{"pages":{"search":{"query":"AV MathTech","originalQuery":"AV MathTech","serpid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","parentReqid":"","serpItems":[{"id":"16961203392222539475-0-0","type":"videoSnippet","props":{"videoId":"16961203392222539475"},"curPage":0},{"id":"3069538793604885392-0-1","type":"videoSnippet","props":{"videoId":"3069538793604885392"},"curPage":0},{"id":"14951792394219975165-0-2","type":"videoSnippet","props":{"videoId":"14951792394219975165"},"curPage":0},{"id":"16070504301166036267-0-3","type":"videoSnippet","props":{"videoId":"16070504301166036267"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEFWIE1hdGhUZWNoCg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","ui":"desktop","yuid":"7571720181771584853"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"11487781041250198608-0-5","type":"videoSnippet","props":{"videoId":"11487781041250198608"},"curPage":0},{"id":"6102360461681452041-0-6","type":"videoSnippet","props":{"videoId":"6102360461681452041"},"curPage":0},{"id":"11610596848832439100-0-7","type":"videoSnippet","props":{"videoId":"11610596848832439100"},"curPage":0},{"id":"18374982937218468458-0-8","type":"videoSnippet","props":{"videoId":"18374982937218468458"},"curPage":0},{"id":"13481872595322230004-0-9","type":"videoSnippet","props":{"videoId":"13481872595322230004"},"curPage":0},{"id":"15073873106952921473-0-10","type":"videoSnippet","props":{"videoId":"15073873106952921473"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEFWIE1hdGhUZWNoCg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","ui":"desktop","yuid":"7571720181771584853"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"13913443276548059590-0-12","type":"videoSnippet","props":{"videoId":"13913443276548059590"},"curPage":0},{"id":"15942355778670852769-0-13","type":"videoSnippet","props":{"videoId":"15942355778670852769"},"curPage":0},{"id":"1367375255134206146-0-14","type":"videoSnippet","props":{"videoId":"1367375255134206146"},"curPage":0},{"id":"7048340523389753610-0-15","type":"videoSnippet","props":{"videoId":"7048340523389753610"},"curPage":0},{"id":"17523148987374675291-0-16","type":"videoSnippet","props":{"videoId":"17523148987374675291"},"curPage":0},{"id":"50591397126640755-0-17","type":"videoSnippet","props":{"videoId":"50591397126640755"},"curPage":0},{"id":"1725909956062664376-0-18","type":"videoSnippet","props":{"videoId":"1725909956062664376"},"curPage":0},{"id":"14516148415828835866-0-19","type":"videoSnippet","props":{"videoId":"14516148415828835866"},"curPage":0},{"id":"2237764118382957432-0-20","type":"videoSnippet","props":{"videoId":"2237764118382957432"},"curPage":0},{"id":"7938447353115069322-0-21","type":"videoSnippet","props":{"videoId":"7938447353115069322"},"curPage":0},{"id":"13035432225398389490-0-22","type":"videoSnippet","props":{"videoId":"13035432225398389490"},"curPage":0},{"id":"10239389000218424535-0-23","type":"videoSnippet","props":{"videoId":"10239389000218424535"},"curPage":0},{"id":"3540251035857020109-0-24","type":"videoSnippet","props":{"videoId":"3540251035857020109"},"curPage":0},{"id":"6714072428496423494-0-25","type":"videoSnippet","props":{"videoId":"6714072428496423494"},"curPage":0},{"id":"14700943493394219677-0-26","type":"videoSnippet","props":{"videoId":"14700943493394219677"},"curPage":0},{"id":"1553245517051567811-0-27","type":"videoSnippet","props":{"videoId":"1553245517051567811"},"curPage":0},{"id":"3361411409579568221-0-28","type":"videoSnippet","props":{"videoId":"3361411409579568221"},"curPage":0},{"id":"14430519612846794746-0-29","type":"videoSnippet","props":{"videoId":"14430519612846794746"},"curPage":0},{"id":"5770073643003888782-0-30","type":"videoSnippet","props":{"videoId":"5770073643003888782"},"curPage":0},{"id":"3531643455849524092-0-31","type":"videoSnippet","props":{"videoId":"3531643455849524092"},"curPage":0},{"id":"1225676179282889416-0-32","type":"videoSnippet","props":{"videoId":"1225676179282889416"},"curPage":0},{"id":"17421683389564325649-0-33","type":"videoSnippet","props":{"videoId":"17421683389564325649"},"curPage":0},{"id":"1687118265449453228-0-34","type":"videoSnippet","props":{"videoId":"1687118265449453228"},"curPage":0},{"id":"2724042116055896401-0-35","type":"videoSnippet","props":{"videoId":"2724042116055896401"},"curPage":0},{"id":"15440091326209299276-0-36","type":"videoSnippet","props":{"videoId":"15440091326209299276"},"curPage":0},{"id":"2328220614763614367-0-37","type":"videoSnippet","props":{"videoId":"2328220614763614367"},"curPage":0},{"id":"17543296386795869083-0-38","type":"videoSnippet","props":{"videoId":"17543296386795869083"},"curPage":0},{"id":"5476060016830583688-0-39","type":"videoSnippet","props":{"videoId":"5476060016830583688"},"curPage":0},{"id":"376380799767643405-0-40","type":"videoSnippet","props":{"videoId":"376380799767643405"},"curPage":0},{"id":"16164174970163614349-0-41","type":"videoSnippet","props":{"videoId":"16164174970163614349"},"curPage":0},{"id":"9068733953901641021-0-42","type":"videoSnippet","props":{"videoId":"9068733953901641021"},"curPage":0},{"id":"11764907202417023480-0-43","type":"videoSnippet","props":{"videoId":"11764907202417023480"},"curPage":0},{"id":"15516080433250147611-0-44","type":"videoSnippet","props":{"videoId":"15516080433250147611"},"curPage":0},{"id":"6172645186178640658-0-45","type":"videoSnippet","props":{"videoId":"6172645186178640658"},"curPage":0},{"id":"10245219360576536085-0-46","type":"videoSnippet","props":{"videoId":"10245219360576536085"},"curPage":0},{"id":"10014056887280849979-0-47","type":"videoSnippet","props":{"videoId":"10014056887280849979"},"curPage":0},{"id":"7520087366119384617-0-48","type":"videoSnippet","props":{"videoId":"7520087366119384617"},"curPage":0},{"id":"9588690245186595101-0-49","type":"videoSnippet","props":{"videoId":"9588690245186595101"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":false},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEFWIE1hdGhUZWNoCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","ui":"desktop","yuid":"7571720181771584853"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Fpromo%3Dpumpkin%26text%3DAV%2BMathTech","pages":[{"reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","start":0,"end":50,"pageNumber":0,"isCounterSent":false}]},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"4210666651704371126797","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_search_toggle_with_text":1,"video_viewer_show_placeholder":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1491314,0,25;151171,0,39;1281084,0,37;287509,0,53;1447467,0,87;1447550,0,58;1478787,0,20;1482982,0,5"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Fpromo%3Dpumpkin%26text%3DAV%2BMathTech","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?promo=pumpkin&text=AV+MathTech","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?promo=pumpkin&text=AV+MathTech","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"AV MathTech: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"AV MathTech\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"AV MathTech — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":true,"sessionCsrfToken":"yfcafe0d58844b3650ffe6099cc20863b","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1491314,151171,1281084,287509,1447467,1447550,1478787,1482982","queryText":"AV MathTech","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7571720181771584853","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1492788,1490736,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":true,"language":"tr","user_time":{"epoch":"1771584859","tz":"America/Louisville","to_iso":"2026-02-20T05:54:19-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1491314,151171,1281084,287509,1447467,1447550,1478787,1482982","queryText":"AV MathTech","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7571720181771584853","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"4210666651704371126797","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":149,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"shouldCensorShockContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false,"isPlayerChangeCounterEnabled":false,"isSmallTitle":false,"shouldRestoreMuteState":false,"isAdvUnderPlayerWithSlider":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"showShock":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7571720181771584853","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1773.0__a3bec2ea4008d9cb4d104248a87be1983f3fae69","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"16961203392222539475":{"videoId":"16961203392222539475","docid":"34-1-9-ZCDB5C41DA028E7DF","description":"Mathematics Training and Talent Search Programme (MTTS) is the most popular undergraduate/graduate training programme in Mathematics running in India. It conducts workshops of duration from 1...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"0","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"How to fill MTTS application form.","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=EZo5swo8bJ0\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxNjk2MTIwMzM5MjIyMjUzOTQ3NVoUMTY5NjEyMDMzOTIyMjI1Mzk0NzVqrw0SATAYACJFGjEACipoaG9tZmZ2eGt0d3BpZnViaGhVQzNNdlFBOEZQeGxCMnpHcFRUNWVmaHcSAgASKhDCDw8aDz8TqAOCBCQBgAQrKosBEAEaeIH7AAH6_wIAA_4K-_0D_wEeCgP69AQEAPEB_wX2AQAAAfkA9_oBAAD4_wEN_QAAAPn7A_8D_gAACwsMBgUAAAAQ-vUB9QAAAP4G_gr_AQAACfcFEQP_AAAJDPn4_wAAAAAFCgMBAAAABAgEBAAAAAAM9QAFAAAAACAALVkm1zs4E0AJSE5QAipzEAAaYAsBABEJBsrZBVH39tfcFRLfAtn-1gH_BgQABgno9hn01r0QFf8l8grRtgAAAPslBT8gAAdaDODQFPP6FczP2R3-f_Il598SCfK--Pv1JS0YCfkjOgDU5wghJw0FKRZBJiAALT6uQjs4E0AJSG9QAiqvBhAMGqAGAAB0QgAAcMEAAPRCAAAUwgAAwEAAALjBAADgQAAAUMIAAHzCAACwwQAAqEEAAEDBAADOwgAAAMEAAOBBAACAQQAAUEEAAFjCAACAQAAAQMIAAJZCAACIwQAAIMIAAJRCAAB4QgAA0EEAAIDAAAAwwgAAAAAAABhCAABAwAAAhkIAAJbCAABAwQAA-MEAAKDAAAAwwQAAREIAAOBAAACgwAAA0MEAAKjBAACAQAAAIEIAAIC_AAAwwgAAPMIAAABBAACGQgAAAEAAAIC_AAAwwQAAMMEAAEBAAABUQgAAgEAAAMjBAACAQQAADMIAAFxCAAA4QgAAEMEAAFDCAADAQQAAIEEAACBCAAAQQgAAEMEAADDCAAAwQQAAKEIAAJhBAAAIwgAAlkIAAEjCAAAowgAAwMEAAEDAAACgQAAAUMEAAJjBAACQQQAAlEIAAHhCAAAQQgAAnkIAAJDBAABgwQAAoEAAAIDBAACAQAAAiEEAAATCAAC6wgAAIMIAANjBAABAwQAAoMAAAABCAABAwAAAEMEAAKJCAABkQgAA4MIAAMzCAAC4QQAABEIAAJRCAAB4wgAA-EEAANDBAACgQAAAwEEAAADBAAA8QgAAUMEAAIhBAACAvwAApMIAAJjCAACgQAAApMIAAFDBAACIQQAAmEIAAKBBAAAQQgAASMIAAKhBAACgwgAAIMIAADjCAACgQQAArkIAACBCAABwQQAAgD8AAFBBAAAgwQAAIMIAABDBAAAUQgAAMEEAANhBAACgQQAAgD8AAEBAAACQwQAAqEEAAADBAAAAwAAAUMEAANhBAABQQQAAhEIAAGBBAAAQQQAAksIAAIC_AACyQgAAgD8AAKBAAAAAAAAAHEIAAMDBAABgwQAArkIAAHBBAACgQAAAiMEAAIDCAADAwAAAgMAAAEDBAAAEQgAAAEIAAABAAAB8wgAADEIAACRCAABEwgAA6MEAAIjBAAAgQQAAcEIAAEDCAAA4wgAAREIAAODAAABQQQAAwEAAAODBAAAYQgAAEEIAABDBAAAQQQAAXMIAAPBBAAAIwgAATMIgADgTQAlIdVABKo8CEAAagAIAABA9AACgvAAAUD0AAOA8AACgPAAAED0AAKg9AAA9vwAAqr4AAFQ-AACCPgAAqL0AAGy-AAA0PgAAor4AAEC8AABkPgAAuD0AAIA7AACqPgAAfz8AAKC8AADovQAAUD0AAHS-AACgvAAA4LwAAES-AACCvgAAgLsAABw-AABQvQAANL4AALi9AABwvQAAoLwAAMY-AAADvwAAdL4AAKi9AAA8vgAAUL0AANg9AAAEPgAAUL0AAEC8AADgvAAA6L0AAJg9AACavgAAuD0AADw-AADIPQAAhj4AAPi9AAAwvQAANT8AAES-AACyPgAAND4AAMi9AADYPQAAuD0AAHA9IAA4E0AJSHxQASqPAhABGoACAABEvgAANL4AANa-AAArvwAAUD0AADA9AAAUvgAA6D0AAHS-AADYPQAAmL0AAEC8AADovQAANL4AAIC7AABQvQAA6D0AABE_AACovQAAwj4AABy-AAAsPgAAuD0AAPi9AABQvQAAcD0AAHC9AAD4vQAAFD4AAIA7AAAMPgAAUD0AAIi9AAAEPgAABD4AAAy-AAB8PgAAJD4AAIa-AACovQAAFD4AAOA8AAAEvgAA4DwAAGS-AABsPgAAf78AADC9AABUvgAAQLwAAMg9AABcvgAARD4AAFQ-AACAOwAAQDwAAKg9AACgvAAAiD0AAIi9AADovQAAoDwAADS-AACIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=EZo5swo8bJ0","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16961203392222539475"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"3069538793604885392":{"videoId":"3069538793604885392","docid":"34-8-8-ZBB876AF6C12F45F6","description":"(1) Calculus: (a) The function of One Variable: Mohit Tyagi sir channel: / mohittyagi Topic to be covered from this channel (1) Functions (2) Limit (3) Continuity (4)Differentiation (5) Definite...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"1","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"GATE 2023 Mathematics Strategy || Study Material","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ohj-aNg7hR8\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChMzMDY5NTM4NzkzNjA0ODg1MzkyWhMzMDY5NTM4NzkzNjA0ODg1Mzkyaq8NEgEwGAAiRRoxAAoqaGhvbWZmdnhrdHdwaWZ1YmhoVUMzTXZRQThGUHhsQjJ6R3BUVDVlZmh3EgIAEioQwg8PGg8_E7gHggQkAYAEKyqLARABGniB_P8IAQABAPUIAP0MAv4ABAAAAvj__gDoAfj7-f4BAAbyCwYEAAAACv_5A_oAAAAE-_wL__0BAAb39Q0CAAAAIA39-fsAAAAOGfoC_gEAAOr2DAgDAAAAEggC9P8AAAD0_gQBAQAAAP4K-QsAAAAAEwsA-wAAAAAgAC1KxNQ7OBNACUhOUAIqcxAAGmD7CQAz_A_15RUR_uju7Bbz8vnWC-0BAN8DAAUE7N4IFfLsBAQAINMg784AAAAW8wET8ADcPdft6R0SCQDkzucBG3_5EfX8AAL24hMU5-kkCQzYCAUA-uj0FTIf6x0HCjAgAC2Pnn07OBNACUhvUAIqrwYQDBqgBgAAeEIAAIjBAACIQgAAkMEAAJhBAAAkwgAAAAAAAAzCAAAAwgAAEEEAAEBBAAAgwQAA0sIAAADCAAAcQgAAoMAAAABBAABAwQAAYEEAADTCAADAQQAAmMEAABDCAABgQgAAyEIAAODAAAAUwgAAisIAANBBAAAUQgAA4MEAAKBCAACowgAAuMEAABTCAABgwQAAEMEAABRCAADgwAAAAMEAAAxCAAAQwQAAAEIAAFxCAADwQQAAgsIAAGTCAAAAQAAAvkIAAADAAACgwQAA-MEAAODAAAAAQgAAEEIAAIhBAAAEwgAATEIAAETCAAAoQgAAnEIAAIA_AAD4wQAA-MEAAAAAAAAEQgAAHEIAABDCAADYwQAAQEEAAIBCAAAAQAAAaMIAAIxCAABwwQAAHMIAAKDAAADYwQAAgL8AACBBAAAQwgAAQEEAAIBCAAC0QgAAMEEAAChCAAAwwQAAgL8AAJBBAABYwgAAQMAAAABAAACIwQAAiMIAAGjCAAAgwQAAAAAAAKBBAACmQgAADMIAAGDBAACeQgAAiEIAAOzCAACKwgAAUEEAAPBBAADgQQAAyMEAAERCAACIQQAAEEEAAMBAAABgwQAASEIAACDBAACgQAAAAEAAAFzCAACAwgAA6MEAACjCAACwwQAAYMEAAIJCAABoQgAAkEEAAFzCAACgQAAAosIAAATCAAAQwQAAMEIAANBCAACAQQAA2MEAAOBAAABQQQAAIMEAAEzCAAAAQAAAwEEAADDBAACAvwAAAEEAAIhBAACAwQAAuMEAAGBBAAAwwQAAoEEAAHDBAAAAQQAA4MAAAJhCAAAAQQAANEIAALrCAAAwwQAA8EIAABTCAACIQQAAcEEAADBBAADgwQAAEMEAAIRCAAAAQQAA8EEAANhBAAA8wgAAAMEAAAjCAAAwwQAAAEIAACRCAADIwQAAEMIAAGxCAABAQQAA4EAAAFDBAABAQAAAAEAAAHhCAABAwgAA-MEAAExCAABgwQAAoEAAAMDBAADIwQAAGEIAAPBBAADAQAAA-MEAAFjCAADQQQAAVMIAAHDCIAA4E0AJSHVQASqPAhAAGoACAADovQAARL4AAHw-AAAMPgAAiD0AANg9AACKvgAAK78AAOA8AADoPQAAHD4AAOC8AABUPgAAJD4AAIK-AAAQvQAAqj4AAOA8AAAsPgAA6j4AAH8_AACYPQAAgDsAAIo-AAAQvQAAiL0AAIg9AADIvQAAED0AADA9AADYPQAAXL4AAKi9AADYvQAA-D0AALi9AADgvAAAXL4AAIi9AABQvQAAyr4AAHS-AADYPQAAiL0AAPi9AABAPAAAkj4AAHy-AAB0vgAAcL0AAAQ-AAAcvgAAoDwAAEA8AAB8vgAAuL0AAFk_AACAOwAA4DwAAPg9AAC4PQAALD4AAEC8AABAvCAAOBNACUh8UAEqjwIQARqAAgAA7r4AABS-AADCvgAAH78AABA9AABQvQAA6D0AAFC9AABAvAAAiD0AABA9AABAvAAAXL4AABy-AACAOwAA4LwAAJi9AAAnPwAABL4AAKo-AABUPgAAcD0AAFC9AABAPAAAQDwAAJg9AACgPAAABD4AAAQ-AABQPQAAFD4AAIC7AACIvQAAEL0AAKY-AAAcvgAA2D0AAFC9AACOvgAAhj4AAMY-AAA0vgAAiD0AAIg9AAD4vQAAiL0AAH-_AABAPAAA6L0AANi9AACovQAA-L0AAMi9AACAuwAA9j4AAMg9AADgvAAATD4AAIA7AABQvQAADL4AAOA8AACAuwAAED0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ohj-aNg7hR8","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3069538793604885392"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"14951792394219975165":{"videoId":"14951792394219975165","docid":"34-10-9-ZA5247469BBF21ACB","description":"In this video, I have discussed the books and strategies to crack IIT JAM 2023 Mathematics. Function of One Variable: Mohit Tyagi sir channel: / mohittyagi Topic to be covered from this channel...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"2","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Self Study Tips for IIT JAM 2024 Mathematics || Free Study Material","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JMKIcqqiMs8\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxNDk1MTc5MjM5NDIxOTk3NTE2NVoUMTQ5NTE3OTIzOTQyMTk5NzUxNjVqrw0SATAYACJFGjEACipoaG9tZmZ2eGt0d3BpZnViaGhVQzNNdlFBOEZQeGxCMnpHcFRUNWVmaHcSAgASKhDCDw8aDz8TywiCBCQBgAQrKosBEAEaeIH1BAD4_AUA9BIGBgcE_QH1AfgA-f7-AP36-wL0BP4A-fv_BQUAAADvBO4E_QAAAP34-AL7_gAABALuBgIAAAARCPj99wAAAAUUAPr-AQAA7vT9CwP_AAAdAgf7_wAAAPUA__oDAAAAAhABBwAAAAAO_gH2AAAAACAALSvk3js4E0AJSE5QAipzEAAaYA0MACEYEvfkBRT9-PfnEeTmA9X15wkA-wIAFgPq5wwZ8NwR-gAJ4Anx0AAAABn4Ew0EAOo3AejnIhXzBtjP8gAOfxUf8wERGenbKRrmCRoUE_b5GAD47gQKLAfvDBIKISAALe9MhTs4E0AJSG9QAiqvBhAMGqAGAAAwQgAAmMEAAMJCAACIwQAAoEEAAPjBAACAvwAA8MEAAGjCAADAwAAAIEEAAIBAAAD8wgAANMIAACBCAAAAAAAAYEEAALjBAAC4QQAADMIAAMhBAACgwQAA8MEAAIBCAACcQgAAoMAAABDCAABEwgAAsEEAAHxCAACAwQAAsEIAAIrCAAAMwgAA8MEAAKBAAAAwQQAAEEIAABDBAADgQAAAuEEAAIjBAAD4QQAAOEIAAPBBAABgwgAAeMIAADBBAAC-QgAAAAAAAIA_AAAcwgAAoMAAAOBBAAAcQgAAUEEAANjBAAAQQgAAMMIAADxCAACaQgAAAEEAAADCAACYwQAAQEEAALhBAAAYQgAAGMIAACzCAAAwQQAAikIAACDBAABcwgAAlEIAANDBAABYwgAAsMEAAEDBAACgQQAAIMEAAAzCAADAQAAAdEIAAJpCAABgQQAAiEIAAKDAAAAwQQAAMMEAAFjCAACAPwAAUEEAALjBAABQwgAAGMIAAIDAAAAAAAAAgEEAAJZCAAD4wQAAUMEAAGxCAAAkQgAA2sIAAFjCAADAQAAALEIAABRCAACwwQAADEIAAEBAAAAAQQAAUEEAAFDBAACIQgAAgD8AAGBBAABwQQAAcMIAAITCAAAYwgAAVMIAAIDBAAAgwQAAgkIAAIRCAABQQQAAXMIAAKDAAACQwgAAFMIAANDBAAAEQgAAskIAAMhBAACgwQAAmEEAAAAAAACQwQAAdMIAAKBAAAAIQgAAuMEAAADAAACAQAAAAEEAAMDAAADgQAAAUEEAAFDBAACIQQAAsMEAAIDAAACAwQAAjkIAADBBAAA4QgAAmsIAAADBAADuQgAALMIAAEBBAAAAQAAAAEEAAAjCAAAAwgAAgkIAAHBBAAAAQgAAwEEAADTCAAAQwQAAAMEAAEDBAAA0QgAAKEIAACDCAAA8wgAAhEIAALBBAABgwQAAwMEAAJjBAAAAwAAAdEIAAILCAAAUwgAAfEIAACTCAACgQAAA2MEAALjBAAA8QgAAuEEAAOBAAACwwQAAZMIAAARCAAAswgAAcMIgADgTQAlIdVABKo8CEAAagAIAAHA9AACOvgAA-D0AAAw-AACAuwAAtj4AABC9AABZvwAAFL4AABA9AAAUPgAAgr4AAI4-AABAvAAAcL0AAJK-AAD6PgAAoDwAAOi9AAAXPwAAfz8AAOi9AABQPQAAoDwAAPg9AACAOwAAgDsAACQ-AADuvgAAJL4AALY-AACAuwAAyL0AAHA9AADYvQAA-L0AAOA8AAC4vQAAgr4AAJg9AAC-vgAAuL0AADw-AACovQAAoLwAADS-AACKPgAAC78AAJK-AAA8vgAAML0AAMi9AACOPgAAQDwAAKK-AACIvQAAQT8AACy-AAAsPgAAfD4AAAw-AADgPAAA2D0AAJo-IAA4E0AJSHxQASqPAhABGoACAABcvgAAUL0AACS-AAD-vgAAQDwAAEC8AAC4PQAAEL0AAHC9AACoPQAAUL0AAOC8AAAUvgAALL4AAMg9AABAPAAAgDsAAC8_AACIvQAAwj4AAII-AABQPQAAqL0AALi9AABAvAAA4DwAADC9AAAQPQAAQDwAADQ-AACIPQAAuD0AANi9AABcvgAAPD4AADA9AACIPQAAiD0AAJK-AAAwPQAAfD4AAKC8AADoPQAAoDwAAMg9AABQPQAAf78AACS-AACgvAAARL4AAOA8AACgvAAAmL0AABC9AAC-PgAAuD0AAEC8AAAwvQAAiL0AACw-AABAvAAAmD0AAKg9AACYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=JMKIcqqiMs8","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14951792394219975165"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"16070504301166036267":{"videoId":"16070504301166036267","docid":"34-5-1-Z8705405699B8543E","description":"AV Math AV Trainings Learn AV calculation Calculation for AV Resources for Learning AV Math Sound Calculations AV Math in AV System Design AV math for Avixa Avixa Prep AV calculations AV Math...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"3","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"AV Math","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LlCeem795wI\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxNjA3MDUwNDMwMTE2NjAzNjI2N1oUMTYwNzA1MDQzMDExNjYwMzYyNjdqrw0SATAYACJFGjEACipoaHducmtndG5tdnNucHJkaGhVQ0VFdFcxTm5aOEFpSjZwYzEtck95T2cSAgASKhDCDw8aDz8T0QKCBCQBgAQrKosBEAEaeIH2-_v7-wUA_QIFAvoF_gEEAAAC-f_-APwF-v0GBP4A9gMBAgcAAAAC_e_--gAAAPP6AQX9AAAAAwv3_wMAAAAVC_P6AAAAABL-APwK_wEB7f8CCAMAAAAFDAgAAAAAAAMM-f3__wAADw0JAgEAAAANBQIDAAAAACAALVmR4js4E0AJSE5QAipzEAAaYPgZABUhLCm5I__jxufWCtPfFez0wA3_9-v_HNDG6AHe-907Jf_v3hrfrQAAACvgDN0rALh57b6tMSv7CM3iJBcRfwATzwUm4rjMGBi2Cu4l-uXQJAAQ8sQY3gDsChZTXCAALb2SIDs4E0AJSG9QAiqvBhAMGqAGAACAwQAAiMEAAKxCAABQQQAAQEEAAMhBAADIQQAAaMIAAGjCAABgwQAAmMEAANjBAAAMwgAAgEEAAIC_AAA0wgAATEIAAOhBAABgwgAAwMAAALhBAACwwQAAUMEAADDBAAAAwQAA0EEAAFTCAACAQAAAAEIAAIDBAAAUwgAA4MAAAFDCAABAwAAAUMEAAKBBAABAQQAAFEIAAFxCAAAYwgAAaEIAANhBAAD4wQAA-EEAABDBAAB4wgAAJEIAAABCAAC4QgAAsMIAAGjCAACAvwAAOMIAAIhBAACowQAAaEIAAHDBAAAgQQAAgD8AAAxCAAAQwQAAoMAAAEBAAACewgAAgD8AACzCAADYQQAAAAAAAITCAAAUwgAANMIAAPBBAACAvwAAAEIAAIBBAACcwgAAAEEAAABBAADgQQAAxMIAACzCAAAgwQAApkIAAGBBAAAEQgAAMEEAAAhCAAAAQQAAqMEAAGBCAABQQQAAEEIAAIC_AACywgAAkEEAAIBAAACAvwAAbEIAAJBBAABcQgAAEEEAAPBBAAAEQgAAOMIAANjBAABUQgAAcEEAANRCAACwQQAABMIAAChCAAAowgAAEEIAAEzCAAAwQgAAAMEAAPBBAAAQwgAA8EEAAODAAABAQQAAuMEAAFDBAACqwgAAcMEAAIC_AADQwQAAIEEAADzCAACAwAAAmMEAAOjBAABEwgAA6EEAADBCAAAAwAAAGMIAAGDBAACowQAAcMEAAFRCAAAAQgAAUEEAAEBCAABAQgAAYMEAAIBAAACwQQAAtkIAANJCAAAYwgAAkMIAACjCAABUwgAA4MAAAIJCAABAwQAAwEAAAFDBAACYwQAA3MIAAERCAACOwgAAoEAAAIjBAACYwQAADMIAAAxCAAAAwQAAsMEAAKLCAABYQgAAGMIAAOBAAADgwQAAAEIAALDBAADwwQAAYEEAAMxCAABAQQAASMIAAJjCAABgwQAAYEIAAIhBAAA0wgAAlEIAAOjBAACAPwAAHMIAAKhBAAAwwQAAyEEAAMDAAAB4QgAAIEIAAGDBAADQwQAA6EEgADgTQAlIdVABKo8CEAAagAIAADy-AAA0vgAAJD4AADA9AAAUPgAAoj4AAGy-AAAXvwAAbL4AAEC8AAAMPgAAsr4AAKg9AADgPAAAuL0AABA9AAB8PgAA4DwAAKi9AABkPgAAfz8AALi9AAD4vQAAML0AAFA9AACgvAAA2L0AAGS-AAD4PQAAJD4AAFQ-AADIPQAAcL0AADA9AABAvAAA6L0AALi9AACyvgAATL4AAEC8AAAMPgAAfL4AAII-AAC4PQAARL4AAHS-AABQvQAABL4AAL6-AAAsvgAA2L0AAFC9AADePgAAyD0AAEC8AAC4PQAAAz8AAFA9AAB8PgAAcD0AAEC8AAA8PgAA4DwAAKi9IAA4E0AJSHxQASqPAhABGoACAACAuwAAuD0AAOi9AAAZvwAA4DwAABC9AAC-PgAAQLwAAHw-AAAsPgAAUL0AAIg9AAAwPQAAEL0AAOA8AACAOwAAmL0AAAs_AACyvgAAij4AAAy-AABQvQAAyL0AAEA8AAC4vQAARD4AADA9AACgvAAAgLsAADw-AABAPAAA2D0AAIK-AACAOwAANL4AAMg9AAAUPgAAUL0AADy-AAD4vQAA6D0AADA9AADgPAAAVD4AAEC8AAC4vQAAf78AAHA9AABQvQAAML0AAMi9AAB0PgAAbD4AAEC8AAC4PQAABD4AAEA8AAB0vgAAoDwAABC9AABwPQAAmL0AAMi9AAAEviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=LlCeem795wI","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16070504301166036267"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"11487781041250198608":{"videoId":"11487781041250198608","docid":"34-0-0-ZB97E791113B2EF28","description":"In this video, we will be talking about the placements of MSc Mathematics in IITs/NITs. Follow me on insta: / _amitvis___ #iitjam2023 #iitjammaths #iitjamcutoff...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"5","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"MSc Mathematics placements in IITs/NITs","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xy6G8PHSXGE\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOFoUMTE0ODc3ODEwNDEyNTAxOTg2MDhqrw0SATAYACJFGjEACipoaG9tZmZ2eGt0d3BpZnViaGhVQzNNdlFBOEZQeGxCMnpHcFRUNWVmaHcSAgASKhDCDw8aDz8T2wWCBCQBgAQrKosBEAEaeIH7C_4A_wEAA_kODgYL-gIO_fkBCf7_APUF9f31Av8A_QX7-g4BAAAGE_YA_gAAAPb9_v78_wAABgb9-vsAAAAaAv0A9wAAAAkI_PcJ_wEB7fIE9AIAAAAFCQHy_wAAAPL4AAcAAAAA_AgIBQAAAAAD9gn7AAAAACAALQhh1Ts4E0AJSE5QAipzEAAaYNgKACcANeGqFDPj9Nzq_OrjArYC6A3_AR__Dwn60AYw88v8BgALthjorwAAADIM5xULAN1i2POdOBIfHB3rEf0pfxMVze0M3uUVBx3g5C5CLekJHAD06AoJEy_9LTs0VSAALWp2Ljs4E0AJSG9QAiqvBhAMGqAGAABcQgAAMMEAAKBCAAAgwgAAQMEAAPjBAABAQAAAUMIAAITCAAAwQQAA0EEAANDBAACiwgAABMIAAKhBAABwQQAA-EEAAAjCAAAgQQAASMIAAIBCAAAAQAAA-MEAAIZCAACoQgAAAEAAAAjCAAB4wgAALEIAADhCAACgQAAAikIAAIrCAADQwQAAMMIAAMBBAABQwQAABEIAAODAAAAAQAAAkMEAAGDBAACgQAAASEIAABBBAABMwgAAQMIAAHBBAACYQgAAwMAAAMDAAAAYwgAA4MAAACBBAAAUQgAAoMAAAETCAAAgQQAAFMIAAExCAABMQgAAUMEAABjCAABAQQAAgMAAAOBBAAAUQgAADMIAAPjBAABQQQAASEIAAIBAAABEwgAALEIAACTCAACOwgAAuMEAAOBAAADIQQAAoMAAACjCAAA8QgAAoEIAAGhCAABAQgAAYEIAADDBAAAIQgAAQMAAAEjCAADQQQAAgEAAAKjBAADewgAACMIAAODBAAAAQQAAAMEAANhBAACIwQAA2MEAAGxCAACaQgAA4MIAAJDCAADIQQAAREIAAHRCAAAUwgAASEIAAPjBAACgQAAA0EEAAIA_AACQQgAAwEAAAHBBAAAAwQAApMIAAKDCAACQQQAAiMIAABDCAABAQQAArkIAAGBBAACAQQAAfMIAAIhBAACCwgAATMIAAKDBAADgQAAArEIAAIBBAACAwQAAEEIAAMBAAACowQAAYMIAAABBAADgQQAAQEAAAADAAAAgQQAAgEEAADDBAABAwgAAcEEAACDBAAAAwAAAGMIAAIBAAACAQQAAeEIAAIBBAADgQQAAcMIAAABAAADEQgAA8MEAAKhBAADAQAAAqEEAABDBAADQwQAAhkIAAIBBAACwQQAAIMEAAHTCAADYwQAAMEEAAEDBAAAoQgAAEEIAAEBAAABIwgAAhkIAADBCAAAAwgAAyMEAAIjBAADAQQAAXEIAAHjCAABAwQAAhkIAABTCAAAAQQAAEMEAACDCAADgQQAAkEEAAPDBAABgwQAAMMIAADBBAADYwQAAMMIgADgTQAlIdVABKo8CEAAagAIAAEC8AAAQvQAAcD0AADS-AABQvQAAyj4AANi9AABFvwAArr4AABw-AAAQPQAAjr4AAIA7AABwPQAA2L0AAIK-AADYPQAA6D0AAOC8AADKPgAAfz8AAKi9AADgvAAAmL0AAIA7AAC-vgAAED0AABC9AAAwvQAA-D0AAHw-AADYvQAAHD4AAHC9AACSvgAADD4AAFQ-AACCvgAArr4AABy-AADYvQAAJL4AAOC8AAC4vQAAmD0AAHy-AACoPQAABL4AAPi9AADivgAAgLsAADC9AAD2PgAABD4AADy-AACIPQAAQz8AAOg9AABMPgAAED0AAKC8AAC4PQAAJD4AAJg9IAA4E0AJSHxQASqPAhABGoACAACOvgAADD4AAHC9AAAfvwAADL4AAIg9AABEPgAAQLwAAAw-AAC4PQAAML0AACS-AADYvQAABL4AAIA7AABQPQAAMD0AADs_AAAEvgAAXD4AAOC8AAAUvgAAoDwAABS-AAD4vQAAVD4AAHC9AABwPQAADD4AAKC8AAAwPQAAuD0AAES-AAA0vgAARD4AAOg9AACGPgAAbD4AAHy-AACOvgAAij4AALg9AAC4PQAAML0AAJi9AABEPgAAf78AAPi9AADgvAAAoDwAADw-AABAPAAA2D0AAKg9AACyPgAAMD0AAEA8AACAOwAAoLwAAEA8AAAcPgAADL4AAEC8AADgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=xy6G8PHSXGE","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11487781041250198608"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"6102360461681452041":{"videoId":"6102360461681452041","docid":"34-5-15-Z53A57BBAD01A09A2","description":"In this video, we will discuss the definition of differential Equations, How to formulate differential equations, and methods to solve differential equations. #iitjam2022 #iitjam2023 #iitjammaths...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"6","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"L-1 Differential Equations || IIT JAM 2023 || Crash Course","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1At6NkhS9LE\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChM2MTAyMzYwNDYxNjgxNDUyMDQxWhM2MTAyMzYwNDYxNjgxNDUyMDQxaq8NEgEwGAAiRRoxAAoqaGhvbWZmdnhrdHdwaWZ1YmhoVUMzTXZRQThGUHhsQjJ6R3BUVDVlZmh3EgIAEioQwg8PGg8_E9IUggQkAYAEKyqLARABGniBA_X-BAP9AOr6CQX9AgAA5wX-A_r__wDz8Pn_BQL_AOj8EQUFAAAACAkF_QIAAAAJ9ff-9v4AAAsR_Q0EAAAA8O4DCv0AAAAKBvYJ_gEAAPTx_wED_wAAF_sBBfP-AgDxCfYKAQAAAOv-BQ0AAAAAFfsABQABAAAgAC1C08s7OBNACUhOUAIqcxAAGmAVCQAfHSwGEBkH8PHyBEMBvRfm3ev5_-beAEAl--kuEOq0y-8AYtcBBK0AAAAo7RIOygAwZQnd7FrtG_0CyfYDJH-7LPTj5Q3x4BLw0Ab5EiUvICgA5u3jBDQS2y07KxMgAC0cpC47OBNACUhvUAIqrwYQDBqgBgAAPEIAAEDBAACcQgAAGMIAAEBBAAAkwgAAgEAAAIDCAAB4wgAAYEEAAJBBAACAwQAAnMIAAODBAACYQQAAAEEAALBBAADowQAAqEEAAGTCAAAkQgAAAAAAABDCAAB0QgAAtkIAAKDAAADIwQAAksIAACxCAAAMQgAAQMAAAI5CAABswgAAUMEAAATCAAAAQAAAAMEAAPBBAABAwQAAUEEAAIA_AAAwwQAAmEEAAERCAAC4QQAAdMIAAHTCAAAAAAAAskIAAEDAAABAwQAAHMIAAKjBAACIQQAABEIAAIDAAABgwgAA0EEAADjCAABIQgAAUEIAAGDBAAAEwgAAYMEAAEBAAACAQQAAFEIAACzCAAAEwgAAgD8AAFhCAACAQQAAWMIAAERCAACYwQAAdMIAAGDBAAAAQQAAiEEAAADBAABEwgAAmEEAAJRCAAB0QgAATEIAAGhCAACgwQAASEIAAKBAAACEwgAA0EEAAIBAAABQwQAApsIAACzCAAC4wQAAMEEAAMDAAABcQgAAHMIAAKjBAACAQgAAfEIAAOrCAABMwgAAoEEAADxCAAA4QgAAHMIAACxCAACgwQAAoEAAAPBBAAAAQAAAfEIAAEBBAACIQQAAwEAAAKTCAACKwgAAAMAAAHDCAAAcwgAAYEEAAJhCAACoQQAAEEEAAEjCAACAwAAAosIAAGjCAAAQwQAAoEEAALRCAABQQQAA8MEAACRCAABAQQAA8MEAAIbCAACQQQAAMEEAAABBAACIwQAAAMEAAMBAAACowQAALMIAAMhBAACowQAAoEAAABTCAACYQQAAuEEAAIZCAACgQQAANEIAAJjCAABAwQAA0kIAAPjBAABQQQAAAEEAAIA_AACQwQAA-MEAAHBCAABgQQAA0EEAAGDBAABUwgAAqMEAAIDAAABQwQAAFEIAADhCAACAwQAADMIAAJBCAACgQQAAMMEAAKDBAAAAwAAAUEEAAIhCAAA0wgAA8MEAAHxCAAAIwgAAoEEAAODBAAAEwgAAJEIAAIBBAADgwAAAgMEAAGjCAADIQQAANMIAAFDCIAA4E0AJSHVQASqPAhAAGoACAACIPQAAUL0AAHC9AADovQAAoDwAAOI-AABAvAAAXb8AAJK-AABQPQAADL4AALK-AAD4vQAAyL0AACy-AACCvgAAQDwAAHA9AACYvQAAGT8AAH8_AABUvgAAiL0AABy-AADovQAAZL4AABQ-AABQvQAABL4AALY-AADGPgAAFD4AAES-AACYPQAAFL4AAIY-AAAMPgAATL4AAKq-AAD4vQAAqr4AANK-AAAcPgAAUL0AAOI-AACYvQAAQLwAAFy-AACmvgAAkr4AALi9AACavgAAoj4AAKg9AAAkvgAAED0AAEM_AACAuwAABL4AAEQ-AADIPQAAij4AABw-AAAkPiAAOBNACUh8UAEqjwIQARqAAgAAZL4AAJi9AACAuwAAQb8AAKA8AABAPAAAkj4AABC9AAAQPQAAgLsAADC9AACIvQAA2L0AAEC8AAD4PQAAoLwAAKg9AAAjPwAAPL4AAOI-AACYvQAAuL0AACS-AAAcvgAAMD0AACS-AAAcPgAAUL0AAFA9AABUPgAAED0AAJg9AABcvgAAcL0AAHw-AACgPAAAHL4AAIA7AAB8vgAAqD0AANg9AACgvAAAmD0AAPg9AACqvgAAEL0AAH-_AAAQPQAABL4AAAy-AAAEvgAAND4AAOC8AADoPQAADD4AAOg9AACgPAAAJD4AAOA8AADIvQAAoLwAANi9AAAMPgAAUL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=1At6NkhS9LE","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6102360461681452041"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"11610596848832439100":{"videoId":"11610596848832439100","docid":"34-10-16-Z5768AA1A2DFBD834","description":"in this lecture we will study the graphs and some basic properties of sec(x) and cosec(x). Thank you for watching.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"7","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Functions Lec-10 || IIT JAM","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=lU-fLvn1O-8\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxMTYxMDU5Njg0ODgzMjQzOTEwMFoUMTE2MTA1OTY4NDg4MzI0MzkxMDBqtg8SATAYACJFGjEACipoaG9tZmZ2eGt0d3BpZnViaGhVQzNNdlFBOEZQeGxCMnpHcFRUNWVmaHcSAgASKhDCDw8aDz8T1gaCBCQBgAQrKosBEAEaeIHxBQMB-wUA6gYOAwMB_wD9CPj9-P79AO0C_AQAAAAA6AH9APv_AAD9C_wFCwAAAP_6_vD__gEAFwED__oAAAD7_gb9_QAAAPn-9fr_AQAA-fn-BgP_AAAH_PsKAAAAAP8Q_gP__wAACgT3BAAAAAAH-AD-AAAAACAALRIG4Ds4E0AJSE5QAiqEAhAAGvABf_MY_qDlxf6MHfsA9CrQAoRDBP8LPu0AygvF__YO1AHk4c3_3TQH_wYFCQCIFw8B-_a9_q3CCwI2yxH_o7Hy_t_h2gEHDfABTz4B_-rYz__ZMvn__v8hASbf3gHmG7v-Mfwu_hXj-AIiRwoBGDAHACURJQIYFRP_FtkxAvoPAQf739X90D4LBQnwCPnF5iYC9rcEATFG7_2_pvYCHr8B_RbXMPz-_gIDFNTmDzIWFvPe4v378OPbCxoU9fraPu_84sj5B7O5Gvv42B8A9RAW7fIM8RXX4wkI7BYYBTq4CBUFGu8OCuwSAOcN5Aj2DvTtIAAtHQbnOjgTQAlIYVACKnMQABpgK_8ACPkZEerj-eoirfYozuAWAQ_yEv_5_wA2__wNMgLznRbtAO7n9_uyAAAAMjgFQ_wA-WIc-ypF-CgVyskLExR_ExYK0vAa9tgHLxsZ9Doo_QwtAPAAq_st5rIMZR4UIAAtW9AtOzgTQAlIb1ACKq8GEAwaoAYAAMBBAABgwQAAEMEAAKDAAAAwwgAAgMEAAARCAADowQAA8MEAADRCAABAQQAAGMIAACjCAACGwgAAgD8AAKDBAAAEQgAA4MEAAJDBAACowQAAGEIAAOhBAAAsQgAAAMAAAKBBAACgwQAAlMIAAJjBAAC-QgAA4EEAAABAAACYQQAAMMIAAIBAAACYwQAAQEIAAMBAAADcQgAAhMIAAMDAAACAPwAAsEEAAAxCAACgQQAAPEIAADBBAADwwQAACMIAAGhCAACgwAAAYMEAABxCAABwQQAAQMEAAKBBAACYQQAA9sIAACDCAAAAwQAAikIAADDBAAAYwgAAmMEAAJDCAACIwQAAIMEAAExCAAAEQgAAwMEAAGDBAAA0QgAAcEIAAJDBAAAgQgAAoEEAADjCAACgQQAAAAAAAIhCAABAQQAAcMEAAMjBAAB0wgAAgEEAALDBAAAkwgAAQEIAACBBAAA8QgAAFMIAAEDBAADAQAAAMMEAAMrCAABgQQAACMIAANBBAABgQQAA4EAAAODAAAAgwQAAEEEAAHhCAAAEwgAAYEEAAABAAAAwwgAAeEIAAEBBAAAowgAAEEIAAABBAABAQQAAMMIAAFBBAACAvwAAUEEAAFTCAAD4QQAAyEEAACzCAAAwwQAANMIAAKDCAACmQgAAgL8AAOjBAABQQQAAUMIAAHDCAAAEQgAAkEEAAIDAAABkQgAAIEEAAFBBAACgwAAAOMIAAMBAAACcwgAAiMIAADxCAADgQAAAAMEAAKhBAABwwQAAlMIAABBCAADAQQAAPMIAALDBAABQwQAAPEIAAKhBAAA4QgAA4EAAAGBBAACiwgAAyMEAAEBBAAC4wQAAgEAAALDCAABowgAAOMIAAMBBAADoQQAA8EEAAABBAAAIQgAAVMIAAMDAAAAMwgAAoMEAAKDBAAAwQQAAPMIAADzCAAC4QgAAbEIAAJjBAAAwwQAAIEIAAIA_AADwQgAAdMIAACDCAADGQgAAUEEAAPhBAAAgQQAAZMIAAAxCAACAwAAAkMEAAHBCAACKwgAAPMIAAHDCAABIwiAAOBNACUh1UAEqjwIQABqAAgAAQDwAAEw-AAAkPgAAPD4AAFA9AADaPgAAEL0AABm_AAB0vgAAqD0AAFQ-AAC2vgAAgDsAABw-AACYvQAAHL4AAFC9AAD4PQAA6D0AANY-AAB_PwAABD4AAOi9AAAQPQAAQLwAAAy-AAAwPQAAVL4AAKC8AAB0PgAAFD4AAEC8AADgvAAA2D0AAHA9AABAvAAAQDwAAL6-AADyvgAAFL4AAI6-AADKvgAAcD0AAEC8AAAUPgAAED0AANg9AACYvQAAML0AAHS-AAA0PgAA6D0AAGw-AAAUPgAAnr4AAKC8AAApPwAAMD0AAJo-AADgPAAAgDsAAHA9AACYPQAA6L0gADgTQAlIfFABKo8CEAEagAIAADC9AAC4vQAAXL4AADu_AAAkvgAAMD0AADA9AABAvAAAuL0AAHQ-AACovQAAiD0AAHA9AAAQPQAAiD0AADC9AAC4vQAANT8AAFS-AAC6PgAAiL0AAFS-AADgPAAA6L0AADC9AABAvAAA4DwAAFC9AABwPQAAHD4AABC9AABQPQAAML0AAGS-AACAOwAAyD0AAKC8AAAcPgAAuL0AABy-AAD4PQAAqL0AAOC8AACAOwAAUD0AAIC7AAB_vwAAcL0AAKC8AAAQvQAA-D0AAOC8AAC4PQAALD4AAPi9AABwPQAAQDwAANg9AABwPQAAoDwAAIo-AAC4PQAAoDwAAFS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=lU-fLvn1O-8","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11610596848832439100"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"18374982937218468458":{"videoId":"18374982937218468458","docid":"34-1-8-Z3EB6A13BB26569B8","description":"IIT JAM,IIT jam,iit jam,IIT jam mathematics,IIT jam strategy,IIT JAM 2019,IIT jam 2019 study tips...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"8","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"How to start preparing for IIT JAM Mathematics 2019","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=yN6IfYdoPKU\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxODM3NDk4MjkzNzIxODQ2ODQ1OFoUMTgzNzQ5ODI5MzcyMTg0Njg0NThqtg8SATAYACJFGjEACipoaG9tZmZ2eGt0d3BpZnViaGhVQzNNdlFBOEZQeGxCMnpHcFRUNWVmaHcSAgASKhDCDw8aDz8TiwOCBCQBgAQrKosBEAEaeIH49vv4BPsA8woQCgUG_AEW_fwA9QEBAPD68QT4Af8A7AAF_g4AAAD9G_wFAwAAAAEF-wP9_gEABfj7C_EA_wANBwP1AQAAAAIW8_f_AQAABugICgP_AAAeEgP8_gAAAAkF-_wFAQAACgQJAQAAAAD___7_AAAAACAALUEexjs4E0AJSE5QAiqEAhAAGvABWO_x_oEL_vhJ1usAER7QAtAA_QBhDuwAyCINAS7tEgD5-t4A6hMCANMYBgDC9AEA3fQPAO3j-wAoAQP_4_TzAP0Q-wEqBiQCF__7AicV6ADuFvkA7u0ZAiLp9QAHC-_-4RT-_hn1HAHSCggAMQnk_xIcBwHVGgQBDxAmAuouHwMJ8doA9AcSCvUAIf_M_hwBAt_1AgYL5QDhLwUDChTt-_7iFf355u3_9M_v_ijuIf8TFAn_Lxfp-vkRA_35Cvv7_xDw-u_nEPrtHwkD49QXAA29_Pb72AMF_BABDSnNBg_K6gr4Hf4PAAHd_P7mDPUSIAAtGrMiOzgTQAlIYVACKnMQABpgRPgASOc62t3jLPPv3OIb3sMcyyb09__96_8bHMrwERb_zxX3AOjo1fetAAAAHQ4FTC4A4Gf42wA2yO8KseENB_9_AysOB-gQEdYjIwb-HjwN6io2AOje2kgtFuwoOA0MIAAt8PUuOzgTQAlIb1ACKq8GEAwaoAYAAIhBAAAAQAAAjEIAANhBAADgwAAAgEIAAJRCAACgQQAAWMIAADTCAACoQQAAgD8AAAxCAACQQQAAgEEAAIBAAAC4QQAAYMIAABxCAACMwgAA2EEAAATCAACgwAAAAMAAADDBAACyQgAAuMEAAFDCAAAgQgAA2EEAAIbCAAAIQgAA6MEAABzCAADAwQAA4EAAAABCAABAQgAAqEEAADxCAADQwQAADEIAAAhCAADoQQAAIEEAAGBBAACAvwAAUMEAAKhBAACmwgAAZMIAAJbCAABQQQAAmEEAALhBAACgwAAADMIAAMBBAACEQgAAoEEAAADBAACAwQAANMIAANjBAAAoQgAAmsIAAMDBAACAwQAArMIAAJBBAACYQQAAoEAAALjBAADowQAAAEEAACjCAAD4wQAAAMIAAHhCAAAAAAAAVMIAABhCAABIwgAATMIAAMDBAABwQgAAIMEAAKDBAAAEQgAAiMEAAKDAAACYwQAA4EAAADBBAADIQQAA_sIAADxCAACowQAAEMEAAIhBAABkwgAARMIAAKBBAABQwQAAYMEAALBBAAD4wQAAvEIAAABCAACQQQAANEIAANjBAACgwAAAkMEAABBBAACwQQAAXEIAAJDCAABYQgAA0MEAAODBAADIwQAAkEIAAAjCAAAwwgAAuMEAABzCAAAAwQAAPMIAANDBAAAwQgAAAEEAAEDAAABEQgAAWMIAALhBAACGQgAAgD8AAEDAAACiwgAACEIAAJBBAAA4QgAAOEIAABhCAABMQgAA-EEAAJBBAACGQgAAkEEAAAhCAAAAwQAAbEIAAIC_AACgQAAAAEEAAMTCAADwwQAAyMEAABBBAAAQQQAATEIAAABCAAAAQgAAqEEAAGBBAACgQAAAMEIAALJCAACQwgAAsEEAAJjBAAAQQQAA4MAAACBBAAAkwgAAXMIAAEDBAAAwwQAAvEIAACTCAAC2wgAAMMEAADDBAADwQQAACMIAAADBAAAsQgAAMEIAAJBBAABAQQAAuMEAAIhBAADwQQAAkEEAAEBCAADgwAAAIEEAAJBCAAAcwiAAOBNACUh1UAEqjwIQABqAAgAAQLwAAKC8AAA8PgAAZD4AAJi9AACCPgAA2L0AAD2_AACCvgAAQLwAAOg9AABcvgAA6L0AALg9AACSvgAARL4AAHw-AAAkPgAAJD4AACE_AAB_PwAAMD0AADC9AAC4PQAAUL0AAFS-AADgvAAAJL4AAEy-AAAQPQAAND4AAEA8AABwPQAAgDsAAFy-AAD4PQAAgLsAAKq-AADmvgAAbL4AAHy-AACavgAA4LwAAAy-AADYvQAAVL4AACQ-AABMvgAA2L0AADS-AADoPQAAqD0AAAw-AAB8PgAA5r4AANi9AABjPwAA6D0AAKg9AAAEPgAAmL0AAFA9AABQPQAA-D0gADgTQAlIfFABKo8CEAEagAIAAGS-AABwvQAA6L0AABO_AAAQvQAA4DwAALg9AABAPAAAMD0AACQ-AAAkvgAAoDwAAIg9AADgPAAAUD0AADC9AABAPAAADT8AAIK-AADGPgAAqD0AADC9AABAPAAAyL0AAJg9AAAQPQAAJD4AAFA9AABAPAAAHD4AAIC7AAC4PQAAqL0AACS-AAAQvQAAqD0AAIA7AAAsPgAAmL0AAOA8AAA8PgAALL4AACQ-AABAvAAA4DwAABy-AAB_vwAA2D0AAES-AADoPQAAEL0AAFA9AABAPAAAJD4AAEA8AACYPQAA4LwAAMg9AABQvQAAMD0AABA9AACovQAABD4AAIA7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=yN6IfYdoPKU","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["18374982937218468458"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"911102325"},"13481872595322230004":{"videoId":"13481872595322230004","docid":"34-3-6-Z1F8B08C449EF3BDD","description":"Graph of quadratic equations with different cases.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"9","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Functions Lec-6 || Graph of Quadratic Equations || IIT JAM(MA)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=immNVqXZ_ag\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxMzQ4MTg3MjU5NTMyMjIzMDAwNFoUMTM0ODE4NzI1OTUzMjIyMzAwMDRq1hASATAYACJFGjEACipoaG9tZmZ2eGt0d3BpZnViaGhVQzNNdlFBOEZQeGxCMnpHcFRUNWVmaHcSAgASKhDCDw8aDz8TrQKCBCQBgAQrKosBEAEaeIHzDfr9_AUA8AsMAvoD_wH3CvsE-P39APj1AfIDA_8A7fwD-gP_AAD1DgEJAgAAAPfz_gn4_wEAGPkBB_MAAAACBQb8-AAAAAgGCf_-AQAA8_P49QIAAAAIBAIKAAAAAP8R_gP__wAA_ggDCwAAAAALBP37AAAAACAALVNm3Ts4E0AJSE5QAiqEAhAAGvABYbsr_YEMBvol8_4BOwrVAb4iFgBUN_8Ao_4AABMm9ADo5dP_5hbnAPYgAgDTNjYABvXsAMzwDAD92BL_x-AQAOPl3gE8B98BZgchABsE8v_OGwH93NnnARv6DgEiHL4ADvgD-hQE_AP2M-gCE9Eb_ygWEQK99BL-E94rAvYa7QXp2dT95-kQCfwd_QC41ioC_Of3_-40_gTPAv0G-_Ph_A8B9ur5yOoECe_R_joGE_z7PeEADeDlAjsg8PXYKuH-xAP69vT0D-0U2iME9w4T7zgB5PwG7dwEDCcKDDOuBvHVJAzzJOoH--X37QIb_fQUIAAtiIsEOzgTQAlIYVACKs8HEAAawAfP9wO_-fCRvZ9yEb2-Wfk8EtjcvDwe6bzo20I-jzo1Pez7S7y4GYM9lDlRvX_mAr2Xx6q-E8fsO74RnbwtC1Y-sIpcvUEtJr11dPy9LxOaPQsCEL0TkGC9c0l2O3QlQj1ssPA8CmuhOw7Zo7pvwAI9ONFTvQoJorzJV8K85gwAPULuAr1PCHw7ctJFvd-KRLyrR_U86kd5veHs1rzRzf48wb4jvO31ybz9gLw95YkWPYm3Cb1yta-9Ylk6vedt0bz3qY89gM1evGo39jvATqA81cgTPQyI2ry4EhA95h6XPUlptryBpcS8YctmPZG0QDyVe-a8segsPXSgPbwTQ5K99xw9vbnHUjtmMGY9C8qZPfOBk7zc74W93Qn2Pcid67p8gM49fkw1vH_6j7ypMuw98T-DvREVsjsgooc8-aRuPaBIgbyQJBC8EN-jPaZiAz2fTag9_G8lPbnUkrwzi1C8YHJjPVKj6zyoO7o9oCYpPfzN3Tvwt4O7g-S4PQiZPzzpe_K8G9FiPQ6v9bwFI6U91gI7vknlmjpTghU86KaovdtcCrxNpiU9anlvPevYEDyuYjG9q4yAvXIBQ7xC454979jZPE2_Ajw1-oc9Dv2uvOOZo7u9qSi9eVGlPVC6crr8ZYG9jqFSPN_rWrzcNiK9UahCPd3q2jvFZQY9-gwIvlUhA7phggQ9-qX0PCD7rLsE8cC9HzwkPUnMfbuVRaE8_bsDvbJoNrs5uMS9kG4fPe8SAzs04S29ynQFvD20oTkBo-s9EttdPDPuhziNJRG9u4zsPBQgjroqRWG9alyOPYdkK7hblDk9xs81PP9BFjmc_pe9vfUrvaPbnLgRgLk9IUOiPGOon7moZws9QymQPW1igzl_fmS9o7ExvWDd4zrirfM83rAIPaATw7hq1fQ7BU6WvaA2Mzir-xG91oqbPC_jOLiFsYm7kvr8OzqMQrg61to7OQ9nPdQ53zeNrve8wMnLvaGlgTl-clS9k3EsPSaasbg1YiG9OaZdPITQwrcfR3M8vxLhO-wWL7jeWfs82PGfvRgNlzhewqy9Xyt8PFL1IzitqQU8thgXPaz1vzjWH7w8JTZEvMJCCDhLj7s9Qj4IvTxjfDhfwte87ghHPS1omzgcZoM9DvR1vOV3Brn3zNK91NFxvAdtDbaTa089_O6MvW0iDTeWu8c7OUdYPZ42A7jOuHq9eSEdvf9H6reKllc9EFj5PY0XQDha8ni9mEuuO2jpXrghrCa9VAF3PWErUrgupJi9fbtbvJDlJ7ggADgTQAlIbVABKnMQABpgSgIANvUs8-PE3OsHqvEPzeP98PTfGP8S8_9RCsDcFgrQnOrxANbf1wSfAAAAKwfnOvgA5X8L8ERTFf__uMb2AAh2AE0QtrYr_rYnDCvr8Soz6xgyANsLmhc69dU5aC8TIAAtkGYROzgTQAlIb1ACKo8CEAAagAIAAFA9AAAEPgAAED0AAPg9AABkPgAAZD4AAEA8AAANvwAATL4AAJg9AADIPQAAor4AAIi9AADoPQAAPL4AAAS-AADoPQAAmD0AADA9AADSPgAAfz8AAJg9AABAvAAAQLwAAEC8AADovQAAJD4AANi9AACgPAAAED0AABQ-AADgPAAAqL0AABQ-AACIPQAAgLsAAJg9AACuvgAAA78AAKK-AACavgAAkr4AAOA8AACoPQAAQLwAABS-AAAUPgAABL4AAAS-AAA0vgAAgDsAAFA9AABkPgAAjj4AAIq-AACYvQAADT8AADA9AADYPQAAUL0AAEC8AACIPQAA4DwAAPi9IAA4E0AJSHxQASqPAhABGoACAABwvQAAyL0AADy-AAA7vwAAJL4AAOA8AABUPgAAQDwAANi9AABsPgAAgDsAAJg9AACIvQAAQDwAAKg9AAAQvQAAcL0AACE_AACKvgAA4j4AANi9AAD4vQAA6L0AABy-AACgvAAA4LwAAAQ-AADgPAAAQLwAABw-AACAOwAAcD0AACy-AABkvgAAUD0AAKg9AAAQvQAAZD4AACy-AADovQAAJD4AAJi9AAAQvQAAqD0AAIi9AABQvQAAf78AALi9AABQvQAAQDwAABC9AAAsPgAAyD0AANg9AADgvAAAMD0AAEC8AABMPgAAiD0AAJi9AAA8PgAATD4AACw-AAAsviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=immNVqXZ_ag","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13481872595322230004"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"4102138896"},"15073873106952921473":{"videoId":"15073873106952921473","docid":"34-3-11-Z70F84245F01BB110","description":"Contact Me Social media - Instagram - https://www.instagram.com/accounts/lo... facebook page - / 100039331624823 Telegram - https://t.me/+j7nhE5ayL3dkMWQ1 Twitter - Hags Tags...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"10","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"5 Ghost's Story","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PuJYqkyEQ24\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxNTA3Mzg3MzEwNjk1MjkyMTQ3M1oUMTUwNzM4NzMxMDY5NTI5MjE0NzNqrw0SATAYACJFGjEACipoaHNoamxwcGt5d2ppdW5kaGhVQzJzbUl2Q09MWEJXUTlzOEN6TXJBT1ESAgASKhDCDw8aDz8T-xGCBCQBgAQrKosBEAEaeIHzCQcI_wIA6_oIBf0CAADkAQL4_AAAAOMB9_8K_AIA_Qr3CwMBAAAFAAABBAAAABAEDPj8_wEA_QgF_gQAAAAH-v3_-gAAAAP7_QH-AQAA_gD4BgP_AAAJCg0JAAAAAOf8BAz_AAAA_ggDCwAAAAD77P7_AAAAACAALdl91js4E0AJSE5QAipzEAAaYAkeAAwGCh7qCRLp-PzrBPIHAwzqBvAAC94A7R_f5gISANHw6QD13AEO2AAAAAAEABgTANUyHgLzJPII7BAGAPEIf_0Y-_wNBvfk-QHy-gzvKAEdBQAHA_gQ3-vgNvf0DCAALdhGjjs4E0AJSG9QAiqvBhAMGqAGAAAgQgAAhkIAAEBCAAAAQAAATEIAAEBAAADowQAA5MIAAJBBAAAcQgAAAEAAAOBAAACAvwAA8MEAAGTCAADQwQAAEEIAADjCAAAsQgAArkIAAMBBAACgQQAAgsIAAGhCAADAwQAAYEEAAKjBAAAgQgAA8MEAAKBAAAAgwQAAAEAAAHDBAACgwgAA5sIAAGBBAAAgwQAAOEIAAJBBAADowQAAoEEAADRCAAAgQgAAcEEAAJbCAADYQQAAyEEAAEBBAAC4QQAACMIAAKTCAAAgwgAAQMIAAGBBAACAQQAAOMIAAOBBAACAQAAAIMIAACBBAACQwQAA1MIAAHDBAAD4wQAAAEAAAFTCAAAMwgAAsEEAAMDBAACQwQAA4MEAAPRCAABQwgAAAAAAANjBAAAYwgAAksIAAFTCAACAvwAAIMIAAIbCAAAAwAAAwMEAAKBBAABwQQAAeEIAAMDBAACAvwAAqMEAAIbCAACAwgAAYMEAAAzCAACAQQAATEIAAMBAAABEwgAAwMEAAAhCAADAwQAAGMIAAIA_AABIQgAAvMIAAAjCAADgwQAAZMIAAFDBAACwwQAADEIAADRCAAAMwgAAGMIAAIBAAAAkQgAAIMEAAHxCAAAAwAAAZMIAAABCAACwwQAAUMEAAMhBAAC4QQAAhsIAACBCAACgwQAAWMIAABzCAAAYwgAApkIAAKDAAAAAQAAAcEEAAKBBAAAIQgAAlMIAAGBBAACgQQAAgsIAAMhBAAAAwAAAQMEAALhBAAAAwQAA6EEAAFhCAABcQgAANEIAALJCAADIwQAArkIAAGRCAAAAQAAAAAAAADBCAAAwQQAA8MEAAJBBAABQQQAAVMIAAAhCAAA0wgAAEMEAAEhCAACIQQAAUMIAAMhBAAAgwgAAQEEAAFBBAABEQgAAEMEAABjCAACgwQAA2MEAAABAAABkwgAAAEEAADDBAACAwAAAPEIAAADCAABgQQAAQMAAALjBAAAAwgAA-EEAAIbCAADgwQAAKEIAAPjBAADwQQAAIMEAABDCAACYQQAAwMEAANBBAADQQQAAoMEgADgTQAlIdVABKo8CEAAagAIAAFA9AABQvQAAcL0AACS-AAC4PQAAwj4AAGy-AAD2vgAAgDsAAKi9AACgPAAAcD0AABw-AAAMvgAAqL0AAOi9AACYvQAAiD0AANi9AACOPgAAfz8AALg9AAAMPgAADD4AAOa-AADIvQAA-L0AACS-AADgvAAATD4AAIY-AABMPgAAQLwAAJ6-AACYPQAABD4AAAQ-AABQvQAAyr4AAFC9AADgPAAAjr4AAEQ-AAAQPQAA2L0AAI4-AACAuwAAqD0AAOi9AAA8vgAAcL0AABy-AACePgAAgj4AAIi9AADYPQAAMz8AAMg9AACIPQAAgDsAAJi9AABEvgAAQDwAAFC9IAA4E0AJSHxQASqPAhABGoACAAAwPQAAir4AADw-AAAjvwAAoj4AAHw-AACoPQAAdD4AABA9AACYvQAABL4AADA9AACaPgAANL4AABC9AACIPQAA-D0AAEs_AAAcvgAAkj4AAKK-AADYPQAAVD4AAJi9AACAOwAAgDsAABQ-AACAuwAAiD0AAIg9AACoPQAAmD0AABy-AADgvAAAgDsAAJi9AADovQAAQLwAAFS-AAA8PgAALD4AAPi9AADgvAAAMD0AALK-AACSvgAAf78AAIA7AAAcvgAARD4AALi9AABcPgAADD4AALg9AAB0PgAAED0AAOC8AACYvQAAXL4AACy-AACAuwAAyL0AAIC7AABkviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=PuJYqkyEQ24","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15073873106952921473"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"13913443276548059590":{"videoId":"13913443276548059590","docid":"34-7-16-Z1A28D0EC506C4BA8","description":"bsc 2nd year physics Contact Me Social media - Instagram - https://www.instagram.com/accounts/lo... facebook page - / 100039331624823 Telegram - https://t.me/+j7nhE5ayL3dkMWQ1 Twitter - Hags Tags...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"12","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"bsc part 2nd physics holography k anupryog","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=M1fVSmM-wrU\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxMzkxMzQ0MzI3NjU0ODA1OTU5MFoUMTM5MTM0NDMyNzY1NDgwNTk1OTBqrw0SATAYACJFGjEACipoaHNoamxwcGt5d2ppdW5kaGhVQzJzbUl2Q09MWEJXUTlzOEN6TXJBT1ESAgASKhDCDw8aDz8TnQ2CBCQBgAQrKosBEAEaeIH-GP__AAAA7wgC_PsBAAEABP_4-P7-AAgDAQAEA_8AAOgIAQMAAAD5BPEJBwAAAPT28_H-_wAABvb1DQIAAAALAAf8_AAAAAYEAAP2-_0D_wHz_QP_AAAM9fv__wAAAAcN_wD5_wAB9wgBAAAAAAAK-PkSAAAAACAALeFw0Ts4E0AJSE5QAipzEAAaYCkHAET6Lv3RDBXSBPvo3eHh8PTawg3_BbgACggRsd4fCLs3_QAb8f4eqwAAADk33-4tAMtvDgXrKvgu9vrCF-EZf_se2QIIJATFCiTlFREtyAsgIwCc8fUA_867OUY0JyAALdTSJTs4E0AJSG9QAiqvBhAMGqAGAACWQgAA4EEAACRCAACIwQAAfMIAAOBBAABEQgAAAAAAAIDAAADQwQAA2MEAAODAAACIwQAAYEEAAFBCAABgwQAABEIAAGzCAAA8QgAAsMEAAEzCAABYwgAAJMIAABBBAACwwQAAmEEAADjCAACAPwAAMEEAAFBBAAAUwgAAQEAAACDCAACwwQAAqMIAADBBAAAoQgAAsEIAAHBBAADoQQAAyMEAAFDBAAAYQgAAMMEAAOBAAAAQQgAA4MAAALBBAABAQQAAwEAAAETCAAA4wgAA2MEAABRCAAAEQgAAUMEAAKDAAABgwQAAgEEAAJhBAAAAQAAATMIAAKbCAAAswgAAgEAAAJzCAAAAwQAAoMIAADjCAAAIQgAAwEEAAMBBAAD4wQAAQEAAACBBAACCwgAAAMMAAEjCAABMQgAAUEEAACDCAABkQgAA8MEAACDCAACowQAADEIAAODBAABcwgAAUEEAAFDBAABAwQAAoEAAAKDBAAAkwgAAgMAAAKLCAACgwQAAIMEAAPhBAAAQQgAAfMIAABxCAAAYQgAAFMIAAGDCAADoQQAAYMEAAJ5CAACAQAAAcEIAABxCAADYwQAAkMEAAABAAAAgQQAAoMAAAMBAAACswgAAOEIAABDCAABAQAAAoEEAALhBAAAswgAAXMIAAJzCAAAQwQAAIEEAAFTCAADwwQAAgMEAAATCAACAwAAAykIAAAAAAABAwQAAgkIAAJjBAABAwQAAoMIAAEBCAAAAwQAAMMEAAOhBAABAQQAAQEIAAIA_AACgwQAAKEIAAOBBAAAQQQAAyEEAACBCAABAwQAAIMEAAABAAADmwgAAuMEAAFDBAAAQwQAAgL8AAJhBAABIQgAAFEIAALDBAACGQgAAJEIAAGBBAACiQgAAOMIAAKzCAADAwQAAEEEAAKDBAAAAQQAAkMEAAITCAAAgwQAAKMIAAEBCAACYwgAAlMIAAABAAACAPwAAWEIAAHjCAACwwQAADEIAAAAAAABQQQAAJEIAAMBAAABgwQAAmEEAAEDBAABwQQAAAEEAABRCAABgQgAASMIgADgTQAlIdVABKo8CEAAagAIAAIA7AACKvgAAfD4AAFw-AABQvQAAhj4AAPi9AADGvgAAnr4AABQ-AADIPQAA4LwAACQ-AACCPgAAHL4AAAy-AACuPgAAgDsAAJI-AACOPgAAfz8AAHC9AABwPQAAFL4AAJ6-AADIvQAAVD4AAJ6-AADIvQAABD4AACQ-AABcPgAARL4AAEA8AAAwPQAAcD0AAFA9AAC4PQAAlr4AADC9AACOvgAAQDwAAKg9AACYvQAA4LwAABA9AADIPQAAoLwAANg9AABsvgAA-L0AAOi9AACWPgAAoDwAAFC9AADgvAAAHT8AAOi9AACIPQAAMD0AACS-AACWvgAAcD0AABA9IAA4E0AJSHxQASqPAhABGoACAABEvgAAMD0AAHy-AAAfvwAAuD0AAMg9AAD4PQAAuL0AABS-AAAcPgAAML0AAGS-AABwvQAAPL4AAHA9AAC4vQAAcD0AAB0_AABEvgAAPD4AAOg9AACIvQAAJD4AAHC9AADYPQAA2D0AAIi9AACAOwAADD4AAOA8AAC4PQAAQDwAACS-AADIvQAAoLwAALi9AADgvAAA2D0AAMi9AACIvQAArj4AAJg9AACKPgAAQLwAAMi9AAC4PQAAf78AAEA8AACgvAAAXD4AAHA9AADYvQAAPD4AAKg9AABwPQAAoLwAAKA8AAA0PgAAdL4AAMi9AAAwvQAAuD0AAKg9AACYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=M1fVSmM-wrU","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13913443276548059590"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"15942355778670852769":{"videoId":"15942355778670852769","docid":"34-9-7-Z9156BB693E64EF12","description":"So you have a space in your room that needs a display. How do you know how big that TV or screen can be to fit in that space? The answer is aspect ratios! You can use the Pythagorean Theorem to...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"13","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"How to Calculate Aspect Ratios and Why It's Important for Pro AV","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=uHQ5Y5c1S-w\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxNTk0MjM1NTc3ODY3MDg1Mjc2OVoUMTU5NDIzNTU3Nzg2NzA4NTI3NjlqiBcSATAYACJFGjEACipoaGFmYXd3cGpmbXJxbWdiaGhVQ0xsaHVzYndBSjJ6bTJZSU1mSWVfZXcSAgASKhDCDw8aDz8TgQiCBCQBgAQrKosBEAEaeIEP_vv8_wIA9AQFAfkD_wEIAQf69___APsFAQgIBP4ACwP0_gUBAAD_BgH_BQAAAO_-AxD_AQAACQf7-QQAAAAZAv0A9wAAAAkQ-w7-AAAA8gb6BwMAAAAHAgX4_wAAAPME9wP6__8B-AABEQAAAAAH-AD-AAAAACAALdIM2Ts4E0AJSE5QAiqEAhAAGvABePsSAabtBPv_BAMB8ekFAIEAAv9rAPQA3wohAK8R6f_2_fkA6hMCAO4j9v_L-C3_3vQPAFcUFP_y-PP_KxL8AQb_DgEp6u8ABQwLAu7wHf8i-g8AAAzz_y_TBwA2B9P-JdA2_ioX7_8U7eMADv44AeMTA_71G_gC-QX2AvIb-PsVHAUB-QDzBBcL8v_ZwhQECR3r_gcQ9QEDK_4DKQPz_eMs_fw2IB4BHA_rBAUVCv7n3vMKDQn_CPfm5QQJDgUD2PEF_BQY_voOEvT2F_QNBxT2DgTdCewD6eQBBQL2_vv_JwMG9vcKCBkPEAse3QMIIAAtv08kOzgTQAlIYVACKs8HEAAawAfZzOG-Jr9qvBn7FryqC529y4G_O8D-kLyO2bi94hAgvWZQSL0-0Oo9mc7zPJ2HUbv8jLu-WlMPvMbqxbvApLI9BNSKvJ-Scz3v5U6-EKhDPRiswLv1oYO-PHfxOy7FlzvBOj4-ia4QPeUrQb0Lv6o9PwqNvNJpwjxfjf08kaE-PBcwHD2vu4Q957c5vSgeoTxRVoI8KzfMvSV1wjy8Wu49QGNLvCsBpzxSo2u8uriCPYCRoTylUf273e16PelKwjuUwhw-5JPfu3qjGz09PJW9L5_RPHLsMLv5KVO9BAMIPG-5ejw5K8K9MGf2PG3nu7ybeqg9ZXLqPQnh0TyaFYA8IVj1PYrHRby0o8I8GoCCPTO0izz_jJw8D3rbPLR9YTts-2i8vAuvPKesQjnSii--mZFSOTmdZLxCA1Y9xN3PPHloqzpgNpa9o-WjOxm8mruMch-9kSxgPNRC7rv07b69lUbsPewgyDo2PB48y6UMPeE8QbxlczC9DZ7TPIuZjrwU5408xrMavScUILzYMN68qDZYvXwurrzczbq7IPRnvUmyVLt0fso8aiRzPYXEqLs-Qoi9GVXGvKWuCDw_nfU5u3tAvcmw6Tv2RV87mmxtvU7WpLtz2ci9YjN7PQntybu_a6e7OsO5PNY1f7yS8Kg99kv6vNnnFDww31C9UrBrPGk_jDuuGhq9d0MfPYACBTkjmiU9ANOIvUR_jDlBxYc9oEnMvXhYsDtfuRk9ysBmvVAKiDsnvQ-9HSCYPARMiTsTM9I7gJKMPdLhDjlywgS9AxAyvU15k7kRtm497iUNPcPFUzlVOrO8XMGbvK4ptrnfbmm9VXMUvEDy1jq2lnO9iDZWPbpgmbqdCAm8-ALOvHFj6jVQ0Fy9EuTWvN7PKjqTm7K856YNPbEi57huMDm9NdLyvfu-A7iARPg8Oq4mPX8eN7nHIsc9puKQPPi2oLnYWYC792zjut2AwTeMGDE9FxiIvTOVHDkK8hO94529PZVT1bgGzmM9DSsmPcvVS7Y4kGS9meMrvTycETiq-QU9Hw4yvcHhvzefyR69UhZ0PHQqGjk9k-K8V8YLPTbNNjj0h0Y-4aunvGjwozlKKUO9yTXqPEAmVriqH0W9Y9ANO4QIBTj362k9MLIOPRzCw7jsCdy84SlfvcSlY7jVXZm8EZeCvQdxA7g1Oba9812EOjgNXDcU9E09tL2nvZeXjberD8o9pf6VPcGUmjeBeAC8OHa7Oj6wErncf6Q8QoHSPOyAA7hL5vi9oM7LvHG9-LYgADgTQAlIbVABKnMQABpgIA4AYhlJy-LrZegA9ugJ1PDf9_7d_v_q4_8fHdj-6RTOzd8N_x_-EAWqAAAAEen2ONsAF28S3NoK6ET81qoJLPZ_B_znw-zx4NfSTfDqvgX7sxYfAMD90ikGFblMJxlBIAAt8WcfOzgTQAlIb1ACKq8GEAwaoAYAAIDAAABwwQAAYEEAABBCAAAMwgAA0EEAAABBAAAowgAA0MIAADDBAAD4QQAAgEEAAKjCAABYwgAAqEEAAMDAAABAwAAAAEAAAKDBAADYwQAAeEIAAODAAAA4QgAAqEIAAAAAAAAQQQAA-MEAABDCAAC4QgAAWEIAAEBBAABMQgAACMIAACBBAADAQAAAyEEAANjBAAAAwAAAEEEAAMDAAABIwgAAGEIAAIjBAAAgQQAATMIAAIBBAAAcQgAAQMAAALpCAABQQQAAEMEAAABAAACmwgAAGEIAACBBAACAwAAAkMIAAPDBAABAQAAAgEIAALBBAAC4wQAAcEEAAHDBAAAgQQAAPMIAACBCAAAgwgAAWMIAANhBAACoQQAAUEEAAIC_AADAQQAA8MEAADDBAABAwgAAcEEAAOBAAAAowgAAyEEAALhBAADgwQAAiMIAAK5CAAAAQQAAYMIAABRCAACCQgAAAEAAAEDBAACAvwAAKMIAAMBAAABAQAAAnMIAAEhCAABsQgAAwMAAAMDAAAAwwQAAIEEAAFhCAABwwQAAHMIAALBBAAC4QQAAaEIAAKBAAAA0QgAA4EEAABxCAAAgwgAADMIAANBCAADYQQAABEIAAEDBAAAQQQAAysIAAFxCAACowgAACEIAAJDBAAD4QQAANEIAAODBAABIwgAAUMEAANDBAACAwgAAisIAAIBAAAAUQgAAuEEAAEBBAABQQQAAyEEAAEDAAABAwgAAfEIAAJjBAAAQwgAA8EEAAKJCAAC4QQAA2MEAAKhCAADowQAAgEAAALBBAACAQQAA4MAAAFzCAAAAQQAA2MEAAJhBAAAkwgAAgL8AAFRCAAAwQgAAiEEAAJhBAACgwQAAoMAAAJbCAADAwAAA2MEAAIhBAABcwgAAcMIAAPhBAADAQQAAAMEAAKDBAAAcwgAAyMEAAEDCAAB4QgAA4MAAAHTCAAAAwAAArMIAAAAAAACAPwAAksIAAEjCAACUQgAAMEEAADDBAACAwAAAHEIAAJjBAABQQQAAyMEAAEDCAAAgwQAABEIAAHDCAACAvyAAOBNACUh1UAEqjwIQABqAAgAAiL0AAFA9AABQPQAA4DwAABQ-AAD4PQAAUL0AAAG_AABAvAAAXL4AAFy-AABUvgAA4LwAADw-AAAMvgAAgLsAAOA8AADgPAAAqL0AAOo-AAB_PwAA6L0AAMg9AABEPgAAEL0AAN4-AABAvAAAgLsAANg9AACCPgAA6D0AAHC9AAAQvQAAQDwAAOi9AAAwvQAAHL4AAPq-AACqvgAA-L0AAMa-AABUvgAAPD4AAMi9AABEvgAAQLwAAIo-AAB8vgAAmr4AAEA8AACIPQAABD4AAIg9AABEPgAALL4AAIi9AAALPwAAUD0AAGw-AADmPgAAED0AAEC8AADYPQAAqL0gADgTQAlIfFABKo8CEAEagAIAAOg9AACgPAAAPL4AADu_AACGvgAAUD0AAIY-AACWPgAAMD0AABQ-AABQPQAAiL0AAEQ-AABMvgAAfD4AAKA8AADIPQAA8j4AAIg9AADiPgAATL4AACw-AACYPQAARL4AAEC8AAC2PgAA6D0AAIC7AACevgAAyL0AAKi9AACYPQAAoLwAAIa-AABcvgAA-L0AAEC8AAAsPgAAXL4AAHC9AADovQAAyD0AAIA7AAAUPgAAuD0AAAy-AAB_vwAAFL4AAES-AADoPQAAML0AAAQ-AADYvQAAVD4AAAQ-AACYPQAAoLwAACS-AACAOwAAcL0AAIY-AABAPAAAoDwAABS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=uHQ5Y5c1S-w","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15942355778670852769"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2855259148"},"1367375255134206146":{"videoId":"1367375255134206146","docid":"34-1-8-Z47B5CFCBC11FAE39","description":"Draw a triangle of perimeter 10 cm. and sides in the ratio 2:3:4 ചുറ്റളവ് 10 സെന്റിമീറ്ററും, വശങ്ങളുടെ അംശബന്ധം 2:3:4 ഉം ആയ ഒരു ത്രികോണം വരയ്ക്കുക #rkmmathtech#...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"14","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Draw a triangle of perimeter 10 cm. and sides in the ratio 2:3:4","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OSc9FQkMIl0\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChMxMzY3Mzc1MjU1MTM0MjA2MTQ2WhMxMzY3Mzc1MjU1MTM0MjA2MTQ2aq0NEgEwGAAiQxowAAopaGhiYXRnam1xaGthcmtpaGhVQ0tJNTdYbGJOTEV2R2VVWUo2MFkyYmcSAgARKg_CDw8aDz8TdoIEJAGABCsqiwEQARp4gfgAAgYB_wD8AwUC-gb-Av0C9Af4_fwA9QD09AMC_wAB_Q8J_wEAABj-B_MAAAAAAPQAAwD9AQAODv3-9wAAAB75AvT9AAAAGv32BP4BAAD_Gv8GAwAAAPn89gD_AAAAAA4B-f3_AAD8_wYG9fwAABD9CgUAAAAAIAAt9AnQOzgTQAlITlACKnMQABpg9xMAHBQU_d4XDOrpC979DvUU8f7g_AAR1gAIHPMPEPvsxRwM_ybWDfzLAAAAAgLvIxQAykQN2ukN_B_57_X6-BR_Exv2Ft8eBM_uG-4nFRX8ERIAAAAA9w4q7w86FxcHIAAtV451OzgTQAlIb1ACKq8GEAwaoAYAAOhBAAAgQgAAEEEAAJzCAAA8QgAA-EEAABxCAABwwQAAgEAAAATCAABYwgAAmkIAANjBAABcQgAAwEAAAABBAAD4QQAAWMIAAEDBAAAEwgAAEEEAAIBAAADAQQAA6EEAAPhBAABAQQAAEEEAAETCAAAowgAAFEIAAADBAACWQgAArsIAAIDBAACgwQAAAMAAAIBBAABUQgAAIEEAAEzCAABwQgAAgL8AAARCAABwQgAAYEIAAAjCAAA8QgAAgEEAAExCAACAQQAAMMIAAGDCAAAAwQAAiEEAALhBAACYQQAAAEAAABDBAAAgQgAAKEIAAOBBAAAAwgAAqMEAAMjBAABAwAAALMIAAIDAAAAAwQAAmEEAAIBBAABwQQAAEEEAAI7CAAC4QQAAoMEAAIDBAADgwAAAgMEAAKhBAABwwQAAqMEAACBCAADAwAAA8MEAAABBAACowQAAAAAAAATCAADIQgAAdMIAADRCAAD4QQAAhMIAAADCAACewgAAHMIAACDCAAAwwgAASEIAAIBCAAA4wgAAQEIAAKDAAABwwQAAyEEAAJhBAABswgAAAMEAAJjBAABIQgAAUMEAAMBAAABgQQAA8EEAACTCAADgQQAAAMAAAKBAAABowgAAJMIAAITCAACYwgAAEMEAAABAAADAwAAAgL8AAEBCAADgwQAAwMEAAKZCAADowQAAAMEAAEDAAACeQgAAwEAAABRCAACgQQAAIMEAAIA_AAAEwgAAgEAAACDBAACAQQAASMIAALBBAABgQgAAjMIAACTCAAAAwQAA-MEAAFTCAAAIQgAAjkIAAMBAAACQQgAAuMEAALjCAABkwgAAZMIAAIBCAAAgQQAAMEIAACDBAABAwQAA8MEAADBCAAC4QQAAHEIAABRCAACYQQAAHMIAABjCAAAEQgAAZMIAAIDCAADYwQAAOEIAABTCAADKwgAA-MEAAMDBAAB8wgAAqMEAADhCAAD-QgAAYEEAAMDBAAAMwgAA0MEAANBBAAAgQQAAAAAAAEhCAACgwQAAuEEAAJhCAAAkQgAA6MEAAAjCAABgQSAAOBNACUh1UAEqjwIQABqAAgAAkr4AAOg9AACSPgAAJD4AADC9AABEPgAAgr4AAA2_AAAwvQAAmD0AAHC9AABAPAAAED0AAKY-AAAMPgAATL4AABQ-AAAQvQAAML0AAMI-AAB_PwAAuD0AAJi9AAAsPgAALD4AAEA8AACgPAAAHL4AAGQ-AACCPgAAUL0AADC9AAAwvQAAuD0AABQ-AADovQAAQDwAAOC8AAA0vgAAXL4AAOi9AAAwPQAAij4AAAQ-AADIvQAATL4AADw-AADgvAAAgLsAAOA8AAC4PQAAED0AAEw-AAAEPgAADL4AAFA9AAAXPwAAFD4AAIg9AADIPQAAgLsAAPg9AACCPgAADL4gADgTQAlIfFABKo8CEAEagAIAALa-AAD4vQAAFL4AAE2_AADYvQAAcL0AABQ-AAB8vgAAJD4AADA9AACCvgAADD4AABC9AAAQvQAA-D0AAHA9AABQvQAAKz8AAOC8AAADPwAAZL4AAFy-AAAwvQAAmL0AAFC9AAC4PQAARD4AABA9AACovQAAMD0AAOC8AAAUPgAAQLwAAJ6-AACIPQAADD4AAKC8AACOPgAA-L0AAIi9AADoPQAAQLwAAIA7AACAuwAAMD0AAJa-AAB_vwAArr4AAAy-AADoPQAAFD4AAEA8AACAOwAAJD4AAIC7AADYPQAAcL0AAEQ-AAC4vQAAEL0AALY-AAAUPgAAuD0AACS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=OSc9FQkMIl0","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":null,"cheight":null,"cratio":null,"dups":["1367375255134206146"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"7048340523389753610":{"videoId":"7048340523389753610","docid":"34-10-6-Z36A6F3C6F0C8E698","description":"Inter session 2023-25 ऑनलाइन परीक्षा आवेदन भरने एवं शुल्क (विलम्ब शुल्क के साथ) जमा करने हेतु दिनांक 28.10.2024 तक अवधि विस्तार किया जाता है।","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"15","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"12 वीं में session 2023-25 ऑनलाइन परीक्षा आवेदन भरने अंतिम मौक","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xhG-vQg55I0\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChM3MDQ4MzQwNTIzMzg5NzUzNjEwWhM3MDQ4MzQwNTIzMzg5NzUzNjEwaq8NEgEwGAAiRRoxAAoqaGhiZWp1Y3VtaWRsem50YmhoVUNCY0JhNW1RX0VOSWhKSG9IZ1pNc3pnEgIAEioQwg8PGg8_E9oBggQkAYAEKyqLARABGniB9P_-BfsGAPj9CP78A_8B8gn5_Pr-_QAB_Qb7AwX-AO79_AME_wAA_gsGAgAAAAD9BQH7-v4AAAwCBv39AAAAAPj9AQEAAAAMAQEB_wEAAP4HAwAC_wAADv4BCAAAAADzCwIBBPr4BAUM-gIAAAAA--3-_wAAAAAgAC1PGOQ7OBNACUhOUAIqcxAAGmAbFAAPKi4wziTovwIE_Anz_-YArdn0_x3mACYX4t0c6uTM9_n_FQoN-7wAAAAbDgIkNADXXBsF2jLzEeTfzfX-XH_vG9__-ffK6Ckh4ATbLvMDGysA4f_93vP8_CUWDCkgAC0YM0E7OBNACUhvUAIqrwYQDBqgBgAAcEEAANhBAACwQQAAIEEAAIBBAADgwQAAEMEAAMhBAACAQAAAAMEAAABCAAAAwgAAFMIAAOhBAACaQgAAAEAAAEDCAACiwgAA4MAAALbCAACAwAAAGMIAAODBAAA0QgAAUEIAANjBAADgwQAAzMIAAAxCAACIwQAA-MEAAADBAAAYwgAAQEEAABDCAABAwAAA2MEAAL5CAACIQQAABEIAAIZCAAAwQQAADEIAAGBBAABgQgAA6sIAAEDCAAAowgAAkEIAAIDBAAAMwgAA4EEAAABBAACgQQAAdEIAALBBAADGwgAA4EEAABDBAADYQQAAgEIAAADBAACAvwAAXMIAAODAAAB4wgAAEMEAALDBAAAQQQAAksIAAIZCAADCQgAAEMIAAFhCAACgwAAA4MEAAOBAAABgwQAAEMEAADRCAAC4wQAAgEAAACBBAACUQgAAuMEAAARCAABQwQAAcMEAADRCAACSwgAAgD8AAIC_AAAAAAAALMIAANDBAACSwgAA4MEAALhBAAAMQgAA0MEAAAjCAAAgQgAAXEIAAILCAACwwQAAEMEAACTCAAAUQgAAmMIAAARCAAAwwQAAwEAAACjCAABswgAA4EEAADDBAABAwgAADMIAAAAAAADoQQAAJMIAAIjCAABAQAAAkEEAAIBBAABwQgAAEMEAADTCAAAgwgAAKMIAAGBBAABQwQAA4EAAABhCAAD4wQAAUEIAAKBAAAAAQgAALMIAAEzCAACAQAAAgEEAAAhCAACAQAAAGEIAAMDBAAAAwAAAMMEAADBBAABUwgAAsMEAAHBCAABoQgAAFEIAADBBAAAAQQAAwMAAALzCAAAwwgAAgkIAAIDAAADYQQAAcMEAAEjCAACAwAAAFEIAAIxCAAAkQgAAAEAAAABBAAAYwgAAREIAABjCAADAwAAA4MEAAJhBAABAQQAAgEEAAGhCAACAQAAAoEAAAOjBAADgQQAAqMEAAIBCAACIwgAAGMIAAOhBAABwQQAAsEEAAAjCAACwwQAAwEEAADzCAAAYQgAA8EEAALbCAABQwQAACMIAAFjCIAA4E0AJSHVQASqPAhAAGoACAACgvAAAcL0AAIY-AADgPAAAML0AAFA9AABcvgAA_r4AAPg9AABAvAAAuj4AADC9AACoPQAADD4AAFC9AACgPAAA-D0AAEC8AACAuwAAPD4AAH8_AABwPQAAgLsAAPg9AADovQAA4DwAAOi9AABAvAAAqD0AAFA9AADIPQAAmD0AACS-AACYPQAAcL0AALi9AAAwvQAAmL0AAKq-AAB8vgAAUD0AAOC8AACYvQAA-L0AAEy-AABAPAAAwj4AAEC8AAD4vQAAkr4AAEC8AAAcPgAAqj4AAJg9AAB0vgAAQDwAAB0_AABAPAAAFD4AAEQ-AAAwvQAAQDwAADC9AAAEviAAOBNACUh8UAEqjwIQARqAAgAAML0AAOi9AABQPQAANb8AAHA9AADYPQAAEL0AAEA8AACSvgAAtj4AAKg9AAC4vQAAFD4AAEy-AABwvQAAQLwAAOi9AABFPwAAQDwAAEw-AAAQvQAAUL0AABw-AAD4vQAA4DwAAAQ-AABAvAAAuD0AACQ-AAC4vQAAUD0AAIi9AADoPQAARL4AABC9AADgvAAAmL0AACQ-AAAQvQAA4LwAAJY-AABwvQAA4DwAAIq-AACKvgAADL4AAH-_AABQPQAA2D0AABw-AACgvAAAJL4AADA9AAAUPgAAUD0AAEC8AACIvQAABD4AAGy-AAAwvQAA4LwAAES-AAAwPQAA-D0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=xhG-vQg55I0","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7048340523389753610"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"17523148987374675291":{"videoId":"17523148987374675291","docid":"34-5-9-Z4F5D9C58670669DC","description":"Change the units in the revit software by just following the simple steps#howtochangeunitsinrevit#howtochangeunits#revitunits...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"16","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"How to change the units in revit 2018","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=gS43g41m8Po\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxNzUyMzE0ODk4NzM3NDY3NTI5MVoUMTc1MjMxNDg5ODczNzQ2NzUyOTFqwA8SATAYACJEGjEACipoaGhqZGlqcWhtcWd0ZmRiaGhVQ3BkT2N2eU5CUFJWanU3TXZqTmxvRVESAgASKg_CDw8aDz8TK4IEJAGABCsqiwEQARp4gQv4Av0C_QDpAAzy__4CACT4BfwGAgMA7QT8-AUAAAD58hQCBQAAAAIAD__6AAAAAP8UBvz-AQAAD_MKAwAAAB75AvT9AAAA_QH-A_4BAAAC9wP3AgAAAAEB9QQAAAAAAP_w_AAAAAEBGQH1AAAAAP74_gsAAAAAIAAt2EPOOzgTQAlITlACKoQCEAAa8AFZNy71C-fbBYLt4AATKuQC1Qg___VPEf-rss0FxAnTAQkDIgAgStL-7TSy_owAuwERByAAGQnu__sSLv7u9yYB5sIOAe-o8wF6PgYAOxcD_NQuPvwO-Q8Ay8EKASQk0P_nEfH54yoSApfY3QREYQcBEwsfBkTvDQPg8SH-xgsbBPPF6gI0JuAAgb0a_vwWBQRWCt8FXP4jAf3K8_kbIiIC6fnZ8hyXMfsmEvT05RLqAAUoJ_se8Rz39R_v_AWxKQep8gAIKP3m9NcE_AQW-gH_CLL3BOAX6gHor_b5ziQBCONLEPrfIuwGFfHw8QboEw0gAC1zT9Y6OBNACUhhUAIqcxAAGmD19AAruwvG_yQx1dnjqSO2ou-b2gb4___a_944-wfm97K_Ldz_PzBK35EAAAAHKS0u3gAIf9mnAyqZWk7nBxwO3Hg2wtzv1jgn6ZYn4lAGABTvBDkADS32BU3O1x_I7BQgAC0ilQY7OBNACUhvUAIqrwYQDBqgBgAAWMIAAPhBAACQQgAAoEEAAOBBAAAsQgAAeEIAAIBBAADgwQAApsIAAIDBAAAowgAAgMIAAIA_AADIwQAAhsIAAAjCAAC8wgAAIMEAAFDBAAAEQgAAuMEAAKDAAACgQAAADEIAALBBAAAkwgAAgMIAAPpCAADYwQAAQMAAACRCAACcwgAAYEIAAFBBAACAwgAAwEEAADBCAADAQAAAQEIAAADAAABgQQAAfMIAAEBAAACuwgAAZMIAAKDAAACAPwAA0EEAALDBAAAowgAAgL8AACBBAAAAQAAAmkIAACBCAAAIwgAAEEEAADDBAAAQQgAAMMEAAMDBAACowQAAwsIAABDBAAAMwgAAuEEAAPBBAAAYwgAA4MAAAFRCAADowQAAsEEAAJBBAAAAQQAAAMAAAFzCAABwQQAA6EEAAAjCAAD4wQAAJEIAAMjBAACgQQAAoMEAAMBAAABkQgAA4MAAAKBCAADoQQAAAMAAALBCAAAwwQAAyMEAAIDBAABwwQAA8MEAABDCAAAMQgAAoEAAAJjBAABAQQAAjEIAAHBBAACAQAAAYMEAAADAAAAQQQAAgD8AAIxCAACIQQAABEIAAIDAAADsQgAANEIAAMDAAACowQAA4MAAAPDBAAAQwgAAAAAAAGTCAACgwAAAFMIAAKjBAADQQQAAAEAAAJBBAAAIwgAAIMIAAPjBAAAwQQAAwEAAAPjBAACgwAAAkEEAAKZCAACwQQAAkEEAAKBAAADIQQAAyEEAALhBAAAUwgAAyEEAAABBAAB4wgAADEIAAADBAAA8QgAAEMEAADDBAACAPwAA0EEAAETCAAB0wgAAsMEAAIC_AAA0wgAAFEIAAKBBAADQQgAAgsIAAFzCAACewgAA-MEAAEDAAABgQgAAuEEAAKBBAAAAQgAAjkIAAOhBAACQwQAAIEEAANBBAABAwAAAmMEAAIjBAAA4QgAAVMIAAEBAAACAwQAADMIAAMDAAAAMQgAARMIAADBCAACeQgAAfEIAAHBBAAAgQgAAEMEAABDBAACAQQAAoMAAAILCAACiwgAAgEEAAODAIAA4E0AJSHVQASqPAhAAGoACAACAOwAA4DwAAAQ-AAA0PgAA6D0AAIg9AABAPAAAH78AAIC7AAAwvQAAUL0AAI6-AADKvgAAND4AAFC9AAAcvgAA-D0AADA9AABUvgAA4j4AAH8_AADoPQAA_r4AAOg9AACOvgAAUL0AABQ-AABkvgAAuL0AAEQ-AAAUPgAAcL0AAEy-AACiPgAAiL0AAES-AADYPQAAgr4AANK-AACAuwAAbL4AAHS-AADYvQAAHD4AAIC7AACgvAAA-D0AAEQ-AAA8PgAA2D0AANg9AACYvQAAqD0AAEw-AAC4vQAAQDwAAF0_AAD4PQAAqL0AAPI-AAAQvQAAbD4AAOg9AABsPiAAOBNACUh8UAEqjwIQARqAAgAADL4AAOC8AACWvgAASb8AAJg9AABMPgAALD4AAMi9AACIvQAARD4AAFy-AAC4PQAATL4AAKi9AAAMPgAAcL0AAPi9AAAJPwAAVL4AANo-AAA8vgAAMD0AAKi9AAA0PgAANL4AAIg9AABEPgAAQLwAAEC8AAAQPQAAiD0AABC9AABAvAAADL4AAHy-AADYPQAAED0AAKi9AABMvgAAQLwAADS-AAD4PQAAFD4AAFw-AADgvAAAqL0AAH-_AACIvQAAiD0AAFw-AAAsvgAAEL0AAEQ-AADoPQAAQLwAAJg9AABQPQAAUD0AAOA8AABAvAAABD4AAJo-AAAEPgAAyL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=gS43g41m8Po","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":686,"cratio":1.86588,"dups":["17523148987374675291"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2252572007"},"50591397126640755":{"videoId":"50591397126640755","docid":"34-4-3-ZF8BC9C85EC43A992","description":"Tom Kehr, Avixa Senior Staff Instructor, teaches how to recognize common display aspect ratios and to do basic aspect ratio calculations for audio visual applications. Want access to even more AV...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"17","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Recognizing Aspect Ratios","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Wu8GoWp_UPA\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoTChE1MDU5MTM5NzEyNjY0MDc1NVoRNTA1OTEzOTcxMjY2NDA3NTVqtg8SATAYACJFGjEACipoaGFmYXd3cGpmbXJxbWdiaGhVQ0xsaHVzYndBSjJ6bTJZSU1mSWVfZXcSAgASKhDCDw8aDz8TwwGCBCQBgAQrKosBEAEaeIH-_ff9_wIA9AQH9wQBAAH_Bgj_-P7-APsFAQgIBP4A9P78_AgAAADy_Q0CBgAAAP7-_v_4_gAACvwICPkAAAAXEP0O_AAAAAoPAwD-AQAA-QH6-AP_AAAGDAkAAAAAAPAEBPz-_wAA8gYJDQAAAAAA6_b3AQAAACAALQpv2Ts4E0AJSE5QAiqEAhAAGvABfzFa_c3m3__GNQEA4cv7AZsO6ABZOv4AlxI0AuQVyQHiyfoBLCjc__gl1v_FEi4A8fXr_hUc3gD81_YA_ij1ADQ0BgBm3DwFGBsKAh_kH_1BIij_BRz8AATm1AAR_94AOekmANIOCgE37OAE3vUrA_Xc5wLpCgoHP7wiAbUb3wG4DxkCGu4T_UYl9vvd6Az_DCbl_gcgCwcaMvoLEfIMCO3U_P4GP_gBD0IJAcji__un7Pb9EgAOAg7kyQELKyv4HTr79fEF_QXlDgQC583_90oA_vbr6vkMyfr0Cu4NBwTeEBb25CMBAQb4G_wF4BwAIAAtLXr6OjgTQAlIYVACKnMQABpgKAkAUQk8_vfbWwEV8AEHphDo9_26Af8Z6P_oQdTpr_EZ0gX9APz_ORGfAAAA7S3mLOoA5X_03-YuF2UR-aX4HuV29wwc19D1DL7TTgb1ubxF2iAkAObZsEXa3Zw0Uj0WIAAtE3oPOzgTQAlIb1ACKq8GEAwaoAYAACBBAABAwQAAZEIAADDBAAAUQgAAyMEAAChCAAAswgAAmMIAAHhCAACcQgAAGMIAAMjBAAA4QgAACEIAACjCAABwQQAACMIAANjBAADgwAAAgD8AAODBAABwwQAAoEEAAChCAACYQQAAgMIAAJjCAACqQgAAKEIAAIA_AACCQgAAdMIAAEjCAAD4wQAAgEEAAChCAACsQgAAhkIAAOBAAADwQQAAUEIAAMBAAABAQgAAQEEAAMBBAADgwAAAyMEAAHxCAACEQgAAMMEAABDBAAAgQgAATEIAANBBAABgQQAAEMIAAADBAABgQQAAMEEAAODBAAAAwAAAIMEAAPjBAABQQQAAAAAAACDBAAA0wgAAsMEAAMjBAAB4QgAAYEIAAKDBAAAcQgAAwEEAADjCAADAQQAAAEEAALZCAACiwgAAdMIAANjBAAAQQQAAqEEAAARCAAAQwgAAiMEAAAAAAADAQQAAwMEAAIDBAADgQQAASEIAAHDCAADYQQAAhsIAAHDCAAAIQgAAEEIAAAxCAABYwgAAAEIAAODAAACWwgAAmMEAABRCAABAQQAAoEEAADhCAACGQgAALEIAAEDCAACAQQAAgL8AALJCAABoQgAAEEIAAEBBAACYwQAALMIAAABBAADowQAAkMIAABDCAAAAQgAAMEIAAGBBAACYwQAA6MEAAEBAAAAAQQAAMEIAAFDCAABwQQAAQMEAAODAAAAQwgAAgMAAAJDBAACkwgAAIEEAABDCAACgwAAABMIAAJJCAAAAQQAAQMIAAMhBAABAQQAAEMEAABhCAACAwAAA-EEAACDBAACAwgAAyMEAACzCAABwwQAAoEEAAIxCAABQwQAApEIAAAAAAACYwQAAuMEAACBCAACgQQAAcEEAAAAAAAD4wQAAbMIAAIDBAAAkQgAAMEIAANhBAAB8QgAAgL8AAJ7CAADKQgAAukIAAPhBAABIwgAAoMEAAMDBAADQQQAA4MEAAKDAAAAQQgAA-MEAAGRCAABQwQAAQMIAAIA_AACAwQAAQMIAAOBBAAAAQQAA2MEAAKjCAABQwiAAOBNACUh1UAEqjwIQABqAAgAAZL4AAKI-AAA8PgAAkj4AAOC8AAAUPgAA6L0AACe_AAC6vgAADL4AAFw-AACOvgAAoDwAANg9AAAUvgAA4LwAAKA8AACAuwAA-D0AAPY-AAB_PwAAgr4AABQ-AADIvQAAoLwAABQ-AAAkvgAAFD4AALi9AADYPQAAjj4AAAw-AACIvQAA0j4AAMg9AAD4vQAAiL0AAN6-AAC6vgAA2L0AAOi9AACovQAATD4AAOi9AAC2vgAALD4AAJI-AACSvgAANL4AAKi9AAAwPQAAED0AAAw-AABsPgAA-L0AAEA8AAAJPwAAPD4AADQ-AACKPgAA4DwAAAw-AACIPQAAyL0gADgTQAlIfFABKo8CEAEagAIAAKC8AACCPgAAJL4AABG_AAAQvQAAyD0AAAQ-AABQPQAAqD0AAII-AADgvAAA2L0AABw-AABkvgAAqD0AAIA7AACYvQAAFT8AAOi9AACGPgAAcL0AAKi9AAAsPgAAHL4AAIC7AACiPgAAUL0AABA9AABMvgAAqL0AAEC8AACIPQAAuL0AAJg9AABEvgAA-L0AAKA8AABMPgAAFL4AAFS-AADIPQAAqD0AABw-AABwvQAAED0AAOC8AAB_vwAA4LwAAKi9AACIPQAAoDwAAIC7AAAkPgAAFD4AAKA8AAAQPQAAoLwAAEy-AADYvQAAQDwAAKA8AAAcvgAA6L0AAOC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Wu8GoWp_UPA","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["50591397126640755"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"3893166846"},"1725909956062664376":{"videoId":"1725909956062664376","docid":"34-2-12-Z1E07EB2C2EDDE7D0","description":"This is an application made in MS Access to generate the automatic result card of different students of different classes with one click just after you enter the required data i the software.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"18","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Automatic Result card generator in MS Access","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bi4spvZZ6IQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChMxNzI1OTA5OTU2MDYyNjY0Mzc2WhMxNzI1OTA5OTU2MDYyNjY0Mzc2aq8NEgEwGAAiRRoxAAoqaGhpamNuc2xvZHhvY2VzZGhoVUNyd191NW9zWFA5WWdqRWdQbTM1NFl3EgIAEioQwg8PGg8_E_ABggQkAYAEKyqLARABGniBDQoJ-QP9AO4D_voEAQAAKgD7-vMFBgDsBPz4BQAAAOUB9_UA_wAA-QTxCQcAAADyA_f6_AAAAA4EAf4FAAAACQj_9vYAAAACDPcG_gEAAO36DvkCAAAAEwgD8_8AAAD1EAEDAQAAAA0HAQUAAAAA__0A7wAAAAAgAC0gLss7OBNACUhOUAIqcxAAGmDYHwAwMA783QUf6en7_xUK_QHiDfsFAPnUAA4W2doI-_nV8Q4AEPcM9MsAAAD73tkH-wDzP_Pb8fgIG8_R9voDBX_uH_YLExsD-jEKEeTZKBECDiAA-wQcGyz83CES1xsgAC2TV287OBNACUhvUAIqrwYQDBqgBgAAdEIAAHBBAADgQQAAkMEAAIA_AACoQQAAuEIAAKDBAADMwgAAQEEAABxCAAAgwQAAgD8AAIhBAACgQQAAAMAAAABBAABwQQAAiMEAAGDCAADwQgAAuMEAAHBBAAAAAAAAOMIAAK7CAAAkwgAAgMAAAI5CAABwQQAAAEEAAFRCAACGwgAAqEEAAGBBAABMwgAAyMEAAJBCAAAAQgAAqkIAACDBAAAgQgAAdEIAAFBCAAB8wgAAwMEAAPhBAAAAQAAAmkIAAADCAAAUwgAAEMIAAFDBAAAAwAAAIEEAADBBAACowgAAiMEAAADBAAAAwQAADEIAAIBBAADgQAAAOMIAAFRCAACUwgAAMEIAAEjCAABAwQAAqMEAAAAAAACwQQAA4MAAAAAAAAAgQQAA4MAAAIhBAAAAQgAAoEIAAOhBAACQwQAAYEIAAFBCAACwwQAACMIAACDBAAAAAAAACEIAAJhCAAC6QgAAuMEAAJBBAABQwQAA4sIAAHhCAACewgAA4MAAAKJCAABQwQAAYEEAAGTCAAC4wQAAoMAAAMDBAADQwQAAyMEAABhCAACQQQAAyEEAADhCAAD4QQAAgD8AAFDCAAAgQQAAWEIAAJjBAAAAQQAAoMEAAIhBAADAwAAAcEIAAFDBAACoQQAAAMIAAATCAACQQQAAoEAAAJjBAACYwgAAuEEAAFzCAACAQAAAEMEAAKjBAAAkwgAAgL8AADBBAAAEQgAAOMIAAKBAAAC4QQAAmEIAAOBAAACaQgAAvEIAAHBBAABgwQAAUEEAALDBAADQQQAAUEEAAKBAAADgQAAAlMIAAPhBAABAQAAAhsIAAIC_AAAMwgAAIMIAAHBBAADgQQAAyMEAAHBBAADgQAAARMIAAPBBAABMQgAAuMEAAKhBAADAwQAA4MAAABTCAADgwQAA2MEAABBBAAAwwgAAoMEAAEDBAAAMQgAAfMIAAFBBAADowQAAMEIAABDBAAAQwgAA6MEAAMpCAADAwQAAoEEAABDBAAA8wgAA6EEAACBBAADGwgAAqMEAAIjBAACgQAAAAMAAAEDBIAA4E0AJSHVQASqPAhAAGoACAAAQvQAAEL0AAKC8AACOPgAA-D0AAFC9AAAwvQAABb8AAKK-AAC4PQAALL4AAAy-AAB0vgAARD4AABA9AABAPAAAkj4AAKg9AABQPQAAAT8AAH8_AAAwPQAAmD0AAFC9AAAwPQAAmL0AAPi9AAAwPQAAgDsAADw-AABEPgAA4LwAAPg9AAAQPQAAmL0AAOg9AAAwPQAA2L0AALK-AADYvQAApr4AAIC7AACYPQAAPL4AADS-AACIvQAAkj4AABS-AADoPQAABL4AAAw-AAC4PQAAUD0AACQ-AAAcvgAAiL0AADE_AABwPQAAjj4AAKI-AACgPAAADD4AAFw-AADIPSAAOBNACUh8UAEqjwIQARqAAgAAVL4AAGQ-AADIvQAA2r4AAOA8AABkvgAADD4AABA9AAD4PQAAgDsAADS-AACovQAA6L0AAEy-AACAuwAAED0AALi9AABBPwAAmL0AAKI-AAAQPQAAVL4AACS-AACYvQAAuL0AADA9AACovQAAQLwAAIg9AABQPQAAEL0AAEQ-AAB8vgAAHD4AAOA8AAC4vQAAhj4AABC9AACCvgAAbL4AAMg9AADYPQAAQLwAAIi9AABQPQAAJD4AAH-_AACSvgAADL4AAKq-AACAuwAATD4AAHA9AACIPQAA6D0AAKg9AACAuwAA2L0AAKA8AACePgAAML0AAGy-AABEvgAAXL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=bi4spvZZ6IQ","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1725909956062664376"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"14516148415828835866":{"videoId":"14516148415828835866","docid":"34-3-4-ZC6F84B9EE6C7DDD4","description":"Click Join and become a member to access more videos for your course! This problem comes from the Virginia Tech Math Emporium practice problem system.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"19","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Can you find the graph of this exponential function??","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pl-L9wQ6A8M\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxNDUxNjE0ODQxNTgyODgzNTg2NloUMTQ1MTYxNDg0MTU4Mjg4MzU4NjZqrw0SATAYACJFGjEACipoaHdneWFuaG51dGVsY25jaGhVQzllTFJWYjJaUkZxdzRCQUd1cHZLc1ESAgASKhDCDw8aDz8ThQKCBCQBgAQrKosBEAEaeIH8CfUB-wUAA_oNDQUK-gIMBf8C9wAAAOz4_PQC_wEA9gYGAQEAAADyBgEBCQAAAO70_QL3AAAA9goAAgQAAAAM-vn8_gAAABYJ9gj-AQAA9v_0AgP_AAAP-_gFAAAAAPsECQv-AAAA_Q70AgAAAAAD9gj7AAAAACAALWA94Ts4E0AJSE5QAipzEAAaYEAOAC0iGBPBCTHNHuCz4fgFAhHe1An_3Mv_9xbxzsDv7KINJf8S5S7tpQAAAAMM8g_3AOh6G9ux8Rf9_ODX9QZNfwguFiPnM_G2ySQwHdLtx_gnFQDJGL__8a7uQDJdHSAALUblGzs4E0AJSG9QAiqvBhAMGqAGAACYwQAA4MEAABxCAAAcwgAALMIAAChCAAC2QgAABEIAAAzCAADowQAAIEEAANDBAADowQAAkEEAAFDBAAAwQQAAAEEAAAzCAAAsQgAAiEEAAOjBAACYwQAADMIAACBCAADowQAAoMEAAMBAAAAUQgAAgEEAANBBAADowQAANEIAAGjCAADIQQAA5sIAAKhBAACAQgAAfEIAAOjBAABAQQAA6MEAAMhBAAA4QgAAiEEAAMDAAABwwgAAMEEAAHBBAABAwAAADEIAAOBAAAAUwgAAgMEAAFDBAAAYQgAAAEEAAPDBAACIwQAAuEEAAKDAAABwQQAAPMIAAJrCAAB0wgAAgEEAAADDAADYwQAAusIAAIBAAAAMwgAAmkIAAADBAAA4wgAALEIAAJbCAACoQQAAqEEAAAxCAACeQgAA2EEAAHDCAADcQgAAgL8AAEDBAADwQQAAMEEAADhCAAB0wgAAcEEAAIDBAAD4wQAADEIAAIzCAACgQAAAbEIAAKDCAACgwQAAEMIAALhBAAA8QgAAMMEAAEzCAAD4QQAAIMEAABTCAABIQgAAIEEAADxCAADwQQAAgEIAAIJCAAAoQgAANMIAADxCAACEQgAAcEEAAIjBAAAAwAAALMIAAJDBAAAEQgAAAMAAAEBAAACgQAAA0MEAAIhBAAAgQgAANMIAADDCAABMQgAAcMEAACDCAACAvwAAoEEAADDBAAAwQgAAAEEAAIBBAABcwgAAAMIAAIBAAACwwQAAEEEAACjCAABQwQAA8EEAAIBAAAAEQgAAEEIAANBBAACQwgAAoMAAABBBAAAsQgAAUEEAADBBAACSwgAAIEEAAFTCAADoQQAAXMIAAJhBAADgwAAApMIAAAjCAAD4wQAAwMAAAHhCAAAoQgAAQEAAAETCAAAAQgAAiMEAAMDBAAAQwgAAEMIAAATCAAAAAAAAAAAAAGBBAABMwgAAgD8AAHjCAACAQAAAuEEAAKDAAACwwgAATMIAAGBBAACowQAAIEEAADhCAADAQAAAQEEAAATCAAAkQgAAMEIAADDBAACCQgAA6MEgADgTQAlIdVABKo8CEAAagAIAABQ-AABAvAAAvj4AADC9AAAwvQAA0j4AABA9AAARvwAAFL4AAFC9AAA8PgAA4LwAANg9AACAOwAA-L0AAKi9AABUPgAA2D0AAOA8AADKPgAAfz8AAPg9AAC4PQAAfD4AAHS-AABkvgAAuD0AANi9AABQPQAAoLwAAKg9AABkPgAAoDwAACw-AAAMPgAABL4AAJ4-AABkvgAAvr4AAFS-AACevgAAVL4AAKg9AACIPQAADD4AAPi9AACgvAAAVL4AAEA8AADovQAAmj4AAPg9AAAsPgAA6j4AABS-AABQvQAAMT8AABQ-AACYPQAAmL0AABQ-AACIPQAAyD0AADy-IAA4E0AJSHxQASqPAhABGoACAACOvgAA6D0AADC9AABXvwAAcL0AAKi9AADuPgAA-L0AACQ-AADIPQAA-D0AAJi9AAB8vgAAbL4AAAQ-AABAPAAARD4AABM_AADgvAAAvj4AAES-AAC4vQAANL4AADA9AAC4vQAAdD4AAEC8AADgvAAABL4AANg9AACgPAAADD4AAGS-AADYPQAABD4AADA9AABcPgAAgDsAALa-AADIvQAAEL0AAAQ-AADgvAAAhj4AADC9AADYPQAAf78AAAS-AAB8vgAAUL0AAJg9AABkPgAAvj4AAKA8AADYvQAAiD0AAHA9AABwvQAAPD4AAES-AABsPgAAqD0AANi9AACoPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=pl-L9wQ6A8M","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["14516148415828835866"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"2237764118382957432":{"videoId":"2237764118382957432","docid":"34-10-12-ZB7575BD5E9D01768","description":"#MatricesTutorial #EntranceExamPreparation #MatrixProblems #MathSkills #ProblemSolving #ECETPreparation #EAMCETPreparation #jeepreparation Welcome to our comprehensive guide on matrices...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"20","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Matrices for ECET, Eamcet, and JEE Entrance Exams | Complete Guide and Practice || Part-1","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iG_xw9Wiw7Q\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChMyMjM3NzY0MTE4MzgyOTU3NDMyWhMyMjM3NzY0MTE4MzgyOTU3NDMyaq8NEgEwGAAiRRoxAAoqaGhqbXZkc2J5eGt6bGprYmhoVUNBZzVVS000WnJqVlhyMTFrSHd0dnlREgIAEioQwg8PGg8_E5UFggQkAYAEKyqLARABGniBBgH-_gP9APb0EAj6Bv0C9BTz_Pf9_ADjAu_2A_wCAPUB_AL0AAAA-AgW-wEAAAAG-gf0-_0BABUD-wYEAAAAEP0K8f0AAAAKEfoP_gEAAPHsCv0DAAAACQoOCQAAAAD6DPcD_QAAAAEKDv8AAAAA-fACBgAAAAAgAC3HWss7OBNACUhOUAIqcxAAGmAQEAAgFxfU3vkV7QHz5_79-B_mBv4RAAIFAAP4xswLBend6hD_B7oWAMQAAAAOD-Ql9QDvSg3k1vEY4vrhwQYL8H8LBAHx9Bbp6A389z8HLgsUDR0A4QAIBfjQCkIGKycgAC32ymE7OBNACUhvUAIqrwYQDBqgBgAALEIAALhBAADgQAAACEIAAEBBAACQwQAAgL8AANDBAABkQgAAiEEAACxCAADgwQAA0MEAAMBAAACqQgAA2MEAAIBAAAB0wgAAEEEAAIjBAADIwQAAPMIAABzCAABAQQAAnkIAAEDAAABEwgAAksIAAIDAAABQwQAAIMEAAMDAAAB4wgAAwMAAAGjCAABMQgAADEIAAP5CAACgwAAAXEIAAMDAAACAwQAAcEEAAKjBAABgQgAACMIAAKDAAABAwQAATEIAAGRCAACcwgAAHMIAAMBBAADAQAAATEIAAIC_AACawgAAYMEAAKjBAADAwQAAwMAAAHjCAADAwAAAeMIAAIDBAAAQwQAAwEAAAIDBAAAswgAAAMEAAPhCAACUQgAAGMIAAMBBAAA0QgAAyMIAAHTCAADowQAA6MEAAMhBAABEwgAAPEIAAEBBAACAQgAAOMIAALjBAABgwQAAsEEAAAAAAAC4wQAAZEIAADBBAAAAQgAAnsIAAEBBAABAwAAAQMEAAEDBAAAAQgAAyEEAAGDCAACyQgAAfEIAAK7CAAC4wQAAgMAAAKBAAADAwAAAwEAAACRCAABMQgAAyMEAABBCAACAQAAAAEIAAIBAAABQQQAASMIAAJjBAADAwAAAwEEAABDBAADAwQAALMIAABRCAAAkQgAAIMEAAPjBAABYwgAAqEEAACBBAADwQQAAQMIAAHBBAAAkwgAA4EAAANjBAADowQAArsIAADzCAACIQQAAQMAAAGDBAADAwAAAAEIAACxCAAAYwgAA-EEAAPBBAABQQgAAIMEAAAAAAACYQQAADEIAAADAAACgwQAA6EEAAMLCAABswgAAZEIAAABAAABoQgAAgMAAAOjBAAAAwQAACEIAAIZCAADYQQAA-EEAADBBAAC4wQAAgMEAAMDBAACMQgAAmEEAAKjBAAAgQQAAcMIAAOBBAADoQQAAgMAAADDBAACYwQAAPEIAABxCAADgwQAA-MEAAIC_AADYwQAAcMEAAMDAAACgwgAAdEIAAEBBAADAQAAAAAAAAOjBAADgQQAAuMIAAETCIAA4E0AJSHVQASqPAhAAGoACAAAwvQAAiL0AAOg9AAAsvgAAUL0AAAE_AABwPQAAUb8AADy-AADgPAAA4DwAANi9AAA0PgAAML0AACy-AAAUvgAAZD4AABA9AAAsPgAAQT8AAH8_AADgvAAA6D0AAMg9AADIPQAADD4AAMg9AABAPAAA4LwAAEQ-AABUPgAAEL0AADy-AACovQAAJD4AAEA8AAAQPQAAuL0AAKa-AAD6vgAAqD0AACS-AADoPQAAPL4AAOC8AACGPgAAZD4AAFS-AACCvgAA6r4AALi9AAAQvQAAxj4AAGw-AAC2vgAAED0AAHU_AACSvgAAbD4AACw-AABwPQAATD4AADC9AABcviAAOBNACUh8UAEqjwIQARqAAgAARL4AABQ-AABwPQAAG78AANi9AACYvQAAmj4AADS-AACovQAAjj4AABA9AAA8vgAAUL0AAGS-AAAQPQAAML0AAEA8AAA_PwAAQDwAAK4-AADYPQAAFL4AAIi9AAAQvQAAgLsAAAy-AAD4vQAAJD4AAIC7AAC4vQAA4DwAAPg9AACYvQAAEL0AAEQ-AABAvAAAkj4AABQ-AAB0vgAAgLsAAJI-AADgvAAA-L0AAMi9AAAwPQAA-D0AAH-_AADgvAAAML0AABS-AABcPgAA4LwAAIA7AAAwPQAAoLwAANg9AAAQvQAAJD4AABC9AACoPQAAQLwAAJi9AABwvQAA-D0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=iG_xw9Wiw7Q","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2237764118382957432"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"7938447353115069322":{"videoId":"7938447353115069322","docid":"34-0-10-Z4D8786777DF242F7","description":"from point a to the other point, h will be negative 01:50 Find the difference in the x-values 02:35 Example 2 03:13 Example 3...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"21","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 4 problem 2.2.3b (VT MATH 1025)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RlgoXXS95PQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChM3OTM4NDQ3MzUzMTE1MDY5MzIyWhM3OTM4NDQ3MzUzMTE1MDY5MzIyaq8NEgEwGAAiRRoxAAoqaGh3Z3lhbmhudXRlbGNuY2hoVUM5ZUxSVmIyWlJGcXc0QkFHdXB2S3NREgIAEioQwg8PGg8_E-oBggQkAYAEKyqLARABGniB_O4F8gf4APD07wf4BAABDRP9BfQBAQDm9PMKCP8BAPEAAQj9AAAADPsKCwgAAAAeDO8I-gMBAQD47PoCAAAA--n5-P8BAAAFFA77_gEAAAbtFP8CAAAAFQkD8v8AAADjAvn1_wD_ABUV-_cBAAAA9Qz--___AAAgAC1Cj747OBNACUhOUAIqcxAAGmDuEgBCMyXFyxkK7PkM6RzztuT33_IF__YCACoP1MYDE9vHDiP_NdkM3KsAAAAT0czvJwDTbh8JvDT4Jsje6vEAAH9BOvDO8PrV6vYU7wrgFtDI-B4A5PLkHGQKzCFLNw4gAC1GiSY7OBNACUhvUAIqrwYQDBqgBgAAYEEAAIjBAACYQQAAiMIAAIBBAACeQgAAkEIAAABBAABAQAAAMMIAACRCAADYQQAA2MEAAMhBAADowQAAoMAAAAAAAABwwQAAYEEAAADCAADoQQAAkEEAAEBBAABQwQAAuEEAAEBCAACoQQAAiMEAACDBAABAQQAAPMIAAM5CAAAwwgAAdEIAAMTCAACAPwAArEIAANhBAADQwQAAsMEAACxCAAD4QQAAmMEAAPBBAADYQQAA0MEAAKBBAABAQAAAAMAAAKDAAABcwgAAiMIAAEDAAADAwQAAcMEAAKhBAACqwgAA4MAAAMhCAAAIQgAACEIAAGTCAACAwQAAmMEAAKBAAACswgAAgEEAAOjBAACgwAAARMIAAMpCAACgwQAAosIAAHBBAADgwAAAGEIAAKDBAAAgwQAAKEIAAEBBAAB8wgAAfEIAANDBAAAAQgAAqEEAABRCAAAgQgAASMIAAIhBAAAQwQAAJMIAAOBAAADgwQAADEIAAABBAACGwgAAcMEAAPDBAAAEQgAAkEIAAKTCAABYwgAAiEIAAKBBAACAwQAAaEIAALhBAADgQAAAOEIAAJBCAACWQgAAyEEAANjBAABQQgAA6MEAAKhBAACYQgAAiEEAAGTCAAAAwAAAyMEAABzCAAAsQgAAoEAAABzCAACowQAAIMEAAHDBAAAowgAApEIAAMhBAAAAwgAAQEAAAEBCAAAwwQAAAEIAABxCAABgQQAAssIAABDBAABQwQAAiEEAALhBAAAAwgAAkEEAADRCAACIwQAAQEEAALBBAACIwQAACMIAACxCAAAkQgAAqEEAAPhBAADAwAAAZMIAACDCAABEwgAAGEIAABjCAACOQgAAiEEAAKDBAADgQAAANEIAABTCAAAEQgAATEIAAIA_AACIwQAAwMAAABDBAADAwgAAOMIAAPDBAACgQAAAgL8AAIDAAABcQgAAMMIAAJbCAADAQAAAPMIAAFxCAAAEQgAA6MEAABzCAAAUQgAAAEEAAARCAAAwQgAAAEIAAJjBAAAAwAAAAEIAADBCAABAwQAAsEEAAPjBIAA4E0AJSHVQASqPAhAAGoACAADOPgAADD4AAII-AAAkPgAA6D0AACU_AACYvQAAO78AAFS-AABQPQAAMD0AAJ6-AAA0vgAAmj4AAIg9AABUvgAAOT8AANg9AACSPgAAHT8AAH8_AAAQvQAAdD4AACQ-AAA0vgAAzr4AALo-AABMvgAAxj4AAGQ-AABEPgAAND4AAM4-AABMvgAAML0AAFC9AACIPQAALL4AAMK-AAD4PQAAjr4AAFC9AABwPQAATD4AADy-AAD4PQAA6D0AAJ6-AADYvQAA4DwAAFw-AAA8PgAAfL4AAN4-AABsPgAA2D0AACs_AACAOwAAuD0AADA9AAD4PQAAyL0AAL4-AAC4PSAAOBNACUh8UAEqjwIQARqAAgAAbL4AAHC9AABUvgAAL78AAAQ-AAAwvQAAjj4AABA9AADoPQAA6D0AAEA8AABUPgAAwr4AAPi9AAAEPgAA4DwAAAy-AAARPwAAqL0AAAc_AADgPAAAuL0AAIq-AACgvAAAiL0AAFA9AABUPgAA2D0AAFC9AAA8PgAAgDsAAMg9AABwvQAAmL0AAHA9AABQvQAAPD4AAII-AACyvgAAUD0AAGw-AABkvgAAND4AALg9AAAUPgAAgDsAAH-_AABcvgAAUL0AAFC9AABEvgAAHD4AAAw-AACOvgAAVD4AAPg9AACgvAAA2L0AAJo-AAAkPgAABD4AAOg9AAA8vgAAHD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=RlgoXXS95PQ","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["7938447353115069322"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"13035432225398389490":{"videoId":"13035432225398389490","docid":"34-8-2-Z6FC9E7DD862E0BCA","description":"#MatricesTutorial #EntranceExamPreparation #MatrixProblems #MathSkills #ProblemSolving #ECETPreparation #EAMCETPreparation #jeepreparation Welcome to our comprehensive guide on matrices...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"22","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Matrices for ECET, Eamcet, and JEE Entrance Exams | Complete Guide and Practice || Part-2","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RCy2Am9vAGU\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxMzAzNTQzMjIyNTM5ODM4OTQ5MFoUMTMwMzU0MzIyMjUzOTgzODk0OTBqrw0SATAYACJFGjEACipoaGptdmRzYnl4a3psamtiaGhVQ0FnNVVLTTRacmpWWHIxMWtId3R2eVESAgASKhDCDw8aDz8T6AmCBCQBgAQrKosBEAEaeIEC-P34Av4A9vQQCPoG_QL1FPP8-P38AOMC8PcD_AIA8gABB_4AAAACCg78BQAAAAb6B_T7_QEAFQP7BgQAAAAFAATt-gAAAAoR-w_-AQAA-fML8AIAAAANAQoFAAAAAPoM-AP9AAAABgwG_AAAAAD7-QcLAAAAACAALRHtzjs4E0AJSE5QAipzEAAaYA0RACIVFtXg-hPtAfng_Pr5HekFAg4AAAUACffKyA4F6ODqD_8GtRUCxQAAAAwO5Sf8AOxJD-nY9Rjf-em_BQ3ufxMDCO_0GOzsEQP3PQUvBw0KGQDiAAYI-tEGQQYwKiAALe3QYjs4E0AJSG9QAiqvBhAMGqAGAABAQgAAUEEAAABBAAA4QgAAgD8AALDBAAAAAAAAuMEAAGRCAADgQAAAPEIAALDBAACYwQAAwEAAAKpCAACwwQAAIEEAAILCAACAQAAAMMEAAIDBAABQwgAANMIAADBBAACUQgAAgEAAAFzCAACSwgAAAMAAAIjBAAAAwQAAgMAAAHzCAAAAAAAAXMIAAGRCAAAAQgAA_kIAAIDAAAA8QgAAgMEAAJDBAABAQQAAqMEAAFBCAAAQwgAAAAAAAKDBAABMQgAAXEIAAJzCAAAcwgAAAEIAAEBBAABcQgAAEEEAAIrCAABwwQAAcMEAAMjBAAAwwQAAcMIAABDBAAB4wgAAkMEAAABAAACAQAAAAMEAACzCAADgwAAA9kIAAJRCAAAUwgAA8EEAAChCAADIwgAAgsIAAODBAADwwQAAwEEAADzCAABIQgAAwEAAAI5CAABcwgAAuMEAAGDBAACYQQAAEMEAAGDBAAA8QgAAoEAAAPhBAACcwgAAcEEAAADAAADAwAAAIMEAALhBAAD4QQAATMIAAKhCAAB0QgAAoMIAAPDBAAAAwQAAAAAAAKDAAACgQAAAIEIAAGBCAAAEwgAADEIAAIBAAAAYQgAAgD8AAHBBAABgwgAAUMEAAADBAADAQQAAIMEAAKDBAABIwgAALEIAAAxCAADgwAAA4MEAAFzCAAC4QQAAQEEAAOhBAABcwgAAYEEAACTCAAAwQQAA2MEAAATCAACswgAATMIAAOBAAAAAQAAAoMEAAEBAAAAQQgAAUEIAAATCAAAIQgAABEIAAERCAABQwQAAgMAAAGBBAAAAQgAAQMAAALDBAACYQQAAusIAAFTCAABoQgAA4EAAAGhCAAAQwQAA0MEAADDBAAAUQgAAkkIAAKBBAADYQQAAiEEAAMDBAABwwQAAoMEAAJhCAACQQQAAgMEAAAAAAACCwgAA2EEAAAhCAACgwAAAAMEAALDBAABAQgAAHEIAANDBAADgwQAAgL8AAMDBAAAgwQAAgL8AAJjCAABwQgAAiEEAADBBAACgQAAAqMEAAKhBAAC6wgAAPMIgADgTQAlIdVABKo8CEAAagAIAADC9AABwvQAA-D0AACy-AABwvQAAAT8AAHA9AABXvwAAPL4AAHA9AACoPQAAyL0AACw-AACAOwAALL4AAFy-AACKPgAAED0AAGQ-AABLPwAAfz8AAHC9AAC4PQAAyD0AAOg9AAAsPgAAUD0AAFC9AABwPQAAXD4AADw-AABQvQAABL4AAJi9AAA8PgAA4DwAAKC8AABQvQAAnr4AAN6-AACIPQAA2L0AABA9AAA8vgAAEL0AAII-AACOPgAAJL4AAGS-AADevgAA2L0AAKC8AADWPgAAgj4AALK-AAAwPQAAaz8AAGy-AABcPgAABD4AAKC8AAAMPgAAML0AANi9IAA4E0AJSHxQASqPAhABGoACAAAsvgAABD4AAFA9AAAhvwAADL4AAJi9AACWPgAAPL4AAKi9AACSPgAAUD0AADy-AAAwvQAAXL4AAKA8AAAQvQAAgLsAAD0_AABAvAAAqj4AAAQ-AAAkvgAAiL0AAHC9AACAuwAA-L0AAAS-AAA0PgAAoLwAAKi9AAAQPQAABD4AAKi9AABQvQAAPD4AAIC7AACWPgAAJD4AAHy-AAAQvQAAlj4AAFC9AAAMvgAA2L0AAFA9AAAMPgAAf78AABC9AABQvQAALL4AAEw-AADgvAAAQLwAAFA9AABQvQAA6D0AABC9AAA8PgAAgLsAAKg9AACAuwAAuL0AAHC9AAAEPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=RCy2Am9vAGU","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13035432225398389490"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"10239389000218424535":{"videoId":"10239389000218424535","docid":"34-4-15-ZEE133C0D8E371DF5","description":"00:53 Plug m, x, and y into y=mx+b, then solve for b 02:05 Use m and b to construct your linear function. Plug in the given x-value 03:00 Example 2...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"23","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 4 problem 3.1.3b (VT MATH 1025)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CvNWavx7rzc\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxMDIzOTM4OTAwMDIxODQyNDUzNVoUMTAyMzkzODkwMDAyMTg0MjQ1MzVqrw0SATAYACJFGjEACipoaHdneWFuaG51dGVsY25jaGhVQzllTFJWYjJaUkZxdzRCQUd1cHZLc1ESAgASKhDCDw8aDz8TrAKCBCQBgAQrKosBEAEaeIH-6_37Av4A8wHqA_kEAAENBv8C9gAAAOTw9f_7_QIA8gABB_4AAAAO_QEDCgAAABgB_QkAAAMBBv739QQAAAAG6gT5_gEAAAwFFP7-AAAABukHCgP_AAATCAPz_wAAAOUB-fYAAAAACRcG_gAAAADzAQD4__8AACAALXaCzjs4E0AJSE5QAipzEAAaYPcVAC0NIuLfHhb35OXrGve87vLp-RUA-O0ALB714fz75NIUE_8h1Rn1uwAAABzfz-0WANVTDvzcIPkS8NMA-eUNfxwoxeLp-9Tj8wb9FvYD1O0PBwDN9foVSATKClIPCSAALXddTDs4E0AJSG9QAiqvBhAMGqAGAAA0QgAAwMEAAFRCAAAAwgAA6EEAAChCAACsQgAAQMEAABDCAACQQQAAUEEAAPDBAACwwQAACMIAAOBBAABgQQAAVEIAAHTCAAAoQgAAjsIAABzCAADwwQAAOMIAANBBAABswgAA4MAAAAzCAAAkwgAAbEIAAGDBAAAEwgAAmEEAAJrCAADgwAAAtsIAAOBBAACQQQAAtEIAAKDBAAA4QgAAiEEAABBCAAAoQgAAgD8AANBBAADGwgAAMEEAAFxCAABgQgAA0EEAABjCAADAwQAAiMEAAMhBAAD4QQAAwEEAAMDCAADgQQAAYEEAAPBBAACwQQAApsIAAIjBAACgwgAA-EEAALjCAADAwQAAYMIAANjBAAB4wgAAjEIAALRCAACGwgAAIEEAAADCAABAwAAAVMIAAIDBAAAAQQAAMEEAAPDBAAC4QgAAsMEAAIJCAABAQAAA0EEAAAAAAACAwAAAQEIAAGDBAADgQAAAcEIAAFDCAABAwQAAiEEAAGTCAABAwAAA4MAAAJpCAAAMwgAAnMIAACBCAACCQgAA4MEAACTCAAAQQQAATMIAABBCAACYwQAAREIAAHhCAACwQQAAQEAAAABAAAAgwQAAAEIAAGDBAACwwQAA-MEAAIjBAAAQwgAAZMIAAMjBAADgQQAA2MEAAIBBAABwwQAAiMEAAADAAABQwQAA-MEAAJbCAABAwAAAFEIAAMDBAACaQgAA0EEAAHBBAACAvwAAVMIAAABBAABQwQAAHEIAAFDCAADIQQAAGEIAACjCAAAwQQAAIMEAAABAAACAwQAAEEIAACRCAACoQQAAoEEAALDBAABcwgAAHMIAAKjBAACAvwAA-MEAALhBAAAwQQAABMIAAKDBAACgwAAALMIAADxCAACwQQAAQMEAADDBAAAAQAAAyMEAAKjBAAAYwgAAcEEAAKhBAADQQQAAmEEAAABBAACuwgAAKMIAAJDBAABAQAAAFEIAAETCAACMwgAAgsIAAKhBAAAAwAAATEIAADTCAABAQgAAwEAAAHBBAAA0QgAAAMEAAChCAACQQQAAgEAgADgTQAlIdVABKo8CEAAagAIAAEw-AAAMPgAAhj4AAGw-AAAsPgAA0j4AAES-AAABvwAAbL4AAIA7AADYvQAAkr4AAKi9AAA8PgAAmD0AADy-AAD-PgAABD4AAMg9AADaPgAAfz8AAMg9AACKPgAAoDwAADS-AAABvwAAxj4AAAS-AABMPgAAHD4AAEw-AAAkPgAA1j4AAHC9AAAMvgAAiL0AAIA7AAC2vgAA5r4AAKi9AACSvgAAbL4AAJY-AABQvQAA2L0AAHA9AACgPAAAZL4AAFS-AADgvAAARD4AADQ-AABMvgAAqj4AAIA7AACgvAAART8AAHC9AAA8PgAAmD0AAGw-AACIvQAAlj4AACS-IAA4E0AJSHxQASqPAhABGoACAACivgAAgLsAAHy-AAAjvwAAyD0AAIA7AAB0PgAAiD0AAKg9AADYPQAAmL0AALg9AADGvgAAFL4AAAQ-AADgPAAAiL0AABU_AAAMvgAA7j4AAJg9AAAwvQAAbL4AAHA9AACovQAA6D0AAOg9AABQPQAAQLwAAPg9AABAPAAAMD0AAFA9AAAkvgAAcD0AAKC8AAA8PgAAuD0AAKK-AACoPQAAHD4AAAy-AACKPgAAoDwAAOg9AAAwPQAAf78AADS-AAC4vQAAiL0AAAS-AABQPQAAHD4AAES-AACOPgAAqD0AAIA7AABQvQAAXD4AAGw-AADIPQAAiD0AAMi9AABcPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=CvNWavx7rzc","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["10239389000218424535"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"3540251035857020109":{"videoId":"3540251035857020109","docid":"34-7-15-Z9EE093958CC2264E","description":"#MatricesTutorial #EntranceExamPreparation #MatrixProblems #MathSkills #ProblemSolving #ECETPreparation #EAMCETPreparation #jeepreparation Welcome to our comprehensive guide on matrices...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"24","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Matrices for ECET, Eamcet, and JEE Entrance Exams | Complete Guide and Practice || Part-3","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1iHZeHgiaQ4\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChMzNTQwMjUxMDM1ODU3MDIwMTA5WhMzNTQwMjUxMDM1ODU3MDIwMTA5aq8NEgEwGAAiRRoxAAoqaGhqbXZkc2J5eGt6bGprYmhoVUNBZzVVS000WnJqVlhyMTFrSHd0dnlREgIAEioQwg8PGg8_E84KggQkAYAEKyqLARABGniBA_369Qb6APr9DwT6B_0C9BXy_Pf9_ADhAu_2A_wCAPIAAQf9AAAA9wgX-wEAAAAG-gj0-_0BABwG7v4EAAAABQAE7PoAAAAPDfsE_gEAAPDrC_0DAAAADgELBQAAAAD_E_4D_v8AAAkYB_4BAAAA_vj-CwAAAAAgAC16F8Q7OBNACUhOUAIqcxAAGmAODwAkFxjS4PsR7gL14__89x_lBQEOAAEBAAf3x8wLBuvg6w__BbkXAsUAAAANDeIj9ADrSQjl2PYY3_rgvwgK7X8QBAT19Rnr6gn7_TsKLgoUCxUA3_8HBfjLBj8GMiUgAC2jzWI7OBNACUhvUAIqrwYQDBqgBgAADEIAAKBBAABgQQAAKEIAAABBAADgwAAAIEEAACDCAABsQgAAgL8AAAhCAABAwQAANMIAAIDBAACiQgAAJMIAABBBAACKwgAAyEEAALDBAACgwQAAWMIAAFDCAAAQQQAAgEIAAABBAACAwQAAWMIAAJjBAACgwQAAgMEAALjBAABMwgAAAAAAAIzCAABUQgAAQEEAAP5CAADgQQAAfEIAAIC_AADgQAAAsEEAAIDAAAAcQgAAFMIAAAAAAACowQAANEIAAExCAACmwgAAhMIAAMhBAACYQQAALEIAAMBBAACcwgAAoMAAAJDBAACAwAAA0MEAAIbCAABQwQAAlMIAADDBAABAQAAAIMEAAMDBAABowgAA8MEAANRCAACoQgAAaMIAAFRCAADgQQAAeMIAACzCAAC4wQAAGMIAACDBAABcwgAAhEIAAEBBAADeQgAA-MEAAEDAAACAwQAAQEAAADDBAAAkwgAAJEIAAHBBAAA8QgAATMIAAIBAAACAwQAAoMEAAMDBAADQQQAA-EEAABTCAACcQgAAKEIAAMDCAACcwgAAMEEAAAAAAACAPwAA0EEAADRCAAAoQgAA4MEAAFRCAACYwQAAkEEAAFDBAADAQAAAKMIAABDBAADQQQAAwEAAAKjBAAAAAAAATMIAADBBAAAoQgAAEEEAAMDBAABQwgAAAEAAAOBBAABgQQAAPMIAAMhBAADIwQAAIEEAAADBAAAQQQAAvMIAAFzCAACgQQAA4EAAAIC_AABQQQAAYEEAAMBBAABgwQAAsEEAAGRCAAAgQgAA0MEAAIhBAACQQQAAuEEAANDBAAD4wQAAmEEAAODCAACWwgAAMEIAAIDAAAAkQgAAwMAAAKDAAAAQwQAAiEEAACxCAADIQQAAkEEAAIhBAABQwQAAAMAAAADCAACAQgAA8EEAAETCAACAPwAAXMIAAIBAAAAYQgAAQEAAADDBAADQwQAAOEIAADxCAACwwQAAWMIAAMDBAACAPwAAuMEAAHDBAABowgAAXEIAAIA_AAAoQgAAsEEAABzCAAB4QgAArMIAACDBIAA4E0AJSHVQASqPAhAAGoACAADYvQAAML0AABQ-AADYvQAAQLwAAAc_AAAwPQAAV78AAEy-AABAvAAAgDsAALi9AABcPgAAgLsAANi9AAA8vgAAXD4AAIg9AAAkPgAAQT8AAH8_AACgvAAAJD4AAMg9AAD4PQAABD4AAJg9AACIvQAAgDsAACw-AABcPgAAML0AABS-AADIvQAADD4AADA9AACgvAAA2L0AAL6-AADuvgAAUD0AAJi9AADgPAAATL4AABC9AACWPgAAgj4AACy-AABcvgAA6r4AAAS-AAAQvQAAxj4AAII-AADWvgAAED0AAHc_AAB0vgAAfD4AAGQ-AACAOwAAHD4AAFC9AAAkviAAOBNACUh8UAEqjwIQARqAAgAARL4AANg9AABQPQAAIb8AABS-AAC4vQAAkj4AABy-AACovQAAkj4AAIg9AAA8vgAAEL0AAGS-AADgPAAA4LwAAEA8AABDPwAAQDwAAKo-AADoPQAABL4AAHC9AAAwvQAAQLwAANi9AADYvQAAND4AAEC8AADovQAAED0AAPg9AACYvQAAqL0AAEQ-AACAOwAAjj4AADw-AAB0vgAA4LwAAJo-AAAwvQAAFL4AAAS-AACIPQAABD4AAH-_AABQvQAAUL0AAES-AABkPgAAEL0AAIC7AAAwPQAAgLsAANg9AADgvAAATD4AAKC8AABwPQAAgDsAAOi9AACYvQAA-D0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=1iHZeHgiaQ4","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3540251035857020109"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"6714072428496423494":{"videoId":"6714072428496423494","docid":"34-0-14-Z13C68345605E0542","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. If this walkthrough video was helpful, click \"Join\" to become a member of the YouTube channel so you can access...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"25","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Identifying Functions from Tables","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NBXPzc7pqyE\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChM2NzE0MDcyNDI4NDk2NDIzNDk0WhM2NzE0MDcyNDI4NDk2NDIzNDk0aq8NEgEwGAAiRRoxAAoqaGh3Z3lhbmhudXRlbGNuY2hoVUM5ZUxSVmIyWlJGcXc0QkFHdXB2S3NREgIAEioQwg8PGg8_E7kBggQkAYAEKyqLARABGniB9AMC_v8BAPT5C_b-AQEBFAr8_PUCAgDtBPz4BQAAAOwPCfoEAAAA_QUICvkAAAD4Bfr-9P8BAA0A_QP7AAAACwUAAAUAAAAKBvcJ_gEAAPT99gP1AgAAGPn-DQAAAAD6Fgj8_v8AAAMA-v8AAAAACe8C_gABAAAgAC3YMtQ7OBNACUhOUAIqcxAAGmAVGAAT_AMOxQEt2izY0A_n4RAYDdH-AN7QAAUG4-_UAf6uBt__M-Ia6rUAAAAKPhM_OAADaS0CvBAINv7B7f_yKn8HJdslDALi4vUHKAzp77zE6TsA8era-O_m7jEXNzkgAC2vSjI7OBNACUhvUAIqrwYQDBqgBgAAhEIAAMBAAAD2QgAA6MEAAMDAAACYQQAAkEIAABBBAAAUwgAAcEEAAExCAAAMwgAAgMAAAMDBAADgwAAAgD8AACRCAABgwgAASEIAAADCAAAEwgAAUMEAAHTCAACUQgAAdMIAAMhBAAB0wgAARMIAAJhBAADgwAAA2MEAABhCAACawgAAsMEAAGTCAABwQQAAGEIAAJxCAADgQAAAPEIAALjBAAAYwgAA0EEAAADBAAAwwQAAPMIAAEBBAACIQgAAyEEAAHhCAABUwgAAgD8AAMDBAAAgQgAAQEIAAKDAAAB4wgAAAMEAAMBBAAAUQgAA4EEAAHTCAABswgAA6MEAACBCAAAowgAAwMAAAODBAABowgAAIMIAAKBCAAAAQgAAGMIAADBCAACQwQAAgL8AAILCAADowQAA0EEAAOhBAAAAQQAA1EIAADDCAACAwAAAiMEAAOBBAABAwQAAqMEAAHBCAABgwQAAAAAAAHhCAACEwgAA6MEAAADAAAB8wgAAoMEAALhBAACKQgAASMIAAKjBAAD4QQAAdEIAAMjBAAAIwgAAwEEAAOjBAABgQgAAIEEAAPBBAAAsQgAAQMEAAKBAAACIwQAA8EEAAIJCAABQQgAAMEEAAGDBAACYwQAAMMEAAFTCAACgQAAAAEEAACDBAABAQAAAwMEAAKjBAABAQQAAoEAAADDBAADKwgAACMIAAMhBAADowQAAeEIAAIjBAACYQQAAAAAAAPjBAADoQQAAoMAAAPDBAABQwgAA6EEAAIhBAACAwQAAyEEAACDCAAAgQQAAqMEAACRCAACQQQAAIMEAAODAAAAgwgAAnsIAAEDBAAAQQQAAgEAAAOBAAACgwAAA2EEAAOBAAAAwwgAA0EEAACzCAACmQgAAyEEAAIDBAACAPwAAMEEAADDCAADgwQAAGMIAALBBAAAQQQAA-MEAANBBAACQQgAAAMMAAFTCAABAwAAAuMEAAAhCAABkwgAALMIAAMDBAACAwQAAgEAAADBCAAAYwgAAVEIAAMhBAABAQQAAKEIAAIDAAAAIQgAAKEIAAIC_IAA4E0AJSHVQASqPAhAAGoACAAAwvQAA6L0AABQ-AAD4PQAAqD0AAM4-AAAcPgAACb8AADC9AACAOwAAMD0AAKi9AABAPAAAJD4AAAy-AADYPQAAFD4AADA9AAAQPQAA_j4AAH8_AACgvAAA-D0AAGQ-AADCvgAAcD0AAJY-AAAMPgAATD4AAFA9AABsPgAAnj4AABC9AABsPgAAqj4AAPg9AAA0PgAA4LwAAKa-AAAcvgAAgr4AACS-AAAsPgAAkr4AADA9AACoPQAAgDsAADy-AACYvQAAfL4AALI-AADgvAAAoj4AADw-AACYPQAAuL0AAEs_AABQPQAAMD0AACQ-AAC4PQAAUL0AABA9AACCPiAAOBNACUh8UAEqjwIQARqAAgAA4LwAAJg9AAA0vgAAFb8AAJi9AAAQPQAAoj4AAMg9AABwPQAAUL0AAFA9AAAUvgAAyL0AAMa-AAAMPgAAgDsAAIg9AAAJPwAA6L0AAJ4-AAC4vQAAMD0AAOA8AAAEvgAAqL0AADQ-AADovQAAUD0AAOi9AAAwvQAA-D0AAMg9AAAsvgAAQLwAAAw-AABQvQAAZD4AAJo-AACivgAAmD0AAMI-AABAvAAA4DwAABw-AAAEvgAAuD0AAH-_AABkvgAAPL4AALg9AACoPQAAqD0AAFQ-AADIvQAAyj4AAKA8AABQvQAAuL0AABy-AAC4vQAAED0AAIY-AACovQAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=NBXPzc7pqyE","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["6714072428496423494"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"14700943493394219677":{"videoId":"14700943493394219677","docid":"34-9-11-Z5F34722A8DE07E1B","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. 2 examples 00:00 Example 1 00:10 Goal: Find derivative of each function, plug in given x-value to see which gives...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"26","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 5 problem 3.2.3cc (VT MATH 1025)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LrYGojIOmwM\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxNDcwMDk0MzQ5MzM5NDIxOTY3N1oUMTQ3MDA5NDM0OTMzOTQyMTk2Nzdqrw0SATAYACJFGjEACipoaHdneWFuaG51dGVsY25jaGhVQzllTFJWYjJaUkZxdzRCQUd1cHZLc1ESAgASKhDCDw8aDz8TiAOCBCQBgAQrKosBEAEaeIH-6_37Av4A6AXw_fr_AgAVBfgG9QEBAOTw9f_7_QIA6PwRBQUAAAD_9wADAgAAABQF-P4DAAIABAH1_gQAAAAJ5_b8_QAAAAwKCPf_AQAACfICBgP_AAAQBPjx_wAAAPL5__v7__8AFBP7-AEAAAD3AQjw_wAAACAALXaCzjs4E0AJSE5QAipzEAAaYOoWACsiI-nZCBPe7PziHvjR-vnk-AkA_AAAJi_z2v8L2cQWIf8o1hnuvAAAABTl1O8bAMZbCe_aHwQg6tLy6e8Gfxgw0t3iBtHbDAL5EvYH49gCBQDmCOoVQwjALFkDFSAALU--RDs4E0AJSG9QAiqvBhAMGqAGAADwQQAAKMIAAGxCAACKwgAAAEIAAABBAADqQgAAiEEAABDCAADAQAAA-EEAAIA_AAAAwgAAgEEAAIBAAADgwAAAikIAAAzCAAAcQgAAoMEAALhBAAAswgAAksIAAAxCAABgwgAA4EAAAADAAAAAAAAAsEEAALBBAACQwQAALEIAAHTCAAAIQgAA3sIAANBBAABAQgAAskIAAODBAAC4QQAAiMEAAGxCAAAYQgAA4EAAAFBBAACUwgAAkEIAAIJCAAAIQgAANEIAAOhBAABswgAA0MEAAAhCAACAQAAAQEEAAOjBAAAAwAAAKEIAANBBAABAQQAAOMIAAAzCAABQwgAABEIAAHDCAAAEwgAAHMIAAIBAAADAQAAAREIAAHhCAABYwgAANEIAAEzCAAAAAAAAUMIAAEDAAAA4QgAAIEEAAMDBAADwQgAADMIAAChCAACgwAAAyEEAAMjBAABQwgAAlkIAAABBAADoQQAATEIAAEDCAABAQQAAwEEAACTCAABowgAAoEAAAJhCAAB4QgAAUMIAAOBAAABkQgAAgL8AAK7CAAD4QQAAcMEAAHxCAADgQAAANEIAACxCAABsQgAAuMEAAChCAACAwAAABEIAAFRCAAAswgAAdMIAAMDBAABwwQAAcMEAABDBAACgQAAAOMIAAEDBAAAwwQAADMIAAJjBAADAQAAA8MEAABzCAACwwQAAPEIAAADCAAAIQgAAuEEAAFBCAADIwQAALMIAAADBAABgQQAADEIAAIbCAACgwAAACEIAAEzCAACAvwAAgD8AAKBBAACawgAAmEEAAFBBAAAwwQAA4EEAABDBAACiwgAAmMEAADDCAAAgwgAAXMIAAPBBAABQQQAAYMEAAIjBAAC4wQAAgMEAAFRCAACwQQAAsEEAAIA_AADgwAAAXMIAAFjCAABAwgAA4MAAAJjBAADgQAAAAMAAAPhBAACqwgAAAMIAAEjCAAAwQgAADEIAAJDBAAAgwgAAhMIAAIA_AADQwQAAEEEAACDBAADoQQAACMIAAABBAADAQQAACEIAAABBAAAgQQAAoEAgADgTQAlIdVABKo8CEAAagAIAAKA8AACoPQAAvj4AAPg9AABEPgAA1j4AAOA8AAAfvwAApr4AAFw-AAAQPQAAPL4AABw-AADYPQAABD4AABC9AAAUPgAAHD4AAGw-AAAdPwAAfz8AAPg9AAAcPgAABD4AAFy-AACCvgAAtj4AAAy-AABEPgAA-D0AANg9AAA8PgAAij4AAGy-AADovQAAmL0AABC9AACovQAA3r4AAFA9AAD2vgAABL4AAJo-AABQPQAAmr4AABw-AAA0PgAAnr4AAFA9AACIPQAAbD4AAGw-AABwPQAA3j4AAHS-AACAuwAAQT8AAAQ-AACuPgAA4LwAAGw-AAAMvgAAhj4AAFC9IAA4E0AJSHxQASqPAhABGoACAAB0vgAAuD0AAHA9AAAxvwAAgLsAAIi9AAC6PgAAUD0AAFA9AAA0PgAAUD0AAIA7AACavgAARL4AADC9AACYPQAA4DwAACk_AACgPAAAxj4AAKA8AAC4vQAAmr4AAKA8AAAUvgAAoLwAAFA9AADgPAAAED0AAAQ-AACgvAAA-D0AADC9AABkvgAAcD0AAOA8AAB0PgAAgDsAAKa-AABQPQAAoDwAABS-AAAQPQAAQLwAAAQ-AABMPgAAf78AADy-AAAwvQAAyL0AAPg9AAAcPgAAVD4AAHS-AAA0PgAAUD0AAEC8AADgvAAAhj4AADw-AAAEPgAAuL0AABy-AABUPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=LrYGojIOmwM","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["14700943493394219677"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"1553245517051567811":{"videoId":"1553245517051567811","docid":"34-5-9-Z07CF5F09D5AE026E","description":"@balumathtech #ecetmaths #ecettrigonometry #trigonometryshotcuts In this video detailed explanation about solutions of trigonometry problems in Apecet 2022 session 1 useful for ECET Eamcet JEE...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"27","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Trigonometry || solutions of apecet 2022 || session 1 || tips and tricks || lecture 1","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=H2sCLb6CNPc\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChMxNTUzMjQ1NTE3MDUxNTY3ODExWhMxNTUzMjQ1NTE3MDUxNTY3ODExaq8NEgEwGAAiRRoxAAoqaGhqbXZkc2J5eGt6bGprYmhoVUNBZzVVS000WnJqVlhyMTFrSHd0dnlREgIAEioQwg8PGg8_E_AJggQkAYAEKyqLARABGniB-P0RCAL_APH7_v8JAv8BAQzu__b-_QD2-vv8_gP_AOj8EQUFAAAACxUBCf4AAAAHBgHv-_0BAB8A9gwCAAAAEQf-CPYAAAABAfj6_wEAAOv3Av8DAAAAEfr3BQAAAAAA__D8AAAAAQUL7goAAAAADAP7CgAAAAAgAC3uws47OBNACUhOUAIqcxAAGmAlBgAaGO-_zxAf9gzXAhQP7SYDEu8a_-XnACQY8_QHEvXKIxoAKdQCDr0AAAAaFOksEADzVe31DwUMGA65rfH9H3_48uoN-xL9uO8XKDUtDOjmGRgA-__w-wHnERlaMRcgAC0dn0g7OBNACUhvUAIqrwYQDBqgBgAAPEIAAOBBAABYQgAAgEAAAMBAAADowQAAiMEAACTCAAAQQgAAAEEAABhCAADowQAADMIAALjBAAC8QgAAlMIAABBCAAD4wQAAMMEAAAzCAACCwgAAXMIAACjCAABkQgAATEIAAPhBAAAcwgAAlMIAAJhBAAAoQgAAgD8AALhBAAAowgAAYMEAANDBAACQQQAAbEIAAPxCAACwQQAAXEIAACBCAADYwQAAUEIAAADCAAAwQgAAJMIAAKjBAAAQwgAA4EEAAFRCAAAswgAAcMEAANhBAAAcQgAAQEAAAGBBAACSwgAAYEEAALjBAADgQQAAMMEAAHzCAAAQwgAAZMIAAMjBAADwwQAAwMAAAOjBAAAEwgAACMIAAMBCAADIQgAAgsIAACBCAADYQQAARMIAAATCAAAYwgAAsEEAACBBAABIwgAAhEIAADDBAAC-QgAAQEAAAFDBAABQwQAAgL8AALBBAADYwQAAEEEAAFBBAADAQAAAcMIAAIA_AACAwQAA-MEAAHBBAADoQQAAqMEAADTCAACMQgAA8EEAAJ7CAACKwgAAiEEAALDBAABwQQAAkMEAABxCAACOQgAA8MEAAADBAACwwQAAsEEAALBBAAAcwgAAMMIAALjBAAAwwQAAoMEAAPDBAACgwAAAcMEAADBCAAAgQgAAMMEAADjCAAAowgAAQMEAAODAAAAwQgAAcMIAAEBCAADwwQAAAEEAABjCAABAwQAAosIAAILCAAAwwQAAPMIAAEBAAADQQQAALEIAADBBAADIwQAAwEEAAHxCAABQQgAAkMEAAPhBAAAgQQAAEEIAAEDCAAAAwgAAsEEAANbCAABYwgAAgEIAAIDAAAA8QgAALEIAAPDBAABgQQAABEIAABxCAAAYQgAAgD8AAJhBAABYwgAAHEIAADDBAACEQgAAuMEAABRCAADIwQAALMIAANhBAADgQAAA-EEAAODBAAAgwQAAiEEAAChCAABgwQAAFMIAADDBAAAgwQAAQEEAABDCAAAAwgAAiEEAAPhBAAAAwAAAwEAAAMDAAAAIQgAAxMIAAFjCIAA4E0AJSHVQASqPAhAAGoACAADYPQAAgLsAACQ-AACgvAAAQDwAAN4-AACAuwAAH78AAFS-AACYvQAAgDsAAKC8AADYPQAAhj4AAJK-AACgvAAAwj4AAIC7AABwPQAAKz8AAH8_AABEvgAADD4AABC9AABwvQAAyD0AAOA8AADgvAAAQLwAAHw-AABcPgAAuL0AADS-AACAOwAAFD4AAHC9AAA0vgAANL4AAIa-AACavgAAUL0AAIq-AACSPgAAXL4AANi9AACgPAAAFD4AAOi9AAAMvgAAjr4AAMi9AABwvQAATD4AACQ-AABkvgAAoLwAAGE_AAAkvgAAuD0AADA9AACYvQAAJD4AABA9AAAUviAAOBNACUh8UAEqjwIQARqAAgAALL4AAIg9AABQPQAAPb8AAKi9AADgvAAA6D0AAHC9AAD4vQAAJD4AAIA7AAA8vgAAiD0AAHS-AADIPQAAqL0AAKi9AAAjPwAAoDwAAGw-AABAPAAAuL0AAIA7AACYvQAAgLsAAAy-AAAMvgAAED0AAFC9AADIvQAA4DwAALg9AACgPAAA4LwAAAQ-AAAEvgAA-D0AAIo-AACCvgAAoDwAAJg9AACAuwAAgDsAAIi9AACgPAAAML0AAH-_AABMPgAAyD0AAOi9AAB0PgAATL4AABQ-AADYPQAA4LwAAHA9AACgPAAAcD0AAIi9AAAQvQAAQDwAAIi9AABwvQAAqD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=H2sCLb6CNPc","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1553245517051567811"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"3361411409579568221":{"videoId":"3361411409579568221","docid":"34-8-5-Z40A8D09E060ABA12","description":"You will learn that how can you export/convert an MS Access Report to PDF file format... #MathechWithYAHYA #PDF #Report # MsAccess #ConvertReportToPDF #ImportAsPDF...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"28","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"How to convert MS Access Reports into PDF File Format | MS Access Series","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=V2dRTNa7CAw\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChMzMzYxNDExNDA5NTc5NTY4MjIxWhMzMzYxNDExNDA5NTc5NTY4MjIxaogXEgEwGAAiRRoxAAoqaGhpamNuc2xvZHhvY2VzZGhoVUNyd191NW9zWFA5WWdqRWdQbTM1NFl3EgIAEioQwg8PGg8_E5ECggQkAYAEKyqLARABGniBDf4C9AAAAPv1Dv8HBf4BIPsG9fUDAwD0Dvb0AwEAAPMA_v7_AAAA9_v9Av4AAAABBfsD_f4BAAIIARADAAAAFgX98PsAAAAGDPr9_gEAAOv3Av8DAAAACwoE-_8AAAAEDfn9__8AAAwGAQUAAAAA9-_w_AAAAAAgAC1HNNM7OBNACUhOUAIqhAIQABrwAX8R1v329BsDoPkqABMp5QLO6OT_Mjw_AKYH-wGnBhkA5iHSAB0HrP_D8_MAkAC9AQDW5_5BILj9EwkxAPgLCgDWBBQBaxX9_xfY_QD_EwD-MtIm_zXCGwBP_kYBJfgl-woDEv3SsyYAkhj9A_ghJgJP-RUE__UU_NjQGvugJf3_INIX-0vJDQS6GBj-PwvF_hn-Fgr7MNL4988EC-QK9gYgvQED5uP18BDIIQndJNX_xQX8-Q0k7_xWbAX-MhsxA8kM9AEW4ub1__8e-dbAIv_bF-sLAugM-UQq7vLvP_b7zvYU6-8g-hsl1wH-uzv2-CAALUF53To4E0AJSGFQAirPBxAAGsAHiQnyvu-ujrw9FtG8Wb-ZPEMw9bq84i49xyKHPX0RI7wVAyS8ATVVPqLFozzKDKU9FOgzvvvv3DxZ04a8OxlsPq4M6jyCjCU8-39QvaFrOj0otoI8HNPTvWc5Gr2m6dg7wvaDvYa87zynoXw88DR5Pm5sdrxkFPQ7urxJvgAMWr2owdm8rPoBPaibpb1lQfo7CzU0PYF8hD0R6fE7GFodPmoHcbu0hRA89SVAPIe_prygbIq8V1z8vX9OIb1RYKa7xwSmvalD9rs2cKw8wE6gPNXIEz0MiNq8tfvVPVED_DwZv5k7HB2RPVjonr38csG7gqJDvHVyq73SCgA7w9T2vVsFpr0bAGA818N3Pdndjb1grVo8JrrIvU8-nDvFiKs7m0BMvef297zc6qA7UggJPNQhkT01v5C8KylhvcZ7Hz3QHY48Ue-jPVnQxbtLUr48DmwwPaDy2Lr_JQY8_0F_vNADhLwyjGC8wdY2vEscrj20PXq8XtsbPpr-sjvCrwU85BBxvAilhL36RWg7Q7hYPQqgWD3Vx-i7l-OFPXuXnLxbjEs8NUNLu7VFY72gsLy71RaovdvxcDw0R3s7Zpe5vAEwDj7kXNQ6QOekPcBZ6j0k_Yu6GYFCvSOxDr0xUhi8CROLvbkijLwxsfm62PULvrA9Mz3Ticy5clP_O7-C1L06i4M6kU2NvHE4072ry5G5TQqdvQKsAjzYhsQ6nooFvea0Aj3TFZy5I2utveLNCj6dNuC5MCNmPYGTUDsvWxc6zHpxPQZVWTyB4-65TM0UPeBNcr38oSE5TQayugO2I70IaBK4OgEPO1cDObwKdB86Y98kPfpaPDxMr5U58CTzPOWgjz2iHdK43_X-PPj2Mz0xNmk5M6JZPAsZOb1I1UC5qYRnvb4qPL2mK2q4P8dHPB97wr0hxyS4uJ1MvU7RMb3A1BI52sj1vTAm4jwPS8s5jVGNvMeWDLxCcSg4OvSMvPSAQ7zl3Ym5OrqAvOGyr7tZMV84fY6EPeXCNzwAx-q2wAPIvQitR71uRMy28-GevZMEm7uBemi4cHATPRFcQDzq3YA5mKdzPbdqzbwO9hm4joi1OtnKcL3_CWc3hn8HPZLcKz3GppM4zEouPZtSQ71atku4Jhqkuysnaz0hKjW4QHLCO-I1xD22Q1S480rjvHuFRT19pPg3a_AePt_KzLtauHg4QyLIPKVN1b1QB3e4_vuiPYECtTs799o47cSbPEVJyD3uUgq5I_HXPBHTdDwro5a4GttrvLGDEDw6gSQ4IAA4E0AJSG1QASpzEAAaYMf9AHnwIs7SA0DM9xDiHRDq8agK4Dv_DOn_7fPYtuAFncgoCf8e0AnslwAAAB4lzkoaAAJ_1bzQ8eVAFMnT5uD1VuP4FMSs8xcA3n7h4_njBRcvXwAk19IuWzXhCwjn3yAALTIGDzs4E0AJSG9QAiqvBhAMGqAGAADAwQAAjkIAAGxCAAAUQgAAYEEAAHBCAADYQQAAAEEAAETCAACMwgAAoMAAAFjCAACQwQAAEMEAAOhBAABcwgAA4MEAAM7CAABgQQAAoEEAALBBAAAswgAAAEAAADRCAAAcQgAAuEEAADTCAACwwQAA3kIAADzCAACgwAAAoMAAAJDCAABQQgAAAEEAAETCAABAQQAAhEIAAMhBAAAkQgAAEEEAAIhBAAA0wgAAoMAAAMrCAABAwAAAIMIAADBBAAAAQQAAgEEAAFTCAACAvwAAQEEAAFBBAADKQgAA8EEAAKDBAAA0QgAAAEEAADhCAAAgQQAAwMAAAOBAAACawgAA8EEAAMDAAAAAwQAAgEEAAABAAAAAwQAAsEEAAABAAABAQQAA4MAAAGDBAAAwQQAAIMEAAMjBAABQQQAAAEEAABDCAACgQgAAUMEAABhCAAA8wgAABMIAAKDAAABwQQAAdEIAAIBBAADgwQAATEIAAFDBAAAEwgAAuMEAAEjCAACgwAAA6MEAAAhCAACwwQAABMIAAJBBAABYQgAA0EEAABBCAADgQAAAmMEAAPhBAACAPwAAskIAAERCAACAwAAAkMEAAPBCAAAIQgAAEEEAAFDCAABMwgAAoEAAAADAAABAwAAAssIAALBBAAAEwgAA2MEAALhBAACwQQAAyEEAAFDBAACAwgAAoMEAAJDBAABAQQAAIMEAAHDBAADwQQAA2kIAAIA_AADwQQAAmMEAAOBAAADgwAAAwEEAAOjBAAA8QgAACEIAADjCAAAMQgAAgEAAACBCAADIwQAAIMEAALBBAADYwQAAlsIAAKDBAAAIwgAAIMIAAMBAAABQQgAAikIAALJCAABUwgAA-MEAAJ7CAADIwQAANEIAAKDAAAAgwQAAgEAAAIBAAABMQgAAAMEAAHBBAACAQAAAEEIAALhBAADgwQAAwMAAAJBCAACawgAAUMIAAAAAAAAAwQAAEMEAALhBAACcwgAAcEEAAIBCAAAAQgAAKEIAAOBAAAAEwgAAYMEAAOhBAAAQQQAAiMIAAFzCAACQQQAA-EEgADgTQAlIdVABKo8CEAAagAIAAKi9AABMvgAAEL0AAL4-AAAEPgAAXD4AACS-AAA3vwAAJL4AABS-AACqvgAAED0AAGy-AACWPgAAuD0AAJi9AADWPgAAQLwAADy-AAAbPwAAfz8AAIA7AADoPQAAED0AAPg9AACOPgAAQDwAADC9AABkPgAAgLsAAIY-AAAQvQAAij4AAFQ-AACgPAAARD4AABA9AABwvQAArr4AAEC8AADovQAADD4AAOg9AAC4PQAAQLwAAPg9AACuPgAAPL4AAIC7AADIvQAAiD0AAMi9AAAcPgAAgDsAAMi9AAAQPQAARz8AABQ-AABwPQAAmj4AALg9AAA8PgAARD4AAAw-IAA4E0AJSHxQASqPAhABGoACAADovQAAQLwAALK-AADWvgAAgLsAANi9AAA0PgAA-L0AAAw-AACovQAApr4AAKA8AADIvQAAir4AABw-AAAQPQAA4DwAAAk_AAAMvgAABT8AAIi9AABwvQAALL4AAMg9AADIvQAAgj4AAPg9AADgvAAAEL0AAIi9AACAOwAALD4AAJi9AABAPAAAVL4AADw-AAA0PgAA2D0AADy-AAAcvgAA-D0AAGw-AABEPgAA4DwAAJg9AADgPAAAf78AAMq-AABMvgAAFL4AAOi9AABAPAAAQLwAAIg9AABwPQAA6D0AAIA7AACYvQAARL4AAJo-AACgvAAAQLwAAMi9AACovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=V2dRTNa7CAw","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["3361411409579568221"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"3487080266"},"14430519612846794746":{"videoId":"14430519612846794746","docid":"34-8-10-Z376249740B1EC47F","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. If this walkthrough video was helpful, click Join to become a member of the YouTube channel so you can access ALL...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"29","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 6 problem 3.3.1b (VT MATH 1025)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Zj5FF1j-eYQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxNDQzMDUxOTYxMjg0Njc5NDc0NloUMTQ0MzA1MTk2MTI4NDY3OTQ3NDZqrw0SATAYACJFGjEACipoaHdneWFuaG51dGVsY25jaGhVQzllTFJWYjJaUkZxdzRCQUd1cHZLc1ESAgASKhDCDw8aDz8ToQGCBCQBgAQrKosBEAEaeIEI8P32BPsA6fv3APkAAQAWBfcG9AEBAOv37_sFAAAA8vAHCwAAAAAJ-_4HAQAAAAUK8w_9_QEACf3-_AQAAAAN7_3_-QAAABIWCPn9AQAACvYFEgT_AP8UCQPz_wAAAPUBA_v3AP8BDwkC-wEAAAD8BP_2_wAAACAALfTbxjs4E0AJSE5QAipzEAAaYOQWADAXLtLXGB3gBPTYPfvB3Pzq2An_BPv_JiDot_zz3bM9Nv8uuhzsngAAACTJsPL0ALZ_L9zUFAEX9c74ExEVcBtFt-XkCdbZFBcRHtg2vdnt6QDDAN0DVguzKWw6AiAALYbHFjs4E0AJSG9QAiqvBhAMGqAGAADIQQAASMIAAKhCAADMwgAABEIAAKBBAACoQgAAAEEAAKDBAABQQQAAAMAAABzCAACIwQAA4MAAAKBBAAAwwQAA0EEAABjCAABcQgAAOMIAALjBAAAgwgAAtsIAAJZCAACKwgAAgMEAAOBAAAC4wQAAqEEAAIhBAAD4wQAA8EEAADTCAACoQQAAyMIAAIhBAACAPwAAoEIAAMDBAACCQgAAQEEAAABBAAAsQgAA4MAAAPhBAABUwgAAiEEAAKhCAACwQQAAQEAAAKBAAABIwgAAgMAAAChCAACQQQAA4MAAAFjCAABQwQAAkEEAAKhBAAAcQgAANMIAAGzCAACAwgAA8EEAAMjCAACAPwAAoMIAABzCAAA8wgAAnkIAAChCAACKwgAAQEIAAOjBAAAgwgAAsMEAABTCAACwQQAAwMAAAADAAACmQgAAEMEAAMhBAADAwQAA6EEAAIC_AADAQAAAmEEAAKjBAADYQQAAokIAAJ7CAABwQQAAUMEAAPDBAADAwQAAAAAAAIxCAACYQQAAXMIAABDBAABsQgAAXMIAACjCAACAwAAAAAAAAOBBAACgQAAAlkIAAHRCAACAQAAA0MEAAEBAAADAwAAAUEIAAKhBAACwwQAAhMIAAPjBAACIwQAAAMIAAMDBAACYQQAAAEAAAADBAAAgwQAAwMAAACjCAAAMQgAAyMEAANjBAACAwQAATEIAAMDBAAAcQgAAgMAAAEBCAAAwwgAAcMIAABhCAAAQQQAAyEEAACTCAACAQQAAyEEAAMDBAAAgQQAAiMEAAKBBAABAQAAAuEEAAIBCAACIQQAAwMAAALjBAACCwgAAyMEAAK7CAABAQQAAkMIAADBBAACIQQAAUMEAAIDBAACIQQAAEEEAAMhCAAAcQgAAoEAAAGDBAABAwAAAgMEAAOjBAABgwgAA4EAAANDBAAAQwQAAYEEAAFBCAACwwgAAGMIAACDBAACAwAAAEEEAAODBAACOwgAAdMIAAADBAACQwQAAoEEAAOjBAABQQQAAkMEAAODAAAAsQgAAcMEAACxCAADwQQAAIMIgADgTQAlIdVABKo8CEAAagAIAAKC8AADgvAAA0j4AAJ4-AAAwPQAAVD4AAKC8AAD6vgAAJL4AAIg9AABAPAAAbL4AABA9AABEPgAAcD0AAIi9AADWPgAA2D0AABQ-AACSPgAAfz8AAOA8AAAMPgAAgDsAADS-AADqvgAAmj4AAGy-AADoPQAAQDwAAPg9AACOPgAAJD4AAIA7AABcvgAAyL0AABA9AAB0vgAA9r4AAEC8AAC-vgAABL4AAEQ-AAAEPgAAqL0AAIi9AACYPQAAHL4AAIC7AAD4PQAAJD4AAJg9AACIPQAAij4AADy-AABAPAAAOT8AAFA9AABQPQAAmL0AACw-AAC4vQAAVD4AADS-IAA4E0AJSHxQASqPAhABGoACAAB0vgAA2L0AAIC7AAAnvwAAND4AAIC7AAAEPgAAUD0AAEC8AACIPQAAUL0AAOA8AABcvgAANL4AAOg9AADgPAAAgDsAADE_AACIPQAA1j4AABw-AABAPAAA-L0AAKA8AADYvQAAML0AAFw-AACoPQAAQLwAAEw-AAAQPQAABD4AAOA8AADovQAA4DwAAIA7AADIPQAAiD0AAKq-AABMPgAAFD4AAHS-AAAcPgAA4DwAALg9AAD4PQAAf78AAES-AACAuwAAML0AANi9AACgvAAAQDwAACy-AACePgAAyD0AAFA9AABQPQAAVD4AAGQ-AACoPQAAqL0AADS-AAA8PiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Zj5FF1j-eYQ","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["14430519612846794746"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"5770073643003888782":{"videoId":"5770073643003888782","docid":"34-4-14-ZE71833839D49B6FE","description":"@balumathtech #ecetmaths #trigonometrytricks #tipsandtricks #ecettrigonometry In this video detailed explanation about trigonometry solutions of Apecet 2022 shift 2 paper ...useful for ECET...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"30","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Trigonometry || mcqs || solutions of apecet 2022 shift 2 ||tips &tricks|ecet eamcet jee || lecture 3","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HoBdE3IUXZs\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChM1NzcwMDczNjQzMDAzODg4NzgyWhM1NzcwMDczNjQzMDAzODg4Nzgyaq8NEgEwGAAiRRoxAAoqaGhqbXZkc2J5eGt6bGprYmhoVUNBZzVVS000WnJqVlhyMTFrSHd0dnlREgIAEioQwg8PGg8_E5kNggQkAYAEKyqLARABGniB-fcHAwT7AOwE_AMKAv8ADAD7-vYAAADiAu_2A_wCAOf8EQUFAAAAChj-AQkAAAASB__69wABARsG7v4EAAAA_Q8K_PgAAAAHAf39_wEAAOz-APUCAAAABvH6-P8AAAD8Bvj7-f4AAQUL7QoAAAAADPQFDgAAAAAgAC38mcc7OBNACUhOUAIqcxAAGmAYCQATHfS90fEV6hTe9iLx6i_s9_of_wvjABwb9PMHDQDKNgYAIt_6G78AAAASGesaBAD2T_bqBQb7FxezrwgLDH8b8OgU9xHw0QQWEjgsC_YHKSIA-AUJ8wbmHBJRLRMgAC3OgVA7OBNACUhvUAIqrwYQDBqgBgAASEIAAMBAAAAMQgAAcEEAAIhBAADgwAAAoMAAAEDCAAAAQQAAQEIAAGBBAAAAwQAA-MEAAIBAAADIQgAAqMIAAMhBAAAYwgAAgMEAADTCAACqwgAAUMIAAKDBAABsQgAAVEIAAEDBAABwwgAAnMIAALBBAAAUQgAAEMEAAABBAACEwgAAyMEAAIjBAABsQgAAHEIAAP5CAADoQQAAFEIAAFBBAAAwQQAATEIAANDBAAAcQgAAsMEAAJDBAABwwQAAwEEAAPBBAAAwwgAAgD8AAABCAAA8QgAAAMEAAABAAACCwgAAcEEAAAzCAACwQQAAQMAAAKjBAAD4wQAAEMIAACjCAACgwQAAAMEAAGDCAADYwQAAQMAAANpCAACiQgAAgsIAAARCAADIQQAASMIAAIDBAAAgwQAAOEIAACDBAACAwgAATEIAADDBAACSQgAA4EAAAKDAAAA4wgAAYMEAANBBAACAwQAAyEEAAEBAAACgQAAAZMIAAOBAAAAswgAAjsIAALBBAAD4QQAAuMEAADjCAACSQgAANEIAAILCAACGwgAAsEEAAJDBAADIQQAAQEAAAMhBAAA0QgAAmMEAAEBAAAC4wQAALEIAAIC_AAAIwgAAksIAAADCAAAgwgAAyMEAAJDBAADwwQAA8MEAAPhBAAAgQgAAJEIAAHDBAABYwgAAgMAAAAAAAACAQgAABMIAAIpCAAAcwgAAAMEAAODBAAAgQQAAaMIAAHDCAAC4QQAAMMIAAKBAAAAwwQAAREIAABhCAACewgAA-EEAAGhCAABAQgAAQMAAANhBAABgQQAA4EAAAIjBAADQwQAAgMAAANTCAABswgAANEIAAEDBAAAwQgAA4EAAAMjBAACYwQAA6EEAAEhCAACAQQAAcMEAABBBAAAEwgAAgD8AAIhBAACcQgAAIMEAAEBAAADQwQAAeMIAAHRCAACwQQAACEIAAODBAABAQQAA4MEAAMhBAAAAQAAAEMIAAJDBAABAQAAAKEIAABTCAACAvwAAwMAAAIDAAAAgwQAAPEIAALhBAACEQgAAgsIAAHTCIAA4E0AJSHVQASqPAhAAGoACAACYvQAAqD0AAI4-AACgPAAAiD0AAOI-AACAuwAAMb8AAJi9AADgvAAAED0AABC9AAA8PgAAXD4AALi9AABwvQAAvj4AAOA8AACoPQAAAT8AAH8_AAAsvgAA2D0AAFA9AAAQPQAAUD0AAHC9AAAcvgAAUD0AAEQ-AAAkPgAAyL0AAOC8AACIvQAA-D0AABC9AAA0vgAA4LwAAIa-AACOvgAAEL0AAEC8AACYPQAAFL4AAAy-AACgPAAAlj4AAAy-AAAkvgAAJL4AAIi9AAAwvQAAfD4AAKg9AACqvgAAoDwAADs_AADgvAAAcD0AABQ-AABQvQAAMD0AADA9AADgvCAAOBNACUh8UAEqjwIQARqAAgAARL4AAEw-AACIPQAAO78AANi9AAAcvgAARD4AALi9AAAQvQAALD4AAPg9AAAkvgAAcL0AAFS-AADoPQAAML0AAOi9AAAbPwAAgDsAAFw-AACoPQAA2L0AAKi9AACovQAA4LwAAJi9AAAcvgAA6D0AAAS-AADIvQAAED0AAPg9AABAvAAAoDwAAMg9AADIvQAAHD4AAI4-AACGvgAAuL0AAPg9AABAvAAAmL0AAHC9AACoPQAAqL0AAH-_AAAsPgAALD4AABy-AAA0PgAAUL0AAHA9AADYPQAAML0AANg9AACgvAAAUD0AAOA8AACAOwAAgDsAACy-AADgvAAAJD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=HoBdE3IUXZs","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5770073643003888782"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"3531643455849524092":{"videoId":"3531643455849524092","docid":"34-5-10-Z8301CDA60488A592","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. If this walkthrough video was helpful, click Join to become a member of the YouTube channel so you can access ALL...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"31","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 5 problem 2.3.1c (VT MATH 1026)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=anJWsbcWeXo\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChMzNTMxNjQzNDU1ODQ5NTI0MDkyWhMzNTMxNjQzNDU1ODQ5NTI0MDkyaq8NEgEwGAAiRRoxAAoqaGh3Z3lhbmhudXRlbGNuY2hoVUM5ZUxSVmIyWlJGcXc0QkFHdXB2S3NREgIAEioQwg8PGg8_E4kCggQkAYAEKyqLARABGniB_u_6_wn2AOYF7_36_wIALP7_C_MFBQDk-vv-BP4BAOb8EgUFAAAAAv33AgoAAAAP_fb0__4CAAv89gYEAAAAA-3zAwQAAAASCgYD_QEAAP7sBgED_wAAGvv7_gAAAAD2_ff7__8AABYW-_cBAAAAAwkR8P8AAAAgAC1807o7OBNACUhOUAIqcxAAGmDxHgA0IiThwgQc5AEH3EHiuND048gS_wwO_0AV38fwD8SuLh7_J8Yb5J8AAAAcysv4GQDKfzTqxw8HBuDd_PAEAnsuUMjf3Ajp0ygB7BXmJsbU9AkAyu7iI2cmqz9gMwwgAC3tvxU7OBNACUhvUAIqrwYQDBqgBgAA0EEAAABAAABgQQAA6MEAAEzCAAAAQQAA1EIAAABCAABwwQAAWMIAAIBBAAAAQgAAOMIAAAzCAABQQQAAyEEAABhCAACowQAAqEIAABjCAABkQgAAAMEAALhBAAAAwAAA0MEAAAAAAACawgAAfMIAAJhBAAAAQAAAYMEAAKjBAAAowgAAEEIAACjCAAAgQQAAIEIAAJRCAADYQQAAoMEAAADAAABEQgAA1kIAAHBBAAAIQgAAhMIAAMhBAACQwQAADEIAABhCAACwwQAAiMEAAJ7CAADAwQAA8EEAAABCAABQwQAAWMIAAKhBAADAQQAAkkIAAETCAABQwgAAfMIAALBBAACowgAABMIAAIbCAAAMwgAAkMEAAFhCAACwQQAAUMIAAMDAAACAwAAAAMAAAKDBAABAwQAAcEIAAJhBAADgwQAAYEIAAADCAADgwQAAJEIAACzCAAAwQgAAcMEAAKJCAAAkwgAA4EAAANxCAAAowgAAisIAACBBAADYwgAAwMAAABTCAAC0QgAANEIAAETCAAAEQgAAoMAAABDCAACSwgAAQMAAABDBAAAEQgAAoMEAANBBAAA4QgAAAAAAAGDBAADYQQAAHEIAAKDAAACoQQAAMMEAAEzCAAAAAAAAQMEAAILCAADAwAAAmMEAACTCAABEwgAAEEEAAIjBAAAEwgAAwMAAAADCAABIwgAABMIAAIBBAABMwgAAbEIAAHhCAADYwQAAYMEAAJjBAADgQQAAgD8AAMDAAAAAAAAAcMEAAFBCAABQQQAAgL8AAKDAAACgQAAACMIAAMDAAABAQgAAoMAAAMRCAABAwAAASMIAAPjBAACwwgAAAMAAAJjBAABwQQAAqEEAAODBAABswgAAAEEAAOBAAACyQgAAAEEAANDBAADYwQAA-EEAAATCAABAQQAAUMEAAIDBAAAIwgAAYMEAAKDAAABAQAAA1MIAANDBAAA8wgAA-EEAAMBBAAAMwgAARMIAACTCAAAEwgAAkEEAAIhBAACowQAA4EEAAJjBAAAAwAAA6EEAACBCAAAAQAAAMEEAADBBIAA4E0AJSHVQASqPAhAAGoACAABQPQAABL4AAMo-AADYPQAAqL0AANY-AADovQAAKb8AAKi9AACoPQAAgLsAADS-AACAOwAAMD0AAKA8AAC4PQAAqD0AALg9AABEPgAA8j4AAH8_AADgPAAA2D0AAKg9AACWvgAApr4AAJ4-AACGvgAAdD4AAJg9AAAkPgAAuj4AAAQ-AACmvgAAcD0AADy-AABAvAAAgDsAALK-AACIPQAAnr4AALq-AABkPgAAEL0AAJK-AAAwPQAAVD4AADy-AAD4PQAAqD0AAI4-AABAPAAA2L0AALY-AAAwvQAAcD0AAD0_AACYPQAABD4AABA9AADKPgAAPL4AAJY-AACovSAAOBNACUh8UAEqjwIQARqAAgAALL4AAKi9AADYvQAAQb8AAOC8AAAEvgAAij4AAKg9AAAsPgAAmL0AAJi9AACoPQAAur4AAES-AAAQPQAA6D0AAIC7AAAtPwAAUL0AAOY-AACIvQAALL4AAK6-AABAvAAADL4AAKA8AABEPgAAQDwAAKA8AABMPgAAgLsAANg9AAAwvQAAPL4AABA9AAD4PQAA4DwAAKA8AACivgAAqD0AAEQ-AABEvgAAcD0AAKg9AACgPAAAiD0AAH-_AACqvgAAqL0AAFS-AACYvQAAFD4AAIA7AACmvgAAkj4AANg9AADgvAAAyD0AAII-AAAMPgAADD4AAJi9AACGvgAAqD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=anJWsbcWeXo","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["3531643455849524092"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"1225676179282889416":{"videoId":"1225676179282889416","docid":"34-10-4-Z7C7FCD55F4A4856B","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. ⋆ If my videos have ever helped you answer a question, get a 6/6 on a quiz, pass an exam, etc., please consider...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"32","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 6 problem 5.1.6c (VT MATH 1524)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=uX6aXgvF3ec\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChMxMjI1Njc2MTc5MjgyODg5NDE2WhMxMjI1Njc2MTc5MjgyODg5NDE2aq4NEgEwGAAiRBoxAAoqaGh3Z3lhbmhudXRlbGNuY2hoVUM5ZUxSVmIyWlJGcXc0QkFHdXB2S3NREgIAEioPwg8PGg8_EzuCBCQBgAQrKosBEAEaeIH-7_r_CfYA6PT9BfgCAQAe-gf_9AMCAOHv9P_7_AIA8fkJAgQAAAD-CfII-wAAAAcJ-Pr4_QEABPgF_gMAAAAU7wH7AwAAABsMD__9AQAAB-YICwP_AAAXBBUCAAAAAP4C_v_9Af8BFhb79wEAAAACGQjz__8AACAALXzTujs4E0AJSE5QAipzEAAaYA0QACQOLN_mGhflCe_VPunp4vb28Cv_EB7_PUHtx-0LxsJMFP9OxQjknwAAAAvYteX2ANh_LPy5IBQX7Lcb9RkLci43q7vF9MfYFDPpNswd6NoSDQDMCfAFPBPCK3kNJiAALf5PFjs4E0AJSG9QAiqvBhAMGqAGAAAIQgAA0EEAAKBCAAB0wgAABEIAALBCAACCQgAAsMEAAJTCAABQwQAAREIAAJDBAADowQAAhsIAAIC_AADwQQAAyEEAAATCAADowQAAEMIAAIDAAAAQQQAAcMEAALBBAAD4wQAAWMIAAK7CAABkwgAAbEIAACDBAAD4wQAAqEEAAFjCAADIQQAASMIAAEBBAADAwAAAjEIAAKBBAAD4QQAAMEEAALBBAACIQQAAQEAAAABBAAAkwgAACEIAAChCAACMQgAA0EEAAIjCAACowQAAQMEAAAhCAAAEQgAAcEEAAKzCAACIwQAAEMEAADBBAACQQQAAfMIAAEDBAAA0wgAA8EEAAMrCAACAwAAANMIAAIjCAABUwgAAfEIAAHBCAAA0wgAAoEEAAJjBAADAwQAAjMIAAADAAACAQgAA-EEAAIA_AACmQgAAiMEAAIC_AADAwQAA0EEAAEBCAACQwQAAbEIAAODAAACgQQAAWEIAACDCAABAwgAAUMEAABDCAABwwQAA4MEAABhCAABQwQAAmMIAAFBBAACoQQAA4EAAACDBAAAAQQAAMMIAACBCAABgwQAA6EEAAFhCAABgQQAAoMAAAABBAACAvwAAGEIAABhCAAAUwgAAoMAAACzCAABAwAAAWMIAAAjCAABAQQAA4MEAAABAAAAAQQAA2MEAADBBAADAwAAAIMEAALjCAAAwQQAAFEIAACDBAABwQgAAgEAAABxCAACIQQAAqMEAAARCAAAwQgAAHEIAAIjBAABEQgAAhEIAANDBAAAQwQAAQEAAAEBBAAAQwgAA4MEAALBBAAAQQQAAAEAAAFzCAAC-wgAAcMEAABjCAADYwQAAwMAAAKBAAABAQAAA4MAAAIjBAACgwAAAsMEAAJxCAABwwQAAgMEAAIjBAAAQQQAAEMEAADTCAACgwAAA2EEAAEBBAAA4wgAABEIAALBBAAD4wgAAJMIAAPjBAAAwQQAANEIAAJLCAACMwgAAEEEAAEBBAABAwQAAmkIAAHTCAAAsQgAAqEEAAMDBAAC4QQAAuMEAAAxCAAB0QgAAQEEgADgTQAlIdVABKo8CEAAagAIAAAQ-AADIvQAAdD4AABQ-AADgPAAAdD4AAKC8AADWvgAAjr4AAKg9AADgvAAAdL4AADQ-AACYPQAAbL4AADA9AAAUPgAA2D0AAIo-AACqPgAAfz8AADC9AACgPAAAmL0AAES-AAB0vgAAwj4AACy-AACYvQAAQDwAAOg9AABEPgAAmL0AAAy-AAAUvgAAML0AAPg9AADIvQAA9r4AACy-AAADvwAAmL0AANY-AAC4PQAAcL0AABA9AAAEPgAABL4AADw-AADoPQAA-D0AAOg9AACoPQAAVD4AAHS-AABwvQAACz8AAKA8AACOPgAAgLsAADw-AABMvgAABD4AABS-IAA4E0AJSHxQASqPAhABGoACAABwvQAAoDwAAIA7AAALvwAAJD4AAKg9AAB0PgAAED0AAIA7AAAkPgAAEL0AADA9AABMvgAAVL4AAOC8AABwPQAAUD0AADM_AACovQAAuj4AAKi9AADovQAAJL4AAFC9AACYvQAA2D0AABQ-AABAPAAAgDsAAGQ-AABQPQAA-D0AAGS-AABAPAAAoLwAADA9AABcPgAAoDwAALa-AACovQAABD4AAJi9AAAEPgAAuD0AAOC8AAAcPgAAf78AAIK-AACovQAAmD0AAFC9AAAUPgAA-D0AADy-AABUPgAAoDwAAOA8AAAwvQAAiD0AAIo-AAC4PQAAEL0AAAy-AAAQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=uX6aXgvF3ec","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["1225676179282889416"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"17421683389564325649":{"videoId":"17421683389564325649","docid":"34-5-15-Z6B465F38009B1D22","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. If this walkthrough video was helpful, click Join to become a member of the YouTube channel so you can access ALL...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"33","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 3 problem 2.1.3e (VT MATH 1025)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Q2OHJTKC-d0\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxNzQyMTY4MzM4OTU2NDMyNTY0OVoUMTc0MjE2ODMzODk1NjQzMjU2NDlqrg0SATAYACJEGjEACipoaHdneWFuaG51dGVsY25jaGhVQzllTFJWYjJaUkZxdzRCQUd1cHZLc1ESAgASKg_CDw8aDz8TYoIEJAGABCsqiwEQARp4gfj2-_gE-wDn-ez6_P4DAA8N8QT0AAAA6_fv-wUAAADo-AUF_P8AAAj-8AkCAAAADwn4BvkAAAEJ_PT99wAAAAPu9AMDAAAAEhYI-f0BAAD48A4JBP8AABQJA_P_AAAA7gUF_P7_AAAHEP33AQAAAPgEAAH_AAAAIAAtQR7GOzgTQAlITlACKnMQABpg7RMAOBc0098ZHO8JA9ku4KbV97zVCP8FCP9PFfO-9_DkyBIs_yLACuadAAAAFr277CwA0n8t_-RB9SbgyPsT-hRNIz_L9e3o6PMFNe4W6DXC0734ANLx7Bg8GLwsfS8XIAAtkXMaOzgTQAlIb1ACKq8GEAwaoAYAAABCAAAowgAAuEEAALhBAACgwQAAYEIAAGRCAADwQQAALMIAADBBAAAwwQAAiEEAAIhBAAAgwQAAqMEAABBBAABQwQAAmMEAAIDAAAAUwgAAAMAAAGBBAAA0wgAA4EAAACDCAABAQQAA-MEAAMDAAAA0QgAAoMAAAGjCAAAAQgAAyMEAADRCAAB4wgAAqEEAAKxCAADOQgAAQEEAACDBAAAYwgAANMIAAGBCAACAwQAAGEIAADDBAAAYwgAAbMIAAABBAABMQgAA4MAAAABBAAAwwgAACMIAAABBAADgQQAAYMIAAEDCAAAAQAAAGEIAAFBBAAAowgAAPMIAALDBAACoQQAAtMIAALjBAABUwgAA4MAAAILCAADAQQAA4MEAAKrCAABEQgAAksIAAEhCAAAEQgAAQEIAAKpCAADwQQAA2MEAABRCAADAwQAAqEEAADxCAAA8wgAAJEIAAOBAAABAwQAAgMEAACDCAAAcQgAAQEAAALBBAAAQQgAAUMIAAKjBAAB4wgAA6EEAAFBBAABwwgAAkMEAAAxCAAD4QQAAEMIAAIBBAAAYwgAAAAAAAMBBAAA4QgAAUEIAANhBAABYwgAAkkIAAKhBAACAwQAAYMEAAEDAAACgwAAAYMEAALBBAAA8wgAAYMEAALjBAAAQwgAA4MEAADRCAADYQQAASMIAAOhBAACoQQAAisIAAIBAAAAAQQAAIEEAAIC_AAAcQgAAsMEAAJjCAADwwQAAoEEAAKDAAADgQAAAcEEAANjBAAAgQQAALEIAACjCAACAQgAAMEIAAODBAADwQQAAPEIAADxCAACwQQAAwEEAAAjCAAA0wgAAGMIAADBCAAAgwgAAaEIAAMDBAACgwgAALMIAAIhBAADQwQAAukIAACBCAABAwQAAqMIAANBBAAAAAAAAtsIAAFDBAAAowgAA4EEAAADBAACgwQAAEEEAAFTCAADAQAAAhsIAANrCAABEQgAAnkIAAAzCAACwwQAAgEEAANjBAABAQQAAhkIAADRCAAAAwQAAwEEAALxCAAAMQgAAAMEAAMDAAADQwSAAOBNACUh1UAEqjwIQABqAAgAAgLsAABA9AACmPgAARD4AAEA8AADqPgAAyD0AADG_AAB8vgAALD4AAOA8AADGvgAAQLwAACw-AABkPgAA6L0AANI-AAAMPgAAgj4AAAM_AAB_PwAAoLwAADw-AAC4PQAADL4AAI6-AACOPgAA6L0AABQ-AAAMPgAATD4AAPg9AACOPgAAmL0AADS-AABQvQAAmL0AAHC9AAALvwAALL4AAOK-AACovQAAdD4AAKC8AACCvgAAMD0AAKY-AACWvgAAiL0AAHA9AAA8PgAAcD0AAFQ-AACyPgAAgr4AADA9AABvPwAA-D0AAHw-AADgPAAAxj4AAIC7AACWPgAAbL4gADgTQAlIfFABKo8CEAEagAIAAIq-AACAOwAAmL0AACG_AADYPQAAmL0AAPg9AAAwPQAAQDwAAPg9AACAuwAABD4AAFy-AADYvQAA2D0AABA9AACIvQAALz8AAKi9AADCPgAAQLwAAPi9AAAsvgAAqL0AAIi9AADgPAAA6D0AADA9AABAvAAAPD4AAEA8AACoPQAAEL0AADC9AAAkPgAAQDwAAAw-AAA8PgAAnr4AAOC8AAAcPgAAZL4AAKg9AADgPAAAMD0AAOA8AAB_vwAANL4AAKi9AADIvQAAoDwAADA9AAAUPgAAHL4AACQ-AACIPQAAQDwAABC9AABsPgAAPD4AAOg9AACgvAAAFL4AALg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Q2OHJTKC-d0","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["17421683389564325649"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"1687118265449453228":{"videoId":"1687118265449453228","docid":"34-3-14-ZAEC4C17A900B994A","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. If this walkthrough video was helpful, click Join to become a member of the YouTube channel so you can access ALL...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"34","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 4 problem 2.2.3c (VT MATH 1025)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VscgsAwuUBM\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChMxNjg3MTE4MjY1NDQ5NDUzMjI4WhMxNjg3MTE4MjY1NDQ5NDUzMjI4aq8NEgEwGAAiRRoxAAoqaGh3Z3lhbmhudXRlbGNuY2hoVUM5ZUxSVmIyWlJGcXc0QkFHdXB2S3NREgIAEioQwg8PGg8_E_UDggQkAYAEKyqLARABGniB_u_6_wn2AO_z7wf4BAABDRP9BfQBAQDV8vAECPgEAPEAAQj9AAAADfsLCwgAAAAeDO8I-gMBAQn89P33AAAA--j5-P8BAAALEQMA_QEAAAbtFP8CAAAAFQkD8v8AAADuA_r5_v8AAAoZB_4BAAAA9QUJ_P__AAAgAC1807o7OBNACUhOUAIqcxAAGmDsEQBGLTbU4icG7fEJ0h_dqtoRyNL-__8AACkM37vvEMnH_zD_N8QY2JwAAAALtsHSHgDJfyT9wjb5MMHh2wQBAGZJQNXR8enc-fMo7hPYGL7D1wkA6OvjEl4JuzNTMxEgAC0L1hU7OBNACUhvUAIqrwYQDBqgBgAAgEIAAEDBAACsQgAAqMIAAHDBAAAAQQAAPEIAANBBAACwwQAAAAAAABhCAACQwQAA6MEAADBBAAAAQAAAEMEAAGBCAABswgAAVEIAAADCAADwwQAAUMEAANrCAABQQgAAcMIAACTCAAAwwQAAoMEAAEDAAABAQAAA6MEAAOhBAAAgwgAADEIAAOrCAACAwAAAcEEAACxCAAAkwgAAikIAAKBAAAAIwgAAMEEAAPjBAACYQQAADMIAAFBBAACQQgAAAAAAAKDAAADAwQAAjsIAAIDBAAB0QgAAuEEAAKhBAACawgAA4MEAAMhBAABAQQAAEEIAABDCAAA0wgAAYMIAAKBBAAC6wgAAgD8AAHzCAABgwgAALMIAAFhCAADwQQAAqMEAAJhBAADQwQAAAMAAACDBAAAkwgAA4EAAACBBAABwwQAAokIAACDBAACAvwAA4MEAAEhCAABwwQAA4MEAAPBBAAAAwAAAMEIAAIhCAACSwgAA2EEAAKBAAADYwQAAPMIAAIC_AADoQQAAGEIAABzCAAAgQQAAPEIAAODBAAD4wQAADEIAABDBAADgQAAAwEAAAIRCAAB8QgAA8EEAAIDBAAAwwgAAwMAAAIxCAABAwAAAJMIAAKjBAAD4wQAAcMEAAADCAACAwAAAsMEAAHDBAADAQAAAuMEAAIBAAAAIwgAAZEIAAFDBAABowgAAEEEAAChCAAAAwAAAJEIAACDBAACWQgAAwMAAAGTCAABwQQAAQEEAAFBBAACIwgAAoEEAAExCAACIQQAAoMEAAPDBAAAAQgAAuMEAAMBBAABMQgAATEIAADBBAACIwQAAlsIAAKjBAAA8wgAAoMEAAHTCAACQQQAAsEEAAIA_AADwQQAAUEEAAETCAADSQgAAKEIAAEDBAABgwQAAcMEAADDBAACCwgAAPMIAABRCAADowQAAIMEAAPBBAACoQgAA3sIAAIbCAAAAwAAAYMEAAHBBAABAwQAAbMIAABjCAACgwAAA2MEAAI5CAACQQQAAgEEAAAAAAAAgwQAAbEIAAJjBAADAQQAAGEIAALDBIAA4E0AJSHVQASqPAhAAGoACAACmPgAAED0AAHw-AABcPgAAiD0AAO4-AAAUvgAAK78AAFS-AACYPQAAmD0AACy-AACovQAAhj4AAKA8AAAEvgAAGz8AAAw-AACKPgAAAz8AAH8_AACAuwAAVD4AAEw-AADIvQAApr4AAGQ-AABUvgAAij4AANg9AAAcPgAALD4AALY-AAB0vgAAUD0AAFA9AABQPQAAHL4AANq-AABAvAAAXL4AAKC8AABAPAAADD4AAIq-AAAQPQAAVD4AADS-AACIvQAAoLwAADw-AAD4PQAA6L0AAOo-AABAPAAAqD0AAB8_AABQPQAADD4AAKA8AAAsPgAAUL0AAJ4-AACAuyAAOBNACUh8UAEqjwIQARqAAgAARL4AABy-AAD4vQAAM78AACQ-AACAOwAAgj4AAEC8AACoPQAAqD0AAIC7AAAcPgAAgr4AAMi9AAAEPgAAoDwAAJi9AAAlPwAAmL0AAPY-AADgvAAAJL4AAGy-AADgPAAAEL0AABA9AABkPgAAcD0AADA9AABEPgAAQDwAAKg9AADgvAAAyL0AAJg9AABAPAAABD4AACw-AACavgAAUD0AAFw-AABMvgAATD4AAHA9AACYPQAA4LwAAH-_AAAcvgAAQLwAAFC9AAAUvgAAUD0AANg9AACCvgAAFD4AANg9AACAOwAA4LwAAHQ-AAA0PgAAJD4AAEA8AABMvgAAJD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=VscgsAwuUBM","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["1687118265449453228"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"2724042116055896401":{"videoId":"2724042116055896401","docid":"34-2-13-Z1F1F618A568303F0","description":"Math has always been seen as the realm of logic and reason, but what if we revealed that AI is transforming our understanding of mathematical concepts? With the power of creative algorithms and...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"35","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"How AI is Turning Math Into a Storytelling Art Form","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=r7l0z8r_ggY\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChMyNzI0MDQyMTE2MDU1ODk2NDAxWhMyNzI0MDQyMTE2MDU1ODk2NDAxaq8NEgEwGAAiRRoxAAoqaGhyZ2Z2a3NtcHRianp1Y2hoVUNRUEtKMVh2MEdJUVRyaE53ZXhrVlFnEgIAEioQwg8PGg8_E7IBggQkAYAEKyqLARABGniB_gcIBPwEAPb5BgkOBvwBDv4GAvcAAAD-AA_79wT-ABcFBAAA_wAA_Pj9_AgAAAD4CgUB-f8AAAwG9QMDAAAAEADz9_0AAAAOC_wD_gEAAPH8_AMDAAAADRQKAQAAAAAGEwYC_gAAAAEJDf8AAAAAC_8F_gAAAAAgAC27St47OBNACUhOUAIqcxAAGmD9CgAU9QfstB0r2fLq0QkOByHXAtz9AOXSAP4TBgAR7M3U9hP_B8oK6L8AAAALDfIfIQDdWQe66QoXFAbdtfIQCn_3CP8PKfT-o_fv1SP5HPoQKxsA-_L5CDoEDiweGBwgAC1mZko7OBNACUhvUAIqrwYQDBqgBgAAgL8AAAAAAAA4QgAAwEEAAIrCAAAkQgAAQMAAAM7CAACewgAADMIAAMBCAABwQQAAgD8AAJjBAAAgQQAApMIAADxCAADAwQAAGMIAAJbCAAD4QQAAmEEAAMBAAABIQgAAGEIAAHBCAACAvwAAZMIAAIZCAABQQgAAAMAAAEBBAAAswgAASEIAAMBBAABEQgAA4MEAANBCAAAAAAAAgD8AAJDBAAAAAAAABEIAAJpCAABQQQAAgEAAAABAAACgwgAAmEEAAADBAABQwQAALEIAAABBAACQwQAAqMEAAGTCAABgQQAA8MEAAFBCAAAAQgAAAAAAAABBAABAwQAAUEIAAKhBAAAEQgAAGEIAAIBAAAAAwQAAEMIAAIC_AADYQQAAcMIAAJBBAADgwQAAQMAAAMjBAADwQQAAeEIAAITCAACQwgAAwMAAAMBAAABAwQAA-EEAAFRCAAA8wgAAIEEAAIxCAADwQQAADMIAAABBAAAYwgAA4EAAAIBBAAAYwgAAcEIAAJBBAAAAwAAAJMIAADjCAADAQAAAqkIAAFDCAADQwQAAAEAAAADCAADYQQAAgEAAACBBAABgQQAAkMEAAITCAAAAwgAAkEIAAExCAACAQAAALMIAAABAAABwwgAADEIAAIDBAADIwQAA8sIAAAxCAAA4QgAAAAAAAObCAAAQwQAAWMIAAIBBAAAEwgAATMIAAABAAACAQAAA2MEAAHBBAABkwgAABEIAAKrCAABgQgAAgL8AACDBAACgQQAAuMEAABBBAAAQQQAASEIAACDCAADAwAAAPEIAAERCAACwQQAA-MEAAKjBAAAAQAAA8MEAAHjCAABgQQAAMEEAAMDBAAAkQgAAsMEAAEBAAABAQAAAwMEAAExCAADcwgAAqEEAAIDBAACkwgAAQMEAAFBBAABwQQAAoMEAANhBAAAgwgAAcMEAADBCAABgQgAAQEEAAMjBAABYwgAAqMEAALhBAACEwgAAGMIAAABBAADQwQAAkMEAABDBAADQQQAAgMIAALBBAACowQAALEIAACBBAAAUwgAAgD8AAJDBIAA4E0AJSHVQASqPAhAAGoACAACCvgAA2L0AADA9AADIPQAA4DwAADC9AAD4vQAABb8AAI6-AAAcvgAA2D0AAFS-AAAkPgAAFT8AAIg9AADKvgAAFz8AAIg9AAD4PQAAzj4AAH8_AACavgAAjj4AAHA9AABwvQAAMD0AADw-AAA8PgAAiL0AADw-AACOPgAAVD4AAJi9AABAPAAA4DwAALg9AABQPQAAdL4AAFy-AAA8PgAARL4AADS-AACWPgAAMD0AAKi9AADIPQAADD4AABS-AACmvgAAUD0AACQ-AACavgAAEz8AAKg9AABcPgAAUD0AAGE_AABQPQAAED0AAJi9AACIPQAAgLsAAIC7AAAMPiAAOBNACUh8UAEqjwIQARqAAgAAoLwAABA9AAD4vQAAC78AALi9AADovQAATD4AANi9AABkPgAAqL0AADS-AACCvgAAUD0AAJ6-AADYPQAAML0AAEA8AAANPwAAuL0AAOo-AADIPQAAiL0AABy-AADgPAAA-D0AAIC7AAAsvgAA2D0AAOA8AAC4vQAAQLwAAEQ-AABwPQAAcD0AANg9AAD4vQAADT8AAIC7AABsvgAA6D0AAEw-AACgvAAABL4AABA9AADgvAAAyL0AAH-_AAAwvQAAlr4AADA9AADovQAAoLwAAFy-AADYPQAAgDsAACw-AADovQAAuL0AABC9AACePgAAQDwAABC9AABAvAAABD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=r7l0z8r_ggY","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["2724042116055896401"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"15440091326209299276":{"videoId":"15440091326209299276","docid":"34-2-0-Z6145BF48C1CF2275","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. ⋆ Timestamps: 00:00 Hokie dokie 00:15 Goal: Approximate the instantaneous rate of change / slope of the function...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"36","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 3 problem 2.1.4d (VT MATH 1025)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RUVdt4cAgqs\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxNTQ0MDA5MTMyNjIwOTI5OTI3NloUMTU0NDAwOTEzMjYyMDkyOTkyNzZqrw0SATAYACJFGjEACipoaHdneWFuaG51dGVsY25jaGhVQzllTFJWYjJaUkZxdzRCQUd1cHZLc1ESAgASKhDCDw8aDz8TjgKCBCQBgAQrKosBEAEaeIH69QT0Af8A6Pns-v3_AwAVBfgG9QEBAOz47_wFAAAA8_0LCPsAAAAJ-_4HAQAAAA_-8An__QIACPz1_fcAAAAC7_QDAwAAABEVB_n-AQAA-fEOCQP_AAATCAPz_wAAAPAD-vn-_wAABw_9-AEAAAD4BAAB_wAAACAALUNSzzs4E0AJSE5QAipzEAAaYP8fACYWJtroCRXn__j1E_DO4vLa_gn_DP0ANxXvxwz72c0eG_8g1g7xuwAAAArWzPciAMJXMg_jE_Ya2uAD-fwbfx4p3vfpBt_iDRvwGP8XzdP8AwDQCf8ZORLZOlAaGSAALX5eRTs4E0AJSG9QAiqvBhAMGqAGAADoQQAA6MEAAJJCAAAAwgAAZMIAAOhBAABgQgAAsEEAAFzCAABAQAAAEEIAAKjBAAC4wQAAAMAAAABAAACgQAAALEIAAIjCAAAIQgAAyMEAAMjBAABQwQAADMIAADhCAABowgAAEEEAAJDBAADAwAAA4EAAAMjBAABEwgAAMEEAAFzCAAAgwQAAusIAABhCAAAwQQAAgkIAAJDBAACAQAAACMIAAJBBAABgQQAAoEAAAKDAAAAswgAAYEIAAHRCAACAQQAAVEIAANDBAAAYwgAAoMEAAFRCAACAvwAAkEEAAMDAAAAkwgAAYEEAALBBAADwQQAAXMIAANDBAACwwgAAAEAAAKzCAACEwgAA2MEAANDBAAAYwgAAcEIAADhCAAD4wQAAAAAAAPjBAADAwQAAyMIAAABBAAAMQgAAYEEAAFDBAADUQgAA0MEAAADAAADgQAAAYEIAAGxCAAD4wQAAJEIAAIC_AAAAwgAApEIAAHTCAABwwQAA-EEAAHjCAABQQQAAQMAAAMhBAAAwQgAA-MEAAEDAAAAIQgAAAAAAAHDCAADwQQAAQMEAAABCAACAwAAAdEIAAAhCAADwQQAAyMEAAABAAABAQAAAWEIAAFBBAABwwgAA4MAAABDCAADAwAAAKMIAAIBAAACYQQAAOMIAACDCAAAAQAAAGMIAAFDBAAAAwQAAMMIAAKDCAACAwAAAQEEAADDCAACKQgAAMEEAAHBCAAAQQgAAXMIAAADBAAAwwQAAGEIAAEzCAADAQQAAgEIAAFDBAACAQgAAMMEAANhBAAAYwgAAgL8AAIBBAAAAQgAA4EAAALjBAACswgAABMIAAATCAACgwAAAAMAAAEBBAACYwQAAyMEAAOBAAAAAQQAA4MEAAJZCAABwQQAAkMEAAADAAABwQQAAmMEAAJbCAADQwQAA2MEAAPjBAAAgwQAAsEEAALhBAAAAwwAAQMEAAFTCAADQQQAAgD8AAJjCAABgwgAA6MEAAIBBAADowQAATEIAAHBBAAAYQgAAMMEAAKDBAABgQgAABEIAAJDBAAC-QgAAiEEgADgTQAlIdVABKo8CEAAagAIAAGQ-AABQvQAArj4AAIo-AAC4PQAABz8AAEA8AABNvwAAXL4AABQ-AACgPAAAwr4AAEC8AABkPgAA2D0AAKC8AAARPwAALD4AAHQ-AAARPwAAfz8AABw-AAB8PgAAgLsAAOC8AADSvgAA2j4AAIK-AAD4PQAAuD0AAII-AAAkPgAAyj4AAAS-AAAMvgAAEL0AAKC8AABEvgAAA78AAIi9AADSvgAAJL4AAKY-AADIPQAAlr4AAJi9AAAsPgAAFL4AAEC8AADIPQAAgj4AABA9AABEvgAA9j4AAMg9AAAwPQAAdz8AAFA9AAAsPgAABL4AALI-AADgvAAAwj4AADy-IAA4E0AJSHxQASqPAhABGoACAABsvgAAML0AAKi9AAA9vwAA-D0AAFC9AAA0PgAAyD0AAIC7AADoPQAA4DwAAJg9AABUvgAA-L0AACw-AACAuwAAUL0AAC8_AABAPAAAyj4AAFA9AAC4vQAAyL0AABC9AABQvQAAcD0AABw-AABwPQAAoLwAAFw-AABAvAAAMD0AAOC8AAAEvgAA4DwAABC9AABAPAAAFD4AAJq-AACYPQAALD4AAHS-AABEPgAAmD0AAOg9AABwPQAAf78AABy-AABQvQAAqL0AAHC9AAAwPQAA2D0AADy-AAA0PgAAuD0AAOA8AADgvAAAij4AAMg9AAA8PgAAQLwAAES-AACoPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=RUVdt4cAgqs","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["15440091326209299276"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"2328220614763614367":{"videoId":"2328220614763614367","docid":"34-7-1-Z929D47AEE82CD26A","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. If this walkthrough video was helpful, click Join to become a member of the YouTube channel so you can access ALL...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"37","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 5 problem 3.2.1b (VT MATH 1025)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4DHyI3qK9kI\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChMyMzI4MjIwNjE0NzYzNjE0MzY3WhMyMzI4MjIwNjE0NzYzNjE0MzY3aq8NEgEwGAAiRRoxAAoqaGh3Z3lhbmhudXRlbGNuY2hoVUM5ZUxSVmIyWlJGcXc0QkFHdXB2S3NREgIAEioQwg8PGg8_E5kCggQkAYAEKyqLARABGniB_uv9-wL-APMB6gP5BAABFQX4BvUBAQDk8PX_-_0CAOn4BQX8_wAAC_X6BAgAAAAP_vAJ__0CAAQB9f4EAAAADfD9__kAAAAMCgj3_wEAAAbpBwoD_wAAGPv8_gAAAADy-f_7-___ABQT-_gBAAAA9wEI8P8AAAAgAC12gs47OBNACUhOUAIqcxAAGmDiHgA7GSXgvhYm3-7t0jUCvNoD2-P___4FACwi9c3r_9G_Mir_Nb8g46UAAAAZycjuIwC4fBvmyiIJMuG6AubuBX8bRsPg5hHP3xQZDA70Bc_H4O4A2wHiG1EEtzN4IBsgAC0vuxg7OBNACUhvUAIqrwYQDBqgBgAADEIAAGzCAAC8QgAAmMIAAOBBAADAQQAAuEIAAIA_AADwwQAAQEAAAKhBAADowQAAwMEAAADAAAAAwAAAqMEAAJhBAAAQwgAAnEIAABDCAACAvwAA4EAAAEjCAACQQgAAlMIAAIBBAAAQwQAA4MAAADRCAACAwAAAOMIAAMDBAABcwgAAuEEAAJzCAAAIQgAAwEAAAJJCAADgwAAAmEEAAFTCAACoQQAATEIAAIjBAADAQQAAPMIAAIRCAAAwQgAAyEEAACzCAADQwQAAYMEAACBBAADgQQAADEIAABDBAAC4wQAA8MEAACBCAAAIQgAATEIAAILCAAAUwgAAWMIAAExCAACMwgAAcMEAAEjCAAAkwgAARMIAAGxCAAAYQgAAzsIAAARCAABgwQAAEEEAALDBAAAAwAAAQEEAAKBBAABAQQAAkEIAAADCAACIQQAAoMEAAFhCAAAgwQAABEIAAPBBAAAQwQAANMIAAIhCAABkwgAAoMAAANBBAAAUwgAAAEAAAJhBAAAYQgAAyEEAAFDCAAD4wQAAlEIAAABAAACkwgAAEEEAAJDBAABgQgAAqMEAABxCAACSQgAAgEEAACDCAABQwQAAgL8AAEBCAAAQQgAA0MEAAEDBAADIwQAA4MEAAPDBAACAvwAAYEEAAEDBAAA8wgAAQMEAAIhBAACSwgAAAEAAANjBAAAIwgAAyMEAAAxCAABAwAAAYEIAANBBAAAsQgAAoMEAAJzCAABEQgAAgMEAAIRCAAAwwgAA0EEAADBBAADQwQAAIEIAALjBAACwQQAAIMEAAFBBAABMQgAAUMEAAMBAAAAgwQAAlsIAAKDBAABEwgAADMIAAKTCAAAwwQAAiMEAACzCAACAPwAAAEEAAAjCAACKQgAAEEIAAEDAAACAvwAA0EEAAMDAAABQwgAANMIAAKBAAADwwQAAgMAAAGBCAABsQgAAvMIAAFzCAADYwQAA4MEAAEBAAAAYwgAAOMIAAJTCAACAPwAAsEEAABBCAACAwAAASEIAAJjBAADgwAAAYEIAABBBAADAQAAA0EEAAMjBIAA4E0AJSHVQASqPAhAAGoACAADoPQAAyL0AAO4-AAA8PgAABD4AAK4-AADgvAAAD78AACy-AAAsPgAAQLwAAAS-AAAwPQAAUD0AABA9AABwvQAAkj4AALg9AAAcPgAABT8AAH8_AACIvQAADD4AAJg9AAAsvgAArr4AAN4-AAAsvgAApj4AAEw-AAD4PQAAjj4AAIY-AABEvgAARL4AAPi9AABwvQAAyL0AANa-AAAcPgAA0r4AAFy-AACiPgAAEL0AAI6-AADoPQAAjj4AAFy-AACAuwAAFD4AABw-AAAkPgAAMD0AAKI-AADYvQAAoDwAAEs_AAAwvQAATD4AACy-AAB0PgAAZL4AAIY-AAAUviAAOBNACUh8UAEqjwIQARqAAgAAHL4AAIA7AAAQPQAAL78AAIC7AADYvQAAbD4AAIg9AACoPQAAiD0AAIC7AACgPAAAgr4AAES-AACgPAAAiD0AAKA8AAAhPwAAMD0AANI-AAAMPgAAML0AAJK-AABAvAAA-L0AAKC8AACIPQAAMD0AAKC8AACKPgAAgLsAAOg9AAAQPQAANL4AAIg9AABQPQAARD4AAEC8AACqvgAALD4AANg9AABkvgAAUD0AAKg9AADIPQAAFD4AAH-_AAA0vgAA2L0AAAy-AACAuwAA2D0AAHA9AAB8vgAAbD4AAPg9AADgvAAAmL0AAIo-AABEPgAA6D0AAIi9AABEvgAAPD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=4DHyI3qK9kI","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["2328220614763614367"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"17543296386795869083":{"videoId":"17543296386795869083","docid":"34-1-1-Z7964524895E4B28C","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. ⋆ Ex2 Timestamps: 00:00 Hokie dokie 00:22 Find the y-values that correspond to the given x-values by plugging the...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"38","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 3 problem 2.1.3b (VT MATH 1025)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dJn_XzGzA-E\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxNzU0MzI5NjM4Njc5NTg2OTA4M1oUMTc1NDMyOTYzODY3OTU4NjkwODNqrw0SATAYACJFGjEACipoaHdneWFuaG51dGVsY25jaGhVQzllTFJWYjJaUkZxdzRCQUd1cHZLc1ESAgASKhDCDw8aDz8TvAGCBCQBgAQrKosBEAEaeIH69_z5_wEA8wHrA_kDAAEODPIE9QAAAO348PwFAAAA8_0KCPsAAAAI_vEIAgAAAA4I-Qb6AAAACPz1_fgAAAAJ6Pf8_QAAAAwJB_f_AQAA-fENCAP_AAASCAL0_wAAAO_9AvIA_wAAExP8-AEAAAD5BAAB_wAAACAALSsy1zs4E0AJSE5QAipzEAAaYPoYACYQLeHxDxv8AO7nEufB8u_b8A0ACvkALArr0QX459gRJP8x1RPluQAAABHZ0fcgANhWEgLOKfIe3N38-fsLfywl5_7qBtXh-xvwF_MS0N_58ADs5_YHXRjNNTwZFSAALZYJRzs4E0AJSG9QAiqvBhAMGqAGAACIQQAA-EEAAABCAABQwQAAkMEAAKhCAADYQQAA4MAAAITCAACMwgAAwEEAAOjBAADgwQAA4MAAAKhBAAAgwQAASEIAADzCAAC4wQAAcMEAAKhBAAAwwQAAQMEAABxCAAA4wgAAQMEAAIA_AADowQAAbEIAAABBAACWwgAAGEIAAHjCAABwQQAAIMEAAMBBAACQwQAAQEAAAMBBAAAAQQAAwMEAALhBAAAwwQAAIEEAAK7CAACIwQAA4EEAAADAAAAwQgAAWEIAAI7CAAB0wgAATMIAADhCAACIQQAAwEEAAEDCAABMwgAAQMEAAMDAAACAQAAAFMIAANDBAAB8wgAABEIAAKDCAAAcwgAAgD8AAGTCAAAYwgAAukIAACBCAABQwQAAoEAAALjBAAAYQgAAxMIAAKhBAAAEQgAAqEEAAADCAABkQgAAkMEAAIBBAABAwAAAfEIAAIZCAAA8wgAAQEAAAJDBAACIwQAAikIAAIjCAACywgAAoEEAAJzCAACIwQAAmEEAAPBBAABgwQAAssIAAMDBAACoQQAAuMEAAKLCAAAwQgAABEIAAExCAAAAwQAAoEIAAEBBAABwQQAAwMAAAEBCAACgQAAAQMEAADBBAADAwQAAQMEAAFzCAAAYQgAAgD8AAEBBAACAwAAAaMIAAIjBAAAAwAAAQMAAAFDCAABAQAAAAMIAAOjBAACwQQAAAMEAACDBAADwQgAAZEIAAHBCAACYQQAADMIAAABCAABAwQAAqMEAADBBAAAIQgAAikIAAETCAADQQQAAyEEAAEhCAAAAQQAAgMAAADxCAAD4wQAAoMAAAIjCAADSwgAAVMIAAEBBAABgQgAALEIAADBCAACIwQAAgMAAAKDBAACAPwAAQEEAAHBCAACQQQAAAMIAAKDBAAAoQgAAIMEAAHzCAACQQQAAyMEAAGDCAAAswgAAIEEAAARCAABYwgAAEMEAADjCAADwQQAAiMEAACTCAABgwgAAEMEAAGBBAABcwgAAQEAAAIC_AACAwAAAEMEAABTCAAAsQgAAmEEAAGBBAAA0QgAAwMAgADgTQAlIdVABKo8CEAAagAIAADA9AADgPAAAjj4AADQ-AADYPQAA-j4AAKC8AAArvwAAVL4AAJg9AACIvQAADb8AAIi9AACCPgAAkj4AABC9AADOPgAAFD4AAIo-AAAFPwAAfz8AAOA8AACCPgAA4LwAAI6-AACevgAAwj4AAAy-AABkPgAAND4AAIY-AABsPgAAvj4AABS-AADYvQAAgLsAAAS-AADovQAA6r4AAFC9AAC-vgAARL4AAL4-AABAvAAAXL4AAOC8AAAUPgAAdL4AAKi9AAD4PQAAZD4AABA9AACAuwAA5j4AAKA8AACYPQAAVz8AAOg9AAA0PgAAqD0AAMI-AACgPAAAxj4AABy-IAA4E0AJSHxQASqPAhABGoACAACqvgAAcD0AAAy-AAA7vwAADD4AANi9AABUPgAAiD0AAJg9AAAcPgAAoDwAABQ-AAC6vgAA-L0AAAw-AABAPAAAiL0AACM_AABwvQAA1j4AAKA8AACYvQAAXL4AAEA8AABwvQAAyD0AAAQ-AACIPQAAcL0AAEQ-AABAvAAAMD0AAOA8AACovQAAiD0AADC9AAD4PQAALD4AAKq-AACAOwAAFD4AAES-AAAsPgAAiD0AACQ-AABAvAAAf78AAPi9AABQvQAAqL0AADC9AADoPQAAND4AAFS-AAA0PgAAqD0AAEA8AACYvQAAoj4AAPg9AAAkPgAAcD0AABy-AAAUPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=dJn_XzGzA-E","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["17543296386795869083"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"5476060016830583688":{"videoId":"5476060016830583688","docid":"34-6-12-ZF8C0F6ACBC85C651","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. Find the slope of the decreasing segment on the original graph.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"39","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Find the rate of change graph, given the graph of the original function","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Ekd8p8F0YUs\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChM1NDc2MDYwMDE2ODMwNTgzNjg4WhM1NDc2MDYwMDE2ODMwNTgzNjg4aq8NEgEwGAAiRRoxAAoqaGh3Z3lhbmhudXRlbGNuY2hoVUM5ZUxSVmIyWlJGcXc0QkFHdXB2S3NREgIAEioQwg8PGg8_E8QCggQkAYAEKyqLARABGniB9wT6_voGAPQDBQH6A_8B_Qj4_fj-_QDs-Pz0Av8BAPQACPz8AAAA__0PCwMAAADz-gX7_AAAAAEK_wUEAAAAEf4A-f8AAAAMBv_6_gEAAP_8-_8D_wAACgX9_QAAAAACAQX__f8AAP8GBf0AAAAAC_7-AQAAAAAgAC1aVOQ7OBNACUhOUAIqcxAAGmAMEQBECwjsx_QevQnJtPMVDN8b39jn__ypAO8O-ur6_emUK-r_N8cR8KcAAAD29fY28gDmdjjNvSsNHOkZCPolDn8oPPPv4hnPzM4aOCToC-oY-wgAzh7R9h6XEkcEVgEgAC0Vuh07OBNACUhvUAIqrwYQDBqgBgAAlkIAAEDCAABYQgAAUMIAAMBAAADgQQAAhkIAAKhBAAAswgAAmEEAAAhCAACwwQAAcMEAANBBAAAoQgAAcMEAAOBBAAC-wgAAbEIAAETCAACwwQAAcMEAADDCAACgQQAA-MEAACRCAAAAQQAAkMEAAChCAACAvwAAHMIAAABCAADIwQAAkMEAAADDAADAQQAAIEIAAKJCAABswgAAgkIAACDBAABwQQAALEIAAGDBAADgwAAALMIAAOBAAACIQgAAAEIAANBBAACIwQAAyMEAAIDBAAAkQgAAAEEAAHDBAAAkwgAAcMEAAHBBAACgwAAAIEEAAPjBAABIwgAAlsIAAMBBAADmwgAAJMIAAJTCAABcwgAADMIAAEBCAACAQgAAUMEAAEDBAAAMwgAAhMIAADzCAAAwwgAAwEEAAKBBAABswgAAnEIAABjCAABQQQAAIMEAAFxCAAAAAAAAAMAAAJhBAADAwAAA6EEAAI5CAABwwgAAAEAAABxCAABEwgAAQMIAACBBAABIQgAA4EAAAI7CAADYQQAAIEIAAEjCAAA4wgAAgEEAADDBAABgQgAAAMEAAFRCAACYQgAAPEIAACDBAACAQQAAgMAAADRCAAAAQQAAjsIAAGDBAADQwQAA8MEAAMjBAADAwAAAsMEAACDBAAAYwgAAXMIAALhBAAA0wgAA0EEAAODBAAAQwQAAsMEAAFxCAAD4wQAAPEIAAADAAACAvwAAoMAAAJDCAACAQQAAoEAAAAAAAADAwAAAcEEAACxCAADgQAAAgL8AAJBBAAAQQQAAoEEAAFBBAABsQgAABEIAAKBAAAAAwAAAgsIAACDCAABIwgAAQMEAAK7CAACIQQAAgD8AANDBAAAwQQAAYEEAAEBAAACEQgAACEIAAODBAACgQQAAiMEAABDBAAA0wgAAQEAAAEDAAACIwgAAmMEAAIhBAACaQgAA0sIAANjBAABwwQAAHEIAALBBAADQwQAAiMIAAOjBAACQwQAAkEEAAMDAAADYwQAAKEIAAODAAAAAwgAATEIAAIDAAAAEQgAAqEEAAHDBIAA4E0AJSHVQASqPAhAAGoACAADIPQAA-L0AANY-AADIvQAAoLwAAHQ-AAAcvgAAGb8AANi9AADIPQAAUD0AAIi9AAA0PgAAcD0AAJa-AABQvQAATD4AAEC8AADIvQAAZD4AAH8_AADYPQAAHD4AAFw-AABQvQAAVL4AAJI-AAAcvgAAED0AAIg9AAC4PQAALD4AAOA8AADIPQAAJD4AAKi9AACaPgAAlr4AAKK-AAAsvgAAdL4AADC9AADKPgAAqD0AAAS-AADYPQAAoDwAAIg9AADYvQAAVL4AAOg9AACgvAAAJD4AANY-AACgPAAAqL0AADk_AACCPgAA6L0AANi9AAAcPgAAcD0AALg9AAAEviAAOBNACUh8UAEqjwIQARqAAgAAdL4AACQ-AABwvQAAVb8AADy-AAAMvgAAwj4AAFS-AACGPgAAQDwAACS-AAAcvgAAcL0AAEy-AAAkPgAAUL0AAEA8AAD2PgAA-L0AAMY-AAAkvgAAZL4AAFy-AAAEPgAA4LwAAAQ-AABcPgAA2D0AADS-AABwPQAAMD0AAPg9AADovQAAyD0AAAS-AACIPQAAsj4AAII-AACGvgAAEL0AAKA8AABAPAAAMD0AAJY-AACYPQAAJL4AAH-_AAC4vQAAxr4AAEw-AACYPQAA2D0AAKI-AABwvQAAZL4AAPg9AAAwvQAAgj4AANg9AAD4vQAAqj4AAJ4-AADYvQAAgLsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Ekd8p8F0YUs","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5476060016830583688"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"376380799767643405":{"videoId":"376380799767643405","docid":"34-8-13-Z59E01FA9F674F9BF","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. If this walkthrough video was helpful, click Join to become a member of the YouTube channel so you can access ALL...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"40","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Finding Indefinite Integral Using Reverse Power Rule","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sx985XxN6DY\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoUChIzNzYzODA3OTk3Njc2NDM0MDVaEjM3NjM4MDc5OTc2NzY0MzQwNWqvDRIBMBgAIkUaMQAKKmhod2d5YW5obnV0ZWxjbmNoaFVDOWVMUlZiMlpSRnF3NEJBR3VwdktzURICABIqEMIPDxoPPxO-AoIEJAGABCsqiwEQARp4gRcL_vcF-gDy_AkI9wX-AhIJBAz1AQEA1vsDBwv4BADw9gvxCAAAAP8LFAgAAAAACAYB7_v9AQAOB_QDBAAAAA7-9_oIAAAA_Qf-C_8BAADoAQEA9QIAAQb6_xYAAAAA_g8GCwEAAAD-C_gMAAAAAPcABwX__wAAIAAtk2_DOzgTQAlITlACKnMQABpgJRMALQ4R5fEPHM0Q18v8J_IE-_PkF__TtAD6EOLB9AXrqBHv_07jEAGvAAAADwPJ6-MAGXH_28_1BCkG38gYHDN_Ahv-8fsKztrj_voX_FrSIxP1ALQt5gcHutFZHgsBIAAt3MwrOzgTQAlIb1ACKq8GEAwaoAYAAFhCAAAQwQAAiEIAAEjCAACQwQAAikIAALJCAAAgQQAAHMIAAABAAABAQQAAGMIAANjBAAAwwQAAwEAAAEDBAACUQgAAgMEAAFxCAAAAwgAA6EEAAOBAAADYwQAAMEEAAETCAAAAQAAAyMEAAIhBAAAQQgAAcMEAAIC_AABwQgAAgD8AALBBAADSwgAAcMEAAIhBAABUQgAAQMAAAGhCAAAAwQAAgMAAAGxCAACIwQAA4MAAADTCAAAQQgAAnkIAAFxCAAAgQQAA-MEAABDBAADIwQAAkEEAAIA_AACAwAAAVMIAAMDAAADgQQAAgL8AAFhCAAC4wQAAQMIAACjCAAA0QgAAwsIAAAzCAACuwgAAGMIAALjBAAAIQgAAAEIAAJ7CAADQQQAAAMIAAIDBAACgwgAANMIAAMBBAACAvwAAqMIAAJRCAACWwgAA2EEAAODAAACGQgAAwMAAAKBAAABwQQAAgMIAAODAAADYQgAAVMIAAGDBAAAwwQAAwMIAAMjBAACAwQAAkEIAAKDBAAC4wQAAgL8AADhCAAC4wQAAlMIAAGBBAABAwQAAJEIAAKBAAACGQgAAIEIAAEhCAAAYwgAAQEAAANBBAACgQAAAkEEAAEDAAAAwwQAAUMEAABDBAAAcwgAAsEEAAOjBAADwwQAAIMEAANjBAABUQgAA-MEAAEhCAAC4QQAAIMIAAFDCAACAQQAAAMEAALBBAABAwQAA-EEAAODAAAA0wgAAYMEAAGRCAAAAwQAAHMIAABBBAADQQQAAEEEAAKDBAACKwgAAEEIAAKBBAAAQQgAAHEIAAIDBAADIQQAAMMEAAFDCAACIwQAACMIAAADAAACGwgAAgEAAABDCAAAIwgAA-MEAAPBBAADQwQAAxkIAADhCAAAAQQAAJEIAAMDAAACAwQAAgMEAAADCAAAAAAAA2MEAAEDAAABwQQAAYEIAAMrCAAAswgAAYMEAAIxCAADAQAAA0MEAAETCAACYwQAAgD8AAKjBAAAIQgAAIEIAAI5CAABgQQAAwMAAAJBCAADAQQAA0EEAAKBAAADwwSAAOBNACUh1UAEqjwIQABqAAgAAED0AADC9AADmPgAADD4AABw-AACyPgAAuL0AAA-_AAC6vgAAMD0AADC9AAC6vgAA-D0AAI4-AAC4PQAAFL4AAMo-AABwPQAAcD0AACc_AABNPwAAtj4AAPg9AAAEPgAAXL4AABA9AADCPgAA4DwAAKg9AABkPgAAVD4AACS-AABAvAAAvj4AACw-AAAsvgAAuL0AAIC7AADWvgAArr4AALi9AACIPQAAvj4AAEy-AABwvQAAvj4AAIi9AAANvwAAmD0AADC9AAC4PQAA2D0AAEw-AACaPgAAnr4AABS-AAB_PwAAUD0AAAy-AADWPgAAUL0AALg9AADIPQAAir4gADgTQAlIfFABKo8CEAEagAIAAJa-AAAQPQAAcL0AACW_AAAMPgAAmL0AAI4-AABwvQAAyL0AABQ-AACIvQAADD4AAFS-AAA8vgAA4DwAAOC8AAB8vgAAIz8AAKC8AADOPgAAiD0AAIK-AADovQAAgLsAABS-AAB0vgAAyL0AAIA7AAD4PQAAED0AAEC8AADYPQAAqL0AABS-AAD4PQAAQLwAALY-AADgPAAAVL4AAEQ-AACYPQAAir4AAIA7AACYPQAAVD4AAEw-AAB_vwAAjr4AALi9AABAPAAADD4AAKA8AAC-PgAAHL4AAMi9AACYPQAAcL0AAEy-AABMPgAAFD4AAKg9AABEPgAAdL4AAEA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=sx985XxN6DY","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["376380799767643405"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"16164174970163614349":{"videoId":"16164174970163614349","docid":"34-5-11-Z8D2145B876E13C8D","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. If this walkthrough video was helpful, click Join to become a member of the YouTube channel so you can access ALL...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"41","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 3 problem 2.1.4c (VT MATH 1025)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NIjQ_O7c15g\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxNjE2NDE3NDk3MDE2MzYxNDM0OVoUMTYxNjQxNzQ5NzAxNjM2MTQzNDlqrw0SATAYACJFGjEACipoaHdneWFuaG51dGVsY25jaGhVQzllTFJWYjJaUkZxdzRCQUd1cHZLc1ESAgASKhDCDw8aDz8TpwKCBCQBgAQrKosBEAEaeIEC-P34Av4A8fTxBvkEAAEVBfgG9QEBAOz47_wFAAAA6fgFBfz_AAAQ__wQBgAAAA_-8An__QIACPz1_fcAAAD76_r5_wEAABEVB_n-AQAA-fEOCQP_AAATCAPz_wAAAPAD-vn-_wAABw_9-AEAAAD4BAAB_wAAACAALRHtzjs4E0AJSE5QAipzEAAaYPQaADMWN9ftGyXpEfXXI92pyPHG3Bn_Ewf_PwrltgP8zrsdHf86yw_lmgAAACXBtOgZANJ_OwDZM-wm0d8E_vUGXCY8zO3c997fDj3qHeQstcTQ8gDV5uoSPy3HRnUrGiAALVP_FTs4E0AJSG9QAiqvBhAMGqAGAABoQgAAAMIAAOBBAAAEwgAA2MEAABBCAAAcQgAAgMEAAHDCAAAAwQAA2EEAAFjCAAAAAAAAuMEAAEDAAADIwQAAfEIAAJDCAAA0QgAAgsIAAABAAAAAQgAARMIAAIhBAABkwgAAAAAAAAzCAADAQAAAbEIAAEBAAACgQAAAoEAAAJjBAAAAAAAA3sIAANBBAAAUQgAAFEIAAKjBAAAQQgAAcEEAAIDBAAAYQgAA6MEAALBBAADAwAAABEIAAIRCAAAIQgAAoEAAAJDBAABAwAAAYMEAAEBBAACgwAAAEEEAAJDCAADIwQAA8EEAAOhBAABgQQAAKMIAAIDBAACmwgAAUMIAAOLCAACowQAAcMIAAIzCAACAvwAAbEIAADhCAADwwQAAiMEAAGDBAAAUwgAAlsIAANDBAAAYQgAAYMEAANDBAADeQgAAXMIAAADAAABAQAAAqkIAAMBBAABgwQAAiEEAALDBAABQQQAAYEIAAJjCAABAwQAA8EEAAIjCAABIwgAAAEAAAKDAAACgQAAALMIAABBCAAA4QgAAQEAAACTCAAAsQgAAAMIAAGxCAACAvwAAFEIAALhBAABoQgAAEMEAAADCAABwQQAAYEIAAMBBAABkwgAAyEEAAIjBAADowQAALMIAAKBAAAAwwQAAAAAAAFDCAABUwgAAwMAAAMDBAABAQAAAuMEAAOjBAAAAwAAALEIAANDBAAB0QgAAMMEAAMjBAADYQQAAtMIAAATCAADAQQAAwEEAAOjBAAAgQQAAREIAAEDBAACAQAAAcEEAAOBBAACYQQAAYEEAAIZCAACgQQAAwMAAAEDBAABYwgAATMIAAGzCAABgwQAAPMIAABBBAADAwQAAgL8AAJhBAACgQQAAwMEAAIhCAACIQgAA6MEAAABCAACAwAAA2MEAAKDBAADgwAAABEIAAEzCAACAQAAA8EEAAKJCAAAAwwAAEMIAAMhBAADgQAAAcEEAAGTCAABswgAAQEAAAEDAAACIQQAAQEIAAJBBAAC4QQAAgEEAAIbCAACIQgAA-EEAAIhBAABIQgAAgD8gADgTQAlIdVABKo8CEAAagAIAAFQ-AADgPAAAwj4AAFQ-AABwPQAA5j4AAKA8AAA1vwAAXL4AABw-AACovQAA3r4AABS-AACCPgAAXD4AAKi9AADePgAA2D0AAHw-AADyPgAAfz8AAOg9AACmPgAAUD0AAPi9AACmvgAAwj4AAJi9AAA8PgAA-D0AAFQ-AACGPgAAwj4AALi9AAD4vQAABL4AAIC7AAA8vgAAB78AAEC8AACevgAA-L0AAIo-AACgPAAAwr4AAIA7AAA8PgAA-L0AAHC9AACIPQAAkj4AAFA9AABQvQAA6j4AAOg9AACIPQAAYT8AAIg9AAAMPgAAML0AAMI-AABAPAAAzj4AAAy-IAA4E0AJSHxQASqPAhABGoACAACavgAAEL0AAKi9AAAzvwAAHD4AABC9AAB8PgAAED0AAKA8AACYPQAAoDwAAOg9AABUvgAA6L0AABQ-AADgPAAAQLwAACc_AACgPAAA3j4AAKA8AABQvQAAFL4AABC9AACYvQAAoLwAAGQ-AABQPQAAQLwAADQ-AACgPAAAcD0AAIC7AAAUvgAAiD0AAFC9AAAQPQAALD4AAKa-AADIPQAADD4AAHS-AABcPgAAiD0AAOg9AAAQPQAAf78AAES-AAAwvQAAQDwAAOA8AACYPQAA6D0AAFy-AABcPgAAmD0AAIA7AABAvAAAhj4AAPg9AAAkPgAA4DwAABy-AADIPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=NIjQ_O7c15g","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["16164174970163614349"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"9068733953901641021":{"videoId":"9068733953901641021","docid":"34-0-5-Z7A386B00A9B8A22D","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. ⋆ 2 examples Timestamps: 00:00 Hokie dokie 00:14 Stairs Shortcut 01:20 Conceptual Explanation. Where f has a max...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"42","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 4 problem 3.1.2d (VT MATH 1025)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IB4UXm9sEQ0\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChM5MDY4NzMzOTUzOTAxNjQxMDIxWhM5MDY4NzMzOTUzOTAxNjQxMDIxaq8NEgEwGAAiRRoxAAoqaGh3Z3lhbmhudXRlbGNuY2hoVUM5ZUxSVmIyWlJGcXc0QkFHdXB2S3NREgIAEioQwg8PGg8_E_oBggQkAYAEKyqLARABGniB_u_6_wn2AOb46vn8_gMADwb_AvUAAADh7_T_-_wCAOf3BQX8_wAAEP0BAwsAAAAaAf0KAAADAQn89P33AAAAB_L8-wQAAAAbDA___QEAAAfmCAsD_wAAFQkD8v8AAADiAvn1_wD_AA4NCvAAAAAA9QUJ_P__AAAgAC1807o7OBNACUhOUAIqcxAAGmD0CwA_JTHX0SQb_8vwySb_neohy-EW_wAG_zUt7L7y8MTQKTn_JdAi5JgAAAAO07HMIACvfy_n2SD4Fe6pDwjp5nMyKLbd0QvmyP7x6gjV58zH8_EA0-jyJFf7vBx-BeggAC3I2BE7OBNACUhvUAIqrwYQDBqgBgAAUMEAAADCAACAvwAAIMEAAMDBAACMQgAAnkIAACBBAAAQQQAAgL8AAAxCAAA0QgAAyMEAAKDAAAAEQgAA4MAAAIC_AACAQQAAGEIAAAAAAADIwQAAmEEAAKDAAAAcwgAAAMEAAOhBAADAwQAA4EAAAAAAAAC4QQAAuMEAAIBCAACkwgAAAMAAAKrCAAAgwQAAVEIAAPhBAAC4wQAAuEEAAIDAAAD4QQAAgEEAAMDBAACAQQAAKMIAABBBAACAPwAAwEAAAADCAAAMwgAAgMEAALjBAACswgAAAAAAAIhBAABgwgAANMIAACRCAAAIwgAAqEEAAJ7CAABUwgAAYEEAAKDAAACkwgAAPMIAAPDBAADgQQAAksIAAEBBAAAAwAAANMIAAODAAACKwgAAgEEAAPjBAAAEQgAAKEIAABBBAADuwgAAxkIAAKDAAABQQQAAjkIAACBBAACgQAAALMIAAPhBAABQwQAAlMIAAEBAAADAwQAAEEEAAKJCAABIwgAAIEEAAEzCAADIQQAAlkIAAILCAAA4wgAAUEEAAPBBAAAQwgAAvEIAADhCAACgQAAAAEIAAAhCAACCQgAAiEIAAMjBAABUQgAAoEAAAHDBAADoQQAAgEAAABDCAACEwgAAQMAAADDCAADgQAAAQMEAAIjBAADgQQAATEIAAAAAAAAswgAA3kIAADBCAAA4wgAA0EEAAFBBAACAQAAADEIAALhBAACoQQAAtMIAACTCAADIwQAAwMEAAEBAAABAQAAAgL8AABRCAAA8QgAAMEIAADBCAADAQQAA2MEAALDBAAAUQgAAUEEAAChCAABgQgAAbMIAAEBBAAB8wgAAsEEAAHzCAADgQQAAQMAAAFTCAAAAQQAA6EEAADzCAAAoQgAAWEIAAAAAAADAwAAAkEEAAMBBAAAYwgAArMIAAGTCAACIQQAAwMAAAMDAAAA4QgAAIMIAACDCAAC4wQAAsEEAAEBCAAD4QQAAPMIAAMjBAACQQQAAUEEAAKhBAACQQgAADEIAAIBBAADAwQAAHEIAAIhCAABwwQAAFEIAAAzCIAA4E0AJSHVQASqPAhAAGoACAACePgAAFD4AAIY-AACGPgAA4DwAAPI-AABAPAAAHb8AAJq-AAAcPgAAQDwAAMi9AAC4vQAABD4AAOg9AABMvgAALz8AAPg9AABwPQAABT8AAH8_AAAEPgAAhj4AAKg9AADovQAA_r4AAL4-AABEvgAA2D0AABw-AABEPgAALD4AAKY-AAAwvQAAZL4AALi9AADgPAAAdL4AAPa-AAC4vQAAor4AADy-AACWPgAA2D0AADy-AACYPQAAoDwAAEy-AADYvQAAQLwAADw-AAAkPgAA-L0AANY-AABAPAAAoDwAAG0_AADYvQAABD4AAAS-AAB8PgAAEL0AAMI-AABMviAAOBNACUh8UAEqjwIQARqAAgAARL4AAHC9AABMvgAAJb8AAKA8AAAQPQAAND4AAJg9AADgPAAAyD0AAMi9AAAwPQAAbL4AAPi9AAD4PQAAQDwAAKi9AAAdPwAAFL4AAPI-AACgPAAAiL0AADy-AADgvAAAmL0AAKA8AAC4PQAAgLsAAIA7AAAMPgAAQLwAAJg9AABAPAAANL4AAFA9AACgPAAABD4AAJg9AAB8vgAABD4AAMg9AAA8vgAABD4AADA9AADgPAAAMD0AAH-_AABUvgAABL4AALi9AAC4vQAAQDwAAPg9AAAEvgAAXD4AAKg9AACAOwAA4LwAADw-AABcPgAA6D0AADA9AAC4vQAA2D0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=IB4UXm9sEQ0","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["9068733953901641021"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"11764907202417023480":{"videoId":"11764907202417023480","docid":"34-5-14-ZF54A1E6FA62BA4D9","description":"Click Join and become a member to access more videos for your course! This problem comes from the Virginia Tech Math Emporium practice problem system. If this walkthrough video was helpful...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"43","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Using Euler's Method with SIR Model to Estimate Susceptible, Infected, and Recovered","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MgOkDZraNOk\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxMTc2NDkwNzIwMjQxNzAyMzQ4MFoUMTE3NjQ5MDcyMDI0MTcwMjM0ODBqrw0SATAYACJFGjEACipoaHdneWFuaG51dGVsY25jaGhVQzllTFJWYjJaUkZxdzRCQUd1cHZLc1ESAgASKhDCDw8aDz8TywOCBCQBgAQrKosBEAEaeIH4Evb2C_H_CPAJAwUJ_AIVBAf5Cf__ANwG_QEA-wIA5PD7_Pv-AAD4Avn-BwAAAA__-gH9_gEAEwH1-wUAAAAj-ALy_QAAABEe-QP9AQAAEAUJ_vYDAAEkAwn5_wAAAAIBAQH_8wP_8RT9_QEAAAAA-Pv3AAAAACAALfwcrzs4E0AJSE5QAipzEAAaYBn_AD8eIOrCGPrdD-q1D-ry-vvhseH_8d3_-EAexuL0_7xZ9f94EB_ZmgAAACLa_fj2AAZ_FrfE8gD9DdXb-S7-Z2oc1fOzBOz3-y__DhgV4wRINgDA3_D8IwbRWh42FCAALZ9-GTs4E0AJSG9QAiqvBhAMGqAGAABEQgAAFMIAAGBCAAAAwAAAwMEAADRCAABQQQAAQMEAAKTCAAC4wQAA8EEAABzCAABgwQAAyMEAAIhBAACAQAAAjkIAAITCAABQQgAATMIAAEjCAABAwAAAsMEAABRCAAAowgAAQEEAAMjBAAAAAAAAJEIAAOjBAAA8wgAAMEIAAOjBAABQwQAAkMIAAOhBAADAQAAAkkIAAAjCAABQQQAAUEEAAKDAAAAYQgAACMIAAIDBAADYwQAACEIAAOhBAACoQQAAwEAAAJDBAABgwQAAIMEAAIhBAACIQQAAAEIAACDCAACYwQAAIEIAAKBBAABAQQAAgsIAACDBAACuwgAAEEEAANbCAACowQAAcMEAAETCAABAwgAAjEIAAIBCAABMwgAAgD8AAJjBAAAEwgAAisIAAABAAACgQQAA4MAAAAAAAACYQgAA-MEAAMBAAAAwwQAAfEIAAABCAAAUQgAAIEEAACTCAABAwQAAmkIAANrCAADYwQAAuEEAAFDCAACgQAAAmEEAAADAAACYwQAAvsIAAAAAAABQQgAAsMEAAJjBAABEQgAAIMIAADBCAACQwQAAGEIAAABCAAAQQQAAgD8AAHBBAAD4wQAAZEIAAOhBAAAkwgAAAEEAAFzCAAA8wgAAgMIAAJjBAACoQQAAAMEAAAjCAAAEwgAACMIAABTCAACgwQAAFMIAAPDBAACgQAAA4EEAAMDAAACoQgAAqEEAAABBAABkQgAAlsIAAIBAAABQwQAAgMEAABzCAAA0QgAABEIAADjCAABoQgAA2MEAAHBBAACgQQAAIEEAAGhCAAAwQQAAUEEAALjBAABQwgAAVMIAAEzCAABAQQAAwMEAABBBAACIwQAAAMAAAMDAAADoQQAA8MEAAEhCAADAQQAAkMEAAPjBAAAAwgAAmEEAAPDBAAAAwgAAEEIAAGDCAACIwQAA6EEAACxCAAD0wgAAIMIAAIA_AABgwQAA6EEAADTCAADOwgAACMIAABTCAACAwAAAkEEAACDBAABsQgAAYMEAAEjCAAC4QgAAEMEAAMBBAACKQgAA0MEgADgTQAlIdVABKo8CEAAagAIAAKC8AAAMvgAApj4AANg9AACIvQAAlj4AAIC7AAAVvwAAJL4AAIi9AAAwPQAAoLwAADQ-AADIPQAATL4AAFC9AAA8PgAA2D0AAMg9AADOPgAAfz8AADC9AACAOwAA6D0AACy-AAD4vQAAZD4AAOC8AACIPQAAFD4AAMg9AACIPQAAoDwAAL4-AACIPQAAVD4AAHA9AAAsvgAAjr4AAJi9AAB8vgAAUD0AAHA9AACYvQAAiL0AAHC9AAAsPgAA4LwAAIg9AAB8vgAAhj4AAHQ-AAC2PgAAgj4AAGy-AADIvQAAJT8AAAw-AADIPQAAoLwAANi9AAD4vQAAqD0AAIi9IAA4E0AJSHxQASqPAhABGoACAAA8vgAAgLsAAOi9AAAPvwAAQDwAAEw-AABUPgAAiD0AAMi9AADYPQAAML0AACS-AABAvAAAVL4AAAw-AAAwvQAAqD0AAA0_AAB0vgAArj4AANi9AACAOwAAgLsAAFC9AAAMPgAA4DwAAHC9AABQPQAAcL0AAKi9AABwPQAA-D0AADS-AACgvAAABD4AANi9AABkPgAAoj4AAIa-AACgPAAABD4AABS-AABAPAAAgDsAAKC8AAD4vQAAf78AALg9AAAMvgAABD4AANg9AAAUvgAAUD0AAKg9AACYPQAAMD0AAIA7AACoPQAAmL0AAPg9AABQPQAAED0AAAw-AADYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=MgOkDZraNOk","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11764907202417023480"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"15516080433250147611":{"videoId":"15516080433250147611","docid":"34-1-9-ZDDDEB7BD100B2C5A","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. ⋆ 2 examples Timestamps: 00:00 Hokie dokie 00:10 Identify the depth, or d(t), and rate of change of depth, or d'(t)...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"44","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 4 problem 2.1.5b (VT MATH 1025)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2119F8WMNak\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxNTUxNjA4MDQzMzI1MDE0NzYxMVoUMTU1MTYwODA0MzMyNTAxNDc2MTFqrw0SATAYACJFGjEACipoaHdneWFuaG51dGVsY25jaGhVQzllTFJWYjJaUkZxdzRCQUd1cHZLc1ESAgASKhDCDw8aDz8TkgGCBCQBgAQrKosBEAEaeIH87gXyB_gA8PTvB_gEAAENE_0F9AEBAOb08woI_wEA5AH9__r_AAAM-woLCAAAABD-7wr__QIABQH0_gQAAAAK5fX7_QAAAAUUDvv-AQAAB-cICgP_AAAfEgP8_gAAAOMC-fX_AP8AChkH_gEAAAD1BQj8__8AACAALUKPvjs4E0AJSE5QAipzEAAaYOUUAD0cI8_IJCHk8AbaLPG15fvN8xf_Afv_SRXyw_cGxrsiJf8v1hTkoQAAABjiwvo7AMR8GROtPfc16MPx6PoBfyo02tze7tLk9RnlDcoSztH5FADN_N4fXwm_IG4aESAALW5mGDs4E0AJSG9QAiqvBhAMGqAGAAAwQgAAAMIAALBCAACSwgAAREIAADBBAACoQgAAMMEAAGzCAAAAwQAAoEEAAODBAAAgwQAAcEEAAKhBAAAAAAAAQEIAAJrCAAAAQgAAQMIAABjCAABgwQAAYMIAADBCAABkwgAA2MEAAJjBAABIwgAAJEIAAODBAADAwAAABEIAAGzCAAAAwAAAsMIAAOBBAACgQQAAdEIAAADCAABgQgAAMEEAAMDAAAAoQgAACMIAAIhCAACUwgAAiMEAADBCAADgQQAACMIAAFzCAAAQwgAAgL8AAGhCAADAQQAA4EAAAJzCAACowQAAREIAAKBBAABwQQAAVMIAAGTCAABQwgAAjEIAAOzCAADQQQAAYMIAAHzCAAAkwgAAeEIAAFBCAACCwgAAKEIAAMDBAAA8wgAAAAAAADDCAACAQAAAQEAAAAzCAACOQgAAZMIAAJBBAAAAwgAATEIAAKDBAABAQQAAbEIAAMjBAACQQQAAhkIAAKzCAADIQQAANEIAAATCAAAUwgAAAEEAANhBAADIwQAAPMIAAChCAACAQgAAEMIAAEDCAACgQAAALMIAAARCAADAQAAA4EEAAIZCAACoQQAA4EAAAMjBAAAwwQAAJEIAAADAAAAEwgAAgMEAAHDBAAD4wQAAAMAAAHDBAAAAwAAAwEAAAKBAAADIwQAAoEAAANjBAAAwwQAA2MEAADzCAACwwQAAgkIAACDBAAA0QgAAcEEAAABBAACAwQAAhMIAACBCAAAAwAAAQEEAACTCAABwQQAAYEEAAEDAAADAwQAAUEEAAKBBAAAwwQAAmEEAAABCAADIQQAA6EEAAKDAAACgwgAAqMEAAIrCAABgwQAAmMIAAIjBAACQQQAAsMEAAPDBAABAwAAAIMIAAGhCAADYQQAAqMEAAFDBAABAwQAAUMEAAPDBAADAwQAASEIAADDCAACIwQAAAEAAAAhCAACiwgAACMIAAEDAAAAUwgAA0EEAAMDBAABswgAAgsIAAAAAAAAYQgAA4EEAALjBAABsQgAAQMEAAEDAAACWQgAAwMAAADhCAABAQAAAIMEgADgTQAlIdVABKo8CEAAagAIAAIo-AADIPQAAjj4AABQ-AACAuwAA1j4AABC9AAAbvwAA-L0AAPg9AADYPQAARL4AAFS-AACCPgAAoLwAAEy-AAD6PgAAED0AABw-AAABPwAAfz8AAOA8AAAkPgAAXD4AACS-AACqvgAAlj4AAKC8AABsPgAAij4AAOg9AAA8PgAAFD4AAIg9AACgPAAAmL0AAEw-AAA8vgAAur4AAKi9AAB0vgAAXL4AAHQ-AAAUPgAAir4AABC9AAAcPgAADL4AAAy-AAAwvQAAZD4AABQ-AABAvAAA2j4AAAw-AAAwPQAAQT8AAKC8AACoPQAAqL0AACQ-AAAMPgAAqj4AAMi9IAA4E0AJSHxQASqPAhABGoACAAB0vgAAyL0AAEy-AAAvvwAAXD4AADC9AAAUPgAAoDwAABA9AAAMPgAAQLwAADw-AACSvgAA2L0AANg9AADgvAAAmL0AABM_AACYvQAA9j4AAJi9AABQvQAALL4AAEA8AACAuwAAiD0AAEw-AAAQPQAAqD0AAEQ-AACAuwAAiD0AAOC8AACIvQAAQLwAAHC9AAAUPgAAHD4AAIq-AACIPQAABD4AAGS-AAAEPgAA2D0AAIg9AABwvQAAf78AAAS-AACovQAA-D0AABS-AADgPAAA2D0AADS-AADYPQAAcD0AAEA8AAC4vQAATD4AACQ-AAD4PQAAcD0AAMi9AADIPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=2119F8WMNak","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["15516080433250147611"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"6172645186178640658":{"videoId":"6172645186178640658","docid":"34-4-10-ZCD9EFA55651EAF92","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. ⋆ If my videos have ever helped you answer a question, get a 6/6 on a quiz, pass an exam, etc., please consider...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"45","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 6 problem 5.1.5a (VT MATH 1524)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=wAS5fOqG0_Q\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChM2MTcyNjQ1MTg2MTc4NjQwNjU4WhM2MTcyNjQ1MTg2MTc4NjQwNjU4aq4NEgEwGAAiRBoxAAoqaGh3Z3lhbmhudXRlbGNuY2hoVUM5ZUxSVmIyWlJGcXc0QkFHdXB2S3NREgIAEioPwg8PGg8_Ez6CBCQBgAQrKosBEAEaeIH-6_37Av4A5AABAvsAAQAb-wb_9QICAOTw9f_7_QIA8gAI_PsAAAD-CPMH_AAAAP0GAfr6_gAAAQEEAQUAAAAW7_b2_QAAABkLDf_-AQAABukHCgP_AAATCggB_wAAAPf9-Pz__wAABw_9-AEAAAALDwXy_wAAACAALXaCzjs4E0AJSE5QAipzEAAaYAUQACMOL9_iGQnpC_fZQerr5P_15if_CBT_PT7px-wIzs9PDv9VwQvanwAAAALQu-IBANJ_Kwa4GRof-r0R_Q4JdT4_scjD9s3YEUDgM8Qk6NgRBQDQA-wFPxLBJnsYJiAALf7gFTs4E0AJSG9QAiqvBhAMGqAGAAAkQgAAsEEAAKRCAAB8wgAAQEEAAIpCAACEQgAA0MEAAHTCAACIwQAASEIAANjBAAD4wQAAfMIAAKDAAACwQQAAXEIAAADCAACQwQAAVMIAAJjBAACQwQAAGMIAALBBAAAEwgAAHMIAAIzCAAAswgAAfEIAAEDAAAAYwgAA6EEAAGzCAAC4QQAAhMIAAABAAABAQAAAgEIAAIBBAAAEQgAAgMAAAKhBAACAQAAAAEAAAKDAAAAIwgAA4EEAAEBCAAB0QgAA2EEAABjCAAC4wQAAAMEAAAxCAAAYQgAAcEEAAJbCAACwwQAAgEAAAIhBAACgQQAAaMIAAGDBAAB0wgAAFEIAANrCAAAgwQAAJMIAAEzCAABMwgAAgkIAAHRCAABMwgAAQEEAAMjBAAAwwQAAksIAAABAAABoQgAAHEIAABBBAADIQgAA6MEAAAAAAAAAAAAA2EEAADhCAADYwQAAREIAADDBAABwQQAAZEIAADzCAAAQwgAAUMEAABDCAACYwQAAkMEAAARCAADAwAAAmsIAACDBAADAQQAAgMEAAGDBAACAQQAAZMIAABhCAAAAwAAAKEIAADhCAABQQQAAgEAAAABBAACgwAAASEIAANhBAAAQwgAAQMEAACzCAABgwQAADMIAAPjBAAAwQQAADMIAAMDAAACQQQAAmMEAAOhBAAAgwQAAcMEAAOzCAACAQAAAyEEAAIDBAACMQgAAAAAAAHhCAADgQQAAcMEAAChCAAD4QQAAIEIAAIDBAABQQgAAlkIAANDBAACQQQAAAAAAAKBAAAA4wgAAsMEAAEBBAACgQAAAQEAAAODBAADIwgAAgMEAAMjBAACowQAAQEAAADBBAAAAwAAAYMEAAOjBAADYwQAACMIAALZCAADgwAAAEMEAAGDBAAAAQQAAiMEAAEjCAAAAwQAAqEEAAKDAAACYwQAAyEEAAKhBAADMwgAACMIAACjCAACIQQAABEIAAETCAAB0wgAAAMEAAKDAAADgwQAAqEIAAGTCAABQQgAA2EEAAKDBAADwQQAAAMAAAABCAACEQgAA0EEgADgTQAlIdVABKo8CEAAagAIAAMg9AAD4vQAAhj4AAMg9AACAOwAAXD4AAPi9AADKvgAAnr4AAHA9AAAQvQAAhr4AADw-AADgvAAARL4AADA9AAAMPgAAyD0AALI-AAC2PgAAfz8AADC9AADIPQAAqL0AAHS-AACKvgAAzj4AAIK-AABAPAAAiD0AAOg9AACOPgAAoDwAACy-AACovQAAoDwAALg9AADYvQAA4r4AACy-AADyvgAAJL4AAOo-AAC4PQAANL4AABw-AAD4PQAA2L0AANg9AAAEPgAAmD0AAJg9AABwPQAAkj4AAHS-AAAQvQAACz8AAIA7AACKPgAAiL0AAEQ-AABsvgAABD4AACy-IAA4E0AJSHxQASqPAhABGoACAABQvQAAcL0AAHA9AAAbvwAAbD4AABA9AAAsPgAAiD0AAIC7AAAEPgAAcL0AAMg9AABsvgAARL4AAJi9AABQPQAAoLwAADc_AADgvAAArj4AADC9AACovQAALL4AABC9AADYvQAAMD0AABQ-AACgPAAAUD0AAIo-AABwPQAA-D0AACy-AADgPAAAEL0AAOA8AAB8PgAA6L0AALq-AADgPAAABD4AABy-AABQPQAAFD4AAHC9AAD4PQAAf78AAFy-AACgvAAAmD0AABS-AAAEPgAAUD0AACy-AAB0PgAAcD0AAOA8AAC4vQAADD4AAIY-AABwPQAAyL0AAFS-AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=wAS5fOqG0_Q","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["6172645186178640658"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"10245219360576536085":{"videoId":"10245219360576536085","docid":"34-7-15-Z27B541E8724BAE70","description":"Draw a rectangle of perimeter 15 cm and sides in the ratio 3 : 4 15 സെന്റിമീറ്റർ ചുറ്റളവും, വീതിയും നീളവും 3:4 എന്ന അംശ ബന്ധത്തിലുമായ ചതുരം വരയ്ക്കുക #rkmmathtech#...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"46","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Draw a rectangle of perimeter 15 cm and sides in the ratio 3 : 4","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PnRf07wtqV8\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxMDI0NTIxOTM2MDU3NjUzNjA4NVoUMTAyNDUyMTkzNjA1NzY1MzYwODVqrQ0SATAYACJDGjAACiloaGJhdGdqbXFoa2Fya2loaFVDS0k1N1hsYk5MRXZHZVVZSjYwWTJiZxICABEqD8IPDxoPPxNbggQkAYAEKyqLARABGniB9wX3_P4CAPgHBQgABv0CBAAAAvj__gD1APX0AwL_AAH9Dgn_AQAAF_4H9AAAAAD_8v_4-P0BABETBQQEAAAAEv4A-P8AAAAKBvcI_gEAAPgPAAQD_wAA9Aj4Af8AAAD6Dvz7_wAAAAQFEgYAAAAADgYCAwAAAAAgAC1aINg7OBNACUhOUAIqcxAAGmDtDQAoFxEM2xj97vEZ3PgE6AzpAs_8_w7PAAQc8Qr--em3GAD_MtAMAsAAAAAN8e8lFwDFUQPW7xsEIO7Q-wXoFX__HPL00hz51vMF5TUaMPohHAsA7QDxEBXg_DwpFgAgAC244Fg7OBNACUhvUAIqrwYQDBqgBgAAAEAAABhCAACQwQAAlsIAAIhBAACoQQAAPEIAAIDAAACQwQAAgMIAAPjBAABQQgAAEMEAAFRCAAAgwQAA-EEAAKDAAACGwgAAiEEAAADBAACgwAAAqMEAAOBBAAAcQgAAyEEAAEBAAACIQQAAhMIAAGzCAACwQQAAmMEAAIZCAAB8wgAAQMEAABzCAACAvwAAQEEAAIZCAACIwQAAXMIAAJpCAADQwQAA4EAAAFxCAAB4QgAAyMEAAIBBAAAYQgAACEIAAIhBAABMwgAAhsIAADBBAADQQQAACEIAAJBBAAAQQQAAcEEAAIhBAABUQgAAQEEAAGDCAAAAAAAAcMIAAIC_AAAswgAAkEEAAADAAACQQQAAsMEAAABCAAAAQAAAiMIAAFBBAACgwQAAmMIAADDBAABAwgAA2EEAAEDBAADgwQAAikIAAMBAAAAUwgAA-EEAAMjBAAAQQgAA2MEAAI5CAAAkwgAA0EEAAKBBAACcwgAABMIAAMbCAABYwgAAYMEAACTCAAA4QgAAPEIAACjCAAA4QgAAIEEAACDBAAAAQgAAqEEAALDBAACQwQAAkMEAAIZCAABAwAAAAMAAAPhBAAC4QQAA-MEAAMBBAABgQQAAgMAAAEzCAAAYwgAAUMIAAHTCAABwwQAAMEIAAKDAAABgQQAAYEIAABDCAADAwQAAJEIAAFjCAABIwgAA6MEAAJZCAAAgQQAAUEEAAIA_AAAgQQAAQEEAAMDBAACgQAAA8MEAAABCAAAUwgAAAEIAAAhCAACqwgAAUMEAAGDBAAAswgAAEMIAAIBBAAAcQgAAOEIAAEBCAADAwQAAnsIAAGDCAABowgAAkkIAAOBAAAAsQgAAqMEAAADBAACwwQAAVEIAANhBAAAIQgAA2EEAAABBAABYwgAAaMIAAChCAACgwgAAkMIAAADCAAA4QgAACMIAAKzCAADYwQAAkMEAAHTCAADIwQAAcEIAAOZCAACYwQAAOMIAAODBAAAgQQAAUEEAAIA_AAAAQAAANEIAADDBAABQQgAAjkIAAOBBAAAAwQAAIMEAAGBBIAA4E0AJSHVQASqPAhAAGoACAACGvgAAMD0AAK4-AAA8PgAA4LwAAAQ-AACGvgAAAb8AAFS-AABAvAAAUL0AAHC9AAAUPgAAjj4AABw-AAA8vgAAmD0AAIg9AABwvQAAlj4AAH8_AABwPQAAiL0AAHA9AAAEPgAAHL4AAOC8AABAvAAABD4AAEw-AACAOwAAoLwAAKC8AABcPgAAqD0AAIC7AACgPAAAyL0AAFS-AABUvgAAEL0AAKg9AAAkPgAAgLsAAIC7AAB8vgAAcD0AAFC9AACAOwAA-L0AAAw-AAA8PgAAZD4AADA9AABMvgAAgDsAABU_AAB8PgAAFD4AAPg9AACgvAAAMD0AADQ-AAAUviAAOBNACUh8UAEqjwIQARqAAgAAur4AAEC8AACCvgAASb8AAFS-AACgPAAAND4AACy-AABwPQAAFD4AAEy-AABAvAAALL4AAFC9AADgvAAA4DwAADC9AAAhPwAAPL4AANo-AAAcvgAALL4AALi9AACYvQAAcL0AADw-AADgPAAA4DwAANi9AABQPQAAED0AAAQ-AACYvQAAdL4AADA9AABQPQAAqD0AAJo-AAAUvgAANL4AADw-AACAOwAAED0AAIi9AACAOwAALL4AAH-_AABEvgAAHL4AAJg9AACCPgAAQDwAABQ-AABEPgAAgDsAAFA9AAAwvQAAhj4AANi9AAAQvQAAqj4AAOg9AADIPQAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=PnRf07wtqV8","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":null,"cheight":null,"cratio":null,"dups":["10245219360576536085"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"10014056887280849979":{"videoId":"10014056887280849979","docid":"34-2-15-ZBAB9A1713B7D6D7C","description":"Explore 2D Heat Equation solving techniques using Finite Difference Method (FDM) with Matlab and manual calculations. Learn step-by-step implementations, compare results, and gain insights into...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"47","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Solve 2D Heat Equation using FDM with Matlab and Manual |Finite Difference Method| 2D Heat Equation","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sCe2I0Uwlec\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoWChQxMDAxNDA1Njg4NzI4MDg0OTk3OVoUMTAwMTQwNTY4ODcyODA4NDk5Nzlqrg0SATAYACJEGjAACiloaGV5eWloaGFtdHp1amVoaFVDc3BEc19VdG4tVmE5elVHSnlqWHB3QRICABEqEMIPDxoPPxODDYIEJAGABCsqiwEQARp4gfcF9_z-AgD4AQAK9wf-AiL4Cgr1AwMA7fjw_AUAAAD18An8_gAAAP8NAAn6AAAA_-71CP3-AAAVBPQA9QAAAA0K-AUDAAAABgME-v8BAADv-g35AgAAAA31Bvf_AAAA-An_CPwAAAD-Cf8DAAAAABcJCgEAAAAAIAAtWiDYOzgTQAlITlACKnMQABpgGv8AVSkl1sUHHeLk5-wO69ID3wXE7v_TBAAVLvvUBQ7Lq_kw_xjjFvatAAAAK_kFD-sA_Gjb7PJCD_EK18PqHQt_EhzcBf4b1o75-CAP_y_YAhs6AOcR8PVL-rVEHUQSIAAtQjEoOzgTQAlIb1ACKq8GEAwaoAYAAHDBAADAwQAAuEEAANDBAAA4QgAAREIAALxCAACYwQAANMIAAJhBAAAQQgAA6EEAAFTCAAAQwQAAAMIAAOhBAAC4QQAAoMIAAMjBAAAMwgAAYMEAACzCAADYQQAAwMEAAEBBAAAMQgAAgsIAAATCAADgwAAAAMAAAHTCAABYQgAAEMIAAADCAABYwgAA6EEAAAxCAABsQgAAAMIAAEDBAAAgQQAAoEEAAMBBAADAwAAAvkIAAGDCAACewgAALEIAABRCAAD4wQAAEMIAAOBBAADgwQAAAMEAAMhBAABAwAAA6sIAAHBBAAAIQgAAcEEAADxCAACKwgAAuEEAADTCAAAYQgAAyMEAAIDCAACCwgAAoMEAAEDCAAA4QgAAmMEAACTCAABkQgAAgEAAAODBAACAQAAAdEIAAIjBAAAQQQAAoMEAAMxCAAAQwQAAGEIAAMBBAADAwAAAiMEAALhBAACoQQAAHMIAAIjBAACMQgAAMEEAAAhCAACAQQAATMIAAHzCAAAowgAAYEIAAI5CAACkwgAAmMEAABxCAAD4wQAAoMIAAExCAAAIwgAA4MAAALhBAADYQQAAaEIAAKDAAAAswgAAmEIAAIjBAAAMQgAAOEIAAIDAAADQwgAAOMIAAKDAAADIwQAA0MEAAABAAABAwQAAAEAAACBCAACYwQAA4EAAAJJCAAAwwQAAHMIAANDBAAAQQgAAmkIAALBBAABIQgAAsMEAAIDBAADAwQAAAEEAABjCAAAoQgAAhsIAACRCAACgwQAAgL8AAHDBAAB8QgAAQEIAAOBAAABwQQAAsEEAAKBAAACIQgAAwEAAAIjBAACAPwAAoMEAAGBBAADQwQAAwMEAAEDBAADIwQAAUEEAANhBAAAswgAAjkIAAEBCAABgQQAACEIAALBCAAAwQgAAhMIAAOjBAADAwAAAMEEAAPDBAAC4QQAAEEIAABjCAABAwAAAuMEAADDBAACEQgAAJEIAAFBBAADAwAAAnkIAAEBCAADYQQAA0EEAADBBAAAYwgAAoMAAAFBBAACAvwAAwMEAAOjBAAAMwiAAOBNACUh1UAEqjwIQABqAAgAAiD0AAKC8AACoPQAAFD4AAMg9AABcPgAADD4AACm_AAAsvgAABD4AAIA7AAAEPgAA4LwAAMi9AACyvgAAUL0AANI-AACAOwAATD4AAEk_AAB_PwAA2D0AAAw-AACAuwAAUL0AAHC9AAA0PgAAgDsAADC9AADoPQAAND4AAMi9AAAQvQAAyD0AAKi9AAAMPgAAuj4AALi9AAC2vgAAhr4AANi9AABAvAAAFD4AABQ-AADIPQAAjj4AAJ4-AAC-vgAAcL0AAMa-AADgvAAAiL0AAFQ-AADKPgAABL4AABC9AAAtPwAAlr4AACy-AADgPAAAcL0AADQ-AACAOwAATL4gADgTQAlIfFABKo8CEAEagAIAAKi9AABMPgAAiL0AADG_AABEvgAAoLwAAKY-AACAOwAAyD0AALg9AAC4PQAA2L0AACS-AAC4vQAAUD0AAKC8AABMvgAAHT8AAES-AADGPgAAED0AAJq-AADIvQAANL4AAOC8AACovQAARL4AAAw-AACAuwAAUL0AAIA7AADIPQAAZL4AAEC8AAAMPgAAyL0AAAw-AAAMPgAAXL4AAHC9AABsPgAAmL0AAIi9AAAwvQAAUL0AABA9AAB_vwAAuD0AAOg9AABEvgAAiL0AAAw-AAAcvgAADD4AAMg9AAAkPgAAmL0AABC9AAD4PQAA2D0AAEA8AABUvgAAED0AALg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=sCe2I0Uwlec","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10014056887280849979"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"7520087366119384617":{"videoId":"7520087366119384617","docid":"34-7-3-ZE75003D3E90B9A75","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. If this walkthrough video was helpful, click Join to become a member of the YouTube channel so you can access the...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"48","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Rate of Change with Table Values - Application Problem","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YR0sjo2AOk8\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChM3NTIwMDg3MzY2MTE5Mzg0NjE3WhM3NTIwMDg3MzY2MTE5Mzg0NjE3aogXEgEwGAAiRRoxAAoqaGh3Z3lhbmhudXRlbGNuY2hoVUM5ZUxSVmIyWlJGcXc0QkFHdXB2S3NREgIAEioQwg8PGg8_E4sCggQkAYAEKyqLARABGniBBwH-Av4CAPP0A_gIAQABHAD8_vQDAwDo-_z-BP4BAOwJAgb7AAAA-gUKAwkAAAD4_QcD_P8AAAMNBQb4AAAADPcIAvsAAAD7CQoL_gEAAP_y-wED_wAAA_QF9_8AAAAABQoDAQAAAPUHAfgBAAAACfUIAwAAAAAgAC1usto7OBNACUhOUAIqhAIQABrwAX8U-_-v6c_-AuHtANAP5QGfMSf_ICreAMf2_gDRB90B0h8GAPMF2__ZNQn-ryz3_wa-0v8RwPX_Er3k_eDT5f_eAxABQNX9AV77-wH5IAH_xBQ8AeThCwEW8dn__ATj_wv5IgHv6tH-1fPRACf7MgEg-RX9_wQgBeDZFfzQ5hAD6trW_fEYEgPx4x4Az-ogAgX-_Pr1HfT48Qf8BDQBBAkd3xICF0To_0P-EwPuNwEGvAnrAM8E4gQeRhYH_f4D-vUSIgP19Q7uHgb2BATOBPoG-u38PsLxBSQE5Abi4ev93PHqAfEw9xLjJfwH9v8E9yAALVJtCTs4E0AJSGFQAirPBxAAGsAHNbXMvqF0WDy9TQQ9I16ovLSsu7ykHr-7FNqYvSdPeT0LEYm7by4ePi3gr7xhFZS8lpNAvqLMqzzo0mQ8xVWFPlQwb72bfyq8dXT8vS8Tmj0LAhC9uKwSvtWv1D0JHU88ZExQPUbPrTz7qp66HQDxPfXVFb35njG9qv-NvdaDs73Unee8Twh8O3LSRb3fikS8Y4yZvB1NXLsP8lW8hh5xPU-bJ73Vgi29h6_lPPeENrzdoKy8crWvvWJZOr3nbdG8dWYsPaaLwzz_dKg8Lz_Duy-xiTtygpu8vNnRO6LGjjz99787uQC0vGVNkT1MrGe8YpOpO3EqyL3Iaqm8Y7QevjYWe7t_YFg85Gb4PWZM4T0YI9Q7Jgx0vV1Guz1MLLo8YUnDPB0XPDuwEh4856cIPrEsXT1G8nC7YhFDvPRn5Dw6a8G8duEHvSoynz0ZtGs8pNQSPM5Csbzej9u8VkduPX_oeD2rE8a8wwqcvUk1xzwkKYq7pCyNPZ0cFbx5bJE7FOeNPMazGr0nFCC8RVylPHO49r3kBDc8Yd6jPIY84r1ZSXG7UkjwuyDWtjzVqJG82zElPt2hlzyi0xA7vz3ZPE4ddbw5W2W72ULQPZQU2L0iEQm4Wmq4vZs08jwVqwa8eCPYvM3IlT0yHR27fTuuu7Wlzj0-auG6KcSrOyfrob1sBno73_nlPU2UjLt5K-A6UW1LPWHVC7u2hm87GLIKPmWew7sY0YI4RUMLPfzJs7yHs3C7p9lyvLDDGjwlTAO75CkwPaVWDr3x2A07NmrPu3s-lDyiz3E5vNpAvGKcZD2yDPW5jk-Su2iwKb1d3oe3kvNUvSc2ir2fqgm55gRtPUOFtLxAFRq6FVusPTLfZr0H5jg5ax7BvcSuor1Z-CI4N_viOrxUET1ccLm2AmVTvJ3kPb1FRTG4GXiZvZf63LsZQpm41VOQvEItPL000Ws3oaVGPWU7Oj3wf784vufGPQAdpr1qQ4Y5SXffOtMkwjwLXRY21LqNPdvVT7rhcXS0sLSCPWMIID4L5EA5EtG3uwz9iL1QZfo332hsPL1ipz2wGok3-Pd-vVvFLD0YKb44BEj-vLfTlr0YYy62Cqi7PVxaoDlpqxo4n9iUvbrEbL3yUhQ4kl0ZPtlPUL2swj-5wKRCPN8DT7xudCW4K7Q9vOmaCb2efU23jrmhvMkJrj1kbhS35NWevHqJ8b1lVTC4Iv_sPTUpBT7zflu4lV8rPM-8jD3F_Aa5dR5VvZTZoLx_KUo3D1iDvPzkIz0usXc3IAA4E0AJSG1QASpzEAAaYC0AADUDKdbx21rqBfLZEODOsrIQ6iz_5uP_-wwDAPoS1JTo-P8rCSS6mgAAABIO5T8IABN_58j198oUAsTe2S3bWP4ZIL_8_wHJ5n9cyd4J0fgfWQAI969OMx3qPDYPESAALXFzEzs4E0AJSG9QAiqvBhAMGqAGAACKQgAAHMIAALxCAACYwgAAgL8AAKBAAAAwQgAACEIAAODBAABwQQAAgEEAAIBAAABgwQAAiEEAAIA_AAAIQgAAwEEAAJbCAADwQQAA4MEAAOjBAACwwQAAgMIAAChCAAAEwgAA0EEAAIBBAAAwQQAA0EEAAKDAAADYwQAAIMEAAFjCAADgwAAAvMIAAChCAACgQAAANEIAAOjBAABEQgAAgEAAAMDAAAAQQQAAQMAAAFBCAAC4wQAAcEEAAHxCAADAQAAAEEEAAJTCAACwwQAAcMEAAHxCAACAvwAA4EEAAFDCAADAwQAAOEIAAFBBAACQQQAAQMIAAIDCAACiwgAAmEEAAPDCAAC4wQAAWMIAAIrCAAAIwgAAGEIAAKBBAAAQwgAAMEEAADzCAADAwAAAHMIAAMjBAADQQQAAEEEAAFTCAACYQgAAmMEAAJjBAABkwgAAEEIAAFBBAAAEwgAAMEEAAIBBAAAAQAAAiEIAAHzCAADwQQAAREIAALDBAABkwgAAQEEAADRCAAAcQgAAHMIAAADAAAAwQgAA8MEAALDBAAAAQgAAQMAAAKBBAADoQQAAYEIAALZCAAD4QQAAsMEAAIBBAAAIwgAAOEIAAOBAAACGwgAA0MEAAADCAACwwQAADMIAAOhBAAAEQgAAEMIAAHDBAACAwQAAiMEAANDBAADAQAAAwMEAAAzCAADQQQAAbEIAAEDBAACKQgAAMMEAAOhBAABUwgAAXMIAAEBBAADgwAAAAEIAABDCAAAAwAAAWEIAAJhBAAAAwQAAQEAAACBBAAAQwgAAQEEAANhBAABwQgAAEEIAAKBAAACawgAASMIAAILCAACYwQAAksIAAOhBAACIQQAAgMEAAHBBAACAvwAAZMIAALJCAACwQQAAkMEAAJDBAACIwQAA4MAAAILCAAAwwgAAgEEAAGzCAADgwAAANEIAAIRCAADSwgAAyMEAAABAAAAswgAA4EAAAPDBAABMwgAAhMIAAAAAAAAgQQAAmkIAAADAAADgQQAAMMEAAJjBAABoQgAAAMEAAChCAAAQQgAAiMEgADgTQAlIdVABKo8CEAAagAIAAFA9AADgPAAAnj4AAMg9AACgvAAAPD4AAHA9AABfvwAAFD4AABQ-AABQPQAAQDwAAMi9AAAMPgAAlr4AAKC8AABcPgAAUD0AAPi9AADmPgAAfz8AAOA8AACYPQAAvj4AACS-AADYvQAATD4AALK-AAC4PQAAZD4AAOg9AAAwPQAAuD0AAHw-AACAOwAAoDwAAGQ-AADKvgAAsr4AAIi9AADavgAAmD0AAOg9AAAwvQAANL4AABC9AADoPQAAiL0AAAS-AAAcvgAAtj4AAJg9AADgvAAAwj4AAIg9AAAUvgAAaz8AAFQ-AAA0vgAAmj4AACw-AABwvQAAND4AAEQ-IAA4E0AJSHxQASqPAhABGoACAADgvAAAUL0AAKi9AAA5vwAAiL0AAHC9AABAPAAAUD0AADC9AACIPQAAiL0AACS-AAAMvgAAur4AAEw-AABwvQAALD4AACc_AADgPAAAqj4AAOi9AACgvAAAiL0AACQ-AAAQvQAAuD0AAHA9AAAQvQAA4LwAAPg9AAAQPQAA4DwAAJg9AABQvQAAQLwAAMg9AAAwvQAAbD4AAJK-AAAkPgAAyD0AADA9AACYPQAAcD0AAEC8AAAwPQAAf78AAKi9AABkvgAAFL4AADC9AADovQAAij4AABy-AADgPAAA4DwAAHA9AABsPgAAyL0AAFC9AADoPQAAbD4AAPi9AAAQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=YR0sjo2AOk8","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1342,"cratio":1.4307,"dups":["7520087366119384617"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"769120402"},"9588690245186595101":{"videoId":"9588690245186595101","docid":"34-9-11-Z50235CB6B17CD68C","description":"This problem comes from the Virginia Tech Math Emporium practice problem system. If this walkthrough video was helpful, click Join to become a member of the YouTube channel so you can access ALL...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"49","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 6 problem 6.1b (VT MATH 1014)","promo":"pumpkin","related_orig_text":"AV MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AV MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OGUJ8_ECykg\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNjk2MTIwMzM5MjIyMjUzOTQ3NQoTMzA2OTUzODc5MzYwNDg4NTM5MgoUMTQ5NTE3OTIzOTQyMTk5NzUxNjUKFDE2MDcwNTA0MzAxMTY2MDM2MjY3ChQxMTQ4Nzc4MTA0MTI1MDE5ODYwOAoTNjEwMjM2MDQ2MTY4MTQ1MjA0MQoUMTE2MTA1OTY4NDg4MzI0MzkxMDAKFDE4Mzc0OTgyOTM3MjE4NDY4NDU4ChQxMzQ4MTg3MjU5NTMyMjIzMDAwNAoUMTUwNzM4NzMxMDY5NTI5MjE0NzMKFDEzOTEzNDQzMjc2NTQ4MDU5NTkwChQxNTk0MjM1NTc3ODY3MDg1Mjc2OQoTMTM2NzM3NTI1NTEzNDIwNjE0NgoTNzA0ODM0MDUyMzM4OTc1MzYxMAoUMTc1MjMxNDg5ODczNzQ2NzUyOTEKETUwNTkxMzk3MTI2NjQwNzU1ChMxNzI1OTA5OTU2MDYyNjY0Mzc2ChQxNDUxNjE0ODQxNTgyODgzNTg2NgoTMjIzNzc2NDExODM4Mjk1NzQzMgoTNzkzODQ0NzM1MzExNTA2OTMyMhoVChM5NTg4NjkwMjQ1MTg2NTk1MTAxWhM5NTg4NjkwMjQ1MTg2NTk1MTAxaq8NEgEwGAAiRRoxAAoqaGh3Z3lhbmhudXRlbGNuY2hoVUM5ZUxSVmIyWlJGcXc0QkFHdXB2S3NREgIAEioQwg8PGg8_E6wCggQkAYAEKyqLARABGniB_u_6_wn2APDw9Pr8AQEBIQL6_gMCAwDa-vwCA_oDAPDz_wECAAAADQz2C_sAAAAR_u8K__0CAAf99vMEAAAADu79_vkAAAATGAj4_QEAAAfmCAsD_wAAIgMJ-v8AAADwAPgEAwAAABIQCwIBAAAAAA_79v8AAAAgAC1807o7OBNACUhOUAIqcxAAGmDdGwAnCCbayB4d3gXr5zvq2uEA4NQg_xgR_zUn4aP-_dK-NjL_HcYM3KEAAAAazLPb6wDefyz_yPIGLwTUCxkjIHERPs2-7ODb6CEn8AutPLzm8QsAxRvjA0smwBtmQCsgAC0JexY7OBNACUhvUAIqrwYQDBqgBgAAbEIAAODBAACmQgAAxsIAAADAAADAQQAAWEIAAFBBAACAwQAAkMEAADBCAACAvwAAgD8AAARCAACwwQAAQEAAAOBBAABMwgAAwEEAABBBAACIwQAAuEEAAHjCAACYQgAAIMIAAKDAAACAQQAAYMEAAIhBAAAAQAAA8MEAABhCAABIwgAA-MEAAMjCAAA4QgAAkMEAAIhCAAAMwgAANEIAAADBAAAYQgAAEMEAAEDBAACoQQAAisIAABBCAABgQgAAkEEAAPBBAAAowgAA0MEAALjBAAAUQgAAwMAAAADBAAAMwgAA4MEAAIRCAACAQAAA2EEAAEzCAACwwgAAyMEAAPhBAACewgAAKMIAAADAAADAwQAA4MEAAIBCAAAgQgAAIMIAAFxCAABkwgAAyEEAAFDCAACAwQAAKEIAAJhBAAA4wgAAlkIAALDBAACAPwAASMIAAGBCAACgQQAAZMIAAMhBAAAAQAAAIMEAAAxCAABcwgAAREIAACBCAAAAwgAA6MEAAOBBAACoQQAAQEIAAHTCAAAYwgAAHEIAAEzCAADYwQAAUEEAADxCAABkQgAAcEIAAHxCAAAYQgAAYEEAAIDBAABoQgAAgEEAACBCAAAMQgAA4MEAAOBAAAA8wgAAYMEAAFDCAADgQAAAHEIAAEzCAAC4wQAA4MEAACTCAAAcwgAAuEEAAEDBAAAQwgAABEIAAOhBAAAAwgAAVEIAAIC_AAAkQgAAosIAAMDBAAAAAAAAIEEAAMDBAAAAwgAAgD8AAFxCAACAwQAAQEAAAIhBAAAYwgAAVMIAAKhBAACAQAAAaEIAAGBBAABswgAAusIAAADBAAAwwgAAMEEAAI7CAADoQQAASEIAAJjBAAAwwQAAwMAAAOjBAACIQgAAFEIAAAAAAADIwQAAgEEAAIDAAACMwgAAqMEAANBBAACkwgAA6MEAANBBAAAQQgAAjMIAAJjBAABAwQAAfMIAAIBCAAAQwgAAhMIAADTCAACAQQAAMEEAADBBAACAwAAA4EEAABBBAAAAQQAAmEEAAMBAAADAwAAAOEIAABTCIAA4E0AJSHVQASqPAhAAGoACAACYPQAAFL4AAMo-AAB8PgAAFL4AABC9AAAkvgAAxr4AAEA8AAAQvQAAoDwAAEy-AAD4PQAABD4AAFC9AABQvQAA2j4AAHA9AACGPgAAdD4AAH8_AAAwPQAABD4AANg9AAAcvgAA2r4AAJo-AAA0vgAAoLwAAMi9AACoPQAARD4AAJg9AACovQAAHL4AAFC9AAC4PQAA6L0AAO6-AACovQAAvr4AAJi9AAAMPgAA-D0AAFC9AACAuwAAfD4AACy-AACAOwAAqD0AABA9AABwPQAAqD0AAPg9AAAEvgAAoLwAACs_AAC4PQAA4LwAABA9AABkPgAAyL0AAFA9AADYvSAAOBNACUh8UAEqjwIQARqAAgAAED0AAOi9AAAQvQAACb8AAFQ-AAC4PQAAcD0AAMg9AAAwvQAAiD0AAPi9AACAOwAAqL0AAHy-AADIPQAAoDwAAIA7AAArPwAA4LwAAMI-AACYPQAAML0AAIi9AACgvAAAED0AAKA8AAAEPgAAcD0AAJi9AABMPgAAQDwAAPg9AADgvAAAUD0AAFC9AACYvQAABD4AAEA8AACevgAAqD0AACw-AAA8vgAAFD4AADA9AABAPAAAQDwAAH-_AAAcvgAAmL0AAEA8AABcvgAAQDwAALi9AAAMvgAAJD4AAKg9AACgPAAAEL0AANg9AACmPgAA4DwAAFC9AAAkvgAAiD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=OGUJ8_ECykg","parent-reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["9588690245186595101"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false}},"dups":{"16961203392222539475":{"videoId":"16961203392222539475","title":"How to fill MTTS application form.","cleanTitle":"How to fill MTTS application form.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=EZo5swo8bJ0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/EZo5swo8bJ0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM012UUE4RlB4bEIyekdwVFQ1ZWZodw==","name":"AV MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AV+MathTech","origUrl":"http://www.youtube.com/@avmathtech6162","a11yText":"AV MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":424,"text":"7:04","a11yText":"Süre 7 dakika 4 saniye","shortText":"7 dk."},"views":{"text":"4bin","a11yText":"4 bin izleme"},"date":"15 şub 2023","modifyTime":1676419200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/EZo5swo8bJ0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=EZo5swo8bJ0","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":424},"parentClipId":"16961203392222539475","href":"http://www.youtube.com/watch?v=EZo5swo8bJ0","rawHref":"/video/preview/16961203392222539475?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3069538793604885392":{"videoId":"3069538793604885392","title":"GATE 2023 Mathematics Strategy || Study Material","cleanTitle":"GATE 2023 Mathematics Strategy || Study Material","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ohj-aNg7hR8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ohj-aNg7hR8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM012UUE4RlB4bEIyekdwVFQ1ZWZodw==","name":"AV MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AV+MathTech","origUrl":"http://www.youtube.com/@avmathtech6162","a11yText":"AV MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":952,"text":"15:52","a11yText":"Süre 15 dakika 52 saniye","shortText":"15 dk."},"date":"2 ağu 2022","modifyTime":1659398400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ohj-aNg7hR8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ohj-aNg7hR8","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":952},"parentClipId":"3069538793604885392","href":"http://www.youtube.com/watch?v=ohj-aNg7hR8","rawHref":"/video/preview/3069538793604885392?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14951792394219975165":{"videoId":"14951792394219975165","title":"Self Study Tips for IIT JAM 2024 Mathematics || Free Study Material","cleanTitle":"Self Study Tips for IIT JAM 2024 Mathematics || Free Study Material","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JMKIcqqiMs8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JMKIcqqiMs8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM012UUE4RlB4bEIyekdwVFQ1ZWZodw==","name":"AV MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AV+MathTech","origUrl":"https://www.youtube.com/channel/UC3MvQA8FPxlB2zGpTT5efhw","a11yText":"AV MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1099,"text":"18:19","a11yText":"Süre 18 dakika 19 saniye","shortText":"18 dk."},"views":{"text":"6,4bin","a11yText":"6,4 bin izleme"},"date":"19 mar 2023","modifyTime":1679184000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JMKIcqqiMs8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JMKIcqqiMs8","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":1099},"parentClipId":"14951792394219975165","href":"http://www.youtube.com/watch?v=JMKIcqqiMs8","rawHref":"/video/preview/14951792394219975165?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16070504301166036267":{"videoId":"16070504301166036267","title":"\u0007[AV\u0007] \u0007[Math\u0007]","cleanTitle":"AV Math","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LlCeem795wI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LlCeem795wI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRUV0VzFOblo4QWlKNnBjMS1yT3lPZw==","name":"AV Engineers","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AV+Engineers","origUrl":"http://www.youtube.com/@avengineers5205","a11yText":"AV Engineers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":337,"text":"5:37","a11yText":"Süre 5 dakika 37 saniye","shortText":"5 dk."},"date":"17 tem 2025","modifyTime":1752710400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LlCeem795wI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LlCeem795wI","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":337},"parentClipId":"16070504301166036267","href":"http://www.youtube.com/watch?v=LlCeem795wI","rawHref":"/video/preview/16070504301166036267?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11487781041250198608":{"videoId":"11487781041250198608","title":"MSc Mathematics placements in IITs/NITs","cleanTitle":"MSc Mathematics placements in IITs/NITs","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xy6G8PHSXGE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xy6G8PHSXGE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM012UUE4RlB4bEIyekdwVFQ1ZWZodw==","name":"AV MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AV+MathTech","origUrl":"https://www.youtube.com/channel/UC3MvQA8FPxlB2zGpTT5efhw","a11yText":"AV MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":731,"text":"12:11","a11yText":"Süre 12 dakika 11 saniye","shortText":"12 dk."},"views":{"text":"3,7bin","a11yText":"3,7 bin izleme"},"date":"24 şub 2023","modifyTime":1677196800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xy6G8PHSXGE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xy6G8PHSXGE","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":731},"parentClipId":"11487781041250198608","href":"http://www.youtube.com/watch?v=xy6G8PHSXGE","rawHref":"/video/preview/11487781041250198608?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6102360461681452041":{"videoId":"6102360461681452041","title":"L-1 Differential Equations || IIT JAM 2023 || Crash Course","cleanTitle":"L-1 Differential Equations || IIT JAM 2023 || Crash Course","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1At6NkhS9LE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1At6NkhS9LE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM012UUE4RlB4bEIyekdwVFQ1ZWZodw==","name":"AV MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AV+MathTech","origUrl":"http://www.youtube.com/@avmathtech6162","a11yText":"AV MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2642,"text":"44:02","a11yText":"Süre 44 dakika 2 saniye","shortText":"44 dk."},"date":"3 oca 2023","modifyTime":1672704000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1At6NkhS9LE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1At6NkhS9LE","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":2642},"parentClipId":"6102360461681452041","href":"http://www.youtube.com/watch?v=1At6NkhS9LE","rawHref":"/video/preview/6102360461681452041?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11610596848832439100":{"videoId":"11610596848832439100","title":"Functions Lec-10 || IIT JAM","cleanTitle":"Functions Lec-10 || IIT JAM","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=lU-fLvn1O-8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/lU-fLvn1O-8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM012UUE4RlB4bEIyekdwVFQ1ZWZodw==","name":"AV MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AV+MathTech","origUrl":"http://www.youtube.com/@avmathtech6162","a11yText":"AV MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":854,"text":"14:14","a11yText":"Süre 14 dakika 14 saniye","shortText":"14 dk."},"date":"3 tem 2018","modifyTime":1530576000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/lU-fLvn1O-8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=lU-fLvn1O-8","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":854},"parentClipId":"11610596848832439100","href":"http://www.youtube.com/watch?v=lU-fLvn1O-8","rawHref":"/video/preview/11610596848832439100?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18374982937218468458":{"videoId":"18374982937218468458","title":"How to start preparing for IIT JAM Mathematics 2019","cleanTitle":"How to start preparing for IIT JAM Mathematics 2019","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=yN6IfYdoPKU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/yN6IfYdoPKU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM012UUE4RlB4bEIyekdwVFQ1ZWZodw==","name":"AV MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AV+MathTech","origUrl":"http://www.youtube.com/@avmathtech6162","a11yText":"AV MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":395,"text":"6:35","a11yText":"Süre 6 dakika 35 saniye","shortText":"6 dk."},"views":{"text":"7,7bin","a11yText":"7,7 bin izleme"},"date":"12 mayıs 2018","modifyTime":1526083200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/yN6IfYdoPKU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=yN6IfYdoPKU","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":395},"parentClipId":"18374982937218468458","href":"http://www.youtube.com/watch?v=yN6IfYdoPKU","rawHref":"/video/preview/18374982937218468458?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13481872595322230004":{"videoId":"13481872595322230004","title":"Functions Lec-6 || Graph of Quadratic Equations || IIT JAM(MA)","cleanTitle":"Functions Lec-6 || Graph of Quadratic Equations || IIT JAM(MA)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=immNVqXZ_ag","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/immNVqXZ_ag?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM012UUE4RlB4bEIyekdwVFQ1ZWZodw==","name":"AV MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AV+MathTech","origUrl":"http://www.youtube.com/@avmathtech6162","a11yText":"AV MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":301,"text":"5:01","a11yText":"Süre 5 dakika 1 saniye","shortText":"5 dk."},"date":"17 haz 2018","modifyTime":1529193600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/immNVqXZ_ag?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=immNVqXZ_ag","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":301},"parentClipId":"13481872595322230004","href":"http://www.youtube.com/watch?v=immNVqXZ_ag","rawHref":"/video/preview/13481872595322230004?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15073873106952921473":{"videoId":"15073873106952921473","title":"5 Ghost's Story","cleanTitle":"5 Ghost's Story","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=PuJYqkyEQ24","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PuJYqkyEQ24?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMnNtSXZDT0xYQldROXM4Q3pNckFPUQ==","name":"AV math","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AV+math","origUrl":"http://www.youtube.com/@AVmathankit","a11yText":"AV math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2299,"text":"38:19","a11yText":"Süre 38 dakika 19 saniye","shortText":"38 dk."},"date":"10 ağu 2022","modifyTime":1660089600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PuJYqkyEQ24?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PuJYqkyEQ24","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":2299},"parentClipId":"15073873106952921473","href":"http://www.youtube.com/watch?v=PuJYqkyEQ24","rawHref":"/video/preview/15073873106952921473?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13913443276548059590":{"videoId":"13913443276548059590","title":"bsc part 2nd physics holography k anupryog","cleanTitle":"bsc part 2nd physics holography k anupryog","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=M1fVSmM-wrU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/M1fVSmM-wrU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMnNtSXZDT0xYQldROXM4Q3pNckFPUQ==","name":"AV math","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AV+math","origUrl":"http://www.youtube.com/@AVmathankit","a11yText":"AV math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1693,"text":"28:13","a11yText":"Süre 28 dakika 13 saniye","shortText":"28 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"15 haz 2022","modifyTime":1655251200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/M1fVSmM-wrU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=M1fVSmM-wrU","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":1693},"parentClipId":"13913443276548059590","href":"http://www.youtube.com/watch?v=M1fVSmM-wrU","rawHref":"/video/preview/13913443276548059590?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15942355778670852769":{"videoId":"15942355778670852769","title":"How to Calculate Aspect Ratios and Why It's Important for Pro \u0007[AV\u0007]","cleanTitle":"How to Calculate Aspect Ratios and Why It's Important for Pro AV","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=uHQ5Y5c1S-w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/uHQ5Y5c1S-w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTGxodXNid0FKMnptMllJTWZJZV9ldw==","name":"AVIXA","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AVIXA","origUrl":"http://www.youtube.com/@AVIXATV","a11yText":"AVIXA. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1025,"text":"17:05","a11yText":"Süre 17 dakika 5 saniye","shortText":"17 dk."},"views":{"text":"22,8bin","a11yText":"22,8 bin izleme"},"date":"5 mayıs 2021","modifyTime":1620172800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/uHQ5Y5c1S-w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=uHQ5Y5c1S-w","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":1025},"parentClipId":"15942355778670852769","href":"http://www.youtube.com/watch?v=uHQ5Y5c1S-w","rawHref":"/video/preview/15942355778670852769?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1367375255134206146":{"videoId":"1367375255134206146","title":"Draw a triangle of perimeter 10 cm. and sides in the ratio 2:3:4","cleanTitle":"Draw a triangle of perimeter 10 cm. and sides in the ratio 2:3:4","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OSc9FQkMIl0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OSc9FQkMIl0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS0k1N1hsYk5MRXZHZVVZSjYwWTJiZw==","name":"RKM MATHTECH","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=RKM+MATHTECH","origUrl":"http://www.youtube.com/@rkmmathtech8257","a11yText":"RKM MATHTECH. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":118,"text":"1:58","a11yText":"Süre 1 dakika 58 saniye","shortText":"1 dk."},"views":{"text":"10,7bin","a11yText":"10,7 bin izleme"},"date":"25 eyl 2021","modifyTime":1632528000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OSc9FQkMIl0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OSc9FQkMIl0","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":118},"parentClipId":"1367375255134206146","href":"http://www.youtube.com/watch?v=OSc9FQkMIl0","rawHref":"/video/preview/1367375255134206146?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7048340523389753610":{"videoId":"7048340523389753610","title":"12 वीं में session 2023-25 ऑनलाइन परीक्षा आवेदन भरने अंतिम मौक","cleanTitle":"12 वीं में session 2023-25 ऑनलाइन परीक्षा आवेदन भरने अंतिम मौक","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xhG-vQg55I0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xhG-vQg55I0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQmNCYTVtUV9FTkloSkhvSGdaTXN6Zw==","name":"MathTech.0 /By Ajit Sir","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=MathTech.0+%2FBy+Ajit+Sir","origUrl":"http://www.youtube.com/@MathTech0","a11yText":"MathTech.0 /By Ajit Sir. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":218,"text":"3:38","a11yText":"Süre 3 dakika 38 saniye","shortText":"3 dk."},"date":"22 eki 2024","modifyTime":1729555200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xhG-vQg55I0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xhG-vQg55I0","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":218},"parentClipId":"7048340523389753610","href":"http://www.youtube.com/watch?v=xhG-vQg55I0","rawHref":"/video/preview/7048340523389753610?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17523148987374675291":{"videoId":"17523148987374675291","title":"How to change the units in revit 2018","cleanTitle":"How to change the units in revit 2018","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=gS43g41m8Po","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/gS43g41m8Po?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcGRPY3Z5TkJQUlZqdTdNdmpObG9FUQ==","name":"TECH MATH","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=TECH+MATH","origUrl":"http://www.youtube.com/@techmath5250","a11yText":"TECH MATH. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":43,"text":"00:43","a11yText":"Süre 43 saniye","shortText":""},"date":"10 ara 2018","modifyTime":1544400000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/gS43g41m8Po?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=gS43g41m8Po","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":43},"parentClipId":"17523148987374675291","href":"http://www.youtube.com/watch?v=gS43g41m8Po","rawHref":"/video/preview/17523148987374675291?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"50591397126640755":{"videoId":"50591397126640755","title":"Recognizing Aspect Ratios","cleanTitle":"Recognizing Aspect Ratios","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Wu8GoWp_UPA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Wu8GoWp_UPA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTGxodXNid0FKMnptMllJTWZJZV9ldw==","name":"AVIXA","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AVIXA","origUrl":"http://www.youtube.com/@AVIXATV","a11yText":"AVIXA. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":195,"text":"3:15","a11yText":"Süre 3 dakika 15 saniye","shortText":"3 dk."},"views":{"text":"3,9bin","a11yText":"3,9 bin izleme"},"date":"7 şub 2019","modifyTime":1549497600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Wu8GoWp_UPA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Wu8GoWp_UPA","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":195},"parentClipId":"50591397126640755","href":"http://www.youtube.com/watch?v=Wu8GoWp_UPA","rawHref":"/video/preview/50591397126640755?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1725909956062664376":{"videoId":"1725909956062664376","title":"Automatic Result card generator in MS Access","cleanTitle":"Automatic Result card generator in MS Access","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bi4spvZZ6IQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bi4spvZZ6IQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcndfdTVvc1hQOVlnakVnUG0zNTRZdw==","name":"Math-Tech with YAHYA","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Math-Tech+with+YAHYA","origUrl":"http://www.youtube.com/@math-techwithyahya7167","a11yText":"Math-Tech with YAHYA. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":240,"text":"4:00","a11yText":"Süre 4 dakika","shortText":"4 dk."},"date":"1 nis 2024","modifyTime":1711929600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bi4spvZZ6IQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bi4spvZZ6IQ","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":240},"parentClipId":"1725909956062664376","href":"http://www.youtube.com/watch?v=bi4spvZZ6IQ","rawHref":"/video/preview/1725909956062664376?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14516148415828835866":{"videoId":"14516148415828835866","title":"Can you find the graph of this exponential function??","cleanTitle":"Can you find the graph of this exponential function??","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pl-L9wQ6A8M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pl-L9wQ6A8M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":261,"text":"4:21","a11yText":"Süre 4 dakika 21 saniye","shortText":"4 dk."},"date":"20 haz 2023","modifyTime":1687219200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pl-L9wQ6A8M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pl-L9wQ6A8M","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":261},"parentClipId":"14516148415828835866","href":"http://www.youtube.com/watch?v=pl-L9wQ6A8M","rawHref":"/video/preview/14516148415828835866?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2237764118382957432":{"videoId":"2237764118382957432","title":"Matrices for ECET, Eamcet, and JEE Entrance Exams | Complete Guide and Practice || Part-1","cleanTitle":"Matrices for ECET, Eamcet, and JEE Entrance Exams | Complete Guide and Practice || Part-1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=iG_xw9Wiw7Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iG_xw9Wiw7Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQWc1VUtNNFpyalZYcjExa0h3dHZ5UQ==","name":"Balu MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Balu+MathTech","origUrl":"http://www.youtube.com/@balumathtech","a11yText":"Balu MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":661,"text":"11:01","a11yText":"Süre 11 dakika 1 saniye","shortText":"11 dk."},"date":"21 kas 2023","modifyTime":1700528407000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iG_xw9Wiw7Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iG_xw9Wiw7Q","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":661},"parentClipId":"2237764118382957432","href":"http://www.youtube.com/watch?v=iG_xw9Wiw7Q","rawHref":"/video/preview/2237764118382957432?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7938447353115069322":{"videoId":"7938447353115069322","title":"Quiz 4 problem 2.2.3b (VT \u0007[MATH\u0007] 1025)","cleanTitle":"Quiz 4 problem 2.2.3b (VT MATH 1025)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RlgoXXS95PQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RlgoXXS95PQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":234,"text":"3:54","a11yText":"Süre 3 dakika 54 saniye","shortText":"3 dk."},"views":{"text":"2,3bin","a11yText":"2,3 bin izleme"},"date":"4 şub 2022","modifyTime":1643932800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RlgoXXS95PQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RlgoXXS95PQ","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":234},"parentClipId":"7938447353115069322","href":"http://www.youtube.com/watch?v=RlgoXXS95PQ","rawHref":"/video/preview/7938447353115069322?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13035432225398389490":{"videoId":"13035432225398389490","title":"Matrices for ECET, Eamcet, and JEE Entrance Exams | Complete Guide and Practice || Part-2","cleanTitle":"Matrices for ECET, Eamcet, and JEE Entrance Exams | Complete Guide and Practice || Part-2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RCy2Am9vAGU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RCy2Am9vAGU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQWc1VUtNNFpyalZYcjExa0h3dHZ5UQ==","name":"Balu MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Balu+MathTech","origUrl":"http://www.youtube.com/@balumathtech","a11yText":"Balu MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1256,"text":"20:56","a11yText":"Süre 20 dakika 56 saniye","shortText":"20 dk."},"date":"21 kas 2023","modifyTime":1700578810000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RCy2Am9vAGU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RCy2Am9vAGU","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":1256},"parentClipId":"13035432225398389490","href":"http://www.youtube.com/watch?v=RCy2Am9vAGU","rawHref":"/video/preview/13035432225398389490?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10239389000218424535":{"videoId":"10239389000218424535","title":"Quiz 4 problem 3.1.3b (VT \u0007[MATH\u0007] 1025)","cleanTitle":"Quiz 4 problem 3.1.3b (VT MATH 1025)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CvNWavx7rzc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CvNWavx7rzc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":300,"text":"5:00","a11yText":"Süre 5 dakika","shortText":"5 dk."},"views":{"text":"2,1bin","a11yText":"2,1 bin izleme"},"date":"6 şub 2022","modifyTime":1644105600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CvNWavx7rzc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CvNWavx7rzc","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":300},"parentClipId":"10239389000218424535","href":"http://www.youtube.com/watch?v=CvNWavx7rzc","rawHref":"/video/preview/10239389000218424535?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3540251035857020109":{"videoId":"3540251035857020109","title":"Matrices for ECET, Eamcet, and JEE Entrance Exams | Complete Guide and Practice || Part-3","cleanTitle":"Matrices for ECET, Eamcet, and JEE Entrance Exams | Complete Guide and Practice || Part-3","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1iHZeHgiaQ4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1iHZeHgiaQ4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQWc1VUtNNFpyalZYcjExa0h3dHZ5UQ==","name":"Balu MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Balu+MathTech","origUrl":"http://www.youtube.com/@balumathtech","a11yText":"Balu MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1358,"text":"22:38","a11yText":"Süre 22 dakika 38 saniye","shortText":"22 dk."},"date":"22 kas 2023","modifyTime":1700621107000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1iHZeHgiaQ4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1iHZeHgiaQ4","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":1358},"parentClipId":"3540251035857020109","href":"http://www.youtube.com/watch?v=1iHZeHgiaQ4","rawHref":"/video/preview/3540251035857020109?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6714072428496423494":{"videoId":"6714072428496423494","title":"Identifying Functions from Tables","cleanTitle":"Identifying Functions from Tables","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NBXPzc7pqyE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NBXPzc7pqyE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":185,"text":"3:05","a11yText":"Süre 3 dakika 5 saniye","shortText":"3 dk."},"date":"29 mayıs 2023","modifyTime":1685318400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NBXPzc7pqyE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NBXPzc7pqyE","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":185},"parentClipId":"6714072428496423494","href":"http://www.youtube.com/watch?v=NBXPzc7pqyE","rawHref":"/video/preview/6714072428496423494?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14700943493394219677":{"videoId":"14700943493394219677","title":"Quiz 5 problem 3.2.3cc (VT \u0007[MATH\u0007] 1025)","cleanTitle":"Quiz 5 problem 3.2.3cc (VT MATH 1025)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LrYGojIOmwM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LrYGojIOmwM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":392,"text":"6:32","a11yText":"Süre 6 dakika 32 saniye","shortText":"6 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"15 şub 2022","modifyTime":1644883200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LrYGojIOmwM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LrYGojIOmwM","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":392},"parentClipId":"14700943493394219677","href":"http://www.youtube.com/watch?v=LrYGojIOmwM","rawHref":"/video/preview/14700943493394219677?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1553245517051567811":{"videoId":"1553245517051567811","title":"Trigonometry || solutions of apecet 2022 || session 1 || tips and tricks || lecture 1","cleanTitle":"Trigonometry || solutions of apecet 2022 || session 1 || tips and tricks || lecture 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=H2sCLb6CNPc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/H2sCLb6CNPc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQWc1VUtNNFpyalZYcjExa0h3dHZ5UQ==","name":"Balu MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Balu+MathTech","origUrl":"http://www.youtube.com/@balumathtech","a11yText":"Balu MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1264,"text":"21:04","a11yText":"Süre 21 dakika 4 saniye","shortText":"21 dk."},"date":"13 nis 2023","modifyTime":1681392607000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/H2sCLb6CNPc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=H2sCLb6CNPc","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":1264},"parentClipId":"1553245517051567811","href":"http://www.youtube.com/watch?v=H2sCLb6CNPc","rawHref":"/video/preview/1553245517051567811?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3361411409579568221":{"videoId":"3361411409579568221","title":"How to convert MS Access Reports into PDF File Format | MS Access Series","cleanTitle":"How to convert MS Access Reports into PDF File Format | MS Access Series","host":{"title":"YouTube","href":"http://www.youtube.com/live/V2dRTNa7CAw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/V2dRTNa7CAw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcndfdTVvc1hQOVlnakVnUG0zNTRZdw==","name":"Math-Tech with YAHYA","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Math-Tech+with+YAHYA","origUrl":"http://www.youtube.com/@math-techwithyahya7167","a11yText":"Math-Tech with YAHYA. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":273,"text":"4:33","a11yText":"Süre 4 dakika 33 saniye","shortText":"4 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"18 ara 2021","modifyTime":1639785600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/V2dRTNa7CAw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=V2dRTNa7CAw","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":273},"parentClipId":"3361411409579568221","href":"http://www.youtube.com/live/V2dRTNa7CAw","rawHref":"/video/preview/3361411409579568221?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14430519612846794746":{"videoId":"14430519612846794746","title":"Quiz 6 problem 3.3.1b (VT \u0007[MATH\u0007] 1025)","cleanTitle":"Quiz 6 problem 3.3.1b (VT MATH 1025)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Zj5FF1j-eYQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Zj5FF1j-eYQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":161,"text":"2:41","a11yText":"Süre 2 dakika 41 saniye","shortText":"2 dk."},"views":{"text":"3,2bin","a11yText":"3,2 bin izleme"},"date":"28 şub 2022","modifyTime":1646006400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Zj5FF1j-eYQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Zj5FF1j-eYQ","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":161},"parentClipId":"14430519612846794746","href":"http://www.youtube.com/watch?v=Zj5FF1j-eYQ","rawHref":"/video/preview/14430519612846794746?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5770073643003888782":{"videoId":"5770073643003888782","title":"Trigonometry || mcqs || solutions of apecet 2022 shift 2 ||tips &tricks|ecet eamcet jee || lectu...","cleanTitle":"Trigonometry || mcqs || solutions of apecet 2022 shift 2 ||tips &tricks|ecet eamcet jee || lecture 3","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HoBdE3IUXZs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HoBdE3IUXZs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQWc1VUtNNFpyalZYcjExa0h3dHZ5UQ==","name":"Balu MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Balu+MathTech","origUrl":"http://www.youtube.com/@balumathtech","a11yText":"Balu MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1689,"text":"28:09","a11yText":"Süre 28 dakika 9 saniye","shortText":"28 dk."},"date":"16 nis 2023","modifyTime":1681614010000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HoBdE3IUXZs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HoBdE3IUXZs","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":1689},"parentClipId":"5770073643003888782","href":"http://www.youtube.com/watch?v=HoBdE3IUXZs","rawHref":"/video/preview/5770073643003888782?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3531643455849524092":{"videoId":"3531643455849524092","title":"Quiz 5 problem 2.3.1c (VT \u0007[MATH\u0007] 1026)","cleanTitle":"Quiz 5 problem 2.3.1c (VT MATH 1026)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=anJWsbcWeXo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/anJWsbcWeXo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":265,"text":"4:25","a11yText":"Süre 4 dakika 25 saniye","shortText":"4 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"23 şub 2022","modifyTime":1645574400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/anJWsbcWeXo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=anJWsbcWeXo","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":265},"parentClipId":"3531643455849524092","href":"http://www.youtube.com/watch?v=anJWsbcWeXo","rawHref":"/video/preview/3531643455849524092?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1225676179282889416":{"videoId":"1225676179282889416","title":"Quiz 6 problem 5.1.6c (VT \u0007[MATH\u0007] 1524)","cleanTitle":"Quiz 6 problem 5.1.6c (VT MATH 1524)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=uX6aXgvF3ec","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/uX6aXgvF3ec?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":59,"text":"00:59","a11yText":"Süre 59 saniye","shortText":""},"views":{"text":"2,5bin","a11yText":"2,5 bin izleme"},"date":"28 eyl 2021","modifyTime":1632787200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/uX6aXgvF3ec?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=uX6aXgvF3ec","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":59},"parentClipId":"1225676179282889416","href":"http://www.youtube.com/watch?v=uX6aXgvF3ec","rawHref":"/video/preview/1225676179282889416?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17421683389564325649":{"videoId":"17421683389564325649","title":"Quiz 3 problem 2.1.3e (VT \u0007[MATH\u0007] 1025)","cleanTitle":"Quiz 3 problem 2.1.3e (VT MATH 1025)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Q2OHJTKC-d0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Q2OHJTKC-d0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":98,"text":"1:38","a11yText":"Süre 1 dakika 38 saniye","shortText":"1 dk."},"views":{"text":"1bin","a11yText":"1 bin izleme"},"date":"30 oca 2022","modifyTime":1643500800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Q2OHJTKC-d0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Q2OHJTKC-d0","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":98},"parentClipId":"17421683389564325649","href":"http://www.youtube.com/watch?v=Q2OHJTKC-d0","rawHref":"/video/preview/17421683389564325649?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1687118265449453228":{"videoId":"1687118265449453228","title":"Quiz 4 problem 2.2.3c (VT \u0007[MATH\u0007] 1025)","cleanTitle":"Quiz 4 problem 2.2.3c (VT MATH 1025)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VscgsAwuUBM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VscgsAwuUBM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":501,"text":"8:21","a11yText":"Süre 8 dakika 21 saniye","shortText":"8 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"4 şub 2022","modifyTime":1643932800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VscgsAwuUBM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VscgsAwuUBM","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":501},"parentClipId":"1687118265449453228","href":"http://www.youtube.com/watch?v=VscgsAwuUBM","rawHref":"/video/preview/1687118265449453228?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2724042116055896401":{"videoId":"2724042116055896401","title":"How AI is Turning \u0007[Math\u0007] Into a Storytelling Art Form","cleanTitle":"How AI is Turning Math Into a Storytelling Art Form","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/r7l0z8r_ggY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/r7l0z8r_ggY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVBLSjFYdjBHSVFUcmhOd2V4a1ZRZw==","name":"Attechedu.training","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Attechedu.training","origUrl":"http://www.youtube.com/@mrpothy","a11yText":"Attechedu.training. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":178,"text":"2:58","a11yText":"Süre 2 dakika 58 saniye","shortText":"2 dk."},"date":"6 oca 2025","modifyTime":1736121600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/r7l0z8r_ggY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=r7l0z8r_ggY","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":178},"parentClipId":"2724042116055896401","href":"http://www.youtube.com/shorts/r7l0z8r_ggY","rawHref":"/video/preview/2724042116055896401?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15440091326209299276":{"videoId":"15440091326209299276","title":"Quiz 3 problem 2.1.4d (VT \u0007[MATH\u0007] 1025)","cleanTitle":"Quiz 3 problem 2.1.4d (VT MATH 1025)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RUVdt4cAgqs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RUVdt4cAgqs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":270,"text":"4:30","a11yText":"Süre 4 dakika 30 saniye","shortText":"4 dk."},"date":"30 oca 2022","modifyTime":1643500800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RUVdt4cAgqs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RUVdt4cAgqs","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":270},"parentClipId":"15440091326209299276","href":"http://www.youtube.com/watch?v=RUVdt4cAgqs","rawHref":"/video/preview/15440091326209299276?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2328220614763614367":{"videoId":"2328220614763614367","title":"Quiz 5 problem 3.2.1b (VT \u0007[MATH\u0007] 1025)","cleanTitle":"Quiz 5 problem 3.2.1b (VT MATH 1025)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4DHyI3qK9kI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4DHyI3qK9kI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":281,"text":"4:41","a11yText":"Süre 4 dakika 41 saniye","shortText":"4 dk."},"views":{"text":"2,3bin","a11yText":"2,3 bin izleme"},"date":"9 şub 2022","modifyTime":1644364800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4DHyI3qK9kI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4DHyI3qK9kI","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":281},"parentClipId":"2328220614763614367","href":"http://www.youtube.com/watch?v=4DHyI3qK9kI","rawHref":"/video/preview/2328220614763614367?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17543296386795869083":{"videoId":"17543296386795869083","title":"Quiz 3 problem 2.1.3b (VT \u0007[MATH\u0007] 1025)","cleanTitle":"Quiz 3 problem 2.1.3b (VT MATH 1025)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dJn_XzGzA-E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dJn_XzGzA-E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":188,"text":"3:08","a11yText":"Süre 3 dakika 8 saniye","shortText":"3 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"30 oca 2022","modifyTime":1643500800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dJn_XzGzA-E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dJn_XzGzA-E","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":188},"parentClipId":"17543296386795869083","href":"http://www.youtube.com/watch?v=dJn_XzGzA-E","rawHref":"/video/preview/17543296386795869083?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5476060016830583688":{"videoId":"5476060016830583688","title":"Find the rate of change graph, given the graph of the original function","cleanTitle":"Find the rate of change graph, given the graph of the original function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Ekd8p8F0YUs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Ekd8p8F0YUs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":324,"text":"5:24","a11yText":"Süre 5 dakika 24 saniye","shortText":"5 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"20 oca 2022","modifyTime":1642636800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Ekd8p8F0YUs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Ekd8p8F0YUs","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":324},"parentClipId":"5476060016830583688","href":"http://www.youtube.com/watch?v=Ekd8p8F0YUs","rawHref":"/video/preview/5476060016830583688?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"376380799767643405":{"videoId":"376380799767643405","title":"Finding Indefinite Integral Using Reverse Power Rule","cleanTitle":"Finding Indefinite Integral Using Reverse Power Rule","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sx985XxN6DY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sx985XxN6DY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":318,"text":"5:18","a11yText":"Süre 5 dakika 18 saniye","shortText":"5 dk."},"views":{"text":"1,7bin","a11yText":"1,7 bin izleme"},"date":"14 mar 2022","modifyTime":1647216000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sx985XxN6DY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sx985XxN6DY","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":318},"parentClipId":"376380799767643405","href":"http://www.youtube.com/watch?v=sx985XxN6DY","rawHref":"/video/preview/376380799767643405?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16164174970163614349":{"videoId":"16164174970163614349","title":"Quiz 3 problem 2.1.4c (VT \u0007[MATH\u0007] 1025)","cleanTitle":"Quiz 3 problem 2.1.4c (VT MATH 1025)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NIjQ_O7c15g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NIjQ_O7c15g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":295,"text":"4:55","a11yText":"Süre 4 dakika 55 saniye","shortText":"4 dk."},"views":{"text":"2,4bin","a11yText":"2,4 bin izleme"},"date":"31 oca 2022","modifyTime":1643587200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NIjQ_O7c15g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NIjQ_O7c15g","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":295},"parentClipId":"16164174970163614349","href":"http://www.youtube.com/watch?v=NIjQ_O7c15g","rawHref":"/video/preview/16164174970163614349?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9068733953901641021":{"videoId":"9068733953901641021","title":"Quiz 4 problem 3.1.2d (VT \u0007[MATH\u0007] 1025)","cleanTitle":"Quiz 4 problem 3.1.2d (VT MATH 1025)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=IB4UXm9sEQ0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IB4UXm9sEQ0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":250,"text":"4:10","a11yText":"Süre 4 dakika 10 saniye","shortText":"4 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"6 şub 2022","modifyTime":1644105600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IB4UXm9sEQ0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IB4UXm9sEQ0","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":250},"parentClipId":"9068733953901641021","href":"http://www.youtube.com/watch?v=IB4UXm9sEQ0","rawHref":"/video/preview/9068733953901641021?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11764907202417023480":{"videoId":"11764907202417023480","title":"Using Euler's Method with SIR Model to Estimate Susceptible, Infected, and Recovered","cleanTitle":"Using Euler's Method with SIR Model to Estimate Susceptible, Infected, and Recovered","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MgOkDZraNOk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MgOkDZraNOk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":459,"text":"7:39","a11yText":"Süre 7 dakika 39 saniye","shortText":"7 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"16 şub 2022","modifyTime":1644969600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MgOkDZraNOk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MgOkDZraNOk","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":459},"parentClipId":"11764907202417023480","href":"http://www.youtube.com/watch?v=MgOkDZraNOk","rawHref":"/video/preview/11764907202417023480?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15516080433250147611":{"videoId":"15516080433250147611","title":"Quiz 4 problem 2.1.5b (VT \u0007[MATH\u0007] 1025)","cleanTitle":"Quiz 4 problem 2.1.5b (VT MATH 1025)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2119F8WMNak","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2119F8WMNak?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":146,"text":"2:26","a11yText":"Süre 2 dakika 26 saniye","shortText":"2 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"3 şub 2022","modifyTime":1643846400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2119F8WMNak?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2119F8WMNak","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":146},"parentClipId":"15516080433250147611","href":"http://www.youtube.com/watch?v=2119F8WMNak","rawHref":"/video/preview/15516080433250147611?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6172645186178640658":{"videoId":"6172645186178640658","title":"Quiz 6 problem 5.1.5a (VT \u0007[MATH\u0007] 1524)","cleanTitle":"Quiz 6 problem 5.1.5a (VT MATH 1524)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=wAS5fOqG0_Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/wAS5fOqG0_Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":62,"text":"1:02","a11yText":"Süre 1 dakika 2 saniye","shortText":"1 dk."},"views":{"text":"3,6bin","a11yText":"3,6 bin izleme"},"date":"28 eyl 2021","modifyTime":1632787200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/wAS5fOqG0_Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=wAS5fOqG0_Q","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":62},"parentClipId":"6172645186178640658","href":"http://www.youtube.com/watch?v=wAS5fOqG0_Q","rawHref":"/video/preview/6172645186178640658?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10245219360576536085":{"videoId":"10245219360576536085","title":"Draw a rectangle of perimeter 15 cm and sides in the ratio 3 : 4","cleanTitle":"Draw a rectangle of perimeter 15 cm and sides in the ratio 3 : 4","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=PnRf07wtqV8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PnRf07wtqV8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS0k1N1hsYk5MRXZHZVVZSjYwWTJiZw==","name":"RKM MATHTECH","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=RKM+MATHTECH","origUrl":"http://www.youtube.com/@rkmmathtech8257","a11yText":"RKM MATHTECH. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":91,"text":"1:31","a11yText":"Süre 1 dakika 31 saniye","shortText":"1 dk."},"views":{"text":"12,6bin","a11yText":"12,6 bin izleme"},"date":"25 eyl 2021","modifyTime":1632528000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PnRf07wtqV8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PnRf07wtqV8","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":91},"parentClipId":"10245219360576536085","href":"http://www.youtube.com/watch?v=PnRf07wtqV8","rawHref":"/video/preview/10245219360576536085?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10014056887280849979":{"videoId":"10014056887280849979","title":"Solve 2D Heat Equation using FDM with Matlab and Manual |Finite Difference Method| 2D Heat Equation","cleanTitle":"Solve 2D Heat Equation using FDM with Matlab and Manual |Finite Difference Method| 2D Heat Equation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sCe2I0Uwlec","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sCe2I0Uwlec?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDc3BEc19VdG4tVmE5elVHSnlqWHB3QQ==","name":"Prof. Mehar Chand","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Prof.+Mehar+Chand","origUrl":"http://www.youtube.com/@drmeharchand","a11yText":"Prof. Mehar Chand. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1667,"text":"27:47","a11yText":"Süre 27 dakika 47 saniye","shortText":"27 dk."},"views":{"text":"3,7bin","a11yText":"3,7 bin izleme"},"date":"28 nis 2024","modifyTime":1714262400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sCe2I0Uwlec?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sCe2I0Uwlec","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":1667},"parentClipId":"10014056887280849979","href":"http://www.youtube.com/watch?v=sCe2I0Uwlec","rawHref":"/video/preview/10014056887280849979?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7520087366119384617":{"videoId":"7520087366119384617","title":"Rate of Change with Table Values - Application Problem","cleanTitle":"Rate of Change with Table Values - Application Problem","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YR0sjo2AOk8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YR0sjo2AOk8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":267,"text":"4:27","a11yText":"Süre 4 dakika 27 saniye","shortText":"4 dk."},"date":"20 oca 2022","modifyTime":1642636800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YR0sjo2AOk8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YR0sjo2AOk8","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":267},"parentClipId":"7520087366119384617","href":"http://www.youtube.com/watch?v=YR0sjo2AOk8","rawHref":"/video/preview/7520087366119384617?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9588690245186595101":{"videoId":"9588690245186595101","title":"Quiz 6 problem 6.1b (VT \u0007[MATH\u0007] 1014)","cleanTitle":"Quiz 6 problem 6.1b (VT MATH 1014)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OGUJ8_ECykg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OGUJ8_ECykg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOWVMUlZiMlpSRnF3NEJBR3VwdktzUQ==","name":"VT Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=VT+Math+Tutor","origUrl":"http://www.youtube.com/@VTMathTutor","a11yText":"VT Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":300,"text":"5:00","a11yText":"Süre 5 dakika","shortText":"5 dk."},"date":"20 haz 2023","modifyTime":1687219200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OGUJ8_ECykg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OGUJ8_ECykg","reqid":"1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":300},"parentClipId":"9588690245186595101","href":"http://www.youtube.com/watch?v=OGUJ8_ECykg","rawHref":"/video/preview/9588690245186595101?parent-reqid=1771584859424192-14210666651704371126-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=AV+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x906f9600bf4","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"4210666651704371126797","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"AV MathTech","queryUriEscaped":"AV%20MathTech","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}