{"pages":{"search":{"query":"Charles Edeki -- Math Computer Science Programming","originalQuery":"Charles Edeki -- Math Computer Science Programming","serpid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","parentReqid":"","serpItems":[{"id":"672607911324991791-0-0","type":"videoSnippet","props":{"videoId":"672607911324991791"},"curPage":0},{"id":"9274281294018179369-0-1","type":"videoSnippet","props":{"videoId":"9274281294018179369"},"curPage":0},{"id":"14072458612494229147-0-2","type":"videoSnippet","props":{"videoId":"14072458612494229147"},"curPage":0},{"id":"4993516738029177943-0-3","type":"videoSnippet","props":{"videoId":"4993516738029177943"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dENoYXJsZXMgRWRla2kgLS0gTWF0aCBDb21wdXRlciBTY2llbmNlIFByb2dyYW1taW5nCg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","ui":"desktop","yuid":"7294750681771584602"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"5404020747213002333-0-5","type":"videoSnippet","props":{"videoId":"5404020747213002333"},"curPage":0},{"id":"15535685480873256822-0-6","type":"videoSnippet","props":{"videoId":"15535685480873256822"},"curPage":0},{"id":"229922741284283274-0-7","type":"videoSnippet","props":{"videoId":"229922741284283274"},"curPage":0},{"id":"4901952468141397944-0-8","type":"videoSnippet","props":{"videoId":"4901952468141397944"},"curPage":0},{"id":"7771845532854954095-0-9","type":"videoSnippet","props":{"videoId":"7771845532854954095"},"curPage":0},{"id":"18002351933952975983-0-10","type":"videoSnippet","props":{"videoId":"18002351933952975983"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dENoYXJsZXMgRWRla2kgLS0gTWF0aCBDb21wdXRlciBTY2llbmNlIFByb2dyYW1taW5nCg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","ui":"desktop","yuid":"7294750681771584602"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"4777049416909710428-0-12","type":"videoSnippet","props":{"videoId":"4777049416909710428"},"curPage":0},{"id":"9612121314434172745-0-13","type":"videoSnippet","props":{"videoId":"9612121314434172745"},"curPage":0},{"id":"735823070467653120-0-14","type":"videoSnippet","props":{"videoId":"735823070467653120"},"curPage":0},{"id":"12474350682906733633-0-15","type":"videoSnippet","props":{"videoId":"12474350682906733633"},"curPage":0},{"id":"14712561674967745922-0-16","type":"videoSnippet","props":{"videoId":"14712561674967745922"},"curPage":0},{"id":"17222024879660654110-0-17","type":"videoSnippet","props":{"videoId":"17222024879660654110"},"curPage":0},{"id":"16903461939129637629-0-18","type":"videoSnippet","props":{"videoId":"16903461939129637629"},"curPage":0},{"id":"7815361902857713297-0-19","type":"videoSnippet","props":{"videoId":"7815361902857713297"},"curPage":0},{"id":"8315921460547976922-0-20","type":"videoSnippet","props":{"videoId":"8315921460547976922"},"curPage":0},{"id":"16571133326285067623-0-21","type":"videoSnippet","props":{"videoId":"16571133326285067623"},"curPage":0},{"id":"13484496721990674596-0-22","type":"videoSnippet","props":{"videoId":"13484496721990674596"},"curPage":0},{"id":"8674305644584827422-0-23","type":"videoSnippet","props":{"videoId":"8674305644584827422"},"curPage":0},{"id":"14364069653270800069-0-24","type":"videoSnippet","props":{"videoId":"14364069653270800069"},"curPage":0},{"id":"5017776963237503210-0-25","type":"videoSnippet","props":{"videoId":"5017776963237503210"},"curPage":0},{"id":"18193705088159913125-0-26","type":"videoSnippet","props":{"videoId":"18193705088159913125"},"curPage":0},{"id":"5138273701662202345-0-27","type":"videoSnippet","props":{"videoId":"5138273701662202345"},"curPage":0},{"id":"6390864300731759553-0-28","type":"videoSnippet","props":{"videoId":"6390864300731759553"},"curPage":0},{"id":"3928153151909862892-0-29","type":"videoSnippet","props":{"videoId":"3928153151909862892"},"curPage":0},{"id":"2373949301055851143-0-30","type":"videoSnippet","props":{"videoId":"2373949301055851143"},"curPage":0},{"id":"9016836211332875457-0-31","type":"videoSnippet","props":{"videoId":"9016836211332875457"},"curPage":0},{"id":"13982374900340971685-0-32","type":"videoSnippet","props":{"videoId":"13982374900340971685"},"curPage":0},{"id":"12602090763707051237-0-33","type":"videoSnippet","props":{"videoId":"12602090763707051237"},"curPage":0},{"id":"16275431946173686208-0-34","type":"videoSnippet","props":{"videoId":"16275431946173686208"},"curPage":0},{"id":"9103960075841879898-0-35","type":"videoSnippet","props":{"videoId":"9103960075841879898"},"curPage":0},{"id":"11473909459881137829-0-36","type":"videoSnippet","props":{"videoId":"11473909459881137829"},"curPage":0},{"id":"10926865050005344112-0-37","type":"videoSnippet","props":{"videoId":"10926865050005344112"},"curPage":0},{"id":"3842254571696082909-0-38","type":"videoSnippet","props":{"videoId":"3842254571696082909"},"curPage":0},{"id":"5373752776544036608-0-39","type":"videoSnippet","props":{"videoId":"5373752776544036608"},"curPage":0},{"id":"10621427996066031320-0-40","type":"videoSnippet","props":{"videoId":"10621427996066031320"},"curPage":0},{"id":"14261799121477601440-0-41","type":"videoSnippet","props":{"videoId":"14261799121477601440"},"curPage":0},{"id":"12023601165640102136-0-42","type":"videoSnippet","props":{"videoId":"12023601165640102136"},"curPage":0},{"id":"14945358113951772-0-43","type":"videoSnippet","props":{"videoId":"14945358113951772"},"curPage":0},{"id":"11680461819635006673-0-44","type":"videoSnippet","props":{"videoId":"11680461819635006673"},"curPage":0},{"id":"3592585992596942110-0-45","type":"videoSnippet","props":{"videoId":"3592585992596942110"},"curPage":0},{"id":"7571262361613786234-0-46","type":"videoSnippet","props":{"videoId":"7571262361613786234"},"curPage":0},{"id":"7516344338964881701-0-47","type":"videoSnippet","props":{"videoId":"7516344338964881701"},"curPage":0},{"id":"12498683891781267877-0-48","type":"videoSnippet","props":{"videoId":"12498683891781267877"},"curPage":0},{"id":"8888819378061391507-0-49","type":"videoSnippet","props":{"videoId":"8888819378061391507"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":false},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dENoYXJsZXMgRWRla2kgLS0gTWF0aCBDb21wdXRlciBTY2llbmNlIFByb2dyYW1taW5nCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","ui":"desktop","yuid":"7294750681771584602"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Fpromo%3Dpumpkin%26text%3DCharles%2BEdeki%2B--%2BMath%2BComputer%2BScience%2BProgramming","pages":[{"reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","start":0,"end":50,"pageNumber":0,"isCounterSent":false}]},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"4549444369294750687152","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_search_toggle_with_text":1,"video_viewer_show_placeholder":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1478303,0,4;1469657,0,50;1457622,0,84;66181,0,95;124067,0,34;1476203,0,67;1484540,0,25;1488626,0,65;1492433,0,21;1491428,0,44;1489525,0,70;1489225,0,62;1481695,0,54;1152685,0,56;1488682,0,14;1492999,0,62;1479115,0,0;1486615,0,65;1494229,0,75;1490832,0,72;1471783,0,72;1349038,0,94;1488511,0,52;1439205,0,52;90495,0,42;1492475,0,69;724635,0,69;1488200,0,78;32737,0,94;1492744,0,94;1490114,0,96;1487548,0,87;1484454,0,42;1462740,0,0;151171,0,55;1281084,0,60;287509,0,96;1447467,0,59;1006026,0,88;1478786,0,59;1482979,0,41"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Fpromo%3Dpumpkin%26text%3DCharles%2BEdeki%2B--%2BMath%2BComputer%2BScience%2BProgramming","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Charles Edeki -- Math Computer Science Programming: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Charles Edeki -- Math Computer Science Programming\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Charles Edeki -- Math Computer Science Programming — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":true,"sessionCsrfToken":"yb1f082dd5f4a763f3abf5a661b5b671e","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1478303,1469657,1457622,66181,124067,1476203,1484540,1488626,1492433,1491428,1489525,1489225,1481695,1152685,1488682,1492999,1479115,1486615,1494229,1490832,1471783,1349038,1488511,1439205,90495,1492475,724635,1488200,32737,1492744,1490114,1487548,1484454,1462740,151171,1281084,287509,1447467,1006026,1478786,1482979","queryText":"Charles Edeki -- Math Computer Science Programming","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7294750681771584602","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1492788,1490736,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":true,"language":"tr","user_time":{"epoch":"1771584602","tz":"America/Louisville","to_iso":"2026-02-20T05:50:02-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1478303,1469657,1457622,66181,124067,1476203,1484540,1488626,1492433,1491428,1489525,1489225,1481695,1152685,1488682,1492999,1479115,1486615,1494229,1490832,1471783,1349038,1488511,1439205,90495,1492475,724635,1488200,32737,1492744,1490114,1487548,1484454,1462740,151171,1281084,287509,1447467,1006026,1478786,1482979","queryText":"Charles Edeki -- Math Computer Science Programming","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7294750681771584602","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"4549444369294750687152","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":159,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"shouldCensorShockContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false,"isPlayerChangeCounterEnabled":false,"isSmallTitle":false,"shouldRestoreMuteState":false,"isAdvUnderPlayerWithSlider":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"showShock":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7294750681771584602","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1773.0__a3bec2ea4008d9cb4d104248a87be1983f3fae69","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"672607911324991791":{"videoId":"672607911324991791","docid":"34-6-3-ZEA3F78F1F1917ABA","description":"In this lecture, you will learn about: The steps involved in the program development cycle...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"0","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Programming Logic and Design: Program or Software Development Cycle","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QF2xZaYSQY4\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFAoSNjcyNjA3OTExMzI0OTkxNzkxWhI2NzI2MDc5MTEzMjQ5OTE3OTFqiBcSATAYACJFGjEACipoaGdhcm13bmxocmNnaHFjaGhVQ3duVWR1emVXbDNjY0hZYVJEa0kxcWcSAgASKhDCDw8aDz8TwASCBCQBgAQrKosBEAEaeIH_BPsB_gIA8P8D_v8CAAEY-_EE9QEBAO0K_wYIAAAA9fcD__cAAAD5_fICAAAAAPgF-v70_wEAAQEDAQQAAAAS_gD4_wAAAPb9Dgv_AQAA7PT3_wIAAAAT9w_9_wAAAPAIAgb-AAAABQYB9gEAAAAMBP37AAAAACAALRPz2Ts4E0AJSE5QAiqEAhAAGvABdwz5AcgN-_8e7uAB2AzqAYEAAv9BCeMAoQQMALv19gDxB80A8-PyAO3qNADV8PQABcnZ_yQDEwAQCfj_HRkT_wEYEQFH5AwBNOTwABcN_gAZFQj_EwcoAAvoDAHqCgf-FBwR_drm0QHqNuQA8AwsAhAaF_8RBAYG-BYcBRYNDwELDgkFFPYiAtb_BAHyAg8EGPv4AAvs4gDuAx0G-Ark_Qnq_wUn59n9HA_rBP_b7_v7LRQFLhfp-hn-Cf3pJwL6_uwH9fzQ8v3wAg75M-0O_ObjFf0C8Aj7Jwn4-v7QCfff-Q7y5hYW_gLxCRMEDPcCIAAtv08kOzgTQAlIYVACKs8HEAAawAd1ywK_hFUrPZhBBr3u0qG8B6gaPSARLjx8oZs8It0UPYDEZTwrq4Q9aYhvPQ8JX7tyNrW-3p5xPexZhLqKrUA-DI0sPVxgRTzfhzO-QYJCPbbcFD31oWu-hNMHPXQ1w7vzdM49b8xcvQzRHD1i2CE-T_YgPT8gKz3KLn29SeeuO-CXH73jQQm9GTigvOj0_ruOBBo-BMU0PBXZuTvmA0I-9j1PvUcBAbuHr-U894Q2vN2grLz6ErW9ZSNrvLINwTxXBN89Pn4KvTOTHj3_LCw9tOZnPdQWsjtQoV898HbWu2uYhrwV3LQ8VNBDPUEhzDy8myI9wAOovcM_sjteo8C8DWKRPY7Tqzz19fw9nKIIPesrWbzbTAo9_CL8PIzTtTxhScM8HRc8O7ASHjwNOZE8XPdgvYRWcbyvBxO9SOcTvOQ0nzy5AmU8qitAu0IZtLy_Wlo8eRfJPcNQAbxlnma9y3wPPFRmlLxVj7q9vjk3PBeZJbw2EME9urvOvcDUxzoumak9ulc8PZ1uNDymEpa70eY4PKCf0juF3lE9xnzpO9RdazkzPJE8EwZKvd16DbwT46s8nVGOPfyjc7u8H8e9kEnrPILjMrz0_t89vKIlvZQtlrvy7xI8ajXBOxlQ8zsONhA9AKiCvSIzPLxXx1a9JNY9vK1GwLsmTtO8-r5uvJDha7vb3Ag-nsLAvK9MjTrJXY-9kzfhu7PiJzu66UA9bL-MO2X6CDv2K_g59O9EPCssnzpre567dJvAPTj9MLlClC-8fNQfvYzL-LmQfwu9b02FPZJPmTgoYSa8iD6pvKbmPDmQbfQ8suhHvW3rwLk1D_s8fG-CPCQlqrkAR4y98gdDvWmAVbnoylY8alxJPKA3kTnFAp-87v03PZoqs7ffNOC6w06sPeoJFbjraQy9gq9jvWkEZzeyr4a8KE80ve2SAjoAVie9WLmhvNqNoTn4BQs8EYrtvA-8MbW3yXI8bS0dvcujwriqgjG9uv_-PM2VwbiLNK-6mrKRO2XLILiOwJm9E-7VvImcVraYzKe8P0YqvcKdADhveZO7czA2PbTFkLf1orG9qGz9vGewmrjGv2-9BMYavVtpm7h9IHk9sCICPM-3rTcX0xE9RtmBvTv-Ezgxz4o8CoAWPduDnLhWVZ68xN1qPPTfTrf3YA09AokhPUHvALgY6SW9ekktvcQzobcy7qw9XCa-vexqQzdCy189Yxq3PW6QjjgHC6e8vfzuPYO0HrlgRqe9F4EQu5N02TcJXbi8CZl1vZHuODggADgTQAlIbVABKnMQABpgOggAOt0qtOUbUeX41QAc5-wd3ubb8_8WuAAVLvSk6g_TwSUG_0rR9CucAAAAOSTcPA4AFH8H8uEIvAQrqdAJEPRtFCU3ruk97fzu8S7Yz_ktWhhWACDQuQgY8bIH7ywQIAAtYBMUOzgTQAlIb1ACKq8GEAwaoAYAAPDBAAA4QgAAfEIAAGDBAACoQQAAgkIAAMxCAABAQAAAssIAAPBBAAAQwQAAWMIAACzCAAAgQQAAFEIAAFzCAADAwAAAUMIAAIA_AAAAAAAAJMIAAGTCAACAwQAADEIAAPBBAABQwQAAYEEAAAzCAABYQgAAMEEAAMBBAACMQgAAsMIAAMjBAACSwgAAwMAAAODAAACIQgAAAMAAAIpCAADwQQAAgD8AAFhCAADQQQAAiMEAADzCAACowQAAQEEAAMhBAAAEQgAAcMIAAOBBAACAvwAANEIAAIhBAABgQQAAlsIAAIhBAABEwgAAZEIAALBBAADoQQAAQMIAAFTCAACCQgAAQMAAAODBAACkwgAAEMEAAODBAADgQAAA-EEAAODAAACIwQAAUMIAAGzCAAAkwgAAwMEAAARCAACowQAAosIAAP5CAADYwQAAvEIAAAhCAAAAwgAAwMAAAIJCAAAUQgAAcMEAAHBCAACcQgAALEIAAPDBAACAPwAAgsIAAIDAAACEwgAAgkIAABzCAACAQQAAgMEAAHRCAADgwAAAoEEAALjBAAC4wQAAMEEAAKDBAACAQAAAgEAAAJhBAABAQAAAIEEAALhBAACAPwAAwMEAAIC_AAAcwgAAiEEAAChCAACQwQAAgL8AAGDCAACIwgAA8EEAAOBBAAAIQgAARMIAAIDAAABQwQAA4MEAAMBAAACYQQAAsMEAALDBAABQwQAA-MEAAJBBAAD4wQAAMMEAAAxCAADYQQAAoMEAADxCAADQQQAA0MEAALjBAADgQQAABEIAALhBAABgQQAAyMEAANDBAADgQAAA6MEAACDBAADAwQAAEMEAAFBCAADQwQAAGEIAAEDBAABkwgAArsIAAADBAAC4QQAAnEIAAADBAAAQwgAAMMIAAJpCAAAwQQAA4EAAALDBAABAwQAA-EEAACjCAAAAQQAA0MEAAMTCAAAQwQAAEEEAAKjBAACEQgAAAMEAACDCAAAQwQAANEIAACDBAABAwQAAaMIAADRCAABIwgAAIMEAALhBAAAwwgAAJMIAAEzCAAA0QiAAOBNACUh1UAEqjwIQABqAAgAAML0AABC9AADoPQAAHD4AAOi9AADIvQAATD4AACu_AAC2vgAA4LwAAOi9AABEvgAAfL4AAEw-AABwPQAAyL0AAJI-AABAPAAAFD4AAP4-AAB_PwAA6L0AAEw-AABwvQAAgDsAAEA8AABwPQAAVL4AAEA8AAAEPgAAkj4AAOg9AACgvAAAUD0AADw-AABsPgAAMD0AAHS-AACyvgAAgLsAAFy-AACGvgAAgLsAANi9AAAwPQAAiD0AALY-AABQvQAAiL0AAPi9AABQvQAAlr4AABw-AAA8PgAAMD0AAFA9AAA_PwAARL4AAAy-AAA0PgAAmD0AAJ4-AAA8PgAAuD0gADgTQAlIfFABKo8CEAEagAIAAI6-AAAQPQAAhr4AAFW_AAC4vQAAiL0AAIC7AAAwPQAAoDwAAAw-AACovQAAMD0AALi9AABEvgAADD4AAOC8AACmvgAAHT8AADA9AADOPgAAMD0AACQ-AACAOwAAgLsAAHy-AACAuwAABD4AAPg9AACGvgAAQLwAAOg9AADgPAAA-D0AACy-AACYvQAATL4AABC9AABEPgAAqr4AAGQ-AABQvQAAoLwAAHC9AADoPQAAuD0AAEy-AAB_vwAA6L0AAAQ-AAC4vQAAUL0AAKi9AACoPQAAmD0AAAE_AADYPQAAQLwAAJg9AACIPQAAFL4AAHA9AADCPgAA4DwAAES-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=QF2xZaYSQY4","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3000,"cheight":2000,"cratio":1.5,"dups":["672607911324991791"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"58502120"},"9274281294018179369":{"videoId":"9274281294018179369","docid":"34-11-11-Z2C70972DA91EB661","description":"It has many practical applications in computer science like design of computing machines, artificial intelligence, definition of data structures for programming languages etc. Propositional Logic...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"1","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Applications of Propositional Logic - Discrete Mathematics Lecture 3","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=m7PSXMZIq1Y\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTOTI3NDI4MTI5NDAxODE3OTM2OVoTOTI3NDI4MTI5NDAxODE3OTM2OWqIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxPsDoIEJAGABCsqiwEQARp4gfb-9AH8BAD7AwMNCgj7AgsA-_r3AAAA9gD19QIC_wD7-Qr6AQAAAPsP8f8DAAAAAfcBBPb9AQABCv8FBAAAABMW-AL-AAAAEhAGCf4BAAD18v8BA_8AAA8ACPv_AAAA9gT_AP__AAABCQ3_AAAAAAsE_fsAAAAAIAAtUBnhOzgTQAlITlACKoQCEAAa8AF_BAkBsh37_g0I3ADYDOoBiSAK_w8T1wC3_wAAm-vZ_-8W4gDa6eUB-OQcANMeEQAP4dQAHNAHARXy-_8eEQQACvMZADHQDgE68u4A8xDo_wEHDv4SBycAAOr_Af0T-wAJ-xwB2-bSAQUp3AL77ikAGgwaAQMJCQLf__395BwAAvX78P8T8g7-1_8EAeYNEAfv6wP6F_vi_9b29gL89uf9CuH7-hL24QAm8QQG-On0-wb4FAUHAf_7KxMMAvoYEAEN8Qv2BO789fACDfpA6A4K5-MV_fvgCfoIIfv8At759PQEEPrcI_0E7wcKBun2AfQgAC3NHSc7OBNACUhhUAIqzwcQABrABxcrCr8jP461PNWIO8l3hLrVNeQ8-_HNvHyhmzwi3RQ9gMRlPCurhD1piG89Dwlfu5fHqr4Tx-w7vhGdvJ1Ggj5_Fku8vhLIvHoXL74IPDA9KZ_UvE94kb5nFUw9qeaLus2zTT1F_US9tiW8PAqdFz6TmxW8EYqtvLOudr3rPfC8IIAvvXzOkr0mLaa8cY10vMRb5z3qnQC9XylLu2DnJj4N0w298R7xvPUlQDyHv6a8oGyKvL-1g715ioE8WmkMu4JCyD3aE-48ItjdPPrbFD1zluO8wF5du7Iokbs-5NI8_s3wvEELCT2-7Eg9EUqpvH_CtDxadz29RyXtu7PtFL13hmQ9exw8Pd1gOD4pplw94xs-OiKudzyAZks9u95sPEArdrupY_q82XoEPODeMD3f8Mw8EFg9OpniYDw16Ts9OZ8TPBIPC7wkFLY87iitOyMylz0M5Qk9XWRIO-Qn2TtsaQS9lNs0uwu45712UIk7W4SYvDt0xT0HAR69rhQbvC6ZqT26Vzw9nW40PC9OfDwfJDW9BcjMO3pip7wbxtO8I_2RvCFMWz0ImkW9yoSEvHF5Rz2_P627C0zAuth1Gb0cako8M1Elu2N1wD19UQy9WmciOpm6K7xMh3M8Zx_xO2j27zyzKh29-jRdvF6aB7yVbKs8qVSFuzhxqLwZYgu9pTqROnWirj3GzZ88Ny7nu7rXbjyvKhY816CSOzXx6Ty3dJY8-esDuJqYrrzuDww8I9yBO1bT9Ty5YJo98w4ruTJXJj245Ji9oGryt9UI_Ty9vfU8IqyOudke4jxLpGs6gNXYOQLvKT3NGba8nSUVOF7cpTupbFi9YkTQufvoFL0TlAc83QZbug_sfT2s6yu8UsIQudNS1Lx6Qbq8J34UuvEC9ryhoY89bQjKtuAx-jt-IJS8ORTQuB7M4LvW8U69P-YluVsRC71QnO28cNMDOe7AirylIbQ8ifupNwopZLzrQ229pFnzNs3yK7zjJpk92s4fuIzQmTzSa9g8TUrttzS5vbyA24s7LWynuJ0ORzt3nwO-Q96Mt6uscj25G8A7_6zRuGvx6b151iS87i9gNpoS_7y9sia9FbrHt51wpTzZlwy9Iwl3uBfTET1G2YG9O_4TOJlK3z2Ac9A8VLi-uIrmAb0j13I8yr6St4a9Gj1Qpha9dapatxjpJb16SS29xDOhtx2XDD1JD0O-VDFNubnBdTwt7Ak-hifnOHF8Y736JQI-qYEsuXxOhb1jhEu8wsjotkeIvDs1iQa698M8OCAAOBNACUhtUAEqcxAAGmAi-gA38jPp5Ah_2PbezxXm2y7P_t7h_9nj_-wb2uL3-M_J7SwAIMoI5qgAAAAkAuso7wDhfsTW3i_49BCn3-wXFGTzNB-rARjgoQkAFNUI6jEP8EoA_sWYFg_wr_kKIREgAC0k1Bw7OBNACUhvUAIqrwYQDBqgBgAABMIAALDBAAAwwQAAuMEAAGDBAADQwQAArEIAABjCAAAswgAAAEEAAMDAAABAwQAAYMEAABzCAAAAwQAARMIAAKhBAAAQwQAAGMIAAOhBAADAwQAAfMIAAEDAAAAAQAAAAAAAAMDAAABQwgAAhsIAANBBAAAgwQAA4MAAAOhBAAAwwgAA0EEAAJbCAAAsQgAAQEEAALxCAADgQAAA0EEAAIA_AADwQQAAyEEAAHBBAABAQAAAgMIAAOhBAACoQQAA0kIAANBBAABAQAAAAEAAABhCAABQQQAAkkIAAMhBAACOwgAAmEEAAHDBAAAUQgAAiEIAAODAAAAUwgAAJMIAALBBAACYQQAAgMEAAMBAAADAwAAAkMEAAIZCAABgQgAAgMAAAAxCAACQQQAAxMIAAOjBAADYwQAAcEIAAAjCAACKwgAAikIAAMhBAAAUQgAAIMIAANjBAAAwQgAAHEIAANBBAADgQAAAMMEAAEBAAADYwQAAcMIAAEBAAABwwQAA6MEAAMBCAACAvwAAuMEAAPDBAACQQQAATEIAALDCAAAAQQAA4EEAAKTCAAAIQgAAbMIAAPhBAACyQgAAqEEAAIDAAAAQQQAAAAAAAOBBAADIwQAAjMIAAMDAAAAswgAAWMIAAAzCAAAkwgAA4MEAAKhBAAAQQgAAisIAAKjBAAAowgAAwMEAAADAAABcQgAAIMEAAPhBAAD4wQAAAAAAACBBAACQQQAAAMAAAMjCAABQwQAAQEEAAIDBAADQwQAAtkIAAADCAAC2wgAAJMIAAGBBAAAwQgAACMIAAKjBAAAAQgAAwMEAAAjCAACIQQAAgMAAAIDAAAAUwgAAJEIAAIDBAAAcQgAAJMIAAJDBAAA8wgAAMEEAAEhCAAAQQQAABEIAAOhBAACAwgAAUEEAAAhCAABgQQAAYEEAAHhCAAD4wQAAOMIAALBCAAAYQgAAQMAAAIBAAAAwwQAAAAAAALZCAAAEQgAAnsIAAEhCAACQQQAAwMAAAKDCAADIwQAAyEEAAFDCAACgwAAAqMEAALjBAAC4wQAAGMIAAPDBIAA4E0AJSHVQASqPAhAAGoACAAB8vgAAFD4AACQ-AABQPQAAmD0AAHQ-AAA0PgAASb8AAL6-AADgvAAAQLwAACS-AABAPAAATD4AAFA9AACIvQAAkj4AAFA9AABEPgAAGz8AAH8_AAAQvQAAij4AAAS-AAAsvgAATL4AAFA9AAB0vgAAgDsAAIY-AACePgAAFL4AAEC8AADoPQAA2L0AADw-AADIvQAAbL4AAKq-AACavgAAyr4AAPi9AACIPQAAPL4AAMi9AAAMvgAAnj4AAMa-AAA0vgAA2r4AANi9AADovQAAmD0AABQ-AAAUvgAAEL0AAGk_AACAOwAAUD0AAMY-AACIPQAATD4AAAQ-AACAuyAAOBNACUh8UAEqjwIQARqAAgAAJL4AADQ-AACIvQAAI78AACS-AACYvQAAmD0AAEA8AACYvQAAmj4AAOg9AADovQAAUD0AAHy-AADYPQAAoLwAAHA9AAAnPwAAcD0AAMI-AACAuwAAcD0AAHC9AAAEvgAAoLwAAFA9AACAOwAAuD0AAIK-AACAOwAAQDwAALg9AAC4PQAAoLwAAKg9AAAkvgAAgDsAALo-AACCvgAAQLwAANg9AAC4vQAAmL0AALi9AABAPAAAQDwAAH-_AAAwvQAADL4AAAy-AABkPgAAiL0AAKg9AAAQPQAA2D0AABA9AACAOwAAuD0AADA9AABAPAAA4DwAAEC8AAAwvQAAqD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=m7PSXMZIq1Y","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["9274281294018179369"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1952854444"},"14072458612494229147":{"videoId":"14072458612494229147","docid":"34-9-1-ZB0B94F34231FCB35","description":"Python is a scripting programming language known for both its simplicity and wide breadth of applications. For this reason it is considered one of the best languages for beginners. Used for...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"2","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Python Fundamentals (Lecture 2 Part 1)","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Bn17msyPjg4\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTQwNzI0NTg2MTI0OTQyMjkxNDdaFDE0MDcyNDU4NjEyNDk0MjI5MTQ3aogXEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E7oOggQkAYAEKyqLARABGniB9AMC_v8BAPb-AwX-Bf4BCAEH-vf__wD0Dvb0AwEAAO39_AME_wAAFQfwCQAAAAAG_AkL-_0BAB4A9gwCAAAAHgn0Bf0AAAANAQEB_wEAAP_x-wED_wAAEvP59v8AAADwBAX8_v8AAP4K-QsAAAAAC_UFDQAAAAAgAC3YMtQ7OBNACUhOUAIqhAIQABrwAX8O9gKmGAf7ZQb7AAsD6wCVAAH_MvbmAKnp9wLJ-dUADBjzAefvFf8HBSsA7w30ABLg6P8R9_YAEfEM_zkMCwAF_wwAKtYMARv8BgEDBdwAAgn9_wXyFAAT7gkAFBEFAAoUBAHaBM3_DxH5Awf9DQQLBhED_fT0ARIJCP7__gUFAP0HASDqDP3m9fYA7RcHAPH3AAPcBRMA--QCBggR8PwAEg4FC_r6BQcIAgv88-z_9A4N_AcU9_0fAQ4B9An_BBnb_v8P_wAA6_kGAB_0FgD02g_4C_AT9Rkd6vn56Qz95_H7-e4WAQDxBggF7PgB9iAALa8JQzs4E0AJSGFQAirPBxAAGsAHpOEQv8Lg9TsyDuS80BDJPVC9vzwLMOK75nUEPisnrbtC5_e7BFqavYj7IzyOFjE8_Iy7vlpTD7zG6sW7DJCAPp9Enz2XW_e6zQLtvXYQhT3kwCY99aGDvjx38TsuxZc7OC_OPM5twrwxb588ERfFPTrDGT2w37g8b7EMvVZbG71SOMy8xaOuvWrU7Lvxe587rYX5Pcc49bxtfNy8dzHtPY8AKb12lhE8r8epPSgmELus0Ba9ZAbqvZokFj2WW5o8K9nxPT19BL0vAVM8xSWyPb5XQz2V9fq7UKFfPfB21rtrmIa8RGmUu221PT0b5U88zKD1PI1uc7x-BSQ9VHwyvdBD7TzCjIQ8Puq_Pei0-Dx2Co-3dEtGPTJyljxGXhY9s743vLcdBbz6t4k7ByZ3PVwNPzzN0im8n_W-uxJBBj1PyTk8aDoBPBnkLrxxgTo88SoMPHNuTj0gNPG7U51EvIZ4IDtRgI08WGttvUKP3ruLPtW8D7bYPVyjb72w7Yg8hBwIPMO2Kj2CChw8qy0rvffuSj3m6oc8JeJyPRYgwDwak4w4L3UGPX57bb0CMPm6WTQduzuSpj1ttii8HCFIva_cgTxIwI27yliYPWY5PzwadQY8Me-BPQl5s7yyqhI8s_4iPHN1Ub1XB4C8x4QYvY3aM7yPegC8TwSxvOAYWTl48dm7eROiPScBA7uQw9y7mXsNvY6portVIyo7LeLkuw9uIT21AN84s_UGvC3fhjqiL0y50F8IPekQGD13fX25fyu-vGtNDry6ZDy5BDaMvD0s1Dy7Y1O3UdaEPe4GUbzwar65XY8dPSbVCDvcOM83Y98kPfpaPDxMr5U51BuUvd3a27vBgXA4YqrPPFYw6LqpI1w4TBjNOljdsLv-F9W4bnHovMH7rz1T7ry4YlXSuzR2E70Ukh-4n07gO0b1sbwUpyy33c_pvHfkfry_NrW4lZpsOWakObz1Hts4exLYvM8Gar3xp6E4N0P9u9DKAj0L5EA5Go4EOyFC9zzlqz24Lk5BvcVvq7t6M1W45eK5vHFom73lrQg2pSXgPEGx-jxAO9O4RMpKvVYLkbzmV_-3FA9evDOeEr0clje3TQN1u_EaKjwI1L44QsyKPIrqSL3h6cO1gpESPWV74zr4uIO4yzg6OypcCj3rsIM3OFpEPCPuVjw8Xo43XIifvGhtRL0FDMI3QyLIPKVN1b1QB3e4qWuNPYsLkT0TJyI4BwunvL387j2DtB65MQdBvVYeDTzX3602ziuovPqpBzo9VeM3IAA4E0AJSG1QASpzEAAaYFj_ACspIQbO-lnWCuf5AMLfWBoY27j_GukA6Onn-wcF7ZIsCf9D5OgFpQAAAAUpEisGAAh3J9vVSNYG9uvQ7wnTfwNC-_vl_fae5f4t1f386vAcWQDkBqscTea4JhZoFiAALXhsFDs4E0AJSG9QAiqvBhAMGqAGAAAQwQAAwEEAABBCAADYwQAAuEIAACRCAABsQgAABMIAAMDBAAAEwgAA0MEAAGjCAACYwgAAoMAAAKBCAABUwgAA8EEAAPjBAABAwQAAUMIAAJjBAADQwQAAwMAAAJhBAAAAQQAAgMEAACDCAAC0wgAAMEIAADhCAABQQQAALEIAAFzCAAAwwQAAaMIAAIC_AABQQQAAzkIAAHDBAACCQgAA4MAAANBBAAAgQgAAGEIAAARCAAA4wgAAMMIAAGDBAAD4QQAABEIAAADDAAAwQQAAgEEAACBBAADAQQAAyEEAAADDAACoQQAAgMIAAODAAAAAAAAAPMIAAIA_AACWwgAAJEIAAIrCAADAwAAAIMIAAPjBAABAwAAAFEIAAKZCAADAwQAA6EEAAPjBAACCwgAAyMEAAODAAADAQQAAEEEAAIbCAAAIQgAA8MEAAHxCAAD4QQAAgMAAANhBAAAsQgAAUEIAACDBAAAwQgAAUEIAAExCAAAEwgAAEMEAADDCAAAEQgAAqMEAADRCAAA8wgAADMIAAFhCAABsQgAAAMIAAIDAAABAwAAATMIAAHBBAAAQwQAAkEEAADBBAABAQQAAMEIAACDCAABAQQAADEIAALjBAAAMwgAAZMIAAMBAAAAgQQAAAEEAAITCAAAMwgAAAEEAAIBBAACgQAAAQEAAAIC_AAAAwgAAAEAAAFDBAAAAQQAAIEEAAPDBAACYQQAAiEEAAFjCAAA0wgAAhMIAABRCAADAQAAAjkIAAKjBAACoQQAAoEAAAJjCAADQQQAAikIAAKhBAABIwgAALEIAAARCAAAQQgAAQEAAAIhBAACYwQAAAMIAADTCAAD4QQAA2MEAAGBBAAC4wQAAcMEAACzCAAC4wQAAmEEAAOhBAACAvwAAAEAAAADAAACQQQAAoEEAAADAAAAwwgAASMIAAExCAAAAwAAAwEEAAEBBAACAQAAAoMIAAADAAAAQQQAAdEIAAEDCAABUwgAAkMEAAEBBAAAAQQAAmMEAAJTCAAAYQgAAcMEAAIhBAAAkQgAAoMIAAODAAABAwgAAEMEgADgTQAlIdVABKo8CEAAagAIAADC9AAC-vgAALD4AAAQ-AACYvQAA-D0AAHQ-AABRvwAAjr4AAPg9AADYPQAAqL0AAHA9AABEPgAAgLsAAOC8AABMPgAAyD0AAM4-AAC-PgAAfz8AAIg9AADoPQAAgj4AAOC8AABAvAAAJD4AAKK-AAAQvQAAED0AAHQ-AAAEPgAAEL0AABS-AACKPgAAVD4AAIg9AADYvQAArr4AAKA8AACKvgAAuD0AANg9AAAkvgAARL4AADC9AABUPgAAoLwAADC9AACKvgAAcD0AADS-AACKPgAALD4AADA9AACgPAAAXz8AAOi9AAAQPQAAPD4AAOI-AABMPgAABD4AADA9IAA4E0AJSHxQASqPAhABGoACAACavgAAJD4AAIA7AAA1vwAAQDwAAIC7AACCPgAAgLsAAMg9AABUPgAAED0AAIC7AACYvQAAuL0AAOA8AACgvAAA-L0AAEE_AABwPQAAyj4AAKA8AAAcvgAAQLwAALi9AAAUvgAAVL4AADw-AAAkPgAAEL0AANg9AACoPQAAmD0AAIi9AAAQPQAAND4AAES-AABUPgAAZD4AAK6-AAB8PgAATD4AAIa-AADgPAAAuD0AAIg9AAAEPgAAf78AABC9AADgvAAAUD0AABw-AABAvAAAND4AABS-AACqPgAA-D0AAEA8AABAPAAAZD4AAEC8AAD4PQAAUD0AAGy-AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Bn17msyPjg4","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["14072458612494229147"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"3426021478"},"4993516738029177943":{"videoId":"4993516738029177943","docid":"34-4-7-Z1F45ABCB729D6FD0","description":"Describe how to enter, clean, and organize qualitative data Examine and code raw data Analyze qualitative data...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"3","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Entering, Coding, and Analyzing Qualitative Data: Research Methods in Computer and Society","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sXsZXfJ7zr0\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTNDk5MzUxNjczODAyOTE3Nzk0M1oTNDk5MzUxNjczODAyOTE3Nzk0M2qvDRIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxOkC4IEJAGABCsqiwEQARp4gQcB_gL-AgDz_Qn-DQL-AQwF_wL3AAAA5w79-Qf9AQD7DPwG-QEAAAoAAgH9AAAAAPvyDPn-AAAGBf36-wAAACUA_QX7AAAADgv8A_4BAAD8-QEI-gEAABMEAf3_AAAABQX79v7_AAADAPr_AAAAAAz6-foAAAAAIAAtbrLaOzgTQAlITlACKnMQABpgHgIAIRQNB9jRJ8j09tr0Atr17wzBDgAO7gABFf7KExLboRL9AEXhL_m0AAAALQUGExIA32cW2MX2CwAl-gUUAz1_5vr2JOkt7Njv3v3_uBPgIVk8AO8MBxgaA6w9Aw8PIAAtmNczOzgTQAlIb1ACKq8GEAwaoAYAAHDBAAD4QQAAgD8AAKDBAABYQgAAGEIAAGBCAAA8wgAAYEEAAGDBAAAAAAAAYMIAAKDCAACgwAAAtkIAACTCAADIQQAAGMIAACDBAABAwgAAUMEAAIzCAAD4wQAAAMAAANhBAACgwQAAFMIAAI7CAAAQQgAAGEIAAIBAAAAwQQAARMIAAGBBAACWwgAAgL8AAAhCAADYQgAAkMEAADxCAABQQQAA6EEAAChCAADwQQAATEIAAIDCAAAMwgAAMMEAAIBBAAAAQAAA0MIAAJjBAABAwQAA8EEAAAxCAABUQgAAAMMAAKhBAABwwgAAMMEAAEDAAAB4wgAAcMEAAIDCAAAgQgAAOMIAAGDBAADAwAAAwMEAABBBAAAsQgAAikIAANDBAAAEQgAAMMIAACjCAABQwQAACMIAAPBBAAAwQgAAPMIAAFhCAADQwQAA3EIAAIBAAABwwQAAcEEAAGBBAADIQQAA4MEAAGhCAACGQgAAikIAACDCAAAwwQAAAMAAAOBBAACAQAAAFEIAAODBAAAEwgAAbEIAAIRCAABowgAAuMEAAODAAAA4wgAA4MAAAEDBAACQQQAAoEEAAMhBAAAsQgAA4MEAABhCAAAAQAAAMMIAABzCAAA4wgAAYMEAAOBAAAAQwQAA8MEAACTCAABgwQAAJEIAAFDBAAAwQQAAAAAAAPjBAAAQQQAAAAAAANjBAADIQQAARMIAACDBAAAAQgAAMMEAAGjCAABswgAALEIAADDBAACcQgAAgMAAAGBBAACoQQAATMIAAADAAABkQgAAgEAAAFjCAABAQgAAbEIAAABBAABQwQAAoEEAAODBAABAwgAANMIAABxCAAAgwQAACEIAACDCAAAgQQAABMIAAGBBAAC4QQAAIEEAAEBBAAAgQQAAiMEAALBBAACAvwAAkEEAACDBAAA8wgAALEIAABxCAADQQQAA0EEAAGBBAACQwgAAEEEAAADAAACaQgAAgMIAAIzCAAAAwgAAcEEAADDBAAAgwQAAtMIAAEBBAAAQwgAA-EEAACRCAACOwgAAEMEAAEjCAABgQSAAOBNACUh1UAEqjwIQABqAAgAAiD0AAAy-AACIPQAAyD0AACS-AAAwPQAA6D0AABG_AADKvgAAiD0AAKi9AACgvAAA2L0AADQ-AAAsvgAAyL0AAFA9AADgPAAAbD4AAOI-AAB_PwAAUD0AAHA9AAAwPQAAyL0AAIA7AAAQvQAARL4AAIo-AAAkPgAA-D0AAIi9AABwvQAAqL0AADA9AAAwPQAAiD0AACy-AAB8vgAAcL0AADS-AACgPAAAoLwAAGS-AAC4vQAAMD0AALI-AABMvgAAUD0AALK-AACYPQAAUD0AADQ-AACgPAAAcL0AABC9AAAlPwAANL4AADw-AAAkPgAAoLwAABQ-AAAEPgAAyL0gADgTQAlIfFABKo8CEAEagAIAAGS-AACYPQAAMD0AABe_AABwvQAAQDwAAHA9AACgPAAAcL0AAK4-AADIvQAAgDsAAOi9AADovQAAyD0AAIC7AACYPQAAJz8AAKA8AADmPgAAgDsAAJg9AAD4vQAAmL0AAIC7AABwPQAAoLwAAIg9AACCvgAADD4AAEC8AAC4PQAAND4AAFC9AABEPgAAUL0AAFA9AAAsPgAAZL4AAAw-AADYPQAAgDsAADC9AACIvQAA4LwAAEy-AAB_vwAAmD0AAJi9AADIvQAAuD0AADC9AABwPQAADD4AAEw-AACIPQAA4DwAAJi9AAC4vQAAcD0AAEC8AAAQPQAAmD0AABQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=sXsZXfJ7zr0","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4993516738029177943"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"5404020747213002333":{"videoId":"5404020747213002333","docid":"34-4-5-Z58B75B7AB0554280","description":"A graph is a set of points, called nodes or vertices, which are interconnected by a set of lines called edges. The study of graphs, or graph theory is an important part of a number of disciplines...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"5","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Graph Theory and Graph Models and Applications: Discrete Math","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MDeTiyn3rz4\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTNTQwNDAyMDc0NzIxMzAwMjMzM1oTNTQwNDAyMDc0NzIxMzAwMjMzM2qIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxODD4IEJAGABCsqiwEQARp4gfATAAABAAD-CggBBQb9AfUD_Pf5_f0A8v0B9PUBAAAI-wz0_gEAAPsF9Pz_AAAA_QYB-vr-AAALEf0MBAAAABEA8fb8AAAAERH6-P4BAAAD-PwGA_8AAAsVAfP_AAAA-wP3Av__AAD-FREBAAAAABP7AAH89P4AIAAtdlDOOzgTQAlITlACKoQCEAAa8AF_-Q0DvvXu_vf26wDcDcwAgxXw_yAR6QDH3wIBuhDU__EvBf_3_BIACAUtAMgUBgAUBN7_CfoAACcN9wARAQoA7hgVAEXoKQMoAgYAIwf2__UbCP8p-CEBIff-AP8VD_4RACP-3_jpAAz_3QIJ9hv__xYSBA8DBQbsBAIA8Q8BBPb78v8JAPcI-vX8_N0nDAAQ_-8HEg_sAdwE6gL99wL79uD2-xcW5_4ZDu0E2uwA_fwAC_cU9_4EGBwRBwMQ_Pz7Cv72E-r3AeMQ_QAT4QwH9NgQ9woBDgDx9vX_AfIEBu4FDwrUHA0G-_X9DPz5-vMgAC1mszg7OBNACUhhUAIqzwcQABrAB4z2-L5eAiY88Q3qvMl3hLrVNeQ8-_HNvDyLOb1yGwg9x4EeOiurhD1piG89Dwlfu5xNl77qPVy5ZI8WvJ1Ggj5_Fku8vhLIvFouW77qj5U8bmKSvE94kb5nFUw9qeaLujtFXT2Zuiu8Xd-HPKDi2D1hPJ68xU-IvLpLgj38E8G88joHvfN_Xb2Bhg29HZGMukKguT3bfRi9uAT9O_nQjz2FRIq9rqDEvFFM3rv2Ocg8Kdw8vHb5O73_4yk8S01MPJTCHD7kk9-7eqMbPb4KujzlFHi8uLh8vA-pszyPeAk82FL2O6jKMj1_FPU8iTxuvOrxVjwwHtS8M3dUuYZ3hL1HVC0935m7u6j8Cz6lg5U9JI6GvHq2Xb1pQDg9j5rEuytlvrxJWOW8FkWXOyieAz6srVi88eXPO0IDVj3E3c88eWirOv1xsTx4RLU9tVd6PFVkiT32l909mPJGvKpdqD1LcA88bjVrvCjV3r1oCvi87QO5u0rcWT36EZq86xPKPNthfT1_1kE93ri5O91Xuj1DMZO9Lh3Su4tInrya3SS8sdcBvD0VRj3qa6c8egZDvKwDqz23cRU93XqLO-1k0L32p-A601J1uwPBLT3svHK9l7hBuL2KjLwUkDs9UjcjvNO2qzywOpI9ifH1u-PgUjxvvmw88xP3OzD8Fr1QJ488Jo4bPDEERT0vZx27euxtOiOaJT0A04i9RH-MOWnk0z3J0r28UrAGuAnrErwRgXS9dWH_ukBpqDuTcew9EkQ6uaqCoT0aGJm9R0qgOCTQxbxtJlU9QdmlN4nAtz3utfs84pUSuB2imzx5uQC7-90KOc64-rzGjgG9EmjGt6qaYL0NUaa7KmpGuZbiND3zisy8d4OOuRePwbwb1AO915H1OeAsxb2mb8g8zqQKuacwwDwsPHk9ggOgNhdnDL3TNEO9ReaRuHaZKzwtiFK9VulcuMgvcjyXqJ49hJAHuIblz70AaeS8AzRNuXqt3zz1H6M8mR6EuTM0fj1Plno9tXWrN-U6lz1S_qQ8UEn8tsPT6zxnJvi9IiQkuOexYT3tX349CEMguMk4q738lD69U5T7t_4bqrx9ezK9qD7PN3HbKD0SBem8yUO4OCx5Ib0cD4G992W5N7EVBD7G__g7MtlTuIRcLr18kmA8A8K9t6tiIrzHrZO8TOZ-t-NgBT0RAUe92Qx0OPZ0ej3gD9-9P5mbtyEytjw7OeM9BBsGOfCyNb1czM89DEYKuUyeHL0Wyrq6JN7It7hLkbx-7yW8aZOSNyAAOBNACUhtUAEqcxAAGmAb9QA94RsN8_8u5LzEziTrAc7QFeEM__W8_9Xv59UQ-duXIOP_B8MFCqIAAAAZ8vsZBgDjf_fa1CfoBSDTxvEjBX73OUeN2h7_vPX5_78SAAsm9lUA7f6VNTgAyiII-AggAC2C5Bk7OBNACUhvUAIqrwYQDBqgBgAAgMAAAKhBAAAkQgAAJMIAAAxCAABAQQAAykIAAJjBAAAIwgAAcMEAABDCAACgQQAAhMIAAFBBAAAwQgAAgEAAAChCAABUwgAAwEAAAETCAAAgwQAAEMIAAIhBAAAQQQAAUMEAAOBAAAAYwgAAhsIAANhBAAB4QgAAgMAAAFRCAACUwgAAoMAAANjBAACgwAAAoEEAALxCAADIQQAAQEEAADhCAAAUQgAASEIAABBCAABMQgAASMIAAIA_AAAgwQAAZEIAAFBBAACiwgAAbMIAAMDBAABAQAAAiEEAAEhCAADOwgAAqMEAAIhBAAAMQgAAcEIAACzCAABswgAAAMEAABxCAADgwQAAwMAAAGjCAAC4wQAAIMEAAIC_AABQQQAAhMIAAIxCAABUwgAAiEEAAKDBAABAwQAA0EEAAKBAAACOwgAAfEIAABDBAAAsQgAASEIAADzCAAC4QQAAoEAAAI5CAAAUwgAASEIAAHRCAABEQgAAYMEAAPDBAACWwgAAJMIAAFzCAACCQgAAAAAAAKDAAADAQAAA4EEAAODAAAAEwgAAYMEAAMDBAAAQwQAAMEEAABxCAADgwAAAPEIAAIDBAACAwAAAyMEAAIJCAAAowgAAsMEAAJrCAABAwgAAPMIAALDBAAAAwQAANMIAAIDBAACwwQAA4EEAABDCAAAAwgAAcEIAAEBAAACYwQAA2MEAADxCAAAEQgAAAMEAAIBAAAC4wQAAwMEAAEjCAABgQQAAwMAAAOBAAADQwQAA-EEAAAhCAAAMwgAAZMIAAABCAAAQwQAAQMIAAMZCAABsQgAAyMEAAEBCAADAQAAAVMIAACDCAAAswgAAREIAAPDBAAA0QgAAgMEAAODAAACswgAAAMAAABBBAACeQgAAZEIAAIC_AADIwQAABMIAAMhBAADYwQAAKMIAAKDBAAAAQgAA4MAAALDCAACIwQAAyMEAAEzCAACwwQAAmEEAAKZCAAAAQAAAoMAAAADCAABgwQAAmEEAAFBBAAAYwgAABEIAAEDCAADIQQAALEIAADBBAACIQQAAvsIAADhCIAA4E0AJSHVQASqPAhAAGoACAAB8vgAABL4AAGQ-AAAQvQAA4LwAALY-AADYPQAAOb8AAKq-AAC4PQAABD4AADC9AAAwPQAAFD4AAGS-AABkvgAA2j4AABA9AAAMPgAA8j4AAH8_AADIvQAAij4AAMg9AABAPAAAuD0AAIY-AACIvQAABD4AACw-AABEPgAAoLwAAAy-AAB0PgAAuD0AAHA9AADYPQAA4r4AAES-AAAMvgAArr4AAFy-AAAMPgAAyD0AAOi9AAAsvgAA4DwAACS-AACivgAAiL0AAKC8AADgvAAAbD4AAII-AAC4PQAAEL0AAFc_AADoPQAAcD0AAHy-AACgvAAAmD0AAOg9AADYvSAAOBNACUh8UAEqjwIQARqAAgAAyL0AAIg9AAAkvgAAKb8AAKi9AADoPQAAyj4AANi9AACIvQAA2D0AAOi9AAAQvQAA2L0AABS-AAAcPgAAoDwAADA9AAAPPwAARL4AAAM_AACAOwAAoLwAAGy-AACIvQAAQLwAAAS-AACIvQAA4LwAAGy-AACoPQAAoDwAAJg9AAAwPQAAXL4AAKg9AADgvAAA4DwAAKg9AAB8vgAAoLwAAKg9AACAOwAAuD0AAFA9AADgPAAAoDwAAH-_AAA0vgAAiL0AALi9AACCPgAABD4AAOg9AACIvQAAoDwAAKg9AACgvAAAgLsAABw-AACoPQAA6D0AAI4-AADgPAAAEL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=MDeTiyn3rz4","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["5404020747213002333"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"4222333867"},"15535685480873256822":{"videoId":"15535685480873256822","docid":"34-5-12-ZC83E7E812D9BCC75","description":"Body Mass Index (BMI) is a measure of health on weight. It can be calculated by taking your weight in kilograms and dividing by the square of your height in meters.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"6","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"C++ Programming: Code to find the Body Mass Index and Compute a Tax using selection statements.","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DRb7Bv-ASDY\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTU1MzU2ODU0ODA4NzMyNTY4MjJaFDE1NTM1Njg1NDgwODczMjU2ODIyaq8NEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E-AGggQkAYAEKyqLARABGniBBAD99_8BAPUOBQL5BP8BD_P6AfcA_wD0Dvb1AwEAAPMACPz7AAAAC_sJCgcAAAADAfkF8v4BAPQNAA4DAAAAD_r89fYAAAACC_cG_gEAAP33Afn2AgABGxAD_f8AAAD1BwgD__8AAPkJ-v8AAAAADPr4-gAAAAAgAC3MZtY7OBNACUhOUAIqcxAAGmAYDgBKDf3uxSAny_juzh8N8iz2zswM__wBAA8l9Krc-9XQ-g__Bd0a9bQAAAAaKgUsGwDhaBLmxhv7IBuTu-z5Tn_tIhkNHQ_WyvQEH_j8ARQ3NRMAywcBDgj-Di_2IRQgAC1THjA7OBNACUhvUAIqrwYQDBqgBgAAgEAAAHRCAAAMQgAAkMEAALRCAABQQgAAkEIAAJDBAABwwQAAQMAAAFBBAAAwwgAAcMEAAKDAAACSQgAAIEEAAADCAAAgwgAAgMAAAODBAABQwQAAFMIAAAAAAADAQAAALMIAABzCAABAwgAA4MIAADRCAACAQAAAQMEAAEhCAADwwgAAmEEAAODBAABgQQAAgEEAANJCAADoQQAAVEIAAEDBAAD4QQAAjkIAAKjBAAA8QgAAiMIAAEDCAAA0QgAAwEAAAIDAAADMwgAAkMEAAMBAAACgQQAA8EEAAGhCAAAAwwAAAMAAAMBAAAA4QgAAuEEAAGTCAADgwAAAIMIAAIZCAABAwQAA4MAAABTCAABEwgAAAMIAAGBCAACMQgAATMIAABRCAAB0wgAA8MEAAIjBAADAwAAAwMAAABBBAABswgAAUEIAADTCAABMQgAAOMIAAOBAAACAwQAAiMEAAMBBAABwQQAAoEEAAHBCAAAAQgAA8MEAAADBAADQwQAAYEEAAPjBAACeQgAAIMEAALjBAABsQgAAaEIAAABAAAAAwQAAkMEAAFTCAACgQQAAmMEAAChCAABwQQAAsMEAAKBAAAAcwgAA0MEAAOBBAADYwQAA6MEAACzCAABwQQAAAAAAAKjBAACowQAA4MEAAIBAAAAIQgAA4EEAACzCAABwQQAAXMIAAEDBAAC4wQAAAEAAAOBBAACowQAAcEEAANhBAAAQQQAAmMEAAGTCAAB0QgAAUEEAAFxCAADgwQAA6EEAAHBBAAAkwgAAQMAAAKhCAADgQAAAwMIAALBBAADIQQAAgMAAAEBAAAAMwgAAJMIAAJDBAABMwgAAMEEAAGBBAAAkQgAAmEEAAEDAAACgwgAAsMEAABBBAACSQgAAwMAAAEDAAADQwQAAqEEAAIhBAAAIwgAAAEAAAOjBAAA4QgAA-MEAAAxCAABAQAAAKMIAACDBAAAswgAA8EEAADRCAADAwQAACMIAABTCAAD4QQAAAEAAAChCAAB0wgAAwEEAAKDBAAAoQgAAXEIAAGDCAADIQQAAIMIAAMhBIAA4E0AJSHVQASqPAhAAGoACAADoPQAA6L0AAPI-AAD4vQAAqL0AAHQ-AACYPQAAJ78AAPa-AACIPQAAHL4AABS-AACAuwAAdD4AABy-AAAsPgAAuD0AAHA9AABkPgAA4j4AAH8_AAAwPQAAVD4AAGw-AACAuwAAND4AANI-AABMvgAA4LwAAEw-AABQPQAADD4AADA9AADIvQAAjj4AAJg9AAA0PgAAsr4AAKq-AACGvgAAVL4AAKi9AACYPQAAuL0AAAy-AABcPgAATD4AAMi9AADgvAAAor4AAII-AAAwPQAAPD4AAIo-AABQvQAAcL0AACs_AAAcPgAAXD4AADQ-AAAkPgAATD4AANg9AADgvCAAOBNACUh8UAEqjwIQARqAAgAAzr4AABQ-AACYvQAARb8AAJi9AACAOwAAQLwAABA9AABwvQAAwj4AAPi9AACgPAAAvr4AAHS-AACIvQAAgDsAABy-AABFPwAATD4AAMY-AADYvQAAEL0AAKA8AAAwPQAAXL4AAJg9AAAQvQAAZD4AAES-AAAMvgAAQDwAADw-AABwPQAA6D0AANg9AABkvgAACT8AABQ-AACivgAAgLsAAOA8AABAvAAA4r4AAEC8AAAkPgAAgDsAAH-_AABsvgAAoDwAAPg9AAD4PQAA6L0AANg9AABEPgAALD4AAJg9AAAwPQAAqD0AABQ-AADgPAAAPD4AAGQ-AAAMvgAAQDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=DRb7Bv-ASDY","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["15535685480873256822"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"229922741284283274":{"videoId":"229922741284283274","docid":"34-6-6-Z2556FA2F1A1100F9","description":"Objectives:Recognize and understand various business and economic terms.Create and evaluate mathematical models for real-life situations.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"7","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Precalculus: Mathematical Modeling in Business and Economics","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DMq6wyTGMbE\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFAoSMjI5OTIyNzQxMjg0MjgzMjc0WhIyMjk5MjI3NDEyODQyODMyNzRqrw0SATAYACJFGjEACipoaGdhcm13bmxocmNnaHFjaGhVQ3duVWR1emVXbDNjY0hZYVJEa0kxcWcSAgASKhDCDw8aDz8TzhCCBCQBgAQrKosBEAEaeIEHAQT5Av4AA_kODwYL-QIQ8_kB9gD_APoH__QCBP4ABgcF_QgBAAAEB_H0AAAAAAMA8wD9_QEADf_s-wIAAAAoAP0G-wAAAAUWAPr-AQAA9PcHAgMAAAAdEQP9_wAAAO8EBfz-_wAA9g_-EwAAAAAGAwEAAAAAACAALV_nzTs4E0AJSE5QAipzEAAaYAcQADsB4dzDSDPU1-PGGPDhKcjxxBD_IzD__S3_vg5K373sKP8IuCj9pgAAAAv1Dx4SAJl6qcvU-iUE-cfW2wNNfwkr_-IRA_TswAjtDvkJK9b8JAD4BP0JKRTmce9KMyAALea0GDs4E0AJSG9QAiqvBhAMGqAGAADAwAAA4EEAAPBBAACWwgAASEIAAKBBAABIQgAAyMEAACDCAADAwQAAAEEAAKrCAABgwgAAFMIAAMxCAABAwAAAwMEAACDBAABMwgAA8MEAAMDBAACwwQAAwMAAAHBBAAAwQQAAqMEAAATCAACOwgAAKEIAAMBBAADQwQAAKEIAAETCAAD4QQAAtsIAADDBAAAIQgAA6kIAAPDBAADwQQAAoEEAAChCAACOQgAAGEIAAOBBAADQwQAAUMEAADDBAAAEQgAAoMEAAMbCAAAEQgAAgEEAAKBAAABEQgAAoEEAAADDAADQQQAA8MEAAJDBAACwQQAALMIAAMDAAABIwgAACEIAAITCAAA8wgAA4MEAACDBAACAwQAAHEIAAEBCAABAQQAAOEIAAJbCAABIwgAAQMEAAODBAADQQQAAAMAAAJ7CAAAYQgAAIEEAAFBCAADAwQAAmEEAAOhBAAA0QgAAZEIAAOjBAAAQQQAALEIAADRCAAA4wgAAyEEAADjCAAAQQQAAiMEAAOBBAADgQAAA4MAAAIRCAAAwQgAADMIAAKBAAABAwAAARMIAAKhBAADAwQAAcEEAAFBBAAD4wQAAcEEAAEzCAACwQQAASEIAACjCAABEwgAAAAAAAIA_AADAQQAA-MEAAIjBAADIwQAAkMEAACBCAACAwQAAFMIAAADBAABYwgAAMEEAANDBAADowQAAWEIAAKBAAACAQAAA4EAAAEBBAABUwgAAwsIAAAAAAABwQgAATEIAAEDAAACIQQAA8EEAAEjCAADAwAAA2EEAAExCAAAAwQAAuEEAACBBAADwwQAAKMIAAIBAAAAAQAAAMMIAAFDCAAAcQgAAsMEAABDBAAD4wQAA2EEAAHzCAABgQQAAwMAAAHRCAAAMQgAA0EEAAKDBAACwQQAAKMIAABDBAAAAwgAAkMEAAKhBAACAwQAAkEEAAJBBAACgwQAAisIAABBBAADgQAAAcEIAAMBBAACGwgAA2EEAAMBBAACYwQAAyMEAACjCAAAQQQAAiMEAABDBAAAgQgAAYMIAAJDBAABowgAA2MEgADgTQAlIdVABKo8CEAAagAIAAMi9AAAkPgAAtj4AAPg9AACAuwAALD4AABy-AAAFvwAAmr4AAPg9AACgvAAAQLwAAFA9AACGPgAAcL0AAFy-AAAUPgAAcD0AAHw-AADqPgAAfz8AAJi9AACYvQAAHD4AAJi9AAAQPQAAcD0AAIa-AACoPQAAnj4AAFC9AAD4vQAAQLwAAHA9AADgvAAAoLwAAPi9AAB8vgAA-L0AANi9AAB0vgAAQLwAAEC8AACgvAAAJL4AAJq-AAA8PgAADL4AAAy-AABAPAAAUD0AAPg9AAAcPgAA2D0AAES-AABAvAAAET8AACQ-AACoPQAAmD0AAFC9AACYPQAARD4AABS-IAA4E0AJSHxQASqPAhABGoACAACGvgAAML0AAKi9AAAjvwAANL4AAKC8AABAvAAAUD0AAAS-AADgPAAA6L0AAIK-AABwvQAAEL0AABw-AACovQAAgDsAAAs_AABAvAAAhj4AAPg9AACIPQAABL4AAHC9AACIPQAA4LwAABC9AACAuwAAFD4AAOA8AAAQvQAAFD4AAKA8AADovQAAmD0AAIi9AAA0PgAAfD4AAAS-AAAwvQAAqD0AAIC7AACgvAAAgLsAAKA8AADovQAAf78AAEQ-AAC4PQAAUD0AAOg9AABcvgAAEL0AAFw-AAC4PQAAqD0AAFA9AAAkPgAAcL0AAMg9AAD4PQAAiL0AAKg9AACgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=DMq6wyTGMbE","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["229922741284283274"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"4901952468141397944":{"videoId":"4901952468141397944","docid":"34-0-0-Z580ABC597E1A3DE1","description":"The data analytics encompasses six phases that are data discovery, data aggregation, planning of the data models, data model execution, communication of the results, and operationalization.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"8","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Data Analytics Life Cycle - Six phases of data Science development process.","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=j1hezywDG_w\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTNDkwMTk1MjQ2ODE0MTM5Nzk0NFoTNDkwMTk1MjQ2ODE0MTM5Nzk0NGqIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxOnFoIEJAGABCsqiwEQARp4gQQNAP0C_gD1-AYJDwb8ARD38_b2AAAA6w_9_fr_AAD1BgYBAQAAAA_79Q_6AAAAAwH5BfL-AQD5BfgHBAAAACABCf_6AAAA-Ab5AP4BAADr9Pb_AwAAABcF_gYAAAAACQsE7gAAAAD0BfYFAAAAABr6-PYAAAAAIAAtbQzOOzgTQAlITlACKoQCEAAa8AFcAfv_t__9_RzlAQH5GOQBgQUL_yH47wC1DfoB2BDhAPkJ_ADw7wwAExEvAOMX_AAh5_QAI_kLAB8SEAAQ_v0ACPUUADvpCgEpDBECB_oK_woR__8bCQr_8OgOAPrkB_8P_v8C8vHwAfUYAgDpFRwAEf3-Bw4DBQULHQEC_QgABAQV9fkF7gj7-wYBAuX_BwYJ7v0GLxH3_wkH8wXw9vcH5fsM-Qf67wMpGf0BBucI_foGFvcHFPf-GgXyARIg8_v7DgX7DfIGBxMSC_k17AwJ-vYY9vn1Dvr_FuoGD-4H-wIeE_3iD_78Bu_7CyPwBvQgAC1uJ0g7OBNACUhhUAIqzwcQABrAB1cHDL_ag1q8L75ovGtyJz25kS09kjk7PAcsxD2lebI7-iFbvL7UlTsg8xw9AYQ0PHR8xL4chO88mdotvf7Viz4gxJ88hqkxO9z0F75-1DU9qmINPE94kb5nFUw9qeaLun0D0z1XAow7q3ZNPfrV3D03fnI8q6AWPG-LCL1DRwe6I9gYvflGub1Tl5y9ZZrfvOaU4D3m3Le8ttCfPCDrCT7Fbdm8qpk1vL_jSj32C1Y9lvn9vL-aA72RlDk9deuQuuqv9z0xslE6yE0DPeWDeT3_gD084DBRvBcSyzzHRO-8KMFRu9LFpjx4Oyc9tmo2u9Kjjj2ZpA29UN-yPL-eLzzC1SY9yOr7PPCLCz7zP7O74jrGO0PeVz3LStU7S-dDPGJOK730fcC7wzQCPAl8bz0mYwa9SVlQvDRT9bwPtCc8RTQTPGLvKj1-QLk6jtj-ur9aWjx5F8k9w1ABvIh5QL1s22Y77eaUO1Yf2bzKA2y7ZNrIvA-22D1co2-9sO2IPOzeyjxTng894ap8PEO5o7wJslQ8L4wPPJy8nT0sFMQ8uk04u7KjDD3qoAG9yvSwPJmolLzH81k9t447O6Y_kL184Lq7wJ4nOz2RcT34YS69-eaKu90rvj2_CjU9MubPO7XFsTsUWCW8LjnRuyXaH71hBc87cM2-OyZO07z6vm68kOFruzqcnz3aOrg8XHxAO745Er32spK8DuvcuZ0YbTvOoAo8b42Au-xAp7whSqi7z7cJO1vraz2f6Lo9Eh3euDVNjjzMInm9ucKUuKUFmjtZNWM80TriOV3KdD2E4Cc8akhNuSixPzqCCfU7wwcGt2PfJD36Wjw8TK-VOaqaYL0NUaa7KmpGuTuYAz3OCvu7vTHrugooebwcXg685EtTuZ1SNL03n389mISSuKhXJb0yazO9f6equE2G4zxEPMi85R0quRfBmryuDE88LZNhObFVG7y01oa89h5ruNRWNr3NKgK91X4ruGAncL2aEVk9B6eZt5Z2ajxPR1Y9Tcw-uDqOxLz8t5w83RlYueXiubxxaJu95a0INney5Tvf-4s9WufUt7TASL3pADK9UjOXNxJoj7tOg728dTKItkRAtDxqSvQ7zWImuI-BZj07RT29LqMjuLS0LrxUNUU7frrkNpP0-rzzyjU9nMofubIEAz2NlHO7o5Frt1e3tLum2Ey9zTG4N7MxBrsIr729HH2mt6AXDj0XJb09KH8AOR44gr0z8549nOfyuGKCWr1bIGY9ZDW7N3rOTLzobYe8urGbNyAAOBNACUhtUAEqcxAAGmBJDgAYCiXK2R5L4eLuv9-5DuTTAdYF__fd_xIA0cUB6-yRAPj_Pvkl8p4AAAAU5-Py6QAFfy363PHEHTXm8tkR9m41Fx_F6Cjzp_wP-tC0G-raFVUAyeSiEy_upAz5-QEgAC2gYRo7OBNACUhvUAIqrwYQDBqgBgAAYEEAAFBBAACUQgAACMIAAHBBAAAwQQAAdEIAAADAAADOwgAA0MEAAKBAAAAYwgAAfMIAAODBAACSQgAAsMEAABxCAAB8wgAAmMEAANDBAACQQQAARMIAACDBAAA8QgAAEMEAAODAAAAMwgAAAMIAAIZCAACgwAAA6EEAAP5CAACswgAAYMIAAKTCAABEwgAAkEEAANpCAADQQQAAgEIAAIDAAACAQgAAoEAAAGhCAADowQAAbMIAADDBAACIQQAAkEIAABDBAADCwgAABEIAAODAAACIQQAAfEIAAKhBAAD4wgAAoEEAAEDAAACwQQAAyEEAAIDAAADQwQAAhsIAAFRCAAAgwQAAMMIAAIDAAABAQAAA8MEAAFBBAACoQgAAAEEAALhBAADQwQAAYMEAAEjCAAAgwQAACEIAAEDAAADwwgAAYEIAABTCAABQQgAAoEEAABBBAABMQgAAUEIAAHhCAADIwQAAAEAAAJxCAAAAQgAAgsIAALhBAACQwgAAUEEAAPBBAAAMQgAAaMIAAAzCAACAQAAAqEEAADTCAABwwQAAgEAAAJhBAAAAAAAAAAAAAIC_AAAoQgAAqEEAANjBAADQwQAAiMEAAKhBAADQwQAA4EAAAIA_AABUwgAAUEEAACTCAAAUwgAAdMIAAIjBAABQQQAA4EEAAABAAACwwQAAwMEAAARCAAAowgAAcMIAAADBAACIQQAA4MAAAKBBAABoQgAAQEEAADDCAACYwQAAjEIAAIC_AAAAwgAAhkIAANhBAADgwAAAgEEAAIA_AAAAAAAAEMIAAIBBAADYwQAAAMAAAJjBAABMwgAAMMIAAKBAAACAvwAAGEIAAMDAAAAAAAAAwMAAAMjBAAAIwgAABMIAAKBAAACSQgAAgD8AAIDBAAAAwQAAgEAAABDCAACAQQAAiEEAAABAAAAYQgAA6MEAAKBAAAAAQgAAcMIAAADCAADwwQAAQEAAACxCAACowQAAAMIAANBBAADIQQAAQEAAAETCAADAwQAAVEIAAODAAABAQAAAQMAAAMjBAAAwwgAAYMIAAPhBIAA4E0AJSHVQASqPAhAAGoACAABMvgAA-L0AAOC8AAAwPQAAJL4AAES-AAAcPgAA9r4AACy-AACYvQAAnr4AAHC9AADYvQAAlj4AAKA8AAAUvgAAzj4AAIg9AACSPgAALz8AAG0_AACovQAAij4AAPg9AAAsvgAAoLwAAAw-AAA0vgAATD4AABw-AAAUPgAAlr4AABw-AABAvAAAgLsAAHQ-AACAOwAAor4AAIK-AAA8vgAAur4AABy-AAAwPQAA6L0AANi9AAAsvgAAmj4AAIK-AABMvgAADL4AACy-AAAwvQAAmD0AAEw-AADgvAAAQDwAAH8_AACgPAAADD4AACw-AABwvQAAPD4AAJg9AACIvSAAOBNACUh8UAEqjwIQARqAAgAAJL4AACS-AABAvAAAR78AANi9AACAOwAAcD0AAHA9AADYvQAAoDwAAOi9AAAsvgAATL4AAFS-AADIPQAA4DwAAGw-AAAJPwAAFD4AALY-AAD4PQAAlj4AAAy-AACYPQAAyL0AABA9AAAQvQAAQDwAAPi9AAAEPgAAuD0AAHA9AABUPgAAuL0AAPg9AACgPAAAED0AAAS-AACavgAAij4AADA9AAAUPgAAML0AANg9AAAsvgAAcL0AAH-_AAD4PQAAQLwAAAy-AAAwvQAAuL0AAJi9AAA0PgAAjj4AABw-AABwPQAAyD0AABC9AAD4vQAAuL0AAEC8AABAPAAAHD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=j1hezywDG_w","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["4901952468141397944"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1131854125"},"7771845532854954095":{"videoId":"7771845532854954095","docid":"34-7-17-ZE986DC57BE9C0E12","description":"Big data analytics examines large amounts of data to uncover hidden patterns, correlations and other insights. With today’s technology, it’s possible to analyze your data and get answers from it...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"9","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Big Data Analytics concepts lecture","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zb_O-doPh4E\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTNzc3MTg0NTUzMjg1NDk1NDA5NVoTNzc3MTg0NTUzMjg1NDk1NDA5NWq2DxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxOMDoIEJAGABCsqiwEQARp4gfj2-_gE-wAD_wUBDgb-AgAEEPP4_v0A8w_29AMB_wD3_AoMCgAAAA0N_wD6AAAACfX2_vb-AAD9GO7-AwAAACkA_Qb7AAAA9wwBBv4BAAD49fQJBP8AAA368_n_AAAABgb79f7_AAH5_fMDAAAAAAzv-fMAAAAAIAAtQR7GOzgTQAlITlACKoQCEAAa8AF_8PsDsgIR_Tj9_wD5GOUBhAUK_x__4gC_7v8Aru_g__kd9QHo8BT_BwUpANkP9wAS9_7_L_8C_wsKCP8aA_0BCgURADXn9AEkAQYA_gL6__ER-wAMBQz_CewJAQoS9v4O8gUB4evaAPEQ-wH0AxMBCgYQAxP7CP_1C_4D_xD__fECBf4bAv4D6wIH9_gVBwUB5vcCBQ33AfP5AQL5EP8D_woDAhH78_0SBgMD9vkJ-fQODfwfFQH8FP8H_fsN9AP-AgEDBuv_APX4__8g8AUEDOgWAu_iAAH_FeoFCef8AvIUBfDj__kE8gYIBfz6-_QgAC0bqEw7OBNACUhhUAIqcxAAGmBTAQAUzyvvxQg5xw3DxOrmBeMTArrw_wTYAPv0EOPs5PGjDB__SOIpFqMAAAAMDBspAADif-7y6BnSGSnqmf4aInUcLB7TsADeDM_2Atrx3_bwMmwA7w2y7TzgvShKHvAgAC3y8Rk7OBNACUhvUAIqrwYQDBqgBgAAiEEAAJhBAACgwQAAEMEAAEDBAACgwQAAVEIAAADCAAAQwgAAkMEAAMBBAAA4wgAAEMIAAJzCAACQQgAA4MAAAIDAAABwwQAA8MEAADzCAADwwQAADMIAAEDBAAAUQgAACEIAAJDBAABMwgAAaMIAAGhCAACgQQAAPMIAAAhCAADOwgAAoEAAAIC_AACQQQAAAAAAAOZCAABEwgAAcEEAAChCAACgQQAAKEIAADRCAABEQgAA-MEAAETCAAA8wgAAwEIAAAAAAABQwQAADEIAAABAAABAwAAAiEEAACBBAAD8wgAAsEEAAMjBAAAsQgAA4EEAAKjBAAAMwgAAusIAAADBAAB4wgAAAAAAABDBAAAAwAAA4MAAAEhCAACkQgAAiMEAAGBCAADIwQAAbMIAACDBAACgQAAAVEIAAABCAAAwwgAAwMAAANDBAAB8QgAAMMIAAAAAAAAsQgAAQEEAAIBCAAAgwgAAcMEAAADAAACwQQAAuMIAAABAAADowQAAiEEAACRCAACAQAAA4EAAAAzCAAAcQgAAbEIAAKjCAAAAQAAAUMEAACDCAAAgQgAAcMEAAKBAAAAAQQAABEIAAHBBAACuwgAAYEEAAKBAAACAwQAAdMIAAEhCAACgQQAATMIAAFDCAACwwQAAGMIAAERCAADwQQAAuMEAAODAAABswgAA-MEAALhBAAAwwQAAEMEAADRCAAAQwQAAEMEAAIC_AACAwAAA2MEAANTCAAAYwgAAWEIAANhBAACAwAAAHEIAAABAAAAYwgAAFEIAAMhBAABUwgAAoMAAAABBAADQQQAAAMEAAHDBAABAwQAAcEEAAKTCAAB0wgAAYEEAALDBAAAwQQAAXMIAABDCAAAMwgAA2EEAAFBBAAAgQgAAQEAAAOhBAAB4wgAAuEEAADjCAAAQwQAAYMEAAIhBAACwwQAAwMAAAGBCAAAAQgAAIMEAALjBAADwQQAAiMEAAMJCAACAwQAAgsIAAKpCAACAPwAAmEEAAEDCAACcwgAAEEEAAAAAAAAgQQAA-EEAAFzCAAAEwgAAfMIAAGDCIAA4E0AJSHVQASqPAhAAGoACAAAEvgAAPL4AAOi9AADYPQAAgDsAAOA8AAC4PQAAF78AAAy-AACYPQAAoDwAAKi9AAAUvgAATD4AAJg9AAAwPQAArj4AAOg9AAD4PQAACT8AAGU_AAAwPQAAlj4AACy-AAAkvgAA6D0AAOA8AADYvQAAMD0AADw-AACePgAAcL0AAKg9AAC4PQAA4DwAAKY-AABQvQAANL4AAIa-AABsvgAAnr4AAGy-AABQPQAAXL4AAJi9AABAPAAAcD0AAKi9AAAEvgAAbL4AAIi9AAAQPQAAMD0AACQ-AADovQAAQLwAAH8_AAAEvgAAsj4AAEw-AADgvAAAQLwAAOg9AADgPCAAOBNACUh8UAEqjwIQARqAAgAALL4AAGS-AAAwPQAAQ78AAKA8AAAQPQAARD4AAJi9AACYvQAAXD4AAEA8AACAuwAABL4AADS-AACAuwAAUD0AAPg9AAAbPwAAMD0AANY-AACgPAAAkj4AAFS-AABQPQAAUL0AAOA8AACAOwAAmD0AAPi9AACoPQAAmD0AAMg9AACGPgAANL4AAAw-AADgPAAAND4AADC9AACKvgAAfD4AACw-AACovQAANL4AAIA7AAAMvgAALL4AAH-_AABQPQAA4LwAAIi9AADgPAAAUL0AAOA8AABAPAAAND4AAAw-AACAuwAAgDsAABA9AABQvQAAoLwAAHC9AACovQAAnj4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=zb_O-doPh4E","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7771845532854954095"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"18002351933952975983":{"videoId":"18002351933952975983","docid":"34-10-11-Z3E91C495277EBE00","description":"Data Science Final Project.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"10","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Data Science Final project","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=uPO01yVoj7w\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTgwMDIzNTE5MzM5NTI5NzU5ODNaFDE4MDAyMzUxOTMzOTUyOTc1OTgzarYPEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E54GggQkAYAEKyqLARABGniB_wkC9f4DAOv8__8TAP8AAfz2_Pj9_QD1APX0AwL_APsA9__8AAAA_gf0B_wAAAADAPQA_f4BAPkG7wACAAAAEwAFBPwAAAAFAf0H_wEAAPH7_AMDAAAABQL9BAAAAAD1CgP6AgAAAPIE-_0AAAAAC_8F_gAAAAAgAC3ovdk7OBNACUhOUAIqhAIQABrwAW36_wG6FhH-MfP1APIn7gCB8Pv_IwXyAMDv_wDM-dcACxf0Adz4GQAFEhz_1wH0_xHi6v8u6usAEv8FACYKCAAXCg0AK-T-ACgLEQL0Avb_-w4F_xkCEgALAxEAE_8F_xcDA_3i69sA_Anz_vzyIQAEEgcAFvL2APUL_gICEwsC7QsLAxT9CAfpBwL_5g77BgT18v_-F_wF9-zxBPMa_gAIAAYEHPMC_h_-9wX_9gL9-fYG_BkL-voUDAcL-Bzx__Hr9voU5wwD6gULASjxC_379hf29PYC__8V6wUI6Aj95wkB9u8VAQD1-gUF_Pr79CAALZD6Tjs4E0AJSGFQAipzEAAaYEf1ABP9K-3zBkbcENL179AM3OEs0egAvvb_1hOxv762FrTzGP9H7w74ngAAADfa9SkQABN_IPv-DdQ9Owq5FucJdFcj-9XR-OeM1_79xt4h5b35JgAQ8aAPFeeCLyTwASAALYYZETs4E0AJSG9QAiqvBhAMGqAGAADgwAAAKEIAAEBBAACQQQAALEIAANBBAAAkQgAAsMEAAFDCAACQwQAAgMAAAJDCAABowgAAAEAAAKpCAACwwQAAQMAAAGzCAAAwwgAAWMIAAIBAAAAgwgAAAEEAALhBAACYwQAAgMAAAOjBAACswgAA2EIAAIC_AADYwQAAPEIAANbCAAAQQgAA2MEAAABAAABAwAAAzEIAAIC_AAAYQgAA4EEAAPBBAAAYQgAAgEAAAIhBAAB4wgAAkMEAAJjBAACoQQAAEEEAAMjCAAAQQQAAoMAAACBBAABkQgAAHEIAAADDAAAAwQAAqMEAAGBBAADAQQAAqMEAAAzCAABIwgAAmkIAABzCAAAIwgAAAAAAADTCAADIwQAANEIAAMBCAABAQAAACEIAAHTCAAAIwgAA6MEAAABAAAAAQgAAcMEAANrCAACeQgAAcMEAADRCAABAQQAAiMEAAFBBAACgQAAAZEIAAKDAAADoQQAACEIAAPhBAABgwgAAUMEAANDBAACQQQAAoMAAAADAAAAowgAA4EAAAGRCAABoQgAABMIAAABBAAAAQAAAoEAAAChCAADIwQAAmEEAAAAAAACwQQAAAAAAAGTCAACgQAAAPEIAACzCAAAswgAAXMIAAAxCAACIwQAAGMIAAATCAACewgAAgL8AAABBAACAwAAAAEEAADDBAABAwgAAUEEAAATCAACQwQAAgEAAAODAAADgQAAA8EEAAABBAABAQQAAhMIAAFBCAABQwQAAZEIAAAAAAABcQgAAUMEAAEDCAAD4QQAAmEIAAMDAAAAwwQAAuEEAAChCAABwQQAAgL8AAOjBAAAMwgAABMIAAFDBAABgQQAA2MEAAAhCAACgwQAAKMIAAFjCAACgwAAAYEEAAKhBAACgwAAAcMEAAMDBAAA0QgAAEEEAAHBBAADAwAAAAEAAAIhCAACAPwAA8EEAAEBCAADIwQAAPMIAAMDBAACAvwAAkEIAAHBBAAA8wgAAQEAAADBCAAAAwAAAQMEAAFTCAADgQQAAMMEAAKhBAAAIQgAAnMIAAKDAAAD4wQAAAMAgADgTQAlIdVABKo8CEAAagAIAAIo-AAAkvgAAyD0AAKA8AAC6vgAAfL4AAFC9AAALvwAAUL0AAKI-AADYPQAAgr4AAMi9AAAcPgAARL4AACy-AACKPgAAoLwAAOg9AADWPgAAfz8AAAw-AACAOwAATD4AAIg9AACYPQAA2L0AALi9AACYPQAA6D0AAOg9AAAsvgAAED0AAKA8AABkvgAAqL0AAI4-AACyvgAAqr4AADS-AAB0vgAAmD0AAGQ-AACOvgAAJL4AAIC7AADYPQAAmD0AAKC8AADovQAA4LwAAES-AABEPgAAij4AAEC8AABwPQAAfz8AALK-AADIPQAAhj4AAIC7AADIPQAAlj4AAOA8IAA4E0AJSHxQASqPAhABGoACAAAwvQAAgr4AABC9AAAvvwAAoDwAAGw-AADoPQAAgDsAABS-AAA0PgAAHL4AAKi9AACAOwAAqL0AAFA9AACAOwAAHD4AAB8_AACgPAAAxj4AAEC8AAAUPgAAcL0AAFA9AADgPAAA4DwAAOg9AACgvAAA2L0AAEQ-AACIPQAAUD0AADw-AADgvAAAMD0AAHC9AAAwPQAAcD0AAGy-AAAUPgAAfD4AAIg9AAAcPgAAgLsAABy-AAAMvgAAf78AABQ-AADgPAAAgDsAAFA9AAAMvgAAMD0AAHA9AAA8PgAA2D0AAIg9AABwPQAAuL0AAKA8AADIPQAAQDwAACS-AAD4PSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=uPO01yVoj7w","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18002351933952975983"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"4777049416909710428":{"videoId":"4777049416909710428","docid":"34-10-8-Z87E15974E827DCD2","description":"Researching and Writing the Literature ReviewA literature review surveys books, scholarly articles, and any other sources relevant to a particular issue, are...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"12","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Researching and Writing the Literature Review","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2FlUsN9Ju54\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTNDc3NzA0OTQxNjkwOTcxMDQyOFoTNDc3NzA0OTQxNjkwOTcxMDQyOGqIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxPJDIIEJAGABCsqiwEQARp4gf799_3_AgDwBQwFEAP9AAz--wj3__8A4voD9gf7AgAE-wEGAQEAAP0C-wUBAAAA9wD1Avr_AAAXCgINBAAAABz8AgMCAP8AEQD88P8BAAAABQj4A_8AAAf_-P7_AAAAAv3-Cf4AAAD_BwX9AAAAAPr08ggAAAAAIAAtCm_ZOzgTQAlITlACKoQCEAAa8AF1-QwCqBcH-3gD5QD3A-0BgQUL_xT59wGr6vcC2f_xASoR9gHW_g0BBPUVAAkMBP8h5_QACe__ABr2A_8aA_0BCPUUACLsAgA19gQA5wrXAPz-Cf8M8AD_DAMRAPQAIv4TCvgA4vjrABAHAAEJ9xn_F_4XBPn1AP4B-_r_9QUGAPwIAgMh2BYA9wUA-dUJDAL9-_gE9AsPAPvlAgYIEfH8ABENBQ0F-AT_CwcEBPvx-_YK_vkE-AUCJAr7BPkXAP8v6PgBAAQG__oPCQAe9RUA6-gS_fn1DvoXD-7_Ceb8AuEA-_foFQUK6ff-Cgb8D_wgAC1uJ0g7OBNACUhhUAIqzwcQABrAB6w4Cb-6Fd08v0UGvFrIrTwz3EA9nmKVvFX-sD02lny61Rg-PFDFzb0z124970wRu_yMu75aUw-8xurFu51Ggj5_Fku8vhLIvLqeCL7WYNA6yYQpPE94kb5nFUw9qeaLuqQJKj1_NBe9Jlg3PTuVAj2fRDo8J7QTO8lXwrzmDAA9Qu4CvUhQHL59Njw8UAGLvMRb5z3qnQC9XylLu5SE5D3WLrc8_BFQPKGUej1kaKu8waq6vL-aA72RlDk9deuQulN5Cz67RzY8yhwmvANmWT1qwSu9PUiPvA9CxLpqfuM6XIpQvC2OEjyR5pk9TP4nPMApJz3wR4u9N9jAPL-eLzzC1SY9yOr7PNaCyD0CI7k8dxvKvDxpwT2kBQM9Fyr_PNXnarwJ0Uk6yUSAPAcmdz1cDT88zdIpvBdc_byUPC09X-HuOwUqLTxGQRA93fNXPGLcaD3hspo9ytw-O4Jvv7yJHVe8FZQaO1WPur2-OTc8F5klvPES_D3AKJy9rShru_TpZ7z6nDY9Pr8cPBz1Rr3dhPE8Ce_Au8olBD3Dv4Q7BCYJOa2aMT0DDJa92B9yPG3jsjosY2M9nI1wO4gkH71DVcw85eFzvF7PIT2GOxU8j3_Ru_LvEjxqNcE7GVDzO_xlQbyF7Nm7h0I6vB_9Jb0DtOu7PVfCO5-dwrs_dpg5G7P0upsbqD3HybM7TqgWO-A9UbyDQLi8PUXQu1RAtbwhrTU7UG2yu8wMm7zzwKy8ySnPO8jqVjx2HvA81O9Cu8GVx7wzKAS9G-5DumYJvDy9cMY7FO-dOonAtz3utfs84pUSuLX0jTxwmOi8a6DiN0P4AT0ml_W8mQseup4Sa73yYyc8jR9AOUWNOD3BbAc9CtIeOaWAFzz1QR470mpjuYZWJ7yKWc89h3ENORDJkLyNQUy8EnOmuMayC7xvXVa8dDCQtwipwLwEqdS869lHOauzmrxN-0E8WKtDt3joYLz7Lya9QxYpNXisI7yun349fQTTOHVHNbwd00k9-ywyt_-AHb1dhI6828OBt7ETgzy2sbO9FanpONpO5TxkLIk8fJqYuPlTHr1X9J29H32FNzW2lzzntF08wUDnOLfEOz0_3pC8Ud-FOBKrhT2fmwy9_MEGuZ1_Gz2BcAo9yx4ouQf03bzoFIQ9pvkrtvTIGTx40Kw83TIjOFqv5zn8za-9GIkot9WU5Dy-Nqa986NNuGGsyjx40509kwuFOLoTrLxy3Lk9dDAYuXUeVb2U2aC8fylKN459JDxg26y8UZiJtyAAOBNACUhtUAEqcxAAGmBGBQAZEPci-OpV5-Dl0BP78xUKGcIU_zTFAO4F8PIPCei5KQz_XdMBG6oAAAAfyO8aBQDBdu-99B_yG-zN9-_tEH-7JxH06SoCyNvE-enbJOYZSVMA3eivJlIP0vkdLeYgAC1boB87OBNACUhvUAIqrwYQDBqgBgAAUEEAAJZCAAAUQgAAgEAAAJ5CAACMQgAAUEIAAJjBAACwwQAADMIAADDBAAD4wQAAPMIAAAAAAADMQgAAoMEAAIBBAACCwgAAgEAAAFDCAADwwQAAlsIAACDCAADIQQAAMMEAAIC_AABwwQAAcMIAACBCAACAQQAAgMEAAMhBAACGwgAAFEIAAEzCAADIQQAAyEEAAMJCAACQQQAAWEIAAGBBAACYQQAAKEIAAIDAAACoQQAAQMIAACDBAABQQQAAAMEAAKBAAADmwgAAMMEAALDBAAAAwAAAmEEAAIBCAAAAwwAAAMIAAKDAAADIQQAAMMEAAJjCAAAQwgAAFMIAAGRCAADYwQAABEIAAKhBAAC-wgAAwMAAAEBCAACsQgAAPMIAAFBCAACAwgAAEMIAAJDBAAAMwgAAgEEAANBBAABwwgAAlkIAAMDBAABwQgAA4EAAAADAAACgQQAAwEAAAKBAAACAwAAAwEEAAIxCAADgQQAA4MEAAGDBAACAwAAAEEEAAJDBAACgQQAASMIAAMDAAABEQgAArkIAAGjCAAAgwQAA4EAAAFzCAAAwQQAAFMIAAEDAAABQQQAAQEAAACBBAAAAwgAAQMAAAChCAAAUwgAAQMIAAPjBAACQwQAA4MEAAKDBAAAowgAASMIAAIjBAACYQQAAwMEAABDBAADAQAAANMIAAABAAACwwQAABMIAAAxCAACAwQAAAMEAAIhBAACAvwAAcMEAADDCAACYQgAAgMEAACRCAADYwQAANEIAANhBAAA8wgAAwEEAADRCAAAwQQAAXMIAABBCAAAgQgAAMMEAAABBAACAvwAAVMIAADDBAADowQAAkEEAAEBAAAAcQgAAcMEAAABAAAAEwgAAmMEAABBBAABAQQAAoMAAAPDBAACowQAAwEAAACBBAACAPwAAEMIAAEDBAAAsQgAA4MAAAKBBAABIQgAALMIAAKDCAACgQAAAyMEAANBBAAAwwQAAVMIAAATCAAAgQQAABEIAALhBAACkwgAAAEIAAEDBAACoQQAAnEIAAKTCAADgQQAAWMIAAAhCIAA4E0AJSHVQASqPAhAAGoACAAAMvgAABL4AAJI-AADIPQAA-L0AALg9AAAwvQAAzr4AAPi9AAAcPgAAgLsAALi9AABwPQAAND4AAPi9AABAvAAAQDwAAHC9AACePgAA5j4AAH8_AACAOwAAmD0AAOg9AAAEvgAAQDwAAIC7AACgvAAAZD4AADQ-AACAOwAAgDsAAIC7AABMPgAAXD4AAMi9AAAwvQAAZL4AADy-AAD4PQAArr4AAEA8AABcPgAAur4AAEC8AACIvQAAQLwAAIA7AABwPQAAiL0AABA9AACoPQAAHD4AAPg9AACAuwAAcL0AADk_AAD4vQAA-D0AADQ-AACovQAAED0AAJg9AADYPSAAOBNACUh8UAEqjwIQARqAAgAAML0AAJg9AADgPAAAHb8AABC9AADoPQAAuD0AAAQ-AACovQAAdD4AAAy-AADYvQAAuL0AAPi9AABQPQAAUL0AAOg9AAAjPwAAML0AAP4-AAA0vgAAgDsAABC9AADYvQAAEL0AAPi9AADgPAAAoLwAAHA9AADoPQAAML0AAKg9AABwPQAA6L0AAHA9AAAQvQAAoDwAABC9AADYvQAAij4AAIC7AACIvQAANL4AABA9AACOvgAAuD0AAH-_AACgvAAA-L0AADQ-AACAOwAA4LwAAOC8AAAkPgAARD4AABA9AADgPAAAEL0AAFC9AACYPQAAML0AAIg9AAAUPgAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=2FlUsN9Ju54","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4777049416909710428"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1949129444"},"9612121314434172745":{"videoId":"9612121314434172745","docid":"34-10-13-Z99F8894B95DC0FF2","description":"Systems Development Life Cycle (S D L C) Planning Analysis Design Implementation Describe the basic systems development life cycle and its phases.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"13","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"System Analysis: Systems Development Life Cycle (Planning, Analysis, Design and Implementation)","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pdaeQKC57_g\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTOTYxMjEyMTMxNDQzNDE3Mjc0NVoTOTYxMjEyMTMxNDQzNDE3Mjc0NWqIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxPTAoIEJAGABCsqiwEQARp4gfQI-wf9AwD0BAUB-QP_ARv2_Qb2AgIA9QsDBv0C_wD-_AIE9wEAAAL9-AIJAAAAAwH5BfP-AQANBvUDBAAAABvwAgH7AAAA_A4F_v8BAADz8_j1AgAAABb7_P4AAAAA9wML_AEAAADqBfsBAAAAABgK8_sAAAAAIAAtIz_cOzgTQAlITlACKoQCEAAa8AF3BfwCwf0B_jD94wDtCt4BgRXw_yP_3gC9_wAAuRDU_wAD8QDm7fYA-QkgAMYGAQAQ4MICI_z8ABwP_P8oDhgACB0ZADvk8gEyAP0A4RHn_xAI-_8mDSr_Fe0JAPEU_P0LDxv_6vzgA_kl7wL28hsCEBkGASj2CAL8BRQE_yQeAPwJAgMeEhIDxvsDAt8WGgEK_P0GCP3uBOno-QT4Ev8E_OMCCBD34wAn7_EH-eED9fIBJgAIFvb9Fw4IDeITA_4D3gL3CvIE_OIaBf876g0J6eYT_Qn6Bvj_GOgGAuH69eLmAvzUDwMBA_YFAPoJ-PQgAC1R9DU7OBNACUhhUAIqzwcQABrAB6w4Cb-6Fd08v0UGvFrIrTwz3EA9nmKVvJQoBT2djUu8VYzOPIrCEz20TVs9tg4QPPyMu75aUw-8xurFuzsZbD6uDOo8gowlPBCw9r0IpE49R7dSu_Whg748d_E7LsWXO6QJKj1_NBe9Jlg3PbVrAj7Ek107oFijuwGcxbt9_sG7oJJuvZita70X5UO9vEkCvVOXDD4Ohrq8T3ulPGkZGT69Xzu9ZRfvOxasJzxxtak8-8Qmu7oRlr0ZPAg8vn0HPeqv9z0xslE6yE0DPei3ND1HLzQ851cOPPN95zzZQPw6iaDFvI1_nzuhjn09_wkuvMUuOz3H90C90FjgPLPtFL13hmQ9exw8Pd1gOD4pplw94xs-OvzrrrvuHmU9iAOyPLNN4LyC_4w76gWCuwl8bz0mYwa9SVlQvG_KprxZYq88YqylPKW8Fj0Xw4-78_jHvL9aWjx5F8k9w1ABvHUM47wNpww8EMvqOicHrb0XVmC89Pt-vEOpDT7oogG-_EGAuszJpT3Xfpc8hf6yOxjMnzyavs-7_qjdO1whDD0j-7s8DzDOuy91Bj1-e229AjD5us-FDzz72T49SFOYvPbwgL0cpJY8OWl1vDX6hz0O_a6845mju2_ltjzc-Vk8LUGGPLP-IjxzdVG9VweAvHTVV71_E-k6XUUxu04CZbzwrIi9-PXHOusB0z2o0Zo8eTjkO8ldj72TN-G7s-InO72mrDysuOc89autOmEtI738eCA8_mveuFbT9Ty5YJo98w4ruUKUL7x81B-9jMv4ucCQmzo8FIU9N-a0OEZuVz2iZy698syTuH82nT1oJci8Rqb6uIbJ8TvyBRC7Q01bOrxTBr12HHg6y8T2OYfk_zzuu_088p2nOSgGjju52q88RIzruKpO4rwTimM984WvOKttVDy3KHO9jqrVt5TR0Lq9LYK90OgAOHFPPL1_1Ta8NKC_OB6mILxXMvS7Wt8WOJ3ipzsjSVW9S56AuBEeyLuRfVA97x2MNgBaEDvWl1s8a7wouChwQb3mJO-8D7p2OfPa9rwI-cq9Wod7tpi8ojsi64C7WXDAOPWisb2obP28Z7CauEmMVLzvSoy9eSvXNkRAtDxqSvQ7zWImuLCvtTyz5py96qksNvfraT0wsg49HMLDuMRr6jpQ5KQ82dP9NlR2lTzWtaw8Rh4kN60N37xlbai9rrOat72vBT2lSQm-rZ6FuKAXDj0XJb09KH8AOXF8Y736JQI-qYEsuVIJpL0f-FM9CUMwOJaRH733PUq9YlNptSAAOBNACUhtUAEqcxAAGmA46gAf5iyw-zVb5vwNzAXmI9v0Kc_-__jr_w8I7MAdbtGv-OUAUNUUBZ8AAAAR6uMZ5AAPf9UxBSHSGyCl1usD3XEhAfzP5gMAoxwQQufFKeoFN3EA6_Ki-UgHtxXtBRogAC1NPRI7OBNACUhvUAIqrwYQDBqgBgAAIMEAAIBBAAA8QgAAIMIAAKhBAACwQQAA0EIAAKDBAACCwgAAEEIAAKBAAACqwgAAlsIAAGDBAAAMQgAANMIAAFBBAAC4wQAAQEEAAODAAADowQAA8MEAAFDBAAAAwAAAYMEAABBBAADgQAAArMIAABxCAACAQAAAJEIAAIJCAAAYwgAA-MEAAJrCAABQwgAAoEAAAJJCAACIwQAAJEIAAABBAAAgQQAAhEIAAEDAAACAQAAAGMIAAMDBAAAQQQAA4EAAAAhCAAC-wgAAqEEAAEBAAADYQQAAXEIAADBBAADywgAAiEEAACTCAABIQgAAiEEAAOBBAACQwQAARMIAAI5CAAAgwQAAVMIAAKDCAAAQQQAAJMIAAKBBAABAQgAAwEAAAIBAAABAwgAAmMIAAADCAABAwAAAAAAAAAAAAADYwgAApkIAAODBAADAQgAAFEIAANDBAACAQQAAdEIAAEhCAAAMwgAAQEIAAK5CAABMQgAAAMIAAAAAAACMwgAAoMEAACzCAACEQgAAhMIAAHBBAAAQwQAATEIAADDBAABwQQAAQEEAAIC_AAAwQQAAgL8AAIhBAABgQQAAkEEAAOBBAADQQQAAqEEAAEDAAAAwwgAAoMAAAAjCAABAQAAAMEIAADDBAAAEwgAAcMIAAITCAACoQQAA-EEAADBCAADowQAAmMEAAODAAAAEwgAAgL8AAHBBAACIwQAAgL8AAGBBAAAcwgAAMEEAAFTCAAAwwQAA-EEAAKDAAABwwQAAAEIAADBBAAB4wgAALMIAAChCAAAQQgAAwMEAACRCAABAQAAAgD8AAOBAAAC4wQAAAMAAAEzCAACAQAAABEIAAADBAADAQQAAIMIAAEzCAAB8wgAAQEAAAJBBAACcQgAAYEEAABDCAAAswgAAaEIAAMBBAABQwQAA8MEAAEDAAADYQQAAFMIAAABAAAAMwgAAcMIAAKBAAAAwQQAAgD8AAHhCAAAAAAAANMIAAEBAAAAQQgAAgMEAAFTCAACiwgAALEIAADDCAACYwQAAyEEAAGDCAAAUwgAAcMIAACBCIAA4E0AJSHVQASqPAhAAGoACAAAsvgAATL4AAEw-AABQPQAAiL0AAHA9AAAcPgAA6r4AAJ6-AACAOwAA6L0AAJg9AACIvQAAPD4AALi9AADIvQAAoj4AABA9AABsPgAAyj4AAH8_AABQvQAATD4AAIi9AAC4vQAARL4AABA9AABQvQAAUL0AANg9AADoPQAA4DwAAOi9AAAcPgAAUD0AABA9AAAUPgAAJL4AALa-AADgvAAAfL4AAAS-AADIvQAAoDwAAOC8AAAcvgAADD4AAJi9AACIPQAAoDwAAKA8AACgvAAA2D0AABw-AABcvgAAQLwAADE_AAAwvQAAgLsAADQ-AACIvQAAyD0AAIg9AAAEviAAOBNACUh8UAEqjwIQARqAAgAAHL4AANg9AAAQvQAALb8AABC9AAAQvQAABL4AABC9AADgvAAAjj4AALi9AAAEvgAATL4AAHy-AABwPQAAgLsAAIA7AAAvPwAAuD0AAJY-AADoPQAA2D0AABA9AADgPAAAJL4AAII-AACIvQAA-D0AAIi9AADYPQAAcD0AAMg9AAC4PQAABL4AAOC8AAAwPQAADD4AADA9AACavgAA4LwAAKA8AABcPgAAuL0AAIA7AABAPAAAUD0AAH-_AADgPAAAFD4AADC9AAAwvQAAfL4AAHC9AAA0PgAAyj4AAJg9AADIPQAAEL0AAAS-AADgPAAAML0AAHA9AADoPQAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=pdaeQKC57_g","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["9612121314434172745"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"583604722"},"735823070467653120":{"videoId":"735823070467653120","docid":"34-9-6-Z2C8CA67062C6563A","description":"In philosophy and logic, contingency is the status of propositions that are neither true under every possible valuation (i.e. tautologies) nor false under every possible valuation (i.e...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"14","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Propositional Equivalence, Tautologies, Contradictions and Contingencies - Discrete math","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AE7xzBQ_Ux4\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFAoSNzM1ODIzMDcwNDY3NjUzMTIwWhI3MzU4MjMwNzA0Njc2NTMxMjBqrw0SATAYACJFGjEACipoaGdhcm13bmxocmNnaHFjaGhVQ3duVWR1emVXbDNjY0hZYVJEa0kxcWcSAgASKhDCDw8aDz8TuxGCBCQBgAQrKosBEAEaeIECAPT9Av4A9AIMAQME_gH_E_cG9v7-APQGAv8IAv8A8gAI_PsAAAABDfr9BQAAAP339wL6_gAAAg4A-wUAAAAf_fL6_AAAAAoR-w_-AQAA6_T2_wMAAAAMBPgFAAAAAPD7Cvv-_wAABQj-_gAAAAAN-vj6AAAAACAALc6zzjs4E0AJSE5QAipzEAAaYPsVAA8HGOvJG0bN0ffW9CnyF-Mj3Br_0eb_DyDFwgToBe7MFf8qxSPwrQAAAA4lyykYANR09eneBB4lDMHYBtonf-YV9_4SG9WnH_MUMdMJ3xXcVQD28P0d-qTALhT_RCAALUIhJjs4E0AJSG9QAiqvBhAMGqAGAABgQQAA-EEAALjBAAAQwQAAAMEAAJjBAADgQQAAEMIAAMjBAACQwQAAiEEAAMjBAADgwQAASMIAAJZCAADYwQAAEMEAAODBAACowQAAaMIAACDCAAAkwgAAEMEAAERCAABUQgAA6MEAACTCAACywgAATEIAAGBBAADowQAAGEIAAJ7CAABQQQAAIMEAAMBAAAAAwAAA7EIAAODBAAAgQgAAREIAAAAAAAA8QgAAgEEAADBCAACwwgAASMIAAAjCAACmQgAAAMAAAJDBAABIQgAAAAAAAMDAAABAQQAAsEEAAADDAADQQQAAyMEAAABCAAA0QgAA4MAAAATCAAC2wgAAAMAAAIzCAAD4wQAAwMEAAKBAAADAwQAAaEIAAIxCAAAEwgAAcEIAAAAAAAA0wgAAIMEAACDBAAAoQgAA-EEAADzCAAAAQAAA0MEAAIhCAAAgwQAAAMAAALhBAACQQQAAmEIAADzCAACAPwAAAMEAAABBAACSwgAAgMEAAEDCAAAAQAAAMEEAAKBAAACQwQAAAMIAANhBAACAQgAAjMIAAOBAAAAAwQAAMMIAADRCAAA4wgAAwEAAAABBAADoQQAAAMAAAHzCAADgQAAAgEAAALDBAABwwgAA2EEAACBBAAAowgAAHMIAABDCAACowQAAQEIAAPhBAAAwwQAAEMEAAEzCAABcwgAAyEEAAFDBAADYwQAALEIAAHDBAACAPwAAiEEAAMDAAAD4wQAA6sIAAEDBAACAQAAAHEIAADBBAACoQQAAmMEAADzCAACQQQAANEIAADjCAAAAwQAA2EEAAOhBAAC4QQAA-MEAAKjBAACAwAAAjsIAAGTCAABgQQAAHMIAAOBAAAAIwgAATMIAAEDBAAAMQgAAIEEAAKhBAAAwQQAAcEEAAEjCAABgQgAAOMIAADBBAACYwQAACEIAAOjBAAAgwQAAgEIAAIA_AADIQQAABMIAAPhBAACQwQAA0kIAAIA_AABYwgAA8EEAAKBAAAAgQQAAmsIAAITCAADYQQAAsMEAABBCAAAYQgAAfMIAAPDBAAAwwgAALMIgADgTQAlIdVABKo8CEAAagAIAANi9AAA0PgAA6D0AAKi9AADovQAAZD4AAOg9AAAjvwAAXL4AAKC8AACYvQAA-L0AAOA8AAAUPgAAFL4AAIC7AADIPQAA4DwAAOg9AAD2PgAAfz8AAEC8AABMPgAAoLwAACS-AACgvAAA4LwAAFS-AADYPQAA2D0AABw-AABQvQAAmL0AALi9AAD4PQAAQDwAAKA8AAAMvgAAXL4AAKq-AACKvgAA6L0AAKA8AABQvQAAXL4AAIg9AABsPgAAgr4AANi9AAAEvgAAgLsAAHC9AACoPQAATD4AAKq-AACgvAAAHz8AAJg9AACgPAAATD4AAOC8AAA8PgAAHD4AACy-IAA4E0AJSHxQASqPAhABGoACAADgvAAAFD4AABA9AAARvwAAQLwAANi9AAAQPQAA4LwAAES-AAC6PgAA-D0AAOC8AADYvQAAjr4AADA9AACgvAAA4DwAAD0_AAAcPgAAvj4AAIg9AACYPQAAcL0AAAS-AADIvQAAUD0AAOA8AAAUPgAALL4AADQ-AADIPQAA2D0AAEC8AACYPQAAmD0AAHC9AAD4PQAAkj4AAJa-AAAQvQAAlj4AAKA8AAA0vgAAQDwAAOC8AADoPQAAf78AAGS-AADgvAAAML0AALg9AACIPQAABD4AAOC8AAA8PgAAUD0AAIC7AADgPAAAcL0AAKC8AABAvAAAZD4AAIi9AABwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=AE7xzBQ_Ux4","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["735823070467653120"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"12474350682906733633":{"videoId":"12474350682906733633","docid":"34-8-1-ZBBD02FD3BC04444B","description":"Criteria for the Quality and Utility of Epidemiologic DataNature of the dataAvailability of the dataCompleteness of population coverageRepresentativeness Gen...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"15","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Principles of Epidemiology: Sources of Public Health Data","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SRFhnG-qfxc\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTI0NzQzNTA2ODI5MDY3MzM2MzNaFDEyNDc0MzUwNjgyOTA2NzMzNjMzaogXEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E6IHggQkAYAEKyqLARABGniBCwkCAAf4ABb9BQkKDP0D6w8C_vn-_QDl-vv-BP4BAPEAAQf9AAAACggHEgEAAAD6_PP49P4BAA7_6vsDAAAAHAgJ-QEA_wAXBv8A_gEAAPjwDwkE_wAAG_sD8_8AAAD__Pr2-_4AAfoA9vsAAAAADPHu-wEAAAAgAC1aGME7OBNACUhOUAIqhAIQABrwAX8DFAO-NQX-XQb4AP3z7QGOHgn_LxHPAJ7m9gLD-M8AJh0JAND9DgEF8xgA7Q7yACzc2P8R4hX_JgEC_x0RBAAUGhAAJ-kCADcL8QDjC9EAAQcO_hX4DQAA9AwA9goYAA8U8_zhFOwABBX5_gr1HP8PGRb_C_UNBwIJ_f7hGhIAAf3w_jnwCgDkBPb56AcM_f379wT6DQcC-uECB_YM8_v74gMI_QL1_B8L-QQA5d_98QEHAAT2BQMsFyII-g_xAx3rBQMK8gT80PwMAT3pDgrc_xv5AvEI-xAD7foW2g705O_6-PUU_BHz-QYGAg0F8SAALd9dLjs4E0AJSGFQAirPBxAAGsAH6V8Sv_mFlzxO-N87d1EPPfwBmj0kMw-8Vf6wPTaWfLrVGD48qj02vTC4yzxpkIK8_Iy7vlpTD7zG6sW7OxlsPq4M6jyCjCU83PQXvn7UNT2qYg08T3iRvmcVTD2p5ou60kiVPf4izbwe7Qk9ERfFPTrDGT2w37g8soJfvfQIpLx5fJa8ICX2veYwCDvyT1-8veMkPh-0g7xkHv07IOsJPsVt2byqmTW8h6_lPPeENrzdoKy82WSIvR4XFT1N9s886q_3PTGyUTrITQM95YN5Pf-APTzgMFG8pOt4PCU2RLzWsPy7HHL9PIWtfj3XhPw3xS47Pcf3QL3QWOA8XqPAvA1ikT2O06s83bQZPj0W0TwDYPq7de-HPY0_Nj3iua08_VLcO6a2t7vkEZw866Y5PNZjkbytx5i8vfnyvKRZND3xKeU8uD_XPB7ygbsqkUQ8Z4dOPb2A6DwJQuQ6gm-_vIkdV7wVlBo7VcmGvQKJwby8Ria88RL8PcAonL2tKGu7asQHPYIQej3_gQu75dUZvSUGAT1dpFA8yiUEPcO_hDsEJgk587GGPeYHzr1whNo7beOyOixjYz2cjXA79vCAvRykljw5aXW8KfRwPUhcNrxCnKC600SEPE_q7LuxAQk8nSFmvJQWDr2TLR68euQKvRN7Kjv_Eum7VqVIvcQaGbxgoNY7oYbPPaUX0juj6rK7hPW_vIALV7xnS3M7YZFbu0lm9Tw6W587Uov3vBJj_Lui4V47wNWVO4IsVT17eIm4dBIlOS7oOL3_qoG5_reSPAZcAT3bHSw4JLVQPe54k7yVUqc6hfkhPcnQDL1qNvy1HHfvPPhmZbwxagI6qki1vXvIrTo-LKS4h-T_PO67_Tzynac5jqv2vC1QfzuNvha63zTgusNOrD3qCRW4V9mtvKMDcr1Mh9e4QgbRu7ZQzbyLRSa5cU88vX_VNrw0oL84USacO062Jzo_Kjo3F1YAvb-GG72Cgh-4cxgGPE6WPz3W3JM3g2iSvOSDHj2na6k3BqyLvMZ0HL0GpSK4BpwlvIxq0b36U_c3THVcPER9MTnoP4q2rOZ5vW1XqLx5afa3ZXOwvMs8A7xNimK4RvHoOpYCt7zG72c3zEouPZtSQ71atku49-tpPTCyDj0cwsO4B_TdvOgUhD2m-Su2NfgUPFRwmTv2x6A3V7e0u6bYTL3NMbg3QyLIPKVN1b1QB3e4oBcOPRclvT0ofwA5cXxjvfolAj6pgSy5seFpvbYqjTuLvMK3HZMkO_dQR7zBSMQ3IAA4E0AJSG1QASpzEAAaYEYGACAMHPXIAkzF4gT52PoIHO4v1e3_Krj_ESzuvAUB5qohF_8x7RMVoQAAAC7pqA_8ANp_Fv6gH_YXAPv1DhkRdOI2HdX7HAWlh7vW_gsw0-X9WgDaDq3zJAOoJxcZHiAALSpJFTs4E0AJSG9QAiqvBhAMGqAGAAAQQgAAQEIAADBCAADYwQAAkEIAAMBBAACYQgAAgEAAAIbCAADgQAAAqEEAAJzCAADYwQAAUEEAAJhCAAA0wgAAEEIAAOjBAAAwwQAAOMIAAODAAAAcwgAAQMEAAARCAAAQwgAAMEEAADDBAAB0wgAAvkIAAKBAAAAkwgAAbEIAAJbCAAAEQgAAUMIAAMDBAAAgQgAA_kIAAADBAAAMQgAAmMEAALhBAAC4QQAAoMAAACjCAACIwQAAyMEAAMhBAABQwQAAFEIAAM7CAAAAwAAAGEIAAFBBAACOQgAAMEIAAADDAABwQQAAAMAAAAAAAACgQQAAHMIAAMjBAAAMwgAANEIAAKDBAADQwQAAMMIAAAzCAACgwQAAKEIAAO5CAABQwQAAEMEAAI7CAABMwgAAoMEAAEDBAAAcQgAAoMAAANTCAADKQgAA2MEAAERCAACgQAAAiMEAALBBAACIQQAAKEIAAODAAAAgQQAAqEEAAADAAAAAwQAAYMEAACzCAACIQQAABMIAAOBBAAAEwgAAgEAAAIJCAAAUQgAAuMEAAIA_AAAAwQAAmMEAABhCAABgwQAA6EEAAIA_AAAwwgAAyEEAAEDBAAAAAAAAjEIAAFTCAACowQAAhMIAAKBAAACAPwAAZMIAAADCAAA8wgAAiMEAADBCAAAwwQAAoMAAACxCAAA4wgAAQEAAAOjBAAAswgAAQMEAAPDBAAAgQgAA2EEAANhBAADAQAAAiMIAADhCAAAAAAAAuEEAAEBAAADoQQAAmEEAAJTCAAAEQgAAFEIAAABBAACAQAAAwEEAAPhBAACIwQAADMIAAEBBAAD4wQAAEMIAAAzCAADAQQAAQMEAAHBBAADQwQAAUMEAAJzCAAAgwQAAmMEAADBCAACAQAAAkEEAAMjBAAAoQgAAgEEAAKDAAACAwgAAuMEAAMhBAACIwQAAoEEAACRCAADgwAAAQMIAAIDBAACIQQAADEIAALBBAAAYwgAAoMAAAKBBAACgQAAAqMEAADjCAACIQQAAAEAAAJhBAAAwQgAALMIAADBBAACAwQAAUEEgADgTQAlIdVABKo8CEAAagAIAAEw-AADgPAAADD4AAMg9AABEvgAAQLwAAKi9AAADvwAAJL4AACw-AABQvQAAcD0AALg9AABUPgAAcL0AAES-AABQvQAAmD0AAIg9AACaPgAAfz8AAKA8AACAuwAAFD4AAFy-AACAOwAA-L0AAKK-AACIPQAA-D0AAOC8AADoPQAALL4AAOC8AAAkPgAAyL0AADA9AAD4vQAAmL0AAOC8AABEvgAAJL4AAHC9AAC4vQAADL4AAOC8AACAOwAA4DwAAAS-AABEvgAAPD4AAIA7AAAkPgAAEL0AAAy-AABAvAAAMT8AAAS-AACIPQAAqD0AAMg9AADIvQAAyD0AABA9IAA4E0AJSHxQASqPAhABGoACAAAwPQAAEL0AAEA8AAAlvwAAiL0AAHC9AABQvQAAmD0AAAy-AAAwPQAAZL4AAI6-AACgvAAAjr4AAOg9AACgvAAAXD4AAAs_AAAwPQAAij4AAIg9AAB0PgAAcL0AAKC8AAAQPQAAHD4AAMi9AABAvAAA2L0AAFQ-AABAvAAABD4AAAQ-AAA0vgAALL4AAIC7AABQPQAAoLwAABS-AACYPQAAMD0AAMg9AADIvQAADD4AAJi9AACovQAAf78AAJi9AAAcvgAAHD4AAFA9AABwvQAAgDsAAPg9AABQPQAAMD0AAKA8AADgPAAATL4AAOC8AACIPQAAVD4AALg9AAAcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=SRFhnG-qfxc","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12474350682906733633"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2718713508"},"14712561674967745922":{"videoId":"14712561674967745922","docid":"34-10-14-ZFA11979B24DA1054","description":"video, sharing, camera phone, video phone, free, upload...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"16","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Java Introduction Lecture 1 Part 1","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fxdShsVxPbA\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjJaFDE0NzEyNTYxNjc0OTY3NzQ1OTIyaogXEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E7UNggQkAYAEKyqLARABGniB_An1AfsFAO_-8ggCA_8BEPoM9vcAAADnBAsIBv4BAPsA-P_8AAAADAX7AgIAAAAG_AkL-_0BAAoFAAgEAAAADAcGA_0AAAAGCQEJ_gEAAPzv_Q0D_wAADQgBBQAAAAD6Dfz7_wAAAP4J_wMAAAAAAPb0_wAAAAAgAC1gPeE7OBNACUhOUAIqhAIQABrwAXAA8QG_CgP9Of3_APkY5AGBBQv_K_HVAcP_AADL-dYA-R70Aeb2AwEFEh3_1gHz_w3t8QApBfcABgQBACQP_AH-BxYBPtf4ARsKCQAICPb_ChH__w8GIQAT-f_--xwI_yIBCv_fB-IACArsAu7xDAQEEwcAJOf__QgGFAECGv8E_AgCAx0GCgTe_wMA6gsNBv3r7QH9BvP_6-r5BPMb_gD85gIHHgHsAjL69wD67fb89A4N_BUVAAMQAPkD-RcA__DyBwAS6_cB4_8D-zXsDAn69hj2-fUO-v8W6gYI6Aj95foL9OIP_vz1-gUF8_j6_yAALW4nSDs4E0AJSGFQAirPBxAAGsAHpOEQv8Lg9TsyDuS8a3InPbmRLT2SOTs8xyKHPX0RI7wVAyS8isITPbRNWz22DhA8dHzEvhyE7zyZ2i29xmumPsiqUjzply2856fYvZxTyTwA4i479aFrvoTTBz10NcO7PaHyPK7ZJbzUzH89nzsBPo-UKD07GLE8_bPuu_h6bb1jFnC9UZZrvIF0pr2bc9M7xFvnPeqdAL1fKUu7YOcmPg3TDb3xHvG8IFKAumbWlDvshNe8mSntvdUpCzzyobo8HejBPYb8frnqSY88wE6gPNXIEz0MiNq8SyyPPVuKdbxzF5u7dM86PbacMD0IhbE7XU4uPTED-rytd6w7VHwyvdBD7TzCjIQ83bQZPj0W0TwDYPq7suSeOwyk1TyFTdM8Vu-COmtuOzwOgvE6VuupPGhxazww5wK833URO3gMLz3VDwA9Uxp2PRillbqahWo7Vg3CPGjFPD0eibg7R2I4vG0bhjwnMpQ7c-lJvQNtPDtROzK88RL8PcAonL2tKGu7LpmpPbpXPD2dbjQ8Q7mjvAmyVDwvjA88gCquPLjvLD0qHVK6GTQZPRQAKL3y45a74cKwvDANoz0wf_I5qqWPvWB5a7yz7Em8p3bmPVx8gLyCm5w78SkFPXp58DzXZBU8s_4iPHN1Ub1XB4C8Ryl3vZE-0jxFw5y7gbEduxZKC72x0rC71bx5PZt9-jmC0DQ75ipRvdiJprwdioo7nRhtO86gCjxvjYC7H9XVvEqcsLxkZpe6uMj9PLbkRz2G77O6dBIlOS7oOL3_qoG5TLMMvECj9DzEFeW5NrgjPUvUIb1i5FK4IojzPLWeq7yyxhQ5gvffPLtHFj0oYSY7qki1vXvIrTo-LKS4JlZGPMOwULo-vV26wLivvOX-uDvLwQI4qk7ivBOKYz3zha84EMmQvI1BTLwSc6a4UmZePP6uqb116F043c_pvHfkfry_NrW4JnMsPBTJHL0vIbQ4wJWJukRjd71e3BW446dxPJ95dD3waQa5MiKsvEpXl7qzUuG2xqAYveiAh7tv1Ri2b_YHvQIQd714-IE36E4QPdelxjxpIoQ4x2KgvSJveb2puKC4PGrMvPKlZr369-W3fOGEPDf8sLpszNQ2ymVNPazG0rxvlBs3vA2FPAwBpbwlNhC4t1bFPGMQUz2To3A4A_XcPIfPbD0ahL62nHlmu2MOwrwkKmU41ZTkPL42pr3zo024QstfPWMatz1ukI44cXxjvfolAj6pgSy5qA0dvYncAj2iPPa26xYGvUkyhry7hZ84IAA4E0AJSG1QASpzEAAaYHT5ACYFJRwIMjbr_vTgEuQA-gUesgT_9e4A5hziBev2D48H-P8M4u0jqAAAAB0B2yM4AA9zIfjkHNEiHPybEPAMf-lBI7Dp-w7C9hzZ-vLxDwAkNgD565v6GNrMDE0X3iAALZLkITs4E0AJSG9QAiqvBhAMGqAGAABgQQAAUEIAANBBAADgwQAAmkIAAGBCAABYQgAAwMAAAEzCAADgQAAAyEEAAGDBAACwwgAAEMEAAJBCAACowQAAyEEAACDCAAAAQgAAkMIAAMDBAAD4wQAAmMEAANBBAABgwQAAEEEAAHzCAADgwgAAgL8AAJBBAAA8QgAA2EEAADTCAAAAwQAAAEAAAAAAAACwQQAA_kIAAKBBAAAwQgAAkMEAABxCAACmQgAA6MEAAEBCAACSwgAAUMIAAPhBAAAYQgAAAEEAANLCAACQQQAA6MEAAKBAAADYQQAAgL8AALTCAACAwQAAgD8AAFxCAAAoQgAA4MEAAMDBAACewgAAZEIAAFjCAAAAQAAAeMIAAGTCAAAowgAATEIAAExCAAAkwgAAgEAAAKDBAAAwwgAAuMEAAGBBAABQwQAAUEEAAIC_AADwQQAAAMAAAFBBAADAwAAA2MEAAJDBAACGQgAASEIAANDBAAAQQQAA0EEAAIC_AAAcwgAAGMIAAGzCAAAAwAAAEMEAAKhCAACIwQAATMIAAHRCAABsQgAAsMEAADTCAAC4QQAA0sIAAARCAACowQAAZEIAAEBAAADgwAAAwMAAAPDBAABAwAAAIEIAAATCAACwwQAA4MEAALhBAABgwQAANMIAAIbCAACQwQAAMEEAAABCAAAEQgAAIMEAADDBAADwwQAAgEEAALDBAAAQQQAAGEIAAGBBAADAwAAAGEIAACDBAACowQAAmMEAAExCAABQwQAAikIAAKDAAAAUQgAA2EEAAAzCAADoQQAAWEIAAKBAAACIwgAAZEIAAIDBAADgQAAAaEIAAJBBAABUwgAAgD8AAKjBAABgQQAA2EEAAARCAABQQQAAwMEAAADCAACgwQAAAEAAAI5CAADAQAAAwMAAABBBAADoQQAAEMEAACDBAADIwQAAFMIAAMhBAAD4wQAAEEEAAABBAAB4wgAAEMEAALjBAACAQgAAbEIAAPjBAACwwQAA-MEAAMjBAACYwQAAEEEAAK7CAAAgQgAA8MEAAChCAADIQQAAUMIAANBBAACAvwAAIEEgADgTQAlIdVABKo8CEAAagAIAAMg9AADoPQAAhj4AAFA9AAAsPgAAuD0AABS-AAANvwAA3r4AAFw-AADgPAAAHL4AAKi9AACoPQAAJL4AAOA8AACoPQAAQDwAAIg9AADyPgAAfz8AAAw-AACYvQAAML0AABy-AACYvQAARD4AAOi9AABQvQAA2D0AAAw-AADYPQAAML0AAIi9AACIvQAAFL4AAHA9AACGvgAAZL4AADy-AAAUvgAAbL4AAHw-AADIvQAAmL0AAKC8AAD4PQAAiL0AADA9AAAMvgAAiD0AAPi9AACIPQAArj4AAGS-AACAuwAAJT8AABS-AAAQvQAAuD0AAOg9AACqPgAAfD4AAJK-IAA4E0AJSHxQASqPAhABGoACAAB0vgAAHL4AAFy-AAAxvwAAfD4AAIg9AADYPQAADL4AALi9AAAMPgAA4DwAAPg9AADIvQAABL4AABQ-AACAuwAAoLwAABE_AACovQAAxj4AABy-AABsPgAA4DwAALi9AACIvQAAQLwAAHA9AACgvAAAqL0AAKg9AAD4PQAABD4AAOC8AABwvQAA6D0AAMi9AABAPAAAgj4AAGy-AABQPQAAgj4AAIi9AAC4vQAAyD0AAAy-AADIvQAAf78AAPi9AAAMPgAAyD0AAAQ-AAAcvgAA6D0AAIA7AACOPgAAiD0AAOA8AAAcvgAA4LwAAJi9AACgvAAALD4AAJi9AAAQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=fxdShsVxPbA","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14712561674967745922"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"17222024879660654110":{"videoId":"17222024879660654110","docid":"34-10-10-Z9173855EE13354D8","description":"Although there are many other methods to collect quantitative data, those mentioned above probability sampling, interviews, questionnaire observation, and do...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"17","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Data Collection for Quantitative Research","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=E-IE-a8EWi8\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTcyMjIwMjQ4Nzk2NjA2NTQxMTBaFDE3MjIyMDI0ODc5NjYwNjU0MTEwaogXEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E6YPggQkAYAEKyqLARABGniBAQj6-QAAAPwAEAUHB_wCEQMG-gf__wD0BgL_CAL_APsM_Ab5AQAA-vIC-_wAAAAI7gMM_f0BAAkH-_kEAAAAH_3z-vwAAAD9Cvr3_wEAAO3-9PkCAAAAB__4_v8AAAD__Pv3_P8AAPgAARIAAAAAFf8D_AABAAAgAC0IsdI7OBNACUhOUAIqhAIQABrwAX_4CQSrFgf8YRXtAfsE-AGgGgj_HQ_sAJb1AwLPAuoAHwjsAN7vCgADABz__hUDACDn9QAM-uwAGvYD_w8BCQAJARwALfL8ADP2AwD1A-QA9P33_hL6CwAR_AkA-AkUAAUBCv_t_eQCIgn1Avz5BQMC-wYE-fYA_gEH_f7vDfUEBvIM_xXqFP7xAAYD5_0N-_L3AALs_Bf9--YCBgcQ8fwIAAYEF_38BwoF9QUNAvD-9wn--QD7C_kdAQ0B-xDk_Q3nBAEJ9AT85hcF_yjxC_3v9xEE9foE9hYO7_8K2AgD3_kE_ugCCQLq9_4K-f8D-iAALatKTzs4E0AJSGFQAirPBxAAGsAHpOEQv8Lg9TsyDuS8v41-PR6uED00MM285nUEPisnrbtC5_e7o-YLvnBvSDx-e828FM_hvsGt-7zV5wq9z0p6Pvbc-Dz5QUe9SyMGvkz2tDy59Pk89aFrvoTTBz10NcO7OC_OPM5twrwxb588ch-UPZgHij30cek7b7EMvVZbG71SOMy8ICX2veYwCDvyT1-8uD8XPv5HJr2aKJ28bM_MPUI6H7x3gVQ7oZR6PWRoq7zBqrq88ijAva-txDyFcxE7BTTxPRUkDbw2Q186sd4IPQ4bQLt4p6-7833nPNlA_DqJoMW80sWmPHg7Jz22aja7xS47Pcf3QL3QWOA8v54vPMLVJj3I6vs899a2Parw1DloVwQ7PGnBPaQFAz0XKv88s743vLcdBbz6t4k734iuPQSJEjxOGCC8n_W-uxJBBj1PyTk80YWHPBqPjDonVwi7pmoxPTPOVT1LQp66U51EvIZ4IDtRgI08WGttvUKP3ruLPtW8uOr6PYTZJL1lyIy8s_IJO4HMbj0exn88rIt7vftRWT3Bgw88JeJyPRYgwDwak4w4M1b2PLibm72WIKc5beOyOixjYz2cjXA7N9JDvVXCcrsCuky7W3IGPQdTXjyk8Mk7OiF0PN6BsLwbZJY7LbrQu5GEWL2eB3u7_1hIvdw2gjxvwc66ccmxvJf8FTzRvVo7mxuoPcfJsztOqBY7lNTwu5YgxLtn7--6Hz9lvCyI3DxnGoO7KlkpvJtUVL1vHdI7ojXQPBB85zyccw27R9DzvAjoHTt-T0i5TLMMvECj9DzEFeW54eSYPXt5Ljvhu2Y5a-M-PHQInLxttWy5kEc1PeKNrzulgkK66X_5vTa6ObyW9EU5c4nAOmQsyTwzHzQ4KAaOO7narzxEjOu4hlYnvIpZzz2HcQ05yR8KvJHhgrxiGr643FS0uqPAjLzQkW05CKnAvASp1Lzr2Uc5QZR5PCLCnrrKP0w31FY2vc0qAr3Vfiu4SXffOtMkwjwLXRY2rQ4lPFHAFj0NyVW3_4AdvV2Ejrzbw4G35eK5vHFom73lrQg29Oi8PEOjJT2MF9u3tMBIvekAMr1SM5c3Oa4LPSiFFrwBT0M3fOGEPDf8sLpszNQ2F9MRPUbZgb07_hM4cRhxPa-6aTx8PDC5vOZ6PJxJID2PQzY4gRYeOzwj2zwm35A4XvSVvADxab2QVkm1va8FPaVJCb6tnoW4oEpSPQc4jj0Vkow47cSbPEVJyD3uUgq5lWlPveevqbvwvLc2wcWOu2IVr7xBcTM3IAA4E0AJSG1QASpzEAAaYE4CACMq8hrH2UrLx8nX-PHd8e8g4Rv_6gT_Dve7oxLn_ZHu__8g2goDoQAAABPBCy4WAPp_CcnoAQDrKMn0BgM3fq83IxvARQfK2uMErLUx9hEqMQDnCJtHEC7ALgDP5iAALQu6ETs4E0AJSG9QAiqvBhAMGqAGAADgwAAAwEEAADBCAADAQAAATEIAAHRCAAAgQgAANMIAAODAAAAQwgAAoMAAACzCAAAQwgAA6EEAANBCAADAwAAAQEEAAFDCAACwwQAADMIAAIjBAAB0wgAAqMEAAJhBAADAwAAA4EAAAODAAACkwgAAdEIAAMBAAACAQAAA4EEAADjCAADAQQAAcMIAAARCAACQQQAA_kIAAEDAAADQQQAAIEEAALBBAAAEQgAAgMAAAFBBAADgwQAAUMEAAIDAAACgwQAAwMAAAPTCAACIQQAAAMEAAKhBAACYQQAAlkIAAADDAAAUwgAAgMEAAKDAAAAgwQAAhsIAAMjBAAAUwgAAHEIAAHDBAABAwQAABEIAAKDCAADQQQAACEIAALBCAADIwQAATEIAAILCAAAAwgAAgMAAAEDCAAAUQgAAGEIAAKLCAACwQgAAqMEAAKhCAABwwQAAgEAAAGBBAABAQQAAwMAAAABAAACQQQAAGEIAAGhCAAAcwgAA4EAAACDBAADYQQAAoEAAACDBAADQwQAAQEEAACRCAABYQgAAbMIAALDBAACAvwAABMIAAHBBAAAkwgAA4EAAAIDBAABgQQAAgL8AACzCAADoQQAAUEIAAFDCAACAwgAABMIAAODBAACwwQAAgMEAACTCAABYwgAAUMEAAKBAAACQwQAAcMEAAIBBAAAkwgAAwEAAADDBAAAowgAAyEEAAFDBAACIwQAAcEEAABDBAADYwQAAhsIAAIBCAAC4wQAATEIAAJBBAADQQQAA0EEAADDCAABAQQAAaEIAAHBBAADwwQAAXEIAAFhCAAD4wQAA4MAAAFBBAABwwgAA0MEAAEDBAAAQQQAAgL8AAFxCAAD4wQAAoMAAAGjCAACgwAAAcEEAAFBBAABwQQAAQMEAAEDCAACYQQAAYEEAAGBBAAAswgAAgMEAAIhBAAAAQgAA8EEAABxCAACowQAAisIAAMhBAAAAAAAAGEIAAEDBAABswgAA6MEAAKBAAABAQQAAYEEAAGTCAADIQQAASMIAAJBBAABQQgAAnsIAAADBAABQwgAAIEIgADgTQAlIdVABKo8CEAAagAIAAJY-AABQPQAAuD0AAFw-AACOvgAA2L0AAOA8AADevgAARL4AAFw-AAAwvQAAoDwAAJg9AAA8PgAA6L0AAEy-AAAQPQAAHD4AAJY-AAADPwAAfz8AAJg9AADIvQAAXD4AAMi9AADovQAAUL0AAIq-AAAcPgAAkj4AAKC8AAD4vQAAcD0AAOC8AACYvQAA4LwAAJi9AACCvgAAbL4AAOC8AABMvgAAiL0AAJg9AABMvgAA4LwAACy-AADIPQAATL4AAKC8AADIvQAAPD4AAJY-AAD4PQAAgDsAABy-AACAOwAANz8AAJi9AABMPgAAFD4AALg9AACoPQAAND4AAJK-IAA4E0AJSHxQASqPAhABGoACAABMvgAAPD4AAOA8AAAtvwAABL4AAKA8AAAEPgAAMD0AAOA8AABcPgAAiL0AAGS-AAAUvgAADL4AAJg9AABAvAAA2D0AAD0_AACgPAAAuj4AAFC9AACYvQAA4LwAAKi9AAAQvQAADD4AAFC9AAAQPQAA2L0AABw-AAAQvQAAyD0AAIg9AACgvAAAJD4AAAS-AABQPQAADL4AACy-AAD4PQAAMD0AAFA9AADYvQAAcD0AAIK-AAAQPQAAf78AAPi9AABUvgAAUD0AAFA9AABQPQAAMD0AACQ-AAB0PgAAoDwAABA9AACoPQAAoLwAAEC8AADIPQAAiD0AAHA9AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=E-IE-a8EWi8","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17222024879660654110"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"4101813225"},"16903461939129637629":{"videoId":"16903461939129637629","docid":"34-3-15-Z0B2948B843EE330C","description":"Exploratory Data Analysis refers to the critical process of performing initial investigations on data so as to discover patterns, to spot anomalies, to test hypothesis and to check assumptions...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"18","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Exploring Data Analyze (EDA) with Summary Statistics : Data Mining Porcess","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QRNxPjhj93g\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTY5MDM0NjE5MzkxMjk2Mzc2MjlaFDE2OTAzNDYxOTM5MTI5NjM3NjI5arYPEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E_sHggQkAYAEKyqLARABGniBAwAFAfwEAAP2-wgGCPwCCQj_-PcAAADkBAP2_vwCAAEL-gAGAQAAB_7yCAIAAAD8AgME9v4BAAj89v34AAAAGAL9APgAAAAFFAD6_gEAAPgBCv4CAAAAEQkIAf8AAAAABwL3AwAAAAEH-PoBAAAABvYA9gAAAAAgAC0dlt87OBNACUhOUAIqhAIQABrwAWjyAAC_Gfz-M_L1AN8d6gCBBQv_MQb7AL3u_wC59-0ADwvrAcnyF_8FEh3_3PPlAADp8v8w_gL_JvMA_xkPAwAOBgUBI-EeAi8QAgAE-fQAAgn9_yX5HgET7wkA_Af9_hf0Dv3SAOMA7xbxAPQDEwH-Bw0BHfIAAQABDP3yDgEE8QIF_gYGDAbZDQ3__AH-Bgj-4QAUE_gG6fcB__4WCPoIAAcEHwn8AhwJBQr_3v0A_AAK-BoL-voWGhAGEhz8BPnq__8V7QH96_oFAB71FQD8BhcB--kPBwMK9gID-xD79PMG9O4jBwD6-g4K_Pr79CAALW4nSDs4E0AJSGFQAipzEAAaYBbzAC31ELzXDyrK893Z988dws5Gnh3_1PP_vAfH1NHx4KzsL_9P7hkNmwAAADDdAC4KAMh_8OfLC8oAF97HBQQ4XxYr_97KChbg1fDKwugz1cs5YAD1Arj5UgbDBB3JGyAALeVoFDs4E0AJSG9QAiqvBhAMGqAGAABQQQAAQEIAAIBAAABQwgAAIEIAAARCAABwQgAAIMEAAITCAACAwQAAAEEAALbCAACYwQAAqMEAANpCAAAgQQAAQMAAANDBAAAowgAAEMEAAIDAAAAUwgAAgL8AAMBAAAAAQAAAAMAAAJjBAABUwgAAjkIAAADAAABEwgAA6EEAAJzCAACQQgAAfMIAAHDBAACOQgAA_kIAAAzCAACAvwAAyEEAABxCAABQQgAAgL8AAMDBAAAAwQAA4EAAAKjBAACAvwAAQMAAAMbCAACgQQAA4EEAAIA_AACmQgAAUEIAAADDAABAQAAAkMEAAODAAACAQQAAUMIAAMBAAAB4wgAAKEIAADDCAABQwgAAAEEAALjBAAAgwQAABEIAAJhCAACIQQAAmEEAAJLCAAAcwgAAoMEAAFDBAAAQQgAA4MAAAJ7CAACaQgAAmEEAABBCAADowQAAqEEAADBBAADYQQAAoEEAAIDAAADgQAAAPEIAAHBBAAAUwgAAqEEAACDCAABQQQAAoMEAAIBAAABQQQAAgEEAAIRCAABYQgAAUMEAAKBAAAAAQQAAJMIAAPhBAABEwgAAoMAAAABBAAAEwgAAAEEAAFTCAACIQQAAlEIAAAzCAABUwgAAqEEAAMhBAAAAAAAANMIAAOBAAAAYwgAAEMIAAMBBAABAwAAALMIAADBBAACIwgAA-MEAAMDBAACowQAA8EEAAHDBAABgQQAAgMAAAIA_AADQwQAAsMIAABhCAAAkQgAA6EEAALhBAAAoQgAAAEIAADzCAABQQQAAHEIAACRCAAAwQQAAHEIAAFBBAAAYwgAAQMIAAIA_AABAwAAAKMIAANjBAABwQQAAEEEAAIDAAABAwgAAqEEAADDCAABAwAAAiMEAAGRCAAAIQgAAwEEAAADCAAAUQgAAwMAAAIC_AAAQwgAAoMAAAKhBAABAwQAA4EEAANBBAAA8wgAAhMIAAEDBAACQQQAAeEIAAI5CAACGwgAAUEIAACRCAADAQAAAgL8AAODBAADIwQAAQMAAAATCAAB8QgAADMIAAEBBAAAQwgAAMEEgADgTQAlIdVABKo8CEAAagAIAAKg9AADgPAAAJD4AADC9AAAUvgAAgr4AAKC8AAATvwAAVL4AAPg9AAC4vQAAcD0AAAy-AABUPgAABL4AAIK-AAAcPgAAuD0AAEQ-AADmPgAAfz8AAEC8AAAQPQAAML0AAMi9AACovQAAmD0AAEC8AAD4vQAALD4AAMg9AADIvQAA2D0AAEy-AAD4vQAAcD0AAPg9AAC4vQAAJL4AAMi9AAD4vQAAmL0AAOA8AAB0vgAAUL0AAEC8AADOPgAAML0AADC9AABUvgAABD4AANg9AAAUPgAAUD0AABy-AACgvAAAOz8AAFC9AADoPQAAqD0AAOg9AACAuwAAND4AABC9IAA4E0AJSHxQASqPAhABGoACAADovQAAcL0AABw-AAA3vwAAoLwAAAw-AAAQPQAAoLwAABS-AAA0PgAABL4AABS-AAA8vgAAPL4AAHA9AACAuwAAyD0AAC0_AABQPQAAnj4AAAw-AAC4PQAA2L0AABC9AABAPAAAyD0AAAS-AABwPQAAuL0AAGw-AADgPAAAcD0AAOg9AABMvgAADD4AAIg9AADYPQAAuL0AAJq-AACYPQAAiD0AAIg9AACgPAAAmD0AALi9AAC4vQAAf78AAOg9AACoPQAAQDwAAIC7AAAEvgAAqL0AAPg9AABkPgAAiD0AAFA9AADgvAAAuL0AAHA9AABwPQAAMD0AADQ-AAD4PSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=QRNxPjhj93g","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16903461939129637629"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2053229265"},"7815361902857713297":{"videoId":"7815361902857713297","docid":"34-8-1-Z7B1D2FCF5EBADA0F","description":"The adjacency matrix, sometimes also called the connection matrix, of a simple labeled graph is a matrix with rows and columns labeled by graph vertices, with a 1 or 0 in position according to...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"19","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Data Structure and Algorithm: Representing a graph as an Adjacency Matrix and Adjacency List","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5gvDE5fy9YY\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTNzgxNTM2MTkwMjg1NzcxMzI5N1oTNzgxNTM2MTkwMjg1NzcxMzI5N2qIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxOFCIIEJAGABCsqiwEQARp4gQkI_fUD_AADCwsOAwv6Ag8N8QT0AAAA_AH6Bv0F_gD2ARQBAQAAAPX8Bf33AAAAA_r8-_39AQAOB_QDBAAAACkA_Qb7AAAAERL6-P4BAAD4Afn4A_8AAAkN-ff_AAAA-fz-BAEAAAAF-wQDAAAAAAnuAv0AAQAAIAAte2_JOzgTQAlITlACKoQCEAAa8AFqAwcB3_z7__f37QDfDNAAgQUL_x4Q6wDT3R0ArO7f_-cV8QDo8BX_-wAP_8kO8v__5-UADvMJAS8M8gAo1ggA8gocADvpCgEb_AUBCvLlAOcbDf8iDCb_H_j-AAcRAf4nCREAAgT5_vUD6AEL_y4BBxP7_hoECwbzCBT-7Q8MAgkd8f4EEgoDBg0A-uX_BwYGBPL-Fgf1_PAb_gMC7u0F6AIA_w_45gApGf0B6PUM-__1BwYRAvcB-Q4OBQkn-AD7Cv73Euv3Ae8JAwEg8AUE--oRAQ4EAgHp-QAJCfQA8vb7CP_UKgj6DfIKBwb-A_AgAC1uJ0g7OBNACUhhUAIqzwcQABrAB7qj974xg6c8InxePPcL0bx62UA8eGz6vO1-1b076oO855RbvHnl-j0lsLk9qCLwPJxNl77qPVy5ZI8WvMVVhT5UMG-9m38qvHoXL74IPDA9KZ_UvOC7bb5eipY9FrlMvD6xjryVlCA8i8JOPX9LQD6nSso7gbiGvFuvLj03Wuk7-OddvU8IfDty0kW934pEvOaU4D3m3Le8ttCfPCDrCT7Fbdm8qpk1vFFM3rv2Ocg8Kdw8vPoStb1lI2u8sg3BPB3owT2G_H656kmPPL7F3rwetdO8jMe7vFWnXrxoKyU9-JlEvNLFpjx4Oyc9tmo2u8ApJz3wR4u9N9jAPOrQlL1p78I8b90IPaj8Cz6lg5U9JI6GvCYMdL1dRrs9TCy6PGz7aLy8C688p6xCOSieAz6srVi88eXPO6MXvTsFM-g7ELXIPC5MMD1C-bE9ylX5ub9aWjx5F8k9w1ABvF3_KT0MtcE8P3ScvCcHrb0XVmC89Pt-vCd4FD2oIxu9e5E_POXuEz4Xxzc8wopwuxUB7j2BFTG9M0Y1vJoRGT0w8vK87aIruj0VRj3qa6c8egZDvGXwYT1pUcS8P3T_OvbwgL0cpJY8OWl1vDUpZT2hgbi9alAPO5m6K7xMh3M8Zx_xO79rp7s6w7k81jV_vHQ1Az1_D4O81r-xO04CZbzwrIi9-PXHOpsbqD3HybM7TqgWO1MYJbyzDKy9cQSKOHrkqj0jX668b0iCuSxCVr1IY_68oV0NO0BpqDuTcew9EkQ6ucoInjxrPji9JIlpOQ0WszwIfIk93Kn4OENIbD2abbg8KWUWuXz1LD3Xd7Q8wc9zt1b3A73L2Ts8BBEnuRlNdLtUa4Y8UMi8udugmzwCo-i7XUAsOrQROb03KAu9rX4QOTWVKr3b4rW8ukIPuciD4zx1DOM8vhzZt3PYfbzCR7m9Fpv7uOalCztTuzW9fdzCOLuPq7q1Bbo8Y_gFOf_eF71rt129lx4SOKe9Fz1WbMI8tZdFOUPTmD3LYLE81H91NxpxHD026h07mzJbuK89mLwX9B6-_YqquOexYT3tX349CEMguFRT0r3odM-8L_jFNypY97isCTi9tnJrN6VSRzxggT69v-bSNxlrZL1WxF-9ueslOPPPtz37TVI9xCwiuV7yATyBpBk8NM32NoT6L7sAIwG86qNfNyO1mjwsM4u9LqMzOD-Oxj0r3gi-hyK0uMr0cD0i4Ss-8cuKOHF8Y736JQI-qYEsuecjn703wHE87WSXt3UIObsUnYC9N5eitiAAOBNACUhtUAEqcxAAGmAl8gAUFSHewv877NHl4v_d5vzLFdv3AN7R_wAG4OP_2O_OIfn_AeEi87QAAAAh__gPFQD0ZPLT1QPeFBT6zv8y9X8CBCDJ8y_cpeb8-N_sEOchNVsABNrDEjDx5xQQFRggAC0VJTk7OBNACUhvUAIqrwYQDBqgBgAAkEEAACxCAAAUQgAA8MEAAPBBAADAQQAArkIAADDBAABQwQAACMIAAIA_AACAPwAAHMIAAMBBAABQQQAA4MEAAAxCAAAwwQAAREIAACTCAABAwQAAMMIAAEBAAACYQQAASEIAABDBAABgQQAAeMIAAIhBAAA0QgAA4EEAAEhCAADKwgAA4MAAAETCAACIQQAA4EEAAJhCAAA0wgAAgEEAAKDAAAAQQQAAaEIAAIDBAADoQQAA6MEAAOhBAADIQQAAwEIAAKBAAAAAQgAAqMEAAMBAAAAUQgAAGEIAALDBAACCwgAAIMEAAOBAAADIQQAAXEIAAGTCAAAQwQAAsMEAAFBCAABgwgAAoMEAAMjBAAAsQgAAEMEAAIDAAABkQgAALMIAAIzCAACYwgAAMMIAAIDBAACAQAAAyEEAAABCAAAAwgAA_kIAACDCAACgQQAAzkIAAIbCAADgQQAA2EEAAPpCAAAwwQAAgD8AALBCAACAwAAAMMIAAADCAADcwgAAQEEAAEzCAADAQgAAcEEAAIA_AACgQAAAaMIAANBBAACIwgAAfEIAAJbCAAAgQQAAuMEAABhCAADwQQAALEIAABDBAACIQQAA4EAAANDBAAAYQgAAAEEAAFTCAACAwAAAHMIAAPjBAABAQAAAEMIAAJjBAABwwQAAIEEAAHDBAABAQQAAAMIAAOBAAAA0wgAAsMEAAKjBAAA4wgAAaEIAACBCAACAwAAAoMEAANBBAABEQgAAuMEAAPhBAAA0wgAAdEIAAHBCAABcwgAAyEEAAGBBAADYwQAAkMIAABRCAACAwQAAEMEAAExCAADQwQAAKMIAANjBAADAwQAAYEEAAIhCAABIQgAAiMEAACDCAACowQAAyMEAAADAAAAUQgAAYEEAAIjBAABAQgAAgEEAALhBAACAwQAAoEEAADTCAABAQQAAIEEAAMBAAABAQQAALMIAAKDBAAAYwgAA2EEAALhBAACAvwAASEIAAPDBAACgwQAA2MEAAADAAAAgwgAAJEIAAEzCAACAwAAALEIAAPBBAAAEwgAAQMEAAERCIAA4E0AJSHVQASqPAhAAGoACAACCvgAAEL0AAJo-AAAwvQAAQDwAABw-AACYPQAAJ78AAKa-AABQPQAAmD0AABS-AAAkPgAAUD0AAKi9AAAEvgAAmj4AAIC7AACIPQAA3j4AAH8_AAAUPgAAnj4AAPg9AABwPQAARD4AAEw-AADIvQAA2D0AAIg9AAAsPgAAMD0AAEC8AABQvQAAmD0AAKC8AADIPQAAbL4AALi9AACKvgAAyr4AAJi9AACAuwAALL4AAIi9AABUPgAAkj4AAJa-AACCvgAARL4AAJg9AADIvQAAMD0AAGw-AABkvgAA2L0AADc_AADgvAAAMD0AAEw-AADgvAAA6D0AAPg9AABsviAAOBNACUh8UAEqjwIQARqAAgAAyL0AAIC7AABAvAAAEb8AAOi9AACYPQAALD4AAOg9AABkvgAAQDwAAFS-AACOvgAANL4AAEy-AAC4PQAAQDwAABQ-AAAZPwAA2D0AAL4-AABsPgAA2D0AABS-AADovQAAoDwAAHC9AAD4vQAA4DwAAES-AAAUPgAAcD0AAAQ-AABwPQAAgLsAABw-AAAUvgAAoj4AAFA9AACWvgAAED0AAHQ-AACYPQAAED0AADA9AAAQvQAAmD0AAH-_AAA8vgAAHL4AAEA8AAAcPgAA2D0AAKA8AACoPQAAND4AALg9AACgvAAAmD0AAEA8AAAMPgAAyD0AAEw-AACYvQAAEL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=5gvDE5fy9YY","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["7815361902857713297"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2372408659"},"8315921460547976922":{"videoId":"8315921460547976922","docid":"34-1-0-Z1C76E90788E7C290","description":"Compound event union of the events A and B intersection of the events A and B OddsMutual Exclusive...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"20","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Statistics: Probability Rules, Compound event, Union, Intersection, Odds and Mutual Exclusive","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RLiqxjimmok\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTODMxNTkyMTQ2MDU0Nzk3NjkyMloTODMxNTkyMTQ2MDU0Nzk3NjkyMmqIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxOQCIIEJAGABCsqiwEQARp4ge73CvcE-wD8ABEFCAf8AvwJ9_z3_f0A4AP7Cwn8AgAG9PoE-AEAABUM_AsGAAAA9fj__vL-AQDx_gkB4gD_AA0J-fkAAAAA_RICEP4BAADp-_IKA_8AAAYACf8AAAAA-wP_7AAAAAABGgH1AAAAABP-7QMBAAAAIAAt6ePEOzgTQAlITlACKoQCEAAa8AF54AgBxgcO_gb24gDcDcsAgRXw_xgf5gCuDvoBxfjSABknFQDj_w3_HRYSAKkjAAEs9Or_EPIKAT7oCAAgIfoB4_YZAR_c9gETHQYAB9ruAesy_P_96gEA_PbsAf0D6gAVC_cA9yPP_gAF5gMIGSsC8QgUBQsDEgH-7f8A2SEJ_wnd-PwT9PD-8xD7Aub3JwbtAwH9HRcO_fYQ-QAREf0BAAEaARcW5_768fcM9PgL-O38-Pz_-vsAFPIQAOITA_76EAb6AewZAv70D_ku7w386eYT_fP0A__sAPIL_-cCBf8jAwbwM_r_-u8P-gnw-PggAC1R9DU7OBNACUhhUAIqzwcQABrAB_Et5L4zxTc99UccvElSTb1XP6Y9GNkEvcyll71xqvU8PTyVPCurhD1piG89Dwlfu5xNl77qPVy5ZI8WvJ1Ggj5_Fku8vhLIvO_lTr4QqEM9GKzAu6dZgL7i0uI4B5ovvduwfD2QIVE9hZwQPKA0xD2m1VC9Ef_WOc76FD2plRO9lDlRvam_vr3W8Wu7vQHmvNfqwT038JS9CekfPGkZGT69Xzu9ZRfvO6kVtj06vWM5vR_1O_oStb1lI2u8sg3BPIB_Cj4C_yo9NtUsO-i3ND1HLzQ851cOPIO-lL1T_RQ722POvA97hj3suZE9OaErvc8w1T1PvWS9O08BPTlCtr2kZpQ9T7C_PCcXEz5P1XM9FamwPMZhqr2rW5097tSaO7ixmTxhBwQ9utt1PHQNrj0eeiG9ysqGuyspYb3Gex890B2OPCTRDbyZaCs9WJBmPGLcaD3hspo9ytw-O8qExDzjAuu8e8RDPNyLHr0D0n48icAJvDRH1j30Nja8oWc9ui6ZqT26Vzw9nW40PEVcpTxzuPa95AQ3PJWrqTwKHhW9KbDCOy91Bj1-e229AjD5uhQImz2r56Q82Fj0O3hilr0v1fG8XeIGO1tyBj0HU148pPDJOyGGZ706aAQ8XYyeu2QntDsnUyI7voFuvHiJID08HPg8m8iKO_5ha73nxN68Tdaou5t-vz0Ud_w89IgrOlsDYL0cS4681jbFu7tcST0clds81lT1OpWe6TwioRK9R-QxOqfZcrywwxo8JUwDuz5hRD3nA329J5a9uAQ2jLw9LNQ8u2NTt78hB7rkPsU7TtYMOn5Rhz2OEze6P3dnuZqjjb3ANoy9ulGWuLGWcbx-c1q89_8zO537xjx14Q08ZBKYuY6r9rwtUH87jb4WuqpO4rwTimM984WvOHA9Tz24Ti29TyUEOb7iJD0f-_S86LT-N3EHRb1nJCe9Qh_cNzrW2js5D2c91DnfNwopZLzrQ229pFnzNhe-eT1_VK49OTHVOFqVDjuQ71c9t3WNuOCK3zwbTOO9kScEOMPT6zxnJvi9IiQkuJRfR7oNZwY8HjFlN2vx6b151iS87i9gNoF73jywxKg8ORQkt0uPuz1CPgi9PGN8OPAXU71na1i81_gTN62n9j2z6pi8ezs6uY8U-Ltb38G9Le91uNezsTzSwPK6vCq3tUJmH7y3QZ29acdROB2XDD1JD0O-VDFNubnBdTwt7Ak-hifnOHAzSz00s8s92dOntwdOrLyuJhO8O8JoN8Byab34O6-8ULi0tyAAOBNACUhtUAEqcxAAGmBp7QBHBQri9hNI3PrD3Q332vsCH7_g_wH9_wAb3672F-WwBRwAJ8gWDKQAAAD05uQqEAD7f_7e4RPXARXZ3sgdEWf7KCyj6ywpzxUHFPXuJzD2Tk8A2AWiCRgGj0IIIwEgAC07yRo7OBNACUhvUAIqrwYQDBqgBgAA4EEAAIBAAACWQgAACMIAALBCAADAQQAAqkIAAPjBAAAAAAAAmEEAADDBAAAUwgAA6MEAAIDAAACwQQAAAEAAAIDAAAAgwgAAEEIAAMDBAACAPwAAgEAAACjCAACAwAAAAAAAACTCAADgwAAAgMIAABhCAABAwQAAMMEAAKhBAACSwgAAMMEAAIrCAAAAQQAAsEEAAGBCAADAwAAAVEIAAIC_AADgwAAAgD8AAJDBAACCQgAAlMIAALDBAABIQgAAYEEAAGBBAACswgAAgL8AAIC_AAAYQgAA2EEAAFBCAACowgAAwMAAABBBAAAkQgAAoEAAALjCAAAQwQAAVMIAAEBCAACCwgAA-MEAAHTCAAD4wQAAbMIAAGRCAAB8QgAAlsIAAOBBAAB0wgAAGMIAACDBAADwwQAAmMEAAKhBAABcwgAAWEIAACTCAAA0QgAAAEEAAIBBAABQQQAABEIAABhCAACgwQAAqEEAAN5CAADAwQAAiEEAAChCAAAkwgAAgEEAADDCAACIQgAAoMAAADjCAAD4QQAAHEIAAKDBAAAkwgAAEMEAANjBAABQwQAAEMIAAHBCAACEQgAAGMIAAABAAACAQAAA6MEAABhCAADAQAAAAMIAAIzCAAC4wQAAcMEAAJDBAAAAwQAAQMAAAMDAAACQQQAAGEIAAABAAAD4QQAAgL8AAAjCAACKwgAAQEEAAEhCAAAAAAAArEIAAAxCAABQQQAA8MEAAFTCAAAQQQAAUMEAAFRCAABkwgAAcEEAACRCAABowgAAAEAAAGDBAACAQAAA4MEAANBBAACwQQAAYEEAAABBAAAMwgAAVMIAALjBAAAgwgAAQEAAAHzCAADgQAAAqMEAAODBAACAwAAAyMEAAOjBAADQQgAAgD8AAADBAABwwQAA0EEAAMBBAACYwQAAPMIAACDCAAAIQgAA-MEAAABCAACAvwAA2sIAAAjCAADgwQAA4MAAANhBAAAQwgAAPMIAALLCAADgQQAADEIAAChCAADwwQAAkkIAAIA_AAA0QgAAqkIAANjBAABgQQAAcMEAAABAIAA4E0AJSHVQASqPAhAAGoACAABMPgAAuL0AAHA9AADIPQAAML0AALi9AAAcvgAAor4AAIK-AADYPQAABL4AAFC9AACgPAAAij4AAIa-AADIvQAA4LwAAFA9AAD4PQAAuj4AAH8_AABAPAAAMD0AADQ-AABsvgAAcL0AAOA8AABAPAAAQDwAABA9AABAvAAA6D0AABS-AABAPAAAMD0AAIA7AABkPgAAXL4AAJ6-AAAkvgAAir4AAOg9AACgvAAA6L0AAIq-AAAUvgAAFD4AAIi9AAAQPQAAJL4AAJg9AAC4PQAARD4AAI4-AABkvgAAyL0AAPY-AAAEPgAAUD0AABw-AAAkvgAAuD0AALg9AACIvSAAOBNACUh8UAEqjwIQARqAAgAAFL4AAOC8AACgvAAAJb8AAOA8AACAOwAAyL0AABC9AAA0vgAAZD4AABy-AAAsvgAAyL0AABy-AAAkPgAAcL0AAKi9AABHPwAAmD0AAJY-AADgPAAAmL0AAJg9AADIvQAAgDsAAJg9AADYPQAAED0AAKA8AAAMPgAA4LwAAAw-AAC4vQAADL4AABC9AACAOwAAqD0AACw-AABEvgAAyL0AANg9AAC4PQAAgDsAAEA8AAAwvQAAUD0AAH-_AACCvgAA4DwAAFA9AADYvQAANL4AAKA8AACIPQAAPD4AAIA7AACoPQAALD4AAPi9AACYPQAAHD4AAAw-AADgPAAALL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=RLiqxjimmok","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8315921460547976922"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1220613111"},"16571133326285067623":{"videoId":"16571133326285067623","docid":"34-1-5-Z3E1302327C3E14CE","description":"video, sharing, camera phone, video phone, free, upload...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"21","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Statistics: Confidence Interval for Mean using large samples","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rs9wl-DtbZY\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTY1NzExMzMzMjYyODUwNjc2MjNaFDE2NTcxMTMzMzI2Mjg1MDY3NjIzaq8NEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E_kMggQkAYAEKyqLARABGniBBv4GAAABAPYBAfn7AQABDQb_AvYAAADoAfj7-f4BAAH5APf6AQAA7fn7AgAAAADx_P0AAwAAAAv2AAH6AAAADQAEDv4AAAD9EQEP_gEAAOz09_8CAAAADP79AQAAAAD-DQYKAQAAAAsE9wQAAAAADP7-AQAAAAAgAC0SQNU7OBNACUhOUAIqcxAAGmBHEQA19Qn11OQr1Qre2u_6GwP04Lsi_wDdANke-rwG8QHOCf__QvwR968AAAAMOOk3RADzagPqzQoGFymr_yAcF38D_QopR_vv7CsxBAPOJ_QAHTEA88Ym8grQ2VL0EBogAC2H-i07OBNACUhvUAIqrwYQDBqgBgAAoMAAAMDBAACwQQAAYMIAAOBBAAB8QgAA_kIAAIA_AADAwQAA4MAAAABCAAAQwQAAbMIAAKDAAAAQwQAA4EAAAMBAAAAYwgAA-EEAALjBAAAwwQAAqMEAAAAAAAAgQQAAAMAAAIBAAAAQwQAACMIAAOhBAAAAQgAAGMIAAExCAABcwgAAAMEAAGzCAADwQQAANEIAAMBCAAAYwgAAUMEAAOBBAAAAQAAAAEIAAEjCAABMQgAAmMEAAKTCAABIQgAAQMAAAPDBAADQwQAAyMEAANjBAABAwAAAWEIAALhBAADCwgAAAMEAAFDBAACgQQAAbEIAAI7CAADAQAAAjMIAAEBBAACIwgAAXMIAAKDCAACAvwAAsMIAAEBBAADowQAArsIAACBCAAAwwgAAIMEAAIhBAACYQQAAgEEAAPhBAABQwgAAMEIAABDBAACUQgAAWEIAAKDAAADoQQAAGEIAAKDBAAAkwgAAcMEAAHxCAAD4wQAA6EEAAKDAAAB4wgAAMMEAAGTCAACkQgAA6EEAALDCAAAwwQAA6EEAABzCAABgwgAA6EEAAMBAAABQQQAAOEIAAFRCAACSQgAAIEEAAHjCAABAwQAAQEEAAPhBAAAkQgAA4MAAAIrCAABAQAAAIMEAAIDAAAA4wgAAkEEAAPDBAADQQQAAaEIAAIBAAADAwAAACEIAAABAAACowgAAGMIAADBCAABMQgAAUEEAAIBCAAAUwgAApMIAANDBAACQwQAAFEIAABBCAABAQQAAgEEAALjBAADgQQAAEMIAAJhBAABwQQAAsMEAAIhBAADQQQAAGEIAACxCAADgwAAADMIAAKDBAABQQQAAUEEAALDBAADAQAAAAMIAAIzCAAAkwgAAYEEAAHDBAAAwQgAA4EAAAABAAABUwgAAMEIAAADAAAAcwgAAJMIAAKhBAADwQQAAAMEAAOBAAABwQQAAWMIAACjCAACOwgAACMIAAJhCAACgwAAAksIAAHDBAABMQgAAYMEAAIBBAAD4QQAAwEEAAAAAAABgQQAAfEIAALBBAAA4QgAAIMIAAEjCIAA4E0AJSHVQASqPAhAAGoACAAC4PQAAUD0AAIo-AABAvAAAyD0AAHC9AAAcPgAA3r4AAKi9AACSPgAAoLwAAJi9AAC4vQAAQDwAALK-AADYvQAAyD0AAJg9AADYPQAAxj4AAH8_AABwPQAAgDsAABw-AABAPAAAHL4AAGQ-AAAQvQAAQLwAAHQ-AABAPAAAoLwAAPg9AACgvAAAoLwAAKA8AACGPgAA2r4AAKq-AAD4vQAAZL4AAIK-AACoPQAAmL0AAIi9AABkPgAAoLwAAIC7AABMvgAAgDsAAOg9AAAEPgAAQDwAAOg9AACevgAAmL0AABE_AADIvQAAQDwAAIY-AABQvQAAqD0AAIg9AADoPSAAOBNACUh8UAEqjwIQARqAAgAANL4AAJi9AABcvgAAN78AAIg9AAAwvQAAMD0AAEy-AADovQAAfD4AAOA8AAAQvQAAXL4AAEy-AACIPQAAUL0AALi9AAAjPwAAQLwAAKo-AAAwPQAAQLwAABA9AABwvQAA4LwAADQ-AABwvQAAQLwAAMg9AADIPQAAQDwAAMg9AAAwvQAAlr4AAHC9AABwPQAAqD0AAOA8AAAkvgAA4LwAABQ-AACgPAAAoLwAAOA8AACAuwAA2D0AAH-_AABsvgAAmD0AADA9AACgvAAAfL4AAFA9AAAQvQAADD4AAIA7AAAwPQAAUL0AAKi9AAAwPQAAcD0AAIg9AACAOwAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=rs9wl-DtbZY","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16571133326285067623"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"13484496721990674596":{"videoId":"13484496721990674596","docid":"34-7-14-Z3110B0EE2A012261","description":"Determine the number of ways a group of objects can be arranged in order Determine the number of ways to choose several objects from a group without regard to order Use the counting principles to...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"22","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Statistics: Permutations and Combination of items. Use the counting principles to find probabilities","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DHZzMUqhEAo\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTM0ODQ0OTY3MjE5OTA2NzQ1OTZaFDEzNDg0NDk2NzIxOTkwNjc0NTk2aogXEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E80JggQkAYAEKyqLARABGniB-vUE9AH_APP3CAECBP4BEQgDC_UBAQDsCv8GCP8AABAICwH7AAAABvsEDfsAAADt_fkC-wEAAP0B-fP0AAAAD_r89PUAAAAFFQD6_gEAAPn4_QYE_wAAGPn-DQAAAAD6AQoA-v8AABAOCgIBAAAABgYDCv8AAAAgAC1DUs87OBNACUhOUAIqhAIQABrwAX_79AHg9-oB7wbZAMcW4f-CIgr-_TDVALD7GgGuEs3_3_7eAPPi8QAHFyX_vQcB_zDY0_8P2wUAQfT4_yLxBwD9CRwBNM0PATwUA___8-T-4h8q_QbxCQIK3On__RT7ABYAEv7a9uUADv_XA_vtKwH_GhUFSPciAPDaAAHoFA8C1hLV_g4EBQDz9BAA6gcjAQXx7v8HEfUCxhP7BAjx-P7W3Rj8ByvY_inwBQfy8_j35AP_BAb27_sUHyH--B0B_wX8E_rl8_v0AB4TASvTEALp6fkBCe_2Bwb58P0K4Qv86e4KANol_QTuCAoG-_j58CAALWPLHTs4E0AJSGFQAirPBxAAGsAHahbQvqyUGT1TDfe7moKbvam1F7wDBV69_YUevgFqajzh0Fu806MZPqg2eD1hCfe6lpNAvqLMqzzo0mQ8xVWFPlQwb72bfyq82UNLvkOSdjspf4K99aFrvoTTBz10NcO7zbNNPUX9RL22Jbw8HQDxPfXVFb35njG9AZzFu33-wbugkm69K4jBvMMXHL1JW-a85suLPXyWDL1uPM48aRkZPr1fO71lF-87cPGLvOzYjLpDIsg5mjpUvUxTpbu4APq6D_yOPfyMKz3fIPU83FV-vP3XPr3KILG6P9QsvXiiOj1Vfbi86gd1Pb-ExDux1Qq9A2iKPXdGQL1Kguw6qMghvgJ8HD3o6W083WA4PimmXD3jGz46A3NZvQ3mmj0vYy-8s743vLcdBbz6t4k7MGOqPaGRmTwmaaM8oxe9OwUz6DsQtcg8CWTAPM9ZdT2FY7E8x458PTAvwDsm2-W8sgN4POujuLwNz4G8Tl7kvdZCfzwHr8Q7pCyNPZ0cFbx5bJE7BDnoPScDFj3aiNC732bGPTm1872HHxg8zvIGvZA4ir2cy0O86xPKPAnmQzxuQqu89gWpPcG80bxvfPG75xYfvY1Hqbz5A7O6PZFxPfhhLr355oq7mHx9vR7GZD3dUAK8Ul8WPexqsrzhhzm8eIkgPTwc-DybyIo7fMCXvFq_VL0v4-A7Y6SdPWoGJz2Qn_A6gErwPM9UIbxdNa47a7uEPfuzerw3uWe7PHyjvILnqb3Wf1-48iKXOj7tED1YUWa7oZ3TPVGBmL2XnVE5HHoLPeLGEjxNLyi669SLvJMKOT3lPJY5UW6mPUpsbb3mggY5qz2RvRpSFb4wUQo6kyXpvFcQGjz6yPc61qJLO928JroC5AQ4F4_BvBvUA73XkfU5O0xBO3MCBzxpyyK5JkBjPTMq_DsozYM45m-nPGF4O731yqm2KNYpvRRUib3vdOI4JdcDvQS0uD2qJ6q4t8lyPG0tHb3Lo8K4w3csPe5IoD1t7Rs5MzR-PU-Wej21das34-PTPMaFAz3N4TK4uD6svGwG-L15_yC4HaGgPTSgXj0DScK4yuEDvhDXHjyX_U43PGrMvPKlZr369-W3AXuWPZbz_zvmDeU3amgDvXp9V70alf83L6YZPng7zDz85hu5cKc-vCfTbb10QV-4Ee8vPYL8T7td6gQ3IvyLvIgf0rzUbUi4HZcMPUkPQ75UMU25yvRwPSLhKz7xy4o4l7sDvNLTwT1Rasm44S2LvZt_yzrmAAo4ziuovPqpBzo9VeM3IAA4E0AJSG1QASpzEAAaYC8DABDhIdMk5VfhDtjo7Qng9dNNrwj_Bsz_6wvh-Q0ev6fkKAAn2kIOnwAAABH80jIOAMB_9gDiM_b9DLjcuQcqU_ALOMvxFhTG-vw1FugpAzFBYAD83b4ORBuiMv7jDiAALf_aGTs4E0AJSG9QAiqvBhAMGqAGAABQQgAAEEEAAM5CAACYwgAASEIAALBBAACAQgAAAMEAACDBAAAQQQAAcEEAABDBAAAMwgAAUMEAAMhBAACoQQAAgEEAABzCAACwQQAA4MAAAGDBAAAMwgAAKMIAADRCAADwwQAAKMIAAKjBAACAwgAAAEIAAIBAAAC4wQAAQMEAAJrCAABwwQAAKMIAACDBAADoQQAAnkIAABDBAAAoQgAAgEAAAIhBAABoQgAAEMIAAJBBAAAAwgAA0EEAALBBAAAgQgAADEIAAKjCAABAwAAAyEEAAMhBAAB8QgAAkEEAAMDCAAAEQgAAcMEAAIxCAADwQQAAcMIAAIDAAAAYwgAAdEIAAFTCAAAcwgAAEMEAAMjBAACAwgAAMEIAADBCAAD4wQAABEIAAIbCAABAQAAAKMIAAPDBAAD4QQAAWEIAAIC_AAB0QgAA4MAAAEBBAACQwQAAYMEAAHBBAACgwAAAhkIAAKDBAABwwQAAoEIAAKDBAAA4wgAAiEEAAFzCAACowQAAHEIAAKBBAAAQQgAAqMIAAGxCAAAMQgAAgEAAAAzCAABEQgAATMIAANhBAAAAAAAA2EEAAAhCAAAAwQAAiMEAAIA_AAD4wQAAQEIAAEBAAAA4wgAAosIAABTCAAAAwgAAJMIAAHBBAABQQgAAUMEAAIBAAABcQgAAAMIAAMjBAACYwQAAVMIAAJzCAACAPwAAEEIAAJDBAACqQgAAcEEAAOBAAACgwAAAQMEAAADBAAAEwgAABEIAACjCAAAsQgAAgkIAADjCAABgQQAAAEIAAKjBAABQwgAA6EEAAKDAAADAQQAAoEEAAIDAAAB4wgAAgMIAAFjCAABwQQAAwMAAAPBBAAAAwAAAwMEAANjBAAAAQAAAhMIAAJpCAAAgQQAAAMAAAGjCAADgwAAAUEEAAKLCAAB4wgAAQMEAAPhBAABgwgAAFEIAAIjBAADQwgAAgD8AACDBAACAPwAAZEIAACDCAACSwgAArMIAALDBAADowQAAiEEAAFDBAACAQQAAAAAAAKBAAACYQQAAYMEAAOBAAAA8QgAAkEEgADgTQAlIdVABKo8CEAAagAIAALi9AACgvAAA-D0AAKA8AACgPAAAsr4AAPi9AAAdvwAAmL0AACw-AAAkvgAAgLsAAEA8AABsPgAAhr4AAKg9AABwvQAAmD0AAOg9AADqPgAAfz8AAKg9AAC4PQAA2D0AAGS-AABwvQAALD4AAOi9AAAkPgAAoLwAAIg9AAB8vgAANL4AAEA8AACSPgAADL4AAOg9AACYvQAADL4AAMK-AACovQAA2L0AAEA8AACWvgAAbL4AAIi9AACSPgAAxr4AAFQ-AAA8vgAAVD4AAIC7AAAUPgAAgDsAABy-AAA0vgAAPz8AADC9AACIvQAA6D0AABy-AABwPQAAgDsAAAy-IAA4E0AJSHxQASqPAhABGoACAACevgAA2L0AABA9AAA7vwAAML0AADy-AACAuwAAFL4AAKi9AADYPQAAuL0AAIi9AABsvgAAgr4AAIC7AACAOwAAUD0AABM_AAAEPgAAoj4AAPg9AACYPQAAHL4AABC9AABQvQAAqD0AABA9AAAQPQAAgLsAAOg9AADgPAAAdD4AAIC7AABMvgAAgLsAABQ-AACmPgAABD4AAJq-AADgPAAAiD0AAOC8AADIvQAAyD0AAOg9AABAPAAAf78AAAS-AAAwvQAAuD0AAAQ-AABEvgAAUD0AAOA8AACYPQAAED0AAHA9AAD4PQAAyL0AAFA9AACoPQAAoLwAAEC8AAAEPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=DHZzMUqhEAo","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["13484496721990674596"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"3502349052"},"8674305644584827422":{"videoId":"8674305644584827422","docid":"34-3-8-ZC6DF8D5706B5E7E5","description":"Begin to understand key components of all analytic studies Begin ability to identify main types of analytic studies Begin to understand key features of experimental, cohort, and case-control...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"23","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Overview of Epidemiological Study Designs: Understand Experimental, Cohort, and Case-Control Studies","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vNHh3Ajfhw4\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTODY3NDMwNTY0NDU4NDgyNzQyMloTODY3NDMwNTY0NDU4NDgyNzQyMmqIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxP5EYIEJAGABCsqiwEQARp4gQIFBfcG-QD0_gsOAgf8AiEJ_ggfAAH_6PQB_Pn-AQD8AgsACgEAAAID-PYJAAAA9-rz_Pn-AAAWA_sHBAAAABoF_PwDAAAACxEDAP0BAADo9Q0IBP8AAA4CCwUAAAAA-gELAPr_AAD2___-AAAAAA3q_AsBAAAAIAAt-rDAOzgTQAlITlACKoQCEAAa8AFy_BEBgSH3-TkN9AAXAPwChP7mADYa5QCs9vMAtRHS__gL_AAA2wIA2AcUAObsDP8A5fD_Lwb2APjwEP8fEfUB_RUnAETmDAE48-4AEBMK_xYCBf8SByYAM_cSAAMICf8uCxQAzO3u__McAgDV6x0CIRoH__L8_AT4FRoE-RTxBPH3BAIHBw4HD_4LA_wT-Ab4_RAJ7wLyBfgLCAP8AgEDGOf__RMJ5wMfC_kEGu_o-wY0Bf0sBv36HgXwAfgaAf_s8PECFQn6B-YC_gMmAggL-vQb9OzdAAIKQ-wD8xH4B_UED_rjAgsCFAgEAfH3-f8gAC3xBS07OBNACUhhUAIqzwcQABrAB6w4Cb-6Fd08v0UGvGtyJz25kS09kjk7PFX-sD02lny61Rg-PNiLOjsb94E8U0MWvXR8xL4chO88mdotvf7Viz4gxJ88hqkxOyPXHb49UvM84BcSPadZgL7i0uI4B5ovvbx5Gj4DIim9NicqPfrV3D03fnI8q6AWPG-xDL1WWxu9UjjMvF2psr3BnCq9PR5EvEtX0D1JZD-96nhMvCAHuj2CkTe9iLKcvGWxwzyo_6w8aeTzvPIowL2vrcQ8hXMROx3owT2G_H656kmPPEVoBD4rC1A9iQYtuzuTkT1C6x-7ZmNKPNLFpjx4Oyc9tmo2u11OLj0xA_q8rXesO1R8Mr3QQ-08woyEPN1gOD4pplw94xs-OttMCj38Ivw8jNO1PFbvgjprbjs8DoLxOqkenzy1ToG87Q-1O6QTDr2H-4g9XfmsPNGFhzwaj4w6J1cIu6ZqMT0zzlU9S0KeunugNb2HbYs8Vi6vuypZib0ldDi7prXMurmpMT5ImLi9CXpevG1dJT1IlTc9gXxkPIWN_Lx8JAy87sWfO4Aqrjy47yw9Kh1SuhdKYT1Q03i9uzkFulk0Hbs7kqY9bbYovEy6V71R54C8-TIsvNWhmT0irpg7Y28UvORcdD2zkdA8jCizO_xlQbyF7Nm7h0I6vIUntLwsRt08uZBkO3hN_ryABfq8tMcPuzqcnz3aOrg8XHxAO2Ujhr2WBOi8E_aKOkextzxOaj49zTb9OpqYrrzuDww8I9yBOwdVFD0ZT6k8QqJJufeeoTs_EKq9OOzttwDy1LyGgR097SeduFHWhD3uBlG88Gq-udo_6jwJRu-8cm1quqk_kLsfXye9k46dOLxTBr12HHg6y8T2OWKqzzxWMOi6qSNcOIwqaLyTB9g8Z5skOktncby3RgQ-B4EuOVfZrbyjA3K9TIfXuEIG0bu2UM28i0UmuQBWJ71YuaG82o2hOZWabDlmpDm89R7bOHsS2LzPBmq98aehOEYu07z2ARI9aAvxOC2e8Lx24108xcZRuCkJCb29Tg-9_B27OOXiubxxaJu95a0INpRfR7oNZwY8HjFlN2OohL1mmS-9xz7JN0hISbzZDEu86IkluHzhhDw3_LC6bMzUNsplTT2sxtK8b5QbN8bPNTxo-cs8gyMVNioED7yMIlU9llLcN1R2lTzWtaw8Rh4kN5OnLLwDvPu8W-2JN0n3jjytUMS9c5zyuOobQbumqcQ97EGXOHF8Y736JQI-qYEsuXY25LzWkgk9q3wRuM88D71ASSa9jE_INyAAOBNACUhtUAEqcxAAGmBJAAA2Axj68OJN58v0v-3n5y7kC-j4___b__A4udH7CeGc5iX_E7z-IqIAAAA1CNdSLgDjeuf71gviO_e6xgAKFX8QMhCs4gjoz8ENBeDj_twJEEgAHt-wBV8Dty8e_hcgAC37nRc7OBNACUhvUAIqrwYQDBqgBgAA4EEAAMBAAADSQgAAFMIAAHxCAADYQQAAWEIAALDCAACSwgAASMIAAEBBAABgwgAAAEEAAMBBAABMQgAAAEEAAABBAABkwgAA6MEAAHDCAABAwQAAwMEAABDCAAAgQgAAAMIAAADAAACUwgAAgsIAACBCAABAwQAAyMEAAEBCAAAgwQAAgMEAAMjCAADgQAAAQMEAAOhCAAAIwgAAAMAAAOjBAADgQAAAGEIAAMBAAABQwgAAgEAAAADCAAAgwQAAQMAAAADBAACGwgAAyEEAAEBAAABwwQAAAEIAAFRCAAAAwwAAwEAAAKBAAACgQAAAMMEAACDBAABQwQAANMIAAMhBAADIwQAA4MEAACBCAADAwQAAgEEAAADAAACAQAAAhEIAAMDAAABowgAAEMIAAADBAAAAwgAAYEEAAAAAAACCwgAAIEIAAEDCAAAcQgAA0MEAAKhBAAA0QgAAuEEAAKhBAAAwQQAAAAAAAOhBAAAwQgAAKMIAAJhBAABgwgAAJEIAADBBAAAwQQAA8MEAAFBBAADoQQAAEEIAAEDBAACAQAAAgL8AAKrCAACMQgAAAEEAAPBBAACgQAAAMMEAADDBAAAAwQAAEEEAAFxCAAAIwgAA0MEAADTCAABcwgAAAEAAAKDBAADwwQAATMIAAIDBAADAQQAAAMEAAKDAAAAAwAAAUMIAANBBAACIwQAAAMIAAOBAAADAwAAAwMAAAIBAAACYwQAAVMIAAKbCAACoQQAAiEEAALhBAAAcQgAAJEIAAChCAAAMwgAAUEEAANBBAAAMQgAAsMEAAJBCAACAwQAAMMIAAETCAABkQgAAIMEAAMDBAABkwgAAyEEAAIDBAAAAAAAALMIAAEDAAACUwgAAXEIAABRCAADwQQAAwEEAAKBAAADAwQAA0EEAAFDBAACwwQAAZMIAAIDBAAAAQQAAQMEAALBBAADAQQAAUMEAAIbCAABgwQAA0MEAAABCAADgwAAAlMIAABzCAAAQwgAA4MAAADDBAADAwQAAgEEAAEDBAACoQQAAIEIAAHjCAACywgAALMIAABBBIAA4E0AJSHVQASqPAhAAGoACAAAUPgAAmL0AAL4-AABcPgAAgDsAADC9AAAUPgAAtr4AADy-AACAuwAAPL4AALi9AADoPQAAED0AAKC8AACoPQAAJD4AAOC8AAAcPgAAyj4AAH8_AADoPQAAqD0AAKC8AAC4vQAAoDwAAOC8AADgPAAAiD0AAOg9AABwPQAALD4AAEy-AABQPQAAEL0AAMi9AACoPQAAgLsAAFS-AABAvAAATL4AAIg9AAAQPQAAcL0AACS-AAC4PQAAPD4AAES-AAAwvQAAcL0AANg9AABQPQAA2D0AAKC8AACgvAAAEL0AAAk_AABsvgAAoDwAAEQ-AAAQPQAAUL0AADA9AADIPSAAOBNACUh8UAEqjwIQARqAAgAAsr4AAOA8AACYvQAAH78AAOA8AABQvQAA-L0AAFA9AAAMvgAAXD4AAMi9AACIvQAAFL4AACy-AACIPQAAoLwAAFA9AABFPwAAqD0AAMI-AABQPQAA-D0AAOA8AADIvQAAcL0AADA9AAAwPQAAiD0AADC9AADYPQAAED0AALg9AAAQPQAADL4AAAQ-AACovQAAcL0AAKg9AAB0vgAA-D0AADA9AABQvQAAqL0AABC9AABQvQAAgDsAAH-_AAAEvgAAiL0AAIi9AAAQPQAADL4AAHC9AAAUPgAAsj4AAOA8AABwPQAABD4AAIi9AADgPAAAEL0AAEA8AAAMPgAAuL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=vNHh3Ajfhw4","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["8674305644584827422"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"500917555"},"14364069653270800069":{"videoId":"14364069653270800069","docid":"34-7-7-ZB4C721DA85041545","description":"Exploratory Data Analysis Hypothesis Testing Versus Exploratory Data Analysis Contingency Table Binning Based on Predictive Value...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"24","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Exploratory Data Analysis, Creating Charts, Contingency Table using Python and Binning Examples","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=L-NyZ6ucOio\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTQzNjQwNjk2NTMyNzA4MDAwNjlaFDE0MzY0MDY5NjUzMjcwODAwMDY5aogXEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E4YMggQkAYAEKyqLARABGniB__wF-gT8AP4LCAEFBv0BGAYGAvUCAgDkD_z4CP0BAAUKBQD3AQAACP7wCQIAAAAHBgMF-f0BABYD-wcEAAAAKQD9BvsAAAALB_YJ_gEAAPDxAQH1AgABGPv8_gAAAAD7BAoM_QAAAP_6-gUAAAAABfz5_gAAAAAgAC2L-8c7OBNACUhOUAIqhAIQABrwAWz8EQGlHvT7XA3eAPgb4QGBFfD_LxX0ALD39ADF-NIACAn4AODbDwAG6Cr_7_3v_xL16f8m-AwADhQX_x3zBgAACwsAQecLATQRA_8UA_b_9gv1_xEHJAAV7QkA7AkG_icH_v3sDN0BBBT6_u3vDQT9IQgCGfEPAt4CCAb8CQAE8vcEAiP3FADVDw__9xgIBvny6P0BBv4H5vYB_wD6Df0L7wj9IQLqAh8KBgv78uv_6g8D-xYhBPgXDggN-w7yAwrR__4Q_wAA2_MFBSH0FwAN5RgC9gIR_wML9QIJ5Qn83f_79vMKCQD6-RAL6_cB9SAALVH0NTs4E0AJSGFQAirPBxAAGsAHpOEQv8Lg9TsyDuS8a3InPbmRLT2SOTs8J4UZPX_1XTyjOp08vtSVOyDzHD0BhDQ8_Iy7vlpTD7zG6sW7OxlsPq4M6jyCjCU856fYvZxTyTwA4i47T3iRvmcVTD2p5ou6pAkqPX80F70mWDc9ERfFPTrDGT2w37g8yi59vUnnrjvglx-9839dvYGGDb0dkYy6veMkPh-0g7xkHv07IOsJPsVt2byqmTW8TCGrvLIJ1Twhsfi8dvk7vf_jKTxLTUw86q_3PTGyUTrITQM9--TNPPZGDT00xfM62Ww2PdwAojw2Etc7HHL9PIWtfj3XhPw3XU4uPTED-rytd6w7XdIivZTJnzxzsyk93bQZPj0W0TwDYPq7GW8QPfZVgz1GroA8s743vLcdBbz6t4k7XpYgPSr3DL3vGUu7b8qmvFlirzxirKU8z0XoPBrBRjxEjDK8pmoxPTPOVT1LQp66dQzjvA2nDDwQy-o6JwetvRdWYLz0-368NhDBPbq7zr3A1Mc6pwdlPVuU2TzYwmI8rt68vKoa8zyFf3-5gCquPLjvLD0qHVK6F0phPVDTeL27OQW6z4UPPPvZPj1IU5i89vCAvRykljw5aXW8KfRwPUhcNrxCnKC69rXuPIdbUzu4x3M7aPbvPLMqHb36NF28Ryl3vZE-0jxFw5y7NP4TvTjiRL1LvgY7Aye7PU2sgrze2wC7WwNgvRxLjrzWNsW7XrOBPP5G-bv8XMg6uHRMvSGH7zsElli60PFRPO_LtD2uGYM4rnQGPME7Wb3UrwG5tyn9On-6Rj01-k45puSWPalWGr2Mj465U7MnPdKQTL0zGpQ4HHfvPPhmZbwxagI61BuUvd3a27vBgXA4vJQ6PYo_yjwFIOE3l6AQvYlBAD2YzRC53t1vvOrWlj0o3S4410cMvTfz9bwhGOm4TkWqvM-j4ry-pFM5na8DvY4IhLu_FiU5bQuFvNjDsDrR3kE4eOhgvPsvJr1DFik1OeWbvH1v3TwYt_y36w8evPpj9TwOMja3_4AdvV2Ejrzbw4G389r2vAj5yr1ah3u2Vp-GPPRAHLwiuC049aKxvahs_bxnsJq4ZXOwvMs8A7xNimK4_YYJPSbI57su76S3bzNQPTTOgL3GtWi39-tpPTCyDj0cwsO4KgQPvIwiVT2WUtw34AHUPMf1bzy06gI4V7e0u6bYTL3NMbg3FPRNPbS9p72Xl423YazKPHjTnT2TC4U4fGKNvSED2T2BNTC5YEanvReBELuTdNk3dnoUPG8nFr3Re822IAA4E0AJSG1QASpzEAAaYBv2ACMoD-vLDmvKCePY1Qcv6AEWziP_zNb_9PL9ve8DxbEaJ_9OE_79pQAAAAIw2RgrAAN9xeXu8-P_y8yz7CEIfxYiEfnLDg6wD-0h6OQnuBwgcQDsEqP0WcjjFzMJGyAALXErFjs4E0AJSG9QAiqvBhAMGqAGAABQQQAAmkIAAChCAAAMwgAAdEIAACBCAAB4QgAAmMEAAJDBAAD4wQAAIEEAAEDCAABUwgAAGEIAAGxCAACQQQAAwEAAANDBAACAPwAA4MEAAODBAAAowgAAYEEAAOhBAABwwQAAFMIAAFDCAADwwgAABEIAAKjBAABgQQAAUEIAAOrCAADoQQAAgMAAAIhBAAAYQgAA_EIAAHxCAAD4QQAAgMAAAJhBAABcQgAASMIAAOhBAAB4wgAAoMAAAIDAAACoQQAA4MAAAO7CAAAgQQAAsEEAADBBAABYQgAAUEEAAMDCAACQwQAAMMEAAFBCAABgQgAAnMIAAIDBAACgwQAAdEIAAADAAABgwQAAUMEAAIDCAAAYwgAAZEIAAFxCAADYwQAAgkIAAMDBAACIwQAAIMIAANjBAACAwQAA2EEAANDBAAAwQgAAGMIAALhBAADgwQAAQEEAACBBAADgwAAAeEIAAOBAAABgwQAANEIAAKBBAAAUwgAAAAAAAODBAABwQQAA6MEAAEhCAACAwQAAmMEAAJhCAACIQQAAcEEAAAjCAABQQQAAxMIAAABCAABIwgAAQEEAAKBBAABwQQAAMMEAAITCAACgwAAAhkIAAGDBAAAgwQAAAEAAAIBBAAAowgAAMMIAAPDBAACAQAAAUEEAANhBAAAwQgAAhsIAAATCAAAswgAAIMEAADzCAACAvwAA6EEAAOjBAACYQQAAEEIAAEDBAAAAwQAAEMIAAFBCAAAwwgAAEEIAAIC_AABIQgAACEIAAGDCAACAQAAAokIAAIDAAACswgAAQEAAABjCAACAvwAAIEEAAODAAABAwgAA4MAAADzCAABQQQAAsEEAAFBBAACoQQAAmMEAAHzCAABwQQAAEMIAAERCAAAwwQAAoMAAAEDBAAD4QQAAqEEAAATCAACAPwAAAMIAAPBBAADIwQAAoEEAAHBBAAB0wgAAEMEAAATCAAAMQgAAhkIAAGTCAAAUwgAAUMEAADBBAAAcQgAAoEAAAHjCAAA4QgAAwMEAAHBBAAD4QQAATMIAAIC_AABAwQAAOEIgADgTQAlIdVABKo8CEAAagAIAAI6-AACYPQAAhj4AABQ-AADIvQAAEL0AAFw-AAARvwAALL4AAEw-AACYvQAAND4AAEC8AAAUPgAAuL0AAKi9AAB8PgAAiD0AANg9AAADPwAAfz8AADC9AADgvAAALD4AAIi9AAC4PQAAuD0AABA9AACYPQAABD4AABA9AADYvQAA4LwAAKA8AADoPQAAiD0AAAw-AAAMvgAAuL0AACy-AAAkvgAAiD0AANi9AABkvgAAqL0AADA9AACOPgAAFL4AAKi9AAAkvgAAdD4AADA9AAAsPgAAVD4AADy-AABwvQAAOT8AAIi9AACAuwAAij4AADA9AACAuwAADD4AAKC8IAA4E0AJSHxQASqPAhABGoACAABkvgAA4DwAAKA8AAAlvwAAmL0AAHA9AAD4PQAAQDwAAEC8AADoPQAAgr4AADC9AACCvgAAuL0AAMg9AACAOwAAqL0AACk_AABwvQAAtj4AAAw-AAAMvgAAiL0AAHC9AADIvQAAuD0AAPi9AABwPQAAcL0AADQ-AADgPAAA-D0AAIC7AABMvgAAND4AANg9AACePgAA2D0AAIK-AACgPAAAXD4AANg9AABQPQAAcD0AAKg9AABwvQAAf78AAFC9AACIPQAAoLwAALg9AACIvQAAuD0AAKg9AACmPgAAyD0AAOA8AAD4vQAA2L0AANg9AAAUPgAATD4AAHA9AACAuyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=L-NyZ6ucOio","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3000,"cheight":2000,"cratio":1.5,"dups":["14364069653270800069"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1368744935"},"5017776963237503210":{"videoId":"5017776963237503210","docid":"34-8-2-Z664FC5BEF05D4FF3","description":"Measures of Central Tendency Determine the mean, median, and mode of a population and of a sample...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"25","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Measures of Central Tendency: Determine the mean, median, and mode of a population and of a sample","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=6ReIakvpP_w\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTNTAxNzc3Njk2MzIzNzUwMzIxMFoTNTAxNzc3Njk2MzIzNzUwMzIxMGqIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxPJBoIEJAGABCsqiwEQARp4gf_y-P_9AwAA_AUI-Aj9AvYLBgL5_f0A8QII8gMBAAAFBAEK-wEAAAYF_fsAAAAA9_X9_v3_AAAH8_ICAQAAABH1AwcCAAAADRj7Av4BAAD4Cv78AwAAAA0IAQUAAAAA9gcIA___AAAA__sMAAAAAP3z-gQAAAAAIAAtlD7eOzgTQAlITlACKoQCEAAa8AFvAxIC4wrmAAsG4gDTEef_gQUL_w0Q3gCyACECvg7t__IF7wDP5fD_FQYaAd0KBwAv-Nj_F9gGASbzAP8aA_0B_gcWAUbvAAAo8wYA-fDN_-j9Dv8P7AoAAO7_AfMS_P79DQj-0gDjAAAF6AMJ9xn_DRYTABbyDQLx6vgB7iUZA-oC7QAd9vYE-_b8_Nb_FwEE8wb9CgQCAd8E7AIRBO_-_OoD_Pr44gEmEQ4EAQEJ-vj1Bvz-8Pv6FQ0HC-0gAvsE_Q_78v72-_sAEQoi3Q0B_PIKAggK_AQND_QNAeP69uX6C_TvHQf06wkU_u7-C_wgAC1uJ0g7OBNACUhhUAIqzwcQABrAByuE7b43C8U7s2y5u0Kk8LxxRC09CebDvNOEbTuKgo27XqQrPJ_Woz0h8PY8RfacvJmAp75l-9A8n_oRPQovYT4XcbC8QdPGOXoXL74IPDA9KZ_UvE94kb5nFUw9qeaLuqxXAT5hJZU8pPHVPLVrAj7Ek107oFiju10Xvr1dlqW8ks1VvXzOkr0mLaa8cY10vD6w4z2ffgg8DO6iPGkZGT69Xzu9ZRfvO2Wxwzyo_6w8aeTzvL-1g715ioE8WmkMu-qv9z0xslE6yE0DPb4KujzlFHi8uLh8vH_u1TyA4AA9yqFqPI1_nzuhjn09_wkuvCCQ1TyKl0C7-xaEu16jwLwNYpE9jtOrPCcXEz5P1XM9FamwPGw-LjzFxdE9_-aqPLO-N7y3HQW8-reJOzBjqj2hkZk8JmmjPOmNybznwu085O6YuwlkwDzPWXU9hWOxPGLcaD3hspo9ytw-O3UM47wNpww8EMvqOhsUaL3mrM881lyJvDvFCj5Wgyu9X_DlO3PGhj3A-IM9OK7zuy3KET1fF4S9mkPzOyRGDz2qO4C9TXQOu3MPKT1sMMO8ts6JuxPKDD2YJIW8mEKxu0y6V71R54C8-TIsvGN1wD19UQy9WmciOlQlPTrwVcY8KRPpunDBiDwHlZ288HAavL-vNrzcJ-w8QGnJOzhxqLwZYgu9pTqROpt-vz0Ud_w89IgrOrHVijyNoTW7RplLu5VFoTz9uwO9smg2u5UMAL1XX1i9M1NzOJMIwzz0aRo9jDlfOwaYXj1-6zm9HiXNOf63kjwGXAE92x0sOAY70TvJPBI90pddOBMjkD2Ps5-9Cn64N4sGXzzTvKO9P3xBOEMIg71DlqC8X6cBun0FST0Lf6O7qwijuNNS1Lx6Qbq8J34UuvEC9ryhoY89bQjKtutpDL2Cr2O9aQRnN6JpAbwipBO9Ca1iufmrtrywLGe9J_IjOTrW2js5D2c91DnfNyRGzzxuXIW9SVyfOHB7HzyLKg0956CkuD_JeDyeAb89e0CHtjS5vbyA24s7LWynuJ0ORzt3nwO-Q96Mt9pO5TxkLIk8fJqYuEN-vL2bRkm8eEvIN5werzwppfG8TE_qt5RhJj3mQVU8eZKWNsxKLj2bUkO9WrZLuKOxFj6mVZ49RyMkuanbOb3mf0k7wVHwN4G7Ij2snMe8krhdNzy4QL26f1G8O0m3tx2XDD1JD0O-VDFNuYqWVz0QWPk9jRdAOPCyNb1czM89DEYKuTJJdr2kI--8ClstuPj7B7yl0IM8UOM3OCAAOBNACUhtUAEqcxAAGmBACgAo7x3k3Ow1y_Dv3uz_Ai_cA8_cAAy0__oIA-sDC8Wn8uj_UfdC1qUAAAAZBMsGJAC0f-f_yDQBRSnZ2PHzJHYbMyjX_h4IjdHrDNvxPRb3-xQAFNajElbozzcLNDQgAC2T8Bc7OBNACUhvUAIqrwYQDBqgBgAAEEIAAEhCAAAoQgAAdMIAAFhCAACSQgAAhEIAACDBAAC4wQAA4MAAACBBAAAwwgAAnsIAAADAAAAQQgAAIMEAAIhBAACawgAACEIAAFTCAABgwQAAqMEAAIDAAABsQgAAwMAAAPDBAADGwgAAsMIAAGBBAADowQAAEEIAAIDAAACGwgAAYEEAABzCAAAAQAAA2EEAAPhCAABIQgAA-EEAAJDBAABAQgAAlEIAAIjBAAAAQgAAaMIAAIDBAABgQQAAdEIAAKhBAAC8wgAAYEEAAJjBAAAAAAAABEIAAHBBAAB4wgAA4MAAAADBAAAIQgAAhkIAAGjCAADIwQAAWMIAAABCAAAQwQAAkMEAACTCAACQwgAAGMIAAFRCAACIQgAAWMIAABhCAACAPwAABMIAADjCAAAAQAAAgD8AABBBAACowQAAEEIAAJjBAAA4QgAACMIAAIBBAADwwQAAcEEAAI5CAABwwQAABEIAABBCAAAAwgAAnMIAAFTCAABIwgAAAAAAAIA_AADYQgAAyMEAAGjCAADCQgAALEIAAJDBAACawgAAgD8AAJjCAABkQgAAQMIAAMBBAABgwQAAkEEAAADCAABgwgAAgMEAAChCAACgwQAAsMEAAIjBAADQQQAALMIAACTCAAB0wgAAQEAAAKBAAAAQQgAAYEEAAODBAAAwwgAAAMAAAJjBAABMwgAAEMEAABxCAADAwQAAuEEAAAhCAADAwAAAAMEAAPDBAACIQQAAoEAAADxCAAAAwQAA4EAAAJhBAAA0wgAAAEEAAMhBAACYwQAAYMIAAIhBAACAQQAA4EAAABxCAABAQAAAVMIAAMDBAAA4wgAAAAAAANBBAACAvwAAyEEAAODAAAC4wQAAYMEAAIBBAAA0QgAAAAAAAKBBAABwwQAABEIAADDCAADAwAAAAMAAABzCAADYQQAANMIAANhBAACAwAAAhsIAABDCAACIwQAALEIAAK5CAAAQwgAANMIAABBBAACwwQAAQMAAAGDBAACIwgAAGEIAAODAAADQQQAAEEIAAEjCAADgQQAAcMEAADDBIAA4E0AJSHVQASqPAhAAGoACAADIvQAA4LwAAEw-AAAUvgAAyD0AAAw-AACYPQAAI78AAIa-AACYPQAAUL0AADC9AABAPAAAdD4AAIC7AAA0vgAAuD0AAOA8AADYPQAApj4AAH8_AACAOwAAuj4AAHw-AADIvQAAuD0AANg9AADgvAAAiD0AAIC7AADoPQAAqL0AAOi9AACyvgAAbD4AAKi9AABQvQAAXL4AAHy-AAAEvgAAPL4AAFS-AABcPgAADL4AAJK-AABAvAAAJD4AACy-AAAEvgAANL4AALi9AAAwPQAAmD0AAAw-AADovQAAcL0AAC0_AADYPQAAMD0AALg9AAA0PgAAgLsAAPg9AADYPSAAOBNACUh8UAEqjwIQARqAAgAAzr4AAES-AAAwPQAASb8AALi9AAAkvgAAqL0AAEA8AAAcvgAARD4AAAS-AABwvQAAcD0AADy-AADYvQAAgLsAAIg9AAA5PwAAdD4AAI4-AAD4PQAAND4AANg9AACYvQAA2L0AAIA7AADIPQAAPD4AADA9AABAPAAAcD0AACQ-AAAwPQAAhr4AAEC8AABAvAAAsj4AAMo-AAB8vgAAoDwAAFw-AABEvgAARL4AAJi9AAB0PgAAcD0AAH-_AADIvQAABL4AAOg9AACSPgAAHL4AADw-AAAEPgAAQDwAAIg9AACAOwAARD4AAMg9AAA8vgAAHD4AAEA8AAAkvgAAEL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=6ReIakvpP_w","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3000,"cheight":2000,"cratio":1.5,"dups":["5017776963237503210"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"3852907831"},"18193705088159913125":{"videoId":"18193705088159913125","docid":"34-8-5-ZD0759D504A5FF34A","description":"Write a program that lets the user enter a year and checks whether it is a leap year. Write a program that prompts the user to enter a year and displays the animal for the year.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"26","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"C++ Selection Statements: C++ Code or Program that checks if a specific year is a leap year. - YouTube","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jOHDNNEYpVU\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTgxOTM3MDUwODgxNTk5MTMxMjVaFDE4MTkzNzA1MDg4MTU5OTEzMTI1aq8NEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E4IDggQkAYAEKyqLARABGniB-_8B__sGAPkHBQgABv0B9Pr6Agn_AADnAwP-CP0BAAgLB_UAAQAA8AAEBAAAAAD4Bfr-9f8BAPIDBwIDAAAADPsAAAEAAAAG_PH4AAEAAO_-9fkCAAAAEwQRAgAAAAD4CQAI_AAAAP8J-QoAAAAAC_r5-wAAAAAgAC3En-M7OBNACUhOUAIqcxAAGmBABAAh-QEE2R0s2BnP_xUM1wv_4MgB__vhAPdA7c_i9tjFFCP_QewJCLEAAAAQPgRcCAD7aw724Qv5MuzKu8TwN3_yItXM__7e5_wH9CYO7_0IMVUAzfcH7gPU9DQo8A8gAC1nqi87OBNACUhvUAIqrwYQDBqgBgAAiEEAAGxCAAAoQgAAwMEAANRCAACUQgAAjkIAAIDBAACowQAAgMAAABBBAAAcwgAABMIAAEDBAACOQgAAgMAAAABAAABYwgAAcEEAAMDBAAAgwQAAVMIAAEDCAACQQQAAHMIAAGDCAAAMwgAAuMIAAARCAACAQAAAEMIAAEhCAADowgAAqEEAAIjCAACAvwAAAEIAANRCAACAQQAAJEIAALhBAAAQQQAAHEIAAOjBAABUQgAAksIAAOjBAAA4QgAABEIAACDBAACqwgAA0MEAALDBAACgQAAA-EEAAExCAAAAwwAAmEEAAABAAADAQQAAmEEAAJrCAADwwQAARMIAAGhCAABkwgAAQMEAACjCAAB4wgAAiMIAACRCAACyQgAAaMIAABxCAACcwgAAmMEAAKDBAADAwAAAwEAAAGBBAAAgwgAAPEIAAODAAAA0QgAAcMEAAAAAAAAgQQAAoEAAADRCAACowQAA4EEAALpCAAAQwQAAQMAAAJjBAACYwQAAEMEAABDCAACWQgAAUMEAAADCAAA8QgAAXEIAAIC_AAAAwQAAmEEAAIbCAABAQAAAAMIAAJBBAAAcQgAAYMEAAJDBAAC4wQAA-MEAADRCAACowQAAyMEAAHzCAAAgwQAAKMIAAADCAAC4wQAAsMEAAODAAAAwQgAACEIAAIDBAACoQQAAAMAAAPDBAABUwgAAoMAAAOBBAACQwQAAmEEAAIhBAADAQAAAgD8AACjCAADAQQAAoMAAAIBCAAA8wgAA6EEAACBCAABowgAAoEAAAOBBAABAwQAARMIAAOhBAADgQAAAMMEAAJBBAACIwQAADMIAAIA_AACGwgAA6MEAAKDBAAAgQQAAmEEAAEDAAAAAwQAAqMEAAPjBAAAsQgAAQEAAAAAAAADYwQAA4EAAAKhBAAAIwgAAKMIAAMjBAABYQgAAXMIAANhBAAAgwQAAgMIAAIzCAACwwQAAQEAAAChCAACIwQAARMIAAKDBAACAvwAAkEEAAARCAABEwgAAFEIAAKDAAAC4QQAANEIAAFjCAAAYQgAAIMEAAKBAIAA4E0AJSHVQASqPAhAAGoACAAAEPgAAML0AAMY-AAAEPgAA6L0AANg9AACAOwAAC78AABC9AACYvQAAgDsAAOC8AAC4PQAAkj4AAAy-AABAPAAAqD0AAPg9AACIPQAAsj4AAH8_AAC4vQAAiD0AAGw-AACgPAAA-L0AAAw-AAAcvgAAyD0AAFw-AABQPQAAFD4AAOC8AAAUPgAAFD4AAFQ-AADYPQAAnr4AAL6-AADIvQAAFL4AAKi9AACYvQAAiL0AAAy-AADovQAATD4AAAQ-AADgvAAAJL4AAEw-AADoPQAAFD4AAEQ-AACovQAAgLsAABs_AACoPQAAgDsAAGw-AACoPQAA2D0AABQ-AABQPSAAOBNACUh8UAEqjwIQARqAAgAAlr4AAOA8AAAQvQAAMb8AAIC7AABwvQAAuL0AALg9AACYvQAATD4AAHC9AAAkvgAABL4AACy-AAAEPgAAEL0AAKi9AAAxPwAAiD0AACw-AABAvAAAiD0AAHA9AABAPAAAiL0AAIY-AAAwPQAAcD0AAJi9AABQPQAAQLwAAAw-AAAwvQAAiL0AAMi9AAC4vQAAqD0AACw-AABkvgAAUL0AAOC8AABwPQAAML0AAOA8AACoPQAAJL4AAH-_AABwvQAAmD0AAOC8AADgvAAANL4AAAQ-AACYPQAAgj4AAEA8AAC4PQAA6D0AAMi9AACgvAAABD4AAEA8AAAQvQAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=jOHDNNEYpVU","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["18193705088159913125"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"5138273701662202345":{"videoId":"5138273701662202345","docid":"34-10-13-Z25408B493C56E909","description":"Identify the sample space of a probability experiment Use the Fundamental Counting Principle Distinguish among classical probability, empirical probability, and subjective probability Determine...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"27","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Probability Concepts and Rules, Distinguish Classical, Empirical and Subjective Probabilities","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=t40xYKbxmEc\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTNTEzODI3MzcwMTY2MjIwMjM0NVoTNTEzODI3MzcwMTY2MjIwMjM0NWqIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxP3DYIEJAGABCsqiwEQARp4gf7r_fsC_gAD_wUBDgb-Au4XDAL5_v0A7_j9Bv8BAAAJEPoE_AEAAAQCCQUCAAAAAfYBBfX9AQADAwQC-wAAABEA8vb8AAAACQMICP8BAAD9_gH-Bgr_AR4FCAkAAAAAAA758QD_AAADBAv3AAAAABL-7QMBAAAAIAAtdoLOOzgTQAlITlACKoQCEAAa8AF_9RgB1hPuAAb14QDNFOT_jh4J_yIS6ACnACUDr_bqAP4U9QDW4dP_9-8M_9UdEAAYAM0AA9AS_yoO9wA-9Ab_Bv8NAC_SDgE38-4A-RTX_gQWE_4F6ioABAD2A_gMCgEbDBP_4QEA_QAF5QPy8zsCCwclAxfeIgT2-QL81yIJ_wny3QAG_On_8fju_9D_GgHz8_X-_PbzAvnoEwn89-j9_-fxBAYC5fsk_fUG7ucF_QABBf397vv5KxYiCAAjCAb_-QD9--nl7wkJFPYs1_IGAOwE-_cEAAcRC_gADdL69Pv-BPTpJvf_4AIMCPj_A_kgAC0PbC87OBNACUhhUAIqzwcQABrAB6w4Cb-6Fd08v0UGvBeppLr1g4o9atM9vV4eIb2cU-Y7KuK0PJu3YD3A-rk9t-C7vJmAp75l-9A8n_oRPZ1Ggj5_Fku8vhLIvHoXL74IPDA9KZ_UvE94kb5nFUw9qeaLuvzvgj3xb8Y8haDZPLVrAj7Ek107oFijuwGcxbt9_sG7oJJuvV2psr3BnCq9PR5EvOaU4D3m3Le8ttCfPGDnJj4N0w298R7xvBasJzxxtak8-8Qmu3b5O73_4yk8S01MPOKSAz6Ho5A8OA9MPEjLFz3sB4Y8d_N5vMCJMry9CIk8wXANvCHnvbyRqfE8nB-5Oxq1nD0x8Le8MOEnO1R8Mr3QQ-08woyEPN20GT49FtE8A2D6u2w-LjzFxdE9_-aqPGz7aLy8C688p6xCOdeK1j1wbfY7VIupujRT9bwPtCc8RTQTPG1eCz2JTXo9EGIhO_0fdj0i-EQ9y_J1vA5fDzzZFi-8iMLjulWPur2-OTc8F5klvHyTqz1GCI-9i9vsOgQ56D0nAxY92ojQu6tgDz1AYsW84vA4PCTjAj3YLzO9SRsevC91Bj1-e229AjD5uqgyMT3_d8Q87kTFu_bwgL0cpJY8OWl1vG7_pT1Iory8Or6ou1xPG7y7Mwk9PcIfPHDBiDwHlZ288HAavB-N2DsrdBg79rsoO-cH5Lxol4-9mbUYu6MNxj2Wr8s6YG69O72E0LpoC0O9xl-DOzXx6Ty3dJY8-esDuNApSDuTLRy99QdSO9DxUTzvy7Q9rhmDOLgtgDxd28C8dywxurvO7TtThRU9gm-_t6CCzTx5GCS8GX77uG7ckj07sii9I04juXLi6TtzQQe9Ephuuf3Y5Lyswgm8zyViOxxF8TzyeYW8dh8_ueu8l7wOkzq951aluPFCoTt1YHQ9pbhsOVfZrbyjA3K9TIfXuDzN-LzGN--8ZpzfONr3cr2aDAK9Sa6iOe7AirylIbQ8ifupN6vMCjrLqym9CVXCt3klN7hUZB49nqiSOGVFHj0ygTE9NFyVtktFmbyTKVU8_tUnN50ORzt3nwO-Q96Mt9pO5TxkLIk8fJqYuGvx6b151iS87i9gNm7UVDy0RJ28M-cAOL4wOT2jS6488I5GOMfO47uyzrK9ijp8t9RD9D1WYE09lItduSnWXzwVJPC6-yIouEHybj2FD4C8EshbNz077DsMtDa9zYQouGEGeT3zOhK-S-epuKN_-rsxJBc-jP1QtwcLp7y9_O49g7QeuXxOhb1jhEu8wsjots9r7LtoUnG7dlnRNyAAOBNACUhtUAEqcxAAGmA5EQAOGCEV4fFc1fntDBMI5RUBFeQZ_xvuACQL_LcY8cOuJDX_DMAPDrEAAAAX8d0QLADucwrd5uT4AuPEDdQhC2PiGyCByCTo5BXi-voQCA4LSFcA6_CzBi_yzywND_EgAC14ayk7OBNACUhvUAIqrwYQDBqgBgAACEIAANBBAACoQQAAfMIAAHhCAADAQQAAukIAAEDCAAAAQQAAcEEAAIjBAABUwgAAiMIAAJjBAAAQQQAAAMAAAAhCAACOwgAAQEIAAFDCAABgwgAAMMEAAPjBAAAQQQAAsMEAAADCAACgwQAAfMIAAMhBAADgQAAAoMAAAGBCAACcwgAAiMEAALDCAAAAQQAAoEAAALxCAAAAAAAAFEIAAKjBAABAwQAAuEEAAKjBAADIQQAAtMIAAODAAACMQgAAJEIAADxCAABAwgAA0EEAAIhBAACwQQAAPEIAAHBBAACMwgAAmEEAACDBAABIQgAAYEEAAKrCAACwwQAASMIAAAhCAABEwgAAuMEAAGTCAACAQAAAWMIAAGxCAABwQgAAkMIAAABCAADQwQAAKMIAAAjCAADowQAAAEEAAOBAAAAowgAAvkIAAODAAAAIQgAAIEIAAKjBAADgQAAAUEEAADRCAACAwQAAEEEAANpCAAB8wgAAYEEAAFBBAABYwgAA4MAAAKhBAADMQgAAgMEAAGjCAABAQgAA8EEAAGDCAAAUwgAATEIAAGDBAACoQQAANMIAAHxCAAAQQgAAIMEAAKDBAADYQQAAMMIAAMBBAAAgwQAA2MEAAFjCAAAwwQAAPMIAABzCAADAwAAA0EEAAJjBAACAQQAAaEIAANDBAACAvwAAwEEAACjCAACGwgAAQMEAAPhBAADAwAAAgkIAACxCAABQQQAAgMAAAATCAAAAwQAAAMEAAChCAABQwgAA0EEAACBCAACYwgAAAEEAAGDBAADgQAAAAMIAAERCAABQQQAAkEEAANBBAAAAwQAAwMEAABzCAAAMwgAAEMEAACzCAABwwQAAoMEAAMDAAAAAQAAAqMEAAAzCAACyQgAAkEEAALBBAACwwQAAQMAAACRCAABwwQAAWMIAACTCAABIQgAAZMIAAEBCAAAwwQAAGMIAAODBAACgwQAAkMEAAARCAACAwgAAbMIAAHTCAABgQQAAgD8AAKDAAABgwgAAAEEAADBBAADYQQAAyEEAABTCAAAwQgAAwMAAALBBIAA4E0AJSHVQASqPAhAAGoACAAAwvQAAQDwAABw-AABQPQAAgDsAAOA8AAAQPQAA8r4AAI6-AAA8PgAAPL4AAKg9AABAPAAAHD4AAAS-AABQPQAAmD0AAFC9AAA0PgAAsj4AAH8_AADgvAAA2D0AAPg9AADYvQAAoDwAABA9AAAsvgAAcD0AAIg9AABAvAAAqL0AAAS-AADYvQAAlj4AAIC7AABAvAAANL4AAFS-AAAMvgAAbL4AAIC7AAD4PQAAmL0AAAy-AADIvQAAZD4AABS-AABAPAAAbL4AAKC8AABwvQAAPD4AAOg9AABsvgAAmL0AAOY-AACovQAAgLsAAEC8AACIvQAAyD0AALg9AACgvCAAOBNACUh8UAEqjwIQARqAAgAAJL4AAHA9AABQPQAAG78AAIA7AADYPQAAoDwAADA9AACKvgAAjj4AAJi9AAAcvgAALL4AAIq-AAAwPQAA4LwAABw-AAAnPwAAqD0AAK4-AACAuwAALD4AAHC9AABwvQAAQLwAABC9AACAuwAAqD0AAPi9AAAwPQAAUD0AAAQ-AADgPAAAcL0AAKA8AABwvQAATD4AAKI-AACKvgAAgLsAAPg9AABAvAAAyL0AABC9AACAuwAAmD0AAH-_AACovQAA4LwAABw-AAA0PgAAyL0AAAw-AADgPAAAuD0AAIA7AAAwPQAA-D0AAJi9AAAwPQAAQDwAACw-AADgPAAAiD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=t40xYKbxmEc","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3000,"cheight":2000,"cratio":1.5,"dups":["5138273701662202345"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"3594593865"},"6390864300731759553":{"videoId":"6390864300731759553","docid":"34-11-3-ZAA5714925483E236","description":"By the end of this lecture, students should: Understand why businesses adopt Big Data analytics. Analyze real-world case studies across industries. Evaluate business outcomes resulting from Big...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"28","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Data Science and Big Data Analytics: Analyze Case Studies on How Big Data Drives Business Decisions","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JhBTEaaniCM\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTNjM5MDg2NDMwMDczMTc1OTU1M1oTNjM5MDg2NDMwMDczMTc1OTU1M2qvDRIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxO5DoIEJAGABCsqiwEQARp4gQD9__7-AwD2-QYJDgb8ARD5Dfb3AAAA9A739QMBAAD7DPwG-QEAAAn_-QP6AAAAAwH5BfP-AQADC_b_BAAAABkC_QD4AAAA_A4F_v8BAAD18v8BA_8AAAUI9P0AAAAAAAgC9wMAAAADAPr_AAAAAArz8PwBAAAAIAAtUvfaOzgTQAlITlACKnMQABpgJ_4AKPbZ2MgsA7zz0MO9_vnG_f_DKf_sA_8LDuawAdYJpQAB_zn9PR6iAAAACf8cIyoA2XgZAN7cAfr6y8_lG3J_OerT6sfn19DR2AUZ6wa70R1fAPYeBgHo_PBJGRsVIAAt1qcbOzgTQAlIb1ACKq8GEAwaoAYAACBCAAAoQgAA4EEAAMDBAACMQgAA8EEAAMRCAABgwQAANMIAAMDAAACAPwAAlsIAAIrCAAAAwQAAZEIAAHDCAADgQQAA8MEAAMDAAAAgwgAAAEAAAADBAAAUwgAAYEEAAAAAAAAwwQAACMIAAFzCAABAQgAALEIAAEBAAAAAQgAAiMIAACDBAABUwgAAgMEAANhBAADIQgAAkMEAAI5CAAAQQQAAmEEAADRCAAAMQgAAwEAAAHTCAACawgAAEEEAAMBAAABMQgAAzMIAAPjBAADAQAAAoEEAACxCAAAEQgAA7sIAAEBBAAAAwgAAQEAAAMBBAACowQAAoMEAAKLCAADwQQAAIMIAAFTCAACOwgAA4MAAAKDAAAAoQgAAyEIAAKDAAACQwQAATMIAAKTCAACwwQAAEMEAAMhBAABgwQAArsIAAHRCAAAQwgAAmkIAACBBAAAAQQAAQEAAABxCAABgQgAA-MEAAAhCAAAsQgAAyEEAACjCAADAwQAABMIAAIhBAADIwQAALEIAAODBAABwwQAAcEIAAGRCAAAIwgAAgEAAAMDAAACAvwAA4EAAAEDBAAA4QgAAYEEAAFDBAAA0QgAAEEEAAKDAAABsQgAA-MEAAGTCAAA0wgAAQEEAABBCAABUwgAAXMIAAITCAAAAAAAAFEIAAOBAAAAgwQAA4EAAAADAAAAQQQAAwMAAAIDAAACYQQAARMIAAFBCAADIQQAAIMEAABTCAACWwgAA4EEAAEDAAACgQQAAIMEAAChCAAAwQQAAWMIAAEBBAACKQgAAuMEAAOjBAACoQQAATEIAAFxCAAAAwgAAkMEAALjBAAB8wgAASMIAAIJCAADIwQAAQEEAAAjCAADIwQAA0MEAAHDBAADYQQAAaEIAAIC_AAAAAAAAcMEAAAxCAAAQQQAAMEEAADDBAAAMwgAA4EEAAJDBAABcQgAACEIAAKDBAACYwQAAAAAAAPBBAACEQgAA6MEAAGjCAADgwQAAPEIAANDBAACgwQAAlMIAAARCAADwQQAAEEIAAAhCAABUwgAA4MEAAGDBAAAAQSAAOBNACUh1UAEqjwIQABqAAgAAEL0AAOC8AAD4PQAAiL0AAAy-AACAOwAAUL0AABW_AADYvQAA4DwAAFS-AACYvQAA6L0AAI4-AABEPgAAiL0AAK4-AAAQPQAAND4AAPY-AAB_PwAABD4AAGw-AACoPQAANL4AAEQ-AACIvQAAJL4AAIC7AAAcPgAA2D0AAEC8AAC4PQAAnr4AANi9AABQPQAA4LwAAIA7AAAsvgAAZL4AACy-AAAkvgAA4DwAAHC9AACYvQAAoDwAAKY-AAAcvgAAyL0AAJi9AAAEPgAA4LwAANg9AAAkPgAA2L0AAFA9AABtPwAAEL0AADQ-AAB0PgAA2D0AAFA9AAAsPgAAEL0gADgTQAlIfFABKo8CEAEagAIAAMi9AAB8vgAAqD0AADW_AAAQvQAAUD0AADC9AADYPQAANL4AAOg9AAAsvgAAML0AAAS-AAAkvgAA4DwAABA9AABUPgAAJz8AABw-AADSPgAAqD0AAFQ-AAAUvgAAMD0AAFC9AABQPQAAQLwAAFA9AACYvQAALD4AAKA8AACYPQAAlj4AAAy-AADIPQAAUD0AAHA9AABQvQAATL4AAGw-AAD4PQAAEL0AAJi9AABAvAAAuL0AAAy-AAB_vwAAUD0AAHC9AAAwvQAAoLwAAFC9AACovQAAHD4AAPg9AADYPQAA4DwAADA9AABAvAAAED0AAEA8AAAwvQAA4LwAADQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=JhBTEaaniCM","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6390864300731759553"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"3928153151909862892":{"videoId":"3928153151909862892","docid":"34-9-10-Z7FE25D0440E57FD8","description":"Objective 1. Name the elements of a study design (HUIT – Hypothesis tested or not, Unit of observation, Intervention, Timing of exposure and outcome measures).","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"29","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Epidemiology. Research Methods: Overview of Epidemiologic Study Designs","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tJvA2wCVF1Q\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTMzkyODE1MzE1MTkwOTg2Mjg5MloTMzkyODE1MzE1MTkwOTg2Mjg5MmqTFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxP6EoIEJAGABCsqiwEQARp4gQb7-v4AAAD5BwsH-Ab9AgEI_gj4_v4A8vr9_AcB_wD69f0H_AAAAP3_-wb1AAAA-vz0-fX-AQAS9fkIAgAAACAN_fn7AAAAExEGCv4BAAD2-xUBAgAAABj7A_T_AAAAAfoBAP__AADpBfsBAAAAAAvz8PwBAAAAIAAtlt3UOzgTQAlITlACKoQCEAAa8AFr7xwBpR70-2X65QEADuQBgRXw_ycF8AC37P4AxfjSAA0a8gHL8f8A-QkgAPkLAf8P6-8AJO0DABT-BQAdBP0BEAcGAUHnCwE0EQP__wTs__AECAAO-hn_DOwbAAMICP8PCQQAzQDgAAQY6QDp-R4CDxgV_wv2DQbzDP4D8Q8BBO8DBv0j9xQA5ggC_-4IAQP9_ekGBBYIBf4BBfz5CP_6-PsLBRP68fwa9PgFDuvy-fEBBwAT_wD7HgkE__kZAf8T6fr7EP8AAO4KAwE76g0J-vUa9evlD_8KGe0AEOwH-t3_-_brDQMG-vkQCwb-A-8gAC1R9DU7OBNACUhhUAIqzwcQABrABxcrCr8jP461PNWIO3dRDz38AZo9JDMPvFX-sD02lny61Rg-PNIQvDvsXGI9A1SCvPyMu75aUw-8xurFuzsZbD6uDOo8gowlPEsjBr5M9rQ8ufT5PE94kb5nFUw9qeaLutJIlT3-Is28Hu0JPfrV3D03fnI8q6AWPLOudr3rPfC8IIAvvV2psr3BnCq9PR5EvMRb5z3qnQC9XylLuyDrCT7Fbdm8qpk1vIev5Tz3hDa83aCsvCfuIr0BQyA9XBa4POqv9z0xslE6yE0DPeWDeT3_gD084DBRvGOc_zy-zIO7Mwo0Oxxy_TyFrX4914T8N8UuOz3H90C90FjgPMYqb7y3nTE9x-PYPN1gOD4pplw94xs-OnRLRj0ycpY8Rl4WPbO-N7y3HQW8-reJO-umOTzWY5G8rceYvG_KprxZYq88YqylPKpUPzzYtqg84BDLuhbOPz2djyE9KSKDPIJvv7yJHVe8FZQaOycHrb0XVmC89Pt-vPES_D3AKJy9rShrux9VYz0qyYo9DzSVPEO5o7wJslQ8L4wPPOg5mDzfbV48lGVKO_Oxhj3mB869cITaO23jsjosY2M9nI1wO_bwgL0cpJY8OWl1vCn0cD1IXDa8Qpyguva17jyHW1M7uMdzO3DBiDwHlZ288HAavHTVV71_E-k6XUUxu3hN_ryABfq8tMcPu9_55T1NlIy7eSvgOoT1v7yAC1e8Z0tzOy3PgzyaGx09m2Zsu00ZM73VC5k8WNMrPMDVlTuCLFU9e3iJuDVNjjzMInm9ucKUuLcp_Tp_ukY9NfpOOVHWhD3uBlG88Gq-uYX5IT3J0Ay9ajb8tYCCpjxbUCm8eZWRuJ4Sa73yYyc8jR9AObyUOj2KP8o8BSDhNxGTC71biIQ8EP_KON804LrDTqw96gkVuDK_pLw7tQm9UYkSucrDgrxp0we94AelONG6fL0ndTi8mDZVOY1RjbzHlgy8QnEoOHsS2LzPBmq98aehOHisI7yun349fQTTOOsPHrz6Y_U8DjI2t_S6z7xVtS69O2rQN7g-rLxsBvi9ef8guOW2vTzsJVe7SJ1uOKzmeb1tV6i8eWn2t0hISbzZDEu86IkluJ1wpTzZlwy9Iwl3uI-BZj07RT29LqMjuJqqAD3J3Uw9MI5GuJT9jrzEAXk92QbDt6pOYjzK4bS7vpA3OF7V3bvAeny9BaXzN4YQIT1cd9O93vObtyEytjw7OeM9BBsGOXF8Y736JQI-qYEsueEti72bf8s65gAKOLhLkbx-7yW8aZOSNyAAOBNACUhtUAEqcxAAGmBHAQAvCBXt2vM78u_78_DX6z76BO36_yO_APsx6cTo_9-xPx7_IO4JGKgAAABa5t7yCQDsb_36tiDPChmz9gMEA38kGAPK-iMR0bO2BNX3CtXoLEkA8_2u-0EIoxEUBQ8gAC2NgCE7OBNACUhvUAIqrwYQDBqgBgAAgD8AAERCAACAPwAAIMIAAKpCAABwQgAAfEIAACTCAADgQAAAAAAAADDBAACEwgAAoMIAAODAAACuQgAABMIAAAhCAAAAwgAAMEEAAFzCAAAMwgAAcMIAAOjBAADAwAAAQEAAAMDBAAC4wQAAuMIAABhCAADQQQAAQEAAAGRCAABkwgAAwMEAAEDCAAAAwQAAWEIAAP5CAAAAwQAAYEIAADDBAAAUQgAAMEIAANhBAAD4QQAApMIAAFjCAACwQQAAcEEAAKBBAADMwgAA4MEAAABAAADQQQAAOEIAABRCAAAAwwAAqEEAAJrCAAAAwQAAIEEAABTCAADYwQAAvMIAABBCAADQwQAAsMEAADDCAACAQQAAwMAAAOBBAABUQgAAqMEAAKBBAAA4wgAAVMIAAHDBAACAwQAAoEEAACBBAABYwgAAgEIAABzCAACeQgAAYEEAABDBAACAQQAAiEEAABRCAABwwQAACEIAAI5CAAAMQgAAQMEAAJjBAACQwQAAAAAAAKBAAABkQgAAwMAAAJDBAABEQgAAJEIAAHzCAAAAAAAAMEEAADzCAABAQAAAoMAAALhBAACoQQAAMEEAAEBCAAD4wQAAIEEAACRCAAAAwgAA-MEAAEjCAACAwAAAcEEAACzCAABUwgAABMIAAIBAAAAQQgAAQEAAAJDBAAAAAAAAgMEAAKDAAABQwQAA2MEAAFBBAABYwgAAgL8AAABBAACgwAAAAMIAAEjCAABEQgAAAAAAAEhCAABwwQAAyEEAAOhBAAAEwgAAsEEAAJZCAADgQAAAdMIAAGRCAABgQgAAMEIAAMDBAAC4QQAAAEAAAGjCAABEwgAAgEIAAADBAAAgQQAA4MEAAIC_AAAowgAAcEEAADBBAADgQQAAYMEAAOBAAAAQQQAAAEAAALBBAAAAQAAAgMEAACTCAAAQQgAA-EEAAKhBAABwQQAAiEEAABzCAACYwQAACEIAAJpCAADYwQAAIMIAAKjBAADIQQAAcMEAAGDBAACqwgAA6EEAAIC_AADIQQAANEIAAFDCAAAAwQAADMIAALhBIAA4E0AJSHVQASqPAhAAGoACAAAEPgAA2L0AABw-AABEPgAA6L0AABC9AABUPgAAB78AANi9AABwPQAAML0AAEA8AAA8PgAA-D0AAIC7AAAsvgAABD4AAEA8AACgPAAAnj4AAH8_AACoPQAA-D0AABC9AAAQvQAAMD0AAHC9AADIvQAAUL0AAFA9AAAkPgAAHD4AALi9AAAQvQAAoDwAANi9AAAEPgAAiL0AAOi9AAB0PgAAdL4AAEC8AADgPAAAgLsAAIC7AADYPQAA-D0AAEy-AAAcvgAAQLwAABQ-AADgvAAAuD0AADS-AAAwPQAA4DwAABs_AACuvgAAoDwAACQ-AADIPQAAEL0AAOg9AACAOyAAOBNACUh8UAEqjwIQARqAAgAAkr4AALg9AAAsvgAABb8AAFA9AABQvQAAUL0AAPg9AAAcvgAAmD0AAIA7AAA0vgAAcL0AAJ6-AAAEPgAAQDwAACw-AAArPwAAUL0AAFw-AABEPgAAZD4AAPg9AACovQAA4DwAABQ-AABsvgAAuD0AADy-AABAPAAAqD0AANg9AACgvAAAgLsAADQ-AAA8vgAAmD0AAJg9AACSvgAAgDsAACw-AACYvQAAyL0AAIA7AAAQPQAA4DwAAH-_AAC4vQAALL4AAAS-AAAkPgAAcL0AAFC9AAAcPgAAgj4AADA9AABAPAAAED0AAEC8AADgPAAA-L0AADA9AACYPQAAuL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=tJvA2wCVF1Q","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["3928153151909862892"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2176603999"},"2373949301055851143":{"videoId":"2373949301055851143","docid":"34-3-1-Z18D07456608A56EA","description":"Objective of this lecture:Interpret the three types of variation about a regression lineFind and interpret the coefficient of determinationFind and interpret...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"30","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Measures of Regression and Prediction Intervals, the coefficient of determination - Statistics","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tiWDIGQNBBw\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTMjM3Mzk0OTMwMTA1NTg1MTE0M1oTMjM3Mzk0OTMwMTA1NTg1MTE0M2rWEBIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxOoDYIEJAGABCsqiwEQARp4gQMBDwABAAD7_gP_AwT-AeUH_w77AAEA8_gG__8C_wD19wP_9wAAAA0F-wMCAAAA7PP9AvYBAAAH7_z88AAAAB38AgMCAP8AERH6-P4BAAD1_P7tAQAAAAsE-AUAAAAABQoF_wAAAAD3CAEAAAAAAAL_8fsA_wAAIAAtKW_ROzgTQAlITlACKoQCEAAa8AF9-xMB3Qb0AePk5gDMIPgAgSIK_hAV1AC98gsArRLN__b9-QDrCg0AIRkV_6gRCwEV9Ob-E98Y_ybsEv8yDQr_5BU6ADD3BAAqCfcADO7eAMAoCf4f6i0CCtzp_-8X-_0b4QT-5_zbAw7_1wMc6hUD_xoVBRsC_AH1-AP73h0UAPT77_8a_AsJ-QP0_NcuDgAeBvwHES_x_9bhAP8N9QkG_vEF9RUK5QQ4Dv4L5QsK-gLuAPb94u37M_oCBe0B-__-6wj05_wF_-b4BwAn8hsA-uQVAgQc_gATDPgA9toA_NgTDwXZJf0E3wH-CO_2-P8gAC3_IR07OBNACUhhUAIqzwcQABrAB_Et5L4zxTc99UccvBzIP70J6ow7nMwuveOgub0cbYs8XgUjvLFu_D23T7093ATpvNjUeb4FBEm984YFvQovYT4XcbC8QdPGOe_lTr4QqEM9GKzAu094kb5nFUw9qeaLus2zTT1F_US9tiW8PB0A8T311RW9-Z4xvVuvLj03Wuk7-OddvSuIwbzDFxy9SVvmvObLiz18lgy9bjzOPOvgsD1_eIy8fBVPvC_rtDwJACm9210WvZVmDr0pnaO8RNsxPIJCyD3aE-48ItjdPDysJjzg1p08_noqvHN2_LwzuLc8Dw52vN_8xj3sG_M8h1k-vdjCBz1Ex5m98juyvFR8Mr3QQ-08woyEPDvIaz4A2fU86CdmO3h0mL2FMyk9I9v5vJyrgTzoORi9eVr-PAGZtz3Woiq8VyGKPNKufT3BMos9jgGZPHIT97ssuYo8czLMPJ5XgT3AX6c8ioYWvDuZ7jxpXTm9NRL8OsMKnL1JNcc8JCmKuzRH1j30Nja8oWc9umPUtTxOojk97D1ZucU1Qz34UQ2-CW8suxOJGL3nujq8pPGVvD0VRj3qa6c8egZDvI03g7z6SYC9hw19OrG8ML3oOf08HNwtuzeq7jwqmVK9C0drPL2pKL15UaU9ULpyumQntDsnUyI7voFuvPdtrbzd71A8aW4qPOcH5Lxol4-9mbUYu3lioT1Vta49t0gYO6M8Fjwj3c88pz0EPOPFAj7ZnQk9sOXFuZqYrrzuDww8I9yBO1iF9rvSV5s9iQr3t9U3dT0rFo-97rDLOfj7hbx7T0A8D2cNOvmY9DwkCi099ZcAOCyONL2FnzO9mOOWOVxUC72cFfG93J51ORZeM734yEE8Ou6HuYOdpz31jR698kcsubQROb03KAu9rX4QOeCiTr3uSKA9dAr7t5f8tDzV7Vq6hopnuBwG2DzbxwW9NldpOQPdKLxksvi8ojEQORq3Yr2FA4Y9YXewOHtm7rx4gpi8kKA1uEWc7zs90dU94glHuQYKQb2Q77c8EQdjOEtshDuXBCM9gKTyuOXiubxxaJu95a0INhjJgz1rywo9zqEyt7jkKL7Rf4W8nfgauVl6I71VaLC9DOgxuKck6z3pdRi64lpFuC1ikz0UUPK7BWYlt7EVBD7G__g7MtlTuE7BkL0_vk69U05lN1msvDxjuDq8zoQdOOW2nb0E_hC9cVaRt2EGeT3zOhK-S-epuGGsyjx40509kwuFOB44gr0z8549nOfyuJgPjb3dH4Q9jMPRN89r7LtoUnG7dlnRNyAAOBNACUhtUAEqcxAAGmBI8wAb-yDk-Adk3dfJ6fEN6hPcG9Lf_-nA_-X4-MMR7ufBAvsAOsdF8qQAAAAt7-8qGADHf9vb0CzlHzDtxv_-BXoCAx_E7wQLpvnvI-j4HwYPQ2UALtOhIDz9sS0VQxggAC07Exg7OBNACUhvUAIqjwIQABqAAgAAQDwAAEC8AABcPgAAmD0AANi9AACAuwAAqL0AAPK-AACIvQAADD4AABC9AAAwPQAAuD0AADQ-AACCvgAAiL0AAPg9AACYPQAAyD0AAII-AAB_PwAAgDsAAEA8AAB8PgAANL4AAPi9AACIPQAA6L0AAKg9AABwPQAA4LwAANi9AAAEvgAAmL0AAEC8AACAuwAADD4AAEy-AABUvgAAgr4AAOi9AABAPAAAMD0AAOC8AACevgAAqL0AAEw-AAAwvQAAqL0AADy-AAD4PQAA2D0AACw-AABMPgAAXL4AAHC9AAAZPwAAMD0AADC9AAAUPgAAED0AAIC7AADIPQAARL4gADgTQAlIfFABKo8CEAEagAIAAJK-AAAwvQAA2D0AAD2_AACAuwAAQDwAAIg9AADgvAAALL4AAKI-AACYvQAABL4AAOi9AAAUvgAAQDwAAKC8AADIPQAAKz8AAAw-AACSPgAAgLsAAHA9AACAOwAAQLwAAHC9AACYPQAAQLwAAFA9AACIPQAAuD0AAFC9AADoPQAAmD0AAJa-AADgvAAAUD0AACw-AAAEPgAA-L0AAFA9AABwPQAAUL0AAFC9AABAvAAAED0AAMg9AAB_vwAAcL0AAIA7AAAsPgAARD4AAEy-AAA8PgAAED0AAOA8AACAOwAAUD0AAIC7AACAuwAAiL0AAPg9AACAuwAAcL0AANg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=tiWDIGQNBBw","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2373949301055851143"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"9016836211332875457":{"videoId":"9016836211332875457","docid":"34-0-9-ZA6BB1501A86F0EF7","description":"Working with Data in Geographical Information System. Spatial Data Collection Technique and Metadata...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"31","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Working with Data in Geographical Information System. Spatial Data Collection Technique and Metadata - YouTube","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Ak0RGiUdsDo\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTOTAxNjgzNjIxMTMzMjg3NTQ1N1oTOTAxNjgzNjIxMTMzMjg3NTQ1N2qvDRIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxP1BIIEJAGABCsqiwEQARp4gQwF-QP9BAD1_goMAgb9ARL3Aff3AQAA9A339QMBAAD-_AIE9wEAAAj7_gYBAAAAB-8DC_39AQAM_-38AgAAABkC_QD4AAAACgb3CP4BAADt_wIIAwAAAAoJBPv_AAAABwz_APn_AAH_BfYCAAAAABD1_v0AAQAAIAAtw0feOzgTQAlITlACKnMQABpg_AUAQg8B9cMWH9XyEL__99jYzx204v_WwAAYJN7MCP7wqfwkADDcHPusAAAAK_LtLOUA3Gvt9OJLJx0Mw-L1IT5_0B7zFgYi2r0WARDq4Q7e9D0bAPcWBh9J9a0_HBIKIAAtBr0lOzgTQAlIb1ACKq8GEAwaoAYAAODAAAAoQgAAKEIAAKjBAACEQgAAZEIAAFxCAAA4QgAAuMIAABDCAAAcQgAAeMIAAITCAACgwQAAlkIAAODAAABwQQAA2MIAAEDCAAAAwQAAuEEAAIjCAADAQAAAmEEAADBBAACAPwAAhMIAAFDBAAC0QgAAsMEAACjCAADYQQAA1MIAABxCAABUwgAAiMEAAOBBAACyQgAAUEEAABBCAABAwQAAjEIAABBBAADIQQAA6MEAAEDBAACIQQAAcEEAACBCAADAQAAA_MIAAJjBAAAAwAAAQEAAAK5CAAAgQQAA7sIAAADAAABAwAAAqEEAAGDBAABEwgAAiMEAAMjCAABsQgAAsMEAAKBBAACQQQAAnsIAAFDBAAAMQgAAMEIAAKDAAABAwQAA4MEAABBBAACYwQAAoMAAAABCAAAgQQAAUMIAAJBCAAAAwQAA0EEAAGjCAAAAwQAA6EEAAJBBAAAoQgAAwMAAAIhBAABUQgAA4EAAAJLCAAAIwgAA4MEAALDBAAAEwgAAAEIAAKDBAACgwAAAAEIAAIpCAAAEQgAAcMEAAGDBAAAkwgAAAEEAAKBAAADwQQAAqEEAABDBAABgwQAAgMAAAEDAAADQQQAAYMEAAKjBAADgwQAA2MEAABBBAAAwwQAACMIAAGDCAADAwAAA8EEAAAzCAAAYwgAAoMEAAGTCAADQwQAANMIAABDBAACAwQAA4EAAAIhBAABwQQAAQEEAAKBBAACowQAAZEIAABhCAAA0QgAAqMEAAABCAABAQQAAMMIAAHBBAAAsQgAA4EEAAILCAACowQAAsMEAANjBAAAcwgAA-MEAAIDCAAAQQQAAqMEAADBCAADYQQAAoEEAAMDBAAAQQQAAoMEAADTCAABAQQAAREIAAIA_AAAQQQAAIMIAAMhBAABgwQAACMIAAODAAADowQAAokIAACzCAAD4QQAAUEIAAMDCAACUwgAAIMIAACDBAACAPwAAQEEAAAzCAADoQQAA8EEAAEDBAAA8QgAA0MEAACBBAADYQQAAiMEAAAhCAAA4wgAAAEEAAIDBAADAQCAAOBNACUh1UAEqjwIQABqAAgAAcD0AAOC8AACmPgAA4LwAABC9AAAwvQAAgLsAAAu_AACivgAAQLwAAFC9AAAsvgAAiD0AANg9AAAMvgAAPL4AAKA8AACYPQAAMD0AAN4-AAB_PwAAcD0AAFC9AAAwPQAAiL0AABA9AACYPQAAFL4AAHA9AAB8PgAAiD0AADA9AADIvQAADD4AAFS-AACYPQAAgDsAAIq-AAC4vQAA-L0AAIK-AAAMvgAABD4AAIi9AABUvgAAfL4AAPg9AAAMvgAAqL0AAEC8AAA0PgAAND4AADQ-AACIPQAAhr4AAJi9AAAXPwAAML0AAMg9AABMPgAA4LwAAOg9AABcPgAAoLwgADgTQAlIfFABKo8CEAEagAIAAHC9AAC4vQAAQLwAACW_AAAUvgAAgLsAAIA7AADIPQAAFL4AAHQ-AAD4vQAAbL4AAKC8AADYvQAAqD0AALi9AADYPQAAIT8AAKA8AAC2PgAAoLwAANg9AACovQAAoLwAAOA8AADgPAAA2D0AAEC8AABwPQAAbD4AAEC8AAC4PQAAoLwAACS-AADgvAAAUL0AAFA9AAAUPgAAZL4AAAw-AAAwPQAA2D0AAIA7AABwPQAAuL0AAKC8AAB_vwAA6D0AAFC9AADgvAAAML0AABS-AABwPQAAmD0AAHQ-AADgPAAA2D0AAAQ-AAAkvgAAgLsAAMg9AADoPQAAuD0AALi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Ak0RGiUdsDo","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["9016836211332875457"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"13982374900340971685":{"videoId":"13982374900340971685","docid":"34-2-17-Z79CCD570687D2097","description":"Objectives: Use the research goal as the organizing principle of a study design. Distinguish between general research goals. Explain the requirements for causality.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"32","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Epidemiology Research Methods: Research Goals in Epidemiology","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iDoKpU86pR0\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTM5ODIzNzQ5MDAzNDA5NzE2ODVaFDEzOTgyMzc0OTAwMzQwOTcxNjg1av0GEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E4oWggQkAYAEKyqLARABGniBBv74_fwEAP0CBQL6Bf4B9wr7BPn9_QD6_gH5BAP_APL1_wECAAAACf_5A_oAAADzA-z6-v8AAAX5-wryAP8AFQX98fwAAAAGCQEJ_gEAAP4BEvcCAAAADf7_-P8AAAD_Av7__QH_APP7Bf_y_AAADPr5-wAAAAAgAC2mjt87OBNACUhOUAIqcxAAGmD_AQABCREE0ugV0-v_H-bu6SvvCeoEAB7FAPIiEc8UBPHQKS8AGtkkA70AAABABO4P7wDdVw8Uvg4CBxcCJv8P_X_0-OrgAA4B-smyzwjr8-DZOUIA7g_tARb_syIHJS8gAC3DuUU7OBNACUhvUAIqjwIQABqAAgAARD4AABS-AAD4PQAAVD4AAN6-AAAkPgAADD4AAA2_AACevgAAuD0AAFC9AACYvQAAoj4AAJI-AAAUPgAAqr4AAKC8AABwPQAAND4AAMI-AAB_PwAAQDwAABw-AABAvAAAFL4AAKg9AAAEvgAAir4AAPi9AABAPAAAND4AADw-AADovQAAoDwAAHA9AAAMvgAAED0AALi9AACqvgAAoj4AAES-AAAQPQAA2L0AAMi9AAD4PQAA2D0AAOA8AACYvQAAQLwAABy-AACgvAAAPL4AAKo-AACgvAAAuD0AAAw-AABXPwAADL4AAEC8AACCPgAADD4AACS-AAC4PQAAgLsgADgTQAlIfFABKo8CEAEagAIAAJq-AABUPgAAuL0AABe_AADIvQAA-D0AAEC8AABcPgAADL4AALg9AACgvAAAor4AAEC8AACCvgAAiD0AAIg9AACKPgAALT8AAJg9AABEPgAAlj4AACw-AABcPgAAmL0AAIA7AABMPgAAmr4AADw-AAB8vgAAUL0AAJg9AABQPQAABD4AADA9AAA0PgAAkr4AAAQ-AAAwvQAANL4AAOC8AABkPgAAyL0AAHC9AACovQAAQDwAAMg9AAB_vwAAoLwAAHS-AACoPQAAkj4AAFA9AAD4vQAAqj4AABQ-AAC4PQAAcL0AAAw-AAAUPgAA4LwAAEC8AAAQvQAAgLsAAOA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=iDoKpU86pR0","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13982374900340971685"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"12602090763707051237":{"videoId":"12602090763707051237","docid":"34-0-5-ZA43D71A09F5C0525","description":"Epidemiology is the study of the distribution and determinants of health-related states or events in specified populations, and the application of this study to the control of health problems...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"33","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Epidemiology - The Approach and Evolution of Epidemiology","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=y5_6S84TM5U\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTI2MDIwOTA3NjM3MDcwNTEyMzdaFDEyNjAyMDkwNzYzNzA3MDUxMjM3arYPEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E7ENggQkAYAEKyqLARABGniBBv74_fwEAAUEDgX6CPwC9RP-Afn9_QD6_gH5BAP_APr1_Qf9AAAABAb3AQIAAADzA_j6_AAAAAb39Q0CAAAADP_4-wcAAAAQBQAM_gEAAPgBCv4CAAAADP0EAP8AAAD2AQL7-AD_AeoF-wEAAAAADPr5-wAAAAAgAC2mjt87OBNACUhOUAIqhAIQABrwAXr1FwGlHvT7Uv7rAAAO5AGBFfD_IRHpALD39ACx9usAERUCAdrtDAD5CSAA7_3v_yz06v8d6Q7_HfUD_ysC9AALBhMAQecLASUYBAD_BOz_6hIF_g76Gf8E9Rb__xYP_hoMEv_P7u__-wrx_e3vDQQPGBX_C_YNBuwEAgD8CQAE8A0F-isEBADZGQf_9xgIBuzy7P3vGAEC5vYB_-0SAfwAARoBDgMEARQGAwML8OMC5QUJ9xP_APsiF_4B-w7yAxH09gEFCfz_6AL-AzvqDQn69Rr1-ucQCAoZ7QAY9gTx3f_79vkT-gD6-RAL-_n68yAALVH0NTs4E0AJSGFQAipzEAAaYDMBACwCI_7c5zDj7Snz-AL7Jvos7NwAHNQA-icIvvcZ29IyNP874CPvsAAAADX00xsSAOVn9QWs_v8DHNne4hbwfzQlGrruIR3rzcIV8A4k68MaCgD1AqbyJwmaIv4NMCAALfsEKzs4E0AJSG9QAiqvBhAMGqAGAAAsQgAAoEAAAMpCAADIwQAA2EEAAIDAAABsQgAAhMIAAFjCAADQwQAAQMAAAADBAAAwwQAAMEIAAARCAABQwQAAFEIAAGzCAADgwAAABMIAABjCAAAEwgAAdMIAADRCAADowQAA-EEAABDBAACewgAA0EEAAADAAADAwQAAjEIAAEzCAAAQwgAAnMIAAJhBAABAQQAApEIAAKjBAAAgwQAAQEAAAADBAACgQgAAUEEAABjCAABEwgAATMIAAABAAACgwAAA4EAAAFTCAACgQQAAgEEAAKBBAAAsQgAAPEIAAMjCAAAwwQAA0MEAAARCAAC4wQAAeEIAAATCAAAowgAAJEIAAMBBAABowgAAsMEAAAxCAACIQQAAiEEAANBBAACgQQAAoMAAACTCAAAIwgAAVMIAAPjBAACowQAAEMIAAKLCAACaQgAAoMIAALpCAAC4QQAAqMEAACBBAACYQQAAwMAAALjBAADAwQAAVEIAALBCAAAcwgAAgEEAACDBAABAwAAAQMAAAKJCAABEwgAAuEEAALBBAAAsQgAAgL8AAKDBAAAEQgAAMMIAAGRCAADgQAAA0EEAAIA_AACgwQAA-EEAANhBAADAQAAAQEIAAPjBAACAPwAAKMIAAFDCAADQQQAA8MEAAMjBAAAswgAABMIAACRCAAAAQQAAgMAAAAzCAAAQwgAAQEAAAMDAAABkwgAAkEEAAEBAAAAgwQAAYEEAAKhBAAAgwgAAlsIAAPDBAADAQQAAQEAAACBBAAD4QQAAHEIAABDBAADAwQAAgEAAALBBAABAwAAAKEIAABDBAABEwgAAEMIAAIBBAAAAAAAA0MEAADDBAABkQgAAuMEAAABAAAAYwgAAHMIAAKzCAABwQgAAcEIAABxCAACQQQAAgMEAAETCAAD4QQAA4EEAAKDAAABUwgAAoMAAAMDAAACgwQAAkEEAABDBAAAswgAAgMIAAFBBAAC4wQAA0EEAADDBAAAswgAAVMIAAPDBAAAgQQAAMMIAAETCAAAAQQAA8MEAABBBAABEQgAAssIAAJDCAABUwgAAFEIgADgTQAlIdVABKo8CEAAagAIAAIg9AAAwPQAAPD4AAFQ-AAAcvgAAJD4AAGw-AADuvgAAZL4AAAw-AADovQAAmL0AANg9AAA8PgAAcD0AAIK-AABQvQAAyL0AANi9AABMPgAAfz8AAIC7AAAMPgAAcD0AADS-AADYPQAAgDsAAJi9AAAMvgAAmD0AABw-AABkPgAAbL4AAIC7AAAcPgAAXL4AAGQ-AABwvQAAjr4AADQ-AAAcvgAADL4AAFQ-AADgPAAAUD0AACQ-AAAsPgAA6L0AALi9AAAUvgAAED0AAI6-AACSPgAAUL0AAMg9AABQPQAAFT8AAGS-AADovQAAED0AAFC9AAAQvQAAHD4AAFA9IAA4E0AJSHxQASqPAhABGoACAAAEvgAAiL0AANi9AAAnvwAAQDwAAEw-AABQvQAAPD4AACS-AABAPAAAPL4AAHy-AAAQvQAAgr4AAKg9AABAPAAAbD4AABU_AADgvAAAoj4AAMg9AAB0PgAA-D0AAKi9AACgPAAADD4AADy-AAAQPQAAPL4AAKA8AACIPQAA2D0AAAQ-AABAvAAAUD0AACy-AAAcPgAAmD0AAES-AAAwPQAADD4AAHC9AAAwvQAAgDsAANi9AAAwPQAAf78AAOC8AABkvgAADD4AAPg9AABwvQAAmD0AAFw-AACYPQAAUD0AAEA8AACAOwAAiD0AADC9AADgvAAAiD0AAOC8AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=y5_6S84TM5U","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12602090763707051237"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2676699571"},"16275431946173686208":{"videoId":"16275431946173686208","docid":"34-0-8-Z6272799361549526","description":"An absolute measure is one that uses numerical variations to determine the degree of error. ... Relative measures are the major alternative to absolute measures. They use statistical variations...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"34","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Epidemiology: The Absolute and Relative Measures of Associations of Exposure and Disease","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bv1JCSnXtA0\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTYyNzU0MzE5NDYxNzM2ODYyMDhaFDE2Mjc1NDMxOTQ2MTczNjg2MjA4arYPEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E_wSggQkAYAEKyqLARABGniBBwH-Av4CAAv9BQP6Bv4B_xL4Bvf-_gD9BQMAAgX-APMAAAf-AAAABQ30CgUAAADr9_78_gEAABUE9AD1AAAAJQD9BfsAAAAdAwMH_gEAAPcKCP0DAAAAFgX-BgAAAAAHDf8A-f8AAfj4AvsAAAAAEf7uAwEAAAAgAC1usto7OBNACUhOUAIqhAIQABrwAWv-HQK_Gfz-H_7yAPkY5AGBBQv_IfjvALf39QC59-0AGRb3Adz9AADrDRsB3PPlAAzn2wAj-QsAEv8FACP8BAAJEQQARPkMARsKCQAICPb_BBkFACIMJv8Y4BIBCh8L_hgKEf_E8Oj_7xbxAOv5GwINFhMAJPcHAvMIFP4AJwcC_AgCAycHEQDZDQ3_8xD7AP37-AQIGO4A3ff4AfsX8gT6-f4DHPb1ACwL_wj67fb8_AAK-BALCAMXH_gB-xQNAfnq__8J9AT88wIL-zXsDAn69hj2--kPB_8W6gYJ9ADy9PMG9OId_gMJ_gUF7fgB9iAALW4nSDs4E0AJSGFQAipzEAAaYDcFACgZJu7s9GXT6Q3dBAIEENwEzAb__MYA6DAc1vgPuqIXBf9EBzDTpQAAACb60QkOAPV48PiqBwcYIZ___QYAf_Q2Hrj_AA-wp8re1Q4V9-IYGgD67ZEHVt2sH_AjCiAALfyUFzs4E0AJSG9QAiqvBhAMGqAGAABAQAAAsEEAAIhBAACowQAAcEEAAIDBAADwQQAAwMEAAGDBAABQwQAAcEEAADDBAAAUwgAABMIAAKxCAAA4wgAAwMAAAKDBAAAgwQAAmMIAABDCAAAowgAARMIAAHxCAACOQgAAKMIAAIDCAACkwgAAUEIAACxCAABAwAAAKEIAAEzCAACQQQAAcMEAAKDAAABQwQAAyEIAADTCAABkQgAAJEIAAGBBAAAMQgAABMIAACRCAAB8wgAAlsIAAPDBAACQQgAAEMEAAHDBAACAQQAAiEEAACBBAACAQQAAMMEAAADDAAAMQgAANMIAAOBBAAAUQgAAgD8AACDCAABAwgAAoEAAAI7CAACIQQAA-MEAAEBAAACYwQAABEIAAFRCAAAAwgAAmEIAAKDBAACGwgAAuMEAAAzCAACoQQAAEEIAAMjBAACAvwAA2MEAAHRCAAAgwQAACEIAAMDBAAD4QQAAeEIAAI7CAABAQQAAwEAAACBBAABYwgAAgMEAAIDCAAAwwQAAQEEAAJBBAAD4wQAALMIAAHBCAACEQgAArsIAAGDBAABwwQAASMIAAChCAAAowgAAaEIAACDBAAAEQgAAEEEAAITCAACgQQAAiEEAADzCAABEwgAAgMAAABDBAABAwQAA6MEAAMDBAABAQAAAWEIAAChCAAAAQQAACMIAADDCAAAUwgAAoMAAAKDBAADwwQAAZEIAAABBAADowQAAAEAAAIhBAAA0wgAA0MIAAADAAACAQQAAmEIAAKDAAACAQQAA4MEAAHDCAACoQQAAMEEAAJDBAAAkwgAAZEIAAChCAABgwQAAoMEAAPhBAACQwQAAisIAAJjCAAAUQgAAAMIAANBBAAAswgAAKMIAAABBAAAMQgAALEIAABBCAACIQQAA0EEAAIbCAADYQQAAYMEAAABAAABwwQAAsEEAAMDAAACYQQAAeEIAAEDAAAD4QQAAEMIAAOhBAABQQQAAiEIAAFDBAACKwgAAYEEAAMjBAAAAQQAAisIAAETCAACAPwAA4MEAACxCAADQQQAAVMIAAABAAABcwgAAMMIgADgTQAlIdVABKo8CEAAagAIAAOC8AACAOwAALD4AAHC9AADIPQAAUL0AADQ-AAD6vgAARL4AAFA9AAAkvgAAiL0AAKA8AACePgAAQLwAAPi9AAC4PQAAED0AAIA7AAC6PgAAfz8AAOi9AADIPQAAcD0AAHy-AACAOwAAFD4AAJg9AABMPgAAVD4AAIg9AABQPQAAHL4AAFC9AACoPQAAUL0AALg9AACIvQAAJL4AABS-AAAwvQAAoDwAAPg9AAC4vQAAXL4AALi9AABsPgAATL4AAKi9AABMvgAAqD0AABw-AACiPgAALD4AAKi9AACAuwAAGz8AAHC9AABwPQAAMD0AAJi9AACYPQAAHD4AAI6-IAA4E0AJSHxQASqPAhABGoACAACWvgAAiL0AAIi9AABVvwAAQLwAAOA8AABEPgAAoDwAAOi9AAAEPgAAyL0AAES-AABUvgAAlr4AABw-AACAOwAAJD4AABs_AADIvQAAlj4AAFC9AADIPQAAqL0AAIC7AABQPQAAhj4AADS-AACAOwAA2L0AAEC8AADgvAAABD4AANg9AADCvgAAoDwAAHA9AAAMPgAAHD4AACy-AACAuwAA2D0AAIi9AABQvQAAED0AABA9AAAQvQAAf78AACy-AABkvgAAUD0AAHw-AAA0vgAAgj4AADC9AACgvAAAgLsAADA9AAAQPQAAQDwAABS-AAAkPgAADD4AABC9AAAEPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=bv1JCSnXtA0","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16275431946173686208"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"3045284078"},"9103960075841879898":{"videoId":"9103960075841879898","docid":"34-3-12-ZC716C6DF84CE415A","description":"The measure of disease frequency we have calculated is the prevalence, that is, the proportion of the population that has disease at a particular time. Prevalence indicates the probability that a...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"35","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Epidemiology: Measure of Disease","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=43VOZrbMRaw\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTOTEwMzk2MDA3NTg0MTg3OTg5OFoTOTEwMzk2MDA3NTg0MTg3OTg5OGqIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxOzB4IEJAGABCsqiwEQARp4gf799_3_AgAM_QUD-gb-AfcK-wT4_f0AAf0G-wMF_gDy-PcG-wAAAAUN9AoFAAAA6v329P0BAAAY_PkAAwAAAA3_-PsHAAAACwQCCQoAAQH-CAMAAv8AABYF_gYAAAAA_gsIBPr_AADy_PgAAAAAAAD19P4AAAAAIAAtCm_ZOzgTQAlITlACKoQCEAAa8AF_9RgBwRwK_gLo8QDnCfYAjh4J_xcS9ACd9AwBthDS__AF7QDi9AMBCAYvANP5DwAf797_EPELARPwDf86HhUADRMfAUPmDAE99QQA8w_p_xcUCP8O-Rr_JOwXAP8WEP4LDxz_2wfeAAkM6QLo-B8C_xcTBBT2HQIAAQ384RoSAPP5DPgk9xUAzQ7xAt4EHQLoAAoE7PkEA9vkAP_9EN4EFc7z-xzn9PkaDuwED-rx-foHGvYM8_38EgYQBecJBfsP4wUCCAbu9uEbBf8n2A4BC-8Q--zdAAIbIOf5EewH-ur7Avj3Fwf86AsX_vj_A_kgAC0PbC87OBNACUhhUAIqzwcQABrAB8GnBb_UlRU8csPvvHMcLryDdn099Oyku5QoBT2djUu8VYzOPCurhD1piG89Dwlfu_yMu75aUw-8xurFuzsZbD6uDOo8gowlPNz0F75-1DU9qmINPE94kb5nFUw9qeaLum7ngT2WpF87FItJPZNvBj5vsCE9nJAOvG-LCL1DRwe6I9gYvV2psr3BnCq9PR5EvMRb5z3qnQC9XylLu2kZGT69Xzu9ZRfvOyBSgLpm1pQ77ITXvLoRlr0ZPAg8vn0HPeqv9z0xslE6yE0DPayyKj2X_BQ9rm4rvFssQD1HaaG67bQYuwA6TD2Dw6Y9ipO5O9Kjjj2ZpA29UN-yPLPtFL13hmQ9exw8Pd1gOD4pplw94xs-OiKudzyAZks9u95sPLO-N7y3HQW8-reJO2LglDzRQRK92LKAu2_KprxZYq88YqylPGLvKj1-QLk6jtj-uqZqMT0zzlU9S0Keuv9Bf7zQA4S8MoxgvFWPur2-OTc8F5klvPES_D3AKJy9rShruy6ZqT26Vzw9nW40PBjMnzyavs-7_qjdOz8wzzu0d-E8TZ-huxdKYT1Q03i9uzkFumNeRzykUDs9-a89u_bwgL0cpJY8OWl1vG7_pT1Iory8Or6ou2_ltjzc-Vk8LUGGPGj27zyzKh29-jRdvOZ6hr20TRg87ADCu04CZbzwrIi9-PXHOqGGzz2lF9I7o-qyu745Er32spK8Duvcudd1wTssaFU9pdoGO1jsar23mUg79FjMO1bT9Ty5YJo98w4rudDQpDz205-9hFmyObRYK7tZYBk9zXlQOY6YhD2m5-e8LGGvOYX5IT3J0Ay9ajb8te4EHDxSVTK8-Q0zup4Sa73yYyc8jR9AOfUUGT3YDik7gGTSuPaQOrwLVmY8PVeEOapO4rwTimM984WvOAJlU7yd5D29RUUxuJPY3jsDTE-9Rl8FuNG6fL0ndTi8mDZVOR6mILxXMvS7Wt8WOBdWAL2_hhu9goIfuH2AyTtrZm09mnjhOP6SHjzNhLA8t9GVtSkJCb29Tg-9_B27OLg-rLxsBvi9ef8guOW2vTzsJVe7SJ1uOPWisb2obP28Z7CauBQPXrwznhK9HJY3t7dp4jyaTqG84T2wuMxKLj2bUkO9WrZLuKJfOz1FHz09h_NyuOyV6Lsz8yk9OBpRuDpZ6jz_AM47gaaitT4qmbwO0Y29Bo37t72vBT2lSQm-rZ6FuKAXDj0XJb09KH8AOXF8Y736JQI-qYEsuehVs70WJOw8zbghOM5mGr0P7s68kCQ_tyAAOBNACUhtUAEqcxAAGmAoCQAZHxjozQEr3PAV_OwGDULx2tn6ABu7ABMSFM0B-dy1Aff_Pew1w60AAAAl9tIA8gD1c_4Quh3rAhS-0g0U-n8HLy_V6g4KrsjCCt_7ARLS-jAA-d-iFzISsRIFNy8gAC3HnyY7OBNACUhvUAIqrwYQDBqgBgAAAEAAAHBBAACYwQAA2MEAAIA_AACwwQAAfEIAACDCAAAAQAAAyEEAABhCAABYwgAANMIAADzCAACkQgAAQMIAAODAAAAQwQAAUMEAAHjCAABEwgAAFMIAAGDBAAAoQgAAQEIAABzCAABIwgAAYMIAAExCAADoQQAANMIAAARCAACiwgAAQEEAAJDBAACAQAAAgD8AAMRCAABUwgAAeEIAANhBAACoQQAAYEIAANhBAADgQQAAOMIAAEjCAADAwQAAoEIAAABAAADAQAAAMEEAAJhBAACYQQAAyEEAACDBAAAAwwAAoEEAACjCAAAwQgAAIEIAAABBAAAMwgAAusIAAMBAAACIwgAAwEAAANjBAADgwAAAAMEAAERCAAB0QgAAkMEAAHBCAAAgwQAAksIAAOBAAABgwQAATEIAADxCAAD4wQAAAEEAADDBAABAQgAAHMIAALDBAAAsQgAACEIAAHRCAABcwgAAAAAAAIBBAAAAQAAAlMIAAIjBAAA4wgAAUMEAAAxCAADoQQAAwMAAAADCAAAMQgAAQEIAAMzCAABwwQAAwMAAAETCAABEQgAAYMEAABBCAAC4QQAALEIAAMDAAAA8wgAAqEEAAABBAAAkwgAAUMIAAKBBAAAAwQAABMIAAODBAAAUwgAABMIAADxCAABMQgAAEMEAAIBAAACIwgAAoMEAABBBAABAQAAAuMEAADBCAAAAAAAAMMEAABBBAACwQQAAAMIAAOzCAAAQwQAAAEIAAEBCAAC4wQAABEIAAFDBAABQwgAAkEEAAIBBAADowQAAFMIAANhBAAAMQgAAUMEAALDBAAAAwAAAgEEAAETCAACCwgAAQEEAAFjCAADAQQAAZMIAACzCAADgwQAAMEIAAOhBAAAsQgAAgEEAAAhCAABIwgAAkEEAADzCAADQwQAAsMEAAPBBAACgwQAAoMAAAGhCAAAQQgAAyEEAAJDBAAAkQgAAmEEAAKpCAACAvwAAjMIAAEhCAAAgwQAAQEEAAJDCAACYwgAAQEAAAPDBAABwQQAAwEEAAFjCAADgwAAAcMIAAILCIAA4E0AJSHVQASqPAhAAGoACAABAvAAA2L0AABQ-AABAvAAA4LwAAPg9AABEPgAA_r4AAHS-AAAEPgAARL4AAMi9AABkPgAARD4AAJY-AAAMvgAAoLwAAKg9AACgPAAAij4AAH8_AACIvQAAZD4AAHA9AAB0vgAAQDwAAKg9AAC4PQAABL4AADw-AAAUPgAAoLwAAAS-AAD4vQAADD4AAMi9AABAPAAAmL0AACS-AABMPgAA-L0AAFC9AAAkPgAAEL0AAMi9AAAQPQAAQDwAAHy-AABkvgAATL4AAIC7AABUPgAAXD4AAIi9AADYPQAAiD0AACE_AABAPAAAVD4AAI4-AAB0PgAAoLwAAPg9AAAkviAAOBNACUh8UAEqjwIQARqAAgAAuL0AACQ-AABkvgAAJ78AAPi9AABQPQAAgLsAAAw-AAAEvgAAZD4AABS-AACavgAABL4AALK-AABAvAAAoDwAAJ4-AADqPgAA6L0AAAw-AABMPgAApj4AAIC7AADoPQAAgLsAALo-AACCvgAAiD0AAFy-AABAPAAAUD0AADA9AABcPgAA-L0AAIK-AACAuwAAfD4AALg9AAAUvgAADL4AACQ-AAAQPQAAMD0AAIC7AAA0PgAA6D0AAH-_AACYPQAAnr4AADQ-AACCPgAAML0AAJI-AAD4PQAAHL4AAHA9AABAvAAAuD0AAOC8AADIvQAAgLsAANg9AAC4vQAA-D0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=43VOZrbMRaw","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["9103960075841879898"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"3940197407"},"11473909459881137829":{"videoId":"11473909459881137829","docid":"34-10-9-Z7C22CBF3AD20BA11","description":"Lecture 1: Introduction and Proofs Instructor: Tom Leighton View the complete course: http://ocw.mit.edu/6-042jf10 License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"36","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Lec 1 | MIT 6.042J Mathematics for Computer Science, Fall 2010","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=L3LMbpZIKhQ\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTE0NzM5MDk0NTk4ODExMzc4MjlaFDExNDczOTA5NDU5ODgxMTM3ODI5atYQEgEwGAAiRRoxAAoqaGhyZXpna2FpbnN6dHBxYmhoVUNFQmIxYl9MNnpEUzN4VFVySUFMWk93EgIAEioQwg8PGg8_E9kUggQkAYAEKyqLARABGniBAAMD8QH-APX4BgkPBvwBGfrwBPQBAQDw-vIE-AH_AP3--fYBAAAAFQjvCQAAAAD-A_8R9_4BAAP7_AIEAAAAEwn3_fYAAAAYCvYI_gEAAPnxAPcCAAAAFBIBC_8AAADx8vr0AP8AAA4IAvsBAAAADg72_QAAAAAgAC3vMs47OBNACUhOUAIqhAIQABrwAX8hDALdDOAA7fDPAOsa-gGBAAL_JRPmANH3_wDF7OIBHhzgAM8B4P_yKwcBwRcHADn2z__77vkAIdry_zP0EwEG_w4BPAD3ASMXGQAEBtUA4x4p_hLoDf8D7N4AGv_d_wcCDP7IANwA19vMBQnZOAIE-RkC_wMbBN7zBf_u9w0GC9Xb_vkA8wTs7P4B3AQfAhzf9gn7NwYC0B3t_w_k7P_02iD_Gv_O_BDSA_8AB_X79Az-9wrm6wIUHiD_2_f19g8BDP_98_H6CAf3AAzpB_358PQJ8O_7CQ3-_vwYtwAB6gL3AQQe9_7eAw0JzvnvAiAALb9PJDs4E0AJSGFQAirPBxAAGsAHuqP3vjGDpzwifF48e8KNPZav7DuUh4W8JcrevTItW70AMa670hC8O-xcYj0DVIK8twz4vY34xLwjMic9xmumPsiqUjzply28ehcvvgg8MD0pn9S89aGDvjx38TsuxZc727B8PZAhUT2FnBA8efNKPfVfzDwBeYA81e0sPnpForuD8w693JsEPNST3rz87QG9aY7svLfkor0nEcY8RGnPPeTEMjxxqjW8gN4KPdSZ_7uE1G07seHpvTRcLr2sEnY8EQAsPpZbGj3bHe086RuXPcJsgjwCxf48HOagvbT4Pr3P2SK9ZhbhPUG1Bj0T1oa8PDAAPoxZBb2jhZU7bazkvaYRLj2UTsE7JxcTPk_Vcz0VqbA8Er3svYX2AD30Q5k7avCIvfjfSj1PvDk8-0gAvQI0AL3Kp8e778ouPNgHgjvyiIC8nbv6u9oEEz0xsf27VxgMvVcbCD1b5EO8R2I4vG0bhjwnMpQ7YlOCPJ3vDL1jXNa87usgvVqEgr3OJ2E8uBRBveoz77sPHMA7RPO1PdjU2b06cSC8TYXXu4easrx6KQa8GTQZPRQAKL3y45a7louCPI95kzy04kC8ixfLPCYGmjuYama8lu-EvT8dz71STDm88SkFPXp58DzXZBU8VK7su-RZeD2WFRa8Eo40PCbKOT3Qcuq7xWUGPfoMCL5VIQO6MQRFPS9nHbt67G06bJ45vbTGJb2zKnw7F96LPSKZwDu3KJK7Iyo5Pa0lDr0kNkw7f74tvSFXqjxwjgS7at6BPVFmaL0CFoQ5tOt3Owj6VbyCZTs6XvhcvY2CuzymwVo3qn7lvCEStDzgpoM5rbp1u3JmYLz6trG55fZDu_wDAL2s6wq5O5gDPc4K-7u9Meu6Cih5vBxeDrzkS1O5I4fDveyMDLvZRg04YB3HPDaxGz1eFFm44iVVu-6CObo4-Ai4iSXlPF3_aT1bEJU3yCiqvOWiED0Mp5A4w4AlPOeOjr3DZnI53fNXPcdXUT0Heh83nNuEvb7Yqz0nXzY4Oo7EvPy3nDzdGVi5ObSYPaaPir3MHdo3nsfyPAZuWD1slHa4rOZ5vW1XqLx5afa3Fe0Avb_ZoDt4WQG3nquXPUtph70YaaA4qmmivSRv7zsWRqM4ndnuPZ-Vk7qjag650LsMPf-l1jxLoAI4dQI6PUn3Dj0C5Sg3YmoLveLuhzy-2F-3oW9BuwuLkL1ihgm4EZupPbC8dbw1q6c461zsvKqkpD0Bi8S4l_RBvby8vz3pDhI4M_wnvqgYzLz174W4IAA4E0AJSG1QASpzEAAaYEH8ABX_Mtbw6EjxD9EBIff5Ecsly_H_8yD_IQ3LACLyxM0UEf8FriC-nwAAACz7zhEbAN9_JLrPJBAEO6n3_w8zdRcLJMw-AfC13DH76BtZGOEeNQAK66gtLuuCMxtPACAALS3SEzs4E0AJSG9QAiqPAhAAGoACAACAOwAAMD0AAFA9AAAUPgAA-L0AAHw-AADIvQAADb8AALK-AABsPgAAPL4AAMK-AABQPQAAVD4AAJg9AABEvgAAgj4AAKC8AAC-PgAAqj4AAH8_AACOPgAAvj4AALg9AAAwvQAAXL4AAKg9AACovQAAJL4AAPg9AAAEPgAAoLwAABA9AABAvAAAJL4AAEC8AACgPAAAPL4AALK-AAA8vgAA1r4AADS-AACYPQAA4DwAAJi9AACAOwAAcD0AAEy-AACGvgAAwr4AAKA8AAAsvgAALD4AAJg9AAAkvgAA4LwAAFE_AAD4PQAAQDwAAHA9AABAPAAAfD4AALg9AAAUviAAOBNACUh8UAEqjwIQARqAAgAA4LwAAOC8AAD4vQAAD78AAOi9AAAwPQAAiD0AAKC8AADovQAADD4AAPi9AAAcvgAAcL0AAHS-AACIPQAAoDwAAOg9AAAjPwAAyD0AAAE_AABAPAAAML0AANi9AAD4vQAAUD0AAKC8AABQPQAAEL0AAKC8AAAwPQAAgLsAABA9AAD4PQAAyL0AAHA9AAAQvQAAiL0AACQ-AABUvgAAqD0AADQ-AACIPQAABD4AACy-AAAEvgAAcD0AAH-_AADovQAAuL0AAOi9AACIPQAADL4AAOi9AACAOwAAND4AADA9AABAvAAAiD0AABy-AABEPgAAUL0AAKi9AACgvAAA6D0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=L3LMbpZIKhQ","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["11473909459881137829"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1841663823"},"10926865050005344112":{"videoId":"10926865050005344112","docid":"34-8-8-Z97A6ED5B9610687E","description":"Lecture 2: Induction Instructor: Tom Leighton View the complete course: http://ocw.mit.edu/6-042jf10 License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"37","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Lec 2 | MIT 6.042J Mathematics for Computer Science, Fall 2010","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=z8HKWUWS-lA\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTA5MjY4NjUwNTAwMDUzNDQxMTJaFDEwOTI2ODY1MDUwMDA1MzQ0MTEyapMXEgEwGAAiRRoxAAoqaGhyZXpna2FpbnN6dHBxYmhoVUNFQmIxYl9MNnpEUzN4VFVySUFMWk93EgIAEioQwg8PGg8_E5wlggQkAYAEKyqLARABGniBAQj6-QAAAPH6EgYGBP4BGPrwBPUBAQDx-vIE-AH_APr8Af__AAAAFQfvCQAAAAALBQMQ__0BAP_89QQDAAAAA_73-PYAAAAXCfYI_gEAAPnxAPcCAAAADQkBBQAAAADy-f_7-___AA4IAvwBAAAADQ32_QAAAAAgAC0IsdI7OBNACUhOUAIqhAIQABrwAX8C_AK7Gvv-GQjqAOQaCQGWHAn_FhH0ANf4_wC7D9X_EBQCAdjgAAAtGvcAtg4JAB3w4f_47h4BH-8P_0wTEf8MEh0AQtX4ASEd5wEr8fT_7Ab9_xP5DAD0CfICBwnb_v_qIADg-OkAAN7kBBb7DQPZDQwEFfj6_A3_BwHsEA0C6-8B-xwk_AAO9vUG3gj__PcC8_z9LO_-ChgF_RLp__8G8xL4DQX4BRn15wQE-_H74gz6AhkO8wUHFQ0EB_3mBeb6_PsX7AH97goDAQX4GQUS_BkA9PoE9eUO8f0R_w0G8yQLDPoS-wDrG_0F9-z07SAALWa9PDs4E0AJSGFQAirPBxAAGsAHL_3rvgpiBT3d1P47JZtGPYR2Q7dAtha9JcrevTItW70AMa67isITPbRNWz22DhA8ofUgvmFL9LxbItc8Z2KaPk46m7wa71g87-VOvhCoQz0YrMC7T3iRvmcVTD2p5ou6vPOqPawZnj1n_408FxJLPVmQ3Dwk-Dq81e0sPnpForuD8w694V4ZPXfxo7yRviS8G3-HPNc3m72uqWK7ELEhPnxZpDwpzPu8gN4KPdSZ_7uE1G07umetvUFSGr2Z2UI8EQAsPpZbGj3bHe08bcrVPfW3KbyfJSM9HOagvbT4Pr3P2SK9QQsJPb7sSD0RSqm8xCy_PVFphLzMeas8qMghvgJ8HD3o6W083WA4PimmXD3jGz467fECvgG5ST2mzkg8q1WQvZEe0DzmqEg8zyG-O_skFjy2ZDi7QX52PfIfOTudCCy8Eg8LvCQUtjzuKK07D-frvKZNgD3j6te63Y1PvUC2dj2pSr46JbkRu5KG5LwaZFy8V24zvG3iJL1Nxsw8rV-6vK-apTttJSq83Ve6PUMxk70uHdK7fCCDPNjIorulwpa6C08ePMAA57zfKfC7KZWwPAo1pzjpP9K7iCQfvUNVzDzl4XO851BmveWXtr2hbZC6E-iNPewGQD3NIAA8rrCqPFx8AD2rBsC79XaVPB3_CTzMosm6KXCcPZIry70o9to41bx5PZt9-jmC0DQ7ZSOGvZYE6LwT9oo6DT-ePXnsgjzLJ446X7kZPcrAZr1QCog7P_orvUJiNj3dwrg5lEC0PeDNZL3ih2o5vaLAPAS_lbu5cPq5uh2QvCY-kjxFtjk6rIMtve1CWD1bi0g5snKevHklpLxZi0u5sZZxvH5zWrz3_zM7luI0PfOKzLx3g465p6MtvE37gzoKpwG6xLFOvZX_mjxpQWG41depOp8bHz2fjqC3NfBDPeTZCLy28NO4xaflPEEKIz2OhUC5yCiqvOWiED0Mp5A4CilkvOtDbb2kWfM2LUHGPc5MFT0W8oY4Wsb8vKlQWD0q2gS1gIgjvb_olzwP4QG4Z2dsPQVN671fJjU4rS8XPVtElDy_Bh259aKxvahs_bxnsJq4mlazu53DC73d6L43nquXPUtph70YaaA4m_mavS4mLD3XXZc3raf2PbPqmLx7Ozq5X_bhPLpDVDzElga54P-dPTUGHzyGjcg2OkoUvR23Trxf9Ni3U2VOPHtclb1edby342sPPoVOHj0XdK44p4xkvUFECj14FOS4bgONvSdprj2_9xY3VtYWvjFWkL31hKC4IAA4E0AJSG1QASpzEAAaYFf7ABz6JOXV41Xo9O_4C-0KINMfw-j_BR__IiXR5v0G3MoQAv8ToyTZpQAAAALz6PxAAMh_I8jaCPD_PMPfAxkNWAgW_uwFACO48wbc9gEx__UVJQDm8Z82O-mWQSFcDSAALXnBHzs4E0AJSG9QAiqvBhAMGqAGAAA4QgAAoMAAAIhCAABAwAAAkMEAAKDAAACsQgAA8MEAAABAAADgwAAA4MAAAIDAAAAwwQAAqEEAANBBAADgwQAA0EEAABjCAAC4QQAA8MEAAPDBAAB8wgAACMIAAIpCAADAQAAAIMEAAJrCAACgwAAALEIAAIJCAAAIwgAAQMEAAJBBAABAQgAAhMIAAIA_AACAQAAAcMEAADDBAACgQQAAYMEAAMDAAAAYQgAAgMAAABhCAAAQwQAADMIAAADCAABYQgAApkIAADBBAAC4QQAADMIAALBBAACAPwAAKMIAAKbCAADoQQAAAEAAADBCAAAAAAAANMIAAIzCAABMwgAA0EEAAIzCAAAAwQAA0MIAAIjBAAAAwAAADEIAAGRCAACQwQAAOEIAAAjCAAB4wgAAQMIAAIDAAAAAwQAAwEAAAIzCAADIQQAAMMIAADDCAABwQQAApkIAACTCAABAwQAA4EEAAEDAAAA8wgAAGEIAABBBAACYwQAACEIAAI7CAADgQQAA0MEAAERCAABMQgAABMIAADRCAAAgQgAAlsIAADDCAADIwQAAIMIAAIjBAAAIwgAA_kIAAKJCAAAgwQAAEEIAADBBAABQwQAAnkIAAMDAAAAgwgAAAEIAAJTCAACAQQAAcEEAALDBAACKwgAAQEEAAIDBAAAgwgAAwMEAABTCAAAUwgAAAEEAACjCAACowQAASEIAAEBAAABQQQAAGEIAABDCAADIwQAA1sIAADhCAAAsQgAAkEEAAHBBAABIQgAAgEEAANjBAAAwQQAAoMEAAMjBAADAwAAAGEIAAIDAAABEwgAARMIAAADAAAAwwgAAAEAAACTCAABgQQAAXMIAABxCAABgwQAA2EEAAFhCAACAQAAAHEIAAKBBAACkQgAAAMIAAHjCAACAQQAAgMAAAMBAAACAwQAATEIAABRCAAAAQAAA-EEAADRCAACAQAAA2MIAAFBBAADIwQAAREIAAAzCAADAwQAAMEIAAJDBAADAQAAAwMEAAGDBAABgQQAAGEIAAADAAACYQQAAMMIAAABAAABIwgAAMMIgADgTQAlIdVABKo8CEAAagAIAAIg9AACAOwAA-D0AAMg9AABQvQAAfD4AAHC9AAARvwAA1r4AAHw-AAAEvgAAA78AAFA9AACKPgAAMD0AADS-AACmPgAAoLwAAP4-AACmPgAAfz8AAHQ-AACSPgAA-D0AAAS-AABUvgAAmD0AAEy-AADYvQAAJD4AAAQ-AADovQAA2D0AAEC8AAAEvgAAgLsAABC9AAD4vQAAur4AAGS-AAC-vgAAUL0AAIg9AACAOwAAVL4AAOA8AAAsPgAAir4AAFS-AACqvgAAoLwAAAS-AAA0PgAAUD0AAES-AAAwvQAAPz8AADw-AABAvAAAPD4AAFC9AACKPgAAqD0AAJi9IAA4E0AJSHxQASqPAhABGoACAACIvQAAgDsAAAy-AAARvwAA-L0AAOA8AABQPQAAQLwAAMi9AABMPgAAqL0AANi9AABQvQAARL4AADA9AACAOwAAuD0AACE_AADIPQAABz8AAIC7AABAvAAAuL0AABy-AACgPAAAoLwAAIg9AACAOwAAUL0AADA9AABAPAAAED0AANg9AAAQvQAAuD0AALi9AADgvAAARD4AAHS-AABwPQAAFD4AAIg9AACoPQAANL4AABy-AABwPQAAf78AAHC9AACYvQAA-L0AAFA9AADovQAA6L0AAJg9AABMPgAAMD0AAIC7AAAwPQAAyL0AADQ-AACIvQAA2L0AAEA8AAD4PSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=z8HKWUWS-lA","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["10926865050005344112"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2073635483"},"3842254571696082909":{"videoId":"3842254571696082909","docid":"34-6-9-Z92EFD54598548681","description":"Lecture 25: Random Walks Instructor: Tom Leighton View the complete course: http://ocw.mit.edu/6-042jf10 License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"38","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Lec 25 | MIT 6.042J Mathematics for Computer Science, Fall 2010","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=56iFMY8QW2k\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTMzg0MjI1NDU3MTY5NjA4MjkwOVoTMzg0MjI1NDU3MTY5NjA4MjkwOWqIFxIBMBgAIkUaMQAKKmhocmV6Z2thaW5zenRwcWJoaFVDRUJiMWJfTDZ6RFMzeFRVcklBTFpPdxICABIqEMIPDxoPPxPAJIIEJAGABCsqiwEQARp4gf0FBfsB_wDw-hIGBgT-ARDz-QH2AP8A8PryBPgB_wD9_vn2AQAAABUI7wkAAAAACwUDEP_9AQD_-_QEAwAAABMJ9_32AAAAGAr2CP4BAAAE6wL0AgAAABMKCAH_AAAA9Pj4BPwA_wAOCAL8AQAAAAMP8fcAAAAAIAAtiJfOOzgTQAlITlACKoQCEAAa8AF_DvYC0Qv8_wsG4QDUCfsArBAKAAYl9QDNBP0Avg_X__4S9gDo2vH_HiP-ALkOCQAn4Nz_7NkdADrpCAAvARIA_gcXAR3e9gEoFvYAKvL0__QKEf__6BkB_fbtAfgP6P__6x8A9f3p-xfh3wAT7CIC1xsMBAr-Av307QoB7wUR_vjw8_wKJvcCDPX4--oGC_0A9wIFAyf8AfQI8AMR6v__7-oH9yb7__4h_vYF9fb6-d8D_vwV-Oz6AgYVAvsR4v3s6RcA9ugB8-kC_gIG9AwD-w0NCP_r-_rxDPgBCvcIAAkXAgXvHgfz9g4GAgD59v4gAC2vCUM7OBNACUhhUAIqzwcQABrAB5IH8r6mQAs94IOXvCWbRj2EdkO3QLYWvbka2b2Q2O68UyunPIrCEz20TVs9tg4QPJZdUL6Q7Nu8iSimPAovYT4XcbC8QdPGOe_lTr4QqEM9GKzAu094kb5nFUw9qeaLutuwfD2QIVE9hZwQPKtNoj1U3B29CXYSvXxi_T33fpm8V4uZvCuIwbzDFxy9SVvmvOWAeD1HIUS9GwsOu3glOT6iEQk8dnIAvAwehj3fqik75O0QPEMRfL2oRwS9mWr_uxEALD6WWxo92x3tPM5fhz3T2vS8zoL1PHwnBr6WffK8pKTsvGNebDw7Dg09LU7rvMQsvz1RaYS8zHmrPKjIIb4CfBw96OltPOSG_z05dvU8jG-ePBjSAb5Jg6s9liYlvGrwiL3430o9T7w5PJoB17s1UsA8Cc3Hu7P7Xz2Q8GK8kXDvOiTRDbyZaCs9WJBmPAFvnrsmrI09Trj5OSFtKL0WyRI9EHkEuXPpSb0DbTw7UTsyvPE8grzQXbe8MtWCPBYYDTxuc187Ka94O0TztT3Y1Nm9OnEgvHNawbxVvUG9-g56u0-t_jw6r_G8oyqcvHY0Dj1phwS9sjJYu6Y_kL184Lq7wJ4nO-dQZr3ll7a9oW2QumozSrt99jI93d-1ObbkJz2Y_iA9uV0gvB4yZT3HNfQ8tmLmO8CHjD3_hJm9hA9juwuosT3xw_e8mIz7uZl7Db2OqaK7VSMqO2u7hD37s3q8N7lnu3JUiTwnBSy95BWIO5TLVb3eVW89KwGMOjy98j1KyFG9V8GOOQwSET0qUgK7HkeVOOvUi7yTCjk95TyWOYJtabzuwuA8mKSaOXUulrzl0Q29i5iLubhD4DuKjDO8TSQ8uX0FST0Lf6O7qwijuCLwUbwI19K8s3KrNw6aIr0pQmo8OmCyuWAdxzw2sRs9XhRZuAShJj1KqoC8L_M4OTZEsDwLcqE8SSEMuLNNIry1aOY8425pNwopZLzrQ229pFnzNoro9z0_kKw9gu5mOFrG_LypUFg9KtoEtUtFmbyTKVU8_tUnN4sWgD1EKsG9fSojONiYPD20JcY8zh-AuCq-y72osj6950aVN0hISbzZDEu86IkluP5cWT1zFoG9AjAGOJVthr0Khu87OLuON8HjKz7cpWi8B4l0uVZVnrzE3Wo89N9Ot0Hybj2FD4C8EshbNzpKFL0dt068X_TYtw0SRzx0fPS9VlhZuGpPGT6pbpk9CAIytzFIVb3nCM88ecf5uJgPjb3dH4Q9jMPRN-Pxvr1zk0K9NsewtyAAOBNACUhtUAEqcxAAGmBM8gAm9B_T3-1Q6e7d9xzhDRi4IMPw__oI_w4c0v8aFd_OGgT_A7Mx06UAAAANCu79KgDWfx7U6ggHLDnE4_wnKWH3DQbc-Qges-31zd0BPxAAKT4A--mkIjjjhzorTRIgAC3Inx07OBNACUhvUAIqrwYQDBqgBgAAXEIAALjBAACAQgAAQMAAAJDBAABwwQAAoEIAABjCAAAQQQAAwMAAALjBAACgQAAAAEEAAPhBAABgQgAAoMEAAOBBAADowQAAQMAAALDBAACYwQAAbMIAABzCAACGQgAAIMEAAEDBAACYwgAAiEEAANhBAAAsQgAANMIAAPDBAAC4QQAAUEIAADDCAACAwAAA0EEAAGDBAACAPwAAUMEAABjCAAAAwQAAqEEAAEBBAACEQgAAqMEAABzCAAAcwgAA6EEAAIhCAAAAwQAANEIAACDCAAAkQgAAiEEAAHDBAACcwgAALEIAAFBBAACCQgAAQMEAAAzCAACWwgAAwMEAAIhBAAAQwgAAwMEAAJjCAABQwQAA4EAAAFBCAAAQQgAAMMEAAMhBAACowQAAOMIAABTCAAAQwQAA6MEAANhBAACCwgAAVEIAACTCAABUwgAAgMAAALZCAAC4wQAAQMAAALBBAACAwAAAUMIAABhCAAAAQQAALMIAAOBBAABwwgAAAEIAAOBAAAAsQgAAmkIAAAjCAACQQQAAUEEAAFDCAAAAwQAAQMIAACDCAADAwQAAXMIAAJZCAACeQgAAgMEAAIhBAACYQQAAAMAAAMBCAADAQAAA8MEAAIpCAACswgAAAEAAAABAAACIwQAAWMIAAOBAAACAwAAA6MEAAIA_AACAwQAA4MEAAKDBAADQwQAAcEEAADhCAACIwQAAyEEAANBBAAAYwgAA2MEAANzCAAAAQgAAFEIAAERCAABQQQAAPEIAADBBAAAcwgAA8EEAAIhBAADQwQAACMIAAJBBAADgQAAAQMIAADjCAADIQQAAdMIAAKBAAAAowgAAkEEAAETCAACQQQAAwMEAANhBAAAsQgAA4EAAADRCAADIQQAAlkIAABzCAACGwgAA4EAAAHBBAACgQQAAiMEAAFRCAABEQgAAgL8AACBCAADwQQAAwEAAAN7CAAAEQgAARMIAAIJCAAAgwgAAAMAAAEhCAADAwQAAIMEAAHDBAAAAQQAAMMEAABxCAAAwwQAA4EEAAGzCAABAQAAAHMIAAEjCIAA4E0AJSHVQASqPAhAAGoACAAD4PQAAcD0AABA9AACoPQAABL4AAI4-AADgPAAAE78AAJK-AABMPgAAiL0AAO6-AACoPQAAfD4AAMg9AACKvgAAhj4AAIA7AAC2PgAAtj4AAH8_AAC2PgAAyj4AAEQ-AAAwvQAADL4AADA9AACYvQAA-L0AABQ-AAAsPgAAyL0AAFA9AACgPAAAHL4AAKA8AACgPAAARL4AAAO_AACSvgAA5r4AAEC8AACYPQAAQDwAAOi9AADYPQAAUD0AAI6-AACuvgAAyr4AABC9AAD4vQAAgj4AALg9AAA0vgAAML0AAFM_AAB0PgAAUL0AACw-AAC4PQAAgj4AAKg9AADYvSAAOBNACUh8UAEqjwIQARqAAgAAQLwAAOi9AAAkvgAAD78AAIi9AAAUPgAAuD0AAIC7AAA0vgAAZD4AAIi9AAD4vQAAgDsAAES-AACAuwAAQDwAABQ-AAAnPwAAqD0AAA0_AAAQPQAAgLsAAKC8AAAkvgAAUD0AAIi9AAAwPQAAgLsAAIA7AAAQPQAAMD0AAIA7AACoPQAAmL0AAAQ-AADovQAAoLwAABQ-AABUvgAA2D0AAIY-AABQPQAAHD4AAGS-AABUvgAAFD4AAH-_AACYvQAA2L0AAJi9AAAQPQAAuL0AAMi9AACoPQAALD4AABA9AADgvAAAMD0AANi9AAAcPgAAyL0AALi9AABAvAAADD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=56iFMY8QW2k","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["3842254571696082909"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"4070096225"},"5373752776544036608":{"videoId":"5373752776544036608","docid":"34-0-16-ZB66400716B40AC08","description":"In this video, we'll explore one of the most popular data structures used in computer science and programming competitions: the Trie, also known as a Prefix Tree. We'll focus on solving the...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"39","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Leetcode 208. Implement Trie (Prefix Tree) | C++ Tutorial","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=TaROsKvSGjs\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTNTM3Mzc1Mjc3NjU0NDAzNjYwOFoTNTM3Mzc1Mjc3NjU0NDAzNjYwOGqvDRIBMBgAIkUaMQAKKmhoeWxvb3pwaWRhZHZ2YmJoaFVDZW5mMkhoVTZGRjVrc2RfaFhLOVFhdxICABIqEMIPDxoPPxPGB4IEJAGABCsqiwEQARp4gfz4BgsBAAD6BBgH_Af9Ag_9BgL3AAAA7QT8-AUAAAAJCwf0AAEAAPoL-wMCAAAA9QED-_P_AQAFAu0GAgAAAAn3AAf9AAAADQf_-v4BAAD2__QCA_8AAAUJAfL_AAAA_AL_7QAAAAAF-wQDAAAAAADw-g0AAAAAIAAtuC_TOzgTQAlITlACKnMQABpgG_IAGfsWw9g-L_XnCdoA3-Un5frH9_8N7wAUGev5BQ3gzyAeABzX7Aa0AAAAKSO5GdoAF1n_6d4mAuEh_rIDCxF_DQ3j3_cYALfYQAAy_N7-FT05AOzyFAk58_UoAjYjIAAtWcQ6OzgTQAlIb1ACKq8GEAwaoAYAAJ5CAABAwAAArEIAAHxCAAAAQQAAAEEAAEDBAAAQwgAAMMIAAGDBAADQQQAAqMEAACBCAACAwgAAFEIAAFzCAAAMQgAAYEEAAIbCAAC4QQAApEIAALjBAABYwgAALEIAAIBBAAAwQgAAsMEAADBBAAAAQQAAKEIAAJjBAABcQgAAEMIAADBCAACgwAAAEEEAALhBAAD-QgAAGMIAABDBAAAAwAAAZMIAAJZCAABIQgAAMMEAAPDBAAAkwgAAyMEAAIhBAADAwQAAsMEAAMjBAABQwQAA2EEAAFhCAADIQQAArMIAABTCAAA0QgAATEIAAPBBAAAMQgAAsMEAAJjBAACgwQAAcEEAAIBBAABAwAAAoEAAAKBAAACYQQAAikIAAFzCAACQwQAABEIAAHDCAAA8wgAABEIAAHBCAADIwQAA4MEAAEBCAAAwQgAATEIAAOjBAACAPwAAYEEAAIZCAAAQQQAAgEEAADDCAAAAQQAA4EEAAKzCAACAPwAA0MEAANhBAAAYQgAAgEEAAMDBAAAgQQAAwMEAAExCAADAwQAACMIAAOBAAADYQQAAYEEAALhBAADwQQAAgkIAAJzCAADAwgAAUEEAANhBAADAQQAAdEIAADzCAAAgwQAAAAAAAIDBAABkwgAAlsIAACTCAADQQQAAEMIAAAzCAACAwgAAIMIAALjCAAAAQQAABEIAAJzCAAAYQgAAoEAAADBBAACCQgAAAAAAAEDCAACYwgAAwMAAAABBAAA0wgAAMMEAABBCAAAMwgAAQMIAAEBCAACQQQAA6MEAAKDAAACAwQAAfMIAAOjBAAAwQQAA6EEAABjCAACCwgAAQEAAAIBBAACgwAAAwMAAAHBBAAAgwQAAcEEAAHDBAAAMQgAAwEAAAODAAABAQAAApsIAAJhBAABswgAAgEEAADTCAABsQgAAksIAAJjCAACeQgAAfEIAACBBAABAwAAAoMEAAKBAAAAAQAAAsMEAAMBAAAAAwQAAwEAAAHBCAADgQQAA-MEAAHRCAADwQQAAIMIAAEDBAADAwAAAyMEAAJDBAACwwSAAOBNACUh1UAEqjwIQABqAAgAAbL4AAOC8AAB0PgAAij4AAIg9AACSPgAAnj4AAB2_AADqvgAA2D0AAES-AABcPgAALL4AAIo-AACYvQAA4DwAAEw-AABQvQAAqD0AAEE_AAB_PwAAcL0AABw-AADIvQAAoLwAAMY-AAA8PgAAxr4AANg9AACmPgAABD4AABA9AAD4vQAADD4AAEw-AACIvQAAuL0AAEy-AADmvgAAgr4AAMa-AABAPAAAyL0AABS-AACYvQAAqD0AAMY-AACSvgAAiL0AAI6-AABwvQAABL4AAKg9AADoPQAAXL4AAFC9AABJPwAAQLwAAFQ-AAB8PgAAML0AAKC8AACoPQAAFL4gADgTQAlIfFABKo8CEAEagAIAAKq-AAAcPgAATL4AACW_AACgPAAAgLsAAFQ-AAA8vgAAoLwAAIo-AAAwvQAA4DwAAJq-AACWvgAAoDwAAIC7AAAQPQAALT8AAEC8AAD6PgAAJL4AANi9AACgvAAA4DwAADy-AACIPQAAEL0AALg9AACgvAAAqL0AALg9AAAwPQAAQDwAABC9AAAsPgAAiD0AAIY-AABkPgAARL4AAKg9AABMPgAAcL0AAMi9AADgvAAAqL0AADQ-AAB_vwAAvr4AAGy-AAAcPgAATD4AAOC8AACePgAAML0AAMg9AACAuwAAcL0AAOA8AACgvAAAgDsAAKA8AACePgAAEL0AAPg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=TaROsKvSGjs","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5373752776544036608"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"10621427996066031320":{"videoId":"10621427996066031320","docid":"34-9-14-ZF62FF6A30FA2A4D8","description":"Who is Chuck? I’m Chukwudi Ikem. I am a software engineer, a recent bootcamp graduate, and university graduate. I graduated from California State University, Fullerton with a B.S. in computer...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"40","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"A Strange Solution: Excel Sheet Column Title | LeetCode #168","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=wkBk9S1VF94\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTA2MjE0Mjc5OTYwNjYwMzEzMjBaFDEwNjIxNDI3OTk2MDY2MDMxMzIwaq8NEgEwGAAiRRoxAAoqaGhzdW9vY3BybWFjenNrY2hoVUNEY01vYXdQNTFCbTJHY3F0THE0b2dBEgIAEioQwg8PGg8_E4oNggQkAYAEKyqLARABGniB_voI-wn2APT3BwoQB_sBGwEQC_QCAgDh7_T_-_wCABEIFPsHAQAA4AEJAwcAAAAIBwMG-P0BAPMFCxAEAAAAIfwCBAMA_wD9Be_u_wEAAPwJ_gcE_wAADf8P8P8AAAD-__z6AgAAAAMTAQkAAAAAAvn1BwAAAAAgAC0B07k7OBNACUhOUAIqcxAAGmADDwAFDgTl7Boo7gAB1R_3G_X28NsaAAQTANwJ0wAYEbnNDPsAJcsJ9sMAAAAQHOImGAD-TwHU9vIX7xHbzeQM_n_zE_n0-v7b1u1H-BILCBgGUO8AAPAXDxbV9lLyHvkgAC2lAFQ7OBNACUhvUAIqrwYQDBqgBgAAIMEAAKBBAAA4QgAAsMEAACRCAADAQQAAjEIAAJBBAACkwgAAIMEAAABAAABwwgAA0MEAACDBAACQQQAAgD8AAGDBAAAAwQAA8MEAAODBAACAQAAAbMIAABTCAABgwQAA4EAAAABAAABAQAAAcEEAANBCAAAAwQAAEMIAAKBBAAD-wgAAYEIAAMBAAADiwgAAsEEAAARCAAAIQgAAlkIAAOhBAAAwwgAA8EEAADBBAABwwQAAbMIAAExCAADgQAAALEIAAIC_AACqwgAAIMIAAAxCAAAcwgAAcEIAAPBBAACmwgAABMIAABDBAAAEQgAA4EAAAFTCAAAcwgAAiMIAAJjBAACiwgAAuEEAACDBAADQQQAAwMEAANhBAAAwwQAA4MAAABxCAABQwQAAMEEAADTCAABcQgAAfEIAAIBAAAAgwgAApkIAAOjBAAAQwQAAoEAAAMDBAADwQQAAqEEAAFhCAABAQgAAEEEAADhCAADAwAAAiMIAAOBAAABwQQAAUMIAACTCAACgQAAAoMEAAAjCAABsQgAAQEIAACBBAADYwQAAQEAAAMDAAADgwQAAAEEAAOhBAAAAwAAAoMAAAIC_AABQQgAAAEIAALBBAABAQAAAgEAAAIBBAACAvwAA6EEAALDCAAAAQAAA2MEAABBBAACgQQAAuMEAALhBAAAwwgAAiEEAADjCAAAkwgAA8EEAAODBAAAEwgAAwEEAAKDAAAAwwQAAqEEAAOjBAADwQQAAlEIAACBCAADQwQAAYEIAAODAAAAkwgAAGEIAAKDBAADwwQAAoEAAAHDBAADgwAAACMIAAIDBAAB4wgAAQMEAAABAAACAvwAA0EEAAJhBAAAEQgAAmsIAACBBAACAwQAAoMIAAADBAABYQgAAYEIAAADAAAAUwgAA2EEAAABBAAAwwQAAEMEAAGhCAABEQgAAsMEAAJjBAAD4QgAAlsIAAKjBAACowQAAiMIAAIDAAABQQQAAfMIAAMhCAADYQQAAgD8AAHhCAABYwgAAsMEAAExCAAAIwgAADEIAAIbCAACIwQAAQMEAAAAAIAA4E0AJSHVQASqPAhAAGoACAABUvgAAuL0AAKI-AABQPQAAnr4AAMo-AADoPQAA-r4AALi9AADgvAAAor4AAFw-AAAQvQAAMD0AAAS-AAAEvgAAHD4AAPi9AACovQAADz8AAH8_AACGvgAALL4AAHw-AAD4vQAAyL0AAGw-AADgvAAAMD0AAHQ-AABAPAAAVD4AAJi9AAAUvgAAXD4AAEC8AACOPgAAqD0AAAy-AABQvQAAVL4AAIA7AABEPgAA4LwAADw-AAAwPQAAHD4AAJi9AACuvgAAZL4AAJg9AABkvgAADD4AAKC8AAAcvgAAUD0AACc_AACCPgAA2L0AAFw-AAB0PgAA4LwAAOg9AACuPiAAOBNACUh8UAEqjwIQARqAAgAAiL0AAIA7AAC4PQAAG78AABy-AADYvQAAgDsAANg9AACAOwAAEL0AAL6-AACAOwAAgLsAAJq-AACYPQAAUD0AAAS-AABTPwAAmD0AAOo-AAAMvgAAPL4AAJq-AACYvQAAZL4AABC9AACGPgAAQLwAAAy-AAC4PQAAgDsAAHA9AAAUPgAAEL0AADA9AABMPgAAHD4AABQ-AACavgAAVD4AAEC8AAC4vQAAMD0AADA9AAD4vQAAyL0AAH-_AADmvgAA4r4AABS-AABwvQAAyD0AAJI-AADovQAALD4AAKA8AABwvQAARD4AAPi9AAA0PgAADD4AAFQ-AAAUvgAAuL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=wkBk9S1VF94","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10621427996066031320"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1754302649"},"14261799121477601440":{"videoId":"14261799121477601440","docid":"34-2-4-ZFF280B28783ED9EE","description":"Step by step instructions for the Mind Tap T6 Case Problem 2: Japanese Puzzle Factory. In this video we will be building an html table which has smaller tables inside of it. The end result will...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"41","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Tutorial 6 Case Problem 2: Japanese Puzzle Factory","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DzF5E4tQstE\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTQyNjE3OTkxMjE0Nzc2MDE0NDBaFDE0MjYxNzk5MTIxNDc3NjAxNDQwarYPEgEwGAAiRRoxAAoqaGh0bHhnb2lrZWtidnBqY2hoVUNhSzJPOEg3em1hanFGMkpka1J4SHVnEgIAEioQwg8PGg8_E9giggQkAYAEKyqLARABGniB-Q_0_gL-APjsCQkGB_wCG_sG__UCAgDiBQP1_vsCAAMEEP3-AQAA_Qz8BQwAAAD7EfH3_P4AAAIIAREEAAAAAgwIBQAAAAAKEAMA_gEAAPnzC_ACAAAADvD4Dv8AAAD8CQEB_P8AAP0NAPkAAAAAE_sAAfz0_gAgAC2O-ss7OBNACUhOUAIqhAIQABrwAW716_7c8wUB-hjkAPYD6gGByA_8J_bsANfODwDJ5_YABPzIAMfw_wDBDwwAwiYZAcfu9AAjAxMAFuju__3zIwA4LPMAJAEKATsCFP8LHOr_-xY-AjTpBQIc2hYB5fX3AAG8AgEt4AD-Ad3x_gsGCf4O5RIDKuL-_AkHFwHjBh__6vQPBOn6EPzUFeH8_ez3__YC8vwQLPL_C_ERBBcG_fsWFgr_B-bgAO8IJwQH-BYI9Af5BfYFDwTI-ggCJ0cO_hYr_Pjp2vf4GvX19B_26vwU9g0EDe8CEPbn-AXu0QDy6PkBCN0S_vzr1gYJ8uj0_iAALfdyKTs4E0AJSGFQAipzEAAaYBgQADn5_ubyKHzYIqTqMMkVA-ge6Tb_FukACBwFxQn04pL5Vf_98uz4nQAAABYSwAbxABV4UvHaN8z8FrnY8RA1fwAtU9Q6EBwY4xcX_tvqAd7wQwAI770uLxanNU04OSAALTYuETs4E0AJSG9QAiqvBhAMGqAGAAAwwQAAiEEAAMhBAACwQQAAYMEAANhBAADIQQAAgMIAAIjCAADgwQAADMIAAGDCAADwwQAAkEEAAMJCAADgQAAAUEEAAPDBAABAwQAAwMAAALBBAAAUQgAAQMEAAKhCAAAEQgAASMIAAOBAAADgwAAAKEIAABBBAAD4wQAAwEAAAJjCAAAkQgAAYEEAAFjCAABAwQAAgEAAAFBBAACYQQAAwMEAABjCAABAwAAAgL8AADzCAACQQQAAkMEAAHBBAADgQQAAgL8AAATCAAAAQQAAyMIAAATCAAD4QQAAgD8AANrCAAC8wgAAUMEAAEDAAACkQgAALMIAAMhBAABkwgAAeEIAAILCAABAwQAAZMIAABDBAAAEwgAAgL8AAPBBAACGQgAAQEEAAAzCAACIQQAAQMAAABRCAADoQQAAHEIAAJTCAACGQgAASMIAAPBBAAC4QQAAoMAAAKBBAAA4QgAAPEIAAIC_AADAQAAAmMEAAGjCAACOwgAAqEEAAFzCAAAMQgAAgEIAABhCAAAAQQAAsMEAAPBBAAA0QgAAoMAAAIDBAAAAwQAAIEIAADBBAADowQAAIEIAAODAAACwQQAAkMEAAPBBAABwQQAAYMEAAAjCAAAUwgAAgEAAAHDBAADAQQAAgsIAAKDAAACmwgAANEIAAEBCAACoQQAAyMEAANDBAAAIwgAAgEAAAILCAAA8wgAAkkIAAODBAAAQQgAAMEEAAABAAAAMwgAAcMEAALhBAADAwAAAAEAAAHDBAACyQgAA0EEAAGTCAAA0QgAA2EEAALhBAADQwQAAoEEAAIBAAAC8wgAAIMEAAEzCAAAgwQAAOMIAABxCAACcQgAAgkIAAABCAACAvwAAAAAAAARCAACMwgAApkIAAABAAAAwQQAAaMIAAPDBAABAQAAANMIAAHjCAADgwAAAQMEAAABCAAC6wgAAMEEAAKZCAAB8wgAAcMIAABDBAACowQAA0EEAADBBAAAEwgAABEIAAKBBAACAvwAAgL8AADBBAAAgwQAAkMEAAEBAAAAQwQAAgL8AAADBAADEwgAAoMEgADgTQAlIdVABKo8CEAAagAIAAIC7AADYvQAAyj4AAJI-AAAQvQAADD4AANg9AADqvgAAbL4AABw-AABUvgAArr4AABS-AABcPgAAMD0AAEA8AAC6PgAAgDsAADw-AACqPgAAfz8AAKg9AACgvAAABL4AAHS-AACIvQAAyD0AAOC8AACYvQAA6D0AABQ-AACqPgAABD4AADC9AABQvQAAQDwAALY-AAAwPQAAPL4AAOg9AADYPQAAuD0AABA9AAAkPgAAgLsAAEw-AACIPQAA4DwAABA9AAAwPQAAgj4AAAy-AAAkPgAAbD4AAOg9AAAEPgAAGz8AABA9AABcvgAAgDsAAPi9AACAOwAAND4AAIA7IAA4E0AJSHxQASqPAhABGoACAAA8vgAAiL0AAJi9AAAxvwAAED0AAHA9AABkvgAAUD0AADS-AACYPQAAmL0AAKi9AACCvgAAgr4AAFA9AACgvAAAoLwAADs_AABwPQAAtj4AABC9AACAuwAAoLwAADC9AAD4vQAA4LwAALg9AACgvAAAyD0AAAQ-AADYPQAAqD0AANi9AAD4PQAABD4AAEA8AAAwPQAAoLwAAL6-AADoPQAA6L0AAKC8AADYvQAAuD0AAIq-AAA0PgAAf78AAMi9AABwvQAAuL0AAES-AABsvgAAQLwAANg9AABsPgAA4DwAANg9AABMPgAAQLwAAJg9AACYvQAAEL0AAHA9AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=DzF5E4tQstE","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":900,"cheight":720,"cratio":1.25,"dups":["14261799121477601440"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2972241039"},"12023601165640102136":{"videoId":"12023601165640102136","docid":"34-1-14-Z227FB60E0337ED1E","description":"Also known as a conditional structure, a selection structure is a programming feature that performs different processes based on whether a boolean condition is true or false. Selection structures...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"42","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Computer Programming Logic: Selection Control Structure - Decision Making Statements","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HCXTiC-pa4o\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTIwMjM2MDExNjU2NDAxMDIxMzZaFDEyMDIzNjAxMTY1NjQwMTAyMTM2aogXEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E8kfggQkAYAEKyqLARABGniB-AwE_wL-APQCBAYIBf0BDf76Cfb__wDkBAwJB_0BAP34Dv_3AAAA-Qv7AwIAAAAK_AP-9_4BAAQCDQfoAP8AEwn3_fYAAAAKEfoP_gEAAOr2Av8DAAAADQELBQAAAADkCwkH_wD_ABEI__EBAAAAFQL5AAAAAAAgAC0wmMo7OBNACUhOUAIqhAIQABrwAVYK8P_f_Pv_CwbiAO8J4QGBBQv_IP_hAM3v9gDL-dYAAxjoAPPjFgD5CB0AyQ7y_w3t8QAbBQYAIQECABv0BgD-EiIAG-MIACbyGQD18QT-6Bkh_iIMJv8N7_0AChL2_gYBCv7bBM7_5QngAf8DIQATGv0EHfIAAfkSFwQMExb6AhwA_f0GEv7b7hb_9QcUCRT_6_0IGO4A7RjuAvj8-f7v7QAFJQ3sASn-AQPc_Ab7AAEE_RsD7_75Dg4FGBcC-PD--P4N1gX__fD09SDwBQTr6BL9Df8FCv0NAQoL2Pv11wQL9s8h-wT-7QUD_Pr79CAALW4nSDs4E0AJSGFQAirPBxAAGsAH-u8Bv4Ebbzv-0mK99wvRvHrZQDx4bPq8lyy4PLcN_jwxdXy8isITPbRNWz22DhA8dHzEvhyE7zyZ2i29nUaCPn8WS7y-Esi8dckovtpUnT2TkKM89aFrvoTTBz10NcO7xo0WPcLwtjvkG-U8tWsCPsSTXTugWKO7IKjouh11ETwz3AC9Vj_AvBf4Rb07eYm7lX8NPqKkVr2xVV08orUSPrwatb2zegc9gN4KPdSZ_7uE1G07yj1zvaT1wbyLS7o8tYwkPj--6bxka4c8lhrrO6qZtbsfLIS7833nPNlA_DqJoMW80sWmPHg7Jz22aja7yPDzPDQAar28n8s7PhltvW8zUD2wY5I8RgrlPaOWIDxTze47FJsKvV01Tz34JVE8K2W-vElY5bwWRZc7XB0APpBmkTwzV4I76XYAPTBiBD0bB8U7CM1JPX5tojzq_8U7_R92PSL4RD3L8nW83fN0O-8O3zw18dE5VcmGvQKJwby8Ria82ChwPcXuob01yfY7b0nuPTGzzz2oXeE7L058PB8kNb0FyMw7rM0cu8R2nDxhEL28oWaYPS7tLzx-Rtg7kjLzPABLOD1deUG7n_irvc3K9jwMnY28AsiKPTiMjb0Ux2S79BNzPAo6ED0SH-07ZCe0OydTIju-gW68XpoHvJVsqzypVIW7ccmxvJf8FTzRvVo7mxuoPcfJsztOqBY7mXsNvY6portVIyo7NODHPVG4gzxrG_M50ClIO5MtHL31B1I72EMAPYZAyT1lHzW5nCGLPEXMNrwvQ1e6u87tO1OFFT2Cb7-3P6D9PBWS5zx7X6s4PSzvPLh-MLzY1cS3VvcDvcvZOzwEESe5nhJrvfJjJzyNH0A526CbPAKj6LtdQCw6aS59uvrMvrxRpcG5zDVWvdaL4ztGSgC5vEcRPX5UQzyc24W3SFM9PZY5Yr0y5pI4mBk2vHnou7x-ebc65s2hPF4lRLxeYxc5exLYvM8Gar3xp6E4dD6hPIV_nD2MlkS5m87pPNbyVD1Uyx64AsK9PGhvVb0VC5s489r2vAj5yr1ah3u2h58EPWo9kj00IqS4a_HpvXnWJLzuL2A2mlazu53DC73d6L43ySIovEj_Jr3Tmk22u8-3O5EyeL1c0Ti4GXYzPVvaX7yBQlC40LsMPf-l1jxLoAI4OFpEPCPuVjw8Xo43XtXdu8B6fL0FpfM3HZcMPUkPQ75UMU25ITK2PDs54z0EGwY5BwunvL387j2DtB655yOfvTfAcTztZJe3HZMkO_dQR7zBSMQ3IAA4E0AJSG1QASpzEAAaYEzyAD_fCtkDI1vqL-D5HNzwH_Ycqwv_5-T_BEL3yv358L_7Hv89vR0NoQAAAPwW0jk7ABV_7dHhEeIjDYWn7AchdRQcN7gSEvfb2xAo_9fVDR8xRQA206L-Rui1HwTrEyAALfqDEzs4E0AJSG9QAiqvBhAMGqAGAACQwQAATEIAAKJCAAB0wgAAJEIAAGxCAADIQgAAqMEAAKrCAAAUwgAAsMEAAIjBAACIwQAAEMEAAPBBAAAMwgAAQEEAAEzCAAAUQgAAAEIAAAjCAADAwgAAnMIAAIpCAACUQgAA4EEAAEDBAADIwQAAMEIAAERCAADAQQAA4EEAAHTCAAAgwgAAbMIAAMDBAABAQQAA-EEAAKBAAADUQgAAHEIAABDBAADgQQAAnkIAAKbCAAA8wgAAQEAAAIC_AAAwQgAAFEIAAIbCAACQQQAAQEAAACRCAABgQQAAUMEAANLCAAAgwQAAkMEAAHxCAADgQQAA4EAAADjCAABMwgAAbEIAALjBAABgwQAAAMAAAGDBAAAowgAAikIAAADAAADgwQAAcEEAAHDBAABYwgAAHMIAAAjCAAAkQgAAREIAADzCAADSQgAAgMIAABhCAABYQgAAAEEAAEBAAABQQQAAEEEAAIBAAACCQgAAykIAACBBAACAwgAAoMEAAI7CAAAUwgAAoMEAADxCAABQQQAAEMIAAEDAAADAQAAAKMIAADjCAABAwAAAsEEAAHBBAACAwQAAwEAAALhBAADAQAAAiEEAAEDBAABQwQAAyEEAAIhBAABgwQAAsMEAANjBAACoQQAAiEEAAKBAAABIwgAAgL8AAGBBAAAAAAAACEIAAHDCAAAgQQAAIMEAAAzCAAAQwgAAEEEAAGDBAACgQQAAAMIAAAjCAAAkQgAAkEEAAIDAAADIQQAAqMEAACDCAAD4QQAAsEEAALjBAAC4QQAAoEIAAIRCAACUwgAAQEAAAFDBAACYQQAAQEAAABDCAAAIwgAAYEEAAADCAADQQQAAgD8AAIJCAADQwQAAAEAAAGBBAABEwgAAgEAAAJpCAAAAQQAAgEAAABzCAAAAQgAA4MAAAJDBAACYQQAAQMAAAIxCAADgwQAAUMEAAIBBAACmwgAAcMEAAIC_AAAwwQAAkkIAAIDBAADQwQAACMIAAHBCAAA0wgAAcMEAAFDCAACQwQAAMEEAAJjBAAAAAAAAUEEAAEDAAABwwQAAcEEgADgTQAlIdVABKo8CEAAagAIAAHC9AACgPAAAsj4AAEQ-AABwPQAAqD0AANg9AAALvwAAAb8AABw-AADIPQAAuL0AABA9AAAQPQAAyL0AAMg9AACoPQAAED0AAKY-AAABPwAAfz8AAIA7AADoPQAAED0AAFC9AACAuwAAgDsAALg9AAD4vQAAoj4AAEw-AAB0PgAABL4AAHQ-AABkPgAAyD0AABQ-AAB0vgAAlr4AAEC8AACAOwAAuL0AABA9AADovQAAJL4AAAw-AACYPQAAcL0AABA9AAAEvgAALD4AAEy-AABQPQAAdD4AAIA7AACgPAAA8j4AADA9AADIvQAA2j4AAIC7AACWPgAABD4AACQ-IAA4E0AJSHxQASqPAhABGoACAAB8vgAAcD0AAFS-AAA3vwAAcD0AAKi9AADIvQAAEL0AAOi9AAC6PgAAmD0AAIi9AADIvQAAhr4AABA9AADIvQAAFL4AADM_AAAkPgAAnj4AAKA8AADYPQAATD4AAOA8AADIvQAA6D0AAJi9AAA8PgAAMD0AALi9AAAwPQAAED0AAIC7AACAOwAAEL0AAGS-AABEPgAAHD4AAHy-AAD4PQAAyD0AAHC9AABsvgAAQLwAADA9AACoPQAAf78AAKA8AACoPQAAQLwAAJi9AACqvgAAEL0AAAw-AAB0PgAAqD0AADA9AAAwvQAAgLsAAIi9AACovQAAgDsAABC9AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=HCXTiC-pa4o","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["12023601165640102136"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"3678740101"},"14945358113951772":{"videoId":"14945358113951772","docid":"34-8-12-ZBAD1C79F6FF95415","description":"Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"43","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Machine learning Concepts - Data mining Lecture 2 Part 2","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RNQmvY_LA0E\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaEwoRMTQ5NDUzNTgxMTM5NTE3NzJaETE0OTQ1MzU4MTEzOTUxNzcyarYPEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E7QNggQkAYAEKyqLARABGniB-wPzBwAAAPn0_wIEBf4BDAoH__YBAQDsCv8GCP8AAOkA-wv-_wAABgP8CgkAAAAKB-7-Af0BABL_7wcCAAAAERL-9vwAAAD_B_kEFQEBAfnxDQgD_wAAEgoIAf8AAAD5Bv73_gAAAAgH9vABAAAADPr4-gAAAAAgAC2aTNQ7OBNACUhOUAIqhAIQABrwAXoDFAO5G_v-QADu_-8V7ACBFfD_I__eAJz69AGj7Nz_FQ8PAMrqDf8VEzMA6f_8AB7v4P8S9vUAJAMQACsLCf8G_w0ALdMNAS4hFADaAOf_AQLzARDqCwDz_QUA_Aj9_hcRAv7e6NYBFw3qAPbyGwIPGBX_I-gNAQII_f7rEQ0C6AD9ACT2Bf_2BQD41hsCBfHm-AXoEAgG_PgJB_4YCfoAARoB__8BAhP-9gL78uv_-gcZ9wYB__soEQsCBBrvBhH09gEK8gT8BwgWBTvqDQn02BD3--MI-goZ7QAe6gv87AYFAd8R_vz4Av8FBv4D7yAALVH0NTs4E0AJSGFQAipzEAAaYC38ADcNIc3uA1DrHO_jIfbvIdtMsvH_6vz_BhQKyPHj4pU1C_8r7fsSowAAAAr_3AwlANx_KMLhK-ATF92g1wj6bghN-s3CIxLG4fjxCxUDIQ0bbQAO_pr6WuTFAiQPFCAALWiMGTs4E0AJSG9QAiqvBhAMGqAGAABwwQAAiEEAAHxCAAAgwgAAGEIAAHBCAACmQgAAAAAAAKjCAACQwQAAKMIAABDBAACowgAAwMEAAFxCAAAYwgAAIMEAAEzCAACAwAAA4MAAAABBAABEwgAAsMEAAPBBAAAwQQAA4MEAAIBBAACQwgAACEIAAIBAAABEQgAAlkIAAILCAAAQwgAA4MEAADBBAAAgwQAAVEIAAKDAAABUQgAA6EEAAKhBAAAcQgAAXEIAABRCAAC2wgAAQMAAALBBAAA0QgAAoEAAAGzCAAAQwQAAsMEAANBBAABgQgAAMEEAANjCAACAwQAAAMIAABxCAAAcQgAAAMEAAADAAAAYwgAAkkIAADDCAADQwQAAeMIAABBBAADYwQAAgMAAAKBBAABgwQAA4EEAAFzCAABIwgAADMIAAADAAABgQQAAgMEAAADDAACUQgAAQMAAAHBCAAAgQgAALMIAAHBBAACeQgAAbEIAAPDBAACAQgAA2kIAAERCAAA4wgAA4MAAACTCAABAwAAAVMIAALZCAAC4wQAAgEAAAGDBAABkQgAAoMEAAABAAACQwQAAwEAAAEBAAACAQAAACEIAAHDBAACAQQAAgEEAAHBBAABAQAAAgMAAAAzCAAAMwgAAfMIAAJjBAAAkQgAAoMEAADzCAACKwgAAQMIAABBCAABMQgAALEIAAAjCAACgwQAAoMAAAKjBAADIwQAAqEEAAABBAAAAwQAAqEEAAIC_AADgwAAAZMIAAMBAAABAQQAA-EEAAPjBAAAYQgAAqMEAADjCAAAAwgAAiEEAACxCAACgwAAAEEEAABjCAADYwQAA0EEAALjBAADowQAAoEEAAADBAAAIQgAAHMIAAOBBAABgwQAA8MEAAHzCAACowQAAYEIAAAhCAAAAAAAAIMEAAPjBAABgQgAAAAAAAABAAAC4wQAAAMAAAKZCAAAUwgAA4MAAACDBAACMwgAAwEAAALjBAAAAQAAAHEIAAKDBAAAYwgAA8MEAAIZCAADwwQAA6MEAABjCAACUQgAANMIAAADCAADQQQAAUMIAAGDBAACSwgAAoMAgADgTQAlIdVABKo8CEAAagAIAAOi9AADIvQAALD4AABw-AABwPQAAuL0AAIC7AAABvwAArr4AAKg9AABQPQAALL4AAIi9AABsPgAAEL0AAFC9AADOPgAAoDwAAL4-AADaPgAAfz8AAHA9AACgPAAAQDwAABS-AACIPQAAiD0AADS-AADgvAAADD4AACQ-AACAuwAAcD0AALg9AABMPgAAPD4AAIC7AADYvQAARL4AABC9AAA0vgAAMD0AAEC8AAAEvgAAQLwAAHA9AAC6PgAAQLwAANg9AABkvgAAmD0AAMi9AACyPgAAND4AAKg9AAAQvQAAIT8AABC9AAAwPQAAQDwAAAS-AAAMPgAAED0AAAw-IAA4E0AJSHxQASqPAhABGoACAAAMvgAAFL4AADA9AAAtvwAAoDwAALg9AACIPQAA4LwAAPi9AAC4PQAANL4AAAy-AABsvgAAhr4AAOg9AACAOwAAcD0AACk_AAAwvQAAnj4AAIC7AAAwPQAATL4AALg9AAAQvQAA4LwAAFC9AACAuwAAqL0AABQ-AABwPQAA-D0AAIg9AABwvQAAXD4AAJg9AABkPgAAML0AAMK-AAAsPgAAQDwAAIC7AACovQAA2D0AAAS-AACYvQAAf78AAEA8AADgvAAAHL4AAOC8AABcvgAAgLsAAKC8AABMPgAAyD0AAKg9AADIPQAAEL0AACQ-AAAwPQAAmD0AAIC7AAAUPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=RNQmvY_LA0E","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14945358113951772"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"11680461819635006673":{"videoId":"11680461819635006673","docid":"34-8-9-ZAB813D7BE4031A66","description":"Concepts and notations from discrete mathematics are useful in studying and describing objects and problems in branches of computer science, such as computer algorithms, programming languages...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"44","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Discrete math - Introductory lecture 1","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7rb2nMf67Es\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTE2ODA0NjE4MTk2MzUwMDY2NzNaFDExNjgwNDYxODE5NjM1MDA2NjczarYPEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E8cEggQkAYAEKyqLARABGniB7gX8BQH_APv8_xABCfsCBAAAAvj__gDzDvb0AwEAAPL6CAIEAAAAAwTsAAYAAAAHBgMF-f0BAA37B_sFAAAAFRj3Av0AAAAWBv8A_gEAAPj19AkE_wAAEwgD8_8AAAD6DPgD_QAAAP4VEAEAAAAAAAACBwAAAAAgAC1qLM87OBNACUhOUAIqhAIQABrwAXoDFAOjJyH8SRD4AAgO9AGBFfD_GB_mALD39ACj7Nz_CAn4ANf3HQADAB__5gr-_yz06v8n5_cAHfUD_ycQ_AH9CBgBJ94hAjQRA_8MAej_8AQIAAj8CQAV7QkA_xYP_gYCC_7cB98AEf8HBfb3EAAO-A8D9QIQ_QUU__3cEgIB8vcEAhjmF_7mCAL_7ggBA_cEAAPZBRUA7tv6_QwXBPYI7P8FCQD8-gr3_AoE-vD79Qr--BH3EPoiAQ8B9QAFAQfxA_8Q_wAAzw4F_CXZDgHd_xr5--MI-hsD6wXv1ADz6_sC-O0YAQDhAgsI7P4M_CAALVH0NTs4E0AJSGFQAipzEAAaYBD2ACb7JRPURFri4OfADwfyKdQq1uP_6az_4wO06-cLALrb_f8EtOPjowAAAAnc9CwiAAh_8sPRMvT6BeS16BMSe_ZJB8EL-T-8MNvAsv4RMQT_UAAR9pEdG-ylFRID_SAALQuNFTs4E0AJSG9QAiqvBhAMGqAGAAAcwgAAqMEAANDBAAAUwgAAkMEAALjBAADSQgAACMIAAGTCAACoQQAAYEEAABDCAABwwQAABMIAADDBAAAkwgAA4EAAAIBAAAD4wQAAwEEAAIDAAACKwgAAgMAAAADBAACAvwAAuMEAAHDCAAB4wgAAcEEAAADBAABAwQAAkEEAAGDCAAAoQgAAnsIAAEBBAABAwAAApEIAAOhBAAAUQgAAQEAAAOBBAADQQQAA2EEAAMDAAABEwgAAkEEAADBBAAD4QgAA-EEAAKBAAACAPwAAAEIAAABAAABoQgAAYEEAALbCAAAQQgAAmMEAACxCAACiQgAAAMEAAOjBAAAgwgAAcEEAAEDAAADowQAAoEAAAMBAAAAAwgAAdEIAAHhCAACAwAAAPEIAAABBAACawgAA4MEAAEDBAACAQgAA0MEAAJbCAABUQgAAcEEAABxCAAAQwgAACMIAADxCAAAwQgAAPEIAAFBBAACAwAAAUEEAAKDAAABswgAAwMAAAMjBAADYwQAArkIAAABBAACowQAAyMEAALhBAADgQQAAwsIAAMjBAADwQQAAiMIAAIhBAAAIwgAAJEIAALhCAAAsQgAAUMEAAGBBAABAQAAAAEIAAMDBAABwwgAAQEAAAMjBAABowgAAKMIAACjCAACIwQAAUEEAACxCAAAcwgAAuMEAAFjCAAAQwQAAgEAAAGRCAACgwAAAoEEAANjBAACIwQAAgMEAALBBAABAQAAAssIAAMDBAACYQQAAQEAAAKjBAAC2QgAAOMIAALLCAABIwgAAgEEAADxCAACAwQAAoMEAABhCAAAEwgAA4MEAAIBBAACAQAAAgMAAABzCAABQQgAAiMEAAChCAAA0wgAAUMEAABzCAAAAAAAAUEIAAIhBAAAwQgAAwEEAAGzCAACwQQAAoEEAAABBAAAwQQAALEIAAIDAAAAswgAAkEIAAChCAACAvwAAoEEAACDBAACgQAAAoEIAACRCAAC2wgAAWEIAAIhBAACwwQAArsIAABDCAACAQAAAOMIAAAAAAAAMwgAAoMEAAAzCAABMwgAAMMEgADgTQAlIdVABKo8CEAAagAIAAAS-AACgPAAARD4AAIC7AADgPAAA3j4AAGQ-AAA9vwAAAb8AAAw-AABAvAAANL4AAJi9AABkPgAAML0AAOC8AACaPgAAQLwAAMg9AAAHPwAAfz8AACS-AABkPgAANL4AAHC9AAAkvgAAZD4AAIC7AABQvQAA2j4AAI4-AABwvQAAuL0AAJI-AADgvAAA6D0AADA9AABcvgAAir4AADS-AAB8vgAAgr4AALY-AACgvAAANL4AAFC9AAAMPgAAVL4AAGy-AACyvgAAMD0AAPi9AACGPgAAUD0AADS-AACAOwAAWT8AABC9AAAMPgAAiD0AAFA9AACOPgAAZD4AAIi9IAA4E0AJSHxQASqPAhABGoACAAA8vgAAND4AADy-AAAXvwAAoLwAAFA9AACePgAAHL4AAOC8AAA8PgAAQLwAAOi9AAAUvgAAXL4AADQ-AABAvAAAuD0AAAU_AADIvQAA-j4AAIC7AADgPAAADL4AAKi9AAAwPQAAUL0AAHC9AACYPQAAXL4AAJi9AAAwPQAADD4AAHA9AACAuwAAyD0AANi9AAAsPgAAuj4AAFy-AABwvQAAjj4AABC9AACAuwAAcL0AAEA8AADgPAAAf78AAOi9AABQvQAAMD0AAHw-AABwvQAAUD0AAEC8AAAwPQAA2D0AAOC8AACgvAAA4DwAAAQ-AACAuwAAqD0AABC9AABEPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7rb2nMf67Es","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11680461819635006673"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"3592585992596942110":{"videoId":"3592585992596942110","docid":"34-5-4-Z5AD3F2D344CDA949","description":"The examination of a problem and the creation of its solution. Systems analysis is effective when all sides of the problem are reviewed. Systems design is most effective when more than one...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"45","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"System Analysis and Design Lecture 1 Part 1","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ktcVwtzPrYQ\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTMzU5MjU4NTk5MjU5Njk0MjExMFoTMzU5MjU4NTk5MjU5Njk0MjExMGq2DxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxOgBIIEJAGABCsqiwEQARp4gfcE-v76BgDz-_sA_wP_ARICBPr2AQEABwkEBAYD_wD79f0G_QAAAAIH_wH9AAAAAfcBBPb9AQAKBQAIBAAAABX5_AD_AAAAAAf9AP8BAADt9ff_AgAAAAsE-QUAAAAA_Af-_Ab6Af_zBPv9AAAAAAX6-v779v8AIAAtWlTkOzgTQAlITlACKoQCEAAa8AF_DQQCqQMT_DD94wDcH-gAghXw_xMI6gCrAwsAuA_s_wAL5gDX3wAA5wAxAPIfCv8e7-D_FfwAAC_-AwArCwn_DRIeADDg_gBH_fwBBAXaAPkD_v8Q6gsAFPwKAPwI_f79Dgj-3AffAAkL6gIA7xH__gcPAQv2DQb0BgoB5hoAAhD3BgAK8BIG5ggC_-P-CAYA9wIGA_r-Au7c-v0FF_sE_OQCCDAJ-f4Z9PgEBPrw-_wAC_cL8_78JxELAvsO8gMK0v_-Ae0ZAuMaBf866g0J7PYUBQHyB_wKGe0A6fYW8dv5BP7fGgz88OYEAOwKB_EgAC11kzc7OBNACUhhUAIqcxAAGmA69gAg-R3Z-zVTABDz4RP3_t_3CtHy__LLAOYAzt38Pfmq__gANNX99K4AAAAF8u8Y9AAKavEI_QfWPSm9ud_-An_oAP7S1gkO0t_0EOjyFPkPWToA7wiX_z7QugsiAvUgAC0kUys7OBNACUhvUAIqrwYQDBqgBgAAMEEAABhCAAAQQQAAAAAAAIRCAAAkQgAAJEIAAITCAAAwwQAAgL8AAGDBAABEwgAAksIAAFBBAACcQgAAOMIAAAAAAAAYwgAAgMAAAIjCAACIwQAACMIAAGBBAABAQAAAwMAAAIDAAAAYwgAA0sIAAExCAABAwQAAEEEAAIJCAACCwgAAYMEAAATCAADAQAAAEEEAAPRCAAAAwAAAcEIAANhBAABAwAAAWEIAAADBAAD4QQAAkMIAAFzCAABQQQAAEEEAALBBAADqwgAAcEEAALDBAAAAwQAAIEEAAARCAAAAwwAAQEEAABzCAACwQQAA2EEAAEDBAAAMwgAAYMIAADxCAABYwgAA4MEAAADCAABgwQAAoMAAADBCAACoQgAAQMEAAGBBAAAkwgAAHMIAADjCAACwwQAAoEEAAKBBAACswgAAREIAACDBAAB8QgAAUEEAAAjCAADIQQAA6EEAAJJCAACowQAAGEIAAGhCAAAAQgAARMIAAIDBAADwwQAAAAAAALjBAABYQgAAKMIAAMDBAABIQgAAhkIAADjCAACgQAAAwEEAABjCAACwQQAAQMEAADhCAAAQQQAAQMEAAKhBAAAgwgAAAEAAABRCAAAEwgAAGMIAAIrCAABQQQAAYMEAAHDCAAAUwgAAUMIAAKDAAAAwQQAAgEAAAKBAAACoQQAAYMIAAIBAAAAAwAAAQMEAAIhBAACAwQAAMEEAAOBAAACgwAAAgMEAAFjCAAA0QgAADMIAAEBCAACAvwAAHEIAAIBAAABgwgAAwEAAALpCAACAwQAAyMEAAIJCAAD4QQAAuEEAAIBAAACgQAAAuMEAAAjCAADowQAAUEEAACjCAADYQQAAmMEAABTCAAAIwgAAQEEAAARCAAAAQQAAgD8AALDBAABAwAAA8EEAAOhBAABgQQAALMIAAKDBAAA4QgAAcEEAAHBBAABgQQAAEMEAAAjCAADAwAAADEIAAJBCAAAgwQAAIMIAAADCAAC4QQAAUMEAANDBAACCwgAAJEIAALjBAAC4QQAAGEIAAHzCAACgwQAAsMEAAIDAIAA4E0AJSHVQASqPAhAAGoACAACAuwAAJL4AABw-AABwPQAAuL0AAFC9AAAUvgAA7r4AAJK-AABAPAAA6L0AAEC8AAAQvQAAMD0AAJi9AAAQvQAAuD0AAKA8AAAcPgAA7j4AAH8_AAAEPgAARD4AABS-AADIvQAAqL0AAHA9AAAQvQAAJL4AAAQ-AABEPgAAuD0AAOC8AAAEPgAAyD0AAKg9AACIPQAAyL0AAHy-AAAQvQAANL4AAI6-AAAUPgAAHL4AACS-AADIPQAABD4AADC9AADgvAAAyL0AAEC8AAAwvQAADD4AABQ-AABUvgAA4LwAADk_AACCvgAAUD0AAGQ-AADYPQAATD4AAAQ-AAAUviAAOBNACUh8UAEqjwIQARqAAgAAZL4AAOi9AADovQAAK78AACw-AAD4PQAAgLsAAOC8AADovQAAij4AALi9AACgvAAA6L0AAES-AADYPQAAoDwAABA9AAA7PwAAqD0AALY-AAAQPQAAZD4AAHC9AACIPQAA4LwAALg9AAAkPgAAqD0AAES-AACYPQAAiD0AAOg9AADIPQAAML0AAIA7AAAcvgAAJD4AAIg9AADKvgAA4LwAAKA8AABQPQAAoDwAAIA7AADIPQAAuL0AAH-_AAAwvQAA6D0AADC9AACgvAAAPL4AAMi9AAAwPQAAmj4AALg9AADYPQAAmD0AAKg9AAA0PgAAmD0AAKA8AADIvQAAED0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ktcVwtzPrYQ","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3592585992596942110"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1525011048"},"7571262361613786234":{"videoId":"7571262361613786234","docid":"34-1-8-ZEC3EC058A9ABA5F7","description":"To prove this using strong induction, we do the following: The base case. We prove that P(1) is true (or occasionally P(0) or some other P(n), depending on the problem). The induction step.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"46","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Strong Induction and Well Ordering: Discrete Mathematics","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4hBQjNAXu7E\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTNzU3MTI2MjM2MTYxMzc4NjIzNFoTNzU3MTI2MjM2MTYxMzc4NjIzNGqIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxP4CIIEJAGABCsqiwEQARp4ge72BwgC_gAD-Q4PBgv5AxUF-Ab1AQEA9QD08wMC_wD3AAX5BwAAAAD_AgX-AAAA_gP_Eff-AQAZ_PkAAwAAABsC_QD3AAAAGQsN__4BAAAB-_wQBP8A_xMKCAH_AAAA-RYI_P7_AAAHDgsKAAAAAPwE__f_AAAAIAAtnf3MOzgTQAlITlACKoQCEAAa8AFqAwcBuBcS_in--QDxE-4AgQUL_x8N_wDL9QgAzgLpAPke9AHo8BX_BwUqAMP-7gEN7fEAOu_8AAsKCP8ZDwMADgYFASnuDwAyAhH__gL6_wQZBQAZAhMAIO8UAAMHCP8X9A79xPDo_-UJ_AIS7CECCgYRAw4DBQX4EwL99h4RA-0LCwMh9wX_1vUE-vMQ-wAL8OkBEA7uAfzx_gIMGuj_AwL7Bxz29QAmEQ4E-uQD9voGFvcaC_r6HxX-AfoI_Pz56v__CfQE_PMCC_sg8AUE-vYY9u3nDv__FuoG_tgH-fb7CP_7_wACA_cEAPoI-fUgAC1uJ0g7OBNACUhhUAIqzwcQABrAB8GnBb_UlRU8csPvvB3iRDxCISI9J8CwPJn1gj1I8qY8GmiEOyurhD1piG89Dwlfu_yMu75aUw-8xurFu4ofUz7LEOg7pPbHvN-HM75BgkI9ttwUPU94kb5nFUw9qeaLum7ngT2WpF87FItJPanB1D3qqDQ87UqmvLKCX730CKS8eXyWvF2psr3BnCq9PR5EvMRb5z3qnQC9XylLu-YDQj72PU-9RwEBu-3IAj0rEjg8kTYjvOT39rxjFec7S2ryPOqv9z0xslE6yE0DPeWDeT3_gD084DBRvA-pszyPeAk82FL2OwA6TD2Dw6Y9ipO5O11OLj0xA_q8rXesO7PtFL13hmQ9exw8Pd20GT49FtE8A2D6u9tMCj38Ivw8jNO1PGQ-IL3uqQG9Iwp3PMvHZD1Dl4u83rKeOzyUMjxK35o8nmutO-3uAzwXLxQ8eKOFPCMylz0M5Qk9XWRIO458eb2WEKQ71u0iO8MKnL1JNcc8JCmKu3yTqz1GCI-9i9vsOm1dJT1IlTc9gXxkPPal7bzgZP47EKzwuyXicj0WIMA8GpOMODNW9jy4m5u9liCnOfNhC7wV8nc8bcvfux8Wlb0pWY488zTkum7_pT1Iory8Or6ou2_ltjzc-Vk8LUGGPA42ED0AqIK9IjM8vGynd721qgC9FHD4OzuJDLwEaRC9QRaeO7X1mD05gq-8eRgDu4T1v7yAC1e8Z0tzO500CD2jsTY91InkNyL4hL2H6wM8yfMNu1bT9Ty5YJo98w4rua50BjzBO1m91K8BudWTeTxrFp48SSdYOY6YhD2m5-e8LGGvORr4VbsuvFy97z65OHLi6TtzQQe9EphuuZ32NL10rYO66oh_uVrdhT1-igO9zFJ3uQooebwcXg685EtTud7db7zq1pY9KN0uOKhXJb0yazO9f6equL2YnLyQbVS9nFSAuQipwLwEqdS869lHORWV6Lw34d475SovuAopZLzrQ229pFnzNtiXUb2K4-U8EdQBORqOBDshQvc85as9uC5OQb3Fb6u7ejNVuLg-rLxsBvi9ef8guNf0JT2fMgg9SQxwuNWKIL0Ds8K8nmD_NfzxrDu1ChG8o3aauBzZsD1AF4281CvhN0LMijyK6ki94enDtQrvhz0h2lg9FUDTuLQ4SL07cC49q31gN1cgHz19fYg8ao2Ntj4qmbwO0Y29Bo37t2EGeT3zOhK-S-epuOobQbumqcQ97EGXOAP8lL1_qI89heReuSumnb1Y8sK88Kilt8HFjrtiFa-8QXEzNyAAOBNACUhtUAEqcxAAGmA3AQAkyiHp8ypH4b3nuPQUIAfZSNIh_9bc_9UG5wgkFNHB3iT_Qrvy96AAAAAH670nOgDhf-3O5C_VABHH6vUSA3ENQ2qjAvf47QE_BNQCHPD3MyUACuWuFXPj0jwMBgcgAC1vRxU7OBNACUhvUAIqrwYQDBqgBgAAIMEAAAxCAABAQQAAUMEAAIhCAABMQgAAcEIAAMjBAAAUwgAAgMAAAMBAAACkwgAAcMIAAKBAAADiQgAAwMEAALhBAABowgAA2MEAADzCAACYwQAAXMIAAIBAAABAQQAAAMEAAODAAAD4wQAArMIAALBCAACgwAAAIMIAADBCAACuwgAAHEIAAIrCAAAQwQAAVEIAAP5CAABgwQAAyEEAAIA_AABIQgAANEIAAKDAAACIwQAAHMIAAFDBAACgQAAAUMEAAKhBAADawgAAkMEAAEBBAADAQQAAREIAAERCAAAAwwAAgEAAAAzCAAAAwAAAmEEAACzCAADowQAAeMIAAFRCAACAwQAA2MEAAEBAAAAUwgAA2MEAABRCAACyQgAA4MAAAPBBAAB8wgAA0MEAACDBAABwwQAA0EEAAOBAAAC-wgAApkIAAKDAAACgQgAAQMEAAFDBAACAQQAAgEEAALhBAAAAwQAAgEEAAFBCAADgQQAAHMIAABDBAACowQAAwMAAAFDBAAAQQgAAwMAAAMBAAACEQgAAYEIAADTCAACIwQAA4EAAAJjBAAAQQgAABMIAAPBBAABwQQAAwEAAABBBAAAUwgAAUEEAADBCAABQwgAADMIAADTCAACQQQAAIMEAAPjBAABwwQAAYMIAAMDBAAAEQgAAAMEAAFDBAACQQQAANMIAAFDBAAC4wQAANMIAAIBAAADIwQAA4MAAALBBAACgQQAAwMAAAITCAABkQgAAgL8AAChCAACAPwAA-EEAAMBBAABowgAAgEEAAGRCAACAQAAABMIAAFhCAAAwQgAA4MAAAAjCAAAAQAAAuMEAAJDBAAAUwgAA4EEAAODAAACoQQAAAMIAAODAAABswgAA4EAAAMBAAAAUQgAAgD8AACBBAAAwwQAA2EEAAOBBAABAwAAAiMEAAKjBAAAkQgAA4EAAALBBAAA0QgAAEMEAAEzCAABwwQAAJEIAAIBCAADIQQAAKMIAADBBAAAwQgAAAEEAACDBAAAkwgAAIEEAABTCAABwQQAAZEIAACTCAABgQQAALMIAANBBIAA4E0AJSHVQASqPAhAAGoACAABMPgAA6D0AAO4-AAAwPQAADL4AAIA7AABUPgAAF78AACS-AABQPQAABL4AACy-AAAwPQAAmD0AAJg9AAAcvgAAnj4AAIC7AACmPgAAIT8AAH8_AAAcPgAAmj4AAHA9AAAMPgAA3r4AAJY-AADIPQAAQDwAALI-AAC4PQAAdL4AAAw-AACqPgAAyL0AAOi9AAAsPgAArr4AALa-AABsvgAAJL4AABA9AAA0PgAAFL4AAAy-AACWvgAAgj4AAIK-AACovQAAjr4AAIA7AAA0PgAAyL0AABQ-AABwPQAAQDwAAHE_AAB0vgAAqD0AAFC9AABQvQAAnj4AAHw-AACGviAAOBNACUh8UAEqjwIQARqAAgAAiL0AAOg9AAAkvgAAO78AALa-AABQPQAAND4AAEA8AADIvQAAXD4AAEC8AABMvgAA-L0AAES-AAAQPQAAQLwAAJi9AAAPPwAAoLwAAPY-AADIPQAAoLwAADy-AABEvgAA4DwAAHC9AACSvgAAQDwAABy-AACIvQAAoLwAAHA9AACCPgAAir4AAFw-AAAcvgAAVD4AAFw-AAA8vgAAqD0AADQ-AADgvAAABL4AABS-AAAQvQAAoLwAAH-_AABQvQAAuL0AAHC9AAB0PgAAcL0AAHA9AADYPQAAqD0AAKg9AADIvQAAgLsAAEA8AACIPQAAFD4AAAQ-AABwPQAAJD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=4hBQjNAXu7E","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["7571262361613786234"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"149357410"},"7516344338964881701":{"videoId":"7516344338964881701","docid":"34-7-7-ZCB082D8B155989C9","description":"We will focus on four methods for collecting data: Observational studies, experiments, simulations, and surveys. In an observational study, a researcher measures and observes the variables of...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"47","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Experimental Design and Data Collection - Statistics","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ilUXp9WrnDw\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTNzUxNjM0NDMzODk2NDg4MTcwMVoTNzUxNjM0NDMzODk2NDg4MTcwMWq2DxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxOSDoIEJAGABCsqiwEQARp4gQIFBfcG-QDv9gMJBAT-AS38EwHzBgUB3vkE9Qj7AgAHBfoEDgEAAAYD-wsKAAAA_gP_Evb9AQAECO72AwAAACoA_Ab7AP8A-xQC8v4BAAD49PMJBP8AAAcTAQD_AAAA-BD7Ev8AAAAEBPwHAAAAABoI_wgAAAAAIAAt-rDAOzgTQAlITlACKoQCEAAa8AF_FgEDuBcS_kIP-QDrCPcArw8JAB4Q6wC49_UAy_nWABMK-ADkAhkBBwUpAOMd5wAS4en_GOTrABL_BQAjDvwBDBEbACjuDwAS__wB__bc__cK9v8Z8AQAHeoFABkZEgAAG__-2xzf_SH-CQAW7xECAvoHBOz8Bf4SFfD78g4BBA_3BgAV6RX-7_v8_O0XBgD2DQf-7QYXAvrcAwAIEPH8B-7_BAQDDAAR-gYG9PnnAPsGFvcLAAgBJA8KAu4B8wUT6_gIDv8AAN8E_wgR5AsH4f8X-hHuBvoXD-7_AeT69uXoAv3vFgEA-QL_Bfn_A_ogAC0teEk7OBNACUhhUAIqcxAAGmA36AAo9RMMpvJL3Or2yfjJ5BHqR9cJ__jb_8kSudT5C_G48vj_Sr7r_aIAAAAR-gU_JQADf9kBuT7V9xvXtvvdFngHHjXG6RTp0en58bnjLw7kSFoA6eWrEjb1yCosBeYgAC3CKRc7OBNACUhvUAIqrwYQDBqgBgAAMMIAAKjBAACAQAAAwMEAAHxCAABEQgAAgEIAAPjBAABAwQAAHEIAAADBAABUwgAAeMIAAIA_AACcQgAAIMEAAEBAAAB4wgAAsMEAACjCAAAAQAAAYMIAAADBAAB4QgAAIEEAANDBAACEwgAAtsIAAARCAAAAQgAAiEEAAJBBAABEwgAAAEEAAJbCAACgwQAAGEIAAO5CAADAwQAANEIAAKBAAAA4QgAAjEIAAIC_AADAQQAAYMIAABTCAABgQQAAQEIAAFBBAADWwgAA4MAAAOBAAAAgQQAAgL8AAEBAAADmwgAAUEEAAHzCAACAQAAAJEIAAAzCAABIwgAAXMIAABhCAAA4wgAAJMIAADDBAABAwQAAIMIAAGBBAABQQgAABMIAAEhCAADYwQAAVMIAAIDAAABAwQAAmEEAAJBBAABQwgAALEIAAADBAACQQgAAmMEAAADBAADAwAAADEIAAHhCAADgwAAADEIAAChCAAAwQgAAZMIAAODAAAAAwQAAIMEAAIA_AABoQgAA4MAAAJLCAACgQgAAlEIAAFTCAAAAwgAAAMAAACjCAAAMQgAA-MEAAOBBAACAPwAAWEIAAKhBAAAcwgAAoMEAAKBBAAAAwAAA0MEAAEzCAADIwQAAYMEAAMjBAAAswgAAcMEAAGBBAAAoQgAAQMAAABDBAABAwQAAYMEAAIC_AACAQAAAEMIAACBCAAAcwgAATMIAAKBAAACgwQAAyMEAABDCAAB4QgAAAEEAAIhCAACgwAAADEIAAIhBAABowgAASMIAACBCAADgwAAAmsIAABRCAAAoQgAA4EAAAKBBAADoQQAAmMEAAEzCAAB4wgAAmEEAAJDBAADIQQAAHMIAAAAAAAAAAAAAEEEAAOBBAABUQgAAyEEAAADBAACwwQAACEIAAJjBAAAEwgAA6MEAAEDCAABIQgAAoEAAALhBAAAEQgAAoEAAAIjCAACAvwAAokIAAJJCAABQwQAAOMIAALDBAAAQwQAAqMEAAHTCAABswgAAIEEAAEjCAACAQQAAmEEAABDCAACAwAAAhsIAALjBIAA4E0AJSHVQASqPAhAAGoACAACoPQAAyL0AADA9AAAEPgAAUD0AAI6-AABwvQAAC78AABS-AACIPQAAFL4AAJi9AAAEvgAAZD4AAFy-AAAEvgAAgj4AABA9AAA8PgAAEz8AAH8_AACAOwAAHD4AAOC8AACAuwAAuL0AAOA8AABQPQAAqD0AAEw-AAAkPgAAuD0AAEC8AABAPAAA2L0AANg9AABMPgAAJL4AABy-AACovQAAZL4AAEC8AABMPgAADL4AAES-AABQvQAARD4AACS-AABEvgAAcL0AAEA8AAAwPQAAuD0AAPg9AACAOwAAEL0AAEE_AAAEvgAAiD0AAPg9AABQvQAAjj4AAOg9AAAQPSAAOBNACUh8UAEqjwIQARqAAgAAHL4AABC9AABUvgAAUb8AABS-AADgvAAAHD4AAFS-AADIvQAAbD4AAFC9AABEvgAABL4AAES-AADIPQAAEL0AADA9AAAfPwAAiD0AAO4-AACYPQAAmD0AAJi9AAAQvQAAEL0AAFA9AACIvQAAgDsAAHC9AAC4PQAA4DwAAOA8AABMPgAAor4AADA9AABwvQAAoDwAAOC8AABEvgAABD4AALg9AAAMPgAAEL0AAKA8AADovQAAmD0AAH-_AABEvgAAuL0AAIi9AADIPQAAJL4AADA9AAAwPQAAHD4AAJg9AABAPAAAuD0AABC9AACovQAAuD0AAFw-AAAwPQAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ilUXp9WrnDw","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7516344338964881701"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"12498683891781267877":{"videoId":"12498683891781267877","docid":"34-0-13-Z961237D9DA4F530B","description":"#Lecture #Students #Nigeria #Ghana Introduction to Statistics...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"48","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Introduction to Statistics - Definition","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LVa2hxNmSYw\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFgoUMTI0OTg2ODM4OTE3ODEyNjc4NzdaFDEyNDk4NjgzODkxNzgxMjY3ODc3aoQJEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E8YOggQkAYAEKyqLARABGniB-v_89wH_APH7_v8JAv8B8w8DDPn9_QDiBAP1_vsCAPYF9fT4AAAA_f_7BvUAAADk-Av9_QMAAAEBBAEFAAAAEfr1AfQAAAAREfr4_gEAAOkBAQD2AgABD_4BCAAAAAD0__8G-v8AAAv_9g8AAAAABgYDCv8AAAAgAC3LM847OBNACUhOUAIqhAIQABrwAX8NBAKxGRT9Uv7sANQc-QCOAAH_EwjqALfs_gDG-NIAAw4GANj3HQAIBS0A1iX-_yz06v8k1_gAIO8P_yAh-gEaDA8ALdQNATIA_QD_9dn___j9_xvvBQAV9hUAEwkK_woVBAHYBMn_IQD9AQj9DgX-Bw8B6vwG_ggL8AHeBhADB-kD_CLoDf32BQD44Rr__gXyBvzrCwP9_OQL-wgh9vwA8wsCBAMNAAr3_Ar78uv_8w8O_P0G6_QpFSEI5AH9BCjdAvsO_w8H5wYNASXaDgHp5hP9DO8V9BkQ7f_n4wf54uYC_OAR_vz4Av8F-gn49CAALXWTNzs4E0AJSGFQAipzEAAaYCvsADvYD_ngC0jX-v61Cc36DuYxvRL_1_r_yReg488-HtXe_AA8suAcowAAAAcN9UbXAAR_xuDcM-UTBum29_QTVhwY9eHR9SO0ES0c3sVMCPYxQADs2qcdIhTBJSkR-yAALfC_Gjs4E0AJSG9QAiqPAhAAGoACAABUPgAAhr4AAAQ-AACYPQAAUL0AAEC8AABwvQAAsr4AAJa-AABAPAAA-D0AAES-AAAMvgAAmD0AAIK-AAB8vgAAPD4AAIg9AADIPQAAET8AAH8_AACIPQAADL4AAAQ-AACivgAAfL4AACw-AACAuwAAhj4AAJo-AAA8PgAAqL0AAOA8AADoPQAAED0AAIg9AAA8PgAAlr4AAFS-AACgPAAAoDwAAAG_AACoPQAAZL4AALi9AAAsPgAAqD0AAIq-AAC4vQAAJL4AABC9AABcPgAA4DwAAFA9AAC4vQAAgLsAACs_AAAEvgAAqD0AANY-AAA0vgAAMD0AAOg9AACoPSAAOBNACUh8UAEqjwIQARqAAgAAZL4AABy-AACCvgAAP78AAPg9AAAEPgAAUD0AAHS-AADgvAAAVD4AAKi9AABQPQAA-L0AAIC7AAAEPgAAUL0AAKC8AAAVPwAAUD0AAN4-AAAwvQAA2D0AAAw-AABAvAAAML0AAEA8AACgPAAAgLsAABQ-AAAwPQAAMD0AAMg9AACoPQAAFL4AALg9AABwvQAALD4AAKg9AAAEvgAAML0AAGw-AAA8PgAAUL0AAFA9AAAwvQAAgLsAAH-_AACAOwAAoj4AAII-AACYPQAAgr4AADC9AABUPgAATD4AANg9AACYPQAARL4AAEC8AACYvQAA2D0AACQ-AACAuwAAEL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=LVa2hxNmSYw","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12498683891781267877"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"8888819378061391507":{"videoId":"8888819378061391507","docid":"34-9-1-Z149DA8289687B1D4","description":"the absolute measures of association...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"49","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","isAdultDoc":false,"relatedParams":{"text":"Epidemiology: How to compare disease Frequencies, prevalence or incidence in two or more groups","promo":"pumpkin","related_orig_text":"Charles Edeki -- Math Computer Science Programming","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Charles Edeki -- Math Computer Science Programming\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dcq6Z9oVE40\",\"src\":\"serp\",\"rvb\":\"EqkDChI2NzI2MDc5MTEzMjQ5OTE3OTEKEzkyNzQyODEyOTQwMTgxNzkzNjkKFDE0MDcyNDU4NjEyNDk0MjI5MTQ3ChM0OTkzNTE2NzM4MDI5MTc3OTQzChM1NDA0MDIwNzQ3MjEzMDAyMzMzChQxNTUzNTY4NTQ4MDg3MzI1NjgyMgoSMjI5OTIyNzQxMjg0MjgzMjc0ChM0OTAxOTUyNDY4MTQxMzk3OTQ0ChM3NzcxODQ1NTMyODU0OTU0MDk1ChQxODAwMjM1MTkzMzk1Mjk3NTk4MwoTNDc3NzA0OTQxNjkwOTcxMDQyOAoTOTYxMjEyMTMxNDQzNDE3Mjc0NQoSNzM1ODIzMDcwNDY3NjUzMTIwChQxMjQ3NDM1MDY4MjkwNjczMzYzMwoUMTQ3MTI1NjE2NzQ5Njc3NDU5MjIKFDE3MjIyMDI0ODc5NjYwNjU0MTEwChQxNjkwMzQ2MTkzOTEyOTYzNzYyOQoTNzgxNTM2MTkwMjg1NzcxMzI5NwoTODMxNTkyMTQ2MDU0Nzk3NjkyMgoUMTY1NzExMzMzMjYyODUwNjc2MjMaFQoTODg4ODgxOTM3ODA2MTM5MTUwN1oTODg4ODgxOTM3ODA2MTM5MTUwN2qIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxPJGIIEJAGABCsqiwEQARp4gQv_9AMAAADx8AYE-gT_AewO-Qb5_v4A9AYC_wcC_wD19wP_9wAAAP4I8wf8AAAA8fj2_PkAAAAI_PX9-AAAABYF_fD7AAAACgb3Cf4BAAD3AQv-AwAAABj5_g0AAAAA_Ab4_Pn-AAH3____AAAAAAz-_gEAAAAAIAAt0qDUOzgTQAlITlACKoQCEAAa8AFb-x0Bvxn8_iz-5gABB9EAgQUL_yQF8QC97v8AufftAB8i-wDQ8_8A-hYRAOnw7AAQ9uv_DvMJARr2A_8v_AAABwz5ADH2GwEbCgkAAxHp_gQZBQAiDCb_AOUHAP8UDv4YChH_wALu_fcQ4wH88SIAHRYG_yDqCwHzCBT-_QkO_uoM9wQrGBYA1vUE-vUCDAP59Or9_hj8Bef29P39AgED-vn-AxTr6wQsC_8I-u32_PQODfz3BAwDFhwH_PsUDQEC5wkAAAQG_-PxEQAg8AUE--oRAe3nDv8DCvYCCfQA8vLmAPnsIfj_-voOCvX4DvEgAC1uJ0g7OBNACUhhUAIqzwcQABrAB1cHDL_ag1q8L75ovHdRDz38AZo9JDMPvIOGfj2qQ268cF_HPIrCEz20TVs9tg4QPPyMu75aUw-8xurFu_7Viz4gxJ88hqkxOxCw9r0IpE49R7dSu094kb5nFUw9qeaLutJIlT3-Is28Hu0JPfrV3D03fnI8q6AWPG-LCL1DRwe6I9gYvV2psr3BnCq9PR5EvMRb5z3qnQC9XylLu2kZGT69Xzu9ZRfvO1FM3rv2Ocg8Kdw8vHb5O73_4yk8S01MPIJCyD3aE-48ItjdPOWDeT3_gD084DBRvGOc_zy-zIO7Mwo0O6zCaz2df2A910V2vMjw8zw0AGq9vJ_LO7-eLzzC1SY9yOr7PN20GT49FtE8A2D6u9tMCj38Ivw8jNO1PIhX47wPR5e8ZywYvGLglDzRQRK92LKAu2_KprxZYq88YqylPK06Rj3YXrA8op-EvGLcaD3hspo9ytw-O_9Bf7zQA4S8MoxgvFWPur2-OTc8F5klvPES_D3AKJy9rShru6cHZT1blNk82MJiPEO5o7wJslQ8L4wPPD8wzzu0d-E8TZ-huy91Bj1-e229AjD5up-JVbwXTSI93bwnvPbwgL0cpJY8OWl1vDX6hz0O_a6845mju7EkLz3oZ2o8aNTXO2j27zyzKh29-jRdvP9YSL3cNoI8b8HOuqD6qLt7wFy9hFGku-sB0z2o0Zo8eTjkOydbM72FKg68sBwluy3PgzyaGx09m2ZsuyL4hL2H6wM8yfMNuxFgRzzj6ZA9WwAwOdDQpDz205-9hFmyOT_ekjsQCM8888TWuFHWhD3uBlG88Gq-uZto4TyPhhi9V650OoCCpjxbUCm8eZWRuJ4Sa73yYyc8jR9AOX0FST0Lf6O7qwijuPaQOrwLVmY8PVeEOapO4rwTimM984WvOE-iELsJfM-8aK_MOAHyqTqmZBS94-TZOA2wJb2KciG6xpYuOR6mILxXMvS7Wt8WOEO5Q71yTUG9cxB8Nyn0sLx60JI90TlKt-sPHrz6Y_U8DjI2twa997zF0cu8NP5lOAacJbyMatG9-lP3N0x1XDxEfTE56D-KtvWisb2obP28Z7CauBJoj7tOg728dTKItuwYsjx5_Ci8pl3stxKrhT2fmwy9_MEGuXF8ozzF8t08i3_jt0HKYDrm84A9OeuTN-AB1DzH9W88tOoCOEJmH7y3QZ29acdROBT0TT20vae9l5eNt3CCSjwq6rc95woJOXxijb0hA9k9gTUwuecjn703wHE87WSXt1_S2LxJqbq8keoLtyAAOBNACUhtUAEqcxAAGmApBwAlEizCz_c35t4G4AMCEiXvCs7t_xLmABYi7scQEM6z7uP_YcUm25wAAAAxzqnqEAD6f_b_xivw7Qap9vcEF23xJT2G8Sr6y7_g-egPGwPK91UA_eeSAzfIwxfwHQsgAC0DRxY7OBNACUhvUAIqrwYQDBqgBgAAQEAAAHBBAACYwQAA2MEAAIA_AACwwQAAfEIAACDCAABAQAAAyEEAABhCAABcwgAANMIAADzCAACkQgAAQMIAAODAAAAQwQAAUMEAAHjCAABEwgAAFMIAAGDBAAAoQgAAQEIAABjCAABMwgAAYMIAAEhCAADoQQAANMIAAABCAACiwgAAQEEAAJDBAACAQAAAgD8AAMRCAABUwgAAeEIAANhBAACwQQAAYEIAANhBAADgQQAAOMIAAEjCAADAwQAAokIAAABAAADAQAAAMEEAAJhBAACYQQAA0EEAACDBAAAAwwAAoEEAACTCAAA0QgAAIEIAAOBAAAAMwgAAusIAAMBAAACIwgAAwEAAANjBAADAwAAAAMEAAERCAAB0QgAAkMEAAHBCAAAgwQAAlMIAAOBAAABgwQAATEIAADxCAADwwQAAAEEAADDBAABAQgAAHMIAALDBAAAwQgAACEIAAHRCAABcwgAAAAAAAIBBAAAAQAAAlMIAAIjBAAA0wgAAUMEAAAxCAADoQQAAoMAAAATCAAAMQgAAREIAAMzCAABwwQAAwMAAAETCAABEQgAAYMEAABRCAAC4QQAALEIAAMDAAAA8wgAAqEEAAABBAAAkwgAAUMIAAKBBAAAAwQAABMIAAODBAAAUwgAABMIAADxCAABMQgAAEMEAAKBAAACIwgAAoMEAABBBAABAQAAAuMEAADBCAAAAAAAAMMEAABBBAACwQQAAAMIAAOzCAAAQwQAAAEIAADxCAAC4wQAACEIAAFDBAABQwgAAkEEAAIBBAADowQAAGMIAANhBAAAMQgAAYMEAALDBAAAAwAAAgEEAAETCAACCwgAAQEEAAFjCAADAQQAAZMIAACzCAADgwQAAMEIAAOhBAAAwQgAAcEEAAAhCAABIwgAAkEEAADzCAADQwQAAqMEAAPBBAACYwQAAoMAAAGhCAAAQQgAAyEEAAJDBAAAkQgAAmEEAAKxCAACAvwAAjMIAAEhCAAAgwQAAQEEAAJDCAACYwgAAQEAAAPDBAABwQQAAwEEAAFjCAADAwAAAcMIAAILCIAA4E0AJSHVQASqPAhAAGoACAAAkPgAA4LwAAPg9AADgPAAAmL0AALg9AAAwPQAAC78AADy-AAA8PgAAqL0AAMi9AAAwPQAAHD4AAOA8AAAEvgAAmD0AAIA7AAD4PQAAuj4AAH8_AADYPQAAjj4AAMg9AAA0vgAAqD0AAKC8AABEvgAAQDwAAAw-AAC4PQAAmD0AADy-AABAvAAAuD0AAEA8AAC4PQAAUD0AAFS-AAD4vQAARL4AABS-AAAQPQAAoDwAACy-AABwPQAABD4AAKK-AABAvAAAVL4AADC9AACIPQAAmj4AAMg9AADYvQAA4LwAAPo-AAB0vgAAoLwAAI4-AABAvAAALD4AACQ-AACgvCAAOBNACUh8UAEqjwIQARqAAgAAEL0AAIi9AAB0vgAA3r4AANi9AACovQAABD4AABw-AAB8vgAAFD4AALi9AADovQAABL4AAHy-AADoPQAAgDsAAPg9AADiPgAAqL0AAJo-AAAkPgAAsj4AAIK-AADgvAAAED0AALg9AABAPAAAQDwAAHC9AACYPQAAmD0AAKg9AABwvQAA6L0AADC9AAAwPQAAnj4AALY-AACavgAAFL4AAIY-AAAcPgAAUD0AABA9AAAsPgAAgDsAAH-_AACIvQAA-L0AACy-AACYPQAA4DwAACw-AADovQAAND4AAKg9AABAvAAAoLwAAAS-AACIPQAAiL0AAHw-AAAQvQAAuL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=dcq6Z9oVE40","parent-reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["8888819378061391507"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"3787937384"}},"dups":{"672607911324991791":{"videoId":"672607911324991791","title":"\u0007[Programming\u0007] Logic and Design: \u0007[Program\u0007] or Software Development Cycle","cleanTitle":"Programming Logic and Design: Program or Software Development Cycle","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QF2xZaYSQY4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QF2xZaYSQY4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":576,"text":"9:36","a11yText":"Süre 9 dakika 36 saniye","shortText":"9 dk."},"date":"18 oca 2023","modifyTime":1674000000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QF2xZaYSQY4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QF2xZaYSQY4","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":576},"parentClipId":"672607911324991791","href":"http://www.youtube.com/watch?v=QF2xZaYSQY4","rawHref":"/video/preview/672607911324991791?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9274281294018179369":{"videoId":"9274281294018179369","title":"Applications of Propositional Logic - Discrete \u0007[Mathematics\u0007] Lecture 3","cleanTitle":"Applications of Propositional Logic - Discrete Mathematics Lecture 3","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=m7PSXMZIq1Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/m7PSXMZIq1Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1900,"text":"31:40","a11yText":"Süre 31 dakika 40 saniye","shortText":"31 dk."},"views":{"text":"8,3bin","a11yText":"8,3 bin izleme"},"date":"3 nis 2020","modifyTime":1585872000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/m7PSXMZIq1Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=m7PSXMZIq1Y","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1900},"parentClipId":"9274281294018179369","href":"http://www.youtube.com/watch?v=m7PSXMZIq1Y","rawHref":"/video/preview/9274281294018179369?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14072458612494229147":{"videoId":"14072458612494229147","title":"Python Fundamentals (Lecture 2 Part 1)","cleanTitle":"Python Fundamentals (Lecture 2 Part 1)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Bn17msyPjg4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Bn17msyPjg4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1850,"text":"30:50","a11yText":"Süre 30 dakika 50 saniye","shortText":"30 dk."},"date":"29 ara 2019","modifyTime":1577577600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Bn17msyPjg4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Bn17msyPjg4","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1850},"parentClipId":"14072458612494229147","href":"http://www.youtube.com/watch?v=Bn17msyPjg4","rawHref":"/video/preview/14072458612494229147?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4993516738029177943":{"videoId":"4993516738029177943","title":"Entering, Coding, and Analyzing Qualitative Data: Research Methods in \u0007[Computer\u0007] and Society","cleanTitle":"Entering, Coding, and Analyzing Qualitative Data: Research Methods in Computer and Society","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sXsZXfJ7zr0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sXsZXfJ7zr0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1444,"text":"24:04","a11yText":"Süre 24 dakika 4 saniye","shortText":"24 dk."},"date":"22 kas 2020","modifyTime":1606003200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sXsZXfJ7zr0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sXsZXfJ7zr0","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1444},"parentClipId":"4993516738029177943","href":"http://www.youtube.com/watch?v=sXsZXfJ7zr0","rawHref":"/video/preview/4993516738029177943?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5404020747213002333":{"videoId":"5404020747213002333","title":"Graph Theory and Graph Models and Applications: Discrete \u0007[Math\u0007]","cleanTitle":"Graph Theory and Graph Models and Applications: Discrete Math","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MDeTiyn3rz4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MDeTiyn3rz4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1923,"text":"32:03","a11yText":"Süre 32 dakika 3 saniye","shortText":"32 dk."},"views":{"text":"5,3bin","a11yText":"5,3 bin izleme"},"date":"2 kas 2020","modifyTime":1604275200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MDeTiyn3rz4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MDeTiyn3rz4","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1923},"parentClipId":"5404020747213002333","href":"http://www.youtube.com/watch?v=MDeTiyn3rz4","rawHref":"/video/preview/5404020747213002333?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15535685480873256822":{"videoId":"15535685480873256822","title":"C++ \u0007[Programming\u0007]: Code to find the Body Mass Index and \u0007[Compute\u0007] a Tax using selection statemen...","cleanTitle":"C++ Programming: Code to find the Body Mass Index and Compute a Tax using selection statements.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DRb7Bv-ASDY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DRb7Bv-ASDY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":864,"text":"14:24","a11yText":"Süre 14 dakika 24 saniye","shortText":"14 dk."},"date":"13 mar 2023","modifyTime":1678665600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DRb7Bv-ASDY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DRb7Bv-ASDY","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":864},"parentClipId":"15535685480873256822","href":"http://www.youtube.com/watch?v=DRb7Bv-ASDY","rawHref":"/video/preview/15535685480873256822?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"229922741284283274":{"videoId":"229922741284283274","title":"Precalculus: \u0007[Mathematical\u0007] Modeling in Business and Economics","cleanTitle":"Precalculus: Mathematical Modeling in Business and Economics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DMq6wyTGMbE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DMq6wyTGMbE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/channel/UCwnUduzeWl3ccHYaRDkI1qg","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2126,"text":"35:26","a11yText":"Süre 35 dakika 26 saniye","shortText":"35 dk."},"date":"10 tem 2021","modifyTime":1625900400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DMq6wyTGMbE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DMq6wyTGMbE","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":2126},"parentClipId":"229922741284283274","href":"http://www.youtube.com/watch?v=DMq6wyTGMbE","rawHref":"/video/preview/229922741284283274?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4901952468141397944":{"videoId":"4901952468141397944","title":"Data Analytics Life Cycle - Six phases of data \u0007[Science\u0007] development process.","cleanTitle":"Data Analytics Life Cycle - Six phases of data Science development process.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=j1hezywDG_w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/j1hezywDG_w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2855,"text":"47:35","a11yText":"Süre 47 dakika 35 saniye","shortText":"47 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"8 haz 2020","modifyTime":1591574400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/j1hezywDG_w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=j1hezywDG_w","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":2855},"parentClipId":"4901952468141397944","href":"http://www.youtube.com/watch?v=j1hezywDG_w","rawHref":"/video/preview/4901952468141397944?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7771845532854954095":{"videoId":"7771845532854954095","title":"Big Data Analytics concepts lecture","cleanTitle":"Big Data Analytics concepts lecture","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zb_O-doPh4E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zb_O-doPh4E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1804,"text":"30:04","a11yText":"Süre 30 dakika 4 saniye","shortText":"30 dk."},"date":"16 nis 2020","modifyTime":1586995200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zb_O-doPh4E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zb_O-doPh4E","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1804},"parentClipId":"7771845532854954095","href":"http://www.youtube.com/watch?v=zb_O-doPh4E","rawHref":"/video/preview/7771845532854954095?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18002351933952975983":{"videoId":"18002351933952975983","title":"Data \u0007[Science\u0007] Final \u0007[project\u0007]","cleanTitle":"Data Science Final project","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=uPO01yVoj7w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/uPO01yVoj7w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":798,"text":"13:18","a11yText":"Süre 13 dakika 18 saniye","shortText":"13 dk."},"date":"3 nis 2020","modifyTime":1585872000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/uPO01yVoj7w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=uPO01yVoj7w","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":798},"parentClipId":"18002351933952975983","href":"http://www.youtube.com/watch?v=uPO01yVoj7w","rawHref":"/video/preview/18002351933952975983?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4777049416909710428":{"videoId":"4777049416909710428","title":"Researching and Writing the Literature Review","cleanTitle":"Researching and Writing the Literature Review","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2FlUsN9Ju54","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2FlUsN9Ju54?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1609,"text":"26:49","a11yText":"Süre 26 dakika 49 saniye","shortText":"26 dk."},"views":{"text":"2,4bin","a11yText":"2,4 bin izleme"},"date":"7 eyl 2020","modifyTime":1599495176000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2FlUsN9Ju54?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2FlUsN9Ju54","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1609},"parentClipId":"4777049416909710428","href":"http://www.youtube.com/watch?v=2FlUsN9Ju54","rawHref":"/video/preview/4777049416909710428?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9612121314434172745":{"videoId":"9612121314434172745","title":"System Analysis: Systems Development Life Cycle (Planning, Analysis, Design and Implementation)","cleanTitle":"System Analysis: Systems Development Life Cycle (Planning, Analysis, Design and Implementation)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pdaeQKC57_g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pdaeQKC57_g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":339,"text":"5:39","a11yText":"Süre 5 dakika 39 saniye","shortText":"5 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"30 ara 2022","modifyTime":1672358400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pdaeQKC57_g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pdaeQKC57_g","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":339},"parentClipId":"9612121314434172745","href":"http://www.youtube.com/watch?v=pdaeQKC57_g","rawHref":"/video/preview/9612121314434172745?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"735823070467653120":{"videoId":"735823070467653120","title":"Propositional Equivalence, Tautologies, Contradictions and Contingencies - Discrete \u0007[math\u0007]","cleanTitle":"Propositional Equivalence, Tautologies, Contradictions and Contingencies - Discrete math","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AE7xzBQ_Ux4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AE7xzBQ_Ux4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2235,"text":"37:15","a11yText":"Süre 37 dakika 15 saniye","shortText":"37 dk."},"date":"9 nis 2020","modifyTime":1586390400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AE7xzBQ_Ux4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AE7xzBQ_Ux4","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":2235},"parentClipId":"735823070467653120","href":"http://www.youtube.com/watch?v=AE7xzBQ_Ux4","rawHref":"/video/preview/735823070467653120?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12474350682906733633":{"videoId":"12474350682906733633","title":"Principles of Epidemiology: Sources of Public Health Data","cleanTitle":"Principles of Epidemiology: Sources of Public Health Data","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SRFhnG-qfxc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SRFhnG-qfxc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":930,"text":"15:30","a11yText":"Süre 15 dakika 30 saniye","shortText":"15 dk."},"views":{"text":"1,5bin","a11yText":"1,5 bin izleme"},"date":"3 tem 2021","modifyTime":1625270400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SRFhnG-qfxc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SRFhnG-qfxc","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":930},"parentClipId":"12474350682906733633","href":"http://www.youtube.com/watch?v=SRFhnG-qfxc","rawHref":"/video/preview/12474350682906733633?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14712561674967745922":{"videoId":"14712561674967745922","title":"Java Introduction Lecture 1 Part 1","cleanTitle":"Java Introduction Lecture 1 Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fxdShsVxPbA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fxdShsVxPbA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1717,"text":"28:37","a11yText":"Süre 28 dakika 37 saniye","shortText":"28 dk."},"date":"23 ara 2019","modifyTime":1577059200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fxdShsVxPbA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fxdShsVxPbA","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1717},"parentClipId":"14712561674967745922","href":"http://www.youtube.com/watch?v=fxdShsVxPbA","rawHref":"/video/preview/14712561674967745922?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17222024879660654110":{"videoId":"17222024879660654110","title":"Data Collection for Quantitative Research","cleanTitle":"Data Collection for Quantitative Research","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=E-IE-a8EWi8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/E-IE-a8EWi8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1958,"text":"32:38","a11yText":"Süre 32 dakika 38 saniye","shortText":"32 dk."},"date":"5 eki 2020","modifyTime":1601929742000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/E-IE-a8EWi8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=E-IE-a8EWi8","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1958},"parentClipId":"17222024879660654110","href":"http://www.youtube.com/watch?v=E-IE-a8EWi8","rawHref":"/video/preview/17222024879660654110?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16903461939129637629":{"videoId":"16903461939129637629","title":"Exploring Data Analyze (EDA) with Summary Statistics : Data Mining Porcess","cleanTitle":"Exploring Data Analyze (EDA) with Summary Statistics : Data Mining Porcess","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QRNxPjhj93g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QRNxPjhj93g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1019,"text":"16:59","a11yText":"Süre 16 dakika 59 saniye","shortText":"16 dk."},"date":"3 ara 2020","modifyTime":1606953600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QRNxPjhj93g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QRNxPjhj93g","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1019},"parentClipId":"16903461939129637629","href":"http://www.youtube.com/watch?v=QRNxPjhj93g","rawHref":"/video/preview/16903461939129637629?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7815361902857713297":{"videoId":"7815361902857713297","title":"Data Structure and Algorithm: Representing a graph as an Adjacency Matrix and Adjacency List","cleanTitle":"Data Structure and Algorithm: Representing a graph as an Adjacency Matrix and Adjacency List","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5gvDE5fy9YY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5gvDE5fy9YY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1029,"text":"17:09","a11yText":"Süre 17 dakika 9 saniye","shortText":"17 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"1 ara 2021","modifyTime":1638316800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5gvDE5fy9YY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5gvDE5fy9YY","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1029},"parentClipId":"7815361902857713297","href":"http://www.youtube.com/watch?v=5gvDE5fy9YY","rawHref":"/video/preview/7815361902857713297?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8315921460547976922":{"videoId":"8315921460547976922","title":"Statistics: Probability Rules, Compound event, Union, Intersection, Odds and Mutual Exclusive","cleanTitle":"Statistics: Probability Rules, Compound event, Union, Intersection, Odds and Mutual Exclusive","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RLiqxjimmok","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RLiqxjimmok?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/channel/UCwnUduzeWl3ccHYaRDkI1qg","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1040,"text":"17:20","a11yText":"Süre 17 dakika 20 saniye","shortText":"17 dk."},"date":"10 ağu 2022","modifyTime":1660161419000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RLiqxjimmok?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RLiqxjimmok","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1040},"parentClipId":"8315921460547976922","href":"http://www.youtube.com/watch?v=RLiqxjimmok","rawHref":"/video/preview/8315921460547976922?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16571133326285067623":{"videoId":"16571133326285067623","title":"Statistics: Confidence Interval for Mean using large samples","cleanTitle":"Statistics: Confidence Interval for Mean using large samples","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rs9wl-DtbZY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rs9wl-DtbZY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1657,"text":"27:37","a11yText":"Süre 27 dakika 37 saniye","shortText":"27 dk."},"date":"7 nis 2025","modifyTime":1743984000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rs9wl-DtbZY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rs9wl-DtbZY","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1657},"parentClipId":"16571133326285067623","href":"http://www.youtube.com/watch?v=rs9wl-DtbZY","rawHref":"/video/preview/16571133326285067623?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13484496721990674596":{"videoId":"13484496721990674596","title":"Statistics: Permutations and Combination of items. Use the counting principles to find probabilitie...","cleanTitle":"Statistics: Permutations and Combination of items. Use the counting principles to find probabilities","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DHZzMUqhEAo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DHZzMUqhEAo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1229,"text":"20:29","a11yText":"Süre 20 dakika 29 saniye","shortText":"20 dk."},"date":"25 ara 2022","modifyTime":1671926400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DHZzMUqhEAo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DHZzMUqhEAo","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1229},"parentClipId":"13484496721990674596","href":"http://www.youtube.com/watch?v=DHZzMUqhEAo","rawHref":"/video/preview/13484496721990674596?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8674305644584827422":{"videoId":"8674305644584827422","title":"Overview of Epidemiological Study Designs: Understand Experimental, Cohort, and Case-Control Studies","cleanTitle":"Overview of Epidemiological Study Designs: Understand Experimental, Cohort, and Case-Control Studies","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vNHh3Ajfhw4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vNHh3Ajfhw4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2297,"text":"38:17","a11yText":"Süre 38 dakika 17 saniye","shortText":"38 dk."},"date":"6 ara 2021","modifyTime":1638748800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vNHh3Ajfhw4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vNHh3Ajfhw4","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":2297},"parentClipId":"8674305644584827422","href":"http://www.youtube.com/watch?v=vNHh3Ajfhw4","rawHref":"/video/preview/8674305644584827422?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14364069653270800069":{"videoId":"14364069653270800069","title":"Exploratory Data Analysis, Creating Charts, Contingency Table using Python and Binning Examples","cleanTitle":"Exploratory Data Analysis, Creating Charts, Contingency Table using Python and Binning Examples","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=L-NyZ6ucOio","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/L-NyZ6ucOio?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1542,"text":"25:42","a11yText":"Süre 25 dakika 42 saniye","shortText":"25 dk."},"date":"17 eki 2022","modifyTime":1665964800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/L-NyZ6ucOio?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=L-NyZ6ucOio","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1542},"parentClipId":"14364069653270800069","href":"http://www.youtube.com/watch?v=L-NyZ6ucOio","rawHref":"/video/preview/14364069653270800069?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5017776963237503210":{"videoId":"5017776963237503210","title":"Measures of Central Tendency: Determine the mean, median, and mode of a population and of a sample","cleanTitle":"Measures of Central Tendency: Determine the mean, median, and mode of a population and of a sample","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=6ReIakvpP_w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/6ReIakvpP_w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":841,"text":"14:01","a11yText":"Süre 14 dakika 1 saniye","shortText":"14 dk."},"date":"22 eki 2022","modifyTime":1666395233000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/6ReIakvpP_w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=6ReIakvpP_w","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":841},"parentClipId":"5017776963237503210","href":"http://www.youtube.com/watch?v=6ReIakvpP_w","rawHref":"/video/preview/5017776963237503210?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18193705088159913125":{"videoId":"18193705088159913125","title":"C++ Selection Statements: C++ Code or \u0007[Program\u0007] that checks if a specific year is a leap year. - ...","cleanTitle":"C++ Selection Statements: C++ Code or Program that checks if a specific year is a leap year. - YouTube","host":{"title":"YouTube","href":"http://itvid.net/video/c-selection-statements-c-code-or-program-that-checks-if-a-specific-year-is-a-leap-year-jOHDNNEYpVU.html","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jOHDNNEYpVU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":386,"text":"6:26","a11yText":"Süre 6 dakika 26 saniye","shortText":"6 dk."},"date":"14 nis 2023","modifyTime":1681430400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jOHDNNEYpVU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jOHDNNEYpVU","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":386},"parentClipId":"18193705088159913125","href":"http://itvid.net/video/c-selection-statements-c-code-or-program-that-checks-if-a-specific-year-is-a-leap-year-jOHDNNEYpVU.html","rawHref":"/video/preview/18193705088159913125?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5138273701662202345":{"videoId":"5138273701662202345","title":"Probability Concepts and Rules, Distinguish Classical, Empirical and Subjective Probabilities","cleanTitle":"Probability Concepts and Rules, Distinguish Classical, Empirical and Subjective Probabilities","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=t40xYKbxmEc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/t40xYKbxmEc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1783,"text":"29:43","a11yText":"Süre 29 dakika 43 saniye","shortText":"29 dk."},"date":"8 ara 2022","modifyTime":1670455906000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/t40xYKbxmEc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=t40xYKbxmEc","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1783},"parentClipId":"5138273701662202345","href":"http://www.youtube.com/watch?v=t40xYKbxmEc","rawHref":"/video/preview/5138273701662202345?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6390864300731759553":{"videoId":"6390864300731759553","title":"Data \u0007[Science\u0007] and Big Data Analytics: Analyze Case Studies on How Big Data Drives Business Decisi...","cleanTitle":"Data Science and Big Data Analytics: Analyze Case Studies on How Big Data Drives Business Decisions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JhBTEaaniCM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JhBTEaaniCM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1849,"text":"30:49","a11yText":"Süre 30 dakika 49 saniye","shortText":"30 dk."},"date":"22 eyl 2025","modifyTime":1758499200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JhBTEaaniCM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JhBTEaaniCM","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1849},"parentClipId":"6390864300731759553","href":"http://www.youtube.com/watch?v=JhBTEaaniCM","rawHref":"/video/preview/6390864300731759553?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3928153151909862892":{"videoId":"3928153151909862892","title":"Epidemiology. Research Methods: Overview of Epidemiologic Study Designs","cleanTitle":"Epidemiology. Research Methods: Overview of Epidemiologic Study Designs","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tJvA2wCVF1Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tJvA2wCVF1Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2426,"text":"40:26","a11yText":"Süre 40 dakika 26 saniye","shortText":"40 dk."},"date":"19 ağu 2021","modifyTime":1629331200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tJvA2wCVF1Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tJvA2wCVF1Q","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":2426},"parentClipId":"3928153151909862892","href":"http://www.youtube.com/watch?v=tJvA2wCVF1Q","rawHref":"/video/preview/3928153151909862892?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2373949301055851143":{"videoId":"2373949301055851143","title":"Measures of Regression and Prediction Intervals, the coefficient of determination - Statistics","cleanTitle":"Measures of Regression and Prediction Intervals, the coefficient of determination - Statistics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tiWDIGQNBBw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tiWDIGQNBBw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/channel/UCwnUduzeWl3ccHYaRDkI1qg","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1704,"text":"28:24","a11yText":"Süre 28 dakika 24 saniye","shortText":"28 dk."},"date":"22 tem 2020","modifyTime":1595401200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tiWDIGQNBBw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tiWDIGQNBBw","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1704},"parentClipId":"2373949301055851143","href":"http://www.youtube.com/watch?v=tiWDIGQNBBw","rawHref":"/video/preview/2373949301055851143?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9016836211332875457":{"videoId":"9016836211332875457","title":"Working with Data in Geographical Information System. Spatial Data Collection Technique and Metadat...","cleanTitle":"Working with Data in Geographical Information System. Spatial Data Collection Technique and Metadata - YouTube","host":{"title":"YouTube","href":"http://thesishelp.pro/phd-writing/ue/Spatial+data+mining+techniques","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Ak0RGiUdsDo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":629,"text":"10:29","a11yText":"Süre 10 dakika 29 saniye","shortText":"10 dk."},"date":"26 kas 2022","modifyTime":1669420800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Ak0RGiUdsDo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Ak0RGiUdsDo","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":629},"parentClipId":"9016836211332875457","href":"http://thesishelp.pro/phd-writing/ue/Spatial+data+mining+techniques","rawHref":"/video/preview/9016836211332875457?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13982374900340971685":{"videoId":"13982374900340971685","title":"Epidemiology Research Methods: Research Goals in Epidemiology","cleanTitle":"Epidemiology Research Methods: Research Goals in Epidemiology","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=iDoKpU86pR0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iDoKpU86pR0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2826,"text":"47:06","a11yText":"Süre 47 dakika 6 saniye","shortText":"47 dk."},"date":"18 ağu 2021","modifyTime":1629244800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iDoKpU86pR0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iDoKpU86pR0","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":2826},"parentClipId":"13982374900340971685","href":"http://www.youtube.com/watch?v=iDoKpU86pR0","rawHref":"/video/preview/13982374900340971685?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12602090763707051237":{"videoId":"12602090763707051237","title":"Epidemiology - The Approach and Evolution of Epidemiology","cleanTitle":"Epidemiology - The Approach and Evolution of Epidemiology","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=y5_6S84TM5U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/y5_6S84TM5U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1713,"text":"28:33","a11yText":"Süre 28 dakika 33 saniye","shortText":"28 dk."},"views":{"text":"1,7bin","a11yText":"1,7 bin izleme"},"date":"1 mar 2021","modifyTime":1614556800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/y5_6S84TM5U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=y5_6S84TM5U","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1713},"parentClipId":"12602090763707051237","href":"http://www.youtube.com/watch?v=y5_6S84TM5U","rawHref":"/video/preview/12602090763707051237?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16275431946173686208":{"videoId":"16275431946173686208","title":"Epidemiology: The Absolute and Relative Measures of Associations of Exposure and Disease","cleanTitle":"Epidemiology: The Absolute and Relative Measures of Associations of Exposure and Disease","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bv1JCSnXtA0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bv1JCSnXtA0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2428,"text":"40:28","a11yText":"Süre 40 dakika 28 saniye","shortText":"40 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"20 mar 2021","modifyTime":1616198400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bv1JCSnXtA0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bv1JCSnXtA0","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":2428},"parentClipId":"16275431946173686208","href":"http://www.youtube.com/watch?v=bv1JCSnXtA0","rawHref":"/video/preview/16275431946173686208?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9103960075841879898":{"videoId":"9103960075841879898","title":"Epidemiology: Measure of Disease","cleanTitle":"Epidemiology: Measure of Disease","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=43VOZrbMRaw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/43VOZrbMRaw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":947,"text":"15:47","a11yText":"Süre 15 dakika 47 saniye","shortText":"15 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"7 mar 2021","modifyTime":1615075200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/43VOZrbMRaw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=43VOZrbMRaw","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":947},"parentClipId":"9103960075841879898","href":"http://www.youtube.com/watch?v=43VOZrbMRaw","rawHref":"/video/preview/9103960075841879898?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11473909459881137829":{"videoId":"11473909459881137829","title":"Lec 1 | MIT 6.042J \u0007[Mathematics\u0007] for \u0007[Computer\u0007] \u0007[Science\u0007], Fall 2010","cleanTitle":"Lec 1 | MIT 6.042J Mathematics for Computer Science, Fall 2010","host":{"title":"YouTube","href":"http://www.youtube.com/v/L3LMbpZIKhQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/L3LMbpZIKhQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRUJiMWJfTDZ6RFMzeFRVcklBTFpPdw==","name":"MIT OpenCourseWare","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=MIT+OpenCourseWare","origUrl":"http://gdata.youtube.com/feeds/api/users/MIT","a11yText":"MIT OpenCourseWare. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2649,"text":"44:09","a11yText":"Süre 44 dakika 9 saniye","shortText":"44 dk."},"views":{"text":"2,7milyon","a11yText":"2,7 milyon izleme"},"date":"31 ara 2012","modifyTime":1356912000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/L3LMbpZIKhQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=L3LMbpZIKhQ","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":2649},"parentClipId":"11473909459881137829","href":"http://www.youtube.com/v/L3LMbpZIKhQ","rawHref":"/video/preview/11473909459881137829?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10926865050005344112":{"videoId":"10926865050005344112","title":"Lec 2 | MIT 6.042J \u0007[Mathematics\u0007] for \u0007[Computer\u0007] \u0007[Science\u0007], Fall 2010","cleanTitle":"Lec 2 | MIT 6.042J Mathematics for Computer Science, Fall 2010","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=z8HKWUWS-lA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/z8HKWUWS-lA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRUJiMWJfTDZ6RFMzeFRVcklBTFpPdw==","name":"MIT OpenCourseWare","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=MIT+OpenCourseWare","origUrl":"http://www.youtube.com/@mitocw","a11yText":"MIT OpenCourseWare. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4764,"text":"1:19:24","a11yText":"Süre 1 saat 19 dakika 24 saniye","shortText":"1 sa. 19 dk."},"views":{"text":"2,7milyon","a11yText":"2,7 milyon izleme"},"date":"31 ara 2012","modifyTime":1356912000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/z8HKWUWS-lA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=z8HKWUWS-lA","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":4764},"parentClipId":"10926865050005344112","href":"http://www.youtube.com/watch?v=z8HKWUWS-lA","rawHref":"/video/preview/10926865050005344112?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3842254571696082909":{"videoId":"3842254571696082909","title":"Lec 25 | MIT 6.042J \u0007[Mathematics\u0007] for \u0007[Computer\u0007] \u0007[Science\u0007], Fall 2010","cleanTitle":"Lec 25 | MIT 6.042J Mathematics for Computer Science, Fall 2010","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=56iFMY8QW2k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/56iFMY8QW2k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRUJiMWJfTDZ6RFMzeFRVcklBTFpPdw==","name":"MIT OpenCourseWare","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=MIT+OpenCourseWare","origUrl":"http://gdata.youtube.com/feeds/api/users/MIT","a11yText":"MIT OpenCourseWare. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4672,"text":"1:17:52","a11yText":"Süre 1 saat 17 dakika 52 saniye","shortText":"1 sa. 17 dk."},"views":{"text":"87,8bin","a11yText":"87,8 bin izleme"},"date":"31 ara 2012","modifyTime":1356912000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/56iFMY8QW2k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=56iFMY8QW2k","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":4672},"parentClipId":"3842254571696082909","href":"http://www.youtube.com/watch?v=56iFMY8QW2k","rawHref":"/video/preview/3842254571696082909?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5373752776544036608":{"videoId":"5373752776544036608","title":"Leetcode 208. Implement Trie (Prefix Tree) | C++ Tutorial","cleanTitle":"Leetcode 208. Implement Trie (Prefix Tree) | C++ Tutorial","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=TaROsKvSGjs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/TaROsKvSGjs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZW5mMkhoVTZGRjVrc2RfaFhLOVFhdw==","name":"Coding Intuition","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Coding+Intuition","origUrl":"http://www.youtube.com/@codingintuition","a11yText":"Coding Intuition. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":966,"text":"16:06","a11yText":"Süre 16 dakika 6 saniye","shortText":"16 dk."},"date":"17 mar 2023","modifyTime":1679011200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/TaROsKvSGjs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=TaROsKvSGjs","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":966},"parentClipId":"5373752776544036608","href":"http://www.youtube.com/watch?v=TaROsKvSGjs","rawHref":"/video/preview/5373752776544036608?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10621427996066031320":{"videoId":"10621427996066031320","title":"A Strange Solution: Excel Sheet Column Title | LeetCode #168","cleanTitle":"A Strange Solution: Excel Sheet Column Title | LeetCode #168","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=wkBk9S1VF94","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/wkBk9S1VF94?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRGNNb2F3UDUxQm0yR2NxdExxNG9nQQ==","name":"theblackunderflow","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=theblackunderflow","origUrl":"http://www.youtube.com/@theblackunderflow1842","a11yText":"theblackunderflow. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1674,"text":"27:54","a11yText":"Süre 27 dakika 54 saniye","shortText":"27 dk."},"date":"13 eyl 2022","modifyTime":1663027200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/wkBk9S1VF94?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=wkBk9S1VF94","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1674},"parentClipId":"10621427996066031320","href":"http://www.youtube.com/watch?v=wkBk9S1VF94","rawHref":"/video/preview/10621427996066031320?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14261799121477601440":{"videoId":"14261799121477601440","title":"Tutorial 6 Case Problem 2: Japanese Puzzle Factory","cleanTitle":"Tutorial 6 Case Problem 2: Japanese Puzzle Factory","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DzF5E4tQstE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DzF5E4tQstE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYUsyTzhIN3ptYWpxRjJKZGtSeEh1Zw==","name":"Joseph Neathawk","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Joseph+Neathawk","origUrl":"http://www.youtube.com/channel/UCaK2O8H7zmajqF2JdkRxHug","a11yText":"Joseph Neathawk. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4440,"text":"1:14:00","a11yText":"Süre 1 saat 14 dakika","shortText":"1 sa. 14 dk."},"views":{"text":"4,2bin","a11yText":"4,2 bin izleme"},"date":"5 eki 2020","modifyTime":1601856000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DzF5E4tQstE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DzF5E4tQstE","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":4440},"parentClipId":"14261799121477601440","href":"http://www.youtube.com/watch?v=DzF5E4tQstE","rawHref":"/video/preview/14261799121477601440?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12023601165640102136":{"videoId":"12023601165640102136","title":"\u0007[Computer\u0007] \u0007[Programming\u0007] Logic: Selection Control Structure - Decision Making Statements","cleanTitle":"Computer Programming Logic: Selection Control Structure - Decision Making Statements","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HCXTiC-pa4o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HCXTiC-pa4o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4041,"text":"1:07:21","a11yText":"Süre 1 saat 7 dakika 21 saniye","shortText":"1 sa. 7 dk."},"views":{"text":"1,5bin","a11yText":"1,5 bin izleme"},"date":"1 tem 2021","modifyTime":1625097600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HCXTiC-pa4o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HCXTiC-pa4o","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":4041},"parentClipId":"12023601165640102136","href":"http://www.youtube.com/watch?v=HCXTiC-pa4o","rawHref":"/video/preview/12023601165640102136?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14945358113951772":{"videoId":"14945358113951772","title":"Machine learning Concepts - Data mining Lecture 2 Part 2","cleanTitle":"Machine learning Concepts - Data mining Lecture 2 Part 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RNQmvY_LA0E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RNQmvY_LA0E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1716,"text":"28:36","a11yText":"Süre 28 dakika 36 saniye","shortText":"28 dk."},"date":"22 haz 2020","modifyTime":1592784000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RNQmvY_LA0E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RNQmvY_LA0E","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1716},"parentClipId":"14945358113951772","href":"http://www.youtube.com/watch?v=RNQmvY_LA0E","rawHref":"/video/preview/14945358113951772?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11680461819635006673":{"videoId":"11680461819635006673","title":"Discrete \u0007[math\u0007] - Introductory lecture 1","cleanTitle":"Discrete math - Introductory lecture 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7rb2nMf67Es","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7rb2nMf67Es?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":583,"text":"9:43","a11yText":"Süre 9 dakika 43 saniye","shortText":"9 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"31 mar 2020","modifyTime":1585612800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7rb2nMf67Es?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7rb2nMf67Es","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":583},"parentClipId":"11680461819635006673","href":"http://www.youtube.com/watch?v=7rb2nMf67Es","rawHref":"/video/preview/11680461819635006673?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3592585992596942110":{"videoId":"3592585992596942110","title":"System Analysis and Design Lecture 1 Part 1","cleanTitle":"System Analysis and Design Lecture 1 Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ktcVwtzPrYQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ktcVwtzPrYQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":544,"text":"9:04","a11yText":"Süre 9 dakika 4 saniye","shortText":"9 dk."},"views":{"text":"133,9bin","a11yText":"133,9 bin izleme"},"date":"16 oca 2020","modifyTime":1579132800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ktcVwtzPrYQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ktcVwtzPrYQ","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":544},"parentClipId":"3592585992596942110","href":"http://www.youtube.com/watch?v=ktcVwtzPrYQ","rawHref":"/video/preview/3592585992596942110?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7571262361613786234":{"videoId":"7571262361613786234","title":"Strong Induction and Well Ordering: Discrete \u0007[Mathematics\u0007]","cleanTitle":"Strong Induction and Well Ordering: Discrete Mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4hBQjNAXu7E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4hBQjNAXu7E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1144,"text":"19:04","a11yText":"Süre 19 dakika 4 saniye","shortText":"19 dk."},"views":{"text":"2,3bin","a11yText":"2,3 bin izleme"},"date":"5 eki 2020","modifyTime":1601856000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4hBQjNAXu7E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4hBQjNAXu7E","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1144},"parentClipId":"7571262361613786234","href":"http://www.youtube.com/watch?v=4hBQjNAXu7E","rawHref":"/video/preview/7571262361613786234?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7516344338964881701":{"videoId":"7516344338964881701","title":"Experimental Design and Data Collection - Statistics","cleanTitle":"Experimental Design and Data Collection - Statistics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ilUXp9WrnDw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ilUXp9WrnDw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1810,"text":"30:10","a11yText":"Süre 30 dakika 10 saniye","shortText":"30 dk."},"date":"19 mayıs 2020","modifyTime":1589846400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ilUXp9WrnDw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ilUXp9WrnDw","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1810},"parentClipId":"7516344338964881701","href":"http://www.youtube.com/watch?v=ilUXp9WrnDw","rawHref":"/video/preview/7516344338964881701?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12498683891781267877":{"videoId":"12498683891781267877","title":"Introduction to Statistics - Definition","cleanTitle":"Introduction to Statistics - Definition","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LVa2hxNmSYw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LVa2hxNmSYw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1862,"text":"31:02","a11yText":"Süre 31 dakika 2 saniye","shortText":"31 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"7 ağu 2019","modifyTime":1565136000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LVa2hxNmSYw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LVa2hxNmSYw","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":1862},"parentClipId":"12498683891781267877","href":"http://www.youtube.com/watch?v=LVa2hxNmSYw","rawHref":"/video/preview/12498683891781267877?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8888819378061391507":{"videoId":"8888819378061391507","title":"Epidemiology: How to compare disease Frequencies, prevalence or incidence in two or more groups","cleanTitle":"Epidemiology: How to compare disease Frequencies, prevalence or incidence in two or more groups","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dcq6Z9oVE40","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dcq6Z9oVE40?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3145,"text":"52:25","a11yText":"Süre 52 dakika 25 saniye","shortText":"52 dk."},"views":{"text":"3,7bin","a11yText":"3,7 bin izleme"},"date":"18 mar 2021","modifyTime":1616025600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dcq6Z9oVE40?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dcq6Z9oVE40","reqid":"1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL","duration":3145},"parentClipId":"8888819378061391507","href":"http://www.youtube.com/watch?v=dcq6Z9oVE40","rawHref":"/video/preview/8888819378061391507?parent-reqid=1771584602632650-8454944436929475068-balancer-l7leveler-kubr-yp-klg-152-BAL&promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x906f9600bf4","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"4549444369294750687152","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Charles Edeki -- Math Computer Science Programming","queryUriEscaped":"Charles%20Edeki%20--%20Math%20Computer%20Science%20Programming","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}