{"pages":{"search":{"query":"Computing MathTech","originalQuery":"Computing MathTech","serpid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","parentReqid":"","serpItems":[{"id":"13112165764804289726-0-0","type":"videoSnippet","props":{"videoId":"13112165764804289726"},"curPage":0},{"id":"17301960310570351563-0-1","type":"videoSnippet","props":{"videoId":"17301960310570351563"},"curPage":0},{"id":"8155473614937073402-0-2","type":"videoSnippet","props":{"videoId":"8155473614937073402"},"curPage":0},{"id":"9129082624207416770-0-3","type":"videoSnippet","props":{"videoId":"9129082624207416770"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dENvbXB1dGluZyBNYXRoVGVjaAo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","ui":"desktop","yuid":"3909310441771567816"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"15344799637705692655-0-5","type":"videoSnippet","props":{"videoId":"15344799637705692655"},"curPage":0},{"id":"3229559192749289380-0-6","type":"videoSnippet","props":{"videoId":"3229559192749289380"},"curPage":0},{"id":"3689442216083040366-0-7","type":"videoSnippet","props":{"videoId":"3689442216083040366"},"curPage":0},{"id":"13868179006786454393-0-8","type":"videoSnippet","props":{"videoId":"13868179006786454393"},"curPage":0},{"id":"17385638116829729049-0-9","type":"videoSnippet","props":{"videoId":"17385638116829729049"},"curPage":0},{"id":"18085395393528167352-0-10","type":"videoSnippet","props":{"videoId":"18085395393528167352"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dENvbXB1dGluZyBNYXRoVGVjaAo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","ui":"desktop","yuid":"3909310441771567816"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"12886106060848458309-0-12","type":"videoSnippet","props":{"videoId":"12886106060848458309"},"curPage":0},{"id":"12345363549800426706-0-13","type":"videoSnippet","props":{"videoId":"12345363549800426706"},"curPage":0},{"id":"17182861295170838365-0-14","type":"videoSnippet","props":{"videoId":"17182861295170838365"},"curPage":0},{"id":"14891356851130042279-0-15","type":"videoSnippet","props":{"videoId":"14891356851130042279"},"curPage":0},{"id":"7265252088063125223-0-16","type":"videoSnippet","props":{"videoId":"7265252088063125223"},"curPage":0},{"id":"14944270557742453116-0-17","type":"videoSnippet","props":{"videoId":"14944270557742453116"},"curPage":0},{"id":"12021517520040899350-0-18","type":"videoSnippet","props":{"videoId":"12021517520040899350"},"curPage":0},{"id":"11845130708331210506-0-19","type":"videoSnippet","props":{"videoId":"11845130708331210506"},"curPage":0},{"id":"15941367421545336656-0-20","type":"videoSnippet","props":{"videoId":"15941367421545336656"},"curPage":0},{"id":"9552406842653182582-0-21","type":"videoSnippet","props":{"videoId":"9552406842653182582"},"curPage":0},{"id":"16881926993381405069-0-22","type":"videoSnippet","props":{"videoId":"16881926993381405069"},"curPage":0},{"id":"6785340914457960450-0-23","type":"videoSnippet","props":{"videoId":"6785340914457960450"},"curPage":0},{"id":"3530026766274700962-0-24","type":"videoSnippet","props":{"videoId":"3530026766274700962"},"curPage":0},{"id":"31035901935951200-0-25","type":"videoSnippet","props":{"videoId":"31035901935951200"},"curPage":0},{"id":"2336400785810493745-0-26","type":"videoSnippet","props":{"videoId":"2336400785810493745"},"curPage":0},{"id":"13466659283284057334-0-27","type":"videoSnippet","props":{"videoId":"12201575831994874959"},"curPage":0},{"id":"6511982993719884630-0-28","type":"videoSnippet","props":{"videoId":"6511982993719884630"},"curPage":0},{"id":"15111425868195090194-0-29","type":"videoSnippet","props":{"videoId":"15111425868195090194"},"curPage":0},{"id":"4462931197844385714-0-30","type":"videoSnippet","props":{"videoId":"4462931197844385714"},"curPage":0},{"id":"7565516359633031239-0-31","type":"videoSnippet","props":{"videoId":"7565516359633031239"},"curPage":0},{"id":"16529865989040886383-0-32","type":"videoSnippet","props":{"videoId":"16529865989040886383"},"curPage":0},{"id":"12971151953011879723-0-33","type":"videoSnippet","props":{"videoId":"12971151953011879723"},"curPage":0},{"id":"5595913159759441173-0-34","type":"videoSnippet","props":{"videoId":"5595913159759441173"},"curPage":0},{"id":"14456044627752760163-0-35","type":"videoSnippet","props":{"videoId":"14456044627752760163"},"curPage":0},{"id":"7099597547415763450-0-36","type":"videoSnippet","props":{"videoId":"7099597547415763450"},"curPage":0},{"id":"3201401658850942940-0-37","type":"videoSnippet","props":{"videoId":"3201401658850942940"},"curPage":0},{"id":"5930430563286544159-0-38","type":"videoSnippet","props":{"videoId":"5930430563286544159"},"curPage":0},{"id":"14677982364216415538-0-39","type":"videoSnippet","props":{"videoId":"14677982364216415538"},"curPage":0},{"id":"203525979415858922-0-40","type":"videoSnippet","props":{"videoId":"203525979415858922"},"curPage":0},{"id":"7793411985646165640-0-41","type":"videoSnippet","props":{"videoId":"7793411985646165640"},"curPage":0},{"id":"3090583758593736935-0-42","type":"videoSnippet","props":{"videoId":"3090583758593736935"},"curPage":0},{"id":"199426724755318747-0-43","type":"videoSnippet","props":{"videoId":"199426724755318747"},"curPage":0},{"id":"15494041324229490212-0-44","type":"videoSnippet","props":{"videoId":"15494041324229490212"},"curPage":0},{"id":"3440253245937670102-0-45","type":"videoSnippet","props":{"videoId":"3440253245937670102"},"curPage":0},{"id":"2635004787469090843-0-46","type":"videoSnippet","props":{"videoId":"2635004787469090843"},"curPage":0},{"id":"4252903301658883596-0-47","type":"videoSnippet","props":{"videoId":"4252903301658883596"},"curPage":0},{"id":"8290455385924628150-0-48","type":"videoSnippet","props":{"videoId":"8290455385924628150"},"curPage":0},{"id":"14006292082607379877-0-49","type":"videoSnippet","props":{"videoId":"14006292082607379877"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":false},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dENvbXB1dGluZyBNYXRoVGVjaAo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","ui":"desktop","yuid":"3909310441771567816"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Fpromo%3Dpumpkin%26text%3DComputing%2BMathTech","pages":[{"reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","start":0,"end":50,"pageNumber":0,"isCounterSent":false}]},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"0965662010485392627156","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_search_toggle_with_text":1,"video_viewer_show_placeholder":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1281084,0,99;287509,0,23;1447467,0,26;787997,0,58;1478787,0,40;1482973,0,11"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Fpromo%3Dpumpkin%26text%3DComputing%2BMathTech","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?promo=pumpkin&text=Computing+MathTech","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?promo=pumpkin&text=Computing+MathTech","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Computing MathTech: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Computing MathTech\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Computing MathTech — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":true,"sessionCsrfToken":"y92d0bc7c011ccae84186fe5ebe3a97b4","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1281084,287509,1447467,787997,1478787,1482973","queryText":"Computing MathTech","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"3909310441771567816","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1492788,1490736,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":true,"language":"tr","user_time":{"epoch":"1771567846","tz":"America/Louisville","to_iso":"2026-02-20T01:10:46-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1281084,287509,1447467,787997,1478787,1482973","queryText":"Computing MathTech","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"3909310441771567816","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"0965662010485392627156","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":162,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"shouldCensorShockContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false,"isPlayerChangeCounterEnabled":false,"isSmallTitle":false,"shouldRestoreMuteState":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"showShock":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"3909310441771567816","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1772.0__b81ce2bfda81b5957ec198b1e35aabd8b6eeaee0","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"13112165764804289726":{"videoId":"13112165764804289726","docid":"34-2-2-ZF5E539F18710BF1A","description":"Introduction about the Computing Math-Tech channel content.. Please Subscribe to my channel & Press the Bell icon, click all Notification for the latest update video. Like the video & Share to...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"0","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Computing Math-Tech (Channel) Content First Introduction","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=26MUbgruLkc\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTMxMTIxNjU3NjQ4MDQyODk3MjZaFDEzMTEyMTY1NzY0ODA0Mjg5NzI2aoQJEgEwGAAiRRoxAAoqaGhzdGFjeGhzaGF6ZmxvYmhoVUM5MkFpbEZsUDJUX3JBU0pINGVQcXNnEgIAEioQwg8PGg8_E8gEggQkAYAEKyqLARABGniB9wX3_P4CAPb5BgkOBvwBFAr8_PUCAgDmAwT9Cf0BAPH69fr_AAAA-wL-_P4AAAD2_vsI9P8BAAj9_v0DAAAADf_4-wcAAAACC_cG_gEAAPYEAgn3AgABFAQSAgAAAAABCgv5_v8AAA0IAvwBAAAABQH7BAAAAAAgAC1aINg7OBNACUhOUAIqhAIQABrwAW_S7_y29u_-yRn2AcBN5wGBGA__M_X5Aev0EADp_tQA6_LjALnYMv_v-P__7PPR_0n0wv8Evxj_J7f1_sbcxgHRCOYANOTqAEAuHQD4NMP_1REg_vHH6__9vtkAHfL_AvXt9v9a99z_uPjFAUMPMwAt-gkI7fYPA-3kDgG0CPUC08rf_fgz9wEP4Cb85QkrAQ77-wkSIhz5zAwUAxjWygQR0Q77GUnm___9-QTJ-gn55hboAzL92gQVK_8K_Oja_AEON_rkyw4E8gP3_ucdCf0QDRz9CdMJFh7xEAUjDgL_H__v9vcO6_cTAPwQ7uHw_SAALQGwADs4E0AJSGFQAipzEAAaYCXzABQNNAPb7CXpDdTrAgmvFor2tPf_xSD_Bhfr4_cm2dH5GP8P0gzgngAAAA4u2T4rANF_BfwOKekk-q6y_UcedRIb6b0SCf24-S79Cclu8hQZJwAn3sY7FCLDSB49KSAALfVmFjs4E0AJSG9QAiqPAhAAGoACAABAvAAAbL4AAPg9AAC4PQAAQDwAABw-AADgvAAAG78AAFS-AABwvQAAiL0AAK6-AACgvAAAoj4AANi9AAAsvgAAoj4AAIA7AADgvAAA6j4AAH8_AABcPgAAED0AADA9AACIvQAANL4AAOA8AADIvQAAyD0AAIo-AACGPgAA6D0AAEA8AACgPAAAuD0AACw-AABUPgAAQDwAAES-AADovQAA6L0AACS-AACAuwAAFL4AAFC9AAAQvQAAZD4AAGy-AAA0vgAA1r4AAOg9AAA8vgAAlj4AAAw-AACIvQAAEL0AAC0_AADIPQAA-L0AAHw-AACSvgAAhj4AABw-AABwPSAAOBNACUh8UAEqjwIQARqAAgAAJL4AAJg9AAC4vQAAG78AAOA8AAD4vQAAMD0AAPi9AACGPgAAUD0AAIi9AADgvAAAJL4AAIK-AABcPgAA4DwAAHA9AAANPwAAyL0AAOY-AAC4vQAAgDsAALi9AABAvAAAML0AAKg9AADgvAAAQDwAABy-AADgPAAAUD0AADQ-AADoPQAAuD0AAFQ-AAC4PQAADD4AAEQ-AACGvgAA2D0AABQ-AACoPQAAyL0AAIC7AADYvQAADL4AAH-_AACAOwAAyL0AADy-AACovQAADL4AAIA7AAAwPQAAXD4AAAw-AACgPAAAPL4AAAy-AACoPQAA2L0AAKi9AACAuwAAgj4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=26MUbgruLkc","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13112165764804289726"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"17301960310570351563":{"videoId":"17301960310570351563","docid":"34-4-3-Z44DC391A720833C4","description":"This video is recorded by and for Math+Tech youtube channel. In this video unit no. 2 operating system fundamentals has been discussed by Sir Masood Abbasi. Topic is taken from Computer Science...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"1","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Computer Science Class 9 Unit 2 Part 2 Operating System By Sir Masood Abbasi at Math+Tech Channel","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bGgUDU7c3Qw\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTczMDE5NjAzMTA1NzAzNTE1NjNaFDE3MzAxOTYwMzEwNTcwMzUxNTYzaq8NEgEwGAAiRRoxAAoqaGhvdXVzcWltb3V2ZXhlY2hoVUNCTnhQczRkQXh3MFRZNFRaa0Roc1NnEgIAEioQwg8PGg8_E4IJggQkAYAEKyqLARABGniB8BMAAAEAAOv-_QQCAv8AEPP5AfYA_wDiBf0BAPwCAPT3A__3AAAAAwTsAAYAAAD99_cC-v4AAAP7_AIEAAAADf0E-gcAAAAOGvoC_QEAAP_8CfsDAAAAHBED_f8AAAD8Bvj8-f4AARQF8_gBAAAAFPwABQABAAAgAC12UM47OBNACUhOUAIqcxAAGmAh_wAtKvX-vRZL49jczh4AwgS0I97w__YmABAf78LjN9-BIAP_IOgN9KIAAAAACrwQHQDEdwHR7Ub5XvO6BOLuE20ZD_EWFu7jwxM83BcWORLeEjIA_P8JJDDKmV0KGQggAC3Jihg7OBNACUhvUAIqrwYQDBqgBgAAQEEAAGBBAADYQQAAQMIAALjBAABAQQAA4EEAAMLCAACwwgAAQEEAAFBBAAAYQgAAgEEAAIBAAAAMQgAAoMEAABxCAACAQAAAtMIAAMDBAACAwAAAhMIAAEDAAADeQgAApEIAAMhBAAA8wgAAGMIAAJ5CAADIQQAAEMEAAKDAAADAwAAAPEIAAODBAAD4wQAAMMIAAKJCAABIQgAAEMEAADhCAAD4QQAAuEEAAFBBAABUwgAAkEEAANhBAADQwQAA2EEAANDBAAAgwQAAgEEAAABCAACQQQAAHEIAADxCAACywgAAEMEAAAAAAADgQQAAqkIAAIhBAACAQAAAIMEAAHhCAAAsQgAAAEAAACBBAACAwQAAgEAAAMBBAADgwAAAYMEAAJhBAACAQAAAcMEAAKBAAAAMQgAAOMIAAEBAAAAowgAAYEIAANBBAABwQQAAEMEAAJJCAAAAwQAABMIAAADBAADwQQAAAMIAAJhBAADYwQAAoMEAAKDAAAC8wgAAwEEAADhCAABQQQAAOEIAAOjBAAAIQgAALEIAAMLCAAAowgAA4EEAAATCAABUQgAAZMIAAAxCAAAgQQAAmMIAAFDBAAAAwQAA-EEAAFhCAACgwAAAtsIAAIBAAACawgAAAMAAADTCAADgQQAAcMIAAOBBAACgQAAAgMEAACDCAACCQgAAkEEAAHDBAACQwQAABMIAAJRCAACMQgAASEIAAIbCAABwQQAAUMEAAABBAACIQgAAAMEAANDBAABwQQAAkkIAAKBBAACgwQAAMEEAAKhBAABAwQAAQEAAAAzCAAAgQQAAgMIAAATCAABAQgAAYMEAAIDBAADYQQAAukIAAFTCAABUQgAAAMIAAMhBAACQQQAAoEEAAHhCAACAQAAAoEIAAPDBAAAgwgAANEIAAOBBAACAQAAA2MEAAPBBAAAgwQAAUMEAADBBAACmQgAAQMEAACTCAABkwgAA6MEAAARCAACAwQAALMIAAGBBAADAwAAAgL8AAATCAACAQAAA6EEAAHhCAABoQgAADEIAAPBBAADgwQAAsEEAAODBIAA4E0AJSHVQASqPAhAAGoACAABMvgAAyL0AAI4-AACgPAAAHD4AADA9AACYvQAAEb8AAES-AADYPQAAoLwAABS-AACIPQAAZD4AAJi9AABkvgAAoj4AADC9AAAcPgAAMz8AAH8_AABwPQAANL4AAGQ-AADoPQAA4LwAANg9AADgPAAAiD0AAKI-AAAwPQAAqD0AAFC9AAAwvQAAqD0AALi9AACYPQAAUD0AAOi9AACIPQAAbL4AAKC8AADgPAAA6L0AABS-AAD4PQAA2j4AAPi9AAAMvgAALL4AAOg9AAAkvgAA1j4AAHw-AAA8vgAA4LwAAEU_AABQPQAA4LwAADw-AACIvQAAgj4AAIA7AAAMPiAAOBNACUh8UAEqjwIQARqAAgAATL4AAEA8AADgPAAAHb8AAFC9AADIPQAAgLsAAFC9AACgvAAATD4AAFy-AADovQAA4LwAACy-AAAQPQAAgDsAADA9AAA_PwAABD4AAPY-AABwPQAAML0AAHC9AACovQAAmL0AAEA8AAC4PQAAcD0AABS-AAD4PQAA4DwAANg9AAAEPgAAgLsAAPg9AACovQAAHD4AADQ-AACevgAA-D0AADA9AADgPAAA-D0AALi9AACovQAAED0AAH-_AAC4vQAADL4AAFC9AABQPQAA-L0AABA9AADIPQAAfD4AAIg9AAAwPQAAED0AADC9AAA8PgAAqD0AAKC8AAAQvQAAyD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=bGgUDU7c3Qw","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17301960310570351563"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"8155473614937073402":{"videoId":"8155473614937073402","docid":"34-9-16-Z275B20D226FC5648","description":"This video is recorded by and for Math+Tech youtube channel. In this video unit no. 2 operating system fundamentals has been discussed by Sir Masood Abbasi. Topic is taken from Computer Science...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"2","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Computer Science Class 9 Unit 2 Part 1 OS & its types By Sir Masood Abbasi at Math+Tech","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cfDI8gN4U9A\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTODE1NTQ3MzYxNDkzNzA3MzQwMloTODE1NTQ3MzYxNDkzNzA3MzQwMmqvDRIBMBgAIkUaMQAKKmhob3V1c3FpbW91dmV4ZWNoaFVDQk54UHM0ZEF4dzBUWTRUWmtEaHNTZxICABIqEMIPDxoPPxPOD4IEJAGABCsqiwEQARp4gfARAggI9wDt_gEG9wT_AQfzAPn3_v0A0gQCDP33BAAC7gT_-QEAAAQF6gAHAAAA-vvy-PT-AQABDP8GBQAAAAwKDf4EAAAAEB36A_0BAAD1-hgBAwAA_yATA_z-AAAA__z69fv-_wEIE-37AQAAABftCAMAAQAAIAAtV-i5OzgTQAlITlACKnMQABpgMQkAIj4L_MILNN8F2dUXA9IJwxbP-_8HJQAlD-LB6TPsgSUH_wD8A_inAAAABgnBBRIA7nAY27kl-zABy-3nBhNw-Rzb3gnY4qIAPNQtJCUczhQoAOsS-QAkvaxNIjkDIAAtAGQgOzgTQAlIb1ACKq8GEAwaoAYAAEBBAACAQQAAyEEAADDCAADQwQAAQEEAAPBBAAC-wgAAtMIAAEBBAAAwQQAADEIAAKBBAACgQAAAFEIAAKjBAAAcQgAAoEAAALbCAACYwQAAAMEAAILCAABAwAAA4EIAAKRCAACwQQAANMIAABjCAACiQgAAuEEAAADBAAAwwQAAwMAAADxCAADQwQAA8MEAACzCAACkQgAAREIAAADBAABIQgAA-EEAAMBBAABgQQAAUMIAALhBAAD4QQAA2MEAAKBBAACYwQAAUMEAAJBBAAAMQgAAcEEAABhCAABAQgAAtMIAAHDBAACAPwAAyEEAAKpCAACYQQAAAEEAAFDBAAB4QgAAKEIAAKDAAAAAQQAAQMEAAEBAAADAQQAAEMEAADDBAABwQQAAMEEAAJDBAACAPwAAGEIAAEDCAACAPwAAOMIAAGBCAADIQQAAAEEAADDBAACOQgAAwMAAANjBAADgwAAABEIAAAjCAACQQQAA4MEAAJjBAABAwAAAusIAANBBAABIQgAA4EAAADhCAADowQAAyEEAACBCAADAwgAAKMIAAOhBAAAMwgAAWEIAAGDCAAAIQgAAEEEAAJbCAAAwwQAAgMAAANhBAABgQgAAgMAAALrCAADAQAAAmMIAAMDAAAAkwgAAyEEAAILCAADYQQAAgD8AAJDBAAAYwgAAhEIAAJhBAAAgwQAAmMEAAAzCAACMQgAAiEIAAFBCAACEwgAAIEEAACDBAAAAQQAAgkIAACDBAADQwQAAcEEAAJRCAACYQQAAiMEAAFBBAADAQQAAUMEAAIA_AAAkwgAA4EAAAHjCAAAIwgAAREIAAIDBAABAwQAA4EEAALhCAABgwgAAUEIAAAzCAADYQQAAgEEAAKBBAACCQgAAAAAAAJxCAAD4wQAAGMIAADhCAAD4QQAAgEAAAPDBAAAAQgAAMMEAAIDBAAAgQQAApkIAABDBAAAQwgAAaMIAAAjCAAAcQgAAUMEAACjCAABgQQAA4MAAAEDAAAAAwgAAQEAAAOBBAACCQgAAYEIAABRCAAAAQgAAwMEAAJhBAADwwSAAOBNACUh1UAEqjwIQABqAAgAA-L0AAKi9AABcPgAAgLsAAEw-AADgPAAAyL0AAAW_AABMvgAAqD0AAPi9AABEvgAAqD0AAFw-AAD4vQAAPL4AAII-AACgvAAAHD4AACM_AAB_PwAAoDwAAPi9AABEPgAADD4AAIA7AACoPQAAuD0AANg9AABMPgAAED0AAFA9AABAPAAAyL0AAFA9AAAMvgAA-D0AAKC8AAAcvgAAMD0AAFS-AABQvQAAED0AAAS-AAC4vQAAyD0AALY-AAAsvgAAXL4AACS-AADIPQAARL4AANo-AAB8PgAATL4AAIC7AAAtPwAAQDwAADC9AABEPgAAgDsAAJI-AACgvAAAoLwgADgTQAlIfFABKo8CEAEagAIAAFS-AAAQPQAAMD0AABO_AACAuwAA6D0AAOg9AAC4vQAAML0AAFw-AABMvgAA-L0AAAS-AAAsvgAA4DwAAKA8AADIPQAANz8AABQ-AAABPwAAED0AAFC9AAC4vQAAEL0AAIi9AABQvQAAyD0AAHA9AADYvQAA2D0AAKA8AAD4PQAAiD0AAIA7AADIPQAAUL0AADw-AACoPQAAmr4AAAQ-AAAQPQAAcD0AAOg9AACYvQAAmL0AAOg9AAB_vwAAHL4AAKi9AACAOwAAUD0AAJi9AABAvAAAiD0AAFw-AACYPQAAED0AAOA8AAAQvQAAdD4AADA9AAAQvQAAUL0AAAw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=cfDI8gN4U9A","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8155473614937073402"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"9129082624207416770":{"videoId":"9129082624207416770","docid":"34-2-14-Z0AB8D528743AA6B3","description":"Join us as we try to discover and explore the world of computers. This Magic Math activity would not be possible without my late Math and Computer Mentor. Renee Diaz Lansangan (November 06, 1965...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"3","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Computer Math Series ft. Magic Math [Episode 1]","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=GTeVqAK4zDw\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTOTEyOTA4MjYyNDIwNzQxNjc3MFoTOTEyOTA4MjYyNDIwNzQxNjc3MGqvDRIBMBgAIkUaMQAKKmhoZGt6YmJpYWFla3Vjc2NoaFVDTWpzTlpycW9WeVNRM2ptV2l5RXU0ZxICABIqEMIPDxoPPxOPBIIEJAGABCsqiwEQARp4gfb7-_v7BQDx-AIIAwT-AQQAAAL5__4A7gT8-QUAAAAE-wEFAAAAAP4H9Af8AAAAAQT8A_3-AQD3BgP7AwAAAAgPAf8DAAAACQ4DAP4BAAD_9gQIBP8AAAwNDfcAAAAAAwz5_f__AAALCwnzAAAAAAEEBv7_AAAAIAAtWZHiOzgTQAlITlACKnMQABpg9xcAHSAVDuIDEvHkAdbz_f0V9ADvCQAGCwAP_PfyFgL_1yAA_w_cE-vUAAAAFAINBiAA1joR7twiCwYV4PoI8g1_9SD66_4E1tYf9dj6IR0K7vzxABP09BcO-fgcFQ8SIAAt5g2HOzgTQAlIb1ACKq8GEAwaoAYAAOhBAACAQQAAeEIAAEDAAABIQgAAQEIAAIhBAACoQQAA2sIAAGDCAADoQQAACEIAAKDBAACAwQAAnkIAANhBAAAYQgAAIMIAAADBAACAPwAAuEEAAFDBAAAAwAAAwkIAABRCAABowgAAOMIAAKjCAAAgQgAA-EEAAOjBAADoQQAADMIAACDBAAA4QgAAUEIAAHDBAADMQgAAyMEAAIDAAAB4wgAAkEEAABhCAAAkwgAA4MEAAIDBAACQQQAAoEEAAFBCAACAwQAAsMEAAFDBAAAkwgAAhkIAAKDAAADgQAAA0sIAAMBBAAC4wQAAEEEAADRCAAAYQgAA2MEAAAjCAABYQgAATMIAAGDBAAAAwgAAIMEAAEBBAABwQQAAmEEAAMDAAACQwQAAUMIAAIrCAAAAwgAAmEEAAHjCAABgwQAAIMIAADBCAACAPwAA2MEAAIA_AABUQgAAUMIAAEBCAACoQQAABEIAANhBAAAAwQAATMIAALjBAACQwQAA0MIAAIDCAABoQgAAYEIAAKBAAAAAwQAA2MEAACBBAADYwQAAIMIAAPhBAAAAQQAAdEIAAOBBAAAMQgAAQMEAACDBAAAIwgAAAAAAADxCAABAQAAANEIAAJjBAAAAQQAAmsIAANhBAADgwQAAQEAAAGTCAAAwQQAABMIAACBBAACIwgAA6EEAAOjBAAAMwgAA0MEAAKBAAABMQgAAmMEAAFhCAABgQQAA8MEAAIbCAABwwQAADEIAALhBAABAwQAAGEIAAGBCAADMQgAADMIAAOBBAADIwQAAoEEAACTCAAAQwQAANMIAACDCAAAcQgAA8MEAAGjCAACQQQAAsMEAAEBCAADgwQAANEIAABBBAABAwAAAAEEAAKjBAAAAwAAAAEEAAEjCAABEwgAAqEEAAIDBAAAAQAAAgMEAABBCAAAIwgAAgMAAAITCAAB8QgAA6EEAAGDCAAA4wgAAUMIAAJhBAACwQQAAjMIAAJjBAACIQQAAbMIAAFDBAACAPwAAIMIAAAAAAAAcwgAANMIAAMhBAABwQQAAmkIAAERCAAAAQiAAOBNACUh1UAEqjwIQABqAAgAAXL4AAEy-AABcPgAAED0AALg9AACiPgAAkr4AAB-_AACivgAABL4AABC9AABsvgAAUL0AAFQ-AAAwvQAANL4AAI4-AABwvQAAgDsAAJI-AAB_PwAALD4AAJY-AABEPgAAmD0AAHy-AACIPQAAgLsAAAQ-AACoPQAAdD4AAKY-AAA0PgAAMD0AABw-AABUvgAAHD4AAFy-AACSvgAAML0AAEy-AAB0vgAAXD4AACS-AAB8vgAAmL0AAFw-AABQvQAABL4AACS-AACGPgAAZL4AAIC7AAA8PgAAoDwAADC9AABnPwAArj4AACQ-AADgvAAAmL0AAIY-AAAEPgAAuL0gADgTQAlIfFABKo8CEAEagAIAAI6-AABsPgAAmL0AACW_AAD4vQAAiL0AALg9AADIvQAALD4AAI4-AAC4vQAAcD0AABA9AADYvQAAuD0AAEC8AABwvQAAGz8AAIA7AAAFPwAAML0AALi9AACYvQAAyL0AAOC8AABQPQAADD4AABQ-AAA0vgAAQDwAAOC8AAAQPQAAFD4AAKC8AADgPAAAgDsAAOC8AACOPgAABL4AANg9AADYPQAAPL4AAEA8AABwvQAAMD0AACy-AAB_vwAAMD0AAEy-AACAOwAAiD0AAJi9AABAvAAAmD0AAFA9AAAEPgAAcL0AADC9AADgPAAAgDsAAIA7AADovQAAgLsAACw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=GTeVqAK4zDw","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9129082624207416770"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"15344799637705692655":{"videoId":"15344799637705692655","docid":"34-9-13-Z0240B4208A9A7078","description":"Hi, In this video, I am going to discuss topics from computer science, mathematics and programming. Kindly subscribe for more videos.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"5","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Math| Computer Science | Programming for Computer Science topics","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VHR2rciQI4c\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTUzNDQ3OTk2Mzc3MDU2OTI2NTVaFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1aq0NEgEwGAAiQxowAAopaGhiYmx6cW51cHlmamh6aGhVQ0J2enBObnBoZmlSQXAtUXpoRnE5VXcSAgARKg_CDw8aDz8TbIIEJAGABCsqiwEQARp4gf8JAvX-AwDy-_sA_wP_AQ_z-gH3AP8A7gnxAAQAAAD6_QD__wAAAAr9-PwDAAAA-A3-B_L_AQD7__wBAwAAAAUD-PD_AAAAAgv3Bv4BAAD4AfwBA_8AABIKCAH_AAAA8AQE_P7_AAAIB_bwAQAAAAwGCPoAAAAAIAAt6L3ZOzgTQAlITlACKnMQABpgTRAAGgQLzAAGT-8JzfcDJe895ffcCf8XPQD9J-jJGwr-uA8uABnpHfWvAAAAASvjCyMA7Wg10vvx6Q4p6Pgl_FR_HfkPBSQP8sD3E_Ui8TgMFhv0AEnlAQ8B25xMFjwTIAAtyxYsOzgTQAlIb1ACKq8GEAwaoAYAAPBBAACAvwAAOEIAAJBBAAAkwgAA8EEAAAhCAACYwQAAiMIAAEzCAACmQgAAuMEAAAjCAAA8wgAAqEEAADzCAACQQgAAEEIAAILCAAAAwAAAdEIAACBBAAAQQQAA2EEAANBBAABwwQAAgMIAAMjBAAA4QgAAyEEAAEhCAACkQgAAgMAAAODBAADIwQAAUEEAAMjBAAD-QgAAuMEAAKDBAACgwQAA6MEAAPhBAAAAQgAA4MAAADDCAACQQQAAAMIAAAxCAAAUwgAAgL8AAMBAAAAAwgAAAMEAAIBBAADgwAAAXMIAAKLCAABAwAAAEMEAAFBBAAAUQgAAkEEAAJTCAAAQQgAAOMIAAABCAACAQAAAEMIAAMBBAABoQgAAbEIAABDCAACowQAAoEEAAIrCAACIwQAAMEEAAIJCAACgwAAA6MEAAARCAABQQQAAAMAAAOjBAACEQgAAxEIAAIDAAADoQQAAQEAAALjBAACaQgAAGMIAAJDCAAAAQAAANMIAAFBBAABkQgAAYMIAAAjCAADgwQAAuMEAAADBAADIwQAA4MAAAMBAAADAQAAAEEEAAIhBAAAgwQAA2EEAAEDBAAAAQgAAuMEAAAhCAACgwQAAlEIAAODBAABwQQAAbMIAADDBAAAAwgAAdMIAADTCAADgQQAAUEEAAJDBAAAAAAAA4MEAAMjBAAAkQgAARMIAAKjCAAAwQQAAwEEAAIhCAABQQgAAEMIAAAAAAADwwQAAAMEAAJRCAACiwgAAkEEAAMhBAAAAQAAAEMEAAI5CAAC4QQAAEMEAABhCAADAwAAAOMIAAIDBAACgwAAAlMIAACDCAADYwQAAqEEAANhBAADQwQAAIEEAAKDBAACoQQAAJMIAABTCAABgQQAADEIAAABBAADgQAAAJMIAAEDBAADQwQAAgMEAADRCAAAsQgAAmsIAABDCAADgQAAAIEIAANDBAAAQwgAARMIAABjCAADwQQAAJMIAADTCAAD-QgAAEMIAAFBBAACmwgAApsIAAAxCAAC4QQAAsMEAABRCAAAQQgAAcMIAAMDAAAAgQSAAOBNACUh1UAEqjwIQABqAAgAA2L0AAGS-AAAkPgAAuD0AADC9AABsPgAALL4AANq-AABEvgAA-D0AANi9AACKvgAA-L0AAIY-AABAPAAA2L0AALY-AAD4vQAAbD4AAJ4-AAB_PwAAcD0AAGQ-AABkPgAAqL0AABS-AACIvQAAEL0AAEA8AADoPQAA-D0AAMg9AACYPQAANL4AAFQ-AAAEvgAAmD0AAPi9AACKvgAA2D0AADS-AAAMvgAAdD4AANi9AAAUvgAAMD0AABw-AADYvQAANL4AACy-AACgvAAAjr4AAIY-AACIPQAAoDwAAIA7AAA9PwAAgDsAAKA8AABwPQAAUL0AAJI-AAAQPQAAHD4gADgTQAlIfFABKo8CEAEagAIAAMi9AAAwPQAA2L0AABW_AAAUvgAAgDsAAJg9AABAvAAAoDwAAJo-AACovQAAiL0AAOC8AADIvQAA6D0AAOC8AABAPAAADz8AAMg9AAABPwAAqD0AANg9AAAwvQAAQLwAAJi9AABAPAAA2D0AAMg9AAB0vgAA-D0AAFA9AACIPQAAPD4AAMg9AAAQPQAAqL0AAKg9AABcPgAAbL4AAHQ-AAA0PgAAMD0AAOA8AACAOwAAoLwAABC9AAB_vwAAuD0AABC9AADovQAAiL0AANi9AACgPAAA2D0AAHw-AAAkPgAAgDsAAHC9AAAQvQAAED0AAFC9AABQPQAA6L0AABw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=VHR2rciQI4c","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15344799637705692655"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"3229559192749289380":{"videoId":"3229559192749289380","docid":"34-2-16-Z2E8C362C89335AE9","description":"This video covers how computers understand numbers as covered by the Network+ exam. This includes binary to decimal conversions. Network+ (N10-006) Training Videos (28 of 52) Visit...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"6","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"28 - Computer Math","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jf8vIav8fGE\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTMzIyOTU1OTE5Mjc0OTI4OTM4MFoTMzIyOTU1OTE5Mjc0OTI4OTM4MGqHFxIBMBgAIkQaMAAKKWhoaGtxaHNwa2phaXZ3amhoVUNFSnk3YktzTUpxeWJfejc1VjFmQXNnEgIAESoQwg8PGg8_E7oCggQkAYAEKyqLARABGniB9vv7-_sFAPf1Dwf7Bv4BBQLz9vf__wD5_f4DBQL_APr49wECAAAADQj0_v0AAAD6BvsG-_4AAO_-AvwDAAAADQr5BAMAAAAPEPr5_gEAAPb__AwE_wAAEQkIAf8AAAD7C_gC_gAAABIS_PkBAAAA_P0D_QAAAAAgAC1ZkeI7OBNACUhOUAIqhAIQABrwAXf7EgHOFA7_CAXuALTx1QCB7Rz_Qyz_ALb-AADDA-QA1g3nAOrjAQDjIiQB0w4jAA_h0wAa5f0AIPQE_yr7BQAU9AwAJsH2ATPk8ADl9NgA__43_xHgGgAfBhMBGP8G_jIeKfrc9-YA9_TfBRLGGAAjHR4EA_b-BQHwEP_fGxMA-e7__hHs_AgIE-X-7hM0Aerx6vzxEPkD6hUQAiD96ALyBgIEAxfnBTYN_goN-gf_3g75AxAB4QHsDw37AxL7-xAa-Qb98_H6BvUC-RHS_PULA_78_-j7-QHx8wv-0An36fsC99sdDfv43_0PCu77ByAALUFaJTs4E0AJSGFQAirPBxAAGsAHL_3rvgpiBT3d1P47qFTJvJjgFD0n3Gu9MgDUvWEmID1Cpds8zNJOPejoJzyT5X-8mYCnvmX70Dyf-hE9FJRCPkZFHL1z6AC82UNLvkOSdjspf4K9FAdQvpN2fjyKmh69Hq92PX27Gz0OeKq8tWsCPsSTXTugWKO7b4sIvUNHB7oj2Bi9vlKxvOGLArx9Qcu8BcP5PTGLWr0LiB89IOsJPsVt2byqmTW85m0WvXIP0zwJh4O7fc-ovfbaBzz0QBi8hNjZPdT1nzx3nTc6iQMtvQdAYb2elv67wIkyvL0IiTzBcA28ZvdEvcjrwbw7PF-7jz-MPRBl3jz4x5Y8Mn2qvfeJiD1xfGW7uWa3PXMTsD2_G4E8A3NZvQ3mmj0vYy-8OSxovNRPDj2AURu8uYnaPQnrFT2uC4U721d5veOfIz2og8a81V-KPWswiD1v4po8_R92PSL4RD3L8nW8P30aPbzG0zy4QII7xEMTvT8Y3Txlm-W8pCyNPZ0cFbx5bJE7ij6fPfy4BzyAbEi8hJ6dPUPyhL2Zt2o8D93iPHV0HL4YYvq5YBV5PY480DxBryo7EiIvPeT-Pr06eZG7hR52vdCzGb3IaT68PZFxPfhhLr355oq7QzSfvAoDAD0JFSC7anM1O695Fb0g9dO7oMz1PHDKwTxvuI-78Z5jvV12jr2J1ca5YhunPNNwBT3gFkm6gKxRPYtWCb36Zva68WhjPfZuYr3Btym64gA_vcndjLzDqeY6WIX2u9JXmz2JCve3R0-2PRbSKzw0zoc4zaHWPHhSlTw8ypc4vyEHuuQ-xTtO1gw6FdeCPYlNWr0565M4avYju--dp71iSNy4HZkCvRLTb71JuSm4bsXZPArkyLzf5QI6ax7BvcSuor1Z-CI4LT0ePDlJTrwh6HO48pUgPfDodb3Xd_e3PM34vMY377xmnN84oeWvvFRNFb21GDG4yC9yPJeonj2EkAe4kgO2PC98jrtnXYq4EOOaPCa6-DyFY9A4jAiAPUtM4TzSpBw4csJkPd__Aj1sDQw4rz2YvBf0Hr79iqq4YmROPXEhKj2aHBq4IvsAvsZfJD0XmGU4mko6PYFWQ7vfTpE4ziULPLtlYryBvJm2gRWBvVBCH72HiR04L6YZPng7zDz85hu5voPfvHgJDr15e3i4K0wfPZ0kor2_a-U3JMRLvI6i2DzA7au3JtyQvBYwMb5BoFq5yvRwPSLhKz7xy4o4UqSxvIQiZz2d6RO4pLAmvVQG6bwgfh644m1vPDVu-zzOSNc3IAA4E0AJSG1QASpzEAAaYCcMADP5O_EC-TIKBd_wCvkKHewH5AcAAwwAFPziBQEg6sQNDgAh1iXivwAAABEOAus5APBb8d7RHfoVBuPl-QRIf_chE_PwBfDpBycDygYfCwE3GgAy7rYZLgzGLTUWICAALZViSTs4E0AJSG9QAiqvBhAMGqAGAADIQQAAQEAAANBBAAAkwgAAqEEAAKDBAADAQQAAAEEAAFTCAABAQgAAAMAAAMDAAACqwgAAIMIAAIBCAADgwQAAAMAAANDBAAAIwgAAiMEAAJBBAACKwgAAwEEAAHBBAAAsQgAAOEIAAADAAACawgAAxEIAAOhBAADAwAAAyEEAAL7CAACAvwAAWMIAACDBAAAQQQAAnEIAAKjBAAC4wQAAMEIAAAhCAAB4QgAAUEIAADBBAACgwAAACMIAAADCAAB8QgAAAEEAAKDAAABQQQAAKEIAAMhBAAAMQgAAyEEAAMDBAAAwQQAA-EEAAEBBAACgQQAAYMEAAMDBAABUwgAAwEAAAKBAAAA4QgAAosIAAAjCAADgwAAAyEEAAMJCAABMwgAAqEIAAJDBAABQwgAAQMEAAIDAAABAwAAAJMIAAJzCAACQwQAAAMAAAOBAAADIQQAAQEEAACBBAAAgQQAAgMAAALDBAAAowgAAUEIAAKDAAACgwAAAAEAAAKDCAAAQQQAAYEEAABRCAADwwQAAcEEAAKBAAACCQgAAssIAAGDCAADQQQAAgMAAAPhBAABAwAAADEIAAKBBAABUwgAAYMIAABzCAAA0QgAAcMIAACjCAACMwgAAMMEAADzCAABQQQAAMMEAAKBAAAAQwgAAwEEAAKRCAAAgwQAAoMIAAADAAAC2wgAAQMAAALBBAABAwQAAjkIAAAhCAAAAQQAA-MEAAJhBAAA4wgAAOMIAAAxCAAAUQgAANEIAANDBAACAQQAA8EEAALjBAAD4QQAAZMIAALjBAACYQQAATEIAAEDAAACcwgAAPEIAAEhCAAAMwgAAmMIAAFhCAABoQgAAWMIAACxCAABEwgAAcEEAAEBBAACAwQAAeEIAAIC_AACgQAAAIMEAAIA_AACAwAAA4MAAAFDBAACAPwAAkMEAAABBAABQwQAAaEIAAIJCAAAAwAAAMEIAAPDBAACgwQAAtkIAAJjBAADGwgAAGEIAAODAAAAwwQAAnsIAAABAAADgQAAAEEIAAADCAAAwQQAACMIAAIhBAABowgAAUMIgADgTQAlIdVABKo8CEAAagAIAAIA7AAAEvgAAHD4AANg9AABwPQAAlj4AAI6-AAAXvwAA1r4AAEC8AACIvQAAxr4AADS-AAC2PgAAHD4AAHy-AACyPgAAgDsAAAw-AACqPgAAfz8AABw-AABUPgAAFD4AAHA9AACAOwAAJL4AAAQ-AACovQAAgj4AAI4-AAAwPQAALD4AAAy-AAAwPQAAQDwAABA9AACGvgAA0r4AABA9AAAwvQAADL4AABA9AAAMvgAA2L0AALg9AAA0PgAAiL0AAHy-AACGvgAAUD0AAIq-AACiPgAA2D0AAFC9AAC4PQAAXT8AAHQ-AAA8PgAAUD0AAMi9AACmPgAAFD4AAHC9IAA4E0AJSHxQASqPAhABGoACAAB8vgAATD4AAGy-AAARvwAA6L0AAEC8AAAEPgAA6L0AADQ-AACGPgAAUL0AAEC8AADgvAAAyL0AADA9AACAOwAAqL0AABc_AADgvAAAAz8AAMg9AABAPAAA4LwAAMi9AAC4vQAAcD0AAKg9AAAMPgAAVL4AAOC8AADgPAAAyD0AAJg9AACoPQAAQDwAAAS-AADoPQAAZD4AAGy-AACAOwAAPD4AAKC8AACIPQAA6L0AAFA9AACgPAAAf78AAKC8AABQvQAA2L0AAIC7AACgvAAAML0AABw-AABUPgAAFD4AAOC8AABwvQAAUD0AAOg9AAAwvQAALL4AAIi9AAAcPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=jf8vIav8fGE","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3229559192749289380"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"705144032"},"3689442216083040366":{"videoId":"3689442216083040366","docid":"34-1-12-ZA16C0FB89F273830","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"7","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Math & computer science week","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cD_9ocww6H0\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTMzY4OTQ0MjIxNjA4MzA0MDM2NloTMzY4OTQ0MjIxNjA4MzA0MDM2Nmq1DxIBMBgAIkQaMQAKKmhodGJmZ29xcHpjdnB0aGNoaFVDQ1NFQVM0bEpmcjdlNFIyRWxJdTVDQRICABIqD8IPDxoPPxN4ggQkAYAEKyqLARABGniB_An1AfsFAAv9__wDBAEB-v338_n9_QDuCfEABAAAAAT7AQUAAAAAAwTuAAYAAAD4APUC-_8AAPsA9voDAAAAFQX98fwAAAAGC_r9_gEAAP7_-QAM-wAAEQkIAf8AAAD__fv3_P8AAAEXAfYAAAAABwoC_QAAAAAgAC1gPeE7OBNACUhOUAIqhAIQABrwAX8A9QOyAhH9HwkCAPsE-AEl6xIAG_gIAPUSBgD03g8AxCILAfLyHAAqEAYAyh76ABoK6wA-_BEAEQDt__8Y-QDU9hAAGPQDARrl9gHm__j_7vEH_iIUBQAHAukBBuUfANn2DP8ZJP8BG-sCAwIC6AI3IwABBO8G_xr68ALn9O4E4fQB_u0X8QIaAwf98AcBA_37-QQIGO8AAwwCACLZ_gAB3An_6gH8_gXyFgP_3_0ADePv_ikAFv_3AOYF5vID_e0oFP_uGe8EG_UF9v_y_gUKFAL8Hv32AgcFAgr2-_7wAh7uAQMY-f_uDAUQBPcADyAALfclTTs4E0AJSGFQAipzEAAaYGQCABTSOg3-CD_0ENzV7ybdLPgG5xb_RCX_FRzh-yAd-9ITCAAO7jrdnwAAACEo_OhIAMl_49sO-9gtFhP8L8f_bj0BDBn3GDLYYOLVys8wE-YBDABa4McJy_y_Yw4tFyAALfjVHDs4E0AJSG9QAiqvBhAMGqAGAADAwAAA6MEAAIRCAACQQQAAMEEAAODAAADwQQAAeMIAALDBAAAQwQAAUEIAABBBAAAgwQAARMIAAADCAAD4wQAAAMAAAKDBAAA4wgAAUEIAANhBAABIwgAAksIAAGBCAAAYwgAAWEIAAMjBAABEQgAAsEEAAERCAAAgQQAAWEIAABDBAACgQAAAFMIAAAjCAADgQQAAtkIAAADAAABgwQAAcMEAAFDCAADoQQAAmEEAABTCAACoQQAABEIAAADAAACOQgAANEIAACzCAADgwQAA4EEAAKjBAACmQgAAAMAAAEBBAABwwQAAkEEAAABAAAAcwgAAIEIAAIbCAACoQQAATEIAAOBAAADIwQAAYEEAABTCAAAgwgAAgL8AAERCAACgQAAASEIAABRCAAAAwwAAlsIAANDBAACAwQAAcEEAAJDBAACuQgAAgEEAAOBAAAA4wgAAREIAAPhBAADIQQAADEIAAAhCAAAEwgAAIEIAAEDBAACkwgAAcEEAAJDBAADAQAAAvEIAAGhCAAAQQQAAAMAAAGBCAACAvwAAPMIAAADCAAAUQgAAiMEAAHBBAABQQQAAQEAAALhCAACAQQAAgMAAAJhBAAAAwQAAUEEAAKZCAABIwgAA4MAAANjBAACwwQAAWMIAACjCAACuwgAATEIAABhCAABcwgAAgEAAACDBAABAwgAAaEIAAADBAADKwgAAhEIAAEBBAAAAwQAAYMEAAHDBAACgQAAApsIAAIjBAAC4QQAApsIAAMjBAAAAQgAAgD8AAETCAAAIQgAAWEIAACBBAABgwgAAJMIAAIDBAAAowgAA2MEAACxCAABwwQAAIMEAAFRCAAAQwQAAxMIAAJBBAAD4wQAAEEIAAHBBAABwwQAAwEAAAABBAADAQAAAQEAAABTCAABAQAAAUMEAALDBAAAAwQAAEEIAAEzCAACUwgAAQMAAADBCAAAkwgAAQEEAACjCAACgQQAAeEIAAAAAAACgQQAAoEIAABDCAAAQwQAAIMIAACDCAABcQgAAwEEAAIBBAADAwAAAAEEAAABAAABUwgAA4EAgADgTQAlIdVABKo8CEAAagAIAALg9AAA0vgAAZD4AAAQ-AACgvAAAXD4AAEy-AAD-vgAAdL4AAJI-AABQvQAAdL4AAKC8AADmPgAAoDwAADS-AAC2PgAAgDsAACw-AADCPgAAfz8AAAQ-AABUPgAAkj4AABC9AAB0vgAAQLwAADC9AADYPQAALD4AAJg9AAAQPQAAFD4AACy-AAAQPQAADL4AAEw-AAAkvgAAmr4AAIC7AAA8vgAABL4AAEQ-AACYvQAAVL4AAKC8AACAOwAAPL4AAEy-AADovQAAuD0AAEy-AABsPgAAuD0AAAS-AACIPQAAaz8AAKA8AAD4PQAADD4AALi9AACePgAAHD4AAEC8IAA4E0AJSHxQASqPAhABGoACAACAuwAAgDsAAPi9AAANvwAA2L0AAIA7AACgPAAAED0AABC9AACuPgAAuL0AALi9AABAPAAA2L0AALg9AACYvQAAcD0AAA8_AAAwvQAA7j4AADA9AADoPQAAqL0AABC9AABQPQAAML0AAEA8AACAuwAAqL0AACQ-AABAvAAAiD0AABQ-AADgPAAAMD0AAIi9AAC4PQAAXD4AADS-AAAkPgAAJD4AAKA8AAAQvQAAUL0AABC9AAAQvQAAf78AACw-AADYvQAAFL4AAFC9AADovQAA2D0AAHA9AAC4PQAA2D0AAKA8AADovQAAcL0AAFA9AABwvQAAMD0AAFC9AADIPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=cD_9ocww6H0","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3689442216083040366"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2509718340"},"13868179006786454393":{"videoId":"13868179006786454393","docid":"34-8-17-Z8304E7EC6775E848","description":"Links: Twitter: / rwl_tutorials Resource Packs : http://resourcepack.net/ocd-resource-... https://minecraft.curseforge.com/proj... My Rig: AMD FX-6300: https://amzn.to/2Rr3PO7 Thermaltake Smart...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"8","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Introduction To Computing - C1L1 - How Computers do math","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-l71VaK1bwo\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTM4NjgxNzkwMDY3ODY0NTQzOTNaFDEzODY4MTc5MDA2Nzg2NDU0MzkzarUPEgEwGAAiRBowAAopaGh2amRvYm1ncXZjbGFwaGhVQ2ZERkNoX21lWVpTdFNIejhkdVpka2cSAgARKhDCDw8aDz8TqASCBCQBgAQrKosBEAEaeIH9Avv5_AQA8fgCCAME_gEGBvgA9___AO4HBgAB_wAA_vjxBfkAAAAMBfsCAgAAAPgN_gfy_wEA_wf89gQAAAAFA_jx_wAAAA0Y-wL-AQAA8vMBAfYCAAENFAkBAAAAAPkF_vj-AAAAEAj_8wEAAAAGAgEAAAAAACAALYjv3js4E0AJSE5QAiqEAhAAGvABbPgN_9nX6QHmFMIB1v_ZAIHtHP8m_9sAsQ4nAsXs4wHlB_QA4fMEAeEHCgC3BCMB8vHiABgOFwAC9-kAKuv5AAEYEQEx6hIADPj5_-nzDwASDiv_HusrAibrGQAK9PkAKQIM_-T29AHvA8gC_wQoAAUWCQA5-QoDAAEO_PIGCAAFHQwDC_kGAw7y9_rX7hsC-w3FCAD84voAGQwE_QHuA9Tm_wEn59n9Ng3-CgEVAPP04QL7GhoABOf5HAEGOgUG0AL7-ADx_gMSMAUCUdzwAur1FgUQ_wYNCxzrABr1BfDaEg4Fzx8OB_0YBvwf9vT_IAAtQVolOzgTQAlIYVACKnMQABpgIfwAVgVDyw4jUg7Nwuz69v0R3AWjFf_8Bf8I8-4EAQnirA3q_xLoKuefAAAA8Dj-ExsADX8Lz9EV3xsTqMYnK0phERUR5xAN7c8FfvP0zSHzCx8uAFyzsAApINJHIxAWIAAtnPwXOzgTQAlIb1ACKq8GEAwaoAYAADhCAABAQAAAYEIAAMhBAAA0QgAAnEIAAKBBAAAgQgAA4EAAACDBAACAQAAA0EEAAJzCAAAAAAAAAAAAAKDAAAAEQgAAoEAAALhBAADgQAAAFEIAAIBCAAB8wgAAdMIAAABCAAAAQQAAgD8AACTCAAAAQAAAPMIAAIA_AACUQgAAMMEAAMDAAACAPwAAsMEAADRCAACIQQAAoEAAAMhBAACAPwAATMIAAOBBAACIQgAAUEEAAIjCAADIwQAAAMEAALjBAADawgAA4MEAAEjCAACMwgAAeEIAADhCAACKwgAAOMIAAADCAAAwQQAAxkIAAJBCAAAMwgAAwMEAABhCAADAQAAAQMIAAIDAAAAgQQAAIMEAAFTCAAAIwgAA-EEAAADCAABwwQAAmMEAAFBBAAA4wgAAIEEAAIxCAABAQQAAZMIAAIRCAACgwgAAAMEAAAhCAADYQQAAgD8AAABCAACAQgAAQEAAAMBBAACQQgAAREIAAAzCAACAQgAAkMEAAOjBAAB0wgAAMEIAADhCAAAgwQAAsMIAAATCAAAAwQAAoMAAAGDBAABwwQAAWEIAAKDAAACQQgAAAMAAAPBBAACgwAAA8MEAAIjBAABgwQAA6EEAAEDCAAB8wgAAJEIAADBBAABAwgAAuEEAAODAAAAcwgAAgMEAAMBBAADWQgAAwEEAABDBAAAgwgAAwEEAAMDAAAAwQgAARMIAAPhBAACwwQAAoMEAAOBAAADYQQAAUMEAANjBAAAwwQAAHEIAAIC_AADAwQAAoMEAAADAAAA0QgAAukIAAMBAAABAwgAAbMIAAPDBAACAPwAAEEEAABDCAADAwQAAUMEAACzCAACgQQAAaEIAANhBAACAvwAAFMIAAIDAAACaQgAA6EEAAGBBAABwQQAAEMIAADBBAAAsQgAAyMEAACBBAACGQgAAVEIAAITCAABIQgAANEIAADhCAABowgAAZMIAAADBAACYQQAAgEEAACBBAABAwAAAoEEAAKjCAAAQwQAAsEIAABhCAAAAQQAAQEEAALjBAABAQAAAuEEAAJjBAAAQQiAAOBNACUh1UAEqjwIQABqAAgAA2L0AAJa-AAB8PgAAmL0AAFA9AACyPgAAXL4AAB2_AACWvgAAML0AAIA7AABMvgAAZL4AAPI-AAAEvgAAVL4AAGQ-AABQvQAABD4AAOo-AAB_PwAAEL0AACw-AAAwPQAA2L0AAHC9AABwPQAAgj4AAKA8AABwPQAAXD4AAJg9AAAwPQAA-L0AAMg9AACAOwAAVD4AANi9AACevgAAiL0AAKg9AABMvgAA-D0AANi9AAAcvgAADL4AAII-AAAcvgAADL4AAHy-AADYvQAATL4AAKY-AACgPAAAXL4AAJg9AAA1PwAAVD4AAIg9AACgPAAAZL4AALY-AADYPQAAND4gADgTQAlIfFABKo8CEAEagAIAAPi9AAAMPgAAXL4AAAO_AAC4vQAALL4AAJg9AAAkvgAAmD0AAFw-AACAOwAAPD4AAFC9AABEvgAAuD0AABA9AADIvQAAAT8AAIi9AAAPPwAAcL0AALg9AABcvgAA6L0AACy-AACIvQAA2D0AADA9AACqvgAAyD0AAAw-AAD4PQAA4DwAAGw-AAAsPgAAgLsAADA9AACSPgAApr4AANg9AAAkPgAAoDwAAPi9AAAQPQAA6L0AAHC9AAB_vwAA2L0AANi9AACqvgAAMD0AAIA7AACIPQAAUD0AAGw-AAAUPgAAML0AAPi9AABQvQAAiD0AAFy-AADoPQAAmL0AAFA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=-l71VaK1bwo","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13868179006786454393"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"3392639029"},"17385638116829729049":{"videoId":"17385638116829729049","docid":"34-0-9-Z30E1EB392A077503","description":"As computers are used more and more to confirm proofs, is it time to take computer science's contribution to mathematics further? Dr Thorsten Altenkirch discusses Type Theory vs Set Theory.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"9","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Computer Science Mathematics (Type Theory) - Computerphile","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qT8NyyRgLDQ\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTczODU2MzgxMTY4Mjk3MjkwNDlaFDE3Mzg1NjM4MTE2ODI5NzI5MDQ5apMXEgEwGAAiRRoxAAoqaGh3a3ZobWxudGxrbnhkY2hoVUM5LXktNmNzdTVXR20yOUk3Sml3cG5BEgIAEioQwg8PGg8_E7sHggQkAYAEKyqLARABGniB-wv-AP8BAPH9_A39Bf4BE_UHBvcAAADtBPz4BQAAAPj2BAAMAAAABgz_BQQAAAD7AgQE9f4BAAQC7QYCAAAADAn6-QAAAAAOGfoC_gEAAP3_AgYE_wAAHQUHCQAAAADy-f_7-___AAUH_v4AAAAADQ33_QAAAAAgAC0IYdU7OBNACUhOUAIqhAIQABrwAV_3A_-B7_35Hu7gAUwj5gC19fMAWvH6ANAK6gDRA_sBM_rpAdQ0Av8jGOEAA_P1_8ra7v_Z4xUABwUBACsS_AETA_gAItj1Afv7AgHa9AX-uSrqALskBP_iBukAHOrj_xHrJP0b_fUE88XmARn7DwQfBPAF7dcHAA3_-wTaBxED-PvhABn8CgjxFQX7s_8ZBxL_7Qj_GBP_HBwCAQ4f4_8lEvz-GebmBRX-9QILBgH6LyX5_BAB4QESHP73-Qr7-xDhBQLx2g7zPPb9_CftBgUh9gL45gz6DvHx__T_7Af02v_69QMM8gj-AOsH_9_4CiAALTKKJDs4E0AJSGFQAirPBxAAGsAHFysKvyM_jrU81Yg7nGrtPX5vdLtJCQa904RtO4qCjbtepCs8H4E_vE0s1TyNUte70nKQvv2ufj1cEQ26xVWFPlQwb72bfyq83PQXvn7UNT2qYg08T3iRvmcVTD2p5ou6dtpgO_bRKT1yKI28UyQdPBsNQL296Ke7-n2PPe4I57zMeee79u8aPeia7jxSnEO9hdqlvNk4B73gVrC87a-IPYPuHL0u2mu7Ib_IvMX_ALsh3Zk8a26aO0n4Y7rvkQk89z8QPhegbbyfSfI7vdS-PQHPh7x59Ba7l1fOvaCpMrwQ_Lm8s_wqPRpROr1naNU7iIdNu35MEL3_pkE8DMiDvf8Zrzxe8XU7J5J-PXz5iD3gfI887-SzvfeRmz3N_bq8iFfjvA9Hl7xnLBi8HzxkPT7jRz3QAdE7AGArPI_QhbwNNcq8BKzVPDOimTz080s8Af05vfMjmT1lWYu8i4ntvRpyJz21oBy72OVFPd9uiT3GHYq86oKAvVWcn71zN4C61SPNPYK8aLy2WJs8pBqGPWF8R72up4y7i0ievJrdJLyx1wG8IrCYPRbGcTwju3e8E8oMPZgkhbyYQrG7MXZHvTq-jL2wfTe8A8EtPey8cr2XuEG4HwsWvdVeH73tuUw8G6dcPWqYSz3iUpk7v682vNwn7DxAack78uQfvbg2t7tRyGe7ucMmPSDPTr1T1JW79ahOvaEnijzixSm7iCSEPaUZtr3cmS67SKTtPH-NP70SpE670PFRPO_LtD2uGYM4wxEEPuaYRz0iPdA3U-oCPrT43rxgHL-5rYQTPQxfOrzFCYY6XY8dPSbVCDvcOM83VvcDvcvZOzwEESe5EqiJPdGWTrw7ueu5vJQ6PYo_yjwFIOE3PkKdveiqVL2Wh065umVqu9fdvLzuAcq4ZyzavK0kSD3PDDC3vNRDvUFYFbu5SOa3ULVMPLiUszzLquS42kJmPQFHhz0T0Qo2wrS5vEyKn70GYHY4brzgvFfLgjyjrjo4LA63vX8mTD1KrMQ4LN4evY6yPr3_xMk0CVPUPeheELxfeuY2amqZPeYUTr1URVk4c6PjvIJ2Ar11sT438tA3PVxCGT15co44AXuWPZbz_zvmDeU3fLVDPYJv2r028Ja4DZ6jPU7I2Lx2H7-4C7nOOpK8qbw1D2S3O_tqPdH5nbsyPG84JMRLvI6i2DzA7au3DRJHPHR89L1WWFm4Iv_sPTUpBT7zflu47AGOPPbnxzsbrPO4NXoVvSthNzwusg833DmDvXCCCj0toMM3IAA4E0AJSG1QASpzEAAaYCoEABIRJQkPEkXyBunm6voWMPkE0wQA9S4AEQza9ggv_cYcBQAA3gjiwQAAAAP_8gQYAN5PC8npEQv1LvjlHxQkfw8N8vkcDgDQCvz9AfouFfY3BAAg_cY3Hfa1MhwrByAALSxAUjs4E0AJSG9QAiqvBhAMGqAGAACQwQAAuMEAAFBBAAAwwgAA6MEAAHBBAADYQQAAIMIAANjCAACqQgAAbEIAAKBBAABwwQAAYEEAAOBBAAAUwgAA8MEAAIDBAAAEQgAA-MIAAABAAAAMwgAAUEEAAEBBAACYQgAAiEEAACjCAAAAwgAAdEIAAKxCAACQQQAA4EAAAKjBAABsQgAAAMAAAATCAAAQwQAAeEIAADRCAACIQQAAoEEAANBBAAAYQgAAPEIAAIBAAACgQQAAQEEAAAzCAAAkQgAAgMEAACjCAAC4QQAAOMIAACBBAAAcwgAAqsIAAKBAAAAQQQAAiEEAAJhBAADAQQAAoEEAALDBAABgQQAA8EEAAPDBAAAUQgAAbMIAAIBAAAAMwgAAgMAAADRCAACCwgAAlkIAAABBAABQQQAAoMAAAARCAACgQAAA2EEAANzCAACAQgAA4EAAAFhCAABQQgAAOEIAAHzCAAAcQgAAQEIAABhCAAAswgAAoEIAAMDAAAAQQgAAAMAAAADCAACoQQAALEIAAIBAAAAMwgAAUMEAABxCAAAkQgAAmMEAANjBAAAAQQAAIEEAADRCAABswgAAQEIAAMDAAAAMwgAAQEAAAKjBAACsQgAAUEIAAMjBAAAgwQAAoEEAAFTCAACAwQAAYMEAAIC_AACQwgAAqEEAAOJCAACIQQAAQMEAACjCAAAMwgAADMIAAMDAAADQwQAAkEIAAJhBAAAwwgAAwEAAAFjCAAAwwgAAbMIAAPBBAAAYQgAAmEEAAGBCAAAgQgAAcMEAACBBAABAQAAAgMAAACBBAABAQgAAjkIAANBBAAAgwQAAmMEAALBBAABgQQAAUMIAAEBAAABAQAAAPMIAAIC_AAAMwgAAoMAAAOBBAADgwQAALEIAAPDBAABIQgAAQMEAANDBAABQwgAAhkIAAILCAADgwQAABEIAAJzCAAAAwgAA0EEAAKBCAAAQwQAAVMIAACDCAABwQQAATEIAAIBAAABAwAAAkEIAAMBAAAAAAAAAwMAAAAhCAAAwwQAAAEAAACjCAADYwQAAGMIAAADAAACWwgAAlMIgADgTQAlIdVABKo8CEAAagAIAALi9AACyvgAAiD0AAGQ-AABAPAAAvj4AAPi9AAA3vwAABb8AAPg9AACAOwAAML0AABy-AAARPwAAQDwAANK-AADePgAA2L0AAGw-AAD-PgAAZT8AACy-AADuPgAAyD0AADA9AAAwvQAA4DwAAAQ-AADIPQAABD4AAI4-AAAwvQAAiL0AAPg9AACuPgAAmL0AAOA8AACKvgAAxr4AAKC8AABkvgAAED0AAGw-AACOvgAAHL4AAFS-AAAkPgAAZL4AAHS-AAAZvwAAjr4AAIq-AACYPQAAgDsAAEQ-AACAuwAAfz8AAEQ-AAAMPgAAcL0AAKA8AAC4PQAAmD0AABQ-IAA4E0AJSHxQASqPAhABGoACAABQvQAAoDwAABS-AAAVvwAA-L0AAIC7AADYPQAANL4AAMi9AACGPgAAUL0AAAy-AADgPAAAdL4AABQ-AABAvAAA6D0AADs_AADYPQAAAz8AAFA9AAC4PQAA4LwAABC9AABwvQAABL4AAIg9AABQPQAAXL4AAFA9AADIPQAAMD0AAFA9AADgvAAALD4AAFC9AACAOwAARD4AALK-AAC4PQAA2D0AAEw-AACgvAAAcL0AAHC9AADIPQAAf78AAES-AADYvQAAlr4AAIg9AABQvQAA4LwAAHA9AABsPgAA2D0AAIA7AAAUPgAAqL0AAHA9AACAuwAAZD4AADA9AAC4vSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=qT8NyyRgLDQ","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17385638116829729049"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1025646871"},"18085395393528167352":{"videoId":"18085395393528167352","docid":"34-2-12-ZA82F0D8F45B4EF49","description":"Let's talk a little bit about Shift, Compare, ADD and Negate. For similar content take a look here: • Basic Computer Math Functions part 1 of 2 Books and other products for networkers Packet...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"10","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Basic Computer Math Functions part 1 of 2","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ZyKfKME5W_c\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTgwODUzOTUzOTM1MjgxNjczNTJaFDE4MDg1Mzk1MzkzNTI4MTY3MzUyaogXEgEwGAAiRRoxAAoqaGhuYXNxYXFtYnJldmpvZGhoVUNvV09rLW81VnVZbmJNdXloallPU0VREgIAEioQwg8PGg8_E70GggQkAYAEKyqLARABGniB9_78AP4DAPP5AgD6AwABFQLy-vUCAQDkAff_CfwCAO4ABf8NAAAA_gf0B_wAAAD3APUC-_8AAAT5BP4DAAAACwYD9gEAAAADCwL6_gEAAOz_AgkDAAAAEgkIAf8AAAAACAL3AwAAABEQ9QUBAAAAEP0JBAAAAAAgAC0AU9s7OBNACUhOUAIqhAIQABrwAVD25v_6-Q8C3yHdAN8M0ACBBQv_CgbP_9cBCwDL-dYA8hT5AOLmKP4TES8AzBMGABLh6f82DA0ADQf6_xoD_QEMERwAHN_3ARsKCQDl__j_7Psa_RsJCv8L7hkAFBTmAP7tEP_08eD_9QPoAQn3Gf_yFgwCJd33A_QL_gMCFAsCAhwA_fEC_wPwAAYD6gsNBgoN5P8KBPb7_QLpAe4W9Qf05f3_HPb1AB_3Efv0BP37C_QE_v0J_v4R-gQJEAn9_O7y8wIJ4BAAAf_59hv9A_776hEB_en2B_L39v8S6Pv7_A4TAeId_gPmAf4GDPII9yAALW4nSDs4E0AJSGFQAirPBxAAGsAHRSz6vu1kEL1UQYC9oBRyvdu6AD3z7v684OLXvHi0EDzYkwa70v_SPWkqdT1UlAW8l8eqvhPH7Du-EZ28yjI0PhH3vTyZEiS9ehcvvgg8MD0pn9S8T3iRvmcVTD2p5ou6Oz1KPEEYLjwYYzs8f0tAPqdKyjuBuIa8IKjouh11ETwz3AC9Vj_AvBf4Rb07eYm75PuNPWfc77zjXeQ65gNCPvY9T71HAQG7b2e6vHjCIT1iLPQ7yj1zvaT1wbyLS7o8tYwkPj--6bxka4c8F8u-vHqysLtjwiC8KQ9hvUA1-zv3dsu7WPMtvHURNT164U68nxHXO_m1er32Tp67zFBLvVjLvT0dBs48Puq_Pei0-Dx2Co-3GD5ivXa3fD0W3ys89vORvSv-irw64hg6XEmhPNhr1Tzi8s48yG1qu8yRmTuuIoo7dknmPF2ABz2Cy5268SoMPHNuTj0gNPG7ssuBPGoEgT3JDIq8JwetvRdWYLz0-368U4cHvL9l7r0lp0A8vocLPp9pdLt_kJs8CYSAO_N957xeQ5U8v8cqPF2Xq7wZMmi8J7ZnPYjO27tKiKi8ruT0PHS_froav_Q7n_irvc3K9jwMnY28NSllPaGBuL1qUA87ajNKu332Mj3d37U5ZCe0OydTIju-gW68H43YOyt0GDv2uyg73MlxOxtutrwnk6o7ESuNPVdCHbmL1hc8_3UuPSrXpbwdPR87GLIKPmWew7sY0YI4RmZJPakqmbxvpZE7hxaNueliEz6OIVq5TQpYPehJvryk7lo6HHoLPeLGEjxNLyi62m28PEaPxDxc9Zk4Pz8EvHEoEbyqCjK6VvcDvcvZOzwEESe5aNlJPIVnV7vKmRo7luI0PfOKzLx3g465hNOnPHsw6bx4sga45-u4vdgtIr0XuB85vZjcPCrxSj0CryI4lNHQur0tgr3Q6AA4CgahPN7fRbzey_Q5iFAAva7C3ru0A1q4mLRSOz9wxb33LmA5Kdt2vOfssz0nn4A3o4bAPJRQVTxCeFK48Vh9PHQXFz3FMOG3UkjPuz48q71PsuQ4NXauPOaszz31DNg2yXl6veKBFjxZzWU4YUz-u9SYtb0ztII2Tv1NvGsLhL1J47O3XUrCvBHpwr3eR504FU4XPQEj3Ls5Q5m4sp8FPbpJMT35ShA4hr0aPVCmFr11qlq3qv2MvFLkGr0lG_43DRJHPHR89L1WWFm4-WTlPcjZmj21QNY2YJqYPFua-z2Erf24seFpvbYqjTuLvMK3uEuRvH7vJbxpk5I3IAA4E0AJSG1QASpzEAAaYDACADj_JfQBGEABBrvrAOrtLOkL4QP_9Av_CgAPDAn36I8Z-QAn1RX5sQAAABEH8g0jAAVmHdHlGtcwD8nTAOQffxQn_eULC-_JCkkS5REb5-YDFgAq6KUQNhDGWholGCAALcVjMTs4E0AJSG9QAiqvBhAMGqAGAADwQQAA8MEAAOhBAACgQQAAkEEAALhBAAAIQgAANMIAALjBAAAQwgAAAMAAADBCAAAAAAAAgL8AADBBAAAcwgAAqEEAABDBAAAQwQAAcMIAAIA_AADAwAAAEMEAAEDAAACoQQAAUEIAAIjBAAAcwgAATEIAAGBCAACIwQAAeEIAACDBAACIQQAAgEEAALjBAABAQAAAbEIAALBBAAAYwgAAkkIAAPhBAACeQgAAkEEAACBBAADowQAABEIAAGDBAABIQgAAQEAAAPDBAADQwQAAQMAAAMBAAAAoQgAAwEAAACzCAACwQQAAIEEAAChCAACIQQAAwMEAAAAAAABcwgAAEMEAAJzCAAAwQQAAuMIAAIDAAAAgwQAA4EEAAJhCAAAswgAAoMAAAOBAAACcwgAAZMIAACzCAAAAQAAAHEIAACTCAACAQAAAAMAAAMDBAABgQQAABEIAAIjBAAC6QgAATEIAACjCAAC4QQAAcEIAAIBAAAAIwgAAEEIAADjCAACgwQAAyEEAAJZCAABgwQAAcMIAAJ5CAAAwQgAAHMIAABDBAADQQQAA-MEAAChCAABcwgAAnkIAAKBBAADgwQAAZEIAAEBBAACIQQAAJEIAAFhCAABUwgAAFMIAAAjCAACgQAAAiMEAACzCAABUwgAAEEIAAFDCAAAgQQAALMIAAHTCAABQwgAAkEEAAJBBAABMwgAAXEIAAEBCAAAAwgAABMIAAIA_AABAwgAAoMIAAAxCAACgwAAAnEIAAKDBAAAMQgAAAEAAANjBAACoQQAAMEIAAHBBAAAcwgAAwEEAABhCAABgwQAAGMIAAIBBAACQwQAAEMIAAGTCAAAgQQAA7sIAAK5CAACowQAA0EEAAODBAADAQQAAYEEAAIRCAACgQAAACEIAACzCAACoQQAAoEAAAPDBAACMwgAAAEEAAEhCAACgwAAA4MAAAFxCAAB8wgAAgMIAAMbCAADAQQAA8EEAAFDCAAAAwgAA0EEAACDCAAAcQgAAoMIAADDBAACAwQAAyMEAAPBBAABAQgAAJEIAAPBBAACIwgAASMIgADgTQAlIdVABKo8CEAAagAIAAMi9AAC2vgAAqD0AAOA8AABcPgAAuj4AAMi9AAAjvwAAgr4AACy-AAA0vgAARL4AAMa-AACuPgAAUL0AAHC9AACOPgAAqL0AAII-AADiPgAAfz8AAEQ-AACCPgAABD4AACy-AACYPQAAmD0AAAS-AABEPgAAFD4AAFw-AACKPgAALD4AAAS-AAAUPgAAUD0AAFw-AAA8vgAAhr4AALg9AACIvQAAir4AAOg9AACYPQAAUD0AAFA9AABUPgAATL4AANi9AAB8vgAAND4AAHy-AABEPgAABD4AAMg9AABQPQAAPz8AAEA8AACAuwAAyL0AAOi9AADiPgAAmD0AABS-IAA4E0AJSHxQASqPAhABGoACAAAMvgAAoDwAAFy-AAAZvwAAyL0AADC9AAC4PQAAgLsAADC9AAB0PgAAiL0AAIA7AAAMvgAARL4AANg9AACgvAAAQDwAAB0_AAAwvQAACT8AABC9AAAwPQAAyL0AAAS-AADgvAAA-L0AAFA9AADgPAAAJL4AAAw-AAAwPQAAuD0AAEC8AAAEvgAADD4AAFC9AACgPAAAlj4AAJa-AABEPgAAND4AAPi9AACYvQAAMD0AABA9AAAQPQAAf78AADS-AAAUvgAABL4AANg9AACYvQAAQDwAAFC9AAB0PgAAmD0AAEC8AABAPAAAgLsAAIg9AADgPAAAZD4AAIC7AABQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ZyKfKME5W_c","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1916,"cheight":1080,"cratio":1.77407,"dups":["18085395393528167352"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1911728520"},"12886106060848458309":{"videoId":"12886106060848458309","docid":"34-7-15-Z10C8BA8BC331A389","description":"Let's talk a little more about Shift, Compare, ADD and Negate. For similar content take a look here: • Basic Computer Math Functions part 1 of 2 Books and other products for networkers Packet...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"12","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Basic Computer Math Functions part 2 of 2","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zENI7ayU1bM\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTI4ODYxMDYwNjA4NDg0NTgzMDlaFDEyODg2MTA2MDYwODQ4NDU4MzA5aogXEgEwGAAiRRoxAAoqaGhuYXNxYXFtYnJldmpvZGhoVUNvV09rLW81VnVZbmJNdXloallPU0VREgIAEioQwg8PGg8_E_8GggQkAYAEKyqLARABGniB9_78AP4DAPP5AgD6AwABDgzyBPUAAADkAff_CfwCAO4ABf8NAAAA_gf0B_wAAAD3APUC-_8AAAP7_AIEAAAACwUAAAUAAAACBgP_B_8AAO_7DfoCAAAAEgkIAf8AAAAADQH6_f8AABMS_PgBAAAAEP0JBAAAAAAgAC0AU9s7OBNACUhOUAIqhAIQABrwAVwB-__hCA8B8gXhANcZ-gCBBQv_DRDeALTmDQLH9_gA4xLcAPPl3f8FEQMAyyAVAQzn2wAZ8e8AIALp_yP8BAAG_gAAG-MIADX2BAAICPb_8xcWAA36F_8M9_AAAxrk_yH7AQDSAOMACwDgAvT0NAIgBQsCCvcLBtoADf7fEAIB-PD0_AQSCgMA7vv_0BgSAgfxEAQFDfcB6wIECQwRBgTzAPn7D_H9_DPn8QDo9Qz75wUI9-bw5gMq8xkB5RID_uvzBPMJ9AT8__8Q_DXsDAn-8wEK_v0GAPYV7vj_7wb2BwMI8tcQ9vf1-gUF3u8J_SAALW4nSDs4E0AJSGFQAirPBxAAGsAHjPb4vl4CJjzxDeq8XFcMPa9Jkjw1NRy84OLXvHi0EDzYkwa7EtUAPRhmfLwRf947cja1vt6ecT3sWYS6Z2KaPk46m7wa71g8DjEOvk0GkTxH6EK84Lttvl6Klj0WuUy8TBkIPqaM7jwzrlG7nIwaPq0icj1aAhq9_bPuu_h6bb1jFnC9MuPxu7FX87zJlv66PrDjPZ9-CDwM7qI8yNQYPWzLRb2IXJm79psJvd15BbycVoY6N4gGvr-wYzsAQpq86-AAPgLCoryHdJO8nIS5O347ybzqq1C8833nPNlA_DqJoMW8wdO6vRFxMz11c7E8hDS-vDbhAbzL1vo6Mn2qvfeJiD1xfGW7eocgPTnsgz1CRZi5F094Pfruhj3OWDA7_5k8vaEbED3Xtzg804bjPcx2aj3WdL08LHqMvHZlYTzJLyy7BSotPEZBED3d81c8x4s7PeCV7jy0gL-8_g-LvN6XDj2hJsA7HiUlvb_ZQbzaa-q7P-MCPgUZAbzzoVU88SmVPcHFCj1F0D28q2APPUBixbzi8Dg8gAEOPe4YmL3DeZ28RLFLPXldHLz_1gi7U1NcPduhBj36lRC8kx-8vb-Q37xQ4Qq8bv-lPUiivLw6vqi79rXuPIdbUzu4x3M72y56uy__ujsGuU27bKd3vbWqAL0UcPg7r8uFvYBx3zvU0rs6e2wmPBHWsbu5aVi7h8uAPWmOLDwB12C6ElDBPcF4Qb1h0wq6vGJhPaT3or3jORk8wNWVO4IsVT17eIm4zBI4PU95dLyWpB06HHoLPeLGEjxNLyi67xkuPKnZQz1pMAI5J7WxPYv4E73VgEe2J7GYO02giL1ksGw6oZeLvZc8eb2UXT84O5gDPc4K-7u9Meu6PkKdveiqVL2Wh0657UCivbN7crtOd_e4BLLwu0cdnbvbzvU3d9A2veYQZ72jfk05A90ovGSy-LyiMRA5dZq7PKTf_jwaNti3O9ZWPClgdr3JUFC4t89PvMkIg7zvt6Q4joopPW0fsjzmZFk31k1OPEolHD5Auz05zZkoPfwcX71dgK8229CePXbjmD1QBfW4-Pd-vVvFLD0YKb449dpsvDpZ6r1g-rg34YgEPUnJAb03-Zo2iwI4vZ-nJr0t6ng4oFTLPffxxrwtj9W4iuYBvSPXcjzKvpK3PzCBPULb_zv1A8i3tT0QvS9n2zzw4QC47AO9O3zUD74X-ty4yvRwPSLhKz7xy4o4h9VJPUAv_D23qge5naYqvc3deLx-6Lu35LUXvR8TaT23YXI4IAA4E0AJSG1QASpzEAAaYDUGADsFGN_3C0DzAMDpEtX1LuMC5_P_6wgAE_QJ9AsG8ZAR8_80zRP8sgAAACEL7xAxAO1nH9fvLug2Bs7f7fMpfyAvIPjtDP3HE0kL5gse7eUEJgAz6KQVQQbDVSYoBCAALbVnKzs4E0AJSG9QAiqvBhAMGqAGAADwQQAA4MEAAPBBAACgQQAAYEEAAMhBAAAMQgAANMIAANjBAAAgwgAAgD8AADhCAAAAAAAAAEAAACBBAAAkwgAAwEEAAFDBAAAgwQAAbMIAAAAAAAAQwQAAIMEAAADAAACAQQAAWEIAAKDBAAAcwgAAREIAAGhCAABwwQAAUEIAACDBAABAQQAAgEEAALjBAACgQAAAWEIAAJhBAAAcwgAAnEIAAOBBAACiQgAAwEEAACBBAADwwQAAEEIAAIDBAABUQgAAgEAAABDCAADQwQAAgMAAAMBAAAAYQgAA4EAAACjCAACwQQAAUEEAACxCAACIQQAA4MEAAAAAAABswgAAQMEAAJrCAABAQQAAtMIAAIDAAAAgwQAA2EEAAJhCAAA0wgAAgD8AAOBAAACQwgAAdMIAACjCAAAAAAAAHEIAABzCAAAAQAAAgD8AAKjBAABwQQAAEEIAAKjBAAC0QgAAQEIAADDCAADIQQAAYEIAAAAAAAAEwgAACEIAADjCAADIwQAAqEEAAJRCAACAwQAAaMIAAKBCAABAQgAAKMIAADDBAADQQQAACMIAADBCAABgwgAApkIAALBBAADowQAAVEIAAEBBAABQQQAAFEIAAERCAABswgAA-MEAAPjBAAAgQQAAgMEAACDCAABYwgAAEEIAAFjCAAAwQQAALMIAAITCAABQwgAAgEEAAJBBAABQwgAAYEIAAEhCAAAAwgAAFMIAAIC_AABAwgAArMIAABBCAAAAwAAAmkIAAKDBAAAEQgAAwEAAAMjBAACwQQAAMEIAAIhBAAAUwgAA0EEAABxCAABQwQAAEMIAAEBBAACQwQAACMIAAGzCAAAgQQAA7sIAALBCAACIwQAA0EEAAMDBAACwQQAAYEEAAIZCAACAPwAABEIAACDCAACgQQAAAEAAAPDBAACKwgAAMEEAADxCAAAAwAAAMMEAAFxCAACCwgAAgMIAAMbCAADIQQAABEIAAGDCAADwwQAAyEEAABzCAAAUQgAAmsIAAADBAABAwQAAwMEAAOBBAABAQgAAGEIAAPBBAACKwgAASMIgADgTQAlIdVABKo8CEAAagAIAAPi9AABsvgAADD4AAKC8AAAcPgAAmj4AAPi9AAATvwAAPL4AANi9AACgvAAAFL4AAJK-AACePgAAoLwAABS-AADCPgAAqL0AAIo-AADePgAAfz8AAAQ-AAA0PgAADD4AANi9AABwvQAAgDsAACy-AAB8PgAARD4AAAw-AABEPgAAbD4AANi9AABcPgAAMD0AAAw-AAAcvgAATL4AAAw-AAAUvgAALL4AAEC8AADgPAAA6D0AADA9AACGPgAAqL0AANi9AACGvgAA2D0AAAy-AAAsPgAAJD4AADA9AAAwPQAAJT8AAHA9AABwPQAA2L0AAES-AACiPgAAUD0AAHA9IAA4E0AJSHxQASqPAhABGoACAAD4vQAAgLsAAIa-AAAfvwAABL4AAIi9AACIPQAAEL0AAOC8AAB0PgAAgLsAAOA8AAAkvgAALL4AAMg9AADgvAAAcL0AABk_AACYvQAACz8AABC9AACIPQAAHL4AAPi9AABwvQAAHL4AABQ-AACYPQAADL4AAAw-AACYPQAA6D0AAJi9AAD4vQAAuD0AAFC9AADgPAAArj4AAKq-AAAcPgAAHD4AAAy-AAAUvgAAcD0AABA9AACgPAAAf78AACy-AABQvQAAHL4AAEA8AADYvQAAuL0AAFC9AACSPgAA2D0AAEC8AAD4PQAAoDwAAOg9AADgPAAATD4AAOA8AABwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=zENI7ayU1bM","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1916,"cheight":1080,"cratio":1.77407,"dups":["12886106060848458309"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"4075353916"},"12345363549800426706":{"videoId":"12345363549800426706","docid":"34-2-6-ZA8BC8A462FC72CAF","description":"This lesson develops the principles that allow complex numbers to be written in exponential form.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"13","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"College Tech Math 2: Exponential Form of Complex Numbers","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Eijk5ka4Sxo\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTIzNDUzNjM1NDk4MDA0MjY3MDZaFDEyMzQ1MzYzNTQ5ODAwNDI2NzA2arYPEgEwGAAiRRoxAAoqaGhpamRmZXB4ZGllY2d2YmhoVUM0eFhzdHNKQzVRSmhDTXV0V2lDX3Z3EgIAEioQwg8PGg8_E-QLggQkAYAEKyqLARABGniB-wT7AAH_APb0EAj6Bv0CFgL88vUCAgDyAPgOBQL_AP8CBvj_AQAABwkHBQsAAAD_7fQI_f0AAPcEBvT4AAAAFAQGBgUAAAAKEfsP_gEAAOv_AgkDAAAAGPv8_gAAAAAABQoDAQAAABQJAwwAAAAAEQcMDP8AAAAgAC3t3847OBNACUhOUAIqhAIQABrwAXsW8ADdBvQB7wbYAMQpCQCBIgr-9BDSALL-AAC898oA7hfgAO_d1P_kHBH_uSf5_zDY0_8P2gUAOunp__Pz_gH5APoANMwPATwUA__yEeb_8B0cAP_iHwH9yuAA6xrm_uwDFv3q2OX-AAbiAw7-OwH5ASQFMvEXAc7nAgHiHgAC4_Lw_vwIGP3x3__69_Uj_gLe9QIi-_z_1wH-BRUF6v3z2CH_AxjlBSnwBQfZ0AsA2_0PBPUA8_0UBxIG4Aj29APgDP_l8_v07xEXBzjdAPjO_vr-Ce_2BxMM-AD22gD87t8A99kl_QTrAfz9-Qr38iAALf8hHTs4E0AJSGFQAipzEAAaYBb-ADjzIuAdB3zQBMvxIaPO4cn-uA3_9d__I_HyBPgjv8n3MgD0vxXuoQAAACkK5h73AMx_tuPrP-wJALa_rRpETd4xMP_qFhm15T4Iz9sV-SsFHgAY7b4hS0ncQBomCCAALdqAFTs4E0AJSG9QAiqvBhAMGqAGAAAUQgAAJEIAACRCAABUwgAAAEEAADBBAACYQgAAcEEAABDBAADgQQAAJEIAALDBAABswgAAGEIAAAxCAABAQAAAIEEAAFDCAABkQgAAgMAAAHTCAAAMwgAAaMIAAChCAADQwQAACMIAACBBAABwwgAAQMEAALBBAAD4wQAAMEIAAJbCAABAQQAAYMIAALDBAABMQgAAzkIAALjBAACGQgAAcEEAAPhBAAAAQgAAdMIAADBCAADGwgAAgL8AAEhCAACwQQAA6EEAAHDCAACQwQAAQEEAAJRCAAAAQgAAQEAAAJrCAAAAQAAAsMEAANBBAAAgQgAAMMIAADDCAADYwQAA8EEAAETCAAA8wgAAVMIAAKDBAABkwgAAEEIAAKhCAAD4wQAA4MAAAILCAADgwAAAGMIAAPjBAADAQQAAJEIAAFTCAAC-QgAAJEIAAPBBAAAQwQAAAEIAAODAAADIwQAAfEIAAEDBAADQwQAAjEIAABzCAACAQQAAgEEAAILCAADYwQAAIEEAAGBCAAAsQgAAyMEAAJBBAAAQQgAA6MEAACDCAABUQgAAHMIAAFBBAACAwAAAjkIAAAhCAAAcQgAALMIAAOBAAABgwQAAoEIAAJDBAAAQwQAAIMIAAJDBAAB4wgAAdMIAAEBAAAAAQAAAwMAAAARCAABQQQAACMIAAMDBAADAQQAALMIAACDCAAAUQgAAVEIAAEjCAAB8QgAAkMEAACBCAABwwQAAsMEAAADBAAA0wgAAAMAAAFTCAAAwQgAAREIAAJjBAACQQQAAoEAAAAjCAADQwQAAPEIAAEDAAAD4QQAAmEEAANjBAABQwgAADMIAAFzCAADAQQAA2MEAACBCAADQQQAA-MEAAIBBAADAwAAASMIAAIxCAACAQQAAoMEAABDBAAD4QQAAgL8AACTCAABQwgAAiMEAADDBAAAIwgAAFEIAABBBAADAwgAAHMIAAKjBAAA8QgAAIEIAAFTCAACewgAAdMIAAEDBAACIwQAAUEEAAFDBAAAwQQAABMIAAFBBAADIQQAA6MEAANBBAAAIQgAAAMAgADgTQAlIdVABKo8CEAAagAIAACQ-AAA8vgAAqj4AAAw-AACIvQAAoj4AAFC9AAAFvwAAQDwAAAQ-AAAwvQAA4r4AAAQ-AACqPgAARL4AABA9AACiPgAAED0AAKg9AADmPgAAfz8AAAQ-AACGvgAAnj4AAHC9AADgvAAABD4AAEA8AACKPgAARD4AAIC7AABQvQAALL4AAFA9AACoPQAAqL0AAFQ-AADgvAAAfL4AALi9AABkvgAAyL0AACQ-AADIPQAAqL0AAFC9AAAUPgAA4LwAAOg9AACYvQAApj4AAKA8AAB8PgAA0j4AAAS-AACAOwAAQT8AAAQ-AAAQvQAARD4AAMi9AAAwvQAAND4AANi9IAA4E0AJSHxQASqPAhABGoACAAC6vgAAyL0AAOg9AAA5vwAA-D0AAKA8AADgPAAAEL0AAOg9AAAEvgAA-L0AAHC9AAAUvgAABL4AAAw-AADgPAAAQDwAAEs_AAAwvQAAyj4AACy-AAB0vgAAuL0AAHC9AACAOwAAyL0AABC9AAAQvQAAgj4AAOA8AACovQAATD4AADC9AACAOwAAsj4AABA9AAA0PgAAUD0AAEy-AAAwPQAAoDwAACy-AAAcvgAAEL0AAIK-AADgPAAAf78AAMi9AAC4vQAAiL0AAIC7AAAMvgAA4DwAABA9AADgPAAAmD0AADA9AAAwvQAADD4AAAw-AACoPQAAhr4AAHC9AAAkPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Eijk5ka4Sxo","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12345363549800426706"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"17182861295170838365":{"videoId":"17182861295170838365","docid":"34-6-1-ZDE6ADB0009681CAC","description":"In this video MS Excel topis are covered from Computer Science Class 9 New book of Sindh education board. 00:05 Introduction of Sir Masood Abbasi 02:00 Introduction to Class 9 Computer New Book...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"14","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Computer || Class 9 || New Book || Excel || Graphs || By Sir Masood Abbasi || Math+Tech","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=TVpKXbXhq1o\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTcxODI4NjEyOTUxNzA4MzgzNjVaFDE3MTgyODYxMjk1MTcwODM4MzY1aogXEgEwGAAiRRoxAAoqaGhvdXVzcWltb3V2ZXhlY2hoVUNCTnhQczRkQXh3MFRZNFRaa0Roc1NnEgIAEioQwg8PGg8_E5cTggQkAYAEKyqLARABGniB4wEH-gzxAPr7_xQBC_oCGPQB9fQBAQDk8gH7-P4BAALtCfMGAQAA8Qbt-gwAAAAe-Pz-_gAEAu0ECQMFAAAAGRkMAwIAAAAHGgD5_gEAABD4B_8CEgAEGQUXAgAAAAAHB_rz_v8AARcV8gcBAAAAB_j4_fry_gAgAC0lAKk7OBNACUhOUAIqhAIQABrwAX8ICAHEKvb_2wP3ANMQvwCRFQ3_NxTGAIX48QHA4_QAsBcGAeDo9AD1IjoAuAcB_ywO_v83B_QA-Psm_wIWCgDx_woASd7vAUHx6wD26fYA-hlHAhEHEf_U9RP_7PrsAA0SIv_83N4B2fQQAzPUJwIOMAYDCBoFAtv__fzuEgEF_-H2BCYb6QDz-_gH3_jnAfz85AdeJOr99PbuAvAJHAb8C-P_IeLy-AEE5gPh6Pr1KwPyBh4n7_cLC_wMCxDr_vASCQcL2v8LHjf48PoDEP39tQUH_BL4_S8i_g3-_gn6Ayka_P7uAf0X8fsEItkECSAALY27Ezs4E0AJSGFQAirPBxAAGsAHuqP3vjGDpzwifF48RLvvPA3hOL36Uq47TTiavdCkYrtIwRO9tknlPXbJkzyIv0E9OGmKvtEMPTztrn08Z2KaPk46m7wa71g8DjEOvk0GkTxH6EK8oMUSvhQiAL3_Rau8O0VdPZm6K7xd34c8HAxFPlXMtboQ7xQ9XRe-vV2WpbySzVW9mIFvvApzs7u68RO7-A29PSj5h7zZPTk94yDMPeA-_Dxekes6UvfcvH2Ix70xQQ88ARVevgu8izowdSG8Wjf3Oszra7va3ag8hmczvWpJjD0dnYg6SSypPGheDj02vRo9aOauPL9mNL0OMgS9Hh8puyBWibwwH9o8XZGzvYxCGDw-NYe799a2Parw1DloVwQ78k9_vaCFub0tBQQ9m0BMvef297zc6qA7BVubPE62YT1JWOU88QHnuWlKvDzayge8klvzPaxVCz5pPFS6UgeLOf4pFTxyuQe83GE4vLNVUz3z-wI8BVEXPbaIKboe_ES8zBmLPd31aD1LOYQ8XeteO_Npn728GDE7oD1SPcwfGL1I2jI8FvaUPa62J72-eX27D_CUPeAwUbzyw9I7rmIxvauMgL1yAUO8RMtwPVE5rD27lKG76Lv7PQsWXb2g5hw8gK-SvTPwK7uUf1K8KHJSvXQwMT0-qf67cuyPvImTQD1NsCw7hjAIPVWnXr3sQr062xI-ve8ekL3FDCY7XWm-PMSWfr3gtyW67H2kPVjLnT2-zri6PzbJPCs5Ij0X1Ng6oTxiPdRDtLxazaW7faEWPe-BiDuPZXO4tOt3Owj6VbyCZTs6O1X-vKzc_LiMg1Q5a-M-PHQInLxttWy5A5WhvRcdWr2du885kPrGvP_hU7xrJZC5Ha0qPdzhZTwwxl44bT5JvWL0TL7q7qw5aonVvZYrd73Bkt43T15fPQr0ub2hl-w4AfKpOqZkFL3j5Nk4fNXKveuh4jxqiaQ5cJyPvTOMNr1aXqI1huXPvQBp5LwDNE25WT8Mva7vKD0zk024o4bAPJRQVTxCeFK4-lgLvfH1lT1pxvO4ZgrGOyH8MLwp4J44zedcPUczmz3VLSW5WJ_MvaYuND2Dfyw5Z9kOPc1yXr3Ahqc3liSfPZmQYD21baM3-AAYvXEtpD3en5I4tYKNukClSjyWPFa3jPo_vUzWcj236JW4qQjDO7gFaLtZn1c4rhoaPXlzOLubWji49nR6PeAP370_mZu3JN4wPXbxyDxOjf04bvg9PW_I0LwfsKC4uiBRvW33XL18doS3Mw5_vWntrrrTPJ83IAA4E0AJSG1QASpzEAAaYEkHAEb2HvPpHi7kBscdIegK4rgJ6iz_IOgAKBDWtMwwzLIEBAAL2QEIpAAAAPEIxwD9AMB_38X-B9k8D7C4_wj1ZxwxGpHZ_gfgDBfc4SfwPOAxCQDx3Z4JN-iuRAgV-CAALVxyGTs4E0AJSG9QAiqvBhAMGqAGAAAQwQAA4MAAAEDAAABUwgAAqMEAAOBBAABAQgAApMIAAFTCAACIwQAA4EEAAGBBAACQwQAAQEAAAEBBAADIwQAABEIAALjBAACWwgAAgEEAAIA_AACmwgAABMIAAK5CAADgQQAAGEIAAMjCAADAwQAAnEIAACBCAABAwAAAmMEAAMjBAABIQgAAaMIAAAzCAACgwQAAbEIAAHxCAACIwQAAgEAAAIhCAAB0QgAABEIAAEjCAAAwQQAAcEEAAKDBAAAAQQAAwMAAAKBAAACwwQAAOEIAAEDBAACeQgAAKEIAAEDCAADAwAAAkMEAAKBAAADwQQAAfEIAALjBAAC4wQAAHEIAAJ5CAADwwQAAQMAAAMBAAABAwQAAGEIAAIDBAABMwgAAgEEAADTCAAAAwgAAUMEAAOBBAACswgAAIMEAAEjCAAAoQgAAIEIAAIBAAAAMwgAAbEIAANBBAAAAwAAAoMEAACRCAAAQwQAAIEIAAEDAAAAQwgAAHEIAAGzCAAAAQgAA8EEAAOBAAACAQgAAwEAAACBBAAD4QQAAOMIAAILCAAAAQQAAIMEAAHBCAABAwQAA2EEAAEhCAACGwgAAQMAAAEDAAABwQQAAQMEAAAzCAACSwgAAkEEAAJLCAADYQQAABMIAAEjCAABowgAAyEEAADBCAAAQwgAAQMEAABxCAAAcQgAAgEEAANDBAABEwgAAQEIAAGBCAAAcQgAATMIAAEBBAAAIwgAAyMEAAPBBAADIQQAAcEEAAMDAAAAAQgAArkIAAIDAAAAIQgAAAEEAALhBAABMwgAAOMIAAIjBAACGwgAAdMIAAFBCAAAowgAAAEAAALBBAACYQgAAoMIAAGhCAAA0wgAAOEIAAABCAABAwgAAvEIAAIA_AABMQgAARMIAAAjCAABQQQAAHEIAAMDAAACowQAAMMEAAODAAAAgwgAA2EEAAIpCAABQwQAAlsIAABDCAACQwQAAwEEAAHDBAAA0wgAAoEAAAEBAAAAIwgAA4MEAAPjBAADgQQAAkEIAADhCAABAQgAAqEEAAADBAADAQAAAuMEgADgTQAlIdVABKo8CEAAagAIAAGS-AABsvgAAwj4AABA9AABMPgAAgj4AAHC9AABDvwAAjr4AALg9AABUvgAAZL4AAHA9AACYPQAAcL0AAGS-AADoPQAAUL0AAFA9AAAfPwAAfz8AAOg9AAAcvgAARD4AABA9AACYvQAAsj4AAII-AAAMPgAA4DwAAMg9AAAUPgAAEL0AAKA8AAAMPgAAyL0AABw-AACIPQAAQDwAAOg9AACGvgAAML0AAJi9AABcvgAAEL0AADC9AACmPgAAuL0AAIq-AADSvgAAFD4AABS-AAA0PgAAZD4AABS-AABQvQAAUT8AABQ-AADovQAAqD0AAKg9AAAkPgAAqD0AAOg9IAA4E0AJSHxQASqPAhABGoACAADIvQAA-D0AADC9AADivgAAPL4AAFA9AABAvAAAcD0AAMg9AACoPQAACb8AADC9AABQvQAAPL4AAHA9AAAQPQAAcL0AADs_AACgvAAAFT8AAFC9AACGvgAAbL4AAOA8AAAMvgAAuL0AAEw-AADgPAAAoLwAABA9AABwvQAAuD0AAJg9AACAOwAAQLwAADQ-AACSPgAARD4AAGS-AACYPQAAQLwAAIg9AAD4PQAA-L0AAFA9AAAwPQAAf78AAI6-AACevgAAqL0AABC9AACgvAAABD4AAKA8AAAEPgAAyD0AAOC8AABwPQAA2L0AAL4-AADIPQAABD4AABC9AACgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=TVpKXbXhq1o","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17182861295170838365"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"14891356851130042279":{"videoId":"14891356851130042279","docid":"34-4-7-Z52A5D59A34896297","description":"1- NOT Gate: The NOT gate, also known as an inverter, is a basic digital logic gate that implements the logical negation operation. It has one input terminal and one output terminal. The output...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"15","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Computer Class 10 Chapter 6 OR, NOT, NAND & NOR Gates","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=e7MRHT2ixD4\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTQ4OTEzNTY4NTExMzAwNDIyNzlaFDE0ODkxMzU2ODUxMTMwMDQyMjc5aq8NEgEwGAAiRRoxAAoqaGhvdXVzcWltb3V2ZXhlY2hoVUNCTnhQczRkQXh3MFRZNFRaa0Roc1NnEgIAEioQwg8PGg8_E6MFggQkAYAEKyqLARABGniBBQoBAPwEAPEC_P_6AgABGQABCfUCAgDo8w75A_4BAPL49wb7AAAA-g_9_vsAAAD49AYB-v8AAPcGA_sDAAAAAQAG9_0AAAAOC_wD_gEAAPj9CQH1AgABCwT5BQAAAAAQ_hD9AP8AAAIQAQcAAAAA_PP97wAAAAAgAC3FJN87OBNACUhOUAIqcxAAGmAxCwBSFibWywsjAwXb5AEq0SzcAQS8_902_-4nsiO0AeSP-REAKM014J0AAAAWDtYb8AAQf73n0C3bNATWAdHDOHEy-PfN2Soa8y0x5tv5QBDoa9QAGgrsLxm3uTT08hAgAC1WhBQ7OBNACUhvUAIqrwYQDBqgBgAAEEEAAADBAACgQAAAsMEAAHTCAAAcQgAA8MEAADzCAACawgAAfMIAAAAAAABgQQAA0MEAAGBBAAAUQgAATMIAAChCAABEwgAAUMEAAIDBAABIwgAAfMIAAFTCAACCQgAA-EEAACDBAAAYwgAA4MAAANBBAABkQgAAkMEAALDBAAAwwgAAUEIAANhBAABIwgAAkMEAANRCAACoQQAAuMEAANBBAACAwQAA4EEAAEBBAAA4wgAAAMIAAFBBAABwwgAAuEEAAKhBAAC4QQAAFEIAAEBBAACwwQAANEIAACRCAACYwgAAJMIAAKBAAAAgQQAAhkIAAIhBAAAMQgAAAMEAAIpCAACgQAAAAEEAAMDBAADYwQAAKMIAADBBAAAAwAAA8MEAAOhBAADYwQAAkMEAAOjBAACsQgAAgMAAAOjBAACywgAA-EEAAERCAAAEwgAAaMIAACRCAAA8QgAA2MEAAFBBAAC8QgAAUMIAADBBAAAAwgAAUMEAAGBBAACkwgAAVEIAABBCAADgwAAA-EEAALBBAAD4QQAA2EEAAGzCAAAAAAAAEEIAAOBBAACQwQAAAEAAANjBAAB4QgAAMMEAAFzCAAAwQgAAXEIAAAzCAAAQQgAAosIAAEhCAABswgAAAMAAAHTCAAAAwAAAQMIAAERCAACKQgAAqMEAADjCAACIQQAAgD8AAHhCAADIQQAAcMEAAGxCAACgQQAAlEIAAEDBAACowQAAQMAAAKDBAAB4QgAA0EEAAKbCAAAUQgAABEIAAIZCAACIwQAAYMEAAHBBAABQwQAAsMEAACzCAAAwwQAApMIAAADAAADwQQAAJMIAAAzCAAAkQgAAaEIAAJDBAACQQQAAgL8AAERCAACAvwAALMIAAEhCAABAwQAAIEIAAEDBAAAQwgAACEIAAPDBAAAEwgAAKMIAAPDBAABYwgAAysIAANhBAAA0QgAAYMEAAHTCAABQwgAACMIAAARCAACMwgAADMIAAKDBAADQwQAAyEEAAODAAAC4wQAAXEIAAEBBAAA0QgAAIEIAADBBAACowQAAFMIAAJDBIAA4E0AJSHVQASqPAhAAGoACAAAQPQAA6D0AAJY-AAC2PgAAgLsAAKi9AACCvgAAE78AAEC8AADgPAAAED0AABC9AAAwPQAAfD4AACQ-AAAsvgAAdD4AABA9AABwPQAA3j4AAH8_AABkPgAABD4AAMo-AAC4PQAA2L0AAEw-AACAuwAAQLwAAFC9AADYPQAAqL0AAIi9AAAMvgAAkj4AAFA9AABkPgAAir4AAKK-AADIvQAApr4AADS-AAAQvQAAMD0AADw-AAB0PgAAuj4AAPi9AADgPAAARL4AADC9AAAcvgAAqL0AAJo-AABkvgAAED0AAFU_AAD4vQAAqL0AAIg9AAD4PQAAij4AACw-AACSviAAOBNACUh8UAEqjwIQARqAAgAAdL4AAEA8AAAUvgAAXb8AAIA7AAAwPQAAyD0AAOi9AAAkvgAAnj4AAKg9AAD4PQAAXL4AALq-AAAcPgAAcD0AAGy-AABXPwAAZD4AAOY-AACovQAAcL0AAHS-AAAkPgAAHL4AACS-AAAMPgAA4DwAAIK-AAB0vgAAEL0AAFC9AACGPgAAQLwAAFA9AADovQAAor4AAFS-AACqvgAABD4AAK6-AACAuwAAcL0AADy-AABwPQAA6L0AAH-_AACOvgAA2D0AAPq-AABMvgAAML0AAOA8AAAwvQAAyL0AAKg9AABAvAAAmj4AAFQ-AAAwPQAAgLsAAFC9AADIvQAABD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=e7MRHT2ixD4","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14891356851130042279"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"7265252088063125223":{"videoId":"7265252088063125223","docid":"34-8-15-Z913183E2454D894D","description":"Fuzzy Computer Math, 2D Coordinates, 2D Coordinate Grids, Survey Math, Computer Science For Surveyors, Measurement Precision and Accuracy...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"16","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"TBAS-Fuzzy Computer Math And 2D Coordinate Grids","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=By_wIR5Y-YQ\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTNzI2NTI1MjA4ODA2MzEyNTIyM1oTNzI2NTI1MjA4ODA2MzEyNTIyM2qvDRIBMBgAIkUaMQAKKmhoZ3FndGV3cGpnam93cmJoaFVDWW1VdVdpeXpRdDdlcUdNUlpPSGxHdxICABIqEMIPDxoPPxPkBYIEJAGABCsqiwEQARp4gfQDAv7_AQD1_goMAgb8Af0C9Af4_f0A5fD7AAn9AQAA6AgBAwAAAAQH8vQAAAAA8gPr-vn_AAAUA_sGBAAAAP7_9wH9AAAACgb3Cf4BAAD8-AL_Av8AAAr8Ae7_AAAA9Av39AAAAAAIG_kAAAAAAAMID_L_AAAAIAAt2DLUOzgTQAlITlACKnMQABpgBBEAHB4K9eoW4uDU6uQGDPoP8935-AAZ_QAb5vb3HPbZzgkB_xHSKO3JAAAAICDk-igA7UcT29YzD-T1w97wCRB_AjL3CgMF6PgHAOoO6gQC8icJAA31_xg8AA0z-hwSIAAtHINoOzgTQAlIb1ACKq8GEAwaoAYAAMBAAACQwQAAaEIAAODBAACAwAAAwEEAABxCAADwwQAAjsIAABDBAAAwQQAAgEIAAADCAACAwQAAEEIAAEDBAABgwQAAkMEAAAAAAACkwgAAQEAAAIjCAAAYwgAAhEIAABhCAAB8QgAAPMIAAADAAABsQgAAhEIAABxCAAAwQQAAAEAAADBCAAAIwgAA6EEAAJhBAAAkQgAAAEIAAFBBAACewgAAMEEAABTCAADYQQAAkEEAACDBAAD4wQAAIMIAANBBAAC4QQAADMIAAAhCAABwQQAA4EAAABDCAAAwwQAAeMIAAIBBAABAQAAAiEEAAAjCAADowQAAYMIAAKBAAAC4QQAAEEEAABBBAAAcwgAAHMIAAMBAAABAQQAAZEIAAKDBAABkQgAAUEEAACDCAACIQQAA0MEAAAhCAACQwQAA8MEAAOBAAADAwAAAssIAAAxCAAAAQgAAYMEAAIA_AACEQgAAgD8AAIbCAABkQgAAbEIAAHBBAADAQAAAjsIAADxCAABIwgAAdEIAAKRCAABYwgAAQEAAAABAAAAUwgAAjMIAAADAAACOwgAAIMEAAI7CAACWQgAAHEIAAFDCAADYwQAAAMEAAKZCAAC2QgAAyMEAALDBAABQQgAAgMEAAJhBAACwwQAAEEEAAKDCAACYwQAAmMEAAIjBAADQwQAAAEAAABTCAADowQAAfMIAAKBAAAA4QgAAFEIAAIhBAABIQgAAEMIAAKjBAACowgAA-EEAAMBBAADAQQAAgEAAAIBAAACwQQAAoMAAABRCAACgwAAAYMEAAMBAAAAQQgAAiEEAAHDCAABIwgAA-MEAALjBAADIwQAAQMAAAJBBAADAwQAAMEIAAAjCAABQwQAA2EEAACBCAAAAQAAAQMAAAFxCAAAUwgAAnsIAAHBBAABwQQAAwEAAAIBBAABMQgAAbEIAANDBAAA4QgAAnEIAALDBAADmwgAAAMIAAPDBAABwQQAAoMAAAGDCAADYQQAAQMEAAMhBAAAAwgAASEIAACDCAAAQQQAAoEEAAFRCAAAgwQAA-MEAAIDCAAAYwiAAOBNACUh1UAEqjwIQABqAAgAAML0AAAy-AADOPgAA-D0AAIi9AAC2PgAAQLwAAOq-AACqvgAAHD4AAKi9AAD4vQAA-D0AAFA9AAC4vQAAQDwAAIY-AABAPAAAdD4AAMI-AAB_PwAAnj4AAIA7AAAUPgAA4DwAABC9AACgPAAAEL0AAIA7AAD4PQAAEL0AABA9AAAMvgAA2D0AABC9AAAsvgAAuD0AADC9AABsvgAAJL4AABy-AAAQPQAAQDwAAIA7AAAMvgAAgDsAABA9AABAvAAA-D0AAIi9AACOPgAAUD0AADQ-AABkPgAANL4AAFC9AAAvPwAAgDsAABA9AACoPQAABL4AAMg9AADIPQAAVL4gADgTQAlIfFABKo8CEAEagAIAAOi9AAA0PgAAcL0AAC2_AABcvgAAcL0AAHA9AABAvAAAQLwAAK4-AACgvAAAqL0AADC9AADgvAAAyD0AALi9AAAUvgAAKT8AAKC8AADiPgAAgDsAAFS-AABQvQAAJL4AAEA8AACYvQAAML0AAHA9AACAOwAAMD0AALi9AABQPQAAuD0AAKC8AAD4PQAAuL0AAFA9AABkPgAAuL0AABA9AAD4PQAAiL0AAIi9AADYvQAAiL0AAEC8AAB_vwAA2D0AADC9AABwvQAAQLwAAIi9AACIPQAAPD4AAHC9AACYPQAAQLwAAEC8AACgPAAAED0AAJg9AACYvQAA4DwAALg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=By_wIR5Y-YQ","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7265252088063125223"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"14944270557742453116":{"videoId":"14944270557742453116","docid":"34-10-0-Z59C6A8332BADAF7B","description":"An implementation of Shor's Algorithm, a Quantum Algorithm for Integer Factorization. It is divided into 2 main parts: 1. Classical Part: Involve reducing the problem of factorizing an integer N...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"17","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Quantum Computing | Integer Factorization with Shor's algorithm using IBM Qiskit","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=BYKc2RnQMqo\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTQ5NDQyNzA1NTc3NDI0NTMxMTZaFDE0OTQ0MjcwNTU3NzQyNDUzMTE2aq0NEgEwGAAiQxowAAopaGhobmV4YWNhbGh6cGJoaGhVQ1B5b3FNS3E3dHBwZVJEWlppMDFtVlESAgARKg_CDw8aDz8TXIIEJAGABCsqiwEQARp4gQQL8wEAAAD7_gL_AwT-ARMCBPn2AQEA5AYHAvf8AgDs_AP6A_8AAP3_-wb1AAAAA_v8-_39AQAQCg0A9QAAABT5Cv0BAAAAAwsC-v4BAAD-APgHA_8AABf7_P4AAAAABfYT-AD_AAAN-AT6AAAAAAP2CfsAAAAAIAAteBzVOzgTQAlITlACKnMQABpgGhIACA4K8tYFLezh--v76OAT6-bP9wAJ6wAEE_7BAgDovgEyAP3eCPS_AAAAJNYKJuMA6FMGxusOCezu49nsKg1_3fcGBCYa4dH91fEeAPjZNSgmAOoJ_QIiFOZL-TsTIAAtoJtOOzgTQAlIb1ACKq8GEAwaoAYAAKDBAACQQQAAgEAAABxCAACQwQAATEIAAIhCAADwQQAAXMIAADjCAAB0wgAA4MEAAITCAABAQAAANEIAAJ7CAABQwQAAcMEAAHDBAACIwQAA0EEAAIjBAABAwAAAgD8AAIDAAABIQgAAQMAAAMjBAACGQgAAgMAAAJjBAACwQQAA1sIAAABBAADIwQAAiMEAAIDAAACgwAAAgMAAABDBAAAMwgAA4EEAAIBBAAAgwQAAbMIAAILCAADAQAAAwEEAABhCAABQQQAAKMIAAABBAAB8wgAAAMEAADBBAABwQQAAwsIAACzCAAA4wgAASEIAABBCAAAowgAAlMIAAPzCAAA0QgAAxsIAAMDBAABQwQAAUMIAADjCAABgQgAAqMEAADhCAADAwQAAEEEAAODAAAAAwAAAgEIAAJBBAACoQQAAVMIAAKJCAADAQAAAHEIAAKZCAADAwQAAIEIAAARCAAA0QgAAwEEAADxCAACOQgAAgMEAAATCAABgwQAAlMIAALDBAACQwQAApEIAAIhBAADAwAAAgMAAAPhBAADoQQAAgL8AAJjBAABQQgAAgD8AAKjBAABcQgAAuEEAAIZCAACgwQAAZEIAANhBAAAMwgAAkMEAAOBBAACgQAAAIMEAAKBAAACYwQAAQEAAADjCAACYwgAALEIAAGxCAACowQAAhsIAAKDAAABIwgAAkMEAAHDBAAAAQQAAAAAAAAhCAAA8QgAA6MEAALjBAAAcwgAAMEEAAADAAAAgwQAAAEIAADhCAAA4QgAAZMIAABhCAABAQQAA7EIAAGDBAAAgQgAAEEEAAODAAACgQAAAeMIAAFDCAABAwAAADEIAAIBCAAAAQgAAmEEAAMDAAABwwQAAIMEAAMBAAADYQQAAIEIAABBCAAAwwgAACMIAAIhCAACIwQAAGMIAAJBBAABAwQAAIEEAAAzCAAC4wQAAfEIAADjCAAA4QgAAEMIAAEDCAABgQQAAFEIAAPDBAACgQQAASEIAAMDBAAAwwQAAkEEAAEjCAADowQAAoMEAAARCAACwQQAAFMIAAIDBAAAgQiAAOBNACUh1UAEqjwIQABqAAgAAgr4AABA9AADIPQAAQDwAAFA9AABQPQAA4LwAACW_AADOvgAAlj4AABy-AADoPQAAoLwAAFQ-AACIvQAAyL0AAEw-AABAPAAAiD0AAA8_AAB_PwAA4LwAAEA8AADYvQAAgLsAADA9AAAwPQAANL4AAIC7AADSPgAA6D0AAI6-AAAMPgAAdD4AAKY-AAAEPgAAMD0AAGS-AAA8vgAAir4AADS-AAAMPgAA4LwAAIK-AAAwvQAA2D0AAIo-AACgvAAAqL0AAN6-AACoPQAATL4AACw-AACCPgAAVL4AADC9AAA7PwAAiL0AABA9AACmPgAAyL0AAIg9AAAUPgAAVL4gADgTQAlIfFABKo8CEAEagAIAAES-AACaPgAAqD0AAD-_AADYvQAAUL0AAJg9AABQvQAAoLwAAEw-AACgvAAALL4AAIi9AABEvgAA-D0AAPi9AAC4vQAAJT8AAJg9AACqPgAAgLsAAEy-AAAwPQAANL4AABA9AABAvAAAJL4AAMg9AABwvQAAMD0AAEC8AADgPAAAUD0AAEA8AAA0PgAANL4AAAw-AAAMPgAANL4AAOg9AAC4PQAA4LwAAJi9AACoPQAABL4AAOi9AAB_vwAAyD0AANi9AAB8PgAA2D0AAFC9AACYPQAARD4AABA9AAAwPQAAEL0AAEC8AAC4vQAAuL0AAMg9AAAsPgAAJD4AAOA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=BYKc2RnQMqo","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["14944270557742453116"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"12021517520040899350":{"videoId":"12021517520040899350","docid":"34-6-10-ZEAFED64866760747","description":"видео, поделиться, телефон с камерой, телефон с видео, бесплатно, загрузить...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"18","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Lecture 2 Calculus Limit at Infinity and Continuous Function #Mat200","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2XICUDGu070\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTIwMjE1MTc1MjAwNDA4OTkzNTBaFDEyMDIxNTE3NTIwMDQwODk5MzUwarYPEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E6YJggQkAYAEKyqLARABGniB-fcHAwT7APX4BwoPBvwBFf38APUBAQDm-vv-BP4BAO___OoEAAAA9RIH8gAAAAAFCvMP_f0BAA8P_f73AAAAGwL9APcAAAABBu4M_wEAAPoA8A8D_wAAD_DsAv8AAADvA_r5_v8AAPgAARMAAAAABv_69QAAAAAgAC38mcc7OBNACUhOUAIqhAIQABrwAV4GBgHoGvcA-eTiAOMi0QGBBQv_CfzhAM3v9gC_Dtj_8hT5AOb2AwEyETAA2A_3AB36_QAD1hD_FvkVAA7zDgABFA4BIuwCACkMEQLv9_z_zh8H_gwFDP_v5AAAChL2_hr99P_fB-IACwDgAibfHQH8AQIAFeT6Au0QFAAAJwcC3w7e_gsDBAD6Avb90BgSAv37-AQIGO4A3uXyAgD5-wYj8wUAFQj0-xsK-gTr_QH76vgB-gYI9vsI-AkC9gHs-uru_gMA7Qj6BfsIBB71FQDu9xIEEe4G-gMK9gIT3wz23vkE_tgOAwH4C_oJCPH5-CAALW4nSDs4E0AJSGFQAipzEAAaYELwADz3CNv45FXr-_vgFqXLGQT4xPv_-Pv_3RvS69UVvsAHHv8m3A_xpgAAABkBBjPrAMF_1OnpEdMd6tee-gAQfAkwCsjYMOujzCtDCPcw8hAVGQDQAqY0Ugq3NQwkGiAALegLGDs4E0AJSG9QAiqvBhAMGqAGAADgwAAAQMAAADxCAAAwwgAAqEEAAIRCAADKQgAAgMAAALjBAADYwQAAqEEAAIDAAACKwgAAAMEAAMBBAABgQQAAcMEAAFzCAACgQQAAwMAAABDBAADowQAAQEAAAKBAAACAvwAAAAAAANDBAAAgwgAAoEAAACBCAACIwQAAGEIAAL7CAAAAwQAAjMIAAMBAAABEQgAAhEIAAABBAABQQQAAoEIAAABCAACQQQAAIEEAAERCAACGwgAAkMEAACDBAADIQQAAcEEAAHTCAAAAwgAA4MAAABjCAACaQgAAuEEAAADDAADwQQAAyEEAALhBAAAcQgAAzMIAAADCAABQwgAAbEIAAJjCAACwwQAAjMIAAOBAAACcwgAAWEIAAPhBAACYwgAABEIAAHTCAACQQQAAYMEAAARCAADgQQAAwEAAAJjCAACYQgAAAMEAABhCAAAYQgAA0MEAAABCAAC4wQAAJEIAAEjCAABAwQAANEIAAODAAACgwAAAsEEAAIjCAAAQQQAAXMIAAIhCAAAUQgAAcMIAAODAAAAQQgAAkEEAAKjBAAA8QgAAgD8AADBBAAC4QQAAGEIAACRCAAAwQQAAUMEAAGBBAABQwQAANEIAAPhBAACAPwAAssIAAGDBAADwQQAAYEEAAJDBAACAQAAA4MAAAGhCAACOQgAAYMEAAAAAAAD4QQAAMEEAAFjCAACAwQAAPEIAAMhBAACgQAAAjEIAAHDBAACYwgAAsMEAAKDAAADYwQAAMEIAAIDBAADAQQAAoEAAADzCAABwQQAAQEIAAAAAAACswgAA4EAAAAhCAABgQQAAEEIAACBBAAAIwgAA4MAAAAzCAABAQQAARMIAAABCAACgQQAAWMIAACTCAAAQwgAA2MEAAGRCAACIQQAAmMEAAEDCAABMQgAAEMIAACzCAACqwgAAmMEAAJ5CAACwwQAAmMEAAOBAAAA0wgAA0MEAANjBAACAvwAASEIAABjCAABQwgAAZMIAAKBBAADgQAAAgMAAAIA_AAAAQgAAoEEAALhBAAAgQQAAgMAAABRCAAAAwAAAoMEgADgTQAlIdVABKo8CEAAagAIAAHA9AAAcvgAAhj4AAOi9AACYPQAAlj4AABQ-AAAbvwAARL4AANg9AAC4vQAADL4AADw-AACCPgAATL4AAIC7AACmPgAA6D0AAI4-AAAhPwAAfz8AALi9AAAwvQAAxj4AADC9AADIPQAATD4AACS-AACYPQAAjj4AAIC7AADIvQAAiL0AADC9AABMPgAA6D0AAKA8AABUvgAAgr4AAI6-AABMvgAAUD0AANg9AAAwvQAADL4AAGS-AACIPQAA-L0AABS-AAAUvgAABD4AAOA8AACCPgAA0j4AABy-AADgvAAAKT8AAOg9AAAQvQAAgj4AAJg9AABcPgAAyD0AANi9IAA4E0AJSHxQASqPAhABGoACAAA8vgAAQDwAAOC8AABNvwAAcL0AAIC7AADYPQAAQLwAAAy-AABUPgAAyD0AADC9AAAQvQAAMD0AADA9AAC4vQAABL4AABU_AADgvAAAyj4AAKi9AABQvQAAEL0AAFy-AABwPQAATL4AAFC9AABAPAAAcD0AAOg9AAAQvQAABD4AAMi9AACovQAAuD0AAHS-AAAQPQAAJD4AABy-AACgPAAAQDwAADy-AABkvgAAUD0AAAS-AACIvQAAf78AACQ-AAAUPgAA6D0AAMg9AABQvQAAqL0AAHQ-AAAwvQAAqD0AAIA7AACAuwAAFD4AAOC8AAAEPgAAyL0AAOg9AABQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=2XICUDGu070","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12021517520040899350"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"3503256767"},"11845130708331210506":{"videoId":"11845130708331210506","docid":"34-6-14-Z547027AB5AC2A2DD","description":"Lecture on Computational Finance / Numerical Methods for Mathematical Finance. Session 02: Computer Arithmetic: Arithmetic Operations The second out of two sessions on computer arithmetic...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"19","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Lecture Computational Finance / Numerical Methods 02: Computer Arithmetic (2/2): IEEE 754, rounding","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=go05MVg2j6A\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTE4NDUxMzA3MDgzMzEyMTA1MDZaFDExODQ1MTMwNzA4MzMxMjEwNTA2arYPEgEwGAAiRRoxAAoqaGhrbmZ5aXFxaGVpbWJjYmhoVUM5UmJSbllQaE85bHBpWS02d1dOSFdnEgIAEioQwg8PGg8_E94sggQkAYAEKyqLARABGniB9wX3_P4CAPMKBAEDA_4BDBH9BPUBAQDmBAsIBv0BAPf5APcBAAAACQcGEAEAAAAA-_IN-P4AAA8B9_wEAAAAFgX98fsAAAACFPT4_wEAAP0GDwIDAAAAHQQHCQAAAAAHDf8A-f8AAQQE_AcAAAAAEwH5AAAAAAAgAC1aINg7OBNACUhOUAIqhAIQABrwAX_6BAOpDer9CAXtAB8z4QCDIQr-MxLKANXLEADP_-0B7zvrAN8H-wDtAwgA4D0O__QE_P4D2iYAIfME_xrnKgDbEBQBPfMiAT8CFf8Y9Az_wScJ_hAHD_8P9ewACSnvAB3yEvzGANsADv_XAw7-OgEaAAX_EgQGBuMRBwICIf4F0N_P_AoA9gkP8vf6xg39AycE7QMQLvH_CRT7CgXb_Ako2foCHBL4BSEM-AUDCgoF5xEE-uf59f8c-iEFCPziBvP2_vUI5v8A_AUCDibyGgAM7RL7DtoX-Q3-_vz-zgn34hUAA-IbBw3C_ggOG_cB9CAALa6gHzs4E0AJSGFQAipzEAAaYEr5AB3vHgHQ50LlJeHMC8f4JeQHx9z_7Of_-Q4E9-0GCL7wGv8txBzwrQAAAC0G1SfwAPVx5c7jSATXJbnY5ggFfxQqBM72TdrH_hQi9ARnHCAZJgAx66MJOADgLiodCyAALbpaIzs4E0AJSG9QAiqvBhAMGqAGAABUQgAAIEEAAGRCAACUwgAAyEEAAOBAAAC4QgAAiEEAAIDAAABgQQAA4EEAALjBAAAMwgAAQMAAAOBBAADAQAAA4EAAAGzCAACoQQAACMIAAEDBAACYwQAAmsIAABhCAAAIwgAAiMEAAJjBAAC0wgAAAEIAAJBBAACgwQAAAEIAABjCAABAwQAAusIAAIDBAABwQQAA1EIAAIDAAAA8QgAABEIAAMjBAABgQQAAMMIAAGBCAACSwgAAVMIAAFBCAADoQQAAwEEAALDCAAAkwgAAUMEAAEhCAAAgQgAA4EAAAADDAAAAwAAAyEEAAAAAAACcQgAAMMEAAKLCAAAcwgAAUEEAALjCAAAIwgAAvMIAALDBAAB0wgAAjEIAAJBCAABkwgAAwEEAAMjBAACowQAAEMIAAAjCAAAAwQAA8EEAAOjBAACGQgAAiMEAABxCAABAwAAAYEIAAADAAAAAwgAADEIAAPjBAADQQQAAPEIAAODBAAAwQQAAMEEAAMDBAACIwgAAcMEAALJCAACgQAAAZMIAAFBCAABwQgAAuMEAAPDBAACIwQAAAMAAAARCAABcwgAAmEIAAAxCAAC4QQAACMIAAKDAAACgwAAAjEIAAKDAAAC4QQAAFMIAAODAAAAgQQAA2MEAAEDAAACowQAAIEEAAKBBAADAQAAAAAAAAKhBAAAIQgAAgEAAAFzCAABAwAAAHEIAAADBAADQQQAA8EEAAMDBAAAQwgAA-MEAAIBBAAAAAAAA4EAAAIbCAABQQQAAgL8AAODAAACIwQAAgL8AAJDBAACgwAAAbEIAAFxCAAA8QgAAgL8AABzCAADAwQAAcMEAAEDCAAAAQQAAiMIAAIhBAAD4QQAAgMEAAOBAAACgwAAA2MEAALZCAAB4QgAAIMIAAMDAAAAQQgAAkEEAADTCAAD4wQAA4EAAAIhBAADAwAAAgEEAAABCAABswgAAEMIAABDBAABAwAAAZEIAADTCAAA0wgAAiMEAAAAAAAAQQQAAkEEAAFzCAAAgQQAAuMEAAPBBAAAkQgAAgL8AAIBBAABAQQAAoEAgADgTQAlIdVABKo8CEAAagAIAAOi9AABsvgAATD4AAEA8AAAcPgAAbD4AAGQ-AAAVvwAAmr4AANg9AABQPQAAfL4AALg9AAAEPgAAUL0AADC9AACuPgAAEL0AAJI-AAAFPwAAfz8AAIg9AABAvAAAmD0AABw-AACYPQAAMD0AAHA9AAA8PgAAXD4AAAw-AADYvQAAUL0AAHA9AABQPQAAqD0AAKA8AACgPAAAXL4AAEC8AAAcvgAAqD0AADA9AACAOwAAqL0AAOC8AABkPgAAZL4AALi9AACSvgAAmL0AAKC8AADGPgAADD4AADC9AACgPAAA9j4AAEC8AACgvAAAXD4AAFC9AACaPgAAiD0AAFA9IAA4E0AJSHxQASqPAhABGoACAACyvgAAdD4AAPi9AAAhvwAAmL0AAJi9AADoPQAAcL0AAFA9AACyPgAAmD0AAMg9AAD4vQAA2L0AADC9AACAOwAAXL4AAC0_AAAwvQAAnj4AAOg9AABMvgAAmL0AAKi9AADIvQAAQDwAAKC8AAA8PgAAJL4AAKi9AAAwPQAAuD0AAJi9AAA0PgAA-D0AACy-AACWPgAAwj4AAJ6-AABEvgAATD4AALi9AABwPQAABL4AAHQ-AADgPAAAf78AAOg9AACYPQAAPL4AABQ-AACAuwAAZD4AAFA9AADgvAAA2D0AAKC8AADgvAAATD4AAHA9AADgvAAAJL4AAHy-AAAcPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=go05MVg2j6A","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["11845130708331210506"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2664608340"},"15941367421545336656":{"videoId":"15941367421545336656","docid":"34-9-14-ZF4DB4887E2EEFC71","description":"Join Telegram Group : https://t.me/target_jam_2021 #TargetCSIRJRF #TargetGATE #CsirMathematicalscience #UgcMathematicalscience #UgcNet #CsirNet #CsirInstitute #CsirBestResult #CsirTopper...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"20","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Late 10 days Strategy for CSIR NET Mathematical Sciences","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UgsZ7p07hKA\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTU5NDEzNjc0MjE1NDUzMzY2NTZaFDE1OTQxMzY3NDIxNTQ1MzM2NjU2aq8NEgEwGAAiRRoxAAoqaGhvbWZmdnhrdHdwaWZ1YmhoVUMzTXZRQThGUHhsQjJ6R3BUVDVlZmh3EgIAEioQwg8PGg8_E_IEggQkAYAEKyqLARABGniB9gEK9gEAAAP_BQEOBv4BCwDvAfb__wDjAPEJAP0CAP3--fYBAAAABg3_BgQAAAAA9AADAP0BAAsFAAkEAAAAJwD9BvsAAAAMDu8C_wEAAPsAA_0D_wAADP8O8v8AAAAJAQz0__8AAAAY9gsAAAAA_AT_9_8AAAAgAC0jg887OBNACUhOUAIqcxAAGmAKCwALGBnrswAk-P7j7Q_z9ATNIevyAOQPABr82OYBBvbmAxb_LNsx4b4AAAABBeIzAQDYUfXt4BMABwXb8O36HH8XE_4JJurprwgCAfUtBP_F7i0A0dD8DiEK3j32IB8gAC0CmVI7OBNACUhvUAIqrwYQDBqgBgAAfEIAALBBAAAQQQAAgD8AAIBBAADAQAAA0EEAADDCAAAIwgAAUMEAAJBBAABEwgAAUEEAAPhBAACMQgAATMIAAHBBAABowgAAQMIAADDBAAAAwgAA0MEAAIDBAABUQgAAiEEAADBBAABwwgAApsIAAARCAABMQgAAPMIAANhBAADAQAAAsMEAAJ7CAACAvwAAMMEAAKJCAAAwQgAAAEIAAMBAAAC4QgAAOEIAAARCAAB4QgAATMIAADDCAAAAQQAAIEIAAHhCAABgwgAAMMEAAMBBAAAAQAAAIEIAAOBAAADkwgAAIEEAAFDCAAB8QgAAYEEAAPhBAAAEwgAA-MEAAIBBAACAwQAAmMEAAGTCAADgwQAAqMEAAHhCAADwQQAAsMEAAIBBAABEQgAA4MIAAADAAAAQwgAANEIAABDBAACuwgAAUEEAAABAAAB0QgAA-MEAAKBAAAC4QQAAMEIAAIhBAAA4wgAAgMAAAIA_AABgwQAAwsIAABhCAACCwgAARMIAAIxCAAAcQgAAoEAAAJDCAAB4QgAAOEIAAAjCAAAAQAAA0EEAAADBAACAQQAAAMIAAPBBAAAYQgAAyMEAAOBBAAAcwgAAYEEAABxCAACIwQAA4MEAANjBAAAkwgAASMIAABTCAADgwQAA8MEAAHhCAACIQQAAGMIAAEDBAACAwAAAEMEAADDBAAAAwQAAWMIAAOBBAAAkwgAAMEEAAEBBAACAwQAA6MEAAJDCAAAQwQAAIMEAABRCAADAwAAAFEIAAGxCAABAwgAAMEEAADhCAADgQAAA8MEAAAAAAAAwQQAAkEEAAJjCAADAwAAAQMIAAGTCAABwwgAABEIAAPjBAAAsQgAALMIAAHDBAAA0wgAAHEIAABxCAABAQQAAiEEAAPjBAABMwgAAgEIAAAhCAADwQQAAuEEAABhCAADYQQAAwMAAALZCAABQQgAAgEAAAIrCAACAvwAAYEEAAGhCAADIwQAAUMEAAHBBAACgQAAAQEEAALDBAABswgAAoMAAADBBAABwwQAAKEIAADDCAACgQAAAWMIAAIzCIAA4E0AJSHVQASqPAhAAGoACAABkvgAAuL0AABw-AABQPQAAUL0AAJI-AAC4vQAA2r4AAOC8AACgPAAAiD0AAOi9AACSPgAAED0AABA9AACAuwAALD4AAKA8AAA0PgAAoj4AAH8_AAAkPgAAPD4AAEw-AABAvAAAUD0AAAy-AABwPQAAoDwAAEw-AAAkPgAARL4AAKA8AAAEvgAAqD0AAHQ-AAAwvQAAuL0AAIK-AAAkvgAAgr4AADC9AACKPgAA6L0AADC9AAA0PgAAPD4AACy-AADovQAAir4AABC9AAAQPQAAlj4AAFA9AACKvgAAML0AACk_AAAcPgAAPD4AAAw-AABAvAAA4LwAADA9AADgvCAAOBNACUh8UAEqjwIQARqAAgAAtr4AAMg9AAC4PQAAJ78AADC9AAAQPQAALD4AAKi9AACYPQAAyD0AAOi9AACWvgAAQLwAACy-AABwPQAA4LwAABw-AAAlPwAAUL0AAIY-AAAcPgAAEL0AAKC8AACAOwAAUD0AAGw-AABQvQAADD4AAEA8AADgPAAAoDwAALg9AACgvAAAoLwAAAw-AABAPAAATD4AAFC9AABEvgAAMD0AANg9AACgPAAA6D0AAFA9AAAkvgAAML0AAH-_AAD4PQAAjr4AACQ-AAAQvQAAUL0AADA9AAB8PgAAcD0AAJg9AACAOwAADD4AANi9AABQvQAAoLwAAES-AAAsPgAARD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=UgsZ7p07hKA","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15941367421545336656"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"9552406842653182582":{"videoId":"9552406842653182582","docid":"34-5-4-Z26339B1D973A180E","description":"Math is one of the most important aspects of your Computer Science Degree. Let's discuss how to get better at math, what math is related to computer science, and a few theoretical and practical...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"21","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Conquering Math as a Computer Science Student","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=yKJz5IntDW8\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTOTU1MjQwNjg0MjY1MzE4MjU4MloTOTU1MjQwNjg0MjY1MzE4MjU4MmqTFxIBMBgAIkUaMQAKKmhodnRjdWF6Z2J0eGthaGRoaFVDMldIalBEdmJFNk8zMjhuMTdaR2NmZxICABIqEMIPDxoPPxOcBIIEJAGABCsqiwEQARp4gQIFAv7_AgD69P8CBAX-AQIMAP_3__8A7AL8BAAAAAD9-_38BwAAAAEM-v0FAAAA8fj2_PoAAAAI-gAMAwAAACAN_fn7AAAAEBH6-f4BAAD2BAIJ9wIAARIKCAH_AAAA_gj-AAIBAAAHD_34AQAAAAcGCgP_AAAAIAAtMyDXOzgTQAlITlACKoQCEAAa8AF_-f8Bz-4A_vbxBAH2A-sBiu4a_yMP_wDVDgP_8DL8AcgDBAD7--4ABAMGAAoNBf_NEBH_MQMVALv64__19P4AGxMEABbvHAH45BwCuBXi__kD_v8XDM7_GxL5_jkF6gEQ7SH9GQMDAOv8BQEf-gL_AvAPAgIICAIiJgUC-fLr_gcuCgLq-uUB8hMF-9_09AcCE_QFEDsD_h3t5_8J_9sBBCTuAOjxBgP-OwkC0gb3_cfV8wPr-QUCI-MZAu3p-fTp2Q_8HwcUAQcH9wD2LgUIE_cNBOH_DgjrFQQB9hf3-hnsCvUhAQL58icACQ4i9P0gAC2cfzE7OBNACUhhUAIqzwcQABrAB4cW4b64Puw8OUImvUGFPj15B5O88kvzPCeFGT1_9V08ozqdPKfN-D3sJKy8tYYXvZxNl77qPVy5ZI8WvGkX-LyK1Gq8lsn0OhfxXb7HGuQ8RD-JPGLerr1hGZu8vjcfPDtFXT2Zuiu8Xd-HPJ87AT6PlCg9OxixPA14D73-LVy8Wy7tuamiCD64e5Q9gk3GusgKjr0B9vG9upw3PGoEgT2TkJO9D1gkO80DCL7hvak93z4EPBIiaj1szJs9EG9CvBGsij1JWMW9MVAluyy7EL7ZFq-8-zzKO0d0T7yi0DK9VjeNPNEbk71PNFm8bmSDPEVWLT3bwUg9fbAOvBvpVjxxtem8GVVIO6nnE73SuOQ7fMCXPAZkzz3yUAU9MEgavVl6wz0Bw9I9tR-lO2CrhL6rHD-90rKku7P7Xz2Q8GK8kXDvOtW6QzzuYKS941fmu2Q99b15hIk9xGLxu_8aWr1zqDW99KopvObGyT1rACY6v9UbPCJ4kr3_I1M926p_vFF3ND17wUc9wPAluysXCj2z-Y49tDCXO82VQbxTrOA6bFMGu-Dpn7w6OL095uUwvKUTST3IMqM97gvHu6q1VbzmUNA8T9BkO7MGzz3r_oE972oDPO49DL5v0AM9kJ_POjp5bDx883Y8LtYmvB-N2DsrdBg79rsoO1Cr6L2uEFa8CFp9O-Guw70Jn3I9ywiauNgAGz0N7h09Sb0GuyxnKj2Kq0-9nJ1SO2SrsLyW54a9iOTYuv5g4D3Z0Qg-q6vDOdgHfjuY9o08jKshu9sVWbuVfsK8kxvTtxbMzrzToXM960NuOvJ8Bj3Pm6-9fRngOJBHNT3ija87pYJCuhmh6byUOwI9tF3RuRzbQb30v9w8uhxuOq10jLvVdjM9Qv8aujiWoDoC_t884MVIt1YGP71XjoW9opX6uAQdzT1TgIM8om8fN6D78jznKme9Ga1nOPvxDby4SHC9N4pxOLWj2L2l6Fe99I4CNXYesL0GT3O68IXgODHhgT0HHR692Fd3tTIjl70yqjG9_dekt9A6I7nGNR49SGHiN8ojbr3c9i2-JgiiuBIQWD0Dtr49-p6ptp78xz0-D2m9DDEoOfPuQ71kFSC924YXuG8zUD00zoC9xrVotxm8mb17vsa9IV04OewjYb2_J5i7XcPlt29K-bxU_3-7SwHXt8h9zLudYe67wqB8N65UxrwLh9S8vBLKNp4lyDzfmdo8TQmOOGsDgb0ofBu9JIjFuC1nJbye4sI9sHwruKC4TT33H6m9K02-tyAAOBNACUhtUAEqcxAAGmAp_AAUIiIA8fo6A-YF9vIFFRPcRr8k_x8W_zIGCOwBLfCl_u7_Dun07KoAAAAR_9U0JwDfcByx7yn6EQKy_yQEAHj9EubfKjHf7fEg7vDPFArlRj8AGfPLR935un8GJ_sgAC2cpSY7OBNACUhvUAIqrwYQDBqgBgAACMIAAODAAABwQQAAgL8AAARCAAAAAAAAUEEAAPDBAAAgwQAA6EEAAIRCAACAwAAAoMIAAFTCAABQwQAAmMIAAJLCAACAQQAAcEEAAIbCAAAQQQAAAEEAAGzCAAAAQAAA4EAAAHhCAABkwgAAEMEAAGBCAAAsQgAA4MEAAIhBAABQwQAAhkIAAFDBAAAYQgAAYMEAAPBBAACiwgAAGMIAABRCAACAvwAAQMAAAODAAAAQQQAABEIAACBBAABIwgAAMEEAAGjCAAAcwgAAkEEAAOBBAACAPwAAAAAAAHDBAABAQAAAoEEAAEBBAABwQgAAAEEAADBBAACgwAAAGMIAAAhCAAD4QQAAGEIAAMBAAAA4wgAAwMAAAChCAACAQQAAZMIAAJZCAACYwQAARMIAAEDCAABgQQAAJMIAADDBAACWwgAA2EEAAIxCAADgQAAAkMEAAABBAAAAwAAAoMAAAK5CAACYQQAAJMIAAIDBAAAwwQAA0MEAAEDBAADgQAAAeEIAANBBAAAUQgAACMIAABDCAABEQgAAUEIAAMDAAAA0wgAADEIAAChCAAAAQAAAgEEAAIA_AACsQgAAmEIAAGTCAAAkwgAAiEIAAAhCAAAAwQAAyMEAACzCAAAcwgAADEIAAAzCAAAwwQAAisIAAJpCAAC2QgAAAMEAAMBAAABIwgAAIMEAAKDAAADAwQAAAMEAAKZCAAA0QgAAssIAAEDAAABUwgAAQEAAAAjCAAAQQgAA-EEAABjCAADgQAAAAEAAABBBAADYQQAAGEIAAAhCAACgQQAA4EEAABDCAACgwQAAAMAAAGRCAACYwQAAHEIAAEzCAADYwQAA6EEAAEDBAABUQgAAGEIAAODAAADAwAAAfMIAALZCAAB0wgAAcEIAAABBAAD4wgAA-MEAABDCAACYwQAAoMEAAKDBAACowgAAcMIAAMDBAABcQgAAuMEAAFTCAACAwgAAMEEAAABAAAAAQAAAFMIAAMJCAAAYQgAAAMIAAJjBAAAAwAAAuEEAAIBAAAAAAAAAkEEAAEjCAAAAQQAArMIAABjCIAA4E0AJSHVQASqPAhAAGoACAADgvAAAEL0AAIY-AABwvQAAcL0AAAk_AAAwPQAALb8AAGS-AAC4PQAAfL4AAMa-AADgvAAA4j4AAOA8AABkvgAA0j4AAJi9AABcPgAA5j4AAH8_AACIvQAAzj4AABw-AAB0vgAAZL4AAPg9AADYvQAATL4AAOA8AAAEPgAAcD0AAEC8AABMvgAAcD0AAI6-AABEPgAAUL0AAKq-AACAOwAAfL4AAIA7AAAcPgAAMD0AACS-AACGPgAAUL0AABC9AAA8vgAApr4AAPi9AACWvgAAkj4AADw-AAAkvgAAuD0AAH8_AADgPAAA4DwAAAw-AAAMvgAAtj4AAJg9AAAsPiAAOBNACUh8UAEqjwIQARqAAgAATL4AABQ-AABwvQAAAb8AAEA8AACIvQAAJD4AANi9AACoPQAARD4AAKC8AAAwvQAA6L0AAHS-AADYPQAAED0AAAw-AAANPwAAoDwAAPo-AACAOwAARD4AAAS-AABQvQAA4LwAAHA9AABAvAAA6D0AAES-AADgvAAAcD0AABQ-AAD4PQAAyD0AABw-AABQvQAAXD4AAGw-AACGvgAAmD0AAEw-AACgPAAAuL0AAHC9AACIvQAAEL0AAH-_AADgvAAADL4AAIi9AAAQPQAAQLwAAKC8AACoPQAAPD4AAAQ-AAAQvQAANL4AAIi9AADYPQAAHL4AAKi9AACAuwAAfD4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=yKJz5IntDW8","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9552406842653182582"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"532472407"},"16881926993381405069":{"videoId":"16881926993381405069","docid":"34-2-17-ZCA6825C437555CFB","description":"How to represent integer sets in computer. Concepts, strategies and computer code are discussed in detail to understand it fully.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"22","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Discrete Math | Computer Representation of Sets.","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9Hdl0W3n-zo\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTY4ODE5MjY5OTMzODE0MDUwNjlaFDE2ODgxOTI2OTkzMzgxNDA1MDY5arUPEgEwGAAiRBowAAopaGh4cnpwZ21neHV2ZnZuaGhVQzlvLTJmNTVoOWx0ejZHX3h4NnZ1Y2cSAgARKhDCDw8aDz8T6hKCBCQBgAQrKosBEAEaeIEBCPr5AAAA8_wIB_cF_gEP_QYC9wAAAPQGAv8IAv8A8wAI_PsAAAAD_e79-gAAAPcA9AL6_wAABPwO_PYAAAASCff99gAAABsR_wD-AQAA9v_0AgP_AAANFQoBAAAAAPIL__76_wAAExP8-AEAAAD2BQj8__8AACAALQix0js4E0AJSE5QAiqEAhAAGvABXPAB-4H14Pr4DOwAQDDcANYGHP88Rdv_wg7k_xXsAgHJEd8A-B7aALYw6f_K__3_FeLo__v25gErz-3-9tUdAPAjBgEn7AUBXBoTAf7bKwDD9vH-qLH1Avvx4wHoGMH-2db5_TILIwHK0LwHNBQYBSP4F_zkDh8A2eAAAMbR_ADvrdAA8Rn6CBTySQDW_gsJJgf7CQL4EPzUNPID987v__z-EvYX89f_Je_1BvcgBAbn0u74JiXTBuUpIv78w80Fx0UY9u3PEu8y1uwK-d0C9BMPCfwX2fgMEOkBCTYU-gcHAgD6-Pn-6v7_8-sECecWIAAtfxD9OjgTQAlIYVACKnMQABpgDfgAIgUb9_IZSOMG7N4C69scud3h5P_u3AD2FOEbGw7kxAvgAP_7Jfm7AAAAECL0HhQA31Df1_Af7RcE4Q8JHBJ_BhbZ7_0BD8spCwXY4iUu_iMJADriAykdEKIwAOoVIAAtFR9IOzgTQAlIb1ACKq8GEAwaoAYAAIhBAADAQQAAcEIAAEzCAAA4QgAAJEIAAIhBAACAQAAAGMIAABjCAABAwQAA4MEAAOjBAAAAAAAAjkIAAHDBAADAwAAA2MEAAFDBAAAMwgAAMEEAAKDBAADQwQAAgEEAABDBAADAwQAAIMIAAMjCAABIQgAAqEEAAODBAADgQAAAIMIAAIBBAACAwgAAwMAAAJBBAADuQgAA8MEAADRCAAAMwgAAoEAAAGRCAACgQQAAFEIAANjBAAAUwgAAgD8AAABCAAAAwQAAzsIAANhBAABAQQAAoEEAAFRCAAAYQgAAAMMAAOBAAAAgwQAAoEAAAHBBAAAcwgAAqMEAAFjCAADgQAAAmMEAABzCAABgwQAAVMIAAKjBAACMQgAAnEIAAJjBAACAQgAAXMIAAHjCAAD4QQAAgMIAAFBBAAAQQQAAZMIAAFxCAAAQwgAASEIAAJjBAAAoQgAAVEIAACxCAAA8QgAAAMIAAEDBAABQQQAAQMEAAHzCAADgwAAAXMIAANhBAAAgwQAAgEAAAODAAAAYwgAAVEIAAGRCAAA8wgAAUMEAACDCAACAwgAAdEIAAKDCAADgQAAAoMAAALjBAACAwAAAIMIAAPBBAAD4QQAAUMIAAKrCAAAwwQAAYEEAAABAAADgwQAA0MEAAADAAADwQQAAkEEAALDBAAC4wQAAgEAAAFjCAADgQAAAQMEAAJDBAADoQQAA8MEAACxCAACQQQAAqEEAAFTCAADWwgAAcEEAADRCAABQQQAAgMAAAMBAAAAwwQAAkMIAAIDAAACAvwAAgEEAAEhCAAAAQAAATEIAADDBAABgwQAAoMAAAJjBAACAwgAAhsIAAOBAAABMwgAAAMEAAADAAADAwAAAbMIAALhBAADgwAAAXEIAAPhBAAAAwAAAbMIAAOhBAADQwQAAAEEAAATCAABAQAAAQMEAAEDBAABMQgAAoEEAAADBAACOwgAAQMAAAEDBAABsQgAAYEEAAIDCAAAAwQAAAEAAALBBAAAcwgAANMIAAFRCAADAwAAAPEIAAIJCAABwwgAA-MEAACDCAADYwSAAOBNACUh1UAEqjwIQABqAAgAA2L0AAHA9AACKPgAA-D0AAJg9AAC6PgAAML0AACW_AACWvgAAUL0AAJi9AAAsvgAAML0AACw-AACYvQAAEL0AAEQ-AACAOwAAqD0AAA8_AAB_PwAAcL0AAII-AACgvAAAED0AAIA7AABwvQAA6D0AADA9AACiPgAAJD4AAHA9AAAQPQAAZD4AABS-AABAPAAAEL0AAIK-AACWvgAABL4AADy-AABkvgAAZD4AAEC8AABcvgAA2L0AACw-AACyvgAAor4AAIq-AADYPQAAFD4AACw-AABwPQAABL4AADC9AAAvPwAAmj4AACQ-AAC4PQAAgLsAANg9AACYPQAAoDwgADgTQAlIfFABKo8CEAEagAIAAK6-AAAcPgAAhr4AACu_AAAQvQAAcL0AAFA9AACYvQAAoDwAAJY-AADgvAAABD4AANi9AAA8vgAAND4AAOC8AADgvAAALz8AAIA7AAABPwAAoLwAAFA9AAC4PQAA2L0AAOi9AAAUPgAA4DwAABw-AABsvgAAuL0AAIA7AABwPQAAyD0AAOC8AAAEPgAAUL0AAHA9AAB0PgAANL4AADC9AAD4PQAAyL0AAAS-AADgvAAAcD0AABA9AAB_vwAAlr4AAIq-AABQvQAAgDsAADA9AADYPQAARD4AAOA8AACYPQAAgLsAABC9AAAkPgAAuL0AAKA8AAAkPgAA4DwAAIC7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=9Hdl0W3n-zo","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16881926993381405069"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"6785340914457960450":{"videoId":"6785340914457960450","docid":"34-10-6-ZF6181B45C534BCAC","description":"Hi there, this is my third and final web lecture for the TU Delft course Computer Organization in the Computer Science bachelor. In this one we examine the Excess-X notation of representing...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"23","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Computer Organization Weblecture 3: Advanced Binary Arithmetic","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vv_hnon5jCk\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTNjc4NTM0MDkxNDQ1Nzk2MDQ1MFoTNjc4NTM0MDkxNDQ1Nzk2MDQ1MGq1DxIBMBgAIkQaMAAKKWhoZHVzb2tiY3ZzdmdpeWhoVUNrSGZoSDZiS0ZtV25ZLWhVVzdUaUFBEgIAESoQwg8PGg8_E5YLggQkAYAEKyqLARABGniB7QT79wP8AOwR7f_9AQEAIAsD-fMEBADhBQP0_vsCAPv_CAMBAAAAB_sEDfsAAAAJ9fb-9v4AAP7wCAH2AAAAKQD9BvsAAAAHDfn9_gEAAAT-BgsD_wAAEQQIEQAAAAACAxX8_wAAAAL49fwAAAAAC_Lv-wEAAAAgAC2c1cY7OBNACUhOUAIqhAIQABrwAWz48_68HOL_DRzG_98fCwKBIgr-F0b5ANX76AGl9egAAA3hAO_d1P8HHBIA0SASABsBxwDx3xD_HuP-_y37BgAi9BsBONv9ADgSKv_-Ben_3gwK_gf4-v_13bgABCLc_h3xEvwI-9wBCuy9CAnXOwMGICoJ__kO_en5CQPu9g0G9_nJ_hcA7wP1ygMB6gcjAQvREf7xGw343Cr1Agf_9fwH8Bb3FQrlBA_g7QvxBvz6898C-gLz3vsd-iEFx_ji_wG_GwD98vD65ez38TXsD_zfBff1-9YDBUEN9QEC9f77Bvjq8tPf7gXoE_wD5xfg8yAALf8hHTs4E0AJSGFQAipzEAAaYEf5ABoE_fPQAjLZBMXU8d8GBcsWydv_6OYACBMPAf8FBK7kFv8BtAf-sQAAAB7f1CwBAAdqC-XcUh7nGbzMzwsLfwshFt4EGenGGfQI3QIAEikvaAAA5cMKNNzCPP0oDCAALUtQKjs4E0AJSG9QAiqvBhAMGqAGAAAMQgAAAAAAAP5CAADAwgAAgMEAAJhBAACyQgAAgL8AAJjBAADgwQAAwMAAAABCAAAkwgAAIMEAAGBBAAAAwAAA8EEAAFTCAADwQQAA6MEAABDBAACMwgAAtsIAABBCAAAkwgAAYEEAAABBAABwwQAACMIAALBBAADAwQAA8EEAANjBAACQQQAAAMMAAEDBAACgwAAA-EEAABBBAAAkQgAA4EAAABTCAAAwwgAAmEEAAMBBAADgwQAAQMEAAEhCAAAQwQAAUEEAAKTCAAC4wQAAlMIAAJJCAAA0QgAAgD8AAIzCAACowQAA8EEAAIxCAABAQgAAKMIAALbCAADYwQAA6EEAAJDCAACAvwAAKMIAAJjCAADowQAAlkIAADBBAABYwgAArkIAAGBBAADAwAAA-MEAADTCAACAQQAANEIAAAjCAACMQgAAkMEAAODAAABwwQAAbEIAAMBAAAA4wgAAkEEAAIA_AAAQQQAAIEIAACzCAABwQQAAsEEAAODBAABEwgAAkMEAAHxCAACAQAAAwMEAAIDBAACIQQAAcMIAAJDBAADoQQAA6MEAAOhBAACgwQAAAEIAAERCAACIwQAAcMEAAMDAAABgwQAA0EEAACBCAADQwQAAgL8AAODAAABgwQAA4EAAACRCAAD4wQAACMIAAEBBAABAQAAAgEEAAKDAAADAwAAAiEEAAIrCAAAwwgAAYEIAAGBBAAA8QgAAIMEAAMhBAACMwgAAsMEAAChCAACgQAAAAEEAAGTCAABgwQAAiEEAACBBAAAIwgAAkMEAAJBBAABEwgAA4EEAADhCAACQQQAAEMEAAODAAAA4wgAAYMEAADDCAABIwgAAdMIAAKBBAAAgQgAAHEIAAJhBAAAgwgAAcMEAALpCAAAQQgAA4MAAAIA_AADAwAAA2MEAAPjBAADIwQAAgL8AAHDBAAAAwgAAgEEAAHhCAADOwgAAAMIAADBBAAAQwQAAkEEAADDBAAAwwgAAwMEAAKBAAACAwAAAkEIAADDCAAAwQQAAgMAAAChCAADKQgAAQEAAAAAAAADAQAAAgMEgADgTQAlIdVABKo8CEAAagAIAALq-AAD4vQAAjj4AAHw-AACOPgAAhj4AADA9AAADvwAA9r4AAI4-AAB0vgAAEL0AAIA7AAB0PgAAFD4AAIC7AADuPgAAEL0AAK4-AADyPgAAfz8AAES-AAB0PgAAHL4AAFC9AACAOwAAMD0AAKA8AACAOwAAoj4AAOg9AAAMvgAAQLwAAJY-AADgvAAAqD0AAKi9AAA0vgAAyr4AADy-AADovQAAdD4AACw-AAAkvgAAyD0AAOC8AAAQPQAABL4AAAS-AADevgAATL4AAES-AACKPgAABD4AABy-AABAPAAANz8AADC9AACgvAAApj4AAOC8AAAQvQAAoDwAAIC7IAA4E0AJSHxQASqPAhABGoACAADivgAArj4AAKK-AAApvwAAqr4AAIC7AABQPQAAqL0AAFA9AACmPgAA-L0AACy-AAAMvgAA-L0AALg9AACgvAAAmL0AABM_AAAQvQAA7j4AAIY-AABQPQAAUL0AADC9AAD4vQAAqD0AABC9AABEPgAAur4AABy-AABQPQAAuD0AAAQ-AACoPQAAyD0AACy-AACOPgAAij4AAI6-AADovQAAQDwAADA9AABAvAAAuL0AACQ-AADIPQAAf78AAIC7AABkvgAABL4AAAQ-AACYvQAAyD0AAKI-AAAwPQAAJD4AAIC7AABMPgAAXD4AAIA7AABAPAAAED0AAIA7AAAMPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=vv_hnon5jCk","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["6785340914457960450"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1539749077"},"3530026766274700962":{"videoId":"3530026766274700962","docid":"34-11-12-ZCD85C2FFAEF4EA89","description":"\"️🔥Purdue - Professional Certificate in AI and Machine Learning - https://www.simplilearn.com/pgp-ai-ma... ️🔥IITK - Professional Certificate Course in Generative AI and Machine Learning...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"24","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Quantum Computing In 5 Minutes | Quantum Computing Explained | Quantum Computer | Simplilearn","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=X8MZWCGgIb8\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTMzUzMDAyNjc2NjI3NDcwMDk2MloTMzUzMDAyNjc2NjI3NDcwMDk2MmqIFxIBMBgAIkUaMQAKKmhoZnZ6Z3VudG1jYmt3dWJoaFVDc3ZxVkd0YmJ5SGFNb2V2eFBBcTlGZxICABIqEMIPDxoPPxOqAoIEJAGABCsqiwEQARp4gQMC8wP9AwDw_wP-_wIAAQsKBwD3AQEA7gT8-AUAAAD7APf__AAAAAj7_gYBAAAA9_77CPT_AQAGBf37-wAAAAP1DfT-AAAAARAABP4BAAD-_Pf--QEAABf6_gwAAAAA8P0C8gD_AAD9BP79AQAAAAYCAQAAAAAAIAAtdUveOzgTQAlITlACKoQCEAAa8AF_7P8D1PcO__sI8gDtCt4BjgAB_1EK1ADH9AkAsvbrAMgqHQHl7hf_CAUtAOAnJwADFPX_ThIS__X2__8nHgkA8QsfADLw_AAQBwwACfL9__0S8P8BCQv-CvkHAggk8QAa5xkA9yPP_gAF5gMABRUCCBX7_gsZEAHyFvX_8Sj8BggAEf4VCPr96e0MAQf2IgME8_D_8vX8BhI_9wAd-fkJ7g35AxD35AAe8fb52fwG-_PwGvk9H_IE_eUAB_kZAf_h5gj4Jgr4A_3u8vQB-wUCBuMKBt4RBvjwG_AJA-z5-wMPAv_s9xD2BPoS_Rfq-_0gAC3Ybjc7OBNACUhhUAIqzwcQABrAB9nM4b4mv2q8GfsWvMnKbz3SkqI8ykMVO83Aor0zJhO9lD8pPH-iEj6Gjh090qZvvfjBgb5_6Pi8RGlPPTsZbD6uDOo8gowlPCv-ur3M90I9mzkEvRQHUL6Tdn48ipoevbYvAD6UUHU9CYz1O5V6Wz0qnxc6_sG2PMoufb1J56474JcfvVsLbj2EDe-99zjqOdfqwT038JS9CekfPARXCT7rrVw8L0RDuq0bCr3Ivlo9PJ2QvPoStb1lI2u8sg3BPOqv9z0xslE6yE0DPUELjj0nUEQ9hLCkPCkPYb1ANfs793bLu8x6ET4WhxM9fJOLvGRa-z20FjC8aSYOPRbz2LxB-bY9raexuvfWtj2q8NQ5aFcEOxfvF7733Y49alC0PHxppb3RdJY9a9hKvLk7hjwgruI7HrV4PA9WbT2FIde8LzylPAjNST1-baI86v_FOzTO8Lz_A-w9IKr8u4aYtj0KZIs9_K3XuyqOI723GJK9Er9_u67q0TxKxaC9MR2EPLpoSLyM2dK9jXRQPGBnhD35Eb-9PWsSPLVGLr0UGUe9ButrOkSxSz15XRy8_9YIu7jGjD0GzK09DezGOyh22bxXCKu9NIiLu8M-mz0TjzW9JSQSPF3alT1DHaY9HfovOtjugzyNXg29oJXNu_7Zuj0rEgM-y7FbufvzI7ycGX0876vVu2IbpzzTcAU94BZJuvOA6Ds6fE29AECpu2IvVD0po8C8v3cju4Ab2Dxob7W9dDtGuaRUQj3pZlo8Ld4DunltID1hj7S9W9CXObHiL7z4MrS6Uad6O2xaTr2oTiw8qKqOOYiZYj2XKse94QbXt3_y3jta6xA9ef-_ueYEbT1DhbS8QBUauvUUGT3YDik7gGTSuC9Q8r2oXJy9Q4C_t8w1Vr3Wi-M7RkoAuQsFkTyfMd08g0-UN-sB8z0Xq1e9bmqbt_EMPz0yqQK8RAyruBoAxTyNiWM9kX06NyRGzzxuXIW9SVyfONElpz3O2Wc9_o8kORHBjb26VoE9SeLlN9H9sT3SPQa9SEUQOPX_QzvHeWS9r2O1t8lDOrwfWZo9N_MGN0XLi713YRK86NQ7tn6nLr1E0-O8WO-RN-GIBD1JyQG9N_maNkpzUDxZ6g89UpiGOJlybz3nozG9gAAeuFBxXD146rY8R2aBOIsINbyWAcq70BxAN0FC1jt89re8bk-Ytxb0g7wklQ69Sw4xuMwhDr2xMyU9gNUKuAcLp7y9_O49g7QeuTXaID0LUp88q30auI2R9Doexws8WvCXOCAAOBNACUhtUAEqcxAAGmBF_AAvBPniBvND39_u0_cM_f3v79gU_xEvAP0PA-vyJve-Dx8AFPE0E7oAAAAQ_P4PFAD0ZAWt3QLvCfih3PkxFX_5Exj0GRvuvx0G_-bi_R4nSRsAHgfMGjkly0rx6ScgAC0YJzc7OBNACUhvUAIqrwYQDBqgBgAA2MEAAAjCAACSQgAABMIAAODAAACIQQAA2EEAAMDAAADwwQAAAEAAANhBAACEwgAAlsIAAKjBAADQQQAAQMIAADhCAACSwgAAwMEAALjBAACQwQAALMIAACDCAACEQgAAgMAAANhBAAA8wgAAsMEAAChCAABwQQAAAEEAAJRCAAAcwgAAbMIAAJbCAABMwgAAQMEAAK5CAACgQgAAMEIAAEDAAACGQgAAAMEAAABCAABIwgAAmMEAAPjBAABQQQAAoEIAACRCAABUwgAAIMEAAIDAAABEQgAAnkIAAIDBAADowQAAUEEAABzCAACAQQAAFMIAAARCAABIwgAAgMIAAExCAAAYwgAAGMIAAJLCAABgQQAAUMIAAHBCAABUQgAA4EAAABxCAACwQQAA-sIAAHDCAABMwgAAWEIAAODBAABQwgAANEIAAIBBAACQQQAAAMEAADBBAAAQQQAAREIAABBCAAAgwgAAcEEAAKhBAADgQAAAPMIAAAxCAACcwgAAMMIAAJJCAACCQgAAwMAAALTCAACAvwAAsEEAAKTCAADgwQAANEIAABDBAABQQgAAhEIAAERCAACIQgAAYEEAAODBAADYQQAAwEAAAJhBAABEQgAAoMAAAEBAAAAkwgAAkEEAAJjBAACAwgAAPMIAAHDBAADQQQAAoMAAAKBAAABQwgAAJMIAACDBAAAAwAAAgsIAAEBBAADAwAAACMIAAPBBAACYQQAAyEEAAKTCAADgQAAAMMEAAIA_AABwwQAA2EEAAODBAAAcwgAAiMEAALhBAABwwQAAKMIAAADBAAC4QQAA4MEAANjBAAAAQQAAmMEAAOhBAACAwQAAoEAAAITCAABoQgAAQMAAAPDBAAC4wQAAmEEAAFRCAABEQgAAJEIAABzCAABQQQAA6EEAAMhBAAAgQQAAgEEAAKDBAABAwgAA0MEAALBBAACwQQAAyMEAAKBAAAA4wgAAHEIAAEhCAADAQAAAmMEAAHxCAAAAwQAAuEEAAJTCAAAQwgAAQEEAANDBAACAQAAA2MEAABDBAACwQQAA8MEAADBBIAA4E0AJSHVQASqPAhAAGoACAAAcvgAAmL0AABC9AADIPQAAmD0AAFw-AACgPAAAE78AABS-AADIPQAALL4AAHA9AAA8vgAAbD4AAAS-AABQvQAAoj4AAOi9AABcPgAALT8AAH8_AAA0PgAAfD4AAKC8AACOvgAARL4AAKC8AABsvgAAfD4AAOY-AAB8PgAAXL4AAMg9AAAsPgAAXD4AAMg9AAD4PQAAuL0AAMq-AABsvgAAqL0AAAy-AACIPQAAPL4AAHA9AACYPQAAdD4AAKq-AABAPAAAGb8AABy-AACSvgAA6D0AAEQ-AADgPAAAgLsAAG8_AABEvgAARL4AAFQ-AADOvgAAfD4AAFA9AAB8viAAOBNACUh8UAEqjwIQARqAAgAAoLwAADQ-AADgvAAAS78AAFS-AACavgAAJD4AANi9AACIPQAAgLsAAFC9AAAkvgAADL4AAJ6-AAAwvQAAyL0AAJq-AAATPwAAmD0AAM4-AAD4PQAAdL4AAEy-AADIvQAABL4AALq-AADgvAAAqD0AAOC8AABwPQAAFD4AAIA7AADgPAAAgj4AACQ-AABcvgAAuD0AAFC9AAC-vgAA0j4AABQ-AAAwPQAA-L0AAAQ-AACOvgAAML0AAH-_AAAEPgAA4DwAADS-AAAMvgAAUD0AADA9AACgPAAAZD4AAPg9AACovQAAPD4AAFC9AADovQAAdL4AADQ-AADgvAAAgLsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=X8MZWCGgIb8","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3530026766274700962"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2572809223"},"31035901935951200":{"videoId":"31035901935951200","docid":"34-3-2-Z81F787115344580A","description":"An excellent summary of the field of quantum computing. the potential applications of quantum computers including quantum simulation, artificial intelligence and more, and the different models...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"25","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"The Map of Quantum Computing - Quantum Computing Explained","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-UlxHPIEVqA\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaEwoRMzEwMzU5MDE5MzU5NTEyMDBaETMxMDM1OTAxOTM1OTUxMjAwaocXEgEwGAAiRBowAAopaGh5bHBvd2pqdGFmZHNiaGhVQ3hxQVdMVGsxQ21CdlpGUHplWk1kOUESAgARKhDCDw8aDz8T1w-CBCQBgAQrKosBEAEaeIH8CfUB-wUA7foH-wQAAAAMBf8C9wAAAO4E_PgFAAAA8wD-_v8AAAAJ__kD-gAAAPf-_Aj1_wEABgX9-_sAAAAG9f37BAAAAAIFAv8H_wAA_vz3_voBAAAO_gEIAAAAAPH8Cfz-AAAA_v3-_QAAAAAGAgEAAAAAACAALWA94Ts4E0AJSE5QAiqEAhAAGvABf-jRANbq5P_mC-wA_vnVAYkKKv8-HuEA3AskAL_q4AHn5A4A6OABANTpE_-9BBcA5QXH_y0Y4QAXAOb_L-n4AP7gJwFW-PgAA_LqAPjyEwABA_ABIOkvAi8U_wL7Cf39FQAr_fzd3wEK67oJCR40AxhKCwMDCgoC5hUbAPMcCf4l8_QB6BAF_BAA_ADjDxIIHxfkA_fv3wTuYRf53fwDAtP0_PwS2_UCAQTmA7n4Cfz0_BsCIBLwB-IE9_4hGfMCvxcLAxgK-QgPE_P1CvXj-_7uAQ3T_AAEE_zzCOvmAPz6_gXy4xQJ9OYbBPcqCfwCIAAt0pcWOzgTQAlIYVACKs8HEAAawAeM9vi-XgImPPEN6rzB4iA-byBuPARL_TtxydE9BOYBvaJ5wrvakB8-pgUzO-etmTqWXVC-kOzbvIkopjy14ZA-uhE2vRqJMD2G4wm-3yD1PKwBKr3gu22-XoqWPRa5TLx22mA79tEpPXIojbyydZo9pcvRvC3oAbxvsQy9VlsbvVI4zLwzbMQ9HwJdvdrujLj-1UM9YD55vXzWtTyFOIA9b960uq7XFL0Ri9i8xKK4PdMOpDy6Z629QVIavZnZQjzb74o9Y8MpvewY0zv75M089kYNPTTF8zoj87g988kqPfdcIT2BiYk9hBJBvJWsVLxMxYY8MjoAPb-JVzwE5qE7Xgc4vToFuTyI6he9CACOPOjjEDsdPd69vsAMPrsIC7rt-4a96Usqvbd0sbznOig9FzY5PR-Cy7vEEDQ9BF7eO2f_TTwk0Q28mWgrPViQZjxVZIk99pfdPZjyRrynrRA6uYy7PVpiijwYSye9g1nXPMnCvDwWO1A8cIUmvU0nvrzcHm49ind7vZAJQjwqbxc-VhnMvffDFbtOpAo9GJ-dvS9pjDw9FUY96munPHoGQ7wiiuk9_fsnvcH-a7x96EK98Dscvf2N9zma4wE99-civctkuDvpfD09bzsePYDqozsKR4W9fyIlvUdmorseMmU9xzX0PLZi5jvy5B-9uDa3u1HIZ7vIk8m8sOU1PUatFzxdab48xJZ-veC3JbpRl9Y85dFtvaAaTLvkNWq9GWayPFAeODmCENq8J7zkPX1SiLmTYpE9poE_vYOTrLkMEhE9KlICux5HlTgbaB69kGzJvPelCzl1-YA962f7vFE5jbiaLhq9uU6oPRyCM7hnKD4-xAWgvHONCjlf3Hw8NeWUvIYCjLgfYqi9PpB-O2WfyrlLRBO93JVnvfJHAbnSzG68kvLJvK3Y7bj4CaY94ohfvWsmy7nTUZk9Ib3yPKqPALpQefo5mFqlvL4b0DgRoFA9ukmcvaiweTl0PqE8hX-cPYyWRLlySzC9EkO8vJzTXrez00o9rZ2PO0RM9rYQrK8928PevcifPLgYyYM9a8sKPc6hMresCZi9SBC2OwSmwTfFQii9P2A0vWrYlTb2xjq9SJFvu3v9xriNk-e85NPru3RXdThPiMo8i8AYvLi2trgdHKy8EwPuPHncTDYylO68uvi7vTYXJrimzLI8H28NvB13pbfW6sY8e-1jPO5Porj5ZOU9yNmaPbVA1jau75O9OuPAPR4C6bgtZyW8nuLCPbB8K7j4-we8pdCDPFDjNzggADgTQAlIbVABKnMQABpgMRcAKRIM4QnvNvP04fT0AvLr9vbJEgAFDwACBATxDAX9xQUIABHvHvnIAAAAFvUIKPoAB00BuOEJ8PrssNnvISB_CAUe9xUU3c4KAhLy9QDzGhIXACv71RwyJeA5_PwfIAAtGbRbOzgTQAlIb1ACKq8GEAwaoAYAAIDCAABgwQAAUEEAAKhBAAAwwgAAoMAAACRCAABQwgAAwMEAAEDAAADYQQAAbMIAADTCAAD4wQAAiEEAAGTCAAA4QgAAUMIAAKDBAAAAQgAAoEAAAGTCAABEwgAAeEIAANjBAACQwQAAlsIAADxCAACAvwAAhkIAAIDCAABwQQAAyMEAAADBAAAcwgAACMIAAIBBAABAQgAAyMEAAJZCAADgwAAA0EEAANBBAADAQAAA8MEAABBBAAAwwQAAiMEAAExCAABIQgAAKMIAACjCAADgwQAA4EAAAKBBAAAAQAAAVMIAAKjBAACoQQAAAMAAAABBAAD4QQAAQMEAADTCAACAQAAADMIAALjBAADIwQAA8MEAAIzCAABAQQAAUEIAAABAAADIQQAAmMEAAKzCAADCwgAAgEAAAEDAAACAPwAAgsIAADBBAACgwAAAAEAAAMjBAABUQgAAuEEAAEBAAADAwQAAIMEAAPBBAACAQQAAKMIAAJDBAADgQAAAQMAAAIjBAACGQgAAqEEAAIBAAACMwgAA8EEAAFBBAACEwgAAmsIAAOBBAAAsQgAAoEAAAERCAACAQAAAkEIAAGRCAAAwwQAAkkIAACBBAACGwgAAgEEAADTCAADQQQAAwEAAAJBBAABAwAAAUMEAALTCAABAQgAALEIAAKjBAABgQQAApMIAAEBBAABAwQAAEEIAAIjBAACGQgAAAMAAAFBBAACEwgAA4MEAADDBAACOwgAAkkIAAJhBAACowgAAmMEAAIA_AACgwQAAwMAAAARCAABwQQAAlkIAACDCAABAwAAAEEEAANjCAAAQwgAA4MEAAODAAAAwwgAAQMEAABxCAAD2wgAAgEEAAODAAAAAwQAAiMEAAMBAAAA0QgAAcEEAALhBAAAgwQAAgEEAAJjBAACAQQAAnsIAAPBBAAAAQQAAAMIAAEDCAABwQQAA-EEAAIjCAAAgwgAARMIAAEBBAABcQgAAEEIAAJLCAACKQgAA8MEAAEDAAABUwgAAosIAALhBAACQwQAALEIAAOBBAADgQAAAwEEAABTCAADQwSAAOBNACUh1UAEqjwIQABqAAgAAmL0AADC9AABAPAAALD4AABC9AACgPAAAgLsAAAu_AAC4vQAAgj4AAPi9AABwPQAAJL4AAIY-AADIvQAA2L0AAPY-AABwvQAAoDwAAOo-AAB_PwAAUD0AAEQ-AABQPQAARL4AACy-AADYvQAAVL4AAIo-AAB8PgAARD4AAI6-AADYPQAAED0AAKg9AACgvAAA2D0AABS-AADSvgAAlr4AAOA8AAAcvgAAND4AAES-AAAwPQAAUL0AAHw-AABkvgAAmD0AAPa-AAC4vQAAhr4AADQ-AABkPgAA4LwAAKA8AABtPwAATL4AAAy-AAAsPgAAir4AAIC7AAAUPgAADL4gADgTQAlIfFABKo8CEAEagAIAAFS-AAAMPgAA6D0AAE2_AACgvAAAtr4AAMg9AAA0vgAAmD0AALg9AACgPAAAiL0AAEC8AACevgAAcD0AANi9AADovQAADz8AAEw-AADKPgAAoDwAAKC8AAAUvgAAgLsAAJi9AACqvgAAMD0AAMg9AAAQvQAA4DwAAKg9AABQPQAABD4AAIo-AABcPgAAZL4AAAQ-AADYPQAAwr4AAMI-AABQPQAAgDsAABS-AADIPQAAXL4AALi9AAB_vwAAgj4AAKi9AAAUvgAAqL0AAOC8AAAkPgAAMD0AAOA8AAAUPgAAoLwAAFA9AABAPAAAXL4AAIK-AAAwPQAAmL0AAAQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=-UlxHPIEVqA","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["31035901935951200"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"119592193"},"2336400785810493745":{"videoId":"2336400785810493745","docid":"34-9-7-Z8F1014B89CA1EF35","description":"In this video Timothy Capelli investigates the problem 1.19 from the Book, Theory of Computation by Wayne Goddard. We see Tim's program that is created to test cases, i.e. strings, where the...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"26","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Theory Of Computation Exercise 1.19","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hjBEtZElA98\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTMjMzNjQwMDc4NTgxMDQ5Mzc0NVoTMjMzNjQwMDc4NTgxMDQ5Mzc0NWrBDxIBMBgAIkUaMQAKKmhoZGp3dWx0dWRxd3JzcGNoaFVDTHIzM1pTUUZBUkg3UVBaNnFvN1hSURICABIqEMIPDxoPPxOjAoIEJAGABCsqiwEQARp4gfcF9_z-AgDz-QIA-gMAAf4L-PL3_v4A8g8F-QQBAAD49Pbv_wAAAAsK-Ar8AAAABwYDBfn9AQAQ-_75AwAAABHp_Ab_AAAABRQA-v4BAAD_8vsBA_8AABf5_gwAAAAAAQoL-f7_AADzEPIIAAAAAAwE_fsAAAAAIAAtWiDYOzgTQAlITlACKoQCEAAa8AF_6A4AqvgR_SQi6QA0CdoBj_oP_0cK4ADL4REBwOrgAfQcCADg6hz_8S8HAcgB7__B7PMABvz0ABfx-_8e9Cj_FAT3AEff7wE-FQP_4gr7_tD-CwAUCCsAGvQZADsHz_4D2AT_9griAuH35AX-BSwAFv32_B4C7ALhNAr9_jD4-wH97v63IQ0D5ekOAez49wZH5d8FJwDmAgQv_gP7ABEHAfANAjoK9_0z-uIC8Qb8-vQdDQgRGPAK2BoQ-1It-wPC9gAFGOX1Aun59PpDCxAHF_sgAOfdBRECBO7u4vUEA9YTDwUAAPMDIP_0Bw716AEgAC3RQhc7OBNACUhhUAIqcxAAGmA3CAA_Cz749iZYAQmx4Bfj9P0GILEP_839_wclA9r6-s2uAQz_EqwFAJ8AAAAMG87_FwADf9m09Anl6QjK3ycBGU3TOf3K3CjXncwUG-esDPoWKDQA-PyLBhEApnMjBvkgAC1hihY7OBNACUhvUAIqrwYQDBqgBgAAAEEAAPBBAAAwQgAAEEEAADxCAAAgwQAAyEEAAOjBAACAwQAAlMIAAHBBAACgwQAAuEEAAIhBAABwwQAAbEIAALjBAAAQQQAAgMEAAOhBAABAwAAA8MEAABDBAAAoQgAA6MEAAIBAAACIwQAAgL8AALhBAABgQQAALMIAAFDBAACIQQAAUEIAAIBBAAAAwgAAUEEAAOBAAABgQgAA4MEAAOjBAAAAwgAAPEIAAOjBAACqwgAAoMEAAIxCAACgwAAAYEIAAFjCAADIwQAACMIAAOjBAACaQgAAAAAAAMhBAAAAwgAAksIAAEBAAADQQQAAJMIAAFjCAADAwQAA6EEAAMBBAAAgwgAAAAAAAOjBAACYwQAA2MEAAJDBAABQQQAAgsIAAMhBAAAAQgAAVMIAACBCAAB8wgAAgL8AAATCAACYQQAAcEIAAFDCAADgwAAAJEIAAChCAABoQgAALEIAABxCAACIQQAAgL8AAEhCAADgQQAA3MIAAAhCAACgwQAAgEEAAFBCAADAQgAASEIAAAjCAACowQAAmMEAAOBBAABQwgAAIEIAAEBBAACIwQAAgEAAAPBBAAAUQgAAAMEAACDBAAAAwQAABMIAAJDCAAAoQgAAwMEAANhBAACIwQAAkMEAAJjBAABAQQAAvMIAAOBAAAAUwgAAcMIAAL7CAADwwQAAAMMAAGBBAAAgQQAA-MEAANhCAABwwQAAoEAAAEBAAABQQQAAAMAAAGBCAACkQgAAkMEAAFBBAAAwQQAAuEEAAHBBAACgQAAAoMEAACBCAABEQgAAQMIAAKjBAACAwQAAQMEAADhCAAC6QgAAmMEAADTCAADQQQAARMIAAGjCAACAQAAA2MEAAIBAAADQQQAAjkIAAEBBAACmQgAAoEAAABhCAADQwQAALEIAAHBBAABIwgAAOMIAAHDBAADwwQAAQMIAAOhBAACGQgAAVMIAAHzCAABgwQAAkEEAAJhBAADgQQAATEIAAFBBAAAYQgAAkMEAAIjBAADQQQAA-MEAAADBAAA4QgAA-MEAALxCAAD4QQAAmMEAAOjBIAA4E0AJSHVQASqPAhAAGoACAAAwvQAAPL4AADw-AACAOwAADD4AAAw-AABAPAAAAb8AABG_AADIPQAAUL0AAHC9AACAuwAAoj4AAOi9AAAcvgAABD4AAIC7AABMPgAA4j4AAH8_AADgPAAAoj4AABA9AAC6vgAAUL0AAAQ-AACAuwAAPD4AAJg9AAAMPgAAMD0AAAS-AADoPQAA-D0AAFC9AACIPQAARL4AAIK-AAC4vQAA4LwAAPi9AABkPgAAFL4AAKK-AACiPgAAED0AALi9AACgPAAA5r4AAFC9AAC4PQAAkj4AABQ-AADYvQAAmL0AAFk_AAAQvQAAuD0AAOA8AAAMvgAAMD0AAOC8AABAPCAAOBNACUh8UAEqjwIQARqAAgAANL4AAKA8AAAQPQAAMb8AAEA8AABAvAAADD4AAJi9AAAMvgAARD4AAOC8AAA8vgAAuL0AAI6-AACgPAAAEL0AAPg9AAA5PwAAcD0AALo-AAC4vQAA-D0AAKA8AAAwvQAAiL0AAEy-AACAOwAAmD0AACQ-AACAOwAAqD0AAPg9AAC4vQAAir4AABQ-AAAQvQAAkj4AADQ-AACqvgAA-D0AAKg9AABAvAAAZL4AAIA7AACovQAAND4AAH-_AAAkvgAAUL0AADw-AABsPgAAyL0AAFA9AACAOwAAgj4AAKA8AACgPAAABD4AAJi9AACAuwAABD4AAFw-AAAEPgAAmL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=hjBEtZElA98","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2336400785810493745"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"266510542"},"13466659283284057334":{"videoId":"13466659283284057334","docid":"34-11-8-Z780FD3B80003B722","description":"This quantum computing course provides a solid foundation in quantum computing, from the basics to an understanding of how popular quantum algorithms work. Quantum computing leverages the...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"27","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Quantum Computing Course – Math and Theory for Beginners","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tsbCSkvHhMo\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTM0NjY2NTkyODMyODQwNTczMzRaFDEzNDY2NjU5MjgzMjg0MDU3MzM0aogXEgEwGAAiRRoxAAoqaGhjeWxnZXN6YW9nYnFxZGhoVUM4YnV0SVNGd1QtV2w3RVYwaFVLMEJREgIAEioQwg8PGg8_E4MtggQkAYAEKyqLARABGniB9Pz2_gH_AOz6CPoEAAAAEwIE-fUBAQD1APT0AwL_AAH5APf5AQAACv_5A_kAAAAOCPgG-gAAAAwQ7gADAAAADPf_7wAAAAAAGPUH_gAAAAHw-gP2AgABFv4GAwAAAAD9Bvf6AgAAAP8HBf0AAAAAEwsA-wAAAAAgAC2FQdE7OBNACUhOUAIqhAIQABrwAX_eCQHt6ugB5efpANoM6wGiEgsA_SzZAMPdAgHSE90AAAPxAOwQ7QAKBhP_og7xAR_v3v8N3gQAMuL9ADz58gDd9AgA7uv7ATAiFQDxAvT_4x8Q__rz_ADm49b_BB7f_hvzEPwG8-8AGRPTAQ3-NQH_FxMEGvD0APjH9gPv9wwFCwTl_fUS-wYC2__67AYgAfrG8gEKJAb66_7kAwELCfwJ4vv7AxboBBcd9woEGvwAzPwCAd3sCAoSBhAF4iDp_-nYD_zb_Aj4_O4FBBcZAPnnAPgECej9_v4B__j-_gf60gX6A94S_vzm9f0M8esD-CAALTLpLTs4E0AJSGFQAirPBxAAGsAH6WLTvorwBT2QeMM8HMg_vQnqjDuczC69_YUevgFqajzh0Fu8FHoNPo0Oozw6At08NE0ovlkuwDv0CY88_b10PpJUS70Dsew8ehcvvgg8MD0pn9S8Efw_vn9geD0QRBK8uYZpud2D6zsp2DW8snWaPaXL0bwt6AG8W68uPTda6Tv45129EUKWPevag72aO9-89JX2PHsgCL14j308dzHtPY8AKb12lhE8gN4KPdSZ_7uE1G07FpJivRFedbs-9NO8HejBPYb8frnqSY88ic8NviJ8jr2Yb5g8bAeDvc0W2jyWMIm8aKPEPFwo8LudRRS9GrWcPTHwt7ww4Sc70CpDvphzn7wPqIg8LTfCPblGVT34rpw8xmGqvatbnT3u1Jo7sTfMPDJ2gjyK9T-6MGOqPaGRmTwmaaM8feuDPCyrizfaNtI7duEHvSoynz0ZtGs8pNQSPM5Csbzej9u8_0F_vNADhLwyjGC8Ig9uvT1ZG70dg-M6HVpkvHmHBT3C7I66871QPSJrETzWbn0732bGPTm1872HHxg8CSJBPN5cN73LCeK758xRPbigiD1ZfR68QZSJPW0lL707SPw6P531Obt7QL3JsOk73035uuNMOL1lGcG62fWxvUhHKbojMBm62L_GvMTeVTx_8TG8oMz1PHDKwTxvuI-7KMyVvYD5ILzLQ647lWulPHmLnD1l_nI7h8uAPWmOLDwB12C6ElDBPcF4Qb1h0wq6PgNquzfh3r3ZfM651u4LvBUb6Tk2eiw6PL3yPUrIUb1XwY45SqFnPekHmjzzGic5X61_vS7isD0JAjo5U7MnPdKQTL0zGpQ4VBv8vWK7-70T0_I5sR5SPO_PAD2FS5k5Vxa7vDs_ID2L5SA6qQQave8HV71_5kW6N1OhvLOvFTn9MjU58UWQPVKtTzyesr84WaKIPQSCrTuOVvc45iqMPLXknL186IM44xaYvNeufz3XUzg4CrWquzOx77wSTry4nKglPWEoET3NQ-U4P8l4PJ4Bvz17QIe2HpY8vMbZtjupihq489r2vAj5yr1ah3u2cHATPRFcQDzq3YA5WjSjvXxaSj1yIGw4mko6PYFWQ7vfTpE4plyGPcOb9Tw5waS3M_xXOnaKFb295DA4glVFPnTINz3J3IS5zcd6vdMV7L3mm_i4iZ_7u2aBW71MZfC3jkTDPJRnfj3mg4w2YQZ5PfM6Er5L56m4Iv_sPTUpBT7zflu4uhOsvHLcuT10MBi5OE9QvTjWCj0QdqY2vUAfveudG7yDUDg3IAA4E0AJSG1QASpzEAAaYDX2ACIFJ-oFCizkz9zX--b3A-Mdz_P_BA4AF_3tAQ0F7MwY5wAPxTPhtwAAAC0B9g0DAORmy67hGQkdCLPHBh4df_MLF-PxGfvF8An4-P4d9ihDOQAT-sIcHiPaVfM1ICAALbUiNjs4E0AJSG9QAiqvBhAMGqAGAAAQwQAAwEAAAGxCAABgwgAA0EEAAADCAACwQgAAAMIAAHzCAAC4wQAAgEEAAKjBAAAQwgAAEMEAAKhBAAAMwgAAsMEAAIDBAADwQQAAwMAAAFDCAAAUwgAAkMEAAEBBAAAAwQAAIEEAAKBAAACAPwAAQMAAAEhCAACQwgAAwEAAABTCAACAQQAAcMIAAFTCAAAwwgAAlEIAAIJCAAAAQgAAaEIAAGBBAAAoQgAAoEAAAIDBAACgwgAA4EAAAADBAACUQgAACEIAAPDBAABAQQAA0MEAAODBAADYQQAAoMAAAADDAABAQQAAEEEAAHBCAAAQQgAA8MEAACDBAAAwwgAAgL8AAMrCAAAYwgAAmMEAAADAAABEwgAAwkIAABxCAACUwgAA2EIAAKDBAABcwgAAHMIAALhBAABQQQAAXEIAALDBAAB0QgAAwMEAAKDBAAA8QgAAiEIAAAxCAADwQQAAUEIAACBBAAAYwgAAqkIAAEDCAAAwwQAAVEIAANrCAACwQQAAHEIAAIBCAACAPwAAUMIAAEDBAABgwQAAeMIAAPDBAAAEQgAAoEEAAJjBAABAQAAADEIAAHxCAACIQQAAFMIAACDBAACEwgAA0EEAAMhBAAAAwgAAAMEAAEjCAABowgAA6MEAAHBBAAA8wgAA4MAAAEBBAACAwAAAGMIAAMjBAABAwQAACMIAAMBAAAB4wgAAJEIAAOBBAAAkQgAAQMAAAPhBAACAvwAALMIAACRCAACgwAAAZEIAAATCAACKQgAAAEAAAOjBAABQQQAAgL8AAABAAACQwQAAAEAAAEBBAAAMwgAAgEAAAFzCAABgwQAAJMIAADjCAAAAQAAAfMIAAERCAACYQQAACMIAAEBBAACAPwAA2EEAAHhCAACOQgAAUEEAAAxCAABgQQAAGMIAAAjCAABEwgAA0EEAAOjBAAAswgAAoMEAAGxCAACYwQAAMMIAAOjBAACIwQAAMEIAAEBBAABYwgAAAAAAAODAAAAAQQAADMIAAEjCAACowQAAQMAAAAxCAAAAQAAAMEEAAFDBAADowQAACMIgADgTQAlIdVABKo8CEAAagAIAAIC7AAAcvgAABD4AAKg9AABwPQAAXD4AAIA7AAAdvwAALL4AALg9AABQPQAAqD0AAOi9AAB0PgAANL4AAOi9AACqPgAAQLwAACw-AAAbPwAAKz8AAKg9AAB0PgAAPD4AADy-AABEvgAAVD4AAOi9AABUPgAAdD4AAHw-AAAkvgAAoLwAADw-AAC4PQAAqD0AAIg9AAAsvgAAjr4AAAS-AABwvQAAur4AAPg9AADovQAAoLwAAKg9AAAkPgAAjr4AAFA9AADKvgAAEL0AAGy-AAAkPgAA-D0AAOg9AABAvAAAfz8AACy-AABEvgAAJL4AAFS-AACCPgAAcD0AABC9IAA4E0AJSHxQASqPAhABGoACAAB8vgAAmL0AAHC9AABJvwAABL4AABS-AAC-PgAATL4AAOg9AAAkvgAAcD0AAES-AACYvQAAlr4AAHA9AAAwvQAAML0AAAM_AADoPQAA6j4AANg9AACAuwAAPL4AABC9AABwvQAAfL4AAOA8AABwPQAAMD0AAKA8AAA0PgAAiD0AAHC9AABQPQAAsj4AACS-AABEPgAABD4AAO6-AADmPgAAhj4AAEC8AABQPQAAJD4AAFS-AACAuwAAf78AALg9AAAwvQAA-L0AAOA8AACovQAAcD0AANi9AADSPgAAFD4AAFC9AAC4PQAAUL0AABy-AACovQAA6D0AAJi9AAAkPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=tsbCSkvHhMo","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12201575831994874959","13466659283284057334"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"339140697"},"6511982993719884630":{"videoId":"6511982993719884630","docid":"34-3-0-Z8EF87AC068179D48","description":"Multiplication example for a couple of matrices divided in 3x3 blocks each. Cannon's algorithm for matrix multiplication: an animation (1.0) Parallel matrix multiplication. Multiply matrix in...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"28","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Cannon's algorithm for matrix multiplication","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sB-Dh4DsOy0\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTNjUxMTk4Mjk5MzcxOTg4NDYzMFoTNjUxMTk4Mjk5MzcxOTg4NDYzMGqHFxIBMBgAIkQaMQAKKmhobHhiZWF2eW5kbWJleGJoaFVDM2hxTUZSc1NuWXRXNUxhLWFQT1Z0ZxICABIqD8IPDxoPPxMtggQkAYAEKyqLARABGniB7gX8BQH_APb0EAj6Bv0CHA4ABvQDAwDzDvb0AwEAAPH2CvIIAAAACwACAf0AAAAGGPv5__0BABYJ_f8EAAAAGvb0Cf0AAAAPDPsD_gEAAAT-BgoD_wAADQ4O9gAAAAD47f7__wD_ABf9CfYBAAAA_wEKBv8AAAAgAC1qLM87OBNACUhOUAIqhAIQABrwAX_cJgCE2-f6_wUEASgDygGjDh7_NQfqAODmEwDQyb4CtBDxAO3Xzf_4I9n_5_Y8AAQb8P8sHgUAHehH_Qv5BAAy0gIAPcQSAVIc2P86_-D_-RtOAtfbJf8x_g4B793y_ik2Dv8PDdUBAdTt_gr8FAYfAAb_DvIRCQgeFgDP5REDBNoTAQT3yQL9yM0AzuohAgL5EwIBCP0JA-8mCBUC8wj8DeD__v4CAr7g_vjlJAkCHwoB-_b7Bg4i9eEGHScWDdsqC_kOHuz38DDt9BC43gMoAfH57f8PFAoIAw_i4Ov9HRgFBtoc7_Lc7xQK6QEIFCAALXyzBjs4E0AJSGFQAirPBxAAGsAHIayuvrgdvzqxw5g8YmeKPLANCz0xrVI9DDdFPQObjrxeQuq8EIBuPdlVbbw5e4i6mYCnvmX70Dyf-hE9PsvTPR04Z72CiDk9Vy6avfFJBz3RjdU8iQsQvjZqrrrOj_k7jsgnPvNEZj2waCO8f6GHPUO4F7vUfHq9MzilvIAl2ztbAGS8M2zEPR8CXb3a7oy4lX8NPqKkVr2xVV08NUVgPjd8wb0x3iA7fHKePFCPSL3Gp8A88Q97vb4aGz102Le6SwDePbiWAzwMELu8sd4IPQ4bQLt4p6-7UP4OPvkKlz3gr9O8VPOGvexVH73cJQi6J_KpPUcfcz2DO8i7JrK6vaEsXL2jfs08ERRkvT7taz3EOOa7LAa0PNUTzDueoMM8R6h-vUw0SDx8ZZ48SrUvPolAmjuP6uq86O6EvMclcz3pri06gsr4veaBXj1a2T48dosAPpdTkr1jC0E8Ni1Hvfuouz1NodK7WqjrPKOmAr0sP5U70dShvCjREj2Mf8S8-Ij4PZVvCTxzwMs7lInbPdjvib0ZFPY6BwbFPYuMHr4raL26GTQZPRQAKL3y45a7FZBWPb9elr3dQ8K7hR52vdCzGb3IaT68G2czPduJ8r3Zqmq7rjEDPf0gYT0vOck7YNw3vbsEzL0qusO6Pz2RPVe9kr1QIwY8lT4-PMiTKb1Y67y79StdPXMRPz2wlem6HLjevB4bnL1u-HS5Yi9UPSmjwLy_dyO7pN7IPSInAr0NCjU78iKXOj7tED1YUWa7ZYnOu8XFpj3UyHM5MnVXveVSiz0qty05Q0hsPZptuDwpZRa5MU2Ju40dRLqLgqg4HAWpOhDQWDzoyga6ebiIPeuqgD1uYJE5uhCbvZUnwL0O0R851iOovAewbb1DbJy52aRxPb_IVT0NFtC3g4RtvRJwDjpu_pm4LWEIvS2dir3opDC5si7OvRjhNzwFp9Y5uh5bvTb1S7y_fyO4VkQNPmPCHj22vh45G_KvPa9Jrbz7fYW4degUPtfd3L2f6Zw5ARnavavHojwTIwO57vGdvZx2Jz0v13I4Z_iqvGHJsLzsJ4049AtAvIVFsD05Z-s4Oa4LPSiFFrwBT0M3R4_fPMf1zz3439g4iwI4vZ-nJr0t6ng4EMXJvAzqW73R0pI4BUaIPRBsprwy-Y42FW9JvSnsEr603kw3SGl7PfO38zwslea39nR6PeAP370_mZu370PUvPf6hD1kvwQ44iL3Pdzjiz1VUCY4qA0dvYncAj2iPPa27Yh5vQe9rTxkxcA3IAA4E0AJSG1QASpzEAAaYBcTAP8oVcnMND3vx_H2KwvF5qwjxO7__Pv_MPDm6jbv0eD2FgD-wSXXmgAAAC_Q7RTUAOt_y7IsUwvUK7C14izQeBj3_NjqUAvdBcYT9fMK_B4rBwAf1rseOTWgWy0sIiAALcrBDzs4E0AJSG9QAiqvBhAMGqAGAAAcQgAASMIAACBBAABowgAAQMAAALBCAADYQQAAGMIAAPDBAACAQQAAgMAAAADCAABEwgAAIMIAAABAAACAwQAAoEAAAJjBAAAAwAAAGMIAAIpCAABAwQAAgEEAAAxCAAAgwgAAMEEAAEBBAABUwgAAOEIAALhBAAAIQgAAQEIAACTCAADwwQAA-MEAALhBAAAkwgAAZEIAAABBAACAQAAAgsIAAIC_AAC4QgAA0EEAAPjBAADgwAAAVEIAABBCAACYQQAAGEIAANjBAADIQQAAisIAAOBAAAAQQgAAIEIAALBBAADAwAAAIEEAAMJCAACgQgAAgL8AALjBAAAMwgAAUEEAABDCAAAwQgAA0MEAAEjCAAAcQgAA6EEAAMhBAABQQQAAlEIAACBBAAAgwgAAQMIAAMBAAADoQQAAAEEAAKhBAAAwQgAAgD8AAFDBAACYQQAA4MAAAADBAACQQQAAIMEAAEBCAADIwQAADEIAAKTCAADIwQAAgMIAADzCAACewgAA-EEAADhCAAAswgAAwEAAAKBBAABgQQAAYMIAALjCAABQQgAACMIAALJCAADgwQAAIEIAAFxCAAAEwgAAnsIAAJBBAAB0QgAAqMEAAGzCAABMwgAAuEIAAOBAAABkQgAAOMIAAGDBAACOwgAAmMEAALjBAAAAQQAAmEEAAMrCAACQwQAAQMAAAJjBAAAQQQAA0EEAAJbCAACsQgAAgEAAAKBBAACAQAAAgMIAAKBAAADaQgAAgMEAABBBAABIQgAANEIAAJjBAAAgQQAAAAAAACBCAACgwQAAYEEAANDBAAC4wQAAAEAAAJhBAABcwgAAsEEAAEDBAAA4wgAA0EEAALhBAABAwQAAgL8AAEBBAACAQQAAnEIAAHBBAACgQAAAPEIAANjBAABAwAAANEIAAJrCAABgwQAAAMEAAOjBAABYwgAANEIAAFRCAACQwgAAQEEAAIA_AABAwQAAOEIAANBBAAAswgAAgL8AAPBBAADgQQAAgD8AAMDAAACQQQAAAMIAAHDCAACwwQAAmMEAABBCAAAAQgAA4EEgADgTQAlIdVABKo8CEAAagAIAAKa-AAAMvgAAdD4AAJi9AAAsPgAAJD4AAKg9AAB_vwAAC78AAKg9AABAvAAA4LwAAHA9AABwPQAAir4AACw-AABMPgAAiD0AABw-AAA9PwAAcz8AAAS-AADYPQAARL4AAIA7AACIPQAAxj4AAHS-AADIvQAAVD4AAKI-AACovQAAML0AAHQ-AAAXPwAAUL0AAPi9AACKvgAANL4AAKq-AAAUvgAADL4AABC9AACCvgAA0r4AABw-AADuPgAAuL0AAKA8AACKvgAAND4AAIK-AAAcvgAArj4AAJ6-AACovQAAfz8AAKA8AADIPQAA4DwAAJi9AACIPQAAiD0AAOK-IAA4E0AJSHxQASqPAhABGoACAAA0vgAAXD4AAJi9AAAzvwAAVL4AAIi9AAAEPgAAqD0AAFC9AAD4PQAAQLwAABS-AACgvAAAFL4AADQ-AACgvAAAqD0AADE_AACYvQAA2j4AAKC8AAAQPQAA4LwAAFS-AABQvQAAcL0AANi9AADgPAAADL4AAFA9AACAOwAAMD0AADA9AABMvgAAXD4AAJi9AABAPAAAgLsAAEy-AACoPQAAEL0AAHC9AABkvgAAqD0AABy-AABwPQAAf78AACy-AACavgAAcL0AABw-AAAEPgAAQLwAAGw-AAAEPgAAiD0AAEC8AAC4PQAA-D0AAHC9AAD4PQAAFD4AAGQ-AAAUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=sB-Dh4DsOy0","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":966,"cheight":720,"cratio":1.34166,"dups":["6511982993719884630"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"3318990157"},"15111425868195090194":{"videoId":"15111425868195090194","docid":"34-9-8-ZFAC1E37FC8A96C23","description":"https://www.coursera.org...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"29","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"coursera - Design and Analysis of Algorithms I - 3.4 O(n log n) Algorithm for Closest Pair","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vS4Zn1a9KUc\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTUxMTE0MjU4NjgxOTUwOTAxOTRaFDE1MTExNDI1ODY4MTk1MDkwMTk0arYPEgEwGAAiRRoxAAoqaGhtbmdyd3hvZmt4dmhiZGhoVUNCQ2J2ZVNpZEp6dnAxektiakdkT1pREgIAEioQwg8PGg8_E_IOggQkAYAEKyqLARABGniB9_78AP4DAPH7__8IAv8AAg4G9Pj__wD9-vsC8wT-AAHxBP_6AAAA_gf0B_wAAAAJ_AP-9_4BAAQG-wf5AAAAHQn0Bf0AAAAGAf3-_wEAAPb__AwE_wAACgX9_AAAAADwBAT8_v8AAPYD_-0AAAAAAPr8-QAAAAAgAC0AU9s7OBNACUhOUAIqhAIQABrwAX8P-QDV-9b_8AXcAOIcCgGNHwn_LDPl_90TEQDC-M8ABBzkAL_K8f4UCgr_wCP5_x_u3v8R4hX_M-kWAD_0Bv_tGhYAINr1ATYSA_8PD98Bxxb__xX4DQD25ukBGybn_wHzBf7y79r-Ce7DCBXpJgLv_wgFF_oK_vLrCwH8CgAE5_fe_Qr5BQPy4v_63gQdAgD2AgbpIff69vjwAejw7PwP5CD9Kw_pARv0-AXo_QH76ez-_P0B6gMCBxcCDBn1-vT4IALw_vT6-REKACXtBgX2FwEKGesEBxn7Af7_7Qf18fX7_fkU-gD9FwX83_T2-iAALW0DLTs4E0AJSGFQAipzEAAaYEjnAP4KU8jwDUXn2fkMCurs3N4o2vb_8NP_6BD9_SwBy9sT3QAT0yvYoAAAACjg1v_OAP1_8OXaHuH_EbW32iLdRQYQ4cb8FPvV0rsW-OQN0yFMWgDF8qcnQvjEFgdEECAALbrUIDs4E0AJSG9QAiqvBhAMGqAGAABcQgAAmEEAAM5CAADgwQAAuEEAAHRCAABMQgAAqMEAAMjBAACAvwAAgL8AAIBAAABwQQAAoEAAADhCAABAwAAA8EEAAEjCAABUQgAAVMIAACzCAACSwgAAjMIAABBCAACSwgAA8MEAACzCAADAwgAAiEEAAChCAAAYwgAA-EEAAEzCAAAAQAAAusIAAAAAAABQQQAAnkIAAIDAAABQQgAAkMEAAPDBAAAQQQAA8MEAACxCAADYwQAASMIAAIhBAABAwAAAgMAAAEDCAACQwgAAMMEAAPBBAACAQAAAOEIAAK7CAACQwQAAIEIAAARCAAAAwAAAIMIAAJbCAAAswgAAJEIAADjCAAAkQgAAGEIAAI7CAACwwQAAXEIAAI5CAABswgAAbEIAAMDBAADAQAAABMIAAJDCAADowQAAgL8AAPjBAAB8QgAABMIAAChCAACowQAAREIAADTCAABEwgAAYEIAANhBAACYQQAA6EEAAFDBAAAAAAAAmEEAAAzCAABgwQAADMIAANBBAABAQQAAaMIAAABCAAAIQgAAOMIAAATCAAAAAAAASMIAAGBCAABEwgAAwEAAAOhBAACAvwAALEIAAIjBAACgwQAAcEIAAEDCAABQwQAAEMIAAODBAAAcwgAA4MAAADDBAAAAwQAA8MEAAPhBAABAwAAAoMEAAOBAAAAQwgAAoEEAAJrCAABgwQAAKEIAALDBAAAgQgAAgEAAAERCAADgwQAALMIAAIhCAAAAwAAAIEEAABzCAADgQQAAGEIAAFDBAAC4wQAAQEEAAHBBAACIwQAABEIAAI5CAABgwQAA4EAAAPDBAACiwgAAwMAAADzCAAA8wgAACMIAAPhBAABwQQAALEIAAADCAACAvwAAAEAAALRCAACKQgAAIMIAADBBAAAAQAAAgD8AANDBAAAEwgAAYEEAABjCAADgQAAAoMAAADBCAABAwgAATMIAALBBAACAPwAABEIAAJhBAAAIwgAAEMIAAKBBAABAQQAA8EEAAPjBAABQQgAAiMEAAEhCAAC0QgAAyMEAAEBBAACAwQAAMEEgADgTQAlIdVABKo8CEAAagAIAAHC9AABAvAAAnj4AAEC8AAC4PQAAML0AABS-AAD2vgAAqr4AAIg9AAAEvgAA4DwAABA9AAAcPgAAoDwAAKC8AACoPQAAoDwAAHC9AACyPgAAfz8AADA9AADYvQAAED0AAAy-AAAUvgAAVD4AABy-AACAOwAAVD4AAHA9AACAOwAAuL0AABA9AACKPgAAuL0AAOA8AACIvQAAuL0AAOi9AADYvQAABD4AABS-AAB0vgAALL4AAMg9AACePgAAcL0AAEA8AAB0vgAABD4AAKg9AABQPQAAUD0AACS-AAC4vQAAFz8AAAS-AADYPQAA2j4AAKC8AAAEPgAAyD0AALi9IAA4E0AJSHxQASqPAhABGoACAAA0vgAAQDwAAKC8AAAXvwAAgDsAADQ-AADgvAAA6D0AALi9AAB0PgAAZL4AAOC8AACIvQAAmL0AAPg9AACAOwAAED0AABc_AACYvQAA2j4AANi9AAB8PgAAqL0AAHC9AABwvQAA-D0AALg9AACIPQAAqL0AABA9AACgvAAA-D0AAOA8AAA8vgAAUL0AADA9AAAMPgAAFD4AACy-AAAwvQAA-L0AADA9AAD4vQAAcD0AAMi9AAAkvgAAf78AAIC7AABAPAAAdD4AALi9AABQvQAAcL0AAJY-AACCPgAAUD0AAOA8AADIvQAAUL0AAKg9AAAQPQAA2D0AAJY-AAAQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=vS4Zn1a9KUc","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["15111425868195090194"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"640104439"},"4462931197844385714":{"videoId":"4462931197844385714","docid":"34-9-0-Z3E075B8F694249C9","description":"Boolean Algebra #Discrete Mathematics #Computer System Principles #AIU Itco341...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"30","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Boolean Algebra #Discrete Mathematics #Computer System Principles","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cHv853WK0F0\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTNDQ2MjkzMTE5Nzg0NDM4NTcxNFoTNDQ2MjkzMTE5Nzg0NDM4NTcxNGqIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxP2EoIEJAGABCsqiwEQARp4gQEI-vkAAAAD9fsJBwn8AhT1Bwb3AAAA7QT8-AUAAAD3_AoLCQAAAPMI_fb5AAAA9v77CPT_AQD_-_4D-gAAABIJ9_32AAAAGxH_AP4BAAD-APcHA_8AAA0VCgEAAAAA8AP6-v7_AAAMDAnyAAAAAAYDAQAAAAAAIAAtCLHSOzgTQAlITlACKoQCEAAa8AF_DhgC1_zY_wwH3wDZ8_MCkx0J_wr83gCXCgYBudnnAP4T9gDY49X_AwAf_-Q1Df8s9Or_AOrrAST98_8f-PYA_uUgAF3iDwEv_OMCC_DjABDzE_4O-hn_DQMTAAsAAP39Dgj-3_jpAAH6-P__4hcDHRAMAgXtB__09vUB2SEJ_xLp-AD8-AYG8wzt-csbFAMK_P0G_Abx_9vtEgId_usC9PTyAv0C6wYK9_wK__UD_Q3zBf3z9-z5JxELAvAi-AciCPwH_fTz-woWCwAj7gYF5AT49_79BgDwG_AJDNT69OkLD_nqJPj_8AcJBdz5AvAgAC30Fzc7OBNACUhhUAIqzwcQABrABxcrCr8jP461PNWIOxeppLr1g4o9atM9vfX0cT1uD2c9s4ndPNIQvDvsXGI9A1SCvJfHqr4Tx-w7vhGdvP7Viz4gxJ88hqkxOxfxXb7HGuQ8RD-JPKdZgL7i0uI4B5ovvfzvgj3xb8Y8haDZPKnB1D3qqDQ87UqmvAGcxbt9_sG7oJJuvXzOkr0mLaa8cY10vFOXDD4Ohrq8T3ulPNNO7T11QA29nWkdvQwehj3fqik75O0QPLHh6b00XC69rBJ2PGn-KD6LXdM7RwsrPMrVmT1p1DK8wo1vvLIokbs-5NI8_s3wvAckYTwx0LU8AKYxvII0aD0pVce7gUj1PFR8Mr3QQ-08woyEPCcXEz5P1XM9FamwPCwGtDzVE8w7nqDDPGu58zwwDUg94zUOPBpyJz3OUaY7-0ICvKb2fb0D3pM8fpBAvDdvnLzMjaM9nZHWOk7sZj2QT4g8X_BpPN3zdDvvDt88NfHROQA7N70MQOO8Lb6XvCJlpT0xNj69aOc0PHPGhj3A-IM9OK7zuzob9juZlEy88S0NPH_vYD2IrY-9ockVPK80mj2q9HO9tyQsPJIy8zwASzg9XXlBuwrbz7wqcBW8T3zSu2Pdrj3sbyY7a8trO7EkLz3oZ2o8aNTXO3DBiDwHlZ288HAavPV2lTwd_wk8zKLJumaEV702kgS9LBD7O5sbqD3HybM7TqgWO3TDJbz8goe9llLcOVIXwruxb4Y7TPqgu6aW0jyTx_S73pZAOxFgRzzj6ZA9WwAwOcoInjxrPji9JIlpObRYK7tZYBk9zXlQOdv2kj0-MXw8PVOAOBXXgj2JTVq9OeuTOA8KyrwSDTe9DHufOKqaYL0NUaa7KmpGucYmYz1L1pe89m_OOTrp_Tvtdw29h-1sud804LrDTqw96gkVuFfZrbyjA3K9TIfXuEjFf7wzjIu9VN-HORjxeL3BFC-9hWVCOe7AirylIbQ8ifupNwXsWbzAGca7udw5OZXhyzrnAYc9MjGLN5vO6TzW8lQ9VMseuNAeGrs36CY8WmMguZ0ORzt3nwO-Q96Mt7ouPD3U4RM8gWUVuOoQDr2apMe7wNltOGDnZj1Okx07aGqUOIBxGzyhcde8tHkfuGANhjzlGSg7lyEdOArvhz0h2lg9FUDTuEfHF7zxudM8UE90t4a9Gj1Qpha9dapatwi8wDv-K2u9kSuYt-wDvTt81A--F_rcuLnBdTwt7Ak-hifnONvbrbxr8B4-kDkhuTV6Fb0rYTc8LrIPNw9Yg7z85CM9LrF3NyAAOBNACUhtUAEqcxAAGmAV-AAwHyb29Ap01-Hyzhvv-CaiDL7y_-zw_-8B4eogKcyY4f8A9hL6z6QAAAAO3dL-JgD1f8riw03XGga64coLDW8NHzboIwEO2yRTD9f4SyTzK0kA9vyjHXYZrQn10gMgAC1mJBM7OBNACUhvUAIqrwYQDBqgBgAAAAAAAJDBAABYQgAA8MEAAKRCAABMQgAAgkIAAADCAABQwgAAgEEAAAjCAAAUwgAAKMIAABDBAABEQgAAqEEAAKhBAAAwwgAA4EAAAKjBAAAYwgAAmMEAAIDBAABkQgAAEMEAAHDBAACgwAAA0MIAAAhCAAAkQgAA0EEAAMBBAAB0wgAAsMEAAODBAAAIQgAAQMAAAP5CAACIwQAAJEIAABRCAABwQgAAPEIAAOBAAAAgQQAAoMIAAJDBAABUQgAAdEIAAJhBAAAowgAAgEEAAADBAAAAQQAA0EEAAEDAAABEwgAA0EEAANDBAACoQQAAMEIAAPTCAACgwAAAQMIAADhCAAAYwgAAyMEAADzCAADAwAAAmMEAABBBAACWQgAAAMEAAEBBAACYwgAAMMIAAADCAAAQwQAA4MAAAABCAAAMwgAAjEIAAJDBAAAUQgAAhEIAAFDBAACwQQAA4EEAAIhCAABAwAAAAEEAAJJCAADAQQAAwMEAAEDBAACmwgAAWEIAALhBAADQQgAAAEAAALjBAAB8QgAAkEEAABzCAADQwQAAQEEAACjCAADwQQAAoMAAADhCAAAsQgAAIEIAAEBBAABwQQAAcEEAAHBBAABwQQAABMIAABjCAACAwAAAmMEAAEjCAAAowgAAkEEAANBBAABAQAAAgEAAADzCAAAgwQAAJMIAAJDBAACCwgAAwMAAAKDAAACGwgAAsEEAABRCAABAwQAA4MAAAPDBAAAMQgAAUMEAAKZCAADQwQAALEIAAPhBAABswgAAEEIAAERCAACwwQAAxsIAABBBAAAwwQAAoEAAAHBBAABwwQAAXMIAANDBAADgwQAAXEIAAJhBAACAPwAAIEEAAHDBAADwwQAAIMIAAIC_AACAQgAAAAAAAJjBAADoQQAAyEEAAHBBAABcwgAAUEEAAILCAADgQQAAgMAAANhBAABgwQAAOMIAAHDBAAB0wgAA0EEAAOBBAAAwwgAAMMEAAITCAAAAQQAAsEEAACBBAACewgAAYEIAAIjBAADAQAAAUMEAAPjBAADIQQAAgMEAADhCIAA4E0AJSHVQASqPAhAAGoACAAAwPQAAQLwAAAM_AAC4PQAAmL0AAJI-AADIvQAA_r4AANa-AAAUPgAAMD0AAHS-AAD4PQAAND4AABC9AABMvgAADD4AAIA7AADKPgAAAz8AAH8_AACAuwAA4DwAANg9AABEvgAAor4AAFw-AAAUvgAAEL0AAMI-AABAvAAA4LwAAOC8AADiPgAAgDsAANi9AADgvAAAFL4AAIK-AACIvQAATL4AAPi9AACovQAA2L0AAKa-AAA0vgAAVD4AACS-AABAvAAAZL4AAHA9AAAkPgAAND4AAFA9AACWvgAAML0AADU_AADIPQAAuD0AADw-AACOvgAA2D0AAKg9AACovSAAOBNACUh8UAEqjwIQARqAAgAAEL0AABw-AADYvQAAN78AAIK-AACIPQAAgLsAAFA9AAAwvQAAvj4AAMi9AAD4vQAAHL4AAKi9AAAsPgAAUL0AABC9AAArPwAAqL0AAMo-AAAQvQAAuL0AAHC9AADovQAAML0AAFw-AAD4vQAAED0AAAy-AADoPQAAuL0AAJg9AAAEPgAAPL4AAHA9AACYPQAALD4AACQ-AAD4vQAAHL4AADA9AADIPQAALL4AAKA8AACgvAAAQDwAAH-_AAAQvQAAML0AAEC8AACgPAAA-L0AADA9AABEPgAAqD0AAIg9AABwPQAAmL0AAFA9AABQPQAAVD4AACw-AAAEPgAAQDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=cHv853WK0F0","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["4462931197844385714"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"277623190"},"7565516359633031239":{"videoId":"7565516359633031239","docid":"34-3-1-Z06C738A6805262D7","description":"Logic Gates and Logic Circuits #Discrete Math #Computer Architecture...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"31","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Logic Gates and Logic Circuits #DiscreteMath #Computer#Architecture","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zKkY_VJPv9c\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTNzU2NTUxNjM1OTYzMzAzMTIzOVoTNzU2NTUxNjM1OTYzMzAzMTIzOWq2DxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxO0D4IEJAGABCsqiwEQARp4gfwJ9QH7BQDtAwIMBwP-AAz--wj3__8A8_v9_AcBAAAB8QT_-gAAAPMH_vf6AAAACPb3_vf-AAD-BwT_BAAAABAR_vb8AAAABgkBCf4BAAD1-AcCAwAAAAX-AwQAAAAA8AgCBv4AAAAADgz2AAAAAP4KBvj_AAAAIAAtYD3hOzgTQAlITlACKoQCEAAa8AF4AgoC2P3s_wX35QDfHeoAgQUL_wn84QCp9goAufftAPIU-QDp7_cABwUqAOMX_AAb8eL_Fer-ACH99P8j7_oA_vYfAD7X-AEhB_kABezx__QJEf8N-hf_EvwJAPwH_f4RAA7_4evaAAsA4AL88SIADRYTABbyDQIB-_r_7Q8MAgH-8v4Q9Qz-9A_8Adb_FwH3AfT9BQ33AeAB_gQL9u8A8Az6AhAI6wMg_vcF9fkK-fwACvj9Ae0DEAUOBPoI_Pz7DgX7Buv_AAEGA_c17AwJCvEO_PwJBv_1DOQCC9j79eP_EQTiHf4D8gYIBf70_gAgAC1uJ0g7OBNACUhhUAIqcxAAGmBAAAAxIAv2Fw1j2trR0y_jyEHS5sfz_xHx__0u5vHa6_Cg8ggADtIFCKQAAAAkBN799wD6f86qyCzo-PSi2fYSMF3rPBnNBS_1wf4QCO3W9yQbMlUAIOqRLCrpoR8H-tYgAC1URxg7OBNACUhvUAIqrwYQDBqgBgAAwEAAAFDBAAA0QgAANMIAAFxCAABUQgAAMEIAAIBAAAAEwgAAuMEAAHzCAAAAQgAA0sIAAETCAAAkQgAAcMIAAFRCAACYwQAAZEIAAEDBAAAwwQAAUEEAAEDCAADowQAAcEEAAAAAAAAcwgAANMIAABBBAACoQQAA4EEAAKhCAAAQwQAAoMEAANjBAACgwQAAAEAAALZCAADoQQAAqEIAAMBAAACowQAAwEEAAHBCAAAIwgAAeMIAAJhBAABgQQAAwEEAACTCAAB8wgAAgEAAAITCAADYQQAAgkIAAADCAADkwgAAIEIAABBCAACGQgAAaEIAADDCAAAAQAAAuEEAAFhCAACEwgAALMIAAOjBAAAgwQAAYMIAAIBBAAAAAAAAYMEAAADAAACYwQAADMIAACjCAADYwQAAKEIAAGhCAACKwgAAbEIAAGjCAAAAQQAAWEIAAPhBAADYwQAAAEAAAIxCAACYQQAAgD8AAP5CAACEQgAABMIAAHBBAAD4wQAAAEEAAAAAAACgQgAAuEEAAKDBAADAQAAAIEEAAADBAADgQAAA4MEAACRCAABAwAAAqMEAADhCAABgQQAAcEEAAGjCAABMwgAAYEEAAHBBAACoQQAA0MEAAEzCAACIwQAAQMAAAEDAAAAAwAAAuMEAAIDAAABAQAAAZEIAAIhCAACAQQAALMIAAAjCAACIwQAAuMEAACTCAACgwAAAKEIAAEDAAAAAwgAAQEEAADDBAAAQwQAAqEEAABxCAADowQAA2EEAAADAAABkwgAAEEEAAChCAADGQgAA0MEAAKBAAAAswgAAcMEAAABAAABwwQAAYMIAAOBBAAAAwAAAJMIAAOBAAADIQQAAHMIAAIBAAABswgAAoEEAACDBAABAQQAACEIAACzCAACwwQAA2EEAAEhCAAAwQQAAIEEAAGDBAADKQgAAiMIAALhBAADgQAAAcMEAANDBAABEwgAAAAAAAKhBAAAAAAAAKMIAACTCAABMQgAAFMIAAIDBAADIwQAAFEIAAGDBAACQwQAAPEIAANjBAABQQQAAlMIAAAAAIAA4E0AJSHVQASqPAhAAGoACAAAMvgAAcD0AAL4-AABUPgAAUL0AANY-AAD4PQAAL78AAOK-AABEPgAAiD0AAMK-AABAvAAAij4AAAS-AACAuwAADD4AAIC7AADKPgAAEz8AAH8_AAAwPQAAyD0AANg9AACAuwAA4LwAACQ-AADgPAAAfD4AAGQ-AADoPQAAED0AAOi9AAB0PgAAQDwAAKC8AAC4PQAAXL4AAKK-AAB8vgAAyr4AAFS-AACYPQAAPL4AACS-AACovQAAJD4AAES-AAC4PQAAmL0AAI4-AAAkvgAAgLsAAAw-AACCvgAAEL0AAE8_AAAwvQAAyD0AAKY-AAAUvgAAJD4AAHQ-AAD4PSAAOBNACUh8UAEqjwIQARqAAgAAHL4AAAQ-AABcvgAAP78AANi9AACgvAAAgLsAAHC9AABcvgAA0j4AABQ-AAAQvQAAFL4AADy-AAAUPgAAuL0AANi9AAAlPwAAUD0AAOI-AAAcvgAAoDwAAJi9AACIvQAAEL0AAIA7AABQPQAAcD0AADS-AADgvAAAoDwAAIA7AAAEPgAAHD4AAIg9AABcvgAA6L0AAHw-AABMvgAAMD0AAEA8AABAvAAAPL4AAOC8AAA8vgAAML0AAH-_AABQvQAAQLwAAJi9AADgvAAABL4AACw-AADoPQAAEL0AAEA8AADgPAAARD4AABA9AAC4vQAAgDsAAEQ-AADgPAAAUD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=zKkY_VJPv9c","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7565516359633031239"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"16529865989040886383":{"videoId":"16529865989040886383","docid":"34-3-9-Z9E40EEBD997B319F","description":"A recursive algorithm is an algorithm which calls itself with \"smaller (or simpler)\" input values, and which obtains the result for the current input by applying simple operations to the returned...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"32","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Recursive Algorithms: Discrete Mathematics","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XCW6HTBENCo\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTY1Mjk4NjU5ODkwNDA4ODYzODNaFDE2NTI5ODY1OTg5MDQwODg2MzgzaogXEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E8EUggQkAYAEKyqLARABGniB9Pz2_gH_APkQ_A0FCPsBDAD7-vYAAAD___P7_AX-APj1BQAMAAAA9gT4AvgAAAAB9gEE9f0BAA4A_QP7AAAAH_3z-vwAAAAfAAH6_gEAAAUP_goD_wAAHBED_f8AAAD1CAgD__8AAAAPDfUAAAAADP3-AQAAAAAgAC2FQdE7OBNACUhOUAIqhAIQABrwAX_5DQOmHvT7Ww3eAAsE6gCDFfD_IBHpAKTo9wLL7uYAIgwCAMvqDf8DAB__-gnz_yTk8wAN4AQAJAECACoC9AATGA8AMOD-ADMRA__pBuwA8AQIABT5DAAE9RX_6gwWAAQD_v_iA_D_EgcAAfb3EAAcEAwCGPEPAuwEAgDmGgAC9AP6AjbxCQDn-Qj_6AwOBv396QbzDBD_--MCBvkI__rx8wgADPr6BR0L-QQL8OQC8gEHAAT3BQMWDggM-w7yAxXp9wkH_v_35wYNASH0FwDp5hP9-PQQ-g8D7vsJ5gn85fXwAesNAgb0-gUGAgwF8iAALWazODs4E0AJSGFQAirPBxAAGsAHFysKvyM_jrU81Yg7d1EPPfwBmj0kMw-8Vf6wPTaWfLrVGD48FqH9vKZdcT2qwrg7_Iy7vlpTD7zG6sW7z0p6Pvbc-Dz5QUe9DjEOvk0GkTxH6EK8T3iRvmcVTD2p5ou6pAkqPX80F70mWDc9LfqkPXt8Zzy_oGA8yi59vUnnrjvglx-9fM6SvSYtprxxjXS8xFvnPeqdAL1fKUu7L1H9PbEFYLqfq628h6_lPPeENrzdoKy8J-4ivQFDID1cFrg84pIDPoejkDw4D0w8fedXPUbF6rtSVPY4Y5z_PL7Mg7szCjQ7HHL9PIWtfj3XhPw3xS47Pcf3QL3QWOA8xipvvLedMT3H49g83bQZPj0W0TwDYPq7de-HPY0_Nj3iua08ZmUePAkCnrtWFoG766Y5PNZjkbytx5i8lKgyvRWvjTydIeY8qlQ_PNi2qDzgEMu6IzKXPQzlCT1dZEg77skovWhbTbyLD307WGttvUKP3ruLPtW8uakxPkiYuL0Jel68s_IJO4HMbj0exn8828wXvUxmhjzrZJ07XCEMPSP7uzwPMM6787GGPeYHzr1whNo7YpQSvFzfjD1wjbY7TLpXvVHngLz5Miy81aGZPSKumDtjbxS89rXuPIdbUzu4x3M7cMGIPAeVnbzwcBq8JdofvWEFzztwzb47ic9dvbDbsTqK6565oYbPPaUX0juj6rK7hPW_vIALV7xnS3M7Hz9lvCyI3DxnGoO7BMomvb13bbtN5oo6asJ2PMOrNj2FTL25AqZCPJ-pHL3YsoS6_reSPAZcAT3bHSw4UdaEPe4GUbzwar65hfkhPcnQDL1qNvy19dUVPTL3mrweuoK5LvBrvd0A_TzRa4a4RY04PcFsBz0K0h45jCpovJMH2DxnmyQ6hlYnvIpZzz2HcQ05qFclvTJrM71_p6q4QgbRu7ZQzbyLRSa5WxELvVCc7bxw0wM5q7OavE37QTxYq0O3Q7lDvXJNQb1zEHw3fYDJO2tmbT2aeOE4g2iSvOSDHj2na6k39LrPvFW1Lr07atA3BpwlvIxq0b36U_c3tlgAPbp9KjmgYr83tMBIvekAMr1SM5c3Uqknu9cdZjwezxc4nXClPNmXDL0jCXe4WLSEPVQenbwb9EW49-tpPTCyDj0cwsO4_VfMvAPTpD02ZqK3qQjDO7gFaLtZn1c46UxSO6KNjb0f6Vw3hhAhPVx3073e85u3cIJKPCrqtz3nCgk5fGKNvSED2T2BNTC54S2LvZt_yzrmAAo4wcWOu2IVr7xBcTM3IAA4E0AJSG1QASpzEAAaYAoGAAQSMOemNGjixCP8CczoPr_uzfT_8dr__yYE1vcd1tsZHv8j3wDPowAAAAu15BD7ANF_vtXZK_DdI5ca_inwb-FDPs0KF_SnDQDkqAwpAwQhHADw240KSBnVGvkP7CAALVcnFTs4E0AJSG9QAiqvBhAMGqAGAAAgQQAAyEEAAExCAAAAwgAAzEIAABRCAACOQgAA4MAAAEDCAAAwwQAA4EAAAFjCAAAQwQAAYEEAAKpCAACAwAAAQEAAADDCAADowQAANMIAALDBAABswgAAcMEAAEBBAAB0wgAAgEAAAPDBAADUwgAApkIAAEBAAABwwgAAkkIAAJLCAACgQAAAcMIAAKDAAAAUQgAA_kIAAIjBAACoQQAACMIAAKBBAACIQQAA-MEAAKDAAAA4wgAAgMEAAEBCAADAwAAAMEEAANLCAACYQQAAEEIAANhBAAAsQgAAXEIAAADDAAAMQgAAqEEAAJhBAACgwAAAXMIAAODBAABkwgAAQEIAAKjBAAAAwQAAwMEAABzCAADAwQAAFEIAAKJCAADgwQAAAMAAAKbCAAA0wgAAAMAAAOjBAAD4QQAAcEEAAKLCAADIQgAAAMIAABhCAABwwQAAQMAAADRCAADAQAAAuEEAAODAAAAAAAAAVEIAAMDAAADAQAAAAMEAABzCAAC4QQAA4MAAAMBBAABAQAAAQMAAADxCAAAwQgAAYMEAADDBAABgwQAAfMIAABhCAADIwQAAHEIAAFBBAACgwAAAAMAAAAjCAACgQAAAeEIAAAzCAAAIwgAAlsIAAMDBAABAQAAABMIAAADCAACgwQAAwMAAAFBBAAAAwQAA4MEAAAxCAAAYwgAAAMEAAPjBAAAgwgAAmEEAAKDBAACgQAAAIEEAAFBBAADAQAAArsIAAEBCAABgQQAA-EEAAMBAAAAYQgAAGEIAAITCAACwQQAAIEIAAGBBAAAwwQAAbEIAAJBBAAAgwQAAuMEAAIA_AAAUwgAAIMEAADDCAABAQQAA4MAAAKBBAAAgwQAAcMEAAITCAACgQAAAIMEAAHBCAAAgQQAAmEEAAJDBAACYQQAAKEIAABzCAAB0wgAA2MEAANhBAAAAwAAAYEEAAOhBAACQwQAAaMIAAATCAABAQQAAuEEAAIhBAADgwQAA2MEAAEBBAACgwQAAgEEAADjCAACIQQAAwMEAAJhBAABwQgAAGMIAAEDAAACwwQAAiEEgADgTQAlIdVABKo8CEAAagAIAADy-AAC4PQAAbD4AAHC9AADgvAAArj4AAIo-AAA3vwAAlr4AAHA9AADYvQAATL4AAJi9AAAsPgAAgLsAAIA7AACAOwAAmD0AAIY-AAARPwAAfz8AAKa-AACGPgAAML0AAHy-AAAMvgAAgj4AAGw-AABAvAAArj4AAIo-AADIvQAABD4AAHQ-AAC4PQAATD4AAIA7AAB8vgAATL4AAJi9AADIvQAAdL4AAIA7AACivgAAdL4AAGy-AABkPgAAdL4AACy-AABkvgAA-D0AANg9AADYPQAAgLsAANi9AAAwPQAAPz8AAOg9AAA0PgAAND4AAOi9AABkPgAAfD4AAJg9IAA4E0AJSHxQASqPAhABGoACAABMvgAA-D0AAFy-AAAlvwAAqL0AABQ-AACOPgAAQLwAAHC9AACIPQAA4LwAACS-AABcvgAALL4AAEQ-AACgPAAAJD4AAPo-AACCvgAA1j4AAKC8AADYPQAAHL4AAOi9AAAQPQAABD4AACS-AABAPAAAVL4AAKC8AACYPQAA6D0AAOA8AADYvQAABD4AAIC7AADIPQAAgj4AADS-AAAUvgAAXD4AAKA8AABAvAAAQDwAANi9AABAvAAAf78AAKi9AADIvQAAMD0AAEw-AADgPAAAcD0AAAQ-AADIPQAAqD0AAKC8AABAPAAAED0AADA9AAAwPQAA2D0AABQ-AAAMPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=XCW6HTBENCo","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["16529865989040886383"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"422887085"},"12971151953011879723":{"videoId":"12971151953011879723","docid":"34-9-1-Z7E4D527F37A53879","description":"Path. A path is a sequence of vertices with the property that each vertex in the sequence is adjacent to the vertex next to it. A path that does not repeat vertices is called a simple path.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"33","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Connectivity: Graph, Paths and Circuits","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=u-xAagtsKZU\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTI5NzExNTE5NTMwMTE4Nzk3MjNaFDEyOTcxMTUxOTUzMDExODc5NzIzaogXEgEwGAAiRRoxAAoqaGhnYXJtd25saHJjZ2hxY2hoVUN3blVkdXplV2wzY2NIWWFSRGtJMXFnEgIAEioQwg8PGg8_E-MVggQkAYAEKyqLARABGniB8w36_fwFAPoEFwb8B_0C-AwA-vn9_QDu-PD8BQAAAPv5CvoBAAAA-AcU-wEAAAAE-gL8BP0BAAEK_wUEAAAAHf3z-vwAAAATAQj9_gEAAPz4Av8C_wAAEvUCAQAAAAD1_gQBAQAAAP4UDwEAAAAABvYA9gAAAAAgAC1TZt07OBNACUhOUAIqhAIQABrwAW8DEgK_CgP9GPj_AfET7gCBBQv_LxfpALTmDQLL-dYACCH7AOjwFf8HBSoA1gHz__sF7v8r5AUBJvMA_xwFDAABFA4BO-kKATICEf8LAOv_9hkHABkCEwAT7wkA8xL8_hUQAv7QEOv_9xDjAQfgLgIEEwcAFvINAukOBgH2FQf_8_gEAhX9CAfe_wMA_hj-_xT8-QAFDfcB6-r5BAAQ-vsZ9P8GEAjrAywL_wj19vr57fYO_xoL-voVDQcLAw_8_Pb4__cG6_8A6gL-AhHkCwf69hj2-fUO-vUM5AL-2Af56woN-e8WAQD6-g4K7fgB9iAALW4nSDs4E0AJSGFQAirPBxAAGsAHuRwDv6G_q7uac_i7yXeEutU15Dz78c28u9urvKUyID2T29s8K6uEPWmIbz0PCV-7_Iy7vlpTD7zG6sW7z0p6Pvbc-Dz5QUe9QNwlvsQrJDzz9m-7T3iRvmcVTD2p5ou6165fPY7Krb1PiuA88zsNPnYUzLyGS1g8b4sIvUNHB7oj2Bi9fM6SvSYtprxxjXS864sUPtOAxbu3cgA9dzHtPY8AKb12lhE8cPGLvOzYjLpDIsg55Pf2vGMV5ztLavI84pIDPoejkDw4D0w8hkTQPKuZEL2knPm8Y5z_PL7Mg7szCjQ7QQsJPb7sSD0RSqm8vJsiPcADqL3DP7I7P28qvVFOdD0RSDK73WA4PimmXD3jGz46suSeOwyk1TyFTdM8K97IPHyX97ykw0M8TdOcPeQ29bwJbI48meJgPDXpOz05nxM8jUolPdYjKD0s85Y8OeCpPfX7mT3gaAW8seuLO3B6VbuyCsC8KlmJvSV0OLumtcy6nPrgPUD9Ar0Mddg7Ij4rPeXnoD3YuvW6L058PB8kNb0FyMw7GxuwPDQAyjwk_pe8GTQZPRQAKL3y45a7Kr6rPA0CBj0PF-87SAjFvNoXFjxpGIS7bv-lPUiivLw6vqi7LL0xvfqMNT3tCK86v2unuzrDuTzWNX-8XpoHvJVsqzypVIW7KHSoOdlZ2TyuHZg7rNr_PBLYwbwdYjQ7xvxcPMaNFr0htaI5cBZlPeHjHT0SssG6LEJWvUhj_ryhXQ07g6mDO29DsTzqojE63j0gPQI6Xb3k5sg5tFgru1lgGT3NeVA5hBOsPW1-Mj1TyfG57nPju9KhiL3DIzw5zrj6vMaOAb0SaMa3XVWhvQDcUTz0PMk4FK0BPQTAnTwq8KO477kdvdhXqLxvOiG6nVI0vTeffz2YhJK4NEgDvKmS9zxdY3C4VA6HvR7b17zQvJ-4qckGvOcGqb1QgDa26h4evcgXjj05yUc4GviGvc9YSr0ucsW3eKwjvK6ffj19BNM4Xa44O4HznT2zGGK2R_LLPDd_nbwlvBC5sRODPLaxs70Vqek42Jg8PbQlxjzOH4C49aKxvahs_bxnsJq4k55xO9uZE72LC9o4sARNPSx6DL1W4vg3AgHhPEQzD705Bp-4NzeWPYOKCj15hpK4aNdTvadN5jzafEO4PjxwvOfjOTt4ZqQ2PlWquyurJL2M4OY3va8FPaVJCb6tnoW4yvRwPSLhKz7xy4o4GCc5vZRDpT1llMe4XCivvd4SKr38ImM3jn0kPGDbrLxRmIm3IAA4E0AJSG1QASpzEAAaYBb4AC_4UP7sEkflxvGyJ9bXBO4OvxT_D73_8fm88vH2wtkg6f8fvA8AoQAAADcV4QUVALt65dnSJPP8_tHiLhvnfw1RCa6-LO_dwboyxPIcAiPqGgAc8a4oN7q-ARIj_SAALbOLFzs4E0AJSG9QAiqvBhAMGqAGAAAQwgAAoEEAADBBAAAAwQAAJEIAAIjBAADoQgAAsMEAAGTCAACgQAAAqMEAABBBAACSwgAAAEEAADhCAABwQQAAoEEAAKDCAAAgwQAABMIAAIC_AABswgAAQEIAAODAAAAwQQAAEEEAACDCAACUwgAAEEEAALhBAABQwQAAoEIAAL7CAACowQAAgsIAAHDBAABUQgAAqkIAAIDBAAAAQQAA8EEAADBCAAAsQgAAJEIAACxCAACQwgAAcEEAALBBAABAQgAALEIAAEzCAAAQwgAAoMEAAODAAACAQQAAgEEAAPzCAABwQQAAoEAAAChCAAAQQgAAxsIAAODAAAAcwgAA6EEAAJDBAAAUwgAAIMEAAIDAAACwwQAADEIAACRCAACAwQAAgkIAAFTCAAAAQAAA4MEAAABBAADQQQAAiEEAAJ7CAACiQgAA4MAAABBCAAB8QgAAXMIAADBBAAAgQQAA1EIAAPjBAABcQgAAjkIAAIA_AAAgwgAAAMEAAJTCAAAwwQAAQMIAAFBCAAAwQQAA6MEAAEBBAABQQgAAUMEAANDBAACgQQAAqMEAAMDAAACYQQAA8EEAANhBAABwQgAAQEAAAOhBAAAowgAAyEEAAMDAAACgQAAAlsIAACDCAADIwQAA-MEAADDBAAAwwgAABMIAAMhBAAA0QgAAHMIAAIDBAAAcQgAAcMEAAKDAAAAEwgAAYEEAAABCAADgQAAAkEEAAABBAABAQAAASMIAAIBBAAA0wgAAHEIAANDBAAAYQgAAcEEAAFDCAAAEwgAAVEIAAABAAABQwgAAhkIAADBCAACYwQAAMEIAANDBAAAgwgAAAMIAAPjBAABQQgAAiMEAABhCAACwwQAAmMEAABzCAAAgQQAAIMEAAJRCAABgQgAAoEEAACDBAACYQQAAFEIAACjCAAD4wQAA-MEAAChCAACgwQAAYMIAAADBAAAgwQAACMIAADzCAABEQgAAsEIAABBCAACYwQAAoMEAALBBAACgwAAAwEAAAFDBAAAQQQAAcMIAAABCAAAEQgAAwEEAABDBAAB0wgAAAEIgADgTQAlIdVABKo8CEAAagAIAABy-AABQvQAADD4AAKC8AABAvAAApj4AAHw-AAABvwAA4r4AAOg9AADIvQAAFL4AAIg9AAC4vQAA-L0AAHC9AAA0PgAAuD0AAHA9AAAPPwAAfz8AAOg9AAA0PgAAuD0AABS-AAA0PgAAgDsAAKg9AAAMPgAAiD0AAEw-AACgvAAAoLwAAKC8AAAkPgAAmD0AAJg9AACWvgAApr4AAFy-AADIvQAABL4AADw-AACYvQAAPL4AAI4-AADYvQAAML0AAAy-AAAQvQAAiL0AAHC9AAA8PgAABz8AAIq-AACgPAAAPT8AABw-AACgvAAAHD4AABC9AACoPQAAHD4AABy-IAA4E0AJSHxQASqPAhABGoACAABkvgAAEL0AAKq-AAA3vwAA4DwAADw-AAC-PgAAqL0AAAy-AACAOwAA4DwAALi9AABsvgAAuL0AAAw-AACgPAAAuD0AAPo-AACuvgAA1j4AAHC9AAAUPgAAZL4AAJi9AACgvAAA4DwAAOi9AACovQAAmL0AAIg9AAAMPgAAUD0AAHC9AACovQAAHD4AAHC9AAAEPgAAML0AAGy-AACIvQAADD4AADC9AADgPAAAND4AAIa-AADoPQAAf78AACS-AAAcvgAAgDsAACQ-AACYPQAAND4AAIA7AAAwPQAAmD0AAIA7AABQPQAAXD4AAIC7AABQPQAAJD4AAIA7AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=u-xAagtsKZU","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["12971151953011879723"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2084942114"},"5595913159759441173":{"videoId":"5595913159759441173","docid":"34-1-3-Z1801E3DEDBE5B955","description":"#Number_System #Computer_Science #Durga_Tripathi #Binary_Decimal_Octal_Hexadecimal Number System Of Computer and Conversion...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"34","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Number System Of Computer and Binary, Decimal, Octal & Hexadecimal Conversion in Computer.","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RSxn882Ve0g\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTNTU5NTkxMzE1OTc1OTQ0MTE3M1oTNTU5NTkxMzE1OTc1OTQ0MTE3M2qHFxIBMBgAIkQaMAAKKWhoZHRicXdwZGhxamd4a2hoVUM2S2ctdWM2SGhxdThuNG0xcDdqTTJBEgIAESoQwg8PGg8_E-kGggQkAYAEKyqLARABGniB_wcHBQAAAOwDAg0IBP0BEwIE-fUBAQDtBPz4BQAAAP78AgT3AQAAAv34AgkAAAADAfkF8v4BAP36A_vuAP8AH_3z-vwAAAD8EgLz_wEAAPgB_AID_wAAFBIBCv8AAAD3Agb1__8AAPsIB_QBAAAA_fL6BAAAAAAgAC1kJtI7OBNACUhOUAIqhAIQABrwAX8ICAHN-87_0Bb3ANPs3QCy7R0AKRXjAMcEOgHZ8e0B1uv1APLg8AHT6BP_rgQnAQ31Av8G_PMAJNbw_0ryB__qHhoAK7r1ARn1FAEB4QsAEfgn__PVJ_81Af3_B9PoAP7kKQAN9gH-Cuq4CSX7LgEFGQoA-fEXBPvj7v3N-Br_9_vdAN_b4_8k9wwDv9omAvoOvgnnDO_3803mByADGATO4v8BERbyAAns5wgDMwD52-cMCgb17vvXGhD7-zT5_-cX7gL3DPz7OP8IBQ--4QMP5AH68grxEOIB9f497PH75wcGAdgV_vvUGQL-DvXoASAALY27Ezs4E0AJSGFQAirPBxAAGsAHt-zYvl13qTyx1MS8qfcUvEQlw7t3Lsy8XyV_vRSvMjwZopK7UbuvPZ7OOrwIoji8-MGBvn_o-LxEaU89xVWFPlQwb72bfyq8z8B4vpOBTbyItgi94Lttvl6Klj0WuUy8PXvDPf0QQD3VDW-8_n4RPukqvb04lGu8YP1kvXm5bbp4fLm7XamyvcGcKr09HkS8_tVDPWA-eb181rU8HAt6PnNcl7yEzF-8IFdUPTiuFT3GBMq6IwHJvXCXjb2kXTs8_m6QPcfscjuhcw09Sg8eu23FvrzCUY08aJwauqci1T0EWtW8z2tnvRh8NT06DnK8lX8tPi5m1Tw__Yw8dKP-vKtkmzzQ7pC8J5J-PXz5iD3gfI88Jgx0vV1Guz1MLLo8fGmlvdF0lj1r2Eq8pSqiPVxUMLxnY6W85ww7vR_kqzzQptk6kCQQvBDfoz2mYgM93Ws3PYycqj0EfoO8_g-LvN6XDj2hJsA7hwRivTeuej3-Nnq8oTYgvYkxn7y2LF88v8ODPTQqlTwLD6m5YGeEPfkRv709axI8wWt8PVK3871rFYg5ew2WPWS-bT3Lq8a6KZWwPAo1pzjpP9K7vz3ZPE4ddbw5W2W7pf9APNnqsr1Tkje6zisIvaAGhDvUQqw78NWWO7cfNT1inc-7H43YOyt0GDv2uyg7uNIGPQhW1b0-uhK6OpyfPdo6uDxcfEA7u_BDPSrFzr2DfO84lyOfPfvGfL0DrBI6lZ7pPCKhEr1H5DE65H1hvaIo0D0my0o5BphePX7rOb0eJc05HHoLPeLGEjxNLyi6bFpOvahOLDyoqo45ufSUvJDBijycodQ56HYlvbEL0LwSqwi5PowVPddpJLxWc8U5W2v_O4PAyry1KSo5BiRGvcNXtb0IyF03161UPeCvE7ycmKy5YlXSuzR2E70Ukh-4F2cMvdM0Q71F5pG4rh17PNx5LL0XQgY3yeE4vSLYPT1odDG4P316PfVkHbzp5Gg4B1yMPauBIT37x6c4BReLPYG6PD25Vi63FnFXOzSkpT3tNwK4mgcQPd44yb0INPs2d7LlO9_7iz1a59S3RMpKvVYLkbzmV_-3OcuRPeLRYb26rGQ4HNmwPUAXjbzUK-E3Sf7WPC81HzxK2YM4lS6oPSG4oD19HDC4rBtPvXAAYr1x-qK4d0iGvez4L71Aaj-44kYjvNyElrx3Q8C3oW9BuwuLkL1ihgm4VRimPW0LxT2Dx-c4PCn6u1UqbT3gMo24Lj9LPd8_bbqurSS2W8rePPqE6LtJUcc3IAA4E0AJSG1QASpzEAAaYCn6AEoSJfL9DGT3E8v4DhHsBvIlpcj_AP8ABhj3AB8d2bAFBAAB6y3dqgAAAPIJ4wksAP119tH9KgowHcXlzRhAfyoTHAMGFN0BLC02AsEbPSdBNQBB57slUv6UTeoRFiAALVuXGzs4E0AJSG9QAiqvBhAMGqAGAACQQQAA2EEAAIhBAADgwQAAEEIAAEDCAACMQgAAoMEAAJjBAACIQgAAgL8AAJzCAABMwgAAsMEAACBCAAA8wgAABEIAAADCAAAAwgAAAAAAAKDBAAA0wgAAIMEAADxCAABwQQAAAMIAABjCAAB4wgAAgEAAAKDAAAAIQgAAQMAAAKjBAABEQgAALMIAADBBAABwQQAAOEIAAGDBAABUQgAAjEIAALhBAADAQQAAYEEAALhBAACuwgAAHMIAAEDAAAAgQQAAEEEAAJTCAACCwgAA4MAAAIC_AABcQgAALEIAAOjCAAAAQAAAAEAAAIDBAABkQgAACMIAAIA_AABwwQAAbEIAAIA_AAC4wQAAoMAAAEBCAAAEwgAATEIAALhCAACAvwAALMIAAKBAAADQwgAAUMIAAKBBAAAkwgAAAMAAANDCAACUQgAAmEEAAMhBAACAPwAAuEEAAODAAAC-QgAAmEEAAJjBAADQQQAADMIAAAAAAAAAwgAAkEEAAADCAAAQwgAAYMEAAIhBAAAAQQAAAMAAAARCAAA4QgAAaMIAAEDBAABAwgAAQMEAABDBAAAMQgAAGEIAAKDAAACmwgAAEEIAAIBBAABAQgAAKEIAAIjCAABowgAAVMIAAFDBAACgQQAAPMIAAJjBAADMwgAAsEEAAABCAADgwAAAgMEAAKBAAABUwgAAPMIAAKDAAAAQQQAAREIAAATCAACEQgAAmMEAAKDAAABswgAAGMIAADxCAAAAwgAAIMEAAIBAAAB0QgAA4MEAABjCAABAwQAAZEIAAAxCAAB0wgAAwMAAAOhBAACAQQAAEEIAAMBAAACAwQAAhsIAAATCAAAMQgAAoMEAABhCAABUwgAAQMEAACBBAAAwwgAANEIAADBCAACqQgAAgL8AABDBAAC6QgAAgkIAADBBAACwwQAAIMEAAEBAAAAAQAAAiEIAAIBBAADAQQAAqMEAAEDBAADIwQAAaEIAAMDAAAAQwgAAUMEAANhBAAAAwAAAAEEAAHBBAAD4QQAA2EEAAEBCAAAAQQAARMIAAGDBAADAwQAAwEAgADgTQAlIdVABKo8CEAAagAIAAGS-AAAsvgAAnj4AAMi9AACAOwAAuj4AABS-AAAdvwAAor4AAPg9AACoPQAAmL0AAHA9AAAEPgAAhr4AABC9AAAEPgAAcL0AAKY-AAC6PgAAfz8AABQ-AABQPQAAXD4AAKA8AAD4vQAA4LwAAJi9AADIvQAAND4AAIA7AADIvQAABL4AAEw-AADYPQAA6L0AACw-AACavgAAmr4AACS-AACSvgAAED0AAEA8AACYPQAAML0AABy-AACYPQAA2L0AAKC8AACCvgAA-D0AAPi9AAAEPgAAJD4AAKK-AACYvQAAFT8AAJY-AACAOwAAbD4AABS-AACmPgAAQLwAAPi9IAA4E0AJSHxQASqPAhABGoACAAC4vQAABD4AAAS-AAApvwAA0r4AABy-AAA8PgAA6L0AAEC8AADOPgAAML0AAIA7AACAuwAAyL0AAOg9AABQvQAA4LwAABk_AAAcPgAAGT8AAIA7AAAQPQAAkr4AAOC8AAC4vQAAcL0AAEQ-AAAMPgAAXL4AAKC8AAAQvQAAUD0AADQ-AABAPAAAcD0AAOC8AAAUPgAAoj4AAJK-AACgvAAAoDwAABw-AAD4vQAAoLwAANg9AACYvQAAf78AABA9AABQvQAAVL4AAKA8AACgPAAAoLwAABw-AACAOwAAJD4AAIA7AADYPQAAiD0AAOA8AADIPQAA-D0AADA9AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=RSxn882Ve0g","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5595913159759441173"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1836722068"},"14456044627752760163":{"videoId":"14456044627752760163","docid":"34-1-17-Z583E29EE71652CE6","description":"In this video I go over another example on using CAS to solve integrals and this time solve the integral of the function x+60*sin^4(x)*cos^5(x). In this example I also show how CAS can be used to...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"35","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Integration using Computer Algebra Systems (CAS): Example 4","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CffwaNubXiI\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTQ0NTYwNDQ2Mjc3NTI3NjAxNjNaFDE0NDU2MDQ0NjI3NzUyNzYwMTYzarYPEgEwGAAiRRoxAAoqaGh2ZGV6aW14Y2lqeXZoZGhoVUNVVUJxMUdQQnZ2R056N2RwZ08xNE93EgIAEioQwg8PGg8_E94EggQkAYAEKyqLARABGniB_QL7-fwEAPj-_QD6BP8BGvcQ_vcCAQDnBAsIBv4BAO38A_oD_wAA8vcGAf4AAAD_8v_4-P4BAPz5AP8DAAAADgP-__0AAAAJD_sN_gAAAPMECvICAAAADv4BCAAAAADxA_v6_v8AAAsBBvkAAAAABgIBAAAAAAAgAC2I7947OBNACUhOUAIqhAIQABrwAWUAGADjIPUA_eEPANgOxgCBAAL_QQnjAKj28wDPFNoA7hj3ANEjKf8UGgMA0in-_wX38ADk6AcALtAe_zbyKwD49BcALvgEAB4r-QD37PcACSj6_hb4DgD33tb_CSjvACsI_vzr2eb-IuYDBBboKAIk-wcGVsf4_t___f0CIP4EzwDf_SEO9AT1BgD34fwR-gIN_PsbH_H98Ovw-Q31CQYY5A8B_QLpBy_75QIS__wG_ezr-evnCQUk8wQJ9iPu__7sB_Xq1gsD8BAWBxXlG_v0Egb7GgD1-QAHBwIV7Rn7wBINAfILCgDVGvgMKucSAiAALb9PJDs4E0AJSGFQAipzEAAaYD0AADMjAMwKHm_P58jm-u_r7uYWw0H_4fH_Ff7i3Q8j5JzpCP8-8gzbowAAAPb7_Bz9AAp_AdzuH-0OA6LH2wo0f_I4T9zrHRjTA10-57kTCTIVYwAA9JoDS_nmKTQFKSAALVDIEzs4E0AJSG9QAiqvBhAMGqAGAADgwQAAUMEAAEBBAACQQQAAgEEAAPhBAAAIQgAAIMEAAEDBAADIQQAAEEEAANjBAACQwQAAEEEAAMhBAABAQAAAFMIAAAjCAAB0wgAA4EEAAHjCAACAwgAAAMAAAHDBAAD4wQAACEIAAGTCAACgQAAABEIAADBBAAD4wQAA4EEAAEzCAAAAwQAAlMIAAIBAAACAwAAAGEIAAAhCAABAwQAATEIAADBCAACgQAAAMEEAAADBAABgwgAAoEAAACBBAAAgQQAA6MEAAPDBAAB4wgAAEMEAALBBAABcQgAAYEEAAIbCAAC4QQAAQEAAAABBAADwQQAASMIAAFTCAACqwgAAiEIAAJbCAAAAwAAAgMAAAEjCAACcwgAALEIAAJRCAAAowgAAUMEAANBBAACEwgAAXMIAAMjBAACAQQAAcEEAAIjCAADqQgAAoEAAAEDAAABAwAAAJEIAALhBAAB0QgAAgD8AAADBAADYQQAAiEIAADDCAABQQQAAnkIAAIDCAAA4wgAAgEEAAKJCAABAQgAAKMIAAKBBAAAgQQAA0EEAAODBAAAgQQAAZMIAAJBBAADwwQAApkIAAAhCAABgwgAAiEEAALhBAAAAAAAAAAAAANBBAACAvwAAQEAAACzCAAAIQgAAIMEAAPBBAAAAwQAAMMEAALhBAABcQgAAsMIAAAAAAACgwQAAXMIAAABBAACIwQAATEIAABxCAACAQAAAoMAAAFTCAAA4wgAAiMEAAIhBAACqwgAAAEEAAEBAAAA4QgAAoEAAAEBBAACAPwAAjkIAAPhBAACIwgAABEIAAEhCAAAQwgAACEIAADDBAAAkwgAAMEEAAIjBAACAQQAAAMMAAJRCAADgQQAABMIAAMBAAABwQQAAEEEAAHxCAACoQQAAmMEAAKDCAACoQgAACEIAAEDBAACEwgAA6EEAAIjBAADowQAA8EEAAJhBAADowQAAWMIAAGDCAABQQQAAjEIAACTCAABcwgAAQEAAABhCAAAQwQAAoMEAACBBAACQwQAA4MAAAMDAAAAAQAAA-EEAANDBAADAwAAAPMIgADgTQAlIdVABKo8CEAAagAIAALg9AACoPQAAtj4AADA9AAAMvgAAZD4AAGy-AADGvgAANb8AACS-AADovQAATL4AAFA9AAADPwAATL4AACW_AAATPwAAdL4AAFA9AABVPwAAWT8AAIo-AAAEPgAAmL0AAMi9AAD4PQAAXD4AABy-AAAQvQAACz8AAPg9AABMPgAAgj4AAFU_AAC4PQAA_r4AAKY-AAADvwAA2L0AAHw-AAAcvgAA-D0AAEA8AADgvAAA2D0AAJY-AABUvgAA9r4AAJq-AABkvgAALD4AAHS-AADoPQAAHD4AAJI-AABwvQAAfz8AAFA9AAAMvgAA2D0AAHW_AAAEPgAAEL0AAGS-IAA4E0AJSHxQASqPAhABGoACAABQvQAAyD0AAES-AABHvwAAlr4AAKA8AABsPgAAmL0AAAQ-AABEPgAApr4AAKC8AACYvQAA6L0AAKi9AABwvQAAvr4AAAU_AAAwvQAAoj4AAAw-AADGvgAAgLsAALg9AABcvgAAoLwAAHS-AABAPAAAyL0AAIA7AACAOwAAmD0AAIA7AAAwvQAAiL0AAIC7AAAJPwAAUD0AAGS-AABQPQAAJD4AAEQ-AADoPQAAmD0AAK4-AACgPAAAf78AACw-AAAkPgAA2L0AAEQ-AABEvgAAij4AACw-AACAuwAATD4AAOC8AACGvgAAmL0AABA9AAA8PgAAJD4AAKq-AAAwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=CffwaNubXiI","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1564,"cheight":1080,"cratio":1.44814,"dups":["14456044627752760163"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1936565592"},"7099597547415763450":{"videoId":"7099597547415763450","docid":"34-9-16-ZCC3750533E2F3325","description":"B.Tech Math Tuition Course- এ যুক্ত হতে চাও? কি কি Course রয়েছে : B.Tech 1st Sem :https://shorturl.at/lasMH 2nd Sem :Coming Soon 3rd Sem :Coming Soon 4th Sem :Coming Soon 👉Admission -এর উপায়...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"36","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Sequence-1 | Engineering Mathematics I | Basic Concept #akdmathsir #btechmath #akd #engineeringmaths","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xb5s95vTWiE\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTNzA5OTU5NzU0NzQxNTc2MzQ1MFoTNzA5OTU5NzU0NzQxNTc2MzQ1MGqvDRIBMBgAIkUaMQAKKmhodnRzcndhbHlkb25vZmJoaFVDY1djQlJwVVhiaTloNU80UFpiU3pTURICABIqEMIPDxoPPxOlB4IEJAGABCsqiwEQARp4gfv_Af_7BgD1AQMFBwT9AQwF_wL3AAAA9_v7_f4C_wDz-gcBBAAAAAL9-QIJAAAA_f_8AQP-AAAJ_fgFAwAAAA8OCvT-AAAACQ4DAP4BAAD7BgcHA_8AAA4ACPv_AAAAAwz5_f__AAD9CAgEAAAAAAYCAAAAAAAAIAAtxJ_jOzgTQAlITlACKnMQABpgBgwAHRkb9rEEHeHn-_Eh9PcSwRTr9P__CQAiBgzTDhHduR8P_ybVDPi7AAAAEvnRDQ0An1vYyuEiGQUK1OcPEw5_2gjgMRT918f9E8wkATf-9wUfAN3-_QEdBNc_IxUfIAAtEEpAOzgTQAlIb1ACKq8GEAwaoAYAAGRCAADAwAAAlEIAABzCAAAAQQAAHMIAAFBCAAAcwgAAGMIAANBBAAAAwAAAIEEAAGzCAACgwQAAmEEAAGDBAACAwAAAgMAAAGDBAABgwgAA-EEAADjCAACCwgAAyEEAAIJCAABEwgAABMIAAKDBAAAAQQAAWEIAAIDBAACIQQAAAAAAAJZCAACAwgAADMIAAIC_AACmQgAAAMEAAMBAAACwQQAA4MEAAIBAAAC4wQAA6EEAAFDCAACgwQAAIEEAAGRCAADgwQAAoEEAABjCAACAwAAABEIAAChCAADwQQAAnMIAAFBBAAC4QQAAXEIAAEhCAACYwQAARMIAABDCAACAwAAAUEEAALZCAACgwQAAAAAAAOBAAACaQgAAHEIAAGjCAADIQgAAuEEAAMzCAACAPwAA4MEAAOjBAACoQQAAcMEAAOBAAACoQQAAeEIAAAzCAABQQQAA-MEAAFBCAADwQQAATMIAAIDAAADgQQAAPMIAAJjBAABswgAAMMIAAIhBAACgwAAAVEIAABBBAAAQwQAASEIAAKBBAACswgAABMIAABBBAACYQQAAqMEAACDBAABAQgAA-EEAAODBAAAAwgAAUMEAAJ5CAAAkQgAABEIAADzCAABAwQAAgsIAABDBAABcwgAA4EAAALjCAACKQgAAXEIAAODBAAB4wgAAqMEAAHDCAACIQQAA8MEAAADBAABUQgAAgEEAAIjBAADgQAAAUEEAADTCAABowgAAJEIAAKhBAABAQQAAAMEAACBCAADAwAAA6MEAAAAAAAAgQQAAwMEAABhCAAAQwQAA4EAAAFzCAABwQQAAAAAAAIA_AACawgAA4EAAAOJCAACYwQAALEIAAARCAADAwQAA4EEAAFjCAABAQgAA0EEAADhCAAAAAAAAmMIAAHBBAADwwQAAiEEAAADCAAAoQgAAFMIAAADBAAAgQQAArEIAANjBAAD4wQAAkEEAAHzCAAAEQgAAlsIAAEDCAAAcQgAAyMEAAADBAACAwAAAiEEAAEhCAAA0QgAABEIAACBBAAAcwgAAgEAAAGzCAACAwiAAOBNACUh1UAEqjwIQABqAAgAAhr4AAHC9AAC4PQAAiL0AAIA7AABsPgAANL4AABe_AABkvgAAQDwAAHA9AAAkvgAAoDwAAJg9AADYvQAAEL0AAIo-AAAwvQAA2D0AAMI-AAB_PwAAyL0AAKg9AACovQAAEL0AAOi9AAAQvQAAFD4AABC9AACYPQAATD4AANi9AACovQAAQLwAACw-AACYPQAAmD0AAOC8AAAkvgAAbL4AACy-AAAQvQAAFD4AAAS-AAAQvQAABL4AAGQ-AAAkvgAAuL0AAJa-AADIvQAAJL4AAGw-AABkPgAAgr4AAEC8AAALPwAAQDwAABA9AAC4PQAAqL0AAFQ-AAD4PQAA6L0gADgTQAlIfFABKo8CEAEagAIAAHy-AABkPgAAoDwAAAu_AAAwPQAAcD0AAN4-AABEvgAA4DwAAPg9AAAwvQAANL4AAPi9AAAkvgAAEL0AAIA7AADgPAAAHT8AAGy-AAC-PgAAuD0AABS-AAAMvgAAmL0AAIA7AAAEvgAAmL0AABQ-AACAOwAAgLsAANg9AAD4PQAAHL4AAOC8AAD4PQAAQLwAAHw-AACYPQAATL4AAFA9AACePgAAJL4AAIg9AABQvQAADL4AAKg9AAB_vwAA4LwAALi9AAAcPgAATD4AALg9AACAuwAAgDsAAAQ-AADIPQAAqL0AAOg9AACgvAAAND4AAKi9AADYvQAAqD0AAFQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=xb5s95vTWiE","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7099597547415763450"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"3201401658850942940":{"videoId":"3201401658850942940","docid":"34-10-8-ZA961D743415EE9B2","description":"Boolean Algebra is the mathematical foundation of digital circuits. Boolean Algebra specifies the relationship between Boolean variables which is used to design combinational logic circuits using...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"37","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Logic Gates - Boolean Algebra- Discrete Mathematics","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OAz8QpC1bHE\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTMzIwMTQwMTY1ODg1MDk0Mjk0MFoTMzIwMTQwMTY1ODg1MDk0Mjk0MGqIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxOUC4IEJAGABCsqiwEQARp4gQEI-vkAAAD7_P8QAQn7Ag_z-gH2AP8A9vr7_f4D_wD49gQADAAAAOwN8vsAAAAAAPvxDfj-AAAEB_oI-QAAABES_vb8AAAAHwMDCP4BAAD9_wIGBP8AAAwODvYAAAAA7RP_B_8A_wAADw31AAAAAP0KBvj_AAAAIAAtCLHSOzgTQAlITlACKoQCEAAa8AFhEfQA6QIFAeQN5wABB9EAgQUL_w0Q3gDp9BwBy_nWAPke9AHy8R0A-QgdAMsFAAAh5_QAPfTrACEBAgAQAQoA6hEuABvjCAAS__wB1e8H__MXFgAi9gsA_d_7AAoS9v78_Q4A2wTO__n25QQS7CECBxP7_hXk-gLzGBP7CiAJ_PwIAgPv9hwBCOICA-X_BwYO__EHE_zn_-0Y7gLWDQf_6On5_BUI9Psp_gED6e77-AIaB_0RAvcBAvv3CwgE_fXYAvz5Ft3__fgP-fYe9RUA7OIIBf_s_Pr_Af_5C9j79dTuCPriHf4D-_b9CxnzBAMgAC1uJ0g7OBNACUhhUAIqzwcQABrAB5Lo7b6UZ0G5zUlevdK6p724QCI9VWWEvKG30bjwp0Y8SygzvNOjGT6oNng9YQn3upfHqr4Tx-w7vhGdvCy5Cj4BZiE8ZmPKvO_lTr4QqEM9GKzAu_Whg748d_E7LsWXO11AXDvruCu8jb_jPB0A8T311RW9-Z4xvWGCYLtvFgo9GLptvBgcKr2-Toq9Bg4LvP7VQz1gPnm9fNa1PHTrNT5wHEK8sVTyPDwE4TqYnEE76OEhu0_3sLzvPTe8ltgrPbWMJD4_vum8ZGuHPBfLvrx6srC7Y8IgvPkpU70EAwg8b7l6PJVShj0jMcE8u2VivGL0jD2eftC9vnZdu5jPKDygEJs9V6kFPd20GT49FtE8A2D6uymuSr2VIK08L3Z4uqdSuL1DR6G924bVukHCZjzwdMI8i3WiO2M9ij0gIIQ8-UiKPNGFhzwaj4w6J1cIuzngqT31-5k94GgFvM8-kD1c-vw8Kh_CvN-Izr2SGTm8tqFPukL_KT2M3NO9T_eLPGKC-j0I6k89i2AtPKA9Uj3MHxi9SNoyPELYX7yA33U8nfIHvCe2Zz2Iztu7SoiovBIiLz3k_j69OnmRux8Wlb0pWY488zTkug4-Az3nOsi9LzNsPM910LyWxjQ91D_OO3DBiDwHlZ288HAavOPgUjxvvmw88xP3OzhxqLwZYgu9pTqROhErjT1XQh25i9YXPFFtSz1h1Qu7toZvOxmRGD74frQ8GeZtORL4ZLvuLDC8Ntf2N4cWjbnpYhM-jiFauZNikT2mgT-9g5OsudWTeTxrFp48SSdYOcAgCT01h1o81a8ZOFU6s7xcwZu8rim2uRwFqToQ0Fg86MoGus3jlTwA7gk8ZhtRucYmYz1L1pe89m_OOSLwUbwI19K8s3KrN16Fj715e6u8tJWIuGAdxzw2sRs9XhRZuEIG0bu2UM28i0UmuQ8WBL1ceBo8zK5duALfI73oHki8Mqtgt-ukYzyijKK9v1JkOSnbdrzn7LM9J5-AN_6SHjzNhLA8t9GVtWOfujsKjoG8kVDAt7ETgzy2sbO9FanpOFT-1jvO4uU9T1VaOEN-vL2bRkm8eEvIN_NFUb023ke9kUy8t079TbxrC4S9SeOzt3QprjxOUHm9rtGoNROGjD1N3UU6kNuduKFlXTw8ItU8uAGUuKaGkTwjY1q99H6KN_nGZr3fkpK9u88CN-wDvTt81A--F_rcuKlrjT2LC5E9EyciOAcLp7y9_O49g7QeuVIJpL0f-FM9CUMwOOylBryLp169JK64NyAAOBNACUhtUAEqcxAAGmAC7wBJGzb2Jh9cAc8Ezw6--_vM_tH__-7d__8O5vHgE8Kw7yX_EvcS6KQAAAAY-SMc-QAuere-tivj6-qw2-0oBn8VKguiLAP81xFgHdjYJ_7tAWIACfOl_kHxxyzx9jMgAC3hnBY7OBNACUhvUAIqrwYQDBqgBgAA4MAAAAxCAACIQQAAcMEAADxCAAC4QQAAfEIAANjBAABEwgAAAMAAAEBBAACywgAAdMIAAODAAAC6QgAAuMEAAEBAAABAwgAAwMEAACTCAACAvwAAEMIAAOBAAACoQQAAAMAAALjBAACCwgAAwMIAAKBCAACAQAAAUMEAABBCAAC4wgAA6EEAAJLCAACwwQAACEIAAMxCAADgwQAAIEIAAABBAAA0QgAA0EEAALhBAACgwQAAJMIAABjCAADgwAAAmEEAACBCAADWwgAAkMEAAPBBAABQQQAAbEIAADhCAAAAwwAAqEEAAAjCAADAwAAAkEEAAAjCAADAwQAAmsIAADxCAAAQwgAAOMIAAIDAAACgQAAAgMEAAFhCAACsQgAA8EEAACBBAAAswgAAUMIAAADCAACowQAAgD8AAEDBAACgwgAAeEIAANjBAACSQgAAIEEAAEBBAACwQQAAgD8AAFBCAACwwQAAXEIAAAxCAADQQQAAQMIAAADBAAA0wgAA8EEAAADBAAAgQQAAgMAAAMjBAACEQgAAdEIAAFDBAABAwAAAEMEAAEDBAADwQQAADMIAABRCAAAAQQAA4EEAAEhCAABMwgAAkEEAAFRCAAAowgAA8MEAAOjBAAAQQQAAoEEAABjCAADowQAAVMIAABDBAADYQQAAyEEAAIBAAACYQQAA-MEAAAAAAAAYwgAA-MEAAIC_AAAAwgAA0EEAABBBAACAPwAAgD8AAGzCAAAkQgAAAAAAADBCAAAQwQAANEIAANhBAACMwgAAAEIAAGRCAABAQAAADMIAAHBCAABMQgAAcEEAAAjCAACAvwAAYMEAADjCAAAQwgAAaEIAALDBAACgQQAAPMIAAABAAADgwQAAQEAAAADAAABkQgAAwEAAACBBAACIwQAAYEIAADBBAAAwQQAA4MAAAFDBAACEQgAAMEEAAARCAAAkQgAAwMAAAIjCAABAwgAAEEIAAKpCAAAwQQAAKMIAAIhBAAAEQgAAUMEAAPjBAADwwQAAEMEAAIBAAACQQQAAKEIAABTCAAAAQAAA-MEAAKBAIAA4E0AJSHVQASqPAhAAGoACAABUvgAA2D0AAFQ-AACoPQAAFL4AALo-AABUPgAARb8AAAG_AABMPgAALD4AANa-AABAPAAAnj4AAEC8AACmvgAAsj4AADC9AADiPgAAPT8AAD0_AABwvQAAHD4AABy-AAA8vgAAmr4AAM4-AAAQPQAAQLwAAJY-AACSPgAAor4AAIA7AACyPgAAQDwAABy-AACgvAAAMD0AAIa-AAAkvgAAqr4AAKC8AACKPgAAJL4AAGS-AACgPAAAzj4AAOa-AAAwPQAAlr4AAFC9AADIvQAA-D0AAKg9AABwvQAAQLwAAH8_AAAMPgAAmD0AAIi9AABUvgAALD4AACw-AAA0viAAOBNACUh8UAEqjwIQARqAAgAAEL0AAI4-AACOvgAAVb8AALK-AAAwPQAA-D0AAOi9AADYvQAAxj4AAFw-AAD4vQAAfL4AAJK-AADoPQAAUL0AACy-AAAlPwAA-L0AALY-AAAwvQAANL4AAJi9AADIvQAAuL0AAAw-AACuvgAAuD0AABy-AAAMvgAAoDwAAIA7AAAwPQAAUL0AAEw-AAAQvQAADD4AACQ-AABcvgAAJL4AAMg9AABQPQAAor4AAOC8AACovQAA6D0AAH-_AACovQAAgDsAABy-AACIPQAA6L0AANg9AAA0PgAAUL0AAIg9AAAwvQAAqD0AAKg9AAAwvQAA6D0AAFw-AAAkPgAADD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=OAz8QpC1bHE","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["3201401658850942940"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2961535390"},"5930430563286544159":{"videoId":"5930430563286544159","docid":"34-3-1-Z70D61282EBCE5D26","description":"This is part of the Understanding Quantum Information & Computation series. Watch the full playlist here: • Understanding Quantum Information & Comput... 52 — Bloch sphere 47:38 — Blo...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"38","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Density Matrices | Understanding Quantum Information & Computation - Lesson 09","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CeK9ry8G8HQ\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTNTkzMDQzMDU2MzI4NjU0NDE1OVoTNTkzMDQzMDU2MzI4NjU0NDE1OWqIFxIBMBgAIkUaMQAKKmhoaGFpeWZ6dmtqa3Zva2JoaFVDbEJOcTdtQ01mNXhtOGJhRV9WTWwzQRICABIqEMIPDxoPPxOWIoIEJAGABCsqiwEQARp4gQsF8_0H-ADv-hQGBwT9AQwO9Pb0AAAA4xD8-Aj9AQAI-gkB-gEAABX5BgAAAAAACvT2_vX-AAAHBvz6-gAAACD8AgQDAP8ADxz6A_0BAADz9ggDAwAAAAoLDwoAAAAA_g0JBPn_AAAHDwwLAAAAABf_9g8AAAAAIAAtR52_OzgTQAlITlACKoQCEAAa8AF_AxQD7uD5AfoY5QDaDskAiO4b_yIS6ADa8An_thHS_wQgCQDx3xkA-BgCAMPuEwD_5OEAIwz2AAnpAf9ADQwA7RoWADPe_QAvDRQC7wAE_-MfD_8c7CkCAOrzACv-_AAPCQQAFBjp_gnuwwcJEh8A8zX-AhgC_AH09fUB7ygH_vj84wAK-QUDAwIF-_4OGgIK_d0ADxT7_tMb7v8ADvYJ7OoABisP6QEwHf0C4w359_UX-QAZGAAE6gIQBQkN7v_h_wr1D88G_wonEfsl7gYF--cTAvn07wPl8foC-eYO_Q3zFAfKCvoFEi8HBQrv-wYgAC3fXS47OBNACUhhUAIqzwcQABrAB4z2-L5eAiY88Q3qvFxXDD2vSZI8NTUcvJsb07wXMx290F23vNL_0j1pKnU9VJQFvL2OkL5851y92KYpO4NQtj4a8rS8r1VMPDV5Or4Oq5E7Sn5EPPWha76E0wc9dDXDu1jBxD2Rlg89RxqBPH55fD0ZxbK8Fp48PEaUxj1Y8Ty9T1ktvfQfLT0_ube9nj8SvVrfNj3p2528U5HKPGzPzD1COh-8d4FUOy4fSb2BGZ096y0QvJVmDr0pnaO8RNsxPOKSAz6Ho5A8OA9MPAP7qT1Vo1c87bjAOyv77ryZ2SI9Y6wfPPpe4z33s1M9d2pLOwaWDT0gyjy8JGR7PIZ3hL1HVC0935m7u7lmtz1zE7A9vxuBPNlCkL02vbo8SOxqOxDgvr31c_k8Ys59PA05kTxc92C9hFZxvLP7Xz2Q8GK8kXDvOuy_nj25dZI8GuFIPOrjxjx68Y890m-hu75o0buQ3ks9rCMivOYkb7x7hxu9gPDCus-aZD32UVy9e-uuO8zJpT3Xfpc8hf6yO91Xuj1DMZO9Lh3Su655er3APAm9-b44OyfbAD3PjZ-8o-EcPI-sh71h8pA96Sjmu0COQTwsRMe8sxJOvDCrU7nuzpq8bZOGuw3byz19kts91e0lurlKgbzScCo97N8zuxKONDwmyjk90HLqu5WNeL3rroe8DCJOOw1u6zwAm2I8EKXmOsWZVb07b-O9tG0uuhmRGD74frQ8GeZtOdApSDuTLRy99QdSO6I10DwQfOc8nHMNuzJXJj245Ji9oGrytxXKQjzKsWs9m8zqOUl-ST2sxUc9ZApeuBXXgj2JTVq9OeuTONe2Mr1GEYg8ACiJt7GWcbx-c1q89_8zO4BVJL1Ct3K97i4POjz1KL0pZH29-BefufQA8bsNPBK9ni2sNsS-8DrZLd08hecbuTF_YD3GK5o82Ar9OMi4ILqwZeg8L8J1uB2ItLsMDmU9EmcHOOy5r7vFwZq9E4B2OeNvcjnJv6A9uf0nOHxD4TwgLxo9rIekuOUyBD3CGoK8INCVOK89mLwX9B6-_YqquC33uDwPiow9qb2KuGVTzr3C6Kg8_jLoNwOHJj0e7AO9norSN31V07xb_SC8xtoUuFWQdb2Qqn27wAy7OC0cDT1JPM-8r1APuL5dAL3Iz146U6act0Hybj2FD4C8EshbN5iwbL0R38m8X8KAONMziD2FC_m8QHokuEUS2Dwgsog902HPOJKoHL1HVTM95q98uLQWwL1UNLs9PF-yOO2Ieb0Hva08ZMXANyAAOBNACUhtUAEqcxAAGmAq-gA2BBTB5vsW9-fpzfrr8QvfHtPi_9MDAAgO0PIBEuzA7wwAEr4r_rUAAAAJ6PgiEQDfYdPN7xfvB-yzsBQmE3_wBQfi6w7q2w8KDvr0FgcKFjIAFeq_KDAiqUj2JCcgAC2qQDc7OBNACUhvUAIqrwYQDBqgBgAAiMEAACBBAACIwQAAuMEAAHBBAAAAwgAA2EEAACDBAABgwgAA2MEAAKJCAACKwgAAbMIAAETCAAAMQgAAGMIAAADBAABwwQAAuMEAAEjCAAA0wgAAYMEAADBBAAAYQgAAgMAAAFTCAAAswgAARMIAACBCAABAQAAAQMAAAHhCAAC6wgAA4MEAABzCAACAwAAAAEEAAL5CAACAwAAA2EIAALBBAAAQQgAA-EEAADhCAACAQAAAjsIAAHDBAACAwAAA7kIAAIBBAABwwQAAsEEAAETCAACgwAAA0EEAAPDBAADiwgAAoMAAAATCAACAQQAAZEIAAJDBAACgQQAAoMIAAKBBAADSwgAAIMIAAGzCAACoQQAAAMIAAIBCAACIQgAAwMAAAMBBAADAwAAApsIAAJjBAADYQQAAbEIAAABAAACQwQAAcEIAAFBBAACwwQAAIEIAALhBAABwQgAASEIAANxCAAAowgAA4MEAAKpCAABIwgAAJMIAAIA_AACOwgAA4EAAAChCAACoQQAAcEEAAOjBAADYQQAAQMAAABDCAAAEwgAAQEIAAMjBAADgQQAAQMEAAARCAACIQQAAMEEAAIBAAAC4wQAA4EAAAEBBAACAvwAAQEAAABBBAABQwQAAFMIAAIjCAACQwQAAEMIAAKBBAADoQQAAUEEAAHDBAAAowgAAUMIAACjCAACYwQAAoEAAABBBAAAAwQAAZEIAAOhBAACwQQAAAEAAAGzCAABwwQAAAMAAAEBBAADAQQAAmEIAANhBAAA8wgAAGEIAAAxCAAAAAAAAAEAAAKBAAADgwQAAPMIAAODBAAAgwgAAgD8AABzCAACKwgAAgL8AAGDBAACIwQAAsMEAALjBAABUwgAA6EEAAKDBAAB8QgAAAMEAAKBAAAD4QQAAgkIAADjCAACgwAAAMEEAAEBAAABAwQAAZMIAAPhBAACYQQAAwMEAAMDBAAA4wgAAwEEAAHBCAABUwgAATMIAAJBBAACYQQAA4MAAAHDCAAB0wgAAIEEAAKhBAAAQQQAAQEEAALDBAACgQAAA8MEAAPDBIAA4E0AJSHVQASqPAhAAGoACAACAOwAAML0AAKC8AABsPgAATD4AAAw-AABEPgAAGb8AABm_AACOPgAAQLwAAAw-AADovQAALD4AABQ-AACuvgAA-D0AAKC8AACYPQAANT8AAH8_AAAEPgAA2D0AAAw-AACOvgAAFD4AAJi9AAAkvgAARD4AAIY-AAB0PgAAuL0AAMi9AAAwPQAAmD0AABC9AAAQPQAAQLwAAKq-AAA0vgAAiL0AAAy-AACoPQAAJL4AAEC8AABkPgAAZD4AACG_AADovQAA3r4AAGS-AAAkvgAAVD4AAIA7AACyvgAA4DwAAE8_AAA0vgAAcL0AAMo-AABQvQAAjj4AABQ-AABsviAAOBNACUh8UAEqjwIQARqAAgAAuL0AANo-AACAOwAAJ78AAMK-AACGvgAAPD4AAAS-AADoPQAAmj4AAHA9AABsvgAAgDsAAJa-AABAPAAAyL0AAKi9AAAzPwAAlj4AAP4-AACYPQAATL4AAIi9AAAEvgAABL4AACy-AAAQvQAATD4AALi9AABAvAAA4DwAAIg9AADgvAAAZD4AAIo-AACCvgAAnj4AANg9AACqvgAAdD4AAPg9AAAUPgAAmr4AAHA9AAAUvgAAJD4AAH-_AACAuwAAFL4AAFC9AADYPQAAoDwAALi9AAAsPgAAlj4AAPg9AACIvQAAuD0AAJi9AABwvQAA4LwAAFQ-AABwPQAAUL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=CeK9ry8G8HQ","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["5930430563286544159"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1468631863"},"14677982364216415538":{"videoId":"14677982364216415538","docid":"34-4-2-ZEA803A766F32F706","description":"🎓 Welcome back to A+ Softek IT Consult — the ultimate tech hub for students, self-learners, and future tech experts! 🎓 In today’s video, you'll learn: Algorithm in Discreet Mathematics Lecture 1...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"39","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Algorithms in discrete mathematics lecture 1","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7NbwBc6n-XQ\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTQ2Nzc5ODIzNjQyMTY0MTU1MzhaFDE0Njc3OTgyMzY0MjE2NDE1NTM4aq4NEgEwGAAiRBowAAopaGhtdmZ0eGRxd2p1Y2VlaGhVQ1Y2UkVpM01zUERBVC1lTUlXMGhVSncSAgARKhDCDw8aDz8Thw-CBCQBgAQrKosBEAEaeIHuBfwFAf8A-wMDDwsJ-gIMAPv69gAAAAAK-fT3BP4A6PgDBwn_AAD6EPD_AwAAAAD78Q34_gAABAf6CPkAAAAhDfz4-wAAAB8AAfr-AQAA9f_8DQT_AAAcEQP9_wAAAPAD-vn-_wAA_hAFAQAAAAAEBvj8AAAAACAALWoszzs4E0AJSE5QAipzEAAaYPkBADUxK_aYF0gOwwPS69vHR9vn0eD_4cT_9TXT3u3t7tzwIv8a1ALelgAAACq-Bic_ANV_u8q3OBgJEZntA_vwfO4U9ApCHQi6KSHa2j71OuAaXQDUwe4APPLPSR8FCiAALQdPEDs4E0AJSG9QAiqvBhAMGqAGAAAIQgAAcMEAACBCAABAwAAAwMEAAADAAACGQgAA0MEAALBBAAAgQQAAXEIAAOhBAACgQAAAwEAAAKDBAAAwwgAAyMEAAGDBAAAUwgAAsEEAANhBAAAUwgAAeMIAAAxCAABQQQAAYEIAAGDBAABAQAAACEIAABBCAAAIwgAA2MEAAMTCAAAgQQAAoEAAADRCAAAAQAAAmEIAAATCAAAAQAAA8EEAAATCAAAYQgAAcMEAAEhCAACawgAAYEEAAADBAABgQgAAMEIAAJhBAAAQQQAAwEAAAOBAAABQQgAAQEIAAFDBAACAwQAAUEIAALhCAAAgQQAANMIAABTCAADAwAAAoEEAADBCAABwQQAAwMAAAGDBAADQwQAAnEIAAJBBAABgwgAAPEIAABBCAAD-wgAAcMIAAKhBAABQwgAA2EEAADDBAACAQgAAQMEAAPhBAADgwAAADEIAABhCAACAQAAA6EEAADDBAAAkwgAAgEIAAAzCAABUwgAAwMEAACTCAACAPwAAEEEAACBCAACAQQAAAEAAAIhCAADAQAAAiEEAAEDCAABAQAAAIMEAAAxCAADQQQAAMEIAAJRCAAAAQQAArsIAAMBBAACAQQAAwEAAAEBAAACWwgAAAMAAAIrCAACAvwAAiMEAAODAAACawgAAWEIAAHBBAACowQAAfMIAADjCAACIwQAAsEEAADzCAACgwAAAwkIAAGDCAACUQgAA4EAAAEBAAAAQwQAAyMIAAKDAAAAAwQAAgMAAAIjBAAB8QgAAIMEAAIjCAACQwQAAmEEAAEBAAAAEwgAAEMEAAMDAAADYwQAAIEEAAJjBAABgwgAA0MEAALjBAAAEQgAAFMIAAKhBAADIQQAAwMAAAI5CAADAwAAAuEEAAIA_AABgQQAA6EEAAIbCAABIQgAAKMIAAIhBAAC0wgAABEIAAIbCAACAwgAAlEIAABBBAADgwAAAkEEAAABBAABgwQAAmkIAAIjCAAAoQgAAqMEAANjBAAAIQgAAFEIAAOBAAAAIQgAAbEIAAIhCAACoQQAAMMEAAMjBAAA8wgAAMMEgADgTQAlIdVABKo8CEAAagAIAAGS-AAD4vQAA2D0AAHC9AACgvAAA6j4AABA9AAAxvwAA0r4AABS-AAAQPQAAlr4AAIA7AABsPgAAyL0AAOi9AACSPgAAgLsAAMg9AADmPgAAfz8AAES-AACGPgAAgr4AAJi9AAA0vgAAdD4AADA9AABQvQAAjj4AALo-AAAsvgAAqD0AAJY-AABwPQAAHD4AAFC9AABcvgAArr4AADy-AAA8vgAAfL4AAFw-AABkvgAAHL4AABS-AACePgAARL4AAJK-AAD-vgAAqL0AAKi9AACCPgAAUD0AADC9AADgvAAAPT8AAKA8AABMPgAALD4AAKC8AAAcPgAAFD4AAHC9IAA4E0AJSHxQASqPAhABGoACAAAUvgAAHD4AAFS-AAAZvwAA6L0AAKg9AACWPgAAoLwAAJg9AABwPQAA4LwAABS-AABwvQAAZL4AABw-AABAPAAA6D0AAPY-AACCvgAAxj4AAOC8AABwPQAABL4AAMi9AACoPQAADD4AABS-AABwPQAAVL4AAIi9AACgPAAA6D0AADC9AAD4vQAAuD0AAIi9AAAsPgAAhj4AAGy-AAD4vQAADD4AAIi9AABwPQAAQDwAAEA8AADYvQAAf78AAKC8AABcvgAAmD0AABQ-AACoPQAAQDwAAJg9AAAwPQAAmD0AAHC9AADgvAAA4DwAAKg9AAC4PQAAED0AAAw-AADYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7NbwBc6n-XQ","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":null,"cheight":null,"cratio":null,"dups":["14677982364216415538"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"203525979415858922":{"videoId":"203525979415858922","docid":"34-6-14-ZD6D0BCFD61044BC8","description":"Any questions? And, you will learn how to graph 3d shapes using the python module: matplotlib. This is my lesson 22 about Computer, Math and English Courses Series. I also provide online...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"40","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Math in real life Python Script Tutorial Series 22 - Sphere coordinates","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OjxRmNjktRo\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFAoSMjAzNTI1OTc5NDE1ODU4OTIyWhIyMDM1MjU5Nzk0MTU4NTg5MjJqiBcSATAYACJFGjEACipoaGdiZ2d1b2V2ZWJhZ25kaGhVQ3BsY3NJc1pSNHEwalIzVWdYam9TRFESAgASKhDCDw8aDz8TowWCBCQBgAQrKosBEAEaeIEBIAT_C_IA-AoQ-_oF_wH8AvEI9vz8ANwB9P8M-wIACvoO8v0BAAAaCewLAAAAAOsA9v7tAAEAFv7rCQMAAAAdFfwR-wAAAAkI_wL-AQD_9OfyAwP_AAAY9BL8_wAAAPv8-gL3_gAB_gz3DQAAAAAf-fb0AQAAACAALem8rDs4E0AJSE5QAiqEAhAAGvABf_koAdr3GQLKAugB_fnTAc8g-wD8NdEAn9DzAJzz5QDjMh0A9PsXAB4JJQHJ-BMA4wbE_xL35AA1yCL_1jbeAOzSCwETxQMAQDIB_wwM8v_KIh3-Bejz__Th5AIAKfj_7_Id_RT4vgEO_P8ANdIoAighIwW_DRf-3iXwAKgSEP7r3Nj969UJCQfzB_vv2w8DDef8CA0rB_nC8gUFLwTx_BAD-v0EGuMF_C3pA9UYAwTiA_8ECMjrAAv1DAMaId4C8vX-9MLHFfwW5PsK8vEN__QcAg0J9AIGHOIAAv7JCvb2CgAI8Az7_P4A5wgiyfn0IAAt51gPOzgTQAlIYVACKs8HEAAawAfpYtO-ivAFPZB4wzy9OgU71gQMvZVw17w_6V-98GScPRKPWr3akB8-pgUzO-etmTqgqEy-7KtmvalRozuKH1M-yxDoO6T2x7wOMQ6-TQaRPEfoQrxXsTi-R6V9PKXUCj2dGJ09CHyZvH_GHryg4tg9YTyevMVPiLwzOKW8gCXbO1sAZLxWP8C8F_hFvTt5ibvmy4s9fJYMvW48zjzcYG29pyqjvDc517xndxA8V350PTIH3jtHWoU8xI2APNuRA7yE2Nk91PWfPHedNzotiJK6WIxfvKbeCb3fCQy9zylQObaOHryswms9nX9gPddFdrwT7lq9zo2pvI39m7uFY3G8LEV3PZ6hizhwl509HxMZPnqtOTmndyG-UbYtPa_TozplyRe9zjjNPG2gDLwwY6o9oZGZPCZpozzAloc9STuUPQ-xZrxjYD09Dy7IPX357jwB_Tm98yOZPWVZi7xngjw9eg27Pd1sYry-mUI9DeYKPWDzYLyyYIe9kdKcPflOCjv9xac9cy2avBRefrvfZsY9ObXzvYcfGDzSiYQ790YDvbqBTTrlw8I9V1K4PIzHnDu0IAQ-GAgCvdggN7p_I2s9wb7nPHDZVzxEFT49ig8iPeROJ7tK0-C9YyCEPbU_6Tuyy4G89wy8PXHyDbs3dfk81UIpPeAfgLs36je9ebJ7PWA26Lqu4qO9pMQuvd4YyDlRbUs9YdULu7aGbztru4Q9-7N6vDe5Z7v35jc8-5mVPPX_QzthgqQ8jhccvV7FmLoBo-s9EttdPDPuhzjsQKc8OdYlvTzucbkKv0-9Jh7QPYAjOblkbLI8XAPbveCkFLlUG_y9Yrv7vRPT8jl1wnC8puXRvN1LQTaaalo7hwYYPbM_1DrSvn69gE4AOhnQMrp5Dpu9OUZyvYZd_bjSzG68kvLJvK3Y7bgz7hm8fFdOPR51CDlUCD-9O22RO0H6gzgNtuI82pEqPqFijbm6ngg9H5UsPF4xmLcCKRE-rNQiPSsSADmJrFo79n8uPrw7FbmBwIQ9_5qHvDAlJbg2RDA9woUdvMe7HbjYmDw9tCXGPM4fgLjfbKO9_C0JvM19qrZpFQK9kLwjvs2DhLjIXzo-3JXCPM2vSzg47IS6Ee7EvCsHXjc4ZQ49Ad6ivWB1eDZXBC--u-yHvbxhozhUdWq8r1VnPe5cEzfEzpQ8Qt5cvYe4NDbe6F49eOWEvUFStLigFw49FyW9PSh_ADlwM0s9NLPLPdnTp7c25Qq9IGNpvT0z_Ldp9oq8qSq5PRhZJbcgADgTQAlIbVABKnMQABpgNgEADxcWAPQYKPHxBwww2gIJ8BQR9P8J3AAAHQr9E-7AqjIa_yHdAt23AAAAIfbqKvoAA2X94vE07PgF0a22IPp_CCEIud4OBs7zAOzcEfYbCxo5AO4buipa-gMy7BQrIAAtkOs2OzgTQAlIb1ACKq8GEAwaoAYAAADCAACYQQAAIEIAAKjBAAAwwQAAfEIAAOxCAAAUQgAA-MIAABDCAAA0QgAAgMEAAKrCAAAAQQAAcEEAAKDAAACAQQAAjMIAAIC_AABAwQAA8EEAAIDAAAAAQgAAJEIAACRCAAAYQgAAkMIAALjBAACcQgAAFEIAAAAAAACAvwAApMIAANDBAAAIwgAARMIAADDBAACSQgAAQMEAAABBAACAwAAAXEIAAIBBAAAQQQAAQMAAAFDBAAAAwAAAwMAAAKpCAAAAQAAA1sIAADDBAADAwAAA4EAAAGxCAAAAwQAA0sIAAPDBAAAQQQAABEIAAODAAAAowgAAYMIAAETCAABYQgAADMIAACDBAABIwgAAPMIAAAjCAABIQgAA-EEAACDBAAAwwQAALEIAALjBAAAwwQAAbEIAAKBBAAC4QQAANMIAALBCAAAMwgAAgD8AAIhBAAAIQgAAqEEAAJZCAACCQgAAkMEAABBBAABAwAAAIMIAAJLCAAAAwQAA8sIAAEBAAAAQwQAAEEIAAFDBAABowgAAQEAAAIZCAAAwQQAATMIAAIBBAABAQAAAcEIAADBBAADQQQAACEIAAKhBAAA4wgAABEIAAChCAAAIQgAAgEEAAAAAAABQwgAAOMIAAIBAAACwQQAAMMEAAJDBAAAswgAA0EEAAJhBAADYwQAAQEEAABxCAACYQQAAJMIAANDBAAC4QQAAQEIAAODAAACIQgAAGMIAAMjBAAAYwgAAQEAAAADBAACgQgAA8EEAAADAAABwQQAAAMIAAGDBAAAQQQAAsEEAAKDBAADQQQAASEIAAIC_AABQQQAA2MEAAFjCAADAQQAAkEEAAJhCAAAwQQAAiEEAAFDBAABMwgAAHMIAAGDBAABAQAAAbEIAAIBBAAAMwgAAQMEAAIpCAAAAAAAAQEAAAKDAAAAsQgAAFEIAAIDBAADgwAAAjEIAAIrCAABQwQAABMIAANjBAACMQgAA4EEAAADCAAAMQgAAjkIAALjBAAAAQAAAQEAAACjCAADAwQAAgL8AAEBAAAAAwAAACEIAAAAAAACAQCAAOBNACUh1UAEqjwIQABqAAgAANL4AAEy-AACaPgAAEL0AAAQ-AAD4PQAAhj4AAA-_AAAUvgAAyL0AAJi9AAC4vQAAcD0AAJI-AADgvAAAqD0AAB0_AACAOwAATD4AAAM_AABJPwAADD4AAEQ-AADCPgAABD4AAPi9AACqPgAAmL0AAJY-AACgPAAAuD0AACy-AAAMPgAA2L0AANg9AAAsvgAA-L0AAGS-AACCvgAAQDwAANa-AACoPQAAML0AAAy-AACCvgAA2D0AADw-AACKvgAA6L0AALi9AAAMPgAAmL0AAAQ-AAAMPgAAqL0AAKi9AAB_PwAA4DwAAOA8AABQPQAA6D0AACw-AAAQvQAAmD0gADgTQAlIfFABKo8CEAEagAIAAHS-AADYPQAAyL0AABW_AACovQAAcL0AABw-AAAwvQAAUL0AAFw-AABEvgAAgLsAADC9AADgvAAA6D0AAJi9AADIvQAAFT8AAKi9AAD6PgAAMD0AAMi9AAAMvgAAcL0AABC9AAB0vgAAMD0AAKA8AAAQvQAA2D0AAEC8AACoPQAAUL0AADC9AAAUPgAAqL0AAIY-AAAUPgAAir4AAJg9AAC4vQAAoLwAAKA8AAAwPQAA-D0AAKC8AAB_vwAAoDwAAAy-AABwvQAAqD0AABA9AAAkPgAA-D0AAKC8AADIPQAAQDwAAKC8AADoPQAAFD4AALg9AABMPgAA6D0AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=OjxRmNjktRo","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1278,"cheight":720,"cratio":1.775,"dups":["203525979415858922"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2552636435"},"7793411985646165640":{"videoId":"7793411985646165640","docid":"34-3-2-ZC305EC382AFF2BA0","description":"The main difference between quicksort and merge sort is that the quicksort sorts the elements by comparing each element with an element called a pivot while merge sort divides the array into two...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"41","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Data Structure and Algorithm: Merge and Quick Sort using Java","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DoDCrJlSRBA\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTNzc5MzQxMTk4NTY0NjE2NTY0MFoTNzc5MzQxMTk4NTY0NjE2NTY0MGqIFxIBMBgAIkUaMQAKKmhoZ2FybXdubGhyY2docWNoaFVDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZxICABIqEMIPDxoPPxOQEIIEJAGABCsqiwEQARp4gQH9-gUAAADy-_sA_wP_AQQAAAL4__4A5g79-Aj9AQDzAP7-_wAAAAH8-P__AAAACO4DDP39AQANAvgQAgAAAB4ACf_6AAAAGAsN__4BAAADAgcBA_8AAAkM-fj_AAAA_AgBAfz_AAABCPj5AQAAAAvw-fQAAAAAIAAtLGDVOzgTQAlITlACKoQCEAAa8AFqAwcBvxn8_kv-7QD5GOQBgQUL_yD_4QC97v8Az_DoAAwY9AHQ8_8ABRId_-X8CQAh5_QADvMJASEBAgAj_AQACgYRADvpCgEpDBEC9APjAAMTEf8l-R4BC-4ZAPwH_f4VEAL-0_Dx_wQV6wD88SIADRYTABXk-gL1BQkB_QkO_uoM9wQf-BIA8Ab4AdP5BQT96-0B_hj8BesCBAn-AfEC8f0eABz29QAp_gED-u32_Pj1Bvz4_QH7JA8KAv0n-_8P9vcB_fkG_fMCC_s17AwJ-vYY9gHzB_z9GfcGG-wK_O38Avn3IPz5_QAGDgb-A_AgAC1uJ0g7OBNACUhhUAIqzwcQABrAB6w4Cb-6Fd08v0UGvFXZ9zwSVdM8-DAgvVX-sD02lny61Rg-PIrCEz20TVs9tg4QPPyMu75aUw-8xurFu51Ggj5_Fku8vhLIvNz0F75-1DU9qmINPE94kb5nFUw9qeaLum7ngT2WpF87FItJPanB1D3qqDQ87UqmvAGcxbt9_sG7oJJuvfN_Xb2Bhg29HZGMupV_DT6ipFa9sVVdPCDrCT7Fbdm8qpk1vBasJzxxtak8-8Qmu3b5O73_4yk8S01MPOqv9z0xslE6yE0DPeWDeT3_gD084DBRvPo2Ez1e2hA9_8YivERplLtttT09G-VPPF1OLj0xA_q8rXesO8Yqb7y3nTE9x-PYPKj8Cz6lg5U9JI6GvCKudzyAZks9u95sPLNN4LyC_4w76gWCu43WDD2d4FE8H2_NvG_KprxZYq88YqylPKpUPzzYtqg84BDLuhapCz0yItE9nmdHPHUM47wNpww8EMvqOsMKnL1JNcc8JCmKu3yTqz1GCI-9i9vsOi6ZqT26Vzw9nW40PNbHIjxmbAM8B6VcO8olBD3Dv4Q7BCYJOS91Bj1-e229AjD5uhgvTDzCHg28X8iwOxwhSL2v3IE8SMCNuzX6hz0O_a6845mju5vIjDwUcZ88q4ZZOmj27zyzKh29-jRdvPdtrbzd71A8aW4qPNBPJ713ooS9ofeEOqGGzz2lF9I7o-qyu30NHL1yWfu8KvptumsUbTw8jKQ7CRz3uQTKJr29d227TeaKOtDxUTzvy7Q9rhmDOEKUL7x81B-9jMv4udWTeTxrFp48SSdYOV3KdD2E4Cc8akhNuYPhVz2G3LG8TLIUuYX4FTz7aa28V3q5OZMl6bxXEBo8-sj3OhStAT0EwJ08KvCjuDznnTzWTwO8KApEuWVEmLxyU0M9rRkxtz-j2bwIoS290F0bueZvpzxheDu99cqptnFPPL1_1Ta8NKC_OI1RjbzHlgy8QnEoOKvMCjrLqym9CVXCtyn0sLx60JI90TlKt60OJTxRwBY9DclVt8agGL3ogIe7b9UYtrg-rLxsBvi9ef8guHBwEz0RXEA86t2AOWOohL1mmS-9xz7JN5werzwppfG8TE_qt_2GCT0myOe7Lu-kt8xKLj2bUkO9WrZLuAJqxTzy4Hg9cin9uOyV6Lsz8yk9OBpRuLIEAz2NlHO7o5Frt60N37xlbai9rrOat72vBT2lSQm-rZ6FuIqWVz0QWPk9jRdAOPCyNb1czM89DEYKubKrj718uvo8c5Q0N3rOTLzobYe8urGbNyAAOBNACUhtUAEqcxAAGmBKAAAg_g_gwfwO3fTXARi28v7u97Pw___rAAwazMjh58KoOQz_J-wBA6YAAAA-0dYaGQDVdxW3EhHIBfLAvP4KHH_tMknDAh3bv_LhH8_-KODrRDoA9_mnFivd-CQ1Dd4gAC0L1Bs7OBNACUhvUAIqrwYQDBqgBgAAqEEAALBBAABMQgAAaMIAAJpCAAAYQgAAkkIAAATCAABAwgAAwEAAACDCAACMwgAASMIAABDCAAAAQQAAAMIAAKJCAABQQQAAhEIAAEDBAADAwAAAQEAAAGzCAAC4QQAA-MEAAPBBAABgQQAAXMIAAAxCAAAAQQAACEIAABBCAAAAQAAAAAAAABTCAACowQAAIEEAAMxCAAAAQAAA2EEAALjBAADAwAAAFEIAALBBAAC0wgAAgMAAAIBAAAAwQQAAMEEAALhBAACIwgAAikIAAKDAAACAQQAAaEIAAMDAAAC2wgAAUMEAABBBAAB8QgAAjEIAAETCAAAAwQAAQMIAAAhCAACAvwAAIMIAAETCAACAwgAAuMEAADxCAACAQQAAgD8AAFxCAACQwgAAcMEAAMjBAAAowgAAAEEAABhCAAAwQgAA7kIAAIDCAAAQQgAAAEIAAIC_AACAPwAAAEIAAFRCAACwwQAAUMEAAKpCAAAwwgAAwMAAAGDCAADQwgAAsEEAAFDBAAAkQgAAuMEAAAAAAADwQQAAFEIAAPDBAADowQAAiEEAABDBAAA4QgAA4MEAADBBAAAAQQAACMIAAFDBAAAwwQAADEIAADBCAAAwwQAAKMIAAARCAAAMQgAAGEIAAABAAADowQAAMMIAAMBBAAC4wQAAwEAAAODAAAC4QQAAQMAAAATCAAAwwgAAwMEAADTCAAAQwgAAPEIAAERCAACIwgAAoEEAAMDBAABgQQAA0EEAACBBAACAvwAA-EEAAOhBAACAwAAAREIAAJZCAAAAQQAAeMIAAGBBAACwQQAA2EEAABBCAABAQQAASMIAANDBAAAAwQAAcMEAAHhCAACQwQAAKMIAAIC_AACSwgAAVMIAAERCAACCQgAAIEEAABBBAABAQQAAwEAAAODAAACAQAAA2MEAABzCAAC4QQAAKMIAAHDBAAA4QgAAiMIAAODBAAAwQQAAqEEAAAhCAAAgwQAAQMIAADDBAADoQQAAAAAAABRCAADMwgAAAAAAAEBBAACowQAA-EEAAIjBAAAQwgAAwEEAAJxCIAA4E0AJSHVQASqPAhAAGoACAACSvgAA6D0AACQ-AAAwvQAAPD4AAJg9AADIvQAAN78AAL6-AAB0PgAAmL0AAEy-AADgvAAAQDwAAEA8AACIPQAATD4AAKC8AAA8PgAA-j4AAH8_AADgPAAAUD0AAOi9AABAPAAAED0AAFA9AABwvQAAQLwAADw-AAAkPgAAyL0AAOA8AADgPAAA-D0AAKg9AACovQAAZL4AAMi9AACavgAAir4AAAQ-AAA0PgAAZL4AAOC8AABEvgAAVD4AAHC9AABQvQAAfL4AABC9AAAcvgAA6D0AAJo-AADovQAAUL0AACE_AABMvgAAFD4AABQ-AABwvQAAnj4AAEw-AACAOyAAOBNACUh8UAEqjwIQARqAAgAAnr4AAKi9AAAkvgAAOb8AAJg9AAAEPgAAMD0AANg9AAAkvgAAED0AAIK-AACIvQAAsr4AAMi9AAAUPgAA4LwAAHA9AAARPwAAuL0AAMo-AAAsPgAAPD4AALi9AACgvAAAML0AAOg9AADIvQAAED0AABy-AABsPgAAmD0AAIg9AAAkPgAALL4AANg9AAC4vQAADD4AAFA9AABEvgAADD4AAIY-AAAwvQAAmD0AAAQ-AACIvQAA6L0AAH-_AACYvQAAmL0AAAw-AACoPQAAgLsAAHA9AAAMPgAAqj4AAKg9AAAwPQAA4DwAADA9AACAOwAAyD0AALY-AABQPQAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=DoDCrJlSRBA","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["7793411985646165640"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1100617522"},"3090583758593736935":{"videoId":"3090583758593736935","docid":"34-11-17-Z6FE410761A43FCC7","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"42","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Intro to Linear Algebra Midterm 2 Fall 23 Review- Georgia Tech Math 1553","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pgm9SnKxOMo\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTMzA5MDU4Mzc1ODU5MzczNjkzNVoTMzA5MDU4Mzc1ODU5MzczNjkzNWqvDRIBMBgAIkUaMQAKKmhocHRoenZxc2F5YnRyZ2NoaFVDRTJNQVhkYzF2M2N5d3FSTDd6bGJqdxICABIqEMIPDxoPPxP7GIIEJAGABCsqiwEQARp4gf708wIC_gD0_goNAgf8AQsA7wH2__8A7AL7BAAAAADx-vX6_wAAAP8JAfb_AAAA9wb6_vP_AQAY9_v58wAAAAsAB_z8AAAADA7vAv8BAAD3AQv-AwAAAAcCBff_AAAACAUMAPr-AAAIHPgAAAAAAPYK9_X__wAAIAAtzHDQOzgTQAlITlACKnMQABpgFQEANBAH-hAx_tP8Grob2goExxe-Ef8LAv8gN8_VGt3jrAYp_zbdGwijAAAAN83ZBhcAznMF_PFCMAL5wMPqGUt_ESPYHRDvFdDyXRYltkLm3_rsAOgfHf1TAN8eUyBIIAAtG8gbOzgTQAlIb1ACKq8GEAwaoAYAAIDAAABEQgAAdEIAAJDCAABEwgAAEEEAAHBCAADgwQAAyMEAACzCAAAIQgAAMMEAAFjCAABAwAAA0MEAAHzCAAB8QgAAMMIAAFhCAADgQAAA-MEAABzCAAA8wgAAoEIAACDCAAAEQgAAFMIAABxCAACQQQAAEEEAAADBAAAgQQAAFMIAADxCAAC0wgAA-MEAALhBAACaQgAABEIAABxCAACAPwAAoEEAAIBAAABAwAAAqMEAACDBAACKQgAADEIAADRCAAAgQgAATMIAAODAAACQwQAAKEIAAPBBAACIwQAAPMIAABjCAAAcQgAAAEIAAARCAAAwwQAAUMIAAADCAACQQQAAhsIAAGjCAAC4wQAAJMIAADTCAAD4QQAAIEIAAEDCAAAsQgAAgMAAALjBAADOwgAAJMIAAKBBAACoQQAAQMAAANxCAACEwgAAiEEAACxCAACyQgAAAEAAADzCAAAsQgAAQEEAAFBBAACGQgAAoMAAAIDBAACgwAAAWMIAAKjBAABwwQAASEIAABhCAABMwgAAgEEAANBBAAAowgAAnMIAAExCAABAwQAAHEIAAEBAAAD4QQAALEIAAChCAAAowgAAwMEAABBBAAAIQgAAokIAAMjBAAA0QgAA4EEAADzCAABQQQAAKEIAAI7CAAAgwgAA-MEAAADBAABAwAAA4MAAACDCAAAAQgAAnsIAAEDAAAAcQgAAIMEAAJhBAAC4wQAA6EEAAPBBAAA0wgAAiMEAALBBAABAQQAAZMIAAFBBAAAkQgAAAEEAAABAAAAEQgAAEEIAADjCAAAwQQAAmEEAACDBAAAQwQAAuMEAAETCAABAwAAA6MEAAEzCAAA4wgAAIEEAAFBBAAAwQQAAwEAAAMDBAADgwQAA-EIAADRCAAA0wgAAVEIAAKBAAACAQAAA0MEAAEBAAACAwAAAAMIAAAAAAABQwQAAjkIAAADDAAAYwgAAcEEAAIBBAAAIQgAAJMIAAHDBAABAwQAAAMEAAODBAAAAQgAAsMEAAOBBAACYwQAAsEEAAAhCAACwQQAAQEAAACDBAADAQSAAOBNACUh1UAEqjwIQABqAAgAAgLsAAEC8AAC6PgAAiD0AABA9AACgPAAAlr4AAAO_AACGvgAAuD0AACw-AAAQvQAAHD4AAFQ-AACuvgAAqL0AAJI-AAAwPQAADD4AAMY-AAB_PwAAXD4AAIi9AABsPgAAJL4AAPi9AAAcPgAA6L0AAFw-AADoPQAAcD0AAMg9AADovQAAcL0AAEC8AACAuwAAuD0AAEA8AAC4vQAArr4AAPi9AABAvAAADD4AADC9AAD4vQAAQDwAACQ-AACGvgAA6D0AAFC9AACuPgAAoDwAADQ-AAAEPgAADL4AABS-AAAZPwAAij4AAEy-AABAvAAABL4AADA9AADIPQAAyL0gADgTQAlIfFABKo8CEAEagAIAAOi9AACIPQAAED0AAC-_AABQvQAAMD0AADA9AACAOwAAyD0AAFw-AAAEvgAAyL0AAFy-AADIvQAA6D0AAHC9AACYvQAAOT8AAMi9AADiPgAADL4AAKq-AABQvQAAQLwAAIA7AABAvAAAgLsAAKg9AACSPgAAUD0AAAS-AAD4PQAAmL0AAES-AACoPQAA-D0AAIY-AAC4PQAAFL4AAOA8AACAuwAAiL0AAAS-AAAQvQAAUL0AAKg9AAB_vwAAUD0AAKA8AACYPQAAXL4AAGy-AAAUvgAA2D0AAKg9AACoPQAAUD0AAIi9AACAOwAAhj4AAPg9AAAcvgAARD4AADQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=pgm9SnKxOMo","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["3090583758593736935"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"199426724755318747":{"videoId":"199426724755318747","docid":"34-5-1-Z226D14C9D3A47D1A","description":"This is a brief tutorial on solving problems involving continuity using limits. Why it's important: Reasoning with definitions, theorems, and properties can be used to justify claims about...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"43","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Limits and Continuity (examples)","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=X98QabGx0Rk\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFAoSMTk5NDI2NzI0NzU1MzE4NzQ3WhIxOTk0MjY3MjQ3NTUzMTg3NDdqhAkSATAYACJFGjEACipoaHZweHFwdWNjcHd5YWFiaGhVQ0tseHV2WHJndVU4NnM3VFlyZHJyTncSAgASKhDCDw8aDz8TiwSCBCQBgAQrKosBEAEaeIH-_gEI-wUAAgoKDQIK-wL2A_34-f39AOfx-wAI_QEA8wAABv4AAADuBQf9-QAAAAH-AgP-_gEA_gcE_wQAAAAV-QAM-QAAAA0L_AP-AQAA9fv-_AMAAAAKA-4BAAAAAPf8Ev3_AAAA-gIDBwAAAAAE_Pn-AAAAACAALXmg4js4E0AJSE5QAiqEAhAAGvABf_QF_sP5xf_qB84AlRfE_4w_BP8kLtoAuRUrAar0uwHW_dQA4RfK_t3rCgDQOjoASQTw_-vH5QBH1fsAGvDuAM_vCwAppyMARdvrABIB3f_rJSQA5P0k_jYL6QH8BOD_9xgz_RII5wL-4MAAEv5LARAKNAQ0_UkE_tgM-dgU__r91rT-5vfr__DO_wfJ6CQC-93hAeXgBfjpPwD5Ltn49xDnDPwQF8cAPvncAwccDv3J6g_47MzhAwMKIQPFMgX2z-83B9IR4vv4MwT5IcjvBQf56_wU_u4CP-0ADwDB9wII9eTu7Q4NAMsN_RcH__gJIAAtReL2OjgTQAlIYVACKnMQABpgE_sAKPM2zQ71T_Ds8xoJ8KsnACHICv8H-ADj_dbyBg3T0gX_AA7QH9eoAAAARDHJ-fYABn_d2w9EDf3otcPeFCV06B4Z17IR75zhOD0N6_4kHSplAO3Xqzgk3uIzAz02IAAtfeoZOzgTQAlIb1ACKo8CEAAagAIAAAy-AACovQAAND4AAFA9AACYvQAAbD4AAO4-AAD-vgAA-L0AAAw-AADYPQAABL4AAPg9AAA8PgAAZL4AADA9AABUPgAAoLwAABQ-AAAdPwAAfz8AAFy-AACoPQAAuD0AAI6-AABUPgAAqD0AAFA9AACCvgAAkj4AAHQ-AAB8vgAATL4AAFA9AACIPQAA4DwAAHA9AACOvgAA4r4AALg9AADKvgAAuL0AAEw-AABwvQAAiL0AABQ-AABkPgAAqr4AAAy-AAAEvgAARL4AACy-AAC2PgAAdD4AACS-AACgPAAALT8AAFC9AAAQvQAAsj4AADy-AADYPQAAUD0AABC9IAA4E0AJSHxQASqPAhABGoACAACYvQAAcD0AAIq-AAA9vwAADL4AACQ-AACOPgAAcL0AAAy-AACiPgAAmD0AALi9AAAsvgAAHL4AAAw-AAAQvQAAiD0AABE_AACgvAAABT8AAPi9AACYPQAAUL0AAAy-AAAQvQAA-D0AABy-AABAPAAAyL0AABC9AABAvAAAoDwAAIg9AAAkvgAADD4AAAy-AABkPgAAED0AAFS-AABwvQAAcD0AAJg9AADYvQAAcD0AADy-AABcPgAAf78AAFS-AAAEvgAA2D0AAHA9AACAuwAAcD0AABw-AABAPAAAED0AAIC7AAAMvgAAJD4AAEA8AAAUPgAAND4AAOA8AAC4PSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=X98QabGx0Rk","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["199426724755318747"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"3340289092"},"15494041324229490212":{"videoId":"15494041324229490212","docid":"34-11-14-Z9221330BF21CFF4E","description":"We compare the similarities between continued fractions and Euclidean algorithm. It's amazing that the two seemingly unrelated math topics are actually very similar!","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"44","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Geometry of Numbers - Lecture 2.1.3 : Continued fractions and Euclidean Algorithm, a comparison","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tk7uFzt8J2Q\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTU0OTQwNDEzMjQyMjk0OTAyMTJaFDE1NDk0MDQxMzI0MjI5NDkwMjEyarYPEgEwGAAiRRoxAAoqaGhmbXZ3eGFyaWN0eWNlY2hoVUNRdVM2cjhwZENYQmRRV1R1QkxsRTJ3EgIAEioQwg8PGg8_E78BggQkAYAEKyqLARABGniB-vf8-f8BAPQJ7QcIBf4B-voE8vr9_ADkAPEJAP0BAP32BwMCAAAA-wL-_P4AAAAP_vEJ__4BAAQB9f4EAAAAFfgP-fcAAAARAPzw_wEAAO7-9PkCAAAAF_n-DQAAAAD2_vXzAAAAAAYMBvwAAAAADAYI-gAAAAAgAC0rMtc7OBNACUhOUAIqhAIQABrwAWz48_7g9-oBzfL4AMj87QGBIgr-F0b5AMsBDgDb8NkA7hfgAN__D__fBwr_0Cv-_yLt2v8EzeMASOQJADDjBwHvLAsAEtfwAiL7BwHUAOP_Ew8t__T1CwAk1fYB-_Te_QMdF_0b6O0C3gvXAR4UJAEE_z8AOwgWAO_PGQPpBOwA_Ofg_ece7APm6Q0B7RQ3AR3x6QMABgn63EDxABkH_frd-Q_4DRLTAED49QAxBRD81e8M-ibu9wAQCRH24jIQAdrzKwXu4_L5EgIDAxrU8gT58PQJ6-fm_wQN8wMX4fr6EQ75BO4BAffj9P0N6v7tBCAALf8hHTs4E0AJSGFQAipzEAAaYD36ABr4RboO_xjp1dwBHei4EvIK0un_C9P__wwFARAcyLgCDf8T9h8BqwAAAC0L6gvTAN1wA9wkUPfcDtvS3g8Bf_IL8dPiJOW_xQoZDAMoBjUtVQDc3rQZGwjTPvNXNiAALSHtJTs4E0AJSG9QAiqvBhAMGqAGAAAYQgAAUEEAAExCAABQwgAAJMIAAIBAAADgQQAAsMEAAFzCAAAAQQAAOEIAAADAAAAwQQAAXEIAAHBBAACowQAAQEIAABDCAACmQgAA4EAAAIDBAAC4QQAApsIAAHRCAACOwgAAmEEAAODAAACAPwAAiMEAAGBBAAAgwQAAAEAAAADCAACgwAAAosIAAHBBAABwQQAAyEEAAKBBAACIQgAAmEEAANjBAADgQAAAEMIAAGDBAAAkwgAAfEIAAARCAAA8QgAACEIAAFTCAACowQAA6EEAAHhCAADAQAAAyMEAACzCAACYwQAAeEIAACxCAAB4QgAAqMEAAEzCAAAUwgAAsEEAAKDCAACEwgAAwMAAAKDBAAA8wgAAgEEAAARCAAAswgAAiMEAABDBAAC4wQAAvsIAAADCAABoQgAAgD8AAJhBAAD0QgAAkMIAAJjBAAD4wQAAOEIAAPBBAABIwgAAIEIAABBBAAB8wgAAREIAAIjBAACAQAAAHEIAACDCAAAAwgAAcMEAAKhBAACKQgAAAMEAALhBAAAgQQAA0EEAADDCAACkQgAAoMEAAIhBAADgQQAAREIAAPBBAACwQQAAkMEAANDBAABQQQAAYEIAALBBAAAQwQAAYEIAAEDAAADIwQAAUMEAABxCAACAwQAAMMIAACTCAABYQgAAmMEAAADCAAAAwQAAiMEAAAjCAAA4QgAAEEIAAIjCAAB8QgAAmMEAAEDAAAAgwQAA8MEAAJjBAAAUwgAA8EEAAHDCAADgQQAAjEIAAJBBAABIQgAABEIAAABAAAAswgAADEIAAMDAAACQQQAAQMEAAKDBAACwwgAAAMAAAODAAACAvwAAgMEAAPBBAABAQQAAgMAAABBBAACYQQAA8MEAACBCAACSQgAAkMIAAAAAAABQQQAAcEEAAKjCAADoQQAACEIAAIDAAACYwQAAmMEAACxCAAD8wgAA-MEAAJhBAADQQQAAZEIAAGTCAAAAwQAAgMEAALBBAAAwwQAAUEEAANBBAACoQQAAAEEAAFDBAACaQgAAiEEAABDBAACIQgAAgEEgADgTQAlIdVABKo8CEAAagAIAAI6-AACgvAAA-D0AAPg9AAD4PQAAVD4AAIg9AAAfvwAAPL4AAPg9AADovQAAZL4AAFw-AAA8PgAAyL0AABw-AABAPAAAqD0AAKA8AADqPgAAfz8AAJa-AABwvQAAMD0AAIK-AACovQAAoDwAAIg9AAAcPgAALD4AAGw-AACGvgAAFL4AAOg9AAB0PgAATD4AAHC9AABEvgAAnr4AAEy-AABwvQAA4DwAAIo-AAB0vgAAJL4AAES-AAAUPgAAUL0AAFA9AAC-vgAAmL0AAIa-AADOPgAApj4AAKC8AACAOwAAHz8AAPg9AADIvQAAoj4AAEC8AAAwPQAA-D0AAGQ-IAA4E0AJSHxQASqPAhABGoACAACOvgAAiL0AAMi9AABLvwAAcL0AAFC9AAAkPgAAED0AAKA8AACIPQAAQDwAAHC9AACovQAAoLwAAPg9AACAOwAAMD0AABM_AABcvgAAqj4AAEC8AADoPQAAED0AAGy-AACAuwAA2D0AAMi9AAAcPgAADL4AANg9AACYPQAAPD4AAJK-AAA0vgAATD4AAOC8AACGPgAAhj4AAJq-AAA8vgAAZD4AAOi9AACGvgAATD4AAHC9AADIvQAAf78AAOA8AAC4vQAA4DwAAIg9AADIPQAAJL4AAKY-AAAkPgAALD4AAIC7AABAPAAAPD4AABy-AAAUPgAAQDwAACw-AAAcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=tk7uFzt8J2Q","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["15494041324229490212"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2134448823"},"3440253245937670102":{"videoId":"3440253245937670102","docid":"34-9-4-ZBBB5597A05313B2C","description":"Welcome everyone on behalf of my YouTube channel. Making learning accessible is my mission, and your feedback is appreciated and will help me improve the topics. You will feel better while...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"45","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Math & Computer learning center || Math Solution || Math tricks","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=BBpRScnY2Y0\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTMzQ0MDI1MzI0NTkzNzY3MDEwMloTMzQ0MDI1MzI0NTkzNzY3MDEwMmqIFxIBMBgAIkUaMQAKKmhoa2V1c3B0YXZucmxydGJoaFVDWDIxendJbnRYLWFKaG83dTlOMlQ1URICABIqEMIPDxoPPxPpAYIEJAGABCsqiwEQARp4gff-_AD-AwD2-QYJDgb8AQYH-AD3__8A7fjw_AUAAAAE8v4CBAAAAA4I9P79AAAA8gXtCf4AAAD7__wBAwAAABQX-AL-AAAABRQA-v4BAADu8_0LA_8AAAgED_z_AAAADQD9-___AAANCAL8AQAAAA4FAgMAAAAAIAAtAFPbOzgTQAlITlACKoQCEAAa8AFx7PAC2xHwABPw8gDfCu4BgQUL_zUI6ADLHyACzgLpAAMY6ADd7wsABRId_9sLHQBMFuH_FvkSAPr8HP8V_RAABv4AACnuDwAdExQAHuDw_wLlBv4JEgkAAO7_AeMs8_0KDRn_9PHg_xDx6AAc-wL_AvoHBPvs_wUB-_r_6BgAAu_bDP4S5vb9HQj_AuMDGQH59Or93BEKAc0M7AEA6e35-PsKBRTr6wQJ-PwJ6PUM-_3w7_oR_wD8BAP1AcoJEP8E_Q_7FAj98RAa_f369A4KGu_5APob-_39DQEKAeP69gQFEfv8BQf43wj-Dub8ChMgAC1uJ0g7OBNACUhhUAIqzwcQABrAB4iCub7FJQG8WkX_vB3iRDxCISI9J8CwPM7cCL1VZYQ6Xw4Wvf3Spz0JshS9S_2hPA3jtr4GLm-9azPnO1EwMz76gJs7kedEPdbVg73qngu9Fl2NPFexOL5HpX08pdQKPY7IJz7zRGY9sGgjvJeC_zxzve29GtsMPKW1Dr0nySk8XdwGPJiBb7wKc7O7uvETu9fqwT038JS9CekfPOw0Uj7Zu_m7vn-YOzItoD0NnjM9srlqPOxo3L0vvQG8GVgFO_epjz2AzV68ajf2Oym0LD3VqiI9yDb6POhVkz35nrK6fkbzvCHnvbyRqfE8nB-5O_zD1j1mgI87-_IXvAHw2TxRh_U9L4XHPLFj7Ty8pjG9bayjOgJtpj3gYgu85G0APTS1UT1n_w09xontuwl8bz0mYwa9SVlQvJezEj3hXQ698J4HO8OjaL3-Tgk9a5T_PPkriT0MrR4-ZJZQuircN73b9uI8-2e8vKo4j70hI1s9szuoO22OMz1V-j06pIvNu9kuBrzMofs82jPwOsU1Qz34UQ2-CW8su8FrfD1St_O9axWIOZmid70BPu688YlQPDUHCL2-ghk9xYB8u_W8K75TOEe9sBquOkfm0bzukIe75VSiORx9DL3hbOk8GWuHOy260LuRhFi9ngd7u2JAQL0x7KA9WBbxOs1hLT0KQO08oEKiu7olwTvAAGc8K-FHu-LAhb3buAo9eh2AOov6pD24uWc9sYJGuzxEyD1rz1G8CTS3uscr8D0UGjK9FUvWOHvnhjxCi7Y6mK6kOdWTeTxrFp48SSdYOSpih73w65E8DsS9OAULr7spbfu8GxXfOBxdpbw9Mmy9_RXLOOd-e7uYyOA8ZZYLuSel4LwDjo48Abf7OCCix72Svv-8dZ0Puby0vDveBD898KylOXvRSL2CVLq9zz5dubKvhrwoTzS97ZICOhacJj1995i9xS6ZN8rPGzwqG5a8u_Rxt9q_XD2bQTe9BM37ODxqHL4ixms88sQ2twFM-T2gks68OsgQOXLCZD3f_wI9bA0MOBcPLz4mR2u9GWdRuZ7H8jwGblg9bJR2uKzmeb1tV6i8eWn2t7qsGD3xxU093NLLOPYnAT5EUku9G2w4OFxEyrt9xcM7fV2TN9vVVT3vQYk5viYduKaX2L36wEQ8cytkuDKU7ry6-Lu9NhcmuHkCQb7iA_27ElL-NIYQIT1cd9O93vObt0LLXz1jGrc9bpCOOG0nwDzrw_o8mg-4uJPPobzNYpi8rU6INyt4kL1sC-q862w1uCAAOBNACUhtUAEqcxAAGmAQBgAvGhXz294f3-zgJBMA-CGzJdkP_wE8_y3N_O_xKczFNu7_IsQK9bAAAAAkDfD9TADUbR_AyCb77fyuzwQPIH8EGf_qACUbzh_e5fz_NyfPPioAEvG1PTr_3CcZLCcgAC1kliY7OBNACUhvUAIqrwYQDBqgBgAAuEEAAMBAAAB4QgAAhEIAAMBAAACGQgAAhkIAAEDAAABIwgAA4MAAANDBAAAEQgAAMMEAAEDAAAAwQQAAoEEAANBBAABwwQAAAEEAAFDCAAAgQgAAZMIAAABBAABMQgAAyMEAABDBAACAvwAA4EAAAJhBAAAQQQAA4MEAAEDAAABowgAAQMEAAILCAAAEwgAAIEIAADBCAADgQgAA2MEAANhBAAAQQgAAwMEAALxCAACAQAAAqMEAAERCAABAQQAAQEEAACTCAABowgAAZMIAAIrCAABAwAAAyEEAAOhBAAAAAAAAmMEAAPhBAABoQgAA6MEAAGDBAADgwQAARMIAAABCAABEwgAAMMEAAIjBAAAAwAAAJMIAAOhBAABQQgAABMIAAKpCAACwwQAAhMIAAKDAAAAUwgAAukIAAEDCAACAPwAA6EEAAIA_AADYwQAAAEIAAGBCAACAvwAAIEIAAFDBAABwwQAAUEEAAEhCAAAIQgAAhsIAAFDBAAAQwgAAAEIAACRCAAAAAAAA2EEAAKjBAABAwgAAAEEAAJrCAACuwgAAJEIAANBBAABMQgAAjEIAABBCAACAwAAAoMAAAKDAAACAQQAAcEIAAODBAABcQgAAXMIAAJhBAAAwwgAAQEEAAEDAAACwQQAAhMIAAJBBAAAowgAAoMEAALDBAACewgAApMIAAAxCAADAwQAAwMIAAEhCAACAwAAAAEEAAEDCAAD4wQAAMMEAAEDBAACKQgAAnEIAAABAAAD4QQAAyEEAAPhBAACAwQAAisIAAGBCAABQQgAABMIAAKDCAABQQQAA0MEAAABAAACQQQAAQMEAACDCAAAwwgAAoMAAAGTCAABUQgAAAEEAAFRCAAAMwgAAmEEAAADAAAAEQgAAeEIAABzCAADAwQAABEIAAFDBAAAEwgAA0MEAAJBBAACKwgAAAEAAADDBAABQQgAAeMIAAJTCAACCwgAAAMIAADBCAACQQQAAQMAAALBBAABAQQAAsEEAAIDBAABAQAAAAMIAADBCAABQQQAA-EEAAIDAAAAoQgAAQMIAAGBBIAA4E0AJSHVQASqPAhAAGoACAACovQAAkr4AAFw-AAAQPQAALD4AAPI-AACgvAAAS78AAMK-AABkvgAAiL0AACy-AADYvQAAqj4AAIi9AACYvQAACz8AAIA7AAD4PQAACT8AAH8_AAAwvQAAuj4AAFA9AADIPQAARL4AAKg9AABsvgAAPD4AAIo-AACqPgAAND4AAMg9AABQPQAATD4AAEA8AADYvQAATL4AANq-AAAQvQAARL4AAES-AABAPAAAQLwAAKK-AABQvQAAhj4AAHy-AABcvgAANL4AAIg9AACGvgAATD4AAFA9AAC4vQAAgLsAAHU_AAB0PgAAiD0AAKi9AABwvQAAuj4AADA9AAC4vSAAOBNACUh8UAEqjwIQARqAAgAAVL4AAPg9AACIvQAAD78AACy-AAAwvQAAhj4AAOC8AABsPgAAED0AAKi9AAAQvQAA2L0AANi9AADoPQAAoDwAABA9AAAHPwAABL4AAA0_AADIPQAAuL0AAFS-AACIvQAAUL0AAOC8AABQvQAAyD0AAAS-AAD4PQAA4DwAAAw-AAAQPQAAED0AAII-AADgPAAAPD4AAEQ-AACCvgAAPD4AAHQ-AADYvQAAED0AAOA8AABAvAAAQLwAAH-_AAC4PQAAJL4AAEy-AAAwPQAAED0AAFC9AACYPQAATD4AAEw-AABQvQAANL4AAKg9AAAMPgAAEL0AAKi9AACAuwAAbD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=BBpRScnY2Y0","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["3440253245937670102"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"207360938"},"2635004787469090843":{"videoId":"2635004787469090843","docid":"34-11-13-Z280DDB99690DE40F","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"46","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Intro to Linear Algebra Midterm 3 Fall 23 Review- Georgia Tech Math 1553","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=J6yKmM5oWs4\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTMjYzNTAwNDc4NzQ2OTA5MDg0M1oTMjYzNTAwNDc4NzQ2OTA5MDg0M2qvDRIBMBgAIkUaMQAKKmhocHRoenZxc2F5YnRyZ2NoaFVDRTJNQVhkYzF2M2N5d3FSTDd6bGJqdxICABIqEMIPDxoPPxO-JIIEJAGABCsqiwEQARp4gf708wIC_gDxCP0KAAT-AQsA7wH2__8A8AEC_P4BAADx9P8BAgAAAAEDB_3_AAAA9wb6_vP_AQAY9_v58wAAABQABQT8AAAADhn6Av4BAAD8_AoEA_8AAAT7_vb_AAAACAUMAPr-AAAJFwb-AAAAAPYK9_X__wAAIAAtzHDQOzgTQAlITlACKnMQABpgGgAAQBoICwYz99r9EbAo7Q30xTG3DP_68v8GOdLdC9bfow4o_0TkHQaYAAAAP8nb_BYA2H8D-utBOfAHrLrlIUh_FDTEJwrzItPsWiQptj_c3vzzAN8YAPdj9M0sWiQ1IAAt460QOzgTQAlIb1ACKq8GEAwaoAYAAKBBAAAAwAAAokIAAJbCAABcwgAAYEIAAGxCAAAwwQAAKMIAAGzCAABwQQAAIMEAACjCAABgwQAAsMEAAODBAAB0QgAAcMEAADRCAADIwQAAmMEAAJDBAAA0wgAAgkIAAHjCAAD4QQAAoMAAADBBAAAgQgAA4EAAAMDBAABgQQAAEMIAAAhCAAAAwwAAAAAAAJBBAACCQgAAAAAAAABBAACwQQAAYEEAAMDAAADAwAAAoEAAAFDCAAAkQgAAbEIAAOBBAACAQQAAVMIAANjBAAAAwgAAEEIAAGBBAACwwQAAIMIAABzCAABgQgAAwEEAAPhBAABgwgAAUMIAADDCAAD4QQAA0sIAADTCAAAwQQAAVMIAACjCAABgQgAATEIAAFjCAABkQgAAoMEAADDBAACuwgAA0MEAAERCAACwQQAAoEAAANhCAAA8wgAAFEIAABBBAACMQgAAAEEAAGjCAAAMQgAAgMEAAMBAAABwQgAAZMIAAJDBAACgQQAAisIAAJDBAAAgQQAAYEIAAMBBAABswgAAQEEAADRCAAA4wgAAfMIAADBCAAAAQQAAkEIAAMDAAACGQgAAREIAACRCAACgwQAAwEAAABhCAADAQQAAnEIAANjBAAD4QQAAgL8AAADCAADAwAAA6EEAAMjBAABEwgAACMIAAIjBAABAwQAAgMAAAJDBAABgQQAAmMIAABDBAAAIQgAAkMEAAGhCAAAAQQAA4EEAAHBBAADowQAAgL8AADBBAAC4QQAAVMIAACBBAAAcQgAAoMEAAFBBAADQQQAAEMEAAADCAADQQQAAmEEAAKhBAAAwQQAAAMAAAIzCAADgwQAAcMEAAEDCAABUwgAAqEEAAOhBAAAAAAAAEMEAADDBAAD4wQAAykIAAFxCAABwwQAAMEEAABhCAAAQwQAADMIAAMjBAACAQAAAIMIAANjBAABgQQAAYEIAANLCAABAwgAAkMEAAABAAADgQQAADMIAAGDCAAA8wgAAiEEAAIC_AAA0QgAAwMEAAKBAAACgwAAAyMEAAAhCAACAQQAAEMEAAIhBAACoQSAAOBNACUh1UAEqjwIQABqAAgAAgLsAAHA9AADKPgAAcD0AANg9AACYvQAApr4AAAW_AACavgAAcD0AAAw-AAAQPQAAZD4AADQ-AACavgAAiL0AAHw-AACIPQAAgLsAAMY-AAB_PwAAmj4AAKC8AABMPgAALL4AADS-AAA8PgAAyL0AACw-AACgPAAAmD0AAPg9AACYvQAAcL0AAAy-AADgvAAAUD0AADC9AADovQAAur4AABS-AACAOwAAHD4AAMi9AABwvQAAmD0AAOg9AACWvgAAFD4AAIi9AACuPgAAQDwAACw-AAAEPgAAlr4AADS-AAAvPwAAij4AAHy-AAAwvQAAPL4AAOA8AAC4PQAAJL4gADgTQAlIfFABKo8CEAEagAIAABS-AACAuwAAUL0AADm_AACYvQAAUD0AABA9AAAwvQAAiD0AACQ-AAAkvgAA-L0AAIa-AAAcvgAADD4AAFC9AACIvQAAMz8AAMi9AADyPgAADL4AAI6-AABwvQAAgDsAAKC8AACAOwAAcL0AABA9AACaPgAAEL0AANi9AAAEPgAAgLsAAIa-AADoPQAALD4AAIY-AACoPQAAFL4AADA9AABAPAAAoLwAACS-AACYvQAAqL0AANg9AAB_vwAAML0AAOA8AACgPAAANL4AAKq-AAAEvgAA6D0AAMg9AACoPQAAcD0AAHC9AAAQvQAAgj4AAMg9AAD4vQAARD4AAGQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=J6yKmM5oWs4","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["2635004787469090843"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"4252903301658883596":{"videoId":"4252903301658883596","docid":"34-3-6-ZF16EB12FA825E59F","description":"Chapter 6 from class 10 Sindh Education Board has been explained in this video. Boolean Algebra Rules has been explained in this video from chapter 6 from Sindh Text Book Board book.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"47","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Computer Class 10 Chapter 6 Boolean Algebra Rules","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=200XaIU57LY\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTNDI1MjkwMzMwMTY1ODg4MzU5NloTNDI1MjkwMzMwMTY1ODg4MzU5NmqvDRIBMBgAIkUaMQAKKmhob3V1c3FpbW91dmV4ZWNoaFVDQk54UHM0ZEF4dzBUWTRUWmtEaHNTZxICABIqEMIPDxoPPxPwDIIEJAGABCsqiwEQARp4gQQA_ff_AQAA-f8D-gf-Agb1APr4_v4A5fYGAgj9AgD4APgM-gAAAPYRB_MAAAAAAfYBBPX9AQD7AgsCBAAAAAsIC_4DAAAAEfb-Bv4BAADyB_oHAwAAAAf-FAQAAAAAAA4B-f3_AAAHD_34AQAAAAL38_MAAAAAIAAtzGbWOzgTQAlITlACKnMQABpgP_kAOTgZMgcKWgz26OAbDe0P7wbfHv_2IQAF9vnjDyzfiCLlAAbi_d-rAAAACg7j9ysAMG0E0NMy5i3v3Ob58Edv_P377Rj5LC8bfwTxCy_yBzI2AP0c7QNUy9MCD_kQIAAtbAQoOzgTQAlIb1ACKq8GEAwaoAYAAIBAAACwQQAAWEIAADzCAABQwQAAQMAAACDBAACawgAAQMIAAAjCAABgwQAAqEEAAHDBAAA4QgAAOEIAAFjCAACwQQAAPMIAAKjBAAAgQQAAUMEAAIjCAACQwQAAVEIAADhCAACAwAAA2MEAAKDBAABAwAAAKEIAADTCAAAMQgAAYMEAAEBCAABQQQAAEMIAAJDBAADWQgAAoMAAACDBAACAQgAA0MEAABhCAADYwQAAMMIAAHDBAAAAAAAARMIAAADAAACYQQAAQEAAAKhBAABAwAAAQMIAAGBCAADoQQAAqMIAABTCAAAEQgAAyEEAAFRCAADwQQAAgMAAAODAAACEQgAAkEEAAOhBAAAgwQAAQEEAAIC_AABMQgAAgMAAAPDBAABAwAAATMIAAJjBAAAAQQAAZEIAALjBAABAwAAARMIAAIhBAABwQQAAAMAAAITCAABgQgAAhEIAADzCAADgQQAANEIAABzCAACAwAAA-MEAAKDAAAAsQgAAmMIAAABCAABYQgAAqEEAAMDBAABQwQAAyEEAAJjBAAA0wgAAmMEAAABCAAAAwAAAQEAAAKDBAADgwQAAREIAAEjCAAA0wgAAKEIAAKDAAABAwQAAgL8AAOLCAADIQQAAwMEAAKBAAAAcwgAAQEAAAIDCAABEQgAA0EEAAFDCAABQQQAAiEIAAIC_AADYQQAAbEIAACDCAADsQgAAJEIAAGxCAABQwgAAoMEAAODBAAAAwgAAtkIAAGDBAABgwgAAsEEAAPhBAACMQgAAUEEAAAhCAABEQgAA2EEAADTCAACMwgAAoMAAAFjCAAAQwgAABEIAAIDAAAD4wQAAQEIAAI5CAACEwgAAmEEAAKBAAAAQQgAAgkIAAFDCAABYQgAAAEAAAARCAAAswgAAQEEAAARCAABEwgAAVMIAAAjCAAAEQgAAIMIAAGTCAAAAQgAAHEIAAIDAAACIwgAAuMEAAADCAAAwQgAAmEEAADDBAADAwQAAQMIAALhBAABkwgAAMMEAAJ5CAAC4QQAAtkIAAFhCAADAQAAAYEEAAFDBAAAQQSAAOBNACUh1UAEqjwIQABqAAgAAUL0AAOC8AACqPgAAnj4AAMg9AABwvQAAiD0AAMK-AAC2vgAAQLwAAPi9AACKvgAAuL0AANo-AABQvQAAlr4AABQ-AACovQAAuj4AANI-AAB_PwAAFD4AAIC7AAAwPQAAHL4AAEy-AACWPgAAiL0AAEC8AAB8PgAAmD0AAEC8AABwvQAAcD0AABA9AAAwvQAARD4AAMi9AACavgAAND4AAKK-AABAvAAAND4AAIg9AACAOwAARD4AAM4-AABcvgAAqD0AABy-AACIvQAAyD0AABw-AADovQAAJL4AAFC9AAApPwAAQDwAAEA8AAAkvgAAwr4AAPg9AAAQPQAA-L0gADgTQAlIfFABKo8CEAEagAIAADS-AAC4PQAAoLwAACG_AACIPQAAUD0AAKC8AADIvQAAgLsAAGw-AAAMvgAAEL0AAJi9AACWvgAAPD4AAIC7AACgvAAAPz8AAIi9AACuPgAAjr4AAOi9AAAQvQAAMD0AAKA8AACYPQAAmL0AAEA8AAAUvgAAyL0AAHC9AAAUPgAAoLwAAKg9AAAUPgAAQDwAACQ-AAAwPQAAfL4AAFC9AAAkvgAAoLwAAHy-AADgvAAAyL0AAFy-AAB_vwAAHL4AAFy-AADYvQAAML0AAPi9AABAvAAA-D0AAIi9AABQPQAAED0AAHA9AABwvQAARD4AANg9AACgvAAAiD0AABA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=200XaIU57LY","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4252903301658883596"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"8290455385924628150":{"videoId":"8290455385924628150","docid":"34-4-14-ZEEA41A5D3261EB92","description":"#Prrime Number #computingmathtech #mathmagic #mathbycomputingmathtech...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"48","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Prime Number ।। অঙ্ক আতঙ্ক নয় । পর্ব –4 Magic Math । কম্পুটিং ম্যাথ – টেক । গণিতের জাদ","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Z-VlKfd00u4\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFQoTODI5MDQ1NTM4NTkyNDYyODE1MFoTODI5MDQ1NTM4NTkyNDYyODE1MGqvDRIBMBgAIkUaMQAKKmhoc3RhY3hoc2hhemZsb2JoaFVDOTJBaWxGbFAyVF9yQVNKSDRlUHFzZxICABIqEMIPDxoPPxOOBIIEJAGABCsqiwEQARp4gfT__gX7BgD2_gMF_gX-Ae4N-QX6_v4A9_v7_f4C_wDu_fwDBP8AAP4LBgIAAAAA_AIDBPb-AQAMAgb9_QAAAP_8APr7AAAADwgFAv4BAAD-BwMAAv8AAA7-AQgAAAAA8wsCAQT6-AQECAMDAAAAAPvt_v8AAAAAIAAtTxjkOzgTQAlITlACKnMQABpgAAMAQkgzObn278W6_Nwf-AzjtNG05f8o9v8OBvjS_efSrBDd_iTuEdWYAAAAJOjtDTIAz39C2qF0JPwMnbDYLyRz9zDG6ucNybwZAdUL90cGHQMFAP7rDNUKCBAx9B4pIAAtqD8SOzgTQAlIb1ACKq8GEAwaoAYAAFRCAAA8wgAAzEIAAATCAACoQQAAgEEAAKBAAAAkwgAA2MIAAIDAAABQQgAAEEEAAITCAAD4wQAA8EEAAGBBAABwQQAAisIAAABBAACKwgAAoEEAAMDAAADYwQAAkkIAAIBBAACWwgAAAMIAADTCAACwQQAACEIAADjCAAB4QgAAAMIAACxCAAAwQQAAYMEAAKDAAACWQgAAAAAAAHDBAADQwQAAMMEAABRCAACgQQAA6MEAAEBAAABMQgAAwMAAABBBAACAQQAA4MAAAODBAADowQAA4EEAAABCAAAgwQAAgD8AAPhBAACAvwAAwEEAAKpCAABAQQAAmMEAAMhBAAAUQgAACEIAAJxCAAAgwgAAiMEAAAhCAAAAQgAA8EEAANDBAACEQgAAoEAAADjCAAAAQgAAYEEAALDBAACAQAAAoMEAAIBBAADAQAAATEIAAIDBAADAQgAAYMIAAEDAAACoQQAAIEIAAFBBAACYQQAAjMIAAKBAAAAkwgAAMMEAAOBBAACsQgAALEIAAHBBAACGwgAAlkIAAEBAAACewgAAcMIAACBBAADwQQAAIEEAAAjCAAAYQgAALEIAAIA_AACgwAAAgEEAAKJCAAA0QgAAQMAAAODBAAAEQgAAnsIAADBBAACCwgAAQMAAAMzCAAA8QgAAWEIAABTCAACgwQAAAMIAACTCAAA8wgAAZMIAAMDBAACgQgAAQMAAAABBAAAAAAAAIMEAAJjBAAAowgAAuEEAADBBAACgwgAAsEEAAFxCAAAAAAAAQMAAABRCAAAAwgAAgEEAAMhBAADYQQAAAMAAADzCAADQQQAABEIAAKBAAABgwgAA4MAAADxCAABYwgAAoEAAAMBBAAAoQgAAAEEAADTCAADAwQAAIEEAAIBBAACIQQAATMIAAKjBAABEQgAADMIAAMBAAAAsQgAAgEAAACDCAACYQQAA0kIAAILCAAAowgAAmMEAAIjBAAAUQgAAyMEAAEDCAAAoQgAAYMEAANhBAACQwQAAwEEAAMhBAAAwwQAAyMEAAHDBAAAwwgAAjEIAAIDCAAA0wiAAOBNACUh1UAEqjwIQABqAAgAADL4AAKA8AACaPgAA4LwAAEC8AAAkPgAAFL4AAC2_AACIvQAAgDsAALg9AAAQvQAAoDwAAHw-AABQvQAABL4AANg9AADgvAAAgDsAANo-AAB_PwAAyD0AAIg9AAA8PgAAmD0AAFC9AACAuwAAoLwAABw-AAA0PgAAUD0AADA9AADYvQAAMD0AAKA8AACgvAAAuD0AABC9AAAsvgAAZL4AAAS-AABAvAAAUL0AABy-AABUvgAA2L0AAKo-AAD4vQAA2L0AAJq-AACIPQAAmD0AAI4-AADYPQAAlr4AAFC9AAAzPwAAUD0AAKg9AAD4PQAALL4AACw-AAC4PQAAED0gADgTQAlIfFABKo8CEAEagAIAANi9AADIPQAAMD0AADG_AAAMvgAAyL0AAOg9AADgvAAA6L0AAK4-AADgvAAAEL0AAEy-AAAMvgAAgLsAAFC9AAAMvgAAKT8AABA9AADCPgAAML0AAHS-AAAcvgAA2L0AAJi9AAAQPQAAoLwAAIA7AABwvQAAqD0AAKC8AABwPQAAND4AAJi9AACgPAAAcD0AAOA8AACoPQAAML0AAAw-AAA0PgAAML0AAKi9AAC4vQAADL4AAPi9AAB_vwAA6L0AAEA8AADgPAAAmD0AADC9AAAUPgAAMD0AAEA8AACAOwAAEL0AAMg9AAAkvgAAqD0AAOA8AACAuwAAML0AAEQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Z-VlKfd00u4","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8290455385924628150"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"14006292082607379877":{"videoId":"14006292082607379877","docid":"34-11-7-Z5E8C1583B5D21523","description":"Welcome to the YT-University. Warm greetings and Heartfelt Thanks to everyone. We hope that you subscribe and help yourself to be notified by clicking the bell icon to continuously receive...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"49","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","isAdultDoc":false,"relatedParams":{"text":"Quantization of Angular Momentum of the Electron in the Hydrogen Atom.","promo":"pumpkin","related_orig_text":"Computing MathTech","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Computing MathTech\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NFILdwqkV2E\",\"src\":\"serp\",\"rvb\":\"ErIDChQxMzExMjE2NTc2NDgwNDI4OTcyNgoUMTczMDE5NjAzMTA1NzAzNTE1NjMKEzgxNTU0NzM2MTQ5MzcwNzM0MDIKEzkxMjkwODI2MjQyMDc0MTY3NzAKFDE1MzQ0Nzk5NjM3NzA1NjkyNjU1ChMzMjI5NTU5MTkyNzQ5Mjg5MzgwChMzNjg5NDQyMjE2MDgzMDQwMzY2ChQxMzg2ODE3OTAwNjc4NjQ1NDM5MwoUMTczODU2MzgxMTY4Mjk3MjkwNDkKFDE4MDg1Mzk1MzkzNTI4MTY3MzUyChQxMjg4NjEwNjA2MDg0ODQ1ODMwOQoUMTIzNDUzNjM1NDk4MDA0MjY3MDYKFDE3MTgyODYxMjk1MTcwODM4MzY1ChQxNDg5MTM1Njg1MTEzMDA0MjI3OQoTNzI2NTI1MjA4ODA2MzEyNTIyMwoUMTQ5NDQyNzA1NTc3NDI0NTMxMTYKFDEyMDIxNTE3NTIwMDQwODk5MzUwChQxMTg0NTEzMDcwODMzMTIxMDUwNgoUMTU5NDEzNjc0MjE1NDUzMzY2NTYKEzk1NTI0MDY4NDI2NTMxODI1ODIaFgoUMTQwMDYyOTIwODI2MDczNzk4NzdaFDE0MDA2MjkyMDgyNjA3Mzc5ODc3aq4NEgEwGAAiRBowAAopaGhja3pxa3JqZXR1cmF5aGhVQzM4STdfSjcyTHdHWWQ3cVRGZlJPY0ESAgARKhDCDw8aDz8TwwGCBCQBgAQrKosBEAEaeIH9BQX7Af8A7_8E_v8CAAED-A0B-f79AOj19AkI_wEA5QH39QD_AAD-DAcDAAAAAPcLBQH5_wAAG_T_9QMAAAAH-Qf59AAAAA4a-gL9AQAA9Qbu-AIAAAAW_gYDAAAAAPYMEvv_AAAA-gLyDgAAAAD7CQcD_wAAACAALYiXzjs4E0AJSE5QAipzEAAaYBoYADcM8P7c8R3P8gLVEuDzGAzx1OkAC-gA9xL15P8f3a7-LP8n4hT-uwAAABy1CR35ANtdIMfiEwDnAPHqyCj6f-UF-zD7J_bN7gwcKvYC99j-GwD3FO4pHwLHaus2JSAALbTBPTs4E0AJSG9QAiqvBhAMGqAGAACAwAAAAEEAAIZCAADowQAAwMEAAEDBAADyQgAAoEAAAOBAAACYwQAAyEEAALhCAABAwQAAyMEAADRCAACgQQAAAMAAAKTCAABwQQAAAMEAAAhCAACowQAAQMEAABhCAACgQQAA8EEAAMDBAAAIwgAAoMAAAMhBAAD4wQAAZEIAABDCAABAwQAAcMEAAJhBAABMQgAAHEIAADDBAAAkQgAAoMEAAPhBAAAMQgAAQEEAAEhCAAC4wQAAQMEAAKBAAAB0QgAAYMIAALjBAACIwQAAuMEAAIDBAABowgAANEIAAFTCAAAowgAA0EEAAARCAAD4wQAAZMIAAMDBAABAwgAAyMEAAGDBAAB8wgAA0MEAAGDBAACAvwAA_kIAAHDBAAB8wgAAmEIAALjBAACAQQAA0MEAAMhBAACgwQAA4MAAADzCAACIQgAA4MEAABDCAAAoQgAAoMEAABBBAAD4QQAAoMAAAGBCAAAAQAAAnEIAAGDBAAAcQgAA2EEAAMTCAADgQAAA8MEAALBBAACoQgAAVMIAAFTCAAAAwgAAiMEAAKjCAADYQQAAcMEAAGBBAAAUQgAA4MAAAFhCAADwwQAAgD8AAARCAACEwgAAgMAAAMjBAABgwQAAqMEAAIzCAAD4wQAARMIAALhBAABAwAAAgMAAAEzCAABwwQAA-MEAAFjCAABwQQAAIEEAAEBBAACMwgAAgEAAAAxCAACAQAAAkkIAACDBAABAwAAAuMEAANhBAABAQAAAIEEAAKLCAAAoQgAAAEIAAJZCAAAQQQAAGEIAABRCAACgwAAAIMEAAEBBAACwwQAABEIAALBBAAAEwgAAgD8AAITCAACIQQAAKEIAAMBAAABIwgAAQEAAADxCAAAgQQAAVMIAAJhCAAAwQgAAEEIAAKpCAABYQgAAAMIAANzCAABQwQAAIMEAALjBAADIwQAAoMAAAOBAAABAwgAAAMEAACDBAAAAwQAAiEEAAMjBAABQwQAATMIAAFBCAABgwQAA-EEAALpCAACwwQAAgMAAADBCAAAAwAAAHEIAABRCAABUQgAATMIgADgTQAlIdVABKo8CEAAagAIAAHS-AABwPQAAcL0AAKC8AABcPgAAgDsAAIC7AAAnvwAAoLwAAII-AACAuwAAQDwAAGQ-AABUPgAA6L0AADC9AABAvAAAuD0AAEw-AAAEPgAAfz8AAIg9AACOPgAAqD0AAFS-AACAOwAAgLsAAKa-AADIPQAAuj4AAAQ-AAB8vgAAqL0AAKC8AAAEvgAAfD4AAJg9AADavgAA1r4AAJ6-AABsvgAA2D0AAFQ-AACgPAAA6D0AABQ-AABQPQAAuL0AABy-AADuvgAAyD0AACy-AACSPgAAHD4AAIA7AABwvQAAJz8AABC9AACovQAAnj4AABA9AABcvgAAEL0AAFy-IAA4E0AJSHxQASqPAhABGoACAACYvQAAiD0AAPi9AABVvwAAnr4AAKK-AAB8PgAA4DwAAFA9AAC4vQAAUL0AAPK-AADgPAAAqr4AANi9AAC4vQAAQLwAABk_AAAsPgAAjj4AABA9AADIvQAAUD0AAAy-AAAUvgAAyL0AAGw-AADYPQAA-D0AAIg9AABEPgAAiD0AAMK-AAAwPQAAXL4AAHS-AABMPgAAxj4AAM6-AAAUPgAApj4AABQ-AACIPQAAPD4AABS-AADCPgAAf78AACS-AABEvgAAUD0AAJg9AACIPQAAfD4AAIi9AACePgAAUD0AAIC7AAD2PgAAyL0AAK6-AABwPQAAXD4AAJK-AACuviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=NFILdwqkV2E","parent-reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14006292082607379877"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false}},"dups":{"13112165764804289726":{"videoId":"13112165764804289726","title":"\u0007[Computing\u0007] \u0007[Math\u0007]-\u0007[Tech\u0007] (Channel) Content First Introduction","cleanTitle":"Computing Math-Tech (Channel) Content First Introduction","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=26MUbgruLkc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/26MUbgruLkc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOTJBaWxGbFAyVF9yQVNKSDRlUHFzZw==","name":"Computing MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Computing+MathTech","origUrl":"http://www.youtube.com/@computingmathtech6056","a11yText":"Computing MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":584,"text":"9:44","a11yText":"Süre 9 dakika 44 saniye","shortText":"9 dk."},"date":"12 tem 2020","modifyTime":1594512000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/26MUbgruLkc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=26MUbgruLkc","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":584},"parentClipId":"13112165764804289726","href":"http://www.youtube.com/watch?v=26MUbgruLkc","rawHref":"/video/preview/13112165764804289726?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17301960310570351563":{"videoId":"17301960310570351563","title":"\u0007[Computer\u0007] Science Class 9 Unit 2 Part 2 Operating System By Sir Masood Abbasi at \u0007[Math\u0007]+\u0007[Tech\u0007...","cleanTitle":"Computer Science Class 9 Unit 2 Part 2 Operating System By Sir Masood Abbasi at Math+Tech Channel","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bGgUDU7c3Qw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bGgUDU7c3Qw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQk54UHM0ZEF4dzBUWTRUWmtEaHNTZw==","name":"Math+Tech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Math+Tech","origUrl":"http://www.youtube.com/@MathTech786","a11yText":"Math+Tech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1154,"text":"19:14","a11yText":"Süre 19 dakika 14 saniye","shortText":"19 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"4 mar 2023","modifyTime":1677888000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bGgUDU7c3Qw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bGgUDU7c3Qw","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":1154},"parentClipId":"17301960310570351563","href":"http://www.youtube.com/watch?v=bGgUDU7c3Qw","rawHref":"/video/preview/17301960310570351563?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8155473614937073402":{"videoId":"8155473614937073402","title":"\u0007[Computer\u0007] Science Class 9 Unit 2 Part 1 OS & its types By Sir Masood Abbasi at \u0007[Math\u0007]+\u0007[Tec...","cleanTitle":"Computer Science Class 9 Unit 2 Part 1 OS & its types By Sir Masood Abbasi at Math+Tech","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cfDI8gN4U9A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cfDI8gN4U9A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQk54UHM0ZEF4dzBUWTRUWmtEaHNTZw==","name":"Math+Tech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Math+Tech","origUrl":"http://www.youtube.com/@MathTech786","a11yText":"Math+Tech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1998,"text":"33:18","a11yText":"Süre 33 dakika 18 saniye","shortText":"33 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"4 mar 2023","modifyTime":1677888000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cfDI8gN4U9A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cfDI8gN4U9A","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":1998},"parentClipId":"8155473614937073402","href":"http://www.youtube.com/watch?v=cfDI8gN4U9A","rawHref":"/video/preview/8155473614937073402?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9129082624207416770":{"videoId":"9129082624207416770","title":"\u0007[Computer\u0007] \u0007[Math\u0007] Series ft. Magic \u0007[Math\u0007] [Episode 1]","cleanTitle":"Computer Math Series ft. Magic Math [Episode 1]","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=GTeVqAK4zDw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/GTeVqAK4zDw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTWpzTlpycW9WeVNRM2ptV2l5RXU0Zw==","name":"The Significance of Old School Technology","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=The+Significance+of+Old+School+Technology","origUrl":"http://www.youtube.com/@thesignificanceofoldschooltech","a11yText":"The Significance of Old School Technology. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":527,"text":"8:47","a11yText":"Süre 8 dakika 47 saniye","shortText":"8 dk."},"date":"18 haz 2022","modifyTime":1655545869000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/GTeVqAK4zDw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=GTeVqAK4zDw","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":527},"parentClipId":"9129082624207416770","href":"http://www.youtube.com/watch?v=GTeVqAK4zDw","rawHref":"/video/preview/9129082624207416770?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15344799637705692655":{"videoId":"15344799637705692655","title":"\u0007[Math\u0007]| \u0007[Computer\u0007] Science | Programming for \u0007[Computer\u0007] Science topics","cleanTitle":"Math| Computer Science | Programming for Computer Science topics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VHR2rciQI4c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VHR2rciQI4c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":108,"text":"1:48","a11yText":"Süre 1 dakika 48 saniye","shortText":"1 dk."},"date":"21 eki 2022","modifyTime":1666310400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VHR2rciQI4c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VHR2rciQI4c","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":108},"parentClipId":"15344799637705692655","href":"http://www.youtube.com/watch?v=VHR2rciQI4c","rawHref":"/video/preview/15344799637705692655?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3229559192749289380":{"videoId":"3229559192749289380","title":"28 - \u0007[Computer\u0007] \u0007[Math\u0007]","cleanTitle":"28 - Computer Math","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=jf8vIav8fGE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jf8vIav8fGE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRUp5N2JLc01KcXliX3o3NVYxZkFzZw==","name":"Dion Training","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Dion+Training","origUrl":"http://www.youtube.com/@DionTraining","a11yText":"Dion Training. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":314,"text":"5:14","a11yText":"Süre 5 dakika 14 saniye","shortText":"5 dk."},"views":{"text":"2,5bin","a11yText":"2,5 bin izleme"},"date":"23 ara 2015","modifyTime":1450828800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jf8vIav8fGE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jf8vIav8fGE","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":314},"parentClipId":"3229559192749289380","href":"http://www.youtube.com/watch?v=jf8vIav8fGE","rawHref":"/video/preview/3229559192749289380?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3689442216083040366":{"videoId":"3689442216083040366","title":"\u0007[Math\u0007] & \u0007[computer\u0007] science week","cleanTitle":"Math & computer science week","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cD_9ocww6H0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cD_9ocww6H0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQ1NFQVM0bEpmcjdlNFIyRWxJdTVDQQ==","name":"ALKIZ MEDIA","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=ALKIZ+MEDIA","origUrl":"http://www.youtube.com/@alkizmedia","a11yText":"ALKIZ MEDIA. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":120,"text":"2:00","a11yText":"Süre 2 dakika","shortText":"2 dk."},"date":"28 kas 2017","modifyTime":1511827200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cD_9ocww6H0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cD_9ocww6H0","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":120},"parentClipId":"3689442216083040366","href":"http://www.youtube.com/watch?v=cD_9ocww6H0","rawHref":"/video/preview/3689442216083040366?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13868179006786454393":{"videoId":"13868179006786454393","title":"Introduction To \u0007[Computing\u0007] - C1L1 - How \u0007[Computers\u0007] do \u0007[math\u0007]","cleanTitle":"Introduction To Computing - C1L1 - How Computers do math","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-l71VaK1bwo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-l71VaK1bwo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZkRGQ2hfbWVZWlN0U0h6OGR1WmRrZw==","name":"Redstone Without Limits","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Redstone+Without+Limits","origUrl":"http://www.youtube.com/@RedstoneWithoutLimits","a11yText":"Redstone Without Limits. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":552,"text":"9:12","a11yText":"Süre 9 dakika 12 saniye","shortText":"9 dk."},"views":{"text":"2,9bin","a11yText":"2,9 bin izleme"},"date":"6 eki 2016","modifyTime":1475712000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-l71VaK1bwo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-l71VaK1bwo","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":552},"parentClipId":"13868179006786454393","href":"http://www.youtube.com/watch?v=-l71VaK1bwo","rawHref":"/video/preview/13868179006786454393?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17385638116829729049":{"videoId":"17385638116829729049","title":"\u0007[Computer\u0007] Science Mathematics (Type Theory) - Computerphile","cleanTitle":"Computer Science Mathematics (Type Theory) - Computerphile","host":{"title":"YouTube","href":"http://www.youtube.com/live/qT8NyyRgLDQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qT8NyyRgLDQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOS15LTZjc3U1V0dtMjlJN0ppd3BuQQ==","name":"Computerphile","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Computerphile","origUrl":"http://www.youtube.com/@Computerphile","a11yText":"Computerphile. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":955,"text":"15:55","a11yText":"Süre 15 dakika 55 saniye","shortText":"15 dk."},"views":{"text":"274,5bin","a11yText":"274,5 bin izleme"},"date":"11 oca 2017","modifyTime":1484092800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qT8NyyRgLDQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qT8NyyRgLDQ","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":955},"parentClipId":"17385638116829729049","href":"http://www.youtube.com/live/qT8NyyRgLDQ","rawHref":"/video/preview/17385638116829729049?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18085395393528167352":{"videoId":"18085395393528167352","title":"Basic \u0007[Computer\u0007] \u0007[Math\u0007] Functions part 1 of 2","cleanTitle":"Basic Computer Math Functions part 1 of 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ZyKfKME5W_c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ZyKfKME5W_c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb1dPay1vNVZ1WW5iTXV5aGpZT1NFUQ==","name":"Bruce Hartpence - Learning Networks","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Bruce+Hartpence+-+Learning+Networks","origUrl":"http://www.youtube.com/@BruceHartpence","a11yText":"Bruce Hartpence - Learning Networks. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":829,"text":"13:49","a11yText":"Süre 13 dakika 49 saniye","shortText":"13 dk."},"date":"5 eyl 2021","modifyTime":1630800000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ZyKfKME5W_c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ZyKfKME5W_c","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":829},"parentClipId":"18085395393528167352","href":"http://www.youtube.com/watch?v=ZyKfKME5W_c","rawHref":"/video/preview/18085395393528167352?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12886106060848458309":{"videoId":"12886106060848458309","title":"Basic \u0007[Computer\u0007] \u0007[Math\u0007] Functions part 2 of 2","cleanTitle":"Basic Computer Math Functions part 2 of 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zENI7ayU1bM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zENI7ayU1bM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb1dPay1vNVZ1WW5iTXV5aGpZT1NFUQ==","name":"Bruce Hartpence - Learning Networks","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Bruce+Hartpence+-+Learning+Networks","origUrl":"http://www.youtube.com/@BruceHartpence","a11yText":"Bruce Hartpence - Learning Networks. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":895,"text":"14:55","a11yText":"Süre 14 dakika 55 saniye","shortText":"14 dk."},"date":"5 eyl 2021","modifyTime":1630800000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zENI7ayU1bM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zENI7ayU1bM","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":895},"parentClipId":"12886106060848458309","href":"http://www.youtube.com/watch?v=zENI7ayU1bM","rawHref":"/video/preview/12886106060848458309?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12345363549800426706":{"videoId":"12345363549800426706","title":"College \u0007[Tech\u0007] \u0007[Math\u0007] 2: Exponential Form of Complex Numbers","cleanTitle":"College Tech Math 2: Exponential Form of Complex Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Eijk5ka4Sxo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Eijk5ka4Sxo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNHhYc3RzSkM1UUpoQ011dFdpQ192dw==","name":"Jason Rouvel","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Jason+Rouvel","origUrl":"http://www.youtube.com/@jasonrouvel6844","a11yText":"Jason Rouvel. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1508,"text":"25:08","a11yText":"Süre 25 dakika 8 saniye","shortText":"25 dk."},"date":"23 mar 2020","modifyTime":1584921600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Eijk5ka4Sxo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Eijk5ka4Sxo","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":1508},"parentClipId":"12345363549800426706","href":"http://www.youtube.com/watch?v=Eijk5ka4Sxo","rawHref":"/video/preview/12345363549800426706?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17182861295170838365":{"videoId":"17182861295170838365","title":"\u0007[Computer\u0007] || Class 9 || New Book || Excel || Graphs || By Sir Masood Abbasi || \u0007[Math\u0007]+\u0007[Tech\u0007]","cleanTitle":"Computer || Class 9 || New Book || Excel || Graphs || By Sir Masood Abbasi || Math+Tech","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=TVpKXbXhq1o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/TVpKXbXhq1o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQk54UHM0ZEF4dzBUWTRUWmtEaHNTZw==","name":"Math+Tech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Math+Tech","origUrl":"http://www.youtube.com/@MathTech786","a11yText":"Math+Tech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2455,"text":"40:55","a11yText":"Süre 40 dakika 55 saniye","shortText":"40 dk."},"date":"20 mar 2023","modifyTime":1679270400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/TVpKXbXhq1o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=TVpKXbXhq1o","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":2455},"parentClipId":"17182861295170838365","href":"http://www.youtube.com/watch?v=TVpKXbXhq1o","rawHref":"/video/preview/17182861295170838365?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14891356851130042279":{"videoId":"14891356851130042279","title":"\u0007[Computer\u0007] Class 10 Chapter 6 OR, NOT, NAND & NOR Gates","cleanTitle":"Computer Class 10 Chapter 6 OR, NOT, NAND & NOR Gates","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=e7MRHT2ixD4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/e7MRHT2ixD4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQk54UHM0ZEF4dzBUWTRUWmtEaHNTZw==","name":"Math+Tech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Math+Tech","origUrl":"http://www.youtube.com/@MathTech786","a11yText":"Math+Tech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":675,"text":"11:15","a11yText":"Süre 11 dakika 15 saniye","shortText":"11 dk."},"date":"9 şub 2023","modifyTime":1675900800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/e7MRHT2ixD4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=e7MRHT2ixD4","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":675},"parentClipId":"14891356851130042279","href":"http://www.youtube.com/watch?v=e7MRHT2ixD4","rawHref":"/video/preview/14891356851130042279?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7265252088063125223":{"videoId":"7265252088063125223","title":"TBAS-Fuzzy \u0007[Computer\u0007] \u0007[Math\u0007] And 2D Coordinate Grids","cleanTitle":"TBAS-Fuzzy Computer Math And 2D Coordinate Grids","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=By_wIR5Y-YQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/By_wIR5Y-YQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWW1VdVdpeXpRdDdlcUdNUlpPSGxHdw==","name":"Taught By A Surveyor","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Taught+By+A+Surveyor","origUrl":"http://www.youtube.com/@taughtbyasurveyor","a11yText":"Taught By A Surveyor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":740,"text":"12:20","a11yText":"Süre 12 dakika 20 saniye","shortText":"12 dk."},"date":"4 tem 2020","modifyTime":1593820800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/By_wIR5Y-YQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=By_wIR5Y-YQ","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":740},"parentClipId":"7265252088063125223","href":"http://www.youtube.com/watch?v=By_wIR5Y-YQ","rawHref":"/video/preview/7265252088063125223?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14944270557742453116":{"videoId":"14944270557742453116","title":"Quantum \u0007[Computing\u0007] | Integer Factorization with Shor's algorithm using IBM Qiskit","cleanTitle":"Quantum Computing | Integer Factorization with Shor's algorithm using IBM Qiskit","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=BYKc2RnQMqo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/BYKc2RnQMqo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUHlvcU1LcTd0cHBlUkRaWmkwMW1WUQ==","name":"Quân Đặng","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Qu%C3%A2n+%C4%90%E1%BA%B7ng","origUrl":"http://www.youtube.com/@wandh","a11yText":"Quân Đặng. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":92,"text":"1:32","a11yText":"Süre 1 dakika 32 saniye","shortText":"1 dk."},"date":"2 haz 2024","modifyTime":1717286400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/BYKc2RnQMqo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=BYKc2RnQMqo","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":92},"parentClipId":"14944270557742453116","href":"http://www.youtube.com/watch?v=BYKc2RnQMqo","rawHref":"/video/preview/14944270557742453116?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12021517520040899350":{"videoId":"12021517520040899350","title":"Lecture 2 Calculus Limit at Infinity and Continuous Function #Mat200","cleanTitle":"Lecture 2 Calculus Limit at Infinity and Continuous Function #Mat200","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2XICUDGu070","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2XICUDGu070?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1190,"text":"19:50","a11yText":"Süre 19 dakika 50 saniye","shortText":"19 dk."},"date":"21 ağu 2019","modifyTime":1566345600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2XICUDGu070?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2XICUDGu070","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":1190},"parentClipId":"12021517520040899350","href":"http://www.youtube.com/watch?v=2XICUDGu070","rawHref":"/video/preview/12021517520040899350?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11845130708331210506":{"videoId":"11845130708331210506","title":"Lecture Computational Finance / Numerical Methods 02: \u0007[Computer\u0007] Arithmetic (2/2): IEEE 754, round...","cleanTitle":"Lecture Computational Finance / Numerical Methods 02: Computer Arithmetic (2/2): IEEE 754, rounding","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=go05MVg2j6A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/go05MVg2j6A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOVJiUm5ZUGhPOWxwaVktNndXTkhXZw==","name":"finmath","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=finmath","origUrl":"http://www.youtube.com/@finmath6357","a11yText":"finmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":5726,"text":"1:35:26","a11yText":"Süre 1 saat 35 dakika 26 saniye","shortText":"1 sa. 35 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"27 nis 2020","modifyTime":1587945600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/go05MVg2j6A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=go05MVg2j6A","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":5726},"parentClipId":"11845130708331210506","href":"http://www.youtube.com/watch?v=go05MVg2j6A","rawHref":"/video/preview/11845130708331210506?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15941367421545336656":{"videoId":"15941367421545336656","title":"Late 10 days Strategy for CSIR NET Mathematical Sciences","cleanTitle":"Late 10 days Strategy for CSIR NET Mathematical Sciences","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=UgsZ7p07hKA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UgsZ7p07hKA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM012UUE4RlB4bEIyekdwVFQ1ZWZodw==","name":"AV MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AV+MathTech","origUrl":"http://www.youtube.com/@avmathtech6162","a11yText":"AV MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":626,"text":"10:26","a11yText":"Süre 10 dakika 26 saniye","shortText":"10 dk."},"date":"6 şub 2022","modifyTime":1644105600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UgsZ7p07hKA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UgsZ7p07hKA","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":626},"parentClipId":"15941367421545336656","href":"http://www.youtube.com/watch?v=UgsZ7p07hKA","rawHref":"/video/preview/15941367421545336656?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9552406842653182582":{"videoId":"9552406842653182582","title":"Conquering \u0007[Math\u0007] as a \u0007[Computer\u0007] Science Student","cleanTitle":"Conquering Math as a Computer Science Student","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=yKJz5IntDW8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/yKJz5IntDW8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMldIalBEdmJFNk8zMjhuMTdaR2NmZw==","name":"ForrestKnight","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=ForrestKnight","origUrl":"http://www.youtube.com/@fknight","a11yText":"ForrestKnight. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":540,"text":"9:00","a11yText":"Süre 9 dakika","shortText":"9 dk."},"views":{"text":"117,5bin","a11yText":"117,5 bin izleme"},"date":"9 ağu 2018","modifyTime":1533772800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/yKJz5IntDW8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=yKJz5IntDW8","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":540},"parentClipId":"9552406842653182582","href":"http://www.youtube.com/watch?v=yKJz5IntDW8","rawHref":"/video/preview/9552406842653182582?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16881926993381405069":{"videoId":"16881926993381405069","title":"Discrete \u0007[Math\u0007] | \u0007[Computer\u0007] Representation of Sets.","cleanTitle":"Discrete Math | Computer Representation of Sets.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9Hdl0W3n-zo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9Hdl0W3n-zo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOW8tMmY1NWg5bHR6NkdfeHg2dnVjZw==","name":"ESTEAM","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=ESTEAM","origUrl":"http://www.youtube.com/@esteam9775","a11yText":"ESTEAM. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2410,"text":"40:10","a11yText":"Süre 40 dakika 10 saniye","shortText":"40 dk."},"date":"21 mar 2020","modifyTime":1584776180000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9Hdl0W3n-zo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9Hdl0W3n-zo","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":2410},"parentClipId":"16881926993381405069","href":"http://www.youtube.com/watch?v=9Hdl0W3n-zo","rawHref":"/video/preview/16881926993381405069?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6785340914457960450":{"videoId":"6785340914457960450","title":"\u0007[Computer\u0007] Organization Weblecture 3: Advanced Binary Arithmetic","cleanTitle":"Computer Organization Weblecture 3: Advanced Binary Arithmetic","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vv_hnon5jCk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vv_hnon5jCk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0hmaEg2YktGbVduWS1oVVc3VGlBQQ==","name":"Stefan Hugtenburg","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Stefan+Hugtenburg","origUrl":"http://www.youtube.com/@StefanHugtenburg","a11yText":"Stefan Hugtenburg. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1430,"text":"23:50","a11yText":"Süre 23 dakika 50 saniye","shortText":"23 dk."},"date":"16 eki 2014","modifyTime":1413417600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vv_hnon5jCk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vv_hnon5jCk","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":1430},"parentClipId":"6785340914457960450","href":"http://www.youtube.com/watch?v=vv_hnon5jCk","rawHref":"/video/preview/6785340914457960450?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3530026766274700962":{"videoId":"3530026766274700962","title":"Quantum \u0007[Computing\u0007] In 5 Minutes | Quantum \u0007[Computing\u0007] Explained | Quantum \u0007[Computer\u0007] | Simpli...","cleanTitle":"Quantum Computing In 5 Minutes | Quantum Computing Explained | Quantum Computer | Simplilearn","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=X8MZWCGgIb8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/X8MZWCGgIb8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDc3ZxVkd0YmJ5SGFNb2V2eFBBcTlGZw==","name":"Simplilearn","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Simplilearn","origUrl":"http://www.youtube.com/@SimplilearnOfficial","a11yText":"Simplilearn. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":298,"text":"4:58","a11yText":"Süre 4 dakika 58 saniye","shortText":"4 dk."},"views":{"text":"494,7bin","a11yText":"494,7 bin izleme"},"date":"16 kas 2021","modifyTime":1637020800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/X8MZWCGgIb8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=X8MZWCGgIb8","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":298},"parentClipId":"3530026766274700962","href":"http://www.youtube.com/watch?v=X8MZWCGgIb8","rawHref":"/video/preview/3530026766274700962?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"31035901935951200":{"videoId":"31035901935951200","title":"The Map of Quantum \u0007[Computing\u0007] - Quantum \u0007[Computing\u0007] Explained","cleanTitle":"The Map of Quantum Computing - Quantum Computing Explained","host":{"title":"YouTube","href":"http://www.youtube.com/live/-UlxHPIEVqA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-UlxHPIEVqA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeHFBV0xUazFDbUJ2WkZQemVaTWQ5QQ==","name":"Domain of Science","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Domain+of+Science","origUrl":"http://www.youtube.com/@domainofscience","a11yText":"Domain of Science. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2007,"text":"33:27","a11yText":"Süre 33 dakika 27 saniye","shortText":"33 dk."},"views":{"text":"2,2milyon","a11yText":"2,2 milyon izleme"},"date":"3 ara 2021","modifyTime":1638547213000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-UlxHPIEVqA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-UlxHPIEVqA","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":2007},"parentClipId":"31035901935951200","href":"http://www.youtube.com/live/-UlxHPIEVqA","rawHref":"/video/preview/31035901935951200?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2336400785810493745":{"videoId":"2336400785810493745","title":"Theory Of \u0007[Computation\u0007] Exercise 1.19","cleanTitle":"Theory Of Computation Exercise 1.19","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hjBEtZElA98","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hjBEtZElA98?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTHIzM1pTUUZBUkg3UVBaNnFvN1hSUQ==","name":"Mykola Hubchak","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Mykola+Hubchak","origUrl":"http://www.youtube.com/@mykolahubchak8098","a11yText":"Mykola Hubchak. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":291,"text":"4:51","a11yText":"Süre 4 dakika 51 saniye","shortText":"4 dk."},"date":"24 mar 2020","modifyTime":1585072211000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hjBEtZElA98?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hjBEtZElA98","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":291},"parentClipId":"2336400785810493745","href":"http://www.youtube.com/watch?v=hjBEtZElA98","rawHref":"/video/preview/2336400785810493745?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12201575831994874959":{"videoId":"12201575831994874959","title":"Quantum Computing Course — Видео от freeCodeCamp","cleanTitle":"Quantum Computing Course — Видео от freeCodeCamp","host":{"title":"VK Video","href":"http://vk.com/video-220919860_456240720","playerUri":"\u003ciframe src=\"//vk.com/video_ext.php?hash=2a9b3fe0c9de51e7&id=456240720&loop=0&oid=-220919860\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"vk","providerName":"vk.com","sourceHost":"vk.com","name":"vk.com","secondPart":{"type":"CHANNEL","isVerified":false,"subscribersCount":0,"a11yText":""},"faviconUrl":"//favicon.yandex.net/favicon/v2/https%3A%2F%2Fvk.com%2Fvideo?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":5763,"text":"1:36:03","a11yText":"Süre 1 saat 36 dakika 3 saniye","shortText":"1 sa. 36 dk."},"date":"20 mayıs 2024","modifyTime":1716192740000,"isExternal":false,"player":{"embedUrl":"https://vk.com/video_ext.php?autoplay=1&hash=2a9b3fe0c9de51e7&id=456240720&loop=0&oid=-220919860","playerId":"vk","videoUrl":"http://vk.com/video-220919860_456240720","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":5763},"parentClipId":"13466659283284057334","href":"http://vk.com/video-220919860_456240720","rawHref":"/video/preview/12201575831994874959?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13466659283284057334":{"videoId":"13466659283284057334","title":"Quantum \u0007[Computing\u0007] Course – \u0007[Math\u0007] and Theory for Beginners","cleanTitle":"Quantum Computing Course – Math and Theory for Beginners","host":{"title":"YouTube","href":"http://www.youtube.com/live/tsbCSkvHhMo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tsbCSkvHhMo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOGJ1dElTRndULVdsN0VWMGhVSzBCUQ==","name":"freeCodeCamp.org","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=freeCodeCamp.org","origUrl":"http://www.youtube.com/@freecodecamp","a11yText":"freeCodeCamp.org. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":5763,"text":"1:36:03","a11yText":"Süre 1 saat 36 dakika 3 saniye","shortText":"1 sa. 36 dk."},"views":{"text":"1,3milyon","a11yText":"1,3 milyon izleme"},"date":"15 mayıs 2024","modifyTime":1715783367000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tsbCSkvHhMo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tsbCSkvHhMo","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":5763},"parentClipId":"13466659283284057334","href":"http://www.youtube.com/live/tsbCSkvHhMo","rawHref":"/video/preview/13466659283284057334?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6511982993719884630":{"videoId":"6511982993719884630","title":"Cannon's algorithm for matrix multiplication","cleanTitle":"Cannon's algorithm for matrix multiplication","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sB-Dh4DsOy0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sB-Dh4DsOy0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM2hxTUZSc1NuWXRXNUxhLWFQT1Z0Zw==","name":"Oscar Mier","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Oscar+Mier","origUrl":"http://www.youtube.com/@oscaringoliling0","a11yText":"Oscar Mier. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":45,"text":"00:45","a11yText":"Süre 45 saniye","shortText":""},"views":{"text":"27,1bin","a11yText":"27,1 bin izleme"},"date":"13 kas 2013","modifyTime":1384300800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sB-Dh4DsOy0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sB-Dh4DsOy0","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":45},"parentClipId":"6511982993719884630","href":"http://www.youtube.com/watch?v=sB-Dh4DsOy0","rawHref":"/video/preview/6511982993719884630?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15111425868195090194":{"videoId":"15111425868195090194","title":"coursera - Design and Analysis of Algorithms I - 3.4 O(n log n) Algorithm for Closest Pair","cleanTitle":"coursera - Design and Analysis of Algorithms I - 3.4 O(n log n) Algorithm for Closest Pair","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vS4Zn1a9KUc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vS4Zn1a9KUc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQkNidmVTaWRKenZwMXpLYmpHZE9aUQ==","name":"André Ribeiro Miranda","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Andr%C3%A9+Ribeiro+Miranda","origUrl":"http://www.youtube.com/c/Andr%C3%A9RibeiroMiranda","a11yText":"André Ribeiro Miranda. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1906,"text":"31:46","a11yText":"Süre 31 dakika 46 saniye","shortText":"31 dk."},"views":{"text":"12,8bin","a11yText":"12,8 bin izleme"},"date":"14 mar 2012","modifyTime":1331683200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vS4Zn1a9KUc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vS4Zn1a9KUc","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":1906},"parentClipId":"15111425868195090194","href":"http://www.youtube.com/watch?v=vS4Zn1a9KUc","rawHref":"/video/preview/15111425868195090194?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4462931197844385714":{"videoId":"4462931197844385714","title":"Boolean Algebra #Discrete Mathematics #\u0007[Computer\u0007] System Principles","cleanTitle":"Boolean Algebra #Discrete Mathematics #Computer System Principles","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cHv853WK0F0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cHv853WK0F0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2422,"text":"40:22","a11yText":"Süre 40 dakika 22 saniye","shortText":"40 dk."},"views":{"text":"1,5bin","a11yText":"1,5 bin izleme"},"date":"20 ara 2019","modifyTime":1576800000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cHv853WK0F0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cHv853WK0F0","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":2422},"parentClipId":"4462931197844385714","href":"http://www.youtube.com/watch?v=cHv853WK0F0","rawHref":"/video/preview/4462931197844385714?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7565516359633031239":{"videoId":"7565516359633031239","title":"Logic Gates and Logic Circuits #DiscreteMath #\u0007[Computer\u0007]#Architecture","cleanTitle":"Logic Gates and Logic Circuits #DiscreteMath #Computer#Architecture","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zKkY_VJPv9c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zKkY_VJPv9c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1972,"text":"32:52","a11yText":"Süre 32 dakika 52 saniye","shortText":"32 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"20 ara 2019","modifyTime":1576800000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zKkY_VJPv9c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zKkY_VJPv9c","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":1972},"parentClipId":"7565516359633031239","href":"http://www.youtube.com/watch?v=zKkY_VJPv9c","rawHref":"/video/preview/7565516359633031239?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16529865989040886383":{"videoId":"16529865989040886383","title":"Recursive Algorithms: Discrete Mathematics","cleanTitle":"Recursive Algorithms: Discrete Mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XCW6HTBENCo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XCW6HTBENCo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2625,"text":"43:45","a11yText":"Süre 43 dakika 45 saniye","shortText":"43 dk."},"views":{"text":"3,7bin","a11yText":"3,7 bin izleme"},"date":"8 eki 2020","modifyTime":1602115200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XCW6HTBENCo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XCW6HTBENCo","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":2625},"parentClipId":"16529865989040886383","href":"http://www.youtube.com/watch?v=XCW6HTBENCo","rawHref":"/video/preview/16529865989040886383?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12971151953011879723":{"videoId":"12971151953011879723","title":"Connectivity: Graph, Paths and Circuits","cleanTitle":"Connectivity: Graph, Paths and Circuits","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=u-xAagtsKZU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/u-xAagtsKZU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2787,"text":"46:27","a11yText":"Süre 46 dakika 27 saniye","shortText":"46 dk."},"date":"10 kas 2020","modifyTime":1604966400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/u-xAagtsKZU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=u-xAagtsKZU","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":2787},"parentClipId":"12971151953011879723","href":"http://www.youtube.com/watch?v=u-xAagtsKZU","rawHref":"/video/preview/12971151953011879723?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5595913159759441173":{"videoId":"5595913159759441173","title":"Number System Of \u0007[Computer\u0007] and Binary, Decimal, Octal & Hexadecimal Conversion in \u0007[Computer\u0007...","cleanTitle":"Number System Of Computer and Binary, Decimal, Octal & Hexadecimal Conversion in Computer.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RSxn882Ve0g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RSxn882Ve0g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNktnLXVjNkhocXU4bjRtMXA3ak0yQQ==","name":"Durga Tripathi","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Durga+Tripathi","origUrl":"http://www.youtube.com/@DurgaTripathi","a11yText":"Durga Tripathi. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":873,"text":"14:33","a11yText":"Süre 14 dakika 33 saniye","shortText":"14 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"5 eyl 2021","modifyTime":1630800000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RSxn882Ve0g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RSxn882Ve0g","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":873},"parentClipId":"5595913159759441173","href":"http://www.youtube.com/watch?v=RSxn882Ve0g","rawHref":"/video/preview/5595913159759441173?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14456044627752760163":{"videoId":"14456044627752760163","title":"Integration using \u0007[Computer\u0007] Algebra Systems (CAS): Example 4","cleanTitle":"Integration using Computer Algebra Systems (CAS): Example 4","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CffwaNubXiI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CffwaNubXiI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/@mes","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":606,"text":"10:06","a11yText":"Süre 10 dakika 6 saniye","shortText":"10 dk."},"date":"10 ağu 2015","modifyTime":1439164800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CffwaNubXiI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CffwaNubXiI","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":606},"parentClipId":"14456044627752760163","href":"http://www.youtube.com/watch?v=CffwaNubXiI","rawHref":"/video/preview/14456044627752760163?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7099597547415763450":{"videoId":"7099597547415763450","title":"Sequence-1 | Engineering Mathematics I | Basic Concept #akdmathsir #btechmath #akd #engineeringmaths","cleanTitle":"Sequence-1 | Engineering Mathematics I | Basic Concept #akdmathsir #btechmath #akd #engineeringmaths","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xb5s95vTWiE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xb5s95vTWiE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY1djQlJwVVhiaTloNU80UFpiU3pTUQ==","name":"AKD Math 12+","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=AKD+Math+12+","origUrl":"http://www.youtube.com/@AkdMath12Plus","a11yText":"AKD Math 12+. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":933,"text":"15:33","a11yText":"Süre 15 dakika 33 saniye","shortText":"15 dk."},"date":"4 ağu 2024","modifyTime":1722729600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xb5s95vTWiE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xb5s95vTWiE","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":933},"parentClipId":"7099597547415763450","href":"http://www.youtube.com/watch?v=xb5s95vTWiE","rawHref":"/video/preview/7099597547415763450?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3201401658850942940":{"videoId":"3201401658850942940","title":"Logic Gates - Boolean Algebra- Discrete Mathematics","cleanTitle":"Logic Gates - Boolean Algebra- Discrete Mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OAz8QpC1bHE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OAz8QpC1bHE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1428,"text":"23:48","a11yText":"Süre 23 dakika 48 saniye","shortText":"23 dk."},"views":{"text":"6,6bin","a11yText":"6,6 bin izleme"},"date":"14 mayıs 2020","modifyTime":1589414400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OAz8QpC1bHE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OAz8QpC1bHE","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":1428},"parentClipId":"3201401658850942940","href":"http://www.youtube.com/watch?v=OAz8QpC1bHE","rawHref":"/video/preview/3201401658850942940?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5930430563286544159":{"videoId":"5930430563286544159","title":"Density Matrices | Understanding Quantum Information & \u0007[Computation\u0007] - Lesson 09","cleanTitle":"Density Matrices | Understanding Quantum Information & Computation - Lesson 09","host":{"title":"YouTube","href":"http://www.youtube.com/live/CeK9ry8G8HQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CeK9ry8G8HQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbEJOcTdtQ01mNXhtOGJhRV9WTWwzQQ==","name":"Qiskit","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Qiskit","origUrl":"http://www.youtube.com/@qiskit","a11yText":"Qiskit. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4374,"text":"1:12:54","a11yText":"Süre 1 saat 12 dakika 54 saniye","shortText":"1 sa. 12 dk."},"views":{"text":"22,7bin","a11yText":"22,7 bin izleme"},"date":"27 mar 2024","modifyTime":1711555215000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CeK9ry8G8HQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CeK9ry8G8HQ","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":4374},"parentClipId":"5930430563286544159","href":"http://www.youtube.com/live/CeK9ry8G8HQ","rawHref":"/video/preview/5930430563286544159?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14677982364216415538":{"videoId":"14677982364216415538","title":"Algorithms in discrete mathematics lecture 1","cleanTitle":"Algorithms in discrete mathematics lecture 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7NbwBc6n-XQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7NbwBc6n-XQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVjZSRWkzTXNQREFULWVNSVcwaFVKdw==","name":"A+ Softek IT Consult","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=A++Softek+IT+Consult","a11yText":"A+ Softek IT Consult. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1927,"text":"32:07","a11yText":"Süre 32 dakika 7 saniye","shortText":"32 dk."},"date":"4 haz 2025","modifyTime":1748995200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7NbwBc6n-XQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7NbwBc6n-XQ","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":1927},"parentClipId":"14677982364216415538","href":"http://www.youtube.com/watch?v=7NbwBc6n-XQ","rawHref":"/video/preview/14677982364216415538?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"203525979415858922":{"videoId":"203525979415858922","title":"\u0007[Math\u0007] in real life Python Script Tutorial Series 22 - Sphere coordinates","cleanTitle":"Math in real life Python Script Tutorial Series 22 - Sphere coordinates","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OjxRmNjktRo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OjxRmNjktRo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcGxjc0lzWlI0cTBqUjNVZ1hqb1NEUQ==","name":"NETS EDU","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NETS+EDU","origUrl":"http://www.youtube.com/channel/UCplcsIsZR4q0jR3UgXjoSDQ","a11yText":"NETS EDU. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":675,"text":"11:15","a11yText":"Süre 11 dakika 15 saniye","shortText":"11 dk."},"date":"2 şub 2020","modifyTime":1580670365000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OjxRmNjktRo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OjxRmNjktRo","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":675},"parentClipId":"203525979415858922","href":"http://www.youtube.com/watch?v=OjxRmNjktRo","rawHref":"/video/preview/203525979415858922?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7793411985646165640":{"videoId":"7793411985646165640","title":"Data Structure and Algorithm: Merge and Quick Sort using Java","cleanTitle":"Data Structure and Algorithm: Merge and Quick Sort using Java","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DoDCrJlSRBA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DoDCrJlSRBA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd25VZHV6ZVdsM2NjSFlhUkRrSTFxZw==","name":"Charles Edeki -- Math Computer Science Programming","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Charles+Edeki+--+Math+Computer+Science+Programming","origUrl":"http://www.youtube.com/@charlesedeki--mathcomputer7198","a11yText":"Charles Edeki -- Math Computer Science Programming. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2064,"text":"34:24","a11yText":"Süre 34 dakika 24 saniye","shortText":"34 dk."},"date":"22 kas 2021","modifyTime":1637539200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DoDCrJlSRBA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DoDCrJlSRBA","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":2064},"parentClipId":"7793411985646165640","href":"http://www.youtube.com/watch?v=DoDCrJlSRBA","rawHref":"/video/preview/7793411985646165640?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3090583758593736935":{"videoId":"3090583758593736935","title":"Intro to Linear Algebra Midterm 2 Fall 23 Review- Georgia \u0007[Tech\u0007] \u0007[Math\u0007] 1553","cleanTitle":"Intro to Linear Algebra Midterm 2 Fall 23 Review- Georgia Tech Math 1553","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pgm9SnKxOMo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pgm9SnKxOMo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRTJNQVhkYzF2M2N5d3FSTDd6bGJqdw==","name":"Zack Brumbach","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Zack+Brumbach","origUrl":"http://www.youtube.com/@Zack-Brumbach","a11yText":"Zack Brumbach. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3195,"text":"53:15","a11yText":"Süre 53 dakika 15 saniye","shortText":"53 dk."},"views":{"text":"2,9bin","a11yText":"2,9 bin izleme"},"date":"17 eki 2023","modifyTime":1697500800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pgm9SnKxOMo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pgm9SnKxOMo","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":3195},"parentClipId":"3090583758593736935","href":"http://www.youtube.com/watch?v=pgm9SnKxOMo","rawHref":"/video/preview/3090583758593736935?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"199426724755318747":{"videoId":"199426724755318747","title":"Limits and Continuity (examples)","cleanTitle":"Limits and Continuity (examples)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=X98QabGx0Rk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/X98QabGx0Rk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS2x4dXZYcmd1VTg2czdUWXJkcnJOdw==","name":"Chris Ozarka","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Chris+Ozarka","origUrl":"http://www.youtube.com/@misterozarka","a11yText":"Chris Ozarka. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":523,"text":"8:43","a11yText":"Süre 8 dakika 43 saniye","shortText":"8 dk."},"date":"11 oca 2020","modifyTime":1578700800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/X98QabGx0Rk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=X98QabGx0Rk","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":523},"parentClipId":"199426724755318747","href":"http://www.youtube.com/watch?v=X98QabGx0Rk","rawHref":"/video/preview/199426724755318747?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15494041324229490212":{"videoId":"15494041324229490212","title":"Geometry of Numbers - Lecture 2.1.3 : Continued fractions and Euclidean Algorithm, a comparison","cleanTitle":"Geometry of Numbers - Lecture 2.1.3 : Continued fractions and Euclidean Algorithm, a comparison","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tk7uFzt8J2Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tk7uFzt8J2Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUXVTNnI4cGRDWEJkUVdUdUJMbEUydw==","name":"Ho Hon Leung","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Ho+Hon+Leung","origUrl":"http://www.youtube.com/channel/UCQuS6r8pdCXBdQWTuBLlE2w","a11yText":"Ho Hon Leung. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":191,"text":"3:11","a11yText":"Süre 3 dakika 11 saniye","shortText":"3 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"29 kas 2014","modifyTime":1417219200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tk7uFzt8J2Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tk7uFzt8J2Q","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":191},"parentClipId":"15494041324229490212","href":"http://www.youtube.com/watch?v=tk7uFzt8J2Q","rawHref":"/video/preview/15494041324229490212?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3440253245937670102":{"videoId":"3440253245937670102","title":"\u0007[Math\u0007] & \u0007[Computer\u0007] learning center || \u0007[Math\u0007] Solution || \u0007[Math\u0007] tricks","cleanTitle":"Math & Computer learning center || Math Solution || Math tricks","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=BBpRScnY2Y0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/BBpRScnY2Y0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWDIxendJbnRYLWFKaG83dTlOMlQ1UQ==","name":"Making Learning Accessible","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Making+Learning+Accessible","origUrl":"http://www.youtube.com/@MakingLearningAccessible","a11yText":"Making Learning Accessible. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":233,"text":"3:53","a11yText":"Süre 3 dakika 53 saniye","shortText":"3 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"30 mayıs 2021","modifyTime":1622332800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/BBpRScnY2Y0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=BBpRScnY2Y0","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":233},"parentClipId":"3440253245937670102","href":"http://www.youtube.com/watch?v=BBpRScnY2Y0","rawHref":"/video/preview/3440253245937670102?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2635004787469090843":{"videoId":"2635004787469090843","title":"Intro to Linear Algebra Midterm 3 Fall 23 Review- Georgia \u0007[Tech\u0007] \u0007[Math\u0007] 1553","cleanTitle":"Intro to Linear Algebra Midterm 3 Fall 23 Review- Georgia Tech Math 1553","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=J6yKmM5oWs4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/J6yKmM5oWs4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRTJNQVhkYzF2M2N5d3FSTDd6bGJqdw==","name":"Zack Brumbach","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Zack+Brumbach","origUrl":"http://www.youtube.com/@Zack-Brumbach","a11yText":"Zack Brumbach. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4670,"text":"1:17:50","a11yText":"Süre 1 saat 17 dakika 50 saniye","shortText":"1 sa. 17 dk."},"views":{"text":"1,7bin","a11yText":"1,7 bin izleme"},"date":"11 kas 2023","modifyTime":1699660800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/J6yKmM5oWs4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=J6yKmM5oWs4","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":4670},"parentClipId":"2635004787469090843","href":"http://www.youtube.com/watch?v=J6yKmM5oWs4","rawHref":"/video/preview/2635004787469090843?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4252903301658883596":{"videoId":"4252903301658883596","title":"\u0007[Computer\u0007] Class 10 Chapter 6 Boolean Algebra Rules","cleanTitle":"Computer Class 10 Chapter 6 Boolean Algebra Rules","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=200XaIU57LY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/200XaIU57LY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQk54UHM0ZEF4dzBUWTRUWmtEaHNTZw==","name":"Math+Tech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Math+Tech","origUrl":"http://www.youtube.com/@MathTech786","a11yText":"Math+Tech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1648,"text":"27:28","a11yText":"Süre 27 dakika 28 saniye","shortText":"27 dk."},"date":"18 şub 2023","modifyTime":1676678400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/200XaIU57LY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=200XaIU57LY","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":1648},"parentClipId":"4252903301658883596","href":"http://www.youtube.com/watch?v=200XaIU57LY","rawHref":"/video/preview/4252903301658883596?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8290455385924628150":{"videoId":"8290455385924628150","title":"Prime Number ।। অঙ্ক আতঙ্ক নয় । পর্ব –4 Magic \u0007[Math\u0007] । কম্পুটিং ম্যাথ – টেক । গণিতের জাদ","cleanTitle":"Prime Number ।। অঙ্ক আতঙ্ক নয় । পর্ব –4 Magic Math । কম্পুটিং ম্যাথ – টেক । গণিতের জাদ","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Z-VlKfd00u4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Z-VlKfd00u4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOTJBaWxGbFAyVF9yQVNKSDRlUHFzZw==","name":"Computing MathTech","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Computing+MathTech","origUrl":"http://www.youtube.com/@computingmathtech6056","a11yText":"Computing MathTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":526,"text":"8:46","a11yText":"Süre 8 dakika 46 saniye","shortText":"8 dk."},"date":"23 tem 2020","modifyTime":1595462400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Z-VlKfd00u4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Z-VlKfd00u4","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":526},"parentClipId":"8290455385924628150","href":"http://www.youtube.com/watch?v=Z-VlKfd00u4","rawHref":"/video/preview/8290455385924628150?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14006292082607379877":{"videoId":"14006292082607379877","title":"Quantization of Angular Momentum of the Electron in the Hydrogen Atom.","cleanTitle":"Quantization of Angular Momentum of the Electron in the Hydrogen Atom.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NFILdwqkV2E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NFILdwqkV2E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMzhJN19KNzJMd0dZZDdxVEZmUk9jQQ==","name":"ProjectX","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=ProjectX","origUrl":"http://www.youtube.com/@DaGuroMo","a11yText":"ProjectX. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":195,"text":"3:15","a11yText":"Süre 3 dakika 15 saniye","shortText":"3 dk."},"date":"13 haz 2023","modifyTime":1686614400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NFILdwqkV2E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NFILdwqkV2E","reqid":"1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL","duration":195},"parentClipId":"14006292082607379877","href":"http://www.youtube.com/watch?v=NFILdwqkV2E","rawHref":"/video/preview/14006292082607379877?parent-reqid=1771567846515808-5096566201048539262-balancer-l7leveler-kubr-yp-vla-156-BAL&promo=pumpkin&text=Computing+MathTech","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x906f9600bf4","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"0965662010485392627156","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Computing MathTech","queryUriEscaped":"Computing%20MathTech","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}