{"pages":{"search":{"query":"NotesForMsc (NotesForMsc)","originalQuery":"NotesForMsc (NotesForMsc)","serpid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","parentReqid":"","serpItems":[{"id":"4280820837700329713-0-0","type":"videoSnippet","props":{"videoId":"4280820837700329713"},"curPage":0},{"id":"17465119914701892392-0-1","type":"videoSnippet","props":{"videoId":"17465119914701892392"},"curPage":0},{"id":"3938405224205951263-0-2","type":"videoSnippet","props":{"videoId":"3938405224205951263"},"curPage":0},{"id":"5410116455344556233-0-3","type":"videoSnippet","props":{"videoId":"5410116455344556233"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dE5vdGVzRm9yTXNjIChOb3Rlc0Zvck1zYykK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","ui":"desktop","yuid":"7571720181771584853"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"444292962724900106-0-5","type":"videoSnippet","props":{"videoId":"444292962724900106"},"curPage":0},{"id":"3403077136136399118-0-6","type":"videoSnippet","props":{"videoId":"3403077136136399118"},"curPage":0},{"id":"4627928373802063554-0-7","type":"videoSnippet","props":{"videoId":"4627928373802063554"},"curPage":0},{"id":"10108228738237993278-0-8","type":"videoSnippet","props":{"videoId":"10108228738237993278"},"curPage":0},{"id":"15483233481343443125-0-9","type":"videoSnippet","props":{"videoId":"15483233481343443125"},"curPage":0},{"id":"15462609586462542083-0-10","type":"videoSnippet","props":{"videoId":"15462609586462542083"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dE5vdGVzRm9yTXNjIChOb3Rlc0Zvck1zYykK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","ui":"desktop","yuid":"7571720181771584853"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"4285799549164644712-0-12","type":"videoSnippet","props":{"videoId":"4285799549164644712"},"curPage":0},{"id":"13688454819205243505-0-13","type":"videoSnippet","props":{"videoId":"13688454819205243505"},"curPage":0},{"id":"18251610717672638170-0-14","type":"videoSnippet","props":{"videoId":"18251610717672638170"},"curPage":0},{"id":"11077244150136506742-0-15","type":"videoSnippet","props":{"videoId":"11077244150136506742"},"curPage":0},{"id":"7762703271091775447-0-16","type":"videoSnippet","props":{"videoId":"7762703271091775447"},"curPage":0},{"id":"283344161852259943-0-17","type":"videoSnippet","props":{"videoId":"283344161852259943"},"curPage":0},{"id":"1206149290295827303-0-18","type":"videoSnippet","props":{"videoId":"1206149290295827303"},"curPage":0},{"id":"8501654806587313723-0-19","type":"videoSnippet","props":{"videoId":"8501654806587313723"},"curPage":0},{"id":"4402117354942055395-0-20","type":"videoSnippet","props":{"videoId":"4402117354942055395"},"curPage":0},{"id":"6194259175904953510-0-21","type":"videoSnippet","props":{"videoId":"6194259175904953510"},"curPage":0},{"id":"8715863567916120103-0-22","type":"videoSnippet","props":{"videoId":"8715863567916120103"},"curPage":0},{"id":"7295228320865180197-0-23","type":"videoSnippet","props":{"videoId":"7295228320865180197"},"curPage":0},{"id":"4899623743816373538-0-24","type":"videoSnippet","props":{"videoId":"4899623743816373538"},"curPage":0},{"id":"14418759482637802649-0-25","type":"videoSnippet","props":{"videoId":"14418759482637802649"},"curPage":0},{"id":"8106147100741110294-0-26","type":"videoSnippet","props":{"videoId":"8106147100741110294"},"curPage":0},{"id":"9274577265543135361-0-27","type":"videoSnippet","props":{"videoId":"9274577265543135361"},"curPage":0},{"id":"1101570071417151840-0-28","type":"videoSnippet","props":{"videoId":"1101570071417151840"},"curPage":0},{"id":"6040954754154839613-0-29","type":"videoSnippet","props":{"videoId":"6040954754154839613"},"curPage":0},{"id":"7275585654094839023-0-30","type":"videoSnippet","props":{"videoId":"7275585654094839023"},"curPage":0},{"id":"8772517807292220137-0-31","type":"videoSnippet","props":{"videoId":"8772517807292220137"},"curPage":0},{"id":"946889001183172837-0-32","type":"videoSnippet","props":{"videoId":"946889001183172837"},"curPage":0},{"id":"5213591206603222553-0-33","type":"videoSnippet","props":{"videoId":"5213591206603222553"},"curPage":0},{"id":"9155357312408326148-0-34","type":"videoSnippet","props":{"videoId":"9155357312408326148"},"curPage":0},{"id":"325374341166670081-0-35","type":"videoSnippet","props":{"videoId":"325374341166670081"},"curPage":0},{"id":"1435330336767687720-0-36","type":"videoSnippet","props":{"videoId":"1435330336767687720"},"curPage":0},{"id":"15436969625669454456-0-37","type":"videoSnippet","props":{"videoId":"15436969625669454456"},"curPage":0},{"id":"15542022164399667506-0-38","type":"videoSnippet","props":{"videoId":"15542022164399667506"},"curPage":0},{"id":"986807403139078214-0-39","type":"videoSnippet","props":{"videoId":"986807403139078214"},"curPage":0},{"id":"1579008060778431748-0-40","type":"videoSnippet","props":{"videoId":"1579008060778431748"},"curPage":0},{"id":"12980654725821496868-0-41","type":"videoSnippet","props":{"videoId":"12980654725821496868"},"curPage":0},{"id":"4863669312288484761-0-42","type":"videoSnippet","props":{"videoId":"4863669312288484761"},"curPage":0},{"id":"6319606412988503197-0-43","type":"videoSnippet","props":{"videoId":"6319606412988503197"},"curPage":0},{"id":"8754018141383251412-0-44","type":"videoSnippet","props":{"videoId":"8754018141383251412"},"curPage":0},{"id":"14649388261492136862-0-45","type":"videoSnippet","props":{"videoId":"14649388261492136862"},"curPage":0},{"id":"11600524537111848048-0-46","type":"videoSnippet","props":{"videoId":"11600524537111848048"},"curPage":0},{"id":"340470128490219424-0-47","type":"videoSnippet","props":{"videoId":"340470128490219424"},"curPage":0},{"id":"3803613432616562764-0-48","type":"videoSnippet","props":{"videoId":"3803613432616562764"},"curPage":0},{"id":"6208358784362947873-0-49","type":"videoSnippet","props":{"videoId":"6208358784362947873"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":false},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"correction":{"items":[{"kind":"misspell","url":"/video/search?promo=pumpkin&text=Notes%20For%20Music%20%28Notes%20For%20Msc%29","params":{"promo":"pumpkin","text":"Notes For Music (Notes For Msc)"},"query":"Notes For M\u0007(u\u0007)s\u0007(i\u0007)c (Notes For Msc)","helpUrl":"https://yandex.com.tr/support/search/info/request-correction.xml","helpTarget":"_blank","helpAriaLabel":"Yazım hatası düzeltme servisi"}],"id":"865004561048"},"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE5vdGVzRm9yTXNjIChOb3Rlc0Zvck1zYykK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","ui":"desktop","yuid":"7571720181771584853"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Fpromo%3Dpumpkin%26text%3DNotesForMsc%2B%2528NotesForMsc%2529","pages":[{"reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","start":0,"end":50,"pageNumber":0,"isCounterSent":false}]},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"6015720044098070607797","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_search_toggle_with_text":1,"video_viewer_show_placeholder":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1491314,0,25;151171,0,39;1281084,0,37;287509,0,53;1447467,0,87;1447550,0,58;1478787,0,20;1482982,0,5"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Fpromo%3Dpumpkin%26text%3DNotesForMsc%2B%2528NotesForMsc%2529","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"NotesForMsc (NotesForMsc): Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"NotesForMsc (NotesForMsc)\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"NotesForMsc (NotesForMsc) — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":true,"sessionCsrfToken":"yfcafe0d58844b3650ffe6099cc20863b","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1491314,151171,1281084,287509,1447467,1447550,1478787,1482982","queryText":"NotesForMsc (NotesForMsc)","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7571720181771584853","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1492788,1490736,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":true,"language":"tr","user_time":{"epoch":"1771584864","tz":"America/Louisville","to_iso":"2026-02-20T05:54:24-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1491314,151171,1281084,287509,1447467,1447550,1478787,1482982","queryText":"NotesForMsc (NotesForMsc)","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7571720181771584853","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"6015720044098070607797","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":149,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"shouldCensorShockContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false,"isPlayerChangeCounterEnabled":false,"isSmallTitle":false,"shouldRestoreMuteState":false,"isAdvUnderPlayerWithSlider":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"showShock":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7571720181771584853","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1773.0__a3bec2ea4008d9cb4d104248a87be1983f3fae69","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"4280820837700329713":{"videoId":"4280820837700329713","docid":"12-3-11-Z01D701AD5748C12D","description":"Musical Instruments, music notes cracked, music notes for beginners, music notes song, music notes art, reading music notes for beginners, music notes lesson, learn basic music notes, music notes...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"0","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Music Notes for I SEE FIRE song (easy version)","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=gATfnD_DJnc\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNDI4MDgyMDgzNzcwMDMyOTcxM1oTNDI4MDgyMDgzNzcwMDMyOTcxM2q2DxIBMBgAIkUaMQAKKmhoYW1vY2dmcHl0YWtnbmJoaFVDZktqNWItZE03T0NkbUxvMmwyY0ZNdxICABIqEMIPDxoPPxPAAYIEJAGABCsqiwEQARp4gfsL_gD_AQDnBvr7BP4CAPD79Qn6__8A2vTyAwf5AwAK-_cBAAAAAOcBAP8AAAAA7QMA8f8BAAAK_PcFAwAAABAG_gj2AAAABQH7Ev8BAAABB__3AwAAAA0BCgUAAAAA8Qj3CQEAAAAAAQEDAQAAAPz9A_wAAAAAIAAtCGHVOzgTQAlITlACKoQCEAAa8AFMAvD_4h7fAA8MAQCB-wL9wAf_ANYVCgDf_O4A8xD9APf9CwD05t__-hQBANQD5P_33fMA7AgpASD99f8mCukABe34AOUI3wAk8hgAFwDt_-0QBP8MBQz_9QjzAgsRDP8QIhv-__L-ABDx6QAP7AAB8v8HBAD6C_729_YB4A8BAQP1-vzT6vwABQ0A-wHgDgT0FwIE7_Pe__b--PkP5t4C8OwH-OTz_vwQ__cC_-D9ABXxDgDM8RMABvnsBN_g_wYk_xz88O8KCBUv8gDv_QsG9PT_9Pn1DvsD5wENDyAL_QPy__jy8AL2BwIQDPkb9w0gAC3VRFA7OBNACUhhUAIqcxAAGmBvCAAbASuv6f0j4fYABAHi8SPkA_H5_wjdAL4HAyP-GvrzFSUA9vTx5bYAAAAO5eMMygDWY_fj-9Tx5d4K1ukuFX8DKugEIAUXy-fs5xFM4jXkaQsA-sWlH_HJJO4W_hIgAC1krDA7OBNACUhvUAIqrwYQDBqgBgAAoEEAAABCAADgQAAAEEEAAMBBAABAwAAAoEEAADjCAAAAwAAAxMIAADTCAAD4wQAAgsIAADDBAACQQQAArsIAAMBAAABwwQAAGEIAALDBAAAEQgAAgEAAAIZCAABsQgAAUMEAAEDBAACIwgAAIMIAAIxCAABwQQAAjMIAADDCAABcwgAA2EEAAAxCAAAQwQAAoMAAAPhBAACSQgAAoMEAALDBAAB4QgAAAEEAAADAAAAMwgAAsEEAAEBBAADAQQAAoEAAAJjBAACwwQAA0MEAAFjCAABgQQAAAMEAAERCAACWwgAAmsIAAILCAAAEQgAAQMEAADDCAABMQgAA2sIAAADBAACCwgAAiMIAANjBAAB4wgAAHEIAAJ7CAAAMwgAAQMAAAABBAAAwwgAAkMIAAIC_AABQQQAAgL8AAGDCAACKwgAAiEEAABRCAAAEwgAAQEAAAIA_AABAwQAAMEIAAABBAAD4QQAAKEIAAKjBAAAIwgAAgsIAAPhBAACcwgAAEMEAAJpCAACowQAAgEEAAIC_AACgwAAAHMIAAMDBAACawgAAcMEAAKBAAABwQgAA6EEAAMBBAAAgwgAAlsIAAIhBAABEwgAAEEIAAIBBAAA8QgAAIEEAAARCAAAQwQAAIMIAAKBBAAAgwQAADMIAAGDBAACwQQAA0MEAAEBBAACgQAAAQEEAAPDBAAAgwgAAgMAAAKhBAACAwQAAqEEAAAhCAABIwgAAkMEAAGzCAABwQgAAEEEAAMDAAADoQQAAHEIAAFBCAAAAQQAACEIAAFzCAAAUQgAAwEAAAIBBAABcQgAAQMEAAKBAAACIQQAAgsIAAIhBAABgwQAAwMAAAHDBAAAMQgAAAAAAAMBAAAA8QgAADMIAAMjBAACgQAAAWEIAABTCAAB0wgAAPEIAAI7CAACGQgAAIMEAALjBAABowgAAhsIAAFBBAACiQgAAIEIAAFDCAACqwgAAoMEAAPhBAAAswgAAFMIAAIBBAACAQAAAwMEAALhBAAA4wgAAEEEAAODAAAAwQQAANEIAAADCAAAcwgAAEEEAAAxCIAA4E0AJSHVQASqPAhAAGoACAAAUvgAAtr4AAO4-AAAEvgAAuL0AAKA8AAAhvwAAEb8AAKg9AADYvQAAhj4AABC9AABEPgAAbD4AAJq-AAAwvQAALD4AAIi9AAAMPgAAjj4AAH8_AABAvAAAiL0AALY-AAAwPQAAor4AABQ-AABQvQAAPD4AAGw-AADgvAAAuD0AACS-AAC4PQAAZD4AAMi9AAAMPgAALL4AAES-AADgvAAA4LwAAJi9AABsPgAAyL0AAHS-AACIPQAAmD0AAEQ-AAAcPgAAmr4AABw-AACAOwAAlj4AACQ-AADovQAAcL0AAGk_AAAsPgAAcD0AAPg9AAAEvgAATL4AABS-AAAkPiAAOBNACUh8UAEqjwIQARqAAgAAJL4AAKa-AACIvQAAG78AAEQ-AABwvQAA6L0AAPi9AACgPAAAoLwAAJK-AAA0PgAABD4AAEA8AAAUPgAAEL0AAEC8AAAnPwAAEL0AANo-AAAwPQAAgLsAAPg9AAAQPQAAcD0AAEC8AABcPgAAcD0AAI4-AABcPgAAgDsAAIg9AACgPAAAfL4AAEC8AAAMPgAAcL0AAMg9AADgvAAAmD0AAJY-AACoPQAAFD4AAOA8AACAuwAAor4AAH-_AACAOwAAyD0AAGQ-AABcvgAAUL0AABy-AABsPgAA2D0AAAw-AAAwvQAAiL0AAJK-AACAuwAAiD0AABQ-AABEPgAAhr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=gATfnD_DJnc","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["4280820837700329713"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1745609633"},"17465119914701892392":{"videoId":"17465119914701892392","docid":"12-8-8-ZFD9FC476B1B4DB5A","description":"Learn more about the music notes for beginners at: https://bit.ly/2PYPw27 In this beginning music theory video lesson, we will learn what the music notes for beginners are. We will also begin...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"1","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Music Notes For Beginners Video - Beginning Music Theory Lesson 1","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=i3fsUxeobCw\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFgoUMTc0NjUxMTk5MTQ3MDE4OTIzOTJaFDE3NDY1MTE5OTE0NzAxODkyMzkyaocXEgEwGAAiRBowAAopaGh6aGx4ZnN1cnhnbXdtaGhVQ2RHY2lxVDlZOUU4NEt3YzBaeGxtd2cSAgARKhDCDw8aDz8TqQKCBCQBgAQrKosBEAEaeIH0CPsH_QMA7gr1_QgBAAD2A_34-f39AOv4_PMC_wEAB_sIAfsBAADw_AAH9gAAAPQEDgT3AAEADPf3_QMAAAANAAQO_gAAAAUB_Qb_AQAA_PgC_wL_AAARCQgB_wAAAAUA-P79_wAA9gb-CgAAAAAL_wX-AAAAACAALSM_3Ds4E0AJSE5QAiqEAhAAGvABfw0n_7QL1gDcG6sB7dvTAZYiDABEGLgAoBwBAakO_gH97v0A2_3OAB0B5QC49T7_HwbL_xAlIQA_vSn_UQ79APkp9QH7xggDShc4_wUc2f3aMfn_4_oBAgTl0gDxBcIBEBYq_xEV9f4N5agL6jZFAhYkH_8YFRP__RkNA8VKKv0g6dT8D_YIBPsSEfvZ8jsJGTzWATkHGfwFO_4EDwQF_e_MLP8L9-QG_gzK-ygX_vPO3SYCA8j6BzTVJQP3G9D7zu44BwDgDvb19gPxMqIP_NsA9Qbk397__gL-9N7c6P3xGOL7GQ4K_MofA_0lKPgJIAAt3JTvOjgTQAlIYVACKs8HEAAawAfHoPu-RrFBPdGa-jx7wo09lq_sO5SHhbzDZKo9elPRPPJEK71ZCAG90TgZvWSg4TycTZe-6j1cuWSPFrwUlEI-RkUcvXPoALx6Fy--CDwwPSmf1LzJcvK9wWoRvQIVq7tfP-k8N-eauyOsvLxM0iu9uC7GvNxtjTwiFMA81sz1vIUqkLx8zpK9Ji2mvHGNdLx_DMK8DMj-vcDbsryUlAU95zjduRm7EDz_Qqo8XzlMPb-pfrzxD3u9vhobPXTYt7oP_I49_IwrPd8g9TyJAy29B0BhvZ6W_rt1vY69zk9RPYWQmDwO1iS8yhXePZPfAr38w9Y9ZoCPO_vyF7yYzyg8oBCbPVepBT3A0Wk6kiQYPso0uzpPPAe9DXnKPYdg5jurMde8oqUhPbrwhzswY6o9oZGZPCZpozw8lDI8St-aPJ5rrTtdOTa9xuBhPc-pgrqPGN098_uDPQ4mj7ycJXI9VBGIPVvrizp1F629GRczPNdzLTxPXG49kbc8PWF8B7tECF49eXJyvCAkMLwFI6U91gI7vknlmjrX6jy8whwYveRFrjtLrBC8Z1zdu_7oI7v2Bak9wbzRvG988bt4Ypa9L9XxvF3iBjvXI169i5MxvINXJjxDNJ-8CgMAPQkVILuImLe9Dr_bvMpwl7v1n7U7KTOvPLWwwLqRoFO83yatvRbtnrpUhYs9D5voPV6kUTqASvA8z1QhvF01rjssZyo9iqtPvZydUjtyVIk8JwUsveQViDsJLlu9RxUsuxrdg7ttA9c9taPYvQyfrzmLdis9IJdYPfaoX7iURsG9Bs-OvE0wpbhu3JI9O7IovSNOI7mtL7c6_RLxvbwjiTk-jBU912kkvFZzxTliqs88VjDouqkjXDht3VK9Y1yzO3kHgrm4B5E9hD_NvJpGAblq1fQ7BU6WvaA2Mzgz7hm8fFdOPR51CDmFsYm7kvr8OzqMQrhtKaY9V59hPVSCKLg71lY8KWB2vclQULjEVjU9eWHGPbbmLric8o08jjq-Og9lUbcYx6I944WZO5nb0Tc03Ns85l0lvgac57jFj4G9L0WTPaAkITnCS7W9jU0CPA26TzZUXdk7ZzHKOy5KAjhx2yg9EgXpvMlDuDhhXva8_U_ZPJTiUTg72p09WVFDvXGV07ir3xa9DfsdvqO8_rh19fS8Wd3qvQ0j8TUIvMA7_itrvZErmLe4cwE9zCuCvS9mdLigFw49FyW9PSh_ADnrXOy8qqSkPQGLxLitbeq9FDu_PG_S4zeOiBM97B3EvTHOBbggADgTQAlIbVABKnMQABpgYegALB9Az94fQe348fEK4fcv8ivJ5f8B-QDaL8g9EUrk4Cv2APK3DfijAAAAMBvvKfYA7X-2xRX_HvoLzZDFFApb5wbT9QtCDoXxEu4KO_MgFGVIAPDixNvx3OoVISVHIAAtmuMUOzgTQAlIb1ACKq8GEAwaoAYAADBBAAAQQQAAgL8AABTCAADgQAAAWEIAANRCAACAvwAAkMIAAJBBAADAQQAAYMEAAIDCAABgwQAAQEAAAODBAACuQgAAsEEAAAAAAAAQwgAAcEEAACzCAADYwQAAgD8AAEDCAAAAQQAAcMEAACDBAAAAQAAAYEEAABDBAAC4wQAAGMIAAFBCAACAwgAAYMIAALBBAAB0QgAAAMAAAJ5CAAAcQgAAgL8AAIhCAAAowgAAgMEAAATCAAAgQgAAnEIAAGRCAAAUQgAAYMEAAABAAAC4wQAAiEIAABDBAADgwAAAfMIAAKDAAACIQQAAGEIAAEBCAADAwAAAwMEAADDBAADwQQAA0MIAAOhBAADwwQAASMIAAGDBAACKQgAASEIAAKbCAAAwQQAASEIAAKrCAABEwgAAwMAAAJhBAABoQgAAcMEAALhCAAAgwgAAJMIAAIhBAACWQgAAkEEAALhBAAB4QgAAYMEAAGDBAACuQgAAHMIAAJLCAACgwQAAqMIAAMDAAADQQQAAEEIAAKBBAACWwgAAGEIAAODBAABAwQAApMIAALhBAAAAQAAA4EEAACDBAABcQgAAXEIAADRCAACAvwAAQEEAANhBAACAQAAA8EEAAIC_AACwQQAAwMAAAEjCAACAwQAAEMEAAHjCAAAIwgAAiMEAADzCAAD4QQAAaMIAANhBAAAAwQAAYMEAAGzCAACSQgAAGMIAAIBAAADgQQAA6EEAADDBAAAgwgAADEIAADhCAADAQAAAwEEAAJpCAACgQQAAsEEAADBBAACgwQAAgL8AAIBAAAAIQgAAqEEAABzCAACYQQAAUEEAADzCAABIwgAAisIAADBBAAAAwQAAuEEAAKBBAADgQQAA0MEAAPhBAABAwAAAdEIAAOhBAADAQAAABEIAAIC_AADQwQAAkMEAAEDAAADgwQAAcMIAADTCAADgwQAAuEIAAKrCAACIwQAAkMEAAEBCAADAQAAAgMAAADTCAACQQQAAiMEAAKjBAACYQQAAIEEAAAhCAABgwQAAoEAAAHhCAADYQQAAAEEAADjCAACowSAAOBNACUh1UAEqjwIQABqAAgAAor4AABe_AADqPgAAML0AAIY-AADYPQAAkr4AABW_AADKvgAAXL4AAPY-AAAQPQAAiD0AAMg9AADOvgAAbL4AAJ4-AADovQAAcD0AAA8_AAB_PwAAgDsAALi9AACYPQAAiL0AAJ6-AACWPgAA6D0AAJg9AADaPgAAlj4AAKI-AAALvwAAsj4AAHQ-AAAUvgAATD4AAO6-AABMvgAAij4AAIA7AAD2vgAAsj4AAHC9AAB8vgAADD4AABC9AADgPAAAqL0AANK-AACKvgAAdL4AABw-AABsPgAAMD0AADC9AABjPwAAQLwAAOi9AABUPgAAPL4AAJg9AAA0vgAAhj4gADgTQAlIfFABKo8CEAEagAIAAGS-AADmvgAAHL4AAFG_AABQPQAAVL4AAFS-AAA0vgAADL4AABC9AABMvgAAuD0AAAw-AAD4vQAA6L0AADC9AABsvgAAVz8AAHw-AAC2PgAAND4AADS-AAAsPgAAML0AAMi9AAC4vQAAHD4AABA9AADKPgAAgj4AABQ-AAAQvQAA4DwAAJK-AADYPQAAUL0AAEC8AABwvQAAXL4AAIY-AACuPgAAMD0AAPg9AACgPAAAuL0AAIi9AAB_vwAARL4AAHA9AACAOwAAML0AAFS-AAAwvQAA6D0AAJI-AAC4PQAAiL0AACQ-AABkvgAA6L0AAAQ-AABcPgAA2L0AANK-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=i3fsUxeobCw","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17465119914701892392"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"609226846"},"3938405224205951263":{"videoId":"3938405224205951263","docid":"12-7-1-Z2466214057950241","description":"Piano and Bass Guitar Music Notes Tutorials Easy For Practice បទ៖ ក្ងោកក្រមុំ - Kngork Kro Mom ច្រៀងដោយ៖ ស៊ីន ស៊ីសាមុត Sinn Sisamouth Singer ចង្វាក់៖ @PlengComposer Follow Me TikTok...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"2","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"ក្ងោកក្រមុំ - Kngork Kro Mom | Piano and Bass Guitar Music Notes Tutorials Easy For Practice","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YtGrtUuAo8s\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTMzkzODQwNTIyNDIwNTk1MTI2M1oTMzkzODQwNTIyNDIwNTk1MTI2M2qvDRIBMBgAIkUaMQAKKmhod3hveHpseGN3bHp2cWRoaFVDSktGZGNnVTRqYmEzZzI4QjkzdTdPdxICABIqEMIPDxoPPxPhA4IEJAGABCsqiwEQARp4gfP_Awv9AwDyA_UCAgP_AfYD_Pj5_f0A9PH5_wUC_wAI__r4_wEAAOL_8PoAAAAA7vcK__QAAQAQ-_75AwAAAAUKBAb3AAAACPAB__8BAAD__An7AwAAAAUIAfL_AAAA-voDC_0AAAAFB_7-AAAAAAP2CPsAAAAAIAAtQrHbOzgTQAlITlACKnMQABpgQw8ASRkizdgH-Oz26PIJ5dcW2enUDP8dDADbCOP8_SXfyR03AAj88vC3AAAAE-LX-P4A4VP85_DlEu_kCt3qHxp_ACnyICsgBsUUPOchU_oC0inwAPvaCB7v50Y1FhYlIAAtcOw-OzgTQAlIb1ACKq8GEAwaoAYAAJDBAABAwQAADEIAAHBBAAAwQQAAEEIAAIBAAAAUwgAAGMIAAJrCAAAQwgAAcMEAANrCAADQQQAAGEIAAIbCAAAAwAAAFMIAAFDBAABQwQAANMIAAAjCAAAoQgAAlkIAAPBBAACgQAAAsMIAAMDAAADYQQAAgMAAAFzCAAAUwgAAKMIAAIC_AADwQQAAgEAAAABBAABwQgAAAEIAAMDBAADgQQAA4EAAAIBBAABAQQAAwMAAAAAAAADgwAAAAEAAAPBBAACAPwAAgMAAAKBAAABAQQAA6EEAAERCAACYQQAAEMIAAGDBAABAwAAA0EEAAFhCAABgwQAAYEEAALLCAADQQQAA0MEAAEzCAABAQAAA8MEAADDCAACAPwAA8MEAAADCAACEQgAAisIAAKrCAAAgwgAAYEEAAMBBAAAwwQAAGMIAAEhCAACkQgAAMEEAADBBAAAAQQAAyEEAAAxCAABgQQAACEIAALjBAADgQQAAPMIAAITCAAAgQQAAgMIAAIC_AADKQgAAIEIAABTCAADgwAAAwMAAAAjCAABowgAAmsIAALhBAAAgwgAAmEEAAOjBAAAAwgAAjMIAAHDCAABswgAAYMEAAARCAAAQQQAAsEEAADDBAAAAwQAAcMEAALjCAACAQQAAAMAAACDCAABoQgAADEIAALhBAACgwAAAuMEAAODBAAB8wgAAEMEAAADBAACAPwAAoMEAADBCAAA8wgAAsMIAAPDBAAAowgAApEIAAKDAAABswgAAQEEAAJpCAABQwgAADEIAALhBAACIQQAACEIAAIDAAAAAwAAAKEIAAMDBAACgQQAAsEEAAAzCAAC0wgAAYEEAANhBAACowQAAUEIAAJBBAADwwQAAYEEAADDBAADgQQAA0EEAAJhCAAAgQgAAhsIAABRCAABAwgAAEEEAABzCAAAMQgAATMIAAL7CAADgQQAAmkIAAIDAAACYwgAAPMIAAADCAABUQgAAmMEAADzCAAAAQAAAwMEAAKhBAACYQQAAiMEAAGxCAACIwQAA4EEAADxCAACgwQAA8MEAABjCAABgQiAAOBNACUh1UAEqjwIQABqAAgAAbL4AAEC8AADiPgAAFL4AAKC8AABwPQAAEL0AAPK-AAAkvgAAMD0AAPg9AABsPgAA2D0AAHA9AABMvgAAhr4AALg9AACgvAAA-D0AAPY-AAB_PwAAFD4AAAy-AACWPgAAfD4AABS-AAD4PQAA-D0AABQ-AAAEPgAAFL4AANg9AAAMvgAAoDwAAFQ-AABMvgAAyD0AAJi9AABEvgAAJL4AAIC7AABAvAAAqD0AAMi9AABwvQAAED0AAFC9AAAUPgAAED0AAAy-AACYPQAAXD4AAHQ-AAAUPgAAtr4AAFC9AAAXPwAAJD4AABA9AAA8PgAAoLwAABA9AABQvQAAfD4gADgTQAlIfFABKo8CEAEagAIAAGy-AACIPQAATD4AABm_AAC4PQAAQDwAAPi9AACovQAADL4AAAw-AABMvgAAiD0AACQ-AADIvQAAuD0AADC9AACovQAAcz8AALg9AAAsPgAAgLsAAES-AABMPgAAuL0AAIA7AABAvAAAEL0AAEC8AABAPAAAND4AADC9AABQvQAA6D0AAIq-AAAsPgAAoDwAACy-AACovQAA-L0AADC9AACIPQAAuD0AAJg9AADgvAAAMD0AALa-AAB_vwAAyL0AACw-AAAUPgAApj4AAKC8AACgvAAA6D0AAEw-AACIvQAAgLsAAHA9AACSvgAAED0AAFw-AACSPgAAfD4AANq-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=YtGrtUuAo8s","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3938405224205951263"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"5410116455344556233":{"videoId":"5410116455344556233","docid":"34-6-13-Z3F82A3F145E5DA84","description":"In this video, I am going to prove another equivalence called the domination law using truth table. The domination law is similar to identity law except that the variable do not have the...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"3","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Domination Laws | Prepositional Logic| Discrete Mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-dcemjSkOwo\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNTQxMDExNjQ1NTM0NDU1NjIzM1oTNTQxMDExNjQ1NTM0NDU1NjIzM2qHFxIBMBgAIkQaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoQwg8PGg8_E_gBggQkAYAEKyqLARABGniB-wT7AAH_AAMLCw4DC_oCDAD7-vYAAAD5_PEDBQT-APr5C_kCAAAA_gjzB_wAAAAA-_EN-P0AAPkF-AcEAAAAIQ38-PsAAAAIDg0H_gEAAPnxAPcCAAAACQUEAf8AAADyDP_--v8AAAkXBv4AAAAADQYJ-gAAAAAgAC3t3847OBNACUhOUAIqhAIQABrwAX8U-__lEekB1AXEALoIDgGJFw7_N0De_6ERLwLI_-oB-PnY_-D91AD18usAtgUZACfq1f8C5hkARBHrAEfdGwABHRUBKdDyATAAMgH-Beb_7SEgAPjw-gDz2K4A_ATj_w8QEv3wCvj9C-mzCRD-QwEOCS8EK-Er_u3UAAHROfQA_OTc_REM6v0I8gf76hc_AQgG6_0PBgMCCjPkAAoM5Afs7wv_-PXUAi798ggNCAL45fIU_ufh7_kI5i0I5xn5BfL2KQLB_wL07hcK7jjM7gfSCOEKBQLxDhf7BxDxre_--PH17-AWCvLL8A329A_zCyAALVJtCTs4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6QqTwvHFELT0J5sO8Df7-vVIOpjyIXYA8EIBuPdlVbbw5e4i6HHh1vmp8ED18ONI8_b10PpJUS70Dsew8cT1avucWvz2FTKi8ptQFvj9MqboFZqq8ZExQPUbPrTz7qp66O5UCPZ9EOjwntBM7qarIu7JdJr1fwQy9IhehvTucirwFK1O9fQA3PftcDb11P6c6aRkZPr1fO71lF-879SVAPIe_prygbIq87GjcvS-9AbwZWAU7cNBePbMl67yGYMs83FV-vP3XPr3KILG6c3b8vDO4tzwPDna8JkCoPZCoKz1v0a68uJAXPsghRz3hB8y8yqk9vtsWtT20TPu4uWa3PXMTsD2_G4E8sOLUvXU2yT08jlU8pAOrO8Z5Dj3pR0O8SxcHPf-JGz00z1s8F1z9vJQ8LT1f4e47CJvwvP9jHD0XDZk8FoTSPUV2j70nZyi8hI4MPR-CKryWlaa8C7jnvXZQiTtbhJi8PjK3PbmdxzzKZac4fQnVPRGqszrqQoc7BSOlPdYCO75J5Zo6Yyp9vKNFzL2HKka8AmcEPShPNDwiQB879gWpPcG80bxvfPG7k64UvSieLr0QYt-79kVfO5psbb1O1qS7SXBZvXQuwbsrkNE79cV0vbNfmLsTTyy86ezJPEwYzT1f6Jq5clP_O7-C1L06i4M6m36_PRR3_Dz0iCs6DZuiPbNg4rxhE-25UZfWPOXRbb2gGky7CesSvBGBdL11Yf-6xxFLvSBOlrzX6Au71Td1PSsWj73usMs5EGd0Pd1ZsD18pr85VyqDvVx3zrxaxg05dfmAPetn-7xROY24XFQLvZwV8b3cnnU59O-jO4_9rLygCmU5h-T_PO67_Tzynac5AvSLvUU1kL07hjE4DdJiPVMlCDtcLbK5cD1PPbhOLb1PJQQ5QgbRu7ZQzbyLRSa5h0x-PUi0U70RPWk4yC9yPJeonj2EkAe4mLRSOz9wxb33LmA5qWb7PLRxiT1gz-u4TEqmvM5lNDxjo5645TIEPcIagrwg0JU4088IPGYx0b0-S5c2vDrLu7hcmDy-0JI2ZVPOvcLoqDz-Mug32kJGPPj6Wr0o4xm4ySIovEj_Jr3Tmk22AmFMvGy14rx2IjI4weMrPtylaLwHiXS5oDNpPLtOqb0fUJu4znI0vF0Py72ocJu3lLSsvGytND0EGPO1HZcMPUkPQ75UMU25yvRwPSLhKz7xy4o461zsvKqkpD0Bi8S4I2jMvQ0B-jtvBgY3sryrvB2xUb0OFrY2IAA4E0AJSG1QASpzEAAaYCb8ACDgHPL-ETvt5-Dz9s_1JOMc9u0A-PIA6B707g3h2e7mDv8S2iMCuwAAAB4G0A8mAOpc1_PFPQTJ_8fn0g8ffwMRK-EE-vi96wHm__UNNgcQPgAB1NEVHQu3NvgENCAALWTSQTs4E0AJSG9QAiqvBhAMGqAGAAA4QgAA2EEAALhBAADwwQAAfEIAAODBAACoQQAAgMEAABTCAAAQQQAATEIAAPjBAACowQAA4MEAAEhCAACowQAAsMEAAJjBAAAwQQAAMMEAADhCAACAwAAAkEEAADBBAACAQAAAmMEAABTCAAAwwgAAPEIAAOhBAACwwQAAAEIAANjBAABQQgAAUMEAAIA_AACIwQAA2kIAADzCAAAAwAAA4EEAAMBAAAAcQgAAoEEAAExCAABwwgAAuMEAAEjCAABsQgAAAEEAAOjBAABAQgAAEEEAAFDBAABgQgAAHEIAAPTCAABAwQAAwEEAAFBCAAAYQgAAIMIAABBBAACQwQAALEIAAPDBAACgQAAAFMIAAMDBAACgwQAAlEIAAOhCAABgwQAAcEEAABRCAADawgAAmMEAAIBBAACYQQAAAAAAADDCAAAwQQAAwMAAAPhBAAAMwgAAMEEAAFhCAACyQgAACEIAAEzCAACAwQAAwEAAALDBAACMwgAAAMEAACjCAABAQQAAoMAAAIC_AACYwQAA4EAAAABCAAAEQgAAQMIAAEDBAACowQAAMMEAABxCAACwwQAADEIAAFxCAAB8wgAAHMIAAEDAAABAQgAA0EEAAJDBAABkwgAAAEEAAOBAAAAQwQAAqMIAAIbCAABcwgAAFEIAAABAAAAUwgAAgMEAACjCAACCwgAAwEEAALjBAADgwAAAuEEAAOjBAAC4QQAAhEIAAAAAAADowQAA7MIAAMDAAACYQQAAoEAAAADBAAAYQgAAuMEAALbCAADIQQAAGEIAAHDBAAAQwQAATMIAAAhCAAAQQQAAiEEAAIhBAABQwQAAvMIAAKjBAACQQQAAiMEAAJBBAAC4wQAAOMIAAMDAAADIwQAAwMAAADRCAAAIQgAAwMAAAKzCAACOQgAAwMEAAGBBAACAwgAACEIAABTCAABMwgAAnEIAAAxCAAAUQgAAUEEAAHBBAACAvwAAOEIAAIzCAACYwQAAqMEAAPjBAAAsQgAAqMEAAGjCAACWQgAAgL8AAOBBAABAQAAAoMIAAPjBAACOwgAAsMEgADgTQAlIdVABKo8CEAAagAIAAOi9AADoPQAARD4AALi9AAAwvQAA4j4AAFA9AABNvwAAfL4AABC9AACIvQAA6r4AAIC7AABsPgAAhr4AADC9AADCPgAAcL0AAJo-AAAPPwAAfz8AACS-AACyPgAAMD0AAFy-AAC6vgAARD4AAFA9AABQPQAAPD4AAJ4-AACqvgAA4LwAAKC8AABQvQAAML0AAEC8AABkvgAAsr4AAK6-AACevgAAiL0AAIo-AABEvgAAlr4AABA9AACGPgAA-r4AAES-AACyvgAABL4AACS-AABAPAAAiD0AAMi9AACYvQAAVT8AAPg9AAAUvgAAkj4AAOi9AABcPgAAyD0AAJg9IAA4E0AJSHxQASqPAhABGoACAADovQAAZD4AABy-AAAxvwAAsr4AAHA9AAAMPgAAdD4AAIC7AACKPgAALD4AAEC8AACgvAAABL4AAAS-AACYPQAAQDwAAAk_AACgvAAArj4AAFA9AABAPAAAoLwAAIq-AAAsvgAA2D0AABS-AABwPQAApr4AAHA9AADoPQAA4DwAAEA8AAC4PQAAHD4AABy-AAAcPgAA1j4AAGS-AAAQvQAAmj4AACS-AABwvQAAML0AAEA8AAAkPgAAf78AAOA8AABcvgAA2L0AALY-AAA8PgAAtj4AALg9AAC4PQAAuD0AAOi9AADYvQAAVD4AAFS-AABwPQAAQLwAAJa-AADYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=-dcemjSkOwo","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5410116455344556233"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"4286338151"},"444292962724900106":{"videoId":"444292962724900106","docid":"34-1-8-Z828F3CD38E6BA456","description":"What are prepositions ? A simple preposition or atomic statement is something that has a truth value. Many such statements make compound statements which also have a truth value such as true or...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"5","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Simple Statements | Prepositional Logic | Discrete Mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bBhjuInSKqs\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFAoSNDQ0MjkyOTYyNzI0OTAwMTA2WhI0NDQyOTI5NjI3MjQ5MDAxMDZqhxcSATAYACJEGjAACiloaGJibHpxbnVweWZqaHpoaFVDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdxICABEqEMIPDxoPPxOwAYIEJAGABCsqiwEQARp4gfT89v4B_wD0CQ8KBQb8ARDz-QH2AP8A7_j9Bv8BAAAH-wgB-wEAAPYE-AL4AAAA9vL9Cff_AQD7_gcJ9wAAACEN_fj7AAAAExEGCv4BAAD0-_78AwAAABMEAf3_AAAA9QgIA___AAAJFwb-AAAAABcJCwEAAAAAIAAthUHROzgTQAlITlACKoQCEAAa8AFqAwcBxOz9_joA8P_vCeEBgQUL_zUI6ADgBPkB2BDhAOcV8QDa4gAA6g4BAM0DEQAQ9uv_KwITAAsKCP8uAREA_gcWAUH6-gAbCgkA9Q7s_wEGDP8l-R4BHeoFAP4Q_AAc_hv_0gDjAPcQ4wEABRMCEAwEARH3GQIaGyAB9hUH__wIAgMcAv4D6AP3-v4MFwIU_-v99wX___QI8AMADPcI7fb9_DAE5wEcCQUK9fkK-fQODfwiEQwFBuzv_gcbG_vl_wn2APT-A-UYBf8V3fUD--oRAfT1Av8CKfEF8dgA9PYDDfvqDwf3-voOCgQK-QEgAC1uJ0g7OBNACUhhUAIqzwcQABrAB4z2-L5eAiY88Q3qvOQFQr3b-5Q990KcPJ45db2HyS-8sWqQPNIQvDvsXGI9A1SCvPyMu75aUw-8xurFuwovYT4XcbC8QdPGOdz0F75-1DU9qmINPE94kb5nFUw9qeaLun0D0z1XAow7q3ZNPSMSlT38vRk98dSGO3AtbjujK4e8s1aZvPN_Xb2Bhg29HZGMupV_DT6ipFa9sVVdPAExKT6a9269D5D5PDwE4TqYnEE76OEhu3b5O73_4yk8S01MPLWMJD4_vum8ZGuHPPvkzTz2Rg09NMXzOg9CxLpqfuM6XIpQvPcm4TxdhpQ98LXxvANoij13RkC9SoLsOjlCtr2kZpQ9T7C_PN1gOD4pplw94xs-OvzrrrvuHmU9iAOyPGz7aLy8C688p6xCOcbLaT0bJRS9vg33O991ETt4DC891Q8APWLvKj1-QLk6jtj-umycCD1mcVU9C9SivA5fDzzZFi-8iMLjut-Izr2SGTm8tqFPukOpDT7oogG-_EGAumSV0j2tCwk9Rl1rPKtgDz1AYsW84vA4POg5mDzfbV48lGVKO62aMT0DDJa92B9yPKUTST3IMqM97gvHu5MfvL2_kN-8UOEKvD2RcT34YS69-eaKu_QTczwKOhA9Eh_tO2pzNTuveRW9IPXTu_dtrbzd71A8aW4qPDHQVb2LmU695vj-Ofji6z18lUE9Rf6yutNrg72lsL07tM6VOoPASj3Mzqa7ADcLu9ApSDuTLRy99QdSO1iF9rvSV5s9iQr3tynuF7x41Fi9VWfIuMCQmzo8FIU9N-a0OMAgCT01h1o81a8ZOKxTpTweWGm8f3ahObJynrx5JaS8WYtLuf3Y5Lyswgm8zyViOybZjzyytg49lxSUOYwqaLyTB9g8Z5skOqpO4rwTimM984WvOIDM2Dx_6mm9LFR4OJTR0Lq9LYK90OgAOFGfZL1miam8mfFXORw5ublRpiw8gcKnuJ3ipzsjSVW9S56AuHqt3zz1H6M8mR6EueIyuLxtALa8uoGTuEbRw7yqTgK9S5VguPPa9rwI-cq9Wod7tgc-67yGtlI8ta6GN8k4q738lD69U5T7t_4bqrx9ezK9qD7PN41s3TyAsD2922psOHQprjxOUHm9rtGoNUnhpT3cdxQ81LYjuQu5zjqSvKm8NQ9ktzX4FDxUcJk79segN-CCDL0Q1rW8LBO0tvZ0ej3gD9-9P5mbt6AXDj0XJb09KH8AOXF8Y736JQI-qYEsuSGsJr1UAXc9YStSuMD4WL0XuIy9fS25tyAAOBNACUhtUAEqcxAAGmAYCwA8zC7e6yVM0fME0gzm7U_sEeDu__YJ__VH59jlFdPl1CUAMrknB6oAAAAf-9wrKQAHebrRuDvo9BCk2e4T_H_1Iii9_vbgsOscDN3r-zT7ITsAEcayFRMirFUC5B8gAC1tKBk7OBNACUhvUAIqrwYQDBqgBgAAcEEAAFDBAADwQQAAOMIAAOBAAAD4wQAAfEIAAHDBAAAcwgAAIEIAAOBAAACAwgAA4MEAAHDBAABgQgAAhsIAAADBAAAwwQAAAMAAALDBAAAMwgAAmsIAAAhCAADgwAAAkEEAAEDAAAAYwgAAwMEAAJhBAADoQQAAaMIAAEBBAAA4wgAAoMAAAHjCAAD4wQAAYEEAAGBCAACgQAAAMEIAAKhBAADIQQAAKEIAAJBBAACAwQAAeMIAAIC_AABgwQAAjkIAAGhCAAAQwQAAsMEAAOBAAABQQQAAHEIAAATCAAAAwwAAwEAAAMDBAABYQgAAmEEAAFDBAADowQAArMIAABDBAAC-wgAA2MEAAIrCAACgQAAAUMEAAIJCAACGQgAAgMEAAKhBAABAQAAAwsIAABjCAACAvwAAJEIAABBBAACmwgAAPEIAAIDBAACIwQAAwMAAAOBAAAA8QgAAWEIAAOBBAAA0wgAAEMEAAIhCAACIwQAAaMIAAJBBAAB8wgAAUMEAAGxCAAA4QgAAuEEAABDCAACQQQAAgEEAALDCAAAAAAAA4EEAACTCAADYQQAAAMEAAHhCAABcQgAAwEAAAEBBAACAPwAA4MAAABRCAAAQwgAAZMIAAMBAAAAUwgAAAAAAAPjBAACowQAAQMIAAJhBAADYQQAASMIAAKBAAABMwgAAAEAAALBBAABIQgAAHMIAAERCAACgwAAAIMEAAGBBAAAYQgAA2MEAAOzCAADAQQAAAMAAAJBBAADwwQAAaEIAAFDBAABYwgAAAEAAAADBAACAwQAAYMEAAABAAACAQQAAWMIAAOjBAABAQAAAAEAAAODAAACAPwAAuEEAAMTCAAD4QQAA2MEAAMDBAABQwQAAGEIAAERCAAAwQgAAEEIAAKDAAABAwAAALEIAADDBAABwwQAALMIAAIZCAAAwwQAAUEEAAKBAAACoQgAAYEEAADTCAACgwQAAsEEAAIRCAAAgwQAAhMIAANhBAAAYwgAAQEAAAJbCAACEwgAAUEEAAATCAAAQwgAADEIAADDCAACYQQAAdMIAAJjCIAA4E0AJSHVQASqPAhAAGoACAADIvQAAgLsAAEQ-AADoPQAA-D0AAKo-AAA8PgAAXb8AAJ6-AABwvQAAoDwAAOK-AABMvgAAhj4AALi9AAC4vQAAND4AADC9AAAEPgAADT8AAH8_AAC4vQAAFD4AACS-AAAwvQAAJL4AABw-AAAsPgAAED0AAKY-AADKPgAAJL4AAKi9AACiPgAAcL0AADw-AACYPQAA-L0AAM6-AAAMvgAAkr4AAJi9AABMPgAAuL0AAES-AAAUvgAAtj4AAMK-AABEvgAAir4AAKC8AABUvgAAFD4AAHC9AADIvQAAEL0AADk_AACIPQAAJL4AAII-AABAvAAAnj4AAGw-AADoPSAAOBNACUh8UAEqjwIQARqAAgAAHL4AAEw-AADIvQAAH78AANi9AADgvAAA-D0AAEC8AACAuwAAmj4AABQ-AACAuwAAmD0AANi9AAAQPQAAEL0AAHC9AAArPwAA2L0AAMY-AACIvQAAuL0AAFA9AABMvgAAmL0AABA9AAAwvQAAuD0AAPi9AACIPQAAcD0AAIg9AAD4vQAAgDsAAPg9AADIvQAA4DwAAJ4-AAA8vgAAEL0AAAQ-AAA8vgAAyL0AABC9AACIvQAAUD0AAH-_AACIvQAAPL4AAOC8AAAUPgAA2D0AABQ-AAAMPgAAUD0AADA9AABwvQAAgDsAAJg9AACgvAAAmD0AAEA8AABQPQAA4LwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=bBhjuInSKqs","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["444292962724900106"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"3403077136136399118":{"videoId":"3403077136136399118","docid":"34-1-12-Z4310B5CA32516A31","description":"What is Commutative Laws | Prepositional Logic| Discrete Mathematics In this video, I will talk about discrete math concept of prepositonal logic. The logical equivalence is some statements that...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"6","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"What is Commutative Laws | Prepositional Logic| Discrete Mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HfdwZHYy_1I\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTMzQwMzA3NzEzNjEzNjM5OTExOFoTMzQwMzA3NzEzNjEzNjM5OTExOGquDRIBMBgAIkQaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoQwg8PGg8_E4sCggQkAYAEKyqLARABGniB9Pz2_gH_AAMLCw4CC_oCE_YB9_YBAADv-P0G_wEAAPL6CAIEAAAA_gjzB_wAAAD28v0J9_8BAPkF-AYDAAAAFwb98PsAAAATEQYK_gEAAPz3Av8C_wAAFQQTAgAAAAAABAT2-_8AAAkXBv4AAAAADQYJ-gAAAAAgAC2FQdE7OBNACUhOUAIqcxAAGmAZCwAwCQwH6xkp7-7wz_rr9TX87N7sAPMNAPEv9sn60NIA5SP_KssZ9bsAAAAT8-ofLwDYXdPrqhkZ1wfD_-0CJ38OBhLuNQzcvvTv7RPmAB3-_yYA-OTvAfb7qijfJTAgAC0ymD87OBNACUhvUAIqrwYQDBqgBgAAUEIAANBBAADYQQAAoMEAAGBCAADwwQAAkEEAAFDBAAAgwgAA4EAAAEhCAADIwQAAcMEAANDBAABIQgAAuMEAAIjBAACIwQAAAEEAAADBAABAQgAAoMAAACBBAABAQQAAgD8AAHDBAAAYwgAAHMIAADhCAADgQQAAIMEAABhCAADgwQAAUEIAACDBAACAPwAAkMEAAORCAAAwwgAAoMAAALhBAACgwAAAGEIAAKhBAAAsQgAAXMIAAMDBAABMwgAAUEIAAMBAAADIwQAAUEIAAGBBAABgwQAAREIAACxCAAD6wgAAiMEAAABCAABMQgAA4EEAAAzCAADgQAAAcMEAACxCAADYwQAAMEEAAPjBAADQwQAAgMEAAJRCAADuQgAAUMEAAHBBAAAEQgAA5sIAALDBAABAQQAAkEEAAIDAAAA8wgAAUEEAAEDBAAAAQgAAGMIAADBBAABkQgAArEIAAOhBAAA0wgAAmMEAAIBAAADIwQAAjsIAAADBAAAswgAAcEEAAEDAAAAwwQAAwMEAABBBAADAQQAAAEIAADTCAACgwAAAmMEAACDBAAAsQgAAqMEAAABCAABgQgAAiMIAACTCAACAvwAAPEIAAOhBAACQwQAAYMIAAABBAAAAQAAAQMEAAJ7CAACEwgAAbMIAABRCAABAwAAAFMIAAHDBAAAowgAAhMIAANhBAAC4wQAAMMEAAKBBAAC4wQAAyEEAAIZCAAAAAAAA0MEAAPrCAADAwAAAoEEAAIC_AACAwAAAFEIAAKjBAAC2wgAA4EEAABBCAACAwQAAgMAAAFDCAAD4QQAAoEAAAHBBAAC4QQAAUMEAAL7CAACAwQAAUEEAAJjBAACoQQAA8MEAADTCAADgwAAA0MEAAIDAAAAsQgAAGEIAAIDAAAC6wgAAhEIAALDBAACYQQAAhsIAABRCAAAkwgAAXMIAAJhCAAAgQgAAJEIAAHBBAABQQQAAoMAAADBCAACCwgAAmMEAAHDBAAAcwgAALEIAAKDBAABcwgAAjkIAAIBAAADQQQAAAEAAAJ7CAAAMwgAAkMIAAKjBIAA4E0AJSHVQASqPAhAAGoACAACOvgAA4DwAAMg9AADoPQAAUD0AAJ4-AACIPQAAV78AAMq-AACIvQAAEL0AAPa-AACovQAAqj4AAGS-AACovQAAJD4AAIA7AACePgAALz8AAH8_AACCvgAAkj4AAAy-AACovQAAPL4AAAw-AAAwPQAAij4AAK4-AADKPgAAVL4AAJi9AACIPQAANL4AAIg9AACgPAAALL4AALK-AAB0vgAALL4AAHy-AAB8PgAAXL4AAIK-AAAcPgAAxj4AAB-_AAAEvgAAqr4AAOi9AAAMvgAAPD4AABS-AACovQAAQLwAAFU_AAAkPgAAED0AAK4-AABMvgAAgj4AAIg9AABAPCAAOBNACUh8UAEqjwIQARqAAgAAVL4AAL4-AAAEvgAAKb8AAJa-AABAvAAAsj4AAOC8AAAEPgAArj4AAEQ-AADYvQAAUD0AAAS-AADgPAAAoDwAAMg9AAAVPwAAUD0AANY-AABAvAAAgLsAAIA7AABMvgAADL4AAEw-AACIvQAAFD4AAJa-AADgvAAAMD0AAHA9AACIvQAAMD0AAAQ-AAAUvgAATD4AAKI-AABEvgAAFL4AAFw-AACAuwAAML0AAEA8AACAuwAAND4AAH-_AAD4vQAAlr4AAKA8AACOPgAAhj4AACw-AAA8PgAAqD0AANg9AADIvQAAmL0AADw-AAAkvgAABD4AAOA8AACovQAAiD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=HfdwZHYy_1I","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3403077136136399118"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"4627928373802063554":{"videoId":"4627928373802063554","docid":"12-7-12-ZFC58A415880E9E38","description":"Violin - Viola - Flute - Church Organ - Atmosphere Sounds - Guitar Arpeggios.... Don't forget to Like, Share, and Subscribe! Thanks For Watching.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"7","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Background Violin Sound - Music Note C (2nd Octave) | Music Sounds For Practice And Tuning","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kWpJk8umxm8\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNDYyNzkyODM3MzgwMjA2MzU1NFoTNDYyNzkyODM3MzgwMjA2MzU1NGqvDRIBMBgAIkUaMQAKKmhoZ3V2ZWNobHZ5ZnJ1YmRoaFVDVDN2dWFNN2gwTHNaOUgzckNTdVpqZxICABIqEMIPDxoPPxOvAoIEJAGABCsqiwEQARp4gfMJBwj_AgDrCP4CAQEAAPv2_Qb6_f0A7f0BBAkAAAD-_AIE9wEAAOr3Av8HAAAA7g0PAvwBAAAV-wIMAwAAAA8D_v_8AAAACPj8Cv8BAADu-g75AgAAAPsMCAL_AAAA_fT-Bvz_AAD2_PwJAAAAAAcGCgP_AAAAIAAt2X3WOzgTQAlITlACKnMQABpgXAUALv833ZkRQtMH6sb9w-bXxNrN9v_uEf-aJi4d6D_v7-sQAObE-AKaAAD_ATjQK78A4H8U1P7X_gAAFNPwRRpm-hsHIGs0D5cuIP8-9MfruxAIAM-j9SbDzSEWERsuIAAtso4POzgTQAlIb1ACKq8GEAwaoAYAAHjCAAAEwgAAcEEAAABCAACOQgAA2MEAABBBAACQwQAAgMAAAJDCAAAgwgAAoEAAALzCAAAkQgAAREIAAFDBAACwQQAAUEEAAMDBAAAwQQAA4EEAAGxCAACWQgAAkEEAAExCAACAwQAAaMIAACDBAADYQQAAIEIAAIbCAAAUQgAA6EEAAEDBAABwwQAAAMEAAGBBAABUQgAAiEEAAIBAAADAwQAAQEIAAHxCAACoQQAADMIAAFRCAADgQQAAUEEAAERCAAAkwgAAoEAAAMBAAACAwQAAsEEAAJ5CAAAQwQAAQEEAAMjBAACAvwAAsEEAAIA_AADAQAAAAEEAAFjCAAA4wgAAUMIAAJjBAACwQQAAAMAAAMjBAACowQAA-MEAAHDBAAAgQgAA0MEAAGzCAAAAwAAAMEEAACTCAAAAQAAA8MEAAMDAAAB8QgAAwEEAAIBBAABwwQAAkMEAANhCAABAQQAAkMIAAABBAABAQgAALEIAAFzCAAAEQgAAZMIAAABCAABMQgAAmkIAAIBAAAAEwgAAwMEAAHBBAADIQQAAoMEAAJjBAAAkwgAAGEIAAGDBAACwQQAALMIAALrCAAAgwgAAZMIAAKDAAAA8wgAA4EEAALhBAAC4wQAA0MEAAADDAAA8QgAAAEEAAEDBAABQwQAAEEIAAADCAABgwQAAcMEAAODBAADgwAAAoMAAAIjBAABAwQAA0EEAAKpCAACgQAAAjsIAADDBAACuwgAAWEIAAOBBAAAgQQAAcEEAAABBAADgQAAAHMIAAKxCAAAAAAAAnEIAAIbCAABwwQAAEMEAAIBBAADAwAAAiEEAAPDBAAAQwgAAHEIAADhCAADQwgAAiMEAADjCAADgQAAAmEEAAIjBAAAwwQAA4EAAAHBBAAAcQgAA4MAAAEDBAACWwgAADMIAABDBAAAAQQAADEIAABTCAAAwQgAAoEEAAExCAAD2wgAAOMIAAIC_AAAUQgAAyEEAAETCAADgQAAABMIAAIBAAACgwAAAcMIAABRCAABgQQAAmMEAAHRCAAAAAAAACMIAAKDAAACIQiAAOBNACUh1UAEqjwIQABqAAgAAsr4AAEy-AABHPwAAyr4AAJi9AAAZPwAAgr4AADW_AADOvgAAUL0AAJ4-AADmvgAALT8AAAS-AADSvgAA-L0AANI-AABsvgAAXT8AAFk_AAB_PwAA4DwAADy-AABQvQAAgj4AACu_AADuPgAAHL4AANK-AAAFPwAAMD0AAAc_AAAwPQAAQDwAAHy-AAABvwAARD4AAFS-AAC6vgAAwj4AANK-AABEPgAAET8AAI4-AACIPQAAVD4AAJg9AAC2vgAAbL4AAJq-AAAQvQAAFb8AABM_AACqPgAA2L0AAAw-AAAtPwAAcL0AAIi9AACmPgAAQLwAADw-AACyvgAAHD4gADgTQAlIfFABKo8CEAEagAIAAOi9AADovQAAfL4AAEm_AACAuwAAML0AAJi9AACSvgAANL4AADQ-AACCvgAAED0AAEQ-AACAuwAAuL0AAMi9AADevgAAIT8AAEC8AACmPgAAfD4AAGS-AABcPgAAQLwAAHC9AABMvgAAoDwAALg9AACoPQAAJD4AABw-AAAwvQAAuL0AABS-AAAkvgAAdL4AAEA8AADgvAAALL4AAHA9AAAMPgAAND4AAEQ-AAAwPQAADD4AACy-AAB_vwAA4DwAAFw-AAAMPgAAoDwAAMi9AAC4PQAAjj4AAIi9AAAMPgAA2L0AAPg9AAA8vgAAyL0AAMg9AADaPgAAuD0AAAe_IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=kWpJk8umxm8","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4627928373802063554"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"10108228738237993278":{"videoId":"10108228738237993278","docid":"34-3-0-Z2139BEBA3404B232","description":"The implication and biconditional connectives are logical operators that makes a compound preposition with two or more variables. This video explains the working of these operators and their...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"8","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Implication and Biconditional | Prepositional Logic | Discrete Math","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1tMFVdrwkT4\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFgoUMTAxMDgyMjg3MzgyMzc5OTMyNzhaFDEwMTA4MjI4NzM4MjM3OTkzMjc4aq4NEgEwGAAiRBowAAopaGhiYmx6cW51cHlmamh6aGhVQ0J2enBObnBoZmlSQXAtUXpoRnE5VXcSAgARKhDCDw8aDz8TgAKCBCQBgAQrKosBEAEaeIH0_Pb-Af8AAwsLDgIL-gIU_fwA9gEBAPb6-_z-A_8A-QsL-f8BAAADCPn79wAAAPr89Pn1_gEAAgUIBwUAAAAeCfMF_QAAAAgODQf-AQAA-fEA9wIAAAAHAgX3_wAAAPoBCgD6_wAADAwJ8gAAAAAQ_QoFAAAAACAALYVB0Ts4E0AJSE5QAipzEAAaYOwJACMJGgXlEDDnywDaDPfqJPP83_QA_foA8hb73fzp4fHhG_8XzQ39xgAAABMK7B8VAOpM9Pu4HQrR_K7v6BAHf-8R7_kLCOjaCPIJGwfz_yEBOgD1_PYOCAXLLv8GOSAALfUSXzs4E0AJSG9QAiqvBhAMGqAGAABAQgAAgEEAAJhBAABAwQAASEIAAPjBAAAQQgAADMIAACTCAABQQQAAREIAABjCAAAgwQAADMIAAHBCAADQwQAAkMEAAHDBAACAPwAAcMEAABxCAAAwwQAAoEAAAJBBAAAAAAAAiMEAABjCAABYwgAAbEIAAAhCAAAwwQAADEIAADDCAABcQgAAsMEAAEDAAADgwAAA9kIAAEjCAACgQAAAGEIAAIDAAAAMQgAAsEEAACRCAABUwgAALMIAABDCAABkQgAAgEAAANjBAAAsQgAAmEEAAAAAAAAcQgAAFEIAAADDAADAwAAAYEEAAChCAADYQQAABMIAAIC_AADQwQAAHEIAANDBAAAQwQAAAMIAAOjBAABAwQAAhkIAAPBCAACIwQAAEEEAAKhBAADcwgAAYMEAAKBAAAAAQgAAQMAAAHjCAADAQQAAUMEAAFBCAADAwQAAEEEAAGhCAACUQgAAEEIAACjCAACQwQAAgD8AAIDBAACUwgAAoMAAAFjCAAD4QQAAwEAAAIDAAADYwQAAcEEAANhBAAAEQgAASMIAADDBAACwwQAAgMAAADxCAACIwQAAFEIAAEhCAAAswgAA8MEAAIDBAAA8QgAAGEIAALjBAAB0wgAAAEAAAIBAAAAwwQAAnMIAAHTCAAB4wgAAAEIAAIBAAAD4wQAAyMEAABTCAAAwwgAAyEEAAGDBAADowQAAYEEAAPjBAADYQQAAmEIAAIA_AAAAwgAA9MIAACDBAABQQQAAMEEAAADAAAAMQgAAqMEAALjCAAD4QQAAEEIAAATCAABAQAAAmMEAAARCAAAQQQAAQEAAAJhBAABgwQAAyMIAAJjBAACQQQAA2MEAAOhBAAD4wQAAMMIAAKDAAACAwQAAwEAAAChCAAAwQgAAQEEAALTCAACCQgAAgMEAANhBAABQwgAA0EEAABDCAAAYwgAAoEIAAARCAABIQgAAMEEAAGBBAAAgQQAAWEIAAGDCAACgwQAAAMAAAOjBAADoQQAAqMEAAHzCAABUQgAAAMEAANhBAADgwAAAjsIAACzCAACGwgAAgMEgADgTQAlIdVABKo8CEAAagAIAAHS-AACYvQAATD4AAKC8AACAOwAA0j4AAHw-AAA9vwAAyr4AACS-AADYvQAAyr4AAIA7AABUPgAABL4AAOA8AABMPgAA4LwAABQ-AAAZPwAAfz8AAAS-AAAkPgAAiL0AAFC9AAC4vQAAyD0AAIC7AAA8PgAAmj4AAJo-AABEvgAARL4AACw-AABAvAAABD4AAIA7AAA8vgAAxr4AAIK-AAC-vgAAQDwAAIY-AAAQvQAAkr4AABS-AABcPgAA0r4AAPi9AACKvgAAHL4AAAS-AAB0PgAA6D0AALi9AADgvAAAOz8AADQ-AADgPAAAlj4AADC9AACOPgAAHD4AAEA8IAA4E0AJSHxQASqPAhABGoACAADYvQAAXD4AAAS-AAAlvwAAdL4AAEA8AACePgAAgDsAAIi9AAC2PgAADD4AAHA9AAAQvQAA-L0AAEA8AADgPAAAEL0AAAs_AACgvAAA-j4AABA9AACAOwAA2L0AAFS-AAAUvgAAEL0AAKi9AACYPQAAtr4AAFA9AABQPQAA2D0AAEC8AACAuwAAyD0AAMi9AACoPQAAoj4AAFy-AABAvAAAVD4AAAS-AADIvQAAoLwAAJg9AAAMPgAAf78AAOi9AACYvQAA-L0AAJo-AAAsPgAALD4AAKg9AADgPAAA2D0AAJi9AAD4vQAARD4AABC9AABQPQAAqD0AAAS-AABwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=1tMFVdrwkT4","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10108228738237993278"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"15483233481343443125":{"videoId":"15483233481343443125","docid":"12-6-17-ZC11EFC8B1CF94C5D","description":"Learn how to play Golden by Huntr/X from the Netflix film K-Pop Demon Hunters and follow the sheet music with easy notes letters for recorder, flute, violin and other instruments with tuning in C...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"9","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Golden - KPop Demon Hunters | Sheet Music with Notes for Recorder, Flute, Violin Tutorial | Huntr/X","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Ro0pr0ZLHmQ\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFgoUMTU0ODMyMzM0ODEzNDM0NDMxMjVaFDE1NDgzMjMzNDgxMzQzNDQzMTI1aq4NEgEwGAAiRBowAAopaGhsaWxjbnJrdHZieWVlaGhVQ285VXhUVGh2V3htUFZ3TnFaTmNMeXcSAgARKhDCDw8aDz8TzQGCBCQBgAQrKosBEAEaeIHwEwAAAQAA-wMDDwsJ-gL79vwG-v39AOf6-_4E_gEABQkFAPcBAADmCwQK_QAAAO4OEAL8AQAAH_H9BgIAAAAVGPcC_QAAAAH59f__AQAA7QnvBQP_AAD-DhT_AAAAAAwEAQX7_wAABPH5AgAAAADz_hD3__8AACAALXZQzjs4E0AJSE5QAipzEAAaYGMKAE3XGvbJ6TPQCLy97ePnDswY1x3_L8n_pfXSOSYQEqwZKgAouf4jlAAAAAIStS7SAN9_8xzRDzXFNQby2A1MfhMm5C18ZdjPLz_8DST9IzZTLQD82B0QK7_6GgZUMiAALfnqBjs4E0AJSG9QAiqvBhAMGqAGAABIQgAAiEEAAMhBAACIQQAAYMEAAOjBAACAwQAAIMEAAADBAADmwgAAoMAAAARCAADewgAAcEEAAJhBAACwwQAA-EEAACTCAACgwAAAIEEAAEDAAABkQgAAEEEAACDCAAAQwQAAIMEAAIDCAADAwQAA6EEAAMBBAACgQAAAAEEAAETCAACAwAAAQEAAADBBAAAAAAAAnEIAAGRCAAAUwgAAcMIAAJhBAAA4wgAA0EEAAPjBAADAQAAAcEEAAIBCAAAsQgAABEIAAADBAAAAwQAA8EEAAFDBAACgwAAAOEIAANDBAACoQQAAiEEAALBBAAB8QgAARMIAAJBBAAAQwQAA4EAAADxCAABAwgAAYEEAAETCAACwwQAAYMEAAKjBAAAAwgAAgMEAAADBAACQwQAATEIAAJZCAACEwgAAoMEAAADAAADYQQAAqkIAAHDBAAAQwQAAjEIAANBBAAAwQQAAZEIAAJxCAAAgQQAA2MEAAAAAAAAgQQAAAAAAAMDAAAAAAAAA4MAAAMDAAAAYwgAAcMEAACxCAACAQAAAgD8AADzCAACAPwAAHEIAAGBCAAC-QgAASEIAAPDBAACWwgAAAMIAADxCAADYQQAAsMIAAHRCAAB8wgAAoMEAAKBAAACmwgAAqMEAAABAAAA8wgAAhEIAABRCAAA8wgAAsMEAALrCAAC4wQAAZEIAAEDBAACIwQAA2EEAAPBBAAAwQgAAIEEAAHjCAABwwgAAAMEAAOBBAAC4wQAAIMIAADRCAAAUQgAAMEEAADjCAAAoQgAAKEIAAFBCAABAwAAAmsIAAEDAAABAwAAANEIAAKzCAABgwQAARMIAAADBAABYQgAAgMAAAIbCAACAwQAADMIAAABBAACAwQAAgkIAALhBAAC0QgAA-EEAAEBAAAA0wgAADMIAAPjBAACwwQAAwMAAAIDBAACYwgAAMMEAAOjBAACCQgAAAEAAANjBAABQwgAA0EEAAGBBAACAwAAA-EEAABjCAABQwQAADMIAAODBAADYQgAAwMEAAAzCAABAQQAAhEIAAETCAAA0wgAAAMAgADgTQAlIdVABKo8CEAAagAIAAEy-AAA0vgAALT8AABC9AACWPgAAuD0AAIq-AAAbvwAAcL0AAAy-AACYPQAAPD4AAHQ-AACAOwAA-r4AABy-AACGPgAAoLwAAJg9AADiPgAAfz8AALi9AACOvgAAiD0AAIg9AACWvgAA4j4AAIi9AABUPgAArj4AADA9AABEPgAAbL4AAIC7AAAQPQAAVL4AAKo-AAAcvgAA6L0AAKi9AACAuwAAqD0AACw-AADYvQAA6D0AAHw-AABcPgAAMD0AAFA9AACIvQAAHD4AAOi9AADovQAAiD0AAOC8AABwvQAAIT8AACy-AAAUvgAAuj4AADC9AACmvgAAuL0AAEQ-IAA4E0AJSHxQASqPAhABGoACAACCvgAAmD0AAAS-AAA7vwAAuD0AAJi9AAD4vQAAgr4AAIC7AAD4PQAAoLwAANg9AABwPQAAXL4AAAQ-AAD4vQAA4r4AAFk_AAAEvgAAgj4AAIC7AADmvgAAPD4AABC9AAAMPgAAuL0AAPi9AABkPgAATD4AADS-AADgPAAADL4AAHA9AAAQvQAAuj4AAEy-AACYPQAAUL0AAFS-AADgvAAA-D0AALi9AAAwvQAAcL0AAKi9AADuvgAAf78AAAw-AACIPQAALD4AAOi9AAAsvgAAPL4AAEw-AAAQvQAAUD0AAPi9AAA0PgAAyL0AAIC7AADYPQAAjj4AAMo-AAA8viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Ro0pr0ZLHmQ","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15483233481343443125"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"15462609586462542083":{"videoId":"15462609586462542083","docid":"34-3-5-Z3472A3301A8E35FB","description":"What is an Idempotent Law | Prepositional Logic | Discrete Mathematics In this video, I will discuss about the idempotent law which is another equivalence and then prove the validity of the...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"10","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"What is an Idempotent Law | Prepositional Logic | Discrete Mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vZ_Jga06oLo\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFgoUMTU0NjI2MDk1ODY0NjI1NDIwODNaFDE1NDYyNjA5NTg2NDYyNTQyMDgzaq4NEgEwGAAiRBowAAopaGhiYmx6cW51cHlmamh6aGhVQ0J2enBObnBoZmlSQXAtUXpoRnE5VXcSAgARKhDCDw8aDz8TtAKCBCQBgAQrKosBEAEaeIH0_Pb-Af8A_AAQBQcH_AIU_fwA9gEBAPb6-_z-A_8A9gETAQEAAAD-CPMH_AAAAPby_Qn3_wEA_AD3EAIAAAAhDf34-wAAAAYHCBP-AQAA_PwKBAP_AAATCAPz_wAAAPL5__v7__8ACRcG_gAAAAAMBP37AAAAACAALYVB0Ts4E0AJSE5QAipzEAAaYCAKABsEEf_pDTfj9gDc6vn7P-gD6uEAAfUA7BMB0f_w4PbxJv8r3B7vxAAAABL64RMiAOBS-_azMBPnAc_97gUNfxD9Bf4q-O7D8PXsJfwnC-sIMgD_7O0NBgarIvAAOSAALbJUVDs4E0AJSG9QAiqvBhAMGqAGAABEQgAA4EEAANBBAACwwQAAZEIAAOjBAACIQQAAYMEAABzCAADgQAAASEIAAMDBAABwwQAAwMEAAERCAACYwQAAmMEAAIjBAADgQAAAAMEAADhCAACAwAAAQEEAACBBAACAPwAAcMEAABDCAAAgwgAAPEIAAOBBAABAwQAAGEIAAOjBAABUQgAAAMEAAAAAAACYwQAA5EIAADTCAADAwAAAsEEAAEDAAAAYQgAAkEEAACxCAABcwgAAwMEAAEzCAABIQgAAwEAAANDBAABQQgAAUEEAAFDBAABIQgAAMEIAAPrCAACYwQAA8EEAAEhCAADwQQAADMIAAABBAACAwQAALEIAAOjBAAAgQQAA-MEAANDBAACAwQAAlEIAAPBCAABgwQAAYEEAAPhBAADiwgAAsMEAAFBBAACYQQAAQMAAADzCAABgQQAAQMEAAPhBAAAYwgAAQEEAAGBCAACsQgAA6EEAADjCAACgwQAAgEAAANjBAACKwgAA4MAAACzCAABQQQAAAMAAACDBAADAwQAAEEEAAMBBAAD4QQAAMMIAAKDAAACQwQAAMMEAACxCAADAwQAABEIAAGBCAACEwgAAKMIAAIC_AAA8QgAA-EEAAJDBAABcwgAAEEEAAEBAAAAwwQAAoMIAAILCAABgwgAAEEIAAIDAAAAMwgAAiMEAACjCAACEwgAAyEEAAMjBAAAQwQAAkEEAALjBAADIQQAAikIAAAAAAADQwQAA-sIAAKDAAACIQQAAAMAAAIDAAAAUQgAAuMEAALTCAADwQQAAFEIAAIjBAACAwAAAWMIAAPhBAACgQAAAcEEAALBBAABQwQAAvMIAAHDBAABwQQAAkMEAAKBBAADgwQAAOMIAABDBAADQwQAA4MAAACxCAAAQQgAAQMAAALrCAACKQgAAsMEAAJBBAACIwgAAHEIAACjCAABgwgAAmEIAABRCAAAsQgAAcEEAAGBBAADAwAAALEIAAITCAACowQAAiMEAABjCAAAoQgAAqMEAAFTCAACQQgAAgEAAANBBAAAAQAAAoMIAAAjCAACQwgAAoMEgADgTQAlIdVABKo8CEAAagAIAABS-AADgvAAAXD4AAOg9AACIvQAAAT8AAOA8AAAnvwAAur4AAAy-AADovQAAkr4AAOA8AADOPgAAdL4AAFC9AAC6PgAAcL0AAJg9AAABPwAAfz8AALa-AACCPgAAmL0AAPi9AAD4vQAAFD4AAEA8AACIPQAAjj4AAKY-AAAMvgAAyL0AAGw-AAD4vQAAuL0AADA9AABUvgAAxr4AAIi9AACCvgAAVL4AADw-AAAQvQAAfL4AAOC8AACuPgAA1r4AANi9AABkvgAAuL0AAES-AABMPgAAEL0AAKC8AABAPAAAPT8AAII-AABAvAAAsj4AABS-AAAkPgAA6D0AAKC8IAA4E0AJSHxQASqPAhABGoACAAB8vgAAvj4AAOi9AAAVvwAAHL4AAOi9AABkPgAAUL0AAAw-AACSPgAAND4AAKi9AACYPQAALL4AAMg9AACgPAAAED0AABs_AADIPQAA5j4AAOg9AACIPQAAuD0AAEy-AADYvQAAJD4AANi9AABMPgAAor4AAMi9AACgPAAAJD4AADC9AACYPQAAqD0AAGS-AAAkPgAApj4AADy-AAAcvgAAPD4AABC9AAAMvgAAuL0AAOg9AAAUPgAAf78AADy-AABMvgAAqL0AACw-AABUPgAA4DwAAII-AABQPQAADD4AAMi9AAAsvgAAJD4AAOC8AACAOwAA6L0AAHC9AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=vZ_Jga06oLo","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15462609586462542083"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"4285799549164644712":{"videoId":"4285799549164644712","docid":"34-8-16-Z5D2C713EE7DFE03C","description":"In this video, we discuss the duality law of prepositional equivalences. Every logical equivalence in prepositional logic has a dual which can be obtained by interchanging the logical operators.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"12","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Duality Principle| Preposition Logic | Discrete Mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MAf5gVeXLV0\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNDI4NTc5OTU0OTE2NDY0NDcxMloTNDI4NTc5OTU0OTE2NDY0NDcxMmqGFxIBMBgAIkMaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoPwg8PGg8_E2uCBCQBgAQrKosBEAEaeIEA_f_-_gMAAv8FAQ0F_gELAPv69wAAAPb6-_3-Av8A8_oHAgQAAAD-B_QH_AAAAPv89Pn2_gEA9wD2BvYAAAAfDP35-wAAABIRBgn-AQAA_-8FAQP_AAATBAH9_wAAAPwIAQH8_wAAARcB9gAAAAAHCwL8AAAAACAALVL32js4E0AJSE5QAiqEAhAAGvABfATr_8YJ4ADZBMwAthcBAIEiCv4QFdQA2hUSALz3ygAADeEA4tHu_w_q_QG9KRsBIu3a_yvZIAAuD_YAPuIYAOYqJgET3QQBLPwXAfEE3P_5Ewb_F_gPAPfc1P_2-_T6_woZ_fIJ-f70FNsBDv47AQT5GgIm5Sb-9uAYBdM5IP7-38T_DhzqAgf0BvvtFDcBDQ0P_QAD-vjg9PD9EOPr_xbRAQINEtMAC_X8DAjhCvz5CB31Bvbv-wECCw_iGCMB8_ckAu798_nxFAjwROcPC9kfAQcI0fgBFxAJDfXn9PD58_fx4AMMAuz8EfrsAQcRIAAt_yEdOzgTQAlIYVACKs8HEAAawAdqFtC-rJQZPVMN97tzHC68g3Z9PfTspLvgoP29LgymOwWRHrwJstS8BZJGPXY7Nr1ZwFS-BIyMOSrP1zwKL2E-F3GwvEHTxjlxPVq-5xa_PYVMqLygxRK-FCIAvf9Fq7wq_4o9878mPNnNzjtejaK8NTlGvbgBhLwiFMA81sz1vIUqkLxsJTS-Ve1DuwOyBjrbmVM9kguZvbzr7LsYWh0-agdxu7SFEDxCwVY914QZvdVR4bt9z6i99toHPPRAGLxzCLE9QL3ZvIXDnDzJcQw9n38QvLpMjTxogEG9a5mxvP6co7vf_MY97BvzPIdZPr2huwQ-kc26PMYJXbz5oAe-9BqbPS-BgDtwl509HxMZPnqtOTmw4tS9dTbJPTyOVTyZ9iw7cAEtPbneWzxN05w95Db1vAlsjjyjF707BTPoOxC1yDz2hca8xi0su7pGcDzHjnw9MC_AOybb5bzmQM8970irPFHAtrxOXuS91kJ_PAevxDs_4wI-BRkBvPOhVTzMyaU9136XPIX-sjvfZsY9ObXzvYcfGDxTghU86KaovdtcCrys0QE9R1m_u35wRzr2Bak9wbzRvG988bt4Ypa9L9XxvF3iBju4nay8tBwNvZdTJzxtA3K9B2TKPMkCiTvb4yC9WAebvP566LsgHxk92GGcPSSsFbvFZQY9-gwIvlUhA7po_q09eahyPc0YCzutzvs8D5fcvBw8lzpSF8K7sW-GO0z6oLuWFXk9X9HtvMp_VDo7sQK9y_OgvLNxTLvYLu085-o9vVN1JrmLWrA9ShisPYnewzkaHQO6XPfgvIUzODkiiPM8tZ6rvLLGFDndKqO8Vz3AvZEGHjnA7SQ9W--uOR6PxbkdrSo93OFlPDDGXjggose9kr7_vHWdD7lJMTs92yG0PFR6lDleaA49PorEve_wZba_B5S8IqqLvLJFBrkCA1I9WpzxvCm8Nbl4H0w9pa_xPJfPAjlB43i8fEftvWETqzmSWug8i_GrPbob1jfle4a9oq0UvVT0L7dTgQk9yOsBvTbpXTgVFJA8c-WCvY_pfDhF2HC9k5kiPIJfIjfJOKu9_JQ-vVOU-7eaEv-8vbImvRW6x7fOJQs8u2VivIG8mbYVg1E8b1bOvCUmEDitp_Y9s-qYvHs7OrlcSQG9yt7SvRciBLlIlkK9LBHDvcHMj7jIfcy7nWHuu8KgfDdhBnk98zoSvkvnqbiKllc9EFj5PY0XQDgeOIK9M_OePZzn8ri0Afi9tVhFPVHgXDgwB-o7twkHvqealbcgADgTQAlIbVABKnMQABpgMfYAIOwj3wMQT9r2_en74eAm8RPw9f_65gDgC-DsF-vG5PAdAB3cHga4AAAAEv--GSUA7GW_AbwU69MF3u3nGQl_DA8fvwcO57Po6d8K_AItCQ86AO7QzSUE9Zkp4gguIAAtEtg1OzgTQAlIb1ACKq8GEAwaoAYAAFhCAABgQQAAiEEAAJjBAABUQgAA8MEAAChCAAAEwgAAMMIAAIBBAABgQgAAMMIAAJDBAAAcwgAAeEIAAODBAACYwQAAMMEAAIC_AAAwwQAAVEIAADDBAAAwQQAAkEEAAIBAAACgwQAAJMIAAETCAABcQgAACEIAAEDBAAAMQgAAIMIAAExCAADAwQAAwMAAAMDAAADgQgAAUMIAAOBAAAAgQgAAQMAAABBCAAD4QQAAJEIAAFDCAAAwwgAAGMIAAIBCAADgQAAA-MEAAAhCAAAwQQAAQMAAACRCAAAAQgAAAMMAABDBAABgQQAAMEIAANhBAAAMwgAAAAAAANDBAAA8QgAAuMEAAADAAAAMwgAA8MEAAGDBAACCQgAA4kIAAEDBAACAQAAACEIAANrCAAAgwQAA4EAAAOhBAACAvwAAbMIAAFBBAACgwAAASEIAAMjBAACAQAAAhEIAAJ5CAAAMQgAAMMIAAEDAAAAwQQAAgMEAAJTCAAAAwAAAZMIAANBBAAAAAAAAAMAAAMjBAAAgQQAA4EEAAOhBAABMwgAAYMEAALDBAACAvwAAQEIAAADBAAAAQgAAVEIAACjCAAC4wQAA4MAAAEBCAAAIQgAAoMEAAFzCAAAAQAAAwMAAAKDAAACkwgAAeMIAAHzCAADwQQAAEEEAABDCAACQwQAAIMIAABzCAADAQQAAiMEAAAjCAABwQQAACMIAANBBAACUQgAAgD8AAADCAADqwgAAoMAAAJhBAACAQAAAoMAAAAxCAACYwQAAwMIAAMhBAAAIQgAAwMEAAADBAACgwQAADEIAAOBAAAAAQQAAuEEAAGDBAADMwgAAiMEAAMBBAADQwQAA4EEAABTCAAAQwgAAAEAAAJDBAAAAQAAAPEIAADRCAADgQAAAsMIAAIhCAACwwQAAwEEAAEDCAADIQQAADMIAACTCAACeQgAAEEIAACBCAAAQQQAAIEEAAABBAABMQgAAaMIAAIjBAACgQAAADMIAAAxCAACgwQAAjMIAAHhCAACgwAAAuEEAABDBAACIwgAAHMIAAI7CAABgwSAAOBNACUh1UAEqjwIQABqAAgAAPL4AAJi9AAAMPgAA6D0AALi9AACOPgAAZD4AAC-_AADOvgAAgLsAAGS-AADSvgAAoLwAAKI-AAAsvgAAUL0AALg9AABAvAAAzj4AADk_AAB_PwAATL4AAKY-AADYvQAAbL4AADy-AAA0PgAAUD0AAEQ-AADCPgAAnj4AALa-AADIvQAAgj4AAKC8AAD4PQAAcD0AABS-AADuvgAAVL4AAJK-AAAUvgAAZD4AAES-AADWvgAAgDsAAK4-AAAHvwAAEL0AAMK-AAAUvgAAqL0AABQ-AABAPAAA4LwAAKC8AABVPwAA6D0AAKA8AADOPgAAFL4AAIg9AAAEPgAAMD0gADgTQAlIfFABKo8CEAEagAIAAFC9AABkPgAA6L0AADO_AABsvgAA4LwAAAQ-AACgPAAAiL0AAI4-AAAUPgAA6L0AAFA9AADovQAAgDsAAFC9AACIvQAAEz8AABC9AACyPgAAED0AAOi9AABQPQAAdL4AAOC8AABwPQAAFL4AAHA9AAAUvgAAmD0AAKA8AABwPQAAUL0AAIC7AACgPAAANL4AAKg9AABEPgAA-L0AAOC8AAAcPgAALL4AAMi9AADgPAAAiL0AANg9AAB_vwAAiL0AAES-AAC4PQAAND4AANg9AADYPQAAND4AAKi9AABQPQAAqL0AAOA8AADYPQAAEL0AAAQ-AACAOwAAML0AAKC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=MAf5gVeXLV0","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4285799549164644712"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"13688454819205243505":{"videoId":"13688454819205243505","docid":"34-3-11-Z9395CCE8403E356A","description":"Associative Laws | Prepositional Logic | Discrete Mathematics In this video, I will discuss a discrete math topic for logical equivalence. One of the identities that which is also found in pure...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"13","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Associative Laws | Prepositional Logic | Discrete Mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=E8zOEDB4VuU\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFgoUMTM2ODg0NTQ4MTkyMDUyNDM1MDVaFDEzNjg4NDU0ODE5MjA1MjQzNTA1aq4NEgEwGAAiRBowAAopaGhiYmx6cW51cHlmamh6aGhVQ0J2enBObnBoZmlSQXAtUXpoRnE5VXcSAgARKhDCDw8aDz8TygGCBCQBgAQrKosBEAEaeIH89_sAAAEAAwsLDQIK-gIU_f0A9gEBAPUG9f31Av8A9QMBAwcAAADuBO0E_QAAAPby_Qn3_wEA9A0ADgMAAAAgDf35-wAAABMDDgr-AQAA9PH_AQP_AAAPAAj7_wAAAPYE_gD__wAABgwG_AAAAAAV_wP8AAEAACAALQZu1Ds4E0AJSE5QAipzEAAaYAoMACcSDP7nFzrr4AniCujpOfDx5_sA9A0A8ST32_3z5e7sHv8I1An0xgAAABf45BQpAOdQ0eCuDhTZ-c8B9RgPf_MO-uct-OjCBvjjHPr8G_ryHgDt6OYIBv67GeMMLyAALRbEWDs4E0AJSG9QAiqvBhAMGqAGAABAQgAA2EEAALhBAADIwQAAdEIAAPjBAADQQQAAwMAAABzCAABAQQAAUEIAAAjCAADYwQAA6MEAAEhCAADAwQAAkMEAAKjBAAAgQQAAgMAAAFBCAAAAwQAAkEEAACBBAADgQAAAsMEAACzCAAAgwgAAMEIAAPhBAABgwQAABEIAAATCAABMQgAAmMEAAIDAAAAQwQAA1EIAADjCAABAwAAA4EEAAAAAAAAUQgAA0EEAAExCAABwwgAAyMEAAETCAABwQgAAQEEAANjBAAA0QgAAMEEAAEDBAABQQgAAIEIAAPLCAADgwAAAuEEAAEhCAAAEQgAALMIAABBBAACowQAAQEIAALjBAABAQQAACMIAALjBAACQwQAAkEIAAOZCAABQwQAAiEEAACRCAADcwgAAgMEAADBBAACAQQAAAAAAACjCAADAQAAAwMAAABRCAAAkwgAAAEEAAFhCAACmQgAA6EEAAEzCAAAgwQAAEEEAAKDBAACIwgAAMMEAADTCAAAQQQAA4MAAAIDAAACQwQAAgEAAAABCAAAAQgAAOMIAACDBAADAwQAAMMEAACRCAACgwQAADEIAAGhCAAB0wgAADMIAAIA_AABAQgAAmEEAAIDBAABYwgAAwEAAAEBAAABQwQAAmsIAAIbCAABowgAAGEIAACBBAAAcwgAAUMEAACjCAAB4wgAAwEEAANDBAAAQwQAAuEEAAOjBAADAQQAAfEIAAABAAADowQAA8MIAADDBAACQQQAAAAAAAKDAAAAUQgAAmMEAALzCAAC4QQAAAEIAAIDBAABgwQAARMIAABRCAADgQAAAiEEAAJBBAABgwQAAwsIAAJDBAACoQQAAoMEAAKhBAADwwQAANMIAAMDAAADAwQAAEMEAAERCAAAMQgAAgL8AALjCAACQQgAA4MEAAJBBAAB0wgAAAEIAAAjCAABMwgAAnkIAAAhCAAAkQgAAcEEAAHBBAACAvwAAQEIAAI7CAACowQAAUMEAABDCAAAoQgAAsMEAAGTCAACUQgAAQEAAAARCAACAPwAAoMIAAATCAACawgAAoMEgADgTQAlIdVABKo8CEAAagAIAAES-AACgvAAAPD4AANi9AACYPQAA4j4AAPg9AABzvwAAsr4AABS-AAAwvQAAF78AAKi9AAC-PgAARL4AAOC8AACePgAA2L0AAIo-AABJPwAAfz8AAL6-AACaPgAAZL4AAIC7AAA0vgAALD4AAKg9AABEPgAA2j4AAOI-AACyvgAAMD0AAHw-AABwvQAA2D0AAJi9AAA0vgAAyr4AAI6-AACqvgAAqL0AAKo-AAB8vgAAtr4AAEC8AADmPgAAJb8AAI6-AADCvgAAgr4AAIK-AABEPgAADL4AACy-AABAvAAAZz8AADw-AADgvAAAoj4AAES-AACqPgAA6D0AAMg9IAA4E0AJSHxQASqPAhABGoACAADIvQAAqj4AAAy-AAApvwAAhr4AAHA9AADCPgAAMD0AAKg9AACuPgAAhj4AAHC9AAAQvQAAHL4AAOC8AABQPQAAmD0AAA8_AABwvQAAxj4AAOC8AADgvAAAQLwAADy-AAAEvgAALD4AALi9AAAMPgAAur4AAIA7AAAEPgAAoDwAAJi9AAAEPgAADD4AACS-AACYPQAAsj4AAFy-AABQvQAAsj4AAEC8AABAPAAAoLwAAKi9AAD4PQAAf78AAKC8AAAcvgAAEL0AAHw-AACOPgAAbD4AAMg9AAAkPgAAuD0AANi9AABwvQAAqD0AAES-AADgPAAAED0AAAS-AAAMPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=E8zOEDB4VuU","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13688454819205243505"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"18251610717672638170":{"videoId":"18251610717672638170","docid":"34-5-16-ZBAAADCA50A3C445A","description":"Factors and Factoring Expression | Unit 1 | Algebra 1 | Lesson 5 in this video, I will teach you about factors and how to find factors of numbers. if you have more than one number then you can...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"14","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Factors and Factoring Expression | Algebra 1 | Lesson 5","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Q8rtqw47jMs\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFgoUMTgyNTE2MTA3MTc2NzI2MzgxNzBaFDE4MjUxNjEwNzE3NjcyNjM4MTcwaq4NEgEwGAAiRBowAAopaGhiYmx6cW51cHlmamh6aGhVQ0J2enBObnBoZmlSQXAtUXpoRnE5VXcSAgARKhDCDw8aDz8T9gSCBCQBgAQrKosBEAEaeIH1BAD4_AUAE_4FCAkK_QIAA__4-P7-APT4Bv__Af8AB_z3BggBAAAC_fgCCQAAAPwECPP7_gEAAQEDAQQAAAAXBPwK_wAAABAA_PH_AQAA_PkBCPoBAAAV_gYDAAAAAAUF-_b-_wAA_gMV-wAAAAAF9QjvAAAAACAALSvk3js4E0AJSE5QAipzEAAaYPkOABQtEgfxJy3y8Nn5FRLxOO79_wsA_eMADA4Htx7yw9rqMP8WxQThvAAAAAb-_BHxAPpW4erP8yT79PjE2AwJf8IfG-8SIf786O_2DvXYARcUXACyGen9ENzZJR0oMyAALYe1Qzs4E0AJSG9QAiqvBhAMGqAGAADwQQAA4MAAAADAAAAkwgAAmEEAACBBAACIQgAAiMEAAIrCAACAwAAAHEIAAIzCAAB8wgAA2MEAAJBCAACAPwAA8MEAAIDBAAA0wgAA6MEAAIBCAADwwQAAHEIAAERCAAAQwgAAoEAAACDBAACywgAALEIAACBCAACIwQAAcEIAAFDCAACQwQAA-MEAAADAAABAQAAA9EIAANjBAACYQQAAXEIAADxCAAB4QgAAhEIAAOhBAACgwgAAOMIAAEBBAACGQgAAoMEAAEDCAAAQQQAAgL8AAIDAAABsQgAAAEEAAADDAAD4QQAA0MEAADhCAADAQQAABMIAAIDAAACGwgAAHEIAAGzCAAD4wQAAWMIAAIBAAADwwQAAXEIAALBCAAAMwgAADEIAADBBAABkwgAA4MEAAAxCAACAQQAAkMEAAKTCAACowQAAJEIAABhCAACIQQAAoEEAAJ5CAACWQgAAXEIAACTCAACAPwAAPEIAAGBBAACAwgAAoEEAAMjBAAAgQgAAoEEAAKhBAAAQQQAA0MEAAABBAACYQQAAhsIAAADCAACgQAAAIEEAADxCAABAwAAA8EEAAHBBAADgwQAAAMEAAGDCAABAQQAAQEAAAODBAADgwQAAkEEAAHBBAABAQAAAuMIAAPDBAABYwgAAQEAAAIjBAAC4wQAAAMEAAAzCAADwwQAAgD8AAKjBAAAMwgAA4MAAAAjCAAA8QgAA0EEAABRCAABgwQAAtMIAACBBAABwQgAATEIAAABBAABEQgAAgD8AADTCAAA4QgAA4EEAAIDBAADAwQAA0EEAAOBAAAAgQQAAQEEAADDBAACgwAAAgMIAAETCAADAQQAACMIAAJBBAAAwwQAAwMEAABDBAACQwQAA6EEAAKxCAABwQQAAsEEAAJjBAAAcQgAAMMIAAHBBAACAQAAAQEAAAIBAAABwwQAALEIAABBCAACYwQAAOMIAACDCAAAAwQAAQEIAABTCAADowQAAsEEAAEBAAACAwAAAGMIAAKDCAACGQgAAIEEAAHDBAADgQAAAiMIAAKBBAAAAwAAARMIgADgTQAlIdVABKo8CEAAagAIAABS-AABAvAAAML0AABA9AAAQvQAAxj4AAIA7AAAxvwAAvr4AAKC8AACKPgAAfL4AAPg9AADoPQAAjr4AAAw-AACOvgAAyL0AABw-AABHPwAAfz8AALi9AAAMPgAABL4AAC-_AABwPQAAcD0AABy-AADIvQAAED0AAK4-AABMPgAA9r4AAKg9AAC6PgAAfL4AALI-AAAUvgAAkr4AAKi9AAAfvwAAgLsAAJI-AAD4vQAAtr4AAN4-AAAMPgAAqr4AAMg9AADGvgAAVL4AAMK-AACoPQAAoj4AAAS-AABQvQAAfT8AAI6-AACqPgAAmD0AAGy-AACAuwAAUL0AAKg9IAA4E0AJSHxQASqPAhABGoACAADIvQAAjj4AAKC8AAArvwAAHL4AABC9AABsPgAAUD0AALg9AAAwPQAA4LwAANi9AAAkvgAAVL4AABC9AACAOwAARL4AACk_AAAQvQAAhj4AALg9AADOvgAAPD4AAHS-AABkvgAAgDsAAPa-AABwPQAAoDwAAKi9AACYPQAA6D0AAFS-AAD4PQAAnj4AAFC9AAADPwAAoLwAAFS-AAAwvQAApj4AAIg9AABEvgAAiD0AALi9AACuPgAAf78AADy-AACYvQAAML0AABQ-AAAUPgAAZD4AAJI-AACIPQAADD4AAMi9AACqvgAAUD0AAFC9AACgvAAA4DwAAES-AAAwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Q8rtqw47jMs","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18251610717672638170"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"11077244150136506742":{"videoId":"11077244150136506742","docid":"12-1-12-Z72F5C035CAEFB81B","description":"Music by Constantino Carrara Available at https://flippednormals.com/product/mu... Music Notes for Maya: generates Dynamic music notes with settings you can control. The music notes were...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"15","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Music Notes Demo","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=g3itWA4Veyc\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFgoUMTEwNzcyNDQxNTAxMzY1MDY3NDJaFDExMDc3MjQ0MTUwMTM2NTA2NzQyarUPEgEwGAAiRBoxAAoqaGh6a3lsbnB5ZHFweHBsY2hoVUM5VTgxT0JGMi05MEZZRlFwOXZZTWtnEgIAEioPwg8PGg8_E0eCBCQBgAQrKosBEAEaeIH0__4F-wYA7wT8AggC_wD2A_34-v39APIB-AIHAf8AAfr7__8AAADwCQABAAAAAO0AD_0AAQAACP3-_QMAAAATCwAB_gAAAAL4AQYAAAAA-Ar-_AMAAAAIBQQBAAAAAPQE9wL7__8B_gn_AwAAAAD_9gH-AAAAACAALU8Y5Ds4E0AJSE5QAiqEAhAAGvABY-kf_wPMzgOqCez_0evbAIEKLf8TORgA2vP1_966-gAFEggAySkw_xjuEgGPzRIA7g4N__cDEQA1yCP_Dfoj_-fU8gHzvvYBFhghAt3o-gDNMgL--Q3_AhW-6wDMFfj-IfAU_MHp6v-yDOX_PBP4AwLqKvw-KB4A-Ab0Ahf4CgX60gMA0e_0B_oi9_YE7P8IIfDmBCUeEvzS3QD-7PYTAM_9DwX_GxL5ByES-erhB_zQF_j3Esgc-yznBPcX3xgDySUb-wDlDPcL5xD9CR76CO0KBQsMDvoFx_rz9fb8BgoMIAII3Bvw8wLuCha4HQ0HIAAtUCMNOzgTQAlIYVACKnMQABpgSwUA8xU2v-41Q9wDDAAM3r4Q9PTI4_8DvP_bD9kr6BPb5O4kAAzQKv6qAAAAOfkbKbcACGwM8Abz0s4vwdLEEBl_GSHb4WEp_5_cCxkSCwD7wBwWAP3Sxyz_E9EpNekjIAAtgj4gOzgTQAlIb1ACKq8GEAwaoAYAAMDAAAAAwAAAgEIAAABCAAAoQgAAEMEAAMBBAAAgwgAAhMIAANzCAACgwAAA4MAAAJBCAABAQQAAKEIAAKDAAAD4wQAAgD8AAKZCAAA8QgAA-EEAAIhBAABwQQAAEEIAAOBAAACgwQAA-MEAAGBCAAA8QgAAYMEAAK7CAACgwQAAAMEAAPhBAAAQwQAA6MEAAHBBAACIQgAAoEAAAHxCAAAAQAAA4EEAABBBAAAAQgAA1sIAAJDBAACgwAAAYMEAAIJCAACywgAAOMIAAIbCAADAwAAAQEEAANhBAAAwwQAAOMIAAAzCAACowQAAAEIAAMBBAABswgAA6EEAABBBAAAAwAAA0MEAAGDCAABwwQAAGMIAAATCAAC4wQAACEIAAEDCAABIQgAA0MEAAKhBAAAwwgAAjkIAAODAAAAgQgAAQMEAAMBBAACQQQAADEIAAMBBAAAAQgAAbEIAACxCAABEQgAAIEIAACzCAACYQQAAUEIAAJjCAACAPwAAtMIAAODAAADwwQAAKEIAAODAAACQQQAAYMEAAJjBAACAvwAAisIAAAxCAABQQgAAikIAAILCAADwQQAAkEIAADzCAADAQAAAQMEAADhCAACowQAASMIAAHDBAAB8QgAAnMIAABDCAAAwwgAAwEEAAIBAAADgwQAAAEEAAGDCAADAwAAANMIAABBBAABsQgAA8EEAAFDBAADgQQAAQMAAAFRCAADgQAAAFEIAACDBAADKwgAAjEIAACBBAADQwQAAcEEAAJRCAAAgQQAAoMAAAERCAACgQQAAdEIAAJhBAAAAQgAAEEEAAOBBAAA4wgAAbEIAAMjCAAA0wgAA2MEAAERCAAAwwgAAoMEAAPBBAADgwQAAoEAAAJLCAABAQAAAoEAAANhBAAAQQgAAYEEAAJjBAAAgQQAAqMEAAIDAAAAQwQAAgMAAAFDBAAAgwQAATEIAAJjBAAB4wgAAQEEAACDBAADAQAAALEIAAPjBAAAAAAAA-MEAAIBAAAAgwQAAAMAAABBCAAAoQgAAwMAAABRCAAD4QQAAnMIAAADCAACQQiAAOBNACUh1UAEqjwIQABqAAgAAlr4AAKq-AAAJPwAAiD0AAAw-AAAMPgAAXL4AABe_AABkvgAATL4AADQ-AAAsPgAAUL0AADQ-AACmvgAAMD0AAEQ-AAAwPQAA4DwAANI-AAB_PwAAqr4AADS-AAAQvQAA-D0AAIq-AAAQPQAAQDwAALg9AADmPgAALD4AAHA9AAAEvgAAZD4AAEC8AAAcvgAAHD4AAAm_AADavgAAVD4AAFC9AADovQAABD4AAAS-AAAcvgAAQLwAACQ-AACiPgAA2D0AAKC8AACYPQAAbL4AAHA9AAAEPgAAmL0AAKg9AABhPwAA2D0AAEQ-AACmPgAAoDwAAPi9AABQvQAABD4gADgTQAlIfFABKo8CEAEagAIAAEA8AADSvgAAVL4AAEm_AACgPAAAED0AAKq-AACIvQAA4LwAAEA8AABsvgAAVD4AAJY-AACgvAAAUD0AAIC7AAA8vgAASz8AAEA8AACuPgAAuD0AAEC8AACOPgAA4DwAAAy-AACIPQAAiD0AAIC7AABkPgAAVD4AALg9AACIvQAAND4AAKa-AAAQvQAA-D0AADS-AADovQAAqL0AAHA9AAAkPgAABD4AALg9AACAuwAAgLsAAGy-AAB_vwAAQLwAABQ-AABAvAAARL4AAAS-AACovQAAtj4AAPg9AAAkPgAAML0AAFC9AAAsvgAA-L0AACw-AAA0PgAAiD0AAMq-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=g3itWA4Veyc","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11077244150136506742"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"4061172641"},"7762703271091775447":{"videoId":"7762703271091775447","docid":"34-9-5-Z53BB2F67F437F777","description":"Example 3 - Prepositional Logic - Discrete Math My Math Channel: / @mathsucceed3523 HI, My name is Girish Iyer, Welcome to my YouTube channel NotesforMsc. a truth table?","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"16","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Example 3 | Prepositional Logic | Discrete Math","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PQQyR7pEIVQ\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNzc2MjcwMzI3MTA5MTc3NTQ0N1oTNzc2MjcwMzI3MTA5MTc3NTQ0N2quDRIBMBgAIkQaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoQwg8PGg8_E70DggQkAYAEKyqLARABGniB9Pz2_gH_APQJDwoFBvwBDAD7-vYAAADq-PvzAv8BAP34Dv_4AAAA_gjzB_wAAAD99_cC-v4AAPEB_QMEAAAAFRj4Av0AAAAIDg0H_gEAAPTx_wED_wAAEAAI-_8AAAD-DAkE-v8AAAEZAfUAAAAAEP0KBQAAAAAgAC2FQdE7OBNACUhOUAIqcxAAGmD-FQAqGh4A7B4n5Ob75Qju5Cn75u3uAPXxAP8C4uv35tvn3BL_Gs0TBMcAAAAUDOQYKgDrT-f1xSsSy_68-ez7DX_5IPH1GAnXyQf69yHvABgX7iEA7_HoEgHpvyjm_isgAC2ETVs7OBNACUhvUAIqrwYQDBqgBgAAyEEAANhBAACoQQAAIMEAAKDAAADoQQAAwEIAABDBAABAwQAAgEAAAMhBAACgwQAAtMIAAETCAADAQQAAgMEAAJhBAACYwQAAiEIAAADAAABQwQAA4MEAADBBAAAIwgAAgMAAAFxCAAAYwgAAIMIAAMjBAAAwQQAAUMEAAFRCAAAUwgAAwEEAAIzCAAAQwQAAREIAAKBCAACoQQAAREIAAGBBAAAEQgAApkIAANDBAAAAQQAAVMIAANDBAADAQAAAMEIAAPhBAACowQAA8MEAADTCAAAAwQAAMEEAAARCAAAAwwAAsEEAAIBBAAD4QQAAlEIAAJ7CAADgQAAALMIAAOBBAAC0wgAAwMEAALLCAAAAwQAATMIAADBCAACYQgAAQMIAAFDBAACIwQAAkMEAAAzCAAAgQgAAFEIAAIpCAABMwgAAwEIAAIDCAADYQQAAmEEAAEDAAAAAQAAA4EAAABBCAAAowgAAOMIAAKhCAACwwQAAEMEAAIpCAAAAwwAAgMAAACzCAAC6QgAA8EEAANDBAAAAQgAAMEEAAJBBAABcwgAAYEIAAOBAAAAIQgAAQMEAAFRCAAAIQgAAAMAAAIjBAADoQQAAgD8AACxCAAC4QQAAqMEAAADCAABQwQAAUMEAAATCAACAvwAAgMEAALDBAAAQQgAAgEEAAMjBAAAQwQAAAEEAALDBAABwwQAAgL8AAKhBAACAPwAAWEIAAEhCAAA0wgAA2MEAAFDBAADAQQAAKMIAAKBBAABQwQAAVEIAAARCAABAwgAAYEIAAChCAAAAQgAAyMEAAKhBAABAwAAAZMIAAEBCAAAwQQAAKMIAAIzCAACAPwAAMEEAAADBAACIQQAAQMAAAFzCAABkwgAAAEAAAEDCAAAcQgAAOEIAABTCAABAwQAAKEIAAMDBAAAUwgAAaMIAALDBAACgQAAA6MEAAPhBAABgQQAAOMIAAARCAAAIwgAA4EEAAIBAAABowgAAFMIAAEjCAACoQQAAcMEAACDBAADAwAAAiEEAALhBAACYQQAAIEIAAFBBAABwwQAA4MAAAKBAIAA4E0AJSHVQASqPAhAAGoACAABMvgAAyD0AAFw-AAAUPgAAuD0AAOY-AABEPgAAbb8AAO6-AACOvgAAqL0AAB2_AACAuwAAsj4AAKA8AABQvQAAbD4AAFA9AADIPQAAFT8AAH8_AAAMvgAAfD4AAIK-AABAvAAATL4AAIg9AADgvAAAuD0AAFQ-AADyPgAATL4AADA9AACqPgAADL4AAOA8AABwvQAATL4AAAu_AACivgAAfL4AADC9AAAEPgAA6L0AAIq-AACIvQAAxj4AAA2_AABEvgAAbL4AABC9AAA8vgAA-D0AANi9AACCvgAAgDsAAG8_AACWPgAAmD0AAKY-AACYvQAAkj4AABQ-AAC4vSAAOBNACUh8UAEqjwIQARqAAgAA6L0AAFQ-AAAcvgAAJ78AAHy-AACgPAAAdD4AAKC8AACgPAAAhj4AABQ-AACAOwAAcD0AAOi9AACoPQAAgLsAAHC9AAAjPwAAqL0AAOo-AACgvAAA6L0AABA9AAAsvgAALL4AAEA8AACovQAA-D0AAIq-AACgvAAAcD0AAOg9AACovQAAgLsAAAw-AADovQAA2D0AAKY-AABcvgAAML0AACQ-AAAcvgAABL4AAOC8AABQPQAADD4AAH-_AAAcvgAAHL4AAAS-AABkPgAA-D0AAMg9AAAsPgAAED0AAOg9AAAwvQAAQDwAADw-AABAPAAAFD4AAFA9AACYvQAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=PQQyR7pEIVQ","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7762703271091775447"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2550742325"},"283344161852259943":{"videoId":"283344161852259943","docid":"34-0-7-ZEE5A5E757AEF1537","description":"Fundamentals of algebraic expressions| Unit 1 | Algebra 1| Mathematics HI, My name is Girish Iyer, Welcome to my YouTube channel NotesforMsc. About Video: In this video, I will introduce you to...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"17","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Fundamentals of expressions| Unit 1 | Algebra 1| Mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NYLmF2mUUps\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFAoSMjgzMzQ0MTYxODUyMjU5OTQzWhIyODMzNDQxNjE4NTIyNTk5NDNqrg0SATAYACJEGjAACiloaGJibHpxbnVweWZqaHpoaFVDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdxICABEqEMIPDxoPPxObAYIEJAGABCsqiwEQARp4gfYJ_vX_AQD7AwMOCgn6Ag0G_wL2AAAA9QD09AMC_wD1AwEDBwAAAAUO9AoFAAAA9vL9Cff_AQANA_gQAwAAABQMAAH-AAAAGxH_AP4BAAD1-gb5AgAAABQSAQr_AAAA9Av38wAAAAAHDgsKAAAAAAL3BgcAAAAAIAAtS6PSOzgTQAlITlACKnMQABpg-wIAJ1QwC-8kOOLq2c762Ms1wCXr8__I9P_1CQ3LC_3Ow-g-_zr2KuqmAAAAFjMOFhAA3XS--bZLJO8Z4fPvASN_5THe-BXs56j1GwcH5g_b2vpjAMPo6wAhCqYtKkE6IAAtun0bOzgTQAlIb1ACKq8GEAwaoAYAAEBAAADIQQAAIMEAAOjBAAAQQgAAkMEAAHRCAABgwQAANMIAAGDBAABAQgAArsIAAJzCAAD4wQAAqEIAAADBAACIwQAAyMEAABDCAAAcwgAAmEEAAGDBAACgQQAA4EEAABBBAACgwAAA0MEAAKrCAAAQQgAA6EEAACDBAAA4QgAAssIAAOBAAACOwgAAgL8AAEDAAACyQgAAuMEAAABCAAAYQgAAFEIAAERCAABoQgAAPEIAAIbCAAB4wgAA6MEAAIBCAAC4QQAAUMIAAMhBAAAAwAAAcMEAAHBCAACoQQAAAMMAAABCAAAMwgAA2EEAAKBBAADgwQAAmMEAAKDCAAAIQgAAhsIAAATCAAAAwgAAAEIAADDBAAB0QgAAnkIAAIBAAADYQQAAwMEAAJzCAABQwQAAEEEAAABCAABAQQAAfMIAAAAAAAAQwQAAeEIAABDBAACwQQAABEIAAGhCAACCQgAAZMIAALhBAAAEQgAAIEEAAI7CAAAAwAAAIMIAAOBAAADAQAAA4EAAAIA_AAAUwgAAFEIAABxCAAAUwgAAYMEAAMDAAAC4wQAAuEEAABTCAADAQQAAIMEAABDBAAAIQgAAZMIAAGBBAAAAQAAAIMIAADzCAACgwAAAMEEAAIC_AAAswgAABMIAAFDCAAAAQQAA6EEAAIDAAADAQAAAKMIAADjCAAAgQQAAmMEAAABAAACAPwAAQMEAACBCAADgQQAAqEEAAAjCAADEwgAAiMEAAFBBAABgQgAAYEEAAMBBAAAgwQAAgMIAAIBBAABYQgAAgD8AAOjBAACQQQAACEIAAABAAACYwQAAoEAAAMBAAACqwgAAHMIAAAxCAAA8wgAAAMAAADDCAABgwQAAcMEAAJBBAACoQQAAPEIAADBBAABgQQAAEMIAAIJCAABcwgAAQEAAAFDBAACAQQAA2EEAAADBAABYQgAA2EEAADBBAAAUwgAAmMEAAABAAACsQgAAgL8AAEjCAADQQQAAEEEAAODAAACWwgAAZMIAACRCAABAwAAAiEEAAEBCAACWwgAAJMIAAGDCAABcwiAAOBNACUh1UAEqjwIQABqAAgAANL4AAIi9AAAkvgAAqD0AAPi9AADGPgAAdL4AAAu_AAAbvwAATD4AAHw-AAC6vgAAQDwAABQ-AACqvgAAHL4AAII-AAAcvgAAXD4AAB0_AAB3PwAAoDwAAJg9AABMvgAAnr4AAPi9AAC4PQAAEL0AAIq-AAAEvgAApj4AABS-AAC4PQAA5j4AAIo-AAC2vgAARD4AALa-AADmvgAAHL4AABG_AADgPAAA9j4AAGS-AABwvQAAUL0AAAw-AAA0vgAAEL0AAM6-AACGvgAAA78AAKY-AADmPgAAuL0AAKi9AAB_PwAAUD0AAGw-AACSvgAATL4AAJY-AACAuwAAgr4gADgTQAlIfFABKo8CEAEagAIAACy-AABcPgAAHL4AAEW_AAA8vgAAqD0AAO4-AAAwvQAAPD4AACw-AABAvAAAiL0AAJi9AABEvgAAQLwAABC9AABEvgAAIz8AAES-AADGPgAAcL0AAMK-AABQPQAABL4AAAS-AADgPAAAgr4AAKg9AABwPQAABL4AAEC8AACAOwAAuL0AAES-AABMPgAAUL0AANY-AABAvAAAPL4AAOg9AABsPgAA-L0AAIA7AADoPQAAUL0AAFQ-AAB_vwAADL4AAFy-AAD4PQAAND4AAHA9AABsPgAAQLwAAPg9AACoPQAA2L0AAHy-AAAcPgAAiL0AABQ-AAAEPgAA-L0AAJg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=NYLmF2mUUps","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["283344161852259943"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"1206149290295827303":{"videoId":"1206149290295827303","docid":"34-7-1-Z194DF05D6AE98D73","description":"Title: Rewriting Expressions using Math laws| Expressions | Algebra 1 | Lesson 03 HI, My name is Girish Iyer, Welcome to my YouTube channel NotesforMsc. About Video: This third lesson from Unir 1...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"18","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Rewriting Expressions using Math laws| Expressions | Algebra 1 | Lesson 03","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tszwU-LSsnU\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTMTIwNjE0OTI5MDI5NTgyNzMwM1oTMTIwNjE0OTI5MDI5NTgyNzMwM2quDRIBMBgAIkQaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoQwg8PGg8_E4UEggQkAYAEKyqLARABGniB-wT7AAH_AAgI-wcHCP0C9gsGAvn9_QDq-PvzAv8BAAYHBf0IAQAAAv34AgkAAAD99_cC-v4AAA4EAf4FAAAAIw8DBAAA_wAQCQYD_gEAAPD7_AMDAAAAHgUICQAAAAAOEPz3AAAAAA0HEvwAAAAAAvwFAAAAAAAgAC3t3847OBNACUhOUAIqcxAAGmAM_gAkMBU2-gRC7uUD0wn65SXaHtUN_-Ty_-spF-UR6eXPBSb_Ns4Z8bQAAAAoEgkZLAAAZrblthEc3xCy0_EYKX_YBvP0FxLvz_gL5CT_A-PsH1oA8vjn9CD2xkEWJCkgAC1w3DM7OBNACUhvUAIqrwYQDBqgBgAA-EEAAADBAACgwAAAMMIAADBBAABAwAAAnkIAAJjBAACYwgAAYMEAAFhCAACUwgAAdMIAAATCAACGQgAAIEEAAMjBAACYwQAAGMIAAKjBAACWQgAA4MEAAChCAAAoQgAAKMIAAEBAAABAwAAAqMIAADBCAADgQQAAYMEAAIJCAABEwgAAsMEAAOjBAAAAAAAAgL8AAOxCAADAwQAAcEEAADxCAAA4QgAAiEIAAJJCAADAQQAAbMIAACjCAACAPwAAjEIAAIjBAAAgwgAAgL8AAADBAAAAwAAAYEIAACBBAAAAwwAAmEEAADDBAAAcQgAAuEEAAAjCAADgQAAAiMIAABRCAACIwgAA4MEAAFTCAADgQAAA4MEAAFhCAADEQgAAyMEAALhBAAAQQQAAPMIAABDCAAAYQgAAEEEAAKjBAACqwgAA2MEAAChCAAAUQgAAkEEAAMhBAACiQgAApkIAAFRCAAA8wgAA4EAAAFRCAAAAQAAAaMIAAMBBAADQwQAADEIAALBBAABAQQAA4EAAAODBAABAQAAAMEEAAHzCAAAowgAAmEEAAJhBAABQQgAAAMAAAPhBAACgQQAA8MEAAADAAABAwgAAUEEAAIBAAADQwQAAqMEAAMBBAAAgQQAAgEAAAMzCAACowQAAXMIAAMDAAACowQAA4MEAAIA_AAAcwgAAsMEAAODAAADgwQAADMIAAJjBAAAAwgAAUEIAAOBBAAAkQgAAAMAAAK7CAABwQQAAVEIAACxCAABQQQAAQEIAAOBAAAA8wgAATEIAANBBAACAwQAAgMEAAMBBAABAQAAAgD8AAKBBAABQwQAAgL8AAITCAAAgwgAAoEEAABTCAACIQQAAwMEAALDBAABgwQAAgMEAAJBBAAC2QgAAcEEAAMhBAACwwQAALEIAABjCAAC4QQAAwEAAAOBAAACAvwAAoMEAAAhCAAAgQgAAcMEAADzCAABIwgAAiMEAACxCAAAMwgAAEMIAABhCAADAwAAAAMAAACTCAACYwgAAgEIAAKBBAACgwQAA4EAAAGzCAADwQQAAAEAAADDCIAA4E0AJSHVQASqPAhAAGoACAADCvgAAcD0AAIA7AABEPgAA2D0AAAM_AAAcvgAAJ78AAPq-AAAwvQAARD4AANq-AAAcPgAAfD4AAAy-AACgvAAAnj4AAFC9AADYPQAAIT8AAEU_AACovQAAoDwAACy-AADCvgAAgDsAAIg9AADYvQAAgDsAABS-AACiPgAAcL0AAFA9AABUPgAAuD0AAGy-AACAOwAAlr4AALi9AABQvQAA-r4AAEw-AACCPgAANL4AADC9AAC6PgAAUD0AALa-AAAQvQAAkr4AAPi9AAB0vgAADD4AAGw-AAC2vgAAqL0AAH8_AADgvAAApj4AADC9AADOvgAABD4AALi9AADovSAAOBNACUh8UAEqjwIQARqAAgAAJL4AADw-AADovQAAM78AAOi9AABwPQAAvj4AAOA8AABcPgAAJD4AAFC9AADoPQAAmr4AAJi9AACIvQAAiD0AAEC8AAARPwAAFL4AAOo-AACIvQAAZL4AAEC8AAAcvgAAZL4AACQ-AACKvgAAcD0AAOC8AAC4PQAAcD0AAJg9AACYvQAABL4AAGQ-AAD4PQAA3j4AAFA9AAAUvgAAUD0AAMY-AACgvAAAmL0AAAw-AAAQvQAARD4AAH-_AAAEvgAAyL0AAPg9AABMPgAAFD4AADQ-AADIPQAAbD4AABQ-AADIvQAA8r4AALg9AAAwvQAAmD0AAJg9AAAUvgAADD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=tszwU-LSsnU","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1206149290295827303"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"8501654806587313723":{"videoId":"8501654806587313723","docid":"34-9-1-ZB9A7346FED90494C","description":"What is well-formed formula | Prepositional Logic | Discrete mathematics | BSc|BCA|MSc|BTech HI, My name is Girish Iyer, Welcome to my YouTube channel NotesforMsc. About Video: In this video, you...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"19","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"What is well-formed formula | Prepositional Logic | Discrete mathematics | BSc|BCA|MSc|BTech","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sO2q5OuT0Hw\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTODUwMTY1NDgwNjU4NzMxMzcyM1oTODUwMTY1NDgwNjU4NzMxMzcyM2quDRIBMBgAIkQaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoQwg8PGg8_E9oBggQkAYAEKyqLARABGniBBwcGAQL-APX4BgkPBvwBJfgCAPQEBAD0BvT99QL_APr5C_kCAAAA8Q_3B_wAAAD3APQC-v8AAAsFAAkEAAAABgcB__4AAAAKEAMA_gEAAPnxAPcCAAAAHwMI-v8AAADyDP_--v8AAAkXBv4AAAAAFwMN8gAAAAAgAC04C807OBNACUhOUAIqcxAAGmAdGQAxFwz30Sww2vzt1w_3zz3px8Xn_wcC_wQT3M_wzMTP4jj_JbUh6qcAAAAn4uMbCgDcf97TsTcW0ACJybokKm0ACyDNI_7Jr_bi6R8GBxD92hgA5-nbJinpsR_yIRYgAC2nBR07OBNACUhvUAIqrwYQDBqgBgAAREIAAKBBAACoQQAAsMEAAGxCAADwwQAA2EEAAMjBAAAowgAAEEEAAEBCAAAMwgAAiMEAAADCAABcQgAAwMEAAHDBAACAwQAAQEAAACDBAAA8QgAA4MAAAEBBAABwQQAAgD8AAIjBAAAQwgAAMMIAAFRCAAAAQgAAQMEAABRCAAAAwgAAUEIAAIDBAABAwAAAYMEAAOpCAABIwgAAAAAAAPhBAACAvwAAIEIAAMhBAAA8QgAAVMIAAADCAAA0wgAAYEIAAOBAAADgwQAAOEIAAIBBAAAAwQAAREIAABBCAAAAwwAAIMEAALhBAABAQgAA4EEAABDCAADAQAAAqMEAACRCAAAAwgAAwEAAAADCAADgwQAAcMEAAJJCAADuQgAAcMEAACBBAAAIQgAA2sIAAJDBAABQQQAAuEEAAEDAAABMwgAAgEEAAADBAAAoQgAA-MEAACBBAABgQgAApkIAAARCAAAwwgAAUMEAAIBAAACowQAAlMIAAADBAAAwwgAAqEEAAIC_AACAwAAA6MEAAFBBAADgQQAAEEIAADzCAAAwwQAAoMEAAKDAAAAwQgAAiMEAAABCAABYQgAAbMIAAATCAAAAwQAAQEIAAPhBAACIwQAAaMIAAOBAAABAQAAA4MAAAJrCAACEwgAAeMIAABBCAAAAQAAAHMIAAJjBAAAYwgAAbMIAANBBAACQwQAAoMEAAKhBAADYwQAAyEEAAJRCAACAvwAA4MEAAPLCAAAAwQAAgEEAAIBAAADAwAAACEIAAJjBAAC-wgAA6EEAABBCAACowQAAwMAAABTCAAAIQgAAAEEAAHBBAACwQQAAcMEAAMLCAABwwQAAiEEAAJDBAAC4QQAA6MEAACjCAADAwAAAwMEAAIA_AAAoQgAAIEIAAIA_AAC0wgAAhEIAALDBAAC4QQAAeMIAAPBBAAAcwgAAOMIAAJxCAAAcQgAAKEIAACBBAABgQQAAgD8AAExCAACEwgAAiMEAACDBAAD4wQAAIEIAAJjBAAB0wgAAjEIAAAAAAAC4QQAAAAAAAJjCAAAAwgAAiMIAAJjBIAA4E0AJSHVQASqPAhAAGoACAADgvAAAqD0AADQ-AACgPAAAcD0AAFQ-AACWPgAAQb8AAJK-AACYvQAAQDwAAJa-AAAMvgAAhj4AAKA8AAAsvgAAXD4AADA9AADYPQAAuj4AAH8_AADIvQAAnj4AACS-AAAUvgAAbL4AAPg9AADoPQAADD4AAFQ-AACmPgAAEL0AACS-AAAwPQAA-L0AABC9AADoPQAAcL0AALK-AAAMvgAADL4AAJq-AAAQvQAA4LwAAI6-AACIvQAApj4AAK6-AAD4vQAAgr4AANg9AACAOwAAqD0AAIi9AAD4PQAAgDsAAEc_AABAvAAAoLwAADA9AABwPQAA6L0AACw-AACIPSAAOBNACUh8UAEqjwIQARqAAgAAir4AAM4-AABcvgAAU78AAI6-AABwvQAAHD4AABS-AAA0PgAArj4AAAQ-AADYvQAAiD0AACy-AABQPQAA4DwAAGS-AAA9PwAAcD0AALI-AADgvAAANL4AAKg9AAAkvgAAbL4AAL4-AAA0vgAAPD4AAJq-AABkvgAAED0AAIC7AAAEPgAAED0AAOg9AABcvgAAPD4AAI4-AABUvgAAtr4AAPg9AAAcPgAAgLsAACy-AACIvQAAuD0AAH-_AAAkvgAA-L0AABy-AAA0PgAAiD0AAGw-AACWPgAAcD0AALg9AAC4vQAAmL0AAEw-AAAsvgAALD4AADC9AAAMvgAAiD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=sO2q5OuT0Hw","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8501654806587313723"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"4402117354942055395":{"videoId":"4402117354942055395","docid":"34-9-1-Z1BB130DBE5B3589B","description":"Words to expressions | Unit 1 | Algebra 1 | Lesson 1 HI, My name is Girish Iyer, Welcome to my YouTube channel NotesforMsc. About Video: In this video, I will introduce you to variables...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"20","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Words to expressions | Unit 1 | Algebra 1 | Lesson 1","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qjz_g4kvjUQ\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNDQwMjExNzM1NDk0MjA1NTM5NVoTNDQwMjExNzM1NDk0MjA1NTM5NWquDRIBMBgAIkQaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoQwg8PGg8_E-4EggQkAYAEKyqLARABGniB_xH_8wL9AOsDAg0IBP0B-A0A-fj9_QDg-QT2B_sCAAUE-wUBAQAACAkF_QIAAAAA8wADAP0BAP0RAPn4AAAADgv4BQMAAAAN_gX5_gEAAPHsCv0DAAAAEQQHEQAAAAAADvnwAP8AAA0HAQUAAAAA_-4HAQAAAAAgAC2ShMo7OBNACUhOUAIqcxAAGmATAgApNQoY9iw06O_r2xAI5DrwC-cM_9L1AP4YB-cF7OnA9SH_IesK9bwAAAAbCA0QHAAPXt3xuR0K6gboxt__MX_PGeH08gjr1usi_xka9P0GEGoAwRjX9gjg6i0YGDAgAC2MH0I7OBNACUhvUAIqrwYQDBqgBgAA6EEAADDBAACAQQAARMIAANhBAACoQQAAtkIAACDBAACGwgAAIMEAABhCAACYwgAAgsIAABDCAACEQgAAQEEAAHDBAABgwQAAwMEAAIjBAACIQgAAwMEAANhBAADAQQAAOMIAAKBAAAAwQQAAmsIAACRCAAAsQgAAmMEAAGRCAAAswgAAmMEAACzCAAAwwQAAMEEAAP5CAACQwQAAuEEAAABCAABcQgAAlkIAAIZCAACgQAAAPMIAABTCAACYQQAALEIAAADBAABMwgAAgD8AAGDBAABgwQAAFEIAAARCAAAAwwAAQEEAAHDBAADwQQAAAEAAAFzCAABAQAAAbMIAABBCAACiwgAA8MEAAEjCAACowQAAqMEAAGxCAADAQgAAmMEAAPBBAAAUwgAAbMIAAODBAAD4QQAAwEAAAIjBAADKwgAAgEAAAABCAABAQgAA2EEAAOBBAACmQgAAmEIAAFBCAABwwgAAoEAAAJhCAABQQQAAhMIAAMBBAADwwQAANEIAAIA_AADAQQAAwEAAAPjBAAAAwAAAoEEAADTCAAAwwgAA4EEAANhBAABMQgAAQMEAAJBBAACgQQAAJMIAAHBBAAAYwgAAkEEAAEBBAADYwQAACMIAADBBAABAQQAAAEEAAKjCAAAAwAAAgMIAAFDBAADIwQAAyMEAAMBAAABAwAAAIMEAAADBAAAQwQAAKMIAALjBAAD4wQAAkkIAAPBBAAAEQgAAUMEAAK7CAABwQQAAhEIAADxCAAAgQQAANEIAALBBAAAswgAAWEIAAJhBAACAvwAAAMAAALBBAABAwAAAkMEAAFBBAACgwAAAQEAAAIrCAAAowgAAiEEAAAjCAACwQQAAwMEAAEBAAABAwQAAyMEAAOBAAADEQgAAmEEAAOBBAACAvwAADEIAANDBAAD4QQAAMMEAAKDAAACAQQAACMIAAIBBAAAgQgAACMIAAFjCAABcwgAAAAAAABBCAADAwQAAKMIAALBBAABAwAAA4MAAALjBAACKwgAALEIAAOhBAADIwQAAqEEAAFTCAAAIQgAAwEAAANjBIAA4E0AJSHVQASqPAhAAGoACAABEvgAAML0AAFC9AAC4vQAAgDsAALo-AAAkvgAA6r4AAAm_AABQvQAADD4AAEy-AABAvAAAND4AAHS-AAC4vQAAVD4AADy-AACYvQAAOz8AAHk_AAAcPgAAML0AAAy-AADCvgAAyD0AAIg9AAAMvgAA-L0AAOC8AACKPgAABL4AAHA9AACuPgAAuj4AANa-AACKPgAApr4AAFS-AABAvAAA7r4AALi9AADCPgAAuL0AAIg9AADCPgAAiD0AACS-AABwPQAAjr4AAFS-AADOvgAAdD4AAKY-AAA8vgAAEL0AAH8_AAAMvgAAoj4AAKi9AADSvgAA0j4AAOC8AABsviAAOBNACUh8UAEqjwIQARqAAgAAuL0AAIA7AABUvgAARb8AABA9AABwPQAAhj4AADC9AACovQAALD4AABA9AACIPQAA4LwAABy-AAAQPQAAmL0AAJK-AAArPwAAqL0AAKY-AAAcvgAAjr4AAMg9AAAMvgAAuL0AAHC9AABsvgAAQLwAAMg9AADovQAAoDwAAEA8AADovQAAoLwAACQ-AABMvgAAoj4AAOA8AAA8vgAAoLwAADw-AADgvAAAmL0AAKg9AACYvQAAmD0AAH-_AAAEvgAAmD0AAFA9AADYPQAA4LwAADQ-AADYPQAAoLwAAHA9AABwvQAAgr4AANg9AABAvAAA6D0AAOg9AAA8vgAA-L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=qjz_g4kvjUQ","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4402117354942055395"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"6194259175904953510":{"videoId":"6194259175904953510","docid":"34-9-4-ZDB2FC5E190D7E40A","description":"Example 4 | Prepositional Logic | Discrete Mathematics | BSc|BCA|MSc|BTech My Math Channel: HI, My name is Girish Iyer, Welcome to my YouTube channel NotesforMsc. About Video: In this video, I...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"21","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Example 4 | Prepositional Logic | Discrete Mathematics BSc|BCA|MSc|BTech","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YmqrkryWeqs\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNjE5NDI1OTE3NTkwNDk1MzUxMFoTNjE5NDI1OTE3NTkwNDk1MzUxMGquDRIBMBgAIkQaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoQwg8PGg8_E_MFggQkAYAEKyqLARABGniB_wQAAQT7AAP5Dw8GDPkDJ_cCAPMEBAD1CPv-_wL_APACEPoHAAAA8RD3B_sAAAD99_cC-v4BAP_7_gP5AAAAFg0AAf4AAAAKEfoP_gEAAPX5B_gCAAAAFAQB_f8AAAD2FvYE__8AAAAQDfQAAAAADQcJ-gAAAAAgAC2aXMY7OBNACUhOUAIqcxAAGmALDAA9CiAI4SIv6e_u2hLc0SPs4Mnm__0CAPoL0d3k4dHl1iv_D70LAbQAAAAhA90gMQDsZtnxsUcbzvyT59QKGn_yHOzdJ_vlvAkR4iD-GBrv9hcA8OfmFBnrqBv9CCYgAC2tLzA7OBNACUhvUAIqrwYQDBqgBgAAfEIAAMDBAACAQgAAksIAAKDAAAC4wQAAKEIAAJjBAACgwQAAAMEAALBBAACAwQAAAMEAAIrCAADgQAAAgD8AANBBAACAQQAAIEEAABDBAAAgQQAAgMEAALjBAACIwQAAYMIAAIRCAACAvwAA0MEAAAxCAAAAAAAAFMIAABxCAACwwQAADEIAAIDAAABAQQAAMEEAAP5CAAC4QQAA-EEAAIhBAAAwQQAA3kIAAOhBAACwwQAAgMEAAKBBAABAQQAAsEEAAFBBAAAIwgAA8MEAAHDBAAAEwgAAFEIAANhBAAAAwwAAsMEAAFBCAAB4QgAABEIAAEDBAABwQQAAsMEAAIjBAACywgAAAEEAAFDBAACQwQAAUMEAAFhCAADaQgAAEMIAAGRCAADgwQAAgD8AAHjCAABQQQAAwEEAALhBAAAowgAAmEEAALjBAAD4QQAAAMEAAFDBAABQQQAATEIAAAxCAABgwQAAVMIAAJJCAAA0wgAAbMIAADxCAABUwgAAgL8AAIjBAABMQgAAYEEAACjCAACQwQAAmEEAABjCAAAgwQAAhkIAAPBBAAB0QgAAkMEAABDBAACQQgAA2MEAAAzCAADgQAAAgEAAAJxCAADYQQAAdMIAAGBBAADAwAAA4MEAAJzCAAAgQQAATMIAAEDAAAB4wgAA2MEAAEBAAADAwQAAUMEAAJDBAACwQQAAqMEAAIhBAADwQQAAGEIAAIDAAAAgwgAAQEAAAJrCAABwQQAAmEEAALDBAACYwQAAnkIAAMBBAAB0wgAAeEIAAEhCAADgQAAADEIAAODAAABAQAAAVMIAACBCAADgQAAAQMEAAJ7CAADAwAAAyMEAABDCAADAQQAA4MAAADjCAAAEwgAAkEEAAHDBAACMQgAAQEIAACBBAADQwQAAmMEAABBBAADgwAAAuMIAAFxCAAAgwgAAlsIAAABCAAAYQgAATMIAAEzCAACAPwAAHMIAAOhBAABAwgAADMIAAATCAADIwQAAAEAAALBBAACAwgAA8EEAAEBCAADAQAAAcEEAAAjCAACwQQAAgL8AAIDBIAA4E0AJSHVQASqPAhAAGoACAAAQPQAATD4AADQ-AABQPQAAUL0AAII-AAAEPgAAQb8AAHS-AAAsvgAAmD0AANa-AACYvQAAkj4AAES-AABkvgAAbD4AAKC8AAAcPgAA_j4AAH8_AAAsvgAAVD4AANi9AABAvAAAgr4AAKg9AAA8PgAAuD0AAHw-AACqPgAA6L0AAKi9AACOPgAAcL0AAHC9AABwPQAAJL4AAPa-AAB8vgAAVL4AAEC8AAAQPQAARL4AAKq-AAD4vQAA1j4AAM6-AABkvgAApr4AAKA8AAAQPQAAPD4AABA9AAC4PQAAUL0AAD0_AADoPQAAgDsAADQ-AAAwPQAAQDwAAPg9AAAwPSAAOBNACUh8UAEqjwIQARqAAgAAdL4AAMo-AACGvgAASb8AALq-AACIPQAAjj4AALi9AAAUPgAAzj4AACw-AABQvQAAgLsAAKi9AACAuwAAQLwAAFy-AAAtPwAAmL0AAOo-AACIvQAAir4AAFA9AAAUvgAATL4AACw-AABQvQAAXD4AAGy-AAA0vgAAmD0AADC9AADgPAAAgDsAABQ-AABcvgAA6D0AAL4-AAA8vgAAFL4AAGw-AACgPAAAED0AABS-AACIvQAAqD0AAH-_AABwvQAAyL0AAEC8AABEPgAAyD0AAFQ-AABsPgAABD4AALg9AADYvQAAyD0AAAw-AAAkvgAAPD4AAMg9AACgvAAAuD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=YmqrkryWeqs","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6194259175904953510"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"8715863567916120103":{"videoId":"8715863567916120103","docid":"34-4-7-Z18728BECB33C100B","description":"Words to equations | Unit 1 | Algebra 1 | Lesson 2 HI, My name is Girish Iyer, Welcome to my YouTube channel NotesforMsc. About Video: In this video, I will revist the topic of expressions and...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"22","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Words to equations | Unit 1 | Algebra 1 | Lesson 2","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3HGfw7jZ6gs\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTODcxNTg2MzU2NzkxNjEyMDEwM1oTODcxNTg2MzU2NzkxNjEyMDEwM2quDRIBMBgAIkQaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoQwg8PGg8_E5gCggQkAYAEKyqLARABGniB_xH_8wL9APT-Cw0CB_wB9QT89_n9_QDg-QT2B_sCAAYFAQv7AQAACAkF_QIAAAD_7fQJ_f0AAAIM8wLvAP8ADgv4BQMAAAAT9gX__wEAAPHsCv0DAAAAD_4BCAAAAAAADvnwAP8AAAMSAQgAAAAACfQIAwAAAAAgAC2ShMo7OBNACUhOUAIqcxAAGmAr_gBBJBf8BzQw8vLv4RP42Cju-eD4_9wIAAEo-eME9tew5xn_HvcE-LUAAAAc-f4PIQAWZOnpvUAKA-bqwuT5Jn_JF9Ht-gzu2ucpADMZBAX8FGYAshHn_Rnk6jIKGTogAC1X_DY7OBNACUhvUAIqrwYQDBqgBgAAAEIAADDBAABgQQAAOMIAAARCAABwQQAAtEIAAMDAAACMwgAAMMEAABxCAACewgAAlMIAAPjBAABwQgAAoEAAAEDBAAC4wQAAuMEAAEDBAACoQgAAsMEAABhCAACgQQAAMMIAAIBAAACgQAAAkMIAAABCAAAgQgAAmMEAAGhCAAAcwgAAoMEAADzCAACIwQAAwEAAAOZCAAAAwQAAyEEAAAhCAABcQgAAmEIAAIpCAACAQQAAUMIAAATCAABwQQAAQEIAAKDAAAA8wgAAwMAAAJDBAACgwAAAHEIAAARCAAD-wgAAgEEAAEDBAAAUQgAAgEAAAHzCAAAAQQAAcMIAACxCAACgwgAAiMEAAFTCAACwwQAAsMEAAHBCAACsQgAA4MEAAARCAACAwQAAPMIAAATCAAAcQgAAQMAAAIDBAADGwgAAQMEAAABCAAAwQgAA-EEAAARCAACgQgAAlEIAAEBCAACEwgAAMEEAAJ5CAAAwQQAAXMIAANBBAAAcwgAAIEIAAEDAAADgQQAAAEEAABTCAAAAAAAAcEEAADDCAAAwwgAA8EEAAJBBAABYQgAA4MAAAKBBAACYQQAANMIAAFBBAADwwQAAQEEAAEDAAADYwQAAqMEAABBBAAAAQQAAoEAAAK7CAAAAQAAAgMIAAMjBAADowQAA4MEAABBBAABQwQAAmMEAABDBAACQwQAAJMIAAJjBAAD4wQAAmEIAAAhCAAAkQgAAUMEAAKzCAACIQQAAikIAAExCAABAQQAAKEIAAJBBAAAwwgAANEIAAKhBAADgQAAAUMEAAIhBAACAvwAAiMEAAKBBAAAgwQAAAMAAAHzCAAAswgAAoEEAAAjCAACoQQAAiMEAAMBAAABAwQAACMIAAMDAAADOQgAAUEEAAPhBAAAAwAAABEIAAPjBAAC4QQAA4MAAADDBAACIQQAA-MEAAGBBAAD4QQAA2MEAAGDCAACCwgAAEMEAACRCAADgwQAAQMIAAMBBAAAAAAAAoMAAAKjBAACCwgAAbEIAAOhBAACIwQAAmEEAAEjCAAAMQgAAoEAAAPDBIAA4E0AJSHVQASqPAhAAGoACAADgvAAAyD0AALi9AAAcvgAAhj4AALI-AADIvQAAK78AABe_AAAEPgAAqD0AAIK-AABEvgAAZD4AAL6-AABMvgAAnj4AAAy-AAC4PQAAUz8AAH8_AABEPgAAqL0AADS-AAA8vgAAqD0AAOg9AABUvgAAUL0AAAw-AACaPgAAsr4AAEw-AACePgAAij4AAIK-AACOPgAAJL4AAJq-AABUvgAAmr4AAIC7AACSPgAAcL0AAKg9AABsPgAALD4AAGy-AAAEPgAAbL4AADS-AAABvwAAbD4AAKI-AABQvQAAEL0AAEs_AADovQAAcL0AAIg9AADSvgAAAz8AALg9AABwvSAAOBNACUh8UAEqjwIQARqAAgAAUL0AABA9AAAcvgAASb8AADC9AABwvQAAjj4AAOi9AADgvAAADD4AAOg9AADgvAAAcL0AAOi9AAC4PQAA6L0AAHy-AAAlPwAAiL0AALY-AAAUvgAAnr4AAEC8AAAkvgAAoLwAAJi9AADovQAAgDsAAEQ-AABQvQAAQLwAAIg9AABcvgAA4LwAAAw-AAAMvgAAmj4AAIg9AABcvgAAqL0AAAw-AACAuwAADL4AAAw-AAAEvgAAqD0AAH-_AAC4vQAAiD0AABA9AAAQvQAAEL0AAIC7AACoPQAAEL0AAKg9AACgvAAA2L0AANg9AAAQPQAAHD4AAIC7AACYvQAAuL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=3HGfw7jZ6gs","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8715863567916120103"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"7295228320865180197":{"videoId":"7295228320865180197","docid":"34-0-13-Z3AB98AB1D52D8532","description":"In this video, you will learn about logical equivalence topic from discrete mathematics. You will appreciate how tautology concepts are useful in identifying the logical equivalences. I will...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"23","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Logical Equivalences | Prepositional Logic | Discrete Mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FMc7pZbvWKA\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNzI5NTIyODMyMDg2NTE4MDE5N1oTNzI5NTIyODMyMDg2NTE4MDE5N2quDRIBMBgAIkQaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoQwg8PGg8_E7sDggQkAYAEKyqLARABGniB9Pz2_gH_AAP5Dg4GC_kCDP76Cfb__wDxAfcCCAH_APwCCgAKAQAA7gTtBP0AAAD99_cC-v4AAAQE9wcEAAAAIQ39-PsAAAAGBwgT_gEAAPTx_wED_wAADgkBBQAAAAD1CAgD__8AAAAPDfUAAAAADAT9-wAAAAAgAC2FQdE7OBNACUhOUAIqcxAAGmAeEgAmAg7t7TRG5eEA1_T88Czn--gBAAUGAOUn5s4F9-wG2yn_FNsKAr0AAAAM-McPHADiWeHwvBUZ1vnI--8KGH_0DwjkNRTowwvi5Cf9ESEX5jIA993zGPPcrR7rDTsgAC2SZUU7OBNACUhvUAIqrwYQDBqgBgAAUEIAAJBBAACAQQAAwMEAAFhCAADQwQAAFEIAAMDBAAAkwgAAUEEAAGhCAAAgwgAAkMEAABDCAABwQgAA0MEAALDBAACQwQAAoEAAAGDBAABMQgAAQMEAACBBAACoQQAAQEAAAKDBAAA0wgAAPMIAAExCAAAIQgAAiMEAAABCAAAgwgAASEIAALjBAACAwAAA4MAAAOZCAABMwgAAAEEAABhCAAAAAAAAGEIAANhBAAA0QgAAcMIAABjCAAAMwgAAeEIAAOBAAADwwQAAIEIAACBBAADAwAAAMEIAAAxCAAAAwwAAAMEAAGBBAAA4QgAA-EEAACDCAABAQAAA0MEAADBCAADAwQAAoMAAABjCAADgwQAAiMEAAIZCAADqQgAAYMEAAABBAAD4QQAA2sIAADDBAAAwQQAA6EEAAEDAAABgwgAAUEEAAEDAAAA0QgAA6MEAAOBAAAB4QgAAoEIAABBCAAAwwgAA4MAAABBBAACAwQAAlMIAAMDAAABIwgAAoEEAAEDAAACAQAAAsMEAAABBAAAEQgAA8EEAAEzCAABwwQAAyMEAAEDAAAAsQgAAQMEAABBCAABYQgAAOMIAAPjBAADgwAAAOEIAAABCAACgwQAAaMIAAEBAAACAvwAAgMAAAKzCAACGwgAAdMIAAAxCAAAQQQAAEMIAAJjBAAAgwgAALMIAALBBAACgwQAA0MEAAHBBAAAIwgAAoEEAAIxCAACAQAAA-MEAAObCAACgwAAAuEEAAOBAAADgwAAAHEIAAKDBAAC8wgAAyEEAAAxCAAC4wQAA4MAAANjBAAAIQgAAIEEAAEBBAABgQQAAUMEAAMjCAACYwQAAoEEAALjBAADoQQAA2MEAACTCAAAAAAAAqMEAAABAAABAQgAAKEIAAKBAAACywgAAjkIAAKjBAADIQQAAVMIAALhBAAD4wQAAJMIAAJ5CAAAMQgAAHEIAADBBAABQQQAAIEEAAEBCAAB4wgAAgMEAAMDAAAAIwgAACEIAAJDBAACIwgAAgEIAAIDAAADgQQAAMMEAAJLCAAAAwgAAisIAAIjBIAA4E0AJSHVQASqPAhAAGoACAAAsvgAAHD4AAJg9AABwvQAA4DwAAIo-AADoPQAAUb8AAKK-AADovQAAMD0AAAu_AABwvQAApj4AANi9AAAUvgAAUD0AAKC8AACWPgAAGz8AAH8_AAAsvgAAmj4AAIa-AAC4vQAAHL4AALg9AAC4vQAAVD4AANI-AADOPgAAfL4AAIC7AAD4PQAAqL0AAFQ-AAAwvQAAPL4AAOa-AACSvgAAur4AABy-AACaPgAA6L0AAJ6-AADgPAAApj4AAMq-AAAsvgAAgr4AAHy-AABkvgAAbD4AAHC9AABwvQAA4DwAAEM_AADIPQAAMD0AAEw-AADIvQAAgj4AADw-AABQPSAAOBNACUh8UAEqjwIQARqAAgAAcL0AAII-AACYvQAAM78AAFS-AAD4vQAABD4AADC9AACIvQAAmj4AAFQ-AAC4vQAAiD0AAAy-AACYPQAAcL0AAPi9AAAjPwAAMD0AAKo-AABQPQAAFL4AADA9AABkvgAAML0AAEA8AACIvQAAyD0AACy-AACYPQAAED0AAHA9AADIvQAAcD0AAHA9AAAsvgAAQDwAAI4-AABEvgAAmL0AAEQ-AACIvQAAqL0AAKA8AADgvAAAuD0AAH-_AABQvQAAiL0AAJi9AAAMPgAAuD0AALg9AAAEPgAA4LwAAKg9AABwvQAAiD0AAJg9AACovQAA6D0AABA9AACIvQAAmL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=FMc7pZbvWKA","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7295228320865180197"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"4899623743816373538":{"videoId":"4899623743816373538","docid":"34-9-0-ZCA674A7338F1A320","description":"In this video, I will discuss another concept of discrete math which is sets. In this set introduction, I talk about basic features , idea and notations to describe sets.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"24","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Set Introduction | Set theory | Discrete Mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kZD93xSU8JU\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNDg5OTYyMzc0MzgxNjM3MzUzOFoTNDg5OTYyMzc0MzgxNjM3MzUzOGquDRIBMBgAIkQaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoQwg8PGg8_E7wBggQkAYAEKyqLARABGniB7gX8BQH_APgLAA_5CPwCD_0GAvcBAADzDvb0AwEAAPb4APYBAAAA-wX0_P8AAAD9DgkJ9f4BABYE9AD1AAAAFgzy-QAAAAAMDu8C_wEAAPT3BwIDAAAAEwgD8_8AAAD1CAgD__8AAAoaAQwAAAAADAT9-wAAAAAgAC1qLM87OBNACUhOUAIqcxAAGmD6GgAXC_vtyyxC78X-rwAI9hLiCL7q_9znAPsQx9718fHs7Q__CdQL8bsAAAD8_w4jBwDMW-LZ0T4cHgrD6fgiHH8WFuXvEdIUwRMI9e8yJBbe5QYA8-jkFRj33yb8FCkgAC3LNkM7OBNACUhvUAIqrwYQDBqgBgAAwEAAAEDBAADAwAAAjsIAABBCAADAQAAAtkIAAMDAAAAUwgAAgL8AALRCAABswgAAbMIAAGTCAAC2QgAAYMEAAKjBAACAwAAAHMIAAATCAABAQgAAAMIAAMDAAACgQAAAoMEAAJDBAAA4wgAATMIAAIZCAADoQQAAAMIAAHBCAACqwgAAoEAAAATCAACAwQAAgMAAAORCAABUwgAA8EEAAIjBAACCQgAAhEIAADRCAAAwQgAABMIAAMDBAABgwQAAiEIAAEDBAAAowgAAAEAAAKhBAAAgQQAAeEIAAKBAAAAAwwAAgL8AAMDAAADIQQAA0EEAAFDBAADAwAAAXMIAAKBBAAAowgAAQMAAAATCAACAwQAAgMAAAChCAADCQgAAoMAAAOhBAACQwQAAwMIAAJDBAABwQQAACEIAAJjBAACQwgAAgD8AAAxCAAAoQgAAMMIAAODAAACiQgAAikIAADBCAAAcwgAA4EAAAAhCAABAwAAAtsIAAGBBAAAowgAAgL8AAMhBAABgQQAAiMEAAIDAAACgQAAA6EEAAAzCAABkwgAA4EAAAMBBAAAgQgAAYEEAAJBBAAA8QgAAsMEAAJjBAABQwgAACEIAAKhBAABAwgAAMMIAAAAAAAAAwQAAIEEAABTCAAAcwgAAjMIAADhCAADgQAAA4MEAADBBAABIwgAAAEEAAODAAABAwAAANMIAAMDAAADAwQAAoEAAAMBBAAAYQgAA6MEAANbCAACAQAAAjkIAAHBBAACgwQAAyEEAAIBAAABcwgAAGEIAAJhBAADgQAAA4MEAAMBAAAAgQQAACMIAAIDAAAAAAAAA4EAAAHDCAAA4wgAAMEEAADTCAAAYQgAABMIAACDBAAC4wQAA2MEAANBBAACOQgAAIEIAAIhBAACGwgAAFEIAABzCAAAQwQAAsMEAADBBAAAgwQAABMIAANhBAABQQgAAoEAAAJDBAAD4wQAABEIAADxCAABgwQAAuMEAAJJCAAAIwgAAkEEAAEjCAACCwgAAwEAAAMDAAAC4wQAAAEEAAGDCAADAQQAAUMIAABzCIAA4E0AJSHVQASqPAhAAGoACAACCvgAAiL0AAJI-AAB8PgAAiD0AAOI-AAAwPQAAT78AALq-AACgvAAAgDsAAGS-AADYvQAAND4AAAS-AAA0vgAAvj4AAOA8AACSPgAAVT8AAH8_AAAcvgAAyD0AAES-AADovQAAgr4AAII-AAAEPgAA4LwAANI-AACuPgAAyL0AAOA8AADKPgAA2D0AAPg9AADgvAAAFL4AAJK-AABUvgAA6L0AAJ6-AABkPgAAFL4AADA9AABUvgAAsj4AAOK-AABMvgAAvr4AAOA8AACAuwAAoLwAAKg9AACgvAAAEL0AAEs_AACePgAAcL0AAOg9AABAPAAA-D0AAPg9AACAOyAAOBNACUh8UAEqjwIQARqAAgAA2L0AABw-AAAUvgAALb8AANi9AACePgAA5j4AABS-AACIPQAAHD4AAIC7AADgvAAAiD0AAIi9AABUPgAAgDsAADC9AAA5PwAAir4AAA0_AAAUvgAAfL4AAHA9AAAMvgAAML0AADC9AAAEPgAAJD4AAPi9AAC4vQAAUD0AABA9AAB0vgAARL4AAMg9AACgPAAAiL0AAI4-AAAkvgAAHL4AAEQ-AAAwvQAAqD0AAIC7AACYvQAAQDwAAH-_AACWvgAA6L0AAAw-AADIPQAAdD4AAEA8AABwPQAA2D0AALg9AACYvQAAND4AAKg9AAAQvQAAij4AAJo-AABcPgAAHL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=kZD93xSU8JU","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4899623743816373538"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"14418759482637802649":{"videoId":"14418759482637802649","docid":"34-4-17-Z9CCC25BD08FAD3AB","description":"Example 3 - Prepositional Logic - Discrete Math My Math Channel: / @mathsucceed3523 HI, My name is Girish Iyer, Welcome to my YouTube channel NotesforMsc.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"25","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Example 1 | Prepositional Logic | Discrete Mathematics #discretemath","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Nw5p5QDSqgU\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFgoUMTQ0MTg3NTk0ODI2Mzc4MDI2NDlaFDE0NDE4NzU5NDgyNjM3ODAyNjQ5aq4NEgEwGAAiRBowAAopaGhiYmx6cW51cHlmamh6aGhVQ0J2enBObnBoZmlSQXAtUXpoRnE5VXcSAgARKhDCDw8aDz8T4gKCBCQBgAQrKosBEAEaeIH0__4F-wYA-wMDDQoI-wILAPv79wAAAPf7-_3-Av8A_P8HAwEAAAD-B_QH_AAAAP34-AL7_gAA-QcAA_wAAAATFvgC_gAAABEQBgn-AQAA9fv-_AMAAAAMCAEFAAAAAPwIAQD8_wAABQsG_AAAAAAGAgAAAAAAACAALU8Y5Ds4E0AJSE5QAipzEAAaYPoOACkcEf_WKj3o3PHjAvbvH9_16OQA6PcA8gfr7PTv5OroDv8XzAjyxAAAAAsB4BUvAOFT3-m7KBrp_7cE6gQVf_Im8Pg2BubJGQ3fEQIGFgPmHQD1698XDvPCIeD4LiAALULNUjs4E0AJSG9QAiqvBhAMGqAGAAAsQgAAMEEAAPBBAAC4wQAAgMEAAMBBAADMQgAAMMEAAADBAACAvwAAoEAAADjCAACIwgAA4MEAAARCAACgQAAAcEEAAATCAAB0QgAAYEEAAKBAAAAEwgAAwEAAAFDBAAAAwgAAhkIAAODAAABswgAAUMEAAEBAAACAwQAAFEIAABzCAAAQQgAAhMIAAPBBAACgwAAAsEIAAGBBAAAgQgAAUMEAAExCAADUQgAAwMEAAJjBAACwwQAAgMAAAIhBAAAMQgAA4EEAACjCAAAcwgAA-MEAAKBAAAAAAAAAgEIAAADDAAAAwQAA4EAAAABCAABAQgAAoMEAAKBBAABAwgAA2EEAAJ7CAABQQQAAiMIAABDBAABgwQAAeEIAAMJCAABwwQAAgL8AALDBAACAwAAAdMIAAEBCAACEQgAAnEIAAKjBAACeQgAAIMIAAEBAAACAwAAAyMEAAEDBAACQQQAAgEEAAJjBAAAwwQAAhkIAAETCAACQwQAAgEEAAPrCAACIQQAA-MEAAGhCAACAwAAADMIAAChCAAAUQgAAmEEAABTCAAAMQgAAJMIAADBCAABQwQAAAEIAAAxCAADgwQAAgL8AAAxCAAAAwAAAKEIAABBBAAAQwQAAQMEAAPDBAAA8wgAAhMIAAEBBAACwwQAAMEEAAGBBAAAAwAAAHMIAABDBAADQwQAAXMIAAADBAACAvwAAcEEAANBBAACWQgAAIEEAAHDBAADgwQAAkMEAABhCAAAEwgAAAEAAAIA_AAB8QgAAREIAAHzCAAB8QgAAkkIAAEhCAACowQAAEEIAAKDAAAB8wgAANEIAADDBAAA0wgAArMIAAIhBAAAIQgAA6EEAABBCAACgQAAA6MEAABzCAAAwQQAA4MAAAEBCAAAMQgAAAMIAAPDBAADAwAAA6MEAAHzCAAA4wgAAgMAAAFDBAAAswgAA6EEAALBBAAAowgAAwEEAADDCAAAAQgAAQMAAAGjCAABYwgAAUMIAAIhBAADwwQAAkEEAAHDBAACYwQAAIEEAAEBAAACoQQAAuMEAAJBBAACoQQAAyEEgADgTQAlIdVABKo8CEAAagAIAAGy-AADgPAAAVD4AAOC8AACovQAAGT8AABw-AABtvwAAxr4AAJ6-AACAuwAAHb8AAMi9AACKPgAA6L0AADC9AABUPgAAqL0AAGw-AAA1PwAAfz8AAGy-AACCPgAAjr4AAOA8AABcvgAALD4AABw-AADgvAAApj4AAPo-AABMvgAAED0AAPI-AACgPAAAiD0AABC9AABMvgAABb8AAI6-AABcvgAAir4AAIY-AAA0vgAAkr4AAES-AADaPgAA7r4AAIa-AADWvgAA2L0AAIq-AABUPgAAcL0AALi9AABAPAAAbT8AAIY-AACgPAAARD4AAOC8AACuPgAADD4AAFA9IAA4E0AJSHxQASqPAhABGoACAAD4vQAAPD4AAFS-AAAnvwAAdL4AAOA8AACKPgAAcL0AAEA8AABUPgAAmD0AADC9AACIPQAA6L0AAMg9AAAQvQAAUL0AABE_AAAEvgAA6j4AABC9AAAEvgAAQLwAADS-AABQvQAA4DwAAHC9AADYPQAAfL4AAFC9AABwPQAAiD0AADC9AABQPQAA-D0AAAS-AACoPQAAoj4AABy-AADgvAAAdD4AAOi9AABQvQAAgDsAAHC9AADgvAAAf78AALi9AABMvgAAgLsAAEw-AADYPQAAcD0AADQ-AABAvAAAyD0AALi9AACYPQAAiD0AAKC8AAC4PQAAuD0AAEC8AABAPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Nw5p5QDSqgU","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14418759482637802649"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"8106147100741110294":{"videoId":"8106147100741110294","docid":"12-5-12-Z6CF3915F54903449","description":"Simplified to play with the soprano recorder - ➤ Accompaniment with piano to play along ➤ Bold notes are the highest (second octave)...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"26","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"The Last of Us Main Theme | Sheet Music with Easy Notes for Recorder, Violin Beginners Tutorial","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KYQFT7KrfuI\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTODEwNjE0NzEwMDc0MTExMDI5NFoTODEwNjE0NzEwMDc0MTExMDI5NGqHFxIBMBgAIkQaMAAKKWhobGlsY25ya3R2YnllZWhoVUNvOVV4VFRodld4bVBWd05xWk5jTHl3EgIAESoQwg8PGg8_E7QBggQkAYAEKyqLARABGniB-wcGAgr0APIJAfwPA_4B-f307_f8_ADl9PIKCf8BABMJDQH6AAAA5fruCwUAAADvDv0A-wAAAB_y__QDAAAAHQT8DP8AAAAQ_-kB_wEAAAUEC-kCAAAA-w8CD_8AAAD88f0H-_4AAAT77QcAAAAAAPoW9v8AAAAgAC0ojLM7OBNACUhOUAIqhAIQABrwAWMND_7sDO8B9_bsAIEV8_2M_ugA4jESAAPv9QANE-YA-N0KAL_73f7S_Bz_5P_x_-wU4v_f_RoAJQ8I_z3_3f_9CBgBB_TuASMM7AH_FfP-0w8tAS0MFQHk7QkAJ-_x_x_9Hf_qCvoD8-vs_wzqDQLq9wAC8_kLAvT29QHw-AsF5-gU_ePj_QL_JgD93ckSBPf-C_v58uUD9f73-O4L7QXP4PkB_QL2_PbtBv7_9fgFESIN9-L1__cSAPkE3AcMBwUME_vR7AT_ESX3Buv8_AoF0_sCCBn98Bj7Af8EAA8GDgkLBQcD_vUIAhIO9wv2CCAALXv7ODs4E0AJSGFQAirPBxAAGsAH0c-cvrWTNz3RHi-9zaylPCisnr35Jay8PuqnvsFiIz3GCPK8uyWBvlPQ7TyaEiC8DeO2vgYub71rM-c7dMpovbwUCD1VYiO9GWWHvOJutTudiKk9xWqtvQscWr0waLw8kJ89vmkQMDxySuU8LZhYPocgvbyhEpe8MDv6PHfEXD0__Wc8u-RJPZXurjzQIoC8WJOivQ_nC714zjs8XZX6uk3xPT1l6PM8ofXQvWZuOT2rdQI9NXH8PMktt7ypPwy9-eKGPRLpLb2aej09L22YvSsoNj1ajZs8qncAvC7lmTtr6DA88VUhPFfdlL3lCD4856cYPYB3vLyVf628DHcOvk3aFjuWYRc9Z-YTPQaqErxWQRA7Ka5KvZUgrTwvdni632zTPUD7kTwjLKo7InCkPKB8kL0IJpI89zORPWIPDT5ahQs7CWTAPM9ZdT2FY7E8TuxmPZBPiDxf8Gk8l97jvO7x3TylYb67LPmTvWJgQjwPL6O8G-1dPW8UtDxVTEE61SlKPbqzAL1MWqe8ck6MvTfGTrwlPKW7ILffPQSQ2r0zAw27fNDYO9GB_rvaUNa6GgGQvT2EnL05Yi28PB80PRVSkz1_WRA7pf9APNnqsr1Tkje6tKvwvRnce7wujzU8Xw2gvUEKYz2ebSQ8RYCTPE8wLT1t7bM7VHKuva9eJb1-xVi7RTG3u48Y3T1Nn3c6NWy6PS5hozx7Usk4-zv7vXxTw7vzs3Y69nqHPUrJPD1_e-i6PkLtvfx2bT3oz0O5mzuqvckmFL0K0uy34cM7PTywTb1-2jU61uynveD7djz5OyQ59VhkvYr4WD2SlW04HHjVvQU-dbyx2qS10-xrPbD-L73g2Xc4sNrGvdRAGL1mb4S6SgsXvgrcmr2pquG2zPvuvFY9CTu7u5a5T15fPQr0ub2hl-w4lNHQur0tgr3Q6AA40bp8vSd1OLyYNlU5EGOMO5jakr2D0jQ42p5qvG2kET0ha4i4f1WJPOwaiDw-dOu5gJyQPUjArT18vuI4agVcvVa8rDzFmvC3j8ahPFd4N73RFC04B_FcuxABjD2DnV24E8_-vDrXZj1oYew4dfW2O8DKJj1-FSY4rzoVPPl_ejxyRjw4v-GRuuzG1jwp8KY4Wt82vRZLcT2d_Mm3k4ycvCaxqr33Adu4LyUBO-c6jTxJJom3lfpovTh4rrtXZQ24U2VOPHtclb1edby3WZJyPEY2QT2Ynr84xtx3Ouqm3rwAA8K4hlWMvfRbir0sUeC2PAgJPE4q2jykrB04IAA4E0AJSG1QASpzEAAaYEoMADoADtL8-i7bCtrx6-H3INYu_wj_B-EAuvv7IDH93NIf_wAHxO31tgAAAAj8tgLnAOZj8u_m1PID_fwD-Dchfygv5OhfJ9bc8ggSJUrzEe0zSgAVzqX-BwgYJgQ-NyAALVWDLDs4E0AJSG9QAiqvBhAMGqAGAABwQQAAjkIAAAhCAABQQgAAEEEAAHBBAAAkQgAAgL8AADhCAACCwgAAgD8AABDBAACowQAAAMAAAHxCAAA4wgAAcMEAABBCAAAEQgAAiMIAAHRCAABAQQAA2MEAAMDBAACwQQAAgMAAALLCAAB0wgAAQEAAAFBCAAAwwQAAMMEAABDBAAAQQQAAEEEAAJrCAABAwQAApkIAAEDBAACQwQAAAMIAAOhBAADgQAAALEIAADhCAADYQQAAuEEAACxCAABQQgAApsIAAFDBAAD4wQAAUEEAAFDBAAAYQgAAAEEAAIBBAAAAAAAA4EAAAJpCAAAAAAAA6MEAAIZCAAAIQgAAREIAAFzCAABQwQAA6MEAAHzCAAAAwAAAEMEAABhCAAAcwgAAukIAAABBAAAcwgAAYMEAANjBAACIwQAAQEAAAETCAAAIQgAA4kIAALBBAACEQgAAMMEAAJLCAACwQQAAGEIAAGDBAADowQAAiEEAAIBAAAAIwgAAoMEAAJLCAADQwQAAZEIAAPjBAADAwQAA0EEAAOBBAACYwQAAiMEAADTCAABIQgAAPMIAAJBBAACaQgAAqMEAAIDAAACAwQAATMIAAIA_AADIwQAAAEIAACBBAABgwgAA0MEAAATCAAAEwgAA4EAAAKBAAABAQAAAokIAAFBCAACwQQAAgMEAADxCAAAswgAAPEIAAKDAAAC4wQAAGEIAANhBAAA4wgAAwEAAAILCAADkwgAArEIAAIC_AABwQQAAwMEAAJDBAABwQQAA4EEAADDBAAC4QQAA6EEAAOhBAACAwQAAIEIAAADAAACOQgAALEIAAILCAAAUwgAAuMEAAPjBAAAQwQAAKMIAAIDBAACAwAAA4MEAAGDBAACmwgAAiEIAACTCAABEQgAAJEIAACDCAABAQQAAuEEAAJDBAAD4QQAAAAAAANTCAABAwgAARMIAADhCAAAQwQAAoMEAABDBAACQwgAAwEEAAJhBAACAwQAAEEEAANDBAACAwAAAbEIAANBBAABgQQAAREIAAIrCAABQQgAAfMIAAAxCAADQwQAA-EEgADgTQAlIdVABKo8CEAAagAIAAIa-AAC2vgAARz8AAOg9AACCPgAAgLsAAFC9AADmvgAA2L0AALa-AAC4PQAAZL4AAHw-AAD4vQAAur4AADS-AAB0PgAAML0AALi9AAD6PgAAfz8AAAS-AACgvAAAcD0AAMg9AADGvgAAqj4AAJg9AABsPgAAPD4AAGw-AADSPgAAyL0AAAQ-AAAMvgAAHL4AAFw-AACqvgAACb8AADQ-AAAsvgAAqr4AAEQ-AAAMvgAAcL0AALI-AAB0PgAABL4AAHC9AACIvQAALL4AAEy-AAAsPgAAkj4AAFy-AABQvQAASz8AABQ-AACGvgAAHD4AAES-AACmvgAATL4AAGw-IAA4E0AJSHxQASqPAhABGoACAAA8vgAARL4AABS-AABTvwAAFL4AADS-AACKvgAAfL4AAEw-AABEvgAAwr4AACw-AACYvQAAHL4AAEw-AACgvAAA2L0AABs_AAAEPgAACz8AADC9AABkvgAAUL0AAFA9AAAkvgAAoLwAAIg9AAAQvQAARD4AAIg9AACAuwAAoDwAAL4-AACavgAAHD4AAJ4-AAAcvgAA-D0AAFC9AABcPgAABD4AAGw-AABQPQAAEL0AAOi9AACSvgAAf78AAIA7AADIPQAAiL0AAKi9AAC6vgAAZL4AAJ4-AAAkPgAAPD4AABC9AACIvQAAvr4AABC9AAAwPQAA-D0AABw-AACgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=KYQFT7KrfuI","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8106147100741110294"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2001890228"},"9274577265543135361":{"videoId":"9274577265543135361","docid":"12-10-13-Z942EBA54318E84BB","description":"Music ➤ Simplified to play with the soprano recorder - ➤ Accompaniment with piano to play along ➤ Bold notes are the highest (second octave)...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"27","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Numb - Linkin Park| Sheet Music with Easy Notes for Recorder, Violin Beginners Tutorial","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=GC0XvxdW198\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTOTI3NDU3NzI2NTU0MzEzNTM2MVoTOTI3NDU3NzI2NTU0MzEzNTM2MWqHFxIBMBgAIkQaMAAKKWhobGlsY25ya3R2YnllZWhoVUNvOVV4VFRodld4bVBWd05xWk5jTHl3EgIAESoQwg8PGg8_E7gBggQkAYAEKyqLARABGniB8BECCAj3AO8K_AsTBfwB-_X8B_n9_QDl9PMKCP8BABH-AgT3AAAA5fruCwUAAADrCAb--gEAABgK_P4FAAAADwz3BQQAAAAF8uwEAAEAAPEFDPACAAAA-v0EBwAAAAD88v0H-_4AAA769f8BAAAADvMU_QABAAAgAC1X6Lk7OBNACUhOUAIqhAIQABrwAX8m-QPVFO4ARtjsAKkH_P_SAP0A5AL0APsAAwAbBt8B0ucRAMMY3__KFhUABBHm_8UX1f_aBAcAJwQRAAwG8gDwCyEA-Q7jABYH8AH4Fdb-vQkd_xDhGQDW5hkAPP8S_xIAJv0MD_j-9RLeAQTyAQELByYD_toD_ucG9f_E_BQB2dgeALjnCAL7D-8D5tgCA-cACgT-4PcE_wX0__H55wjryd__CfYO_P3tFvn5E_f_CRQF8t3sCAoIFvIC2QcNBw4BDP_F8hgDHyQJ-d4H-AsE3fr5_RD5_SXn_vv5DRME8vEH8vAA8_EOAP0MAwftECAALbLEKjs4E0AJSGFQAirPBxAAGsAH6rDqvtrSPLv4lxM9eQKBPZQyKb3G-oY8KuAevgPuWT1zVY-8ByWUvtTaTz3G8z68vY6QvnznXL3Ypik7M9iZvWzcLD1upkK8NXk6vg6rkTtKfkQ8sTRQvXCVJ73J2Nq85Ic6voJ9Kj2GsDc7KcuIPoxLlTxRn8k8oTfwPBPcxLotcCI8Ei6EPTlaej3-NdE7BaNSvVKpA70R7Zk8L2OEPbvKBL3t1Jw8ofXQvWZuOT2rdQI98Q97vb4aGz102Le6_m6QPcfscjuhcw09SByNvSd1l7rKci-73MdAvbM4zrvW2Zq88VUhPFfdlL3lCD48Y5ICueBePrwkFby8qMghvgJ8HD3o6W0854knPQ68Wj3q4RA9IsoSvWTGADv7WSw8toQMPjhnRDzNb3u7HPPVPDNX4bznLq48e_QGPkouuTvWur-7Zw7JPIFItbwBJc88D-frvKZNgD3j6te6QVliPe0bDj0XlVy7NjwePMulDD3hPEG8n9LHPd6VuDwJjqa8y_X2PRqckrw84zG8DLANPHwxDz0oS5-4wWt8PVK3871rFYg50cffOzPdqzyXQwG8hLRLvX3mbL23PlE8Q20gPZTIFD23__Y5ZLZgu6gEj72aNBm7gUqrvSVi5bzriwi8C4ubvRlW8TwL6h08NcIRPblo7btE5JG7_mFrvefE3rxN1qi7L7IPvCaOvDwgMn67ZoWyPdY6cbyqC1s7X3nQvRNp9jyTaNE66pwaPZ7YHjyhsxI74bgMvrw78j1Xtja5DiBSvQB1Hj06Use6t089PVNgHL1L5Mm5mzrPvbjuQTwtJwq57Baeu-PQET01X9m5lx_YvVhmGz3qK4y59O-jO4_9rLygCmU5VwfgvW8jirzc0co5zCDDvdQNBL4IU4U5_Lf9Oksvf7tqCVm3ryuhPaXCs72T0xc576YAPShJ1738vxS5eHOyvXaw1brc8Is5JnMsPBTJHL0vIbQ4tXYWvTDJtzwOwW25flw2vfn6Fb05xvc4aomlPRvFiD3Pr9A3b2tmvWhNYjxu5oG4DLG6PFFjp7zwN6c2z-DdOfq6Zz0KBYe4WjSjvXxaSj1yIGw4QNXNPAriUTsCDso3E7rLO9ehmroaXje2jSK_OdO5R7ypNxo4PdUCvDZ7-zyoi8k3WwWWvHAINb08Rai3qQjDO7gFaLtZn1c4_m2FvbOKqzpF-La35NWevHqJ8b1lVTC4zsHzPIt2cDxyGMk43W9-vG_ZfLzZP7G4XCivvd4SKr38ImM3lRGyvGUwqzyLFY82IAA4E0AJSG1QASpzEAAaYEgOACPZFcfh-xfS-wztAsTTKr419zf_FN4A1QHkVkwa5N4MHAD0quLtoAAAAAn_kxrNAMl_qP8V8fn-5e_v_S4kfQhJ_whFKOfL1Bf7Gy71EhhyQwA4p54DHvpRPCUgKSAALfJoDTs4E0AJSG9QAiqvBhAMGqAGAABgQQAAAAAAABhCAACAwQAANEIAAOBAAAAwQgAAoMAAANjBAAB8wgAAGMIAALhBAAD8wgAAiMEAAABCAACawgAAJMIAAMBBAADwQQAAqMIAAIRCAAAgQQAAMMEAAIhBAAAAAAAA2MEAAObCAACIwQAA4EEAAJ5CAACYwQAATMIAACjCAACAQAAAAEAAALhBAAAAQAAAEEIAADDBAAAQwgAAmMEAAEhCAAAcQgAAYMEAAEDAAAAAQQAAoMAAACDBAAB0QgAAwMAAAOBBAADQQQAAHEIAAOhBAADwwQAAEEEAAEDBAACIwQAA4EEAACBCAAAQwQAARMIAAIjBAACGwgAAQMAAAIA_AABwwQAAUMIAACjCAADAwQAA4MEAAOhBAACAwQAAoEEAACDBAACGwgAAQEAAAIjBAADAwAAAoEAAAFzCAABwQQAAoEIAAIhBAAAUQgAAIMEAAODBAABcQgAAqEIAADhCAABgQgAAJEIAABBCAAAwwgAAQEEAAODCAAD4wQAABEIAAHhCAAAAwQAAiMEAAFBCAACAvwAAyMEAANzCAAAgwgAAyMEAAEBCAABAQAAAEEIAABzCAADgwQAAmMEAABzCAADGQgAAyEEAAMBAAAAQQQAAEEEAABDCAACowQAAcEEAADDCAABgwgAAfEIAABBCAAAAwAAAkMEAAIBAAAAgQgAADMIAAADCAADgwAAACEIAAIBBAABwQQAAMEIAAIzCAACuwgAAKMIAAMhBAABIQgAAiMEAAKBBAAC4QQAAAAAAADDBAABAQgAAwMAAACDBAABAwAAAyEEAAKBAAACIwQAAcEIAAABAAACKwgAATMIAAGRCAADIQQAAIMEAAChCAACIQQAA8EEAANhBAADAwQAA2EEAAHDBAAAYQgAA0EEAAMbCAABQQQAACMIAACxCAAC4QQAACMIAAEDCAACSwgAACEIAAERCAAD4QQAAdMIAAKzCAADwwQAAwEAAADDCAACIQQAAjEIAAEDCAACwQQAAmMEAAEDBAABgwQAAwEEAAABBAADoQQAAwEEAADDCAAA8wgAAUEIgADgTQAlIdVABKo8CEAAagAIAAJa-AADCvgAAPT8AAAS-AABkPgAAuL0AABw-AAAjvwAAQDwAAHS-AABUPgAAVL4AACw-AACovQAAvr4AACS-AADIPQAA4DwAAEw-AAAFPwAAfz8AAFC9AAAcvgAAgDsAADA9AAD-vgAA7j4AAOC8AACePgAAzj4AAFw-AACuPgAABL4AAFQ-AAAQvQAANL4AAK4-AABMvgAApr4AAJY-AAC4vQAAqr4AABC9AAA8vgAABL4AAKo-AABUPgAAuD0AACw-AABAvAAAHD4AAFS-AADYPQAAND4AANg9AACAOwAAYT8AAMi9AACevgAAjj4AAHC9AACWvgAA-L0AAJI-IAA4E0AJSHxQASqPAhABGoACAABcvgAAiL0AAFy-AABBvwAAMD0AAIa-AACYvQAApr4AADA9AABEvgAANL4AAAw-AACgPAAAmL0AAPg9AAAkvgAA_r4AABk_AAD4vQAA0j4AACQ-AAC-vgAAoLwAAKC8AACAuwAAvr4AAHC9AADYPQAAwj4AAIC7AAC4PQAAML0AAOA8AADgvAAARD4AAIi9AABQPQAAgDsAAPi9AAA8PgAAZD4AAFC9AADgPAAAmD0AALi9AACivgAAf78AADw-AABMPgAAqD0AADy-AAAUvgAANL4AAIY-AABwvQAARD4AAAy-AABwPQAABL4AAKC8AACIvQAAbD4AAIo-AABkviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=GC0XvxdW198","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9274577265543135361"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"1001293000"},"1101570071417151840":{"videoId":"1101570071417151840","docid":"34-4-0-Z5DCB0C23EC4EBBDE","description":"integer, data types, int, float, c++, programming...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"28","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"L2 - Data Types - Integers - C++ Programming","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4qoqI0MAL5Q\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTMTEwMTU3MDA3MTQxNzE1MTg0MFoTMTEwMTU3MDA3MTQxNzE1MTg0MGqHFxIBMBgAIkQaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoQwg8PGg8_E_ADggQkAYAEKyqLARABGniBAgUC_v8CAPMEBQH5A_8BHAD8_vQDAwDkEgcBA_0CAO0DBQsFAAAA8wP7BwEAAAAI9vf-9_4AAAML9v8EAAAAB_kG-fQAAAAHCQEK_gEAAOH5Cf0CAAAADwAI-_8AAAD-__37AgAAAAz79_8AAAAACe8C_gABAAAgAC0zINc7OBNACUhOUAIqhAIQABrwAX9F9gD34roDnCTB_rEJEAGTDP7_M__OALUtEQHR7bUB3NbnANrE6f-h9MYAnf3iAubf6QAPJCEANgID_yvtCQAR99sBPfUFAUb61ALt8Ob-IwcjAffFQgAV0_UADuIA_xDbE_635ef_yReh-9siLgE0CBIDSwscAeTzHP7jPSoEBA_uAdkpF_611g_-3goR_AkG6PxMG_H_3QMHDiABBgbm0xMB_ALw-hEKGQcH-_r96-EECfLu8QgEQRr_Cywr98b7EgMT0gXuByYBDiP78-zqCwYNIMj2Fe_yBgjnJgID6hL5-LhEDPe_1QTo9f8F9iAALaWs9To4E0AJSGFQAirPBxAAGsAHgO7TvhHew7rl6Ja8cxwuvIN2fT307KS7-INGvVbBg7ztxPq7PtDqPZnO8zydh1G7ll1QvpDs27yJKKY8PSlzPpTA5rv1cg49GYGivUC1uz3hpF-94J4nvX9Hubybnma8GBVnvaC8uDog5AY9CoEsPjlH-Dwl7La8hWB1vRsWXr2Bfjq8VuAcPBKWQjyMEjS9peKqPY2Dhj0LY2Y8kBMmPjbvEz16MAy5g6UKPhkMRD3LaWw7_WZCvtNPk7wjmgW9RTFUvHnqDzz5yQm8sd4IPQ4bQLt4p6-7uBIQPeYelz1Jaba8qMoyPX8U9TyJPG687mURPefZkTwKVzS7rfkBvlSlkjwh0d875x69PaunAL2K1t06HIS_vU2tDT03nOQ7PptyO7AeN737kYW6LP6lPOdAxT2paKw8wzw1vQD8qL2xBXO8SDbXPUjfJLyiaQG7IzKXPQzlCT1dZEg7seuLO3B6VbuyCsC86fDQvWx6MD3p85G8cPUXPYPFHD2rjNA81SlKPbqzAL1MWqe8LcoRPV8XhL2aQ_M7V3s4vS-H_b0qoGY6dH7KPGokcz2FxKi7r0M1PWi-yb1nO5G7h-YVvOWagjyqQFK8Y3XAPX1RDL1aZyI6kNlZvbAjabw1pQi86QthvdnOt7xk4r27H_0lvQO067s9V8I7vxE4vJzslbwBVG273_nlPU2UjLt5K-A6xdopvHItf7xGZ_Q6lyOfPfvGfL0DrBI6ktikvLNW2TxHIck6ZhW2PF5vcT0-krM5mE1APuviNjybGna5-PuFvHtPQDwPZw06-5tLvfuoCz1q9MM5trySPbWj2D2IHYG5JTIdvZUQjL3SI6k4eilmvXN7Dr1Rw-I49KfNvWIxBzvEfmc5e0IgPR2mYr2GVAu4mNS1PPRCMD3KtM63_vKZPczVaruv1cQ4dCEcPJSpjb3zwCc3L6XOvRxLM72B6LE5u4-rurUFujxj-AU53RWgPdnAJ70N0H85RZzvOz3R1T3iCUe51LqNPdvVT7rhcXS0R_LLPDd_nbwlvBC5dlNqvVfPyb1cOmq4cBalPMqURTxXzIm4IvsAvsZfJD0XmGU4AooHPJ85oL2zEZ23OjzEvGGogzwl3fq3QUfrvWxeVbzUEay39wEoPnBh3b3xZ7-5veMEPsnNS73m6KQ4O_5LPYiBrjyCE8o2jrmhvMkJrj1kbhS3YQZ5PfM6Er5L56m4Iv_sPTUpBT7zflu4lV8rPM-8jD3F_Aa5fy_FvOTWKT1MM4i4i8yXvUaTkL2wACq4IAA4E0AJSG1QASpzEAAaYC79AD8CMKX7_irwJuISEfgD0M33qQn_9tL_JQrg1v0H8pwlWf8S8x0KnQAAAAsq_Dq9ABJ4HOfq9LM0-ySd_EYdf_f2TbbkBRzPlzH1Dvf1DQgVGwAZ87_kN9nfDWAQBSAALbUmFDs4E0AJSG9QAiqvBhAMGqAGAADwwQAArkIAAFRCAAAQQQAAsEEAALRCAACEQgAANEIAAADCAAAowgAAMEEAAADCAAA8wgAA4MAAABDBAAAkwgAAQMAAALbCAAAQwQAAgL8AAABAAABQwQAA-MEAAFBBAACwQQAAuMEAABTCAACAwQAApkIAAMDBAAAcwgAAFMIAAIrCAABYQgAAoMEAAADCAADgQQAADEIAAEDBAACQQgAAQEEAAIjBAADowQAAQEAAAIzCAADAwQAA2EEAAJhBAACAQQAAoEEAAMDCAACgQQAA-EEAAKBAAACQQgAAQEIAAJrCAABwwQAAsMEAAEhCAAAAwAAA6MEAAKBAAABAwgAA-EEAAMjBAACIQQAAqMEAAGjCAACIwQAAjkIAACBBAAAIwgAAoEEAAKjBAAAQwQAAMMIAANDBAAA0QgAAEEEAALjBAAB0QgAAEEEAAPBBAADAwQAAwMAAAAhCAADgwAAAXEIAAJDBAADYQQAA_kIAAODBAAC4wQAAHMIAANDBAACwwQAAXMIAAMhBAAAkwgAA8MEAAOBBAACaQgAA8EEAAKDAAAA4QgAAGMIAAADAAAA8wgAAeEIAAGBCAABgwQAAYMEAAKRCAABwQQAAfEIAAODBAAC4wQAAQMEAABDCAAAAQAAAWMIAAMhBAAB8wgAAqMEAAODBAAAsQgAAGEIAAIBAAADAwAAAwMEAAJjBAABAQgAAoEAAABBBAABYQgAAuEEAAMBAAABwQQAA0MEAAChCAACgwAAAQMAAABTCAABcQgAA4EEAAPjBAABEQgAAEEEAAAAAAADgwQAA4EAAAAhCAAAQwgAAcMIAACDCAACAwQAAuEEAAFDBAACQQQAAQEEAAJJCAACwwQAA0MEAAADAAAAEwgAAQEAAADxCAADAwAAAUEEAAABAAACeQgAAqEEAAIhBAAAAwgAAQMEAAI5CAABIwgAAIMEAAMRCAADawgAAusIAACDBAABAwAAAwEEAANBBAAB8wgAAoMAAAGhCAACIQQAAdEIAAMDBAAAAQQAAwEEAABDCAABYQgAAyMEAAKBBAAA8QgAAoEAgADgTQAlIdVABKo8CEAAagAIAAIC7AABUvgAAUD0AAOg9AACivgAAyD0AAAQ-AADevgAAJL4AADw-AACCvgAAZL4AAKi9AABsPgAAuL0AAFA9AABUPgAAoDwAADw-AAANPwAAfz8AAIA7AAAsvgAA4DwAAHC9AACKPgAAED0AADC9AACovQAAmD0AAKA8AACgvAAAmL0AAHC9AAB0PgAABL4AAJg9AAC4vQAA-L0AACS-AACgvAAABL4AAEw-AAAsvgAAED0AAKA8AABwPQAAmD0AAMi9AACovQAAJD4AAIC7AABsPgAAED0AABC9AAAwPQAATz8AABy-AACaPgAAdD4AADA9AABkPgAAcD0AAEA8IAA4E0AJSHxQASqPAhABGoACAAA0vgAAUL0AAAy-AABLvwAAgLsAAIC7AAA0PgAAqL0AAFC9AACCPgAA4LwAAHC9AAB8vgAABL4AAKC8AADgvAAAML0AAC8_AABwPQAAtj4AAFC9AABwvQAAyD0AABC9AAAMvgAAPD4AACS-AACIPQAAoDwAAAQ-AACgPAAA2D0AAOC8AAAkvgAAoDwAALi9AACGPgAAiL0AABS-AAC4PQAAhj4AAIC7AABMvgAA-D0AANi9AAAEPgAAf78AAIa-AAAQPQAALD4AAJg9AACYvQAAiD0AAIg9AABMPgAAcD0AAIC7AADovQAAUD0AAIi9AAAkPgAAND4AACS-AABQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=4qoqI0MAL5Q","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":360,"cheight":360,"cratio":1,"dups":["1101570071417151840"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"4231430365"},"6040954754154839613":{"videoId":"6040954754154839613","docid":"34-5-3-Z8F09CCAB835296B9","description":"In this video, we will introduce you to discrete mathematics. Let us begin with the question \"What is discrete mathematics ?\" Is it a branch of mathematics ?","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"29","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Introduction To Discrete Mathematics | Discrete Mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pB8GKLB6evE\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNjA0MDk1NDc1NDE1NDgzOTYxM1oTNjA0MDk1NDc1NDE1NDgzOTYxM2qGFxIBMBgAIkMaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoPwg8PGg8_E3SCBCQBgAQrKosBEAEaeIH3BPr--gYA-_z_DwEI_AIEAAAC-f_-APUF9v32Av8A9PoHAQQAAAD8BfX8AAAAAPz5Bwv__gAABAb7B_kAAAAUC_P6AAAAABQF_wD-AQAA_AAC_QP_AAAKCQT7_wAAAPMK__77_wAAAhABBwAAAAD_B_7_AAAAACAALVpU5Ds4E0AJSE5QAiqEAhAAGvABcADxAcsHDf4z8vUA6gj3AIEFC_9EFecA1wELANgQ4QDjEtwAz-wM__IMCwDdCgcADOfbAED8EgAYAfr_LgERAAwRHAAu8vwAJPf7AOQP6v8TAgT_JfkeAQ3v_QADBwj_D_7_AtIA4wDvBfj_AAUTAgL6BwQg_i0CEA4UAvUFBgAE9_8ECfoFA-oCCPf59xz_DAEC_AEF_gb2Bf0D_g7jAwjm_PslDewBHAkFCvX5CvnnBQj3GA4H_Abs7_4HGxv77fQS-gbr_wDW_QoBFd31A_r2GPbtAQH_AinxBfHYAPTmCQH19Qn9_fr6Dgr0CgD_IAAtbidIOzgTQAlIYVACKs8HEAAawAeSB_K-pkALPeCDl7zD_Eu89dvXPf2_aryeOXW9h8kvvLFqkDzSELw77FxiPQNUgrybHaG-RqGbvMhnqDw7GWw-rgzqPIKMJTwOMQ6-TQaRPEfoQrxPeJG-ZxVMPanmi7qQhRg-OgV5PKIwXj0qhjA9svRBPRyfAzycOQE89suOuwKOUrt8zpK9Ji2mvHGNdLxCoLk9230YvbgE_Tt06zU-cBxCvLFU8jzXaBk9nB81vQyR9Dvk9_a8YxXnO0tq8jy1jCQ-P77pvGRrhzxgKqw8xU5CPCkqtDsTUSO8wYYQvFC04bwAOkw9g8OmPYqTuTti9Iw9nn7Qvb52Xbv5oAe-9BqbPS-BgDs7yGs-ANn1POgnZjuy5J47DKTVPIVN0zwfPMm8710cPOl0ajwBIz492FlevZAJgrzIbWq7zJGZO64iijti7yo9fkC5Oo7Y_rrRpF68ZqwsPfdeV7tTqb48wauGu-xDh7vieA6-wGr6O1T1-rrxEvw9wCicva0oa7unB2U9W5TZPNjCYjy64pg8h086vNvG-rsbG7A8NADKPCT-l7xqTIg9AWikvbgj-7vrucY9-ibNPdzptTra5ua9S2E5PCFVObxHVOg8zCg2vSqFCLzxKQU9ennwPNdkFTxwwYg8B5WdvPBwGrzB6h-7SOxJPNKXFDyVjXi9666HvAwiTjv44us9fJVBPUX-sroWGNK9Wt92vAHXHrqDwEo9zM6muwA3C7tyVIk8JwUsveQViDso4H86NHaDPX_jpbosTee6WPkKvaFDYzoA8tS8hoEdPe0nnbjTiT893kcBPBhwbzoFC6-7KW37vBsV3ziV7ce6N-lSuGchTLqeEmu98mMnPI0fQDnkgrM8DtcqPVDjaLouFLq8ozKPPNRPSLoL1yG8HG98PYzBrLirbVQ8tyhzvY6q1beiaQG8IqQTvQmtYrndz-m8d-R-vL82tbiIUAC9rsLeu7QDWrhRlBU9lHtrveK4ezkZ0IM7mGDAO_m6wLisYya8BlZEvOQuALn12eC6GhrqvFhVyDcGnCW8jGrRvfpT9zfW7By9UInQPJyqXTjsJZe9A5vOvER4ETgNZg06nZCMvD0ztribr209M-KdvFfmmzcX0xE9RtmBvTv-EzgThow9Td1FOpDbnbiBQQ68_PkbveMlHbhUdpU81rWsPEYeJDecfES9C6gBvU-jh7c_jsY9K94IvocitLigFw49FyW9PSh_ADnwsjW9XMzPPQxGCrkv0lW84efkPGKkMrfNZ2-9IfQivaNQ0rcgADgTQAlIbVABKnMQABpg5gsAN_8UytZCUeTJ7Mj36AMRxh7r9v_u7v8C_svj8STh2-cfAA_eBwC1AAAACur_Dh4A-Gay2cs47vz8vvUHIgV_BywOzCTwCM0pJeC4_CoW5e8gABDftx4kGr8zEPolIAAt5OAuOzgTQAlIb1ACKq8GEAwaoAYAAERCAACIQQAAqEEAACDBAABQQgAA4MEAABxCAADowQAAGMIAABBBAABEQgAAFMIAABDBAAAMwgAAbEIAALjBAACgwQAAkMEAAKBAAACQwQAAEEIAAFDBAACAvwAAcEEAAEDAAACAwQAALMIAAFTCAABwQgAABEIAAFDBAAAAQgAAPMIAAGBCAADgwQAAgL8AAEDAAAD-QgAAPMIAAABBAAAUQgAAgD8AABBCAACQQQAAGEIAAGjCAAAswgAABMIAAGBCAACAQAAA0MEAACxCAACQQQAAQMAAABRCAAAkQgAAAMMAAKDAAABAQQAAHEIAANhBAAAUwgAAQMAAAOjBAAAMQgAAsMEAAJjBAAAEwgAA2MEAAHDBAACAQgAA8EIAAGDBAABAQQAAUEEAAODCAAAwwQAAAAAAAARCAAAAwAAAdMIAAPBBAABgwQAAXEIAAMjBAABAQQAAVEIAAJBCAAAkQgAAMMIAAJDBAABAQAAAMMEAAJrCAACAwAAAYMIAAOBBAACAQAAAAMAAAKjBAAAwQQAADEIAAAxCAABEwgAAIMEAANjBAACgwAAAREIAAJjBAAAUQgAASEIAACTCAADwwQAAkMEAADRCAAAUQgAA0MEAAHjCAABAwAAAoEAAADDBAACiwgAAfMIAAGTCAADwQQAAwEAAAOjBAADIwQAAFMIAACjCAADIQQAAUMEAAPDBAABAQQAAAMIAAMhBAACWQgAAwEAAAAjCAADwwgAAcMEAAKBBAACIQQAAAAAAABRCAAC4wQAAssIAANhBAAAMQgAA-MEAAABBAACowQAACEIAAABBAACAvwAAcEEAAFDBAADMwgAA2MEAAHBBAADowQAAuEEAAODBAAAwwgAAAMEAAIDBAADAQAAAJEIAADRCAABQQQAAssIAAIJCAABwwQAA8EEAAEjCAAC4QQAA8MEAABTCAACaQgAA8EEAAERCAAAAQQAAUEEAAGBBAABQQgAATMIAALDBAABAwAAA2MEAAMhBAACgwQAAdMIAADxCAABAwQAAAEIAAADBAACSwgAAMMIAAJDCAACIwSAAOBNACUh1UAEqjwIQABqAAgAAVL4AABA9AACaPgAAqL0AAKA8AABBPwAAJD4AAGG_AACOvgAAmr4AAEC8AAD6vgAA-L0AADw-AACgPAAAPL4AALI-AABwvQAARD4AAC8_AAB_PwAAsr4AAHw-AAAUvgAAuL0AALq-AAA8PgAALD4AAJg9AADmPgAA8j4AAJa-AAAkPgAAsj4AAKA8AAAwPQAAHL4AAGS-AADqvgAAcL0AADC9AABcvgAAPD4AACS-AAA0vgAADL4AAOY-AAD-vgAAkr4AAL6-AABcvgAA4LwAAIo-AAA8vgAAqD0AAIg9AABbPwAApj4AAHA9AABwPQAA6L0AAHQ-AADYPQAAVD4gADgTQAlIfFABKo8CEAEagAIAACy-AABEPgAAnr4AABO_AACavgAA2D0AAMY-AAC4vQAAND4AAPg9AACIvQAAUL0AAOC8AABAvAAAHD4AAOA8AADoPQAA8j4AAKa-AAARPwAAmL0AAHC9AABEvgAAqL0AAIC7AABwvQAAgDsAAJg9AABsvgAAEL0AAHA9AAC4PQAAEL0AAOA8AABkPgAA4DwAANg9AACmPgAAFL4AAAS-AACCPgAAoLwAAKC8AAAwvQAAML0AADC9AAB_vwAAQLwAAHS-AAC4vQAAXD4AAEQ-AABQvQAAPD4AAIC7AABEPgAAyL0AAMg9AAAMPgAAiD0AALg9AACYPQAAqD0AAHA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=pB8GKLB6evE","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6040954754154839613"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false,"videoContentId":"2137788812"},"7275585654094839023":{"videoId":"7275585654094839023","docid":"34-2-11-ZB6FE964AB8DD1663","description":"Distributive Law| Unit 1| Algebra 1 | Lesson 4 HI, My name is Girish Iyer, Welcome to my YouTube channel NotesforMsc. About Video: In this video, you will learn about distributive law as an...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"30","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Distributive Law| Distributive property | Unit 1| Algebra 1 | Lesson 4","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9JcderDdYr4\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNzI3NTU4NTY1NDA5NDgzOTAyM1oTNzI3NTU4NTY1NDA5NDgzOTAyM2quDRIBMBgAIkQaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoQwg8PGg8_E70DggQkAYAEKyqLARABGniBDgwDAwAAABT9BQkJC_0D_QL0B_j9_QDr-PvzAv8BAP78AgT3AQAA_AYE__cAAAD28v0J9_8BAPoV_gUDAAAAFBQJAwIAAAAPAPsG_gEAAPT3BwIDAAAACvcKAwAAAAD9DvD7_wAAAAEKDv8AAAAADPUABQAAAAAgAC2EadM7OBNACUhOUAIqcxAAGmAHAAANERsQ8yIu-esK2Qjz-Q3yHf4BAOYMAPcc9-8T78_LC-sAJd0R_sgAAAAcL_UkGgAJR83-2hgP7gDs3QIPHH_q_trSAvv34gwg_BQnDwzhHCIAzwEC9x7T9R709DggAC1E2Gc7OBNACUhvUAIqrwYQDBqgBgAABEIAACDBAADgwAAA8MEAAGBBAAAQQQAArkIAAEDAAAA8wgAAAAAAAExCAACswgAAYMIAAMDBAACSQgAAAMAAANDBAACYwQAALMIAAKjBAACgQgAAKMIAANhBAAAsQgAAIMIAAMDAAADQwQAAysIAAFxCAAAcQgAAcMEAADxCAACOwgAAQMAAAEDCAADgwAAAmEEAAOhCAACAwQAAiEEAADRCAABYQgAAdEIAAHBCAADYQQAAssIAABDCAABQQQAAikIAAODAAAAowgAAIMEAAKBAAABAQAAAQEIAAPhBAAAAwwAABEIAANjBAAAYQgAAoEEAADzCAABAwQAAkMIAAAxCAAAUwgAAFMIAAETCAAAwQQAA0MEAABxCAACuQgAAEMIAAAhCAADAwAAAQMIAAJjBAADwQQAAgEAAAIjBAACcwgAAAMEAAAhCAAB0QgAAoEAAANhBAACGQgAAVEIAAGBCAAAQwgAAYEEAACRCAADgQQAAhsIAAGBBAADYwQAAIEIAAHBBAACYQQAA-EEAAODBAACYQQAA2EEAAGjCAAAcwgAAYMEAAHBBAABUQgAAwMAAABhCAABgQQAAYMEAACDBAACEwgAAqEEAAABAAAAcwgAADMIAAIhBAADgQQAAoEAAALbCAAD4wQAATMIAAABAAAAAAAAAgMEAAFDBAAAUwgAAIMEAAADAAADwwQAACMIAAADAAABMwgAAKEIAAKBBAABMQgAA8MEAALTCAAAAQQAAdEIAAEBCAAAgQQAAIEIAAKBAAAAYwgAA-EEAALBBAAC4wQAAkMEAAOhBAACIQQAAAEEAAADAAABwwQAAQMAAAJLCAABYwgAA4EEAAADCAACAQQAA4MAAAHDBAAAwwQAAQMEAANhBAACsQgAA4EAAABhCAADYwQAASEIAADjCAADAQQAAIEEAAIDAAACwQQAAAMEAADhCAAAgQgAAgD8AADzCAABIwgAAoEAAADhCAAAYwgAAGMIAANBBAABAQAAAoMEAAOjBAACMwgAANEIAAHBBAACAQAAAgEAAAGTCAACgQAAAwMAAADTCIAA4E0AJSHVQASqPAhAAGoACAACgPAAADD4AABw-AAAwPQAAML0AAMY-AACAuwAAxr4AAOK-AADIvQAAqL0AAEC8AAAQPQAAiD0AAJ6-AABAPAAAfD4AACy-AACgPAAA6j4AAH8_AABEvgAAXD4AAHC9AACCvgAAJD4AAIg9AACIvQAAUL0AAAw-AAA8PgAAUD0AAPi9AACSPgAARD4AABy-AADIPQAAdL4AAIa-AABUvgAAtr4AAEC8AACWPgAAoLwAAAy-AAAcPgAAgj4AAEy-AADovQAA2L0AALi9AABMvgAAqD0AAAw-AADYvQAAmL0AAAk_AABwvQAAUD0AAEC8AABkvgAAFD4AAJg9AAAMviAAOBNACUh8UAEqjwIQARqAAgAAmr4AAOg9AABQvQAAG78AAJI-AAB8PgAAhj4AAIA7AACgvAAAPD4AAIa-AACYPQAAfL4AAFy-AACAuwAAiD0AAAS-AABDPwAAFL4AAMY-AAAcvgAAFL4AAHA9AAAQvQAAFL4AAMg9AABMvgAAmD0AAHS-AAAkvgAAED0AACQ-AACAuwAAcD0AAOg9AAAMvgAA2j4AAAQ-AABkvgAAJL4AAGQ-AAAwvQAAQLwAAAy-AACgvAAAgLsAAH-_AAC2vgAAML0AAOg9AAA0PgAA6D0AAJI-AADIPQAAqD0AABA9AAAwvQAAgr4AALg9AABMPgAAmD0AAHA9AABkvgAAiD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=9JcderDdYr4","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7275585654094839023"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"8772517807292220137":{"videoId":"8772517807292220137","docid":"34-8-17-Z8D735EC574980353","description":"Quiz 64: evaluate the expression #shorts #algebra In this video, I ask a math Quiz to solve an expression and write answers in comment. #shorts #math My Other Playlists: Quiz Shorts : • Math Quiz...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"31","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 64: evaluate the expression #shorts #algebra","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=aAifW5C3dFE\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTODc3MjUxNzgwNzI5MjIyMDEzN1oTODc3MjUxNzgwNzI5MjIyMDEzN2qtDRIBMBgAIkMaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoPwg8PGg8_ExCCBCQBgAQrKosBEAEaeIEL9ADwC_IA8fYKAgMF_gH_CAr_9_79ANsR9AUD-wIA-Af_CBMAAAD5_wEHCgAAAAnrBA79_AEADBT9DgUAAAAa7fX1_QAAABkH_wD-AQAA2fQACAT_AQATEP39_wAAAPj4B_sBAAAAABIP8wAAAAAY7wXxAAAAACAALZBnszs4E0AJSE5QAipzEAAaYPIPACYwGBnyKjHe3PSnEgnAMgAQ1RT_CRT_3Rfd0xfx2tvUO_82wRrhqwAAAP4HIR4YAOR23Ne39B0O457H1BAmf9MZBdMb-u397TMfNezOAAYneQDh89oM-DIKMywqLCAALc2oHzs4E0AJSG9QAiqvBhAMGqAGAABwQQAAAEIAAGxCAAAgwgAAwEAAALpCAABoQgAAsMEAAIzCAADAwQAAmEIAAIjBAAA8wgAA4MEAABDBAAD4QQAAQEEAACBBAAA8wgAAZMIAANBBAAAwQQAAkEEAAABCAAAAwgAAVMIAALbCAABAwgAApkIAAABAAACowQAAmMEAAFDCAACgQQAAgD8AAKBBAADYQQAAlkIAAHDBAABwQgAA-MEAALhBAACIQQAAyEEAADBBAABgwQAAIEEAAFBBAACeQgAAFEIAAGDCAACIQQAAFMIAAGDBAAA8QgAAmEEAAJbCAAAkwgAACMIAAIDAAAC4QQAAJMIAAKDAAABwwgAAHEIAAFzCAADgQAAAoEAAADzCAACAQAAAskIAACBCAABAwQAAEEIAADhCAACYwQAAkMIAAEDBAABsQgAAbEIAAEDBAAA4QgAAQMAAAMDAAAAwwgAAIEEAAI5CAACIwQAAMEIAAIA_AAAUwgAAMEIAAODAAAC8wgAAFMIAAHjCAABgQQAAOMIAAJBBAACAwQAAcMIAACBCAAA4QgAAYEEAAIzCAAAAwQAAEMEAAFxCAAAQwQAA8EEAAHhCAACIQQAA0MEAAGBBAAAQQQAAEEIAAODAAAD4wQAAYEEAADjCAACAQQAAoMEAACTCAACIwQAAIEEAAEBAAACEwgAAqMEAAKDCAAAMwgAAqEEAAMLCAADAwAAAkMEAADDCAABcQgAAoEEAAPhBAADAwAAAPMIAAEDBAABEQgAAsEEAAMBBAABUQgAAEEIAAIbCAACgQQAAwEEAAABBAABQQQAAisIAAABCAADgwAAAEEEAALjBAACWwgAAKMIAAATCAACwQQAA6EEAAPBBAAAMQgAAAEEAAEDCAABgwQAANMIAANBBAACwwQAAQEEAAITCAAB0QgAAgMEAACTCAAAAwQAAMMEAAKBAAACGwgAAhkIAAMDAAACSwgAAmMEAAIjBAACYwQAAoEEAAKzCAAAYwgAAoMAAALjBAAAwwQAA0EEAAEzCAACIQgAAVEIAAFDBAACAwAAAKMIAAPjBAAAAQgAAgMAgADgTQAlIdVABKo8CEAAagAIAAOA8AABsPgAAPD4AAJg9AADYPQAA6D0AAIi9AADevgAAtr4AACQ-AABkPgAAgr4AAKo-AAA8PgAA4DwAABy-AABsPgAAQLwAAKA8AADSPgAAfz8AAEC8AAA8PgAAyL0AALq-AAAQPQAADD4AAFC9AACovQAAED0AACw-AACovQAAHL4AAGQ-AABwPQAA3r4AAFC9AAAsvgAAur4AABS-AAD-vgAAmj4AAJY-AABAPAAAtr4AACQ-AABwPQAAVL4AAKA8AADIPQAAgr4AAIC7AAAsPgAAvj4AANi9AABAvAAALT8AALi9AABkPgAA2D0AACy-AABAvAAA-D0AAIK-IAA4E0AJSHxQASqPAhABGoACAAA0vgAAUL0AACQ-AABJvwAAHD4AAKC8AADYPQAAML0AAIi9AAA8PgAAqD0AAJi9AAB8vgAAkr4AAOC8AAAwPQAAqL0AAHc_AADYPQAAHD4AAMg9AAD4vQAAdD4AANi9AABMvgAAFD4AAMa-AABEPgAAoDwAAOA8AADoPQAAHD4AACS-AACAOwAA3j4AAIC7AAAbPwAAgDsAAM6-AAAUvgAA1j4AAOA8AACivgAAgDsAAOi9AACePgAAf78AAJq-AABAvAAADL4AAEC8AAAEPgAAgj4AANg9AABcPgAAuD0AAIC7AABEvgAATD4AAAS-AAAEPgAAyD0AAGS-AABAvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=aAifW5C3dFE","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["8772517807292220137"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"946889001183172837":{"videoId":"946889001183172837","docid":"34-4-13-ZA1407F0F416E4458","description":"Example 5 | Prepositional logic | Find the truth value | discrete math #shorts...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"32","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Find the truth value | prepositional logic problem solution |discrete math #shorts","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pMdSg9Q_uoM\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFAoSOTQ2ODg5MDAxMTgzMTcyODM3WhI5NDY4ODkwMDExODMxNzI4MzdqrQ0SATAYACJDGjAACiloaGJibHpxbnVweWZqaHpoaFVDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdxICABEqD8IPDxoPPxM8ggQkAYAEKyqLARABGniBCwXz_Qf4AAP5DxAGDPkDHfsH__QDAgDjEPz4CP0BAPr8Af__AAAA_gjyCPsAAAAQ_u8K__0CAOwEAwb0AAAAHAL9APYAAAASCQYD_QEAAAP19_gD_wAACfkC_P8AAAAFAAcL-v8AAAEbAvQAAAAACvQJAwAAAAAgAC1Hnb87OBNACUhOUAIqcxAAGmALIAAgIgjt1RZas_zate_-yDHT0usM_wrY_wAbAbrpyuTLBAr_NMMrBaUAAAAVDLYqMAClf-TdlAUV-tm7JfD4RXgMFPruKvfgnPP27Se4FgccCBAA2-X_Hwb8vS_5FRUgAC002hk7OBNACUhvUAIqrwYQDBqgBgAAeEIAAIBBAABgQgAAYMEAANjBAAC4QQAAWEIAAJDBAACiwgAAAMAAACxCAABMwgAAsMEAACBBAAAAwAAA2EEAAIZCAAAowgAAikIAAODBAADwwQAAkEEAAI7CAAB0QgAAisIAAJrCAAB0wgAAQEEAAEBAAABQwQAAPMIAAIBBAABIwgAAPEIAADDCAACAQAAAsEEAACBCAAAcwgAAQEIAADDBAAAAwAAALEIAACDBAABAQAAAIMEAAJBBAACQQQAAgkIAALhBAACgwAAAJMIAAEzCAAAwQgAAYEEAAAhCAACOwgAA4EAAAABCAAAcQgAAEEEAAFzCAAAAAAAAfMIAAABCAACUwgAAgL8AAMDAAACKwgAAyMEAAARCAACcQgAAgMEAAJBBAACgQAAAgMEAAMbCAAAAwQAAAMEAAMBAAABgQQAAjkIAANDBAACAQAAAQEEAAFhCAAAAQAAAHMIAABBCAADgQAAAEEIAAJZCAAAEwgAAQMIAAFBBAABAwgAAwEEAAJDBAACgwQAAFEIAAIDCAABwQQAAQEIAAAAAAADewgAAuEEAAMDBAAA4QgAAYMEAAFBCAAB4QgAAhEIAAEDBAAAkwgAAgEAAAHBCAABwwQAARMIAAEDBAACowQAAuMEAALjBAADowQAAiMEAAIC_AACAPwAAUMIAAIjBAABMwgAAAEAAAAzCAACEwgAAMEEAAMDAAAB4wgAAskIAADDBAAA8QgAAEEIAAMLCAACgwAAAQMEAABBCAABMwgAABEIAAAxCAAC4wQAAFEIAAADAAABsQgAAUMEAAIC_AABEQgAAIMEAAMBAAADYwQAAjMIAACzCAACYwgAADMIAABDBAADAQAAAXMIAABhCAAAAQQAAwEAAAOjBAABMQgAAYEEAAIjBAAAAwAAAgEAAAIDBAACYwQAAAMEAAOhBAAC4wQAAgEAAAKBBAACQwQAAAMMAAHjCAABgwQAAuEEAANhBAABYwgAAjsIAAFBBAACAPwAAAAAAAOBBAACIwQAA-EEAAEBBAABQwQAAyEEAAADCAACYwQAA-EEAAODAIAA4E0AJSHVQASqPAhAAGoACAAAcPgAA4LwAANI-AADgvAAABL4AAN4-AACIvQAAKb8AAI6-AADgvAAAgLsAAIK-AAC4PQAALD4AAES-AAAkPgAAbD4AAIC7AACIPQAAzj4AAH8_AAAMvgAAPD4AADA9AABwvQAAML0AADA9AACgPAAARD4AABw-AABMPgAA-L0AAFC9AABsPgAAML0AALi9AAAwvQAAXL4AAMa-AACCvgAAor4AAKC8AABcPgAAcL0AAK6-AAAEvgAAPD4AAJa-AAD4PQAAcD0AACw-AAAwvQAAqD0AAKg9AAAsvgAA4LwAAC0_AAAUPgAAcD0AAHQ-AAC4PQAAuD0AAII-AACYvSAAOBNACUh8UAEqjwIQARqAAgAADL4AAAQ-AAAEPgAAH78AAOi9AAAwPQAAmD0AACw-AACYPQAAZD4AAEA8AACAuwAAED0AAHC9AAAEPgAAoLwAABA9AAAhPwAAEL0AAMI-AADYvQAAyL0AABC9AADovQAA4LwAABA9AABQPQAAiD0AADS-AAAMPgAAUL0AAOg9AABAvAAA-D0AABQ-AABQvQAAMD0AALY-AAAsvgAAiD0AALg9AAAcvgAAEL0AAOA8AACgvAAABL4AAH-_AAAMPgAAJL4AAEC8AAAQPQAA2D0AAIY-AAC4PQAAQDwAAJg9AACAuwAAyL0AAJg9AABwvQAA2D0AAIC7AABQvQAAyD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=pMdSg9Q_uoM","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["946889001183172837"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"5213591206603222553":{"videoId":"5213591206603222553","docid":"34-0-17-Z4A45EFE18BB56CBD","description":"видео, поделиться, телефон с камерой, телефон с видео, бесплатно, загрузить...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"33","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 27: What is this notation of set called? #shorts #math #shortvideos #mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=F3OSlcxG6rQ\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNTIxMzU5MTIwNjYwMzIyMjU1M1oTNTIxMzU5MTIwNjYwMzIyMjU1M2qtDRIBMBgAIkMaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoPwg8PGg8_ExCCBCQBgAQrKosBEAEaeIHy_P_1_gIA9_sU_f0E_wEMAPv69gAAAO4J8AAEAAAA_ggCBgYBAAAJ9PD9BQAAAPby_Qn3_wEA-QX4BgMAAAAT-QL-9wAAABcJ9gj-AQAA6vYMCAMAAAAGEgEAAAAAAAAEA_b7_wAA_gn_AwAAAAAMBgj6AAAAACAALR091js4E0AJSE5QAipzEAAaYPYYABAYHO_LJRbp8fXdCfD3B_T68-sABO8AAhTZ1BQM0-cFIwAW6SbvzAAAABAA7hsSAL4_AOgAABwA9eT37QgAfw8S4CEW_PT6Bgf39QX44MMW9QD--x8GAx7mNyshIiAALenjcTs4E0AJSG9QAiqvBhAMGqAGAACYQQAAuEEAANBBAAAwQQAAgMAAAFhCAAAcQgAAJMIAALTCAACQwQAAREIAAPDBAAAowgAA2MEAAPBBAADIQQAAuEEAACxCAACQwgAA2MEAAChCAABgwQAAuEEAADBCAAAQwQAAMMIAANjBAAA8wgAAukIAAHBBAABUwgAA4EEAALLCAAAAQQAAMEEAANhBAAAgwQAAcEIAAIA_AACQQQAAIEEAAGDBAAAMQgAAbEIAAKDAAABQQQAAAAAAAKDAAAA8QgAAcEEAAJrCAACIwQAA2MEAAAAAAABgQQAAnkIAANbCAADYwQAAgMEAAEDBAABQwQAAtsIAAOBAAABswgAAGEIAAGjCAAAwQgAAkEEAADzCAACAvwAAgkIAABxCAABAQQAAkEEAAGBBAABAwAAA4MEAACRCAAA0QgAAuMEAABDCAAA0QgAAsEEAANjBAACowQAAwEEAAMBBAABAQQAAAEEAAPBBAABAQAAAwEEAAKDBAADywgAAkMEAAIBBAACAvwAAJMIAAADCAAAswgAAZMIAAAAAAABIQgAAgMAAAFTCAABQwQAAwEAAABRCAADwwQAAyMEAAGBCAAAIQgAAoEAAAIDAAACwQQAAYEEAAMjBAABQwgAAFEIAAMDBAACuQgAA8MEAANDBAAAwwQAAAMAAAKjBAAA4wgAAmEEAAFjCAACAPwAA6MEAAHTCAAAgQQAA-MEAAEjCAAA0QgAAgEAAAABBAADwwQAAoMIAAJBBAADoQQAAdEIAAAAAAAAMQgAAkMEAAEDCAAAIwgAA4EAAAPhBAABAQAAAdMIAAJBBAABAwQAAmEEAAGDBAACswgAA6MEAANDBAADQwQAAIEIAABBBAABYwgAAfEIAANDBAACAwQAAQMIAAFBCAADgwQAAoEAAAETCAAC0QgAAmMEAAIhBAACgQQAAuEEAALjBAABgwgAAcEIAAIpCAACKwgAALMIAABTCAAD4wQAAHEIAAPjBAACKwgAASEIAAFBBAAAwQQAAoMAAAIzCAACOQgAACMIAAHTCAADwQQAAnMIAAFDBAADAwAAAsEEgADgTQAlIdVABKo8CEAAagAIAABC9AACYvQAALD4AALg9AABQPQAAbD4AAES-AADivgAAHL4AADw-AADgvAAAQLwAANg9AAAkPgAAkr4AAEA8AABcPgAAcD0AANg9AADCPgAAfz8AABA9AACYPQAARD4AAJg9AABsvgAAmD0AALi9AABUPgAAbD4AAFA9AAC4vQAAgDsAAJi9AADIvQAA4DwAACw-AAAEvgAAir4AAHy-AABkvgAAiL0AACQ-AACYvQAANL4AAOi9AABEPgAARL4AADA9AAD4vQAALD4AADC9AACiPgAAiD0AAMi9AACYvQAAFz8AAOA8AAAEPgAAUD0AAAS-AABUPgAAyD0AABC9IAA4E0AJSHxQASqPAhABGoACAABEvgAABD4AAOA8AAAjvwAAUL0AAHC9AAAcPgAAcD0AAFA9AAAkPgAAMD0AAOi9AABAPAAAQLwAABA9AABwvQAAQDwAABs_AAAEvgAAmj4AAHA9AAAQvQAAED0AAGy-AABAvAAA2D0AAEC8AADgPAAAUD0AAGw-AADgPAAA2D0AAGS-AAAMvgAAcD0AADC9AABQPQAAbD4AAES-AABQvQAAND4AABC9AACoPQAAqD0AAHC9AACgPAAAf78AAAQ-AABQvQAAuD0AAJg9AAD4PQAADD4AACQ-AABkPgAA4DwAAIA7AADYvQAAcL0AAIi9AABwPQAAML0AADQ-AACYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=F3OSlcxG6rQ","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["5213591206603222553"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"9155357312408326148":{"videoId":"9155357312408326148","docid":"34-3-14-ZE23F48E99EFB3DFC","description":"Distributive Property #shorts #algebra #math Description : In this short video, I will introduce you to distributive Property which help expand math expression into expanded form. My Other...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"34","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Distributive Property #shorts #algebra #math","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hhz8Xh5PwhQ\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTOTE1NTM1NzMxMjQwODMyNjE0OFoTOTE1NTM1NzMxMjQwODMyNjE0OGqtDRIBMBgAIkMaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoPwg8PGg8_EzyCBCQBgAQrKosBEAEaeIELBfP9B_gAFv0FCgoM_QMB-_X89_39AOEC7vYD_AIAEPIDB_7_AAADCfj79gAAAOr0-QgAAQAACxL9DQQAAAAVAxQA_gAAABoH9Pj-AQAA6f8CCgT_AAAP9Ab2_wAAAAkF-_wFAQAABAYUBwAAAAAS_QoFAAAAACAALUedvzs4E0AJSE5QAipzEAAaYNsGAAofLh7VLxDpyADAEfTsIucU7gX_7QcA_xfy8hfpy-QKEP8x1xjsvAAAAAhDEBgaAOlZuevSAxYR-K7QEyspf-wT2NQd6-UBDxwJDQ0BFMsXFgDZ7u4HJvoGIwL_RiAALdkuQzs4E0AJSG9QAiqvBhAMGqAGAAAYQgAAMMEAAIBBAABIwgAAmEEAABxCAACiQgAAAMAAAKDCAACAPwAAREIAAJrCAACQwQAAiMIAAMhBAAAEQgAAMEIAAJDBAADYwQAAIMIAAIBAAABMwgAAoMIAACBCAAB0wgAALMIAAODBAAAgwQAAgEIAACBBAAAowgAAQEAAAIbCAAB0QgAAMMIAAGDCAAAMQgAAgkIAAIBBAACoQgAAUEIAALjBAABcQgAAIEEAACDBAACowQAAsEEAAIhBAAA0QgAAUEIAAGjCAABIwgAAcMEAABDCAADgQAAAOEIAANDCAABQQQAAAMIAAIBBAAAQQgAARMIAAIBAAADIwQAAsMEAAK7CAABAQQAAJMIAACBBAAAgwgAAREIAAGxCAABAwAAAEEIAAABBAAAYwgAAjsIAADDBAABEQgAAPEIAABDCAAC-QgAAUEEAAFDBAAAQwQAAPEIAAPDBAABgQQAASEIAADhCAACwQQAASEIAACTCAADewgAAgD8AAIC_AACYwQAAFMIAAODAAAAgQQAA6MIAAIZCAABgQQAAiMEAAADCAABAQQAAkMEAAMhBAABwwQAAUEEAADBCAADIQQAABEIAAAAAAADAwAAAPEIAAFDBAACgwQAAMEIAAEDAAABQQQAARMIAACBBAACowQAAgMEAAGBBAACGwgAA4EEAAODBAACgQQAA8MEAAODBAABAQQAAuEEAAJDBAACgQQAAMMEAACBBAAAAwAAAhMIAABzCAADYQQAAgD8AAMBAAABUQgAAPEIAANjBAADIwQAAqEEAAIjBAADYQQAAQMAAAERCAABQwgAAEEEAALhBAADYwQAAgMIAAMDCAAAQwQAAgEEAAOhBAADQwQAAUEIAADDBAADAwAAAoMAAAHRCAADQQQAAAEAAAADBAABgQQAACMIAAIhBAABQwQAAoEEAABDBAADYwQAAHMIAALJCAACowgAAFMIAAOBAAABAQQAAKEIAAIC_AACWwgAAfEIAAIjBAADgwAAACEIAAGjCAACoQQAAgL8AAHzCAABQQgAAMMEAABBBAAAQwQAAMMEgADgTQAlIdVABKo8CEAAagAIAAOi9AACIvQAAND4AAHA9AABAvAAAAz8AAKC8AAATvwAAC78AAHA9AACoPQAAXL4AAAQ-AABwPQAARL4AAOA8AADCPgAA-L0AALg9AADePgAAfz8AAFC9AAC6PgAAyL0AAHy-AACAuwAA4DwAAFS-AACIPQAAHD4AAI4-AACoPQAABL4AAFw-AACAOwAAir4AAOi9AADgvAAAtr4AAAS-AAABvwAAQLwAANY-AAAwPQAAzr4AAAw-AAAMPgAAxr4AAEC8AAAwPQAA4LwAAIa-AABMPgAA-D0AAMi9AADIvQAAMT8AAEQ-AADgPAAAML0AACy-AACoPQAA-D0AAJi9IAA4E0AJSHxQASqPAhABGoACAABsvgAAPD4AAOA8AAAbvwAAgLsAABw-AACiPgAAMD0AALg9AAA0PgAA-L0AAPi9AACCvgAAFL4AABC9AACYPQAAoDwAAD0_AABsvgAAoj4AAMg9AADovQAA4DwAALi9AAAUvgAAFD4AALK-AAA0PgAATL4AAKi9AAC4PQAADD4AAHA9AAAQvQAAmj4AAIC7AAARPwAAfD4AAFS-AAAsvgAA_j4AAMi9AADgvAAARL4AAIC7AAAEPgAAf78AAPi9AABMvgAAED0AAFw-AACWPgAAvj4AAAw-AADoPQAAuD0AALi9AAAcvgAAPD4AAJg9AADIPQAAMD0AABS-AACOPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=hhz8Xh5PwhQ","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["9155357312408326148"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"325374341166670081":{"videoId":"325374341166670081","docid":"34-6-13-Z1B3CA077464553B2","description":"simplify, expression, math, quiz, math quiz...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"35","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 37: Simply the expression. #shorts #math #algebra #mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=emsLmXSurhM\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFAoSMzI1Mzc0MzQxMTY2NjcwMDgxWhIzMjUzNzQzNDExNjY2NzAwODFqrQ0SATAYACJDGjAACiloaGJibHpxbnVweWZqaHpoaFVDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdxICABEqD8IPDxoPPxMQggQkAYAEKyqLARABGniB-v778wrzAPv4BwkCCfwCBwj2APX__wDqC-4ABQAAAAD2_g4KAAAAA_3r_fkAAAAJ6wQO_fwBAPsIAgDsAP8AGwX8_AMAAAAgFP8A_QEAANn0AAgE_wEADhAR9QAAAAAXBfbz____AAoaB_4BAAAADwcK-QAAAAAgAC1sQbU7OBNACUhOUAIqcxAAGmDNCQAWKBP_xk0i18L5zg0ABSrJFtcD_xMLAAYE9tcVCt3gIjH_Ec0V4bQAAAAG_gMKHgCxZ83LxgIk-AGv0_UgI3_aEO0JLe_o2P4x9gsKAujmIkMA7BXcCDAr6jcgLjsgAC3xPi87OBNACUhvUAIqrwYQDBqgBgAAiEEAAMDAAABcQgAAAMEAAJjBAACcQgAAhkIAAHDBAACwwQAAgMEAAIhCAAAQwQAAcMIAAJBBAACQQQAABEIAAIBBAAAAwAAA4MAAAKDBAACAQQAAEEEAAAAAAABQQgAACMIAABjCAAAwwQAAWMIAAMBBAAAQQQAAoEAAAODAAACIwgAAEEEAAEhCAAAkQgAANEIAALxCAABAQAAAUEEAAADCAAAAQQAAqEEAAMDBAADoQQAAUMIAAJBBAAAAQAAAkkIAAGRCAAAkwgAAgL8AAEDBAACcQgAA4EAAALhBAADgwAAAdMIAAEBBAAA4QgAAuEEAAGDCAABgQQAAgMEAABDBAAAAwgAAQEAAABBBAAAkwgAA-EEAAHRCAACwQQAAFMIAALhBAABEQgAAiMEAAIDCAACAQAAAcEEAAEhCAADAwAAArEIAAAAAAABgwQAAIEEAAMBBAAAEQgAAcEEAAGBCAACgQQAAnsIAAFhCAADwwQAANMIAAKDAAAA8wgAA4EAAAEDAAAAwQQAAgD8AAPjBAABAQQAAQEEAAEBCAADOwgAAZEIAAEzCAABwQgAAhsIAAAxCAAA4QgAAgD8AALjBAACIQQAA4EAAAABCAAAAAAAABMIAAADBAACAwQAAAMIAACTCAAAgwQAAoMAAAGBBAACAwAAAYMIAABzCAABowgAAwEAAAODAAACYwgAAgL8AAIhBAACgwgAAyEIAAEBBAACgQAAA4MAAACzCAAAwQQAAKMIAABhCAADgQAAAfEIAAIJCAAAMwgAAuEEAALBBAABgQQAATMIAAADCAAAMwgAAKMIAAFBBAADgwAAAosIAAIzCAABkwgAAkEEAAI5CAADgwAAAyEEAAJDBAACgwQAAUMEAADDCAABAQAAAgMIAAIC_AAA8wgAAMEIAAIDAAAAgwgAAQMAAAGjCAABUwgAAAMIAAJZCAAAUwgAA8MIAAFDBAABgwQAAAMEAADDBAADywgAAmMEAALDBAAAQQQAAIMEAAFhCAADYwQAANEIAAKBAAAAgwQAAqEEAAKDAAAAAwQAAGEIAAEhCIAA4E0AJSHVQASqPAhAAGoACAACYvQAAmD0AAII-AABwPQAAyD0AAJI-AAA0vgAAKb8AAGS-AAA0PgAAUD0AAJ6-AACAuwAAtj4AAEA8AABAPAAApj4AAIg9AAAEPgAA5j4AAH8_AAAwvQAAZD4AABC9AAAUvgAATL4AAOg9AACgvAAAPD4AABQ-AAAUPgAA2L0AAAQ-AABAPAAABL4AAIi9AAAwvQAA-L0AANq-AABkvgAAsr4AAOA8AABMPgAAQLwAAJq-AACovQAAfD4AAHy-AABAPAAAiL0AAAw-AACAuwAAoj4AAKY-AABkvgAAoLwAAF0_AAAcPgAAND4AABy-AABAvAAAoDwAAEw-AAB0viAAOBNACUh8UAEqjwIQARqAAgAAPL4AAJg9AACAOwAANb8AAEA8AACIvQAAXD4AABA9AAAMPgAAUL0AAKC8AABwvQAATL4AAES-AACAuwAA4DwAAIi9AAATPwAAfL4AAKI-AABAvAAAiL0AAOi9AABMvgAAqL0AAIg9AAA0vgAA4DwAAEC8AADoPQAAED0AABQ-AACIvQAANL4AAPg9AABQPQAABD4AAFA9AAA8vgAA6D0AAEw-AACKvgAAyL0AALg9AABcvgAAoDwAAH-_AADIvQAAPL4AADA9AABQPQAA-D0AABw-AABQvQAAVD4AADA9AACYvQAAFL4AALg9AAAwvQAAML0AAIi9AACgPAAADD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=emsLmXSurhM","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["325374341166670081"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"1435330336767687720":{"videoId":"1435330336767687720","docid":"34-8-0-Z06EAFC6E6BE3AAE1","description":"Book Preview | Discrete Math for computer Science | Tremblay and Manohar #shorts #math #bookpreview Discrete Mathematical Structures WITH Applications TO Computer Science Paperback – 1 July 2017...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"36","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Book Preview | Discrete Math for computer Science | Trembley and Manohar #shorts #math #bookpreview","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=i8PHq3cwiD0\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTMTQzNTMzMDMzNjc2NzY4NzcyMFoTMTQzNTMzMDMzNjc2NzY4NzcyMGqtDRIBMBgAIkMaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoPwg8PGg8_Ez2CBCQBgAQrKosBEAEaeIEEC_MBAAAA-_UIAPoF_gIMAPv69gAAAOQC8PcD_AIA_wQN9AgBAAAI__v3-QAAAP4D_xD3_gEABfn7C_IA_wAgDf35-wAAABQBCf3-AQAA9foG-QIAAAANFQoBAAAAAAUA-P79_wAADggC_AEAAAAA-vz5AAAAACAALXgc1Ts4E0AJSE5QAipzEAAaYPsMABMiFATOGxjw1vbbAP8UGeka6gcAC_8A8P3j9w7y9sUIBP_z7QH4zQAAAAEO9A8qANZCEefeBvP5FNj7FP8jfyIeAPkcCPrrLA_rBAwV_BYVMwAT8_H7CvPfKQgnBCAALSN5ezs4E0AJSG9QAiqvBhAMGqAGAADgwAAAZEIAALBBAAAEwgAAOEIAACBCAACwQQAArsIAAIBAAABswgAAQMEAABDBAAAAwgAAgMEAAGRCAACgQQAA0MEAADhCAACGwgAAaMIAAOjBAABAQQAAgD8AANBBAACgwQAAwEEAADzCAACmwgAANEIAAKDAAABwwQAAAEIAAKjBAACYQQAAbMIAALhBAAAkwgAAlkIAAEzCAACGQgAAmMEAAMDBAAA4QgAALEIAAIBBAAC4QQAAIMEAAADCAADwQQAA0MEAAKDBAACcQgAAAEEAAPjBAADQQQAA4EAAAOzCAAAAQAAAJMIAANhBAAAQQQAAgL8AABDBAADAwQAAGEIAAPDBAAAAQAAAIEEAAPjBAAAQwQAAdEIAAABAAABwQQAAqEEAAODAAACGwgAAiMIAAADBAABUQgAAnEIAANjBAACgQAAAuMEAABRCAACwQQAALEIAAFBCAAAAQQAAikIAAPDBAAAAwAAA4EIAACBCAABEwgAAIEEAACDCAACUQgAAYMEAAEBAAABAwQAAEMIAABhCAACkQgAADMIAABDCAAAwwQAAisIAAKhBAABwwQAAAEAAABhCAAD4QQAAgMAAAADCAAAQwQAANEIAACzCAABIwgAAIEIAAETCAABgQQAAiMEAAOjBAACQwQAAgMAAAHTCAABAQAAAgL8AAHDCAAAswgAA4EEAADjCAADIwQAAgEAAAEDAAAAcQgAAIEIAAMDBAACcwgAAwMIAAHTCAAAoQgAAWEIAALDBAAAAwAAAUMEAAIDCAAAQQgAAOEIAAChCAACAvwAAgEAAAM5CAACoQQAAGMIAAAhCAABAwQAAhsIAAPjBAAAgwQAAKMIAAMDAAABEwgAA6EEAAATCAACgQAAAyEEAADhCAAA4QgAAQEEAAFTCAABEQgAAMMIAADDBAADgQQAAwEEAAEBAAAAQwQAAskIAAATCAAAYQgAAdMIAANBBAAAswgAAeEIAAMDBAADYwQAA4EEAACDBAAAAwQAAsMEAAEDCAABQQQAAoMAAAEBBAABgQgAAYMIAAITCAADowQAABMIgADgTQAlIdVABKo8CEAAagAIAAGS-AAAkvgAAsj4AAOA8AABAvAAACz8AAEC8AAArvwAAdL4AAEC8AABQvQAAML0AALg9AACyPgAAgLsAAAy-AAC2PgAAEL0AAHA9AADSPgAAfz8AALi9AACOPgAAFD4AAEA8AAAwvQAA6D0AAOA8AADYPQAATD4AANg9AAD4vQAA4LwAAFQ-AADYPQAAFL4AADC9AAC4vQAAhr4AAHC9AABUvgAAqL0AAMg9AACAOwAAnr4AANi9AACmPgAAHL4AAEy-AABkvgAAuD0AAEC8AABsPgAAUD0AAFS-AACgvAAATT8AAHw-AADoPQAAMD0AABC9AAD4PQAA6D0AALi9IAA4E0AJSHxQASqPAhABGoACAACYvQAAZD4AAIC7AAAlvwAAHL4AADA9AAA0PgAAUD0AAEA8AABkPgAAoDwAADC9AACovQAAyL0AAII-AACAuwAA2D0AABE_AACgvAAABz8AAKC8AABAPAAAmL0AACy-AACYvQAAQDwAADA9AADIPQAAgr4AADA9AACgvAAAmD0AAKg9AACYvQAAUD0AAFA9AADgvAAAtj4AADy-AABAvAAAcD0AADC9AADgPAAAgLsAAKA8AAAwPQAAf78AADC9AADovQAAgDsAAKA8AADYPQAAiD0AAPg9AACAuwAA6D0AAEC8AADYvQAA6D0AAKA8AABwPQAAMD0AANg9AAAcPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=i8PHq3cwiD0","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1435330336767687720"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"15436969625669454456":{"videoId":"15436969625669454456","docid":"34-9-6-Z0F00265F58E84D48","description":"Rewriting expression using math laws #shorts #math #prealgebra #algebra1 HI, My name is Girish Iyer, Welcome to my YouTube channel NotesforMsc. About Video: This third lesson from Unir 1 of...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"37","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Rewriting expression using math laws #shorts #mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9u7UFN0h5AI\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFgoUMTU0MzY5Njk2MjU2Njk0NTQ0NTZaFDE1NDM2OTY5NjI1NjY5NDU0NDU2arkNEgEwGAAiTxo8AAo1aGhqZ2Vldm5zcWhnd2lkY2hoaHR0cDovL3d3dy55b3V0dWJlLmNvbS9ATm90ZXNmb3JNc2MSAgASKg_CDw8aDz8TPIIEJAGABCsqiwEQARp4gfsAAfr_AgADCwoNAgr6AgsA7wH2__8A9QD19AMC_wD49gQADAAAAAj-8QgCAAAA9vL9Cff_AQANAvgQAgAAACAN_fn7AAAAGxH_AP4BAAD1_gMEAwAAABsQA_3_AAAACwgD-f7_AAAPAg0KAAAAAAz-_gEAAAAAIAAtWSbXOzgTQAlITlACKnMQABpg5woAIScfK8sCGOztBscH7-Et3BDOAAD1_v8AGwjpEu3c5Bgx_zOxLei1AAAAIBIGBDMAyWfE0bEPK9gMr_0JLhJ_9Qr8DCn-4NH_9tYG-QDtyQQkAAzZ2QInINJEFzUfIAAtanQyOzgTQAlIb1ACKq8GEAwaoAYAAHBBAADAQAAAgD8AAHTCAACAQAAAYEIAAHxCAADowQAAVMIAAAAAAAAkQgAAksIAALjBAAB4wgAAJEIAAOBBAAAUQgAAAMAAACjCAAA8wgAAgMAAAIDAAACCwgAAKEIAAIDAAAAIwgAAYMEAAFTCAACKQgAAoEEAAADBAAAkwgAAZMIAAGBCAACEwgAAFMIAAHRCAAC-QgAA4MAAAJBCAACUQgAAAMAAAHBCAABgQgAAIEEAAPjBAABgwQAAMEEAABRCAADgQAAAcMIAAABAAACAPwAA6MEAAARCAABgQgAA9MIAANBBAABswgAAMEEAAOBBAAAYwgAAEEEAAGDBAABYwgAApMIAAEBBAAAgwgAABEIAAIDBAACYQgAANEIAAIjBAAAgQgAAgMAAADzCAAAowgAAKMIAAGhCAACCQgAAXMIAAERCAACAQAAACEIAALDBAAAMQgAAsMEAAIBBAAAgQgAABEIAALhBAAAgQgAAAMIAANbCAACYwQAAcMEAAIDAAAAgwgAAIMEAABTCAAC0wgAApEIAACBCAADgwQAAgEEAAMjBAABEwgAA8EEAAATCAABAQAAAkEEAAOBBAAAoQgAAwMEAACDBAADYQQAAJMIAADDCAABAQgAAgMAAADBBAADowQAAQEAAAIBBAABQwQAAjEIAAKjCAACAwQAAgMEAADBBAADoQQAAcMEAAADAAAAAQgAAMMEAAPhBAACAwAAAmMEAAIDAAAAcwgAA-MEAAFxCAAAAAAAAgMAAAEBBAABEQgAAqMEAAMDBAACAwAAAwMAAACRCAAAAQgAAVEIAAJDBAAAAQAAA6EEAAODAAADIwgAAvMIAANBBAACYwQAA2EEAAEDBAABEQgAA4MAAACBBAADAQAAAgEEAAJBBAACIQQAA-MEAALBBAAAUwgAAIEIAADBBAABAQAAAiMEAAKDAAAAgQQAAkEIAAHzCAACgwgAAsEEAALjBAAAwQgAAOMIAAJDCAABEQgAAEMEAAEBBAACwQQAASMIAABBBAACIwQAAfMIAACxCAAAcwgAAYMEAANjBAADAwSAAOBNACUh1UAEqjwIQABqAAgAAwr4AAKA8AADgPAAAcD0AAOg9AADuPgAAPL4AAD2_AAB0vgAAQDwAANg9AABEvgAAqD0AALo-AABcvgAAqL0AAOI-AAAwPQAAiD0AABc_AABHPwAAuL0AALY-AABAPAAAML0AAFy-AAAcPgAAEL0AAJg9AACgPAAAij4AAJq-AAAsPgAAUD0AAEA8AADIvQAAiD0AAIa-AACGvgAAZL4AAKq-AAAQvQAAZD4AAOi9AACOvgAAVD4AAJg9AADCvgAABL4AAES-AAAQvQAAXL4AAAQ-AABUPgAAtr4AAIi9AAB_PwAAFD4AAAw-AAC4PQAAdL4AAHQ-AABAPAAAFL4gADgTQAlIfFABKo8CEAEagAIAAHS-AAB0PgAAEL0AACG_AAAkvgAAoLwAAN4-AACAOwAAlj4AADC9AACAOwAA-L0AAHS-AAAkvgAAmL0AANg9AAA0PgAABz8AAPi9AADmPgAAHD4AAJi9AAAwvQAAVL4AAES-AAAUPgAAZL4AAPg9AAAUvgAAyD0AACw-AAAUPgAA2L0AAOC8AACGPgAAmD0AAL4-AAAkPgAAgr4AALg9AADqPgAAiL0AAFA9AABwPQAAyL0AAJI-AAB_vwAA2L0AAI6-AACYPQAAVD4AAKY-AAAsPgAA-D0AAJ4-AAAUPgAA-L0AAHS-AADYPQAAcL0AAOC8AABwvQAAcL0AAI4-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=9u7UFN0h5AI","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["15436969625669454456"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"15542022164399667506":{"videoId":"15542022164399667506","docid":"34-4-2-ZA4A176F60BE2A951","description":"math problems...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"38","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Translate English statements into logical symbols | Discrete Math #shorts #math #shortvideos","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PN4hk4exhL0\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFgoUMTU1NDIwMjIxNjQzOTk2Njc1MDZaFDE1NTQyMDIyMTY0Mzk5NjY3NTA2aq0NEgEwGAAiQxowAAopaGhiYmx6cW51cHlmamh6aGhVQ0J2enBObnBoZmlSQXAtUXpoRnE5VXcSAgARKg_CDw8aDz8TPYIEJAGABCsqiwEQARp4gff-_AD-AwD8-QYHAgf8AvX67__5_v4A7gT8-AUAAAAFAwcEAgEAAAL97_36AAAAAfYBBPb9AQD7_gcI9wAAABIEBvn4AAAAEAgFAv4BAADu8_0LA_8AAAgFBAEAAAAAAQX9Bvn_AAEADwz2AAAAABD9CQQAAAAAIAAtAFPbOzgTQAlITlACKnMQABpg1BUAFwwL8t0tAO7t8esH-ekq5QT0-AD86QABBADgBgfd4v4GABrUAQDSAAAAFQTvCzcA4zfw4NwHAdrq3-sKAg1_8RkI-hIF8-0cAQIRBv738CQLAPP9BA4I_-4qFgUdIAAt-UCGOzgTQAlIb1ACKq8GEAwaoAYAAFBBAACowQAASEIAAMDAAACgQAAAmkIAAGRCAAAEwgAAjsIAAADBAADgQAAAdMIAAFzCAABMwgAAmEEAAMBAAAAoQgAAUMEAAPjBAABkwgAADMIAAMjBAABAwgAAhkIAAEDCAAAowgAAFMIAADDCAACEQgAA0EEAAFjCAACAPwAAfMIAAFBBAACowQAA4EAAADBCAAC0QgAA4MEAAJhCAAAAQQAAMMEAAMBBAAAsQgAAoMAAALhBAADAwAAA4EAAAIRCAAAsQgAAUMIAAEDBAABQwgAAuEEAAIhBAABgQQAAksIAAADBAAAwwQAAgMEAAMBAAACQwgAAEEEAAFzCAADAwAAAjsIAAGDBAAAcwgAAWMIAABDCAABEQgAAWEIAANjBAABwQQAAXEIAAHTCAAC2wgAAgD8AALhBAACQQQAAdMIAABRCAACgQAAAwEEAAIDAAAAwQgAAAAAAAMjBAABEQgAAQEEAABxCAACGQgAA0MEAANzCAAAgwQAAoMAAAJBBAAAwwQAAUEEAADzCAADAwgAALEIAAEBCAABswgAAfMIAAMBAAADgwQAASEIAALDBAAAEQgAAnkIAAHBCAAAwQQAAMMEAAMDAAAAAQQAAuMEAACDCAACAPwAAVMIAAJhBAAAgQQAAUMEAABTCAAC4wQAAoMAAAITCAAAgQQAAQMIAAIBAAACAPwAAiMIAAPjBAACAQAAAMMIAAPBBAACwQQAAwEAAAODAAACgwgAAQMEAAIhBAAAgQgAAAMEAAGBBAAAAQAAAGMIAANjBAABAwQAAyEEAAGBBAABgwQAAtEIAAIA_AAAAAAAAQMEAAHjCAACGwgAAmMIAAIC_AACAQQAAgL8AABDBAAAsQgAAwMEAAEBAAAAQwQAALEIAAJjBAABQwQAA0MEAABBCAABAwQAAKEIAAOBAAAAgwgAAPMIAAGDBAACYQQAAqEEAALjCAABQwgAAkEEAAKDBAABgQgAAfMIAALzCAAAYQgAAAEAAACBBAADoQQAAlMIAAEhCAAAgwQAA2MEAAKBAAAAUwgAAMMEAAMDAAABAwSAAOBNACUh1UAEqjwIQABqAAgAAiL0AAMi9AAA0PgAAgDsAAOA8AADOPgAAML0AACW_AADYvQAAoLwAAIi9AABQvQAAgLsAAKI-AAAcvgAAQDwAADw-AACAOwAAqL0AALY-AAB_PwAAcL0AAAw-AACoPQAA4DwAABS-AACoPQAABL4AAJY-AACCPgAAHD4AAKi9AADgPAAAUD0AAMi9AAD4PQAAyD0AABS-AACOvgAAcL0AANq-AADIvQAAmj4AAAQ-AAAEvgAABL4AADw-AAAcvgAAcL0AAOA8AAA0PgAA2L0AAEw-AACYvQAARL4AAKC8AAA1PwAAPD4AABA9AADgPAAAQDwAADw-AABkPgAAUD0gADgTQAlIfFABKo8CEAEagAIAAKC8AADIPQAAQLwAABO_AAA0vgAADL4AAFA9AADoPQAAQDwAAOg9AABAvAAADL4AAEC8AAC4vQAAHD4AAKi9AACgPAAAHT8AAHC9AADiPgAA4LwAAMi9AAC4vQAANL4AABA9AADgvAAAoDwAAFA9AAC4PQAAFD4AAHC9AAD4PQAAuL0AAIC7AACYPQAAgLsAAAw-AAB8PgAAJL4AADA9AADIPQAA-L0AABy-AACIPQAA6L0AAFA9AAB_vwAAQDwAAFy-AADgvAAAuL0AABA9AACAuwAAiD0AABA9AACoPQAAgDsAAOC8AABwPQAAiD0AADA9AABAvAAA2D0AAKC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=PN4hk4exhL0","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15542022164399667506"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"986807403139078214":{"videoId":"986807403139078214","docid":"34-3-8-Z5E124121821A554A","description":"Quiz 65: Evaluate 2a + 5b #shorts #algebra #math In this video, I ask a Quiz for algebra math. You need to evaluate the expression and write answers in comment.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"39","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 65: Evaluate 2a + 5b #shorts #algebra #math","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0yk9IO6lbOY\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFAoSOTg2ODA3NDAzMTM5MDc4MjE0WhI5ODY4MDc0MDMxMzkwNzgyMTRqrQ0SATAYACJDGjAACiloaGJibHpxbnVweWZqaHpoaFVDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdxICABEqD8IPDxoPPxMQggQkAYAEKyqLARABGniB_uv9-wL-APP3CAEDBP4BDAD7-vYAAAD5_PEDBQT-APkG_wcQAAAABwX9-wAAAAAG_AoM-_0BAA4D-BEDAAAAEfr1AfQAAAAL__v3_wEAAOv3Av8DAAAAAggB_P8AAAD6_P4EAQAAAAkXBv4AAAAABfQJ7gAAAAAgAC12gs47OBNACUhOUAIqcxAAGmDlEAAhLyIGxiD56uID1iPx1Q_eBeb-AP8AAAUF5NUADNfm7ib_LOQa4LsAAAAC5gwVSQDYWAXLu98RJOHJ1PYRHX_vDAr4JPbyGf84CRDn_t3aJEIA1_UCAgkv_QswEiMgAC3kLEY7OBNACUhvUAIqrwYQDBqgBgAANEIAAAhCAABUQgAAuMIAAIZCAADOQgAAhkIAAKBAAACYwQAAQMAAAPhBAABEwgAAcMIAAOjBAADQQQAAQEAAAIC_AABAwQAAAMAAAFDCAAAwQgAAAEAAALDBAADoQQAAIEEAABTCAAC2wgAAnMIAAERCAADAQAAAsEEAANjBAAA0wgAAAEAAAGTCAADgQAAAQEIAAKxCAACAQQAA2EEAAPjBAACAQQAAYEEAAJjBAACMQgAAWMIAAEDBAABAQgAAukIAADBBAABEwgAAgEIAAKBAAABAQQAAGEIAAIA_AAAowgAAgMEAAJDBAACCQgAA6EEAAJ7CAABAQAAAEMIAABBBAAA4wgAAwEAAADDBAAAowgAAQMEAAGRCAADYQQAAgsIAAMBBAABAQQAAgsIAAFzCAADQwQAAkEEAAGhCAACAQAAAgkIAABTCAAAQQQAAAMIAAMBAAABEQgAAwEAAADBCAABAwAAAwEAAAFhCAADgwAAALMIAAPDBAABMwgAAQEEAAETCAACUQgAAIMEAAJLCAABAQgAAIEIAAOBBAABAwgAAqMEAAFjCAACSQgAAgMEAACRCAACoQQAAyMEAALDBAABQwQAAoMAAAPhBAACIQQAAKMIAACDCAACAQAAAoMEAAOjBAAB8wgAAgEAAAIhBAABQQQAAAAAAANDBAADAwAAAqMEAAIBBAACOwgAA4EAAABRCAABAwgAAUEIAABBBAAAwwQAAmMEAADjCAAAAwQAAEEIAADxCAAAgwQAAsEEAACxCAAA4wgAAAAAAAIBAAADAwAAAaMIAAEDCAAAAQQAAAMEAAJBBAADAwQAAUMIAAGDCAAA0wgAA2EEAAIhBAAAgQQAAdEIAAJDBAADAwAAAsMEAACBBAABAQgAAMEEAAEDAAAAgwQAANEIAAGDBAACQwQAAoEAAAGzCAAAgQgAAYMIAAGBCAAAAQAAAsMIAAMDBAABQwQAAJEIAADhCAAD6wgAAQMEAACjCAAAQwQAA0MEAADhCAABwwgAAQEIAAARCAADoQQAADEIAAAjCAACgQAAAiEEAAABBIAA4E0AJSHVQASqPAhAAGoACAACAuwAABD4AAFQ-AAAcvgAAMD0AAHQ-AAAEvgAAA78AANK-AABUPgAAQDwAAGy-AABMPgAAJD4AANi9AAA0vgAA8j4AAFA9AAB0PgAA-j4AAH8_AAAEPgAAFD4AAMi9AADIvQAA-L0AANg9AAD4vQAAmD0AAI4-AADIPQAAlr4AACw-AACYvQAAuL0AABy-AACIPQAAEL0AAGy-AACSvgAAFL4AAHw-AADKPgAA6D0AAPi9AAAcPgAAMD0AAJa-AACAuwAAiD0AAEA8AACgPAAAfD4AAJo-AAAQvQAA4DwAAAE_AACAuwAAMD0AAPg9AADYvQAAVD4AAGQ-AAC2viAAOBNACUh8UAEqjwIQARqAAgAANL4AAKg9AACgPAAAKb8AALg9AACgvAAAmD0AAJi9AADgvAAAzj4AAJg9AABwPQAArr4AAAy-AACAuwAAgDsAAAS-AABRPwAAyL0AAHw-AAAUPgAABL4AAIC7AABAPAAALL4AACQ-AACKvgAAPD4AAOA8AAAEPgAAED0AAPg9AADYvQAAoLwAAHw-AAAEPgAACT8AAOA8AACSvgAATL4AAIo-AABQvQAAgr4AAKA8AACoPQAAZD4AAH-_AADIvQAA4DwAABS-AADYvQAAqD0AAEw-AACIPQAAUD0AAPg9AACAOwAATL4AAII-AAC4PQAAiD0AAHA9AACIvQAABD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=0yk9IO6lbOY","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["986807403139078214"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"1579008060778431748":{"videoId":"1579008060778431748","docid":"34-8-4-Z3E485AA148A61F71","description":"math, mathquizoftheday...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"40","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 51: Which one is multiplicative identity? #shorts #math","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=q8PV6wc0IUg\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTMTU3OTAwODA2MDc3ODQzMTc0OFoTMTU3OTAwODA2MDc3ODQzMTc0OGqtDRIBMBgAIkMaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoPwg8PGg8_ExCCBCQBgAQrKosBEAEaeIHx-vwHCPcA8uwR_f0DAAEQDvAE8wAAANQB9f759wQABgAICA0BAAAN9QkA-AAAAAvn-v___QEA-Rj9BgQAAAAD8P7z-AAAAA4Q7QL-AQAA7-oL_QMAAAAVCQPy_wAAAAT2B-8A_wAAAQn3-QEAAAAA-hX3_wAAACAALQQPvDs4E0AJSE5QAipzEAAaYMgLACYhF_fXDuUF5vX5KOPFFNUW1vP_HBYADArH1wb20db9IAAkvxDmtAAAAAH-LRgFAN1d8vDrFhEE7bHdDyEdfwsL-PkPFP3j4LXUDTrZ7_41OADs5QP65DHdTho2DyAALbfNOTs4E0AJSG9QAiqvBhAMGqAGAABwQQAAAEIAAHRCAAAAwAAAEEEAAJpCAAD4QQAAFMIAAEjCAAAAwgAAiEIAAFBBAAAQwQAAAMEAALhBAAD4QQAAEMEAAABCAACKwgAAKMIAABBBAABAwQAAAEEAABBCAAAEwgAAwMEAALrCAACWwgAAzEIAAOBAAADQwQAAAMEAAETCAAAUQgAAQEAAAKBBAACoQQAA0EIAADDCAAAgQgAATMIAADBBAADYQQAABEIAAHDBAACgwAAAMMEAACBBAAAQQgAA2EEAAEDCAAA8QgAAcMEAAFDBAAB4QgAAAEIAAIzCAACMwgAA0MEAADDBAABwQQAAqMEAADTCAACEwgAASEIAAKDBAAAQQQAA2EEAAIDBAACAPwAA0kIAADRCAACgwAAAwEEAAIBBAADwwQAARMIAAAjCAABkQgAAZEIAAMjBAACAQgAABMIAAFBBAAAswgAA0EEAAIxCAABQwQAACEIAAKhBAACIwgAAXEIAAABAAACowgAAgMAAACjCAAD4QQAAOMIAAMhBAAC4wQAAOMIAABBCAAA4QgAAAEEAABTCAABwwQAA8MEAAFhCAAAQwgAAMEIAAJ5CAACgQQAALMIAAODAAAAAQAAA8EEAAPjBAACowQAAIEIAADDCAADQQQAA0MEAADDCAAAwQQAAYEEAAABAAAAgwgAAeMIAAGDCAABgwgAAmEEAALLCAAAYwgAAqMEAAAjCAAAcQgAA2EEAABBBAABQwQAAeMIAAGDBAABAQgAAAMAAAKhBAABMQgAA0EEAAGDCAAAcQgAA4EAAABDBAAAcQgAAWMIAABxCAAAAQQAAAMEAALjBAACCwgAAcMIAAJDBAACgQQAAAEAAABBCAADIQQAAgEAAAHjCAADgQAAAJMIAAMhBAACIwQAAJEIAALLCAABQQgAA4EAAAATCAAAAAAAAoEAAAKDAAAAwwgAAtEIAAFDBAABQwgAABMIAAFDBAAAQwgAAAEEAAFjCAADowQAAqMEAABDCAABAwQAAGEIAABzCAABoQgAAWEIAAKDAAABQQQAACMIAADTCAABAQQAAoEAgADgTQAlIdVABKo8CEAAagAIAAEA8AABMPgAALD4AABA9AADovQAATD4AAPg9AAC6vgAAPL4AABw-AACgvAAA6L0AABA9AAAUPgAA6L0AAIA7AACSPgAAMD0AAFA9AABsPgAAfz8AAKi9AAAwPQAAZD4AAJK-AAAMvgAAmD0AAFC9AABsPgAAND4AAKA8AAAQvQAAmL0AABC9AAAwPQAABL4AAIg9AADovQAARL4AAIa-AABUvgAADL4AABw-AABAvAAAqL0AAFC9AACgPAAARL4AAOA8AABAvAAAoj4AACQ-AAD4PQAA2D0AAMi9AADgvAAAAz8AAFA9AAD4PQAAFD4AAIi9AAAQvQAATD4AABy-IAA4E0AJSHxQASqPAhABGoACAACWvgAA6D0AAHA9AAAXvwAA6D0AAOA8AACGPgAAoDwAAEC8AADoPQAAoDwAAOC8AAAMvgAAuL0AAIg9AABwPQAAoDwAAFU_AABQvQAAsj4AAOC8AAAUvgAAgLsAAOi9AAAEvgAAQDwAABC9AADgPAAAUL0AAOg9AADgPAAAUD0AAIi9AACgvAAAgj4AAFC9AAC4vQAAUL0AAEy-AAAQPQAARD4AAMi9AAC4PQAAML0AAEy-AAAEPgAAf78AAGy-AAC4vQAAFL4AAMg9AABkPgAARD4AAKC8AAB0PgAAoDwAAEC8AACgvAAABD4AAKA8AACAOwAAcL0AAMi9AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=q8PV6wc0IUg","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1579008060778431748"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"12980654725821496868":{"videoId":"12980654725821496868","docid":"34-1-2-Z20235BB2D0076E21","description":"math video, math, square root of negative number...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"41","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Square root of a negative number #shorts #math #shortvideos #mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=aDwejiRMe30\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFgoUMTI5ODA2NTQ3MjU4MjE0OTY4NjhaFDEyOTgwNjU0NzI1ODIxNDk2ODY4aq0NEgEwGAAiQxowAAopaGhiYmx6cW51cHlmamh6aGhVQ0J2enBObnBoZmlSQXAtUXpoRnE5VXcSAgARKg_CDw8aDz8TNIIEJAGABCsqiwEQARp4gfsAAfr_AgD7_g0E-gf9Ag79-QEJ_v8A6QH4-_n-AQD5Bv8HEAAAAPoQ8P8DAAAA-Pn7D___AAAF-fsL8gD_ABIFBvn4AAAAFwn2CP4BAADx-_wDAwAAAAoKBPv_AAAA__8J-QMAAAAPAg0KAAAAAAYDAQAAAAAAIAAtWSbXOzgTQAlITlACKnMQABpg4BwAJRUT9swFAerZ7OsW-vcf5fPh5wAR9gAXEPPtEw_Q3PgN__rODfDLAAAAAf8ACh0AvUP41dgWIgLvvfMGFgx_8x72Byf29-n86vn9DvQA4QTuAAQE-AQeIvY7DCIfIAAtvrxrOzgTQAlIb1ACKq8GEAwaoAYAAIBAAADQwQAAHEIAAOjBAAAwwgAAREIAADRCAACgwAAApMIAAADBAAAIQgAA2MEAAPhBAABgQQAA4MAAAIA_AACiQgAAEMIAAKBAAACAPwAAGEIAAIBBAACewgAAPEIAAKLCAACAPwAAwMAAANhBAAC4QQAA4EEAABDBAADQwQAAPMIAABRCAABowgAAAEIAAIA_AACCQgAABMIAADhCAAAAQgAACEIAADRCAAAIQgAAgEEAAMDBAACaQgAAdEIAAAxCAADwQQAAUEEAACzCAABgwQAAwEAAACTCAABAQgAATMIAABDBAABkQgAAUEEAAEBBAACKwgAAYMEAAHDCAAAEwgAAssIAAEjCAABwwQAACMIAAKBAAAAUQgAAeEIAAEDBAACIQQAAHMIAAIDAAADqwgAAwEAAABxCAAAIwgAAgL8AANpCAAAgwgAAQEAAAFBBAACUQgAAwEEAAGDCAAAAAAAAkMEAABBCAAAYQgAAkMEAAAzCAABwwQAADMIAAIBAAAAIwgAAuMEAAI5CAAAAwgAA0EEAAIBCAABoQgAAsMIAABBBAAAQQQAAmEIAACDBAADYQQAAcEIAANBCAADYwQAAcEEAAChCAAAMQgAAVEIAABjCAAA8QgAAwMEAAHDBAACQwQAAYMEAAADAAABQQQAAMMIAAJrCAACIQQAARMIAAOBBAAAswgAAAMIAAABCAABAwAAADMIAAFhCAACAwAAAuEEAAAjCAADOwgAAkMEAABDBAABAQgAA8MEAAAAAAADIQQAAoEAAABRCAAAgQgAAoEAAACBBAACAwQAAjkIAAIhBAACgwAAAuMEAAIzCAACQwQAAaMIAABTCAAAwwgAA0EEAADBBAABAwAAA0EEAAJjBAAAAAAAA6EEAABhCAADIwQAAQEAAAEBAAABAwgAACMIAAMBAAACAQQAAqMEAAABBAAAAQAAAokIAAMjCAABIwgAA0MEAADBBAABAQAAAWMIAADDBAAAgQQAAAMEAAKjBAADoQQAAIEEAAIDAAACIwQAAWMIAABxCAAAAQAAAEMEAACBCAAAAwSAAOBNACUh1UAEqjwIQABqAAgAAuL0AAFS-AABQPQAAbL4AANg9AAC2PgAAHL4AABu_AAA0vgAAyD0AAJg9AABEvgAAgDsAAGw-AACavgAAoDwAAGw-AADgPAAAMD0AAIY-AAB_PwAAQLwAAIC7AADoPQAANL4AALa-AAD4PQAArr4AALo-AACuPgAADD4AADy-AADgvAAAuD0AAIg9AACgPAAAVD4AACy-AAB0vgAAjr4AAKK-AACIvQAATD4AAFA9AAAMvgAAqL0AAOg9AAD4vQAAcD0AAPi9AAA0PgAABL4AAJI-AACIPQAAyL0AAFC9AAA1PwAA2D0AAOg9AABwPQAAXL4AAHw-AADYPQAALL4gADgTQAlIfFABKo8CEAEagAIAAKi9AAAQPQAAyL0AAA2_AACCvgAAJL4AACQ-AADIPQAAjj4AAJi9AAAUvgAAQDwAAIi9AABQvQAA4LwAAFA9AACAOwAAET8AADS-AAADPwAAuL0AACy-AAAcvgAAbL4AAIi9AACoPQAAED0AABA9AADYPQAABD4AAFC9AAB0PgAATL4AAOi9AABQPQAAHD4AAGw-AABsPgAA6L0AAEC8AACSPgAAJL4AADS-AACIPQAAUL0AAKA8AAB_vwAARL4AAHy-AADgPAAAQDwAADQ-AACIvQAAuD0AACw-AAAEPgAAmL0AAPi9AACgvAAA6D0AANg9AAAUvgAAgLsAAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=aDwejiRMe30","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12980654725821496868"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"4863669312288484761":{"videoId":"4863669312288484761","docid":"34-1-15-Z97D4A8C958A631BA","description":"quiz, math quiz, absolute values...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"42","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 34: What is the absolute value of -5? #shorts #math #shortvideos","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zcBvIqNSPgc\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNDg2MzY2OTMxMjI4ODQ4NDc2MVoTNDg2MzY2OTMxMjI4ODQ4NDc2MWqtDRIBMBgAIkMaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoPwg8PGg8_ExCCBCQBgAQrKosBEAEaeIH_-_sABPsA7w4Q-wcC_wEXAvH69AICAOoQ_P36_wEA-AkHDgEBAAAWCO8JAAAAABXv9An8_wIBCxL9DQQAAAAE7Q4A-wAAABUBCf3-AQAA5Ar7CQMAAADyEwAK_wAAAP78DPn6_wAADAX2BAEAAAAG_Q4BAAAAACAALVU0xzs4E0AJSE5QAipzEAAaYO8eAEU6F-WdLiTWA-n2GuvwDdQB7wD_ByT_4_rjwOULu64M_v8pojDpogAAAALYxRQRAKB_MdfNABwjzq_15xEce_UM7AYV2ty9sfcH_jHxrdVKNwDCA9EjAgz0VBxS-CAALWJDEzs4E0AJSG9QAiqvBhAMGqAGAACAvwAAkEEAAIpCAAAAwgAA4EAAAK5CAAD4QQAAQEAAAGDBAADAwQAAREIAAMDAAAAowgAAcMEAAEBAAADwQQAAQEAAANBBAAAUwgAAgMIAAFBCAADAQQAA2EEAAHBBAAAUwgAALMIAALzCAABswgAAfEIAAEBBAAAAwAAAoMAAAJjBAABAQAAAmEEAAJhBAAAkQgAAPEIAAKjBAAC4QQAApsIAAEDAAAAEQgAAYEEAAIhBAABwwQAAEEEAAIA_AAC4QgAAMEIAAATCAAA0QgAAoMEAAKBAAAAMQgAAgEEAAEzCAABkwgAA4MAAAKhBAADoQQAAcMIAAIBBAAA8wgAAgEEAAOjBAAAgQQAA4MAAAOjBAACIQQAAvEIAAEBBAACwwQAAKEIAAIJCAABowgAAgsIAAEDAAADYQQAAVEIAAOBAAAAsQgAAwMAAAADBAAAQwgAAoMAAAKxCAACgwAAAyEEAAIDAAABMwgAAgkIAAGDBAACywgAAPMIAADjCAADQQQAA0MEAAJhBAAAQwQAADMIAANhBAABoQgAAuEEAANDCAAAQQQAAqMEAAMBBAADYwQAAMEIAAHxCAADIwQAAUMIAAJDBAACwQQAAgEEAAIDBAAAwwgAAkEEAAATCAACAPwAAwMEAAADCAABQwQAABEIAAFDBAACWwgAAgMEAALDCAABkwgAAqEEAAJrCAAAAwAAA4MAAACDCAACAQgAA4MAAABDBAABAwQAAcMIAABjCAAD4QQAA6EEAAJhBAABAQgAAZEIAAI7CAAAAQgAAqEEAAJhBAADQQQAApsIAAJhBAACYwQAAwMAAALjBAACSwgAAOMIAAPDBAABUQgAASEIAAABBAABwQQAA4MAAAILCAADAwAAABMIAADhCAADIwQAAiEEAAHzCAACEQgAAQEAAABDCAACQwQAAwMEAANjBAACEwgAAhEIAABDBAAB0wgAAwEAAAEDBAADYwQAAUEEAANLCAACYwQAAMMEAAAzCAACIwQAAKEIAAAjCAAB8QgAAKEIAAADBAAAEQgAAYMEAAEjCAACIQQAAAEAgADgTQAlIdVABKo8CEAAagAIAAIg9AADgvAAALD4AAKC8AAAcPgAAwj4AAFA9AAAHvwAAFL4AAAQ-AABwvQAA6L0AABA9AABQPQAAZL4AAJg9AAAcPgAAUD0AAFC9AACyPgAAfz8AAKC8AABQPQAAoLwAAKi9AACAuwAAFD4AAIA7AACuPgAAlj4AABQ-AACIvQAAqL0AAIi9AAA0vgAAyL0AACw-AACIvQAAlr4AAHS-AACqvgAAuL0AAFw-AACgvAAAgr4AABA9AABEPgAAyL0AALg9AACoPQAAbD4AAIA7AABQPQAABD4AAIA7AACgvAAAJT8AAPi9AABkPgAA-D0AAIA7AAAEvgAAgj4AAPi9IAA4E0AJSHxQASqPAhABGoACAABMvgAANL4AAIg9AAA1vwAAbD4AAFC9AAC4PQAAqL0AAIC7AACYvQAADL4AAKC8AABQvQAA-L0AACw-AABAvAAAgLsAAEE_AAAcvgAAlj4AAOC8AAC4vQAAgLsAAMi9AACIPQAAED0AAIi9AACYvQAAiD0AADw-AAAQvQAATD4AAOi9AACGvgAAyD0AANg9AADgvAAAED0AADS-AAC4vQAAuD0AAMi9AACgPAAAoDwAAFC9AADovQAAf78AADy-AACYvQAAuL0AAIA7AABQPQAA6D0AAIC7AADgvAAA4DwAABA9AACIvQAAQDwAABA9AAAUPgAAML0AAFA9AAD4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=zcBvIqNSPgc","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4863669312288484761"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"6319606412988503197":{"videoId":"6319606412988503197","docid":"34-3-7-ZD5798CDE69F15F3D","description":"math, shorts...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"43","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 31: Which is the correct interval? #shorts #math #shortvideos","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=d5c9QyQPCc0\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNjMxOTYwNjQxMjk4ODUwMzE5N1oTNjMxOTYwNjQxMjk4ODUwMzE5N2qtDRIBMBgAIkMaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoPwg8PGg8_ExCCBCQBgAQrKosBEAEaeIH_BwcFAAAA8wQFAfkE_wEGAvL19v_-AO0K8AAFAAAA9AoLBQkAAAD4_PECAAAAAAHy9fgA_QEACPoADAMAAAAJ9wAH_QAAAAT4-vj_AQAA7fP9DAT_AAAABPr-_wAAAAkBC_T__wAABgwG_AAAAAAC9BAGAAAAACAALWQm0js4E0AJSE5QAipzEAAaYNYTAAMbDAi6LxHd2ebpEv3dF-Pr0en_KPYAB__G2gLi39MTJv8CtSLstgAAAAAK1Q8mAK5iDtTQAvwe4rMDARUef_Uf8y0jAPMhFef1DPTv2dYNMQD6D-4o6CLyTycuHSAALSXoODs4E0AJSG9QAiqvBhAMGqAGAADAQAAAAEEAAHBCAAAAwgAA6MEAADxCAACMQgAA6MEAAETCAABAwQAAikIAAFDBAABMwgAAgEAAAMBAAAD4QQAA8EEAAAAAAACAQAAAIMIAAABBAABAwAAAyEEAAIBCAAAEwgAACMIAANjBAAAowgAA0EEAAGDBAAAgwgAAQEAAAIrCAABgQQAALEIAAEBBAABQQQAAnkIAACBBAAAwQQAAsMEAAJBBAAB0QgAAQEEAAIA_AACOwgAAXEIAAMDAAABoQgAA6EEAACzCAAAgwQAAUMEAAHxCAACIQQAA0EEAABTCAAAowgAAoEEAAFBCAAAoQgAAtMIAALBBAAA0wgAAEEIAAFzCAADAwAAA4EAAAAjCAACgwQAAhEIAABRCAACowQAAiEEAAAAAAACQwQAAZMIAAFBBAABEQgAA8EEAAIC_AABYQgAAwMEAAHDBAADQQQAAEEIAAKBBAAAgQQAAZEIAACDBAACEwgAAgEIAAJDBAABswgAAIMEAAETCAADYQQAAgL8AAIDAAAAwQQAAZMIAAJhBAACgQAAADEIAAKTCAAA0QgAAcMIAAGRCAABQwgAAqEEAAHhCAACQQQAAEMEAAFBBAAAQQQAA0EEAAADAAAB0wgAAiEEAAIC_AADgwAAAXMIAAJDBAAAAQQAAwEAAAODBAAAgwgAAQMEAAGjCAACgwQAA0MEAALbCAAAAQAAAQMAAAMLCAACiQgAAoEAAACBBAAAAQAAARMIAAERCAAAwwQAAokIAAODBAACSQgAAUEIAAEjCAADoQQAA-EEAAKBBAAA0wgAAqMEAAAjCAAD4wQAAQMEAACDCAACgwgAAmMIAABTCAABgQQAAKEIAAAAAAADgwAAAkMEAALjBAADIwQAAnMIAADBCAACGwgAAUEEAAODBAAA4QgAAAMEAAGDCAACAvwAAwMAAALDBAAAkwgAAiEIAAEDAAAAAwwAAgL8AALDBAABgwQAAEEEAAKDCAAAcwgAAgL8AAOBAAAAwQQAAFEIAABzCAAAwQgAAmMEAAMDAAACAPwAAoMEAAMBAAAAgQgAAYEIgADgTQAlIdVABKo8CEAAagAIAALg9AAAMvgAALD4AAIi9AACIPQAAJD4AADA9AADevgAAHL4AAHw-AACgvAAARL4AAPg9AABUPgAAiL0AAKC8AAC-PgAAUD0AAFA9AACmPgAAfz8AAAw-AAAkPgAA4DwAAIC7AAAcvgAA2D0AAOC8AAAkPgAAVD4AAMg9AAAwvQAAoDwAAHA9AADovQAAQLwAACQ-AAAwvQAApr4AAEy-AADCvgAAQLwAABQ-AACAuwAA2L0AAES-AABAvAAA2L0AAKg9AACYPQAAJD4AAIi9AAC2PgAAJD4AAOC8AACgvAAAHz8AADS-AAD4PQAAiD0AAAS-AADoPQAAZD4AAEA8IAA4E0AJSHxQASqPAhABGoACAAA0vgAAmL0AAIC7AAApvwAADD4AAKA8AAAsPgAAcD0AADC9AADIPQAAmD0AAJi9AADIvQAAyL0AAAw-AACgPAAAdD4AACc_AACYvQAAvj4AAHC9AADIPQAAcD0AAEy-AABAvAAADD4AAHC9AABQvQAAQDwAACw-AABAPAAAHD4AAMi9AAAUvgAALD4AAFA9AABAPAAAJD4AADy-AACIvQAAbD4AAOi9AACAOwAA4DwAAES-AABcPgAAf78AAOi9AAA0vgAAQDwAAFA9AACoPQAAHD4AAJg9AACIPQAA4DwAADA9AAA0vgAA6D0AAFC9AACAOwAAJL4AAHC9AADYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=d5c9QyQPCc0","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6319606412988503197"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"8754018141383251412":{"videoId":"8754018141383251412","docid":"34-11-14-ZDB55407791C7B80B","description":"Mini Desktop :- shorturl.at/gPWY2 Website: https://notesformsc.org Social Media: / notesformsc / nnotesformsc Hashtags: #math #mathbook #mathbooksolution #discretemath #discretemathbook #shorts...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"44","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Book Preview | Introductory Discrete Math | V.K. Balakrishnan #shorts #shortvideos #math","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FfpeC2Z-KlU\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTODc1NDAxODE0MTM4MzI1MTQxMloTODc1NDAxODE0MTM4MzI1MTQxMmqtDRIBMBgAIkMaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoPwg8PGg8_ExCCBCQBgAQrKosBEAEaeIH2-gL-AQAABAAFBwEJ_AIB_Pb8-P39APQO9vQDAQAABPkP_gYBAAAEB_L0AAAAAAH2AQT1_QEAAgUVBwMAAAAVDAAB_gAAAAQF_vT-AQAA5wH9AAMAAAALFAH0_wAAAAUKBf8AAAAAAgII_vD7AAD_9v4H_PX-ACAALa0-0Ts4E0AJSE5QAipzEAAaYMoUADoUFgGHUTTexPTQ_QPg8uMIxP3__8r_6-bVy-nf2cL1CP_i1v3oowAAAADyAyo7ALp31Ni5GwjZ65XUCSgafyc7B90tBBHuPfTR8CcM4iv_HwAA7dADFh3zRkkPDCAALYLpGjs4E0AJSG9QAiqvBhAMGqAGAAAUwgAAUEEAAEBCAACgwAAAHEIAAEBBAAC4QQAAjsIAAOjBAACAvwAAIEIAAGDBAABwwgAARMIAAIBBAABQQQAAoMEAADxCAACEwgAAVMIAABjCAABAQgAAmMEAAFhCAACYwQAAoMEAAILCAABkwgAA0kIAABRCAACAQAAAMEEAAJTCAABAQAAAOMIAAKBBAAAcwgAAHEIAAETCAABoQgAAAEEAAADBAAC4QQAAGEIAADBBAAAEQgAAuMEAAJjBAACIQgAAYEEAACzCAACKQgAAcMEAAMjBAADAwAAAMEEAAADDAAC6wgAAKMIAAIhBAACwwQAAgMAAACzCAACQwQAAVEIAAABBAAAgwQAAPEIAAIzCAACowQAA8EEAAIjBAACgwAAAgD8AAKBAAABkwgAA0MEAAJDBAABcQgAAgMAAABjCAACAQQAAQMAAAABAAADYwQAAAEAAAPBBAACAPwAA8EIAABRCAACAPwAAHEIAAKBBAAAAwwAAQMAAAEBAAABwQQAAuMEAAADCAADgwQAAMMEAAMhBAACUQgAAgMAAAGzCAAA4wgAAyEEAAGDBAACAPwAAQMAAAHhCAAC0QgAAjMIAAJ7CAADgQQAAsEEAAOBAAAAAwQAAqMEAAEDAAADAQAAAiEEAAEzCAADAwQAAMEEAAAAAAAAgwgAAgL8AAIbCAAAMwgAASEIAAHzCAABUwgAAsEEAAADBAACwwQAAIEEAALhBAAD4QQAAbMIAAIjBAACYQQAAMEEAAGDBAAAQQQAAwMAAAGTCAABMQgAAgL8AAPBBAACgQQAAPMIAAIBBAAAQQQAA2MEAAKDAAABYwgAAEMEAAGDBAAAgQQAAaMIAAMhBAAAEwgAAIEIAAIC_AAAIwgAAkEEAACBBAADgQQAAkEEAAJDCAACGQgAA4MEAAKDBAAAMQgAAYEEAABzCAAAkwgAA4MAAAIBAAAAAQAAAOMIAAGTCAADgwQAAkEEAAFDBAACIQQAA6EEAAMDAAABAQAAA8EEAAMBAAAAEQgAAgD8AABDCAAB0QgAAfMIAAPDCAACYwgAAcMEgADgTQAlIdVABKo8CEAAagAIAABC9AABwvQAAmj4AAIi9AACgPAAAyj4AAHC9AAATvwAAhr4AAIg9AACIPQAA-L0AAIg9AACCPgAA4LwAAJi9AAB8PgAA4LwAAKC8AACuPgAAfz8AAEC8AAAEPgAADL4AAAS-AAB8vgAA6D0AAEy-AAAkPgAAfD4AABQ-AABQvQAAmD0AAEQ-AABAvAAALL4AADC9AADgPAAAgr4AAMi9AABkvgAAHL4AALg9AACovQAANL4AAIg9AACiPgAANL4AALi9AAB0vgAA6D0AAKi9AACiPgAAML0AAKq-AACgvAAANT8AAEA8AACoPQAA4DwAADC9AACIPQAADD4AACS-IAA4E0AJSHxQASqPAhABGoACAADIvQAAtj4AAEC8AAARvwAAcL0AAPi9AABkPgAAgLsAAKg9AABEPgAALD4AAIA7AACgvAAA2L0AAJo-AABwvQAAcL0AAAE_AAAQvQAABz8AAAQ-AAC4vQAA4LwAAEy-AABwvQAAgLsAAAw-AABUPgAA2L0AAIA7AACAOwAA2D0AAAy-AACAOwAAiL0AAHA9AAAQPQAA6j4AAAy-AACgvAAADD4AACS-AAAwPQAAiD0AAKg9AAD4PQAAf78AAMi9AADovQAALD4AACy-AAA8PgAAQDwAALg9AAAwvQAAND4AAIi9AAAEvgAADD4AAFA9AAAwvQAA4LwAADw-AAAMPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=FfpeC2Z-KlU","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8754018141383251412"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"14649388261492136862":{"videoId":"14649388261492136862","docid":"34-5-12-Z7875D456256FA316","description":"math quiz, quiz, mathematics, graph...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"45","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 38: Find function for the graph. #shorts #math #shortvideos","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WMxyw3f7VcQ\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFgoUMTQ2NDkzODgyNjE0OTIxMzY4NjJaFDE0NjQ5Mzg4MjYxNDkyMTM2ODYyaq0NEgEwGAAiQxowAAopaGhiYmx6cW51cHlmamh6aGhVQ0J2enBObnBoZmlSQXAtUXpoRnE5VXcSAgARKg_CDw8aDz8TEIIEJAGABCsqiwEQARp4ge0E-_cD_AD3_Qn9-wT_ARcC8fr0AgIA4gLv9gP8AgAA_gEECAEAAAH8-P__AAAA_ff3Avr-AQD7APYRAgAAABD6_PT1AAAADgf_-f4BAADs8v0MBP8AAAYOCgD_AAAAAfoBAP7_AAARDwsCAQAAAAD6FPf_AAAAIAAtnNXGOzgTQAlITlACKnMQABpg4h4ALQsU86UQAd_sz98f9uYf6hDq_v8K5QD5_r7Q9PXQxBoX_wq2BgO3AAAACA3zFjkAo2EmxtAYBwvexeYYGhh_8i7wBCLw4O72-foOJuztygbmANH_5w73-vY1JzYRIAAtXcE4OzgTQAlIb1ACKq8GEAwaoAYAAOhBAAD4wQAAJEIAABBBAADgwQAAUEIAAI5CAABcQgAAQEAAAJDBAAAQQQAAPEIAALhBAAAAwAAA2EEAAEhCAADAQAAAgD8AAKBAAAAwwgAAcEIAAIBBAAAAQQAAoEEAAJjCAAAAwgAAkMIAAAzCAACSQgAAkEEAAAxCAACAvwAAmMIAAIC_AAAAQAAAVEIAAAhCAAAoQgAAmEEAAABCAAA8wgAA0EEAAIhCAACIQQAAYEEAAIDBAAAcQgAA-MEAAKxCAACWQgAAsEEAAHDBAAAQwQAANMIAABBBAABcQgAAsMEAAI7CAACQwQAAJMIAADDBAADowQAAZMIAAGDBAAAwwQAAGMIAAMhBAACowQAAoEAAAARCAADYQgAAIEEAAOjBAABoQgAAMEEAAIA_AACAwgAAAMAAACBCAACgQQAAgMEAAJJCAACAQAAA4MEAAAAAAADYwQAAQEIAANDBAACWQgAALEIAAOjBAADIQQAAVMIAALLCAACAwQAAtsIAALBBAACMwgAAIMEAAGBBAAAswgAAQEEAAODAAABcQgAAmMIAAADCAACgwAAAPEIAAODBAABAwAAAgkIAACBCAAAswgAANEIAABhCAACgQQAAgMAAAKhBAACIwQAABMIAAAhCAAA0wgAA4MAAADBCAABAwAAALMIAAKjBAACQwQAAAMMAALjBAACgwAAAAMIAAOjBAACAQAAAWMIAAABCAAD4QQAASMIAABzCAAB8wgAAOMIAAGDBAAAQwgAAIEEAAJDBAADIQQAAUMEAADRCAAA8QgAAKEIAACBBAACawgAAIEIAAKjBAACAPwAABEIAANbCAAAEwgAARMIAACRCAAAQQQAA6MEAAABCAADoQQAAJMIAADBCAACYQQAAQEEAAAhCAABAwAAAFMIAAGBBAACQwgAA6MEAAKDBAABkwgAAQMEAAETCAACAwQAAIEEAAIbCAAAwwQAAmMEAALjBAABAQAAABMIAAFDBAADIwQAAoEEAANBBAADAwQAAiEEAAHRCAAAAQgAAAMEAAPBBAABIQgAAUMIAAIC_AAAMwiAAOBNACUh1UAEqjwIQABqAAgAA-D0AANi9AABUPgAAyL0AAOA8AACePgAAPL4AAPa-AACKvgAAND4AABA9AABEvgAAPD4AAIg9AAD4vQAAqD0AAFw-AACYPQAAuD0AAII-AAB_PwAAqD0AAEQ-AAAQvQAAEL0AAPi9AACYPQAA-L0AAOA8AADIPQAA-D0AAOC8AACIPQAA-L0AAFA9AABwvQAAcD0AAAy-AADSvgAARL4AAL6-AACgvAAAZD4AAIA7AABsvgAAgDsAAKg9AADgvAAAcD0AAHC9AACoPQAA4LwAAGw-AACuPgAA4LwAAKC8AAALPwAAMD0AAHw-AABQPQAAPD4AAKi9AAAkPgAA2L0gADgTQAlIfFABKo8CEAEagAIAAES-AAAQPQAA2D0AACO_AAAsPgAAgLsAAEQ-AACIPQAA4DwAAOA8AAAQPQAAmL0AAJi9AAAUvgAA4DwAAEA8AACgPAAANz8AACS-AACCPgAAUL0AAKi9AACAOwAAHL4AAFA9AAD4PQAAmL0AAKA8AACgPAAAXD4AAKA8AAA0PgAAor4AABC9AAC4PQAAUL0AAPg9AAAwPQAAir4AAHC9AAAEPgAALL4AABC9AAAUPgAA2L0AAEC8AAB_vwAAqL0AABy-AABQPQAAED0AACw-AAA0PgAAcL0AAOg9AACAOwAAgLsAANi9AACIPQAAoLwAANg9AABwvQAAoDwAANi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=WMxyw3f7VcQ","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14649388261492136862"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"11600524537111848048":{"videoId":"11600524537111848048","docid":"34-9-6-Z464809E9C06424BD","description":"Best seller for Discrete Mathematics #shorts #discretemath #shortvideos Hi, In this video, I am going to discuss topics from computer science, mathematics and programming. Kindly subscribe for...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"46","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Best seller for Discrete Mathematics #shorts #discretemath #shortvideos","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dheJuOz2zok\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFgoUMTE2MDA1MjQ1MzcxMTE4NDgwNDhaFDExNjAwNTI0NTM3MTExODQ4MDQ4aq0NEgEwGAAiQxowAAopaGhiYmx6cW51cHlmamh6aGhVQ0J2enBObnBoZmlSQXAtUXpoRnE5VXcSAgARKg_CDw8aDz8TFIIEJAGABCsqiwEQARp4gfsB-Qj8BQADAAUGAQj8AgD89v34_v0AAAn69fgE_gD4_AkKCQAAAPn98gIAAAAA-Pr7D___AAAJ_AgI-QAAABEI-P33AAAAEv39_P4BAAD5Afr5AwAAAAYRAQAAAAAA8QQE_P7_AAAJBAgBAAAAAAYCAQAAAAAAIAAtotThOzgTQAlITlACKnMQABpg4hAAHiYNB7pBNuHR4eMNAfoazPnv5P_35QD19NboAPvr1_USAArWCOvBAAAA_Qr5Di4A21Xe0tMbCfz1tPj_HCR_-CPwGEvxAAMwGeHcKAQG4P0bAO712yEUA9Yt6e0cIAAtmR1JOzgTQAlIb1ACKq8GEAwaoAYAAIDAAAAwQQAA8MEAABzCAABAwQAABEIAABxCAAA8wgAA2MEAABDCAAB4QgAA8MEAAEDCAADwwQAAUEIAANDBAAAowgAAyEEAAJzCAABUwgAAgD8AAODAAAAgwgAAEEIAAADBAACAvwAAaMIAAIrCAABMQgAAZEIAAAjCAADQwQAA1sIAAKhBAACowgAAYMEAAIjCAACaQgAADMIAABxCAACAQQAAIEEAADBCAACQQQAAQEIAADDCAABwwgAAkMEAAABCAADIQQAAwMAAAKBCAABQQQAAuMEAAJhBAADQQQAAAMMAAMDAAADYwQAATEIAAERCAAAAAAAANMIAAKjBAAAkQgAAQEAAAIBAAAAQQQAA8EEAAEDAAABIQgAAEEEAACDBAACGQgAAQMIAAEjCAABEwgAAoMAAAMBBAADAQQAAUMIAAPhBAABgQQAAYEEAAIA_AABwQQAAqEEAAEBBAACiQgAAQMAAALjBAAB0QgAA0EEAAJDCAABYQgAAaMIAAIBAAAAYwgAA4EAAANjBAADwwQAAOEIAABhCAACAvwAAmMIAAIDAAAAswgAAoMEAAKDAAACgQQAAokIAABxCAAC4wQAARMIAABBBAADQQQAAdMIAAEDCAAC4QQAABMIAAABBAAC4wQAAmMEAAOjBAACwQQAA6EEAAKDAAABgwQAAJMIAAMBBAABMQgAAIMEAADDCAABwQQAAMEIAAARCAACgQAAAwEAAABjCAACKwgAASMIAABRCAAAAwAAAAMAAABxCAADgwAAAsMEAAIC_AACYQQAA0EEAAIjBAACIwQAAsEEAAIjBAADAwQAAwMAAAGBBAACmwgAABMIAABBCAABAwgAAGEIAAODAAAAUQgAAwMAAAJLCAABMQgAAUEEAAFRCAABQQQAAnsIAAKRCAABIwgAAIEEAANhBAABwwQAAgL8AAFBBAAB8QgAAmMEAADBBAAA4wgAAuMEAAIDAAABQQgAAQMAAADDBAADoQQAABMIAAEBAAACAvwAA0MEAAJDBAAAQwQAA4EEAACxCAAAIwgAAeMIAAMzCAABIwiAAOBNACUh1UAEqjwIQABqAAgAAPL4AAOA8AAAEPgAAuL0AALi9AAAlPwAA4LwAADm_AABMvgAARL4AAIg9AACKvgAAUD0AACw-AAAQvQAA2L0AAK4-AACgvAAABD4AAN4-AAB_PwAAXL4AAJI-AADIvQAAEL0AAJK-AAAQvQAAmD0AAKi9AADKPgAAsj4AAJi9AAAQPQAAjj4AAIC7AAAQPQAAQLwAAAS-AADGvgAALL4AAES-AAAcvgAAVD4AADC9AAAcvgAAdL4AAII-AAC6vgAAdL4AAJa-AADoPQAAyL0AAKo-AACYvQAAMD0AAKA8AAAxPwAAfD4AADw-AACYPQAA4LwAADw-AADoPQAAoDwgADgTQAlIfFABKo8CEAEagAIAAHA9AADoPQAA6L0AACW_AACWvgAAuD0AAHw-AAAQPQAAQLwAADQ-AACAOwAABL4AAOA8AAD4vQAABD4AAIA7AACgPAAAGz8AAJa-AADmPgAAED0AAAy-AACovQAARL4AAKC8AABQPQAALL4AAJg9AAA8vgAAoLwAAKA8AABwPQAAoDwAACS-AAAEPgAAqD0AAEA8AACKPgAA-L0AAAy-AABsPgAAoLwAAFC9AADIvQAAmL0AAIA7AAB_vwAA4LwAAEy-AAA0vgAAqD0AADw-AACIPQAATD4AAKi9AADYPQAAuL0AADA9AAAwPQAAgDsAADA9AABQPQAAFD4AAFA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=dheJuOz2zok","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11600524537111848048"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"340470128490219424":{"videoId":"340470128490219424","docid":"34-11-10-Z78A3B275FC7F2B01","description":"quiz, math, math quiz...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"47","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 39: What is square root of 0.36 ? #shorts #math #shortvideos #mathematics","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Qsk85CZTXnQ\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFAoSMzQwNDcwMTI4NDkwMjE5NDI0WhIzNDA0NzAxMjg0OTAyMTk0MjRqrQ0SATAYACJDGjAACiloaGJibHpxbnVweWZqaHpoaFVDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdxICABEqD8IPDxoPPxMQggQkAYAEKyqLARABGniB-vf8-f8BAPkHCwb4Bv0CFQLy-vUCAgDkAvD3A_wCAAj4AwEIAQAAAv3u_foAAAAE-_wL__0BAAX5-wvyAP8ACQUR9vkAAAAQCAYD_gEAAOz3Av8DAAAAAQsJ-f8AAAAF_gL3AQAAABAOCgIBAAAABv0NAQAAAAAgAC0rMtc7OBNACUhOUAIqcxAAGmDGHgA-HxjnpiXt0er47BLl_yDY-tXo_ysGABMF68oLA7PW_ib_AZgO86oAAAAl4d4DRgCBdwLK6B0iEuKT6A0QHXzgHPMLHvL3DuoA4QgGANi6CgUAAwDNARQs-081RBQgAC0bkB47OBNACUhvUAIqrwYQDBqgBgAAgL8AAIZCAAAUQgAA4MEAAGhCAACYQgAAkEEAAKDAAACAPwAAGMIAADhCAADgwQAAHMIAAJDBAABQQgAAKEIAAPjBAAAMQgAArMIAAEzCAACQQQAA0EEAAKhBAADgQQAAKMIAAEDAAACOwgAAdMIAAKJCAACAQAAAAAAAALBBAAA0wgAAoEAAAMjBAAAQQQAAgD8AAHhCAACowQAA0EEAADjCAAAAQAAAEEIAAEhCAAAgQgAAgEEAAABAAAAAwAAAkkIAAIhBAABQwgAAlEIAAABBAAAAwAAAjEIAAKBBAACuwgAAAMIAABjCAAAQQQAAkEEAACjCAACAvwAAdMIAAKBBAACYwQAAwEEAAMjBAACgwQAAwEAAALxCAADIQQAAAAAAAEBCAADoQQAARMIAAFzCAAAwwQAAwEEAAGRCAAAgwgAA4EEAACDBAABgQQAASMIAABxCAACOQgAAAEEAACRCAAAAQAAAkMEAAK5CAAAYQgAAqMIAAMjBAACgwQAAcEEAAJjBAABkQgAA4MEAAMDBAABcQgAAlkIAAADAAAAwwgAAoMAAAPjBAADoQQAAPMIAAChCAABoQgAAgD8AAAjCAACwwQAAgEEAAMBAAAB4wgAAAMIAAABCAAAYwgAA2EEAAMjBAABQwgAAQEAAAADAAACowQAAsMEAABjCAAC6wgAALMIAAMBAAACwwgAAAEAAALhBAAAMwgAAlEIAAOBBAAAQwQAADMIAAK7CAABEwgAAjEIAAAhCAAAQwQAAyEEAANBBAACewgAAUEEAAHBBAABEQgAAoMAAACzCAAAAQgAA-EEAAHDBAAD4wQAAPMIAAETCAADYwQAAYEEAAAAAAABQwQAAoEAAALhBAABIwgAAcEEAABDBAABMQgAAAMAAAOBBAACcwgAAZEIAADDBAADgwQAAAMAAAKBAAACIQQAANMIAAL5CAAAQwQAAEMIAAEjCAACYQQAAFMIAAKBAAACewgAA6MEAAMBBAACYwQAAAAAAAJBBAAAowgAAZEIAAChCAABAQAAA8EEAADTCAABAwgAA4MEAAIjBIAA4E0AJSHVQASqPAhAAGoACAACAuwAAED0AAOA8AADgPAAAFD4AAGw-AAB8vgAACb8AAAS-AADYPQAAFL4AAKi9AACgvAAAqj4AAGS-AADgvAAAlj4AADA9AAAwvQAA4j4AAH8_AACAuwAAuD0AAKA8AABAPAAABL4AADw-AAAUvgAARD4AAIY-AAC4PQAAML0AAOg9AAAQvQAAcD0AAKA8AAAMPgAAoLwAAIa-AACCvgAAlr4AAFC9AAA8PgAA4DwAAEy-AAC4vQAAND4AABS-AACgvAAAgDsAAGQ-AABwvQAAbD4AADQ-AABAPAAAcL0AAB8_AADYPQAAyD0AAEA8AAC4vQAA-D0AADQ-AAC4vSAAOBNACUh8UAEqjwIQARqAAgAAjr4AAOA8AAAwvQAAEb8AAFA9AACovQAAZD4AAIA7AABsPgAAuL0AAJi9AACgvAAAyL0AANi9AADoPQAAMD0AAKg9AAAPPwAA6L0AAM4-AAAQvQAAQLwAAIA7AAAcvgAAUL0AAFQ-AABAvAAAQDwAAFA9AADYPQAA4LwAAHQ-AACOvgAABL4AAFA9AADoPQAAND4AABQ-AAAcvgAAiL0AACQ-AACYvQAAQLwAAPg9AABAvAAAMD0AAH-_AABkvgAARL4AAKg9AACAuwAADD4AAFA9AABwPQAATD4AAKg9AADgvAAAhr4AAIA7AACAuwAAUD0AAOi9AAAwPQAAEL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Qsk85CZTXnQ","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["340470128490219424"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"3803613432616562764":{"videoId":"3803613432616562764","docid":"34-8-4-Z3D5C009C75F483F4","description":"math, mathematics, percentage, mathquizoftheday...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"48","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 49: What is 5% of 250? #shorts #math #shortvideos","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HKRzP1BECbY\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTMzgwMzYxMzQzMjYxNjU2Mjc2NFoTMzgwMzYxMzQzMjYxNjU2Mjc2NGqtDRIBMBgAIkMaMAAKKWhoYmJsenFudXB5ZmpoemhoVUNCdnpwTm5waGZpUkFwLVF6aEZxOVV3EgIAESoPwg8PGg8_ExCCBCQBgAQrKosBEAEaeIH-9gT_AAAA6gQJAvkBAAAMAPv69gAAAPQO9vQDAQAA_Bb9BwcBAAAD_e79-gAAAPb--wj0_wEAAggBEAMAAAAC-gkD-AAAAP76BP__AQAA6vYMCAMAAAD-EP8D_wAAAAX-AvcBAAAAEA4KAgEAAAD-ABUG_wAAACAALR620js4E0AJSE5QAipzEAAaYNoXABEcD_PDDA7l5ev8GvXzHeQJ-vIAEPEABfzM6Q4G1tsZCQAIzgn0zAAAAAwD-AMJAMpGFOTlJhAT6dHu_wQCfwAT3g0PAerr9u_rAxL938okFgD8DO8a-RPlNiohHCAALbSxbDs4E0AJSG9QAiqvBhAMGqAGAABgwQAAcEIAAFBCAADAwQAAcEIAAOhCAABgQQAAQEAAAGDBAADwwQAAQEIAAABAAAAgwgAAqMEAAGBBAAD4QQAAQMEAABRCAACwwgAAeMIAAOhBAAAAQgAAQEEAAMBBAABMwgAAgMEAALTCAABQwgAAmEIAAIA_AACAQAAAwEAAABDCAAAwwQAAAMEAAIBBAADgQQAAEEIAAMDAAACQQQAAeMIAAEDAAACAQQAAuEEAABxCAAAAAAAAsEEAAFDBAADQQgAAoEEAACDCAABgQgAAcMEAAHDBAAA8QgAAoEAAAGDCAABUwgAAHMIAAEBBAADAQQAA-MEAAFBBAAAwwgAAAEAAAIjBAAAQQgAAkMEAABTCAAAAQAAAxEIAANhBAADgQAAA2EEAAIpCAABAwgAAbMIAAMBAAAAwQQAASEIAAKDBAADQQQAAQMAAAMDAAAAowgAAcEEAALZCAAAQQQAAUEIAAEBAAAAAwgAAiEIAANhBAACywgAAOMIAAMDBAACAQAAAoMAAAMhBAADAwAAAyMEAAGhCAACAQgAAEEEAAJzCAACgwAAAgMEAAGBBAAAMwgAANEIAAHBCAADgwAAALMIAAODBAACAwAAAgD8AAOjBAACowQAAcEEAALDBAACgQAAAEMEAAGjCAACgQQAA2EEAADDBAABMwgAAsMEAAMjCAAAowgAA4EAAAJbCAAAwQQAAwEEAACDCAAA8QgAAIEEAAIC_AAAgwQAAMMIAABTCAACSQgAAEEIAAADBAADYQQAABEIAAIjCAADQQQAAwEEAAERCAAAQwQAAwMIAAOBAAABQwQAAoMEAADDCAACCwgAA0MEAAAjCAABkQgAA8EEAAKjBAADQQQAAAEAAAIjCAABQQQAAoMAAADxCAABAQAAA4EAAAKjCAABsQgAAwMEAAEzCAAAAQAAAoMAAAIDAAABkwgAAhEIAAKDAAAA8wgAA-MEAAABBAAAwwgAA4MAAAKzCAABgwQAAwEEAAODBAACAQAAA0EEAANjBAACYQgAAQEIAAJDBAAAUQgAAYMEAAGDCAADIwQAAEMEgADgTQAlIdVABKo8CEAAagAIAAMg9AACYvQAA2D0AAKg9AAC4PQAAdD4AAOi9AADqvgAAVL4AAFQ-AADYvQAA4LwAAKg9AAAMPgAAXL4AAKi9AAAcPgAAmD0AALg9AACOPgAAfz8AAKg9AADoPQAAqD0AAEA8AAAsvgAAyD0AABy-AACGPgAAdD4AAFA9AADgvAAAEL0AAIi9AABQvQAAiD0AAGQ-AAC4vQAAlr4AAIa-AACGvgAAED0AAMg9AABAPAAARL4AAIC7AACYPQAAQDwAAKA8AAAwvQAA-D0AAIA7AAAMPgAA6D0AAFC9AADgvAAACT8AAMi9AAAsPgAA2D0AAKi9AADgPAAARD4AAHC9IAA4E0AJSHxQASqPAhABGoACAAAsvgAAcD0AAHA9AAAPvwAA6D0AAMi9AABUPgAA6L0AANg9AACIPQAA4LwAABS-AABQvQAAVL4AAKg9AACAOwAABD4AACk_AAAEvgAAmj4AAKC8AAAQPQAAML0AAKi9AACgvAAA-D0AABC9AACgPAAAgLsAABQ-AADgPAAAdD4AAFS-AACYvQAAiD0AAIg9AABMPgAA2D0AAIa-AADIvQAADD4AAIC7AAAwvQAAiD0AAKi9AADIPQAAf78AACS-AAA8vgAAEL0AAHA9AAC4PQAA-D0AAIC7AAAUPgAAMD0AADA9AAC4vQAAEL0AAHA9AADgPAAAqL0AAOA8AACAuyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=HKRzP1BECbY","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3803613432616562764"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false},"6208358784362947873":{"videoId":"6208358784362947873","docid":"34-0-1-Z6FC93BE70A2092A4","description":"видео, поделиться, телефон с камерой, телефон с видео, бесплатно, загрузить...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"49","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","isAdultDoc":false,"relatedParams":{"text":"Quiz 10: What type of matrix is yhis! #shorts #shortvideos #discretemath","promo":"pumpkin","related_orig_text":"NotesForMsc (NotesForMsc)","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NotesForMsc (NotesForMsc)\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2anaQovoEcA\",\"src\":\"serp\",\"rvb\":\"EqkDChM0MjgwODIwODM3NzAwMzI5NzEzChQxNzQ2NTExOTkxNDcwMTg5MjM5MgoTMzkzODQwNTIyNDIwNTk1MTI2MwoTNTQxMDExNjQ1NTM0NDU1NjIzMwoSNDQ0MjkyOTYyNzI0OTAwMTA2ChMzNDAzMDc3MTM2MTM2Mzk5MTE4ChM0NjI3OTI4MzczODAyMDYzNTU0ChQxMDEwODIyODczODIzNzk5MzI3OAoUMTU0ODMyMzM0ODEzNDM0NDMxMjUKFDE1NDYyNjA5NTg2NDYyNTQyMDgzChM0Mjg1Nzk5NTQ5MTY0NjQ0NzEyChQxMzY4ODQ1NDgxOTIwNTI0MzUwNQoUMTgyNTE2MTA3MTc2NzI2MzgxNzAKFDExMDc3MjQ0MTUwMTM2NTA2NzQyChM3NzYyNzAzMjcxMDkxNzc1NDQ3ChIyODMzNDQxNjE4NTIyNTk5NDMKEzEyMDYxNDkyOTAyOTU4MjczMDMKEzg1MDE2NTQ4MDY1ODczMTM3MjMKEzQ0MDIxMTczNTQ5NDIwNTUzOTUKEzYxOTQyNTkxNzU5MDQ5NTM1MTAaFQoTNjIwODM1ODc4NDM2Mjk0Nzg3M1oTNjIwODM1ODc4NDM2Mjk0Nzg3M2q5DRIBMBgAIk8aPAAKNWhoamdlZXZuc3FoZ3dpZGNoaGh0dHA6Ly93d3cueW91dHViZS5jb20vQE5vdGVzZm9yTXNjEgIAEioPwg8PGg8_ExCCBCQBgAQrKosBEAEaeIHz_wML_QMA8QgGCvcE_wEM_vsI9___APQR-gIGAv8A8_0KCPwAAAD7BfX8_wAAAPz8BPv8_gAAAggBEAMAAAAO-vz19gAAAA4D-P7-AQAA9f4DBAMAAAACCQQFAAAAAPv9Av39_gAABv0M_wAAAAAI_gQGAAAAACAALUKx2zs4E0AJSE5QAipzEAAaYN4SAB0OMuO0UBEB3uHZCf3TFMwN2-L_6ewAGR_K1wQH3t7vRAAR1g7erwAAAP799xwRAMtf7-b8Ch4t9rzfCioCf_0V2ygqGQrtNuj3ARHf2dwe3wAM4hwLBinkWFQdLiAALe7RMTs4E0AJSG9QAiqvBhAMGqAGAABgQQAAAEEAABBCAADgQAAAEMEAAKxCAABIQgAACMIAAJTCAADgwAAAikIAAIhBAADAQQAAJMIAAIjBAABoQgAA8EEAAIhCAABMwgAAQMEAAEBCAACoQQAAgMAAAABCAABgwQAAwEEAAKjBAACQwQAAPEIAACBBAADAwAAAMEIAAADAAACgQQAAAEIAAABCAAAQQQAArkIAAJjCAADgQQAAUMIAAADAAAAwwQAAvkIAAITCAABAwQAAqMEAAKhBAADoQQAAEEIAAAAAAACwwQAAUMIAANhBAAAIQgAAqEEAAIC_AABYwgAAVEIAAJDBAAAAQAAAaMIAAGTCAAC4wgAALEIAACDBAAAYQgAA-EEAAPDBAACgQQAAOEIAANhBAACowQAAQEAAANjBAAC4wQAAksIAAIBAAABgQgAAcMEAAFBBAADWQgAAqMEAAGBBAAC4wQAAgEEAAHRCAADowQAACMIAAKDAAAAEwgAASEIAAEjCAAB4wgAA4MEAAEDCAAAYQgAATMIAAGBBAABUwgAAsMEAAATCAABIQgAAAMIAAMDBAAAwwQAAuEEAAABCAACoQQAA0EEAACRCAADgwAAAFEIAAHRCAAAQQgAAgMAAAMBAAAAEwgAAcEIAAGzCAAAEQgAA2MEAAADAAABQwgAAIEEAAMjBAAA0wgAAEEIAACzCAABIwgAAYMEAADTCAACQwQAAbMIAAMLCAABwQgAArkIAAABAAADgwAAAUMIAAEBCAAA0QgAA6EEAAIhBAAD4QQAAUEEAAFzCAABIQgAAyEEAALhBAAAgQgAAOMIAAODBAACowQAAgEEAACDBAAC8wgAAmMEAAIA_AACgQAAACEIAAIjBAAAMwgAAHEIAABzCAAAQwQAAQEEAAKjBAACYwQAAGEIAAODAAACqQgAAwMEAAEDAAABgwQAAcEEAAFjCAAAYwgAASEIAAHBBAAAQwQAAwEAAACDCAACKwgAAQEAAACDCAABQwgAAKEIAAIC_AABAQQAAgEEAADTCAAC4QQAAeEIAACTCAABgQQAAUMIAACTCAAA4QgAAIEIgADgTQAlIdVABKo8CEAAagAIAAFA9AAD4PQAAij4AAJg9AABQPQAA2j4AALi9AADyvgAADL4AABw-AAC4PQAAqL0AAEQ-AABMPgAAoDwAABC9AABUPgAAcD0AAOA8AAB8PgAAfz8AAIg9AADoPQAAyD0AAJg9AACovQAAiD0AAPi9AABcPgAAkj4AAKg9AADovQAAML0AABC9AACAOwAAHL4AAKC8AADIvQAAqr4AAGS-AACSvgAANL4AALg9AAAQvQAAcL0AAOC8AAAsPgAA6L0AAAQ-AADgvAAAND4AAFA9AADYPQAAQDwAAKi9AABAPAAAIT8AAEA8AACGPgAAPD4AAOA8AADIvQAAVD4AACy-IAA4E0AJSHxQASqPAhABGoACAAC4vQAAoDwAADw-AAAdvwAAMD0AAAS-AAD4PQAAcL0AAHC9AADIPQAAgLsAAEy-AAAEPgAAFL4AAFw-AABwvQAALD4AAEs_AAAwPQAArj4AADC9AADIvQAAED0AAKi9AABwPQAAUL0AAEA8AABAPAAAMD0AACw-AAAwvQAAFD4AAKi9AABAvAAAHD4AAIA7AADgvAAAyD0AABy-AACAOwAAyD0AABA9AADYvQAAED0AACS-AACAOwAAf78AAPi9AABUvgAAmL0AAOA8AAD4PQAA6D0AAMg9AACovQAAMD0AAKA8AACYPQAAML0AADC9AACYPQAAUD0AAKg9AAAkviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=2anaQovoEcA","parent-reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["6208358784362947873"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"censoredShock":false,"isShockDoc":false}},"dups":{"4280820837700329713":{"videoId":"4280820837700329713","title":"\u0007[Music\u0007] \u0007[Notes\u0007] \u0007[for\u0007] I SEE FIRE song (easy version)","cleanTitle":"Music Notes for I SEE FIRE song (easy version)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=gATfnD_DJnc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/gATfnD_DJnc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZktqNWItZE03T0NkbUxvMmwyY0ZNdw==","name":"Rajkumar Yenugu","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Rajkumar+Yenugu","origUrl":"http://www.youtube.com/@rajkumaryenugu9233","a11yText":"Rajkumar Yenugu. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":192,"text":"3:12","a11yText":"Süre 3 dakika 12 saniye","shortText":"3 dk."},"date":"27 mar 2016","modifyTime":1459036800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/gATfnD_DJnc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=gATfnD_DJnc","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":192},"parentClipId":"4280820837700329713","href":"http://www.youtube.com/watch?v=gATfnD_DJnc","rawHref":"/video/preview/4280820837700329713?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17465119914701892392":{"videoId":"17465119914701892392","title":"\u0007[Music\u0007] \u0007[Notes\u0007] \u0007[For\u0007] Beginners Video - Beginning \u0007[Music\u0007] Theory Lesson 1","cleanTitle":"Music Notes For Beginners Video - Beginning Music Theory Lesson 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=i3fsUxeobCw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/i3fsUxeobCw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZEdjaXFUOVk5RTg0S3djMFp4bG13Zw==","name":"Lessons That Rock","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Lessons+That+Rock","origUrl":"http://www.youtube.com/@Lessonsthatrock","a11yText":"Lessons That Rock. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":297,"text":"4:57","a11yText":"Süre 4 dakika 57 saniye","shortText":"4 dk."},"date":"1 eki 2018","modifyTime":1538352000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/i3fsUxeobCw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=i3fsUxeobCw","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":297},"parentClipId":"17465119914701892392","href":"http://www.youtube.com/watch?v=i3fsUxeobCw","rawHref":"/video/preview/17465119914701892392?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3938405224205951263":{"videoId":"3938405224205951263","title":"ក្ងោកក្រមុំ - Kngork Kro Mom | Piano and Bass Guitar \u0007[Music\u0007] \u0007[Notes\u0007] Tutorials Easy For Practice","cleanTitle":"ក្ងោកក្រមុំ - Kngork Kro Mom | Piano and Bass Guitar Music Notes Tutorials Easy For Practice","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YtGrtUuAo8s","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YtGrtUuAo8s?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSktGZGNnVTRqYmEzZzI4QjkzdTdPdw==","name":"Pleng Composer","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Pleng+Composer","origUrl":"http://www.youtube.com/@PlengComposer","a11yText":"Pleng Composer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":481,"text":"8:01","a11yText":"Süre 8 dakika 1 saniye","shortText":"8 dk."},"date":"15 ara 2023","modifyTime":1702598400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YtGrtUuAo8s?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YtGrtUuAo8s","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":481},"parentClipId":"3938405224205951263","href":"http://www.youtube.com/watch?v=YtGrtUuAo8s","rawHref":"/video/preview/3938405224205951263?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5410116455344556233":{"videoId":"5410116455344556233","title":"Domination Laws | Prepositional Logic| Discrete Mathematics","cleanTitle":"Domination Laws | Prepositional Logic| Discrete Mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-dcemjSkOwo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-dcemjSkOwo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":248,"text":"4:08","a11yText":"Süre 4 dakika 8 saniye","shortText":"4 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"26 eyl 2022","modifyTime":1664150400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-dcemjSkOwo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-dcemjSkOwo","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":248},"parentClipId":"5410116455344556233","href":"http://www.youtube.com/watch?v=-dcemjSkOwo","rawHref":"/video/preview/5410116455344556233?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"444292962724900106":{"videoId":"444292962724900106","title":"Simple Statements | Prepositional Logic | Discrete Mathematics","cleanTitle":"Simple Statements | Prepositional Logic | Discrete Mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bBhjuInSKqs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bBhjuInSKqs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":176,"text":"2:56","a11yText":"Süre 2 dakika 56 saniye","shortText":"2 dk."},"date":"12 mar 2021","modifyTime":1615507200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bBhjuInSKqs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bBhjuInSKqs","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":176},"parentClipId":"444292962724900106","href":"http://www.youtube.com/watch?v=bBhjuInSKqs","rawHref":"/video/preview/444292962724900106?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3403077136136399118":{"videoId":"3403077136136399118","title":"What is Commutative Laws | Prepositional Logic| Discrete Mathematics","cleanTitle":"What is Commutative Laws | Prepositional Logic| Discrete Mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HfdwZHYy_1I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HfdwZHYy_1I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":267,"text":"4:27","a11yText":"Süre 4 dakika 27 saniye","shortText":"4 dk."},"date":"30 eyl 2022","modifyTime":1664496000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HfdwZHYy_1I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HfdwZHYy_1I","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":267},"parentClipId":"3403077136136399118","href":"http://www.youtube.com/watch?v=HfdwZHYy_1I","rawHref":"/video/preview/3403077136136399118?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4627928373802063554":{"videoId":"4627928373802063554","title":"Background Violin Sound - \u0007[Music\u0007] \u0007[Note\u0007] C (2nd Octave) | \u0007[Music\u0007] Sounds For Practice And Tuni...","cleanTitle":"Background Violin Sound - Music Note C (2nd Octave) | Music Sounds For Practice And Tuning","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kWpJk8umxm8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kWpJk8umxm8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVDN2dWFNN2gwTHNaOUgzckNTdVpqZw==","name":"Music Instruments Sounds","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Music+Instruments+Sounds","origUrl":"http://www.youtube.com/@musicinstrumentssounds","a11yText":"Music Instruments Sounds. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":303,"text":"5:03","a11yText":"Süre 5 dakika 3 saniye","shortText":"5 dk."},"date":"22 mar 2022","modifyTime":1647907200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kWpJk8umxm8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kWpJk8umxm8","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":303},"parentClipId":"4627928373802063554","href":"http://www.youtube.com/watch?v=kWpJk8umxm8","rawHref":"/video/preview/4627928373802063554?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10108228738237993278":{"videoId":"10108228738237993278","title":"Implication and Biconditional | Prepositional Logic | Discrete Math","cleanTitle":"Implication and Biconditional | Prepositional Logic | Discrete Math","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1tMFVdrwkT4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1tMFVdrwkT4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":256,"text":"4:16","a11yText":"Süre 4 dakika 16 saniye","shortText":"4 dk."},"date":"2 eyl 2022","modifyTime":1662076800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1tMFVdrwkT4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1tMFVdrwkT4","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":256},"parentClipId":"10108228738237993278","href":"http://www.youtube.com/watch?v=1tMFVdrwkT4","rawHref":"/video/preview/10108228738237993278?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15483233481343443125":{"videoId":"15483233481343443125","title":"Golden - KPop Demon Hunters | Sheet \u0007[Music\u0007] with \u0007[Notes\u0007] \u0007[for\u0007] Recorder, Flute, Violin Tutoria...","cleanTitle":"Golden - KPop Demon Hunters | Sheet Music with Notes for Recorder, Flute, Violin Tutorial | Huntr/X","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Ro0pr0ZLHmQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Ro0pr0ZLHmQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbzlVeFRUaHZXeG1QVndOcVpOY0x5dw==","name":"Uncomplicated Sheet Music","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Uncomplicated+Sheet+Music","origUrl":"http://www.youtube.com/@UncomplicatedSheetMusic","a11yText":"Uncomplicated Sheet Music. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":205,"text":"3:25","a11yText":"Süre 3 dakika 25 saniye","shortText":"3 dk."},"views":{"text":"67,4bin","a11yText":"67,4 bin izleme"},"date":"16 ağu 2025","modifyTime":1755302400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Ro0pr0ZLHmQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Ro0pr0ZLHmQ","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":205},"parentClipId":"15483233481343443125","href":"http://www.youtube.com/watch?v=Ro0pr0ZLHmQ","rawHref":"/video/preview/15483233481343443125?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15462609586462542083":{"videoId":"15462609586462542083","title":"What is an Idempotent Law | Prepositional Logic | Discrete Mathematics","cleanTitle":"What is an Idempotent Law | Prepositional Logic | Discrete Mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vZ_Jga06oLo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vZ_Jga06oLo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":308,"text":"5:08","a11yText":"Süre 5 dakika 8 saniye","shortText":"5 dk."},"views":{"text":"2,1bin","a11yText":"2,1 bin izleme"},"date":"27 eyl 2022","modifyTime":1664236800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vZ_Jga06oLo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vZ_Jga06oLo","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":308},"parentClipId":"15462609586462542083","href":"http://www.youtube.com/watch?v=vZ_Jga06oLo","rawHref":"/video/preview/15462609586462542083?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4285799549164644712":{"videoId":"4285799549164644712","title":"Duality Principle| Preposition Logic | Discrete Mathematics","cleanTitle":"Duality Principle| Preposition Logic | Discrete Mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MAf5gVeXLV0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MAf5gVeXLV0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":107,"text":"1:47","a11yText":"Süre 1 dakika 47 saniye","shortText":"1 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"29 ağu 2022","modifyTime":1661797256000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MAf5gVeXLV0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MAf5gVeXLV0","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":107},"parentClipId":"4285799549164644712","href":"http://www.youtube.com/watch?v=MAf5gVeXLV0","rawHref":"/video/preview/4285799549164644712?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13688454819205243505":{"videoId":"13688454819205243505","title":"Associative Laws | Prepositional Logic | Discrete Mathematics","cleanTitle":"Associative Laws | Prepositional Logic | Discrete Mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=E8zOEDB4VuU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/E8zOEDB4VuU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":202,"text":"3:22","a11yText":"Süre 3 dakika 22 saniye","shortText":"3 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"5 eki 2022","modifyTime":1664928000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/E8zOEDB4VuU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=E8zOEDB4VuU","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":202},"parentClipId":"13688454819205243505","href":"http://www.youtube.com/watch?v=E8zOEDB4VuU","rawHref":"/video/preview/13688454819205243505?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18251610717672638170":{"videoId":"18251610717672638170","title":"Factors and Factoring Expression | Algebra 1 | Lesson 5","cleanTitle":"Factors and Factoring Expression | Algebra 1 | Lesson 5","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Q8rtqw47jMs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Q8rtqw47jMs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":630,"text":"10:30","a11yText":"Süre 10 dakika 30 saniye","shortText":"10 dk."},"date":"18 ağu 2023","modifyTime":1692316800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Q8rtqw47jMs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Q8rtqw47jMs","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":630},"parentClipId":"18251610717672638170","href":"http://www.youtube.com/watch?v=Q8rtqw47jMs","rawHref":"/video/preview/18251610717672638170?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11077244150136506742":{"videoId":"11077244150136506742","title":"\u0007[Music\u0007] \u0007[Notes\u0007] Demo","cleanTitle":"Music Notes Demo","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=g3itWA4Veyc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/g3itWA4Veyc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOVU4MU9CRjItOTBGWUZRcDl2WU1rZw==","name":"Forrest-Schlage Animation","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Forrest-Schlage+Animation","origUrl":"http://www.youtube.com/@ForrestSchlageAnimation","a11yText":"Forrest-Schlage Animation. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":71,"text":"1:11","a11yText":"Süre 1 dakika 11 saniye","shortText":"1 dk."},"date":"4 mar 2019","modifyTime":1551657600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/g3itWA4Veyc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=g3itWA4Veyc","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":71},"parentClipId":"11077244150136506742","href":"http://www.youtube.com/watch?v=g3itWA4Veyc","rawHref":"/video/preview/11077244150136506742?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7762703271091775447":{"videoId":"7762703271091775447","title":"Example 3 | Prepositional Logic | Discrete Math","cleanTitle":"Example 3 | Prepositional Logic | Discrete Math","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=PQQyR7pEIVQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PQQyR7pEIVQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":445,"text":"7:25","a11yText":"Süre 7 dakika 25 saniye","shortText":"7 dk."},"date":"25 eki 2022","modifyTime":1666656000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PQQyR7pEIVQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PQQyR7pEIVQ","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":445},"parentClipId":"7762703271091775447","href":"http://www.youtube.com/watch?v=PQQyR7pEIVQ","rawHref":"/video/preview/7762703271091775447?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"283344161852259943":{"videoId":"283344161852259943","title":"Fundamentals of expressions| Unit 1 | Algebra 1| Mathematics","cleanTitle":"Fundamentals of expressions| Unit 1 | Algebra 1| Mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NYLmF2mUUps","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NYLmF2mUUps?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":155,"text":"2:35","a11yText":"Süre 2 dakika 35 saniye","shortText":"2 dk."},"date":"18 kas 2022","modifyTime":1668729600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NYLmF2mUUps?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NYLmF2mUUps","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":155},"parentClipId":"283344161852259943","href":"http://www.youtube.com/watch?v=NYLmF2mUUps","rawHref":"/video/preview/283344161852259943?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1206149290295827303":{"videoId":"1206149290295827303","title":"Rewriting Expressions using Math laws| Expressions | Algebra 1 | Lesson 03","cleanTitle":"Rewriting Expressions using Math laws| Expressions | Algebra 1 | Lesson 03","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tszwU-LSsnU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tszwU-LSsnU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":517,"text":"8:37","a11yText":"Süre 8 dakika 37 saniye","shortText":"8 dk."},"date":"4 ağu 2023","modifyTime":1691107200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tszwU-LSsnU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tszwU-LSsnU","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":517},"parentClipId":"1206149290295827303","href":"http://www.youtube.com/watch?v=tszwU-LSsnU","rawHref":"/video/preview/1206149290295827303?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8501654806587313723":{"videoId":"8501654806587313723","title":"What is well-formed formula | Prepositional Logic | Discrete mathematics | BSc|BCA|MSc|BTech","cleanTitle":"What is well-formed formula | Prepositional Logic | Discrete mathematics | BSc|BCA|MSc|BTech","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sO2q5OuT0Hw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sO2q5OuT0Hw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":218,"text":"3:38","a11yText":"Süre 3 dakika 38 saniye","shortText":"3 dk."},"date":"3 kas 2022","modifyTime":1667433600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sO2q5OuT0Hw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sO2q5OuT0Hw","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":218},"parentClipId":"8501654806587313723","href":"http://www.youtube.com/watch?v=sO2q5OuT0Hw","rawHref":"/video/preview/8501654806587313723?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4402117354942055395":{"videoId":"4402117354942055395","title":"Words to expressions | Unit 1 | Algebra 1 | Lesson 1","cleanTitle":"Words to expressions | Unit 1 | Algebra 1 | Lesson 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qjz_g4kvjUQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qjz_g4kvjUQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":622,"text":"10:22","a11yText":"Süre 10 dakika 22 saniye","shortText":"10 dk."},"date":"23 kas 2022","modifyTime":1669161600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qjz_g4kvjUQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qjz_g4kvjUQ","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":622},"parentClipId":"4402117354942055395","href":"http://www.youtube.com/watch?v=qjz_g4kvjUQ","rawHref":"/video/preview/4402117354942055395?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6194259175904953510":{"videoId":"6194259175904953510","title":"Example 4 | Prepositional Logic | Discrete Mathematics BSc|BCA|MSc|BTech","cleanTitle":"Example 4 | Prepositional Logic | Discrete Mathematics BSc|BCA|MSc|BTech","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YmqrkryWeqs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YmqrkryWeqs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":755,"text":"12:35","a11yText":"Süre 12 dakika 35 saniye","shortText":"12 dk."},"date":"31 eki 2022","modifyTime":1667174400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YmqrkryWeqs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YmqrkryWeqs","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":755},"parentClipId":"6194259175904953510","href":"http://www.youtube.com/watch?v=YmqrkryWeqs","rawHref":"/video/preview/6194259175904953510?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8715863567916120103":{"videoId":"8715863567916120103","title":"Words to equations | Unit 1 | Algebra 1 | Lesson 2","cleanTitle":"Words to equations | Unit 1 | Algebra 1 | Lesson 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=3HGfw7jZ6gs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3HGfw7jZ6gs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":280,"text":"4:40","a11yText":"Süre 4 dakika 40 saniye","shortText":"4 dk."},"date":"26 kas 2022","modifyTime":1669420800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3HGfw7jZ6gs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3HGfw7jZ6gs","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":280},"parentClipId":"8715863567916120103","href":"http://www.youtube.com/watch?v=3HGfw7jZ6gs","rawHref":"/video/preview/8715863567916120103?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7295228320865180197":{"videoId":"7295228320865180197","title":"Logical Equivalences | Prepositional Logic | Discrete Mathematics","cleanTitle":"Logical Equivalences | Prepositional Logic | Discrete Mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FMc7pZbvWKA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FMc7pZbvWKA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":443,"text":"7:23","a11yText":"Süre 7 dakika 23 saniye","shortText":"7 dk."},"date":"21 eyl 2022","modifyTime":1663718400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FMc7pZbvWKA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FMc7pZbvWKA","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":443},"parentClipId":"7295228320865180197","href":"http://www.youtube.com/watch?v=FMc7pZbvWKA","rawHref":"/video/preview/7295228320865180197?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4899623743816373538":{"videoId":"4899623743816373538","title":"Set Introduction | Set theory | Discrete Mathematics","cleanTitle":"Set Introduction | Set theory | Discrete Mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kZD93xSU8JU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kZD93xSU8JU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":188,"text":"3:08","a11yText":"Süre 3 dakika 8 saniye","shortText":"3 dk."},"date":"4 eki 2022","modifyTime":1664841600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kZD93xSU8JU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kZD93xSU8JU","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":188},"parentClipId":"4899623743816373538","href":"http://www.youtube.com/watch?v=kZD93xSU8JU","rawHref":"/video/preview/4899623743816373538?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14418759482637802649":{"videoId":"14418759482637802649","title":"Example 1 | Prepositional Logic | Discrete Mathematics #discretemath","cleanTitle":"Example 1 | Prepositional Logic | Discrete Mathematics #discretemath","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Nw5p5QDSqgU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Nw5p5QDSqgU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":354,"text":"5:54","a11yText":"Süre 5 dakika 54 saniye","shortText":"5 dk."},"date":"14 eki 2022","modifyTime":1665705600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Nw5p5QDSqgU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Nw5p5QDSqgU","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":354},"parentClipId":"14418759482637802649","href":"http://www.youtube.com/watch?v=Nw5p5QDSqgU","rawHref":"/video/preview/14418759482637802649?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8106147100741110294":{"videoId":"8106147100741110294","title":"The Last of Us Main Theme | Sheet \u0007[Music\u0007] with Easy \u0007[Notes\u0007] \u0007[for\u0007] Recorder, Violin Beginners T...","cleanTitle":"The Last of Us Main Theme | Sheet Music with Easy Notes for Recorder, Violin Beginners Tutorial","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KYQFT7KrfuI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KYQFT7KrfuI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbzlVeFRUaHZXeG1QVndOcVpOY0x5dw==","name":"Uncomplicated Sheet Music","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Uncomplicated+Sheet+Music","origUrl":"https://www.youtube.com/channel/UCo9UxTThvWxmPVwNqZNcLyw","a11yText":"Uncomplicated Sheet Music. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":180,"text":"3:00","a11yText":"Süre 3 dakika","shortText":"3 dk."},"views":{"text":"17,8bin","a11yText":"17,8 bin izleme"},"date":"28 oca 2023","modifyTime":1674864000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KYQFT7KrfuI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KYQFT7KrfuI","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":180},"parentClipId":"8106147100741110294","href":"http://www.youtube.com/watch?v=KYQFT7KrfuI","rawHref":"/video/preview/8106147100741110294?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9274577265543135361":{"videoId":"9274577265543135361","title":"Numb - Linkin Park| Sheet \u0007[Music\u0007] with Easy \u0007[Notes\u0007] \u0007[for\u0007] Recorder, Violin Beginners Tutorial","cleanTitle":"Numb - Linkin Park| Sheet Music with Easy Notes for Recorder, Violin Beginners Tutorial","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=GC0XvxdW198","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/GC0XvxdW198?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbzlVeFRUaHZXeG1QVndOcVpOY0x5dw==","name":"Uncomplicated Sheet Music","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Uncomplicated+Sheet+Music","origUrl":"http://www.youtube.com/@UncomplicatedSheetMusic","a11yText":"Uncomplicated Sheet Music. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":184,"text":"3:04","a11yText":"Süre 3 dakika 4 saniye","shortText":"3 dk."},"views":{"text":"3,1bin","a11yText":"3,1 bin izleme"},"date":"11 mayıs 2024","modifyTime":1715385600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/GC0XvxdW198?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=GC0XvxdW198","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":184},"parentClipId":"9274577265543135361","href":"http://www.youtube.com/watch?v=GC0XvxdW198","rawHref":"/video/preview/9274577265543135361?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1101570071417151840":{"videoId":"1101570071417151840","title":"L2 - Data Types - Integers - C++ Programming","cleanTitle":"L2 - Data Types - Integers - C++ Programming","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4qoqI0MAL5Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4qoqI0MAL5Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":496,"text":"8:16","a11yText":"Süre 8 dakika 16 saniye","shortText":"8 dk."},"date":"11 haz 2017","modifyTime":1497139200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4qoqI0MAL5Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4qoqI0MAL5Q","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":496},"parentClipId":"1101570071417151840","href":"http://www.youtube.com/watch?v=4qoqI0MAL5Q","rawHref":"/video/preview/1101570071417151840?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6040954754154839613":{"videoId":"6040954754154839613","title":"Introduction To Discrete Mathematics | Discrete Mathematics","cleanTitle":"Introduction To Discrete Mathematics | Discrete Mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pB8GKLB6evE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pB8GKLB6evE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":116,"text":"1:56","a11yText":"Süre 1 dakika 56 saniye","shortText":"1 dk."},"date":"13 mar 2021","modifyTime":1615593600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pB8GKLB6evE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pB8GKLB6evE","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":116},"parentClipId":"6040954754154839613","href":"http://www.youtube.com/watch?v=pB8GKLB6evE","rawHref":"/video/preview/6040954754154839613?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7275585654094839023":{"videoId":"7275585654094839023","title":"Distributive Law| Distributive property | Unit 1| Algebra 1 | Lesson 4","cleanTitle":"Distributive Law| Distributive property | Unit 1| Algebra 1 | Lesson 4","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9JcderDdYr4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9JcderDdYr4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":445,"text":"7:25","a11yText":"Süre 7 dakika 25 saniye","shortText":"7 dk."},"date":"8 ağu 2023","modifyTime":1691452800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9JcderDdYr4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9JcderDdYr4","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":445},"parentClipId":"7275585654094839023","href":"http://www.youtube.com/watch?v=9JcderDdYr4","rawHref":"/video/preview/7275585654094839023?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8772517807292220137":{"videoId":"8772517807292220137","title":"Quiz 64: evaluate the expression #shorts #algebra","cleanTitle":"Quiz 64: evaluate the expression #shorts #algebra","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/aAifW5C3dFE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/aAifW5C3dFE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":16,"text":"00:16","a11yText":"Süre 16 saniye","shortText":""},"date":"24 ağu 2023","modifyTime":1692835200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/aAifW5C3dFE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=aAifW5C3dFE","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":16},"parentClipId":"8772517807292220137","href":"http://www.youtube.com/shorts/aAifW5C3dFE","rawHref":"/video/preview/8772517807292220137?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"946889001183172837":{"videoId":"946889001183172837","title":"Find the truth value | prepositional logic problem solution |discrete math #shorts","cleanTitle":"Find the truth value | prepositional logic problem solution |discrete math #shorts","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pMdSg9Q_uoM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pMdSg9Q_uoM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":60,"text":"1:00","a11yText":"Süre 1 dakika","shortText":"1 dk."},"date":"31 eki 2022","modifyTime":1667174400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pMdSg9Q_uoM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pMdSg9Q_uoM","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":60},"parentClipId":"946889001183172837","href":"http://www.youtube.com/watch?v=pMdSg9Q_uoM","rawHref":"/video/preview/946889001183172837?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5213591206603222553":{"videoId":"5213591206603222553","title":"Quiz 27: What is this notation of set called? #shorts #math #shortvideos #mathematics","cleanTitle":"Quiz 27: What is this notation of set called? #shorts #math #shortvideos #mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/F3OSlcxG6rQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/F3OSlcxG6rQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":16,"text":"00:16","a11yText":"Süre 16 saniye","shortText":""},"date":"14 eki 2022","modifyTime":1665705600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/F3OSlcxG6rQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=F3OSlcxG6rQ","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":16},"parentClipId":"5213591206603222553","href":"http://www.youtube.com/shorts/F3OSlcxG6rQ","rawHref":"/video/preview/5213591206603222553?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9155357312408326148":{"videoId":"9155357312408326148","title":"Distributive Property #shorts #algebra #math","cleanTitle":"Distributive Property #shorts #algebra #math","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/hhz8Xh5PwhQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hhz8Xh5PwhQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":60,"text":"1:00","a11yText":"Süre 1 dakika","shortText":"1 dk."},"date":"21 ağu 2023","modifyTime":1692576000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hhz8Xh5PwhQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hhz8Xh5PwhQ","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":60},"parentClipId":"9155357312408326148","href":"http://www.youtube.com/shorts/hhz8Xh5PwhQ","rawHref":"/video/preview/9155357312408326148?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"325374341166670081":{"videoId":"325374341166670081","title":"Quiz 37: Simply the expression. #shorts #math #algebra #mathematics","cleanTitle":"Quiz 37: Simply the expression. #shorts #math #algebra #mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=emsLmXSurhM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/emsLmXSurhM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":16,"text":"00:16","a11yText":"Süre 16 saniye","shortText":""},"date":"25 eki 2022","modifyTime":1666656000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/emsLmXSurhM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=emsLmXSurhM","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":16},"parentClipId":"325374341166670081","href":"http://www.youtube.com/watch?v=emsLmXSurhM","rawHref":"/video/preview/325374341166670081?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1435330336767687720":{"videoId":"1435330336767687720","title":"Book Preview | Discrete Math for computer Science | Trembley and Manohar #shorts #math #bookpreview","cleanTitle":"Book Preview | Discrete Math for computer Science | Trembley and Manohar #shorts #math #bookpreview","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=i8PHq3cwiD0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/i8PHq3cwiD0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":61,"text":"1:01","a11yText":"Süre 1 dakika 1 saniye","shortText":"1 dk."},"date":"27 eki 2022","modifyTime":1666828800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/i8PHq3cwiD0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=i8PHq3cwiD0","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":61},"parentClipId":"1435330336767687720","href":"http://www.youtube.com/watch?v=i8PHq3cwiD0","rawHref":"/video/preview/1435330336767687720?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15436969625669454456":{"videoId":"15436969625669454456","title":"Rewriting expression using math laws #shorts #mathematics","cleanTitle":"Rewriting expression using math laws #shorts #mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/9u7UFN0h5AI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9u7UFN0h5AI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO2h0dHA6Ly93d3cueW91dHViZS5jb20vQE5vdGVzZm9yTXNj","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":60,"text":"1:00","a11yText":"Süre 1 dakika","shortText":"1 dk."},"date":"19 ağu 2023","modifyTime":1692403200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9u7UFN0h5AI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9u7UFN0h5AI","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":60},"parentClipId":"15436969625669454456","href":"http://www.youtube.com/shorts/9u7UFN0h5AI","rawHref":"/video/preview/15436969625669454456?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15542022164399667506":{"videoId":"15542022164399667506","title":"Translate English statements into logical symbols | Discrete Math #shorts #math #shortvideos","cleanTitle":"Translate English statements into logical symbols | Discrete Math #shorts #math #shortvideos","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=PN4hk4exhL0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PN4hk4exhL0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":61,"text":"1:01","a11yText":"Süre 1 dakika 1 saniye","shortText":"1 dk."},"views":{"text":"1,8bin","a11yText":"1,8 bin izleme"},"date":"28 eki 2022","modifyTime":1666915200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PN4hk4exhL0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PN4hk4exhL0","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":61},"parentClipId":"15542022164399667506","href":"http://www.youtube.com/watch?v=PN4hk4exhL0","rawHref":"/video/preview/15542022164399667506?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"986807403139078214":{"videoId":"986807403139078214","title":"Quiz 65: Evaluate 2a + 5b #shorts #algebra #math","cleanTitle":"Quiz 65: Evaluate 2a + 5b #shorts #algebra #math","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/0yk9IO6lbOY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0yk9IO6lbOY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":16,"text":"00:16","a11yText":"Süre 16 saniye","shortText":""},"date":"25 ağu 2023","modifyTime":1692921600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0yk9IO6lbOY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0yk9IO6lbOY","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":16},"parentClipId":"986807403139078214","href":"http://www.youtube.com/shorts/0yk9IO6lbOY","rawHref":"/video/preview/986807403139078214?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1579008060778431748":{"videoId":"1579008060778431748","title":"Quiz 51: Which one is multiplicative identity? #shorts #math","cleanTitle":"Quiz 51: Which one is multiplicative identity? #shorts #math","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=q8PV6wc0IUg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/q8PV6wc0IUg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":16,"text":"00:16","a11yText":"Süre 16 saniye","shortText":""},"date":"27 kas 2022","modifyTime":1669507200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/q8PV6wc0IUg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=q8PV6wc0IUg","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":16},"parentClipId":"1579008060778431748","href":"http://www.youtube.com/watch?v=q8PV6wc0IUg","rawHref":"/video/preview/1579008060778431748?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12980654725821496868":{"videoId":"12980654725821496868","title":"Square root of a negative number #shorts #math #shortvideos #mathematics","cleanTitle":"Square root of a negative number #shorts #math #shortvideos #mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=aDwejiRMe30","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/aDwejiRMe30?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":52,"text":"00:52","a11yText":"Süre 52 saniye","shortText":""},"date":"28 eki 2022","modifyTime":1666915200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/aDwejiRMe30?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=aDwejiRMe30","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":52},"parentClipId":"12980654725821496868","href":"http://www.youtube.com/watch?v=aDwejiRMe30","rawHref":"/video/preview/12980654725821496868?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4863669312288484761":{"videoId":"4863669312288484761","title":"Quiz 34: What is the absolute value of -5? #shorts #math #shortvideos","cleanTitle":"Quiz 34: What is the absolute value of -5? #shorts #math #shortvideos","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zcBvIqNSPgc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zcBvIqNSPgc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":16,"text":"00:16","a11yText":"Süre 16 saniye","shortText":""},"date":"21 eki 2022","modifyTime":1666310400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zcBvIqNSPgc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zcBvIqNSPgc","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":16},"parentClipId":"4863669312288484761","href":"http://www.youtube.com/watch?v=zcBvIqNSPgc","rawHref":"/video/preview/4863669312288484761?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6319606412988503197":{"videoId":"6319606412988503197","title":"Quiz 31: Which is the correct interval? #shorts #math #shortvideos","cleanTitle":"Quiz 31: Which is the correct interval? #shorts #math #shortvideos","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=d5c9QyQPCc0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/d5c9QyQPCc0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":16,"text":"00:16","a11yText":"Süre 16 saniye","shortText":""},"date":"18 eki 2022","modifyTime":1666051200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/d5c9QyQPCc0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=d5c9QyQPCc0","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":16},"parentClipId":"6319606412988503197","href":"http://www.youtube.com/watch?v=d5c9QyQPCc0","rawHref":"/video/preview/6319606412988503197?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8754018141383251412":{"videoId":"8754018141383251412","title":"Book Preview | Introductory Discrete Math | V.K. Balakrishnan #shorts #shortvideos #math","cleanTitle":"Book Preview | Introductory Discrete Math | V.K. Balakrishnan #shorts #shortvideos #math","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FfpeC2Z-KlU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FfpeC2Z-KlU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":16,"text":"00:16","a11yText":"Süre 16 saniye","shortText":""},"date":"29 eki 2022","modifyTime":1667001600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FfpeC2Z-KlU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FfpeC2Z-KlU","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":16},"parentClipId":"8754018141383251412","href":"http://www.youtube.com/watch?v=FfpeC2Z-KlU","rawHref":"/video/preview/8754018141383251412?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14649388261492136862":{"videoId":"14649388261492136862","title":"Quiz 38: Find function for the graph. #shorts #math #shortvideos","cleanTitle":"Quiz 38: Find function for the graph. #shorts #math #shortvideos","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WMxyw3f7VcQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WMxyw3f7VcQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":16,"text":"00:16","a11yText":"Süre 16 saniye","shortText":""},"date":"25 eki 2022","modifyTime":1666656000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WMxyw3f7VcQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WMxyw3f7VcQ","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":16},"parentClipId":"14649388261492136862","href":"http://www.youtube.com/watch?v=WMxyw3f7VcQ","rawHref":"/video/preview/14649388261492136862?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11600524537111848048":{"videoId":"11600524537111848048","title":"Best seller for Discrete Mathematics #shorts #discretemath #shortvideos","cleanTitle":"Best seller for Discrete Mathematics #shorts #discretemath #shortvideos","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dheJuOz2zok","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dheJuOz2zok?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":20,"text":"00:20","a11yText":"Süre 20 saniye","shortText":""},"date":"22 eki 2022","modifyTime":1666396800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dheJuOz2zok?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dheJuOz2zok","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":20},"parentClipId":"11600524537111848048","href":"http://www.youtube.com/watch?v=dheJuOz2zok","rawHref":"/video/preview/11600524537111848048?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"340470128490219424":{"videoId":"340470128490219424","title":"Quiz 39: What is square root of 0.36 ? #shorts #math #shortvideos #mathematics","cleanTitle":"Quiz 39: What is square root of 0.36 ? #shorts #math #shortvideos #mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Qsk85CZTXnQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Qsk85CZTXnQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":16,"text":"00:16","a11yText":"Süre 16 saniye","shortText":""},"date":"27 eki 2022","modifyTime":1666828800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Qsk85CZTXnQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Qsk85CZTXnQ","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":16},"parentClipId":"340470128490219424","href":"http://www.youtube.com/watch?v=Qsk85CZTXnQ","rawHref":"/video/preview/340470128490219424?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3803613432616562764":{"videoId":"3803613432616562764","title":"Quiz 49: What is 5% of 250? #shorts #math #shortvideos","cleanTitle":"Quiz 49: What is 5% of 250? #shorts #math #shortvideos","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HKRzP1BECbY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HKRzP1BECbY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnZ6cE5ucGhmaVJBcC1RemhGcTlVdw==","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":16,"text":"00:16","a11yText":"Süre 16 saniye","shortText":""},"date":"19 kas 2022","modifyTime":1668816000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HKRzP1BECbY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HKRzP1BECbY","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":16},"parentClipId":"3803613432616562764","href":"http://www.youtube.com/watch?v=HKRzP1BECbY","rawHref":"/video/preview/3803613432616562764?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6208358784362947873":{"videoId":"6208358784362947873","title":"Quiz 10: What type of matrix is yhis! #shorts #shortvideos #discretemath","cleanTitle":"Quiz 10: What type of matrix is yhis! #shorts #shortvideos #discretemath","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/2anaQovoEcA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2anaQovoEcA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO2h0dHA6Ly93d3cueW91dHViZS5jb20vQE5vdGVzZm9yTXNj","name":"NotesForMsc (NotesForMsc)","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","origUrl":"http://www.youtube.com/@NotesforMsc","a11yText":"NotesForMsc (NotesForMsc). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":16,"text":"00:16","a11yText":"Süre 16 saniye","shortText":""},"date":"1 eki 2022","modifyTime":1664582400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2anaQovoEcA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2anaQovoEcA","reqid":"1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL","duration":16},"parentClipId":"6208358784362947873","href":"http://www.youtube.com/shorts/2anaQovoEcA","rawHref":"/video/preview/6208358784362947873?parent-reqid=1771584864424882-6015720044098070607-balancer-l7leveler-kubr-yp-sas-97-BAL&promo=pumpkin&text=NotesForMsc+%28NotesForMsc%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x906f9600bf4","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"6015720044098070607797","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"NotesForMsc (NotesForMsc)","queryUriEscaped":"NotesForMsc%20%28NotesForMsc%29","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}