{"pages":{"search":{"query":"Softhints - Python, Linux, Pandas","originalQuery":"Softhints - Python, Linux, Pandas","serpid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","parentReqid":"","serpItems":[{"id":"15797355702921339774-0-0","type":"videoSnippet","props":{"videoId":"15797355702921339774"},"curPage":0},{"id":"4690022766664769573-0-1","type":"videoSnippet","props":{"videoId":"4690022766664769573"},"curPage":0},{"id":"1564783305503615062-0-2","type":"videoSnippet","props":{"videoId":"1564783305503615062"},"curPage":0},{"id":"8747997297112882307-0-3","type":"videoSnippet","props":{"videoId":"8747997297112882307"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFNvZnRoaW50cyAtIFB5dGhvbiwgTGludXgsIFBhbmRhcwo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","ui":"desktop","yuid":"5302353331770764921"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"5708144153368454758-0-5","type":"videoSnippet","props":{"videoId":"5708144153368454758"},"curPage":0},{"id":"6854617396207543740-0-6","type":"videoSnippet","props":{"videoId":"6854617396207543740"},"curPage":0},{"id":"12156681734898204797-0-7","type":"videoSnippet","props":{"videoId":"12156681734898204797"},"curPage":0},{"id":"12892308147392684503-0-8","type":"videoSnippet","props":{"videoId":"12892308147392684503"},"curPage":0},{"id":"11574804767142018509-0-9","type":"videoSnippet","props":{"videoId":"11574804767142018509"},"curPage":0},{"id":"13722152198013702674-0-10","type":"videoSnippet","props":{"videoId":"13722152198013702674"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFNvZnRoaW50cyAtIFB5dGhvbiwgTGludXgsIFBhbmRhcwo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","ui":"desktop","yuid":"5302353331770764921"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"2085791086707417704-0-12","type":"videoSnippet","props":{"videoId":"2085791086707417704"},"curPage":0},{"id":"5411503664160402905-0-13","type":"videoSnippet","props":{"videoId":"5411503664160402905"},"curPage":0},{"id":"15968327375634093840-0-14","type":"videoSnippet","props":{"videoId":"15968327375634093840"},"curPage":0},{"id":"16084559102957432310-0-15","type":"videoSnippet","props":{"videoId":"16084559102957432310"},"curPage":0},{"id":"2914404919708917106-0-16","type":"videoSnippet","props":{"videoId":"2914404919708917106"},"curPage":0},{"id":"10893694322601581276-0-17","type":"videoSnippet","props":{"videoId":"10893694322601581276"},"curPage":0},{"id":"2584590509853947860-0-18","type":"videoSnippet","props":{"videoId":"2584590509853947860"},"curPage":0},{"id":"9225762296984234625-0-19","type":"videoSnippet","props":{"videoId":"9225762296984234625"},"curPage":0},{"id":"11700078229563273860-0-20","type":"videoSnippet","props":{"videoId":"11700078229563273860"},"curPage":0},{"id":"14521922739199248243-0-21","type":"videoSnippet","props":{"videoId":"14521922739199248243"},"curPage":0},{"id":"11716599978107054446-0-22","type":"videoSnippet","props":{"videoId":"11716599978107054446"},"curPage":0},{"id":"8210718368817714446-0-23","type":"videoSnippet","props":{"videoId":"8210718368817714446"},"curPage":0},{"id":"8179578966159366168-0-24","type":"videoSnippet","props":{"videoId":"8179578966159366168"},"curPage":0},{"id":"17838540055524678982-0-25","type":"videoSnippet","props":{"videoId":"17838540055524678982"},"curPage":0},{"id":"2813130286715331788-0-26","type":"videoSnippet","props":{"videoId":"2813130286715331788"},"curPage":0},{"id":"3098241893280506215-0-27","type":"videoSnippet","props":{"videoId":"3098241893280506215"},"curPage":0},{"id":"1005924626098078530-0-28","type":"videoSnippet","props":{"videoId":"1005924626098078530"},"curPage":0},{"id":"4152481358530839772-0-29","type":"videoSnippet","props":{"videoId":"4152481358530839772"},"curPage":0},{"id":"14090877751408616933-0-30","type":"videoSnippet","props":{"videoId":"14090877751408616933"},"curPage":0},{"id":"17906915965363300048-0-31","type":"videoSnippet","props":{"videoId":"17906915965363300048"},"curPage":0},{"id":"10177135887636997120-0-32","type":"videoSnippet","props":{"videoId":"10177135887636997120"},"curPage":0},{"id":"2425198842126478862-0-33","type":"videoSnippet","props":{"videoId":"2425198842126478862"},"curPage":0},{"id":"10762138478490024630-0-34","type":"videoSnippet","props":{"videoId":"10762138478490024630"},"curPage":0},{"id":"12309169677238325865-0-35","type":"videoSnippet","props":{"videoId":"12309169677238325865"},"curPage":0},{"id":"3274924830062823712-0-36","type":"videoSnippet","props":{"videoId":"3274924830062823712"},"curPage":0},{"id":"5897512234853138329-0-37","type":"videoSnippet","props":{"videoId":"5897512234853138329"},"curPage":0},{"id":"2742133624125496185-0-38","type":"videoSnippet","props":{"videoId":"2742133624125496185"},"curPage":0},{"id":"13297521790081125104-0-39","type":"videoSnippet","props":{"videoId":"13297521790081125104"},"curPage":0},{"id":"2228646437506862105-0-40","type":"videoSnippet","props":{"videoId":"2228646437506862105"},"curPage":0},{"id":"13380767496200438439-0-41","type":"videoSnippet","props":{"videoId":"13380767496200438439"},"curPage":0},{"id":"996738562123215522-0-42","type":"videoSnippet","props":{"videoId":"996738562123215522"},"curPage":0},{"id":"16257130570718559061-0-43","type":"videoSnippet","props":{"videoId":"16257130570718559061"},"curPage":0},{"id":"17113424891836532083-0-44","type":"videoSnippet","props":{"videoId":"17113424891836532083"},"curPage":0},{"id":"13901289731968769500-0-45","type":"videoSnippet","props":{"videoId":"13901289731968769500"},"curPage":0},{"id":"11513031006369495557-0-46","type":"videoSnippet","props":{"videoId":"11513031006369495557"},"curPage":0},{"id":"14289329508133966607-0-47","type":"videoSnippet","props":{"videoId":"14289329508133966607"},"curPage":0},{"id":"4499742001458970208-0-48","type":"videoSnippet","props":{"videoId":"4499742001458970208"},"curPage":0},{"id":"11628773176569326539-0-49","type":"videoSnippet","props":{"videoId":"11628773176569326539"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":false},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFNvZnRoaW50cyAtIFB5dGhvbiwgTGludXgsIFBhbmRhcwo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","ui":"desktop","yuid":"5302353331770764921"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Fpromo%3Dpumpkin%26text%3DSofthints%2B-%2BPython%252C%2BLinux%252C%2BPandas","pages":[{"reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","start":0,"end":50,"pageNumber":0,"isCounterSent":false}]},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"7528617031302353337196","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1450763,0,9;1472350,0,43;1336777,0,71;284409,0,71;151171,0,22;1281084,0,38;287509,0,66;1447467,0,43;785124,0,0;1478786,0,59;1473596,0,51;1482979,0,69;1466396,0,14;912281,0,80"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Fpromo%3Dpumpkin%26text%3DSofthints%2B-%2BPython%252C%2BLinux%252C%2BPandas","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Softhints - Python, Linux, Pandas: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Softhints - Python, Linux, Pandas\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Softhints - Python, Linux, Pandas — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":true,"sessionCsrfToken":"y267dae2c250486c985d1d90f81c2c800","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1450763,1472350,1336777,284409,151171,1281084,287509,1447467,785124,1478786,1473596,1482979,1466396,912281","queryText":"Softhints - Python, Linux, Pandas","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"5302353331770764921","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1486468,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":true,"language":"tr","user_time":{"epoch":"1770764921","tz":"America/Louisville","to_iso":"2026-02-10T18:08:41-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1450763,1472350,1336777,284409,151171,1281084,287509,1447467,785124,1478786,1473596,1482979,1466396,912281","queryText":"Softhints - Python, Linux, Pandas","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"5302353331770764921","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"7528617031302353337196","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":156,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false,"isPlayerChangeCounterEnabled":false,"isSmallTitle":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"5302353331770764921","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1765.0__1b65778f629c0be7662f8369a8a645d0fd81b295","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"15797355702921339774":{"videoId":"15797355702921339774","docid":"34-8-6-Z6C37CEB0064424DE","description":"Python cumulative sum per group with pandas https://blog.softhints.com/python-cum... Python/Pandas conver column from string to date http://blog.softhints.com/python-pand... Python and Pandas...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"0","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python Cumulative Sum per Group with Pandas","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1tCbvYv_ibw\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxNTc5NzM1NTcwMjkyMTMzOTc3NFoUMTU3OTczNTU3MDI5MjEzMzk3NzRqkhcSATAYACJEGjAACiloaG5wa2F3bXhteG5lc3hoaFVDZzVydlBfRDczNW9TQmF0ZGNINVpGQRICABEqEMIPDxoPPxOGBIIEJAGABCsqiwEQARp4gQkJBQ4D_QDz_AkH9wX-ARwAAQr0AgIA8fr8_AcB_wDx9P8BAgAAAAkEAO8DAAAA8wQPBPYAAQAiAQQHBAAAABv29An9AAAABwoCCv4BAAD_8fsBA_8AABn7A_T_AAAA-gEKAPr_AAD-CvgLAAAAAA_3EQwAAAAAIAAt8GDMOzgTQAlITlACKoQCEAAa8AFqTwj_yvzl_w8I2AD5BvUBhwor_18hBQDf_BX_zP_sAdP45wDO9SMAwSnt_4EXCQLW6fAANQ8HAf3cEP8BByoAGhL2AVbiMwRLGdz__Cv6_hD4J_8U5Q7_I_4n_hn0_wHx8wr98OzU_s3p_wEKHzQDEfEC_xUK5P0YDkAB8QcIAOft-AfaAxsEzOH2AvEDEAXwCtT6FzDV__QU-AAe8w8EDvoZAQfo7AUOCRQG0OcA_NQE_fv_-foA2AoO_CkkGfrrAAYIAOYL-BL--vgd7d4NBNj5-AC_BxEcAfPzytoB_tL3Bf4KPfv-8xUcBwsbBPsgAC1CrRQ7OBNACUhhUAIqzwcQABrAB2ND774Pwae804CDOxipoDt3_LI8w4keO2pNc72pCME8tnIFvdcUCD4iBjU9R8KjPJfHqr4Tx-w7vhGdvP29dD6SVEu9A7HsPCtgnL27Hta8Tl5EvSxDgb3-odO7SQJDvSmYvL3Y1zq8kfrhPKDi2D1hPJ68xU-IvAnMqb1UwwO9aMMrvD7etTwIeBA7wcxSvIXqBj5fuLM9xhEQvOYDQj72PU-9RwEBuwPFF7xUQmY9XMBTu-Efu70BQIS8ObTtvJPpmz1K6go8zf7lu2icAT2OAgS9zmelPPM82D2AH4899g1MPJkOnTpdLgk846hcO0zFhjwyOgA9v4lXPHf1Cr6gny49XPlRvEYK5T2jliA8U83uO8KymL2V6fw8aDC8PJH6kT2CJfI8kDaGO_Q04D04k8A9dwJQPDqcT71CJ1-8wi8uOsCT9j3_6pE9GJvvu6TcojyZOpk8l6KFu75b6jyWzpc9jzaOuY2bmr1zlTg97PuLvFAIEz1VYy48xhaCO44HCz6dGj69T1LoO7LgmTxL7eA8Hz66PC7yHbxvLpm9zct-u7WRJj1_qzA9ux3Muy2qaj1SESM8Q32_u6Nr8DzOfB29xUaPvEt9xD22cmU8rtCsPJDZWb2wI2m8NaUIvA42ED0AqIK9IjM8vJcZ27x6Hvc89-cDvGj2Dz3iirC8spRyu9VWoT3Sl7S9IkISPHTDJbz8goe9llLcORiyCj5lnsO7GNGCOCUX7bw_0yE9JTczO5qYTj0eoSs9GDuGOu6vDj6fEpG9ftCUOT_ekjsQCM8888TWuAxcZjllQoK7b6YiukxuND2ZyFY91_atuAXT-rv4ToG9CfmRuYGvKD2MLm-9IYr8uQMRnb3QqIq8l4iZOef-qrwfyoa89HSAOcmUajwp-Dc8XLwAuPpYZj1w1ZA8DCNguOKVYjsYLba9_INZudn5ijtBqKG95Te8ObGulb3AMys9SIC-NyiQQz0t2Bw9kuh9OGJDnDzDHYk9WLChOWqJpT0bxYg9z6_QN1jciT2XfS09D2ghtXZTar1Xz8m9XDpquC7nkj0W4DY9JycWuSL7AL7GXyQ9F5hlOEmMVLzvSoy9eSvXNnnqjTv_eC88SagguElmxb2Hixy-tbqtOBxmgz0O9HW85XcGuSqKXD2bfGm8MPUTt3qXAb2rA2W9tWLmtyPchD35l749blE1t97oXj145YS9QVK0uCL_7D01KQU-835buJ-cF7131eg8SgJAuOmLczzOAxS8KDIit356Ij1pL2y7pVeeNiAAOBNACUhtUAEqcxAAGmAQGQAV7hwgBu8K5c755gvIwzjAHKkU_yXI_03_2TUEAtyeOvj_G-0G2J4AAABJEu3wGwARf_a2yBDkFgunwQ4_I2v4AB3g4fYPtqsyNd8j2bwE6hYA_N6_LEgC8Fn2JBsgAC1OpRU7OBNACUhvUAIqrwYQDBqgBgAAiEIAAIRCAACYwQAAgMAAAIA_AABcQgAALEIAAMjBAADIwQAAuMEAADBCAADAwQAABMIAACTCAAAQQgAAYMEAAKBAAACQwQAAIMEAANBBAACIQgAAYMEAAKDAAACAvwAAkEEAAKDBAABMwgAAcMEAAGhCAABAwAAAKMIAABjCAABgwgAA8EEAANhBAACIwQAAoEEAADBCAACgQQAAwEAAALJCAADwwQAADEIAAExCAACIwQAAhMIAACDBAACoQQAAvEIAACjCAAD8wgAAMMIAADBBAACIwQAATEIAANBBAADawgAAIMIAAHDBAACYQQAA6EEAANjBAAAQQQAAVMIAACDBAADgwQAAAAAAAEjCAAAAwQAAssIAAOBBAABIQgAABMIAAMhBAAA4QgAAgL8AAKBAAADQQQAAuEIAACBBAACowgAAIEIAAIBBAABwQQAAuEEAAIhBAACAPwAAUEEAABBCAACgwQAACEIAAMBAAAAIwgAAzMIAAMBAAADYwQAAFMIAAIjBAACwQQAARMIAAKjCAAA4QgAAjEIAABzCAACAQAAAsMEAANBBAAAwQgAA4MEAADhCAAAYQgAAyEEAAEDBAADQwQAAVEIAAMBAAADgwAAAoMAAAIC_AAAwQgAAEEEAAHzCAABAwAAA6MEAABxCAADYQQAAYMEAAGRCAAAkwgAAIEIAAAAAAADAwAAAhEIAAGDBAABgQQAA6EEAAFTCAADAwAAAcEEAAPDBAABAwAAAVMIAABBBAAAAQAAAOEIAABDCAAAcwgAAWEIAAKZCAAA0QgAAuEEAAHBBAADAQQAAUMEAAODAAABcwgAAmMIAAMDAAAA8wgAAIEEAACxCAAAAwQAAsMIAAMDBAAAAwQAAwMEAAGDCAAD4QQAAQMAAAODBAADgwQAAgEEAAIC_AADgQQAAEEEAABRCAAAgQgAAEMIAAJBBAADAQgAAUMIAAIbCAADYwQAA4EEAAEhCAADowQAAlsIAAJBCAACAQAAAAEIAAGDBAABEwgAAoMEAAIjBAAAswgAAYMEAACjCAAAsQgAASMIAAEBAIAA4E0AJSHVQASqPAhAAGoACAABMvgAAur4AACw-AABwPQAAdL4AAAQ-AAAQPQAAP78AABS-AADIPQAAZL4AAEQ-AADgvAAAPD4AAIC7AAAcvgAA2D0AAKg9AAAwvQAA9j4AAH8_AAB0PgAAcD0AAHA9AABwvQAA-L0AAIA7AABUvgAAhr4AAIi9AADoPQAADL4AAPg9AADYvQAARD4AAOC8AAB8PgAAQLwAAIq-AACgPAAA2L0AAJg9AAAwvQAAiL0AACS-AADYPQAAgj4AAHC9AACYvQAAtr4AABw-AACAOwAAVD4AAJg9AACSvgAA4LwAAH8_AAAQvQAADD4AAEw-AAAkPgAAQLwAADA9AACovSAAOBNACUh8UAEqjwIQARqAAgAAlr4AAMg9AADovQAA4r4AAMi9AAA0PgAAwj4AAOC8AACgvAAA2j4AACS-AACoPQAAoLwAAEA8AAAsvgAAQDwAAES-AAA9PwAAmL0AAPY-AAC4PQAAiL0AAPi9AACAOwAAHL4AAFy-AADYPQAADD4AAOA8AAAwvQAAMD0AAFA9AAAkvgAAuL0AACQ-AABEvgAA9j4AAJg9AAC-vgAAQDwAAKg9AABQPQAABD4AAAS-AABkPgAA2D0AAH-_AABAPAAABD4AALi9AAAUPgAAyD0AAOg9AACYPQAAyj4AANg9AABAvAAAyL0AAPg9AACSPgAAuD0AAKg9AABAvAAAUL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=1tCbvYv_ibw","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15797355702921339774"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"105882116"},"4690022766664769573":{"videoId":"4690022766664769573","docid":"34-0-5-Z5E1832B47AB74622","description":"Pandas Tutorial : How to split columns of dataframe https://blog.softhints.com/pandas-tut... pandas.Series.str.split https://pandas.pydata.org/pandas-docs... Machine Learning Cheatsheet...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"1","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Pandas Tutorial : How to split columns of dataframe","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cCoGsFVPVh0\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChM0NjkwMDIyNzY2NjY0NzY5NTczWhM0NjkwMDIyNzY2NjY0NzY5NTczapIXEgEwGAAiRBowAAopaGhucGthd214bXhuZXN4aGhVQ2c1cnZQX0Q3MzVvU0JhdGRjSDVaRkESAgARKhDCDw8aDz8T8wGCBCQBgAQrKosBEAEaeIENCgn5A_0AA_kODwYM-QMGA_H19v_-AOz47_sFAAAA_Bf9BwcBAAD_FAgLBgAAAO_27wj6AAAADf_r-wIAAAAb9vQJ_QAAAAX6Avj_AQAA-An1AgP_AADtAwX9_wAAAPn8_gQBAAAABQYB9QEAAAAJ6goGAAEAACAALSAuyzs4E0AJSE5QAiqEAhAAGvABfPHY_hLnFAXABgAA_O_mAYjTJP9gAPwB1vL0_8T_6QHY_dYA4ftJ_s4a5QCBE-wBvv3S_y5JCwEM1zf_FAdEARD33QFb3RACMwz1AOsp9v7wJwv_XNwPADvGCAAmHPP9G87x_s0K0QCx3v7_ODM3AgX3IAIgGO8E5ioSBM0ZAgLP7QL9ACLx_Kzr6v0G9-YBFzjZAUka8v8PJAf8LOLoAhD5HQEV1fMD7wUFAP4qFwjm-vX6D-4VB8_r__4TQBsCBw0WDQz38_wP9uTyKwTx-OAU7gn3yPIR8-YLFNP5C_fi-QP15DYLAfEYIAj1_wX3IAAt1awAOzgTQAlIYVACKs8HEAAawAfpYtO-ivAFPZB4wzz7dvG7GbRGPJhp-zzMpZe9car1PD08lTwzqUE-2cQwOlizqTyz8HW-x9CWvEVkQDkKL2E-F3GwvEHTxjkrYJy9ux7WvE5eRL3kcsK9OIJYO6w9B73q7JS9Pb0tvcZt9Dy-S1k-kRzdO6B8izoxNZO96HGzvOsPnjxar1M9yCHHvGMl5rz6MKY9I93vPVY9qjtpGRk-vV87vWUX7zsAOqy9yxTzPG5jvbzMG1S79iUbvPUZBr0JeZM9DdbJPPyOYTybjVq9w3esvLMIRTwUvYI9IVGyPeverzwZLRW8YLcdvC7gijxxyMY8cYQWvccpn7w8awe-NYQ-PGgN-bzdtBk-PRbRPANg-rtIURe-GzRPPLMMcTzNYTI9ZVFYPPtOXbz0NOA9OJPAPXcCUDyUMzS9NtZUvdD3LjzmzRE-I_s7PVZ3dryMjQ-9pR4YvQXSzzyXPSQ9QSvyO0_Clrvyh9W8pmlrPRj0ubxS7aM9xeDGvCZ8hDuOBws-nRo-vU9S6DuA9A09WQhBPfO_JjxzWsG8Vb1BvfoOeruDDK47NVkIPT_vvjv2Bak9wbzRvG988buqpY-9YHlrvLPsSbzKWJg9Zjk_PBp1Bjw01E28jhsCPEKhEry6jIY9tO56vXHc77ueOpC9kx2LPej2kruBsR27FkoLvbHSsLucaWI9HOqXvYTyTLq-ORK99rKSvA7r3Ll65Ko9I1-uvG9Igrkptyi9paFmPbBRx7kf9Oy8WAqWO5WRZbvHZxI-rqDpvZAJtLm7zu07U4UVPYJvv7c_oP08FZLnPHtfqzg5Yr092Qr5O0F-grmtL7c6_RLxvbwjiTn00h49IDX3vADCXji8TLO9MhRBvNfZ7ji0ETm9NygLva1-EDmLfE08i7F9uRvZH7kbi3w9NckZPW07grb5iQG8PnbXvb3FRLjL_307jup0vVPqwDdR7pi9BTdtPWr2TTi5Sr27I2oiPedyuTipZvs8tHGJPWDP67iAnJA9SMCtPXy-4jiAR4Q9ADCDPM-pp7iwD7G9twy4vf5YOLiex_I8Bm5YPWyUdrhtxf69otQ-vRov9LjCdVu9ujDSvTbDu7U6PMS8YaiDPCXd-rf5egi9VAEnvoEqHThp-Pu8-Ofcu74CzzajXrs95gv3O-yx8jeN5YY6rQ4lPPAsvzdtcwM-PfmfPS7thzeV31g99czcvNkt_bci_-w9NSkFPvN-W7gPhtW8hnzGPCiyxrdYYz88N3akvDEcCTbdIpU9XOSiO0AtcLggADgTQAlIbVABKnMQABpgD_kAHPf8scnnOfvSs-ALx9HRwxzrPf_5tP8C-q0ZAOqtui39__8BC9WXAAAAMRcGOC4AI3_o2ewiwCBCz8_3ENNsH94eze3zF9rMaA7RFtPCA_5UAA7K0CQbEtZPSjAjIAAtLc0QOzgTQAlIb1ACKq8GEAwaoAYAAHBCAAAMQgAAyMEAAEBAAAD4wQAAoEEAAOBBAAD4wQAAoEEAAPjBAAAUQgAA0EEAAMDBAADYwQAAUMEAAEBAAABQQQAAwMAAAKhBAACcQgAAXEIAAABBAAAQQgAA8EEAACDBAABEQgAAkMEAAFzCAAAAAAAAIMIAALjBAABkwgAAwMEAACBCAAAAQQAAQEIAAGTCAACCQgAAZEIAAKBAAABAQAAAgMEAADRCAABkQgAAgL8AAKzCAACAPwAAYMEAALhCAABcwgAAbMIAAODBAABswgAAZMIAAJhBAABgwQAAzMIAAMTCAADAQQAAuEEAAGBBAAC4QQAAQEIAAK7CAAAgQgAAgMAAAJjBAABgwgAAPMIAABDCAACAPwAA-EEAAMjBAADIwQAAgEIAAODAAACAPwAAeEIAAHBCAAAIQgAA4MEAADhCAABgwgAAmMEAADhCAABAwAAAUEEAAARCAACgwQAAYEEAAFBBAAAQQQAAoMAAAEBAAAAgwQAAuMEAAEDAAAAwwQAAgkIAAEDAAACgwgAAIEEAAOBBAAAgQQAAgMEAAETCAACAQQAAcEEAAGzCAABwQgAAgL8AALhBAAAgQQAAGMIAANhBAACowQAAsEEAAPBBAADwQQAAREIAAJLCAACwwgAAoEEAAJjBAABoQgAAQEIAAMBBAADQQQAAGMIAABhCAAAAQQAAiEEAACxCAADQQQAAiEEAADhCAAAMwgAAcEIAALDBAACIQQAAYEEAAFDCAABAwQAAcMEAACRCAAC4QQAAAMIAALBCAACsQgAASEIAAKDBAACQQQAAEEEAAABAAACAQAAAGMIAAETCAAAQwQAAFMIAAIBBAAB8QgAAAMEAAIBAAACUwgAAmMEAACBBAABAwAAAAEEAAEDAAABswgAAsMEAAODBAAAAwAAAYMIAAABAAADAQAAAyEEAAADCAACAvwAAlkIAAHTCAABQwQAAWMIAAIBBAAAUQgAASMIAAFTCAAAwQgAADEIAAIA_AAAAAAAA4EAAAABBAAA4wgAAoEAAAMBAAACAwgAAZEIAAGDCAACwwSAAOBNACUh1UAEqjwIQABqAAgAAgDsAAOi9AABEPgAAqL0AABy-AAAEPgAAqD0AAB-_AADIvQAAVD4AALK-AACgvAAAVL4AAEQ-AAAEvgAAJL4AAJg9AABAPAAABD4AABk_AAB_PwAAuL0AAEC8AAAUPgAA6L0AAAS-AACIPQAANL4AAPg9AAB0PgAAQLwAAMi9AADIPQAA4LwAAOA8AACovQAALD4AAOi9AABUvgAAmL0AADC9AACgPAAA-L0AAIK-AAAkvgAAqD0AAFw-AAAwPQAAFL4AAKK-AACAuwAAoDwAAK4-AAAQPQAARL4AAKA8AABxPwAABL4AAMg9AAAkPgAABL4AAEQ-AADgPAAADD4gADgTQAlIfFABKo8CEAEagAIAAGS-AADYPQAAEL0AAB2_AAC4vQAAED0AAOC8AACiPgAA2L0AAJg9AAB8vgAAmL0AAEA8AADovQAAQDwAAIi9AACYPQAANT8AAJg9AADWPgAAML0AAAQ-AAAwPQAADL4AALi9AABAPAAAyD0AADC9AAAQvQAADD4AAEC8AACAOwAAcD0AADS-AABAvAAAPL4AAHA9AADgPAAAfL4AAFw-AACovQAAiL0AABA9AACIPQAAmL0AAKA8AAB_vwAAUL0AAIK-AAAEPgAATD4AADA9AABwPQAALD4AANI-AAAQvQAAiD0AAOA8AABAPAAAgDsAAAQ-AAAUPgAAcD0AAGS-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=cCoGsFVPVh0","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4690022766664769573"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3471214759"},"1564783305503615062":{"videoId":"1564783305503615062","docid":"34-11-16-Z797461D6F632AC06","description":"Map the headers to a column with pandas and python https://github.com/softhints/python/b... - - Data set: Stack Over Flow 2018 insights...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"2","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Pandas count values in a column of type list","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=lx7KFd6BPcg\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChMxNTY0NzgzMzA1NTAzNjE1MDYyWhMxNTY0NzgzMzA1NTAzNjE1MDYyaocXEgEwGAAiRBowAAopaGhucGthd214bXhuZXN4aGhVQ2c1cnZQX0Q3MzVvU0JhdGRjSDVaRkESAgARKhDCDw8aDz8TsgeCBCQBgAQrKosBEAEaeIH_BPsB_gIA6_sT_PwAAQD9AfQG-P39APj9_gMFAv8A7A8J-gQAAAD6EAT-BgAAAPj5-w___wAAChD9DAQAAAAO_PwG-wAAAAYDBPr_AQAA-Pjr_gL_AAAAAwIB_wAAAPwBAwb-_wAAB_v8BgAAAAD_7wcBAAAAACAALRPz2Ts4E0AJSE5QAiqEAhAAGvABXwLr__HT4QG9CgAA8uXgAYHtHP869_QA0OQQAcXN7gDd8dP_6BEkANkU6wC2_uoB4triABj7_wAA0-b_9Rc5AB4B8AA13f0AKA7pAQgw8P8I_QL_IfwB_xPKDv4VIPsC_8_u_Nz35gDV7OsACRsvAhPZJAQTCef-BikWAOIP__va8gH-_QYCA8ngC__i-eoB_f3nBigN8QQAG_QAGNcVAf_m8AXz4Ar_DQgSBR3_CwTo6_78BfYGA-wPDfslIBb7ABv0CwkPAfQSDAP0D_D4-A4e-gkAxgYPGvP6DAT5FPnp-wL39z8MBukS_QP9CwQCIAAtQVolOzgTQAlIYVACKs8HEAAawAfxLeS-M8U3PfVHHLz284E8w8pYORpUdrw8izm9chsIPceBHjozqUE-2cQwOlizqTyZgKe-ZfvQPJ_6ET0KL2E-F3GwvEHTxjlVOF29BEh-vT6KBL2m1AW-P0ypugVmqrzq7JS9Pb0tvcZt9Dyp-E8-EoMAvdRhhTxiUSy9ZFKoPKiWY7zcmwQ81JPevPztAb2F6gY-X7izPcYRELwFweM9yTjmvRSMbzut9Wq9O1ESPSXJmLw1cfw8yS23vKk_DL3JIm09RYTaOyUzKDybjVq9w3esvLMIRTwdhIo9ltEoPRxOzzzTmSW9Fzl6PFuoRrxjkgK54F4-vCQVvLwvej29CUr2PIe_B7z19fw9nKIIPesrWbzGYaq9q1udPe7UmjukA6s7xnkOPelHQ7zThuM9zHZqPdZ0vTx8riC92FqZveU90jutOkY92F6wPKKfhLwiYQm9bUAhPG16Cz2yy4E8agSBPckMirwsbDy8uqHpPRw5GDsT6_k86gt8vAStn7u-hws-n2l0u3-QmzyfZQw9guUGPGIB3LmVq6k8Ch4VvSmwwjuY_ZW86SmyvK16abu2HI49kpexu0CZkDtMule9UeeAvPkyLLyzBs896_6BPe9qAzzPw-Q85zJavNmZ37rOl5091FwzvS_X6LtiQEC9MeygPVgW8Tq1vu08qJMnvWjqs7s1hp89Pwg8vVBsiTssuas7111qPHapkbt65Ko9I1-uvG9IgrlYdty8sVOMPQMtODv8ie-8YUEwPV1DYLmhndM9UYGYvZedUTk2V828ERKOPAKV-brgsxo9h2cOPQ60ojk6WtU9i_Y9vSpU0LitL7c6_RLxvbwjiTlXbhM9tzYePVkHKjlnazO9OnJJvMzDXLr5wOm7-aRuvA4vkLgJxnw9wiM7vC8usjZ4Ik29h44YvT-1hLg21Uk8yLfXvcfO3rjfMWE7F37FvfSKTDfqHh69yBeOPTnJRzjF0MW8yDclPBssHLpGPzo99M6HPWz-t7iAtIQ94xcePrLngrceljy8xtm2O6mKGrhXBvW9cEPsvcwMi7hveZO7czA2PbTFkLfJOKu9_JQ-vVOU-7e8lLq87r2-vUmLmzdvKnK9DxJ9PScMC7j5egi9VAEnvoEqHTiYhZs84-5iPF3oLLdGz-09_kmXPV17qjj0yBk8eNCsPN0yIzhIgb89M367PcWeAziLiY28AQ-xPEq-HDci_-w9NSkFPvN-W7hTK6K953IBvOLgGrgpci28uuSOvQw6VLiW8qU9ZZtpu6jT_rYgADgTQAlIbVABKnMQABpgKwoAIQgz0PcKLuzf4NsB8uzWtP_FI_8U0gD41r8i_SzhwPbl_wboDNCsAAAADgfuJ-MAFWb9670Y5DwCybrxBgN_4_MKAvoh993Wa1gL4eLEEksmADDj3BMe-9c1JhgVIAAt7gwmOzgTQAlIb1ACKq8GEAwaoAYAAAhCAABoQgAAiMEAAMBAAAAAQAAAIEIAABxCAABgwQAABMIAABTCAAAsQgAACMIAALjBAAAowgAATEIAAIDBAAAwQQAAyMEAAIjBAAAIQgAAXEIAABTCAACAQAAAEEEAAAhCAACwwQAAEMIAAIDAAACIQgAAgMEAAEDCAADowQAAnMIAALBBAAAMQgAAkMEAAAxCAABsQgAAIEEAAIA_AACUQgAAkMEAAAxCAACeQgAAoMEAAGzCAACAwAAAAEAAAMJCAACSwgAA1MIAADzCAACYQQAAQMEAAGRCAACAQQAAzMIAABjCAACAQAAAAEEAAMhBAAAcwgAA4EAAAIzCAADAQAAA4MEAAADBAADwwQAAAMAAAKjCAAAAQQAAKEIAADjCAACgQQAA6EEAAEDAAACoQQAAHEIAAKRCAAAQwQAAqMIAABhCAACAPwAA0EEAAMBBAAAgQQAAAEAAAEBAAAA0QgAAIMEAACRCAACAQAAAwMEAAMjCAACYQQAA0MEAABDCAABAwAAAAEEAADjCAACkwgAAwEEAAI5CAAAUwgAAGEIAACDCAAAkQgAA4EEAAGDBAAAMQgAA2EEAABBCAAAAAAAAVMIAADhCAABAwAAAwMAAABDBAAAQwQAAhEIAAADAAABUwgAAgD8AANDBAABgQgAA4EEAALDBAABkQgAASMIAADRCAADgQAAAMMEAABRCAAC4wQAAAAAAAEBBAAAgwgAAMEEAACBCAAAIwgAAkEEAABTCAACQQQAAIMEAACxCAAAcwgAA-MEAAJBCAACGQgAAaEIAAIBBAAAwwQAAwEEAAAAAAADAwAAAjsIAAJDCAAAgwQAACMIAAAhCAADoQQAAIMEAALLCAACQwQAAwMEAADDCAACAwgAA0EEAAJjBAACowQAAPMIAAFDBAACAwQAAGEIAAMBBAAAwQgAAQEIAAOjBAACwQQAAqEIAAOjBAACIwgAAMMIAAIC_AAAgQgAAwMAAAJrCAACWQgAAgEAAALBBAADYwQAALMIAAGDBAAAgwQAADMIAAODAAAAQwgAAQEIAAHzCAACAQSAAOBNACUh1UAEqjwIQABqAAgAAoLwAADS-AACIPQAAcD0AAHy-AABAPAAAqL0AAFW_AADYvQAAUD0AAOK-AACgvAAAUD0AABA9AACSvgAAjr4AAKC8AADgPAAAML0AACc_AAB_PwAATD4AAIg9AACoPQAAXD4AAEC8AAAEPgAAwr4AAKC8AABAPAAAHD4AAKi9AACGPgAAsr4AAKC8AABwvQAAuD0AAIC7AAB8vgAAmL0AACy-AABEPgAAwj4AAGS-AAAUvgAAfD4AAII-AABEvgAAlr4AAIq-AABQvQAAiL0AACw-AAAwPQAAHL4AAJi9AABnPwAAZD4AAKi9AABMPgAApj4AAPg9AACoPQAAUL0gADgTQAlIfFABKo8CEAEagAIAAKi9AABsvgAAyL0AAF2_AAB0vgAAHL4AALY-AABUPgAAlr4AAFy-AACIvQAAnr4AAOi9AACuvgAAoLwAAKg9AAA0vgAARz8AADw-AACoPQAALD4AAOg9AAA0vgAAQLwAAJ6-AABQvQAAqL0AAIi9AABwvQAAMD0AAAQ-AADYPQAAqr4AAGS-AACIvQAABL4AAOI-AACCvgAAG78AAIi9AACovQAADD4AAFC9AACSPgAAqD0AAKo-AAB_vwAACb8AAHC9AADevgAAmD0AAGQ-AABsPgAAmL0AAKY-AACIPQAAoDwAAKI-AACePgAAML0AAMo-AABkPgAA2r4AAPK-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=lx7KFd6BPcg","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1564783305503615062"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4073858784"},"8747997297112882307":{"videoId":"8747997297112882307","docid":"34-4-11-Z40E61C03E84899DE","description":"Pandas count and percentage by value for a column https://blog.softhints.com/pandas-cou... 'per100': percent100}) Bonus tips: pandas column renaming df.columns = ['food', 'Portion size ', 'per...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"3","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Pandas count and percentage by value for a column","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=P5pxJkv71BU\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChM4NzQ3OTk3Mjk3MTEyODgyMzA3WhM4NzQ3OTk3Mjk3MTEyODgyMzA3apIXEgEwGAAiRBowAAopaGhucGthd214bXhuZXN4aGhVQ2c1cnZQX0Q3MzVvU0JhdGRjSDVaRkESAgARKhDCDw8aDz8T8wGCBCQBgAQrKosBEAEaeIH89_sAAAEA9_sV_f0E_wEMAPv69gAAAPb6-_3-A_8A-wz8BvkBAAD2EQfzAAAAAP4D_xD3_gEAChH9DAQAAAAH8AIEAQAAAAz_Bfr_AQAA8Qf6BwMAAAAFCPT9AAAAAPwBAwb-_wAADBD_AgEAAAAJ6wkGAAEAACAALQZu1Ds4E0AJSE5QAiqEAhAAGvABf_vgAbrs1f8NJvgAFO79ApT7Dv9F_g__zAEOAMXl9QDW-OgA0vwAANoK9ADA9AEA4_Pz_xICDgAB59gA7QQqAR7y8gBPzfYBOQD9AAgy8P8Z9QIAK_QOABjqCwAJFgH9E-vk_sYA2wAB2_D-Dv46ARbuNgDf-eMD7woZ_e4E-gLV4vX_Avko__Hn8Pvm2-795hf--ikO8QTzBv0EAunoBg_s8f360e0DOucpBw8NHgT7AA31H_kJAgUCA_YJIiL5B-j3_gvwBfsS-_wNJun3ABb0-_rvxggBJxL3DP_rB_TrIf_9ESr-AtQWChDo9gHzIAAtXgAfOzgTQAlIYVACKs8HEAAawAcrhO2-NwvFO7NsubtcVww9r0mSPDU1HLw-ibk9kKUqPVXFcbsbEBE-0lRPvPSFFT2ZgKe-ZfvQPJ_6ET0UlEI-RkUcvXPoALxVOF29BEh-vT6KBL0_VPq9bV7LvIYULb3nWQS96aI8vdhsQDy-S1k-kRzdO6B8izpg_WS9ebltunh8ubtPCHw7ctJFvd-KRLw7qzU-5SgAPi-sdjzhlwo-caiUvbqrbLs8BOE6mJxBO-jhIbvq1bu9osc5PJBMR71zCLE9QL3ZvIXDnDxJdCW9CFwSvf5ceruvsCA9qDeDPZ8jzTwLhmm91KppuvN-ELxjkgK54F4-vCQVvLzuk8i873QnPQ8WBrz19fw9nKIIPesrWbwYPmK9drd8PRbfKzw0tVE9Z_8NPcaJ7bvPfKM9uDJSPafQVDwVkFa90nYHvatArTuLITQ9qFEoPd9hh7uPQsg8E4Xxu4caYDzcYTi8s1VTPfP7AjxrvTq9u5nRPbIf1rtgrmU9mq83vJBl5rvl7hM-F8c3PMKKcLt5iiK8i_GKu5GM3LkWpk89UEMqvX8sBjuqz7o8Y7j6vCoksjqlE0k9yDKjPe4Lx7tICMW82hcWPGkYhLuoxPU938OVPRCRO7uDZfS7hivWPLpVRry6jIY9tO56vXHc77vSUnm9bHEyPQD17ruEPwk7FY2FvWh8GTt0Mcw9krmdvT_C1brMn2s7KvFKvDqOgrtp5NM9ydK9vFKwBrjfAM68YpVcPRhryTm4yP08tuRHPYbvs7rurw4-nxKRvX7QlDk2V828ERKOPAKV-boktVA97niTvJVSpzo3_dk9FlyiPGFcSLkF0_q7-E6BvQn5kbn14LQ9yepzO9akJrhgbP45GAdXvRFi2zeHGw28RbvpO6KRuDjWtew8lgIYPJvDgDnSzG68kvLJvK3Y7bhz2H28wke5vRab-7jL_307jup0vVPqwDfaQqa9OymdPQIvjbe6ngg9H5UsPF4xmLfa2HY9OJonu0tZDriOlM09fZKbPbOgVDeE8gA8oHraPE7vabewD7G9twy4vf5YOLgLtSY8lX8tPGCZKjhEykq9VguRvOZX_7dN2lS9hveWvTeDAbeLUde6NadcPZSiQTiaj4C9Zwr9vWksqTitTPg8PJo0PH7C67jHI5I9LyfyPM36GDiLCDW8lgHKu9AcQDfFVNo9HLBwPdObADichsk7cDIAvcMdGTci_-w9NSkFPvN-W7iPev68R-5EvOMvjLhkB5E7l7PtvDEfdTe_pLw9IY7aPMSd6rYgADgTQAlIbVABKnMQABpgMgUACwZBFPXwONq84vPp1dL_rBjKSv8I8P8j4IwI_UPGvejb_zrR9t6WAAAAGyPqNPkAFX_v87kZ80UQ1tgW6RBw9BU23LPrAfSxXCi41u7cLSMwAAC0wCYz9MJyJAMFIAAtnxUNOzgTQAlIb1ACKq8GEAwaoAYAAGxCAACGQgAAgL8AAEBBAACAvwAAFEIAADhCAAAEwgAAIMIAANDBAABQQQAA0MEAAATCAADIwQAAuEEAAJjBAACAQAAAQMEAADDBAAAAQgAAcEIAAMjBAAAwQQAAIMEAAKhBAADQwQAAaMIAAABAAABYQgAAmMEAAJDBAADAwQAAnsIAAABCAABEQgAAmMEAAGBBAADwQQAAqEEAAOBBAABsQgAAMMIAAMhBAABIQgAAkMEAAIbCAAAwwQAAsEEAAMBCAACCwgAA7sIAACDCAACAvwAAuMEAAARCAAD4QQAAzsIAAKjCAADgwAAAYEEAABBBAAAYwgAAAMAAAJDCAAAAQQAACMIAAHBBAAAwwgAAIMEAAJrCAADQQQAAsEEAABjCAAA0QgAAREIAAKDAAAAgQQAAKEIAALRCAAAAQAAAsMIAABRCAACQQQAAIEEAAJBBAAAQQQAA4EAAAMBBAAA4QgAAQMEAAMhBAAAQQQAA-MEAAMrCAACAvwAAyMEAADzCAABAwQAA8EEAALDBAACewgAACEIAAIJCAADowQAAAEEAAIjBAAA0QgAADEIAAODBAAAwQgAA2EEAANBBAACgwQAAcMEAAPhBAAAgQQAAAAAAAODAAAAQwQAAAEIAADDBAACEwgAAAMAAABTCAAA8QgAA-EEAAMDAAABkQgAAdMIAAEhCAACAPwAAoMAAADBCAAD4wQAAMEEAAARCAABcwgAA4EAAAJBBAAAgwQAAgL8AABDCAACoQQAAQEAAAHRCAABYwgAANMIAAJ5CAACwQgAAZEIAALBBAACAPwAAcEEAANDBAAAAQAAAhsIAAITCAAAwQQAA-MEAANhBAAAcQgAAwMAAAKLCAAAAwgAAqMEAACzCAABMwgAA0EEAAABAAACIwQAAIMIAAJBBAAAwQQAAUEEAACBBAAA8QgAAOEIAACjCAACAQQAA3kIAAGTCAABkwgAAFMIAACBBAAAQQgAAiMEAAHDCAACCQgAAgL8AAEBBAACAPwAAwMEAAHDBAADAwAAADMIAADDBAABEwgAAPEIAAIzCAAAAwCAAOBNACUh1UAEqjwIQABqAAgAAVL4AAIq-AAAkPgAA6L0AAFS-AABEPgAA-L0AAEO_AABkvgAAJD4AANi9AAC4PQAAQLwAAHA9AACWvgAA4DwAAEA8AABAPAAAqD0AANo-AAB_PwAAED0AANg9AACYPQAA2D0AADQ-AACgPAAAiD0AAOC8AAD4vQAABD4AAJ6-AADYPQAAZL4AANg9AABAvAAAFD4AACy-AABEvgAALL4AAOi9AAAQPQAAkj4AAGy-AADIvQAA2D0AAIY-AABQvQAAoLwAAGS-AAAMPgAAUL0AABA9AABAPAAApr4AADC9AAAzPwAA2D0AADQ-AACCPgAAbD4AAOA8AAAsPgAAMD0gADgTQAlIfFABKo8CEAEagAIAANi9AACgPAAAiD0AADW_AACWvgAAgLsAAJ4-AACoPQAAcD0AAFA9AAAkvgAAPL4AAOC8AABwvQAAgLsAAFA9AAAwPQAALT8AACw-AADaPgAA4DwAAPi9AADYvQAANL4AABy-AAAwPQAAED0AABC9AADYvQAARD4AAIC7AADoPQAAEL0AABy-AACYPQAAoLwAAOg9AAAwPQAAbL4AAAQ-AAA8PgAAuD0AAAw-AAAQPQAA2L0AAAQ-AAB_vwAANL4AAOi9AADovQAAFD4AAOg9AABQPQAA6D0AALY-AADoPQAAgLsAAOC8AABAvAAA4DwAAHQ-AADYvQAAgr4AAOC8IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=P5pxJkv71BU","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8747997297112882307"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2507145606"},"5708144153368454758":{"videoId":"5708144153368454758","docid":"34-11-16-ZA121DB67212AC147","description":"Python Pandas 7 examples of filters and lambda apply https://blog.softhints.com/python-pan... 0, len(foo))) print(df) print('-') print(df['Language']) print('-') print...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"5","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python Pandas 7 examples of filters and lambda apply","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7nYkJctgSSA\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChM1NzA4MTQ0MTUzMzY4NDU0NzU4WhM1NzA4MTQ0MTUzMzY4NDU0NzU4asAPEgEwGAAiRBowAAopaGhucGthd214bXhuZXN4aGhVQ2c1cnZQX0Q3MzVvU0JhdGRjSDVaRkESAgARKhDCDw8aDz8TowKCBCQBgAQrKosBEAEaeIEACPsOCPcABgURBvkJ_AIdAAcLCAEBAPkH__MCBP4A8_YD__YAAAAOBvoDAgAAAAH1AQX0_QEAGgsDDgUAAAAd9fMJ_QAAAP8DDQT-AQAADwX9BgT_AAAb-wPz_wAAAPEBAwsBAAAA7Q37BQAAAAAR9hMNAAAAACAALe7wvTs4E0AJSE5QAiqEAhAAGvABfy3kAPrY5ASqBtYA3wzzAYQYDv9BHO8AsO8NAc8H3AHF2OIA09k8_bku6v-W_vYB0vkC_xsRAgEM4gL_IOEzAAsS9QE10i0DXhfwAP8QAP7tIyIAB-I3_y3eB_836Ov_Ae8G_aTo2_7-4sQA_gUyAB8BBv9GChoB6QQ1Ad71IP_fEvIG7BkjCMUN__0IGhL_9u3e-zor5__gAwYNEPILB-7X_P4MAPr3GyIJBv_wBPzm-_X6EO_9-uUOKQQKKSn4Bg0VDQXp-_L5LwT5Q-Hs_fYU9gE40QMI8_Lc-c0fFfzM9gb-vUAL9-EOHv0GEPUCIAAt4sQDOzgTQAlIYVACKnMQABpgGxYAMw0V7vD_K_jc6gX2vdse8w25Cf8GygD_4sQMA_29miwK_-7gGeKqAAAAOgIE8yIAE2_9BeMP__YOs7zzAw1_zB8NzBIDIq3xPiXQMdG-Cv0zAAz2uAlz9vU8ESgcIAAtZ8EhOzgTQAlIb1ACKq8GEAwaoAYAAIA_AADAwQAADEIAAAAAAAAIQgAAoEEAAHhCAAAIQgAAKMIAACjCAABAQgAAXMIAACBBAACYwQAAgEEAAMBAAAAQQQAAVMIAAIjBAADAQQAAEEEAAHDCAAAswgAAZEIAALjBAACAwQAAPMIAAIA_AAAAQAAAgMEAAADCAAAgQgAAkEEAAIC_AADQwQAAAAAAAKjBAADWQgAAUEEAAIpCAADoQQAAAEAAAGRCAAAsQgAACMIAAJDCAABQwgAAEMEAABxCAACIwQAAbMIAAJDBAABgwQAAuEEAAARCAACAwQAAtMIAAMBBAAAwQgAAGEIAAPJCAAC4wQAAAMIAAIDCAACoQQAAmMEAACzCAABcwgAADMIAALzCAAAwQgAAqkIAAAjCAAAAwQAAAAAAAATCAAAUwgAAwMAAAMBBAAAEwgAAtMIAANBCAACCQgAAKEIAAKhBAAAAwQAAqEEAAEhCAABEQgAAHMIAAIBAAAAwQgAAAMAAAJDBAADgwQAAIMEAABzCAAAYQgAArEIAAEzCAAAcwgAAAEAAAI5CAABwwQAAgL8AAIDAAACAPwAAAAAAAADCAACUQgAABEIAAHDBAACCwgAA6MEAADBBAACoQQAAuEEAAHBBAADAwQAA8EEAANhBAACQwgAAAAAAAKhBAAAoQgAAFEIAAMBAAACwwQAAAMIAABDBAAD4wQAAIEEAAIDAAABwwQAAIEEAAAhCAABAQQAAMMEAAADAAAAAwgAA-EEAAFDCAACAPwAAMMEAABhCAACAvwAAUMIAAPhBAABUQgAAQMAAAKDAAAAAAAAAUEEAABRCAACIwgAAUMIAALjBAAAEwgAAYMEAAK5CAAAEQgAAcEEAABDBAAAIwgAAgEAAAIjBAAAEQgAAjEIAABTCAABAwQAAoEAAAIpCAAAgwQAAyMEAAPhBAAAAwAAAMEEAADjCAAC6QgAATEIAAGzCAABQwQAACMIAAPhBAACOQgAAqMEAAJ7CAABgQQAAcEIAANDBAACQwQAAZMIAAFBBAADQQQAAiEEAAMBBAABkwgAAUEIAAIDBAAAQQiAAOBNACUh1UAEqjwIQABqAAgAA-L0AAGy-AAAcPgAARL4AAMK-AADgPAAAvj4AAEG_AABUvgAAcD0AAOi9AAAQvQAAiL0AAKY-AACgvAAARL4AAAQ-AACAuwAARD4AAAs_AABrPwAAoDwAAIg9AABwPQAAHD4AADC9AACAOwAAXL4AALg9AACAuwAAUD0AAFC9AABkPgAAPL4AAEw-AABsvgAAsj4AAHS-AABEvgAAoDwAALi9AADoPQAApr4AAFS-AAB8vgAAiD0AAOo-AACIvQAAsr4AAPK-AADIPQAABL4AACw-AACAuwAAyL0AAPg9AAB_PwAAPL4AAKI-AAAcPgAA2D0AAFA9AABAPAAAEL0gADgTQAlIfFABKo8CEAEagAIAACS-AAAwvQAAJL4AAB-_AAB8vgAA-D0AACQ-AADCPgAAcL0AAAw-AABcvgAAcD0AAAy-AABQPQAAcL0AAOA8AAC4vQAAOT8AABA9AAAJPwAAQLwAADC9AABwvQAAEL0AAJa-AAA8vgAAyD0AABA9AACAOwAAHD4AABA9AABQPQAADL4AAMi9AAAEPgAALL4AAM4-AABAvAAArr4AAFw-AADYvQAAmL0AAKi9AADoPQAAFD4AAFQ-AAB_vwAAJL4AAAS-AACIvQAAED0AAHQ-AAAMPgAAHD4AAL4-AADoPQAAgDsAAOC8AADCPgAA6D0AAI4-AACSPgAA2L0AAIa-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=7nYkJctgSSA","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5708144153368454758"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1697875877"},"6854617396207543740":{"videoId":"6854617396207543740","docid":"34-11-6-Z2E5573F23E5178B8","description":"Pandas use a list of values to select rows from a column https://blog.softhints.com/pandas-use... Notebook: https://github.com/softhints/python/b... Mathematics or statistics', 'Web development...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"6","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Pandas use a list of values to select rows from a column","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jlSbo5wmTPQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChM2ODU0NjE3Mzk2MjA3NTQzNzQwWhM2ODU0NjE3Mzk2MjA3NTQzNzQwarUPEgEwGAAiRBowAAopaGhucGthd214bXhuZXN4aGhVQ2c1cnZQX0Q3MzVvU0JhdGRjSDVaRkESAgARKhDCDw8aDz8TsQOCBCQBgAQrKosBEAEaeIEEC_MBAAAA9vUQB_sG_QIODPIE9QAAAPj9_gMFAv8A9AoLBQkAAAD6EAT-BgAAAPX8CQz0_wEAERQFBQQAAAAYBPwK_wAAAAv_-_j_AQAA7v70-QIAAAD_Av_z_wAAAPr9Av39_gAA__r6BQAAAAD65gEJAAAAACAALXgc1Ts4E0AJSE5QAiqEAhAAGvABf9jgAtrs5__LERYAHePuAIHtHP8tFAv_x_wdALn1DADt6tz_1QsL_8oN-v_WDAkA27_o_xECDQD4zND_8yQFAR3z8gA47_sAG_P0AS8A5v8BBw7-Cgn-Ah3ZFgEfHhYA_8_u_Nvm6wP39N8F_wQoAPTeOQL9I-X_8AkY_eoR8wXp9A8EBQf3AOH75f7oBeUEEyAE_hQQ6gEVGusBAPj6Bw765_3yzf8ANg3-CiEDAP_wAQgA--H_9gUCA_cuPvIAAgPvBNvoAPkQ_vr5Cf4C9TMG-grbvhUFJRH4DAT5FPn6_gTzBzIKEM8FAQDqCwjvIAAtQVolOzgTQAlIYVACKnMQABpgQgIAHO8EDPj2Kffl2uLY1Aft2uqVRf_2rv_i7qP2CfDjruzQ_xX0FtaaAAAAIhbTOBUAGX_w2dgXEQ4SkdjXBh1-7AEG1-z4Cc3GMTDY8dLN4jRvAPqyp_xZE80t_AwFIAAteOgROzgTQAlIb1ACKq8GEAwaoAYAABhCAACEQgAAoEAAAGBBAACAwQAASEIAAFBCAAAQwgAASMIAADzCAAAIQgAA2MEAACTCAAAcwgAAmEEAAMDAAAAwQQAAsMEAABDBAADgQQAAdEIAAGDBAAAwQQAAYEEAAAAAAADAwQAAaMIAAADAAAAkQgAAIMIAANjBAAAYwgAAtMIAAIA_AABIQgAAMMEAAFBBAACQQQAADEIAAEBBAABEQgAAmMEAACBCAABMQgAAgMAAAEDCAACIwQAAoMAAAP5CAABcwgAAvsIAAAjCAADAwQAAgMAAAARCAADgQQAA1MIAAKLCAACAPwAAoEEAANBBAAAQwgAAQEEAAKjCAACAQAAAisIAAIDAAABcwgAA2MEAAHTCAADYQQAAcEEAAAjCAAAcQgAAOEIAAODAAACgQQAATEIAAJhCAADgwAAAgMIAAAhCAACgQQAAAEAAAIA_AADgQQAA4EAAAERCAABcQgAAwMAAABBCAABAwAAA8MEAAMjCAAAQQQAAIMIAAFTCAACAvwAA0EEAABTCAACSwgAA2EEAAHRCAADIwQAA4MAAAMDBAABEQgAA4EAAAGDBAABQQgAAYEEAADhCAACwwQAAIMIAAOBBAACAPwAAkEEAAEDAAADgQAAAQEIAAIjBAABwwgAAwEAAAMDBAAB0QgAACEIAAADAAAAYQgAAaMIAABhCAAAAwAAAwMEAAMBBAAAAwQAAoEAAAABCAAB0wgAAEEEAAIBBAADIwQAAQEEAAAzCAAC4QQAAUEEAAHRCAAAYwgAAQMIAAJpCAACaQgAAPEIAAEBBAACAQAAAyEEAAEDBAAAgQQAAssIAAIDCAAAAAAAAiMEAALhBAABkQgAAAEAAAFjCAAAUwgAAYMEAAEjCAAA0wgAAuEEAAIjBAAAEwgAAeMIAAKBAAAC4wQAAQEEAAOhBAAAQQgAAQEAAAPjBAAAwQQAAjkIAAJjCAABAwgAAMMIAADBBAADQQQAAOMIAAHDCAACuQgAAAMEAAAAAAACgwQAAmMEAAEDBAAAAwAAAAMIAAIC_AAA4wgAAMEIAAJTCAADgwSAAOBNACUh1UAEqjwIQABqAAgAAVD4AALi9AABEPgAAZL4AAJi9AAAMPgAAyD0AAF2_AACgPAAA2D0AAM6-AAAsvgAAmL0AAGw-AADYvQAAED0AAOi9AAAwPQAAHD4AAAs_AAB_PwAA6D0AAJI-AADgvAAAqD0AAOA8AAAcPgAAbL4AAPi9AACyPgAA-D0AAIC7AAAMPgAAZL4AACw-AACYPQAAJD4AAJi9AAAsvgAAQLwAABy-AACIvQAAiL0AAAS-AACSvgAAiD0AAAw-AAAEvgAAzr4AAL6-AAAcPgAAUL0AAOg9AACgvAAA2D0AAEA8AAA9PwAAmL0AAEC8AABsPgAAPD4AACw-AAAMPgAAgDsgADgTQAlIfFABKo8CEAEagAIAAFS-AABcvgAABL4AAEm_AACYvQAA4DwAAOg9AAAcPgAA-L0AAKA8AADovQAA2L0AAMi9AAAEvgAAEL0AABA9AAAQPQAALT8AAPg9AACCPgAAMD0AAAw-AABQPQAAEL0AAES-AABEPgAAuD0AAKC8AADIvQAAXD4AAMg9AADoPQAAXL4AAAS-AADYvQAAiL0AAGw-AACovQAAvr4AAOA8AABAPAAAED0AAFA9AACCPgAAMD0AAAw-AAB_vwAAhr4AAPi9AACAuwAAQDwAALg9AADYPQAA6D0AAJ4-AACIPQAAiD0AAPg9AAAUPgAAyL0AAJI-AACoPQAAZL4AAIK-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=jlSbo5wmTPQ","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6854617396207543740"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"547408178"},"12156681734898204797":{"videoId":"12156681734898204797","docid":"34-2-17-Z109463089ADF4FEC","description":"Map the headers to a column with pandas and python? https://github.com/softhints/python/b... Data set: Stack Over Flow 2018 insights https://insights.stackoverflow.com/su...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"7","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Map the headers to a column with pandas?","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3g6KG_8zq0E\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMjE1NjY4MTczNDg5ODIwNDc5N1oUMTIxNTY2ODE3MzQ4OTgyMDQ3OTdqkhcSATAYACJEGjAACiloaG5wa2F3bXhteG5lc3hoaFVDZzVydlBfRDczNW9TQmF0ZGNINVpGQRICABEqEMIPDxoPPxPnBIIEJAGABCsqiwEQARp4gfATAAABAADw-hIGBgT-AQYQEf33AP8A7QT8-AUAAADrDwn5BAAAAA8N__0EAAAA9v77CPP_AQAVA_sGBAAAABfv9vb9AAAADf4F-f8BAAD5Afn4A_8AAPQE-_X_AAAA8vgABwAAAAD-EAUBAAAAAPrlAQkAAAAAIAAtdlDOOzgTQAlITlACKoQCEAAa8AFwAvr_6fH7A9UU-ADy5eABge0c_y_p-wDQ5BABx-b1AMcD4gHSDCMA2wn1AKz--ADp7sz_EQINAA_38v8GGSUAHgHwADLPDgFP_d7_Cxn9_gsIGgAtAA4BF_UXABcL-v_08ub_3PfmANTX7ADwJzICFe80ABrh4__wCRj94g__-80CAP3j-QgE5gMJ9eLr-P_5D-35NQncAAkU-woZ2fUH6efvA_rHFwQWDiAHHf8LBN34_wb2APT-0QsdAyUgFvsAG_QLBO389QspEvo13wD5IBMCEADGBg8L4PkFEusI-vEUCf_3PwwG4_IQCAAW__sgAC1BWiU7OBNACUhhUAIqzwcQABrAB-li076K8AU9kHjDPMl3hLrVNeQ8-_HNvEleJ73jVVY9pr_NvBiYBT6AM-s7f7O9u5mAp75l-9A8n_oRPRSUQj5GRRy9c-gAvFU4Xb0ESH69PooEvaDFEr4UIgC9_0WrvBgVZ72gvLg6IOQGPan4Tz4SgwC91GGFPBHxYL0jBQC9HTOWO1Y_wLwX-EW9O3mJu4XqBj5fuLM9xhEQvAXB4z3JOOa9FIxvOzwE4TqYnEE76OEhu6XiOr3BKii8V6lKvckibT1FhNo7JTMoPOv7hb0-aEy9hzsRPK-wID2oN4M9nyPNPAuGab3Uqmm6834QvNnWKrxEB3I7IXDquoZ3hL1HVC0935m7u_X1_D2cogg96ytZvMZhqr2rW5097tSaOzS1UT1n_w09xontu9OG4z3Mdmo91nS9PJO5A70VXh29o8SVuIshND2oUSg932GHu4-uLTyCO5C8wB-jPL5b6jyWzpc9jzaOuRc3BL0VWCA-EQkVu7kxIj1JPRW9mS6juxxc2j217vC8RGyPOnGi6bqnf-Q8tq37O2J7Mj0XZ7y950YBu3fCprzFlwS963JKPGByqD1HPg48oH8Ku5tXdb3QhjI8geUyuclJpz17tKI955p_uejn-roJ5gG8TxhevM6XnT3UXDO9L9fou9w2Ir1RqEI93eraOwYwgDyda3O9FwaTu3QxzD2SuZ29P8LVusyfazsq8Uq8Oo6Cu00Pbz1PRSW9qigjOBr8fTwc-bI9ssG6OncXw7xSIhE8BFSbO6Gd0z1RgZi9l51ROUrxTLwRemy8EWPBOPr6MD1sd888mfAzOFmYnz0oZpg7A-VIua0vtzr9EvG9vCOJOfX9bz3Nxq88zuBkuC5AtrzMAtK8WOONORVwD73dggC9lT9suY9Efj2Ivhu9EOWZuQJlU7yd5D29RUUxuPmJAbw-dte9vcVEuJ9Vybqq5I296JwVORq3Yr2FA4Y9YXewOF3-A73l7xw8OBOvuBe-eT1_VK49OTHVOIC0hD3jFx4-sueCt9AeGrs36CY8WmMguVcG9b1wQ-y9zAyLuAwpdTwe5gY9gy1YN0XLi713YRK86NQ7tmFM_rvUmLW9M7SCNpLhXb144E09dMlRuIrKJr1ivOa9yeVyOJXAQT17vNA8xC8KucPwAT7Xb2E9Z9sCOVcgHz19fYg8ao2Ntnf2xT3Rkic-eabwOJyGyTtwMgC9wx0ZNyL_7D01KQU-835buH0Efry6bPC7Kn59uFLbn7s0_169UGTWN0M9mD1rw5e8UvcKOCAAOBNACUhtUAEqcxAAGmAoEgAj-BLQ-e4l586o1QvV7eTIAtkn_w6uAAzZsyj949GeJez_FdUI6p4AAAAOMdwNIQD3f_DWxzTVSg2vxgADGU79DhndAAYO2MlWOewVuqf_Aj4A_uO3ITUA3Sc1MBAgAC3gQRk7OBNACUhvUAIqrwYQDBqgBgAANEIAAGxCAADgwAAAgD8AAADAAADwQQAAQEIAAOjBAAAcwgAATMIAANBBAADIwQAA8MEAADTCAAAAQgAAoMAAAGBBAACAwAAAUMEAAABCAABAQgAABMIAAHBBAADgwAAAYEEAAIDBAAAswgAAAMEAAFRCAADgwQAAEMIAAMDBAACmwgAAmEEAABRCAACwwQAA4EEAAPBBAACoQQAAQEEAAGBCAAAEwgAAkEEAAJJCAABQwQAAfMIAAHDBAAAgQQAA6EIAAIbCAADGwgAAGMIAAABAAAAAwQAASEIAAOhBAADcwgAAnMIAACBBAACoQQAAcEEAABjCAABAQQAArsIAAIBAAABAwgAAIEEAADzCAAAAQQAAhMIAAOhBAACwQQAAAMIAAAxCAABAQgAAsMEAAKhBAAA4QgAAukIAAIDAAACQwgAAVEIAAIBAAAAAQAAAwEEAAJhBAADAQQAAyEEAACxCAACgwAAA6EEAAABBAADAwQAAysIAAFBBAAAQwgAAZMIAAMBAAACwQQAAcMEAAJrCAACQQQAAXEIAABjCAACIQQAA8MEAAExCAABgQQAA2MEAAChCAAAMQgAANEIAABDBAAAgwgAADEIAAADAAAAQQQAAwMAAAHDBAAAwQgAAIMEAAEDCAACAwAAA-MEAAIBCAAAAQgAAwMAAACxCAABkwgAABEIAAMBAAAAAwQAAkEEAAFDBAAAgQQAAsEEAAHjCAACQQQAAQEIAAIDBAACgQAAADMIAANhBAADgwAAAREIAAATCAAAUwgAApkIAALhCAACGQgAAoEEAAHDBAAAgQQAAQMEAADDBAACiwgAAjMIAAMDAAAAMwgAAIEIAAPhBAAAgwQAAlsIAABzCAACQwQAAOMIAAHTCAAAEQgAAgMEAANjBAAA8wgAAAMAAABDBAACgQAAA4EEAAARCAADgQQAA4MEAAOBAAACiQgAAWMIAACzCAABYwgAAEEEAANBBAADIwQAAYMIAAFhCAACAQAAAMEEAADDBAADQwQAAoMEAABDBAADwwQAAAMEAAAzCAABYQgAAusIAAOBAIAA4E0AJSHVQASqPAhAAGoACAAAwvQAAsr4AADA9AACoPQAApr4AAKA8AACIvQAAEb8AAI6-AABQPQAAdL4AABC9AAD4vQAAND4AAAS-AAA8vgAAHD4AAEC8AACovQAAxj4AAG8_AABsPgAAEL0AAAQ-AAAMPgAAcL0AADC9AABcvgAAQDwAAI6-AADYPQAAED0AAII-AACivgAAPD4AAJa-AACKPgAA6L0AAKK-AADIPQAAUD0AAKC8AAAEPgAAtr4AAIg9AACGPgAADD4AAMg9AACIPQAAhr4AAMg9AACCvgAAgj4AAAQ-AABwvQAAgDsAAH8_AAAkvgAAuD0AAPg9AACgPAAAUD0AAEA8AADIPSAAOBNACUh8UAEqjwIQARqAAgAAVL4AAAQ-AAC4PQAACb8AAIi9AADYPQAAND4AAEw-AAAEvgAADD4AAAS-AACYvQAAoDwAALi9AAD4vQAAgDsAAKC8AAAtPwAAuD0AALI-AAAMPgAAyD0AABC9AAAkvgAADL4AAKa-AABAvAAAUD0AAAS-AACYPQAA2D0AANg9AAC4vQAABD4AADw-AACOvgAApj4AAOg9AADKvgAAND4AAIg9AAAcvgAA4DwAAEC8AADgPAAAJD4AAH-_AACoPQAAcL0AAIC7AABkPgAARD4AAFQ-AAAcPgAAhj4AAMg9AABAvAAAEL0AADQ-AAC4PQAA4DwAAOC8AAAMvgAAML0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=3g6KG_8zq0E","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12156681734898204797"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2004349782"},"12892308147392684503":{"videoId":"12892308147392684503","docid":"34-5-13-ZF6FF6BD5BA02C771","description":"3 Simple ways to optimize pandas https://github.com/softhints/python/b... Optimize datatypes of dataframe Use built-in functions Search for smart alternative Do tests Bonus tips: Use NumPy...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"8","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"How to Optimize and Speed Up Pandas","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nW5ltiwV-6Y\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMjg5MjMwODE0NzM5MjY4NDUwM1oUMTI4OTIzMDgxNDczOTI2ODQ1MDNqkhcSATAYACJEGjAACiloaG5wa2F3bXhteG5lc3hoaFVDZzVydlBfRDczNW9TQmF0ZGNINVpGQRICABEqEMIPDxoPPxP5BYIEJAGABCsqiwEQARp4gfr__PcB_wD3_Qj9-wT_AR4C-v8DAgMA7QT8-AUAAADtAwULBgAAAPYSB_IAAAAA-vz0-fX-AQAYCwMNBAAAAAnn9vv9AAAA_QL2BP4BAAD58QD3AgAAAAUJAfH_AAAA_A0H_wMAAAD-CvgLAAAAAAzr_QsBAAAAIAAtyzPOOzgTQAlITlACKoQCEAAa8AF2BOz_--DpA9EC6wD98-wBge0c_y_p-wDf5P0Axc3uAMP5zQHtAB4Awvz0AL4R7__I4d7-EgMhAA3a9gDuBCkBDfnlATXd_QAoCfgACxzq__73_P8xBPwAHdkWASULAP0R7wYB6PzdA8787ADwJzICFe80ABMJ5_4GKRYA7AYU_cT_8v7qDgX8yeAL_-_p_P4K_dsAJBXd_tsVAwQ12u7-AfEMAt3v_vsZ-xgGHf8LBPXu9AH4_AUM7B8a_iUgFvv5DvwH7_70-SECAgEG4_n8Dh76Ce_ICAEY5gAC8wYO9-oC9wEHMgoQ3gUD9Qgg-gEgAC1BWiU7OBNACUhhUAIqzwcQABrABy_9674KYgU93dT-O1rIrTwz3EA9nmKVvJcsuDy3Df48MXV8vKYO8j2V9DC8ZMlnuvyMu75aUw-8xurFuxSUQj5GRRy9c-gAvLm8nr2pMPg72P4EvfAuzL0raYW8HM58vP1O072bdUa9iy40Pd7LLT6wUgW82OTfO8_dqb0Dt2m9EayFPBH5kzzTI5e83DYCvIXqBj5fuLM9xhEQvAXB4z3JOOa9FIxvOzwE4TqYnEE76OEhu-yzlLxr1e68i-jyvHVmLD2mi8M8_3SoPEl0Jb0IXBK9_lx6u7J9TT3EZ0E9HFODOz0oCL3jux49Z8sgvHhnijvTiBm9BfnZvKjQb73-NBo6YJmvu_X1_D2cogg96ytZvCYMdL1dRrs9TCy6PPmE7Dz2lQc9sZuAu9OG4z3Mdmo91nS9PJO5A70VXh29o8SVuBNFuD2TRvu8dcy5vGMCyLsZat68IJ8LPQm70Tscts0973pEvNJtDr1Ikps9ON0PvD8oHj1DS6i8WjG3vMv19j0anJK8POMxvNbHIjxmbAM8B6VcO9fqPLzCHBi95EWuO3zQ2DvRgf672lDWulCPzT2ZULc8k63LuoUedr3Qsxm9yGk-vAOvuz24wkA955sfO3P-XDyKAdQ7A5hwuw42ED0AqIK9IjM8vFumoL0bRiY9uroEvNs7vDpKs3m8tx0BvMzRwz1phnm9NFgnPCdbM72FKg68sBwlu0TztT2WIm85Xsv5OjvyMb12Cpg9S1d9OPyJ77xhQTA9XUNguaGd0z1RgZi9l51ROaUFmjtZNWM80TriOdhthju91YS8lth3uN47mj1u8ys9480vub7F4DusUxW-pozJOTkEkz2PTKy8ipkbOm3YgL1qFok7Vf3QOYcbDbxFu-k7opG4ONetVD3grxO8nJisuTK_pLw7tQm9UYkSuYyC4Dyc0bC9q1JNuFO1-LzAFJS9BOPWOMnhOL0i2D09aHQxuAXsWbzAGca7udw5OcN3LD3uSKA9be0bOWqJpT0bxYg9z6_QNwxMODyDrYg84SxCuVcG9b1wQ-y9zAyLuAu1JjyVfy08YJkqOEN-vL2bRkm8eEvIN7yUurzuvb69SYubNzo8xLxhqIM8Jd36t0lmxb2Hixy-tbqtOO0dPz2Jgx887YjGuGMpAj4YwwY90YjhNzX4FDxUcJk79segNyPchD35l749blE1twPsRDvkzSu9MqqZuCL_7D01KQU-835buERyLb3h-ua7sj2ZuEjUlbwinva8tPgAuBahvT1Dpyy90X0zuCAAOBNACUhtUAEqcxAAGmAbAQAD4w63HgopzuXY3_jV5RinEM5J_yPW_yv8uRMJ2RGqTOb_D-wQzZkAAABONL0IDgD5fxHXrgezExPF1C8tDi4l8RLj8esDuLg-D9zo76O6AAIAHMbLIET63R0FFQAgAC0pfRg7OBNACUhvUAIqrwYQDBqgBgAANEIAAGhCAACgwAAAoMAAAJBBAABQQgAAGEIAAEDBAADYwQAAyMEAACBCAADYwQAAEMIAAEzCAABMQgAAwMAAAIBBAABAwQAAEMEAANhBAABsQgAAsMEAAEDAAACAvwAA0EEAAKjBAAAwwgAAMMEAAGRCAACAwQAAMMIAAKDBAACQwgAAmEEAABhCAACwwQAAsEEAAHxCAABwQQAAEEEAAJJCAAAEwgAAGEIAAIxCAABAwQAAdMIAAKjBAAAAQAAA1EIAAHzCAADOwgAAFMIAAABBAAAQwQAAMEIAANBBAADQwgAAVMIAACDBAACYQQAAoEEAACDCAAAgQQAAlMIAAOBAAAAEwgAAwEAAACTCAADgQAAApMIAAKBBAAAgQgAAZMIAABxCAAAAQgAAgL8AABhCAAAgQgAAuEIAAKDAAACqwgAA-EEAAMDAAAC4QQAAgEEAAIBAAABAwAAA0EEAACBCAAAAwQAANEIAAEDAAADowQAAwsIAAIBBAADowQAAMMIAAMBAAADIQQAAUMIAAKjCAACgQQAAhEIAAEDCAACgQQAAJMIAAEBCAAC4QQAAcMEAABhCAACwQQAAFEIAAHDBAADowQAAJEIAAIA_AAAAwAAAgMEAAIDBAAB0QgAAAMAAADTCAAAQwQAA0MEAAHRCAAAIQgAAwMEAAGxCAABkwgAAHEIAAGBBAAAgwQAADEIAAMDBAACAQAAAUEEAABDCAACAPwAA6EEAAAjCAAAwQQAA8MEAALBBAADgwAAAIEIAAEjCAAAQwgAAhEIAAI5CAABsQgAAiEEAACDBAAAAQgAAwMAAAKBAAACKwgAAhsIAAIDAAAD4wQAA2EEAABRCAACAwAAAnsIAAPjBAADQwQAAUMIAAFTCAAD4QQAAsMEAAKjBAAAgwgAAYMEAALDBAAAAQgAAqEEAAAhCAAD4QQAAAMIAAKBBAACqQgAA6MEAAHjCAADwwQAAwEAAABRCAAAIwgAAlMIAAJRCAAAQwQAAYEEAAODBAABQwgAAgMAAAMDAAAAIwgAAgMEAADDCAAA4QgAApMIAAIC_IAA4E0AJSHVQASqPAhAAGoACAAC4PQAAor4AAIC7AAAwvQAAfL4AAOC8AABAvAAA_r4AAEC8AABwPQAAML0AAHA9AABcvgAA6D0AAGy-AAAsvgAAij4AAKC8AACYPQAAuj4AAH8_AAAUPgAAiD0AAFQ-AACIvQAAJL4AAKA8AAAUvgAAqD0AAOC8AACoPQAA4LwAAOg9AAAQvQAAfD4AAPi9AAA8PgAAML0AAKq-AACgvAAAdL4AAEC8AADovQAA2L0AALK-AABQPQAAgj4AAEC8AAAQPQAAcL0AALg9AACgPAAAbD4AAJg9AAAEvgAAcL0AAEU_AAC4vQAA2D0AAOA8AACgvAAAmD0AAIg9AADgPCAAOBNACUh8UAEqjwIQARqAAgAAoLwAADS-AABAPAAAJb8AAIA7AADIPQAAQLwAANY-AAA8vgAAgLsAAAS-AAC4vQAAmD0AABy-AAAkPgAAUL0AAJi9AABFPwAAFD4AAIY-AACgPAAAoDwAAAQ-AADIvQAAEL0AAKg9AACYPQAAQLwAAIA7AAAsPgAAoDwAAEC8AADIvQAAEL0AAAw-AABUvgAAfD4AAJi9AAC2vgAAbD4AAOA8AABwvQAAuD0AAII-AABQvQAAmL0AAH-_AACovQAAXL4AAOA8AAA0vgAAED0AAOA8AABwPQAA1j4AAFA9AABQPQAAqL0AAHA9AADgPAAAgj4AAFQ-AAAsvgAAkr4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=nW5ltiwV-6Y","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12892308147392684503"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2867078404"},"11574804767142018509":{"videoId":"11574804767142018509","docid":"34-6-17-Z2630D844AE0D44D8","description":"Scrape wiki tables with pandas and python https://github.com/softhints/python/b... Extract tabular data from PDF with Python - Tabula, Camelot, PyPDF2 • Extract tabular data from PDF with Py...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"9","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Easily extract tables from websites with pandas and python","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OXA_ZD1gR6A\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMTU3NDgwNDc2NzE0MjAxODUwOVoUMTE1NzQ4MDQ3NjcxNDIwMTg1MDlqkhcSATAYACJEGjAACiloaG5wa2F3bXhteG5lc3hoaFVDZzVydlBfRDczNW9TQmF0ZGNINVpGQRICABEqEMIPDxoPPxPBBYIEJAGABCsqiwEQARp4gfwCCfv9BAD7_g0E-wb9AgEI_gj4_v4A7gT8-AUAAAD2EwcD_wAAAAn_-QP6AAAA_v0K_vT-AQARBwEM9gAAAA717QH-AAAAAf38Bwr_AQH59vUIA_8AACP3_fn_AAAA8QkGEAAAAAD3____AAAAAAr1BQwAAAAAIAAttHTcOzgTQAlITlACKoQCEAAa8AFk-fT-1PvV_-0WBwAc4-4AgcgP_Dj39ADC3AIB1NsCANj56gDSIij_yPnm_74k-f_i2-MACA0L_yDb8v_1-hgANAUFADDrEQA4DPAA_hILAAj9Av8d7QUAD9ceABMB8wAA6fAA7f0BAdjczQUIGy4C9d83ARIJ6P79JAP_DBUD_tsGBATp-hD8z_ME-ePs-P8MD9__IxTe_gz_5wAY2vUHBPTwAenl8f8S6g8NEege_t74_wby4f4E0gsdAysxCf4C9ukA8tsO8xD--_kO8Pj49wP8AgDHBg8M7wEHBN8WAeQUAAIQKP4C5xcNB_8bD_cgAC33cik7OBNACUhhUAIqzwcQABrAB5G33L6-SI0979ALvfbzgTzDylg5GlR2vHR8dD2qgaY9uRcYvA_S8z2Q7iy9oATRPPyMu75aUw-8xurFuxSUQj5GRRy9c-gAvFU4Xb0ESH69PooEvT9U-r1tXsu8hhQtverslL09vS29xm30PKn4Tz4SgwC91GGFPA14D73-LVy8Wy7tufBVBj3NhHW95jXAvDurNT7lKAA-L6x2PAXB4z3JOOa9FIxvO2Wxwzyo_6w8aeTzvKXiOr3BKii8V6lKvfepjz2AzV68ajf2O7et0rx2jOu8lF5lPEkL_DyZB1U9SbqoO38Xdr1y-c88ZJXSvGOSArngXj68JBW8vIXFEr0LyzG6_a6-vA0zeT1iBjQ9ZVr2vCYMdL1dRrs9TCy6PCMQLz1Z0ZA9EyhivNOG4z3Mdmo91nS9PJQzNL021lS90PcuPM9F6DwawUY8RIwyvI-uLTyCO5C8wB-jPDhAm7slRpo9toPPumu9Or27mdE9sh_Wu2CuZT2arze8kGXmu8zJpT3Xfpc8hf6yO1evh7zHld-84JAZPGejCT3qnku9vmtQPAWTUbxCPoi9LXVzO1UZQT3a_0A9Zlmku6Y_kL184Lq7wJ4nO0DnpD3AWeo9JP2LuuUvyLzFX-46_RM_u_fjez0VUA29EFYKvKejTb1phW49Q4oFO6D6qLt7wFy9hFGku8zRwz1phnm9NFgnPCXfVr2RbMc75P2POmnk0z3J0r28UrAGuK7grbx-Kqg9R9wMu1xQxLzDqWU9F7uCOqqCoT0aGJm9R0qgOKkfKr19_fc7Bnowu8AgCT01h1o81a8ZOF-jWz3flr48vI7bN60vtzr9EvG9vCOJOfXgtD3J6nM71qQmuD7jh72Qqp6792cIOUwYzTpY3bC7_hfVuO3TkT3YQUq8rr7QOD-j2bwIoS290F0bueKVYjsYLba9_INZuWNKv7yaOrS9_uV1OcnhOL0i2D09aHQxuKBvCzyk_KQ8_WAguAnfGz2Ejzc9XCn8uBeFeD0nvOQ96I4ytwxMODyDrYg84SxCuVcG9b1wQ-y9zAyLuM7dk7za_MO71Y8JODrYcb2xaL67BkAgOE3aVL2G95a9N4MBt534Jb20o2I92Qa2Nvl6CL1UASe-gSodOGGhuzzrzo874rLSuFsoyT2tPs08G32ztjX4FDxUcJk79segN0iBvz0zfrs9xZ4DOBEtg7x6Jgc7qvXPtSL_7D01KQU-835buLrM-rwALLy8GT7buCa1ZTvMpHy9ILzXt28t8z1-DXO7iDV6uCAAOBNACUhtUAEqcxAAGmAmBwAn-hTn_Tgh8-rM3vzK9CEAMbgb__jHAAfo0gb11NHELg7_-vkG2K8AAAAwAt4uCwANaS-_-vfm2f27u-4jD3_dHxPm-_4G5dMhSeEZ9aLWFQMA8N7FMDj26CcONgEgAC0FLSs7OBNACUhvUAIqrwYQDBqgBgAAoMEAAJDBAAAUQgAAQEAAAChCAABQQQAAgEIAAJhBAACawgAA2MEAAPBBAACIwgAAoMAAABBBAAAsQgAAgEEAAGDBAACwwQAARMIAACBBAAA4QgAAkMIAANDBAADIQQAAmEEAABTCAAAIwgAAVEIAALhBAABkwgAAisIAAGhCAABAwgAAqEEAAIBBAABEwgAAQEEAADxCAAAgQQAAikIAAEhCAAAAwQAADEIAAIZCAAAUwgAAgMIAAADCAACgQAAAiEIAACDCAACCwgAAgMEAAABAAADYwQAAQEIAAEDAAAC-wgAAQMEAAGhCAADgQAAAxEIAANjBAAAswgAAisIAABBCAABwwgAADMIAAOjBAADwQQAATMIAAHBBAABUQgAA0MEAAKhBAAAAQQAAIMEAAOjBAADwQQAAJEIAAGTCAACYwgAAfEIAALpCAABEQgAABMIAADTCAACgQQAAXEIAAKBCAABQwQAAAEAAAMhBAACYQQAA-MEAAADAAAAAQQAAlMIAAGBBAACCQgAAmMEAAIDBAABQwQAAMEIAAIBBAADgwAAAoEEAADBCAAAAwQAAAEIAAHhCAADgQQAAAEAAAJbCAABQwQAAHEIAAKDAAAAQQgAAYEEAAATCAAA8QgAAsEEAAJjCAADYQQAAgEAAAGhCAAC6QgAAmMEAAAzCAABUwgAAMMEAANjBAACwQQAACMIAANjBAABgwQAACEIAAMBAAAAwQQAAwEAAABDCAADoQQAACMIAALBBAAAAwAAAfEIAAIjBAACGwgAANEIAAAAAAADYQQAALEIAAOjBAAAEQgAAoMAAADzCAACewgAAcEEAALDBAABwQQAAvEIAANhBAACYQQAAFMIAAIjBAABAQQAAZMIAAMBBAAD4QQAAgMAAAEDAAACAwQAAQEIAAKDBAAAwwgAAkEEAALBBAACYQQAAyMEAAJBCAABgQgAALMIAAHDBAABgwQAAkMEAAMhBAAAAQQAAgsIAAJxCAADIQQAADMIAAIBAAAAcwgAAEEEAAChCAACowQAAgMAAAFjCAAAMQgAAQMIAAKDAIAA4E0AJSHVQASqPAhAAGoACAACOvgAAkr4AAOg9AACCPgAAXL4AAIi9AACOPgAAN78AAIA7AAB8vgAAJL4AAIg9AACoPQAALD4AAKg9AACAuwAAij4AAMg9AAAkvgAAFT8AAGs_AAB8PgAATD4AAII-AAB8PgAAoLwAAFA9AABAPAAAuD0AADy-AACCPgAAgLsAAOg9AABQvQAAvj4AAKI-AACaPgAAZL4AAIq-AABQPQAA6L0AAFA9AAC4vQAAUL0AAIK-AAA8PgAA6D0AAMi9AABMvgAAtr4AAJg9AAAMvgAAPD4AAFw-AACgPAAAoDwAAH8_AACgvAAAoLwAACQ-AAAcPgAAQDwAADA9AACKPiAAOBNACUh8UAEqjwIQARqAAgAAjr4AAIA7AADovQAAEb8AAKi9AACYvQAAQDwAACQ-AACgvAAAUD0AAFS-AADYPQAAML0AAEC8AABAPAAAQLwAADS-AABLPwAAuD0AAPo-AADgPAAAoLwAABS-AABwvQAAVL4AAIK-AABcPgAA4DwAABA9AAAsPgAAUD0AAJg9AAAEvgAA4DwAADw-AAAUvgAAdD4AAOC8AADGvgAARD4AAKi9AABwvQAAiL0AAAw-AACIPQAAoDwAAH-_AAA0vgAAiL0AAES-AACIvQAA6D0AAIi9AAAcPgAA4j4AABQ-AACAOwAA4DwAACw-AABMPgAABD4AAAQ-AABQvQAArr4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=OXA_ZD1gR6A","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11574804767142018509"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1639725601"},"13722152198013702674":{"videoId":"13722152198013702674","docid":"34-5-8-Z78F5BEE9AF433DCF","description":"Notebook: https://github.com/softhints/python/b... Data: https://www.kaggle.com/statchaitya/co... https://www.kaggle.com/erikbruin/coun... https://www.kaggle.com/sudalairajkuma... This video is...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"10","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"25. Pandas: Create A Matplotlib Scatterplot From A Dataframe","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DWhwQ1_oXnw\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMzcyMjE1MjE5ODAxMzcwMjY3NFoUMTM3MjIxNTIxOTgwMTM3MDI2NzRqtQ8SATAYACJEGjAACiloaG5wa2F3bXhteG5lc3hoaFVDZzVydlBfRDczNW9TQmF0ZGNINVpGQRICABEqEMIPDxoPPxOnA4IEJAGABCsqiwEQARp4gfsAAfr_AgDs8gsBCgH_AAH89vz4_f0A9QD19AMC_wAFBAEK-wEAAAr_-QP6AAAA9v77CPT_AQAWD_YHAwAAAA78_Ab7AAAABQH9B_8BAAD0-_78AwAAAPoFBff_AAAA8f79Ev8BAAAJBAgBAAAAAAf4AP4AAAAAIAAtWSbXOzgTQAlITlACKoQCEAAa8AFqEfz_3QzhAOQg8gDrC9oBge0c_zkc5ADH_B0AxezjAdrt9gDL-Dr_6RT0ALcEIwHy8eIAFg0BAQXxC__7CxQBHwIBADXd_QBPKAQA5hgF__EcGwAh_AH_IP4j_izt7_8B8gX-2ubSAcj60gHwJzICDAcUBCgCC__tAyoB8gYIAPME-QLeAfkD1v8EAcvjAfwK_dsANQncAAsJ8QY49v4EJ8X5AQ8G9gUWGwcF5v0C-_Xu9AH97fr52PYN_ShIDv7-7AYGAOkK-QIY_Pwu1fEGAf0B_xfX-RAN_v789Pr-7N0dCvXbI_0E0g8Q-_8bEPcgAC1BWiU7OBNACUhhUAIqcxAAGmDxDgAm3wb4Du4o-Omy4inX7Oi6EKFU_wLD_wD15ykF5MCnKxT_DPFI15oAAAA3JhcxKADzf_vAA_nqNBGyvw4_82H7DDT7Dx7328ZVH8UQ1rf_EBQAStrFHVIt4kVy_-0gAC11UBA7OBNACUhvUAIqrwYQDBqgBgAAaEIAAI5CAACYQQAAgEAAAJDBAACSQgAA-EEAANjBAAAMwgAANMIAAIBAAAAAQAAAwMEAAFTCAAA0QgAAkMEAAIBAAAAIwgAAAMEAAKBBAABwQgAAIMIAAAxCAACAwQAA4EAAAMDAAAA8wgAAQEEAAHBCAAC4wQAAIMIAANDBAACIwgAAcEEAAEBAAACQwQAAgD8AAHxCAAAYQgAAoMEAALBBAAAgwQAAuEEAAFhCAAAIwgAAgMEAAEBAAAAgQQAAjEIAABTCAAAAwwAAGMIAAADBAABgwQAAPEIAAEBBAACIwgAAUMIAADDBAAAYQgAAoMAAACjCAABAwQAAqMIAAMDAAADAwQAAAAAAAPDBAAAwwgAAbMIAAIhBAABkQgAAkMEAAPhBAAC4QQAAQMAAAJBBAAAAQgAAvEIAAIA_AAC0wgAAhkIAAEDBAAC4QQAAAEEAAPhBAACoQQAAgMAAAIBBAACAwAAAsEEAAIA_AACgwQAA2MIAAHBBAACMwgAAQMIAAEDBAADwQQAAMMIAAIrCAACYQQAAmkIAAHDCAACAvwAAKMIAAEBCAAAwQgAAoMAAAIJCAAAoQgAAOEIAAKDAAADYwQAAgkIAAODAAABgwQAAMMEAAABBAAA0QgAAMEEAABjCAADYQQAAwMEAAEBBAACAQQAACEIAABxCAAAgwgAAuEEAAJhBAACgwQAAGEIAAEDBAABMQgAAyEEAAEjCAACgQAAA-EEAACTCAACAQAAAsMEAAIhBAAAAQAAAFEIAAKDBAABcwgAAeEIAADxCAABUQgAAIEIAABBBAAC4QQAADMIAABTCAACewgAA1sIAALjBAACgwAAAcEEAABBCAABAQAAAzsIAABDCAAAcwgAAsMEAACDCAABoQgAAoEAAALjBAABswgAAQEAAAGBBAACAQQAAiEEAADhCAAAAQAAAIMEAAEDBAACyQgAAjMIAADTCAADQwQAAuEEAAOBBAADIwQAAusIAAEhCAACAQQAAkEEAAIjBAACwwQAA0MEAAODAAACwwQAAAEEAALDBAABkQgAAjMIAAEDAIAA4E0AJSHVQASqPAhAAGoACAACAuwAA-L0AAOg9AACAOwAAdL4AAHA9AAC-PgAAEb8AAHA9AACoPQAAQDwAAJg9AAAQvQAALD4AANi9AABwvQAA6D0AABA9AACYvQAA7j4AAH8_AAAQPQAAJL4AACQ-AACgvAAAMD0AAKA8AABQvQAAmD0AAJg9AADgPAAAFL4AAKC8AAAwvQAABD4AAMg9AACmPgAAjr4AAIq-AACgvAAAkr4AAEw-AABwPQAAcD0AAJg9AABUPgAAPD4AAKg9AAA8vgAARL4AADA9AAAwPQAATD4AABQ-AACqvgAAiD0AADM_AABMvgAAFD4AAFQ-AADoPQAADD4AABQ-AACAOyAAOBNACUh8UAEqjwIQARqAAgAAVL4AACw-AAAwvQAAK78AAEy-AAB0PgAAVD4AAPg9AADYvQAApj4AAGS-AACIvQAATL4AAEA8AADIvQAAgLsAAMi9AABJPwAAgDsAAAU_AACgPAAATL4AAKA8AAAEvgAAXL4AABS-AAAkvgAAqD0AAIg9AACgPAAAoLwAAOC8AACYPQAAir4AADQ-AAC4vQAAgj4AAFC9AAD4vQAA6D0AABA9AACAuwAA4LwAAPi9AABQvQAAbD4AAH-_AAAcvgAAoDwAABw-AAAsPgAABD4AAMg9AACSPgAAZD4AAIg9AABwvQAAyL0AACQ-AADoPQAAND4AAEQ-AAAUPgAAcL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=DWhwQ1_oXnw","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["13722152198013702674"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1825119565"},"2085791086707417704":{"videoId":"2085791086707417704","docid":"34-11-2-ZCFAC7AD3A603941F","description":"Topics In this video you can find how to match single and multiline python comments and docstrings. Also you can find how to enable detection in PyCharm for broken and incomplete docstrings...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"12","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python Regular Expression Matching Multiline Comments and Docstrings","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1_oeU4tAsIM\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChMyMDg1NzkxMDg2NzA3NDE3NzA0WhMyMDg1NzkxMDg2NzA3NDE3NzA0arUPEgEwGAAiRBowAAopaGhucGthd214bXhuZXN4aGhVQ2c1cnZQX0Q3MzVvU0JhdGRjSDVaRkESAgARKhDCDw8aDz8TpAKCBCQBgAQrKosBEAEaeIEDAAALA_0ACvYEDvoN-gMVBfgG9QEBAOr4-_IC_wEA_fUHBAIAAAAYAAgLAQAAAPcLBQH5_wAAGfz5AAMAAAAMCu0E_QAAABX-Awb-AQAAAvULB_QCAAEfAwj6_wAAAAX3CP0AAAAAExH0BgEAAAAJ9QgDAAAAACAALWf5zTs4E0AJSE5QAiqEAhAAGvABbQ7c_RXL8QWoBtUA9RwSAZT2DQBEzgoAxuDoAdP8BgHT7cb__Ob4_6cU4ACBE-wB1OvW_1M98wDmGP3_FAdEAfvn0AFt5QD_MxLjAe8V4f74Fwj-FrgnARi7Ev4eGgf_GObe_aLn2v7KwwAEER8RBBkSBwJFAv4BAis5_NoIKf_p-_r3_Aod_asTEfoHKOr8AxrwBzss5v_OAv0G6PHyCx_cFAIezxgFHBIpCe4H-_ny6fECBhcH_gQ-Gf8LKir4Bw0WDSvtCfIKDgr-KPPj-_w9-AwX2vgLB_fs_MwgFvzTJQ3y2E8KAurdE-z3DfXvIAAt1awAOzgTQAlIYVACKnMQABpgOvwAJQsfBPw8Xej33-ko3hMs2C3BH_8n9P80A9L9ONe7jxUp_x7t-_6aAAAALf2hPPoAGX_P3_8bwt0el7n0Cftm6ARTxwQWR-XWShgDDcXjOCEVAEbe0fE1E7A3PQMUIAAtspYPOzgTQAlIb1ACKq8GEAwaoAYAAIBBAADAQAAALEIAANjBAABEQgAAAEIAAKpCAAC4QQAAfMIAAIDAAACgQQAAWMIAAMBAAACgQAAAkEIAAMDBAADwwQAAOMIAAIDBAADowQAADEIAAGTCAAAowgAAUEEAAIC_AADowQAAAMIAAMhBAABsQgAAYMEAADjCAAAwQgAAMMIAAKJCAAAIQgAAnMIAAJDBAACCQgAAYEEAALJCAABAQAAAAAAAADxCAABcQgAAIMIAAPDBAAAoQgAAoEAAAOhBAAAswgAAnsIAAAzCAAAEQgAAgD8AAFxCAAAQwgAAisIAAMjBAAAAQQAAUEEAANBBAABAwAAAFMIAAJzCAACIQgAA8MEAAMBAAAAMwgAAYMEAAIjCAABQwQAA6EEAAADCAABIQgAAqMEAAOBAAAAIQgAAkEEAACxCAAAEwgAAdMIAAJBCAADAQQAAEEEAAIrCAACOwgAAAEAAADxCAABAQgAABEIAAKjBAADQQQAA4MAAAMDBAAAQwQAAyMEAAAjCAACYQQAAgEEAAKjBAABAQAAA4EAAADRCAADgwAAA8MEAAIBBAABQQQAAJEIAAHBBAABoQgAAmEEAALjBAACAwgAAFEIAAHxCAACYQQAAZMIAAETCAACIQQAAQEEAAJpCAAAQwgAADMIAAMDAAACIQQAAjkIAAIhBAADgwAAADMIAAHBBAABwwQAA0EEAACBBAAAAwAAAoEAAACBBAAAQQQAAHEIAAGjCAAAwwgAAOEIAAODAAADAQQAAJMIAAMhBAADAwQAAiMIAALhCAADgwQAANEIAAMhBAADQwQAA4MAAAEzCAAAwwQAAfMIAANDBAACAwQAAQEAAAIxCAABEQgAAUEIAAI7CAACYwQAA4MAAAEjCAACYQQAAREIAAMBBAAAwQgAABMIAABBCAACwwQAAiMEAANjBAADgQQAA8EEAADDCAABkQgAA-EIAAHzCAADgwQAAPEIAAMDBAAAQwQAAoEEAALTCAAAAQAAALEIAAKjBAAAIQgAAQMIAAJjBAABoQgAAuMEAAKhBAAB4wgAA4EEAAADAAACAwSAAOBNACUh1UAEqjwIQABqAAgAAwr4AAIg9AACAuwAAij4AACS-AADgPAAAQLwAAFO_AADKvgAAFL4AAHC9AACIPQAAgLsAAJ4-AACGvgAAzr4AAAQ-AAAMPgAA2D0AAPo-AABzPwAAyL0AADC9AACGPgAAED0AABA9AABwPQAA-L0AAKC8AADIPQAAbD4AAOC8AABwvQAAfL4AAHw-AADYPQAAXD4AAJa-AACovQAAqL0AAIC7AABsPgAAUL0AAIK-AAAEvgAAgj4AAKI-AABcvgAALL4AADS-AACyPgAAXL4AAJI-AACovQAAqL0AAIi9AAB_PwAAcD0AAJg9AAB8vgAAhr4AAEA8AAAwvQAAXL4gADgTQAlIfFABKo8CEAEagAIAANq-AACCPgAAyL0AADu_AAA0vgAAQDwAAGQ-AACYvQAAoDwAAOg9AAAUvgAA6L0AAEy-AACgvAAA2D0AAKC8AABUvgAAKT8AABC9AADKPgAA2D0AAIK-AAAQvQAAmL0AABy-AAD4vQAAZL4AAEA8AAC4vQAAED0AADA9AAAQPQAAgLsAAIC7AACiPgAABL4AANg9AADIvQAANL4AAAQ-AABAvAAAyD0AAIC7AAAwPQAAyL0AAOA8AAB_vwAAUL0AAIA7AAD4vQAAND4AAEA8AABEPgAAgj4AAAQ-AAAEPgAAEL0AAOC8AADIPQAAmL0AADA9AAAkPgAAMD0AAIi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=1_oeU4tAsIM","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2085791086707417704"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4150505388"},"5411503664160402905":{"videoId":"5411503664160402905","docid":"34-8-17-Z1DAACC8E55EFA9A7","description":"using other package managers (e.g., yum or dnf), you may need to adjust the command accordingly. step 3: install required dependencies pandas relies on other libraries like numpy and setuptools...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"13","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"python install pandas linux","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sW-G6ivU8s4\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChM1NDExNTAzNjY0MTYwNDAyOTA1WhM1NDExNTAzNjY0MTYwNDAyOTA1aq8NEgEwGAAiRRoxAAoqaGhrdXN4cnhsc3d3dm9xZGhoVUNTMXZNWWV5S3hlT1J4dVNCSnVfeGx3EgIAEioQwg8PGg8_E7kBggQkAYAEKyqLARABGniBBRAECf4CAPz1CAD7Bf4CI_gCAPQEBADi-gP2B_sCAPvz__0DAAAAEgH1AQgAAAD49AcB-v4AAAwBCQ8EAAAAGfb1CP0AAAAC-AEGAAAAAPj39_0D_wAABPv-9v8AAAD6-gML_f8AAAUD8fwAAAAA-_kHCgAAAAAgAC3Gidg7OBNACUhOUAIqcxAAGmAcEgAb-yMA2yUY5OcH8fzf5jL1__HcABH1AA3sBRcN4trDBhsA-_X9AcQAAAAmLrsMDwDrTfrm_hkL8fLp3AMMF3_JEwAnIvYGve9DFQAQ5NEsLAYA9QHx_l72CCQZ-hsgAC2gFVE7OBNACUhvUAIqrwYQDBqgBgAA2EEAAEDAAADAwAAAEMIAADDBAADIwQAAhEIAADDBAACMwgAA4EAAAERCAAC6wgAAIMIAAFDCAAA4QgAAfMIAAJDBAAAgwQAAGMIAACzCAABcwgAAkMIAACjCAACAQQAAgEAAABTCAAB4wgAAKMIAACBCAAA8QgAAbMIAAKDAAADSwgAA2EEAAJTCAAA8wgAAYEEAAJZCAABgQQAAfEIAAHBCAABAwAAAOEIAADBBAADoQQAAlMIAAJjBAAAYwgAAskIAAKhBAABMwgAAgL8AANhBAADgQAAALEIAAFDBAAAAwwAAsEEAAJDBAACQQQAAXEIAALDBAADAwQAAUMIAAMDBAABcwgAACMIAAIjBAAAgwQAATMIAABhCAABsQgAAgL8AAPhBAAAgwQAAtMIAACTCAAAAAAAAGEIAABzCAAC0wgAANEIAAEDAAADYQQAAgMEAAFDBAADgQAAAAEIAAGhCAADYwQAAIEEAAOBAAACwQQAAmMIAAABBAAAUwgAAiEEAACBCAACIQQAAEMIAAEDCAAB4QgAAKEIAAIDCAACwwQAAAAAAANDBAAAwQQAAQMAAABhCAABMQgAAcEEAAKBBAAC4wQAAqEEAACxCAAAcwgAADMIAABBBAADAwAAAoEAAACDCAADQwQAAWMIAAPBBAACIQgAAFMIAAJjBAAAkwgAAmMEAALhBAADgQQAAgMEAACBCAADgQAAA6MEAAEBAAAAAQgAAoMEAAHDCAAAAQQAAgEAAAKBBAADgQAAAiEIAAFDBAAAMwgAAyMEAAMDAAACYwQAAAEEAAMBAAAAgQQAAUMIAACzCAAAAwgAAcMEAAJjBAAAIwgAAFEIAAMDBAABAQgAA8MEAAABAAABwQQAAiEEAAFxCAAAQQgAAjEIAAADBAABkwgAAlEIAADDBAAAQQgAAAEEAAKBBAADAQQAAcMEAAEBAAACkQgAAEMEAAEDCAABAQQAAAMEAAGRCAADgwAAAisIAAJBCAACYwQAAQEEAAADCAABUwgAAMMEAABDBAADgwQAAEEEAAHTCAABwwQAATMIAAHjCIAA4E0AJSHVQASqPAhAAGoACAAAwvQAA9r4AADw-AAA8PgAANL4AAAy-AABwPQAAUb8AANi9AADIPQAA2D0AAEC8AACgPAAA4DwAACy-AAAUvgAAJD4AAAQ-AADIPQAAsj4AAFk_AADoPQAAXL4AAKo-AAC-PgAAcL0AANg9AACKvgAAML0AAEA8AAA8PgAA2D0AAKo-AABwPQAALD4AABA9AABsPgAAfL4AADy-AABcPgAAgLsAABC9AACSvgAAgr4AAAS-AACqPgAAdD4AAKA8AABsvgAAnr4AALI-AABwvQAAdD4AAES-AABAvAAAoDwAAH8_AADoPQAATD4AAJI-AACGPgAAFD4AALi9AACoPSAAOBNACUh8UAEqjwIQARqAAgAANL4AACw-AACKvgAAIb8AANq-AAAMPgAArj4AANg9AADoPQAAND4AAMq-AADgvAAAoDwAAMg9AADgvAAAQLwAAKK-AAA_PwAA-D0AAOo-AAA8PgAAlr4AAEC8AAA8PgAArr4AAI6-AADoPQAABD4AALg9AACIvQAAgDsAAIi9AACovQAAmL0AAOA8AAA8vgAAHz8AAOi9AACqvgAAmD0AAHC9AACCPgAA-D0AAPg9AAD6PgAAPD4AAH-_AABAvAAARD4AAHC9AAAsPgAAiD0AAOA8AAA8PgAAvj4AAIY-AADgvAAAEL0AAJo-AAA8PgAA2j4AANo-AABkvgAA3r4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=sW-G6ivU8s4","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5411503664160402905"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15968327375634093840":{"videoId":"15968327375634093840","docid":"34-6-12-ZC395D8A3B76E2EB0","description":"Python group or sort list of lists by common element https://github.com/softhints/python/b... Computer Write This? https://www.nytimes.com/interactive/2... Part of learn python for beginners and...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"14","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python group or sort list of lists by common element","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zVQJQxpedm8\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxNTk2ODMyNzM3NTYzNDA5Mzg0MFoUMTU5NjgzMjczNzU2MzQwOTM4NDBqhxcSATAYACJEGjAACiloaG5wa2F3bXhteG5lc3hoaFVDZzVydlBfRDczNW9TQmF0ZGNINVpGQRICABEqEMIPDxoPPxPsB4IEJAGABCsqiwEQARp4gf8E-wH-AgD0AgwAAgT-AfH79Qn6__8A8QII8gMBAAD3-QD3AQAAAAQG9wECAAAA7fT9AvYAAAAO_f4DBAAAABkC_QD4AAAADPX-9P8BAAD-_Pf--QEAABb7_P4AAAAA9vUFAvz_AAD6_fQDAAAAAAnvAv4AAQAAIAAtE_PZOzgTQAlITlACKoQCEAAa8AFtF9z_B_DoA9co1gDTFAQAgQAC_zsH-gDY7wr_1N_tAML5zAHeAh4Byg76_7QA0wHl_OX_DfAiABHbBQAM-x7_BwLQADLPDwFMEvMA-g_1AAj9Av8h7hj-KP4LARfmB_8c9QP-2-brA9Xs6gAJHC8CEPMC_yz1CALxHhf67AYU_cvy8__HGPb_0-ka_-XuCv_8H9wENfrvAO4DHQYF3PwJ_f4O-Pr0-AsZ-xgG__MD_fH5_gX1APT-yyAZ_wghIfr3DxwD9OQB8QwZDQAY9_gBAQUDCRjW-RAa1f7-8wYO9_US6vz2GhQD4vwZ6fEcBwEgAC2_TyQ7OBNACUhhUAIqzwcQABrAB23I375z99Q8_gGgPHMcLryDdn099Oyku6G30bjwp0Y8SygzvNqQHz6mBTM7562ZOpfHqr4Tx-w7vhGdvP29dD6SVEu9A7HsPCtgnL27Hta8Tl5EveRywr04glg7rD0Hvf1O072bdUa9iy40PX9LQD6nSso7gbiGvM_dqb0Dt2m9EayFPBH5kzzTI5e83DYCvIXqBj5fuLM9xhEQvAXB4z3JOOa9FIxvO6sQBzypdwc9I3z5vMwbVLv2JRu89RkGvZBRGT16hD89_GYsPUl0Jb0IXBK9_lx6u0kL_DyZB1U9SbqoOz0oCL3jux49Z8sgvF1OLj0xA_q8rXesO-DhUb1wDYe8gVamO920GT49FtE8A2D6uxg-Yr12t3w9Ft8rPFbvgjprbjs8DoLxOtOG4z3Mdmo91nS9PJQzNL021lS90PcuPBNFuD2TRvu8dcy5vIyND72lHhi9BdLPPL5o0buQ3ks9rCMivMHWNrxLHK49tD16vGCuZT2arze8kGXmu8zJpT3Xfpc8hf6yOzob9juZlEy88S0NPNzNursg9Ge9SbJUu3zQ2DvRgf672lDWunahfj2iCdQ80hIgOn3oQr3wOxy9_Y33OQOvuz24wkA955sfO41A4bxA68y7YU9gvA42ED0AqIK9IjM8vNJSeb1scTI9APXuu3hN_ryABfq8tMcPuyKI8z1qsSW973vtuvWoTr2hJ4o84sUpuzTgxz1RuIM8axvzOYv-ULwDqIM9tZkgOvyJ77xhQTA9XUNgue6vDj6fEpG9ftCUOdUI_Ty9vfU8IqyOuWM3gTuxrM88grASOKrUvD30swc9ZfNTue-rEj3OpgO-FqHWt9Psaz2w_i-94Nl3OLxMs70yFEG819nuOIcbDbxFu-k7opG4OH8RWT1eTXk8lkCvN8EiGr3sEnq8gTOuuHQhHDyUqY2988AnN_Lyj7zu1o29_hw3OAkspb32UXw8hlkYOG_zRrxTwbK8G6uRuM3yK7zjJpk92s4fuLvPVj17JZo91swTOPFYfTx0Fxc9xTDht1cG9b1wQ-y9zAyLuKgXnTsiFes8B6t-tmvx6b151iS87i9gNryUurzuvb69SYubN1M4B70faCU9Hz8tuElmxb2Hixy-tbqtOI-hmD3z3yi8lSceuczRAz7rzUG7DKDfN-UfsLnDwK067OfPNlDfEj7mWvQ9ipPmNgTZfDxPXTm9eWMquCL_7D01KQU-835buAYsWb07Uj-7eDwmuATRCb1dhy-9zOkaNxahvT1Dpyy90X0zuCAAOBNACUhtUAEqcxAAGmBECQA1vBLP6kk74v_XHhnUADMI9rgE_wnS_wbu5OYe96mlPhf_EvjL_JoAAABpDfIVCwAIfwLs0CDL5fXDpN4xDHrC-yXE6Q8IwN9HLPAFtOkKQCUAz8PG8T008zsS1kYgAC28lQ87OBNACUhvUAIqrwYQDBqgBgAAgMAAAADAAAAcQgAAMEEAAEhCAACoQQAAlkIAAABCAACSwgAAgMEAAEhCAACMwgAAgMEAAABAAADYQQAAcEEAAODAAAC4wQAADMIAAOBAAAD4QQAAcMIAAAzCAAD4QQAAQEAAACDCAABMwgAAIEIAAOBBAADgwQAAgMIAABBCAAAIwgAAAEIAAEBAAACCwgAA4EAAADxCAACoQQAAqEIAAEBCAAC4wQAAGEIAABBCAAAIwgAAkMIAABTCAACAPwAAkEIAAPDBAACowgAAMMEAAIjBAADIwQAAKEIAAABAAADUwgAA4MEAABRCAAAwQQAA0EIAALDBAAAQwgAAPMIAAARCAABAwgAAiMEAACjCAABAwAAAmsIAANhBAABMQgAAqMEAAEBAAACoQQAAyMEAANDBAAAEQgAAcEIAACzCAACewgAAeEIAAL5CAABAQgAAHMIAAPjBAABQQQAAgEIAAKxCAAAwwQAAgEAAAJBBAAAwQQAAPMIAAEDBAAAAQQAAisIAAMBBAACGQgAA0MEAAATCAABAQQAATEIAAABBAACYwQAAqEEAAPBBAAAAQQAAgD8AAIhCAACIQQAAAMEAAKzCAAAAQQAAyEEAACBBAACYQQAAYEEAACDCAADoQQAA0EEAAJjCAACAPwAAwMAAADBCAACuQgAAsMEAALjBAABcwgAAgL8AANDBAAC4QQAAEMEAAIDBAACAQAAAiEEAAIBAAABAwAAAgEAAAATCAABgQQAAEMIAABBBAADAwAAAiEIAABjCAACawgAAJEIAABBBAACAQQAATEIAAMDBAADgQQAAkMEAADjCAABIwgAAgL8AABDBAACAwAAAtkIAAPhBAAAIQgAA4MEAAKDBAAAAQgAARMIAAOBBAAAQQgAAAEAAAKDAAACowQAAbEIAAHDBAAAgwgAAcEEAAEBBAADAQQAABMIAAJBCAACuQgAAgsIAAHDBAABQwQAAgEAAAMBBAABQQQAAhMIAAIZCAABwQQAA2MEAAGBBAAA4wgAAYEEAAPhBAAAMwgAAAMAAAHDCAAAwQQAALMIAADDBIAA4E0AJSHVQASqPAhAAGoACAACivgAAML0AAOC8AADyPgAAQDwAAIC7AABsvgAAYb8AAJg9AABAvAAAPL4AAKg9AADgPAAAQDwAAIC7AABwvQAABL4AAAQ-AABwvQAADz8AAH8_AAA0vgAAiD0AAIA7AACGPgAABL4AAFA9AADavgAAPL4AAHC9AACKPgAAyD0AALi9AADevgAAXD4AALo-AAAkPgAAFL4AANa-AAAUvgAAuL0AAMi9AAD4PQAAmD0AAKi9AADIvQAAtj4AAGy-AACavgAAyr4AAM6-AACSvgAAND4AAHA9AADIvQAAqD0AABM_AABQvQAAqD0AAFw-AACaPgAADD4AAOA8AACiPiAAOBNACUh8UAEqjwIQARqAAgAAjr4AAFC9AABEvgAAK78AAHC9AAAQPQAAzj4AAPi9AAAUPgAAdD4AADy-AABwvQAAoDwAANi9AACaPgAAEL0AAFS-AAAXPwAAJD4AAAE_AACGPgAAyD0AABA9AAA8PgAAuL0AADA9AAAkPgAATD4AAFy-AACovQAA4LwAAOA8AACAOwAAfL4AAOC8AABEvgAApj4AAHC9AADGvgAARD4AANi9AACKPgAAnj4AAAQ-AADKPgAAHL4AAH-_AADIvQAAqD0AAHC9AACyvgAAiD0AABC9AAAMPgAAvj4AAEw-AABAPAAAJL4AAPg9AABAPAAAXD4AALI-AADIPQAA2L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=zVQJQxpedm8","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15968327375634093840"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1943837653"},"16084559102957432310":{"videoId":"16084559102957432310","docid":"34-1-12-ZA6134EABFD86D260","description":"Python split string into list examples https://blog.softhints.com/python-spl... Socials Facebook: / 435421910242028 Facebook: / softhints Twitter: / softwarehints Discord: / discord If you really...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"15","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"python split string into list examples","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=T8EfomTlcfA\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxNjA4NDU1OTEwMjk1NzQzMjMxMFoUMTYwODQ1NTkxMDI5NTc0MzIzMTBqkhcSATAYACJEGjAACiloaG5wa2F3bXhteG5lc3hoaFVDZzVydlBfRDczNW9TQmF0ZGNINVpGQRICABEqEMIPDxoPPxOUA4IEJAGABCsqiwEQARp4gQj8BAz-AgAEAAUHAQj8AgYH-AD3__8A9QD19AMC_wD6BQcE-QEAAAQG9wECAAAA9v7-_vz_AAAX_PkAAwAAABX5AAz5AAAACvoDA_8BAAD0_fYD9gIAAAjuBP__AAAA8wEDCgEAAAAC-fb8AAAAAAn1CAMAAAAAIAAtLWnaOzgTQAlITlACKoQCEAAa8AF_F_AA5_D6A-4G1wD98uoBm9oe_ygR_gCw_gAA1gbhAdbXzwAC3TgAryH6_5UQ7wHn7Mj_Fw4CAR8B-P8d9Sj_GhL2ATbLEAErCvcA-RD0ABQQL_8g6i4CQeP7AiT7_vvx9An-xevs_-ra2AAP_jwBKfz9_DD0CQLvChr94BD_-9cHBQX7FCP54_Ub_AIEEv8L_dgAHSLw_AAbDQQaAQUF5cr1Aw74-QYYCAQE-wsC_dr3_gYY9f0F2RoQ-wkjI_n9AwIEDPAF-xkMCgga4O31-wH19PjR9A_95OYN2voJ-OUmGALZVvkB5Qwa_gsaBPsgAC3vuRg7OBNACUhhUAIqzwcQABrAB5IH8r6mQAs94IOXvHMcLryDdn099Oyku5rMnbzrXbK8XMMUPLU1Mj6_a0s98Wj-PJxNl77qPVy5ZI8WvD0pcz6UwOa79XIOPbm8nr2pMPg72P4EvdFch72PPl47oG7iukd_rr2bAY69S0STPP8-Qz53fwa4DOtBvUxUz70R7sS8w8RVPKSYk7pqNLm6kXfzvIXqBj5fuLM9xhEQvBhaHT5qB3G7tIUQPFFM3rv2Ocg8Kdw8vEMRfL2oRwS9mWr_u1KQqTy_dwA9IRutPHZNbby9B8O8jZG2uxS9gj0hUbI9696vPERplLtttT09G-VPPOrxVjwwHtS8M3dUuTxrB741hD48aA35vPCLCz7zP7O74jrGO-Ol271FBRg9r7cIPZzZUzzQsei8x1WSOfQ04D04k8A9dwJQPKur5TuvLYe9i67Fuxzu4z2uQq88nEzBvHlP7zyx9wM8v5ZbO5wEpTxdAHU8oyeAvBsUaL3mrM881lyJvKQsjT2dHBW8eWyRO2SV0j2tCwk9Rl1rPFN1UbtGLxk9_dLHPHX4Vb3B_iu9Fyp_vFJI8Lsg1rY81aiRvPYFqT3BvNG8b3zxu6xx9rx8j2S9gMKPOo510T1f4lm8myqOPIUs4roCzMI7KMrvumLrAz0llN69Uj_SOftglL3pILm8ks2XO2XfFzy9yjU8As2tO3QxzD2SuZ29P8LVugRUWL1Gcwm9p1BEuzTgxz1RuIM8axvzOREnBr3-jQw9OOeSu5qYTj0eoSs9GDuGOv4MPz7JIq29TbCPuLcp_Tp_ukY9NfpOOShhJryIPqm8puY8OTGzbz31I089ED-4ON0qo7xXPcC9kQYeOX3a1zyagmu9pHv5uRIV6r0duLk8ASecOU7q8DyTaI864oUhN9Vwhj3W6yw9S6RUuXiekz1uuNk8_aiduJPY3jsDTE-9Rl8FuPlJhb1NP4K9qmy_OGFmabw1rT49AO6JuMLDjzwRGda8hQSht-NvcjnJv6A9uf0nOAUXiz2Bujw9uVYutzgJLz25hVO8CfoOOOLPm70zUPm9RsoNuPTovDxDoyU9jBfbt2vx6b151iS87i9gNkmMVLzvSoy9eSvXNjo8xLxhqIM8Jd36txrerL3mIdO9aELKOLwNhTwMAaW8JTYQuFsoyT2tPs08G32ztvnSwLxqXMk7rjdfOOP_jj1_3zo9rfHTt9WU5Dy-Nqa986NNuCL_7D01KQU-835buKwERr0RJTA9D3KzuEjUlbwinva8tPgAuIERajwt-CG85Gv-NyAAOBNACUhtUAEqcxAAGmAoDgAV2R3-8TVV-eXoEQjNBi8FIb8n_wLuABz14kQaBL7fLQ__Gbj_5KsAAAAYB9gXIwAhcvffDRnv3guv0MMa-X_kAB7n8f4Hp_l-DPYL5dUQFj4A2PDKJWjmAUXp0jEgAC0rrR07OBNACUhvUAIqrwYQDBqgBgAAcEEAAIDBAAAsQgAAAEAAAEhCAAAAQAAArEIAAFhCAABYwgAAEMIAAHxCAABgwgAAgD8AAGBBAADIQQAAgMAAAKjBAACKwgAA2MEAALhBAAAEQgAANMIAADzCAABoQgAAwEAAAPjBAAAUwgAAwMAAAKBBAACAwQAAWMIAABBCAADIwQAAkMEAAPjBAACowQAAQMAAAJxCAADYQQAAZEIAAIJCAADAwAAA6EEAAIBCAACIwQAAoMIAAETCAACAQAAAFEIAAIjBAACuwgAA4MAAAIjBAAC4QQAAhEIAAEDAAACkwgAAFEIAAGRCAADAQQAA7kIAAGDBAAAEwgAA2MEAAMhBAACowQAACMIAAEzCAAA0wgAAmsIAADRCAACOQgAALMIAAKDBAABgwQAAcMIAAJDBAAAAwAAAPEIAAFjCAADowgAAmkIAAKBCAAAIQgAAQMAAAGDBAACQQQAAVEIAAIhCAAAMwgAAYEEAABBCAAAAAAAAIMEAAODBAAAAQAAAdMIAAOBBAACqQgAAYMIAAJDBAACAPwAAMEIAAIBAAABQQQAAwMAAAIBAAABAQQAAuMEAAGxCAABgQQAAYMEAAIDCAAAgwQAAmEEAAABAAAAcQgAA2EEAADjCAAD4QQAAFEIAAIjCAAAAwAAAkEEAABxCAABkQgAAgMEAAJjBAAAAwgAAwMAAADTCAACIQQAAQEAAAIjBAAAwwQAAJEIAAOBBAACgwAAAAAAAABjCAADIQQAAoMEAAMBAAADowQAA6EEAAADCAAAowgAAQMAAAHBBAACgwAAAcEEAABzCAACoQQAAkEEAAGDCAABAwgAAUMEAADDBAAAAwgAAlEIAAEDAAACoQQAAAAAAAATCAABgQQAAoMEAAKBBAABcQgAA8MEAALjBAAAAwQAAjkIAAPDBAAAcwgAAAEIAAIC_AACwQQAAVMIAALhCAAAQQgAAeMIAAPDBAAAMwgAAgEEAAERCAADIwQAAjMIAAAxCAAA8QgAAmEEAAJjBAAA4wgAAoEEAAPBBAADAQAAAEEEAAKDCAADgQAAA8MEAAABBIAA4E0AJSHVQASqPAhAAGoACAACYvQAAiD0AAKg9AAD4PQAAfL4AACQ-AABUPgAALb8AALi9AABAPAAAPL4AAHA9AADYPQAAZD4AAOi9AAB0vgAAED0AAAQ-AAAMPgAAOz8AAH8_AAAUvgAA6L0AAJ4-AAAwvQAAhr4AAMg9AAABvwAAJD4AANo-AAC4PQAAyL0AALi9AACCvgAAwj4AAKA8AAAUPgAADL4AAJ6-AADYvQAA2L0AAIA7AACIvQAANL4AALi9AABEPgAAnj4AAPi9AAA0vgAA0r4AAIi9AACAuwAAjj4AABw-AADgPAAAiD0AAH0_AABAvAAAbD4AADw-AACAOwAADD4AABC9AAAQvSAAOBNACUh8UAEqjwIQARqAAgAABL4AAJg9AADavgAA7r4AAIq-AACgvAAA_j4AAMg9AABEPgAAiL0AAES-AAAsvgAAoDwAAKC8AAAEPgAAEL0AABS-AADSPgAAlr4AAAU_AACWPgAA4LwAAEC8AADIvQAAgLsAAIi9AACAOwAADD4AABC9AACovQAAMD0AADQ-AACmvgAALL4AAFC9AABMvgAA_j4AADw-AAB8vgAAQDwAAII-AACgPAAADD4AAJg9AACiPgAAED0AAH-_AADovQAAFL4AABA9AACIvQAAlj4AABS-AABUPgAAqj4AAFQ-AAC4vQAA4LwAANg9AABkPgAALD4AADw-AAAEPgAAXL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=T8EfomTlcfA","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16084559102957432310"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4117007275"},"2914404919708917106":{"videoId":"2914404919708917106","docid":"34-4-10-ZF81C746BCCE923FA","description":"Code and details: http://blog.softhints.com/python-shuf... content, you're welcome to support me and this channel with a small donation via PayPal and Bitcoin. PayPal donation...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"16","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"python shuffle list","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WFRBxz6AeZI\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChMyOTE0NDA0OTE5NzA4OTE3MTA2WhMyOTE0NDA0OTE5NzA4OTE3MTA2apIXEgEwGAAiRBowAAopaGhucGthd214bXhuZXN4aGhVQ2c1cnZQX0Q3MzVvU0JhdGRjSDVaRkESAgARKhDCDw8aDz8T3wGCBCQBgAQrKosBEAEaeIEA_f_-_gMA-goA-_0DAAH79v0G-v79APECCPIDAQAA_QL_BP8BAAD-B_QH_AAAAO30_QL2AAAADQMB_gQAAAAdCfQF_QAAAAj2CPv_AQAA_vz3_vkBAAAN9Qb3_wAAAPsECQv-AAAAAvT1DQAAAAAH-AD-AAAAACAALVL32js4E0AJSE5QAiqEAhAAGvABWQPY_g7tEASlGecAuhYBAIHtHP8o-PsB2gX4AdH_7gHd8dP_7-4jAMoN-v_BFwcA3e_f_ycVFv8K6AH_G_Ul_yIO6gEq5wIAIQ0LAPYj4v_0Hgn_NegFAi7TBwAXC_r_GN3i_8rs7v_Cw_MBChMhABzuIgIcFxgB6BMYAPIWHQHo7QH76B3tA8f_9voLFv3_9y7u_zkU9f_6ExH8CArpBvQJGATz5v0EBBkoAg36B__Z_u__AQoTCd7_Bgf2LxUD8h8UBPP0_v0FHQfyH_bp_P0w-gn95PQJ8PXz_-8D_vsS_Rb44xoHDO38EPr5CvjzIAAtQVolOzgTQAlIYVACKs8HEAAawAdtyN--c_fUPP4BoDzKu5-9WkaKPXyGS7zZ38O9fjq7O4C-iDzS_9I9aSp1PVSUBbyyL-G-johzPILA0roKL2E-F3GwvEHTxjkOMQ6-TQaRPEfoQrz1oWu-hNMHPXQ1w7vNs009Rf1EvbYlvDxBthw-wTCqPI1JezsDFrq9Zo1VPGMyCz3sKxS9I9wDPBVYAD0n9zs-XSQDPScrqzyitRI-vBq1vbN6Bz1MIau8sgnVPCGx-Lw5CWU9VLAfPFLvDLyF0rI9du9yOxboiT2JAy29B0BhvZ6W_rtVp168aCslPfiZRLxucD29QzVqPc6A5Tu8myI9wAOovcM_sjttrOS9phEuPZROwTv1vCs-zSx4PPp6vjzgoD299ZHlPLhvmjxW74I6a247PA6C8TrXitY9cG32O1SLqbpF1dC7668yu42YWbwLDg8-XGsWPKrvALyDGwS9Xkfeu9dLlbq-aNG7kN5LPawjIrzZeDC8he0ju0udNrx8k6s9RgiPvYvb7Doumak9ulc8PZ1uNDx69DC9Xpl8PRqSC7x1kq07PPYzPCzzFrwn2wA9z42fvKPhHDw0zrA8xAtiPXuwVjwK28-8KnAVvE980rvKWJg9Zjk_PBp1BjzkXHQ9s5HQPIwoszu6jIY9tO56vXHc77sIJ529dkW6PGeOZzrqAwm9Ow7DuXUe1zs9a009YLgJvVXCtbmE9b-8gAtXvGdLczv7nmc9xNOKO8YFuTsBZXg8PDQHvVOCObo_-iu9QmI2Pd3CuDnRSMo9C-qAvI7t4LifZlS7b3rdu5VCA7tf8jo9WAEePY76J7kjBWA9rFwBvLeZGThq9iO7752nvWJI3LhDCIO9Q5agvF-nAbrKkm-8-O2YOpWByDf5wOm7-aRuvA4vkLjoGgE9K726u_yDl7nI3oE8QA1JPajmUTiU0dC6vS2CvdDoADi1SwC9blFGvbtKUjhIdCq9e0MrPJW5tbcKKWS860NtvaRZ8zaVQVq8EmmbPCE1sDiSzKo8IlUEPgUNHzdTJaU7AnLTO20kVriwD7G9twy4vf5YOLjJQzq8H1maPTfzBjes5nm9bVeovHlp9reA2-48oLaXvTmXezhlhBy9FvuLPH97Qbh8tUM9gm_avTbwlrgLLFs9pvguvJLQl7jZmIc9O5wOu6VUwDd1Ajo9SfcOPQLlKDe7iKU8zsg7PUUchbe4cwE9zCuCvS9mdLiKllc9EFj5PY0XQDjkVEG9b9IZPKtcR7dMnhy9Fsq6uiTeyLe9tBK6WZ-XvfJmM7ggADgTQAlIbVABKnMQABpgMgkAGwgXFO74J-4N3Q8TvSEm6_PKMf8X4AD90uUrB-3c0D8q__vx6PW2AAAANhHvE_cAIF_-4QgI7wXzz8jULf5_6OkaCQvvBcgURiLPKdjHQT5MAOTZ6Pc-BAEcLAsaIAAtcTM0OzgTQAlIb1ACKq8GEAwaoAYAAMDBAACuQgAAREIAABxCAAB4QgAAKEIAAGhCAACAQQAAKMIAAHDCAAAoQgAAoMEAAMjBAADowQAA0MEAAADBAADAwAAAyMIAANBBAADgwQAAQEEAADDCAADAwQAAAAAAACBCAAAAwgAAlMIAAEDBAAC4QgAA-MEAABDCAAAQQQAAnMIAAAAAAAAAQAAA2MEAACxCAAAAQQAAAAAAABxCAAAwwgAAcMEAAAjCAADAwQAAQMIAAHzCAACgwQAAyMEAAAxCAABgQQAAhsIAAADBAABUwgAAgEAAAL5CAAAUQgAAiMIAADTCAADIQQAAhkIAAIBBAACgwAAAIMIAADjCAACgQQAATMIAAFTCAAA0wgAAUMEAAKDBAABEQgAAyEEAAKDAAABMwgAA2MEAABDCAADgwAAAQEEAAMJCAABgwQAAYMEAAPhCAABQwQAA0EEAAEDCAACgwQAASEIAAGBBAAB4QgAAaMIAACxCAABQQQAAKMIAAAzCAADAwAAAhsIAADjCAADAQQAAgMAAAFDCAAAwwgAAIEEAAMBBAAAEwgAAeMIAAIC_AADgwAAAYEEAADDBAADGQgAAHMIAAODAAABAwAAAmkIAAKDBAACkQgAAsMEAAMDAAABgQQAAMMEAAMhBAACmwgAAUMEAADTCAAAUQgAAFEIAAIDBAAAAQQAA4EAAABTCAACQwQAAJMIAAIDBAACAPwAA6MEAAIC_AACeQgAAAEEAAMhBAABAwgAAsEEAAHBBAAAQwQAAsMEAAJBCAABQwQAAaMIAADBCAACoQQAAMMIAAIA_AABgQQAA4EAAAPhBAACYQQAAwMEAAADCAACgQQAAgEEAAFDBAAAMQgAACEIAAIjCAAA0wgAAqMEAAPDBAACoQQAAAEEAAIDBAACAPwAAgEAAALRCAABIwgAA2EEAACBBAACAQAAAQEAAAOjBAADgQQAAcEEAAETCAADAwQAAkMEAAKhBAAAwQgAA2EEAAIDCAAAgQgAAgEAAAADAAAAQQQAAcMEAAPBBAADAQAAAQMAAACxCAADIwQAAlMIAAJBBAABAwCAAOBNACUh1UAEqjwIQABqAAgAAmr4AAGS-AADoPQAADT8AAHS-AACOvgAAQDwAABu_AAAcvgAAJL4AAAw-AAA0vgAAuj4AABC9AACYvQAAZL4AAKY-AAD4PQAA6j4AADM_AAB_PwAAuL0AABS-AAAUPgAA1j4AAM6-AAB0PgAA0r4AAKY-AACWPgAAdD4AACw-AADovQAA-L0AAKg9AACKPgAAUD0AAES-AACivgAAHL4AAOq-AACSPgAAcD0AANi9AADgvAAA2L0AAGw-AADyvgAAor4AAKi9AACOvgAA2L0AACw-AADIvQAAJD4AAJg9AABZPwAAEL0AAJY-AAAkPgAATD4AAAw-AAC4vQAAyL0gADgTQAlIfFABKo8CEAEagAIAAMi9AACIPQAAXL4AABO_AABsvgAAHD4AAA8_AACgPAAAmD0AABw-AABUvgAATL4AAOg9AAAMPgAAyD0AAJi9AAC6vgAAIz8AAJa-AAC-PgAA8j4AABy-AAAQPQAAoDwAAKi9AABUvgAAQLwAAEw-AABwPQAAgDsAAKA8AACIPQAApr4AAI6-AABQvQAAVL4AAPo-AABEvgAAmr4AAIC7AADYPQAABD4AAII-AACYPQAAoj4AAAw-AAB_vwAAiD0AABQ-AACovQAAXL4AAJ4-AAC4vQAAhj4AALI-AACCPgAAQLwAADA9AACCPgAAPD4AAJY-AABEPgAALD4AAJ6-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=WFRBxz6AeZI","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2914404919708917106"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1229703829"},"10893694322601581276":{"videoId":"10893694322601581276","docid":"34-9-2-Z3320717D2BBEB6A0","description":"Load multiple CSV files into a single Dataframe https://github.com/softhints/python/b... channel useful and enjoy the content, you're welcome to support me and this channel with a small donation...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"17","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Load multiple CSV files into a single Dataframe","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=30ndwJm1I5c\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMDg5MzY5NDMyMjYwMTU4MTI3NloUMTA4OTM2OTQzMjI2MDE1ODEyNzZqkhcSATAYACJEGjAACiloaG5wa2F3bXhteG5lc3hoaFVDZzVydlBfRDczNW9TQmF0ZGNINVpGQRICABEqEMIPDxoPPxPOBIIEJAGABCsqiwEQARp4gQ_zBQcC_gAD-Q4PBgv5AhT2Aff2AQAA4wLw9wP8AgD1Dv_-BwAAAAsK9wr8AAAA9_f2BAL_AAAECO_3AwAAAB3vAgH6AAAABwoCCv4BAAD5-P0GBP8AAAYACQAAAAAA_v_9-wIAAAAGDAb8AAAAAAPx-_wAAAAAIAAthWHPOzgTQAlITlACKoQCEAAa8AFs78f-AxTwAtwQ4ADx490BgeH9_yv3-gHQ5ewB4uLuAdvw0P__Ekr_zwfo_7gn-P_b7t3_JxoEACLzBP_98icAIAHvADna_QAaFO4B6S0J_xoXCP8j_AH_JuMG_yP7_vsw9fX6xADaANHU6v_vKjUCEOITAysS9wHwIBn6_AwS_cjx8v_ADhED0Ogc__fcAf_8DuQFOQnaAAL8GAAb1vQHDfoYAQn56gUF_ggI__MD_Ofq_fzo-AYCzgwfAygjGPrsAAYI2eYA-AEIBPQJ9uT8_SDxCQ7tAhEB3PT-_-sH9PkJ-v4FGwYT5Qwa_vIuCPcgAC0UBRs7OBNACUhhUAIqzwcQABrABy_9674KYgU93dT-OywuzrxxcI48Id6Au3yhmzwi3RQ9gMRlPA_S8z2Q7iy9oATRPPyMu75aUw-8xurFuxSUQj5GRRy9c-gAvBV6E71FOnK8SkbpvORywr04glg7rD0Hvf1O072bdUa9iy40Pf8hPT7Oif08ThBQPL5WWL2JIju6Fzm6PPBVBj3NhHW95jXAvEDeOz7T46I965p_vAXB4z3JOOa9FIxvO0whq7yyCdU8IbH4vMwbVLv2JRu89RkGvf5ukD3H7HI7oXMNPUq4i72tMtO8R1ACvJz6wDwaAIW8Q7ZiPDITVr3QQgI9hjrNOmT5wrv5kRG9nOgpvL9BAL0a26u8zOmXvCcXEz5P1XM9FamwPC5wubwExoo9X0YxujS1UT1n_w09xontu9OG4z3Mdmo91nS9POa7Sr1hQlu9nTUuvMt1pD2ewBI5He3yupfA0rzE6Dm8gAOkPDhAm7slRpo9toPPuvKH1bymaWs9GPS5vLhDV7oF0QS9ScBDvMJkvz1Ihww95xHpu0BRtDzGvqQ8h343umFetrzoEUg8_AYBPC91Bj1-e229AjD5ulEiiD3w7z093cmMvJMfvL2_kN-8UOEKvMlJpz17tKI955p_ubZKMDyPQR-8y4jJu2j27zyzKh29-jRdvFumoL0bRiY9uroEvIGxHbsWSgu9sdKwu8zRwz1phnm9NFgnPF56IL1Ai987c3TLuxiyCj5lnsO7GNGCOBEnBr3-jQw9OOeSu8DVlTuCLFU9e3iJuDSXtT26qdy85lh4uI0lEb27jOw8FCCOutke4jxLpGs6gNXYOfXdSD3bVmg5eJgEudGXGT2VZ7m9vXNwOf71hT0BbQu97vYdum3YgL1qFok7Vf3QOWWm2TxBEYs8rB3ruIfiaT2WNbu8YtPBuPaQir3Xbta8UdUuOJTR0Lq9LYK90OgAOByvZbzQC9e9kAUoOYYzZL01zR48D21ZuHd-kzrP80y8KXtHuZbtnjxsGys9Ex1uuD_JeDyeAb89e0CHtjS5vbyA24s7LWynuGBZGb6Lwk69KjD6uGJXibyoYlc73mBBuFRT0r3odM-8L_jFN1l6I71VaLC9DOgxuCy8Jr1lHZ49mOuWuJqPgL1nCv29aSypOHef47vTVbC8ToAHt8zRAz7rzUG7DKDfNzOHJDyeoCg9d47-t0iBvz0zfrs9xZ4DOIuKFzwWbpQ8d_MyuVUYpj1tC8U9g8fnOAgOjr0Yc3y8LdyBuOIL7ryeUu-8fkO0t1ad1T1E5G-9PlXYtyAAOBNACUhtUAEqcxAAGmAMAwADDQPd6Qf5777I3B_e6OXPGLRT_xrP_wzZtv8j2sOgRfL_Lgb02JwAAAALCPPwIwAQfyTd4vHSGhHEyvUoDF3wIDi-HRkCtrpk298FzNw0IzkAJ8e8KiH951o4BfYgAC0ZfBY7OBNACUhvUAIqrwYQDBqgBgAA-EEAAHRCAABAQAAAgD8AAIA_AADYQQAAKEIAAEDBAAA4wgAAJMIAAPhBAAD4wQAACMIAAADCAADYQQAAQMEAAEBBAABQwQAAYMEAAOhBAABUQgAALMIAAMBAAABgwQAA8EEAANjBAABowgAAEEEAAEBCAAAYwgAAqMEAAKDBAACmwgAA2EEAAFBCAACowQAAoEEAANhBAAAAQgAACEIAABxCAADAwQAAcEEAAI5CAABQwQAAbMIAAAAAAAAAQQAAyEIAAK7CAADkwgAALMIAAEBBAACQwQAALEIAAPBBAADQwgAAiMIAAHBBAAAAQQAAoEEAAMDBAAAAQQAAtsIAADBBAAAgwgAAIEEAALjBAAAAQAAAmMIAADBBAABQQQAAIMIAAFBCAABUQgAAAMAAAJhBAAAsQgAAkEIAADDBAACiwgAAJEIAABBBAACIQQAA0EEAACBBAAAwQQAA6EEAACBCAADAwAAA0EEAABBBAADAwQAAsMIAAIhBAADgwQAAQMIAAADBAADQQQAAyMEAAKDCAADYQQAAeEIAAPjBAABQQQAAuMEAABxCAACQQQAAgL8AAPhBAADgQQAAHEIAAHDBAABEwgAAuEEAAAAAAADgQAAAAEAAAADBAABEQgAAUMEAAGzCAACAvwAANMIAAIZCAAAUQgAAUMEAAFBCAACAwgAAREIAACBBAABgwQAA8EEAAPjBAAAAAAAAwEEAACzCAABAQQAA8EEAABDBAABwQQAACMIAAHBBAAAAQAAAXEIAAAzCAAAAwgAAqkIAALBCAACWQgAAUEEAAJjBAABgQQAAIMEAAIC_AACywgAAgMIAAABAAAC4wQAAHEIAABRCAAAAwQAAjsIAAIjBAAAUwgAAKMIAADDCAAAEQgAAIMEAAGDBAAAUwgAAAEAAAEDBAABAQQAAuEEAABBCAAB4QgAAFMIAAABBAADCQgAAUMIAADTCAABAwgAAQMEAAPhBAACYwQAAksIAAI5CAABQQQAAwEAAAADBAADQwQAAmMEAAMBAAADYwQAAUMEAACjCAABoQgAArMIAAIC_IAA4E0AJSHVQASqPAhAAGoACAACWvgAAPL4AAAw-AAAwvQAA-D0AABA9AAC4PQAAQb8AAAO_AAB0PgAA4LwAAFC9AABUvgAACT8AAKg9AACCvgAAXD4AAOg9AABwPQAAAz8AAH8_AACIvQAANL4AAFC9AADIvQAAED0AAPg9AAAkvgAAEL0AAFw-AADYPQAA4LwAAIC7AADovQAAJD4AAOA8AAAwPQAAmL0AANi9AABAPAAAQLwAACQ-AAAEPgAAPL4AAOg9AADIPQAAQDwAAIA7AACgPAAAkr4AANg9AAD4PQAAkj4AAEA8AACGvgAAgLsAAE0_AABQPQAAXD4AAMo-AAAQPQAALD4AAAw-AAAkPiAAOBNACUh8UAEqjwIQARqAAgAAyL0AABA9AAC4PQAABb8AAAS-AABAPAAAFD4AAEC8AACgPAAAiD0AAIq-AACIvQAAMD0AABS-AAAwPQAAED0AAEA8AAA1PwAAyD0AAOo-AADgPAAAgDsAADy-AACYvQAADL4AAKi9AACgPAAAoLwAAEA8AAAEPgAAEL0AAAw-AADgPAAAir4AAIg9AABwPQAAhj4AAFC9AACOvgAAuD0AAOi9AADIPQAAQDwAAHA9AAAQPQAAoDwAAH-_AAA0vgAAoLwAAKC8AADIPQAAQDwAAAS-AADYPQAAsj4AALg9AACAOwAAJL4AAIi9AACaPgAALD4AAHA9AAD4PQAA-L0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=30ndwJm1I5c","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10893694322601581276"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3031184197"},"2584590509853947860":{"videoId":"2584590509853947860","docid":"34-2-16-ZE72000562B311235","description":"Topic In this video you can find several useful examples how to merge multiple CSV files: combine identical CSV files combine files with trace of original file merge CSV files with different...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"18","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"How to merge multiple CSV files with Python","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=V0KxE6AfodM\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChMyNTg0NTkwNTA5ODUzOTQ3ODYwWhMyNTg0NTkwNTA5ODUzOTQ3ODYwarkNEgEwGAAiRBowAAopaGhucGthd214bXhuZXN4aGhVQ2c1cnZQX0Q3MzVvU0JhdGRjSDVaRkESAgARKhDCDw8aDz8ThwKCBCQBgAQrKosBEAEaeIEA9wX-_AQA_QIFAvoF_gET9QYG9wAAAPQN9_UDAQAA-gwD7gAAAAAJ__kD-gAAAAH2AQT2_QEABgP9AQQAAAAXBPwK_wAAAAr9BAv_AQAA_wABAvsCAAEL9vv__wAAAAH6AQD__wAABQz5AwAAAAAM9gAFAAAAACAALc5t3js4E0AJSE5QAipzEAAaYBklABz-GAnoBwfy6uIMK-LlRuXXzAb_QcMAJO-yHR31uLI0_f85_-zhowAAADzr5v_RACt3_ckJJSH8D6vL-AgJfw4S7xwI7vi16jnM-Foh-koSbwDp3gYNR-MDXvs5KSAALbzrFzs4E0AJSG9QAiqvBhAMGqAGAACIQQAAAMEAAGRCAADgwAAAqEEAAExCAAC2QgAAwMAAAJzCAABwwgAALEIAAIDCAADIwQAAmMEAAAxCAAAAQAAAoMEAACDCAAAwwQAA4MAAAKhBAACOwgAA-MEAAERCAABwQQAAAMIAALjBAAAwQgAAQEIAAABBAABEwgAASEIAACzCAAA0QgAAQMEAAIjCAACAvwAAZEIAANBBAAC-QgAAHEIAAKjBAAAkQgAAjEIAABTCAABcwgAAYMEAAKBBAACQQgAALMIAAKrCAACwwQAA0EEAACDBAABoQgAAcMEAAKDCAACYQQAAAAAAAMhBAACqQgAAoMEAAMjBAABUwgAAAEIAAMjBAACwwQAAoMEAANjBAACGwgAA8EEAAIJCAAD4wQAAaEIAAHBBAACwwQAA-MEAADBCAABkQgAAEMEAAGzCAACOQgAAmkIAADRCAAC4wQAAkMEAAOBBAAAoQgAAHEIAAKjBAAD4wQAAOEIAAGBBAAA8wgAAAMIAANjBAADgwQAAwEEAABxCAAAgwQAAgL8AAABAAAAAQQAAMMEAAHzCAADQQQAAQEAAAFBCAAAQwQAAlEIAAABCAABQQQAAdMIAAOjBAAAUQgAAmEEAACDBAADAQAAAoMEAAEDAAACwQQAAnMIAAABAAABAwAAAHEIAAJhCAACAPwAAAEEAAIDCAACAvwAAyMEAAKDAAACAvwAADMIAAEDAAABwQgAAgL8AANhBAABgQQAA8MEAACDBAAAwwQAAcMEAABTCAACEQgAA2MEAAHzCAACuQgAAMMEAAIC_AAA0QgAAAMEAACBBAACwwQAAJMIAAJTCAAAAwgAAPMIAAMjBAACWQgAAEEIAAOhBAAAYwgAA6MEAADBBAAAcwgAAAAAAAJxCAACAQAAA8EEAACzCAABQQgAAQEEAABTCAADgQAAAwMAAAMBBAABQwgAAMEIAAKpCAACCwgAASMIAAMDBAAAwQQAAEEEAADDBAACcwgAAAEIAAKBAAAAgwQAAyEEAAHTCAABAQAAAEEIAACDBAACAQAAAZMIAAABCAABEwgAAQMEgADgTQAlIdVABKo8CEAAagAIAAKK-AABcvgAAQDwAAFA9AABcPgAAyD0AAKC8AAB_vwAArr4AACQ-AAA8PgAA4LwAAFy-AACyPgAAJD4AADy-AACOPgAA6D0AAJg9AAATPwAAQT8AAAQ-AAAwPQAA4LwAAOC8AABQvQAALD4AADy-AABQPQAAQDwAAIo-AACovQAAQLwAACQ-AACaPgAAED0AANi9AADYvQAAyL0AAFC9AADovQAAPD4AAKi9AAAsvgAA-L0AADy-AAAQvQAAfL4AAOC8AACyvgAAMD0AAOC8AAAEPgAAJD4AAJi9AABwvQAAXT8AAAS-AAAQPQAAjj4AAGw-AACWPgAA-D0AAKA8IAA4E0AJSHxQASqPAhABGoACAACavgAAqD0AACy-AADuvgAAoLwAADA9AADIPQAAMD0AAKg9AAAsPgAAur4AAKg9AABQvQAAQLwAAIC7AACgPAAAoLwAACk_AADovQAA3j4AAKC8AAAwvQAAFL4AAKg9AAAMvgAAmD0AAEw-AACAuwAAUL0AADQ-AABAPAAAiD0AABC9AACAOwAAEL0AAIC7AABkPgAAcL0AAGS-AABwPQAAQLwAADA9AAA0PgAAuD0AALg9AABwvQAAf78AAKi9AABMvgAAML0AAHA9AADgPAAAcD0AAJg9AACWPgAA2D0AABA9AAAQvQAAgLsAAHw-AAC4PQAAiD0AANi9AAAcviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=V0KxE6AfodM","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2584590509853947860"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2555949101"},"9225762296984234625":{"videoId":"9225762296984234625","docid":"34-3-3-ZE6A6895840C75EAB","description":"In this video, we will be learning how to add and remove our rows and columns. This video is sponsored by Brilliant. Be one of the first 200 people to sign up with this link and get 20% off your...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"19","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python Pandas Tutorial (Part 6): Add/Remove Rows and Columns From DataFrames","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HQ6XO9eT-fc\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChM5MjI1NzYyMjk2OTg0MjM0NjI1WhM5MjI1NzYyMjk2OTg0MjM0NjI1apIXEgEwGAAiRBowAAopaGh3dmR5b2xic2l2Z3JwaGhVQ0NleklnQzk3UHZVdVI0X2diRlVzNWcSAgARKhDCDw8aDz8T9geCBCQBgAQrKosBEAEaeIECCQoFBfoA9_oW_f0E_wEV9gH29QEAAOwF_PcFAAAABQoFAPcBAAAR__sRBwAAAPX4__7y_gEAFgP7BwQAAAAqAP0G-wAAAAkECAj-AQAA9f_zAgP_AAAL_ALt_wAAAP7yAfr6_v8ABg0H_AAAAAAW7gcCAAEAACAALds2xDs4E0AJSE5QAiqEAhAAGvABfw35Ad_36gHwL9YA-QX1Aaf3Jv83GPEAxSQNAevo3AHB9fYB9fsVALYQ5gDKAe__39fgABLvDAEWAOf_-_kKAA329AA1zA8BSBjd__wBDv8eKiv-BucvACbjBv8Z5Aj_BwIN_tnk6gPU2MgG7yo1Ai8AJwEUDCMD6vYX_vQbCf7VEtX-0QYEBuEDEwTj7Ar_8QrV-h0J8vv3DAkDIvj4CgHP8wL58_gMIg34Bf_zA_zg7PAF9QDz_eohHP4QNRcB6x3_CgTs_PT4EwwAGuHu9Qjz_P8hvPsJEvzzCPDyC_PbHwr06S0JAbr4BfULGgT7IAAt9YoaOzgTQAlIYVACKs8HEAAawAd6UeO-b1EguoUyQzyClSC8PMihukeOtjuqBVs9HWsQPRyGxbwQgG492VVtvDl7iLqXx6q-E8fsO74RnbwUlEI-RkUcvXPoALwrYJy9ux7WvE5eRL2m1AW-P0ypugVmqryPMjc675w8vfhxtDyp-E8-EoMAvdRhhTw9DO29c_6cvUt-G7tapQ-9aoA3vb6bkzxA3js-0-OiPeuaf7wFweM9yTjmvRSMbzvEwXQ9_By8ug6xi7s4Fk-9q_hwvYOyH71zCLE9QL3ZvIXDnDy3rdK8dozrvJReZTwiSsU8GeOzPQlG7zu9bKC9JuZUPaEWvToquwq9FdnYvKExbrwMyIO9_xmvPF7xdTvWgsg9AiO5PHcbyrwURxo8VvCbPZXy9zu7KlA9-o1AvL_vvjq5ido9CesVPa4LhTttb4e9lMIcvUXxKrwErNU8M6KZPPTzSzxAJVg9-1R8u0Ux1Dw4QJu7JUaaPbaDz7qSKsC8oKdhPaV9UbnPmmQ99lFcvXvrrjve9WM9Y875u_3tmTqdXcO9xrWMuwGiZLtiezI9F2e8vedGAbsLTx48wADnvN8p8LuyW3U93Gd1PXgGsrtJ42a9ihL-PGa28bp8YRI-o-BuPd9NmjsI29m8kcqePKAeNrwONhA9AKiCvSIzPLyzgS-9ZOsUPQaRtbug-qi7e8BcvYRRpLuTJK49gPdpvUBLOrssuas7111qPHapkbtas1o9PXaRveqG2LoVBws9YTAEPZlqwbp3F8O8UiIRPARUmzvKNPo9E3vNvFmGYTjbFVm7lX7CvJMb07dTb5e88ncPPfgIJDnA55c9pYJqPSG5g7ndKqO8Vz3AvZEGHjlMezk9B01BvSjCn7m4ePi8g4rHO0wJHToO7AK80-UjvX-b-Lmtx7g9zmZ6PJnT5LieZ4W7U2JyvUeHrbegxdK89iBpvRjfo7na93K9mgwCvUmuojlX0gW91kwIPX9BjDeFCaM82YgRPW1yrrd_VYk87BqIPD5067mAnJA9SMCtPXy-4jgwLhG8qJtaPWNm-rgg7rq9868lvqsLyTioF507IhXrPAerfra5F_u7vQ5mPA_XkjjhNLM83GF4vTj3qrfbmr68jWKpPTZMmLewr7U8s-acveqpLDatp_Y9s-qYvHs7OrnD8AE-129hPWfbAjkvJQE75zqNPEkmibd39sU90ZInPnmm8Dihb0G7C4uQvWKGCbgi_-w9NSkFPvN-W7gFHF091hDmPPgQz7gAyh89tRxDveD8PDjdk0w9J9T8uvx517cgADgTQAlIbVABKnMQABpgHxIAK_YQyNbvFuTQy_3yvOUO1QW4FP8Ftv8DCa0M-cfGkB8W_xPw_-2cAAAAOgjzAQMAC38P7OwD1SkO0vQNAuxO_zUfw-8i_6-9SQ3M-Piu-P06AAf2tRRZCCBwE0sXIAAtqUUZOzgTQAlIb1ACKq8GEAwaoAYAAKhBAAB4QgAAuMEAACBCAAAMwgAAgMAAADBCAACewgAA2MEAABzCAABAwAAA4MAAAODAAAAswgAAdEIAAILCAACwQQAAmMEAANjBAAAYQgAALEIAABxCAAAAAAAAsMEAAMhBAAAAwQAAnsIAAMDAAABsQgAAQEAAAABBAACgwQAAgsIAAHBBAABgQQAALEIAAKDBAACgQgAAMMEAABTCAAAgQgAAMEEAAFRCAABsQgAASEIAADDBAABgwQAAHMIAAKJCAABgwgAAQMEAAATCAADYwQAA8MEAACDBAABwQQAA8MEAADzCAACQQQAAMEEAAPjBAADgQAAA-MEAAI7CAAAQQQAAQEIAAARCAAAAQQAAFEIAAEBAAAAsQgAAQEIAAHTCAACYQgAAEMEAACzCAAAEQgAAUEEAAFBBAAAwwQAAuMEAAJDBAABUwgAAlkIAAIA_AADAQAAAmEEAAJBBAABAwAAAGMIAABhCAAA8QgAAiEEAAEDCAACCQgAAFMIAAABAAAAcQgAAMEEAAMDBAAAowgAAAMEAAKhCAADowQAA-MEAAFzCAAAEwgAAiEEAADDBAACoQQAAXEIAAKDBAAC4wQAAqMEAAGRCAABswgAAAAAAACDCAACAPwAAPEIAABjCAABUwgAAEMEAAGDCAACMQgAAYEEAACRCAACAQAAAWMIAAGjCAAAkQgAAwEAAABjCAACGQgAAiEEAAADAAABAQQAAuMEAAKjBAAAgwgAAMMEAAIhBAAC6QgAAQMEAAJhBAADowQAAOMIAABhCAACIQQAAaEIAAIBAAACQQgAAQEIAABTCAACoQQAAyMEAAKDBAACCwgAABMIAAEDAAACAwAAAAMAAAHDCAADQQQAAPMIAAKrCAADIwQAAiEEAABDCAAAQQgAAVMIAACzCAADYwQAAmEEAAKhBAAAMQgAACMIAAADCAACYwQAA2EEAABDBAAAUwgAAiMIAAEjCAAC0QgAA8MEAAFjCAADQQgAAMMIAAIRCAACAwQAA2sIAAEBAAACIwQAAMMEAAKhBAABEwgAAYMEAALjCAADwwSAAOBNACUh1UAEqjwIQABqAAgAAqL0AAJi9AACyPgAAmL0AAPi9AAC4vQAAcD0AAA2_AAD4vQAA4LwAADy-AAC4PQAA4LwAAKY-AABAPAAAnr4AAGw-AACAuwAA6D0AAPI-AAB_PwAAEL0AAFC9AACqPgAAcL0AAPi9AACCPgAAjr4AABw-AAAsPgAAEL0AABC9AAD4PQAA6L0AADA9AADgPAAAuD0AAAS-AABcvgAA4LwAALK-AAAUPgAAqL0AABy-AACYPQAAoj4AAL4-AACIvQAA4LwAAAy-AAAQPQAAMD0AALY-AAD4vQAAzr4AAKC8AABtPwAAiL0AAAQ-AABsPgAAUL0AACQ-AACAuwAAFD4gADgTQAlIfFABKo8CEAEagAIAAFy-AACYPQAAUD0AAP6-AADovQAA2D0AABA9AACaPgAAuL0AAJg9AAB8vgAAUD0AAJi9AACYvQAAoLwAAOA8AACgPAAART8AABQ-AADqPgAAML0AAOC8AAAQvQAABL4AAHS-AACovQAARD4AAFA9AABAPAAAFD4AABA9AABwPQAABL4AADC9AADoPQAAQDwAAHw-AADIPQAAmr4AACQ-AACgvAAAuL0AAIC7AAAUPgAAcD0AAOg9AAB_vwAAZL4AAAy-AAD4PQAABD4AAPg9AAAwPQAA-D0AANo-AABwPQAAgDsAABC9AABwPQAABD4AACQ-AAA8PgAAQLwAAHy-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=HQ6XO9eT-fc","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9225762296984234625"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3466211875"},"11700078229563273860":{"videoId":"11700078229563273860","docid":"34-3-14-Z39248D3BAA304FBE","description":"In this video, we will be learning how to sort DataFrames in Pandas. This video is sponsored by Brilliant. Go to https://brilliant.org/cms to sign up for free. Be one of the first 200 people to...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"20","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python Pandas Tutorial (Part 7): Sorting Data","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=T11QYVfZoD0\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMTcwMDA3ODIyOTU2MzI3Mzg2MFoUMTE3MDAwNzgyMjk1NjMyNzM4NjBqkhcSATAYACJEGjAACiloaHd2ZHlvbGJzaXZncnBoaFVDQ2V6SWdDOTdQdlV1UjRfZ2JGVXM1ZxICABEqEMIPDxoPPxOrB4IEJAGABCsqiwEQARp4gfUBAv4F-gDy-Az1_gEBARb9_AD1AQEA5BD8-Aj9AQD7DfwG-QEAABAJ8v78AAAA9fH9Cvb_AQAX-gMNAwAAABwC_QD3AAAA_v8J9_4BAAD1__sOBP8AABv7A_P_AAAAAvwPAQAAAAD_BfUDAAAAAArpCgYAAQAAIAAtt8nCOzgTQAlITlACKoQCEAAa8AF_BfsCze0A_gwk-QAO8ewAr_gj_zEABQC9FAEB--TnAcDv5ADsCQwAyPnm_8IGAf_i2-MAGeb9ABbo7v_7BwcADPrlAUrQ9wFN_d__Cxj9_gEeJv8T_f8AJewYAB_rIQH6BQj82N_2-t322gDwDCoCKwAjAf8DGgTq-ggD6hIOAvME-gL89wYG1f4W_-PH7QDyCdn6FAT5BgAYDAQf-fgJBvP9-fnn7v8f_wf_LgUP_fABCAAP2vT-6wsgAw4wFQH-GwYH3OkA-QcmCggI2-f6FfX8-x7C-wgT_AUNBQUT7dMRAfn3LBUAwPkF9v8aD_cgAC3g4Sk7OBNACUhhUAIqzwcQABrABy_9674KYgU93dT-O8nKbz3SkqI8ykMVOz6JuT2QpSo9VcVxu_3Spz0JshS9S_2hPJxNl77qPVy5ZI8WvBSUQj5GRRy9c-gAvFU4Xb0ESH69PooEvSu3ub088UG9632ZvCtLdLyzvve8xyRIO6n4Tz4SgwC91GGFPD0M7b1z_py9S34bu1Y_wLwX-EW9O3mJu4XqBj5fuLM9xhEQvAXB4z3JOOa9FIxvO8rngD2G17-8j2wuPItDrL3Atqm99jrOvPepjz2AzV68ajf2O3bjGzy1ena6VuiNPBS9gj0hUbI9696vPCz1l70NVrc8ym_yu4Q0vrw24QG8y9b6Or7fQ7267vc8KioRvWOEiz0vg1Y8IPGGvE88B70Neco9h2DmO6HccT1bFCw8gWi5u9eK1j1wbfY7VIupupQzNL021lS90PcuPNGFhzwaj4w6J1cIu0_SNz0vevi8AjQAPcapET2Z9eI9O5_sOywsOLzaYo09IY3xO7kxIj1JPRW9mS6ju9TiAj1bjba8mJAHvLU2bb3c_eC8NulXu8FrfD1St_O9axWIOUPJpLyLHD294QpmO7jGjD0GzK09DezGOzfSQ71VwnK7ArpMu_CkNT5zDL09DpsOO4Nl9LuGK9Y8ulVGvA42ED0AqIK9IjM8vLOBL71k6xQ9BpG1u6D6qLt7wFy9hFGkuyKI8z1qsSW973vtuqiEjDyNHzQ9itK1uw-BfjwikIa9xoMQO7P7hD02KYs9jfv5uBM9Gr3qJgw7Jlv_Oco0-j0Te828WYZhOErxTLwRemy8EWPBOHdf3zsJrWI8wk0DuUM7lz36-5s9l7gxuYsGXzzTvKO9P3xBOCJ_mj3CUyO9n_3yuCQmLb20IxM7-mzduL25Cb0Yfiu9tFAGuXRg2T14WTg7Pzk5OcPdk7vaBLO932EMuRdnDL3TNEO9ReaRuFsRC71QnO28cNMDOeoeHr3IF449OclHOBnLtDwCsjw9sS3PN_q49jzukl08kM-ROXqOSD3K5E89XFOlOB81UroVG_M8ZhLIuOLPm70zUPm9RsoNuC35abzyCsQ8ki9yN7kX-7u9DmY8D9eSOEmMVLzvSoy9eSvXNkXKYLwbgM09phy4OJtoIbzpHI29zWuEOLEVBD7G__g7MtlTuMPwAT7Xb2E9Z9sCOThaRDwj7lY8PF6ON3f2xT3Rkic-eabwODW3grwsMWq9uqFGuCL_7D01KQU-835buPu5hz0VrPE8dDshNwDKHz21HEO94Pw8OJ8InT1wS5o8YjwlOCAAOBNACUhtUAEqcxAAGmAiEAA02BvN8vcU5ur1A_a1xh62GcEU__W8_wnrwBIUAMWNNw3_KP3n25wAAABQJPQTHAApfwrNBRDZQRfywfwh52_yKR3uGA4FqsVAMOIJDYbhEigAH-m7Gm76AT48OQogAC2gfxE7OBNACUhvUAIqrwYQDBqgBgAAUEEAAFxCAAAAwAAAMEEAABjCAAAwwQAAMEEAAJLCAAAUwgAA8MEAADDBAABQwQAAAMEAAFDCAAAkQgAAOMIAAABBAACQwQAAAMAAAChCAABkQgAA-EEAAMhBAACAwQAAAEEAAGDBAACIwgAAkMEAACxCAACAQAAAgMEAAEBBAADYwQAA4MAAANhBAAAQQgAA4MEAAGRCAACgQAAAmMEAAChCAACgQQAAVEIAAIBCAAAcQgAAYEEAAIC_AADwwQAAVEIAAHjCAAAQwgAAeMIAABzCAABowgAAgD8AAMBAAAAwwQAAksIAABhCAADIwQAAFMIAAMBBAABwwQAAqsIAAKDAAACAPwAAsEEAAKBBAAD4QQAAwEAAAEBCAABwQgAAgMIAAHhCAABgwQAAsMEAAMBBAAAEQgAAgL8AABjCAAAMwgAAAEAAACzCAABkQgAA4EEAAADAAAAwQgAAFEIAAADAAACAwgAA4EEAAHhCAAC4QQAAEMIAAGRCAAAQwgAAQMAAAGBCAAAAwAAAkMEAACjCAAAQwgAAkEIAACjCAAAMwgAAyMEAAIDBAADYQQAAMEEAABxCAACEQgAAFMIAAMDBAAAwwQAAfEIAADzCAAAwwQAAmMEAAMBBAACWQgAAwMAAAHDCAADwwQAAVMIAAJZCAADgQAAAsEEAAIBAAABAwgAAisIAAEBCAADgQQAA8MEAAAxCAADgQQAAIEEAANhBAACgwQAAMMEAABDCAABgQQAAIMEAAMxCAACAwQAA4EEAAHDBAAA0wgAATEIAAMBBAABoQgAAyEEAAGRCAABgQgAASMIAAIBBAACQwQAAgMAAAEzCAADgQAAAAMAAAIDBAABAwQAATMIAAEBAAAB4wgAA2MIAADDCAABgQQAAOMIAAABCAAAYwgAANMIAAADBAABAwQAAAEEAAHRCAACAwQAABMIAACzCAABcQgAAsMEAANjBAACewgAAosIAAFxCAAAIwgAAaMIAAK5CAABcwgAAGEIAABTCAAD8wgAAwEAAAEBAAAAkwgAAyEEAAEDCAACAwAAAcMIAAADCIAA4E0AJSHVQASqPAhAAGoACAAB0vgAAdL4AABQ-AAB0vgAAur4AAKg9AAAMPgAAK78AALq-AAAQvQAAQLwAABQ-AAAUvgAAPD4AAFC9AAAUvgAAPD4AAHC9AAA8PgAACz8AAGs_AACgvAAARD4AAFC9AADIPQAAiL0AAIi9AAAcvgAAMD0AAJg9AABMPgAAqD0AAHQ-AAAsvgAAmD0AAFC9AACSPgAALL4AAGS-AABAvAAAhr4AABw-AADYvQAAwr4AAJi9AADoPQAAoj4AAJi9AABAvAAAtr4AAIC7AAB0vgAAbD4AAJi9AAAQvQAAmD0AAH8_AABkvgAA1j4AAGQ-AABwPQAAHD4AAMg9AACGPiAAOBNACUh8UAEqjwIQARqAAgAAHL4AAFA9AABAPAAAFb8AAPi9AAA0PgAALD4AACQ-AACYvQAAHD4AAEy-AABQvQAAqL0AAHC9AAAwvQAAQDwAAKA8AAAvPwAAED0AAOY-AAAUPgAA4DwAABC9AACovQAANL4AACS-AAAwPQAAcD0AALi9AABUPgAAyD0AAHA9AACAuwAAFL4AABw-AADovQAAdD4AAIC7AACmvgAAjj4AAHA9AAAwvQAAqD0AALg9AABQPQAAuD0AAH-_AADgvAAA4LwAAMg9AAAsPgAAuD0AADA9AAD4PQAA5j4AALg9AACAuwAAoLwAAFA9AAAEPgAA6D0AAGw-AABwPQAAuL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=T11QYVfZoD0","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11700078229563273860"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"788451991"},"14521922739199248243":{"videoId":"14521922739199248243","docid":"34-2-15-Z1C3B85F051D74A52","description":"In this video, we will be learning how to update the values in our rows and columns. This video is sponsored by Brilliant. Be one of the first 200 people to sign up with this link and get 20...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"21","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python Pandas Tutorial (Part 5): Updating Rows and Columns - Modifying Data Within DataFrames","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DCDe29sIKcE\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxNDUyMTkyMjczOTE5OTI0ODI0M1oUMTQ1MjE5MjI3MzkxOTkyNDgyNDNqkhcSATAYACJEGjAACiloaHd2ZHlvbGJzaXZncnBoaFVDQ2V6SWdDOTdQdlV1UjRfZ2JGVXM1ZxICABEqEMIPDxoPPxPiEoIEJAGABCsqiwEQARp4gf8EAAEE-wD79A7-CAX9ARD9BgL2AQAA4-_7_wn9AQD5BQgE-AEAAAwL9wv7AAAAAfUBBfT9AQAT_-4IAgAAABv19An9AAAACvkDA_4BAAD_BOkEA_8AAAsG_fz_AAAAB_f8BPn-_wEGDvkDAQAAABLn-_4BAAAAIAAtmlzGOzgTQAlITlACKoQCEAAa8AF9EwMD2Pv6_wwl-AD6BfYBge0c_zYZA_-7FAEB8PLtAb7u4wD28wUAxvnl_8AHAf__4t8A_-cHAB0B-f_8-gkABPPqAUzP9wFP_d7_-hsB_wEfJ_8g7xf-LtMHAA_zDv4M-QP72-brA9z12QDx8j4CLAAkAf8DGgTwCRj94x0AAtsT6P_UBgQF0_4X_-XXAgMK_dsAGwnz-wAZDAQxE_ML9dz0-g35-QYNBvMGDfoH__H5_gX97fr57B8a_g8yFQH-GwcH5vP79QwZDQAO6fQFDecB-xHC9vsE-P4C8fML9NERAfnqKgkAvvgF9v8bEPcgAC1BWiU7OBNACUhhUAIqzwcQABrAB0rU677KQFQ8Ja6jPFxXDD2vSZI8NTUcvD6JuT2QpSo9VcVxuxCAbj3ZVW28OXuIupfHqr4Tx-w7vhGdvBSUQj5GRRy9c-gAvCtgnL27Hta8Tl5EvSu3ub088UG9632ZvI8yNzrvnDy9-HG0PN7LLT6wUgW82OTfOz0M7b1z_py9S34bu-NBCb0ZOKC86PT-u4XqBj5fuLM9xhEQvAXB4z3JOOa9FIxvO89Jnz2FmZG8LqqHu4tDrL3Atqm99jrOvHDQXj2zJeu8hmDLPEoPHrttxb68wlGNPBS9gj0hUbI9696vPCz1l70NVrc8ym_yu-iDyrwKgxo5hQuUvHSj_ryrZJs80O6QvA0zeT1iBjQ9ZVr2vE88B70Neco9h2DmO6HccT1bFCw8gWi5u7mJ2j0J6xU9rguFO21vh72Uwhy9RfEqvKpUPzzYtqg84BDLug5sMD2g8ti6_yUGPKetEDq5jLs9WmKKPNJtDr1Ikps9ON0PvLkxIj1JPRW9mS6ju1fk_DyiYpy7nYiZvHJOjL03xk68JTylu8FrfD1St_O9axWIOXzQ2DvRgf672lDWurJbdT3cZ3U9eAayu9h1Gb0cako8M1Elu3xhEj6j4G49302aO4Nl9LuGK9Y8ulVGvA42ED0AqIK9IjM8vLOBL71k6xQ9BpG1u6D6qLt7wFy9hFGku3N_1T0w-Vq9opT3urjlozw4no88RsIMuzH5FT1CeX-9cd7mOxPQST0UUV09EngSO3cXw7xSIhE8BFSbO8o0-j0Te828WYZhOLHiL7z4MrS6Uad6O1Nvl7zydw89-AgkORsjwz2GU4s9NPtauK0vtzr9EvG9vCOJOdPsaz2w_i-94Nl3OFqhSLyLvFE8zhMfOTzrortVKUK90zi-OD_6mz3VQZ48W_WRuGAAYbyUpZa9IjJNucrDgrxp0we94AelOOwJPL1yJfG81mKAObx9Eb31JzY94fW6OKI10DwIZGU8iyjEN0E7sTyzq7U8eSFWOTM0fj1Plno9tXWrN7lIa7wBgyk9nlfSuCDuur3zryW-qwvJOC35abzyCsQ8ki9yN5Q5jLyPiE48YWcgOeE0szzcYXi9OPeqt9uavryNYqk9NkyYt0lDMjxG6be9pC5gN7EVBD7G__g7MtlTuLlT2j0S30Q9CEqvONezsTzSwPK6vCq3tXf2xT3Rkic-eabwODW3grwsMWq9uqFGuCL_7D01KQU-835buNMLkz1HwqM8ItpquOJOMz32g3W94B4kN-6cgT1WzsM8M00nuCAAOBNACUhtUAEqcxAAGmAjBgA_2xDI2v0Z7OPS3wLT4OXVLM0J__e1_90Twv4I3duSLQr_KfkF2p0AAAA3CfoB-wANf_Dz7Q3ENSzX4PMg7HIZGSrK-BbwxMIqIc7qFq30P1IAI-2rHksK7GguSBQgAC03TRY7OBNACUhvUAIqrwYQDBqgBgAAMEEAAGxCAAAAwgAA2EEAAATCAABAQQAAKEIAAIbCAAAgwQAAkMEAAEBAAACgwQAAwMAAAAzCAABUQgAAiMIAAOhBAACIwQAA2MEAADxCAAAsQgAAHEIAAMDAAACowQAAwEEAAJjBAACswgAAAMAAAHxCAACQQQAAgEAAAKjBAAB8wgAAoEAAAIC_AAA0QgAAAMAAAHRCAAAwwQAAsMEAABRCAABQQQAAMEIAALRCAABAQgAAoEAAALjBAAAUwgAAnkIAAFDCAACowQAATMIAAJDBAAAQwgAAwMEAAIhBAAAUwgAAHMIAADBBAAAwQQAA8MEAAIBAAABAwQAAtsIAAEBAAAAIQgAAwEEAAJhBAAAUQgAAgEAAAAxCAAAoQgAAdMIAAJRCAACwwQAA-MEAABhCAAAQQQAAsEEAAJjBAAAQwgAAAEEAAAzCAACUQgAAQEEAAEBAAADIQQAA4EEAAAAAAADowQAAHEIAAGBCAAD4QQAAWMIAAFhCAAA0wgAAEMEAAERCAACIQQAAgMEAABjCAACgwAAAqEIAANjBAAAwwgAAOMIAAKDBAACAQAAAoEAAAABCAABoQgAA4MAAACjCAADAwQAAhkIAAITCAACAvwAARMIAAGBBAABcQgAA2MEAACzCAAAwwQAASMIAAKxCAACwQQAAAEIAAOBAAAAcwgAANMIAAFRCAACgwAAABMIAAFhCAABAQQAAcMEAAJBBAACIwQAAuMEAAPDBAACgwAAAqEEAAL5CAABAwQAA6EEAABDBAAAswgAA4EEAAKBAAABkQgAAwEAAAHRCAACQQgAA-MEAAMhBAADAwQAAQMAAAIjCAAAYwgAAAMAAAADAAABgQQAAdMIAAMhBAABkwgAAysIAAMDBAACgQQAAHMIAADBCAADwwQAASMIAAIDBAACQQQAA6EEAALBBAACQwQAADMIAABzCAADoQQAAoMAAABjCAACEwgAAGMIAAJRCAAAgwgAANMIAANJCAABcwgAAQEIAAJjBAADwwgAAoMAAAHDBAAAQwQAAwEAAADjCAAAYwgAAuMIAAKjBIAA4E0AJSHVQASqPAhAAGoACAACIvQAAUL0AACQ-AAAkvgAAbL4AAIC7AAB0PgAAH78AACS-AAAQPQAADL4AANg9AAAQvQAAqD0AAJi9AACKvgAAcD0AAOC8AABQvQAADT8AAHU_AABAPAAAUL0AAOg9AACYPQAAoLwAANg9AACovQAAgLsAANg9AADYPQAAqD0AAPg9AAB8vgAAQDwAACS-AABcPgAAqL0AACy-AACIPQAAtr4AABw-AACIvQAAwr4AAJi9AABcPgAAvj4AAFC9AADYvQAAZL4AAHA9AACovQAAtj4AAKC8AACYvQAAgLsAAH8_AAB8vgAAnj4AAFA9AACAOwAAcD0AAIg9AABcPiAAOBNACUh8UAEqjwIQARqAAgAATL4AAMg9AAA8PgAAEb8AAIi9AAA0PgAAqD0AAFQ-AADYvQAARD4AAIK-AACgPAAA4LwAAHC9AAAUvgAAoDwAAKC8AABLPwAAmD0AAK4-AAAsPgAA4LwAABC9AADovQAALL4AAEy-AAAQPQAAUD0AAAy-AACePgAAqD0AAIA7AACgvAAAiL0AAGw-AAD4vQAAPD4AACS-AAC-vgAAkj4AAEA8AABwvQAAyD0AAAw-AADgPAAAgLsAAH-_AABwPQAAoLwAAHA9AABcPgAAJD4AANg9AAAEPgAA8j4AAFA9AACAOwAAEL0AAOA8AAAwPQAAiD0AAHQ-AAAwPQAATL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=DCDe29sIKcE","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14521922739199248243"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"344345471"},"11716599978107054446":{"videoId":"11716599978107054446","docid":"34-1-4-ZE9B902CCB4049F01","description":"In this video, we will be learning how to clean our data and cast datatypes. This video is sponsored by Brilliant. Go to https://brilliant.org/cms to sign up for free. Be one of the first 200...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"22","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python Pandas Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Values","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KdmPHEnPJPs\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMTcxNjU5OTk3ODEwNzA1NDQ0NloUMTE3MTY1OTk5NzgxMDcwNTQ0NDZqkhcSATAYACJEGjAACiloaHd2ZHlvbGJzaXZncnBoaFVDQ2V6SWdDOTdQdlV1UjRfZ2JGVXM1ZxICABEqEMIPDxoPPxP5DoIEJAGABCsqiwEQARp4gQYB_v4D_QD3-hX9_QT_ARDy-QH2AP8A8AMI8QMBAAD1FAgD_wAAAA4FBAYDAAAA9v77CPP_AQALEf0NBAAAABsC_QD3AAAADwP3_v4BAAD7C_YNBP8AAPoFBff_AAAABv8TCv8AAAALBfcEAQAAABXvBwIAAQAAIAAtx1rLOzgTQAlITlACKoQCEAAa8AF_G9v-1QfxAcga9QH4B_MBk_Uv_zAZ3gC6FSoB0-7qAeLK-wH4DToBqxUQAJIVDgHYztkAFwIR_xHO8_8WHgsAHyz1AUHAEwFE-tUC4wAaAAIoM_4n5TgCVggTAS3tFP_x-DD70N7lBLb4xAHrEDkCIg8iAikRBf7WCSAE6DcJ_t4D4gDM7fMH49EX--zWEgQN_M8AMBvS_Roy-gsj8BIEAcUP_u4E8wtCKPwC9xr0_tjo7AYH8-v65Ski_jlCDf78BAIFHd_yAgse7Qgj6tgPAvwC_wGm9gPu9PcR7g0HBNImDfL0Uw8IqvYG8wMSB-sgAC1exfs6OBNACUhhUAIqzwcQABrAByuE7b43C8U7s2y5uyWbRj2EdkO3QLYWvaoFWz0daxA9HIbFvBCAbj3ZVW28OXuIupfHqr4Tx-w7vhGdvC0LVj6wily9QS0mvXi3Ur38p7w7OFeDvORywr04glg7rD0HvYyoBL1k1K27i5CVPC2YWD6HIL28oRKXvP5l172xpvK9KRALvONBCb0ZOKC86PT-u4XqBj5fuLM9xhEQvLsmBD6th5-9QHf4vELBVj3XhBm91VHhu2x85r2wrd-8EyFfvfBZzTyscoA7RtJuPMR5OLyyTL-7g_jhO2o-rT1MM909OU6juyz1l70NVrc8ym_yu5V75ryx6Cw9dKA9vIZ3hL1HVC0935m7u2nWIz3muMk8j5fkvE88B70Neco9h2DmO1MsLT0a8IM8VZQgPOenCD6xLF09RvJwu6vcNb343r46VG2fOapUPzzYtqg84BDLunBoYD3NjKO8jekuPJ9HGz2HU5Y90uipPGu9Or27mdE9sh_Wuy0zlj2reCO9Eo40vP3Fpz1zLZq8FF5-uxZErryO1Ia9AOphPA_d4jx1dBy-GGL6uYMMrjs1WQg9P---OxQImz2r56Q82Fj0O6q1VbzmUNA8T9BkO3xhEj6j4G49302aOw9IIr322HE8XRgiumj27zyzKh29-jRdvLOBL71k6xQ9BpG1uyTzBDw4LK29KbXyu3N_1T0w-Vq9opT3ugYCcLu7WSw7lX7Cu5cjnz37xny9A6wSOij1gDymgJQ9dKcmu5uf7rsxyOc8itiSOzy98j1KyFG9V8GOOZ9mVLtvet27lUIDuyQfhbzqr9c8w4ZXucDnlz2lgmo9IbmDudgCjDyDaM29LiTCuG2GYD0iiKO9h_JGuWdrM706ckm8zMNcujz1KL0pZH29-BefuR5Nij11tCI7Y9BeuYSGGT2RIay8YY_AuAh2nburRKS9GswtuewJPL1yJfG81mKAOWFmabw1rT49AO6JuN56CD3wnBI9u_ZzuKlm-zy0cYk9YM_ruDM0fj1Plno9tXWrNwHGTj0mmrY8vyqGuOLPm70zUPm9RsoNuJRfR7oNZwY8HjFlN8JLtb2NTQI8DbpPNsvrUjx8Yt29TNuKOOGWjzzp4qU9OAywOD_WnbxYa229jvzMNy-mGT54O8w8_OYbuVsoyT2tPs08G32ztqsE8LwEsYe8fgUmuFDfEj7mWvQ9ipPmNrhzAT3MK4K9L2Z0uCL_7D01KQU-835buCSsNz30Ycc8Q_LxuFjcJD0ptJe9acNNOOXBLD0UpY68bBkKtyAAOBNACUhtUAEqcxAAGmAhAQAo7AfJ9uQ38vH44PTd_cnAQKUY_9XE_wAR7A3vDdyLKxv_Lf0d2ZwAAABDAfcf_QAefx_P-wrgITTFzO8r6WoK-jLuFx3z389kQtYNG6HxNVkAKgXBBGruADs1RCsgAC007BE7OBNACUhvUAIqrwYQDBqgBgAAuEEAAGBCAADYwQAAMEIAALDBAABgQQAAbEIAAIbCAAC4wQAA0MEAAEBBAACYwQAAAAAAACDCAAB0QgAAhMIAACBBAADgwQAAkMEAAOhBAAA4QgAA2EEAAADAAACowQAAwEEAALjBAACywgAAQMEAAFhCAABAQQAAEMEAAMjBAACWwgAAQEEAABDBAAAQQgAAUMEAAIpCAADIwQAAAMIAAFBCAACgQQAAZEIAAJhCAAA8QgAA2MEAAHDBAAAUwgAAxEIAADTCAACYwQAAMMIAABDBAADQwQAAQMEAABBBAAAwwgAA6MEAADBBAACgQQAAcMEAAEDAAADIwQAAosIAAIBBAABIQgAAmEEAAAAAAABMQgAAwMAAABBCAABEQgAAVMIAAJhCAACIwQAALMIAABBCAADAQAAAgEEAAIDAAACgwQAAMMEAAETCAACgQgAAAEAAAOBAAACYQQAAMEEAAABBAAAwwgAAMEIAABRCAAC4QQAAQMIAADRCAAAwwgAAEMEAAARCAAC4QQAAiMEAABzCAACgQAAAmkIAACTCAABQwgAAcMIAANjBAABAQQAAEMEAANhBAAB0QgAAgL8AAADCAACwwQAAgEIAAFTCAABAwAAAMMIAAIDAAABgQgAAPMIAAGzCAABQwQAAPMIAAJxCAACwQQAAIEIAAABBAACAwgAAPMIAACRCAAAAQAAAAMIAAGhCAACAwAAAgMAAAGDBAABwwQAA6MEAABjCAADgQAAAEEEAAKZCAABgwQAA2EEAAAjCAAAUwgAAsEEAAKBBAAAwQgAAQEAAAKhCAACGQgAA0MEAALhBAAAQwgAAiMEAAKLCAAAwwgAA4EAAAEBAAABgQQAATMIAANBBAAAMwgAApMIAAMDBAADYQQAAAMIAADBCAAA0wgAA4MEAABDCAACoQQAAEEIAALhBAADIwQAAyMEAAEDAAABgQQAAAMEAABTCAABYwgAAEMIAAKxCAAAQwgAAcMIAAL5CAAAUwgAAPEIAAKDBAADiwgAA4MAAANDBAAAAQQAAgL8AAGjCAACAwQAAxsIAANDBIAA4E0AJSHVQASqPAhAAGoACAADgPAAALL4AAJo-AAC6vgAAPL4AAKA8AAAUPgAASb8AAJ6-AAAwvQAAcL0AAOA8AACgPAAAVD4AAPi9AACivgAATD4AADA9AACovQAABT8AAH8_AADYvQAAgDsAAAw-AAAQPQAAHD4AAJg9AABAvAAAiL0AADw-AABEPgAAUD0AALg9AABUvgAAML0AAMi9AADYPQAAqL0AACy-AACgvAAARL4AAFA9AAC4vQAApr4AAEy-AABsPgAA3j4AAPi9AAAcvgAAEL0AAFw-AAAUvgAAvj4AAEA8AABkvgAAgDsAAH0_AABQvQAAiD0AAII-AADYPQAAiD0AABQ-AACYPSAAOBNACUh8UAEqjwIQARqAAgAAuL0AAIC7AAAMPgAADb8AAMi9AABwPQAAoDwAACw-AAA8vgAALD4AAES-AACYvQAA2L0AAMi9AACIvQAAgLsAAJg9AAAxPwAAHD4AAL4-AAA8PgAAiD0AANi9AACIvQAAFL4AAES-AADgvAAAgDsAAEC8AACSPgAAMD0AAKg9AACgPAAAqL0AAPg9AACAOwAAZD4AAKi9AACGvgAAgj4AADA9AABQvQAAML0AANg9AABwPQAABD4AAH-_AABAPAAAoLwAAOC8AAAUPgAAoDwAADA9AACYPQAAgj4AAMg9AACgPAAAUL0AABA9AAD4PQAAgDsAALg9AACIvQAAiL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=KdmPHEnPJPs","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11716599978107054446"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2445944828"},"8210718368817714446":{"videoId":"8210718368817714446","docid":"34-0-14-ZF389C1D5AB394EA6","description":"In this video we continue working with the data frame and show how to smooth our timeseries data using the rolling filter. We'll cover some of the basics and look at different window types.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"23","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python + Pandas Tutorial - (Pt.5) Rolling Filter","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=j_r3dJCSD2k\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChM4MjEwNzE4MzY4ODE3NzE0NDQ2WhM4MjEwNzE4MzY4ODE3NzE0NDQ2arYPEgEwGAAiRRoxAAoqaGhtbGd3cG1pa2phdm53Y2hoVUMyVzBhUUVQTnBVNlhya0ZDWWlmUkZREgIAEioQwg8PGg8_E9YHggQkAYAEKyqLARABGniB_Qj69gT7APkJDvz7BP8BH_X8B_UCAgDf-QT1CPsCAPwS_Pn8AQAAFQz8CwYAAAD1_hT6-v8BACMBBAgEAAAAEvn0AfQAAAAJ7gL-_wEAAPoA8A8D_wAAGvsD8_8AAAD5-gMM_f8AAP0E_v0BAAAADfQT_gABAAAgAC3vosU7OBNACUhOUAIqhAIQABrwAX_Y4AL5COkCsP0AAA_b4gCJ4_7_Owf6APII_QC_980A6MnsAO0sHv_bCfUA0x8RAOHZ4gAC_R0ACOft_x4SBAAI_gAAPQwQARoKAP_yBN3_AjIWASn0DgAQ1h8AGg0e_hXZ9f_Us9sC6wb2_gr1Hv8U2SQEDPUOB-MY_gDZL_YA5vfc_Q8S1QHr-vv7BR_v_RwV5gMuI-z_-iTQAhv0DgMB8QwC9vjv_BonFQT_8_cG_ezs-QD6Dvju_AICGhQNAf0DAQT7_vADEP76-QPWA_sd-AEL--oECBYPCQ3_7Af03iUFBvc_DAbOIwUAChkD-yAALSjGJDs4E0AJSGFQAipzEAAaYAwEADrdKAQVDzTg7vkG-t7jTe4W1AH_BdEAGuLXJwnlw44ZGf8B-A_EqQAAAD8T5yENAARwFLMgF_gG87uR_Bv0fxQO-xwiDwLJ2FYs5OL-u_kAJQAe78X6b_gJIlQWLiAALTNhHDs4E0AJSG9QAiqvBhAMGqAGAABsQgAAokIAAIDAAAC4QQAAYMIAAMBBAACYQQAAhsIAANBBAAC4QQAAgD8AAJjBAACAvwAAPMIAAKJCAACEwgAAEMEAAJDBAABwQQAAVEIAAMBCAACQQQAAgMEAAJDBAABAwAAAwEAAADzCAAAYwgAAYEIAAOBAAAAwwQAAQEEAAIjBAAAYQgAAEMEAAGxCAABQwQAAzEIAAMDBAACwwQAA4EEAAADCAABwQQAAoEEAAKDBAADgQAAAAMEAAMjBAACeQgAAhsIAACDCAABAwgAAYEEAAHBBAACIQQAAZMIAAJzCAACuwgAAcEEAAJhBAABcwgAAUMEAANjBAABIwgAAmEEAAKBAAAAAwAAAJMIAALBBAACcwgAAPEIAAGxCAACowQAAgkIAAAxCAAAcwgAAwEEAALhBAACGQgAAcEEAAHDBAAAkQgAAkEEAAHBBAACQwQAAuEEAABBCAAAEQgAAKEIAAAAAAAAsQgAAiEEAAETCAADEwgAAFEIAAMjBAADowQAAYMEAAGBBAAAEwgAA6MEAAIBBAADQQQAAjMIAAFBBAAC4wQAAQMAAAKhBAACmwgAA4EAAANBBAAAQQQAAmMEAADDBAACaQgAAOMIAAFDBAAAgwgAAUMEAAABCAABwwgAAmMEAAAzCAAAMwgAAQEIAAETCAACAPwAAoEAAAMjBAADowQAAPEIAAExCAAAAwAAA8EEAAGRCAADgwQAAQMIAACDBAADwwQAAQMEAADDBAAAUwgAAPEIAAMDBAACAwAAAEMIAAODAAAAYQgAA2EIAAKhCAADgQAAAGEIAAFBCAAAAwgAA4EEAAGDBAACcwgAAVMIAADTCAAA4wgAAAEEAAJhBAADQwgAALMIAAMDBAAAMwgAA2MEAAABBAACAvwAAQEEAACzCAADowQAAgD8AAIhBAAAgwQAAIMEAAODBAABowgAAwEAAAKZCAACowQAAMMIAAKDBAACAQQAAoEEAANDBAACcwgAAoEIAAEjCAAD4QQAAUMIAAIbCAAAwwQAAsMEAAHDBAADgwQAAGMIAAKDBAADQwQAAAEEgADgTQAlIdVABKo8CEAAagAIAANi9AACSvgAAbD4AAKi9AACgPAAAED0AAIC7AABVvwAAir4AAIA7AABMPgAAQDwAABA9AAAcPgAAJL4AAJK-AAAkvgAAiD0AAIA7AAALPwAAOT8AADw-AABQPQAAqD0AAOg9AAAcvgAAbD4AAKq-AABwPQAA4DwAAIo-AACGPgAA6D0AALK-AAA0PgAANL4AAIY-AAA8vgAAPL4AAEw-AAB8vgAA-L0AAJi9AADKvgAALL4AAKo-AADCPgAAmL0AAKA8AAC6vgAAUD0AADS-AADgPAAAND4AAKC8AACAOwAAfz8AAPi9AAB8PgAAQDwAAAQ-AACgPAAAED0AAOC8IAA4E0AJSHxQASqPAhABGoACAAAMvgAAUL0AADC9AAAxvwAALL4AAEC8AAC4PQAAyD0AAIi9AADoPQAAZL4AAKi9AABUvgAANL4AAOC8AADgvAAA6L0AAE0_AABAPAAA2j4AAHA9AAA0vgAANL4AAIg9AABUvgAAdL4AAIg9AADgvAAA2D0AAFw-AACIPQAAoDwAAIA7AAAUvgAATD4AABA9AABEPgAABL4AALq-AADGPgAAQLwAAOC8AACgvAAAyD0AAFC9AAAMPgAAf78AANi9AAD4vQAAdL4AAOC8AABQvQAABD4AAKi9AADGPgAAmD0AADA9AABEPgAA4DwAAPg9AADIPQAAdD4AADC9AADYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=j_r3dJCSD2k","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8210718368817714446"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2341790759"},"8179578966159366168":{"videoId":"8179578966159366168","docid":"34-2-12-Z2C90E710D7457E18","description":"In this video, we will be learning how to filter our Pandas dataframes using conditionals. This video is sponsored by Brilliant. Go to https://brilliant.org/cms to sign up for free. Be one of...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"24","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python Pandas Tutorial (Part 4): Filtering - Using Conditionals to Filter Rows and Columns","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Lw2rlcxScZY\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChM4MTc5NTc4OTY2MTU5MzY2MTY4WhM4MTc5NTc4OTY2MTU5MzY2MTY4apIXEgEwGAAiRBowAAopaGh3dmR5b2xic2l2Z3JwaGhVQ0NleklnQzk3UHZVdVI0X2diRlVzNWcSAgARKhDCDw8aDz8T5wqCBCQBgAQrKosBEAEaeIH_D__-B_gA-QkP_PsE_wEmAwcC8wQEAPIQ9fMEAf8A_REH-wsBAAAGDv8GBAAAAPj0DPL8_gEAJAEECAQAAAAc9fMJ_QAAAAnw-QT_AQAAB_n__voBAAEb-wPz_wAAAPXzBgL7_wAABg0H-wAAAAAK6AoHAAEAACAALf8Avzs4E0AJSE5QAiqEAhAAGvABfyj6_-bv-gPTLNEA7PLxAawMG_8pKvUAzBAD_-rn2gG37OAB-QIJAMD44v-u_ucB3tXfAP_kBwAQ9vD_-_kKAATx6AE3yhABWP3a__8OAP4CIiv-CP48ACvpGwAm8BH_BwIO_rvP9QTS18YG8PBFAx0NHQEVDSQE6fUX_uAg_wLTE9P93hwDCOYWEf7f6ff_8ArU-hn73v_3DQkEI_3mAgHN8wIRB_UGJA34Bf_yA_z07PMB9ADz_ekjHf4pJBn61icBCO3i8fgGIAEMG-Dt9Qn4AfM5x_IEE_zyCPDxDPLZIAv0xDgK-M_xDPf_HhL2IAAt-ecUOzgTQAlIYVACKs8HEAAawAd6UeO-b1EguoUyQzxcVww9r0mSPDU1HLyZ9YI9SPKmPBpohDsQgG492VVtvDl7iLqXx6q-E8fsO74RnbwtC1Y-sIpcvUEtJr0rYJy9ux7WvE5eRL2m1AW-P0ypugVmqrznWQS96aI8vdhsQDzRHyo-6rAivVDCzLw9DO29c_6cvUt-G7vjQQm9GTigvOj0_ruF6gY-X7izPcYRELwFweM9yTjmvRSMbzvEwXQ9_By8ug6xi7s4Fk-9q_hwvYOyH71aRzU9g8anu8iD4zy3rdK8dozrvJReZTwiSsU8GeOzPQlG7zss9Ze9DVa3PMpv8rsE-aO8pl_ivPgBxLm-30O9uu73PCoqEb1jhIs9L4NWPCDxhrwucLm8BMaKPV9GMboSycY8Kk-FvEJDf7xcHQA-kGaRPDNXgjsVkFa90nYHvatArTsErNU8M6KZPPTzSzxwaGA9zYyjvI3pLjynrRA6uYy7PVpiijzyh9W8pmlrPRj0ubw6ETM9SkqVvNSxkDstuBo9LZm-ujIcQDq1Nm293P3gvDbpV7th3qM8hjzivVlJcbt80Ng70YH-u9pQ1rpO_4M9ApU2PZ7YvzvYdRm9HGpKPDNRJbt8YRI-o-BuPd9NmjuDZfS7hivWPLpVRryz_iI8c3VRvVcHgLyuiQC9ix9-PeyReTqEPwk7FY2FvWh8GTtOEMA96N8pvcoiWLrHGA494eDBPLso2bvxaGM99m5ivcG3Kbo_Nsk8KzkiPRfU2Docisy8JkDoPABH8TpPIx0-lbgOvQ170jjhYuC8OM2MvAZlpbgWzM6806FzPetDbjreO5o9bvMrPePNL7lcVAu9nBXxvdyedTlU0U49jlD9vDeX27lAc3G9JJd_vPIz7rgCNCO8Tat3vSGzXjlm_rw9xT-mupMQ-7ieZ4W7U2JyvUeHrbe9mJy8kG1UvZxUgLnPRD29G0xevTJeOznqHh69yBeOPTnJRziiNdA8CGRlPIsoxDd2w7Y8uu5SPFxKAblqiaU9G8WIPc-v0DcXH7A8S6CHPTgzx7gg7rq9868lvqsLyTgjNvE7O_82PddclriUOYy8j4hOPGFnIDnhNLM83GF4vTj3qrdFymC8G4DNPaYcuDgseq87tZKMvXDxXzixFQQ-xv_4OzLZU7i5U9o9Et9EPQhKrzhs7mg8KSCSvIcYqjd39sU90ZInPnmm8DizMQa7CK-9vRx9prci_-w9NSkFPvN-W7jlQ3A93xpYPPEFnbgAyh89tRxDveD8PDjOGAY9euvyPIe4CTggADgTQAlIbVABKnMQABpgHQYAQtss5AXtHvbU0_AezMb2xhG-C_8Yrv___M4NIffFoD0H_x3nFdedAAAAPwfyAAoADH_w2yEA6DUHscf38-t29xYG5d0n_eHLVFPfBd-k_RRdACfbvBR3CPtbIi0bIAAtUsMROzgTQAlIb1ACKq8GEAwaoAYAAIBBAABgQgAAYMEAAJBBAABAwgAAoEAAAJBBAACGwgAAQMEAAHDBAADAwAAAYMEAAMDAAABowgAAKEIAAFjCAABAQQAAgMEAAIjBAAAgQgAAlEIAACBCAACQQQAAuMEAADBBAABwwQAAisIAAIDBAABIQgAAqEEAAIC_AAAQwQAAJMIAAADAAACIQQAAOEIAAHDBAABQQgAAoMAAAADCAAAMQgAAQEAAAChCAAB8QgAAMEIAANBBAABQwQAA4MAAAEBCAACEwgAAGMIAAHDCAAAgwgAATMIAAHDBAAAAQAAAUMEAAJDCAAAYQgAAcMEAACTCAACoQQAAQMEAAJLCAAAwwQAA2EEAAKhBAAAQQQAA8EEAAKBBAAA4QgAATEIAAGjCAACAQgAAiMEAABjCAABUQgAA4EEAAABBAAD4wQAAAMIAAHBBAAAEwgAASEIAANBBAAAQwQAAIEIAAOhBAAAAAAAAQMIAAChCAABwQgAAyEEAAFjCAABUQgAABMIAAMBAAABsQgAAgMAAACDBAACowQAABMIAAKpCAADQwQAA-MEAADzCAABAwQAAYEEAAEBBAAAkQgAAZEIAAPjBAACwwQAAiMEAAKJCAAA0wgAAQMAAADzCAACoQQAAjkIAAGDBAABgwgAAFMIAAKTCAACmQgAAIEEAANBBAAAAAAAABMIAAFDCAABYQgAA-EEAAADCAACoQQAAYEEAAEBAAACoQQAAyMEAAEDBAAAQwgAAgD8AACBBAADoQgAAMMEAAMhBAADAwAAAEMIAABxCAAAAQgAAcEIAAJhBAABYQgAALEIAAGzCAACgQQAAUMEAAMDAAAB0wgAAAMAAABDBAAAgwQAAQMAAAI7CAAAAQQAARMIAAMzCAACQwQAA4EAAAPDBAAAMQgAA2MEAAFDCAACIwQAAQMAAAKhBAAAMQgAA4MAAADzCAABAwgAAeEIAACDCAAAcwgAAoMIAAFzCAABkQgAAMMIAAEDCAAC4QgAAbMIAAKhBAACowQAAAMMAALDBAABQwQAASMIAAIhBAAA8wgAA4MEAADjCAACIwSAAOBNACUh1UAEqjwIQABqAAgAAuL0AAOC8AAA8PgAAZL4AAAy-AADgPAAAND4AAD2_AACGvgAAED0AAOA8AABMPgAAcL0AAEQ-AABAPAAAXL4AANg9AAAQvQAAML0AAPo-AABLPwAAJD4AANg9AAAMPgAABD4AAEA8AACAOwAAXL4AADA9AACAOwAA6D0AAKA8AAAkPgAALL4AAFQ-AABEvgAALD4AACy-AABUvgAAoDwAAIK-AABMPgAAyL0AAJa-AABwPQAArj4AAJI-AABwvQAAMD0AAMK-AADYPQAA-L0AAFw-AADYPQAA-L0AAEC8AAB_PwAAFL4AABw-AABwPQAAFD4AABQ-AAAQPQAAoDwgADgTQAlIfFABKo8CEAEagAIAABS-AABwPQAAgDsAABe_AADYvQAAQDwAABQ-AAAQPQAAyL0AAHQ-AAAEvgAAoDwAAIi9AAD4vQAA4LwAAEC8AACgvAAAST8AABQ-AAD2PgAAiD0AAMi9AABAPAAAmL0AAEy-AACovQAAQDwAAJg9AACgvAAARD4AAOA8AAAwPQAAEL0AAFS-AADYPQAAgDsAAAQ-AACgvAAAbL4AAHQ-AADIPQAAiL0AAOC8AACYPQAAqD0AACw-AAB_vwAAdL4AAKi9AACgvAAAJD4AADA9AABAPAAAUD0AAKI-AACYPQAAoLwAAHC9AACgPAAAuD0AAPg9AABkPgAAgLsAACy-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Lw2rlcxScZY","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8179578966159366168"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3281458948"},"17838540055524678982":{"videoId":"17838540055524678982","docid":"34-3-16-Z202E949B2DB83208","description":"Take my Full Python Course Here: https://www.analystbuilder.com/course... In this series we will be walking through everything you need to know to get started in Pandas! In this video, we learn...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"25","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Merging DataFrames in Pandas | Python Pandas Tutorials","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=TPivN7tpdwc\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxNzgzODU0MDA1NTUyNDY3ODk4MloUMTc4Mzg1NDAwNTU1MjQ2Nzg5ODJqiBcSATAYACJFGjEACipoaGF2ZHNiYnJwd3FkeWliaGhVQzdjczhxLWdKUmxHd2o0QThPbUNtWGcSAgASKhDCDw8aDz8TsAqCBCQBgAQrKosBEAEaeIH_BAABBPsA-v0PBPoH_QIP_PkBCv7-AOwF_PcFAAAAChYH_gEBAAAVFvcB_gAAAPT7Cgzz_wEADgP3EQMAAAAR-fQB9AAAAAkDCAj-AQAA-gDwDwP_AAAGCQHx_wAAAPIBAwsBAAAA_A4A-QAAAAAW7gcCAAEAACAALZpcxjs4E0AJSE5QAiqEAhAAGvABf_jmA9HvAP739usA8-jjAI7vGv86COYAvBAQAeDz3wDJ5fwB2P0AAN77DgDA4yf_6_DR_yEWAwD10g0AFAocAPzkCABE1PgBJAj4AOkg7_8CLRQAHvwB_yPtFgAgAPAC7QEB_97p1gHb39EFCREdABj7EP0GFPf_AAEN_PMZ-fzy9wQCBBP-BAICBfvx1_cCAgf5BiET4f4IEvsJ-OQBBgHXC_8F7PAEE_kGBwEBCvry7AMG9_0B-9z3C_4XJwcC8gTwCADy_gMMEPX3MOnx_gf9-QrjzPQFD_31BwUFEe7e__v2ER8F99QFAQASEAD_IAAtnWo3OzgTQAlIYVACKs8HEAAawAd6UeO-b1EguoUyQzxT5FW9Ud6HPIviMLzzdw68YhwyPV8Ieb1Ru689ns46vAiiOLwdycW-ZgiRvH2ljT0UlEI-RkUcvXPoALwrYJy9ux7WvE5eRL0VN06-rTTpvGU6T7wmZ7I9szEGO9HTmzwtmFg-hyC9vKESl7whlaK8hkSQvE7etrzwyTs7qtBlvdIjfDwoCw8-YgQjPXg8kjxpGRk-vV87vWUX7ztZ2i69S2_kvN-bjbul4jq9wSoovFepSr3qr_c9MbJROshNAz2bjVq9w3esvLMIRTy7kFg9XCDeO4fYhTw2M8S9VcKTOxqZ9LsT7lq9zo2pvI39m7uGd4S9R1QtPd-Zu7v9z7s9eLmIPasmiLwilK28dEuhPc7Bszw0tVE9Z_8NPcaJ7bsGFts8qcL6PPaTFrw3mSK9U4iRPIZrmrwbnq49X5wzPfVSjLuY2ne8_TX0PJQcyzwJu9E7HLbNPe96RLyJ2zc9UXdUPZuPDDykLI09nRwVvHlskTsY64s9BVklvd5UZjvsj4e7dmKgPDDrzbsDDJY9lVCwvFvkQ7zqr1u73f6mvNrTZTsT46s8nVGOPfyjc7tLkfy9isuxPXztlDmoxPU938OVPRCRO7uuMQM9_SBhPS85yTvOl5091FwzvS_X6LuuiQC9ix9-PeyReTrzcW28lM6wuyk7ojs9a009YLgJvVXCtbnvK4W8P3o7uzjNDjtru4Q9-7N6vDe5Z7tnVVU9fkl0vAAxrrtoz-W8djCHPH6fGrv1fog9M98BvUB8bDkWdgc9kbTAvFVwhzle-Fy9jYK7PKbBWjc5Yr092Qr5O0F-grlq9iO7752nvWJI3LjIfqE9soPKvNhcVbq08Ku7M3V5OvKpjDlpWXK90wY2vS7g6bpQEMY8gA5TvRuBNbk_x0c8H3vCvSHHJLhIxX-8M4yLvVTfhzn5q7a8sCxnvSfyIzkFpH08moSBPbC1qTiiNdA8CGRlPIsoxDftREk9W-z2PON8Zzi7z1Y9eyWaPdbMEziRKoo8zAfEvC-g_jjiz5u9M1D5vUbKDbgor5-8LR6zPRMZpDcvfFC7dSzGO4PnFjhJjFS870qMvXkr1zZTOAe9H2glPR8_LbjFnBa9tJOsvVGCgzhVsYI8nSylvXpHgzeIAiw9Iz4BPVMU5jdmqRA9uWvuPKrSpjZtcwM-PfmfPS7thzdyjL-6M9zAvKjAZrgi_-w9NSkFPvN-W7gTaXY93p9cPW-_c7g5F3O7el_Zufhti7fEQNe8mAY0vKuAvjYgADgTQAlIbVABKnMQABpgJhMAHgwfz8QQDc3a5-_xxt4yyyq1__8Yov8d8q0kGQfcijf5_wz2B9-dAAAAQSYFExkAEn8Xo-k_4SEDzr8KQOx69zgGzwvy7dbKKTnsAR-0zAIyAAfZti07JRFjGDQuIAAtnagPOzgTQAlIb1ACKq8GEAwaoAYAAIhBAAAAwQAAgD8AADTCAAAwQgAAAEAAADRCAADowQAAsMIAAGBBAACuQgAA8EEAAJ7CAABYwgAA-EEAAIBAAAC4wQAAkEEAAMDBAAB8wgAAAEEAACDCAAAAAAAAVEIAAFBCAABsQgAAaMIAAGzCAADiQgAAmEIAAFBBAACoQQAAGMIAANhBAABQwgAAAEIAAKBAAADCQgAAgD8AABBBAABAwAAAAEAAACBBAAB8QgAAgD8AAAjCAABMwgAAEMEAAHxCAABAQAAADMIAABhCAAAAwQAAAMAAAAAAAACGwgAAgMIAADBCAACAvwAAOEIAABBCAAAwwgAAYMEAACjCAAAgQQAAUMIAADBBAACgwgAAkMEAADDCAADgQQAAfEIAABDCAAAcQgAAkMEAAKLCAAAwwQAA4EEAAHhCAAD4wQAAiMEAAMBAAAAMQgAAbMIAAOhBAAAgQQAAoMEAAIJCAAB4QgAAwMAAABjCAABYQgAAsEEAAIBAAADAwQAAWMIAAMBBAAAwQQAAiEEAAAjCAABgwgAAWEIAAIhBAAA0wgAAoMEAAKhBAACoQQAA4EAAAADBAACEQgAAMEEAAEBAAADowQAAQMIAAIRCAACGQgAAkEEAACDBAAAcwgAAssIAAABBAABUwgAAhMIAAMjBAABEQgAAvkIAAABAAAAEwgAAiMEAAJbCAAA8wgAACMIAAEDBAADoQQAAKEIAAIDAAAAsQgAAQEAAAOBAAACWwgAAmEEAAFBBAACAvwAAIEEAAARCAACYwQAAiEEAAAxCAACAvwAA4MEAAPBBAAAAQAAAwMEAAJBBAADQwQAAbMIAADBBAAB0wgAAAAAAAAxCAAAEwgAAdEIAAODAAABgQQAAgL8AACzCAAAMQgAABMIAALhBAABwwgAAAAAAAAxCAABQwQAAgEEAAHBBAAAUQgAAqEEAABTCAABkQgAAMEIAAOBAAADIwQAANMIAABBCAABQQgAAuEEAAFjCAABcQgAAIMEAAHDBAACuwgAAUMEAADDBAACAPwAACMIAAJDBAADYwQAAoMAAALzCAAAAwiAAOBNACUh1UAEqjwIQABqAAgAA6L0AAHy-AAAEPgAAir4AACy-AAA8PgAAHD4AADG_AAAsvgAAML0AAJi9AAAQPQAAmL0AAEw-AAA0vgAATL4AACw-AAAQPQAAuD0AAO4-AABnPwAAyD0AAMg9AADYPQAAuD0AAJi9AADgPAAARL4AAIA7AAD4PQAADD4AAIA7AABcPgAATL4AABC9AABAPAAARD4AAGy-AACKvgAAoDwAALa-AACYPQAAqL0AAHS-AABwvQAAjj4AAEQ-AABwPQAAuL0AAOi9AACoPQAAmL0AAEw-AAAwPQAApr4AAEC8AAB_PwAA4LwAAHQ-AACKPgAAQLwAAAQ-AAAQPQAA2D0gADgTQAlIfFABKo8CEAEagAIAAFy-AAAEPgAABD4AABG_AAAwvQAA6D0AAHA9AABMPgAANL4AAGw-AAA0vgAAML0AAOi9AADovQAAyL0AAOA8AABAvAAAWz8AAHw-AADaPgAABD4AAIA7AADgvAAAmL0AAHy-AACOvgAAmD0AAMg9AAAQvQAADD4AAIg9AACgPAAAED0AAKC8AABEPgAANL4AAHw-AABwvQAAtr4AAHQ-AACgvAAAML0AAKC8AACAuwAA4DwAAHQ-AAB_vwAA-L0AAKA8AABAPAAALD4AAOg9AAC4PQAAuD0AANY-AACYPQAAgDsAAIA7AAA8PgAA-D0AADA9AAAsPgAAiL0AAAS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=TPivN7tpdwc","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17838540055524678982"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1626793243"},"2813130286715331788":{"videoId":"2813130286715331788","docid":"34-3-14-Z36FBC0EB607642B1","description":"This Python Pandas tutorial shows how to combine or merge two columns of a DataFrame into one new column using string addition. This is especially useful for dates where you have separate columns...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"26","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python Pandas - Combine 2 Columns of a DataFrame","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kJkNRbKzs6w\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChMyODEzMTMwMjg2NzE1MzMxNzg4WhMyODEzMTMwMjg2NzE1MzMxNzg4apMXEgEwGAAiRRoxAAoqaGhneWpmaXNtYXNka2ZrY2hoVUM0WHQtRFVBYXBBdGtmYVdXa3Y0T0F3EgIAEioQwg8PGg8_E8oCggQkAYAEKyqLARABGniB-AwE_wL-APb0EAj6B_0CCP8A7_f__wDhAfb_CvwCAPgJBw4BAQAAHwr0_AIAAAD28v0K9_8BAB8A9gwCAAAAG_b0Cf0AAAAGAf0H_wEAAP_7-_8E_wAADfvz-f8AAADr_P_9AgAAAAcQ_fcBAAAADfQS_gABAAAgAC0wmMo7OBNACUhOUAIqhAIQABrwAX_08wKfD_T8Og30AAwE6ACWCSX_NxvkAMohDAHS_-4B2-72AM79DwHl__4A1A0iAP_j4AAA3_cAINvy_-0BDAEH_gAARuUMATYA_QAbGvoAEg4q_wbwFwA74gn-Fwv6__ITFQDs2uf_3fbZABXpJwIa-hH98vz8BP4MI_3mDuUAxf_y_vQHEgoa--b_3eINAA7s5QH9Me3-ABr0ADb3_gT74QMICgD7-QgJAw38CgL-9Av--CTv-ADtDg37Ewr9-_oL_vUDAPwJEfv8DB_26vwy4w8A4cjzBR4m8Qv_7Af12PgF_gQlC_nfAwwIB_4D7SAALXgAKTs4E0AJSGFQAirPBxAAGsAHY0Pvvg_Bp7zTgIM7Ndq1PU1PMzwryCW9qgVbPR1rED0chsW8EtUAPRhmfLwRf9470nKQvv2ufj1cEQ26_b10PpJUS70Dsew8K_66vcz3Qj2bOQS9sTRQvXCVJ73J2Nq85RVeveuIqDySi1a8Cp0XPpObFbwRiq28qv-NvdaDs73Unee8D1hDvT8ZY7xsiea8CzU0PYF8hD0R6fE7RljJPbx-jL1FOzg7wDEaPR5Pi7zQWrY8744cvjtqUb14nz69d0VVPfbJ9ruTrte7t63SvHaM67yUXmU8FL2CPSFRsj3r3q88LPWXvQ1WtzzKb_K7ZhkdvW8ogT133Xi7OpZyvSyncz1IlsK8RG-xPNwDfj2bZ7a80lebvd1IVD0a9C27odxxPVsULDyBaLm7pUuvPQDblj2ZYaO621d5veOfIz2og8a8oFRWPKuaGz1w1ju8S6KoPZaNs7wlXpo7n0cbPYdTlj3S6Kk8LGw8vLqh6T0cORg7C_vJO5cubbt6msC7nRzEPQS4j7ulwyC8LcoRPV8XhL2aQ_M7D93iPHV0HL4YYvq5Cuqlux9AgD3HzFY1YHKoPUc-Djygfwq7MPplPJKruzvdzRW7nDQNPsfegzo4KdQ6xzkAvboatLw_eTO8anM1O695Fb0g9dO7eJGyu09BGT2iROy7kDNIPcjWTr1hnKa68E_pPfym0L0BHb05JlaGPVr5AL08kvi44DxLPXUs5bycWLc7E9BJPRRRXT0SeBI7f06BvCl7pjxXSqW4lEC0PeDNZL3ih2o5P96SOxAIzzzzxNa4s78ivfqQwTzjrR85fPUsPdd3tDzBz3O3avYju--dp71iSNy4In-aPcJTI72f_fK4Kcz7vErfNbyFYNE5EvVCvSIY5714Guo3o3CiPU2NSDu9eKc4rq__POpCrDpzwt23d9A2veYQZ72jfk05na8DvY4IhLu_FiU56h4evcgXjj05yUc49yn9PM0f0zxH7R04Rj86PfTOhz1s_re4eo5IPcrkTz1cU6U4mh-UPaOvAD2wZM43uD6svGwG-L15_yC4Af4EPWZfA7xW1E84PF89vRysJD2SE-Y4J6YmPWnynrxkPFU4Fpf0PLm3jD0LqBw4PLavvRNLRb3-r7w3sRUEPsb_-Dsy2VO4X0ujPbn2Cj3ZVp04MpTuvLr4u702Fya4zj-gPWx4-j3tjMo35NWevHqJ8b1lVTC4Iv_sPTUpBT7zflu4-7mHPRWs8Tx0OyE3PhDRO_8vLb1mhYo3KKQLPckamjvICSE4IAA4E0AJSG1QASpzEAAaYCkLABH3HPn72zD-xNjxCsu95sAOnv__GcT_Cuy7Ewr0y44D6f8WAeq-mgAAAB36BAMeAP5_7fTvOP1OI9bT0yzpaPccEuPmCP7s200T1P3jrBcoLwAw9bRBYB7wcDVKMiAALZ2VEjs4E0AJSG9QAiqvBhAMGqAGAACAQQAAuEEAAMhBAABwwQAAqEEAAJ7CAAAQQgAAcMIAADTCAACgQAAAsEEAAIjBAABswgAAkMEAAGBBAABMwgAA4EAAAEDCAACYwQAAbMIAAIBCAADYwQAAqEEAALBBAACAQgAABEIAALDBAACMwgAAbEIAAEBCAACAwAAASEIAAGzCAADgwAAAOMIAAGBBAAD4wQAAnkIAAJDBAAAAQQAAlEIAAPhBAAAkQgAASEIAAMBBAACIwQAApsIAALjBAAAsQgAAMMIAAFDCAAAAQAAAXMIAAIDBAAD4QQAAisIAAATCAACQQQAAYEEAABxCAACAwAAAkMEAALjBAACOwgAAgMEAAEzCAADAQQAADMIAAIjBAAAUwgAADEIAAJZCAACowQAAMEIAAMDAAADQwQAAqMEAALhBAACAPwAAZMIAAEzCAABYwgAAcEEAABRCAAA4QgAAAEAAAFBBAAAIQgAAUEIAALrCAADAQAAAQEEAACDBAADwwQAAgEEAAGTCAACAQAAAAEEAAIA_AAAIwgAAcMIAAABCAACcQgAArsIAAILCAABAQgAAAAAAAEhCAABQQQAAVEIAAIBBAAAAQAAAiEEAAHTCAAB0QgAAEEEAAFBBAAAQwgAAyMEAAEBAAABgQQAASMIAAGzCAACewgAAfEIAAOBBAABYQgAAcMEAAIDAAACUwgAAMEEAACxCAAAgQQAAsMEAAIBCAAC4QQAAYMEAABBBAACAvwAAvMIAAJBBAAAcwgAAfEIAAJhBAACAPwAAqMEAAIC_AAA8QgAAiEEAAMjBAABwQQAAuEEAANhBAABMwgAAHEIAAMDAAABAwAAAqMIAADRCAABoQgAAWMIAACxCAABUwgAA0MEAAAAAAAAEwgAAQEIAAFBBAAC4wQAA4MEAANjBAAAkQgAARMIAAJhBAABQQQAAQEIAAPhBAABgwQAAMEIAAIJCAAAAwQAAkMEAAIDCAADIwQAAgkIAADzCAACKwgAAmEEAAHDBAADAQAAAisIAACjCAABwQQAA0EEAAIC_AACAPwAAmsIAAIC_AADAwQAAEMIgADgTQAlIdVABKo8CEAAagAIAAMi9AAB0vgAARD4AAAS-AAD4vQAAuL0AAHQ-AAAXvwAAhr4AADA9AABwvQAAcL0AAHA9AAC6PgAAgLsAAGy-AADKPgAA2D0AAJY-AAAPPwAAfz8AAKi9AAC4vQAAPD4AAIA7AAA0vgAAXD4AAES-AAAcPgAAVD4AALg9AABcvgAAZD4AABS-AAAUPgAAuD0AAIg9AAAwvQAAZL4AABC9AADYvQAAnj4AAKC8AAB0vgAAEL0AANg9AADKPgAABL4AABC9AABMvgAAcD0AAEC8AAAPPwAAQLwAAKi9AAAwPQAAaT8AAMi9AAAEPgAAiD0AAKA8AACCPgAAQDwAAIi9IAA4E0AJSHxQASqPAhABGoACAACmvgAAJD4AAOi9AAAXvwAADL4AAEQ-AACgPAAAVD4AAES-AACyPgAAgr4AAIA7AAAsvgAA4DwAACS-AACAOwAA-L0AAEM_AAD4PQAA2j4AADQ-AAAwPQAA4DwAAOC8AACmvgAAVL4AAAw-AAAUPgAAUL0AAIg9AADoPQAA4DwAALi9AACAuwAAED0AAFy-AADePgAAiD0AAM6-AACAOwAABL4AAHA9AACgPAAAoLwAAGQ-AACOPgAAf78AADC9AAC4PQAA2D0AAAw-AADYPQAAPD4AAJ4-AACyPgAA2D0AAFA9AADIPQAAlj4AAPg9AAAUPgAAVD4AAIA7AABUviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=kJkNRbKzs6w","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2813130286715331788"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"332611324"},"3098241893280506215":{"videoId":"3098241893280506215","docid":"34-5-13-Z0CE220778816A37F","description":"This Python Pandas tutorial video teaches you how to select, slice and filter data in a DataFrame, by both rows and columns, using the index or conditionals such as Lambda functions. It explains...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"27","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python Pandas: Select, Slice & Filter Data rows & columns by Index or Conditionals","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DCE6t3vNfvM\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChMzMDk4MjQxODkzMjgwNTA2MjE1WhMzMDk4MjQxODkzMjgwNTA2MjE1aogXEgEwGAAiRRoxAAoqaGhneWpmaXNtYXNka2ZrY2hoVUM0WHQtRFVBYXBBdGtmYVdXa3Y0T0F3EgIAEioQwg8PGg8_E8YLggQkAYAEKyqLARABGniBDvz_BwX6APMCDQEDBP4BHPsG__UCAgDzD_b0AwH_APMLCwUKAAAAIAP6DP0AAAD1-P_-8v4BABIVBQUFAAAAKQD9BvsAAAAA8f39AAEAAPv78fECAAAAFAkD8_8AAAD-8wH6-v7_AAUCCAkAAAAADPQFDgAAAAAgAC1r6sY7OBNACUhOUAIqhAIQABrwAX_6BAOtBNL9Kw3xAA0E5gCQCSj_MDfj_7gVAQHc_QUB4P7eANIh8v_nBuQB0SASAAbH2P_t4_sADdn1AOwBDQEN9_QASuQNAVH8_AE0IAgA__45__IBDAI39hMAD_IP_uUfDQEC0_sA2_XXACL8KwEc-hL98uX2_vIHDAHvEQEF5PPx_uztDQcb--T_zdQIBAPe1wAKHuoACRT7Cjr2_gQN7An9Ggrx-jQg_AIF_Pv-8wf5BR_i5wLaGA_8Jgju-AUNBgHv_fP5Evv8DRni7vUO5gH7CNL5AQQD6hD-zgn30BIB-RIfDwTNBQEACw8e9yAALa6gHzs4E0AJSGFQAirPBxAAGsAH2EX5viisP7uCnOY8Ndq1PU1PMzwryCW9xyKHPX0RI7wVAyS8a5T9OmRkQbup7-E8oUh3vnNWujykNjG9y4AzPubRiL2YYjM8ye5dveJ-9jwY1ki9WGM_vds2jDpEFNO8PE_8vQZXbbtOPAy9qcHUPeqoNDztSqa8PQztvXP-nL1Lfhu70_nPOvYqjTwIYSS8cqa5PWu8bz2bwYS8IAe6PYKRN72Ispy8wDEaPR5Pi7zQWrY8crWvvWJZOr3nbdG80CAqPHd2BTtUO8M6t63SvHaM67yUXmU8IkrFPBnjsz0JRu87yCjPvT9tebxzO2o7s-NQvFAYGT1SCRM8hz2jvZpbIT0AkNO8TtJ8vGXnCD3tSLW8Ka5KvZUgrTwvdni6_lC_PbD_Gj35mLg7z3yjPbgyUj2n0FQ85ww7vR_kqzzQptk6rTpGPdhesDyin4S8S6KoPZaNs7wlXpo7X5WQPZpEuD1Qbls8wdY2vEscrj20PXq8z08svYcMdTzyfAI7RAhePXlycrwgJDC8eYoivIvxiruRjNy52HcqvRzNMb7XNIy6LJEVPERcTz0jNAA8FAibPavnpDzYWPQ7Ry1POkAWATzWlUe7nDQNPsfegzo4KdQ6xzkAvboatLw_eTO8CkeFvX8iJb1HZqK7pBeYu2LqV7vqd4K7WsVxPe8lCL1F8747WWkCPhU4ib1At3A6b4CZPQbTFbxEVYa7BeoDPbZHD70dhM67pSFZPd4gWjxym3w7WIX2u9JXmz2JCve3PL3yPUrIUb1XwY45_ZUfvS6TXD2-WKe4bFpOvahOLDyoqo45TG40PZnIVj3X9q24FJ2LvYl64b3GJ3A5GD-9PamAAL2JMjm5j-HxvcfoKr1nAy45E33-vIgPHL6TJZc3ZhMAPr6oOLy6goy4_vKZPczVaruv1cQ4dOeevczAN72axZW4VAg_vTttkTtB-oM44xaYvNeufz3XUzg47V9ePZ713zyJqFS4nKglPWEoET3NQ-U4wn2ePSMTED1hzHA3ogipPTxQ5z3EjfY489r2vAj5yr1ah3u2Af4EPWZfA7xW1E849AtAvIVFsD05Z-s4uqwYPfHFTT3c0ss44ZaPPOnipT04DLA4lW2GvQqG7zs4u4431EP0PVZgTT2Ui125WyjJPa0-zTwbfbO2MpTuvLr4u702Fya4d_bFPdGSJz55pvA45NWevHqJ8b1lVTC4Iv_sPTUpBT7zflu4xl1zPQ7Y9joUEmC4WDPXPDH3n72Q2Gg4goBrPExdqDy1uBs4IAA4E0AJSG1QASpzEAAaYDEVABn1HwQH8hXv2un6FtTi9N_yuPv_-bEAIx2rCQnZ5bH8-f8WCPznrgAAACch5wwSAABl-AHmI_kH9a-mzxcbfwAcB93sCu773iMk3gvyxeUvQwD8DcgjfvvcJyoAEyAALUWTKjs4E0AJSG9QAiqvBhAMGqAGAAC4QQAA4EAAAKBBAAAQwgAAiEEAAHzCAADQQQAAEMIAAKDBAAAQwQAAFEIAAEBAAAB0wgAARMIAADBBAAA0wgAA8MEAAEzCAABAwAAAgMIAADhCAAC4wQAAcEEAALBBAACOQgAAUEEAAGjCAACswgAAiEIAAJBCAACAwQAA8EEAAGDCAACAPwAASMIAAABAAAAEwgAAeEIAABDCAABAwQAAgEIAADBBAAAkQgAAOEIAACxCAAA0wgAAlMIAAPjBAACYQgAA2MEAAEjCAACoQQAAPMIAAIjBAAAUQgAAPMIAAGDCAAAoQgAAQMEAAGxCAACAQQAAcMEAAFDBAACAwgAAgMEAACjCAABQQgAA-MEAAJDBAAAQwgAAyEEAAJhCAADwwQAAgkIAAGBBAADowQAAYMEAAADBAACgwQAAcMEAAGDBAAB8wgAA2EEAAEhCAAAEQgAAAAAAAIC_AACQQQAAvEIAAKTCAACgwAAAyEEAAIDBAAAQwQAAiMEAAI7CAADAQAAA4EAAAFhCAAAIwgAAaMIAAEhCAABUQgAApMIAAIrCAACIQQAAmMEAAKhBAACAwAAAUEIAACRCAADAQAAAUMEAAITCAACAQgAAQEAAADDBAADIwQAAEMEAAIDAAACQwQAAcMIAABDCAACSwgAAnEIAAFBBAAAwQQAAgD8AAADBAABowgAAQMAAAJhBAADwQQAAYMEAAHRCAABwQQAAuMEAADDBAACwwQAAjMIAAIDAAADYwQAAYEIAAIA_AAAAAAAAyMEAACBBAAAkQgAAYEEAAHDBAAAAwAAA4EEAANBBAAAMwgAAOEIAAIBBAADQQQAAssIAAABCAACiQgAA-MEAAIBCAAC4wQAAPMIAAEBAAAAEwgAASEIAAMBBAACAvwAAiMEAABTCAABoQgAAXMIAADBBAACgQAAAEEIAACBCAABAQAAAIEIAABBCAADIwQAAmMEAAADCAAAwwQAASEIAAKDCAACewgAAgEEAABDBAACAQAAAlMIAAAjCAACAQQAAoEEAACBBAACAQAAAmMIAAABAAABwwgAAGMIgADgTQAlIdVABKo8CEAAagAIAAKg9AADgvAAATD4AAES-AACCvgAA6L0AAEA8AABPvwAAVL4AAMg9AABEvgAAQLwAAFC9AADoPQAAML0AAJi9AAAQPQAAoLwAAKg9AAAlPwAAfz8AAAQ-AAAMPgAA2D0AABw-AABQPQAAJD4AAEy-AACYPQAA4LwAALg9AACIPQAAJD4AAK6-AACKPgAAgLsAADQ-AADIvQAA-L0AABy-AAC6vgAAUL0AABC9AACavgAAuD0AADQ-AADePgAAPL4AAAy-AADKvgAA-D0AAFS-AAAMPgAAPD4AABS-AABAvAAAZT8AAFS-AACYPQAAyD0AAJo-AABkPgAADD4AAKA8IAA4E0AJSHxQASqPAhABGoACAAA0vgAA4DwAAIA7AAAVvwAARL4AALg9AAB8PgAALD4AANi9AAA0PgAAPL4AAKC8AADovQAAJL4AAEC8AAAQPQAAoDwAAEs_AAAEPgAAAz8AAKA8AABAvAAANL4AAKC8AABUvgAAqL0AAIg9AACIPQAA2L0AAOg9AACAuwAAiD0AAIA7AACKvgAAFD4AABC9AAB0PgAA4DwAAKK-AABsPgAAgLsAAHC9AABQvQAAED0AANg9AACYPQAAf78AAJ6-AAAEvgAAcL0AAGQ-AADoPQAAUD0AAEC8AADmPgAAcD0AAKC8AAAQPQAAmD0AACQ-AACCPgAAmj4AAEA8AAAUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=DCE6t3vNfvM","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3098241893280506215"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3995972058"},"1005924626098078530":{"videoId":"1005924626098078530","docid":"34-11-12-ZE9965CA29D2F0B78","description":"In this short video, you will learn 3 simple steps to plot a histogram with Pandas in Python. Blog post explaining the code: http://bit.ly/histogram_pandas Jupyter notebook with the code examples...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"28","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"How to Plot a Histogram with Pandas in Python","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ra2pw0qKWvg\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChMxMDA1OTI0NjI2MDk4MDc4NTMwWhMxMDA1OTI0NjI2MDk4MDc4NTMwapMXEgEwGAAiRRoxAAoqaGhuZXFyZHpvcWpjY3JlYmhoVUNGSGVZMWFPdC1ZNEZMWmVHX0lwSkNBEgIAEioQwg8PGg8_E_QBggQkAYAEKyqLARABGniB9gn-9f8BAPPuD_39AwABD_P6AfYA_wD0Dvb0AwEAAP8LAwAAAQAAEwH9-_sAAADt9wr_8wABAAoR_QwEAAAAGvb1Cf0AAAAL_QQM_wEAAP789_75AQAAEAAI-_8AAADzAQMKAQAAAAQJBAQAAAAAAvQQBgAAAAAgAC1Lo9I7OBNACUhOUAIqhAIQABrwAXj38v7R-vn_t_QFABfqxAK6BR__RQj5AKb6HQHSD7cB2_3aAAkEFADlGPEAgQQqAcz-7gArD_QBIAUy_wv6BAANGQUAT_0IAC8Q5QH_DwD-AiQu_gbkNAAr9f0AOhQIARchFPwB3Ab_vvnKARD-QQE5CfkDIO0TAtjV9gLIIPj-4RHzBenrDwgE3esH_ej1_xYmBf0lTdsB_Pr6CCTdCQIZzAED8AP0Cvg5-f_4F_b-Aez5Bg0NDfXIGvb-L1UR_d0oC_r7x_D8By73-x3P8QUCHPv2_N_yCg_rAQj54fADwuYM9-M5AxEGFQkF9foHBiAALZbMDDs4E0AJSGFQAirPBxAAGsAHt-zYvl13qTyx1MS8ycpvPdKSojzKQxU7ztwIvVVlhDpfDha9vcdJPlStoLya-QQ9-zw2viOxEbysEIA9cXK3PsurqTzoESg9BwnxvXChYbyOzY67WxBFvTb34ztl5Ek73PUSPZELzrygBxC7GxBRPiPue71VtIO8hWB1vRsWXr2Bfjq8L5tKPbdKK73WaCK8Gk_kPTr5Pj3rrxI9dzHtPY8AKb12lhE8Y9uYvNQdVTyDfcU8V1z8vX9OIb1RYKa7L-LWPM7cqD0wx6E8vgq6POUUeLy4uHy8SyyPPVuKdbxzF5u7naJ-PJdBeTrpp268l1PCvKl2vLzN3848l-QwvkRvLD3sgma8GyqbPVidRj3fTC-74CwFvpz5VbxZvce79VIMPaAPYLz8T8Q7MGOqPaGRmTwmaaM8Qr74uitW6LxdL_K7HO7jPa5CrzycTMG8b2HCPK6J4DwDBzQ8WW1ePbORUD2nO3Q8WrM6PSFxNLyxMAY7r6b8PCDE37qYFnU8HFzaPbXu8LxEbI86HDBePb_Xq7wYx5I89vlePbI6aL0APQu8oPOkPF8eFz0ws_i6KegWPsgyUz0q2dq6vjXuO8S5AT2ekEK8Y3XAPX1RDL1aZyI6HUspPWayyTwsfQ28_izWvGFcoLzzvju8CJPivfJjJ7zC-6q6TQq9vDj1IT310GM7n72EvL7kGr0H7wo7zF42vIPuXD3LUqE7DT-ePXnsgjzLJ446nQULvdGe5Dupi7G7uMj9PLbkRz2G77O67q8OPp8Skb1-0JQ5NILNvav0ybyN2Yo569SLvJMKOT3lPJY5ZOuJPfiBdTz1GV647l_5vasJ_byF6BS5VNFOPY5Q_bw3l9u5OAaevW13Cr1R14k5ax7BvcSuor1Z-CI4m0xmPTRTVb1LoQs4K3OJPW0VCb3dKsY4_rBKPMQgFb3psQc3na8DvY4IhLu_FiU5ARXOvUw9hj2U6fs39GN9vbjrgD1k6BW4F755PX9Urj05MdU4Q9OYPctgsTzUf3U3sLSCPWMIID4L5EA5sEKQvUwAmb0hZWO4QZoRPvvOzz2Ueoa5rAmYvUgQtjsEpsE3BBCNPXq9AL0FMIA4UMJMvC_pnjxbPIa4QY53vaIMFT2WzPs3Q1r-PEizCL2dmUO1l5GVPXwSoz06E5k41bl9PIwTH71xczC1xcacPYfxBD0otaa3szEGuwivvb0cfaa3Iv_sPTUpBT7zflu4PCn6u1UqbT3gMo24BEKGvDRQFD0St224zmYavQ_uzryQJD-3IAA4E0AJSG1QASpzEAAaYAoMACjQJvvpGRnl5_XnCsvfLdkGpQb_DNUA-AbpO_fopKojGf_vARbrqgAAACodDjRGAAhq_8kJIess-9q58w4Qf78GIOHh9xbQziou2x_c6QRNEgAT5OwvVgH5UC_zHSAALbhMIzs4E0AJSG9QAiqvBhAMGqAGAABUQgAAAMAAALhBAAAAQQAAeMIAAKBBAADAQQAAgMEAAHDCAACwQQAA0EEAAADBAACQwQAAgEEAAODAAACKwgAA0EEAABTCAACowgAAoMEAAIA_AAAIwgAAgL8AAHxCAACgQAAAVEIAAEzCAAAAwQAAdEIAAKBBAACgQQAAGEIAAFzCAAAQwgAA-MEAACBBAABAwAAAlEIAABhCAACIwQAAMEIAAEBBAABwQQAAyEEAAARCAACQwQAAoMEAAMDBAABcQgAA4MAAAEjCAADgwAAAUEIAAIC_AABkQgAAbEIAAAjCAABAwQAA0EEAAPhBAAAkQgAAYMEAACjCAABwwQAA4MAAALhBAAAAQgAAuEEAAFDBAAAwwgAAcEEAADBCAABwwQAAMMEAACBCAACkwgAA6MEAAJjBAADAQgAAtMIAAKDCAACoQQAAcEEAAIhBAAAQwQAAQEAAAPDBAAAgwQAA4EEAAKDAAACawgAA4MAAABTCAAC8wgAAAEIAAHDCAACYwQAAoEIAAABAAABkwgAAMMEAALhBAADAQgAACMIAAHDBAACYQQAAjMIAAGxCAADAwQAALEIAACBBAAAIwgAAgEAAADTCAABgQgAAqMEAAEBAAAAcwgAAMEEAALDBAAAAQQAAPMIAALjBAACywgAAgEIAAGBBAABAwAAAVMIAAADBAABkwgAAwEEAAKBAAACgQAAAoEEAAKBBAACIQQAA4MAAANDBAABQwQAAksIAALjBAABYwgAA4MAAAAAAAAA8QgAATMIAAMDBAACgQAAAAMAAALjBAADgwAAAAAAAAMjBAAAMwgAATMIAAIDAAACMwgAAwMEAAABBAACgQQAAAEEAAIJCAABAwgAAAMIAAEBBAABgwQAApkIAABTCAAAMQgAA4MAAAPzCAAC4QQAAGEIAAHBBAABgQQAAikIAAGTCAABQQQAABEIAALJCAAAkwgAAjsIAACTCAADYwQAAJEIAAFDCAAAAwQAAkEIAAOBAAAAsQgAAgL8AAAxCAABAwgAAkEEAACDCAADQQQAAUMEAAEjCAAAAwgAAisIgADgTQAlIdVABKo8CEAAagAIAAOA8AACKvgAAXD4AAIA7AACivgAARD4AAII-AABLvwAAqr4AABA9AACIvQAAJD4AAKg9AACGPgAAcL0AABy-AAAMPgAAHD4AAOC8AADCPgAAfz8AADy-AACoPQAAHD4AAMg9AADgvAAA4LwAAIK-AAC4vQAAuL0AABQ-AAA0vgAAuD0AAIa-AAD4PQAAMD0AADw-AAC-vgAAtr4AAJg9AADgPAAAqD0AAIi9AAAQvQAAqL0AAAQ-AACKPgAAMD0AAIi9AACivgAAcL0AAOi9AAC6PgAA4DwAAHS-AAAUPgAAVT8AAPi9AABEPgAA6D0AAEQ-AABEPgAA6D0AADC9IAA4E0AJSHxQASqPAhABGoACAABsvgAAqD0AAIC7AAAnvwAAyL0AAFQ-AABsPgAAmD0AAAy-AACiPgAATL4AAHA9AABwvQAAqD0AAFC9AABAvAAAQDwAADE_AACYPQAA_j4AAKA8AAAwvQAAEL0AADC9AACWvgAAdL4AAOA8AABQvQAAQDwAAAw-AADgPAAAUD0AAIi9AAC4vQAADD4AABC9AACuPgAAoLwAAIK-AACAuwAADL4AAPg9AACIPQAAUD0AAMg9AAC2PgAAf78AAKC8AADgPAAAoDwAAGQ-AAAsPgAAmj4AAJ4-AACIPQAA2D0AADA9AABUvgAAlj4AAJg9AAAsPgAAJD4AAKi9AADovSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=ra2pw0qKWvg","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1005924626098078530"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4015226289"},"4152481358530839772":{"videoId":"4152481358530839772","docid":"34-0-4-ZB01C9B2319380013","description":"Using pandas and python - How to do inner and outer merge, left join and right join, left index and right index, left on and right on merge, concatenation and append, merge dataframes with no...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"29","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"How to do \"Left Join and Right Join\" Dataframes with Pandas Merge and Python","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2uU-EzbEKWw\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChM0MTUyNDgxMzU4NTMwODM5NzcyWhM0MTUyNDgxMzU4NTMwODM5NzcyaocXEgEwGAAiRBowAAopaGhuemJibW53cXJtaGJqaGhVQ3NzZF9rOW9aMEN0Q19qYWZNeFNWT1ESAgARKhDCDw8aDz8TkQOCBCQBgAQrKosBEAEaeIECBQL-_wIA8gEQBPoE_wH79v0G-v39AOv4-_MC_wEACRD6BPwBAAAP__wQBgAAAPj5-w___wAADQL4EAIAAAAO_PwG-wAAABT-AwX-AQAA_vz3_vkBAAAO_v74_wAAAPME9wP6__8BARgB9QAAAAAO9wb7AAEAACAALTMg1zs4E0AJSE5QAiqEAhAAGvABXTEd__ve5wOwCe3_3e0BAL8FHf8-HuEA1e0L_-7x6wHX7PUA9fsVALAQwgGB8v8CxQO6_wkI_wAr_PH_AOwUAPgO7AAu2CcCOPvdAvv7__8BISv-BuYwACy98AL-8vv8Eukn_fvx5wfT2MgG7yo2Agf79gITEA__zgAR_eAHI__kAP0A6fMkAvP7-AcJ9CkEDRHb_ycW2v4KQREALwEECPb6DQb-FQ8LHCoXBeT9AvrV_e3_8Ab-AwMIGwIA_xwD8CIWBfPhAe8R_vr5GuDt9eEy9Poo_PIC_eLp9c0CCADn-gL3xjcK-N_7G-cAGP_7IAAtykQYOzgTQAlIYVACKs8HEAAawAf1Ssm-6JNLvF_7-Dzu0qG8B6gaPSARLjyV0gO-lpinvL-0rDvakB8-pgUzO-etmToEVDi-lqGiuwRIvrw9KXM-lMDmu_VyDj0ZgaK9QLW7PeGkX70qXXW9zQ_SPF8MxDtPy8-96ovKuw4n2TucjBo-rSJyPVoCGr2H--i9qVsnvd0vl7tvJ4Y9-NmtvAXBvTnjKIo9rENEPUYWG7sgB7o9gpE3vYiynLxlscM8qP-sPGnk87zhH7u9AUCEvDm07bxlzPi8QBdNPf_mxTx_FeC9bjsjvfGdmDxDbuu8OSy4PZ3JiDwVFsE89vwbuxhKuzsPdq89igMmu0ZRIrrKqT2-2xa1PbRM-7iD8R09VVHXvGXO7Tvt8QK-AblJPabOSDxiTiu99H3Au8M0Ajz0NOA9OJPAPXcCUDzz6cy8XQxvvapBPbwTRbg9k0b7vHXMubwBKqa8jeQ8vW8_qrw_fRo9vMbTPLhAgjss-ZO9YmBCPA8vo7wRKrI9GiAoO3pQErvU4gI9W422vJiQB7ygPVI9zB8YvUjaMjzYdyq9HM0xvtc0jLq5opk9nUggPrEN5LqLy5w9pBd6vV94SrxAjkE8LETHvLMSTrwp9HA9SFw2vEKcoLp3WcK9Lk5GvO6lOrzAa2E8i11TOgBntbrIG-o8tivZvEJtLDn-YWu958TevE3WqLtzf9U9MPlavaKU97pThiA91i55uz8h-bpE87U9liJvOV7L-TrfAM68YpVcPRhryTmn2XK8sMMaPCVMA7tPIx0-lbgOvQ170jj-t5I8BlwBPdsdLDibOs-9uO5BPC0nCrkbI8M9hlOLPTT7WrjLovC8W0IevjcF4zme8FC7nKkrvdWBxbkofuy9EXNEPew2tzk866K7VSlCvdM4vjhHjY49gUJ9vY4lELlGmtg9sjMAPdYLkDgTCUu9WdqOvO-NJbnsCTy9ciXxvNZigDlcomQ91wZdvO7jIDnL7WK7Tq2IPMDDvLeSWug8i_GrPbob1jdi9cc8tSvfuy35D7fo2AE9EhNUPaqcgraVozu9RZsDvg3aMzdveZO7czA2PbTFkLfK4QO-ENcePJf9Tjc8asy88qVmvfr35bdqShe9_XdOvRkpXrif2JS9usRsvfJSFDiCVUU-dMg3PcnchLn801c9NCE3vX-OMbfDJv23s0OMvU2KDjeb0o-74uSOPWDeRzc_jsY9K94IvocitLjK9HA9IuErPvHLiji4H7C8r4grPSLTlbgsv8a7q_oGPfvQ9rcdkyQ791BHvMFIxDcgADgTQAlIbVABKnMQABpgKAkANe0U1ef979DV1f4IwuwQ2hrY7f_50v8J7sAUEvHOjDPs_w8SH_GoAAAAPzXh-BIAEWdI4ewa0Dcb2tr_R-5_I_ogA_znCcvnJArQBxi-ByozAADx_R4qA-hmLCE3IAAtewolOzgTQAlIb1ACKq8GEAwaoAYAAExCAABgwgAAXEIAAIBBAAAQwQAACEIAADjCAADIwQAARMIAABjCAACoQQAAFMIAAILCAADgwAAAgEAAABDCAADQQQAAFMIAAFzCAACIQQAAAMAAAKDCAADgQAAAjkIAAMhBAAAYQgAAAMAAAFBBAACgQQAAUEEAAKDAAAB4QgAACMIAACBBAACAQQAAIMEAAMBAAACeQgAARMIAAIDBAACAQQAARMIAACxCAABwQgAAJMIAAGTCAABwwgAAIMIAAHRCAABgwQAAQMIAAPhBAACYwQAAQMIAAADAAACwwQAAGMIAAADBAAAAwAAAoEEAAGxCAACAQQAAoMAAAGTCAADQQQAAAAAAAADBAABQwQAAAMAAAOjBAABoQgAAhEIAAGjCAADIQQAA2EEAAADDAACowQAAokIAABBCAADwwQAAqMEAAGBCAAB0QgAAQEEAAKBAAABwwQAAOEIAAIBBAACwwQAABMIAAKDCAACyQgAAUMEAAEDCAADAwQAAAMAAAIA_AABUQgAAPEIAAHDBAABAwAAAwMAAAFRCAAAowgAA4MAAAEhCAADIwQAACEIAAMBAAABgQQAAIEIAAFDCAADgwQAAgEAAAODAAAAAQQAASEIAAKjBAAAgwQAASMIAADjCAABMwgAAhsIAANDBAACMQgAAqEEAAODBAAC4wQAAIMIAAETCAADoQQAAMEEAAAAAAADgQQAAREIAAExCAABIQgAAoMAAAFTCAACiwgAAsMEAAAAAAABIwgAALMIAAMBBAACIQQAASMIAAAxCAABQQQAAmEEAAMDAAACYwQAAAEAAAAzCAAAAAAAAyEEAACjCAAA4wgAAmEEAADhCAACAQQAAIMEAAHTCAABkwgAAGMIAAIDAAACyQgAATEIAAIA_AABgwQAAiMEAADBBAABwwQAAAMIAAKDBAADoQQAAQMIAAGTCAAB4QgAAikIAADzCAABQwQAAAAAAABBBAADAQgAAoMEAALjBAAAMQgAACMIAAODAAAAIwgAA9sIAAIJCAACgQQAAqMEAAEBCAAC4wQAAsEEAAILCAABowiAAOBNACUh1UAEqjwIQABqAAgAA4LwAANK-AACKPgAAfL4AAHS-AACSPgAARD4AAD2_AACovQAA6L0AAAS-AADovQAAoLwAAHQ-AAAUvgAAcD0AAOI-AABAPAAAmD0AAB0_AABzPwAA4LwAAII-AADYPQAAoDwAAJi9AABcPgAA-L0AAAw-AACoPQAAVD4AAPi9AAD4PQAAXL4AACw-AADYPQAALD4AAAy-AAB8vgAAPL4AAFS-AAC4PQAA6D0AADS-AACYvQAAgDsAAGw-AACSvgAAmL0AAHS-AAAMvgAAMD0AAJI-AAAsPgAALL4AAEA8AAB_PwAARL4AAHw-AACgPAAAFL4AALo-AADYPQAAyL0gADgTQAlIfFABKo8CEAEagAIAAHS-AABEvgAAMD0AADm_AADYPQAABD4AAIC7AAD4PQAAnr4AAIC7AAAQvQAAMD0AADC9AAAEvgAAcD0AAKA8AACovQAAXz8AAJY-AAC2PgAA-D0AAJg9AADYPQAAPL4AABy-AABcvgAADD4AAFA9AACoPQAAiD0AAAQ-AABAPAAAML0AANi9AACWPgAARL4AAMg9AAD4vQAA1r4AAAQ-AACAuwAAQLwAAKC8AADYPQAAyL0AAJg9AAB_vwAAXL4AACQ-AACIPQAA4DwAABA9AADovQAAJD4AAN4-AABQPQAA4DwAAMg9AAA0PgAAQLwAAOg9AAAkPgAAUD0AAIK-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=2uU-EzbEKWw","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4152481358530839772"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1776470280"},"14090877751408616933":{"videoId":"14090877751408616933","docid":"34-6-17-Z56FD515CD114D63F","description":"can load your own dataset or use one provided by pandas. in this example, we will use the famous iris dataset. let's start by creating a histogram for one of the numerical columns in the iris...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"30","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"pandas histogram in python","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QbenOJUiKzE\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxNDA5MDg3Nzc1MTQwODYxNjkzM1oUMTQwOTA4Nzc3NTE0MDg2MTY5MzNqrw0SATAYACJFGjEACipoaHRibGxwbGxpeGRkcnBjaGhVQzVFNGFwR0U5V09NOWIwVWF5QWxDMFESAgASKhDCDw8aDz8ToAGCBCQBgAQrKosBEAEaeIH3Bff8_gIA8_kCAPoDAAH1-Pv8-v79APECCPIDAQAA9wj8Af8AAAALC_8A-gAAAO73Cv_zAAEAChD9DAQAAAAZ9vUI_QAAAAr9BAv_AQAA-Pjr_gL_AAAY-wL1_wAAAPMBAwoBAAAABQ35AwAAAAAP-BAMAAAAACAALVog2Ds4E0AJSE5QAipzEAAaYP8MAAbz_iLEHBHc2RTv_NfVJwIF1tL_--YA6wbtFBHzx6wVFgDwAO_3wQAAADIaDCUxAPFT_e4AKf8j7fb36xEjf74V9fsG-fjSABgL5w7w5BE89wAP-t8SVvkNTQn-FSAALYA0Szs4E0AJSG9QAiqvBhAMGqAGAADQQQAAgL8AAABAAAAEwgAAEMEAAPDBAABwQgAAAMEAAKrCAADgQAAAaEIAALTCAAAMwgAASMIAADhCAABgwgAAoMEAAIDBAAAMwgAAIMIAAFzCAACGwgAAAMIAAIhBAACAPwAACMIAAGzCAAAkwgAAJEIAACxCAABswgAA4EAAAM7CAADYQQAAgMIAAFzCAAAwQQAAqEIAAJhBAABkQgAAbEIAADDBAAAoQgAAMEEAANhBAACQwgAAUMEAACjCAAC8QgAAcEEAAFjCAAAwQQAAwEEAAEBAAAA8QgAAcMEAAADDAACoQQAAUMEAAEBBAABQQgAAcMEAALDBAABgwgAAUMEAAGzCAAAIwgAAcMEAADDBAAA4wgAAJEIAAIhCAADAQAAA0EEAAKDAAACqwgAATMIAAOBAAAA0QgAADMIAALjCAABMQgAAAMAAAKBBAACYwQAAiMEAAGBBAAAYQgAAdEIAAOjBAACAQAAAAMAAAJBBAACIwgAAEEEAABzCAACIQQAAMEIAAOBAAAAwwgAANMIAAFBCAAAMQgAAfMIAAFDBAAAwQQAA0MEAAIBBAAAAwQAAAEIAAFRCAAAgQQAAQEEAAKDBAACQQQAASEIAAPjBAAAEwgAAgEEAAIC_AACgwAAAPMIAANjBAABMwgAA-EEAAGRCAAAMwgAAsMEAACzCAADAwQAAsEEAAMhBAACAwQAADEIAACBBAADQwQAAQEAAAOhBAACYwQAAisIAAKBAAACAvwAAAEEAACBBAACYQgAAiMEAACzCAACQwQAAgMAAANDBAABgQQAAQMAAAABBAABIwgAALMIAABTCAABwwQAAYMEAAKDBAAAIQgAAuMEAADBCAAAMwgAAAMEAADBBAABAQQAAOEIAABhCAACQQgAAIMEAAHjCAACcQgAAUMEAAAhCAAAAQAAAFEIAAKhBAACowQAAAEEAAJxCAACgwAAAEMIAADBBAACIwQAAaEIAAIA_AACWwgAAmEIAAPjBAACAQQAAJMIAAGTCAACAwAAAQMAAAOjBAACgQAAAdMIAAJjBAABMwgAAbMIgADgTQAlIdVABKo8CEAAagAIAAFC9AAA8vgAAfD4AAMg9AABkvgAA6D0AACw-AABlvwAAzr4AAMg9AAA0vgAA-D0AAKg9AAB8PgAA4DwAACy-AABwPQAA-D0AADA9AADaPgAAfz8AAK6-AADYPQAAoDwAAIo-AACIvQAAgDsAAJq-AADIvQAAmD0AADw-AAAcvgAAHD4AAHy-AABMPgAAqD0AAMg9AAC6vgAAor4AANg9AABwvQAA6D0AAKC8AAD4vQAAML0AAEw-AACqPgAAuL0AAIq-AACmvgAA6L0AAFS-AACKPgAAZL4AAFy-AAAcPgAAaT8AAKi9AACCPgAAiD0AAJI-AABUPgAAmD0AAHC9IAA4E0AJSHxQASqPAhABGoACAAAsvgAAXD4AAKi9AAAXvwAANL4AADw-AACSPgAAyD0AAKi9AADGPgAANL4AAFA9AABwvQAAMD0AALi9AADgPAAAJL4AADM_AAAQPQAA7j4AADQ-AACoPQAAcL0AAEA8AADWvgAAmr4AAEA8AADoPQAAbL4AAIg9AAD4PQAAyD0AAPi9AACIPQAAqD0AAEy-AAATPwAAQLwAANa-AAAQvQAAHL4AAAw-AADovQAAiD0AAJY-AACuPgAAf78AAJi9AAAMPgAA-L0AADQ-AACWPgAAlj4AAI4-AACGPgAARD4AAEA8AAA0vgAA6j4AAPg9AAAcPgAAsj4AAAy-AABsviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=QbenOJUiKzE","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14090877751408616933"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17906915965363300048":{"videoId":"17906915965363300048","docid":"34-6-4-Z4FA5CDC0DFAFA2B3","description":"Day 1: Python - Python Programming - Features of Python - • Python - Python Programming - Features of ... Day 2: Python Data Type - • Python Data Type | Python Standard Data Ty... Day 3: Python...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"31","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python Pandas Filter & Sort | Python Pandas | Python Pandas Filter | Python Pandas Sort | Pandas","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hgYsBdOkHDY\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxNzkwNjkxNTk2NTM2MzMwMDA0OFoUMTc5MDY5MTU5NjUzNjMzMDAwNDhqhxcSATAYACJEGjAACiloaGdkbXZoenhlaGhpYmpoaFVDLWt0NDlHMnU1WWVSNDJ3TEhvcktLdxICABEqEMIPDxoPPxOCCoIEJAGABCsqiwEQARp4gQED_QL7BQD0AwUB-gP_AfoD_wH5_f0A-gb_9QIE_gD_CgMAAAEAAA0I9P79AAAA-PUGAfr_AAAU-wILAwAAAA39_Ab7AAAAAvgBBgAAAAD_AfT9Av8AAA8D-fP_AAAA8v8IBfv_AAAAAQEDAQAAAAL4BQYAAAAAIAAtd1vjOzgTQAlITlACKoQCEAAa8AFnFuL_Ad35A7v-9QDt8vIBgeH9_z728wDLAg4A1gbhAdvw0P_m_D3-2CT5AKb--AHJ_dr_Jj0JAfwMIP8QBjgABuf1AEzjDQErHAUA3BTj_wQYFv4j7Rn-MdAHACcLAP0Y7vj-5vzbA8r86wAWAx0BKPz9_B0CF_zwIBn66BQPAuPy8P7_IBP6xd4M_v4H9f_9_eUHOQnaAOgXEQIF2vwJGeIQAQXq7_UOCBQF3w_49eDs8AUK4wQA7EEX-BA1FgHz9yQCEv8AABICAwMG4fj86CbtBwjR-AH15fcG6gsA7MsFDvPzKvgQ4Psb5_EMAf4gAC0UBRs7OBNACUhhUAIqzwcQABrAByuE7b43C8U7s2y5uywuzrxxcI48Id6Au_iDRr1WwYO87cT6u6YO8j2V9DC8ZMlnunI2tb7ennE97FmEuv29dD6SVEu9A7HsPFjH0b0MvIk8bAN8vbeyJL4pFcM8RNBivI8yNzrvnDy9-HG0PP8hPT7Oif08ThBQPCGys71NO627qzFXvFY_wLwX-EW9O3mJuzurNT7lKAA-L6x2POYDQj72PU-9RwEBu6Iww70CQec79xBDvNd-p70L_V28d0tyvAl5kz0N1sk8_I5hPLet0rx2jOu8lF5lPB2Eij2W0Sg9HE7PPDvlrL16foc8IolePEXHRDyfz5u9E2a1PDJ9qr33iYg9cXxlu920GT49FtE8A2D6u9nLW70ei467gib4PPmE7Dz2lQc9sZuAu898oz24MlI9p9BUPDqcT71CJ1-8wi8uOrRY6j2hhSQ9gaRluqTcojyZOpk8l6KFu13_KT0MtcE8P3ScvPKH1bymaWs9GPS5vCJlpT0xNj69aOc0PMv19j0anJK8POMxvDHmUzxk_4E9IcKJPL_HKjxdl6u8GTJovDzjljwnvpo8mMqyOqgyMT3_d8Q87kTFuxwhSL2v3IE8SMCNu9C0BD6w4tQ8ft0vO4Us4roCzMI7KMrvug42ED0AqIK9IjM8vMiSrr0Nuu87r_AJvAbHWz1oNpc6XHdcuvBP6T38ptC9AR29OcXaKbxyLX-8Rmf0OjTgxz1RuIM8axvzOVKL97wSY_y7ouFeO5MIwzz0aRo9jDlfO6Gd0z1RgZi9l51RORx6Cz3ixhI8TS8oundf3zsJrWI8wk0DuRMjkD2Ps5-9Cn64N7nj6Dxa25-9jWhGObYdJrt4FF29tdcwupS4E72h6Mu8iXc7t8Gi7Lwhuoa92PKuOQbnHT1gXtu6Q9mqOP4uJz2oRVA72CriOHQhHDyUqY2988AnN7VLAL1uUUa9u0pSOGuX27wgm6Q8Su5xt6vMCjrLqym9CVXCt2JDnDzDHYk9WLChOQUXiz2Bujw9uVYut-ZVYj1TklU9AC4qOB75470b65y9HMKFuIefBD1qPZI9NCKkuEN-vL2bRkm8eEvIN8vrUjx8Yt29TNuKOPz1VD2GFA09fUrOtix5Ib0cD4G992W5N7GvDrxF_7q7WAfvtr5ggT1u_ro82vMkOZxrmLxoFEE9e8-wOHYsYD3T9Jk9Jv1kt9WU5Dy-Nqa986NNuCL_7D01KQU-835buBmnxrzze3Y8XCK_uAoGQb38JI29TLnoNoozED0BgEi9EDQStiAAOBNACUhtUAEqcxAAGmAOCAAI-hL57xgW3e0DA_nK7UAEBtvxAATqABrs4CkR-e-9MBQA8P8MAskAAAAwHfcTCADyRxDnFAnoHuvY2goIEH_O-wwDAvIRzeUkLdom9LkBFeoAEg_cD0gDACsBBiAgAC2mDVo7OBNACUhvUAIqrwYQDBqgBgAAuMEAADBBAACEQgAAAEAAAAxCAACgQAAAZEIAAKBBAADQwQAAgD8AAEBCAABwwgAABMIAADDBAAAAAAAAoEAAAMBAAAAowgAA8MEAAOhBAACgQQAAQMIAAABCAABwQgAAqEEAAGDBAAAEwgAA6MEAAFxCAAAAQQAAcMEAAJRCAAAQwgAAgEAAAADCAACEwgAAiEEAAO5CAAAAAAAAYEEAAFBBAACIwQAAyEEAAOBBAAAswgAAIMIAAKTCAADgQQAAXEIAAHDBAABMwgAAoMEAAEBBAADgwAAA2EIAAABAAAA4wgAAUMEAAJjBAACAQAAAKEIAAFBBAABwwgAAOMIAAHBBAACwwQAA6MEAACDBAABwwQAANMIAADBCAADKQgAAgL8AAIC_AAAgQgAAnsIAANDBAAAAwAAAaEIAAIhBAACOwgAAzkIAALBBAAAgQgAA8MEAAMBAAADQQQAAiEEAAGhCAABAwgAAQMIAAGxCAACIwQAAvMIAAMhBAAAUwgAAgMAAAIRCAACIQgAARMIAAEDBAABsQgAADEIAADDCAAAYwgAAgEAAACRCAABoQgAA8MEAAKRCAAAkQgAAEEEAAJ7CAACQwQAA-EEAAOBBAAAEQgAAAEAAADzCAAAAwAAAoMAAACDCAAAcwgAAgEEAAAhCAAB8QgAAIMEAAOBAAAAgQQAALMIAABzCAACgwAAApMIAAAjCAABEQgAABEIAAARCAADYQQAA2EEAAGTCAAAAwAAAWMIAAIjBAAAwwQAA2EEAAFDCAAAMwgAAmkIAAMBAAABswgAAkEEAAMhBAAAwwQAAIEEAAIjBAADYwQAA4MEAABDBAAAIQgAAIEIAABTCAACgQAAAhMIAAGzCAACQwQAABEIAAIRCAACYQgAAAEEAAJjBAAAQwgAAOEIAABDBAABAwQAAgMEAAEBCAACAQQAAmMEAAOBBAACwQQAACEIAAJDBAABswgAAnkIAAChCAACwQQAAgsIAAFRCAAAAQAAAwEAAADTCAABAwQAA0MEAAKDAAACgQQAA6EEAAIDAAADAQAAAAMAAAADBIAA4E0AJSHVQASqPAhAAGoACAAAUvgAAgr4AAII-AABcvgAA-L0AAKA8AABQPQAAa78AAAy-AACAOwAAND4AAJg9AADoPQAADD4AAOA8AADIvQAAED0AABA9AACAuwAA6j4AAH0_AAAQPQAAmD0AADQ-AACGPgAADL4AAKC8AACevgAALD4AAKi9AAAMPgAAqD0AAOg9AAAMvgAAjj4AABy-AADoPQAATL4AAHS-AAAwPQAAzr4AAJg9AAAkvgAAZL4AABy-AABwPQAA2j4AAJi9AACovQAAbL4AABA9AAAUvgAAbD4AAMg9AACCvgAAQDwAAH8_AAD4vQAAgj4AAIg9AACaPgAAND4AAOA8AAAwPSAAOBNACUh8UAEqjwIQARqAAgAAiL0AAAQ-AAAwvQAAF78AAEy-AAAcPgAAhj4AAEQ-AAC4vQAAXD4AAIa-AACgPAAAHL4AAKA8AAAwvQAAoLwAAGS-AAAzPwAAcD0AAAs_AAA8PgAAuL0AANi9AADgPAAAur4AALq-AAD4PQAAFD4AADC9AACoPQAAqD0AAEA8AADgvAAAUL0AAEA8AADYvQAAlj4AAIi9AACWvgAAjj4AAOC8AADgPAAAgLsAAFA9AAAkPgAAXD4AAH-_AACIvQAALD4AAIi9AADgvAAAVD4AABA9AAAcPgAA0j4AAEw-AABAvAAAgLsAAIY-AAA8PgAAqD0AAJY-AADgvAAAHL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=hgYsBdOkHDY","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17906915965363300048"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3898069959"},"10177135887636997120":{"videoId":"10177135887636997120","docid":"34-11-10-ZC00CD1876E667A6E","description":"This playlist (or related videos) is included in my online book: https://www.myeducator.com/reader/web.... You can purchase a single copy here: https://app.myeducator.com/s/2JzbbMQ5... To get an...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"32","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python: write to sqlite database from pandas dataframe","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YyUknBHcZB8\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMDE3NzEzNTg4NzYzNjk5NzEyMFoUMTAxNzcxMzU4ODc2MzY5OTcxMjBqiBcSATAYACJFGjEACipoaHJpaXRhcnNiZXdmeWdkaGhVQ0F2Ym5vN2duT0hVZ0lmN0s2UXdVVlESAgASKhDCDw8aDz8T0weCBCQBgAQrKosBEAEaeIH8_wgBAAEA9AIMAAME_gEHAADv9___AOMB9_8K_AIA_AL_BP8BAAANBfsDAgAAAPby_Qn3_wEACgUACQQAAAAmAP0G-wAAAAgH_wL-AQAAAfnyAwP_AAAY-wP0_wAAAPwBAwb-_wAA_Q0A-QAAAAAM9QAFAAAAACAALUrE1Ds4E0AJSE5QAiqEAhAAGvABf0X2AMzl3v_oD_4AE-zlAKLpIwBuItcBvQISABHk5AHc1ucA3_tN_oJC1wKP_fYBu_3Q_zBNCwEr8AX_Bu_0ARgO3gFC4xgALPoJAfoBEf_2-DL_F9UjADzy6AALC_4F_t4x_-3ny_60-MIB3dIvAVjwAgT43_4I6w0g_e0l9vrf2OoA-woe_fzMHQAb0BEF4ATZAS5C8P0bXvIAJPASBBDnDPwS9vcIPhwXBt4ODfjL_en_C-b6C-MPLAQ2YRP99gcTAfe3Bf8X2vr0C8ze9-gQ6PgU_u4CI-74ENcOB_zBFwH3CUMOFsIVFvrTD-__IAAtpaz1OjgTQAlIYVACKs8HEAAawAeMnwa_KjYrvXneFbwmp4Y9Hzj8u4Ey-DsMN0U9A5uOvF5C6rxrlP06ZGRBu6nv4Tz8jLu-WlMPvMbqxbs9KXM-lMDmu_VyDj2PU_S8nZnFPPqC8bxFvPW9Z-jEPKy4J7xYFSa9odwxvRUZnbwKnRc-k5sVvBGKrbwJzKm9VMMDvWjDK7ymGgw9m5BWvZqWuzuF6gY-X7izPcYRELxsz8w9QjofvHeBVDtRTN679jnIPCncPLwYfSW-SaGsvAovQbxC0uc8McOQPMgljrxl-1W9m7ySvGlG9bwdhIo9ltEoPRxOzzxET-q912YIPfGYpjywGSW9U4AevGQjEDxs6dG9qValPW0a27wNM3k9YgY0PWVa9rwUmwq9XTVPPfglUTzFIgE9M7nivNNGu7swY6o9oZGZPCZpozzxAee5aUq8PNrKB7ykidc9VLSoPI5irzxWDcI8aMU8PR6JuDu-W-o8ls6XPY82jrkSf_k85bijPVx9DjyoTow9VhEOPbRsdzzPAw4933k4vUsPtztDuaO8CbJUPC-MDzy_xyo8XZervBkyaLx0fso8aiRzPYXEqLv3gxA9x6lOO04ddbwGCqO6QvVlPVDQXLzx2M89yKNIu3IueLoM1k27ceKAPdRb6rvpC2G92c63vGTivbuSdM29J4xBPDvSzzpo9g894oqwvLKUcrvL6JE9szi9vdqlU7tJigO9Ti02POZRNzvxaGM99m5ivcG3KboKo1m9jmnYu8sq8LpBmhG9WTVjvTNIB7k8vfI9SshRvVfBjjnZcEK9MXzEuyQvCbqOCpe9WvERO6nQjTjsFp6749ARPTVf2ble3KU7qWxYvWJE0LmUpzY66WuMvcOxarpAc3G9JJd_vPIz7rgGJEa9w1e1vQjIXTfMLjM9aksCvVBairmCqDs9FMpnPNRcJDiMguA8nNGwvatSTbhWlJy96-uPvZXmxjmLqwg86AECPXE1Tjc_fXo99WQdvOnkaDjaVtM9IxmNPK8LUzcoMxQ9um-QO0jS4LcqjkM94gLQPbsB9ziwQpC9TACZvSFlY7itLxc9W0SUPL8GHblO-zw9xBxpPTWz0jfQYT68PlZVvS14Rrjhlo886eKlPTgMsDjwF1O9Z2tYvNf4Ezc72p09WVFDvXGV07goFp49NheJPKD4Pzg7ZcG6EJJFPbDmnzfQ5qI9b4uIPeaf0beMCFA9AeEiPFpmRrgi_-w9NSkFPvN-W7jsAY489ufHOxus87hI1JW8Ip72vLT4ALjAcmm9-DuvvFC4tLcgADgTQAlIbVABKnMQABpgGxIAH-YT7_QED_b9xfEGxub21TrRCf_P1v8S898D9dnsnSzx_x8sF_qtAAAAMRL_KA8ADl8fzewP3C0Qx9v0K-N_8AIoAvPyGbj2PCO9APPa1P4tACnk0_s_CdomMRs1IAAt5ZkwOzgTQAlIb1ACKq8GEAwaoAYAAIhBAAC4QgAAjkIAALBBAADQQQAAmEIAAERCAACgwAAApsIAAJLCAACYwQAAmMEAANjBAAAAwgAAgEEAACzCAADAQAAA7sIAAARCAAAEwgAAiEEAAGzCAAAswgAAAEEAAAhCAAAwQQAAGMIAAJBBAADoQgAADMIAAMDAAAAQwQAAwsIAAEBCAAAYwgAAmMEAAGBBAAAoQgAAWEIAAGBCAAAwwQAABMIAALjBAACAPwAAiMIAADDBAABAwAAAgMAAAMhBAAAgQQAAqMIAAEDBAACoQQAACMIAAKZCAADAQQAA6MEAABDBAAAAAAAAHEIAAODAAACIwQAAyMEAAMbCAAAAAAAAbMIAAJDBAAAAwAAAEMIAABDBAAA0QgAAIEEAAEDAAABgQQAA2MEAAIhBAAAcwgAAoMAAAJxCAABAwAAAUMEAAMRCAAAMwgAAgkIAAKDBAAAMwgAAUEEAAGBBAABEQgAAgMAAADDBAABEQgAAYMEAAETCAACgQAAANMIAABTCAACAwAAAaEIAAGTCAACwwQAADEIAABhCAACAwQAAcMIAAKBAAACAPwAA6EEAAKDAAABwQgAAsEEAAFDBAADgwAAAlkIAAFBBAAAEQgAAgL8AAEDBAAAAQQAAEMEAAPDBAACOwgAAQEAAAJrCAAAAwQAABEIAANhBAADwwQAAmMEAAODBAABgwQAAWMIAAKBAAAC4wQAAgMEAABxCAACqQgAA4MEAAIC_AACgwQAA0EEAALBBAADgQQAAIMEAAExCAACgQAAAlMIAADxCAAAQQQAAuMEAAGDBAADQQQAAiEEAALjBAADgwQAALMIAABjCAADgwQAAKEIAAEDAAABIQgAAPEIAABjCAAAIwgAA-MEAAEjCAAAAQQAAIEEAAPhBAACAwAAABMIAAHRCAACAwQAAUEEAAGDBAABAQgAAWEIAADDBAACAQAAAjkIAAKbCAADwwQAAgEAAAOjBAACoQQAA4MEAAI7CAACQQQAAQEIAALhBAAB8QgAABMIAAGBBAADoQQAAAAAAAARCAACQwgAAYMEAAHDBAADIQSAAOBNACUh1UAEqjwIQABqAAgAALL4AAAS-AABMPgAAhr4AAAS-AAA8PgAATD4AADG_AACYvQAAmD0AAIa-AAC4vQAA4DwAAEw-AAAcPgAAmr4AAFQ-AADgvAAAEL0AAB8_AABpPwAAgLsAAPi9AABcPgAAFD4AAMg9AAAsPgAAXL4AADQ-AADWPgAAUD0AAKa-AAD-PgAAmD0AAFC9AAAUPgAALD4AACS-AAAcvgAATD4AAMa-AAB8PgAAVD4AABy-AAAkPgAAzj4AADQ-AABAvAAAjr4AAAS-AAAwPQAABL4AANI-AAAwPQAAmL0AALg9AAB_PwAANL4AAMg9AAD-PgAAcD0AACw-AAAsPgAARD4gADgTQAlIfFABKo8CEAEagAIAAJ6-AAAEPgAAuD0AABe_AACAuwAAkj4AADQ-AACKPgAAiL0AACQ-AACyvgAAEL0AAHS-AACAuwAALL4AAKg9AABwPQAATT8AAPg9AAAHPwAA2D0AAAw-AACIvQAAUL0AALK-AABMvgAALD4AAAQ-AACgvAAA2D0AAJg9AABwPQAA4DwAABS-AACIPQAABL4AALY-AABMvgAAor4AAFw-AADovQAAcL0AAOA8AABAPAAA4LwAAJ4-AAB_vwAAdL4AAHC9AACOPgAAED0AAKI-AAAwPQAAgj4AAAc_AAC4PQAAgLsAAKC8AACePgAARD4AANg9AAAEPgAAmD0AAKi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=YyUknBHcZB8","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":2560,"cheight":1440,"cratio":1.77777,"dups":["10177135887636997120"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2158882578"},"2425198842126478862":{"videoId":"2425198842126478862","docid":"34-11-8-Z22C987EF6039DC44","description":"This is an example of how to run a Python script as a Linux service. This should work on any Linux distribution that uses systemd, which these days is almost every distribution. My git repo with...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"33","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Running Python Script as a Linux Service","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hg-YWVz6J-Y\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChMyNDI1MTk4ODQyMTI2NDc4ODYyWhMyNDI1MTk4ODQyMTI2NDc4ODYyaogXEgEwGAAiRRoxAAoqaGhwcW93cG5kaHplc2pzZGhoVUNzR0xleDhEdk5YMDVtSzFWUlUxZzVBEgIAEioQwg8PGg8_E4AOggQkAYAEKyqLARABGniB_BcL_QT8AA39__sEBAEBJ_cCAPMEBADkD_z4CP0BAPn09_v3AAAAEPv0EPkAAADs-P_y9QAAAP_8BBMDAAAAHAL9APcAAAAP-_IM_wEAAP789v75AgAACAMG9_8AAAABBvwH-P8AAQL49fwAAAAACu0C_QABAAAgAC33Y8Q7OBNACUhOUAIqhAIQABrwAW0R7_78zwgDqyDjAN_44QCB-hH_NQfqANjz9P_W8OsBzvfkAPzrGP--EPn_hxLtAcH91f8oCAj_D_8V_x78FwAh_tQAPcQSAUD72ALkF_P_FjAT_yTnNQJK3_oCEfDX_xkAFf7S4McBreDkAxH-RAE07RMCGiAE_usdOQHyLRkE8vrs_90lFf6w1vz-Hw8C_A8T1_9BCtQA7Rwr_QoM5Af62QML8PkP-fYk-gTw8ff24AT_BPQV8QjmDigECigo-PcHEgH88O75ERby9Cfz5PsDGAQIALkIE-fP8wXV-Qv35esMANMr_QTsDQbyIQ_59yAALcb9Bjs4E0AJSGFQAirPBxAAGsAHthMNvxrdQbyE82m97tKhvAeoGj0gES48wsqXPHF2RjwrDSa91xQIPiIGNT1HwqM8dHzEvhyE7zyZ2i29LQlQPtT4YDzmZBg9mGPevCahurt201e9Rbz1vWfoxDysuCe8fxPqvbtjMbwLyjk9w7nmPSCToT3l56u8b4sIvUNHB7oj2Bi94V4ZPXfxo7yRviS8lPYGPqoAqTwTMtS5bM_MPUI6H7x3gVQ7k9STvdUqlTw84Z27yj1zvaT1wbyLS7o8Vd_UO4zWdrx_fT68BbOovUe1Q712Yyu9HYSKPZbRKD0cTs88Y1apveXQtz1AQqC7PsX7vCJYML3TN0Q8VRTPvc5D_Tvo-Kg8Iv0WPla1Kb0jdli74KA9vfWR5Ty4b5o8O2WvPas4GzxYYH6804bjPcx2aj3WdL08egCmPGLgVL3EH0k7vMW4Pa7rPDuoI7a82EURvUlLBT3qtTQ8vlvqPJbOlz2PNo65GxRoveaszzzWXIm8BKJxPdwjBb1BKw084eEHPdlF7LyRcRY8Zc2-PPagqz2rJDI8yF2EPI2Ugj02yCS8C08ePMAA57zfKfC73BHOPfGT9jrK_FM5hR52vdCzGb3IaT68p3bmPVx8gLyCm5w7DSiFPeeQszoX1Dc8FEuAvINo7b1S5Wu6knTNvSeMQTw70s86ls7HPL87g7y_9uU7zwNuPQlrSL1i_DU6JaPUvEXd_zoY3C46CY3APafbqL3frNq5eSEdvVS3abyXzsE6c1ZavUcQeDvauV07lEC0PeDNZL3ih2o5SqFnPekHmjzzGic5wXcXvJUPYb1_7Ik4tfSNPHCY6LxroOI3gIKmPFtQKbx5lZG4G8Q9vNSIj71srSk5S7F-vN16zTzFqXe5vXcvPdd9UT1sSIy4kj6tPHEbzbyxv2Y4pEQcvQ3Ecj1XvLu1JhgOPZMFh721cgW51VOQvEItPL000Ws3YvTgu5maJL29Nqg4Sw3jPOqMlLx23eq3-RIqvIuA1LxaJVg4nPKNPI46vjoPZVG3L2uku3uqeb15UDq3sA-xvbcMuL3-WDi4q6xyPbkbwDv_rNG432yjvfwtCbzNfaq2BEj-vLfTlr0YYy62fVXTvFv9ILzG2hS4JFp3vR1twb0OFho5mXJvPeejMb2AAB64ZTTSPexVH72h9cQ3VyAfPX19iDxqjY22imd6PSZBbjytAxC4bYaAPa1mgrxjWm64Iv_sPTUpBT7zflu4xb-ZvXM4ST1dTuO44S2LvZt_yzrmAAo45cEsPRSljrxsGQq3IAA4E0AJSG1QASpzEAAaYDMNACL8Hc3MJGvdAgsHJr0aAxbjz_7_HMQAJRP1JwDdvMBDK__-_-sKoQAAADIonz3qADN_8838Arfq1uG7xjDcee3PF7oC5hHB03YL5vTfxUEzMgAK3c8QS_0CKjYOISAALdmNEDs4E0AJSG9QAiqvBhAMGqAGAACgwAAAgEIAAPhBAADQwQAAbEIAADxCAACUQgAAcEEAAHTCAABAQQAACEIAAKTCAABAwgAAGMIAALBBAACwwQAAwMAAAPDBAAAswgAAEEEAANBBAAA0wgAAuMEAAGRCAABAQQAA6MEAABzCAAAEQgAAZEIAAEDBAAAMwgAA0MEAAEjCAACwQgAA2EEAAKzCAACEQgAAeEIAAGBBAACGQgAAjkIAAHDBAAAEQgAAFEIAAATCAABwwQAAmEEAAJhBAACQQgAAoMAAALjCAAAMwgAAIEIAADzCAAB0QgAA-EEAAPLCAAD4wQAA8MEAAFDBAACGQgAAOMIAAIA_AAB8wgAAiEEAAIDBAAAQQQAAHMIAACBBAACYwgAAwMAAAExCAADowQAAAEAAABBCAABgwQAABMIAAKBBAAA8QgAAyEEAAJjCAACoQgAAQEEAAGRCAACgwAAAwMAAAFDBAABMQgAAUEIAAIA_AAAAQQAAoEEAAABAAAB0wgAAEMEAAEBBAACgwAAAuMEAACBBAABAQAAAKMIAAJ5CAACGQgAAoMAAABDBAACgQQAAUEEAAHBBAAAgQQAAREIAAABCAACIwQAAqMEAAKBAAADQQQAAQEEAAMhBAACgQAAAuMEAAOhBAACAvwAAusIAADDBAAA8wgAAKEIAAHxCAACowQAAkEEAACTCAABQwQAAAAAAAETCAAAAwAAAKMIAAAzCAABAQQAAgEAAAADBAADAwAAA-MEAAIDAAABgwQAABEIAAABAAACMQgAAAAAAAHzCAACiQgAAAEEAAEDBAADoQQAAAMEAAGBBAACowQAAQMEAABTCAADYQQAARMIAAMDBAAAIQgAAkEEAAKBAAAAAwgAAiEEAABBCAAA8wgAAQMEAAChCAACAQQAAwMAAALjBAABAQgAA4MAAAJjBAAAQwgAAQEIAAOBCAADIwQAA4EAAALhCAABowgAAJMIAACjCAABAwAAAJEIAAEDAAACMwgAAhkIAAAxCAABAQQAAyEEAAILCAAAwQQAA4EEAAATCAAAowgAAMMIAABBCAADowQAAgEAgADgTQAlIdVABKo8CEAAagAIAALi9AAAMvgAA_j4AAEQ-AACAOwAAoDwAAEQ-AABVvwAABL4AABy-AAD4PQAAQLwAAOY-AAAsPgAAuL0AANi9AACyPgAALD4AALg9AADGPgAAfz8AAIA7AACIvQAA7j4AACw-AABAPAAAfD4AALi9AACCvgAAND4AAGw-AAAUvgAAZD4AAKY-AADKPgAALD4AAEA8AADWvgAANL4AAMo-AAAEvgAAZD4AACS-AACYvQAAnr4AAMI-AAD4PQAAED0AAGS-AAAMvgAAzj4AADC9AACePgAAgLsAAGw-AAAwvQAAXz8AAFw-AAAcvgAAjj4AAGw-AAC4PQAAUL0AAEw-IAA4E0AJSHxQASqPAhABGoACAACmvgAA6D0AAFy-AAAjvwAAUL0AACw-AAB0PgAAEL0AADC9AACyPgAAor4AAFC9AADIvQAAiD0AAKA8AACYvQAAXL4AACc_AAAkvgAA0j4AABA9AAA0vgAAUL0AAPg9AABQvQAALL4AAIA7AAAQPQAAQDwAABA9AACgvAAAQDwAAFC9AAC4vQAAUD0AAFy-AADiPgAAcL0AAFS-AAAwPQAA6L0AAJg9AADIPQAA4DwAAFw-AACYvQAAf78AAIg9AACgvAAAyD0AAKg9AAAQvQAARD4AADQ-AAAwPQAA2D0AAIC7AABAvAAA6D0AAEQ-AAB0PgAAjj4AAFA9AAAsviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=hg-YWVz6J-Y","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2425198842126478862"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3802899795"},"10762138478490024630":{"videoId":"10762138478490024630","docid":"34-5-12-Z9C065AB51E53EE38","description":"#coding #python #programming Filtering is when you keep only select rows of a DataFrame that meet a certain condition.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"34","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Filtering in Pandas is easy!","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AdR_gx5Y4wE\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMDc2MjEzODQ3ODQ5MDAyNDYzMFoUMTA3NjIxMzg0Nzg0OTAwMjQ2MzBqrw0SATAYACJFGjEACipoaGhraGpieHZjYnFwbmVkaGhVQzRTVm8wVWUzNlhDZk95YjVMaDF2aVESAgASKhDCDw8aDz8ThgOCBCQBgAQrKosBEAEaeIEGB_kEA_0AAwsLDgML-gIO_fkBCv7-APsF-fwHBf4A_Bf9BwcBAAD9FPrzBAAAAP78C_3z_gEAGQsDDgQAAAAJ5vb7_QAAAAb4-P4MAAEBCf8J-QMAAAATCgkB_wAAAOsCBwMDAP8AAQoO_wAAAAD75Ar-AAAAACAALTGCyjs4E0AJSE5QAipzEAAaYBQFAA0kFALlIBrnvwf09QHyEubx0_QAHeYADd_L9Cz5w8Yy-_8S8BjovQAAACwDAuomANBcEOTqGxs49bjlAg0Of-IU7zEO8gXcr_AbAETXyusMGgAGDNMPRN37KfwMDyAALcNWQDs4E0AJSG9QAiqvBhAMGqAGAAAAwAAA2MEAABBCAAAwwgAAPMIAAERCAABAQgAAcMEAAEjCAABAwAAAcEIAAABBAAC4wQAAGMIAAIhBAACAwQAAMEEAAOjBAAAswgAAgMAAAKxCAAA0wgAAIMEAAOBBAAD4wQAAmEEAAEDAAACAwQAA2MEAAKDAAABwwQAAuEEAADDBAAAkQgAAqEEAADRCAAD4wQAAtEIAAPhBAABwQgAA6MEAAKhBAAA8QgAAVEIAACTCAACYwQAABEIAABDBAABwQQAAgMAAADzCAACQwQAAmMEAAADCAAAMQgAAgMEAAGDCAAB0wgAATEIAAAxCAACYQgAACEIAALBBAAAUwgAAgL8AAGjCAABsQgAAQMEAAAxCAAA8wgAAgkIAALhBAABowgAAlkIAAEBBAAAQwQAAEMIAAIJCAAAoQgAAmEEAAIDBAADQQQAA0MEAALhBAAAMwgAAEMEAAIBBAAAsQgAAMMEAAMBBAABEwgAAUMEAAJDBAAAcwgAAKMIAACDCAAAwwQAAcEEAAARCAABAwQAAAMAAAABAAADAwAAABEIAALjCAAAUQgAAqEEAANhBAACoQQAA6EEAAIA_AAAAwgAALMIAAJhBAAAAQgAA2MEAAHhCAAAYwgAAVEIAANBBAABgQQAASMIAAADBAAAQwgAAikIAAIBAAACAwQAAIEEAAAjCAAC4wQAAwMAAAIDAAACgQAAAsEEAADDBAAAwQgAAAEEAAIC_AACKwgAAqMEAAARCAAAwwQAAwMAAAHBBAACYQQAAgEEAAKDBAACMQgAAxEIAACxCAAAQwQAAVMIAAEjCAACcwgAAwEAAABDCAAAkwgAAsMIAAFxCAAA4QgAAnkIAAMBCAACIQQAAIEEAAJjBAACAwgAAaEIAAIZCAADgQQAAMMEAAEBAAAAoQgAAAMEAANjCAAAwwQAAcMEAAKDBAAAcwgAA6EEAAGxCAABgwgAATEIAAMDBAADIwQAAAAAAAJDCAAAQwQAAkMEAAABBAAAcwgAAqEEAACDCAABMQgAAuEEAAADBAAAAwgAAssIAALZCAABwwQAAmkIgADgTQAlIdVABKo8CEAAagAIAADA9AAAUvgAAHD4AAPi9AACivgAAUD0AAEC8AAAbvwAAfL4AADw-AADYPQAAgLsAAIi9AACWPgAALL4AAES-AACIPQAAcD0AANg9AACiPgAAfz8AAAQ-AADIvQAAND4AAOA8AADovQAAEL0AAJq-AACIPQAAED0AADC9AABAPAAAoDwAAPi9AAA8PgAAZL4AAAw-AABcvgAANL4AAIA7AABUvgAAqL0AAOC8AADovQAAHL4AAEC8AADgvAAAND4AABA9AAAUvgAAij4AAEA8AACSPgAAUD0AADy-AACAuwAAXz8AAEC8AABcPgAAcL0AAHA9AAAEPgAA2D0AAJi9IAA4E0AJSHxQASqPAhABGoACAACovQAAqD0AANi9AAAnvwAA-L0AAKA8AACoPQAABD4AACS-AABsPgAAEL0AAOi9AABwvQAA6L0AAKg9AAC4vQAA2L0AADk_AACgPAAA0j4AAIC7AABAPAAAUD0AABy-AAAkvgAATL4AAKi9AABAPAAADD4AABA9AADgvAAA-D0AAMi9AABUvgAAiD0AAAS-AACSPgAARD4AAGS-AACgPAAAQLwAAJi9AABUvgAAED0AAHA9AACyPgAAf78AACy-AABQPQAAiD0AAMg9AACAuwAARD4AAOg9AAAcPgAA4DwAABA9AADYvQAAXD4AAHA9AABEPgAAhj4AAKA8AABEviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=AdR_gx5Y4wE","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10762138478490024630"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12309169677238325865":{"videoId":"12309169677238325865","docid":"34-3-3-Z7A5ACC15BB034E19","description":"I created a Python script that takes a backup of my firewall configurations, then I scheduled it with crontab. I use it at work and at home and I hope someone finds it helpful. Here's the link...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"35","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Schedule A Python Script with Linux Crontab","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=j-KgGVbyU08\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMjMwOTE2OTY3NzIzODMyNTg2NVoUMTIzMDkxNjk2NzcyMzgzMjU4NjVqkxcSATAYACJFGjEACipoaGpubnNhY2dhcnpldnBkaGhVQ0tROXRha0IyeUZBeFFESlZRdktWSWcSAgASKhDCDw8aDz8TjQKCBCQBgAQrKosBEAEaeIH7EggKAv4A-uvzBP0G_gIU9AcG9wAAAOr4-_IC_wEAAvsF-wQBAAAP-_QP-gAAAPIE_gL5AAAAEPsJBAQAAAAbAv0A9wAAABAA-wb-AQAA9P31BPUCAAEM_w7y_wAAAAL99Ab8_wABAvj1_AAAAAD_9QH-AAAAACAALWiEzDs4E0AJSE5QAiqEAhAAGvABRfDp-wMT8QLDGfYA6_XPAIEAAv8WQ_oA5PEiAc8U2gDa7fYA3OAw_sgXFQDPE_UAFPTn_khFBv_m-QEACw8UABT0DAAQDyAAIfsHAeYYBf8gPxMALvclASj-CwH79eD-HPUD_tv35gC4-u0CFQIbAAPvEAJJDu371SMF_ycQDf4B_QgB3CP2_eH75f4E8gwA-w3ECBsf8f3ZFtwABSAUCe3eDgAx6vcEFfAF_wHuEfr38wj7FA4JA9AW9_4dHAP3-_cOARgK_O7U5Oz0IPXp_Ab-D_7g5vMJEf30CAL2_vvmDBD44T4HAvgC_wYqHAUCIAAtv08kOzgTQAlIYVACKs8HEAAawAcsK82-yDDdOr1IMr10_Ma9d2ClPPTkNT3joLm9HG2LPF4FI7zWcCE-f_lEPUXchz2bHaG-RqGbvMhnqDw5TC89OoQgPftWMD1VOF29BEh-vT6KBL1XsTi-R6V9PKXUCj3F-FW8l1CGvZBDKT1YHy8-7iyQPftGDzxLEAS9cF0xPBuHFT0y4_G7sVfzvMmW_rpTlww-Doa6vE97pTycUl4--hnoPHbmuTwy5Pi9pOrNPOvr7zwWkmK9EV51uz7007wfoSY9np6SvG-TGTwrbRG-JQXYuwGsxLzzPNg9gB-PPfYNTDxucD29QzVqPc6A5TtWHi69Vj1KveXesrs-GW29bzNQPbBjkjwi_RY-VrUpvSN2WLtJ1Xu9n_OJvLUgEDyiduQ8AmvAPYhSVjyvZ349wUIcPEJ5HTzw14m8gX-lvWhGmrzLdaQ9nsASOR3t8rqmajE9M85VPUtCnrpWR249f-h4PasTxrx1F629GRczPNdzLTwPttg9XKNvvbDtiDzSrq09vtmWvWDBBTy46c89mPG7PfgMcjyszRy7xHacPGEQvbzrciq9XOTevQOUK7xGLUg9l7iCO2YUSzxwzQ2--FV5PZTnVjljdcA9fVEMvVpnIjo5Who919yhPYPu_Tu6jIY9tO56vXHc77v3ba283e9QPGluKjxKuTY9zXqMvZNxmDd_3Qq8iKFwvTbqX7v4VC69VlYkPRkLIzoW65o9Eav_vWzXAboEyia9vXdtu03mijrkfWG9oijQPSbLSjkH0Vo9D0wJvbOFgLo_3pI7EAjPPPPE1riO6Yk8J5Twumbi_bk14Sg8NZWavajkRzldgng8RtvnPEddhDqi13q8qBFkvd0ES7nWoks73bwmugLkBDhyTSE9PVY6vJKTBLqSPq08cRvNvLG_Zjg0SAO8qZL3PF1jcLgZp8Y8w7wHvlO_ULktcz89APhxvZyDm7j0I7Q87FwnvTLoSjc3F589B_BWvXkxMznI4mg9bGmUvXNJ9jn-kh48zYSwPLfRlbVxWnA8uvXavfmfCjnl4rm8cWibveWtCDa92IM7yqacPAV5EzdAOWW9_mXXvc5ykzhQqQK-casgvSRC_TiLxlq9OpyvPL2cELkseq87tZKMvXDxXzitp_Y9s-qYvHs7OrlsnZO827WMu_6iDLgWM0K9zDIaPSve5zd7KPY8iQKiPBCDKbfZxgk9MD-BPPAYO7j7u609H1o1PRlhyzh8Yo29IQPZPYE1MLlcKK-93hIqvfwiYzf4-we8pdCDPFDjNzggADgTQAlIbVABKnMQABpgDv4ANfsq8PREZd7k3QEQ0-0C3xPVD_8x2f8AAg87AcyXvSYz_wb0-vCjAAAANxLAGBAAHH_s3AUG1ffuw-z9IxlGBBkZxhXr_NjPfhXU_tW1QQ0ZAAboz89n7-FMRQUiIAAtNfsZOzgTQAlIb1ACKq8GEAwaoAYAAODAAACQwQAAQEAAAEDAAABAQAAAyMEAACxCAABAQAAA6MEAABTCAAAwQgAAoMIAAOjBAADwwQAA2EEAAJDBAAAEwgAAMMIAAADCAACAQAAAuMEAAHTCAABAQAAAaEIAAEBAAABAQAAALMIAAGDBAAAUQgAAYEEAAFDCAABkQgAAcMEAAIjBAAAUwgAALMIAAHDBAADmQgAAwMAAABhCAABUQgAAAMEAAMhBAACAQgAA4MEAAEDCAADQwgAAEMEAAK5CAAAAwQAAaMIAAIDAAABAQAAAgL8AAIBCAADwwQAAhMIAALBBAADAwAAAPEIAAFRCAACgQAAAXMIAAGDCAAAgQQAAaMIAAI7CAACAwQAAMMIAAEjCAAAQQgAAhkIAABDBAACgQAAAsEEAANrCAADwwQAAAMAAANBBAAAwwQAAjsIAAIpCAAAMQgAAmEEAAMBAAABQwQAAukIAAJBBAACGQgAAjMIAACDBAAAcQgAAgD8AAHDCAACAQAAATMIAAIBBAACEQgAAGEIAAPjBAACoQQAAcMEAABxCAAAowgAALMIAAIA_AABgQQAAgD8AAJjBAACAQgAAoEAAAIhBAADowQAAiMIAANhBAABgQgAAyEEAAIDBAAAIwgAAQMEAAODAAACSwgAAyMEAAMDBAABgQgAAFEIAAMDBAAAgwQAAsMEAAAjCAADAwQAABEIAAIDCAACYwQAAiMEAABBCAACAPwAAkEEAAFBCAAB4wgAAwMAAAFzCAABwQQAAsMEAAFhCAABgwQAADMIAAJpCAACgQAAAcMEAABDBAACQQQAAQEEAAMhBAABgwgAA-MEAAGDBAABIwgAAQMEAAJJCAABQwQAAsEEAACTCAABQwgAAQEEAAIhBAACEQgAArEIAAHDBAADYwQAAgMEAAIxCAABQQQAAIEEAAFBCAABwwQAABMIAAMjBAABkQgAAFEIAAADBAAAcwgAAwMEAADxCAACeQgAAsEEAAHjCAABgQgAAAMIAAODBAAAMwgAAksIAAEDAAACgQQAA4EAAAMBBAABAwQAAAMEAANDBAADgQCAAOBNACUh1UAEqjwIQABqAAgAARL4AAMi9AAC6PgAAdD4AAMg9AACAOwAAzj4AADe_AADoPQAAmD0AANg9AAAEvgAA3j4AAIg9AAAMvgAAMD0AAGw-AACYPQAAMD0AAKI-AAB_PwAAuD0AALi9AADSPgAAFD4AAAw-AABMPgAAgLsAAIC7AAAUPgAABD4AABS-AAAkPgAADD4AAMi9AAAEPgAAuD0AALq-AABMvgAAXD4AALK-AADOPgAAyD0AAAS-AAD4vQAAFD4AAFw-AABUvgAAxr4AAI6-AACWPgAADD4AAKY-AACAOwAARD4AANi9AABHPwAAgDsAAIA7AACqPgAA-D0AAMi9AABwvQAAPD4gADgTQAlIfFABKo8CEAEagAIAAIa-AAA0PgAA2L0AACW_AABkvgAAyD0AALo-AACovQAAmD0AABw-AADOvgAAXL4AAIA7AACgPAAAyD0AAJi9AAD4vQAAGT8AAOi9AADGPgAAPD4AABS-AABQvQAAyD0AAIC7AABUvgAAEL0AAOg9AADIvQAAoDwAAEA8AABwPQAA6L0AACS-AABwPQAATL4AAOo-AABAPAAAjr4AAJg9AABAPAAATD4AALg9AAAMPgAAlj4AABy-AAB_vwAAFD4AADA9AACoPQAAPD4AAIA7AACgvAAAXD4AAII-AABEPgAAgLsAAKg9AADgPAAAyD0AAJI-AADOPgAADD4AAI6-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=j-KgGVbyU08","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12309169677238325865"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3148417164"},"3274924830062823712":{"videoId":"3274924830062823712","docid":"34-3-10-ZE6DA60982D20D8ED","description":"Practice your Python Pandas data science skills with problems on StrataScratch! https://stratascratch.com/?via=keith In this video, we go through several real-world examples of using the...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"36","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python Plotting Tutorial w/ Matplotlib & Pandas (Line Graph, Histogram, Pie Chart, Box & Whiskers)","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0P7QnIQDBJY\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChMzMjc0OTI0ODMwMDYyODIzNzEyWhMzMjc0OTI0ODMwMDYyODIzNzEyapIXEgEwGAAiRBowAAopaGh6bWVjdWVweHRicWVsaGhVQ3E2WGtoTzVTWjY2TjA0SWNQYnFOY3cSAgARKhDCDw8aDz8T6hyCBCQBgAQrKosBEAEaeIH0DAbzBfoABPMSBPsJ_AIHB_cA9v__APMP9fMDAf8ACPoJAfoBAAAHAwQE9QAAAPX--wnz_wEAEwgBDfQAAAAc9fQJ_QAAAPID_Aj_AQAABwH59_cCAAERAAn6_wAAAO__DxD_AAAAFP79BgAAAAANBBcA_wAAACAALRyPwTs4E0AJSE5QAiqEAhAAGvABXO7dANbZAP_Z9foABwz2AYHw-_8v9-gAz_D2ANkQ4gDkEd4A8SMY__kiFP_cCxwA3f_0ACUXIQH_2R4ADfMOABf29QAh7AIAIBUEAPD3_P_WBPz_Ggv7ABnsIwQTEAUAAuMDAOLr2wDxGuIC-xIUARQABP8f_fn_6g0FAe8t9f_rDPcE7fsN_eIH9QHzA_UCIAfhAzAl-QP3DvoAEOv__w0ABvr-Au0FGyr1APb_DgP3Cf75-fQDAfjx_v0MKBEB8fMHABHs-AEPCPMHFOj_AQIQAgUF5AYO9wkA__T1CPb_Cwj44xz-A-wTCwb-9P4AIAAtkPpOOzgTQAlIYVACKs8HEAAawAeD4NG-j0gFPd5lhb39HBk8K7qavDszYjt1GSO7N8ZOvAWTUb0-7FU-juXdPD1XBT2yL-G-johzPILA0rr43yo-psAXvLlIC71Yx9G9DLyJPGwDfL3n_iq-Xcv_PEh0KjyPDom9qlNUO8k5MTwgtC4-Ey8qvb2oXTwhlaK8hkSQvE7etrz4oRo8H4XrvbyRebwKAtq8IgXFPEdSdzzr4LA9f3iMvHwVT7wDySC9tjEGPi8TBzwRrAU8VlsYPLwq67zKtJw94kCDvePXuLsumdm8f_h5PBHC4Li82dE7osaOPP33vztm90S9yOvBvDs8X7t4Z4o704gZvQX52bwW89i8Qfm2Pa2nsbpBXvQ8ABEsPWwt5TvIRSW-adGBPZ0Ix7ybQEy95_b3vNzqoDupHp88tU6BvO0PtTsryjs9gbawvNCiUrzVukM87mCkveNX5rvdazc9jJyqPQR-g7xTqb48wauGu-xDh7vY5UU9326JPcYdirw2gRi9WOdWu5ZqMLvPAw4933k4vUsPtzsENLY8is_4vFBW57tcIQw9I_u7PA8wzrvXXKS8lecLPU3IPbyPDKg8BMelvF8yAryTrhS9KJ4uvRBi37vx2M89yKNIu3IueLqFLOK6AszCOyjK77oJmVU9qkeaPPkJELxEPr69a7f9PS0kzbnzcW28lM6wuyk7ojtHuZo9Y1Y5vF4GjDs1bLo9LmGjPHtSyTgLJOg9qwEvvezJ0zlWcZk9vDBjvDAlSjrYQwA9hkDJPWUfNbk8vfI9SshRvVfBjjnyrIm8QrXcvJqpgbgqRWG9alyOPYdkK7jNIPw7_mqEPAs6frrhIIS7HvH1PP_MLrn-9YU9AW0Lve72Hbow2gM9pF4mvQHds7l-Mza9pFCWvS6Do7eG7gi9NW4AvfkrpLhq1fQ7BU6WvaA2Mzgxf2A9xiuaPNgK_TgyT3g8tPTyvGevmbiyJ7a9Pfc5PYaekjhnyQ29fvMMPcwqobif8XE7pdgBPqiuMblk5NE8xQ-EPd6i_rcWcVc7NKSlPe03ArgQma29eEBevSuds7gPVDc98YLoPelBgjc_kg29KxQIPHXHxDjzRVG9Nt5HvZFMvLcpTAq89FUtPcjpOzeKyia9YrzmvcnlcjgkoD09fzMxvne1Abn1w6-5bBvrvLLlgLgC_t88n5SkvG49TDhNNyS9jbvMPazuDjcGv6i85kyUvQrKZLdqTxk-qW6ZPQgCMrcqqo69Jg0_vY2Mfbd9iYK9tN40PUVhPTj5dCs9CdFrPEZ8pDQgADgTQAlIbVABKnMQABpgKgAAJNoZ-v7kMf_ry-UJye7_7SvNYP_y6f_iCyEW8eilkxMN_wbSAfmdAAAAJhsDQiMADH_juRIG6vvxxpYQMAJo9wM6uhYoAwDYWvzs9gzILTAdAAINte9nFxhIdfMMIAAtviEUOzgTQAlIb1ACKq8GEAwaoAYAAIBAAAAswgAAFEIAAJBBAAAgwQAAyEIAAHRCAAAUQgAAgMIAANjBAADgQQAAGMIAAKhBAABAwAAA-MEAAEBCAADYwQAAEEEAACTCAAAsQgAAGEIAAIrCAAAAwAAAQEEAABBBAACQQQAAIMEAAGDBAACAvwAAoEAAAEDAAACIQgAA8EEAAATCAAAkwgAAoMEAAOBAAACuQgAAgEEAAODBAAAgwQAA-MEAAIxCAADYQQAAMMIAAETCAACawgAAQMEAABBBAACuwgAAZMIAAAjCAABkwgAARMIAAAhCAADQQQAAmMIAACRCAAAAQAAApEIAAPRCAACowQAAjsIAAIDBAADQQQAAMMIAAIrCAAAgQQAAoMAAAGzCAACAQAAAAMEAAOjBAADoQQAAoMAAAFDCAAAUwgAADEIAAODAAACwwQAAsMEAAK5CAABQQQAAwMAAAChCAABYQgAACEIAANBBAAAIQgAAAEAAACBBAAC0QgAAcEIAAABAAABAwQAAbMIAAPDBAACAwQAAkkIAANBBAABAwAAAKMIAAMhBAAAAwAAAaMIAAMDAAADgwAAAbEIAABjCAAB0QgAASEIAACDBAAC4wgAAoEEAAMBBAAAgQQAAJEIAAJhBAAAowgAANMIAAIhCAADowQAAuMEAAPBBAACgQAAAIMEAAMDBAADoQQAA8MEAAODAAACowQAAgD8AAKDCAABAQQAAMMEAAABAAAAAQgAAEMIAAADAAAB4wgAAMEEAAABCAABAQQAAUMEAACRCAAB8wgAA0MEAAAxCAACMQgAATEIAACjCAAAAwAAAAEAAANhBAADowQAAYMEAAJjBAAAAwAAAQMAAAAhCAACAQQAADEIAACzCAAB0wgAAgMAAALjBAABMQgAAhkIAAIDBAABMwgAAoMAAAJBCAAAEwgAAJMIAAMhBAAAcwgAACEIAAIBAAAD4QQAAmkIAABTCAAAgwQAAgsIAAOBAAAAsQgAAEEIAAIDBAACAPwAAgkIAAOjBAABQwgAAEEEAAABCAADYQQAAAAAAAOBBAACAQAAABMIAAIA_AABAQCAAOBNACUh1UAEqjwIQABqAAgAALL4AACS-AADoPQAA-D0AAJg9AADgPAAAyj4AAB-_AADIvQAAmD0AADC9AACGPgAAgDsAABA9AAC4vQAADL4AAKI-AADgPAAAoLwAABM_AAB_PwAAEL0AAMi9AAAsPgAAij4AABA9AACYPQAAXL4AAKg9AABwPQAA2D0AAKC8AAAwPQAAnr4AAIg9AAAQPQAAiD0AAHS-AACmvgAAUL0AAHS-AABcPgAAiD0AADC9AADIPQAAUD0AAJ4-AACovQAARL4AAKi9AABsvgAAcL0AADw-AAD4PQAAlr4AAFA9AAA5PwAAZL4AAAw-AADIPQAAHD4AAJY-AAAQPQAAmL0gADgTQAlIfFABKo8CEAEagAIAADy-AAAcPgAAoDwAAD2_AAAsvgAAQDwAAFw-AADIvQAAML0AAI4-AABcvgAALL4AAOi9AADgvAAAML0AAJi9AADovQAAIz8AADA9AADuPgAADD4AAGy-AACIvQAA4LwAAKi9AABEvgAAyL0AADA9AABQPQAAFD4AAEC8AAAwPQAAoDwAAES-AAAwPQAAuL0AAJY-AADIvQAATL4AADw-AACIvQAAiD0AADA9AAAQPQAAcD0AANg9AAB_vwAAuD0AAOA8AADIPQAA-D0AAIi9AAAwPQAAND4AAFA9AADoPQAA4LwAADC9AACIPQAA2D0AAAQ-AADoPQAA6D0AAIC7IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=0P7QnIQDBJY","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3274924830062823712"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"881412775"},"5897512234853138329":{"videoId":"5897512234853138329","docid":"34-1-7-Z06D2B82105C39FC9","description":"In this video, we'll be learning how to use Type Hints in Python to write self-documenting code, catch bugs earlier, and improve IDE completions. We'll start with basic type annotations for...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"37","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python Tutorial: Type Hints - From Basic Annotations to Advanced Generics","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RwH2UzC2rIo\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChM1ODk3NTEyMjM0ODUzMTM4MzI5WhM1ODk3NTEyMjM0ODUzMTM4MzI5aq4NEgEwGAAiRBowAAopaGh3dmR5b2xic2l2Z3JwaGhVQ0NleklnQzk3UHZVdVI0X2diRlVzNWcSAgARKhDCDw8aDz8TmxOCBCQBgAQrKosBEAEaeIHzCQcI_wIA9Q4FAvkE_wET9wH39gEAAOYO_fgH_QEA_wsDAAABAAAQ__wQBgAAAPUBA_zz_wEAFg_2BwMAAAAZAv0A9wAAAAcJAQr-AQAA_PgC_wL_AAAX-_z-AAAAAPgJ_wj8AAAA-gLzDQAAAAAV_wP9AAEAACAALdl91js4E0AJSE5QAipzEAAaYBMDAD79_t7ICw_2Fenj-934FQMGzen_2vIAGxT5CewpzrsGPgAB8vr-vQAAABQS9DjQABlODukUMwgB_hW82QINfxkK7BP7EAa7_hATDQr27xoZNQDmG_z5MMT0LhQnJiAALfE6TDs4E0AJSG9QAiqvBhAMGqAGAABMwgAAmEEAACBBAACIQQAAcEEAACRCAAAQQgAA2EEAAFjCAAAQwQAAoEEAAABAAACgwQAAFMIAAJxCAACUwgAAgD8AAFDBAAAAwgAAgMAAALBBAACowgAAyMEAAMhBAACoQQAAyMEAAEDCAACAQQAAqEEAAABAAACwwgAAcEEAAFTCAADoQQAAYMEAAGDBAAAAQQAAtkIAABDBAABYQgAA2EEAANhBAABkQgAADEIAALjBAADYwQAA4MEAAIDBAAA4QgAAUMEAAJjBAAC4wQAAIMEAACzCAAAAQAAABEIAAIbCAABAwAAABEIAAAhCAAAgQQAAwMAAANjBAADkwgAACEIAANDBAAC4QQAAFEIAAIA_AAA8wgAAmkIAAKpCAAAowgAAeEIAAADCAACAwgAAOMIAAFBBAABAQgAAQMEAAEjCAADQQQAAAAAAACRCAAAAwgAAAMAAALBBAABAQgAAAEAAAITCAAAEQgAAYEIAAJDBAAC2wgAAAMAAACTCAAAgwQAAZEIAACRCAABMwgAAwMEAACBBAAAQQgAA6MEAAKDCAADgQQAAoMEAAIA_AAAsQgAAcEEAADBCAACIwQAAYMIAAABBAAAQQgAAuMEAAJBBAABAwgAAkEEAAKBAAADowQAAuMEAACjCAACEwgAAokIAANBBAACAQAAAAMIAAIDCAAB0wgAAoMEAADBCAACAwgAAuEEAAKjBAADgQAAAcMEAANDBAACuwgAAtMIAAPBBAABAwQAAAEEAAHDBAAD4QQAAUMIAANjBAAAAQgAAqEEAAIBAAACAQAAAoEAAADRCAABIwgAAIMEAAGjCAAAkQgAAfMIAAAjCAACEQgAAAAAAAJxCAAAEwgAAAAAAALjBAABUwgAAHEIAAKBBAAA0QgAAIEEAAGTCAAAwQQAANMIAAMDBAACYwQAAKEIAAFDCAAAkwgAAWEIAACRCAAAEwgAAIMEAAEBAAADQwQAAgEIAAAxCAACYwgAAaEIAANDBAABAwAAAOMIAAJbCAAAgwQAA8EEAACBBAAAIQgAAyMEAAJhBAACOwgAAYEEgADgTQAlIdVABKo8CEAAagAIAAJK-AABMvgAA-D0AAHQ-AAAMPgAAiD0AAHw-AABVvwAAPL4AAHA9AAAQvQAAJD4AAIi9AAAEPgAA4LwAAFS-AAAsPgAAcD0AAHA9AAAZPwAAfz8AAHA9AACYvQAAHD4AANY-AACIPQAAiD0AABy-AABsPgAALD4AACQ-AABwvQAAoDwAAFC9AAAcPgAAND4AABw-AAC4vQAAzr4AAFC9AABUvgAApj4AAHQ-AAAUvgAAcD0AAMY-AACOPgAAQDwAAHA9AABcvgAAmL0AAIA7AAC6PgAAQDwAAOi9AACAuwAAbz8AAAy-AAB0PgAAPD4AAFw-AABMPgAA4DwAAAQ-IAA4E0AJSHxQASqPAhABGoACAAA8vgAALD4AALi9AAARvwAAbL4AAJi9AACGPgAALL4AAKi9AADOPgAAgDsAABC9AABQvQAAEL0AAIA7AAAwvQAABL4AADM_AAAQPQAA2j4AAHA9AACIPQAADL4AAIA7AAB8vgAARL4AABA9AAAkPgAAMD0AAIA7AADoPQAAmD0AAGS-AACIvQAARD4AAIC7AAAHPwAABD4AAMq-AAAUvgAAQLwAAIY-AACCvgAAiD0AAAw-AAA8PgAAf78AAHC9AAA8PgAALL4AALg9AABwPQAAgDsAAGQ-AACWPgAAJD4AAIA7AABAvAAA6D0AAAQ-AAC4PQAAhj4AABw-AABUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=RwH2UzC2rIo","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5897512234853138329"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2742133624125496185":{"videoId":"2742133624125496185","docid":"34-11-3-ZA493F29E7999BBA9","description":"In this tutorial, we learn about cron jobs and how to schedule commands and Python scripts in the terminal via crontab (for Linux and Mac). This allows us to run commands on a repetitive schedule.","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"38","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"How To Schedule Python Scripts As Cron Jobs With Crontab (Mac/Linux) - Python Task Automation","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5bTkiV_Aadc\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChMyNzQyMTMzNjI0MTI1NDk2MTg1WhMyNzQyMTMzNjI0MTI1NDk2MTg1apMXEgEwGAAiRRoxAAoqaGhkaW1hbXl2dHF6cHRjY2hoVUNiWGdOcHAwamVkS1djUWlVTExiRFRBEgIAEioQwg8PGg8_E-oHggQkAYAEKyqLARABGniBBg0RBQL_APv0CAD6Bf4CG_sG__UCAgDq-PvyAv8BAPwD_wX_AQAAD_v1D_oAAAD2Awj8-_8AAA0CCQ8EAAAAEwn3_fYAAAASBgAN_gEAAPT99QT1AgAADP8O8v8AAADyBfYD-v__AQQE_AcAAAAACfUIAwAAAAAgAC0E8c07OBNACUhOUAIqhAIQABrwAV0C7P8G-igD0AUAAOv10QCByA_8Jf_cAO3bFQDH8gQA4O4j_879DwHnECAB1Q0iAMQY1P86LA8ABhEXAADuEgBY998AKyDjASn8FQH9Jvv-GSYC_ywADgFIBuwAEwHzAC4LFAAZ6u4CsecHA_AjFgEa-hH9NhT9_936Hv71JBQD5OYW_d0h9v3t7f8BA-EH__0N5gQXF_cH5xL8BR4PCgTZGRYBGhH5BfwK-Qj0t_EA3vj_BvkvAP_4EBAGBBvuBg4B8ff_F_EI9xL49BUW8vzyPwwE0xTu_hgB9PX68w0ECeIV_QHcE_XWGfkMGfcB9SAALfdyKTs4E0AJSGFQAirPBxAAGsAH6rDqvtrSPLv4lxM9I16ovLSsu7ykHr-7-INGvVbBg7ztxPq7FHoNPo0Oozw6At08dHzEvhyE7zyZ2i29teGQProRNr0aiTA9CLDjPLuWtbwJIVu9Rbz1vWfoxDysuCe8sxVKvYj44rwu1bs8EjFVPrzeZz2eUcS8vr72vand7zwvQbw8phoMPZuQVr2alrs7YapZPoAXzzsQqyQ9-ERoPb3Dbbze2747ADqsvcsU8zxuY728crWvvWJZOr3nbdG84Z-tPJ_a6jx5qM-4U9DtvR8yQL2R1568tfvVPVED_DwZv5k77YEGvrbcVD0dHoS7s-NQvFAYGT1SCRM8TPobvbPprTthzZa7Y4SLPS-DVjwg8Ya83O-Fvd0J9j3Ineu6s743vLcdBbz6t4k7PSZXPXcRpjwjtgA9Qr74uitW6LxdL_K7HO7jPa5CrzycTMG88KCbuy05Uz2u9Fo8_OAcPbnjSD1qu-y72XgwvIXtI7tLnTa8oL66PT1Ze7yaoac8nVAjPezCD75UQZw7NNDGPFaxvT11yTi8-lQfvdlh5zxYpoS8CdBFva3sjLy5kY28Nd6MvAcuqrz6eTY7KHbZvFcIq700iIu7vgpaPdcnyrxFB2o78u8SPGo1wTsZUPM72O6DPI1eDb2glc27xRvZvJoVfrsgr247Y9MKvLirHD0201Y7GdcpvRqMDL0_weo7h4BtPZGUmbw81hk6r3LPOzc_NLxVrb-6aRgfvBQiIL06JqQ69FOHvUf8bTsz2BC6bQPXPbWj2L0Mn685SvFMvBF6bLwRY8E4jqKYvXm3aL0E6b05Ksb5vIg7KL1Wdky3hfgVPPtprbxXerk5kPrGvP_hU7xrJZC5thoNvQ03oDyhs0-6AUb8PPg7DLzZVRy55COzPAcThb0JURO54AMqvU3cqjzUZ5g179GBPTwfxL1-Bhe5bZ3JPKKgL71_o6a5YvTgu5maJL29Nqg4b8uxvTxOMb0F-Hu1QU0Ivd-HpDv2flU4-1H5vIv65rvON064xrpdPPCFKb1iRq83NiHtva5-TL2BWGa43uaNPYFe-LxHiDY4PhJFvaZxOTy1Mwk5VF3ZO2cxyjsuSgI4gGDuvQQPAr0MGcO4rsfzPM00q7wLXo81raf2PbPqmLx7Ozq5SV6nPSvoLLyWgXM317OxPNLA8rq8Kre1hj3tPf3-CbyBLEo3s5dtPDeYuDuM_mS4ChAlPe7Vgj1P_7s4-PzQvRRIZL3Ic0s4VdfGvbuZUbz5mlu3vbQSulmfl73yZjO4IAA4E0AJSG1QASpzEAAaYPUHAAwOGuPeKU7R4On2GMwNKuYjwB7_-Pv_IjMgJSLwjo8iP_8G9ubmnQAAADwexjbzAN5_I-DzIcYL5KvX6iscZ-4CBN8R1-r402XqugvbsRk5JwD_DMztYiXwXjM8JiAALTLZEDs4E0AJSG9QAiqvBhAMGqAGAAAoQgAA6EEAAPBBAAAQwgAAAMAAAHjCAAAQQgAAMEEAAL7CAABQwQAAAAAAAKDBAABcwgAAMMIAAFBBAABgwgAA6MEAAAAAAADYwQAA0EEAABjCAACOwgAAGEIAABhCAABAwQAAgEEAAMBBAABQwgAAcEEAAEBAAADAwQAAskIAAEjCAACwwQAAoMAAAOBAAACQwQAAbEIAAChCAAAYQgAAiEIAALhBAAD4QQAAuEEAAJBBAACgwAAARMIAAOjBAACEQgAAIMEAAGDBAAA8wgAAsMEAAPDBAACeQgAAEEEAAGzCAACgwAAAAAAAABDBAACAQQAAJEIAACTCAABkwgAAkEEAAADCAABIwgAAwEEAAEDAAABAwQAAkEIAANJCAACQwQAAgD8AADBBAADEwgAAhsIAAIxCAADIQQAAisIAAJDCAADIQQAACEIAAABBAADQQQAAmMEAABRCAAC4QQAAJEIAACzCAACQwQAAcEEAALDBAAC4wQAAcEEAAGDCAADAQAAAlkIAAEzCAACAPwAAAEAAAGzCAACgQQAAmsIAAAzCAACAQQAAoEAAAGDBAACAQAAAjEIAAABBAADAwgAAMEEAABjCAABoQgAA8EEAAMDBAAAEQgAA-MEAAIC_AACQQQAA6MEAAADCAABkwgAAyEEAAHBBAABAQAAAQEAAAOBAAADWwgAAUEEAAARCAAAwQQAAQMAAANBBAAB4QgAA0EEAAEBCAADAQAAAlsIAAHBCAAA8wgAAQEEAAPBBAACoQgAAgEAAAEDAAABYQgAAQMAAAAAAAAC4wQAAaMIAAIjBAACIwQAAIMEAANDBAACAwAAAIMEAAABCAADQQQAAXMIAAFhCAABIwgAAcMEAAAzCAACAvwAATEIAAFhCAACIQgAAkMEAAFjCAAB8QgAAAMEAAIjBAACwwQAAiEEAAEDBAAAUwgAAmEEAANhBAAD4wQAALMIAABTCAADgwQAAOEIAAMhBAAAIwgAATEIAAFDBAAAIQgAAbMIAAIDAAADwQQAAMEIAAFTCAACYQQAAdMIAAADBAACowQAAwsIgADgTQAlIdVABKo8CEAAagAIAAFS-AAAEvgAAlj4AALg9AABwPQAA4LwAALo-AAArvwAAoDwAALi9AADoPQAAcL0AANI-AAAQPQAAgLsAABC9AAC2PgAAqD0AADC9AACKPgAAfz8AADw-AACAuwAAuj4AAEA8AADIvQAAij4AAHS-AACIvQAAEL0AACQ-AACgvAAAND4AAFC9AACgPAAAPD4AAGQ-AACSvgAAhr4AAIg9AADWvgAAlj4AAIA7AACoPQAAgLsAALo-AAC6PgAAXL4AADy-AABcvgAAPD4AABA9AABsPgAALD4AAMi9AACYvQAARz8AAFC9AABAPAAApj4AAMg9AAAQPQAAUL0AAIA7IAA4E0AJSHxQASqPAhABGoACAACavgAAuD0AAKg9AAARvwAAcD0AAIg9AABcPgAAoDwAAOA8AACIPQAAkr4AAKi9AAAQPQAAQLwAAAw-AACIvQAAEL0AADE_AAAwPQAAyj4AAMg9AACovQAAoDwAAKA8AAAQvQAABL4AAOg9AADIPQAAiD0AALg9AACAuwAAyD0AALi9AAAEvgAAUD0AAKi9AACePgAAcD0AAGS-AAAEPgAAoDwAAEC8AAAMPgAAyD0AADQ-AAC4vQAAf78AAOA8AACAuwAATD4AAMg9AACgvAAAML0AAOg9AACGPgAABD4AAEA8AACYvQAAQDwAACQ-AAA0PgAA6D0AAHA9AAAUviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=5bTkiV_Aadc","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2742133624125496185"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4238742103"},"13297521790081125104":{"videoId":"13297521790081125104","docid":"34-9-14-Z2AA7765032693ECF","description":"#python #linux #windows #apple...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"39","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Stop Python crashing when you try to open a file ... #shorts #python #linux #windows #apple","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=wXIvqwOOSbc\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMzI5NzUyMTc5MDA4MTEyNTEwNFoUMTMyOTc1MjE3OTAwODExMjUxMDRqrQ0SATAYACJDGjAACiloaGNueGJrbGdvcWhyZHdoaFVDUDdXbVFfVTRHQjNLNTFPZDlRdk0wdxICABEqD8IPDxoPPxM8ggQkAYAEKyqLARABGniBCQUJBv4CAPz1CAD7Bf4CGgABCvUCAgDkAvD3A_wCAA70Awb-AAAABQT-Cv4AAAD4-QwAAv8AAAIIARADAAAAGQL9APcAAAAL-vcB_wEAAP33Afn2AgABA_r9BAAAAAAC_f4J_gAAAPv7AgMAAAAAAvcFBwAAAAAgAC1drtg7OBNACUhOUAIqcxAAGmAQDgANDB8R7hw54e4e5gzfCTf29PXn_ynsAOEXDBQM7svIIhYAEvfw-cEAAAAUNM0U9gD2UBP1-yD06O_g7uwhDn_p-ewYEfUEt-c6_gMa2dxAQBMA_wXz_0YBA0cU1CMgAC2cxko7OBNACUhvUAIqrwYQDBqgBgAAYMEAABhCAADAQAAA4MEAAFRCAADAQQAAZEIAAIA_AADqwgAAUEEAAKhBAACIwQAANMIAAFBBAACaQgAA-MEAACjCAACYwQAAoMIAAIjCAACgQAAANMIAACTCAACqQgAAoEEAAMBAAAAMwgAABMIAAMpCAACqQgAAoMAAAHBBAAAUwgAAmEIAANDBAABAwAAAAEIAAJxCAADYQQAAMEEAAMBAAADYQQAAfEIAAABCAADgwAAAoMAAAFBBAABYwgAAUEIAAEBAAACWwgAAwEEAAODAAABgwQAAUMEAAAxCAAAkwgAAcEEAABzCAACQwQAADEIAALjBAACowQAAuMEAABhCAAAIwgAAHEIAAIDBAACgQAAAgD8AAExCAABsQgAAFMIAAJpCAAAAwAAAkMEAAPjBAAA4QgAAFEIAACDCAACgwgAAgMAAADDBAAAYwgAATEIAAGBCAABMwgAAQMAAAIRCAAAwQgAA6EEAAOBAAAA0QgAAuMEAAEDAAAAEwgAAwEEAAMDAAAAYQgAAcMEAAHjCAACIQgAA2EEAACBBAABMwgAAAEAAAIhBAAA4wgAAcMEAANBBAADQwQAAkMEAAJhBAAAswgAAqEIAAJBCAAAkwgAA4MAAANBBAAAgwQAAHEIAABDCAACwwQAAjsIAAPBBAACOQgAAqEEAAODAAAAgwgAAmMEAAODAAACMwgAAVEIAAEDAAABwQQAAiMEAACDBAAA0wgAAJMIAAFDBAAAkQgAAkEEAAERCAABQQQAAdEIAABhCAAAgwgAAiEEAANhBAAAgQQAAAEIAAMBAAAAAwAAAgMIAAJhBAACqwgAA-MEAAJzCAABwQQAAEEIAALDBAAAQQQAAZMIAAOBBAAAgwQAAHMIAAGDBAACgQAAAmEEAAODBAAAwwgAAZEIAAFBBAABAwQAABEIAAOBAAAAsQgAAXMIAAFhCAAC4QgAAPMIAAFzCAADwwQAAaMIAAERCAAAAQAAASMIAAJZCAABgQQAAiMEAAIDBAAC4QQAA2MEAAKBBAAAEwgAAuMEAAEDBAABgQQAAAMIAAGBBIAA4E0AJSHVQASqPAhAAGoACAABAPAAAnr4AAIo-AABUPgAAcL0AADQ-AABcvgAAZ78AAAy-AACIPQAA4LwAABA9AACgvAAA2j4AAES-AAA0vgAAPD4AAHA9AACIvQAAqj4AAH8_AAA8vgAABD4AAJ4-AABAPAAAEL0AAKI-AADYvQAAnj4AAHC9AAC4PQAAUD0AAOg9AACKPgAA6L0AAHC9AAAUPgAA0r4AAAS-AABMPgAAxr4AADC9AADIvQAAmL0AAFy-AAA0vgAArj4AACy-AADYvQAAFL4AAMY-AACIPQAA4DwAAEC8AACAOwAAiL0AAGU_AACAOwAA2D0AAJI-AAAUPgAADD4AADw-AABQvSAAOBNACUh8UAEqjwIQARqAAgAAcL0AAEA8AABAPAAAGb8AADy-AACAuwAABD4AAMg9AACYPQAAPD4AACy-AACYvQAAHD4AAKC8AAD4PQAA6L0AAAS-AAAvPwAAqD0AAL4-AABQvQAAHL4AAFA9AABQPQAAcL0AAOi9AAA0PgAAcD0AAMg9AAAwPQAA4LwAAKA8AACYvQAA4DwAAIg9AADIvQAAZD4AAEw-AACCvgAALD4AAEA8AAAcPgAAqD0AAKg9AAAcPgAANL4AAH-_AAB0PgAA2D0AAEC8AABwvQAAcL0AAKg9AAAUPgAAfD4AAOg9AADgPAAAiL0AAOi9AAAQPQAAPD4AACQ-AACAOwAAPL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=wXIvqwOOSbc","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13297521790081125104"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2228646437506862105":{"videoId":"2228646437506862105","docid":"34-6-5-Z31685E2A018814D0","description":"Install Python (3.9 or 3.X or 2.X) from source code on Linux (Centos6/7/8 or Rhel6/7/8) #DIT Evolution #python #linux What is python , programming and programming language types ? Ans:- Python is...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"40","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Install Python (3.X or 2.X) from source code on Linux (Centos6/7/8 or Rhel6/7/8)","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-nejVRZ8wXM\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChMyMjI4NjQ2NDM3NTA2ODYyMTA1WhMyMjI4NjQ2NDM3NTA2ODYyMTA1aogXEgEwGAAiRRoxAAoqaGhna2d3d2RibXB2a3RsY2hoVUNHY2pieFpXekw0S2dNdGN5REJFX0pnEgIAEioQwg8PGg8_E-8CggQkAYAEKyqLARABGniB9wwH_P4DAAD7BQn4CPwCE_UHBvcAAADc9Pf2B_kDAP34Dv_4AAAABgP8CgkAAAAABAr_-_4BAAr8CAj4AAAADvz8BvsAAAAL-vcB_wEAAP789_75AQAABPv-9v8AAAAC_f4J_gAAAAcR8PwBAAAA_P0D_AAAAAAgAC3EQtg7OBNACUhOUAIqhAIQABrwAVcD2f4MFw0E0AUAAOv10QCByA_8J_j7AeDl_QC99fcA8PbqAMDvG__KFxUA5ycGAAX48QBaKP4A_tb_AAEGJQAp_PoAHfEEASX87AENAef_9B0J_yDvF_4R2QYCFxfiAAPc9P257eT-3fbaAA0QFAcc7iECNAvoBOkTGAACGA0C2wYEBPUS-wbA8O_-BvwDABf_5_wUKtr_9vfwAfcRCwPd7AkBI9ntAf38GAce9RMA3w76AgX2BgP4EBAGDjEVAQID8AT98_H6EPgD8BML-_L6Dw8J8MkIARsR6_8J4wr8_w4J9uI8BwIABgsBL_v59iAALfdyKTs4E0AJSGFQAirPBxAAGsAHKSDNvp2MAD2KQga9opjcvSGDSzt9kMi7LqmfvQMLu7xT8G-806MZPqg2eD1hCfe6_Iy7vlpTD7zG6sW7iq1APgyNLD1cYEU8eLdSvfynvDs4V4O89aFrvoTTBz10NcO7msuyuSAax709sbM8D5dcPjqDFT2BxUY9kY68vbPacj0qRDY9aIh0vB0hA70pJ7U8O6s1PuUoAD4vrHY8HAt6PnNcl7yEzF-80LflvWi2Zj1NqvA6R1qFPMSNgDzbkQO8cNBePbMl67yGYMs8SXQlvQhcEr3-XHq7FL2CPSFRsj3r3q88wdO6vRFxMz11c7E8nxHXO_m1er32Tp67-aAHvvQamz0vgYA77IbtPYz3gz1yW5E7qBFEvDdtqTvrlY08ipUsvOWfdDw34zS8MGOqPaGRmTwmaaM8eByOu0rqSb1AnkC7TvDNPavIjTxQ94C6Fs4_PZ2PIT0pIoM83CMjPFHTEz0cu9-8kirAvKCnYT2lfVG5z5pkPfZRXL176647YoL6PQjqTz2LYC08DLANPHwxDz0oS5-46DmYPN9tXjyUZUo76q9bu93-prza02U7PeT3PFgFhbycXB88TLpXvVHngLz5Miy8vgpaPdcnyrxFB2o7dnFZurjvLLxnrdM6i6nEPSXJWL1kgQS8OmlrvTQHMj3gEp07EpqePY5MUTzIw047OW6nPFADob0Q2VU7hPW_vIALV7xnS3M7euSqPSNfrrxvSIK57c9qvdX_nrzq-Xu6m5_uuzHI5zyK2JI7lEC0PeDNZL3ih2o5BDaMvD0s1Dy7Y1O3jqSuPBtyYj1s-0-4udJhPS7elL1zT904DwrKvBINN70Me584qppgvQ1Rprsqaka5Z2szvTpySbzMw1y6fAKyPCA0gb1HcgW4vPk3PVpQM707tZ04FkBCPF7aED3ceYe3-YkBvD521729xUS45iqMPLXknL186IM4EFsavelw37g7kB-2neKnOyNJVb1LnoC4-rj2PO6SXTyQz5E5ksyqPCJVBD4FDR83GnEcPTbqHTubMlu4EJmtvXhAXr0rnbO4qBedOyIV6zwHq362NmIcvUKOwr3Ad7s3BEj-vLfTlr0YYy62SilDvck16jxAJla4v_-FPJjd870orbo2tLQuvFQ1RTt-uuQ2QHLCO-I1xD22Q1S4dKHovH2RgD2i0_04SGl7PfO38zwslea3ricfvRADALxz7He3ipZXPRBY-T2NF0A4xb-ZvXM4ST1dTuO4NuUKvSBjab09M_y3goBrPExdqDy1uBs4IAA4E0AJSG1QASpzEAAaYEfxADvSGM_jMCveDvPuP6b9BPnX1uD_INMAHvcbBe_svrJFD_8q-_EgoAAAADAcvQHBABt-LND5Ss_4CeHG1Swmasz7A8jl9yT40H_-wwa1zAYvDwDe7NTqVPPlOBXEFiAALQbcEzs4E0AJSG9QAiqvBhAMGqAGAAAQQgAAoEAAACRCAAAEQgAAwMAAAPBBAADgwAAACEIAAEDCAACAPwAA0EEAANjBAACiwgAAUMIAAK5CAACSwgAAgMEAACzCAAAowgAAQMEAAODBAAA4wgAA4EAAAOBBAACgwAAAEEIAAGTCAACAvwAAAEEAAODAAAAIwgAAMMEAAEjCAACgwAAAuEEAAGBBAAC4QQAAmkIAACBCAAAYQgAA4EEAAMjBAACYQQAAyMEAAADAAACkwgAAcEEAAJDBAAAYQgAAREIAAPDBAACAvwAAoMEAAIBBAAAgQgAAUEIAALLCAACAvwAAAMIAAExCAACAQgAABMIAAHDBAACAwgAAUEIAAEDAAABQQQAAmMEAAGDBAACgwQAAlkIAAPBBAADAwQAAqEEAADRCAACywgAAVMIAAIhBAAA4QgAAQMIAACTCAABEQgAAAEIAAJDBAABgwgAAkMEAAKBBAAAQwQAAEMEAADBBAADYwQAAEEIAAILCAABcwgAAAMIAACDCAAAUwgAAbEIAALBBAAAswgAAgL8AADBBAAAAwQAAZMIAAMjBAAAAAAAACMIAAKhBAAAQwgAACMIAAGBBAAAowgAAAEEAAGBBAACkQgAAoEEAAADCAABcwgAAMMEAAFTCAACYQQAAOMIAAKDBAABEwgAAYEEAAPhBAACIwQAAXMIAAGTCAABcwgAA0MEAAHDBAADIwQAAdEIAABTCAACsQgAAAAAAAOjBAAAgwgAApsIAAIA_AAAQwQAAHMIAAARCAADwQgAAiMEAADDBAACAQAAAAAAAAExCAACYwQAAUEEAADBBAACIwQAAMEEAAADBAABkwgAAPMIAAIhBAAAkQgAAikIAAFxCAAAwQQAAqMEAAMBAAAAAQQAAOEIAADBBAABkQgAAgMEAAHTCAADeQgAA6MEAAOBBAACawgAANEIAAJTCAACEwgAAdEIAAPBBAABgwQAAQMAAAADBAAAEwgAA-EEAAFTCAAAAwgAAuEEAAJjBAABIQgAAuEEAALDBAACAQQAAAMAAABDBAACoQQAASMIAAGDBAABAwAAAnMIgADgTQAlIdVABKo8CEAAagAIAAES-AAAMvgAAtj4AAI4-AABwvQAAbD4AADA9AABTvwAAir4AANi9AACoPQAAcL0AAK4-AADgPAAALL4AAES-AABEPgAADD4AAFw-AAAHPwAAfz8AAKg9AAAwPQAAqj4AAOI-AAA0PgAA-D0AAAy-AABUPgAA4DwAACQ-AAC4PQAA6D0AAPg9AAD4PQAAjj4AAIo-AACevgAAdL4AABy-AAAQPQAAcD0AALi9AABAvAAAFL4AAIY-AADSPgAA6L0AABS-AACmvgAAfD4AAHC9AACqPgAARD4AAKC8AACgPAAAMz8AAKg9AADIPQAAFD4AAAw-AAC4PQAAED0AABA9IAA4E0AJSHxQASqPAhABGoACAACivgAAQLwAANi9AAANvwAAMD0AANg9AAC-PgAAQDwAANg9AACIPQAAPL4AAFw-AACAuwAAqD0AAEQ-AAAQPQAAJL4AACc_AABQvQAA5j4AALg9AABwvQAAmL0AADA9AABEvgAA4LwAAIY-AAAEPgAAoDwAAIi9AACgPAAAcD0AAES-AABUvgAAoDwAAHA9AACqPgAATD4AAJK-AABcvgAAgDsAACQ-AACSPgAAcD0AAOY-AAAcvgAAf78AAIi9AACSPgAAgDsAAIA7AABEPgAAML0AACQ-AACaPgAARD4AAIC7AABkvgAAND4AAGQ-AABsPgAAyD0AAIg9AAA8viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=-nejVRZ8wXM","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2228646437506862105"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3658021530"},"13380767496200438439":{"videoId":"13380767496200438439","docid":"34-4-15-Z34B658137DB1002A","description":"Unix & Linux: Difficulty installing cx_Freeze for Python 3.3 Helpful? Please support me on Patreon: / roelvandepaar With thanks & praise to God, and with thanks to the many people who have made...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"41","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Unix & Linux: Difficulty installing cx_Freeze for Python 3.3","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QD3BBCgFpq4\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMzM4MDc2NzQ5NjIwMDQzODQzOVoUMTMzODA3Njc0OTYyMDA0Mzg0MzlqrQ0SATAYACJDGjAACiloaGJqa2RodG9naGhpZGdoaFVDUEYtb1liMi14TjVGYkNYeTAxNjdHZxICABEqD8IPDxoPPxNGggQkAYAEKyqLARABGniBAg8H_v4CAAD7Bgn3CPwCG_YR_vcCAQDr-PvzAv8BAPPxBwoAAAAABQT-Cv4AAAD7AgQE9f4BAAf_AvUEAAAAEwDzAv8AAAAI-PwK_wEAAPT99gP1AgAACQUEAQAAAAD4Cf8I_AAAAP0B9PEBAAAA__j-CgAAAAAgAC1oV9Y7OBNACUhOUAIqcxAAGmAbAgBP2B3x5TQA8-PXvRP2yUQK4uzh__XQAA0LAAn-6dG7BjUAEcf5BKcAAAAzA6EQ5gAdbNGv7SQTtN_ezOkR-3_eAvn6FA4Dse1hAxEJ199BUPEA-dQW9lL94ho6Aw8gAC2Zsx87OBNACUhvUAIqrwYQDBqgBgAASEIAADBCAADoQQAAcEEAAMDBAADgQQAAgEEAAHBBAABgwgAARMIAAEDBAAAEQgAACEIAAPjBAAC-QgAAIEEAAMBAAAAwwgAAsEEAALjBAADIQQAA-MEAAKDBAAD4QQAAMEEAACBCAADCwgAAUEEAADRCAADgwAAAQEEAAHDBAABwwQAAXEIAAAjCAADAQQAAwEEAAP5CAAAwwQAA0MEAAMDBAAAAQQAAEEIAAOjBAABQwgAACMIAAJhBAAAMwgAAiMEAABDBAABAwgAA4EEAAHDBAADoQQAAoEEAAFBCAAAUwgAAYMEAACxCAABAQgAAAEAAAIzCAABAwgAAisIAALjBAAAoQgAACEIAAIBCAADEwgAAQMAAABxCAACAQgAAQEAAADBCAADwwQAAQMIAAADBAABgwQAAwEEAAIC_AAAQwgAAiEIAAPjBAADAQQAAgMIAAJBBAAAUQgAAUMEAAMjBAACIwQAA2MEAAKhBAAAwwQAAlMIAAABBAAAswgAAEMEAAADBAACAQAAAEMEAAABAAAAAQQAAYEIAAFTCAAAgwQAA8MEAAFDCAACoQgAALMIAACDBAAAgQQAAJMIAAEDAAABQwQAAyEEAAMDAAADQwQAA9MIAAAhCAAC4wQAANMIAAAjCAABAQQAAVMIAAGDBAACAwAAAQMAAAHjCAADowQAAPMIAABhCAADYQQAABMIAANxCAAAYwgAATEIAAEhCAAAwwQAAjsIAANjCAABwQQAAEEIAAOjBAACgQQAA-EEAAKBBAAAMwgAAQEEAAIC_AACAPwAAgD8AABBBAACYwQAA8MEAAADCAACoQQAAAMAAAGzCAAAowgAAAEAAAIDAAAAAwQAAYMEAAODAAACgwAAAwEEAAJBBAAAQQQAAYMEAAABBAADGwgAAJEIAAIhBAAAAAAAALMIAAAxCAADAwgAA0MEAAHhCAAAwQgAAPMIAAEDAAACgwAAA2MEAAHRCAAAAAAAAcMIAAJBBAACwwQAAUEIAALhBAACAPwAAUEEAAIBAAAAAAAAA6kIAALDBAACYwQAAOMIAAJDBIAA4E0AJSHVQASqPAhAAGoACAAAwvQAA0r4AAII-AACuPgAAqj4AALi9AABAvAAAf78AAHC9AAA8vgAAED0AAHA9AACSPgAAkj4AAGS-AAAMvgAAsj4AACw-AABkvgAAqj4AAGs_AAAcPgAABL4AAPI-AAAVPwAAED0AAHw-AADWvgAAoDwAAFC9AAAUPgAAQDwAADA9AAD6PgAAfL4AAKC8AAD4PQAALb8AAOK-AADYPQAAfL4AANo-AAAkvgAADD4AADS-AACAOwAA2D0AANg9AADYvQAA4DwAAJ4-AADYvQAAMD0AALg9AAAcvgAAqL0AAG0_AAAwPQAABL4AAB8_AAA8PgAAnj4AAOC8AADYvSAAOBNACUh8UAEqjwIQARqAAgAATL4AAJo-AAC4vQAATb8AAPa-AABAvAAAxj4AAHC9AACCPgAALD4AAGy-AABkvgAAgLsAAIg9AABwPQAAmL0AAJK-AAAPPwAARD4AAOI-AACiPgAAkr4AAJg9AACoPQAAlr4AAEy-AADoPQAALD4AALg9AACAOwAAgLsAADC9AAD4vQAAfL4AANi9AAC4vQAAmj4AAFS-AACCvgAAfD4AACS-AADCPgAAfD4AADQ-AACWPgAAHD4AAH-_AAAsPgAAhj4AAAQ-AAAMvgAAUD0AAKi9AADCPgAAxj4AAII-AABAvAAAoDwAADA9AACIvQAAkj4AAFw-AAAsPgAAVL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=QD3BBCgFpq4","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13380767496200438439"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"996738562123215522":{"videoId":"996738562123215522","docid":"34-10-6-Z63F0F1C868EC7563","description":"Download this code from https://codegive.com Title: Python Tutorial: Running System Commands on LinuxIntroduction:In Python, you can interact with the underl...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"42","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"python run system command linux","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1rBane0SdsI\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoUChI5OTY3Mzg1NjIxMjMyMTU1MjJaEjk5NjczODU2MjEyMzIxNTUyMmqvDRIBMBgAIkUaMQAKKmhoYW1keW9neG54ZGR1YWNoaFVDeElGZnc2UXVDNF9zWlQ4Vlg4NXB5ZxICABIqEMIPDxoPPxOkAYIEJAGABCsqiwEQARp4gQIK-gb8BQD29fsC-gT_AQ7-BgL3AAAA5w79-Qf9AQD69f0H_QAAABL-_AQAAAAA7fT9AvcAAAAI-wALAwAAABgC_QD4AAAABgkBCf4BAAD_7vX2Af8AAAX6Cvz_AAAA-wEJAPv_AAAC-fb9AAAAAAn2BwMAAAAAIAAtwVrgOzgTQAlITlACKnMQABpgGgsAB_AH7ewbC_PVB_AK5Q0X_PHp3gAlDgAPFAb9Je720w4kAPf19PnOAAAAFwDTCgcA5EAZ6RglCP787-z0_vt_5_sCGxzrBcT6ORr6Auf4MCYPAB4M9f5T_AgoCAIgIAAtdcZxOzgTQAlIb1ACKq8GEAwaoAYAACxCAADQQQAAqEEAAHBBAAAAQgAAVEIAADBBAAAAQAAAlsIAACDBAABAQAAAXMIAADDBAADgwAAAfEIAALhBAAAYQgAAyMEAAEDBAACCwgAABEIAAHDCAAAsQgAABEIAAABAAABAwQAAPMIAAKhBAADmQgAAoMEAAETCAABgQgAArsIAAFxCAAAgQQAAcMIAAABCAACcQgAAUEEAADBCAAAwwQAAwEAAAKBAAAC4QQAAZMIAACzCAAAgQQAAcMEAAMhBAADAwQAAisIAABTCAACgQQAAIMEAAIpCAAA4QgAASMIAAIbCAAAAQQAA-EEAACDCAAAkwgAAdMIAAFzCAACAQAAA4MEAAODAAACgQQAAPEIAAADCAABAwAAAPEIAAATCAABAwAAATMIAAFBBAACowQAAhEIAAIxCAACAwgAAgMIAAGhCAAAkwgAAEEIAAEDAAAAMwgAAIMEAAJBBAACAQAAAKEIAABjCAAAQwQAAWMIAAJzCAADgQQAA8MEAAATCAACYwQAAwMEAACTCAAAIwgAAwEAAAKBBAACIwQAAcMEAAABAAACYQQAAREIAAODAAADgQQAAIEEAABBBAAAEwgAAkEIAAOBBAABIQgAAZMIAALhBAADAQAAAIEIAAAhCAACYwgAAQMAAAEjCAABAQQAA0EEAAAzCAACQQQAA6MEAALDBAAAAwQAAkMEAACBBAABwwgAAKMIAABBBAACYQQAAFEIAAEBBAAA4wgAATEIAANhBAACIQQAAyMEAAAhCAAAQwQAASMIAAPhBAADQwQAAiMEAAChCAABMwgAAsMEAAKDBAABwQQAAiMIAAKDAAAAMQgAA6EEAAAxCAACYQQAAoEAAAEzCAABAwAAADMIAAEzCAAD4wQAAgMAAABhCAACwQQAAusIAAMhBAADgwAAAOEIAAJBBAAA0QgAAHEIAABTCAACIQQAAsEIAAIjBAAA4wgAA4MAAAKjCAAAgQQAAwEEAAJrCAACGQgAA6EEAAIDAAACwQQAAMMIAAEDCAABAQAAAIMIAANhBAADSwgAAQMEAAODBAACowSAAOBNACUh1UAEqjwIQABqAAgAAcL0AAHS-AADaPgAABT8AAIA7AACgvAAA6L0AAD-_AACovQAAoLwAANg9AACIvQAAlj4AACQ-AAAwvQAAMD0AAFA9AABEPgAAXD4AAHQ-AAB_PwAALD4AAJi9AACiPgAAcD0AAFS-AADoPQAAvr4AADC9AACoPQAAHD4AALi9AABAvAAATD4AAGQ-AAAsPgAAUD0AAM6-AACOvgAAFD4AABC9AABAPAAABL4AAIA7AADOvgAA6D0AAEQ-AADIPQAAqL0AAHS-AACCPgAAcL0AAEA8AACovQAAUD0AAEC8AABhPwAA4LwAAKA8AACOPgAAXD4AAHA9AADgvAAAQDwgADgTQAlIfFABKo8CEAEagAIAAI6-AACWPgAAUL0AAEu_AAAEvgAAqD0AAEQ-AAD4vQAARD4AAI4-AAAcvgAA4LwAAKg9AACYPQAAPD4AANi9AACyvgAART8AAEA8AADWPgAAED0AAEy-AAAEPgAADD4AAGy-AACmvgAAHD4AAEw-AABQvQAAUL0AAEC8AABwPQAAHL4AAEA8AAAQPQAAfL4AAL4-AABAPAAAsr4AAIA7AADCvgAAFD4AABS-AAAkPgAAnj4AAIC7AAB_vwAA-D0AAHw-AABwPQAAqL0AABA9AAAwPQAAoj4AACQ-AABkPgAAED0AAEC8AACyPgAA4DwAALI-AAC6PgAARD4AALa-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=1rBane0SdsI","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["996738562123215522"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16257130570718559061":{"videoId":"16257130570718559061","docid":"34-11-7-Z03985A7441FC6481","description":"Getting Started with Python on Linux - Pandas - Simple Example [Python] Python tutorial and examples. Thank you for watching. Products Explorer - Interesting information for you. M.T.J. Music...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"43","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Getting Started with Python on Linux - Pandas - Simple Example [Python]","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FgjTiLHwa0I\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxNjI1NzEzMDU3MDcxODU1OTA2MVoUMTYyNTcxMzA1NzA3MTg1NTkwNjFqhxcSATAYACJEGjAACiloaGlyZHphbWxxbXVzYmhoaFVDTGd2WmFJcEZQMjBuMGJfOEFVZHFqdxICABEqEMIPDxoPPxOgBIIEJAGABCsqiwEQARp4gQb-BgAAAQD3_Qj9-wT_ARsAAQr1AgIA7QT8-AUAAAAH-wgB-wEAABP--wUAAAAA7vcK__MAAQANAgkPBAAAABr29Qj9AAAACPj8Cv8BAAD49_f9A_8AAA7-_vj_AAAA-QH6Cv8AAAABCPj5AQAAAAb-Cw0AAAAAIAAtEkDVOzgTQAlITlACKoQCEAAa8AFkEcj8AdT3BKEk4ADm_f8Bgeft_lHw1v_T8fP_4Pj8AMvNwgDPyRf_kOjxAo4WDwGa-NX9LEEuAAEHEf8Q-Sn_Jf3PADvtMQBLAfwA4Rnx_-YMLwAo5DoCU9YN_hAAAPsS2_n73_rQBLP3wgH0SCAAIgEH_z8bCgHnBDoB_jctAOATEgXZKRj-u-0G9g8e_P8RFdL-MRzQ_egFJwgr9vUN9PgQCOr0_P8fGRj72s_4_vP57BT1-wcQ5Csj_fggFgEK6QX-79oC6yszDfYj-_Pr4zwKByHy8g8h7eD2ySIX_PD4Df7jJAEBCCge-wYR9AIgAC3qjPI6OBNACUhhUAIqzwcQABrAB1wfxr4AQXQ9pxKUPME72b1TFr89V2J5PDvHIL4vCoy8qwtTvIl9Uj6Aatc8JVe1O5xNl77qPVy5ZI8WvIqtQD4MjSw9XGBFPJhj3rwmobq7dtNXvabUBb4_TKm6BWaqvDBBkr1PaIi8hU8pPb5LWT6RHN07oHyLOs_dqb0Dt2m9EayFPOFeGT138aO8kb4kvHKmuT1rvG89m8GEvOMgzD3gPvw8XpHrOruNp73ypHs9I2UwvHL-Ab30Eog89gJYvFo39zrM62u72t2oPJ0u672vT2-8X5rDu7uQWD1cIN47h9iFPGRAUbw3F388Zz6MPLxabj23i7w6duWvOxR7WL5Ztwu9JUgbvJlHPj5KV5W9Dkysuya6yL1PPpw7xYirOxCniD3gyFG6ZFTfuvQ04D04k8A9dwJQPHoApjxi4FS9xB9JO6PNMT5sszG8yHi5vFQXdb3oRCy9mjE7PAm70Tscts0973pEvLt8a72Dw2Y8IHucOxMLAT1QKmu9tXffOxjriz0FWSW93lRmO2Y0TbzJmFY9V8R6PLnar72KtAc8Cvw8vKDzpDxfHhc9MLP4uoZanj0nUES6XTeAvIUedr3Qsxm9yGk-vF-peLxkL2U9rucSPGN0Zbvtlsm8aQ4cuy260LuRhFi9ngd7uxDmFr6kIog6qqeMOTfMijvHj-c7KsjLu4pQNjxnGG296MhCOwxzwrzRffO7s2fou_ly1TwaQK47S_2jOx_V1bxKnLC8ZGaXuro_mD1--ck8ghG8uW0D1z21o9i9DJ-vOeEkjTzN4DQ9SSyyueCzGj2HZw49DrSiOdVKl7wUEYQ9qzsTOIsGXzzTvKO9P3xBOADxCDyQI6U6biS_um3YgL1qFok7Vf3QOfu9Qz15O4I8VwnKuAnGfD3CIzu8Ly6yNknVez0h_3G8TZRRNyYYDj2TBYe9tXIFufLyj7zu1o29_hw3OOoeHr3IF449OclHONx7QLs-LOm7CHoUuMbzrj3kn6k95AJqNrUhNbwvy_C6XESeuI3R-rxwV4S9ZRC-t_FILL73_8a9iVwNuHJsPbyznWo9KIK2tyq-y72osj6950aVN8VCKL0_YDS9atiVNjJyhr2Ei0u9SxsLuIchqL0G4Jq9ynQuOLnYGb2DbHm9LPNpOEeT6z0uwwS9j-2dNgL-3zyflKS8bj1MOHF_tD3XpDs95CdauHSy-TwxMAG9t8vVtoiEzz1rsks9ibeFOGbZE72EGJ48dlN2uL6gCTydoZg9ygOFN45bzDxwP6C8MSS8NyAAOBNACUhtUAEqcxAAGmArCgA-9Aj55zU84e3-5A3K5Tr2BtgF_wn0AAbh9DsNDtKyKAj_C_f5AK8AAABUOLUa6wAma_rc5xrk6vW11u0mFn_C6TT5Mf34o-5nK94P6rcvFBkADtjV_UINDCUL9SMgAC1FdyM7OBNACUhvUAIqrwYQDBqgBgAANEIAAIA_AAA8QgAAwMAAANjBAACQQQAAAAAAALhBAADIwgAAQMAAAMBBAAAAwQAA4MEAABDCAADQQQAAZMIAAJBBAACIQQAANMIAAOjBAAC0wgAAcMEAAADAAAAAQgAAAMIAAJBBAAAowgAAiMEAAJBCAABAwQAAYEEAAFhCAACiwgAAiMEAABTCAAAowgAAcEEAAIxCAAAMQgAAJEIAAEDAAAAUQgAAgEAAAMhBAAAIwgAA0EEAANDBAACAwQAAcEIAAMBAAAAgwgAAqMEAAPBBAAAAwAAAlkIAAOBBAABcwgAA4MEAABBBAABQwQAAoMAAANDBAAAAwgAAhsIAACBBAABwQQAAMMEAAMBAAAAQwgAAgMAAAIhBAAAMQgAAYEEAAADAAAAoQgAAxsIAAKzCAACAQQAASEIAAJTCAAAowgAAEEIAABDBAABowgAARMIAAOBAAAAAQgAAEEIAAPhBAADAwQAADMIAAGTCAACIQQAAiMEAAPBBAAB4wgAAQMEAAOBCAABMwgAA2MEAAPDBAAAAwgAAnkIAAMDBAABAwgAAQEAAAFTCAACoQQAAQMAAADxCAAAIQgAAkMIAADBBAACAPwAAPEIAAEDBAABgQQAAGEIAALjBAABgwgAAoMAAAKjBAACAwQAAGMIAADxCAACAPwAAAAAAACzCAAAAQAAAiMIAAOhBAAAQwQAAcMEAAKDAAAA0QgAA4MAAACBCAAAoQgAAmMEAAHjCAACAQAAAKMIAAIC_AACAPwAApkIAAOBAAAAAwAAAAEAAAHjCAABAwgAAwMAAAFjCAABwQQAAIMIAADDCAABowgAADMIAAARCAACIQQAAUEEAAIjBAABQQgAA4MEAAEDAAACYwQAAYEEAAJ5CAADQQQAA3EIAAODBAADWwgAA0EEAAChCAABQQQAAiMEAAGBBAAAMwgAAoMAAAOBBAABgQQAAwEAAAPjBAADQwQAASMIAAKBBAACgQQAAyMEAAOpCAADowQAAdEIAAMDBAAAAQAAAgEAAAJBBAACQwgAAwMAAAIDAAABswgAAMMIAAMLCIAA4E0AJSHVQASqPAhAAGoACAADgvAAAjr4AADQ-AABkPgAAUD0AAPi9AACePgAAf78AALg9AAC4vQAA2L0AAIK-AACAuwAABD4AABC9AACgvAAAgDsAALg9AAAMPgAACT8AAEk_AABsPgAAyL0AAHQ-AADmPgAAPD4AACQ-AADIvQAAdD4AAJg9AACCPgAAgLsAAGw-AAAkvgAAFD4AAIo-AAAcPgAA_r4AAFy-AACqPgAAlr4AAP4-AAAEvgAANL4AAKA8AADyPgAAlj4AAEC8AAC6vgAAgr4AAHw-AABkvgAA4DwAAMi9AABEPgAAED0AAHM_AAD4vQAA4DwAACw-AACOPgAAND4AAOC8AABUPiAAOBNACUh8UAEqjwIQARqAAgAARL4AAFA9AACYvQAALb8AAGS-AAC4PQAAsj4AAMg9AACYPQAALD4AAIK-AAAwPQAAML0AAIg9AAAQvQAAoLwAABy-AAAbPwAAQDwAAAM_AADoPQAAqL0AAOi9AAAwPQAAVL4AAMK-AACoPQAAqD0AADA9AAAEPgAAED0AAOA8AACIvQAAbL4AAAQ-AAAMvgAA5j4AAHC9AACmvgAAmj4AALi9AACgvAAA4LwAACw-AACWPgAAED0AAH-_AADIPQAAyD0AAJg9AAAUPgAA6D0AABA9AADoPQAAsj4AAEw-AABQvQAAHL4AAI4-AAD4PQAAgj4AALY-AAAwPQAARL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=FgjTiLHwa0I","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":2560,"cheight":1440,"cratio":1.77777,"dups":["16257130570718559061"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2602245538"},"17113424891836532083":{"videoId":"17113424891836532083","docid":"34-6-7-Z5DFFF2F75349AB5E","description":"Code and details: Code from the video: http://blog.softhints.com/python-stri... Other examples: http://blog.softhints.com/python-spli... Simple python split string Split by multiple separators...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"44","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"python string split by separator","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iBsg75W2Vig\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxNzExMzQyNDg5MTgzNjUzMjA4M1oUMTcxMTM0MjQ4OTE4MzY1MzIwODNqtQ8SATAYACJEGjAACiloaG5wa2F3bXhteG5lc3hoaFVDZzVydlBfRDczNW9TQmF0ZGNINVpGQRICABEqEMIPDxoPPxPJAYIEJAGABCsqiwEQARp4gQH6Cgb-AwD_AfkG-Af9AhQF-Ab1AQEA8QII8gMBAAD8_wgDAQAAAAYD_AkJAAAA-QQBAP__AAAX_PkAAwAAABkC_QD4AAAABgH9_v8BAAAB__8D7QQAAQjuBP__AAAA7AD_A_0A_wAG-f_9AAAAABf6Dv8AAQAAIAAtaa3aOzgTQAlITlACKoQCEAAa8AF_RfYAyvn4_70HAADG5hsAkfQw_z5I2v_sDBQCAPHYAeHeEgDp6C8AhOraA4_99gG11tL-MAQaATb77f8A6BkAFwoJASzRDQFp-_oB7iUS_iMfIv8X1SMAN6zsAuMN6_r5-xcA0Q4KAbT4wgEMJT8DKeX-AhAlGAHc1Rj8AyASA9_Y6gDaDwwEyMIp_zrsKgQRFdL-Pi7l_7dHBwQr9vUN6u0M_-oACwsOEwj_AQEO98YMEwHsCP0E5RQS-vQUKwMHEAcCBef78R3lDAEbA90G5CILA_fF8RIP1fcH-gH2-QjfDPHgNvT_2Poi4foj7vkgAC2lrPU6OBNACUhhUAIqcxAAGmAT9wAh2xT0Ajk47v_g_kzHHg7gIswI__jQ_0Eb6lokDMHCJT7_LdkL8qEAAAAu1sQk6wBBeA_KPgC0EfLG5tAv7G717AbyFuMZx-R_SsP74ub5DggAEsngJVzw6x4KEjMgAC0OAhc7OBNACUhvUAIqrwYQDBqgBgAAAMAAAJRCAACIQQAAmEEAAARCAAAwQgAAsEIAAOBAAACowgAAoMAAAERCAABQwgAAYMEAAEDAAACOQgAAmMEAAGTCAAAQwgAAcMIAABDCAAAAQgAAYMIAADzCAAAcQgAAgMAAADDCAACgwQAA4MAAAJhCAACAQAAAisIAAARCAADCwgAAbEIAALBBAABYwgAAFEIAAJhBAACIQQAAkEIAAEhCAACwwQAAKEIAABDBAABAwAAAFMIAAGBCAAAAAAAAUEEAAFBBAACqwgAABMIAABRCAAB0wgAAgEIAADBCAACwwgAAmMEAAEDBAACAQAAAHEIAAODBAACowQAAaMIAAGBCAABwwgAAMEEAACDBAAAgQgAAuMEAAFhCAACIQQAAIEEAAABBAAAEwgAAYEEAABDCAADIQQAAREIAACBBAAD4wQAAjkIAACBBAABgwQAAyMEAAMBAAACAvwAAmEEAAIBCAAAgQQAAkEEAAGhCAADAwAAAEMIAANDBAADYQQAAXMIAAFzCAACAwAAAQMAAABjCAACAQgAAPEIAAGhCAACgwQAAyEEAAGDBAACAwAAAAEAAAFxCAACAQQAAAAAAAIBBAADQQQAA4EAAAMhBAACAvwAAgEEAANhBAACQQQAAUEEAAKzCAAAEQgAAVMIAAADAAADYQQAAAEEAABhCAADAwQAAQMAAAGDCAAAAwgAA-EEAALDBAAAIwgAA4EEAAIC_AAAwQQAAEMEAAODBAAC4QQAA6EEAAAhCAADgwAAAyEIAAABBAAD4wQAAVEIAAIDAAADQwQAAYEEAABBBAACgQAAADMIAAIjBAAAUwgAAgD8AAADBAABAwAAAYEEAAPhBAAD4QQAAgMIAAPhBAABgQQAAdMIAALDBAAAwQgAADEIAAIBAAACAwQAAWEIAABDBAACYwQAAQMAAAIpCAACQQgAAoMEAAIjBAADgQgAAusIAAJjCAADowQAA6MEAANhBAAB4QgAAfMIAAK5CAAAwQQAAoEAAAMBBAAAEwgAAAEAAAKhBAACswgAAEEIAAGDCAAAQQgAAQEAAAIBAIAA4E0AJSHVQASqPAhAAGoACAAAMvgAAoLwAAII-AAAcPgAATL4AALg9AABwPQAAM78AAKa-AAA0PgAAiL0AAKA8AAC4PQAAPD4AAMi9AAA0vgAAoDwAABw-AACGPgAADz8AAHs_AABEvgAABL4AAGQ-AAAMvgAAxr4AAKg9AADSvgAALD4AAL4-AACgPAAAqL0AAHC9AADgPAAAgj4AAIA7AAD4PQAAsr4AAIa-AABAvAAAmL0AAMg9AABMvgAAlr4AACy-AABEPgAAZD4AABA9AAD4vQAAE78AAOA8AADIPQAAfD4AAGQ-AACIvQAAoDwAAH8_AACIvQAAfD4AAHQ-AACgvAAAML0AAJi9AABQvSAAOBNACUh8UAEqjwIQARqAAgAAzr4AALY-AACWvgAAB78AADS-AADYPQAAnj4AAIg9AABUPgAAcD0AALq-AAAkvgAAFL4AAJg9AACovQAA4LwAAAy-AADuPgAAor4AAPY-AABEPgAAQDwAAFC9AADgvAAAbL4AADy-AACgPAAA2D0AAKA8AABAvAAA6D0AAPg9AABkvgAA2L0AAPi9AAA8vgAAxj4AAAQ-AAB0vgAAUD0AABC9AABwPQAAHD4AAEA8AAA0PgAAVD4AAH-_AADIPQAAgDsAADQ-AAAMPgAABD4AAAQ-AACmPgAAzj4AACQ-AACgvAAAUL0AALg9AAAcPgAAgDsAANg9AABcPgAAFL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=iBsg75W2Vig","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17113424891836532083"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2190226829"},"13901289731968769500":{"videoId":"13901289731968769500","docid":"34-8-4-ZDF8B4E56F4176E14","description":"to restart. step 3: restart the service now, let's create a function that will restart the specified service using the systemctl command. step 4: execute the script call the restart_service...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"45","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"python script to restart service in linux","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=EpnUPzPH2HQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMzkwMTI4OTczMTk2ODc2OTUwMFoUMTM5MDEyODk3MzE5Njg3Njk1MDBqrg0SATAYACJEGjAACiloaGV4emNsYmFqcXlra2doaFVDbEpHaGlpMU1XN1h6NmpaZDgzWXdxQRICABEqEMIPDxoPPxOoAYIEJAGABCsqiwEQARp4gQUQBAn-AgD8-fMA-wX_ARr7Bv_2AgIA5gME_Qn9AQD3-QD3AQAAAAj-8ggCAAAA-fYL8_z-AAD3-woIAwAAABkC_QD3AAAAA_v9Af4BAAD-_Pf--QEAAAoKBPv_AAAA-voDC_3_AAAC-fb8AAAAAP_vBwEAAAAAIAAtxonYOzgTQAlITlACKnMQABpgBBMAIPgJAswhPeEHBfoA8e4xFObl2QAU7QDzAe8OAdTV0yMLAAwD7gbEAAAAEjPGLvkAClD34eT6_gnP-eLkFhV_4_3Y9xf1-NoOQgn7Ft3yOUItAPoD_QhfDAYdB90TIAAt_OdNOzgTQAlIb1ACKq8GEAwaoAYAAPBBAACAvwAAAEAAAOjBAABAwQAAmMEAAGBCAACYwQAAiMIAAAAAAAAgQgAAqsIAAAzCAABAwgAAMEIAAITCAABwwQAAIMEAACTCAABAwgAAjMIAAHzCAABAwgAAyEEAAOBAAAAAwgAAgMIAABTCAAAQQgAATEIAAHzCAAAAAAAAvsIAAJhBAAB4wgAAHMIAAFBBAACoQgAAAEAAAIJCAACAQgAAwMAAAEhCAABQQQAAuEEAAKbCAACowQAANMIAAMZCAACAQQAAJMIAADBBAADoQQAAgD8AAChCAACQwQAAAMMAANBBAACowQAA8EEAAERCAACYwQAAuMEAADzCAACgwQAAZMIAAODBAAC4wQAAEMEAAGDCAAAYQgAASEIAAMDAAAAYQgAAgMAAAMLCAAA8wgAAAEAAAChCAAD4wQAAoMIAANhBAAAAwQAA6EEAAGDBAABgwQAAAEEAALhBAACIQgAAyMEAABBBAADgQAAAoEEAAKDCAACgQAAAGMIAAGBBAAAcQgAAkEEAAEjCAAA0wgAAVEIAADhCAACEwgAAmMEAAIA_AAAIwgAAQEEAAMDAAAAUQgAAWEIAANhBAADAQQAAoMEAALBBAAAwQgAADMIAAPjBAABAQAAAIMEAAAAAAAAEwgAA0MEAADTCAAAIQgAAbEIAACjCAACgwQAAUMIAAOjBAAD4QQAA2EEAACDBAABsQgAA4EAAAOjBAAAAQAAABEIAADDBAACKwgAA4EAAAABBAABgQQAAwEAAAIxCAACAwQAACMIAAFDBAABAwQAAiMEAAIDAAAAQQQAAQEEAADzCAAAwwgAA-MEAAIjBAACQwQAAJMIAAChCAACgwQAAOEIAAODBAACAvwAAQEEAAJhBAABoQgAABEIAAFRCAABAwAAAeMIAAI5CAACowQAAEEIAAABBAACoQQAAwEAAAEDBAABAQAAAhkIAADDBAABMwgAA4EEAAFDBAACOQgAA4MAAAHDCAACKQgAAiMEAAGBBAADwwQAAWMIAAEDAAABQwQAA4MEAAFBBAACIwgAAQMEAAGzCAACGwiAAOBNACUh1UAEqjwIQABqAAgAAPL4AAEy-AACyPgAAwj4AAJ4-AAAsPgAAcD0AAH-_AACAOwAARL4AAJi9AADYvQAAXD4AAHw-AABQvQAAiD0AAFw-AABcPgAADL4AAKo-AABvPwAAir4AAEy-AACuPgAAiD0AACQ-AACGPgAAML0AAIC7AABUPgAAqj4AABS-AACYPQAAFD4AACw-AABcPgAAyL0AALa-AAAcvgAAdD4AABC9AABMPgAAyD0AAKA8AACevgAAdD4AAJY-AADgvAAApr4AAKi9AADSPgAAmL0AACw-AAB0vgAAfD4AAIA7AABpPwAAtj4AAKA8AAA8PgAAsj4AAKA8AACAuwAALD4gADgTQAlIfFABKo8CEAEagAIAAIa-AABUPgAA6r4AABW_AACOvgAAlj4AAKY-AADIvQAA2D0AALY-AADGvgAAmD0AAKi9AABMPgAAND4AAFC9AACOvgAAET8AADy-AAAVPwAAXD4AAIa-AABQPQAAdD4AAGS-AAB0vgAAED0AAAw-AAC4vQAA6L0AAEA8AAAwvQAAML0AAMi9AACAuwAAcL0AAAU_AACAOwAABL4AAOC8AADYvQAARD4AACQ-AACIPQAAGT8AALg9AAB_vwAAoLwAAPg9AACYPQAA4DwAADA9AAD4PQAAoj4AADC9AACOPgAAML0AAKi9AACyPgAAZD4AAJ4-AAANPwAAoDwAAGS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=EpnUPzPH2HQ","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13901289731968769500"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11513031006369495557":{"videoId":"11513031006369495557","docid":"34-9-11-Z35A0FFB33248CBBD","description":"In this short tutorial we will learn how to install Pandas in Python. In fact, we will install Python using two methods; by installing the scientific Python distribution Anaconda, and by...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"46","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"How to Install Pandas in Python","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8Sipkd9vNKk\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMTUxMzAzMTAwNjM2OTQ5NTU1N1oUMTE1MTMwMzEwMDYzNjk0OTU1NTdqkxcSATAYACJFGjEACipoaG5lcXJkem9xamNjcmViaGhVQ0ZIZVkxYU90LVk0RkxaZUdfSXBKQ0ESAgASKhDCDw8aDz8TjQKCBCQBgAQrKosBEAEaeIEEAP33_wEA9_0I_vsE_wEc9v0H9gICAO0E_PgFAAAA_wsDAAABAAALCvgK_AAAAP79C_30_gEADQIJDwQAAAAOAfQP_QAAAAj4_Ar_AQAA_vz3_vkBAAATBAH9_wAAAPL4AAcAAAAA_wX2AwAAAAAC9BAGAAAAACAALcxm1js4E0AJSE5QAiqEAhAAGvABVv_jAPIXFgHy_f4A3wDhAIHw-_8jBfIA5vf4ALcB-v_yBfAA1Ocf_-f3FwDrIAUADe7xADMm-AAKAA7_FyANABD3AAAfFf4AIwEGAAMF3gAaCfn_N_gfABL6__8KEvb-LOL2_dMA5ADg-_4ACQUH_vEHAP85CP8C-SILAxIKDAHw3Az-_hno_9oJ__4B_QoI9w36ARAN7gH4-fMBAPn7Bh8b__8U6-wEHgUSAPsHDvzqF__9_Qn-_hYe-AEHGhr78_j-Bf4OBQH98QQDBen6_QoLDQbn0vUECRbvAAgA-P0KFAPz6RUFCuj1DQcI8vn5IAAtkPpOOzgTQAlIYVACKs8HEAAawAfBpwW_1JUVPHLD77yKb529IXkiPYEyfDz4g0a9VsGDvO3E-rtU15s9z5KRPK-49juZgKe-ZfvQPJ_6ET0tCVA-1PhgPOZkGD25vJ69qTD4O9j-BL31oWu-hNMHPXQ1w7vNpkg8846TPMwNQT1YHy8-7iyQPftGDzyeS4y97Ui1PJnLV7zwyTs7qtBlvdIjfDyESjw-yInAun5BQT3mA0I-9j1PvUcBAbsAOqy9yxTzPG5jvbx2-Tu9_-MpPEtNTDyCQsg92hPuPCLY3Tzu0DC9WHqIvIsqz7sPqbM8j3gJPNhS9jtEaZS7bbU9PRvlTzxpM_M8Hm_yvdcl0zpVFM-9zkP9O-j4qDzdYDg-KaZcPeMbPjqy5J47DKTVPIVN0zwH_da8awqmuu8ip7xPFPI8xC24O12aqjuvBxO9SOcTvOQ0nzxTGnY9GKWVupqFajvxKgw8c25OPSA08bvkJ9k7bGkEvZTbNLvfiM69khk5vLahT7oPttg9XKNvvbDtiDynB2U9W5TZPNjCYjyA9A09WQhBPfO_JjxFUJC8FhjyPTM1bTrPhX66k2CgvZqFLLxqEMk7TJOtPHPIvDk30kO9VcJyuwK6TLtj3a497G8mO2vLazvmCZ89beCzPFGfCTxfojC8kC2QvZATprtdoj-9kjx8PVgwO7zcxpU8TwG0ujiLNDu0YFg9z_npPMQvqzqZew29jqmiu1UjKjuDwEo9zM6muwA3C7sJ6xK8EYF0vXVh_7oU6mm8lJVQPfxBcrv3nqE7PxCqvTjs7bcYVZA9eIsxPWDEEjl9sdc9LqCCO7_aELms8Yi8nHeivW6FUTn11RU9MveavB66grnRKIi9mam_PBzF97UmVkY8w7BQuj69XbpO6vA8k2iPOuKFITfWtew8lgIYPJvDgDkQyZC8jUFMvBJzprgezOC71vFOvT_mJbn5q7a8sCxnvSfyIznvJm69UwEcu_9aZbh7Eti8zwZqvfGnoTiW7Z48bBsrPRMdbrgtnvC8duNdPMXGUbjxnfs7oI8NvYLjgjh2b-W9FILLvBB2tLilJeA8QbH6PEA707jor8a8U0A6vRFqODjuHdo8HBm1vJ-UbLfiHJo8BSK6vG47hLcwoYI9uFGOveKERLi8DYU8DAGlvCU2ELjZmIc9O5wOu6VUwDdUdWq8r1VnPe5cEzf7L6E9uhAQvcHHijfTM4g9hQv5vEB6JLigFw49FyW9PSh_ADm1z7m9skGLPALBP7jD89K9jooEvYeyybbspQa8i6devSSuuDcgADgTQAlIbVABKnMQABpgKgMANfch3eALN9flBu8D0fxD3hPK_v8E0P8U6tMl8fq0gS0k_xIL-eSiAAAAQTe9CAwALnv3y-UxygvTvckpHRdu6Bnw_QP-JsPRPRe4DuDB_EIkAAzoxPJ79PdMNwoZIAAtPYYVOzgTQAlIb1ACKq8GEAwaoAYAADBBAAAUQgAAwMAAAEBCAACYwQAAgMAAAEBBAACGwgAAwMAAAHBBAACIwQAA4MEAAPDBAABAwQAAyEEAAKLCAAB4QgAAgMIAABTCAADYQQAAgEAAAHBBAAAAwQAAuEEAAFRCAAD4QQAA5sIAAMDBAACAQgAAMEIAAMDAAACAwAAAUMIAAADCAACAQAAAREIAAOBBAACeQgAAJMIAAODBAABwQgAAAMAAAEBCAADwQQAAcMEAALBBAAAQQQAA2MEAAEhCAAAUQgAAFMIAAADCAACgwAAACMIAAIDBAACgwAAA4MEAAAjCAADAwQAAIEIAAHDBAADAQAAA0EEAALbCAABwwQAAkEEAAChCAAAkQgAA2MEAACTCAAAQQgAABEIAAJLCAABwQQAAAEIAAJLCAABQQQAAgEEAAI5CAADAwAAAWMIAAGTCAAA8wgAAQEEAAAAAAABUwgAAFEIAAPDBAACAQAAAIMIAAABAAACcQgAAYMEAAJDCAABQQQAAuMEAAEDAAAA4QgAAQEEAAKDAAACGwgAACEIAADxCAABUwgAA4MEAAIC_AAAAQAAAWEIAALhBAAC4QQAACEIAAFBBAADwQQAAwEEAAMBBAAC0wgAAwEAAALDBAAAAQQAAiEEAALjBAAAQQQAAiEEAACBBAADgQQAAMEIAAIC_AAC4QQAABMIAAKDAAABsQgAAEEEAAIBAAACyQgAAoMAAACxCAAD4wQAA4MEAABRCAABUwgAAVMIAANhBAADgQAAAYEEAAIBAAADQQQAAoMIAAIBBAACIQQAASEIAABTCAAA4QgAAMEIAACDBAADoQQAAcEEAAIhBAACgwgAAUMEAAOhBAAAMwgAAmEEAAFjCAAAMwgAAfMIAAABBAABgwQAAgEIAAAzCAAAIQgAAUMEAAKjBAAAcwgAAGMIAANhBAAAAQAAAgMAAABDCAAAwQQAA0EEAADjCAADAwQAAuMEAAABAAADOQgAAdMIAAKbCAAC6QgAADMIAADRCAABQQQAAwsIAADxCAACIwQAAJMIAAMBAAADYwQAAIMEAAADDAABowiAAOBNACUh1UAEqjwIQABqAAgAA2D0AANK-AACOPgAA2L0AAI6-AACYvQAAyL0AAG2_AAAMvgAAcD0AACw-AAC4vQAAgLsAAKi9AAAMvgAAdL4AADw-AACYPQAAyD0AAMY-AAB_PwAALD4AAMi9AACOPgAApj4AAFS-AADIPQAAor4AAIg9AAAwvQAAHD4AABQ-AACKPgAAUL0AAJo-AAD4vQAADD4AAI6-AAAsvgAAqD0AAAS-AACIPQAAbL4AAK6-AABQvQAALD4AABw-AAC4PQAAyL0AAIa-AABcPgAA4LwAABw-AAAQPQAA-L0AAIC7AAB3PwAA6L0AAFQ-AABcPgAAmj4AAIo-AABQPQAAuD0gADgTQAlIfFABKo8CEAEagAIAAJq-AACAOwAAkr4AAA2_AAA0vgAAPD4AAIo-AABMPgAAoDwAACw-AAC6vgAAHD4AABS-AACKPgAAcL0AAEA8AABEvgAAJz8AAKA8AAAPPwAAqD0AAFC9AADovQAAmD0AAKq-AAB0vgAAqj4AAIg9AACCPgAAcD0AAHA9AACAuwAALL4AAOi9AACAOwAAcL0AABU_AABAvAAAjr4AABC9AACAuwAAND4AABw-AAAMPgAArj4AAEw-AAB_vwAAoDwAAII-AADIPQAAoDwAAAQ-AAAQvQAAij4AAO4-AAB0PgAAoDwAABy-AACmPgAAhj4AAJI-AABMPgAA-L0AAJK-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=8Sipkd9vNKk","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11513031006369495557"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3785568614"},"14289329508133966607":{"videoId":"14289329508133966607","docid":"34-6-11-ZED98447AD9E4C0DD","description":"Pandas: How to filter results of value_counts? https://blog.softhints.com/pandas-how... Step #1: How value_counts works Step #2: Filter value_counts with isin Step #3: Use group by and lambda to...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"47","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"22. Pandas: How to filter results of value_counts?","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OR36conyfTc\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxNDI4OTMyOTUwODEzMzk2NjYwN1oUMTQyODkzMjk1MDgxMzM5NjY2MDdqhxcSATAYACJEGjAACiloaG5wa2F3bXhteG5lc3hoaFVDZzVydlBfRDczNW9TQmF0ZGNINVpGQRICABEqEMIPDxoPPxPfAoIEJAGABCsqiwEQARp4gQADA_EB_gD5CA78-wT_ARn68AT0AQEA7Ar_Bgj_AADrDwn5BAAAAP0a_AUDAAAAAfYBBfX9AQASBgQFBAAAAAX4AgcG_wAAC_j__QABAAD8DPb3A_8AAPsNCAL_AAAA-QYBBgQBAAANEP8CAQAAAAHwCA8AAAAAIAAt7zLOOzgTQAlITlACKoQCEAAa8AFh9OH_EODhA8MZ9gD_9v4Age0c_xbqAgDQ5BABx-b1ANna0gDtAB4A1AEB_7b-6gHI4d7-JBgEAPjM0P8BBiYAEgvnAUflDAFLEvMAAxTk_gsMCP8S6A3__OMcABcUBv8Y3eL_1Pv6AtXs6wAJGy8CAu0k_SEJ3P_9JQP_8gYIAOYD6QDqDgX8uvAT_egF5QT9DeUEKA3xBPjxCv0S7vcJ_vEF9vPgCv8N7C0CGO8HBgHv-gX48AMC7B8a_hksCAId-f8K8_T-_SL3DAb65QH3IQnvCQDGBg805fED8fML9PEUCf8HMgoQ5hgOB-AlCPsgAC1BWiU7OBNACUhhUAIqzwcQABrAB_Et5L4zxTc99UccvDxm4Dy1ku87UiGDPO8tdjwZR4s95upHvBsQET7SVE-89IUVPZsdob5GoZu8yGeoPAovYT4XcbC8QdPGOVU4Xb0ESH69PooEvSu3ub088UG9632ZvOrslL09vS29xm30PKn4Tz4SgwC91GGFPA14D73-LVy8Wy7tuU8IfDty0kW934pEvIXqBj5fuLM9xhEQvAXB4z3JOOa9FIxvO1FM3rv2Ocg8Kdw8vDgWT72r-HC9g7IfvVpHNT2Dxqe7yIPjPOv7hb0-aEy9hzsRPN6O0zoiwVQ9a0yjPD7EcL2V5TU8Bo8lPGOSArngXj68JBW8vL7fQ7267vc8KioRvdaCyD0CI7k8dxvKvMZhqr2rW5097tSaOzS1UT1n_w09xontu5fmJj4l_Dc90ssDO5O5A70VXh29o8SVuDh9kj0fnqU87yE8vGMCyLsZat68IJ8LPbLLgTxqBIE9yQyKvCxsPLy6oek9HDkYO7kxIj1JPRW9mS6ju44HCz6dGj69T1LoO9bHIjxmbAM8B6VcO8oyST28dum8CfGSvHzQ2DvRgf672lDWunahfj2iCdQ80hIgOqY_kL184Lq7wJ4nO05ktj0Ifb89oOGNPNqN3zup11I8Yj5qvK9rmj3KkpS82SLpu546kL2THYs96PaSuwYwgDyda3O9FwaTu04QwD3o3ym9yiJYusyfazsq8Uq8Oo6Cu00Pbz1PRSW9qigjON7gD7uLfE094WGdubF5rDsCZOg7pgh0O5RAtD3gzWS94odqOc4YZr2_z108I-27ucAgCT01h1o81a8ZOKrUvD30swc9ZfNTudgCjDyDaM29LiTCuPX9bz3Nxq88zuBkuJ0ICbz4As68cWPqNQooebwcXg685EtTuR5Nij11tCI7Y9BeucKSAjxZUQO9cjH3tvmJAbw-dte9vcVEuPLyj7zu1o29_hw3OBq3Yr2FA4Y9YXewOF3LmryazUM9qej-uNElpz3O2Wc9_o8kOReFeD0nvOQ96I4yt9AeGrs36CY8WmMguR75470b65y9HMKFuC7V-7z462Q9wHeYOMov6LyPD4S8Eqb0NwRI_ry305a9GGMutiy8Jr1lHZ49mOuWuL0doby5VQC-u-YtuBVOFz0BI9y7OUOZuE_MCj7-v4U8yikbuNvBCD3FUkk9dTGpts4_oD1sePo97YzKN7OXbTw3mLg7jP5kuCL_7D01KQU-835buDw-zrvQKxm9weDhuOmz6Dz-6la9ioaNtpbypT1lm2m7qNP-tiAAOBNACUhtUAEqcxAAGmAbDAAz_hbw-g4m-_DQ9fgN6OTR8Ngu_xLVABHx3wMSFvK_J9j_JO4W0bQAAAAjE9sEFgDwVRTtzAnlK_XR3xTm_X_4DvzvDfUH_KhGRucX6ujvFh8AN83X90_wxg8ZDgogAC3J1T07OBNACUhvUAIqrwYQDBqgBgAADEIAAK5CAAAAAAAAgEAAAIhBAACeQgAAbEIAAIDBAAAYwgAADMIAAIBBAABQQQAABMIAACDCAABgQgAAiMEAADBBAACAwQAAAEEAADBBAAA0QgAAOMIAAIA_AAAYwgAA8EEAAGDBAAAowgAAmEEAABxCAADowQAAZMIAALDBAACCwgAAyEEAAMhBAACowQAAmEEAADxCAABIQgAAYEEAAGhCAAAwwQAAUEEAAKJCAAAIwgAAKMIAAJDBAABQQQAAuEIAAIzCAAAAwwAAMMIAAARCAACwwQAAVEIAABhCAADEwgAAJMIAAEBAAAA0QgAA4EAAABzCAAAwQQAAosIAAIC_AADYwQAAsEEAABDBAACgwQAAlMIAAKhBAADAQQAAIMIAAExCAADQQQAAoEAAANhBAAAEQgAAkkIAAIA_AACswgAAMEIAAHBBAACQQQAACEIAAFBBAADgwAAAIEEAAMBBAABAwAAACEIAAHBBAABQwQAApsIAAIhBAAAUwgAARMIAALDBAAAcQgAAEMIAAJDCAAC4QQAAVEIAAGDCAABQQQAABMIAAAxCAABQQQAAiEEAAExCAABwQQAA8EEAAKBAAAAYwgAAMEIAALjBAACAvwAAQMEAAEBAAAAMQgAAoEEAACTCAACoQQAA8MEAADRCAABQQgAAiEEAAChCAADQwQAAoEEAAABAAACwwQAATEIAAKjBAACAQQAADEIAAFDCAADgQAAAyEEAAIjBAACgQQAACMIAAARCAACgwAAAPEIAAADBAADAwQAAaEIAAIpCAACyQgAACEIAAABAAAAwQgAAIMIAAIBAAAB4wgAAqsIAABDCAAAgwgAAkEEAAFhCAACgQAAAmsIAAIBAAACQwQAAFMIAAFjCAABcQgAAQMEAALjBAADYwQAAgD8AAIjBAACQQQAAkEEAAJBBAACIQQAAHMIAAABAAACkQgAAiMIAAGzCAADYwQAAgEEAAPhBAABgwQAAnsIAACRCAABgQQAABEIAAFDBAABIwgAA8MEAACBBAADIwQAAAAAAADTCAACAQgAAqsIAAADAIAA4E0AJSHVQASqPAhAAGoACAAAMvgAAgr4AAIg9AACOvgAAyL0AAAQ-AACIPQAAR78AAK6-AACiPgAAqD0AAKA8AAB8vgAAbD4AAMi9AACIvQAAfD4AAHA9AABkPgAA7j4AAH8_AAA0PgAAND4AAIA7AACAuwAAyD0AAHC9AACgPAAAUL0AAEy-AAAMPgAAkr4AALI-AAD4vQAAuD0AABy-AABEPgAAPL4AAMK-AABwvQAAdL4AAOg9AABAvAAAJL4AAPi9AAAEPgAAFD4AAIi9AABEPgAAmL0AAFQ-AAAwvQAAdD4AAFw-AADGvgAAQLwAAGE_AAAQPQAAhj4AADw-AABcPgAA2D0AACw-AABAvCAAOBNACUh8UAEqjwIQARqAAgAAyL0AAAy-AADovQAAL78AAIK-AABAPAAA2D0AAFQ-AABAvAAAgLsAABy-AAAQvQAAmL0AAMi9AAC4PQAA4DwAAIA7AAAtPwAALD4AAAk_AAAQPQAAcL0AAIi9AABwvQAAbL4AADC9AABEPgAAoLwAAOA8AABMPgAAoDwAAFA9AABAvAAAfL4AAFA9AAAQPQAAuD0AAOC8AACSvgAArj4AAOC8AACIvQAA2D0AAPg9AADgvAAAbD4AAH-_AACSvgAAVL4AABy-AAC4vQAAoLwAAHC9AACgPAAA2j4AAPg9AACgPAAAUD0AAAw-AADoPQAAVD4AAIg9AAAsvgAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=OR36conyfTc","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":2560,"cheight":1440,"cratio":1.77777,"dups":["14289329508133966607"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"526384238"},"4499742001458970208":{"videoId":"4499742001458970208","docid":"34-7-2-Z914C0167E5BF3C6B","description":"In this video I show how one can run python scripts in Linux. I show two ways, the Terminal, which is suggested by experts and the python IDE IDLE. Basic terminal instructions: • Intro to the...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"48","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"How to run Python scripts in Linux","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=asnGiNwo4RU\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoVChM0NDk5NzQyMDAxNDU4OTcwMjA4WhM0NDk5NzQyMDAxNDU4OTcwMjA4apMXEgEwGAAiRRoxAAoqaGhmd251cmptb2V5ZGxoZGhoVUNRSlc5NWZJSjFPWG9lMm1HRy04NWdREgIAEioQwg8PGg8_E6ACggQkAYAEKyqLARABGniB-xIICgL-AAD4_wP6B_4CHvX8B_UCAgDg-QT2B_sCAALwBP_6AQAAD_v0D_oAAAD-_Av98_4BAAEA_ggEAAAAHwrzBv0AAAASBgEN_gEAAAH__wPsBQABAggB_P8AAAD8AQMG_v8AAAL49fwAAAAADfUABgAAAAAgAC1ohMw7OBNACUhOUAIqhAIQABrwAX8mwf0SIhMG3R4oAMT_yAC3pwIAfCsHAAUS-f_41rwCBPwIACDzJf_E6c4AsAXM_pwnAf80UwwBBqoK__sA-QCnKdUA3fI0A0v60QPB4s_-V__i_BAgEAE8F8H-wc_zAETKIv057wIDjrkOAiETFP4B6vr_BgDYAuvgEAFB-Pz5B_D_B88C9QXr3er5U9X-AiP49AEEPiMB5v4O-CRp_AYFA_cMTQ70_BYe-v8CBSsAL0_uAMviDBDJ0wj4Ni8g-AgSCALw6-0K-eY2_M4VDPIuBxEF2vcCDAEJCQIJOBvy9eAC_9QEEQMy3AYV2xHxGSAALcKZ5Do4E0AJSGFQAirPBxAAGsAHp5XCvr7rrT3-oyW8pP5Kvi5weTxKPTA9_YUevgFqajzh0Fu8TROWPaMViT1BbwA9xJdZvoxmZbz1uiW9vRtLPia8rj3iWxg8CLDjPLuWtbwJIVu9_WUYvMBlhLxHJju89DY2vJ36m7xxJKu8LfqkPXt8Zzy_oGA8nkuMve1ItTyZy1e8-tAlPqpUv739tNs8jgQaPgTFNDwV2bk7gyR9vflBRz14yxs8WdouvUtv5Lzfm427OC_uvScRQT24jCC9AybQvT6JOT238gy8RCC9vbRgPb1b1Uc5ktKHPZgT1L3TazM8ghC6PWpMyDwaXwU84NsUPcdFGj18HJc8fsUKvk8gDL2iRt87ugKwPS65n7vQmMm8zMhKvbC0kr1mnoE82B80O48BhD1XQKG8zR7oPUUCl7xoycg8RYLpvWULGDwdxzQ85s0RPiP7Oz1Wd3a81b5Pvdmi-7zYcdO7ssuBPGoEgT3JDIq8kMAPvtJ0kby1PwS8bayEPB0QNz2zW3A8pTJFvIvIizyjpRu8wFkvPdjYBT4LMVE75rpfvXngZztzW2w8SiZnvbRnATzWScc64UXfva54tDyePqe833dCPYroV7zXn2m8oCV-vKiljr04SIi8tyjzvSaVBL3BqGa7CNDKPW4nmzw4jP47-wQgvqaUjL0z3UA6QJ5CPaIlj7yCNZQ7i5hovZIj_b34swC6loYQvZUWRL1rNFI700SUPXniHLxRaaM71wZdvGdKRrzAAjm70775vVMGLr3L5Fs5K1s6vf0HAr13mVa5CADOPdXAoL3cdYM3O1X-vKzc_LiMg1Q54nTyvSqUoLySn3e5_2w1PVajsjyKIBG4mfDwvNBLoD0727M49KfNvWIxBzvEfmc55_6qvB_Khrz0dIA50b5oPe5Upb2T3xO5ZyzavK0kSD3PDDC3gET4PDquJj1_Hje5z0Q9vRtMXr0yXjs57yfZvHQ5b72Z1EK3Q6ahPJoJhrxEQaW4kNGqO5aNs70GpqM4QupWvc9DN7tOCWI1XNGRvYA-27vtzUi473aYvPKLzD0seuM33RB8O8VhH70zHH84bcX-vaLUPr0aL_S4NiACvjuJrb2gTjs4WaSqO1k_vL2RGO440KC8vMcil70vO2E47eWIvGs0j73vCWo3ataOPX8T6r2Mxbi4DISjvRk8bD2J-gW4rhoaPXlzOLubWji4bYaAPa1mgrxjWm64FD01Pa4jWD300Jw4wRsyvbzJ1LzHXVC4bsaEvdgo673n7ZC2cvJMveEeUL0B0g24IAA4E0AJSG1QASpzEAAaYCceAEj08fnRFmC-9hX_MeH8Kg_X-Nv_MLP_MuoKQRzJlbtBQP8hCNr9oQAAABMd0RTvAAB7CMb--t4CBtHT6kvyfyHayfcwy_a6wE_8_w69FxP3VgAS4_ssTAAbSSw6aSAALU-8DTs4E0AJSG9QAiqvBhAMGqAGAAAAwQAAmkIAAMDBAAAAQgAAIEEAAI5CAABwQQAAWMIAALbCAABwwgAAQEEAAHTCAACAPwAATMIAAKDAAADAwQAA0MEAAFBBAACowQAAaMIAAKDBAACgwAAAQMAAAJ5CAABsQgAAQEAAAEBBAACewgAAOEIAALhBAADowQAAgMAAAAjCAACEQgAAKEIAAJDCAAAoQgAAHEIAAIhBAACAvwAAFEIAADxCAACeQgAAikIAAAjCAAAAQQAAKMIAAGRCAACkQgAAAMEAALjBAACAwQAAiMEAAEBBAAA4QgAAqEIAAGDCAABEwgAAAEEAACBCAABgQQAA4EAAADxCAABowgAAwEAAAEjCAAAEQgAAFEIAABDBAABAQAAAMMEAADxCAAAgwQAAFEIAABhCAADAwQAAlMIAAARCAABEwgAAgMIAAJjCAAAQQgAAwEEAAEBCAABQQgAAjkIAAODAAAAAQAAAAEIAAFBBAABwQgAAHMIAADxCAAAgwgAAYEEAAKjBAAAAwAAAMEIAAGDCAACAQQAAKMIAAMBAAAB4QgAAMMEAAOBAAAD4wQAA4EEAAABAAAAAwAAAKEIAAOBBAABAQAAAQMIAABxCAAA4wgAAoMEAAPBBAABwwQAA4EEAABBBAABgQQAAMMEAANhBAAAQQQAAuEEAAIBAAADgwAAAJEIAAHDCAABAQQAAQEEAAHDCAABwwQAAWMIAAOhBAACQwQAAoEAAAKrCAADAwQAA2EEAAKDAAADAQAAAiEIAANjBAADYQQAAikIAAFTCAADYwQAAUEEAAGBBAAAsQgAAXEIAAIZCAAAgwQAAkMEAAJzCAAA0wgAAMMIAAADAAADwQQAA2EEAABBBAABowgAAPEIAAIhBAABUwgAAgEEAAEBBAABYQgAAgEAAAIhBAACgQQAAMMIAAITCAABAQgAAEEEAAKBBAAAgwgAAAMAAAI5CAAAIwgAAPMIAABxCAAD4wQAABMIAAIBBAAC-wgAAYEIAAIhBAACYQQAAUEEAAIDAAABowgAAAAAAALLCAAAgQgAAMEEAAERCAADYwQAAgEEgADgTQAlIdVABKo8CEAAagAIAADy-AACivgAAhj4AAOo-AADIPQAAED0AAFC9AAB5vwAAgLsAACy-AACgvAAAoLwAAHw-AAAwPQAAPL4AANg9AABMPgAATD4AANg9AADiPgAAcT8AAJi9AAAMvgAA2j4AAII-AABwPQAAdD4AACS-AAAQvQAAuD0AAKY-AAAMvgAAHD4AAAQ-AACYPQAATD4AAKC8AADmvgAALL4AAKI-AABwvQAA-D0AAOi9AAAUvgAAlr4AADw-AACuPgAAEL0AAIK-AAAcvgAAwj4AAGy-AADoPQAAVL4AAL4-AACAuwAAfz8AALg9AABAPAAArj4AAN4-AAAMPgAA2L0AAIY-IAA4E0AJSHxQASqPAhABGoACAACCvgAAiD0AAI6-AAAlvwAARL4AAOg9AACOPgAAyL0AANg9AABcPgAAjr4AAJg9AAAwPQAAVD4AAMg9AADIvQAAnr4AABE_AAAUvgAAGz8AADw-AAAkvgAAmL0AAIg9AAAUvgAAmr4AAFw-AAD4PQAAQDwAALg9AADgPAAAiD0AACy-AADIvQAAgDsAADS-AADePgAAqD0AAIK-AAAwPQAA6L0AAFA9AADoPQAADD4AAKY-AABAPAAAf78AAFA9AACgPAAAED0AAKi9AAAcPgAAoLwAAJ4-AADYPQAAgj4AABC9AABAvAAAoj4AAGQ-AACiPgAAsj4AAOg9AACOviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=asnGiNwo4RU","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4499742001458970208"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2696444092"},"11628773176569326539":{"videoId":"11628773176569326539","docid":"34-10-7-ZCE859A0ADCF5AAB5","description":"Buy the full source code of application here: https://procodestore.com/index.php/pr... #python #pandas #txtocsv Visit my Online Free Media Tool Website https://freemediatools.com/ Welcome Folks My...","preview":{"posterSrc":"","censoredPosterSrc":"","isBase64Poster":true},"target":"_blank","position":"49","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","isAdultDoc":false,"relatedParams":{"text":"Python 3 Pandas Script to Convert Text File TXT to CSV File Full Project For Beginners","promo":"pumpkin","related_orig_text":"Softhints - Python, Linux, Pandas","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Softhints - Python, Linux, Pandas\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2JaTi_1hAhg\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNTc5NzM1NTcwMjkyMTMzOTc3NAoTNDY5MDAyMjc2NjY2NDc2OTU3MwoTMTU2NDc4MzMwNTUwMzYxNTA2MgoTODc0Nzk5NzI5NzExMjg4MjMwNwoTNTcwODE0NDE1MzM2ODQ1NDc1OAoTNjg1NDYxNzM5NjIwNzU0Mzc0MAoUMTIxNTY2ODE3MzQ4OTgyMDQ3OTcKFDEyODkyMzA4MTQ3MzkyNjg0NTAzChQxMTU3NDgwNDc2NzE0MjAxODUwOQoUMTM3MjIxNTIxOTgwMTM3MDI2NzQKEzIwODU3OTEwODY3MDc0MTc3MDQKEzU0MTE1MDM2NjQxNjA0MDI5MDUKFDE1OTY4MzI3Mzc1NjM0MDkzODQwChQxNjA4NDU1OTEwMjk1NzQzMjMxMAoTMjkxNDQwNDkxOTcwODkxNzEwNgoUMTA4OTM2OTQzMjI2MDE1ODEyNzYKEzI1ODQ1OTA1MDk4NTM5NDc4NjAKEzkyMjU3NjIyOTY5ODQyMzQ2MjUKFDExNzAwMDc4MjI5NTYzMjczODYwChQxNDUyMTkyMjczOTE5OTI0ODI0MxoWChQxMTYyODc3MzE3NjU2OTMyNjUzOVoUMTE2Mjg3NzMxNzY1NjkzMjY1Mzlqtg8SATAYACJFGjEACipoaG5hb2pheHdweGR4dnJkaGhVQ1I2ZDBFaUMzRzRXQTgtUnFqaTZhOGcSAgASKhDCDw8aDz8ThQKCBCQBgAQrKosBEAEaeIH_BAABBPsA8wINAQME_gEQ8vkB9gD_APMP9vQDAf8A_fgP__cAAAAB_Pj__wAAAPQBA_vy_wEA-wD2EQIAAAAgCvMG_QAAAAYB_Qf_AQAA8_D_AQP_AAAUCQPz_wAAAAEG_Af4_wABFQoDDAAAAAAC5_UDAQAAACAALZpcxjs4E0AJSE5QAiqEAhAAGvABRwLg__P4GwLeEPoA3wDhAIHw-_8dD-wA5wIGAM4W8wDkEd4A6PAU_-cFCADZD_cA_frb_zULDAAH9xkA_vYdACkC9QAb4PcBLQ8CAOsF7gDkCPoAMgwG_x_vFAAV_-T_FwMD_ePr7wLB2QgBBxYmAgMJAQQT-wj_7gQCAN4dCP_hBQME9fj__s37AgISFQoADiPoAS0Q9wD2-g8CLvfrAQgABgQL-vsF_v0UBgEBCfv8BvT--P0B-_bzFAAeGhL8BAgOCPbpAfQEFwb0I_n4BAQdAwMH8_gGAPT1Cez1-AQEBRH70CD7A_YPFAX6CPn2IAAtkPpOOzgTQAlIYVACKnMQABpgPgQAPgMb6dkMP9wN3-EY3N0d6xHOCP8a6P8W58gIB9HbmE4b_x7jAAKlAAAAMS7hLh0ACXnv5P8M2E7_t7DNLht_4PP1zO8Y8NXFahTYMuHbFx8ZABzltBNXHgxOIfwfIAAtbx8YOzgTQAlIb1ACKq8GEAwaoAYAAABBAAAQQgAA-EEAALDBAABkQgAAnEIAAIBCAAAAQgAAzsIAAKDBAAAAQgAAZMIAACzCAAAAQQAAyEEAAPDBAADQwQAAMMIAAGTCAAA8wgAAuEEAANDBAAAgwgAAEEIAAPhBAACAQAAAgMEAAKDAAADSQgAAgEAAAFTCAABEQgAAlsIAAFRCAAAwQQAAoMIAALhBAACCQgAANEIAANBBAAB8QgAAwEEAAOhBAAAEQgAAIMIAADDCAAAMQgAAoMAAAIpCAABwQQAAvsIAANDBAABQQQAACMIAAHhCAADAQQAApsIAAIC_AABAwgAAgL8AAKBBAAA0wgAAQEAAAIjCAAAkQgAAYMIAAHBBAAAQwgAAuEEAAFDCAAB4QgAAKEIAABzCAAAMQgAAqMEAACBCAABswgAALEIAAHDBAACgwAAAqsIAAKhBAACAPwAAQEAAAAAAAACYwQAA-MEAANBBAABIQgAAQEAAAADAAABMQgAAwEAAAAjCAACAQAAAgL8AAKjBAACQwQAAgL8AAAAAAABgwgAAjkIAAHRCAAAkQgAAwMAAAEBBAAA4QgAAuEEAAJhBAABQQgAAgMAAAOBAAADAQQAAqEEAAAAAAADwQQAAoEAAAIC_AACgwQAAAMAAAOBBAACswgAAgMAAADDCAACQwQAAyEEAAKDBAAD4QQAAoMEAAIDBAAAIwgAAnMIAAFBCAAAowgAABMIAAHBCAACgQQAAkEEAADTCAABAwAAALEIAAMBBAAA8QgAAEEEAAAhCAACQQQAAdMIAAPBBAAAEwgAAgMAAAABCAADgwAAAEEEAALjBAAAwwQAAkMIAAOBAAADowQAA2MEAAIhCAAAoQgAADEIAAETCAACgQQAAoMEAAJTCAABQwQAAgkIAAHxCAACgQAAAoEAAAIBCAABAwQAAFMIAAOBAAACgQAAAYEIAAEDBAAAAwQAAokIAADjCAAAkwgAAgMAAAAzCAAAQQQAAYEEAAIzCAADkQgAA6EEAALjBAACgwAAATMIAANjBAAAkQgAAsMEAAIA_AAA0wgAAPEIAAKBAAABQQSAAOBNACUh1UAEqjwIQABqAAgAAQLwAAAy-AAAcPgAALL4AAGQ-AACgvAAARL4AAEG_AAAwvQAAyL0AAKA8AADIvQAA4DwAABw-AAAcPgAAur4AAOg9AACYPQAArr4AAM4-AAB_PwAAij4AAEA8AAAsPgAAbD4AACS-AAC4PQAA-L0AAEw-AAD4PQAAXD4AAOC8AACOPgAA6L0AAEQ-AADovQAAZD4AAGS-AADCvgAAyD0AAHS-AACIPQAAjr4AAKK-AAC4vQAA4j4AALo-AAAQvQAAhr4AANK-AACIPQAAyL0AAFw-AAAsPgAAyL0AAOC8AAB1PwAALL4AAEw-AADqPgAAVD4AAAy-AACgPAAAPD4gADgTQAlIfFABKo8CEAEagAIAACy-AAAwvQAARL4AANK-AACovQAAUD0AACw-AAAEPgAAgDsAAAQ-AAB0vgAAyD0AAAw-AAAQPQAAuD0AABC9AADIvQAAMT8AALi9AAAJPwAAUD0AAJi9AABwvQAAgDsAALi9AAD4vQAAoj4AAMg9AACYPQAA6D0AAIC7AABQPQAAdL4AALi9AAAQvQAAoLwAADw-AACoPQAAXL4AABQ-AACAuwAABL4AABQ-AADYPQAAbD4AAEC8AAB_vwAADL4AADy-AAAwvQAAFL4AAOg9AADIvQAAuD0AAHQ-AAAcPgAAoLwAAOA8AADIPQAAjj4AABQ-AADYPQAAUD0AAJK-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=2JaTi_1hAhg","parent-reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11628773176569326539"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1077229275"}},"dups":{"15797355702921339774":{"videoId":"15797355702921339774","title":"\u0007[Python\u0007] Cumulative Sum per Group with \u0007[Pandas\u0007]","cleanTitle":"Python Cumulative Sum per Group with Pandas","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1tCbvYv_ibw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1tCbvYv_ibw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":518,"text":"8:38","a11yText":"Süre 8 dakika 38 saniye","shortText":"8 dk."},"views":{"text":"5,4bin","a11yText":"5,4 bin izleme"},"date":"25 eyl 2018","modifyTime":1537833600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1tCbvYv_ibw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1tCbvYv_ibw","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":518},"parentClipId":"15797355702921339774","href":"http://www.youtube.com/watch?v=1tCbvYv_ibw","rawHref":"/video/preview/15797355702921339774?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4690022766664769573":{"videoId":"4690022766664769573","title":"\u0007[Pandas\u0007] Tutorial : How to split columns of dataframe","cleanTitle":"Pandas Tutorial : How to split columns of dataframe","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cCoGsFVPVh0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cCoGsFVPVh0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":243,"text":"4:03","a11yText":"Süre 4 dakika 3 saniye","shortText":"4 dk."},"views":{"text":"17,7bin","a11yText":"17,7 bin izleme"},"date":"5 oca 2019","modifyTime":1546646400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cCoGsFVPVh0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cCoGsFVPVh0","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":243},"parentClipId":"4690022766664769573","href":"http://www.youtube.com/watch?v=cCoGsFVPVh0","rawHref":"/video/preview/4690022766664769573?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1564783305503615062":{"videoId":"1564783305503615062","title":"\u0007[Pandas\u0007] count values in a column of type list","cleanTitle":"Pandas count values in a column of type list","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=lx7KFd6BPcg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/lx7KFd6BPcg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":946,"text":"15:46","a11yText":"Süre 15 dakika 46 saniye","shortText":"15 dk."},"views":{"text":"2bin","a11yText":"2 bin izleme"},"date":"16 mar 2019","modifyTime":1552694400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/lx7KFd6BPcg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=lx7KFd6BPcg","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":946},"parentClipId":"1564783305503615062","href":"http://www.youtube.com/watch?v=lx7KFd6BPcg","rawHref":"/video/preview/1564783305503615062?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8747997297112882307":{"videoId":"8747997297112882307","title":"\u0007[Pandas\u0007] count and percentage by value for a column","cleanTitle":"Pandas count and percentage by value for a column","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=P5pxJkv71BU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/P5pxJkv71BU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":243,"text":"4:03","a11yText":"Süre 4 dakika 3 saniye","shortText":"4 dk."},"views":{"text":"15,4bin","a11yText":"15,4 bin izleme"},"date":"6 nis 2019","modifyTime":1554508800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/P5pxJkv71BU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=P5pxJkv71BU","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":243},"parentClipId":"8747997297112882307","href":"http://www.youtube.com/watch?v=P5pxJkv71BU","rawHref":"/video/preview/8747997297112882307?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5708144153368454758":{"videoId":"5708144153368454758","title":"\u0007[Python\u0007] \u0007[Pandas\u0007] 7 examples of filters and lambda apply","cleanTitle":"Python Pandas 7 examples of filters and lambda apply","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7nYkJctgSSA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7nYkJctgSSA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":291,"text":"4:51","a11yText":"Süre 4 dakika 51 saniye","shortText":"4 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"1 eyl 2018","modifyTime":1535760000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7nYkJctgSSA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7nYkJctgSSA","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":291},"parentClipId":"5708144153368454758","href":"http://www.youtube.com/watch?v=7nYkJctgSSA","rawHref":"/video/preview/5708144153368454758?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6854617396207543740":{"videoId":"6854617396207543740","title":"\u0007[Pandas\u0007] use a list of values to select rows from a column","cleanTitle":"Pandas use a list of values to select rows from a column","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=jlSbo5wmTPQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jlSbo5wmTPQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":433,"text":"7:13","a11yText":"Süre 7 dakika 13 saniye","shortText":"7 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"7 nis 2019","modifyTime":1554595200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jlSbo5wmTPQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jlSbo5wmTPQ","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":433},"parentClipId":"6854617396207543740","href":"http://www.youtube.com/watch?v=jlSbo5wmTPQ","rawHref":"/video/preview/6854617396207543740?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12156681734898204797":{"videoId":"12156681734898204797","title":"Map the headers to a column with \u0007[pandas\u0007]?","cleanTitle":"Map the headers to a column with pandas?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=3g6KG_8zq0E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3g6KG_8zq0E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":615,"text":"10:15","a11yText":"Süre 10 dakika 15 saniye","shortText":"10 dk."},"views":{"text":"1,7bin","a11yText":"1,7 bin izleme"},"date":"9 mar 2019","modifyTime":1552089600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3g6KG_8zq0E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3g6KG_8zq0E","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":615},"parentClipId":"12156681734898204797","href":"http://www.youtube.com/watch?v=3g6KG_8zq0E","rawHref":"/video/preview/12156681734898204797?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12892308147392684503":{"videoId":"12892308147392684503","title":"How to Optimize and Speed Up \u0007[Pandas\u0007]","cleanTitle":"How to Optimize and Speed Up Pandas","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nW5ltiwV-6Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nW5ltiwV-6Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":761,"text":"12:41","a11yText":"Süre 12 dakika 41 saniye","shortText":"12 dk."},"views":{"text":"4,3bin","a11yText":"4,3 bin izleme"},"date":"19 mar 2019","modifyTime":1552943836000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nW5ltiwV-6Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nW5ltiwV-6Y","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":761},"parentClipId":"12892308147392684503","href":"http://www.youtube.com/watch?v=nW5ltiwV-6Y","rawHref":"/video/preview/12892308147392684503?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11574804767142018509":{"videoId":"11574804767142018509","title":"Easily extract tables from websites with \u0007[pandas\u0007] and \u0007[python\u0007]","cleanTitle":"Easily extract tables from websites with pandas and python","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OXA_ZD1gR6A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OXA_ZD1gR6A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":705,"text":"11:45","a11yText":"Süre 11 dakika 45 saniye","shortText":"11 dk."},"views":{"text":"16,8bin","a11yText":"16,8 bin izleme"},"date":"5 şub 2019","modifyTime":1549324800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OXA_ZD1gR6A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OXA_ZD1gR6A","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":705},"parentClipId":"11574804767142018509","href":"http://www.youtube.com/watch?v=OXA_ZD1gR6A","rawHref":"/video/preview/11574804767142018509?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13722152198013702674":{"videoId":"13722152198013702674","title":"25. \u0007[Pandas\u0007]: Create A Matplotlib Scatterplot From A Dataframe","cleanTitle":"25. Pandas: Create A Matplotlib Scatterplot From A Dataframe","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DWhwQ1_oXnw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DWhwQ1_oXnw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":423,"text":"7:03","a11yText":"Süre 7 dakika 3 saniye","shortText":"7 dk."},"date":"19 mar 2020","modifyTime":1584643570000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DWhwQ1_oXnw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DWhwQ1_oXnw","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":423},"parentClipId":"13722152198013702674","href":"http://www.youtube.com/watch?v=DWhwQ1_oXnw","rawHref":"/video/preview/13722152198013702674?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2085791086707417704":{"videoId":"2085791086707417704","title":"\u0007[Python\u0007] Regular Expression Matching Multiline Comments and Docstrings","cleanTitle":"Python Regular Expression Matching Multiline Comments and Docstrings","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1_oeU4tAsIM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1_oeU4tAsIM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":292,"text":"4:52","a11yText":"Süre 4 dakika 52 saniye","shortText":"4 dk."},"date":"1 eyl 2019","modifyTime":1567296000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1_oeU4tAsIM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1_oeU4tAsIM","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":292},"parentClipId":"2085791086707417704","href":"http://www.youtube.com/watch?v=1_oeU4tAsIM","rawHref":"/video/preview/2085791086707417704?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5411503664160402905":{"videoId":"5411503664160402905","title":"\u0007[python\u0007] install \u0007[pandas\u0007] \u0007[linux\u0007]","cleanTitle":"python install pandas linux","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sW-G6ivU8s4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sW-G6ivU8s4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzF2TVlleUt4ZU9SeHVTQkp1X3hsdw==","name":"CodeLive","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=CodeLive","origUrl":"http://www.youtube.com/@CodeLive-","a11yText":"CodeLive. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":185,"text":"3:05","a11yText":"Süre 3 dakika 5 saniye","shortText":"3 dk."},"date":"18 şub 2024","modifyTime":1708214400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sW-G6ivU8s4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sW-G6ivU8s4","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":185},"parentClipId":"5411503664160402905","href":"http://www.youtube.com/watch?v=sW-G6ivU8s4","rawHref":"/video/preview/5411503664160402905?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15968327375634093840":{"videoId":"15968327375634093840","title":"\u0007[Python\u0007] group or sort list of lists by common element","cleanTitle":"Python group or sort list of lists by common element","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zVQJQxpedm8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zVQJQxpedm8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1004,"text":"16:44","a11yText":"Süre 16 dakika 44 saniye","shortText":"16 dk."},"views":{"text":"2,4bin","a11yText":"2,4 bin izleme"},"date":"21 şub 2019","modifyTime":1550707200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zVQJQxpedm8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zVQJQxpedm8","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":1004},"parentClipId":"15968327375634093840","href":"http://www.youtube.com/watch?v=zVQJQxpedm8","rawHref":"/video/preview/15968327375634093840?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16084559102957432310":{"videoId":"16084559102957432310","title":"\u0007[python\u0007] split string into list examples","cleanTitle":"python split string into list examples","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=T8EfomTlcfA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/T8EfomTlcfA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":404,"text":"6:44","a11yText":"Süre 6 dakika 44 saniye","shortText":"6 dk."},"views":{"text":"3,6bin","a11yText":"3,6 bin izleme"},"date":"17 ağu 2018","modifyTime":1534464000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/T8EfomTlcfA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=T8EfomTlcfA","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":404},"parentClipId":"16084559102957432310","href":"http://www.youtube.com/watch?v=T8EfomTlcfA","rawHref":"/video/preview/16084559102957432310?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2914404919708917106":{"videoId":"2914404919708917106","title":"\u0007[python\u0007] shuffle list","cleanTitle":"python shuffle list","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WFRBxz6AeZI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WFRBxz6AeZI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":223,"text":"3:43","a11yText":"Süre 3 dakika 43 saniye","shortText":"3 dk."},"views":{"text":"3,8bin","a11yText":"3,8 bin izleme"},"date":"14 mayıs 2018","modifyTime":1526256000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WFRBxz6AeZI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WFRBxz6AeZI","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":223},"parentClipId":"2914404919708917106","href":"http://www.youtube.com/watch?v=WFRBxz6AeZI","rawHref":"/video/preview/2914404919708917106?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10893694322601581276":{"videoId":"10893694322601581276","title":"Load multiple CSV files into a single Dataframe","cleanTitle":"Load multiple CSV files into a single Dataframe","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=30ndwJm1I5c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/30ndwJm1I5c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":590,"text":"9:50","a11yText":"Süre 9 dakika 50 saniye","shortText":"9 dk."},"views":{"text":"9bin","a11yText":"9 bin izleme"},"date":"9 şub 2019","modifyTime":1549670138000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/30ndwJm1I5c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=30ndwJm1I5c","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":590},"parentClipId":"10893694322601581276","href":"http://www.youtube.com/watch?v=30ndwJm1I5c","rawHref":"/video/preview/10893694322601581276?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2584590509853947860":{"videoId":"2584590509853947860","title":"How to merge multiple CSV files with \u0007[Python\u0007]","cleanTitle":"How to merge multiple CSV files with Python","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=V0KxE6AfodM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/V0KxE6AfodM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":263,"text":"4:23","a11yText":"Süre 4 dakika 23 saniye","shortText":"4 dk."},"views":{"text":"16,4bin","a11yText":"16,4 bin izleme"},"date":"2 oca 2020","modifyTime":1577923200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/V0KxE6AfodM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=V0KxE6AfodM","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":263},"parentClipId":"2584590509853947860","href":"http://www.youtube.com/watch?v=V0KxE6AfodM","rawHref":"/video/preview/2584590509853947860?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9225762296984234625":{"videoId":"9225762296984234625","title":"\u0007[Python\u0007] \u0007[Pandas\u0007] Tutorial (Part 6): Add/Remove Rows and Columns From DataFrames","cleanTitle":"Python Pandas Tutorial (Part 6): Add/Remove Rows and Columns From DataFrames","host":{"title":"YouTube","href":"http://www.youtube.com/live/HQ6XO9eT-fc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HQ6XO9eT-fc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQ2V6SWdDOTdQdlV1UjRfZ2JGVXM1Zw==","name":"Corey Schafer","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Corey+Schafer","origUrl":"http://www.youtube.com/@coreyms","a11yText":"Corey Schafer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1014,"text":"16:54","a11yText":"Süre 16 dakika 54 saniye","shortText":"16 dk."},"views":{"text":"314bin","a11yText":"314 bin izleme"},"date":"1 şub 2020","modifyTime":1580540400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HQ6XO9eT-fc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HQ6XO9eT-fc","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":1014},"parentClipId":"9225762296984234625","href":"http://www.youtube.com/live/HQ6XO9eT-fc","rawHref":"/video/preview/9225762296984234625?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11700078229563273860":{"videoId":"11700078229563273860","title":"\u0007[Python\u0007] \u0007[Pandas\u0007] Tutorial (Part 7): Sorting Data","cleanTitle":"Python Pandas Tutorial (Part 7): Sorting Data","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=T11QYVfZoD0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/T11QYVfZoD0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQ2V6SWdDOTdQdlV1UjRfZ2JGVXM1Zw==","name":"Corey Schafer","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Corey+Schafer","origUrl":"http://www.youtube.com/@coreyms","a11yText":"Corey Schafer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":939,"text":"15:39","a11yText":"Süre 15 dakika 39 saniye","shortText":"15 dk."},"views":{"text":"211,8bin","a11yText":"211,8 bin izleme"},"date":"6 şub 2020","modifyTime":1580999402000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/T11QYVfZoD0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=T11QYVfZoD0","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":939},"parentClipId":"11700078229563273860","href":"http://www.youtube.com/watch?v=T11QYVfZoD0","rawHref":"/video/preview/11700078229563273860?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14521922739199248243":{"videoId":"14521922739199248243","title":"\u0007[Python\u0007] \u0007[Pandas\u0007] Tutorial (Part 5): Updating Rows and Columns - Modifying Data Within DataFrame...","cleanTitle":"Python Pandas Tutorial (Part 5): Updating Rows and Columns - Modifying Data Within DataFrames","host":{"title":"YouTube","href":"http://www.youtube.com/live/DCDe29sIKcE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DCDe29sIKcE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQ2V6SWdDOTdQdlV1UjRfZ2JGVXM1Zw==","name":"Corey Schafer","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Corey+Schafer","origUrl":"http://www.youtube.com/@coreyms","a11yText":"Corey Schafer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2402,"text":"40:02","a11yText":"Süre 40 dakika 2 saniye","shortText":"40 dk."},"views":{"text":"457,4bin","a11yText":"457,4 bin izleme"},"date":"24 oca 2020","modifyTime":1579824000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DCDe29sIKcE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DCDe29sIKcE","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":2402},"parentClipId":"14521922739199248243","href":"http://www.youtube.com/live/DCDe29sIKcE","rawHref":"/video/preview/14521922739199248243?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11716599978107054446":{"videoId":"11716599978107054446","title":"\u0007[Python\u0007] \u0007[Pandas\u0007] Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Valu...","cleanTitle":"Python Pandas Tutorial (Part 9): Cleaning Data - Casting Datatypes and Handling Missing Values","host":{"title":"YouTube","href":"http://www.youtube.com/live/KdmPHEnPJPs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KdmPHEnPJPs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQ2V6SWdDOTdQdlV1UjRfZ2JGVXM1Zw==","name":"Corey Schafer","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Corey+Schafer","origUrl":"http://www.youtube.com/@coreyms","a11yText":"Corey Schafer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1913,"text":"31:53","a11yText":"Süre 31 dakika 53 saniye","shortText":"31 dk."},"views":{"text":"259,6bin","a11yText":"259,6 bin izleme"},"date":"24 şub 2020","modifyTime":1582552804000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KdmPHEnPJPs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KdmPHEnPJPs","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":1913},"parentClipId":"11716599978107054446","href":"http://www.youtube.com/live/KdmPHEnPJPs","rawHref":"/video/preview/11716599978107054446?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8210718368817714446":{"videoId":"8210718368817714446","title":"\u0007[Python\u0007] + \u0007[Pandas\u0007] Tutorial - (Pt.5) Rolling Filter","cleanTitle":"Python + Pandas Tutorial - (Pt.5) Rolling Filter","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=j_r3dJCSD2k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/j_r3dJCSD2k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMlcwYVFFUE5wVTZYcmtGQ1lpZlJGUQ==","name":"Mark Jay","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Mark+Jay","origUrl":"http://www.youtube.com/@MarkJay","a11yText":"Mark Jay. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":982,"text":"16:22","a11yText":"Süre 16 dakika 22 saniye","shortText":"16 dk."},"views":{"text":"9bin","a11yText":"9 bin izleme"},"date":"2 ara 2017","modifyTime":1512172800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/j_r3dJCSD2k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=j_r3dJCSD2k","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":982},"parentClipId":"8210718368817714446","href":"http://www.youtube.com/watch?v=j_r3dJCSD2k","rawHref":"/video/preview/8210718368817714446?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8179578966159366168":{"videoId":"8179578966159366168","title":"\u0007[Python\u0007] \u0007[Pandas\u0007] Tutorial (Part 4): Filtering - Using Conditionals to Filter Rows and Columns","cleanTitle":"Python Pandas Tutorial (Part 4): Filtering - Using Conditionals to Filter Rows and Columns","host":{"title":"YouTube","href":"http://www.youtube.com/live/Lw2rlcxScZY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Lw2rlcxScZY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQ2V6SWdDOTdQdlV1UjRfZ2JGVXM1Zw==","name":"Corey Schafer","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Corey+Schafer","origUrl":"http://www.youtube.com/@coreyms","a11yText":"Corey Schafer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1383,"text":"23:03","a11yText":"Süre 23 dakika 3 saniye","shortText":"23 dk."},"views":{"text":"505,8bin","a11yText":"505,8 bin izleme"},"date":"17 oca 2020","modifyTime":1579219200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Lw2rlcxScZY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Lw2rlcxScZY","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":1383},"parentClipId":"8179578966159366168","href":"http://www.youtube.com/live/Lw2rlcxScZY","rawHref":"/video/preview/8179578966159366168?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17838540055524678982":{"videoId":"17838540055524678982","title":"Merging DataFrames in \u0007[Pandas\u0007] | \u0007[Python\u0007] \u0007[Pandas\u0007] Tutorials","cleanTitle":"Merging DataFrames in Pandas | Python Pandas Tutorials","host":{"title":"YouTube","href":"http://www.youtube.com/live/TPivN7tpdwc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/TPivN7tpdwc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDN2NzOHEtZ0pSbEd3ajRBOE9tQ21YZw==","name":"Alex The Analyst","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Alex+The+Analyst","origUrl":"http://www.youtube.com/@AlexTheAnalyst","a11yText":"Alex The Analyst. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1328,"text":"22:08","a11yText":"Süre 22 dakika 8 saniye","shortText":"22 dk."},"views":{"text":"179,1bin","a11yText":"179,1 bin izleme"},"date":"2 mayıs 2023","modifyTime":1683029193000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/TPivN7tpdwc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=TPivN7tpdwc","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":1328},"parentClipId":"17838540055524678982","href":"http://www.youtube.com/live/TPivN7tpdwc","rawHref":"/video/preview/17838540055524678982?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2813130286715331788":{"videoId":"2813130286715331788","title":"\u0007[Python\u0007] \u0007[Pandas\u0007] - Combine 2 Columns of a DataFrame","cleanTitle":"Python Pandas - Combine 2 Columns of a DataFrame","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kJkNRbKzs6w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kJkNRbKzs6w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNFh0LURVQWFwQXRrZmFXV2t2NE9Bdw==","name":"Oggi AI - Artificial Intelligence Today","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Oggi+AI+-+Artificial+Intelligence+Today","origUrl":"http://www.youtube.com/@joejamesusa","a11yText":"Oggi AI - Artificial Intelligence Today. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":330,"text":"5:30","a11yText":"Süre 5 dakika 30 saniye","shortText":"5 dk."},"views":{"text":"29,9bin","a11yText":"29,9 bin izleme"},"date":"14 tem 2020","modifyTime":1594684800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kJkNRbKzs6w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kJkNRbKzs6w","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":330},"parentClipId":"2813130286715331788","href":"http://www.youtube.com/watch?v=kJkNRbKzs6w","rawHref":"/video/preview/2813130286715331788?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3098241893280506215":{"videoId":"3098241893280506215","title":"\u0007[Python\u0007] \u0007[Pandas\u0007]: Select, Slice & Filter Data rows & columns by Index or Conditionals","cleanTitle":"Python Pandas: Select, Slice & Filter Data rows & columns by Index or Conditionals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DCE6t3vNfvM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DCE6t3vNfvM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNFh0LURVQWFwQXRrZmFXV2t2NE9Bdw==","name":"Programming and Math Tutorials","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Programming+and+Math+Tutorials","origUrl":"http://www.youtube.com/@joejamesusa","a11yText":"Programming and Math Tutorials. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1478,"text":"24:38","a11yText":"Süre 24 dakika 38 saniye","shortText":"24 dk."},"views":{"text":"35,4bin","a11yText":"35,4 bin izleme"},"date":"15 haz 2020","modifyTime":1592251249000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DCE6t3vNfvM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DCE6t3vNfvM","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":1478},"parentClipId":"3098241893280506215","href":"http://www.youtube.com/watch?v=DCE6t3vNfvM","rawHref":"/video/preview/3098241893280506215?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1005924626098078530":{"videoId":"1005924626098078530","title":"How to Plot a Histogram with \u0007[Pandas\u0007] in \u0007[Python\u0007]","cleanTitle":"How to Plot a Histogram with Pandas in Python","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ra2pw0qKWvg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ra2pw0qKWvg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRkhlWTFhT3QtWTRGTFplR19JcEpDQQ==","name":"Erik Marsja","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Erik+Marsja","origUrl":"http://www.youtube.com/@ErikMarsja","a11yText":"Erik Marsja. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":244,"text":"4:04","a11yText":"Süre 4 dakika 4 saniye","shortText":"4 dk."},"views":{"text":"13,9bin","a11yText":"13,9 bin izleme"},"date":"14 şub 2020","modifyTime":1581683625000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ra2pw0qKWvg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ra2pw0qKWvg","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":244},"parentClipId":"1005924626098078530","href":"http://www.youtube.com/watch?v=ra2pw0qKWvg","rawHref":"/video/preview/1005924626098078530?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4152481358530839772":{"videoId":"4152481358530839772","title":"How to do "Left Join and Right Join" Dataframes with \u0007[Pandas\u0007] Merge and \u0007[Python\u0007]","cleanTitle":"How to do "Left Join and Right Join" Dataframes with Pandas Merge and Python","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2uU-EzbEKWw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2uU-EzbEKWw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDc3NkX2s5b1owQ3RDX2phZk14U1ZPUQ==","name":"TechEngineerSchool","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=TechEngineerSchool","origUrl":"http://www.youtube.com/@TechEngineerSchool","a11yText":"TechEngineerSchool. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":401,"text":"6:41","a11yText":"Süre 6 dakika 41 saniye","shortText":"6 dk."},"views":{"text":"3,2bin","a11yText":"3,2 bin izleme"},"date":"2 nis 2020","modifyTime":1585785600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2uU-EzbEKWw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2uU-EzbEKWw","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":401},"parentClipId":"4152481358530839772","href":"http://www.youtube.com/watch?v=2uU-EzbEKWw","rawHref":"/video/preview/4152481358530839772?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14090877751408616933":{"videoId":"14090877751408616933","title":"\u0007[pandas\u0007] histogram in \u0007[python\u0007]","cleanTitle":"pandas histogram in python","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QbenOJUiKzE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QbenOJUiKzE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNUU0YXBHRTlXT005YjBVYXlBbEMwUQ==","name":"CodeMake","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=CodeMake","origUrl":"http://www.youtube.com/@CodeMakes","a11yText":"CodeMake. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":160,"text":"2:40","a11yText":"Süre 2 dakika 40 saniye","shortText":"2 dk."},"date":"18 şub 2024","modifyTime":1708214400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QbenOJUiKzE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QbenOJUiKzE","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":160},"parentClipId":"14090877751408616933","href":"http://www.youtube.com/watch?v=QbenOJUiKzE","rawHref":"/video/preview/14090877751408616933?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17906915965363300048":{"videoId":"17906915965363300048","title":"\u0007[Python\u0007] \u0007[Pandas\u0007] Filter & Sort | \u0007[Python\u0007] \u0007[Pandas\u0007] | \u0007[Python\u0007] \u0007[Pandas\u0007] Filter | \u0007[P...","cleanTitle":"Python Pandas Filter & Sort | Python Pandas | Python Pandas Filter | Python Pandas Sort | Pandas","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hgYsBdOkHDY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hgYsBdOkHDY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLWt0NDlHMnU1WWVSNDJ3TEhvcktLdw==","name":"Anuurag Edlabadkar","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Anuurag+Edlabadkar","origUrl":"http://www.youtube.com/@anuuragedlabadkar6855","a11yText":"Anuurag Edlabadkar. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1282,"text":"21:22","a11yText":"Süre 21 dakika 22 saniye","shortText":"21 dk."},"date":"3 mar 2022","modifyTime":1646328435000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hgYsBdOkHDY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hgYsBdOkHDY","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":1282},"parentClipId":"17906915965363300048","href":"http://www.youtube.com/watch?v=hgYsBdOkHDY","rawHref":"/video/preview/17906915965363300048?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10177135887636997120":{"videoId":"10177135887636997120","title":"\u0007[Python\u0007]: write to sqlite database from \u0007[pandas\u0007] dataframe","cleanTitle":"Python: write to sqlite database from pandas dataframe","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YyUknBHcZB8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YyUknBHcZB8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQXZibm83Z25PSFVnSWY3SzZRd1VWUQ==","name":"Mark Keith","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Mark+Keith","origUrl":"http://www.youtube.com/@MarkKeith","a11yText":"Mark Keith. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":979,"text":"16:19","a11yText":"Süre 16 dakika 19 saniye","shortText":"16 dk."},"views":{"text":"13,4bin","a11yText":"13,4 bin izleme"},"date":"8 eyl 2021","modifyTime":1631059200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YyUknBHcZB8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YyUknBHcZB8","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":979},"parentClipId":"10177135887636997120","href":"http://www.youtube.com/watch?v=YyUknBHcZB8","rawHref":"/video/preview/10177135887636997120?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2425198842126478862":{"videoId":"2425198842126478862","title":"Running \u0007[Python\u0007] Script as a \u0007[Linux\u0007] Service","cleanTitle":"Running Python Script as a Linux Service","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hg-YWVz6J-Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hg-YWVz6J-Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDc0dMZXg4RHZOWDA1bUsxVlJVMWc1QQ==","name":"Tal Z","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Tal+Z","origUrl":"http://www.youtube.com/@talz8397","a11yText":"Tal Z. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1792,"text":"29:52","a11yText":"Süre 29 dakika 52 saniye","shortText":"29 dk."},"views":{"text":"7bin","a11yText":"7 bin izleme"},"date":"14 ağu 2021","modifyTime":1628899200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hg-YWVz6J-Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hg-YWVz6J-Y","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":1792},"parentClipId":"2425198842126478862","href":"http://www.youtube.com/watch?v=hg-YWVz6J-Y","rawHref":"/video/preview/2425198842126478862?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10762138478490024630":{"videoId":"10762138478490024630","title":"Filtering in \u0007[Pandas\u0007] is easy!","cleanTitle":"Filtering in Pandas is easy!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AdR_gx5Y4wE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AdR_gx5Y4wE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNFNWbzBVZTM2WENmT3liNUxoMXZpUQ==","name":"Bro Code","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Bro+Code","origUrl":"http://www.youtube.com/@BroCodez","a11yText":"Bro Code. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":390,"text":"6:30","a11yText":"Süre 6 dakika 30 saniye","shortText":"6 dk."},"views":{"text":"7,8bin","a11yText":"7,8 bin izleme"},"date":"8 eyl 2025","modifyTime":1757350271000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AdR_gx5Y4wE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AdR_gx5Y4wE","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":390},"parentClipId":"10762138478490024630","href":"http://www.youtube.com/watch?v=AdR_gx5Y4wE","rawHref":"/video/preview/10762138478490024630?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12309169677238325865":{"videoId":"12309169677238325865","title":"Schedule A \u0007[Python\u0007] Script with \u0007[Linux\u0007] Crontab","cleanTitle":"Schedule A Python Script with Linux Crontab","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=j-KgGVbyU08","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/j-KgGVbyU08?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS1E5dGFrQjJ5RkF4UURKVlF2S1ZJZw==","name":"Ali Younes","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Ali+Younes","origUrl":"http://www.youtube.com/@AliYounes_conf_t","a11yText":"Ali Younes. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":269,"text":"4:29","a11yText":"Süre 4 dakika 29 saniye","shortText":"4 dk."},"views":{"text":"14,5bin","a11yText":"14,5 bin izleme"},"date":"24 ağu 2020","modifyTime":1598227200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/j-KgGVbyU08?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=j-KgGVbyU08","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":269},"parentClipId":"12309169677238325865","href":"http://www.youtube.com/watch?v=j-KgGVbyU08","rawHref":"/video/preview/12309169677238325865?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3274924830062823712":{"videoId":"3274924830062823712","title":"\u0007[Python\u0007] Plotting Tutorial w/ Matplotlib & \u0007[Pandas\u0007] (Line Graph, Histogram, Pie Chart, Box &...","cleanTitle":"Python Plotting Tutorial w/ Matplotlib & Pandas (Line Graph, Histogram, Pie Chart, Box & Whiskers)","host":{"title":"YouTube","href":"http://www.youtube.com/live/0P7QnIQDBJY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0P7QnIQDBJY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcTZYa2hPNVNaNjZOMDRJY1BicU5jdw==","name":"Keith Galli","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Keith+Galli","origUrl":"http://www.youtube.com/@KeithGalli","a11yText":"Keith Galli. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3690,"text":"1:01:30","a11yText":"Süre 1 saat 1 dakika 30 saniye","shortText":"1 sa. 1 dk."},"views":{"text":"342,3bin","a11yText":"342,3 bin izleme"},"date":"6 haz 2019","modifyTime":1559779200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0P7QnIQDBJY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0P7QnIQDBJY","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":3690},"parentClipId":"3274924830062823712","href":"http://www.youtube.com/live/0P7QnIQDBJY","rawHref":"/video/preview/3274924830062823712?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5897512234853138329":{"videoId":"5897512234853138329","title":"\u0007[Python\u0007] Tutorial: Type \u0007[Hints\u0007] - From Basic Annotations to Advanced Generics","cleanTitle":"Python Tutorial: Type Hints - From Basic Annotations to Advanced Generics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RwH2UzC2rIo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RwH2UzC2rIo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQ2V6SWdDOTdQdlV1UjRfZ2JGVXM1Zw==","name":"Corey Schafer","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Corey+Schafer","origUrl":"http://www.youtube.com/@coreyms","a11yText":"Corey Schafer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2459,"text":"40:59","a11yText":"Süre 40 dakika 59 saniye","shortText":"40 dk."},"views":{"text":"34,1bin","a11yText":"34,1 bin izleme"},"date":"17 tem 2025","modifyTime":1752759373000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RwH2UzC2rIo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RwH2UzC2rIo","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":2459},"parentClipId":"5897512234853138329","href":"http://www.youtube.com/watch?v=RwH2UzC2rIo","rawHref":"/video/preview/5897512234853138329?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2742133624125496185":{"videoId":"2742133624125496185","title":"How To Schedule \u0007[Python\u0007] Scripts As Cron Jobs With Crontab (Mac/\u0007[Linux\u0007]) - \u0007[Python\u0007] Task Autom...","cleanTitle":"How To Schedule Python Scripts As Cron Jobs With Crontab (Mac/Linux) - Python Task Automation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5bTkiV_Aadc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5bTkiV_Aadc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYlhnTnBwMGplZEtXY1FpVUxMYkRUQQ==","name":"Patrick Loeber","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Patrick+Loeber","origUrl":"http://www.youtube.com/@patloeber","a11yText":"Patrick Loeber. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1002,"text":"16:42","a11yText":"Süre 16 dakika 42 saniye","shortText":"16 dk."},"views":{"text":"69,4bin","a11yText":"69,4 bin izleme"},"date":"7 oca 2021","modifyTime":1609977600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5bTkiV_Aadc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5bTkiV_Aadc","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":1002},"parentClipId":"2742133624125496185","href":"http://www.youtube.com/watch?v=5bTkiV_Aadc","rawHref":"/video/preview/2742133624125496185?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13297521790081125104":{"videoId":"13297521790081125104","title":"Stop \u0007[Python\u0007] crashing when you try to open a file ... #shorts #\u0007[python\u0007] #\u0007[linux\u0007] #windows #ap...","cleanTitle":"Stop Python crashing when you try to open a file ... #shorts #python #linux #windows #apple","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=wXIvqwOOSbc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/wXIvqwOOSbc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDdXbVFfVTRHQjNLNTFPZDlRdk0wdw==","name":"David Bombal","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=David+Bombal","origUrl":"http://www.youtube.com/@davidbombal","a11yText":"David Bombal. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":60,"text":"1:00","a11yText":"Süre 1 dakika","shortText":"1 dk."},"views":{"text":"54,3bin","a11yText":"54,3 bin izleme"},"date":"31 tem 2024","modifyTime":1722436135000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/wXIvqwOOSbc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=wXIvqwOOSbc","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":60},"parentClipId":"13297521790081125104","href":"http://www.youtube.com/watch?v=wXIvqwOOSbc","rawHref":"/video/preview/13297521790081125104?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2228646437506862105":{"videoId":"2228646437506862105","title":"Install \u0007[Python\u0007] (3.X or 2.X) from source code on \u0007[Linux\u0007] (Centos6/7/8 or Rhel6/7/8)","cleanTitle":"Install Python (3.X or 2.X) from source code on Linux (Centos6/7/8 or Rhel6/7/8)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-nejVRZ8wXM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-nejVRZ8wXM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR2NqYnhaV3pMNEtnTXRjeURCRV9KZw==","name":"DIT Evolution","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=DIT+Evolution","origUrl":"http://www.youtube.com/@DITEvolution","a11yText":"DIT Evolution. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":367,"text":"6:07","a11yText":"Süre 6 dakika 7 saniye","shortText":"6 dk."},"views":{"text":"6,5bin","a11yText":"6,5 bin izleme"},"date":"7 mayıs 2022","modifyTime":1651881600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-nejVRZ8wXM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-nejVRZ8wXM","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":367},"parentClipId":"2228646437506862105","href":"http://www.youtube.com/watch?v=-nejVRZ8wXM","rawHref":"/video/preview/2228646437506862105?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13380767496200438439":{"videoId":"13380767496200438439","title":"Unix & \u0007[Linux\u0007]: Difficulty installing cx_Freeze for \u0007[Python\u0007] 3.3","cleanTitle":"Unix & Linux: Difficulty installing cx_Freeze for Python 3.3","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QD3BBCgFpq4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QD3BBCgFpq4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUEYtb1liMi14TjVGYkNYeTAxNjdHZw==","name":"Roel Van de Paar","isVerified":true,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Roel+Van+de+Paar","origUrl":"http://www.youtube.com/@RoelVandePaar","a11yText":"Roel Van de Paar. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":70,"text":"1:10","a11yText":"Süre 1 dakika 10 saniye","shortText":"1 dk."},"date":"1 eyl 2020","modifyTime":1598918400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QD3BBCgFpq4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QD3BBCgFpq4","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":70},"parentClipId":"13380767496200438439","href":"http://www.youtube.com/watch?v=QD3BBCgFpq4","rawHref":"/video/preview/13380767496200438439?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"996738562123215522":{"videoId":"996738562123215522","title":"\u0007[python\u0007] run system command \u0007[linux\u0007]","cleanTitle":"python run system command linux","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1rBane0SdsI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1rBane0SdsI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeElGZnc2UXVDNF9zWlQ4Vlg4NXB5Zw==","name":"CodeCraze","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=CodeCraze","origUrl":"http://www.youtube.com/@CodeCraze-tx3ee","a11yText":"CodeCraze. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":164,"text":"2:44","a11yText":"Süre 2 dakika 44 saniye","shortText":"2 dk."},"date":"21 oca 2024","modifyTime":1705866902000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1rBane0SdsI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1rBane0SdsI","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":164},"parentClipId":"996738562123215522","href":"http://www.youtube.com/watch?v=1rBane0SdsI","rawHref":"/video/preview/996738562123215522?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16257130570718559061":{"videoId":"16257130570718559061","title":"Getting Started with \u0007[Python\u0007] on \u0007[Linux\u0007] - \u0007[Pandas\u0007] - Simple Example [\u0007[Python\u0007]]","cleanTitle":"Getting Started with Python on Linux - Pandas - Simple Example [Python]","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FgjTiLHwa0I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FgjTiLHwa0I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTGd2WmFJcEZQMjBuMGJfOEFVZHFqdw==","name":"Products Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Products+Explorer","origUrl":"http://www.youtube.com/@products-explorer","a11yText":"Products Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":544,"text":"9:04","a11yText":"Süre 9 dakika 4 saniye","shortText":"9 dk."},"date":"2 nis 2020","modifyTime":1585784533000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FgjTiLHwa0I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FgjTiLHwa0I","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":544},"parentClipId":"16257130570718559061","href":"http://www.youtube.com/watch?v=FgjTiLHwa0I","rawHref":"/video/preview/16257130570718559061?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17113424891836532083":{"videoId":"17113424891836532083","title":"\u0007[python\u0007] string split by separator","cleanTitle":"python string split by separator","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=iBsg75W2Vig","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iBsg75W2Vig?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":201,"text":"3:21","a11yText":"Süre 3 dakika 21 saniye","shortText":"3 dk."},"views":{"text":"1,8bin","a11yText":"1,8 bin izleme"},"date":"28 şub 2018","modifyTime":1519833567000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iBsg75W2Vig?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iBsg75W2Vig","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":201},"parentClipId":"17113424891836532083","href":"http://www.youtube.com/watch?v=iBsg75W2Vig","rawHref":"/video/preview/17113424891836532083?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13901289731968769500":{"videoId":"13901289731968769500","title":"\u0007[python\u0007] script to restart service in \u0007[linux\u0007]","cleanTitle":"python script to restart service in linux","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=EpnUPzPH2HQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/EpnUPzPH2HQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbEpHaGlpMU1XN1h6NmpaZDgzWXdxQQ==","name":"CodeMade","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=CodeMade","origUrl":"http://www.youtube.com/@CodeMade","a11yText":"CodeMade. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":168,"text":"2:48","a11yText":"Süre 2 dakika 48 saniye","shortText":"2 dk."},"date":"16 şub 2024","modifyTime":1708041600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/EpnUPzPH2HQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=EpnUPzPH2HQ","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":168},"parentClipId":"13901289731968769500","href":"http://www.youtube.com/watch?v=EpnUPzPH2HQ","rawHref":"/video/preview/13901289731968769500?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11513031006369495557":{"videoId":"11513031006369495557","title":"How to Install \u0007[Pandas\u0007] in \u0007[Python\u0007]","cleanTitle":"How to Install Pandas in Python","host":{"title":"YouTube","href":"http://www.youtube.com/v/8Sipkd9vNKk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8Sipkd9vNKk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRkhlWTFhT3QtWTRGTFplR19JcEpDQQ==","name":"Erik Marsja","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Erik+Marsja","origUrl":"http://www.youtube.com/@ErikMarsja","a11yText":"Erik Marsja. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":269,"text":"4:29","a11yText":"Süre 4 dakika 29 saniye","shortText":"4 dk."},"views":{"text":"196,7bin","a11yText":"196,7 bin izleme"},"date":"15 tem 2018","modifyTime":1531612800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8Sipkd9vNKk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8Sipkd9vNKk","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":269},"parentClipId":"11513031006369495557","href":"http://www.youtube.com/v/8Sipkd9vNKk","rawHref":"/video/preview/11513031006369495557?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14289329508133966607":{"videoId":"14289329508133966607","title":"22. \u0007[Pandas\u0007]: How to filter results of value_counts?","cleanTitle":"22. Pandas: How to filter results of value_counts?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OR36conyfTc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OR36conyfTc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzVydlBfRDczNW9TQmF0ZGNINVpGQQ==","name":"Softhints - Python, Linux, Pandas","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","origUrl":"http://www.youtube.com/@softhints","a11yText":"Softhints - Python, Linux, Pandas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":351,"text":"5:51","a11yText":"Süre 5 dakika 51 saniye","shortText":"5 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"13 oca 2020","modifyTime":1578873600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OR36conyfTc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OR36conyfTc","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":351},"parentClipId":"14289329508133966607","href":"http://www.youtube.com/watch?v=OR36conyfTc","rawHref":"/video/preview/14289329508133966607?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4499742001458970208":{"videoId":"4499742001458970208","title":"How to run \u0007[Python\u0007] scripts in \u0007[Linux\u0007]","cleanTitle":"How to run Python scripts in Linux","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=asnGiNwo4RU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/asnGiNwo4RU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUUpXOTVmSUoxT1hvZTJtR0ctODVnUQ==","name":"Pavak Paul","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Pavak+Paul","origUrl":"http://www.youtube.com/@PavakPaul","a11yText":"Pavak Paul. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":288,"text":"4:48","a11yText":"Süre 4 dakika 48 saniye","shortText":"4 dk."},"views":{"text":"79,3bin","a11yText":"79,3 bin izleme"},"date":"12 haz 2016","modifyTime":1465689600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/asnGiNwo4RU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=asnGiNwo4RU","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":288},"parentClipId":"4499742001458970208","href":"http://www.youtube.com/watch?v=asnGiNwo4RU","rawHref":"/video/preview/4499742001458970208?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11628773176569326539":{"videoId":"11628773176569326539","title":"\u0007[Python\u0007] 3 \u0007[Pandas\u0007] Script to Convert Text File TXT to CSV File Full Project For Beginners","cleanTitle":"Python 3 Pandas Script to Convert Text File TXT to CSV File Full Project For Beginners","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2JaTi_1hAhg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2JaTi_1hAhg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUjZkMEVpQzNHNFdBOC1ScWppNmE4Zw==","name":"Coding Shiksha","isVerified":false,"subscribersCount":0,"url":"/video/search?promo=pumpkin&text=Coding+Shiksha","origUrl":"http://www.youtube.com/@CodingShiksha","a11yText":"Coding Shiksha. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":261,"text":"4:21","a11yText":"Süre 4 dakika 21 saniye","shortText":"4 dk."},"views":{"text":"13,8bin","a11yText":"13,8 bin izleme"},"date":"11 şub 2021","modifyTime":1613032736000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2JaTi_1hAhg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2JaTi_1hAhg","reqid":"1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL","duration":261},"parentClipId":"11628773176569326539","href":"http://www.youtube.com/watch?v=2JaTi_1hAhg","rawHref":"/video/preview/11628773176569326539?parent-reqid=1770764921313292-752861703130235333-balancer-l7leveler-kubr-yp-sas-196-BAL&promo=pumpkin&text=Softhints+-+Python%2C+Linux%2C+Pandas","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0xd5172ed42e0","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"7528617031302353337196","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Softhints - Python, Linux, Pandas","queryUriEscaped":"Softhints%20-%20Python%2C%20Linux%2C%20Pandas","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}