{"pages":{"search":{"query":"1/N","originalQuery":"1/N","serpid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","parentReqid":"","serpItems":[{"id":"4134622419284279170-0-0","type":"videoSnippet","props":{"videoId":"4134622419284279170"},"curPage":0},{"id":"7565213160852847585-0-1","type":"videoSnippet","props":{"videoId":"7565213160852847585"},"curPage":0},{"id":"8823071975235908055-0-2","type":"videoSnippet","props":{"videoId":"8823071975235908055"},"curPage":0},{"id":"441276524147351745-0-3","type":"videoSnippet","props":{"videoId":"441276524147351745"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dDEvTgo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","ui":"desktop","yuid":"5014245231769519748"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"8883190756721679698-0-5","type":"videoSnippet","props":{"videoId":"8883190756721679698"},"curPage":0},{"id":"13791403985441730808-0-6","type":"videoSnippet","props":{"videoId":"13791403985441730808"},"curPage":0},{"id":"689576405884987124-0-7","type":"videoSnippet","props":{"videoId":"689576405884987124"},"curPage":0},{"id":"12342526334236678473-0-8","type":"videoSnippet","props":{"videoId":"12342526334236678473"},"curPage":0},{"id":"14684404978834622936-0-9","type":"videoSnippet","props":{"videoId":"14684404978834622936"},"curPage":0},{"id":"11326497938724186306-0-10","type":"videoSnippet","props":{"videoId":"11326497938724186306"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dDEvTgo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","ui":"desktop","yuid":"5014245231769519748"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"12686427269631730422-0-12","type":"videoSnippet","props":{"videoId":"12686427269631730422"},"curPage":0},{"id":"18318416703157781796-0-13","type":"videoSnippet","props":{"videoId":"18318416703157781796"},"curPage":0},{"id":"4532981024393830620-0-14","type":"videoSnippet","props":{"videoId":"4532981024393830620"},"curPage":0},{"id":"13554085402586357420-0-15","type":"videoSnippet","props":{"videoId":"13554085402586357420"},"curPage":0},{"id":"4546708299032047775-0-16","type":"videoSnippet","props":{"videoId":"4546708299032047775"},"curPage":0},{"id":"8757757928739608711-0-17","type":"videoSnippet","props":{"videoId":"8757757928739608711"},"curPage":0},{"id":"14804681058292170072-0-18","type":"videoSnippet","props":{"videoId":"14804681058292170072"},"curPage":0},{"id":"6307263209824668076-0-19","type":"videoSnippet","props":{"videoId":"6307263209824668076"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dDEvTgo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","ui":"desktop","yuid":"5014245231769519748"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3D1%252FN"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"7501718262231171856798","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472346,0,26;1466867,0,75;1457616,0,48;1186711,0,57;1473738,0,93;1424968,0,84;1472056,0,12;1460923,0,17;1459297,0,5;1152685,0,16;1472029,0,28;1383554,0,11;1469892,0,20;123850,0,95;1461712,0,20;1470249,0,30;1470224,0,22;1373787,0,41;1466295,0,41;1465943,0,32;1468618,0,65;1471919,0,34;90500,0,12;1404017,0,42;1466270,0,93;45963,0,0;1470316,0,38;1145208,0,99;1470414,0,35;151171,0,95;128381,0,31;1281084,0,45;287509,0,67;1447467,0,37;1006026,0,31;1466397,0,64"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3D1%252FN","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=1%2FN","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=1%2FN","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"1/N: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"1/N\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"1/N — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y075a20928a13725fbbb75c7593bcf666","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472346,1466867,1457616,1186711,1473738,1424968,1472056,1460923,1459297,1152685,1472029,1383554,1469892,123850,1461712,1470249,1470224,1373787,1466295,1465943,1468618,1471919,90500,1404017,1466270,45963,1470316,1145208,1470414,151171,128381,1281084,287509,1447467,1006026,1466397","queryText":"1/N","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"5014245231769519748","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769519765","tz":"America/Louisville","to_iso":"2026-01-27T08:16:05-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472346,1466867,1457616,1186711,1473738,1424968,1472056,1460923,1459297,1152685,1472029,1383554,1469892,123850,1461712,1470249,1470224,1373787,1466295,1465943,1468618,1471919,90500,1404017,1466270,45963,1470316,1145208,1470414,151171,128381,1281084,287509,1447467,1006026,1466397","queryText":"1/N","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"5014245231769519748","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"7501718262231171856798","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":158,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"5014245231769519748","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"4134622419284279170":{"videoId":"4134622419284279170","docid":"34-7-4-Z08708913A878576A","description":"Selamlar, bu videoda fazlasıyla kullandığımız 1+2+3+...+n ifadesinin tümevarımla gösterimini sizlerle de paylaşmak istedim. Ardından aritmetik dizilerdeki karşılığını da aktardım. Bu formülü...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3072802/afa9de8e55474bca1102311ce0ea4f8d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/OGs34QEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"isFull":true,"fullTextUrl":"/video/result?ask_summarization=1&numdoc=1&noreask=1&nomisspell=1&parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=videoid:4134622419284279170","teaser":[{"list":{"type":"unordered","items":["Bu video, bir eğitmen tarafından sunulan matematik eğitim içeriğidir.","Videoda, tüme varım metodu kullanılarak doğal sayıların toplamının n(n+1)/2 formülüyle hesaplandığı ispatlanmaktadır. İlk bölümde tüme varım metodunun temel prensipleri açıklanıp, 1'den n'ye kadar olan sayıların toplamının formülle sağlandığı gösterilmektedir. İkinci bölümde ise aritmetik dizilerde terimler arası fark, artış miktarı ve toplam formülleri detaylı olarak anlatılmaktadır.","Video sonunda eğitmen, izleyicilere 1'den n'ye kadar olan sayıların karelerinin toplamının formülünü tüme varım yöntemiyle göstermelerini ödev olarak vermektedir."]},"endTime":620,"title":"Tüme Varım Metodu ile Toplam Formülleri","beginTime":0}],"fullResult":[{"index":0,"title":"Tüme Varım Yöntemi ve Ödev","list":{"type":"unordered","items":["Geçen videoda, 1'den n'ye kadar olan doğal sayıların toplamının n×(n+1)/2 formülüyle hesaplandığını tüme varım yöntemiyle ispatlamak ödevi verilmişti.","Tüme varım yöntemi, bir formülün aldığımız her değer için sağlandığını göstererek, tüm değerler için geçerli olduğunu kanıtlama yöntemidir.","Bu videoda tüme varım yöntemi kullanılarak ödevin çözümü gösterilecek ve sonunda yeni bir ödev bırakılacaktır."]},"beginTime":0,"endTime":44,"href":"/video/preview/4134622419284279170?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=0&ask_summarization=1"},{"index":1,"title":"Tüme Varım Yönteminin Uygulanması","list":{"type":"unordered","items":["İspat için önce n=1 ve n=2 değerleri için formülün doğruluğu kontrol edilir: 1'den 1'e kadar toplam 1, formülde 1×2/2=1; 1'den 2'ye kadar toplam 3, formülde 2×3/2=3 olarak hesaplanır.","Keyfi bir k değeri için formülün doğru kabul edilir: 1'den k'ye kadar toplam k×(k+1)/2 olarak varsayılır.","Bu varsayımdan sonra, k+1 değeri için formülün de doğru olduğu gösterilir: 1'den k+1'e kadar toplam k×(k+1)/2 + (k+1) = (k+1)×(k+2)/2 olarak hesaplanır."]},"beginTime":44,"endTime":233,"href":"/video/preview/4134622419284279170?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=44&ask_summarization=1"},{"index":2,"title":"Sonuç ve Ek Bilgi","list":{"type":"unordered","items":["Tüme varım yöntemiyle 1'den n'ye kadar olan sayıların toplamının n×(n+1)/2 formülüyle hesaplandığı ispatlanmıştır.","Bu toplam formülü aslında aritmetik dizilerde toplam hesaplamak için kullanılır.","Aritmetik dizi, artış miktarı değişmeden artan ifadelerin dizisidir ve örneğin 1, 4, 7, 10 gibi 3'er 3'er artan bir dizi de aritmetik dizidir."]},"beginTime":233,"endTime":269,"href":"/video/preview/4134622419284279170?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=233&ask_summarization=1"},{"index":3,"title":"Aritmetik Dizilerde Artış Miktarı","list":{"type":"unordered","items":["Aritmetik dizilerde tüm terimler arası fark aynıdır, örneğin 1234 dizisinde fark 1'dir.","Birinci ile üçüncü terim toplanıp ikiye bölüldüğünde veya üçüncü terimden birinci terim çıkarılıp ikiye bölüldüğünde artış miktarı bulunur.","Herhangi bir terimden ilk terim çıkarılıp terim sayısının farkı ile bölündüğünde de artış miktarı (r) bulunur."]},"beginTime":272,"endTime":358,"href":"/video/preview/4134622419284279170?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=272&ask_summarization=1"},{"index":4,"title":"Aritmetik Dizinin Toplam Formülü","list":{"type":"unordered","items":["Aritmetik dizinin terimleri a₁, a₁+r, a₁+2r, ..., a₁+(n-1)r şeklinde yazılabilir.","Dizinin toplamı için n tane a₁ ve 1'den n-1'e kadar olan sayıların toplamı ile r çarpımı alınır.","Toplam formülü S = n/2 × (a₁ + aₙ) olarak hesaplanır, yani terim sayısının yarısı ile ilk terim ve son terimin toplamının çarpımıdır."]},"beginTime":358,"endTime":515,"href":"/video/preview/4134622419284279170?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=358&ask_summarization=1"},{"index":5,"title":"Örnek ve Ödev","list":{"type":"unordered","items":["Gauss'ın toplama yöntemi ile 1'den n'ye kadar olan sayıların toplamı n(n+1)/2 olarak bulunur.","Ödev olarak 1²+2²+3²+...+n² formülünün n(n+1)(2n+1)/6 olduğunu tümevarımla gösterme isteniyor."]},"beginTime":515,"endTime":612,"href":"/video/preview/4134622419284279170?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=515&ask_summarization=1"}],"linkTemplate":"/video/preview/4134622419284279170?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"1+2+3+...+n","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qhC9ZqKvrHk\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhUKEzQxMzQ2MjI0MTkyODQyNzkxNzBaEzQxMzQ2MjI0MTkyODQyNzkxNzBqiBcSATAYACJFGjEACipoaGlvcnpnZ3Z5YmN0d21jaGhVQ1M4LUlrblFkNVJCdGt4QWVucTRTLWcSAgASKhDCDw8aDz8T7ASCBCQBgAQrKosBEAEaeIH2-gL-AQAA8wQFAfkE_wHwCvfx-f39AAj_9_4DA_8A8ff8DgUAAAD9GfwFAwAAAAMB-QXy_gEA-vcD-AIAAAAA9_wBAQAAAA8A-wb-AQAA__UECAT_AAD-9gAN_wAAAO4TBQIJ8-4LABL8_wEAAAD06_z4AAAAACAALa0-0Ts4E0AJSE5QAiqEAhAAGvABVg0J_L3e6P_fJe8A2zL9AIEKLf8fKd8A2vP1_9IG3gHiExX_ANMDAO4F8ADtKA3_5evD_wTFFv8wtw0CM_PeACQDAQAn1wsAZOgRAPkS8__GEzsBEvgh_xjxwv8cHNwAGAAU_h7m6wL18toGNtEpAicSPAAG5wn_8AcNAv_9Bwbi9db9_O7tBfriC_7qFz0B7tD3Ad3s5APjBPEBFtrOAwsACQYFOPkBM-rtCP7x9gex7_f98-jiCTMWDwLmAu4I_tIW9bHZ-gXoDQQBHPX2AdIh-vYktvoKJAj8Bh8QDvHwwvft5xrxBesL6QfQ6A37IAAtUCMNOzgTQAlIYVACKs8HEAAawAcSg-C-T_3ovPwiXD2p9xS8RCXDu3cuzLzjoLm9HG2LPF4FI7weT-s92p-FvXMzt7zRrlK-n2SBPS6ujDzFVYU-VDBvvZt_Kryo2OI8yzF0PaAb9byOQKy9ofEpPZqpmLt22mA79tEpPXIojbyg4tg9YTyevMVPiLwJzKm9VMMDvWjDK7xbC249hA3vvfc46jk39Hu9XGFRO90se7vtWiy95cQIPVXHhbxw8Yu87NiMukMiyDl3CL29-BJvPb3jFL2CQsg92hPuPCLY3TwEdnC9XqxePKjrpLxvLyk9eNwmvbO9DDwHJGE8MdC1PACmMbx7Mlo9IhZWvFzbJbxlF1y-eKeMPCgEvLsXQN871PscPVRxYzwY0gG-SYOrPZYmJbwy9ZQ9U0fqua6OEr2E7Uw95PNqPVSQ-jyXsxI94V0OvfCeBzsk0Q28mWgrPViQZjxyyyK9hmMMvUgiqryWWak8ogGGPMA9sjtZJFe9--Z-vP2FgTsgiwO9O_AbPbRMELzDeBK9Xuh7vZ-dBLxFXKU8c7j2veQENzyZIX-9ecrNu0XahrwdbcE9OWkQPS4Ff7zkLEw-6lePvQMMhTverAE9LNKZvab0irs9kXE9-GEuvfnmirsZgUK9I7EOvTFSGLy_a6e7OsO5PNY1f7yeOpC9kx2LPej2krvzcW28lM6wuyk7ojt1oq49xs2fPDcu57vt1Aw-IdS7PI6mC7gW65o9Eav_vWzXAboBZXg8PDQHvVOCObov6d68jfDWvX2NTjnudJw9rOLNvSr_vTkcYnc9565ju9YUtLmpKJi9_fEDPctFfTi19I08cJjovGug4jeJD7e9t0K4vTFCuji8Uwa9dhx4OsvE9jnQ4Ss9X2InPSbsvLnljJK9k7kDveN9nrmB_eG8wCgcvDVqsTcUfK49K8KNPeBkZTi81EO9QVgVu7lI5reNDqc7BUOpu9A4Mbm8L528i4GfPdKubDfAlYm6RGN3vV7cFbiSWug8i_GrPbob1jfs7SA9aojouwsOQ7jBWJ89CxmePb0ZIzhhfIc9kvMTPCsCYbjI6wE-VtGEPPBeg7gKu2i9RTCZPUe8wjiE8l69X4C3O6olGDi3aeI8mk6hvOE9sLg9Tke9MX9gPAnasTj3ASg-cGHdvfFnv7luHmK9sSuyvRO_v7iJn_u7ZoFbvUxl8LdNNyS9jbvMPazuDjfk1Z68eonxvWVVMLgi_-w9NSkFPvN-W7isBEa9ESUwPQ9ys7g3NY46goFRPZUsRjeVEbK8ZTCrPIsVjzYgADgTQAlIbVABKnMQABpgJwEAJ-tC6xDuHRcKAyQnzbTeCR__AwDR7wD2GucLJRnX1CXvAA78_eWxAAAA_fXsGBMA_WPr2wsh4_TG8bUJ9wZ_KQUL1MoIANPqRQfvVOMS7P0ZAAvfwg4jvqI2UvYfIAAttDsvOzgTQAlIb1ACKq8GEAwaoAYAAIxCAAAcwgAAjEIAABzCAAAAQAAAAMIAADRCAAAAQAAAGMIAALBBAAAAwgAA2EEAAKBAAACAwQAAPEIAAIC_AACIwgAAmMEAAKDAAACawgAAXEIAALhBAAAYwgAAHEIAAKBAAABAQAAAkMIAACBBAABEQgAALEIAAMDBAAAQwgAA-MEAAIBAAAAEwgAAYEIAAIC_AABQQgAAoEEAAMBAAABQwQAAsEEAAFRCAAC4wQAAAMAAAIDAAABkQgAAGEIAAPBBAAA8wgAAwMEAAARCAADoQQAA4MAAADjCAABgQQAAoEEAAIhBAAA4QgAAnEIAADDBAABgwgAAsMEAAOjBAACYwQAATMIAAJjBAABgwgAAgMEAAEBAAAAAQgAAlEIAAK7CAABYQgAACEIAANLCAADQwQAAYEIAAADCAAAAwQAAtsIAAARCAAAYQgAAqEEAACBCAAAYQgAAqMEAACBBAAB4QgAAAEIAAIBAAACSQgAAOEIAAMbCAACAwAAAQMAAAGjCAACIQQAAEEIAALBBAAAswgAAikIAADBBAABQQQAAssIAAAAAAABwQQAAgEIAAFBBAAAEQgAAWEIAAGhCAACAvwAA4MAAABBCAACoQgAA4MAAAKjBAAAQQQAALMIAADhCAABQwQAANMIAAIDBAAAUQgAA0MEAAIBBAACIQQAALMIAAARCAAAYwgAA0MEAAAxCAACgQgAADMIAAGBBAAAwQQAAsMEAAKjBAABgwQAAqMEAAFBCAAAwQQAAqMEAAJRCAAAsQgAAgMEAABxCAABYQgAAMMEAAIhBAABQQQAAwMAAAABBAAAsQgAAfMIAANDBAABMwgAAAAAAACDBAAAswgAALEIAAODAAAAQQQAAmMEAADhCAACowQAAkEEAALDBAACwwQAAcMIAAGBBAABMQgAAsMEAAIBAAADgQQAAmEEAAK7CAAAYQgAAcEIAAKLCAAAAwQAAMMIAAL7CAAAAQAAAjsIAAIZCAADwQQAA2MEAAExCAADwQQAAgEAAABDCAAC4QQAAcMEAACBCAABAQAAAwEEAAKDBAAAgwSAAOBNACUh1UAEqjwIQABqAAgAARL4AAIg9AACIvQAAPD4AABw-AACGPgAATL4AAEe_AADoPQAA7j4AACw-AACAuwAAML0AAPi9AACYvQAAgLsAACQ-AABQPQAAbD4AAEc_AAB_PwAAiL0AAIg9AADgvAAAEL0AALq-AAAcPgAAmD0AAFA9AAAUPgAAdD4AADy-AABcPgAAXD4AACS-AACavgAAxr4AABy-AADGvgAA-L0AAJ4-AAC6vgAAyj4AAN6-AAAQvQAAmr4AAKg9AADIvQAAmL0AAI6-AAAEvgAAMD0AAAw-AABsPgAAkr4AAKg9AABvPwAAfL4AAKA8AADIPQAAUD0AALI-AACIPQAAgr4gADgTQAlIfFABKo8CEAEagAIAAKA8AACgvAAAqL0AAC2_AAAQvQAAqD0AAFQ-AABAPAAAMD0AAPg9AABwPQAAqL0AAHA9AAAMvgAA6D0AAIC7AABwvQAANT8AAFy-AACyPgAAHL4AAJi9AADgvAAA6L0AANi9AABAvAAA4LwAAOC8AACgPAAAUL0AALg9AACYPQAAQLwAAKC8AAAsPgAAQDwAAPg9AAAsPgAAnr4AAHC9AADoPQAAgLsAAFC9AACYvQAATL4AAEA8AAB_vwAAiD0AAOA8AAA8vgAAoDwAAIC7AAAEPgAAcD0AADw-AAC4PQAAMD0AAKC8AADYPQAAmD0AAJg9AAAcvgAAcL0AAPg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=qhC9ZqKvrHk","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4134622419284279170"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1153336462"},"7565213160852847585":{"videoId":"7565213160852847585","docid":"34-5-7-Z73647E11A40DF850","description":"an = (-1)^n * (n+1)/n Use a graph of the sequence to decide whether the sequence is convergent or divergent. If the sequence is convergent, guess the value of the limit from the graph and then...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4264160/69a2b90fa989193f13d343ba2a411a94/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Z0XWBgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnALxunefW2k","linkTemplate":"/video/preview/7565213160852847585?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"an = (-1)^n * (n+1)/n","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nALxunefW2k\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhUKEzc1NjUyMTMxNjA4NTI4NDc1ODVaEzc1NjUyMTMxNjA4NTI4NDc1ODVqiBcSATAYACJFGjEACipoaHZubGN6YmJrY3Bub2ZjaGhVQ0dROWJNTEk5UzBJcVplRHVUMUVIZWcSAgASKhDCDw8aDz8TjwGCBCQBgAQrKosBEAEaeIH7AfkI_AUA8P4ABfkD_wHsA_z6-wD_AAj7AAMEA_8A8vf8DQUAAAAEEQH-_wAAAAEE_AP9_gEABgUF-wQAAAD8-gMD_gAAAA4A_Ab-AQAA__z7_wP_AAAECPsKAAAAAPAT__v___8A_wgDCwAAAAD77f7_AAAAACAALaLU4Ts4E0AJSE5QAiqEAhAAGvABUwAUAND59f8HAQ0A3wruAYEFC_8kBfEAze_2AOoe0wH5HvQB7w7wAPkIHQDMEwYAG_Hi__vcAQAh_fT_APEPAAAKCgAZyRYAKQwRAgT59ADZGBX-EvkLABze-AH8B_3-CgsM_vsB1v_yAtIBJt8dARH9_gck9wcCAfMN_-gCCAHe8ev_CfoFA_Dw_wHsJBoBJ_bo__wtBQHYGPD_AAz3CPb3FfsDE-sEPhoLBwUE-AbfEO8DC_X-_BAFDgQJEA4IERMW_e3zCv0O_PwKLOQA-gkD_vwX3_7_9-v5BOn4AwPi3AL47hL1A-j1Dgfm6AP5IAAtbidIOzgTQAlIYVACKs8HEAAawAdma8W-fnN_vCNN-rtTYBy9JELjvG-RBb39hR6-AWpqPOHQW7yKwhM9tE1bPbYOEDzY1Hm-BQRJvfOGBb2MEQk-XRYzvUcmm70OMQ6-TQaRPEfoQrz1oWu-hNMHPXQ1w7uay7K5IBrHvT2xszz_PkM-d38GuAzrQb1vsQy9VlsbvVI4zLwypRo9VbSDu0yZCr1wQqE9hG1-u18elzwaQRk9FEGcPMj1RrsrV469MXMmvIB8Lrzss5S8a9XuvIvo8rwr2fE9PX0EvS8BUzydLuu9r09vvF-aw7toor68KcoqvfYjybtatlG6Ks_yvJxe2Lzza5C9cKu1vUtY27xTCWq9RDagPZhnRTrdYDg-KaZcPeMbPjpXSZq8CTifvK6SWbw-m3I7sB43vfuRhboA8oQ9iSsCPfgrLjx964M8LKuLN9o20jsFKi08RkEQPd3zVzzs3Qe66Uuputsxtbxd_yk9DLXBPD90nLyVYke86ZsUPbHojLwFf6a7hLI1vbmDnjrGweU9HVWNvYz_8bqgPVI9zB8YvUjaMjxcTai8uXJRvW9Ws7xjL589Jv-jPbhiNbzkabk9XXSNvEcBIDxEy3A9UTmsPbuUobtB2Ak9QliiveQ_Irpz2ci9YjN7PQntybslxIY9phhWPdz8-buUpn87dtr_PHeIvTvnB-S8aJePvZm1GLtH1zs8K-C5vIl0BTxAa949CkOJvPJt5bkYsgo-ZZ7DuxjRgjglF-28P9MhPSU3Mzs3TbS9NATRPMIK_DjVN3U9KxaPve6wyznbFVm7lX7CvJMb07fYWw-9u5nxPQlEirn2-FM9-oMcvQE2QrmJD7e9t0K4vTFCujjahra88BSyvKKX1brGJmM9S9aXvPZvzjnMIMO91A0EvghThTkLC869x17UvKyMhrjxE4I9P7qiPcduWTd0IRw8lKmNvfPAJzfL_307jup0vVPqwDeVPbO9GGHlPLbNArkPZPs7nMXmvKOQnLiO9mk9eQiOPYpdnjgAIwM9DtvWPT5PjDewtII9YwggPgvkQDkGnCW8jGrRvfpT9zd4ROU9irx2PYzSLbki-wC-xl8kPReYZThZeiO9VWiwvQzoMbiwBE09LHoMvVbi-DetmrG7orJhvd0ItDc6XdY97EqNOxz7Sbm4hZi9P4ILvMIP3reepqA8pKnevJ33ITebS1u9kjynPW1wgThhBnk98zoSvkvnqbgi_-w9NSkFPvN-W7jrXOy8qqSkPQGLxLgBLUK9JDo1PSjZHbdRODM6dyY5vf8F47cgADgTQAlIbVABKnMQABpgNggA8-dT8gH4IQcC_hk25wDm6SXw-QDm8AAIHfQTAffP1RTk_wjz_t65AAAAAvn_FwkA4VkH9w854xwNCdb26B1_OyAQyOT4Erj3FjfyFx4jGfUeAAn9wPgz4gH6TfMrIAAtR0tHOzgTQAlIb1ACKq8GEAwaoAYAADhCAABAwQAAnkIAAEjCAAAoQgAAAMIAAHxCAAA4QgAAwMAAAIBBAACoQQAAuEEAANhBAACgwQAA4MAAAHBCAABAQgAAsMEAAKBBAADgwQAAIEEAAIBAAACMwgAAUMEAAEDCAAAkwgAA4EAAAPjBAADcQgAAAMEAAIDBAAAwwgAAOMIAAKBBAAAswgAAqEEAAKBBAABoQgAAgD8AADBCAACwwQAAAEAAABBBAABEwgAAMEIAAGTCAACIQQAAKEIAALBBAACAwQAAkMEAACDBAABcwgAAEMEAABBBAACIQgAAqMIAAADBAABAQgAANEIAAADBAAAYwgAAYMEAAFzCAACgQAAA6MIAAEDCAACAwAAA0MEAABDBAACgQQAAQMEAAGzCAACQQQAAtMIAAGBBAABQQQAAQEEAAKBAAACgwQAAiEEAAMhCAACAwQAA4MAAALDBAABQQQAAWEIAAMBAAAAsQgAAqEEAAMDBAADoQQAADMIAAEDBAACIQgAAIMIAAIDCAAC4QQAA-MEAALZCAABIwgAATMIAAPhBAAAYQgAAXMIAAKhBAABAQAAAAEEAAARCAAAwQgAAHEIAACBBAADAwQAAQEAAAHTCAAC2QgAAUEIAAAzCAABEwgAAoMEAALjBAABwwgAA0MEAALDBAADAwQAAYMIAAADBAACAQQAAuEEAACBBAABAwQAAkMEAAGBBAACGQgAAgMEAAKBCAAA8QgAAFEIAABjCAAAgwQAAmMEAAIBAAADgQQAAHMIAADRCAACIQgAA-EEAANhBAABAwAAADMIAAKDAAABAQAAA0MEAANhBAAAcQgAAUEEAAFjCAACYwQAAmMEAAKrCAABMwgAAFEIAAAAAAABYwgAA6EEAAOhBAACGwgAAEEEAAJZCAADgwQAAgMAAANhBAACAwAAAcMIAACzCAAAAQAAAFMIAAAzCAADoQQAAcEEAAFzCAACAwQAA6MEAANTCAADYQQAAoMEAAMjBAACCwgAAgMEAACxCAACCQgAAmMEAAIA_AACIwQAAAMAAAAxCAADAQAAATMIAAABCAACowSAAOBNACUh1UAEqjwIQABqAAgAAyL0AAOA8AAAsPgAADD4AAAS-AADYvQAAcD0AAMa-AACOvgAAXD4AAKg9AABwPQAAuL0AADw-AACgPAAANL4AADQ-AAAwPQAA2D0AAIY-AAB_PwAAED0AAKA8AAC4PQAA6L0AAMi9AAC4PQAAUL0AAHC9AACuPgAAqD0AAHA9AADYvQAAyD0AAAQ-AAAwvQAAuD0AAKq-AACOvgAA-L0AAIi9AABUvgAALD4AALi9AACgPAAAgLsAAKg9AAAUPgAAmL0AAAS-AACIPQAAQDwAADw-AAAsPgAAHL4AAHA9AAA7PwAA6L0AAEw-AAAQvQAAUL0AAFw-AAA0PgAArr4gADgTQAlIfFABKo8CEAEagAIAAIi9AAAUvgAA2L0AACG_AAC4PQAAgDsAAII-AABAPAAAED0AAHw-AACIvQAAgLsAABA9AAAQvQAAUD0AAEC8AAD4PQAART8AAJi9AADmPgAATL4AADC9AACIPQAAML0AAIi9AADYPQAAgLsAAJi9AACqPgAAED0AADC9AADYPQAAgLsAAHS-AACYPQAA2D0AABw-AAAQvQAAgDsAAFC9AACWPgAA-D0AABy-AADovQAAJL4AABw-AAB_vwAAfL4AABC9AAAQPQAAQLwAAHA9AABwPQAAVD4AAMg9AACoPQAAQDwAAGS-AAAwvQAAqD0AALg9AAAkvgAA2L0AAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=nALxunefW2k","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7565213160852847585"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1881992772"},"8823071975235908055":{"videoId":"8823071975235908055","docid":"34-8-15-Z6565CAAC61165023","description":"Sequences Limit (1-(1/n))^n For more info, watch • Video 2597 - Number e expressed as a limit...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2732945/0db9ebc977cadf86f32747be5d8c6e09/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/F3YZEAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7rhaHtNbehI","linkTemplate":"/video/preview/8823071975235908055?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Video 2517 - Sequences Limit (1-(1/n))^n - Practice","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7rhaHtNbehI\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhUKEzg4MjMwNzE5NzUyMzU5MDgwNTVaEzg4MjMwNzE5NzUyMzU5MDgwNTVqkxcSATAYACJFGjEACipoaG9yY2tsenh6dW5naWxkaGhVQzY0OWlXTzVmNGt1X2dJdjRCZzM0RXcSAgASKhDCDw8aDz8TuAKCBCQBgAQrKosBEAEaeIHz_wML_QMA9PkL9v4BAAHw_wH7-v__AO348PwFAAAA8_v1BAsAAAD6A_IIBwAAAPcKBQH5_wAAAgUIBwQAAAAE__0CAgAAAAYJAQn-AQAAAwAA_AIAAAD7_QMGAAAAAAYUBvcA_wAA-gLzDQAAAAAJ9QgDAAAAACAALUKx2zs4E0AJSE5QAiqEAhAAGvABfxT7_8n6y_-69uT_HAD7AtQbJwAUNAIA0gb2AuwY_AAK_d8A2xzzAAop4wCwFOv_Fv_3_-3N6AAt1A__IsoCAOwTDwEmFcf_MAAyARzyDv_IHvD-4QPv_vPYrgAhG8EAEMMF_u0Z6_8fGMcCEP5DAf_DJwMh7BQC2qr9Advv5QUT9OT63SQV_uC5Fv4TMwsLFPAyAQMzHQH5K8cC_PQD-fz-EfcrAuMC7_vw_hYvCvrk3BP47-sTAw_3H_zd4PMDyw0hAdMD-P8FxQj5Cw8H7sw77QcFAvEO8QET-evI8gIZ1Pry7ePg_PIQ6fPkG9zxIAAtUm0JOzgTQAlIYVACKs8HEAAawAfMXcO-ZNL4ukvw_jtTYBy9JELjvG-RBb0U2pi9J095PQsRibtpOis-YSsSvSw_-jyL-8-9bq6QPJ1T4rvLgDM-5tGIvZhiMzx1dPy9LxOaPQsCEL1P5dS9-vePPLrsIT0kBYu9AxaPveT7Pbx-eXw9GcWyvBaePDzJV8K85gwAPULuAr3UOps9NFVGvQ6fdL1OMHK9S5buPBNanDpsSFc9sez4vFSGlry3V0s9VnTWu8anIL2scOu98NOCPDIFqbsP_I49_IwrPd8g9TwlPby9rZnGvNkWlLyXV869oKkyvBD8ubxmFuE9QbUGPRPWhrxpM_M8Hm_yvdcl0zqx4Um-LpL2PE8InTzcBKk9g7_fPRwxqbxQw9e9xJJ3PWuMzjrFIgE9M7nivNNGu7sPv4Y975ysPcNVlDyJF5o91QIevCEUpbrDo2i9_k4JPWuU_zzjghg9I6eqvdbcl7vPPpA9XPr8PCofwrzcix69A9J-PInACbyJMxW9kKuXPYXy-DvcHm49ind7vZAJQjwFI6U91gI7vknlmjrHg229VxCOvZ23VrzRx987M92rPJdDAbxDqR0-H2rbvcSaqTn50A-9196nun5a3juyEci8vUpIve32k7rOJpa9-p6sPLXhMLu_a6e7OsO5PNY1f7xiQEC9MeygPVgW8Tp7LS29R2OzvfC-iDkDJ7s9TayCvN7bALsti5M9nq8ePaCiDzoX3os9IpnAO7cokrsKo1m9jmnYu8sq8Lpl04C8kCiZvVIDEzuhndM9UYGYvZedUTnkROC8AFqMO3Z2kLgHluO9-5vrPDSVejcFC6-7KW37vBsV3zhq9iO7752nvWJI3LgW85g9f1ayO1kE97qeP5I9oQPcPDtusbmzPxC-yDgQvQyTSrmSPq08cRvNvLG_ZjgWjbA9m5KHvJ58mTjVAgA9-vLdPMeiN7hkkSY8SQ1xO9tUqDihpUY9ZTs6PfB_vzjnItk8A8z8vVJJyDkUBA89EF0APo3DcbjrDx68-mP1PA4yNrcqjkM94gLQPbsB9zjl4rm8cWibveWtCDb06Lw8Q6MlPYwX27eik6q9V6fEPb02oDjx_Bq8P_mgPApelTilUkc8YIE-vb_m0jfWn04962iWPQF3Wzid2e49n5WTuqNqDrmr3xa9DfsdvqO8_rjDEYM5UFUhvYShK7ebS1u9kjynPW1wgTi9rwU9pUkJvq2ehbgi_-w9NSkFPvN-W7jrXOy8qqSkPQGLxLgjaMy9DQH6O28GBjfrFga9STKGvLuFnzggADgTQAlIbVABKnMQABpgPfIA7g0y5AES_wQgCPMPsdv-6CjLAv_3Av8WDNrcCOnRy_Pi_wboF9mfAAAAOPbVLAYA73IF6g42Nf3-4JsAARF_CSDlzPIaG8KsH98z4UAR9RY6AKz0vhcrt7QCRCMxIAAtZVkgOzgTQAlIb1ACKq8GEAwaoAYAACxCAABAwQAANEIAACDBAACgQAAAiEIAAPhBAADIQQAAPMIAABTCAACIQQAAOEIAACBBAACQwQAAgD8AABDBAACIQQAAcMIAAJBBAAAEwgAAREIAAJDBAAD4wQAAoEAAAEDBAACAPwAAlsIAAKjBAACAPwAAgD8AAIrCAACgQQAAsMEAABxCAAA4wgAAYMEAAABCAADSQgAAWMIAAHRCAABAwQAAJEIAAFBBAAAAQAAAwEAAAIA_AAAgQgAAgEEAAIBBAAA0wgAAhMIAAJjBAADQwQAAYMEAADTCAACgQAAAgEAAALjBAACAQQAA4EAAAIDAAAAwQQAARMIAAEBAAAAgQQAAdMIAAHDCAACAwAAANMIAAPBBAACCQgAAuEEAACDCAAC4QQAAMMEAAIrCAACgwQAAwMAAAJJCAAAAwgAAUMEAAIRCAACGwgAAqMEAAIjBAAC-QgAA8MEAAFDBAAAAAAAAYEEAAMhBAAAcQgAA4EAAAJBBAADYwQAAlMIAAEjCAADgwQAA8MEAAABCAAAwwgAA4MAAADRCAADgQAAAwMEAACxCAAAwQQAAxkIAADBBAADAwAAA6MEAAKhBAAAIwgAAAMIAAGBBAAAAwQAAjEIAAIBBAACoQQAAVEIAANbCAAAAwQAAkkIAANjBAAA4wgAAQMAAAMDCAACgQAAArMIAAJBBAAC4QQAAIEIAALhCAABAQgAAAMEAAOhBAABYQgAAksIAAETCAACKwgAA6MEAALRCAAAEwgAAgEEAAMDBAAAEQgAAIMEAAEDBAABUQgAAuEEAAFRCAACwQQAAgEIAAGDCAAAwwgAADMIAAAjCAABgwgAAEEEAADBBAACAQAAAcEIAAMBBAABwQQAAoMEAAIC_AABAQAAAHEIAAMhCAAAEwgAAAAAAAOBAAABAwAAAoMIAAEDBAACowQAAJMIAAIDBAAC4wQAA0kIAABzCAAA8wgAAYEEAAFDBAAAQQgAAmMEAAHDBAADAwQAADEIAAGDBAAAcwgAAsEEAAKBBAAAIQgAA4EEAAIJCAAAAQAAA0MEAAMDBAAAQwSAAOBNACUh1UAEqjwIQABqAAgAATD4AAOA8AADgvAAA6L0AADA9AABsPgAA-L0AAIq-AAB0vgAAnj4AAKA8AACCvgAAHD4AALI-AAAkPgAAQLwAAKo-AADIvQAAuD0AAAE_AAB_PwAAPD4AADC9AAAkPgAAuL0AADA9AABMPgAAML0AAMK-AAANPwAAyD0AAMg9AACavgAAgDsAAI4-AADovQAAmD0AABw-AADevgAA7r4AAAy-AADIvQAAkj4AABQ-AACovQAAdL4AAHy-AACmvgAAfL4AAJa-AACKvgAARL4AAO4-AAAUPgAA6L0AAJg9AAAlPwAAuD0AAEw-AACmPgAAHL4AAN4-AADoPQAAPL4gADgTQAlIfFABKo8CEAEagAIAAAw-AABkvgAALL4AABO_AAAwvQAAuD0AALY-AAAQPQAAiD0AAI4-AAAQvQAABD4AAAQ-AACIPQAAcL0AAIC7AAAQPQAANT8AACy-AAARPwAADL4AAI6-AAAEPgAA2L0AAMg9AADgvAAAmL0AAEA8AADuPgAAoDwAAPi9AACIPQAALL4AAKK-AAAwPQAAyD0AALg9AADgPAAADD4AAJi9AAANPwAAUD0AAOi9AAA8vgAAML0AANg9AAB_vwAAmL0AAHA9AACoPQAA6L0AAEw-AADovQAAZD4AAOi9AAA0PgAADL4AAK6-AACovQAAMD0AAHA9AAAkvgAA4LwAABy-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=7rhaHtNbehI","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["8823071975235908055"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"673592235"},"441276524147351745":{"videoId":"441276524147351745","docid":"34-4-9-Z948B2EF542BAEDB6","description":"Visit https://www.mathmuni.com/ for thousands of IIT JEE and Class XII videos, and additional problems for practice.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3447160/16e8c9b365b5505f2115e6426033b71b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2h-2DQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_iX84IwfFs0","linkTemplate":"/video/preview/441276524147351745?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find the limit of 1/(n+1) + 1/(n+2) + 1/(n+3) + ... + 1/6n as n tends to infinity","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_iX84IwfFs0\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhQKEjQ0MTI3NjUyNDE0NzM1MTc0NVoSNDQxMjc2NTI0MTQ3MzUxNzQ1apIXEgEwGAAiRBoxAAoqaGhycG9hd2h6bGF1d2ZiYmhoVUNoTHVQRjRscmF5QTRlbGI3RWplekRREgIAEioPwg8PGg8_E0GCBCQBgAQrKosBEAEaeIH7AfkI_AUA9P74BfkE_wH6A_8B-f39AO748fwFAAAA8wAABv4AAAAEEQH-_wAAAA0I-Qb6AAAACvYAAfoAAAAC_Pn6AQAAAAUB_Qb_AQAA-ff3_QP_AAACCvEIAAAAAPML__77_wAAAP_7DAAAAAD38wP9AAAAACAALaLU4Ts4E0AJSE5QAiqEAhAAGvABfxET_r7f6P_93REA7-YGAcI0DQDnJNL_yvb-ANjwwAHhCPMA3Aj7AOso9P_hOvEAHQHCACXjEv9SvQkA7-TXAPv1CQAh8eAAOSkaAP4F5__-DCT-Brfi_eze8QAgLuL-IPQE_TAa7f8BL_cBGeUuAxjsPAAK9ST8B87aA-fWCQT21PACzxLoBhjb-P_i1ScD-MAYAf8cFf_mGvP3-gASCAjvGPb1KuoCJwwHDlTR8fquAxcC6NYT_DEzBATSCRAJHAYjAN8h__fj4gr3IO4F9-gd1foFAvINAPwAFQwA9PwVD_jy-Azu-PH4BwfiJvnwIAAtHUYQOzgTQAlIYVACKs8HEAAawAf1Ssm-6JNLvF_7-DycAYm849SYvDjtbr08izm9chsIPceBHjq8P4493ZMoO4ngKb2Dp_C9WmKKPFOAHj2Bsgk-7UcqvWnDIT11dPy9LxOaPQsCEL3n_iq-Xcv_PEh0KjzNPbS9fFNnPZMvUr0Lv6o9PwqNvNJpwjxviwi9Q0cHuiPYGL34oRo8H4XrvbyRebxNn6E7yrhzvRiOET350I89hUSKva6gxLxCwVY914QZvdVR4btrEbG9x8jIPB8R07wNubM9k398PVxDX7zc9Be-5CJIvZee-ruG26s8kE6dvE9ZLT3qB3U9v4TEO7HVCr2CJIe8ID6VvBTR77wouQO-Fi82veI-Ej39z7s9eLmIPasmiLxQw9e9xJJ3PWuMzjpcPq08-LuhvURdWjzEzB496dUQPovpGbzQgJU9Q5CDPMF9kbtc68a9PrTPPCF97jwCLT29biSKvVaFYbwMwmY95wekPCfDTDw2Q8O7A-8_PfAb_LrLcb29jwG0PZJeVLw-jaA85gmAO370l7vFNUM9-FENvglvLLtjKn28o0XMvYcqRrylGLs9nWyevEI7jLxbPpc9-KTDvajUOrvtZkE9laFlvbJW4zwXmSO8Zyx1vYu4SjwXCZK9rvlMvU5wHLydIWa8lBYOvZMtHrzLmOe8Wg25PeyMiDuRoFO83yatvRbtnrryB8M8GlzpvNcXB7xAa949CkOJvPJt5blRl9Y85dFtvaAaTLs5YPe9veVqPAe75zmdqL66A9mRvRpKCLrurw4-nxKRvX7QlDmlBZo7WTVjPNE64jkmbLS9ZEDWPVwmEDi50mE9Lt6UvXNP3TjdKqO8Vz3AvZEGHjnnfnu7mMjgPGWWC7k-44e9kKqeu_dnCDmnR8m8mxPFvQMCszgtQSa9Ik7Mu5R_C7nIRIo9J9g_veqF_DfA8rs8SjscvGtkzjhtMck8KEnyvLSerDgCgwS95yW1vIAnrbXikgM-jsOlvYIxoTlwex88iyoNPeegpLgFF4s9gbo8PblWLre4RyW8F4LcPSYd5TegFT28YciFvN07PzgYyYM9a8sKPc6hMrecenO910vTPZ-NlzjJSac9hF5EPVb9-zidcKU82ZcMvSMJd7i0Va487jFHvIBMn7fB4ys-3KVovAeJdLmF3ky9VKiOverKw7ivYiw9eJRvvYJcJDcyC7O9Ev5APbJytjfVlOQ8vjamvfOjTbjK9HA9IuErPvHLiji4H7C8r4grPSLTlbhiglq9WyBmPWQ1uzeUzKC9LAY0PbotgjcgADgTQAlIbVABKnMQABpgMuwAHBM7tEDfFfbt3ecC4MwL2QLMIf_UA__-D9buCf6ptBTu_yP17OygAAAAFQnn9OsA3H_4CQdf_w8U-YTOAhJ0Exzr2scZE8vfTvgv8Fj-5hkdANAHnx0b4b1BOzwaIAAtr1EYOzgTQAlIb1ACKq8GEAwaoAYAACxCAACAvwAAyEIAAKbCAADowQAAAMEAAOBBAACoQQAA2MEAAIDAAAAAQQAAAMAAAODBAADgQAAA4MEAABBCAABMQgAAWMIAANhBAABQQQAAMMEAAKDAAADSwgAAIEIAAILCAACGwgAAQMAAAFBBAAAAQgAAMEIAADjCAABAwAAAosIAAIA_AACkwgAAoEAAAODAAABQQgAA2MEAADBCAAAAQAAAsEEAANDBAADgwQAAZEIAANjBAACAvwAAKEIAACBBAAAwQQAA2MEAAODBAACQwQAAQEIAAPBBAABEQgAAjsIAAKDAAAAgQgAAAEIAAFBBAAA4wgAAZMIAAOjBAAAwQQAAvsIAAJjBAADAQAAAOMIAAKDBAACgQQAAoEEAAHDCAABAQgAATMIAAPhBAACWwgAAgD8AABBBAABAQAAAAMEAAIpCAADAQAAAoMEAAJjBAAAIQgAAoEAAAEDCAACEQgAAEEIAAEBBAADIQQAABMIAANhBAAB8QgAAAMIAAMjBAADAwAAAiMEAAM5CAAC4wQAAKMIAAOBBAACAPwAAZMIAAEhCAAD4QQAAwEEAAKBBAABYQgAAsEEAAABCAAAAwgAAkMEAAATCAACoQgAAAEAAADDCAAAgwgAAMMIAAPjBAABYwgAAAEEAAADCAABQwQAAgL8AAMBAAAAswgAAkMEAAChCAADgwQAAeMIAAChCAAA4QgAAcEEAAKJCAADAQAAAyEIAAFTCAADIwQAAUMEAACDBAABgQQAAssIAAGBBAAA8QgAAwEAAAKhBAACQwQAAUMEAAETCAAC4QQAAFEIAAI5CAADAQQAA4MAAAGzCAABgwQAA0MEAAFTCAABcwgAACEIAAOhBAACAQAAAbEIAACBBAACwwQAApEIAAGRCAAAQwQAAwMAAAABBAAAQwQAASMIAAKbCAAD4QQAAYMEAACDBAABAQgAAAEEAAIzCAADQwQAAAEAAAEjCAAAIQgAAEEEAAETCAAA8wgAAkEEAAFBBAABwQgAAQEEAAADAAAAAwAAAQMAAAEhCAAAEwgAA6MEAAAxCAACgQCAAOBNACUh1UAEqjwIQABqAAgAABD4AAIK-AABUPgAATL4AAFC9AABwvQAAND4AACe_AACWvgAAiD0AANi9AAAsvgAAMD0AALI-AADgPAAA6L0AAKg9AACoPQAABD4AAAM_AAB7PwAA4DwAALg9AADIPQAAQLwAAKi9AACWPgAAiL0AADy-AADWPgAAVD4AAIg9AABMvgAA2D0AAPg9AADIPQAAoLwAACy-AADavgAAgr4AAIa-AAB8vgAAmD0AAIa-AAAQvQAAkr4AADQ-AADIvQAAED0AAI6-AAAQPQAAJL4AALo-AABkPgAAbL4AAIC7AAB_PwAA4LwAAIC7AAAcPgAAuD0AAMY-AAA0PgAAyr4gADgTQAlIfFABKo8CEAEagAIAAPi9AACAuwAAVL4AAC2_AAB0vgAAiL0AABQ-AABQPQAAgLsAAII-AAAQvQAA4DwAADC9AACYPQAAED0AAJi9AADIvQAADT8AABC9AAATPwAABL4AABy-AADovQAAVL4AAEA8AAAMvgAAiL0AAEC8AAC4PQAA4DwAAFC9AADoPQAAoDwAABC9AABUPgAAPL4AAEQ-AABcPgAAEL0AAEA8AABUPgAAgDsAAJK-AACovQAA-L0AAKi9AAB_vwAAQDwAAKA8AACgPAAAuD0AAOA8AACovQAArj4AAEA8AAD4PQAAiL0AANi9AAAQPQAAyD0AAIg9AACAOwAAgDsAAHC9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=_iX84IwfFs0","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["441276524147351745"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3509568059"},"8883190756721679698":{"videoId":"8883190756721679698","docid":"34-4-2-ZD5AFA7EDDB9D2305","description":"We will prove the sequence (n+1)/n converges to 1. In other words, we're proving that the limit of (n+1)/n as n approaches infinity is 1. We use the epsilon definition of a convergent sequence and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/961279/0b1992927ab05da3894d15ef23b2f055/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Jpi7LQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNop746tkRsc","linkTemplate":"/video/preview/8883190756721679698?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof: Sequence (n+1)/n Converges to 1 | Real Analysis","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Nop746tkRsc\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhUKEzg4ODMxOTA3NTY3MjE2Nzk2OThaEzg4ODMxOTA3NTY3MjE2Nzk2OThqiBcSATAYACJFGjEACipoaGNjYXh6aGJ6c21qbGliaGhVQ3lFS3ZheGk4bXQ5Rk1jNjJNSGNsaXcSAgASKhDCDw8aDz8TkgOCBCQBgAQrKosBEAEaeIEEDQD9Av4A7gMGBgAD_gEIAwoJ9___AOz8AQUJAAAA6QMHAAL_AAAJB_3_CwAAAAMB-QXy_gEAAwz2_wQAAAALAAf8_AAAAAwO7gL_AQAA8-cECQP_AAAXBf4GAAAAAOwPCf3___8A-AABEgAAAAAS9f39AAEAACAALW0Mzjs4E0AJSE5QAiqEAhAAGvABdRAS_tD70f_dEOAAy_kEAYEiCv4ILvIAv-vzAMAD4wAT7vQA6BLW_-QSAQC6Ee7_F9jj_w_aBQA66en_NtvrAO0L-wAS1_ACNQ8WAhIVC__6F0MC4c_6APXk5gIP8t3_CvoeAfL85PruA8UCDv47Aeb6KgQc7xEC8skH__XoCQUd3er-5x7sAwfPDAHaGR4CHc39_hwJ8_vxCuwE8gwS9_7hFv0HK9f-FvgHCB0L9ALC7BT9Atb7BRwhFAjS_e8E-_YPAd4QCPr77AUEGuHu9dr7Awb84_QJDv7-_ATo9_r_B_bw4Bjy9OgT_APhCPXtIAAt_yEdOzgTQAlIYVACKs8HEAAawAfZzOG-Jr9qvBn7FrwcyD-9CeqMO5zMLr1fJX-9FK8yPBmikrsUdhE-3w7evCa-gzuWk0C-osyrPOjSZDzFVYU-VDBvvZt_Krx1dPy9LxOaPQsCEL20rBu-K7CGPWL4A726VrG8w1RpPPauZrwnwHA99M4ZvE-x6rypqsi7sl0mvV_BDL3cmwQ81JPevPztAb2tf-E8s8W_vMRPLbxpGRk-vV87vWUX7zsWrCc8cbWpPPvEJrumEIO9HwAnPTMb_7xSkKk8v3cAPSEbrTyJAy29B0BhvZ6W_rv-BWe9wENsPTyZB7tY8y28dRE1PXrhTrwPdq89igMmu0ZRIrqX5DC-RG8sPeyCZrz9z7s9eLmIPasmiLzLBqO9htVuPabc2DwH_da8awqmuu8ip7wfPGQ9PuNHPdAB0TsuCpa8dW2UvFeZhLyQJBC8EN-jPaZiAz0HKdg9_1nzvKCJsLwctk09kK4IvRJpm7xOXuS91kJ_PAevxDtQCBM9VWMuPMYWgjv4QCE9TyYJPKxhtTzfZsY9ObXzvYcfGDxjKn28o0XMvYcqRrw9FUY96munPHoGQ7xbPpc9-KTDvajUOrtcTBq8bXuxvP0RK7xB2Ak9QliiveQ_IrrZ9bG9SEcpuiMwGboHIza9vBybO6PKMLxCPSI8LXFpPVnppDvnB-S8aJePvZm1GLsbdMg9QDdPPVcGVbvIftY9AoV2O1J02zjCTNs9Ox3ovXbP2Dntz2q91f-evOr5e7ojmiW90KGnvKaLYjvurw4-nxKRvX7QlDk3JQ8967iAPR3Vuzn-65G9Z4dTPZxI8bj2-FM9-oMcvQE2QrmtL7c6_RLxvbwjiTnl9kO7_AMAvazrCrnrlc28zMhqPSf58DlbFOy8Ey1UvemhxTk2iSs96AcgPDsNcbgWIyE9cFvAPD9gEjnGsgu8b11WvHQwkLdtnck8oqAvvX-jprmsuru6UMiOPWTM-jeMGDE9FxiIvTOVHDl6H0I9uKOou2fTwDmAnJA9SMCtPXy-4jgqjkM94gLQPbsB9zidDkc7d58DvkPejLcoWC09qw-KPVYUmrhYn8y9pi40PYN_LDkDhyY9HuwDvZ6K0jcTuss716GauhpeN7aNwgS9zFW9O0Y_ZrfB4ys-3KVovAeJdLmBQQ68_PkbveMlHbh5MxS9aiyWvUjoMLeORMM8lGd-PeaDjDYd4ww8Z0bfvWlQErgi_-w9NSkFPvN-W7iu75O9OuPAPR4C6bgrpp29WPLCvPCopbeYCVC8cmvSPAP2fDggADgTQAlIbVABKnMQABpgIf4AHP9C4-4ULO_n-fYO8fbV4RXp8gDl7AD_E_LqFv7NzAz3_yjpIeS2AAAAGOHQLt4A_l8E_OglCyMMzcDMIgZ_GegHmdsh39Pq_BUo-TQG-QlDAOX2vBMI4MMS9w0lIAAtaPU7OzgTQAlIb1ACKq8GEAwaoAYAAExCAABAwgAAnEIAAIDCAACIQgAAQMEAADBCAAAgwQAAAAAAADBBAACAwAAAwEAAABRCAAC4wQAA4MAAAMBAAAAQQgAAoMAAAPBBAAAMwgAAAMAAAKBAAAD4wQAAgEEAAGjCAADAwAAAYEEAAKDBAACGQgAAAAAAAJBBAACgwQAA8MEAAADCAAB4wgAAWEIAAMhBAAC-QgAAgL8AAMBAAACwwQAAQMAAALBBAADgwQAAIEIAAATCAACwQQAAfEIAABxCAABAwAAA2MEAANjBAABswgAA-MEAAGBBAAC4QQAAQMIAACDBAABwQgAAyEEAAGBBAACowQAABMIAAGTCAAAIwgAAAMMAADzCAAAYwgAAkMEAADzCAACAQQAAwMEAAJTCAAAUQgAABMIAADDBAACQwQAAwEAAAFzCAAD4wQAAwEEAAMRCAACAvwAAgD8AAFBBAADAQAAAGEIAAJhBAABkQgAABEIAAMDCAACwQgAAUMEAALDBAABUQgAAyMEAAFTCAAAgQgAAFEIAAIRCAAAYwgAA4EAAACBBAAAMQgAANMIAAABAAABgQQAAkEEAAGBBAABEQgAASEIAAKDAAAAowgAAoMAAAGDCAABAQgAAmEIAAEDBAAAwwgAAmMEAAGDBAACOwgAA4MEAAEBAAAAAwgAAmMIAAATCAABAQQAAuEEAAPDBAAAgwgAA4MAAABjCAADoQQAAgMIAAIpCAACAQgAAAMAAANjBAAAQQQAAMMEAANDBAAAkQgAA2MEAAPhBAAAgQgAAoEAAABxCAACAQAAAIEEAADDBAADAQAAAAMEAAMDBAAAwQgAAcMEAAOjBAABAwAAAksIAAJDCAABQwQAAoEAAAAjCAABwwgAA0MEAAKRCAABwwQAAMEIAAKBCAAAAwgAAEEEAAEBBAABgwQAAbMIAAIrCAACAPwAAMMEAAATCAAAAQAAAFEIAAKbCAACAwQAAwMAAAFDCAABwQQAA8MEAAIBAAACqwgAAsMEAABRCAADoQQAAbMIAANhBAACAwQAAoMEAAEBAAAAgQgAAUMIAAGRCAADwwSAAOBNACUh1UAEqjwIQABqAAgAADL4AAKC8AACIPQAAQDwAAEC8AACOPgAAPL4AAPa-AACuvgAAmD0AAEC8AACAOwAABL4AAI4-AACAuwAAHL4AAIo-AAAwvQAAdD4AANI-AAB_PwAAmD0AAFQ-AABQPQAA6L0AABS-AAAUPgAAQLwAAHA9AACyPgAAPD4AAMi9AAAsvgAAqL0AAIo-AACIPQAA2L0AAIi9AAC6vgAAor4AACy-AABkvgAApj4AAIi9AAC4PQAAEL0AALg9AABEvgAAgDsAAJq-AAAsvgAAEL0AADQ-AADIPQAAVL4AAEC8AAAnPwAA-D0AAAw-AABwPQAAQDwAAM4-AAAsPgAAmr4gADgTQAlIfFABKo8CEAEagAIAAIK-AACYPQAAQDwAANa-AAD4PQAAoDwAALY-AAAwPQAAuD0AAMY-AAAwPQAA4LwAABC9AAA0vgAAmL0AAFA9AAAcPgAALT8AAIA7AADePgAAQDwAAEQ-AAAQvQAAQLwAADC9AABAvAAABD4AACw-AAAwPQAAiL0AABA9AABkPgAAfL4AAMi9AACYPQAAmL0AAO4-AABUPgAAor4AAEC8AABUPgAAML0AAPi9AAAkvgAAJD4AACQ-AAB_vwAAqL0AAHC9AABAPAAAoDwAAOg9AAAwvQAAED0AALY-AAD4PQAAQLwAABy-AAAQPQAAbD4AALi9AACKvgAAcL0AAAw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Nop746tkRsc","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["8883190756721679698"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3355869125"},"13791403985441730808":{"videoId":"13791403985441730808","docid":"34-2-4-ZC509664A19220AC7","description":"I am going to upload lectures of Mathematics of Matric and Intermediate classes. please share my channel and videos...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3741532/4a04294f94fbead62f03d9ad52cdb19d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gpAPwgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dgo0qeFDTGCo","linkTemplate":"/video/preview/13791403985441730808?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Prove lim (n )[(1+1/n)^n]=e","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=go0qeFDTGCo\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhYKFDEzNzkxNDAzOTg1NDQxNzMwODA4WhQxMzc5MTQwMzk4NTQ0MTczMDgwOGqIFxIBMBgAIkUaMQAKKmhoYmZ4Y3pxa256dHBxbWRoaFVDU2NSMnRlczlRU3MtZ1g0VU5ITFJCZxICABIqEMIPDxoPPxPlAoIEJAGABCsqiwEQARp4gfQI-wf9AwDsA_gG-AIAAPb5-_z6_v0A9PH5_wUC_wDzAAAH_gAAAP4LBwIAAAAA_gP_EPf-AQAGBf36-wAAAAT__QICAAAABQH7Ef8BAAD_8vsBA_8AAA8G-Q__AAAA-g78-_8AAAD__AMKAAAAAAD6_PkAAAAAIAAtIz_cOzgTQAlITlACKoQCEAAa8AF_DAD8rdbi_rQY2v8BZgoCrStC__tCxQCqBvwBzuywAQAS1gDxBtT_IR1RALEFzf5CycP-69IW_0HWzP_52PkA_AgGAfn6uQFZ7Cf_1uL5AL0HJf_uyQf-z7nZ_ycgtQAEzAb_7vrZ-BP_yAT55zsB898sBwTx_QfSuxAB55ryAfT2tv0RNSMDCb0QAbUQFQMY0Oj7FAcL8fsE1wPY5BT45gAJ9AAT8gb92f4BLwQB_tXm6gf85Pj2MA8H_9HnBvr54iD9yPkM9Aek-gBM0AD1_CzsDAvA9gEb8wPpHQTuC_j9Bu4P7vEA49zxEdsb__ogAC1w3uY6OBNACUhhUAIqzwcQABrAB7fs2L5dd6k8sdTEvJwBibzj1Ji8OO1uvV8lf70UrzI8GaKSu2eaMD4gkVu8Q-StOYEIAb43Pkk9rm2AvMuAMz7m0Yi9mGIzPHoXL74IPDA9KZ_UvIkLEL42aq66zo_5OyQFi70DFo-95Ps9vMF-vj3y98G9F61tvAK1Xb1fehs907AuvdybBDzUk968_O0BvcQdtTskJV29NT-jvGxIVz2x7Pi8VIaWvK_HqT0oJhC7rNAWvXuuBb3DB3s9I8oNvc_htTpYSiA92l8RvEgcjb0ndZe6ynIvu_kpU70EAwg8b7l6PJVShj0jMcE8u2VivGVDnT13NbS9kHYyvSi5A74WLza94j4SPfCLCz7zP7O74jrGOxjSAb5Jg6s9liYlvJ8aM7vnjv68C9XovH6h7Loe4j89CEaUPDMtNj0gKk09pSseO5AkELwQ36M9pmIDPVuVlD3qDqi9MDCGvGueQz3yYry8l7MxO_KH1bymaWs9GPS5vArq5bzXBEc9xSEXPEafqrw3zGk7QbCPPMU1Qz34UQ2-CW8suyi6vr2m7Lm9Q6SNOx1twT05aRA9LgV_vPD5YT0UXw2-d4QRu_fYpz0mcyw81VjGOwPBLT3svHK9l7hBuM4mlr36nqw8teEwuxpVAb2LgR89dSwlvHMHWz0DU8c9cgzBOWwB57swR--9P5qgug1u6zwAm2I8EKXmOnP8iz1kXcc976iwt5VFoTz9uwO9smg2u7h0TL0hh-87BJZYurQipb1tLT29ariEOcdnEj6uoOm9kAm0ubceKjyNW7G89JkLui3RCb6WIS49nrhguFOzJz3SkEy9MxqUOKs9kb0aUhW-MFEKOnm2w7uizmE9VgUTubT-t7ochC89H6O4umsewb3ErqK9WfgiOC09Hjw5SU68IehzuEaa2D2yMwA91guQOIBE-Dw6riY9fx43uZ2vA72OCIS7vxYlObtkh7316QI9BIapuKsmiD3Pt5q9-5-HOVegDL1PdpM96khnuK0OJTxRwBY9DclVt1WZlDuTTIM9lA-ZuDm0mD2mj4q9zB3aN83nXD1HM5s91S0luZr_nL3QkJs9AtsuOHj6t7x7vNA8cqqaN4rLUT04JjA8r0-pOHFP4Ty5gMC6pMytt9Rg2j0H45G9x5dPuagmp71UPcS9HLiDuH0M8TwRc4S9Tb6VN003JL2Nu8w9rO4ON7MxBrsIr729HH2mt8r0cD0i4Ss-8cuKOGCamDxbmvs9hK39uFIJpL0f-FM9CUMwOC43-L0zccY8-NJ-tyAAOBNACUhtUAEqcxAAGmBh8wAGGV7XJA3eCPfoJj7G0-nXDuT8__z3_w8m8f0X_Me1DekA-Q0Q2ZkAAAAt-sf7-AAbfxT5IkQSPOf0gt7tFW80N_644Akc2c1kAxbRNzYNLQEA3SmczjPZxv9zuCMgAC3q0Q47OBNACUhvUAIqrwYQDBqgBgAABEIAAJDBAACiQgAAiMIAAMBBAACwwQAAwkIAABBBAAAwwQAAUEEAAOBBAACAvwAAkMEAAPjBAAAUQgAAgMEAAPBBAACAPwAAKEIAAOjBAACIwQAAAEEAAITCAACYwQAAhsIAAIDAAACIQQAA4EEAAABCAAAAAAAA-MEAAOBAAADKwgAAYMEAAHDCAADwQQAAiEEAAJZCAACgwAAAFEIAAETCAAAgQgAASEIAAPjBAABAQQAADMIAAOhBAABcQgAA0EEAAFDBAACAvwAAEMEAAKjBAACIQQAAYEEAAATCAACkwgAAwMAAAJRCAABwQgAAgL8AAFzCAADYwQAAJMIAAMDBAADWwgAAXMIAALjBAAAAwgAAkMEAAKBBAABMQgAAKMIAAKZCAABgwgAAUMIAALjBAAAwQQAAiMEAAGDBAACAwAAAlEIAAADAAAAAAAAAAMEAAOhBAACAwAAA-EEAAPBBAADwQQAArMIAAIRCAACQQQAAoMAAAORCAACQwQAAyMEAACxCAAAcQgAAfEIAAOjBAAAAAAAAoMAAADDBAACWwgAAiEEAAAhCAAC4QQAA8EEAABBCAACcQgAAIMEAAPjBAAAwwQAAgMEAAJJCAAAgQQAAgsIAAKDAAACAwQAAkMEAANDBAAAgQQAANMIAAOjBAACowQAAAEAAAMDAAACAwQAAgD8AAADCAACoQQAAaMIAAKBCAACowQAA2EEAAIhBAAA4QgAABMIAAITCAACowQAAqEIAAKBCAAA0wgAAQEIAAIJCAAAEwgAAMEIAAKDBAADoQQAAqMEAAODAAAAQwQAAPMIAAKBAAADYwQAAbMIAAKDAAAAAwgAAisIAADzCAACIQQAAMMIAAKjBAAAAQAAAsEEAALDBAABcQgAAikIAAIBAAACgQAAAAAAAAGDBAAA8wgAAVMIAAKDAAABAwAAA6MEAAPDBAAAYQgAA1sIAABzCAAAUwgAA8MEAAJhBAADQwQAA2MEAAGDBAABAwQAAYEIAANBBAADQwQAAcMEAAKDAAAAQwQAA8EEAANBBAACQQQAAIEEAAMDBIAA4E0AJSHVQASqPAhAAGoACAACIvQAAUD0AAFQ-AAAUPgAALL4AALi9AACWvgAAVL4AAIi9AABMPgAADD4AADA9AAD4PQAA-D0AAPg9AACAOwAARD4AAOC8AAAkPgAALD4AAH8_AAAUPgAAQDwAAKo-AAAcvgAAgr4AABA9AACSvgAAmD0AAAM_AAAQvQAAFD4AAHC9AABQPQAAQLwAAFA9AADIvQAAhr4AAJq-AAAkvgAA1r4AANi9AAAUPgAADL4AALi9AABwvQAAQDwAAEA8AACovQAAVL4AAOg9AACAuwAAFD4AAEA8AABUvgAA4LwAADk_AABAPAAAgj4AAKI-AABQvQAAML0AAOg9AABQvSAAOBNACUh8UAEqjwIQARqAAgAAuL0AAMi9AADgvAAA-r4AABw-AAAkPgAALD4AAEQ-AACYPQAAbD4AACS-AACgPAAAyD0AAFC9AABwPQAAgLsAAKC8AAA_PwAAVL4AAMI-AAAcvgAAqL0AABw-AADIvQAAMD0AAJg9AACgPAAAgDsAADQ-AAAQvQAAqL0AAOg9AADgvAAANL4AAIg9AABQvQAA2D0AADQ-AACAOwAAoDwAAKo-AADgvAAAMD0AAFS-AADIvQAAyL0AAH-_AACovQAAoLwAABQ-AADIvQAAyD0AACw-AAAUPgAAZD4AAOA8AADgvAAAhr4AACy-AADoPQAAED0AAMi9AADgvAAA4LwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=go0qeFDTGCo","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13791403985441730808"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3655484304"},"689576405884987124":{"videoId":"689576405884987124","docid":"34-1-2-Z35DF5173FC5B8868","description":"Why the limit of (1+1/n)^n as n approaches infinity is e? Why the limit of (1-1/n)^n as n approaches infinity is 1/e 👉 • Limit of (1-1/x)^x Mathematics discussion public group 👉...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3423062/69aad28c7cce709beff931e8ca551178/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Dcp4DAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhpCenDJgy7w","linkTemplate":"/video/preview/689576405884987124?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof of (1+1/n)^n=e","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hpCenDJgy7w\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhQKEjY4OTU3NjQwNTg4NDk4NzEyNFoSNjg5NTc2NDA1ODg0OTg3MTI0aogXEgEwGAAiRRoxAAoqaGhtdG5ibHJneHp1eHNvYmhoVUNQQklyM21pb1BiWUJLcFdYYWZXaThBEgIAEioQwg8PGg8_E_ABggQkAYAEKyqLARABGniB_wT7Af4CAPQEBQH5A_8B7wIA-An_AADt_QEECQAAAOwJAgb7AAAA-g_9_vsAAAAO_vEJ__4BAAEK_wUEAAAAAgAD_gIAAAAXCfYI_gEAAP_y-wED_wAACAQCCgAAAADwE__7____AAr_AgwAAAAA-_P7-QAAAAAgAC0T89k7OBNACUhOUAIqhAIQABrwAX_zGP7kA9QCvQPiAbT75gG0JxkACz7tAL_c5gHICNYBuSX3AB5E1f_t9___twHq_0LJw_4UtPP_Kdj-_vvG5wEU2gAA6dDlAE0YOv8G8-wA5loy_dbtFP7Pudn_Kx_y_SjsGfsK-c4B0g_IAl_4NwD6ITH_Q-sfARegKv3eve0G5tPO_dcQDQS7pwL9Aj8qARfXDP4HIwwH2OnG_ugACffP5jj9CjvJ_Sju9Af12v8E6_b9BxIM_wwkUxoIyRH8B8zuOgfJ-Qz07vPuCQfOFvHTB_PyMOD0Cgj26vz6GvsUCsHo7Qb4_BHu6fwD1grx5yAALR0G5zo4E0AJSGFQAirPBxAAGsAHiQnyvu-ujrw9FtG8o1M8vfTIG7zrTTG8nrVbvQ9faz1H-v48n1s4PucTfr3YCj-8booHvr9qwDzmXXW8pkI8PmVhOb08fEM92UNLvkOSdjspf4K9TNyfvZvaA73J9xa8K0t0vLO-97zHJEg7Cp0XPpObFbwRiq28MzilvIAl2ztbAGS8sZzOvJecSby27WC9CgLavCIFxTxHUnc8xr6pPU8qUDxJHAs8XBBgPQCXVr2OUai8axGxvcfIyDwfEdO8YScrvLY0cj1aG3O6xHk4vLJMv7uD-OE73wkMvc8pUDm2jh68PQo3PaZGaLyTxqi8YvSMPZ5-0L2-dl27-aAHvvQamz0vgYA7banjPQYRqbwUnds8ZDvEvRV1gTykC3u8Q3m6PLdSOb2soDO8tMlhPBWnjz3_Fi48LHqMvHZlYTzJLyy7qh5GuoCBgD1U02Q8W5WUPeoOqL0wMIa8UAgzPQm_GrwkUFS7jZuavXOVOD3s-4u8PjK3PbmdxzzKZac47N7KPFOeDz3hqnw8xTVDPfhRDb4Jbyy7CcMAvvnZuL0_iiI6HW3BPTlpED0uBX-8Wz6XPfikw72o1Dq7OcV0vKjOOb0hs_G7KfRwPUhcNrxCnKC6ziaWvfqerDy14TC7KHJSvXQwMT0-qf67cXONuy5gOD1Brwc8hD8JOxWNhb1ofBk73_nlPU2UjLt5K-A6LYuTPZ6vHj2gog865lsAPESQnrwlIVO74gA_vcndjLzDqeY6O7ECvcvzoLyzcUy7oZ3TPVGBmL2XnVE5NlfNvBESjjwClfm6CH8VvVtErz2Ygfg4_o4yvUxREbwxQUE5y6LwvFtCHr43BeM5vHf1O8ssAr2-mAG5S7F-vN16zTzFqXe5E33-vIgPHL6TJZc3aQ9FPLgyEj329Ta5-lhmPXDVkDwMI2C4_rBKPMQgFb3psQc37Ak8vXIl8bzWYoA5vH0RvfUnNj3h9bo4jBgxPRcYiL0zlRw5w3csPe5IoD1t7Rs56FGMvFpAcj0J5bw34me9PcOv4jyY0rC4YJsFvIxETb12nS84HaGgPTSgXj0DScK4aHUyvmSkKD0Xyky3AQcjvR-ua71WvnK2cv-cPXc7sTyoF8A1V8IDvAAIjjyM4po4WL6YPc3mkb2SWx25NFMQPYJU6r3lHI64zC-evMoSwrzZIXE3hs2LvQiw6D1Us5Y47AO9O3zUD74X-ty4yvRwPSLhKz7xy4o4_wp0PRjAmj1PdHE36FWzvRYk7DzNuCE4NgZYvTInwzwwg8M3IAA4E0AJSG1QASpzEAAaYDP1ABwgTtguCgr0E9kzLPvQy-Af9eX_9_L_7zseE_H-qa8t-gAG5BTWogAAAC4M4RQTAAp18e_vLAAzMC2C49k_fy39_rC6ExO3sUQINAj_FhA6IQAhDpoJ8uG4OUISIiAALfKFEzs4E0AJSG9QAiqvBhAMGqAGAAAgQQAAgMEAAExCAAB8wgAAlEIAABDBAAB8QgAAcMEAAJBBAAAkQgAAsMEAAAzCAAAMwgAAQMEAAPhBAABwQQAA4EAAANDBAAC4QQAAAMIAAJjBAACIQQAADMIAAEDAAAAEwgAAqMEAACBBAACqwgAAsEIAAKDAAABAQAAABEIAAIbCAADAwQAAqsIAALhBAADoQQAAzEIAAADAAAAEQgAAwEEAAMBAAAAQQQAACMIAAMhCAACswgAAHMIAAIxCAADgQQAAoEAAAETCAAAwQQAAUMEAAABAAACoQQAAqEEAAADDAAAQQQAAuEEAANBBAACgQQAAhsIAABzCAACKwgAAAMEAANbCAAAAwgAAmsIAABDBAAB8wgAAaEIAAFBCAAC4wgAAEEIAAOjBAAAAwgAA4MAAANDBAACgwQAAoMAAAATCAACcQgAAoMEAACxCAAAQQQAAAMAAAMhBAAAcQgAAFEIAAJDBAADAwQAAtEIAAKjBAACYQQAAZEIAAAzCAAC4wQAAiMEAAHRCAACQQQAAPMIAABBBAAAQQgAAiMEAACjCAABgQQAAmEEAALDBAAAQwQAAdEIAADBCAABgQQAAyMEAAHDBAACwwQAAPEIAABRCAABAwQAAlMIAALDBAACYwQAAYMIAAIDAAACAPwAAgD8AAIC_AAD4QQAAgMEAABBCAABwQQAAAMIAABDBAABwwQAAUEIAAJBBAACOQgAAOEIAAKBBAACYwQAAqMEAAIC_AADgwQAAiEIAAADCAABAQQAA-EEAAATCAADAwQAAEEEAAMjBAADgQAAA-EEAAKBBAAAAQQAAPEIAABDBAADIwQAADMIAAPjBAAA8wgAAnsIAAKBAAABAwAAAiMIAADBBAAAcQgAAIMIAAJpCAAB4QgAAgL8AAGBBAAAQQgAAQEAAABDCAABwwgAAoMEAAKBBAADAwQAA2EEAAKDAAAA4wgAARMIAACTCAAAgwQAAQEIAAAjCAAAEwgAAwMIAABBCAADYQQAAAEEAABTCAADQQQAAyMEAAFBBAAAEQgAA4MAAANjBAAAAQQAAkMEgADgTQAlIdVABKo8CEAAagAIAAHw-AACAOwAAQDwAAKi9AAAwvQAAHL4AADS-AACWvgAAmD0AANg9AABEPgAAoDwAAOC8AACyPgAAED0AAIi9AACoPQAAED0AAEA8AACIPQAAfz8AABw-AACgvAAA-D0AAFS-AABQvQAAqD0AAIK-AAD4vQAAtj4AANg9AADoPQAAJL4AAFC9AABwPQAAyL0AAEC8AAA8vgAA4r4AAIa-AACoPQAAjr4AAAw-AAAEvgAAED0AAKi9AACAOwAAFD4AAPg9AAD4vQAAQLwAAIA7AACOPgAA4LwAABy-AACoPQAAMz8AAJq-AAB8PgAAVD4AABy-AACIPQAABD4AAHy-IAA4E0AJSHxQASqPAhABGoACAAAwvQAATL4AAMi9AAATvwAAML0AABA9AABsPgAAED0AAOA8AABEPgAANL4AAOi9AAAcPgAAHL4AAEA8AACAOwAA6D0AABs_AABUvgAAwj4AAJi9AADgPAAAMD0AAOA8AADIPQAADD4AACS-AACAuwAARD4AANi9AACIvQAAHD4AAKA8AACyvgAA4LwAAJg9AACqPgAAdD4AAEC8AADIvQAAmj4AADA9AAC4vQAAZL4AAMg9AADovQAAf78AAOC8AAAsvgAAmD0AAKg9AABAPAAAPD4AACw-AAAEvgAAqD0AAKi9AAA0vgAANL4AAKg9AADoPQAAUL0AAIA7AADgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=hpCenDJgy7w","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1040,"cratio":1.84615,"dups":["689576405884987124"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"175386555"},"12342526334236678473":{"videoId":"12342526334236678473","docid":"34-0-9-Z74946CFE9366CF49","description":"The proof that the sum from n = 0 to infinity of 1 over n factorial equals e. 1) Definition of the factorial function 2) Maclaurin Series 3) Differentiating e^x 4) Evaluate at x = 1 Created by Ben...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1019780/a8b885668e98e3b231b07f3f22b6fba4/564x318_1"},"target":"_self","position":"8","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D3kOTivwS1To","linkTemplate":"/video/preview/12342526334236678473?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Infinite Sum of 1/n!","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3kOTivwS1To\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhYKFDEyMzQyNTI2MzM0MjM2Njc4NDczWhQxMjM0MjUyNjMzNDIzNjY3ODQ3M2quDRIBMBgAIkQaMQAKKmhobnFkbW1peWRxeHJzZWNoaFVDWU1tT0FoY3hTYkloaE4wNjJjZEVmdxICABIqD8IPDxoPPxNYggQkAYAEKyqLARABGniB-wH5CPwFAO7s-__9AQEA9gP9-Pn9_QDm8vb__P0BAPMA_v7_AAAA9wQJ_f8AAAAB_gID_v4BAAz7BvwEAAAAEfYDBwIAAAD-Bv4K_wEAAAj3-QED_wAABAj7CgAAAAD6Dfz7_wAAAPr99AMAAAAA9fsG_P8AAAAgAC2i1OE7OBNACUhOUAIqcxAAGmD3DgA6-QvRBgof7BYI9frx7ATzzdUYANrdANkm8AH3ENzAI___Nv4VD7wAAAAm7kEbsgACU-Lp3QwELfjs7fYgHH8Y7LX44CDz2fra7iEcDgzk3_YA9Qr7Ggn570YUFkIgAC3kU0c7OBNACUhvUAIqrwYQDBqgBgAAYEEAAJzCAACwQgAArMIAAPBBAAAQwgAAuEIAADBBAACgwQAAgEAAAABCAABsQgAAgkIAAJhBAAC4wQAAwEAAAJBBAADAwAAAqEEAANjBAAAcQgAAMEEAAGjCAAAQQgAAWMIAAABBAABAQQAAAMEAAERCAACAwQAA-MEAAMDAAACSwgAAgD8AAIA_AABcQgAAwEAAALJCAAD4wQAAEEEAAFTCAACoQQAAdEIAAGDBAACAPwAA6MEAAPhCAACQQQAAZEIAAKjBAAAAQgAAfMIAADBBAACIQQAAPEIAAIDAAADYQQAAQEEAADxCAABIQgAAREIAAATCAACgwQAATMIAAABAAACGwgAAkMEAAODAAABAwAAAAMAAANBBAAAAQQAAjsIAAK5CAAAcwgAAmMEAAIjBAACAQQAAHMIAAPBBAACQQQAAaEIAAIjBAABgwQAAWMIAAOBAAAC4QQAAQEAAAIxCAABIQgAAmsIAAKBBAAAAwQAAgL8AAODBAACAwAAAcMEAAJpCAADAQQAAvkIAAADBAACgQAAAgL8AAOBAAACCwgAAsMEAAKDAAAB0QgAAIEEAAFRCAACEQgAAgL8AAMDBAACAQQAA6MEAANhBAAAAQQAACMIAABhCAADowQAAFEIAAEjCAACAwQAAiEEAAMjBAAB4wgAAkMEAAJBBAADAwgAAcEEAACDCAADQwQAAIMIAADBCAABcwgAAAEEAAERCAAAAQgAAAMAAAATCAABwQQAAbEIAAHBBAABowgAAaEIAACRCAAAMwgAAiEEAALjBAACoQQAANMIAAJDBAACAPwAAMMEAAIjBAAAIwgAARMIAALBBAACAwgAAgEAAABDCAABwQQAAwMAAAFzCAACAvwAAUEIAADDBAAAEQgAAgMEAAGxCAABEwgAA6MEAAABAAAC8wgAAlMIAABhCAABcwgAAIEEAABBBAABcQgAAjMIAAJBBAADgwQAAcMEAABBCAABwwQAAiEEAAJDBAAAwwQAAeEIAAIDAAAC4QQAAwEEAALDBAABAwQAAUEIAAGBBAABAwQAAAMAAAEDCIAA4E0AJSHVQASqPAhAAGoACAAAkPgAAbL4AAIg9AAAMPgAAuL0AADA9AAAQvQAABb8AALi9AACAuwAAQDwAABy-AAAUvgAAXD4AAOC8AABMvgAAuD0AAHA9AACgPAAAtj4AAH8_AABUPgAA4LwAADA9AAAkvgAATL4AAIg9AACAOwAAQDwAAKo-AAB0PgAAmL0AAIK-AAAkPgAADD4AAPg9AABcPgAAuL0AAPK-AACCvgAAQLwAAHS-AAAwvQAA6L0AAKC8AAAEvgAAVD4AAEC8AACYvQAAur4AAHC9AACIvQAAND4AACQ-AAAUvgAA4DwAAFs_AADovQAAoDwAAFQ-AACAOwAA6D0AABQ-AACeviAAOBNACUh8UAEqjwIQARqAAgAA6L0AAEy-AACSvgAANb8AAES-AABAPAAA6D0AAFA9AADgvAAABD4AAHC9AAAkvgAAqD0AADC9AADgPAAA-L0AANg9AAAZPwAAhr4AAO4-AAB0vgAAED0AAIA7AACYvQAA2D0AABC9AACIPQAAED0AAI4-AABAvAAAmD0AADA9AADovQAAML0AAHQ-AADIvQAAkj4AAGQ-AAAsvgAAmD0AAHQ-AAC4vQAAgr4AADA9AAC2vgAAcL0AAH-_AADYPQAAyr4AABw-AACovQAAQLwAAOA8AACOPgAAQDwAAKg9AACgvAAAij4AAIA7AADYvQAA2D0AANg9AABEPgAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=3kOTivwS1To","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12342526334236678473"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14684404978834622936":{"videoId":"14684404978834622936","docid":"34-8-8-ZB1470CBC3C08C288","description":"Limit (1+1/n)^n = e as n approaches to infinity Proof: • Limit (1+1/n)^n = e as n approaches to inf... This video explains the simple easy and quick proof of an important theorem Limit (1-1/n)^n...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4019740/2786dd341417d8f55940ae1e46025ced/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lsOvGAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdOqFf4bqJxU","linkTemplate":"/video/preview/14684404978834622936?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limit (1-1/n)^n = 1/e as n approaches to infinity Proof |Mad Teacher","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dOqFf4bqJxU\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhYKFDE0Njg0NDA0OTc4ODM0NjIyOTM2WhQxNDY4NDQwNDk3ODgzNDYyMjkzNmqGFxIBMBgAIkMaMAAKKWhoY3VwZmZwZXV6dmptemhoVUNJUDg5R01nTDZhUlV5eHBKZXNTWWJBEgIAESoPwg8PGg8_E0yCBCQBgAQrKosBEAEaeIH9BAkN_wIADP3__AMEAQH6-gTy-v38ANv08gMH-QMA-wD3__wAAAD6EAT-BgAAAP4J7wL3_gAA-xQH-wUAAAAIB__39wAAAAkQ-w7-AAAAB_r___sBAAD__O0D_wAAAPUBAvv4AP8B9gb-CgAAAAAL8fn0AAAAACAALTju1zs4E0AJSE5QAiqEAhAAGvABf-YC_8j6yf_iDOkAwyb2AIYXDv_8Oc0A4BADANXu0wAAENwA6gTs_-QZ8QDdDv3_HAXQ_wTCF_857AD_BbHuAfzx9gDq4tQDSwMZ_wDsBADqBgsA6-nxAdbD3v8M9boABgX-_wn61QER_88D-uozAQ4JMAQg1xT92af9AeQn5f_h2-wAxg7MARbm6f3d9DUI89cZ_yEn7vzWMfMDCOgS9en7LQEPFcsAMO4FCDgH_wnQ_ev_3iIWAxztFgDcHCoBAQ01-uAI-_f10xLyPiH97dkG9fTt6_oM8-cLE_Pj8u0H9ubw2_j8-MnvDfbNFgP0IAAtas0FOzgTQAlIYVACKs8HEAAawAcuIKS-IrjbPGfzUDlaLQC-QUWVvFO1Gzz3eEG-isQpvQygKbzNPs89SmervVdnqzx_gxa-ogtqOyFQBz0YdxM-1YqAvP6Nh7uG4wm-3yD1PKwBKr1Hjw--baSRPGg4yjy5hmm53YPrOynYNbx580o99V_MPAF5gDxviwi9Q0cHuiPYGL1RzaY9ABsQvdaF6byF2qW82TgHveBWsLx3Me09jwApvXaWETyvx6k9KCYQu6zQFr3q1bu9osc5PJBMR72CQsg92hPuPCLY3Tx_FeC9bjsjvfGdmDw1P6O9xipKPdAWxrxmFuE9QbUGPRPWhrxi9Iw9nn7Qvb52XbsMyIO9_xmvPF7xdTsnkn49fPmIPeB8jzx83KK9v2D3PExELrx3Y7a9XVY8PHslnbn0NOA9OJPAPXcCUDzZEgi9voagvPkcbTuZ-4-9m0WOPWdtyTwiRAM9RYBTvETf3bxd_yk9DLXBPD90nLygG7W83I-KPAAPVjy2tWq9eq9VPb_WJTzs3so8U54PPeGqfDwFI6U91gI7vknlmjr54-67W2H6vYUCvjt0eh4-NvchuyXLrLoTygw9mCSFvJhCsbt4nFK69z0jOvM7TTyl_0A82eqyvVOSN7p2J8m9GhzAvJAaiztSXxY97GqyvOGHObwPqXg9qDCLPRgwVLsvv9O9cqPtvNe0XrvPA249CWtIvWL8NTq8CPM9qeSXvVQh8DgSUME9wXhBvWHTCrpRBqg9N0iQu2ujFTtl04C8kCiZvVIDEzvurw4-nxKRvX7QlDkomcE8cfKRvKHyA7iUidu9Cd2aPe-96Dj1geQ9XXvAvSWeHbfvqxI9zqYDvhah1rfA7SQ9W--uOR6PxbnQdN077CO2PRVUIbjMIMO91A0EvghThTmLfE08i7F9uRvZH7lwPU89uE4tvU8lBDmyr4a8KE80ve2SAjptMck8KEnyvLSerDi7j6u6tQW6PGP4BTkRoFA9ukmcvaiweTlJd9860yTCPAtdFjabzuk81vJUPVTLHri4RyW8F4LcPSYd5TdnZ2w9BU3rvV8mNTgXePi81o3XPTjUujhKUai9Y27tPPsFPjjQYT68PlZVvS14Rrjew4q8VZKrvWg5_zfYY6K8QdsDuxllNDiCVUU-dMg3PcnchLm4XZO9z6uQvdp1RLiGvRo9UKYWvXWqWrcAAna96hLEPD3I87dhBnk98zoSvkvnqbgi_-w9NSkFPvN-W7hgmpg8W5r7PYSt_biyq4-9fLr6PHOUNDeYCVC8cmvSPAP2fDggADgTQAlIbVABKnMQABpgD_0ASA0cwhzFNOgQ2wAi1Mfr6PLlBf_a_P_5Jd7o1_HOqEAI_xrqDe2qAAAAMPTuFfIAynIQ9QogCiPx1rPZGkB_HAvkt6lK1ra5Fe4Q8DcI4g3xAPsuoPcO0sxFIegzIAAtMvgbOzgTQAlIb1ACKq8GEAwaoAYAAKhBAAAcwgAAhkIAAGzCAADgQAAAUMEAAJRCAAD4QQAAQMEAAEBBAABgQQAAQMAAAIhBAAAAwQAAAEAAANBBAAAoQgAAIEIAAABAAAAgwQAAAAAAAIBBAACQwQAAwEAAAKzCAABQQQAAREIAAEBBAABMQgAAgMAAAJDBAACAwQAAeMIAAIBBAAA4wgAAqEEAAPhBAACiQgAAGEIAAFDBAAAAQAAAEEEAAHRCAABYwgAAMEEAAKjCAABYQgAA-EEAAOBBAAAQwQAAwMAAAIBAAACAwQAAwEAAAIA_AADgQAAAkMIAABDBAABYQgAAYEIAAAAAAABwwgAAwMEAADjCAADAwQAA0MIAAIjBAACAQAAAQMAAANjBAABMQgAAQEAAAPDCAACiQgAA2MEAAADAAAAAwQAAoEEAANjBAACgwAAAQMEAAKxCAABQwQAA4MAAAIBBAAAMQgAA-EEAALhBAAAoQgAAJEIAAADDAACGQgAAUMEAAADBAACyQgAACMIAAIC_AABAQgAA4EEAAGBCAADowQAAHMIAAJjBAACgQAAA-MEAAIA_AADIQQAAKEIAAEBAAAAkQgAAkEIAAADBAAAQwgAAQEAAADTCAACSQgAALEIAACjCAAC4QQAAIMEAAKjBAABgwgAAIMEAALjBAAD4wQAAmMIAAJzCAABgwQAAsMEAAIBBAACwwQAA2EEAACDCAABQQgAAcMIAACBCAADwQQAA4EAAAMjBAACwwQAAoEEAAEhCAABwQgAARMIAAJ5CAAB8QgAAgL8AANBBAACAwQAAAEEAAMjBAADowQAAGMIAAATCAACQQQAAkMEAAPDBAAAMwgAAZMIAAJDBAAC4wQAAgMAAAKDBAABQwgAAwEAAACxCAAAwwQAAjkIAAFxCAABQQQAAkEEAAKhBAAAwQQAAFMIAAHzCAACAwAAAaMIAAAjCAACAQQAAWEIAAILCAABgwQAAkMEAAILCAACAwQAAmMIAAABAAACYwQAAMMEAAEBBAABwQgAA4MEAAIhBAAAAwAAAsMEAABhCAACgQQAABMIAAHBBAADYwSAAOBNACUh1UAEqjwIQABqAAgAAoDwAAIK-AAAkPgAA-L0AAJg9AAA0PgAA-D0AAL6-AACIvQAAED0AAEA8AACoPQAAgLsAAGQ-AACAuwAAMD0AABw-AABAvAAAcL0AACQ-AAB_PwAA4LwAABC9AACYPQAANL4AACy-AACCPgAABL4AADS-AACuPgAAHD4AAKg9AABsvgAAED0AACQ-AAAMvgAAuD0AAFC9AAD6vgAAFL4AAFC9AABEvgAAcD0AALi9AACIPQAADL4AAII-AADYPQAAcD0AAGS-AADgPAAABL4AAGQ-AADgvAAANL4AAOA8AAAvPwAADL4AAAQ-AACWPgAAcD0AADw-AACIPQAAkr4gADgTQAlIfFABKo8CEAEagAIAAKg9AADovQAA4DwAAAW_AAA8PgAAHD4AAI4-AAAcPgAA4LwAADQ-AABQvQAAgDsAALg9AADovQAAiL0AAEA8AABAvAAAHz8AAOi9AAADPwAAML0AANi9AABQPQAADL4AABQ-AAAMvgAA-L0AAIA7AAAMPgAAgDsAAHC9AAD4PQAALL4AAIi9AADgPAAATL4AAPg9AACgvAAA6L0AAJg9AAA8PgAAUL0AAKA8AABMvgAA6L0AAEC8AAB_vwAAED0AAOA8AACIPQAATL4AAGw-AACYvQAAND4AADC9AADIPQAA-L0AAKq-AACAuwAAZD4AAPi9AACSvgAA4DwAAOA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=dOqFf4bqJxU","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14684404978834622936"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1585676953"},"11326497938724186306":{"videoId":"11326497938724186306","docid":"34-1-0-Z7D0FE7D39FCE88FE","description":"This video will demonstrate the common steps to proving that the series of n(n+1) equals n(n+1)(n+2)/3 for all positive integers using mathematical induction (also known as the inductive method).","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1962952/40daebdc65699adc94576ad4878138ad/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qdcCCgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DfnPYgblaalU","linkTemplate":"/video/preview/11326497938724186306?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proving Σn(n+1) = n(n+1)(n+2)/3 using Mathematical Induction","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fnPYgblaalU\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhYKFDExMzI2NDk3OTM4NzI0MTg2MzA2WhQxMTMyNjQ5NzkzODcyNDE4NjMwNmqTFxIBMBgAIkUaMQAKKmhoeXRlYmJjY3J5bGxnemNoaFVDWWgyNTEwZTBBSjVCRWNvcHJ0bXdiZxICABIqEMIPDxoPPxP3BIIEJAGABCsqiwEQARp4gfsB-Qj8BQD5AQAJ-Ab-AgYG-AD3__8A9_v7_f4C_wD5-_8FBQAAAAUM_wUDAAAAAPvyDPn-AAAJ_fgFAwAAAAsI-voAAAAAEAUADP4BAAD__Pv_A_8AAA0IAQUAAAAA-AoG-_v_AAAJ_wILAAAAAP_2Af4AAAAAIAAtotThOzgTQAlITlACKoQCEAAa8AF_Bvv-zdXFAOEN6QDCJ_YAgxgO__4R3QCoGgEBrvW_AdwPAgD6-egA4BQpAbAdCQA60Mr--MkCACnQ7v448tsAAA8QAfvW9gJZGRMB_gL2_tYRH_734RQA9dXL_hso-QIGBf7_5wLrBCEZxAL66TQBBP9MAR3lCP_V0vYCAfH5AAvu0QAGCfQA8r8EAtz0Ngg9nPkCJggG_9Uy8gPs5gH8_tsa_Ak0z_0-3gMA-g0D_dTYBQH8AeMENxgQArz33P_65hz96gkL-eX48vlD1gD3tA0DDB7z8w4XD_YAC_D4CwXq_vO66ff22A_0_eIc2vAgAC0sqgI7OBNACUhhUAIqzwcQABrABy_9674KYgU93dT-O6Wdj71E5M-8hUu9vBTamL0nT3k9CxGJu28uHj4t4K-8YRWUvOwzx736crA8iL0wvcVVhT5UMG-9m38qvHV0_L0vE5o9CwIQvbeyJL4pFcM8RNBivIJEibx1K4q9_CtYu6Di2D1hPJ68xU-IvG-LCL1DRwe6I9gYvZita70X5UO9vEkCvW4wuTzZBUi9aqHHO7efZzxFMZS8kAEPvM72DT1zi9S839Gxu08kc7y4ghw9Wg2JvOGfrTyf2uo8eajPuCU9vL2tmca82RaUvPINQL237Tu9WkJjPOoHdT2_hMQ7sdUKvWL0jD2eftC9vnZdu6jIIb4CfBw96OltPEYK5T2jliA8U83uO9JXm73dSFQ9GvQtuyG3lTzY9eu98VanOmAhEz0b3IE9TojOO7P7Xz2Q8GK8kXDvOgib8Lz_Yxw9Fw2ZPKTUEjzOQrG83o_bvP6vjz3MKuy8YKiJu-nw0L1sejA96fORvK3nOj2_EBI92LZNvEafqrw3zGk7QbCPPHAK6zxF77m99kflufpYpr3LUJC9Haeuux1twT05aRA9LgV_vLQgBD4YCAK92CA3uth1Gb0cako8M1Elu22kkTxeyHm9H6w1O4FKq70lYuW864sIvNi_xrzE3lU8f_ExvK9meLwtN5I9nlUPO9BPJ713ooS9ofeEOqMNxj2Wr8s6YG69O5Ol-zzo-Gg9HucRu1T6nj2a6Di9eFpPOC7Og71hCC-9qKjKuaisJrwm30y9dLmqud1hkz27lwu-pQ5oORxidz3nrmO71hS0uSZstL1kQNY9XCYQODFNibuNHUS6i4KoOMui8LxbQh6-NwXjOZ4Sa73yYyc8jR9AOcp6AD05qG493BKYOhQcg73HJK29GlEVOJObsrznpg09sSLnuEaa2D2yMwA91guQOMDyuzxKOxy8a2TOOJTJP70Xpfo8qHbXOBw5ublRpiw8gcKnuEHxAz1xT8G91zh7ORe-eT1_VK49OTHVOEyXNLx7f6i8eD5DuPqBtj0b-iI9BuJ9N_X_QzvHeWS9r2O1t7_z6z2sLnG8VcxSOLSQEL7YjKI9mXsEt_zxrDu1ChG8o3aauP2GCT0myOe7Lu-kt2qirjtSKAs8AphZOPcBKD5wYd298We_uVxJAb3K3tK9FyIEudVdmbwRl4K9B3EDuJG_Cr2DHpU9i0ORN9WU5Dy-Nqa986NNuMr0cD0i4Ss-8cuKOPJrWjxt8xA9886KuOhVs70WJOw8zbghON4BHr0ZsY071QM-OCAAOBNACUhtUAEqcxAAGmA6-gAkA1_u_fsd3-vK9xK67_CwRtPs_9Ld_zAM9-weFanRBBf_D8QS2KAAAAAD--UUIQDwf-XtED4hGe_MtfwSMXg6LzGOBv8MxOxrB_0eTSzn8ioAMu-UFR_cjjg6Gi8gAC1pdA07OBNACUhvUAIqrwYQDBqgBgAAOEIAAEDBAACoQgAA1MIAAAAAAADAQAAAhEIAAOBAAACgQAAAgMAAAIA_AABAwQAAOMIAAFDBAACoQQAAAAAAAGxCAAAMwgAAhkIAAAjCAADowQAADMIAANLCAAAEQgAANMIAABzCAACIQQAAKMIAAABCAACQQQAAGMIAAIBBAAAswgAAAAAAAPDCAAAAwQAAgMAAAGRCAACgwQAAmEIAAABBAACYwQAAAAAAAKDAAACwQQAAXMIAADDBAACIQgAAiEEAANhBAABYwgAAOMIAADDCAABQQgAAbEIAAARCAADcwgAAUEEAAEBBAACgQAAA8EEAAEzCAABswgAA0MEAAKBAAACgwgAAyMEAAJbCAAAowgAARMIAAIBCAAAoQgAADMIAABhCAACAwQAAgEAAABDBAAAEwgAAAEAAAFBBAADowQAAkkIAAEBAAADgQQAAAEAAAChCAACAwAAACMIAAIhBAABAwAAAGEIAAIJCAACMwgAAUEEAAABBAADowQAALMIAAIDBAAAQQgAAiEEAAJbCAABAQAAAMEIAAFzCAAAwwgAAAAAAAABBAADAwAAADMIAAFhCAAAkQgAAAEEAAEDBAABAwAAABMIAAChCAAAwQQAAIMIAAFDCAADgwQAAIMEAAMjBAACgwAAA6MEAAMDAAAD4QQAAAMEAAABBAACgwAAAPEIAAKBAAABgwgAAyMEAADBCAADAwAAAfEIAAIA_AABQQgAAPMIAALDBAAAAQAAAwEEAAKDAAACAwgAAgD8AAAhCAAAAQAAAsMEAALDBAACwQQAAAAAAAGhCAACIQgAAGEIAABDBAAC4wQAAuMEAANDBAABEwgAAgMEAAI7CAACAQQAAoEEAAIA_AACAQAAAgD8AACjCAADYQgAAOEIAAMDAAACQwQAAQMAAAEDBAAAYwgAAYMIAAMhBAABAwQAA4MAAALBBAAB8QgAAqsIAAGDCAAAQQQAANMIAABRCAACgwAAAmsIAAETCAAAAAAAA4EAAAFRCAAAQwgAAEEEAACDBAAAAQgAASEIAAIDBAADAQAAAiEEAAEDBIAA4E0AJSHVQASqPAhAAGoACAACIvQAAuD0AAPg9AABAPAAAQLwAABA9AABwvQAARb8AAMq-AACqPgAAoDwAAKC8AACAOwAARD4AAHC9AABEvgAAij4AADA9AAA8PgAA-j4AAH8_AADYvQAAJD4AABC9AAAsPgAAFL4AALg9AAC4vQAABL4AAK4-AAAsPgAA2L0AAEC8AAD4PQAAUD0AAIg9AAAUvgAAir4AAIa-AACevgAAhr4AAKC8AACAOwAAJL4AADS-AACKvgAAVD4AAOi9AABEvgAAgr4AAHC9AAAkvgAAPD4AACw-AACmvgAAgDsAADM_AADgPAAAQDwAAHA9AAAwPQAAzj4AAHQ-AAB0viAAOBNACUh8UAEqjwIQARqAAgAAUL0AAOC8AACYvQAAC78AAAS-AAAEvgAAND4AAKC8AADYvQAADD4AAHC9AAA8vgAAgDsAAGy-AADgPAAAML0AALg9AAAnPwAAED0AAOI-AABwPQAAcL0AAFC9AAA8vgAA4DwAAKi9AACIvQAAoLwAABw-AADgPAAAQLwAAMg9AACgvAAAXL4AABQ-AACgvAAAND4AACQ-AAAkvgAAiD0AAHQ-AABAvAAAML0AAPi9AAC4vQAAND4AAH-_AABsvgAAXL4AAKC8AAC4PQAA4DwAAIA7AACIPQAAuD0AAKA8AAAwvQAA4DwAAOi9AAA0PgAAoDwAAKC8AAAwPQAAoLwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=fnPYgblaalU","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["11326497938724186306"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1639725601"},"12686427269631730422":{"videoId":"12686427269631730422","docid":"34-7-0-Z0E41CDFE06C5A0DF","description":"Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Using the Principle of Mathematical Induction to prove sum(1/(i(i + 1)), i = 1,..., n) = n/(n + 1). I did it for the first time in this...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1627659/a5b3d758402897786cf11d38658cff06/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/r9VoUAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dl7nkGZm9Oy8","linkTemplate":"/video/preview/12686427269631730422?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Principle of Mathematical Induction sum(1/(i(i + 1)), i = 1,..., n) = n/(n + 1)","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=l7nkGZm9Oy8\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyWhQxMjY4NjQyNzI2OTYzMTczMDQyMmqTFxIBMBgAIkUaMQAKKmhoenpsYmpub211Z2hidmJoaFVDcjdsbXpJazYzUFpuQnczYmV6bC1NZxICABIqEMIPDxoPPxPbAoIEJAGABCsqiwEQARp4gfMJBwj_AgDyA_UCAgP_AQQAAAL4__4ACfT8_PgC_wDt_fwDBP8AABYJ_QH-AAAAD_7xCf_-AQAYAQP_-gAAAAf6_f_6AAAAGxH_AP4BAAAG8f_9Av8AABQRAQr_AAAAAA4B-f3_AAAFBgMUAAAAAPv5AQQAAAAAIAAt2X3WOzgTQAlITlACKoQCEAAa8AF_NBAB2_auAdoS3QD0BOYBviI1_wky8QDR--YBtvbFAOrn1__sBO7_ACLy_6cl0wAm69f_--z4ACO-9v871-kA1vD3ASHx4AA-Ey7_G_MN_9r3Af8R6v__89mxAOsVyP8g8BT8F_ThAOwDwAIQ_kAB2OAuCR3Z-AP2u_QD7QT6Avf4xP74APEFGfUY_NYbIQIYuwoDAvkO_OsT2_0A-RD82vkQ9zQS5AEN0fABICb099ME_foN8BMGEgoT9cX8_AzW8S8GwiMDA_3xE_gQ_AH_5BLwCPIK8BEZEQoODAD0-zgNAQLiCvj05hX8BOUa3fEgAC2swA87OBNACUhhUAIqzwcQABrAB8xdw75k0vi6S_D-O6Wdj71E5M-8hUu9vLvbq7ylMiA9k9vbPPa2ST6SUoq9UVcNPYv7z71urpA8nVPiuxSUQj5GRRy9c-gAvHE9Wr7nFr89hUyovKbUBb4_TKm6BWaqvLMVSr2I-OK8LtW7PNaiLz1UPfS82qQqu2-LCL1DRwe6I9gYvbx8xjxuDh-8Ig14vfY6jr3ZvQu9ucOmvHcx7T2PACm9dpYRPK_HqT0oJhC7rNAWveEfu70BQIS8ObTtvPDnyjsfg1U94o-HPIkDLb0HQGG9npb-u_4FZ73AQ2w9PJkHu37-Cz7NsZw9xg6PvHkqhj1FBym9CpAXvW2s5L2mES49lE7BO3qHID057IM9QkWYuchFJb5p0YE9nQjHvIqVLLzln3Q8N-M0vA-_hj3vnKw9w1WUPCvKOz2BtrC80KJSvODsAL3gWIY8nTnaPJNSED4xJl29lbsqvM8-kD1c-vw8Kh_CvB4lJb2_2UG82mvqu98zFLxDnYg9vZyGO1OwhjyxJTW99kWhOwUjpT3WAju-SeWaOseDbb1XEI69nbdWvPyd2LtD0Ic8HtCEO07wzT1mM-e9_1cAPDD6ZTySq7s73c0Vu7IRyLy9Ski97faTutn1sb1IRym6IzAZujYapb1byp486yoPvDON5rwwoKc94KAcvEq5Nj3Neoy9k3GYN3Wirj3GzZ88Ny7nu94e5D1PxMc8iFcjOZcjnz37xny9A6wSOtkQEr1Jzei8WkKlO3CEO70hBgq-eXtNuO6vDj6fEpG9ftCUOVwtIb28Byg9J1yzOV74XL2Ngrs8psFaN0GYQD2Kk_u9TGt2OGskLj0vFdu9u2o3OfXgtD3J6nM71qQmuNB03TvsI7Y9FVQhuMwgw73UDQS-CFOFOYbuCL01bgC9-SukuLdETj2pewO5e7couEswRr1vuE893AfGN4dMfj1ItFO9ET1pOLUQiTuI4DM9GrC0uOci2TwDzPy9UknIOXisI7yun349fQTTOFHZ8Lw55Rs9kkqUOG2TBT2ICCk9P_UJubETgzy2sbO9FanpOCGem7zhk1M9yNDVt1RT0r3odM-8L_jFN0DVzTwK4lE7Ag7KNy23z7y4OHA75KWMuAoouTz-3ZE90q9lN4JVRT50yDc9ydyEuc3Her3TFey95pv4uDKU7ry6-Lu9NhcmuJtLW72SPKc9bXCBOB3jDDxnRt-9aVASuMr0cD0i4Ss-8cuKOPCyNb1czM89DEYKuSNozL0NAfo7bwYGN7hLkbx-7yW8aZOSNyAAOBNACUhtUAEqcxAAGmAt-wAwF1L-8gkx3fPqAAfh0Pi7OuHv_9ne_xP16wIpC5DLAfL_9s8YwqEAAAAlDeYSAQDgf-bHGFMG-w7W0M89AXcBE_ie5uMIps446B0_PT7w-CkA6fSwLxHjhkcdMTcgAC24sRE7OBNACUhvUAIqrwYQDBqgBgAAkEEAAGzCAACQQgAAhMIAABxCAAAQwgAA4kIAAMhBAACgwQAAoEEAAIA_AABgwQAAgD8AAEBAAACgwAAA6EEAACBCAAAgwQAAsEEAAKDAAAC4wQAAiMEAACjCAAAAwQAAQMIAAETCAACoQQAAiMEAAIBCAABAQAAAJMIAABTCAADEwgAAMMEAAGzCAACoQQAAKEIAALBCAADgwAAA-EEAAABAAADoQQAAhEIAACzCAABAQgAA4sIAAAhCAABoQgAAJEIAAOBAAACAvwAAUMEAACDBAAAAQAAAwEEAAMhBAADgwgAAQEAAAEBBAACEQgAAgD8AAL7CAAAQwgAAJMIAAGDBAADkwgAASMIAACzCAABAQQAAJMIAADRCAACoQQAAoMIAAIRCAABYwgAAqMEAAIDAAACgQAAAoEAAAABBAAD4wQAAwkIAAABAAAAwwQAAwEAAACBBAAAMQgAAgEAAAHhCAAA0QgAAJMIAACxCAADgwAAA-MEAAIZCAADAwQAAIMEAAOBBAACgQQAAkkIAAETCAACQwQAAyMEAAMhBAAAowgAAEMEAAJBBAACIQQAAAEEAABBCAABIQgAA8EEAAODAAADAQAAALMIAANJCAAAIQgAANMIAAGjCAACQwQAAkMEAAJLCAAAAwgAAmEEAACDBAABYwgAAQMIAAFDBAACIwQAAoEEAABzCAACgQAAA4MAAAEhCAAAowgAAWEIAAMBAAAAIQgAASMIAACDCAAAgwQAAEEIAAERCAAAgwgAAcEIAAGhCAADAwAAAQEEAAOBAAADowQAAJMIAAFDBAABwQQAA4EAAANBBAABAwQAAAMIAAEjCAABAwgAAyMEAACDCAAAUQgAAQMAAADjCAAAwQQAAOEIAAGDBAAAQQgAAbEIAAEBAAACAQAAAGEIAAGBBAABcwgAALMIAAKBBAAAMwgAABMIAAMBAAAAMQgAACMIAABDBAADowQAANMIAAARCAAA8wgAABMIAAFTCAAAAwQAAqEEAALBBAADowQAAIMEAAHDBAACQQQAAiEEAAOBAAADgwQAA4MAAAKDBIAA4E0AJSHVQASqPAhAAGoACAAAUPgAAJL4AAJg9AAAwPQAAHL4AAEy-AADIvQAAGb8AAN6-AACePgAAVL4AAKg9AACYPQAAgDsAANi9AAAMvgAADD4AAKA8AABAvAAAuj4AAH8_AABcvgAADD4AABS-AAAwPQAAqr4AAIY-AABAvAAAXL4AAJI-AABUPgAAHL4AAHC9AACOPgAAij4AAII-AAA8PgAAqr4AAJK-AAC2vgAAmL0AAAS-AAAcPgAAHL4AAHC9AAC2vgAAFD4AAIA7AAAcvgAA-r4AAFS-AACSvgAAyD0AADQ-AADYvQAAoDwAACk_AAB8vgAAoLwAALi9AADgvAAAlj4AAIo-AACmviAAOBNACUh8UAEqjwIQARqAAgAAiL0AAFA9AACIvQAAHb8AAPi9AAD4vQAAqj4AAMg9AADgPAAAQLwAAHC9AABMvgAA2L0AABS-AAC4PQAAoLwAADw-AADqPgAAML0AAAM_AAAwvQAAyD0AACS-AABkvgAAuD0AAAy-AABwvQAAcL0AABA9AAAwPQAAoLwAAAw-AAAQvQAAHL4AAAw-AADIvQAARD4AAFA9AABEvgAAJD4AAOg9AACgvAAA2L0AAFA9AAAsvgAAMD0AAH-_AABwvQAARL4AANg9AADgPAAAHD4AALi9AAD4PQAA-D0AAJg9AABwvQAA2L0AAIA7AADIPQAAEL0AALi9AAD4PQAAiD0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=l7nkGZm9Oy8","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":700,"cratio":1.82857,"dups":["12686427269631730422"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3770708013"},"18318416703157781796":{"videoId":"18318416703157781796","docid":"34-4-12-Z73399B0FD8713E51","description":"This video explains the proof of Limit (1+1/n)^n = e as n approaches to infinity. This is a new version of the proof with more elaboration and detail. I tried my best to explain every single...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1640907/c72de7a05630574b958e5db1c2302e68/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/HxnhOgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWB93_KmHFWg","linkTemplate":"/video/preview/18318416703157781796?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limit (1+1/n)^n = e as n approaches to infinity (W/Voice Explanation) Maths Proof (New) |Mad Teacher","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WB93_KmHFWg\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhYKFDE4MzE4NDE2NzAzMTU3NzgxNzk2WhQxODMxODQxNjcwMzE1Nzc4MTc5NmqSFxIBMBgAIkQaMAAKKWhoY3VwZmZwZXV6dmptemhoVUNJUDg5R01nTDZhUlV5eHBKZXNTWWJBEgIAESoQwg8PGg8_E8wEggQkAYAEKyqLARABGniB-AMIEAT7APv5BwgCCPwCDAD7-vYAAADX8_EDB_gDAPD69fn_AAAA9QT4AvgAAAD3Bvr98_8BAP0RAPn4AAAAGAb97_sAAAAUEgcK_gEAAAr2-AED_wAA-fz2AP8AAAD1AQP79wD_Ae8CAQUAAAAADPz66wAAAAAgAC3zHMc7OBNACUhOUAIqhAIQABrwAX8ICAH558YD0y3RANztAQDOCBEAD_znALvp8gDM_-wB7Br2APEh8wDsJ_X_ohIMARPYtAL1A_YARvT4_znY6QD5APoAFfW-AS0dBQAK-A3-8A0W_wPG-gEY1tIDHhnFAAfSHP4uGe3_HRbLAg_-PgEE_0MAK-IPAQKjAQfd-_wCDQD5-PcjBQUQ8fb69eIpBPTbFv8P9f765_7fBO33EgDy9Bz5CC7V_Tf9AQQkAwD-stQN__vfCw4zGygJz_3uBOXhHv_NJvD9CwoX9CUD8_nmKOwIBu_gAw7sAQgN9QoADff89QrzAPXo-O8C-Tfv-yAALY27Ezs4E0AJSGFQAirPBxAAGsAHZ0a3viwSbjzwgQI9vqOGvezpeb2ixJ287X7VvTvqg7znlFu89rZJPpJSir1RVw09JoaZvRXeijw8xnA8y4AzPubRiL2YYjM8GYGivUC1uz3hpF-9T-XUvfr3jzy67CE9ulaxvMNUaTz2rma8POmuPejUursTYGY6b4sIvUNHB7oj2Bi9EUKWPevag72aO9-8t3-FvefT2bzQj9A6dfWEPRSCKz3ywfy8bus9PYDAnLtEqoO82xkWvq99ATzCxzu98OfKOx-DVT3ij4c8fxXgvW47I73xnZg8-n0_vRqUHz3GBWQ63gydPTN51jt_4h27A2iKPXdGQL1Kguw6L4byvXSQfLz9Iaw8tYzQO-NoUz0b26W6ZDvEvRV1gTykC3u8ZckXvc44zTxtoAy8rqfvu6yLKz5zWuA6PD0lPCM9e7zqo766RZDEvZaw1j0tca48W5WUPeoOqL0wMIa8M-t7PP2AC7uEU5U83IsevQPSfjyJwAm8k_7evClHzD39n-Q7QdgEu-_u97xB8cY7BSOlPdYCO75J5Zo6-ePuu1th-r2FAr47CxJ2Pd2hdjtbiW27FZBWPb9elr3dQ8K7aebmu1hdorwjU5k7yj7-vIrzhr0SjpM7-iXivWLiar3TY187_GWBvY6hUjzf61q8YeehPecGXj1JBuu7OkSXvYrQ47xcWmw7_IUjPWxXjTwPYgg7hnFHPqM0QLwU7e25TQ9vPU9FJb2qKCM4aRgfvBQiIL06JqQ6RLN8PE-TCb6bBmK5PL3yPUrIUb1XwY45APLUvIaBHT3tJ524LdEJvpYhLj2euGC4BnYmPerbiL0CzWY4avYju--dp71iSNy4OJ0pPfl2XDyERDG4VuZ3vSECnj0jH1o5zCDDvdQNBL4IU4U56ln1vBF55jwL7Ns4D7SnPJo737wfoLu4pFLLOvQ9fjylLXe4A90ovGSy-LyiMRA5gr-EPT6ITj0Oa0c4Wq-DPQGPw72m0Vo5EOOaPCa6-DyFY9A4jNCZPNJr2DxNSu23W8gMvIuvgT03bjq5088IPGYx0b0-S5c2baljPag04jyxRbS42gPrO2UJkT0xsSM5gXvePLDEqDw5FCS3agWsvTb2trsr2qW4EjKQPMSDPD2KxaM3glVFPnTINz3J3IS5XEkBvcre0r0XIgS51V2ZvBGXgr0HcQO4m0tbvZI8pz1tcIE45NWevHqJ8b1lVTC4yvRwPSLhKz7xy4o4UqSxvIQiZz2d6RO46FWzvRYk7DzNuCE4tJFrvddJsj1SG9U3IAA4E0AJSG1QASpzEAAaYCv3ACsORL0L0xrw79gQ9cDU7Nwa1yX_8O__7TvY5vgAt7o1B_8V6RnToAAAACUA4BHdANZ5-RH7JCQH9d6B6R5KYhAF5uKpQdqa3wTZIO8oE88HDADvEpwfEtyeRyEGFyAALSyyFzs4E0AJSG9QAiqvBhAMGqAGAAAEQgAAoMEAAGhCAABQwgAAgEEAAABBAAC6QgAAUEEAAIDAAACQQQAAqEEAAJDBAAAcwgAAEMEAABhCAACAwAAAcEEAAEBAAAAEQgAAuMEAACDBAACQwQAANMIAAIDAAABowgAAMEEAAJBBAAAIQgAAEEEAAJBBAADgwQAAAMEAAIjCAAAAQQAAaMIAAHBBAACAvwAAmEIAANhBAAAkQgAAMEEAAEBCAACMQgAAPMIAALBBAACYwgAAiEEAACxCAABwQQAA6EEAAADBAACAQAAAqMEAAIBAAAAAwAAAgEAAAIDCAADIwQAAHEIAALRCAABAwQAAoMIAADjCAADYwQAAgD8AAMLCAABQwQAAGMIAAKDBAADwwQAAREIAAEhCAADQwgAAukIAALDBAABgwgAARMIAANBBAADAwAAAcMEAABDCAABYQgAAQMAAALBBAACgQAAAcEEAAEDAAAAcQgAAyEEAAKDAAADCwgAArEIAAKjBAABgwQAAoEIAAPjBAADAwQAAgL8AAKZCAABUQgAAAMAAAEBAAAAAwAAAQMEAAIrCAAC4QQAAKEIAAKhBAABgQQAAgEIAAJBCAADAwQAA8MEAAGBBAACYwQAAiEIAACBBAAB0wgAAIMEAAGDBAAC4wQAAgsIAAJhBAABswgAAGMIAALjBAAAAwQAABMIAABzCAAAwQQAAgMEAAABBAACIwQAAnEIAAPDBAAA4QgAAQEEAABhCAAAwwgAAcMIAAIA_AABgQgAAbEIAACjCAABwQgAAMEIAACzCAABAQgAAmMEAANBBAADYwQAAuMEAAGDBAABUwgAAUEEAADDBAABQwgAAPMIAACjCAAAAwQAANMIAAKDAAACQwQAAAMIAANhBAADgwAAAgMEAAHBCAABkQgAAAEAAALhBAAAgQgAAwEAAAIC_AACcwgAAUMEAANDBAABwwgAAoEAAAKhBAAC-wgAAAMAAAMDAAAAAAAAAAEEAAJTCAAAcwgAAhsIAAABAAAAMQgAAcEIAAMjBAAAYQgAAuEEAAOBAAADoQQAAiMEAADBBAABwwQAAMMEgADgTQAlIdVABKo8CEAAagAIAAKC8AACOvgAAZD4AADS-AADYPQAAjj4AAFA9AADKvgAA2L0AAJi9AACgPAAAyD0AAEA8AAB8PgAAED0AAIA7AAB0PgAAQDwAAOi9AABEPgAAfz8AABC9AACYvQAAHD4AAGy-AABkvgAAkj4AAHC9AAAcvgAArj4AADw-AABAvAAALL4AAOC8AABEPgAAEL0AANg9AACIvQAA5r4AABy-AADIvQAA6L0AALg9AAAUvgAA-D0AAAS-AACCPgAAmD0AAAQ-AACKvgAAQDwAABC9AABUPgAAUD0AAIK-AACAOwAAQz8AAJi9AAB0PgAAuj4AAIg9AAAcPgAAyD0AAFS-IAA4E0AJSHxQASqPAhABGoACAACgPAAAiL0AADA9AAD2vgAAgDsAAOg9AACKPgAAfD4AABA9AABEPgAAcL0AABC9AAAUPgAAML0AANi9AACgPAAAmL0AAB8_AAAcvgAA7j4AAOA8AAAEvgAAED0AAFy-AAD4PQAAmL0AALi9AACIPQAAuD0AAKA8AAAQvQAA2D0AAEy-AADIvQAA6D0AAFS-AABkPgAAHD4AABS-AACYPQAAij4AAMi9AABwPQAAVL4AADC9AADovQAAf78AACQ-AAAwvQAAoDwAAAS-AAB8PgAAEL0AAEQ-AAAUPgAAyD0AABS-AACKvgAAML0AADQ-AACIvQAAgr4AAHA9AAAQPSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=WB93_KmHFWg","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["18318416703157781796"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3259266924"},"4532981024393830620":{"videoId":"4532981024393830620","docid":"34-2-0-Z2AA65F70BC57B376","description":"We prove the sequence {1/n} is Cauchy using the definition of a Cauchy sequence! Since (1/n) converges to 0, it shouldn't be surprising that the terms of (1/n) get arbitrarily close together, and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4259802/026148f337ff105c19188e4945647a54/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/GVeZuQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D97PCMCQYKeM","linkTemplate":"/video/preview/4532981024393830620?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof: Sequence (1/n) is a Cauchy Sequence | Real Analysis Exercises","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=97PCMCQYKeM\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhUKEzQ1MzI5ODEwMjQzOTM4MzA2MjBaEzQ1MzI5ODEwMjQzOTM4MzA2MjBqiBcSATAYACJFGjEACipoaGNjYXh6aGJ6c21qbGliaGhVQ3lFS3ZheGk4bXQ5Rk1jNjJNSGNsaXcSAgASKhDCDw8aDz8T7wOCBCQBgAQrKosBEAEaeIH_CQL1_gMA9AP-AgAE_wECDAD_9___AO39AQQJAAAA_P4CDQAAAAAC_fgCCQAAAP34-AL7_gAABAH2_gQAAAALBgP2AQAAAAkH9Pb_AQAA-fb1CAP_AAAYAPIH_wAAAP0EDfAAAAAA7P4FDAAAAAAX9PYCAQAAACAALei92Ts4E0AJSE5QAiqEAhAAGvABffsTAdD70f_vBtgAxxbg_4EiCv79MdUAwQX9AM0V2QAE8vAA3wPrAN8HCv-5J_n_MNjT__rSAgA4y-f_HejvAOgE7gEFx-kCNQ8WAioJ9f7sCSQA-ODu__fc1P8b_9z_DeMP_wj73AHuA8UCDv47AfkBJAUq_CMB8skH_-n39QLt39v-BBb9BfzSKv_i9i0HEd3u_Q0F8_roHuoC7gAH-g7ZDPwUO-v_DgbyBhUD__ywAvwD_OP3BRISBQHqFvkF8_ckAuUJFvHw9BQEOObv_uHqBgP50vQOG_L6DfT0-_3_6-0A2hP---n58ALkI_ryIAAt_yEdOzgTQAlIYVACKs8HEAAawAcHB9u-eQOMPMpnMTo-K5S9SPMRPeFgb70jE_C91y0nPff9QLwYmAU-gDPrO3-zvbv2lmK-BXiBPHk_Dbz9vXQ-klRLvQOx7DxxPVq-5xa_PYVMqLy3siS-KRXDPETQYrxAXCg8uG5vvP0EhrsnwHA99M4ZvE-x6rwBnMW7ff7Bu6CSbr2kmJO6ajS5upF387w_P2c9e2GXvNILDrwEVwk-661cPC9EQ7qY7ZK72Ig7vPB2c7zWMTO9jVL4PDQ_yLyaP4Y96dVAPYTZ37v0YQe9ww2IvS6dhTz-BWe9wENsPTyZB7tjXmw8Ow4NPS1O67z8w9Y9ZoCPO_vyF7yoyCG-AnwcPejpbTzshu09jPeDPXJbkTvGYaq9q1udPe7Umjukbqc8_dJHPBa6t7zPfKM9uDJSPafQVDw0U_W8D7QnPEU0EzyqHka6gIGAPVTTZDxTyqA9LHdQveKxG7yyA3g866O4vA3PgbzfiM69khk5vLahT7ozyZM9sud8PDQR9Du_w4M9NCqVPAsPqbnfZsY9ObXzvYcfGDxjKn28o0XMvYcqRrx0fso8aiRzPYXEqLtbPpc9-KTDvajUOrtIfJu6MVs3vegjOrwwq1O57s6avG2ThrvOJpa9-p6sPLXhMLudIWa8lBYOvZMtHrxCPSI8LXFpPVnppDuRoFO83yatvRbtnrpo_q09eahyPc0YCzvMLnM9UBm_PF2-GjuXI589-8Z8vQOsEjqVDAC9V19YvTNTczhzVlq9RxB4O9q5XTvurw4-nxKRvX7QlDmLdis9IJdYPfaoX7j7m0u9-6gLPWr0wzk5WCk9COkpvNv1aTnLovC8W0IevjcF4zn076M7j_2svKAKZTks5AC9US3iPOzks7muwAu9pmkrvOY2wzl_EVk9Xk15PJZArzd4npM9brjZPP2onbgMB4K8tIvMuw-z_zltnck8oqAvvX-jprkl1wO9BLS4PaonqrjCw488ERnWvIUEobfDdyw97kigPW3tGzkAIwM9DtvWPT5PjDfr0D89s90zPcuPk7gGnCW8jGrRvfpT9zf80pE8w45wPXLYODgi-wC-xl8kPReYZTjaQkY8-PpavSjjGbiKy1E9OCYwPK9PqTj6sCO9KPCxu9BzxDjB4ys-3KVovAeJdLlcSQG9yt7SvRciBLnVXZm8EZeCvQdxA7jE9cE77g4kPYf5zbfsA707fNQPvhf63LjK9HA9IuErPvHLiji6E6y8cty5PXQwGLl1HlW9lNmgvH8pSjfPa-y7aFJxu3ZZ0TcgADgTQAlIbVABKnMQABpgIfwAESc949woN-XtAfYB2RDPzyTj-v_xAwAgD9bQBxnYvw71_yPqFvGvAAAAH87DE_UAA23m_CEe8w39vNLDIhh_DfUJqr4e_J756xQI9CP37CJZANwJszIQtt058iYaIAAtdWwmOzgTQAlIb1ACKq8GEAwaoAYAAMBBAAB4wgAAWEIAAEDCAACAQQAAYEEAAFhCAAAQwgAAHMIAAMhBAAAIQgAACMIAALDBAACYwQAAmEEAAMDBAADgwAAAwMAAAHBCAACwwQAAwMEAAABBAADAQAAAiEEAAFzCAADAwAAAEEEAAJDBAACgQgAAiMEAAPjBAADQQQAAAMIAACTCAACAwgAA6EEAADhCAABoQgAAYMEAABhCAABQQQAAkEEAALBBAAC4wQAAuEEAAGzCAACIQQAA4EEAAJBCAAAwwgAAyMEAANDBAABgQQAAUMEAACBBAACAwAAANMIAAOBAAADYQQAAAEEAAADBAABowgAA4MEAAIDCAAAgwQAA6sIAAEjCAABowgAAyMEAAJjCAAAgQgAABEIAAMjCAACAQQAAwMEAAODBAABIwgAAEMEAAODAAACgwQAA-MEAAMpCAABAwQAAwEEAAGxCAABcQgAAREIAAPhBAADAQQAANMIAAIjCAADMQgAAgEAAAOBBAACOQgAAhsIAAODAAACAwAAATEIAAGRCAAA0wgAAAEAAALBBAADYwQAAiMIAAODAAAAQwQAAjkIAAKhBAACuQgAAhEIAAOhBAABkwgAAsMEAABjCAAAAQQAA8EEAABTCAABwwQAAmMEAABDCAACUwgAA8MEAAODAAABAwQAAisIAAIDCAABQwQAAEMIAAEBBAADowQAAMEEAABDBAACwQQAAVMIAAERCAACAQQAAMEEAAMBAAAA8wgAAAMEAAEDBAABMQgAAAMIAACRCAABMQgAAgD8AACRCAACoQQAAgD8AAOBAAACoQQAAYEEAAEBBAACAQQAAAAAAAMjBAACAvwAATMIAAHDBAACIwgAAAEAAAPDBAACcwgAA4EAAAGxCAACwQQAAvEIAABBCAACwwQAAikIAALhBAACQQQAAAMIAAATCAADAwAAABMIAAIDAAADIQQAAaEIAALzCAAA8wgAAwMEAAIC_AADAQAAAVMIAAADBAACAwQAAwEEAAJBBAACoQQAAwMEAAIRCAACAQAAANMIAAARCAABQwQAAmMEAADhCAADgwSAAOBNACUh1UAEqjwIQABqAAgAAEL0AABA9AACAOwAAmL0AAHC9AABMPgAAiL0AAP6-AAC6vgAAMD0AAIg9AABwvQAADL4AAGw-AABQvQAAJL4AAIo-AACYvQAAuj4AAAU_AAB_PwAAcL0AAJI-AACIPQAATL4AADC9AAAwvQAADD4AAIi9AACuPgAAhj4AAFy-AABEvgAAuL0AAGQ-AABsPgAATL4AAKA8AAC-vgAAkr4AAKA8AACKvgAAwj4AAPi9AABEvgAAgDsAAJg9AABMvgAAMD0AAJq-AAC-vgAAQDwAAJ4-AADgPAAAsr4AAIA7AAA9PwAAcD0AAIg9AACYvQAAlr4AAI4-AADoPQAAgDsgADgTQAlIfFABKo8CEAEagAIAAIK-AAAwvQAA6D0AAAm_AABUPgAAED0AANI-AAAcvgAAiD0AAFw-AADgPAAA4LwAAJg9AACYvQAA2D0AADA9AACiPgAAIz8AAOA8AADqPgAAcL0AAFQ-AACYPQAAQLwAAOC8AACAuwAA6D0AACw-AACIPQAAgDsAAFA9AACCPgAAjr4AAAy-AAD4PQAAqD0AAN4-AABEPgAAfL4AAAS-AABEPgAAgDsAABS-AACAOwAAmD0AAAQ-AAB_vwAA-L0AAIi9AABMPgAAyD0AABQ-AAD4vQAAND4AAOg9AAA0PgAAgDsAACS-AAD4PQAAuD0AAHA9AAAkvgAAUD0AAFA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=97PCMCQYKeM","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["4532981024393830620"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3497707118"},"13554085402586357420":{"videoId":"13554085402586357420","docid":"34-3-14-Z537C73FEF16C60F8","description":"The sequence 1/n is very very famous and is a great intro problem to prove convergence. We will follow the definition and show that this sequence does in fact converge to 0 using the Epsilon...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3072928/dc79f5df3f808b1f42202128543a5b5d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gtqmawEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dx1WBTBtfvjM","linkTemplate":"/video/preview/13554085402586357420?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Real Analysis Course #15 - Limit of 1/n Converges to 0","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=x1WBTBtfvjM\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhYKFDEzNTU0MDg1NDAyNTg2MzU3NDIwWhQxMzU1NDA4NTQwMjU4NjM1NzQyMGqvDRIBMBgAIkUaMQAKKmhodXFrcmNmdmRtdmlrdWNoaFVDaFZVU1hGelY4UUNPS05XR2ZFNTZZURICABIqEMIPDxoPPxOFAoIEJAGABCsqiwEQARp4gfkP9P4C_gD59P8CBAX-AQINAP_3__8A7QrwAAUAAADyAAj8-wAAAAMJ-Pv3AAAABAH5BfL-AQAMDvsCBQAAAA32CAL6AAAABA_7BAoAAQH08f8BA_8AAA4JAQUAAAAA8gz__vr_AADr_gUNAAAAABL1_f0AAQAAIAAtjvrLOzgTQAlITlACKnMQABpgGwsAC_Qg0eQoLfYNAvgTG_74-B_YCf_iCv_nEQuyEQzb0Cbl_1TIIs6sAAAAFfneD9cAFW0b88Eh-R0N1cTlNfJ_CfoB_8br2tPi1wE2DP3bCDNPAL_22QgE8eRJ_U8tIAAtKCgtOzgTQAlIb1ACKq8GEAwaoAYAAAzCAACcwgAAHEIAAHBBAAAQwQAALEIAAERCAAAAQQAANMIAAMDBAACAQAAACMIAAFBBAAAMwgAA4MEAAGBBAADIwQAAuEEAADxCAABAwgAAkEIAABBBAACgQAAAQEEAAOjBAADowQAALMIAAADBAAAgQgAAsEEAAODBAADAQAAAqMEAAADBAACgwQAAWMIAACBBAABcQgAAKEIAABxCAACgwAAAKEIAAKBBAAC0QgAAAAAAAEDAAAAQQgAAgMAAAJJCAAAgwQAA4MAAAHTCAACAwAAAQMEAAHDBAACwQQAAgL8AAOBBAACgwAAAJEIAAPjBAABowgAAkMEAACDBAADowQAAYMEAAMBAAACAPwAAiMEAAAzCAADQwQAAMEIAAGjCAABIQgAACMIAAAzCAADAwQAANEIAABDBAABIwgAA0MEAAIJCAAB4QgAAAEAAAIhBAAAUwgAAUEIAADBBAAAcQgAAcMEAAFjCAAAAAAAAsEIAAI7CAABAQAAAgMAAAFBCAABIQgAAkMEAAEBCAACIQQAAgEEAAJhBAABwQQAAqMIAABzCAACIwQAADEIAANBBAABcQgAAZEIAAJLCAACgwQAAaMIAAEhCAADQwQAAiMEAABzCAAC6QgAApEIAANBBAABYwgAAkMIAAIjBAAC4wQAAgD8AAGjCAAAgwQAAHMIAAHDCAAAAQAAAgkIAAFBCAAA0QgAAUMIAADDBAADQwQAAAAAAAExCAAAgwgAAtMIAAMBAAABUQgAAAEAAAIhBAABAQAAARMIAAJpCAABAQAAAIEIAABBCAAB8wgAAyMEAABzCAADgwAAAAMIAAADAAAA0wgAAmMEAAGBBAAAQQQAAMMEAAMjBAAAswgAAcMEAAPjBAAAQQgAAUEEAAKDBAACAQAAAMEEAAJBBAACAPwAA-MEAAMDAAACMwgAAlkIAAODAAABAQAAA_EIAAILCAAAAwQAAYMIAADTCAACAQAAAQEAAAIrCAADAQgAAAEAAAADCAABwwQAALMIAAEhCAABQQgAAfMIAALRCAABwQQAAgMEAAAAAAABgwiAAOBNACUh1UAEqjwIQABqAAgAAFL4AADC9AAAcPgAA-D0AAEC8AADaPgAAcD0AAAW_AADIvQAAMD0AADw-AACgvAAABD4AAKo-AABAPAAA6L0AAFQ-AABAvAAAND4AAA0_AAB_PwAALL4AAEQ-AAAUPgAARL4AAOA8AABEPgAAbD4AAGy-AACaPgAAmj4AAAS-AAA0vgAAND4AAMo-AAA0PgAA2L0AAHA9AAD-vgAAHL4AAIK-AAAsvgAAmj4AAIa-AACYPQAAiD0AAFQ-AAAEvgAAiD0AADy-AABEvgAA2L0AAHw-AABEPgAAnr4AAIA7AAA_PwAAoLwAAIA7AADGPgAA4LwAAII-AAAsPgAAoLwgADgTQAlIfFABKo8CEAEagAIAAIa-AAAwvQAAoDwAAAW_AABQvQAADD4AAI4-AAAQPQAAcL0AALo-AACoPQAAiL0AAIA7AADIvQAAQDwAAEA8AABAPAAANz8AAMi9AADGPgAAmD0AAOA8AACYvQAAqL0AAEA8AADgvAAAML0AANg9AACAOwAAcL0AADA9AADoPQAAPL4AAEC8AADSPgAAuL0AANI-AABMPgAAxr4AAJi9AAD4PQAAED0AAKA8AAA0vgAAgLsAAFA9AAB_vwAAHD4AAHC9AABsvgAAcL0AADA9AADoPQAAPD4AAEw-AACoPQAAQDwAAHC9AACYPQAAFD4AAOC8AAA8vgAAqD0AAFQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=x1WBTBtfvjM","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13554085402586357420"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2621129618"},"4546708299032047775":{"videoId":"4546708299032047775","docid":"34-7-17-Z996524E0820A1E32","description":"Hey Guys! Do you like Voice explanation then Watch this video on a New, easier and different version of the proof: • Limit (1+1/n)^n = e as n approaches to inf... This video explains a quick and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4032598/052ee1ab33349f32f17f891f0b049d97/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/EG_htwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D3Wb0jPhuRco","linkTemplate":"/video/preview/4546708299032047775?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limit (1+1/n)^n = e as n approaches to infinity (W/Text Explanation) Proof | Maths |Mad Teacher","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3Wb0jPhuRco\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhUKEzQ1NDY3MDgyOTkwMzIwNDc3NzVaEzQ1NDY3MDgyOTkwMzIwNDc3NzVqhxcSATAYACJEGjAACiloaGN1cGZmcGV1enZqbXpoaFVDSVA4OUdNZ0w2YVJVeXhwSmVzU1liQRICABEqEMIPDxoPPxOqAYIEJAGABCsqiwEQARp4gfMJBwj_AgD0-AgBAgT-AQb1APr4_v4A5ALw9wP8AgDzAP7-_wAAAPYE-AL4AAAA9v77CPT_AQD9EAD6-AAAAAgH__b3AAAAExEGCf4BAAAE-gMBA_8AAAD_8_r_AAAA-Qb-9_4AAAD0DQUGAAAAAAvw-fQAAAAAIAAt2X3WOzgTQAlITlACKoQCEAAa8AF_7CEBt-zU_-38_QC1FuoAlRQM__0y1ADT--gB1s_GAQP9BgDeCPsA7AMJAMwU9AAj7Nn_HswIATrK5v8N1uIA_PP3ABLW7wI2JxgAAO4DAP4LIv7hzvoACtvo_wgL0v7x9An-Agb3_v_mzAAP_jwBDQgWBBb1IQL3v_UD7ej1BOze2v7mH-wDF935_-L1LgcczR8AHQry-9sr9AIA-Q_98vQb-RU96v8OCBQFE__8B9r3_gbs-hX7Gv4J_fUzFwMBDC77uwfs-unN9_8kA_P5CO3y8vzi8woC6xIK_QT7CAb36fL2Ggj84PESCff_BPggAC1U6Rg7OBNACUhhUAIqzwcQABrAB08-xb5-2Nw8McawO2ZOB77-Kp-7gvilvDvHIL4vCoy8qwtTvO0ZWD3_IzO99noXPUeRBb6Zr3w9aRxKPRSUQj5GRRy9c-gAvHoXL74IPDA9KZ_UvBH8P75_YHg9EEQSvOdZBL3pojy92GxAPCMSlT38vRk98dSGO3OvXTzzLII9JcHlvFbgHDwSlkI8jBI0vT8_Zz17YZe80gsOvC5ZpT1jQky8HwhaPELBVj3XhBm91VHhu7fVrDvnzDE92T4EvY_97D20FWU9_GRgun8V4L1uOyO98Z2YPJOYxr2Gj4g8jtGVPIGJiT2EEkG8laxUvGkz8zweb_K91yXTOrHhSb4ukvY8TwidPCcXEz5P1XM9FamwPH_qmb2mmKQ7kyA3vBV1BbyfxIy8MZQ4vB5H_bwnab49pkuaPLXMiL1F0D08uhwIPJn7j72bRY49Z23JPH97aLyg_ei9NldNvLHriztwelW7sgrAvFhrbb1Cj967iz7VvLa1ar16r1U9v9YlPEQgzTwTOIa6ohUOPGBnhD35Eb-9PWsSPGMqfbyjRcy9hypGvCKwmD0WxnE8I7t3vBWQVj2_Xpa93UPCu0ctTzpAFgE81pVHu22kkTxeyHm9H6w1O4FKq70lYuW864sIvP4s1rxhXKC88747vBKONDwmyjk90HLquzo5iL1Tjr69SA4UutW8eT2bffo5gtA0O5gyAD4Wf0A9LT-1t-YcIT1ZXgO9HgYpO-3Par3V_5686vl7ukGaEb1ZNWO9M0gHuXlYCD64IL67D7aROKUFmjtZNWM80TriOZSJ270J3Zo9773oOFFupj1KbG295oIGOa0vtzr9EvG9vCOJObp2mDyKKYc88FTZulbmd70hAp49Ix9aOdYjqLwHsG29Q2ycuQ3SYj1TJQg7XC2yuZKeGD363Qo9ZHgAODzN-LzGN--8ZpzfOOalCztTuzW9fdzCOFB5-jmYWqW8vhvQOEyoAD3H8J29_u4wOXbDtjy67lI8XEoBuZLMqjwiVQQ-BQ0fN1WZlDuTTIM9lA-ZuK_YGTzz2pa9SVoft9FEEz3Nii09yWc0uACLIb1Y5u09nS7cOF2_AD2_GQu9yXJiONXzhL1d6Ha6DKfeuDP8Vzp2ihW9veQwOMHjKz7cpWi8B4l0uagmp71UPcS9HLiDuImf-7tmgVu9TGXwt-GZkDxVm6k9vZm4t_Z0ej3gD9-9P5mbt8r0cD0i4Ss-8cuKOAcLp7y9_O49g7QeuadaC77Mmhi9Cpd0uO2Ieb0Hva08ZMXANyAAOBNACUhtUAEqcxAAGmAf8AA5EzvCINky9AHW-yrD1tTU8ckZ_97s__cW2ATnBb6zOQr_I_Iq3Z4AAAAmBPQP1gDPf-reFEAaFwfXg9oxKG4YAuanuTPgstYD7e7XNhfcEAgA_A-WJCH4v1YTBTUgAC2tvxM7OBNACUhvUAIqrwYQDBqgBgAAEEIAAIDBAAB0QgAASMIAAMhBAAAAQAAAvEIAAIhBAAAAwQAAwEAAAMhBAACQwQAACMIAAODAAAD4QQAAAMEAABRCAAAgQQAAAEIAAHDBAAAwwQAAkMEAADzCAAAAAAAAaMIAAEBBAACwQQAAwEEAAKBAAACAQQAA8MEAAKBAAACEwgAA4EAAAHjCAACoQQAAEEEAAJhCAADAQQAA6EEAAMBAAAA8QgAAiEIAAETCAAAAQQAArsIAAKBBAAAsQgAAMEEAAPhBAAAgwQAAAEAAAHDBAAAAwAAAIMEAAKBAAABwwgAA8MEAAPhBAACgQgAAQMAAAKTCAAAYwgAA4MEAAMBAAAC2wgAA0MEAABDCAABwwQAAHMIAAEhCAABQQgAAvMIAAKRCAAAQwgAAQMIAACjCAADYQQAAuMEAAIDBAAAEwgAAZEIAADDBAADAQQAAQEEAAPhBAABAQAAAFEIAAKBBAACgwAAA0sIAAKhCAACIwQAAAMAAAKZCAADowQAAYMEAAAAAAACMQgAAgkIAAGDBAAAAwAAAQMAAAFDBAAB8wgAAqEEAAFhCAACgQAAAQEEAAIZCAACOQgAAoMEAAJjBAACQQQAA-MEAAJpCAACwQQAAdMIAACDBAACAwQAABMIAAI7CAACgQAAAZMIAACTCAAAAwgAAUMEAAPDBAAAcwgAAkEEAAJDBAACgQAAAUMEAAJZCAAAMwgAAPEIAAJBBAAAMQgAAGMIAAHDCAAAwQQAAOEIAAEhCAAAQwgAAXEIAAFhCAABcwgAAYEIAAODBAACQQQAA4MEAAMjBAACwwQAATMIAAEBBAADQwQAAbMIAAEDCAAA8wgAAwEAAADzCAADgwAAA0MEAANjBAACQQQAAIMEAANjBAACSQgAAeEIAAAAAAADYQQAADEIAACBBAAAAwQAAkMIAAKDBAADwwQAAcMIAACBBAADoQQAAtsIAAADAAAAgwQAAAEAAAMBAAACCwgAAIMIAAIjCAACAvwAA2EEAABxCAADwwQAAPEIAAJBBAAAwQQAADEIAAEDBAACAQAAAYMEAADDBIAA4E0AJSHVQASqPAhAAGoACAAAwPQAAfL4AAEQ-AACovQAAHD4AABQ-AABEPgAA4r4AAOi9AACgPAAAQDwAAMg9AABAvAAAmj4AAKg9AACIvQAALD4AALg9AAAEvgAAhj4AAH8_AAC4PQAA6L0AAFw-AAAcvgAALL4AAJI-AADovQAAEL0AALY-AAAEPgAAEL0AAHS-AADgvAAAgj4AAIA7AAAsPgAAoLwAAOK-AABcvgAA2L0AAOi9AACAuwAAqL0AADA9AABEvgAAHD4AAIC7AAAUPgAAXL4AAHA9AAAQPQAAdD4AAOA8AABcvgAAQLwAAEU_AACovQAAVD4AAKo-AABQPQAADD4AABQ-AAAcviAAOBNACUh8UAEqjwIQARqAAgAAED0AAAy-AABQPQAA_r4AAMg9AACoPQAAHD4AACQ-AABQvQAAND4AABS-AACIvQAA6D0AAIi9AABQvQAAoLwAAEA8AAAlPwAA2L0AAOI-AADgvAAAqL0AADA9AAAsvgAAHD4AAMi9AABwvQAAgDsAAAQ-AADIPQAAEL0AANg9AAAMvgAAyL0AALg9AAAUvgAAPD4AAIg9AAAMvgAAyD0AAGQ-AACIvQAAoDwAABS-AAAEvgAAuL0AAH-_AADYPQAAmL0AAJg9AAAMvgAA6D0AAKi9AAA8PgAAmD0AAIg9AACovQAARL4AAMi9AABUPgAAiL0AAES-AACYPQAAQLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=3Wb0jPhuRco","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4546708299032047775"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"2638020382"},"8757757928739608711":{"videoId":"8757757928739608711","docid":"34-11-17-Z2B314D93B2065311","description":"What is the limit of (n/(n+1))^n as n tends to infinity?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2998232/65320fca29a382844cc74dd9fa954adc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/HDIgCQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1B114U9spjE","linkTemplate":"/video/preview/8757757928739608711?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Video 2630 - What is the limit of (n/(n+1))^n as n tends to infinity?","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1B114U9spjE\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTFaEzg3NTc3NTc5Mjg3Mzk2MDg3MTFqkxcSATAYACJFGjEACipoaG9yY2tsenh6dW5naWxkaGhVQzY0OWlXTzVmNGt1X2dJdjRCZzM0RXcSAgASKhDCDw8aDz8T6gKCBCQBgAQrKosBEAEaeIH7Cv4JAv0AA_4L-v0D_wH5A_8B-P39AOMC7_cD_AIA5e_7CQL-AAD8BgT_9wAAAPcO_gjx_wEADgD9A_sAAAD8-wH_8AEAAAUB-xL_AQAA9AYCAgMAAAAJ_fAMAAAAAPIM__76_wAA9Q_-EwAAAAD68vv5AAAAACAALeB1zDs4E0AJSE5QAiqEAhAAGvABf_koAePuzQG99uX_5goeAqMvJf8JMvEAyvb-AMgX1QANOtUC0BXk_wAj8v_LL_7_NdTP_gTGFv8r1Q7_Mej3AN8DDwElCN7_MPwZARf29wHdJhP_Cdj7_xnV0QMfGsMAFOwHARgd5P0FMNYDNu4hAvblJAUp4ir-8MMI_9z7_AIS9OX65CHqA8rg9gISIB0GHckhABAfGfnyM-H87PcTAP3vBvQ0EuQBAQ37_hUtCfq5y_AE9u4EAiMSE_Lv-d8KxPMV9dAU-vH63xkAGQoF--Yp6wgMDvoFB_oOBADJ-AEV2-sC4vIDA_IP6vTY8fT5IAAt51gPOzgTQAlIYVACKs8HEAAawAcHB9u-eQOMPMpnMTpTYBy9JELjvG-RBb08izm9chsIPceBHjo_c0Y-Du4zvZb5fTtoN4-9Jn7WPED8l7z9vXQ-klRLvQOx7DyHNCq-nmmoPbZyZbzxhN69gB-fPLdBDjxYFSa9odwxvRUZnbzpC-E9rR6LvCPUMTzomYM8JFT6PJspI73cahk69RFYvRN8WL039Hu9XGFRO90se7vr4LA9f3iMvHwVT7xcEGA9AJdWvY5RqLxpbgW-I9QRPQfIYbyQURk9eoQ_PfxmLD2dLuu9r09vvF-aw7slF629217BvAshzjrf_MY97BvzPIdZPr1ik6k7cSrIvchqqbzQKkO-mHOfvA-oiDzcBKk9g7_fPRwxqbwchL-9Ta0NPTec5Dv1Ugw9oA9gvPxPxDss_qU850DFPalorDzEEDQ9BF7eO2f_TTzDo2i9_k4JPWuU_zzs-gU92Znivaurp7zPPpA9XPr8PCofwrzcix69A9J-PInACbwiezO9bLkOPbtg0zs9FGA9a5bwvOfNPDwFI6U91gI7vknlmjqV3Dy9PPHBvUPp5rspjJI8gGORO_VXvLtDqR0-H2rbvcSaqTnYdRm9HGpKPDNRJbvKPv68ivOGvRKOkzuAr5K9M_Aru5R_UrzFpwW9as_6uu4MjbuuiQC9ix9-PeyReTqZNtK8vFrOvRicLzp5E6I9JwEDu5DD3LslSLs9nqAjPWBPK7naEC096M4fO0ayCbziAD-9yd2MvMOp5joVLAK8FgS1vTmdCrqUQLQ94M1kveKHajkENoy8PSzUPLtjU7dzS7u98-34PNxy6Thr4z48dAicvG21bLkF0_q7-E6BvQn5kbkrVX097VycO6gS-bed-8Y8deENPGQSmLlKCxe-Ctyavamq4bbEAC48_g-wPES7rLc066Y9V2QPvSRLODnSP3c8G0CkPNuB-ziNDqc7BUOpu9A4Mbmelj89VPCKPObqSTgjrIw99GwGvs9wpTnOr8E8SZPMPd9Eh7isYya8BlZEvOQuALnclBw9TqKUPbrAhzetaJi8bqRsvT9TMDjEq9E8GF3BO0O2Vbiik6q9V6fEPb02oDh19bY7wMomPX4VJjh9VdO8W_0gvMbaFLic4QY9iDehPWDBMjixFQQ-xv_4OzLZU7ir3xa9DfsdvqO8_rh87NM8ofIvvYneajibS1u9kjynPW1wgTj2dHo94A_fvT-Zm7fK9HA9IuErPvHLijg5oQu90RCEPeXT1bitbeq9FDu_PG_S4zfF3UW9_6vQuqaDPDggADgTQAlIbVABKnMQABpgIuwALPox0xv38PId7Qb01dzo6gTw-QDi0QDGG9j7_-q8nxwAAPXwIvSsAAAAGgL5ANkA-2nf9Q86Dh0K1o7hARZ_NeTZ590lC928EwkZ2Cz1_C8FAN4btyFX9cg_ICcuIAAtA20oOzgTQAlIb1ACKq8GEAwaoAYAACRCAAAQQgAANEIAAIjCAABgQQAAcEEAAERCAABgwgAABMIAABTCAACoQQAAgEAAAMDAAAAoQgAA4MAAAFDBAACgQQAA-MEAAIhCAADIQQAAAMAAADBBAACCwgAAgkIAAMjBAAAEQgAAUEEAACBCAABwQQAAQMAAAGDBAAAAQQAAAMIAAARCAAC6wgAAAMAAAChCAABcQgAAoEEAACxCAACAwAAA4EAAAIDAAABQwQAAAEEAADTCAACIQgAAjEIAADRCAACAwQAAhMIAALDBAAAQQQAAJEIAAKjBAAAgwQAADMIAAODAAAB8QgAA6EEAAKhBAAAgwgAAaMIAAPjBAADAQQAAnMIAAAzCAACAwAAASMIAAGzCAAAEQgAA2EEAAJ7CAAAYQgAAoMEAACDCAAAgwgAAdMIAABhCAACwQQAAoMEAAMZCAAB4wgAAuEEAABBBAACkQgAAYEEAAJjBAAAAQAAAIEEAAIDAAABcQgAAiEEAAAhCAAAMQgAADMIAAJjBAACAwQAACEIAAHhCAACOwgAAwMAAAMhBAADYwQAAdMIAAFxCAAAwQQAAVEIAAFBBAABYQgAAjkIAAEBCAAA0wgAAwMEAAABAAABQQQAAdEIAAPDBAABoQgAAiEEAAGDCAADIwQAAaEIAABjCAADwwQAAYMEAADTCAAAYwgAAHMIAAOjBAADoQQAAwMEAAOBBAACIQQAAiMEAABRCAAAQwQAAQEAAADzCAABgwgAA2MEAALBBAAA4QgAATMIAAGBBAAC4QQAAgEAAABxCAADYQQAAUMEAAATCAABkQgAAmEEAACBBAACAwQAA6MEAADzCAADAQAAALMIAAEDBAACAwgAALEIAAGBBAAAYwgAATEIAAMDBAAAMwgAAtkIAAHBCAAAEwgAAAEIAAFDBAACQQQAAXMIAAEBBAAD4wQAAyMEAAAAAAAAQQQAAWEIAALjCAAD4wQAAEEEAANDBAABoQgAAGMIAAJDBAACYwQAAwEAAAMBAAACAQAAAkEEAAMhBAACAvwAA0EEAAHBCAAAAQQAAGMIAAEBBAABAwSAAOBNACUh1UAEqjwIQABqAAgAAoLwAAJq-AACSPgAA6L0AAAy-AACIPQAA4LwAAJq-AABwvQAADD4AAKA8AACYPQAA6D0AAII-AAC4vQAAqL0AAGw-AACgvAAABD4AACw-AAB_PwAAqD0AALi9AADmPgAAUL0AAFS-AACWPgAAPL4AAKA8AACuPgAAUL0AADA9AACCvgAAQDwAAFC9AABsvgAAqD0AAES-AADKvgAAuL0AAHy-AACIvQAA6D0AALi9AABwPQAAyL0AAFA9AAAcPgAA6D0AAIi9AADYPQAAmL0AAII-AABAPAAAVL4AAKC8AABjPwAA4DwAAKA8AACqPgAAoDwAABw-AADgPAAAhr4gADgTQAlIfFABKo8CEAEagAIAABC9AAD4vQAAqL0AAAm_AAAwPQAAmD0AADw-AAAcPgAAML0AAK4-AAAQPQAAqD0AALg9AAAwPQAAgDsAAEA8AAAwvQAANT8AAOi9AAAVPwAAML0AAFC9AACYPQAATL4AAKg9AAAUvgAAFL4AAIC7AAAMPgAAgLsAAOi9AAAUPgAADL4AAPi9AAB8PgAATL4AAGQ-AACYvQAAuL0AADC9AAAQPQAAML0AAGS-AABUvgAAmL0AAKg9AAB_vwAAiL0AAIi9AACovQAAZL4AAJY-AABwvQAAzj4AANi9AADIPQAAyL0AALK-AABsPgAAXD4AAIC7AAA8vgAA-D0AAHC9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=1B114U9spjE","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["8757757928739608711"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"145432988"},"14804681058292170072":{"videoId":"14804681058292170072","docid":"34-6-12-ZBFE0A21AE0AAE3D7","description":"In this video I have solved a question on limit of sequence.lim {1/(n+1) + 1/(n+2) +...+ 1/2n} as n tends to infinity. * * Connect with me on social media: 1)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2176385/c6a7ae6cf416604addd2a7b8f5c6b64d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/W4YaFQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJPLri-Dj7ag","linkTemplate":"/video/preview/14804681058292170072?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"lim {1/(n+1) + 1/(n+2) +...+ 1/2n. || What is this limit?","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JPLri-Dj7ag\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhYKFDE0ODA0NjgxMDU4MjkyMTcwMDcyWhQxNDgwNDY4MTA1ODI5MjE3MDA3MmquFxIBMBgAImsaVlYotS_9Ix8gT3lWRQIAc8QPEYAAAAYQgczqruxVPUXq0VPsjCAdUgYrWMEKWDBq7fF4PJC0Hc4McYb3Eb_q8Xg8oM3ncTLo24BAoefxBMEDAQAkdQfLKhHCDw8aDz8T-gKCBCQBAIAEKyqLARABGniB8w36_fwFAPH9_A39Bf4B6f35BPsAAADm8fb__P0BAPMAAAf-AAAA_Rj8BQMAAAD-A_8Q9_4BAAkG-_kEAAAABPkCBwb_AAAFAf0G_wEAAAL3A_gCAAAAAgrxCAAAAAD0C_j0AAAAAPL2_hAAAAAACe8B_gABAAAgAC1TZt07OBNACUhOUAIqhAIQABrwAX_0_wDb9q8B1gXHAOgN1QHtICT_GUz5AMzk6wHUBt8B7y7RAOcWAgD2SfoAtBPt_x0BwgAEyeEAPNz8ACDNAgDAEvsAFCLz_z0TLv8M7_z-xxM5AfHUBf5A9dMAEDz5_Q34A_o1Kd3_9y7qAg_-PwHr1SAD_-EkA_a79APs9g8G8_ru__0HAgQNERX54PUxB_Dw8v4WEwn56xPc_foAEQfy1ST_HRzg_THr7QgOHhn-0MsO_gnq-wn8JhsL5RPfCNfxLwb_G_r8CAwJ_kYU7gTr6-oKCAnaDP_jBALwCwYEJvbp-QLqAQ_1D_cNDvXnASAALaQ3ETs4E0AJSGFQAirPBxAAGsAHLiCkviK42zxn81A5VDZMvZk8L70Rto66S9O2vZbLKz2s7ge99rZJPpJSir1RVw09jxv-vBQ0tzwpKrQ7oOIoPlHbxrxEDjY8GYGivUC1uz3hpF-9KD34vNZ-4Ty9Vj09gkSJvHUrir38K1i78zsNPnYUzLyGS1g8LpJ2vYmmQj0b7si73GoZOvURWL0TfFi9F9JmvXZ0Nzy1La88XuirPYDBCT3cEU48NpYrPezuizwSKVK9OC_uvScRQT24jCC9g5GtPbDxjz0McCY93PQXvuQiSL2Xnvq7-SlTvQQDCDxvuXo8PQo3PaZGaLyTxqi8UcEBPlCxwL0LVXs80CpDvphzn7wPqIg8iOoXvQgAjjzo4xA7Klwqvbdr-DygUqW8e_KVPAKsIbwj4Ra9ZJPcPW79TzxnMcw8w6t2PAcCCb0goRw8mfuPvZtFjj1nbck8W5WUPeoOqL0wMIa8RoGZPaGgND1S32i7HiUlvb_ZQbzaa-q7trVqvXqvVT2_1iU83B5uPYp3e72QCUI8j-AWPlt4Dr4D5w682HcqvRzNMb7XNIy6_FuNvek6njy_Xdk7Q6kdPh9q273Emqk5KHbZvFcIq700iIu7R1ToPMwoNr0qhQi8M96Gvef34rxk29S75sKivSnhoz20Kvi7cwdbPQNTxz1yDME5_kHJPFsMjr0d32Y7L7IPvCaOvDwgMn67LYuTPZ6vHj2gog86CyToPasBL73sydM5hHUNvYvYDL2_I3C7YEKAvYBfaL0Kzmg54luYPbokmLwdn3s5csIEvQMQMr1NeZO5B5bjvfub6zw0lXo3_8V5u2-QmrzoBDa5y6LwvFtCHr43BeM5Tz0CPrGz9Dttk2q5Z2szvTpySbzMw1y6zCDDvdQNBL4IU4U5R_govJBe3jxuXZa4qWIPPRsBC7zxGMs4GhbjvbBLfr0pUlE3AFYnvVi5obzajaE5u4-rurUFujxj-AU5UZQVPZR7a73iuHs5dh6wvQZPc7rwheA4SVODPeYdTLznevM0sLSCPWMIID4L5EA5GuflPF0Pa724sI03D1Q3PfGC6D3pQYI3opOqvVenxD29NqA4Yt8IPI_-dz1tDms4PGkBPf1xsT3ModA4DqY8PDoC2bviNkE4IguiPb6utb3a7AK53ryCPLSvHL78h2W4Qq-0vXrOTL1yy4i3F7woPYVBKT5cX3c4U2VOPHtclb1edby3QstfPWMatz1ukI443OJQPQHlJT1-1fa3n8e4vQocf72bN9i3SV6nvUasqj1UMog4IAA4E0AJSG1QASpzEAAaYDfnAA_9NdojJBXzEOIhKeTLztr02gD___b_CAzq_CUAwc8A5QAZ2Q7orAAAACrt6wzlAPpsIgsKZ-Ap7fKfxxYafx33E9bGAuuj1iPlKQEaHfgOSgDoGccHHQDJAS8tNCAALbb3KDs4E0AJSG9QAiqvBhAMGqAGAAAQQgAAAMAAAAxCAACMwgAAQMEAAAjCAADKQgAAFEIAADBCAAAAQgAAGEIAAIDBAADIwQAAAAAAALBBAADgQAAAEMEAABjCAAB4QgAAHMIAAGBBAABAQAAAIMIAABDBAABQwQAAcMEAAOjBAABQwgAATEIAAADAAABAQAAA6MEAAIjCAADYwQAAnMIAAABCAACoQQAAokIAANDBAAAsQgAAgEAAACRCAACCQgAAwMEAAJRCAADUwgAAwMAAAOBBAABIQgAAAEAAAMDBAACgQQAAIMEAAJBBAACAQQAAwEAAAO7CAACwwQAAYEEAADxCAABYQgAAhsIAALDBAABQwgAAkMEAAILCAACywgAApMIAAEBAAAD4wQAAOEIAAIxCAAA4wgAAyEEAACjCAADwwQAAAAAAAFDBAAAYQgAA4EEAAADCAACQQgAAgL8AAPBBAAAQQQAAwEAAAEBBAAAQwQAAVEIAAKDBAABgwQAAxEIAAEDAAAAgwQAAhEIAACjCAAAkwgAAIEEAAGhCAACIQgAAaMIAAMhBAABgQQAAQMEAAEjCAACAvwAA8EEAAHBBAADAQQAAVEIAAPhBAABAQgAAWMIAADBBAABwwQAAhEIAAOBAAAAgwgAAZMIAAADBAADowQAAcMIAAFDBAADAwQAAkEEAAHDBAADAQAAAwEAAAAjCAACYQQAAhsIAAIDAAACAwAAAqEEAAEjCAABMQgAAyEEAAMDAAABEwgAAwMEAAMDAAAAgQQAABEIAAPjBAABcQgAA2EEAAADBAABAQQAAiEEAACDCAAAowgAAwEAAACBBAADgQQAAXEIAADTCAADwwQAAgsIAAADBAAAswgAAJMIAACxCAADAQAAAmsIAAEBAAABAQgAAwMEAAChCAACGQgAAqMEAAAhCAAA8QgAAEMEAABDCAAAAwgAAQMAAACBBAABkwgAAWEIAABDBAACAwgAAoMEAAMDAAAAIQgAAVEIAAMTCAABYwgAAlsIAAGDBAACAQAAAcEEAAIjBAACQwQAAgL8AANhBAABAwAAAQMAAAMDAAABgQQAAAEAgADgTQAlIdVABKo8CEAAagAIAAPi9AACYvQAAFD4AAJi9AACYvQAAkj4AANi9AADivgAATL4AAKI-AADoPQAA4LwAAIi9AAA8PgAAqL0AAAS-AAAUPgAA6L0AAKY-AAC2PgAAfz8AADS-AAD4PQAAVD4AAPi9AAAEvgAAyD0AACQ-AABEvgAA_j4AAPg9AACgvAAAXL4AAJg9AABAPAAAuL0AAIA7AAAkvgAA6r4AABy-AAB8vgAAJL4AALo-AACSvgAAUL0AAES-AAB0PgAAiD0AAEA8AACWvgAAyL0AAFS-AACmPgAAXD4AAES-AABAPAAANz8AAHC9AAAEPgAAZD4AAIg9AABsPgAALD4AADC9IAA4E0AJSHxQASqPAhABGoACAABsvgAAMD0AAFy-AAAnvwAAJL4AAJi9AADqPgAAiL0AAEQ-AAAkPgAAUD0AAPg9AAAMPgAAiD0AAKA8AACIvQAA4LwAAP4-AAC4vQAAGT8AABy-AAAsvgAAgLsAAHS-AACgvAAAqL0AANg9AAAwPQAADD4AAOi9AACAuwAAMD0AADC9AAAQvQAATD4AAAS-AAAsPgAAoj4AAOC8AABAPAAAuj4AAHC9AADgPAAAmL0AABS-AABQvQAAf78AABA9AAAEvgAAdD4AABQ-AAB8PgAAiD0AAI4-AACgPAAA-D0AAAy-AAAkvgAAiD0AALi9AAAQPQAAmL0AAEC8AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=JPLri-Dj7ag","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["14804681058292170072"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3684915393"},"6307263209824668076":{"videoId":"6307263209824668076","docid":"34-0-4-Z1EC458A84F118017","description":"In this video, we discussed the convergence of series (1/n)sin(1/n) and sin^2(1/n) with their graphs which helps to understand the concept of convergence easily. It helps the teachers, students...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3433222/da7e95385dc85059e72d714055c2c74a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/z9PoggAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dl0wlChHFuls","linkTemplate":"/video/preview/6307263209824668076?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Series (1/n) sin(1/n) converges and sin^2(1/n) converges (with geometrical meaning)","related_orig_text":"1/N","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"1\\/N\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=l0wlChHFuls\",\"src\":\"serp\",\"rvb\":\"EqoDChM0MTM0NjIyNDE5Mjg0Mjc5MTcwChM3NTY1MjEzMTYwODUyODQ3NTg1ChM4ODIzMDcxOTc1MjM1OTA4MDU1ChI0NDEyNzY1MjQxNDczNTE3NDUKEzg4ODMxOTA3NTY3MjE2Nzk2OTgKFDEzNzkxNDAzOTg1NDQxNzMwODA4ChI2ODk1NzY0MDU4ODQ5ODcxMjQKFDEyMzQyNTI2MzM0MjM2Njc4NDczChQxNDY4NDQwNDk3ODgzNDYyMjkzNgoUMTEzMjY0OTc5Mzg3MjQxODYzMDYKFDEyNjg2NDI3MjY5NjMxNzMwNDIyChQxODMxODQxNjcwMzE1Nzc4MTc5NgoTNDUzMjk4MTAyNDM5MzgzMDYyMAoUMTM1NTQwODU0MDI1ODYzNTc0MjAKEzQ1NDY3MDgyOTkwMzIwNDc3NzUKEzg3NTc3NTc5Mjg3Mzk2MDg3MTEKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2MzA3MjYzMjA5ODI0NjY4MDc2ChMzMTAyMDAzMjE3MjY5OTc5NzUzChM5NzY0Njc5MjY1NTU5ODYwNjI4GhUKEzYzMDcyNjMyMDk4MjQ2NjgwNzZaEzYzMDcyNjMyMDk4MjQ2NjgwNzZqwQ8SATAYACJFGjEACipoaGZzcmp1Y2lvaG9leWViaGhVQ20xZGRlXzMyY2FWUmhqOWdvbW5rY1ESAgASKhDCDw8aDz8TtgGCBCQBgAQrKosBEAEaeIH-__j_-wYA-QEACfgG_gLxA_wI-v_-APYA9fUCAv8A8vv2-v8AAAAGBf37AAAAAAMA9AD9_gEAFAj9_wQAAAAS-QL_-AAAAAsB-QII_wEBA_f5-QL_AAAPAwcPAAAAAPoN_fv_AAAACf8BCwAAAAAI9gcDAAAAACAALdlt5Ds4E0AJSE5QAiqEAhAAGvABcfgO_-sD3wHdEOAAqzne_4EiCv79MdUAzgvpAM0V2QD2_fkA3wPrAAH6_ACoEQsBEODRABLvDAE33vwAMOMHAfv2CAASygMANSYYAA4B5f_gIhH_D-v___3K4ADtFM3_Euom_fHt1_7uA8UCDv47AR3-HgUdAhb8_tL6_M4d-f8FGdEA_SHh_wDp-v7tFDcBGfr4AC4mB_3tEt79CwME_uvlCfUHK9f-CAoDDvL3DPfn6v38COz7CRLpAvjNHgkIAQst-9QS-_Lm-AcAL_f1Bc7--v4I3-sBHPsB_tjt_fUGAQD78hr189z4AP7hCPXtIAAt_yEdOzgTQAlIYVACKnMQABpgOvwAIPdQyAkVNPbd2AU47tb67DTR5P_48AAIMu7pEhfGvAkh_0S8Ce2eAAAAQe70Gt4A5H_8wzVA8SYYzcTSDQ9_8PoOqL8mCuPRLifvISwbLA9hAN_olfNK1cZYHSgDIAAtQn8SOzgTQAlIb1ACKq8GEAwaoAYAABxCAAAQQQAAPEIAAHDCAAAcQgAAgMAAAJBCAACQQQAAAMAAAPBBAACSQgAAgMAAAILCAAAEQgAAPEIAAEBCAABwwQAAKMIAABxCAACIwQAAgMAAAIjBAAAwwgAA4EEAAMDAAAD4QQAAUEEAAHzCAADAwAAAgEAAADDCAACgQQAAIMIAAEDBAADIwQAAkEEAAODAAACmQgAAcMEAADDBAACAQQAAGEIAAKhCAACgwgAAEEIAAIbCAAAgQQAAAAAAAGBBAABAQgAAGMIAAJBBAADwQQAACEIAAExCAAD4QQAAAMIAAGDBAAA8QgAAlkIAABxCAABUwgAA4MAAACDCAAD4QQAAXMIAAATCAADowQAAoEAAAMjBAAB8QgAAqEIAABzCAADIQQAAQMIAADjCAABgwgAAgMEAAIC_AAAIQgAAYMEAAMhBAAAAwQAAgD8AAGTCAAAAAAAAQEAAADhCAADAQAAAmMIAABjCAACSQgAAksIAAPjBAABwQQAAYMEAABzCAABQQQAAlkIAAARCAAA8wgAAIEIAAOBBAAAQQQAAmMIAABRCAABgwgAAEEEAALDBAABUQgAALEIAAPjBAADowQAA6EEAACzCAABEQgAAAAAAABjCAACwwQAAoMAAADjCAACmwgAAIEEAAJjBAACgwAAAQMEAAHBBAAAAQAAAJMIAAIA_AAAQwgAAsMEAAKBBAACCQgAAkMEAAKhCAAAAQQAAAAAAAEBBAAAkwgAAMEEAACjCAAAQQgAA2MEAADBCAAAMQgAAcMIAAFxCAACAwAAAQEAAAHjCAADQQQAAcMEAAIC_AABoQgAAoMEAAPDBAACIwgAAOMIAADxCAADowQAAUEIAAIA_AABowgAA8EEAAADAAADYwQAAmkIAAIhBAABwQQAACMIAAIhBAADgQQAASMIAAHzCAAAAQQAAAMAAAIDCAAB4QgAAwEAAALLCAACAQAAA4MAAAABCAABkQgAAsMIAACjCAAC8wgAABMIAAIC_AACAPwAA0MEAAEhCAACgwQAAQEAAACxCAAAUwgAA-EEAAFBBAACIwSAAOBNACUh1UAEqjwIQABqAAgAADL4AAHw-AAAsPgAAUL0AAAy-AAAMPgAABL4AABm_AAAQvQAAJD4AANg9AABMPgAADL4AAII-AABwPQAAcL0AAMg9AAAMvgAAnj4AABM_AAB_PwAABL4AABQ-AAA8PgAARL4AAJY-AACYPQAAED0AAHC9AADqPgAAUD0AABC9AABMvgAAiD0AAIY-AACgvAAAmr4AANi9AAB8vgAA1r4AAOC8AAAEvgAA2j4AAKC8AABkvgAATL4AAJY-AAAMvgAARL4AAAy-AAAcvgAAUD0AAAQ-AAD4PQAAmr4AAKg9AAAvPwAAuD0AALg9AAAwvQAA-D0AAK4-AAB0PgAApr4gADgTQAlIfFABKo8CEAEagAIAAOi9AAAUvgAAiL0AABe_AAAQvQAAdL4AAAQ-AAA8vgAAgDsAAIY-AADYvQAAJD4AAKY-AACAuwAA-L0AABC9AABEvgAAOz8AAMg9AAC-PgAAcL0AACy-AACgPAAA2L0AAFC9AAD4vQAAgj4AAHA9AACoPQAAiD0AADA9AAAEPgAAfL4AACQ-AABAPAAAyL0AAJY-AAB8PgAAbL4AAIK-AAB8PgAAFD4AAPi9AADgvAAAuD0AAAy-AAB_vwAAiL0AAFA9AADovQAAyD0AAPg9AACoPQAALD4AAHC9AAAMPgAAML0AADA9AACAOwAAoLwAAHA9AAAwvQAAfL4AAMK-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=l0wlChHFuls","parent-reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6307263209824668076"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4175600468"}},"dups":{"4134622419284279170":{"videoId":"4134622419284279170","title":"\u0007[1\u0007]+2+3+...+\u0007[n\u0007]","cleanTitle":"1+2+3+...+n","host":{"title":"YouTube","href":"http://www.youtube.com/live/qhC9ZqKvrHk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qhC9ZqKvrHk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzgtSWtuUWQ1UkJ0a3hBZW5xNFMtZw==","name":"Tunç Kurt Matematik","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Tun%C3%A7+Kurt+Matematik","origUrl":"http://www.youtube.com/c/Tun%C3%A7KurtMatematik","a11yText":"Tunç Kurt Matematik. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":620,"text":"10:20","a11yText":"Süre 10 dakika 20 saniye","shortText":"10 dk."},"views":{"text":"28,4bin","a11yText":"28,4 bin izleme"},"date":"15 ara 2021","modifyTime":1639593099000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qhC9ZqKvrHk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qhC9ZqKvrHk","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":620},"parentClipId":"4134622419284279170","href":"/preview/4134622419284279170?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/4134622419284279170?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7565213160852847585":{"videoId":"7565213160852847585","title":"an = (-\u0007[1\u0007])^\u0007[n\u0007] * (n+\u0007[1\u0007])/\u0007[n\u0007]","cleanTitle":"an = (-1)^n * (n+1)/n","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nALxunefW2k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nALxunefW2k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR1E5Yk1MSTlTMElxWmVEdVQxRUhlZw==","name":"MSolved Tutoring","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MSolved+Tutoring","origUrl":"http://www.youtube.com/@mathematicssolved","a11yText":"MSolved Tutoring. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":143,"text":"2:23","a11yText":"Süre 2 dakika 23 saniye","shortText":"2 dk."},"views":{"text":"6,7bin","a11yText":"6,7 bin izleme"},"date":"9 şub 2017","modifyTime":1486598400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nALxunefW2k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nALxunefW2k","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":143},"parentClipId":"7565213160852847585","href":"/preview/7565213160852847585?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/7565213160852847585?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8823071975235908055":{"videoId":"8823071975235908055","title":"Video 2517 - Sequences Limit (1-(\u0007[1\u0007]/\u0007[n\u0007]))^n - Practice","cleanTitle":"Video 2517 - Sequences Limit (1-(1/n))^n - Practice","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7rhaHtNbehI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7rhaHtNbehI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNjQ5aVdPNWY0a3VfZ0l2NEJnMzRFdw==","name":"Chau Tu","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Chau+Tu","origUrl":"http://www.youtube.com/@ChauTu","a11yText":"Chau Tu. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":312,"text":"5:12","a11yText":"Süre 5 dakika 12 saniye","shortText":"5 dk."},"views":{"text":"25,6bin","a11yText":"25,6 bin izleme"},"date":"24 tem 2016","modifyTime":1469318400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7rhaHtNbehI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7rhaHtNbehI","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":312},"parentClipId":"8823071975235908055","href":"/preview/8823071975235908055?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/8823071975235908055?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"441276524147351745":{"videoId":"441276524147351745","title":"Find the limit of \u0007[1\u0007]/(\u0007[n\u0007]+1) + \u0007[1\u0007]/(\u0007[n\u0007]+2) + \u0007[1\u0007]/(\u0007[n\u0007]+3) + ... + 1/6n as n tends to in...","cleanTitle":"Find the limit of 1/(n+1) + 1/(n+2) + 1/(n+3) + ... + 1/6n as n tends to infinity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_iX84IwfFs0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_iX84IwfFs0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaEx1UEY0bHJheUE0ZWxiN0VqZXpEUQ==","name":"mathmuni","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathmuni","origUrl":"http://www.youtube.com/user/mathmuni","a11yText":"mathmuni. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":65,"text":"1:05","a11yText":"Süre 1 dakika 5 saniye","shortText":"1 dk."},"views":{"text":"44,5bin","a11yText":"44,5 bin izleme"},"date":"27 ağu 2012","modifyTime":1346025600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_iX84IwfFs0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_iX84IwfFs0","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":65},"parentClipId":"441276524147351745","href":"/preview/441276524147351745?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/441276524147351745?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8883190756721679698":{"videoId":"8883190756721679698","title":"Proof: Sequence (n+\u0007[1\u0007])/\u0007[n\u0007] Converges to 1 | Real Analysis","cleanTitle":"Proof: Sequence (n+1)/n Converges to 1 | Real Analysis","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Nop746tkRsc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Nop746tkRsc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":402,"text":"6:42","a11yText":"Süre 6 dakika 42 saniye","shortText":"6 dk."},"views":{"text":"34,3bin","a11yText":"34,3 bin izleme"},"date":"18 oca 2021","modifyTime":1610928000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Nop746tkRsc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Nop746tkRsc","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":402},"parentClipId":"8883190756721679698","href":"/preview/8883190756721679698?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/8883190756721679698?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13791403985441730808":{"videoId":"13791403985441730808","title":"Prove lim (n )[(1+\u0007[1\u0007]/\u0007[n\u0007])^n]=e","cleanTitle":"Prove lim (n )[(1+1/n)^n]=e","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=go0qeFDTGCo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/go0qeFDTGCo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU2NSMnRlczlRU3MtZ1g0VU5ITFJCZw==","name":"Math Academy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Academy","origUrl":"http://www.youtube.com/@mathacademy3136","a11yText":"Math Academy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":357,"text":"5:57","a11yText":"Süre 5 dakika 57 saniye","shortText":"5 dk."},"views":{"text":"41,8bin","a11yText":"41,8 bin izleme"},"date":"28 haz 2019","modifyTime":1561680000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/go0qeFDTGCo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=go0qeFDTGCo","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":357},"parentClipId":"13791403985441730808","href":"/preview/13791403985441730808?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/13791403985441730808?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"689576405884987124":{"videoId":"689576405884987124","title":"Proof of (1+\u0007[1\u0007]/\u0007[n\u0007])^n=e","cleanTitle":"Proof of (1+1/n)^n=e","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hpCenDJgy7w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hpCenDJgy7w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUEJJcjNtaW9QYllCS3BXWGFmV2k4QQ==","name":"Ah Sing TV","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ah+Sing+TV","origUrl":"http://www.youtube.com/@ahsingtv","a11yText":"Ah Sing TV. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":240,"text":"4:00","a11yText":"Süre 4 dakika","shortText":"4 dk."},"views":{"text":"120,4bin","a11yText":"120,4 bin izleme"},"date":"23 mar 2019","modifyTime":1553299200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hpCenDJgy7w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hpCenDJgy7w","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":240},"parentClipId":"689576405884987124","href":"/preview/689576405884987124?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/689576405884987124?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12342526334236678473":{"videoId":"12342526334236678473","title":"The Infinite Sum of \u0007[1\u0007]/\u0007[n\u0007]!","cleanTitle":"The Infinite Sum of 1/n!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=3kOTivwS1To","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3kOTivwS1To?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWU1tT0FoY3hTYkloaE4wNjJjZEVmdw==","name":"University of Derby Maths Society","isVerified":false,"subscribersCount":0,"url":"/video/search?text=University+of+Derby+Maths+Society","origUrl":"http://www.youtube.com/@universityofderbymathssoci9637","a11yText":"University of Derby Maths Society. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":88,"text":"1:28","a11yText":"Süre 1 dakika 28 saniye","shortText":"1 dk."},"views":{"text":"14,4bin","a11yText":"14,4 bin izleme"},"date":"11 haz 2023","modifyTime":1686441600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3kOTivwS1To?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3kOTivwS1To","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":88},"parentClipId":"12342526334236678473","href":"/preview/12342526334236678473?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/12342526334236678473?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14684404978834622936":{"videoId":"14684404978834622936","title":"Limit (1-\u0007[1\u0007]/\u0007[n\u0007])^n = 1/e as n approaches to infinity Proof |Mad Teacher","cleanTitle":"Limit (1-1/n)^n = 1/e as n approaches to infinity Proof |Mad Teacher","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dOqFf4bqJxU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dOqFf4bqJxU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVA4OUdNZ0w2YVJVeXhwSmVzU1liQQ==","name":"Mad Teacher","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mad+Teacher","origUrl":"http://www.youtube.com/@MadTeacher","a11yText":"Mad Teacher. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":76,"text":"1:16","a11yText":"Süre 1 dakika 16 saniye","shortText":"1 dk."},"views":{"text":"53,5bin","a11yText":"53,5 bin izleme"},"date":"10 haz 2018","modifyTime":1528588800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dOqFf4bqJxU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dOqFf4bqJxU","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":76},"parentClipId":"14684404978834622936","href":"/preview/14684404978834622936?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/14684404978834622936?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11326497938724186306":{"videoId":"11326497938724186306","title":"Proving Σn(n+\u0007[1\u0007]) = \u0007[n\u0007](n+\u0007[1\u0007])(\u0007[n\u0007]+2)/3 using Mathematical Induction","cleanTitle":"Proving Σn(n+1) = n(n+1)(n+2)/3 using Mathematical Induction","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fnPYgblaalU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fnPYgblaalU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWgyNTEwZTBBSjVCRWNvcHJ0bXdiZw==","name":"MasterWuMathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MasterWuMathematics","origUrl":"http://www.youtube.com/user/MasterWuMaths","a11yText":"MasterWuMathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":631,"text":"10:31","a11yText":"Süre 10 dakika 31 saniye","shortText":"10 dk."},"views":{"text":"35,9bin","a11yText":"35,9 bin izleme"},"date":"12 şub 2014","modifyTime":1392163200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fnPYgblaalU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fnPYgblaalU","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":631},"parentClipId":"11326497938724186306","href":"/preview/11326497938724186306?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/11326497938724186306?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12686427269631730422":{"videoId":"12686427269631730422","title":"Principle of Mathematical Induction sum(1/(i(i + 1)), i = \u0007[1\u0007],..., \u0007[n\u0007]) = n/(n + 1)","cleanTitle":"Principle of Mathematical Induction sum(1/(i(i + 1)), i = 1,..., n) = n/(n + 1)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=l7nkGZm9Oy8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/l7nkGZm9Oy8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":347,"text":"5:47","a11yText":"Süre 5 dakika 47 saniye","shortText":"5 dk."},"views":{"text":"70,5bin","a11yText":"70,5 bin izleme"},"date":"1 eki 2014","modifyTime":1412121600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/l7nkGZm9Oy8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=l7nkGZm9Oy8","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":347},"parentClipId":"12686427269631730422","href":"/preview/12686427269631730422?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/12686427269631730422?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18318416703157781796":{"videoId":"18318416703157781796","title":"Limit (1+\u0007[1\u0007]/\u0007[n\u0007])^n = e as n approaches to infinity (W/Voice Explanation) Maths Proof (New) |Mad...","cleanTitle":"Limit (1+1/n)^n = e as n approaches to infinity (W/Voice Explanation) Maths Proof (New) |Mad Teacher","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WB93_KmHFWg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WB93_KmHFWg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVA4OUdNZ0w2YVJVeXhwSmVzU1liQQ==","name":"Mad Teacher","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mad+Teacher","origUrl":"http://www.youtube.com/@MadTeacher","a11yText":"Mad Teacher. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":588,"text":"9:48","a11yText":"Süre 9 dakika 48 saniye","shortText":"9 dk."},"views":{"text":"20,6bin","a11yText":"20,6 bin izleme"},"date":"16 ara 2018","modifyTime":1544972417000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WB93_KmHFWg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WB93_KmHFWg","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":588},"parentClipId":"18318416703157781796","href":"/preview/18318416703157781796?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/18318416703157781796?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4532981024393830620":{"videoId":"4532981024393830620","title":"Proof: Sequence (\u0007[1\u0007]/\u0007[n\u0007]) is a Cauchy Sequence | Real Analysis Exercises","cleanTitle":"Proof: Sequence (1/n) is a Cauchy Sequence | Real Analysis Exercises","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=97PCMCQYKeM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/97PCMCQYKeM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":495,"text":"8:15","a11yText":"Süre 8 dakika 15 saniye","shortText":"8 dk."},"views":{"text":"22,6bin","a11yText":"22,6 bin izleme"},"date":"4 ağu 2021","modifyTime":1628035200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/97PCMCQYKeM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=97PCMCQYKeM","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":495},"parentClipId":"4532981024393830620","href":"/preview/4532981024393830620?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/4532981024393830620?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13554085402586357420":{"videoId":"13554085402586357420","title":"Real Analysis Course #15 - Limit of \u0007[1\u0007]/\u0007[n\u0007] Converges to 0","cleanTitle":"Real Analysis Course #15 - Limit of 1/n Converges to 0","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=x1WBTBtfvjM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/x1WBTBtfvjM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaFZVU1hGelY4UUNPS05XR2ZFNTZZUQ==","name":"BriTheMathGuy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=BriTheMathGuy","origUrl":"http://www.youtube.com/@BriTheMathGuy","a11yText":"BriTheMathGuy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":261,"text":"4:21","a11yText":"Süre 4 dakika 21 saniye","shortText":"4 dk."},"views":{"text":"33,2bin","a11yText":"33,2 bin izleme"},"date":"22 nis 2020","modifyTime":1587584705000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/x1WBTBtfvjM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=x1WBTBtfvjM","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":261},"parentClipId":"13554085402586357420","href":"/preview/13554085402586357420?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/13554085402586357420?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4546708299032047775":{"videoId":"4546708299032047775","title":"Limit (1+\u0007[1\u0007]/\u0007[n\u0007])^n = e as n approaches to infinity (W/Text Explanation) Proof | Maths |Mad Teac...","cleanTitle":"Limit (1+1/n)^n = e as n approaches to infinity (W/Text Explanation) Proof | Maths |Mad Teacher","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=3Wb0jPhuRco","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3Wb0jPhuRco?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVA4OUdNZ0w2YVJVeXhwSmVzU1liQQ==","name":"Mad Teacher","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mad+Teacher","origUrl":"http://www.youtube.com/@MadTeacher","a11yText":"Mad Teacher. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":170,"text":"2:50","a11yText":"Süre 2 dakika 50 saniye","shortText":"2 dk."},"views":{"text":"136,2bin","a11yText":"136,2 bin izleme"},"date":"11 ara 2016","modifyTime":1481414400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3Wb0jPhuRco?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3Wb0jPhuRco","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":170},"parentClipId":"4546708299032047775","href":"/preview/4546708299032047775?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/4546708299032047775?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8757757928739608711":{"videoId":"8757757928739608711","title":"Video 2630 - What is the limit of (n/(n+\u0007[1\u0007]))^\u0007[n\u0007] as n tends to infinity?","cleanTitle":"Video 2630 - What is the limit of (n/(n+1))^n as n tends to infinity?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1B114U9spjE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1B114U9spjE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNjQ5aVdPNWY0a3VfZ0l2NEJnMzRFdw==","name":"Chau Tu","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Chau+Tu","origUrl":"http://www.youtube.com/@ChauTu","a11yText":"Chau Tu. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":362,"text":"6:02","a11yText":"Süre 6 dakika 2 saniye","shortText":"6 dk."},"views":{"text":"50bin","a11yText":"50 bin izleme"},"date":"18 eyl 2016","modifyTime":1474156800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1B114U9spjE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1B114U9spjE","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":362},"parentClipId":"8757757928739608711","href":"/preview/8757757928739608711?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/8757757928739608711?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14804681058292170072":{"videoId":"14804681058292170072","title":"lim {\u0007[1\u0007]/(\u0007[n\u0007]+1) + \u0007[1\u0007]/(\u0007[n\u0007]+2) +...+ 1/2n. || What is this limit?","cleanTitle":"lim {1/(n+1) + 1/(n+2) +...+ 1/2n. || What is this limit?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JPLri-Dj7ag","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JPLri-Dj7ag?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO2h0dHA6Ly93d3cueW91dHViZS5jb20vQHVnLXBnbWF0aGVtYXRpY3MzOTI1","name":"Ug-Pg Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ug-Pg+Mathematics","origUrl":"http://www.youtube.com/@ug-pgmathematics3925","a11yText":"Ug-Pg Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":378,"text":"6:18","a11yText":"Süre 6 dakika 18 saniye","shortText":"6 dk."},"views":{"text":"43,2bin","a11yText":"43,2 bin izleme"},"date":"15 mayıs 2020","modifyTime":1589493069000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JPLri-Dj7ag?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JPLri-Dj7ag","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":378},"parentClipId":"14804681058292170072","href":"/preview/14804681058292170072?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/14804681058292170072?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6307263209824668076":{"videoId":"6307263209824668076","title":"Series (\u0007[1\u0007]/\u0007[n\u0007]) sin(\u0007[1\u0007]/\u0007[n\u0007]) converges and sin^2(\u0007[1\u0007]/\u0007[n\u0007]) converges (with geometrical m...","cleanTitle":"Series (1/n) sin(1/n) converges and sin^2(1/n) converges (with geometrical meaning)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=l0wlChHFuls","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/l0wlChHFuls?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbTFkZGVfMzJjYVZSaGo5Z29tbmtjUQ==","name":"NextGenMaths","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NextGenMaths","origUrl":"http://www.youtube.com/channel/UCm1dde_32caVRhj9gomnkcQ","a11yText":"NextGenMaths. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":182,"text":"3:02","a11yText":"Süre 3 dakika 2 saniye","shortText":"3 dk."},"views":{"text":"15,3bin","a11yText":"15,3 bin izleme"},"date":"30 eki 2018","modifyTime":1540857600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/l0wlChHFuls?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=l0wlChHFuls","reqid":"1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":182},"parentClipId":"6307263209824668076","href":"/preview/6307263209824668076?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1%2FN","rawHref":"/video/preview/6307263209824668076?parent-reqid=1769519765464220-7501718262231171856-balancer-l7leveler-kubr-yp-sas-98-BAL&text=1/N","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"7501718262231171856798","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"1/N","queryUriEscaped":"1%2FN","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}