{"pages":{"search":{"query":"2Sin","originalQuery":"2Sin","serpid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","parentReqid":"","serpItems":[{"id":"588583153824967963-0-0","type":"videoSnippet","props":{"videoId":"588583153824967963"},"curPage":0},{"id":"17235897394657342265-0-1","type":"videoSnippet","props":{"videoId":"17235897394657342265"},"curPage":0},{"id":"9969593555327435338-0-2","type":"videoSnippet","props":{"videoId":"9969593555327435338"},"curPage":0},{"id":"9153792943451754530-0-3","type":"videoSnippet","props":{"videoId":"9153792943451754530"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dDJTaW4K","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","ui":"desktop","yuid":"7646445971767361594"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"5245132173503641133-0-5","type":"videoSnippet","props":{"videoId":"5245132173503641133"},"curPage":0},{"id":"4946065568751119381-0-6","type":"videoSnippet","props":{"videoId":"4946065568751119381"},"curPage":0},{"id":"4716300028186583151-0-7","type":"videoSnippet","props":{"videoId":"4716300028186583151"},"curPage":0},{"id":"14211616315839962469-0-8","type":"videoSnippet","props":{"videoId":"14211616315839962469"},"curPage":0},{"id":"1213343071297793149-0-9","type":"videoSnippet","props":{"videoId":"1213343071297793149"},"curPage":0},{"id":"4935589598019722161-0-10","type":"videoSnippet","props":{"videoId":"4935589598019722161"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dDJTaW4K","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","ui":"desktop","yuid":"7646445971767361594"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"3254593785073535593-0-12","type":"videoSnippet","props":{"videoId":"3254593785073535593"},"curPage":0},{"id":"15104312234662260239-0-13","type":"videoSnippet","props":{"videoId":"15104312234662260239"},"curPage":0},{"id":"3968380474563467748-0-14","type":"videoSnippet","props":{"videoId":"3968380474563467748"},"curPage":0},{"id":"11862011102614616425-0-15","type":"videoSnippet","props":{"videoId":"11862011102614616425"},"curPage":0},{"id":"4616381845294875200-0-16","type":"videoSnippet","props":{"videoId":"4616381845294875200"},"curPage":0},{"id":"17117185322851783722-0-17","type":"videoSnippet","props":{"videoId":"17117185322851783722"},"curPage":0},{"id":"16333511611220353394-0-18","type":"videoSnippet","props":{"videoId":"16333511611220353394"},"curPage":0},{"id":"10666614162854869335-0-19","type":"videoSnippet","props":{"videoId":"10666614162854869335"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dDJTaW4K","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","ui":"desktop","yuid":"7646445971767361594"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3D2Sin"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"1693058724288433197145","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1460331,0,85;1443981,0,71;151171,0,68;1459210,0,33;1281084,0,98;704825,0,4;287509,0,51;1447467,0,24;1231501,0,42;912281,0,13"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3D2Sin","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=2Sin","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=2Sin","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"2Sin: Yandex'te 1 bin video bulundu","description":"Результаты поиска по запросу \"2Sin\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"2Sin — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"ycae9a7f7831aa8cf67aa587ab9058443","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1460331,1443981,151171,1459210,1281084,704825,287509,1447467,1231501,912281","queryText":"2Sin","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7646445971767361594","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1460915,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1767361775","tz":"America/Louisville","to_iso":"2026-01-02T08:49:35-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1460331,1443981,151171,1459210,1281084,704825,287509,1447467,1231501,912281","queryText":"2Sin","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7646445971767361594","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"1693058724288433197145","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":166,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7646445971767361594","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1743.0__eecddcd035f1600a552b89c33e76f4a866ae10da","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"588583153824967963":{"videoId":"588583153824967963","docid":"34-9-1-ZA5B91B45769197C6","description":"Learn how to solve the equation 2sin^2(x)-sin()x-1=0 and find the values of x on [0,2π) using substitution, factoring by ac method, and the unit circle.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2837698/a4f61adeec1f6549f1b4358672f65f66/564x318_1"},"target":"_self","position":"0","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DIUFgI9E9wP4","linkTemplate":"/video/preview/588583153824967963?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solve the equation 2sin^2(x)-sin() x-1=0 and find the values of x on [0,2π).","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IUFgI9E9wP4\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFAoSNTg4NTgzMTUzODI0OTY3OTYzWhI1ODg1ODMxNTM4MjQ5Njc5NjNqrw0SATAYACJFGjEACipoaGFrYnRodnpvZ3p5ZGFiaGhVQ1ltYUVuUWNyWHF5NVFSYmhyUTUtSFESAgASKhDCDw8aDz8T3wKCBCQBgAQrKosBEAEaeIHuAfn9_AUA9AQFAfkD_wEUBfgG9QEBAPTx-f8FAv8A6_kFBfz_AAABDPv9BQAAABH27vn-AQAAEPv--QMAAAAPBv4I9wAAABj99wT-AQAABQH4-AP_AAD8__36_wAAAAgKA-8AAAAA9RD-_gAAAAD_AQoG_wAAACAALXGG3js4E0AJSE5QAipzEAAaYCgRACUbINcIEC_r5_wEDgb74fLL4vgAEuYAAQn61A4M2NAKC_8g6Rz3xAAAAB4E9BDgAPtDEgjfMwf4_u_M7ggefwkJ5g4GJwHq6QIMFg3sB90RFADhFhUTNsnXMPn-ICAALT79ZDs4E0AJSG9QAiqvBhAMGqAGAADAQQAA4EAAAMBBAABUwgAA0kIAAFRCAACMQgAAqMEAAIC_AACwQQAAgEEAAAzCAABMwgAADMIAABBCAAAQQQAAAMEAAHjCAABMQgAAgMIAACzCAACwwQAAYMIAABDBAAAAwAAAgMEAAIjBAACUwgAAiEEAAMDAAACgwQAAYEEAAHDCAACQwQAAisIAAIBAAAAAwAAAsEIAAIDBAACCQgAAoEAAALhBAAA4QgAA0MEAAGhCAACswgAATMIAAFxCAAC4QQAA2EEAAEDCAACgwAAAuMEAAADAAACgwAAA4EAAAKTCAACAvwAAQMAAAJxCAACAQQAAcMIAACDBAADGwgAAiEEAAEzCAAAEwgAAiMIAAEzCAAB4wgAAaEIAAJxCAAAQwgAAkEEAACDCAACGwgAADMIAAIDAAADgwAAAsMEAAAjCAACIQgAAUEEAABBCAAAgQQAAYEEAAFBBAABwQgAAiEEAABzCAACAvwAAtEIAACTCAABwwQAAIEEAAEzCAADowQAAAMAAAPBCAAAwQQAAaMIAAGhCAAAAQgAAPMIAAJjCAAAUQgAAoEAAAABAAACAvwAAhEIAAKBAAADgwQAAyMEAAIA_AABQwgAA2EEAAODAAAAswgAAKMIAAHBBAABMwgAAlsIAALjBAACIwQAAMMEAALhBAACwQQAAAMAAAIBAAADgwAAAKMIAAIBBAADAQQAAPEIAAIDBAAAkQgAAAEIAAKBBAABgwgAAsMEAAOBAAAAAQQAALEIAANjBAAAgQQAAwEAAAGjCAAAAwAAAyEEAAFDBAACgwQAAuEEAAMBBAAAAwQAASEIAAAjCAAD4wQAAZMIAAJ7CAABAwQAAiMEAALBBAACYwQAAMMIAAIC_AAC4QQAAUEEAAGhCAABkQgAAwEAAAABAAADAQAAAmMEAAIDAAAAkwgAAGMIAAEBAAABowgAAYEIAAMDBAACMwgAAAAAAAIC_AABwQQAAjkIAABDCAABgwgAAWMIAAHBBAACAPwAAAMAAAETCAAAQQgAA4MAAAMhBAAAYQgAAMMIAAGBCAACAvwAAYMEgADgTQAlIdVABKo8CEAAagAIAAL4-AAA0PgAAlj4AAOC8AADIPQAARD4AAEw-AABDvwAAiL0AAHC9AAD4vQAAcL0AAJi9AADoPQAAtr4AACw-AABAvAAA4DwAACQ-AAAHPwAAfz8AAIC7AABwPQAAJD4AAOi9AAAcPgAALD4AAOi9AABkPgAAJD4AAMg9AADKvgAA4DwAAOA8AAAkPgAAVD4AAMg9AADWvgAA8r4AAL6-AACIvQAADD4AAJo-AADgPAAAuL0AAEA8AACaPgAAgDsAAKg9AACuvgAAMD0AAFC9AABAvAAAxj4AABS-AABAvAAAHz8AAFC9AACWvgAA2L0AALg9AADoPQAATD4AADy-IAA4E0AJSHxQASqPAhABGoACAACYvQAAEL0AALg9AAAzvwAAML0AAEQ-AADWPgAA6D0AAKA8AADoPQAAgDsAAIA7AAAQvQAAiL0AABQ-AABAPAAAqL0AAB0_AAA8vgAAsj4AAAy-AAB8vgAALL4AAOC8AAAwPQAAFL4AAIA7AACAOwAAoLwAADC9AACYvQAAHD4AAMa-AACAuwAADD4AAKC8AACiPgAAqD0AAKa-AAA8vgAAPL4AAKA8AACgvAAA6D0AADw-AACovQAAf78AADA9AAAwPQAAqL0AANi9AABkPgAAHD4AANg9AACCvgAADD4AAEA8AADIvQAAfD4AALg9AAB8PgAAqL0AAKA8AABQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=IUFgI9E9wP4","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["588583153824967963"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17235897394657342265":{"videoId":"17235897394657342265","docid":"34-8-17-Z00FDD414F61A1213","description":"Learn how to solve a trigonometric equation using factoring and the unit circle.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4825664/8d68561a2a1a509a03fb0941a16f1f8d/564x318_1"},"target":"_self","position":"1","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5F4kooCsEK4","linkTemplate":"/video/preview/17235897394657342265?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solve the equation 2sin^2(x)=sin(x) and find the values of x on [0,2π).","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5F4kooCsEK4\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFgoUMTcyMzU4OTczOTQ2NTczNDIyNjVaFDE3MjM1ODk3Mzk0NjU3MzQyMjY1aq8NEgEwGAAiRRoxAAoqaGhha2J0aHZ6b2d6eWRhYmhoVUNZbWFFblFjclhxeTVRUmJoclE1LUhREgIAEioQwg8PGg8_E-UBggQkAYAEKyqLARABGniB7gH5_fwFAPQEBQH5A_8BDP77CPf__wD08fn_BQL_AOsDBgAC_wAA-hAD_gYAAAAR9u75_gEAABD7_vkDAAAADwb-CPcAAAAY_fcE_gEAAAEG__cCAAAA-vz3AP8AAAAIAQv1__8AAPUQ_v4AAAAAAQQG_v8AAAAgAC1xht47OBNACUhOUAIqcxAAGmAlEAA6Lxuz9gNA2OLy8gn39Nztmcb6_yXdAAUF774QEtjAAwr_H98aAKsAAAAjBfgZ6ADwXxUQ1137Bf_6vPIULH8h_dEjAS0L7ewXNxT3_BPUEB8AyRcvCzK8-CX7ESwgAC2QLy47OBNACUhvUAIqrwYQDBqgBgAAYEEAAIBAAAD4QQAAUMIAANBCAABsQgAAdEIAAJDBAACgQAAAsEEAAABAAAAkwgAAYMIAAOjBAABIQgAA4MAAAKDBAABQwgAAdEIAAIzCAABAwgAAuMEAADzCAAAQQQAAQMAAAODAAAC4wQAAjsIAAFBBAAAAQQAAUMEAAABBAABEwgAAyMEAAJLCAACAPwAAoMAAALpCAABgwQAAkkIAAMDAAACgQQAAREIAABjCAABwQgAAtMIAADTCAAB0QgAAoEEAANBBAABEwgAAQEAAAJDBAACgwAAAoMAAAKDAAACEwgAAgD8AAMDAAACUQgAAmEEAAGTCAACgwQAAtsIAAABBAAAkwgAAyMEAAHjCAABEwgAAXMIAAIBCAAB4QgAA-MEAAPBBAAAQwgAAlsIAAOjBAABwwQAAQMEAAFDBAAAEwgAAYEIAAGBBAAAEQgAAUEEAADBBAABAQQAAjEIAAJhBAABEwgAAIMEAALBCAABAwgAA0MEAABDBAAAowgAA4MEAADDBAAD-QgAAgEEAAFjCAAA8QgAAIEIAAHjCAAC8wgAA-EEAAGDBAAAQQQAAiMEAAIxCAACgQAAAyMEAAAjCAAAAAAAAEMIAADBBAABQwQAALMIAACzCAACQQQAAPMIAAI7CAACwwQAA4MEAAMDAAACwQQAAyEEAAMDAAADgwAAAUMEAAMjBAADYQQAAgEEAAFhCAABQwQAANEIAALBBAAAEQgAAdMIAALDBAAAAQAAAAEAAAERCAAC4wQAAQEEAAIDAAAAUwgAAQMAAAIhBAAAAwQAAuMEAABRCAAAIQgAAcMEAABRCAAAEwgAAkMEAAGDCAACywgAAgD8AALDBAADAQQAAsMEAADzCAADAQAAA6EEAAOhBAAB0QgAAXEIAADBBAABQQQAAkEEAACDBAAAAwAAAGMIAABjCAABAwAAAbMIAAFRCAACAvwAAZMIAAAAAAACAQAAAUEEAAIhCAADAwQAAZMIAAHzCAABgQQAAgL8AAMDAAAAQwgAA-EEAADDBAAAQQgAAUEIAAFDCAAAMQgAAgMAAABDCIAA4E0AJSHVQASqPAhAAGoACAACqPgAAFD4AAPY-AABAPAAAQLwAAFw-AABwvQAAHb8AAEC8AABAvAAAML0AAOi9AACYPQAA2D0AAK6-AACoPQAAgLsAAFA9AAAEPgAAvj4AAH8_AAAQvQAAuL0AAIY-AAC4vQAA2D0AAPg9AAA0vgAAlj4AAAQ-AACgvAAAVL4AAIC7AACAOwAAoDwAAJg9AACgPAAAqr4AANa-AADSvgAAgLsAAOg9AABsPgAAML0AABS-AACYvQAAdD4AABA9AAD4PQAAFL4AAAw-AACIPQAADD4AAI4-AABcvgAA4LwAAA8_AABAPAAANL4AAEA8AABwPQAAyL0AADQ-AADovSAAOBNACUh8UAEqjwIQARqAAgAAqL0AAAy-AAD4PQAANb8AAEC8AAAcPgAAZD4AABw-AADgvAAAFD4AAEC8AACYPQAAmD0AAEA8AACIPQAAQLwAAOi9AAAzPwAANL4AAJY-AABkvgAAdL4AAMi9AACIvQAAUD0AADS-AAAMPgAAoLwAABw-AABQPQAAqL0AAPg9AAC-vgAAgDsAAOg9AACgvAAATD4AAAw-AACSvgAAPL4AAAy-AAAQvQAAML0AALg9AACoPQAABL4AAH-_AAAUPgAAuD0AAFC9AADYvQAAHD4AAFQ-AADIPQAAVL4AAJg9AAAQPQAAML0AAEQ-AACAOwAAdD4AAMi9AACAOwAAHL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=5F4kooCsEK4","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17235897394657342265"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9969593555327435338":{"videoId":"9969593555327435338","docid":"34-11-4-Z64AB138A4B8D00AB","description":"Dr. Pan works through a trig equation step-by-step: 2sin(x)^2 - 3sin(x) + 1 = 0 Find the exact solution in radians between 0 and 2π If you like this video, ask your parents to check Dr. Pan's new...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4466579/abfa8316d609780a77f8e715a2d3be73/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/s4VgnwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dpfy_z3eX4jI","linkTemplate":"/video/preview/9969593555327435338?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Solve a TRIG Equation | 2sin(x)^2 - 3sin(x) + 1 = 0 | Trigonometry","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pfy_z3eX4jI\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFQoTOTk2OTU5MzU1NTMyNzQzNTMzOFoTOTk2OTU5MzU1NTMyNzQzNTMzOGqTFxIBMBgAIkUaMQAKKmhoaGZzb3N1dm5zdHFkdmNoaFVDS2VGSTZxWlF4cnBKM3Q2ZUJXbXB0QRICABIqEMIPDxoPPxOdAYIEJAGABCsqiwEQARp4geoFAvr-AgD5BwsH-Ab9Aib-_wr0BAQA7fjw_AUAAAD58xMCBQAAAPUK_PkEAAAA_wv89gH-AAAU-vP0AwAAAAkCAAD0AQAAEQD88P8BAAD0-_78AwAAAPz2_QIAAAAABgX79v7_AAAMCPj8AQAAAP0GBQ3_AAAAIAAtuojVOzgTQAlITlACKoQCEAAa8AF_4g78seMB_cgGtQDmS98Ahz4x_wtB7ADE5g__AO_TAcvqvP_cPd8A9wAb_5s39f8gx9b_974CADnIEv_ZwiUB7-ACACPh8gJRGj3_6QPt_6P0H_zc2A4B_LLSACkisAD42_r0ERYMAPQh6AYy-j8BFkI1AxDrUgH9vvf60ereB_T1sv3bDOkB7wkB8o3-JgoQvBj9KUEgANbow_4UJgfw7e8m9if-tPlK1wMAGtsv_PI7__sf_gD4QhwTA6zm_fca8Svuxdwa9PcAHxO_9iTuDPnWDgoMzhAD4xkOEADx-t34A_MbDwv8_QHgCs0R7f8gAC2e79o6OBNACUhhUAIqzwcQABrAB9nM4b4mv2q8GfsWvKWdj71E5M-8hUu9vD_pX73wZJw9Eo9avSCWwj0Koxm9EAaevL2OkL5851y92KYpO4mZDT7MP1-9652fuXV0_L0vE5o9CwIQvVrClb3RbRM9iVyAPYJEibx1K4q9_CtYu3IeaT07anG9vLQ8vTM4pbyAJds7WwBkvJita70X5UO9vEkCvX0ANz37XA29dT-nOi9R_T2xBWC6n6utvC5zCj57_xo9qKQTvWsRsb3HyMg8HxHTvKzA9Ty0rlG9sM_3PBfLvrx6srC7Y8IgvEy0Gr2PkQe8rbYNPEELCT2-7Eg9EUqpvHhnijvTiBm9BfnZvKjIIb4CfBw96OltPORm-D1mTOE9GCPUO670Kr5txd49itQLuyrh6T0fTjs8Ja2dvKky7D3xP4O9ERWyOyCihzz5pG49oEiBvC0OH7xVVi49EEIbPSJEAz1FgFO8RN_dvD99Gj28xtM8uECCO688LT1UvUY8vsdTO_C3g7uD5Lg9CJk_PK1furyvmqU7bSUqvAUjpT3WAju-SeWaOvnj7rtbYfq9hQK-O3fc8DxG-y499g2nvE_fvDwDKne9CAWlPPlocT26JBg8OlcUOwqHGb3yBj292TobPErT4L1jIIQ9tT_pO1Su7LvkWXg9lhUWvHiJID08HPg8m8iKO9PMaT0O3ey9j4o4umhH5LpzpC49Dug7vM9-STzdXFw9glfGOWIvVD0po8C8v3cju8tuAb3xHIA8cOmYOwt4Pr0cWDM8s2O7udFIyj0L6oC8ju3guAQpB72jiuy83QaquHNLu73z7fg83HLpOKeCI7tmP9w8FzQzOqs9kb0aUhW-MFEKOutteD01UrU9cqKSOLyUOj2KP8o8BSDhN19_vb0fGDu9CNU3uWVEmLxyU0M9rRkxtwJlU7yd5D29RUUxuC1hCL0tnYq96KQwuQ0zuLu6-Ju8sL4JukEjHT1JL-o95ELtuJi0Ujs_cMW99y5gOQnfGz2Ejzc9XCn8uD4mDT0j4Js9sOscuEtshDuXBCM9gKTyuJgarD3X8Km9AuheuCivn7wtHrM9ExmkN2VTzr3C6Kg8_jLoN_zxrDu1ChG8o3aauK4OQD540y297Ip9tq1jgbzczuM8VXF1OJJdGT7ZT1C9rMI_uRZOAr4wq2a9VSpWOHP5ajxV-KO94xA7N-Y7OL2oLX89yhDIsga_qLzmTJS9Cspkt_lk5T3I2Zo9tUDWNrbKnTzc1Ss9X9lwuOhVs70WJOw8zbghOFNQy70shA88Li5MtyAAOBNACUhtUAEqcxAAGmAa5gAaIyCNOxr39_apGw_g3eO69K4V_-zn_1RD8xcqA8rcGO__Kuzm35IAAAA14eEd4AADf_HmOk4MDguqk9Zp5VgPJeTS6wwc2M5kKx77QRW8BzQA5B6lD0bHwx02LCAgAC2cRgo7OBNACUhvUAIqrwYQDBqgBgAAIEEAAMBAAADIQQAATMIAAOhBAAAAQgAAmkIAAMBAAABYwgAA0MEAAIC_AAAgQQAAWMIAADDCAAD4QQAAcMEAAEDAAACuwgAAqkIAAJrCAACQwgAAIMIAAPjBAAAAQgAAgEAAADhCAADgwQAAGMIAANhBAACAPwAALMIAAFDBAABMwgAAEEIAAHzCAADAQQAAwMEAAJRCAADAQAAAJEIAAADBAABQQgAAjkIAAEDAAAAQQgAA4MEAAAzCAACAQQAAREIAAODAAADowQAA0MEAAMDAAAAAQAAA2EEAAABBAACAwgAAAEAAAFBBAACQQgAAgEEAAHTCAACIwQAA3sIAAERCAABYwgAAmMEAAITCAAC6wgAASMIAAMBCAACsQgAAMMIAAPBBAABAwQAAusIAAEjCAADQQQAAJEIAAEBBAADQwQAAJEIAAGBBAACIQQAAQMAAAIhBAAD4QQAAGEIAANBBAAAcwgAAQEAAABBBAAAAAAAAEMEAAFBBAACywgAA0EEAAARCAAAYQgAAAAAAALDBAADwQQAAyEEAAEDCAACYwgAAwMAAAEDBAABgQQAAIEEAAOhBAADIQQAAgL8AACDCAACAQAAADMIAAGBCAAAwQgAA2MIAAOBAAAA4wgAABMIAAMjBAACYQQAAAMEAAFxCAAC4wQAAwMEAAFDBAAAgwgAADMIAAFDBAADAwQAAcMEAAMhBAABgwgAADEIAAExCAADowQAAuMEAAKjCAAAAQgAAQEAAACBCAADgQAAA8EEAAKBBAAAAQAAAAMAAAARCAACgQAAAgL8AAIDBAACWQgAAQEAAAABBAACAwQAAdMIAAIzCAACQwgAAwEEAAADAAACYQQAAwEEAANDBAAAwwQAAUEEAAABBAABsQgAAXEIAACDCAAAwwQAAQEEAAAjCAACgwQAAGMIAALDBAACQwQAAJMIAAGBCAABgQQAACMIAANjBAABwQQAAIMEAABRCAACswgAADMIAAABAAAAAQAAAIEEAAHBBAACcwgAAQMEAAMjBAADoQQAAPEIAAFTCAAAEQgAAgEEAAIDAIAA4E0AJSHVQASqPAhAAGoACAACCPgAAPD4AAAQ-AAAwvQAAUL0AAGw-AAAsPgAAcb8AAMi9AACgPAAAgDsAAEA8AACgvAAAmj4AALa-AAAkvgAAdD4AAPg9AABcPgAAKz8AAH8_AAAsvgAAND4AAGw-AAAwvQAAuD0AADw-AAAEvgAAVD4AALg9AAAsPgAAA78AAIA7AABAvAAAZD4AADA9AAAQvQAAqr4AAJa-AADqvgAA2D0AAHC9AAAUPgAAcL0AACS-AADIvQAAZD4AACy-AACYvQAAJL4AAIA7AABQvQAAED0AAOg9AAA0vgAA4DwAAFk_AAAMvgAAdL4AAHS-AADgvAAAwj4AAEQ-AACiviAAOBNACUh8UAEqjwIQARqAAgAAyD0AAOA8AABwPQAAKb8AAES-AAAwPQAArj4AABA9AADIvQAAcD0AAMg9AAC4vQAAED0AAAS-AAB8PgAAEL0AADC9AAALPwAAMD0AAMY-AAAwPQAAuL0AAFS-AADgvAAAML0AAJ6-AACgvAAAEL0AADC9AABQvQAAoLwAAOg9AAAUvgAAQDwAAOg9AAAQvQAA-D0AAHQ-AACyvgAADL4AAJi9AABkPgAAUD0AAKA8AABEPgAAoDwAAH-_AAAkPgAAlj4AAJK-AACAuwAA-D0AABA9AADoPQAABL4AADw-AACgPAAAiL0AAPg9AADoPQAABD4AABC9AACAuwAAQLwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=pfy_z3eX4jI","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["9969593555327435338"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1931037588"},"9153792943451754530":{"videoId":"9153792943451754530","docid":"34-6-14-ZAC563532AAD5FCD5","description":"Find All Solutions to the Equation 2sin(x) - 1 = 0 If you enjoyed this video please consider liking, sharing, and subscribing. Udemy Courses Via My Website: https://mathsorcerer.com My FaceBook...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3513895/c182ff261402c2833c9ee67efd10bea3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MNedfQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DjHpegxDQObY","linkTemplate":"/video/preview/9153792943451754530?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find All Solutions to the Equation 2sin(x) - 1 = 0","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jHpegxDQObY\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFQoTOTE1Mzc5Mjk0MzQ1MTc1NDUzMFoTOTE1Mzc5Mjk0MzQ1MTc1NDUzMGrBDxIBMBgAIkUaMQAKKmhoenpsYmpub211Z2hidmJoaFVDcjdsbXpJazYzUFpuQnczYmV6bC1NZxICABIqEMIPDxoPPxOwAoIEJAGABCsqiwEQARp4ge0E-_cD_AD3_Qn9-wT_ASn-_wvzBQUA4-_7_wn9AQDr-BH8_f8AAAEN-v0FAAAACwfs_gH9AQAHBvz6-wAAAAkRAf4EAAAAFf4A_Az_AQH49vb9A_8AAP7q_vr_AAAAAAQE9vv_AADzEv79AQAAAAf9Bv_78_4AIAAtnNXGOzgTQAlITlACKoQCEAAa8AF_-xMB4g_IAtwQ4AD5BfUBpDID__0x1ADABf0AqhLo__rtDADR-8r_D-r9AbwpGwEYBdf_A8oU_yjZDf8k4xwA8_zsASn48QE1DxYCB-bt_s4fG_4LCv4C9Ny3AAgL0_4N4g__DOfdAArrvAjw8UICFdcmBBvc-ALx6QwB1zL1AO3f2_70FPsGB84MAewVNwEl-AQE9xr1-dYX2gAN9QkG8hD_-AMY5QUBBOcDHRD_Cefq_fzx3_0EKN8cAtL97wTz9yQC_fLw-v3yEfgkA_P57B75AenZAAIABwcC9toA_CIP6wPg-f353jEAAur-7AQgAC1cMBs7OBNACUhhUAIqcxAAGmA3_QARDyDT-fst5w3W_QzmA_z45sPv_-f5AOgbHusJQcal9OL_O-P8864AAAA98e8N7AAgaPnu9jQDIBHmk9ASH3_9FubS0w8Gv8UTGSL_HzHRNhgA3RytCS3awUciAiUgAC2bQyc7OBNACUhvUAIqrwYQDBqgBgAAIEIAACjCAACIQgAASMIAAIhBAADAwQAAokIAANDBAAA4wgAAkEEAALhBAAAwwQAAAEIAABTCAABAwAAAKEIAAFBCAACAQQAAqEEAAAzCAACgwQAAuEEAAAzCAACAvwAAhsIAAAAAAAC4QQAAAMEAAJBCAAAQwQAAEMIAABBBAABkwgAAqEEAABzCAADAQQAAQEAAANRCAADgQAAAkEEAAJBBAADAQAAAhEIAAAzCAADgQQAApMIAACBCAACIQQAAWEIAALjBAABAQAAAAMEAACDBAACYwQAADEIAAKhBAADuwgAAEMEAAGBCAACQQgAAAMEAAJ7CAACYwQAAHMIAAFDBAAAAwwAAIMEAAIC_AACAPwAAGMIAADBCAAB0QgAAeMIAABRCAAAowgAAuMEAAODAAABwQQAAkEEAAGDBAAAgwQAAqEIAAGDBAAAAwAAAUEEAADxCAACYQQAAXEIAADRCAADgQQAAcMIAAAhCAABQwgAAKMIAAMhCAACowQAAwMAAAMhBAABAwAAAgMAAAFzCAAC4wQAAgMAAAABAAACQwQAA8EEAAADBAAAwQgAAqMEAAIBAAABIQgAAUMEAAEDBAACAvwAAUMIAAMJCAAAwQgAAEMIAAIDAAABwwQAAHMIAAGzCAADwwQAAAMAAAIjBAACSwgAAGMIAAAAAAAAAwQAAIMEAABTCAAAQQQAAwMEAAIRCAACIwQAAREIAAMBBAABAQAAAwEEAABzCAAAQwQAAuEEAAGRCAABswgAAcEIAADRCAADwwQAAGEIAAJBBAADQwQAAgEAAAKDBAADgwQAAHMIAAOhBAABAQAAAMMEAABzCAABQwgAAUMIAACjCAAAQQQAAAMIAAFTCAAAgQQAAEEIAAGTCAAAwQQAAUEIAAKDAAABQwQAAgL8AADBBAAAUwgAAkMIAADxCAABEwgAA4MEAAODAAABsQgAAZMIAACDCAAAYwgAAwsIAAEBAAABwwgAACMIAAMBAAADQwQAAMEIAAFBCAAAMwgAAAEEAAKBAAAD4wQAAJEIAAKjBAACwwQAAAEAAAIDBIAA4E0AJSHVQASqPAhAAGoACAADWPgAAHD4AAEC8AACYPQAARD4AABQ-AADgvAAAa78AALg9AACIvQAAiL0AAMi9AAAEPgAAhj4AAOK-AAAwvQAAZD4AAJg9AADgvAAAJT8AAH8_AAC4vQAAij4AALi9AADIPQAAqL0AAJo-AADgPAAA6L0AAIi9AAC2PgAAD78AAOg9AAAcPgAABD4AAFw-AAAEPgAAxr4AAC2_AAAJvwAAiL0AADC9AAADPwAAEL0AAFw-AABMvgAAJD4AALi9AAAUPgAApr4AAGS-AACivgAAiD0AAHQ-AAD4vQAAQDwAAGM_AACCvgAAdL4AAKa-AABUvgAAgj4AACw-AABUviAAOBNACUh8UAEqjwIQARqAAgAAoDwAANg9AACKPgAARb8AACy-AABEPgAA4j4AAFQ-AABQPQAAgLsAAEw-AAAsvgAATD4AANi9AAB0PgAAoLwAAMg9AAALPwAAmL0AAIo-AADYvQAADL4AAJi9AACAOwAAqD0AAIK-AAAQvQAAMD0AAIg9AACYvQAAML0AAHA9AACqvgAAiD0AAHw-AADIvQAAmj4AAKC8AACuvgAAgLsAAI6-AABQPQAAcL0AAII-AADgPAAAqL0AAH-_AAC2PgAAEL0AAOg9AAAMvgAAlj4AAJg9AACCPgAAnr4AADw-AABQvQAAcL0AAHQ-AAC4vQAAdD4AAHC9AABcPgAAgDsgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=jHpegxDQObY","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1000,"cratio":1.92,"dups":["9153792943451754530"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1380768794"},"5245132173503641133":{"videoId":"5245132173503641133","docid":"34-4-5-Z85B4D527F4B65A91","description":"Trigonomwteric Equations: • Derive formula for cos2x and then apply to... YouTube Channel: / @mathematicstutor Learn From Anil Kumar: anil.anilkhandelwal@gmail.com #Mhf4u_logarithms...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3338456/821742184e7b84a096ee4995ac9d6c93/564x318_1"},"target":"_self","position":"5","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHtux5hEzqYM","linkTemplate":"/video/preview/5245132173503641133?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"2sin2x+1=0 Solve Polynomial Logarithmic and Trigonometric Equation Test 2025 Mhf4u | Pre-Calculus","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Htux5hEzqYM\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFQoTNTI0NTEzMjE3MzUwMzY0MTEzM1oTNTI0NTEzMjE3MzUwMzY0MTEzM2qvDRIBMBgAIkUaMQAKKmhoeHNseGhha3RsZGxnYmJoaFVDNFlvZXkxVXlsUkNBeHpQR29mUGlXdxICABIqEMIPDxoPPxOeBYIEJAGABCsqiwEQARp4gfQEEfcH-ADyCxELBQb8ARcF9wf0AQEA_fDz9_4F_gDy6v_zAv8AAAQF6gAHAAAAAwHw8f39AQAW-fLzAwAAAA32_u0AAAAAEAT2_v4BAAD29uj9A_8AABr7-_4AAAAACf0C-_j-_wEMBfYEAQAAAAUGAvX_AAAAIAAtn_q8OzgTQAlITlACKnMQABpgGA8ALAwjttMRGtuw3BBDA8bv1-Ko8P8m9f8QGx7ILOq6yAMg_0axIwmYAAAAN-zHLAcA1HzS9NYxHNEur6LAIAJ_5g3T8Q4z1I7_5whJAAPx9QIdAM3gJvVOBtcsFEceIAAtdxAPOzgTQAlIb1ACKq8GEAwaoAYAAPBBAACAQQAA2kIAABzCAACAPwAAQMAAAKpCAAD4QQAAqMEAABBBAAA0QgAAyMEAAJBBAAA4QgAAEEEAABRCAABgwQAAqsIAAMhBAAAAAAAAJMIAADjCAAB0wgAAUEIAAEBAAAAgwgAAoMEAANDBAADgQAAAAEAAALDBAACoQQAAgMIAABDBAAA8wgAAAAAAAABBAACIQgAAEEEAAIJCAAAwwQAAmMEAAIA_AABUwgAAYEEAAFjCAAAgwQAAAEIAAMDAAAAcQgAA2MIAALDBAABkwgAAQEIAACDBAAAIQgAAxMIAACTCAAAIQgAA6EEAAABCAABEwgAAEMIAAADAAABgQgAAPMIAAMDAAAAAwgAAgMEAAFDCAACKQgAALEIAABjCAAA8QgAAVMIAAIBBAACAwQAAFMIAAIBBAABoQgAAsMEAADRCAADQwQAAoMAAAJjCAACOQgAAAEAAAKDBAACgwAAAQEAAABDBAACSQgAAYMIAABBBAABAQQAAQMIAAHzCAACgQQAA0kIAAABBAAA0wgAAwEEAAEhCAAB4wgAAsMEAADDBAACwwQAAcEEAAJBBAABEQgAAgkIAAATCAACwwQAA8EEAADDCAACCQgAAEMEAAIBAAAA4wgAA2MEAAIBAAAAAwgAAwEEAAIjBAADAQAAAgEAAAFDBAAAgQQAAkEEAABDBAABAQAAAfMIAAJBBAACiQgAAgD8AAI5CAACAwQAAMEIAADzCAAC4wQAAOEIAAIBAAAAAwAAAIMIAAFBBAAAQQQAAoMAAAIhBAACgQQAATEIAABTCAAAAQgAAgEEAAMDAAACgwAAANMIAAETCAAAwwQAAkMIAAERCAAAEwgAAZEIAAMhBAADwwQAACMIAAADBAACowQAA-kIAAABBAAAQwQAAgMEAAMBBAABwwgAA6MEAAKDBAAAwwQAAAMEAAAjCAADoQQAAPEIAALDCAABAwgAAwEAAABDBAACgQQAAwMEAAETCAAAkwgAAAAAAAADBAAAAQQAAYMEAAAhCAAAgwQAAUEIAAGRCAACAQQAAXEIAAOhBAAAwwSAAOBNACUh1UAEqjwIQABqAAgAAED0AAOC8AACCPgAADL4AAFC9AAD4PQAAUL0AABW_AAAMvgAAgDsAAJg9AAC4vQAA-D0AAKo-AAAkvgAAHL4AAHQ-AADgvAAAHD4AAP4-AAB_PwAAcL0AAMg9AADYPQAA4LwAABC9AABMPgAAcD0AAHQ-AACCPgAAuD0AAHS-AAAwvQAAcD0AAHw-AABwvQAAQDwAADC9AAB8vgAAir4AANi9AABQvQAAmD0AAGS-AAAsvgAAiD0AAOo-AAA8vgAAHL4AAKa-AAAwPQAAqL0AAI4-AAAUPgAAfL4AAEC8AAAnPwAAqL0AADC9AADYPQAAQLwAACQ-AAAEPgAAor4gADgTQAlIfFABKo8CEAEagAIAABA9AABAPAAAuD0AADW_AAAUvgAA6D0AAKo-AABAPAAAir4AAFw-AADIPQAATL4AADw-AACIvQAAVD4AAEC8AADoPQAAIT8AAAQ-AACePgAAqD0AAMi9AACAuwAAgLsAAKA8AAAkvgAAcL0AABC9AABQPQAAoLwAAIi9AABAvAAAuL0AAES-AACgvAAAgLsAAOi9AAD4vQAABL4AAAS-AAAEvgAAVD4AANg9AACgvAAA6D0AAMg9AAB_vwAAuD0AACw-AAAMvgAAqD0AALg9AABwvQAAZD4AAKK-AAAcPgAAgDsAADA9AAAMPgAAgDsAAOg9AAAUvgAAcD0AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Htux5hEzqYM","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["5245132173503641133"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4946065568751119381":{"videoId":"4946065568751119381","docid":"34-2-17-Z9B4DB2358DC2E220","description":"This video explains how to solve a trigonometric equation using reference triangles and the unit circle. https://mathispower4u.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4310296/01f1d6037181a58609d82ec3b87c1dcc/564x318_1"},"target":"_self","position":"6","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKHlh642VgC4","linkTemplate":"/video/preview/4946065568751119381?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solve a Trigonometric Equation: 2sin^2(x)=1 over the interval [0,2pi)","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KHlh642VgC4\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFQoTNDk0NjA2NTU2ODc1MTExOTM4MVoTNDk0NjA2NTU2ODc1MTExOTM4MWqvDRIBMBgAIkUaMQAKKmhoZWh2ZHRoaHFjZXhrcGJoaFVDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZxICABIqEMIPDxoPPxOlAoIEJAGABCsqiwEQARp4gfD9CgD-AgDyARAE-gT_AQ4M8gT1AAAA7fjw_AUAAADs-BD8_f8AAP0L_AUMAAAAAwD0AP3-AQAW9PAAAQAAAAgABAT8AAAAEQD88P8BAAD2-gb5AgAAAP7s_vr_AAAADQ_89wAAAAAHD_34AQAAAAwD-woAAAAAIAAt6A3XOzgTQAlITlACKnMQABpgIhQAIysGv_8OHeXm6QcIIPP5_uTF7wD_-AAkJPXTN_rat_wWADrWCgC6AAAACertGhwA6k8V6gdAER3t4tjpHSt_BwrLIvgNCdrl-ykfCAEM7wEHAPUcKQstxvUwGiokIAAtlL5IOzgTQAlIb1ACKq8GEAwaoAYAAOhBAACgwAAAyEEAAHDCAABkQgAAgEEAADxCAAAUwgAAUEEAAJhBAABAwAAAEMIAAJjBAACgwQAAKEIAAIA_AAAAwQAALMIAAABAAABQwgAAJMIAAKDBAAD4wQAA-EEAAADBAAAIwgAAfMIAAMbCAABEQgAAkEEAAOjBAAAcQgAAMMIAAEBBAAAAwgAAEEEAAIBAAAD0QgAACMIAAEBCAACoQQAAGEIAAERCAADwwQAAkEIAAPDCAADAwQAAmEEAAFBCAACAwAAAIMIAALhBAAAwQgAAcMEAAEBCAACwQQAAAMMAACxCAACAvwAAfEIAADBCAABswgAA0MEAAMDCAAAAwAAASMIAAEzCAABMwgAAAAAAAHTCAABsQgAAkEIAAITCAAAUQgAAqMEAAGjCAAAUwgAAcMEAAEDBAADAwAAAuMEAAFRCAAAowgAAHEIAAMBAAADYQQAAyEEAADBCAABYQgAABMIAAIA_AAAsQgAABMIAAEDCAACAvwAAJMIAAHBBAADAwAAAKEIAAJBBAAB4wgAA8EEAAEBCAAAcwgAAcMEAAKDAAABAwgAA2EEAACTCAAAAQgAAFEIAAKhBAADgwQAADMIAAPDBAAAoQgAAoEAAANjBAAAAwgAAAAAAAODBAAA4wgAAUMIAAIDAAAA8QgAAMMEAABBCAACYwQAAkMEAAKDBAADYwQAAoMEAAADCAAA8QgAAPMIAANBBAAAQQQAAQMAAABDBAACOwgAAoEAAABDCAAA0QgAA4MAAADBCAACgQQAAOMIAAIC_AABgQgAAOMIAAETCAAAUQgAABEIAANhBAABAwAAAPMIAAGDBAABYwgAAtsIAADDBAADwwQAAAAAAAIC_AACGwgAAQEAAAMBBAACgQAAAhEIAAABCAADgwAAAQMAAAPBBAAAAwAAA4MAAABDCAABwwQAAoMAAAATCAABYQgAA8MEAACBBAAAgwgAAAAAAAEDAAAC2QgAAKMIAAAzCAABgwgAA4EAAAMBAAABgwQAAQMIAAEBCAACgQAAATEIAADxCAAAYwgAAUMEAAKBAAADAwSAAOBNACUh1UAEqjwIQABqAAgAAiD0AAKA8AABcPgAAQLwAABA9AAA8PgAALD4AAD2_AABUvgAAuD0AADC9AACIvQAAED0AAEw-AABUvgAAVL4AADw-AACgPAAAfD4AACk_AAB_PwAAqD0AAFA9AAA8PgAA2D0AANg9AAAMPgAAHL4AABQ-AAA0PgAAoDwAAJ6-AACgvAAAiD0AACQ-AADgPAAAcD0AAFy-AAC-vgAAtr4AAFC9AAAsPgAARD4AAOC8AACYvQAAiL0AAGQ-AABQvQAAyL0AAIa-AADYvQAAcL0AAFQ-AADOPgAAlr4AAIA7AAAjPwAALL4AAFy-AABQPQAAQDwAAKo-AAAsPgAAor4gADgTQAlIfFABKo8CEAEagAIAAEC8AACAOwAA4DwAACm_AACAOwAAiD0AACw-AADIvQAAHL4AAFQ-AAAwPQAAEL0AAEA8AACYvQAA2D0AAKi9AACgPAAAIT8AAHA9AADSPgAA6L0AAKi9AAAwvQAAuL0AAIC7AACGvgAAmD0AABC9AACIPQAAuD0AAKA8AADoPQAAXL4AADA9AADgPAAAiL0AAKA8AACCPgAAfL4AAKi9AABAPAAADD4AABC9AAAwPQAAQLwAAJg9AAB_vwAAUD0AAHw-AABAvAAAiD0AAIC7AACgPAAABD4AAIi9AADIPQAAMD0AAKC8AACgvAAAMD0AAIg9AACAOwAA4DwAAAS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=KHlh642VgC4","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4946065568751119381"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4716300028186583151":{"videoId":"4716300028186583151","docid":"34-8-15-Z6ACFE0C2F0F951C9","description":"video, sharing, camera phone, video phone, free, upload...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3448035/2e79e30fba1db50e25dcc1f0db57e937/564x318_1"},"target":"_self","position":"7","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DN1uJlbXc6pI","linkTemplate":"/video/preview/4716300028186583151?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Trigonometric equations Solve 〖2sin〗^2(x)+sin(x)-1=0 Where 0 x 360","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=N1uJlbXc6pI\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFQoTNDcxNjMwMDAyODE4NjU4MzE1MVoTNDcxNjMwMDAyODE4NjU4MzE1MWqvDRIBMBgAIkUaMQAKKmhoZHNqY2NkdGZrZWN1aWNoaFVDckc4blBIYnFXdzFLREFMUDVnd3VkZxICABIqEMIPDxoPPxPgAYIEJAGABCsqiwEQARp4gfT__gX7BgDyAQ8D-gT_ARME-QX2AQEA9PH6_wUC_wD9-Q3_-AAAAAEM-_0FAAAAAwD0AP3-AQAQ_P75AwAAAAgCAAD0AQAAEv3-_P4BAAD9-_33AgAAAPfz__3_AAAACAoD8AAAAAD9DAD6AAAAAAAAAgYAAAAAIAAtTxjkOzgTQAlITlACKnMQABpgKPsAIAEc5xon6f7R7uE2BgnL9tnU0P8Q6AAfSgTcLhDb1hUQ_zYT7QCwAAAAMfTfAw8AI1IJERA9HBEO39XtI-N_IBqiPgkVKBoKG-4o9_ME3Az4AAIdJvEy7dM8Ku8dIAAtPSw6OzgTQAlIb1ACKq8GEAwaoAYAABxCAABwQQAACEIAAFTCAADAQAAAlsIAAJhBAACQwQAAgEIAADhCAAAkQgAAwMEAAOhBAACQwQAACEIAAEBAAAAMwgAAwMEAAPhBAADwwQAAMEEAAABBAADAwAAAmMEAALhBAADgwAAAgEAAAIDCAACCQgAA4EAAAGDBAACaQgAA8MEAAODBAADgQAAAGEIAAPjBAACWQgAAgMAAAEBAAAAAQAAAAAAAAPBBAAAwwgAAVEIAAAzCAACgwAAAiEEAAMDBAAAAQAAADMIAAHBBAABIwgAAQEEAAFhCAAA4QgAATMIAAPjBAACoQgAAokIAADBBAAAEwgAAQMEAABTCAACIQQAAosIAAOBAAACowQAAPMIAABBBAADOQgAApEIAAJrCAACAwAAAkEEAALTCAABcwgAA4EAAALDBAADgQQAAAMAAABhCAAAEwgAAgEAAAHDBAADoQQAAcEEAAExCAACAwAAAlMIAAKDAAADwQgAAvsIAAMDBAADoQQAAkMEAAJLCAABwQgAAOEIAAPDBAADAwQAAcEEAAMBAAAC4QQAAMMEAAFRCAABgQQAAAEIAAFBBAAAYQgAAoEIAAEjCAABAwgAAQMEAALDBAAAgQgAAQEAAALDBAAAQwQAAoMEAAFBBAAAEwgAAmEEAACTCAACYwQAA6MEAAIhBAADAwQAAyMEAAFTCAABQwgAAFMIAADDBAABsQgAAQEAAAM5CAADgQQAACMIAAKBBAADQwgAADEIAAKjBAABEQgAAcMEAANhBAADAQQAATMIAADhCAABwQQAAQEIAAJjBAABAQQAAuMEAAKDAAAD4QQAAoEAAAPjBAADowQAAMMEAAODBAACswgAAAEEAALDBAABkwgAAiMEAAPhBAABcwgAAQEIAADBBAABQwQAASMIAAMBBAABAQQAAWMIAAJjCAABIQgAA4MAAAHTCAAA0QgAAgMEAAAzCAAAgwQAAkMEAAKjBAAAAQgAAlsIAAMDAAADQwQAAwMEAACBCAACAvwAAuEEAAKBBAAAoQgAAcEEAAIRCAACgwQAAgD8AADBBAACwwSAAOBNACUh1UAEqjwIQABqAAgAAij4AABA9AAD-PgAAiL0AABC9AABAvAAAHD4AAA-_AACovQAAFD4AAOC8AACAuwAAFD4AAHA9AACuvgAAQLwAAJY-AACgPAAAij4AAAE_AAB_PwAAML0AAOi9AADuPgAAmD0AAIC7AACOPgAAML0AAHQ-AAC4PQAAcL0AAHS-AADoPQAAUL0AABQ-AADIPQAAoDwAAGS-AACGvgAA0r4AAPg9AABQvQAAkj4AAAS-AACIvQAAJL4AABw-AACgvAAAED0AAOi9AAAMPgAAED0AAAQ-AAAEPgAAyr4AABC9AAA_PwAA4DwAAK6-AACSvgAAiL0AAIA7AAAkPgAAFL4gADgTQAlIfFABKo8CEAEagAIAAHA9AABcvgAAEL0AADW_AACAOwAA2D0AACw-AADgvAAAXL4AAAQ-AACYPQAAgLsAAKg9AABwvQAAXD4AAKi9AABMvgAAKT8AAPi9AACCPgAAuL0AAAS-AABwvQAAoLwAABA9AAA8vgAA4LwAAKi9AABcPgAAoDwAABC9AABwPQAAir4AAMi9AAD4PQAAQDwAAIg9AABwPQAAdL4AACy-AABQvQAAND4AAHC9AADoPQAAQLwAAAy-AAB_vwAA2D0AALo-AAAsvgAAHL4AAKi9AAAQPQAAFD4AAKi9AADIPQAAMD0AAJi9AAAQvQAAMD0AABw-AACYPQAABD4AAHS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=N1uJlbXc6pI","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["4716300028186583151"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14211616315839962469":{"videoId":"14211616315839962469","docid":"34-11-15-Z37EC6A2DC1811EC5","description":"How to prove that sinA+sinB=2sin((A+B)/2)cos((A-B)/2) Angle sum identity • Angle sum identities for sine and cosine 💪 Support this channel and get my math notes by becoming a patron...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4361985/8febddc898fd3a0c0a924214679683a3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/VNl2CwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNjyjKzNgmHQ","linkTemplate":"/video/preview/14211616315839962469?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to prove the sum-to-product identity for sine: sinA+sinB=2sin((A+B)/2) cos((A-B)/2)","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NjyjKzNgmHQ\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFgoUMTQyMTE2MTYzMTU4Mzk5NjI0NjlaFDE0MjExNjE2MzE1ODM5OTYyNDY5arYPEgEwGAAiRRoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioQwg8PGg8_E9ACggQkAYAEKyqLARABGniB-_8B__sGAPv-DQT7Bv0CDQvzBPYAAAD3-_v9_gL_AO79_AME_wAA9_0E_fgAAAAB9wEE9v0BAAwA_QP7AAAADwb-CPcAAAACC_gG_gEAAPwAAv0D_wAADP7-AQAAAAAADfryAAAAAP0Q9fYBAAAABAH7BAAAAAAgAC3En-M7OBNACUhOUAIqhAIQABrwAX_T_ADJ-sr_wBXfAPYbEQHZMw3_OEHd_7Xn8f_GGPwB2v3YAPDd7wH9EBMA7BkC_xXVrQIEwxf_QNn8ABzbAAHPGfMBPMQSAS7kPwL15_UA1Qz4_wjsHQAWu-oAHR3aABXnLP0G9g7-7wXdARHiEQMb6A8B8QIV_OvbL_3a7uQF6trV_QUXJgL-7RgA1B0jAi3kAwLeD-ACzgwTAwPl5Acg6BLy9C3pAzPD2PkW6hP5kxoCASXd4gI4HSwK3fDoAfUFGPDA_wL0B_MC9x7c6_P9Je8KJNbmAkII_fEFABQI8gUT-Rb1CAfqC-kH1w3w_yAALai2Bzs4E0AJSGFQAipzEAAaYDf7ACDiC_ra-xHlHvz1-dwMDeTtxjL_8-f__xnP8_wNs7QY2P8--RbnogAAAEj80yICAPR_CRLfBew_0tCDqfU6fggBGcup7wHH9EAHHhEYLdX_WgD8A8NBM7X6JCXdGSAALVTZGDs4E0AJSG9QAiqvBhAMGqAGAAAwQgAAhMIAAIBBAACAPwAAAMIAABRCAAA8QgAAoEAAABTCAACQQQAA0EEAAGzCAAAQwgAA6MEAAJBBAAC4wQAAAMEAALzCAAAAQAAA8MEAAIjBAABgwQAAJMIAAAxCAABIwgAAEEIAAOzCAADoQQAAbEIAAMBBAADgwQAAAAAAAJbCAADgwQAAksIAABxCAAAwQgAASEIAAFjCAAAgQgAAIMEAAKDAAAAgQgAAcMEAABhCAAAgwQAAmEEAAAhCAADGQgAAAEIAAAzCAADgwQAAoEEAAJhBAABQwQAAoEAAAGjCAABAQAAAoEAAAEBBAACYQQAAVMIAAIDBAAC2wgAAXMIAAGDBAAD4wQAAMMIAAMjBAABEwgAAJEIAAIhCAABkwgAAqEEAAOBAAACswgAAhMIAADDBAAAoQgAAAEEAACDCAAAMQgAAFMIAAIA_AACAwAAAJEIAADBBAACAwQAAiEEAAEzCAAAYwgAAZEIAAMDBAAB4wgAAEMEAAAAAAAAUwgAAIEIAAEhCAADgQQAAusIAAJ5CAAD4QQAAoMEAAGDCAACgwAAA4MEAAKZCAADQQQAALEIAAKJCAACiQgAAGMIAAOBBAAAgQQAAkMEAADDBAABgwQAAiEEAALjBAABYwgAAQMIAAMjBAADgwQAAQEIAAADAAABswgAAAEIAAJ7CAAAAwQAAkMEAACBBAAAwQQAAQEIAAAzCAABAwAAA4MAAAGDBAACgwAAAisIAACDCAAAYQgAAQMEAAABBAAAAAAAAEEEAAIjBAADAQQAAQMEAAADCAAAQQQAAgD8AAJRCAABAQAAAwEEAAEDBAAAAAAAASMIAABTCAAC4QQAAwMEAABBBAABAQAAA2MEAANjBAAA4QgAA6EEAAGxCAAAMQgAAEMEAAAAAAACgwQAAgD8AAGDBAAAAwQAAUEEAAADCAAAgwgAAJEIAAOBCAACuwgAAIMEAADBBAABwwQAAskIAAJrCAAAswgAATEIAAJDBAADAQAAAFEIAAADCAACwQQAAgMAAAABAAABYQgAAYMEAAABAAABkwgAAEMIgADgTQAlIdVABKo8CEAAagAIAAIA7AADYvQAAjj4AAHC9AADIPQAAhj4AAFQ-AAAZvwAABD4AAJi9AACoPQAAMD0AACS-AABUPgAADL4AADA9AACePgAAgLsAADw-AAC-PgAAfz8AANi9AABwvQAApj4AAJ6-AABwPQAAQDwAAOi9AABcPgAAxj4AAJg9AABUvgAAuL0AAJg9AACIvQAAMD0AAOi9AACIvQAAjr4AABA9AADgPAAA2L0AABw-AAA8PgAAJL4AAFC9AACGPgAAfL4AAFC9AACgvAAAJD4AAFQ-AACePgAAyL0AAES-AACAuwAAGz8AAFA9AABUvgAAuD0AAOC8AADIPQAAMD0AADC9IAA4E0AJSHxQASqPAhABGoACAACWvgAAcL0AABC9AAAxvwAAuL0AAOC8AAAwPQAAuL0AAJi9AACgvAAAZL4AAOi9AAA8vgAAEL0AABw-AAAQvQAAgDsAACM_AABAPAAAoj4AAMg9AADovQAAmL0AAIi9AABwvQAAoLwAABA9AACAuwAAUD0AAPg9AADgPAAAHD4AAOi9AAC4vQAAHD4AANg9AACyPgAALD4AAKa-AAAcvgAAoDwAAKg9AADYPQAAuD0AAKg9AAAwPQAAf78AAOC8AACAOwAAgDsAAFA9AAAEvgAA4DwAADw-AAAQPQAA2D0AALg9AAAEPgAAiD0AABQ-AACCPgAA4LwAABA9AACgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=NjyjKzNgmHQ","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14211616315839962469"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2258890574"},"1213343071297793149":{"videoId":"1213343071297793149","docid":"34-4-13-Z0F6F0955B5A1399E","description":"improve your performance and Clear your concepts from basic for Class 6-12 School and Competitive exams (JEE/NEET) - https://doubtnut.app.link/POyZDvv5Lyb Contact Us: 👉 Have Any Query?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4431802/59fb75c6097d580db81e16bc0ac407b1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pn_54gEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DX6dKe6wkxSs","linkTemplate":"/video/preview/1213343071297793149?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"(2sin^(2) x -1) +1=0 | 12 | General Solutions OF Trignometric Equations | Maths | Chhaya Public...","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=X6dKe6wkxSs\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFQoTMTIxMzM0MzA3MTI5Nzc5MzE0OVoTMTIxMzM0MzA3MTI5Nzc5MzE0OWqIFxIBMBgAIkUaMQAKKmhoeGNscGhrYnl4bHJ5bWRoaFVDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQRICABIqEMIPDxoPPxODAYIEJAGABCsqiwEQARp4ge4F_AUB_wD5CA78-wT_AQwR_QX1AQEA8vr9_AcB_wD9-A7_-AAAAA0N8_wIAAAA-vz0-fX-AQAY9_v58wAAABcPCP71AAAAGAb1-f4BAADs8QT0AgAAAAntBf__AAAABgb79v7_AAD-CvgLAAAAABD9CgUAAAAAIAAtaizPOzgTQAlITlACKoQCEAAa8AF_Gtb_6eXiAt337P-SHggAgQot_x8p3wCm-h0B0BnsAd0e6wD7APj-4hMmAbUtHgEU17ACFdsa_z7F5P8O3vMA_RkwAD_X_QE7KhoA7t_Y_-oKKAAa9xAAFb7rAAoZAf0L8RT58Ar4_v8H3gQj0Af_ETMpAiEbHAH-zfn73Pv8Avb73AACEesLAOb5_vThKwQc_uL8EzTv__E04fwY4f_-8fMd-A8o7gVm7_gCJgQA_r4J6wDo4fD5QPnw-ssDCfzlGiT-7P3y-BP--fj_3OoJ9ADpAyLX5wL8I_QIAA0G_AfjCvPnHwEA0t8XBMoE__4gAC1QIw07OBNACUhhUAIqzwcQABrAB6cEhL5pTw49S1BoPG7bZ77H_Le8eW5GvBrAC76b58i8-V8YvbgZgz2UOVG9f-YCvZZdUL6Q7Nu8iSimPKDiKD5R28a8RA42PHoXL74IPDA9KZ_UvBUcTr6sTcg8NZcfO3ZvdT6t8ES6OcFMu7VrAj7Ek107oFiju_J6IL6zlw09dW9qPEhQHL59Njw8UAGLvEtX0D1JZD-96nhMvHglOT6iEQk8dnIAvAA6rL3LFPM8bmO9vLfVrDvnzDE92T4EvZTCHD7kk9-7eqMbPXWbpr0aKs661zg2PRzmoL20-D69z9kivU7ApbzIIYe8JVXAvHsyWj0iFla8XNslvKjIIb4CfBw96OltPOSG_z05dvU8jG-ePMWP0T2rMTI8NJ_WO9XnarwJ0Uk6yUSAPNYF17yEr1m9y8plvLXMiL1F0D08uhwIPAlkwDzPWXU9hWOxPCsVVLw33bK8ooalvD99Gj28xtM8uECCOxhLJ72DWdc8ycK8PL2fxD1qnV08qe-hPB9VYz0qyYo9DzSVPPA2jz3snMu8wpvaPApCg71sv7u9DIPoO6HGgz1chsm8x9slvOw5lD2Hk7o959BYvOcWH72NR6m8-QOzutHlcj26gnE7NlIduwp5vr2YABc9gy4GPGj27zyzKh29-jRdvGmoEb0YrvM8fB0hPMyqub04tHK9Q_-4Odp6Ib1nIB48sf8VO11_ajq2R7Q9o16SuVT6nj2a6Di9eFpPODm0SDzX3Ry-LNtGuoKvsz3fFSY9cFjguswSOD1PeXS8lqQdOrceKjyNW7G89JkLujK7uDs3qN09m2wEOHmrUzyTcWy9qoYDOb7F4DusUxW-pozJOasFtr1W4bW9alqwubT-t7ochC89H6O4uhN9_ryIDxy-kyWXN40_9jzxgX09Qh7TuMKi4jwGuKC8HrEkuLzUQ71BWBW7uUjmt-Njob3b2xI9o_B3OUMSxzxNELU8tbuDOPcp_TzNH9M8R-0dOEl33zrTJMI8C10WNpNV8T36WGY9JeiUOIVUi72w4iQ-WAIlOdPPCDxmMdG9PkuXNqDcez0Bmbc9WAA2uDxfPb0crCQ9khPmOAOHJj0e7AO9norSNwjSwD2Lkps94_F5OEuXWT0v5kK8t5XAt62n9j2z6pi8ezs6uVTF1L3_e0u9GFFXtovjW72cxH-7oB1jtOY7OL2oLX89yhDIsga_qLzmTJS9CspktxQ9NT2uI1g99NCcOHtACj17erY6KID6uKmjY7z1Kx27Ly2oNs5mGr0P7s68kCQ_tyAAOBNACUhtUAEqcxAAGmA3-ABEAjq3CvUV6vvZODPx1AvrQ8cD_-YE_yFAB-TxSN7DIBUAQ98A96IAAABBBuLs7gDtf8j5HijlMvzmis4RGW7lHRvNtxP0t8ZKHhf2DkTdJRYA--6UQzLVyzw-DCIgAC3HkRI7OBNACUhvUAIqrwYQDBqgBgAAgkIAAIBAAACUQgAAwMEAAFRCAAAIQgAAkkIAAIBAAABQwgAAQMEAAExCAABQwgAACMIAACjCAACgwAAAgEEAAABAAAC-wgAAIEIAADzCAADgwAAAsMEAAIbCAADoQQAAyMEAAPDBAAAEwgAA8MEAAKhBAAAgQQAA8MEAABhCAABUwgAAMMEAAJDCAABwQQAAAAAAAEBBAADgwQAA8EEAAJBBAACAvwAAAMAAADTCAADIQQAAUMEAAHBBAACIQQAApkIAAHBBAADwwQAAVMIAAIhBAAAYQgAASEIAAEDAAACiwgAAAMEAAHBBAAB0QgAAAAAAABDCAAA4wgAAeMIAAGhCAADOwgAAKMIAAKDBAACEwgAAiMIAAEhCAACkQgAAisIAADDBAAAMQgAAAEEAALbCAACgQAAAgEEAAPBBAACAvwAAVEIAAADBAABwQQAA4MAAAFxCAAAsQgAAoEAAAJRCAACQwQAAoEAAAGRCAACQwgAAsEEAABxCAABUwgAAiMEAAFBBAAAIQgAAAAAAAJLCAABQwQAAgMAAAAAAAACAwQAAQMAAABDCAAC4QQAAQEEAAIRCAABcQgAAkMEAABBBAAAIQgAAksIAAFhCAABQQgAAYMEAAOjBAAAYwgAAKMIAAAzCAAAgQQAAQMEAAMDBAAAYwgAAiEEAAIA_AAAAwgAAwEAAAODBAAC2wgAAgMEAAGDBAAAcwgAAVEIAALhBAAAAQgAA4EAAAMjBAAAAAAAAUMEAAPhBAAAkwgAAyEEAAFhCAABEwgAAeEIAAEDAAACAPwAAIMIAAIBAAABYQgAAPEIAAGBCAAAQwQAAksIAANDBAABEwgAA2MEAABjCAABQQQAAYEEAAABBAACAQQAAqMEAADDBAACaQgAAMEIAAAzCAAD4QQAA8MEAAIC_AAAswgAADMIAAEDBAABAQQAAAMAAADRCAADAwQAAkMIAACDBAACgQAAA6MEAAMhBAAAcwgAAgsIAAMBAAACgQAAAREIAAIBBAABwwQAAmkIAAARCAACIQQAAPEIAADDBAAAgQQAAXEIAAGBBIAA4E0AJSHVQASqPAhAAGoACAABEPgAAqL0AAIC7AACovQAAFD4AAMI-AAAQPQAAP78AAJK-AABkvgAA2L0AAOi9AACovQAArj4AAOi9AACGvgAA7j4AAIA7AAB8PgAAFz8AAH8_AAAUPgAABD4AAEC8AADoPQAAFL4AAIA7AAAUvgAAJD4AAII-AACCPgAAxr4AAKA8AACovQAAdD4AAGw-AABAPAAAiD0AAM6-AAALvwAAiD0AAKC8AACSPgAAUL0AAOi9AABcvgAAVD4AADy-AABwPQAA8r4AADy-AACIvQAA-D0AABA9AABEvgAAgLsAAE0_AAAEvgAAgLsAABC9AAD4vQAAVD4AAEQ-AAAEviAAOBNACUh8UAEqjwIQARqAAgAAqL0AAHA9AAA8PgAAO78AAMi9AACevgAALD4AAJi9AAAQPQAAHD4AAEw-AACIvQAAUD0AACy-AAD4PQAAgLsAAEA8AAAVPwAALD4AAIo-AABAvAAA4LwAAAS-AAA8vgAAgDsAAKg9AABQvQAAoDwAAFC9AAAMPgAAML0AAEQ-AAD4vQAAUL0AAKg9AACAOwAAiD0AADw-AABcvgAAiL0AAPg9AACoPQAAVL4AAOg9AACAOwAADL4AAH-_AAAwPQAAmD0AADS-AAC4PQAAgDsAAOC8AABwPQAAQLwAAPg9AACgvAAANL4AAOi9AAD4vQAA4DwAAHy-AAC4vQAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=X6dKe6wkxSs","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1213343071297793149"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3535814815"},"4935589598019722161":{"videoId":"4935589598019722161","docid":"34-10-13-ZF58912FC3A89A993","description":"Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Solve 2sin^2(x) + 3sin(x) + 1 = 0...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3301774/e539571c7692594c11e24cd2880c36c9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/h8krGAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dr89G7vFFBAs","linkTemplate":"/video/preview/4935589598019722161?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solve 2sin^2(x) + 3sin(x) + 1 = 0","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=r89G7vFFBAs\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFQoTNDkzNTU4OTU5ODAxOTcyMjE2MVoTNDkzNTU4OTU5ODAxOTcyMjE2MWqTFxIBMBgAIkUaMQAKKmhoenpsYmpub211Z2hidmJoaFVDcjdsbXpJazYzUFpuQnczYmV6bC1NZxICABIqEMIPDxoPPxPCAYIEJAGABCsqiwEQARp4ge4B-f38BQDwAwv7_AEAAQ8M-gII_wAA9PH5_wUC_wDy9f8BAgAAAAEM-_0FAAAABgf5-_n-AQAM9wPwAwAAAAj4AAf9AAAADgP4_v4BAAD_Bfv_A_8AAPr89wD_AAAAAAcC9wMAAAD9DAD6AAAAAPv6BwoAAAAAIAAtcYbeOzgTQAlITlACKoQCEAAa8AF_8-f-zfvO_9oR3gDs8vEBqRwKAB4n4ADL9v4At_bGAA71_wHO28r_9ewO_80iEwD7FM7_ANr2ACXV8P804QgBChD2ARPU7wIhEy8C8ATZ_94lEv_8_gEA9trR_-sVyf_z-in8IPH6_NITsfwP_j8BAuop_P_hJAPi3BT8xQ4MAP7dwP8PHugC_dQYAOsWOwEb6P4BAvkO_PZJ_QAR9gL6_P4Q-A4T0AAX_vQDCe4D7tfjHwEWDwoEGe8UALcNFv7y9yYCBOv88_AWCe8y9vQG4gD3BfjP8w8JFv0GGPTrAwYM8vzv5eL97gwF89oM8v8gAC10cRI7OBNACUhhUAIqzwcQABrAB9hF-b4orD-7gpzmPMl3hLrVNeQ8-_HNvODi17x4tBA82JMGuyqxJj32zFe9D9YhuaFId75zVro8pDYxvcuAMz7m0Yi9mGIzPIbjCb7fIPU8rAEqvcly8r3BahG9AhWruwj3hL09uze9xugQO6mECrzdRIi88xDXvG-xDL1WWxu9UjjMvFbgHDwSlkI8jBI0vddWB72D5WO9qcNlvPp0wT2uTgm97jLyPLImXDuGS1g7-HBJveEfu70BQIS8ObTtvIRZEj2451k9YiAZPEl0Jb0IXBK9_lx6u_4FZ73AQ2w9PJkHuyZAqD2QqCs9b9GuvKBv6z0P14W8RDYLvUC3sb09KRM9mtwcPLlmtz1zE7A9vxuBPHTZPr1Wosc9OQ_nvGz7aLy8C688p6xCOTBjqj2hkZk8JmmjPKvcNb343r46VG2fOZCxhL0jMqw8q_4tPBaE0j1Fdo-9J2covPSLkj1UcWO9X3a0vCpZib0ldDi7prXMuj4ytz25ncc8ymWnOA8mxbzIpWC8cJKLOwUjpT3WAju-SeWaOlNAir1mw3W9uamBPNCg_DxQidA8inEAvPD5YT0UXw2-d4QRuyu0PTxfARa8o8SVOihlnb37WIE8AIEaPE8eu7zWAYA9ALYTu_xlgb2OoVI83-tavMuY57xaDbk97IyIO9PMaT0O3ey9j4o4up4J7T1dG8U8u3ttusITuj1qm-q6mQCyupcjnz37xny9A6wSOswMm7zzwKy8ySnPO2e8mL166_K81BQMOcdnEj6uoOm9kAm0uc2h1jx4UpU8PMqXOOzTG73ZO0g81sLsNrnSYT0u3pS9c0_dOFxUC72cFfG93J51OfDETD1YmT67bF9dOppqWjuHBhg9sz_UOpLmz712CFK8-M0IOcmLET34LcS81heIuYSGGT2RIay8YY_AuMU2TrxQqKc7Og7auK6qTT3Yw1s648-KORq3Yr2FA4Y9YXewOEHjeLx8R-29YROrOaqCMb26__48zZXBuFs9TLu7NLQ8y7WZuEtshDuXBCM9gKTyuLg-rLxsBvi9ef8guAfxXLsQAYw9g51duLjkKL7Rf4W8nfgauRQPXrwznhK9HJY3t6DOaz3NJri7rqu9NydcGT2YqYM7b2zYN62n9j2z6pi8ezs6uVxJAb3K3tK9FyIEubvtgryX5qG9-jj_t-Y7OL2oLX89yhDIsr2vBT2lSQm-rZ6FuCL_7D01KQU-835buOtc7LyqpKQ9AYvEuK1t6r0UO788b9LjN720ErpZn5e98mYzuCAAOBNACUhtUAEqcxAAGmAa6wAx_k23NAwt9_bSMibL8uvVsM8G_wHV_yL5BOkTEMSwIgf_Hw0RCZgAAAAwzQP4-gAkf-wY6mbs9BzZpNhSFXASB-aw5AkS-fI-3uAfQDXQ7TYAnRu6MUO6zgQR7yQgAC35_RI7OBNACUhvUAIqrwYQDBqgBgAA2EEAACDBAACgQAAAfMIAAPBBAAC4wQAApEIAAMDBAAAwwQAAyEEAAGRCAAAowgAAwMEAAODBAADoQQAAEEEAAFBBAABswgAAbEIAACTCAABAwgAAmMEAACDCAACQQQAA6MEAACDCAABgwQAAdMIAAPhBAACgwQAAQMIAACBBAACwwgAAmMEAAHzCAADgQQAA6EEAALZCAAA0wgAAeEIAAEBBAAAMQgAANEIAALDBAABYQgAAhMIAABBBAAAAQgAAlEIAAABAAACIwQAAgL8AADBBAAAQQQAAFEIAAEBBAAAAwwAAQEAAALhBAAAIQgAAGEIAAETCAACAQAAAhsIAABBBAADcwgAAcMIAAJrCAADgwQAAXMIAABhCAAC8QgAARMIAAMDAAAAkwgAAcMIAABDCAACIQQAAoEAAAOhBAACAvwAAkEIAAODAAACAvwAA4EAAAJhBAAAcQgAAFEIAACxCAAAgwgAAAEAAAJhCAABQwgAAyMEAAPBBAAD4wQAAMMEAAOBBAAAcQgAAmEEAAJDCAABAQAAA4EAAAOjBAAAkwgAAEEIAAADBAACgwAAAAEAAADBCAAA8QgAAXEIAALjBAACAvwAAoMEAAJhCAADgQQAA6MEAABTCAADYwQAAjsIAAGTCAABQwQAAmMEAAMhBAACgwQAA8EEAAIBAAAAIwgAACEIAAKbCAAC4wQAAQMAAAOBBAACAwQAAVEIAAEBAAACAQQAAgMAAAGDCAAAAwQAA0MEAAFhCAADowQAAREIAABBCAAAkwgAAIEIAAPBBAAAAQAAAAAAAAKDAAACAQQAAAAAAAABBAAC4wQAAYMEAADTCAACCwgAAFMIAAIzCAAAAQAAA2MEAACzCAADgQAAAIEIAAIDCAAA8QgAAgkIAAMjBAAD4QQAAAEEAACDBAAAYwgAAkMEAAIhBAADAQAAAhsIAAABCAAD4wQAAUMIAABTCAACowQAAcEEAAIBCAACEwgAAisIAAPjBAAAAwAAA6EEAAJDBAABQwQAAQEEAAIC_AABgQQAA4EAAABzCAADYQQAAcEEAAADAIAA4E0AJSHVQASqPAhAAGoACAAAEPgAAmD0AAK4-AACIPQAAPL4AAIC7AACOPgAAC78AAHA9AABQvQAA2D0AAOC8AAAkPgAAQDwAAJq-AAAEPgAARD4AAFA9AADmPgAAjj4AAH8_AABMvgAA2L0AAJY-AACAuwAAcD0AABA9AAAwPQAAUD0AADA9AACYPQAAfL4AAPi9AACYvQAAXD4AAKg9AACAuwAAgr4AAMK-AADGvgAAvj4AADA9AAA8PgAAcD0AAPi9AACovQAAFD4AACQ-AAAUPgAAQLwAAIg9AAAwvQAA6D0AAJi9AABkvgAADD4AACk_AADgPAAANL4AAI6-AADgvAAAcL0AAKA8AAAcviAAOBNACUh8UAEqjwIQARqAAgAAVD4AAHy-AADgvAAAN78AAHA9AACCPgAArj4AAIA7AAB8vgAAHD4AAAw-AAC4PQAAqD0AACS-AAA0PgAA4DwAAHC9AAApPwAAfL4AAHQ-AADIvQAAML0AAKi9AABQPQAA4LwAADS-AAAwvQAAEL0AAEC8AACYvQAA4DwAAHA9AACOvgAA-L0AABA9AAC4PQAAgDsAAOA8AACyvgAAmr4AADC9AAAsPgAAgDsAAJg9AAAkPgAAyL0AAH-_AACIPQAA1j4AAFS-AAAMvgAAND4AAMg9AADoPQAAfL4AAPg9AADgPAAAQLwAAOg9AADgPAAALD4AAKg9AAD4PQAAJL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=r89G7vFFBAs","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":694,"cratio":1.84438,"dups":["4935589598019722161"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"87582226"},"3254593785073535593":{"videoId":"3254593785073535593","docid":"34-0-1-ZCA2CF2D51F4D53C1","description":"A http://www.door2math.com production. Dr. Pan makes learning math Fun. Solve for x: sin(x) [2sin(x) + sqrt(2)] =0, x is between 0 and 360...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3927507/5980b12a5985e3fa60ac2db186d23db7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Xa3AGgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DN058h7tUTuQ","linkTemplate":"/video/preview/3254593785073535593?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Solve Trig Equation: sin(x) [2sin(x) + sqrt(2)] =0, x is between 0,360","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=N058h7tUTuQ\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFQoTMzI1NDU5Mzc4NTA3MzUzNTU5M1oTMzI1NDU5Mzc4NTA3MzUzNTU5M2qTFxIBMBgAIkUaMQAKKmhoaGZzb3N1dm5zdHFkdmNoaFVDS2VGSTZxWlF4cnBKM3Q2ZUJXbXB0QRICABIqEMIPDxoPPxOTAYIEJAGABCsqiwEQARp4gfcF9_z-AgD5BwsG-Ab9AhwA_P70AwMA9PH5_wUC_wD18An8_gAAAPUK_PkEAAAAAwD0AP3-AQAQ-_75AwAAAAf5Bvn0AAAAEvnz-f8BAAAFAfj4A_8AAAP0AP__AAAACQoE7wAAAAABGAH2AAAAAAj-BAYAAAAAIAAtWiDYOzgTQAlITlACKoQCEAAa8AF_3CYA4-36BMbi4gC-Gtv_lSTo__w5zgDGDeb_x__qAf4FOgDiLQb_HdkHAN4TPP8fAb4A9OcqATKzDQIPCO4B4d4CAfzMBwMyIAYAGefs_h4aCv8K1vv_GtLOA_UV3f4aABX-LQbU_gYg4QAZAyEB_QoUAhUSEf_p3_QBzDbLBPCy0wAFGf0GBPv28930NAj86Pf_MhUJA90H__vmGQL7JAYV_AIj9wLa-ewE-iAqANvp7QYa4fgDKs8T-9gaBP4F-xb57tIR8Aax-wAG1RPz0CL69iTV5gIf6__11Nn4CR4lAvv55_YA5fjtAvTk7-YgAC18swY7OBNACUhhUAIqzwcQABrAB3HMur7mrws6R-EhvAoHzL1XDxS8NIUOvTvHIL4vCoy8qwtTvJ9bOD7nE3692Ao_vK8I3r2G1GW7icTOu8uAMz7m0Yi9mGIzPHV0_L0vE5o9CwIQvRd-AL7qYDg9-a63PCtLdLyzvve8xyRIO6Di2D1hPJ68xU-IvGGCYLtvFgo9GLptvJita70X5UO9vEkCvduZUz2SC5m9vOvsuy5ZpT1jQky8HwhaPAzyqT3ZAXw8X-qpu3cIvb34Em89veMUvYz8lTwc7fg9FOoMvInPDb4ifI69mG-YPEYmoLzbTwa8KahRO2gIprrnMIQ8QCajvLybIj3AA6i9wz-yO22s5L2mES49lE7BOycXEz5P1XM9FamwPMZhqr2rW5097tSaOz6bcjuwHje9-5GFun0TmT0PcBS7Sj-jO5ezEj3hXQ698J4HOyTRDbyZaCs9WJBmPKdIdL1zuUG8QKN0vA4lxD08sgO9_70fOnqslL3IluU84TOIPE9cbj2Rtzw9YXwHu-zeyjxTng894ap8PN9mxj05tfO9hx8YPPpYpr3LUJC9Haeuu-fMUT24oIg9WX0evIvLnD2kF3q9X3hKvD-d9Tm7e0C9ybDpO-eihjxPZYe8NgIQPFpquL2bNPI8FasGvPxlQbyF7Nm7h0I6vPV2lTwd_wk8zKLJuoYwCD1Vp1697EK9OtW8eT2bffo5gtA0O4O1-7w7BAk9Vlmlu1qzWj09dpG96obYumnMP73QYzS9yI-dumBCgL2AX2i9Cs5oOf4MPz7JIq29TbCPuAwSET0qUgK7HkeVOHNLu73z7fg83HLpOG7ckj07sii9I04juas9kb0aUhW-MFEKOrhD4DuKjDO8TSQ8ubh4-LyDisc7TAkdOuu8l7wOkzq951aluOtLgL1AB6c8W8RGuep2Bj5S3l09Nzj4NQHyqTqmZBS94-TZOA2wJb2KciG6xpYuOUtWqjxDuSM9tPIdOY2u97zAycu9oaWBOf1Ylz3ct_o9HVbENecfOD0P77k9tGi5OPdXzz2pUo68qnUCuDZEMD3ChR28x7sduD5Iaj0g96O8U0CZOGh1Mr5kpCg9F8pMt0mMVLzvSoy9eSvXNvinFD4D-k49H_TtNgJhTLxsteK8diIyOLvVoz08gwa-wHDXuDnFxL1ntya-1kdyOJ_kDr5IZIS9x7m2t0tKED3pMPo8LHrFNZXfWD31zNy82S39t7nBdTwt7Ak-hifnOL8WCj2hb8E9_y-ct6clBr7PGYu79I40NiXSob0Yw2Y8q5dqOCAAOBNACUhtUAEqcxAAGmAd-QAd-BaeGCgc2svj_iHj99u94Lz3_xXJADcbyvIHN9y1JCf_NgfyAJ8AAAAX7-UL5gAEdwH6HU4Q9eXTmc5F73_7-8_H6CMt5P0E9d0OGDXlGC4AkiLPCVm35y0TGlggAC0RaRU7OBNACUhvUAIqrwYQDBqgBgAAiEIAAFDBAABAQgAALMIAAKDAAABQwQAA_kIAAJDBAABwwQAAOEIAAMhBAAB0QgAAgEEAAABCAACmQgAAMEEAAKDAAADIwQAA8EEAAMBAAACQQQAAqMEAAOjBAACQQQAAXMIAAATCAAA4QgAAqEEAADDBAAC0QgAAkMEAAJBBAABQwgAAuEEAAGjCAAA0wgAAMEEAAFxCAAAgQgAAUEIAABxCAACIQQAAwEEAADDBAAAQQgAAIMIAABxCAADwQQAAEEEAAIjBAADwwQAAyMEAAFBBAACAQQAA4MAAAABCAACAwgAAAEEAAFxCAAAIQgAAoEEAAKjBAADowQAAGMIAAIA_AACywgAAgEEAAHjCAADgwQAAAMIAAFRCAAAAQgAAmsIAAFBCAAAwQgAAgMEAAMjBAABgwQAAEEIAAKZCAADAwAAAUEIAALhBAADgwQAAsMEAANBBAAAwQgAAMMEAAFBBAAAAQgAA4EAAAFBCAACowQAAgEAAABRCAABEwgAAyEEAAKhBAAAwQgAAJEIAALTCAAAAwgAAgD8AAEDBAAAQwQAAgEEAAIBBAAAgwQAAiMEAAJBCAABwQgAAgEEAAHjCAAAwQgAAkMEAAAAAAACIwQAAoEAAALjBAABEwgAAPMIAAFDBAAC4QQAAIMEAAKDBAACAQAAAgD8AAGDBAACcwgAApEIAAGjCAAAIwgAAnsIAAAxCAADAQQAA4EEAAMDAAAAUQgAAIMIAAIjBAADYQQAAgkIAAGhCAABMwgAAnkIAAGRCAABAQQAAEEIAAADAAACgQQAAVMIAANBBAACIwQAAJEIAAMBAAAAAwQAAsMIAAMBAAADSwgAAMMIAAEjCAABgQgAAwMAAALhBAAAIQgAAAEEAAIC_AAAYQgAASEIAAMDAAADYQQAAMMEAAEDAAACYwgAADMIAAMBBAACIwQAAmMEAAEzCAADwQQAAUMIAAJDCAAAQwgAA8EEAANhBAABEwgAAcMIAAEBBAACAwQAAgEIAABhCAACgQQAAcEEAABDCAADwwQAAQEAAAABAAAAAQQAACEIAAPjBIAA4E0AJSHVQASqPAhAAGoACAAAQPQAA2D0AAHQ-AABQPQAAQLwAAFQ-AAAEPgAAMb8AAKg9AABAPAAAcL0AAPi9AADgPAAAuD0AAIq-AABQvQAAmj4AAFA9AADIPQAAAz8AAH8_AADYvQAAEL0AAGw-AABEvgAAPD4AAFQ-AABQPQAAgj4AAKA8AAC4PQAArr4AAOC8AABAvAAAMD0AAMg9AACgPAAAHL4AAAS-AADOvgAA4DwAANi9AAB0PgAAgDsAAJg9AAAUvgAAhj4AABS-AADIvQAA6L0AAAQ-AACIPQAA-D0AACQ-AADovQAAQLwAACk_AABAvAAAVL4AAIa-AAAEvgAAiD0AACw-AAA8viAAOBNACUh8UAEqjwIQARqAAgAAgDsAAEC8AAC4PQAAE78AAKC8AADoPQAA9j4AAOA8AABQvQAAJD4AAGQ-AACoPQAA2D0AANi9AACKPgAAMD0AAOC8AAAhPwAAQLwAAM4-AADgPAAAgDsAACS-AACYvQAAQDwAAFS-AADgPAAA4DwAABy-AACYvQAAEL0AANg9AACKvgAAUL0AAIo-AABwvQAAPD4AANg9AADivgAAPL4AABS-AAAEPgAAUD0AAHA9AACCPgAAML0AAH-_AAAQPQAATD4AAKK-AAC4vQAAkj4AAIA7AACIPQAAcL0AADQ-AABAvAAAgr4AAIY-AAAMPgAAFD4AAHC9AAC4PQAA4LwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=N058h7tUTuQ","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":768,"cheight":480,"cratio":1.6,"dups":["3254593785073535593"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4184213138"},"15104312234662260239":{"videoId":"15104312234662260239","docid":"34-3-17-Z25B37DFBC2EFFAA9","description":"This video explains how to solve a trigonometric equation by factoring and using the unit circle. http://mathispower4u.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2225736/7171b561d9fb122a911d23f763fe0dc5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hr/IPQlAQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzIhiiADpeuM","linkTemplate":"/video/preview/15104312234662260239?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solve Trig Equation by Factoring: 2sin^2(x)-sin(x)-1=0 (Radians)","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zIhiiADpeuM\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFgoUMTUxMDQzMTIyMzQ2NjIyNjAyMzlaFDE1MTA0MzEyMjM0NjYyMjYwMjM5apMXEgEwGAAiRRoxAAoqaGhlaHZkdGhocWNleGtwYmhoVUNOVk14Uk1Fd3ZvOUFTLUpmaDZmUUZnEgIAEioQwg8PGg8_E5kCggQkAYAEKyqLARABGniB7QT79wP8APMKEAoFBvwBHAABCvQCAgDz7_n_BgL_APL8Cwn7AAAA9Av8-QUAAAAEAPMA_f0BABL7_vgDAAAAIQEK__kAAAAQA_f-_gEAAAMAAPsD_wAAAfv7_QAAAAAADvnwAP8AAAYNB_wAAAAAAAACBwAAAAAgAC2c1cY7OBNACUhOUAIqhAIQABrwAX8MAPyg5cX-1vTn_8cVrQCzQRAAxB-6_5oU4wCe8PIACSAnAN00B_8QChz_zif6AOvq1ADHweIAO6cPAgfjBgDDpf0AC9zrAmwa7gD41OT-6ignAPbdFgDn9tYA1DnJ_CjsGfsSD84B697g_y_6OwHhE0IBEfwE-6b5Cv-pRRYCKNDh_uYE_QUJvRAByKgcBubw_wQ_NAr8DucCBwUUHgUAAP_6FhzuAPoP9QzkPRn6_r3mAvvZ8wcFDBAE8jHm_9T18QzipBQFGNj68xXp9fXM-QUIIQwRCfMCFxIC6gYJEiQG6cvf8vENyesSCvwF5CAALXDe5jo4E0AJSGFQAirPBxAAGsAHjPb4vl4CJjzxDeq8JZtGPYR2Q7dAtha9-DM8vIdLMz3EwZS7mDDaPQUgpLwe1mU8xJdZvoxmZbz1uiW9LQtWPrCKXL1BLSa9ehcvvgg8MD0pn9S8TMQ7voKcRbtWMte65BQNvl6NorxPqj-7vz6vPRfrn7u1FQC9rkUQPYOcwTxV7Lm8Vj_AvBf4Rb07eYm7aY7svLfkor0nEcY8ru59POBAEDx1FBC8D2NCPgkgLTpCx7O8eraova7iw7spi-s7CXmTPQ3WyTz8jmE8PKwmPODWnTz-eiq8D0LEump-4zpcilC8nLS6PUrtRTywepu8uavXvPO_pr0uqxC9r4ogvJozbDwjOhm8cJedPR8TGT56rTk54CwFvpz5VbxZvce7OCySvSlrpbzA7k-8APKEPYkrAj34Ky48GXUNPQr11D2O1Zy8duEHvSoynz0ZtGs8KcEsPBtMQznNJ4I7ufIjvKJ55TwaqVK82OVFPd9uiT3GHYq8pUNMPCAalz2FHOM7d6m3PQQJJb1xhYE8xTVDPfhRDb4Jbyy7JNbnuXPxt7yOll48-PzQPSVZTjqLzX08rPw3vcwmAL6qEM07kS4yO6KU9Ty3_uk7i2o2PUL7hbvSP1o7ziaWvfqerDy14TC7X37nvcvZWz12OQC74-BSPG--bDzzE_c7UKvova4QVrwIWn078gfDPBpc6bzXFwe8ZoWyPdY6cbyqC1s7a7uEPfuzerw3uWe7JRftvD_TIT0lNzM7H_TsvFgKljuVkWW70UjKPQvqgLyO7eC4EYcRPTo7Pr3rsYi6JB-FvOqv1zzDhle5E6swvaF6pb0kdV24JTIdvZUQjL3SI6k45fZDu_wDAL2s6wq5bsXZPArkyLzf5QI6X3-9vR8YO70I1Te5296uvZGdor3y_oI4yR8KvJHhgrxiGr64_oL4PKFHjDzm5vC4LuI_u5KBEbzB-Nk4QxLHPE0QtTy1u4M4IjylPeXCh707jFI52lbTPSMZjTyvC1M3iaxaO_Z_Lj68OxW5BZsEOxt7m73nlm626jaNPAwRBr2ZfnI332hsPL1ipz2wGok3rAmYvUgQtjsEpsE3SYxUvO9KjL15K9c2-KcUPgP6Tj0f9O02TA2OvfkMzTyLHdw3CLCnuzwBs73By_84OcXEvWe3Jr7WR3I4B_ARvU_ToTt8HCA4fQMTPRhHkL1_twk2FPRNPbS9p72Xl423ucF1PC3sCT6GJ-c4JKaaPTvhFT6kXG64YoJavVsgZj1kNbs3uEuRvH7vJbxpk5I3IAA4E0AJSG1QASpzEAAaYA_nADUWJcEgQAfu4cD5Qa_02O3sxg__8KX_Nxb73AgGv7HlCQAZ3NnqmAAAAP_77Qi0AB9_C-AuT_4sGey-wFkPXCYuBLbTPBjxvhYQ8MEGIvUIMgC89pEPT9PRDCUKQiAALZADETs4E0AJSG9QAiqvBhAMGqAGAAA8QgAAoEAAAJxCAABAwgAAXEIAAFxCAAB8QgAAAMIAAKDBAABQQQAAcMEAABDCAAAYwgAAGMIAAARCAAC4QQAAmEEAAIDCAAAAQgAASMIAALjBAACAwAAANMIAAABBAACQwQAAZMIAABTCAABcwgAAaEIAAIA_AACMwgAAEEIAALzCAADAQAAAaMIAAFBBAABAwQAAkkIAAKjBAADIQQAAyEEAAKDAAADAQQAAgMAAACxCAAAgwgAAQEAAAABBAACIQgAAgMAAABTCAAAAAAAAQEEAAIBBAADYQQAANEIAAADDAAAgQgAAAEAAAHBCAACgQAAAlsIAAEDAAACCwgAAVEIAAOrCAADgwQAAYMIAABjCAACSwgAAWEIAAKpCAABQwgAABEIAAEzCAADgwQAAmMEAACDBAAAUQgAAEMEAAIC_AAB4QgAAAMIAAHBBAADgQAAAAEAAAIBAAAAMQgAAXEIAALjBAAAAwAAAkEIAANjBAADIwQAADEIAACzCAAAgwQAA4EAAAOhBAABAwQAAlMIAAJhBAABgQQAAMMEAAFDBAADAQQAAAMIAAADAAAAgwQAAoEAAAGRCAAAAQQAAoMAAADDBAABYwgAAhEIAAMhBAAAYwgAAOMIAAHDBAACCwgAAJMIAABDBAACwQQAAQEAAAEDAAABAQgAAiEEAAABAAAAAAAAAOMIAAFjCAACgQAAAgEIAAOBAAACEQgAA2EEAAMhBAAAgQQAAFMIAAEDBAAAgQQAAhkIAAFDCAAD4QQAASEIAAJDCAADAQAAAgMAAAIC_AADAQAAAAMEAALhBAACAPwAAoEEAAADBAAA0wgAAAMIAADzCAACKwgAATMIAAIA_AAAIwgAAFMIAAEDBAADQQQAAnsIAAARCAAAQQgAAYMEAAODAAABwwQAAiEEAABzCAABEwgAAIEEAAERCAAAwwgAALEIAAJDBAACAwgAAOMIAACBBAAAowgAAWEIAABjCAABwwgAAYMIAAKhBAAAIQgAAgEEAALjBAABYQgAAgMAAAJhBAABMQgAAJMIAABRCAACAQAAAQEAgADgTQAlIdVABKo8CEAAagAIAAKg9AACOPgAARD4AAPg9AAAEPgAAMD0AAMg9AAApvwAA6L0AADQ-AADgvAAABD4AAFC9AAAUPgAAHL4AADC9AADoPQAAqD0AAFw-AAAbPwAAfz8AAIA7AACAOwAAJD4AACS-AABQPQAA-D0AAIA7AAC4PQAAfD4AAOA8AACmvgAAEL0AAKC8AAAkPgAAVD4AAAQ-AABEvgAAXL4AAMa-AABAPAAA2D0AAJg9AAAQvQAAyL0AAHA9AACOPgAAqL0AAOC8AACqvgAAuD0AALg9AACgPAAAlj4AAGS-AACgvAAAGz8AAES-AAAUvgAA4DwAAOA8AADIPQAAPD4AAFS-IAA4E0AJSHxQASqPAhABGoACAADgPAAAcD0AAEA8AAA5vwAAiL0AAIg9AABUPgAAyL0AAOi9AABMPgAAQDwAAIi9AABQPQAAmL0AAAw-AADovQAATL4AABs_AACgvAAAnj4AAIA7AACKvgAAQDwAALi9AACgPAAAXL4AAFC9AADgvAAAcD0AAFA9AAAQvQAAqD0AAEy-AABwvQAAoLwAAIi9AAC4PQAALD4AAFS-AAD4vQAAgLsAAPg9AABQPQAAcD0AAAQ-AACgvAAAf78AANg9AACePgAA4DwAADA9AABQvQAAiD0AABw-AAAkvgAAyD0AAEA8AAAwvQAA4LwAAIg9AAA8PgAAmD0AAFA9AAAUviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=zIhiiADpeuM","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1238,"cheight":720,"cratio":1.71944,"dups":["15104312234662260239"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2905200830"},"3968380474563467748":{"videoId":"3968380474563467748","docid":"34-0-12-Z2FC610E6CA6862B7","description":"In this video I show a very easy to understand proof of the common trigonometric identity, cos(2x) = 1 - 2sin^2(x). Download the notes in my video: https://1drv.ms/b/s!As32ynv0LoaIibIYx...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1724622/050ff37c3a08bfccbf2285a1601715c5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hr/6znEAQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXGk2CpbEl8I","linkTemplate":"/video/preview/3968380474563467748?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Trigonometric Identity: cos(2x) = 1 - 2sin^2(x)","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XGk2CpbEl8I\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFQoTMzk2ODM4MDQ3NDU2MzQ2Nzc0OFoTMzk2ODM4MDQ3NDU2MzQ2Nzc0OGqTFxIBMBgAIkUaMQAKKmhodmRlemlteGNpanl2aGRoaFVDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdxICABIqEMIPDxoPPxO-AYIEJAGABCsqiwEQARp4ge_6AQD8BQD0_AgH-AX-AQsM9vj2AAAA8gH3AgcB_wDzAAj8-wAAAAYJBwUKAAAABQMD_P7-AQAL9_f9AwAAABEI-P33AAAADgP4_v4BAADu_gD2AgAAAAX39QH_AAAAAA368gAAAAAFA_H8AAAAAAEEBv7_AAAAIAAtfGXeOzgTQAlITlACKoQCEAAa8AF_9DX-0BHVAMUb9QH6GvsBj_Qx_wwm4P_C3ucBqPS6AdkRAwD5-eYA9Doi_qUX6f8_zMb--MQCAEjU-wAX6hgAGQT1AerS5gBW7SX_BRzZ_e8pDP_p5u8B9qD4AfQY2f7e9AD67vvb-ekEtAIe3zYDBvciAhzyKQPVnvwBz9DkAv3Vsv42JQEE_MsdAN48KwJE6RwG7CMR9sse0AAV9AP5_dgc_Ao4y_0O8voQEfgK_rQPBAryBxUFLg4H_9PoBfrw9S8CDRQC8PbJEwsi1_4B-xzj-QGi9gMk-QL-8fD5_Qbo_vLWIO3wAjUFA8EF__0gAC1Ne_E6OBNACUhhUAIqzwcQABrABzkr-r4ZAwy8Nu-0uiwuzrxxcI48Id6Au-Di17x4tBA82JMGu4LKSD7ElIi8VUqRu4EIAb43Pkk9rm2AvMVVhT5UMG-9m38qvHV0_L0vE5o9CwIQvef-Kr5dy_88SHQqPPQ2Nryd-pu8cSSrvKnB1D3qqDQ87UqmvG-LCL1DRwe6I9gYvbx8xjxuDh-8Ig14vZMcMLwI-lE7oFKlPEZYyT28foy9RTs4OzwE4TqYnEE76OEhu33PqL322gc89EAYvIRZEj2451k9YiAZPNxVfrz91z69yiCxutFeiL36ghG99qXpO5VShj0jMcE8u2VivNjCBz1Ex5m98juyvKjIIb4CfBw96OltPN20GT49FtE8A2D6u8Zhqr2rW5097tSaO4VRGr1H4HS9IO_VvFxJoTzYa9U84vLOPDw9JTwjPXu86qO-upAkELwQ36M9pmIDPf4f8Tx8_mq9XBjOvCpxfT2nvj281X5GvI2bmr1zlTg97PuLvKQsjT2dHBW8eWyROyGNLzyqR5o8vM9xPHAK6zxF77m99kfluZXcPL088cG9Q-nmu5jgBD6cb2Q9zCvTO2786T1M5K29K3Opu0QgjTxXU6O8Cf43PDeq7jwqmVK9C0drPL2pKL15UaU9ULpyur9rp7s6w7k81jV_vKejTb1phW49Q4oFOzo5iL1Tjr69SA4UugMnuz1NrIK83tsAu_ubaz32C1Y9DisnumIvVD0po8C8v3cju9Lxsr0nqDy8t-qdOt1rF71KqgC9Hkw9uTy98j1KyFG9V8GOObceKjyNW7G89JkLunIRhLxiENg9hNQOt2vjPjx0CJy8bbVsuV7cpTupbFi9YkTQuWjZSTyFZ1e7ypkaO8pTljyTh6o8Eq8AOpLmz712CFK8-M0IOYt8TTyLsX25G9kfuRR8rj0rwo094GRlOLzrbDz7Yd-880mTuAfIIbxFqwk99aDyNxBbGr3pcN-4O5AftkHxAz1xT8G91zh7OX9ViTzsGog8PnTruZZ2ajxPR1Y9Tcw-uKIIqT08UOc9xI32OK_YGTzz2pa9SVoft0-lwD2bx0E9ssjcuLSQEL7YjKI9mXsEtxXtAL2_2aA7eFkBt2IvlD2taR68P3XctUKhVDyp5R29no2qOMKk2D02Kia9e7Qtubhdk73Pq5C92nVEuGzuaDwpIJK8hxiqN5G_Cr2DHpU9i0ORN1NlTjx7XJW9XnW8tyL_7D01KQU-835buDmhC73REIQ95dPVuLQB-L21WEU9UeBcOOQ5ob1S2SM6RB3ftyAAOBNACUhtUAEqcxAAGmAR9gAK8xqk8w4pCxLX9xHjrCPj9q_8_wvj_0g15R0M67_F8QUAM9QX4pgAAAAv5QpMEwA0f7zOFk0QNgO-hc78NlAr_Bfa4RQD8LxJEPjzCAUGFxoADxG5E0gHzx1sSDcgAC0owRI7OBNACUhvUAIqrwYQDBqgBgAA6MEAABRCAAAEwgAAcEEAAMjBAAAIQgAAikIAAADCAAAowgAAoEEAAERCAADAwQAAksIAACTCAAA0QgAA6MEAAFDBAADIwQAAAAAAADBBAADgwAAA4MEAAIDBAACowQAAUEEAAFxCAADCwgAA2EEAAKBBAAAQQQAAAMIAALBBAABwwgAAAMEAADDCAADwwQAAZEIAAPhBAADwwQAASEIAAIA_AAAIQgAASEIAAFzCAAAIQgAAUEEAAODBAABAwQAAgEAAAODBAAD4wQAAWMIAAOjBAABgwQAAwMEAAEDBAABkwgAAVMIAAOBBAACgwQAAkEIAAFjCAAC-wgAAsMIAAHDBAACgwgAAMMEAAFDBAAAIwgAAwMEAAOBBAABYQgAAaMIAADTCAABAwAAAlMIAAKLCAADowQAAoEEAAAxCAABYwgAArEIAAFjCAACowQAAQMAAALBBAAAAQAAA0EEAADBBAACYwQAAuEEAAGhCAAB8wgAAYEEAAFBBAAC0wgAAEMEAABzCAAB4QgAALEIAADTCAADoQQAAIMEAABBCAADAwgAANEIAANjBAAA8QgAA4MEAADRCAACgwAAALEIAAJjBAAAcQgAAgEEAAIC_AABQQQAAEEEAAABAAAAAQAAAIMEAAMBBAABwwQAAAMIAAHDBAAAwQQAA6EEAAJhBAABswgAAUEIAAOBBAADAQQAA6MEAALJCAABAwAAAgL8AAKBBAABkwgAA4MEAAITCAABQQQAAMMEAADTCAACAQAAA2EEAACBBAAA4QgAAqEIAAHBCAACQQQAAYEEAABBBAAA8QgAAEMEAAEhCAACoQQAAEMIAAADAAAAkwgAA4EEAAJLCAAAsQgAAwEAAAATCAADIQQAAGEIAADhCAAAwQgAAgEEAAMDBAABQQgAAHEIAAIDAAAAcwgAAwMEAABBCAAAQwgAALMIAALDBAACMQgAAmMIAAJjBAADgwQAATEIAAKhCAACgwQAAfMIAAMhBAAAEwgAA0EEAAMDBAACAwAAAUEEAAIDAAABQwQAAhEIAAPBBAAD4QQAAAMEAAADCIAA4E0AJSHVQASqPAhAAGoACAABQPQAAJL4AAJY-AAAMvgAARL4AAL4-AABUPgAAK78AAKA8AACIvQAAiD0AADA9AABUPgAAjj4AAHy-AAAQvQAApj4AAKg9AACoPQAAGz8AAH8_AACevgAABL4AAEQ-AADovQAAiD0AAJg9AADIvQAAmD0AAHw-AAAkPgAAmr4AALi9AAAcvgAABD4AAHy-AAAQvQAAQLwAAKK-AAC4vQAA6D0AAIq-AABwPQAA2L0AALi9AAAUPgAA7j4AAIK-AADovQAADL4AAOg9AABwvQAAkj4AAIC7AACGvgAA6D0AAGs_AADIPQAAoLwAAEQ-AAA0PgAAuL0AAEC8AAC2viAAOBNACUh8UAEqjwIQARqAAgAAcL0AABA9AACAOwAAQb8AAJi9AAAUPgAA2D0AAKA8AAAsvgAAuD0AAEA8AADIvQAAiL0AAIC7AABwvQAAoLwAAKi9AABNPwAAQLwAAHQ-AAAEPgAApr4AAOg9AAAUvgAATL4AAPi9AAAwvQAAQLwAANg9AAB0PgAAHD4AAKA8AAC2vgAAmD0AAPg9AAAQvQAAqD0AAKA8AACuvgAAXL4AAOg9AAAcPgAAJD4AALg9AADgvAAAuj4AAH-_AACAuwAAPD4AANi9AADYPQAAFD4AAEQ-AABcPgAAMD0AAMg9AABwPQAADD4AADQ-AABwvQAALD4AAOA8AAC4vQAAjr4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=XGk2CpbEl8I","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":984,"cheight":720,"cratio":1.36666,"dups":["3968380474563467748"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4175600468"},"11862011102614616425":{"videoId":"11862011102614616425","docid":"34-2-13-ZC5892E4EB2EEB5F7","description":"Trigonometry (Field Of Study), inverse trig function, Math, arccos, double angle, mathematics, sin^-1, trig function, inverse trig, arcsin, evaluate trigonometry function, Sine, math, Inverse...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4519166/1635a1f5d323fd2e700fda922d864f25/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XdabtgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DBJokCsxvbF0","linkTemplate":"/video/preview/11862011102614616425?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"EASY Explanation OF Inverse TRIG Functions | sin(2sin⁻¹(12/13)) | Trigonometry","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=BJokCsxvbF0\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFgoUMTE4NjIwMTExMDI2MTQ2MTY0MjVaFDExODYyMDExMTAyNjE0NjE2NDI1asAPEgEwGAAiRBoxAAoqaGhoZnNvc3V2bnN0cWR2Y2hoVUNLZUZJNnFaUXhycEozdDZlQldtcHRBEgIAEioPwg8PGg8_E2GCBCQBgAQrKosBEAEaeIHv-gEA_AUA9v4DBf4F_gEGBvgA9___APP7_fwHAQAA8gIO-gcAAAD6Avv-BgAAAPcD-fIB_wAADP_t_AIAAAARBAb5-AAAABYG9vn-AQAA7wEF_wMAAAAK9gEGAAAAAAUF-_b-_wAABQPx_AAAAAAAAAIGAAAAACAALXxl3js4E0AJSE5QAiqEAhAAGvABf8IfAvrW4gTn68ABzC7dAY49BP_8PcoA1A4rAN8PBwHd9PAA3P3QAOgECwDDNv7_NdfuACXBCQE2rg4CF-z_ANDu9gEV-BEAJhY3AgDrBAD5_Q__9uAVABzPygMFKtP-Eb4F_hPl-ALVDs0CPMwuAhckCQEO7kgB_cb4-uo6-gkM7c8AyBXkBxnxBfWb_iEJAvkUAwQ4IAHLB98DORkA_ubeC_LxFtL-VecGAwQNDQbkPe75_vQeBSgUFvCqDxr-BvsX-coX-e_4ABsQ4-vsBA4B0fQJCtQOHBQLESwA9AMG6f7yBTEP9wDM-eivIA4IIAAtnlH7OjgTQAlIYVACKnMQABpgPPcAJP0YthkKE-T6uPIO8MgN8xGS-f_z2AAUJ80hKQjfxiIeACUH_QWpAAAAMxALBvgA7nDvDRgd_Dr_upjbKzh_NAT3-9kQCbHvIjIy9e8S7RclAP3mtiRH5eNNC1gVIAAtB9oeOzgTQAlIb1ACKq8GEAwaoAYAAAxCAAAAAAAA-EEAAKjBAADAwAAAMEEAANRCAABgQQAAGMIAADzCAAAkwgAA4EEAACDCAAAcwgAAbEIAALjBAAAAwQAAiMIAADhCAACGwgAADMIAAAzCAAAcwgAA4EAAAEDBAAB0QgAAOMIAAKhBAACAPwAABEIAAFjCAACYwQAAfMIAALhBAAAQwgAA4EAAAIA_AAAoQgAAEEIAAAxCAAAwQQAAuEEAANhBAAAAQAAAAEIAAAzCAACowQAAAMEAANBBAABAwAAAXMIAAIbCAACAPwAAgL8AABhCAAAgwQAACMIAAKDAAAAEQgAAnEIAAGBBAABAwgAAiMIAAIDCAAAIQgAAXMIAAADAAAB8wgAAnsIAAFzCAACsQgAAZEIAADjCAAAMQgAAiEEAAJTCAABgwgAAQEAAABBCAACYQQAA4MEAAPhBAABAQAAAQMAAAODAAABAQQAAEEIAAExCAADwQQAANMIAAKDBAAAQQQAAAMAAAFDCAACQQQAApsIAABBBAACgQAAAaEIAAOBBAAAUwgAAIEEAAEBAAACowQAAIMIAAHDBAACIwQAAGEIAAOBAAAB8QgAAQEEAAEDAAADAwQAAyEEAACBBAAAgQgAAmEEAAOTCAACwQQAAcMIAACzCAAAEwgAAqEEAADzCAACoQQAAAMAAACDBAAA8wgAAaMIAAFTCAABAQAAAwMAAAGDBAABcQgAABMIAACBCAAB8QgAAYMEAACzCAACgwgAABEIAAMDAAAAAQQAAYEEAABxCAAAcQgAAUMEAAFDBAAAUQgAAREIAAODAAACgQAAAhEIAACTCAABgQQAAoMAAAM7CAACUwgAAWMIAAMBBAADgwQAAHEIAAOBBAAAwwQAAQMAAABBBAAAoQgAAOEIAALBCAABgwgAAFMIAAEBAAAAYwgAAgEAAABzCAABAwQAABMIAACjCAABQQQAALEIAALTCAABQwgAAqEEAAODAAABMQgAAXMIAANjBAABAwAAAIMEAAJBBAADIQQAASMIAAGBBAADQQQAAEEIAAJ5CAAA8wgAAAEIAAEDAAAC4wSAAOBNACUh1UAEqjwIQABqAAgAAuD0AAJg9AACmPgAAmD0AAIA7AACqPgAA-L0AABe_AABMvgAAUD0AAMi9AABwvQAAND4AAJI-AAAMvgAAEL0AAKA8AABQPQAAND4AAOY-AAB_PwAAmL0AAFA9AACOPgAAML0AAPg9AABwPQAAqL0AAJ4-AABEPgAAUD0AAMa-AABQvQAAcL0AANg9AACovQAANL4AAKK-AAB8vgAAPL4AABC9AAAUvgAAoLwAAIK-AAAMvgAAiL0AALY-AADovQAAUL0AAJq-AACYPQAAEL0AABw-AADgPAAAFL4AAEA8AAA_PwAAQDwAABA9AACIPQAAED0AAMg9AADYPQAAhr4gADgTQAlIfFABKo8CEAEagAIAAIi9AAC4vQAAcL0AADe_AABkvgAALL4AACQ-AAAQvQAARL4AAHw-AABQPQAAyL0AAAQ-AADgvAAAEL0AAKi9AAAUvgAAIz8AAHA9AABcPgAAoDwAADC9AADgvAAAmL0AAJi9AABEvgAAcD0AAOA8AABwPQAAmD0AAHA9AAAMPgAAjr4AAFA9AADgPAAADL4AAJI-AACSPgAAlr4AABy-AAAUPgAABD4AAFS-AADIPQAA6D0AAFC9AAB_vwAABD4AAFw-AAD4vQAATD4AAIA7AAAMPgAARD4AAIC7AADYPQAAoDwAAEw-AADgvAAA6L0AADw-AACoPQAA-L0AAKa-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=BJokCsxvbF0","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["11862011102614616425"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"237180590"},"4616381845294875200":{"videoId":"4616381845294875200","docid":"34-3-2-Z0550E542FE42E9C7","description":"Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Write 1 - 2sin^2(22.5) as a Single Trigonometric Function or Number in Exact Form...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3149972/2be3b9f2196660c00089f34e10d187b3/564x318_1"},"target":"_self","position":"16","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DsIOo1GiZ75U","linkTemplate":"/video/preview/4616381845294875200?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Write 1 - 2sin^2(22.5) as a Single Trigonometric Function or Number in Exact Form","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sIOo1GiZ75U\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFQoTNDYxNjM4MTg0NTI5NDg3NTIwMFoTNDYxNjM4MTg0NTI5NDg3NTIwMGquDRIBMBgAIkQaMQAKKmhoenpsYmpub211Z2hidmJoaFVDcjdsbXpJazYzUFpuQnczYmV6bC1NZxICABIqD8IPDxoPPxNFggQkAYAEKyqLARABGniB7vYHCAL-APEBEAT6BP8BFQX4BvUBAQD98fT4_gX-APr5C_kCAAAA8Bb-_wQAAAD6_PT59f4BAA8O_f73AAAAGwL9APcAAAAKB_P1_wEAAPTx_wED_wAAEOr7Af8AAAAFAvLzAAD_ARYJ_AEAAAAAC_8G_gABAAAgAC2d_cw7OBNACUhOUAIqcxAAGmAPBgA--vij3g8A9OHG50b4vyQO57AO__Pg_1Ev3f4EMaqrFA7_S9jwEpYAAAAXKe4u6gAGfwHPClgDI92_otMmC2AW_9gR4OcaqM5EUkH48PIJG_4A4Nb3ADTn5R5RUgkgAC2MghE7OBNACUhvUAIqrwYQDBqgBgAAgEAAABDCAABwQgAAZMIAAMhBAACYwQAAjEIAAKBAAADwwQAA4MAAACBBAAAUwgAABMIAAIA_AABkQgAA2EEAAKBBAABYwgAASEIAAADCAAA8wgAAGMIAANDBAAA0QgAAAMIAAMDAAADwwQAAIMIAABxCAABIwgAAPMIAACBBAABAwgAAAMEAALDBAADwQQAAwEEAAORCAAAEwgAAMMEAAKhBAAA0QgAASEIAABDCAACeQgAASMIAAPBBAABgQQAASEIAAIBAAABcwgAA4MEAAKhBAADoQQAAeEIAAABCAACiwgAAsEEAABBCAAAcQgAAMEIAAILCAABAwAAAsMIAAGBBAACWwgAAgMEAAFzCAACowQAAOMIAAGxCAACQQgAAwsIAABBBAABAwQAAhMIAAAzCAABAwAAACMIAAJBBAACAQQAAoEEAAKjBAAAgQQAAgL8AADhCAABwQQAAZEIAACBBAABwwgAAFMIAAIxCAABYwgAA6MEAAIC_AABwwQAAMMEAADxCAAA4QgAACEIAAJLCAADAQAAAqEEAAIDAAAAgwgAAAEEAACTCAACYQQAAqMEAACBCAABkQgAAOEIAALjBAAAQwQAAuMEAAKBCAADwQQAAHMIAAIDBAAAowgAAeMIAACzCAACgwAAAuEEAAKBBAABYwgAAgD8AAIjBAABEwgAAIMEAAIDCAAB0wgAAiMEAADBCAAAgwgAAjEIAAMBAAABAwQAAIEEAAILCAABQQQAAUMEAADxCAAAMwgAAPEIAANBBAAAUwgAACEIAAMhBAAD4QQAAsMEAAJhBAACYQQAAEEEAAIA_AAAQwQAAQEAAAIbCAAC-wgAAwEEAADDCAAAAQAAAwMEAADjCAABwwQAAmEEAAHTCAADMQgAAoEEAAGDBAACYwQAAiEEAAABAAAAswgAADMIAAKBBAADYwQAA8MEAADBCAACgwQAARMIAACDCAACAwQAAmMEAACBCAACcwgAAGMIAABTCAABgwQAA8EEAAJBBAAC4wQAA6EEAAJDBAAAgQQAAZEIAAEDCAAAQQgAAwMAAACDBIAA4E0AJSHVQASqPAhAAGoACAACSPgAA4LwAAJo-AAAkvgAAyL0AAII-AACKPgAAG78AAOi9AABAPAAAhr4AALK-AABUPgAAXD4AADy-AACoPQAA6D0AAOA8AADiPgAAGz8AAH8_AAA0vgAAND4AAMo-AAAEvgAAcD0AAJo-AABAvAAAiD0AAOg9AACgPAAAVL4AAIi9AABAvAAAsj4AAEA8AAAwvQAAfL4AAJ6-AADovQAAXL4AAAy-AAD4PQAAUL0AAFy-AABAPAAAPD4AABy-AADgPAAAXL4AAEC8AAC4PQAAdD4AAJ4-AAD4vQAAgDsAAC0_AAAQPQAAcL0AAIC7AACIvQAAkj4AAFA9AACovSAAOBNACUh8UAEqjwIQARqAAgAAML0AAAy-AABQvQAAP78AADy-AACovQAAND4AAEC8AAD4vQAAyL0AAOi9AAAwvQAA2L0AAIC7AAC4PQAAgLsAACy-AAAxPwAA4DwAAN4-AADYvQAAbL4AAHS-AAD4vQAABL4AAGy-AABQPQAAUL0AABw-AABwPQAAgLsAACQ-AAB8vgAAML0AANg9AADgPAAAVD4AAMg9AACGvgAAbL4AAKA8AAAUPgAALL4AANg9AAAwvQAA4LwAAH-_AABkvgAAgj4AABS-AACAuwAADD4AAPi9AABkPgAAQLwAAAw-AABAvAAADD4AAPg9AAAcPgAAij4AABA9AAAQPQAAnr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=sIOo1GiZ75U","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["4616381845294875200"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17117185322851783722":{"videoId":"17117185322851783722","docid":"34-9-0-Z1669F1D8A220D490","description":"cos(x)sin(y): http://youtu.be/edtk9thfwbM Trigonometry: Sine, Cosine and Tan Functions: http://youtu.be/WKTIlF2oWw8 . - - Subscribe via Email...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4429386/47a4ce70fe4333eff742789f0c111b46/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/iZBrCwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DIaZFDmVtyyU","linkTemplate":"/video/preview/17117185322851783722?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Trigonometric Identity: sin(2x) = 2sin(x) cos(x)","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IaZFDmVtyyU\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFgoUMTcxMTcxODUzMjI4NTE3ODM3MjJaFDE3MTE3MTg1MzIyODUxNzgzNzIyapIXEgEwGAAiRBoxAAoqaGh2ZGV6aW14Y2lqeXZoZGhoVUNVVUJxMUdQQnZ2R056N2RwZ08xNE93EgIAEioPwg8PGg8_E2CCBCQBgAQrKosBEAEaeIHxBQMB-wUAAPwFCPgI_QIGBvgA9___AO748fwFAAAA8wAI_PwAAAD_BgH_BQAAAAQD-voE_QEACvMB-gMAAAARCPj99wAAAA4D-P7-AQAA-QH6-QP_AAAH__j-_wAAAAgKA-8AAAAABQPx_AAAAAD_B_7_AAAAACAALRIG4Ds4E0AJSE5QAiqEAhAAGvABdf8cAMEs9f_ZBPcA7DrmAIEKLf8fKd8AtfAMAbT2xADsGtwA2wToAPcMKQC1CAH_HgHBABXbGv9CEewAQQEYASQDAQAV2QUCOxAYAs8A3_7bDQv9Cdj7__3E3QDqFsf_HhYD_dEJ1QDsA78CCtJCAw8IGAUK9SX82PEF_-z1Dwf2-MP-GSH6BP3TGQDjMyUCGvMI_u4-G_rRBuMCEPLoAODtGP8I4dkAM-rtCPAG_Pnk5_389QwI80EiAgLeGicB8vYoAgTq_PPn5vv8MM4SAvUE_AP75gUJBAPnEvni8AP_8xX33Bvw8-MNHP7Y-AADIAAtUCMNOzgTQAlIYVACKs8HEAAawAdma8W-fnN_vCNN-rvSuqe9uEAiPVVlhLxNOJq90KRiu0jBE70YmAU-gDPrO3-zvbuWk0C-osyrPOjSZDzFVYU-VDBvvZt_KrzZQ0u-Q5J2Oyl_gr31oWu-hNMHPXQ1w7tssPA8CmuhOw7Zo7qpwdQ96qg0PO1KprwgqOi6HXURPDPcAL0PWEO9PxljvGyJ5rxa3zY96dudvFORyjyitRI-vBq1vbN6Bz3O9g09c4vUvN_RsbvSzo-95ymhvBDf8Lv-bpA9x-xyO6FzDT1bM2g8fO4kvahkqTs33dK9a6SAvJNl0js27DI9AA0FPcTSO73yCO49exTOvceArLw5Qra9pGaUPU-wvzwnFxM-T9VzPRWpsDzGYaq9q1udPe7UmjubQEy95_b3vNzqoDsLlio9cJUnvKrMOTx964M8LKuLN9o20juqHka6gIGAPVTTZDxNHVo9Y81tvCSKf7yqXag9S3APPG41a7yW6x2-iiSFPez6Abu46vo9hNkkvWXIjLw_vPg8eUWLPA6zYTwJhIA7833nvF5DlTxTghU86KaovdtcCryfsLQ96Y9LubhGfLuLy5w9pBd6vV94SrznFh-9jUepvPkDs7o1KWU9oYG4vWpQDzu9qSi9eVGlPVC6cro6eWw8fPN2PC7WJrxxc427LmA4PUGvBzyZNtK8vFrOvRicLzowgxE-QEQUPTaMW7qn03U9AZklu7Ax-bpE87U9liJvOV7L-TpY7Gq9t5lIO_RYzDttWG69ORGYPA_jQTmTYpE9poE_vYOTrLmzeIE9y34CPFEcvzZN9eQ88mPHPS7XNzm19I08cJjovGug4je54-g8WtufvY1oRjn076M7j_2svKAKZTmeP5I9oQPcPDtusbkfYqi9PpB-O2WfyrkG11w9b6LxPMt3ormR-HA9u-_YPNWPTzhIxX-8M4yLvVTfhzkHyCG8RasJPfWg8jcVlei8N-HeO-UqL7hB8QM9cU_Bvdc4ezlRM6C7uA1ZPOeyGDfrDx68-mP1PA4yNrdPK1s9OyesPTxMhLiaBxA93jjJvQg0-zag3Hs9AZm3PVgANrgi-wC-xl8kPReYZTgOUUC9F8kHvF72krZBF6g9UzUrvbSWpDhBgwm8eUA5vc8ACTitp_Y9s-qYvHs7Orn2VFi9f8FuvFSyU7eTa089_O6MvW0iDTcHrZy9xoQqOo9Ttje9rwU9pUkJvq2ehbgi_-w9NSkFPvN-W7gYJzm9lEOlPWWUx7itbeq9FDu_PG_S4zfNZ2-9IfQivaNQ0rcgADgTQAlIbVABKnMQABpgKPYA-N8akt8yRPX9zPoW4MEk9_efE__03v9CHNkbAu_GzhwRACfSCAGZAAAAMNwCMgQAJn-r1Q078xz5qpLaJBtUMQcG2AML-8vYJAPv5v4_4TUXABT5tgxI3ecBZD0_IAAt9S8UOzgTQAlIb1ACKq8GEAwaoAYAAJDBAADYQQAAMMEAAGBBAADYwQAANEIAAJxCAACQwQAAeMIAAMhBAAAcQgAAAMIAAITCAAAwwgAAMEIAABzCAAAUwgAABMIAAKDAAACAwAAAqMEAABzCAABAwQAABMIAAJBBAAB8QgAArsIAAMBBAAAsQgAAEEEAABTCAABwQQAAkMIAAADAAAB8wgAAwMEAAFhCAABIQgAA8MEAAExCAAAwQQAACEIAADhCAAAwwgAA6EEAAIBAAAAswgAAgEAAAJhBAADAwAAARMIAABTCAADAwQAAcMEAACDBAAAwwQAAuMIAADTCAAAEQgAAmMEAAJZCAABQwgAAosIAAMjCAAAgwQAArMIAAFDBAACwwQAA0MEAAETCAADgQQAATEIAAHDCAAAIwgAAoMEAAJrCAACGwgAA0MEAADhCAADoQQAAisIAAK5CAAAQwgAAwMEAAKDAAABwQQAAcEEAAPBBAACIQQAA0MEAAEBBAACGQgAAQMIAAIDAAAAQQQAAtMIAAADBAACgwQAAkkIAACBBAAA8wgAAyEEAAODAAACAQAAApsIAACxCAACowQAAOEIAAMDBAAAMQgAAUEEAAEBCAAC4wQAAIEIAAMBAAABAQQAAQMAAAIA_AACgwAAA4MAAAFDBAADAQAAAQMEAABzCAABwwQAAgEAAAPBBAACYQQAAdMIAAFBCAAC4QQAAyEEAAGDBAACgQgAAwMAAAIDBAABwQQAAEMIAAOjBAACCwgAAoEEAAMDAAAAYwgAAwEAAACRCAACAQQAAEEIAAGhCAABEQgAAoEAAAJhBAACAQQAAKEIAAIDAAAD4QQAAsEEAAJjBAADAwAAALMIAAAhCAAB8wgAAcEIAAKDAAAB0wgAAQMAAACBCAAA8QgAAlEIAAPBBAADIwQAAIEIAAPBBAADgQAAAGMIAAPjBAAC4QQAADMIAABjCAACgwAAAtEIAAKbCAACowQAAiMEAABBCAACsQgAAoMAAAJTCAACwQQAA6MEAAOhBAADIwQAAQMEAAKBAAAAAAAAA2MEAAFxCAACwQQAA2EEAAKjBAADIwSAAOBNACUh1UAEqjwIQABqAAgAAmD0AACS-AAC6PgAAuL0AAEy-AAC2PgAA-D0AABG_AADYPQAA2L0AAFA9AAAEPgAAhj4AAHQ-AABMvgAAcD0AAIY-AADgPAAAcD0AAPI-AAB_PwAAor4AABC9AACKPgAAJL4AAPg9AABAPAAABL4AAHQ-AABEPgAAuD0AALq-AAAQvQAAuL0AAKg9AABkvgAAyL0AADS-AACmvgAAgDsAABw-AABsvgAAMD0AAHC9AACgvAAABD4AANo-AACivgAARL4AAIq-AACAOwAAUD0AAJo-AADIvQAAhr4AAPg9AABRPwAA6D0AAIA7AAD4PQAA-D0AAPi9AACYvQAA2r4gADgTQAlIfFABKo8CEAEagAIAAJi9AAAQPQAAcL0AAD-_AABEvgAAUD0AACw-AABwvQAAcL0AACQ-AACgvAAAUL0AAHA9AABwPQAAML0AAKC8AAB0vgAANT8AAFC9AAB8PgAALD4AALa-AAAQPQAAmL0AAAy-AAAEvgAAQLwAAIC7AACYPQAAJD4AAJg9AAAQPQAAtr4AAOA8AADgPAAAML0AADw-AABAPAAAor4AAJK-AABAvAAAVD4AABw-AACIPQAARD4AABw-AAB_vwAA6D0AAII-AAA8vgAAmD0AAOg9AAAcPgAAdD4AAKi9AAAUPgAAQDwAAKg9AAA0PgAAQDwAAGw-AACgvAAAcL0AAJa-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=IaZFDmVtyyU","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":984,"cheight":720,"cratio":1.36666,"dups":["17117185322851783722"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4116868069"},"16333511611220353394":{"videoId":"16333511611220353394","docid":"34-9-8-Z1898CD7E1690FB88","description":"This video shows how to graph a sine trigonometric function y=-2sin(x) where the graph is reflected! #mathmethods #maths #trigonometricfunctions #graph #plot #reflection...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4736926/672d2ed46d05a46e09d29b3147fdffcd/564x318_1"},"target":"_self","position":"18","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNVYmCiJEqTc","linkTemplate":"/video/preview/16333511611220353394?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Graph y = -2sin(x) | Math | Trigonometric | Sine","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NVYmCiJEqTc\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFgoUMTYzMzM1MTE2MTEyMjAzNTMzOTRaFDE2MzMzNTExNjExMjIwMzUzMzk0aq4NEgEwGAAiRBoxAAoqaGh2bXdsb215bHRxbWhjZGhoVUNia0VkNWdaV09MVlVOZHVoTWI1RnFBEgIAEioPwg8PGg8_Ez2CBCQBgAQrKosBEAEaeIHqBQL6_gIA_AAMD_gJ_AILDPX39gAAAO348PwFAAAA-fMTAgUAAAD_BgH_BQAAAAQD-voE_QEAGPz5AAMAAAAJB__29wAAABcG9fn-AQAA-Pf3_QP_AAAFAQD9_wAAAAYF-_b-_wAABw_9-AEAAAABBAb-_wAAACAALbqI1Ts4E0AJSE5QAipzEAAaYPQVAAoLBOTMHvv16dj39vH2Cej50woAAOcALQ324yb8-d4wEAAg9v4FyQAAACHu_fkiAPo88O7uIwkMBtzN_hcZfx0D5BX-BenY8PAJFBgKBOP-9wD4BAMDOecHDB46JSAALVzDdDs4E0AJSG9QAiqvBhAMGqAGAADAQAAA-MEAANBBAACCwgAAlEIAADBBAACOQgAAGEIAAKzCAAAkwgAABEIAAGTCAAA0wgAAkMIAABBCAACwQQAAAEEAAFzCAAAAAAAARMIAAMhBAADQwQAAcMEAAJjBAAAUwgAAHMIAAEjCAADgwAAAKEIAAIBAAAAkwgAAGEIAAMrCAADIwQAArMIAAAzCAAAkQgAAiEIAAIC_AAAcQgAAgMEAAHxCAAA8QgAAUEIAADxCAACAvwAAQEEAACDBAACMQgAAIEEAAI7CAAAEwgAAUMEAAMjBAADYQQAAQMEAANrCAADYQQAAcEEAAKhBAADAwQAAwsIAABDBAACuwgAAcEEAAFjCAACwwQAAwMEAABDCAAA0wgAAGEIAAExCAAAgwQAAeEIAAODBAABMwgAADMIAAIA_AAAwQQAAJMIAAPjBAAAEQgAAREIAABDBAAC4wQAAmEEAAEBCAABMQgAAbEIAABTCAAAAwAAAhkIAAGDBAAAowgAAYEEAAETCAACAQAAAYEEAAOBBAACAPwAAPMIAACxCAABQQQAAuMEAAIDCAAAAQAAAoEEAAPhBAACwQQAAIEEAAABCAAD4wQAAIMEAAJDBAABAwQAAiEEAAADAAAAgwgAAAMIAAATCAACgwQAAwMEAAIjBAAAYwgAAgMAAAFDBAAC4wQAAgMEAABjCAABAwQAAoMEAADDBAACIQQAACEIAAHBBAADAQAAAsEEAACxCAAAwwgAAyMIAAFzCAAC2QgAAoEEAALjBAADAQQAACEIAAJzCAABgQQAAwEAAAAhCAAAQQQAAcMEAAABCAABYwgAAEEEAAEDBAAAwwQAAqMEAALzCAAAAQQAAZMIAAHDBAACwwQAAYEEAAATCAADAwAAAAMAAAJpCAABQQgAAsEEAAIDBAAAgQQAAmsIAAPDBAACGwgAAkMEAAMhBAABgwgAAqMEAAPBBAABMwgAAMMIAACzCAAAMwgAAjkIAAHBBAAAswgAAVEIAAEBAAAD4QQAA6MEAABzCAACYQQAAJEIAAFDBAABUQgAAmMEAALhBAABYwgAAfMIgADgTQAlIdVABKo8CEAAagAIAAKA8AADgvAAAvj4AAOA8AABwvQAAZD4AAMg9AADivgAA2L0AAEA8AADYvQAAML0AACw-AAAcPgAAjr4AAOC8AACCPgAAMD0AACw-AADiPgAAfz8AABC9AAAQPQAAZD4AAFA9AADgPAAAVD4AAMi9AABMPgAADD4AABA9AAD4vQAAgLsAANi9AAAkPgAAuL0AAHC9AACKvgAAjr4AAHS-AAD4vQAAUL0AAFw-AAC4vQAAqL0AAPi9AADIPQAA2L0AAPi9AACgPAAAoLwAAKg9AAAEPgAALD4AABy-AACAuwAAHT8AABQ-AACgvAAAUL0AABA9AABMPgAA2D0AAI6-IAA4E0AJSHxQASqPAhABGoACAADYvQAAgDsAACS-AAAvvwAALL4AAKg9AACaPgAA6L0AAFC9AACoPQAAuL0AAJi9AACAOwAAoDwAANg9AAAwvQAABL4AAAE_AAAkvgAA0j4AAEC8AADovQAAZL4AAKC8AAAQvQAALL4AAEC8AAC4vQAAQDwAALg9AAAQPQAAqD0AAAy-AABwvQAAcD0AAHC9AABkPgAAJD4AAI6-AAAsvgAAcL0AACQ-AADIPQAAiD0AAFA9AAAwvQAAf78AAMg9AAAcPgAA2L0AACQ-AACAOwAA-D0AAAQ-AAAQvQAABD4AAIA7AABAvAAA2D0AABw-AABkPgAAuD0AADA9AADYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=NVYmCiJEqTc","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16333511611220353394"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10666614162854869335":{"videoId":"10666614162854869335","docid":"34-7-9-Z22142A0FEE84959F","description":"Prove that 2 sin 1 3/5 = tan 1 24/7 '2sin^ 1(3/5)=2tan^ 1(24/7) '2sin^ 1(3/5)=2tan^ 1(24/7)' #mathematics #ncert #JEE #JEE_Mains #Iitjee...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1839895/29371226aff71bee50bc7df4a6fce627/564x318_1"},"target":"_self","position":"19","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dnnk9wTkT9_8","linkTemplate":"/video/preview/10666614162854869335?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"'2sin^ -1(3/5)=2tan^- 1(24/7)'|| Prove that 2 sin -1 3/5 = tan- 1 24/7","related_orig_text":"2Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nnk9wTkT9_8\",\"src\":\"serp\",\"rvb\":\"EqwDChI1ODg1ODMxNTM4MjQ5Njc5NjMKFDE3MjM1ODk3Mzk0NjU3MzQyMjY1ChM5OTY5NTkzNTU1MzI3NDM1MzM4ChM5MTUzNzkyOTQzNDUxNzU0NTMwChM1MjQ1MTMyMTczNTAzNjQxMTMzChM0OTQ2MDY1NTY4NzUxMTE5MzgxChM0NzE2MzAwMDI4MTg2NTgzMTUxChQxNDIxMTYxNjMxNTgzOTk2MjQ2OQoTMTIxMzM0MzA3MTI5Nzc5MzE0OQoTNDkzNTU4OTU5ODAxOTcyMjE2MQoTMzI1NDU5Mzc4NTA3MzUzNTU5MwoUMTUxMDQzMTIyMzQ2NjIyNjAyMzkKEzM5NjgzODA0NzQ1NjM0Njc3NDgKFDExODYyMDExMTAyNjE0NjE2NDI1ChM0NjE2MzgxODQ1Mjk0ODc1MjAwChQxNzExNzE4NTMyMjg1MTc4MzcyMgoUMTYzMzM1MTE2MTEyMjAzNTMzOTQKFDEwNjY2NjE0MTYyODU0ODY5MzM1ChQxMDc2MDY0MzY0MjM4ODc4NTU5NAoUMTIzMjU2NzcyOTUzMDg3ODYxNDgaFgoUMTA2NjY2MTQxNjI4NTQ4NjkzMzVaFDEwNjY2NjE0MTYyODU0ODY5MzM1aq8NEgEwGAAiRRoxAAoqaGh6ZGJ2enNlZXp3Y3FiZGhoVUNqaU5ObjJ5ZGRlS3dreFBVVHFUTzVREgIAEioQwg8PGg8_E7wCggQkAYAEKyqLARABGniB9P_-BfsGAPUD_gIAA_8B9AjxBPn-_QDyAAL8_gEAAPn7_wUFAAAABwgF_QIAAAAJ_QP_-P4BAAj9_v0DAAAACPgAB_0AAAALCQf4_wEAAP33Afn3AgABBf4DBAAAAAAHGPv__wAAAAAR_f8BAAAAAvwFAAAAAAAgAC1PGOQ7OBNACUhOUAIqcxAAGmANBQBD6STR2-3q3x7j6w706QsQ1_Pc__UkAB4c8tvu9uim_Qf_E_H6CroAAAAB__gRBADfWkwHBy0BLPMLyBbVGH8MENoB3xDZ2eYS4isGPgrqCfMA2hQLE_qgAS1FCwkgAC37ykA7OBNACUhvUAIqrwYQDBqgBgAABEIAAIDBAACaQgAAcMIAAJ5CAACgwAAArEIAAKjBAABQwQAAMEIAAEDAAAAAQAAAUMEAAEBAAACwQQAAwEEAAMBAAACAwAAAgD8AAKBAAADAQAAAAEIAABTCAADAwAAAsMEAAMDAAAAoQgAAMMIAAHBCAABgwQAAEMIAAADAAACwwgAAUMEAAGzCAADoQQAAMEIAAMBCAADwQQAAaEIAAChCAABAQgAASEIAAATCAABsQgAAsMIAAKBBAACAQgAAfEIAAHBBAAAIwgAAoEEAAIBAAACAPwAAmEEAAIhBAAAAwwAAyEEAAMhBAAAkQgAAEEEAAKLCAACwwQAAKMIAAIC_AADiwgAAKMIAADDCAACwQQAAfMIAAPhBAAAsQgAAlMIAAHRCAABIwgAAyMEAAAAAAAAQQQAAYMEAAOBBAAAYwgAAUEIAACDCAAAAQgAAoEAAAADBAAC4QQAAUEIAALhBAACQQQAAZMIAAGxCAABAQQAAYEEAAMJCAAAQwQAAAMAAAJjBAABEQgAAJEIAACTCAACgwQAA8EEAACDBAAA4wgAAAEEAAAhCAACgQAAAQEEAADhCAACgQgAAqEEAAKjBAACwQQAAFMIAAJZCAABEQgAA4MEAAADCAAAgwQAAgMEAABzCAAAAwQAAIMEAAJjBAADowQAAYMEAANDBAADAQAAAqEEAAKDBAADYQQAAgD8AAGRCAACAPwAAMEIAAIBBAABAQAAAEMIAABTCAACAQAAA0EEAAKRCAABQwQAAcEIAAPhBAAC4wQAAAAAAAKhBAAAEwgAAMMIAAKBAAACAvwAAkMEAAFBCAACgQAAADMIAALjBAADowQAAPMIAAJzCAADAQAAA4MAAAKrCAAAAQAAAiEEAAAjCAAAUQgAANEIAABBBAAAMQgAAmEEAAJhBAAAswgAAbMIAAEBAAABAwQAAYMEAAFBBAAAgQQAAEMIAAPDBAAAcwgAA6MEAADhCAAC4wgAA0MEAAIDCAACoQQAATEIAABhCAADwwQAACEIAAABBAABwQQAAQEAAADDCAADQwQAAkMEAAAjCIAA4E0AJSHVQASqPAhAAGoACAACovQAAQLwAAII-AAC4PQAAHL4AABA9AADgvAAAur4AABQ-AADYvQAA2L0AADA9AABQPQAAUL0AAIi9AACgPAAADL4AAIA7AABMPgAApj4AAH8_AACgvAAADL4AAJY-AABsvgAAlr4AAKA8AABQvQAAbD4AADQ-AACgvAAA4LwAAAy-AACIPQAA-D0AAIC7AABwPQAAXL4AAIK-AADgvAAAUL0AAAy-AAAwPQAAML0AAHS-AAAMvgAAmj4AADw-AACIvQAANL4AAFA9AAAwvQAAbD4AABA9AAC4vQAAcD0AACk_AAC4vQAAcL0AABS-AACYPQAAcD0AAEA8AACgvCAAOBNACUh8UAEqjwIQARqAAgAAPL4AALi9AACGvgAAc78AADC9AADYvQAAJD4AADA9AACIPQAAiD0AABA9AAAsPgAABL4AAIC7AABkvgAAqD0AALa-AAA1PwAAjr4AAOg9AAD4vQAAhr4AAKg9AACSvgAAVL4AAIY-AADIPQAAcD0AAOA8AABwPQAALD4AADA9AACqvgAAuL0AAJi9AACgPAAATD4AABC9AACyvgAAvr4AAII-AAC4vQAAiL0AADQ-AADovQAAuL0AAH-_AAC4vQAAND4AAEA8AAAwPQAA2D0AAHC9AAAsPgAAlj4AAKg9AACgvAAA-D0AAEQ-AAAEvgAAfD4AAIq-AAAsvgAAZL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=nnk9wTkT9_8","parent-reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":null,"cheight":null,"cratio":null,"dups":["10666614162854869335"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"588583153824967963":{"videoId":"588583153824967963","title":"Solve the equation \u0007[2\u0007]\u0007[sin\u0007]^2(x)-sin() x-1=0 and find the values of x on [0,2π).","cleanTitle":"Solve the equation 2sin^2(x)-sin() x-1=0 and find the values of x on [0,2π).","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=IUFgI9E9wP4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IUFgI9E9wP4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWW1hRW5RY3JYcXk1UVJiaHJRNS1IUQ==","name":"The Math District","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Math+District","origUrl":"http://www.youtube.com/@TheMathDistrict","a11yText":"The Math District. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":351,"text":"5:51","a11yText":"Süre 5 dakika 51 saniye","shortText":"5 dk."},"date":"30 mar 2024","modifyTime":1711756800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IUFgI9E9wP4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IUFgI9E9wP4","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":351},"parentClipId":"588583153824967963","href":"/preview/588583153824967963?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/588583153824967963?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17235897394657342265":{"videoId":"17235897394657342265","title":"Solve the equation \u0007[2\u0007]\u0007[sin\u0007]^2(x)=sin(x) and find the values of x on [0,2π).","cleanTitle":"Solve the equation 2sin^2(x)=sin(x) and find the values of x on [0,2π).","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5F4kooCsEK4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5F4kooCsEK4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWW1hRW5RY3JYcXk1UVJiaHJRNS1IUQ==","name":"The Math District","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Math+District","origUrl":"http://www.youtube.com/@TheMathDistrict","a11yText":"The Math District. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":229,"text":"3:49","a11yText":"Süre 3 dakika 49 saniye","shortText":"3 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"14 mar 2024","modifyTime":1710374400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5F4kooCsEK4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5F4kooCsEK4","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":229},"parentClipId":"17235897394657342265","href":"/preview/17235897394657342265?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/17235897394657342265?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9969593555327435338":{"videoId":"9969593555327435338","title":"How to Solve a TRIG Equation | \u0007[2\u0007]\u0007[sin\u0007](x)^2 - 3sin(x) + 1 = 0 | Trigonometry","cleanTitle":"How to Solve a TRIG Equation | 2sin(x)^2 - 3sin(x) + 1 = 0 | Trigonometry","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pfy_z3eX4jI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pfy_z3eX4jI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS2VGSTZxWlF4cnBKM3Q2ZUJXbXB0QQ==","name":"TucsonMathDoc","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TucsonMathDoc","origUrl":"http://www.youtube.com/@TucsonMathDoc","a11yText":"TucsonMathDoc. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":157,"text":"2:37","a11yText":"Süre 2 dakika 37 saniye","shortText":"2 dk."},"views":{"text":"29,4bin","a11yText":"29,4 bin izleme"},"date":"8 mar 2011","modifyTime":1299542400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pfy_z3eX4jI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pfy_z3eX4jI","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":157},"parentClipId":"9969593555327435338","href":"/preview/9969593555327435338?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/9969593555327435338?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9153792943451754530":{"videoId":"9153792943451754530","title":"Find All Solutions to the Equation \u0007[2\u0007]\u0007[sin\u0007](x) - 1 = 0","cleanTitle":"Find All Solutions to the Equation 2sin(x) - 1 = 0","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=jHpegxDQObY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jHpegxDQObY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":304,"text":"5:04","a11yText":"Süre 5 dakika 4 saniye","shortText":"5 dk."},"views":{"text":"17,8bin","a11yText":"17,8 bin izleme"},"date":"25 mar 2021","modifyTime":1616630400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jHpegxDQObY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jHpegxDQObY","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":304},"parentClipId":"9153792943451754530","href":"/preview/9153792943451754530?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/9153792943451754530?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5245132173503641133":{"videoId":"5245132173503641133","title":"\u0007[2\u0007]\u0007[sin\u0007]2x+1=0 Solve Polynomial Logarithmic and Trigonometric Equation Test 2025 Mhf4u | Pre-Ca...","cleanTitle":"2sin2x+1=0 Solve Polynomial Logarithmic and Trigonometric Equation Test 2025 Mhf4u | Pre-Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Htux5hEzqYM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Htux5hEzqYM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNFlvZXkxVXlsUkNBeHpQR29mUGlXdw==","name":"Anil Kumar","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Anil+Kumar","origUrl":"http://www.youtube.com/@MathematicsTutor","a11yText":"Anil Kumar. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":670,"text":"11:10","a11yText":"Süre 11 dakika 10 saniye","shortText":"11 dk."},"date":"14 oca 2025","modifyTime":1736853986000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Htux5hEzqYM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Htux5hEzqYM","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":670},"parentClipId":"5245132173503641133","href":"/preview/5245132173503641133?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/5245132173503641133?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4946065568751119381":{"videoId":"4946065568751119381","title":"Solve a Trigonometric Equation: \u0007[2\u0007]\u0007[sin\u0007]^2(x)=1 over the interval [0,2pi)","cleanTitle":"Solve a Trigonometric Equation: 2sin^2(x)=1 over the interval [0,2pi)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KHlh642VgC4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KHlh642VgC4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":293,"text":"4:53","a11yText":"Süre 4 dakika 53 saniye","shortText":"4 dk."},"date":"26 kas 2024","modifyTime":1732579200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KHlh642VgC4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KHlh642VgC4","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":293},"parentClipId":"4946065568751119381","href":"/preview/4946065568751119381?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/4946065568751119381?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4716300028186583151":{"videoId":"4716300028186583151","title":"Trigonometric equations Solve 〖\u0007[2\u0007]\u0007[sin\u0007]〗^2(x)+sin(x)-1=0 Where 0 x 360","cleanTitle":"Trigonometric equations Solve 〖2sin〗^2(x)+sin(x)-1=0 Where 0 x 360","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=N1uJlbXc6pI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/N1uJlbXc6pI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDckc4blBIYnFXdzFLREFMUDVnd3VkZw==","name":"Srikanth Math Academy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Srikanth+Math+Academy","origUrl":"http://www.youtube.com/@srikanthmathacademy","a11yText":"Srikanth Math Academy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":224,"text":"3:44","a11yText":"Süre 3 dakika 44 saniye","shortText":"3 dk."},"date":"6 oca 2023","modifyTime":1672963200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/N1uJlbXc6pI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=N1uJlbXc6pI","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":224},"parentClipId":"4716300028186583151","href":"/preview/4716300028186583151?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/4716300028186583151?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14211616315839962469":{"videoId":"14211616315839962469","title":"How to prove the sum-to-product identity for sine: sinA+sinB=\u0007[2\u0007]\u0007[sin\u0007]((A+B)/2) cos((A-B)/2)","cleanTitle":"How to prove the sum-to-product identity for sine: sinA+sinB=2sin((A+B)/2) cos((A-B)/2)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NjyjKzNgmHQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NjyjKzNgmHQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":336,"text":"5:36","a11yText":"Süre 5 dakika 36 saniye","shortText":"5 dk."},"views":{"text":"45bin","a11yText":"45 bin izleme"},"date":"4 mar 2018","modifyTime":1520182801000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NjyjKzNgmHQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NjyjKzNgmHQ","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":336},"parentClipId":"14211616315839962469","href":"/preview/14211616315839962469?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/14211616315839962469?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1213343071297793149":{"videoId":"1213343071297793149","title":"(\u0007[2\u0007]\u0007[sin\u0007]^(2) x -1) +1=0 | 12 | General Solutions OF Trignometric Equations | Maths | Chhaya Pub...","cleanTitle":"(2sin^(2) x -1) +1=0 | 12 | General Solutions OF Trignometric Equations | Maths | Chhaya Public...","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=X6dKe6wkxSs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/X6dKe6wkxSs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":131,"text":"2:11","a11yText":"Süre 2 dakika 11 saniye","shortText":"2 dk."},"date":"7 kas 2021","modifyTime":1636243200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/X6dKe6wkxSs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=X6dKe6wkxSs","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":131},"parentClipId":"1213343071297793149","href":"/preview/1213343071297793149?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/1213343071297793149?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4935589598019722161":{"videoId":"4935589598019722161","title":"Solve \u0007[2\u0007]\u0007[sin\u0007]^2(x) + 3sin(x) + 1 = 0","cleanTitle":"Solve 2sin^2(x) + 3sin(x) + 1 = 0","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=r89G7vFFBAs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/r89G7vFFBAs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":194,"text":"3:14","a11yText":"Süre 3 dakika 14 saniye","shortText":"3 dk."},"views":{"text":"49,1bin","a11yText":"49,1 bin izleme"},"date":"14 ara 2015","modifyTime":1450051200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/r89G7vFFBAs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=r89G7vFFBAs","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":194},"parentClipId":"4935589598019722161","href":"/preview/4935589598019722161?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/4935589598019722161?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3254593785073535593":{"videoId":"3254593785073535593","title":"How to Solve Trig Equation: sin(x) [\u0007[2\u0007]\u0007[sin\u0007](x) + sqrt(2)] =0, x is between 0,360","cleanTitle":"How to Solve Trig Equation: sin(x) [2sin(x) + sqrt(2)] =0, x is between 0,360","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=N058h7tUTuQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/N058h7tUTuQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS2VGSTZxWlF4cnBKM3Q2ZUJXbXB0QQ==","name":"TucsonMathDoc","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TucsonMathDoc","origUrl":"http://www.youtube.com/@TucsonMathDoc","a11yText":"TucsonMathDoc. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":147,"text":"2:27","a11yText":"Süre 2 dakika 27 saniye","shortText":"2 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"1 haz 2015","modifyTime":1433116800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/N058h7tUTuQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=N058h7tUTuQ","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":147},"parentClipId":"3254593785073535593","href":"/preview/3254593785073535593?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/3254593785073535593?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15104312234662260239":{"videoId":"15104312234662260239","title":"Solve Trig Equation by Factoring: \u0007[2\u0007]\u0007[sin\u0007]^2(x)-sin(x)-1=0 (Radians)","cleanTitle":"Solve Trig Equation by Factoring: 2sin^2(x)-sin(x)-1=0 (Radians)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zIhiiADpeuM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zIhiiADpeuM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":281,"text":"4:41","a11yText":"Süre 4 dakika 41 saniye","shortText":"4 dk."},"views":{"text":"95,8bin","a11yText":"95,8 bin izleme"},"date":"31 mayıs 2018","modifyTime":1527724800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zIhiiADpeuM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zIhiiADpeuM","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":281},"parentClipId":"15104312234662260239","href":"/preview/15104312234662260239?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/15104312234662260239?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3968380474563467748":{"videoId":"3968380474563467748","title":"Trigonometric Identity: cos(2x) = 1 - \u0007[2\u0007]\u0007[sin\u0007]^2(x)","cleanTitle":"Trigonometric Identity: cos(2x) = 1 - 2sin^2(x)","host":{"title":"YouTube","href":"http://www.youtube.com/v/XGk2CpbEl8I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XGk2CpbEl8I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://gdata.youtube.com/feeds/api/users/MathEasySolutions","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":190,"text":"3:10","a11yText":"Süre 3 dakika 10 saniye","shortText":"3 dk."},"views":{"text":"40,4bin","a11yText":"40,4 bin izleme"},"date":"11 ağu 2012","modifyTime":1344643200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XGk2CpbEl8I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XGk2CpbEl8I","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":190},"parentClipId":"3968380474563467748","href":"/preview/3968380474563467748?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/3968380474563467748?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11862011102614616425":{"videoId":"11862011102614616425","title":"EASY Explanation OF Inverse TRIG Functions | sin(\u0007[2\u0007]\u0007[sin\u0007]⁻¹(12/13)) | Trigonometry","cleanTitle":"EASY Explanation OF Inverse TRIG Functions | sin(2sin⁻¹(12/13)) | Trigonometry","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=BJokCsxvbF0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/BJokCsxvbF0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS2VGSTZxWlF4cnBKM3Q2ZUJXbXB0QQ==","name":"TucsonMathDoc","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TucsonMathDoc","origUrl":"http://www.youtube.com/@TucsonMathDoc","a11yText":"TucsonMathDoc. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":97,"text":"1:37","a11yText":"Süre 1 dakika 37 saniye","shortText":"1 dk."},"views":{"text":"9,1bin","a11yText":"9,1 bin izleme"},"date":"11 mar 2011","modifyTime":1299801600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/BJokCsxvbF0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=BJokCsxvbF0","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":97},"parentClipId":"11862011102614616425","href":"/preview/11862011102614616425?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/11862011102614616425?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4616381845294875200":{"videoId":"4616381845294875200","title":"Write 1 - \u0007[2\u0007]\u0007[sin\u0007]^2(22.5) as a Single Trigonometric Function or Number in Exact Form","cleanTitle":"Write 1 - 2sin^2(22.5) as a Single Trigonometric Function or Number in Exact Form","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sIOo1GiZ75U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sIOo1GiZ75U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":69,"text":"1:09","a11yText":"Süre 1 dakika 9 saniye","shortText":"1 dk."},"views":{"text":"5,6bin","a11yText":"5,6 bin izleme"},"date":"19 haz 2018","modifyTime":1529366400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sIOo1GiZ75U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sIOo1GiZ75U","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":69},"parentClipId":"4616381845294875200","href":"/preview/4616381845294875200?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/4616381845294875200?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17117185322851783722":{"videoId":"17117185322851783722","title":"Trigonometric Identity: sin(2x) = \u0007[2\u0007]\u0007[sin\u0007](x) cos(x)","cleanTitle":"Trigonometric Identity: sin(2x) = 2sin(x) cos(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=IaZFDmVtyyU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IaZFDmVtyyU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/@mes","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":96,"text":"1:36","a11yText":"Süre 1 dakika 36 saniye","shortText":"1 dk."},"views":{"text":"21,4bin","a11yText":"21,4 bin izleme"},"date":"10 ağu 2012","modifyTime":1344556800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IaZFDmVtyyU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IaZFDmVtyyU","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":96},"parentClipId":"17117185322851783722","href":"/preview/17117185322851783722?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/17117185322851783722?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16333511611220353394":{"videoId":"16333511611220353394","title":"Graph y = -\u0007[2\u0007]\u0007[sin\u0007](x) | Math | Trigonometric | Sine","cleanTitle":"Graph y = -2sin(x) | Math | Trigonometric | Sine","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NVYmCiJEqTc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NVYmCiJEqTc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmtFZDVnWldPTFZVTmR1aE1iNUZxQQ==","name":"Be Bright","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Be+Bright","origUrl":"http://www.youtube.com/@bebright07","a11yText":"Be Bright. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":61,"text":"1:01","a11yText":"Süre 1 dakika 1 saniye","shortText":"1 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"27 ağu 2024","modifyTime":1724716800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NVYmCiJEqTc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NVYmCiJEqTc","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":61},"parentClipId":"16333511611220353394","href":"/preview/16333511611220353394?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/16333511611220353394?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10666614162854869335":{"videoId":"10666614162854869335","title":"'\u0007[2\u0007]\u0007[sin\u0007]^ -1(3/5)=2tan^- 1(24/7)'|| Prove that \u0007[2\u0007] \u0007[sin\u0007] -1 3/5 = tan- 1 24/7","cleanTitle":"'2sin^ -1(3/5)=2tan^- 1(24/7)'|| Prove that 2 sin -1 3/5 = tan- 1 24/7","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nnk9wTkT9_8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nnk9wTkT9_8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDamlOTm4yeWRkZUt3a3hQVVRxVE81UQ==","name":"concepts & Methods","isVerified":false,"subscribersCount":0,"url":"/video/search?text=concepts+%26+Methods","origUrl":"http://www.youtube.com/@math.concept","a11yText":"concepts & Methods. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":316,"text":"5:16","a11yText":"Süre 5 dakika 16 saniye","shortText":"5 dk."},"views":{"text":"3,2bin","a11yText":"3,2 bin izleme"},"date":"23 şub 2023","modifyTime":1677110400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nnk9wTkT9_8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nnk9wTkT9_8","reqid":"1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":316},"parentClipId":"10666614162854869335","href":"/preview/10666614162854869335?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","rawHref":"/video/preview/10666614162854869335?parent-reqid=1767361775527133-6169305872428843319-balancer-l7leveler-kubr-yp-sas-145-BAL&text=2Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"1693058724288433197145","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"2Sin","queryUriEscaped":"2Sin","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}