{"pages":{"search":{"query":"Algebraic Continuation","originalQuery":"Algebraic Continuation","serpid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","parentReqid":"","serpItems":[{"id":"16714422399688017513-0-0","type":"videoSnippet","props":{"videoId":"16714422399688017513"},"curPage":0},{"id":"8456393125392171615-0-1","type":"videoSnippet","props":{"videoId":"8456393125392171615"},"curPage":0},{"id":"15045470446930191855-0-2","type":"videoSnippet","props":{"videoId":"15045470446930191855"},"curPage":0},{"id":"11837607782579414840-0-3","type":"videoSnippet","props":{"videoId":"11837607782579414840"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEFsZ2VicmFpYyBDb250aW51YXRpb24K","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","ui":"desktop","yuid":"3744360991769399893"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"12897340969601619328-0-5","type":"videoSnippet","props":{"videoId":"12897340969601619328"},"curPage":0},{"id":"2688212009315782319-0-6","type":"videoSnippet","props":{"videoId":"2688212009315782319"},"curPage":0},{"id":"976542139578525706-0-7","type":"videoSnippet","props":{"videoId":"976542139578525706"},"curPage":0},{"id":"4846922559670027576-0-8","type":"videoSnippet","props":{"videoId":"4846922559670027576"},"curPage":0},{"id":"8317937736908237175-0-9","type":"videoSnippet","props":{"videoId":"8317937736908237175"},"curPage":0},{"id":"17575647547320309477-0-10","type":"videoSnippet","props":{"videoId":"17575647547320309477"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEFsZ2VicmFpYyBDb250aW51YXRpb24K","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","ui":"desktop","yuid":"3744360991769399893"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"18099680105972913136-0-12","type":"videoSnippet","props":{"videoId":"18099680105972913136"},"curPage":0},{"id":"7858078376643167637-0-13","type":"videoSnippet","props":{"videoId":"7858078376643167637"},"curPage":0},{"id":"2793310263380283745-0-14","type":"videoSnippet","props":{"videoId":"2793310263380283745"},"curPage":0},{"id":"3629859563401858465-0-15","type":"videoSnippet","props":{"videoId":"3629859563401858465"},"curPage":0},{"id":"17208951426433325738-0-16","type":"videoSnippet","props":{"videoId":"17208951426433325738"},"curPage":0},{"id":"14821029701771323048-0-17","type":"videoSnippet","props":{"videoId":"14821029701771323048"},"curPage":0},{"id":"2355512586354516836-0-18","type":"videoSnippet","props":{"videoId":"2355512586354516836"},"curPage":0},{"id":"14322741334124635167-0-19","type":"videoSnippet","props":{"videoId":"14322741334124635167"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEFsZ2VicmFpYyBDb250aW51YXRpb24K","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","ui":"desktop","yuid":"3744360991769399893"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DAlgebraic%2BContinuation"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"5886386477597700745797","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["151171,0,6;126313,0,96;1281084,0,44;715044,0,9;287509,0,14;1447467,0,38;1466397,0,45;1467128,0,75"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DAlgebraic%2BContinuation","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Algebraic+Continuation","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Algebraic+Continuation","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Algebraic Continuation: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Algebraic Continuation\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Algebraic Continuation — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y653254f26ba5884daaf9da0dbfba166f","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"151171,126313,1281084,715044,287509,1447467,1466397,1467128","queryText":"Algebraic Continuation","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"3744360991769399893","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769399918","tz":"America/Louisville","to_iso":"2026-01-25T22:58:38-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"151171,126313,1281084,715044,287509,1447467,1466397,1467128","queryText":"Algebraic Continuation","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"3744360991769399893","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"5886386477597700745797","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":149,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"3744360991769399893","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"16714422399688017513":{"videoId":"16714422399688017513","docid":"34-9-15-Z80C9FA3ED8379149","description":"Inspired by Pierre Arnoux, Edmund Harriss, Katherine Stange, and Steve Trettel's visualizations of algebraic numbers: https://im.icerm.brown.edu/portfolio/... Pictured here are roots of some...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2227809/313e2fd5915b173409a5bc7b0bec4a38/564x318_1"},"target":"_self","position":"0","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMzMevFaVqr4","linkTemplate":"/video/preview/16714422399688017513?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Algebraic numbers in motion: rotating the constant coefficient","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MzMevFaVqr4\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhYKFDE2NzE0NDIyMzk5Njg4MDE3NTEzWhQxNjcxNDQyMjM5OTY4ODAxNzUxM2quDRIBMBgAIkQaMQAKKmhoaXpsaWVzcGh3cGx0ZGNoaFVDX0J3cllLNXJYT3RLT2oyOWs0SVdvZxICABIqD8IPDxoPPxMyggQkAYAEKyqLARABGniBAgUF9wb5APoEGwf8CPwCAAT_9_f-_QDl-AMQBf4BAPwCCwAKAQAA7wEA-v8AAAD-A_8S9v0BABnz7gABAAAAB_n9__kAAAACDfYH_gEAANr88_8DAAEAKAH8BP8AAAAKCwTtAAAAAPseAwUAAAAAAhgI8___AAAgAC36sMA7OBNACUhOUAIqcxAAGmAPDAAo-xD42vQf19wBxvkX-RT4C9b5ANv0ABAWF-kSEtbV_Pr_N-YJ_sIAAAAKChopBgDNVt7g3BEZAvXo2vz9Pn_e-_MeCBT-1dQYDx4SJPceDjUA7Qbl_Csr_1f2AisgAC3UOFE7OBNACUhvUAIqrwYQDBqgBgAAcEEAAPBBAAA8QgAAcMEAAHzCAAAAwgAAgMAAAGBBAAD4wQAAHMIAAGxCAAAgwQAA2MEAALDBAAAQQQAAmEEAAEBCAABYwgAAPEIAAKjCAAAsQgAAAEAAAMBBAABAQQAAgkIAADDCAAA0wgAAQEEAAABCAABQQgAAQEEAAABBAACOwgAAQEAAAK7CAACowQAAMEEAAPhBAADIQQAA4EAAANjBAADQQQAAAMAAAJTCAADAQAAAQEEAALhBAAAMwgAAgEIAAJDBAAAkwgAAQEEAAIDCAABswgAAcMEAAIjBAACMwgAAAEAAAEBCAAAkQgAAJMIAAGDBAAAkQgAA8EEAAKjBAAAIQgAAIMIAAFzCAADgwQAAKEIAALBBAABcQgAAwMEAADBCAACwwQAAKEIAALjCAAAAQQAAFEIAAJjBAAAwwgAAnkIAAIhBAABowgAAiEIAAAhCAAAMQgAAAMIAAFRCAADIQQAAAMEAAKBCAABAwAAAUMIAAPhBAAAQwQAAWMIAAGDBAAC4wQAAQMAAAGjCAACAPwAAuMEAAILCAABYwgAAHEIAAHDCAABgQQAAoEEAACDCAAAMQgAA2EEAAGDBAABAwAAAIEIAAMDBAACgwAAAgD8AAEDBAAAQwgAAgEAAAKTCAAAAQQAADMIAAGzCAAAAwQAAUMEAADTCAACIwgAA1kIAAK5CAACUQgAA4MEAACBBAAA0QgAAbEIAAIC_AAD4wQAA8MEAAKBAAADYwQAApMIAANzCAAAYwgAAiEEAAPDBAADAQAAA6MEAAARCAACuQgAAEMEAABTCAACEwgAAAEAAAIBBAAAgwQAAKMIAACTCAAAAwQAA6EEAAIC_AAAQQQAAQMIAAKBBAAA4QgAA4EEAAMDBAACKQgAAkEEAAEBBAABgQQAAkEIAANDBAADgwQAAgMEAAEBAAAAgwQAAIEIAAAAAAABwQgAAosIAADDCAAAAAAAAoEAAAABBAACoQQAAQMEAAMBBAAAMQgAAgEAAAGBBAAAUQgAAAEAAADDBAAAMwgAAoEEAAJBCAAAEwgAAwMAAADzCIAA4E0AJSHVQASqPAhAAGoACAAD4vQAANL4AAEQ-AABcPgAAML0AANg9AADoPQAAvr4AAMi9AACIPQAAFL4AAOi9AADoPQAAij4AAES-AADIvQAAiD0AABA9AACgPAAA7j4AAH8_AABAPAAAtr4AADQ-AADIvQAAZL4AAOg9AAA0vgAAhj4AAJY-AACAOwAAZL4AAKi9AAAMPgAAoLwAAKA8AACyPgAAPL4AAKK-AACAuwAAkr4AAGQ-AAAQPQAAcL0AAIg9AACYPQAAhj4AAKA8AACIPQAABL4AAHA9AAA0vgAAqj4AACw-AACWvgAA4DwAAD0_AADIvQAAgDsAAJo-AACOvgAAuD0AAHA9AAAEviAAOBNACUh8UAEqjwIQARqAAgAAgLsAAMi9AABAvAAAPb8AAHC9AACAOwAAEL0AAOg9AAAkvgAAPD4AAJg9AABQvQAAEL0AAOi9AABwPQAAcL0AAOg9AAAlPwAAoDwAANI-AABsvgAA4LwAAKC8AABsvgAAgLsAAMg9AACIvQAAqL0AADQ-AABsPgAAoLwAAFA9AABQvQAAPL4AABQ-AADgPAAABD4AABw-AAAcvgAAMD0AAHA9AAAMvgAATL4AAAQ-AACSvgAAyD0AAH-_AACYvQAAdL4AACw-AABQPQAAuL0AAHA9AADIPQAAgDsAAEC8AABAPAAADL4AAKA8AACgvAAAFD4AAEA8AABQPQAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=MzMevFaVqr4","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["16714422399688017513"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8456393125392171615":{"videoId":"8456393125392171615","docid":"34-7-9-ZDAF15E76C45C71B8","description":"Limits, Continuity, Calculus, Math, Business, Economics, Mathematics (Field Of Study), Algebraic Definition...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4219332/b16f4a3feacfc47e8e9797a6a111a92e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9cUqhgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Db3sRRo4OtEY","linkTemplate":"/video/preview/8456393125392171615?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Algebraic Definition of Continuity","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=b3sRRo4OtEY\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhUKEzg0NTYzOTMxMjUzOTIxNzE2MTVaEzg0NTYzOTMxMjUzOTIxNzE2MTVqiBcSATAYACJFGjEACipoaGdub2t0aWx0Z3RndXViaGhVQ3kwcGNlMGRXSDhuRF9XSkxOeml0WncSAgASKhDCDw8aDz8ThwSCBCQBgAQrKosBEAEaeIELBfP9B_gA8f0K_g4D_gHi9vPw_AAAAOAB9f8L_AIA5_X5-Qr_AAD7-gf8AwAAAOv2C_7yAAEABwYF-gUAAAAc9fQJ_QAAABoH9Pj-AQAA-AL59wP_AAAI-_sL_wAAAPsD_-wA_wAABfsEAwAAAADvDwYA__8AACAALUedvzs4E0AJSE5QAiqEAhAAGvABfxsK_84xyAHPBr4AzxUbAZY2K_8dWPgAwhME_7PtBQATE8UCxdXA_wYFCACtHgkARA3S_wS9Gf9T8fb_PdwJAe8kBgFK6foBPOkoAP7w3P6wH___DQz-AxzPygMKDcj-GP7-BPcaB_vKFqP7Ev5KAQXOFAIQ_AP7wvL5BuMW7wYFuuX68Rn5CA3aEvboGkUBKdQNAgEZA_jvO9z899EF_A0ACwcIAtr5Fd0DCCX68vbnxAgBDvnsDBQLFvPs7_EA8xMlA-nc7vfmB_rwK_wF_bwd8Ana5QkHFAsK_f7bAwfs8fn84dr9AQMW6QTpHvEBIAAt7lr5OjgTQAlIYVACKs8HEAAawAcfvM6-sRKYO0btwDup9xS8RCXDu3cuzLzMpZe9car1PD08lTyYMNo9BSCkvB7WZTwzSKu9rnh0PYZwsbzFVYU-VDBvvZt_KrxxPVq-5xa_PYVMqLz9B7K9v63HO3sOE7zMvpG98bShvGr07jtvmyk9cbtBvc7QLjz9s-67-HptvWMWcL28fMY8bg4fvCINeL2qGN28uAkSvQ2Qoruq9C49R1L3vNQeQDwKIRA8mw85vXVvqLprEbG9x8jIPB8R07xe_4W5qPe5PKv11TtY_ry9xdmevSpLXzsr--68mdkiPWOsHzxBCwk9vuxIPRFKqbxKxMU9l9MUvTBjiryoyCG-AnwcPejpbTzshu09jPeDPXJbkTsdPd69vsAMPrsIC7p_ZUo9v9HzvP_MoLwA8oQ9iSsCPfgrLjw8PSU8Iz17vOqjvrpiNXE8mM6dPQpTTruG4k49kP5yvUagVbytM949KubjuWyE9ru7fGu9g8NmPCB7nDuYWxA9uXnZPOnxADqAM6c86FjUPJLBPDvFNUM9-FENvglvLLvSiYQ790YDvbqBTTpjL589Jv-jPbhiNbxDqR0-H2rbvcSaqTnHeUm8dWeaOs0bK7vRMho854xIvdk8Mzwhhme9OmgEPF2Mnrv8ZYG9jqFSPN_rWrx_Dhi9oGeYPKasTzvbyJC8E2FDvpRZlDl5YqE9VbWuPbdIGDs7Bl89eLcSPUHGs7pas1o9PXaRveqG2LoKo1m9jmnYu8sq8Lp4jce9AmP9vMe21jfHZxI-rqDpvZAJtLl6oxs9nD6hPeBT4Dnr4-G9dYgJvCS2FbnB0hC8_ZMuPL2riznLovC8W0IevjcF4znA7SQ9W--uOR6Pxbk9fu88WrWgPZ0ML7kC9Iu9RTWQvTuGMTj0Xgo8TzbKvELJgrhZHJk9dYVoPeFOjjg_bmQ8vlgtuzd9gzjmpQs7U7s1vX3cwjiq7_w8dP43vaGBEDjCtLm8TIqfvQZgdjjDdyw97kigPW3tGznj3Iu8xg3JPJPDj7blOpc9Uv6kPFBJ_LYVFJA8c-WCvY_pfDgoWC09qw-KPVYUmrgi-wC-xl8kPReYZThrEay7i4DxuwU9hTjNiSe9nPY5vN3cbDZsE908kFIkPYt16TjB4ys-3KVovAeJdLnNx3q90xXsveab-Lh19fS8Wd3qvQ0j8TXmOzi9qC1_PcoQyLL2dHo94A_fvT-Zm7ci_-w9NSkFPvN-W7gD_JS9f6iPPYXkXrlwysG9Mxf4Pbrcpji9tBK6WZ-XvfJmM7ggADgTQAlIbVABKnMQABpgHuwARAAo4_XdStrp8csI5cUX6wDXDv_b3QDtD9gNBhPT5QAEABjdCv-1AAAAJTDmH9IAAme549YxAxnkzbrbBiB_-g315rgT9cTmJz0J7SYeOwc_AAXo0A4g8s4yGBRIIAAtDjQtOzgTQAlIb1ACKq8GEAwaoAYAAOhBAABAwQAAeEIAAGDCAACIwQAAAMEAAKRCAACgwQAAAMIAACDBAACYQQAAssIAAIDAAADIwQAAWMIAAJBBAACKQgAAAEAAAMhBAAAAwQAAUMIAABzCAACGwgAA-EEAAKjCAAA0wgAAHMIAAABCAABQQQAAXEIAADjCAAAwwQAAksIAADxCAACUwgAAcMEAAAhCAABwQgAAcEEAAFBCAADgQQAARMIAACxCAAC4wQAAEEEAAMjBAACAQQAAEEIAAK5CAACAQQAAgL8AABDBAABwwQAAsEEAAPBBAACwQQAAwsIAADBBAACoQQAAGEIAAIBAAACOwgAAcMEAALDBAABswgAA7MIAAODBAACAwgAAoMEAABzCAADIQQAAZEIAAAzCAADYQQAAEEEAAJzCAACUwgAAMMEAAKBBAAA4QgAA4MEAAKZCAAAQwQAAJMIAAODAAACOQgAAyMEAAIjBAABYQgAAEEIAAIBBAAAcQgAAPMIAADDCAABgQQAAEEEAAOBAAADgwAAAiMEAAGBCAACMwgAA2EEAAIDAAABwwQAA0MEAAIC_AACgwAAAwEEAALDBAAAMQgAAmEIAAFBCAACAQQAAFMIAAIjBAABYQgAAoEEAAIjBAACwQQAA0MEAAIDBAABYwgAAgEEAAODAAACgwAAAAMEAAHzCAADwQQAABMIAAABCAABAwQAAKMIAAABAAAAcQgAAoMAAAADBAADIwQAA2EEAAKBBAABgwgAAuMEAAPhBAAAgQgAAGMIAAMhBAAAEQgAAMMEAABBBAABgwQAAiEEAAFBBAACIwQAAPEIAABDBAACAvwAAIMEAAGTCAACowQAAgsIAAIDBAACKwgAAgEAAAABAAAAkQgAA4EEAACBCAADQQQAAWEIAAHBCAAAMwgAAYEEAAPBBAACgQQAAMMEAABTCAAAsQgAAAMEAAJBBAAAswgAA2EIAAMLCAAAgwgAAQMAAAJjBAAAAQAAA-MEAAAzCAABAQgAATMIAAEDAAAAoQgAAAMIAAIDBAACIwQAAksIAAHxCAACYQQAA4MAAAMjBAACgwSAAOBNACUh1UAEqjwIQABqAAgAANL4AAJi9AABkPgAAND4AANi9AABUPgAA4LwAAJq-AACKvgAAoDwAAPg9AAA8vgAAXD4AAKC8AACSvgAANL4AABQ-AABAPAAAXD4AAN4-AAB_PwAAPD4AAPi9AAB8PgAAbL4AAIa-AACoPQAADL4AAEQ-AACKPgAAqD0AALa-AABcvgAAqD0AAIA7AAC4vQAAED0AAJ6-AACGvgAAoDwAAJa-AABMvgAAJD4AAKi9AADIvQAAcD0AAOg9AACmvgAAoLwAAGy-AADIvQAAqD0AADQ-AABkPgAAEL0AANi9AAAdPwAAcD0AANi9AAA0PgAANL4AANi9AACAOwAAhr4gADgTQAlIfFABKo8CEAEagAIAAIK-AABAvAAAfL4AAEu_AADYvQAA4LwAAIC7AABQPQAAZL4AAHw-AABAPAAAyL0AAFC9AAAsvgAA2D0AAKi9AAAQPQAAIz8AABw-AACaPgAAEL0AAMg9AAAUPgAAUL0AAHC9AACAuwAANL4AAIC7AADoPQAADL4AAIi9AADgPAAARD4AAIi9AAAcPgAAbL4AACw-AAD4PQAAcL0AAKi9AAAMPgAAyD0AADy-AACIvQAAiL0AACQ-AAB_vwAAmL0AAIC7AAAUPgAALD4AAKi9AACaPgAAkj4AACS-AACAuwAAQDwAAOC8AAAEPgAAjr4AAPg9AABkPgAA6L0AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=b3sRRo4OtEY","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":788,"cheight":480,"cratio":1.64166,"dups":["8456393125392171615"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4023702376"},"15045470446930191855":{"videoId":"15045470446930191855","docid":"34-3-9-Z508676F7E1165F02","description":"Inspired by Pierre Arnoux, Edmund Harriss, Katherine Stange, and Steve Trettel's visualizations of algebraic numbers: https://im.icerm.brown.edu/portfolio/... Pictured here are roots of some...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3296372/0b1875b3ed4cd589dea26e28f3a90ee0/564x318_1"},"target":"_self","position":"2","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2ZIOYtMqU0o","linkTemplate":"/video/preview/15045470446930191855?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Algebraic numbers in motion: rotating the coefficient of x^2","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2ZIOYtMqU0o\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhYKFDE1MDQ1NDcwNDQ2OTMwMTkxODU1WhQxNTA0NTQ3MDQ0NjkzMDE5MTg1NWquDRIBMBgAIkQaMQAKKmhoaXpsaWVzcGh3cGx0ZGNoaFVDX0J3cllLNXJYT3RLT2oyOWs0SVdvZxICABIqD8IPDxoPPxMyggQkAYAEKyqLARABGniB9AwG8wX6APABEQT5BP8B5gTu-PoAAADo7AQJ_v8AAPwCCwAKAQAA_Az8BQ0AAAD-A_8S9v0BAA329v0EAAAAA_729_UAAAAaCvUJ_gEAAOvwBfMCAAAAIAf4-v8AAAAKCwTtAAAAAOsWDAEAAAAAAhgI8___AAAgAC0cj8E7OBNACUhOUAIqcxAAGmAICQAjABT55fsf3N4G0v8Q_BH8_Nz7AOLqAAwVD-USFdfbCP3_NeMC-8UAAAAFDh8fDADaUvXx2Bwe-e0Iyev_J3_t_eYYDAj_w8smASQeH_sbCjsA6wvXAjUf_kf8DDUgAC3Oq1c7OBNACUhvUAIqrwYQDBqgBgAAmEEAAMDAAAA4QgAAUMEAAHzCAACwwQAAwMAAAJhBAAAEwgAAWMIAAIJCAAAAAAAAgMAAAIDBAABAQQAAmEEAAEBCAABcwgAAGEIAAKDCAAAYQgAAQEAAALhBAACgQQAAnkIAADzCAABcwgAAQEAAAEBCAABgQgAAQMAAAEBAAACWwgAAQMAAAILCAACIwQAAUEEAACBCAADwQQAAcEEAAAjCAACYQQAAEEEAAJjCAAAAwAAAAMEAAChCAADAwQAAjEIAABDBAAAkwgAAgD8AAGzCAAB0wgAAoMAAAJDBAACOwgAAQMAAAMBBAAA0QgAAQMIAAIA_AABkQgAAqEEAANDBAAAEQgAAGMIAAGzCAAAwwgAAIEIAAMBBAAA8QgAAoMEAAARCAAAQwQAAJEIAAKLCAACgQAAABEIAAMDBAAAswgAAnEIAAABCAACEwgAAdEIAAHBBAAAcQgAAAMIAAEBCAAAEQgAAiMEAAJJCAABgwQAAZMIAAKhBAADgwAAALMIAABTCAADYwQAAAMEAAHjCAACQwQAAAMIAAGDCAABYwgAALEIAAFDCAACAQQAAoEAAAMDBAAAUQgAABEIAAODAAAAgQQAAKEIAALDBAADgQAAAqMEAAATCAAAgwgAAUEEAAIzCAACAQQAAiMEAAGjCAACAwQAAcMEAAEDCAACmwgAA4kIAAMpCAACIQgAAEMEAAABAAAAYQgAAQEIAAGDBAAAAwgAAYMEAAAAAAAAUwgAAmMIAANTCAAAUwgAAyEEAANDBAACgwAAAOMIAANBBAACiQgAAYMEAAHTCAAB0wgAAAMAAABBBAACQwQAAQMIAAATCAACgwAAAMEIAAKDAAABgQQAAGMIAAJBBAABAQgAAIEEAALjBAACCQgAABEIAAMhBAAAwwQAAhEIAAIDBAABIwgAAiMEAAMDAAABAwQAAFEIAAADAAABIQgAAoMIAAGDCAACQwQAAMMEAAABBAADAQQAAQMEAADBBAAAcQgAAQEEAADBBAACYQQAAgEAAAADAAACgwQAAyEEAAHxCAAAwwgAAgD8AADjCIAA4E0AJSHVQASqPAhAAGoACAACgvAAA6L0AADw-AADoPQAAUL0AANg9AABEPgAA5r4AAAy-AADgPAAAQLwAAAS-AAA8PgAAnj4AAIK-AACIvQAAyD0AALg9AAAwPQAAxj4AAH8_AACAuwAAmr4AACQ-AAAcvgAADL4AABA9AABUvgAAgj4AAGw-AAAQPQAAXL4AALi9AACgvAAAED0AAPg9AACWPgAAJL4AAIq-AAAwvQAAPL4AAHQ-AAD4PQAAoDwAAIi9AABQPQAALD4AABA9AAA0PgAAFL4AAPg9AACYvQAAtj4AAIY-AAB0vgAAoDwAACE_AADYvQAAQLwAAEQ-AACGvgAA4LwAAAQ-AACovSAAOBNACUh8UAEqjwIQARqAAgAAcL0AABy-AACIPQAASb8AAPi9AABQvQAAmL0AAMg9AAAsvgAAVD4AAIg9AACYvQAA4LwAAKi9AACgPAAAcL0AAMg9AAAhPwAAiD0AAL4-AAC4vQAAEL0AADC9AAAsvgAAoDwAAOA8AADIvQAAcL0AAGQ-AAB8PgAAML0AAHA9AADgvAAAdL4AACQ-AAAwPQAAFD4AAAw-AAA0vgAAqD0AAIA7AAAEvgAANL4AAJg9AAAUvgAAUD0AAH-_AADoPQAAHL4AAHA9AACIPQAAFL4AAHA9AAD4PQAAmL0AAKA8AACgPAAAuL0AABA9AAAwvQAAFD4AAKi9AACIPQAAMD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=2ZIOYtMqU0o","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["15045470446930191855"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11837607782579414840":{"videoId":"11837607782579414840","docid":"34-7-2-Z98F20C4D3A136F05","description":"This video covers the properties of limits, the indeterminate form 0/0, vertical asymptotes (limits going to positive and negative infinity), piecewise functions, and a brief review of continuity.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/488532/4ec1deab2f7061889872d4eacdc8d338/564x318_1"},"target":"_self","position":"3","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbbV2NP-S1eM","linkTemplate":"/video/preview/11837607782579414840?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Unit 1 Algebraic Limits and Continuity","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bbV2NP-S1eM\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhYKFDExODM3NjA3NzgyNTc5NDE0ODQwWhQxMTgzNzYwNzc4MjU3OTQxNDg0MGqvDRIBMBgAIkUaMQAKKmhocXN5dHBscnRpcmJob2JoaFVDcC1BQ2stODM5ZGcxZ0c2ZjZoLWpHQRICABIqEMIPDxoPPxPXD4IEJAGABCsqiwEQARp4gfsE-wAB_wDy_Qr-DQP-Afr99vH5_fwA5PD7AAn9AQAA9_4NCAAAAPYECvz_AAAA9vL9Cff_AQD5Dvn7BAAAABQABQT8AAAABwz6_f4BAADs8QT0AgAAABv88Pn_AAAA_AL_7QAAAAALAAABAAAAAPz4BvYAAAAAIAAt7d_OOzgTQAlITlACKnMQABpgEwkAGvwe4f0XTvDjBtcJC70V7v_EBf_8DwABAt7w-vnjxgsFABn5Cg-8AAAAGzPeHPAA8Vfo46oo9B7f-MEMBAt_3gbVDuz77MTkEA49BvYLLiEuAOHxBv818PccDRwkIAAtyhBIOzgTQAlIb1ACKq8GEAwaoAYAAKhBAADgQAAAnkIAANrCAABQwQAAEMEAAIJCAAAkQgAABMIAAKjBAAAYQgAAgL8AADDCAADgQQAAEMEAAFDBAAA4QgAAVMIAAABCAAAgwQAAEMEAAIC_AADWwgAAZEIAACTCAACwwQAAgL8AAFDBAACgQQAAQEEAAKDAAAC4QQAAGMIAACRCAADIwgAAoMAAAIC_AACiQgAAqMEAAI5CAAAwQQAA4EAAAFBBAADQwQAAQEAAAGjCAAAkQgAAeEIAANhBAACYQQAA6MEAADjCAAAAwAAAUEIAAEBCAACAwQAAvMIAANjBAACgQQAAyEEAAIhCAACAvwAAiMIAAGjCAABwQQAAhMIAAJDBAABcwgAAuMEAAATCAABYQgAALEIAAIhBAABcQgAABMIAANhBAAAwwgAA2MEAABBCAAA0QgAAMEEAAKxCAABQwQAAwEAAAMDAAACKQgAAQEAAABjCAABMQgAAYMEAAPhBAAB8QgAAhsIAAHBBAADwwQAAsMEAAJTCAACoQQAAcEIAAGhCAAAYwgAAIEEAAHxCAAC4wQAACMIAAADBAABAwAAAwEEAAEDBAACAQgAAMEIAAJBCAABgwgAAuEEAAIA_AACQQgAAkEEAAFDBAAAwwQAA4MEAALDBAAAAwgAAoEAAABjCAABAwQAAAAAAAMDBAACgwAAAGMIAAMBBAAAQwQAAKMIAAABAAACwQQAA0MEAABhCAACAQAAAlEIAADDBAADwwQAAAAAAAOBAAACQwQAAlMIAAOhBAADgQQAAoMAAAABBAAAowgAAiEEAAIbCAACYQQAAGEIAADxCAABAQQAAKMIAAHDCAADgQAAAUMIAAMDAAAA8wgAADEIAADhCAAC4wQAAiEEAABBBAABYwgAAvkIAAExCAADAwAAAsEEAAIBAAABAwQAARMIAADDCAABUQgAAMMEAAODAAADoQQAAiEIAAKLCAAB0wgAAgEAAAJhBAABUQgAAiMEAAGjCAAD4wQAAgL8AADDBAAAMQgAAgEEAABBBAACYwQAAoMAAADxCAAAAwQAAsEEAAAxCAABAwSAAOBNACUh1UAEqjwIQABqAAgAAiL0AAHA9AABMPgAAmL0AADC9AAA0PgAA4DwAALK-AAAkvgAAyD0AABA9AACYvQAAHD4AADA9AACWvgAAEL0AADw-AACovQAAJD4AAO4-AAB_PwAAED0AAFA9AABwPQAAmL0AAEC8AABwPQAA6D0AAJq-AAAMPgAA2D0AAGS-AAAQPQAAXD4AAOg9AAAsvgAARD4AAFy-AADGvgAA-L0AANa-AAAcPgAAXD4AABy-AACAuwAAiD0AAII-AAC4vQAAgLsAALi9AABQvQAALL4AAHQ-AACSPgAAHL4AAJi9AAALPwAAMD0AAKC8AABUPgAAuL0AAEw-AAAQPQAA-L0gADgTQAlIfFABKo8CEAEagAIAACS-AABwPQAAbL4AADu_AAAQPQAApj4AAI4-AADIvQAAfL4AAK4-AADgPAAAUL0AAKi9AACovQAA2D0AAKi9AAAEvgAAQz8AAES-AADSPgAAqL0AAEy-AAAQPQAAuL0AAOC8AABAvAAAFL4AADA9AACIPQAAuL0AAOA8AAC4vQAA4LwAAOi9AABsPgAALL4AAEQ-AADgvAAAPL4AACy-AACIPQAAoDwAAMg9AABAvAAAZL4AAEQ-AAB_vwAADL4AAEC8AAAkPgAAQDwAAKA8AAAkPgAARD4AAKi9AACAOwAAQLwAAEA8AABkPgAAUD0AACQ-AAB8PgAADD4AABC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=bbV2NP-S1eM","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["11837607782579414840"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12897340969601619328":{"videoId":"12897340969601619328","docid":"34-2-4-Z5AFF73B79FC968B6","description":"In this episode, we examine Georg Cantor’s seminal 1874 paper, On a Property of the Class of All Real Algebraic Numbers. Cantor presents a method for ordering all algebraic numbers using a unique...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/472628/4feb5f56b760549208717d952ba818b5/564x318_1"},"target":"_self","position":"5","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFIFP7CNoeQ0","linkTemplate":"/video/preview/12897340969601619328?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cantor’s Continuum: Algebraic Numbers and the Infinite","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FIFP7CNoeQ0\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhYKFDEyODk3MzQwOTY5NjAxNjE5MzI4WhQxMjg5NzM0MDk2OTYwMTYxOTMyOGquDRIBMBgAIkQaMAAKKWhocmJsdm9yZGdyYmlzbmhoVUNJVXdwR0gwdWpjRlA5cFFuVjRWc21REgIAESoQwg8PGg8_E7QHggQkAYAEKyqLARABGniB_vYE_wAAAOjzB_79AAEA-QP_Afn9_QDjAfb_CvwCAPUO__4GAAAA9AIH8P4AAAAN9gIEAP0CABML9fYEAAAACPPz9P4AAAD-Bv4K_wEAAP8B8_0D_wAACf3xDAAAAAD8Av_tAAAAAAECCQAAAAAA9A4N9v__AAAgAC0ettI7OBNACUhOUAIqcxAAGmDzAQA7-B747eUh5uTzzPID5AT8ENT3AN_4AOgN9vQMC9bUAh3_IPb-BckAAAAUFhUY5QDxR8bs0hwSF-vr1vUIHX_0CtgC2A726vP7GRP6G_kg8hgA7Rf0AUAJ3zUGDDkgAC1JA2Q7OBNACUhvUAIqrwYQDBqgBgAAqMEAACxCAABAQgAA4MAAAOBBAABgwQAABEIAABDCAACAwgAAIMIAANhBAAB8wgAAHMIAAEzCAAAEQgAAMMEAAIDAAAD4QQAAQMIAAIzCAABMwgAA4EAAAIC_AADAQQAAoEAAAODBAAD4wQAAXMIAAKxCAAAgQgAA0MEAAODAAACAwgAAEEEAACjCAAAAQAAAQMEAAN5CAACgQAAAkEIAAAhCAAAgQQAACEIAANBBAABAwQAA0MEAAIjBAABkwgAAgkIAAIA_AABAwQAAdEIAAPDBAACAwQAAAMAAADDBAAAAwwAAcMEAAJDCAAAsQgAAEEIAAMBAAADQwQAAUMIAAABCAACQwgAAqMEAADDBAAAgwQAAgMAAAHRCAACoQQAAgD8AAEhCAADIwQAA4MEAALDBAACgwQAAkkIAAJBBAAAYwgAAZEIAAGBBAACAwQAA-EEAAIDBAABAQgAAmEEAAN5CAABwQQAAUMIAAHRCAAAAwQAAxMIAABxCAACkwgAA6EEAAGBBAAAIwgAAoMAAAJDBAADIQQAAcEEAAFTCAABgwgAAQMEAABjCAADAQAAAcMEAAGDBAAD4QQAAPEIAAEDAAACIwgAAQMAAAJBCAADwwQAAQMIAAEDAAAAgwgAA-MEAAEjCAAAAwQAAwMAAAIDAAAAIQgAA2MEAADTCAABQwgAAYMEAAAxCAADgwAAAOMIAAEBCAADgQQAAgkIAAIBAAABwQQAA8MEAAJrCAABUwgAAGEIAAEBCAADAwAAAWEIAAPBBAACAwgAAgEEAAIA_AAAEQgAAEEIAAGDBAACAwAAAkMEAACjCAADgwAAAgEAAACjCAABswgAAUEEAAKDBAADAwAAAfMIAAOBBAAA8wgAA4MAAAAAAAAAQQgAA0EEAAKBBAAAcwgAAfEIAAETCAADgQAAAIMEAADDBAADYwQAA2MEAAAhCAADAQAAAAAAAAGTCAADYwQAAAMIAAChCAACgQQAARMIAAFRCAABAwAAAMMEAABjCAACWwgAAIMEAAIDAAADYwQAA8EEAACDBAABgwgAAbMIAAOjBIAA4E0AJSHVQASqPAhAAGoACAACyvgAAdL4AAMg9AAAkPgAA-L0AAII-AABwPQAAH78AAMi9AAAQvQAAVL4AAHy-AAB8PgAAUL0AABy-AAC4vQAAqL0AABA9AACYvQAAIT8AAH8_AACgPAAAir4AAOg9AAAkvgAAyL0AALg9AABkPgAADD4AAGQ-AACaPgAAC78AAGS-AACqPgAAnj4AABw-AAAcPgAAUD0AAL6-AACWvgAA2L0AALg9AADOPgAAor4AAPg9AABAvAAAjj4AAGy-AAAsPgAAjr4AAKC8AACCvgAAbD4AAGw-AAAMvgAAUL0AAE0_AAB0PgAAir4AAPo-AAAwvQAAQDwAABw-AAC4vSAAOBNACUh8UAEqjwIQARqAAgAAPL4AAIC7AACYvQAARb8AADy-AAAwvQAA4LwAAEA8AABQvQAAiD0AABS-AAAEvgAAQDwAALi9AACgPAAAmL0AAKi9AABPPwAAFL4AAMY-AAA8vgAAjr4AAEA8AABcvgAAQLwAAHC9AADovQAAED0AADw-AACAOwAAgDsAAFA9AAC4vQAAiL0AAKI-AAAwvQAAjj4AADQ-AABUvgAAuL0AAOg9AAAMvgAAbL4AADC9AACivgAAMD0AAH-_AACYvQAAqr4AAEC8AACIPQAAQLwAAIg9AACSPgAAcL0AAOA8AABAvAAATD4AAMg9AACAOwAATD4AAOA8AADYPQAA-L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=FIFP7CNoeQ0","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["12897340969601619328"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2688212009315782319":{"videoId":"2688212009315782319","docid":"34-9-5-ZF7EB48F8B5534FA7","description":"continuity laws. A constant multiple of a continuous function is continuous, the sum of continuous functions is continuous, the product of continuous functions is continuous, and the quotient of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1369961/8995761f1b5fe206d50022bd899cfba2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/k9pZNQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSbk-DDhuEvc","linkTemplate":"/video/preview/2688212009315782319?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proving the Algebraic Continuity Laws | Real Analysis","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Sbk-DDhuEvc\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhUKEzI2ODgyMTIwMDkzMTU3ODIzMTlaEzI2ODgyMTIwMDkzMTU3ODIzMTlqiBcSATAYACJFGjEACipoaGNjYXh6aGJ6c21qbGliaGhVQ3lFS3ZheGk4bXQ5Rk1jNjJNSGNsaXcSAgASKhDCDw8aDz8TnwOCBCQBgAQrKosBEAEaeIEEB_j8_AQA9QILAAIE_gH3BwTw-f39APQJ9An8Af8A-AAF-gcAAAD6_QgEAAAAAPb5___0_wEAAA70CQMAAAAYAv0A-AAAAA4D-P7-AQAA9fL_AQP_AAAO7PsB_wAAAPkOBPEAAAAABQIHCAAAAAALBP37AAAAACAALRLU3zs4E0AJSE5QAiqEAhAAGvABawrvAe3z_AL7FekAuBbv_4EFC_8NEN4A2fn_AMv51gDyEucA5v8M_wURAwDbGQ4AEuHp___rBQA56gcACuj3APD8_QAp2AwBLxACAOoF7QDnGw3_GQITAPnk3v8tGPz_F_QO_fTx4P8ABegDB-AuAgoGIAMg_fn_8ucg_uAH-QH0D-D-9hD8Bfv2_PzsJBoBBPTy__0G8__fBOwCBvT6_vDkCwANFQD6FBr4CfEJ9ADg_vIA7Pv3_xAYGv_6CPz88QEF_ObjAAATCggGAfsFAuoA-QQO1ewH-wH5A_UFDPjo8vv55wIKAvIGCAXaA__-IAAtbidIOzgTQAlIYVACKs8HEAAawAcSg-C-T_3ovPwiXD0KB8y9Vw8UvDSFDr0U2pi9J095PQsRibuYMNo9BSCkvB7WZTz2lmK-BXiBPHk_DbwUlEI-RkUcvXPoALxYx9G9DLyJPGwDfL23siS-KRXDPETQYrwrP189fl9xu5_NKryg4tg9YTyevMVPiLxdF769XZalvJLNVb35Rrm9U5ecvWWa37xhr4s8tyQsOuOwDz2UlAU95zjduRm7EDwvb-m8IanoO2FmhLy31aw758wxPdk-BL1w0F49syXrvIZgyzxIHI29J3WXuspyL7vcx0C9szjOu9bZmrxoCKa65zCEPEAmo7xpox890iMhuVqJVLzZP--9nPn1PQM2b7vkhv89OXb1PIxvnjwYPmK9drd8PRbfKzwH_da8awqmuu8ip7xYfi89dPU-PDt4XDwryjs9gbawvNCiUryNSiU91iMoPSzzljwrFVS8N92yvKKGpbxd_yk9DLXBPD90nLwHRAi-HYgWPX_ThbzysIU9dmGVPbhlE7zPE8-7tBlMPGbEfTtgZ4Q9-RG_vT1rEjz6WKa9y1CQvR2nrrsdbcE9OWkQPS4Ff7wiGyg-sWnKvNulyzrnFh-9jUepvPkDs7o3qu48KplSvQtHazzZ9bG9SEcpuiMwGbrTtqs8sDqSPYnx9buvZni8LTeSPZ5VDztmhFe9NpIEvSwQ-ztowIo9tcCDPBQmiDsti5M9nq8ePaCiDzqBW_c9CEuWvfhf7jhpGB-8FCIgvTompDo04S29ynQFvD20oTneuaY9O2gbvdoZxzmow0o9ZmfRvAS39biUidu9Cd2aPe-96Dj13Ug921ZoOXiYBLkUnYu9iXrhvcYncDmRYuC9umUsvTNUfLjQdN077CO2PRVUIbgGJEa9w1e1vQjIXTctQSa9Ik7Mu5R_C7kMhLM9jy8GPUh15rgezOC71vFOvT_mJbnjY6G929sSPaPwdzkCMk-9I4LRPXW3vDjAlYm6RGN3vV7cFbh0PqE8hX-cPYyWRLk_yXg8ngG_PXtAh7ZVmZQ7k0yDPZQPmbjD0-s8Zyb4vSIkJLgu55I9FuA2PScnFrlodTK-ZKQoPRfKTLeOiLU62cpwvf8JZzd9IHk9sCICPM-3rTcZa2S9VsRfvbnrJTj3ASg-cGHdvfFnv7nsI2G9vyeYu13D5bc455a8RsA3vWriA7ik0Ai9JEQJPpsWwTYd4ww8Z0bfvWlQEri5wXU8LewJPoYn5zg8Kfq7VSptPeAyjbjaETi9LSuoPPQiJLhbB4c8e636vP4scrcgADgTQAlIbVABKnMQABpgHP0AD-828_v1OvX8Fdjz6fns9BrRDv_03wDzFgL1EwjxvxLw_z_fCOq4AAAAFPDeGgAA_WLnAt0L2iblzbXyEiV_5_8nwtUC3sruHSQW9ygEEBxGAOL2tiMb4u85_Bw7IAAtHlg-OzgTQAlIb1ACKq8GEAwaoAYAALJCAAAgwgAANEIAAETCAAAswgAAUEEAADhCAADQwQAADMIAAMhBAAAkQgAAWMIAADDCAACgQAAAcEEAAMjBAAAYQgAAkMIAAEhCAAAQwQAABMIAAODBAADQwQAAhkIAAAzCAAAQQQAAIMIAAFDBAAAQwQAAwEAAADzCAABQQQAASMIAAADBAACawgAAjEIAACBBAAC6QgAAOMIAACRCAACIQQAAQMAAADBCAACYwQAA0EEAAIjCAACYQQAAsEEAAKhCAAAEQgAAHMIAAMBAAABQQQAAMEEAAHBBAABAwQAA0sIAABDCAAAkQgAASEIAAJhBAABIwgAABMIAACDCAACAwAAAJMIAAHDBAAA0wgAA0MEAAITCAABMQgAAsEIAAILCAAAMQgAAiEEAAFzCAACMwgAAgEAAAKDAAABQQQAAgL8AABBBAABwwQAAEMEAAEBBAACYQQAANEIAABBBAAAQQQAAKMIAAADCAADKQgAAVMIAADjCAACgQQAAmMEAAAAAAADwQQAAmEEAANhBAACOwgAAFEIAAFRCAACAwQAArsIAAOBBAADAwAAAZEIAAMDAAAAMQgAAdEIAACxCAABAwgAAUEIAALjBAADoQQAA0EEAAIjBAACwwQAAPMIAAADCAABcwgAAOMIAADzCAADoQQAAJMIAAKjBAADIQQAAUMIAAJBBAACIwQAA4MAAAABAAAAIQgAAUMEAAEBCAABAwAAAEEEAAJhBAACWwgAA4MAAAGjCAAAgQQAAFMIAABhCAAAgQQAAJMIAAOBBAACgQQAA-EEAAIDBAADgQQAAGEIAAAjCAAAMQgAA4MEAAMDBAAD4wQAANMIAAOBAAADAwQAAgEEAAFDBAAAgwgAAMEEAADBCAACgQAAAjEIAAHRCAACQwQAAwMAAABBBAACgQAAA2MEAAEDBAACAQQAAEEEAAKLCAAAQQgAAAEIAAI7CAAAYwgAAuMEAAOBBAAC8QgAAmMIAAETCAAAAwQAAGMIAAGDBAABgwQAAgsIAALhBAAAwwQAAUEEAAJBBAAB4wgAA-EEAAIDAAABAwiAAOBNACUh1UAEqjwIQABqAAgAAqr4AAOA8AADYPQAAgLsAAKi9AACmPgAAHD4AAB2_AAC4vQAAQDwAAPi9AAAMvgAA2D0AAAw-AAC6vgAAqD0AAFw-AACYvQAA8j4AACs_AAB_PwAAhr4AAJo-AABMPgAAqr4AAMi9AABQPQAALD4AAAS-AAAQPQAATD4AAPq-AAAwvQAAqL0AACw-AABEvgAAuL0AAIK-AADWvgAAoDwAAIq-AACoPQAAPD4AAIq-AADYvQAADD4AALY-AAAbvwAAyL0AAKq-AABEvgAAoDwAANg9AABEPgAAHL4AAOi9AABBPwAAnj4AAEy-AACCPgAAJL4AAAw-AAA8vgAAbL4gADgTQAlIfFABKo8CEAEagAIAAL6-AAA8PgAAVL4AAGG_AAA0vgAAqD0AAKo-AACAOwAAiD0AANI-AAA8PgAA6L0AANa-AABcvgAAHL4AAKg9AADSPgAAHz8AANi9AACmPgAAPL4AAEQ-AAAwvQAAgDsAAHy-AADaPgAA2L0AAMg9AACgPAAAED0AACQ-AACgPAAAFL4AAGy-AAAcPgAAVD4AAMo-AAD4PQAAgr4AADS-AABEPgAAmD0AAFy-AADIPQAAFL4AAN4-AAB_vwAAmL0AAJq-AABUPgAAfD4AAKg9AAC6PgAAyD0AACw-AACgPAAAQDwAAEC8AABcPgAAwr4AAIg9AABwPQAA4DwAAII-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Sbk-DDhuEvc","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2688212009315782319"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1955132349"},"976542139578525706":{"videoId":"976542139578525706","docid":"34-0-10-Z35B663FC9CD68438","description":"Limits of Algebraic Functions ||All in One || Calculus: Limits and Continuity || Limits of Algebraic Functions ||All in One || Calculus: Limits and Continuity || In this tutorial video, how to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3936459/93869073fe30a725d02bae1e602e41eb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/QyL60QAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtnhdduncZK0","linkTemplate":"/video/preview/976542139578525706?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limits of Algebraic Functions ||All in One || Calculus: Limits and Continuity","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tnhdduncZK0\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhQKEjk3NjU0MjEzOTU3ODUyNTcwNloSOTc2NTQyMTM5NTc4NTI1NzA2aoQJEgEwGAAiRRoxAAoqaGhraHllb25lcmhzbXJ6Y2hoVUNqYWxZaEhTYTUwVDF2WmxjdVpvMjdBEgIAEioQwg8PGg8_E5IaggQkAYAEKyqLARABGniB-wPzBwAAAAP_BQENBv4BAfz2_Pj9_QDl8fX_-_0BAP0CCgAJAQAA8wj99vkAAAD4-foQ__8AAPwHAgDvAP8AEwAFBPwAAAAED_sECgABAfgB_AED_wAACwPtAQAAAAAABAT2-_8AAPv0_wkAAAAABwYKA_8AAAAgAC2aTNQ7OBNACUhOUAIqhAIQABrwAX8bCv-n58n-8vHiANc5_AC0KD3_CjnvAMEO5P8LwtQCsiy6AfQS_P8aRDAA0S7YAD3NyP7zofQAMeft__r3DADmJB8AJu_bAGj7-gHNw-b_vhZCAfDNLv8P9QoDBSrT_gz5JgIkEu8C2-z0_jXp9wnqDB4HBAwMA9q21wG7EA4Aw9XB-usCDwIN2hL2t_UJBg3B5wX7Cer_Cxr5DUTXBADm0xIBLiQBARXEBP8Q6NYDmwL8BP0sxfwjLQz5--fY_Ab6GPne7_rx-_jf-iXsBvX7G-T5C-vzCQ7oDfkl7u_x7esK7QsM_B0c7voFFDDv_CAALe5a-To4E0AJSGFQAipzEAAaYDLjADziLs0G-DnoHvraCOKfEdEFwST_Ffb_0DDkCwD-zcTt_QDx5wPhoQAAACQ33P_sANh_vOcMK-It0-Wc9SMQaPkt-sfJ-eKdyS81LvEyLhIbOQDOBq4JHvPdSwZDRCAALVIZFzs4E0AJSG9QAiqPAhAAGoACAADgvAAA4LwAACQ-AAAMvgAAuD0AANY-AAAQPQAA6r4AADC9AADgvAAABD4AAGS-AACWPgAARD4AAJa-AACYPQAAiD0AAOC8AAAwvQAADT8AAH8_AAAEvgAABL4AAEA8AAAcvgAAQLwAABw-AACoPQAAcL0AAOg9AAA8PgAAPL4AABS-AADYvQAAyD0AAKq-AAAwPQAANL4AAKq-AADgPAAA9r4AAEA8AACyPgAARL4AAJg9AACovQAAVD4AAK6-AABwPQAAiL0AANi9AABAvAAAhj4AAIY-AADgPAAAML0AAA0_AACAuwAAfD4AAKo-AACAuwAAyD0AADA9AACgvCAAOBNACUh8UAEqjwIQARqAAgAAVL4AAJi9AAAkvgAAX78AAEy-AABsPgAA0j4AAIC7AADWvgAAmj4AACw-AAAQvQAAgr4AAHC9AACIPQAAgDsAABC9AAA_PwAA4LwAAJ4-AADIPQAAEL0AAJi9AACovQAAyL0AAHC9AADovQAA-D0AAEA8AABQvQAA-D0AABy-AADovQAAnr4AAKY-AABAvAAAZD4AAFC9AAC6vgAAhr4AAOg9AADoPQAAMD0AANg9AACAOwAALD4AAH-_AADovQAAND4AAKg9AAAEPgAAgj4AAPg9AAA8PgAAQLwAAOA8AABQvQAAkj4AALI-AAAkvgAAmj4AAOY-AABsPgAA-L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=tnhdduncZK0","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["976542139578525706"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3940733047"},"4846922559670027576":{"videoId":"4846922559670027576","docid":"34-2-4-Z0DBFDA284E39547F","description":"How can we generalize algebraic field extensions to arbitrary commutative rings? This lecture is part of a master level course on Commutative Algebra and Algebraic Geometry. Keywords: integral...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3468507/4e62383e517aed02f0216f003bf556e3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cEjk5AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DwSu2fqUWgp8","linkTemplate":"/video/preview/4846922559670027576?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"6.1 Integral ring extensions (Commutative Algebra and Algebraic Geometry)","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=wSu2fqUWgp8\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhUKEzQ4NDY5MjI1NTk2NzAwMjc1NzZaEzQ4NDY5MjI1NTk2NzAwMjc1NzZqiBcSATAYACJFGjEACipoaGZ6cXZxeWJ2dWJwYWdkaGhVQ1BXbmhSMjlWSFRBazdyWlVFRFFkRFESAgASKhDCDw8aDz8TiAaCBCQBgAQrKosBEAEaeIH8CQD9-wUA_Q30B_kG_gL2-fv8-v79AOQF_QEA_AIA-PYEAAsAAAD-CwcCAAAAAP4G_goD_gAABgX9-_sAAAAIAgAA9AEAAA0G__r-AQAA7_70-QIAAAAG8AUN_wAAAAUF-_f-_wAA_wYF_QAAAAAK_Qv3AAAAACAALaML4Ts4E0AJSE5QAiqEAhAAGvABbxL8_9QJAgDdEOAAxCkJAIEiCv4QFdQAvfILALz3ygDvPOsA4ur0AAkGNQC9BwH_MNjT__7z3gE2_QT_Ff78APv2CAAovvUBNQ8WAggIBQCxMBz9F_gPAP3K4AAb_9z_BQT-__oBy_8bFc4BF-cqAgT_PwAW9SAC_-AJ-vwLAAXV7OX__QcCBPPnGgDaGR4CAt71AgEUAvrGE_sE-Avj_evlCfUkHQEAHvPiBdP7B_rT7vj4Bvbv-_wjGQr9_wP75wMVAATd8vkIB_YAKewHBenp-QH_5vr4Gu7_9-0P-P333Q74xAv6BhML9Avv9vj_IAAt_yEdOzgTQAlIYVACKs8HEAAawAdma8W-fnN_vCNN-rulnY-9ROTPvIVLvbyrIgy-EgCHPZuIozwUdhE-3w7evCa-gzskQz6-iHJYPUnombrFVYU-VDBvvZt_KryG4wm-3yD1PKwBKr0R_D--f2B4PRBEErwq_4o9878mPNnNzjsb9gs-zEwEPLN36zxvsQy9VlsbvVI4zLxPCHw7ctJFvd-KRLz7ipo82ip3vOWtxDztr4g9g-4cvS7aa7szeE68NNb-vL4exLu_tYO9eYqBPFppDLsED8I9IiaHPRBKTjx2TW28vQfDvI2Rtrvcx0C9szjOu9bZmryNf587oY59Pf8JLrzwbmA9W1U7vVbYZ7zKqT2-2xa1PbRM-7j31rY9qvDUOWhXBDsYPmK9drd8PRbfKzxz2P08SfaEOeXHKbwA8oQ9iSsCPfgrLjwPVm09hSHXvC88pTxtXgs9iU16PRBiITuk1BI8zkKxvN6P27yEjgw9H4IqvJaVprzfiM69khk5vLahT7o0R9Y99DY2vKFnPbqnB2U9W5TZPNjCYjwhn8Y9YswnvQrOBzx1-FW9wf4rvRcqf7zdwX49vLskPYh7kbx0Iww-XFNFOzz8c7rxbpu9ycuavV5tAbzDPps9E481vSUkEjyQ2Vm9sCNpvDWlCLyyy4G89wy8PXHyDbtiQEC9MeygPVgW8To1hB697s4cPIC_lLtOEMA96N8pvcoiWLoti5M9nq8ePaCiDzrCTNs9Ox3ovXbP2Dlkq7C8lueGvYjk2Lr8ie-8YUEwPV1DYLkfotE9WPgfvXnRijjyv5s9NASDuUaIAzmzvyK9-pDBPOOtHznub5o8oywyvbz3m7jLovC8W0IevjcF4znUG5S93drbu8GBcDjf9f48-PYzPTE2aTlff729Hxg7vQjVN7nEsU69lf-aPGlBYbjmVr09ZcjxPW8rajcpY9e8jf4hvXBNm7mdrwO9jgiEu78WJTlBIx09SS_qPeRC7bjsua-7xcGavROAdjl0PqE8hX-cPYyWRLkGzmM9DSsmPcvVS7bmVWI9U5JVPQAuKjiBOko9bdhAvTker7ejIIg9tqNzPTDeqLhDfry9m0ZJvHhLyDfL61I8fGLdvUzbijgLvVk8UMkUPAcZPLcxKNO95WwQvfrCWDiSXRk-2U9QvazCP7l36Qa3DdMovbpSHzeE-i-7ACMBvOqjXzeOuaG8yQmuPWRuFLfZhOq8Ile1vdJCMLgi_-w9NSkFPvN-W7gHC6e8vfzuPYO0Hrna8Oy7LQAyvHvUoTbOZhq9D-7OvJAkP7cgADgTQAlIbVABKnMQABpgM-IAAyAx2AgfDOTfxeIB78vh2CSz9f_Ov__lOQT4JwfcvOszADjb_PymAAAAH_0MGeUAGnjI7-4d2AkK1qzlG0h_8SwfxPIo8sO8GlEJvQbpIC4_AOgVlQY079QvJDEFIAAtdb4ZOzgTQAlIb1ACKq8GEAwaoAYAADBBAACAQAAAmkIAAILCAACQQgAA2EEAAJhCAAAAwQAAOMIAAAAAAABgQQAAAMEAAOjBAADgwQAAPEIAAPDBAAAAQAAARMIAABRCAABYwgAAyMEAAEzCAACQwgAAokIAAABAAAAAAAAAWMIAAIDCAACSQgAAcEIAAKDAAACAwAAAeMIAAHBBAADgwgAAIMEAACBCAACEQgAAoMAAADBBAAAwwQAAAMEAAPjBAAAAwgAAuEEAAEDCAABowgAAMEIAACBCAADgQAAAtsIAAABAAADIwQAAkEEAANBBAAAQQQAApsIAABRCAAAAAAAATEIAAIhBAABcwgAAFMIAABjCAADgQAAAhMIAAJDBAABMwgAAhsIAADjCAACSQgAAWEIAAGTCAAB0QgAACMIAACzCAABgwgAARMIAAIjBAAAAwAAATMIAACxCAABAQQAAgMAAANBBAABUQgAADMIAAPDBAABgQgAAiMEAAJhBAABIQgAAQEAAAEDBAAAAQAAAAMIAADBBAABwwQAATEIAAJhBAACywgAAEEIAAGhCAAA8wgAAHMIAAABCAAAAQAAA8EEAAEjCAAA0QgAA4EAAAGBBAADAQAAADMIAAEDAAACoQgAAQMEAAPDBAABwwgAAgMIAAJDBAACgwQAAwMEAAODBAAAwQQAACEIAAOhBAACAwAAAQEEAAIBAAACwwQAAgMIAAIBBAAAoQgAAoEAAAMBBAACgwAAAAAAAAFBBAAAYwgAA2EEAABBBAABgQgAAiMIAAJBBAAAcQgAANMIAABDBAAAgQQAALMIAAIDBAAAUQgAAAEIAADBBAAAAwAAACMIAAATCAADAwQAAOMIAAIC_AADowQAAgEIAAFBBAADgQAAAQEIAAAjCAADAQAAAaEIAAOhBAABQwgAA0MEAAPhBAADQQQAAAEEAAJjBAAAAwgAAOEIAADDCAADoQQAAQEIAAJjCAADAwgAA-MEAAKBAAACEQgAAKMIAADDCAACAPwAA4MAAACDBAAAQQQAAOMIAAEBAAADoQQAAmEEAAChCAAAgwQAAyEEAALhBAACAwCAAOBNACUh1UAEqjwIQABqAAgAAQLwAAKi9AAC4vQAAuj4AACy-AACYvQAAML0AAOK-AACqvgAAHD4AABS-AADevgAAiD0AAIY-AACIvQAAir4AAKo-AACgvAAAmj4AACU_AAB_PwAAEL0AAFC9AACovQAAdL4AAFS-AAAUPgAAqr4AANg9AACIPQAAUD0AACQ-AACmvgAA6D0AALg9AAAUvgAALL4AAEC8AADWvgAAbL4AAA2_AAAUPgAAwj4AAKC8AABwvQAAuD0AAIA7AADivgAABL4AAFy-AACOvgAAcD0AAAc_AACGPgAAqr4AABy-AABPPwAAQDwAAFA9AADIvQAA4LwAAMi9AAD4vQAAFL4gADgTQAlIfFABKo8CEAEagAIAAGy-AACoPQAAcD0AAGe_AAAQvQAAMD0AAJY-AACKvgAAmL0AAGQ-AADIvQAA6L0AAFy-AAAcvgAA-D0AALi9AABkvgAAMT8AAHC9AACCPgAA4DwAAMK-AACIvQAAMD0AAFC9AAAQvQAATL4AAOg9AADgPAAAoDwAAIA7AACYPQAAgDsAAFy-AAAcPgAAcD0AAOo-AAAcPgAAXL4AALi9AAA8PgAAQLwAAOC8AACoPQAAuD0AAKC8AAB_vwAAEL0AANg9AAAcPgAAZD4AAFS-AABUPgAAgLsAAOi9AADIPQAAQLwAABA9AABwPQAAoDwAAKY-AACOPgAAML0AAMg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=wSu2fqUWgp8","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":658,"cratio":1.94528,"dups":["4846922559670027576"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2655489776"},"8317937736908237175":{"videoId":"8317937736908237175","docid":"34-8-15-Z2ADB266232E30728","description":"Смотрите любимые видео, слушайте любимые песни, загружайте собственные ролики и делитесь ими с друзьями, близкими и целым миром.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/471502/c60a51d183a9bbba56b420c38782b7b1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/52be4gEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNGk9XhreJ98","linkTemplate":"/video/preview/8317937736908237175?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Matrix 10: Part 9 Cont. || Algebraic Multiplicity || Eigen Vectors ||Explanation with Solved Example","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NGk9XhreJ98\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhUKEzgzMTc5Mzc3MzY5MDgyMzcxNzVaEzgzMTc5Mzc3MzY5MDgyMzcxNzVqhxcSATAYACJEGjAACiloaHJ3cnJqdWFyY2djdmdoaFVDUEtkeGlKSjBIcTI5LUNTZ044a0NpdxICABEqEMIPDxoPPxPIFIIEJAGABCsqiwEQARp4gfH6_AcI9wD8ABIGCAj7Ai8H-QcLBQYA6gP7BAAAAADq9xL7_P8AAAYQBPULAAAA-Aj58fX-AQAa9vr48gAAABH5_PP0AAAADhDtAv4BAADp8_X_AwAAAAL1BgcAAAAA9fcO8AAAAAAAEQ70AAAAABIIDQ3_AAAAIAAtBA-8OzgTQAlITlACKoQCEAAa8AF_5gL_3RK_AsYC5gHzBOQBvyIVAPw5zQDI4ekBsPXBAdsg6gAEEAMA4BQoAcEB7f8HvND_7cvnAEHZ_AAP3fIABusJAQAC3QExADMBGefr_ugLKwD84gIAGtLNAxFB-Pwj7xX7Gh_i_eko0QQR_kUB9wEqBhrzJQLsxx4D9NL8AwTu9_r5MfcB0tILAOjuHAQixP3-AAP59uT-3ATm-PH78dEn__pB4vkJ-e0AMxPt9qrQDv_73vUGD0EB_uIV3Anj3iH_0PoK9uH2CAAo_AX9xf34_vze8Qvz5wsT9xAYBe3d6vXT4_TzJf_zCOMc2_AgAC1qzQU7OBNACUhhUAIqzwcQABrABwcH2755A4w8ymcxOkKk8LxxRC09CebDvDyLOb1yGwg9x4EeOhR2ET7fDt68Jr6DO2g3j70mftY8QPyXvMVVhT5UMG-9m38qvNlDS75DknY7KX-Cvf0Hsr2_rcc7ew4TvFgVJr2h3DG9FRmdvOkL4T2tHou8I9QxPG-LCL1DRwe6I9gYvSIXob07nIq8BStTvQUpgryafkS9Zs-vPKGjsDw2YOu8qtqLO9doGT2cHzW9DJH0OxaSYr0RXnW7PvTTvHVmLD2mi8M8_3SoPGQqs71BPjK8OsY6PMmzRr22Goi86HK5POoHdT2_hMQ7sdUKvWL0jD2eftC9vnZdu2O0Hr42Fnu7f2BYPK9duj2N64Q8lXf6PNzvhb3dCfY9yJ3ruux9VD1e97G9lXyRvFh-Lz109T48O3hcPDxuMz0tFci73k0BPf1xsTx4RLU9tVd6PFCEGruN9oO9RcKSvE6OzD0eeiE9Pi7gu6wUJ73yqx492O8uvG2OMz1V-j06pIvNu6KZJz1g-268Z87dO0VcpTxzuPa95AQ3PGMqfbyjRcy9hypGvHsNlj1kvm09y6vGukOpHT4fatu9xJqpOYbGOL2Eewo9h-4jPBb1bjwwkBa9gVxiO4Cvkr0z8Cu7lH9SvPx_Jr0ASm09kpbnu3Lsj7yJk0A9TbAsO6c95bzrjA--Jd69tzqcnz3aOrg8XHxAO7jlozw4no88RsIMu1JfGz1ZYYS8bXlYOdLxsr0nqDy8t-qdOh0Rnb0YLmE8wPYHOu50nD2s4s29Kv-9OdWTeTxrFp48SSdYOREmG70BGIo9WDWRuZ-fM70U6R49Vjspt_yzVb13PbK9hRswuE3HkjzEWIu895CpuYfk_zzuu_088p2nOUoLF74K3Jq9qarhtn8_qzxofhC9MLCWuR01yz1QllA9W6xhOGBZ6bxImZ6800UgudxzyzreIis9Y3WQt_vxDby4SHC9N4pxOEHxAz1xT8G91zh7Oc6vwTxJk8w930SHuOsPHrz6Y_U8DjI2t3Jv3j0vWLA9rfGoOPFZKD13loq91TXrOM3nXD1HM5s91S0lubSQEL7YjKI9mXsEtwwMD71xWvA8oYeeOOwYsjx5_Ci8pl3st7_hkbrsxtY8KfCmONRg2j0H45G9x5dPuVxJAb3K3tK9FyIEuTjnlrxGwDe9auIDuJG_Cr2DHpU9i0ORNxT0TT20vae9l5eNt8r0cD0i4Ss-8cuKOHANpjvnvkE8Mc3SuFIJpL0f-FM9CUMwOEEoL70ecZO9pManuCAAOBNACUhtUAEqcxAAGmAq6AA6JTzTJRT14NS6_evb6PTZGMkZ_-zKABAB5edcJO7I3gMADMUk-6YAAAAbAfYb3wD1cL0TIygbDhDCuN4LNXzVFTP35C36x-ccJfTACO8N_1wA2PLXJDsTgRkKDiwgAC2QPB07OBNACUhvUAIqrwYQDBqgBgAAgkIAAKBAAAC0QgAAlMIAAIDBAACgwAAAGEIAANhBAACQwQAAQMEAAChCAAA0wgAA0MEAAIC_AACAPwAAYEEAAKRCAAAgwgAAjkIAAAjCAAAEwgAA2MEAAMLCAAAgQgAAhsIAAIzCAAAAwAAA8MEAAMhBAAAAwQAALMIAADRCAADYwQAAEMEAAJTCAADAQAAA2EEAAFBCAAA4wgAAgkIAAOBAAADYwQAAAEEAAPjBAADgQAAATMIAAIC_AABgQgAA-EEAAOhBAADAQAAAaMIAAJjBAABgQgAAjkIAACBCAAC8wgAAEMEAAABBAAAQQQAA0EEAANDBAABQwgAAHMIAAIhBAAC0wgAACMIAAKjCAAAQwQAAAMIAAIRCAAAIQgAA4MAAAABBAAAQwgAAJEIAANDBAACowQAAqEEAADBBAAAgwQAAqEIAAMDAAABwQQAA4EAAAFRCAADgQAAALMIAADhCAABgwQAA2EEAAJRCAACcwgAA0EEAAABAAABowgAAisIAAMDAAADAwAAAUEIAAFDCAACYwQAA0EEAAKjBAADwwQAAiEEAAIC_AACowQAAQEAAAKxCAADoQQAASEIAALDBAACQwQAA4MEAAIRCAADgQAAAEMIAAGzCAAAMwgAA0MEAAHTCAAAwwQAAMMEAAHDBAACgQQAAEMIAAABBAACAvwAAWEIAAHDBAACSwgAAgD8AAPhBAABMwgAAkEIAACjCAACEQgAAAAAAACDCAABwwQAA4MAAAMDAAACGwgAAoEEAACRCAAAQwQAAQEEAAAjCAAA0QgAAQMAAAMhBAAAYQgAAUEIAAIC_AACIwQAAPMIAANjBAABowgAAQMEAAFjCAABQQQAAAEEAAIDBAADAQAAAAEEAAJLCAADCQgAAjkIAAKDAAAAQwQAAgMAAAAzCAABIwgAABMIAACxCAABAwQAAiEEAAARCAACgQQAAuMIAAGTCAACAwAAA0MEAAIC_AAAwwQAAYMIAAFjCAABAwAAAwMEAAEhCAACYQQAAiEEAAMBAAABAQAAAEEEAAAAAAADAQAAAFEIAAIBBIAA4E0AJSHVQASqPAhAAGoACAAAMPgAATD4AAHQ-AAAcPgAAED0AAJY-AAC4PQAAE78AAKi9AADIPQAAyD0AAKi9AAAsPgAARD4AAGy-AADYvQAAcD0AAFA9AADgPAAA7j4AAH8_AAAQvQAAUL0AAHw-AACIvQAAiD0AAPg9AABcvgAAmD0AAIY-AABwPQAAiL0AAEy-AAAcPgAA2D0AAOC8AACAOwAAbL4AANa-AACWvgAApr4AAKA8AAAEvgAAiL0AAJK-AABAvAAAsj4AAPi9AADIvQAAHL4AAMg9AADgvAAATD4AAGQ-AACyvgAAcL0AABM_AABwvQAAEL0AAHQ-AAC4vQAAQDwAAAQ-AABEviAAOBNACUh8UAEqjwIQARqAAgAAUL0AAKg9AAC4PQAAJ78AAHC9AADIvQAAUD0AAFA9AACgvAAAjj4AANg9AAAwvQAA2D0AAMi9AADIPQAAqL0AAFC9AAA7PwAA4DwAAKY-AAA8vgAAJL4AAJg9AABsvgAAQDwAAOC8AADgPAAAoDwAAIA7AAD4PQAAUL0AABw-AAAkvgAAQLwAABQ-AADIvQAAcD0AAJ4-AAAkvgAAgDsAAAw-AAC4vQAAVL4AAKA8AADYvQAAiL0AAH-_AACAuwAAML0AAIA7AACIPQAA4LwAAIg9AAD4PQAAyD0AAEA8AACgPAAAML0AAMi9AAAQvQAA-D0AAFC9AACAuwAA2L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=NGk9XhreJ98","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8317937736908237175"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"823481130"},"17575647547320309477":{"videoId":"17575647547320309477","docid":"34-9-3-Z1C2654157D4F268B","description":"In this video we'll use the Euclidean algorithm to quickly determine the (finite) continued fractions for rational numbers. Like us on Facebook: / learnmathsfree Follow us on Twitter...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3838397/6ad3c59cbfb5c0435856083d1ea61535/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ELhToQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbOyNOT4lvTA","linkTemplate":"/video/preview/17575647547320309477?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Continued Fractions #3: Quickly Finding Continued Fractions of Rational Numbers","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bOyNOT4lvTA\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhYKFDE3NTc1NjQ3NTQ3MzIwMzA5NDc3WhQxNzU3NTY0NzU0NzMyMDMwOTQ3N2q2DxIBMBgAIkUaMQAKKmhoeWx3bm1vZWxheHV6b2JoaFVDdFRGckVQSXFhS2ZXeUdrQmk5Um12ZxICABIqEMIPDxoPPxO-AoIEJAGABCsqiwEQARp4gfzwAfz9AwD1A_4CAAT_Af0I-P34_v0A8Pj9Bf8BAAACDA4GBAEAAAIBBPwKAAAA9_j3BAH_AAADAwQC_AAAAAzx_f_6AAAABA78BAoAAQHxBPv9AwAAAA3y-Q3_AAAA_QQN8AAAAAATAggBAAAAAAD7Evj_AAAAIAAtxcPcOzgTQAlITlACKoQCEAAa8AF_Bvv--OS-A9wo7gDu3tcB7goHABtU-ADE9f4A6f7VAAUl2wDiM-QA0Cr4AKsu9_8gAbwAD93LATvrAP8n3NUAwv3vASrUDAErPSz-HuUe_ugLLAAZz88AJ__aAfrXyP7vyxj9EA3UAf7iwwALIzsDAugu_OjMCQDcutkB67oC_i3iA_3jFNYAHhoO_r_-IwEe-fYBOvQG-go14wAQ8gsH6QAI9Qk0z_0N8_sOMijj_rboGP0UvwgLIvgoB9sQ7QP0EiQDzUMA_P__GfoCLuADCvrdC-xJ5QH5AvYFKvcIAB7_8PYd_fz27TUADOX96QQgAC0sqgI7OBNACUhhUAIqcxAAGmANBAA5_Uz6Au0s8-ne7CTjyg7hG9oL_9jk_y8I-L5M74P6Kfn_Bgwm-50AAAA7PdEqBQDJfwPm-nH7EgLG4rcm_W_eDBPx7irZ1fIBFEQWKB8r9j0Az-K5OiERw3DnZgYgAC0WhRI7OBNACUhvUAIqrwYQDBqgBgAAAAAAAOjBAAA0QgAAXMIAAODAAAAAwQAAvkIAAFBBAAC0wgAAEEEAAPhBAAD4wQAAmEEAANjBAACAwgAAyEEAAKxCAACYQQAAUEEAAADAAABAQQAA-MEAAKLCAADYQQAAfMIAAIjBAAAMwgAAYEEAABBCAABIQgAAwMAAAEDCAACQwgAAPEIAAFjCAAAAwgAAcEEAAEhCAABwQQAAgkIAAChCAACIwQAASEIAAAAAAAAgwQAAoMAAAIpCAAA0QgAAhkIAAJhBAACowQAAuMEAABDBAADAwAAAIMEAAIBBAAAgwgAA8EEAAAxCAAC6QgAAoEAAAIDCAAAgQQAAUMEAAGDCAADKwgAAIMEAAIDAAADQwQAAgEAAAKhBAAAUQgAA6MEAABhCAAAswgAAhMIAAJ7CAAAAQgAAwEEAABRCAACIQQAA_kIAALDBAACGwgAAoMAAAIBBAABAQAAAcMEAAHxCAABcQgAAoMAAAARCAAAkwgAAiMIAAFBBAACowQAAAMEAALBBAABwwQAArkIAACDCAAA4QgAAwMEAANBBAAA8wgAAcEEAAJDBAAAcQgAA4EAAAMhBAACUQgAAwEEAAFBBAAAQwQAA4EAAAExCAABwQQAAPMIAAHBCAAAAwAAAIMEAAOjBAADgQQAAAMEAANDBAAA4wgAAfMIAADBBAADwwQAAOEIAAMDAAACAQQAAFEIAAEBCAABgwQAAQEEAAEDBAAAQQQAAqEEAAKjBAABQwgAAcEIAADhCAAAIwgAAokIAAJxCAAC4wQAAEMEAAChCAACAPwAAEMEAAIDBAACAQAAAmMEAAKBBAAAAQAAAmMIAAGDBAABwwgAAHMIAAKDAAACAQQAAgEAAACBBAADQQQAA0EEAAOBAAABIQgAAXEIAACDBAAAAQAAAoEAAAAAAAAAIwgAA2MEAAPBBAADgwAAAgMAAADzCAABsQgAA4sIAAIDAAACAQAAA4MEAALhBAAAMwgAAoMEAABRCAAAswgAAoMAAAIpCAADowQAAoMEAAEBAAAAQwgAAgkIAALhBAACowQAAAMAAAOBAIAA4E0AJSHVQASqPAhAAGoACAAA8vgAAQLwAAKg9AADIPQAABL4AAMY-AACoPQAAB78AANi9AAAQvQAAUL0AAJa-AACmPgAAkj4AABC9AACAuwAAcD0AAMg9AAB8vgAAsj4AAH8_AABUvgAAVL4AALg9AAAUvgAAUL0AAEA8AABAvAAAVD4AAAw-AAB8PgAA-r4AAHS-AAC4PQAAHD4AADA9AADIPQAAPL4AAPq-AACevgAAmD0AADA9AACOPgAAoDwAACQ-AACgPAAADD4AAHS-AAAUPgAAnr4AACy-AADovQAAET8AACQ-AABMvgAAyD0AACs_AADOPgAAMD0AALI-AACovQAAML0AALg9AAAsviAAOBNACUh8UAEqjwIQARqAAgAAbL4AAIi9AAC4vQAARb8AAEy-AABUvgAAVD4AADC9AACgPAAAQLwAADw-AADIPQAAUD0AAAS-AABMPgAAoDwAABC9AAAxPwAAMD0AAMo-AAAMvgAA-L0AAMg9AABcvgAAdL4AAKg9AAD4vQAABD4AAGQ-AADovQAAQDwAAMg9AABcvgAAgr4AAJo-AABsPgAAhj4AAEQ-AADYvQAAiL0AAGQ-AADovQAA3r4AAHQ-AADIvQAAXD4AAH-_AADOvgAA2L0AAOC8AAD4PQAAoDwAAJi9AABcPgAAUD0AACw-AACovQAALL4AADw-AAB8vgAABD4AAHA9AACgPAAATL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=bOyNOT4lvTA","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":500,"cratio":2.56,"dups":["17575647547320309477"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"13987053"},"18099680105972913136":{"videoId":"18099680105972913136","docid":"34-4-16-Z536B419C8C9E98D4","description":"The Hodge theory of complex algebraic varieties is at heart a transcendental comparison of two algebraic structures. We survey the recent advances bounding this transcendence, obtained mainly...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4471256/39466a7170a52cc1aa49386402a663f9/564x318_1"},"target":"_self","position":"12","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DaPig5MPP_Ho","linkTemplate":"/video/preview/18099680105972913136?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Bruno Klingler: Hodge theory, between algebraicity and transcendence","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=aPig5MPP_Ho\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhYKFDE4MDk5NjgwMTA1OTcyOTEzMTM2WhQxODA5OTY4MDEwNTk3MjkxMzEzNmqvDRIBMBgAIkUaMQAKKmhoZG56d3N1bWhidnhmcmRoaFVDTUhMdW42amQtY01QblhoYzJKcVdQdxICABIqEMIPDxoPPxPiE4IEJAGABCsqiwEQARp4gQYH-QQD_QDw-_7_CQL_Ad8QCgz8AQEA-f4B-AUD_wDy8AcLAAAAAAIAD__6AAAACwMOAvP-AQAVA_sGBAAAAAsACPz8AAAAAAj9AP4BAAD89wL_A_8AAAr2CgMAAAAAA_YG8AD_AADxCw31AAAAABH9CgUAAAAAIAAtMYLKOzgTQAlITlACKnMQABpgJhAAIAQP6d_1BPLqAdcPEwz-DPb98AD18AAAGO8AIf_64v0D_xTYEv3OAAAABRjYDv0A6D8Q1uQl_PsH_-MA_Bd_ERQHBwQH7-LUA98U9Cf9HBYfAO37Afgf4hwjBjwIIAAtc7uBOzgTQAlIb1ACKq8GEAwaoAYAADBCAAAgwQAA5kIAALDCAACQwQAAgL8AAIxCAADIQQAAQMEAALjBAACQwQAAAEIAANjBAAAQwQAAAEEAAIDAAADwQQAAgMEAAEhCAAAQwgAAgEEAADDCAAC2wgAAbEIAACjCAACAwQAAmMEAAODBAAAMQgAAFEIAAJjBAAAEQgAAqMEAAMBBAADiwgAADMIAAMBBAACkQgAAgD8AAJhBAABQQQAAgMAAADDCAAAwwQAAWEIAABDCAABEwgAATEIAAPBBAABwQQAAjsIAAATCAACMwgAAZEIAALhBAACwQQAAoMIAADBBAAAEQgAAsEEAABxCAACowQAAksIAANjBAACAPwAAqMIAAADBAACKwgAABMIAAPDBAADWQgAAQEEAAEjCAACOQgAAwEAAAIBBAAAAwgAAIMIAAHDBAAAAQgAAqMEAAEhCAACQwQAAiEEAAAAAAABoQgAAVMIAAJDCAAAMQgAADEIAALBBAAA4QgAAuMEAAEBAAADoQQAAaMIAAADCAACQwQAAXEIAAExCAACMwgAA4EAAADxCAADwwQAANMIAAIBBAADYQQAAYEIAAIDBAABkQgAAYEEAAGBBAABgwQAAWMIAAFDBAAAYQgAAmEEAAAAAAABAwQAABMIAAOjBAAAAwgAA-EEAAPDBAADwwQAAyEEAAMDBAAAAwQAAgMAAAABCAAAAQQAAgsIAALjBAABwQgAAUEEAAABCAACgQAAA8EEAABDBAAC4wQAAgEAAABhCAAD4QQAAysIAAIDBAAAAQQAAAAAAADjCAABwwQAAAEEAAOBAAABIQgAAPEIAAMBBAACAwAAAgEAAAEzCAADQwQAAOMIAANjBAAAswgAAHEIAALBBAACgQQAAQEEAAHBBAABwwQAA0kIAALxCAADYwQAAyMEAAIBAAADgQAAAmMEAAFTCAAAQQQAAQEEAAIC_AACgQAAAdEIAAKLCAABAwgAAwEAAAOjBAADwQQAA4MEAAOjBAADAwQAAiMEAALjBAABEQgAANMIAABBBAADIwQAAwEEAAFRCAACIQQAAiMEAAIBAAABAwCAAOBNACUh1UAEqjwIQABqAAgAAiL0AAEC8AAD4PQAAJD4AAIC7AAA8PgAAcL0AAAe_AAC-vgAAjj4AAIg9AAAEvgAAFD4AACQ-AACSvgAAZL4AACQ-AADYvQAAbD4AAAs_AAB_PwAAQDwAAHQ-AAAsPgAAFL4AAMg9AADYPQAAML0AANo-AAA8PgAAcD0AAOA8AADuvgAAhj4AANi9AACOvgAAoDwAAKq-AACSvgAAhr4AALK-AADIPQAAsj4AAOi9AABUvgAAFD4AABA9AAAkvgAAED0AAJa-AABEvgAAmL0AAHQ-AAC-PgAAML0AAIi9AABXPwAAuL0AADC9AACgPAAAdL4AAOA8AAAQPQAAhr4gADgTQAlIfFABKo8CEAEagAIAABy-AABwPQAAEL0AAEW_AAAQvQAAQDwAAEQ-AAAsvgAAZL4AAJI-AADYPQAA-L0AADA9AAA8vgAAoDwAABC9AAAEPgAAKT8AAFQ-AADuPgAAUD0AAHA9AADoPQAARL4AAFC9AAAwvQAAcD0AAIg9AADIvQAADD4AALg9AABAPAAAoLwAABy-AACAOwAA-L0AALi9AABkPgAALL4AAJg9AAB0PgAA4LwAABA9AADgPAAADL4AAGQ-AAB_vwAAor4AAEy-AAB8PgAAVD4AAOg9AAB0PgAAUD0AADC9AACgPAAAqL0AAAQ-AACAuwAAgr4AAMg9AACOPgAAgDsAAOi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=aPig5MPP_Ho","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18099680105972913136"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7858078376643167637":{"videoId":"7858078376643167637","docid":"34-5-3-ZB36BB44040314584","description":"want me to do leave them in the comments below. #physicstutor #mathtutor If you would like a copy of this worksheet please send an email to finnphysicstutor@gmail.com Disclaimer: The content...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/225464/deddc8dbcb8213524fb1357870024a52/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/GGpmawEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DGHDraungm-E","linkTemplate":"/video/preview/7858078376643167637?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Definition of Continuity an Algebraic Approach","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=GHDraungm-E\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhUKEzc4NTgwNzgzNzY2NDMxNjc2MzdaEzc4NTgwNzgzNzY2NDMxNjc2Mzdqrw0SATAYACJFGjEACipoaHpiaHJuaXl3a3ZteXBiaGhVQ2t4czJZRDhzNEptOC11QUFBRmZFYXcSAgASKhDCDw8aDz8ToASCBCQBgAQrKosBEAEaeIEL9ADwC_IA7AYOBhQE_AD5_fTv9_z8AN0B9f8L-wIA4QH29AD-AAAC_AD3AwAAAOr1DP7xAAEA-Rn9BgQAAAAk_PD5-wAAABEO-wT-AQAA-An59_QCAAEQ7vcQ_wAAAPsD_-oA_wAACwUKAQAAAAD9DAf2_wAAACAALZBnszs4E0AJSE5QAipzEAAaYAUGAFYeHufT93zi2BC5_varD-r1xyb_w_L_9gjf9s4j2r8YBf8p7xT5nwAAACws6TLMAO9_yMimPv0k7tLQ8fUff70C2gLD_9Oi50IqHsYvDFP4EwDZ5dwuBuTeNyUZQCAALdDlEDs4E0AJSG9QAiqvBhAMGqAGAAD4QQAAWMIAAAhCAAAEwgAAwMAAADzCAAC6QgAAwEEAAHDBAABEQgAAjEIAAKhBAACAQQAAXEIAAKDAAADIQQAA4EAAAGjCAAAEQgAAgEEAAHDBAACIQQAAlsIAAJBBAADowQAAIMIAAMBAAAAgwQAAbEIAAABCAAAMwgAAIMEAAIzCAABAQAAAGMIAABxCAAAgQgAAqkIAADzCAAA4QgAAIMIAALhBAAAQQQAAtsIAAAhCAACQwgAABEIAANhBAABAwAAAgEAAAGBBAACgQAAAJEIAAFBCAAAoQgAAIEIAAGDCAAAQwgAA0EEAAGBBAADYQQAAcMEAAITCAAAowgAAAMAAACjCAADgwQAAwMAAAIDAAABwwQAAsMEAAAhCAACUwgAAEEEAAFTCAADgwAAAsMEAAKDBAAAQwQAAkEEAAIDBAAC-QgAAAEAAAMDBAAB0wgAA2EEAAKhBAAAQwQAABEIAAKBBAACgwQAA0EEAAJDCAADwQQAAgEIAACDBAAA4wgAAqEEAAAjCAAAsQgAAAMEAAHzCAAAMQgAAGEIAAGDCAACAQQAA2EEAAEBBAACAPwAAVEIAANBBAACYQQAAdMIAAFBCAACmwgAAjkIAAMBAAAAkwgAArMIAADDCAAAswgAAgMEAAIBAAACQwQAAqEEAALjBAAAsQgAAQMEAAHTCAACoQQAAKMIAAMBAAAAAwQAApkIAAEzCAAC6QgAAQEAAAGRCAABAwgAATMIAAEDAAACwwQAAoEEAACjCAAAwQQAA4EEAADBBAABsQgAAIMEAADDBAABMwgAAUEEAAOBAAAAMQgAAgEEAAEDBAABowgAAQMEAAGDCAAA8wgAAvMIAAOBBAAAQwQAAAMIAACxCAAAAwAAAyMEAAHBCAAAIQgAAQEEAAJjBAABAwAAAIEIAAEDCAABwwgAABEIAAIDCAADgwQAAiEIAABhCAACgwQAAcMEAAKjBAAAIwgAA4EEAABzCAACEwgAANMIAAAAAAADIQQAAEEEAADBBAADwwQAAUMEAALBBAAA4QgAAAEAAAIA_AAAYQgAA4EAgADgTQAlIdVABKo8CEAAagAIAAJ6-AABAPAAATD4AAEw-AACovQAAzj4AABU_AAD2vgAAhr4AAKi9AAAMPgAAML0AAHQ-AAAwPQAAtr4AAIC7AABMPgAAoLwAAHQ-AAALPwAAfz8AAPi9AAB0PgAAZD4AAJq-AAD4vQAAoj4AAAy-AABkPgAAND4AAJo-AADuvgAANL4AAPg9AAAkPgAAuD0AALg9AADavgAA7r4AAEC8AABUvgAAdL4AAP4-AADovQAAcD0AAEw-AACaPgAA3r4AALg9AAD2vgAATL4AAIC7AABEPgAAHD4AAPg9AADIvQAAMT8AAJi9AAAsvgAAyL0AAGy-AACYvQAAgDsAABy-IAA4E0AJSHxQASqPAhABGoACAACuvgAAgLsAAHy-AABJvwAAgLsAANg9AADoPQAAgLsAAGS-AAAcPgAA2L0AABy-AABsvgAAZL4AAIA7AABAvAAA-D0AAPY-AACoPQAAsj4AAPg9AACGPgAA4DwAAKi9AACovQAAiD0AAHy-AADgvAAADL4AADC9AADYPQAAUD0AACQ-AACYvQAAFD4AAHS-AADOPgAAED0AAHy-AADgvAAAiD0AAAQ-AABAPAAAED0AADC9AAA8PgAAf78AANi9AADovQAAkj4AAHQ-AACAOwAAvj4AAIo-AABQvQAAgDsAAEC8AADIvQAALD4AACS-AAAwPQAAnj4AABC9AACIPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=GHDraungm-E","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["7858078376643167637"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4244054562"},"2793310263380283745":{"videoId":"2793310263380283745","docid":"34-2-13-ZF120F2B67E4105C3","description":"Hello Students .....","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4314090/a1a7b7001ba890c8418a5ad786d03ed8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/S-aVIgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5jGJ4xkWLaM","linkTemplate":"/video/preview/2793310263380283745?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"!! Algebraic Limits (PART-1) !! Limits, Continuity and Differentiability !! Lecture -2 !! !!","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5jGJ4xkWLaM\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhUKEzI3OTMzMTAyNjMzODAyODM3NDVaEzI3OTMzMTAyNjMzODAyODM3NDVqtg8SATAYACJFGjEACipoaHR2amVjbGVreGxoaGZiaGhVQy1pUEhoa09YdnZFMU9pT3A4YWVzbmcSAgASKhDCDw8aDz8TjROCBCQBgAQrKosBEAEaeIH0_Pb-Af8AA_8FAQ4G_gEB_Pb8-P39AOj19AkH_wEA7QMFCwUAAAD8BgT_9wAAAA_7_gv2_wAA_RAA-vgAAAAS9QMHAgAAAA8N_QMS_gEB_Pv99gL_AAAa_PD5_wAAAP_8-_f8_wAA-gEF_wAAAAAG9QD1AAAAACAALYVB0Ts4E0AJSE5QAiqEAhAAGvABf_44Ac37zv_Z8QUA1xIXAdcZJAAKH-b_viLzAOIpwwHVHQYA7u_kAA_p_QHKFfMAE9m0AuHlCAAzyiH_L-n4APzy9wAw1ygCLQAvASP30QLrCicAE9wdAPXi5QIAKPn_9OAJADLo1AAdFssCHPoRBAT_QwAQ8egB3bD9Af7-8gj3-Mb-6BAF_PLlHADYBCICH_HnAxUTCPqs8-gBAOHn9_7fF_zzNvgB_N7hAfoN5gnH5v4F_vn6ABpDBvf5Ee8E--kZ_sXnBf4JChsGCg4G8Ogc1_oa0vgSHO3_9gYMCQwL-fEEwuz49wMT7ATmGd7yIAAtpO8TOzgTQAlIYVACKnMQABpgNuUAOh8U2BIsJef94Of_7K9B0QqoJv_s1f_wF-LlSujguRQAABQBAOSdAAAANxnu8hEAHX_4-ucg4A3Y1pPu_Pxw3wUYxMUV9J_DCiwj2PcJJBV6AK_dskArB-73NR8wIAAt9AIVOzgTQAlIb1ACKq8GEAwaoAYAAABCAACAQQAAokIAAIDAAABAwQAAcEEAAJBBAACAQQAAMEEAAHDBAAAQQgAAnEIAABzCAADgwAAAPEIAAADAAABAQQAA6MEAAIC_AACAwgAAIEIAACjCAAB4wgAAJEIAAAxCAACIwQAAqMEAAIDCAADIQQAADEIAAOBBAACWQgAAMMIAAIJCAAAowgAAEEEAAFDBAACaQgAAgEAAAIA_AACOwgAAEEEAAExCAABEwgAAcMEAAAzCAABkwgAA8EEAAIC_AADAwQAAcMEAAADAAABAwQAAdEIAAAxCAADgQQAABMIAADDBAAAUQgAACEIAAMDAAAA8wgAAgsIAAJDBAACQQQAAikIAAJ5CAACQwQAAgsIAAFBCAABYQgAAeEIAAAjCAAC0QgAAqMEAAMzCAADAQAAAPMIAAJDBAAD4wQAAUMEAALhBAAAAwAAAjEIAAFTCAACgQQAAXMIAAGBBAABwwQAAFMIAAMDBAACQQQAAVMIAAEBBAADIwQAAdMIAAIjBAAAAAAAAgEIAAMDAAAAAwQAATEIAACxCAABEwgAAqsIAAJhBAABgQQAAwEAAAIzCAAAAQgAAoEEAAJLCAACcwgAAMMIAAKxCAADgQAAAHMIAAILCAACgwQAAIMIAAEBBAADowQAAQEEAAHjCAACIQQAANEIAANBBAABYwgAAgMAAADjCAACAQQAAqMEAAFBBAABUQgAA2EEAAIBBAAAAQAAAKEIAAOjBAAC0wgAAAEIAAABBAACAQQAAgL8AAEDBAAAQQQAAEMIAABRCAACQwQAAcEEAAABBAADIQQAAAEAAALjCAAAAwQAASEIAAIA_AABwwgAA0MEAAEBCAAAYwgAASEIAAADBAAAAQQAAEEEAAAzCAABQQgAAcEEAAMBBAADwQQAAaMIAAKBBAAAQQQAA4EEAAMjBAACAwAAAgD8AAGDBAADwQQAAREIAAFTCAADAwAAAKMIAAIC_AACQwQAAuMEAALDCAABAQQAAAMIAABDBAACAwAAAVEIAABDBAAC4QQAATEIAAJ5CAAB0wgAAoEAAACjCAAAEwiAAOBNACUh1UAEqjwIQABqAAgAA4DwAAMi9AAB0PgAAgDsAAJi9AACWPgAAgLsAAOa-AABQvQAA-D0AAIg9AAAEvgAATD4AAOg9AABsvgAAED0AADw-AACgvAAAyD0AALo-AAB_PwAA4LwAAFC9AAAsPgAANL4AAEC8AABwPQAAqL0AAOi9AABEPgAA2D0AAOC8AAAEvgAAUD0AAOC8AAAQPQAAqD0AADC9AACivgAABL4AANK-AAC4PQAAcD0AAOi9AAD4vQAA2L0AAHw-AAC4vQAAgLsAAAy-AAC4PQAAVL4AAL4-AABEPgAAJL4AAHC9AAAVPwAAUL0AAJi9AAB8PgAAmL0AABA9AADYPQAA4DwgADgTQAlIfFABKo8CEAEagAIAAAy-AAAwvQAANL4AAEu_AACgPAAAXD4AABQ-AADgPAAAbL4AAII-AADoPQAAoLwAAAy-AACIvQAA-D0AAIi9AABwvQAAQz8AAES-AACaPgAAcL0AAGy-AAAkPgAARL4AAOC8AAD4PQAA-L0AAKg9AADoPQAAgDsAABA9AAC4vQAAcL0AAPi9AAA0PgAAgDsAANi9AADYPQAAEL0AAAy-AACyPgAADL4AAHA9AABAPAAAhr4AABw-AAB_vwAAyL0AAEA8AAA0PgAAQLwAAKA8AAAsPgAAJD4AAMi9AABAvAAAoLwAAJg9AAAMPgAATL4AAFA9AAD4PQAAUD0AAIC7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=5jGJ4xkWLaM","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2793310263380283745"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3629859563401858465":{"videoId":"3629859563401858465","docid":"34-1-7-ZB704A32C946CCB97","description":"Algebraic Topology, by Allen Hatcher: https://amzn.to/4dksIpM. Spectral sequences are part of Algebraic Topology. Algebraic Topology uses Abstract Algebra to study topological spaces. the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4381940/254a13dd81fc3287e8dd51ad98ec3b80/564x318_1"},"target":"_self","position":"15","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcKisLJz05F0","linkTemplate":"/video/preview/3629859563401858465?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Algebraic Topology and Homology | Using Abstract Algebra to Study Topological Spaces","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cKisLJz05F0\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhUKEzM2Mjk4NTk1NjM0MDE4NTg0NjVaEzM2Mjk4NTk1NjM0MDE4NTg0NjVqrQ0SATAYACJDGjAACiloaGFiaHpxcW52cWZ4dndoaFVDekxJckNkdzh5QmNrbkVmNWt0NmpudxICABEqD8IPDxoPPxM8ggQkAYAEKyqLARABGniBCfoC-_0DAPX-CgwCBv0BBgLz9ff__wD8E_oC-gT-AP78AgT3AQAACP0I_gMAAADy-Pb8-gAAAAoBAP_sAP8AFQX98fwAAAD-Bv4K_wEAAPj9CQH1AgABFf4GAwAAAAD0Cfr_AgAAAPQQ_v4AAAAABAUB9gAAAAAgAC2Gwdw7OBNACUhOUAIqcxAAGmAIDwAmFiIa6Bcf3vEb7Q7r7in7Duj6AP3-AAMaAuICGfLvAB__Edwb8ssAAAAtHPQg-gDeRv7wzQsh9PHh0_cdF3_bFwQDGwfjz-XpKhXr79UD-ygAyvvy9goA8RfuHy8gAC2lqGk7OBNACUhvUAIqrwYQDBqgBgAAgMEAAHBCAAAgQQAAIEEAAGBBAABAQgAAlkIAANjBAAAAwAAAwMEAABDBAACoQQAAPMIAAATCAABQQgAAgMEAAEDAAAAwwQAAAMIAAPLCAAAcwgAA-MEAAHzCAACQQgAAoEEAAKDAAAAcwgAAXMIAAKxCAACCQgAADMIAABjCAAAYwgAA-EEAAJLCAAAgQQAAAMAAAMpCAABkwgAAIEIAAFBBAAAAwAAAaEIAACBBAACwQQAA-EEAAFTCAAAAwQAAnkIAAIBAAABowgAAiEEAAOBAAACAQQAA-MEAALjBAAAgwgAA8EEAAMDBAAAcQgAAUEEAADDBAAAMwgAAUMIAAGBBAAAMwgAALEIAAEjCAAAowgAAUMEAAMBCAAAwQgAADMIAANBBAAAAwAAAgMIAALLCAACAvwAAFEIAADjCAACcwgAAoMEAAKBBAACIwQAAEEEAALBBAADgwQAAFMIAAJpCAABAwgAASEIAAIBBAABwQgAAhMIAACDBAABwwgAA8EEAAADCAAAQQgAAAAAAADjCAAAsQgAAikIAAJjCAACWwgAA4EAAAMBAAABQQQAAqMEAAOBBAACIQQAAnEIAAAzCAAAEwgAAmEEAAFRCAADowQAABMIAAOBAAABYwgAAUEIAACBBAACAQAAAUMEAADBBAACAQAAAsMEAAPjBAACgwgAAEMEAAPhBAABUwgAAAMAAABBBAADYQQAAgD8AABBBAADAwQAARMIAAL7CAADAQQAAXEIAAHRCAAAowgAAAEEAAFDBAADAwQAAcMEAAKDAAACQQQAAuEEAALjBAACUQgAAAEAAAOjBAADowQAAQMIAACDCAADQwQAA0EEAAHDBAAAUQgAA4EAAADBBAACoQQAAwEEAAHBBAAAAQQAASEIAAPDBAABwwgAAEEEAAEDCAACgQAAAmEEAAJjBAAAAwQAAEEEAANBBAAA0QgAAEEEAALbCAACwQQAALMIAAEBCAACGwgAAJMIAADBCAACwwQAAAMAAAADBAAAAAAAATMIAAPBBAAAUQgAA2EEAAAjCAAA0wgAAkMEAAODAIAA4E0AJSHVQASqPAhAAGoACAAAQPQAADD4AAEC8AACgPAAAoDwAANi9AAAcPgAAFb8AAIq-AABEPgAAhj4AAEy-AAAUPgAADD4AAEA8AADIvQAAEL0AAIA7AAAEPgAA2j4AAH8_AAAcPgAAcL0AAAy-AAC-vgAA4DwAABC9AAAcvgAA2L0AADQ-AABUPgAAmL0AAIa-AACWPgAAlj4AAEC8AADgvAAAHL4AAJK-AACYvQAA0r4AAGQ-AADIvQAAqL0AANi9AACOPgAAND4AACS-AAC4PQAAsr4AAOC8AAD4vQAApj4AAFQ-AABEvgAAUL0AAAs_AADGvgAAQLwAAIY-AAA0vgAAcD0AAIg9AAC4vSAAOBNACUh8UAEqjwIQARqAAgAAMD0AAIY-AAAMvgAAN78AAKq-AACgPAAA4DwAAFQ-AAAkvgAAfD4AAKA8AACOvgAAFL4AAFS-AACAOwAAuL0AADy-AAArPwAALL4AAFw-AAC4PQAAdL4AAKg9AABMvgAAqL0AADA9AAC-vgAAuD0AAIi9AABAvAAAmD0AADC9AABQvQAAUD0AACw-AAAMvgAAfD4AAFA9AABEvgAAQDwAAGQ-AAAQvQAARL4AAFA9AABMvgAAHD4AAH-_AABQPQAAHL4AAOC8AACAOwAAcD0AABQ-AAB8PgAAcD0AADA9AACYvQAABD4AAKA8AACovQAAgDsAAEw-AABQPQAAcL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=cKisLJz05F0","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["3629859563401858465"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17208951426433325738":{"videoId":"17208951426433325738","docid":"34-4-2-Z23FA771E1D88BFF9","description":"This is the first hour of André Henriques' fourth year Algebraic Topology course (a second lecture will follow soon). We recall a known algebraic invariants of spaces, the fundamental group, and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4000807/5ea4f6ab573b3ad4d6672fa0103be103/564x318_1"},"target":"_self","position":"16","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYbjJ2wep8o0","linkTemplate":"/video/preview/17208951426433325738?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Algebraic Topology: Algebraic Invariants of Spaces - Oxford Mathematics 4th Year Lecture","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YbjJ2wep8o0\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhYKFDE3MjA4OTUxNDI2NDMzMzI1NzM4WhQxNzIwODk1MTQyNjQzMzMyNTczOGqvDRIBMBgAIkUaMQAKKmhoeGFscmJ6a3Ztd3VzYmJoaFVDTG5HR1JHX191R1NQTEJMenloZzhkURICABIqEMIPDxoPPxPJGYIEJAGABCsqiwEQARp4gQn6Avv9AwDtAwIMBwP-APr99vL5_fwA9An0CvsB_wD78__9AwAAAAQG9wECAAAA-_3-B_7-AAAGBf36-wAAABEEBvn4AAAA_wjy_f8BAADs_wIJAwAAAAz9BAD_AAAA_AL_7gAAAAD-DwUAAAAAAAAN_Pf_AAAAIAAthsHcOzgTQAlITlACKnMQABpgAw4APiYcA8sOFeTb-Nz9-eUm4g3G9v_10P_qDALx8Bz7tgof_yqoJOuuAAAANvvwCxIA227pwZszIeHx67z1FR1_0ybb5yn99dMS8QgsC-vZ6fBlAMXp4wQjCf4Z-UY2IAAtNuQoOzgTQAlIb1ACKq8GEAwaoAYAADRCAAAAQAAAuEIAAOBBAAAgwQAAHEIAAHxCAADYQQAAQMEAANjBAAAIwgAAkEIAALDBAACIQQAAMEIAAHBBAAA4QgAAmEEAANBBAACUwgAAPEIAAHDBAADgwQAAKEIAAGDBAADYQQAAJMIAAKBAAACmQgAAUEEAAMDAAABcQgAAgMIAABDBAAAkwgAAqEEAAKBBAACMQgAA4MAAAKBAAACYQQAAMEEAADBCAAAwQQAAIEEAAIC_AAAEQgAAsEEAALhBAACgQQAAmMEAAODBAACCwgAA0MEAAODBAADgwQAAgMAAAKDAAACAwAAACEIAABDBAAC4wQAAgMIAAAzCAACgwQAAcMEAAJjBAAAwwgAAIMEAAFhCAACgQAAArkIAAHzCAADoQQAAsMEAAJDCAACywgAAOMIAAMhBAAAwwQAAGMIAAODAAABcwgAAAAAAAMBCAACgQAAAmMEAAEzCAAB8QgAAmEEAAKDBAAC4QQAA4EEAAPjBAADIQQAA_sIAAIBBAACQQQAAyEEAALhBAABIwgAAsEEAACBCAAAwwQAAlsIAAJBBAAAcwgAAjkIAAMBAAACuQgAAkkIAAARCAADAwAAAAEEAACxCAACAQQAAgD8AAGDBAADIQQAAjMIAABRCAAB8wgAAJEIAALDCAAAAwgAAeMIAAETCAACgwgAAgsIAABDBAACAQAAAgMAAAFzCAABsQgAA0EEAAIBBAACOQgAAQMAAAGTCAACUwgAAHEIAAKDAAAAUwgAAyEEAAIBBAADgwQAA0EEAAIjBAADgQAAAUMIAAIhBAAAQQQAAUEEAAMDBAAC4wQAAAAAAAIDCAADAQAAAwMEAAMhBAAAAwQAAREIAAMBAAABgQQAAUEIAAIhCAADgwQAAsEEAAJRCAADYwQAAwMAAAEDAAACwwQAAIEEAAMBAAADAwAAAaMIAADBBAAAIwgAAnkIAAIbCAAAMwgAA8MEAAFhCAAAEQgAAoMEAAMhBAAAQQgAAiEEAABBCAACgQAAAkEIAAADCAABQwQAAMMEAAODBAAAsQgAAOMIAALjBAAAswiAAOBNACUh1UAEqjwIQABqAAgAAoDwAAFA9AAAwPQAAQLwAAIA7AAAUPgAATL4AAC2_AAA8vgAAuD0AAAQ-AACAuwAA6D0AAJY-AABcvgAAqr4AAEQ-AABAvAAAND4AAN4-AAB_PwAA4DwAAGw-AACAuwAAUL0AAIK-AADIPQAARL4AAOA8AABUPgAADD4AAJi9AAAkvgAA4DwAABA9AACAOwAAoDwAAOi9AADOvgAALL4AAJK-AACKPgAAqD0AAPi9AABQvQAAQLwAAOg9AAA8vgAA2L0AAOa-AAB0vgAA4LwAAJY-AAB8PgAAQLwAAKi9AAARPwAAiL0AABS-AACSPgAA4DwAAAQ-AAAwPQAAUL0gADgTQAlIfFABKo8CEAEagAIAAMi9AAA8PgAAuD0AAD-_AAAUvgAANL4AANg9AACYvQAAcL0AAEQ-AADoPQAArr4AAHA9AACmvgAAQDwAAHC9AACoPQAAJz8AAMg9AAB0PgAAcD0AAOC8AABwvQAAJL4AANg9AABwPQAAML0AAAQ-AAAEvgAAED0AAHA9AACIPQAAoLwAABA9AADgPAAALL4AAFA9AABsPgAAir4AAKA8AABEPgAAcL0AAHC9AABAvAAAPL4AAKC8AAB_vwAAmD0AAHS-AABAPAAA6D0AAKC8AABwPQAAQDwAAIC7AADgPAAAML0AAIo-AACYvQAAHL4AAIC7AADIvQAA4LwAALg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=YbjJ2wep8o0","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17208951426433325738"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14821029701771323048":{"videoId":"14821029701771323048","docid":"34-4-16-ZDBA6D0466A8372EC","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/ap-c...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/790511/ba1c040f9ae3b7b5aa91cd6f7402553e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/TZ4GbgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRoxefQ_Qgm8","linkTemplate":"/video/preview/14821029701771323048?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Inflection points (algebraic) | AP Calculus AB | Khan Academy","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RoxefQ_Qgm8\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhYKFDE0ODIxMDI5NzAxNzcxMzIzMDQ4WhQxNDgyMTAyOTcwMTc3MTMyMzA0OGqSFxIBMBgAIkQaMAAKKWhoZG92aXd4c2V2ZnFyZ2hoVUM0YS1HYmR3N3ZPYWNjSG1GbzQwYjlnEgIAESoQwg8PGg8_E84CggQkAYAEKyqLARABGniBCAn88Qn0_wT4EBEHDfgD8wT89vj9_ADeBQPz_vsCAO7_--gF_wAAARwO_QIAAADqBwQG7gEBAA729fwEAAAAGgb97vsAAAD6Evn__gEAAPL99AT0AgABGAQWAgAAAAAIHvr__wAAAP709-sAAAAADxD1_QAAAAAgAC2_77Y7OBNACUhOUAIqhAIQABrwAX_7EwHQ-9H_2_IFANUN6AHBEAMAERXUALzZAgHb8NkA5hIkAAgEEgDTCycAzBT0ABLauALv0-sAMODZ___p6wAH_g8BAsoe_0sVEAELC_P_7UMl_uzh_f8k1fYB-SUK__kFCfwdBAMA9vTdBjcMKwDuChgFFAwjA_LIB__ex9cB8rzZACIs-wD1yQMBwtwkAgLbCAgA7gT-1xLz_fnX8v8BvB3_ByzX_kH49QAMBwH5yuf-BQz78AoEMxX_4Q7wAvYQHgMG_xL28vbzBxLP_PXp6fkBCe_1B_zz9_j58g4FBvjp8ukCAQj2DvgM4Qj17SAALVwwGzs4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6CgfMvVcPFLw0hQ69S9O2vZbLKz2s7ge9H_gYPp8cJb1ZYzq9dLUVvpmDkD0tBg-9xVWFPlQwb72bfyq8ehcvvgg8MD0pn9S8t7IkvikVwzxE0GK8al0TPEZ8J70gcw67Cp0XPpObFbwRiq28yi59vUnnrjvglx-9GBwqvb5Oir0GDgu8zocMPSUyPbzMndM7D-2EO8xzLr2yo8y7xMF0PfwcvLoOsYu71jEzvY1S-Dw0P8i8D_yOPfyMKz3fIPU86_uFvT5oTL2HOxE8TLQavY-RB7yttg08UjehvFbeJ7vK3cY6YpOpO3EqyL3Iaqm8qMghvgJ8HD3o6W08RgrlPaOWIDxTze47A3NZvQ3mmj0vYy-8d4oQPQJnhL2_HAu8SxcHPf-JGz00z1s80ICVPUOQgzzBfZG7LQ4fvFVWLj0QQhs9huJOPZD-cr1GoFW8oJuHPQj4fzxrvoi7rBQnvfKrHj3Y7y68W-VOPeMqTbkPuC48lqHgvAvssTzcZio8Pc3NO_g7j72omDk87EO4vY9QA75_QBC7Yy-fPSb_oz24YjW8tCAEPhgIAr3YIDe6eZWQvPA1P70oYGA83035uuNMOL1lGcG6-CAfvYOMGz28-kK8VK7su-RZeD2WFRa8N3X5PNVCKT3gH4C75wfkvGiXj72ZtRi7Aye7PU2sgrze2wC7J_SvPV9AlD2I2xa3lyOfPfvGfL0DrBI6segsvWYdxLyOW4q7KuiBvZw8oL3OAHW4oZ3TPVGBmL2XnVE5HHoLPeLGEjxNLyi6chGEvGIQ2D2E1A63HaKbPHm5ALv73Qo5y6LwvFtCHr43BeM5t7LNuWvOBTzNbLC5J6XgvAOOjjwBt_s4ax7BvcSuor1Z-CI4i3xNPIuxfbkb2R-5FHyuPSvCjT3gZGU43FS0uqPAjLzQkW05fNXKveuh4jxqiaQ5E4gyPO1KpjwoIag4EaBQPbpJnL2osHk5dD6hPIV_nD2MlkS5dOgZu8mwJT2kwxE4cjPcPSJUCT4bC6o5GuflPF0Pa724sI03ifC6PcMRpDznjKC4tJAQvtiMoj2ZewS3Nov8vPvb77yS-4e4plyGPcOb9Tw5waS3QqFUPKnlHb2ejao4H58APqTkkL0V6Dq5uF2Tvc-rkL3adUS42MlKvQxQRL1awKq4pNAIvSRECT6bFsE2nIbJO3AyAL3DHRk3yvRwPSLhKz7xy4o4G3fUPNMnYz2lNKC46FWzvRYk7DzNuCE4GjOZvV-E3zxjGDG3IAA4E0AJSG1QASpzEAAaYBf6ABD7Kv0CxU3YHN7z87rZ9LQFwx3_A8f__QvaJcsMwaL_KP8zEADlogAAAO334z8TAA9_6grsNt794-yxsTMaZuUfQ6TSE_yfGD4cBRgRFgMMUQDQQpZJP8TWIzIaBiAALbwlETs4E0AJSG9QAiqvBhAMGqAGAAAAQgAAEMEAAKhBAABEwgAAAEAAAIjBAABYQgAA2MEAAMjBAACwQQAAMEIAALTCAAAUwgAAUMIAAIBBAABAwgAAgEAAADTCAABgQQAAgMIAAHzCAAAgwQAA6MEAALBBAACowQAALMIAAJrCAAAYwgAAgkIAABxCAAAYwgAADEIAAGzCAACAQAAAmMIAAMDAAACgwAAAuEIAAEDCAAC2QgAAwEAAAIDAAADIQQAAsMEAAABAAABswgAASMIAAIBAAADgQgAA0EEAAEDCAACQQQAA0EEAAHBBAAAEQgAA4MAAAADDAACAvwAAMMEAANBBAAAQQgAAkMEAAJDBAABowgAAUMEAAEDCAAA0wgAAFMIAAMDBAAA8wgAAKEIAAIJCAACwwQAAiEEAAIhBAACcwgAAGMIAACTCAADoQQAAsEEAAEDAAADwQQAAFMIAAFBBAADIQQAAiEEAABRCAACIQQAAjkIAAFTCAAAAQgAAbEIAAEDCAACCwgAAIEEAAEzCAAAwQQAA8EEAAIhBAACAwAAAtMIAAGxCAABIQgAAkMIAACzCAADgQAAAgMAAAGBCAACowQAAKEIAAFxCAAB0QgAABMIAAIC_AAAgwQAASEIAAIBAAACAQAAA2MEAACTCAAAgwgAANMIAADDCAABMwgAAQEIAAJhBAACgwQAAgEEAACDCAACAvwAA4MAAAEDBAABswgAAJEIAAGDBAABAQQAAMMEAAMBBAABgQQAAkMIAAHDBAADwwQAAoEAAAIDBAABQQgAAAMAAADjCAACoQQAA4MAAAEDBAACAQAAAwEEAAEhCAACgwAAA6MEAAPDBAACQwQAA8MEAAHzCAACIQQAAOMIAAKhBAADIwQAACMIAAABBAABMQgAAEEEAAJxCAACOQgAA-MEAAEDAAAAEQgAAkMEAACDBAAAAwAAAgMAAAFDBAAAQwgAAwEEAADBCAABAwAAAdMIAAMBAAACgQAAAmEIAAIDAAACEwgAA-EEAACDBAADQwQAAHMIAAFjCAAAgQQAAsEEAAKhBAADoQQAAGMIAAEBAAADYwQAARMIgADgTQAlIdVABKo8CEAAagAIAAOA8AAAQPQAAmj4AAAQ-AAB8PgAA4LwAAHQ-AAANvwAAzr4AAKA8AAAQPQAATL4AABw-AACuPgAAgr4AAIi9AAC6PgAAqD0AALg9AADqPgAAfz8AAES-AAD4vQAA-D0AAOA8AACYvQAAjj4AAGS-AAAEPgAAfD4AAAQ-AACevgAANL4AADC9AAAcPgAAcL0AABA9AAAHvwAAvr4AAJK-AADGvgAAyD0AAMI-AABQvQAA6L0AABS-AACKPgAAhr4AAHC9AABwvQAAqL0AAKC8AABwvQAAJD4AADy-AACovQAAGz8AAJi9AAAkPgAAhj4AAOA8AAC4PQAA6D0AAKi9IAA4E0AJSHxQASqPAhABGoACAACKvgAAMD0AAIi9AABDvwAAEL0AACw-AACgPAAA2L0AAAy-AACuPgAAQLwAALi9AADovQAA2L0AAKg9AACovQAAiL0AAB8_AACgPAAAmj4AAOA8AACYPQAAgDsAAHA9AACAuwAAyL0AAKC8AAC4PQAAcD0AAFC9AACYPQAAQDwAAHC9AABQvQAARD4AAPi9AACWPgAAUD0AANK-AACIvQAALL4AAEQ-AABQvQAAED0AAEA8AACIvQAAf78AALI-AACGPgAAiD0AABC9AACSvgAA4LwAAJI-AAAUPgAA2D0AAMg9AACIPQAAMD0AAIC7AABQPQAAmD0AAI4-AABwPSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=RoxefQ_Qgm8","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14821029701771323048"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4254818120"},"2355512586354516836":{"videoId":"2355512586354516836","docid":"34-9-2-Z2D5749C94B2980B9","description":"We go through the topics by chapters in Joe Gallian's \"Contemporary Abstract Algebra\". The algebraic structures that are studied are groups, rings, and fields. https://amzn.to/2ZqLc1J...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4010751/e24cf8d6c78e637122c1008c478c05e4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Cre4IgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dph6m71UVjrI","linkTemplate":"/video/preview/2355512586354516836?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Topics to Expect on an Abstract Algebra Final Exam","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ph6m71UVjrI\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhUKEzIzNTU1MTI1ODYzNTQ1MTY4MzZaEzIzNTU1MTI1ODYzNTQ1MTY4MzZqhxcSATAYACJEGjAACiloaGFiaHpxcW52cWZ4dndoaFVDekxJckNkdzh5QmNrbkVmNWt0NmpudxICABEqEMIPDxoPPxPSHYIEJAGABCsqiwEQARp4gfv_Af_7BgD7_P8PAQj8Aun6_vn8AAAA9gf8__8C_wDq-QMGCP8AAAn--PwDAAAA-AX6_vX_AQAEBvsH-QAAAA_69gH1AAAABwb_Av4BAAD4Cv78AwAAAAwIAQUAAAAA9gT_AP__AAD5Awv7AAAAABD2_v0AAQAAIAAtxJ_jOzgTQAlITlACKoQCEAAa8AF_6PQBwQndAN737P_oHfkBjxUN__w10QDT7Qv_pxTJ_tgYzwDg6PMA-QAV_80jFAAl69f_BMcW_yDg_v4U7v8A1xEWASy49AE9Ey7_JPfQApoeCP3-ABoBGNbRAyIZ9f4IAg7-FPi_AQrqtwkP_j8BBP9EAAAC-QTv5w0B9xjvBfzl3f33IwUFB_MH--sWOwH4GA8KARYC-uYh6AIP8ugA--EE-h0c4P0g8t8FBgb0CdHuDfrz6eIJBAct_ucC7wjKJBr7yujv_O0CD_kg2wPx5insCCvqBv4tCvf54NsJ9wf36PHSCgsU3d319-j96wQgAC08OxE7OBNACUhhUAIqzwcQABrAByuE7b43C8U7s2y5u9zxJj0OVWe8vZh7uzyLOb1yGwg9x4EeOtFg7jxXEi89PhR7vZ_klr4b2Go9Sg1NvbXhkD66ETa9GokwPcnuXb3ifvY8GNZIvRH8P75_YHg9EEQSvLGi5j1R-oK8DjCzPHYJPT2OY1q8i1IfvLOudr3rPfC8IIAvvTZEwL3o7Xm9LlJNPBt_hzzXN5u9rqliu2xIVz2x7Pi8VIaWvKMysLsMjje9OfWcvPEPe72-Ghs9dNi3uskibT1FhNo7JTMoPGX7Vb2bvJK8aUb1vFWKXb0c45S8jQUKvQplAb7zI7k9kXWdvHkqhj1FBym9CpAXvfmgB770Gps9L4GAOxsqmz1YnUY930wvuxSbCr1dNU89-CVRPDS1UT1n_w09xontu5fmJj4l_Dc90ssDOymY8T2N-wU9ciJRu3aukz0dVc09ONPKO6TUEjzOQrG83o_bvPzgHD2540g9arvsuwwYKb1qxr08FqS6Oz21Hz24c2Y9ds9wvI2LdL2NT7e8k8KfO8U1Qz34UQ2-CW8suyTjAj3YLzO9SRsevK3UmDzfBs46QHs_PBQImz2r56Q82Fj0O3hilr0v1fG8XeIGOz2RcT34YS69-eaKu9qN3zup11I8Yj5qvGYev72FLWw9ajFbu6ejTb1phW49Q4oFO-bSkzw3hgW9Dx9gO7v6iLv1gJ68tyHOu_91Lj0q16W8HT0fO4gkhD2lGba93Jkuu0VDCz38ybO8h7Nwu91rF71KqgC9Hkw9uTVNjjzMInm9ucKUuDclDz3ruIA9HdW7Oe9-K71KHGk6jrVzOO5z47vSoYi9wyM8OSexmDtNoIi9ZLBsOul_-b02ujm8lvRFOZUsFz7VKHY55dOquWsewb3ErqK9WfgiOA6aIr0pQmo8OmCyuWJV0rs0dhO9FJIfuEhZer0kJii89RcOub0YirzZ1FS8kHtDOEtX8D0Wqas9snMvOEyoAD3H8J29_u4wOc3yK7zjJpk92s4fuIzQmTzSa9g8TUrttwib8Dy5_dI9R2llOO5ubz0UQRy9CRWxtvzSkTzDjnA9ctg4OHOj47yCdgK9dbE-N23zcD2LpvM8pZlNOHzhhDw3_LC6bMzUNlqd3L31wEI9vBr9N5JdGT7ZT1C9rMI_uSH_cbyPNo69yhGuuLvtgryX5qG9-jj_t0CQgr2mvHE9oH71tuwDvTt81A--F_rcuCL_7D01KQU-835buDwp-rtVKm094DKNuDxgKD2Juf88Wnqvt5hnSr1BFCc88kRMNyAAOBNACUhtUAEqcxAAGmAlCQAaBTgLCiVFySjwBBql3xnsE_IO_-TyANsZ5tMc-fW6CyD_CcwU6rAAAAAbEuUd5QAPcREIARsMC-rzmMQfNX_nKRLW3Q3ZuNQqNPfi9OYGFUYAtxCzODHfzUsbHSsgAC364yI7OBNACUhvUAIqrwYQDBqgBgAAiEEAAKBBAACIQQAA2EEAAADBAADmQgAA-EEAAKhBAACmwgAAHMIAABBBAADgwAAAYMIAAPDBAABAQgAAQMAAAKBBAABwwgAAcEEAAGTCAAAAQQAANMIAAADBAAAkQgAACMIAAAAAAACwwQAAaMIAAKBCAABkQgAAeMIAAAAAAABwwgAAAMEAALjBAADgQQAAqEEAAM5CAABAQgAAIEEAALhBAAAYQgAAGEIAAARCAADowQAAIEIAAGDBAACoQQAA6EEAAHBBAABkwgAAiMIAAPDBAABQQQAADEIAAKBBAADQwQAAwMEAAIhBAADAwAAAHMIAAGzCAACgwQAAsMEAACBCAAAEwgAAkMEAAMjBAADMwgAAQEAAAABCAABMQgAAAMIAAPBBAACgwQAAPMIAAKjCAADgQAAAqEIAAEjCAABwwgAAoEAAAKBAAACgwQAAQEAAABxCAADowQAASMIAAIDAAAA0wgAAGEIAADDBAABAQQAAhMIAAADBAACOwgAAsEEAAEBAAACAvwAAAMAAAKbCAACgwAAAqkIAAFDCAACKwgAAmEEAAFBBAACyQgAAMEEAAIBBAACIQQAAUEEAACTCAADgwQAADEIAABBBAAAsQgAAusIAAMBBAABQwgAA6EEAAIDBAADAQAAALMIAAFTCAAC4wQAAKMIAAKjBAAAEwgAARMIAAOBBAADYwQAAgD8AAMBBAADAwQAAFEIAAEhCAAC4QQAADEIAALjCAAAEQgAA0EEAADxCAADAwAAA-EEAAFBBAAAIwgAAAMEAAADBAACAQgAAiEEAADDBAAA4QgAACMIAADBBAACIwQAAZMIAAJbCAADIwQAAAMAAAMBBAABAQgAAgD8AAGBBAACowQAAEEIAAIA_AADgQQAAkEIAAHTCAAAEwgAAJEIAAPjBAADYQQAA4EAAADzCAAAQwgAAqMEAAADAAAAUQgAAaMIAAIDCAABIwgAAAMAAAFRCAAAswgAAIMIAAHBBAABQQgAAQEEAAJhBAAA4wgAA-MEAAHBBAACwwQAAwMAAAODBAACAQQAAmkIAANjBIAA4E0AJSHVQASqPAhAAGoACAACivgAA4DwAAKg9AACaPgAAFD4AAHQ-AAAkPgAAa78AAMq-AADIvQAArj4AACe_AAAcPgAAED0AAEA8AAC6vgAAqD0AAEC8AACSPgAAQz8AAHs_AAC4PQAAHD4AALa-AADyvgAARL4AAJI-AAAQvQAAuL0AANg9AAANPwAAcD0AAKi9AADCPgAAfL4AAOi9AABkPgAApr4AAPq-AACmPgAApr4AAJY-AAB8PgAA-L0AAHA9AAABPwAA8j4AAOq-AAD4PQAATb8AAGy-AACgPAAAoj4AABU_AADWPgAAQLwAAH8_AAC2vgAAiD0AANg9AAAsvgAARL4AAHC9AAB8viAAOBNACUh8UAEqjwIQARqAAgAAVL4AAOi9AAC2vgAAOb8AAHy-AACgvAAAoDwAAIg9AAB0vgAA0j4AAMg9AACoPQAAfL4AAIA7AAA8vgAA4DwAACy-AAAzPwAAiL0AAKI-AACSPgAAiD0AAOC8AADovQAAPL4AAIg9AACGvgAADD4AADC9AAAEPgAAPD4AADC9AADIPQAA6L0AALY-AADIvQAA1j4AAHA9AACSvgAAiL0AAPo-AACIvQAAVL4AAKi9AACIPQAABD4AAH-_AAAQPQAAiD0AAIK-AAAsPgAAMD0AAMg9AABcPgAAfD4AAAw-AACYvQAAMD0AAI4-AAAwvQAAqD0AAEw-AAAcvgAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ph6m71UVjrI","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["2355512586354516836"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2749278708"},"14322741334124635167":{"videoId":"14322741334124635167","docid":"34-0-15-ZF7B3C8E61929BD30","description":"Discussion Meeting Topics IN Hodge Theory (Hybrid) Organizers: Indranil Biswas (TIFR, Mumbai, India) and Mahan Mj (TIFR, Mumbai, India) DATE: 20 February 2023 to 25 February 2023 Venue: Ramanujan...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/760556/d2ab3b3496d0bbb73e949616e30ffce1/564x318_1"},"target":"_self","position":"19","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DllhXDrwqKdg","linkTemplate":"/video/preview/14322741334124635167?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Hodge Theory, between Algebraicity and Transcendence (Lecture 4) by Bruno Klingler","related_orig_text":"Algebraic Continuation","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Algebraic Continuation\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=llhXDrwqKdg\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjcxNDQyMjM5OTY4ODAxNzUxMwoTODQ1NjM5MzEyNTM5MjE3MTYxNQoUMTUwNDU0NzA0NDY5MzAxOTE4NTUKFDExODM3NjA3NzgyNTc5NDE0ODQwChQxMjg5NzM0MDk2OTYwMTYxOTMyOAoTMjY4ODIxMjAwOTMxNTc4MjMxOQoSOTc2NTQyMTM5NTc4NTI1NzA2ChM0ODQ2OTIyNTU5NjcwMDI3NTc2ChM4MzE3OTM3NzM2OTA4MjM3MTc1ChQxNzU3NTY0NzU0NzMyMDMwOTQ3NwoUMTgwOTk2ODAxMDU5NzI5MTMxMzYKEzc4NTgwNzgzNzY2NDMxNjc2MzcKEzI3OTMzMTAyNjMzODAyODM3NDUKEzM2Mjk4NTk1NjM0MDE4NTg0NjUKFDE3MjA4OTUxNDI2NDMzMzI1NzM4ChQxNDgyMTAyOTcwMTc3MTMyMzA0OAoTMjM1NTUxMjU4NjM1NDUxNjgzNgoUMTQzMjI3NDEzMzQxMjQ2MzUxNjcKFDE3MDQ4OTg3NDE0NjAzNzIxMTYzChM3Mzg4OTA0ODk5MDYwNjEyMjYyGhYKFDE0MzIyNzQxMzM0MTI0NjM1MTY3WhQxNDMyMjc0MTMzNDEyNDYzNTE2N2qvDRIBMBgAIkUaMQAKKmhob2Rzc3ppY2ttcG9mZGNoaFVDTzN4blZUSHpCN2wtbmM4bUFCVUpJURICABIqEMIPDxoPPxOhHoIEJAGABCsqiwEQARp4gfsD8wcAAADx-_7_CAL_AegNBAb7__8A-v4B-QQD_wDy9P8BAgAAAP8KEwcAAAAABvwJC_v9AQANBvUDBAAAAAsAB_z8AAAACAf_Av4BAAD09wcCAwAAAA39BAD_AAAAA_cG8QD_AADxCgz1AAAAAAz-_gEAAAAAIAAtmkzUOzgTQAlITlACKnMQABpgMQwALwIE3db--NvV_6cGHfcRB-XL__8F3wAPHuYBIAPiyf0E__zKKPe4AAAA9iTXB-0A1mEKye8R9BcBAMjq_xt_HhkF7An898Tc78keChACQzMdAMEHCRIkyB9A8UoUIAAtJBI7OzgTQAlIb1ACKq8GEAwaoAYAAMhBAAAEwgAAtEIAADhCAABAQAAAREIAAKjBAAD4wQAAxsIAAMzCAACaQgAAmMEAAKzCAACYwQAAEEIAAOhBAAAAAAAASMIAAFDBAAC4QQAAAMEAADTCAACAQAAAgEEAAOBBAACowQAAgD8AAABAAAC4QQAAQEAAABRCAAC6QgAAaMIAAJjBAACYwQAAJMIAAODAAABgQgAAQMEAANjBAABowgAA8MEAAAhCAADIQQAAQMEAAABAAABIwgAAXMIAADBCAACAPwAAMMIAAEhCAADAQAAAIMIAALhBAACAvwAAPMIAADBBAAAAwAAAwEAAAMDAAAAwwQAAGEIAAODAAADIQQAAIEIAAJDBAACwQQAAMMIAACxCAACAQAAAlEIAAJBBAACAQgAAYEEAAJrCAACAvwAAMMEAAEBBAAAYwgAAAAAAAOhBAAC4QQAAAEAAAODBAAAwQQAACEIAAPDBAACgQQAAwEAAADDCAABsQgAAAEIAAMjBAADwQQAAhsIAAAAAAABIQgAAuMEAAMBAAAAMwgAAgEAAAATCAACEwgAAgMIAANBBAACwwQAALEIAAMDBAACAPwAAOEIAAHzCAAAwwgAA-EEAAMjBAADwQQAAoEEAAHDBAAA0wgAAHMIAACjCAADYwQAARMIAAKBAAADQQQAAgL8AAFBBAADgQQAAMMEAALjBAACAQQAAQMEAAKDCAAAIQgAAlEIAAGRCAAAQQQAAZEIAADDBAACKwgAAnMIAAEDAAABwwgAAQMIAALhCAACAQQAAUEEAAKBCAADgQAAAqEEAANhBAACQwQAAMEEAABjCAADYwQAAJEIAAGTCAADQwQAAqMEAABhCAABQQQAA8MEAAKTCAAAQQgAA4MAAADDBAACoQQAANEIAAABAAACAPwAAnsIAABxCAADAQAAASMIAAJhBAAAQQgAALMIAAIDCAAA8wgAAokIAAKDBAACYwQAAyMEAAAjCAABcQgAAkEIAAFjCAACUQgAAoMAAAAAAAABQwQAAksIAAJBBAADgwAAAJMIAAGxCAACYQQAAPMIAAMzCAAAgwSAAOBNACUh1UAEqjwIQABqAAgAAUL0AAKA8AAAUPgAAFD4AAJg9AAA0PgAAQLwAABW_AACevgAAED0AAJg9AAAEvgAA-D0AAGQ-AABcvgAAZL4AAHQ-AAC4vQAALD4AAOo-AAB_PwAAiL0AAII-AAD4PQAAmL0AAFA9AAAwPQAAUL0AAKY-AAB0PgAADD4AAJi9AADCvgAAZD4AAIA7AADIvQAAgLsAALq-AAB8vgAAPL4AAIa-AAAMPgAAZD4AAMi9AABMvgAA2D0AADw-AACCvgAAXL4AAO6-AAB0vgAA4DwAAEw-AAA0PgAAmD0AAKi9AAAtPwAAHL4AAEC8AAAUPgAABL4AAHA9AABAvAAA6L0gADgTQAlIfFABKo8CEAEagAIAAAS-AADIPQAAiD0AAD2_AAAQPQAA4DwAANg9AADYvQAARL4AAL4-AAAQPQAAiL0AAEC8AABUvgAAgDsAAKC8AADoPQAANz8AAIo-AADyPgAAiD0AADA9AADIPQAAFL4AABC9AAAQvQAAmD0AAPg9AABUvgAALD4AAIg9AABAvAAABD4AAOi9AACgPAAANL4AAMi9AABsPgAAbL4AAPg9AABkPgAAQDwAAOg9AACYvQAAiL0AAMg9AAB_vwAARL4AAMi9AABEPgAALD4AALg9AABUPgAA4DwAADA9AACgPAAAcL0AAHA9AABQvQAAJL4AAIg9AAB0PgAAoLwAAOC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=llhXDrwqKdg","parent-reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14322741334124635167"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"16714422399688017513":{"videoId":"16714422399688017513","title":"\u0007[Algebraic\u0007] numbers in motion: rotating the constant coefficient","cleanTitle":"Algebraic numbers in motion: rotating the constant coefficient","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MzMevFaVqr4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MzMevFaVqr4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX0J3cllLNXJYT3RLT2oyOWs0SVdvZw==","name":"Sebastian Bozlee","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sebastian+Bozlee","origUrl":"http://www.youtube.com/@aguywithaproject","a11yText":"Sebastian Bozlee. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":50,"text":"00:50","a11yText":"Süre 50 saniye","shortText":""},"date":"21 şub 2022","modifyTime":1645401600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MzMevFaVqr4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MzMevFaVqr4","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":50},"parentClipId":"16714422399688017513","href":"/preview/16714422399688017513?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/16714422399688017513?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8456393125392171615":{"videoId":"8456393125392171615","title":"\u0007[Algebraic\u0007] Definition of Continuity","cleanTitle":"Algebraic Definition of Continuity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=b3sRRo4OtEY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/b3sRRo4OtEY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeTBwY2UwZFdIOG5EX1dKTE56aXRadw==","name":"Education Made Painless","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Education+Made+Painless","origUrl":"http://www.youtube.com/@educationmadepainless6346","a11yText":"Education Made Painless. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":519,"text":"8:39","a11yText":"Süre 8 dakika 39 saniye","shortText":"8 dk."},"date":"14 eki 2014","modifyTime":1413244800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/b3sRRo4OtEY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=b3sRRo4OtEY","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":519},"parentClipId":"8456393125392171615","href":"/preview/8456393125392171615?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/8456393125392171615?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15045470446930191855":{"videoId":"15045470446930191855","title":"\u0007[Algebraic\u0007] numbers in motion: rotating the coefficient of x^2","cleanTitle":"Algebraic numbers in motion: rotating the coefficient of x^2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2ZIOYtMqU0o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2ZIOYtMqU0o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX0J3cllLNXJYT3RLT2oyOWs0SVdvZw==","name":"Sebastian Bozlee","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sebastian+Bozlee","origUrl":"http://www.youtube.com/@aguywithaproject","a11yText":"Sebastian Bozlee. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":50,"text":"00:50","a11yText":"Süre 50 saniye","shortText":""},"date":"21 şub 2022","modifyTime":1645401600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2ZIOYtMqU0o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2ZIOYtMqU0o","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":50},"parentClipId":"15045470446930191855","href":"/preview/15045470446930191855?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/15045470446930191855?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11837607782579414840":{"videoId":"11837607782579414840","title":"Unit 1 \u0007[Algebraic\u0007] Limits and Continuity","cleanTitle":"Unit 1 Algebraic Limits and Continuity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bbV2NP-S1eM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bbV2NP-S1eM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcC1BQ2stODM5ZGcxZ0c2ZjZoLWpHQQ==","name":"Mr. Spinelli (Spaghetti's Mathematics)","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mr.+Spinelli+%28Spaghetti%27s+Mathematics%29","origUrl":"https://www.youtube.com/channel/UCp-ACk-839dg1gG6f6h-jGA","a11yText":"Mr. Spinelli (Spaghetti's Mathematics). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2007,"text":"33:27","a11yText":"Süre 33 dakika 27 saniye","shortText":"33 dk."},"date":"20 eyl 2020","modifyTime":1600560000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bbV2NP-S1eM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bbV2NP-S1eM","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":2007},"parentClipId":"11837607782579414840","href":"/preview/11837607782579414840?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/11837607782579414840?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12897340969601619328":{"videoId":"12897340969601619328","title":"Cantor’s Continuum: \u0007[Algebraic\u0007] Numbers and the Infinite","cleanTitle":"Cantor’s Continuum: Algebraic Numbers and the Infinite","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FIFP7CNoeQ0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FIFP7CNoeQ0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVV3cEdIMHVqY0ZQOXBRblY0VnNtUQ==","name":"Ak","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ak","origUrl":"http://www.youtube.com/@Parzivalx","a11yText":"Ak. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":948,"text":"15:48","a11yText":"Süre 15 dakika 48 saniye","shortText":"15 dk."},"date":"18 mayıs 2025","modifyTime":1747526400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FIFP7CNoeQ0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FIFP7CNoeQ0","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":948},"parentClipId":"12897340969601619328","href":"/preview/12897340969601619328?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/12897340969601619328?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2688212009315782319":{"videoId":"2688212009315782319","title":"Proving the \u0007[Algebraic\u0007] Continuity Laws | Real Analysis","cleanTitle":"Proving the Algebraic Continuity Laws | Real Analysis","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Sbk-DDhuEvc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Sbk-DDhuEvc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":415,"text":"6:55","a11yText":"Süre 6 dakika 55 saniye","shortText":"6 dk."},"views":{"text":"3,3bin","a11yText":"3,3 bin izleme"},"date":"17 tem 2023","modifyTime":1689552000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Sbk-DDhuEvc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Sbk-DDhuEvc","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":415},"parentClipId":"2688212009315782319","href":"/preview/2688212009315782319?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/2688212009315782319?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"976542139578525706":{"videoId":"976542139578525706","title":"Limits of \u0007[Algebraic\u0007] Functions ||All in One || Calculus: Limits and Continuity","cleanTitle":"Limits of Algebraic Functions ||All in One || Calculus: Limits and Continuity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tnhdduncZK0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tnhdduncZK0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDamFsWWhIU2E1MFQxdlpsY3VabzI3QQ==","name":"NETRA P CHAND","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NETRA+P+CHAND","origUrl":"http://www.youtube.com/@netrapchand4531","a11yText":"NETRA P CHAND. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3346,"text":"55:46","a11yText":"Süre 55 dakika 46 saniye","shortText":"55 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"15 tem 2019","modifyTime":1563148800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tnhdduncZK0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tnhdduncZK0","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":3346},"parentClipId":"976542139578525706","href":"/preview/976542139578525706?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/976542139578525706?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4846922559670027576":{"videoId":"4846922559670027576","title":"6.1 Integral ring extensions (Commutative \u0007[Algebra\u0007] and \u0007[Algebraic\u0007] Geometry)","cleanTitle":"6.1 Integral ring extensions (Commutative Algebra and Algebraic Geometry)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=wSu2fqUWgp8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/wSu2fqUWgp8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUFduaFIyOVZIVEFrN3JaVUVEUWREUQ==","name":"Uppsala Algebra","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Uppsala+Algebra","origUrl":"http://www.youtube.com/@uppsalaalgebra6902","a11yText":"Uppsala Algebra. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":776,"text":"12:56","a11yText":"Süre 12 dakika 56 saniye","shortText":"12 dk."},"views":{"text":"1,8bin","a11yText":"1,8 bin izleme"},"date":"29 mar 2021","modifyTime":1616976000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/wSu2fqUWgp8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=wSu2fqUWgp8","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":776},"parentClipId":"4846922559670027576","href":"/preview/4846922559670027576?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/4846922559670027576?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8317937736908237175":{"videoId":"8317937736908237175","title":"Matrix 10: Part 9 Cont. || \u0007[Algebraic\u0007] Multiplicity || Eigen Vectors ||Explanation with Solved Ex...","cleanTitle":"Matrix 10: Part 9 Cont. || Algebraic Multiplicity || Eigen Vectors ||Explanation with Solved Example","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NGk9XhreJ98","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NGk9XhreJ98?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUEtkeGlKSjBIcTI5LUNTZ044a0Npdw==","name":"DES! Learning Point","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DES%21+Learning+Point","origUrl":"http://www.youtube.com/@DESiLearningPoint","a11yText":"DES! Learning Point. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2632,"text":"43:52","a11yText":"Süre 43 dakika 52 saniye","shortText":"43 dk."},"date":"17 ara 2021","modifyTime":1639699200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NGk9XhreJ98?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NGk9XhreJ98","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":2632},"parentClipId":"8317937736908237175","href":"/preview/8317937736908237175?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/8317937736908237175?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17575647547320309477":{"videoId":"17575647547320309477","title":"\u0007[Continued\u0007] Fractions #3: Quickly Finding \u0007[Continued\u0007] Fractions of Rational Numbers","cleanTitle":"Continued Fractions #3: Quickly Finding Continued Fractions of Rational Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bOyNOT4lvTA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bOyNOT4lvTA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdFRGckVQSXFhS2ZXeUdrQmk5Um12Zw==","name":"CrystalMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=CrystalMath","origUrl":"http://www.youtube.com/@LearnMathsFree","a11yText":"CrystalMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":318,"text":"5:18","a11yText":"Süre 5 dakika 18 saniye","shortText":"5 dk."},"views":{"text":"17,5bin","a11yText":"17,5 bin izleme"},"date":"14 oca 2019","modifyTime":1547424000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bOyNOT4lvTA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bOyNOT4lvTA","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":318},"parentClipId":"17575647547320309477","href":"/preview/17575647547320309477?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/17575647547320309477?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18099680105972913136":{"videoId":"18099680105972913136","title":"Bruno Klingler: Hodge theory, between algebraicity and transcendence","cleanTitle":"Bruno Klingler: Hodge theory, between algebraicity and transcendence","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=aPig5MPP_Ho","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/aPig5MPP_Ho?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTUhMdW42amQtY01QblhoYzJKcVdQdw==","name":"International Mathematical Union","isVerified":false,"subscribersCount":0,"url":"/video/search?text=International+Mathematical+Union","origUrl":"http://www.youtube.com/@InternationalMathematicalUnion","a11yText":"International Mathematical Union. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2530,"text":"42:10","a11yText":"Süre 42 dakika 10 saniye","shortText":"42 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"16 şub 2023","modifyTime":1676505600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/aPig5MPP_Ho?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=aPig5MPP_Ho","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":2530},"parentClipId":"18099680105972913136","href":"/preview/18099680105972913136?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/18099680105972913136?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7858078376643167637":{"videoId":"7858078376643167637","title":"Definition of Continuity an \u0007[Algebraic\u0007] Approach","cleanTitle":"Definition of Continuity an Algebraic Approach","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=GHDraungm-E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/GHDraungm-E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa3hzMllEOHM0Sm04LXVBQUFGZkVhdw==","name":"Math And Physics Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+And+Physics+Tutor","origUrl":"http://www.youtube.com/@themathandphysicstutor","a11yText":"Math And Physics Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":544,"text":"9:04","a11yText":"Süre 9 dakika 4 saniye","shortText":"9 dk."},"views":{"text":"1,8bin","a11yText":"1,8 bin izleme"},"date":"25 ağu 2020","modifyTime":1598313600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/GHDraungm-E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=GHDraungm-E","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":544},"parentClipId":"7858078376643167637","href":"/preview/7858078376643167637?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/7858078376643167637?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2793310263380283745":{"videoId":"2793310263380283745","title":"!! \u0007[Algebraic\u0007] Limits (PART-1) !! Limits, Continuity and Differentiability !! Lecture -2 !! !!","cleanTitle":"!! Algebraic Limits (PART-1) !! Limits, Continuity and Differentiability !! Lecture -2 !! !!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5jGJ4xkWLaM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5jGJ4xkWLaM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLWlQSGhrT1h2dkUxT2lPcDhhZXNuZw==","name":"INKredible Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=INKredible+Mathematics","origUrl":"http://www.youtube.com/@inkrediblemathematics1838","a11yText":"INKredible Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2445,"text":"40:45","a11yText":"Süre 40 dakika 45 saniye","shortText":"40 dk."},"date":"8 haz 2020","modifyTime":1591574400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5jGJ4xkWLaM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5jGJ4xkWLaM","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":2445},"parentClipId":"2793310263380283745","href":"/preview/2793310263380283745?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/2793310263380283745?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3629859563401858465":{"videoId":"3629859563401858465","title":"\u0007[Algebraic\u0007] Topology and Homology | Using Abstract \u0007[Algebra\u0007] to Study Topological Spaces","cleanTitle":"Algebraic Topology and Homology | Using Abstract Algebra to Study Topological Spaces","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/cKisLJz05F0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cKisLJz05F0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDekxJckNkdzh5QmNrbkVmNWt0Nmpudw==","name":"Bill Kinney","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bill+Kinney","origUrl":"http://www.youtube.com/@billkinneymath","a11yText":"Bill Kinney. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":60,"text":"1:00","a11yText":"Süre 1 dakika","shortText":"1 dk."},"views":{"text":"4,7bin","a11yText":"4,7 bin izleme"},"date":"12 mayıs 2025","modifyTime":1747008000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cKisLJz05F0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cKisLJz05F0","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":60},"parentClipId":"3629859563401858465","href":"/preview/3629859563401858465?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/3629859563401858465?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17208951426433325738":{"videoId":"17208951426433325738","title":"\u0007[Algebraic\u0007] Topology: \u0007[Algebraic\u0007] Invariants of Spaces - Oxford Mathematics 4th Year Lecture","cleanTitle":"Algebraic Topology: Algebraic Invariants of Spaces - Oxford Mathematics 4th Year Lecture","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YbjJ2wep8o0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YbjJ2wep8o0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTG5HR1JHX191R1NQTEJMenloZzhkUQ==","name":"Oxford Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Oxford+Mathematics","origUrl":"http://www.youtube.com/@OxfordMathematics","a11yText":"Oxford Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3273,"text":"54:33","a11yText":"Süre 54 dakika 33 saniye","shortText":"54 dk."},"views":{"text":"8bin","a11yText":"8 bin izleme"},"date":"19 haz 2025","modifyTime":1750291200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YbjJ2wep8o0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YbjJ2wep8o0","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":3273},"parentClipId":"17208951426433325738","href":"/preview/17208951426433325738?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/17208951426433325738?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14821029701771323048":{"videoId":"14821029701771323048","title":"Inflection points (\u0007[algebraic\u0007]) | AP Calculus AB | Khan Academy","cleanTitle":"Inflection points (algebraic) | AP Calculus AB | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/RoxefQ_Qgm8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RoxefQ_Qgm8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":334,"text":"5:34","a11yText":"Süre 5 dakika 34 saniye","shortText":"5 dk."},"views":{"text":"233,9bin","a11yText":"233,9 bin izleme"},"date":"26 tem 2016","modifyTime":1469491200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RoxefQ_Qgm8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RoxefQ_Qgm8","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":334},"parentClipId":"14821029701771323048","href":"/preview/14821029701771323048?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/14821029701771323048?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2355512586354516836":{"videoId":"2355512586354516836","title":"Topics to Expect on an Abstract \u0007[Algebra\u0007] Final Exam","cleanTitle":"Topics to Expect on an Abstract Algebra Final Exam","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ph6m71UVjrI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ph6m71UVjrI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDekxJckNkdzh5QmNrbkVmNWt0Nmpudw==","name":"Bill Kinney","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bill+Kinney","origUrl":"http://www.youtube.com/@billkinneymath","a11yText":"Bill Kinney. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3794,"text":"1:03:14","a11yText":"Süre 1 saat 3 dakika 14 saniye","shortText":"1 sa. 3 dk."},"views":{"text":"1,5bin","a11yText":"1,5 bin izleme"},"date":"15 mayıs 2022","modifyTime":1652572800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ph6m71UVjrI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ph6m71UVjrI","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":3794},"parentClipId":"2355512586354516836","href":"/preview/2355512586354516836?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/2355512586354516836?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14322741334124635167":{"videoId":"14322741334124635167","title":"Hodge Theory, between Algebraicity and Transcendence (Lecture 4) by Bruno Klingler","cleanTitle":"Hodge Theory, between Algebraicity and Transcendence (Lecture 4) by Bruno Klingler","host":{"title":"YouTube","href":"http://www.youtube.com/live/llhXDrwqKdg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/llhXDrwqKdg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTzN4blZUSHpCN2wtbmM4bUFCVUpJUQ==","name":"International Centre for Theoretical Sciences","isVerified":false,"subscribersCount":0,"url":"/video/search?text=International+Centre+for+Theoretical+Sciences","origUrl":"http://www.youtube.com/@ICTStalks","a11yText":"International Centre for Theoretical Sciences. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3873,"text":"1:04:33","a11yText":"Süre 1 saat 4 dakika 33 saniye","shortText":"1 sa. 4 dk."},"date":"23 şub 2023","modifyTime":1677142243000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/llhXDrwqKdg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=llhXDrwqKdg","reqid":"1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":3873},"parentClipId":"14322741334124635167","href":"/preview/14322741334124635167?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","rawHref":"/video/preview/14322741334124635167?parent-reqid=1769399918074689-15886386477597700745-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Algebraic+Continuation","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"5886386477597700745797","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Algebraic Continuation","queryUriEscaped":"Algebraic%20Continuation","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}