{"pages":{"search":{"query":"B Cos","originalQuery":"B Cos","serpid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","parentReqid":"","serpItems":[{"id":"18063985617105936263-0-0","type":"videoSnippet","props":{"videoId":"18063985617105936263"},"curPage":0},{"id":"7337463648124401468-0-1","type":"videoSnippet","props":{"videoId":"7337463648124401468"},"curPage":0},{"id":"6762013871831908703-0-2","type":"videoSnippet","props":{"videoId":"6762013871831908703"},"curPage":0},{"id":"6983541087870559507-0-3","type":"videoSnippet","props":{"videoId":"6983541087870559507"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEIgQ29zCg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","ui":"desktop","yuid":"3060553181769645551"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"12050665197458559593-0-5","type":"videoSnippet","props":{"videoId":"12050665197458559593"},"curPage":0},{"id":"2827420706404570879-0-6","type":"videoSnippet","props":{"videoId":"2827420706404570879"},"curPage":0},{"id":"14068187318672752935-0-7","type":"videoSnippet","props":{"videoId":"14068187318672752935"},"curPage":0},{"id":"14401655594263532014-0-8","type":"videoSnippet","props":{"videoId":"14401655594263532014"},"curPage":0},{"id":"15009903043903176008-0-9","type":"videoSnippet","props":{"videoId":"15009903043903176008"},"curPage":0},{"id":"12113026535125905572-0-10","type":"videoSnippet","props":{"videoId":"12113026535125905572"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEIgQ29zCg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","ui":"desktop","yuid":"3060553181769645551"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"5426087144729824260-0-12","type":"videoSnippet","props":{"videoId":"5426087144729824260"},"curPage":0},{"id":"11910685238037106036-0-13","type":"videoSnippet","props":{"videoId":"11910685238037106036"},"curPage":0},{"id":"759602051200234493-0-14","type":"videoSnippet","props":{"videoId":"759602051200234493"},"curPage":0},{"id":"13252040213595142549-0-15","type":"videoSnippet","props":{"videoId":"13252040213595142549"},"curPage":0},{"id":"4983631306736271509-0-16","type":"videoSnippet","props":{"videoId":"4983631306736271509"},"curPage":0},{"id":"6880455033782389412-0-17","type":"videoSnippet","props":{"videoId":"6880455033782389412"},"curPage":0},{"id":"12432177880103358688-0-18","type":"videoSnippet","props":{"videoId":"12432177880103358688"},"curPage":0},{"id":"8565724792070107656-0-19","type":"videoSnippet","props":{"videoId":"8565724792070107656"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEIgQ29zCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","ui":"desktop","yuid":"3060553181769645551"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DB%2BCos"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"9304188678774735887258","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455699,0,43;1472346,0,54;1466867,0,37;1457622,0,40;1473738,0,19;1476204,0,82;1471965,0,93;1460956,0,59;1460710,0,63;1460214,0,95;1465969,0,49;1472010,0,30;1472031,0,0;6160,0,56;1469892,0,13;1339938,0,34;1461712,0,64;1470224,0,8;1282204,0,21;1469597,0,93;1466295,0,61;1470864,0,22;1466082,0,89;1452051,0,48;1146115,0,28;1476026,0,87;1215711,0,95;1439206,0,93;1474027,0,75;1470514,0,78;133991,0,78;1471678,0,40;89018,0,99;1404017,0,85;1475770,0,32;1002325,0,23;151171,0,56;1281084,0,55;287509,0,78;1447467,0,58;785125,0,12;1466396,0,84"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DB%2BCos","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=B+Cos","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=B+Cos","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"B Cos: Yandex'te 3 bin video bulundu","description":"Результаты поиска по запросу \"B Cos\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"B Cos — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y7569df9f795375a16581723b79a629fb","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1472346,1466867,1457622,1473738,1476204,1471965,1460956,1460710,1460214,1465969,1472010,1472031,6160,1469892,1339938,1461712,1470224,1282204,1469597,1466295,1470864,1466082,1452051,1146115,1476026,1215711,1439206,1474027,1470514,133991,1471678,89018,1404017,1475770,1002325,151171,1281084,287509,1447467,785125,1466396","queryText":"B Cos","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"3060553181769645551","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1475824,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769645740","tz":"America/Louisville","to_iso":"2026-01-28T19:15:40-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1472346,1466867,1457622,1473738,1476204,1471965,1460956,1460710,1460214,1465969,1472010,1472031,6160,1469892,1339938,1461712,1470224,1282204,1469597,1466295,1470864,1466082,1452051,1146115,1476026,1215711,1439206,1474027,1470514,133991,1471678,89018,1404017,1475770,1002325,151171,1281084,287509,1447467,785125,1466396","queryText":"B Cos","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"3060553181769645551","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"9304188678774735887258","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":155,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"3060553181769645551","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1757.0__1e42d45c824ef14ef6767326055fb713b0c3a145","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"18063985617105936263":{"videoId":"18063985617105936263","docid":"34-3-17-ZCF2B5CE860446D29","description":"Cos(A+B) proof:Trigonometry, How to proof Cos(A+B).Trigonometric Cos(A+B) proof is obtained considering a right angle triangle which makes an angle makes an angle of B with the horizontal. OP is...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/989659/e7770cef63d2c8853c5329a328e52a76/564x318_1"},"target":"_self","position":"0","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2OUaik1j14k","linkTemplate":"/video/preview/18063985617105936263?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cos(A+B) proof:Trigonometry, How to proof Cos(A+B)","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2OUaik1j14k\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhYKFDE4MDYzOTg1NjE3MTA1OTM2MjYzWhQxODA2Mzk4NTYxNzEwNTkzNjI2M2qvDRIBMBgAIkUaMQAKKmhobHl0dGZoZ2xqY2V6a2NoaFVDQXliQXpCR2FwdE1yM3J0MzRQYjJUQRICABIqEMIPDxoPPxO-A4IEJAGABCsqiwEQARp4gfv2Dv7_AQD1_goMAgb8AQb1APr4_v4ABfvuBv0E_gD3ARMBAQAAAAQSAf7_AAAAAwDzAP39AQAQAff8BAAAABQMAAH-AAAACgfz9f8BAADt8_0MBP8AAAPzAP__AAAAAA758QAAAAAFA_D8AAAAAAD__v8AAAAAIAAtKufUOzgTQAlITlACKnMQABpgExEACQkL4ucPEQQH8_cG-vX08u_eDADwAQARHQ8BEfre9PkMABvnCPTZAAAACPUFJxAA8yv38wD7BhQF6N3n_R1_EwX1BvP_BPAK-hEPGeYBBA0FAAH1GfcT9gv7HRQdIAAtqCKdOzgTQAlIb1ACKq8GEAwaoAYAAABAAACYwQAAmEEAAEjCAACAQQAAAEAAAK5CAABAwQAAoEAAAKDBAAAAAAAAhEIAADTCAAAUQgAAAEAAAADAAABwwQAAVMIAAJhBAABUwgAAzEIAAMjBAACgwAAAFEIAAKBAAACwQQAAIEIAABDCAAC4wQAAwEAAAJDBAABQwQAArMIAAJBBAACgwQAAwMEAAABCAAAMQgAAgD8AAKDBAAAsQgAAAEIAADBCAACQQgAAykIAAGDCAABwQgAAEMEAAJBCAADIwQAAgMEAAJDCAAAgwgAACEIAAGBCAADYQQAAAMEAAAjCAADYQQAAikIAAIDAAABIwgAAkMEAADzCAAAwQQAAwMEAAMBBAABEwgAAQEAAADDBAADYQQAAAAAAAJjCAACGQgAA4MAAAKbCAABwQQAAQMAAAEDAAACgQAAAmMEAAMBBAACAQAAAsMEAAPhBAAB4wgAAmEEAADxCAABQQgAA4MEAAIZCAABQQgAAyMIAACDBAACcwgAATMIAAMBAAAAMwgAAHEIAABhCAADgwQAAwEEAAOhBAADQwQAAEMIAAEBBAADAwQAALEIAANBBAAAAwAAAgD8AAAjCAAAgwQAAqEEAADDBAACgwQAAgEAAABzCAABwwgAAgMEAAODBAADAQAAA2MEAACTCAAAwQgAAQMEAAHBBAAAAQAAAbMIAAKhBAAAAwQAAuMEAAGBBAACiQgAAQMEAANhBAAAQQgAA2EEAAGDCAACAwgAAJEIAAKBAAAAkQgAACMIAAGDBAAAAQAAADMIAADzCAACgwAAAwEAAAAzCAACgwQAAJEIAABjCAADAQQAAYMEAAFDCAABQwgAAnMIAAFBBAABcwgAAPEIAAAAAAACQwQAAAEEAAKBBAAAQwQAA8EEAAGRCAAAgQgAABMIAAMDBAABAQAAAmsIAALbCAACQQQAAgEAAAJDCAACcwgAAYMEAAJjBAAD4wQAAOMIAAOhBAADQQgAAEMEAAKjBAAAswgAAcMEAAPhBAACgwQAAmEEAAGhCAAAwwQAAtkIAAI5CAACwwQAAIEEAAETCAAAwwSAAOBNACUh1UAEqjwIQABqAAgAAoDwAAMa-AACIPQAAqr4AAKg9AABkPgAA2D0AACO_AACAOwAAgDsAAFC9AADgPAAAVL4AABc_AABcvgAAhr4AACQ-AACYvQAAPD4AABM_AAB_PwAAFL4AAAw-AAA8PgAAdL4AALg9AADYPQAANL4AAFA9AADqPgAAND4AALK-AABwvQAA4LwAABS-AABMvgAABL4AAGS-AADWvgAAlj4AAKi9AACyvgAAbD4AAIi9AABwvQAARL4AAII-AACevgAAgLsAALi9AAAcvgAAyL0AAOo-AAB8vgAAHL4AAOA8AABxPwAA4LwAACy-AAAEPgAAXL4AAII-AACAOwAA-L0gADgTQAlIfFABKo8CEAEagAIAABC9AADgvAAA-L0AAEm_AACSvgAAJL4AAEQ-AAA0vgAAmL0AAFA9AAAwvQAAZL4AAKi9AAA0vgAAUD0AANi9AADYvQAA5j4AADA9AABkPgAAbD4AAOA8AAAEvgAAoDwAAJi9AACAOwAAoLwAADA9AACgvAAABD4AAAQ-AAA8PgAAhr4AAKi9AADovQAA4DwAAO4-AACGPgAA0r4AAAS-AAAEPgAAgj4AAEC8AAB8PgAAdD4AAEA8AAB_vwAAFD4AAEw-AAAwvQAAqD0AABy-AADgPAAA6D0AAPg9AAAsPgAAcD0AACw-AADovQAAML0AAHQ-AAA8PgAAgLsAABy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=2OUaik1j14k","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["18063985617105936263"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7337463648124401468":{"videoId":"7337463648124401468","docid":"34-10-0-Z6C9C59F034AE7636","description":"Physics Ninja looks at the derivation of several trigonometric proofs. 1) cos(A+B)=cos(A)cos(B)-sin(A)sin(B) 2) sin(A+B)=sin(A)cos(B)+sin(B)cos(A)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1627773/b68f52a93f818d8aaf0d2fbde4573bdc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/b-hLGQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DX2rv8XNZ0Eg","linkTemplate":"/video/preview/7337463648124401468?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Trigonometric Proof: cos(A+B)=cos(A) cos(B)-sin(A) sin(B)","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=X2rv8XNZ0Eg\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhUKEzczMzc0NjM2NDgxMjQ0MDE0NjhaEzczMzc0NjM2NDgxMjQ0MDE0NjhqiBcSATAYACJFGjEACipoaGlieGZ4eXd3YWdqb2lkaGhVQ3B2cWloZk14OThKVXQzQmtsM0dTVEESAgASKhDCDw8aDz8T9AWCBCQBgAQrKosBEAEaeIH7_wH_-wYA-QcFCAAG_QHsA_z7-wD_AP__9Pv9BP4A8_oHAQQAAAD6D_3--wAAAP3__AED_gAAEPz--QMAAAATCwAB_gAAAA4D-P_-AQAA_fv99wIAAAAD-_0DAAAAAAAN-vIAAAAABQPx_QAAAAAEAfsEAAAAACAALcSf4zs4E0AJSE5QAiqEAhAAGvABXuYcAOnx2ADL-Ov_3CDoAYEV8P_9KtsA2_zrAOD9BAEbCh0A6v00_ykDJf_DIfr_FQTd_wLsEwAp1Bv_AADhAOEB_QEe4AkANwIS_wvw4gAIJPv-_eoBAObp6v8DHeH-C-cN_wf84QHzBOYBHvwmAdkB8QLoJvkB5-_vAd4GEAPzEN3-CR4DAuntDAEH9iMDAPcCBh8U-_j1Bv0DDfwXBCsL7vz3Iu8C8_z0_uX-DwP__PwDB9TwAPnxBwj1Aer6_u4FBfrPAwD36Pj-5wcZAwISAwYEGP4AHAb9BQL3_vz1MP4EAxv4_hQY9ATn2vf6IAAtUfQ1OzgTQAlIYVACKs8HEAAawAe_urq-gAvXPJH9YrwsLs68cXCOPCHegLsjE_C91y0nPff9QLwkQx4-k2uvOnOULb0YzRq-08JgvRkvp7xRMDM--oCbO5HnRD1A3CW-xCskPPP2b7tMxDu-gpxFu1Yy17pkTFA9Rs-tPPuqnrrCyYw9L1JDvXwZuzz3VrQ9ZKAhPTKZIL3cmwQ81JPevPztAb1a3zY96dudvFORyjyUlAU95zjduRm7EDz1Yi09WVSfPHG74Ttyta-9Ylk6vedt0byDka09sPGPPQxwJj09PJW9L5_RPHLsMLtVil29HOOUvI0FCr0mQKg9kKgrPW_RrryPfTq96ywEvQM-vzts6dG9qValPW0a27y5Zrc9cxOwPb8bgTyndyG-UbYtPa_TozphScM8HRc8O7ASHjwsRRI-oNw7vc-JmDyr6uU9m0LfOjbXITyqHka6gIGAPVTTZDwB_Tm98yOZPWVZi7wz63s8_YALu4RTlTxl_x28WqirPKxjxzqvpvw8IMTfupgWdTyEL-e86T2_PRufKDsFI6U91gI7vknlmjpFGeC8JgTlO0OTn7x4bUU9CQQQPXHOozzB7go9HtyCPKAabTu8uyW7_RCLvdODo7dKFJA8ntrmObpWMbyJFcS9pn_pPesQLLooclK9dDAxPT6p_rvHqEG9eQv_vAfrc7g7Hs684eN9PSZF-TtNuu08RBzeOY31Kjssuas7111qPHapkbu28LE99vErPUKoHDsYI9I8tbBhO3mfWzvA1rA93TiTvfjFabjRSMo9C-qAvI7t4LjkROC8AFqMO3Z2kLgSgEQ9Y3_ZPatjMzng-BW9Z1NkvVLrKbj_I0O-ZmfRvTzykDmQ-sa8_-FTvGslkLmwIh696_BGPHZ0ljkfYqi9PpB-O2WfyrnrS4C9QAenPFvERrnxRZA9Uq1PPJ6yvzjBjAk9LCz6O9-hVzptMck8KEnyvLSerDgNtuI82pEqPqFijbmy_mW9KmMyPPyMFLmK6Pc9P5CsPYLuZjj3PH-9zhgGPvMdMrePeAk7_p7IvfHtrzhhfIc9kvMTPCsCYbifyR69UhZ0PHQqGjm45Ci-0X-FvJ34GrldvwA9vxkLvclyYjjIXzo-3JXCPM2vSziilBS8KebBuz5IODjB4ys-3KVovAeJdLk5xcS9Z7cmvtZHcjiixxm9FMhRPbrUfDfgFXw9q9UyvUkLFTZpgKw98fRKvXDrS7VkXpI9tGtsPSF47jg8Kfq7VSptPeAyjbjDldi8vzpYPHmbbbjyoPK6W4kqPV4QqjcgADgTQAlIbVABKnMQABpgHeAAAwINyQM1OeX-ztEd08ngyeKmFv_VB_8wFgEZF_XSuA8LABTzEuWaAP8AINTpSwoA3n_hzDIU-jQ5upDoRRlxIPzAzdYaE_EKFhEAA_FM-zYcAMsF1wVO4OPxTUlUIAAtQdIUOzgTQAlIb1ACKq8GEAwaoAYAAKBBAAAwwQAAAEIAAAjCAAAQQgAAAEIAAJRCAACgwQAAIMEAAIDBAAC4QQAA4EEAAHjCAADIQQAACEIAABBCAABwwQAAisIAAHBCAABIwgAAEEIAAFTCAABwQQAALEIAAPBBAAAIQgAAyEEAAHzCAAAwwgAAkMEAAIC_AAAkQgAAgsIAAHTCAADgwQAAyMEAAHBCAAAsQgAAuMEAAMBAAACCQgAAAEEAAAhCAACAQQAAkEIAACjCAADAwQAAyMEAAOhBAABAwQAArMIAABzCAADYwQAAuMEAADBBAAAIQgAAssIAAIDAAAD4QQAAhkIAAGDBAAAwwgAAgL8AAIbCAADgQQAAYMIAAJBBAABcwgAAgD8AAHjCAACAQgAAoEEAALDCAABoQgAA6EEAAOjBAADIwQAAEMEAAIBBAABgQQAA-MEAAAhCAAAgwQAAUMEAACBBAAA4wgAA6EEAAIhCAACIQQAAFMIAAJhBAAB8QgAAssIAADBCAAAAwgAApsIAAADCAAAwwgAAnEIAADBBAACMwgAAEEIAAIBCAACwwQAAmMEAAERCAABAwAAAEEEAACBCAADQQQAASEIAAJjBAAAQQQAA2EEAAKTCAAAMQgAAkEEAAIDAAAC4wgAADMIAADDCAAAMwgAAAAAAACDBAAAgQQAAoEEAAIA_AAAAAAAAwMEAAAxCAADAwQAA8MEAAIDAAACYQgAAVEIAABBBAAA0QgAAIMEAAHzCAAAAwgAAAMAAAODBAACYQQAA8MEAALhBAACAvwAAJMIAACDBAADwQQAAYMEAAKBAAACYQQAAMEIAAIBBAABgQgAAwMAAAEjCAABUwgAAdMIAAKBAAABQwQAAEEIAAAjCAAAwwgAAoMAAAMBBAACgwAAA4EEAAPhBAABgQQAAmMEAAIC_AABQwQAAqMIAALTCAACYQQAAEMEAAAzCAABEwgAA4MEAAKjBAACQwQAAYEEAAKhBAADSQgAADMIAABDCAACCwgAAAMEAAMBAAABwwQAASEIAAEhCAABAwQAATEIAAJBBAADwwQAAZEIAABjCAACgwSAAOBNACUh1UAEqjwIQABqAAgAAgDsAAJa-AAA0PgAAbL4AAOA8AAC-PgAAiD0AABG_AACIPQAA4LwAADA9AABwvQAAgLsAAL4-AABcvgAABL4AACw-AACIvQAAPD4AAN4-AAB_PwAARL4AAOg9AACmPgAAVL4AAHA9AAC4PQAABL4AADw-AAC6PgAADD4AALK-AABwvQAAED0AAKi9AAAkvgAADL4AAHy-AADOvgAAJD4AAIA7AADCvgAAND4AAKC8AAC4vQAA-L0AALo-AACGvgAATL4AAFy-AAAMvgAAUL0AAOY-AABMvgAAHL4AADA9AABRPwAAFD4AAPi9AABQPQAA2L0AACQ-AACYvQAADL4gADgTQAlIfFABKo8CEAEagAIAAAS-AACIvQAAJL4AAFu_AAB8vgAATL4AAI4-AACWvgAAgDsAABC9AADIvQAATL4AAAy-AABQvQAAuL0AAJi9AABsvgAAyj4AAKC8AABcPgAAoj4AAEC8AAA0vgAAoLwAALi9AADgvAAAoLwAAJg9AABwvQAAVD4AAEQ-AABMPgAAyr4AAKA8AAAcvgAAcL0AAAs_AAAMPgAA5r4AAGy-AABEPgAAkj4AABA9AACmPgAAVD4AABC9AAB_vwAAND4AAJo-AACgPAAA4DwAAEA8AACgPAAARD4AAJg9AABcPgAAQDwAADQ-AACAOwAAuL0AAHQ-AAAEPgAA4LwAAGy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=X2rv8XNZ0Eg","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7337463648124401468"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3155367760"},"6762013871831908703":{"videoId":"6762013871831908703","docid":"34-3-17-ZBF245F7CF5081A67","description":"This video unpacks the mysteries of sine and cosine functions, proving the identities for sin(A-B), cos(A+B), and cos(A-B) using clear Algebra and Simple Animations. Unravel the following: Sin...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/997943/9f8b67e6d56e92e8f4b17742fed727f1/564x318_1"},"target":"_self","position":"2","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DK0xpipKRoWA","linkTemplate":"/video/preview/6762013871831908703?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simplest Proof: Sin(A-B), Cos(A+B) & Cos(A-B) | Trigonometric Identity","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=K0xpipKRoWA\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhUKEzY3NjIwMTM4NzE4MzE5MDg3MDNaEzY3NjIwMTM4NzE4MzE5MDg3MDNqrQ0SATAYACJDGjAACiloaHh0anhiZ3dobmdoeWJoaFVDSEU3WWtWVG5ycEIyWE5xaU1fV2EyZxICABEqD8IPDxoPPxNwggQkAYAEKyqLARABGniB9PT5_v0DAP0ACw74CfwC9QH4APn-_gDuCfEABAAAAPP9Cgj8AAAA_gsHAgAAAAAG9_cCAv0BABD7_vkDAAAAFhD9DfwAAAAOA_j-_gEAAPX7_vwDAAAABvP6-f8AAAAADfryAAAAAAUD8fwAAAAA_wf-__8AAAAgAC3nmNw7OBNACUhOUAIqcxAAGmAhDAANB_Pi0iYf-Pzv8A0S7Abr_sMdAO0IABcd7fEM89fECAv_JMYU574AAAAf-QYhIgD5VuHf0g8iDQLLstsHPn_4COwRBvb92A8BAhMj7BfrHzMA8P0JBCP6GxIlKzcgAC1xuVA7OBNACUhvUAIqrwYQDBqgBgAATEIAAOhBAACIQgAALMIAAJpCAAAIQgAADEIAADBBAABAwAAAoMAAADhCAAAAAAAA8MEAAAjCAACAQgAAYEEAAADCAAB8wgAAjEIAAKDAAACgwAAAyMEAAAjCAAAwwQAAgMAAACBBAAAwwQAAisIAAHDBAAAAwQAAgEAAABBCAABcwgAAwMAAACDCAAC4QQAAgL8AADxCAAA4QgAAikIAAIC_AACgQQAA8EEAAGjCAAAwQgAAsMEAANjBAAAQQgAAEEEAABRCAABYwgAAuMEAAKhBAAAAQQAAcMEAAMBAAAAQwgAAoMEAAEBBAADiQgAAEMIAAETCAACgwAAAxMIAAARCAAAAwgAAAEIAAADCAACEwgAATMIAAIBCAACwQgAAQMIAACRCAAAAAAAAiMIAAIjCAACQQQAAkMEAAIA_AAAQQQAAeEIAAIbCAACAQAAA8MEAAKDAAACYwQAAeEIAADDBAABUwgAA8MEAAI5CAABowgAAIMEAAMhBAAAkwgAAgMIAAMBAAACeQgAAgL8AALDBAAAkQgAA2EEAADDBAABcwgAADEIAAIDBAACAQAAAEEEAABBCAABMQgAAdMIAAADBAAAAQQAAdMIAAChCAAC4QQAASMIAAEzCAAAgQQAAjsIAAEDCAABgQQAAIMEAAJjBAADQQQAANEIAAIDBAABAwgAA4MAAALDBAACAPwAAIMEAAL5CAACIQQAAqkIAAAAAAADIQQAAiMIAAHzCAABgQQAA8MEAAEBAAADAQAAA2EEAABxCAAB0wgAAQEIAAOhBAAAkQgAAyMEAAMBAAACAPwAAgEAAAEDAAACYwQAAfMIAADzCAABgwgAAwMAAANDBAABgQQAAwMEAAEBBAAAAwgAAsEEAAIjBAAA8QgAADEIAAIBAAABwwQAAgMEAABxCAABAwAAABMIAAFDBAACgwAAAlMIAAERCAAAswgAAVMIAAGBBAAAAwQAAcEEAAEhCAACawgAANMIAAJLCAAA4QgAA4EAAAKBBAACYwQAAwEEAAHBBAAA8QgAAUEIAAEzCAACIQgAA6MEAABRCIAA4E0AJSHVQASqPAhAAGoACAACIvQAAjr4AABw-AABUvgAAED0AANo-AABkPgAACb8AAIg9AADovQAAgDsAAEC8AAA0vgAA1j4AAGS-AAAsvgAArj4AAHC9AAAUPgAABT8AAH8_AAB0vgAA2D0AAGw-AACavgAAQLwAAJg9AACovQAAFD4AANo-AAAsPgAAZL4AAHC9AACAuwAABL4AABS-AABwvQAAHL4AAOa-AABMPgAA2L0AANK-AAAEPgAAED0AABC9AABAvAAAoj4AAMK-AABUvgAA6L0AAJi9AAAQvQAA5j4AAOi9AACCvgAAED0AAE8_AACoPQAANL4AAEQ-AADYvQAAFD4AADC9AAAEviAAOBNACUh8UAEqjwIQARqAAgAABL4AAKg9AAD4vQAAPb8AAKa-AAC4vQAAdD4AAIi9AADgPAAAgLsAAAy-AACGvgAANL4AAEC8AACAuwAAUL0AAIi9AADePgAAoLwAAKI-AACWPgAAgDsAAFy-AABwvQAAiL0AAIC7AABQvQAAED0AALi9AACCPgAA2D0AADw-AACGvgAAQLwAAKC8AAC4vQAA9j4AAAQ-AADCvgAADL4AANg9AAB8PgAA4DwAAHQ-AAAcPgAAMD0AAH-_AAD4PQAAuD0AAOC8AABwPQAAcD0AAIC7AABMPgAALD4AAFQ-AACAOwAAqD0AAHA9AACgPAAAdD4AAOg9AADgPAAAJL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=K0xpipKRoWA","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6762013871831908703"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6983541087870559507":{"videoId":"6983541087870559507","docid":"34-2-7-Z84D48AD8AEF57436","description":"Explanation on Cosine of compound angles ie., Cos(A - B) = CosA CosB + SinA SinB and Cos(A + B) = CosA CosB - SinA SinB. Watch the concept videos in my channel and just grasp the concepts which...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3126941/38c3474ec2b3a0a16261ae5b6f7e9685/564x318_1"},"target":"_self","position":"3","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DN2wQRbXuLMc","linkTemplate":"/video/preview/6983541087870559507?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Trigonometry | Cos (A+B) & Cos (A-B) | Trigonometric Ratios Of Compound Angles","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=N2wQRbXuLMc\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhUKEzY5ODM1NDEwODc4NzA1NTk1MDdaEzY5ODM1NDEwODc4NzA1NTk1MDdqrw0SATAYACJFGjEACipoaGFleWdoc2ZxY2plempkaGhVQ2dzaTI3MDhnczNvbGw1N01RUmI0T1ESAgASKhDCDw8aDz8TuAmCBCQBgAQrKosBEAEaeIH3-QT7_AQA-AcFCAAG_QL2A_34-f39AP__9Pv9BP4A9wESAQEAAAAEEQH-_wAAAPn8A_8D_gAADv3-AwQAAAATCwAB_gAAABUIAvX-AQAA9fcHAgMAAAAD9AD__wAAAAAN-vIAAAAABQPx_AAAAAD8A__3_wAAACAALZbg3Ts4E0AJSE5QAipzEAAaYP4VAA4oB8TUExv6-Nv_AP3uAuv-yAv_6_sAKiAG-CH67tn-Hf8W3fz6xAAAAPvy-yEQAPtB7PIAFQwT-NXO-CkofwkA9RL09fzV8xc3GyXm8fsV_wD-Awf1HgEmEUE7EiAALfOeZzs4E0AJSG9QAiqvBhAMGqAGAAAAQgAAuEEAAGRCAADgQAAAJEIAAIBAAAAAQAAAMEEAALLCAAAAAAAA4EAAADzCAACqwgAASMIAALJCAABgQQAA4MEAACDCAABAwgAAnMIAAFRCAAAAwQAAUEEAAOBAAADYwQAAAMEAACDCAACQwQAAiEEAABBBAADYQQAA2EEAAGDCAAAwQQAAQMEAABDBAACAwAAAukIAAKBBAABwwQAAcEEAAAhCAAAwQgAAJMIAAIpCAACgwAAAmMEAAKDAAACsQgAA2MEAAGzCAABIQgAA0EEAADDBAADgQQAALEIAANjCAADAwAAAqMEAAGRCAAAQwQAAIMEAAAjCAAAIwgAAYMEAAMDCAAB0QgAAuMEAAJjBAAAAwAAASEIAAExCAABUwgAAkkIAAIBBAAB0wgAARMIAAGDBAADIwQAADMIAAAjCAADIwQAAuMEAABxCAAAMwgAAQEIAAIjCAAAgwQAAcEEAAAhCAACoQQAA4EAAAOBBAACYwgAAAMAAABTCAABMwgAA6EEAALBBAADwwQAA0MEAALhCAACQQQAAiMIAADjCAACgQAAA4EAAAIJCAACQwQAAAAAAAJhBAADowQAAwMAAAOjBAAAQQgAAEEIAAHjCAACwwQAAAAAAAGBBAAAgQQAAuEEAABTCAABAwAAAQEAAACxCAACAPwAAgMEAAGjCAAAUwgAAgEEAAHDCAACAwAAAqkIAAEBBAADAQQAAoEEAABDCAAAAwgAAeMIAAPjBAACKQgAAgD8AAIBAAAA0QgAA4EAAACzCAAB8QgAAoMEAACRCAADIQQAAaEIAAMhBAAAIwgAA-EEAAHBBAACgwQAAeMIAACDBAACAQQAA4EEAABBCAAAAwAAAgEAAAIBAAABwwQAAuEEAAKBBAAA8QgAAgMAAAJ7CAABwQQAAAMAAAJhBAAA0wgAAZEIAAHDBAAAQQgAAqMEAAExCAAAswgAAdMIAAFRCAACIwgAAIEEAAHDCAAA0wgAAIEEAADhCAACYQgAAAMEAACTCAABgQQAAkEEAAPjBAABsQgAAksIAAChCAABEwgAAkMEgADgTQAlIdVABKo8CEAAagAIAALi9AACKvgAAgj4AAI6-AABAPAAAqj4AAPg9AAARvwAA4LwAABS-AABQPQAADL4AAEA8AADuPgAAPL4AAOi9AACOPgAAmL0AABQ-AADyPgAAfz8AADS-AAAEPgAA6D0AAJi9AABAPAAAMD0AAOi9AACoPQAAwj4AACQ-AACGvgAAqL0AAFC9AAAwvQAAXL4AAMi9AAAEvgAAyr4AAKg9AACIvQAARL4AAAw-AAD4vQAADL4AAAS-AADiPgAAsr4AAEy-AABkvgAAJL4AAJi9AAAFPwAA2L0AAEy-AABAPAAARz8AABA9AAAQvQAADD4AAAy-AAA0PgAAiL0AADy-IAA4E0AJSHxQASqPAhABGoACAACgvAAAcD0AAMi9AABRvwAAqr4AADS-AABcPgAAJL4AANi9AAC4PQAAML0AAFy-AAA8vgAAHL4AAEA8AACovQAATL4AAA8_AACAOwAAZD4AAII-AADIvQAANL4AAKC8AAA8vgAAoLwAAJi9AADIPQAAQLwAABw-AAAcPgAA-D0AAHS-AAAEvgAAqL0AAJg9AADGPgAAij4AALq-AAA0vgAAZD4AAJY-AABAvAAAPD4AADQ-AADoPQAAf78AAIC7AACCPgAA-L0AALg9AACgvAAADD4AAMg9AAAcPgAAJD4AAEA8AABkPgAAiL0AAJi9AABkPgAAkj4AAIA7AABUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=N2wQRbXuLMc","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6983541087870559507"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12050665197458559593":{"videoId":"12050665197458559593","docid":"34-10-5-Z472F19E634E2A33C","description":"cos(A-B)=cos(A)cos(B)+sin(A)sin(B) proof - geometrical To find out how the diagram was created and also to look at its fine details, visit the link below: http://mathsvideos.net/2016/09/29/how...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2268062/3cae56cc3271ad4a385347350d5788b6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RwM4nQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DgDOGT6NcD60","linkTemplate":"/video/preview/12050665197458559593?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(A-B)=cos(A) cos(B)+sin(A) sin(B) proof - geometrical","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=gDOGT6NcD60\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhYKFDEyMDUwNjY1MTk3NDU4NTU5NTkzWhQxMjA1MDY2NTE5NzQ1ODU1OTU5M2qTFxIBMBgAIkUaMQAKKmhobmhrYmp3cW5jamp0cWJoaFVDRnZZb0hFVV8zeDVMS3lRcTZ0NTVfZxICABIqEMIPDxoPPxOKA4IEJAGABCsqiwEQARp4gff5BPv8BAD0BAUB-QP_AesD_Pr7__8A___0-_0E_gD6_QD__wAAAPoP_f77AAAABvf3AgL9AQAPAfj8BAAAAB8M_fn7AAAADgP4_v4BAAD9-_33AgAAAAP7_QMAAAAAAA368gAAAAD_BfYCAAAAAAj-BAYAAAAAIAAtluDdOzgTQAlITlACKoQCEAAa8AF_DSf_y-Xd_8gEKP7KBwYC7QL0_0siBP-YGBkBygjYAegI5AAkDRr_Pef3AN7--gBGDtD_2_zpAP-8NAAO9-IBnv_5ACAEFgBhGxQBXB0BABALJP8BDhD9BOXSAOXw__sX6AgBGPaxAf8I2AQt-jkB_hzoBZv0Ef8W6Bn_1fr7A_X2uP3l5vkHvw___br-JwEzKvQA7Dr-Be_2GgMu6SX7KuPqA_wD4AkSw8cFsTsvAQlLCPzukfkD7EH6_vAC3_bgBBsAt_4C8v__G_myMgD3JvDb-xwR-hYaAiAEMNTqApz1CvXeQwQT9OnmDfwPBQMgAC3clO86OBNACUhhUAIqzwcQABrAB4iCub7FJQG8WkX_vAhojTv0jH29u892vfN3DrxiHDI9Xwh5vR_4GD6fHCW9WWM6veVk4r2Cnoe98j_evC0LVj6wily9QS0mvdz0F75-1DU9qmINPJZZBL2HzAs9nFPJvCtLdLyzvve8xyRIO3b81z1PZZe9eCoAPYVgdb0bFl69gX46vPihGjwfheu9vJF5vNfqwT038JS9CekfPPiOdTzOpbg8FA1NvbxPjz0r1oU9O59LvItDrL3Atqm99jrOvFpHNT2Dxqe7yIPjPOPMRb32rLU83mQGOz3kOTvcryy9Ot8VPN_8xj3sG_M8h1k-vfNrkL1wq7W9S1jbvMPU9r1bBaa9GwBgPMDRaTqSJBg-yjS7OshFJb5p0YE9nQjHvJH6kT2CJfI8kDaGO_FmPT59NVG9iXHIuwOY8j0Tysw8XFnivHvsiL1Ga1s9aF1EO3BzTztndoI9SJK7vEdiOLxtG4Y8JzKUO2qTeTwyq3u6szwTPG-df7znQTA829qnPL6zajudSfs9MhSBvI_gFj5beA6-A-cOvJoRGT0w8vK87aIrunHKnDweiuI9Yd5jPAApHjyb1wK9hJ-0u3nLVTzSMcw8QtcxukHYCT1CWKK95D8iuph8fb0exmQ93VACvHmx0L01mdE9do1xu6ozTT36qma9t9DXO52EUr22v049s8jAO7qkGr5H29864n7ZOo6Eh7ypn1y9N5GROp00CD2jsTY91InkNym3KL2loWY9sFHHue9lrLxYbSO9LE8cO5whizxFzDa8L0NXujJ1V73lUos9KrctOXkB2zxDyPk9CuouuGvjPjx0CJy8bbVsuf8jQ75mZ9G9PPKQObxTBr12HHg6y8T2Od_1_jz49jM9MTZpOf7u_b2HyyA9yDD-uT9UWr2yRj09kNyDuUFtirxSDFA9CuXnuOIlVbvugjm6OPgIuCbuZzwQO7i9VWPEOKTfnr30-P09oAgVOHEfCb65NN69KVfOOBnQgzuYYMA7-brAuJjyRr0DGlY95OmFOAPM4Tzx3oy9JEoUOfX_QzvHeWS9r2O1ty33uDwPiow9qb2KuFRT0r3odM-8L_jFN6_Xj7xcEQY9y8c-t8hfOj7clcI8za9LOMBVhTsi6Sq7zQcDuJUuqD0huKA9fRwwuPlK4L0Mj929YzNEuNVdmbwRl4K9B3EDuDpKFL0dt068X_TYt2sKmT1QzJW8Rxylt1UYpj1tC8U9g8fnOBgnOb2UQ6U9ZZTHuFXXxr27mVG8-Zpbt1KajTyZJQk8wWdLNyAAOBNACUhtUAEqcxAAGmA77QAi6y_oABwYCAXvBiXdpOadEcQQ_wIC_xv_yhwC7t7O5yMA8eUP8JsAAAA07gM3-AAHf9j4LCEG-BPGlvglHEkK89-Xu-pF2u0LOSMD5zH0KUQA_Q20WjXZ6gBISiUgAC2_EBo7OBNACUhvUAIqrwYQDBqgBgAAMEIAACBBAAD4QQAA4MEAAIA_AADAQQAATEIAAADAAACwQQAAhsIAABzCAACuQgAAAAAAALBBAACIwQAAHEIAACBCAAC8wgAAYEEAAEzCAAAcQgAAEMEAAOBAAAAAQgAAmEEAALhBAACYQgAAmMEAAKjBAACCQgAAQMEAABxCAACwwgAAAMEAAAjCAABwQQAAREIAAFBBAACwQQAAsMEAAOhBAABAwAAAiEIAAIRCAACgQQAAwMEAALBBAACAPwAAAEIAANjBAADwwQAAgsIAAADCAABgQQAA0EEAAIhBAAAwQQAApsIAAFBBAACOQgAAUMEAAHDBAABowgAARMIAAIC_AABowgAAgL8AAGjCAABgQQAAAMAAAEBBAAAgwgAAsMEAAABCAACSwgAAEMIAAOBBAACAQQAAsEEAAABAAAAgwgAAKEIAAEBAAAAYwgAAtEIAAHTCAACIQQAAgMEAALZCAAAowgAAeEIAAHBBAAAUwgAAwMEAAIDCAACQwgAAiEEAAFTCAADQQQAAyEEAAJjBAACQQQAAgEEAAEBAAAAAQAAAkEEAAFTCAAAAAAAAHEIAAEBBAAAAQgAAkMEAAJDBAABcQgAAqMEAAIBBAAAQwQAAgEAAAKjCAACwwQAAEMIAAGDBAADwQQAAEMEAABjCAAAQwgAAmEEAAAzCAAAIwgAAAEEAANDBAAA0wgAAgEAAADxCAADAwAAAuEEAAHBBAAAwQQAANMIAAAzCAACYQQAASMIAAEBAAADIwQAAQMEAAFRCAAAwwQAA-MEAAIDBAABwwQAASMIAAMDAAAA0QgAAAEAAAGhCAACgQQAAwMIAAITCAACCwgAAHEIAAPhBAACAQgAAIMEAAMBAAADAwQAAaEIAAAzCAABsQgAAuEIAABBBAAAkwgAAYMEAAOBBAABowgAAiMIAAEDBAAAgQQAAlsIAAMbCAAAMwgAA4MEAAFTCAAD4wQAAgEAAAKJCAABMQgAAgD8AABTCAAAEwgAAkEEAAIJCAAAIQgAA-EEAABDBAAAMQgAAikIAADRCAAAQQQAAAMEAAIBAIAA4E0AJSHVQASqPAhAAGoACAADYvQAAjr4AACw-AABcvgAAED0AALo-AAC4PQAAEb8AANg9AADIvQAABD4AAOC8AACgvAAA0j4AADy-AADovQAAbD4AAFC9AAAkPgAA-j4AAH8_AABsvgAA2D0AAJ4-AAA0vgAAcD0AABA9AAA0vgAA-D0AAOI-AAAcPgAAmr4AADC9AACIPQAABL4AAJi9AAAUvgAAVL4AAOa-AACYPQAAML0AAK6-AAA0PgAAQLwAAEy-AAAkvgAA1j4AAJ6-AACOvgAATL4AAES-AADgvAAACz8AACy-AABkvgAA4DwAAFM_AAA8PgAAcL0AACQ-AADIvQAAPD4AAMi9AACovSAAOBNACUh8UAEqjwIQARqAAgAAQLwAADA9AAAkvgAATb8AAL6-AABUvgAAij4AAEy-AAAwPQAAgDsAAOC8AABEvgAAqL0AAJi9AABAvAAAcL0AAEy-AADGPgAAML0AAHQ-AACGPgAAEL0AAGS-AABQvQAAqL0AAEA8AAAwvQAAiD0AANi9AAAcPgAAFD4AACQ-AACKvgAAQDwAAAS-AADgvAAA0j4AACw-AADKvgAAXL4AACQ-AACKPgAAQLwAAIY-AABEPgAA2L0AAH-_AABUPgAAgj4AAJi9AAAwPQAAED0AAOC8AAA8PgAAcD0AAFQ-AACgvAAAHD4AABC9AABQvQAATD4AANg9AACgPAAALL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=gDOGT6NcD60","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12050665197458559593"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"491705460"},"2827420706404570879":{"videoId":"2827420706404570879","docid":"34-3-1-Z55CB7D09CF60C6A1","description":"learn explanation of cos(a+b) = cos a cos b - sin a sin b|cos(a+b)|trigonometry #mathematics #trigonometricfunction #cosinefunction #maths #trignometry #trigonometry @mathsnonstop8857...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2980520/7161622b179a5ba7779ef784aa5f09c4/564x318_1"},"target":"_self","position":"6","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSsA2j3MlDAQ","linkTemplate":"/video/preview/2827420706404570879?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to derive cos (a+b)=cos a cos b -sin a sin b","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SsA2j3MlDAQ\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhUKEzI4Mjc0MjA3MDY0MDQ1NzA4NzlaEzI4Mjc0MjA3MDY0MDQ1NzA4Nzlqrg0SATAYACJEGjAACiloaHB4c214a3FjdWFwdXVoaFVDdDltUHBOSlVXSnlnMXhfQzJmbktOdxICABEqEMIPDxoPPxPRBIIEJAGABCsqiwEQARp4gfv_Af_7BgD0AwUB-gP_AewD_Pv7AP8A___0-_0E_gD5-_8FBQAAAPUOBwD7AAAAAPUAAwD-AQAI_f79AwAAABMLAAH-AAAADgP4__4BAAD__Pv_A_8AAAQC_QQAAAAAAA368gAAAAD_BfYCAAAAAAIC_AwAAAAAIAAtxJ_jOzgTQAlITlACKnMQABpg_AoACxkZ6NQGKNkSAuLd1x7449-oNP_6KwAe_ADdCe3M0d4O_xYMDAi0AAAA8-TxIfsAEmDZ-9EHAfPkwNfvGT1_IukYztrF59frGQkVGSH8ESRNALcOHN4E5BQ1FSkrIAAtGps4OzgTQAlIb1ACKq8GEAwaoAYAAChCAACoQQAAukIAAETCAADoQQAAgEAAAEBBAAAQwQAALMIAANjBAACYQQAAAEIAABzCAAAEwgAAaEIAAKDBAACQQQAAEMIAAPhBAAB8wgAAMEEAAJDBAAAkwgAAeEIAAGhCAADQwQAAiMEAAL7CAACIQQAANEIAAGBBAACKQgAAOMIAAADAAABIwgAAkMEAAIjBAADMQgAA6EEAAAhCAACgwQAAgMAAAMBBAACgwQAAmEEAANjBAACAwgAA-EEAAIZCAAAAAAAATMIAAAAAAABQwQAABEIAAOBBAABwwQAAlMIAABRCAACAwAAA4EAAAAhCAABgwQAATMIAAHDBAAAoQgAAiMEAABxCAAAEwgAAeMIAAKjBAACAQgAAZEIAAEzCAADGQgAAkMEAACTCAAAQQQAADMIAALBBAADgwAAASMIAAEBBAAAAAAAAjkIAAJBBAAA0QgAAAMIAAOBBAADQQQAAtsIAALDBAABQQgAA8MEAAIBBAAAgwgAAjMIAAPjBAADgQQAAsEIAAEDCAABYwgAArEIAANBBAACcwgAAQMIAAABAAACgQQAAfEIAAFzCAABIQgAAcEEAADDCAAAgwQAAaMIAAARCAACgQAAA2MEAAKDBAADowQAA-MEAACDBAABAwgAAIEEAAADAAADoQQAAOEIAAEBBAACowgAAEMEAADDCAABgwgAAWMIAAIBAAAAgQgAA2EEAAIBAAACAvwAAmEEAAIbCAAA0wgAABEIAAMBBAACIQQAAAAAAAGDBAACAwQAAfMIAAKBBAAC4wQAAMMEAANBBAABoQgAAFEIAAATCAABQQQAAIEEAAABBAACQwgAABMIAALJCAADQwQAAYEEAACDBAAAQQQAADMIAAHBBAAC4QQAAnkIAAGhCAACAPwAAwMEAAKhBAACYQQAAgEAAALDBAAAwwQAA6EEAAMDAAACeQgAAFEIAABDCAAAAQAAAcMEAAIBAAADwQQAARMIAALzCAACoQQAAJMIAAEBAAADAwQAAgD8AAHBBAADIQQAAHEIAAIBBAAAkwgAATEIAAAjCAAA8wiAAOBNACUh1UAEqjwIQABqAAgAAoLwAAJa-AABcPgAAJL4AAIA7AADSPgAAUD0AABO_AAAQPQAANL4AAFA9AAAEvgAAqL0AAL4-AABcvgAAHL4AAGw-AACgvAAA2D0AAL4-AAB_PwAA2L0AAEA8AACKPgAAZL4AAHC9AAC4PQAAHL4AAAQ-AACqPgAAJD4AAHy-AAC4vQAAML0AAOi9AADovQAAML0AAFS-AADCvgAAFD4AAKi9AACmvgAAyD0AAFA9AAD4vQAAHL4AALI-AACOvgAAgr4AADy-AAAQvQAAQLwAANo-AAAUvgAAHL4AAIA7AABJPwAAHD4AAMi9AAAwPQAAEL0AAAQ-AABQvQAADL4gADgTQAlIfFABKo8CEAEagAIAAKi9AABwPQAANL4AAEe_AACmvgAAHL4AAK4-AABUvgAABD4AAKA8AAD4vQAAFL4AABS-AACAOwAAML0AADC9AAAkvgAArj4AAIi9AACaPgAAhj4AAFC9AABMvgAAQLwAABS-AACoPQAA4DwAAHA9AADYvQAAbD4AAOg9AABsPgAA4r4AAIA7AAB0vgAAED0AAPY-AACoPQAAyr4AAIK-AACIPQAAmj4AAHA9AACuPgAAgj4AAHA9AAB_vwAA6D0AADQ-AACgvAAAML0AALg9AABAvAAAbD4AAFA9AAB8PgAAoDwAABA9AAAQPQAAQLwAAHw-AADgPAAAoLwAAEy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=SsA2j3MlDAQ","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2827420706404570879"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14068187318672752935":{"videoId":"14068187318672752935","docid":"34-6-3-ZC9BEABCDF14A562D","description":"cos(A+B)=cosAcosB-sinAsinB explained in simple terms. See why sin(A+B)=sinAcosB+cosAsinB below: • sin(A+B)=sin(A)cos(B)+cos(A)sin(B) proof -... Video created by Tiago Hands: / tiago_hands Get...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3043453/a8691603f3b62fb7be060797d5fba173/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/DkmHugAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-n6h6-CT0-0","linkTemplate":"/video/preview/14068187318672752935?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(A+B)=cos(A) cos(B)-sin(A) sin(B) proof - geometrical","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-n6h6-CT0-0\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhYKFDE0MDY4MTg3MzE4NjcyNzUyOTM1WhQxNDA2ODE4NzMxODY3Mjc1MjkzNWqTFxIBMBgAIkUaMQAKKmhobmhrYmp3cW5jamp0cWJoaFVDRnZZb0hFVV8zeDVMS3lRcTZ0NTVfZxICABIqEMIPDxoPPxOeA4IEJAGABCsqiwEQARp4gff5BPv8BAD0BAUB-QP_AesD_Pr7__8A___0-_0E_gD6_QD__wAAAPoP_f77AAAABvf3AgL9AQAPAfj8BAAAAB8M_fn7AAAADgP4_v4BAAD9-_33AgAAAAP7_QMAAAAAAA368gAAAAD_BfYCAAAAAAj-BAYAAAAAIAAtluDdOzgTQAlITlACKoQCEAAa8AF_ERP-2_auAdYfEQD8MQEB1hklAO8x9AHd_Bb_uCDuABv34P_7APn-CxPHAbXe2P4fGP7_3wzlABjKFv814QgBwfIWAAnx6QE9Ey7_LQr0_uj4AgABDA3-4N3N_hsb3QAPxgX-CPvYAejY1gA8DS4AtwYjA8z_8f_LABL96QcX_e8V0_3lIeoD4fQd_P4RHwMC2_QC-isJ-_3Y9vo17hMDJfXx_Qn46QXyyez-tvgJ_Asf-QAOqgr_DTwB_9_i8wP1BRfx5e4O_P__F_rXGff5-ufjAP4q-w0H-g4DGfTrAwv58ATQO_T-Dfz0ARwA7-0gAC0dRhA7OBNACUhhUAIqzwcQABrAB2fyrb4McAa9UmoKvbXzBbyGWk69Xff7OhTamL0nT3k9CxGJu_4OZT7GZqy8BpCQvIiKbTv02s87udDouiy5Cj4BZiE8ZmPKvIbjCb7fIPU8rAEqvSxDgb3-odO7SQJDvfZzNL1_vq28RjniukZQtj3YyhW9Z3RxPSGVoryGRJC8Tt62vCgTMj2wXyu9sac9vXEeTjz84Lw88m52vKr0Lj1HUve81B5APJKzED11iqo9S-XtuxaSYr0RXnW7PvTTvF7_hbmo97k8q_XVO0gcjb0ndZe6ynIvu2Oc_zy-zIO7Mwo0O8x6ET4WhxM9fJOLvGRSCL2GYEu9sNycvHf1Cr6gny49XPlRvCmuqjyWSq49-D_ZuzqTNr4ElUw8X4iLvP1S3Dumtre75BGcPDhoPz6H1i88-Kc3O1e1BD6DDTS9Ed6DvAib8Lz_Yxw9Fw2ZPMeOfD0wL8A7JtvlvPSLkj1UcWO9X3a0vPeCJT1tdl-9I39Vu5eCHjwODwS8dxrfPCgrhr2Dogk-LUC6OgUjpT3WAju-SeWaOpPHM72drZK9VnknPEt2bD0N7cI9OeajO1mHwz0Kz1W99IJTO3mVkLzwNT-9KGBgPEHYCT1CWKK95D8iunPZyL1iM3s9Ce3Ju0-5GL0wZus9U2bCuXfci7wJwES9ymOTuwQvJD17-a09SZK1OiM3jr3oiHe9JtVUuY0jezxV7zq8sJFBO6g76ry67jI9iH3IuQTKJr29d227TeaKOiwWOj0Huaa957UxuaGd0z1RgZi9l51ROf2VH70uk1w9vlinuHkB2zxDyPk9CuouuGRssjxcA9u94KQUuVQb_L1iu_u9E9PyOaLXeryoEWS93QRLudDhKz1fYic9Juy8ucC4r7zl_rg7y8ECOOAsxb2mb8g8zqQKuVkcmT11hWg94U6OOH-Dtr33VX49rIjzuMFC3DyTGMm9RTbUNgIyT70jgtE9dbe8OIz6v73iQfE7XScGue1EST1b7PY843xnOAYKQb2Q77c8EQdjONpsUT2Yf7m9nUXbOPX_QzvHeWS9r2O1t87vRT1Gp4i9ot0xucJLtb2NTQI8DbpPNmbeBT3oWgk8Ey1uNxxe8D19BP489OeQuEn-1jwvNR88StmDOIJVRT50yDc9ydyEuaqex716nY69kk3VN7yQzr03gpm9gmKPuDCJjj3kfLk6q9CKuBT0TT20vae9l5eNtyEytjw7OeM9BBsGOShl0r02HYE99R_UuKdaC77Mmhi9Cpd0uOblED3kq3M9Rs1DNyAAOBNACUhtUAEqcxAAGmAr0gAY-zHx6xgW4AXu0jbAvNXLA7Ac_-gW_wsUwhjx6-Ld0i0A9MkhzJgAAAA46ukyCgDof9nmJwsMMCHDwrhLC1ID9qiywfYo8_MSCDQI3DbeL0UA3xHUE1W2qesoRzYgAC1l1RM7OBNACUhvUAIqrwYQDBqgBgAAAEEAAODBAAAkQgAAbMIAAIBBAACgQAAAYEIAALhBAAAAwgAAaMIAAFDBAACCQgAAiMEAABhCAACwwQAAOEIAADRCAAA8wgAAqEEAADBBAABwQQAAoMIAAPjBAABMQgAAEMIAAOBAAAAkQgAA4MAAADDCAADgQQAApMIAAABAAACwwgAAQEIAACTCAABAwgAAGEIAAMhBAABAQQAAAMEAAKBBAADwwQAAMEEAABhCAACoQQAA6MEAACBCAABAQAAAgD8AAMhBAACCwgAAgMIAAETCAAAIQgAAAMAAAIBBAAAQwgAAAEAAALDBAAC2QgAAoEAAAEzCAAA8wgAAYMIAAKjBAAB0wgAAAMAAAEDAAAAAQgAAuMEAAKhBAACIwQAASMIAAIZCAACAwQAAiMEAAIA_AABAQQAAQMAAAABCAADowQAAXEIAACBBAABEwgAAVEIAAHDBAADwQQAAOMIAALRCAABkQgAAMEEAANBBAAC4wgAAUMEAAOjBAAA4wgAA-MEAAMDAAAD4QQAAkkIAAGjCAAAAAAAAEEEAAKjBAAAQQQAAhkIAAEDAAACAPwAAoEEAAABCAAAYQgAAgEAAAKDAAAAEQgAAQMIAAIA_AABAQAAAcMEAACzCAAAUwgAAGMIAACTCAADAQQAAIMEAADjCAABAwAAAgL8AAPDBAAAUwgAAHEIAABDBAAA0wgAAEEIAAKZCAADAQQAALEIAAFDBAACEQgAAbMIAABjCAABwwQAA4MEAAFxCAAAQwgAAgD8AAJBCAABEwgAAHMIAAJjBAAAQwgAAgMIAAJhBAADYQQAAgMAAAMBBAACAvwAAyMIAAJTCAACawgAAkEEAAKDAAACGQgAAgL8AAIDAAADgQAAAAEIAAODAAAAkQgAAyEEAADBCAAAYwgAAwMAAADBCAABowgAA3sIAAADCAACQQQAAYMEAAI7CAAA0QgAAsMEAAJjBAADIwQAAHMIAAIBCAAAoQgAAZMIAAKjBAACwwQAAAMAAAIBCAAAAAAAAoEEAADBBAABYQgAAokIAAEBBAACgwAAAuMEAAIA_IAA4E0AJSHVQASqPAhAAGoACAAD4vQAAmr4AABQ-AABcvgAAuD0AANo-AAD4PQAAD78AABQ-AADYvQAAND4AAIC7AABQvQAAsj4AAGS-AAAwvQAAbD4AAIi9AAAsPgAA7j4AAH8_AABkvgAA6D0AAJI-AAB8vgAAUD0AAIg9AAAEvgAAFD4AAM4-AAA8PgAApr4AAFC9AABwPQAANL4AAKi9AAAUvgAAZL4AAOq-AADYPQAAoLwAALK-AAA0PgAAgDsAABy-AAAMvgAA5j4AAKa-AACSvgAAZL4AAES-AACgvAAABz8AAFS-AABEvgAA4DwAAFE_AAAkPgAAmL0AAHA9AAAEvgAARD4AAAS-AAAEviAAOBNACUh8UAEqjwIQARqAAgAAUL0AAIC7AAAEvgAAUb8AAJq-AAA0vgAAlj4AAIK-AAAQPQAAoLwAAHC9AAA8vgAAcL0AAJi9AACIvQAAEL0AAEy-AADWPgAAcL0AAEw-AACiPgAAQDwAADy-AAAwvQAAyL0AAJg9AAC4vQAA2D0AAAy-AAAkPgAAND4AAEQ-AACevgAAoLwAAAy-AACAuwAA9j4AAPg9AADSvgAAkr4AAFQ-AACKPgAAoLwAAI4-AABcPgAABL4AAH-_AAAsPgAAij4AAKC8AABwPQAAmD0AADC9AABsPgAAcD0AAGQ-AAAQvQAADD4AAOC8AACIvQAAZD4AALg9AAAQPQAATL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=-n6h6-CT0-0","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14068187318672752935"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3390598886"},"14401655594263532014":{"videoId":"14401655594263532014","docid":"34-3-16-Z5548D0531237237C","description":"comment sections. I will try my best to upload solution as fast as possible, but forgive me for my delayed schedule and have some patience. Thank You !","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3600739/9f2e174552779b150c9f956076fe9f71/564x318_1"},"target":"_self","position":"8","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvSuCI4wzsJg","linkTemplate":"/video/preview/14401655594263532014?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Prove That : Cos(A-B).Cos(A+B)= 〖Cos〗^2 A-〖Sin〗^2 B","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vSuCI4wzsJg\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhYKFDE0NDAxNjU1NTk0MjYzNTMyMDE0WhQxNDQwMTY1NTU5NDI2MzUzMjAxNGqtDRIBMBgAIkMaLwAKKGhoc3NycXh3bHliZm52aGhVQ0NCT2E0c1ZjelZOalBqOFJ2c2JNbkESAgAQKhDCDw8aDz8TpwGCBCQBgAQrKosBEAEaeIH2-_v7-wUA-QcLBvkG_QLuA_YA-v__AAII-_7_BP4A9gMBAgcAAAD6D_3--wAAAAT7_Ar__QEACP3-_QMAAAATCwAB_gAAAA4D-P7-AQAA_fv99wIAAAAD-_0DAAAAAAAN-vIAAAAABQz6AgAAAAAEAfsEAAAAACAALVmR4js4E0AJSE5QAipzEAAaYPsWAEopEOvnAxjpGQPr_dHz7v_R7xL_6gwAJP8T5foICMr3-f8dE_X1vQAAAAbpGUoWAPxVBQzcJuIU9d6b__k4fw38DAAG9u0LBTkL_Oko7PIALgDjCfnvFfoTAlANJCAALacMUDs4E0AJSG9QAiqvBhAMGqAGAAAsQgAAAEAAAIxCAABYwgAAEMEAADRCAAAcQgAA6MEAAJbCAADIwQAAsMEAAJDBAAAgwgAAmsIAAJDBAABUQgAAMEIAANDBAADoQQAAXMIAAMDBAADAwAAAWMIAAMDAAAAMwgAA6MEAANjBAAAAQAAABEIAAJjBAACCwgAAMEEAAKjCAABwQQAAMMEAAOBBAAAwQQAAjEIAAGBBAAAQQgAAoEEAAAAAAACGQgAAAEAAAFBBAACoQQAAQEEAAEDAAACYQgAA8MEAACDCAAAwQQAAEMEAANjBAADgQAAAIEEAAPbCAABwQQAAKEIAAIxCAAAgwQAAtMIAAEBAAAA8wgAAQEEAAPLCAAAwQQAAMMEAAGzCAAAUwgAAXEIAAIxCAABQwQAANEIAAIC_AAAcwgAAHMIAAFBBAAD4QQAAMEEAALBBAAA4QgAAkMEAANDBAACwwQAAgEEAACBBAAAoQgAAmEEAADDBAABwwQAAMEIAAADCAAC0wgAAEEEAAKDBAADAwAAAsEEAAIC_AAAAwQAArsIAABhCAAA8QgAAEMEAAIjBAAAMQgAAKMIAAMBBAAAAwQAA0MEAABhCAACAQQAAAEAAAJjBAADwwQAAmkIAAAxCAADwwQAALEIAAADCAAAYwgAAVMIAAIBAAABAQAAA6EEAAKjBAAAAwgAAsEEAAEjCAABAwAAA6MEAAGBBAADwQQAAeEIAABhCAAAMQgAAUMEAAAAAAACYQQAATMIAAADCAACIQgAAMEIAABzCAABcQgAACEIAADjCAAAgQgAAgMEAAABAAACoQQAA4MEAACxCAAA8wgAAiEEAADBBAADowQAA8MEAAFDCAAAkwgAAIMEAAKDAAACOwgAAsEEAAIjBAAAoQgAATMIAAIBBAABcQgAAiMEAABDCAAAEwgAAyEEAAOjBAABUwgAAHEIAAABAAABcwgAAAAAAAEhCAADYwgAACMIAAPhBAACSwgAAREIAADjCAABYwgAABEIAAJDBAAA8QgAA8EEAABzCAADgQQAAkMEAAFDCAACiQgAAmsIAAAhCAAAAwQAAiMEgADgTQAlIdVABKo8CEAAagAIAALi9AAB8vgAA4DwAAGy-AACYvQAA3j4AABw-AAAVvwAAoj4AAJa-AADYPQAAbL4AAPi9AADaPgAAZL4AAFS-AAC-PgAAcL0AAN4-AAAVPwAAfz8AAEy-AACoPQAA3j4AAP6-AACYPQAA4LwAAAy-AACYPQAA3j4AAFQ-AACKvgAA4LwAAAS-AABMvgAAVL4AABS-AAAsvgAAA78AAMo-AACoPQAAir4AAFQ-AAAMPgAA6L0AAGQ-AACyPgAAC78AAHS-AADIvQAAEL0AAIg9AAAjPwAATL4AAOA8AABQPQAAYz8AAJY-AABkvgAAgj4AAIi9AABAPAAAir4AAOC8IAA4E0AJSHxQASqPAhABGoACAABAvAAA2L0AAHC9AABbvwAANL4AAOi9AACiPgAAqL0AAEA8AABQPQAAUD0AAJi9AAAwvQAAcL0AADC9AABwvQAAZL4AAPI-AAA8vgAA2D0AAII-AAAwvQAAyL0AAHC9AADYvQAALD4AAKC8AACYPQAAoLwAAGQ-AAAkPgAA-D0AAMq-AABwvQAAyL0AAFA9AADmPgAA4DwAANq-AAB8vgAAND4AAEQ-AACIPQAAsj4AABQ-AADovQAAf78AAHQ-AAA0PgAAQLwAABS-AABEPgAAND4AABw-AACIPQAAHD4AAEA8AAAwPQAAoDwAAES-AABkPgAA2D0AAFA9AAA0viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=vSuCI4wzsJg","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["14401655594263532014"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15009903043903176008":{"videoId":"15009903043903176008","docid":"34-1-14-Z7BFFB9DBC36142B0","description":"Dear viewers: In this vdo, we will learn that why we can replace cos(A+B).cos(A-B) by cos^2A-sin^2B in #trigonometry. #mathsformulae #sumdiffformulae #trigoformulaeproof Plzz Do like,share...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2383102/b588cc5266d7a1320ac08f3605e038e2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/FlNsdQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUOBgaskhzg8","linkTemplate":"/video/preview/15009903043903176008?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof for cos(A+B).cos(A-B)=Cos²A-Sin²B || Trigonometry formulae proof || maths","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UOBgaskhzg8\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhYKFDE1MDA5OTAzMDQzOTAzMTc2MDA4WhQxNTAwOTkwMzA0MzkwMzE3NjAwOGq2DxIBMBgAIkUaMQAKKmhocGF0cnZxZ25laHdpaGNoaFVDX092WjIyb0M0bW9HNDdyQWZNVWdNdxICABIqEMIPDxoPPxOTAoIEJAGABCsqiwEQARp4gff5BPv8BAD7_g0E-wb9Avb5-_z6_v0A___0-_0E_gD8_wcDAQAAAAQRAf7_AAAAAwD0AP3-AQAPAfj8BAAAABQX-AL-AAAAFgb2-f4BAAD18v8BA_8AAAf6Av3_AAAAAA368gAAAAALBPcEAAAAAP8H_v__AAAAIAAtluDdOzgTQAlITlACKoQCEAAa8AF_4g78rQzSAM4X0gC1W-MBhz4x_0VQ1f-6FgX_uQX5AcP03gD2AgwAHOA1AMsq-gBFxsD-3bo0AFC03P8Z6BoA4ijtATPE7wF8CScABcjIAuH1AwDN_xn_883B_vjPvf7A1Rb9Ffbv-w7jnwwm-BcFDwQLAR0RMgXUjzIB0ereB7rPufk8KQEFL-Q5-rP-KgESExX8_w4fA94gGAP24vQBAeoTAws-xv04zPQCFgUaCMDn9PQYGdvxO_Ee9rwDDPoa8SvuxfkN8-zx__8rzgPt-x7g-CzL4ANSCvztIdT4-OvpC-rrJvDtzfQA_eUi7wEgAC2e79o6OBNACUhhUAIqcxAAGmAZ9gATBhrH9QcL5grS6-zg1geh-dYd_wLp_0Ib5AUJ9ubIE-__Ht4h7qgAAAA63fvdFQDnb9_yKADyIAy3geUwMlIUAS3RzBoQ2u8aGugG9PD39CAA9AvGHCMI8yloPCcgAC3i_iw7OBNACUhvUAIqrwYQDBqgBgAAsEEAAAhCAAAQQQAAoEEAAJDBAADgQQAAPEIAAKBAAABYwgAAgMEAAJjBAAAAAAAAfMIAANjBAACyQgAAnsIAAHBBAAA8wgAAoEAAALDBAABwwQAAjsIAAGDBAAAAwAAAEEIAAMhBAAAUwgAAwEEAAOBAAABAQAAAXMIAAIBBAABkwgAAsEEAACjCAAAgQQAAkEEAANBCAACAwQAASEIAAChCAACwQQAAYEIAAABAAAAAwQAAYMEAABjCAACAvwAAKEIAAHBBAAAcwgAAAMAAABDBAADgQAAA8EEAALhBAACowQAAgD8AAMhBAAAcQgAAgEEAAGDCAABgwgAAJMIAAMBAAAAAQAAAIEIAAEBAAAAwwgAAyMEAAFhCAACmQgAAXMIAAMJCAACgQQAAXMIAACDCAACgwQAABEIAACDBAAAwwgAA4MAAAIDAAACoQgAAMMEAALDBAADwQQAAMEEAACjCAABowgAAwMEAAJJCAACQwQAAXMIAAIhBAABMwgAA6MEAAKBBAABAQgAAwMAAAEDBAACgwAAAeEIAAKzCAACCwgAAiEEAAHDBAABQQgAAgEAAACDBAADIQQAABMIAAODBAAAQwQAAqEEAADjCAAAEwgAAxsIAAJhBAADgwQAAyMEAABDCAACwQQAAisIAAIhBAAB4QgAAIEEAABjCAABgwgAAusIAAMhBAAD4QQAAAAAAALBCAAAwwQAATEIAACBBAAAAQgAATMIAANrCAACAQQAAmEEAAADBAADgQQAAwMAAAIDBAAAAwgAAoEEAAKBBAACCQgAAYMEAAJhBAABQQQAAKMIAAIjBAAAQQQAAQEEAALzCAAAgwQAAOEIAAEBAAADQQQAA8MEAAKDAAADgwAAAAAAAAPhBAABQQQAAIEIAAOBBAABEwgAAqEEAAEjCAABwwQAAyMEAAIBAAABkwgAAhsIAAIJCAABAQQAAQMIAAIC_AACAQAAAyMEAAMJCAAAQwQAApMIAAIjBAAAwQQAA-EEAABDBAAAYwgAAPEIAAMBAAADIQQAAWEIAAITCAAB4QgAAjMIAACzCIAA4E0AJSHVQASqPAhAAGoACAABQvQAAjr4AAAw-AAA0vgAAoLwAAK4-AABQPQAA7r4AAHA9AADYvQAAED0AALi9AADYvQAAxj4AACy-AAAEvgAAVD4AAIi9AAD4PQAArj4AAH8_AAAcvgAAED0AAFw-AAB0vgAAoDwAAIA7AAC4vQAAJD4AAKI-AAAMPgAAkr4AAIi9AAAQvQAAHL4AAES-AAAwvQAAHL4AAOq-AADIPQAAEL0AAK6-AAAEPgAAQDwAAIi9AAAQvQAA7j4AAIa-AAC4vQAALL4AALi9AAAQPQAA4j4AACS-AABMvgAAMD0AAD0_AAD4PQAAMD0AAFQ-AADIvQAAmD0AAFC9AAAUviAAOBNACUh8UAEqjwIQARqAAgAAEL0AAIg9AAD4vQAAQb8AALK-AAAUvgAAij4AAOi9AAAQvQAAmD0AALi9AABMvgAA2L0AABC9AADYvQAAUL0AAES-AADiPgAAcL0AADw-AACWPgAAcL0AADy-AAC4vQAA2L0AAHA9AADgvAAAUD0AAIi9AABcPgAA6D0AAOg9AACmvgAA-L0AAFS-AACAuwAAxj4AAKg9AACqvgAARL4AAAQ-AABcPgAA2D0AAIY-AABMPgAAoLwAAH-_AADoPQAAND4AABA9AABwPQAA6D0AADA9AAAcPgAA-D0AABw-AACgvAAAHD4AAHC9AACgvAAAdD4AAMg9AAAwPQAAbL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=UOBgaskhzg8","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15009903043903176008"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1805030348"},"12113026535125905572":{"videoId":"12113026535125905572","docid":"34-1-2-Z5E10E00B91B7E43E","description":"In this quick video, we prove the identity cos(-B) = cos(B) using basic trigonometric concepts. This identity shows the even nature of the cosine function. Perfect for students revising for...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4332632/fc5ac4d5bee41369a012715d232b2964/564x318_1"},"target":"_self","position":"10","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnA9oKiN3pK0","linkTemplate":"/video/preview/12113026535125905572?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"02-Cos(-B) = Cos(B) | Trigonometric Identity Proof in 1 Minute | Math121 Pukhtu| Nafees Ullah","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nA9oKiN3pK0\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhYKFDEyMTEzMDI2NTM1MTI1OTA1NTcyWhQxMjExMzAyNjUzNTEyNTkwNTU3MmqtDRIBMBgAIkMaMAAKKWhoaHBlcm1mcWZxaW1iemhoVUNHdlZJbnFSbXBueDlXYWg1enFyVWp3EgIAESoPwg8PGg8_E3SCBCQBgAQrKosBEAEaeIH2-gL-AQAAA_kODgYL-QL1Bu_5-P38APQG9f31Av8A-QsL-f8BAAAEAgkFAgAAAA_-8An__QIACPz1_fgAAAAVGPgC_QAAAAcM-v3-AQAA8vL49QIAAAAS8vn2_wAAAA4P_PcAAAAABQvuCgAAAAAAAAIHAAAAACAALa0-0Ts4E0AJSE5QAipzEAAaYP8EABcJC_O4Fhzv_ez9AfbkGNUP1QD_BhMAIRn2APbgyNIGHP8JyBbqvAAAABgA-SYyAN1W-8_f_RAq-qrACABBfwD9-wgh8ffR8xT3JiT36fEdHAD3C__wJBQKGUAaGiAALWDfTDs4E0AJSG9QAiqvBhAMGqAGAAAAQQAACMIAABxCAAC4wQAA6EEAAGDBAAAkQgAAQMEAANrCAADQwQAAYEEAAJjCAACGwgAAdMIAAOhBAAA4wgAAgL8AACjCAAAwQQAAAMEAAPjBAACGwgAABMIAAFDBAACgwQAAUEEAAJrCAAAEQgAAcEEAAKBAAAAswgAA8EEAAEDCAAAQQQAAMMIAADzCAAAMQgAAeEIAAOBAAADgQQAAKEIAAABCAACsQgAAsEEAAMDAAABwwgAAYEEAAIDBAADoQgAA6EEAACDBAACIwQAAmMEAANDBAABAQgAAYEEAAKTCAACYQQAA8EEAAEBCAABAQgAACEIAAIA_AAA4wgAAMMIAAIDBAACAwQAAuMEAAFDBAACgwAAAMEIAABBCAAAMwgAAcEIAAPhBAABkwgAAhsIAAAAAAACowQAAHMIAAGzCAABAQQAAoMAAAEBAAACIQQAAoEAAACBCAAAMQgAAREIAAIjBAACgwQAAgkIAAIBBAABUwgAAIEIAADTCAADwQQAAgkIAALBBAACYwQAAmMEAAERCAACgwAAA2MEAAKzCAAAAQQAA6EEAAABAAACYQQAAQEEAAJZCAAAwwQAAoMEAAJBBAACIQQAA0EEAAMDAAAAQwgAAOEIAAPBBAAAEwgAA2MEAADzCAADEwgAAHEIAADxCAABowgAAgEAAAETCAAB4wgAA0EEAAKpCAABEwgAAnkIAAIjBAAAgQQAAOMIAALBBAAAcQgAAiMIAAOBBAACgQAAAoMAAAIDAAACQQgAAqEEAALjBAABMQgAAYMEAAGRCAAAAQAAAAMEAABDBAACWwgAAgL8AAIC_AAAUQgAAMMIAAABAAABkQgAA8MEAAMDAAAAgwQAAcMEAAKDBAAAYwgAANEIAAGhCAAAsQgAAFEIAACDBAAAwQQAAgMEAAEjCAACAvwAAUMEAAEzCAAAcwgAAuMEAAIZCAABUwgAAgEAAABzCAACCwgAAREIAAOBAAAAUwgAAlEIAABTCAACAQAAAuMEAAADCAAAwQgAAEEIAAKDAAAAAQAAACEIAAGxCAACuwgAAZMIgADgTQAlIdVABKo8CEAAagAIAAKi9AABsvgAA6D0AAFS-AABQPQAABT8AABw-AAAbvwAA2L0AAEA8AABQvQAAEL0AAHC9AADKPgAARL4AAJa-AACCPgAAgDsAAOg9AAAjPwAAfz8AAFS-AACAOwAATD4AAFC9AACAOwAARD4AAPi9AADgPAAA-j4AABw-AACGvgAAMD0AAHA9AABwvQAAPL4AADC9AAAQvQAAzr4AAAQ-AADovQAA0r4AABA9AABQvQAAUL0AAOC8AADOPgAA0r4AAEy-AAAkvgAAED0AAJi9AAARPwAA6L0AAIa-AABAPAAASz8AACw-AACovQAAZD4AAKC8AABUPgAAQLwAAFy-IAA4E0AJSHxQASqPAhABGoACAABEvgAAZD4AANi9AAAnvwAAPL4AAOi9AACqPgAABL4AAEC8AAC4PQAAoLwAAHy-AABkvgAAuL0AAIC7AAAQvQAAcL0AABs_AACYvQAAij4AACw-AAAkvgAALL4AADC9AACYvQAAED0AAOA8AAC4PQAAoLwAADQ-AAD4PQAAqD0AAJq-AACAuwAAoLwAAIi9AABMPgAA2D0AAKa-AAAkvgAAZD4AAFQ-AAAcPgAADD4AAOA8AABwPQAAf78AABC9AAC4PQAAQLwAAKg9AAAUPgAAQDwAAFA9AAB8PgAA2D0AAOC8AACGPgAAqL0AAFA9AAAMPgAAyD0AALg9AAAkviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=nA9oKiN3pK0","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12113026535125905572"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5426087144729824260":{"videoId":"5426087144729824260","docid":"34-10-0-Z040324700FBEC545","description":"#shorts,#youtubeshortfeature,#ytshorts,#trending,#viral,#maths Hi, I,m Sachin kathiya I tried to post shorts tricks and important video which surely help you in doing questions of jee and neet...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2425621/de02a49ea2a11163666918aa3f718bc2/564x318_1"},"target":"_self","position":"12","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQvZdiC-CJXM","linkTemplate":"/video/preview/5426087144729824260?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is the value of cos(a+b).cos(a-b)=?","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QvZdiC-CJXM\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhUKEzU0MjYwODcxNDQ3Mjk4MjQyNjBaEzU0MjYwODcxNDQ3Mjk4MjQyNjBquw0SATAYACJRGj4ACjdoaG5ndnB3dWNscGFta2hjaGhodHRwOi8vd3d3LnlvdXR1YmUuY29tL0BTYWNoaW5LYXRoaXlhEgIAEioPwg8PGg8_EwqCBCQBgAQrKosBEAEaeIH_-fz7_AUA8gEPA_oE_wHx_AAD-___AP0MBfv6BP4A9gYGAQEAAAD6D_3--wAAAAT7_Ar__QEAAAD_-wMAAAALBAAABQAAABYG9vr-AQAA9fv-_AMAAAAD-_0DAAAAAAAN-vIAAAAABQrvCQAAAAAI_vsI_PP-ACAALVsG4Ts4E0AJSE5QAipzEAAaYPwVAD4eG_zt9R3-G9Pj2uLx8-jQxhj_7f0AAPQc9woL_dfjAv8Z9xvauQAAAPTQDRHrAAxW5OvdGPU23sen4_E8fxjrH_QN-f3JChAa8w7z8g8OSAC1-fsEFPsBAhcrLCAALYIuRzs4E0AJSG9QAiqvBhAMGqAGAABcQgAAAMAAAIhCAAAQQgAAOMIAABxCAAB4QgAA4MAAAODBAAAowgAAgMAAAChCAADYwQAA2MEAABBCAADAwQAAoEIAAMBAAADoQQAAZMIAABzCAAAwwQAA-MEAAFBCAACwQQAAUMIAAPjBAAAQwQAAJEIAADhCAACKwgAAkEEAAADAAACYwQAAiMIAAABCAACgQQAAAEIAAFBBAADAQAAAFMIAAKBBAACIQQAAUMEAAOBAAABQQgAAAAAAADDBAABcQgAAyMEAAAAAAABgwgAAmMEAADBBAACYQQAAQEEAAEjCAAAUQgAAiMEAAOBAAABgQQAAgEAAAIjCAABswgAAgMEAAFjCAACowQAAwsIAAKDBAAA0QgAAGEIAALBBAACAwQAAEEEAALBBAAB4wgAA1MIAACDBAADgQQAAQMEAAGjCAACQQQAAEEEAAEzCAADgQQAAMEIAADjCAAAYwgAAGEIAAAzCAAAQwQAAAAAAAPhBAACgwgAA4MAAAKzCAAAAQgAAgL8AAMBBAAAwQgAAEMIAANhBAAAAQgAAvsIAAFzCAAAAQgAAgMEAAFhCAACgQAAAoEIAAFRCAAAEQgAAQMAAAJBBAADAQQAAdEIAAPBBAADgwQAAHEIAAIDCAADYQQAAwEAAADxCAADwwQAAAMEAAMDBAAB0wgAAgMAAAJLCAACowQAAuEEAAPjBAACoQQAAbEIAAGDBAAAAwAAAJEIAAJhBAACIwQAAyMIAABBBAADwQQAABEIAAIDAAAAwQQAAbEIAAODBAAAQQQAAiEEAAIDBAAA4QgAAAMIAAFxCAAC4QQAABMIAAODBAACOwgAAXEIAAMjBAABEQgAA0MEAAIhCAACIwQAAAEIAAIBAAACAQgAABMIAAABAAAC4QQAAlsIAADTCAABgQQAAQEAAAIA_AABIQgAAgMAAALhBAACQQQAAQMAAAJhCAADgwAAAxMIAANjBAAA4wgAAREIAAJzCAAB4wgAA0kIAAATCAADIQQAAQMAAABBBAACAwAAAmEEAAMDBAABgQQAACMIAAPhBAACYQQAAiMEgADgTQAlIdVABKo8CEAAagAIAAES-AABsvgAA-D0AACS-AABQPQAA3j4AAJg9AAAHvwAAgLsAALi9AABQPQAANL4AANi9AACmPgAAXL4AABS-AACqPgAAEL0AABQ-AACiPgAAfz8AAMi9AAAMPgAAPD4AAAy-AACIPQAAMD0AABA9AAAQPQAAoj4AACw-AABMvgAAyL0AABC9AACavgAAPL4AADA9AAA8vgAAur4AAOg9AAAEvgAAkr4AAKY-AAC4PQAAyL0AAIA7AAAUPgAAjr4AACS-AADgPAAAMD0AAOA8AADaPgAA6L0AADC9AACgvAAAPz8AAPg9AACAuwAAbD4AAKC8AADIPQAAoLwAAFC9IAA4E0AJSHxQASqPAhABGoACAACYvQAAML0AAOi9AABPvwAAhr4AACy-AACOPgAALL4AAOA8AACYPQAAML0AAIq-AADIvQAA-L0AAEA8AACovQAAML0AAAU_AAD4vQAAbD4AAHw-AACgPAAAFL4AAEC8AACIvQAAJD4AAAS-AAAwPQAA4LwAAFQ-AADYPQAAPD4AAIK-AAA0vgAAiL0AAHA9AADyPgAAUD0AALK-AAAcvgAAFD4AADQ-AADgvAAAgj4AAMg9AACoPQAAf78AAOA8AABwvQAAuL0AAOC8AAC4PQAADD4AAAQ-AADgPAAAFD4AAOA8AAD4PQAAcD0AALi9AACCPgAA-D0AADA9AADYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=QvZdiC-CJXM","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["5426087144729824260"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11910685238037106036":{"videoId":"11910685238037106036","docid":"34-2-16-Z2E1A82DC59F4FA51","description":"Quickly learn how to prove the trigonometric identity cos(a-b) = cos(a)cos(b) + sin(a)sin(b)! This clear and simple explanation makes understanding algebra and trigonometry easy for everyone. sin...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3175070/0a55b0b1d2f515a4c02beaf4cc058e81/564x318_1"},"target":"_self","position":"13","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJ9yMnACBy9o","linkTemplate":"/video/preview/11910685238037106036?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(a-b) = cos(a) cos(b) + sin(a) sin(b) Proof","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=J9yMnACBy9o\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhYKFDExOTEwNjg1MjM4MDM3MTA2MDM2WhQxMTkxMDY4NTIzODAzNzEwNjAzNmquDRIBMBgAIkQaMQAKKmhoY2ttamt4bnFhem1ndmNoaFVDOW9GYmhLMVlBZ015VV9zVHdKeExuZxICABIqD8IPDxoPPxNyggQkAYAEKyqLARABGniB-_8B__sGAPj9CP78A_8B5gD5_fwAAAD_A__8-QX-APn7_wUFAAAA-g_9_vsAAAD9-PgC-_4AAAf_AvYEAAAAEwsAAf4AAAAOA_j__gEAAP_8-_8D_wAAA_v9AwAAAAAADfryAAAAAP8F9gIAAAAABAH7BAAAAAAgAC3En-M7OBNACUhOUAIqcxAAGmAFBQAG-j334DEuCi0B9O_OBdHV56sv_-c0ACkF-eLt_N7r9Pb_AeoO-KwAAAD6wxpA9QDqYccCwPwNEenc0PABRH_r9f_S48UkBxYS4e4S8C7jBDAAowAI5QbaCtA1CDUgAC1ViDI7OBNACUhvUAIqrwYQDBqgBgAAqEEAABjCAACSQgAADMIAAAhCAABgQQAADEIAALBBAABgwgAAwMAAABBBAAAgwgAAoMIAAGjCAABAwQAAQMAAAEBBAABAwgAAmEEAAMjBAABEQgAAyMEAAOBBAABAwAAAGMIAAABAAAA8wgAAoMEAADxCAABgwQAAcMEAAEBCAAAAwgAAUMEAAHDBAABQwQAAUEEAAHxCAABgwQAAsEEAAKhBAAAoQgAArkIAABBCAAAAQgAASMIAAOBAAADAQAAArEIAAMhBAABYwgAAyMEAABjCAADgwAAATEIAACRCAADEwgAAgD8AAFBCAABsQgAAiMEAAFzCAAAAwgAAZMIAAFBBAAB8wgAAmEEAAFDBAABQwgAA-MEAAFxCAABgQgAAfMIAABhCAAAwQgAAQEAAAIjCAACAQQAAqEEAABzCAABwwQAAMMEAAKBBAAA8QgAAQMAAAFTCAACIQQAATEIAACRCAACmwgAAMMEAAMRCAABswgAAWMIAAGBBAACMwgAAsMEAAADAAAA4QgAAoMEAAGDCAABIQgAAjEIAAEDAAABwwgAAGEIAAADCAACmQgAAuMEAALBBAABYQgAAmsIAAFjCAAAkQgAA2MEAAJDBAACYQQAAAMAAABTCAADowQAAEMEAAGzCAAAEwgAA2MEAAIhBAABwwQAAOMIAAMBAAAAIwgAAHMIAAMDAAACwQQAACMIAADRCAACgQAAAokIAANBBAADAwQAAgEAAAJrCAAAMwgAAgL8AAIDAAAAkwgAAREIAANDBAADSwgAABEIAAIDAAAAQQQAAqEEAAMBAAAAMQgAA8MEAADRCAAAwwgAAgL8AAJDBAAAAwQAAQEAAACDCAAAAwAAAcMEAABTCAACAQAAAwEEAAIDAAAA0QgAAoEAAAEBAAAAgwgAAiEEAADDCAAAAwgAAnsIAAIhCAADQQQAA-MEAACRCAACYwQAAUMIAAJDBAAAgwQAAHMIAAJhCAABwwQAAUMIAAOBAAABgwQAANEIAABDBAADYwQAALEIAAARCAAAAwAAA4EAAAAzCAACwQQAAAMEAALzCIAA4E0AJSHVQASqPAhAAGoACAABwvQAAjr4AACQ-AAA0vgAAcD0AAKY-AABAPAAAD78AADw-AADovQAA-D0AABC9AAD4vQAAoj4AAFS-AADIvQAATD4AAJi9AADIPQAAwj4AAH8_AABEvgAA4DwAAHw-AACKvgAAuL0AAFA9AADIvQAADD4AAL4-AAA0PgAAlr4AAFC9AACoPQAADL4AAOi9AACYvQAAbL4AAM6-AAA0PgAAML0AALa-AADIPQAA4DwAAAy-AAAcvgAA3j4AAGy-AABsvgAATL4AAOi9AACYvQAA4j4AAEy-AAAkvgAAED0AAE0_AADIPQAA-L0AAOA8AAD4vQAAFD4AAKi9AADIvSAAOBNACUh8UAEqjwIQARqAAgAAcL0AAEC8AAAcvgAAU78AAIq-AAA0vgAAij4AAFS-AAAkPgAAML0AAIi9AAAEvgAA2L0AADC9AAAQvQAAML0AAES-AADKPgAAyL0AAHw-AACWPgAAML0AAEy-AADgvAAAcL0AACw-AABAvAAAuD0AANi9AACGPgAAFD4AADQ-AACOvgAAUL0AABS-AABAPAAAzj4AAKA8AADCvgAAHL4AAEw-AABkPgAAED0AALI-AAA8PgAARL4AAH-_AAA8PgAAPD4AABA9AACIvQAAiD0AANi9AAAsPgAAJD4AAGw-AADgvAAAqD0AADC9AACovQAAbD4AAJg9AAAwPQAALL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=J9yMnACBy9o","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11910685238037106036"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"759602051200234493":{"videoId":"759602051200234493","docid":"34-6-17-Z3DF6ABEA9E48E762","description":"Here is Higher Maths Chapter 11 – Double Angle & Addition Formulae. Lesson 1 of 6: Cos(A ± B) / Cos(X ± Y) / Compound Angle Formulae I am using a mix of mainly the Heinemann and Maths in Action...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1539130/6680963ced532f0fa2c57e4df5e7b659/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MTU8rQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCYIvP5-x5z8","linkTemplate":"/video/preview/759602051200234493?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"11.1 Double Angle & Addition Formulae 1. Cos(A ± B) - Higher Maths Lessons - @MrThomasMaths cos(X±Y)","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CYIvP5-x5z8\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhQKEjc1OTYwMjA1MTIwMDIzNDQ5M1oSNzU5NjAyMDUxMjAwMjM0NDkzarkNEgEwGAAiRBowAAopaGhpa2FmanZwZXFpeHpjaGhVQy1NdUtCd0s3aklxSUhETDhQOUJNV2cSAgARKhDCDw8aDz8T_QeCBCQBgAQrKosBEAEaeIH1BAD4_AUA-QcLBvkG_QIKAPAB9v__AP__9Pv9BP4A9fcD__gAAAD_CQH3AAAAAAcE_gUF_QEAEfb5CAIAAAAFDPP1-wAAAA4L_AP-AQAA-ff3_QP_AAAJ9woCAAAAAAgKA-8AAAAA_ggDCwAAAAAMBgj6AAAAACAALSvk3js4E0AJSE5QAipzEAAaYCoOABMlJAPtCCTn4v_Z8_8PQNUABeQAAAEAGQr95wL70sj2If8Duw7fuwAAAA_39QkGAPJb6eDgJAz4FNu06RY9f-wEBQoODOrj2z_cBiQS8xMgTgDa9-T4IfnzV-w3KyAALS9TQjs4E0AJSG9QAiqvBhAMGqAGAADYQQAAuEEAABBBAAAIwgAAYEIAABxCAABwQgAAEMIAAEDAAACgwAAA4EAAAEDBAABwwgAAUEEAANBBAAB0wgAA0EEAACjCAADgQQAAGMIAAGjCAABswgAADMIAAIpCAAAAwAAA4MEAADDBAACSwgAAoMAAAFDBAACoQQAAEEIAAILCAACowQAAIMEAAOBBAADAQQAA7EIAAKDBAACGQgAAEEEAAKDAAABQQgAAEEEAAOhBAAAAwwAABEIAAIhCAAA4QgAAuEEAAJbCAAAwwQAAwEAAAKBAAACIQQAAkEEAAGjCAAAQwgAAAMIAACBBAADwQQAACMIAADBBAADwwQAADEIAAEDAAAAAQQAAMMIAAPjBAABYwgAAjEIAAExCAACkwgAAoMAAAIA_AACgwgAA4MAAAGBBAADQwQAAsMEAALbCAABMQgAAMEEAACBCAAAwwQAAwEEAAPBBAAAQQgAAFEIAAKjBAAAAAAAAkkIAAOjBAADQwQAArsIAAHBBAAAwwQAAqEEAANBCAAAwQQAANMIAAEhCAAD4QQAATMIAAEjCAACAQQAAgL8AAKhBAACQwQAApkIAAMBAAAAMwgAAQMAAAPhBAADQwQAA2MEAAEDBAABYwgAARMIAAIBBAABAwAAAAMIAAJLCAACYwQAAUEEAAMBAAAAQQQAA2MEAABTCAACYQQAAcMEAACjCAAAAQQAAikIAAEDBAACoQQAA2EEAANBBAACEwgAAgsIAAFRCAAAUQgAAUMEAAHDBAADgQQAAiEEAAODBAABgQQAAsEEAANBBAABQwQAA4EEAADBBAAAAQAAA2MEAALDBAABAwAAA-MEAAMLCAABoQgAAYMIAAMDBAACoQQAAAMAAACDBAAAAwAAADEIAANRCAACYwQAAmEEAAADAAACYwQAAqEEAAAzCAABgwQAAyMEAAAAAAABYwgAAREIAAABBAAAcwgAAgMEAADBBAABgQgAAEEIAAGjCAADowQAAEMIAAMhBAABgwgAAKMIAAIDBAABAQgAAQMEAANBBAABgQQAAfMIAAI5CAADQwQAAOMIgADgTQAlIdVABKo8CEAAagAIAAJi9AACKvgAAcD0AADy-AABwPQAAjj4AAMI-AAALvwAAVL4AALg9AACavgAAgr4AAFS-AADOPgAAqr4AAEC8AABUPgAAyL0AAHw-AAD-PgAAeT8AAAw-AAAUPgAAHD4AALi9AAA8vgAAyj4AAKg9AAAwPQAA2D0AAAw-AACoPQAAML0AAJa-AACIvQAAqr4AAKo-AAAcvgAAyr4AAHC9AAAMvgAAor4AAJI-AAC4vQAA4DwAAJg9AAB8PgAALL4AAIA7AADOvgAAgj4AAHy-AACGPgAA4DwAAMg9AADgvAAAfz8AAAw-AACIvQAAPL4AAMi9AACCPgAAUL0AALi9IAA4E0AJSHxQASqPAhABGoACAACovQAAED0AAOi9AAApvwAANL4AAPi9AACAOwAAUL0AADC9AABQPQAA-L0AACy-AABUvgAABL4AAEA8AABQvQAAuL0AABc_AACIvQAAtj4AAGQ-AAAEvgAAcL0AAFS-AACovQAAmD0AAPi9AAAwPQAAuD0AAGQ-AACoPQAA-D0AAAS-AAAUvgAA2D0AAKg9AACaPgAAuD0AAIa-AACgvAAAXD4AADA9AACgvAAA2D0AAPi9AAAsPgAAf78AAJi9AADgvAAAQDwAAHC9AADYvQAAqL0AACQ-AACGPgAAuD0AAEA8AACAOwAAmL0AANg9AAAQPQAAED0AAAw-AADgvCAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=CYIvP5-x5z8","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["759602051200234493"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4038658446"},"13252040213595142549":{"videoId":"13252040213595142549","docid":"34-8-13-ZF43B4963A3168B1E","description":"Quickly learn how to prove the trigonometric identity cos(a+b) = cos(a)cos(b) - sin(a)sin(b)! This clear and simple explanation makes understanding algebra and trigonometry easy for everyone. sin...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3856244/767c856a763be9b2e25431f0dd53e77a/564x318_1"},"target":"_self","position":"15","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOjPxttMrUpA","linkTemplate":"/video/preview/13252040213595142549?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(a+b) = cos(a) cos(b) - sin(a) sin(b) Proof","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OjPxttMrUpA\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhYKFDEzMjUyMDQwMjEzNTk1MTQyNTQ5WhQxMzI1MjA0MDIxMzU5NTE0MjU0OWqvDRIBMBgAIkUaMQAKKmhoY2ttamt4bnFhem1ndmNoaFVDOW9GYmhLMVlBZ015VV9zVHdKeExuZxICABIqEMIPDxoPPxOkAYIEJAGABCsqiwEQARp4gfv_Af_7BgD4_Qj-_AP_AeYA-f38AAAA_wP__PkF_gD5-_8FBQAAAPoP_f77AAAA_fj4Avv-AAAH_wL2BAAAABMLAAH-AAAADgP4__4BAAD__Pv_A_8AAAP7_QMAAAAAAA368gAAAAD_BfYCAAAAAAQB-wQAAAAAIAAtxJ_jOzgTQAlITlACKnMQABpgCwQACvc1-d4oLwgr-fXz0gjX3Oy-Kf_pMAAeCvzh7PHW5Pn4_wXnEPuzAAAA-9UbQvEA41nK_sX-Bgvs7NDsDkR_-PT_4OXKHQYGB-n0EO8l6AM0AK4OAeAF2A7WLxM2IAAtNfhAOzgTQAlIb1ACKq8GEAwaoAYAAMhBAAAowgAApEIAACzCAADYQQAAYEEAAKBBAACYQQAASMIAAIDAAAAAAAAACMIAAIDCAABowgAAgMEAAADAAABwQQAAKMIAAIhBAAAEwgAA4EEAAIDBAADYQQAAgMAAADjCAAAAQAAA2MEAAIjBAAA0QgAAkMEAAFDBAABkQgAAyMEAADDBAACAPwAAgL8AAIA_AACoQgAAgMEAAEBBAACIQQAA0EEAALRCAAAMQgAA0EEAADTCAAAQQQAAQEAAAJZCAACoQQAAYMIAABDBAAAEwgAAQMEAAEhCAAAUQgAA2MIAAHDBAABkQgAAeEIAAMDAAABEwgAA4MEAAFjCAADAQAAAnMIAAFBBAACgwQAAXMIAANjBAAB8QgAAhkIAAI7CAAAkQgAAJEIAAKDAAAB0wgAAkEEAABBCAAAMwgAAMMEAAIBAAACAQQAAGEIAAEDAAABQwgAAYEEAAExCAAAkQgAAlMIAAATCAADEQgAAjsIAAFjCAABwQQAAfMIAAFDBAABgQQAALEIAAAjCAAA8wgAAJEIAAIxCAADgwAAAOMIAADhCAAAMwgAAjkIAAATCAADgQAAAYEIAAJjCAACGwgAABEIAAMjBAAAQQQAA4EEAAKDAAADAwQAA6MEAAGDBAAB8wgAAyMEAALDBAACgQQAADMIAADzCAACAPwAAAMIAADjCAACAwQAAyEEAABTCAAAIQgAAQEEAAJxCAADgQQAA-MEAABBBAACkwgAA4MEAAKDAAADgwAAAOMIAAGxCAADowQAAxsIAACxCAAAAAAAAMEEAABhCAADgwAAA8EEAANDBAAAgQgAALMIAAIDAAACYwQAAwMAAAKDAAAAAwgAAQMAAAHDBAAAowgAAAMEAAPBBAAAAAAAAJEIAAHBBAAAAwQAADMIAADBBAAAcwgAACMIAAK7CAACUQgAAkEEAACjCAAAUQgAAQMEAAFjCAABgwQAAAEAAACTCAACIQgAAoMEAAEDCAACgQAAAcMEAAEBCAABAwQAA4MEAABhCAADYQQAAqMEAAOBAAAAMwgAA0EEAAKBAAAC-wiAAOBNACUh1UAEqjwIQABqAAgAAiL0AAI6-AAAcPgAANL4AAFA9AACqPgAAoDwAAA-_AAA0PgAA2L0AAPg9AAAQvQAA-L0AAKI-AABMvgAAyL0AAFQ-AACYvQAAyD0AAMI-AAB_PwAARL4AAKA8AAB8PgAAjr4AALi9AAAwPQAA2L0AAAw-AADCPgAAND4AAJa-AABwvQAAmD0AAAy-AAD4vQAAmL0AAGS-AADKvgAAND4AADC9AAC2vgAAyD0AAOA8AAAMvgAAHL4AAN4-AABsvgAAfL4AAFS-AADovQAAiL0AAOI-AABUvgAAJL4AABA9AABNPwAA2D0AAOi9AADgPAAABL4AABQ-AACovQAAyL0gADgTQAlIfFABKo8CEAEagAIAAHC9AABAvAAAHL4AAFO_AACOvgAANL4AAIo-AABcvgAALD4AADC9AACIvQAADL4AANi9AAAwvQAAEL0AADC9AABEvgAAyj4AAMi9AAB8PgAAlj4AADC9AABEvgAAQLwAAHC9AAA0PgAAgLsAAMg9AADYvQAAgj4AABQ-AAA0PgAAkr4AAFC9AAAkvgAAoDwAAM4-AADgPAAAwr4AACS-AABMPgAAZD4AADA9AACyPgAARD4AAES-AAB_vwAAPD4AADw-AAAwPQAAiL0AAIg9AADovQAALD4AABw-AAB0PgAA4LwAALg9AAAwvQAAqL0AAHQ-AACYPQAAUD0AACS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=OjPxttMrUpA","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13252040213595142549"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4983631306736271509":{"videoId":"4983631306736271509","docid":"34-9-11-Z75294FE17EC02550","description":"subtracting the cosine function's subtraction formula from the cosine function's addition formula or [cos(A+B) = cosAcosB - sinAsinB] - [cos(A-B) = cosAcosB + sinAsinB]. Mharthy's Channel's...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/932008/d027a1786677f6862a7145de264f1409/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Cf57QwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUR8sVnFi82k","linkTemplate":"/video/preview/4983631306736271509?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cosAcosB = [cos(A+B)+cos(A-B)]/2 and sinAsinB = [cos(A-B)-cos(A+B)]/2 (2 of 6)","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UR8sVnFi82k\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhUKEzQ5ODM2MzEzMDY3MzYyNzE1MDlaEzQ5ODM2MzEzMDY3MzYyNzE1MDlqiBcSATAYACJFGjEACipoaGd6bHVuYm16YnhpdmxiaGhVQ0x0ZzlGSWJBMUNZTnhoZko5N2pXWWcSAgASKhDCDw8aDz8TyQSCBCQBgAQrKosBEAEaeIH7_wH_-wYA9AMFAfoD_wHsA_z7-wD_AAII-_7_BP4A8_oHAQQAAAD6D_3--wAAAAT7_Ar__QEACP3-_QMAAAATCwAB_gAAAA4D-P_-AQAA_AAC_QP_AAAD-_0DAAAAAAAN-vIAAAAA_wX2AgAAAAAEAfsEAAAAACAALcSf4zs4E0AJSE5QAiqEAhAAGvABf-jRANPbzQDjFbwBvfAP_60MG_8dJuEArRMUAdr9BQH2DPsAAuvhANjZBwHhETX_8O_fAAT5Dv8-_-j-PvsAACAOEgAu5QMAKvzqAQQG0gEaAwX_-PknADH17AAaFgb_IhsfAP7s_QD289wGD_49AToRGgMDCgoCAgr8_vMoFgQOAgID_uf8__gD8_zZBCIC9ALw-9b82AHoFxECHA3UAgMXH_3kCeAHM_riAvjbA_PZ9_4G8trP_h75IwbgDvACC_wJCewQ8PUS_BD8Cdbk-eHdA_UBtfgDICXj-BPoCfn8G_b03gMc-6sh-AgYA_0AIAAt0pcWOzgTQAlIYVACKs8HEAAawAexGvu-bDCDPW0Yx7tayK08M9xAPZ5ilbz4gbW8A6vPPGkU97zqUYI8ET5vvAf1yLw4aYq-0Qw9PO2ufTz9vXQ-klRLvQOx7DyHNCq-nmmoPbZyZbw_VPq9bV7LvIYULb0er3Y9fbsbPQ54qrxa9M49wvJsPT844bokuiK9CQyDvUvqJL19l4K9ZUZLOy2AhLz0Pbk9-nmVO1QtM7xGWMk9vH6MvUU7ODvFAOg73-aovN_fHjyvIhO-ERRkPbLd2js7BEk9YRHovI_dB7xKDx67bcW-vMJRjTz6NhM9XtoQPf_GIrz0iwK-PTCUOcs6lDubeqg9ZXLqPQnh0TxAt7G9PSkTPZrcHDx6hyA9OeyDPUJFmLlPPAe9DXnKPYdg5jvNYTI9ZVFYPPtOXby5ido9CesVPa4LhTurBba9dTxGPUXtI7whpBi9RS3NvKCxZTyeV4E9wF-nPIqGFrxtUxy91oc6vVj1wzws-ZO9YmBCPA8vo7yf0sc93pW4PAmOprydHMQ9BLiPu6XDILxgZ4Q9-RG_vT1rEjxjKn28o0XMvYcqRrzRx987M92rPJdDAbwplbA8CjWnOOk_0rtIfJu6MVs3vegjOrykfb09c8mHvS_ILzu_mR29jDx6vYiFNTwtutC7kYRYvZ4He7sgWHo8VHTkPOwq6ruhWF29Dk8KvJaOHrybfr89FHf8PPSIKzqLEJg9EZ_FPP5M8rkCZj68bE0JvZuoZzvUoIE7dBWxvT6zW7jqOEO9wSkCPayPqDl754Y8Qou2OpiupDktOK09lKQLPQ0KijnRShC9bDBDvP9rsDnaP-o8CUbvvHJtarqox9a9WQ1TvcknP7ihl4u9lzx5vZRdPzhdwXa9rrFwPN5jKTmlgBc89UEeO9JqY7n77bY9Fjx7PUaYC7nD3ZO72gSzvd9hDLnUiVo9RzzUOfeXdjngn4I9eA0avapHB7lhZmm8Na0-PQDuibgPZPs7nMXmvKOQnLhRM6C7uA1ZPOeyGDejhsA8lFBVPEJ4Urhy6wW8hj4zvUGSBjivPZi8F_Qevv2Kqrj9Hqs8tKRNvb0_fzjK4QO-ENcePJf9Tjfal4c9XWequ7DmlzheWRQ8HGQtPcJrkTiFD4C8z-AqvftMF7iZSt89gHPQPFS4vri2UXg8cxLqvS7r9rh19fS8Wd3qvQ0j8TXj_449f986Pa3x07cm3JC8FjAxvkGgWrki_-w9NSkFPvN-W7jiGK48b6WiPUwnUriksCa9VAbpvCB-HriNkfQ6HscLPFrwlzggADgTQAlIbVABKnMQABpgKgoAJQpM3xgLK_UOA-35yQvsz_TaB_8E9gAgBP79Cv7TxN32_wPw8u61AAAACNDtHfsACV_xENEq7QjI4ZD5AEJ_Fv4nzLP_-AkUQPzhLQ4Q5BojANbw2QI7Dvv5KQAUIAAtr086OzgTQAlIb1ACKq8GEAwaoAYAAODAAAAkwgAA_EIAALDBAADiQgAAQEAAAJhCAAAMQgAAmMEAAOjBAABAQQAAIMEAADBBAAAAAAAA-EEAAEhCAAAQwQAAZMIAAMBAAABYwgAAAEIAAIA_AAAMwgAAEMIAALjBAACEwgAAtMIAAIDCAABwQgAAQEAAAFDBAAAAwAAAwEEAABDBAAA4wgAAgMAAABRCAAAIQgAAqEEAAPhBAADgwQAAgsIAAHDBAADcwgAAjEIAANDBAACIwQAAAEEAAFxCAAD4QQAAMMEAACRCAAAQwQAA6EEAAExCAAAwQQAA6MEAADDBAADoQQAAVEIAAEBBAABUwgAAAMAAAI7CAAAMQgAAdMIAAAAAAACwwQAAeMIAAABBAACcQgAAIEEAAHTCAAAIQgAA8EEAAIDCAAAAAAAACMIAAKBAAADwQQAAgEEAAJpCAAAcwgAABMIAAMDBAAAwQQAA0EEAAGxCAABwQQAAFMIAAIBBAACoQgAAjsIAACRCAABkQgAAFMIAAMjBAACAQQAA8EEAAIDBAAAAwQAAgEEAALBBAACgQQAAkMIAAEDCAAAQQQAAwEAAAMDBAABgwQAAQEIAAODBAAAQwgAAoMEAACjCAACgQAAAgEIAAGDBAACYwQAA2MEAADjCAAAMwgAAmMEAAEBAAADIQQAA4MAAALjBAACQQQAAeMIAAMDBAACQwQAAEEEAAM7CAABgQgAAyMEAAExCAAAcQgAAJMIAAFTCAADAwQAAUMEAAIDBAAAUQgAAgEEAAOhBAAAgQQAAwMEAAOBBAAAowgAAMEEAAEDAAADIwQAAaEIAAADBAACAvwAAuEEAALjBAADAQAAAaMIAAEBCAAAAwQAAcMEAACDBAAAgQQAABMIAAKDAAACgwAAAbEIAAFhCAACgwQAAQEEAACxCAABAQQAAYMIAAJDCAADIQQAAhMIAADTCAACQQQAAAEAAAIhBAAAwwQAAgEEAAJbCAAAQQQAAEMIAABTCAACgwQAA0MEAAKRCAAAQwgAACMIAAEhCAABAwQAAEEEAAK5CAACYQQAAUMEAACjCAACgwSAAOBNACUh1UAEqjwIQABqAAgAAyL0AAES-AACIPQAAdL4AAAw-AADuPgAAPD4AACW_AADoPQAAyL0AABQ-AAAsvgAA6L0AAKo-AAB8vgAAqL0AAM4-AACovQAADD4AANI-AAB_PwAAbL4AABA9AAB8PgAAdL4AAKA8AABAPAAAUL0AAOg9AAB0PgAAbD4AAGy-AACIvQAAcL0AAI6-AACevgAAcL0AAPi9AADyvgAAJD4AABA9AACyvgAADD4AAAw-AAAwPQAAEL0AAN4-AAANvwAA-L0AADC9AADgPAAAqL0AAAM_AAA8vgAAPL4AAOA8AABPPwAAXD4AAHS-AAC4PQAAqL0AAJg9AAAsvgAABL4gADgTQAlIfFABKo8CEAEagAIAAKi9AAAQvQAAuL0AAE2_AABEvgAALL4AAAw-AADovQAAoLwAAFC9AABwvQAA-L0AAEy-AADIvQAAQDwAAIC7AADovQAA6j4AAIi9AAA0PgAAtj4AAHA9AABEvgAAEL0AAPi9AAA8PgAAqL0AAKg9AAAEvgAAjj4AADw-AAAcPgAATL4AAFC9AACYvQAAyD0AANY-AABQPQAAyr4AAFy-AAAkPgAAPD4AAIA7AACiPgAALD4AAOi9AAB_vwAAyD0AABw-AAAQvQAA4LwAAIg9AACAOwAADD4AAAQ-AABEPgAAQLwAAKg9AABQPQAAcL0AAEw-AAAEPgAAcD0AAPi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=UR8sVnFi82k","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4983631306736271509"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1910536124"},"6880455033782389412":{"videoId":"6880455033782389412","docid":"34-3-14-Z0EDD1C26806A75EE","description":"A video created for my math class as a review for our final exam.This is a proof that cos(A-B) = Cos(A) * Cos(B) + Sin(A) * Sin(B)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4044310/23676c139a52929207f174f174ccb3ab/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/nUlXAgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLPjWKP_lJAw","linkTemplate":"/video/preview/6880455033782389412?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof of Cos (A-B)","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LPjWKP_lJAw\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhUKEzY4ODA0NTUwMzM3ODIzODk0MTJaEzY4ODA0NTUwMzM3ODIzODk0MTJqtg8SATAYACJFGjEACipoaG1haGl4Y25jdmJraG1kaGhVQ25WTUkwT2FRampyRUVKVzBFVGg0QlESAgASKhDCDw8aDz8TgAWCBCQBgAQrKosBEAEaeIH3-QT7_AQABQQOBfoI_ALp-v74_AAAAPYH_P__Av8A7QkOA_4AAAD6D_3--wAAAAMA9AD9_gEABgUF-wQAAAATEwkCAgAAAAwN8AL_AAAA-fn-BgP_AAD_-wP_AAAAAPQL-PQAAAAA_wX2AgAAAAD8-voAAAAAACAALZbg3Ts4E0AJSE5QAiqEAhAAGvABf-whAasOBPz5G-EA9yDcAbcCCwD9MtQA4Czz_-sT7AH0HAgA7x0V_xbwEAG7BwH_-xPQ_-H-zP8svQwCBBfmAeXiAgD28PsBTBUQARbq7v7UFwH-4d7qARbyx_8aDeb-INYN_ygF2f72890GEfUJAO4KGAbpEzAACQ4KA9EnCv_-3sP_7QP-BP3sK_vi9S4HDOn9CCAHBf_z-BUC6fnz_C7uBgAFHgYC9vPiA9L7BwgDCvoAO-DsCgrSHQX87OD93xIPAcbLFP33vwv9BdoR9QsN8vH84vMKIu4T-fO18f4RDvkE-Bf5AP4A6Qcc5fr9IAAtVOkYOzgTQAlIYVACKnMQABpgHgUAH_42Cu0STv8d297ytdim5unaGv_TIv_uHgwp7vHM4s_tAArIHd6bAAAADOLnRf0AA3_c0A_4CkPgxrjaDxxTBRPCifMjLOYF_9LpztQJyy07AMb5vAYtIfcVSChZIAAtv9gZOzgTQAlIb1ACKq8GEAwaoAYAAGBCAADYQQAAZEIAACjCAACIwQAAKEIAAOJCAADAwAAADMIAALjBAAAgwQAAgkIAAFjCAACQQQAAUEIAAExCAAAwQgAAAMIAAGxCAAAAwgAAIEEAAAjCAAAgwQAAFMIAACDBAAC4QQAA8EEAAIjBAAAAAAAANEIAAMDBAAAQQgAAPMIAAIBAAADkwgAA6MEAAPhBAACAQgAAKEIAAHBCAAD4QQAAEEEAAEDBAACAwQAAYEEAAAzCAAAQwQAADEIAAGBBAAAowgAAlsIAABDBAACYQQAAAMAAAKhBAAAMQgAAWMIAAIBBAACWQgAAgMAAAKBBAAAMwgAAgsIAAATCAAA0QgAAYMIAACRCAABgwgAAcMEAAKDBAACUQgAAcEEAAJTCAACYQQAANEIAALDBAADQwQAAPMIAAFxCAABkQgAAQMIAALRCAABswgAAFMIAACBBAAA8QgAAmEEAAEDCAADAQQAAgMAAAODBAACAPwAAcEEAAABBAAA4QgAApMIAADxCAACYwQAA0EEAALBBAADQwgAAoMAAAMhBAAAUwgAAiMEAADBCAAAQQQAAuEEAANDBAAAgQgAAbEIAAFDBAADQwQAAwEEAANDBAACoQQAAgEEAACDBAADowQAAuMEAAIDCAAAwQQAA6EEAAKjBAABgwgAAcMEAAEBBAAAgwgAACMIAAOBBAAAwQQAApMIAAGzCAABgQgAA4EAAALBBAAC4QQAAcEEAADTCAABQQQAAIEEAABBCAAAMQgAAYMEAAGRCAAAYQgAAAEEAAABBAAAAwAAAQEAAABjCAAAIQgAAIEEAAGBCAACAwQAAoMAAACjCAADAwQAAKMIAANDBAABgQQAAZEIAAJhBAAAAwAAAEEEAAHBBAACAQAAAMEIAAMxCAAAYwgAAyEEAAOjBAABgQQAASMIAAIA_AAB8wgAA6MEAACTCAABcwgAAwEAAAGDBAAC6wgAAoMEAAPhBAABoQgAAnsIAAHzCAABAwAAA2EEAADRCAACOQgAAQEAAAIDBAACoQQAAuEEAANhBAADAwQAA0EEAAExCAADgwCAAOBNACUh1UAEqjwIQABqAAgAAMD0AABS-AABwPQAALL4AADA9AACCPgAAUL0AAOq-AACgPAAAED0AABw-AAAUvgAA6L0AAL4-AADYvQAAVL4AAII-AACgvAAABD4AAFQ-AAB_PwAAUL0AADA9AACCPgAAnr4AABC9AACAuwAAHL4AAKg9AACOPgAAyD0AAFy-AABAvAAAyD0AACy-AAAcvgAAUL0AAGS-AACyvgAAmD0AAHC9AADSvgAAFD4AAFA9AACgvAAARL4AAPg9AADIvQAA2L0AAPi9AACAOwAAqD0AANY-AACovQAABL4AAOA8AAA9PwAAuD0AAOA8AACIPQAAPL4AAFA9AACAOwAAuL0gADgTQAlIfFABKo8CEAEagAIAAOi9AADgPAAALL4AADW_AABsvgAA-L0AAEQ-AACIvQAAMD0AAIg9AAC4vQAAnr4AADS-AAAsvgAAMD0AAIi9AACYPQAA0j4AACy-AACCPgAA2D0AABw-AABUvgAAiD0AAFA9AAAkPgAAyL0AABA9AABAPAAA2D0AABA9AABUPgAARL4AAOi9AAAMvgAA4DwAAPI-AAAUPgAAor4AAPi9AABwPQAAuD0AANi9AABMPgAAFD4AABC9AAB_vwAARD4AAIi9AABwPQAAgDsAAMi9AACgPAAAyD0AAIA7AAAEPgAAMD0AAOg9AAAQvQAAED0AAEw-AACAOwAA2D0AAKA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=LPjWKP_lJAw","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6880455033782389412"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1051752587"},"12432177880103358688":{"videoId":"12432177880103358688","docid":"34-6-4-ZF68CD2EC30EB6475","description":"Hello Friends, Cos(A+B) = CosA.CosB – SinA.SinB In this value we will find Cos(A+B). One of our viewers asked to explain this formula, to help him I am uploading this video. Keep watching and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/397933/4b1e0298ec12aed53ed25a5627792c84/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ex8eCQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmFklFT88drc","linkTemplate":"/video/preview/12432177880103358688?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cos(A+B) = CosA.CosB - SinA.SinB","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mFklFT88drc\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhYKFDEyNDMyMTc3ODgwMTAzMzU4Njg4WhQxMjQzMjE3Nzg4MDEwMzM1ODY4OGqTFxIBMBgAIkUaMQAKKmhoYW91Z2hkbG9icXBzZ2NoaFVDTTc1WXFFSHF6dUZIUG1MVk1kek5EURICABIqEMIPDxoPPxO2BIIEJAGABCsqiwEQARp4gf77AvT9AwAFBA4F-gj8AvAD_An6_v4ACAMBAAQD_wDp-QMGCP8AAPMH_ff5AAAAAPQAAwD-AQAT-vT1AwAAABAG_gj3AAAADAH5Agj_AQH0-_78AwAAAAD_AAkAAAAADQ_89wAAAAALCPn8AQAAAPv_-gUAAAAAIAAtHHLbOzgTQAlITlACKoQCEAAa8AF_9w__yvrM_8jj4wDRKeEBpw0d__w30ADZDCcAuAPfAOwH6ADYAiMBJ-sG_9Yp3AAuD_7_7ejqADbHI_8M-OcByQUYABzrIwJM8gUANh_2_64MJP73-SoBGPHC_xz_CP703woAFPi8Af7kxwBV5hUA_x0YBdzyDQb96P8A5RYRAtAU0P3w9P7-79v_-cINEQMQ6OAB-i0J--Pg9gb96AsGLtT5Ay450_8PB_AHrRUO_egU6gMZ4vkD-yIU-Pzq3f31BRfwwcYV_PrrLP3g9Qf44xLwCRP_CA8l7BX4BOb2-dkJ7vzyL_cR_QDnCBDX6fogAC1O_As7OBNACUhhUAIqzwcQABrABy4gpL4iuNs8Z_NQObHfw708qF-9cL4HvfioD76n89c85V4gvR_4GD6fHCW9WWM6vdBHGb5vi-i8l6NPuyB5Fz5c0cE83XL9ur9E_L2YdfW8gln8vLSsG74rsIY9YvgDvSuIIT5jFaW8aGEqvIHaXj2rQq69WioPPbKCX730CKS8eXyWvO56Kb7cy6e9Rn1tvPuKmjzaKne85a3EPJ2FeD28PpC7igU-vCalZT1A22o9tMBoPDVx_DzJLbe8qT8Mvf5ukD3H7HI7oXMNPXgANb1Xp_M6xYLvu-VeAL1NmLq82P9vvGNebDw7Dg09LU7rvJ8R1zv5tXq99k6eu635Ab5UpZI8IdHfO2YwZj0Lypk984GTvBU5FL5PlW88qxmjvFMsLT0a8IM8VZQgPPFmPT59NVG9iXHIuwOY8j0Tysw8XFnivPC9pLwyO-s9lSbnul9wlzx9M5w7ss6CvKjsqjyhXhU9_R3Au6b4U7yrcFW9rdo1PBlBnbvbU8087iGGPMQdlLwbuR4-0gyYugUjpT3WAju-SeWaOsdp47wQm0O9fNd7PE2mJT1qeW8969gQPLYcjj2Sl7G7QJmQO21TvLy9qx69t76COqR9vT1zyYe9L8gvO96Fd70gJ8w9KAgXN1xnDbwK2-89ws4gO_dtrbzd71A8aW4qPCg0fz0DCP89e68Hutp6Ib1nIB48sf8VO6fTdT0BmSW7sDH5up00CD2jsTY91InkN0ZmST2pKpm8b6WRO9mbszwsq3-9RmOZuSxN57pY-Qq9oUNjOiaNcb0uklY9edD2udKJhD3p8gY-skiFOU8kmL1D8y-9SZmZt1Qb_L1iu_u9E9PyOXzLsb3AcPg8m9zyObAiHr3r8EY8dnSWORVwD73dggC9lT9suTBpl72tv0U93nMGuZf8tDzV7Vq6hopnuLwPdr0oW4k90wpbufmrtrywLGe9J_IjOQ_Rqrtvngo-oKIZuRdWAL2_hhu9goIfuAIpET6s1CI9KxIAOa_hU73aAdc9y00_N5EqijzMB8S8L6D-OL5QgDzrqyu8wrIOtjt6Uj04p208q6U9uGVTzr3C6Kg8_jLoN9YjyD1h4QO8f3EcOfinFD4D-k49H_TtNmFe9rz9T9k8lOJROIJVRT50yDc9ydyEuZdWE74MIKy9OY3xNYtIPr2X-wm9GN7FuOJGI7zchJa8d0PAt69zajp8ooY8UYjPuCEytjw7OeM9BBsGOSmeabx4zZA9oeaauGBGp70XgRC7k3TZN1fbA70g8OA991IuOCAAOBNACUhtUAEqcxAAGmAZ7QDk1kD57ApY8iLqAdSzANSwFbY8__7a_-v80Q3y_Mve9P7_1Pgh3JYAAAAqz9ckAQD2f70avgnYIh7cluhVN2sD8BaYuf0R_eoJOuwsHgX0MDgAsBLGET_fBQ4aQmIgAC3URxE7OBNACUhvUAIqrwYQDBqgBgAAoEEAAADCAACMQgAAmsIAALDBAACAwQAAkkIAAJjBAAAowgAAwMEAAIDAAACEQgAAWMIAAHDBAAAAQgAA-EEAADBBAAAswgAAYEEAAFzCAADgwAAAgMAAABDCAABQQgAAVEIAAADBAADYwQAARMIAAOBAAABUQgAAEEEAAAhCAADgwAAAiEEAAMjCAADQwQAA6EEAAARCAABAQQAAAMAAABzCAAAwQQAAMMEAAAAAAABEQgAAOMIAAPjBAACQQQAATEIAAIDAAACgQAAA2MEAAATCAAAsQgAABEIAAGDBAAC2wgAAEEEAAIC_AADYQQAA4MAAAAzCAACYwgAAXMIAAARCAAAAAAAANEIAAADCAAAowgAAIEEAAGBCAACQQQAAaMIAALJCAABAQAAAyMEAAKDAAAAkwgAAoEEAAJhBAABQwQAAGEIAABDBAAAAQAAAuEEAAHhCAABwwQAAiEEAAEhCAAB0wgAAAEAAAExCAADQwQAA4EAAAADCAADQwgAAuEEAANDBAACeQgAAKEIAAFjCAAC0QgAAEEEAAGzCAAAwwgAAgEEAAFzCAACIQQAAmsIAAIJCAAAwQgAAEMEAAABAAAAMQgAAFEIAAPBBAADgQAAAmMEAAETCAACKwgAAAEEAADjCAACgQQAAHMIAAGBBAACgQAAAwEAAALDCAADgQAAAXMIAAAzCAABkwgAAkEEAAFhCAAAsQgAAQMAAABBBAAAAQQAAKMIAAGjCAAD4QQAAAEEAAAxCAACYwQAAQEAAAMBBAABwwgAAkMEAAODAAADgwAAAAEAAAChCAAAIQgAAJMIAAIDAAACAwAAA6MEAAOjBAAAwwgAA4kIAAETCAADgQQAAMEEAAJjBAABQQQAAqEEAAABCAACmQgAATEIAAMDAAABwwgAAUEIAALhBAABAQAAA4MAAAKBBAAB8QgAA4MAAALhBAADAQQAAfMIAAEjCAACAwAAAQEAAAPhBAAAYwgAA0MIAALBBAADAwAAAAMEAAAAAAAAAQgAAQMEAAIhBAAA0QgAAoEEAAIDAAACIQQAA4MEAAITCIAA4E0AJSHVQASqPAhAAGoACAADYvQAAJL4AAEQ-AAA8vgAAiD0AAGw-AAB8PgAAD78AAFw-AADIvQAAPD4AAOA8AACYvQAAnj4AADS-AAAUvgAAnj4AAFC9AADYPQAA3j4AAH8_AACovQAAgLsAAHQ-AAAMvgAAgDsAAOA8AAAsvgAAmL0AAOo-AAAMPgAA-L0AAOi9AAAwvQAAdL4AADS-AADIvQAADL4AAM6-AAA8PgAAED0AAJa-AAAMPgAAJD4AAGS-AACgvAAApj4AAGy-AACavgAAqL0AALi9AADYPQAABT8AAES-AAAsvgAAMD0AAFU_AAAkPgAA2L0AAEA8AADYvQAAqD0AABS-AABEviAAOBNACUh8UAEqjwIQARqAAgAA6L0AAIC7AACgvAAAQb8AAGS-AABAvAAAoj4AAGy-AAAQPQAA4LwAAHS-AACWvgAAUL0AAJi9AABAvAAAgLsAAHA9AADqPgAALL4AAAw-AAB0PgAAcD0AADS-AACoPQAA6L0AABw-AAAQvQAAMD0AAKC8AABMPgAABD4AAEw-AACyvgAAPL4AAIa-AACKPgAA_j4AAIC7AACavgAArr4AAFA9AACWPgAAuD0AAKo-AAA8PgAAMD0AAH-_AAAQPQAAUD0AACQ-AACoPQAAqD0AAOg9AABkPgAAUL0AADQ-AACgPAAATD4AAFC9AABQvQAAkj4AAOg9AADYPQAARL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=mFklFT88drc","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12432177880103358688"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3132708862"},"8565724792070107656":{"videoId":"8565724792070107656","docid":"34-9-6-Z35EE143D0F233531","description":"The value of ((cos A + Cos B)/ (Sin A - SinB))^n + ((SinA + Sin B)/ (Cos A - Cos B))^n is ? Embark on an extraordinary mathematical journey where we solve a seemingly complex trigonometric...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4079133/8d61d6152d89d33dfa86aada9beecbfa/564x318_1"},"target":"_self","position":"19","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvpRhnCBON2M","linkTemplate":"/video/preview/8565724792070107656?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The value of ((cos A + Cos B)/ (Sin A - SinB))^n + ((SinA + Sin B)/ (Cos A - Cos B))^n is ?","related_orig_text":"B Cos","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"B Cos\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vpRhnCBON2M\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxODA2Mzk4NTYxNzEwNTkzNjI2MwoTNzMzNzQ2MzY0ODEyNDQwMTQ2OAoTNjc2MjAxMzg3MTgzMTkwODcwMwoTNjk4MzU0MTA4Nzg3MDU1OTUwNwoUMTIwNTA2NjUxOTc0NTg1NTk1OTMKEzI4Mjc0MjA3MDY0MDQ1NzA4NzkKFDE0MDY4MTg3MzE4NjcyNzUyOTM1ChQxNDQwMTY1NTU5NDI2MzUzMjAxNAoUMTUwMDk5MDMwNDM5MDMxNzYwMDgKFDEyMTEzMDI2NTM1MTI1OTA1NTcyChM1NDI2MDg3MTQ0NzI5ODI0MjYwChQxMTkxMDY4NTIzODAzNzEwNjAzNgoSNzU5NjAyMDUxMjAwMjM0NDkzChQxMzI1MjA0MDIxMzU5NTE0MjU0OQoTNDk4MzYzMTMwNjczNjI3MTUwOQoTNjg4MDQ1NTAzMzc4MjM4OTQxMgoUMTI0MzIxNzc4ODAxMDMzNTg2ODgKEzg1NjU3MjQ3OTIwNzAxMDc2NTYKEzk1NTk5NDU2MDExNzQxNTkyMjgKFDEwNTg1MjQ5NzAzODUwODg4NzU4GhUKEzg1NjU3MjQ3OTIwNzAxMDc2NTZaEzg1NjU3MjQ3OTIwNzAxMDc2NTZqrw0SATAYACJFGjEACipoaHZxaGpvb2ZqYWJpd29jaGhVQzc4TndlSml2aHM1NUYwaUdJektwVUESAgASKhDCDw8aDz8ThAGCBCQBgAQrKosBEAEaeIH_-fz7_AUA9AQFAfoD_wHp_fkD-wAAAP8D__z5Bf4A9gMBAgcAAAD6D_3--wAAAAb39wIC_QEABv749gMAAAATCwAB_gAAAA4D-P7-AQAA_wH0_QL_AAAA_wAJAAAAAAgKA_AAAAAABQz5AgAAAAAEAfsEAAAAACAALVsG4Ts4E0AJSE5QAipzEAAaYA0UAAgdFfreBh7jAv715usaBODi4BEA-w0ACfIY7g4J2trrB_8IChD_0QAAAADq-x39APs48_7TA_v7-fLX6yESfxD6Dub75uTfBv8LFg8j9v4MJgDUDQ3nD-v_HP4kKSAALaZUhTs4E0AJSG9QAiqvBhAMGqAGAACIQQAAQEAAABxCAACSwgAAikIAAFDBAACgQgAA2EEAAKDBAACIQQAAoEAAALDBAAA8wgAAgL8AAABAAACAQQAAgMAAABzCAACIQQAAAAAAADBBAABQwQAAZMIAAIDAAABAwQAAQMAAAFBBAADGwgAAsEEAAATCAACAPwAA-EEAANLCAADYwQAAosIAADhCAADQQQAAhEIAAKDBAADgQQAAUEEAAMhBAABUQgAAoMAAALpCAADGwgAAOMIAAARCAABUQgAAEMEAAOjBAAAAQgAAQMEAADBBAABQQQAAAMAAAADDAAAgQQAAKEIAAKBCAACIQgAAqsIAAAzCAACawgAAuEEAAITCAABYwgAAiMIAAKBBAAD4wQAAbEIAAI5CAACgwQAA-EEAAEjCAABowgAAgMAAAIBAAACAPwAAQMAAANjBAABoQgAAGMIAALBBAACgQAAAAEEAAIA_AACgQAAAAEIAAPDBAACAPwAApEIAAETCAAAQQgAA6EEAACjCAACYwQAAwMAAAJJCAAAAQgAADMIAAAhCAADQQQAAcMEAAMjBAACAwAAA4EEAAMBAAACQQQAATEIAACBCAACoQQAAoMAAAJjBAAB0wgAAWEIAAOhBAAAwwQAAqsIAADDBAABwwQAAJMIAAADCAACAwQAAYEEAANBBAADQQQAAmEEAAIBBAAAAwQAAQMIAAKhBAAAIQgAA8EEAAEDBAABEQgAA6EEAAIhBAACgwQAADMIAAFBBAACgwAAAGEIAAIC_AAD4QQAAuEEAABzCAACAPwAA8EEAAKDAAABYwgAAQEAAAIBAAADAwAAAjkIAAFTCAAAgwgAAisIAAETCAAAwwgAAWMIAANhBAAAAwQAAjsIAAOjBAACYQQAAqMEAAEBCAAA0QgAAIMEAAGBBAAAYQgAAGMIAANDBAABIwgAAYMEAAMBAAABcwgAAYEIAAIjBAAAgwgAAgMEAAEzCAADgQAAApkIAABTCAACQwQAAgsIAALBBAACgwAAAoMEAALDBAADoQQAAYEEAAAxCAAAwQgAA4MEAAEBBAACAwQAAgMEgADgTQAlIdVABKo8CEAAagAIAAJi9AACCvgAAhj4AABy-AADgPAAAgj4AAIg9AAARvwAA-D0AAIi9AACgvAAAiD0AAKA8AACyPgAARL4AAEC8AABUPgAAgLsAAIg9AADiPgAAfz8AACy-AACAuwAAdD4AAAy-AAAQPQAAqD0AABS-AADYPQAArj4AAOg9AACCvgAAFL4AADC9AABAvAAA2L0AANi9AAAMvgAAsr4AAKg9AACgvAAAPL4AACQ-AAAwPQAAXL4AAKi9AADCPgAABL4AAPi9AABwvQAAuL0AAIC7AADePgAAqL0AABy-AAAQPQAAVz8AABw-AACovQAAcD0AAEA8AADoPQAAcL0AABS-IAA4E0AJSHxQASqPAhABGoACAACYvQAAgDsAAEA8AABTvwAAXL4AABS-AACCPgAAZL4AAEC8AACYPQAA2L0AACy-AAAUvgAAuL0AAIC7AACgvAAADL4AAOo-AACgPAAAdD4AAGQ-AACgPAAAbL4AABC9AADovQAAiD0AAOC8AAAwPQAABL4AAIY-AADoPQAATD4AAIK-AAD4vQAALL4AANg9AADWPgAAQDwAAMK-AAAcvgAAQDwAAGw-AABwvQAAqj4AADQ-AACIvQAAf78AAOA8AABUPgAAoDwAABA9AACAuwAAgDsAAOg9AADIPQAAND4AAKA8AABQPQAAQLwAAOC8AABsPgAABD4AABA9AAAUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=vpRhnCBON2M","parent-reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8565724792070107656"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"18063985617105936263":{"videoId":"18063985617105936263","title":"\u0007[Cos\u0007](A+\u0007[B\u0007]) proof:Trigonometry, How to proof \u0007[Cos\u0007](A+\u0007[B\u0007])","cleanTitle":"Cos(A+B) proof:Trigonometry, How to proof Cos(A+B)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2OUaik1j14k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2OUaik1j14k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQXliQXpCR2FwdE1yM3J0MzRQYjJUQQ==","name":"Creative solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Creative+solutions","origUrl":"http://www.youtube.com/@creativesolutions382","a11yText":"Creative solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":446,"text":"7:26","a11yText":"Süre 7 dakika 26 saniye","shortText":"7 dk."},"date":"24 kas 2023","modifyTime":1700784000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2OUaik1j14k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2OUaik1j14k","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":446},"parentClipId":"18063985617105936263","href":"/preview/18063985617105936263?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/18063985617105936263?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7337463648124401468":{"videoId":"7337463648124401468","title":"Trigonometric Proof: \u0007[cos\u0007](A+\u0007[B\u0007])=\u0007[cos\u0007](A) \u0007[cos\u0007](\u0007[B\u0007])-sin(A) sin(\u0007[B\u0007])","cleanTitle":"Trigonometric Proof: cos(A+B)=cos(A) cos(B)-sin(A) sin(B)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=X2rv8XNZ0Eg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/X2rv8XNZ0Eg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcHZxaWhmTXg5OEpVdDNCa2wzR1NUQQ==","name":"Physics Ninja","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Physics+Ninja","origUrl":"http://www.youtube.com/@PhysicsNinja","a11yText":"Physics Ninja. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":756,"text":"12:36","a11yText":"Süre 12 dakika 36 saniye","shortText":"12 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"16 eki 2022","modifyTime":1665950527000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/X2rv8XNZ0Eg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=X2rv8XNZ0Eg","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":756},"parentClipId":"7337463648124401468","href":"/preview/7337463648124401468?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/7337463648124401468?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6762013871831908703":{"videoId":"6762013871831908703","title":"Simplest Proof: Sin(A-\u0007[B\u0007]), \u0007[Cos\u0007](A+\u0007[B\u0007]) & \u0007[Cos\u0007](A-\u0007[B\u0007]) | Trigonometric Identity","cleanTitle":"Simplest Proof: Sin(A-B), Cos(A+B) & Cos(A-B) | Trigonometric Identity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=K0xpipKRoWA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/K0xpipKRoWA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSEU3WWtWVG5ycEIyWE5xaU1fV2EyZw==","name":"Animate Math & Science","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Animate+Math+%26+Science","origUrl":"http://www.youtube.com/@AnimateMathScience","a11yText":"Animate Math & Science. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":112,"text":"1:52","a11yText":"Süre 1 dakika 52 saniye","shortText":"1 dk."},"date":"3 haz 2024","modifyTime":1717372800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/K0xpipKRoWA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=K0xpipKRoWA","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":112},"parentClipId":"6762013871831908703","href":"/preview/6762013871831908703?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/6762013871831908703?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6983541087870559507":{"videoId":"6983541087870559507","title":"Trigonometry | \u0007[Cos\u0007] (A+\u0007[B\u0007]) & \u0007[Cos\u0007] (A-\u0007[B\u0007]) | Trigonometric Ratios Of Compound Angles","cleanTitle":"Trigonometry | Cos (A+B) & Cos (A-B) | Trigonometric Ratios Of Compound Angles","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=N2wQRbXuLMc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/N2wQRbXuLMc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZ3NpMjcwOGdzM29sbDU3TVFSYjRPUQ==","name":"Sarada Maths ( Learn Concepts of Mathematics )","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sarada+Maths+%28+Learn+Concepts+of+Mathematics+%29","origUrl":"http://www.youtube.com/@saradamathslearnconceptsof5334","a11yText":"Sarada Maths ( Learn Concepts of Mathematics ). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1208,"text":"20:08","a11yText":"Süre 20 dakika 8 saniye","shortText":"20 dk."},"date":"5 ağu 2021","modifyTime":1628121600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/N2wQRbXuLMc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=N2wQRbXuLMc","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":1208},"parentClipId":"6983541087870559507","href":"/preview/6983541087870559507?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/6983541087870559507?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12050665197458559593":{"videoId":"12050665197458559593","title":"\u0007[cos\u0007](A-\u0007[B\u0007])=\u0007[cos\u0007](A) \u0007[cos\u0007](\u0007[B\u0007])+sin(A) sin(\u0007[B\u0007]) proof - geometrical","cleanTitle":"cos(A-B)=cos(A) cos(B)+sin(A) sin(B) proof - geometrical","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=gDOGT6NcD60","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/gDOGT6NcD60?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRnZZb0hFVV8zeDVMS3lRcTZ0NTVfZw==","name":"Mathematics Proofs - GCSE & A Level","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathematics+Proofs+-+GCSE+%26+A+Level","origUrl":"http://www.youtube.com/@mathematics.proofs","a11yText":"Mathematics Proofs - GCSE & A Level. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":394,"text":"6:34","a11yText":"Süre 6 dakika 34 saniye","shortText":"6 dk."},"views":{"text":"40,9bin","a11yText":"40,9 bin izleme"},"date":"29 eyl 2016","modifyTime":1475107200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/gDOGT6NcD60?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=gDOGT6NcD60","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":394},"parentClipId":"12050665197458559593","href":"/preview/12050665197458559593?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/12050665197458559593?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2827420706404570879":{"videoId":"2827420706404570879","title":"How to derive \u0007[cos\u0007] (a+\u0007[b\u0007])=\u0007[cos\u0007] a \u0007[cos\u0007] \u0007[b\u0007] -sin a sin \u0007[b\u0007]","cleanTitle":"How to derive cos (a+b)=cos a cos b -sin a sin b","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SsA2j3MlDAQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SsA2j3MlDAQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdDltUHBOSlVXSnlnMXhfQzJmbktOdw==","name":"Maths Nonstop","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Maths+Nonstop","origUrl":"http://www.youtube.com/@mathsnonstop8857","a11yText":"Maths Nonstop. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":593,"text":"9:53","a11yText":"Süre 9 dakika 53 saniye","shortText":"9 dk."},"date":"16 ağu 2025","modifyTime":1755302400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SsA2j3MlDAQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SsA2j3MlDAQ","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":593},"parentClipId":"2827420706404570879","href":"/preview/2827420706404570879?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/2827420706404570879?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14068187318672752935":{"videoId":"14068187318672752935","title":"\u0007[cos\u0007](A+\u0007[B\u0007])=\u0007[cos\u0007](A) \u0007[cos\u0007](\u0007[B\u0007])-sin(A) sin(\u0007[B\u0007]) proof - geometrical","cleanTitle":"cos(A+B)=cos(A) cos(B)-sin(A) sin(B) proof - geometrical","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-n6h6-CT0-0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-n6h6-CT0-0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRnZZb0hFVV8zeDVMS3lRcTZ0NTVfZw==","name":"Mathematics Proofs - GCSE & A Level","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathematics+Proofs+-+GCSE+%26+A+Level","origUrl":"http://www.youtube.com/@mathematics.proofs","a11yText":"Mathematics Proofs - GCSE & A Level. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":414,"text":"6:54","a11yText":"Süre 6 dakika 54 saniye","shortText":"6 dk."},"views":{"text":"38bin","a11yText":"38 bin izleme"},"date":"6 oca 2014","modifyTime":1388966400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-n6h6-CT0-0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-n6h6-CT0-0","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":414},"parentClipId":"14068187318672752935","href":"/preview/14068187318672752935?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/14068187318672752935?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14401655594263532014":{"videoId":"14401655594263532014","title":"Prove That : \u0007[Cos\u0007](A-\u0007[B\u0007]).\u0007[Cos\u0007](A+\u0007[B\u0007])= 〖\u0007[Cos\u0007]〗^2 A-〖Sin〗^2 \u0007[B\u0007]","cleanTitle":"Prove That : Cos(A-B).Cos(A+B)= 〖Cos〗^2 A-〖Sin〗^2 B","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vSuCI4wzsJg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vSuCI4wzsJg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQ0JPYTRzVmN6Vk5qUGo4UnZzYk1uQQ==","name":"Solution With X","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Solution+With+X","origUrl":"http://www.youtube.com/@solutionwithx","a11yText":"Solution With X. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":167,"text":"2:47","a11yText":"Süre 2 dakika 47 saniye","shortText":"2 dk."},"date":"19 eyl 2024","modifyTime":1726763698000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vSuCI4wzsJg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vSuCI4wzsJg","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":167},"parentClipId":"14401655594263532014","href":"/preview/14401655594263532014?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/14401655594263532014?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15009903043903176008":{"videoId":"15009903043903176008","title":"Proof for \u0007[cos\u0007](A+\u0007[B\u0007]).\u0007[cos\u0007](A-\u0007[B\u0007])=\u0007[Cos\u0007]²A-Sin²\u0007[B\u0007] || Trigonometry formulae proof || ma...","cleanTitle":"Proof for cos(A+B).cos(A-B)=Cos²A-Sin²B || Trigonometry formulae proof || maths","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=UOBgaskhzg8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UOBgaskhzg8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX092WjIyb0M0bW9HNDdyQWZNVWdNdw==","name":"Anuj Dubey","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Anuj+Dubey","origUrl":"http://www.youtube.com/@anujdubey3937","a11yText":"Anuj Dubey. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":275,"text":"4:35","a11yText":"Süre 4 dakika 35 saniye","shortText":"4 dk."},"views":{"text":"10,8bin","a11yText":"10,8 bin izleme"},"date":"21 eki 2018","modifyTime":1540080000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UOBgaskhzg8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UOBgaskhzg8","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":275},"parentClipId":"15009903043903176008","href":"/preview/15009903043903176008?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/15009903043903176008?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12113026535125905572":{"videoId":"12113026535125905572","title":"02-\u0007[Cos\u0007](-\u0007[B\u0007]) = \u0007[Cos\u0007](\u0007[B\u0007]) | Trigonometric Identity Proof in 1 Minute | Math121 Pukhtu| Naf...","cleanTitle":"02-Cos(-B) = Cos(B) | Trigonometric Identity Proof in 1 Minute | Math121 Pukhtu| Nafees Ullah","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nA9oKiN3pK0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nA9oKiN3pK0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR3ZWSW5xUm1wbng5V2FoNXpxclVqdw==","name":"Math121 Pukhto","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math121+Pukhto","origUrl":"http://www.youtube.com/@Math121pukhtu","a11yText":"Math121 Pukhto. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":116,"text":"1:56","a11yText":"Süre 1 dakika 56 saniye","shortText":"1 dk."},"date":"16 nis 2025","modifyTime":1744761600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nA9oKiN3pK0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nA9oKiN3pK0","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":116},"parentClipId":"12113026535125905572","href":"/preview/12113026535125905572?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/12113026535125905572?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5426087144729824260":{"videoId":"5426087144729824260","title":"What is the value of \u0007[cos\u0007](a+\u0007[b\u0007]).\u0007[cos\u0007](a-\u0007[b\u0007])=?","cleanTitle":"What is the value of cos(a+b).cos(a-b)=?","host":{"title":"YouTube","href":"http://www.ponfish.com/wiki/what-is-the-value-of-cos-a-b","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QvZdiC-CJXM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO2h0dHA6Ly93d3cueW91dHViZS5jb20vQFNhY2hpbkthdGhpeWE=","name":"Sachin kathiya","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sachin+kathiya","origUrl":"http://www.youtube.com/@SachinKathiya","a11yText":"Sachin kathiya. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":10,"text":"00:10","a11yText":"Süre 10 saniye","shortText":""},"date":"30 ağu 2021","modifyTime":1630281600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QvZdiC-CJXM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QvZdiC-CJXM","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":10},"parentClipId":"5426087144729824260","href":"/preview/5426087144729824260?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/5426087144729824260?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11910685238037106036":{"videoId":"11910685238037106036","title":"\u0007[cos\u0007](a-\u0007[b\u0007]) = \u0007[cos\u0007](a) \u0007[cos\u0007](\u0007[b\u0007]) + sin(a) sin(\u0007[b\u0007]) Proof","cleanTitle":"cos(a-b) = cos(a) cos(b) + sin(a) sin(b) Proof","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=J9yMnACBy9o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/J9yMnACBy9o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOW9GYmhLMVlBZ015VV9zVHdKeExuZw==","name":"Destined Emporium","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Destined+Emporium","origUrl":"http://www.youtube.com/@DestinedEmporium","a11yText":"Destined Emporium. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":114,"text":"1:54","a11yText":"Süre 1 dakika 54 saniye","shortText":"1 dk."},"date":"1 eki 2024","modifyTime":1727740800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/J9yMnACBy9o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=J9yMnACBy9o","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":114},"parentClipId":"11910685238037106036","href":"/preview/11910685238037106036?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/11910685238037106036?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"759602051200234493":{"videoId":"759602051200234493","title":"11.1 Double Angle & Addition Formulae 1. \u0007[Cos\u0007](A ± \u0007[B\u0007]) - Higher Maths Lessons - @MrThomasMaths ...","cleanTitle":"11.1 Double Angle & Addition Formulae 1. Cos(A ± B) - Higher Maths Lessons - @MrThomasMaths cos(X±Y)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CYIvP5-x5z8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CYIvP5-x5z8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLU11S0J3SzdqSXFJSERMOFA5Qk1XZw==","name":"Mr Thomas","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mr+Thomas","origUrl":"http://www.youtube.com/@MrThomasMaths","a11yText":"Mr Thomas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1021,"text":"17:01","a11yText":"Süre 17 dakika 1 saniye","shortText":"17 dk."},"views":{"text":"8,1bin","a11yText":"8,1 bin izleme"},"date":"5 kas 2020","modifyTime":1604534400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CYIvP5-x5z8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CYIvP5-x5z8","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":1021},"parentClipId":"759602051200234493","href":"/preview/759602051200234493?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/759602051200234493?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13252040213595142549":{"videoId":"13252040213595142549","title":"\u0007[cos\u0007](a+\u0007[b\u0007]) = \u0007[cos\u0007](a) \u0007[cos\u0007](\u0007[b\u0007]) - sin(a) sin(\u0007[b\u0007]) Proof","cleanTitle":"cos(a+b) = cos(a) cos(b) - sin(a) sin(b) Proof","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OjPxttMrUpA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OjPxttMrUpA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOW9GYmhLMVlBZ015VV9zVHdKeExuZw==","name":"Destined Emporium","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Destined+Emporium","origUrl":"http://www.youtube.com/@DestinedEmporium","a11yText":"Destined Emporium. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":164,"text":"2:44","a11yText":"Süre 2 dakika 44 saniye","shortText":"2 dk."},"date":"28 eyl 2024","modifyTime":1727481600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OjPxttMrUpA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OjPxttMrUpA","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":164},"parentClipId":"13252040213595142549","href":"/preview/13252040213595142549?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/13252040213595142549?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4983631306736271509":{"videoId":"4983631306736271509","title":"\u0007[cos\u0007]Acos\u0007[B\u0007] = [\u0007[cos\u0007](A+\u0007[B\u0007])+\u0007[cos\u0007](A-\u0007[B\u0007])]/2 and sinAsin\u0007[B\u0007] = [\u0007[cos\u0007](A...","cleanTitle":"cosAcosB = [cos(A+B)+cos(A-B)]/2 and sinAsinB = [cos(A-B)-cos(A+B)]/2 (2 of 6)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=UR8sVnFi82k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UR8sVnFi82k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTHRnOUZJYkExQ1lOeGhmSjk3aldZZw==","name":"Mharthy's Channel","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mharthy%27s+Channel","origUrl":"http://www.youtube.com/@MharthysChannel","a11yText":"Mharthy's Channel. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":585,"text":"9:45","a11yText":"Süre 9 dakika 45 saniye","shortText":"9 dk."},"date":"12 mar 2022","modifyTime":1647043200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UR8sVnFi82k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UR8sVnFi82k","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":585},"parentClipId":"4983631306736271509","href":"/preview/4983631306736271509?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/4983631306736271509?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6880455033782389412":{"videoId":"6880455033782389412","title":"Proof of \u0007[Cos\u0007] (A-\u0007[B\u0007])","cleanTitle":"Proof of Cos (A-B)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LPjWKP_lJAw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LPjWKP_lJAw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDblZNSTBPYVFqanJFRUpXMEVUaDRCUQ==","name":"Max Tepermeister","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Max+Tepermeister","origUrl":"https://www.youtube.com/channel/UCnVMI0OaQjjrEEJW0ETh4BQ","a11yText":"Max Tepermeister. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":640,"text":"10:40","a11yText":"Süre 10 dakika 40 saniye","shortText":"10 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"1 haz 2014","modifyTime":1401580800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LPjWKP_lJAw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LPjWKP_lJAw","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":640},"parentClipId":"6880455033782389412","href":"/preview/6880455033782389412?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/6880455033782389412?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12432177880103358688":{"videoId":"12432177880103358688","title":"\u0007[Cos\u0007](A+\u0007[B\u0007]) = CosA.CosB - SinA.SinB","cleanTitle":"Cos(A+B) = CosA.CosB - SinA.SinB","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mFklFT88drc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mFklFT88drc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTTc1WXFFSHF6dUZIUG1MVk1kek5EUQ==","name":"Pawan Wagh Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Pawan+Wagh+Academy","origUrl":"http://www.youtube.com/channel/UCM75YqEHqzuFHPmLVMdzNDQ","a11yText":"Pawan Wagh Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":566,"text":"9:26","a11yText":"Süre 9 dakika 26 saniye","shortText":"9 dk."},"views":{"text":"51,5bin","a11yText":"51,5 bin izleme"},"date":"21 tem 2017","modifyTime":1500595200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mFklFT88drc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mFklFT88drc","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":566},"parentClipId":"12432177880103358688","href":"/preview/12432177880103358688?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/12432177880103358688?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8565724792070107656":{"videoId":"8565724792070107656","title":"The value of ((\u0007[cos\u0007] A + \u0007[Cos\u0007] \u0007[B\u0007])/ (Sin A - SinB))^n + ((SinA + Sin \u0007[B\u0007])/ (\u0007[Cos\u0007] A - \u0007[C...","cleanTitle":"The value of ((cos A + Cos B)/ (Sin A - SinB))^n + ((SinA + Sin B)/ (Cos A - Cos B))^n is ?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vpRhnCBON2M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vpRhnCBON2M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNzhOd2VKaXZoczU1RjBpR0l6S3BVQQ==","name":"Shiwam's Classes","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Shiwam%27s+Classes","origUrl":"http://www.youtube.com/@shiwamsclasses","a11yText":"Shiwam's Classes. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":132,"text":"2:12","a11yText":"Süre 2 dakika 12 saniye","shortText":"2 dk."},"date":"1 şub 2025","modifyTime":1738368000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vpRhnCBON2M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vpRhnCBON2M","reqid":"1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL","duration":132},"parentClipId":"8565724792070107656","href":"/preview/8565724792070107656?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","rawHref":"/video/preview/8565724792070107656?parent-reqid=1769645740343986-8930418867877473588-balancer-l7leveler-kubr-yp-vla-258-BAL&text=B+Cos","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"9304188678774735887258","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"B Cos","queryUriEscaped":"B%20Cos","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}