{"pages":{"search":{"query":"BCox","originalQuery":"BCox","serpid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","parentReqid":"","serpItems":[{"id":"7337463648124401468-0-0","type":"videoSnippet","props":{"videoId":"7337463648124401468"},"curPage":0},{"id":"6762013871831908703-0-1","type":"videoSnippet","props":{"videoId":"6762013871831908703"},"curPage":0},{"id":"16031952831185477843-0-2","type":"videoSnippet","props":{"videoId":"16031952831185477843"},"curPage":0},{"id":"1134513770522703810-0-3","type":"videoSnippet","props":{"videoId":"1134513770522703810"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEJDb3gK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","ui":"desktop","yuid":"3558156681769626001"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"14401655594263532014-0-5","type":"videoSnippet","props":{"videoId":"14401655594263532014"},"curPage":0},{"id":"16614542426172645431-0-6","type":"videoSnippet","props":{"videoId":"16614542426172645431"},"curPage":0},{"id":"2623314492742791540-0-7","type":"videoSnippet","props":{"videoId":"2623314492742791540"},"curPage":0},{"id":"16951421080835507869-0-8","type":"videoSnippet","props":{"videoId":"16951421080835507869"},"curPage":0},{"id":"16076010806097411303-0-9","type":"videoSnippet","props":{"videoId":"16076010806097411303"},"curPage":0},{"id":"18225918010381791171-0-10","type":"videoSnippet","props":{"videoId":"18225918010381791171"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEJDb3gK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","ui":"desktop","yuid":"3558156681769626001"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"6924831840091690430-0-12","type":"videoSnippet","props":{"videoId":"6924831840091690430"},"curPage":0},{"id":"2210780698944176160-0-13","type":"videoSnippet","props":{"videoId":"2210780698944176160"},"curPage":0},{"id":"15565583960296570704-0-14","type":"videoSnippet","props":{"videoId":"15565583960296570704"},"curPage":0},{"id":"1490297785528638233-0-15","type":"videoSnippet","props":{"videoId":"1490297785528638233"},"curPage":0},{"id":"11941330678110157601-0-16","type":"videoSnippet","props":{"videoId":"11941330678110157601"},"curPage":0},{"id":"5579579069333012079-0-17","type":"videoSnippet","props":{"videoId":"5579579069333012079"},"curPage":0},{"id":"8205269322889375169-0-18","type":"videoSnippet","props":{"videoId":"8205269322889375169"},"curPage":0},{"id":"1844490894097861881-0-19","type":"videoSnippet","props":{"videoId":"1844490894097861881"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"correction":{"items":[{"kind":"misspell","url":"/video/search?text=B%20Cos","params":{"text":"B Cos"},"query":"B Co\u0007(s\u0007)","helpUrl":"https://yandex.com.tr/support/search/info/request-correction.xml","helpTarget":"_blank","helpAriaLabel":"Yazım hatası düzeltme servisi"}],"id":"55663552506"},"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEJDb3gK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","ui":"desktop","yuid":"3558156681769626001"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DBCox"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"7972053466411291289718","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455699,0,90;1450764,0,61;1466867,0,55;1336775,0,69;284407,0,69;151171,0,43;126353,0,33;1281084,0,21;287509,0,41;1447467,0,57;786154,0,95;1473595,0,60;1468028,0,20;912287,0,90"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DBCox","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=BCox","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=BCox","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"BCox: Yandex'te 4 bin video bulundu","description":"Результаты поиска по запросу \"BCox\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"BCox — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y1dd55ead93531484f3df5d6bd22f081d","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1450764,1466867,1336775,284407,151171,126353,1281084,287509,1447467,786154,1473595,1468028,912287","queryText":"BCox","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"3558156681769626001","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1475824,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769626055","tz":"America/Louisville","to_iso":"2026-01-28T13:47:35-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1450764,1466867,1336775,284407,151171,126353,1281084,287509,1447467,786154,1473595,1468028,912287","queryText":"BCox","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"3558156681769626001","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"7972053466411291289718","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":156,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"3558156681769626001","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1757.0__1e42d45c824ef14ef6767326055fb713b0c3a145","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"7337463648124401468":{"videoId":"7337463648124401468","docid":"12-10-0-Z6C9C59F034AE7636","description":"Physics Ninja looks at the derivation of several trigonometric proofs. 1) cos(A+B)=cos(A)cos(B)-sin(A)sin(B) 2) sin(A+B)=sin(A)cos(B)+sin(B)cos(A)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1627773/b68f52a93f818d8aaf0d2fbde4573bdc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/b-hLGQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DX2rv8XNZ0Eg","linkTemplate":"/video/preview/7337463648124401468?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Trigonometric Proof: cos(A+B)=cos(A) cos(B)-sin(A) sin(B)","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=X2rv8XNZ0Eg\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoVChM3MzM3NDYzNjQ4MTI0NDAxNDY4WhM3MzM3NDYzNjQ4MTI0NDAxNDY4aogXEgEwGAAiRRoxAAoqaGhpYnhmeHl3d2Fnam9pZGhoVUNwdnFpaGZNeDk4SlV0M0JrbDNHU1RBEgIAEioQwg8PGg8_E_QFggQkAYAEKyqLARABGniB-_8B__sGAPkHBQgABv0B7AP8-_sA_wD___T7_QT-APP6BwEEAAAA-g_9_vsAAAD9__wBA_4AABD8_vkDAAAAEwsAAf4AAAAOA_j__gEAAP37_fcCAAAAA_v9AwAAAAAADfryAAAAAAUD8f0AAAAABAH7BAAAAAAgAC3En-M7OBNACUhOUAIqhAIQABrwAV7mHADp8dgAy_jr_9wg6AGBFfD__SrbANv86wDg_QQBGwodAOr9NP8pAyX_wyH6_xUE3f8C7BMAKdQb_wAA4QDhAf0BHuAJADcCEv8L8OIACCT7_v3qAQDm6er_Ax3h_gvnDf8H_OEB8wTmAR78JgHZAfEC6Cb5Aefv7wHeBhAD8xDd_gkeAwLp7QwBB_YjAwD3AgYfFPv49Qb9Aw38FwQrC-789yLvAvP89P7l_g8D__z8AwfU8AD58QcI9QHq-v7uBQX6zwMA9-j4_ucHGQMCEgMGBBj-ABwG_QUC9_789TD-BAMb-P4UGPQE59r3-iAALVH0NTs4E0AJSGFQAirPBxAAGsAHv7q6voAL1zyR_WK8LC7OvHFwjjwh3oC7IxPwvdctJz33_UC8JEMePpNrrzpzlC29GM0avtPCYL0ZL6e8UTAzPvqAmzuR50Q9QNwlvsQrJDzz9m-7TMQ7voKcRbtWMte6ZExQPUbPrTz7qp66wsmMPS9SQ718Gbs891a0PWSgIT0ymSC93JsEPNST3rz87QG9Wt82PenbnbxTkco8lJQFPec43bkZuxA89WItPVlUnzxxu-E7crWvvWJZOr3nbdG8g5GtPbDxjz0McCY9PTyVvS-f0Txy7DC7VYpdvRzjlLyNBQq9JkCoPZCoKz1v0a68j306vessBL0DPr87bOnRvalWpT1tGtu8uWa3PXMTsD2_G4E8p3chvlG2LT2v06M6YUnDPB0XPDuwEh48LEUSPqDcO73PiZg8q-rlPZtC3zo21yE8qh5GuoCBgD1U02Q8Af05vfMjmT1lWYu8M-t7PP2AC7uEU5U8Zf8dvFqoqzysY8c6r6b8PCDE37qYFnU8hC_nvOk9vz0bnyg7BSOlPdYCO75J5Zo6RRngvCYE5TtDk5-8eG1FPQkEED1xzqM8we4KPR7cgjygGm07vLslu_0Qi73Tg6O3ShSQPJ7a5jm6VjG8iRXEvaZ_6T3rECy6KHJSvXQwMT0-qf67x6hBvXkL_7wH63O4Ox7OvOHjfT0mRfk7TbrtPEQc3jmN9So7LLmrO9ddajx2qZG7tvCxPfbxKz1CqBw7GCPSPLWwYTt5n1s7wNawPd04k734xWm40UjKPQvqgLyO7eC45ETgvABajDt2dpC4EoBEPWN_2T2rYzM54PgVvWdTZL1S6ym4_yNDvmZn0b088pA5kPrGvP_hU7xrJZC5sCIevevwRjx2dJY5H2KovT6Qfjtln8q560uAvUAHpzxbxEa58UWQPVKtTzyesr84wYwJPSws-jvfoVc6bTHJPChJ8ry0nqw4DbbiPNqRKj6hYo25sv5lvSpjMjz8jBS5iuj3PT-QrD2C7mY49zx_vc4YBj7zHTK3j3gJO_6eyL3x7a84YXyHPZLzEzwrAmG4n8kevVIWdDx0Kho5uOQovtF_hbyd-Bq5Xb8APb8ZC73JcmI4yF86PtyVwjzNr0s4opQUvCnmwbs-SDg4weMrPtylaLwHiXS5OcXEvWe3Jr7WR3I4oscZvRTIUT261Hw34BV8PavVMr1JCxU2aYCsPfH0Sr1w60u1ZF6SPbRrbD0heO44PCn6u1UqbT3gMo24w5XYvL86WDx5m2248qDyuluJKj1eEKo3IAA4E0AJSG1QASpzEAAaYB3gAAMCDckDNTnl_s7RHdPJ4Mniphb_1Qf_MBYBGRf10rgPCwAU8xLlmgD_ACDU6UsKAN5_4cwyFPo0ObqQ6EUZcSD8wM3WGhPxChYRAAPxTPs2HADLBdcFTuDj8U1JVCAALUHSFDs4E0AJSG9QAiqvBhAMGqAGAACgQQAAMMEAAABCAAAIwgAAEEIAAABCAACUQgAAoMEAACDBAACAwQAAuEEAAOBBAAB4wgAAyEEAAAhCAAAQQgAAcMEAAIrCAABwQgAASMIAABBCAABUwgAAcEEAACxCAADwQQAACEIAAMhBAAB8wgAAMMIAAJDBAACAvwAAJEIAAILCAAB0wgAA4MEAAMjBAABwQgAALEIAALjBAADAQAAAgkIAAABBAAAIQgAAgEEAAJBCAAAowgAAwMEAAMjBAADoQQAAQMEAAKzCAAAcwgAA2MEAALjBAAAwQQAACEIAALLCAACAwAAA-EEAAIZCAABgwQAAMMIAAIC_AACGwgAA4EEAAGDCAACQQQAAXMIAAIA_AAB4wgAAgEIAAKBBAACwwgAAaEIAAOhBAADowQAAyMEAABDBAACAQQAAYEEAAPjBAAAIQgAAIMEAAFDBAAAgQQAAOMIAAOhBAACIQgAAiEEAABTCAACYQQAAfEIAALLCAAAwQgAAAMIAAKbCAAAAwgAAMMIAAJxCAAAwQQAAjMIAABBCAACAQgAAsMEAAJjBAABEQgAAQMAAABBBAAAgQgAA0EEAAEhCAACYwQAAEEEAANhBAACkwgAADEIAAJBBAACAwAAAuMIAAAzCAAAwwgAADMIAAAAAAAAgwQAAIEEAAKBBAACAPwAAAAAAAMDBAAAMQgAAwMEAAPDBAACAwAAAmEIAAFRCAAAQQQAANEIAACDBAAB8wgAAAMIAAADAAADgwQAAmEEAAPDBAAC4QQAAgL8AACTCAAAgwQAA8EEAAGDBAACgQAAAmEEAADBCAACAQQAAYEIAAMDAAABIwgAAVMIAAHTCAACgQAAAUMEAABBCAAAIwgAAMMIAAKDAAADAQQAAoMAAAOBBAAD4QQAAYEEAAJjBAACAvwAAUMEAAKjCAAC0wgAAmEEAABDBAAAMwgAARMIAAODBAACowQAAkMEAAGBBAACoQQAA0kIAAAzCAAAQwgAAgsIAAADBAADAQAAAcMEAAEhCAABIQgAAQMEAAExCAACQQQAA8MEAAGRCAAAYwgAAoMEgADgTQAlIdVABKo8CEAAagAIAAIA7AACWvgAAND4AAGy-AADgPAAAvj4AAIg9AAARvwAAiD0AAOC8AAAwPQAAcL0AAIC7AAC-PgAAXL4AAAS-AAAsPgAAiL0AADw-AADePgAAfz8AAES-AADoPQAApj4AAFS-AABwPQAAuD0AAAS-AAA8PgAAuj4AAAw-AACyvgAAcL0AABA9AACovQAAJL4AAAy-AAB8vgAAzr4AACQ-AACAOwAAwr4AADQ-AACgvAAAuL0AAPi9AAC6PgAAhr4AAEy-AABcvgAADL4AAFC9AADmPgAATL4AABy-AAAwPQAAUT8AABQ-AAD4vQAAUD0AANi9AAAkPgAAmL0AAAy-IAA4E0AJSHxQASqPAhABGoACAAAEvgAAiL0AACS-AABbvwAAfL4AAEy-AACOPgAAlr4AAIA7AAAQvQAAyL0AAEy-AAAMvgAAUL0AALi9AACYvQAAbL4AAMo-AACgvAAAXD4AAKI-AABAvAAANL4AAKC8AAC4vQAA4LwAAKC8AACYPQAAcL0AAFQ-AABEPgAATD4AAMq-AACgPAAAHL4AAHC9AAALPwAADD4AAOa-AABsvgAARD4AAJI-AAAQPQAApj4AAFQ-AAAQvQAAf78AADQ-AACaPgAAoDwAAOA8AABAPAAAoDwAAEQ-AACYPQAAXD4AAEA8AAA0PgAAgDsAALi9AAB0PgAABD4AAOC8AABsviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=X2rv8XNZ0Eg","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7337463648124401468"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3155367760"},"6762013871831908703":{"videoId":"6762013871831908703","docid":"12-3-17-ZBF245F7CF5081A67","description":"This video unpacks the mysteries of sine and cosine functions, proving the identities for sin(A-B), cos(A+B), and cos(A-B) using clear Algebra and Simple Animations. Unravel the following: Sin...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/997943/9f8b67e6d56e92e8f4b17742fed727f1/564x318_1"},"target":"_self","position":"1","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DK0xpipKRoWA","linkTemplate":"/video/preview/6762013871831908703?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simplest Proof: Sin(A-B), Cos(A+B) & Cos(A-B) | Trigonometric Identity","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=K0xpipKRoWA\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoVChM2NzYyMDEzODcxODMxOTA4NzAzWhM2NzYyMDEzODcxODMxOTA4NzAzaq0NEgEwGAAiQxowAAopaGh4dGp4Ymd3aG5naHliaGhVQ0hFN1lrVlRucnBCMlhOcWlNX1dhMmcSAgARKg_CDw8aDz8TcIIEJAGABCsqiwEQARp4gfT0-f79AwD9AAsO-An8AvUB-AD5_v4A7gnxAAQAAADz_QoI_AAAAP4LBwIAAAAABvf3AgL9AQAQ-_75AwAAABYQ_Q38AAAADgP4_v4BAAD1-_78AwAAAAbz-vn_AAAAAA368gAAAAAFA_H8AAAAAP8H_v__AAAAIAAt55jcOzgTQAlITlACKnMQABpgIQwADQfz4tImH_j87_ANEuwG6_7DHQDtCAAXHe3xDPPXxAgL_yTGFOe-AAAAH_kGISIA-Vbh39IPIg0Cy7LbBz5_-AjsEQb2_dgPAQITI-wX6x8zAPD9CQQj-hsSJSs3IAAtcblQOzgTQAlIb1ACKq8GEAwaoAYAAExCAADoQQAAiEIAACzCAACaQgAACEIAAAxCAAAwQQAAQMAAAKDAAAA4QgAAAAAAAPDBAAAIwgAAgEIAAGBBAAAAwgAAfMIAAIxCAACgwAAAoMAAAMjBAAAIwgAAMMEAAIDAAAAgQQAAMMEAAIrCAABwwQAAAMEAAIBAAAAQQgAAXMIAAMDAAAAgwgAAuEEAAIC_AAA8QgAAOEIAAIpCAACAvwAAoEEAAPBBAABowgAAMEIAALDBAADYwQAAEEIAABBBAAAUQgAAWMIAALjBAACoQQAAAEEAAHDBAADAQAAAEMIAAKDBAABAQQAA4kIAABDCAABEwgAAoMAAAMTCAAAEQgAAAMIAAABCAAAAwgAAhMIAAEzCAACAQgAAsEIAAEDCAAAkQgAAAAAAAIjCAACIwgAAkEEAAJDBAACAPwAAEEEAAHhCAACGwgAAgEAAAPDBAACgwAAAmMEAAHhCAAAwwQAAVMIAAPDBAACOQgAAaMIAACDBAADIQQAAJMIAAIDCAADAQAAAnkIAAIC_AACwwQAAJEIAANhBAAAwwQAAXMIAAAxCAACAwQAAgEAAABBBAAAQQgAATEIAAHTCAAAAwQAAAEEAAHTCAAAoQgAAuEEAAEjCAABMwgAAIEEAAI7CAABAwgAAYEEAACDBAACYwQAA0EEAADRCAACAwQAAQMIAAODAAACwwQAAgD8AACDBAAC-QgAAiEEAAKpCAAAAAAAAyEEAAIjCAAB8wgAAYEEAAPDBAABAQAAAwEAAANhBAAAcQgAAdMIAAEBCAADoQQAAJEIAAMjBAADAQAAAgD8AAIBAAABAwAAAmMEAAHzCAAA8wgAAYMIAAMDAAADQwQAAYEEAAMDBAABAQQAAAMIAALBBAACIwQAAPEIAAAxCAACAQAAAcMEAAIDBAAAcQgAAQMAAAATCAABQwQAAoMAAAJTCAABEQgAALMIAAFTCAABgQQAAAMEAAHBBAABIQgAAmsIAADTCAACSwgAAOEIAAOBAAACgQQAAmMEAAMBBAABwQQAAPEIAAFBCAABMwgAAiEIAAOjBAAAUQiAAOBNACUh1UAEqjwIQABqAAgAAiL0AAI6-AAAcPgAAVL4AABA9AADaPgAAZD4AAAm_AACIPQAA6L0AAIA7AABAvAAANL4AANY-AABkvgAALL4AAK4-AABwvQAAFD4AAAU_AAB_PwAAdL4AANg9AABsPgAAmr4AAEC8AACYPQAAqL0AABQ-AADaPgAALD4AAGS-AABwvQAAgLsAAAS-AAAUvgAAcL0AABy-AADmvgAATD4AANi9AADSvgAABD4AABA9AAAQvQAAQLwAAKI-AADCvgAAVL4AAOi9AACYvQAAEL0AAOY-AADovQAAgr4AABA9AABPPwAAqD0AADS-AABEPgAA2L0AABQ-AAAwvQAABL4gADgTQAlIfFABKo8CEAEagAIAAAS-AACoPQAA-L0AAD2_AACmvgAAuL0AAHQ-AACIvQAA4DwAAIC7AAAMvgAAhr4AADS-AABAvAAAgLsAAFC9AACIvQAA3j4AAKC8AACiPgAAlj4AAIA7AABcvgAAcL0AAIi9AACAuwAAUL0AABA9AAC4vQAAgj4AANg9AAA8PgAAhr4AAEC8AACgvAAAuL0AAPY-AAAEPgAAwr4AAAy-AADYPQAAfD4AAOA8AAB0PgAAHD4AADA9AAB_vwAA-D0AALg9AADgvAAAcD0AAHA9AACAuwAATD4AACw-AABUPgAAgDsAAKg9AABwPQAAoDwAAHQ-AADoPQAA4DwAACS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=K0xpipKRoWA","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6762013871831908703"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16031952831185477843":{"videoId":"16031952831185477843","docid":"12-11-5-Z9D31BE81C295D3A6","description":"Class 11 Trigonometry | Compound Angles Formula | Sin (A+ B) | Sin (A- B) | Cos (A+ B) | Cos (A-B) #class_11_trigonometry #compound_angles_firmula #sin(a+b) #sin(a-b) #cos(a+b) #cos(a-b)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3185573/848b5eb2b934ef66381b2b636ee2d33b/564x318_1"},"target":"_self","position":"2","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0Uqa8Jzx-b8","linkTemplate":"/video/preview/16031952831185477843?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Class 11 Trigonometry | Compound Angles Formula | Sin (A+ B) | Sin (A- B) | Cos (A+ B) | Cos (A-B)","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0Uqa8Jzx-b8\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoWChQxNjAzMTk1MjgzMTE4NTQ3Nzg0M1oUMTYwMzE5NTI4MzExODU0Nzc4NDNqrg0SATAYACJEGjEACipoaGZhZHpramh5Y3Z3Z3piaGhVQ2xIYUsxSno1dXlxc3JYVkdpWnlscFESAgASKg_CDw8aDz8TG4IEJAGABCsqiwEQARp4gfv_Af_7BgDwAwYGAAP_Ae4D9gD6__8A9QX1_fYC_wD99gYDAgAAAPoP_f77AAAA_f_8AQP-AAAO_f4DBAAAAAwHBgP9AAAAFgb2-v4BAAD1-_78AwAAAAf7Bgv_AAAAAA368gAAAAADAPr_AAAAAAcI-wMAAAAAIAAtxJ_jOzgTQAlITlACKnMQABpgHwYA9yj-u_MxMfb93v_08PXmy-WmFf_sLgAg_w7iFindresW_yjiA_mwAAAAB9P_G_4A_lzI-vj9BwcEEcPDODZ_AfXoE8znHcXnCfsZSezw8AYGAOEKFwQbxCwmJTEeIAAtRW02OzgTQAlIb1ACKq8GEAwaoAYAAHxCAABAwAAAcEIAABzCAABQwgAAgEIAAIJCAACIwQAAkMEAAODBAABQQQAADMIAAIDBAAAEwgAAMEEAAOBBAACaQgAAFMIAAHhCAAAgwgAAdMIAAAjCAABkwgAA-EEAAFTCAADQwQAAYEEAAHDCAAAAQQAAUEEAAGDCAAAcQgAA-MEAALBBAAA8wgAA8EEAAMhBAACaQgAADEIAAJxCAACgwAAAcEEAADRCAAAAAAAAmMEAABDBAAAwwQAAiEEAAAhCAAAgQQAAOMIAACzCAADgwAAALEIAAERCAAAsQgAAoMIAAPDBAAAoQgAAiEEAAJBBAAAswgAAIMEAAFTCAADIQQAAVMIAAOBBAAA4wgAABMIAADDBAACWQgAAbEIAALjBAAAgwQAA4EEAACBBAACWwgAAsEEAAARCAAAgQgAA6MEAAERCAACOwgAAEEEAAKjBAACYQgAAHMIAANDBAABwQQAA0MEAAJDBAACYQQAA6MEAANhBAAAMQgAAeMIAAABBAABwwQAAwMAAAOBBAACGwgAAAEEAAIhBAABQwQAAVMIAAMBBAAAYwgAAVEIAAKhBAABAQQAAiEIAAMDAAABgwQAAMEIAAHDBAACGQgAAAEIAAHzCAAAQQQAAHMIAAMDBAACgQAAAmEEAAIC_AAC4wQAAoMEAAMjBAAAgwQAA6MEAAIDBAADAwQAAnsIAAABAAAAEQgAADMIAACxCAACAwAAAHEIAAADBAADIwQAATEIAAMjBAAAIQgAA0MEAAERCAABYQgAAsMEAAEDBAACgwAAAjkIAAATCAADwwQAAgEIAAAAAAACoQQAAwMEAAO7CAABcwgAADMIAAMBAAABQQgAAwEAAABBCAABwQQAAMMEAABzCAABEwgAAPEIAAGxCAAA8wgAACMIAAPDBAAAwwQAAcMEAAARCAABgwQAA2MEAAHDBAADIQQAAgL8AAKDCAACAwgAAyEEAAIBAAACgQAAAbMIAAM7CAADAwAAAmMEAAOjBAACaQgAAFMIAAODAAACgQAAAIEEAAOhBAAAUwgAAjkIAACxCAADAQSAAOBNACUh1UAEqjwIQABqAAgAA4LwAAI6-AACSPgAAPL4AAIg9AACGPgAAJD4AAA-_AAAMPgAA2L0AAIA7AADovQAABL4AAOI-AAAEvgAAoLwAAHw-AADovQAAFD4AANY-AAB_PwAADL4AAJg9AABkPgAAHL4AAHA9AACYPQAAQDwAAGQ-AACSPgAAuD0AAES-AACIvQAAuL0AAIi9AAAkvgAAqL0AANi9AACivgAAZD4AAEC8AACavgAARD4AAIg9AAC4vQAAyL0AAL4-AACSvgAATL4AADS-AABQvQAAgDsAANY-AAA8vgAAXL4AADA9AAA7PwAAiD0AACS-AABQvQAAyL0AABw-AAAQvQAAqL0gADgTQAlIfFABKo8CEAEagAIAAMi9AADIvQAAyL0AAGO_AACCvgAAbL4AAHQ-AACOvgAAgDsAABC9AABEvgAALL4AAGS-AADovQAAgLsAAHC9AACGvgAA7j4AAMg9AABkPgAAqj4AANi9AABUvgAAQDwAAOi9AACYPQAA2L0AAOA8AADYvQAAZD4AAKg9AAB0PgAAgr4AAMi9AAD4vQAA4DwAAAs_AACIPQAAvr4AADy-AAAsPgAAsj4AAIA7AACSPgAAhj4AAKi9AAB_vwAAEL0AAI4-AACYvQAAgLsAADC9AACIPQAA6D0AAIg9AABMPgAAoDwAAHA9AABQvQAAcL0AAKI-AABEPgAA-L0AAFy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=0Uqa8Jzx-b8","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["16031952831185477843"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1134513770522703810":{"videoId":"1134513770522703810","docid":"12-10-6-ZF99DD56737D44D59","description":"Trigonometry Super Shortcut-IIT/Eamcet/NDA. Solve THE Limit Problem IN 5 Seconds. Address : Human...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/879926/800b7b19ab3fa0c83d3c8248f1ccf815/564x318_1"},"target":"_self","position":"3","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAbJ4z04NA_w","linkTemplate":"/video/preview/1134513770522703810?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof of Cos(A+B) | using Derivative | Proofs | Trigonometry Formula | Sin (A+B) Formula #shorts","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AbJ4z04NA_w\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoVChMxMTM0NTEzNzcwNTIyNzAzODEwWhMxMTM0NTEzNzcwNTIyNzAzODEwaqwNEgEwGAAiQhovAAooaGhub2Fjc3lzY3l0YXpoaFVDT2dyNHllX0pnNm9iLTNCaHpBaWJJdxICABAqD8IPDxoPPxMwggQkAYAEKyqLARABGniBAfoKBv4DAPX-CgwCBv0BBgf4APf__wAACe_-AwT-APz_CAMBAAAA-g_9_vsAAAAG9_cCAv0BABQD-wYEAAAACQz8AvoAAAAXBvb5_gEAAP_y-wED_wAAAAUI_v8AAAAADfnyAAAAAAMA-v8AAAAACP4EBgAAAAAgAC1prdo7OBNACUhOUAIqcxAAGmAl_gARHdqq5zUT5_TMyQTn1gDOxr8a_wnp_0g9_gc47erAJ90APs0GJpwAAAA22QEMTwD5eci-DgULDvi1seAzTH8h3wz99CH2tMfhKz3_wdf8-h4A7_wcAtLz_xZDZQQgAC24QhU7OBNACUhvUAIqrwYQDBqgBgAAQEEAAOBAAACSQgAAIEEAALjBAAAcQgAAlkIAAIBAAAAkwgAABMIAALDBAACAPwAAkMIAAODBAACgQQAAgMAAAJ5CAAAgQQAAoMAAAITCAACQwQAA4MAAAFjCAABgQgAAuMEAAJjBAAA4wgAA6MEAAJBCAADIQQAAOMIAAIhBAAC4wQAA6EEAAJ7CAACQQQAAhkIAAJBCAACAQAAAgEEAAPjBAAAIwgAAIEIAAIhBAADQQQAAMEIAAJjBAACAwAAAokIAAABAAAD4wQAAkEEAADzCAADgQQAAMEEAAMDAAABkwgAAsMEAAABAAADgwAAAsEEAAPDBAACCwgAApMIAAKDAAADQwgAAwMAAAL7CAAAcwgAAgMAAAI5CAAAwQgAAOMIAADBBAADAQAAAosIAAADDAABwwQAALEIAAIC_AAC4wQAAiEEAAAzCAACYwQAA6EEAABhCAACowQAAGMIAAChCAADQwQAAUEEAAExCAABAQAAAZMIAADDBAAB0wgAAmEEAADDCAAAAwQAAEEIAAPjBAAAQQgAACEIAAIrCAACOwgAAAMAAAOBAAADQQQAAoEAAAAhCAACqQgAAsEEAACDBAADAQQAA8MEAABRCAAC4QQAAoMEAAIC_AACWwgAAwEEAACBBAABgwQAA0MEAAIA_AAAIwgAAhMIAAHBBAACkwgAAsMEAANhBAAAkwgAA0MEAAKBBAAAQQQAAQEAAAAxCAAAwQQAAAEAAAODCAADoQQAACEIAAERCAABAQQAAUEEAAEBBAAAEwgAA6MEAAADBAAAgQQAATEIAAPDBAABsQgAAAMAAABjCAAAowgAAjsIAAABAAABowgAAmEEAAKjBAABAQAAAAMEAAAhCAAAwwgAABEIAAIC_AABMQgAAiEIAALDBAADYwQAAAMEAAMDAAAAEQgAAMEEAAFDBAAAYwgAAcMEAAJjBAADgQQAAAMIAAKDCAAAIQgAAAMEAAJJCAACewgAA0MEAAGhCAAAQwQAAFEIAAChCAAAEwgAAgMAAAEDBAADAwQAAEMEAAFjCAACowQAAMEEAAEDBIAA4E0AJSHVQASqPAhAAGoACAABQPQAA-L0AADQ-AAA8vgAAML0AALY-AAA8PgAA4r4AAKg9AAD4vQAAML0AAHC9AADovQAAwj4AAOi9AABQvQAAND4AALi9AAAcPgAAnj4AAH8_AADIvQAABD4AAEQ-AACCvgAAqD0AABC9AACovQAADD4AAHw-AABwPQAAdL4AAHC9AADIvQAAED0AABy-AACgvAAAHL4AAMa-AAAQPQAAcL0AAIq-AAAEPgAA4DwAALi9AABQvQAAkj4AABS-AAAMvgAAZL4AAFC9AACgPAAArj4AAAy-AABcvgAAED0AAC0_AABAPAAAMD0AADA9AAD4vQAAQDwAAKC8AABAPCAAOBNACUh8UAEqjwIQARqAAgAAuL0AAHC9AACIPQAAT78AACS-AACYvQAAbD4AAAy-AAAQvQAAEL0AAKi9AAB8vgAAqL0AAOi9AAAwPQAAoLwAADC9AAALPwAAFD4AAFw-AACOPgAAcL0AAKi9AACgvAAAiL0AAHA9AACovQAAcD0AANi9AAAsPgAAuD0AAEw-AAAsvgAAyL0AAKi9AADgvAAAsj4AADQ-AACyvgAAHL4AADQ-AAB8PgAABD4AACQ-AABsPgAAML0AAH-_AACoPQAAhj4AAIC7AAAEPgAA4LwAAKA8AAAUPgAAiD0AADQ-AABAPAAAiD0AAFC9AADgvAAAhj4AAEA8AAC4vQAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=AbJ4z04NA_w","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1134513770522703810"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14401655594263532014":{"videoId":"14401655594263532014","docid":"12-3-16-Z5548D0531237237C","description":"comment sections. I will try my best to upload solution as fast as possible, but forgive me for my delayed schedule and have some patience. Thank You !","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3600739/9f2e174552779b150c9f956076fe9f71/564x318_1"},"target":"_self","position":"5","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvSuCI4wzsJg","linkTemplate":"/video/preview/14401655594263532014?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Prove That : Cos(A-B).Cos(A+B)= 〖Cos〗^2 A-〖Sin〗^2 B","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vSuCI4wzsJg\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoWChQxNDQwMTY1NTU5NDI2MzUzMjAxNFoUMTQ0MDE2NTU1OTQyNjM1MzIwMTRqrQ0SATAYACJDGi8ACihoaHNzcnF4d2x5YmZudmhoVUNDQk9hNHNWY3pWTmpQajhSdnNiTW5BEgIAECoQwg8PGg8_E6cBggQkAYAEKyqLARABGniB9vv7-_sFAPkHCwb5Bv0C7gP2APr__wACCPv-_wT-APYDAQIHAAAA-g_9_vsAAAAE-_wK__0BAAj9_v0DAAAAEwsAAf4AAAAOA_j-_gEAAP37_fcCAAAAA_v9AwAAAAAADfryAAAAAAUM-gIAAAAABAH7BAAAAAAgAC1ZkeI7OBNACUhOUAIqcxAAGmD7FgBKKRDr5wMY6RkD6_3R8-7_0e8S_-oMACT_E-X6CAjK9_n_HRP19b0AAAAG6RlKFgD8VQUM3CbiFPXem__5OH8N_AwABvbtCwU5C_zpKOzyAC4A4wn57xX6EwJQDSQgAC2nDFA7OBNACUhvUAIqrwYQDBqgBgAALEIAAABAAACMQgAAWMIAABDBAAA0QgAAHEIAAOjBAACWwgAAyMEAALDBAACQwQAAIMIAAJrCAACQwQAAVEIAADBCAADQwQAA6EEAAFzCAADAwQAAwMAAAFjCAADAwAAADMIAAOjBAADYwQAAAEAAAARCAACYwQAAgsIAADBBAACowgAAcEEAADDBAADgQQAAMEEAAIxCAABgQQAAEEIAAKBBAAAAAAAAhkIAAABAAABQQQAAqEEAAEBBAABAwAAAmEIAAPDBAAAgwgAAMEEAABDBAADYwQAA4EAAACBBAAD2wgAAcEEAAChCAACMQgAAIMEAALTCAABAQAAAPMIAAEBBAADywgAAMEEAADDBAABswgAAFMIAAFxCAACMQgAAUMEAADRCAACAvwAAHMIAABzCAABQQQAA-EEAADBBAACwQQAAOEIAAJDBAADQwQAAsMEAAIBBAAAgQQAAKEIAAJhBAAAwwQAAcMEAADBCAAAAwgAAtMIAABBBAACgwQAAwMAAALBBAACAvwAAAMEAAK7CAAAYQgAAPEIAABDBAACIwQAADEIAACjCAADAQQAAAMEAANDBAAAYQgAAgEEAAABAAACYwQAA8MEAAJpCAAAMQgAA8MEAACxCAAAAwgAAGMIAAFTCAACAQAAAQEAAAOhBAACowQAAAMIAALBBAABIwgAAQMAAAOjBAABgQQAA8EEAAHhCAAAYQgAADEIAAFDBAAAAAAAAmEEAAEzCAAAAwgAAiEIAADBCAAAcwgAAXEIAAAhCAAA4wgAAIEIAAIDBAAAAQAAAqEEAAODBAAAsQgAAPMIAAIhBAAAwQQAA6MEAAPDBAABQwgAAJMIAACDBAACgwAAAjsIAALBBAACIwQAAKEIAAEzCAACAQQAAXEIAAIjBAAAQwgAABMIAAMhBAADowQAAVMIAABxCAAAAQAAAXMIAAAAAAABIQgAA2MIAAAjCAAD4QQAAksIAAERCAAA4wgAAWMIAAARCAACQwQAAPEIAAPBBAAAcwgAA4EEAAJDBAABQwgAAokIAAJrCAAAIQgAAAMEAAIjBIAA4E0AJSHVQASqPAhAAGoACAAC4vQAAfL4AAOA8AABsvgAAmL0AAN4-AAAcPgAAFb8AAKI-AACWvgAA2D0AAGy-AAD4vQAA2j4AAGS-AABUvgAAvj4AAHC9AADePgAAFT8AAH8_AABMvgAAqD0AAN4-AAD-vgAAmD0AAOC8AAAMvgAAmD0AAN4-AABUPgAAir4AAOC8AAAEvgAATL4AAFS-AAAUvgAALL4AAAO_AADKPgAAqD0AAIq-AABUPgAADD4AAOi9AABkPgAAsj4AAAu_AAB0vgAAyL0AABC9AACIPQAAIz8AAEy-AADgPAAAUD0AAGM_AACWPgAAZL4AAII-AACIvQAAQDwAAIq-AADgvCAAOBNACUh8UAEqjwIQARqAAgAAQLwAANi9AABwvQAAW78AADS-AADovQAAoj4AAKi9AABAPAAAUD0AAFA9AACYvQAAML0AAHC9AAAwvQAAcL0AAGS-AADyPgAAPL4AANg9AACCPgAAML0AAMi9AABwvQAA2L0AACw-AACgvAAAmD0AAKC8AABkPgAAJD4AAPg9AADKvgAAcL0AAMi9AABQPQAA5j4AAOA8AADavgAAfL4AADQ-AABEPgAAiD0AALI-AAAUPgAA6L0AAH-_AAB0PgAAND4AAEC8AAAUvgAARD4AADQ-AAAcPgAAiD0AABw-AABAPAAAMD0AAKA8AABEvgAAZD4AANg9AABQPQAANL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=vSuCI4wzsJg","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["14401655594263532014"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16614542426172645431":{"videoId":"16614542426172645431","docid":"12-6-11-Z30C7D26F078616B9","description":"If Cos A =Cos B then show that Angle A =Angle B Class 10 trigonometry Trigonometry class 10 CBSE class 10 trigonometry Trigonometry ncert class 10 Maths class 10 Ncert class 10 maths Ncert class...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/217922/0fd2688980e2f346ec3189f66f5b758f/564x318_1"},"target":"_self","position":"6","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1MtNAuAw9RQ","linkTemplate":"/video/preview/16614542426172645431?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"If Cos A =Cos B then show that Angle A =Angle B","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1MtNAuAw9RQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoWChQxNjYxNDU0MjQyNjE3MjY0NTQzMVoUMTY2MTQ1NDI0MjYxNzI2NDU0MzFqrg0SATAYACJEGjEACipoaHphdGFrYWVrb2h5eHdiaGhVQ3dSTFU4WEl4UlIyZUkxemhtOERSY0ESAgASKg_CDw8aDz8TPIIEJAGABCsqiwEQARp4gfb7-_v7BQD0BAUB-gP_Ae77-v77AP8A9gD19QIC_wD0_QoI_AAAAPoP_f77AAAAAf4CA_7-AQADC_f_AwAAABEI-P33AAAACv_7-P8BAAD5-f4GA_8AAAD2DQX_AAAA-g38-_8AAAD_BfYCAAAAAAf7_gkAAAAAIAAtWZHiOzgTQAlITlACKnMQABpgDBUAHxo2ArIJD-Lj4PPw9doQ-PLlDP_yFAAp_PIHETXMu9Uf_xjpB_O2AAAA3BskNggA-1cJ7yQP9gX87dX3AhN_AA372uvs-NseNwr9JQXnLTclANH0E_MGvxhJV_v_IAAtDL1BOzgTQAlIb1ACKq8GEAwaoAYAAIA_AACgQAAACEIAAATCAABAQAAAdEIAACRCAABgwQAAmMIAAI7CAACwQQAA4EEAAIBBAADAwAAARMIAADRCAADAwAAAZMIAAMjBAACQwQAAsEEAANDBAAAgwQAAoEIAAJDBAABgQQAAkEEAAGzCAAAgwgAAUMEAAGTCAAAoQgAAwMIAAABAAAAQQQAAsEEAAMBAAADgQAAAwMEAALDBAACAPwAAwMAAAJhBAABMQgAADEIAAODAAAAoQgAA8MEAACxCAADwQQAAeMIAAM7CAABAwQAANEIAAEBBAADgQAAAAEAAADBBAAAQQgAAcEIAAKDBAABAwgAASMIAAIzCAAAgQgAAgMIAAIA_AACAQQAAisIAAGjCAABIQgAA0MEAAJTCAAAsQgAAIEIAAIBAAABcwgAAwMAAAMjBAAAoQgAA4EAAABxCAACIwQAAGMIAAADAAACYQQAAtEIAACzCAAAYQgAAgD8AAABAAACAQQAAoMIAANDBAAA0wgAA8MEAAARCAACIwQAAoEEAAGxCAACgwgAAwEEAAPBBAABAQQAAkMEAAIDBAADAwQAA8EEAAIhBAAAsQgAAJEIAACDBAACgQAAA8EEAAIjBAACAQAAALEIAAPjBAAAAAAAAAMIAAOBAAACAQAAAuEEAAMBAAAA4wgAAAAAAAKhBAADowQAAaMIAALBBAAAAwQAAzsIAAIhBAACQQQAANMIAANBBAAAQQgAA2EEAAMDBAAAkwgAAmMEAADDBAAAkQgAAiMEAAEBAAABcQgAAaMIAAADBAACgQAAAAMAAAADCAACAvwAAIEIAAKDAAABoQgAAgMIAAADDAACgwQAAdMIAAIC_AACAvwAAAEIAAOBAAAC4QQAAMMEAAIBAAADwQQAA-EEAAADBAAAAwQAATMIAAFTCAABAwQAAmsIAAHzCAACAQAAAwEEAAKDAAADAwAAAQMAAAJzCAABAwQAAgMAAABjCAAC2QgAAQEAAABTCAACgQAAAQEAAAMBAAAAgQQAAgL8AAFxCAAAgQgAAGEIAALRCAAAAAAAAHMIAAHhCAAAQwiAAOBNACUh1UAEqjwIQABqAAgAAqL0AAJq-AACKPgAATL4AAJi9AABUPgAAED0AACG_AAAUPgAA6L0AAHw-AAAEvgAABL4AAAU_AAAUvgAAvr4AAHQ-AADgvAAAmD0AANI-AAB_PwAAgLsAADC9AABMPgAAcD0AAPi9AAC4PQAADL4AACw-AADqPgAAED0AAPi9AAAMvgAAiD0AAEy-AAAUvgAAgj4AAHS-AADKvgAAFD4AAFy-AABsvgAADD4AABQ-AACYvQAAQLwAAJo-AACgvAAAyL0AABy-AACgPAAAqD0AAOI-AACgPAAAfL4AADA9AAB7PwAAuL0AABQ-AADgPAAARL4AAEA8AACAOwAAJL4gADgTQAlIfFABKo8CEAEagAIAAJi9AAAQPQAAJL4AACm_AAAsvgAAir4AAJI-AABUvgAA4LwAAKg9AADoPQAAFL4AAJa-AAB8vgAAEL0AAIC7AABAPAAAET8AABC9AAA0PgAAlj4AAFA9AABsvgAAED0AALi9AACCPgAAgLsAAPg9AACgvAAAij4AADw-AADIPQAAkr4AADC9AAAQvQAA-D0AAI4-AAAwvQAA2r4AAAy-AACuPgAATD4AABA9AACSPgAAiD0AANg9AAB_vwAABL4AAKA8AAAUvgAAUL0AAAw-AABAPAAA2L0AAI4-AAD4PQAAgDsAAGw-AADIvQAAUL0AAMg9AAA0PgAAgLsAAAy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=1MtNAuAw9RQ","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["16614542426172645431"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2623314492742791540":{"videoId":"2623314492742791540","docid":"12-8-12-ZB5FA1F8C64C7A784","description":"Hello Students, We are back with the easiest proof of sin(A+B) & cos(A+B) of Trigonometric Functions. With the help of this proof we can derivate all the remaining proofs of Trigonometric...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/999223/82090fea6978d269c223d2611c63c507/564x318_1"},"target":"_self","position":"7","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DlHMJ9mhD8NE","linkTemplate":"/video/preview/2623314492742791540?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Easiest Proof of sin(A+B) & cos(A+B)","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=lHMJ9mhD8NE\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoVChMyNjIzMzE0NDkyNzQyNzkxNTQwWhMyNjIzMzE0NDkyNzQyNzkxNTQwaq8NEgEwGAAiRRoxAAoqaGhla3p4Z3RlYmFza2ZvYmhoVUNFWUUyeml6MlIwbDNMOUFQTmJQd2NREgIAEioQwg8PGg8_E6QBggQkAYAEKyqLARABGniB9voC_gEAABAAEQACCP8B2wP5AfwCAgD1B_v-_wL_AO0DBQsFAAAA-RD9_vsAAAD_7fUI_f0AAAYFBfoFAAAAIg8DBAAA_wAMDu8C_wEAAPj39_0D_wAABf4DBAAAAAAADvnxAAAAAAYC_fjy-wAAA_j-AwAAAAAgAC2tPtE7OBNACUhOUAIqcxAAGmAqEgAbDyDv2AAv_i3h7gb7HNjy170vAOn8AOsRBAn2__jVCtUAFdQa-LYAAAAb2OoWFADlXND6w__rEvz0st_0SX8IAPTwHfET5DAI9gIM_g-6NfYA4fMHEgcDIuIvRkcgAC28rj87OBNACUhvUAIqrwYQDBqgBgAAqEEAAFDBAAAAQgAAsMEAAEjCAADAwQAAZEIAAGzCAAD4wQAAAEAAAMDAAABkwgAAoMEAAHBBAADwQQAAWMIAAOBAAADgQAAAoEAAAKDBAABYwgAAYMIAADDBAACgQAAAAMIAAFBBAAB4wgAAUEIAAMBAAAAoQgAAisIAAABAAABMwgAAAMEAAIDAAABgwQAALEIAAHRCAAAwwQAAdEIAAJBBAACQwQAAZEIAAKjBAACgwQAAwEAAALBBAAC4wQAASEIAAIhBAAAAQQAAQEAAAIBBAAAQQgAAKEIAABTCAABwwgAAwMAAAEDAAACKQgAAiMEAADBCAABMwgAA4MEAAETCAACewgAAoMEAAFTCAAAYwgAAgD8AAGRCAAD4QQAAOMIAAMhBAACAQAAAzsIAAJbCAACAPwAATEIAAPBBAAA8wgAAJEIAACzCAABwwgAA-MEAAJBBAAAAQgAAEEEAAKhBAACgQAAAPMIAAGxCAAAQwQAAPMIAAOBAAADgwAAADEIAAIBCAADwQQAAmEEAAMDBAABAQQAAUEEAAIjCAADAwQAAQEEAACDCAABAQAAAUEEAANBBAAAsQgAANEIAAKBAAACAPwAAiMEAABhCAAAgwQAAXMIAADRCAABYwgAA4MEAAOBAAAAgQQAAssIAAHRCAABwQQAAeMIAAAxCAAC8wgAAqMEAAKhBAAAgQgAAQMIAAI5CAABgwQAAQMIAALjBAAAgwQAAgEAAAMTCAADoQQAALEIAADDBAAAUwgAA-EEAAKBAAAAQQQAAjEIAAKDAAAD4QQAAuMEAAJDBAAAgQQAARMIAAFTCAABoQgAAEMIAAGBBAAAQQQAAcEEAAKzCAADQQQAAwMEAAHBBAACAPwAAMEIAAIRCAADYQQAAFEIAAAzCAACAwAAACMIAAIBBAABYwgAAmMEAAEhCAACawgAAgMAAADzCAADoQgAACMIAAETCAACQQQAAMMEAAIhCAAAUwgAAEMEAAIZCAACAwgAAmEEAAIrCAACKwgAAoEAAANjBAAAwwgAALEIAAATCAACgQAAAGMIAAGTCIAA4E0AJSHVQASqPAhAAGoACAAAQPQAAUL0AAEA8AAB8vgAA2D0AAGw-AAAQPQAA4r4AAHA9AACAuwAAmD0AAKC8AAB0vgAApj4AAES-AABsvgAAVD4AABC9AAAsPgAAoj4AAH8_AADovQAA2D0AACw-AADSvgAAFD4AAOC8AABQvQAA4DwAAKo-AADYPQAAbL4AAKA8AACIPQAAFL4AAPi9AABQvQAANL4AAMK-AAC4PQAAgLsAAOK-AABEPgAAHD4AABC9AABQvQAAND4AACS-AAAUvgAAmL0AABA9AAAEPgAAyj4AAHC9AAA0vgAA4DwAABk_AAAMPgAAyL0AAEA8AAC4vQAAoLwAAIC7AAA0viAAOBNACUh8UAEqjwIQARqAAgAADL4AAKi9AABAPAAAV78AAFS-AADgvAAAbD4AAKC8AABAPAAAcD0AACy-AACevgAAUL0AAMi9AACgvAAAML0AAEC8AAD2PgAA6L0AAPg9AACCPgAADD4AAAy-AAC4PQAAQDwAAFQ-AAAMvgAAyD0AAPi9AAAcPgAAcD0AAFQ-AAAsvgAABL4AAAS-AAAwvQAAET8AAOC8AACqvgAAJL4AAHA9AAAsPgAAiL0AAIY-AABMPgAAZL4AAH-_AACGPgAA4DwAAOg9AACgvAAAED0AAFA9AACWPgAAQLwAADQ-AACgPAAADD4AAIA7AACYvQAAkj4AAFA9AACoPQAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=lHMJ9mhD8NE","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2623314492742791540"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16951421080835507869":{"videoId":"16951421080835507869","docid":"12-3-7-Z000D482748337180","description":"Diploma Math I , Worked Examples based on Sin(A+B),Sin(A-B),Cos(A+B),Cos(A-B) formulas...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3506717/7b548fcf41dbf90e7ac65059b945a9ca/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/R1OEEAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOGpwB2dfu48","linkTemplate":"/video/preview/16951421080835507869?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Diploma Math I, Worked Examples based on Sin(A+B), Sin(A-B), Cos(A+B), Cos(A-B) formulas","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OGpwB2dfu48\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoWChQxNjk1MTQyMTA4MDgzNTUwNzg2OVoUMTY5NTE0MjEwODA4MzU1MDc4NjlqkxcSATAYACJFGjEACipoaHBqcGt4dnlkeHNoampiaGhVQ2YxbjFnUXphR19yOUJtX2hKeW9iOFESAgASKhDCDw8aDz8T7gSCBCQBgAQrKosBEAEaeIH7_wH_-wYA-QYLBvkG_QLv_vb3-v7-AP8D__z5Bf4A_fYGAwIAAAD6D_3--wAAAPf49wQB_wAADwH4_AQAAAAWEP0N_AAAAA0L_AP-AQAA-ff3_QP_AAAMAQoFAAAAAAAN-vIAAAAABQz6AgAAAAAFBgMJ_wAAACAALcSf4zs4E0AJSE5QAiqEAhAAGvABf_cP_9Po4v-vBtgA5x75AcIgFAAaTvkAt-jxANfu1QDsB-gABPsk__0QEwDCINUAFNawAu7O6AAkvPX_BugFAN8DEAEK8egBPxQw_xf29wHk-SX85swSAf3D3AAcDuP9-uP79yMF5QAQ_9IDDBcmAA8JGAUe2RP-E7Ej_eTJ8AXr29f9JCkSA_3SGQDE_iEBBu_s_yAK8fvQBuMCCdIL_OjiCvQIMdL9E-EDByD47Aa_DQQJAvHZ-x8oCvru3-QB1fEwBtL7Cvb04fb9DuUJ_RAY5QQVwuQJH_oB_hAKEfvs2wD15BEDCP0A5wjeCfTrIAAtTvwLOzgTQAlIYVACKs8HEAAawAd40OS-qTyROwwN37ycAYm849SYvDjtbr34Mzy8h0szPcTBlLsYmAU-gDPrO3-zvbts7FK-d2RRPQMqF73LgDM-5tGIvZhiMzyG4wm-3yD1PKwBKr1MxDu-gpxFu1Yy17qCRIm8dSuKvfwrWLtyHmk9O2pxvby0PL0CtV29X3obPdOwLr1PCHw7ctJFvd-KRLyrR_U86kd5veHs1rzRzf48wb4jvO31ybyzzXI9QfuHPAr3yrwQlJm7yCuLPe7mzrz66k89fp-LPRSOxby-xd68HrXTvIzHu7xMtBq9j5EHvK22DTx0zzo9tpwwPQiFsTtlQ509dzW0vZB2Mr2zfei9Ukx8OjWK9rtGCuU9o5YgPFPN7jsdPd69vsAMPrsIC7rRJK27Xgp0vWFuN71gIRM9G9yBPU6Izjs3TIk9jf02Pcsqz7rkO8Y7jPcDPr8syDwgS6o9qBb2vFx2iLwOXw882RYvvIjC47rSbQ69SJKbPTjdD7waKaU8OO4ZPZlbqbtFTvy7knUYPZ0m2DwkXp67YvjovVMYZzv6WKa9y1CQvR2nrrsdbcE9OWkQPS4Ff7yvQzU9aL7JvWc7kbtRSi0903IWvKE4lTsDvSY9NL_1vJRQuDsjK4S9B_SdPXLAA7oaVQG9i4EfPXUsJbxzB1s9A1PHPXIMwTl8wJe8Wr9UvS_j4DsxBEU9L2cdu3rsbTr7m2s99gtWPQ4rJ7piL1Q9KaPAvL93I7sEyia9vXdtu03mijoHyPy808wpvYOlW7rHZxI-rqDpvZAJtLkMEhE9KlICux5HlTgR3wm-H2faPcTLm7hDCII7FPDGvJxEUjj8s1W9dz2yvYUbMLgBVw29yZ4zPdu_07nKegA9OahuPdwSmDoXhbi9WqyyvH8i7rlC5Jk8vonhPFWtKDkMhLM9jy8GPUh15rgbLz09sLl5PcpTSLkNsCW9inIhusaWLjnqHh69yBeOPTnJRzhMqAA9x_Cdvf7uMDntgyw83mSqPV7pvbijC0W8dk-TPfYtRzhPK1s9OyesPTxMhLj1_0M7x3lkva9jtbfLXps9Lg-IPAK0A7ZaNKO9fFpKPXIgbDgX1Tq6-VAxOtBY3DdEQLQ8akr0O81iJrj3KLM7ejEZPdl63DiSXRk-2U9QvazCP7lnROm9fVsQvZoSO7gH4gY94ZZPvZmkzjWbS1u9kjynPW1wgTjCFYC9FHjnvdm0oLjK9HA9IuErPvHLijgHC6e8vfzuPYO0HrnoVbO9FiTsPM24IThLKY698iiQPeAzXLggADgTQAlIbVABKnMQABpgDvIAIPQ06xEcFeoB3Q7UvM3vlQfDGv8W_f8VDRH5Eyu0xy3tABTbLtWgAAAAJc78-CMA7n-u1gw5BMfcsa7FDiRW-wBbrb7tG9wFP-zuBu0fAAZBANz7tx49_7lE7BUWIAAtYCwYOzgTQAlIb1ACKq8GEAwaoAYAAFBBAAAQQQAAqMEAABBBAAAAwAAAQEEAAERCAABIwgAA4MEAAAAAAABAQQAAgMIAAETCAABwwQAA0EIAAJLCAAAgQQAAGMIAAAAAAABgwQAAlMIAADDCAAAgwQAAcEEAAAxCAAAwwQAA2sIAAMjBAACwQQAALEIAALDBAADIQQAAksIAAMDAAACwwQAAiEEAAEBCAADaQgAASMIAAJBCAAAAQAAAoEEAAGhCAAAAwgAAUMEAADjCAAAAwAAAwMEAAAhCAACoQQAADMIAAOjBAAAAQQAAQMEAAHBBAADIwQAAxMIAAMBAAACQwQAAsEEAAJBBAABQwQAAwMAAANbCAACQwQAAAEAAAKhBAAAgQQAAwMEAAJjBAACOQgAACEIAAGDCAAAgQQAAcMEAAJ7CAAAQwgAAEMEAABDBAACAwAAAQMEAABBBAACYwQAAQEAAAFDCAADYwQAAREIAAAxCAACwQQAACMIAAOBAAAC2QgAA4EAAALbCAABAQQAAyMEAAKDBAAAQQQAAQEEAAADBAABMwgAAdEIAAJpCAABswgAAJMIAADBBAACwwgAAIEIAAIjBAABQQQAAoEEAAIDBAACYQQAAAAAAAABBAABwwQAAAMAAAGjCAADAwAAAwMEAACDBAADAQAAAwMEAAKjBAAAoQgAAUEIAAIBBAABQwQAAlsIAABDBAABwQQAAOEIAANjBAACoQgAAgEEAAEBBAABQwQAAIMEAAGjCAACowgAAgEAAAKBBAADYQQAAgMEAAAhCAAAYQgAAXMIAAIBAAADYQQAAZEIAAILCAAAcQgAAuEEAACTCAACowQAA2EEAAADBAABswgAArMIAADxCAACYwQAA4MAAAJTCAADIQQAA2MEAALhBAADQQQAApkIAAPhBAACAQQAAMMEAAAjCAAAAwAAAJMIAAEBAAACAwQAAQMEAADDCAAA4QgAAYEEAAKjBAAAgwgAAKEIAAGhCAADSQgAAQEAAAJjCAADIQQAAwMEAAIC_AAAUwgAAlMIAAMBAAADgQAAAqEEAANBBAAAQwQAAIEEAAGjCAABYwiAAOBNACUh1UAEqjwIQABqAAgAAEL0AAKi9AABUPgAABL4AAFA9AAC2PgAAiD0AABe_AADYPQAAML0AAAQ-AADovQAAuL0AAJ4-AAA0vgAAEL0AAJo-AACIvQAAyD0AAJo-AAB_PwAANL4AAIA7AABsPgAAZL4AAIA7AACAOwAAQLwAABC9AABsPgAA-D0AAGS-AACIvQAAQDwAABS-AADIvQAAgLsAAEy-AACyvgAA-D0AAFC9AAC-vgAAyD0AACw-AABAvAAA2L0AAJo-AAB8vgAAjr4AAGS-AADIPQAAqL0AAM4-AAAUvgAAir4AAKA8AAA_PwAAuD0AAES-AABAPAAAgLsAAFA9AACIvQAA-L0gADgTQAlIfFABKo8CEAEagAIAAOi9AADovQAA4LwAAFG_AACevgAAqL0AAJY-AACYvQAAmD0AABC9AAD4vQAAPL4AAKi9AABwPQAAiD0AAHC9AAD4vQAA6j4AAMi9AACKPgAAPD4AAAy-AAA8vgAAyL0AAEA8AACoPQAAML0AAIA7AAAwPQAAVD4AAIA7AAAsPgAAXL4AACS-AABQPQAAcD0AAKo-AAC4PQAAXL4AAOi9AABEPgAAPD4AAHA9AABcPgAA4DwAADy-AAB_vwAARD4AAAw-AACAuwAAcL0AADA9AACAuwAAXD4AAKg9AAAsPgAAgDsAAKA8AAAQvQAAqL0AAIo-AACAuwAAqD0AALi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=OGpwB2dfu48","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16951421080835507869"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16076010806097411303":{"videoId":"16076010806097411303","docid":"12-11-9-Z7348FAA6C0C8B4F9","description":"a(b cosC - c cosB) = b² - c² a(b cos c-c cos b)=b^(2)-c^(2) Prove that: a ( b cos C - ccosB ) = b^2 - c^2 In any triangle abc prove that a( b cos C - c cos B) = b^2 - c^2. #math #trigonometry...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3274476/3f1055c63380b14853422ae775f325c0/564x318_1"},"target":"_self","position":"9","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DuO8Dk6x3yR0","linkTemplate":"/video/preview/16076010806097411303?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Prove that :- a(b cosC - c cosB) = b² - c²","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=uO8Dk6x3yR0\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoWChQxNjA3NjAxMDgwNjA5NzQxMTMwM1oUMTYwNzYwMTA4MDYwOTc0MTEzMDNqrw0SATAYACJFGjEACipoaHRuaXBxY3Nsb2RudGNiaGhVQ3kwSmxLRjFXOXFaeW84ZEdlay1hWmcSAgASKhDCDw8aDz8T4AGCBCQBgAQrKosBEAEaeIEA9wX-_AQA-QcLBvkG_QL7_AT9-v39AP4OAAEFBf4A6wMGAAL_AADeBAQA-QAAAP34-AL7_gAABQYH-fgAAAADBAMGBgAAAAoOAwD-AQAA7PcC_wMAAAAIBQQBAAAAAPsX_PkA_wAADAYBBQAAAAANAvL3AAAAACAALc5t3js4E0AJSE5QAipzEAAaYBEVAP4qNdoBCkH8KwEpAxAC5r_o6iD_90AAMQv82AXi8-37GQAN-hfpuwAAAPUoJkTtABBN9xbT9PgzCevmFiEof8_9B-4KyxVBDCL56hjdDtYaCAC_Jfvh8ush9yrmMyAALacNRTs4E0AJSG9QAiqvBhAMGqAGAAA0QgAAiEEAAIRCAABMwgAAMMEAAMBAAABcQgAANEIAAPjBAAAMwgAA0EEAAADCAADQwQAAgEAAABjCAACYwQAACEIAAILCAABAQQAA-MEAAEBBAACQwQAAnMIAAKhCAABowgAAFMIAACjCAABAwAAAREIAABhCAADowQAAYEEAAIDCAADYQQAAjsIAAJDBAACoQQAAVEIAAODAAAAgQgAAAMAAALBBAACAwAAASMIAADxCAADowQAAcEEAAIBBAAAMQgAAuEEAAEjCAAB0wgAAcMEAAABCAADAQQAAAEEAAKzCAADwwQAALEIAAFBBAAAAQgAAQMAAAKbCAAA4wgAAmEEAANLCAACowQAAUMIAABDCAADIwQAAikIAAPhBAAAswgAAPEIAAPjBAAAIQgAA3sIAAIA_AABMQgAA4EAAALjBAACuQgAAJMIAAIBAAAAMwgAAqkIAAIjBAACGwgAAMEIAAKBAAAAoQgAAmEEAAGzCAABgQQAAAEAAAILCAABIwgAAgEAAAKBBAADQQQAA6MEAADBBAAB0QgAAcMEAAODBAACoQQAAkMEAAGRCAACgQQAAQEIAALhBAAAsQgAABMIAAJDBAAAAQAAAjEIAAARCAACQQQAAYEEAAKDAAAAwwgAAIMIAALBBAAAQwgAACMIAAMDBAABcwgAAUMEAAFDCAACAQQAAEEEAAIjCAADAQQAAwEAAAAjCAAAYQgAAgMEAACBCAACwwQAAOMIAANjBAACIQQAAwMAAAJDCAADgQQAAwEEAAJjBAAAAwAAAwEAAAJjBAAAkwgAAIEEAACRCAAAgQgAAgEEAALDBAACQwgAAqMEAACTCAACIQQAADMIAAChCAAD4QQAAsMEAAOBAAABAwAAAKMIAAOJCAACoQgAAOMIAAPBBAADgQQAA8MEAAFzCAADgwQAAHEIAAAjCAAAoQgAAgEEAAExCAAB0wgAAYMIAAOBAAACgwQAAXEIAAIC_AADAwQAAwMEAAAAAAAAAQAAAfEIAACBBAAAIQgAAAAAAAIC_AAAYQgAA4EEAAJBBAAAMQgAAMMEgADgTQAlIdVABKo8CEAAagAIAAIC7AAAUvgAApj4AAIA7AAA0vgAAFD4AAEA8AABsvgAAgj4AADC9AACgPAAAnr4AAOC8AACGPgAAML0AAFC9AABEPgAA2L0AAFQ-AAA8PgAAfz8AAPg9AABAvAAAkj4AAJK-AABQvQAAgDsAACy-AABwvQAAwj4AAKC8AAC4vQAADD4AAAQ-AABcvgAAXL4AAEC8AACKvgAArr4AAHQ-AABEvgAAjr4AADA9AADYPQAAgr4AAIA7AACKPgAAZL4AAN6-AAAkvgAA4DwAAEQ-AADKPgAAnr4AACS-AABAvAAALz8AAII-AAC4PQAA-D0AAIK-AABwvQAABL4AAIC7IAA4E0AJSHxQASqPAhABGoACAADKvgAAuD0AABS-AAARvwAA-D0AAOC8AAAEPgAAUD0AAOA8AAA8PgAAyL0AALi9AACGvgAARL4AAGS-AABwPQAAcD0AAB8_AAAcvgAAqD0AAKg9AADoPQAA4LwAANg9AADovQAAAz8AAEA8AAAUPgAA4LwAAPg9AAAUPgAA2D0AAJa-AADYPQAAFL4AAJi9AADuPgAAUL0AAKa-AAB8vgAAXD4AAIg9AACYPQAABD4AAHA9AADgvAAAf78AAKi9AAA8vgAAVD4AAEA8AAAsPgAAgj4AAMg9AACCPgAAoDwAAEA8AAAMPgAAmL0AAIC7AABwPQAAcL0AALi9AACYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=uO8Dk6x3yR0","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16076010806097411303"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18225918010381791171":{"videoId":"18225918010381791171","docid":"12-0-3-Z6AFB78B87B7B8B15","description":"Quickly learn how to prove the trigonometric identity sin(a-b) = sin(a)cos(b) - cos(a)sin(b)! This clear and simple explanation makes understanding algebra and trigonometry easy for everyone. sin...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3471436/5a94e587fd65f41018372e5c54ec0323/564x318_1"},"target":"_self","position":"10","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dxll9kkQYzYg","linkTemplate":"/video/preview/18225918010381791171?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"sin(a-b) = sin(a) cos(b) - cos(a) sin(b) Proof","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xll9kkQYzYg\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoWChQxODIyNTkxODAxMDM4MTc5MTE3MVoUMTgyMjU5MTgwMTAzODE3OTExNzFqrg0SATAYACJEGjEACipoaGNrbWpreG5xYXptZ3ZjaGhVQzlvRmJoSzFZQWdNeVVfc1R3SnhMbmcSAgASKg_CDw8aDz8TY4IEJAGABCsqiwEQARp4gfv_Af_7BgD9AgUC-gX-AeYA-f38AAAAAf_-_gIE_gD0AAAG_gAAAPoP_f77AAAA9_j3BAH_AAAH_wL2BAAAABMLAAH-AAAADgP4__4BAAAEAfj4A_8AAAP7_QMAAAAAAA368gAAAAABB_j6AQAAAAf7_gkAAAAAIAAtxJ_jOzgTQAlITlACKnMQABpgCQIADvsw9ecpIwkm9fz9yQrQz-CyKv_pNAAkCgLY4vfZ2gj6_wnwDACvAAAABM8eNwIA41zJ_bsEBQTo7MzoG0F__vf66uXOIAABCuf7G-U14wQ1AK8U_-YFwgjSJQw-IAAtsis4OzgTQAlIb1ACKq8GEAwaoAYAAMBBAACwwQAAqkIAAIrCAABcQgAAREIAAGRCAADoQQAAVMIAAFDBAADAwAAAoMEAAHzCAABEwgAAIEEAAIBAAAAAQAAAdMIAAAhCAADwwQAA2EEAAPDBAACAwQAAgMAAABzCAACgQAAA0MEAAIjBAAAEQgAAgMEAADDCAADIQQAAXMIAAEDBAABcwgAAMMEAAAAAAACUQgAAEEEAALhBAABwQQAAVEIAAJBCAADIQQAAJEIAAILCAAAQQQAAmEEAAJhCAAAIQgAAjMIAAFDBAAAQwgAAwEAAAAxCAAAQQgAAyMIAAMhBAAAkQgAAgkIAAEDAAACMwgAALMIAAHDCAACwQQAAVMIAAKDAAABgwQAAkMIAADjCAAAwQgAAdEIAAJbCAACiQgAAgL8AAABAAABowgAAAEAAANBBAAAwwgAA6MEAAFBBAADoQQAALEIAAHDBAAAcwgAAoEAAAEBCAADgQQAAkMIAABTCAACwQgAAcMIAAPjBAACQQQAAlsIAANjBAADAwAAAmkIAAIA_AABEwgAACEIAAEBCAADwwQAAxMIAAABCAADAwAAAiEIAACDBAADwQQAA-EEAAEDCAAB0wgAAuEEAAMjBAAAAwAAAoEEAAKjBAAA4wgAAmMEAAKjBAACEwgAAcMEAALjBAAAgwQAAQMEAAFDBAAAQwQAAmMEAAPDBAAAwwQAAHEIAAADAAAAYQgAAgD8AAJZCAABAQQAAcEEAAOjBAABswgAAAAAAAJhBAACAPwAA2MEAAAhCAADowQAAmsIAAADAAABAwAAAMEEAAMBBAAAQQQAA8EEAAPDBAABEQgAAgMIAAADBAACYwQAANMIAAKjBAADIwQAAUEEAACBBAADgwQAAAMEAAABBAAAAwQAAUEIAABRCAABgQQAAyMEAAMBBAAAUwgAAEMIAALDCAAD4QQAAUEEAAFTCAAAEQgAA0MEAADTCAACgwQAA4MAAAATCAACSQgAAsMEAAITCAAAUwgAAkEEAADxCAAAAQQAA-MEAAMBBAAAgQgAAkEEAAIhBAABAwgAAFEIAAEDAAACUwiAAOBNACUh1UAEqjwIQABqAAgAAUL0AAHy-AABMPgAABL4AAHA9AACiPgAAED0AAAW_AAA8PgAA2L0AALg9AACAuwAA6L0AAIo-AAA8vgAAUL0AABw-AACYvQAA-D0AALY-AAB_PwAAXL4AAOA8AAB0PgAAnr4AAJi9AADgPAAAqL0AAEw-AADCPgAAFD4AAI6-AACYvQAAqD0AAKi9AACovQAAuL0AAGS-AAC-vgAAJD4AAKC8AACavgAADD4AAKA8AAAMvgAAFL4AANI-AAA8vgAAbL4AAEy-AAAMvgAAoLwAAMI-AABEvgAAHL4AAFA9AAA7PwAAqD0AAPi9AABAvAAA2L0AAAQ-AABwvQAA2L0gADgTQAlIfFABKo8CEAEagAIAAJi9AABQvQAADL4AAFu_AACSvgAAPL4AAIo-AABsvgAAND4AAHC9AAC4vQAA-L0AADC9AABAvAAAML0AADC9AAB0vgAAzj4AAFC9AACCPgAAnj4AAIi9AABMvgAAQLwAADC9AAD4PQAAQDwAANg9AAAMvgAAdD4AAAw-AABEPgAAgr4AAIC7AAAUvgAAUL0AANo-AACgPAAAxr4AACy-AABEPgAAZD4AAOA8AACqPgAAZD4AAIq-AAB_vwAAbD4AAGQ-AACgPAAAML0AAHA9AAAMvgAAVD4AAMg9AACGPgAAEL0AANg9AACAuwAAqL0AAIo-AAAQPQAAQLwAADy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=xll9kkQYzYg","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18225918010381791171"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6924831840091690430":{"videoId":"6924831840091690430","docid":"34-4-14-Z625810A08BD34C9E","description":"Monica Performing Her Hit \"Still Standing\" At Club Opera In Atlanta #Monica #Ludacris #Luda #Live #BCox #Atlanta #ATL #Show #Concert #R&B #UnclePaulie #DTP #DisturbingThePeace #BrianMichaelCox...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4775749/0194d3bd61de01e8120ac51fe435dcd6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/a8E8TQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbuXV3ZVxX-M","linkTemplate":"/video/preview/6924831840091690430?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"#Monica #Ludacris #StillStanding Monica Ft Ludacris - Still Standing Performed Live!! #BCox","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=buXV3ZVxX-M\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoVChM2OTI0ODMxODQwMDkxNjkwNDMwWhM2OTI0ODMxODQwMDkxNjkwNDMwaogXEgEwGAAiRRoxAAoqaGhtcWFkeHpkaGdkcHNjYmhoVUM5cXp6TVY4RTU5LURjZkxqN1ZwaXZREgIAEioQwg8PGg8_E-0EggQkAYAEKyqLARABGniBBwEE-QL-AAEMBAf4CP0C6P0J-Pz__wDjAPAJAP0CAAL5-___AQAA3vACBQEAAADtAAr1-AAAACEBBAcEAAAACg37AvoAAAAHAA_2_wEAAA70A_IBAAAA9PwJAP8AAAAFAPj-_f8AAPwCDQ8AAAAAEP8DEAAAAAAgAC1f5807OBNACUhOUAIqhAIQABrwAWr89gEbHf8FCyD5AIEQF_y-Chb_0CD2APIU6QHoAPAB3AYIABfhCgAOA_sACQjyAAoABf_yBBYA7v_qADMJ_gAbxgsA5wD0AegTEwH1zPkBGuf9AFf95gPiABsAAxzi_xD-_wPWDP4AAQsXAh36Av8n_vMDBADoAREOFQLNBfgBEPcGABbcAwLn5h4AGPX6_wYE8f4GDvcBB9X8BOsuFP3y9AgA9xAAAQzp8_nb_AYHC_oM-PEc9f385wsDBubxB-YdCPsABAb__dv59u3y8gP68_YI_iD8Ct4BDwcXDAv1IdkQ_D44CfnvAf39C-gEASAALf3IPTs4E0AJSGFQAirPBxAAGsAHHuG8viiQozzYLLe9rYUpvt19aT2U6YY6q16OvgSozryju5q8V7Wkvi5kv7xkKS29rwjevYbUZbuJxM67e05Kvg7Ez7tkYHg8H7y2vabthLzOQnE8R2tWvSkaEL0ZBDE936QpPr0ezD18D9e8QHaNPJ7WSLzn4zo97D-hvIEqibwMUao8Twh8O3LSRb3fikS8DXc5OmKBDz2rybY7nQMVPXtqFT3uNQ49k9STvdUqlTw84Z27Hy4JPpXpIbz1Umc8L-LWPM7cqD0wx6E8dApCPl2pQrzyzLA82Ww2PdwAojw2Etc7ZhbhPUG1Bj0T1oa8IJDVPIqXQLv7FoS79PSmPb00BT2AZSW8O8fgPfcLcb3mY9K8p2mBPbtEtTzWSUe8vG1QPZAl_7spabS8huVPvXB-njzk0Ky8x_eQvZUfYj1VH587z0XoPBrBRjxEjDK8-uwgPg82qzy9UVC8pztvvTtrXLzuDuO76O4EPRWtDD46DYs7InszvWy5Dj27YNM7p3YmPszvBL7If-A7G02pPZm0Dr1w-mm8yDREPWYXlz0-lym8MzyRPBMGSr3deg28NGIHu1goyrsYZro7cM0NvvhVeT2U51Y5GrkTvdh4VbyeSt26zmX0PEb1MTzksvq7mKLcvXknurwb7_G6w-WivUFXDL1N5Ha7ZqNTPXxTB71vING78D9oO565YjtnTnw65YTkvDKHTr1Zr7u7nTQIPaOxNj3UieQ3Gt4svtF6OL2hcsA54xeuPTJUqryPrRK5Bf4LPeKpbLw56Pk4H8oGPOfzO72yfWS5734rvUocaTqOtXM4yxTTPQsJ2Lx4Kj-5nA6ZvRUutT009R65fFj5vM_3070yN7S5HWCcvLw7kj2IMbC3lEvjPWJp4D0AEsG4zPvuvFY9CTu7u5a5yHSNPMebPL3EoJC4SzBGvW-4Tz3cB8Y35qULO1O7Nb193MI4rEyCvTFnsT2r-0g4ZxIQPQSGNj1CfrU4CiSyPNvzgLtu6284Xa44O4HznT2zGGK2z2HjvDy44DzVZtm3Ruq9PagxhjzRCAY4B6havf57ID6ma5U5Y6iEvWaZL73HPsk3BBCNPXq9AL0FMIA4dVq3vJjrQ73QqMU2YA2GPOUZKDuXIR044tBWPdmKhz2hsAS5rKaQPMMUQDxuKGo4vFCqvfRPoD0xUh84IA3nvBUqDj0eLr42WTxLPRC5Lz0BFam4E-puPTAjxr3NyfC36svSvZsdCb2F29U3XCivvd4SKr38ImM33gEevRmxjTvVAz44IAA4E0AJSG1QASpzEAAaYB4EACYgAKvoJhvB1SIJ_e8uAuQGDPH_H_v_LBcNyQasnc_-9gD8u8r5qgAAAB8qLBAmALNu7eTxJ_IiLu8bLWwDf_INzRJVBdnyD9X8JxGw5wA6OADbAaPqF-IrOMTq3yAALZiqGTs4E0AJSG9QAiqvBhAMGqAGAADgwQAAmEEAAMxCAACQwQAA4MEAAHBCAACoQQAAUMEAAIhBAAB4wgAAJMIAAEjCAACMwgAAIMIAALBBAAA0wgAAAMEAANjBAAAkQgAAqsIAAI5CAAD4wQAAPMIAAGBBAAA0QgAAiMEAAHTCAABgwgAAEEIAAFBBAABMQgAAREIAAMDAAAAEQgAAUMEAANBBAAAYQgAAjkIAAHBBAAAYwgAAMEEAAIDBAAAkQgAAeEIAALhBAACgQQAAUMIAALhBAADwQQAAgEAAABxCAAB8QgAAEMIAADBBAAAEwgAA-EEAAIC_AACGQgAA6MEAAGRCAAAUwgAAMMEAABxCAAAwwgAAEEIAAIA_AAAAwQAAkMEAAITCAAAAwQAAoMAAAOjBAACAQQAAoEEAAIbCAADgQAAAQEEAAIDBAACgQAAAcMEAAEzCAABwQQAAeEIAAADBAAAQwQAAEEIAAADBAABQQQAAtEIAAAxCAAA8QgAAaEIAAGRCAAAMwgAAgD8AAIhBAADiQgAA2MEAADBCAADwwQAANMIAABhCAAAwQQAAQMAAAHzCAACoQQAAfMIAAKhBAAAAwwAAyEEAAODAAADgwAAAgMEAAITCAABQQgAAsEEAADhCAABwwQAA4EEAAAAAAACAwgAAGEIAAPBBAACIQQAAiEEAAGxCAABAQAAAEEIAAIA_AAC4QQAAAMAAAIzCAABAQQAAwMAAAPBBAAA8wgAAIEIAAI7CAAAswgAAAMEAAIhBAACAPwAAuEEAAHhCAAAAQQAADEIAAPBBAADAQQAAAEEAAMBAAADoQQAAiEEAAKDBAAAQwgAAEMIAAERCAACAQAAAAMIAAHBCAAAQwQAA6MEAAIBBAACAwQAAuMEAAEBCAAAgQQAAEEIAAKDAAAAgQgAAwEEAAGDBAAB4wgAAgsIAAIBAAAAcwgAAgMAAAMDBAAD4wQAA4EEAAMhBAABsQgAA4sIAAKjBAACUwgAAbEIAAMDBAADEwgAATEIAADBBAABYQgAAwMEAAPBBAAD4QQAAYMEAAIDAAAAgQgAAQMIAAMDBAAAAwgAASEIgADgTQAlIdVABKo8CEAAagAIAAAm_AAABvwAAbD4AAJq-AAA0vgAAzj4AABA9AAAvvwAAPL4AANo-AABbPwAA2D0AAMI-AADGvgAAhj4AADW_AAAMPgAArr4AAAU_AABHPwAACz8AAEC8AABUvgAAmD0AAFw-AADmvgAAGT8AADS-AACIPQAAfz8AAIA7AACaPgAA6L0AAHM_AAAsPgAAuj4AACw-AACgPAAALL4AADS-AAAwvQAA5j4AAC8_AABMPgAAgj4AAOC8AACavgAA4DwAAKK-AAB3vwAAO78AAPg9AACgPAAAhj4AAL6-AAA8PgAAIT8AAIA7AAAwvQAA7j4AAOK-AAAwPQAAmD0AAMi9IAA4E0AJSHxQASqPAhABGoACAACavgAAJL4AAHQ-AABrvwAAmL0AAIA7AAAUPgAAZL4AAOi9AAA0PgAAZL4AAOC8AAAsPgAAQDwAAFy-AABQPQAA6L0AAH8_AABUPgAAoj4AAKC8AAB0vgAAUL0AAEC8AADYvQAAML0AABw-AAAUPgAAtj4AABQ-AACAOwAA-L0AADQ-AAAFvwAAiD0AANg9AABwvQAAFL4AAJi9AAAQvQAAfD4AADA9AAC4PQAA6L0AAI6-AAAEvgAAeb8AABy-AAAQPQAARD4AAII-AABwPQAAmD0AABA9AACoPQAAiD0AAAy-AACaPgAAML0AAI6-AACePgAAyD0AAOA8AACOviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=buXV3ZVxX-M","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":400,"cheight":300,"cratio":1.33333,"dups":["6924831840091690430"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1626654815"},"2210780698944176160":{"videoId":"2210780698944176160","docid":"12-0-0-ZA12637B0B25ADAA5","description":"sin ( A-B ) = sin A cos B - cosA sinB proof. #studymathematics #class11 # trigonometry by J.P. Verma...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3933039/3b7afad1edc5a5457fe17afa7ee29c95/564x318_1"},"target":"_self","position":"13","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5T8ukxz2qfE","linkTemplate":"/video/preview/2210780698944176160?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"sin ( A-B ) = sin A cos B - cosA sinB proof #Trigonometry By J.P. Verma","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5T8ukxz2qfE\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoVChMyMjEwNzgwNjk4OTQ0MTc2MTYwWhMyMjEwNzgwNjk4OTQ0MTc2MTYwaq8NEgEwGAAiRRoxAAoqaGhzeGpvYXV5cWF4dnltYmhoVUNKUHVQa0xsdUZUTUI2OU15MzBGb1l3EgIAEioQwg8PGg8_E_UCggQkAYAEKyqLARABGniB-P4IBPwEAAT1EAT7CPwC6f35BPsAAAD8AfsF_QX-AOvuCgAE_wAA7QUI_fkAAAD6-_j6Av4AAA8B-PwEAAAAEwsAAf4AAAAWBvb6_gEAAP_8-_8D_wAA__sD_wAAAAAADfryAAAAAAn78PYBAAAAAgL8DQAAAAAgAC2TuN47OBNACUhOUAIqcxAAGmA3-QABKyLbyRYnx_zk_ND9Ahm4D7Ug_wIr_xALEPAK7M23KSz_PvsV76IAAAARx_0XIAADev3W0QUlDwC0vtJAO38xAewM-8EDBK8wHT4-AvrjR0gA5BcJ9hXqN1E2JVggAC1oXxg7OBNACUhvUAIqrwYQDBqgBgAA2EEAAJBBAABAwAAAUMEAAAhCAAAQQQAAaEIAAEDAAAAQwQAAiEEAAIA_AABowgAA6MEAAFBBAADAQgAAHMIAAABCAAAwwQAAyMEAALDBAACQwQAAKMIAAJjBAADoQQAAcEEAAKDAAABAwgAAAEAAAGBBAABEQgAARMIAAHBBAACAwAAAgEAAABTCAABAQQAAXEIAAExCAACYwQAANEIAAOhBAAAQQgAAoEIAALjBAAB4QgAAEMIAACTCAAAAQAAALEIAACRCAADQQQAAMEEAACBBAAAAQQAAPEIAAGzCAACSwgAAUMEAAIhBAACSQgAAmEEAAAzCAADQwQAANMIAAMDBAACOwgAAIEEAAJjCAADAwQAAQMEAADxCAABcQgAAyMEAAABBAAAAwAAA1MIAAIzCAABgwQAAAMEAAMhBAAAQwgAAcEEAAMDBAABQwQAAcMEAAMhBAADgwAAAnkIAAJhBAABAwgAAQEAAAEBBAACwwQAAfMIAAIBAAACgwQAAEMIAAJhBAACCQgAA4EAAAOjBAAA0QgAAXEIAAHzCAAAAQQAAUMEAAIDCAACAQAAAKMIAAHRCAAAUQgAAeMIAAGBBAAAwQQAADMIAAKBBAABwwQAAnsIAAEBBAAAEwgAAYMEAACDBAAAQwgAARMIAAAhCAAAEQgAA8MEAAGDBAACSwgAASMIAAGDBAADgQQAA2MEAAMRCAAAAwgAAQEEAAJBBAAAAwAAAUMEAANTCAABAwAAAcEIAAIBCAACgwQAAJEIAAABCAAC4wgAAQEIAAIDBAAAAwAAAYMIAACBBAADIQQAAZMIAAIjBAAAAAAAAGMIAAIDBAACIwgAA6EEAAIjCAABAwAAA0MEAAABBAABAQQAAIEIAAK5CAAAwQQAAoEEAAODAAADYwQAAIMEAAAzCAAAQwQAA6MEAALBBAAAQwgAA4MAAAGBCAADoQQAATMIAAJ7CAADwQQAAqEEAAJ5CAADIwQAAAMIAAMBBAAC4wQAAJEIAAKDAAABIwgAACEIAAADAAABgwgAAUEIAAI7CAAB8QgAAMMIAAKjCIAA4E0AJSHVQASqPAhAAGoACAABAPAAAFL4AAJY-AADYvQAAoLwAAJ4-AAAQvQAAxr4AABw-AADgPAAAoDwAAIA7AAAwPQAAND4AADy-AADgvAAAqD0AAMi9AABUPgAAwj4AAH8_AAC4vQAAQLwAAJ4-AAB8vgAAMD0AAHA9AADovQAAFD4AAN4-AACgPAAA2L0AABy-AAAwPQAAQLwAABS-AAD4vQAAyL0AAJK-AAC4PQAAoLwAAGy-AAAcPgAAgDsAAAy-AABwvQAAkj4AACy-AABcvgAAHL4AABC9AACYPQAAwj4AAAy-AADYvQAAoDwAACM_AADYPQAAyL0AANg9AABQvQAAmD0AAHC9AAAcviAAOBNACUh8UAEqjwIQARqAAgAABL4AAOC8AABAvAAAT78AAJ6-AABMvgAARD4AACS-AAC4PQAAED0AAGy-AAB8vgAAUD0AAIC7AACIvQAAcL0AADS-AAD6PgAAoLwAAAQ-AAB8PgAA-L0AAAS-AADgPAAAgDsAALg9AAAwPQAAuD0AABA9AAAsPgAA4DwAACw-AAB0vgAAqL0AAFS-AACgPAAA9j4AAMg9AACGvgAAZL4AAAw-AACCPgAAMD0AAGw-AAB0PgAAgr4AAH-_AACOPgAATD4AAAQ-AAAwPQAAEL0AAKA8AABsPgAAQLwAADw-AABAvAAARD4AAAS-AACovQAAlj4AABA9AABAPAAAdL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=5T8ukxz2qfE","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2210780698944176160"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15565583960296570704":{"videoId":"15565583960296570704","docid":"12-2-12-Z4D54F3FDFA2144B2","description":"If tan 𝜃 = a/b in any triangle, ABC, find the value of a sin 𝜃 - b cos 𝜃 / a sin 𝜃 + b cos 𝜃. Cbse Class 10 Maths Introduction to Trigonometry Book Out Question in Tamil by Kalvikan 📌Class...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2044062/f887aa439b5d89af3eb36cd8878e678b/564x318_1"},"target":"_self","position":"14","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQBWjmHEDTzE","linkTemplate":"/video/preview/15565583960296570704?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"If tan theta = a/b in any triangle, ABC, find the value of a sin theta - b cos 𝜃 / a sin 𝜃 + b cos.","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QBWjmHEDTzE\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoWChQxNTU2NTU4Mzk2MDI5NjU3MDcwNFoUMTU1NjU1ODM5NjAyOTY1NzA3MDRqrw0SATAYACJFGjEACipoaHNoZ3R3bGJ0eHF4aXFiaGhVQ29qOVZTdXJYZHdmQXdvejZlUkpmR3cSAgASKhDCDw8aDz8TjAGCBCQBgAQrKosBEAEaeIH3_vwA_gMA9AQFAfkD_wH2-Pv8-v79APUF9f32Av8A-QkGDQEBAAD6D_3--wAAAAT7_Av__QEADwH4_AQAAAAZAv0A-AAAAA0H__r-AQAA_Pv99wIAAAAC9gUGAAAAAAAN-fIAAAAAAQj4-gEAAAAI_gQGAAAAACAALQBT2zs4E0AJSE5QAipzEAAaYAMSAEAbC9qqAS2-B-bc4_f4DN3-wQ__5xH__esL8QMS65oO-f8aDxf0rQAAAPbq8DIhAOdo-eXgDf4N9vW06BsnfxH4DRQA6-Wt_UU4ByAzwiM8HADZCQH7G8EXRjUsEiAALbwvLTs4E0AJSG9QAiqvBhAMGqAGAAAgQgAAKEIAAOhBAAAwwQAAzkIAAOBBAAAYQgAAEEEAAMBAAAAAwAAAsEEAAFzCAAAwwgAAuEEAAExCAAAYwgAAcEEAADTCAACAwAAAEMIAALjBAACowQAAsMEAADRCAADgwAAAgD8AAHjCAAC8wgAAcEEAANhBAAAkQgAAjEIAAPDBAACgQAAAGMIAAFDBAADIQQAA7EIAAIC_AABAQgAAAAAAAIhBAABsQgAAIMIAAARCAAC8wgAAZMIAAGBCAADIQQAAqEEAAEzCAAAwwQAA-EEAAJjBAADgQAAAgL8AAIzCAAAwwQAAEMEAAFxCAABEQgAADMIAAAjCAAB8wgAAHEIAAIC_AACAQAAAKMIAABjCAABcwgAAqkIAAJRCAAA0wgAAgMEAAIA_AADAwgAABMIAAIC_AAAgwgAAAAAAABTCAAA8QgAABMIAAOhBAABEwgAAMEEAAEBAAABYQgAAFEIAADDCAAAgQQAASEIAAIrCAABowgAAwMEAADDBAAAkwgAAEMEAAGBCAACAwQAAZMIAAGxCAACQQgAAQEEAABDBAABQQQAAGMIAADDBAABkwgAAhkIAAKBBAAAgwgAAsMEAAABBAABEwgAAAMAAAJBBAAAswgAAGMIAAEDBAADIwQAAGMIAAIzCAADgQAAA8EEAAFRCAACIQQAAqMEAAPjBAADAwQAAuMEAAIC_AAAwwQAAdEIAANDBAAAwQgAAIEIAAJjBAADQwQAAEMIAAIA_AACYwQAAgEAAAEBAAABwQQAA-EEAAMrCAADYQQAA0EEAAODAAABcwgAA6EEAAEBAAAAAQQAAwEAAAJjBAAAMwgAAlMIAAN7CAAAIQgAABMIAAIBAAADIwQAAQMEAAIDBAAAQwQAA6EEAAERCAACIQQAAQEAAAMDAAADAQQAAQEEAAABAAACgwAAAFMIAAMjBAABkwgAAxEIAAJjBAAAIwgAAwMEAAMBAAACGQgAAgkIAANjBAACwwQAA4MEAAJDBAAAQwQAARMIAAILCAAAMQgAAgEAAACBCAABYQgAAHMIAAIhBAABwwQAA4MEgADgTQAlIdVABKo8CEAAagAIAADC9AAAkvgAAtj4AAJi9AAD4PQAAgj4AADA9AAAHvwAABD4AABy-AADoPQAAiL0AAOC8AAB8PgAALL4AANi9AAAUPgAA4LwAAOA8AADCPgAAfz8AANi9AADIvQAAgj4AACy-AADgvAAAcD0AAJi9AAC-PgAAnj4AAJg9AABcvgAAyL0AAIA7AABQvQAAqL0AAKC8AABMvgAAmr4AAIg9AAAkvgAA-L0AAFw-AACgPAAAEL0AAJi9AAC-PgAAHL4AAKi9AABQvQAAcL0AAAQ-AABsPgAAiD0AADS-AABAPAAAGT8AAIC7AABwvQAA2D0AAIC7AADIPQAAmD0AAAy-IAA4E0AJSHxQASqPAhABGoACAAAcvgAANL4AADC9AABVvwAAHL4AAAy-AAB8PgAAHL4AAIA7AABwPQAABL4AABC9AABEvgAAML0AAFC9AAAQvQAADL4AAO4-AADYvQAAoj4AACQ-AABAPAAAnr4AAEA8AABwvQAAmD0AAAw-AACoPQAAmL0AAKY-AAAEPgAAPD4AAIq-AAAMvgAA6L0AALg9AADePgAA6D0AAMq-AAAwvQAA-D0AAFA9AABAPAAAqj4AABw-AABkvgAAf78AAJg9AABQPQAAqD0AAFC9AACYPQAAmD0AADA9AADIPQAAFD4AAIA7AAAsPgAAgDsAAFC9AACSPgAAVD4AAIg9AADIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=QBWjmHEDTzE","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15565583960296570704"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1490297785528638233":{"videoId":"1490297785528638233","docid":"12-7-11-ZFEDDA5C9D337EE2D","description":"video, sharing, camera phone, video phone, free, upload...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4303848/a55fc4cfb46b4f16b5b5367eb35f6725/564x318_1"},"target":"_self","position":"15","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWmQTZY5FXuE","linkTemplate":"/video/preview/1490297785528638233?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Lecture#06:Prove that Sin(A+B)=Sin(A) Cos(B)+Cos(A) Sin(B)","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WmQTZY5FXuE\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoVChMxNDkwMjk3Nzg1NTI4NjM4MjMzWhMxNDkwMjk3Nzg1NTI4NjM4MjMzaq4NEgEwGAAiRBoxAAoqaGhkYWpocm9kaG9qa21lY2hoVUNHblVGQk5KOVRhejNpWkYtYl9FYzBnEgIAEioPwg8PGg8_E0qCBCQBgAQrKosBEAEaeIH7_wH_-wYA_QIFAvoF_gHmAPn9_AAAAP8D__z5Bf4A-fv_BQUAAAD6D_3--wAAAP_v9gj9_gAAEAMC9QQAAAATCwAB_gAAAAwG__r-AQAA_fv99wIAAAAF_gMEAAAAAAAN-vIAAAAABAf-_gAAAAALA_wJAAAAACAALcSf4zs4E0AJSE5QAipzEAAaYC75AC8WKFL4APP8FPa9FdALv-HSyff_EfIA8RgK9fUDAb4LAf8lLRIBrAAAABQH9y4SABtX_RDlKgAZGPTN9fX3fzIDyiEK_iESJSrIB94KCOM0FgDzBiDiMLLWEzsP_SAALYDBOzs4E0AJSG9QAiqvBhAMGqAGAABwQQAA4EAAADxCAACAQgAAVMIAAAhCAAAQQgAACMIAAEBBAACAwQAAIEEAAOBAAACYwQAAAEEAAGBBAAAwQgAAhkIAABTCAADYQQAAmMIAAETCAADIwQAAVMIAAFBCAACQQQAALEIAAPDBAACOwgAAmEIAACDBAABEwgAAwEAAAABAAADIQQAA4MEAAABAAAAkQgAAtkIAAADBAACQQgAAPMIAAFTCAABQQgAAAEEAAIC_AACMQgAAPMIAAIhBAACgQQAAAMEAAIzCAACIwQAAhsIAALhBAADQQQAAMMEAAADCAAB0wgAAAAAAAIA_AADAQQAAMEEAAIrCAACiwgAAgD8AAODBAAAAAAAAjMIAAHzCAABcQgAA8EEAAPhBAAAAQQAAVMIAAJBBAACCwgAAusIAAIA_AABMQgAAmEEAABzCAAAsQgAABMIAAILCAACAQAAAIEIAAKjBAAAYwgAAMEEAALDBAADoQQAAQEEAAIhBAABIwgAAsEEAACTCAABAwQAAcMEAALjBAACgQQAAQMAAAJpCAABwQgAAlMIAACjCAADAwAAACEIAAIhBAAAQQQAAgEEAAFxCAAAgwQAAcMEAABTCAABQwQAAHEIAAADBAACAwgAAgL8AABzCAAAAQAAACEIAABBCAAAwwQAAYEEAACzCAABMwgAAmMEAAL7CAAAUwgAAWEIAADTCAADYQQAA2EEAAKDAAAC4QQAAYEIAAAzCAAAEwgAAoMIAAFRCAADAQQAAQEEAAKBBAAD4QQAALEIAAKBAAABwwQAAAEAAADBCAABAQAAAoEAAAExCAAAwwQAACMIAAHDBAADewgAAkMEAAATCAABwQQAAqMEAAATCAAAIQgAA4EEAALjBAACCQgAAbEIAADBBAAD4QQAAuMEAAKTCAADowQAAEMEAAHRCAACAQQAA4MAAAIBAAAC4wQAA-EEAADRCAABwwgAAkMIAANBBAAAEwgAAHEIAAJjCAAAwQQAAkkIAABDBAAAAQgAAfEIAAABAAAAMwgAAgMEAAEDBAABwQQAAiMEAAHBBAABEQgAA2MEgADgTQAlIdVABKo8CEAAagAIAAKA8AAAEvgAAlj4AAIA7AADgvAAARD4AAHC9AAC6vgAA6D0AAHC9AAAMPgAAUL0AAEA8AABsPgAA-L0AADC9AABcPgAAoLwAAFQ-AACqPgAAfz8AAFC9AAAQvQAAkj4AAKK-AACovQAAgLsAACS-AAAUPgAAqj4AAIA7AAC4vQAAuL0AAHA9AADovQAAED0AAHC9AAAcvgAAmr4AAMg9AAA8vgAARL4AAHA9AAAEPgAAyL0AAOi9AAB8PgAARL4AADy-AAAcvgAAgDsAAAQ-AADWPgAAgLsAAGy-AABAvAAAFT8AAKg9AADYvQAAgDsAAKi9AABAPAAAML0AAAS-IAA4E0AJSHxQASqPAhABGoACAADIvQAAVL4AAAS-AABTvwAA2L0AANi9AABcPgAAHL4AAKA8AAAwPQAAmL0AAHC9AACYvQAAEL0AAOA8AABwvQAANL4AAPI-AAAMvgAAND4AAKg9AABAvAAAFL4AAKA8AACAOwAAPD4AADA9AACAOwAAgDsAADw-AABQPQAAND4AAHS-AAD4vQAAJL4AAFA9AACOPgAAuD0AAIq-AAA8vgAAPD4AACQ-AACAOwAAkj4AAAQ-AACavgAAf78AAAw-AABsPgAAED0AAFC9AABwvQAAcD0AANg9AAAwPQAADD4AABA9AACIPQAA6L0AANi9AABsPgAAcD0AAOC8AAAsviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=WmQTZY5FXuE","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1490297785528638233"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11941330678110157601":{"videoId":"11941330678110157601","docid":"12-11-11-Z9532433C4E5B3DC9","description":"video, sharing, camera phone, video phone, free, upload...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/936892/cc766a70613108b45f6654f2b6ac7f94/564x318_1"},"target":"_self","position":"16","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Du9aJXRyCG5M","linkTemplate":"/video/preview/11941330678110157601?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof Of Sin(A+B) & Cos(A+B)","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=u9aJXRyCG5M\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoWChQxMTk0MTMzMDY3ODExMDE1NzYwMVoUMTE5NDEzMzA2NzgxMTAxNTc2MDFqvA0SATAYACJSGj8ACjhoaGtmZWphenplb2pkdWNiaGhodHRwOi8vd3d3LnlvdXR1YmUuY29tL0BQT0xZTUFUSF9SQUdIVRICABIqD8IPDxoPPxMfggQkAYAEKyqLARABGniB9voC_gEAAAUEDwX6CfwC4wD4_fsBAAD2-vv8_gP_AOj5AwcJ_wAA-RD9_vsAAAAH9_YCA_0BAAf_AvUEAAAAIg8DBAAA_wAYBvX5_gEAAP_7-_8D_wAA__oD_wAAAAAADvnxAAAAAAMA-v8AAAAABQH7BQAAAAAgAC2tPtE7OBNACUhOUAIqcxAAGmAN_QA9FyY8_Az6BgTzwxTcIZzfvMT6_wz_APAuHPHwCe3NJ_H_KQ4T66kAAAAY9uUcIgAKW8oEwiMYNR3v4vAF9X9D-skZEhIoFD4l1-_c6hDHMAUA_vwe6hvc0BE4Kh4gAC1ZRjE7OBNACUhvUAIqrwYQDBqgBgAAQEIAANjBAAC4QQAACMIAAHBBAADAQAAAwEIAAIBBAAAswgAAQMEAAGBBAAAwQQAAFEIAAKBBAAAwwQAAKEIAAIZCAADgwAAAJMIAAJjBAACYQQAAVMIAAIDBAAAsQgAARMIAAIhBAAAgwQAAkMEAALhBAAAcQgAAPMIAAOBAAAAowgAAUEIAAIA_AAA0wgAAZEIAAFBCAACIQQAAQEAAAOBBAADgwQAArkIAAPhBAACIwQAAuMEAALRCAAAgwQAAQEAAAMBBAABQwQAAmMIAAMDBAAAgwgAAQEAAAJJCAAB0wgAAMMEAAJDBAACeQgAAoEAAANDBAABIwgAAZMIAACDCAAAowgAAyEEAAGDBAAAAQQAATEIAADRCAADIwQAABMIAAGBCAAAYwgAAUEEAABjCAAAgQgAAiEEAAOBBAAAYwgAAwEIAAEBAAACQwQAA0EEAAADBAACAQQAAQMAAAKRCAADoQQAAEEIAACBCAACewgAAuMEAAKDBAACWwgAAEMEAADjCAABAwAAAoMAAAMDBAADAwQAAQEAAACxCAACgwQAAIEEAACTCAAAgQQAAiMEAAAAAAABwQQAA4EEAAAAAAADIQQAA4MEAAIBCAADYQQAAlMIAAFBBAAAIwgAA6MEAAADCAACAQQAAAAAAAODBAABswgAAfMIAAIDAAAB8wgAAqEIAADDBAADwQQAAMEEAAOhBAADgwAAAJEIAAKDBAABQwQAACMIAALLCAADwwQAAFEIAAABBAACAwQAAoEEAALhCAADYwQAAfMIAAAAAAABAwAAAkMEAACBBAAAUQgAATMIAAJBBAAAcQgAAhsIAADTCAADOwgAACEIAAEDBAACQQQAAsMEAAAAAAADAwAAAAMEAAKhBAABgQgAASEIAAGxCAACAvwAAIMIAAAzCAAAAwgAAyMIAAOBBAAAMwgAAkMEAAEzCAAA4QgAAFMIAAI7CAADYwQAAIMEAAJhCAAAQQgAAIMIAALhBAAAkwgAAuMEAAABCAACAwQAAAEIAAGDBAAAQQgAAwEIAAERCAACYwQAA2MEAAABBIAA4E0AJSHVQASqPAhAAGoACAADoPQAAHL4AABQ-AADIvQAAgLsAACQ-AAD4vQAAtr4AAJg9AACAOwAAfD4AAPi9AAC4vQAAbD4AACy-AADovQAATD4AAFC9AACoPQAAHD4AAH8_AACYvQAAmL0AAII-AACSvgAAoDwAAKi9AAC4vQAAJD4AAHw-AABQPQAAyL0AADC9AAAMPgAARL4AALi9AABwvQAATL4AALa-AABwPQAA2L0AALa-AAAUPgAAuD0AAIi9AABMvgAAPD4AALi9AACIvQAAiL0AAHA9AAC4PQAA3j4AAMi9AACCvgAAQDwAABM_AADYPQAAgDsAAEA8AAAUvgAAcL0AAKA8AACovSAAOBNACUh8UAEqjwIQARqAAgAAEL0AAI6-AAAwvQAAXb8AADy-AADgvAAADD4AAHC9AACAuwAAUD0AABy-AABEvgAAqD0AAIA7AACYPQAAyL0AAFC9AAADPwAAPL4AAEw-AACoPQAAED0AAFC9AAAQPQAAiD0AACQ-AABQvQAAQDwAAOg9AAAsPgAAgLsAACQ-AAAEvgAAbL4AANi9AACoPQAAtj4AAPg9AAAkvgAAJL4AABw-AAAEPgAAuL0AAFw-AAAwPQAAhr4AAH-_AAB8PgAA4DwAANg9AADIvQAAcL0AAPg9AACGPgAADL4AABQ-AADgPAAAqD0AAHC9AAA0vgAAnj4AALg9AADYPQAAHL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=u9aJXRyCG5M","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["11941330678110157601"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5579579069333012079":{"videoId":"5579579069333012079","docid":"12-3-9-Z4DA669F89696AE82","description":"#tricks. #tricks Parametric x=(a-b)cos(t)+b cos(t(k-1)), y=(a-b)sin(t)-b sin(t(k-1)),#youtubeshorts #shorts - YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4857980/e3274260fa6d0265958b33d6c8712227/564x318_1"},"target":"_self","position":"17","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzpwMKZUrHsE","linkTemplate":"/video/preview/5579579069333012079?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"#tricks Parametric x=(a-b) cos(t)+b cos(t(k-1)), y=(a-b) sin(t)-b sin(t(k-1)),#youtubeshorts #shorts","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zpwMKZUrHsE\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoVChM1NTc5NTc5MDY5MzMzMDEyMDc5WhM1NTc5NTc5MDY5MzMzMDEyMDc5aq4NEgEwGAAiRBoxAAoqaGh3Z2Ztb2h2a2t4cHJ5Y2hoVUMxMkxiSi1CTHpkMzNYTnR1cF92VHR3EgIAEioPwg8PGg8_Ey-CBCQBgAQrKosBEAEaeIH2-_v7-wUA-gcM_fwE_wHp_gEA_AAAAPYA9fUCAv8A_P8HAwEAAAD6D_3--wAAAAD1AAMA_gEACP8EAwQAAAAN_fwG-wAAAAkH_PgJ_wEB-ff3_QP_AAD7_QMGAAAAAAMM-f3__wAAB_z8BQAAAAALA_wJAAAAACAALVmR4js4E0AJSE5QAipzEAAaYP0FAAgjGwfGM__bAPnDEALmGN335g__BwcARhnT5igb4b8dLP8B7gr8ugAAAAERHyo0AONWFePq-P8M4vDC7isuf_Yk3CMPD-_55Sf_ECDp-uIiBQD4Gg_wM-M9R0kC8CAALQclQjs4E0AJSG9QAiqvBhAMGqAGAAAQwgAAUEIAADhCAAA0wgAAyEEAAEBBAAD-QgAAKMIAAGzCAABgwQAAVEIAAPBBAADgQAAAEEEAABxCAACmQgAAIMEAAEBBAAA8QgAARMIAAJjBAAAQQQAAIMEAAJJCAAAAAAAAgMEAAMjBAADgwAAACEIAANhBAABwwQAAoEEAANDCAACwQQAASMIAAAjCAAAAQQAAkkIAACDBAAA0QgAAoEAAAJBBAABQQgAAAAAAABBBAACgQAAAGEIAAIBAAABQQgAA4MAAAOhBAACAvwAAiEEAAEBAAACYQQAAUMEAAJzCAABIwgAAUMEAANhBAAAcQgAAaMIAAKBBAAAwQQAAgEEAAIDBAAAcQgAAPMIAAKhBAACYQQAAuEEAALBBAABgwQAAkEIAABzCAAAgwQAABMIAAAAAAABUQgAAtkIAAIDCAAAAQgAAAMAAAHjCAACAQQAAEMEAAIDBAADgQQAAnkIAAARCAADIQQAAEEIAAKLCAAB0wgAAQMAAAJLCAABcQgAAgMEAAMDAAAAAQgAAeMIAAKBBAACAQAAAoMEAAJDBAACowQAAdMIAADBCAABAwAAAQEEAAKBBAABIQgAA6MEAAABBAACAvwAAgEEAAGzCAABswgAAiEEAAJjCAACIwQAA2MEAADBBAADAwAAAWMIAAJBBAACAwAAAEMEAAKTCAADaQgAAMEIAABTCAACIwQAAcEEAAJBBAAAAQgAAqEEAAMBAAACowQAALMIAABTCAACaQgAAAEAAAJzCAACyQgAAXEIAAMDBAAAIQgAAMEEAACBCAACIwQAAKMIAAHBBAAAEwgAA8EEAAKDAAACowgAAWMIAAEzCAACIQQAAfMIAANBBAAAQwQAAgMAAADRCAACgwAAAAMAAAOBBAAAcQgAAgEIAAJjBAAAAQAAAHMIAAITCAACIwgAAsEEAAABBAAAwwQAADMIAAExCAABUwgAAMMIAAGzCAABQQQAA8EEAAABAAADgwQAA4MEAABjCAAAgQQAAIMEAAKBAAABwQQAAkMEAALjBAADAQQAAXEIAADTCAADgwAAAcMEgADgTQAlIdVABKo8CEAAagAIAAIC7AABEvgAAjj4AABC9AACYPQAAVD4AADA9AADOvgAA-D0AABS-AABQPQAADL4AAKC8AABcPgAAXL4AAIA7AABMPgAAEL0AAFA9AACiPgAAfz8AAFC9AACAuwAA2D0AANi9AABwvQAAmD0AABC9AABcPgAAlj4AAJg9AAC4PQAABL4AAOA8AAD4vQAAiL0AAMg9AAD4vQAAqr4AAIC7AABcvgAAfL4AAJg9AAAQPQAAgDsAAMi9AABkPgAANL4AAGS-AADYvQAAqD0AAEA8AAC6PgAAEL0AAFS-AADgvAAAGz8AAKC8AACAuwAAgDsAAIi9AACAOwAAML0AANi9IAA4E0AJSHxQASqPAhABGoACAAAMvgAAJL4AABy-AABZvwAAcL0AADC9AACePgAAmL0AABC9AADoPQAAPD4AAOi9AADgvAAAML0AALg9AADIvQAALL4AAB0_AAA8vgAAJD4AAJg9AABcvgAAUD0AAOA8AAAQPQAALD4AAIC7AACYPQAAdD4AABA9AACYPQAAQDwAALK-AAA8vgAAEL0AAKC8AADYPQAAiD0AAFy-AAAkvgAAXD4AAOg9AAAcPgAAyD0AAIg9AAAEvgAAf78AAEQ-AABMPgAAML0AABS-AABAvAAAqD0AAKg9AACAuwAAuD0AAKA8AAA8PgAAoLwAADS-AAAsPgAAiL0AAIg9AACovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=zpwMKZUrHsE","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5579579069333012079"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8205269322889375169":{"videoId":"8205269322889375169","docid":"12-10-5-Z50413E9B6C9A3CE7","description":"Sin(A+B) Sin(A-B) Cos(A+B) Cos(A-B) के मान #smile_maker #education #shorts #trigonometric #trending #viral #sorts #2023 #maths #mathtrick #trigonometricidentities #trigonometryclass11...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4317168/36aaa910937ac6a7a1bcae35aec2759b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/m15_CwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D3nkOpP-RgiQ","linkTemplate":"/video/preview/8205269322889375169?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sin(A+B) Sin(A-B) Cos(A+B) Cos(A-B) के मान #smile_maker #education #shorts #trigonometric #trending","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3nkOpP-RgiQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoVChM4MjA1MjY5MzIyODg5Mzc1MTY5WhM4MjA1MjY5MzIyODg5Mzc1MTY5aoYXEgEwGAAiQxowAAopaGhxem95cWJ2eHZkZXB1aGhVQ1VZY0VoSHJiOW5HbjdLbFFPdFJMZmcSAgARKg_CDw8aDz8TLYIEJAGABCsqiwEQARp4gfv6AQT-AgD4BwUIAAb9AvEK-fv5_v0A9QD19AMC_wD99gYDAgAAAPoP_f77AAAA_fj4Avv-AAAO_f4DBAAAABQMAAH-AAAAFQgC9f4BAAD0-_78AwAAAAX-AwQAAAAAAA358gAAAAAKAAABAAAAAAf7_goAAAAAIAAtwqTaOzgTQAlITlACKoQCEAAa8AFf9wP_qBwW_UcP3gCx-gf-gQAC_znh5AD3GPYA--PmAf4W9QDv0gUBG__cABb4EP9G9_j_HNAHAe4E_P_cJfYACvMZAPzf-AEo4AQA1gDk_9PpBgEh7hj-6SH5ARj_Bv4hCuz91QzyAPPF5gEe1wb__-X5B__lIAJF0AUB3xwTAL7f8fz98fAEHQD0-c3-HAHnFv761QYXAPIK7QQi6O0C_u0hBP0C6QcZ-xgGBBv8AMcI7gDjBv0A_u70BeYcEf0E_BL6GAr87gYO_wgTAhsHJfATAg__8wH52AQH7tH0Avr-BPPrGgEA-u0R-fYTC_ggAC2_TyQ7OBNACUhhUAIqzwcQABrAB7znwL4Vo9M77tfTPEtbrL2KxGk938U7PSMT8L3XLSc99_1AvOm3L75580o9lWMSvZsdob5GoZu8yGeoPI9xFT7ALru6a2kJPdz0F75-1DU9qmINPPWhg748d_E7LsWXO8BfTD7ypeY817QAudBMqLvJzhY9XcE2vBHxYL0jBQC9HTOWOyE_W77Zh8Y8bRVpPG4wuTzZBUi9aqHHO-YDQj72PU-9RwEBu_0VsjzG_Ky9OOjcPE8kc7y4ghw9Wg2JvOM1Tz552uu8g13DPDysJjzg1p08_noqvFssQD1HaaG67bQYu8h0Lb0LxKG8UvkyvQUX6z2nnvs8rXoMPPmgB770Gps9L4GAO7ZBlz3KFom8jgHZPAzlJD1p0CY9hs6pO7rS1zzISZw95gMGuwFAhD35X_g8UTQNvMQxwTw0DtU9KkBvPOy_nj25dZI8GuFIPKqqIzwN34I857ikPP4Pi7zelw49oSbAO2qTeTwyq3u6szwTPK3nOj2_EBI92LZNvEQIXj15cnK8ICQwvCZRLzxUu3C9r4zXvD_CVTyqU3S9GgV3vM54kT0baxq99e9AO6UTST3IMqM97gvHu9qh6zy0_vs8Mv4BvLqYUD0fG1e9YmqmPLZKMDyPQR-8y4jJu1JfFj3sarK84Yc5vJSmfzt22v88d4i9O-oDCb07DsO5dR7XO6q6hzxxEtQ8IqLeu4sx1TzXQyW9qOOCuoFb9z0IS5a9-F_uOAChjz2z8LW8SeI8Ow98rD28oHQ8B5yEOnMQtLyjAFY9CUg9uGMbwj160IE7OGoruX0JkD0BrCk9fcLbtyvp1zy2IRA9qWdUtnd_YT26pIU8SToduZ4Sa73yYyc8jR9AOd_1_jz49jM9MTZpOQYkRr3DV7W9CMhdN6NHI7w9dIs8WlJKOcaoCz6sIIG9bYiZOP6wSjzEIBW96bEHN465BDyNCwc9zjgJOd0Xkb3BUsI89QQLuHAnz7pSfae8sCuSt_JgUjpXKw-8VXGEt12uODuB8509sxhith81UroVG_M8ZhLIuO5ubz0UQRy9CRWxtuGtnLv_j_q68H5GOMwBzLy8aPq6NNKmODz03T2vN_u8qTctOfYnAT5EUku9G2w4OLLTnTlC0NE9LMCJNi-mGT54O8w8_OYbud_HjL0f2Zy8hEoMtvGdiL0rt769cbzSt_2kNb3fiE27V8V0Nj1zkD3Ir2S9JLIEN0LLXz1jGrc9bpCOONThNz3RJuK6IzEOuATRCb1dhy-9zOkaN4Rz_Lxig2W9IXoPuCAAOBNACUhtUAEqcxAAGmANCAD6-g3k6AQB_griDArx-xrlE9QWABcCACQGANsmDAPZBQAAJvvwJMcAAAAD6AIBRADvROvtEhnrI_HC1QcZM38UEfoW-v4Q9vgLH_MrAwnzDRkA5xj7Chf9ECo6HSggAC1Q6G07OBNACUhvUAIqrwYQDBqgBgAAkEEAACDBAABQQgAAuEEAADDCAAA0QgAA-EEAAFBBAACkwgAAEMEAAIDBAACIQQAAAMIAAFjCAABUQgAA2MEAABBCAABwwQAAwMAAAEzCAAAEwgAAoMEAAMDBAAC6QgAAoMAAAETCAAAwwgAAhsIAAAhCAAAAAAAAosIAAOhBAABYwgAAIMIAAKDAAADwQQAAAMIAAMZCAAAwQgAAhEIAAPBBAACAQQAADEIAACBCAACAwAAA2MEAAKDBAACAPwAAiEIAAABBAAAAwgAAQMEAACTCAADYQQAAiMEAAODAAAB4wgAAgEEAAOjBAAAEQgAAEEIAAABBAACowQAAksIAAHDBAABMwgAAsEEAAHzCAADAQAAA6MEAALpCAABQQgAABMIAAARCAAA0QgAAnMIAAJbCAAAkQgAAcMEAADzCAABswgAAAEAAAIjBAAAAQQAAAEIAAJBBAACIwQAAgEAAAIBBAACQwQAAgD8AAAAAAACIwQAA8MIAAGDBAACCwgAAPEIAABRCAABAQAAA6MEAADDCAAAEQgAAjkIAAIDCAAC-wgAAYEIAABDCAABUQgAAYEEAAGBCAABMQgAALEIAACBBAADIwQAA0EEAAGxCAAAAwQAAQEAAAOhBAACwwQAAkEEAAGDBAACQwQAABMIAAGRCAADwwQAATMIAAIjBAACawgAAgMEAACRCAADgQQAAcEEAAAxCAADAwQAAgL8AABBCAAAgQQAAEMEAALrCAABgQQAAsMEAADhCAAAAwQAAZEIAAIBBAAAEwgAA6EEAAABAAAAgQQAAEEEAANDBAAAwQgAA0MEAABjCAAAIwgAAkMIAAJjBAABowgAAkkIAAABCAADAQQAAkMEAAEDCAADowQAA0EEAAIBBAADAQQAAQMEAAKDAAADgwQAAUEEAAIA_AABQQQAAAEIAADDBAACowQAAyMEAAPBBAACwQQAAPMIAAAjCAAAQQQAACMIAAFBCAAD0wgAAYMIAAEhCAABgwQAAmEEAAIA_AABIwgAAQMEAAAAAAACIwQAAAEAAAKjCAADYQQAAQMEAAEDBIAA4E0AJSHVQASqPAhAAGoACAACYvQAAFL4AAEw-AABwvQAA4DwAAIY-AACgvAAAA78AALg9AACIvQAAqD0AAOC8AABAvAAAij4AACy-AABQvQAAJD4AAIi9AAA8PgAAsj4AAH8_AADIvQAAmD0AADw-AABcvgAAQDwAAIC7AAAcvgAAZD4AAKo-AACoPQAA-L0AACS-AAAQvQAAiL0AAJi9AADYvQAAiL0AAJK-AABAPAAA-L0AADy-AABwPQAA4LwAAMi9AAAwvQAAxj4AAHS-AABkvgAARL4AAFC9AACAuwAAnj4AANi9AABEvgAAgDsAABc_AADgvAAAmL0AADQ-AABQvQAA6D0AAKC8AAAEviAAOBNACUh8UAEqjwIQARqAAgAAUD0AABy-AACgPAAAV78AAJa-AACovQAAyD0AAOC8AAAkvgAAgLsAABC9AACKvgAAED0AAKi9AAAQvQAAiL0AADS-AAAXPwAA4DwAACQ-AABUPgAAuL0AAJi9AAAEvgAAmL0AAIi9AABwvQAAUD0AAOA8AAD4PQAA-D0AANg9AAAkvgAAqL0AAFC9AABQvQAAlj4AAIo-AACivgAABL4AAHQ-AAAEPgAAgDsAAKg9AAAwPQAAiL0AAH-_AAAsPgAAbD4AAJi9AACIPQAAoLwAAKg9AAAsPgAAiD0AAPg9AACAuwAAgj4AAIi9AACYvQAAZD4AABA9AABwvQAAFL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=3nkOpP-RgiQ","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":720,"cheight":1280,"cratio":0.5625,"dups":["8205269322889375169"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3275944450"},"1844490894097861881":{"videoId":"1844490894097861881","docid":"12-8-9-ZCA11D14E76585C40","description":"Provided to YouTube by Music Theories RecordingsB'cos · Don AireyAll Out℗ 2011 Mascot Music Productions and Publishing BVAuto-generated by YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2477846/110fbe472d544d40bccb8307e7182799/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mqI28wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dae6GKuComHw","linkTemplate":"/video/preview/1844490894097861881?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"B'cos - YouTube","related_orig_text":"BCox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"BCox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ae6GKuComHw\",\"src\":\"serp\",\"rvb\":\"Eq4DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDE2NjE0NTQyNDI2MTcyNjQ1NDMxChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4MjI1OTE4MDEwMzgxNzkxMTcxChM2OTI0ODMxODQwMDkxNjkwNDMwChMyMjEwNzgwNjk4OTQ0MTc2MTYwChQxNTU2NTU4Mzk2MDI5NjU3MDcwNAoTMTQ5MDI5Nzc4NTUyODYzODIzMwoUMTE5NDEzMzA2NzgxMTAxNTc2MDEKEzU1Nzk1NzkwNjkzMzMwMTIwNzkKEzgyMDUyNjkzMjI4ODkzNzUxNjkKEzE4NDQ0OTA4OTQwOTc4NjE4ODEKFDE2Njc1NTE2NzE3NTU0MjAxMTY3ChQxMTAzNjM3NDI2MTk1MDQ2MTU4MhoVChMxODQ0NDkwODk0MDk3ODYxODgxWhMxODQ0NDkwODk0MDk3ODYxODgxarYPEgEwGAAiRRoxAAoqaGhoZWVtZ2t1dG1jeHhtYmhoVUNOMklFVndhNEJNYm14bHBaSFc0NFJBEgIAEioQwg8PGg8_E6YCggQkAYAEKyqLARABGniB__n8-_wFAPv-DQT7Bv0C7_729_r-_gD___T7_QT-APMAAAb-AAAA8RT-_wQAAAAB_gID_v4BAAf_AvUEAAAADgP-__0AAAAK__v4_wEAAPH8_AMDAAAADP79AQAAAAAADfryAAAAAP8F9gIAAAAABAH7BAAAAAAgAC1bBuE7OBNACUhOUAIqhAIQABrwAX8m-QOi-On8QwwIAMwU4_8BAP8AvPbzACj2EQAPDPUAHBvhABneDADD6DoGJw4AAM_9D_4K-gAAANTn__4H7QAU9QwA6gnjAuX-7wAdByP_4OIM_9--AQEW-P_-Fgr6_xTb9f8jBd3_9Pvu_eHY8gH8FiH_2e0aAg3K-AQr-v373OMFACEY7ADkCAL_-PAOBgr8_QcNGhX68OwC_Prb9P8A8gwCGS4k_xge9wrqF-T_EhQI__flIAP_C-gEDBr1-vn19wE4DPwC8RAVB94OCPfz1RH3EesXCu3j9vj3GRb1_Rj39Qj_Af8N9_b2RPX6_CAALbLEKjs4E0AJSGFQAipzEAAaYP4JABjdXh24FkbvGDT74-823RvosBT_1BQAFNb-_zwD6sTaEgDsCeXppgAAAMrp_Df4AABx3hPf5NzjCATnJTddbBMSBIHsE-js9tLe0PH46_0iMADQ4tjpBe5W_gMGKiAALazAIzs4E0AJSG9QAiqvBhAMGqAGAABcwgAAgL8AADRCAADgQAAAiMEAAJBBAADYQQAAQEAAAIzCAACgwQAAEEIAAHBBAAAgwgAARMIAAKBBAACwwQAAFMIAALjBAACYwQAA4MEAAIBCAADQwQAAHEIAALDBAABUQgAAwMEAAGTCAAAQQQAAwEIAADBCAACCQgAAAMEAAOjBAACAQQAAMMEAAKDAAABgQQAAkEEAACBCAAAwwgAAoMEAAIC_AACoQQAAgMEAAAjCAAB8QgAA4MAAACDBAADAQQAAiMEAAGzCAADQQQAAQEAAABzCAACAwAAAuMEAAMBBAACAwQAAAMAAACBBAAA4QgAAGMIAAABBAABAwAAAgMAAAKDAAAAQwgAAkMEAAMDBAADwQQAA4EEAAHDBAAAAwQAASEIAAIBBAABswgAAsMEAAMBAAAAEwgAAiMIAAEDBAABwQQAAPEIAAARCAACAQAAAhEIAANDBAAA0QgAATEIAAIpCAAAMQgAAkEIAAGBBAACAwAAA0MEAAJjBAAA0QgAAukIAAFBCAADgQQAAgMEAAGxCAABwQgAAksIAALrCAACYwQAAFMIAALBBAAB8wgAAHMIAAJBBAACgwQAAOEIAAGzCAADYQQAAtEIAAMjBAAD4wQAAIMIAAJzCAABUwgAA4EAAAKDAAABYwgAAAEIAAMRCAAAcwgAAEMIAAMhBAABYwgAAmMEAAIrCAACgwQAALEIAAMBBAABQwQAAyEEAAKzCAABQQQAAwMAAALjBAABMQgAA6EEAAADBAACAPwAAwEAAALhBAAAAQQAAMEEAAFxCAAAUQgAAEEEAAJhBAABAQAAAsEEAAEBCAADAQQAATMIAAJBBAAA4QgAAhsIAAAzCAAAgwQAAJEIAAEzCAADowQAALEIAAIBBAABwQgAAFEIAAKjCAABEwgAAEMEAAADCAAAAAAAAgL8AABzCAABQwgAAkEEAAFRCAACAPwAAssIAALLCAABEwgAAoEAAAABBAACgwQAA_kIAANDBAABoQgAAEMIAAGRCAAD4QQAAwMAAAMDAAADIQQAAZMIAABTCAABYwgAAIEEgADgTQAlIdVABKo8CEAAagAIAAOC8AACGvgAAFD4AAHA9AACIvQAA6D0AAEy-AAD2vgAAMD0AAFA9AACuPgAA-L0AAPi9AACqPgAAgr4AAEy-AACSPgAA4DwAABA9AAC-PgAAfz8AAPi9AACCvgAAJD4AAOA8AABUvgAAyL0AADy-AAAMPgAAqj4AAJg9AABAvAAADL4AAEA8AAD4vQAAbL4AAEC8AABkvgAA3r4AAFA9AACovQAAzr4AADw-AADgPAAAPL4AACS-AAAMPgAAuL0AACS-AABAPAAA4DwAABA9AADCPgAAiL0AAKa-AABwPQAAST8AAAw-AAAkPgAAXD4AAEA8AABQvQAAML0AAJi9IAA4E0AJSHxQASqPAhABGoACAABAPAAATL4AAHC9AAAzvwAAQDwAAKA8AAAwPQAAQLwAAOC8AAAsPgAAqL0AAAy-AADIPQAAoLwAAMg9AADIvQAAUL0AAC8_AAA0vgAAPD4AAOC8AABQvQAA6D0AAOC8AABQPQAAPD4AABA9AACAuwAAVD4AAEw-AACAuwAAmD0AAPi9AAAsvgAAEL0AABA9AABcPgAA4DwAABS-AACovQAAVD4AAJg9AAAQPQAADD4AALi9AAD4vQAAf78AAOg9AACAOwAAyD0AABy-AADYvQAA2D0AAKg9AADIPQAAcD0AAKg9AACAOwAA2L0AAIi9AABMPgAAED0AAIA7AAAkviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ae6GKuComHw","parent-reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1080,"cheight":1080,"cratio":1,"dups":["1844490894097861881"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1434084250"}},"dups":{"7337463648124401468":{"videoId":"7337463648124401468","title":"Trigonometric Proof: \u0007[cos\u0007](A+\u0007[B\u0007])=\u0007[cos\u0007](A) \u0007[cos\u0007](\u0007[B\u0007])-sin(A) sin(\u0007[B\u0007])","cleanTitle":"Trigonometric Proof: cos(A+B)=cos(A) cos(B)-sin(A) sin(B)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=X2rv8XNZ0Eg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/X2rv8XNZ0Eg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcHZxaWhmTXg5OEpVdDNCa2wzR1NUQQ==","name":"Physics Ninja","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Physics+Ninja","origUrl":"http://www.youtube.com/@PhysicsNinja","a11yText":"Physics Ninja. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":756,"text":"12:36","a11yText":"Süre 12 dakika 36 saniye","shortText":"12 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"16 eki 2022","modifyTime":1665950527000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/X2rv8XNZ0Eg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=X2rv8XNZ0Eg","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":756},"parentClipId":"7337463648124401468","href":"/preview/7337463648124401468?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/7337463648124401468?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6762013871831908703":{"videoId":"6762013871831908703","title":"Simplest Proof: Sin(A-\u0007[B\u0007]), \u0007[Cos\u0007](A+\u0007[B\u0007]) & \u0007[Cos\u0007](A-\u0007[B\u0007]) | Trigonometric Identity","cleanTitle":"Simplest Proof: Sin(A-B), Cos(A+B) & Cos(A-B) | Trigonometric Identity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=K0xpipKRoWA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/K0xpipKRoWA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSEU3WWtWVG5ycEIyWE5xaU1fV2EyZw==","name":"Animate Math & Science","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Animate+Math+%26+Science","origUrl":"http://www.youtube.com/@AnimateMathScience","a11yText":"Animate Math & Science. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":112,"text":"1:52","a11yText":"Süre 1 dakika 52 saniye","shortText":"1 dk."},"date":"3 haz 2024","modifyTime":1717372800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/K0xpipKRoWA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=K0xpipKRoWA","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":112},"parentClipId":"6762013871831908703","href":"/preview/6762013871831908703?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/6762013871831908703?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16031952831185477843":{"videoId":"16031952831185477843","title":"Class 11 Trigonometry | Compound Angles Formula | Sin (A+ \u0007[B\u0007]) | Sin (A- \u0007[B\u0007]) | \u0007[Cos\u0007] (A+ \u0007[B\u0007...","cleanTitle":"Class 11 Trigonometry | Compound Angles Formula | Sin (A+ B) | Sin (A- B) | Cos (A+ B) | Cos (A-B)","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/0Uqa8Jzx-b8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0Uqa8Jzx-b8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbEhhSzFKejV1eXFzclhWR2laeWxwUQ==","name":"Maths Only Maths","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Maths+Only+Maths","origUrl":"http://www.youtube.com/@mathsonlymaths3822","a11yText":"Maths Only Maths. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":27,"text":"00:27","a11yText":"Süre 27 saniye","shortText":""},"date":"19 tem 2024","modifyTime":1721347200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0Uqa8Jzx-b8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0Uqa8Jzx-b8","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":27},"parentClipId":"16031952831185477843","href":"/preview/16031952831185477843?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/16031952831185477843?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1134513770522703810":{"videoId":"1134513770522703810","title":"Proof of \u0007[Cos\u0007](A+\u0007[B\u0007]) | using Derivative | Proofs | Trigonometry Formula | Sin (A+\u0007[B\u0007]) Formula...","cleanTitle":"Proof of Cos(A+B) | using Derivative | Proofs | Trigonometry Formula | Sin (A+B) Formula #shorts","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AbJ4z04NA_w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AbJ4z04NA_w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDT2dyNHllX0pnNm9iLTNCaHpBaWJJdw==","name":"Human Sir Maths Club","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Human+Sir+Maths+Club","origUrl":"http://www.youtube.com/@HumanSirMathsClub","a11yText":"Human Sir Maths Club. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":48,"text":"00:48","a11yText":"Süre 48 saniye","shortText":""},"views":{"text":"1,8bin","a11yText":"1,8 bin izleme"},"date":"7 haz 2021","modifyTime":1623024000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AbJ4z04NA_w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AbJ4z04NA_w","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":48},"parentClipId":"1134513770522703810","href":"/preview/1134513770522703810?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/1134513770522703810?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14401655594263532014":{"videoId":"14401655594263532014","title":"Prove That : \u0007[Cos\u0007](A-\u0007[B\u0007]).\u0007[Cos\u0007](A+\u0007[B\u0007])= 〖\u0007[Cos\u0007]〗^2 A-〖Sin〗^2 \u0007[B\u0007]","cleanTitle":"Prove That : Cos(A-B).Cos(A+B)= 〖Cos〗^2 A-〖Sin〗^2 B","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vSuCI4wzsJg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vSuCI4wzsJg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQ0JPYTRzVmN6Vk5qUGo4UnZzYk1uQQ==","name":"Solution With X","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Solution+With+X","origUrl":"http://www.youtube.com/@solutionwithx","a11yText":"Solution With X. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":167,"text":"2:47","a11yText":"Süre 2 dakika 47 saniye","shortText":"2 dk."},"date":"19 eyl 2024","modifyTime":1726763698000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vSuCI4wzsJg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vSuCI4wzsJg","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":167},"parentClipId":"14401655594263532014","href":"/preview/14401655594263532014?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/14401655594263532014?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16614542426172645431":{"videoId":"16614542426172645431","title":"If \u0007[Cos\u0007] A =\u0007[Cos\u0007] \u0007[B\u0007] then show that Angle A =Angle \u0007[B\u0007]","cleanTitle":"If Cos A =Cos B then show that Angle A =Angle B","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/1MtNAuAw9RQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1MtNAuAw9RQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd1JMVThYSXhSUjJlSTF6aG04RFJjQQ==","name":"MATHEMATICAL ADDA","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MATHEMATICAL+ADDA","origUrl":"http://www.youtube.com/@MATHEMATICALADDA2019.","a11yText":"MATHEMATICAL ADDA. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":60,"text":"1:00","a11yText":"Süre 1 dakika","shortText":"1 dk."},"views":{"text":"5,9bin","a11yText":"5,9 bin izleme"},"date":"22 oca 2023","modifyTime":1674345600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1MtNAuAw9RQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1MtNAuAw9RQ","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":60},"parentClipId":"16614542426172645431","href":"/preview/16614542426172645431?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/16614542426172645431?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2623314492742791540":{"videoId":"2623314492742791540","title":"Easiest Proof of sin(A+\u0007[B\u0007]) & \u0007[cos\u0007](A+\u0007[B\u0007])","cleanTitle":"Easiest Proof of sin(A+B) & cos(A+B)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=lHMJ9mhD8NE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/lHMJ9mhD8NE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVlFMnppejJSMGwzTDlBUE5iUHdjUQ==","name":"Vishwas Dhatterwal","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Vishwas+Dhatterwal","origUrl":"http://www.youtube.com/@VishwasDhatterwal","a11yText":"Vishwas Dhatterwal. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":164,"text":"2:44","a11yText":"Süre 2 dakika 44 saniye","shortText":"2 dk."},"views":{"text":"2,9bin","a11yText":"2,9 bin izleme"},"date":"15 eki 2023","modifyTime":1697369411000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/lHMJ9mhD8NE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=lHMJ9mhD8NE","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":164},"parentClipId":"2623314492742791540","href":"/preview/2623314492742791540?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/2623314492742791540?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16951421080835507869":{"videoId":"16951421080835507869","title":"Diploma Math I, Worked Examples based on Sin(A+\u0007[B\u0007]), Sin(A-\u0007[B\u0007]), \u0007[Cos\u0007](A+\u0007[B\u0007]), \u0007[Cos\u0007](A-\u0007[B...","cleanTitle":"Diploma Math I, Worked Examples based on Sin(A+B), Sin(A-B), Cos(A+B), Cos(A-B) formulas","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OGpwB2dfu48","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OGpwB2dfu48?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZjFuMWdRemFHX3I5Qm1faEp5b2I4UQ==","name":"Maths Academy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Maths+Academy","origUrl":"http://www.youtube.com/channel/UCf1n1gQzaG_r9Bm_hJyob8Q","a11yText":"Maths Academy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":622,"text":"10:22","a11yText":"Süre 10 dakika 22 saniye","shortText":"10 dk."},"date":"1 mayıs 2020","modifyTime":1588291200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OGpwB2dfu48?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OGpwB2dfu48","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":622},"parentClipId":"16951421080835507869","href":"/preview/16951421080835507869?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/16951421080835507869?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16076010806097411303":{"videoId":"16076010806097411303","title":"Prove that :- a(\u0007[b\u0007] cosC - c cosB) = \u0007[b\u0007]² - c²","cleanTitle":"Prove that :- a(b cosC - c cosB) = b² - c²","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=uO8Dk6x3yR0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/uO8Dk6x3yR0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeTBKbEtGMVc5cVp5bzhkR2VrLWFaZw==","name":"Pace Edu.","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Pace+Edu.","origUrl":"http://www.youtube.com/@hindilife9250","a11yText":"Pace Edu.. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":224,"text":"3:44","a11yText":"Süre 3 dakika 44 saniye","shortText":"3 dk."},"date":"20 mar 2023","modifyTime":1679270400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/uO8Dk6x3yR0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=uO8Dk6x3yR0","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":224},"parentClipId":"16076010806097411303","href":"/preview/16076010806097411303?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/16076010806097411303?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18225918010381791171":{"videoId":"18225918010381791171","title":"sin(a-\u0007[b\u0007]) = sin(a) \u0007[cos\u0007](\u0007[b\u0007]) - \u0007[cos\u0007](a) sin(\u0007[b\u0007]) Proof","cleanTitle":"sin(a-b) = sin(a) cos(b) - cos(a) sin(b) Proof","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xll9kkQYzYg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xll9kkQYzYg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOW9GYmhLMVlBZ015VV9zVHdKeExuZw==","name":"Destined Emporium","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Destined+Emporium","origUrl":"http://www.youtube.com/@DestinedEmporium","a11yText":"Destined Emporium. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":99,"text":"1:39","a11yText":"Süre 1 dakika 39 saniye","shortText":"1 dk."},"date":"30 eyl 2024","modifyTime":1727654400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xll9kkQYzYg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xll9kkQYzYg","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":99},"parentClipId":"18225918010381791171","href":"/preview/18225918010381791171?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/18225918010381791171?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6924831840091690430":{"videoId":"6924831840091690430","title":"#Monica #Ludacris #StillStanding Monica Ft Ludacris - Still Standing Performed Live!! #\u0007[BCox\u0007]","cleanTitle":"#Monica #Ludacris #StillStanding Monica Ft Ludacris - Still Standing Performed Live!! #BCox","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=buXV3ZVxX-M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/buXV3ZVxX-M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOXF6ek1WOEU1OS1EY2ZMajdWcGl2UQ==","name":"Paul Johnson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Paul+Johnson","origUrl":"http://gdata.youtube.com/feeds/api/users/remedyunclepaulie","a11yText":"Paul Johnson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":621,"text":"10:21","a11yText":"Süre 10 dakika 21 saniye","shortText":"10 dk."},"views":{"text":"208,9bin","a11yText":"208,9 bin izleme"},"date":"11 eyl 2008","modifyTime":1221091200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/buXV3ZVxX-M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=buXV3ZVxX-M","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":621},"parentClipId":"6924831840091690430","href":"/preview/6924831840091690430?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/6924831840091690430?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2210780698944176160":{"videoId":"2210780698944176160","title":"sin ( A-\u0007[B\u0007] ) = sin A \u0007[cos\u0007] \u0007[B\u0007] - cosA sinB proof #Trigonometry By J.P. Verma","cleanTitle":"sin ( A-B ) = sin A cos B - cosA sinB proof #Trigonometry By J.P. Verma","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5T8ukxz2qfE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5T8ukxz2qfE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSlB1UGtMbHVGVE1CNjlNeTMwRm9Zdw==","name":"Study Point Pro","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Study+Point+Pro","origUrl":"http://www.youtube.com/@StudyPointPro","a11yText":"Study Point Pro. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":373,"text":"6:13","a11yText":"Süre 6 dakika 13 saniye","shortText":"6 dk."},"views":{"text":"23,6bin","a11yText":"23,6 bin izleme"},"date":"31 mayıs 2021","modifyTime":1622419200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5T8ukxz2qfE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5T8ukxz2qfE","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":373},"parentClipId":"2210780698944176160","href":"/preview/2210780698944176160?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/2210780698944176160?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15565583960296570704":{"videoId":"15565583960296570704","title":"If tan theta = a/\u0007[b\u0007] in any triangle, ABC, find the value of a sin theta - \u0007[b\u0007] \u0007[cos\u0007] 𝜃 / a si...","cleanTitle":"If tan theta = a/b in any triangle, ABC, find the value of a sin theta - b cos 𝜃 / a sin 𝜃 + b cos.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QBWjmHEDTzE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QBWjmHEDTzE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb2o5VlN1clhkd2ZBd296NmVSSmZHdw==","name":"Kalvi kan","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Kalvi+kan","origUrl":"http://www.youtube.com/@Kalvikan","a11yText":"Kalvi kan. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":140,"text":"2:20","a11yText":"Süre 2 dakika 20 saniye","shortText":"2 dk."},"date":"1 ara 2025","modifyTime":1764547200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QBWjmHEDTzE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QBWjmHEDTzE","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":140},"parentClipId":"15565583960296570704","href":"/preview/15565583960296570704?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/15565583960296570704?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1490297785528638233":{"videoId":"1490297785528638233","title":"Lecture#06:Prove that Sin(A+\u0007[B\u0007])=Sin(A) \u0007[Cos\u0007](\u0007[B\u0007])+\u0007[Cos\u0007](A) Sin(\u0007[B\u0007])","cleanTitle":"Lecture#06:Prove that Sin(A+B)=Sin(A) Cos(B)+Cos(A) Sin(B)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WmQTZY5FXuE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WmQTZY5FXuE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR25VRkJOSjlUYXozaVpGLWJfRWMwZw==","name":"Learn Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Learn+Mathematics","origUrl":"http://www.youtube.com/@ZamanMathsLecture","a11yText":"Learn Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":74,"text":"1:14","a11yText":"Süre 1 dakika 14 saniye","shortText":"1 dk."},"date":"20 mar 2022","modifyTime":1647803098000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WmQTZY5FXuE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WmQTZY5FXuE","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":74},"parentClipId":"1490297785528638233","href":"/preview/1490297785528638233?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/1490297785528638233?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11941330678110157601":{"videoId":"11941330678110157601","title":"Proof Of Sin(A+\u0007[B\u0007]) & \u0007[Cos\u0007](A+\u0007[B\u0007])","cleanTitle":"Proof Of Sin(A+B) & Cos(A+B)","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/u9aJXRyCG5M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/u9aJXRyCG5M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO2h0dHA6Ly93d3cueW91dHViZS5jb20vQFBPTFlNQVRIX1JBR0hV","name":"POLYMATH","isVerified":false,"subscribersCount":0,"url":"/video/search?text=POLYMATH","origUrl":"http://www.youtube.com/@POLYMATH_RAGHU","a11yText":"POLYMATH. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":31,"text":"00:31","a11yText":"Süre 31 saniye","shortText":""},"date":"23 eki 2023","modifyTime":1698019200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/u9aJXRyCG5M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=u9aJXRyCG5M","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":31},"parentClipId":"11941330678110157601","href":"/preview/11941330678110157601?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/11941330678110157601?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5579579069333012079":{"videoId":"5579579069333012079","title":"#tricks Parametric x=(a-\u0007[b\u0007]) \u0007[cos\u0007](t)+\u0007[b\u0007] \u0007[cos\u0007](t(k-1)), y=(a-\u0007[b\u0007]) sin(t)-\u0007[b\u0007] sin(t(k-1)...","cleanTitle":"#tricks Parametric x=(a-b) cos(t)+b cos(t(k-1)), y=(a-b) sin(t)-b sin(t(k-1)),#youtubeshorts #shorts","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/zpwMKZUrHsE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zpwMKZUrHsE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMTJMYkotQkx6ZDMzWE50dXBfdlR0dw==","name":"PHI MATH","isVerified":false,"subscribersCount":0,"url":"/video/search?text=PHI+MATH","origUrl":"http://www.youtube.com/@phi-math","a11yText":"PHI MATH. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":47,"text":"00:47","a11yText":"Süre 47 saniye","shortText":""},"date":"4 mar 2023","modifyTime":1677888000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zpwMKZUrHsE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zpwMKZUrHsE","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":47},"parentClipId":"5579579069333012079","href":"/preview/5579579069333012079?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/5579579069333012079?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8205269322889375169":{"videoId":"8205269322889375169","title":"Sin(A+\u0007[B\u0007]) Sin(A-\u0007[B\u0007]) \u0007[Cos\u0007](A+\u0007[B\u0007]) \u0007[Cos\u0007](A-\u0007[B\u0007]) के मान #smile_maker #education #shorts #...","cleanTitle":"Sin(A+B) Sin(A-B) Cos(A+B) Cos(A-B) के मान #smile_maker #education #shorts #trigonometric #trending","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=3nkOpP-RgiQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3nkOpP-RgiQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVljRWhIcmI5bkduN0tsUU90UkxmZw==","name":"Smile Maker","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Smile+Maker","origUrl":"http://www.youtube.com/@smilemaker","a11yText":"Smile Maker. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":45,"text":"00:45","a11yText":"Süre 45 saniye","shortText":""},"views":{"text":"34,7bin","a11yText":"34,7 bin izleme"},"date":"10 tem 2022","modifyTime":1657411200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3nkOpP-RgiQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3nkOpP-RgiQ","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":45},"parentClipId":"8205269322889375169","href":"/preview/8205269322889375169?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/8205269322889375169?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1844490894097861881":{"videoId":"1844490894097861881","title":"\u0007[B\u0007]'\u0007[cos\u0007] - YouTube","cleanTitle":"B'cos - YouTube","host":{"title":"YouTube","href":"http://www.coveralia.com/videoclips/b-cos-don-airey.php","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ae6GKuComHw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjJJRVZ3YTRCTWJteGxwWkhXNDRSQQ==","name":"Don Airey - Topic","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Don+Airey+-+Topic","origUrl":"http://www.youtube.com/channel/UCN2IEVwa4BMbmxlpZHW44RA","a11yText":"Don Airey - Topic. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":294,"text":"4:54","a11yText":"Süre 4 dakika 54 saniye","shortText":"4 dk."},"date":"7 kas 2014","modifyTime":1415343600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ae6GKuComHw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ae6GKuComHw","reqid":"1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL","duration":294},"parentClipId":"1844490894097861881","href":"/preview/1844490894097861881?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","rawHref":"/video/preview/1844490894097861881?parent-reqid=1769626055383564-7972053466411291289-balancer-l7leveler-kubr-yp-vla-18-BAL&text=BCox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"7972053466411291289718","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"BCox","queryUriEscaped":"BCox","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}