{"pages":{"search":{"query":"Bcox","originalQuery":"Bcox","serpid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","parentReqid":"","serpItems":[{"id":"7337463648124401468-0-0","type":"videoSnippet","props":{"videoId":"7337463648124401468"},"curPage":0},{"id":"6762013871831908703-0-1","type":"videoSnippet","props":{"videoId":"6762013871831908703"},"curPage":0},{"id":"16031952831185477843-0-2","type":"videoSnippet","props":{"videoId":"16031952831185477843"},"curPage":0},{"id":"1134513770522703810-0-3","type":"videoSnippet","props":{"videoId":"1134513770522703810"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEJjb3gK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","ui":"desktop","yuid":"4063650841769425165"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"14401655594263532014-0-5","type":"videoSnippet","props":{"videoId":"14401655594263532014"},"curPage":0},{"id":"11910685238037106036-0-6","type":"videoSnippet","props":{"videoId":"11910685238037106036"},"curPage":0},{"id":"2623314492742791540-0-7","type":"videoSnippet","props":{"videoId":"2623314492742791540"},"curPage":0},{"id":"16951421080835507869-0-8","type":"videoSnippet","props":{"videoId":"16951421080835507869"},"curPage":0},{"id":"16076010806097411303-0-9","type":"videoSnippet","props":{"videoId":"16076010806097411303"},"curPage":0},{"id":"18285447808517736288-0-10","type":"videoSnippet","props":{"videoId":"18285447808517736288"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEJjb3gK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","ui":"desktop","yuid":"4063650841769425165"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"1137395185516115693-0-12","type":"videoSnippet","props":{"videoId":"1137395185516115693"},"curPage":0},{"id":"18225918010381791171-0-13","type":"videoSnippet","props":{"videoId":"18225918010381791171"},"curPage":0},{"id":"6924831840091690430-0-14","type":"videoSnippet","props":{"videoId":"6924831840091690430"},"curPage":0},{"id":"2210780698944176160-0-15","type":"videoSnippet","props":{"videoId":"2210780698944176160"},"curPage":0},{"id":"15565583960296570704-0-16","type":"videoSnippet","props":{"videoId":"15565583960296570704"},"curPage":0},{"id":"1490297785528638233-0-17","type":"videoSnippet","props":{"videoId":"1490297785528638233"},"curPage":0},{"id":"11941330678110157601-0-18","type":"videoSnippet","props":{"videoId":"11941330678110157601"},"curPage":0},{"id":"5579579069333012079-0-19","type":"videoSnippet","props":{"videoId":"5579579069333012079"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"correction":{"items":[{"kind":"misspell","url":"/video/search?text=B%20cos","params":{"text":"B cos"},"query":"B co\u0007(s\u0007)","helpUrl":"https://yandex.com.tr/support/search/info/request-correction.xml","helpTarget":"_blank","helpAriaLabel":"Yazım hatası düzeltme servisi"}],"id":"178636566522"},"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEJjb3gK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","ui":"desktop","yuid":"4063650841769425165"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DBcox"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"4136913660525645077203","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1281084,0,14;287509,0,20;1447467,0,14;1231501,0,76;1473596,0,82;1466396,0,37;912280,0,39"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DBcox","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Bcox","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Bcox","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Bcox: Yandex'te 4 bin video bulundu","description":"Результаты поиска по запросу \"Bcox\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Bcox — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y8a1053a34ecf74ab7280df198a56d14f","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1281084,287509,1447467,1231501,1473596,1466396,912280","queryText":"Bcox","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"4063650841769425165","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769425178","tz":"America/Louisville","to_iso":"2026-01-26T05:59:38-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1281084,287509,1447467,1231501,1473596,1466396,912280","queryText":"Bcox","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"4063650841769425165","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"4136913660525645077203","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":148,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"4063650841769425165","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"7337463648124401468":{"videoId":"7337463648124401468","docid":"12-10-0-Z6C9C59F034AE7636","description":"Physics Ninja looks at the derivation of several trigonometric proofs. 1) cos(A+B)=cos(A)cos(B)-sin(A)sin(B) 2) sin(A+B)=sin(A)cos(B)+sin(B)cos(A)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1627773/b68f52a93f818d8aaf0d2fbde4573bdc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/b-hLGQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DX2rv8XNZ0Eg","linkTemplate":"/video/preview/7337463648124401468?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Trigonometric Proof: cos(A+B)=cos(A) cos(B)-sin(A) sin(B)","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=X2rv8XNZ0Eg\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhUKEzczMzc0NjM2NDgxMjQ0MDE0NjhaEzczMzc0NjM2NDgxMjQ0MDE0NjhqiBcSATAYACJFGjEACipoaGlieGZ4eXd3YWdqb2lkaGhVQ3B2cWloZk14OThKVXQzQmtsM0dTVEESAgASKhDCDw8aDz8T9AWCBCQBgAQrKosBEAEaeIH7_wH_-wYA-QcFCAAG_QHsA_z7-wD_AP__9Pv9BP4A8_oHAQQAAAD6D_3--wAAAP3__AED_gAAEPz--QMAAAATCwAB_gAAAA4D-P_-AQAA_fv99wIAAAAD-_0DAAAAAAAN-vIAAAAABQPx_QAAAAAEAfsEAAAAACAALcSf4zs4E0AJSE5QAiqEAhAAGvABXuYcAOnx2ADL-Ov_3CDoAYEV8P_9KtsA2_zrAOD9BAEbCh0A6v00_ykDJf_DIfr_FQTd_wLsEwAp1Bv_AADhAOEB_QEe4AkANwIS_wvw4gAIJPv-_eoBAObp6v8DHeH-C-cN_wf84QHzBOYBHvwmAdkB8QLoJvkB5-_vAd4GEAPzEN3-CR4DAuntDAEH9iMDAPcCBh8U-_j1Bv0DDfwXBCsL7vz3Iu8C8_z0_uX-DwP__PwDB9TwAPnxBwj1Aer6_u4FBfrPAwD36Pj-5wcZAwISAwYEGP4AHAb9BQL3_vz1MP4EAxv4_hQY9ATn2vf6IAAtUfQ1OzgTQAlIYVACKs8HEAAawAe_urq-gAvXPJH9YrwsLs68cXCOPCHegLsjE_C91y0nPff9QLwkQx4-k2uvOnOULb0YzRq-08JgvRkvp7xRMDM--oCbO5HnRD1A3CW-xCskPPP2b7tMxDu-gpxFu1Yy17pkTFA9Rs-tPPuqnrrCyYw9L1JDvXwZuzz3VrQ9ZKAhPTKZIL3cmwQ81JPevPztAb1a3zY96dudvFORyjyUlAU95zjduRm7EDz1Yi09WVSfPHG74Ttyta-9Ylk6vedt0byDka09sPGPPQxwJj09PJW9L5_RPHLsMLtVil29HOOUvI0FCr0mQKg9kKgrPW_RrryPfTq96ywEvQM-vzts6dG9qValPW0a27y5Zrc9cxOwPb8bgTyndyG-UbYtPa_TozphScM8HRc8O7ASHjwsRRI-oNw7vc-JmDyr6uU9m0LfOjbXITyqHka6gIGAPVTTZDwB_Tm98yOZPWVZi7wz63s8_YALu4RTlTxl_x28WqirPKxjxzqvpvw8IMTfupgWdTyEL-e86T2_PRufKDsFI6U91gI7vknlmjpFGeC8JgTlO0OTn7x4bUU9CQQQPXHOozzB7go9HtyCPKAabTu8uyW7_RCLvdODo7dKFJA8ntrmObpWMbyJFcS9pn_pPesQLLooclK9dDAxPT6p_rvHqEG9eQv_vAfrc7g7Hs684eN9PSZF-TtNuu08RBzeOY31Kjssuas7111qPHapkbu28LE99vErPUKoHDsYI9I8tbBhO3mfWzvA1rA93TiTvfjFabjRSMo9C-qAvI7t4LjkROC8AFqMO3Z2kLgSgEQ9Y3_ZPatjMzng-BW9Z1NkvVLrKbj_I0O-ZmfRvTzykDmQ-sa8_-FTvGslkLmwIh696_BGPHZ0ljkfYqi9PpB-O2WfyrnrS4C9QAenPFvERrnxRZA9Uq1PPJ6yvzjBjAk9LCz6O9-hVzptMck8KEnyvLSerDgNtuI82pEqPqFijbmy_mW9KmMyPPyMFLmK6Pc9P5CsPYLuZjj3PH-9zhgGPvMdMrePeAk7_p7IvfHtrzhhfIc9kvMTPCsCYbifyR69UhZ0PHQqGjm45Ci-0X-FvJ34GrldvwA9vxkLvclyYjjIXzo-3JXCPM2vSziilBS8KebBuz5IODjB4ys-3KVovAeJdLk5xcS9Z7cmvtZHcjiixxm9FMhRPbrUfDfgFXw9q9UyvUkLFTZpgKw98fRKvXDrS7VkXpI9tGtsPSF47jg8Kfq7VSptPeAyjbjDldi8vzpYPHmbbbjyoPK6W4kqPV4QqjcgADgTQAlIbVABKnMQABpgHeAAAwINyQM1OeX-ztEd08ngyeKmFv_VB_8wFgEZF_XSuA8LABTzEuWaAP8AINTpSwoA3n_hzDIU-jQ5upDoRRlxIPzAzdYaE_EKFhEAA_FM-zYcAMsF1wVO4OPxTUlUIAAtQdIUOzgTQAlIb1ACKq8GEAwaoAYAAKBBAAAwwQAAAEIAAAjCAAAQQgAAAEIAAJRCAACgwQAAIMEAAIDBAAC4QQAA4EEAAHjCAADIQQAACEIAABBCAABwwQAAisIAAHBCAABIwgAAEEIAAFTCAABwQQAALEIAAPBBAAAIQgAAyEEAAHzCAAAwwgAAkMEAAIC_AAAkQgAAgsIAAHTCAADgwQAAyMEAAHBCAAAsQgAAuMEAAMBAAACCQgAAAEEAAAhCAACAQQAAkEIAACjCAADAwQAAyMEAAOhBAABAwQAArMIAABzCAADYwQAAuMEAADBBAAAIQgAAssIAAIDAAAD4QQAAhkIAAGDBAAAwwgAAgL8AAIbCAADgQQAAYMIAAJBBAABcwgAAgD8AAHjCAACAQgAAoEEAALDCAABoQgAA6EEAAOjBAADIwQAAEMEAAIBBAABgQQAA-MEAAAhCAAAgwQAAUMEAACBBAAA4wgAA6EEAAIhCAACIQQAAFMIAAJhBAAB8QgAAssIAADBCAAAAwgAApsIAAADCAAAwwgAAnEIAADBBAACMwgAAEEIAAIBCAACwwQAAmMEAAERCAABAwAAAEEEAACBCAADQQQAASEIAAJjBAAAQQQAA2EEAAKTCAAAMQgAAkEEAAIDAAAC4wgAADMIAADDCAAAMwgAAAAAAACDBAAAgQQAAoEEAAIA_AAAAAAAAwMEAAAxCAADAwQAA8MEAAIDAAACYQgAAVEIAABBBAAA0QgAAIMEAAHzCAAAAwgAAAMAAAODBAACYQQAA8MEAALhBAACAvwAAJMIAACDBAADwQQAAYMEAAKBAAACYQQAAMEIAAIBBAABgQgAAwMAAAEjCAABUwgAAdMIAAKBAAABQwQAAEEIAAAjCAAAwwgAAoMAAAMBBAACgwAAA4EEAAPhBAABgQQAAmMEAAIC_AABQwQAAqMIAALTCAACYQQAAEMEAAAzCAABEwgAA4MEAAKjBAACQwQAAYEEAAKhBAADSQgAADMIAABDCAACCwgAAAMEAAMBAAABwwQAASEIAAEhCAABAwQAATEIAAJBBAADwwQAAZEIAABjCAACgwSAAOBNACUh1UAEqjwIQABqAAgAAgDsAAJa-AAA0PgAAbL4AAOA8AAC-PgAAiD0AABG_AACIPQAA4LwAADA9AABwvQAAgLsAAL4-AABcvgAABL4AACw-AACIvQAAPD4AAN4-AAB_PwAARL4AAOg9AACmPgAAVL4AAHA9AAC4PQAABL4AADw-AAC6PgAADD4AALK-AABwvQAAED0AAKi9AAAkvgAADL4AAHy-AADOvgAAJD4AAIA7AADCvgAAND4AAKC8AAC4vQAA-L0AALo-AACGvgAATL4AAFy-AAAMvgAAUL0AAOY-AABMvgAAHL4AADA9AABRPwAAFD4AAPi9AABQPQAA2L0AACQ-AACYvQAADL4gADgTQAlIfFABKo8CEAEagAIAAAS-AACIvQAAJL4AAFu_AAB8vgAATL4AAI4-AACWvgAAgDsAABC9AADIvQAATL4AAAy-AABQvQAAuL0AAJi9AABsvgAAyj4AAKC8AABcPgAAoj4AAEC8AAA0vgAAoLwAALi9AADgvAAAoLwAAJg9AABwvQAAVD4AAEQ-AABMPgAAyr4AAKA8AAAcvgAAcL0AAAs_AAAMPgAA5r4AAGy-AABEPgAAkj4AABA9AACmPgAAVD4AABC9AAB_vwAAND4AAJo-AACgPAAA4DwAAEA8AACgPAAARD4AAJg9AABcPgAAQDwAADQ-AACAOwAAuL0AAHQ-AAAEPgAA4LwAAGy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=X2rv8XNZ0Eg","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7337463648124401468"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3155367760"},"6762013871831908703":{"videoId":"6762013871831908703","docid":"12-3-17-ZBF245F7CF5081A67","description":"This video unpacks the mysteries of sine and cosine functions, proving the identities for sin(A-B), cos(A+B), and cos(A-B) using clear Algebra and Simple Animations. Unravel the following: Sin...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/997943/9f8b67e6d56e92e8f4b17742fed727f1/564x318_1"},"target":"_self","position":"1","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DK0xpipKRoWA","linkTemplate":"/video/preview/6762013871831908703?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simplest Proof: Sin(A-B), Cos(A+B) & Cos(A-B) | Trigonometric Identity","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=K0xpipKRoWA\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhUKEzY3NjIwMTM4NzE4MzE5MDg3MDNaEzY3NjIwMTM4NzE4MzE5MDg3MDNqrQ0SATAYACJDGjAACiloaHh0anhiZ3dobmdoeWJoaFVDSEU3WWtWVG5ycEIyWE5xaU1fV2EyZxICABEqD8IPDxoPPxNwggQkAYAEKyqLARABGniB9PT5_v0DAP0ACw74CfwC9QH4APn-_gDuCfEABAAAAPP9Cgj8AAAA_gsHAgAAAAAG9_cCAv0BABD7_vkDAAAAFhD9DfwAAAAOA_j-_gEAAPX7_vwDAAAABvP6-f8AAAAADfryAAAAAAUD8fwAAAAA_wf-__8AAAAgAC3nmNw7OBNACUhOUAIqcxAAGmAhDAANB_Pi0iYf-Pzv8A0S7Abr_sMdAO0IABcd7fEM89fECAv_JMYU574AAAAf-QYhIgD5VuHf0g8iDQLLstsHPn_4COwRBvb92A8BAhMj7BfrHzMA8P0JBCP6GxIlKzcgAC1xuVA7OBNACUhvUAIqrwYQDBqgBgAATEIAAOhBAACIQgAALMIAAJpCAAAIQgAADEIAADBBAABAwAAAoMAAADhCAAAAAAAA8MEAAAjCAACAQgAAYEEAAADCAAB8wgAAjEIAAKDAAACgwAAAyMEAAAjCAAAwwQAAgMAAACBBAAAwwQAAisIAAHDBAAAAwQAAgEAAABBCAABcwgAAwMAAACDCAAC4QQAAgL8AADxCAAA4QgAAikIAAIC_AACgQQAA8EEAAGjCAAAwQgAAsMEAANjBAAAQQgAAEEEAABRCAABYwgAAuMEAAKhBAAAAQQAAcMEAAMBAAAAQwgAAoMEAAEBBAADiQgAAEMIAAETCAACgwAAAxMIAAARCAAAAwgAAAEIAAADCAACEwgAATMIAAIBCAACwQgAAQMIAACRCAAAAAAAAiMIAAIjCAACQQQAAkMEAAIA_AAAQQQAAeEIAAIbCAACAQAAA8MEAAKDAAACYwQAAeEIAADDBAABUwgAA8MEAAI5CAABowgAAIMEAAMhBAAAkwgAAgMIAAMBAAACeQgAAgL8AALDBAAAkQgAA2EEAADDBAABcwgAADEIAAIDBAACAQAAAEEEAABBCAABMQgAAdMIAAADBAAAAQQAAdMIAAChCAAC4QQAASMIAAEzCAAAgQQAAjsIAAEDCAABgQQAAIMEAAJjBAADQQQAANEIAAIDBAABAwgAA4MAAALDBAACAPwAAIMEAAL5CAACIQQAAqkIAAAAAAADIQQAAiMIAAHzCAABgQQAA8MEAAEBAAADAQAAA2EEAABxCAAB0wgAAQEIAAOhBAAAkQgAAyMEAAMBAAACAPwAAgEAAAEDAAACYwQAAfMIAADzCAABgwgAAwMAAANDBAABgQQAAwMEAAEBBAAAAwgAAsEEAAIjBAAA8QgAADEIAAIBAAABwwQAAgMEAABxCAABAwAAABMIAAFDBAACgwAAAlMIAAERCAAAswgAAVMIAAGBBAAAAwQAAcEEAAEhCAACawgAANMIAAJLCAAA4QgAA4EAAAKBBAACYwQAAwEEAAHBBAAA8QgAAUEIAAEzCAACIQgAA6MEAABRCIAA4E0AJSHVQASqPAhAAGoACAACIvQAAjr4AABw-AABUvgAAED0AANo-AABkPgAACb8AAIg9AADovQAAgDsAAEC8AAA0vgAA1j4AAGS-AAAsvgAArj4AAHC9AAAUPgAABT8AAH8_AAB0vgAA2D0AAGw-AACavgAAQLwAAJg9AACovQAAFD4AANo-AAAsPgAAZL4AAHC9AACAuwAABL4AABS-AABwvQAAHL4AAOa-AABMPgAA2L0AANK-AAAEPgAAED0AABC9AABAvAAAoj4AAMK-AABUvgAA6L0AAJi9AAAQvQAA5j4AAOi9AACCvgAAED0AAE8_AACoPQAANL4AAEQ-AADYvQAAFD4AADC9AAAEviAAOBNACUh8UAEqjwIQARqAAgAABL4AAKg9AAD4vQAAPb8AAKa-AAC4vQAAdD4AAIi9AADgPAAAgLsAAAy-AACGvgAANL4AAEC8AACAuwAAUL0AAIi9AADePgAAoLwAAKI-AACWPgAAgDsAAFy-AABwvQAAiL0AAIC7AABQvQAAED0AALi9AACCPgAA2D0AADw-AACGvgAAQLwAAKC8AAC4vQAA9j4AAAQ-AADCvgAADL4AANg9AAB8PgAA4DwAAHQ-AAAcPgAAMD0AAH-_AAD4PQAAuD0AAOC8AABwPQAAcD0AAIC7AABMPgAALD4AAFQ-AACAOwAAqD0AAHA9AACgPAAAdD4AAOg9AADgPAAAJL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=K0xpipKRoWA","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6762013871831908703"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16031952831185477843":{"videoId":"16031952831185477843","docid":"12-11-5-Z9D31BE81C295D3A6","description":"Class 11 Trigonometry | Compound Angles Formula | Sin (A+ B) | Sin (A- B) | Cos (A+ B) | Cos (A-B) #class_11_trigonometry #compound_angles_firmula #sin(a+b) #sin(a-b) #cos(a+b) #cos(a-b)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3185573/848b5eb2b934ef66381b2b636ee2d33b/564x318_1"},"target":"_self","position":"2","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0Uqa8Jzx-b8","linkTemplate":"/video/preview/16031952831185477843?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Class 11 Trigonometry | Compound Angles Formula | Sin (A+ B) | Sin (A- B) | Cos (A+ B) | Cos (A-B)","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0Uqa8Jzx-b8\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhYKFDE2MDMxOTUyODMxMTg1NDc3ODQzWhQxNjAzMTk1MjgzMTE4NTQ3Nzg0M2quDRIBMBgAIkQaMQAKKmhoZmFkemtqaHljdndnemJoaFVDbEhhSzFKejV1eXFzclhWR2laeWxwURICABIqD8IPDxoPPxMbggQkAYAEKyqLARABGniB-_8B__sGAPADBgYAA_8B7gP2APr__wD1BfX99gL_AP32BgMCAAAA-g_9_vsAAAD9__wBA_4AAA79_gMEAAAADAcGA_0AAAAWBvb6_gEAAPX7_vwDAAAAB_sGC_8AAAAADfryAAAAAAMA-v8AAAAABwj7AwAAAAAgAC3En-M7OBNACUhOUAIqcxAAGmAfBgD3KP678zEx9v3e__Tw9ebL5aYV_-wuACD_DuIWKd2t6xb_KOID-bAAAAAH0_8b_gD-XMj6-P0HBwQRw8M4Nn8B9egTzOcdxecJ-xlJ7PDwBgYA4QoXBBvELCYlMR4gAC1FbTY7OBNACUhvUAIqrwYQDBqgBgAAfEIAAEDAAABwQgAAHMIAAFDCAACAQgAAgkIAAIjBAACQwQAA4MEAAFBBAAAMwgAAgMEAAATCAAAwQQAA4EEAAJpCAAAUwgAAeEIAACDCAAB0wgAACMIAAGTCAAD4QQAAVMIAANDBAABgQQAAcMIAAABBAABQQQAAYMIAABxCAAD4wQAAsEEAADzCAADwQQAAyEEAAJpCAAAMQgAAnEIAAKDAAABwQQAANEIAAAAAAACYwQAAEMEAADDBAACIQQAACEIAACBBAAA4wgAALMIAAODAAAAsQgAAREIAACxCAACgwgAA8MEAAChCAACIQQAAkEEAACzCAAAgwQAAVMIAAMhBAABUwgAA4EEAADjCAAAEwgAAMMEAAJZCAABsQgAAuMEAACDBAADgQQAAIEEAAJbCAACwQQAABEIAACBCAADowQAAREIAAI7CAAAQQQAAqMEAAJhCAAAcwgAA0MEAAHBBAADQwQAAkMEAAJhBAADowQAA2EEAAAxCAAB4wgAAAEEAAHDBAADAwAAA4EEAAIbCAAAAQQAAiEEAAFDBAABUwgAAwEEAABjCAABUQgAAqEEAAEBBAACIQgAAwMAAAGDBAAAwQgAAcMEAAIZCAAAAQgAAfMIAABBBAAAcwgAAwMEAAKBAAACYQQAAgL8AALjBAACgwQAAyMEAACDBAADowQAAgMEAAMDBAACewgAAAEAAAARCAAAMwgAALEIAAIDAAAAcQgAAAMEAAMjBAABMQgAAyMEAAAhCAADQwQAAREIAAFhCAACwwQAAQMEAAKDAAACOQgAABMIAAPDBAACAQgAAAAAAAKhBAADAwQAA7sIAAFzCAAAMwgAAwEAAAFBCAADAQAAAEEIAAHBBAAAwwQAAHMIAAETCAAA8QgAAbEIAADzCAAAIwgAA8MEAADDBAABwwQAABEIAAGDBAADYwQAAcMEAAMhBAACAvwAAoMIAAIDCAADIQQAAgEAAAKBAAABswgAAzsIAAMDAAACYwQAA6MEAAJpCAAAUwgAA4MAAAKBAAAAgQQAA6EEAABTCAACOQgAALEIAAMBBIAA4E0AJSHVQASqPAhAAGoACAADgvAAAjr4AAJI-AAA8vgAAiD0AAIY-AAAkPgAAD78AAAw-AADYvQAAgDsAAOi9AAAEvgAA4j4AAAS-AACgvAAAfD4AAOi9AAAUPgAA1j4AAH8_AAAMvgAAmD0AAGQ-AAAcvgAAcD0AAJg9AABAPAAAZD4AAJI-AAC4PQAARL4AAIi9AAC4vQAAiL0AACS-AACovQAA2L0AAKK-AABkPgAAQLwAAJq-AABEPgAAiD0AALi9AADIvQAAvj4AAJK-AABMvgAANL4AAFC9AACAOwAA1j4AADy-AABcvgAAMD0AADs_AACIPQAAJL4AAFC9AADIvQAAHD4AABC9AACovSAAOBNACUh8UAEqjwIQARqAAgAAyL0AAMi9AADIvQAAY78AAIK-AABsvgAAdD4AAI6-AACAOwAAEL0AAES-AAAsvgAAZL4AAOi9AACAuwAAcL0AAIa-AADuPgAAyD0AAGQ-AACqPgAA2L0AAFS-AABAPAAA6L0AAJg9AADYvQAA4DwAANi9AABkPgAAqD0AAHQ-AACCvgAAyL0AAPi9AADgPAAACz8AAIg9AAC-vgAAPL4AACw-AACyPgAAgDsAAJI-AACGPgAAqL0AAH-_AAAQvQAAjj4AAJi9AACAuwAAML0AAIg9AADoPQAAiD0AAEw-AACgPAAAcD0AAFC9AABwvQAAoj4AAEQ-AAD4vQAAXL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=0Uqa8Jzx-b8","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["16031952831185477843"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1134513770522703810":{"videoId":"1134513770522703810","docid":"12-10-6-ZF99DD56737D44D59","description":"Trigonometry Super Shortcut-IIT/Eamcet/NDA. Solve THE Limit Problem IN 5 Seconds. Address : Human...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/879926/800b7b19ab3fa0c83d3c8248f1ccf815/564x318_1"},"target":"_self","position":"3","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAbJ4z04NA_w","linkTemplate":"/video/preview/1134513770522703810?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof of Cos(A+B) | using Derivative | Proofs | Trigonometry Formula | Sin (A+B) Formula #shorts","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AbJ4z04NA_w\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhUKEzExMzQ1MTM3NzA1MjI3MDM4MTBaEzExMzQ1MTM3NzA1MjI3MDM4MTBqrA0SATAYACJCGi8ACihoaG5vYWNzeXNjeXRhemhoVUNPZ3I0eWVfSmc2b2ItM0JoekFpYkl3EgIAECoPwg8PGg8_EzCCBCQBgAQrKosBEAEaeIEB-goG_gMA9f4KDAIG_QEGB_gA9___AAAJ7_4DBP4A_P8IAwEAAAD6D_3--wAAAAb39wIC_QEAFAP7BgQAAAAJDPwC-gAAABcG9vn-AQAA__L7AQP_AAAABQj-_wAAAAAN-fIAAAAAAwD6_wAAAAAI_gQGAAAAACAALWmt2js4E0AJSE5QAipzEAAaYCX-ABEd2qrnNRPn9MzJBOfWAM7Gvxr_Cen_SD3-Bzjt6sAn3QA-zQYmnAAAADbZAQxPAPl5yL4OBQsO-LWx4DNMfyHfDP30Ifa0x-ErPf_B1_z6HgDv_BwC0vP_FkNlBCAALbhCFTs4E0AJSG9QAiqvBhAMGqAGAABAQQAA4EAAAJJCAAAgQQAAuMEAABxCAACWQgAAgEAAACTCAAAEwgAAsMEAAIA_AACQwgAA4MEAAKBBAACAwAAAnkIAACBBAACgwAAAhMIAAJDBAADgwAAAWMIAAGBCAAC4wQAAmMEAADjCAADowQAAkEIAAMhBAAA4wgAAiEEAALjBAADoQQAAnsIAAJBBAACGQgAAkEIAAIBAAACAQQAA-MEAAAjCAAAgQgAAiEEAANBBAAAwQgAAmMEAAIDAAACiQgAAAEAAAPjBAACQQQAAPMIAAOBBAAAwQQAAwMAAAGTCAACwwQAAAEAAAODAAACwQQAA8MEAAILCAACkwgAAoMAAANDCAADAwAAAvsIAABzCAACAwAAAjkIAADBCAAA4wgAAMEEAAMBAAACiwgAAAMMAAHDBAAAsQgAAgL8AALjBAACIQQAADMIAAJjBAADoQQAAGEIAAKjBAAAYwgAAKEIAANDBAABQQQAATEIAAEBAAABkwgAAMMEAAHTCAACYQQAAMMIAAADBAAAQQgAA-MEAABBCAAAIQgAAisIAAI7CAAAAwAAA4EAAANBBAACgQAAACEIAAKpCAACwQQAAIMEAAMBBAADwwQAAFEIAALhBAACgwQAAgL8AAJbCAADAQQAAIEEAAGDBAADQwQAAgD8AAAjCAACEwgAAcEEAAKTCAACwwQAA2EEAACTCAADQwQAAoEEAABBBAABAQAAADEIAADBBAAAAQAAA4MIAAOhBAAAIQgAAREIAAEBBAABQQQAAQEEAAATCAADowQAAAMEAACBBAABMQgAA8MEAAGxCAAAAwAAAGMIAACjCAACOwgAAAEAAAGjCAACYQQAAqMEAAEBAAAAAwQAACEIAADDCAAAEQgAAgL8AAExCAACIQgAAsMEAANjBAAAAwQAAwMAAAARCAAAwQQAAUMEAABjCAABwwQAAmMEAAOBBAAAAwgAAoMIAAAhCAAAAwQAAkkIAAJ7CAADQwQAAaEIAABDBAAAUQgAAKEIAAATCAACAwAAAQMEAAMDBAAAQwQAAWMIAAKjBAAAwQQAAQMEgADgTQAlIdVABKo8CEAAagAIAAFA9AAD4vQAAND4AADy-AAAwvQAAtj4AADw-AADivgAAqD0AAPi9AAAwvQAAcL0AAOi9AADCPgAA6L0AAFC9AAA0PgAAuL0AABw-AACePgAAfz8AAMi9AAAEPgAARD4AAIK-AACoPQAAEL0AAKi9AAAMPgAAfD4AAHA9AAB0vgAAcL0AAMi9AAAQPQAAHL4AAKC8AAAcvgAAxr4AABA9AABwvQAAir4AAAQ-AADgPAAAuL0AAFC9AACSPgAAFL4AAAy-AABkvgAAUL0AAKA8AACuPgAADL4AAFy-AAAQPQAALT8AAEA8AAAwPQAAMD0AAPi9AABAPAAAoLwAAEA8IAA4E0AJSHxQASqPAhABGoACAAC4vQAAcL0AAIg9AABPvwAAJL4AAJi9AABsPgAADL4AABC9AAAQvQAAqL0AAHy-AACovQAA6L0AADA9AACgvAAAML0AAAs_AAAUPgAAXD4AAI4-AABwvQAAqL0AAKC8AACIvQAAcD0AAKi9AABwPQAA2L0AACw-AAC4PQAATD4AACy-AADIvQAAqL0AAOC8AACyPgAAND4AALK-AAAcvgAAND4AAHw-AAAEPgAAJD4AAGw-AAAwvQAAf78AAKg9AACGPgAAgLsAAAQ-AADgvAAAoDwAABQ-AACIPQAAND4AAEA8AACIPQAAUL0AAOC8AACGPgAAQDwAALi9AACovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=AbJ4z04NA_w","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1134513770522703810"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14401655594263532014":{"videoId":"14401655594263532014","docid":"12-3-16-Z5548D0531237237C","description":"comment sections. I will try my best to upload solution as fast as possible, but forgive me for my delayed schedule and have some patience. Thank You !","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3600739/9f2e174552779b150c9f956076fe9f71/564x318_1"},"target":"_self","position":"5","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvSuCI4wzsJg","linkTemplate":"/video/preview/14401655594263532014?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Prove That : Cos(A-B).Cos(A+B)= 〖Cos〗^2 A-〖Sin〗^2 B","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vSuCI4wzsJg\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhYKFDE0NDAxNjU1NTk0MjYzNTMyMDE0WhQxNDQwMTY1NTU5NDI2MzUzMjAxNGqtDRIBMBgAIkMaLwAKKGhoc3NycXh3bHliZm52aGhVQ0NCT2E0c1ZjelZOalBqOFJ2c2JNbkESAgAQKhDCDw8aDz8TpwGCBCQBgAQrKosBEAEaeIH2-_v7-wUA-QcLBvkG_QLuA_YA-v__AAII-_7_BP4A9gMBAgcAAAD6D_3--wAAAAT7_Ar__QEACP3-_QMAAAATCwAB_gAAAA4D-P7-AQAA_fv99wIAAAAD-_0DAAAAAAAN-vIAAAAABQz6AgAAAAAEAfsEAAAAACAALVmR4js4E0AJSE5QAipzEAAaYPsWAEopEOvnAxjpGQPr_dHz7v_R7xL_6gwAJP8T5foICMr3-f8dE_X1vQAAAAbpGUoWAPxVBQzcJuIU9d6b__k4fw38DAAG9u0LBTkL_Oko7PIALgDjCfnvFfoTAlANJCAALacMUDs4E0AJSG9QAiqvBhAMGqAGAAAsQgAAAEAAAIxCAABYwgAAEMEAADRCAAAcQgAA6MEAAJbCAADIwQAAsMEAAJDBAAAgwgAAmsIAAJDBAABUQgAAMEIAANDBAADoQQAAXMIAAMDBAADAwAAAWMIAAMDAAAAMwgAA6MEAANjBAAAAQAAABEIAAJjBAACCwgAAMEEAAKjCAABwQQAAMMEAAOBBAAAwQQAAjEIAAGBBAAAQQgAAoEEAAAAAAACGQgAAAEAAAFBBAACoQQAAQEEAAEDAAACYQgAA8MEAACDCAAAwQQAAEMEAANjBAADgQAAAIEEAAPbCAABwQQAAKEIAAIxCAAAgwQAAtMIAAEBAAAA8wgAAQEEAAPLCAAAwQQAAMMEAAGzCAAAUwgAAXEIAAIxCAABQwQAANEIAAIC_AAAcwgAAHMIAAFBBAAD4QQAAMEEAALBBAAA4QgAAkMEAANDBAACwwQAAgEEAACBBAAAoQgAAmEEAADDBAABwwQAAMEIAAADCAAC0wgAAEEEAAKDBAADAwAAAsEEAAIC_AAAAwQAArsIAABhCAAA8QgAAEMEAAIjBAAAMQgAAKMIAAMBBAAAAwQAA0MEAABhCAACAQQAAAEAAAJjBAADwwQAAmkIAAAxCAADwwQAALEIAAADCAAAYwgAAVMIAAIBAAABAQAAA6EEAAKjBAAAAwgAAsEEAAEjCAABAwAAA6MEAAGBBAADwQQAAeEIAABhCAAAMQgAAUMEAAAAAAACYQQAATMIAAADCAACIQgAAMEIAABzCAABcQgAACEIAADjCAAAgQgAAgMEAAABAAACoQQAA4MEAACxCAAA8wgAAiEEAADBBAADowQAA8MEAAFDCAAAkwgAAIMEAAKDAAACOwgAAsEEAAIjBAAAoQgAATMIAAIBBAABcQgAAiMEAABDCAAAEwgAAyEEAAOjBAABUwgAAHEIAAABAAABcwgAAAAAAAEhCAADYwgAACMIAAPhBAACSwgAAREIAADjCAABYwgAABEIAAJDBAAA8QgAA8EEAABzCAADgQQAAkMEAAFDCAACiQgAAmsIAAAhCAAAAwQAAiMEgADgTQAlIdVABKo8CEAAagAIAALi9AAB8vgAA4DwAAGy-AACYvQAA3j4AABw-AAAVvwAAoj4AAJa-AADYPQAAbL4AAPi9AADaPgAAZL4AAFS-AAC-PgAAcL0AAN4-AAAVPwAAfz8AAEy-AACoPQAA3j4AAP6-AACYPQAA4LwAAAy-AACYPQAA3j4AAFQ-AACKvgAA4LwAAAS-AABMvgAAVL4AABS-AAAsvgAAA78AAMo-AACoPQAAir4AAFQ-AAAMPgAA6L0AAGQ-AACyPgAAC78AAHS-AADIvQAAEL0AAIg9AAAjPwAATL4AAOA8AABQPQAAYz8AAJY-AABkvgAAgj4AAIi9AABAPAAAir4AAOC8IAA4E0AJSHxQASqPAhABGoACAABAvAAA2L0AAHC9AABbvwAANL4AAOi9AACiPgAAqL0AAEA8AABQPQAAUD0AAJi9AAAwvQAAcL0AADC9AABwvQAAZL4AAPI-AAA8vgAA2D0AAII-AAAwvQAAyL0AAHC9AADYvQAALD4AAKC8AACYPQAAoLwAAGQ-AAAkPgAA-D0AAMq-AABwvQAAyL0AAFA9AADmPgAA4DwAANq-AAB8vgAAND4AAEQ-AACIPQAAsj4AABQ-AADovQAAf78AAHQ-AAA0PgAAQLwAABS-AABEPgAAND4AABw-AACIPQAAHD4AAEA8AAAwPQAAoDwAAES-AABkPgAA2D0AAFA9AAA0viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=vSuCI4wzsJg","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["14401655594263532014"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11910685238037106036":{"videoId":"11910685238037106036","docid":"12-2-16-Z2E1A82DC59F4FA51","description":"Quickly learn how to prove the trigonometric identity cos(a-b) = cos(a)cos(b) + sin(a)sin(b)! This clear and simple explanation makes understanding algebra and trigonometry easy for everyone. sin...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3175070/0a55b0b1d2f515a4c02beaf4cc058e81/564x318_1"},"target":"_self","position":"6","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJ9yMnACBy9o","linkTemplate":"/video/preview/11910685238037106036?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(a-b) = cos(a) cos(b) + sin(a) sin(b) Proof","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=J9yMnACBy9o\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhYKFDExOTEwNjg1MjM4MDM3MTA2MDM2WhQxMTkxMDY4NTIzODAzNzEwNjAzNmquDRIBMBgAIkQaMQAKKmhoY2ttamt4bnFhem1ndmNoaFVDOW9GYmhLMVlBZ015VV9zVHdKeExuZxICABIqD8IPDxoPPxNyggQkAYAEKyqLARABGniB-_8B__sGAPj9CP78A_8B5gD5_fwAAAD_A__8-QX-APn7_wUFAAAA-g_9_vsAAAD9-PgC-_4AAAf_AvYEAAAAEwsAAf4AAAAOA_j__gEAAP_8-_8D_wAAA_v9AwAAAAAADfryAAAAAP8F9gIAAAAABAH7BAAAAAAgAC3En-M7OBNACUhOUAIqcxAAGmAFBQAG-j334DEuCi0B9O_OBdHV56sv_-c0ACkF-eLt_N7r9Pb_AeoO-KwAAAD6wxpA9QDqYccCwPwNEenc0PABRH_r9f_S48UkBxYS4e4S8C7jBDAAowAI5QbaCtA1CDUgAC1ViDI7OBNACUhvUAIqrwYQDBqgBgAAqEEAABjCAACSQgAADMIAAAhCAABgQQAADEIAALBBAABgwgAAwMAAABBBAAAgwgAAoMIAAGjCAABAwQAAQMAAAEBBAABAwgAAmEEAAMjBAABEQgAAyMEAAOBBAABAwAAAGMIAAABAAAA8wgAAoMEAADxCAABgwQAAcMEAAEBCAAAAwgAAUMEAAHDBAABQwQAAUEEAAHxCAABgwQAAsEEAAKhBAAAoQgAArkIAABBCAAAAQgAASMIAAOBAAADAQAAArEIAAMhBAABYwgAAyMEAABjCAADgwAAATEIAACRCAADEwgAAgD8AAFBCAABsQgAAiMEAAFzCAAAAwgAAZMIAAFBBAAB8wgAAmEEAAFDBAABQwgAA-MEAAFxCAABgQgAAfMIAABhCAAAwQgAAQEAAAIjCAACAQQAAqEEAABzCAABwwQAAMMEAAKBBAAA8QgAAQMAAAFTCAACIQQAATEIAACRCAACmwgAAMMEAAMRCAABswgAAWMIAAGBBAACMwgAAsMEAAADAAAA4QgAAoMEAAGDCAABIQgAAjEIAAEDAAABwwgAAGEIAAADCAACmQgAAuMEAALBBAABYQgAAmsIAAFjCAAAkQgAA2MEAAJDBAACYQQAAAMAAABTCAADowQAAEMEAAGzCAAAEwgAA2MEAAIhBAABwwQAAOMIAAMBAAAAIwgAAHMIAAMDAAACwQQAACMIAADRCAACgQAAAokIAANBBAADAwQAAgEAAAJrCAAAMwgAAgL8AAIDAAAAkwgAAREIAANDBAADSwgAABEIAAIDAAAAQQQAAqEEAAMBAAAAMQgAA8MEAADRCAAAwwgAAgL8AAJDBAAAAwQAAQEAAACDCAAAAwAAAcMEAABTCAACAQAAAwEEAAIDAAAA0QgAAoEAAAEBAAAAgwgAAiEEAADDCAAAAwgAAnsIAAIhCAADQQQAA-MEAACRCAACYwQAAUMIAAJDBAAAgwQAAHMIAAJhCAABwwQAAUMIAAOBAAABgwQAANEIAABDBAADYwQAALEIAAARCAAAAwAAA4EAAAAzCAACwQQAAAMEAALzCIAA4E0AJSHVQASqPAhAAGoACAABwvQAAjr4AACQ-AAA0vgAAcD0AAKY-AABAPAAAD78AADw-AADovQAA-D0AABC9AAD4vQAAoj4AAFS-AADIvQAATD4AAJi9AADIPQAAwj4AAH8_AABEvgAA4DwAAHw-AACKvgAAuL0AAFA9AADIvQAADD4AAL4-AAA0PgAAlr4AAFC9AACoPQAADL4AAOi9AACYvQAAbL4AAM6-AAA0PgAAML0AALa-AADIPQAA4DwAAAy-AAAcvgAA3j4AAGy-AABsvgAATL4AAOi9AACYvQAA4j4AAEy-AAAkvgAAED0AAE0_AADIPQAA-L0AAOA8AAD4vQAAFD4AAKi9AADIvSAAOBNACUh8UAEqjwIQARqAAgAAcL0AAEC8AAAcvgAAU78AAIq-AAA0vgAAij4AAFS-AAAkPgAAML0AAIi9AAAEvgAA2L0AADC9AAAQvQAAML0AAES-AADKPgAAyL0AAHw-AACWPgAAML0AAEy-AADgvAAAcL0AACw-AABAvAAAuD0AANi9AACGPgAAFD4AADQ-AACOvgAAUL0AABS-AABAPAAAzj4AAKA8AADCvgAAHL4AAEw-AABkPgAAED0AALI-AAA8PgAARL4AAH-_AAA8PgAAPD4AABA9AACIvQAAiD0AANi9AAAsPgAAJD4AAGw-AADgvAAAqD0AADC9AACovQAAbD4AAJg9AAAwPQAALL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=J9yMnACBy9o","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11910685238037106036"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2623314492742791540":{"videoId":"2623314492742791540","docid":"12-8-12-ZB5FA1F8C64C7A784","description":"Hello Students, We are back with the easiest proof of sin(A+B) & cos(A+B) of Trigonometric Functions. With the help of this proof we can derivate all the remaining proofs of Trigonometric...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/999223/82090fea6978d269c223d2611c63c507/564x318_1"},"target":"_self","position":"7","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DlHMJ9mhD8NE","linkTemplate":"/video/preview/2623314492742791540?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Easiest Proof of sin(A+B) & cos(A+B)","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=lHMJ9mhD8NE\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhUKEzI2MjMzMTQ0OTI3NDI3OTE1NDBaEzI2MjMzMTQ0OTI3NDI3OTE1NDBqrw0SATAYACJFGjEACipoaGVrenhndGViYXNrZm9iaGhVQ0VZRTJ6aXoyUjBsM0w5QVBOYlB3Y1ESAgASKhDCDw8aDz8TpAGCBCQBgAQrKosBEAEaeIH2-gL-AQAAEAARAAII_wHbA_kB_AICAPUH-_7_Av8A7QMFCwUAAAD5EP3--wAAAP_t9Qj9_QAABgUF-gUAAAAiDwMEAAD_AAwO7wL_AQAA-Pf3_QP_AAAF_gMEAAAAAAAO-fEAAAAABgL9-PL7AAAD-P4DAAAAACAALa0-0Ts4E0AJSE5QAipzEAAaYCoSABsPIO_YAC_-LeHuBvsc2PLXvS8A6fwA6xEECfb_-NUK1QAV1Br4tgAAABvY6hYUAOVc0PrD_-sS_PSy3_RJfwgA9PAd8RPkMAj2Agz-D7o19gDh8wcSBwMi4i9GRyAALbyuPzs4E0AJSG9QAiqvBhAMGqAGAACoQQAAUMEAAABCAACwwQAASMIAAMDBAABkQgAAbMIAAPjBAAAAQAAAwMAAAGTCAACgwQAAcEEAAPBBAABYwgAA4EAAAOBAAACgQAAAoMEAAFjCAABgwgAAMMEAAKBAAAAAwgAAUEEAAHjCAABQQgAAwEAAAChCAACKwgAAAEAAAEzCAAAAwQAAgMAAAGDBAAAsQgAAdEIAADDBAAB0QgAAkEEAAJDBAABkQgAAqMEAAKDBAADAQAAAsEEAALjBAABIQgAAiEEAAABBAABAQAAAgEEAABBCAAAoQgAAFMIAAHDCAADAwAAAQMAAAIpCAACIwQAAMEIAAEzCAADgwQAARMIAAJ7CAACgwQAAVMIAABjCAACAPwAAZEIAAPhBAAA4wgAAyEEAAIBAAADOwgAAlsIAAIA_AABMQgAA8EEAADzCAAAkQgAALMIAAHDCAAD4wQAAkEEAAABCAAAQQQAAqEEAAKBAAAA8wgAAbEIAABDBAAA8wgAA4EAAAODAAAAMQgAAgEIAAPBBAACYQQAAwMEAAEBBAABQQQAAiMIAAMDBAABAQQAAIMIAAEBAAABQQQAA0EEAACxCAAA0QgAAoEAAAIA_AACIwQAAGEIAACDBAABcwgAANEIAAFjCAADgwQAA4EAAACBBAACywgAAdEIAAHBBAAB4wgAADEIAALzCAACowQAAqEEAACBCAABAwgAAjkIAAGDBAABAwgAAuMEAACDBAACAQAAAxMIAAOhBAAAsQgAAMMEAABTCAAD4QQAAoEAAABBBAACMQgAAoMAAAPhBAAC4wQAAkMEAACBBAABEwgAAVMIAAGhCAAAQwgAAYEEAABBBAABwQQAArMIAANBBAADAwQAAcEEAAIA_AAAwQgAAhEIAANhBAAAUQgAADMIAAIDAAAAIwgAAgEEAAFjCAACYwQAASEIAAJrCAACAwAAAPMIAAOhCAAAIwgAARMIAAJBBAAAwwQAAiEIAABTCAAAQwQAAhkIAAIDCAACYQQAAisIAAIrCAACgQAAA2MEAADDCAAAsQgAABMIAAKBAAAAYwgAAZMIgADgTQAlIdVABKo8CEAAagAIAABA9AABQvQAAQDwAAHy-AADYPQAAbD4AABA9AADivgAAcD0AAIC7AACYPQAAoLwAAHS-AACmPgAARL4AAGy-AABUPgAAEL0AACw-AACiPgAAfz8AAOi9AADYPQAALD4AANK-AAAUPgAA4LwAAFC9AADgPAAAqj4AANg9AABsvgAAoDwAAIg9AAAUvgAA-L0AAFC9AAA0vgAAwr4AALg9AACAuwAA4r4AAEQ-AAAcPgAAEL0AAFC9AAA0PgAAJL4AABS-AACYvQAAED0AAAQ-AADKPgAAcL0AADS-AADgPAAAGT8AAAw-AADIvQAAQDwAALi9AACgvAAAgLsAADS-IAA4E0AJSHxQASqPAhABGoACAAAMvgAAqL0AAEA8AABXvwAAVL4AAOC8AABsPgAAoLwAAEA8AABwPQAALL4AAJ6-AABQvQAAyL0AAKC8AAAwvQAAQLwAAPY-AADovQAA-D0AAII-AAAMPgAADL4AALg9AABAPAAAVD4AAAy-AADIPQAA-L0AABw-AABwPQAAVD4AACy-AAAEvgAABL4AADC9AAARPwAA4LwAAKq-AAAkvgAAcD0AACw-AACIvQAAhj4AAEw-AABkvgAAf78AAIY-AADgPAAA6D0AAKC8AAAQPQAAUD0AAJY-AABAvAAAND4AAKA8AAAMPgAAgDsAAJi9AACSPgAAUD0AAKg9AACovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=lHMJ9mhD8NE","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2623314492742791540"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16951421080835507869":{"videoId":"16951421080835507869","docid":"12-3-7-Z000D482748337180","description":"Diploma Math I , Worked Examples based on Sin(A+B),Sin(A-B),Cos(A+B),Cos(A-B) formulas...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3506717/7b548fcf41dbf90e7ac65059b945a9ca/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/R1OEEAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOGpwB2dfu48","linkTemplate":"/video/preview/16951421080835507869?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Diploma Math I, Worked Examples based on Sin(A+B), Sin(A-B), Cos(A+B), Cos(A-B) formulas","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OGpwB2dfu48\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhYKFDE2OTUxNDIxMDgwODM1NTA3ODY5WhQxNjk1MTQyMTA4MDgzNTUwNzg2OWqTFxIBMBgAIkUaMQAKKmhocGpwa3h2eWR4c2hqamJoaFVDZjFuMWdRemFHX3I5Qm1faEp5b2I4URICABIqEMIPDxoPPxPuBIIEJAGABCsqiwEQARp4gfv_Af_7BgD5BgsG-Qb9Au_-9vf6_v4A_wP__PkF_gD99gYDAgAAAPoP_f77AAAA9_j3BAH_AAAPAfj8BAAAABYQ_Q38AAAADQv8A_4BAAD59_f9A_8AAAwBCgUAAAAAAA368gAAAAAFDPoCAAAAAAUGAwn_AAAAIAAtxJ_jOzgTQAlITlACKoQCEAAa8AF_9w__0-ji_68G2ADnHvkBwiAUABpO-QC36PEA1-7VAOwH6AAE-yT__RATAMIg1QAU1rAC7s7oACS89f8G6AUA3wMQAQrx6AE_FDD_F_b3AeT5JfzmzBIB_cPcABwO4_364_v3IwXlABD_0gMMFyYADwkYBR7ZE_4TsSP95MnwBevb1_0kKRID_dIZAMT-IQEG7-z_IArx-9AG4wIJ0gv86OIK9Agx0v0T4QMHIPjsBr8NBAkC8dn7HygK-u7f5AHV8TAG0vsK9vTh9v0O5Qn9EBjlBBXC5Akf-gH-EAoR--zbAPXkEQMI_QDnCN4J9OsgAC1O_As7OBNACUhhUAIqzwcQABrAB3jQ5L6pPJE7DA3fvJwBibzj1Ji8OO1uvfgzPLyHSzM9xMGUuxiYBT6AM-s7f7O9u2zsUr53ZFE9AyoXvcuAMz7m0Yi9mGIzPIbjCb7fIPU8rAEqvUzEO76CnEW7VjLXuoJEibx1K4q9_CtYu3IeaT07anG9vLQ8vQK1Xb1fehs907AuvU8IfDty0kW934pEvKtH9TzqR3m94ezWvNHN_jzBviO87fXJvLPNcj1B-4c8CvfKvBCUmbvIK4s97ubOvPrqTz1-n4s9FI7FvL7F3rwetdO8jMe7vEy0Gr2PkQe8rbYNPHTPOj22nDA9CIWxO2VDnT13NbS9kHYyvbN96L1STHw6NYr2u0YK5T2jliA8U83uOx093r2-wAw-uwgLutEkrbteCnS9YW43vWAhEz0b3IE9TojOOzdMiT2N_TY9yyrPuuQ7xjuM9wM-vyzIPCBLqj2oFva8XHaIvA5fDzzZFi-8iMLjutJtDr1Ikps9ON0PvBoppTw47hk9mVupu0VO_LuSdRg9nSbYPCRenrti-Oi9UxhnO_pYpr3LUJC9Haeuux1twT05aRA9LgV_vK9DNT1ovsm9ZzuRu1FKLT3Tcha8oTiVOwO9Jj00v_W8lFC4OyMrhL0H9J09csADuhpVAb2LgR89dSwlvHMHWz0DU8c9cgzBOXzAl7xav1S9L-PgOzEERT0vZx27euxtOvubaz32C1Y9DisnumIvVD0po8C8v3cjuwTKJr29d227TeaKOgfI_LzTzCm9g6VbusdnEj6uoOm9kAm0uQwSET0qUgK7HkeVOBHfCb4fZ9o9xMubuEMIgjsU8Ma8nERSOPyzVb13PbK9hRswuAFXDb3JnjM927_Tucp6AD05qG493BKYOheFuL1arLK8fyLuuULkmTy-ieE8Va0oOQyEsz2PLwY9SHXmuBsvPT2wuXk9ylNIuQ2wJb2KciG6xpYuOeoeHr3IF449OclHOEyoAD3H8J29_u4wOe2DLDzeZKo9Xum9uKMLRbx2T5M99i1HOE8rWz07J6w9PEyEuPX_QzvHeWS9r2O1t8temz0uD4g8ArQDtlo0o718Wko9ciBsOBfVOrr5UDE60FjcN0RAtDxqSvQ7zWImuPcoszt6MRk92XrcOJJdGT7ZT1C9rMI_uWdE6b19WxC9mhI7uAfiBj3hlk-9maTONZtLW72SPKc9bXCBOMIVgL0UeOe92bSguMr0cD0i4Ss-8cuKOAcLp7y9_O49g7QeuehVs70WJOw8zbghOEspjr3yKJA94DNcuCAAOBNACUhtUAEqcxAAGmAO8gAg9DTrERwV6gHdDtS8ze-VB8Ma_xb9_xUNEfkTK7THLe0AFNsu1aAAAAAlzvz4IwDuf67WDDkEx9yxrsUOJFb7AFutvu0b3AU_7O4G7R8ABkEA3Pu3Hj3_uUTsFRYgAC1gLBg7OBNACUhvUAIqrwYQDBqgBgAAUEEAABBBAACowQAAEEEAAADAAABAQQAAREIAAEjCAADgwQAAAAAAAEBBAACAwgAARMIAAHDBAADQQgAAksIAACBBAAAYwgAAAAAAAGDBAACUwgAAMMIAACDBAABwQQAADEIAADDBAADawgAAyMEAALBBAAAsQgAAsMEAAMhBAACSwgAAwMAAALDBAACIQQAAQEIAANpCAABIwgAAkEIAAABAAACgQQAAaEIAAADCAABQwQAAOMIAAADAAADAwQAACEIAAKhBAAAMwgAA6MEAAABBAABAwQAAcEEAAMjBAADEwgAAwEAAAJDBAACwQQAAkEEAAFDBAADAwAAA1sIAAJDBAAAAQAAAqEEAACBBAADAwQAAmMEAAI5CAAAIQgAAYMIAACBBAABwwQAAnsIAABDCAAAQwQAAEMEAAIDAAABAwQAAEEEAAJjBAABAQAAAUMIAANjBAABEQgAADEIAALBBAAAIwgAA4EAAALZCAADgQAAAtsIAAEBBAADIwQAAoMEAABBBAABAQQAAAMEAAEzCAAB0QgAAmkIAAGzCAAAkwgAAMEEAALDCAAAgQgAAiMEAAFBBAACgQQAAgMEAAJhBAAAAAAAAAEEAAHDBAAAAwAAAaMIAAMDAAADAwQAAIMEAAMBAAADAwQAAqMEAAChCAABQQgAAgEEAAFDBAACWwgAAEMEAAHBBAAA4QgAA2MEAAKhCAACAQQAAQEEAAFDBAAAgwQAAaMIAAKjCAACAQAAAoEEAANhBAACAwQAACEIAABhCAABcwgAAgEAAANhBAABkQgAAgsIAABxCAAC4QQAAJMIAAKjBAADYQQAAAMEAAGzCAACswgAAPEIAAJjBAADgwAAAlMIAAMhBAADYwQAAuEEAANBBAACmQgAA-EEAAIBBAAAwwQAACMIAAADAAAAkwgAAQEAAAIDBAABAwQAAMMIAADhCAABgQQAAqMEAACDCAAAoQgAAaEIAANJCAABAQAAAmMIAAMhBAADAwQAAgL8AABTCAACUwgAAwEAAAOBAAACoQQAA0EEAABDBAAAgQQAAaMIAAFjCIAA4E0AJSHVQASqPAhAAGoACAAAQvQAAqL0AAFQ-AAAEvgAAUD0AALY-AACIPQAAF78AANg9AAAwvQAABD4AAOi9AAC4vQAAnj4AADS-AAAQvQAAmj4AAIi9AADIPQAAmj4AAH8_AAA0vgAAgDsAAGw-AABkvgAAgDsAAIA7AABAvAAAEL0AAGw-AAD4PQAAZL4AAIi9AABAPAAAFL4AAMi9AACAuwAATL4AALK-AAD4PQAAUL0AAL6-AADIPQAALD4AAEC8AADYvQAAmj4AAHy-AACOvgAAZL4AAMg9AACovQAAzj4AABS-AACKvgAAoDwAAD8_AAC4PQAARL4AAEA8AACAuwAAUD0AAIi9AAD4vSAAOBNACUh8UAEqjwIQARqAAgAA6L0AAOi9AADgvAAAUb8AAJ6-AACovQAAlj4AAJi9AACYPQAAEL0AAPi9AAA8vgAAqL0AAHA9AACIPQAAcL0AAPi9AADqPgAAyL0AAIo-AAA8PgAADL4AADy-AADIvQAAQDwAAKg9AAAwvQAAgDsAADA9AABUPgAAgDsAACw-AABcvgAAJL4AAFA9AABwPQAAqj4AALg9AABcvgAA6L0AAEQ-AAA8PgAAcD0AAFw-AADgPAAAPL4AAH-_AABEPgAADD4AAIC7AABwvQAAMD0AAIC7AABcPgAAqD0AACw-AACAOwAAoDwAABC9AACovQAAij4AAIC7AACoPQAAuL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=OGpwB2dfu48","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16951421080835507869"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16076010806097411303":{"videoId":"16076010806097411303","docid":"12-11-9-Z7348FAA6C0C8B4F9","description":"a(b cosC - c cosB) = b² - c² a(b cos c-c cos b)=b^(2)-c^(2) Prove that: a ( b cos C - ccosB ) = b^2 - c^2 In any triangle abc prove that a( b cos C - c cos B) = b^2 - c^2. #math #trigonometry...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3274476/3f1055c63380b14853422ae775f325c0/564x318_1"},"target":"_self","position":"9","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DuO8Dk6x3yR0","linkTemplate":"/video/preview/16076010806097411303?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Prove that :- a(b cosC - c cosB) = b² - c²","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=uO8Dk6x3yR0\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhYKFDE2MDc2MDEwODA2MDk3NDExMzAzWhQxNjA3NjAxMDgwNjA5NzQxMTMwM2qvDRIBMBgAIkUaMQAKKmhodG5pcHFjc2xvZG50Y2JoaFVDeTBKbEtGMVc5cVp5bzhkR2VrLWFaZxICABIqEMIPDxoPPxPgAYIEJAGABCsqiwEQARp4gQD3Bf78BAD5BwsG-Qb9Avv8BP36_f0A_g4AAQUF_gDrAwYAAv8AAN4EBAD5AAAA_fj4Avv-AAAFBgf5-AAAAAMEAwYGAAAACg4DAP4BAADs9wL_AwAAAAgFBAEAAAAA-xf8-QD_AAAMBgEFAAAAAA0C8vcAAAAAIAAtzm3eOzgTQAlITlACKnMQABpgERUA_io12gEKQfwrASkDEALmv-jqIP_3QAAxC_zYBeLz7fsZAA36F-m7AAAA9SgmRO0AEE33FtP0-DMJ6-YWISh_z_0H7grLFUEMIvnqGN0O1hoIAL8l--Hy6yH3KuYzIAAtpw1FOzgTQAlIb1ACKq8GEAwaoAYAADRCAACIQQAAhEIAAEzCAAAwwQAAwEAAAFxCAAA0QgAA-MEAAAzCAADQQQAAAMIAANDBAACAQAAAGMIAAJjBAAAIQgAAgsIAAEBBAAD4wQAAQEEAAJDBAACcwgAAqEIAAGjCAAAUwgAAKMIAAEDAAABEQgAAGEIAAOjBAABgQQAAgMIAANhBAACOwgAAkMEAAKhBAABUQgAA4MAAACBCAAAAwAAAsEEAAIDAAABIwgAAPEIAAOjBAABwQQAAgEEAAAxCAAC4QQAASMIAAHTCAABwwQAAAEIAAMBBAAAAQQAArMIAAPDBAAAsQgAAUEEAAABCAABAwAAApsIAADjCAACYQQAA0sIAAKjBAABQwgAAEMIAAMjBAACKQgAA-EEAACzCAAA8QgAA-MEAAAhCAADewgAAgD8AAExCAADgQAAAuMEAAK5CAAAkwgAAgEAAAAzCAACqQgAAiMEAAIbCAAAwQgAAoEAAAChCAACYQQAAbMIAAGBBAAAAQAAAgsIAAEjCAACAQAAAoEEAANBBAADowQAAMEEAAHRCAABwwQAA4MEAAKhBAACQwQAAZEIAAKBBAABAQgAAuEEAACxCAAAEwgAAkMEAAABAAACMQgAABEIAAJBBAABgQQAAoMAAADDCAAAgwgAAsEEAABDCAAAIwgAAwMEAAFzCAABQwQAAUMIAAIBBAAAQQQAAiMIAAMBBAADAQAAACMIAABhCAACAwQAAIEIAALDBAAA4wgAA2MEAAIhBAADAwAAAkMIAAOBBAADAQQAAmMEAAADAAADAQAAAmMEAACTCAAAgQQAAJEIAACBCAACAQQAAsMEAAJDCAACowQAAJMIAAIhBAAAMwgAAKEIAAPhBAACwwQAA4EAAAEDAAAAowgAA4kIAAKhCAAA4wgAA8EEAAOBBAADwwQAAXMIAAODBAAAcQgAACMIAAChCAACAQQAATEIAAHTCAABgwgAA4EAAAKDBAABcQgAAgL8AAMDBAADAwQAAAAAAAABAAAB8QgAAIEEAAAhCAAAAAAAAgL8AABhCAADgQQAAkEEAAAxCAAAwwSAAOBNACUh1UAEqjwIQABqAAgAAgLsAABS-AACmPgAAgDsAADS-AAAUPgAAQDwAAGy-AACCPgAAML0AAKA8AACevgAA4LwAAIY-AAAwvQAAUL0AAEQ-AADYvQAAVD4AADw-AAB_PwAA-D0AAEC8AACSPgAAkr4AAFC9AACAOwAALL4AAHC9AADCPgAAoLwAALi9AAAMPgAABD4AAFy-AABcvgAAQLwAAIq-AACuvgAAdD4AAES-AACOvgAAMD0AANg9AACCvgAAgDsAAIo-AABkvgAA3r4AACS-AADgPAAARD4AAMo-AACevgAAJL4AAEC8AAAvPwAAgj4AALg9AAD4PQAAgr4AAHC9AAAEvgAAgLsgADgTQAlIfFABKo8CEAEagAIAAMq-AAC4PQAAFL4AABG_AAD4PQAA4LwAAAQ-AABQPQAA4DwAADw-AADIvQAAuL0AAIa-AABEvgAAZL4AAHA9AABwPQAAHz8AABy-AACoPQAAqD0AAOg9AADgvAAA2D0AAOi9AAADPwAAQDwAABQ-AADgvAAA-D0AABQ-AADYPQAAlr4AANg9AAAUvgAAmL0AAO4-AABQvQAApr4AAHy-AABcPgAAiD0AAJg9AAAEPgAAcD0AAOC8AAB_vwAAqL0AADy-AABUPgAAQDwAACw-AACCPgAAyD0AAII-AACgPAAAQDwAAAw-AACYvQAAgLsAAHA9AABwvQAAuL0AAJi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=uO8Dk6x3yR0","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16076010806097411303"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18285447808517736288":{"videoId":"18285447808517736288","docid":"12-2-12-Z3B10296BB51173B7","description":"Simple But Elegant Way To Prove That sin(A+B)=sinAcosB+cosAsinB - Edexcel Proof Simplified... Video created by: Tiago Hands / tiago_hands Get mathematics proofs on Instagram: / mathematics.proofs...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2194846/50c2b601b1c6a95c12c4ab0871b93721/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/EAcEsQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4K6xr8hjkTw","linkTemplate":"/video/preview/18285447808517736288?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"sin(A+B)=sin(A) cos(B)+cos(A) sin(B) proof - geometrical #some2","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4K6xr8hjkTw\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhYKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4WhQxODI4NTQ0NzgwODUxNzczNjI4OGqTFxIBMBgAIkUaMQAKKmhobmhrYmp3cW5jamp0cWJoaFVDRnZZb0hFVV8zeDVMS3lRcTZ0NTVfZxICABIqEMIPDxoPPxOVA4IEJAGABCsqiwEQARp4gff5BPv8BAD2_gMF_gX-AeUA-f38AAAA___0-_0E_gDzAAAH_gAAAPoP_f77AAAA9_j3BAH_AAAPAfj8BAAAABkC_QD4AAAADgP4_v4BAAAFAfj4A_8AAAP7_QMAAAAAAA368gAAAAABB_j6AQAAAAf7_gkAAAAAIAAtluDdOzgTQAlITlACKoQCEAAa8AF__x4A1_WlAfQ09wH7NgIB2DYN__w7zADa_Bj_sCPsADEN4QD08AcADBXAAa3a0_4Y__f_xRbqAAGaGAE9vwwAuvEZAB7m9AFEFjP_PP_f_-MJ_P7vAQ8D3dnI_hAc8P0xr_79GfLeAPXx1gcq-zUB0OwPAsjz__vB6xQD4xgSAswWzP33APAF0uUK9_4TIwMj1vML_x8X_-bN9_wm1Sf1QvDkA_wD4gj82d0BvPUgAhcaC_4QoQv-ADEGAdve8gP0BRnvz_oL9e3xGQXrMfvv7vva8ucQDQsI-hAEA_P9-igS5wTLQfL-BuLk_wwD6_ggAC04HAI7OBNACUhhUAIqzwcQABrAB2fyrb4McAa9UmoKvbXzBbyGWk69Xff7OhTamL0nT3k9CxGJu4LKSD7ElIi8VUqRuzQwjbxKtU88fHQwuxh3Ez7VioC8_o2Hu4bjCb7fIPU8rAEqvVhjP73bNow6RBTTvPZzNL1_vq28RjniusLJjD0vUkO9fBm7PJFWRjy0jqq8lIAdvSgTMj2wXyu9sac9vXEeTjz84Lw88m52vKr0Lj1HUve81B5APMbEgTwYcrE9zamJPBaSYr0RXnW7PvTTvPBZzTyscoA7RtJuPEgcjb0ndZe6ynIvuw-pszyPeAk82FL2O8x6ET4WhxM9fJOLvCq7Cr0V2di8oTFuvA1TK75csqY7Yro1vCmuqjyWSq49-D_Zu8hFJb5p0YE9nQjHvP1S3Dumtre75BGcPDhoPz6H1i88-Kc3O1e1BD6DDTS9Ed6DvAib8Lz_Yxw9Fw2ZPMeLOz3gle48tIC_vPSLkj1UcWO9X3a0vPeCJT1tdl-9I39Vu7NWfjzOOC29UcywPCgrhr2Dogk-LUC6OgUjpT3WAju-SeWaOpXcPL088cG9Q-nmu0t2bD0N7cI9OeajO1mHwz0Kz1W99IJTO10mubzXG5C9Gls-PJxHzzwS1YC9zoJ1vJxTCb5f-k09dEuju0-5GL0wZus9U2bCuc98mLzwsP-8wB0Pu0WlDD1w7m89zf5lO8CNWb1IUlK9fd0WO7HVijyNoTW7RplLu2GRW7tJZvU8OlufOwqjWb2Oadi7yyrwuqPjbz2T2oW9ZxeXN-6vDj6fEpG9ftCUOZB_C71vTYU9kk-ZOHkB2zxDyPk9CuouuPJ8Bj3Pm6-9fRngOFQb_L1iu_u9E9PyOZ7wULucqSu91YHFudGlKT2vcWc9RF7FusC4r7zl_rg7y8ECOCf3i73meQs9nwu4tp5Qnj3Y6Sw9mfx1uH-Dtr33VX49rIjzuOYqjDy15Jy9fOiDOCXXA70EtLg9qiequNaLpr1_jb27ZiAAuVkNgz3xDcU83bvvOBNjWb3Ouxs9P388ONpsUT2Yf7m9nUXbOBLRt7sM_Yi9UGX6N1z7Jz2WBp69UHW0OMrhA74Q1x48l_1ONxYggDwIVMG7JeR6thxe8D19BP489OeQuG-3iTxCUWo8h0IpOIJVRT50yDc9ydyEuaqex716nY69kk3VN7yQzr03gpm9gmKPuPCnlj12Y4s8W3mptBT0TT20vae9l5eNt7nBdTwt7Ak-hifnOInwz72TUbU97XjxuKdaC77Mmhi9Cpd0uOblED3kq3M9Rs1DNyAAOBNACUhtUAEqcxAAGmAv4gARACvyChAP1A7U9Vy-0di5B6YR_90T_wkMzRnt5sjl6iMAFMod2pcAAABD1uQlCQDPf_zvKiMeDh7Gs702HkD5D8jB1fc64dUYGkMDyyn0NkoAwRPOI1q6u_83OTggAC124BM7OBNACUhvUAIqrwYQDBqgBgAAiEEAAADBAACQQQAA0MEAAKDBAACcQgAAiEEAACDBAAC4wQAAlsIAAEDBAADIQgAACEIAAJpCAADIwQAA8EEAAPhBAACAwQAAgD8AAJDBAAAIQgAAgsIAAKhBAAAsQgAAQEAAADBBAACAQgAAoMEAAFzCAABAwQAAwMEAAAxCAACwwgAAkMEAAJDBAADQwQAA2EEAADhCAAAswgAAmMEAAERCAABAwgAAoEAAADBBAABAQAAAgMEAAERCAACgQAAAQMAAAIDCAACswgAAsMIAABjCAAAAQAAAmEEAABDBAABoQgAABMIAADhCAABIQgAAuMEAACTCAAAwwQAASMIAABDCAAAUwgAAFMIAAKBBAABAQAAAqEEAAHDBAAAAwgAAHMIAACRCAACgwAAAyMEAADBBAABQwQAAYEEAAKjBAAD4wQAAWEIAAATCAAAwwgAAZEIAAMjBAABQQgAAOMIAAJJCAAAwQQAAcEIAAMhBAAC2wgAALMIAAIzCAACmwgAAsEEAACTCAACYQQAASEIAADDCAAAMQgAAGEIAAODBAADgQAAAdEIAAEzCAADIQQAA8EEAABRCAAAMQgAAIMEAAKBAAAAEQgAAHMIAANDBAAAQwQAAwEAAAODBAAAIwgAAgsIAAMDBAAAYQgAAgD8AACDCAAAEQgAAgEAAAGDBAAAEwgAAOEIAAMhBAABgwgAAQEEAACRCAABAwAAA-EEAAKhBAACYQQAAHMIAADzCAAAAwQAARMIAALhBAADQwQAAAMAAAChCAAAcwgAAqMEAAJDBAAAUwgAA0MEAABDBAABEQgAAoEEAAPhBAAAQQQAA0sIAAIjBAABwwgAAmEEAABhCAACOQgAA4MEAAOBAAACQQQAANEIAAEDAAADAQQAAZEIAAOBBAAAowgAAcMEAAKBCAACWwgAAiMIAAODAAADAwQAAOMIAAMzCAAAwwQAA2MEAAMDBAAAwwQAAAAAAALZCAAAUQgAAgMEAADjCAAC4wQAAoEAAAEBCAACEQgAAmEEAAABBAABQQgAAHEIAADBCAAAUwgAAoEAAAEDBIAA4E0AJSHVQASqPAhAAGoACAABwvQAARL4AAGw-AAAEvgAAuD0AAMY-AADoPQAAA78AADQ-AADIvQAAyD0AAKC8AADgvAAAij4AADS-AACAOwAAJD4AALi9AABEPgAA4j4AAH8_AABUvgAAyD0AAKI-AAB0vgAAiD0AAKA8AADIvQAATD4AANI-AADoPQAAfL4AAHC9AAC4PQAAUL0AAKi9AAA0vgAAPL4AAMa-AADIPQAAQDwAAIq-AABUPgAAQLwAADS-AAAEvgAAuj4AAJK-AACWvgAAZL4AACy-AACIPQAA3j4AADy-AABsvgAAoDwAADk_AAAMPgAAuL0AABA9AAAMvgAAJD4AANi9AADIvSAAOBNACUh8UAEqjwIQARqAAgAA-L0AAIC7AAD4vQAAVb8AALa-AAAkvgAAkj4AAIa-AAAQPQAAML0AAAS-AAAsvgAAEL0AAOC8AACYvQAAoLwAAEy-AADOPgAAiL0AADw-AACePgAAQLwAAHy-AAAQvQAAuL0AAKA8AABwvQAAiD0AACy-AAAcPgAAJD4AAEQ-AACOvgAAgLsAAOi9AACAuwAA7j4AAAQ-AADOvgAAmr4AAOg9AACCPgAAQDwAAIo-AACGPgAAXL4AAH-_AABsPgAAfD4AABC9AAAkPgAAUD0AAIA7AAB8PgAAoLwAAGw-AADgvAAAND4AAIA7AABQvQAAjj4AAHA9AABAPAAAVL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=4K6xr8hjkTw","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18285447808517736288"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"733893462"},"1137395185516115693":{"videoId":"1137395185516115693","docid":"12-6-17-ZD056BBC5415E4FA8","description":"Follow us facebook - / vishal10m twitter / vishalkvs instagram / vishal10m -Quick Link SSC CGL 2022 Perlims...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/928970/ac07d2d926095f1c962e8b07686c7d5b/564x318_1"},"target":"_self","position":"12","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DO2HYwew0uCU","linkTemplate":"/video/preview/1137395185516115693?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"If sin (A + B) = cos (A + B), what is the value of tan A?","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=O2HYwew0uCU\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhUKEzExMzczOTUxODU1MTYxMTU2OTNaEzExMzczOTUxODU1MTYxMTU2OTNqrg0SATAYACJEGjEACipoaGF4bXhka2VucWR3dW1jaGhVQ0pEZDItZ1lrd3hqMjdldWtyNjBXdGcSAgASKg_CDw8aDz8TcIIEJAGABCsqiwEQARp4gfr3_Pn_AQD6CA38-wT_AfD8AAT7__8A6QH4-_n-AQD1AwECBwAAAOgP_v36AAAACO4DDP39AQAEB_D3AwAAABMABQT8AAAAEBH6-f4BAAD8-_32Av8AAPr2BQT_AAAADQ_89wAAAAAFDfkDAAAAAAr4-REAAAAAIAAtKzLXOzgTQAlITlACKnMQABpg_A8AIyQgCNoOD-ER7ujo2fn039bIDP_oGwDz8ybs8xf2reYE_y_rBvi5AAAAB9j9Lv8A91T79dYYAxrXDrrqARZ_-u0HBBLU3szxGCgJDDbZ9yU9ALkF8_QSxwgcOyAXIAAtEQxGOzgTQAlIb1ACKq8GEAwaoAYAAGxCAABQQgAAnEIAAHTCAABAQQAAMEIAAKhCAABgQQAAVMIAAHDBAABAQQAAMMIAACTCAADQwQAAoEEAAODBAAAYQgAAmMIAAFhCAAAUwgAAqMEAADDBAACMwgAAGEIAALjBAADAwAAA2MEAAATCAACgQAAAAMEAAIA_AABwwQAA0sIAAFBBAACawgAAgMAAAKDAAACQQgAAKEIAAHRCAAAwQQAAVMIAAODAAABwwQAAAMEAABjCAADAQAAAJEIAAMhBAABIQgAA_MIAAHBBAAAQwQAA4EAAAMBBAABAQAAAgsIAACDBAACYwQAAdEIAAIhBAAAcwgAA6MEAAATCAADAQAAACMIAACDBAADAwQAAVMIAAEzCAACiQgAAgkIAACDCAACiQgAAwMEAANDBAABwwgAA0MEAANhBAABwQQAAoMEAAIJCAABgwQAA-EEAAGDBAABAQQAAmEEAAMDAAACQQQAAqMEAAIDAAACSQgAAVMIAAADCAADgwQAAOMIAAJjBAAAQwQAApkIAACTCAAAYwgAAXEIAAGxCAACwwQAAiMIAALhBAACowQAAVEIAAOjBAACIQQAA-EEAABjCAADgwAAAcMEAAGDBAACAQgAAIEEAAKBBAAAwQQAAgL8AAFDBAAAcwgAAIEEAAITCAAAgwQAAAEEAAFBCAACAvwAAoEEAAABBAACoQQAAfMIAAHBBAAB4QgAAAEEAAMZCAAAAwQAAYEEAAODBAABEwgAAMEEAAIA_AABgQQAABMIAAGBBAAAIQgAAEMEAAAAAAACAQAAAEEEAAMjBAABMQgAAFEIAALDBAABAQAAAKMIAAEDCAACAwAAA2MEAAGDBAABwwQAA8EEAAKBBAACgQQAA4EAAALjBAACIwQAAmkIAAEBBAADAwAAAoEAAABBCAABgwQAAAEAAAFDBAAAkwgAAUEIAAKDCAABAQAAApEIAAPzCAABswgAA4EAAAAAAAACQQgAAMMIAAHDCAAAAwQAAkEEAABBBAAAUQgAACMIAAODAAAAIQgAAiEEAAGxCAAC4wQAAOEIAAPBBAAAwwSAAOBNACUh1UAEqjwIQABqAAgAAyL0AAPi9AACCPgAAcL0AAIA7AACOPgAAUL0AAO6-AACYPQAA2L0AADC9AAAcvgAAML0AAPg9AABsvgAABL4AACw-AABAvAAADD4AAI4-AAB_PwAAcL0AABA9AAAkPgAATL4AAFC9AACgvAAAyD0AAPg9AABUPgAAyD0AAES-AACovQAAUD0AAAS-AADgvAAAcD0AANi9AACWvgAAqL0AAJi9AADYvQAAkj4AAOA8AABMvgAA4LwAACw-AADgPAAAUL0AAJg9AACAuwAAyD0AAFQ-AACgPAAAVL4AAIC7AAAZPwAA-D0AAKi9AADoPQAAyL0AAEC8AACoPQAAUD0gADgTQAlIfFABKo8CEAEagAIAADS-AAAcvgAAoLwAAFm_AACGvgAADL4AADQ-AACovQAAJD4AAOC8AADIvQAA6L0AAIi9AAC4PQAA2D0AABC9AAAQvQAA-j4AANi9AACWPgAAmj4AAFC9AAC4vQAABL4AAFC9AAB8PgAAUL0AAJg9AABQvQAAqj4AAHA9AABcPgAAPL4AAFS-AADYPQAADD4AAPo-AAAsPgAAjr4AADS-AAB8PgAA6D0AAHA9AACOPgAA-D0AAIi9AAB_vwAAqD0AAPi9AADgvAAA6L0AAAw-AABwPQAAkj4AADA9AABkPgAAoDwAADC9AAAEPgAADL4AALI-AAAwPQAA4DwAAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=O2HYwew0uCU","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1137395185516115693"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18225918010381791171":{"videoId":"18225918010381791171","docid":"12-0-3-Z6AFB78B87B7B8B15","description":"Quickly learn how to prove the trigonometric identity sin(a-b) = sin(a)cos(b) - cos(a)sin(b)! This clear and simple explanation makes understanding algebra and trigonometry easy for everyone. sin...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3471436/5a94e587fd65f41018372e5c54ec0323/564x318_1"},"target":"_self","position":"13","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dxll9kkQYzYg","linkTemplate":"/video/preview/18225918010381791171?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"sin(a-b) = sin(a) cos(b) - cos(a) sin(b) Proof","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xll9kkQYzYg\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhYKFDE4MjI1OTE4MDEwMzgxNzkxMTcxWhQxODIyNTkxODAxMDM4MTc5MTE3MWquDRIBMBgAIkQaMQAKKmhoY2ttamt4bnFhem1ndmNoaFVDOW9GYmhLMVlBZ015VV9zVHdKeExuZxICABIqD8IPDxoPPxNjggQkAYAEKyqLARABGniB-_8B__sGAP0CBQL6Bf4B5gD5_fwAAAAB__7-AgT-APQAAAb-AAAA-g_9_vsAAAD3-PcEAf8AAAf_AvYEAAAAEwsAAf4AAAAOA_j__gEAAAQB-PgD_wAAA_v9AwAAAAAADfryAAAAAAEH-PoBAAAAB_v-CQAAAAAgAC3En-M7OBNACUhOUAIqcxAAGmAJAgAO-zD15ykjCSb1_P3JCtDP4LIq_-k0ACQKAtji99naCPr_CfAMAK8AAAAEzx43AgDjXMn9uwQFBOjszOgbQX_-9_rq5c4gAAEK5_sb5TXjBDUArxT_5gXCCNIlDD4gAC2yKzg7OBNACUhvUAIqrwYQDBqgBgAAwEEAALDBAACqQgAAisIAAFxCAABEQgAAZEIAAOhBAABUwgAAUMEAAMDAAACgwQAAfMIAAETCAAAgQQAAgEAAAABAAAB0wgAACEIAAPDBAADYQQAA8MEAAIDBAACAwAAAHMIAAKBAAADQwQAAiMEAAARCAACAwQAAMMIAAMhBAABcwgAAQMEAAFzCAAAwwQAAAAAAAJRCAAAQQQAAuEEAAHBBAABUQgAAkEIAAMhBAAAkQgAAgsIAABBBAACYQQAAmEIAAAhCAACMwgAAUMEAABDCAADAQAAADEIAABBCAADIwgAAyEEAACRCAACCQgAAQMAAAIzCAAAswgAAcMIAALBBAABUwgAAoMAAAGDBAACQwgAAOMIAADBCAAB0QgAAlsIAAKJCAACAvwAAAEAAAGjCAAAAQAAA0EEAADDCAADowQAAUEEAAOhBAAAsQgAAcMEAABzCAACgQAAAQEIAAOBBAACQwgAAFMIAALBCAABwwgAA-MEAAJBBAACWwgAA2MEAAMDAAACaQgAAgD8AAETCAAAIQgAAQEIAAPDBAADEwgAAAEIAAMDAAACIQgAAIMEAAPBBAAD4QQAAQMIAAHTCAAC4QQAAyMEAAADAAACgQQAAqMEAADjCAACYwQAAqMEAAITCAABwwQAAuMEAACDBAABAwQAAUMEAABDBAACYwQAA8MEAADDBAAAcQgAAAMAAABhCAACAPwAAlkIAAEBBAABwQQAA6MEAAGzCAAAAAAAAmEEAAIA_AADYwQAACEIAAOjBAACawgAAAMAAAEDAAAAwQQAAwEEAABBBAADwQQAA8MEAAERCAACAwgAAAMEAAJjBAAA0wgAAqMEAAMjBAABQQQAAIEEAAODBAAAAwQAAAEEAAADBAABQQgAAFEIAAGBBAADIwQAAwEEAABTCAAAQwgAAsMIAAPhBAABQQQAAVMIAAARCAADQwQAANMIAAKDBAADgwAAABMIAAJJCAACwwQAAhMIAABTCAACQQQAAPEIAAABBAAD4wQAAwEEAACBCAACQQQAAiEEAAEDCAAAUQgAAQMAAAJTCIAA4E0AJSHVQASqPAhAAGoACAABQvQAAfL4AAEw-AAAEvgAAcD0AAKI-AAAQPQAABb8AADw-AADYvQAAuD0AAIC7AADovQAAij4AADy-AABQvQAAHD4AAJi9AAD4PQAAtj4AAH8_AABcvgAA4DwAAHQ-AACevgAAmL0AAOA8AACovQAATD4AAMI-AAAUPgAAjr4AAJi9AACoPQAAqL0AAKi9AAC4vQAAZL4AAL6-AAAkPgAAoLwAAJq-AAAMPgAAoDwAAAy-AAAUvgAA0j4AADy-AABsvgAATL4AAAy-AACgvAAAwj4AAES-AAAcvgAAUD0AADs_AACoPQAA-L0AAEC8AADYvQAABD4AAHC9AADYvSAAOBNACUh8UAEqjwIQARqAAgAAmL0AAFC9AAAMvgAAW78AAJK-AAA8vgAAij4AAGy-AAA0PgAAcL0AALi9AAD4vQAAML0AAEC8AAAwvQAAML0AAHS-AADOPgAAUL0AAII-AACePgAAiL0AAEy-AABAvAAAML0AAPg9AABAPAAA2D0AAAy-AAB0PgAADD4AAEQ-AACCvgAAgLsAABS-AABQvQAA2j4AAKA8AADGvgAALL4AAEQ-AABkPgAA4DwAAKo-AABkPgAAir4AAH-_AABsPgAAZD4AAKA8AAAwvQAAcD0AAAy-AABUPgAAyD0AAIY-AAAQvQAA2D0AAIC7AACovQAAij4AABA9AABAvAAAPL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=xll9kkQYzYg","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18225918010381791171"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6924831840091690430":{"videoId":"6924831840091690430","docid":"34-4-14-Z625810A08BD34C9E","description":"Monica Performing Her Hit \"Still Standing\" At Club Opera In Atlanta #Monica #Ludacris #Luda #Live #BCox #Atlanta #ATL #Show #Concert #R&B #UnclePaulie #DTP #DisturbingThePeace #BrianMichaelCox...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4775749/0194d3bd61de01e8120ac51fe435dcd6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/a8E8TQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbuXV3ZVxX-M","linkTemplate":"/video/preview/6924831840091690430?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"#Monica #Ludacris #StillStanding Monica Ft Ludacris - Still Standing Performed Live!! #BCox","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=buXV3ZVxX-M\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhUKEzY5MjQ4MzE4NDAwOTE2OTA0MzBaEzY5MjQ4MzE4NDAwOTE2OTA0MzBqiBcSATAYACJFGjEACipoaG1xYWR4emRoZ2Rwc2NiaGhVQzlxenpNVjhFNTktRGNmTGo3VnBpdlESAgASKhDCDw8aDz8T7QSCBCQBgAQrKosBEAEaeIEHAQT5Av4AAQwEB_gI_QLo_Qn4_P__AOMA8AkA_QIAAvn7__8BAADe8AIFAQAAAO0ACvX4AAAAIQEEBwQAAAAKDfsC-gAAAAcAD_b_AQAADvQD8gEAAAD0_AkA_wAAAAUA-P79_wAA_AINDwAAAAAQ_wMQAAAAACAALV_nzTs4E0AJSE5QAiqEAhAAGvABavz2ARsd_wULIPkAgRAX_L4KFv_QIPYA8hTpAegA8AHcBggAF-EKAA4D-wAJCPIACgAF__IEFgDu_-oAMwn-ABvGCwDnAPQB6BMTAfXM-QEa5_0AV_3mA-IAGwADHOL_EP7_A9YM_gABCxcCHfoC_yf-8wMEAOgBEQ4VAs0F-AEQ9wYAFtwDAufmHgAY9fr_BgTx_gYO9wEH1fwE6y4U_fL0CAD3EAABDOnz-dv8BgcL-gz48Rz1_fznCwMG5vEH5h0I-wAEBv_92_n27fLyA_rz9gj-IPwK3gEPBxcMC_Uh2RD8PjgJ-e8B_f0L6AQBIAAt_cg9OzgTQAlIYVACKs8HEAAawAce4by-KJCjPNgst72thSm-3X1pPZTphjqrXo6-BKjOvKO7mrxXtaS-LmS_vGQpLb2vCN69htRlu4nEzrt7Tkq-DsTPu2RgeDwfvLa9pu2EvM5CcTxHa1a9KRoQvRkEMT3fpCk-vR7MPXwP17xAdo08ntZIvOfjOj3sP6G8gSqJvAxRqjxPCHw7ctJFvd-KRLwNdzk6YoEPPavJtjudAxU9e2oVPe41Dj2T1JO91SqVPDzhnbsfLgk-lekhvPVSZzwv4tY8ztyoPTDHoTx0CkI-XalCvPLMsDzZbDY93ACiPDYS1ztmFuE9QbUGPRPWhrwgkNU8ipdAu_sWhLv09KY9vTQFPYBlJbw7x-A99wtxveZj0rynaYE9u0S1PNZJR7y8bVA9kCX_uylptLyG5U-9cH6ePOTQrLzH95C9lR9iPVUfnzvPReg8GsFGPESMMrz67CA-DzarPL1RULynO2-9O2tcvO4O47vo7gQ9Fa0MPjoNizsiezO9bLkOPbtg0zundiY-zO8Evsh_4DsbTak9mbQOvXD6abzINEQ9ZheXPT6XKbwzPJE8EwZKvd16Dbw0Yge7WCjKuxhmujtwzQ2--FV5PZTnVjkauRO92HhVvJ5K3brOZfQ8RvUxPOSy-ruYoty9eSe6vBvv8brD5aK9QVcMvU3kdrtmo1M9fFMHvW8g0bvwP2g7nrliO2dOfDrlhOS8ModOvVmvu7udNAg9o7E2PdSJ5Dca3iy-0Xo4vaFywDnjF649MlSqvI-tErkF_gs94qlsvDno-TgfygY85_M7vbJ9ZLnvfiu9ShxpOo61czjLFNM9CwnYvHgqP7mcDpm9FS61PTT1Hrl8WPm8z_fTvTI3tLkdYJy8vDuSPYgxsLeUS-M9YmngPQASwbjM--68Vj0JO7u7lrnIdI08x5s8vcSgkLhLMEa9b7hPPdwHxjfmpQs7U7s1vX3cwjisTIK9MWexPav7SDhnEhA9BIY2PUJ-tTgKJLI82_OAu27rbzhdrjg7gfOdPbMYYrbPYeO8PLjgPNVm2bdG6r09qDGGPNEIBjgHqFq9_nsgPqZrlTljqIS9Zpkvvcc-yTcEEI09er0AvQUwgDh1Wre8mOtDvdCoxTZgDYY85RkoO5chHTji0FY92YqHPaGwBLmsppA8wxRAPG4oaji8UKq99E-gPTFSHzggDee8FSoOPR4uvjZZPEs9ELkvPQEVqbgT6m49MCPGvc3J8Lfqy9K9mx0JvYXb1TdcKK-93hIqvfwiYzfeAR69GbGNO9UDPjggADgTQAlIbVABKnMQABpgHgQAJiAAq-gmG8HVIgn97y4C5AYM8f8f-_8sFw3JBqydz_72APy7yvmqAAAAHyosECYAs27t5PEn8iIu7xstbAN_8g3NElUF2fIP1fwnEbDnADo4ANsBo-oX4is4xOrfIAAtmKoZOzgTQAlIb1ACKq8GEAwaoAYAAODBAACYQQAAzEIAAJDBAADgwQAAcEIAAKhBAABQwQAAiEEAAHjCAAAkwgAASMIAAIzCAAAgwgAAsEEAADTCAAAAwQAA2MEAACRCAACqwgAAjkIAAPjBAAA8wgAAYEEAADRCAACIwQAAdMIAAGDCAAAQQgAAUEEAAExCAABEQgAAwMAAAARCAABQwQAA0EEAABhCAACOQgAAcEEAABjCAAAwQQAAgMEAACRCAAB4QgAAuEEAAKBBAABQwgAAuEEAAPBBAACAQAAAHEIAAHxCAAAQwgAAMEEAAATCAAD4QQAAgL8AAIZCAADowQAAZEIAABTCAAAwwQAAHEIAADDCAAAQQgAAgD8AAADBAACQwQAAhMIAAADBAACgwAAA6MEAAIBBAACgQQAAhsIAAOBAAABAQQAAgMEAAKBAAABwwQAATMIAAHBBAAB4QgAAAMEAABDBAAAQQgAAAMEAAFBBAAC0QgAADEIAADxCAABoQgAAZEIAAAzCAACAPwAAiEEAAOJCAADYwQAAMEIAAPDBAAA0wgAAGEIAADBBAABAwAAAfMIAAKhBAAB8wgAAqEEAAADDAADIQQAA4MAAAODAAACAwQAAhMIAAFBCAACwQQAAOEIAAHDBAADgQQAAAAAAAIDCAAAYQgAA8EEAAIhBAACIQQAAbEIAAEBAAAAQQgAAgD8AALhBAAAAwAAAjMIAAEBBAADAwAAA8EEAADzCAAAgQgAAjsIAACzCAAAAwQAAiEEAAIA_AAC4QQAAeEIAAABBAAAMQgAA8EEAAMBBAAAAQQAAwEAAAOhBAACIQQAAoMEAABDCAAAQwgAAREIAAIBAAAAAwgAAcEIAABDBAADowQAAgEEAAIDBAAC4wQAAQEIAACBBAAAQQgAAoMAAACBCAADAQQAAYMEAAHjCAACCwgAAgEAAABzCAACAwAAAwMEAAPjBAADgQQAAyEEAAGxCAADiwgAAqMEAAJTCAABsQgAAwMEAAMTCAABMQgAAMEEAAFhCAADAwQAA8EEAAPhBAABgwQAAgMAAACBCAABAwgAAwMEAAADCAABIQiAAOBNACUh1UAEqjwIQABqAAgAACb8AAAG_AABsPgAAmr4AADS-AADOPgAAED0AAC-_AAA8vgAA2j4AAFs_AADYPQAAwj4AAMa-AACGPgAANb8AAAw-AACuvgAABT8AAEc_AAALPwAAQLwAAFS-AACYPQAAXD4AAOa-AAAZPwAANL4AAIg9AAB_PwAAgDsAAJo-AADovQAAcz8AACw-AAC6PgAALD4AAKA8AAAsvgAANL4AADC9AADmPgAALz8AAEw-AACCPgAA4LwAAJq-AADgPAAAor4AAHe_AAA7vwAA-D0AAKA8AACGPgAAvr4AADw-AAAhPwAAgDsAADC9AADuPgAA4r4AADA9AACYPQAAyL0gADgTQAlIfFABKo8CEAEagAIAAJq-AAAkvgAAdD4AAGu_AACYvQAAgDsAABQ-AABkvgAA6L0AADQ-AABkvgAA4LwAACw-AABAPAAAXL4AAFA9AADovQAAfz8AAFQ-AACiPgAAoLwAAHS-AABQvQAAQLwAANi9AAAwvQAAHD4AABQ-AAC2PgAAFD4AAIA7AAD4vQAAND4AAAW_AACIPQAA2D0AAHC9AAAUvgAAmL0AABC9AAB8PgAAMD0AALg9AADovQAAjr4AAAS-AAB5vwAAHL4AABA9AABEPgAAgj4AAHA9AACYPQAAED0AAKg9AACIPQAADL4AAJo-AAAwvQAAjr4AAJ4-AADIPQAA4DwAAI6-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=buXV3ZVxX-M","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":400,"cheight":300,"cratio":1.33333,"dups":["6924831840091690430"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1626654815"},"2210780698944176160":{"videoId":"2210780698944176160","docid":"12-0-0-ZA12637B0B25ADAA5","description":"sin ( A-B ) = sin A cos B - cosA sinB proof. #studymathematics #class11 # trigonometry by J.P. Verma...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3933039/3b7afad1edc5a5457fe17afa7ee29c95/564x318_1"},"target":"_self","position":"15","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5T8ukxz2qfE","linkTemplate":"/video/preview/2210780698944176160?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"sin ( A-B ) = sin A cos B - cosA sinB proof #Trigonometry By J.P. Verma","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5T8ukxz2qfE\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhUKEzIyMTA3ODA2OTg5NDQxNzYxNjBaEzIyMTA3ODA2OTg5NDQxNzYxNjBqrw0SATAYACJFGjEACipoaHN4am9hdXlxYXh2eW1iaGhVQ0pQdVBrTGx1RlRNQjY5TXkzMEZvWXcSAgASKhDCDw8aDz8T9QKCBCQBgAQrKosBEAEaeIH4_ggE_AQABPUQBPsI_ALp_fkE-wAAAPwB-wX9Bf4A6-4KAAT_AADtBQj9-QAAAPr7-PoC_gAADwH4_AQAAAATCwAB_gAAABYG9vr-AQAA__z7_wP_AAD_-wP_AAAAAAAN-vIAAAAACfvw9gEAAAACAvwNAAAAACAALZO43js4E0AJSE5QAipzEAAaYDf5AAErItvJFifH_OT80P0CGbgPtSD_Aiv_EAsQ8ArszbcpLP8--xXvogAAABHH_RcgAAN6_dbRBSUPALS-0kA7fzEB7Az7wQMErzAdPj4C-uNHSADkFwn2Feo3UTYlWCAALWhfGDs4E0AJSG9QAiqvBhAMGqAGAADYQQAAkEEAAEDAAABQwQAACEIAABBBAABoQgAAQMAAABDBAACIQQAAgD8AAGjCAADowQAAUEEAAMBCAAAcwgAAAEIAADDBAADIwQAAsMEAAJDBAAAowgAAmMEAAOhBAABwQQAAoMAAAEDCAAAAQAAAYEEAAERCAABEwgAAcEEAAIDAAACAQAAAFMIAAEBBAABcQgAATEIAAJjBAAA0QgAA6EEAABBCAACgQgAAuMEAAHhCAAAQwgAAJMIAAABAAAAsQgAAJEIAANBBAAAwQQAAIEEAAABBAAA8QgAAbMIAAJLCAABQwQAAiEEAAJJCAACYQQAADMIAANDBAAA0wgAAwMEAAI7CAAAgQQAAmMIAAMDBAABAwQAAPEIAAFxCAADIwQAAAEEAAADAAADUwgAAjMIAAGDBAAAAwQAAyEEAABDCAABwQQAAwMEAAFDBAABwwQAAyEEAAODAAACeQgAAmEEAAEDCAABAQAAAQEEAALDBAAB8wgAAgEAAAKDBAAAQwgAAmEEAAIJCAADgQAAA6MEAADRCAABcQgAAfMIAAABBAABQwQAAgMIAAIBAAAAowgAAdEIAABRCAAB4wgAAYEEAADBBAAAMwgAAoEEAAHDBAACewgAAQEEAAATCAABgwQAAIMEAABDCAABEwgAACEIAAARCAADwwQAAYMEAAJLCAABIwgAAYMEAAOBBAADYwQAAxEIAAADCAABAQQAAkEEAAADAAABQwQAA1MIAAEDAAABwQgAAgEIAAKDBAAAkQgAAAEIAALjCAABAQgAAgMEAAADAAABgwgAAIEEAAMhBAABkwgAAiMEAAAAAAAAYwgAAgMEAAIjCAADoQQAAiMIAAEDAAADQwQAAAEEAAEBBAAAgQgAArkIAADBBAACgQQAA4MAAANjBAAAgwQAADMIAABDBAADowQAAsEEAABDCAADgwAAAYEIAAOhBAABMwgAAnsIAAPBBAACoQQAAnkIAAMjBAAAAwgAAwEEAALjBAAAkQgAAoMAAAEjCAAAIQgAAAMAAAGDCAABQQgAAjsIAAHxCAAAwwgAAqMIgADgTQAlIdVABKo8CEAAagAIAAEA8AAAUvgAAlj4AANi9AACgvAAAnj4AABC9AADGvgAAHD4AAOA8AACgPAAAgDsAADA9AAA0PgAAPL4AAOC8AACoPQAAyL0AAFQ-AADCPgAAfz8AALi9AABAvAAAnj4AAHy-AAAwPQAAcD0AAOi9AAAUPgAA3j4AAKA8AADYvQAAHL4AADA9AABAvAAAFL4AAPi9AADIvQAAkr4AALg9AACgvAAAbL4AABw-AACAOwAADL4AAHC9AACSPgAALL4AAFy-AAAcvgAAEL0AAJg9AADCPgAADL4AANi9AACgPAAAIz8AANg9AADIvQAA2D0AAFC9AACYPQAAcL0AABy-IAA4E0AJSHxQASqPAhABGoACAAAEvgAA4LwAAEC8AABPvwAAnr4AAEy-AABEPgAAJL4AALg9AAAQPQAAbL4AAHy-AABQPQAAgLsAAIi9AABwvQAANL4AAPo-AACgvAAABD4AAHw-AAD4vQAABL4AAOA8AACAOwAAuD0AADA9AAC4PQAAED0AACw-AADgPAAALD4AAHS-AACovQAAVL4AAKA8AAD2PgAAyD0AAIa-AABkvgAADD4AAII-AAAwPQAAbD4AAHQ-AACCvgAAf78AAI4-AABMPgAABD4AADA9AAAQvQAAoDwAAGw-AABAvAAAPD4AAEC8AABEPgAABL4AAKi9AACWPgAAED0AAEA8AAB0viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=5T8ukxz2qfE","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2210780698944176160"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15565583960296570704":{"videoId":"15565583960296570704","docid":"12-2-12-Z4D54F3FDFA2144B2","description":"If tan 𝜃 = a/b in any triangle, ABC, find the value of a sin 𝜃 - b cos 𝜃 / a sin 𝜃 + b cos 𝜃. Cbse Class 10 Maths Introduction to Trigonometry Book Out Question in Tamil by Kalvikan 📌Class...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2044062/f887aa439b5d89af3eb36cd8878e678b/564x318_1"},"target":"_self","position":"16","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQBWjmHEDTzE","linkTemplate":"/video/preview/15565583960296570704?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"If tan theta = a/b in any triangle, ABC, find the value of a sin theta - b cos 𝜃 / a sin 𝜃 + b cos.","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QBWjmHEDTzE\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhYKFDE1NTY1NTgzOTYwMjk2NTcwNzA0WhQxNTU2NTU4Mzk2MDI5NjU3MDcwNGqvDRIBMBgAIkUaMQAKKmhoc2hndHdsYnR4cXhpcWJoaFVDb2o5VlN1clhkd2ZBd296NmVSSmZHdxICABIqEMIPDxoPPxOMAYIEJAGABCsqiwEQARp4gff-_AD-AwD0BAUB-QP_Afb4-_z6_v0A9QX1_fYC_wD5CQYNAQEAAPoP_f77AAAABPv8C__9AQAPAfj8BAAAABkC_QD4AAAADQf_-v4BAAD8-_33AgAAAAL2BQYAAAAAAA358gAAAAABCPj6AQAAAAj-BAYAAAAAIAAtAFPbOzgTQAlITlACKnMQABpgAxIAQBsL2qoBLb4H5tzj9_gM3f7BD__nEf_96wvxAxLrmg75_xoPF_StAAAA9urwMiEA52j55eAN_g329bToGyd_EfgNFADr5a39RTgHIDPCIzwcANkJAfsbwRdGNSwSIAAtvC8tOzgTQAlIb1ACKq8GEAwaoAYAACBCAAAoQgAA6EEAADDBAADOQgAA4EEAABhCAAAQQQAAwEAAAADAAACwQQAAXMIAADDCAAC4QQAATEIAABjCAABwQQAANMIAAIDAAAAQwgAAuMEAAKjBAACwwQAANEIAAODAAACAPwAAeMIAALzCAABwQQAA2EEAACRCAACMQgAA8MEAAKBAAAAYwgAAUMEAAMhBAADsQgAAgL8AAEBCAAAAAAAAiEEAAGxCAAAgwgAABEIAALzCAABkwgAAYEIAAMhBAACoQQAATMIAADDBAAD4QQAAmMEAAOBAAACAvwAAjMIAADDBAAAQwQAAXEIAAERCAAAMwgAACMIAAHzCAAAcQgAAgL8AAIBAAAAowgAAGMIAAFzCAACqQgAAlEIAADTCAACAwQAAgD8AAMDCAAAEwgAAgL8AACDCAAAAAAAAFMIAADxCAAAEwgAA6EEAAETCAAAwQQAAQEAAAFhCAAAUQgAAMMIAACBBAABIQgAAisIAAGjCAADAwQAAMMEAACTCAAAQwQAAYEIAAIDBAABkwgAAbEIAAJBCAABAQQAAEMEAAFBBAAAYwgAAMMEAAGTCAACGQgAAoEEAACDCAACwwQAAAEEAAETCAAAAwAAAkEEAACzCAAAYwgAAQMEAAMjBAAAYwgAAjMIAAOBAAADwQQAAVEIAAIhBAACowQAA-MEAAMDBAAC4wQAAgL8AADDBAAB0QgAA0MEAADBCAAAgQgAAmMEAANDBAAAQwgAAgD8AAJjBAACAQAAAQEAAAHBBAAD4QQAAysIAANhBAADQQQAA4MAAAFzCAADoQQAAQEAAAABBAADAQAAAmMEAAAzCAACUwgAA3sIAAAhCAAAEwgAAgEAAAMjBAABAwQAAgMEAABDBAADoQQAAREIAAIhBAABAQAAAwMAAAMBBAABAQQAAAEAAAKDAAAAUwgAAyMEAAGTCAADEQgAAmMEAAAjCAADAwQAAwEAAAIZCAACCQgAA2MEAALDBAADgwQAAkMEAABDBAABEwgAAgsIAAAxCAACAQAAAIEIAAFhCAAAcwgAAiEEAAHDBAADgwSAAOBNACUh1UAEqjwIQABqAAgAAML0AACS-AAC2PgAAmL0AAPg9AACCPgAAMD0AAAe_AAAEPgAAHL4AAOg9AACIvQAA4LwAAHw-AAAsvgAA2L0AABQ-AADgvAAA4DwAAMI-AAB_PwAA2L0AAMi9AACCPgAALL4AAOC8AABwPQAAmL0AAL4-AACePgAAmD0AAFy-AADIvQAAgDsAAFC9AACovQAAoLwAAEy-AACavgAAiD0AACS-AAD4vQAAXD4AAKA8AAAQvQAAmL0AAL4-AAAcvgAAqL0AAFC9AABwvQAABD4AAGw-AACIPQAANL4AAEA8AAAZPwAAgLsAAHC9AADYPQAAgLsAAMg9AACYPQAADL4gADgTQAlIfFABKo8CEAEagAIAABy-AAA0vgAAML0AAFW_AAAcvgAADL4AAHw-AAAcvgAAgDsAAHA9AAAEvgAAEL0AAES-AAAwvQAAUL0AABC9AAAMvgAA7j4AANi9AACiPgAAJD4AAEA8AACevgAAQDwAAHC9AACYPQAADD4AAKg9AACYvQAApj4AAAQ-AAA8PgAAir4AAAy-AADovQAAuD0AAN4-AADoPQAAyr4AADC9AAD4PQAAUD0AAEA8AACqPgAAHD4AAGS-AAB_vwAAmD0AAFA9AACoPQAAUL0AAJg9AACYPQAAMD0AAMg9AAAUPgAAgDsAACw-AACAOwAAUL0AAJI-AABUPgAAiD0AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=QBWjmHEDTzE","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15565583960296570704"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1490297785528638233":{"videoId":"1490297785528638233","docid":"12-7-11-ZFEDDA5C9D337EE2D","description":"video, sharing, camera phone, video phone, free, upload...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4303848/a55fc4cfb46b4f16b5b5367eb35f6725/564x318_1"},"target":"_self","position":"17","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWmQTZY5FXuE","linkTemplate":"/video/preview/1490297785528638233?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Lecture#06:Prove that Sin(A+B)=Sin(A) Cos(B)+Cos(A) Sin(B)","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WmQTZY5FXuE\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhUKEzE0OTAyOTc3ODU1Mjg2MzgyMzNaEzE0OTAyOTc3ODU1Mjg2MzgyMzNqrg0SATAYACJEGjEACipoaGRhamhyb2Rob2prbWVjaGhVQ0duVUZCTko5VGF6M2laRi1iX0VjMGcSAgASKg_CDw8aDz8TSoIEJAGABCsqiwEQARp4gfv_Af_7BgD9AgUC-gX-AeYA-f38AAAA_wP__PkF_gD5-_8FBQAAAPoP_f77AAAA_-_2CP3-AAAQAwL1BAAAABMLAAH-AAAADAb_-v4BAAD9-_33AgAAAAX-AwQAAAAAAA368gAAAAAEB_7-AAAAAAsD_AkAAAAAIAAtxJ_jOzgTQAlITlACKnMQABpgLvkALxYoUvgA8_wU9r0V0Au_4dLJ9_8R8gDxGAr19QMBvgsB_yUtEgGsAAAAFAf3LhIAG1f9EOUqABkY9M319fd_MgPKIQr-IRIlKsgH3goI4zQWAPMGIOIwstYTOw_9IAAtgME7OzgTQAlIb1ACKq8GEAwaoAYAAHBBAADgQAAAPEIAAIBCAABUwgAACEIAABBCAAAIwgAAQEEAAIDBAAAgQQAA4EAAAJjBAAAAQQAAYEEAADBCAACGQgAAFMIAANhBAACYwgAARMIAAMjBAABUwgAAUEIAAJBBAAAsQgAA8MEAAI7CAACYQgAAIMEAAETCAADAQAAAAEAAAMhBAADgwQAAAEAAACRCAAC2QgAAAMEAAJBCAAA8wgAAVMIAAFBCAAAAQQAAgL8AAIxCAAA8wgAAiEEAAKBBAAAAwQAAjMIAAIjBAACGwgAAuEEAANBBAAAwwQAAAMIAAHTCAAAAAAAAgD8AAMBBAAAwQQAAisIAAKLCAACAPwAA4MEAAAAAAACMwgAAfMIAAFxCAADwQQAA-EEAAABBAABUwgAAkEEAAILCAAC6wgAAgD8AAExCAACYQQAAHMIAACxCAAAEwgAAgsIAAIBAAAAgQgAAqMEAABjCAAAwQQAAsMEAAOhBAABAQQAAiEEAAEjCAACwQQAAJMIAAEDBAABwwQAAuMEAAKBBAABAwAAAmkIAAHBCAACUwgAAKMIAAMDAAAAIQgAAiEEAABBBAACAQQAAXEIAACDBAABwwQAAFMIAAFDBAAAcQgAAAMEAAIDCAACAvwAAHMIAAABAAAAIQgAAEEIAADDBAABgQQAALMIAAEzCAACYwQAAvsIAABTCAABYQgAANMIAANhBAADYQQAAoMAAALhBAABgQgAADMIAAATCAACgwgAAVEIAAMBBAABAQQAAoEEAAPhBAAAsQgAAoEAAAHDBAAAAQAAAMEIAAEBAAACgQAAATEIAADDBAAAIwgAAcMEAAN7CAACQwQAABMIAAHBBAACowQAABMIAAAhCAADgQQAAuMEAAIJCAABsQgAAMEEAAPhBAAC4wQAApMIAAOjBAAAQwQAAdEIAAIBBAADgwAAAgEAAALjBAAD4QQAANEIAAHDCAACQwgAA0EEAAATCAAAcQgAAmMIAADBBAACSQgAAEMEAAABCAAB8QgAAAEAAAAzCAACAwQAAQMEAAHBBAACIwQAAcEEAAERCAADYwSAAOBNACUh1UAEqjwIQABqAAgAAoDwAAAS-AACWPgAAgDsAAOC8AABEPgAAcL0AALq-AADoPQAAcL0AAAw-AABQvQAAQDwAAGw-AAD4vQAAML0AAFw-AACgvAAAVD4AAKo-AAB_PwAAUL0AABC9AACSPgAAor4AAKi9AACAuwAAJL4AABQ-AACqPgAAgDsAALi9AAC4vQAAcD0AAOi9AAAQPQAAcL0AABy-AACavgAAyD0AADy-AABEvgAAcD0AAAQ-AADIvQAA6L0AAHw-AABEvgAAPL4AABy-AACAOwAABD4AANY-AACAuwAAbL4AAEC8AAAVPwAAqD0AANi9AACAOwAAqL0AAEA8AAAwvQAABL4gADgTQAlIfFABKo8CEAEagAIAAMi9AABUvgAABL4AAFO_AADYvQAA2L0AAFw-AAAcvgAAoDwAADA9AACYvQAAcL0AAJi9AAAQvQAA4DwAAHC9AAA0vgAA8j4AAAy-AAA0PgAAqD0AAEC8AAAUvgAAoDwAAIA7AAA8PgAAMD0AAIA7AACAOwAAPD4AAFA9AAA0PgAAdL4AAPi9AAAkvgAAUD0AAI4-AAC4PQAAir4AADy-AAA8PgAAJD4AAIA7AACSPgAABD4AAJq-AAB_vwAADD4AAGw-AAAQPQAAUL0AAHC9AABwPQAA2D0AADA9AAAMPgAAED0AAIg9AADovQAA2L0AAGw-AABwPQAA4LwAACy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=WmQTZY5FXuE","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1490297785528638233"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11941330678110157601":{"videoId":"11941330678110157601","docid":"12-11-11-Z9532433C4E5B3DC9","description":"video, sharing, camera phone, video phone, free, upload...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/936892/cc766a70613108b45f6654f2b6ac7f94/564x318_1"},"target":"_self","position":"18","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Du9aJXRyCG5M","linkTemplate":"/video/preview/11941330678110157601?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof Of Sin(A+B) & Cos(A+B)","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=u9aJXRyCG5M\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhYKFDExOTQxMzMwNjc4MTEwMTU3NjAxWhQxMTk0MTMzMDY3ODExMDE1NzYwMWq8DRIBMBgAIlIaPwAKOGhoa2ZlamF6emVvamR1Y2JoaGh0dHA6Ly93d3cueW91dHViZS5jb20vQFBPTFlNQVRIX1JBR0hVEgIAEioPwg8PGg8_Ex-CBCQBgAQrKosBEAEaeIH2-gL-AQAABQQPBfoJ_ALjAPj9-wEAAPb6-_z-A_8A6PkDBwn_AAD5EP3--wAAAAf39gID_QEAB_8C9QQAAAAiDwMEAAD_ABgG9fn-AQAA__v7_wP_AAD_-gP_AAAAAAAO-fEAAAAAAwD6_wAAAAAFAfsFAAAAACAALa0-0Ts4E0AJSE5QAipzEAAaYA39AD0XJjz8DPoGBPPDFNwhnN-8xPr_DP8A8C4c8fAJ7c0n8f8pDhPrqQAAABj25RwiAApbygTCIxg1He_i8AX1f0P6yRkSEigUPiXX79zqEMcwBQD-_B7qG9zQETgqHiAALVlGMTs4E0AJSG9QAiqvBhAMGqAGAABAQgAA2MEAALhBAAAIwgAAcEEAAMBAAADAQgAAgEEAACzCAABAwQAAYEEAADBBAAAUQgAAoEEAADDBAAAoQgAAhkIAAODAAAAkwgAAmMEAAJhBAABUwgAAgMEAACxCAABEwgAAiEEAACDBAACQwQAAuEEAABxCAAA8wgAA4EAAACjCAABQQgAAgD8AADTCAABkQgAAUEIAAIhBAABAQAAA4EEAAODBAACuQgAA-EEAAIjBAAC4wQAAtEIAACDBAABAQAAAwEEAAFDBAACYwgAAwMEAACDCAABAQAAAkkIAAHTCAAAwwQAAkMEAAJ5CAACgQAAA0MEAAEjCAABkwgAAIMIAACjCAADIQQAAYMEAAABBAABMQgAANEIAAMjBAAAEwgAAYEIAABjCAABQQQAAGMIAACBCAACIQQAA4EEAABjCAADAQgAAQEAAAJDBAADQQQAAAMEAAIBBAABAwAAApEIAAOhBAAAQQgAAIEIAAJ7CAAC4wQAAoMEAAJbCAAAQwQAAOMIAAEDAAACgwAAAwMEAAMDBAABAQAAALEIAAKDBAAAgQQAAJMIAACBBAACIwQAAAAAAAHBBAADgQQAAAAAAAMhBAADgwQAAgEIAANhBAACUwgAAUEEAAAjCAADowQAAAMIAAIBBAAAAAAAA4MEAAGzCAAB8wgAAgMAAAHzCAACoQgAAMMEAAPBBAAAwQQAA6EEAAODAAAAkQgAAoMEAAFDBAAAIwgAAssIAAPDBAAAUQgAAAEEAAIDBAACgQQAAuEIAANjBAAB8wgAAAAAAAEDAAACQwQAAIEEAABRCAABMwgAAkEEAABxCAACGwgAANMIAAM7CAAAIQgAAQMEAAJBBAACwwQAAAAAAAMDAAAAAwQAAqEEAAGBCAABIQgAAbEIAAIC_AAAgwgAADMIAAADCAADIwgAA4EEAAAzCAACQwQAATMIAADhCAAAUwgAAjsIAANjBAAAgwQAAmEIAABBCAAAgwgAAuEEAACTCAAC4wQAAAEIAAIDBAAAAQgAAYMEAABBCAADAQgAAREIAAJjBAADYwQAAAEEgADgTQAlIdVABKo8CEAAagAIAAOg9AAAcvgAAFD4AAMi9AACAuwAAJD4AAPi9AAC2vgAAmD0AAIA7AAB8PgAA-L0AALi9AABsPgAALL4AAOi9AABMPgAAUL0AAKg9AAAcPgAAfz8AAJi9AACYvQAAgj4AAJK-AACgPAAAqL0AALi9AAAkPgAAfD4AAFA9AADIvQAAML0AAAw-AABEvgAAuL0AAHC9AABMvgAAtr4AAHA9AADYvQAAtr4AABQ-AAC4PQAAiL0AAEy-AAA8PgAAuL0AAIi9AACIvQAAcD0AALg9AADePgAAyL0AAIK-AABAPAAAEz8AANg9AACAOwAAQDwAABS-AABwvQAAoDwAAKi9IAA4E0AJSHxQASqPAhABGoACAAAQvQAAjr4AADC9AABdvwAAPL4AAOC8AAAMPgAAcL0AAIC7AABQPQAAHL4AAES-AACoPQAAgDsAAJg9AADIvQAAUL0AAAM_AAA8vgAATD4AAKg9AAAQPQAAUL0AABA9AACIPQAAJD4AAFC9AABAPAAA6D0AACw-AACAuwAAJD4AAAS-AABsvgAA2L0AAKg9AAC2PgAA-D0AACS-AAAkvgAAHD4AAAQ-AAC4vQAAXD4AADA9AACGvgAAf78AAHw-AADgPAAA2D0AAMi9AABwvQAA-D0AAIY-AAAMvgAAFD4AAOA8AACoPQAAcL0AADS-AACePgAAuD0AANg9AAAcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=u9aJXRyCG5M","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["11941330678110157601"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5579579069333012079":{"videoId":"5579579069333012079","docid":"12-3-9-Z4DA669F89696AE82","description":"#tricks. #tricks Parametric x=(a-b)cos(t)+b cos(t(k-1)), y=(a-b)sin(t)-b sin(t(k-1)),#youtubeshorts #shorts - YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4857980/e3274260fa6d0265958b33d6c8712227/564x318_1"},"target":"_self","position":"19","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzpwMKZUrHsE","linkTemplate":"/video/preview/5579579069333012079?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"#tricks Parametric x=(a-b) cos(t)+b cos(t(k-1)), y=(a-b) sin(t)-b sin(t(k-1)),#youtubeshorts #shorts","related_orig_text":"Bcox","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bcox\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zpwMKZUrHsE\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzM3NDYzNjQ4MTI0NDAxNDY4ChM2NzYyMDEzODcxODMxOTA4NzAzChQxNjAzMTk1MjgzMTE4NTQ3Nzg0MwoTMTEzNDUxMzc3MDUyMjcwMzgxMAoUMTQ0MDE2NTU1OTQyNjM1MzIwMTQKFDExOTEwNjg1MjM4MDM3MTA2MDM2ChMyNjIzMzE0NDkyNzQyNzkxNTQwChQxNjk1MTQyMTA4MDgzNTUwNzg2OQoUMTYwNzYwMTA4MDYwOTc0MTEzMDMKFDE4Mjg1NDQ3ODA4NTE3NzM2Mjg4ChMxMTM3Mzk1MTg1NTE2MTE1NjkzChQxODIyNTkxODAxMDM4MTc5MTE3MQoTNjkyNDgzMTg0MDA5MTY5MDQzMAoTMjIxMDc4MDY5ODk0NDE3NjE2MAoUMTU1NjU1ODM5NjAyOTY1NzA3MDQKEzE0OTAyOTc3ODU1Mjg2MzgyMzMKFDExOTQxMzMwNjc4MTEwMTU3NjAxChM1NTc5NTc5MDY5MzMzMDEyMDc5ChM4MjA1MjY5MzIyODg5Mzc1MTY5ChMxODQ0NDkwODk0MDk3ODYxODgxGhUKEzU1Nzk1NzkwNjkzMzMwMTIwNzlaEzU1Nzk1NzkwNjkzMzMwMTIwNzlqrg0SATAYACJEGjEACipoaHdnZm1vaHZra3hwcnljaGhVQzEyTGJKLUJMemQzM1hOdHVwX3ZUdHcSAgASKg_CDw8aDz8TL4IEJAGABCsqiwEQARp4gfb7-_v7BQD6Bwz9_AT_Aen-AQD8AAAA9gD19QIC_wD8_wcDAQAAAPoP_f77AAAAAPUAAwD-AQAI_wQDBAAAAA39_Ab7AAAACQf8-An_AQH59_f9A_8AAPv9AwYAAAAAAwz5_f__AAAH_PwFAAAAAAsD_AkAAAAAIAAtWZHiOzgTQAlITlACKnMQABpg_QUACCMbB8Yz_9sA-cMQAuYY3ffmD_8HBwBGGdPmKBvhvx0s_wHuCvy6AAAAAREfKjQA41YV4-r4_wzi8MLuKy5_9iTcIw8P7_nlJ_8QIOn64iIFAPgaD_Az4z1HSQLwIAAtByVCOzgTQAlIb1ACKq8GEAwaoAYAABDCAABQQgAAOEIAADTCAADIQQAAQEEAAP5CAAAowgAAbMIAAGDBAABUQgAA8EEAAOBAAAAQQQAAHEIAAKZCAAAgwQAAQEEAADxCAABEwgAAmMEAABBBAAAgwQAAkkIAAAAAAACAwQAAyMEAAODAAAAIQgAA2EEAAHDBAACgQQAA0MIAALBBAABIwgAACMIAAABBAACSQgAAIMEAADRCAACgQAAAkEEAAFBCAAAAAAAAEEEAAKBAAAAYQgAAgEAAAFBCAADgwAAA6EEAAIC_AACIQQAAQEAAAJhBAABQwQAAnMIAAEjCAABQwQAA2EEAABxCAABowgAAoEEAADBBAACAQQAAgMEAABxCAAA8wgAAqEEAAJhBAAC4QQAAsEEAAGDBAACQQgAAHMIAACDBAAAEwgAAAAAAAFRCAAC2QgAAgMIAAABCAAAAwAAAeMIAAIBBAAAQwQAAgMEAAOBBAACeQgAABEIAAMhBAAAQQgAAosIAAHTCAABAwAAAksIAAFxCAACAwQAAwMAAAABCAAB4wgAAoEEAAIBAAACgwQAAkMEAAKjBAAB0wgAAMEIAAEDAAABAQQAAoEEAAEhCAADowQAAAEEAAIC_AACAQQAAbMIAAGzCAACIQQAAmMIAAIjBAADYwQAAMEEAAMDAAABYwgAAkEEAAIDAAAAQwQAApMIAANpCAAAwQgAAFMIAAIjBAABwQQAAkEEAAABCAACoQQAAwEAAAKjBAAAswgAAFMIAAJpCAAAAQAAAnMIAALJCAABcQgAAwMEAAAhCAAAwQQAAIEIAAIjBAAAowgAAcEEAAATCAADwQQAAoMAAAKjCAABYwgAATMIAAIhBAAB8wgAA0EEAABDBAACAwAAANEIAAKDAAAAAwAAA4EEAABxCAACAQgAAmMEAAABAAAAcwgAAhMIAAIjCAACwQQAAAEEAADDBAAAMwgAATEIAAFTCAAAwwgAAbMIAAFBBAADwQQAAAEAAAODBAADgwQAAGMIAACBBAAAgwQAAoEAAAHBBAACQwQAAuMEAAMBBAABcQgAANMIAAODAAABwwSAAOBNACUh1UAEqjwIQABqAAgAAgLsAAES-AACOPgAAEL0AAJg9AABUPgAAMD0AAM6-AAD4PQAAFL4AAFA9AAAMvgAAoLwAAFw-AABcvgAAgDsAAEw-AAAQvQAAUD0AAKI-AAB_PwAAUL0AAIC7AADYPQAA2L0AAHC9AACYPQAAEL0AAFw-AACWPgAAmD0AALg9AAAEvgAA4DwAAPi9AACIvQAAyD0AAPi9AACqvgAAgLsAAFy-AAB8vgAAmD0AABA9AACAOwAAyL0AAGQ-AAA0vgAAZL4AANi9AACoPQAAQDwAALo-AAAQvQAAVL4AAOC8AAAbPwAAoLwAAIC7AACAOwAAiL0AAIA7AAAwvQAA2L0gADgTQAlIfFABKo8CEAEagAIAAAy-AAAkvgAAHL4AAFm_AABwvQAAML0AAJ4-AACYvQAAEL0AAOg9AAA8PgAA6L0AAOC8AAAwvQAAuD0AAMi9AAAsvgAAHT8AADy-AAAkPgAAmD0AAFy-AABQPQAA4DwAABA9AAAsPgAAgLsAAJg9AAB0PgAAED0AAJg9AABAPAAAsr4AADy-AAAQvQAAoLwAANg9AACIPQAAXL4AACS-AABcPgAA6D0AABw-AADIPQAAiD0AAAS-AAB_vwAARD4AAEw-AAAwvQAAFL4AAEC8AACoPQAAqD0AAIC7AAC4PQAAoDwAADw-AACgvAAANL4AACw-AACIvQAAiD0AAKi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=zpwMKZUrHsE","parent-reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5579579069333012079"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"7337463648124401468":{"videoId":"7337463648124401468","title":"Trigonometric Proof: \u0007[cos\u0007](A+\u0007[B\u0007])=\u0007[cos\u0007](A) \u0007[cos\u0007](\u0007[B\u0007])-sin(A) sin(\u0007[B\u0007])","cleanTitle":"Trigonometric Proof: cos(A+B)=cos(A) cos(B)-sin(A) sin(B)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=X2rv8XNZ0Eg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/X2rv8XNZ0Eg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcHZxaWhmTXg5OEpVdDNCa2wzR1NUQQ==","name":"Physics Ninja","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Physics+Ninja","origUrl":"http://www.youtube.com/@PhysicsNinja","a11yText":"Physics Ninja. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":756,"text":"12:36","a11yText":"Süre 12 dakika 36 saniye","shortText":"12 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"16 eki 2022","modifyTime":1665950527000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/X2rv8XNZ0Eg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=X2rv8XNZ0Eg","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":756},"parentClipId":"7337463648124401468","href":"/preview/7337463648124401468?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/7337463648124401468?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6762013871831908703":{"videoId":"6762013871831908703","title":"Simplest Proof: Sin(A-\u0007[B\u0007]), \u0007[Cos\u0007](A+\u0007[B\u0007]) & \u0007[Cos\u0007](A-\u0007[B\u0007]) | Trigonometric Identity","cleanTitle":"Simplest Proof: Sin(A-B), Cos(A+B) & Cos(A-B) | Trigonometric Identity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=K0xpipKRoWA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/K0xpipKRoWA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSEU3WWtWVG5ycEIyWE5xaU1fV2EyZw==","name":"Animate Math & Science","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Animate+Math+%26+Science","origUrl":"http://www.youtube.com/@AnimateMathScience","a11yText":"Animate Math & Science. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":112,"text":"1:52","a11yText":"Süre 1 dakika 52 saniye","shortText":"1 dk."},"date":"3 haz 2024","modifyTime":1717372800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/K0xpipKRoWA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=K0xpipKRoWA","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":112},"parentClipId":"6762013871831908703","href":"/preview/6762013871831908703?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/6762013871831908703?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16031952831185477843":{"videoId":"16031952831185477843","title":"Class 11 Trigonometry | Compound Angles Formula | Sin (A+ \u0007[B\u0007]) | Sin (A- \u0007[B\u0007]) | \u0007[Cos\u0007] (A+ \u0007[B\u0007...","cleanTitle":"Class 11 Trigonometry | Compound Angles Formula | Sin (A+ B) | Sin (A- B) | Cos (A+ B) | Cos (A-B)","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/0Uqa8Jzx-b8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0Uqa8Jzx-b8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbEhhSzFKejV1eXFzclhWR2laeWxwUQ==","name":"Maths Only Maths","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Maths+Only+Maths","origUrl":"http://www.youtube.com/@mathsonlymaths3822","a11yText":"Maths Only Maths. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":27,"text":"00:27","a11yText":"Süre 27 saniye","shortText":""},"date":"19 tem 2024","modifyTime":1721347200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0Uqa8Jzx-b8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0Uqa8Jzx-b8","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":27},"parentClipId":"16031952831185477843","href":"/preview/16031952831185477843?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/16031952831185477843?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1134513770522703810":{"videoId":"1134513770522703810","title":"Proof of \u0007[Cos\u0007](A+\u0007[B\u0007]) | using Derivative | Proofs | Trigonometry Formula | Sin (A+\u0007[B\u0007]) Formula...","cleanTitle":"Proof of Cos(A+B) | using Derivative | Proofs | Trigonometry Formula | Sin (A+B) Formula #shorts","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AbJ4z04NA_w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AbJ4z04NA_w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDT2dyNHllX0pnNm9iLTNCaHpBaWJJdw==","name":"Human Sir Maths Club","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Human+Sir+Maths+Club","origUrl":"http://www.youtube.com/@HumanSirMathsClub","a11yText":"Human Sir Maths Club. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":48,"text":"00:48","a11yText":"Süre 48 saniye","shortText":""},"views":{"text":"1,8bin","a11yText":"1,8 bin izleme"},"date":"7 haz 2021","modifyTime":1623024000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AbJ4z04NA_w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AbJ4z04NA_w","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":48},"parentClipId":"1134513770522703810","href":"/preview/1134513770522703810?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/1134513770522703810?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14401655594263532014":{"videoId":"14401655594263532014","title":"Prove That : \u0007[Cos\u0007](A-\u0007[B\u0007]).\u0007[Cos\u0007](A+\u0007[B\u0007])= 〖\u0007[Cos\u0007]〗^2 A-〖Sin〗^2 \u0007[B\u0007]","cleanTitle":"Prove That : Cos(A-B).Cos(A+B)= 〖Cos〗^2 A-〖Sin〗^2 B","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vSuCI4wzsJg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vSuCI4wzsJg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQ0JPYTRzVmN6Vk5qUGo4UnZzYk1uQQ==","name":"Solution With X","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Solution+With+X","origUrl":"http://www.youtube.com/@solutionwithx","a11yText":"Solution With X. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":167,"text":"2:47","a11yText":"Süre 2 dakika 47 saniye","shortText":"2 dk."},"date":"19 eyl 2024","modifyTime":1726763698000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vSuCI4wzsJg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vSuCI4wzsJg","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":167},"parentClipId":"14401655594263532014","href":"/preview/14401655594263532014?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/14401655594263532014?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11910685238037106036":{"videoId":"11910685238037106036","title":"\u0007[cos\u0007](a-\u0007[b\u0007]) = \u0007[cos\u0007](a) \u0007[cos\u0007](\u0007[b\u0007]) + sin(a) sin(\u0007[b\u0007]) Proof","cleanTitle":"cos(a-b) = cos(a) cos(b) + sin(a) sin(b) Proof","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=J9yMnACBy9o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/J9yMnACBy9o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOW9GYmhLMVlBZ015VV9zVHdKeExuZw==","name":"Destined Emporium","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Destined+Emporium","origUrl":"http://www.youtube.com/@DestinedEmporium","a11yText":"Destined Emporium. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":114,"text":"1:54","a11yText":"Süre 1 dakika 54 saniye","shortText":"1 dk."},"date":"1 eki 2024","modifyTime":1727740800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/J9yMnACBy9o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=J9yMnACBy9o","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":114},"parentClipId":"11910685238037106036","href":"/preview/11910685238037106036?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/11910685238037106036?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2623314492742791540":{"videoId":"2623314492742791540","title":"Easiest Proof of sin(A+\u0007[B\u0007]) & \u0007[cos\u0007](A+\u0007[B\u0007])","cleanTitle":"Easiest Proof of sin(A+B) & cos(A+B)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=lHMJ9mhD8NE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/lHMJ9mhD8NE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVlFMnppejJSMGwzTDlBUE5iUHdjUQ==","name":"Vishwas Dhatterwal","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Vishwas+Dhatterwal","origUrl":"http://www.youtube.com/@VishwasDhatterwal","a11yText":"Vishwas Dhatterwal. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":164,"text":"2:44","a11yText":"Süre 2 dakika 44 saniye","shortText":"2 dk."},"views":{"text":"2,9bin","a11yText":"2,9 bin izleme"},"date":"15 eki 2023","modifyTime":1697369411000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/lHMJ9mhD8NE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=lHMJ9mhD8NE","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":164},"parentClipId":"2623314492742791540","href":"/preview/2623314492742791540?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/2623314492742791540?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16951421080835507869":{"videoId":"16951421080835507869","title":"Diploma Math I, Worked Examples based on Sin(A+\u0007[B\u0007]), Sin(A-\u0007[B\u0007]), \u0007[Cos\u0007](A+\u0007[B\u0007]), \u0007[Cos\u0007](A-\u0007[B...","cleanTitle":"Diploma Math I, Worked Examples based on Sin(A+B), Sin(A-B), Cos(A+B), Cos(A-B) formulas","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OGpwB2dfu48","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OGpwB2dfu48?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZjFuMWdRemFHX3I5Qm1faEp5b2I4UQ==","name":"Maths Academy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Maths+Academy","origUrl":"http://www.youtube.com/channel/UCf1n1gQzaG_r9Bm_hJyob8Q","a11yText":"Maths Academy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":622,"text":"10:22","a11yText":"Süre 10 dakika 22 saniye","shortText":"10 dk."},"date":"1 mayıs 2020","modifyTime":1588291200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OGpwB2dfu48?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OGpwB2dfu48","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":622},"parentClipId":"16951421080835507869","href":"/preview/16951421080835507869?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/16951421080835507869?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16076010806097411303":{"videoId":"16076010806097411303","title":"Prove that :- a(\u0007[b\u0007] cosC - c cosB) = \u0007[b\u0007]² - c²","cleanTitle":"Prove that :- a(b cosC - c cosB) = b² - c²","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=uO8Dk6x3yR0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/uO8Dk6x3yR0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeTBKbEtGMVc5cVp5bzhkR2VrLWFaZw==","name":"Pace Edu.","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Pace+Edu.","origUrl":"http://www.youtube.com/@hindilife9250","a11yText":"Pace Edu.. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":224,"text":"3:44","a11yText":"Süre 3 dakika 44 saniye","shortText":"3 dk."},"date":"20 mar 2023","modifyTime":1679270400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/uO8Dk6x3yR0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=uO8Dk6x3yR0","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":224},"parentClipId":"16076010806097411303","href":"/preview/16076010806097411303?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/16076010806097411303?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18285447808517736288":{"videoId":"18285447808517736288","title":"sin(A+\u0007[B\u0007])=sin(A) \u0007[cos\u0007](\u0007[B\u0007])+\u0007[cos\u0007](A) sin(\u0007[B\u0007]) proof - geometrical #some2","cleanTitle":"sin(A+B)=sin(A) cos(B)+cos(A) sin(B) proof - geometrical #some2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4K6xr8hjkTw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4K6xr8hjkTw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRnZZb0hFVV8zeDVMS3lRcTZ0NTVfZw==","name":"Mathematics Proofs - GCSE & A Level","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathematics+Proofs+-+GCSE+%26+A+Level","origUrl":"http://www.youtube.com/@mathematics.proofs","a11yText":"Mathematics Proofs - GCSE & A Level. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":405,"text":"6:45","a11yText":"Süre 6 dakika 45 saniye","shortText":"6 dk."},"views":{"text":"65,5bin","a11yText":"65,5 bin izleme"},"date":"4 oca 2014","modifyTime":1388793600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4K6xr8hjkTw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4K6xr8hjkTw","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":405},"parentClipId":"18285447808517736288","href":"/preview/18285447808517736288?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/18285447808517736288?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1137395185516115693":{"videoId":"1137395185516115693","title":"If sin (A + \u0007[B\u0007]) = \u0007[cos\u0007] (A + \u0007[B\u0007]), what is the value of tan A?","cleanTitle":"If sin (A + B) = cos (A + B), what is the value of tan A?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=O2HYwew0uCU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/O2HYwew0uCU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSkRkMi1nWWt3eGoyN2V1a3I2MFd0Zw==","name":"Exampix","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Exampix","origUrl":"http://www.youtube.com/@Exampix","a11yText":"Exampix. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":112,"text":"1:52","a11yText":"Süre 1 dakika 52 saniye","shortText":"1 dk."},"views":{"text":"3,9bin","a11yText":"3,9 bin izleme"},"date":"14 mar 2023","modifyTime":1678752000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/O2HYwew0uCU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=O2HYwew0uCU","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":112},"parentClipId":"1137395185516115693","href":"/preview/1137395185516115693?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/1137395185516115693?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18225918010381791171":{"videoId":"18225918010381791171","title":"sin(a-\u0007[b\u0007]) = sin(a) \u0007[cos\u0007](\u0007[b\u0007]) - \u0007[cos\u0007](a) sin(\u0007[b\u0007]) Proof","cleanTitle":"sin(a-b) = sin(a) cos(b) - cos(a) sin(b) Proof","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xll9kkQYzYg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xll9kkQYzYg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOW9GYmhLMVlBZ015VV9zVHdKeExuZw==","name":"Destined Emporium","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Destined+Emporium","origUrl":"http://www.youtube.com/@DestinedEmporium","a11yText":"Destined Emporium. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":99,"text":"1:39","a11yText":"Süre 1 dakika 39 saniye","shortText":"1 dk."},"date":"30 eyl 2024","modifyTime":1727654400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xll9kkQYzYg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xll9kkQYzYg","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":99},"parentClipId":"18225918010381791171","href":"/preview/18225918010381791171?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/18225918010381791171?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6924831840091690430":{"videoId":"6924831840091690430","title":"#Monica #Ludacris #StillStanding Monica Ft Ludacris - Still Standing Performed Live!! #\u0007[BCox\u0007]","cleanTitle":"#Monica #Ludacris #StillStanding Monica Ft Ludacris - Still Standing Performed Live!! #BCox","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=buXV3ZVxX-M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/buXV3ZVxX-M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOXF6ek1WOEU1OS1EY2ZMajdWcGl2UQ==","name":"Paul Johnson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Paul+Johnson","origUrl":"http://gdata.youtube.com/feeds/api/users/remedyunclepaulie","a11yText":"Paul Johnson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":621,"text":"10:21","a11yText":"Süre 10 dakika 21 saniye","shortText":"10 dk."},"views":{"text":"208,9bin","a11yText":"208,9 bin izleme"},"date":"11 eyl 2008","modifyTime":1221091200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/buXV3ZVxX-M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=buXV3ZVxX-M","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":621},"parentClipId":"6924831840091690430","href":"/preview/6924831840091690430?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/6924831840091690430?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2210780698944176160":{"videoId":"2210780698944176160","title":"sin ( A-\u0007[B\u0007] ) = sin A \u0007[cos\u0007] \u0007[B\u0007] - cosA sinB proof #Trigonometry By J.P. Verma","cleanTitle":"sin ( A-B ) = sin A cos B - cosA sinB proof #Trigonometry By J.P. Verma","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5T8ukxz2qfE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5T8ukxz2qfE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSlB1UGtMbHVGVE1CNjlNeTMwRm9Zdw==","name":"Study Point Pro","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Study+Point+Pro","origUrl":"http://www.youtube.com/@StudyPointPro","a11yText":"Study Point Pro. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":373,"text":"6:13","a11yText":"Süre 6 dakika 13 saniye","shortText":"6 dk."},"views":{"text":"23,6bin","a11yText":"23,6 bin izleme"},"date":"31 mayıs 2021","modifyTime":1622419200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5T8ukxz2qfE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5T8ukxz2qfE","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":373},"parentClipId":"2210780698944176160","href":"/preview/2210780698944176160?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/2210780698944176160?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15565583960296570704":{"videoId":"15565583960296570704","title":"If tan theta = a/\u0007[b\u0007] in any triangle, ABC, find the value of a sin theta - \u0007[b\u0007] \u0007[cos\u0007] 𝜃 / a si...","cleanTitle":"If tan theta = a/b in any triangle, ABC, find the value of a sin theta - b cos 𝜃 / a sin 𝜃 + b cos.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QBWjmHEDTzE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QBWjmHEDTzE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb2o5VlN1clhkd2ZBd296NmVSSmZHdw==","name":"Kalvi kan","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Kalvi+kan","origUrl":"http://www.youtube.com/@Kalvikan","a11yText":"Kalvi kan. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":140,"text":"2:20","a11yText":"Süre 2 dakika 20 saniye","shortText":"2 dk."},"date":"1 ara 2025","modifyTime":1764547200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QBWjmHEDTzE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QBWjmHEDTzE","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":140},"parentClipId":"15565583960296570704","href":"/preview/15565583960296570704?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/15565583960296570704?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1490297785528638233":{"videoId":"1490297785528638233","title":"Lecture#06:Prove that Sin(A+\u0007[B\u0007])=Sin(A) \u0007[Cos\u0007](\u0007[B\u0007])+\u0007[Cos\u0007](A) Sin(\u0007[B\u0007])","cleanTitle":"Lecture#06:Prove that Sin(A+B)=Sin(A) Cos(B)+Cos(A) Sin(B)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WmQTZY5FXuE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WmQTZY5FXuE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR25VRkJOSjlUYXozaVpGLWJfRWMwZw==","name":"Learn Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Learn+Mathematics","origUrl":"http://www.youtube.com/@ZamanMathsLecture","a11yText":"Learn Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":74,"text":"1:14","a11yText":"Süre 1 dakika 14 saniye","shortText":"1 dk."},"date":"20 mar 2022","modifyTime":1647803098000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WmQTZY5FXuE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WmQTZY5FXuE","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":74},"parentClipId":"1490297785528638233","href":"/preview/1490297785528638233?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/1490297785528638233?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11941330678110157601":{"videoId":"11941330678110157601","title":"Proof Of Sin(A+\u0007[B\u0007]) & \u0007[Cos\u0007](A+\u0007[B\u0007])","cleanTitle":"Proof Of Sin(A+B) & Cos(A+B)","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/u9aJXRyCG5M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/u9aJXRyCG5M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO2h0dHA6Ly93d3cueW91dHViZS5jb20vQFBPTFlNQVRIX1JBR0hV","name":"POLYMATH","isVerified":false,"subscribersCount":0,"url":"/video/search?text=POLYMATH","origUrl":"http://www.youtube.com/@POLYMATH_RAGHU","a11yText":"POLYMATH. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":31,"text":"00:31","a11yText":"Süre 31 saniye","shortText":""},"date":"23 eki 2023","modifyTime":1698019200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/u9aJXRyCG5M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=u9aJXRyCG5M","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":31},"parentClipId":"11941330678110157601","href":"/preview/11941330678110157601?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/11941330678110157601?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5579579069333012079":{"videoId":"5579579069333012079","title":"#tricks Parametric x=(a-\u0007[b\u0007]) \u0007[cos\u0007](t)+\u0007[b\u0007] \u0007[cos\u0007](t(k-1)), y=(a-\u0007[b\u0007]) sin(t)-\u0007[b\u0007] sin(t(k-1)...","cleanTitle":"#tricks Parametric x=(a-b) cos(t)+b cos(t(k-1)), y=(a-b) sin(t)-b sin(t(k-1)),#youtubeshorts #shorts","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/zpwMKZUrHsE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zpwMKZUrHsE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMTJMYkotQkx6ZDMzWE50dXBfdlR0dw==","name":"PHI MATH","isVerified":false,"subscribersCount":0,"url":"/video/search?text=PHI+MATH","origUrl":"http://www.youtube.com/@phi-math","a11yText":"PHI MATH. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":47,"text":"00:47","a11yText":"Süre 47 saniye","shortText":""},"date":"4 mar 2023","modifyTime":1677888000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zpwMKZUrHsE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zpwMKZUrHsE","reqid":"1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":47},"parentClipId":"5579579069333012079","href":"/preview/5579579069333012079?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","rawHref":"/video/preview/5579579069333012079?parent-reqid=1769425178307957-7413691366052564507-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Bcox","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"4136913660525645077203","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Bcox","queryUriEscaped":"Bcox","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}