{"pages":{"search":{"query":"COSINES Pi","originalQuery":"COSINES Pi","serpid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","parentReqid":"","serpItems":[{"id":"4178210084667429603-0-0","type":"videoSnippet","props":{"videoId":"4178210084667429603"},"curPage":0},{"id":"14548984471809982370-0-1","type":"videoSnippet","props":{"videoId":"14548984471809982370"},"curPage":0},{"id":"738371306606548154-0-2","type":"videoSnippet","props":{"videoId":"738371306606548154"},"curPage":0},{"id":"13941471492004294348-0-3","type":"videoSnippet","props":{"videoId":"13941471492004294348"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dENPU0lORVMgUGkK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","ui":"desktop","yuid":"9972001131765359653"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"7002590484924136549-0-5","type":"videoSnippet","props":{"videoId":"7002590484924136549"},"curPage":0},{"id":"11588418929539663975-0-6","type":"videoSnippet","props":{"videoId":"11588418929539663975"},"curPage":0},{"id":"14728550762159858729-0-7","type":"videoSnippet","props":{"videoId":"14728550762159858729"},"curPage":0},{"id":"10589901200142294149-0-8","type":"videoSnippet","props":{"videoId":"10589901200142294149"},"curPage":0},{"id":"15841735231746771934-0-9","type":"videoSnippet","props":{"videoId":"15841735231746771934"},"curPage":0},{"id":"8628487916656493955-0-10","type":"videoSnippet","props":{"videoId":"8628487916656493955"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dENPU0lORVMgUGkK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","ui":"desktop","yuid":"9972001131765359653"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"4680557584120603352-0-12","type":"videoSnippet","props":{"videoId":"4680557584120603352"},"curPage":0},{"id":"13955326636724259412-0-13","type":"videoSnippet","props":{"videoId":"13955326636724259412"},"curPage":0},{"id":"9959871708545098351-0-14","type":"videoSnippet","props":{"videoId":"9959871708545098351"},"curPage":0},{"id":"18034870356742062189-0-15","type":"videoSnippet","props":{"videoId":"18034870356742062189"},"curPage":0},{"id":"10979820142222361640-0-16","type":"videoSnippet","props":{"videoId":"10979820142222361640"},"curPage":0},{"id":"11669260522631890285-0-17","type":"videoSnippet","props":{"videoId":"11669260522631890285"},"curPage":0},{"id":"9806329504216327359-0-18","type":"videoSnippet","props":{"videoId":"9806329504216327359"},"curPage":0},{"id":"16267245428716860612-0-19","type":"videoSnippet","props":{"videoId":"16267245428716860612"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dENPU0lORVMgUGkK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","ui":"desktop","yuid":"9972001131765359653"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DCOSINES%2BPi"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"2169417016634288897192","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1374658,0,31;1269693,0,19;1281084,0,53;287509,0,75;681841,0,40"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DCOSINES%2BPi","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=COSINES+Pi","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=COSINES+Pi","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"COSINES Pi: 1 bin video Yandex'te bulundu","description":"\"COSINES Pi\" sorgusu için arama sonuçları Yandex'te","shareTitle":"COSINES Pi — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y8787f6e91d624482cdee77f6ef78b27f","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1374658,1269693,1281084,287509,681841","queryText":"COSINES Pi","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"9972001131765359653","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1441146,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765359672","tz":"America/Louisville","to_iso":"2025-12-10T04:41:12-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1374658,1269693,1281084,287509,681841","queryText":"COSINES Pi","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"9972001131765359653","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"2169417016634288897192","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":153,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvInRelatedWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"9972001131765359653","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1730.0__3d16743d3f4a80a51841f5bd9590c58da53e91a3","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"4178210084667429603":{"videoId":"4178210084667429603","docid":"34-6-15-Z7A06033A643B5F27","description":"International contest of conference interpreters Cosines Pi. The New standard of employer communication Register now. Win your choice at https://cosines-pi.ru #employer #jobs #interpreting #aiic...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4571144/7743cd784d1176ce18263d51c5f3f11f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/WuYrtgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dc8mBExfmGV4","linkTemplate":"/video/preview/4178210084667429603?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cosines Pi: employer of choice in the European market","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=c8mBExfmGV4\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhUKEzQxNzgyMTAwODQ2Njc0Mjk2MDNaEzQxNzgyMTAwODQ2Njc0Mjk2MDNqhxcSATAYACJEGjEACipoaGZpam5wdnh5aGFqZnljaGhVQ1Y5SWoyVDEyUmJiZzAzYWpHTTVJdUESAgASKg_CDw8aDz8TfYIEJAGABCsqiwEQARp4gf_5_Pv8BQD4-xP9_QT_AQQAAAL4__4A8QIH8gMBAAD-_vr3AQAAAAQH8_UAAAAA8vn3_PoAAAANDAH6BQAAAA4D_v_9AAAA8f_5__8BAAD2-gb5AgAAAA_7-AUAAAAA_gj-AAIBAAD-CvwA9v0AAPbwCwcAAAAAIAAtWwbhOzgTQAlITlACKoQCEAAa8AF_8PsDmwn_-iIK9ABI5O3_5gMR_y7n6QD0BOAAwd3qALrzEAIN_gf_AOYKAN4KBwDP9hT-JhchAe4ICgAaDvYAIwEHAD8E7f4g5wMAChAUAAf-AQAHCRT_BA7y__EWCv8PAff7I__y_xoO_AD7_fkCF_j2BAENHP7zFPb_-uPuAuMRAwEaC_cEDf4JAxEFCQUMJAgE8gL0BPsPDv3w5Az7EC73_fj58v0D8gkDFfUD-uMSCAIYDgf8BAP1AQgQDggDAQPxFxLzBxT88QT4__8IHu768g7y9_IBJf8ACOTtAB0PB_Xo-_377_UE_gjy_AUgAC0bqEw7OBNACUhhUAIqzwcQABrAB9hF-b4orD-7gpzmPJf9Oj4ZhCA79DKKPGmNQT12erS9j7agvKjoQz0jLC673HWgvcPMKL2c1Wy9lfMFPWhezj7WHQs9SsJ0PB-8tr2m7YS8zkJxPLeyJL4pFcM8RNBivI7IJz7zRGY9sGgjvBwMRT5VzLW6EO8UPSCo6LoddRE8M9wAvXYW3T3Joc-8Huh8PKKyBr34GqK9bUVRvFZOFj3P1zE9hU8EvKIww70CQec79xBDvOxo3L0vvQG8GVgFO4TY2T3U9Z88d503OnbjGzy1ena6VuiNPM2aTj3H0xe9RYBTvJuHyD2dcju8Ewd1PPjMKD30Oyg8G3KiPLTTxbw5Org8DwJZO2Vke7uqQJK8Utr2u2Q7xL0VdYE8pAt7vHHM8r1oyYg9mwPEvLTJYTwVp489_xYuPOmNybznwu085O6Yu9GFhzwaj4w6J1cIu86JDb6kpaK9P1MOu5ZZqTyiAYY8wD2yO9sBEr0olgC96kQbuvrXjzrIpfu8_EQUPBZo-zqgtIa9SLK9PKovZj3WTOO83uoWvDEFgD1BeP66Q-IivF7FmDzX22a882EGutBjFL2p3LQ9JfRpvN93Qj2K6Fe8159pvLIRyLy9Ski97faTuk2FyD3Rzqk8PMKGO9dMPj1Kfdk9hWCwOnfci7wJwES9ymOTuy_s-rwGcRQ9bYjUu3c8V71JEK4801z6OwgW0byJ3hi9wXTWOtuG8b3n7T48ZkGTumkhrD37Ffy87ovXuj5C7b38dm096M9DuekN9zyALoW9kk3duc4YZr2_z108I-27uVcqg71cd868WsYNOX3Kkb3T0Ts9xkqSODST-bx-LC49LN3juP3Y5Lyswgm8zyViO-56Brx86XK9LoWdOYae3jurdWK9SdX_ubzCjL0Rhb879ULEuJr6Kj0eMro9Zt14txqtXj0Ryeu8bR4COXnnoD0l9n89PSV-ubUQiTuI4DM9GrC0uPRjfb2464A9ZOgVuHklN7hUZB49nqiSONXwyL3rcd-9rDqBNqhvmbwWO9A8w95kOHgMVroz9HQ8njsAOAfxXLsQAYw9g51duNV_kDvshu28wb_IONBhPrw-VlW9LXhGuO8tdjwvcqo8xX_dODC7Jz3-DsU8PqRktzsSpL38cVs9-QRAOJrBuT38v789EZXLOIqN3Ls57_89Rnw1OKDP9jweB1Q9MFa-t05l7LxqA5Y9B8rPt1UYpj1tC8U9g8fnOJvYcLvVmAs9vxThuOJOMz32g3W94B4kN68Mxb0j7hs9Bw3dtiAAOBNACUhtUAEqcxAAGmAnFwAh5UL55LxuuAEY6OsB_A707b1D_zMz_88Q88wV9si1_v0A8NIqFp8AAAA3ExkRwADFfOSVCQ7wNvMArCI_y3_cFs8cs___D6zO9QjRzw72-QwABwr5Q0EO-VYx9ysgAC3EFRI7OBNACUhvUAIqrwYQDBqgBgAAkEEAAOhBAAB8QgAAUEEAAABBAAAwQQAAwMAAAIhBAABowgAATMIAALBBAACWQgAAuMEAAPDBAABgwQAAwMEAAGBBAADoQQAAIMEAAIDCAAAAQAAALMIAAJzCAACGQgAAAEAAAExCAADQwQAAEMIAAFRCAAAMQgAAqkIAACBBAABAQAAAWEIAACDBAADYQQAAQMAAAPBBAAAwwgAAgMAAAADCAADQwQAAAMEAAJBBAABQQQAAgEEAAIjCAACQwgAAgD8AAFBBAABIwgAAcEEAALhBAACoQQAAkMEAALBBAAAgwQAAmMEAAHDBAAAgwQAAgMEAANjBAABowgAA4EAAADDBAACAvwAACEIAAKhBAABowgAA2EEAAITCAACoQgAAuMEAAJpCAADAwAAACMIAAIDAAADgwAAAoEAAAADCAAAwwQAA4MEAAEBBAAAQwgAAHEIAAMBBAABwwQAA0MEAADRCAACAwAAAmsIAADxCAADIQQAABEIAAKBAAADGwgAAqEEAAIDAAAAMQgAAQEAAAABCAADAwAAAAEAAACzCAACSwgAAqMEAAGDCAAAAQAAAhMIAAODAAAAAQQAAgMIAAIbCAAAIwgAAEEEAANBBAAA4wgAAiMEAALhBAABQQQAAiEEAAILCAACgQAAAisIAAPjBAACQwQAA8EEAAJDCAABQQQAAzsIAALhBAACQwQAAAMAAAPBBAAAoQgAAkEEAAGxCAABwwQAANMIAALbCAAAgQgAAcEIAACRCAACgQAAAwMEAACDBAADIQQAAsEIAAODAAADgwAAANEIAAEDAAAA4QgAArMIAAMBAAACkQgAAgEAAAIrCAAAwwQAAQEAAAPhBAAAwQQAAjMIAAGBBAAC4QQAAQEAAAPhBAADAwQAAhEIAAIBBAACewgAAAMEAAGBBAAAAAAAAgMAAADxCAACYwQAA-MEAAGBBAABgQgAA6EEAADzCAAAwQQAANMIAAJjBAACYwQAAZMIAALBBAADAQQAAFMIAAIDAAADIQQAAeMIAAIA_AAAwQQAAikIAAIDAAADEwgAAyMEAAOjBIAA4E0AJSHVQASqPAhAAGoACAAAQPQAADD4AABw-AADgvAAA4LwAAIC7AAAEPgAAC78AAJg9AACIPQAAuL0AADA9AAAwvQAAjj4AALi9AAA0vgAAHL4AADA9AAAsPgAAgj4AAH8_AAD4PQAAmD0AALg9AACuvgAAPL4AAKg9AADYvQAAqL0AABQ-AABwPQAA6L0AAAy-AADgvAAAmL0AAKi9AAC4PQAATL4AAI6-AADYvQAARL4AAFC9AABwPQAAoDwAABQ-AABEvgAA-D0AAIi9AAAQvQAAqL0AAAQ-AAAEPgAAgLsAAOi9AABwvQAAEL0AACs_AADoPQAABL4AAHA9AADIPQAAqD0AAKg9AADYvSAAOBNACUh8UAEqjwIQARqAAgAAgr4AAEw-AABAPAAAQ78AAAS-AAAQvQAADD4AABS-AACgvAAAPD4AAIC7AADuvgAAfL4AANq-AADgPAAA4DwAANg9AAAzPwAAcD0AABw-AACCPgAAmD0AAOA8AADIPQAAEL0AAGw-AACqvgAAND4AAIi9AAAMvgAAoDwAAAQ-AABAvAAAjr4AABC9AABAPAAA1j4AAFA9AACmvgAAZL4AAIA7AAAkPgAAqL0AAPi9AAAkPgAAjj4AAH-_AAAUvgAAuL0AADC9AADIPQAAuL0AAAQ-AADIPQAAML0AAIg9AACAuwAAJD4AAFA9AACgPAAADD4AAKC8AACoPQAALD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=c8mBExfmGV4","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4178210084667429603"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14548984471809982370":{"videoId":"14548984471809982370","docid":"34-4-2-Z58D5D3D35F190061","description":"This was a class during the First Annual Cosines Pi International Interpreting Conference, to help non-native speakers of English hear and reproduce English ...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4289882/035e6aef8ab10a1a2fc3da50e7010d66/564x318_1"},"target":"_self","position":"1","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DO2L3p-pIpHs","linkTemplate":"/video/preview/14548984471809982370?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cosines Pi English Intonation Master Class","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=O2L3p-pIpHs\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhYKFDE0NTQ4OTg0NDcxODA5OTgyMzcwWhQxNDU0ODk4NDQ3MTgwOTk4MjM3MGquDRIBMBgAIkQaMQAKKmhoY3Z3cGpxeXp2aW5idGNoaFVDS0JTZFR0azRoTkdwRnVzRkltMFdRdxICABIqD8IPDxoPPxMsggQkAYAEKyqLARABGniBBQoBAPwEAPv-DQT7Bv0C-gP_Afn9_QDxAgjyAwEAAAUDBwQCAQAA_AX1_AAAAAD8_AT7_P4AABIL9vcDAAAAEQQG-fgAAAACC_gG_gEAAPryAPgCAAAABQf1_QAAAAD9B_AIAAAAAP0Q9fYBAAAACvUFDAAAAAAgAC3FJN87OBNACUhOUAIqcxAAGmDtCgAYDQ7m4CY-7N4FBxz78SzzFuL7AOsbAA4AAOsS96XoBAIADt0C6sUAAAAn-vcIBADPSdLc_woTI_r11gH8C38JBuJB7QEXyO311f4ABfwjDBUA9QIaAzz6-yYm4jUgAC1kBVs7OBNACUhvUAIqrwYQDBqgBgAAoEEAAJDBAACcQgAA0MEAAJDBAABcQgAAoEAAACjCAAA8wgAAuMIAACjCAABQQQAABMIAACBCAAAUQgAA0MEAAIC_AABkwgAA4EEAACDBAADgQAAAAAAAABzCAAC8QgAAZEIAAEBCAABowgAAuMIAACxCAACWQgAAGEIAAGBBAACIwQAAZEIAAJjBAAAAQAAAhMIAAJBBAABgwQAAeEIAAATCAACwQQAA4MAAAJBCAAAUQgAAGEIAAOBAAACWwgAAEEIAADRCAADAwAAA4EEAALDBAAAQQQAA0MIAAMjBAAAAwgAAoEEAAODBAACYQQAAgMAAAKDBAABIwgAALEIAALBBAADAQQAAwEEAAIC_AAAUwgAAkEEAAODBAAB4QgAAsMEAAIRCAAAAwAAAKMIAAIA_AABwQQAAsEEAALDBAAAgwQAAQEEAAKjBAABAwAAABEIAAHhCAABAwgAA4MEAAABCAACgQQAACMIAAJ5CAACQQgAAgD8AAIBBAAAwwgAA2EEAAIA_AABAQgAAkEEAAJjBAACYQQAAqMEAADTCAAAEwgAAkEEAABDBAAC4wQAApsIAABhCAAAwQQAAUMIAANjBAACAwQAACEIAAMhBAACUwgAAAEEAAMBAAABQQQAApMIAAADAAAAQQQAAEMIAABxCAABYwgAAsEEAAIhBAACoQQAAbMIAAGBBAAC4wQAACMIAADRCAAAwwQAAUMEAAGhCAABIwgAAsMIAAKDCAABAQgAA1kIAAADAAACYQgAAAMAAADBCAADoQQAAgkIAAIC_AABAQQAA8EEAACTCAAC4wQAAAMIAAEBAAAC4QQAAIEEAACzCAADIQQAAgEEAALDBAABAwQAAhMIAAOBBAABgQQAAMMEAAJhBAACwQQAAAEIAAKBBAABQwQAAUEEAAIC_AACYwQAAQEEAAABCAAAIQgAAgMAAANBBAADgQQAAoEEAANzCAABQwQAAQMIAAMhBAABgQQAAQMAAADBBAABcQgAAAAAAAOBBAABAQAAAqMIAAABCAADgQQAAWEIAADDBAAAAQQAAOMIAACzCIAA4E0AJSHVQASqPAhAAGoACAACevgAA4LwAALY-AAA0vgAAoDwAAJK-AAAcPgAAKb8AADy-AADgvAAAoDwAAJi9AACIvQAA9j4AAKC8AAAkvgAABD4AAOA8AACoPQAAzj4AAH8_AAAQvQAAZL4AAJg9AAAwvQAA-L0AAJ4-AABUvgAABL4AANo-AADgPAAAEL0AAPi9AABEvgAAuL0AADQ-AACePgAAnr4AAIA7AABMvgAAdL4AADA9AABEPgAA2D0AAKg9AAAEvgAAPD4AALi9AABMvgAAVL4AAAQ-AABwPQAAVD4AACy-AAA0vgAA4DwAAF8_AAC4PQAAgj4AAKg9AAAEvgAATD4AAJg9AACgPCAAOBNACUh8UAEqjwIQARqAAgAAiD0AABA9AACgPAAAH78AAFC9AACAOwAA6L0AAFS-AAAEvgAAfD4AADC9AACOvgAAmD0AAPq-AAA0PgAAUL0AAJg9AAB1PwAABD4AAJI-AACYvQAAJL4AAPg9AADgPAAAMD0AAHA9AAAQvQAA2D0AAAQ-AAAcvgAA4LwAAHA9AAAQvQAAUL0AAPg9AADoPQAAHD4AAJg9AACevgAALL4AAKC8AABMPgAARL4AAAS-AADYvQAAJD4AAH-_AACKvgAARL4AAOi9AADYvQAAdL4AABC9AADgPAAAmL0AAIC7AABwPQAAij4AADy-AAC4PQAAmD0AALg9AAAcPgAAiL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=O2L3p-pIpHs","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["14548984471809982370"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"738371306606548154":{"videoId":"738371306606548154","docid":"34-2-14-Z25499C9A77B053CE","description":"register at cosines-pi.ru About Cosines Pi III Origins. Cosines Pi III is an International Contest of Simultaneous Interpreters annually held in Moscow in the premises of Moscow University.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2772309/202f2aff5967a6642026561286907c9b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/g_9gpQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D84mt4JNx4ps","linkTemplate":"/video/preview/738371306606548154?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cosines Pi III","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=84mt4JNx4ps\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhQKEjczODM3MTMwNjYwNjU0ODE1NFoSNzM4MzcxMzA2NjA2NTQ4MTU0arUPEgEwGAAiRBoxAAoqaGhmaWpucHZ4eWhhamZ5Y2hoVUNWOUlqMlQxMlJiYmcwM2FqR001SXVBEgIAEioPwg8PGg8_EzuCBCQBgAQrKosBEAEaeIH09Pn-_QMABPUQBPsI_AL-BgUACf3-APoG__QCBP4A_fYGAwIAAAAEEQH-_wAAAPb4___0_wEADAT57gMAAAASAAUE_AAAAA8A-wb-AQAA_f4F9AIAAAD--PcG_wAAAPQJ-v8CAAAA9gn49gAAAAAA8foNAAAAACAALeeY3Ds4E0AJSE5QAiqEAhAAGvABf_AHA6QI__ol__oAO_D6_-oC9QAbDRYADhT_AKYFEf_kEwQA_QD7_yMK9gDWFCv_7gAZ_voMHAD87hQAPwQBABrzBAAM2gIAAvfxABT27AHoCAf-EPoKAAjuCQHp9Qj_Bgf0_-z49wEpBPsADxX2A_4D7QQC-P8E6AD-_uQG-gEO8BX_IwQDAAgfBAX9-vYECwQZ_gAHDwHuA_YBC_oC_BAO-vka9AH-G-f6AQEPAPb8_fz5ERUMAP388_4CBwv76P8I9x4P-_v25gAC7vz9CAcJ9vYDDgf67PgH_wPv-vwD8__45Qr0B_v6DQkHAvT7IAAtYbZfOzgTQAlIYVACKnMQABpgIQgAGAQ0-dIJX8QPKDkE5e1E_AORMv_2OP__6c78HdG4stkTAPj1NOqeAAAAHevo4CIAJH_LufHP9UUQ-r7-GBZ5_hfkHYnbDM3Xv9P17xARDuElAOP_3T87va0fTAs5IAAtTOgQOzgTQAlIb1ACKq8GEAwaoAYAAIDCAAAcQgAAiEEAAJBBAABAwQAAKEIAAIhBAAAcwgAAgEEAAJLCAACGQgAAyEEAAIbCAABgQQAAcEIAAMDBAACIwQAAbEIAAIpCAAC4QQAAcMEAAKjBAAAowgAA2EEAAGDBAACoQQAAAEAAAMjBAACEQgAAIEIAACBBAACOwgAAGMIAAJhBAADQwQAAwEAAAJjBAACkQgAA2MEAADjCAADAwQAAgMEAAIRCAAAEQgAAQEEAAGBCAAAYwgAAQMAAAAhCAAC8wgAAMEEAAFRCAACuwgAAoEEAAJDBAAAgwgAAkkIAACBBAAA0wgAAgEIAACDCAACgwQAAIEIAAABCAAAAAAAAJEIAACBBAACgwQAAmMEAAFBCAAAQQQAADEIAAADBAABgQgAAnMIAAODAAAAwwgAAeEIAAAAAAACAQQAAoEEAAOhBAAAAwQAAsMEAAPBBAAAAQgAALMIAABxCAAC0QgAAEMEAAFDCAACcQgAAoMEAAGDBAAAMQgAAUEEAAFjCAAC4QQAAqMEAAKhBAAAowgAA0MEAADDBAABQQgAAgMEAAPhBAACAwgAA6MEAAEBAAADgQQAAhMIAAHRCAAAAwQAAkEEAAIhCAADYQQAAKMIAAODAAAAQwgAAEMIAADhCAABAwgAAEMIAAFDBAAAAAAAAUMEAAFDBAAAwQgAAAEIAAMjCAABYQgAA4MAAAIDBAAB8QgAAgMAAAJzCAABEQgAAHMIAAKjCAAAUwgAAokIAAKJCAAB4QgAAEEIAAEDAAADwQQAAAMAAAOBBAAC4QQAASMIAAGDBAAAcQgAA4EEAAKDAAACgQQAA-MEAAEDBAACkwgAAdEIAAEBCAAB8wgAAAMEAADzCAACYQQAAHEIAADDBAAAQwQAAjsIAAADBAACkwgAAcMEAAMBAAACoQQAAZMIAAGBBAAC4QQAAQMAAAPDBAADAwAAAYEEAAChCAABAwAAAwMAAAMzCAAAwQQAAJMIAAGBBAAD4QQAA6EEAAADAAACIQQAAsMEAABhCAACwwQAAUMIAAMjBAACAQAAAwMEAACjCAABgQSAAOBNACUh1UAEqjwIQABqAAgAAJL4AAOg9AAD4PQAADD4AAOC8AAAMvgAAyD0AAO6-AACgPAAAoDwAAOC8AABwvQAAuD0AAGw-AACAuwAAjr4AAMi9AAAsPgAADD4AAFw-AAB_PwAAoLwAAAS-AAAQPQAArr4AACy-AAAwPQAAbL4AABA9AAA0PgAAyD0AANi9AABwvQAAiD0AADy-AAAEvgAAmL0AAJ6-AACmvgAA2L0AABA9AABAvAAAmD0AAIi9AABcPgAALL4AABA9AACAuwAAiL0AAAQ-AADYPQAAHD4AACw-AAAcvgAABL4AAIg9AABHPwAARD4AAIC7AABwPQAA4DwAAIC7AABAPAAAsr4gADgTQAlIfFABKo8CEAEagAIAAFA9AACAuwAAQDwAADu_AAB8vgAAyD0AAFA9AABQvQAAuL0AAPg9AAAcvgAAvr4AAKg9AABMvgAAMD0AAIg9AABUPgAALT8AAPi9AAAUPgAABD4AAAQ-AADYvQAA2D0AAMi9AAAcPgAAuL0AAIA7AACgvAAAoDwAAHA9AABwPQAAiD0AAFy-AAAUvgAAhj4AACw-AACYvQAAhr4AAMK-AACovQAAlj4AAIC7AACYvQAA4DwAABQ-AAB_vwAAcD0AAKi9AAB0vgAAuD0AABC9AACIPQAAZD4AADS-AAAcPgAAcD0AAJI-AADgPAAAUD0AABw-AAA0vgAA4DwAAIC7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=84mt4JNx4ps","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["738371306606548154"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"13941471492004294348":{"videoId":"13941471492004294348","docid":"34-2-16-ZC6406AE0888E5D29","description":"General relativity and Quantum theory. Ekaterina Shutova class...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4570236/c3e6b70057e28e5fa594a5693a26c394/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kloZ9wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DI0_ShubIK0I","linkTemplate":"/video/preview/13941471492004294348?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cosines Pi, Strings theory consequtive interpretation","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=I0_ShubIK0I\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhYKFDEzOTQxNDcxNDkyMDA0Mjk0MzQ4WhQxMzk0MTQ3MTQ5MjAwNDI5NDM0OGqIFxIBMBgAIkUaMQAKKmhobWN3ZWFiemRlY2JoY2RoaFVDTkFzbVZFNFNwMTJybk93ZWxNQW9VdxICABIqEMIPDxoPPxO4DIIEJAGABCsqiwEQARp4gfP_Awv9AwD5BwsG-Qb9AgEI_gj4_v4A8g8F-QQBAAD99gYDAgAAAPoP_f77AAAA-Qf68_b-AQASC_X3AwAAABMABQT8AAAADA3wAv8AAAD7AAL9A_8AAAf_-P7_AAAA9g4BAwEAAAD-CvwA9v0AAA__Aw8AAAAAIAAtQrHbOzgTQAlITlACKoQCEAAa8AF67f8DgQT8-HDo6wFV7AH_vwoV_yQkCQAb6wkAEwcTAAP-BQBjAPUBLRr4ABUB9v_n7iYA5Qz7ASYN-AATChsAJQEIABDkAwHhEv4BKfwD___4_f8I_AgADQQI_gv_6QDh_Ov_BfTxAAUVEgL4Bvr-Bfz4AgAB-wPVAgABHvwABQ8T_f398_IDA_359wP0CgABC_38-d8S-xIQ-gPx-Q4A3BsC_9z3CgYO8Pf_GA3_B_0QA_4XHvP5CQn9CfsN8wMBGPz86vX89hAk-AXoBxcC4fsDBSn7A_wG_Ab0BhkB_iIAB_726QIMEA4CC_PlBAEgAC1GnD87OBNACUhhUAIqzwcQABrAB3_1GL80Wti8QC8hPfRPUD54VIY8Zhx-PUGBlz44qo27CNYnPLjSRrz0VY28qA7DvJZdUL6Q7Nu8iSimPAHySj15CrU7n52CPNo74z19rUu8jEI3vLSsG74rsIY9YvgDvaOKLLx9X7e7OUHAO5EDAL1g6y29Y64UPLWlzr05Qgo8oXAMva-7hD3ntzm9KB6hPBMqOL2k8VU9M40mvMaTs70TtO48vXaEvPV5hj3s92S90luXPOxo3L0vvQG8GVgFO-vgAD4CwqK8h3STvK3aNT7W6PA8TueUPLZeXT3JLTw9u1u-vJG63by5Ms27KLnDPOiDyrwKgxo5hQuUvMxQS71Yy709HQbOPMdI9ry8dim9fzgfPHyQTz2jHZy85wolOxvccT3B-kS9zGJivCajT712AP67B9loPEIDVj3E3c88eWirOgktgD22Ny49k0O6vN6qcL0x1Dw8KPWju7HriztwelW7sgrAvJXY0DxS0mM9-9uvurtbPr0pl8a8VJhOu4ijyLvpvyK93GIDPbfXfb0aNDQ9h9wQvGgN-TwMyEM9ShuYvMA0Fj2Ussa9KjFXu2oQyTtMk608c8i8OTHGMLsSpPK9WCvJuiEeiT2grmk9QDgZPFq47D34sHI8L6A8O2jI3TwMNrs7QckuvMuiCz0y5Ls7-dGCumxehT2xjVM8gYbpu3n0hb2fsAS9gQFnO0of4zvcoYe5Hjq5OsFts7uPHGm8ZpSZu_fqI73WKcU8vPpHul-UhbzwtEa8bMhfuNbawL22y4i9xnxHOADy1LyGgR097SeduKkiprx1YkW8Q9HNuHz1LD3Xd7Q8wc9zt7KrP72vyFS9c64-t2h2H7zs5Le9uP-dOVcH4L1vI4q83NHKOblFKjyyAs28pFVKOujA0j0z4Ow8EwlauGUkgb2aTww9vOoeubXRrzwtf3m9ZG8HOcsvwzwglcW7_I5FOourCDzoAQI9cTVON3AKK71xOZ68yz6FuH5cNr35-hW9Ocb3ODBmS7z5NOE7VsMbuHmVkL3ziYE9Qph9uMUgMDzZDTY85Us4OJRfR7oNZwY8HjFlN0pRqL1jbu08-wU-OE3aVL2G95a9N4MBt22sArwZz6s9LUMOOWpcDj0Wd3I8U7nCt6JfOz1FHz09h_NyuKNeuz3mC_c77LHyNyCqer3Pjqo9pUL0Nz077DsMtDa9zYQouNDw5runMas8KmgxuM595js8H5Q9vRK_OJx_hb1HbZe9iJsFt6mjY7z1Kx27Ly2oNka3eT00vk-9aYV1uCAAOBNACUhtUAEqcxAAGmAsCAAO3yz01hxI9t0_5AX6-B39Hrsb_-sS_w8u4rJXA-zP6w__Irr7-KQAAADrCswsDQDVavDQAPXaN-fDtRwK-H8q-_860eTT2fP5CfPM5BTsGR8Ay_70JhrhykVG-g8gAC1QQSY7OBNACUhvUAIqrwYQDBqgBgAAJMIAAADBAADYQQAAyMEAAEBBAAAAQQAAHEIAADBBAABAwAAAgMEAAPjBAACCQgAAsEEAAADAAABAQAAAYMEAALJCAACAwAAAyMEAAFzCAAAEQgAAgMIAAIA_AAAAwAAAoEEAADBBAACwwQAA4MAAALJCAACYQQAAYEIAAJjBAAAcwgAA6EEAALbCAABAwAAACEIAAI5CAADIwQAAAMAAAABAAAA8QgAAEEEAAEDCAAA0wgAAEEIAAEDAAACAvwAA4MEAAEBAAABkwgAAjEIAAODBAACeQgAAQMIAAKBBAAAgQQAAwEAAAEDAAAAcQgAAMMIAAPjBAABQwgAAEMIAAABAAACoQQAAPEIAAAzCAAAkwgAAmEEAAARCAADYQQAAIMIAABxCAADAwAAAYEIAAJDBAADAQQAA4EAAAHjCAACQwQAANMIAAADBAADAwAAAwMAAAFRCAAAUwgAA4EEAAGxCAADAwAAAQMEAANhBAACwQQAAUMEAAIBAAACwwQAAcEEAAEBBAABoQgAAoEAAAIDBAABMwgAAqEEAADzCAAB4wgAACEIAAGDCAABgQQAAusIAAGDBAADYQQAA2EEAADjCAAAAwQAAREIAAFxCAABwQQAATMIAAIBBAAD4wQAALEIAANDBAACAQQAAtsIAAADAAACAvwAADEIAAODAAADgwAAAvsIAAAxCAACAPwAAVEIAANBBAADAQQAAMEEAANBBAADwwQAAwEAAAPDBAACYwQAAeEIAAJZCAADoQQAAGEIAANhBAACAwAAAgMAAAIBAAABQwQAAREIAAJhBAABwQQAAHMIAAFhCAAA0QgAABMIAAHjCAABwwQAA0EEAAMhBAADIwQAAAMEAAMhBAADIQQAAWMIAAIjBAACAwAAAAMIAAJjBAACgwgAAQMEAAEDCAAD4QQAAUEEAAKBBAACUQgAATMIAABhCAACSQgAAikIAAEDAAAAAQQAAqMIAALhBAACgwAAA7MIAAMBBAADoQQAAgEEAABzCAABwQgAAgEAAAAAAAABMQgAAHEIAAIzCAACgwAAAyMEAAODAIAA4E0AJSHVQASqPAhAAGoACAADgPAAAcD0AAOg9AAAEPgAAiD0AAHC9AACgPAAABb8AAOi9AACoPQAAgLsAACQ-AABQvQAAlj4AAIq-AABwvQAAHD4AAOg9AAA0PgAACT8AAH8_AAAUvgAAqL0AAKg9AADevgAAHL4AAAQ-AACSvgAALD4AAK4-AACYPQAAJL4AAES-AAAQPQAAcD0AACQ-AAAMvgAAkr4AADS-AADIvQAAkr4AAHC9AADIPQAAyL0AAOi9AABwvQAA-D0AAFC9AACovQAAVL4AAOA8AAAkPgAA-D0AADA9AACIvQAAyL0AAE0_AACYPQAA4LwAADC9AABQvQAAqL0AAKC8AABAPCAAOBNACUh8UAEqjwIQARqAAgAAqL0AAIC7AAAMvgAAR78AAJi9AABAvAAAPD4AAHS-AADYvQAAXD4AAIA7AAAUvgAANL4AAJq-AADIPQAAML0AAIC7AAAfPwAAuL0AAMo-AAC4vQAA4LwAADC9AACIvQAAEL0AADA9AABwvQAA4DwAAFC9AAAQPQAAmD0AAIg9AACgvAAAgr4AAKA8AACoPQAA4LwAAIg9AABcvgAAqD0AAAw-AACIPQAADL4AAJg9AABkvgAAoDwAAH-_AACCvgAA4LwAAHA9AABwPQAADL4AADA9AABAvAAADD4AAEA8AABAvAAAPD4AAES-AACYvQAAMD0AAIo-AABEPgAAQLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=I0_ShubIK0I","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1440,"cheight":1440,"cratio":1,"dups":["13941471492004294348"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"7002590484924136549":{"videoId":"7002590484924136549","docid":"34-10-1-ZC44B558DE6C961C4","description":"Origins. the 4th Cosines Pi is an International Contest of Simultaneous Interpreters annually held in Moscow in the premises of Moscow University. The acronym Cosines is formed from the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2988938/e5dc678677e7c2cc89bc00be430e1828/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/r5XeNAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D04boI8XsBTo","linkTemplate":"/video/preview/7002590484924136549?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cosines Pi IV - promo","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=04boI8XsBTo\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhUKEzcwMDI1OTA0ODQ5MjQxMzY1NDlaEzcwMDI1OTA0ODQ5MjQxMzY1NDlqtQ8SATAYACJEGjEACipoaGZpam5wdnh5aGFqZnljaGhVQ1Y5SWoyVDEyUmJiZzAzYWpHTTVJdUESAgASKg_CDw8aDz8TJ4IEJAGABCsqiwEQARp4gfn3_AP7BQD39Q8H-wb-AfcK-wT5_f0A9QUC_wcB_wD99gYDAgAAAAIJDfwEAAAA9_7-_vz_AAD_Bvz2BAAAAAz3CAL7AAAACQb3CP4BAAD3BAL4AgAAAAUH9f0AAAAA8gj3CQEAAAD9DAD6AAAAAADx-gwAAAAAIAAtznfjOzgTQAlITlACKoQCEAAa8AF_3_oBgvfg-Vr2-wA16AL_4vAfAEbm9AA1-fP_uvT2AAQQBwAm7usABQ_sAPH8Ef_dDyQAGA4YAM4E-P8IBgEAXvn8AAPfEwIO2ioA6w0Q_9XW_f3k8f0BAxLaAvj_AQEk1M8AGhrO_gEDBgIGvwQC8f3t-_sSBf7p_OEFD-sgA9MdEPoZ_AsIGQ_j_xb5FwQTIQT-9wIc-vdC_QAQ6RID_Qrm_xAU8wAJAiT-ARUA8vb86_8UDgkDHffmBesV-gX8-_D3G_7u-P8y7wb9-voA4OXl-QEiFfvZ1vn8FvXtAv3k-efw5-X9ASgEAt4L8_8gAC1_giE7OBNACUhhUAIqcxAAGmDzDQAFGyX36Qgm3_TxGu738j4L6MUVAPEiAAoP9e8U5dfX7RH_7u0BDsUAAAAH7PscHgDxSfLc2tv8Gu4ayQAoIn8DFez00df4_9vj2u7m5hcH8iEA6RMCKQrm3goxCDAgAC3ck187OBNACUhvUAIqrwYQDBqgBgAA6EEAAIjBAABoQgAAQMAAAKDAAAAwQQAANEIAAADAAACQwgAAIMIAAJhBAAAYQgAAdMIAANjBAAD4QQAAcMEAAODAAAAAwQAAMMIAAEjCAAB4QgAAMEEAAHDBAAC4QgAA6EEAABhCAAAUwgAAKMIAAGBCAACcQgAAIEEAAOBAAABcwgAAgEIAAJDBAABQwQAAKMIAALhBAADIQQAAEMEAAHDBAACYQQAAwMAAACBCAABgwQAAwEEAAPjBAAD4wQAAQEEAAEBCAAC4wQAAkEEAAADCAADwQQAAuMEAAMhBAABwwgAAIMEAAJBBAADIQQAAEMEAAEjCAACiwgAAAMAAAHBBAACAvwAATEIAAARCAACIwQAAsEEAACjCAAC-QgAAqMEAALRCAACYwQAAQMIAADBBAABAQQAAuEEAAEzCAAA0wgAA8EEAALhBAADwQQAAmEEAANBBAAAEwgAAoEEAADBBAADQwQAAAMIAAKhBAACWQgAAZMIAAIDAAADIwgAAwEAAAHBBAAAQQgAAEEEAAIDAAAA0QgAAWEIAACjCAACwwgAA6MEAAHBBAABwQQAA4MAAAExCAAAwQgAAPMIAAHTCAAD4wQAAVEIAAKhCAABYwgAAiMIAAEDBAACgwQAAJEIAAJzCAAAAQQAArMIAAKDAAADIQQAAoMEAAPDBAACoQQAAFMIAALhBAAAwwgAABMIAAMDAAAA4QgAAYEEAAABCAABwwQAAhsIAANDCAADgQAAA4EEAADRCAAD4QQAAyMEAAIDBAABAwgAAVEIAAIjBAABAQAAADEIAAABAAACYQQAAOMIAAIjBAAAQQgAA4MAAAL7CAABgQQAACEIAAOBAAADwQQAAEMIAAAAAAADAQQAAEMIAACBBAAC4wQAAgEIAAATCAADAwgAAZEIAAGBBAABwwQAAMMEAAODAAADIQQAAyMEAANhBAAC2QgAAWMIAAADBAAAAQQAAEMIAABDBAADgwAAAnsIAAIBAAADQQQAAMMIAAEBBAADIQQAAFMIAAExCAACAQAAAUEIAAATCAACEwgAAXMIAAMBAIAA4E0AJSHVQASqPAhAAGoACAAA8PgAAyD0AAOg9AACIPQAAZL4AABy-AABkPgAAxr4AAIg9AACYvQAAyD0AAFA9AABwvQAAkj4AAGy-AADKvgAA6D0AAJg9AAAEPgAAij4AAH8_AACAOwAA6L0AADw-AAB0vgAAcL0AAKi9AAC4vQAA2L0AAK4-AADIPQAALL4AAEC8AABMPgAABL4AABC9AABQPQAAvr4AAN6-AAAUvgAAQDwAAIA7AADoPQAAmL0AABA9AAA0vgAAyD0AABC9AAAcvgAAgDsAAKg9AACWPgAATD4AAFS-AACAOwAAgDsAADk_AABMPgAAQDwAAAQ-AAAQvQAAgDsAAFA9AAAEviAAOBNACUh8UAEqjwIQARqAAgAAqD0AAEC8AAAEvgAAO78AAIa-AABEPgAAQLwAAJg9AACYvQAARD4AACS-AACSvgAAiD0AAFS-AACYPQAAQDwAACw-AAAfPwAAcL0AADw-AACgvAAAED0AAOA8AADoPQAAuL0AAIY-AACYvQAAEL0AAKA8AAAwvQAAQDwAAIA7AADYPQAAPL4AADy-AABMPgAAJD4AABQ-AAAsvgAAkr4AAEA8AACSPgAA2D0AALi9AADIPQAAyD0AAH-_AADYPQAAEL0AAFC9AAD4PQAATL4AAEQ-AAA8PgAAFL4AALg9AABwPQAA6D0AAMi9AACAuwAARD4AAJi9AADIvQAAED0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=04boI8XsBTo","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7002590484924136549"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11588418929539663975":{"videoId":"11588418929539663975","docid":"34-7-1-ZE6FFA6F7466B6066","description":"In this video, I teach you about the law of cosines and how to setup and solve triangle lengths and angles. There are 2 common cases you can solve for using the law of cosines: Side-Angle-Side...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1589394/cd48cc6b20f821ed24345a8db8d06596/564x318_1"},"target":"_self","position":"6","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DU4DWmUmURog","linkTemplate":"/video/preview/11588418929539663975?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Law of Cosines - Solve for Lengths & Angles | Trigonometry | Eat Pi","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=U4DWmUmURog\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhYKFDExNTg4NDE4OTI5NTM5NjYzOTc1WhQxMTU4ODQxODkyOTUzOTY2Mzk3NWquDRIBMBgAIkQaMAAKKWhodHFhY3JtdW9leWhrYmhoVUNWb2dCanR6dzY3bnhwLXFFS2dFSXlBEgIAESoQwg8PGg8_E68EggQkAYAEKyqLARABGniB8u4E_P8BAPv1Df8HBf4BDP76Cff__wD1BfX99QL_AP34Dv_4AAAABQT-Cv4AAAD5B_ry9v4BABIL9fYEAAAACQ0G-_kAAAAVBv8A_gEAAAz8CAMD_wAAB-8GDf8AAAAADvnxAAAAAP0B9PEBAAAA_wEKBv8AAAAgAC3J1tQ7OBNACUhOUAIqcxAAGmA2DQD4GBLr6wQv_OD2-RkU8jTt_b4h_xjsACMDDxA5FsGsHf8AMtwr6KwAAAArAeb1DQD1Yv67CR0j6gvG2AAa-X_t-9VFD-MVquLuDUPwD_EiKxIA9-wT_D29zxMoMhIgAC35cDE7OBNACUhvUAIqrwYQDBqgBgAAAEIAAIBBAACIQQAAkMIAAIhBAABQQQAAMEIAAMDBAABAwAAAgEAAAKhBAABAQQAAlsIAAABAAACAPwAAUEEAAGBBAAB4wgAAVEIAAJjBAADAwQAAdMIAAEBAAAAcQgAA8EEAAChCAAAoQgAABMIAACDCAACgQQAAaMIAAAhCAACAwgAABMIAAAzCAABAwQAA-EEAAGBCAADAQAAAsEEAAHBCAADgQQAAPEIAAIBAAAAkQgAAgsIAAEBCAACoQQAAlkIAADBCAAC4wQAAIMIAAPDBAACAPwAAsEEAABRCAADIwQAAsEEAALhBAABwQgAAgMAAAIDCAAAAwQAAsMEAAABBAAB8wgAAMMEAAHDBAACAQQAAYMEAAABAAACCQgAAOMIAAPhBAACgwAAAWMIAADjCAADgQQAAoMEAAFBBAAAcwgAAwEEAADBBAAAAwAAAgEIAAHDBAAAQQQAAuEEAAJhCAACSwgAAUEEAAKxCAACcwgAAsMEAACTCAAB8wgAAGMIAADDBAACkQgAAIEIAAJjCAAA4QgAAmMEAAMDBAAAMwgAAREIAAODAAACIQQAAkEEAAExCAABQQQAAgMAAAMBAAACUQgAAlsIAAMBBAAAQQQAACMIAAHDCAAC4wQAAuMIAAJTCAACowQAAUMIAAPDBAACAwAAAgEAAAIC_AABQwgAAHEIAAJDBAACgwAAAiEEAANBCAAAAAAAAlkIAAJDBAAAMQgAA4MAAABjCAACwQQAAMMEAALhBAAAIwgAAREIAAGxCAACGwgAAcEEAADDBAAAgwQAAGMIAAEBBAACYQQAADMIAAChCAAAwwgAATMIAAMLCAABIwgAANEIAAKjBAADgQQAAgEAAACDCAAAQQQAAiEEAAIDAAACoQQAAYEEAAKBBAACQwQAALMIAAFDBAAAgwgAAiMIAAChCAACIQQAAMMIAAOjBAABAwAAAUMIAAFBBAAC4wQAA-EEAAORCAAA8wgAAbMIAAFjCAADAwQAAkMEAAIC_AACQwQAAJEIAAMBAAAB8QgAABEIAAPDBAABwQQAAwMEAAMDBIAA4E0AJSHVQASqPAhAAGoACAADIPQAAUD0AAJY-AAAUvgAAqL0AAFQ-AACGPgAAA78AAIg9AAAQvQAAXL4AAPi9AAAQPQAAnj4AAGS-AACAuwAAcD0AAFA9AAB0PgAA5j4AAH8_AACAuwAAPD4AACw-AACmvgAA2D0AAAw-AADYvQAAij4AAGw-AACAuwAAkr4AAIi9AACgPAAAiL0AALi9AADgvAAAmr4AAI6-AABUvgAAJL4AAFA9AABQPQAA-L0AAHC9AACYvQAAMD0AAHC9AADgPAAAEL0AAJg9AAB8PgAAmD0AAKg9AAAMvgAAQLwAAD0_AACovQAAgLsAAOg9AACWvgAAmD0AALg9AABMviAAOBNACUh8UAEqjwIQARqAAgAAZL4AADA9AABMPgAAIb8AAFw-AABQvQAABD4AAAS-AABAvAAAiD0AAPi9AAAcvgAA4LwAAI6-AADYPQAAQLwAAAw-AAAzPwAAED0AAGw-AAAEvgAAgLsAADC9AACYPQAAgDsAAOA8AAAwvQAAoLwAAFC9AACIPQAAED0AAGQ-AABMvgAA2D0AAOA8AADgPAAAkj4AAHA9AAC-vgAA-L0AAPi9AAAkPgAAUL0AAMg9AACAuwAA4LwAAH-_AACgPAAAQDwAABC9AAAEPgAAyL0AAPg9AACIPQAAEL0AAFA9AACoPQAAqL0AALi9AADYPQAA4DwAAPi9AAAQvQAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=U4DWmUmURog","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11588418929539663975"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14728550762159858729":{"videoId":"14728550762159858729","docid":"34-11-11-ZE5AE64AFE436825E","description":"Download This Video Mp4/Mp3...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2111277/62829023cb9265453bac876b04d20de0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mscX7AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFstK92rEUS8","linkTemplate":"/video/preview/14728550762159858729?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cosines Pi V: Dmitry Denisov VS Valentina Kucheryavenko","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FstK92rEUS8\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhYKFDE0NzI4NTUwNzYyMTU5ODU4NzI5WhQxNDcyODU1MDc2MjE1OTg1ODcyOWqHFxIBMBgAIkQaMAAKKWhocGZkbWlic2llZHBrbGhoVUNsLXN2VWFYc0tzTDRPUXF6eVJqaVFBEgIAESoQwg8PGg8_E_gDggQkAYAEKyqLARABGniBCQj99QP8AOvxCwEKAf8A5hL6-Pn__wAQBwP5BgAAAPv_CAMBAAAA-hHv_wQAAAD9Cu4D9v0BAAb6AvX4AAAAGwL9APcAAAAHAf39_wEAAPHy-PQCAAAA-fz2AP8AAAAJDv0FAQEAAAEI9_kBAAAAAvr2BwAAAAAgAC17b8k7OBNACUhOUAIqhAIQABrwAXjx-wKB_AX3Rf4LACsT-wC1DgkALffpAN0LAv_EDdv_-Qj9AOj2AwH33wr_9f0N__QJCf8d_P0ACO4B__4A_QAhAQcANusJARvx6wEkBAz-3u8FAQf8BwAPBP4B_gLuABX4Av4J7ucACfYHAOjv_wIbFQb_BRH5_-IJ-QIB9_wA9w37_goDAwAHE_f_CAcE__78-QT4Bf__9QfxAwMLEAMMAAb6Fv38BhcV-v4PAv_9AAEE_ScKCvz9Av8C-_35AvLnBfkEB_QF8hcHAhgQEgMA6Aj37ukN_-D8-QYP_gEA-wf8_uT_-QTvDv0D-e_28CAALR8lWTs4E0AJSGFQAirPBxAAGsAH-u8Bv4Ebbzv-0mK9Zd6CPpWxhrywJoW7n8dYPoCiqrtdbaS7H6bYO0GUubwf39Y6GM0avtPCYL0ZL6e8xmumPsiqUjzply28V_EAu2cPD71Y7wY99fFwvv_-gLocpkw9YNYaPbM2hz3cyRa8wX6-PfL3wb0XrW28ukuCPfwTwbzyOge9o02_PfUBt7w0Usa7E1y0uzHMDr0v-sg7jLCSvXHiKz2lTOq8OR69vOYueLxSqF289yIaPeXzBDx1gNa8BTTxPRUkDbw2Q186mu-7PatuPzzYO228zZpOPcfTF71FgFO8LPWXvQ1WtzzKb_K7E7vBvVmK6blC9vI72mzBPYDTmz2G07i86NtivW9xw7zzd606Ka5KvZUgrTwvdni69vORvSv-irw64hg6qTLsPfE_g70RFbI75fK6PcPdtLwEuiO8VxpCvA2O0r1C2N-6ZH8vvaQAUb0rOxQ8M-t7PP2AC7uEU5U8NkPDuwPvPz3wG_y636N-vL86t7v6jFU8HOOzut89Nr23kA-8qi9mPdZM47ze6ha80r4ePfjH1rzPyYE8oPOkPF8eFz0ws_i6LMd1vPNmv7ua6NY7jIHVPd3f6rzMWwe5GuKzPCvKurvI85q5t4p0Pbx9MTzlvHe7zpedPdRcM70v1-i7JoICveOm5r3GLwe54aiGPfSYkrzCrbM6oYbPPaUX0juj6rK7JlaGPVr5AL08kvi4bHt7PU3gsTyripk6f3hMPVewjTzcVZu7NR4xvXiGP73gO5w6Y4FKvf3Npb2fYYO5XC0hvbwHKD0nXLM5NjwNPpjzMbxr1Sm5QwiCOxTwxrycRFI49ZZXvVJmnrzndwO65357u5jI4Dxllgu51Zl3O2BVAr3uVUs5sqXiPPOZIr0YCmK5zC4zPWpLAr1QWoq5G4t8PTXJGT1tO4K2vuIkPR_79LzotP43pwSUPc1iqD1LVkm5rLq7ulDIjj1kzPo3taPYvaXoV730jgI10dMXvP7mbjtOjf04KQzlPLQhf70KgaC4vztDvIgToz2yx1O4h0VWPdNlpr2_KPQ2DaniPSKVOL3t3kE3VVjfPKuKujw5ndY4Z0XUvLoFHD1R_pQ4XlkUPBxkLT3Ca5E4QihKvNuTdrxJnBQ4R-6fvVRomr1s8vk4jJ6bvcl9oTykdbm3poaRPCNjWr30foo35K-vvau8w70b34K3-2RbPXu1bT34Hoe4niXIPN-Z2jxNCY44lMpqvWsFcrx-MY-4IsutPW91Kj3TUNy17pyBPVbOwzwzTSe4IAA4E0AJSG1QASpzEAAaYCv8AAnaOe4D-VfV5OPuzgAl7PrX0AsAAgYA-hAFuDMJDeL34f_0EQ8WrgAAACMNxgD9ANpnHdACDdw88BHXEyEhfycM-ADT8gj33tf528ZcqDbvQwDwJPb2KhPL8UAWMiAALRBJLTs4E0AJSG9QAiqvBhAMGqAGAACgwAAAEMIAALBCAABgwQAAwMAAAEDBAACgQAAAIMIAACTCAAAwwQAAaEIAAAhCAAAMwgAAKMIAAERCAABoQgAAAMAAAIC_AACIwQAAaMIAAHhCAABQQQAAMEEAAMBAAAAAQAAA-EEAAIjCAADQwQAA_kIAAKhCAACgwQAAMMEAACDBAACsQgAAwMAAAEDCAADYQQAADEIAAIC_AADYwQAAgMEAAEBBAACcQgAAsEEAAIjBAACgQAAA8MEAAJhBAABMQgAAAEEAAAjCAABUQgAAAMIAAGxCAAAAQAAAVEIAACDBAACEwgAAQEEAAJBBAACAQAAAaMIAABDBAAA4wgAA6MEAAADAAACWQgAAOMIAAKDAAADgQQAAyEEAAKhCAADIwQAAdEIAAKhBAACQwgAA8MEAADBCAACowgAACMIAAGjCAABAwQAA2MEAAMDAAABAwAAAIEIAAFDBAACSQgAAcEIAAKjBAAD4wQAAoEEAACxCAADwwQAAXMIAAIDCAAAoQgAAAAAAAIBAAADQQQAAEMEAAHDBAAAEQgAAcMEAAIzCAACwQQAA2EEAAJjBAABgwQAA0EEAADDBAAAUQgAAPMIAABxCAACkQgAABEIAAMDAAABEwgAAKMIAAI7CAAAAQAAAkMEAAMDBAABAQAAAoEEAACxCAADgQAAAqEEAAHjCAACowgAAJEIAAHTCAABAwQAAIMEAACBBAACAQAAAYEEAAIBAAAAkwgAABMIAAIDAAADQQQAAFEIAAHDBAADowQAAEEEAAOjBAAAEQgAAyMEAAEDBAAAAwQAAgMEAAKBBAABEwgAAAMEAABDCAACAPwAA-MEAAGhCAAB0QgAAoMAAAHDBAADQwQAAQEAAAMBAAADAwgAAgMAAAKBAAAAQQQAAwMAAABjCAAAkQgAAUEIAAEBAAADAwAAAUMEAAEBBAABEwgAAQEEAAHxCAAAAwQAAPEIAACBCAACmwgAAQEEAAABAAACCwgAATEIAAHhCAABQwQAA6MEAAJBBAACwQQAAIEIAAJjBAABQwQAAnsIAAOhBAACCwgAAkMEgADgTQAlIdVABKo8CEAAagAIAAHQ-AACYvQAAuj4AAFy-AABwvQAA6L0AAGw-AACOvgAAoDwAALg9AABwPQAABL4AALg9AACYPQAAfL4AAMg9AABwPQAAqD0AALg9AACyPgAAfz8AAOg9AACuvgAAPD4AACy-AAAQvQAADD4AAGS-AADgvAAAlj4AAJi9AADgvAAAcL0AABC9AABQvQAAcL0AAHA9AACavgAAdL4AAPi9AADKvgAAdL4AAIi9AABAvAAABL4AAIK-AADYPQAAJD4AAIC7AAA0PgAAgj4AAJg9AADgPAAA2D0AAGy-AAAQvQAAFT8AADA9AAAQPQAAPD4AADC9AADYvQAAyD0AAJg9IAA4E0AJSHxQASqPAhABGoACAACAuwAAbL4AANi9AABXvwAAfL4AAEC8AABQvQAAoLwAAGy-AAA0PgAAyL0AAFy-AABwPQAADL4AAAQ-AADYvQAADL4AAEE_AACYPQAAkj4AAFS-AAA0vgAA4LwAALi9AABwPQAA4DwAAOA8AACovQAAVD4AAIA7AACYvQAAEL0AAKg9AABkvgAAuD0AAIA7AACAOwAALD4AANi9AADgvAAA6D0AAPg9AACovQAAoLwAAJK-AAA0vgAAf78AAIi9AACgvAAAML0AABC9AACWvgAAmD0AAJg9AABAvAAAQLwAAEA8AACOPgAAVL4AAMi9AAB8PgAADD4AAIC7AAAkviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=FstK92rEUS8","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14728550762159858729"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"10589901200142294149":{"videoId":"10589901200142294149","docid":"34-6-17-Z3B9098E200959C71","description":"In this video, we are given the cosine of an angle and we are to find the sine and cosine of half the angle. DrTMath&MoreOnline URL: / @drtmathandmoreonline...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1769611/b17c1e8349a9cbaaf8b315ad6ebb178d/564x318_1"},"target":"_self","position":"8","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dwu1snjYiVuI","linkTemplate":"/video/preview/10589901200142294149?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find the Sine and Cosine of pi/24 If Cosine of pi/12 is Given","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=wu1snjYiVuI\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhYKFDEwNTg5OTAxMjAwMTQyMjk0MTQ5WhQxMDU4OTkwMTIwMDE0MjI5NDE0OWquDRIBMBgAIkQaMAAKKWhoeXZkemJodWR3bW9kaGhoVUN2UnExdGlGZnV1Tm5CLWx0UFRSdVJ3EgIAESoQwg8PGg8_E-kCggQkAYAEKyqLARABGniB_v_4__sGAPf1Dwf7Bv4B-gP_Afn9_QD6Bv_1AgT-APT6BwEEAAAABgX9-wAAAAD7_PX69v4BABEK9vcDAAAAAQUG_PgAAAAOA_j__gEAAP3-BfQCAAAABAL9BAAAAAD9DfH7_wAAAP0B9fIAAAAA-_oBAwAAAAAgAC3ZbeQ7OBNACUhOUAIqcxAAGmAOEQAG_BH50QMW_Pv9-f3-9Qb76-7-AAP3AOH57vEKENrZ_vcAGewI-NgAAAAT8v4H6wDqMfb03gsJA_T67er5CH8P9ucV-Qbl7fDwBhYOJhUSEwcAAPsKDhj2-CAGIywgAC05HJY7OBNACUhvUAIqrwYQDBqgBgAAFEIAAOBBAABgQQAALMIAAAhCAACYQQAAXEIAAKBBAAA8wgAAyEEAACBCAAAYwgAAjMIAAPDBAADIQQAAAEEAADDBAACcwgAA8EEAAFDBAADIwQAAAMEAAGDBAADwQQAAAEEAAIA_AAAQwQAAbMIAAAhCAAAgwQAAOMIAAARCAABgwgAAQMEAAKrCAAAQQQAAEEEAAKZCAAAQwgAABEIAAGhCAADIQQAAmEEAAADCAACgQAAAoMIAAHDBAAC4QQAAdEIAAFBCAABEwgAA4EAAAMBAAABQQQAAsEEAAKBBAAD8wgAAMEEAAKDAAAAIQgAAwEEAAEzCAACYwQAAmMIAANBBAACQwgAAXMIAAMDBAADYwQAAlMIAAKpCAADUQgAAuMEAAEBBAAAAwgAAGMIAAJDCAAAQQQAAqEEAAAxCAAAMwgAAWEIAAMBAAAD4QQAAEEEAAABCAAAUQgAAMEIAABRCAACUwgAAIMEAALZCAACCwgAABMIAAEBAAADwwQAA4MAAAJBBAAA0QgAAgEEAAJDCAABgQgAAQEIAAMDBAAAowgAADEIAAKBAAADwQQAAgMEAAFxCAAAAQgAAYEEAAODBAAAgQgAAIMEAAPBBAACYQQAAcMEAANjBAACYwQAAKMIAAIrCAAC4wQAAMMIAADDBAACQwQAAiEEAAJjBAACIwQAA4MAAACjCAABgQQAAQEEAAPBBAAAgwQAAgEIAAMBBAAAAwQAAAEAAACzCAAAgQQAAHMIAALhBAABgwQAAZEIAAADAAACawgAAJEIAAPhBAAAIwgAAUMEAACxCAADwQQAAwEAAAOBBAABcwgAAsMEAAAzCAAAYwgAA4EAAADzCAADQQQAAYMEAAGTCAACAPwAALEIAAKjBAAB0QgAAfEIAAABBAAAAwQAASEIAAHBBAAAUwgAAPMIAAAAAAAAcQgAAjsIAAHBCAACAQQAAhsIAAAjCAABAwgAA2EEAAN5CAAC4wQAAgsIAAIDAAAAwwQAAAMEAALDBAACwwQAAwEAAAMBAAADgQAAADEIAAADCAAAIQgAAsEEAADDCIAA4E0AJSHVQASqPAhAAGoACAAAQPQAAmD0AAN4-AACYvQAAEL0AADA9AADYPQAAFb8AAIC7AACWvgAA-L0AAIK-AACCPgAAXD4AAAS-AABQvQAAED0AAOg9AABQPQAAZD4AAH8_AABsvgAAQLwAAKg9AADIvQAAiL0AADw-AACgvAAAHD4AACQ-AAAUPgAAjr4AACS-AABAPAAA-L0AAEC8AAD4vQAAqr4AAKK-AAAcvgAAQDwAADC9AACCPgAAiL0AAOC8AADIvQAAmj4AAJg9AAAQPQAA4DwAAJg9AADIPQAATD4AAMi9AAAQvQAAMD0AADk_AACIPQAAcL0AAIC7AABQPQAAiL0AAHA9AAAMviAAOBNACUh8UAEqjwIQARqAAgAAfL4AAIC7AADgPAAAPb8AAES-AABQPQAAFD4AANg9AACgPAAAmL0AAEy-AAC2vgAAFL4AAAy-AADIPQAAED0AABw-AAAbPwAAqL0AAEQ-AACAOwAAqL0AAMi9AABwPQAAQLwAABQ-AACAOwAAoDwAAHC9AABAPAAAoDwAACQ-AAA0vgAAgDsAAHC9AACoPQAAkj4AAMg9AACWvgAAXL4AAJi9AACIPQAAmD0AAHA9AADYPQAAgLsAAH-_AACgPAAAHL4AAFC9AAAwPQAAoDwAALg9AAA0PgAAyL0AALg9AACYPQAAsj4AAAQ-AACYPQAAjj4AADS-AABwvQAAMD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=wu1snjYiVuI","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10589901200142294149"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15841735231746771934":{"videoId":"15841735231746771934","docid":"34-7-16-Z935D6ACFBAFB2862","description":"This video uses odd/even properties of functions and horizontal translations of functions to derive results for thesine, cosine, and tangent of pi/2 minus the angle theta.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/916422/344eca4cea2fcd47ca92895bdd4a9488/564x318_1"},"target":"_self","position":"9","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQu3OMgW8i5M","linkTemplate":"/video/preview/15841735231746771934?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Trig Identities Cosine, Sine, Tangent: pi/2 Pius/ Minus Theta","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Qu3OMgW8i5M\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhYKFDE1ODQxNzM1MjMxNzQ2NzcxOTM0WhQxNTg0MTczNTIzMTc0Njc3MTkzNGqvDRIBMBgAIkUaMQAKKmhoa3pvZm96enpmYnZ5b2JoaFVDLXhod203X21ONXctck1DZm8zRkdjQRICABIqEMIPDxoPPxOeCoIEJAGABCsqiwEQARp4gfr3_Pn_AQD8-QYHAgf8Avv2_Qb6_v0A9vr7_f4D_wDs-BD8_f8AAPoQBP4GAAAA-AX6_vT_AQAS_-8HAgAAAAkCAAD0AQAADA7vAv8AAAD7AAL9A_8AAAf_-P7_AAAA-xf8-QD_AAD6B-3-AAAAAO7-Aw7__wAAIAAtKzLXOzgTQAlITlACKnMQABpgGBkADwYM_t0YF-YoBQTx8OUs8QHSBQDrGgAh9tr4B_Lh1wEp_yXsHPnMAAAAAAf7OAoA7UMX7O39EQX08dLZCy9_CQHuMfvu7L_-C_MX-iL2_RUVAOACEhIj_AIZIP8iIAAtsYZuOzgTQAlIb1ACKq8GEAwaoAYAADBCAACQQQAA4EEAAADBAACwQQAA0EEAAGhCAAAAQAAAsMEAADDCAACgQQAAPMIAAOBAAADowQAA6EEAAIBBAAAwQgAAQMAAAIbCAADYQQAAQEEAAPjBAABEwgAAaEIAAPjBAAAsQgAAgMAAAJDCAAAoQgAAYEEAAGBBAAAAQgAAosIAAIA_AACAvwAAlkIAABDBAACwQgAAkEEAAPhBAABQQgAAgMAAAJRCAADoQQAA4EEAAJrCAAAAQAAAUEEAAI5CAABQwQAAjMIAADBCAAAIQgAAuMEAAABBAABQQQAA9sIAAADAAACAQAAAGEIAABDBAABcwgAAAEEAAKTCAADgQAAAysIAAJBBAACIwgAAQMAAABTCAABIQgAAtkIAALrCAACKQgAAAAAAAFDCAACAwQAAIMEAAGhCAAAQQgAACMIAAGxCAACswgAAbEIAAFDBAACsQgAAiMEAADBCAADwQQAAiMEAABDBAACwQQAAAEAAANjBAABwQQAAwEAAAEDBAAAAwAAAwMAAAPDBAAAswgAAKEIAAKxCAACCwgAAgD8AAMDBAAAgwgAAAEIAALTCAAA8QgAAWEIAAIhBAADgQQAAeMIAAIC_AACYQQAAUMEAAMjBAACAwQAAMEEAAETCAABgwgAAUMIAABTCAAAAQgAAgL8AAKDAAAA4wgAAUMIAAOjBAABgQQAAgD8AAMBAAACOQgAABEIAACDBAAAowgAAMMEAAJjBAAAQwgAA0EEAAOBBAACIQQAAQEAAADRCAACgQQAAKMIAABxCAAA0QgAAoEAAAKDBAABQQQAAEMEAAABBAABYwgAAcMEAALjBAAAQwgAAlsIAAGBBAACwwQAAQMEAAEBAAABwwQAAEEEAAADAAADIQQAAGEIAAKDBAACAPwAAEEEAAIDAAACQwQAAQEAAAJDBAABQQQAAwEEAACDCAACAPwAAbEIAABzCAACQwgAAKMIAAIA_AAA0QgAA0MIAAHDBAABQwQAA-EEAADTCAABQwQAAsMEAAKBBAACAQQAA6MEAADRCAABYwgAASEIAAODAAADgwCAAOBNACUh1UAEqjwIQABqAAgAAXL4AANg9AACiPgAAyD0AAKg9AACyPgAATD4AAAW_AADIvQAAiL0AAAS-AACYvQAA2D0AAFQ-AAC4vQAAuL0AAIg9AADYPQAAPD4AAMo-AAB_PwAA2L0AAES-AABUPgAALL4AAIC7AADYPQAAmL0AACw-AACePgAAcD0AAIa-AAAEvgAAML0AABQ-AADgvAAAML0AAOi9AACWvgAAmL0AAKA8AACoPQAA-D0AAIC7AADIPQAAED0AAIo-AACIvQAAMD0AAIC7AABMPgAAmD0AAIo-AADgPAAAUL0AAKA8AAAHPwAAbD4AAKi9AAA0PgAAMD0AAHA9AAAQPQAA2L0gADgTQAlIfFABKo8CEAEagAIAACS-AAAwPQAAqD0AAC-_AABEvgAAPD4AAFQ-AACIPQAAyL0AADA9AAAMvgAApr4AAHC9AADIvQAAuD0AAIC7AAAcPgAAKz8AAIC7AACSPgAAED0AAPi9AABwvQAAML0AAOC8AACAOwAA4DwAAKA8AADgvAAAyD0AABA9AAC4PQAALL4AAIi9AACoPQAA4DwAACw-AADIPQAAjr4AAMi9AACAOwAAyD0AADQ-AAAwPQAAiL0AAOg9AAB_vwAAQLwAAMi9AACoPQAAuD0AABA9AACoPQAAND4AABA9AACIPQAAUD0AAI4-AADgPAAAiD0AAHQ-AADgvAAAcD0AAEC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Qu3OMgW8i5M","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15841735231746771934"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8628487916656493955":{"videoId":"8628487916656493955","docid":"34-8-3-Z0793C73A6D58BC80","description":"Graph Cosine Y=COS(X+pi/4) Easily is an easy way to sketch trigonometric graphs of cosine functions. This trick will make it easier and faster for you to sketch a graph of a Cosine function Y=COS...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1015209/9a49fea1c242efecae7d4b869ebe4e2b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/B9LNPAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Ddse5YT3yBNg","linkTemplate":"/video/preview/8628487916656493955?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Graph cosine y=cos(X+pi/4) easily #shorts | sketching trigonometric#10 graph","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dse5YT3yBNg\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhUKEzg2Mjg0ODc5MTY2NTY0OTM5NTVaEzg2Mjg0ODc5MTY2NTY0OTM5NTVqhxcSATAYACJEGjEACipoaGFmbXh3b3B2a3d4dGZjaGhVQ3pGTGtxVzZYN242c1NYWTNPZFVfUFESAgASKg_CDw8aDz8TL4IEJAGABCsqiwEQARp4gfD9CgD-AgD7_g0E-gf9AgYH-AD3__8A6_j78wL_AQAE-g_-BgEAAAEDB_3_AAAA_v7-__j-AAAVCf3_BAAAAAf5Bvn0AAAAB_zx-AABAADy8_j1AgAAAPsH7f__AAAAAw35_f__AAAFDfkDAAAAAAf4AP4AAAAAIAAt6A3XOzgTQAlITlACKoQCEAAa8AF_3CYAyPrK_8T10QCdQ9j_ljkE_xMYzQDHEgT_0A-0Adn-GADiMeUABOnT_7IIAf8U5On_9Kj1ACW69f4LyP0A3hUEAePpCgEhBh8B9tX__gM9GwHhBO_-GfC___UV3f4L8RT5DCrSAesDvAIR_kQBDwkZBQ7yEQnt0wAB6wT5ArMUzfrXAvcE8O8I9tMdIwIfI_kLKxr69uzm7PgT9gP6M9kk_xAq7QUu0xED8vwFAe3kBAks7iQF_PgaDPM6GgPT8DIG4-0P-_3wFPcn8-T7xf34_j_A8QX_4AQC5AL0C-oD8PEUMv4C5u8G_fnN8AEgAC18swY7OBNACUhhUAIqzwcQABrAB8Y0s76sOQA9u1MPPKAUcr3bugA98-7-vPvnOb5iwkM8-63dvAmy1LwFkkY9djs2vfjBgb5_6Pi8RGlPPYmZDT7MP1-9652fuXoXL74IPDA9KZ_UvIkLEL42aq66zo_5O17FGjxsbpY8_CzgvODZfj1ScU29zTdHvNfVjTsITDE9XKFZPJfUnjusW5i9odCXvFOXDD4Ohrq8T3ulPKK1Ej68GrW9s3oHPddoGT2cHzW9DJH0O-r2KL3fWty80-OtvI_97D20FWU9_GRguuv7hb0-aEy9hzsRPCYFkb38Z5M72J2sO28uyT1Xqzu95ETgvA92rz2KAya7RlEiunf1Cr6gny49XPlRvOxbGDzLl7w9at-3PHq2Xb1pQDg9j5rEu2JOK730fcC7wzQCPDhoPz6H1i88-Kc3O_EB57lpSrw82soHvAG9lbxUiGw9MQtWOfFmzT2vV7-73Sz7u_4Pi7zelw49oSbAO-XpQb2gZFy90yUtPCJ4kr3_I1M926p_vKuWFD7TvS49JRIYvAUjpT3WAju-SeWaOld7OL0vh_29KqBmOnxH7T0gNw09U10fu96rFr3OABe9hnyGvLG8ML3oOf08HNwtuxeZI7xnLHW9i7hKPAp5vr2YABc9gy4GPPfjez0VUA29EFYKvGHnoT3nBl49SQbru3hN_ryABfq8tMcPu7wpQDzSwzA9EJp6u11pvjzEln694LcluqCNLD7LrgW9IAINuXB4kT06wD29Iy-tusakP7zkBLe8PP75uB-i0T1Y-B-9edGKODsrErzjCCi9G9Qauai3ULx0tAo-_MVYN06AAT4C6IG8YkBvuas9kb0aUhW-MFEKOrEeUjzvzwA9hUuZOXOJwDpkLMk8Mx80OBL1Qr0iGOe9eBrqN3vaobxZQBU8UG_ZuIVwdj1Rdkk9ZleEOCLLnTxaUqS8HLUAOdlXAby92la9fLeVuFHumL0FN209avZNODr0jLz0gEO85d2JuQdcjD2rgSE9-8enOOvJzD3hkzM9S86QN89h47w8uOA81WbZt5oHED3eOMm9CDT7Np7H8jwGblg9bJR2uLjkKL7Rf4W8nfgauTz03T2vN_u8qTctOQ0RnD16sCA9PHjDN2qirjtSKAs8AphZOIJVRT50yDc9ydyEuYxxFL3be0K9xfxnuIdnDr30ZS69zdIQuP2kNb3fiE27V8V0Nr2vBT2lSQm-rZ6FuLnBdTwt7Ak-hifnOBt31DzTJ2M9pTSguMOV2Ly_Olg8eZttuL1AH73rnRu8g1A4NyAAOBNACUhtUAEqcxAAGmDy8wAs0w_E0kUf9hii6zPk5frTKrw2_x_C_x3_wzAj6dzpGg8AK_AF_5oAAAAq8u8LAwDxf-fiPd7SMveIpA4zJXHu5kLL9Bv_8t33DSQa20PdKiAAvBO1JT_rCwFiUyIgAC1qNRI7OBNACUhvUAIqrwYQDBqgBgAAAMIAAIC_AACAvwAAgEAAADTCAACiQgAAikIAAFDBAACowgAA-MEAANhBAAAQQgAAuEEAAKBAAAB0QgAAJEIAADBBAAAAQQAA0MEAANDBAAAsQgAA4MEAAKDBAAAQwQAAiMEAAABAAACAQQAAKMIAAOBAAAD4QQAAqMEAAMhBAACOwgAAUEIAAKDBAADwwQAAAEEAAGBCAAAgQgAAAMAAANhBAACgwQAAhkIAADBBAABAwAAAoMIAAIxCAAAkQgAAGMIAADhCAAAEwgAAoMEAAIjCAAAAwQAAEMEAAIhCAADwwQAAYMEAAIBAAAAcQgAAMEEAAGjCAACQQQAAQMIAAAAAAADKwgAAjEIAAIBAAABswgAAUEEAAIpCAAAwQQAAUMEAAI5CAABQwgAAHMIAANjBAADAQQAAmEIAAEBCAADQwQAAnkIAACjCAAAwwgAANEIAAFxCAADAQQAAIMEAAABBAAAwQgAABEIAAIZCAAC-wgAAisIAAEhCAACuwgAAMEEAAHBBAAAgQgAAwMAAAAzCAABQQQAAgMAAAAxCAADAwQAAQEIAAEDAAABUQgAAsMEAAIBAAABwQQAAgMAAAEDAAAA8QgAACEIAABBBAADAQAAAksIAAIRCAAAQwgAAREIAAEDBAAAMQgAAoMEAAFDCAACAPwAAqMEAAABAAADAwQAACMIAACzCAAA4wgAALMIAAMhBAABcwgAAikIAAJBBAAAwwQAAEMIAAIDBAAAUQgAAgD8AADhCAAAgwQAA6EEAAIhBAAAgwQAAoEEAACBBAAAAQAAAYMIAAKhBAADAQAAAvMIAABRCAACgQAAAkMEAAOjBAABAwgAAAEEAABRCAAAIQgAAIEEAAFxCAABQwQAAiMEAAOBAAACYQgAAAMEAAAAAAADAwQAAgEIAANDBAABIwgAAOMIAAKjBAABAwgAAzMIAACDCAABgQgAAAEAAAEBBAABkwgAAAEEAABRCAAAQQQAAgMIAAHBBAACgwAAAuEEAAAxCAABgQQAAMEEAAGDBAAD4wQAAjEIAADhCAADYwQAAIEEAACxCIAA4E0AJSHVQASqPAhAAGoACAAAQPQAA4DwAAEw-AAC4vQAAMD0AAEQ-AAB0PgAArr4AAIC7AAD4vQAAEL0AAKg9AAAMPgAAnj4AALa-AAAcvgAAnj4AAIC7AAAEvgAAoj4AAH8_AAAQvQAAcL0AADQ-AAC4PQAA4LwAABw-AAAsvgAAoDwAAII-AACIPQAALL4AAEC8AABAPAAAND4AAHS-AAAEPgAAtr4AAM6-AADYvQAALL4AAEC8AADoPQAAUD0AAAw-AADgPAAA-D0AAOC8AABcvgAA4DwAABA9AACgvAAALD4AABC9AAAQvQAAoLwAABE_AACGPgAAiL0AALg9AABwvQAADD4AABC9AAA8viAAOBNACUh8UAEqjwIQARqAAgAAcD0AAMg9AADovQAAM78AAGy-AAAQPQAA2D0AAIi9AADgvAAAyD0AAAy-AAAUvgAAMD0AAMi9AAAEPgAAUL0AAFC9AAAPPwAATL4AAJY-AABAvAAAPL4AAFC9AAAwvQAAUL0AADA9AACIvQAAoLwAAPi9AAAcPgAAiD0AAOA8AAAUvgAAmL0AAOC8AAC4PQAADD4AAAQ-AACGvgAARL4AAHC9AAA8PgAA6D0AABQ-AAAwPQAAmL0AAH-_AACIPQAAUL0AAIC7AABwPQAA4DwAAPg9AAA0PgAA2L0AALg9AACAuwAA2D0AAHC9AAAQPQAAdD4AAHQ-AAA8PgAAVL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=dse5YT3yBNg","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":720,"cheight":1080,"cratio":0.66666,"dups":["8628487916656493955"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4680557584120603352":{"videoId":"4680557584120603352","docid":"34-11-2-Z532C158B4EF5F84F","description":"Hi Guys, This video will show you how to graph the cosine function y=cos(x)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4216607/af84ae3dea19b077be738ae95d76f412/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zkFaXAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDeNATUXoxdU","linkTemplate":"/video/preview/4680557584120603352?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to graph the Cosine cos(x) fast and easy :)","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DeNATUXoxdU\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhUKEzQ2ODA1NTc1ODQxMjA2MDMzNTJaEzQ2ODA1NTc1ODQxMjA2MDMzNTJqtg8SATAYACJFGjEACipoaGdiYWdkeWt0b3RlYmRiaGhVQzRYSEJiaENTTldsSFBKNzMwbWZSbFESAgASKhDCDw8aDz8T_QGCBCQBgAQrKosBEAEaeIH2AQr2AQAA-RMQB_oH_QIMAPv69gAAAOz47_wFAAAA_AIKAAoBAAD6EQT-BgAAAAP7_Pv9_QEAEQMC9AQAAAAZBPwL_wAAAA7_7AH_AQAAA_b4-AP_AAD9EP8D_wAAAAAO-fEA_wAAAQj4-QEAAAAD8fv8AAAAACAALSODzzs4E0AJSE5QAiqEAhAAGvABdhwcAMj75P_H9tMAwRjd_4Ea7gD8NdEAyhED_7X2xQAHGh8A0CoSAB4JJQHIFvMAOwzX___jCAA92_wAJe8IANnTJwEJ4-8BJg4NAAfk6_7yIwr_7OryAP3F3QAQPfn8DfgD-vUL4ALzFtgBPA0uAOP7GQEAAvkE6e79A98h_wPr3Nf97gINAufXFPzf9TEIOu0XBRRKBP0NDs0B6BcC-xf1CAIXC-IE8PX-BdooA_vq1_D5Kuz2_wneFPziCwb63RMQAer0IPf8zvfzBdcS9Mn--f4U3vkKC80CBOzK8wIVEPjy4vIDA_259_sT4gDqIAAtaOIOOzgTQAlIYVACKnMQABpgI_AAF_U_xvALPuMmxeIzuvLMzvLWNv8Z1P_u6-AW_-DQ4RXlAO_qGfSdAAAAFAfX--kAH3_gzfTf1RsptrTJLvttSgQEk-8CCBXM_gLfBBYb7VgdAJMb1BJV1P8YEzNMIAAt2IcXOzgTQAlIb1ACKq8GEAwaoAYAAAhCAAAQwQAAmEIAAKjCAAAEwgAAFEIAAPJCAABAwAAAYMIAAOjBAACAQAAA4EEAANDBAAAcQgAAuEEAAMhBAADAQAAAXMIAAJRCAAAAQQAAREIAAGDBAABQwgAAIEIAAKDAAACAwAAAUEEAAIBBAACAvwAAaEIAAHDBAADgQAAAmMEAAOhBAADQwgAAqEEAAODAAACKQgAAcEEAAKDAAABQQgAACEIAAFDBAAAYQgAAnEIAADzCAAAAQAAAEEIAACxCAAAAQgAAcMIAACjCAACAvwAAFEIAAEDAAABwwQAAfMIAAADBAAAUQgAAcEIAAFxCAABMwgAAZMIAAATCAADAQQAAwMIAAADAAAB0wgAADMIAAHDCAACgQgAAqEEAAGjCAAB8QgAA4EAAAEDBAADgwQAAFMIAAIJCAAAUQgAA2MEAAEBCAACAPwAAgMEAAIBBAACSQgAAmEEAAHDCAAAwQQAA4EEAACDBAACAwQAAAMAAAHBBAABwQgAAAMIAABBBAACAvwAATEIAAAxCAACSwgAANMIAAKBBAACAvwAAuMEAAOhBAAC4QQAAgkIAAIBAAAAoQgAAaEIAADxCAABYwgAABEIAAGDBAAAwQQAAMMEAAADAAAAswgAAcMEAAEDBAABwwQAAoEEAACDBAABIwgAAIMIAALhBAAAgwgAAFMIAAIBAAADgQAAARMIAABTCAABwQgAAmMEAAMBBAAAAAAAAQEEAAIrCAADYwQAAcMEAADDBAABgQgAAcMIAAABBAACQQQAAwEAAALBBAAAwQQAAMMEAALjCAABIQgAAMEEAABxCAADgQAAAuEEAAKbCAADgwQAAfMIAALDBAACAwgAAaEIAAAxCAADAwAAAAMAAAADBAABwwQAASEIAAIRCAADwwQAA4MAAAMBAAACgwQAAPMIAAEDBAACowQAAwEAAAIDCAABIwgAAoEEAAIzCAAA8wgAACMIAAIBBAAAcQgAAcMIAANDBAABgwQAAQEAAAOBBAAD4QQAAAAAAACBCAACwwQAAQMEAAJJCAADgQQAAAEIAACBBAADAwCAAOBNACUh1UAEqjwIQABqAAgAAUD0AADS-AADaPgAA2D0AANi9AADoPQAAqL0AAPK-AAAcvgAAoDwAABA9AACIPQAAcD0AAJo-AACWvgAARL4AAJI-AADYPQAAoLwAAKo-AAB_PwAAmL0AAAS-AACWPgAAQLwAAKA8AAAUPgAAbL4AAHA9AAAsPgAAEL0AAGS-AADIvQAALD4AAJi9AADIvQAAgDsAAOa-AACevgAA-L0AACS-AAAMvgAAML0AAHC9AAAMvgAAZL4AACQ-AACgPAAA2L0AAHC9AAAMPgAAED0AAK4-AABwPQAAXL4AAKi9AABBPwAAUD0AAFC9AACgPAAA4LwAABC9AAAQPQAARL4gADgTQAlIfFABKo8CEAEagAIAAJi9AABwvQAABL4AABO_AAAMvgAAmD0AAIY-AACAOwAAoLwAAJg9AAAMvgAAuL0AAKA8AABAvAAAFD4AAIi9AACgvAAA5j4AAKK-AAC6PgAAUL0AABC9AAA8vgAAcL0AAHA9AABQvQAA2D0AAHC9AACIPQAA2D0AAIA7AAAUPgAAjr4AAPi9AAAQvQAAyD0AAHQ-AABUPgAAbL4AAAS-AABAvAAA4DwAAMg9AAAcPgAAoDwAADC9AAB_vwAABD4AAFC9AABAPAAAEL0AAKC8AACYPQAAyD0AAEC8AACoPQAAMD0AADA9AABAvAAADD4AAPg9AADgPAAADD4AAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=DeNATUXoxdU","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":730,"cheight":480,"cratio":1.52083,"dups":["4680557584120603352"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"13955326636724259412":{"videoId":"13955326636724259412","docid":"34-0-4-Z3330D84CB2217B7D","description":"Once a year we open our International interpreter's contest - which is our mind olympics and the race of the fittest for the profession. Access is open to every iterpreter in the world. #stayhom...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3445252/1f05131831eba4c79e0bc8085d36cdea/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/SYClCQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dp87oHHIR1g8","linkTemplate":"/video/preview/13955326636724259412?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cosines IV - registration open!!!!","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=p87oHHIR1g8\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhYKFDEzOTU1MzI2NjM2NzI0MjU5NDEyWhQxMzk1NTMyNjYzNjcyNDI1OTQxMmrhEBIBMBgAIkUaMQAKKmhoZmlqbnB2eHloYWpmeWNoaFVDVjlJajJUMTJSYmJnMDNhakdNNUl1QRICABIqEMIPDxoPPxOFAYIEJAGABCsqiwEQARp4gQ39-vgD_AAH8ggDBAj9AhAN-gIJ_wAA8w_29AMBAAD4-v8FBQAAAPgIFvsBAAAA-P0HA_v_AAAG_vf0BAAAACgA_Qb7AAAA_wjw_f8BAADu-g75AgAAAPIB_Qb_AAAAB_n5-gEAAAHtCgP-AAAAAPrlAQkAAAAAIAAt0NDLOzgTQAlITlACKoQCEAAa8AF_AgMCmwn_-kf4_AAX6PEA_esMAA7rGAD1Bu4Are_g_9UmCAEI6_cAFu_zAcwfFAHr6hL_E_wAAAUOEwAS6AAANgUOACjYDAEP7u8BCwDr__XmBAAY2if-BAD3AwbzGAAB9QT-F-oFASzZDAIR__L_8wjxAi76CAIB_u__8u74A-72DAP-JQUCBg0A-g_69AIf9g379AsPAAsJ8foNAg77_ir5_hv29gAT7RT-AAb3_Ov5AfoqCgv8__r9_fP1AwPu9BL7CAwB9gD6_QMJ5f8IBhz1-w7y9_IIHQX4Gdr__e38AvnnE_X3I_gBCQD59v4gAC2lQEw7OBNACUhhUAIqzwcQABrAB_rU0b6BLpC8FHZRPWGkFz4RhBC8iWQGvG_kcDwshFC9yIwDvHqnIbwGZkW9zoahvGpNIz4_jbu8ZzJyPZ1Ggj5_Fku8vhLIvJ_pZb1ZC_28LnA-PV4OC77W1TO9GPpxPbGi5j1R-oK8DjCzPP8hPT7Oif08ThBQPOTDxzzD8iC6g5rrvBLC4z3Kbii7N4yCvLkXfT23lzS8dx1gPEiBLz0Xq6w9HOwLvPEFlz0LJh69p7QZvWscG70dBN29MOaZuzjATD3tTlK9LWFIPOkblz3CbII8AsX-PA78A71lSqW9Ebj_vLiklD0ghQa9Oj3Ou4YbsDzkXBS9qACYPCcWmL2LA4O8LKrVuyzlRj2GTa48Y1CeOwfkd731vJs8UCqrvHhBNL59f9q7SwuyvOWNnbxBABq9h3QTPVKl3DxBcTa8xH4LvGBtUb3wKhU9jJH4O2drw72TCqm9NiChuykKz7xqrY49B4gEOiqOI723GJK9Er9_u5C9nr375-m8wGp2PPX3Ar5AnXc9tLIWu0TztT3Y1Nm9OnEgvE9dyT2cG069Im85vPyIJD2HawW-yOCTOlk0Hbs7kqY9bbYovLrewT0Sc389jmcjvPAan71UQge84FgCvHvRuD0cH1K73nooPIiV2zyvPr498R5Su1Iby7xxlm08qxdPu7nNr7y70EG9ogC8uzqcnz3aOrg8XHxAOzzuZT1UO6O9r0h4ObEW_713BwK9DRB1OWgOnz0oexA9B5GDuPKa172TnB09wjTAON65pj07aBu92hnHObG9HDw-mrW96mfiOevUi7yTCjk95TyWOZw-cb039767E3WGORLiZb1obq89fICxuV1Vob0A3FE89DzJOJz6EL5fDdA8b0cqOppbAT57QIq9BZQkuYH94bzAKBy8NWqxN3LaWD0riQw-UaEKOfphhD2dqIs9HnGUOEZkFDw7hpw9JT6BuROIMjztSqY8KCGoOFXv-rxjT_G7BewOuQdcjD2rgSE9-8enOC7wa72p2YO9RVxbNyzeHr2Osj69_8TJNKAVPbxhyIW83Ts_OCGem7zhk1M9yNDVtyiLkT3xjAy9Dj6XOFRd2TtnMco7LkoCOJs90D3-iou92qGSOBWDUTxvVs68JSYQOG1TobwGW1Y9vbSQt0bP7T3-SZc9XXuqOJNrTz387oy9bSINN5RryjzaafW8h-3Bt1ACxr2B-bU8CPkguKAXDj0XJb09KH8AOX0Efry6bPC7Kn59uAnv_jrYXu47q6hIt-I__b0O3Sy99qbduCAAOBNACUhtUAEqcxAAGmAPAQAc0xoE0_xV0_YY7wPkFTwoIJ00__kU_9w6t8oJ-eu_pfkA_rQSDJ0AAADS8uAUGADYf7i5_fACUd5BreQiEGYME_8KiMA27wDMJu_W4z0eHgIA7OfZOCDwuj8g7RwgAC3trRI7OBNACUhvUAIqjwIQABqAAgAAEL0AAKA8AAC4PQAATD4AAAS-AADgvAAA-D0AAKa-AAC-vgAAuD0AAJi9AACIPQAAML0AAFA9AAC-vgAARL4AAIY-AABQPQAAhj4AAGw-AAB_PwAAUL0AAIA7AABUPgAA2L0AAAS-AAAwPQAA2L0AALg9AABcPgAAuD0AAMg9AAAQPQAAML0AAMi9AABQvQAARD4AAM6-AABkvgAAHL4AAIC7AADoPQAAmD0AAPi9AACovQAAiD0AAJg9AAA0vgAADL4AAKi9AAA0PgAAZD4AAOg9AABwvQAA6D0AAHC9AAAJPwAAHD4AAAw-AACIPQAAmL0AABA9AABAPAAAFL4gADgTQAlIfFABKo8CEAEagAIAAJK-AABwPQAADL4AAEW_AACAOwAAuD0AABC9AAD4vQAAoLwAAEw-AADgvAAATL4AAFA9AAAUvgAAiD0AAIi9AAAwPQAAKT8AAIg9AAA0PgAAmD0AAIg9AABUPgAAMD0AAOC8AAAcPgAAyL0AAKg9AADIPQAAqL0AAIg9AAAwPQAAqD0AAOC8AACIPQAAHL4AAKo-AABsPgAAfL4AAGS-AAAcPgAARD4AAOg9AACIvQAAmD0AAIg9AAB_vwAAfD4AAPg9AAA0PgAAVD4AAJa-AAAkPgAAfD4AAEA8AACYPQAAiD0AAKC8AACAuwAA6L0AAAw-AABQvQAAmL0AAHA9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=p87oHHIR1g8","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13955326636724259412"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9959871708545098351":{"videoId":"9959871708545098351","docid":"34-1-13-Z0DC29D956FFD93F2","description":"This video explains how to determine sine and cosine function values using reference angles. The angles are multiples of pi/6 and pi/3 radians. Site: http://mathispower4u.com Blog...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3070187/cb410d873e19f31a6c84d6e967544587/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Re2HAAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Do_fwUKC09nU","linkTemplate":"/video/preview/9959871708545098351?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sine and Cosine Values in Radians Using Reference Triangles - Multiplies of pi/6 and pi/3","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=o_fwUKC09nU\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhUKEzk5NTk4NzE3MDg1NDUwOTgzNTFaEzk5NTk4NzE3MDg1NDUwOTgzNTFqtg8SATAYACJFGjEACipoaGVodmR0aGhxY2V4a3BiaGhVQ05WTXhSTUV3dm85QVMtSmZoNmZRRmcSAgASKhDCDw8aDz8TmgKCBCQBgAQrKosBEAEaeIH_BPsB_gIA9_sU_f0E_wEEAAAC-P_-APECCPIDAQAA9wETAQEAAAD6CvsDAgAAAP34-AL7_gAAGQXw_gMAAAAMAQsE9QAAAAYJAQr-AQAA8_P49QIAAAAD-v0EAAAAAPoO_Pv_AAAA_RH19gEAAAD7-gEEAAAAACAALRPz2Ts4E0AJSE5QAiqEAhAAGvABd_FJ_9b1owG7Ft3_6UDjALo8DwD2JOwA1wMKAOQVyQH0D_oA_zgbAAgiFgG6T_IAFwTmAMzG5QBG4R4A-QkJANDvCwDfF_MAfxsJAdzd6f7HNwL--Q7_Atre4P8FXtj9FBzv-xAO0gHaNegEK_o2AfLr9QEf-A3-2eAAAMgwDf7cNdD_5yL1_Obm_gLgOSkCDsUV_flHBwLd2tz-2OwGCiPmE_ERLOwFQAvv-t8eHAAA1_b5GRIMBCD-C_z4FOwE-Q_98d8LHO0V-xT7BtIU8wIg-vUvGf_0KeoX-A8BA_P38PXt7ODd_A706xIDsuv2IAAtrAn9OjgTQAlIYVACKnMQABpgROQAEw0rzQci--rb3_j93urAvRvrIf8Ewf8P5OMNJAbDqsvtACXjLteYAAAAGPzJ3-0ABHzpzk_z6xIPyt7uHhp_PSAA8fFFF9uXLPou7SD7EC5RAAUFzFpBr5oyEylLIAAt8aEROzgTQAlIb1ACKq8GEAwaoAYAACDBAABgwgAA2EEAACTCAAAAQgAAIEIAAMJCAAAQQQAAqEEAAAzCAAAgwQAAIEEAABxCAABYQgAA-EEAAFhCAACgQAAAcMEAAGhCAADwwQAALEIAAEDBAAAQwQAAAAAAADBBAAC4QQAAqEEAAARCAABQwQAAJEIAAEzCAAAcQgAADMIAANBBAACQwgAAkEEAAAhCAACEQgAA0EEAABDBAAAoQgAAeEIAALhBAAAIQgAAEMEAAAzCAAAcQgAA8EEAAAzCAAAAwQAApsIAAEjCAAAQwQAAgEAAAPBBAAAwQQAASMIAAADAAAAYQgAAhkIAABhCAAAUwgAAmMIAANDBAAAwQQAAFMIAAJDBAAAYwgAAPMIAAIDBAACMQgAAwEEAAFzCAAAkQgAAEMEAAJBBAAA4wgAAQMIAAERCAACgQgAAEMIAAIhCAADIQQAAmEEAABRCAACoQQAAKEIAAITCAAAAQAAAkEEAAKDBAAAMQgAACMIAAHDBAADAQQAAZMIAAMhBAAA8wgAApkIAAJZCAAAswgAAPMIAAHBBAADgwAAAgEEAAIhBAAAgwQAALEIAAHDBAACiQgAAgEEAAIhBAAA4wgAAwEAAAADBAABAQQAAokIAAEBBAAA8wgAAgMAAAODAAAAUwgAAqEIAAIA_AAAAwQAA4MEAAExCAACYwgAABMIAABxCAADgwAAAMEEAAKjBAAAIQgAAoMEAADxCAAAQQQAAgMEAAGjCAABQQQAAqMEAAAzCAAC4QQAAZMIAAKBBAAAAQgAAQMEAAIZCAABgQgAAgMEAAEDCAADYQQAAdEIAAMjBAABQQgAAAEAAANbCAAAAQAAAOMIAADRCAAAowgAALEIAABxCAABQwQAA-EEAACxCAABwQgAAMEIAAEBBAACgwAAAQMEAALBBAAAQQQAAXMIAABjCAADQwgAAwEAAABTCAABowgAAQEEAAGTCAACUwgAA4MEAALhBAAAcQgAAkEEAAJbCAACIwQAAgEAAAEhCAACowQAAoEAAACRCAACAPwAAAMIAAJBBAABEQgAAmMEAADhCAAAAwSAAOBNACUh1UAEqjwIQABqAAgAADL4AAPg9AADOPgAAML0AALg9AACgvAAAmD0AACu_AACIvQAABL4AACy-AAAUvgAA4LwAAK4-AACAOwAA6L0AABQ-AACoPQAATD4AAMY-AAB_PwAAoDwAAFC9AAAQPQAADL4AAMi9AACoPQAAhr4AAJg9AACWPgAAMD0AAK6-AABAPAAAQDwAAEy-AACIPQAAHL4AAFS-AACKvgAAyL0AAFy-AADIPQAAED0AAIA7AABAPAAAUL0AAIo-AADovQAA4LwAAOC8AADIPQAA4DwAAFw-AAD4vQAAdL4AAOC8AAA9PwAAUD0AAHS-AABMPgAAcD0AAIg9AACYPQAAUL0gADgTQAlIfFABKo8CEAEagAIAAI6-AACIPQAA4DwAADO_AAAQvQAAQDwAAOg9AAA0vgAAHL4AALg9AABUvgAANL4AAHy-AABcvgAA6D0AAOA8AAC4PQAAPz8AAHA9AACaPgAAED0AANi9AAC4vQAAcD0AAKi9AACAuwAAQLwAAKA8AAC4vQAAcD0AAFA9AADYPQAAoLwAABy-AAAwPQAAFD4AABw-AADgvAAAir4AALi9AAAwvQAA6D0AAEA8AAAwPQAAMD0AAIg9AAB_vwAAnr4AADC9AABAPAAARD4AAHC9AABQPQAAED0AAIA7AABQPQAAED0AAJo-AABAvAAA-D0AAFw-AAAcPgAAMD0AAIi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=o_fwUKC09nU","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9959871708545098351"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18034870356742062189":{"videoId":"18034870356742062189","docid":"34-9-3-Z68E1C3F68A11F5D0","description":"This video explains how to determine sine and cosine function values using reference angles. The angles are multiples of pi/4 radians. Site: http://mathispower4u.com Blog...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2365444/ecfdd64cbb89e7f5171bdd40e7757a5f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zbVIQwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzRZQCXEIUu0","linkTemplate":"/video/preview/18034870356742062189?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sine and Cosine Values in Radians Using Reference Triangles - Multiplies of pi/4","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zRZQCXEIUu0\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhYKFDE4MDM0ODcwMzU2NzQyMDYyMTg5WhQxODAzNDg3MDM1Njc0MjA2MjE4OWq2DxIBMBgAIkUaMQAKKmhoZWh2ZHRoaHFjZXhrcGJoaFVDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZxICABIqEMIPDxoPPxPcAoIEJAGABCsqiwEQARp4gQH9-gUAAAD3-xT9_QT_AQ0G_wL2AAAA7QT8-AUAAAD3ARMBAQAAAPoQBP4GAAAA_fj3Avv-AAAaBfD-AwAAAAwBDAT1AAAADAH5Awj_AQH58QD4AgAAAAUD_QQAAAAA_Qb3-gIAAAD-Dv_vAQAAAPv5AQQAAAAAIAAtLGDVOzgTQAlITlACKoQCEAAa8AF__x4A1_WlAb0W3gDmD9AB0hwpAOkT4wDII-H-zBzqAeoe9QAGUOf-Cjz-_4cw_wEXBOYAusbBAC7oFf8RqxQBtM4FAN8v7ABGNwH_y9f9_9MM9__l-wEC-_HkAQVb2f0a_xb-GyDh_bn4xgELIzwD4eYcAAfQ9wXs0gAB1yMY_-0Xzv3ZIAMJCPIH-r0OEgMf7Br_BDr6AfP16wLX7x4H9PkPCDkU4QEQB-8I1ToTAxPW_f0l9wsDEPch_OEW2wne5f0FzuIW9iMGE_g49fMG6OjoCx7z8w73mwD4BeT1-BcHA_nXxvcHAdX7_hHU5_ogAC04HAI7OBNACUhhUAIqcxAAGmAp9QAiJCHB9hwO7eDM6xji9b6-D9UV__u2_xze4xs2Bs-ou9cAE-Uz4JoAAAAcE-L19QD7eubITvvxGAnK5NwxCX8_GhHe4kkNwaMw-0PcGhf9LlkA6wa8UynHiScQCDMgAC0-xw87OBNACUhvUAIqrwYQDBqgBgAAUMEAAFDBAAAcQgAAcMEAAIhBAABgQQAAvkIAAFBBAACAvwAAMMIAAIDBAAAEQgAAIEIAAJZCAABgQQAACEIAAIhBAABgwQAAUEIAAFDBAAAsQgAAkEEAAODBAACwQQAAMEEAAKBBAAAAAAAAKEIAAHDBAAAsQgAAKMIAAMhBAABEwgAAoEAAAJTCAADoQQAAHEIAAKJCAAAAQgAAuMEAAADAAAA4QgAAGEIAALBBAAAAwgAAjMIAAFhCAACwQQAAkMEAAOhBAAAYwgAAHMIAAMDAAADAQAAAqEEAAIC_AAAgwgAA4MEAAIBBAABwQgAANEIAAJDBAACmwgAA8MEAAABBAAAEwgAAGMIAACDBAADowQAAQMEAAJRCAAAQQgAAuMEAAGhCAADYwQAAuEEAACTCAADIwQAAokIAALxCAABQwQAAkkIAAIC_AADIQQAAGEIAAAhCAACAQQAAWMIAAJhBAAA0QgAAoMEAAARCAADAwQAAkMEAAOhBAAAcwgAAQMAAAADCAACQQgAAlEIAANDBAADgwQAAMEEAAPjBAAAgwQAAMEEAADDCAACAQgAABMIAAFBCAADoQQAABEIAAAjCAAAIQgAAwEAAACBBAACGQgAAgMEAAPjBAADgQAAAoMAAAATCAADcQgAA4MEAABTCAABUwgAAiEIAAI7CAADwwQAAQEEAABBBAAAwQQAAYMEAAHBBAABAwQAAPEIAAHBBAAAAwQAAJMIAAADAAACAwgAA-MEAABRCAABwwgAAAEIAAPhBAAAQQQAAfEIAAHBCAABAQAAAjMIAAKhBAAAwQgAAIMIAANhBAACQwQAA2sIAANhBAAAMwgAAwEAAAJ7CAAAIQgAAIEIAAGDBAADwQQAAgD8AANBBAABQQgAAiEEAAJDBAACAwQAAUEEAAIhBAACOwgAAkMEAAKzCAACQwQAAMMIAAFzCAADgQQAAfMIAAJjCAACIwQAAAMAAADhCAAAAAAAAjMIAACzCAACgwAAAaEIAAAjCAAAsQgAAuEEAABDCAAAAwgAAmEEAAHBCAAAQwQAAGEIAAJhBIAA4E0AJSHVQASqPAhAAGoACAABAvAAAHD4AAK4-AAAMvgAAiD0AANg9AADYPQAAKb8AACS-AAAwvQAA2L0AABC9AACovQAArj4AAPi9AABUvgAAND4AAKA8AAAUPgAA0j4AAH8_AABQPQAAEL0AAPg9AAAQvQAAgDsAAEA8AABUvgAALD4AAP4-AAAwPQAAyr4AAIA7AABQPQAAHL4AAIC7AACYvQAAfL4AAFy-AACovQAAPL4AAAQ-AAC4PQAAcL0AAAy-AACIvQAAbD4AAPi9AAC4vQAABL4AABQ-AABQPQAAdD4AANi9AADgvAAAUL0AADM_AABAvAAAJL4AADQ-AACgvAAA2D0AABw-AAAQvSAAOBNACUh8UAEqjwIQARqAAgAAqr4AAJg9AACovQAAK78AABC9AAAwvQAA6D0AAFy-AADovQAAuD0AADy-AAAMvgAAPL4AAAy-AAD4PQAA4LwAAFA9AAApPwAAoDwAAKI-AABwPQAAmL0AAFC9AABwPQAAUL0AAHC9AACgPAAAED0AAFC9AACoPQAAmD0AAOg9AAC4vQAAmL0AADA9AACIPQAAfD4AAPg9AAB8vgAAqL0AABA9AACoPQAAQDwAANg9AADoPQAAED0AAH-_AABkvgAAcL0AAMg9AABcPgAAiL0AAOg9AACIPQAAEL0AAKg9AACgPAAAhj4AAIC7AACYPQAAbD4AAHw-AADgPAAADL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=zRZQCXEIUu0","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18034870356742062189"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10979820142222361640":{"videoId":"10979820142222361640","docid":"34-5-6-ZC617AA72973E3EB8","description":"With the unit circle and the Pythagorean theorem, we can find the exact sine, cosine, and tangent of the angles π/6 and π/3.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4755638/a2447f8f69679bcf7f1c23b6b94bf860/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/JaTj_QEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTt_ATh5mCGw","linkTemplate":"/video/preview/10979820142222361640?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cosine, sine and tangent of π/6 and π/3","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Tt_ATh5mCGw\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhYKFDEwOTc5ODIwMTQyMjIyMzYxNjQwWhQxMDk3OTgyMDE0MjIyMjM2MTY0MGqSFxIBMBgAIkQaMAAKKWhoZG92aXd4c2V2ZnFyZ2hoVUM0YS1HYmR3N3ZPYWNjSG1GbzQwYjlnEgIAESoQwg8PGg8_E48EggQkAYAEKyqLARABGniB9_78AP4DAPoEFwb8B_0C6An4_vsA_wD6Bv_0AgT-AOoA-wv-_wAA-hAD_gYAAAAJ_AP-9_4BABUJ_f8EAAAADPcIAvsAAAAQCAUC_gEAAP8AAQL7AgABB_z7CgAAAAD7F_z5AP8AAPkJ-v8AAAAA-fICBgAAAAAgAC0AU9s7OBNACUhOUAIqhAIQABrwAX_0Nf7C-cP_vAcAAPs7AgHEVir__D_IAMwn_ALZ2ekB_gZAANX-E_8y59YAqQkB__oYw__S3-gBOKsPAhDL2gDd2gIBLsrxATAgIv8uFcz_2PwY_vDD6f_Y3d7_ICDWAATO7_w948oA6QS0AkIqIATiH_oJziMeBtLvBv_ZJ_8D--DW_fUqBgbYBfL28twyBQ3F_P446_D72vEC_hUEGPcjD_8JEi_rBdcI4v2gGBD9_vn5BDOY5gIzAhcC5N717-gCCPm3vBn847_1_-QVAPXFHuD3NAIRESvpGffx8Pn9BwIA-uED6gMP8-oT8-Hu4iAALU178To4E0AJSGFQAirPBxAAGsAHiIK5vsUlAbxaRf-8XNf5vO97b720BQS9UYf1vdeXhj2Fp2G9oOJoPguO_Tow1hq6st4Dvb-XZ7wz-lG8QL05PuIbqjkMpdi5dXT8vS8Tmj0LAhC9_Qeyvb-txzt7DhO8zL6RvfG0obxq9O47wX6-PfL3wb0XrW28c69dPPMsgj0lweW81DqbPTRVRr0On3S9rX_hPLPFv7zETy28nJeUPAzyqbxteus8DPKpPdkBfDxf6qm7rHDrvfDTgjwyBam7t6thPfeOvz31VD28JT28va2ZxrzZFpS8c3b8vDO4tzwPDna8ZhbhPUG1Bj0T1oa8YpOpO3EqyL3Iaqm8d_UKvqCfLj1c-VG8Xp0DPbvR5z24EBg8Tz1SvrcIgT1_7Uu79VIMPaAPYLz8T8Q704bjPcx2aj3WdL08g8LgPRXAObwvY9S8kCQQvBDfoz2mYgM9X3CXPH0znDuyzoK8a55DPfJivLyXszE7YZG6PJ1ZnDx1UPA73zMUvEOdiD29nIY7gDOnPOhY1DySwTw7BSOlPdYCO75J5Zo6xAVAvW6jwbzkv7y758xRPbigiD1ZfR68wIXrPKUEo7290kc7P531Obt7QL3JsOk7FvVuPDCQFr2BXGI77j0Mvm_QAz2Qn886GlUBvYuBHz11LCW8y6ILPTLkuzv50YK6gHYPO0lwOT043ts6DAMWPX0IKrz61FK7rVwluocxCT0YcpW7axRtPDyMpDsJHPe57c9qvdX_nrzq-Xu6TegEPdAr3r0pOYo4fZXcPRZuKb58PPK5spJAvS2_Aj2PJsi5KkVhvWpcjj2HZCu4icjVPH0_hb1HWoU5VBv8vWK7-70T0_I5uEPgO4qMM7xNJDy5vqZivJj7JD16k4Q3p6MtvE37gzoKpwG6DpoivSlCajw6YLK5nlCePdjpLD2Z_HW4Q5opO6Feujv5tXk4LXM_PQD4cb2cg5u4vyAzvKwbzz1JDDQ15j3uvU3JKLwwwVm5iuj3PT-QrD2C7mY4sOmcvHY2BD7X81232mxRPZh_ub2dRds4NkQwPcKFHbzHux2464QhPf-B6Lzhyqc4ZVPOvcLoqDz-Mug30GE-vD5WVb0teEa4HF7wPX0E_jz055C41p9OPetolj0Bd1s4L6YZPng7zDz85hu5-UrgvQyP3b1jM0S4amNxvcyfSjwWOCS39w94PT1NQbxh1bu3hhAhPVx3073e85u3y24BvSZX8T1yj7K4GCc5vZRDpT1llMe4K6advVjywrzwqKW3qF3CvJu0fz0XxU84IAA4E0AJSG1QASpzEAAaYEb8ABbATN7mCyDPBNfaAcm5C9EE1P3_4_T_BuHN8Pjsrr_sEP8n_Cj7mAAAADPn0xT2APR_IcdEHvQTFwGGxQ0NbATm09avRwGg4wor9fVRFAkaLQDDG7xQJr3zMDxZTCAALfSmDTs4E0AJSG9QAiqvBhAMGqAGAAAoQgAAEMEAADhCAABgwgAAgEAAAHBBAADqQgAAoMEAAMDBAAAwQQAAEEEAANjBAAA8wgAAMMEAAFhCAACwwQAAMMEAAFDBAAAgQQAACMIAAODAAABEwgAAgL8AAOhBAACgQAAAEEEAAABBAABwQQAAQEEAAHhCAABQwgAAgEAAAJ7CAACIQQAAbMIAAHjCAADQQQAAoEIAAABBAABEQgAAbEIAALhBAABYQgAAkEEAAKhBAACewgAAgEEAAAAAAACQQgAAwEAAAATCAAAgQQAAkEEAAADBAABQQQAAcEEAAP7CAAC4QQAAAEAAAIhCAADoQQAAgMIAAPDBAAAkwgAAyMEAAEjCAABAwAAAJMIAAABAAAAowgAAiEIAAABCAACcwgAAukIAADBBAABowgAA2MEAAIBAAABQQgAATEIAAPjBAAAYQgAAYEEAAEDAAACQQQAAgEAAAARCAABIQgAAHEIAAAAAAACAwAAAsEIAADDCAABgwgAA0EEAAKrCAAAcQgAAgL8AAFBCAAAAwAAApsIAAOBAAAC4QQAAaMIAAFDBAAAAAAAAwEAAAKBBAABwwQAAAEIAAEhCAABQQQAALMIAAJBBAAAowgAANEIAAIA_AADYwQAAgMEAAHDCAABwwgAAYMIAAADAAABIwgAAmEEAAEBBAABIwgAAyMEAAHjCAABYQgAA4MAAAGBBAAAowgAAVEIAAEDAAACAQQAAYMEAACRCAABMwgAARMIAAEDAAAAkQgAALEIAAMDBAACiQgAAwEEAAKjBAACIwQAAgL8AAAjCAADYwQAAyEEAAAhCAADQwQAAoMAAAMDAAAAkwgAAdMIAALLCAADoQQAAGMIAABhCAABQwQAACMIAAABCAAAQQgAAFEIAAHxCAABIQgAA2EEAAJBBAABgQQAAUMEAALDBAACMwgAAQMEAADzCAABAwgAAEMIAAGxCAADAwQAAgMIAAMDAAACIQQAAbEIAALDBAACEwgAABEIAACTCAACAPwAA2EEAAOjBAACAQQAAkMEAAMhBAABQQQAAgMEAAIBBAAA8wgAAPMIgADgTQAlIdVABKo8CEAAagAIAAIA7AAAQPQAArj4AAI4-AAAMvgAAMD0AAKC8AADSvgAAmD0AAAy-AACgvAAAFL4AALg9AAA0PgAA-L0AABC9AACoPQAAiD0AAAQ-AAB0PgAAfz8AANi9AABMvgAAfD4AAAS-AACAuwAAgDsAACS-AAAsPgAAiD0AAEC8AACYvQAAgr4AABA9AADIvQAAML0AAKi9AACCvgAAsr4AABS-AADgvAAAuL0AAIA7AADgPAAAcL0AABS-AACCPgAAQDwAAIC7AABwvQAAcD0AAAw-AACWPgAAML0AADS-AACgPAAAJT8AADA9AACAuwAA4DwAAEC8AADIvQAA4LwAAPi9IAA4E0AJSHxQASqPAhABGoACAAD4vQAAir4AAFA9AAAVvwAAED0AACw-AAAQvQAAND4AAHy-AACYPQAAJL4AAOi9AABQPQAAqL0AAIg9AACAOwAA-D0AAC0_AACovQAAij4AACS-AABwPQAAiL0AAKi9AABQPQAAyL0AACQ-AACovQAAuD0AAJg9AABAPAAAFD4AAMi9AADIvQAAMD0AAIC7AABwPQAAij4AAHS-AACIvQAAoDwAAJi9AACAOwAAcL0AALi9AADYvQAAf78AAHA9AAAQPQAAQDwAAAQ-AAAsvgAAUD0AAKg9AAC4PQAAgLsAANg9AABcPgAAqL0AACw-AADoPQAABL4AAKC8AACIvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Tt_ATh5mCGw","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10979820142222361640"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11669260522631890285":{"videoId":"11669260522631890285","docid":"34-6-1-ZAFA9B0FB88352FC1","description":"Useful for high school/intermediate and other competitive exams.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4497401/7e0812025167661c4caa4d5469d3854c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Xl7XIQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DxO5eZcFRcOw","linkTemplate":"/video/preview/11669260522631890285?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cosine theorem;Cosine rule;Cosine formula","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xO5eZcFRcOw\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhYKFDExNjY5MjYwNTIyNjMxODkwMjg1WhQxMTY2OTI2MDUyMjYzMTg5MDI4NWqHFxIBMBgAIkQaMAAKKWhocXpzYWV3ZXR0b29hYmhoVUM3LWxzZGVobkNxNm44OW5pRWZSWE9BEgIAESoQwg8PGg8_E50CggQkAYAEKyqLARABGniB-ff8A_sFAPf1Dwf7Bv4B9wr7BPn9_QD1Dff1AwEAAO35D_z9_wAA9Q4HAPsAAAAEA_r6A_0BABEK9vcDAAAACAADBPwAAAAGA_YB_wEAAAP6AwED_wAABAj7CgAAAAAFBfv3_v8AAP0Q9fYBAAAAB_gA_gAAAAAgAC3Od-M7OBNACUhOUAIqhAIQABrwAX_-OAHk7s4B2fEFAP751QHEMwwAERbSAL0F_QDVDrsB3h3sAOQpBf8HFwUA7SX0AED1yv_v0OoALroMAh_m7gDQ2f4AM_cEATwTLf80-wP_2w8c_wH06_0V8tz__RX7AP7nFv8y6NQAD__UAzoNLQD7Gib_3_kZ_t2w_QHT-e78_Obe_QIQ7Ar64wr-4PUwBxv_4_wOBfL65yDoAhfj__7-3xf88xLZ_xMI4AX4GwQF4wLtBxLHBwofKvUB-Pnz7-YZIv7F_wH1--wq_e3f6_IPFuYD9gUACBrzDgQC2fjyEezyANcgD_sF5ej_-Av38SAALaTvEzs4E0AJSGFQAirPBxAAGsAHbhPWvlFq77yC1g88I16ovLSsu7ykHr-7-DM8vIdLMz3EwZS7fshrPnZoHb2N7Eo8Jdq_vYA3Mz1U9BM8xVWFPlQwb72bfyq8GYGivUC1uz3hpF-9jkCsvaHxKT2aqZi74oH5u_S2Q73Vx-i8wsmMPS9SQ718Gbs8CcypvVTDA71owyu8l9SeO6xbmL2h0Je8C6cWvVVXtDyYCju8j0T5PF-mnL2iuAC85y5TPMSW_j21IC27peI6vcEqKLxXqUq9dWYsPaaLwzz_dKg8iQMtvQdAYb2elv67wWVfPC3Tjjt3lNQ8vwekPabicD0oawC6eGeKO9OIGb0F-dm8DVMrvlyypjtiujW8ZjBmPQvKmT3zgZO8sOLUvXU2yT08jlU8I2x0uxDfsjpQOpG8z3yjPbgyUj2n0FQ8XPOZPRntJ7z9Ws28kCQQvBDfoz2mYgM9x458PTAvwDsm2-W8x6y4PTSJlTxKahk8slIYPAIJDz3ZvL87hqS7u0FtSj0Dc5k8ac-QvYhdlT3lJmq832bGPTm1872HHxg8ldw8vTzxwb1D6ea7idPpPWifrT1fDIA4dy8HPgh7br2T5Dk8m1xHPaI4gb1_fZ27A8EtPey8cr2XuEG4vakovXlRpT1QunK6Fi2FvXkj0z2vRc45hWbyvMlOKT11T3s6tUgDvM2VgTzVx6o774C-OwHSmL3JtmO7JUi7PZ6gIz1gTyu5ySzxPG6uML2vigE75DVqvRlmsjxQHjg5TShpPWgSy73Izbe5PL3yPUrIUb1XwY455ETgvABajDt2dpC4qLdQvHS0Cj78xVg38nwGPc-br719GeA4_LNVvXc9sr2FGzC459r8vHfyjr1Pzj251ne4uyaKgD2KppQ4L1DyvahcnL1DgL-3S0QTvdyVZ73yRwG5-lhmPXDVkDwMI2C4H-ZBve8Ulz3Xrpk5bHakvWYPmbzcLa05S1aqPEO5Iz208h05qyaIPc-3mr37n4c5eq3fPPUfozyZHoS5BReLPYG6PD25Vi63h1ORPfRfxj2quSQ39f9DO8d5ZL2vY7W3pSXgPEGx-jxAO9O4opOqvVenxD29NqA42peHPV1nqruw5pc4HNmwPUAXjbzUK-E3rsfzPM00q7wLXo81L6YZPng7zDz85hu5732wvWSKQ70ULkG4VIehve-Jmr297Bu2wkZ-vA974T0MtcE3ol0mO7P2LbwlEdG4yvRwPSLhKz7xy4o4HjiCvTPznj2c5_K4K6advVjywrzwqKW39DxuvCa8nj3vkIU4IAA4E0AJSG1QASpzEAAaYBsKAPkSK-cd-_i3QvIQGru4S7rm4kf_KiIA9Oa_6DbiwtzW_ADvIzz7nwAAADfsyubmAOB_1eIdtfIk_fq8wTMoaw_vLu-T9ADbl736HLwOJBcKTADTO9lVDvTOFD0mJCAALVlhDzs4E0AJSG9QAiqvBhAMGqAGAABwQQAAcEEAAJjBAACgQAAAoMIAAADAAABwwQAAUMEAAPDBAACAwAAA-MEAAIhBAABAQAAAJMIAALxCAACwwQAAAMEAAIjBAABAQQAAIMIAAEzCAABQwgAA6EEAAIA_AABgQgAAYEEAANDBAAD4wQAAFEIAAEDAAAAswgAABEIAAATCAAAIQgAAcEEAAABCAABAQQAA-EIAAFDCAACwQQAAOEIAAIDBAABUQgAAEMEAAIDBAACowQAAqMEAAIDAAAAcQgAAAMIAACTCAAAUQgAAAMEAAFDBAAAIQgAAJEIAAJjCAAAQwQAAyEEAANBBAADoQQAAUMEAACjCAACWwgAA6MEAABzCAABAQAAAMEIAAGDBAACAvwAAtkIAAI5CAAA4wgAAQEIAADDBAABAwgAAKMIAACDCAAAsQgAAKEIAAFTCAADoQQAAEMEAAChCAACAQAAA6MEAABRCAAAAwAAAAMEAAJTCAAAswgAAZEIAAABBAABUwgAAQMAAAETCAADAQAAAREIAAHhCAAAIwgAAmMEAAMjBAABQQgAAjMIAAPjBAABwQQAAZMIAAIZCAACowQAANMIAANBBAAA0wgAASMIAAIDAAAAcQgAAUEEAACjCAADMwgAAOEIAADDBAAAYwgAAYMIAAMBBAAAUwgAA6EEAABDBAABgwQAAcMIAAFjCAAC-wgAAcEEAAPhBAADAwQAALEIAALDBAAAcQgAAiMEAAETCAACEwgAA2sIAADBBAACgQQAAoMAAANBBAADwQQAA4MEAANjBAAAgQgAAuEEAANBBAACgQQAAyEEAAChCAACgwAAA2MEAAEDAAACAQQAArMIAAEBAAABEQgAAAEEAADxCAADgwQAAHMIAAEDAAACgQQAAEEIAADBBAAC4QQAAAEEAAFTCAAAAAAAAmEEAABTCAABkwgAAgkIAADTCAAAEwgAAnkIAABBCAACQwgAAMEEAAAxCAAB4wgAAtEIAAHBBAACGwgAAEEIAABjCAADYQQAAyMEAAFDCAACAvwAA4EAAAKDAAABAQgAADMIAAKhBAADgwQAACMIgADgTQAlIdVABKo8CEAAagAIAAMg9AABwvQAAwj4AAIg9AADgvAAAUD0AAEA8AADWvgAAmL0AALi9AABQPQAALL4AABA9AACmPgAAbL4AANi9AADYPQAAMD0AAMg9AACWPgAAfz8AANi9AABMvgAAFD4AABS-AABEvgAAJD4AAKi9AABcPgAAZD4AAOA8AADovQAAJL4AAPg9AAC4vQAAPL4AAEA8AAB0vgAAdL4AAOA8AADovQAAPL4AAAQ-AADgvAAAUL0AADS-AABcPgAAuL0AAFA9AACgvAAAFD4AAEw-AABkPgAAFL4AANi9AAAQvQAAMT8AANg9AACAuwAA4LwAABC9AABAvAAAgDsAACy-IAA4E0AJSHxQASqPAhABGoACAAAwPQAAQLwAANi9AAD2vgAAyL0AABQ-AAAQPQAAND4AAMi9AACgvAAAZL4AAIK-AAA8PgAAyL0AAFA9AABAvAAAFD4AAA0_AAAMvgAALD4AADA9AACgPAAAoDwAABA9AABAPAAAiD0AAPg9AAAwvQAAuD0AAJg9AADgPAAA-D0AAKa-AAAEPgAArr4AADA9AACYPQAAJD4AACS-AACevgAAED0AABQ-AABMPgAAiD0AANg9AADIPQAAf78AALg9AACgvAAAMD0AAKC8AAAQPQAAiD0AAEw-AAAMvgAA6D0AAFA9AAA8PgAAmL0AAOg9AACoPQAALL4AAMi9AACOviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=xO5eZcFRcOw","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":590,"cratio":2.16949,"dups":["11669260522631890285"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9806329504216327359":{"videoId":"9806329504216327359","docid":"34-2-3-ZC34E4F3DB013FF37","description":"This video explains how to simplify an expression invovling the tangent of a difference of two angles using a sine and cosine difference identity. http://mathispower4u.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4819356/1518a9fa06a360cf4a272278d4828296/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/A9DOHAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkJnN5jwK96k","linkTemplate":"/video/preview/9806329504216327359?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Ex: Simplify Tan(pi/2 - u) Using Sine and Cosine Difference Identity","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kJnN5jwK96k\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhUKEzk4MDYzMjk1MDQyMTYzMjczNTlaEzk4MDYzMjk1MDQyMTYzMjczNTlqiBcSATAYACJFGjEACipoaGVodmR0aGhxY2V4a3BiaGhVQ05WTXhSTUV3dm85QVMtSmZoNmZRRmcSAgASKhDCDw8aDz8T_gKCBCQBgAQrKosBEAEaeIH7Cv4JAv0ABPQRBPsJ_AIN_voJ9v__AOMC7_cD_AIA-Pr_BQUAAADzAgfw_gAAAP7x__f3_QEADf_s-wIAAAAH-f3_-QAAAAAY9Qf-AAAABvYO8gEAAAAN-_T5_wAAAAUU9Aj-AAAA_BL09QEAAAD7-QgLAAAAACAALeB1zDs4E0AJSE5QAiqEAhAAGvABf-Io_rj62_-26_X_tVvjAa9FEQD7RsIAuRDg_8v8BwHQ_h0A-ET3_zT-GAC8LhoAMeTK__KU8wBFty3-_QviAOfDDgHn8eABewknANPh-ADDIAH95uTuAdfSvf4GbNL8_w4k--rlxf3lHfYCMfo-AfwMGQL_9RX85NjxAd9ELgXDGsP97gobD_mfEvvKBi4D9qwgATRK7_3T7ur7-QEXCiwIGvwSGcABIQsFBcs06PHio_sHLCrMBzgCGQLV7OIB-tnsB-bbGPcC1_YRB8sX8cUW-wBE7v8RJeb_8-DIAg26Henz3enq-fLn5A7x3ezfIAAt3YzbOjgTQAlIYVACKs8HEAAawAfYRJ6-ntpPPFKHEL16k5q9mipTvVLI3zwllC6-MLzSPZz3pLylokE-sGH8vM8vKr23DPi9jfjEvCMyJz2Y3SM-gUmQvUP09bx1dPy9LxOaPQsCEL3n_iq-Xcv_PEh0Kjwq_4o9878mPNnNzjvBfr498vfBvRetbbwJzKm9VMMDvWjDK7z4oRo8H4XrvbyRebwp6KY9PS-Avf8_Lj3r4LA9f3iMvHwVT7wEHAI-zrFyvA-ORDtrEbG9x8jIPB8R07yaP4Y96dVAPYTZ37sDZlk9asErvT1Ij7zZbDY93ACiPDYS1ztjXmw8Ow4NPS1O67wjqWC9kFyYvegkJbzesO28m9UxPdn2LDzkZvg9ZkzhPRgj1DtXeNe9LFMCvTzRP7zo8ms9EROJvUgi6jtcHQA-kGaRPDNXgjsgooc8-aRuPaBIgbw3b5y8zI2jPZ2R1jrq48Y8evGPPdJvobtHYji8bRuGPCcylDs2PB48y6UMPeE8QbynegI-lcEHPTBP37ulMkW8i8iLPKOlG7zFNUM9-FENvglvLLtzWsG8Vb1BvfoOerv1uRo-KzQQPUsporuLy5w9pBd6vV94SrwIiBM9MolOOaXwpLua4wE99-civctkuDtK0-C9YyCEPbU_6Tv-LNa8YVygvPO-O7wPqXg9qDCLPRgwVLsI_ty86-OhPA9bfrugkQQ8Ey6_vLvAPLtbeUk9Mi5mPMlaP7vjxQI-2Z0JPbDlxbmaZjU9gUjavDwkqbtwhDu9IQYKvnl7TbhtA9c9taPYvQyfrzmc25Q9AoTqvE-5nbiRuni9KJwdPccBCbhkbLI8XAPbveCkFLkeEai9zvxKvgHLDjmxlnG8fnNavPf_Mzs7v5094IdePOdXrrggose9kr7_vHWdD7nzhL-9aVFkPfwyOLmur_886kKsOnPC3bfjTDg8PxcyPOL-AbpWlJy96-uPvZXmxjmeAzC9D_IqPr3F37gSsiA8iKykvIqO2jmK6Pc9P5CsPYLuZjiJrFo79n8uPrw7Fbk4CS89uYVTvAn6DjigFT28YciFvN07PziL15Y9nw8FPSCNFbhr8em9edYkvO4vYDY8Kfi8cY_lvYkdvLjIXzo-3JXCPM2vSzh5eoC8SQj_O7geZzj3ASg-cGHdvfFnv7m4XZO9z6uQvdp1RLirt5G9tfJcvIo1VLiakAC5wMRpvKgBh7jcjVS9nSezvSw0ErijubQ9yH2LPYDxgzgnESE9XjhmPbbjq7j86gW9hrC1PFnKareoXcK8m7R_PRfFTzggADgTQAlIbVABKnMQABpgMuEAI-IX0AwmEe4kwvcIt9r0siPY-_8ABP_8_-n77hvXtt7iADXy_fmhAAAAGwkDEQAAAXT81BcD4Av7vaLIIAB_IhUB3vAg_87EGvkS2jELJnVXAOolxCw_27AdKzdVIAAt4y4aOzgTQAlIb1ACKq8GEAwaoAYAAKjBAAAQQQAAikIAAIA_AADwQQAAQEEAAJ5CAACgwAAAUMEAAMBAAAAkwgAAEMIAAMBAAABAQQAAQEAAAOhBAADAwQAAoMEAAKBBAACAQAAAMEEAAOjBAACEwgAA0EEAAGDBAACoQQAAcMEAABDCAABAQAAAMMEAAMjBAACoQQAAFMIAAIC_AAC8wgAAoEEAADBBAAAcQgAAqEEAAMjBAAAcQgAAAEAAABDBAAAMwgAAoEAAAJzCAAAAwQAAIEEAAMDBAAA4QgAAssIAADDBAAAIwgAANEIAAHBCAACQQQAApsIAADDBAADoQQAApEIAAERCAABwwgAAwMIAAGDCAAAMQgAANMIAAKjBAAB8wgAAhMIAABDCAAC0QgAA-EEAAOjBAACAQQAAqEEAAABBAADgwQAAAMIAAIhBAADgQgAAAAAAAGhCAAAwwgAAgMAAAADBAAA4QgAAsEEAACDCAACIwQAA-EEAAADBAAA8QgAAOMIAALjBAABkQgAAHMIAAOBAAADgwQAAtEIAAABCAAAIwgAAMEEAAHhCAABgwQAAHEIAABTCAADgwQAAAEIAAODAAACUQgAAIEIAAFDBAAC4wQAA-EEAAIjBAADYQQAAjEIAAKBAAACowQAAoMAAABBCAADgwQAAnEIAAKjBAABgwQAAoEAAAJxCAAAYwgAA4MAAADDBAACYwQAAbMIAAABBAACQQQAAuMEAABxCAADYQQAAYMEAACzCAADQQQAAkMEAACzCAADQQQAAhMIAACBCAABwQQAAcEEAACBCAAAYQgAAsEEAAJbCAAAkQgAAfEIAALDBAACIQQAAMMIAAJLCAADAQAAANMIAAGBCAABswgAA4EEAABxCAADAwQAAiEEAAEDBAAAAQgAArEIAAFDBAABwwgAAQMAAAIhBAACoQQAAjMIAAGTCAAAcwgAAiMEAABTCAAAAAAAAIEEAAILCAACAwAAAgD8AAEDAAAAYQgAAAMIAAHTCAACQwQAAwEAAADhCAAAAQQAAqMEAAIhBAADowQAAoEAAAIRCAAAcQgAABMIAAHxCAADgQSAAOBNACUh1UAEqjwIQABqAAgAAEL0AAHC9AACWPgAAmD0AAOA8AAAsPgAAJD4AAOK-AACgvAAAQDwAABS-AACAuwAAyL0AAII-AACIvQAAPL4AABw-AACgPAAAPD4AAMY-AAB_PwAAdL4AAIC7AAAUPgAAir4AAPg9AAAEPgAAcD0AAFQ-AACiPgAAMD0AADS-AABAvAAAcD0AAKC8AACgPAAA4LwAALi9AABsvgAAFD4AAAS-AACIvQAA4DwAALi9AAD4PQAAEL0AAIY-AAAkvgAAyL0AAIC7AACIPQAAFD4AAIY-AABQvQAAEL0AAOA8AAALPwAAoDwAABS-AAAEPgAA4LwAALi9AADYPQAAqL0gADgTQAlIfFABKo8CEAEagAIAAJa-AABAPAAAyL0AAD2_AABQvQAAbD4AAI4-AACovQAAoLwAAMi9AACCvgAAor4AAAS-AADYvQAAQLwAABA9AADoPQAAIz8AAHy-AACCPgAAqD0AAJa-AAAwPQAA4LwAAIC7AADgvAAAyL0AAOC8AADYvQAA6D0AABw-AADIPQAAqr4AAOg9AAAkPgAAML0AAKY-AADIvQAAsr4AAAS-AAAwPQAAMD0AAHQ-AADoPQAA-L0AAEQ-AAB_vwAAqL0AAJa-AAAwPQAAJD4AALg9AABEPgAAJD4AAIi9AACoPQAAQDwAAKo-AAAUPgAAcD0AADw-AADgPAAAUL0AAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=kJnN5jwK96k","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9806329504216327359"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16267245428716860612":{"videoId":"16267245428716860612","docid":"34-0-12-ZA9615737F0584597","description":"This video introduces the periodicity identities for the sine and cosine functions. Essentially, this looks at what happens when the angle is shifted pi/2 radians or 90 degrees, The general...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3659050/752eca6068ed66786f9f9881373c7ccb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Zz_7QwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DiFkpwvNTksI","linkTemplate":"/video/preview/16267245428716860612?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sine and Cosine Periodicity Identities","related_orig_text":"COSINES Pi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COSINES Pi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iFkpwvNTksI\",\"src\":\"serp\",\"rvb\":\"ErADChM0MTc4MjEwMDg0NjY3NDI5NjAzChQxNDU0ODk4NDQ3MTgwOTk4MjM3MAoSNzM4MzcxMzA2NjA2NTQ4MTU0ChQxMzk0MTQ3MTQ5MjAwNDI5NDM0OAoTNzAwMjU5MDQ4NDkyNDEzNjU0OQoUMTE1ODg0MTg5Mjk1Mzk2NjM5NzUKFDE0NzI4NTUwNzYyMTU5ODU4NzI5ChQxMDU4OTkwMTIwMDE0MjI5NDE0OQoUMTU4NDE3MzUyMzE3NDY3NzE5MzQKEzg2Mjg0ODc5MTY2NTY0OTM5NTUKEzQ2ODA1NTc1ODQxMjA2MDMzNTIKFDEzOTU1MzI2NjM2NzI0MjU5NDEyChM5OTU5ODcxNzA4NTQ1MDk4MzUxChQxODAzNDg3MDM1Njc0MjA2MjE4OQoUMTA5Nzk4MjAxNDIyMjIzNjE2NDAKFDExNjY5MjYwNTIyNjMxODkwMjg1ChM5ODA2MzI5NTA0MjE2MzI3MzU5ChQxNjI2NzI0NTQyODcxNjg2MDYxMgoUMTM4MjgwOTIwOTM0ODg0NjIyNDUKFDEwOTQ1NDA3MTEyODY3NDkwMzMyGhYKFDE2MjY3MjQ1NDI4NzE2ODYwNjEyWhQxNjI2NzI0NTQyODcxNjg2MDYxMmqIFxIBMBgAIkUaMQAKKmhoYXNlcGt3cXdrY3ZobWRoaFVDc2VZLUE3TVFMOTY5anR4Qkp6bkZ0dxICABIqEMIPDxoPPxOYA4IEJAGABCsqiwEQARp4gfr__PcB_wD3-xX9_QT_Ae8F_wD6_v4A8vr9_AcB_wD17wr8_gAAAAICDfIDAAAA-vz0-fX-AQAR-_74AwAAABH69QH0AAAADhr6Av0BAAD_9QQJBP8AABcF_gYAAAAA-A8F8P__AADtEf_zAAAAAPnxD_sAAAAAIAAtyzPOOzgTQAlITlACKoQCEAAa8AF__Tv9vsizAK8IAAC8_8EAqEsSAPtLvQC4Ldf-0tHlAf0HTQDYOwj_Ld3lAbcWOQAH9Mz-vrjeAEOaEgMB3MX_zbUOAfrK8wI5Jij__Qfd_ukSIf7RzN8C9O27ACcnzf8T9QT4Ie7UAe4fxwIvHzgB9AE4CP8C9gbJ7Aj_si31_v3No_7XXzUABMH-9tXDOAT1pCMBQwgd-9gG6wLHFiXyGRgf-vA84QTN9uYG9SgFCNvtHP0zr-EEUPcCCNHr3wH0CRgBybQO87yY7_cuygTrrCTsC0gM-RQeyhv547TtAxUt6_4Es_75B9nc__Db6t0gAC0dLco6OBNACUhhUAIqzwcQABrAB5xNr77qwlm8SWf9u6NTPL30yBu8600xvFGH9b3Xl4Y9hadhvT9zRj4O7jO9lvl9O0sIMb3J5gq96mKuvB-gCz7pPbq8e8n1vHV0_L0vE5o9CwIQvWLerr1hGZu8vjcfPJWZx72i2RC9QZscPNaiLz1UPfS82qQqu2WXBLrJx4M9jH6Xu5fUnjusW5i9odCXvIXapbzZOAe94FawvNLGEb2Mcsu41HAbPTWYBj7Acuc7HHyhvNLOj73nKaG8EN_wu4z8lTwc7fg9FOoMvEq4i72tMtO8R1ACvBF2lb0PCV-8pCRavGYW4T1BtQY9E9aGvGkz8zweb_K91yXTOlUUz73OQ_076PioPF6dAz270ec9uBAYPK7XBL4Nnz497EWZvIhX47wPR5e8ZywYvJyfJz1r7xO9TfOOPEF-dj3yHzk7nQgsvHvsiL1Ga1s9aF1EO74zdb09WoE8c1nWvCpxfT2nvj281X5GvJIdwLz3mKO8FelZPMwZiz3d9Wg9SzmEPEQgzTwTOIa6ohUOPAUjpT3WAju-SeWaOrVGLr0UGUe9ButrOqFmmD0u7S88fkbYO0z7przpkoa9RYiGvIxMwDwgMlu9uUgMPC9HWbzQkmw8ARupu5xTCb5f-k09dEujuxpVAb2LgR89dSwlvDktk7wVgJC74GLqu08CW70-SwY9Ox2GO7slPj3spL68tqvnu5Ol-zzo-Gg9HucRu0io2TwvdYi7D5QAO2nMP73QYzS9yI-duhuIQLyxa_u9tr6eue6vDj6fEpG9ftCUOZOKa737boS8c6_iOBvqob2yW5U9LNmZOIiZYj2XKse94QbXt1Qb_L1iu_u9E9PyObx39TvLLAK9vpgBuS666TvMeWs9HLxNOZegEL2JQQA9mM0QudJ4Xb0O-Py8heqWuGrxbj3Ikn49kA4OOL6OEzue-CA9lTtNuI65BDyNCwc9zjgJOb7x2jxAlo89At0FORJntb2nhme9bqvfOIro9z0_kKw9gu5mOImsWjv2fy4-vDsVuSiEST3wxOy9T6dhOMc3aj0gX4K9dvnKNs7dk7za_MO71Y8JOLSQEL7YjKI9mXsEtwEHI70frmu9Vr5ytshfOj7clcI8za9LOPbRKTz0lJs9QY8lN9Rg2j0H45G9x5dPuTnFxL1ntya-1kdyOHyjbL1HOdg823G1NwKbwz0O_a68EEGXN9ecaD3fETq9T2IZuKN_-rsxJBc-jP1QtzjCvT2Ljdk91SngtiNozL0NAfo7bwYGN9w5g71wggo9LaDDNyAAOBNACUhtUAEqcxAAGmAAAAAODyDs_wQu7g7gy_XbwPbuEM4T_-38AO_-uvgN59TQ7QEAIdQu_LIAAAAnFeUw5QD3YtT6_AMPHAe1wLsTLX8DA_zc1STh4cb7_iHOMyT2HjEAyRzWOCgd2S8JF1wgAC1F-S87OBNACUhvUAIqrwYQDBqgBgAA4EEAAATCAACEQgAAXMIAAABAAACgwAAA-EIAACDBAAAkwgAAAMAAABBBAAAoQgAAIEEAAJBBAADgQQAA2EEAAPBBAACAwQAANEIAAPjBAACgQAAAAAAAAMjBAABwwQAAwMEAABDCAAAUQgAAHEIAAABCAABIQgAADMIAABRCAADKwgAAyEEAAJ7CAAAYwgAA-EEAAOhBAAAAQgAAbEIAAHhCAADQQQAABEIAAJBBAACYQQAAKMIAAIxCAAAoQgAAPEIAADBBAAAUwgAAEMEAAKDAAACYwQAAwEAAACRCAACgwgAAgEEAAFhCAAA8QgAAgD8AAGzCAADowQAAgL8AALDBAADGwgAAgEEAADjCAAAQQQAAUMEAAI5CAAAUQgAAIMIAAJxCAACAPwAAGMIAAMDAAABAwAAAXEIAADxCAAAkwgAAlEIAADBBAAAwwgAAqEEAADBBAABAQAAAEMEAADhCAABEQgAAkEEAAARCAAAIwgAACMIAACRCAAAkwgAASEIAAEBAAADAQQAAkkIAANDCAACYwQAAIMIAAFDBAABQwQAAoMAAAMBBAACgwQAAiMEAACBCAAA8QgAAIEEAABzCAAAgQgAAwMAAABBCAABQQQAAwMAAAHDBAAAIwgAAfMIAAILCAADwQQAAcMEAABzCAACgwAAAgL8AAJBBAACMwgAAtEIAADDCAAAAwQAA8MEAADBCAADAQAAA2EEAAKDAAADoQQAAHMIAAMDBAABQwQAAhkIAACxCAABcwgAAikIAAGhCAACAwAAAAEAAAKBAAACwwQAAAMEAAOBAAAAQQgAAgEEAAIBBAAAAQQAAksIAAJjBAACcwgAAyMEAADzCAACCQgAA4MAAAIC_AAAwQgAAXEIAALjBAACQQQAAcEIAAIBBAAAkQgAAwMAAAEBBAACMwgAARMIAAIBBAAAgwQAAmMEAALrCAABUQgAA8MEAAEjCAADgwQAAEEEAAAxCAAAwQQAAnsIAAFBBAADowQAAZEIAADRCAADQQQAAgEEAAMDAAACowQAABEIAANBBAADowQAAgMAAABzCIAA4E0AJSHVQASqPAhAAGoACAAC4vQAAED0AAII-AADYPQAAQLwAAFQ-AABUPgAAF78AAOi9AAAwvQAA2L0AAKC8AABEPgAAlj4AAPi9AAC4vQAAcD0AAFA9AAAUPgAAxj4AAH8_AAAUvgAAmD0AAEw-AAD4vQAARD4AAMg9AAAUvgAAyD0AAGQ-AACoPQAAHL4AACS-AABAvAAAuD0AABC9AABQvQAANL4AAGy-AACgvAAAUD0AAKi9AAB0PgAA4DwAAKi9AAAQPQAAZD4AABS-AACovQAAEL0AAAQ-AACAuwAApj4AABC9AAC4vQAAMD0AACE_AAAQvQAAyL0AABA9AAAQvQAAqD0AAHA9AACOviAAOBNACUh8UAEqjwIQARqAAgAAFL4AAKA8AABQvQAAGb8AAAy-AACIPQAAPD4AAJg9AABsvgAADD4AAHC9AACGvgAAED0AAPi9AACoPQAAgLsAAKI-AAAhPwAAND4AAL4-AACgPAAA-D0AAOC8AAC4vQAAQLwAAIi9AACAOwAAUL0AAIi9AACoPQAAMD0AALg9AABQvQAAmD0AAAQ-AAAEvgAA-D0AAMg9AAB0vgAAML0AAKg9AADoPQAAQDwAAOA8AAC4vQAAdD4AAH-_AAC4vQAARL4AAEC8AACGPgAAcD0AAHA9AABMPgAA4LwAALg9AAAwPQAADD4AAKg9AACAOwAAuD0AABC9AAAUvgAAyL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=iFkpwvNTksI","parent-reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1910,"cheight":1080,"cratio":1.76851,"dups":["16267245428716860612"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"4178210084667429603":{"videoId":"4178210084667429603","title":"\u0007[Cosines\u0007] \u0007[Pi\u0007]: employer of choice in the European market","cleanTitle":"Cosines Pi: employer of choice in the European market","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=c8mBExfmGV4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/c8mBExfmGV4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVjlJajJUMTJSYmJnMDNhakdNNUl1QQ==","name":"Marklen Konurbaev Channel","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Marklen+Konurbaev+Channel","origUrl":"http://www.youtube.com/@1188067","a11yText":"Marklen Konurbaev Channel. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":125,"text":"2:05","a11yText":"Süre 2 dakika 5 saniye","shortText":"2 dk."},"views":{"text":"3bin","a11yText":"3 bin izleme"},"date":"25 tem 2021","modifyTime":1627171200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/c8mBExfmGV4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=c8mBExfmGV4","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":125},"parentClipId":"4178210084667429603","href":"/preview/4178210084667429603?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/4178210084667429603?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14548984471809982370":{"videoId":"14548984471809982370","title":"\u0007[Cosines\u0007] \u0007[Pi\u0007] English Intonation Master Class","cleanTitle":"Cosines Pi English Intonation Master Class","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=O2L3p-pIpHs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/O2L3p-pIpHs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS0JTZFR0azRoTkdwRnVzRkltMFdRdw==","name":"Julia POGER","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Julia+POGER","origUrl":"http://www.youtube.com/@juliapoger5524","a11yText":"Julia POGER. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":44,"text":"00:44","a11yText":"Süre 44 saniye","shortText":""},"date":"14 nis 2021","modifyTime":1618358400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/O2L3p-pIpHs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=O2L3p-pIpHs","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":44},"parentClipId":"14548984471809982370","href":"/preview/14548984471809982370?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/14548984471809982370?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"738371306606548154":{"videoId":"738371306606548154","title":"\u0007[Cosines\u0007] \u0007[Pi\u0007] III","cleanTitle":"Cosines Pi III","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=84mt4JNx4ps","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/84mt4JNx4ps?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVjlJajJUMTJSYmJnMDNhakdNNUl1QQ==","name":"Marklen Konurbaev Channel","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Marklen+Konurbaev+Channel","origUrl":"http://www.youtube.com/@1188067","a11yText":"Marklen Konurbaev Channel. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":59,"text":"00:59","a11yText":"Süre 59 saniye","shortText":""},"date":"13 nis 2019","modifyTime":1555113600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/84mt4JNx4ps?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=84mt4JNx4ps","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":59},"parentClipId":"738371306606548154","href":"/preview/738371306606548154?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/738371306606548154?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13941471492004294348":{"videoId":"13941471492004294348","title":"\u0007[Cosines\u0007] \u0007[Pi\u0007], Strings theory consequtive interpretation","cleanTitle":"Cosines Pi, Strings theory consequtive interpretation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=I0_ShubIK0I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/I0_ShubIK0I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkFzbVZFNFNwMTJybk93ZWxNQW9Vdw==","name":"Dmitry Beresnev","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dmitry+Beresnev","origUrl":"http://www.youtube.com/@Elstarn","a11yText":"Dmitry Beresnev. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1592,"text":"26:32","a11yText":"Süre 26 dakika 32 saniye","shortText":"26 dk."},"date":"16 eyl 2019","modifyTime":1568592000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/I0_ShubIK0I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=I0_ShubIK0I","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":1592},"parentClipId":"13941471492004294348","href":"/preview/13941471492004294348?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/13941471492004294348?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7002590484924136549":{"videoId":"7002590484924136549","title":"\u0007[Cosines\u0007] \u0007[Pi\u0007] IV - promo","cleanTitle":"Cosines Pi IV - promo","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=04boI8XsBTo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/04boI8XsBTo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVjlJajJUMTJSYmJnMDNhakdNNUl1QQ==","name":"Marklen Konurbaev Channel","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Marklen+Konurbaev+Channel","origUrl":"http://www.youtube.com/@1188067","a11yText":"Marklen Konurbaev Channel. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":39,"text":"00:39","a11yText":"Süre 39 saniye","shortText":""},"date":"19 eyl 2020","modifyTime":1600529183000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/04boI8XsBTo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=04boI8XsBTo","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":39},"parentClipId":"7002590484924136549","href":"/preview/7002590484924136549?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/7002590484924136549?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11588418929539663975":{"videoId":"11588418929539663975","title":"Law of \u0007[Cosines\u0007] - Solve for Lengths & Angles | Trigonometry | Eat \u0007[Pi\u0007]","cleanTitle":"Law of Cosines - Solve for Lengths & Angles | Trigonometry | Eat Pi","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=U4DWmUmURog","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/U4DWmUmURog?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVm9nQmp0enc2N254cC1xRUtnRUl5QQ==","name":"Eat Pi","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Eat+Pi","origUrl":"http://www.youtube.com/@Eat_Pi","a11yText":"Eat Pi. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":559,"text":"9:19","a11yText":"Süre 9 dakika 19 saniye","shortText":"9 dk."},"date":"2 ağu 2024","modifyTime":1722556800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/U4DWmUmURog?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=U4DWmUmURog","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":559},"parentClipId":"11588418929539663975","href":"/preview/11588418929539663975?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/11588418929539663975?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14728550762159858729":{"videoId":"14728550762159858729","title":"\u0007[Cosines\u0007] \u0007[Pi\u0007] V: Dmitry Denisov VS Valentina Kucheryavenko","cleanTitle":"Cosines Pi V: Dmitry Denisov VS Valentina Kucheryavenko","host":{"title":"YouTube","href":"http://mxtube.net/video/view/FstK92rEUS8/COSINES-Pi-V-Dmitry-Denisov-VS-Valentina-Kucheryavenko/8:25.html","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FstK92rEUS8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbC1zdlVhWHNLc0w0T1FxenlSamlRQQ==","name":"COSINES Pi Contest of Interpreters","isVerified":false,"subscribersCount":0,"url":"/video/search?text=COSINES+Pi+Contest+of+Interpreters","origUrl":"http://www.youtube.com/@COSINES-pi","a11yText":"COSINES Pi Contest of Interpreters. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":504,"text":"8:24","a11yText":"Süre 8 dakika 24 saniye","shortText":"8 dk."},"date":"18 eki 2021","modifyTime":1634515200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FstK92rEUS8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FstK92rEUS8","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":504},"parentClipId":"14728550762159858729","href":"/preview/14728550762159858729?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/14728550762159858729?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10589901200142294149":{"videoId":"10589901200142294149","title":"Find the Sine and \u0007[Cosine\u0007] of \u0007[pi\u0007]/24 If \u0007[Cosine\u0007] of \u0007[pi\u0007]/12 is Given","cleanTitle":"Find the Sine and Cosine of pi/24 If Cosine of pi/12 is Given","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=wu1snjYiVuI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/wu1snjYiVuI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdlJxMXRpRmZ1dU5uQi1sdFBUUnVSdw==","name":"DrTMath&MoreOnline","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrTMath%26MoreOnline","origUrl":"http://www.youtube.com/@DrTMathAndMoreOnline","a11yText":"DrTMath&MoreOnline. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":361,"text":"6:01","a11yText":"Süre 6 dakika 1 saniye","shortText":"6 dk."},"date":"12 oca 2023","modifyTime":1673481600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/wu1snjYiVuI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=wu1snjYiVuI","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":361},"parentClipId":"10589901200142294149","href":"/preview/10589901200142294149?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/10589901200142294149?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15841735231746771934":{"videoId":"15841735231746771934","title":"Trig Identities \u0007[Cosine\u0007], Sine, Tangent: \u0007[pi\u0007]/2 Pius/ Minus Theta","cleanTitle":"Trig Identities Cosine, Sine, Tangent: pi/2 Pius/ Minus Theta","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Qu3OMgW8i5M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Qu3OMgW8i5M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLXhod203X21ONXctck1DZm8zRkdjQQ==","name":"The Math Dawg","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Math+Dawg","origUrl":"http://www.youtube.com/@themathdawg3823","a11yText":"The Math Dawg. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1310,"text":"21:50","a11yText":"Süre 21 dakika 50 saniye","shortText":"21 dk."},"date":"11 mar 2022","modifyTime":1646956800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Qu3OMgW8i5M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Qu3OMgW8i5M","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":1310},"parentClipId":"15841735231746771934","href":"/preview/15841735231746771934?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/15841735231746771934?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8628487916656493955":{"videoId":"8628487916656493955","title":"Graph \u0007[cosine\u0007] y=cos(X+\u0007[pi\u0007]/4) easily #shorts | sketching trigonometric#10 graph","cleanTitle":"Graph cosine y=cos(X+pi/4) easily #shorts | sketching trigonometric#10 graph","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/dse5YT3yBNg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dse5YT3yBNg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDekZMa3FXNlg3bjZzU1hZM09kVV9QUQ==","name":"M4thnet","isVerified":false,"subscribersCount":0,"url":"/video/search?text=M4thnet","origUrl":"http://www.youtube.com/@M4thnet","a11yText":"M4thnet. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":47,"text":"00:47","a11yText":"Süre 47 saniye","shortText":""},"date":"10 nis 2022","modifyTime":1649548800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dse5YT3yBNg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dse5YT3yBNg","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":47},"parentClipId":"8628487916656493955","href":"/preview/8628487916656493955?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/8628487916656493955?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4680557584120603352":{"videoId":"4680557584120603352","title":"How to graph the \u0007[Cosine\u0007] cos(x) fast and easy :)","cleanTitle":"How to graph the Cosine cos(x) fast and easy :)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DeNATUXoxdU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DeNATUXoxdU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNFhIQmJoQ1NOV2xIUEo3MzBtZlJsUQ==","name":"I Hate Math Group, Inc","isVerified":false,"subscribersCount":0,"url":"/video/search?text=I+Hate+Math+Group%2C+Inc","origUrl":"http://www.youtube.com/@Ihatemathdotcom","a11yText":"I Hate Math Group, Inc. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":253,"text":"4:13","a11yText":"Süre 4 dakika 13 saniye","shortText":"4 dk."},"views":{"text":"5,6bin","a11yText":"5,6 bin izleme"},"date":"4 oca 2014","modifyTime":1388793600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DeNATUXoxdU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DeNATUXoxdU","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":253},"parentClipId":"4680557584120603352","href":"/preview/4680557584120603352?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/4680557584120603352?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13955326636724259412":{"videoId":"13955326636724259412","title":"\u0007[Cosines\u0007] IV - registration open!!!!","cleanTitle":"Cosines IV - registration open!!!!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=p87oHHIR1g8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/p87oHHIR1g8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVjlJajJUMTJSYmJnMDNhakdNNUl1QQ==","name":"Marklen Konurbaev Channel","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Marklen+Konurbaev+Channel","origUrl":"http://www.youtube.com/user/1188067","a11yText":"Marklen Konurbaev Channel. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":133,"text":"2:13","a11yText":"Süre 2 dakika 13 saniye","shortText":"2 dk."},"date":"1 nis 2020","modifyTime":1585742223000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/p87oHHIR1g8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=p87oHHIR1g8","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":133},"parentClipId":"13955326636724259412","href":"/preview/13955326636724259412?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/13955326636724259412?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9959871708545098351":{"videoId":"9959871708545098351","title":"Sine and \u0007[Cosine\u0007] Values in Radians Using Reference Triangles - Multiplies of \u0007[pi\u0007]/6 and \u0007[pi\u0007]/...","cleanTitle":"Sine and Cosine Values in Radians Using Reference Triangles - Multiplies of pi/6 and pi/3","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=o_fwUKC09nU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/o_fwUKC09nU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":282,"text":"4:42","a11yText":"Süre 4 dakika 42 saniye","shortText":"4 dk."},"views":{"text":"86,9bin","a11yText":"86,9 bin izleme"},"date":"29 haz 2012","modifyTime":1340928000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/o_fwUKC09nU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=o_fwUKC09nU","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":282},"parentClipId":"9959871708545098351","href":"/preview/9959871708545098351?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/9959871708545098351?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18034870356742062189":{"videoId":"18034870356742062189","title":"Sine and \u0007[Cosine\u0007] Values in Radians Using Reference Triangles - Multiplies of \u0007[pi\u0007]/4","cleanTitle":"Sine and Cosine Values in Radians Using Reference Triangles - Multiplies of pi/4","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zRZQCXEIUu0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zRZQCXEIUu0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":348,"text":"5:48","a11yText":"Süre 5 dakika 48 saniye","shortText":"5 dk."},"views":{"text":"32bin","a11yText":"32 bin izleme"},"date":"29 haz 2012","modifyTime":1340928000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zRZQCXEIUu0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zRZQCXEIUu0","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":348},"parentClipId":"18034870356742062189","href":"/preview/18034870356742062189?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/18034870356742062189?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10979820142222361640":{"videoId":"10979820142222361640","title":"\u0007[Cosine\u0007], sine and tangent of π/6 and π/3","cleanTitle":"Cosine, sine and tangent of π/6 and π/3","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Tt_ATh5mCGw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Tt_ATh5mCGw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":527,"text":"8:47","a11yText":"Süre 8 dakika 47 saniye","shortText":"8 dk."},"views":{"text":"35,9bin","a11yText":"35,9 bin izleme"},"date":"22 nis 2021","modifyTime":1619109275000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Tt_ATh5mCGw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Tt_ATh5mCGw","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":527},"parentClipId":"10979820142222361640","href":"/preview/10979820142222361640?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/10979820142222361640?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11669260522631890285":{"videoId":"11669260522631890285","title":"\u0007[Cosine\u0007] theorem;\u0007[Cosine\u0007] rule;\u0007[Cosine\u0007] formula","cleanTitle":"Cosine theorem;Cosine rule;Cosine formula","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xO5eZcFRcOw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xO5eZcFRcOw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNy1sc2RlaG5DcTZuODluaUVmUlhPQQ==","name":"Maths and Education by Gyanendra Pathak","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Maths+and+Education+by+Gyanendra+Pathak","origUrl":"http://www.youtube.com/@GyanendraPathak21","a11yText":"Maths and Education by Gyanendra Pathak. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":285,"text":"4:45","a11yText":"Süre 4 dakika 45 saniye","shortText":"4 dk."},"date":"8 haz 2020","modifyTime":1591574400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xO5eZcFRcOw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xO5eZcFRcOw","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":285},"parentClipId":"11669260522631890285","href":"/preview/11669260522631890285?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/11669260522631890285?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9806329504216327359":{"videoId":"9806329504216327359","title":"Ex: Simplify Tan(\u0007[pi\u0007]/2 - u) Using Sine and \u0007[Cosine\u0007] Difference Identity","cleanTitle":"Ex: Simplify Tan(pi/2 - u) Using Sine and Cosine Difference Identity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kJnN5jwK96k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kJnN5jwK96k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":382,"text":"6:22","a11yText":"Süre 6 dakika 22 saniye","shortText":"6 dk."},"views":{"text":"12,1bin","a11yText":"12,1 bin izleme"},"date":"6 nis 2014","modifyTime":1396742400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kJnN5jwK96k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kJnN5jwK96k","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":382},"parentClipId":"9806329504216327359","href":"/preview/9806329504216327359?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/9806329504216327359?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16267245428716860612":{"videoId":"16267245428716860612","title":"Sine and \u0007[Cosine\u0007] Periodicity Identities","cleanTitle":"Sine and Cosine Periodicity Identities","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=iFkpwvNTksI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iFkpwvNTksI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDc2VZLUE3TVFMOTY5anR4Qkp6bkZ0dw==","name":"Euler's Academy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Euler%27s+Academy","origUrl":"http://www.youtube.com/@EulersAcademy","a11yText":"Euler's Academy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":408,"text":"6:48","a11yText":"Süre 6 dakika 48 saniye","shortText":"6 dk."},"views":{"text":"1bin","a11yText":"1 bin izleme"},"date":"25 ara 2022","modifyTime":1671926400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iFkpwvNTksI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iFkpwvNTksI","reqid":"1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL","duration":408},"parentClipId":"16267245428716860612","href":"/preview/16267245428716860612?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","rawHref":"/video/preview/16267245428716860612?parent-reqid=1765359672285003-18216941701663428889-balancer-l7leveler-kubr-yp-vla-192-BAL&text=COSINES+Pi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"2169417016634288897192","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"COSINES Pi","queryUriEscaped":"COSINES%20Pi","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}