{"pages":{"search":{"query":"Cofactor","originalQuery":"Cofactor","serpid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","parentReqid":"","serpItems":[{"id":"12870102210173290980-0-0","type":"videoSnippet","props":{"videoId":"12870102210173290980"},"curPage":0},{"id":"13873643969943266938-0-1","type":"videoSnippet","props":{"videoId":"13873643969943266938"},"curPage":0},{"id":"7272366101235726634-0-2","type":"videoSnippet","props":{"videoId":"7272366101235726634"},"curPage":0},{"id":"8229106796468162806-0-3","type":"videoSnippet","props":{"videoId":"8229106796468162806"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dENvZmFjdG9yCg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","ui":"desktop","yuid":"7794876221767023015"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"6060981859542032068-0-5","type":"videoSnippet","props":{"videoId":"6060981859542032068"},"curPage":0},{"id":"15281853354796967411-0-6","type":"videoSnippet","props":{"videoId":"15281853354796967411"},"curPage":0},{"id":"12933677450569542122-0-7","type":"videoSnippet","props":{"videoId":"12933677450569542122"},"curPage":0},{"id":"12062212538547105164-0-8","type":"videoSnippet","props":{"videoId":"12062212538547105164"},"curPage":0},{"id":"16370370032025818170-0-9","type":"videoSnippet","props":{"videoId":"16370370032025818170"},"curPage":0},{"id":"655634337907879876-0-10","type":"videoSnippet","props":{"videoId":"655634337907879876"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dENvZmFjdG9yCg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","ui":"desktop","yuid":"7794876221767023015"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"16047807482951932404-0-12","type":"videoSnippet","props":{"videoId":"16047807482951932404"},"curPage":0},{"id":"10711069408874971521-0-13","type":"videoSnippet","props":{"videoId":"10711069408874971521"},"curPage":0},{"id":"9550436003846901545-0-14","type":"videoSnippet","props":{"videoId":"9550436003846901545"},"curPage":0},{"id":"5856518616715463098-0-15","type":"videoSnippet","props":{"videoId":"5856518616715463098"},"curPage":0},{"id":"14388189241908552568-0-16","type":"videoSnippet","props":{"videoId":"14388189241908552568"},"curPage":0},{"id":"9148667687347532008-0-17","type":"videoSnippet","props":{"videoId":"9148667687347532008"},"curPage":0},{"id":"9498893947626164161-0-18","type":"videoSnippet","props":{"videoId":"9498893947626164161"},"curPage":0},{"id":"17233049986251540831-0-19","type":"videoSnippet","props":{"videoId":"17233049986251540831"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dENvZmFjdG9yCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","ui":"desktop","yuid":"7794876221767023015"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DCofactor"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"3083372017439516547137","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1460331,0,47;1450763,0,34;1460336,0,5;1457620,0,17;1186711,0,94;124067,0,97;1424970,0,4;1447616,0,58;1460724,0,15;1455915,0,44;1460733,0,99;1459297,0,2;1312967,0,98;1152685,0,43;1444119,0,42;1454918,0,37;1461642,0,78;1455711,0,15;6161,0,93;1460349,0,11;1383554,0,4;30276,0,61;1454363,0,90;1461007,0,43;260555,0,47;132355,0,65;1456758,0,11;1447942,0,68;1456122,0,96;1457072,0,85;1456172,0,44;1282204,0,69;1453818,0,94;1457986,0,24;1451609,0,74;1448581,0,88;1461374,0,65;1349038,0,16;1452328,0,97;1185075,0,47;1454030,0,26;1404017,0,4;1458606,0,53;1447783,0,74;1455132,0,63;1460869,0,52;1456200,0,62;1457019,0,63;151171,0,93;128380,0,46;1459210,0,1;1269694,0,55;1281084,0,70;287509,0,63;1447467,0,86;1006734,0,21;912283,0,61"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DCofactor","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Cofactor","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Cofactor","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Cofactor: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Cofactor\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Cofactor — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y457b837c7cfdc9ecd9eae63cefafe00f","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1460331,1450763,1460336,1457620,1186711,124067,1424970,1447616,1460724,1455915,1460733,1459297,1312967,1152685,1444119,1454918,1461642,1455711,6161,1460349,1383554,30276,1454363,1461007,260555,132355,1456758,1447942,1456122,1457072,1456172,1282204,1453818,1457986,1451609,1448581,1461374,1349038,1452328,1185075,1454030,1404017,1458606,1447783,1455132,1460869,1456200,1457019,151171,128380,1459210,1269694,1281084,287509,1447467,1006734,912283","queryText":"Cofactor","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7794876221767023015","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1460915,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1767023026","tz":"America/Louisville","to_iso":"2025-12-29T10:43:46-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1460331,1450763,1460336,1457620,1186711,124067,1424970,1447616,1460724,1455915,1460733,1459297,1312967,1152685,1444119,1454918,1461642,1455711,6161,1460349,1383554,30276,1454363,1461007,260555,132355,1456758,1447942,1456122,1457072,1456172,1282204,1453818,1457986,1451609,1448581,1461374,1349038,1452328,1185075,1454030,1404017,1458606,1447783,1455132,1460869,1456200,1457019,151171,128380,1459210,1269694,1281084,287509,1447467,1006734,912283","queryText":"Cofactor","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7794876221767023015","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"3083372017439516547137","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":153,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7794876221767023015","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1743.0__eecddcd035f1600a552b89c33e76f4a866ae10da","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"12870102210173290980":{"videoId":"12870102210173290980","docid":"34-10-0-Z49AC56B4ED112CA4","description":"00:15:47 4.3 Modifying Metabolite Flux with Cofactor Equilibrium 00:20:00 4.4 Citric acid cycle 00:21:41 4.5 Paper manufacturing 00:22:57 5 Other examples 00:23:14 6 Notes Listening is a more...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/986839/00cc396af1525a42bd906a1288afffe7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qC-dDAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdAPNJGyBkQ4","linkTemplate":"/video/preview/12870102210173290980?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cofactor engineering | Wikipedia audio article","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dAPNJGyBkQ4\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFgoUMTI4NzAxMDIyMTAxNzMyOTA5ODBaFDEyODcwMTAyMjEwMTczMjkwOTgwaocXEgEwGAAiRBowAAopaGh5cW50eGN4dnJuenlpaGhVQ3phcndRRmFUTWU3dDZTb0dnTEhCd0ESAgARKhDCDw8aDz8T_QqCBCQBgAQrKosBEAEaeIH7Cv4JAv0A8An9ChEE_AHy-xH6-_7-AOEF_QEA_AIA9gX19PgAAAABDfr9BQAAAPYDCPz7_wAABvb0DgIAAAAQ-vz09QAAABEJBgP-AQAAAQcIBvYCAAEZ-f4NAAAAAPsaAwn_AAAA-wEO7gAAAAAJ6wv5AAAAACAALeB1zDs4E0AJSE5QAiqEAhAAGvABbPYE_4ET2vpG7fEAVifiALgj4AAr_9YAqfocAeHeAAEADt8AGQH6__cLKADtFwL_4-EZ_hkPAgFWEwcAKvQbANbw9wE09wQBPzEB_wLyL__e9_AAEfgg__gODwDJ7_H_DhIi_x8EAwDX9NMA1i39BBok_Abv9w0D_UMjA8v_MQIhAQwB0u4YBBIeAQPC9gcFKwTrAwzq3gANIAb83NklAM8OCfcg-_sKAu35AAYYDP0t5icIAvLb-_7O9voh8-wCAB_yDS3C_gD8D_wBL88RAgDcDPMU6BsL7CLsCyX4BwAGJAf74wr49A389AEvIAYCIAAtJmUROzgTQAlIYVACKs8HEAAawAf67wG_gRtvO_7SYr2cau09fm90u0kJBr0-ibk9kKUqPVXFcbt4tdy8i9PeO9ExEb3El1m-jGZlvPW6Jb3dJ58-Get2PZQNkDyHNCq-nmmoPbZyZbxFvPW9Z-jEPKy4J7wpIiO-___kvHW-CDxyHmk9O2pxvby0PL2uRRA9g5zBPFXsubzzf129gYYNvR2RjLrX6sE9N_CUvQnpHzzLyI-8Y3OfvJExDb0yLaA9DZ4zPbK5ajypSza-1Fa2vNXkjjwNubM9k398PVxDX7we3149LfHbPNFyRTwTUSO8wYYQvFC04bz6XuM997NTPXdqSzsDaIo9d0ZAvUqC7DoC61079n-OO4h6przRyr29-RNVPWHzO7v4WDW9kkVVPQCuBL3UnjK9sGVDPHrXCzxNhw4-hIUuvXqsdLxPlJS9pR4WvEqNHDx4N6C82h8IvYsTBDwWzj89nY8hPSkigzwpCs-8aq2OPQeIBDolMbI9WnmTvDlRwzusKJS8mrEIvZZ2brqZOlk8OaGrvF4pbDvNpHc9h2SyvW0IabxOpAo9GJ-dvS9pjDyhxoM9XIbJvMfbJbw0zrA8xAtiPXuwVjx2qty9jfzwvPyrBTycR888EtWAvc6CdbzcgkY7R5yUPdsABTyscrG9ZePiu39SCrxWgD8-y7tqPFqI4Dk4cai8GWILvaU6kTpa37Y8JW4fPadarDudE7u9HWw7vdie57kX3os9IpnAO7cokrvG5RM9xi42PUC7BbtK6rm9hpP0PZ8ISzmcIYs8Rcw2vC9DV7omjXG9LpJWPXnQ9rlG7y-8e7SjOjZ7LzmFoi-8mWBdPZ5gHTgcGTW9hwM3PW0y2LkXZfY9k5MEvY7f4jduxdk8CuTIvN_lAjqANgg9QW61vB0DYrkL1yG8HG98PYzBrLjof46900y3PF2MK7hkJ5c943ERvXPRSTjwRru9SPCAvff4STnz3dI8ZPlkvT6IyDgzD4q908gdPRLHyrhJr4e94a0YPbpOkzj_p8k7kzcAvb3UdrgfNVK6FRvzPGYSyLgU4aA9rZxiPJbGSrjVNo-8bM0WPrIhQDlEykq9VguRvOZX_7fFQii9P2A0vWrYlTaQRNS802Y8Pby57reNwgS9zFW9O0Y_ZreAKk69ruTEvZcmcDihZV08PCLVPLgBlLgNn7o7z1xRvaFFrrbeSI-8thGPPG7p0bYU9E09tL2nvZeXjbdhrMo8eNOdPZMLhTjyNiA9kRmePeMcYriX9EG9vLy_PekOEjjeAR69GbGNO9UDPjggADgTQAlIbVABKnMQABpgPQkAMhsX7OMeOvje8Ow44hYl_QAS9P_T1P8eMQvWCgyrvf8T__zazdasAAAAAgPrBesAA28AwNYI8Ez_6rHdIAJ__Eoq4QJCAavNGgn5q__kCBgvANkApN4h5t37GgAgIAAtOWUkOzgTQAlIb1ACKq8GEAwaoAYAAATCAACgQQAAMEEAAMDBAACgQQAAYEEAADBCAADYwQAAAAAAAEBAAADAwAAAwMAAAIBAAAA8wgAAUEEAAEDAAAAUQgAAGEIAAGxCAABAQQAAIEIAAEBAAACAwgAAiEEAAADCAACUQgAAgEAAAOjBAAA8QgAAwEEAAEDAAADwQQAAQMIAACDBAAAcwgAA0MEAAGDBAACeQgAAQEAAAFBCAADgwQAA-MEAAHRCAAAAwQAAGMIAAEjCAABcwgAA6MEAAFDBAADgwQAAEMEAABBCAAAwwgAAIEIAAIBAAACCQgAAysIAAKjBAACQwQAATEIAAI5CAABQQQAA2MEAADBBAACYQQAAhkIAAGDCAAA8wgAANEIAAILCAABQwQAAAEIAAKDAAAAQQQAAiEEAAPhBAAB0wgAAZMIAAMBAAAAEQgAAhMIAAHhCAAA0wgAAdEIAAI5CAAAYwgAAQEEAAOBAAAC4QQAAwEEAAJBBAAC4QgAAHEIAAOjBAAAAQAAAgsIAABTCAACQwgAAlEIAAGDCAABYQgAAkMEAAEBBAAA8wgAA6MEAAEDAAADAQAAAwEEAAJbCAAD4QQAAHEIAAEDAAAA4wgAAmEEAANBBAAAwwgAAgD8AAJjBAADYwQAAmEEAAMBAAAA0QgAAHEIAAJLCAACgQAAARMIAAIJCAACAQQAAsMEAADDBAAAgQQAA8MEAAEDCAAAIwgAAiMIAAAhCAACEQgAAQEAAABDBAADQwQAA2MEAAIJCAACgwQAAAMIAACBCAADQQQAAVEIAABDCAAAQQgAAQEIAANBBAACAPwAAYMEAAKBBAABMQgAA4MAAAFzCAADQQQAAmsIAAJDBAACAQAAAQMAAAPhBAAA8wgAAEMEAAIDAAACCQgAA8EEAABBBAAA0wgAACMIAAJBBAACEQgAAwEEAAERCAACAwQAAgL8AAMjBAACIwQAADEIAAKbCAAAEwgAAoEAAAILCAAAgQQAALEIAAIhBAACgQAAAGEIAACRCAAA8wgAA2MEAAADAAAC0wgAAnMIAAERCAADIQQAAHMIAAEzCAACMQiAAOBNACUh1UAEqjwIQABqAAgAArr4AADS-AAA0vgAA6D0AABC9AAAMPgAAJL4AAOK-AABUvgAAbD4AADA9AABAvAAAuD0AACQ-AADYvQAABL4AAGQ-AAAQPQAAnj4AANo-AAB_PwAAfL4AAMg9AADgvAAAsr4AAKA8AABAvAAAML0AALg9AACOPgAARD4AAKA8AACSvgAA4LwAAHQ-AAA0PgAAgj4AAJi9AACOvgAAgr4AACy-AADYPQAA2D0AAIC7AACYvQAA-D0AABw-AAC4vQAA-L0AAGy-AADYvQAAhr4AAI4-AAB0PgAABD4AALg9AAAJPwAAPL4AAII-AADiPgAAML0AAIi9AAAwPQAAcD0gADgTQAlIfFABKo8CEAEagAIAAJg9AACgPAAAML0AAAu_AAC4vQAADL4AANi9AABQPQAAyL0AAPg9AACYvQAAwr4AAFw-AABUvgAALD4AAIi9AAB8PgAAGz8AAIg9AABUPgAAXD4AALg9AAAcPgAA4DwAAIC7AABwvQAAJL4AAFA9AABsPgAA4DwAALg9AACAOwAAmD0AAFw-AAAUPgAA4DwAALo-AACmPgAAVL4AAPi9AACaPgAAPD4AAIA7AAD4vQAAEL0AAK4-AAB_vwAAhj4AAHy-AABMvgAAQLwAAAS-AACWPgAAXD4AAHy-AAA8PgAAoDwAAHC9AADgPAAAqL0AAAS-AACYvQAAXL4AAFA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=dAPNJGyBkQ4","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["12870102210173290980"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2731058481"},"13873643969943266938":{"videoId":"13873643969943266938","docid":"34-4-10-Z3AED701E8EB3B7BA","description":"\"Cofactor Expansions\" | Linear Algebra with Educator.com ►Watch more at http://www.educator.com/mathematics/linear-algebra/hovasapian/ Understand your Linear Algebra homework and ace the test with...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1780845/f342ef589ca2c6b0a52858abfca78ae2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/G4yIKgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DW8f73Gcdjsw","linkTemplate":"/video/preview/13873643969943266938?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"\"Cofactor Expansions\" | Linear Algebra with Educator.com","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=W8f73Gcdjsw\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFgoUMTM4NzM2NDM5Njk5NDMyNjY5MzhaFDEzODczNjQzOTY5OTQzMjY2OTM4arYPEgEwGAAiRRoxAAoqaGh6bWFpZWV0Y3F4a3FuY2hoVUNHc2VrRGt1cGQ4LUNPSmhNSXlUV3F3EgIAEioQwg8PGg8_E48EggQkAYAEKyqLARABGniB_Qf-Df4CAPsDAw4KCPsCDAX_AvcAAAD9BQMAAgX-AOwO-fUA_wAA_fT1CQYAAAD8AgQE9v4BABcBA__6AAAAAPz-BvkAAAAJB_T2_wEAAPz8CgQD_wAADP79AQAAAAD8DAf_AgAAAPsBDfAAAAAA__YB_gAAAAAgAC2Nj9o7OBNACUhOUAIqhAIQABrwAX8X8ADY8QUB-grvAMEHDQGpLCP_ERXTAKno_v-i9OcAAA7hAO_c0__y9yb_ziz-_xPatgIC6RYAOsnm__vi-gDxBBcBTeINAUICFv_-Ben_3-8UAATgDQD9yN8AFQHyAAr6HwEI-9sB8fH1BRjmKwIf7CUCDN7__fDoDAHRA-UAzt3N-wUI9gAM5SD96hoZAQ_q4gHw-ub71CYLBCXn7AL96yQF4T37Axf4CAno-O7-yef-BQ0l_P0dIhUI2Pb09gX7E_rN6fD8N_8HBRnzDgjRF-f5Ev8HDiEH_QYG_gMF__YBAdn-9gXoEAcV1PgD7SAALe-5GDs4E0AJSGFQAipzEAAaYAz6AAsnEfQBHkfd_Nbo8P_tRNIe1Pv_wcz_ABrg9yf2mqrPJf9HAfjJngAAABzbAAL6APt_1ejlF-359M-T0TRMaec1P8QoGRi95wok1s4bAQX8XQD_FKtHQe_KBzA3ESAALWHdFDs4E0AJSG9QAiqvBhAMGqAGAABQQgAAgEEAAIpCAABAwgAAoMEAAIBAAACWQgAAAEEAABjCAACQwQAAAAAAADTCAADgwAAAEMEAABBBAAAgQQAAyEEAADDCAAC4QQAA2MEAAIDCAABkwgAApsIAALhCAAA8wgAANMIAADTCAACIwQAAokIAAChCAADgwAAAQMAAAEjCAADQQQAAiMIAAKjBAAAQQQAAeEIAABBBAACOQgAAgD8AAAxCAACgwAAA2MEAAIBBAAAQwgAANMIAAABBAAA4QgAAPEIAAGzCAADQwQAAsMEAAHRCAACoQQAAEEIAAPzCAACwwQAAsEEAAAxCAADgQQAAGMIAAGTCAAAswgAAsEEAAJrCAABQwQAAJMIAAKDAAAAMwgAAtEIAAAxCAACowQAADEIAACBBAAAwwQAAYMIAAMDAAABQwQAAgEEAAFTCAABkQgAAAEAAAJDBAADAQAAALEIAAMDBAABMwgAAJEIAAKBBAACAwAAA2EEAALDBAADQwQAA4EEAAEjCAACAwQAAFEIAAAhCAAAIQgAAaMIAAEBBAACgQgAAPMIAAOjBAADgQQAAwEEAABBCAAC4wQAAbEIAAFxCAAAAQgAAIMEAAFBBAACIwQAAukIAAAAAAACYQQAAaMIAALLCAAA4wgAAsMEAAIA_AAAcwgAAQEEAABBBAAAAwAAAHMIAAKDAAAAQQQAA4MAAAKzCAADAQAAAiEEAAKDBAAA4QgAAgL8AAOBBAACQQQAAkMEAANBBAAAAwQAA8EEAAIzCAAA0QgAAqEEAACTCAAAsQgAAqMEAADDBAABQwgAA4EAAAIBBAAAwQQAAAMEAAAzCAAB4wgAAgD8AADTCAAAQQgAAsMEAAJBCAABwQQAAMMEAANhBAACwwQAAgMEAAMRCAAAUQgAAgsIAACzCAAAUQgAA4EEAADDBAABcwgAA4EAAABBCAAAAAAAANEIAAIJCAACGwgAAWMIAAAzCAAAMwgAAcEEAAOjBAAA0wgAA6MEAABTCAADIwQAAdEIAACTCAADgwAAA4EEAAABAAAAAAAAAIMEAAAxCAACgwAAAUMEgADgTQAlIdVABKo8CEAAagAIAAJK-AACovQAAyD0AAJY-AAAQPQAAHD4AANg9AAAHvwAAD78AAKA8AADIPQAAqr4AAFw-AABMPgAAyL0AAFS-AACgPAAAQDwAAOg9AAAtPwAAfz8AAGw-AACAOwAAmL0AAK6-AADgPAAAVD4AAPi9AAAMvgAA4j4AALI-AAC4PQAAir4AADA9AADIvQAAqD0AAKg9AAC4vQAAXL4AADC9AADyvgAAQDwAAHw-AAB0vgAAML0AAGw-AACePgAABb8AAIi9AADyvgAAgLsAABC9AABcPgAAFD4AAPg9AAAMvgAARz8AAGw-AAAEPgAAlj4AAKq-AADgPAAAUD0AAAS-IAA4E0AJSHxQASqPAhABGoACAACgPAAAHD4AAMi9AAA3vwAATL4AAKg9AAC4PQAAmD0AAAy-AABQPQAAPL4AAJa-AABkvgAAir4AAEA8AABQvQAARL4AACU_AACAuwAATD4AAKA8AACevgAAgDsAALi9AACIvQAAEL0AALK-AABAvAAA6D0AANi9AABAvAAAqD0AALi9AABAvAAAgDsAAJi9AADqPgAAyD0AAES-AAAsvgAAND4AAAQ-AADYvQAAED0AADA9AABEPgAAf78AAMi9AAAUPgAAuD0AADw-AAA0vgAAJD4AAIg9AADgvAAAcD0AAEC8AAAwvQAAQLwAANg9AAAsPgAABD4AADy-AACYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=W8f73Gcdjsw","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13873643969943266938"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1919197867"},"7272366101235726634":{"videoId":"7272366101235726634","docid":"34-8-10-ZCE95872061A0BF5C","description":"We generalize the idea of a 2x2 or 3x3 determinant using the idea of cofactors. We eliminate the row and column in which an entry resides and compute the smaller (inductively) defined determinant.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1781583/88333fb950db702c1551a97879b7a5a1/564x318_1"},"target":"_self","position":"2","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrixK1vIN-44","linkTemplate":"/video/preview/7272366101235726634?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cofactor Expansions of Determinants","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rixK1vIN-44\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFQoTNzI3MjM2NjEwMTIzNTcyNjYzNFoTNzI3MjM2NjEwMTIzNTcyNjYzNGqvDRIBMBgAIkUaMQAKKmhoamltZWtpdXZwdGVrbGNoaFVDX2puU2FVUndnNWJLM3BiQ3BfeGFiZxICABIqEMIPDxoPPxOkA4IEJAGABCsqiwEQARp4geoFAvr-AgD57QkJBgf8AQEI_gj4_v4A_QEOCQYF_gABC_oABgEAAPoD8ggHAAAA8QAGAAAAAAAE_A389gAAABb5-wD_AAAAEBH6-f4BAAADAgcBA_8AAAn98QsAAAAA8AQE_P7_AAD7CAb0AQAAAPj98wMAAAAAIAAtuojVOzgTQAlITlACKnMQABpg_hoAIvAD3dkZM-8Nw-PlIQEe7Qnx3wDw1AAEDgLaDeXk0sckABHoHQC9AAAA6ev5Ht4A21Df-s0hDw8JDOzrCRh_QR0GKh0YHPr3xOAUBBMX_9oWAAAQ-esv8rEmJw4oIAAtKCxMOzgTQAlIb1ACKq8GEAwaoAYAAODAAACAvwAAgEEAAFDCAACgwAAAIMEAAJZCAADIQQAAlsIAAPBBAACoQQAAAEAAAFDBAACgwAAA4EAAAATCAACMQgAAksIAAMBBAAAIwgAAgsIAAHzCAAC8wgAAYEIAAAAAAABgwQAAKMIAAEDAAACAPwAAYEIAAJDBAAAcwgAAuMEAAJZCAADewgAAHMIAABxCAABMQgAA4MAAAI5CAACoQQAA0MEAAIBBAAA8wgAA4EAAAFTCAAAsQgAAoEEAAJBBAABwQQAAPMIAALDBAAAcwgAAbEIAAIDAAAAYQgAApsIAAABCAACgQAAAEEIAAMBBAADgwAAARMIAAMDBAACgwAAArsIAAIDAAACewgAA0MEAAMjBAAA8QgAAQEIAACDCAABIQgAAMEEAADzCAABYwgAAYMEAAGDBAABAQQAAfMIAAIJCAADQQQAARMIAANhBAACQQgAAlMIAALjBAACSQgAAcEEAAMBAAAAMQgAAwEAAAMBAAACAPwAAEMIAAIBBAAAAwQAANEIAAExCAABkwgAAREIAAABBAAAgwQAANMIAAMhBAACAwAAA2EEAACzCAABEQgAAWEIAADxCAABQQQAAQEAAABDBAAB4QgAAgMAAAAjCAAAkQgAASMIAADDBAABwQQAAAEEAAEDCAABwQQAAHEIAAPDBAABAQAAAmMIAAAhCAADAwQAA4MEAAKBAAACAQgAA4EEAAIA_AABAQAAAoEAAAIA_AABwwgAAOEIAAIC_AACwQQAA-MEAAKhBAABwQQAAIMEAAHDBAACgQAAAgL8AAIBAAADYQQAALEIAAADCAADgwQAAWMIAAIDCAADgwAAAhsIAAAAAAAAEwgAALEIAACRCAABYQgAAZEIAAHBBAACYQQAA6EEAAOBBAABgwQAAqMEAAIDAAAD4QQAAgMEAAJjBAABwQQAAwEAAAIC_AAAAQAAA5EIAAL7CAACiwgAAAMEAAIjBAAAQQgAAGMIAAGTCAAAMQgAAyMEAAEBBAAAgQQAAAMEAAEDAAADYwQAAQEEAAJZCAADIwQAAREIAAPDBAACAwiAAOBNACUh1UAEqjwIQABqAAgAAfL4AADA9AAAQPQAAoDwAAIi9AAB0PgAAML0AABO_AADovQAATD4AAHA9AACKPgAARD4AAAw-AACgvAAAiL0AABw-AAAwvQAA2D0AAO4-AAB_PwAAiD0AAJo-AACYPQAAXL4AAKA8AACovQAAuL0AABS-AADYPQAABD4AAOi9AABEvgAAyL0AAIo-AADovQAABD4AAOC8AACWvgAAlr4AACy-AACIPQAAqD0AAAy-AAAQvQAAqD0AAFQ-AAD4vQAAcL0AAL6-AABwvQAArr4AAAw-AACSPgAALL4AAKA8AABTPwAALL4AABC9AAAEPgAAQLwAAIi9AAAQPQAAhr4gADgTQAlIfFABKo8CEAEagAIAAPi9AACWPgAAgDsAACu_AAC2vgAAEL0AABQ-AABQvQAA6L0AAL4-AACAuwAAur4AAEA8AACevgAAoLwAALi9AAC4vQAALT8AAOg9AACSPgAAXD4AAEA8AACgvAAAgLsAANi9AABMvgAANL4AAHQ-AADgvAAAZL4AAFA9AAAQPQAAqD0AABC9AADYPQAAFL4AAAM_AACOPgAApr4AAKA8AADYPQAA4DwAABS-AAD4vQAA6D0AAGw-AAB_vwAAuD0AAIi9AADgPAAALD4AAJi9AABUPgAALD4AAOC8AADIPQAAcL0AAFQ-AACYPQAAQLwAAIg9AAAUPgAAQDwAAPg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=rixK1vIN-44","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7272366101235726634"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8229106796468162806":{"videoId":"8229106796468162806","docid":"34-6-10-Z7FFC28BAA4D03C0E","description":"In this mathematics tutorial video, you will learn about the cofactor of a 3 by 3 matrix and how to find the value of the cofactor of a 3 by 3 matrix. Learn how to find 3x3 matrix cofactors...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2420030/42c761c2a6a83ad22dfa6eb8d415ff6e/564x318_1"},"target":"_self","position":"3","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFAeLPGRFibA","linkTemplate":"/video/preview/8229106796468162806?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cofactors of a Matrix: How to Find the Cofactors of a 3x3 Matrix | Step by Step Guide #cofactors","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FAeLPGRFibA\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFQoTODIyOTEwNjc5NjQ2ODE2MjgwNloTODIyOTEwNjc5NjQ2ODE2MjgwNmqvDRIBMBgAIkUaMQAKKmhoc3Z0c3ZlZXJ0eGxreGJoaFVDRVRNWHRXVE9sME0yN0VZRTA3RUpGURICABIqEMIPDxoPPxPKB4IEJAGABCsqiwEQARp4gfb7-_v7BQD1CQ4JBAX9AQ8M-wII_wAA_AH7Bf0F_gDt-Q_8_f8AAP0C_AUBAAAABwYB8fz9AQAAAP_7AwAAAA_69gH1AAAADAb_-v4BAAAEAv4FA_8AAPv9AwYAAAAA-v3-AwEAAAAI-g70AAAAAP8BCQb_AAAAIAAtWZHiOzgTQAlITlACKnMQABpgABEAPP8ByMwtIu_htwMeFOYR1A7yBf_t8gD7FOG8IQCu9OAZAP6XG-KqAAAAEvLCHQkA1WX32_AjIFj3rp7PCQF_CxskETca9_YP-Cj-B_Pn6QzZAPDxAAE6HxEsH01DIAAtOlUlOzgTQAlIb1ACKq8GEAwaoAYAABxCAACAQQAAjkIAAMjBAAAwQQAA4EAAAJhCAAC4wQAAoMAAAMDAAAAgwQAAQEEAAIC_AADgQQAAiEIAACzCAAAwQQAACMIAAERCAAAgwQAAoMEAAIrCAABwwQAAaEIAAOjBAABwwQAAOMIAAPhBAABAwQAAdEIAACTCAAAAwAAAoMAAAOhBAACGwgAAgMAAAODAAAAAQgAAcEEAAMBAAABcwgAA4EAAANBBAADowQAAQEIAAIjBAAAwwQAAQMAAAJBBAACCQgAAgL8AAABAAAAgwgAAQEIAAEDAAACEwgAANMIAAAhCAAAQQQAAdEIAAEBBAAAcwgAAoMIAABjCAABgQQAAKMIAAIDBAACEwgAAMMIAAOBAAACgQQAAkEIAAAAAAACGQgAAPMIAADzCAABUwgAAuMEAAADAAAAgQQAA0MEAAFxCAADAwQAAIMIAABhCAACcQgAAgMAAAKDBAAAAQAAAYEEAAIDCAACAQQAACEIAADBBAAAAQgAApsIAAFBBAADAQAAAwEIAAMRCAACgwAAAwEAAAABBAAB8wgAApsIAAABAAAAQwQAAEEIAAKjBAACiQgAAiEIAAFDBAACAwQAAAAAAAKhBAABsQgAAHMIAADDCAAB0QgAAlMIAAAAAAAAAQAAAwEEAAHjCAAC4wQAAwMAAAADBAABowgAAYMEAACTCAADAwQAAyMEAAMDAAACKQgAAEEEAADRCAAAcQgAAMEEAABjCAAD2wgAAFEIAAFhCAACAQQAAYEEAAMBAAAAEQgAAoMEAACxCAACgQAAAwMAAABzCAADwQQAAIEEAAIDCAAB8wgAAcEEAALrCAABwQQAAjMIAAGDBAABAwgAAMEEAAEBAAAAAQgAACEIAAFBBAAAIQgAAQEAAAJpCAADYwQAAhMIAABxCAABAwAAAAMEAAJjBAACgQAAAoEEAAMjBAADAQAAATEIAALDBAADcwgAAsMEAAIA_AAA0QgAAKMIAAIjBAACgQQAAUMEAACDBAAAIwgAAiEEAAMjBAABAQAAAAMAAAEBCAAAEwgAASEIAAEBAAABgwiAAOBNACUh1UAEqjwIQABqAAgAAPL4AAES-AAAsPgAAiD0AAKY-AADGPgAADD4AAF2_AADGvgAAqD0AAEQ-AAAEvgAAij4AAAS-AAAQvQAAMD0AAKg9AAAkPgAAyL0AAOo-AAB_PwAAUD0AABQ-AAB8PgAA2L0AAPg9AAB0PgAArr4AAI4-AAAMvgAAsj4AABC9AACevgAAML0AAJo-AABwvQAAmL0AAFS-AADSvgAAA78AAJ6-AAAMvgAAkr4AAIq-AAAkvgAAUD0AAIo-AACyvgAAyD0AAHy-AAA0vgAAVL4AABA9AACSPgAAvr4AAJi9AABRPwAAmL0AAOg9AAC-PgAAgDsAAEA8AAAwPQAAyL0gADgTQAlIfFABKo8CEAEagAIAAJq-AAB8PgAADD4AAAW_AADyvgAAXL4AAIo-AAAUPgAAoj4AAAy-AACCvgAAFL4AAKA8AAD4vQAADD4AAHA9AACgvAAAAz8AAPg9AAAPPwAAJD4AAAy-AAA0vgAAPL4AADy-AADCvgAAoj4AAAw-AAA8vgAARL4AADA9AABcPgAAqL0AAMg9AABkPgAAiD0AAEQ-AADGPgAArr4AAEw-AAAQPQAA2D0AABA9AAAcvgAAuD0AAIC7AAB_vwAA4DwAABS-AACGvgAA4LwAAII-AACgvAAAlj4AAKY-AABkPgAAEL0AAHw-AAAQvQAAMD0AAOi9AABcvgAAUD0AAAQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=FAeLPGRFibA","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8229106796468162806"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6060981859542032068":{"videoId":"6060981859542032068","docid":"34-9-10-Z1551D8CBB566EE53","description":"Cofactor expansion along any row Have you ever wondered why you can expand the determinant along any row and still get the same answer? In this video, I show why it's true! Enjoy Check out my...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1614925/48db2b2b5243baf72b898d2c727a8584/564x318_1"},"target":"_self","position":"5","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDkdNmn5Fxhs","linkTemplate":"/video/preview/6060981859542032068?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cofactor expansion","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DkdNmn5Fxhs\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFQoTNjA2MDk4MTg1OTU0MjAzMjA2OFoTNjA2MDk4MTg1OTU0MjAzMjA2OGqvDRIBMBgAIkUaMQAKKmhoZ3J0Z2Z0cXhibXNla2RoaFVDb09qVHh6LXU1elUwVzM4ek1rUUlGdxICABIqEMIPDxoPPxPQDoIEJAGABCsqiwEQARp4gfUEAPj8BQAY9gkA_wb_ABP9_QD2AQEA7QL8BAAAAAAA_gEDBwEAAAIC-fcIAAAA8gAGAAAAAAAM-wb8BAAAAA70-QMDAAAADAoDAAj_AQEL_AcDA_8AAAz9BAD_AAAA-gv4Av4AAAAADgz2AAAAAAAAAgYAAAAAIAAtK-TeOzgTQAlITlACKnMQABpg6CYAAyT3-NVSS9kQpP7uDA9Y8-H4-v_zqf8xL97KG8HZtrBC_xfW_vKcAAAA3B0CJt8AO3_k-MQHBfzr1O7iQ11_MT5ECErpH_7rzNr6yNAB-882AOI74SM5uMRSJlUpIAAtEaUKOzgTQAlIb1ACKq8GEAwaoAYAAERCAAAAwAAA4EEAAIDCAACgQAAAAMAAAHRCAADgQAAAcEEAALhBAADoQQAAoMEAAJbCAAAAAAAAQEEAAKBAAABAwQAANMIAAHRCAACowQAABMIAAFBBAACwwQAAQEIAAIA_AAAwQQAAEMEAAJrCAAAwQQAA4MAAAIC_AACAwAAAgMIAAHDBAADAwAAAsEEAAAhCAACoQgAAMMEAAIhBAADgQAAAIEIAAFxCAACQwgAAPEIAADTCAADQQQAAIEIAAGRCAABQQgAA4MEAACDBAACgQAAAWEIAAEBBAACowQAACMIAAHDBAACwwQAANEIAAHhCAACEwgAAkMEAADjCAABAwAAAuMIAAGjCAACYwQAA0MEAADjCAABYQgAAnEIAACDCAAAIwgAAoMEAACjCAACOwgAAEMIAAEBCAAB4QgAAiMEAAOhCAACIwQAAMEEAAKBBAAC4QQAAgMAAAMBBAABYQgAAQEAAAOjBAACQQgAAEMEAAEDBAADAQQAAvsIAACDCAADIQQAA2kIAACBCAACEwgAAIEIAAADBAACAvwAAQMIAAJBBAADgQAAAwEEAAEDAAAB4QgAAIEEAAFRCAACYwQAAoEEAAAjCAABQQQAA6EEAANDBAAAMwgAAYEEAAILCAACMwgAAAEAAADxCAABwwQAACMIAABDBAADIwQAA2MEAAMDAAAAcwgAAAMEAACBBAABQQQAAlsIAAJJCAABAwAAAgMAAAKjBAADgQAAAAMEAAAzCAAAYQgAAuMEAAFRCAACYQgAA4MEAAFxCAAAwQQAA6MEAAHDCAAAAAAAA4MAAAJhBAAAUQgAAyMEAACzCAAB4wgAA8MEAAADBAAAgwQAA0EEAAJBBAACIwgAAAAAAADBBAACEwgAABEIAAIhBAABgwQAAAAAAAEBCAACIwQAAfMIAACBBAADowQAAwMAAADDCAAAAQgAAFMIAAMzCAACAPwAACMIAAFBCAABcQgAA4MIAAGDCAADAwQAAEMEAAIBAAADAwQAAwMEAALhBAAAgwgAAAAAAALDBAAAwQQAAGEIAALBBAAD4QSAAOBNACUh1UAEqjwIQABqAAgAAcL0AABC9AAC4PQAAHD4AADA9AACCPgAAML0AAO6-AACovQAATD4AACQ-AABkPgAADD4AAIg9AACIPQAAED0AACw-AACAOwAAyL0AAP4-AAB_PwAAHD4AADw-AAA0PgAANL4AAEA8AAD4vQAAoDwAAFA9AABMPgAA6D0AAAQ-AACWvgAAED0AAIA7AAAEvgAAcD0AAEA8AACmvgAARL4AAHy-AAAwvQAAVD4AANi9AACYvQAAoLwAAIC7AADYvQAAuD0AAGy-AAAwvQAAiD0AAAQ-AADCPgAAHL4AAIC7AABFPwAA2L0AACw-AACiPgAAML0AAEA8AAAMPgAAML0gADgTQAlIfFABKo8CEAEagAIAACw-AAAwPQAAJL4AABO_AACivgAAyL0AAIC7AAAsPgAAcD0AALi9AAAMvgAApr4AAKI-AACKvgAABD4AAKi9AACYvQAAJT8AABC9AABkPgAAEL0AAAS-AABkPgAABL4AAFC9AADgvAAAfL4AAOA8AABUPgAAkr4AAEC8AADIPQAAoLwAADA9AAAQPQAAiL0AAMI-AAC-PgAA-L0AANi9AACmPgAAiD0AACy-AAC4vQAAoLwAAAw-AAB_vwAAoDwAAAy-AACIvQAAqD0AAMi9AADIPQAAhj4AAKi9AAAMPgAAcL0AAHC9AADovQAAgLsAALg9AACYvQAAbL4AADS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=DkdNmn5Fxhs","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6060981859542032068"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15281853354796967411":{"videoId":"15281853354796967411","docid":"34-3-5-ZECF36FFA666E7B3F","description":"Previous: • 7-5. Properties of Determinants (Lin... Next: Coming Soon Playlist: • Linear Algebra for Data Science In this chapter of our linear algebra journey, we dive into the world of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3429735/d2556ed84a3db6516977864282e3b1b8/564x318_1"},"target":"_self","position":"6","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DROBEkqCTUgM","linkTemplate":"/video/preview/15281853354796967411?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"7-6. Cofactor Expansion (Linear Algebra for Data Science)","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ROBEkqCTUgM\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFgoUMTUyODE4NTMzNTQ3OTY5Njc0MTFaFDE1MjgxODUzMzU0Nzk2OTY3NDExaq4NEgEwGAAiRBowAAopaGhibHpwemZ2b3Jmd3lpaGhVQ3RuSFZHYUF3THZyQ2VfMkVMTFhUQkESAgARKhDCDw8aDz8ToQKCBCQBgAQrKosBEAEaeIH5D_T-Av4A8PoTBgcE_gEQ8vkB9gD_AO0E_PgFAAAABgD8_AgBAAATAfQBCAAAAPsDBAX1_gEACPHxAgEAAAAUAAUE_AAAAA4H__r-AQAA-wAD_QP_AAAJBQQB_wAAAAUU9Aj-AAAA9gT_7AAAAAADCA_y_wAAACAALY76yzs4E0AJSE5QAipzEAAaYBgTAAAuEfXdNT3s5Nrf9P76CdkP7f__2sP_E__p3wy_0sbKLv8f_BTnsAAAAPjz9yfcAC5k9vvKHw0Q_-DY5hwyfx8HIfo2AwXLChT9F8sHyxX0TQDkEQEIPeWhFSEyQyAALbEMMTs4E0AJSG9QAiqvBhAMGqAGAACAQQAA-EEAABhCAACIwQAAKEIAALhBAABsQgAAoEAAAKDCAAAIwgAAEEEAADzCAABQwQAAVMIAAMZCAACAQQAAMMEAANDBAACGwgAAyMEAABRCAAB4wgAAsMEAAKhBAADwwQAAwMEAALjBAAB4wgAATEIAAMhBAABswgAAtEIAAKrCAACAwAAAoEAAAPDBAAAQQgAA_kIAAAAAAAAAwQAAyEEAAEhCAABIQgAAXEIAAKjBAADgwQAAAMIAALDBAACAwAAAwEEAAJDCAABAQQAAkMEAACDBAADYQQAAmEEAAADDAAAAAAAAQEEAAEBBAABAwQAA-MEAABjCAAC2wgAAIEIAACTCAAB8wgAAmEEAANDBAACgwQAAWEIAAKpCAACAPwAAFEIAAILCAACAwQAAuMEAAIDAAABgQgAAJMIAAITCAABQQgAAcEEAAFRCAAD4wQAAsMEAAOhBAAAMQgAAyEEAANjBAAAAAAAAEEIAAIDAAACCwgAAcEEAAMDBAADgQAAAMEEAAOBBAAAAwQAALMIAAEBCAACSQgAAAMIAAOBAAABAQQAAoEAAAJBCAACAwQAAMEEAAIA_AAAUwgAAYMEAAIDCAADgwAAAyEEAAGBBAAB0wgAAREIAAMhBAACgwAAATMIAAJDBAACgwQAAcEEAAIhBAAD4wQAAJMIAAGDBAAAMwgAAQMEAAOBAAABMwgAAIEIAALjBAABgQQAAsEEAAEBAAAAswgAA4sIAABBBAABQQgAAAEEAAEBAAABIQgAAQEAAAIzCAADYQQAAMMEAAAAAAACQQQAAQMEAANBBAAA4wgAAMMIAAPjBAABAwQAAhMIAAIjBAABAQQAAyMEAAIBAAAAMwgAAGEIAACDCAACAQAAA-EEAAExCAAAAQgAAgL8AAFzCAAAAQQAANMIAAEDAAACAwQAAVEIAAFBBAAAwwgAAEEIAACBBAACYwQAAhMIAAJjBAACYwQAAbEIAABBCAACMwgAAOEIAABBBAAAAwAAALMIAAFDCAACAwAAAYEEAAMjBAACAQQAAmsIAAJBBAAA8wgAAIMIgADgTQAlIdVABKo8CEAAagAIAAHS-AAB0vgAAFD4AAHQ-AAAkvgAAqD0AABA9AADGvgAAsr4AAPg9AABEvgAA6L0AACw-AAC2PgAAcL0AAFS-AADqPgAA2L0AAJY-AAAnPwAAfz8AACw-AABEPgAAPD4AAAy-AAAUPgAALD4AANi9AACIvQAA-D0AABA9AAAcvgAATL4AAAy-AAAsvgAAXL4AAGQ-AABQvQAAur4AAIK-AAC-vgAA2j4AAN4-AAC4vQAAQLwAAIg9AADaPgAA3r4AAIC7AACqvgAARL4AAKi9AACOPgAArj4AALi9AABwvQAAVT8AAOi9AAAcPgAAuj4AABS-AACoPQAAED0AAHS-IAA4E0AJSHxQASqPAhABGoACAAC4PQAAML0AADC9AABLvwAA1r4AAIC7AAC4PQAALD4AAIg9AABAvAAAVL4AAJ6-AAB8vgAAbL4AABA9AABAPAAAUD0AAAU_AACAOwAAqj4AAOA8AABEvgAABL4AAOC8AACovQAA2D0AALK-AABAvAAAQLwAAKA8AACgvAAAFD4AAJg9AAAwvQAAJD4AAJg9AAAHPwAAmD0AAIa-AACIPQAAZD4AABw-AAAsvgAAUD0AALi9AAD4PQAAf78AANg9AADIvQAAJL4AAEC8AAA0vgAAgLsAAGQ-AACIPQAAND4AAEA8AACovQAAML0AAKg9AAAMPgAAuL0AAFy-AABkPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ROBEkqCTUgM","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15281853354796967411"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12933677450569542122":{"videoId":"12933677450569542122","docid":"34-8-2-Z3530CD42DF483333","description":"Calculating the determinant value for first cofactor expansion 6:34 Validating result by doing cofactor expansion on another column 7:56 Cofactor expansion on every row and column 8:08 How to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3770812/5e80e654ec00e50b2a2e93a6c7986f5e/564x318_1"},"target":"_self","position":"7","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnpJZIcpyDvw","linkTemplate":"/video/preview/12933677450569542122?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cofactor Expansion for Determinants (EASY Guide)","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=npJZIcpyDvw\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFgoUMTI5MzM2Nzc0NTA1Njk1NDIxMjJaFDEyOTMzNjc3NDUwNTY5NTQyMTIyaq8NEgEwGAAiRRoxAAoqaGhsd2ltYm11ZW5tdmpsY2hoVUNjMWx0R3RrSkhzdmlieW1wOGxjR1NnEgIAEioQwg8PGg8_E8EFggQkAYAEKyqLARABGniB9AMC_v8BAPv-DgT6B_0CJv7_CvQEBADs_QEFCQAAAA0H9QoEAAAABAb3AQIAAAD4_QcD_P8AAAX2DPYEAAAAD_P4BAMAAAAQEfr5_gEAAA4EE_kCAAAAD_4BCAAAAAD8AQMG_v8AAAAPDfUAAAAAAP_-_wAAAAAgAC3YMtQ7OBNACUhOUAIqcxAAGmD6FgAbBAbT0yYt5QnG3-8f_CfR8QHuAPjPABwI7d8Kze7bzxv_F9cr9bkAAAAHBdke0gAHVeDyxy8MAw3V5-0CIH9HFiQMKw0EDOzj7gPz7w362joA_A0A_jXsrycgEzIgAC1fX0I7OBNACUhvUAIqrwYQDBqgBgAAAEAAAEDCAAAIQgAAWMIAAIBBAACYQQAATEIAAKjBAACAQAAAIEIAAChCAABAQAAAqMEAAIBBAACAwAAAsEEAAAxCAAAUwgAAKEIAAJhBAAAUwgAAIEEAAIbCAAB0QgAAAEIAAMBAAACIQgAA6MEAAOBAAABAQQAAiMEAAHRCAABEwgAAYMIAACDCAABAQAAAAMEAALJCAAC4wQAADEIAAODAAABAQgAATEIAACDCAADIQQAAQMIAAJhCAABIQgAA6EEAAExCAAAAAAAAgEEAAEDAAAAgQgAAIEEAADDBAAAAwQAAAMIAANBBAABAQgAAyEEAAJbCAACgQAAAEMEAAAxCAACYwgAAiMIAAATCAABgQQAAXMIAACBBAABoQgAAAEAAABDBAACOwgAAKMIAAJDCAACgQQAAmMEAAKBBAABgwQAAnkIAAIC_AABgwQAA4EEAAADAAAAAQAAANEIAACBBAABAwQAAUMIAAMhCAACEwgAAsEEAACBCAAD4wQAAEMEAAFxCAAB8QgAAVEIAAAjCAABQwQAAMEEAAADCAAAAwAAAPEIAAFBCAADgwAAAcEEAAIJCAACCQgAAwEAAABzCAABYQgAAaMIAADBCAABkQgAA4MAAACBBAACwwQAAGMIAAKrCAABAwQAAQMAAAKDBAAAAwgAACEIAAKDBAAAAwQAAAMEAAEjCAAAkwgAAHEIAAAhCAAAwwgAAkkIAABBBAABgQQAAUMEAAEDBAAC4QQAAZMIAABBCAABswgAAfEIAAKBBAABEwgAAkkIAAKBAAAAwQQAAeMIAAJDBAAAAwgAAQMIAAIC_AABkwgAA8MEAACDCAACQwgAAiEEAADjCAAAAQQAA4MAAADDCAABAQAAAcMEAADDCAABwQQAAcEEAAJDBAACAvwAA4MAAAMBBAABYwgAAQMIAAGDBAAAwwgAAkMIAAGRCAACgwQAAdMIAACBBAABAwQAAqEEAAGhCAACKwgAAjsIAAJrCAAAIQgAAgkIAAEBAAAD4wQAAUEIAAPDBAABwQQAAmMEAAHDBAABMQgAA0EEAAKhBIAA4E0AJSHVQASqPAhAAGoACAACavgAAoLwAAFA9AABMPgAAgLsAALY-AABQvQAADb8AAIK-AAC4PQAAEL0AAGQ-AADoPQAA4DwAAPi9AACYvQAAJD4AAHC9AADgvAAAFT8AAH8_AAB8PgAAuD0AADw-AAA0vgAA2D0AAAy-AACAOwAANL4AABC9AAD4PQAALL4AAI6-AAAEvgAABD4AAEy-AAB0PgAAmL0AAIa-AAA8vgAAfL4AACw-AABcPgAA2L0AAEC8AACIPQAABD4AADS-AACYPQAArr4AAKi9AABsvgAA4DwAANo-AAAEvgAAUL0AAEE_AAAcvgAAEL0AAKo-AACIvQAAuD0AALg9AACovSAAOBNACUh8UAEqjwIQARqAAgAA2L0AAHw-AACYvQAANb8AAPq-AAAsvgAABD4AAKg9AABkPgAAQDwAABS-AACevgAAyD0AAGS-AABAvAAAqL0AAL6-AAA5PwAAuL0AADw-AAC4PQAA-r4AAAw-AADgvAAAyL0AACS-AADGvgAARD4AAAw-AACyvgAAQLwAABQ-AABUvgAAmD0AAGw-AAA0vgAALT8AAKI-AACOvgAAmL0AAIY-AAAQPQAAor4AAMi9AABsPgAAcD0AAH-_AAA8PgAAgDsAAI6-AAAMPgAADL4AAKg9AACSPgAAQLwAAGw-AAC4vQAAiD0AAIA7AACAOwAAHD4AAHC9AABUvgAABL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=npJZIcpyDvw","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12933677450569542122"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12062212538547105164":{"videoId":"12062212538547105164","docid":"34-1-2-Z9DE945FE4FC24EE2","description":"Structure-based function prediction through online server Cofactor part-2 is here which describes how we get our results and what important domain it covers such as protein alignment, gene...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2348804/a7119a0a5e0a43554a93e07ed66cc314/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9ef_QgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8BYFk2v7uyY","linkTemplate":"/video/preview/12062212538547105164?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cofactor Part-2|TM-Align|Gene Ontology|Homology|Binding Sites|Molecular Functions #bioinformatics","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8BYFk2v7uyY\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjRaFDEyMDYyMjEyNTM4NTQ3MTA1MTY0aogXEgEwGAAiRRoxAAoqaGhnYXBzdG5udndpZGFlZGhoVUM0RkpiU1lrRV9GZWNJVUM1MFVBWC1BEgIAEioQwg8PGg8_E_8DggQkAYAEKyqLARABGniBAwAACwP9APX4BgkPBvwBG_sG__UCAgDsAvsEAAAAAPXp_gL6AAAAC_sKCgcAAADvCvYJ9wABABIIAQz1AAAAEwUG-fgAAAAAGPUH_gAAAPz3Av8D_wAAHgUICQAAAAD8DQf_AwAAAP0NAPkAAAAABgYDCv8AAAAgAC1n-c07OBNACUhOUAIqhAIQABrwAX8F-wK0Hfv-5R_yADgBvwCWCSX_NxvkANrvCv_J5_YAyQPjAdT2HwDhBgkA1wwIALn0CP8fAu4AGQgSABYLHgAO5gAAMNAOAS4Z9f8I-Qv-BR4G_x4CFgAV-wsA6wrx_BnjBP7y7tr-9esHAP8EJwATDgUC-uj_BsgPIQLuKQf-7-MCAfYAHAHU6hn_yg39Av0N5gQtIu3_8SMQAwXe_AgZCwAGEu78-xYSEf0bD_8IEO4FCC0H_frb8P_-GSoIAu4ABQf72wQCBwsH_wTS-AEA7AT7CekLBBsW_wL-0Qj4__UR-N0S_vz0Jg4CBAz3AiAALeDhKTs4E0AJSGFQAirPBxAAGsAHkujtvpRnQbnNSV69w-a9PcFLGr0bSxg8guEcPU9x3jsMgCe8GJgFPoAz6zt_s727cja1vt6ecT3sWYS6Z2KaPk46m7wa71g8OT9qvEl7SL3hE2G9oMUSvhQiAL3_Rau8RB0RvST7Nj1JsII8tWsCPsSTXTugWKO7yi59vUnnrjvglx-96-Z9vYmukL3-HiM8PrDjPZ9-CDwM7qI8uyYEPq2Hn71Ad_i8L2_pvCGp6DthZoS86tW7vaLHOTyQTEe90VeQPb0gfbwFBKm80acaPagHW70mpxc7HYSKPZbRKD0cTs880ex1vfv1-byD_bK8vaCqvLwffL3t6wY6OPJlPO7vR7uw7US7d3s1vfhluj3_kWm82UKQvTa9ujxI7Go7s03gvIL_jDvqBYK79DTgPTiTwD13AlA8pBMOvYf7iD1d-aw81V-KPWswiD1v4po80CjdPZsywTyrprU89DCZPfLDEj21gYU8wdY2vEscrj20PXq8qLieO0IZVD1hn2e6Wyi5PX_2I728kDO83Ve6PUMxk70uHdK7qNkoPFhIT70TsS08gg6pvDJStTqqf9I7vUGqvMdBLr0TGnO7LzKiOxQU9bwY9os7IvwrPu-ejbwzBow6c_5cPIoB1DsDmHC7ZCe0OydTIju-gW68rokAvYsffj3skXk6qMwoPf_-HLv_4Ko7nGliPRzql72E8ky63bVxul6LEb1lIt-6euSqPSNfrrxvSIK55DVqvRlmsjxQHjg5ubzDvHhQjz1Nz6K5lEC0PeDNZL3ih2o5O3UjvMCBZD1i4i25jumJPCeU8Lpm4v25IwVgPaxcAby3mRk4XtylO6lsWL1iRNC5xasMPqrgJry5kB05thoNvQ03oDyhs0-6EvVCvSIY5714Guo3161UPeCvE7ycmKy50sxuvJLyybyt2O24vZicvJBtVL2cVIC5-UmFvU0_gr2qbL847yZuvVMBHLv_WmW4Q7lDvXJNQb1zEHw3l4pyvbtlYjwTr5S3WpUOO5DvVz23dY24TytbPTsnrD08TIS4nDEMvQA2Bb2KVpc3T9GsPcONCj2p3Im49aKxvahs_bxnsJq4Xb8APb8ZC73JcmI4imR-vGImWz1PWzU4xZwWvbSTrL1RgoM4_862PK8I_rxCOpG4XrI7vNeh2j3c1wq4VIehve-Jmr297Bu2zo7UPUa_DD06LBK4oW9BuwuLkL1ihgm4qWuNPYsLkT0TJyI4rARGvRElMD0PcrO4n8e4vQocf72bN9i3gRFqPC34Ibzka_43IAA4E0AJSG1QASpzEAAaYBP0AEjRD939Ky7gENvpF-8FRfv7zA__9sj_LSrRtwwMy53VQv855PLzoAAAADAB3isFAPJ_-uX-N-zu77XO1BIMXvYoPsDxM9m05_om-9L9-fDXJQDr3qPrXxCUBioSKSAALWt_GDs4E0AJSG9QAiqvBhAMGqAGAAC4wQAA4EAAAIhCAAAAAAAAMEEAAOjBAACAQQAA8MEAAAjCAAAwwgAAAMAAABzCAACOwgAAFMIAAABCAADAwAAAAEEAAEzCAABAQgAAMMIAABxCAABgQQAAWEIAAIBAAACYQQAAUMEAAKjCAADIwQAAVEIAAOhBAABQwQAAoEEAAETCAABgQQAASMIAAATCAAC4wQAAgkIAACBBAACAQQAAsMEAAOBAAADQQQAAmMEAAEBBAAAkwgAAcMIAAAjCAACAQgAAgEAAAHTCAABAQQAADEIAAGDBAAAgQgAAwEAAAGjCAAAEwgAAuMEAAPBBAAAAQgAAoEAAAFBBAABAwAAAAEAAAIC_AAC4wQAAoEAAAABBAAAMwgAAfEIAAHRCAAAAwgAAHEIAAFBCAACSwgAAJMIAAPDBAADgQQAAGEIAANDBAADIwQAAAAAAAIJCAACYQQAAwMAAAFRCAAAEQgAAfEIAALTCAABowgAAIEIAABDBAABwwgAA4EEAAFjCAADIQQAAMEIAALhBAAAIwgAANMIAAGRCAACgQAAAIMIAAM7CAADIQQAAsMEAAHxCAAA4wgAAIEEAABxCAACGwgAA-MEAAJjBAAAAAAAAsMEAABzCAADAQAAAIMEAADxCAACWwgAAPMIAAHBBAACEwgAA2EEAACDBAAAIwgAAJEIAAHDBAADKwgAAJEIAAKhBAABEwgAABEIAAKBAAACyQgAAQEEAAFDBAADwQQAAWMIAAGDBAAAAwgAAwEAAAFBBAAAcQgAAQMEAAEDBAACAQgAA4EEAAIC_AAC4wQAAREIAAPhBAAAYwgAAaEIAACDBAAAQwQAA2MEAAOhBAABQQgAA4MAAAOBBAAAUwgAAHMIAAADBAACIwQAADEIAAJJCAACCQgAAgMAAAODAAABAQgAAAMIAADTCAACoQQAAAAAAABRCAADAwQAAAMEAAExCAACwwQAAGMIAAFzCAAAowgAAiEIAACBCAACAwgAAiEIAALDCAACgQAAAjsIAAJzCAAA8QgAAgL8AACBBAACUQgAAWEIAAAAAAACmwgAAwMEgADgTQAlIdVABKo8CEAAagAIAAAS-AACIPQAAUD0AAFw-AAAEPgAAED0AAFA9AADSvgAAfL4AADA9AAAMPgAAPD4AAII-AAAMPgAAVL4AADA9AAAMPgAAqD0AABQ-AAAVPwAAfz8AAMi9AABQvQAA-D0AAIi9AAAUPgAAUL0AAOA8AADIvQAAFD4AADw-AAAUvgAAgDsAAKC8AAC-PgAAFD4AAIA7AABkvgAAur4AADC9AACovQAAQDwAAHC9AAAMvgAA4LwAACw-AAC2PgAAtr4AAIi9AACavgAAQDwAAFC9AAC2PgAATD4AAJi9AAAQvQAA2j4AABQ-AACYPQAAgj4AAIA7AACgPAAA-L0AAOC8IAA4E0AJSHxQASqPAhABGoACAACoPQAAmj4AAOi9AAAtvwAAqr4AAIi9AAAsPgAAUL0AAEC8AACCPgAAcD0AAKq-AAC4PQAAlr4AABQ-AAAEvgAA2L0AABM_AAAQPQAAlj4AAMg9AAAkvgAABD4AAPi9AACAuwAAcD0AACS-AAA0PgAAiL0AABy-AACAOwAAoDwAAPi9AADgvAAAML0AAAS-AAA8PgAALD4AAGy-AAAwvQAA2D0AAAw-AACYvQAAiD0AAIC7AACYPQAAf78AAJg9AACAOwAAuD0AAHC9AADIvQAABL4AAHQ-AACIPQAAuD0AABC9AADIPQAA6L0AADC9AAAQPQAA2D0AAEQ-AABQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=8BYFk2v7uyY","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1276,"cheight":720,"cratio":1.77222,"dups":["12062212538547105164"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3253861800"},"16370370032025818170":{"videoId":"16370370032025818170","docid":"34-8-10-ZB93C3434F69A3838","description":"cofactor expansion definition of the determinant of a square matrix of any size, also called the Laplace Expansion. This recursive definition involves two new terms: minors and cofactors.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4578605/bbcaedd6c21a9dededea6236145fb7b1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/DY4aRwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DaICtl-9J6rs","linkTemplate":"/video/preview/16370370032025818170?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Cofactor Definition of Determinants (Laplace Expansion Explained) | Linear Algebra","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=aICtl-9J6rs\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFgoUMTYzNzAzNzAwMzIwMjU4MTgxNzBaFDE2MzcwMzcwMDMyMDI1ODE4MTcwaogXEgEwGAAiRRoxAAoqaGhjY2F4emhienNtamxpYmhoVUN5RUt2YXhpOG10OUZNYzYyTUhjbGl3EgIAEioQwg8PGg8_E-QGggQkAYAEKyqLARABGniB-wv-AP8BAPz5BgcCB_wCDP76Cff__wD0BgL_BwL_AAEF-f3_AQAACP7xCAIAAAD2-P__8_8BAAv2AAH6AAAACfP3C_oAAAAQEfr5_gEAAP4BEvYCAAAACPz7Cv8AAAD3Agb1__8AAPEKDPUAAAAAAwwDBAAAAAAgAC0IYdU7OBNACUhOUAIqhAIQABrwAX8ICAGyC-79IArkAIz9Dv6TBPMA2CYE_5ndEgLiAOsB9gz7AM_6x__M6QAA4dMa_wDg7f_U4BcAPejo_xneAAEE8egBJdkLADbvCADeDcn_zAUd_98cAv7lAvIAMg_q_ib9JP8I-9kB_-XKABnlLAP4ASYGDPE9Ae3eLP3gIP8CCuXp_9oB-ATq6v4C6u8ZBN7s9_v6Fun_4wIGDOUC2wIBzg3-Benu9BMI4AXsDfAA9OzzAbP95QADCRsD--4A-OvtCgDc4x4EElIGAvUaBe_d4uL5B9kIEx3x-Q3w8Qzy3-z59vHoDP_y7v0D4Sb4BiAALY27Ezs4E0AJSGFQAirPBxAAGsAH9UrJvuiTS7xf-_g8NW7AvdFS3rxFM4m7vMravUAYwz0iT7O76lGCPBE-b7wH9ci8OGmKvtEMPTztrn08LQtWPrCKXL1BLSa9WMfRvQy8iTxsA3y99DMlvoCJbj0I2i49ZExQPUbPrTz7qp66oDTEPabVUL0R_9Y5CcypvVTDA71owyu8NkTAvejteb0uUk08BSmCvJp-RL1mz688bEhXPbHs-LxUhpa85m0WvXIP0zwJh4O7t9WsO-fMMT3ZPgS9VwTfPT5-Cr0zkx49wE6gPNXIEz0MiNq84YKHvLko6bwMkRO9C4ZpvdSqabrzfhC8ezJaPSIWVrxc2yW8-aAHvvQamz0vgYA7ldxcPQZCNz1wtsg5FEcaPFbwmz2V8vc7pAOrO8Z5Dj3pR0O8ZJPcPW79TzxnMcw8QX52PfIfOTudCCy8jUolPdYjKD0s85Y8cHNPO2d2gj1Ikru8qOyqPKFeFT39HcC7A9--vSzfCT3n8hM7LY-aPIZ7wDw9Eqs7P7z4PHlFizwOs2E8r6SmPSvRY72n3PG6-limvctQkL0dp667HW3BPTlpED0uBX-8mx8_PgDCbD2HqHK52BqwvXzX_7tMvGq7KfRwPUhcNrxCnKC6awDFvcR1Mb2Dbo67GmNxPFLy6j3QqTe7p6NNvWmFbj1DigU7ic9dvbDbsTqK6565u_qIu_WAnry3Ic67LYuTPZ6vHj2gog86rG8wPuSezr3Zxyu4ydpQvSDfdL1I2SG5mKkkvMsLdT2KxdI6gU0MPcYqbzyajuc4YPmdPZ9ygb2ao3S4rm7rvKbwID0Llp65T37mOyhjabqaX3s4mqONvcA2jL26UZa4eilmvXN7Dr1Rw-I4Nw2bPVHHOT25Iz43zCDDvdQNBL4IU4U5Q3GHvcu8F7wDIZ-4k6kCPlx1fLvDyBA5FnCqvT6Ai73IR5Q2lMk_vRel-jyodtc4iUUMvQgE-j1vcTq4Ve_6vGNP8bsF7A65QTuxPLOrtTx5IVY5dAarPSTbTz2RO7u43JQcPU6ilD26wIc3mBqsPdfwqb0C6F64IjPXPXIpmTv5LWw3yXl6veKBFjxZzWU4bwSDPYBgo73jBOo4HNmwPUAXjbzUK-E3VZB1vZCqfbvADLs49wEoPnBh3b3xZ7-5jJ6bvcl9oTykdbm3dfX0vFnd6r0NI_E1pNAIvSRECT6bFsE2U2VOPHtclb1edby3VRimPW0LxT2Dx-c48jYgPZEZnj3jHGK42vDsuy0AMrx71KE2WtFNOww3tb2O8oS4IAA4E0AJSG1QASpzEAAaYCEBAB37GOIGDUjm-MD46-zw_c4V6AEA4rQA6f0PACkA2uLeEf8WzwPPswAAAOfh4xS2AAZlvPTNHgAK7uDM4Cs4fy47Bf4TJvXQ4OIg9uErAhYHTgDs-LUoTRzeAC4EHyAALY-ULzs4E0AJSG9QAiqvBhAMGqAGAACGQgAAgMEAAKhBAACYwQAAkMIAAADAAAAQQQAADMIAAADAAAAwwQAABEIAAABAAAAAwAAAwEAAAFBBAADAwAAAkEEAAAjCAABAQAAAKMIAAIC_AAAgwgAAgMEAACxCAADAwAAA8EEAAMDBAADQwQAAMMEAAIjBAACgQQAAMEEAAPDBAAAoQgAAgEEAAHhCAACwwQAA_kIAAKDAAABAwAAA4MAAACTCAADwQQAAuMEAADBCAAAswgAA2MEAAPDBAABwQQAA4MEAACjCAAAoQgAAiMEAALBBAADAwAAAcEEAAJ7CAACiwgAA3EIAAKpCAAAcQgAAkMEAAPjBAAAAwAAAQEAAAIjCAACAQAAAgD8AAPDBAAAwwgAAnkIAAEhCAADCwgAAUEEAAPBBAACawgAACMIAAIC_AACYQQAAyEEAANhBAAAkQgAA6MEAADTCAAAAwQAAAEIAAEDAAAAEQgAAwEEAAKDAAABswgAASEIAALbCAAAwwgAAEMEAAEDCAACoQQAAbEIAAMDAAABQwQAAKMIAAODAAAAIQgAA6EEAACjCAAAkQgAAgsIAADBCAAAEwgAAcMEAAABBAACgwQAAqMIAACzCAAAAwQAAlEIAADRCAABQwQAAcEEAAIjBAABswgAAwMEAAADAAAAIwgAAQEIAAHDCAAAAwAAAUMEAABDBAAA8wgAAmMEAAFzCAABgQQAABEIAAMDBAABUQgAAQMAAAGDBAACYQQAAcMIAAChCAACGwgAA8EEAAADAAABUQgAAgEAAAADAAAAwQgAAnkIAADRCAAAIQgAAyMEAAFjCAADowQAAgL8AABDBAACMwgAAMMIAAKbCAADgQAAAqEEAAOBBAACAwAAAOMIAAARCAADAQQAAFMIAAIBCAAAYQgAAZMIAAJjBAAAIQgAAyMEAAKhBAACAwQAA2EEAAKLCAACAwgAAcEIAAARCAACQwgAAgD8AAJhBAAAgwQAATEIAABTCAAAQwQAAsMEAALDBAADAwQAAwEAAADDCAACoQQAAIMEAACDBAAD4QQAAJMIAAEBBAAAoQgAAQMAgADgTQAlIdVABKo8CEAAagAIAAM6-AABcvgAAJD4AAEQ-AAAwPQAAvj4AAAS-AAAnvwAA5r4AAOA8AADIPQAAEL0AAIo-AAAsPgAAXL4AAFy-AABMPgAAML0AABA9AAALPwAAfz8AAEQ-AACIPQAAuD0AAI6-AADIvQAAXD4AABy-AAAwPQAAqD0AAJI-AABcvgAA_r4AAGy-AACGPgAAir4AACQ-AACAOwAAhr4AAIK-AAAsvgAAQDwAAIY-AAB0vgAAEL0AAFQ-AADOPgAA5r4AAPg9AAAFvwAAJL4AALa-AABQPQAAmj4AAKC8AAAEvgAAXT8AAPi9AADYvQAAij4AADy-AADIvQAAQLwAAKK-IAA4E0AJSHxQASqPAhABGoACAABsvgAAlj4AABC9AABFvwAAHb8AAGS-AAAEPgAAND4AAFQ-AAAcPgAAFL4AAHS-AAC4vQAAbL4AAOi9AAAwvQAARL4AAAk_AAAEPgAAlj4AAJg9AACKvgAAUL0AADC9AABEvgAAFL4AAES-AABkPgAAML0AAK6-AACgvAAAJD4AAIC7AABcPgAARD4AABS-AABdPwAAgj4AAJa-AAAwPQAAyD0AAHC9AADavgAAgLsAAFQ-AADoPQAAf78AADQ-AABcvgAAEL0AADQ-AADgvAAA-D0AAKY-AADIvQAAVD4AAJi9AADYPQAAfD4AAIi9AACoPQAAuL0AAI6-AAAsPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=aICtl-9J6rs","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["16370370032025818170"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4251120675"},"655634337907879876":{"videoId":"655634337907879876","docid":"34-4-4-Z0E2EDB2CBD6D42F7","description":"Factors affecting enzyme action...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3291710/92f7c91dc235e58ed3c6f3ca3f7675b4/564x318_1"},"target":"_self","position":"10","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DH85cHXtBcQM","linkTemplate":"/video/preview/655634337907879876?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cofactor and it's types","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=H85cHXtBcQM\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFAoSNjU1NjM0MzM3OTA3ODc5ODc2WhI2NTU2MzQzMzc5MDc4Nzk4NzZqrw0SATAYACJFGjEACipoaGloY3Rtd3BnY3h2dGtjaGhVQzFDUmRUWDRFNV9IRnplYXdMeGlVSWcSAgASKhDCDw8aDz8TjAOCBCQBgAQrKosBEAEaeIH6BwAG-gYA-_4NBPsG_QID-QwB-f7-AOYGBgL4_QIAAfr7__8AAAD99fYJBgAAAP8K_PcB_gAACAoEAgQAAAAM-wAAAQAAAA4D-P_-AQAABfcMBwP_AAAFAQD9_wAAAP4I_gACAQAABQsG_AAAAAAK_wX-AAAAACAALSv14zs4E0AJSE5QAipzEAAaYAEgADcGMNvYJBHjLOYACSogRBTl2Pv_CeYAVC7spwss2MrzPv8bwunwqwAAAA0I7zujABdqTvm2BAUS4CvA9jkcf9IlB9IWHwn78ugeENMACPw0FAC-Ou7jEtcXEkIbNyAALURbIDs4E0AJSG9QAiqvBhAMGqAGAAAsQgAAAMEAANZCAAAEwgAAAAAAAOBAAAAoQgAAmEEAAKDBAABcwgAAmEEAAIxCAAC4wgAAIMEAAIBCAAAswgAAgEAAABjCAABAwAAAsMEAAARCAACwwQAAPMIAANBBAADgQQAAbMIAAHzCAAA8wgAAcEEAACxCAADIwQAAlEIAADjCAAAwQQAAIMEAAKhBAADAwQAA5kIAAODAAABMwgAAQEEAADBBAABwQQAAGMIAAABCAADgQAAAHMIAAKDAAABAQQAAwMEAAFDCAADgQAAAgL8AANhBAACgQQAAIEIAANDBAADAQQAAoMEAAKhBAACgwAAACMIAAI7CAACAwgAAgEAAAGhCAACQQgAAmMEAACDCAADgwAAAfEIAAJJCAABIwgAA2kIAAMhBAAAkwgAA2EEAAEBBAADQwQAAMMEAAJDBAACIwQAAgEAAAJpCAABAwQAAoEAAACTCAAAgwQAA4EEAANDBAABowgAAGEIAAFTCAAAkwgAAmMEAAJDBAABwwQAA6EEAAGxCAAC4wQAA2MEAADxCAAD4QQAAsMIAAOjCAAA8QgAAoMAAAKDBAAAUwgAAoMAAAIjBAACYwQAA4MEAAGjCAAAEQgAADEIAAKDBAAAswgAA4EEAAFjCAADwwQAAQEAAAEDBAAAYwgAAaEIAAOhBAADYQQAAuMEAAEzCAACuwgAA4EAAAMDAAABAQgAAmkIAABBCAADAQAAAiEEAAABBAACYwQAAfMIAAFDBAABAQgAAgD8AAIA_AADAwAAAgEAAAKhBAACAwAAAGEIAAMjBAABwQQAAYMEAAKjBAABYwgAABEIAACxCAADIwQAAeMIAAFjCAAA0QgAA4MAAAHRCAADAQAAA0MEAAEDAAABIwgAAPEIAAERCAACoQQAA4EEAAKLCAAAwQQAAsMEAALDBAACAvwAAuMEAAKDAAABEwgAAiEEAAGxCAABgwgAAEMEAAAjCAABcwgAAUEEAAADCAAB0wgAA0EEAAOjBAADAQAAAAEAAAABCAADAwQAAgL8AAIhBAACeQgAAlsIAAJBBAAAgwgAA4MEgADgTQAlIdVABKo8CEAAagAIAABA9AABwvQAAHD4AAM4-AAAUvgAAbD4AABC9AAD6vgAAmL0AAII-AACAuwAA6L0AAI4-AAA8PgAAuL0AAFA9AAAQPQAAmD0AAHA9AAAXPwAAfz8AAIC7AADovQAADD4AAKA8AACoPQAAmL0AAKC8AADgPAAAiD0AAEC8AACAuwAAmr4AADQ-AAAUPgAA-L0AAIg9AACYvQAAgr4AAHC9AACSvgAAPL4AADA9AABQvQAA4LwAAMi9AACgPAAAEL0AAIC7AAAcvgAAyD0AAIC7AAA0PgAAbD4AAES-AAAQPQAALz8AAHC9AAA8PgAAnj4AAHC9AAAwPQAAmD0AAHA9IAA4E0AJSHxQASqPAhABGoACAACgPAAAcL0AAKi9AAADvwAAoLwAAKg9AAAkPgAAuD0AAGS-AADoPQAAoDwAAHS-AADIPQAALL4AAPg9AABwvQAA6D0AACk_AABAPAAAjj4AAKC8AADgPAAAJD4AAMi9AACgPAAA6L0AAOi9AAAQvQAA-D0AAFC9AACgPAAABD4AACy-AABwPQAAuD0AADy-AAAkPgAA6D0AAFy-AABQvQAATD4AALg9AACIvQAA4LwAAAS-AACCPgAAf78AADC9AABwPQAAoLwAAMg9AABAvAAAMD0AADQ-AAAwPQAAcD0AAIg9AACAOwAAQLwAALg9AAAQPQAAoLwAAMi9AAAcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=H85cHXtBcQM","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["655634337907879876"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16047807482951932404":{"videoId":"16047807482951932404","docid":"34-8-12-ZDB9760058E25263B","description":"In this video, we’ll discuss the Types of Cofactors that assist enzymes in catalyzing biochemical reactions. Cofactors are non-protein molecules or ions that bind to enzymes to help them function...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1610873/73c24ff5b01b2719f9e71c99c8afec85/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/tcvG0QAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DuzFYEJapSno","linkTemplate":"/video/preview/16047807482951932404?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Types of Cofactors, Biology Lecture | Sabaq.pk","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=uzFYEJapSno\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFgoUMTYwNDc4MDc0ODI5NTE5MzI0MDRaFDE2MDQ3ODA3NDgyOTUxOTMyNDA0aogXEgEwGAAiRRoxAAoqaGh3a2h3ZXBsbGt2aWlvYmhoVUNJcmZwMHRqV1c1UW93SkNKbHNrbFdREgIAEioQwg8PGg8_E-IBggQkAYAEKyqLARABGniB8wkHCP8CAPEH_QoABP4B-voE8vr9_ADo_QUC__4BAPL0_wECAAAABgP8CgkAAAD2-P__8_8BAAoQ_QwEAAAAHfkC9f0AAAAGA_YB_wEAAPX-AwQDAAAAEgoIAf8AAAAIBfz9BAEAAO4R__QAAAAAA_n-AwAAAAAgAC3ZfdY7OBNACUhOUAIqhAIQABrwAW3yQ__i7coBzBj2AQEKvAH0AuH_P-vCAYHxDwHM2ekAFQYIAMrZxv_tBfAA2foOAPoWyv_oBf4BQhEZ_0fdGwDtMwwAH_r3APoNAQDL59f-NCDY_Q4aDQHRAM8B9fry-Q3y7_04LNv_C-mzCsUYKP8mKNkEUvYnAPYbIQbQFwICBR3KAEgXCgLVIBz54QkP_BU03AEA-9z5-CH_-hMEFfmg-g4AFur7-jPD2fkPIBr-Hv8k_ggB_voTChT0-Rj-DhEaCQX4vgT_1xMO9D3pEfv47fILHBf0_AoX_QYV5gn49eoZCOcgAQDkHQT2IA0JFiAALW8-CTs4E0AJSGFQAirPBxAAGsAHt-zYvl13qTyx1MS874zWPXoIOT2KyRu9guEcPU9x3jsMgCe8VNebPc-SkTyvuPY70EcZvm-L6LyXo0-7xmumPsiqUjzply287-VOvhCoQz0YrMC7owUIvuPh_bxEyb88sQ-nvRvkhD2Quy08sAcOvYvA2Ly8hiq88ODHPZuHnT2X8qu8Uc2mPQAbEL3Whem811YHvYPlY72pw2W8oaOwPDZg67yq2os7e3qGPSpHtzwEJqY8JxyAvfFArr2lJeA8DbmzPZN_fD1cQ1-8lhrrO6qZtbsfLIS7uO13u-T-_jyGu8Q8JkCoPZCoKz1v0a682MIHPUTHmb3yO7K8v54vPMLVJj3I6vs8wNFpOpIkGD7KNLs6rvQqvm3F3j2K1Au7R6h-vUw0SDx8ZZ48bePvPRoOxb22uZY84BSxvBFP27xyC6c8kCQQvBDfoz2mYgM9-SuJPQytHj5kllC6qr_5PPIpWzykXbs8qBSwvSZjJr1Jewu8-tePOsil-7z8RBQ8zwMOPd95OL1LD7c7thQLPZFUgL3la4W8TYXXu4easrx6KQa8tZEmPX-rMD27Hcy7r0M1PWi-yb1nO5G7aqBeveJvQL0HDy48x7iXvUxli71yAq47l-IqvcvdDrpA1OS72mpAvbF_CbxUi6k5xe0rvMTQKr0qrBA8ey0tvUdjs73wvog5nHKAPWo8RzxtOgK8bJ45vbTGJb2zKnw75hwhPVleA70eBik7nQULvdGe5Dupi7G76jhDvcEpAj2sj6g5mbQOPf-zBr7_TG85DRazPAh8iT3cqfg4JUeVvPFIPL07mIw5SNEUPOXtyDz9jg06ZDtfvTdb77x3Iso4xasMPqrgJry5kB054WsfPL4n4DyFwCG6OmtBPb4iKT0AGkG5mmgmva8mn73-60i5l_y0PNXtWrqGime4cjLRPc6l2D10NeO3dS5WPVQ7Pj0tZO247sCKvKUhtDyJ-6k3Q7lDvXJNQb1zEHw3YDzjPfiIXT34cHc4uTEivdX00TrafMu4TrYhPWTpQ73Oe5y39f9DO8d5ZL2vY7W3XsKsvV8rfDxS9SM4hyw3vd6bNrsdaI43NlwEvVeu2Lv4dq-4xM8PPjxq6buey5U2hQ-AvM_gKr37TBe4CyxbPab4LryS0Je4XEkBvcre0r0XIgS5sgQDPY2Uc7ujkWu3sIfdugJlE77rpHg4P47GPSveCL6HIrS4ITK2PDs54z0EGwY57ZZGOnXopD0KbuO4rQDXui2X7T3KSGg4W29lvYkKFb7OT_G3IAA4E0AJSG1QASpzEAAaYCQUADkIQezOJjf3Itb69_nlGQsDnPT_B8z_ICkU0u8xv7TuNQAY0k3HmwAAAA315B3AAPZ_CffhQfwdC9HXxgX9erw1XLzb-Rq3IuUT7vvJIgD_SQDK9IzLKMvn3ipiLyAALRG2Djs4E0AJSG9QAiqvBhAMGqAGAACgQQAA4EAAAMBCAABgwQAAgEEAAPBBAAD-QgAAcMEAAMDCAACAwQAAHEIAANDBAAA8wgAAEMIAALhBAABAQAAA0EEAAEBBAADgwAAAoMAAAEhCAADAwQAAoMAAAIBBAABIwgAAwEEAAOBBAABAwQAAmEEAAARCAACgwAAAkkIAABDBAACAwAAA6MEAAJLCAACQwQAAoEIAAABCAAAMQgAAgL8AAKBAAAD-QgAAYEIAAIC_AAAYwgAAcEEAAKjBAABAQgAAcEEAADjCAAAQQQAA-EEAAFDBAADoQQAAVEIAAOTCAADAwAAAgD8AAOBBAAAAQgAAqEEAAEBBAAAcwgAAAMEAAJzCAACAQAAA-MEAABBBAADwwQAATEIAABhCAACQwQAAjkIAANhBAACQwQAAQMIAANBBAAAwQgAAgMAAANrCAADwQQAACMIAABBCAAA0QgAAoEAAAARCAACwQgAAAEEAAAzCAACAwAAAnkIAAEBBAAAMwgAAYEIAAN7CAACAQgAAgMAAAEBAAACWwgAAqMEAAIjBAAB0QgAAqMEAABjCAADAQQAA4EAAAChCAADYwQAAgEEAABBCAADIwQAAMMEAALBBAABwwQAAgEAAACDCAACgQAAAIEEAACDBAACAQAAAPMIAAIjBAADAwQAAIMEAAADAAAB8wgAAcEIAAHzCAAC4wQAAoEEAABDBAACgwgAAAAAAABBBAACIQQAAmEEAAIDAAACgwQAAmsIAAKDBAACqQgAAoEEAAKjBAABUQgAAMMEAAATCAABQQQAA4MAAADDBAAAAAAAAwEEAALDBAAAAwgAAoMEAAKDAAACAwAAAyMEAAMBBAAAEQgAAyMEAAMBAAABgwgAARMIAAFjCAACAwQAAsEEAAJhCAADoQQAAgL8AAIBBAABAQQAALMIAAPjBAAAQwgAAwEAAAMDBAABkwgAAOMIAAOhBAACgQQAAHMIAAJDBAAA0wgAAQEIAANDBAADWwgAAREIAADDBAACwQQAA0MEAALjBAACGQgAAgL8AABDBAAAgQgAAAMIAAODAAABYwgAAoEAgADgTQAlIdVABKo8CEAAagAIAADy-AACAuwAAgLsAACw-AABwvQAAVD4AACQ-AAD6vgAAyL0AAOg9AAAQvQAAqL0AADw-AAA8PgAA4DwAAKC8AABQPQAAgLsAALg9AAANPwAAfz8AALi9AAB0PgAA4LwAAGS-AABAvAAAcL0AAHC9AABQvQAAJD4AABQ-AACAOwAAgr4AAKA8AAAMPgAAEL0AALg9AAAwvQAAqr4AAOi9AABsvgAA6L0AAAQ-AADovQAAQDwAAFC9AAAEPgAAkr4AABy-AADKvgAAVL4AAHC9AABMPgAAXD4AAIA7AACgPAAAFT8AAPi9AADoPQAA7j4AAIi9AABwPQAAQDwAAOg9IAA4E0AJSHxQASqPAhABGoACAACIvQAA-D0AANi9AAAJvwAAyL0AAMi9AABMPgAA4LwAADS-AACIPQAAQDwAAL6-AADYPQAA0r4AAOA8AADgvAAAgj4AAAM_AAD4PQAALD4AALg9AABcPgAAqD0AAEC8AACAuwAAiD0AAFS-AABQPQAAuL0AAPi9AAC4PQAA6D0AANi9AABwPQAAUL0AAFS-AAB8PgAAND4AAIq-AADIvQAARD4AACQ-AACgvAAAgDsAAEA8AABMPgAAf78AALi9AAAUvgAAiD0AAJ4-AABAPAAAFD4AAPg9AAAQvQAAED0AAKC8AADYPQAADL4AAIi9AABwvQAAmD0AAOi9AADYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=uzFYEJapSno","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1156,"cratio":1.66089,"dups":["16047807482951932404"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3134089579"},"10711069408874971521":{"videoId":"10711069408874971521","docid":"34-4-9-Z33370F0D484FC988","description":"11th Biology playlist by GS Academy: • 11th Biology playlist by GS Academy Contact OR Whatsapp FOR Online Learning or FOR MORE Links +92 344 4789 022 Subscribe...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1840711/ba9fd61fada281c84450b664d8afad8b/564x318_1"},"target":"_self","position":"13","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnhkWOMYjnC4","linkTemplate":"/video/preview/10711069408874971521?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cofactor and its types, activator, co enzyme, prosthetic group, gs academy","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nhkWOMYjnC4\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFgoUMTA3MTEwNjk0MDg4NzQ5NzE1MjFaFDEwNzExMDY5NDA4ODc0OTcxNTIxaq4NEgEwGAAiRBowAAopaGhuZW9pc3pqYmp4eW1jaGhVQ3VYWF92R295enVKZ1htMGtGYmlMSFESAgARKhDCDw8aDz8T0QaCBCQBgAQrKosBEAEaeIEJCQUOA_0A_AARBQcH_AIcDwAH9AMDAOMGBwL3_AIA7PsD-gP_AADzA_oHAQAAAP339wL6_gAA-P8EAAQAAAAMBQAABQAAAP8I8f3_AQAABvYO8gEAAAAI-QL8_wAAAPsEBP0AAAAABAED_AAAAAAYCgsBAAAAACAALfBgzDs4E0AJSE5QAipzEAAaYCYUAD8qS7_YLhTpEN3D8SnAMu0FrS3_9wD_SzLHm_UX4OjoQwAOwijklgAAAA0X8QTUAP1_8fSa5R0r_T-P1hk2XfhDMrP2OBUKOg0MF-0KL8cBvwCuAfD_HNXX70gxISAALd9vDjs4E0AJSG9QAiqvBhAMGqAGAABgQQAAAMIAAJBBAABAQQAAhMIAAOBAAACgwAAAbMIAAETCAAAAQgAAIMEAAOjBAABAwAAAwMEAADBBAACgQAAAwEAAAETCAACgwAAAwMAAAEBBAAAcQgAA4MEAAIZCAAAIwgAAFEIAAPDCAACAQQAAEEIAALBBAADgwQAAqMEAAJhBAACsQgAAFEIAAERCAABIQgAA_kIAACDBAACwwQAAGEIAANjBAADoQQAAqMEAAMjBAAA8QgAAoEAAAABCAAAAwQAA2MEAAIA_AABgwQAAgEEAAIDBAACQQQAAGEIAAOBAAADowQAAEEEAANBBAABgQQAAuEEAANBBAABwwgAA8MEAAFBBAACAQAAAoEEAAEDBAACwwQAAIMEAAIBCAACQwgAAQEAAAABAAAC0wgAAAEEAAKhBAADAQAAAwEAAADDBAACgQQAAHMIAAGDBAAAAwAAAcMEAAIJCAAAAQQAA4MEAANDBAABYwgAA8EEAABDBAACCwgAAoMEAACBCAABgQgAAokIAAKhBAAAwQgAAJEIAAEDAAACMQgAAgMIAAHDCAADgwQAA6MEAAFxCAABgwQAAgEAAAEDBAADYQQAAIMIAAGBBAABwQgAA-EEAAEBBAABwwgAAaEIAAKBAAAAMwgAAkMEAAIrCAABcwgAA8EEAAOBAAAAQwQAAsMEAACBBAABMwgAAAEIAAODAAADwwQAAVEIAADjCAADAQAAAAEIAAEDCAAD4QQAAEMIAAKjBAACYQQAA4MAAAOBAAADYQQAAmEEAAKBBAADYQgAAoEEAAIA_AAAgwQAAQEAAAARCAAAAAAAAgMEAAGBCAACAwQAAbMIAAHTCAADIQQAAgEEAAMBBAACOwgAAqMIAALBBAABAQQAAAEIAAGBCAACwQQAAQEAAAJBBAABAQAAAQEEAAGTCAACgwAAAMEEAAATCAACewgAAoMAAAP5CAACQwgAAyMEAADBBAABQwQAA6EEAAADDAADYwQAAoEEAADDCAAAwwQAAJEIAAJDCAAAYQgAAoEAAAADCAABoQgAAMMIAABDBAAAowgAAcEEgADgTQAlIdVABKo8CEAAagAIAAMq-AAAQPQAAiD0AACw-AAAEPgAAqD0AANg9AAA9vwAAVL4AAJg9AACIPQAAgLsAAEA8AABEPgAAJL4AADw-AACoPQAAMD0AAHw-AAAHPwAAfz8AAHC9AABsPgAADL4AACS-AAAQPQAA-L0AAEy-AAAkvgAAyD0AAEQ-AAD4PQAAyL0AAKA8AADgPAAAiD0AAEA8AAAsvgAAor4AACS-AACevgAA4DwAAIA7AAAQvQAATL4AACy-AABsPgAAxr4AABC9AACevgAA2D0AAIC7AACIPQAATD4AAIK-AACYvQAADz8AAJg9AAAEPgAArj4AABC9AACIPQAAgDsAAHC9IAA4E0AJSHxQASqPAhABGoACAAAEvgAAED0AAAS-AAALvwAAdL4AABw-AAA8PgAAoLwAADS-AACIPQAAfL4AAJ6-AACovQAAor4AACw-AADgPAAAED0AACE_AAC4PQAApj4AADQ-AABQPQAAFL4AAEA8AADgvAAA4LwAADC9AADgPAAADL4AAEy-AAAwPQAAED0AAPg9AADovQAA2D0AABC9AAAsPgAAND4AALa-AADovQAAmD0AALY-AACOPgAALL4AAKg9AACgPAAAf78AAIi9AADYPQAAPL4AACQ-AAAMvgAAED0AALg9AABsPgAAiD0AAKA8AAA8PgAANL4AACw-AAAwPQAAJD4AAFA9AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=nhkWOMYjnC4","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10711069408874971521"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9550436003846901545":{"videoId":"9550436003846901545","docid":"34-10-5-ZCED2564E91043734","description":"In this lecture i have explained cofactors and its types. hope this video will be beneficial. Subscribe our channel for more updates. #cofactor #Enzymes #Typesofcofactor #enzymesbiology...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4074749/6ba688a866378fe61db684a991dafb95/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mle0LAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKM_NOuZi2YE","linkTemplate":"/video/preview/9550436003846901545?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Types of Cofactors | Cofactors Class 11 Biology | Enzymes","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KM_NOuZi2YE\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFQoTOTU1MDQzNjAwMzg0NjkwMTU0NVoTOTU1MDQzNjAwMzg0NjkwMTU0NWqIFxIBMBgAIkUaMQAKKmhoZmR0cXlwZXpydXpxcGRoaFVDc3BlTjBEQll6SjBqWjhoaUtTOEFQZxICABIqEMIPDxoPPxOeBIIEJAGABCsqiwEQARp4gf4HCAT8BAD8AA8FBwf8AQcBB_r4__8A8QH_BfYBAAD69f0H_QAAAPwF9fz_AAAA_PwE-_z-AAAEBvsH-QAAAA79CfP9AAAABgv6_f4BAAD8-AL_Av8AAA0IAQUAAAAA_v_9-wIAAAD_BgX9AAAAAAcFCQMAAAAAIAAtu0reOzgTQAlITlACKoQCEAAa8AFr9vUBtvEE_Dzy3gAXEugAgQUL_zwU9gDZ-f8Avw7Y__IU-QDo8BX_7_0TAd0KBwDw7PIAKwITAAj3GgAq9g8BARQOAUH6-gAbCgkAHPn6AOkd_P8N-hf_HO73AAcRAf4s8w3-7P3jAu8W8QD0AxMBFvsP_goCEAEFFQ8A_QkO_voSB_z8-AUF7hT2_QIIJf8I_uEAExgEAusP_QQGCPv_DAL8_jAE5wEsC_8ICvsG_wkHBPwaC_r6I-kFBeoQCQvx5Qb5BfTvBPMCC_sg8AUE-vYY9gQPCPkJF-8A9PUJ9vv_BPb0AhIA_QAGDu_-8QMgAC1uJ0g7OBNACUhhUAIqzwcQABrAB3XLAr-EVSs9mEEGvbRkRDyXSpk9047RPMLKlzxxdkY8Kw0mvdiLOjsb94E8U0MWvbIv4b6OiHM8gsDSulG_iz4dbBY9m-hzPRl0or0Moh89ikG7u_Wha76E0wc9dDXDuyZnsj2zMQY70dObPPLHOT0nb1s97NElPXAtbjujK4e8s1aZvIlH_byTnai9a3ARveID2z2Lh_e6wVPIvHcx7T2PACm9dpYRPHDxi7zs2Iy6QyLIOboRlr0ZPAg8vn0HPbWMJD4_vum8ZGuHPP8sLD205mc91BayO1ssQD1HaaG67bQYu4GlxLxhy2Y9kbRAPLu7qT2SJIi9cihZujJ9qr33iYg9cXxlu6j8Cz6lg5U9JI6GvBSbCr1dNU89-CVRPM1hMj1lUVg8-05dvO69vj25yk69f6yWPMdU8Dxiloc9KqO2PGLvKj1-QLk6jtj-umycCD1mcVU9C9SivN3zdDvvDt88NfHROSpZib0ldDi7prXMuvES_D3AKJy9rShru2PUtTxOojk97D1ZuQXOqTtS--M7lHivPGgN-TwMyEM9ShuYvKrPujxjuPq8KiSyOqUTST3IMqM97gvHu8OqsL1lwzq96CfBu7qYUD0fG1e9YmqmPPEpBT16efA812QVPNjugzyNXg29oJXNu86K6L1Rn-Q8jX8uOlalSL3EGhm8YKDWOxt0yD1AN089VwZVuwEba70JCDw90_Pyub2mrDysuOc89autOisbUT2nraa95-DbumYVtjxeb3E9PpKzOX4Ji7y-JYq98E0tObcp_Tp_ukY9NfpOOSZeVDz2YT283vELOrX0jTxwmOi8a6DiN2cBJLyJfJc8g2ilN2zzlb0mX_-8scBEuFqhSLyLvFE8zhMfOT4fyrx1XAg9pns0uZjUtTz0QjA9yrTOtzf_Dz0Y2zq9bGDEtdSJWj1HPNQ595d2OXEHRb1nJCe9Qh_cN972jjzhkLK87iUIOcOAJTznjo69w2ZyOUE7sTyzq7U8eSFWOe-kjTve9i693eY8uHLrBbyGPjO9QZIGOK_YGTzz2pa9SVoft73YgzvKppw8BXkTN0pRqL1jbu08-wU-OD9wNb16g5Q8GowoOEySQj3dmB66cUwHOJIS8TwbDUC99GZjOOuEYT0rGNW8PJPxuHePIDykn7q8-AxTuC8lATvnOo08SSaJtyL8i7yIH9K81G1IuL2vBT2lSQm-rZ6FuELLXz1jGrc9bpCOOPCyNb1czM89DEYKucOV2Ly_Olg8eZttuHu6P71RCw-9yB-3tyAAOBNACUhtUAEqcxAAGmAYAwAZ9Az33ChX3PDJERgaJjkSCtkN__jkABIt9p0cR8TG8TT_FqH046MAAAAN9MMXzgD5euTsvOX2QPX0pOwrGn_qLym02CYE-czCDcnTyhPlHkYA_BOo90X02SxJKhkgAC2L1xM7OBNACUhvUAIqrwYQDBqgBgAA6MEAAAhCAAAkQgAAPMIAAIJCAAAwwgAAJEIAACTCAADowQAAmEEAAPBBAABowgAAYMIAAIDAAABgQgAAoMEAANDBAABwQQAAkEEAAAzCAAA8wgAAiEEAAChCAAAYQgAAHEIAADjCAAAswgAA0sIAAIJCAAAQQQAAiEEAAARCAABQwQAAcEIAAATCAADIwQAA4MAAAMBCAADYwQAAwEEAAABBAAAAAAAAAEEAAKBBAADAQAAAAAAAAGDBAADowQAAnkIAAMDAAABMwgAAuEEAAABCAAAAwgAAcEIAACzCAACUwgAAwMEAABDCAAAwwQAAIEIAALhBAAAQQQAAAMIAACxCAACwwQAAyEEAAIbCAAAQQQAAJMIAABRCAABAQgAAjsIAACxCAADwQQAArMIAAOhBAADgwQAAYEIAAOhCAADgwQAAmEEAAMjBAAC4QQAADMIAAEBBAAD4QQAAhEIAAJxCAABEwgAAcMIAAHRCAAAYwgAAEMIAAEBBAACIwgAAMEIAAPhBAAD4QQAAcMEAAEDCAACAPwAAKEIAALTCAAAAAAAAoMEAAODBAACEQgAAaMIAABBCAABwQgAAUEEAACzCAABgwQAAUEEAADBBAADQwQAA4MAAAEBBAAAQwQAAiMIAABRCAADgwQAAAMAAAKBBAABAwAAAYMEAAIhBAAA4wgAAjsIAAMDAAACgwQAAQMIAAJhBAAAAQgAADEIAABBCAABwQQAAMMEAADTCAAAQwgAAAMEAADxCAABAwQAAMEIAAKBBAABowgAAkkIAAPhBAAAwwQAAuMEAAIC_AADAQAAA0MEAAKBAAAAUQgAAgL8AACDBAAAYwgAAwEEAAJTCAACYQQAAcMIAAEjCAADwwQAAYEEAAAhCAAC8QgAAMEEAAGBBAAC4QQAAGEIAAJjBAABUwgAAAAAAAKhBAACAwAAAuMEAAJBBAABkQgAALEIAAFzCAAAwQQAAkEEAANBBAACIwQAATMIAALBBAABgwQAAQMAAAO7CAACOwgAA4EEAAHDBAADgQAAA8EEAAIjBAACwwQAAmsIAAATCIAA4E0AJSHVQASqPAhAAGoACAAB8vgAAyL0AAEA8AACaPgAAgLsAAAw-AACoPQAA-r4AAIa-AAB0PgAAQLwAAOC8AAAEPgAAoj4AAHC9AACAOwAALD4AAIA7AADoPQAAGz8AAH8_AADIvQAAyD0AAJi9AAAsvgAA4LwAADA9AAAkvgAAQDwAAPg9AAAMPgAA2D0AALa-AACAuwAAfD4AAOi9AAAQPQAAED0AAI6-AAC4vQAAyr4AAOi9AABAPAAANL4AAIA7AAAwvQAA-D0AAJa-AABAvAAAmr4AAPi9AAAkvgAARD4AAAw-AAAwvQAAML0AADU_AACIvQAADD4AALI-AADYvQAAUL0AAOC8AAAcPiAAOBNACUh8UAEqjwIQARqAAgAA2L0AAII-AAAkvgAAGb8AAFS-AACovQAAVD4AAHC9AAAQvQAAoLwAAEC8AADqvgAAoLwAANK-AAD4PQAAcL0AALg9AADePgAAUL0AACQ-AABQPQAAmD0AAEA8AABAPAAAgLsAAIi9AABsvgAAED0AADS-AABcvgAA2D0AAAQ-AABUvgAAZD4AAEC8AABcvgAALD4AAFw-AACevgAAmL0AAFA9AABkPgAAEL0AAEA8AACYvQAAyD0AAH-_AACIPQAAmL0AANi9AAAEPgAAoLwAAAQ-AAAsPgAA4LwAAKg9AABAvAAAdD4AABy-AACovQAADL4AADA9AABAvAAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=KM_NOuZi2YE","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9550436003846901545"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4109395059"},"5856518616715463098":{"videoId":"5856518616715463098","docid":"34-3-4-ZBE037ECE2847B268","description":"CoFactor Matrix - Learn how to find the inverse of a 3x3 matrix and inverse of 2x2 matrix using cofator matrix, especial in solving system of linear equations. Learn how to find the inverse of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4282970/74f806dc91cddb25d251f223d4c2f2d8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_jhRcAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dk41lPRKRpjc","linkTemplate":"/video/preview/5856518616715463098?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"CoFactor Matrix - Calculate the Inverse of a 3×3 Matrix Using the Cofactor Approach","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=k41lPRKRpjc\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFQoTNTg1NjUxODYxNjcxNTQ2MzA5OFoTNTg1NjUxODYxNjcxNTQ2MzA5OGrBDxIBMBgAIkUaMQAKKmhod3VsYXduanJudXl2Z2RoaFVDQjBaVWJ1T0VBZU42NGFVR081TXk1URICABIqEMIPDxoPPxOyB4IEJAGABCsqiwEQARp4gfzwAfz9AwD1_goMAgb9AQ8M-gII_wAA9QX1_fYC_wDt-RD8_f8AAPoK-wMCAAAABhb8-v_9AQAG_vj1BAAAABkC_QD4AAAADRj7Av4BAAAEBgQHA_8AAAMCCAcAAAAA-gYBBgQBAAAQ-RAAAAAAAP8BCgb_AAAAIAAtxcPcOzgTQAlITlACKoQCEAAa8AF_DfkB6-flAtUr0wDkC_QB3gUX_xsU8gCS4_UDtPQNAO0Z9wD8APn-7wXyAMdB9AD8-c7-9wDYACPY8f828xQBFRziASPbCgArAC0BFuru_tDuFv0U0-8B_QHPABz_2__-5ScAEvjDARXs4QAuKi4BDQgqAwrlFv7b2SEC0dn9ABXk9gDzFRADDOUg_a7-GwfoC_ADDQXz-twq9AIeuPUE5_P8-hQ86v8L9fsMBeXvDNW4__4G9u_76QwjA94k5v7z9yQC5Qf8-BQt9gfu4OzyCPviCvjz7QPy5wP9GgAZ_hzz_ALxG_Xz7QD4Eg4U9fEgAC31iho7OBNACUhhUAIqcxAAGmAVBABMFzHB3P8k_PvAE-_v9BPZNtr3_-bz_x4X77g9GcXe6BwACcAJxaUAAAAD5PgU_QDXdOPa0UgLS9rDt-M_I3_7FTzkzDoW4gT5KPn-CeXw7goA4_SMJFU8rCgFIRMgAC0N4Bk7OBNACUhvUAIqrwYQDBqgBgAAgEEAAADAAACwQQAAMMIAAPDBAACwQQAAzEIAAADBAAB0wgAA4MAAADRCAABAwAAA8MEAAHBBAAAwwQAA2MEAAEBCAAAAwAAAokIAAARCAABAwgAACMIAAKTCAAAgQgAA4MAAABDBAAAUwgAAAAAAAMDAAACKQgAAoMEAAIDBAACowQAAAEIAAHzCAAAIwgAAFMIAACxCAADQQQAAIEIAALBBAACQQQAAgMAAAIDAAACAwAAAZMIAAHBCAABgQQAAKEIAABRCAABgwQAAgEAAAOjBAACIQgAAQEEAABDCAADKwgAAFEIAAADAAACoQgAAwEEAABDBAABEwgAAgMEAAEDBAACAwgAAMMIAAHTCAACIwQAALMIAANhBAABUQgAAgEAAAFBCAACIQQAAjMIAAKTCAAAQQQAAgD8AAJRCAAA0wgAAsEIAABDBAABwwgAAmEEAAMxCAADQwQAAYEEAAAxCAAAwQgAAJMIAAOhBAACgQAAAwEAAAOhBAAAkwgAAgL8AADxCAADoQQAAVEIAAOjBAAC4QQAAYMEAAKhBAAAowgAAZEIAAMhBAAB4QgAAEEEAAPhBAAAkQgAA8EEAAEDBAAC4QQAAgEEAAExCAACAQQAANMIAANhBAACGwgAACMIAAFBBAADYQQAAFMIAAABBAACAPwAAUMEAAI7CAAAYwgAAAMAAAADAAAC4wQAAMMEAAIpCAADAQAAAYEEAAHDBAAAQwQAAQMIAAIrCAABYQgAAAMAAAGhCAACAQAAAGEIAAFBCAAAAAAAA-MEAAABBAAAQwgAAkMIAAHBBAAAAwQAALMIAAAjCAABIwgAAqsIAAGBBAABAwgAA-EEAAIbCAAD4QQAA0EEAAHBBAABAQgAAYEEAALhBAAAAAAAA6EEAALDBAADAwQAAEEIAAIxCAABwwQAAoMEAAAxCAADgQQAAMMEAABBBAACmQgAAlsIAABjCAAAkwgAAQEEAADhCAAAowgAA6MEAAGRCAADowQAAQEAAAABAAABQwQAAKMIAANjBAAAAwQAA6EEAACDCAABUQgAAEEEAAGzCIAA4E0AJSHVQASqPAhAAGoACAAAEvgAAyL0AAGQ-AABsPgAAND4AAIo-AACgPAAAOb8AAIq-AACAOwAALD4AAKi9AAAsPgAAcD0AAKi9AACgvAAALD4AAPg9AAC4vQAAuj4AAH8_AADgPAAAmD0AABQ-AABAPAAAmD0AAAQ-AABcvgAAVD4AADC9AACSPgAAqL0AAFS-AABAvAAAsj4AAOC8AABwvQAAXL4AAL6-AADSvgAAVL4AALi9AACovQAAnr4AAHC9AACoPQAArj4AAAy-AADYPQAAJL4AAIC7AAAcvgAA4LwAAAw-AACuvgAAqL0AAEc_AAAkvgAAJD4AAGw-AAAQvQAAoDwAANg9AADYvSAAOBNACUh8UAEqjwIQARqAAgAAfL4AAFw-AADIPQAAGb8AALq-AAC4vQAAhj4AADQ-AABMPgAAuD0AAPi9AAD4vQAA4LwAAOC8AABAPAAAoDwAAIi9AAAZPwAAED0AAAU_AADYPQAANL4AAES-AAA0vgAABL4AAIq-AABUPgAABD4AABy-AACAOwAAoDwAABw-AACYvQAA6D0AAEw-AADIvQAARD4AAJ4-AACWvgAAVD4AANg9AABQvQAA4DwAALi9AADgPAAAgDsAAH-_AAAEPgAABL4AAFS-AACgvAAAPD4AAHA9AABEPgAAgj4AADw-AADgvAAA-D0AAKg9AABQPQAAEL0AAGy-AABQvQAAFD4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=k41lPRKRpjc","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5856518616715463098"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1212825838"},"14388189241908552568":{"videoId":"14388189241908552568","docid":"34-8-16-ZF22C2A96F7D0D717","description":"Unlock the secrets of matrix mathematics with our detailed tutorial on finding the cofactors of 2x2 and 3x3 matrices. This video is perfect for students and anyone looking to strengthen their...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2731391/2573562956fd97115d29d2947e111a66/564x318_1"},"target":"_self","position":"16","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMLQkCZHUSKw","linkTemplate":"/video/preview/14388189241908552568?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculating Cofactors: Step-by-Step Guide for 2x2 and 3x3 Matrices.","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MLQkCZHUSKw\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFgoUMTQzODgxODkyNDE5MDg1NTI1NjhaFDE0Mzg4MTg5MjQxOTA4NTUyNTY4aq8NEgEwGAAiRRoxAAoqaGh2c2JiZWJheW9kb2phY2hoVUNMUUY4QmppcHpRamlRUTlqWG5fTklREgIAEioQwg8PGg8_E60JggQkAYAEKyqLARABGniB6vj8-wL-AAP_BQEOBv4CFQr7_PQCAgDz8Pn_BQL_APYBFAEBAAAA_Qz8BQwAAAAGCPj7-P0BABLr-_wCAAAAD_TrAf4AAAAHDPn9_gEAAP_0BAkE_wAAAvYFBwAAAAD5AfoL_wAAABUCCAEAAAAAAvcGBwAAAAAgAC2OTss7OBNACUhOUAIqcxAAGmAEGgA-GSDf1xEW-cfb9DYCyvjSFOQP_-8B_wX_1ccY-9rt7AP_J4Ee6acAAAAuBtMKJwDrafTB0RwcDQm9rPkZIXIAAzcHOvoIFwgXCfoBH8He8zAAw9MRFhP93gAeSDEgAC37zio7OBNACUhvUAIqrwYQDBqgBgAAQEEAAIDBAABUQgAAcMIAAIjBAACIQQAAmEIAAPjBAACCwgAAcMEAAIBBAACQwQAASMIAAOjBAACAQQAAuMEAAIA_AAA8wgAAQMAAAEBBAABQQQAAjMIAAFBBAAAIQgAAoMAAALhBAACQwQAA8MEAAIhBAADwQQAAIMEAAJZCAAAowgAA-MEAANDCAABAwQAAoEAAAMZCAACQQQAAAMEAAIC_AAAMQgAAEEIAAPhBAADgQQAAQMIAABhCAAAQQgAAxkIAAHBCAAB0wgAAoMAAANhBAADAwAAAREIAADDBAABswgAA4EEAANhBAAAIQgAAQMEAAPjBAACAwAAAgsIAAHBBAAAcwgAAJMIAAAAAAAAYwgAAZMIAAJRCAABkQgAAAMIAAARCAACAwAAAtMIAAJrCAADQwQAATEIAAADBAACAwgAAFEIAAJDBAAA0QgAAQEAAALBBAACKQgAAQEIAANhBAACGwgAAHEIAAP5CAADQwQAAgMIAACRCAACiwgAAwEEAAHhCAACGQgAAiEEAAHDCAABcQgAAHEIAADzCAABUwgAAUEIAAIA_AAC4QQAAAEAAAHxCAACSQgAAQMEAAADCAADYQQAATMIAAMDBAADAQQAA-MEAAMjBAACuwgAACMIAACTCAADIwQAAUMEAAIA_AABAwAAAoMEAAOjBAACgwAAAoEEAALBBAACYwQAA1sIAAIBBAAAAAAAAwMAAACBBAADAQAAAgD8AADjCAAD4wQAA0EEAAABBAAA0wgAAWEIAAGDBAACawgAA4EAAAMhBAABQwQAAOMIAAGBBAAAQQQAAiMEAAIC_AAAIwgAAAMEAAIC_AABQwQAA8EEAAKLCAABQQQAAwMEAAIC_AACAQAAAAMAAAChCAACqQgAABEIAAJDBAADIwQAAoEAAAADBAAA4wgAA-MEAAAAAAACwQQAAWMIAAKBAAABQQQAAcMEAAMjBAAA4wgAAJEIAAHRCAAAwwgAAHMIAABRCAACwwQAAQMAAACjCAAAAwgAA0EEAAMjBAACgQAAANMIAAEBAAACYwQAACMIAAJDBIAA4E0AJSHVQASqPAhAAGoACAAB0vgAAQDwAABw-AAC4PQAAMD0AALY-AACYPQAAVb8AAFS-AADgvAAAqL0AABS-AADIPQAAqD0AAHy-AABwPQAAbD4AAPg9AAAsPgAAOz8AAH8_AACIvQAAML0AAKo-AADYvQAAZD4AABQ-AABUvgAALD4AABy-AABcPgAAlr4AAOA8AABUvgAAuj4AAIg9AADovQAAiL0AAMq-AAAPvwAAoLwAAIA7AADoPQAAfL4AAAS-AAAsPgAA1j4AAKK-AAA8PgAAUL0AAOA8AAB0vgAAbD4AAKI-AAAFvwAAML0AAEc_AADgPAAAcL0AAKI-AACIvQAAnj4AAMg9AACAuyAAOBNACUh8UAEqjwIQARqAAgAA3r4AAMY-AADIPQAAB78AACS-AACYvQAA8j4AADC9AACuPgAAmD0AAKC8AABAPAAAUL0AAAy-AAA0PgAAcD0AACS-AAAjPwAADL4AAOY-AAAwPQAAXL4AAOC8AAAEvgAAuL0AACS-AACYPQAAdD4AAGS-AACGvgAAUD0AAEQ-AACuvgAA4DwAAJo-AACAOwAAdD4AAK4-AADmvgAAuL0AAEA8AACIPQAAcD0AABS-AACCPgAAuL0AAH-_AACoPQAAUD0AAI6-AAAwPQAAZD4AADC9AABcPgAApj4AAEQ-AABQvQAAcL0AAOA8AADIPQAAgLsAAFS-AAB0PgAABD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=MLQkCZHUSKw","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14388189241908552568"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9148667687347532008":{"videoId":"9148667687347532008","docid":"34-10-4-ZD3439C69E8E2EB30","description":"The Co factor method is a linear algebra concept used to find the inverse of a matrix. We go through it step by step in this video! - Follow us on Twitter at / afmatheng Follow us on Facebook at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2029558/6141acf51c94e24e141483d6ddb8da1d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/VooGhQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcADUMC2T6S4","linkTemplate":"/video/preview/9148667687347532008?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Using the Cofactor Method to Solve for the Inverse of a Matrix - Linear Algebra","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cADUMC2T6S4\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFQoTOTE0ODY2NzY4NzM0NzUzMjAwOFoTOTE0ODY2NzY4NzM0NzUzMjAwOGq2DxIBMBgAIkUaMQAKKmhoYmNpeHhmZXBxaGNjZ2NoaFVDM2JhM0c4UEZxTDdRRGhJMVZieTRqQRICABIqEMIPDxoPPxP4BIIEJAGABCsqiwEQARp4gf799_3_AgD1_goMAgb8ARAIAwv2AQEA9QX1_fUC_wD3-QD3AQAAAPoD8ggHAAAADQv58wH-AQAG_vj1BAAAABgE_Ar_AAAAEBD6-f4BAAADAgcBA_8AAAUC_QQAAAAA-AsH-vv_AAD9-Q74AAAAAPv-DP7_AAAAIAAtCm_ZOzgTQAlITlACKoQCEAAa8AF_DSf_pyXZ_9znI_8TQu0DsCk__z9J2f_Z7C4B7vkMAcYS3QDeMgf_2v7-ANkQ_P8jAbUAycPjADLmF___4uUA--_1ARfL6wJUAxz_Duv7_t7R___u-e4B9vDGACT_0P8JxyL-JfzxBukEswJGEgsALRVHANMJUwEAyQsG4hfuBufV0P0CFOcNEN0p_MfnJQIP4vwK4BAF-54n8_0D4uAIFRQa-yT-u_oT1ucPICTlB8r96P8VAdUBGykr_s308fPzFCcDs8T29Qn4Dgf9-vLuGAjm-gYC7xAzF_QQJc__Cd7AAALcDPbyvhvkAAxC9A0gAC3clO86OBNACUhhUAIqcxAAGmAL7QAk5Cvz-P0M6QLQCvEJBQHZH-cJANznAAgfAdQSCsPHBgQAOuINyrcAAAAi-O0Q5AAAXNjt-yABG-jEyPkn-3_rFOvY9BH_1PUmPvDmAer7RD8ABArGG3IZ1SsdFjMgAC2N7Tk7OBNACUhvUAIqrwYQDBqgBgAAOEIAABBBAACOQgAAjsIAACTCAACgQQAAFEIAAIBBAADQwQAAiEEAAPBBAAC4QQAAgMEAALhBAAAkQgAAgEEAAIhBAAC4wQAAVEIAAIC_AAAQwgAAKMIAAKTCAABkQgAAQMEAAOBAAAAEQgAA4EAAAOjBAAAQQQAA0MEAAKBBAAAgwgAACEIAAIzCAAAUQgAA2MEAAOBCAADAwQAA6EEAALBBAAAgwQAAcMEAABDCAAAQQgAAiMIAAKDAAABoQgAAkEEAAJhBAADowQAA8MEAAIjBAABEQgAAgL8AAKBBAAAIwgAAAMEAAHxCAABAQgAAiEEAAILCAABwwgAAMMEAAIC_AAA8wgAAYMEAAIBBAACAwgAA2MEAADBCAACCQgAAyMEAAJ5CAABowgAARMIAANDBAABMwgAAQEAAAHBBAABAwAAAikIAAGBBAADAQQAA6MEAAIBCAADoQQAAwMAAAADCAAAgwgAAPMIAAEhCAACSwgAAqEEAAERCAACSwgAAYMIAABxCAAAIQgAAdEIAAOjBAABgwQAAPEIAAADCAACGwgAACEIAAAxCAAAoQgAAgD8AAGRCAADgQAAACEIAAITCAACgQAAAEMEAADBCAACgQAAAMMIAALjBAABYwgAAHMIAABzCAABwQQAAEMEAAKjBAAAwQQAAsMEAAMDCAAAAAAAAAEEAAGBBAABAwQAAkEEAAMRCAAAwwgAAjkIAAABAAAAEQgAACMIAAGzCAABgQQAAkMEAALjBAAAswgAABEIAAGBBAABgwQAA4EAAAKDAAAC4QQAAyMEAAIpCAABQwQAAAMIAAABBAADYwQAAOMIAAFjCAACawgAA4EAAAODBAADYQQAA0EEAABDBAACYQQAA8EEAAKDAAABUQgAAoEIAAEDBAACGwgAA8EEAAJjBAADowQAAiMIAABBBAACMwgAATMIAAMBBAAAAQgAAusIAAKjBAADYwQAA2MEAADRCAAA4wgAAcMIAADjCAABwwQAAoMAAAAhCAADYwQAAuMEAAGDBAADgQQAAXEIAAIDAAACQQQAAFEIAAADCIAA4E0AJSHVQASqPAhAAGoACAACAuwAAjr4AAI4-AAA0PgAAbD4AALY-AAAcvgAAQ78AAOK-AADgPAAAfD4AAIK-AAC6PgAA6D0AAIq-AACgvAAAlj4AAKg9AABwPQAA7j4AAH8_AACoPQAAiD0AAHA9AAB0vgAAuD0AAOo-AAA8vgAAgLsAADA9AAC-PgAADL4AAFS-AAA0PgAAmj4AAKg9AABwPQAAiL0AAGy-AACavgAA3r4AAFA9AACIPQAAdL4AADS-AADCPgAAzj4AAHS-AAD4PQAAtr4AAKg9AABMvgAA6D0AAKg9AACWvgAARL4AAHU_AAA8vgAARD4AAKA8AACKvgAA2L0AAEC8AAB8viAAOBNACUh8UAEqjwIQARqAAgAAUL0AAK4-AACYPQAAIb8AAAm_AABAvAAA2j4AAJI-AACuPgAALD4AAFC9AAB8vgAAFL4AANi9AACIvQAAMD0AACS-AAAnPwAAlr4AALY-AABQPQAAAb8AABS-AACovQAAHL4AAEC8AAA8vgAAdD4AADC9AAB0vgAAQLwAAAQ-AABkvgAAyD0AADw-AAC4PQAAHT8AANo-AACCvgAAHL4AALI-AAAQvQAAqL0AAFy-AAAUPgAAdD4AAH-_AABUPgAAFL4AALa-AADYvQAAhj4AAFQ-AABsPgAAoLwAAHQ-AADIvQAAED0AAFw-AAD4PQAAMD0AAK6-AABUvgAAsj4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=cADUMC2T6S4","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9148667687347532008"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3282397294"},"9498893947626164161":{"videoId":"9498893947626164161","docid":"34-10-13-Z13A4727FED631B9C","description":"I teach how to use cofactor expansion to find the determinant of matrices. I also teach that the determinants of a triangular matrix are the product of diagonal entries. LIKE AND Share THE Video...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/403057/71eb9328335c591ecf300783d50e4274/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/i1XkswAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZAECu1mkFY8","linkTemplate":"/video/preview/9498893947626164161?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"[Linear Algebra] Cofactor Expansion","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ZAECu1mkFY8\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFQoTOTQ5ODg5Mzk0NzYyNjE2NDE2MVoTOTQ5ODg5Mzk0NzYyNjE2NDE2MWqTFxIBMBgAIkUaMQAKKmhoY2NhZndpcG14Y2NoZ2RoaFVDR1lTZlpiUHAzQmlBRnM1MzFQQlk3ZxICABIqEMIPDxoPPxPbBYIEJAGABCsqiwEQARp4gfsL_gD_AQAD-Q4OBgv6Ag_9BgL3AAAA7f0BBAkAAAAGBfsDDQEAAAL9-AIJAAAA_v0L_fP-AQAT9QEAAwAAAAn3AAf9AAAADQf_-v4BAAADAgcBA_8AAAz-_QEAAAAAAw35_f__AADxCgz1AAAAAAEEBv7_AAAAIAAtCGHVOzgTQAlITlACKoQCEAAa8AF_IQwC4Pi4Ad4P4gDJFeL_ngT0AP0u1wDA8goAxeziAQn95ADZ6OUB2wn1AMAHAf8h7tz_8OvuAE0B7_8u5QcB4yT9AfDe7QAyJBcA_gXq___-N_8F8QgCA-zeAOny3f8J8xH68_zl--8DyAIO_jgB5_opBBnbJAXg0AsB4wIKAQno7P8FB_YACuv_A-sHIgER3u_9Gev5_Okd6wIh7xv89dz0-gcp2f4n8QQGDBEAA8XtE_3b6wkL_CEYCeknAvr0-CIC2fsJ-PP2__8l6vgA0P76_gfdBxH1DP__7egA_fb77f_LBgnz7uMEAOYh-vIgAC12SCQ7OBNACUhhUAIqzwcQABrAB23I375z99Q8_gGgPPcL0bx62UA8eGz6vOOgub0cbYs8XgUjvBR2ET7fDt68Jr6DOxToM77779w8WdOGvP29dD6SVEu9A7HsPHE9Wr7nFr89hUyovB2Rz73kCok9jcIBvASjV717yAy7paWNvKDi2D1hPJ68xU-IvKmqyLuyXSa9X8EMvXG1CLvimxw95yBDvaWa_juVybq8eOXhuyDrCT7Fbdm8qpk1vPRn5DxOLIu8xMEvvTgv7r0nEUE9uIwgvfDnyjsfg1U94o-HPPRhB73DDYi9Lp2FPENu67w5LLg9ncmIPHTPOj22nDA9CIWxO1Uivz1nrt08X--8uw1TK75csqY7Yro1vJXcXD0GQjc9cLbIOcZhqr2rW5097tSaOyNsdLsQ37I6UDqRvGAhEz0b3IE9TojOO8LUG72zYS09bx49vODsAL3gWIY8nTnaPFuVlD3qDqi9MDCGvEXU6Tyo0dq8nGCsu0kV4LzP93A703LaujPJkz2y53w8NBH0O0QgzTwTOIa6ohUOPGBnhD35Eb-9PWsSPFd7OL0vh_29KqBmOufMUT24oIg9WX0evFs-lz34pMO9qNQ6u96sAT0s0pm9pvSKuzCrU7nuzpq8bZOGu4Cvkr0z8Cu7lH9SvP4s1rxhXKC88747vCAfGT3YYZw9JKwVu7jSBj0IVtW9ProSumVu_j0JQpg9-ASiOt4e5D1PxMc8iFcjOZYvHj2u2I-99j_hulZhqL1fcBe946CtuXNWWr1HEHg72rldO08jHT6VuA69DXvSOH399Tym78U9daeZOfubS737qAs9avTDOYX5IT3J0Ay9ajb8tcui8LxbQh6-NwXjOU3HkjzEWIu895CpubxMs70yFEG819nuOF9_vb0fGDu9CNU3uaNwoj1NjUg7vXinOP7ymT3M1Wq7r9XEOPPAD7zdpFg8ywTsuUinDj1WGDG9NHoUt7UQiTuI4DM9GrC0uEyoAD3H8J29_u4wOXMYBjxOlj891tyTN2Tk0TzFD4Q93qL-twib8Dy5_dI9R2llOJHEIb2LDKy9yCZ8OKgXnTsiFes8B6t-tqBQz70V74Y9wtICOMe4Rz2jJI-9E_u4OF5ZFDwcZC09wmuROGpcDj0Wd3I8U7nCt4JVRT50yDc9ydyEuZOMnLwmsaq99wHbuHX19LxZ3eq9DSPxNZvSj7vi5I49YN5HN-TVnrx6ifG9ZVUwuCL_7D01KQU-835buB44gr0z8549nOfyuFXXxr27mVG8-Zpbt0krPjym_UU893maOCAAOBNACUhtUAEqcxAAGmD-BgAGETgBCSdN3PvG6RfW9R_UEdQF_9qZ_wz-6P0d6rOzwS7_PwAT0KAAAAACAPYJ7gAhf6UK5Cn_7fXUzsIvSmb7EFHFABIbuP84CvqzHPA7AncABBOeFz8KxSY_KiYgAC1Q4RE7OBNACUhvUAIqrwYQDBqgBgAAgL8AAJBBAACAQQAAAMIAADBCAABQwQAA-EEAAMjBAAAwwgAAFEIAAADAAAB8wgAABMIAADDBAAAAwAAAIMEAAEBCAADIwQAAUEEAAOjBAAC4wQAAYEEAAIBCAACQQQAAAEIAAIjBAAAAwQAAYMIAAIhCAAAgwQAAQEEAAMhBAABwwgAAAMAAAHjCAABAwAAA4MEAALJCAADIwQAAgEAAAARCAABwwQAAHEIAABxCAAAwwQAAlsIAAODAAACAvwAA0kIAAABCAAAAwgAAPEIAAIBAAAAcwgAAmMEAAFBBAAD6wgAAQEAAAJDCAAAcQgAA4MAAAIDAAABwQQAAPMIAAIA_AAAQwgAA4EAAAKDBAAAAwAAAIMIAAJJCAAC0QgAAkMEAAHxCAAD4QQAAWMIAAMBBAACQQQAArkIAADxCAACowgAAIMEAAIBAAADYQQAAAEEAAAzCAAAMQgAAKEIAAKJCAAAUwgAAMMIAAGhCAACowQAArMIAAJDBAAAwwgAA8EEAAIpCAABAwAAAIMIAACzCAACoQQAACEIAAIjCAABAwQAAEEIAAABBAABUQgAA4MAAAMBAAAAIQgAAkMEAAKBAAACYQQAAQEAAAABCAACAwQAAOMIAAAhCAABgQQAANMIAACDCAACAwgAAIEEAAIDAAACAPwAAaMIAAKBAAAAMwgAARMIAAKhBAACgQQAAkEEAAADAAACQQQAAOEIAALBBAAA4wgAAMMEAAJ7CAACowQAA0MEAAMDAAAAAQAAA2EEAAAAAAAC0wgAAsEEAAEBBAADIwQAAoEAAAEBAAAAgQgAAKMIAABBCAAAAwAAAVEIAAGTCAACQQQAABEIAAKjBAADgwAAAHMIAAPDBAACOwgAABEIAABBCAAAsQgAAREIAAJBBAABYwgAAFEIAAEjCAACowQAAcMEAAAxCAAAAAAAAUMIAAJBBAACKQgAAAEIAAMDAAAD4QQAA6MEAAFRCAAAQwQAAqsIAAIpCAADIwQAAgMEAAObCAACAwgAAgEAAAGDBAADAwQAACEIAAEjCAAAAwQAAXMIAAKbCIAA4E0AJSHVQASqPAhAAGoACAACGvgAApr4AAEw-AADyPgAALD4AANo-AAC4vQAA3r4AAAO_AAA8PgAAUD0AAFy-AAC6PgAAmD0AAAS-AAD4vQAAxj4AAJi9AACYPQAAGT8AAH8_AABEPgAAQLwAABC9AACevgAAiD0AACQ-AACovQAAPL4AAJ4-AACWPgAA-D0AAAO_AAAMPgAAmL0AAJ6-AAAMPgAAMD0AALa-AABQvQAA1r4AAMo-AADyPgAAEL0AALi9AABcPgAA6D0AANa-AADgPAAADL4AADy-AACKvgAAgj4AAJ4-AADoPQAAyL0AAGU_AACAOwAAuD0AACQ-AAC-vgAA-L0AAOC8AACmviAAOBNACUh8UAEqjwIQARqAAgAAMD0AAII-AAB8vgAAWb8AAAO_AAAsvgAAFD4AAIC7AACqPgAAPL4AACy-AAC6vgAAdL4AAIq-AACAOwAAEL0AAKq-AAAHPwAAfL4AAJg9AAA0PgAAB78AALg9AAAQPQAAPL4AACw-AAAhvwAADD4AAII-AACuvgAA4DwAABQ-AAAMvgAAcD0AADA9AAAUPgAAXz8AADA9AAAcvgAAnr4AANY-AABEPgAAmr4AAIg9AAAcPgAAgj4AAH-_AADoPQAAmD0AAJi9AACgPAAA-L0AAIg9AACuPgAALL4AAI4-AAC4vQAAmL0AAHA9AACAOwAAPD4AAKi9AACOvgAAiD0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ZAECu1mkFY8","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9498893947626164161"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"514935629"},"17233049986251540831":{"videoId":"17233049986251540831","docid":"34-11-9-ZE12C462C51CE9A9C","description":"We explore the cofactor expansion for determinants of square matrices. Welcome back to Linear Algebra! Let’s start with some recap.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1731740/3744af9c40764c468446362188507ac8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/QoWzbAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DuAw3o1GKsBY","linkTemplate":"/video/preview/17233049986251540831?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cofactor Expansion for Determinant // Short Lecture // Linear Algebra Course","related_orig_text":"Cofactor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cofactor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=uAw3o1GKsBY\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjg3MDEwMjIxMDE3MzI5MDk4MAoUMTM4NzM2NDM5Njk5NDMyNjY5MzgKEzcyNzIzNjYxMDEyMzU3MjY2MzQKEzgyMjkxMDY3OTY0NjgxNjI4MDYKEzYwNjA5ODE4NTk1NDIwMzIwNjgKFDE1MjgxODUzMzU0Nzk2OTY3NDExChQxMjkzMzY3NzQ1MDU2OTU0MjEyMgoUMTIwNjIyMTI1Mzg1NDcxMDUxNjQKFDE2MzcwMzcwMDMyMDI1ODE4MTcwChI2NTU2MzQzMzc5MDc4Nzk4NzYKFDE2MDQ3ODA3NDgyOTUxOTMyNDA0ChQxMDcxMTA2OTQwODg3NDk3MTUyMQoTOTU1MDQzNjAwMzg0NjkwMTU0NQoTNTg1NjUxODYxNjcxNTQ2MzA5OAoUMTQzODgxODkyNDE5MDg1NTI1NjgKEzkxNDg2Njc2ODczNDc1MzIwMDgKEzk0OTg4OTM5NDc2MjYxNjQxNjEKFDE3MjMzMDQ5OTg2MjUxNTQwODMxChQxNDc3NTAxNTQ3MjU2MDE5Mjk1NgoUMTU4NjMyNjc3NzM2MzE4Njc2MTEaFgoUMTcyMzMwNDk5ODYyNTE1NDA4MzFaFDE3MjMzMDQ5OTg2MjUxNTQwODMxarYPEgEwGAAiRRoxAAoqaGhrZm5udGxkb3RwbnZrYmhoVUNiWVNoQWdDS2FJVllDNldpRWJYUnZBEgIAEioQwg8PGg8_E-oFggQkAYAEKyqLARABGniB-wT7AAH_APsDAw8LCfoCFPQHBvcAAAD1_woABwL_AAj86QUCAQAACP7xCQIAAAAB9gEF9f0BAA4A_QP7AAAADvz8BvsAAAAREfr4_gEAAAT9EgAD_wAAGPv8_gAAAAAEDvn9__8AAPEKDfUAAAAABAb4_AAAAAAgAC3t3847OBNACUhOUAIqhAIQABrwAX8ICAHN-87_2xHeANcSFwGqHAoA_DTSAMv2_wC49scA-fnaAOwD7v_2MBz_thPt_0D1yv_v0OkAKevw_0zK_v_qHhoAPNj9ADwTLf8A7gMA6wonAPLVBf4q4dgCCAvR_gryE_n2C-EC7QPCAg_-PgHSCiQFHwIY--LcFPzN-Br_L-7c_QolBAP64wr-9_Qm_he9CgMP9f76803mBwQQFwTtvwr7DybvBAz1-w0JJ-QB0cwO_vzh7PoENhb_5wLvB_P3JgLjB_z48dkAAhHu9_fa8vACFg37EvYBEg4N3fsD_9PmB-0BAfcP9fX12fL1-SAALY27Ezs4E0AJSGFQAipzEAAaYAAAAAINK_LjLSXq-8zk8gzpHd0W5N4A6L__Hvvz8S3f3L_SHAAW3jHksQAAAAT89w_tAARkudnsNA0LE73V3S0sfwLzSvoeGhDx-RESCuwJDREETgDuEb8LWAGaEzIaKiAALXcZLzs4E0AJSG9QAiqvBhAMGqAGAABwQQAAQMAAACBCAACIwgAA2MEAAOhBAADYQgAAuMEAAAjCAABgwQAAIEEAALjBAACcwgAAgMAAAIDAAABQwQAAXEIAAEBBAADAQQAA8MEAAIDBAAAswgAAgMEAAIBAAADIwQAAoEEAADTCAAAAAAAAgL8AALhBAACIwQAAIEEAAEzCAABgQgAAyMIAABTCAAAwQgAAYEIAANBBAADIQQAAAEIAAKBAAAAUQgAAQMEAAFBCAACowgAAIEEAADBCAABgQgAAwEAAAPjBAADAwAAA0MEAACBBAADAQQAAEMEAAHDCAAAwwQAAuEEAAPBBAABkQgAApMIAAGzCAABgwgAAwMAAAMrCAACowQAAuMEAANBBAAD4wQAAfEIAAHBCAACuwgAAJEIAAMBBAABEwgAAhsIAAEBAAAAUQgAAZEIAANjBAADCQgAAXMIAAHDBAACYQQAAREIAAJBBAAAYwgAAnkIAACBBAAAwwQAAikIAABTCAAAAwgAAQEIAALTCAAAoQgAARMIAAHxCAABYQgAAOMIAAABBAABwwQAAuEEAAKDCAABQQgAAYMEAAPhBAACAwQAAQEIAAEBCAABIQgAA4MEAAJjBAAAAwQAASEIAAGBCAADQwQAAFMIAAHDBAAAUwgAAAEAAAGBBAACwQQAA8MEAAFBBAAAQwQAAgMEAANjBAADoQQAA4EAAADjCAACIwQAAJEIAAAjCAACgQQAAAMAAABBCAADowQAAYMIAAIDAAACAwQAAmEIAADzCAAAAwQAAUEIAAHDBAACgQQAAmEEAAAzCAAAkwgAA4MAAAIBBAAAAAAAAmEEAAGBBAAC4wgAAAMAAAILCAADgwAAAjMIAALBBAAAIQgAAIMEAAABAAAAwwQAAgEAAAJxCAAA0QgAA8MEAAOBBAACGQgAAAEAAACDBAABEwgAA-MEAAEDBAACQwQAAQMEAAGxCAACgwgAA8MEAAOjBAADYQQAAmEEAAHjCAAAowgAAYMEAAIjBAACAwAAAMEEAAFDBAACYQQAAgMAAAABAAAAoQgAAmEEAADTCAAAAwAAAUMEgADgTQAlIdVABKo8CEAAagAIAAJ6-AAAMvgAAND4AAEQ-AADYPQAArj4AADC9AAD-vgAAsr4AAJg9AABQPQAAmD0AAIo-AADYPQAAJL4AAMi9AADyPgAAyL0AABQ-AAADPwAAfz8AANg9AABsPgAADD4AADy-AACIPQAAHD4AABS-AABsvgAAPD4AAFQ-AADgvAAAgr4AAFC9AACIPQAADL4AAOA8AAD4vQAAsr4AAES-AACqvgAAcD0AALI-AAD4vQAAmD0AABQ-AACiPgAAmr4AAHC9AACWvgAA-L0AAKq-AAA8PgAAtj4AAHA9AADovQAAST8AAAS-AACYvQAATD4AACS-AADgPAAAiL0AAGy-IAA4E0AJSHxQASqPAhABGoACAABAPAAA2D0AAEC8AABHvwAAxr4AAIi9AADIPQAA2D0AAPg9AACgvAAAcL0AALa-AAAQvQAAvr4AADA9AADgvAAA6L0AACc_AACYvQAAuD0AAKA8AACSvgAAqD0AABC9AACgvAAAyD0AAOa-AAAkPgAA4DwAAK6-AACAuwAABD4AADC9AABAPAAAZD4AABC9AAAdPwAAjj4AAJK-AAAMvgAApj4AAKA8AACavgAAcL0AAHA9AACAOwAAf78AAFw-AACAuwAAFL4AABQ-AABkvgAAQLwAAFQ-AACAOwAAHD4AAFC9AADgPAAAEL0AAEC8AADoPQAADL4AADy-AAAcPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=uAw3o1GKsBY","parent-reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":876,"cheight":1080,"cratio":0.81111,"dups":["17233049986251540831"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3747207233"}},"dups":{"12870102210173290980":{"videoId":"12870102210173290980","title":"\u0007[Cofactor\u0007] engineering | Wikipedia audio article","cleanTitle":"Cofactor engineering | Wikipedia audio article","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dAPNJGyBkQ4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dAPNJGyBkQ4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDemFyd1FGYVRNZTd0NlNvR2dMSEJ3QQ==","name":"wikipedia tts","isVerified":false,"subscribersCount":0,"url":"/video/search?text=wikipedia+tts","origUrl":"http://www.youtube.com/channel/UCzarwQFaTMe7t6SoGgLHBwA","a11yText":"wikipedia tts. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1405,"text":"23:25","a11yText":"Süre 23 dakika 25 saniye","shortText":"23 dk."},"date":"10 tem 2019","modifyTime":1562716800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dAPNJGyBkQ4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dAPNJGyBkQ4","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":1405},"parentClipId":"12870102210173290980","href":"/preview/12870102210173290980?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/12870102210173290980?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13873643969943266938":{"videoId":"13873643969943266938","title":"\"\u0007[Cofactor\u0007] Expansions\" | Linear Algebra with Educator.com","cleanTitle":"\"Cofactor Expansions\" | Linear Algebra with Educator.com","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=W8f73Gcdjsw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/W8f73Gcdjsw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR3Nla0RrdXBkOC1DT0poTUl5VFdxdw==","name":"Educator.com","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Educator.com","origUrl":"http://www.youtube.com/@EducatorVids2","a11yText":"Educator.com. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":527,"text":"8:47","a11yText":"Süre 8 dakika 47 saniye","shortText":"8 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"30 eyl 2011","modifyTime":1317340800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/W8f73Gcdjsw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=W8f73Gcdjsw","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":527},"parentClipId":"13873643969943266938","href":"/preview/13873643969943266938?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/13873643969943266938?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7272366101235726634":{"videoId":"7272366101235726634","title":"\u0007[Cofactor\u0007] Expansions of Determinants","cleanTitle":"Cofactor Expansions of Determinants","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rixK1vIN-44","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rixK1vIN-44?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX2puU2FVUndnNWJLM3BiQ3BfeGFiZw==","name":"Mike, the Mathematician","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mike%2C+the+Mathematician","origUrl":"http://www.youtube.com/@mikethemathematician","a11yText":"Mike, the Mathematician. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":420,"text":"7:00","a11yText":"Süre 7 dakika","shortText":"7 dk."},"date":"28 mayıs 2024","modifyTime":1716854400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rixK1vIN-44?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rixK1vIN-44","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":420},"parentClipId":"7272366101235726634","href":"/preview/7272366101235726634?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/7272366101235726634?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8229106796468162806":{"videoId":"8229106796468162806","title":"\u0007[Cofactors\u0007] of a Matrix: How to Find the \u0007[Cofactors\u0007] of a 3x3 Matrix | Step by Step Guide #\u0007[cof...","cleanTitle":"Cofactors of a Matrix: How to Find the Cofactors of a 3x3 Matrix | Step by Step Guide #cofactors","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FAeLPGRFibA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FAeLPGRFibA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVRNWHRXVE9sME0yN0VZRTA3RUpGUQ==","name":"Excellence Academy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Excellence+Academy","origUrl":"http://www.youtube.com/@jonahemmanuelofficial","a11yText":"Excellence Academy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":970,"text":"16:10","a11yText":"Süre 16 dakika 10 saniye","shortText":"16 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"13 haz 2025","modifyTime":1749840306000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FAeLPGRFibA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FAeLPGRFibA","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":970},"parentClipId":"8229106796468162806","href":"/preview/8229106796468162806?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/8229106796468162806?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6060981859542032068":{"videoId":"6060981859542032068","title":"\u0007[Cofactor\u0007] expansion","cleanTitle":"Cofactor expansion","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DkdNmn5Fxhs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DkdNmn5Fxhs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb09qVHh6LXU1elUwVzM4ek1rUUlGdw==","name":"Dr Peyam","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Dr+Peyam","origUrl":"http://www.youtube.com/@drpeyam","a11yText":"Dr Peyam. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1872,"text":"31:12","a11yText":"Süre 31 dakika 12 saniye","shortText":"31 dk."},"views":{"text":"4,8bin","a11yText":"4,8 bin izleme"},"date":"14 eyl 2019","modifyTime":1568419200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DkdNmn5Fxhs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DkdNmn5Fxhs","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":1872},"parentClipId":"6060981859542032068","href":"/preview/6060981859542032068?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/6060981859542032068?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15281853354796967411":{"videoId":"15281853354796967411","title":"7-6. \u0007[Cofactor\u0007] Expansion (Linear Algebra for Data Science)","cleanTitle":"7-6. Cofactor Expansion (Linear Algebra for Data Science)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ROBEkqCTUgM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ROBEkqCTUgM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdG5IVkdhQXdMdnJDZV8yRUxMWFRCQQ==","name":"Takuma Organizational & Data Analytics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Takuma+Organizational+%26+Data+Analytics","origUrl":"http://www.youtube.com/@TakumaKimura-po7yd","a11yText":"Takuma Organizational & Data Analytics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":289,"text":"4:49","a11yText":"Süre 4 dakika 49 saniye","shortText":"4 dk."},"date":"1 nis 2025","modifyTime":1743465600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ROBEkqCTUgM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ROBEkqCTUgM","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":289},"parentClipId":"15281853354796967411","href":"/preview/15281853354796967411?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/15281853354796967411?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12933677450569542122":{"videoId":"12933677450569542122","title":"\u0007[Cofactor\u0007] Expansion for Determinants (EASY Guide)","cleanTitle":"Cofactor Expansion for Determinants (EASY Guide)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=npJZIcpyDvw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/npJZIcpyDvw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYzFsdEd0a0pIc3ZpYnltcDhsY0dTZw==","name":"JoeCMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=JoeCMath","origUrl":"http://www.youtube.com/@JoeCMath","a11yText":"JoeCMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":705,"text":"11:45","a11yText":"Süre 11 dakika 45 saniye","shortText":"11 dk."},"date":"11 eki 2025","modifyTime":1760140800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/npJZIcpyDvw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=npJZIcpyDvw","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":705},"parentClipId":"12933677450569542122","href":"/preview/12933677450569542122?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/12933677450569542122?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12062212538547105164":{"videoId":"12062212538547105164","title":"\u0007[Cofactor\u0007] Part-2|TM-Align|Gene Ontology|Homology|Binding Sites|Molecular Functions #bioinformatic...","cleanTitle":"Cofactor Part-2|TM-Align|Gene Ontology|Homology|Binding Sites|Molecular Functions #bioinformatics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8BYFk2v7uyY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8BYFk2v7uyY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNEZKYlNZa0VfRmVjSVVDNTBVQVgtQQ==","name":"Dr. Majid Ali","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dr.+Majid+Ali","origUrl":"http://www.youtube.com/@MajidAli2020","a11yText":"Dr. Majid Ali. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":511,"text":"8:31","a11yText":"Süre 8 dakika 31 saniye","shortText":"8 dk."},"date":"25 oca 2024","modifyTime":1706140800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8BYFk2v7uyY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8BYFk2v7uyY","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":511},"parentClipId":"12062212538547105164","href":"/preview/12062212538547105164?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/12062212538547105164?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16370370032025818170":{"videoId":"16370370032025818170","title":"The \u0007[Cofactor\u0007] Definition of Determinants (Laplace Expansion Explained) | Linear Algebra","cleanTitle":"The Cofactor Definition of Determinants (Laplace Expansion Explained) | Linear Algebra","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=aICtl-9J6rs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/aICtl-9J6rs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":868,"text":"14:28","a11yText":"Süre 14 dakika 28 saniye","shortText":"14 dk."},"views":{"text":"12,9bin","a11yText":"12,9 bin izleme"},"date":"13 nis 2024","modifyTime":1712966400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/aICtl-9J6rs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=aICtl-9J6rs","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":868},"parentClipId":"16370370032025818170","href":"/preview/16370370032025818170?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/16370370032025818170?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"655634337907879876":{"videoId":"655634337907879876","title":"\u0007[Cofactor\u0007] and it's types","cleanTitle":"Cofactor and it's types","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=H85cHXtBcQM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/H85cHXtBcQM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMUNSZFRYNEU1X0hGemVhd0x4aVVJZw==","name":"Biology Made Easy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Biology+Made+Easy","origUrl":"http://www.youtube.com/@biologymadeeasy4734","a11yText":"Biology Made Easy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":396,"text":"6:36","a11yText":"Süre 6 dakika 36 saniye","shortText":"6 dk."},"date":"22 ara 2024","modifyTime":1734825600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/H85cHXtBcQM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=H85cHXtBcQM","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":396},"parentClipId":"655634337907879876","href":"/preview/655634337907879876?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/655634337907879876?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16047807482951932404":{"videoId":"16047807482951932404","title":"Types of \u0007[Cofactors\u0007], Biology Lecture | Sabaq.pk","cleanTitle":"Types of Cofactors, Biology Lecture | Sabaq.pk","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=uzFYEJapSno","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/uzFYEJapSno?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSXJmcDB0aldXNVFvd0pDSmxza2xXUQ==","name":"Sabaq Foundation - Free Videos & Tests, Grades K-14","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sabaq+Foundation+-+Free+Videos+%26+Tests%2C+Grades+K-14","origUrl":"http://www.youtube.com/@sabaqpk","a11yText":"Sabaq Foundation - Free Videos & Tests, Grades K-14. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":226,"text":"3:46","a11yText":"Süre 3 dakika 46 saniye","shortText":"3 dk."},"views":{"text":"6bin","a11yText":"6 bin izleme"},"date":"13 şub 2019","modifyTime":1550016000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/uzFYEJapSno?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=uzFYEJapSno","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":226},"parentClipId":"16047807482951932404","href":"/preview/16047807482951932404?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/16047807482951932404?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10711069408874971521":{"videoId":"10711069408874971521","title":"\u0007[Cofactor\u0007] and its types, activator, co enzyme, prosthetic group, gs academy","cleanTitle":"Cofactor and its types, activator, co enzyme, prosthetic group, gs academy","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nhkWOMYjnC4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nhkWOMYjnC4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdVhYX3ZHb3l6dUpnWG0wa0ZiaUxIUQ==","name":"GS ACADEMY","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GS+ACADEMY","origUrl":"http://www.youtube.com/@gsacademypakistan","a11yText":"GS ACADEMY. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":849,"text":"14:09","a11yText":"Süre 14 dakika 9 saniye","shortText":"14 dk."},"date":"25 ara 2021","modifyTime":1640390400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nhkWOMYjnC4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nhkWOMYjnC4","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":849},"parentClipId":"10711069408874971521","href":"/preview/10711069408874971521?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/10711069408874971521?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9550436003846901545":{"videoId":"9550436003846901545","title":"Types of \u0007[Cofactors\u0007] | \u0007[Cofactors\u0007] Class 11 Biology | Enzymes","cleanTitle":"Types of Cofactors | Cofactors Class 11 Biology | Enzymes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KM_NOuZi2YE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KM_NOuZi2YE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDc3BlTjBEQll6SjBqWjhoaUtTOEFQZw==","name":"Biology Terms","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Biology+Terms","origUrl":"http://www.youtube.com/@BiologyTerms","a11yText":"Biology Terms. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":542,"text":"9:02","a11yText":"Süre 9 dakika 2 saniye","shortText":"9 dk."},"views":{"text":"5,4bin","a11yText":"5,4 bin izleme"},"date":"5 kas 2020","modifyTime":1604534400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KM_NOuZi2YE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KM_NOuZi2YE","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":542},"parentClipId":"9550436003846901545","href":"/preview/9550436003846901545?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/9550436003846901545?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5856518616715463098":{"videoId":"5856518616715463098","title":"\u0007[CoFactor\u0007] Matrix - Calculate the Inverse of a 3×3 Matrix Using the \u0007[Cofactor\u0007] Approach","cleanTitle":"CoFactor Matrix - Calculate the Inverse of a 3×3 Matrix Using the Cofactor Approach","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=k41lPRKRpjc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/k41lPRKRpjc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQjBaVWJ1T0VBZU42NGFVR081TXk1UQ==","name":"Skill Ark","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Skill+Ark","origUrl":"http://www.youtube.com/@skillark","a11yText":"Skill Ark. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":946,"text":"15:46","a11yText":"Süre 15 dakika 46 saniye","shortText":"15 dk."},"views":{"text":"8,5bin","a11yText":"8,5 bin izleme"},"date":"9 nis 2018","modifyTime":1523232000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/k41lPRKRpjc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=k41lPRKRpjc","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":946},"parentClipId":"5856518616715463098","href":"/preview/5856518616715463098?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/5856518616715463098?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14388189241908552568":{"videoId":"14388189241908552568","title":"Calculating \u0007[Cofactors\u0007]: Step-by-Step Guide for 2x2 and 3x3 Matrices.","cleanTitle":"Calculating Cofactors: Step-by-Step Guide for 2x2 and 3x3 Matrices.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MLQkCZHUSKw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MLQkCZHUSKw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTFFGOEJqaXB6UWppUVE5alhuX05JUQ==","name":"Dan Formulas","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dan+Formulas","origUrl":"http://www.youtube.com/@Danformulas","a11yText":"Dan Formulas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1197,"text":"19:57","a11yText":"Süre 19 dakika 57 saniye","shortText":"19 dk."},"date":"25 mayıs 2024","modifyTime":1716620407000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MLQkCZHUSKw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MLQkCZHUSKw","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":1197},"parentClipId":"14388189241908552568","href":"/preview/14388189241908552568?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/14388189241908552568?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9148667687347532008":{"videoId":"9148667687347532008","title":"Using the \u0007[Cofactor\u0007] Method to Solve for the Inverse of a Matrix - Linear Algebra","cleanTitle":"Using the Cofactor Method to Solve for the Inverse of a Matrix - Linear Algebra","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cADUMC2T6S4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cADUMC2T6S4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM2JhM0c4UEZxTDdRRGhJMVZieTRqQQ==","name":"AF Math & Engineering","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AF+Math+%26+Engineering","origUrl":"http://www.youtube.com/@AFMathandEngineering","a11yText":"AF Math & Engineering. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":632,"text":"10:32","a11yText":"Süre 10 dakika 32 saniye","shortText":"10 dk."},"views":{"text":"23,7bin","a11yText":"23,7 bin izleme"},"date":"12 kas 2016","modifyTime":1478908800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cADUMC2T6S4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cADUMC2T6S4","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":632},"parentClipId":"9148667687347532008","href":"/preview/9148667687347532008?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/9148667687347532008?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9498893947626164161":{"videoId":"9498893947626164161","title":"[Linear Algebra] \u0007[Cofactor\u0007] Expansion","cleanTitle":"[Linear Algebra] Cofactor Expansion","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ZAECu1mkFY8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ZAECu1mkFY8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR1lTZlpiUHAzQmlBRnM1MzFQQlk3Zw==","name":"TrevTutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=TrevTutor","origUrl":"http://www.youtube.com/@Trevtutor","a11yText":"TrevTutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":731,"text":"12:11","a11yText":"Süre 12 dakika 11 saniye","shortText":"12 dk."},"views":{"text":"136bin","a11yText":"136 bin izleme"},"date":"31 mayıs 2016","modifyTime":1464652800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ZAECu1mkFY8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ZAECu1mkFY8","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":731},"parentClipId":"9498893947626164161","href":"/preview/9498893947626164161?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/9498893947626164161?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17233049986251540831":{"videoId":"17233049986251540831","title":"\u0007[Cofactor\u0007] Expansion for Determinant // Short Lecture // Linear Algebra Course","cleanTitle":"Cofactor Expansion for Determinant // Short Lecture // Linear Algebra Course","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=uAw3o1GKsBY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/uAw3o1GKsBY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYllTaEFnQ0thSVZZQzZXaUViWFJ2QQ==","name":"AfterMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AfterMath","origUrl":"http://www.youtube.com/@Prof.afterMATH","a11yText":"AfterMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":746,"text":"12:26","a11yText":"Süre 12 dakika 26 saniye","shortText":"12 dk."},"date":"1 nis 2020","modifyTime":1585699200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/uAw3o1GKsBY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=uAw3o1GKsBY","reqid":"1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL","duration":746},"parentClipId":"17233049986251540831","href":"/preview/17233049986251540831?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","rawHref":"/video/preview/17233049986251540831?parent-reqid=1767023026466588-1308337201743951654-balancer-l7leveler-kubr-yp-sas-137-BAL&text=Cofactor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"3083372017439516547137","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Cofactor","queryUriEscaped":"Cofactor","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}