{"pages":{"search":{"query":"Convolve","originalQuery":"Convolve","serpid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","parentReqid":"","serpItems":[{"id":"17192505606311819473-0-0","type":"videoSnippet","props":{"videoId":"17192505606311819473"},"curPage":0},{"id":"11595664004769074878-0-1","type":"videoSnippet","props":{"videoId":"11595664004769074878"},"curPage":0},{"id":"945516742966137529-0-2","type":"videoSnippet","props":{"videoId":"945516742966137529"},"curPage":0},{"id":"6473460922060104275-0-3","type":"videoSnippet","props":{"videoId":"6473460922060104275"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dENvbnZvbHZlCg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","ui":"desktop","yuid":"1533840941769509912"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"2972504676208557545-0-5","type":"videoSnippet","props":{"videoId":"2972504676208557545"},"curPage":0},{"id":"3946941228870964371-0-6","type":"videoSnippet","props":{"videoId":"3946941228870964371"},"curPage":0},{"id":"14258639781782902993-0-7","type":"videoSnippet","props":{"videoId":"14258639781782902993"},"curPage":0},{"id":"6668176899195575991-0-8","type":"videoSnippet","props":{"videoId":"6668176899195575991"},"curPage":0},{"id":"17439716362498100681-0-9","type":"videoSnippet","props":{"videoId":"17439716362498100681"},"curPage":0},{"id":"12850748595789960-0-10","type":"videoSnippet","props":{"videoId":"12850748595789960"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dENvbnZvbHZlCg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","ui":"desktop","yuid":"1533840941769509912"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"12188968537323491571-0-12","type":"videoSnippet","props":{"videoId":"12188968537323491571"},"curPage":0},{"id":"3225282561023548082-0-13","type":"videoSnippet","props":{"videoId":"3225282561023548082"},"curPage":0},{"id":"11788038988751882480-0-14","type":"videoSnippet","props":{"videoId":"11788038988751882480"},"curPage":0},{"id":"16055178751703457341-0-15","type":"videoSnippet","props":{"videoId":"16055178751703457341"},"curPage":0},{"id":"17853819740209983895-0-16","type":"videoSnippet","props":{"videoId":"17853819740209983895"},"curPage":0},{"id":"7183263477294660592-0-17","type":"videoSnippet","props":{"videoId":"7183263477294660592"},"curPage":0},{"id":"13625532212783191526-0-18","type":"videoSnippet","props":{"videoId":"13625532212783191526"},"curPage":0},{"id":"8316092011944863897-0-19","type":"videoSnippet","props":{"videoId":"8316092011944863897"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dENvbnZvbHZlCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","ui":"desktop","yuid":"1533840941769509912"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DConvolve"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"8336412685807681607119","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472346,0,13;151171,0,48;1281084,0,18;287509,0,92;1447467,0,46;1006024,0,98"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DConvolve","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Convolve","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Convolve","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Convolve: Yandex'te 1 bin video bulundu","description":"Результаты поиска по запросу \"Convolve\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Convolve — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y9d43da3ec1175a297777370d5f6ffd4f","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472346,151171,1281084,287509,1447467,1006024","queryText":"Convolve","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1533840941769509912","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769509931","tz":"America/Louisville","to_iso":"2026-01-27T05:32:11-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472346,151171,1281084,287509,1447467,1006024","queryText":"Convolve","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1533840941769509912","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"8336412685807681607119","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":159,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"1533840941769509912","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"17192505606311819473":{"videoId":"17192505606311819473","docid":"34-9-7-Z6DA0EDC84B93C070","description":"🔍 PPE Detection Using Computer Vision | Convolve AI Tool Ensure workplace safety with our advanced PPE Detection System powered by computer vision! 🚧👷♂️ ✅ Real-time monitoring of PPE...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4077795/510efff4c42ace1661e50eead5dd3bc8/564x318_1"},"target":"_self","position":"0","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4Bqmc1CDH3w","linkTemplate":"/video/preview/17192505606311819473?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"PPE detection using Computer Vision | Convolve AI Tool","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4Bqmc1CDH3w\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoWChQxNzE5MjUwNTYwNjMxMTgxOTQ3M1oUMTcxOTI1MDU2MDYzMTE4MTk0NzNqrw0SATAYACJFGjEACipoaG9zdGFsZXFsemh5dmFjaGhVQ1dIWFdVVi0yQ1l6SVFPQmtlYUZDQncSAgASKhDCDw8aDz8ThwOCBCQBgAQrKosBEAEaeIH6__z3Af8ABgUPBfkJ_AIaAAYKBwEBAOUEDAkH_QEA5gH9__r_AAD6_wEGCAAAAAn19_72_gAA-_T6_fkAAAAGAO78AAAAABER-vj-AQAA-Qf6-fYCAAEQBAcQAAAAAPIM__76_wAA9P399gAAAAAF_Pn-AAAAACAALcszzjs4E0AJSE5QAipzEAAaYAwTABYTHRIGBEDnBffq_gYIEPTq1w8ADdwA_xjw7CAY-qwA6AAt3gcKxAAAAAz-AhgSAAxDKfzXDgD-F9kT7B4af-kL8QMvLfnpLhcNEOcVDxciDgAg-goBCeawMw4SCCAALSmKYTs4E0AJSG9QAiqvBhAMGqAGAABMQgAAoMAAAMJCAAAkQgAAuEEAABjCAACAvwAAmMEAAIjCAACgQAAACEIAAPhBAAAwwgAAbMIAAMBBAABAwQAAoEEAAEzCAABIwgAAoMEAAEhCAABAwQAAAEEAAGhCAAAEQgAAuEEAAEzCAACYwQAAtEIAAJJCAADQQQAAeEIAAHjCAABAQAAAoMAAALjBAAAwwQAAkkIAAAjCAAAwQQAA4MEAAGDBAAAgQQAAAAAAAEBAAABQQQAAIMIAAJhBAACwQgAAQEEAABDCAABwQQAAAEEAAARCAACMQgAAQEEAAEjCAABQQQAAgMEAAHBBAABQwQAAgMAAAJzCAAB4wgAADEIAAMBAAADoQQAAiEEAAETCAACYQQAAUEIAAFRCAAAswgAASEIAAPDBAAAkwgAAGMIAADDBAACoQQAAoMIAADDCAAAsQgAAEMEAAIBBAADYwQAAAAAAABzCAABAwAAAAEEAAODBAADowQAAqMEAAEDAAACMwgAAQMEAAI7CAACgwAAAgkIAADhCAACAwgAAAEAAAEDAAAB8QgAAbMIAAATCAAAIQgAAGEIAAEhCAABgQQAAIEEAAIhCAACwQQAAaMIAAMjBAACOQgAAcEIAAARCAAA0wgAArMIAAEDCAABAQAAAoMEAAADBAAC4wQAAJEIAANhBAAAYQgAAlMIAAABAAAAAwgAABMIAAOjBAAAAwQAAYEEAACBCAAAowgAAoEEAADBBAABYwgAA0sIAAIA_AABAwgAAYMEAAIDAAAAQQgAAMMEAALjBAAAoQgAANMIAACDCAACyQgAA-MEAAODAAABMwgAAgL8AAHDBAABwwQAA8MEAAAhCAACUQgAAJMIAAERCAAC4QQAAGMIAAJDBAAAEwgAAMEIAAEBBAABMQgAAcMEAAOLCAAAgQgAAQEAAANBBAADowQAAREIAAIhBAAAkwgAAaEIAAIhBAABQQQAAAEAAAIC_AABMwgAAgEAAAODBAAAQwgAAOEIAAGTCAACAwAAAAMIAAJBBAADgQAAAbEIAABjCAADQwQAAisIAAIhBAAAEwgAAkMEgADgTQAlIdVABKo8CEAAagAIAAPK-AACKPgAAgj4AAPg9AABkPgAAUD0AADC9AADqvgAApr4AADC9AACmPgAARL4AAGQ-AADSPgAA2D0AAHC9AACmPgAA2D0AAJ4-AADWPgAAfz8AAKC8AACYvQAAiD0AAAy-AACuPgAA4LwAACQ-AAAsvgAAjj4AAPg9AADYvQAADD4AAK4-AAD4PQAADD4AAIA7AAC-vgAAqr4AAKi9AACovQAADD4AAEA8AACAOwAAqD0AAFQ-AAAMPgAAPL4AAKC8AABkvgAAvj4AAKA8AAAJPwAAjj4AABy-AABAPAAAHT8AAGQ-AACCPgAApj4AABS-AAAcvgAAiL0AAAS-IAA4E0AJSHxQASqPAhABGoACAACAOwAAkj4AAHy-AAAZvwAAlr4AABA9AACYPQAAMD0AAFA9AACqPgAAuL0AAPi9AADYPQAAZL4AAEA8AAAwvQAAnr4AAEM_AAD4PQAAsj4AAEA8AACmvgAADD4AAJi9AACIvQAA2D0AADy-AAAEPgAAHL4AAES-AADgvAAAoDwAABC9AACWPgAA2D0AALq-AAAHPwAA6D0AAK6-AABkvgAAuD0AAHw-AADIvQAAcL0AADQ-AABQPQAAf78AABC9AACAuwAALL4AAKA8AADovQAA4DwAAHw-AAAwPQAAFD4AAFC9AAA0vgAAiD0AACw-AABEPgAAiD0AAHS-AAAkviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=4Bqmc1CDH3w","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17192505606311819473"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11595664004769074878":{"videoId":"11595664004769074878","docid":"34-11-16-ZD5FDD473C4D7DA7A","description":"In this video Numpy convolve 1d is explained both in python programming language.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1627830/5211066cc3259ce5f3a8fdaeb621d367/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/WwNzNAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DY03LVHWc6rE","linkTemplate":"/video/preview/11595664004769074878?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Numpy Convolve 1d in Python + Examples By Hand (for different modes)","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Y03LVHWc6rE\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoWChQxMTU5NTY2NDAwNDc2OTA3NDg3OFoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzhqiBcSATAYACJFGjEACipoaGJ6b2d1a2p3c2lkY3BkaGhVQ2F1N2ZCWnJfZlNOYjRDemJHV0ExUncSAgASKhDCDw8aDz8TyQKCBCQBgAQrKosBEAEaeIH7-gEE_gIA-_4NBPsG_QIG9QD6-f7-AO4E_PgFAAAA_wIG-f8BAAAKAAIB_QAAAP79Cv70_gEAFAP7BgQAAAALCe4E_QAAABAIBgL-AQAA9Pv-_AMAAAAD-v0EAAAAAPr6Awv9AAAABQ35AwAAAAAJ9QgDAAAAACAALcKk2js4E0AJSE5QAiqEAhAAGvABfxT7_9HP5AEBGgAAt_u7AJz2K_8gKt4AwOYuAOzv6QHW7sn_2PXu_6kG_QGzCAH_1uzY_w3n_wAw_O__8fS9AQQrCQEp0PIBSQMY_xsP_gD5G00CFgkwAD_uAQLy4-MAQwAr_Prv5Af-48YA4dcqAQ8JGAUwAg7-x-MCAt_1H_8G8v8Gx-8GAv8AFgDwAxIF_CXVBfoY6P8ENP4DPdsEAOAeBfgSGPEAO_wCBPoMA_3RBP365gfn_srwIQg1PAv-_DUPBOHx-vMcGxH2IOvbDg0E_fsYDvsT3u35A_AHEfX_8xX2vz0L-P3kBwTrG_MBIAAtUm0JOzgTQAlIYVACKs8HEAAawAdtyN--c_fUPP4BoDwYqaA7d_yyPMOJHjtNOJq90KRiu0jBE72-1JU7IPMcPQGENDx0fMS-HITvPJnaLb39vXQ-klRLvQOx7Dzc9Be-ftQ1PapiDTz8VCW-MdkuvAdz5jd22mA79tEpPXIojbwKgSw-OUf4PCXstrwhsrO9TTutu6sxV7xRoDI7QNN5u_unITyOBBo-BMU0PBXZuTvtr4g9g-4cvS7aa7uCXhO9k11EPDsvOjyscOu98NOCPDIFqbsJeZM9DdbJPPyOYTz0YQe9ww2IvS6dhTy4EhA95h6XPUlptrxkzy6-SRyovFBhtjxhlmw9Cl-kPSDZtzyt-QG-VKWSPCHR3ztO0ny8ZecIPe1ItbxberS88J29PFGC4zykbqc8_dJHPBa6t7wu5yI-waq6Paq-QLrxAee5aUq8PNrKB7wErNU8M6KZPPTzSzxOTTg852zmvCmY77uo7Ko8oV4VPf0dwLvcix69A9J-PInACbxQCBM9VWMuPMYWgjscjGI9iQ5cvGGP5LxMmB89vRJtvBRQcrth3qM8hjzivVlJcbsYsCQ9MR3fPFWFyDu2HI49kpexu0CZkDtMule9UeeAvPkyLLw1KWU9oYG4vWpQDztNBUa9YarZPEdXabvjtUG9CtYYvahW37vpk8E8mdGEvf92vLuVjXi9666HvAwiTjtHuZo9Y1Y5vF4GjDs87mU9VDujva9IeDn5ctU8GkCuO0v9oztBCG09QmYdvQYkhrtmFbY8Xm9xPT6SszmmB6o8eW5GPNI0Nrr9lR-9LpNcPb5Yp7gtyea83_TTPABpRbkFWtM7P48xPcjgjzj6_Qy9P0thvb9Xk7lDCIO9Q5agvF-nAboiMnG9GYl1vbgOxDm6EmG9zb1RvJepizoG11w9b6LxPMt3orngMfo7fiCUvDkU0LhZmC-9bh8NvS84XrlHdQq-eyv5O6suDDqxVRu8tNaGvPYea7ieSXY9m-M7O_3MjjgDsKa8EHHaO6DWuzaYwB0-X63_vLtK_TheDsC9etsRPT8QFbm4Pqy8bAb4vXn_ILgB_gQ9Zl8DvFbUTzi9j-O9OGXOPThzkTgd7Ig9byGZPNuQPDizH069IpQQPD2kRLg9W6y8kSEMvXqsQDjUQ_Q9VmBNPZSLXblPzAo-_r-FPMopG7hjM1Y9dlG0vT-bnThmED89q7QFPWA_gLg_jsY9K94IvocitLiKllc9EFj5PY0XQDiDDq89QhbYPGlJ2bcu-Nk8PFvRvF-EKDcPWIO8_OQjPS6xdzcgADgTQAlIbVABKnMQABpgKQUAaAtA8SMNGfTO2xop1Osp896c-f8Ax_8VEgIoNCrOqicL_zHRCduYAAAAQA4eA_kAQH3w6wYeERYc5NXTPCx__jct6-wZ8sXZR0aq6gkEWBxBAPa8rApU9L9k7ewfIAAtOisNOzgTQAlIb1ACKq8GEAwaoAYAABhCAAD4wQAAVEIAALjBAACgQQAAkMEAAEDBAABkwgAAjsIAAEDAAAAgQQAAIEEAAJLCAADYwQAAAAAAAHDCAABAQQAAGMIAABBBAAAgwQAAcEIAAGjCAACAwAAAcMEAAIhCAAAAQQAAOMIAAJjBAADgQAAAUEIAAHzCAACEQgAAAMEAAAxCAAAwwgAA4EAAAEDBAACMQgAAEEIAAIhBAAAUQgAAMEIAAFRCAADgQQAAQMAAAIDAAADgwAAAkMEAAPBBAABMwgAAAMAAAFjCAAB8wgAABMIAAMhBAAAoQgAAMMEAAPhBAADoQQAAYEEAAFBCAACAQAAA0MEAAEBBAACgwQAA6EEAAHRCAAAQwQAAFMIAAIA_AADQQQAAWEIAACTCAAAkQgAAEMIAAIBAAABQwQAAQEAAAOBAAABowgAAfMIAAKBBAAB4QgAA0EIAAIBBAABwQQAASMIAAABBAACAQQAAYMEAAGBBAAAcQgAA4EAAAEDBAADAwQAAcMIAAEBAAAB0QgAAUEIAAMDAAACgwQAAUEEAABBCAACMwgAALMIAAFxCAABEQgAA0EEAAChCAAAIQgAA8EEAAHTCAAAEwgAAgMEAAOpCAABgwQAAkMEAAGzCAADAwQAADMIAAOhBAACOwgAAwEAAAKbCAACYQgAAqkIAAIBBAABgwgAAQMIAAJbCAAAEwgAAmEEAAAhCAABMQgAAKEIAAEhCAACYwQAAIEEAAFDBAAD4wQAABEIAAKjBAAAAQQAA6EEAAIhBAAB0QgAAiMEAAEDAAABgQQAAoMAAAGhCAADAQAAAQMAAAITCAAAsQgAAoMAAADBCAAAAwwAAjkIAAKpCAABAwgAAUEIAABDBAAAAAAAA6MEAADTCAADYQQAA6MEAAFBBAACAPwAAgMIAAFBBAADAQAAAkMEAAEBBAAAwQgAALEIAAIjCAAAkQgAAhEIAAAzCAAAgQQAAJMIAAOjBAAAgQgAAFMIAAGTCAABAQQAAgMEAABBBAABAQAAA2MEAADBCAAAEQgAAMMEAAOBAAACYwQAAkEIAANDBAADwwSAAOBNACUh1UAEqjwIQABqAAgAAiL0AAGS-AAA0PgAAmL0AADC9AABUPgAAsj4AACO_AABcvgAA4DwAAOC8AACyvgAAdD4AAEQ-AABUvgAAuL0AAJg9AABUPgAAQLwAABM_AAB_PwAAUL0AALK-AABwvQAAgLsAADy-AABMPgAA2L0AAIA7AAA0PgAAPD4AAK6-AAC4vQAAHL4AAEQ-AADgPAAAuj4AAGS-AACqvgAAgLsAAEy-AAAwvQAA6D0AAOg9AABwvQAAoDwAADw-AAA0vgAAMD0AABS-AACgvAAAUD0AALo-AACiPgAAVL4AAMg9AAAdPwAAmL0AAKI-AACqPgAAUD0AANg9AAAMPgAA-L0gADgTQAlIfFABKo8CEAEagAIAAJ6-AABEPgAAUL0AAPK-AAAwPQAARD4AANo-AAAcPgAAuL0AAPg9AACSvgAAVL4AANi9AAAMvgAADL4AAEA8AACIvQAAST8AAEC8AABsPgAAZD4AAMi9AACYPQAAiD0AAES-AACCvgAAuL0AANg9AAC4PQAAyL0AAMg9AADIPQAAtr4AABA9AACIPQAAlr4AADc_AADYvQAAyr4AADC9AACYPQAA6D0AABQ-AACAOwAAlj4AAMI-AAB_vwAAJL4AAOA8AACYPQAAfD4AAII-AACWPgAAiD0AAKY-AACoPQAAoLwAADC9AAB8PgAARD4AAOg9AABkPgAAVL4AAIa-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Y03LVHWc6rE","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1030,"cratio":1.86407,"dups":["11595664004769074878"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3490721331"},"945516742966137529":{"videoId":"945516742966137529","docid":"34-0-1-ZF6294960C54C577F","description":"Want to train your own Large Language Model (LLM) with custom data? Try it now: https://convolveaichatbot.streamlit.app/ 🔍 Whether you’re building a customer support chatbot, automating...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2836697/1b4215bb844d5c1c7ef6d99e254fb4e3/564x318_1"},"target":"_self","position":"2","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEus4XKXKPoo","linkTemplate":"/video/preview/945516742966137529?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Train Your Own LLM with Webpages, PDFs, and Text – Try Convolve’s Tool!","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Eus4XKXKPoo\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoUChI5NDU1MTY3NDI5NjYxMzc1MjlaEjk0NTUxNjc0Mjk2NjEzNzUyOWqvDRIBMBgAIkUaMQAKKmhob3N0YWxlcWx6aHl2YWNoaFVDV0hYV1VWLTJDWXpJUU9Ca2VhRkNCdxICABIqEMIPDxoPPxOkBYIEJAGABCsqiwEQARp4gQP1_gQD_QD6BBkH_Aj8Av8HCf_4_v4A5AQMCQf9AQAJDAf0AAEAAO_v-vYDAAAA7gD3__AAAQD4CAAE-wAAAA_06wH-AAAAFwgC9P4BAADx7Ar9AwAAAAkKDgkAAAAA-QH6C_8AAAAN-_3wAQAAAAL69gYAAAAAIAAtQtPLOzgTQAlITlACKnMQABpgJwcAFyQ29wD5RfH8F_j8E_MHBOC1Cf8Cu__qI-riItzbj0Dq_1DOHuyTAAAAPc3uFeYA93tR3scVAuX63arzOCx_-hIfLgRXDea0QA0jCN_zHT0GAA0KBQwut_1rQD8QIAAtW2gTOzgTQAlIb1ACKq8GEAwaoAYAAIZCAACAwQAAqkIAABBCAAD4QQAAZMIAAKBAAAB0wgAAEMIAAEBAAACGQgAAiEEAABzCAACAwgAAmEEAAIC_AADwQQAAIMIAABzCAAAkwgAAMEIAAFDBAACYQQAAhEIAABRCAADwQQAAJMIAACzCAAD-QgAAjkIAAJjBAACMQgAAfMIAAABBAABwwQAAGMIAAJDBAABsQgAAmMEAADBBAAAUwgAAuMEAAKBAAAAwQQAAqMEAAADAAADIwQAAgEEAAIpCAADowQAAOMIAACBBAACowQAAbEIAAIpCAACAwAAAFMIAAJBBAAAIwgAAYEEAAODAAADgwQAAcMIAAJjCAACoQQAAMEEAAAhCAABQQQAAKMIAAMBBAABEQgAAREIAABzCAAAkQgAA8MEAABTCAADwwQAAAMEAABBBAACOwgAAcMIAAHBCAACgwAAA2EEAAFDBAAAQwQAARMIAAPDBAADQQQAAAMEAAEDAAABQwQAAoMAAAHTCAADIwQAAdMIAAABBAACWQgAAXEIAAJDCAAAAwAAAEEIAAGhCAACOwgAAyMEAADBCAAB8QgAAFEIAABBBAACgQQAAWEIAAPhBAADwwQAAHMIAADRCAABsQgAAAEAAAEDBAACwwgAATMIAAIC_AAAwwgAAQMAAACDBAABUQgAAHEIAABRCAABIwgAAcMEAAODBAAAIwgAADMIAAEBBAABAQQAANEIAANDBAACIQQAADEIAAODBAAC2wgAAwMAAACTCAAAEwgAAUMEAAMhBAADIQQAA2MEAAAxCAADgwAAAIMIAAM5CAACQwQAAQMEAADTCAACQQQAAqMEAACBBAAA0wgAALEIAAKBCAAAUwgAABEIAAAhCAADwwQAA-MEAAJDBAADQQQAAIEIAAAxCAADYwQAAnsIAAHBBAABwwQAAFEIAAABAAACCQgAAFEIAABDCAACUQgAAmEEAAGBBAACYwQAAEMEAAPjBAACAQAAA0MEAAODBAACWQgAAIMEAAEDBAAAowgAAUEEAAIBBAAA0QgAADMIAALjBAABYwgAADEIAANDBAAAwwSAAOBNACUh1UAEqjwIQABqAAgAA6r4AAIo-AACoPQAAgLsAAKi9AAAUPgAA-D0AAAm_AAD4vQAAML0AAGQ-AAAkPgAAFD4AAFQ-AAC4vQAAvr4AAKY-AAD4PQAAoDwAAD0_AAB_PwAAgDsAALK-AAAQPQAAuD0AAFw-AABQvQAAiD0AAJq-AAB8PgAAiD0AAHS-AACYPQAAuL0AAIA7AAAwvQAALD4AAKg9AABkvgAAML0AAKg9AADIvQAAdD4AADA9AADYPQAAFT8AAEw-AAAQvQAAgLsAANi9AABcPgAAqD0AAB8_AAD4PQAA0r4AABA9AABhPwAAQLwAAEQ-AAAcPgAADL4AAJ6-AAC4vQAAoDwgADgTQAlIfFABKo8CEAEagAIAABC9AAAQvQAAHL4AAAW_AABQvQAA4LwAALg9AAC4vQAALL4AAIg9AAAMvgAAHL4AACw-AAC2vgAAdD4AAEC8AACIPQAAPT8AAIg9AACaPgAA4LwAABC9AACIPQAAoLwAAFA9AADYPQAAPL4AAFC9AACYvQAA-L0AAEC8AABQPQAA4DwAAIi9AAAkPgAAoLwAACQ-AADYPQAAVL4AABy-AAD4PQAAZD4AAKC8AABQvQAAMD0AAHC9AAB_vwAAsr4AAFS-AAAsvgAAND4AAJi9AAD4PQAAqD0AAKi9AAAQPQAAEL0AAOC8AABMvgAAuD0AAOg9AAB8PgAAUL0AAHS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Eus4XKXKPoo","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["945516742966137529"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6473460922060104275":{"videoId":"6473460922060104275","docid":"34-3-5-Z1378D6B2A5401D4B","description":"What does Convolve mean? - - Susan Miller (2023, May 31.) Meaning of Convolve www.language.foundation © 2023 Proficiency in English Language Foundation, All rights reserved...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2841741/e9ec36b7046c116f67dc9a1b0f688048/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zCMkPQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Db8GLuUBc7tg","linkTemplate":"/video/preview/6473460922060104275?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Convolve | what is Convolve meaning","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=b8GLuUBc7tg\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoVChM2NDczNDYwOTIyMDYwMTA0Mjc1WhM2NDczNDYwOTIyMDYwMTA0Mjc1aocXEgEwGAAiRBoxAAoqaGhmcGl5ZnlwZHZ4d3NkYmhoVUNCX2FpMGpjeXc5emtzWTZ4ZjhILWxREgIAEioPwg8PGg8_Ex2CBCQBgAQrKosBEAEaeIH--fUF_QMABPUQBPsI_AL_Bgj_-f7-APkFC_oDA_8A-QoL-f8AAAD_BgH_BQAAAPwC-fv9_gAAEQYEBAQAAAD7AP_9AwAAABP9_fz-AQAA__wJ-wMAAAAM_QQA_wAAAPwH_vwG-gH__QT-_QEAAAAH-AD-AAAAACAALdby3js4E0AJSE5QAiqEAhAAGvABf_n_Aa7__fxBDuAA6An2AJsIJP88CeUAu_8AAMcD5gDXL_sA8eHZ_xz-AQDmDgsA-u78_z0MJQAC-OsACAYBAAMC8wE08PwAKvAcANkA5v8CCv3_HO4FAP37AP4F3vv-CiHZ_9cEyP__9AQD_uoAAxTi-wf8_SwDFhQCAfvlFwD72wMAAQ7vCA3z-PvsBh8BB-8SBOUQFP39_PsG_Pfp_TD07AIhAuoCFA0dBgAG9vvyC-P58Av1-QQPAP369Bz4-hAG-gv75AH0JfL3LhrxBx4WBvgDKgP6ChrtAOno8P4l5_n13xH-_Pr5EAvg-gACIAAtnH8xOzgTQAlIYVACKs8HEAAawAfpYtO-ivAFPZB4wzxxjvq9cMFoPQW5sLx1GSO7N8ZOvAWTUb26LOa9Gn6BvA_lVbybHaG-RqGbvMhnqDwtCVA-1PhgPOZkGD2_Dze-HdloOj0CaT31oYO-PHfxOy7FlzuzXI4-xUIjPddO1LxGeOA8Xs3LPFb81bzYtg09yt4yvf3wWjrvsro8ANUJvRp7gDyKW0U-IBKpvf0ozzx3Me09jwApvXaWETxYbs48fxscO9jVZDwTPA2789bvPPNMmrrnq1Q-8F2UPGzJDTzK1Zk9adQyvMKNb7ykRJy8skOhPDsOjzst4Zq8y1yqPPoGS7xkWvs9tBYwvGkmDj1trOS9phEuPZROwTvkhv89OXb1PIxvnjzw-QE-X4f_up9xYbw6RcK9Yj5qPZov5TsBIz492FlevZAJgrwXXP28lDwtPV_h7jsMGyo9BZ3aO-KprDyPQsg8E4Xxu4caYDyTfQa9aWhIPYjRGjwo1d69aAr4vO0Dubs2EME9urvOvcDUxzrxKZU9wcUKPUXQPbwmwgs9UQnZPLVrQjw6b2g9NzutPGH2l7w_kSM8vf7EvRnpgzsvz1m9UFBvPf5KJbuTrhS9KJ4uvRBi37sCyIo9OIyNvRTHZLvYiDu8ycduPc46ITxPJ4Q9xu4KPALLW7zEknY732-kPVxAwzomTtO8-r5uvJDha7toR-S6c6QuPQ7oO7xgYLG9sLy3u7hUDLmDwEo9zM6muwA3C7tBpps9aiSjvQxECbukVEI96WZaPC3eA7orWzq9_QcCvXeZVrlBpLo87FPpvB72QTkLicm7FbUKPfdNzDnISoK82YODu7gixDn11RU9MveavB66grnis8C9TO0bPejFnjikDdU7W90BPFw1tjlpLn26-sy-vFGlwbn83se7J8YtPcOXYLg-vpM9kXWdvDBN8zeO_ry8FEbOPDWHxreFf6y8Q5iRupS0XzZRJpw7TrYnOj8qOjeGR8E9zTiyvKYZtThuvOC8V8uCPKOuOjgktss9P-MivcZw9jiC4ge-6iIlvW6v47eU7cs7r_oSvU84DzjFj4G9L0WTPaAkITlYn8y9pi40PYN_LDmcSFU9Ty2RPN6pnDh59LU8uMEaPYOAArgXiYQ9R31IPMw1AbgtHA09STzPvK9QD7ho11O9p03mPNp8Q7hlZYW8xwypPQpzkjisHkO6CsNbPIjP07cNEkc8dHz0vVZYWbjSfjU8fEqpPO3vtzifW-Q7FSL7PAnGwLjcsm29TpcqvY0_WDf5yQe8IIEavW58nbcgADgTQAlIbVABKnMQABpgWAoAMwxE_fDcUsLoCBoEDEriJe_SEf8y4v_-OBGoPhTX1wEj_2ni_wCZAAAAIenrKLMA_3_sCdUe-gAZ6tPRPOVkHRYfwuFNJP7q2lir1RcNLxsvAOMDxwX2HJt9DxgwIAAtqb8OOzgTQAlIb1ACKq8GEAwaoAYAAJjBAAAAQgAAoEAAAEBBAAAgwQAATMIAAADAAAAgQQAA4MEAAMDBAACOQgAAsMEAALbCAAAQwgAAZEIAAETCAABQQQAAjEIAAHRCAACgQQAAUEIAAEDBAAB4QgAAcMEAAMBBAACAPwAAiMEAAHTCAADYQgAAKEIAAHDBAAB8QgAA8MEAAJjBAABgwgAAHMIAAEBAAAAAQQAAmMEAAABBAACQQQAAbEIAAFBBAABwQQAAYEEAAPBBAADYwQAA0MEAAEBCAAAAQQAAgL8AAABAAAAgwgAAUEEAALBBAACgwAAAAMIAAAAAAAAYwgAAOEIAAMDBAAAswgAAuMEAAEzCAACAPwAA4MEAAKBBAABgwQAAfMIAACzCAACAQAAAsEEAAEzCAABQQgAAAEIAACzCAABgwQAAiMEAAEDAAAAIwgAA4MEAADzCAACIwQAAEEIAALhBAAAAwQAA2MEAAIZCAADGQgAA2sIAADjCAABoQgAAoMAAABDBAADAQAAA8sIAALDBAADAQQAAksIAAKDAAAAUwgAAGEIAAKBAAAAkwgAAYMIAADhCAABgwQAAgEEAACxCAAAcQgAAUEIAAAzCAAAwQgAAoMEAAFBCAAAAQAAAEMEAAHBBAAA0wgAAsMEAAKDAAACwQQAAkMIAAMDAAAAwQgAAUEIAAABAAAAMQgAAAMIAANjCAACgQgAAEEIAABDCAACQQQAAAEIAAMDAAAAAwAAAoEAAAFTCAABYwgAAoMAAAKBBAABAQgAAgEAAAMBAAAAoQgAA-MEAABTCAADIwQAAFMIAAIDBAAAQwQAAyEEAAGDBAACgQAAAoMEAAKjBAACawgAAYEIAAIBCAACEwgAAeMIAAPjBAACAvwAAfMIAAFDBAADQQQAAkEEAAAxCAAAgwgAAEEEAAABBAABQQQAAwMEAAKDAAAAAQAAAgEIAAKDAAADwQQAAhEIAAOBBAAAcQgAAMEEAALrCAAA8QgAAoEEAANDBAACWQgAAsMEAAOBBAACiwgAACMIAADRCAADAwAAAaMIAAAjCAAAYwgAAyMEAABTCAACMwiAAOBNACUh1UAEqjwIQABqAAgAAxr4AAFA9AACYPQAA6D0AAOC8AABAvAAAuL0AANq-AAA0vgAAoDwAAEw-AAAwvQAA2D0AAKg9AADIvQAAqL0AAOA8AADYPQAAdD4AAN4-AAB_PwAAoLwAAFC9AACYPQAAir4AACy-AACAOwAA4LwAAFA9AADoPQAA-D0AAFy-AAB0vgAAgr4AAGw-AADIPQAAgj4AAHy-AAD4vQAANL4AADA9AACOvgAAND4AAEQ-AAAcvgAAJD4AANg9AABcvgAAoLwAAEy-AAB8vgAA2D0AAAQ-AAAcPgAAHL4AALg9AAAHPwAAyD0AAHQ-AAAwPQAAJL4AACQ-AACAuwAAPL4gADgTQAlIfFABKo8CEAEagAIAAIi9AACgvAAAZL4AANK-AADgPAAAXL4AAJg9AAAsvgAAUL0AACw-AAD4vQAAUL0AAJo-AAD2vgAAcL0AABC9AAAcPgAAXz8AAEw-AABcPgAAJD4AANg9AABkPgAAJD4AAGS-AAAQPQAAiD0AACw-AADoPQAAPL4AAPg9AAAUPgAANL4AAHw-AAAwvQAAoDwAAP4-AABMPgAApr4AAJq-AADqPgAAij4AACy-AABQvQAAfD4AANY-AAB_vwAAwr4AAFS-AABsvgAAZD4AANg9AACKPgAAoDwAAOA8AADoPQAAoDwAAOg9AACgvAAA2L0AALi9AABkPgAA4r4AAMq-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=b8GLuUBc7tg","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1440,"cheight":1080,"cratio":1.33333,"dups":["6473460922060104275"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2411195590"},"2972504676208557545":{"videoId":"2972504676208557545","docid":"34-4-17-ZAAAD265C0BD05726","description":"Tutorial on how to use Simple Moving Average (SMA) in Python using NumPy package. In this video, we will talk about how to calculate simple moving average by hand. And also we will use a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3292243/748fada377c885fe3f2e95bc3845fe22/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/yfykMAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTlndg7-hqv0","linkTemplate":"/video/preview/2972504676208557545?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simple Moving Average (SMA) in Python using NumPy Convolve","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Tlndg7-hqv0\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoVChMyOTcyNTA0Njc2MjA4NTU3NTQ1WhMyOTcyNTA0Njc2MjA4NTU3NTQ1aogXEgEwGAAiRRoxAAoqaGhiem9ndWtqd3NpZGNwZGhoVUNhdTdmQlpyX2ZTTmI0Q3piR1dBMVJ3EgIAEioQwg8PGg8_E78FggQkAYAEKyqLARABGniBAvUACP0DAPj9CP77A_8BDv4GAvcAAADxAgjyAwEAAAcJ_Pf7AQAA-v0IBAAAAAD9-PgC-_4AABMD-wYEAAAAEQj4_fcAAAAMAQEB_wEAAPn5_gYD_wAAEvUCAQAAAAD4Cgf7-_8AAPn3-wEAAAAADPUR_gABAAAgAC0d4947OBNACUhOUAIqhAIQABrwAX9fCf_N5d7_4A3oAOQi-AG0-Un_PUfa_8H1_gDo_tMA7Qm9_-vw9gC8F8f-kBYOAdfN2AAdEgIBU_H2_xAJ7QEME_UBM6zyAWQY7wDuJRL-__1J_usO_vsU8ucA3LvI_SbbJP_UBej_DOarC-3tUwP-IRsGHPIoA6LcBgHm3yUAHQob_ubn-QboLwkD9ukTCAwn5P4JFvIC9Fb8ABjo9Azh7_v57938BQr46__sPQEGyeoP-Lff3v_kDywEESPx-PII8f7nFwECGir7_BT-7foP6wgKBQLvD83K9_v6Afb54fkD9N4dHf7p3BTsxR30CyAALbQF-Do4E0AJSGFQAirPBxAAGsAHNbXMvqF0WDy9TQQ9XFcMPa9Jkjw1NRy8XyV_vRSvMjwZopK7MBxePaQ-4jv70vY8_Iy7vlpTD7zG6sW7_b10PpJUS70Dsew8WQxovQpihT1Qmpe8xNpuvXiQKD2IRTG8bNHCveqcejydV4a8CoEsPjlH-Dwl7La8nkuMve1ItTyZy1e8-PmEPbl2Gjt6jw674yiKPaxDRD1GFhu70c3-PMG-I7zt9cm8zcJDvOlUw7yRHo47axGxvcfIyDwfEdO84Z-tPJ_a6jx5qM-4KEJvvULRp72hf6e7FTQyPTz20z3bHQw79IsCvj0wlDnLOpQ7b1NyPf74Rj1dkhk9fsUKvk8gDL2iRt87ax0mveUwUz2A8ve8D-kcvc3TTz2JdQ89PptyO7AeN737kYW6LuciPsGquj2qvkC6AGArPI_QhbwNNcq8aDoBPBnkLrxxgTo8IkQDPUWAU7xE3928vlvqPJbOlz2PNo653IsevQPSfjyJwAm8I4m5vJGe4DtPEj87YioePNXyubz_p6y8RRmQPVHX-zt2RK67Yd6jPIY84r1ZSXG7_aTaO7qNsT0NDbS69gWpPcG80bxvfPG7QI5BPCxEx7yzEk68nEfPPBLVgL3OgnW87MmCvd4oKD2hwDc7z0zAvVXx6zxJdfC6-ah5O46S173eo1a6OjmIvVOOvr1IDhS6Wt-2PCVuHz2nWqw7PO5lPVQ7o72vSHg55ZoiPduw-TsAVLM7JT8iPfYqDbw62j-6uMj9PLbkRz2G77O6znemPSoO1jzOViq59MCnvXoCmzqf3lu5mzrPvbjuQTwtJwq5qAXKvLEcvjqlhHO5_LNVvXc9sr2FGzC4nvBQu5ypK73VgcW54q7evZPxmb3JJ2o5bd1SvWNcszt5B4K5rce4Pc5mejyZ0-S4iXNZvR7gyTxmBBe4lNHQur0tgr3Q6AA4Vwn2vVMPLLzhDg06AoMEvecltbyAJ6218p0TPXuvkLx1KCg4jAITPZhQwbuO7eA4AUz5PaCSzrw6yBA5rQ-gvaEUzT2uyIy44s-bvTNQ-b1Gyg24vHDvOx56gb1N0MI4mv-cvdCQmz0C2y44AffcPdkAkTwgHjw58-5DvWQVIL3bhhe4d3PnvPBjMb3Cw9w388-3PftNUj3ELCK5xy0mPor6bjwgQgI4k2tPPfzujL1tIg03dixgPdP0mT0m_WS3bXIYPmGkF76n-N64Iv_sPTUpBT7zflu4vJKUPUWbSD13Z0S3WGM_PDd2pLwxHAk28qDyuluJKj1eEKo3IAA4E0AJSG1QASpzEAAaYDUUAFwOPwIsAzzR2Rz9JbQHHhHkuAj_Kb3_-zUkBzA0qKYjDf8xDfP4nwAAACsTAPrXAB192-HiFgsqHuDX00oJf78zGdQDBvu5zEUv9uMQEFkYMAAFxsESOxO4fv76QCAALWb_DDs4E0AJSG9QAiqvBhAMGqAGAAAAQgAA-MEAACRCAABwQQAAoMAAACDBAACAwQAAaMIAADjCAACoQQAAAEEAAEDAAABAwgAAoMEAALBBAAAUwgAAUEIAAMDBAACYQQAAAEEAAExCAACGwgAAyMEAAEDBAAA8QgAAmEEAAEDCAAAgwQAAPEIAACBCAABkwgAArEIAABDBAADgQAAAwMEAAEBBAADQQQAANEIAAJhBAAAMQgAAIEIAANhBAABcQgAAAAAAAODBAADIQQAAAMAAAJDBAAAAAAAALMIAAMBAAACUwgAAgMIAAODAAAAMQgAA4EEAAMBAAACAQQAA6EEAAEjCAACAQgAAsMEAALDBAABAwQAASMIAAIBBAABQQgAAEMEAADDCAABgQQAADEIAALBBAABwwQAADEIAACTCAABAwQAALMIAAIDAAACgQAAAgMIAAHDCAADQQQAAPEIAAKhCAAC4QQAAAEEAACDCAABAQQAA4MAAACBBAAAEQgAAOEIAAMBBAADIwQAAEEEAAATCAACowQAA4EEAAGxCAACAwAAA4MEAAChCAADQQQAAOMIAAATCAACmQgAADEIAAJRCAAAYQgAAiEEAAIhCAAAgwgAACMIAAHBBAADcQgAAMMIAAJDBAABEwgAACMIAANDBAAAEQgAATMIAAAhCAABkwgAAcEIAAMpCAAAAQQAAmsIAAADCAABcwgAAoMAAALBBAAAIQgAAnkIAAOhBAADwQQAAkMEAAADBAABAQQAADMIAABRCAAAAwQAA-MEAAExCAADwQQAA3kIAAAjCAAAAwAAAAMEAAIA_AACWQgAAQEEAADBBAACSwgAA4EEAAIA_AAA0QgAA8MIAAFhCAACIQgAAJMIAAPhBAACIwQAAAAAAANDBAAAowgAAwEEAAKjBAAD4QQAAgMEAAGzCAAAIwgAAJEIAALDBAAAgQQAALEIAAABCAACmwgAA4EEAAIJCAADwwQAAYMEAAAjCAAAIwgAA-EEAAJDBAAAswgAAKEIAADTCAACoQQAAUEEAAHDCAABgQgAAqEEAALjBAACAQAAAQMEAALBCAADIwQAARMIgADgTQAlIdVABKo8CEAAagAIAAAy-AAAMPgAAjj4AABy-AAAkPgAAED0AAJY-AAA9vwAAhr4AAFC9AACoPQAARL4AAJi9AACYPQAA4LwAAJa-AAAsPgAADD4AAHA9AACuPgAAfz8AADA9AAAEvgAALD4AADA9AAD4vQAAuD0AAKg9AABwPQAAPD4AABQ-AAAkvgAAiD0AAPi9AACAuwAA6D0AAIY-AACivgAAfL4AAKi9AAAUvgAAVD4AAHC9AACIvQAAuD0AABQ-AACSPgAAiL0AAJi9AAAUvgAAfD4AACQ-AABsPgAADD4AAAS-AABAvAAAGz8AABC9AAAUPgAAHD4AAEA8AADoPQAABD4AAOA8IAA4E0AJSHxQASqPAhABGoACAABcvgAAFD4AALi9AAAZvwAADL4AAEC8AACCPgAA4DwAAKC8AADIPQAAgr4AAFC9AAAkvgAAED0AADC9AACAuwAAXL4AACM_AAAkvgAAtj4AAEw-AAAcvgAARL4AABC9AABUvgAAVL4AAPi9AACAuwAA6D0AACw-AAAwPQAA2D0AAES-AAAcvgAAqD0AAEC8AAD2PgAAqL0AAJa-AABwvQAAML0AALg9AAAwPQAAuD0AADw-AABMPgAAf78AAOC8AACIPQAAJL4AAAw-AADoPQAAPD4AANg9AABEPgAAJD4AAIA7AAAsvgAAVD4AAGQ-AAAkPgAABD4AAEC8AABMviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Tlndg7-hqv0","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1030,"cratio":1.86407,"dups":["2972504676208557545"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"25065778"},"3946941228870964371":{"videoId":"3946941228870964371","docid":"34-0-3-ZF3A17A2A737B6F56","description":"5×5 Image Convolved with 3×3 Filter | CNN Convolution Example Explained In less then 60 Seconds In this YouTube Short, I show how a 5×5 image is convolved using a 3×3 filter in a Convolutional...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2836697/55277f2875a351630c87422bf264ccc2/564x318_1"},"target":"_self","position":"6","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5bYh8ZB-QVY","linkTemplate":"/video/preview/3946941228870964371?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"5×5 Image Convolved with 3×3 Filter | CNN Convolution Example Explained In less then 60 Seconds","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5bYh8ZB-QVY\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoVChMzOTQ2OTQxMjI4ODcwOTY0MzcxWhMzOTQ2OTQxMjI4ODcwOTY0Mzcxaq4NEgEwGAAiRBoxAAoqaGhqdmFmdWN4bGp3a25pY2hoVUN4eXE3RjVINC1QVWhTZzhTc1lmZVB3EgIAEioPwg8PGg8_Ey2CBCQBgAQrKosBEAEaeIH7AfkI_AUABQQOBfoI_AILAPv79wAAAPEAAvz-AQAA7Q4I-gQAAAD-BgQKBAAAAP7-_v_4_gAABAT4BwMAAAAV-QAM-QAAAAr5__0AAQAA_PkBCPoBAAAH-wYL_wAAAP78Cvr7_wAA_QwA-gAAAAAU_wP9AAEAACAALaLU4Ts4E0AJSE5QAipzEAAaYCEFAEEq_-7iAzXe0ej0NiveJiDiu___GdH_6zLX3igm1p8lI_8xvyLgnwAAABoK2hf2ABZ_G-rB9Cy1A63cwCQZfOIrw_48T-zk9wQfE8QAJRMMTgAr8e8kN7iwVew4ICAALTbnEjs4E0AJSG9QAiqvBhAMGqAGAAAIwgAAiEEAAAxCAACQQQAAkMEAAJRCAACgwQAAZMIAADTCAAAAwAAAHEIAAIDCAABYwgAAAEAAAABCAACAQAAAIMEAAHBCAABwwgAAgD8AAIhBAAC4QQAA2EEAAKpCAAAIwgAANMIAAGDBAAAYwgAAnEIAAMBBAADgwQAA2EEAAJrCAACAQAAA-EEAAHBBAAAIwgAAREIAAEBAAABIQgAAMMEAAKjBAAAYQgAAAAAAAGBBAACoQQAAoMEAAHBBAAC4QQAA8EEAABjCAADgQQAAtsIAAKDAAAAoQgAAyEEAALLCAAB8wgAAcMEAAIC_AAA0QgAAJMIAAAxCAABQwQAAXEIAAAzCAACAQgAACMIAAFDBAADwQQAAEEIAAAxCAACQQgAAQEEAAMBAAACAwAAANMIAAGRCAADYQQAA8EEAAOBAAAAUQgAAMEEAAEDCAADoQQAAoEEAAGhCAAAUQgAAOEIAAHBBAAAcwgAA-EEAAJTCAADWwgAA4EAAAGTCAACQQQAAAAAAACBBAACIQQAAIEEAAODAAAAMQgAAAMAAANjCAAAUQgAAwMEAABBCAAB4wgAAAEAAADhCAACgQQAAwMEAANhBAADoQQAACEIAAEDBAAAUwgAA2EEAADTCAAAsQgAAgMEAABzCAAC4wQAAIEEAAJjBAAAQwQAAwEAAALbCAAAAAAAAiMEAAPjBAAAkwgAAiEEAAFTCAACIQgAANEIAAIDAAACQwQAAQMIAAHDBAABAQAAAQEEAANhBAADWQgAAUEEAAATCAAAQQQAA4EEAANBBAAAgwgAAYMIAAOBAAACGwgAAyMEAACBBAADOwgAAFMIAAFjCAAAQQQAAREIAAAAAAACQwQAAoEAAAMDBAAA8wgAAAMEAAODAAADAwQAAYMEAAILCAABAQgAA0MEAACDCAACAQAAAmMEAAIrCAACqwgAAiEIAAADAAABgwgAAmMEAAEjCAAAAwQAAEEEAAKLCAAAIwgAAIEEAAJhBAACgQAAAAEAAAAzCAABEQgAAEMIAAFDBAADAQQAA-MEAAJrCAAC4wQAA4EEgADgTQAlIdVABKo8CEAAagAIAAPa-AAAUPgAAQLwAAGw-AAD4PQAAuj4AAIY-AABTvwAArr4AAFS-AAAwvQAAiL0AAOA8AAC2PgAAED0AAPi9AADgPAAAqD0AAKC8AAB_PwAAPT8AAAS-AAAQPQAAqL0AAIK-AAAQvQAA-D0AAJ6-AACAOwAAgLsAAIY-AAAcPgAAML0AAHC9AAAQPQAAqL0AADA9AAAMvgAA-r4AAOi9AACSvgAAEL0AAIA7AAAQPQAAmL0AACQ-AADmPgAABb8AAIA7AADmvgAADL4AABy-AAB0PgAAFz8AAN6-AAAwPQAAeT8AAIo-AAAEPgAALD4AAIi9AADYPQAA4LwAAKK-IAA4E0AJSHxQASqPAhABGoACAACYvQAAoLwAAAy-AAArvwAALL4AAHC9AAC4PQAAcD0AACy-AAA0PgAAcD0AAEy-AACYvQAAhr4AAOA8AACAOwAAqD0AAE0_AAAcPgAAqj4AAEC8AAD4vQAAmD0AAOi9AAD4vQAAND4AADC9AACYPQAAqD0AAJg9AAAwPQAAED0AAAS-AADovQAA6D0AAHC9AAA8PgAAcD0AAJa-AAAQvQAAVD4AAIA7AACYvQAAQDwAAOi9AACWPgAAf78AALK-AABMvgAAuL0AALg9AACIvQAAcL0AABA9AACCPgAAoDwAAIA7AABEPgAAED0AAHA9AABMPgAAMD0AANi9AADYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=5bYh8ZB-QVY","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["3946941228870964371"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14258639781782902993":{"videoId":"14258639781782902993","docid":"34-2-13-Z6F9D3417ED66BD9F","description":"Brief explanation and usage examples for Nuke's Convolve node.0:00 1 - Intro0:08 2 - Convolution Explanation0:28 3 - Matrix Analogy1:31 4 - Matrix Example in...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4519277/73a858c69e83f386ebae129bb7e25acb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2PcCrQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DyoK-GtpdL3Q","linkTemplate":"/video/preview/14258639781782902993?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nuke Nodes Kickstart - Convolve","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=yoK-GtpdL3Q\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoWChQxNDI1ODYzOTc4MTc4MjkwMjk5M1oUMTQyNTg2Mzk3ODE3ODI5MDI5OTNqkxcSATAYACJFGjEACipoaHRvaW1qaWluam5panBjaGhVQ2w3VjRXSWd2bnlDaGRmdVdFaGU5MVESAgASKhDCDw8aDz8TuAWCBCQBgAQrKosBEAEaeIH7A_MHAAAA-_4OBPoH_QL6-gTy-v38AO0HBwAB_wAA7AQI8gAAAAD5EP3--wAAAAEIAf7x_gEAFfsCDAMAAAAO9ewB_gAAAAYD9gH_AQAA-Qv5BvcBAAH--PcG_wAAAPH_Dg7_AAAACQH7-QAAAAAO9wb7AAEAACAALZpM1Ds4E0AJSE5QAiqEAhAAGvABYdcR_vfr9wKVHeMA0inhAYEKLf9KRBwAEf7uANfv1QDiExX_1CPPAAYR6QCZ7goAwBQW_xz7_wAgBTL_Ju8IAPwj4ADutRIAOyoaAMsCFADKHvH-EyH6_xPo-__r-usAN9Qc_s36-QPO6OcA7vTwAeP7GgEgA-oCGiYSAt0IJv_u9QUD-ADxBfwPDvv37BEH9SwP_j767AD8MA7_7AAH-fsX8Avc2ykD6vcO-vbcEwTfEPH25vcGA_7N9vr48ST21Qr2ARwADfMHLvf78xQW_uoh-AEJzPgBDdr4BgwA9PsX9gj33QMOAhY37_bwzgsSIAAtUCMNOzgTQAlIYVACKs8HEAAawAcr-9a-l1duPUsJPD2-Wfk8EtjcvDwe6bx4KWW-9yQrvdKEt7zWcCE-f_lEPUXchz2Xx6q-E8fsO74RnbwKL2E-F3GwvEHTxjk_KYm89zFQPUkCQ7zWgIK9doe5PPJyvbyPDom9qlNUO8k5MTzCyYw9L1JDvXwZuzwpqxC88aSgvCRhvroeUyc-4SGBvTNfsbul4qo9jYOGPQtjZjycl5Q8DPKpvG166zx0Ukm9JS2LvKBJLDwRrAU8VlsYPLwq67wgD1i9Go_tPJT5R7ybOFm91ej1vRDzPLs_1Cy9eKI6PVV9uLwZLRW8YLcdvC7gijxKxMU9l9MUvTBjirydnQy-vhFdvJV2NLyES-c9UTZAvHlNWbyh8u-9CZl1vDYmnzzbp8O9qGmbu9QWzTwNOZE8XPdgvYRWcbzpjcm858LtPOTumLt207e80yyFvcQSRTwBKqa8jeQ8vW8_qrwoBYK8xd6gPaY_4Lxz6Um9A208O1E7Mrw2qKK9f6TIPA9hnTtV_QU9jJqEvZ77IbwPgcA6rjQCPAEKILwk4wI92C8zvUkbHrySVrE9uTXpPbpMj7q9Qaq8x0EuvRMac7tICMW82hcWPGkYhLs1S1m7wtOWO8xAJzvHOQC9uhq0vD95M7zp-Ww7h9eqPQ7P_bv2TZA8u-M-vfx0uLve4FC9YCHzvdoIfrr44us9fJVBPUX-srrb27I9kiWjveA6Gbp7ubQ81d9cPI2if7ve4A-7i3xNPeFhnbkLeD69HFgzPLNju7neuaY9O2gbvdoZxzlKoWc96QeaPPMaJzk4pMG9ihYKvan_JLmV5iC9w_vgPOHcrTmml_i986upvao0dTixrqO7Te2WvG30R7pEqai93naAO7MmrjlpWXK90wY2vS7g6bqhbTA90J7Gva2ps7iKgk-8mit-PURlsTjA0AM-YPK1vIp27TdEA5c9GdrnOz8MibkQY4w7mNqSvYPSNDi1o9i9pehXvfSOAjWK6Pc9P5CsPYLuZjj7Ufm8i_rmu843Tri4mBq9VeIVPd84wbjz4Z69kwSbu4F6aLjW7By9UInQPJyqXTiUOYy8j4hOPGFnIDnoJXA92VQnvfyfpzh6aMS9x18fvZjTjribaCG86RyNvc1rhDiVwEE9e7zQPMQvCrmgM2k8u06pvR9Qm7j4pwQ-VZwPvdqDlzZTLy49lrD2PUEryDcy7qw9XCa-vexqQzdhrMo8eNOdPZMLhTjTaY29eK7EvY3ZhjgXDDM9gbZwPWUogLjDcqU9bavZvVO3wLggADgTQAlIbVABKnMQABpgCu4AU_Usw_gNQ_T1ywz37efzDgC2JP8Wyv8U-tf31gvIpR_6ABC7BvuYAAAAPBwtX9AAIH_SvdDw4_EAquwkLz9vOQLE2TpTCjgGQdnc__ULJDEZANvfwuMWQcNKHAIMIAAt_G4TOzgTQAlIb1ACKq8GEAwaoAYAAKBBAACYQQAATEIAALhBAAAwQgAADMIAAPhBAAAUwgAArsIAAPBBAAAgwQAAKMIAAHzCAABQwQAAoEAAAMbCAAD4QQAAcMIAAIhBAAAQQQAAokIAALjBAACAQAAAEEEAAKBBAACAwQAAksIAAFBCAACgQQAAIEIAANhBAACYwQAADMIAANBBAADIwQAAYMEAABxCAABcQgAABMIAAGBBAACQQgAA4MAAAEhCAACGQgAAuEEAAADCAAAQwQAAXMIAALBCAAAkQgAAOEIAAEDAAAAAQAAAlMIAAAxCAAA4QgAAgsIAALBBAABwwQAAOEIAANBBAABAwAAAMEIAAPDBAABYQgAAQEEAAI5CAABAwQAAYMEAAMDAAAAAAAAAAEAAAJjBAAC4QQAAiEIAANDBAAAAwAAAoEAAACDBAAAwwQAADMIAAJ7CAADIQQAAKEIAALDBAAA0wgAAHEIAAIC_AAB4QgAAuEEAAATCAABIQgAA-EEAAILCAABgwQAAmMIAABRCAABQQQAAYEEAAGDBAABAQAAATEIAALBBAABYwgAAuMEAAIC_AACAPwAAJEIAAABCAABwwQAAokIAALjBAACYQQAAREIAABRCAAA4wgAAgEEAABDCAACAwQAAEMEAAEDCAAC4wQAAfMIAAFzCAADIQQAAdEIAABzCAAAAQQAAIMIAAEzCAABoQgAAIMEAAABAAABsQgAA6EEAACRCAAAQQQAAMEEAAKDAAABkwgAAkMEAAAAAAADgwQAA2EEAADBCAADAQAAAKMIAAFRCAAAUQgAA0EEAAILCAACIwgAAMEEAAODBAABUQgAA4EEAAADBAACewgAAFEIAAHRCAAAQwgAAcEEAADTCAADgwQAAUMEAAJLCAAAUQgAALEIAAIDAAAAAQQAAqsIAABBBAACuwgAA-MEAABTCAACoQQAA6MEAAFjCAADgQQAAZEIAAJhBAACgwAAAIMEAAETCAABYQgAAaMIAAHDBAACoQQAAEMIAAARCAAC4wQAAOMIAANxCAAAsQgAAUEEAAPjBAAAYwgAAKMIAAHDCAAAUwiAAOBNACUh1UAEqjwIQABqAAgAAPL4AAKA8AACePgAAQDwAABQ-AABMPgAAcD0AABO_AAA8vgAAmD0AANg9AACovQAAqD0AAKg9AAAQvQAAjr4AAII-AAAkPgAAgLsAAA8_AAB_PwAAoLwAAAS-AABwvQAAmL0AAIC7AAA8PgAAQLwAAPi9AABMPgAA-D0AAFA9AACYvQAAoLwAAJi9AACYPQAAPD4AAAy-AABcvgAAur4AAAy-AADYvQAA4DwAAIA7AAA0PgAAEL0AAIA7AAAcvgAARL4AAIi9AACYvQAAPD4AAIY-AACCPgAAZL4AADA9AAArPwAAQLwAAHw-AABEPgAAcL0AADA9AADIPQAAmL0gADgTQAlIfFABKo8CEAEagAIAABy-AACIPQAARL4AAAO_AAA0PgAA-D0AAEC8AACIvQAAyL0AABA9AAA8vgAAUL0AABy-AAA0vgAAQDwAAKA8AADgvAAAZT8AAHy-AACOPgAAoLwAACy-AADIPQAAML0AAAy-AABAvAAAmL0AAHA9AAAsPgAA2D0AAAw-AAC4PQAAfL4AAEC8AAC4PQAAuD0AABw-AABwPQAAVL4AAGS-AACaPgAA4LwAAEC8AACgvAAA-L0AAJY-AAB_vwAAxr4AADC9AABAvAAAqD0AAIC7AABQPQAAMD0AAEQ-AABQPQAAgDsAAPg9AADgvAAAPD4AAJg9AADYPQAAoLwAAJa-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=yoK-GtpdL3Q","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":2304,"cheight":1440,"cratio":1.6,"dups":["14258639781782902993"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2439242261"},"6668176899195575991":{"videoId":"6668176899195575991","docid":"34-7-9-Z2AA898EAFA963C13","description":"Python : Convolve2d just by using Numpy To Access My Live Chat Page, On Google, Search for \"hows tech developer connect\" So here is a secret hidden feature I promissed to tell you. This is a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3100815/9509efc48fa4d469d04a22e56b9cb850/564x318_1"},"target":"_self","position":"8","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVjjOdnidBiA","linkTemplate":"/video/preview/6668176899195575991?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Python : Convolve2d just by using Numpy","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VjjOdnidBiA\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoVChM2NjY4MTc2ODk5MTk1NTc1OTkxWhM2NjY4MTc2ODk5MTk1NTc1OTkxaq4NEgEwGAAiRBoxAAoqaGh1bGhkaGl3YWt2YXBkZGhoVUNhWkw0ZUxEN2EzMEZhOFFJLXNSaV9nEgIAEioPwg8PGg8_E0SCBCQBgAQrKosBEAEaeIH_8vj__QMAC_0FA_oG_gEAA__4-P7-APECCPIDAQAAAwQP_f4BAAAEAggFAgAAAO4A__v7AQAAEfb5CAIAAAAcCfQF_QAAAAYDBPr_AQAABgb_APsAAAAO_gEIAAAAAPL_CAX7_wAA_Q70AgAAAAAL_wX-AAAAACAALZQ-3js4E0AJSE5QAipzEAAaYBsVACz4OAX78iLn9PgKFtgPLBvbvPMAC9oACCcLCgoVtss39AAe-P7wugAAACIK_xHEACBXGersEQX2DOQJ_kX8fyEa5SbZHQvX-xQ_8eQIwEEh9QDwDQXdJhHxWesUFiAALffIPzs4E0AJSG9QAiqvBhAMGqAGAAAwQQAAIEEAAKBAAABgQQAAwEAAAMBAAAC4QgAAIMIAAIjBAACgwAAAyEEAABzCAAAYwgAAPMIAAFxCAACYwQAA0EEAAAAAAADIwQAAZMIAAABAAACAPwAAEMIAACBBAADgQQAAuMEAAJTCAAAAwQAAqEIAAOBBAAAAQAAAqEEAAHzCAADIQQAAQMAAALBBAABAwAAAqEIAACTCAADQQQAAkMEAABhCAAB8QgAA4MAAADxCAAAAQQAAAMIAADTCAACCQgAA2MEAABxCAADwQQAA2EEAAMBBAAAAQQAAoMAAAMDCAACgwAAAmMEAAFRCAADgwAAAkMEAADjCAACMwgAAoEAAAAzCAAAkQgAAIMEAAKDAAACgQQAAKEIAAERCAAAAwQAAaEIAAADBAACCwgAAwEAAAKDAAACGQgAACEIAAODBAACQQQAA4MEAAMBBAACiwgAAsMEAAIhBAAAoQgAAPEIAALDBAABAQQAAQMEAAIBBAAC2wgAAoMAAABDCAABgwQAAQEIAAKDAAADowQAAcMEAALBBAADGQgAAKMIAAAAAAACYwQAApMIAAIJCAAAQwQAAEEEAAFBBAAAAwQAAIEEAAFDCAADQQQAAoMAAAADBAACSwgAA8EEAACDBAAAswgAAMMEAANjBAABQwgAAcEIAAABCAAD4wQAAoEEAAIzCAAD4wQAABEIAAARCAAAIwgAAiEIAAIC_AADAQAAAoEEAAEDAAABgwgAAysIAAGjCAADEQgAAYEIAAPjBAAC4QQAA4MAAADzCAABcQgAAYMEAABDCAABAwgAAwMAAAAhCAAAcwgAAMMEAAIC_AACAQQAA8MEAAHTCAACgQAAAYMEAAKBAAACMwgAAgD8AACDBAACgQQAAOEIAACBBAABAQQAAVEIAAKjCAABAwQAAJMIAAPjBAADwwQAA6EEAABDCAACowQAAYEIAADxCAAAAwgAAEMIAAEBCAABAwQAAlkIAACDBAAAQwgAA5EIAAODAAABcQgAAkMEAADjCAACAvwAAAMIAACDCAAB8QgAAJMIAABDCAACgwgAAWMIgADgTQAlIdVABKo8CEAAagAIAAJi9AADIvQAAtj4AAIC7AAD4vQAAgLsAADQ-AAAPvwAAyL0AAKC8AABwvQAAkr4AACw-AACOPgAA4LwAAFy-AADYPQAAVD4AAJg9AACyPgAAfz8AAIg9AABkvgAAgj4AAFC9AADgPAAAuD0AAOi9AADYPQAA-D0AAIC7AACCvgAAUD0AAKA8AADoPQAAqD0AAAw-AACSvgAATL4AAEA8AADYvQAA2D0AAHC9AACgPAAAHL4AACw-AADgPAAAmD0AAHC9AADgPAAADD4AAJI-AAC6PgAAbD4AAHy-AADgPAAANT8AANg9AAC4PQAAmj4AAIC7AACAuwAA6D0AAJi9IAA4E0AJSHxQASqPAhABGoACAACuvgAAqj4AABA9AAANvwAAiD0AANg9AACOPgAAuL0AAJg9AABcPgAAbL4AAKi9AACAOwAAcL0AABA9AACIvQAAZL4AAFM_AABAvAAAtj4AADA9AACuvgAABD4AABA9AAAUvgAAdL4AADC9AAC4PQAAND4AAPi9AADgvAAAyD0AAAS-AAAwvQAAuD0AABy-AADiPgAAcD0AAFy-AAAQvQAAoLwAAIg9AADIPQAA2L0AAGQ-AABMPgAAf78AAFC9AADIPQAADD4AAHQ-AACgvAAARD4AAEQ-AADIPQAA2D0AAKA8AAAMvgAAMD0AAHw-AABUPgAA4DwAAEC8AAD4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=VjjOdnidBiA","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6668176899195575991"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17439716362498100681":{"videoId":"17439716362498100681","docid":"34-6-5-Z8964FCF3E4DAD2E5","description":"Intro to 2D convolution program written for ECE 588 Robot vision Download Executable Installer https://drive.google.com/open?id=0B-5...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3680673/fced81ff85726673e91ac5b14de8f6ce/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/vHzKKAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHSvUUL5sCeg","linkTemplate":"/video/preview/17439716362498100681?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Intro to 2D Convolve","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HSvUUL5sCeg\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoWChQxNzQzOTcxNjM2MjQ5ODEwMDY4MVoUMTc0Mzk3MTYzNjI0OTgxMDA2ODFqiBcSATAYACJFGjEACipoaGtieXpjb2hydG1kcnBiaGhVQ3JkaWp6eUN6STltYjJaZWp6cXpHRncSAgASKhDCDw8aDz8T8gSCBCQBgAQrKosBEAEaeIH2_vQB_AQA-PsT_f0E_wH1AfgA-f7-AO79AQQIAAAA8gIO-gcAAAD6DwP-BgAAAP0FAfv6_gAADv3-AwQAAAD9-_EJ_wAAAAr5__0AAQAA__wJ-wMAAAD8__37_wAAAOwI_gABAAAABAf-_gAAAAD7-gEDAAAAACAALVAZ4Ts4E0AJSE5QAiqEAhAAGvABbA4R_vjv-ALgA_gAsTXh_4HID_wN_OoA2PvqAd79BAHmJfj_4Qf8AOErB__CJhkBFvX9_yYUFf8O5RX_HhEEAB0mJgEHAgMCHO8CAc3YCQAMFP__NdcA_wIJGgHXBAEALgsUAO4bCwLj1xL_ANQDANgJIAQk7-oFAvL9ChscG_8RCQX79evv_egQ6QL7y_T_DA_f_zst-APs2fn9IRXx-RYQHAMYDQL7JfYmAPoIEfsC8AD39woH9R4F7wEZKwgCzATtAda-__zs-vX6_vMC-OEGDgEI9gIFDRv08v4M6w7oIhYC6C8DDgfs-g32A_cAIAAt93IpOzgTQAlIYVACKs8HEAAawAeS6O2-lGdBuc1JXr2Kb529IXkiPYEyfDz4g0a9VsGDvO3E-rv_I9M9wVJdPJoLnDyyL-G-johzPILA0rogeRc-XNHBPN1y_bq5-iG-KIENvY-6Bz3Lg1S-mlWpvBGakzxWRPI65C_NPX59oTv_lWU-lk3vPN8YgjwEIcS9FEnqPIz9ALzwyTs7qtBlvdIjfDwqqEg-uAbTu_4qgDzmA0I-9j1PvUcBAbuNXo090rDzPAOgAry6EZa9GTwIPL59Bz0fZxo9hmboO7M8k7qx3gg9DhtAu3inr7vrRi49xruIPOX4fLxFKeG8UxPzvCi67jzJT3Q8u2WivE8Hsrwyfaq994mIPXF8ZbsaQo899vDAPGcxqTrCz0m7fKJGPIlutjmc2VM80LHovMdVkjkBmbc91qIqvFchijxDo4E7hpuSPeGQMjzW_i4--K-HO-gkJTy5vx895_mIPRvNmzz-D4u83pcOPaEmwDvcoPa9GP4bvBtvYTyXgh48Dg8EvHca3zz4iPg9lW8JPHPAyzuQXTM8Im1jPd-V8joWpk89UEMqvX8sBjsZNBk9FAAovfLjlru9ZC29wnI-u2Iirzx9PV-9T7iCPcv4Vrtu_6U9SKK8vDq-qLvPw-Q85zJavNmZ37qz_iI8c3VRvVcHgLz47G-9dvUvvZf6XLsQsmo7gsQ7vZWFqzu5wyY9IM9OvVPUlbvmKlG92ImmvB2KijuL-qQ9uLlnPbGCRrvkNWq9GWayPFAeODlqwnY8w6s2PYVMvbncjVQ92EQGPTMlZTmzeIE9y34CPFEcvzZcOsY90sWmvPmH67jISoK82YODu7gixDl21OK8Ldj8POLCL7mB6G68lxSJPaj9Crk7mAM9zgr7u70x67qGnt47q3VivUnV_7noGgE9K726u_yDl7nCouI8BrigvB6xJLhz2H28wke5vRab-7jdz-m8d-R-vL82tbi7ZIe99ekCPQSGqbjAlYm6RGN3vV7cFbhxSSQ9ZPhZvW89ybhSPLg8X8tQvRitEbjByfa81oJIPaPtC7mgrHO9odY0PAjjGjj80pE8w45wPXLYODj_DEq70D-kux4TRzg5y5E94tFhvbqsZDhYPHW8lqWpu2DnyLbHc6w983JJuoxqy7dfQNQ8o8yGvWSfVbfEa-o6UOSkPNnT_TY1-BQ8VHCZO_bHoDd7cHI9bklzvZtZvzfk1Z68eonxvWVVMLhG5JA9gcYxPeWQjzgPhtW8hnzGPCiyxreksCa9VAbpvCB-Hrj2Or69BVONvHNfF7ggADgTQAlIbVABKnMQABpgFv0AXgkluSpdR8fQAusy8NzH6hjoLf_3lf8S9dbcFgbdpOsV_0LjBtyXAAAA9fYPS_QAFX_hH-oHzTUPA8MGOP5_LPQJvuBDEBHWYB7j6vQm4xkJABKnzBEeSr06agY9IAAt2ckLOzgTQAlIb1ACKq8GEAwaoAYAABTCAAC4QQAA-EEAAEBAAAAAwQAAmEIAAHBBAAA0wgAAksIAAJTCAABAwQAAMMEAAFDCAAA4QgAAJMIAAHDBAACAQQAA-MEAABBBAADIwQAAgEEAAJjBAAB8QgAAsEEAAEhCAADoQQAAeMIAAFDBAADQQQAAUEEAAIrCAABIwgAAtMIAALhBAABAQAAAiMIAAARCAAAAQAAAOEIAAADCAAA8QgAAYEEAAPhBAAC4QQAAnMIAABjCAABwQQAA6EEAALBBAABAQQAAdMIAAJBBAAAQwgAAiMEAAKhBAACmQgAAzsIAAEDCAAAAwAAANEIAAGBBAADYwQAAgEEAAKTCAAD4QQAAkMEAAEDAAABMQgAA6MEAAIBAAABMQgAAgkIAAIBBAABYQgAAIEIAAFzCAAAgwQAA6EEAACBBAACAwQAA6MEAADhCAADgwQAAYMEAAMhBAABAQgAA6EEAAGDBAAAwQgAA6MEAAEBAAABsQgAAYEIAAKzCAAAwwQAAEMIAAOBAAACoQQAAAEAAAIBAAABAwgAAAMAAAExCAAAAwQAA4MEAABBCAAAcQgAALEIAAKDAAABIQgAABEIAAEBBAABwwQAAQEIAAPhBAADgwQAAOEIAAIbCAACgwQAAyMEAAK5CAABAQAAAikIAALjBAABEwgAAiEEAAADAAACgQAAAmMIAAIBBAAC4QQAAuMEAAODAAACAQQAAeEIAABRCAACQQQAAMEEAAIC_AAAkwgAAqMEAAIjBAADQQQAAiMEAAADBAAAAAAAAYMIAAIBBAADIQQAAgEIAAHDBAABwwQAA6EEAABBBAACQwQAAiEEAAEBAAABowgAAgL8AAIBCAACAPwAAdEIAAKLCAAAYQgAA8EEAAETCAAAQwgAAikIAABRCAACgwAAAKEIAAPJCAABAQAAAjMIAAEBBAAAEQgAAgMEAAKDBAACIwQAAsEIAAIjCAAAgQQAAaMIAAHTCAAAYQgAAGEIAAIjBAAAAwAAAXEIAAJBBAABwwgAAoEEAAILCAABUwgAAIMEAABxCAAAQQQAAQEEAACjCAABQQSAAOBNACUh1UAEqjwIQABqAAgAAcL0AAKC8AABMPgAAhj4AAJi9AAA0PgAAML0AAA-_AACSvgAADD4AAKg9AAC4vQAA4DwAABA9AADIvQAADL4AAIY-AABQPQAAUD0AAOI-AAB_PwAAJD4AAIa-AABQPQAAyL0AAEC8AABAPAAAfL4AAJi9AADYPQAAmD0AAAQ-AACGvgAAEL0AADw-AADgPAAAQDwAABC9AAAEvgAAgr4AAIi9AACAOwAA-D0AAIg9AABAPAAA-D0AAOA8AACAuwAA-L0AAEy-AACAuwAAcD0AAHQ-AABcPgAAmr4AABC9AAAjPwAAgLsAAHA9AABwPQAA4DwAAAw-AABwPQAAuL0gADgTQAlIfFABKo8CEAEagAIAAEC8AACgvAAAQLwAACO_AACAuwAA6D0AAFC9AABwvQAAJL4AAKY-AAA8vgAAmL0AAFw-AADYvQAAED0AANi9AACAuwAART8AAOg9AADaPgAAJL4AAIA7AADYPQAAMD0AAJi9AABcvgAAXD4AALg9AABMPgAAiD0AAOA8AAAwPQAA4DwAAKi9AADovQAAmL0AACQ-AABcPgAA-L0AANg9AAC4PQAAoDwAAAy-AACAuwAAcL0AAKg9AAB_vwAAiL0AAKA8AACCPgAA-D0AAFy-AACgPAAAuD0AAKg9AACYPQAAED0AANg9AACovQAAQDwAADw-AAB0PgAAML0AAHy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=HSvUUL5sCeg","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["17439716362498100681"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3978550480"},"12850748595789960":{"videoId":"12850748595789960","docid":"34-6-12-Z9DF0099D71C4F736","description":"This tutorial explains (provide proofs using code) the components & operations in a convolutional layer in neural networks. The difference between Kernel and Filter is clarified as well.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2103752/4d55979f0dd4d098935fae5ff8d6732a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/vX7f9AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHALYTCQBcO4","linkTemplate":"/video/preview/12850748595789960?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Convolution, Kernels and Filters - Visually Explained + PyTorch/numpy code | Essentials of ML","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HALYTCQBcO4\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoTChExMjg1MDc0ODU5NTc4OTk2MFoRMTI4NTA3NDg1OTU3ODk5NjBqiBcSATAYACJFGjEACipoaGR1d2dlcWFneG9kZHNjaGhVQ2sxdTVfcXFfbnJkejEzLW81SzZiZVESAgASKhDCDw8aDz8ToQWCBCQBgAQrKosBEAEaeIEECP8FAAAA-QcLB_gG_QIGAvL19v_-AOQSCAED_QIA8QsC-_kAAAD2BAr8_wAAAPsCBAT1_gEAFAP7BgQAAAAJ8_cL-gAAABcG9fn-AQAAAvn8BgP_AAAN_QQA_wAAAPju____AP8ADAwJ8gAAAAD8Afj7AAAAACAALQAH1Ts4E0AJSE5QAiqEAhAAGvABXPf_ANX-AgD7CPMA3wzQAIEFC_8WHegA4Bj-Aez7_gDg8wcA5Pn0AMoNCgDjF_wABNPg_zYKIQAA9PsACxH7ABgRAwAc-xMAOtDj_wweB_7xNB3-G_IT_hP5__727OwAAuIDAPTx4P_e4dUE8wokAQP6FQEK_fYA5PYEAAIUCwITD_L87gwE_dnp-QHr4RwCGxrT_h0A7AIDDAIAMAj-_-UQ-gEADPL6HAkFCunzFwMK-gz4_wT6CPXfFgESIPP77vLzAvfsBv4N__v6CQvr-vwGFwHz_woNFd3___jiAP3yFQXw4hgL_PIGCAUG_A_8IAAtbidIOzgTQAlIYVACKs8HEAAawAe77tW-2xkmvILxQjtayK08M9xAPZ5ilbw5ZOO9stILO4kDLb2Qoh4-ShLfPLdDATyXx6q-E8fsO74RnbwtC1Y-sIpcvUEtJr25vJ69qTD4O9j-BL2OQKy9ofEpPZqpmLv9TtO9m3VGvYsuND0KnRc-k5sVvBGKrbz4_CC-WDWNvSnvPjz4-YQ9uXYaO3qPDrulVJ09SpZLul39WLog6wk-xW3ZvKqZNbxrcxC8tlfVPH2wDjxDEXy9qEcEvZlq_7uCAu88v-8fvd6wSDu3rdK8dozrvJReZTxau809Ai7oPZfA0jw75ay9en6HPCKJXjzviO88uWeSPb8AjDz5oAe-9BqbPS-BgDt6JxU9amMxPdoTbrzt8QK-AblJPabOSDwDuso8VGBXvRl3XjzThuM9zHZqPdZ0vTzU74K8nTcEvTN_2DpNdp09M0imvN37LLqmajE9M85VPUtCnrq-aNG7kN5LPawjIrzEQxO9PxjdPGWb5bySyAI8ZYcfPM3dtjocXNo9te7wvERsjzocMF49v9ervBjHkjxh3qM8hjzivVlJcbvB5MY8Uv60Pc3ZjLxz8209LZOBva9QNTzYGrC9fNf_u0y8arsCyIo9OIyNvRTHZLt2cVm6uO8svGet0zpL2K28qxW3vcWaArx33Iu8CcBEvcpjk7vQTye9d6KEvaH3hDpH1zs8K-C5vIl0BTzMn2s7KvFKvDqOgrtND289T0UlvaooIzjsQKe8IUqou8-3CTtW0_U8uWCaPfMOK7mUQLQ94M1kveKHajk7dSO8wIFkPWLiLble-Fy9jYK7PKbBWjctn0A93_4cPX-3sjfdKqO8Vz3AvZEGHjnIfqE9soPKvNhcVboSFeq9Hbi5PAEnnDmE06c8ezDpvHiyBrjr2oM9lZO1PAmlfTjLqdM8UGgfPG6JoriT2N47A0xPvUZfBbih5a-8VE0VvbUYMbhtC4W82MOwOtHeQTjbq0o9Oo_tO252hDjG86495J-pPeQCajZD05g9y2CxPNR_dTdtkwU9iAgpPT_1CbmVozu9RZsDvg3aMzeIKMu7WizFvHNhNDjCS7W9jU0CPA26TzbhNLM83GF4vTj3qrdvlne98-8JPQZ817g8tq-9E0tFvf6vvDejsRY-plWePUcjJLnLODo7KlwKPeuwgzcGqF-8G54Ovpl_wDdmED89q7QFPWA_gLhhBnk98zoSvkvnqbgi_-w9NSkFPvN-W7ifW-Q7FSL7PAnGwLhpi2s8hctPPWqeJbhRODM6dyY5vf8F47cgADgTQAlIbVABKnMQABpgY-8ALgsX8xoXaPn31O8W8e_b5v6yFP_xq__sGPL_FxfQswoI_z_kG-udAAAALgclNvcAP3_auP_3_Bn50cLjSwVaQO3u3RMv9PDJN_6i0vMEBT07ADHRrv8v7LxIQOv9IAAtYc4VOzgTQAlIb1ACKq8GEAwaoAYAAIBAAACwQQAAiEEAACDBAAAQQgAAgMAAAHxCAADYwQAAWMIAAMBAAACgQAAAtMIAAFTCAAAUwgAAuEEAABTCAACQQQAAoEAAAARCAABwwQAAoEAAAKjBAADgwQAAAMAAAIDAAAAgwgAAPMIAACDBAABcQgAAUMEAABDBAADgQAAAnsIAAERCAADgwAAAgMIAAEDAAACUQgAAuEEAAIJCAABsQgAAMEEAAI5CAAAAQQAAQMAAAIbCAABIwgAA6EEAAMZCAACwQQAAIMIAADDBAAAUwgAAYMEAAFBCAABgQgAAAMMAABzCAAAMwgAAYEIAAGhCAAAYwgAAwEEAAFDCAAAAwgAAqsIAAIA_AABIwgAA8MEAABDCAACGQgAALEIAABzCAABoQgAAYMEAAETCAABwwQAAmEEAAFxCAAAIQgAAWMIAAAxCAADAwAAAXEIAAMDAAACAwAAAMMEAAIZCAAAAQgAAAEAAAAxCAAAYQgAAqsIAALTCAACAvwAAtMIAAMhBAADQQQAAbEIAAFjCAACIwQAAYEIAAIBBAADgwQAALMIAAKhBAADYQQAAwEEAAIA_AACQQQAAiMEAAIBAAAB4wgAAwMEAALhBAAAkQgAA4MEAAKjBAAAAwAAAEEEAAPDBAAB8wgAAoMEAADzCAADQQQAAREIAAATCAAA8wgAABMIAAODBAAAcwgAAIMEAAAjCAACAQAAA8MEAAChCAACIwQAA4MAAACDBAAB4wgAAgEEAACDBAAAAwAAA8EEAAEhCAADQwQAAbMIAABRCAACYQQAAQMAAALhBAABIQgAAgEEAAGjCAABgQgAAkMEAAKBAAACWwgAAiMEAABhCAAAEQgAAAEIAAEBAAACAwAAAkMEAAABAAAAIQgAAZEIAAGBCAADAQAAAkMEAADRCAACGwgAAEMEAAAjCAADAQAAAQMIAAJDCAADwQQAAbEIAAIC_AAAAwQAAgMEAAFDBAAAsQgAAcMEAAJLCAADQQQAAmMEAAODBAABAQQAAcMIAAEDAAAAoQgAA0EEAAIA_AADwwQAAAEEAAAzCAAAgwSAAOBNACUh1UAEqjwIQABqAAgAAPL4AAIi9AAAEPgAAUL0AAIi9AACYPQAAiD0AAC2_AAANvwAAiD0AAHC9AAAEvgAAED0AAEw-AACYvQAAir4AABQ-AAC4PQAAUL0AAAM_AAB_PwAAUL0AAFC9AADYvQAAHL4AAGS-AABMPgAA6D0AAIi9AADovQAATD4AAAw-AACAuwAAEL0AAHw-AABQPQAAvj4AADC9AAAEvgAA6L0AACy-AAA8vgAAFL4AAOA8AACAOwAAQDwAAI4-AACavgAAoDwAAIq-AAAcPgAAML0AAFQ-AAC2PgAAzr4AAEA8AAAfPwAAnj4AAFA9AABwPQAAuL0AAOA8AAA0PgAAVL4gADgTQAlIfFABKo8CEAEagAIAAJq-AAD4PQAA6L0AAB-_AAA0vgAAEL0AAJg9AADYPQAARL4AABw-AACCvgAA-L0AAOi9AABkvgAAMD0AAKC8AAD4vQAAUz8AACQ-AAC6PgAAUD0AACy-AABwPQAAiL0AAGy-AACAOwAAqL0AAHA9AABAvAAAML0AAEA8AADgPAAAgLsAANi9AADoPQAAML0AAII-AABwPQAALL4AAMg9AADYPQAAoDwAALi9AACgPAAAUD0AAEw-AAB_vwAA7r4AAGS-AAAwvQAATD4AABC9AAB8PgAA2D0AAEQ-AAAwPQAAEL0AAMg9AACAOwAAgLsAABQ-AACiPgAABL4AAIq-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=HALYTCQBcO4","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12850748595789960"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"492782442"},"12188968537323491571":{"videoId":"12188968537323491571","docid":"34-8-3-ZF5BF194C972C48B8","description":"The convolve primitive modifies the pixels of an object using a convolution matrix. is used to recalculate the color values for each of the pixels. All the other elements correspond to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1339051/edab121ef873f05397803468c16c3479/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/JxVKPwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DuhnecYmzSMg","linkTemplate":"/video/preview/12188968537323491571?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Inkscape: Blur and Convolve Filter Primitives Explained","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=uhnecYmzSMg\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoWChQxMjE4ODk2ODUzNzMyMzQ5MTU3MVoUMTIxODg5Njg1MzczMjM0OTE1NzFqhxcSATAYACJEGjAACiloaHd4YXl6Zmt4bXJkaHVoaFVDSEJjNkFJak5nMVlhcEZkNlJlcl9rQRICABEqEMIPDxoPPxP9BIIEJAGABCsqiwEQARp4gfsK_gkC_QAE9BEE-wn8AhIDBvoI__8A4A_1BAP7AgDrEAn5BAAAAP0M_AUMAAAACfX3_vb-AAAOA_cRAwAAAA_8_Ab7AAAABu_2EAABAAD3AQv-AwAAAAD9CfL_AAAA-_Lz-f8A_wEJAfv5AAAAAA_3EQwAAAAAIAAt4HXMOzgTQAlITlACKoQCEAAa8AFPAxb-uej8_u_8_QD497YCxx0t_zoH-gCB-SIB6fr9APgk8gHoJAX_1BcGALgEIgHU_vEA7AT_ARftOf4GABMAJycEABH9HgE98hoA-fMRAO4vDv7_0hAAOPfZAPcR5P8HAgz-BCDyAeHj8gTn3iMBAfH8__cB7gHz9fQB8xYcAf4SFwHg0g3_9AQO_uPH7QD3Le7_OBT1_wAZDAQU5v_-GCsH_f__AgLzBfz4_iARBiDj_wP2_AH63QkN_DEm-wTeK_L-39IJ-BMK8AkY4-_26NwKBhAc9ArxI_4D8O0ACPIpDA0RDwrt7q3__vLo9P4gAC1Y6ic7OBNACUhhUAIqzwcQABrAB7fs2L5dd6k8sdTEvPcL0bx62UA8eGz6vGpNc72pCME8tnIFvT7sVT6O5d08PVcFPbPwdb7H0Ja8RWRAOcVVhT5UMG-9m38qvGLZLL5yAqo7w2QKvdGcq7wZkpM8Jxp_vPZzNL1_vq28RjniuhsQUT4j7nu9VbSDvDM4pbyAJds7WwBkvOFeGT138aO8kb4kvHBCoT2EbX67Xx6XPJ2FeD28PpC7igU-vFR_Tj3G6oM77JbuPJxs471t2MC8zWUZPVb1srxPubg8DQScPAr4NbzI9tA8ZZ27vCJKxTwZ47M9CUbvOwZbdr3vCGK96ksFvWg6kD1QIEc8TmmYvK35Ab5UpZI8IdHfO9wEqT2Dv989HDGpvKiyHr1XCZa8soQ1u7NN4LyC_4w76gWCu6VoJT7Y-Ke8TkiWOUQU0zxH0ok8XxbJPCKnzz0Jd709eeRVO7pjFj3k9ss8ptWMu_mo2rwLRuU9LyqxO_E6cT24i5W86k5BvBoppTw47hk9mVupu6cHZT1blNk82MJiPL4-qT1Xwge8gC2KvGHeozyGPOK9WUlxu7WRJj1_qzA9ux3Mu7vPVj0SFQq9pk-hvOmNCb0sYlg98aNYuzeq7jwqmVK9C0drPE8eu7zWAYA9ALYTuy19o73ZhyY9XqmAuyC9vLyCaHe9f8uUO5GgU7zfJq29Fu2eusNnq7zF8IW7ZV11OzZRwL3c2uK98xJYuiApQj4gjAw8O2bEuHJUiTwnBSy95BWIOw8pxLsa6zE9aiXpOeJbmD26JJi8HZ97OQDy1LyGgR097SeduO8ZLjyp2UM9aTACORJz_7zrUgg9BDIwue5f-b2rCf28hegUuRzWDz1aYqU8cF3luXHRhL19acC8pgpZOen2rbwlO_a9ubzMOP2KkLzpPfq8h4-AuTf_Dz0Y2zq9bGDEtTduUb2mJau9GFW_uGTYl725P029hb57OVfSBb3WTAg9f0GMNzK12zx4Eiy9OF4EOXhS8DzolNG86wVct27c4j0dVl66mGsBOETG_ry_ggQ-51f0OMvQwrv6pGk9ANCmOOhOED3XpcY8aSKEOD2T4rxXxgs9Ns02OKuppj0zgrI8iBE7OHMT9T0sppg9dUciN_f5Wb26vNk9QQq_OCU5Bb2GhZS9qXjOt2rWjj1_E-q9jMW4uA2fujvPXFG9oUWutuP_jj1_3zo9rfHTtx2XDD1JD0O-VDFNuW0xKb1YVQ8-XgrfuMZdcz0O2PY6FBJguFyJZb1kM9E8p72gNwlduLwJmXW9ke44OCAAOBNACUhtUAEqcxAAGmAvEABSNRfWFgJG7d_PHB342bQM9c1C_xG6_wn-2usy5-fsKgcAM8oIyZ8AAADy1-Ya4wAVdwDZ_f0J_O-BzdlF_ltw7TbY5y8i8r8OPfr64PcD_w0AEcW9KGcM4AE-_CcgAC0TtBc7OBNACUhvUAIqrwYQDBqgBgAAJMIAAMjBAACIwgAA8EEAAIhBAACQwQAAAEAAAHDCAADAQAAAaMIAANjBAACQwQAAQMEAAOjBAADoQQAAgMIAAPDBAADYwQAA4EEAAIbCAACQQQAAtEIAAJBBAACwQQAA0MIAAITCAAAAwQAAcEEAANhBAACgwAAAykIAAAAAAABwQgAAXEIAAKDBAADwQQAA4MAAAAhCAAAQQgAAkMEAAKBBAAC4QQAAQMAAABxCAACIQQAAoEAAALDBAAAkwgAAAMAAACDBAAAgwgAAyMEAAJBBAAB8QgAAQEAAAABBAADwwQAAAEAAAABAAAC4QQAASMIAAIC_AAAMwgAAJEIAAIjBAADAwAAAgL8AAIDBAADowQAAhEIAANhBAABAQgAAqEEAAJhBAAAAQQAA2EEAAEBAAAAgQgAAUEEAAILCAABAwgAA6EEAAJjCAAB8wgAAQMAAAGxCAAAIQgAAUEEAADBBAADoQQAARMIAADRCAADIQQAAqMEAADBBAABIwgAA4MAAAODAAACIQQAAQEIAACzCAACOwgAAQEAAAJzCAAAAwgAAQMIAAPDBAAAwQQAAgL8AAMjBAACoQQAAkMEAANjCAACAQAAABEIAAHRCAADoQQAAcMEAAIDAAABQwQAAUEEAAHBBAAAAQgAAgMAAAIjBAAB4QgAADEIAAIRCAADIQQAABMIAADxCAACgwAAAgEAAAFBBAAAYQgAAQMAAAPhBAABgQQAA2sIAAOhBAADgQAAAjEIAAAjCAACcQgAAAEIAAPjBAABgQgAAoEEAAHDBAABYQgAAbMIAACDBAACKQgAAkEEAAExCAAC4QQAAIMEAAMDBAAAIwgAAAMEAANJCAABYQgAAmEEAAFzCAABgQQAAbMIAAIDBAACAwQAAbEIAAIRCAADowQAAMMEAAHBBAAAMwgAAQEAAAKhCAACYwQAAUMEAALhBAACwQQAAYMIAAFDBAABowgAAkMIAALRCAACAwAAAZMIAAFhCAABgQQAA0EEAAL7CAAAAwQAAIEEAAOBBAAAgwQAAcEIAABjCAACYwQAAMEEAADDCIAA4E0AJSHVQASqPAhAAGoACAACivgAA-D0AAOg9AACYPQAAgDsAADQ-AAAEPgAAD78AAHy-AABEPgAAiL0AAAw-AAAwPQAATD4AACy-AAC4vQAAmj4AAFA9AAAwPQAAJz8AAH8_AAAQvQAAUD0AAJi9AABUvgAA6D0AABQ-AAB0vgAAuD0AAEw-AADYPQAAMD0AAKA8AAAEvgAABD4AAIC7AACYPQAAiL0AAPi9AADSvgAALL4AAMi9AACYPQAAyL0AAEA8AABMPgAATD4AADS-AAAcvgAAJL4AAKg9AADIvQAA-D0AAFQ-AACGvgAAgLsAAEs_AADgPAAA-D0AAIg9AABUvgAAQLwAAKg9AABcviAAOBNACUh8UAEqjwIQARqAAgAA-D0AAFC9AABsvgAAF78AAGS-AAD4vQAAHD4AAIi9AABkvgAATD4AAKA8AAA0vgAAyD0AAJK-AABQPQAAcL0AABw-AAA_PwAAiD0AAOo-AAAwPQAAEL0AAHA9AAAQvQAAML0AAAS-AAAEvgAAqD0AANg9AACoPQAAUD0AAJg9AAAMvgAATL4AAHA9AACAOwAAJD4AAEQ-AAA8vgAAED0AAK4-AADgvAAAfL4AAIA7AACgPAAAxj4AAH-_AAC6vgAAir4AACS-AABEPgAAED0AAKC8AACgPAAAEL0AAOg9AACIvQAAPD4AABA9AACAuwAAFD4AALI-AABQvQAAor4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=uhnecYmzSMg","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12188968537323491571"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"764197261"},"3225282561023548082":{"videoId":"3225282561023548082","docid":"34-2-14-ZD1C22D38C29185E6","description":"Nuke Compositing - Convolve Node - Bokeh Effect - Defocus Did you know that you can use the convolve node to defocus your image. Simply input a roto shape and adjust the scale to adjust the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2908215/67c57e64a77929b9e0ae6da229586c4d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/z8qMIgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DF676sDJDIWg","linkTemplate":"/video/preview/3225282561023548082?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nuke Convolve Node Defocus - Did you know?","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=F676sDJDIWg\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoVChMzMjI1MjgyNTYxMDIzNTQ4MDgyWhMzMjI1MjgyNTYxMDIzNTQ4MDgyaocXEgEwGAAiRBoxAAoqaGhpYm13dnVudHFvbmZqZGhoVUNVTVFCQ05jVXR1aW05QVBZMXFqaVpBEgIAEioPwg8PGg8_EzSCBCQBgAQrKosBEAEaeIH3Bff8_gIA_AAQBQcH_AEAAw_1-f7-AOTrAvoB_AIA7QQI8gAAAAD_DQAJ-gAAAPwCBAT2_gEADQEJDwQAAAAO9e0B_gAAAP8I8f3_AQAA_vz3_vkBAAAH-wcM_wAAAAb_Egn_AAAABQPw_AAAAAAMBgj6AAAAACAALVog2Ds4E0AJSE5QAiqEAhAAGvABf_8eAOfV9wHC7_f_4PUPAJX2DQAiLNwA5gHxAfFG1wDhFSsB-jn5__Tx6gDJ5AgAxBEB_x4SHgD6LyX_-t35AC4u5gD15w4ARBYz__lL2wANFe3_KSjw_gYA8wQJDcr-K_wp_vbmHf6Z4AkDFioGAOD6HAEx_UUD7B_x_wS0Af_k5zn59gvMAPcD8fwv__T9MfAV-HQIAQAD8eT9LNv49xMqIwLsDxwI8eUI_eH7-woQ8-n1CMMH8xztFwAt2B8CAEz-ADInCO0fBvYEDh4e_dw68vkWBgQB8uD1BxQU2wIT6vAA2R3v8cBW7wfm3xIQIAAtOBwCOzgTQAlIYVACKs8HEAAawAfSqMC-hPPKO4G2gD0lm0Y9hHZDt0C2Fr0lyt69Mi1bvQAxrrvWcCE-f_lEPUXchz2bHaG-RqGbvMhnqDyJmQ0-zD9fveudn7n8cfs97_dVPTDHAT3wLsy9K2mFvBzOfLzigfm79LZDvdXH6LzBfr498vfBvRetbbyygl-99AikvHl8lryDpO893OidvUFv4Do-sOM9n34IPAzuojzL0cg8quExva7ZBT1S99y8fYjHvTFBDzzxD3u9vhobPXTYt7ruRc-8spwkPRShJ72qgea9AisHvtJiXzyyfU09xGdBPRxTgzuzmg49L-8aPDt-njzlesA9KRXgO8MJ8bxfk7q9amc9vLCl7LwwNTg9VetOvdzh5TtberS88J29PFGC4zzYtwO-5yiGPYhJ2TvLM8q9yocAvWc2mztWZkU9DKhcPVtQ6bxG0Ki9AkjtvctfRjtnSsY8GoByvT_M-Tw2LUe9-6i7PU2h0rucjEe7gaGaOjjYHTx5vhC9TTHHPX-lc7ze9WM9Y875u_3tmToBXxs8oKmyvELMJbwTiRi957o6vKTxlbznzFE9uKCIPVl9HrxW5ne99XeAvIGBu7xuBYM9QQDfPJcStLu0E9I7iQyKOhnBqzx_bBK9My9MvZgD1rtuXeC8Ee5EPaZnFzzpk8E8mdGEvf92vLuozCg9__4cu__gqjt4H4w9IrFzPYByCLvTFRw-dvzXvS6pjrl3dkM8hgqEPFHCp7o6YzG73xCvPQx4armEBbG9jf2bvBDfQbUfotE9WPgfvXnRijjhYuC8OM2MvAZlpbjWDWq9Ar9hPfMoe7hQcQy-Pd00vZVywbhB1L292hwHvYWpgbmlFV88hvmMPd_3JzkM5QS-SflFu1aRuDnrvJe8DpM6vedWpbhHjY49gUJ9vY4lELlPHGW9EmigPb0knrg1mUE-qxSxvJNjCrmnBJQ9zWKoPUtWSblEDhu8DJvcvGVgmDeBBiu-nICAvSkTD7gCKRE-rNQiPSsSADniVbu8RWGMvXWEDrjG-9G9M2HFvIO3hjd6u-u7KiPHO5NG5jfIPu28pSe2vVcIyTgH_Cu92d1yvQ42Kjg8Kfi8cY_lvYkdvLh39tW9e-OavFZI9LiSEvE8Gw1AvfRmYziAoFc9WNmIvU7Jhbj_5V476UCLvcslr7g6Weo8_wDOO4GmorVTLy49lrD2PUEryDfTM4g9hQv5vEB6JLjeT7I83nx-PCGouDiQ9bS9BQJYvcYBlDcJmfU8jzPNO8H3DTeguE099x-pvStNvrcgADgTQAlIbVABKnMQABpgRfcAQisq8AMLN8zq9gke4SngG_uuOv8Uv__hHbwD_hSkriH8_z75_QKYAAAASDj_U9sAG3cR-Pji1AkI1QHsTM1_B9fAzENw9wT1WCX83rvt80shAOPl7f22O9467_khIAAtP5EPOzgTQAlIb1ACKq8GEAwaoAYAACzCAAAwwQAAwEAAAJDBAACIQQAAQMIAAPBBAADoQQAAxMIAAKDAAAB8QgAA-MEAAFDCAAAUwgAATEIAAJ7CAAAowgAAkMIAAIBAAACQwQAAVEIAAMjBAAAMQgAAAEEAAIDAAAAswgAAGMIAAAAAAACwQQAABEIAACRCAACAPwAAJMIAAEBAAABowgAAcMIAAHDBAACIQgAA8EEAAEBBAABQQgAA4MAAAKhBAABwQQAACEIAAHTCAAAUwgAAwMAAAHxCAABQwQAAAEEAADDBAACAQAAAkMEAABRCAADIQQAAmMIAANBBAACgwQAAoMAAAFDBAABwwQAAQMEAADjCAADAQAAAyMEAANhBAADAQQAAsMEAAPhBAAAUQgAAmEIAAIBAAACGQgAAYEEAAFTCAACAwQAA0EEAANBBAAAcwgAAPMIAAKhBAABQQQAAOEIAAEBAAADAwQAAiEEAAMJCAADYQQAAQEEAAHBBAAB0QgAAnEIAAEjCAADwQQAAkMIAAIBBAAAQQQAADEIAAIBBAAAAAAAAUEIAAMBBAADowQAAqMIAAMBAAAAAAAAAwMAAAOBAAABwQQAAskIAAHzCAAAQwQAAoEEAAERCAAAMQgAAgMEAAPDBAACwQQAA-EEAAFDCAACAwgAAisIAAFTCAADYQQAApkIAALDBAABIwgAAJMIAAAjCAAAEQgAAVEIAANDBAAAYQgAAgEIAAMBAAADAQAAAUEEAALDCAAAkwgAAoMEAADBBAABsQgAAwEAAAIxCAAAAQAAAHMIAANDBAAC4wQAAQEEAAODBAADwwQAAsEEAAFTCAADIQQAAOMIAAODBAACowgAA4MAAAIhCAABwwQAAwEEAACDCAADgQAAALMIAAFzCAAD4QQAAUEEAAFxCAADoQQAAzMIAAFBCAACgwQAAAEAAADTCAAAAQAAA0EEAACjCAAAwQQAApEIAAODAAACAQQAAqEEAANDBAABwQgAAQEEAAGzCAADOQgAAQEEAAIBAAADgQAAAaMIAAKDAAABQQgAAkEEAAJhBAABYwgAAmMEAACzCAAAAwCAAOBNACUh1UAEqjwIQABqAAgAAQLwAAHA9AABUPgAAgDsAABA9AAC2PgAAuD0AAAG_AABsvgAAML0AAAQ-AACovQAAlj4AANg9AABAvAAAir4AALI-AABsPgAAmL0AAAU_AAB_PwAATL4AAOi9AAAQPQAAyL0AAIg9AABwPQAAiL0AAEC8AAAEPgAA6D0AADC9AAA8vgAAqD0AALi9AABwPQAAqD0AAAy-AACWvgAAtr4AAAS-AAAcvgAAFL4AACQ-AACIPQAAMD0AAJi9AADovQAAiL0AALg9AADovQAATD4AAMY-AACCPgAA9r4AAOg9AAArPwAAQDwAAJI-AABcPgAAHL4AANi9AACIPQAAHL4gADgTQAlIfFABKo8CEAEagAIAAFC9AACIvQAAED0AABu_AADgPAAAhj4AAMg9AAAEPgAAlr4AAHQ-AACgvAAATL4AAAQ-AAAcvgAAyD0AAKC8AAAUPgAAUT8AABQ-AACKPgAAQDwAABw-AABMPgAAmL0AANi9AACYPQAA-L0AABA9AABAvAAAoDwAALg9AAAwPQAAQLwAAHC9AABUPgAAFL4AAHw-AABMPgAAlr4AAPi9AABMPgAAJD4AAIC7AACIvQAAiL0AAEw-AAB_vwAAUL0AAKA8AABAvAAATD4AAHC9AABMPgAAXD4AAGQ-AABQPQAAiD0AAOi9AACAOwAAML0AACw-AAAMPgAAmL0AAAS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=F676sDJDIWg","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3225282561023548082"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2453319324"},"11788038988751882480":{"videoId":"11788038988751882480","docid":"34-5-14-Z56771B6F5E27AE8C","description":"Descargar Código: / pythonmaraton Join Patreon: / pythonmaraton ^Downloadable code & more! Learn Python: Python Book (English): https://amzn.to/3HcwgLd Libro de Python (Español)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2038455/848b52caa53a18a21ff486ca7e18abe8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/m-7pSgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D3ninJWqdIes","linkTemplate":"/video/preview/11788038988751882480?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Moving Sum/Average of Array with Python (Numpy Convolve)","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3ninJWqdIes\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoWChQxMTc4ODAzODk4ODc1MTg4MjQ4MFoUMTE3ODgwMzg5ODg3NTE4ODI0ODBqtg8SATAYACJFGjEACipoaHNkbXNqemttcWhicmliaGhVQ3ViNHFUOFNnbTd5dFpzTy1qTEw0T3cSAgASKhDCDw8aDz8TsgKCBCQBgAQrKosBEAEaeIH7-gEE_gIA_QIFAvoF_gIa9xH-9wIBAOQEA_X-_AIA8QoC-_oAAAAE-AgEAAAAAP7-_v_4_gAAFAP7BgQAAAAZAv0A-AAAAAz_Bfr_AQAA_PkBCPoBAAAR-AsMAAAAAPYBAvv4AP8B-_nt-wAAAAAQ_QkEAAAAACAALcKk2js4E0AJSE5QAiqEAhAAGvABdFoY-tQECQGsG9X_wOPOAKX3V_5_U9EBCSg9AeHcygH6x9wB58gr_4gx9_-VOvX_yebM_xki1wA0xOn-7PCnASJGEQAkBRkAHvneAv8UAP1OKTD_CNpG_1rxwf_q0-79HgA__BMCDf_fyMX_Ee4w_-7m8gIK4skCyuwH_yo1CwUf1_EB-wwk_DvXE_3V4w_--BWhDRHh0ADxZ_z_OB0tDNkRJvIYPgUMK0YBBQAL7_iv2_0I_wj1D8YmF_lPPfcHCxfzCQf0Dwz13wfzwtzwBS7zARHg2tn-8O_S99zZHwb-3g4NzgQp-dD5KNsVHvDqIAAtSFbPOjgTQAlIYVACKnMQABpgEQsAbP0vACfYTgbsAwEN0w0bGvSc9_8Uj__2HwkrBwGulRrw_ycmC_iSAAAARxDOEdcAHH8ysBEVzgfv0PfQOvNHz-4s2d0lHuf4VTHGyeoGSTrtAOHNxR9N88ZH5xo_IAAtXyAPOzgTQAlIb1ACKq8GEAwaoAYAAOBBAAAEwgAAOEIAAHBCAABIwgAACEIAAJhBAACowQAAwMEAAEDAAACwQQAAqMEAAADAAABQQQAA0EEAAGzCAADAQQAAEMEAAKDBAACowQAAkkIAAFzCAAAQwgAAmEEAABBBAAAoQgAA8MEAAEBBAABAQAAAWEIAAJDCAAB0QgAAkMEAAOBBAAAwwQAAcEEAAEhCAAC0QgAAKEIAAKBBAADWQgAAEMEAADRCAABMQgAAyMEAAGjCAADgwAAAEMEAAIhCAACYwQAAgMAAAHDCAACowQAAAAAAAGBCAABAQgAANMIAAEDBAABUQgAAcEIAAEhCAAAAQgAA0MEAAFjCAAAkwgAAgMAAABDBAAAAQgAA6MEAAJbCAADAQQAAdEIAAMhBAAAgQQAAIEEAALLCAAAgwQAANEIAACxCAADAwQAAXMIAAIC_AACcQgAAfEIAAOBBAAAQwgAAoEAAAOBBAACgwAAAFMIAAHDBAABYQgAAkEEAAIjCAADAwAAAgMAAAKDBAACGQgAAHEIAAHBBAABAQAAAgMEAALhBAABQwgAAsMEAAFBCAAAAQAAAIEEAAADBAADwQQAAOEIAACDCAAAwQQAAgEAAADhCAADgwAAAiEEAAI7CAAAAwQAAgMEAAKBBAADowQAAYEEAAJDCAABkQgAA0EEAAIDBAABcwgAAAMIAAIbCAAA8QgAAVEIAAHDBAADQQQAAQMAAAFBBAAAcwgAAAMAAAIDBAAB0wgAA-MEAAFDBAADgwAAAUEEAAKhBAABQwQAAVMIAAABBAABMQgAAaEIAAPjBAABQwQAAPEIAAEDAAACAwQAAIMEAAOhBAACiwgAAEMEAAJ5CAADIQQAAZEIAAETCAAAswgAAyMEAAFjCAAC4QQAAbEIAAIDAAACAvwAARMIAAODAAACgwQAAIMEAAIDBAAA4QgAAQMAAAJLCAABAQgAAxkIAAFTCAAAIwgAAaMIAABBCAACQQgAAIMIAADDCAACWQgAAjMIAAIhBAACIwQAAfMIAACBBAABQwQAAIMEAANjBAABIwgAA6EEAAKjCAADIQSAAOBNACUh1UAEqjwIQABqAAgAATL4AABy-AACuPgAANL4AAEC8AAAQPQAApj4AAEO_AACGvgAAir4AALg9AACCvgAAbD4AADw-AACAuwAARL4AAFQ-AABEPgAAMD0AAKo-AAB_PwAA4LwAABA9AAAMPgAA4DwAAGS-AAAEPgAAQLwAAOA8AADYPQAAfD4AAKi9AAAwvQAAdL4AAHA9AAB0PgAAgj4AAGy-AADSvgAALL4AANi9AAA8PgAAgDsAAOA8AAB0vgAAQDwAAN4-AAAUvgAA2L0AAHy-AAAQPQAAmD0AAMY-AACCPgAAqL0AADA9AAA5PwAA-D0AAEQ-AACYPQAAED0AAEA8AACYPQAAiL0gADgTQAlIfFABKo8CEAEagAIAAJ6-AAAsPgAA6L0AACe_AAAMvgAAcD0AAIo-AADYvQAADL4AALI-AABMvgAA2L0AADy-AABQPQAAML0AADC9AABUvgAANz8AABy-AADGPgAAlj4AACy-AAAUvgAAqD0AACy-AABEvgAAPL4AANg9AABAPAAAHD4AAHA9AABQPQAA2L0AAAS-AAAMPgAA6L0AAOY-AABUvgAAjr4AAIA7AACIvQAAqD0AAIC7AADgPAAAPD4AAGQ-AAB_vwAAoLwAAFA9AAA8vgAA-D0AAIg9AAA0PgAAXD4AAIg9AAAkPgAAgDsAABA9AACSPgAARD4AACQ-AACKPgAAmD0AABy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=3ninJWqdIes","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11788038988751882480"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3883071824"},"16055178751703457341":{"videoId":"16055178751703457341","docid":"34-6-17-ZB6FA1DC345F3D330","description":"This video explains the detailed tutorial of how to convolve signals in MatLab. Discrete-time LTI signals are being constructed in Matlab and then convolved to generate a third convolved signal.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1009247/c14ba2ee13c3d7e92670b5e1b382b872/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hh25DgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJxpxRp5qQ5s","linkTemplate":"/video/preview/16055178751703457341?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to convolve LTI Systems in Matlab 2020","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JxpxRp5qQ5s\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoWChQxNjA1NTE3ODc1MTcwMzQ1NzM0MVoUMTYwNTUxNzg3NTE3MDM0NTczNDFqhxcSATAYACJEGjAACiloaGRvdHNsZnllanNnZnNoaFVDR2dDdERoTnY0SkF0T29vTHg4OVJKZxICABEqEMIPDxoPPxP7B4IEJAGABCsqiwEQARp4gfsD8wcAAAAA-wYJ9wn8Ah0A_P70AwMA8gD5DQUC_wDx9gryCAAAAPP69gv9AAAAAv799vP9AQAODv3--AAAAA4B9A_9AAAA9w_vAf8BAAAE_Qn_-gIAAQf-FAQAAAAA-wEKAPr_AAAHD_34AQAAABD9CQUAAAAAIAAtmkzUOzgTQAlITlACKoQCEAAa8AFyPCT_1_XkAcIC5AELFO8Bmw8h_yEZ7gCrzwMBzBGtAa0R8ADv2e0BxQIC_4Ez_wEiAbgAKOjkACjfLQDm1PkADwIvAGn3uwRo-_oB_QP2_gIpNP4M-g0AI-HgACgd8_014wP9FQT8A8nPuwcLJT8DIxAjAiQt-QO_uvgIrC8rA_Pm7PoEDBD4BdjoCNX-DAlD6hsG9l7iACnl3P8R8gwI4wTkBCIh2_1K_hUDVAEJA8YMEwEN2wUAAwohA_0H-wzZ9vr5Ct7-ATj4-vYQ4gr8-gLy8hYl7w4DBerq7Rj1CgQxHvv_LwIFFr31AdnS_OAgAC1aePg6OBNACUhhUAIqzwcQABrAB7vu1b7bGSa8gvFCO1PkVb1R3oc8i-IwvJXSA76WmKe8v7SsO9cUCD4iBjU9R8KjPJfHqr4Tx-w7vhGdvD0pcz6UwOa79XIOPQ4xDr5NBpE8R-hCvBU3Tr6tNOm8ZTpPvJ0YnT0IfJm8f8YevBIxVT683mc9nlHEvAnMqb1UwwO9aMMrvF2psr3BnCq9PR5EvFOXDD4Ohrq8T3ulPHglOT6iEQk8dnIAvOZtFr1yD9M8CYeDu5eQL762P-E7wRdLvF7_hbmo97k8q_XVO-PMRb32rLU83mQGOx2Eij2W0Sg9HE7PPNHsdb379fm8g_2yvIKiQ7x1cqu90goAO0C3sb09KRM9mtwcPPW8Kz7NLHg8-nq-PNQotL1qGq-8tjv7O5dHSLyFwzy9jK1WPA-_hj3vnKw9w1WUPOcMO70f5Ks80KbZOg5JHT6L9YI9gytFPF9wlzx9M5w7ss6CvJfe47zu8d08pWG-u5wUCzugRms8rZucu77bjD1LVfs6O7WpPP3Fpz1zLZq8FF5-u_oBGT2zVjm95flju9zNursg9Ge9SbJUu2AVeT2OPNA8Qa8qO3SJmTzobIy9NQ5QvM4U3zxXAUM9XjSeu6R9vT1zyYe9L8gvO-vqCDxgZi49M3UyvLlKgbzScCo97N8zuzHpVL1ANfk8AYK9O7W-7Tyokye9aOqzuyB557wZBXy9rHOMO72E0LpoC0O9xl-DO7zaHTy02s08antku9cGXbxnSka8wAI5u6fZcrywwxo8JUwDu2regT1RZmi9AhaEOXdOTr1nfD89kdwNOrzaQLxinGQ9sgz1ue5z47vSoYi9wyM8OSUyHb2VEIy90iOpOEI-SL36Y1U9jCO4OdugmzwCo-i7XUAsOl39WDyA1vy9w6tsOR6_fL1cgKy8Cd36OEDj3Ty1npu9Fq-4tv0V8j0fYa29O2QfOLVLAL1uUUa9u0pSOLtmbb2u4049sy4jt-y5r7vFwZq9E4B2Oe1EST1b7PY843xnOAdqJz0fQgY9nnEmuEtshDuXBCM9gKTyuG_2B70CEHe9ePiBN83nXD1HM5s91S0luazmeb1tV6i8eWn2tzdbLz0yaDK9vA4AOKRIiDx27_I8ABaStyZmZ71NnME88j8JOEL0_zw7y4e8ZhHPuM7pCD0UNaK8zWAkuDtlwboQkkU9sOafNyTES7yOotg8wO2rtx2XDD1JD0O-VDFNucr0cD0i4Ss-8cuKOEitCz0DdyU9hvZ4uCNozL0NAfo7bwYGN_rXvb0WOLS749tYtyAAOBNACUhtUAEqcxAAGmAW9wA87iHkBikSCOv6ITDh5b_l4MIn__jDAA8U9dwYH9WvDRMAEwYQy6kAAAAlAfYX5gAIbr7pCAcBIxXO1sVH-G8PCAq_BfMNCTIcKubV5_76LCgAHwGrBn86ni4wFSwgAC07RiI7OBNACUhvUAIqrwYQDBqgBgAALEIAADxCAABMQgAAgL8AAIA_AABwQQAAJEIAANBBAABMwgAAKMIAAHDBAACgwAAACMIAAEjCAACmQgAA-MEAAGBBAABEwgAAwMEAAODBAADwQQAAmMEAAKDAAABAQQAAEEIAAEBBAACcwgAAwEAAAIhCAADAQAAAAMEAAEBBAADCwgAAMEEAADzCAAAAQQAAkMEAAMxCAADAwAAAQEAAACDBAAAkQgAANEIAAFBBAACoQQAAgMAAADjCAACYwQAAEEIAAODAAAAowgAAKEIAAIjBAACIQQAAuEEAAARCAADGwgAAYMEAAMhBAACCQgAA4MEAADTCAACKwgAAgMIAABxCAACwQQAAUEEAADBCAAB4wgAAAAAAAEBCAACIQgAAyMEAAFRCAADowQAAcMIAAFDBAACgQAAAWEIAABjCAAAkwgAA2EEAAEDBAABsQgAALMIAALDBAAAgQgAA4EEAABhCAAAYwgAAAAAAAKBAAAAAwAAA6MIAAMBAAAB4wgAAQMAAABDBAADAQAAAYMEAAIDBAADgQAAArkIAAOjBAADIwQAAgMEAAADCAAB0QgAA4MAAAMDAAACgwAAALMIAADDBAACIwgAA0EEAAJjBAADAwAAApsIAAOBAAAAwQQAAAMIAAMjBAADowQAAlMIAAOhBAABwQQAA0MEAAPjBAAAMwgAAjsIAAChCAADYQQAADMIAAKBCAABwQQAAyEEAABBCAADwQQAANMIAAPLCAABAwAAAdEIAALhBAACIQQAAQEAAAIjBAACSwgAA0EEAAPBBAADAwAAAQMEAAMDAAADAwAAABMIAAAzCAACAwQAANMIAAGjCAAAYwgAAAAAAAJDBAABAQQAABMIAAFDBAAAYwgAAgL8AABxCAABAQQAAgEAAAJBBAACWwgAAOEIAAFzCAAAAQAAAiMEAAIDAAAAgwgAA4MEAAIpCAACAQQAAKMIAAATCAADgQAAAwMEAAMJCAAAgQQAADMIAAGRCAAAQQQAADEIAAEDAAAAMwgAAuEEAAFBBAACIQQAAsEIAAHjCAAD4wQAAmsIAADzCIAA4E0AJSHVQASqPAhAAGoACAADYvQAAmL0AABw-AAC4PQAAMD0AAKA8AADYPQAA_r4AADS-AAAMvgAAEL0AAEA8AAAkPgAAgLsAADC9AABkvgAAXD4AAFw-AAC4PQAABT8AAH8_AABAPAAA4LwAAOi9AACIvQAAUL0AABQ-AAAwvQAAFL4AAKo-AABUPgAAPL4AAMi9AADoPQAAFD4AALI-AAAQPQAA6L0AAIa-AACGvgAAmL0AAKi9AABwPQAAiD0AAJi9AADgPAAAuD0AAJi9AAD4vQAAoDwAAHC9AAA0PgAAfD4AANg9AAAMvgAAQDwAACM_AABwvQAABD4AANg9AADgPAAAiD0AAHA9AACGviAAOBNACUh8UAEqjwIQARqAAgAAUL0AAEw-AABAvAAAHb8AALi9AADYvQAAXD4AACS-AADgPAAAjj4AABC9AABMvgAAiD0AAES-AADgPAAAML0AAEA8AAAtPwAAqD0AAGw-AABwPQAAPL4AAFA9AAAwPQAAUL0AACQ-AACovQAAmD0AADC9AACIPQAA4LwAABQ-AAA0vgAAUD0AAAy-AABwvQAAmj4AAKg9AABsvgAAfL4AAAQ-AABMPgAAUD0AAKA8AAAsPgAALD4AAH-_AAAQvQAAoLwAAKi9AAAMPgAA4LwAAHA9AADoPQAAuL0AAOg9AADgPAAAEL0AADC9AAD4PQAAND4AAPi9AABsvgAAyL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=JxpxRp5qQ5s","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16055178751703457341"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1047607640"},"17853819740209983895":{"videoId":"17853819740209983895","docid":"34-0-7-ZB064EA21D53DE017","description":"Given an LTI system impulse response h[n], convolve each of four finite-length sequences with h[n] to determine the output sequence y[n]. ** See the full collection of problems and tutorials at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3680673/57d289a91182dc2c0283cb9394bf6a4c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/6onrngAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_RsMMkuQVUE","linkTemplate":"/video/preview/17853819740209983895?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Convolution Example #1","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_RsMMkuQVUE\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoWChQxNzg1MzgxOTc0MDIwOTk4Mzg5NVoUMTc4NTM4MTk3NDAyMDk5ODM4OTVqkxcSATAYACJFGjEACipoaGpsdmN5cHBucHN0YWJjaGhVQ1U3c3NKU1F1OFlOV25Lc3JCSEVHcUESAgASKhDCDw8aDz8T-gWCBCQBgAQrKosBEAEaeIH78PwH_wEA-gQYBvwH_QIHAADw9___AO74EAUHAQAA7AkOA_4AAAD-CwcCAAAAAPwD-fv9_gAAAwMEAvwAAAAH-vcFAgAAAA8A-wb-AQAA7_oN-QIAAAAH-wcM_wAAAPILAgEE-fcF_QwA-gAAAAAM_v4BAAAAACAALSD_1zs4E0AJSE5QAiqEAhAAGvABf-YC_-MV_QG49uP_zw_lAZ0yKP_8Oc0AvuYvALQE3gDfL_b_3ebyAAsHPgDdDv3_b-zh_9fi6gElufX-GPHvAAbrCQHyuvYBVxgSAf_x3v6qDCb-9tvq_v3B2wAQGxL-Fv7-BNHgxwER_88DAAcdAyskJQUM4Rr97dMAAesE-QPg9dT9KQP9BNLSCwDB_iMB98EEADMGFvzFJOn_Ce_3_efgCvMYRuf_MO4FCPML_gjgBP8EDfruCzYXDwLh-Qf3DOUaAvHdAe0T7v3_FL8a8-oO6vkm-AUIH-v_9fLy-v0P9vz0uQ34B9HBCAXj9AHxIAAtas0FOzgTQAlIYVACKs8HEAAawAeIgrm-xSUBvFpF_7xGthO-wbqLvfTcIr39hR6-AWpqPOHQW7xmED8-ehE3PAc3Y7wU6DO---_cPFnThrzLgDM-5tGIvZhiMzx6Fy--CDwwPSmf1Lzn_iq-Xcv_PEh0KjyxpLw98PTvvBiNRjxUUwI-3Es6vXbMELwzOKW8gCXbO1sAZLwriMG8wxccvUlb5ry_s0I9lEKou0dQIT0g6wk-xW3ZvKqZNbztyAI9KxI4PJE2I7y31aw758wxPdk-BL01l_s96ozJPY2zjjzkgz-7fAM9vSsOjDwmBZG9_GeTO9idrDst4Zq8y1yqPPoGS7xik6k7cSrIvchqqbz5oAe-9BqbPS-BgDtGCuU9o5YgPFPN7jt6tl29aUA4PY-axLta1wk8MWCJvO6ayjtcHQA-kGaRPDNXgjvpaxE9TRp-vEzyDjyQJBC8EN-jPaZiAz3Hjnw9MC_AOybb5bw7me48aV05vTUS_DrXfpy9fV3mPQT2IDugvro9PVl7vJqhpzxtXSU9SJU3PYF8ZDzNpHc9h2SyvW0Iabz6WKa9y1CQvR2nrrvovsw9ADBjPa7mDDt2NA49aYcEvbIyWLumP5C9fOC6u8CeJzthtu48ZNrtvAqCx7sILwu9qyArvLlB5Trw1ZY7tx81PWKdz7ufKhU9sABmPQNmtruBsR27FkoLvbHSsLsiiPM9arElve977brHGA494eDBPLso2buBW_c9CEuWvfhf7jiAG9g8aG-1vXQ7Rrm0IqW9bS09vWq4hDndYZM9u5cLvqUOaDmLdis9IJdYPfaoX7j-65G9Z4dTPZxI8bhfo1s935a-PLyO2zceEai9zvxKvgHLDjkWXjO9-MhBPDruh7mp0yq7wF5hPN1bazYS9UK9IhjnvXga6jeO53G7EG5XPSBy3LmFcHY9UXZJPWZXhDjGsgu8b11WvHQwkLdxTzy9f9U2vDSgvzgCMk-9I4LRPXW3vDieSTY9BMX0vA7xfTf9WJc93Lf6PR1WxDXnHzg9D--5PbRouTiaH5Q9o68APbBkzjetaJi8bqRsvT9TMDjA5wc-3kLyvDkRGjhr8em9edYkvO4vYDaR2Ck9SwXVvVLCGDjEzw8-PGrpu57LlTaXLQO9L2r3vFop3DfCpNg9NiomvXu0LblcSQG9yt7SvRciBLk8cdS8yZ0IvfEbgLeBJmK9TagbPXYHdTjDnCC9Sijdve0gSbjK9HA9IuErPvHLijgASDe7d1U2PT6V3bijYre86FjUPMTV87beAR69GbGNO9UDPjggADgTQAlIbVABKnMQABpgJA0AC_tC7Q0KRfkP5SYL4M77AAS06f_27___ChTzETLCwfEN_0maNdyfAAAAORnFDP4ALH_jFPQkJsoNs_PZ-ilg-z46r9tyE6wNRRHv1AP-EwgsAP3bnyA2u7dQ_yweIAAthMQSOzgTQAlIb1ACKq8GEAwaoAYAAPhBAACYQQAAnkIAADzCAADAwAAAwMAAAKpCAAAAAAAAUMEAALDBAADwQQAAEMIAAODBAAAAQQAA6MEAAMBBAAAAQgAAMMIAAIJCAADAwQAAAMIAACjCAACCwgAAmEIAANDBAABQwgAAyEEAAADBAACYwQAAyEEAAEBAAACAwQAAeMIAAKDBAADgwAAAAAAAALBBAACgQgAAMMEAAOBBAADAQAAAQEEAABBBAACAwgAA8EEAAMjBAABoQgAAiEEAAPhBAABAQAAAgMEAAKjBAADgQAAAcEIAAKRCAADgwQAA8MEAAPDBAACwwQAACEIAAEBCAACQwQAACMIAAODAAACgQQAAlsIAAI7CAAAEwgAAuMEAAODAAAAAQgAAPEIAACjCAACgwQAAQMAAAIhBAABEwgAAuMEAADBCAADmQgAAgMEAALBCAACAQAAAwMEAAIBBAAAAQgAA4EEAAPDBAACaQgAAMEEAAHzCAACOQgAAIMIAAFDBAACAPwAAxMIAALjBAAAsQgAAEEEAAKRCAAAwwgAAuMEAAJjBAABAwQAAsMEAAKBBAAAUwgAA4EEAAARCAACSQgAAAEEAAHBBAADowQAAAMAAAEDBAACoQQAAiEEAAKBAAAAswgAAqMEAAPjBAAAswgAAqEEAAABAAABgwQAAgL8AAIBBAADIwQAAuMEAAKBAAAAUwgAA3MIAAADBAACQwQAAqsIAAKpCAACAwAAAREIAACTCAACAPwAAcMEAAIjCAADoQQAAdMIAAFRCAACMQgAAQMAAAIZCAACgwQAA2MEAAJjCAAC4QQAAuEEAANhBAABAQAAAcMEAAIDCAAA0wgAACMIAAMBBAABgQQAA6EEAAOBBAADwwQAAgEEAAODBAAB0wgAAbEIAAKhBAAA4wgAAmMEAAFDBAACYwQAAfMIAAAzCAADgQAAAyMEAAKDBAACAQQAAaMIAAIbCAACAPwAAEEEAAKBAAACgQQAAcMIAAITCAAA4wgAAMMEAAEBBAAAwwQAAkEEAAIBBAACIwQAA-EEAAGBBAAAoQgAAgMAAAJxCAABcQiAAOBNACUh1UAEqjwIQABqAAgAA6L0AAMg9AACoPQAAsj4AAKA8AACCPgAA-D0AABu_AAC6vgAAyD0AAFC9AAA8vgAAmL0AAEw-AADYvQAABL4AAKA8AABwPQAAiD0AADk_AAB_PwAAgLsAAPi9AAAUvgAA4LwAAKC8AAAwPQAAML0AAFC9AACmPgAAND4AAIi9AABMvgAAkj4AAEQ-AACAuwAARD4AAHS-AAC6vgAAkr4AAOC8AABEvgAARD4AABA9AACgPAAAgLsAADA9AAB0vgAAZL4AAKa-AADovQAA2D0AANg9AABUPgAAkr4AAFA9AABJPwAAUD0AAGQ-AAAkPgAAML0AAIY-AACYPQAAxr4gADgTQAlIfFABKo8CEAEagAIAAHC9AAD4PQAAQLwAABW_AABwvQAA4DwAADw-AACgPAAAML0AAHQ-AABwvQAAPL4AACQ-AAA0vgAAcL0AAFC9AADgPAAAPz8AALg9AACmPgAAcL0AAHC9AAAMPgAAmL0AAOi9AABAvAAAiD0AAJg9AACYPQAAUD0AABA9AAD4PQAAPL4AAIA7AAC4vQAAJL4AAIY-AAAcPgAAXL4AAKA8AABEPgAAoLwAAHC9AADgPAAA4LwAAII-AAB_vwAAFL4AANi9AAAMPgAARD4AABC9AADIPQAAcD0AAEw-AABQPQAA4DwAAKA8AADgvAAA4DwAABQ-AABAvAAAVL4AADS-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=_RsMMkuQVUE","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17853819740209983895"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"416010800"},"7183263477294660592":{"videoId":"7183263477294660592","docid":"34-11-10-ZFE2ADC4720CAA952","description":"Shot on Super 8 with in-camera edits, Convolve transforms pages from Greg Bright’s Fontana Mazes into a convoluted passage, using prisms, water refractions a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4433979/55b628f2998b817d809bb7d69741f01f/564x318_1"},"target":"_self","position":"17","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbSxSEAlbQVg","linkTemplate":"/video/preview/7183263477294660592?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Convolve - Directed by Colby Richardson","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bSxSEAlbQVg\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoVChM3MTgzMjYzNDc3Mjk0NjYwNTkyWhM3MTgzMjYzNDc3Mjk0NjYwNTkyaq8NEgEwGAAiRRoxAAoqaGhheWRweHZkdmZpa2xyY2hoVUNYQ1d5dkxMN1B3YUdkeWk0V3pRUVZ3EgIAEioQwg8PGg8_E8kBggQkAYAEKyqLARABGniB_vn1Bf0DAPoEFwb8B_0C9A4L-fr9_QD5BQv6AwP_AP8CBfn_AQAA_wYB_wUAAAD-_v7_-P4AAAYF_fv7AAAABPkCBwb_AAAL-vgB_wEAAP_y-wED_wAADP79AQAAAAAEB_QBAAAAAP3_DAUAAAAACfEBA_vz_gAgAC3W8t47OBNACUhOUAIqcxAAGmD1CAApJyQL8_wM9OECAAoHHegQ3_0GAArQAOAO6_MV_-O9MPoAENnr-8cAAADrHwMY_wALRvL1xQoACu8S4xAzCH8ZDt8ECy4EDyH98_EG7t8kOzQAAh4ABgXo7joeORwgAC2r1GA7OBNACUhvUAIqrwYQDBqgBgAAZMIAAIjBAABAwAAAoMEAALDBAAAAQQAA0EEAAEBCAADmwgAA6MEAAEBBAAAwQgAAsEEAAOBAAAAAwgAAgEEAALhBAABAQAAAHEIAAODBAADwQQAAIMEAAMhBAAAAQgAAcEEAAMjBAAA4wgAAiEEAAPBBAAAEQgAAAEAAACDBAAC6wgAAYMEAAABAAAAAAAAAIMEAAJZCAAAAQgAA-EEAAEDAAABIwgAA-EEAABhCAACwQQAAuEEAAFxCAACIQQAATEIAAFjCAAAAwAAAwMEAAABAAAAUwgAAGMIAABDCAABkwgAAOEIAAMhBAABEQgAAQMAAAADAAAAwQgAAgMAAANhBAAAIQgAA8MEAAKBAAAAIwgAAgEEAAHDCAAC0QgAAMEEAAODAAAAwwQAAYMIAAATCAAAAQAAAUMEAAODAAAB4wgAAcEIAAGjCAABgwgAAiEIAABDCAADIQQAAmMEAAFBCAAA8QgAAWEIAAJhBAADgwAAAYMIAALjBAACQwQAAgL8AALBCAACQwQAAAMAAAPDBAADYwQAAIEIAAGzCAABcwgAAGEIAAMDBAACAvwAAoMIAANBBAACWQgAAEEIAAFDCAAAAQgAAqkIAAADCAADwQQAAxsIAAEBCAACawgAAEEIAAL7CAAAgQgAAoMEAAEDCAADwwQAA6MEAAMDBAADQwQAAsEEAALBBAABgQgAAKMIAAOZCAABcQgAAmMEAANhBAADAQAAAVMIAACDCAACgwAAA2MEAAMjBAACowQAA2EEAAAjCAAAcwgAAWMIAADBBAAA0QgAARMIAABDCAACuwgAAAMAAALRCAACIwQAAUEEAAKDAAACAvwAA2EEAAAAAAAAwQgAA-MEAAJhBAAAkQgAAQEAAAMjBAABQQQAAaEIAALhBAAAQQQAAyEEAAETCAAAQQQAAkEEAABRCAABAQAAAGMIAAChCAACSQgAAIMEAALjBAABowgAAEMIAAMjBAAC4QQAAAMAAADTCAAB4QgAAEEEAAIBAAABMwgAAUEEAAADBAABQwQAAuEEAAIDBAAC6wgAAUMEAAGDCIAA4E0AJSHVQASqPAhAAGoACAAAUvgAALL4AAPg9AACgvAAAmL0AABy-AACKvgAAur4AAKa-AACWPgAAhj4AAEw-AACoPQAAyj4AAIC7AAA0vgAAUL0AAIC7AAAsPgAAfD4AAH8_AAD4PQAAuL0AAEQ-AAAkPgAANL4AABA9AAC4vQAA6D0AAHw-AACIvQAAUL0AAAS-AAAkvgAAjj4AABS-AACqPgAATL4AAKK-AAD4vQAAUL0AAEC8AACYvQAAqD0AAAy-AAAwPQAAVD4AAIi9AACgvAAAxr4AALi9AAAwvQAAND4AAKA8AAB8vgAAHD4AAOI-AADYPQAAtj4AAMY-AACoPQAAVD4AAPg9AACOviAAOBNACUh8UAEqjwIQARqAAgAA-D0AAMi9AAC4PQAANb8AAAy-AACAuwAA2D0AAFw-AAA8vgAAhj4AAKg9AABEvgAAAT8AAFy-AADgPAAAHL4AALg9AAB_PwAAfD4AAP4-AABEvgAAuL0AAI4-AABcvgAAmD0AAGS-AAAEPgAA6D0AANY-AAAEvgAAiL0AADC9AAAwvQAAHL4AABQ-AABcvgAAoLwAAJI-AABQvQAABD4AAKY-AAC4vQAAfL4AAEy-AACqvgAAnj4AAH-_AAAkvgAAsr4AAKg9AADIvQAAHD4AAHA9AAB8PgAA2L0AABA9AACIvQAAyD0AAIA7AAB8vgAAHD4AAEC8AABAvAAAmr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=bSxSEAlbQVg","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["7183263477294660592"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"13625532212783191526":{"videoId":"13625532212783191526","docid":"34-10-2-ZE46D78A5E8E30CD7","description":"Explains what happens when a function is convolved with the delta impulse function. Related videos: (see: http://www.iaincollings.com) • Convolution in 5 Easy Steps • Convolution in 5 Easy Steps...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3450230/682857424aa03de4d9e0f9766b92635a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/AGzDvAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTIcfY19dk0c","linkTemplate":"/video/preview/13625532212783191526?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Convolution with Delta Function","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=TIcfY19dk0c\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoWChQxMzYyNTUzMjIxMjc4MzE5MTUyNloUMTM2MjU1MzIyMTI3ODMxOTE1MjZqtg8SATAYACJFGjEACipoaGV6b3d0Y3dpY2NlZXRjaGhVQ3JsdHp1U3ZSYkwzcnBzdkxEbkZrdVESAgASKhDCDw8aDz8TugOCBCQBgAQrKosBEAEaeIH9_P0O_gIA9_sU_f0E_wERAwb6B___APj5EPcCA_8A4QsD-f3-AADvAAAMBwAAAPkEAQD__wAACfz3BQMAAAAO9PgEAwAAAAQE_vT_AQAA8fv8AwMAAAAX7AT6_wAAAPX__wb6_wAA_QT-_QEAAAAF_QL5AAAAACAALdOk2js4E0AJSE5QAiqEAhAAGvABeSkS_8D74P-Y3MsBPwvSAdAeKwAVGskA0BoXAA0F4AD0yw8ALSnb_w8JGv-BM_8B-Ob7_sD24gEbAOH_G_37ALfwGgAfJQQBNNYFAO7-UP3Y9e4AvwT7AdvXxf4kHroAEREU_eYQCgDpBLYCLPo3Afcf1AUQ8RIJ6w0g_fsOAQYTItf7xuoz-_7rGgC8_iUBIPn1Aew4_gVUA98CxgIbBuTh_wgwAuAD18byAe0H-_gN3A_5C-b6CxYWBwHF2Pf76QII-RW8CP4d5gwB87gD9ADkBfkXuuALD70R8x3Z-fmyyhH19g7r97QM9O8RCwIOIAAtWnj4OjgTQAlIYVACKnMQABpgEPkAJvtFDfgsKfEd-Ari-8j_GxDJ9v_g4AAUNu0QA-fgsvDnABvKOM-pAAAAGSb6JwIAUXEE6vwP7wHt1eLx_wN_QyQxzRj8Ev_KLkgr5hXu5kIgACP1uyUz0ohHJzVCIAAtL_MeOzgTQAlIb1ACKq8GEAwaoAYAAEBBAACwwQAAIEIAAMBAAACIQQAAAMEAAExCAAAgQQAAlsIAAHTCAADgQQAAQEEAACjCAAAAQQAAFEIAADTCAAAgwQAAPMIAAEBBAAAMwgAAUEEAALjBAABgwQAAmEEAAMDAAAB0QgAAosIAAABCAACsQgAAkEIAABDBAADgQQAAOMIAAIjBAACWwgAAYEEAAABCAACOQgAAAAAAAODAAADwwQAAKEIAAMBAAAAgwgAAAEIAALBBAAAAwQAAgL8AAEBCAABAwQAA0MEAAIDBAABwQQAAREIAAIA_AACQwQAAgL8AAAjCAAC4QQAAYEEAAKBAAAAYwgAAtMIAACjCAABgwQAAhMIAAADCAACawgAAvsIAAEBAAAAwQgAAAEIAAMjBAAAYQgAAAEAAAOzCAACwwQAArMIAAChCAAAwwgAA8MEAAAxCAADAQAAAAMEAABRCAAAcQgAAJMIAAIA_AAAgQgAAoMEAAIBAAAAsQgAAEEEAAKDBAAA4QgAAxMIAAKDAAACQQQAAWEIAAAhCAABUwgAAKEIAAABBAACgwQAAeMIAAABAAACAwAAAlkIAAIDAAABQQgAA6EEAAKDBAAAgwgAAaMIAAHxCAADQQQAAAAAAAODBAAAAAAAAIMIAAPDBAAAAwAAAMEEAAFjCAAAAAAAAsEEAABzCAACIwQAAhsIAAKBAAAAUwgAA2MEAADBBAAAAQgAAGMIAADBBAADQQQAAjMIAABzCAACiwgAAYEEAAABAAACAvwAA0EEAAGDBAAAwQQAAgMAAAOhBAADgQAAAEEIAAFhCAAA0QgAAkEIAACjCAAAAQAAAwEAAAHDCAACWwgAAwEEAAHxCAAAQwgAAQEIAAOBBAACoQQAAmMEAAGRCAADQQQAAoEEAANZCAABIwgAAjMIAAIBBAAAUQgAAPEIAAMDAAAAAwAAAMMIAAODAAAAAQQAAmkIAABDCAACCwgAAyMEAANjBAABAQgAAGMIAANjBAAA0QgAAyMEAAOBBAAAAwgAAYMEAAKjBAACoQQAA4EAAAJBCAABoQgAA4MAAADTCAAAAQSAAOBNACUh1UAEqjwIQABqAAgAATL4AADC9AACAOwAAQLwAAOC8AACyPgAAdD4AAGG_AAB8vgAAFD4AAGw-AACevgAAML0AAIY-AAAQPQAAXL4AAPg9AACoPQAAFD4AADk_AABjPwAATD4AABA9AAAQvQAATL4AAGQ-AADoPQAAlr4AADy-AADoPQAAXD4AAFA9AAAkvgAABD4AAHA9AACWvgAA2D0AAES-AAC2vgAAJL4AAKq-AABQvQAAEL0AAIC7AACIPQAAyD0AAJg9AACqvgAARL4AALa-AABAPAAAMD0AAAQ-AADuPgAAZL4AAIA7AAB_PwAAMD0AADw-AADePgAATD4AAOg9AADgPAAA9r4gADgTQAlIfFABKo8CEAEagAIAAIC7AAAMPgAATL4AACu_AABsvgAABD4AAMo-AACAOwAAoLwAAGQ-AADoPQAAgr4AAMg9AADYvQAAQLwAAFC9AADYPQAAFz8AAJi9AADCPgAAiL0AAIi9AACAOwAA6L0AAFA9AACAOwAAoLwAAOC8AABwPQAAcD0AAFA9AACgPAAAir4AAIC7AABAvAAAPL4AAMg9AACYPQAAdL4AAFC9AAAcPgAA6D0AADA9AADIPQAAcL0AADw-AAB_vwAAuD0AAJi9AABAPAAARD4AABA9AABwPQAAMD0AAJg9AADIPQAAQLwAABA9AACAuwAAiL0AAAQ-AAAQvQAAcL0AAAS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=TIcfY19dk0c","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["13625532212783191526"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2868483515"},"8316092011944863897":{"videoId":"8316092011944863897","docid":"34-8-17-Z5E1ACFB83D65597F","description":"Video shows what convolve means. To form the convolution of something with something else. To compute the convolution function. Convolve Meaning. How to pro...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2390088/374bca2d2e78beb4f7b8bd4c4279c3d0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/HwSDQgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Duo9nwiJZyTk","linkTemplate":"/video/preview/8316092011944863897?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Convolve Meaning","related_orig_text":"Convolve","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Convolve\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=uo9nwiJZyTk\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNzE5MjUwNTYwNjMxMTgxOTQ3MwoUMTE1OTU2NjQwMDQ3NjkwNzQ4NzgKEjk0NTUxNjc0Mjk2NjEzNzUyOQoTNjQ3MzQ2MDkyMjA2MDEwNDI3NQoTMjk3MjUwNDY3NjIwODU1NzU0NQoTMzk0Njk0MTIyODg3MDk2NDM3MQoUMTQyNTg2Mzk3ODE3ODI5MDI5OTMKEzY2NjgxNzY4OTkxOTU1NzU5OTEKFDE3NDM5NzE2MzYyNDk4MTAwNjgxChExMjg1MDc0ODU5NTc4OTk2MAoUMTIxODg5Njg1MzczMjM0OTE1NzEKEzMyMjUyODI1NjEwMjM1NDgwODIKFDExNzg4MDM4OTg4NzUxODgyNDgwChQxNjA1NTE3ODc1MTcwMzQ1NzM0MQoUMTc4NTM4MTk3NDAyMDk5ODM4OTUKEzcxODMyNjM0NzcyOTQ2NjA1OTIKFDEzNjI1NTMyMjEyNzgzMTkxNTI2ChM4MzE2MDkyMDExOTQ0ODYzODk3ChM4OTQwNjg2NTcxOTc0ODc2OTk3ChQxNDAxODY3NTI5ODA5MTk3MDMxMhoVChM4MzE2MDkyMDExOTQ0ODYzODk3WhM4MzE2MDkyMDExOTQ0ODYzODk3aocXEgEwGAAiRBoxAAoqaGhpeHhldXlvbmlpZ2lnZGhoVUNoS3ZjZTRmVzM4YVpwT3c2aXpMNGtnEgIAEioPwg8PGg8_EwqCBCQBgAQrKosBEAEaeIH2_vQB_AQAA_4K-_0D_wH-BgUACf3-APkFC_oDA_8A6wMGAAL_AAD-CwcCAAAAAAYH-fv5_gEAFgIOBQQAAAAE__4CAgAAABL9_fz-AQAA__wJ-wMAAAAO_gEIAAAAAPILAgEE-vgEBAf-_gAAAAD_7wP4AAAAACAALVAZ4Ts4E0AJSE5QAiqEAhAAGvABUxcf_JH25Pt_-N4BsRfpAIQKLP9mDckAvCPzAEQEBgDvLtEA4OjzABPx4QAf2DH_PgTy_0k29QAqGRYA8BvkAC_i8ADs2QQAH-wkAfkeAf_-9fz_IwMaABAI8QDXEN__MSjD_gD_6wDz5wkANtkSAvP2FALv_iYCAxLXAQjyGADs3gIBDAD1Cg8B5QT39Cb-EQED-98UGfwfAOP7Jhnu-Pkc6_0RB_UGD-ozAzMH_wj6Ce7-IvgKAyod_gEJJSX58vYnAv3x7_kI-QwG_93rCfACEvb75wUJEhTvEgwA9PwH9-jx-Azu-OQNHP7_CQ4SIAAt5AIROzgTQAlIYVACKs8HEAAawAfBquK-yyi7vLawuDwG9li-hCF8PWB_iDzemFm9_RjOvNqrL727JYG-U9DtPJoSILybHaG-RqGbvMhnqDxZc8u9Nc2gvGoRdjxLIwa-TPa0PLn0-TyatUS-QUsSveKuPj34FhY-D3tBvYBADL0LDZS9UPvtvHFLdTwWWLY9Iao1PSOiGD1WP8C8F_hFvTt5ibsFw_k9MYtavQuIHz3mA0I-9j1PvUcBAbv1Yi09WVSfPHG74TsSImo9bMybPRBvQryCQsg92hPuPCLY3TzMJiA-JwRBvYypy7r-eqo9Y0_xvGsUbTy4pJQ9IIUGvTo9zrsuamE9ZudjPemtjTsmNfS9fgMuPau6Aj331rY9qvDUOWhXBDuk4yo-DjqnvT1uDbvDJ8K8rEaFPZD5mzxxcA49lcrlvHSqxrwxLou85LvEPRCxgTwk0Q28mWgrPViQZjxwaGA9zYyjvI3pLjw9o8i9ww6jvJ0PTzuSHcC895ijvBXpWTzxfGs9w-7gvDXAO7ynB2U9W5TZPNjCYjwsssK8Q0QevK7t0rwkCWc9Gya_vJdMW7p7aP892KtevayjUzvoXHu9s8F0O9Tshbuk8h0858W5PZI7rroKhxm98gY9vdk6Gzw5Who919yhPYPu_Tv343s9FVANvRBWCryvZni8LTeSPZ5VDzs0zxs9dpMOvQHhnjsvsg-8Jo68PCAyfru-ORK99rKSvA7r3LliL1Q9KaPAvL93I7sCPrk9OatvvVTt9jg0tRE9hceIvHIfsbo1Qws8tqWru4UcL7oomcE8cfKRvKHyA7hbDxo9-0uBPXPcZzkxs2899SNPPRA_uDjt-kA9mWl2vedj8DiqSLW9e8itOj4spLgkJi29tCMTO_ps3bhyTSE9PVY6vJKTBLq4iLk8ZQGePeQAqLjIg-M8dQzjPL4c2bfmb6c8YXg7vfXKqbZy4Zs90n5VvRQkfbnqHh69yBeOPTnJRzhRGYo9StQGvWqMozhgD9y8CN8AvW_Vwzj2M8s96MqWvLxuBTgs3h69jrI-vf_EyTRM1Ue90eCAPBRl-7dl0Yq95B9MPadLXzgH_Cu92d1yvQ42Kjjfn1c90cdhve53qji_mJI8R3SPvQbEubdCzIo8iupIveHpw7X_zrY8rwj-vEI6kbiIzRG9cg9OPf6L7rd8o2y9RznYPNtxtTc1wLs8XBuPvCp-JbNyjL-6M9zAvKjAZrjsXCK9Kb-7vLUnfrgASDe7d1U2PT6V3bhNcAC9uxZjvCfozLfY4HO9zPx0vcwWjbggADgTQAlIbVABKnMQABpgJCUAQQRm3gP1UNDqIw4RIDkJCfDJMP8fqP_5KhHTICe90QEN_znn_PiiAAAAIdINLdkAH3XsJtcjBeEu1jPxTfx_NhkD5uVDCQz4-jrK5z35QO4qAPcQ5eUV_aR0CUVTIAAtv9ATOzgTQAlIb1ACKq8GEAwaoAYAADDCAAAYQgAAgMAAAFDBAAAgwQAAIEEAAAAAAACIwgAAIMEAAHBBAADAwQAAQMEAADzCAAC6wgAAmMEAAMjBAAAsQgAAMEEAAMBBAABQwQAAAAAAAAhCAABMQgAAAEAAAAxCAADQwQAAqMEAANjBAABcQgAAoEAAABDBAAAAQgAA4MAAAIjCAAAYwgAAwEEAAAAAAABIQgAAcMEAAFRCAACIQQAAMEIAADRCAACAPwAAgEEAAEhCAAAEQgAAMMEAAIJCAACowQAAeMIAADTCAACWwgAAYMIAALBBAACIwQAATMIAADzCAAAAQAAAAAAAABzCAABgwQAABEIAABzCAACIwgAAosIAAJJCAAAQwQAAysIAACDBAACOQgAAnkIAABDCAAAAwAAAUEEAAOjBAABwwQAA6EEAAGBBAAAAQAAAOMIAAKBAAACoQQAAAEEAABhCAABgwQAAWEIAAERCAAAEQgAApMIAAKBBAAB8QgAAIEIAALTCAACwwQAAbMIAAABBAACKQgAAEMIAAIjBAAA4wgAAAEIAAJhBAABQwgAAgMEAAGBBAACgwAAAKEIAAEBCAAAgQQAA0EEAAGzCAACSQgAAQEAAABBCAACEwgAAIMEAACzCAACYQQAAqEEAABDBAAAgwQAA4MEAAMDBAAAgwQAAQEEAAAjCAABAwQAAdMIAAFjCAACwQQAAOEIAAEBBAADAQQAA-EEAADRCAAAQQgAABMIAAEDBAACewgAA6MEAAIhCAAAoQgAAIEEAABDBAAAcQgAAvMIAALBBAAAwQQAAJEIAAIjBAAAAwgAAMMEAAIDCAADIQQAAgEEAAIhCAAAUwgAAyEEAAOBAAAAQwgAAXMIAAI7CAADAQAAAUMIAAIDAAACwQQAA-EEAAOBBAADYwQAAHMIAADDCAADAwQAAbMIAAGDBAACwQQAASEIAAODBAADgQAAAcEIAAIzCAAAgwgAAoMAAABjCAACAQgAAwMAAAITCAACkQgAAYMEAAFBBAACkwgAAUMIAACRCAAAAQQAAbMIAAJpCAAAUwgAAYMEAAKBBAADYwSAAOBNACUh1UAEqjwIQABqAAgAAfL4AAHC9AAAMPgAAmD0AABS-AAAQvQAAZL4AALa-AAAcvgAA2D0AAIY-AACIvQAAUD0AANg9AACYvQAA2L0AAIC7AACoPQAALD4AAFw-AAB_PwAAmL0AADS-AAAkPgAAVL4AABy-AADIvQAAgDsAABQ-AAD4PQAAED0AABS-AABMvgAAFL4AACw-AABAPAAA-D0AAFS-AAAMvgAADL4AABA9AAC-vgAAqD0AAFA9AAAMvgAAEL0AAMg9AABwvQAAEL0AABy-AACovQAA2D0AAGQ-AAAQPQAAXL4AAMg9AAD6PgAADD4AAHw-AAAEPgAAgDsAABA9AACIPQAAFL4gADgTQAlIfFABKo8CEAEagAIAAIC7AABQvQAA2L0AAPa-AACIPQAAqL0AAIg9AAAQvQAABL4AAJ4-AABQvQAAcL0AAFQ-AAB0vgAAmL0AAKi9AACgPAAAWT8AAIg9AABMPgAAQDwAADC9AAB0PgAAuD0AAKi9AABAPAAAQDwAANg9AACSPgAAgLsAAKA8AAC4PQAALL4AAOg9AACYvQAAyL0AAL4-AACIPQAAPL4AAAS-AACmPgAAqD0AAAS-AAAwvQAAyD0AAIY-AAB_vwAABL4AAHC9AACgPAAAyD0AAIA7AACCPgAAED0AADC9AAAwPQAAED0AAEA8AAAQvQAAQLwAAIg9AADIPQAAlr4AAJa-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=uo9nwiJZyTk","parent-reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8316092011944863897"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1287144569"}},"dups":{"17192505606311819473":{"videoId":"17192505606311819473","title":"PPE detection using Computer Vision | \u0007[Convolve\u0007] AI Tool","cleanTitle":"PPE detection using Computer Vision | Convolve AI Tool","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4Bqmc1CDH3w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4Bqmc1CDH3w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV0hYV1VWLTJDWXpJUU9Ca2VhRkNCdw==","name":"Convolve AI","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Convolve+AI","origUrl":"http://www.youtube.com/@ConvolveAI","a11yText":"Convolve AI. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":391,"text":"6:31","a11yText":"Süre 6 dakika 31 saniye","shortText":"6 dk."},"date":"3 şub 2025","modifyTime":1738540800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4Bqmc1CDH3w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4Bqmc1CDH3w","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":391},"parentClipId":"17192505606311819473","href":"/preview/17192505606311819473?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/17192505606311819473?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11595664004769074878":{"videoId":"11595664004769074878","title":"Numpy \u0007[Convolve\u0007] 1d in Python + Examples By Hand (for different modes)","cleanTitle":"Numpy Convolve 1d in Python + Examples By Hand (for different modes)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Y03LVHWc6rE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Y03LVHWc6rE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYXU3ZkJacl9mU05iNEN6YkdXQTFSdw==","name":"Koolac","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Koolac","origUrl":"http://www.youtube.com/@Koolac","a11yText":"Koolac. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":329,"text":"5:29","a11yText":"Süre 5 dakika 29 saniye","shortText":"5 dk."},"views":{"text":"5,9bin","a11yText":"5,9 bin izleme"},"date":"27 tem 2022","modifyTime":1658939958000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Y03LVHWc6rE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Y03LVHWc6rE","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":329},"parentClipId":"11595664004769074878","href":"/preview/11595664004769074878?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/11595664004769074878?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"945516742966137529":{"videoId":"945516742966137529","title":"Train Your Own LLM with Webpages, PDFs, and Text – Try \u0007[Convolve\u0007]’s Tool!","cleanTitle":"Train Your Own LLM with Webpages, PDFs, and Text – Try Convolve’s Tool!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Eus4XKXKPoo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Eus4XKXKPoo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV0hYV1VWLTJDWXpJUU9Ca2VhRkNCdw==","name":"Convolve AI","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Convolve+AI","origUrl":"http://www.youtube.com/@ConvolveAI","a11yText":"Convolve AI. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":676,"text":"11:16","a11yText":"Süre 11 dakika 16 saniye","shortText":"11 dk."},"date":"31 oca 2025","modifyTime":1738281600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Eus4XKXKPoo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Eus4XKXKPoo","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":676},"parentClipId":"945516742966137529","href":"/preview/945516742966137529?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/945516742966137529?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6473460922060104275":{"videoId":"6473460922060104275","title":"\u0007[Convolve\u0007] | what is \u0007[Convolve\u0007] meaning","cleanTitle":"Convolve | what is Convolve meaning","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=b8GLuUBc7tg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/b8GLuUBc7tg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQl9haTBqY3l3OXprc1k2eGY4SC1sUQ==","name":"Listen and Learn English","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Listen+and+Learn+English","origUrl":"http://www.youtube.com/@EngListenLearn","a11yText":"Listen and Learn English. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":29,"text":"00:29","a11yText":"Süre 29 saniye","shortText":""},"date":"1 haz 2023","modifyTime":1685577600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/b8GLuUBc7tg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=b8GLuUBc7tg","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":29},"parentClipId":"6473460922060104275","href":"/preview/6473460922060104275?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/6473460922060104275?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2972504676208557545":{"videoId":"2972504676208557545","title":"Simple Moving Average (SMA) in Python using NumPy \u0007[Convolve\u0007]","cleanTitle":"Simple Moving Average (SMA) in Python using NumPy Convolve","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Tlndg7-hqv0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Tlndg7-hqv0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYXU3ZkJacl9mU05iNEN6YkdXQTFSdw==","name":"Koolac","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Koolac","origUrl":"http://www.youtube.com/@Koolac","a11yText":"Koolac. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":703,"text":"11:43","a11yText":"Süre 11 dakika 43 saniye","shortText":"11 dk."},"views":{"text":"1,5bin","a11yText":"1,5 bin izleme"},"date":"22 ağu 2022","modifyTime":1661193429000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Tlndg7-hqv0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Tlndg7-hqv0","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":703},"parentClipId":"2972504676208557545","href":"/preview/2972504676208557545?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/2972504676208557545?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3946941228870964371":{"videoId":"3946941228870964371","title":"5×5 Image \u0007[Convolved\u0007] with 3×3 Filter | CNN Convolution Example Explained In less then 60 Seconds","cleanTitle":"5×5 Image Convolved with 3×3 Filter | CNN Convolution Example Explained In less then 60 Seconds","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/5bYh8ZB-QVY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5bYh8ZB-QVY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeHlxN0Y1SDQtUFVoU2c4U3NZZmVQdw==","name":"Muhammad Usama Anwar","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Muhammad+Usama+Anwar","origUrl":"http://www.youtube.com/@muhammadusamaanwarpk","a11yText":"Muhammad Usama Anwar. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":45,"text":"00:45","a11yText":"Süre 45 saniye","shortText":""},"date":"10 ara 2025","modifyTime":1765324800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5bYh8ZB-QVY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5bYh8ZB-QVY","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":45},"parentClipId":"3946941228870964371","href":"/preview/3946941228870964371?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/3946941228870964371?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14258639781782902993":{"videoId":"14258639781782902993","title":"Nuke Nodes Kickstart - \u0007[Convolve\u0007]","cleanTitle":"Nuke Nodes Kickstart - Convolve","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=yoK-GtpdL3Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/yoK-GtpdL3Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbDdWNFdJZ3ZueUNoZGZ1V0VoZTkxUQ==","name":"The Comp Romp","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Comp+Romp","origUrl":"http://www.youtube.com/@TheFrameLab","a11yText":"The Comp Romp. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":696,"text":"11:36","a11yText":"Süre 11 dakika 36 saniye","shortText":"11 dk."},"views":{"text":"5,9bin","a11yText":"5,9 bin izleme"},"date":"21 nis 2019","modifyTime":1555804800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/yoK-GtpdL3Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=yoK-GtpdL3Q","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":696},"parentClipId":"14258639781782902993","href":"/preview/14258639781782902993?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/14258639781782902993?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6668176899195575991":{"videoId":"6668176899195575991","title":"Python : \u0007[Convolve\u0007]2d just by using Numpy","cleanTitle":"Python : Convolve2d just by using Numpy","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VjjOdnidBiA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VjjOdnidBiA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYVpMNGVMRDdhMzBGYThRSS1zUmlfZw==","name":"Hey Delphi","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Hey+Delphi","origUrl":"http://www.youtube.com/@Hey_Delphi","a11yText":"Hey Delphi. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":68,"text":"1:08","a11yText":"Süre 1 dakika 8 saniye","shortText":"1 dk."},"date":"11 mayıs 2023","modifyTime":1683763200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VjjOdnidBiA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VjjOdnidBiA","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":68},"parentClipId":"6668176899195575991","href":"/preview/6668176899195575991?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/6668176899195575991?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17439716362498100681":{"videoId":"17439716362498100681","title":"Intro to 2D \u0007[Convolve\u0007]","cleanTitle":"Intro to 2D Convolve","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HSvUUL5sCeg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HSvUUL5sCeg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcmRpanp5Q3pJOW1iMlplanpxekdGdw==","name":"University of Michigan Digital Signal Processing","isVerified":false,"subscribersCount":0,"url":"/video/search?text=University+of+Michigan+Digital+Signal+Processing","origUrl":"http://www.youtube.com/@universityofmichigandigita2369","a11yText":"University of Michigan Digital Signal Processing. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":626,"text":"10:26","a11yText":"Süre 10 dakika 26 saniye","shortText":"10 dk."},"date":"12 haz 2017","modifyTime":1497225600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HSvUUL5sCeg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HSvUUL5sCeg","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":626},"parentClipId":"17439716362498100681","href":"/preview/17439716362498100681?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/17439716362498100681?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12850748595789960":{"videoId":"12850748595789960","title":"Convolution, Kernels and Filters - Visually Explained + PyTorch/numpy code | Essentials of ML","cleanTitle":"Convolution, Kernels and Filters - Visually Explained + PyTorch/numpy code | Essentials of ML","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HALYTCQBcO4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HALYTCQBcO4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDazF1NV9xcV9ucmR6MTMtbzVLNmJlUQ==","name":"Kapil Sachdeva","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Kapil+Sachdeva","origUrl":"http://www.youtube.com/@KapilSachdeva","a11yText":"Kapil Sachdeva. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":673,"text":"11:13","a11yText":"Süre 11 dakika 13 saniye","shortText":"11 dk."},"views":{"text":"2,8bin","a11yText":"2,8 bin izleme"},"date":"14 şub 2022","modifyTime":1644796800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HALYTCQBcO4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HALYTCQBcO4","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":673},"parentClipId":"12850748595789960","href":"/preview/12850748595789960?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/12850748595789960?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12188968537323491571":{"videoId":"12188968537323491571","title":"Inkscape: Blur and \u0007[Convolve\u0007] Filter Primitives Explained","cleanTitle":"Inkscape: Blur and Convolve Filter Primitives Explained","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=uhnecYmzSMg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/uhnecYmzSMg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSEJjNkFJak5nMVlhcEZkNlJlcl9rQQ==","name":"Open Source Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Open+Source+Tutor","origUrl":"http://www.youtube.com/@opensourcetutor1878","a11yText":"Open Source Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":637,"text":"10:37","a11yText":"Süre 10 dakika 37 saniye","shortText":"10 dk."},"views":{"text":"3,1bin","a11yText":"3,1 bin izleme"},"date":"3 ara 2016","modifyTime":1480723200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/uhnecYmzSMg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=uhnecYmzSMg","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":637},"parentClipId":"12188968537323491571","href":"/preview/12188968537323491571?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/12188968537323491571?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3225282561023548082":{"videoId":"3225282561023548082","title":"Nuke \u0007[Convolve\u0007] Node Defocus - Did you know?","cleanTitle":"Nuke Convolve Node Defocus - Did you know?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=F676sDJDIWg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/F676sDJDIWg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVU1RQkNOY1V0dWltOUFQWTFxamlaQQ==","name":"Post Series: A Nuke course by Shonda Hunt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Post+Series%3A+A+Nuke+course+by+Shonda+Hunt","origUrl":"https://www.youtube.com/channel/UCUMQBCNcUtuim9APY1qjiZA","a11yText":"Post Series: A Nuke course by Shonda Hunt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":52,"text":"00:52","a11yText":"Süre 52 saniye","shortText":""},"views":{"text":"2,5bin","a11yText":"2,5 bin izleme"},"date":"26 oca 2023","modifyTime":1674691200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/F676sDJDIWg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=F676sDJDIWg","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":52},"parentClipId":"3225282561023548082","href":"/preview/3225282561023548082?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/3225282561023548082?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11788038988751882480":{"videoId":"11788038988751882480","title":"Moving Sum/Average of Array with Python (Numpy \u0007[Convolve\u0007])","cleanTitle":"Moving Sum/Average of Array with Python (Numpy Convolve)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=3ninJWqdIes","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3ninJWqdIes?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdWI0cVQ4U2dtN3l0WnNPLWpMTDRPdw==","name":"Python Marathon","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Python+Marathon","origUrl":"http://www.youtube.com/@pythonmaraton","a11yText":"Python Marathon. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":306,"text":"5:06","a11yText":"Süre 5 dakika 6 saniye","shortText":"5 dk."},"views":{"text":"5,3bin","a11yText":"5,3 bin izleme"},"date":"24 kas 2020","modifyTime":1606176000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3ninJWqdIes?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3ninJWqdIes","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":306},"parentClipId":"11788038988751882480","href":"/preview/11788038988751882480?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/11788038988751882480?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16055178751703457341":{"videoId":"16055178751703457341","title":"How to \u0007[convolve\u0007] LTI Systems in Matlab 2020","cleanTitle":"How to convolve LTI Systems in Matlab 2020","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JxpxRp5qQ5s","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JxpxRp5qQ5s?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR2dDdERoTnY0SkF0T29vTHg4OVJKZw==","name":"Wasim Explains","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Wasim+Explains","origUrl":"http://www.youtube.com/@wasimexplains1919","a11yText":"Wasim Explains. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1019,"text":"16:59","a11yText":"Süre 16 dakika 59 saniye","shortText":"16 dk."},"views":{"text":"3bin","a11yText":"3 bin izleme"},"date":"17 nis 2020","modifyTime":1587081600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JxpxRp5qQ5s?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JxpxRp5qQ5s","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":1019},"parentClipId":"16055178751703457341","href":"/preview/16055178751703457341?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/16055178751703457341?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17853819740209983895":{"videoId":"17853819740209983895","title":"Convolution Example #1","cleanTitle":"Convolution Example #1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_RsMMkuQVUE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_RsMMkuQVUE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVTdzc0pTUXU4WU5XbktzckJIRUdxQQ==","name":"Rose-Hulman Online","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Rose-Hulman+Online","origUrl":"http://www.youtube.com/@RoseHulmanOnline","a11yText":"Rose-Hulman Online. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":762,"text":"12:42","a11yText":"Süre 12 dakika 42 saniye","shortText":"12 dk."},"views":{"text":"188,4bin","a11yText":"188,4 bin izleme"},"date":"5 ara 2012","modifyTime":1354665600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_RsMMkuQVUE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_RsMMkuQVUE","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":762},"parentClipId":"17853819740209983895","href":"/preview/17853819740209983895?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/17853819740209983895?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7183263477294660592":{"videoId":"7183263477294660592","title":"\u0007[Convolve\u0007] - Directed by Colby Richardson","cleanTitle":"Convolve - Directed by Colby Richardson","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bSxSEAlbQVg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bSxSEAlbQVg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWENXeXZMTDdQd2FHZHlpNFd6UVFWdw==","name":"Colby Richardson - Media Artist","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Colby+Richardson+-+Media+Artist","origUrl":"https://www.youtube.com/channel/UCXCWyvLL7PwaGdyi4WzQQVw","a11yText":"Colby Richardson - Media Artist. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":201,"text":"3:21","a11yText":"Süre 3 dakika 21 saniye","shortText":"3 dk."},"date":"17 haz 2021","modifyTime":1623888000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bSxSEAlbQVg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bSxSEAlbQVg","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":201},"parentClipId":"7183263477294660592","href":"/preview/7183263477294660592?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/7183263477294660592?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13625532212783191526":{"videoId":"13625532212783191526","title":"Convolution with Delta Function","cleanTitle":"Convolution with Delta Function","host":{"title":"YouTube","href":"http://www.youtube.com/live/TIcfY19dk0c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/TIcfY19dk0c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcmx0enVTdlJiTDNycHN2TERuRmt1UQ==","name":"Iain Explains Signals, Systems, and Digital Comms","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Iain+Explains+Signals%2C+Systems%2C+and+Digital+Comms","origUrl":"http://www.youtube.com/@iain_explains","a11yText":"Iain Explains Signals, Systems, and Digital Comms. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":442,"text":"7:22","a11yText":"Süre 7 dakika 22 saniye","shortText":"7 dk."},"views":{"text":"47,9bin","a11yText":"47,9 bin izleme"},"date":"30 eki 2018","modifyTime":1540857600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/TIcfY19dk0c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=TIcfY19dk0c","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":442},"parentClipId":"13625532212783191526","href":"/preview/13625532212783191526?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/13625532212783191526?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8316092011944863897":{"videoId":"8316092011944863897","title":"\u0007[Convolve\u0007] Meaning","cleanTitle":"Convolve Meaning","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=uo9nwiJZyTk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/uo9nwiJZyTk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaEt2Y2U0ZlczOGFacE93Nml6TDRrZw==","name":"ADictionary","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ADictionary","origUrl":"http://www.youtube.com/@adictionary3492","a11yText":"ADictionary. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":10,"text":"00:10","a11yText":"Süre 10 saniye","shortText":""},"date":"28 nis 2015","modifyTime":1430204400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/uo9nwiJZyTk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=uo9nwiJZyTk","reqid":"1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL","duration":10},"parentClipId":"8316092011944863897","href":"/preview/8316092011944863897?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","rawHref":"/video/preview/8316092011944863897?parent-reqid=1769509931683431-16833641268580768160-balancer-l7leveler-kubr-yp-sas-119-BAL&text=Convolve","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"8336412685807681607119","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Convolve","queryUriEscaped":"Convolve","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}