{"pages":{"search":{"query":"Cosh Qkr","originalQuery":"Cosh Qkr","serpid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","parentReqid":"","serpItems":[{"id":"11775056631151210748-0-0","type":"videoSnippet","props":{"videoId":"11775056631151210748"},"curPage":0},{"id":"15263656455838767821-0-1","type":"videoSnippet","props":{"videoId":"15263656455838767821"},"curPage":0},{"id":"12778427531885698618-0-2","type":"videoSnippet","props":{"videoId":"12778427531885698618"},"curPage":0},{"id":"1777253507816056849-0-3","type":"videoSnippet","props":{"videoId":"1777253507816056849"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dENvc2ggUWtyCg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","ui":"desktop","yuid":"8485061771765325724"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"7234224056201505506-0-5","type":"videoSnippet","props":{"videoId":"7234224056201505506"},"curPage":0},{"id":"7710768368219701697-0-6","type":"videoSnippet","props":{"videoId":"7710768368219701697"},"curPage":0},{"id":"4336102306689087442-0-7","type":"videoSnippet","props":{"videoId":"4336102306689087442"},"curPage":0},{"id":"15973286579272085015-0-8","type":"videoSnippet","props":{"videoId":"15973286579272085015"},"curPage":0},{"id":"11875323078133337089-0-9","type":"videoSnippet","props":{"videoId":"11875323078133337089"},"curPage":0},{"id":"14164279639636408542-0-10","type":"videoSnippet","props":{"videoId":"14164279639636408542"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dENvc2ggUWtyCg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","ui":"desktop","yuid":"8485061771765325724"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"18345411233428913217-0-12","type":"videoSnippet","props":{"videoId":"18345411233428913217"},"curPage":0},{"id":"1628159026169086323-0-13","type":"videoSnippet","props":{"videoId":"1628159026169086323"},"curPage":0},{"id":"1168415187337642287-0-14","type":"videoSnippet","props":{"videoId":"1168415187337642287"},"curPage":0},{"id":"14815462639359441119-0-15","type":"videoSnippet","props":{"videoId":"14815462639359441119"},"curPage":0},{"id":"10535238265546568586-0-16","type":"videoSnippet","props":{"videoId":"10535238265546568586"},"curPage":0},{"id":"11564991466595010862-0-17","type":"videoSnippet","props":{"videoId":"11564991466595010862"},"curPage":0},{"id":"5329736165519296187-0-18","type":"videoSnippet","props":{"videoId":"5329736165519296187"},"curPage":0},{"id":"7205744904036836832-0-19","type":"videoSnippet","props":{"videoId":"7205744904036836832"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dENvc2ggUWtyCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","ui":"desktop","yuid":"8485061771765325724"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DCosh%2BQkr"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"5876535783563342287205","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1440258,0,30;1407487,0,55;1414493,0,45;66182,0,69;1432976,0,3;1436971,0,78;1437735,0,25;1430180,0,30;1427781,0,35;1434898,0,74;1427951,0,20;1418769,0,76;1434143,0,78;1425772,0,42;1282205,0,18;1417827,0,73;1428626,0,59;1431291,0,42;1420353,0,95;1349071,0,36;1430495,0,0;1425586,0,20;1436884,0,34;1404018,0,5;1433604,0,54;461652,0,33;1427075,0,66;1422266,0,13;1433820,0,95;1297912,0,93;1435632,0,35;124080,0,11;46451,0,26;151171,0,42;126330,0,63;1281084,0,74;287509,0,18;785124,0,7"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DCosh%2BQkr","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Cosh+Qkr","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Cosh+Qkr","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Cosh Qkr: 1 bin video Yandex'te bulundu","description":"\"Cosh Qkr\" sorgusu için arama sonuçları Yandex'te","shareTitle":"Cosh Qkr — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y6e62c9c12a7aaca63bb038895006eddf","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1440258,1407487,1414493,66182,1432976,1436971,1437735,1430180,1427781,1434898,1427951,1418769,1434143,1425772,1282205,1417827,1428626,1431291,1420353,1349071,1430495,1425586,1436884,1404018,1433604,461652,1427075,1422266,1433820,1297912,1435632,124080,46451,151171,126330,1281084,287509,785124","queryText":"Cosh Qkr","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"8485061771765325724","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1441146,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765326007","tz":"America/Louisville","to_iso":"2025-12-09T19:20:07-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1440258,1407487,1414493,66182,1432976,1436971,1437735,1430180,1427781,1434898,1427951,1418769,1434143,1425772,1282205,1417827,1428626,1431291,1420353,1349071,1430495,1425586,1436884,1404018,1433604,461652,1427075,1422266,1433820,1297912,1435632,124080,46451,151171,126330,1281084,287509,785124","queryText":"Cosh Qkr","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"8485061771765325724","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"5876535783563342287205","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":156,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"8485061771765325724","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1729.0__491d2077c35fc53c28577367d9c4833c662b0670","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"11775056631151210748":{"videoId":"11775056631151210748","docid":"34-2-8-ZADE0BC405FA2570A","description":"Integration of Inverse cosh (cosh^-1(x)) For inverse sinhx go here • Integration of inverse sinhx (sinh^-1(x)) For inverse tanhx go here • Integration of inverse tanhx (tanh^-1(x)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/926621/f8870370d0c86aba63ffd5a7fb6db5eb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/6uwuLwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSp5ii6G46UI","linkTemplate":"/video/preview/11775056631151210748?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration of Inverse cosh (cosh^-1(x))","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Sp5ii6G46UI\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoWChQxMTc3NTA1NjYzMTE1MTIxMDc0OFoUMTE3NzUwNTY2MzExNTEyMTA3NDhqhxcSATAYACJEGjEACipoaGFlcXFuYmVwbW1oaWRjaGhVQ1l4RkdPSnV0LVRVQjJZWi1MZzBPancSAgASKg_CDw8aDz8TboIEJAGABCsqiwEQARp4gfwCCfv9BAD0_AgH-AX-AfcK-wT4_f0A7gcHAAH_AADoAf0A-_8AAAIH_wL9AAAA_QYB-_r-AAAI_f79AwAAAAUA7_wAAAAA-w_6__4BAADn6_4AAwAAAAIV-Qr_AAAA-hUI_f7_AAD-9gkFAAAAAPz4BvYAAAAAIAAttHTcOzgTQAlITlACKoQCEAAa8AF_9AX-3-vEAc8GvQCzIiAAlTcr_-Mqyv-2LREBzBGtAegg9QDc_c8ABP8u_9Av1wBY1ur9BLwZ_0e94P8f2AAB5PAOAQre7QJRAxv_7fDm_u0PG__vzQb-0r7b_ww16gAY_v4EywvPAOcszQQ_6yYC9wEuBzX6LAEAywsG3PQi_9300PzaDwwE49AX-_cpIQYz3SgDAvgR_PgwwAIU9QP5H_o0ARAXxwAG_QoL7Qf7-Mz96f8BBwkCQfkCB8MDCvsX8ybw9Ab85___G_kr_AX9xh3h9xjZ-AwR_v378vTvEfzc99_hA-sD6NoGAPYN9e8gAC1F4vY6OBNACUhhUAIqzwcQABrAB7fs2L5dd6k8sdTEvHdlJ74VRJO8QcnuvA3-_r1SDqY8iF2APBiYBT6AM-s7f7O9u421D76nQ4I85ZeDOxh3Ez7VioC8_o2Hu9lDS75DknY7KX-CvRUcTr6sTcg8NZcfO4JEibx1K4q9_CtYux0A8T311RW9-Z4xvV9lSDzQnWA885hcvNybBDzUk968_O0BvfSV9jx7IAi9eI99PGkZGT69Xzu9ZRfvO1wQYD0Al1a9jlGovHL-Ab30Eog89gJYvPBZzTyscoA7RtJuPJuNWr3Dd6y8swhFPFZQjL3QwQm9WhSRvN_8xj3sG_M8h1k-vWkz8zweb_K91yXTOiY19L1-Ay49q7oCPfW8Kz7NLHg8-nq-PCpcKr23a_g8oFKlvBkPwruXTYW9wM5NPGAhEz0b3IE9TojOOzyUMjxK35o8nmutO-DsAL3gWIY8nTnaPPTzUD3TwA-9u5KuvOeBWT0yFSg7ux3rvOnw0L1sejA96fORvIIwwTw_9fo70oSzuy6ZqT26Vzw9nW40PGBnhD35Eb-9PWsSPOc4171I7Am9B09XvCe2Zz2Iztu7SoiovCKK6T39-ye9wf5rvKY_kL184Lq7wJ4nOw4-Az3nOsi9LzNsPNn1sb1IRym6IzAZunDBiDwHlZ288HAavMSSdjvfb6Q9XEDDOpk20ry8Ws69GJwvOmOknT1qBic9kJ_wOioBMT0Vrdw8NbQ_O0TztT2WIm85Xsv5OjWD8LvxuIc7oRENPKfZcrywwxo8JUwDu6Gd0z1RgZi9l51RObTrdzsI-lW8gmU7Ol-tf70u4rA9CQI6OSKI8zy1nqu8ssYUOb7F4DusUxW-pozJOcfmlTuRL7w8RXyKOujKVjxqXEk8oDeROQL0i71FNZC9O4YxONUPpb3wOhY9MtjSubDzsD0T3307EyyftyLLnTxaUqS8HLUAOQ2wJb2KciG6xpYuOUh0Kr17Qys8lbm1t9q_XD2bQTe9BM37OM6vwTxJk8w930SHuJiZ47qdZgO8L_AStmCJLD0wVxA9EgwqNxLRt7sM_Yi9UGX6NxjJgz1rywo9zqEyt7jkKL7Rf4W8nfgauTxqzLzypWa9-vflt4BxGzyhcde8tHkfuA6mPDw6Atm74jZBOPcBKD5wYd298We_uQpcCL3iw5G9PKVYuH0M8TwRc4S9Tb6VNwX65L3tBnY9KnvPOB2XDD1JD0O-VDFNucr0cD0i4Ss-8cuKOJVfKzzPvIw9xfwGubQB-L21WEU9UeBcOB2TJDv3UEe8wUjENyAAOBNACUhtUAEqcxAAGmAW8wArCz7kAf1T5ADZvgbv-e3tNswu_wMA_w0p7eHu5cDA7w3_9vD88qMAAADw7BwnwgALfNr63fnBMf_dnPQ6MH_ZHCyn1hIaCNkd8fEBDgkzO1QAuB-_EyMo-GAECRIgAC1uzBw7OBNACUhvUAIqrwYQDBqgBgAAcEEAAJjBAADaQgAA0MIAAEDBAADAwAAAfEIAAJjBAACgQQAAcMEAALjBAACYwQAAPMIAAFDBAAAAAAAAwEEAABhCAACgwQAAKEIAAFDBAAAIwgAAmMEAAKjCAACIQQAAZMIAABTCAADAQQAAIMEAAEBCAAAoQgAAEMIAAODAAACUwgAAEEEAALrCAADgwAAAAMAAAKpCAADAwAAAoEEAAEDBAAAgwQAAkMEAALBBAADAQQAAOMIAAIDBAAAcQgAAIMEAANBBAADgwQAAEEEAACDCAAAcQgAAeEIAAMBBAADUwgAAgMAAAPBBAAD4QQAAIEIAAITCAADAwQAAIMIAAODAAACswgAAjsIAAETCAABQwQAAYMIAAJZCAACYQQAAJMIAAFBCAADIwQAAQEAAADTCAAAAAAAAUEEAANBBAADgwQAAtkIAADDBAACAwAAAQEEAAOBBAAAAQAAAgsIAAIhBAADwQQAAQMAAALJCAABgwQAAIEEAABRCAACgwQAAcMEAAJjBAAAwQQAAlkIAADzCAAC4wQAAqEEAADzCAADYwQAAkEEAADBCAAAAwQAA4EAAAGhCAACAPwAAwEEAAIDCAABQwgAAmMEAAJxCAACYQQAAhMIAAAzCAAAcwgAAQMAAABDCAACgQAAAIEEAAATCAADAQAAAYEEAALjBAADgwAAAEEIAAPjBAABwwgAAAEAAAFBBAABAwAAAlEIAAKDAAACeQgAAPMIAALjBAABAwQAAgD8AAFRCAAA8wgAAiEEAAExCAAAAAAAAAEEAAAAAAACgwAAAwMEAAKBBAABQQgAAYEIAAADAAAAQwQAAhMIAAPjBAACAwAAAIMIAACzCAAAgQgAAUMEAAJDBAACgwAAA4MAAABTCAADeQgAAjkIAAABBAADYwQAAGEIAABDBAACowQAAksIAAMDAAADwQQAA0MEAAJBBAABsQgAAtsIAABTCAAC4wQAAuMEAALBBAACAQAAAVMIAAHDCAAAAwAAA0MEAADxCAAAUwgAACMIAABTCAACIwQAAOEIAAFDBAADgwQAAFEIAABxCIAA4E0AJSHVQASqPAhAAGoACAACCvgAAFL4AAOA8AACoPQAA6L0AAGw-AAAEvgAAS78AAGS-AADIPQAAXD4AAJ6-AABsPgAAZD4AAKK-AACyvgAAgj4AAOg9AADgPAAA7j4AAH0_AACIPQAAEL0AAAS-AADIPQAAoDwAAGQ-AAAkvgAANL4AAFA9AACCPgAAcL0AAFC9AAAwvQAAmL0AADy-AABsPgAAVL4AABy-AADovQAAJL4AAES-AADYPQAAiL0AAHA9AACKPgAAXD4AAHS-AACyvgAAdL4AAEQ-AABcvgAAxj4AANg9AAAcvgAAUL0AAH8_AAAQvQAA2D0AANi9AADgvAAAUL0AAMi9AAATvyAAOBNACUh8UAEqjwIQARqAAgAAoDwAAGQ-AAD4vQAAL78AAIq-AABwvQAA0j4AAFC9AACIPQAAlj4AAEC8AAAEvgAADD4AAGy-AACgvAAAgDsAADS-AAARPwAATL4AACQ-AACoPQAAVL4AAIA7AACAuwAA2L0AAIY-AABUvgAAuD0AAIq-AACYvQAAQLwAAKg9AABcvgAAoLwAAIK-AABQPQAAij4AAFw-AAAkvgAAvr4AAEQ-AAAUPgAAUD0AABA9AACSPgAA4DwAAH-_AADIvQAA-L0AABy-AADoPQAAgj4AAPY-AACYPQAAqr4AAOg9AAD4vQAAUL0AABA9AAA0vgAALD4AALg9AAB8vgAAJL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Sp5ii6G46UI","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1080,"cheight":1080,"cratio":1,"dups":["11775056631151210748"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15263656455838767821":{"videoId":"15263656455838767821","docid":"34-10-17-Z6B42D8DDE0DE07D5","description":"AB/BC, AP calculus, Algebra, Calc1, Calc2, Calc3, College, College Math, Critical numbers deadly sins, DE, Differential Equations, L'Hospital's rule, Mathematics, calculus, derivative, funct...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4429331/c51e5f9ac7de0849f1fa35e436634a12/564x318_1"},"target":"_self","position":"1","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DT2x2gklmwq8","linkTemplate":"/video/preview/15263656455838767821?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative of cosh(x)","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=T2x2gklmwq8\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoWChQxNTI2MzY1NjQ1NTgzODc2NzgyMVoUMTUyNjM2NTY0NTU4Mzg3Njc4MjFqrw0SATAYACJFGjEACipoaGxraWR1Y3l0bG52cGpiaGhVQ1EzamJWQTBVQ3VCSmZxVFd4T2IxYVESAgASKhDCDw8aDz8TxwGCBCQBgAQrKosBEAEaeIHxBQMB-wUA-gQXBvwH_QIHAwkJ-P__APP7_fwHAQAA5wH49gD_AAD4BQICAAAAAP34-AL7_gAABgAL_wQAAAALCe8E_QAAAAYD9gH_AQAA_PkBCPoBAAD5DgT8_wAAAPkOBPIAAAAA9f399wAAAAAA9vT_AAAAACAALRIG4Ds4E0AJSE5QAipzEAAaYBkVAC4J-Ofn70Lny-OuIgvjxBjaziz_EPYAFju55BHX0sb70P8ZyQMZpAAAAA4U7S__AON1pt28GR3v8dDa-wxIf-kF-9fxD_zN4xDUA_mvOBEwOACK4wsL-N3YJwQSBCAALTVrHjs4E0AJSG9QAiqvBhAMGqAGAADIQQAAAMAAAGhCAAAQwgAAIMEAAFDBAABAQQAAuMEAACTCAAAAQgAAIEEAADjCAADYwQAAUMIAADBBAACgQQAAQMEAAKbCAACEQgAAeMIAAEDAAACYQQAAjkIAAIC_AACgQAAAfMIAAGDCAAC0wgAAgEIAALjBAADYwQAAZEIAADBBAABkwgAA8MEAAPhBAAAwwQAArkIAAKDAAAAsQgAAoMEAAExCAABQQgAAYEEAAIC_AABQwgAAwMAAANDBAACuQgAAwMAAAPjBAAAAQQAAMMEAAJDBAABUQgAA0EEAAJzCAABgwQAAMEEAAFBBAACIQQAAAMIAAJhBAABAwQAAiMEAAGjCAAAIwgAAqMEAAIDBAACUwgAAHEIAAMBCAADQwQAAoEEAAERCAAC4wQAAcMEAAOBAAAAwQQAAUEEAAGDBAAAMQgAA8MEAAMhBAABcQgAAEMEAADhCAACsQgAAoEIAAL7CAAB4wgAAmkIAAKDBAABwwgAAkkIAAFTCAAAIQgAA-EEAAIBBAACAPwAACMIAABxCAADAQQAArsIAANbCAABgQQAAAMEAAERCAABAwgAAPEIAAGxCAADAwQAAoMEAACRCAAAQwQAAAEAAAIC_AACgwQAAQEEAABBCAAAgQQAAssIAAFzCAADgwQAAMEEAABjCAAA0wgAAYMEAADDBAABEwgAAUMEAAJBBAABYwgAAQEIAAEDBAABgQQAAyEEAAMjBAAAsQgAAhsIAABDBAADwwQAAkEEAANDBAABoQgAAIMEAAFjCAABQQgAA-MEAACBBAAAAwQAAmEEAALhBAAAIwgAAQEIAABjCAAAcQgAA6MEAAAAAAACAPwAA-MEAACDBAACYwQAAYMIAAJDBAACIQQAAQEAAAHxCAACgQAAAMMEAAIDAAAAcQgAAcEEAACTCAAAEwgAAHEIAADRCAADgwAAAIEIAACxCAADAwQAAoMEAAJDBAAAwQQAAJEIAAMjBAAA0wgAASMIAAKBBAAAwQgAApsIAAGjCAAAwQgAAQMEAAJjBAAAEQgAAmMEAAKDBAAAcwgAAMMIgADgTQAlIdVABKo8CEAAagAIAAOA8AABQPQAAnj4AAKA8AACCvgAAbD4AAFy-AADWvgAAFL4AAPg9AADYPQAALL4AAJg9AAAEPgAAFL4AAMi9AAAMPgAAoDwAAKA8AACIPQAAfz8AAIA7AAAsvgAA-D0AAKi9AADYvQAABL4AAES-AAAwvQAADD4AABC9AACAOwAAEL0AAAy-AAC4vQAAjr4AAIg9AAC2vgAALL4AAMi9AAAwvQAAlr4AAPg9AAAwPQAA6L0AAHC9AAAQvQAAMD0AAEy-AAA0vgAAgj4AAIg9AAAsPgAAUL0AAHS-AAAQPQAAKz8AAKg9AACGPgAA4DwAADA9AACCvgAAUD0AADS-IAA4E0AJSHxQASqPAhABGoACAAA8vgAAQLwAADA9AAAvvwAALD4AAFA9AABUPgAA2L0AAOg9AACIPQAA2L0AAEC8AACYPQAAFL4AAHA9AADgPAAAoDwAADU_AAB0vgAAVD4AAHy-AACYvQAA2D0AAEC8AABQvQAAZD4AABA9AABAPAAAMD0AADA9AABAPAAALD4AAHS-AAAcvgAAFL4AAAQ-AAC4PQAAND4AAOi9AACGvgAABD4AABA9AAAQPQAAmD0AABC9AADYvQAAf78AAEy-AABwvQAAdD4AANg9AADoPQAAtj4AADA9AABwvQAAQLwAAIA7AAAwvQAABL4AAAy-AABkPgAAcD0AAEC8AAA8viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=T2x2gklmwq8","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15263656455838767821"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12778427531885698618":{"videoId":"12778427531885698618","docid":"34-1-16-Z99A5EA43F2EA467E","description":"In this video I will teach you the integral of coshx and how you can find this with a step by step derivation from the exponential definition of the coshx function. This video forms part of the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3435397/100316f9877ce9a86152854b87999825/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/p93uBwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DxITx1h7UE5M","linkTemplate":"/video/preview/12778427531885698618?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Integrate coshx - Step by Step Tutorial","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xITx1h7UE5M\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoWChQxMjc3ODQyNzUzMTg4NTY5ODYxOFoUMTI3Nzg0Mjc1MzE4ODU2OTg2MThqtg8SATAYACJFGjEACipoaHNxd2h3ZmR4anZnbXNjaGhVQzRkYXJCbzRqWERMczNidC03Mnh2TmcSAgASKhDCDw8aDz8TxwGCBCQBgAQrKosBEAEaeIHqBgsCBPwAAQwEB_cI_QIWBfcG9AEBAO3vBfwHAAAAAfgA9vkBAADlDAQK_QAAAAb6CPT7_QEADvsH-wUAAAAI8vL0_gAAAPoR-v_-AQAA8PEBAfUCAAEBE_T9_wAAAOwU_wj___8ABAED_AAAAAAV7wcCAAEAACAALUzFxjs4E0AJSE5QAiqEAhAAGvABcfgO_-sD3wHPAuoBzCD4AIEiCv79MdUAzw8D_7z3ygDkB_QA5yrpAAkGNQDQK_7_MNjT_wPLFP8rvgsCHejvAPTqAQAj1vQBNQ8WAgX38QDgIhH_89gF_tzM4_8oNvT-BQT-_9YI2gDtItgDIvwsAQwIKQM8-AoD8skH_-3o9gT3--AA-_YHB_3XFgDtFDcBFsEJAwAGCfroHuoC_PYD-v3sIwUHK9f-FwcEBAMKCgXg7fAFCRn0_Tn68vvgAfwF8_ckAu0Q8PXy2wACFwkE_MoX8wcZ9fUL_-MB9Nre-QgE7v_10wAB_OP0_Q3hCPXtIAAt_yEdOzgTQAlIYVACKnMQABpgI_QACxoSt-EQIPDiseUj1OrIvhTsMf_w-v_vGt7_GwbOyegT_wXV8fyrAAAAEvDlNe8ACG_0t-z62BH43qHTHBl_CA9XzeXjEQ3EVQfX5eYjFx5GANQRxCM0BTA66gsUIAAtRwwkOzgTQAlIb1ACKq8GEAwaoAYAAKBAAAAAwgAAlEIAANLCAADgQQAAQMAAAGxCAAAQwQAAgMAAABBBAADAwAAA2MEAADDCAAAAwQAAIMEAAIBBAADQQQAAsMEAAIBBAAC4wQAAEMIAAOjBAACiwgAAuEEAACzCAABswgAA8EEAANjBAABMQgAA0EEAAADCAACgQQAAqsIAAKDBAAC4wgAA4MAAAHBBAABQQgAAHMIAAGxCAABwQQAA4EAAANDBAAAAwAAAWEIAAFjCAADIwQAAikIAADRCAABQQQAA4MAAABTCAADAwQAAeEIAADRCAACwQQAA-MIAAABAAACIQQAAIEEAAABCAACOwgAAIMIAAKjCAABAQAAAxsIAAMDBAAB4wgAAQEEAAGDCAAAcQgAAQEIAAGDCAACwQQAA6MEAAGDBAABEwgAAoEAAAKDAAACAwAAAgMEAAMRCAAAQQQAAoMAAAIC_AAAAQQAAmEEAABTCAAD4QQAAgMAAAOBBAACmQgAASMIAAMBBAAA8QgAAyMEAAJjBAADgwAAACEIAAI5CAAAYwgAAcMEAABBCAADYwQAA4MEAAKhBAAAwQgAAuMEAAPBBAADAQgAAOEIAAERCAAAUwgAAAMIAABDCAACAQgAA6EEAADTCAACiwgAASMIAAODAAACGwgAAwMAAAEBAAAAAwAAAqEEAAOBAAAC4wQAAEMEAAGxCAAAMwgAAmMEAAHBBAACwQQAAAMEAAEhCAACAPwAArEIAAHTCAAAQwgAAAEAAAJjBAAA4QgAAWMIAAEBBAAAEQgAA0MEAABBBAABAQAAAwMAAAADBAAAAQQAAPEIAAGhCAADQQQAAqMEAAEzCAADIwQAAMMIAAKDBAABwwgAAyEEAAKBAAAAcwgAA2EEAAIhBAACgwAAAvkIAAFhCAABAQQAAIEEAAKBBAAC4wQAAEMIAAIjCAABAQQAAAEEAAABAAAAgQgAAQEEAAHDCAADowQAAyMEAAPDBAADwQQAAoMAAAIDCAABUwgAAGEIAAATCAAAMQgAAuMEAAGDBAABAwAAA4MAAAGBBAAAQwQAAgMEAANhBAADgQCAAOBNACUh1UAEqjwIQABqAAgAAkr4AAHy-AABkPgAA2D0AAJg9AACSPgAAgLsAABO_AABsvgAAND4AAKA8AABAvAAABL4AAIg9AABEvgAAqr4AAHw-AAAQPQAAUL0AAPY-AAB_PwAAMD0AAJi9AAA0PgAA-L0AALg9AABUPgAALL4AAOA8AABcPgAAyD0AAEA8AAAcvgAAND4AAAy-AAB8vgAAMD0AAIq-AABsvgAAQLwAAOi9AAB8vgAAFL4AABC9AAAQvQAA6D0AABQ-AACavgAAwr4AAAS-AAAwvQAAuD0AAMY-AABwPQAAvr4AAKi9AABPPwAALD4AAEC8AAB0PgAAcL0AAIg9AADovQAAVL4gADgTQAlIfFABKo8CEAEagAIAAEy-AAC4PQAAHL4AACm_AACgPAAAML0AAKg9AABwvQAAcL0AAGw-AAAUvgAAoLwAALi9AACOvgAA-D0AAKC8AACgPAAADT8AADC9AACCPgAAUL0AAOA8AAC4PQAAgDsAAJi9AABkPgAABL4AAEC8AABwvQAABL4AABC9AADIPQAAED0AAFS-AAD4vQAAuD0AAIo-AAD4PQAAJL4AAFS-AABQvQAAmD0AAEC8AADgvAAAPD4AAJg9AAB_vwAABL4AAMi9AACYPQAAND4AABS-AAAkPgAA-D0AALi9AABAPAAAED0AABS-AABAvAAAmD0AAKg9AACgPAAAUL0AABA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=xITx1h7UE5M","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12778427531885698618"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1777253507816056849":{"videoId":"1777253507816056849","docid":"34-4-1-ZC1834DEC3C029622","description":"What is the inverse function of hyperbolic cosine function? Proof of the formula of the inverse hyperbolic cosine function. cosh^-1 (x) = ln(x+sqrt(x^2-1)) Mathematics discussion public group 👉...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4522945/35836975e2a6198356f4996d9aced0fb/564x318_1"},"target":"_self","position":"3","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdlobxijULUs","linkTemplate":"/video/preview/1777253507816056849?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Inverse function of cosh x","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dlobxijULUs\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoVChMxNzc3MjUzNTA3ODE2MDU2ODQ5WhMxNzc3MjUzNTA3ODE2MDU2ODQ5aq8NEgEwGAAiRRoxAAoqaGhtdG5ibHJneHp1eHNvYmhoVUNQQklyM21pb1BiWUJLcFdYYWZXaThBEgIAEioQwg8PGg8_E8QBggQkAYAEKyqLARABGniB9vv7-_sFAOz7Evz9AAEABwMJCfj__wDuBPz5BQAAAO_8APT5AAAA8QL4_gEAAAAEA_r6A_0BAP8H_PYEAAAAEADz9_0AAAD4DvAB_wEAAO319_8CAAAABQr8Af8AAAD6FAf9_v8AAP73CQQAAAAA_PP98AAAAAAgAC1ZkeI7OBNACUhOUAIqcxAAGmDpJAAs8hX73fw77BIC0v4T-A0V_O4BAO_2AA4d6N4I9OnH-hwAEPUI_c0AAAAOEQ0e7ADlQgv47A7aG_7U8wYEMH_oA_cE-f3y4REGFRIN2foPBAYA3AX2ECca6j4UEgkgAC2C9Hc7OBNACUhvUAIqrwYQDBqgBgAA0EEAACDBAACCQgAAlsIAAJhBAAAAAAAAPEIAAKBAAACQQQAA0EEAAMBAAAAQwQAATMIAAEDBAAAYQgAAqEEAAADAAABUwgAASEIAACBBAAC4wQAA2MEAACDCAAAgQQAA2MEAAIBAAABgQQAAyMEAAARCAACAvwAAMMIAABBBAACWwgAAIMIAALrCAAAwQgAAEEEAALRCAAAAAAAAgL8AAKhBAAAYQgAAgMAAAFDBAACQQgAARMIAACDBAACCQgAAQMAAAJBBAAA8wgAAAMAAAMDBAACQQQAAQEEAAAhCAACmwgAAgEEAABBCAABcQgAA4EAAAHTCAAA0wgAATMIAAEDBAACowgAAyMEAAATCAAAYwgAANMIAAEhCAACCQgAAusIAAJBCAABIwgAAmMEAAODBAACgwQAAgL8AAFDBAABAwQAAfEIAAIhBAADoQQAA4MAAAFBBAAD4QQAAoEEAAOBAAAAIwgAAJMIAAKhCAAAQwgAAoEAAAIxCAACgwQAAMMIAAOBAAAA8QgAAUEIAADjCAADgwQAAMEIAAJjBAACGwgAAKEIAAPBBAADIQQAAAEEAAI5CAAAMQgAAgMAAABzCAABAQAAAYMEAAHRCAABwQQAANMIAAHDCAADIwQAA2MEAAFzCAACgQQAAMMEAABTCAACowQAAOEIAAFTCAACYQQAAmEEAAKjBAAAwwQAAAEAAALpCAADoQQAAskIAAIhBAAA8QgAAAMIAACDCAAAgwQAAAEAAAGBCAAA4wgAA2EEAACBCAADgwQAAgEEAAIhBAAAQwQAAcMEAAERCAABQQQAAcEEAACxCAADgwAAA0MEAAEzCAACAwQAAeMIAAIbCAADAQQAA4MAAACDCAADIQQAAoEEAAADCAACMQgAAgkIAAMBAAABwwQAAwEEAAOBAAAAgwgAAjMIAACDBAACQQQAAYMIAAABCAADAQAAAoMIAAEjCAAAcwgAADMIAAFRCAACAwgAAdMIAAMjCAADAQQAAsEEAAERCAAAowgAAgMEAABDBAACQQQAAFEIAAIDBAACgQAAAIEIAAEBAIAA4E0AJSHVQASqPAhAAGoACAABAvAAAcL0AAOg9AABcPgAADL4AAIo-AAB8vgAAI78AAHy-AAAsPgAAiD0AAAS-AABUPgAAjj4AACy-AADIvQAAuD0AAMg9AAAsPgAAwj4AAH8_AADIPQAAoLwAAKA8AACYvQAAgLsAADQ-AABsvgAADL4AAHA9AADoPQAAoLwAAPi9AADYvQAAgj4AAFS-AAAEPgAAdL4AADS-AAAsvgAA-L0AAFy-AAAwPQAAyL0AALg9AACoPQAAND4AABS-AAA8vgAAxr4AAFQ-AAAQvQAA2D0AAOg9AABAPAAAQLwAAF8_AADgvAAAnj4AABC9AAAEPgAAUL0AAFC9AADyviAAOBNACUh8UAEqjwIQARqAAgAA4DwAABw-AAAwvQAAGb8AAIa-AAAkvgAArj4AAIC7AACgvAAAlj4AAEw-AACavgAAdD4AAKq-AABwvQAAcL0AAJg9AAAxPwAAqL0AABQ-AABwPQAAUL0AADA9AACgPAAAgLsAAOA8AADovQAAmD0AAFA9AACgPAAAUD0AAHA9AADivgAAUD0AAOC8AABQvQAApj4AACQ-AAC6vgAAJL4AANg9AADIPQAA6L0AALg9AAAsPgAAhj4AAH-_AABAPAAAnr4AAHy-AADYPQAARD4AANo-AAAwvQAAVL4AAIg9AABQvQAABD4AAIA7AABUvgAA2D0AAJg9AADovQAAfL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=dlobxijULUs","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1777253507816056849"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7234224056201505506":{"videoId":"7234224056201505506","docid":"34-10-14-ZC33573C10C1203D7","description":"Hey there lovely people :)If you enjoyed the video and found it useful, please let me know in the comments below as to what you’d like to see next.Thanks for...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4033481/998d2936c44f777160b3d89efc75dd75/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/IW86JQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Du2GTHoV4yhU","linkTemplate":"/video/preview/7234224056201505506?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to differentiate the inverse cosh of x (cosh^-1x) | Step By Step","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=u2GTHoV4yhU\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoVChM3MjM0MjI0MDU2MjAxNTA1NTA2WhM3MjM0MjI0MDU2MjAxNTA1NTA2aogXEgEwGAAiRRoxAAoqaGh6cHJhZGRheWJtdnhxY2hoVUNONjVyTm83aVJqMDFBQTRmaVpEeWZ3EgIAEioQwg8PGg8_E8QDggQkAYAEKyqLARABGniB-gILAAT8APwADBD4CvsCDf76Cfb__wDz7_n_BgL_APIACfv7AAAA9BAIAPoAAAAK_AP-9v4BAAoH-_gFAAAAAvP0APgAAAAND-4C_wEAAPPmBAkE_wAACxz9AP8AAAD7Gfz5AP8AAPkCBAgAAAAAFvEF8wAAAAAgAC1s-MY7OBNACUhOUAIqhAIQABrwAX8C-v_d9-gB1gXHAPkG9AHcMAz_EhbRAMD7IQDq59oB1THh_8kB3P_cBwv_7RcC_0D1yf8E1ikAUb4JAAXy9gH6IvcBLujsAD0TLv__8uH-yyEc_hQI9AAA2wkAEDz5_fb9_Pwx_-z_7QPBAisAFf0g7CYCEisxAN-rJQD95PkB693Y_f40CAPivRX-AvwPC_QC8PsQBQj02UXwAPjU8v8IByL3CC_U_SrZ9wEM7gMExub-BuEa8_wWIST-3gj189fxLgbY3-b67hIZCAwGEP7kEvAIIAnpCAgOGAP4DxYFFdzsAgLqAQ_cDfX95Rne8iAALfjGETs4E0AJSGFQAirPBxAAGsAH7ZrYvlZ2S72PEuA8LC7OvHFwjjwh3oC7PIs5vXIbCD3HgR46n1s4PucTfr3YCj-8FOgzvvvv3DxZ04a8_b10PpJUS70Dsew8GYGivUC1uz3hpF-9eUr7uwSH_LwtX_Y7Tj8Nvc2QKrwMzgC970jLPe6KDTyJDCY9XRe-vV2WpbySzVW9mK1rvRflQ728SQK9CgLavCIFxTxHUnc8bEhXPbHs-LxUhpa812gZPZwfNb0MkfQ7rHDrvfDTgjwyBam7VvWyvE-5uDwNBJw8EwmLvQo3VL2yto683wkMvc8pUDm2jh68E2fBu5aGL7vnT0C8SsTFPZfTFL0wY4q8bazkvaYRLj2UTsE7eocgPTnsgz1CRZi5UMPXvcSSdz1rjM46MvWUPVNH6rmujhK9AZm3PdaiKrxXIYo8feuDPCyrizfaNtI7Y2A9PQ8uyD19-e4844IYPSOnqr3W3Je7oJuHPQj4fzxrvoi7wwqcvUk1xzwkKYq7lks5PdYkcz0TNeo7O38kvM8627r8QIs73Ve6PUMxk70uHdK73M26uyD0Z71JslS758xRPbigiD1ZfR68TvDNPWYz573_VwA8TLpXvVHngLz5Miy8jOgIPbs8QryWQda7j6wXvUdxbj2qUBW888yGvfB63zw4npG7lxnbvHoe9zz35wO8clP_O7-C1L06i4M6MIMRPkBEFD02jFu6zC5zPVAZvzxdvho7zKwvPcW9s726ocY6LEJWvUhj_ryhXQ070775vVMGLr3L5Fs5PL3yPUrIUb1XwY45tyn9On-6Rj01-k45-5tLvfuoCz1q9MM5qn7lvCEStDzgpoM5XFQLvZwV8b3cnnU5GD-9PamAAL2JMjm55bO8PDtZZT0xH5S6zCDDvdQNBL4IU4U5VW_oPOTirr1JEMm4HTXLPVCWUD1brGE4vo4TO574ID2VO024WxELvVCc7bxw0wM5yCiqvOWiED0Mp5A466RjPKKMor2_UmQ5rUA-PPwFlrto8pk4Go4EOyFC9zzlqz24cjPcPSJUCT4bC6o5j8ahPFd4N73RFC040IAVPYBKtT2WNJC4oFDPvRXvhj3C0gI4u54DvYdtizygA5i3xM8PPjxq6buey5U2nlcxug9jUj1oLrY4DZ6jPU7I2Lx2H7-4ORzIuZ89171uKD-3IY1Pve6CfL1GFY64hs2LvQiw6D1Us5Y42YTqvCJXtb3SQjC4yvRwPSLhKz7xy4o4JxEhPV44Zj2246u4OE9QvTjWCj0QdqY20rWFvbLKtr0L31a4IAA4E0AJSG1QASpzEAAaYD_pACoMPcweKh7FEs35_PasDMEb5C__Ahn_3SzF7ErzzfcyDv8g9hbsoAAAACzg6jD3AP1_AdMH9tgAx9bOyiEoZLwmKN6_BirvzkUFvv4UFvQYawCv-f04FR8iUvvPAiAALaGcGTs4E0AJSG9QAiqvBhAMGqAGAAAgQgAAgEAAACRCAACIwQAAYEEAAOhBAAAAQgAA6MEAAHTCAABwwgAAAEEAAFzCAAAQwgAAgD8AAIjBAACAwQAAgkIAAHzCAABQQQAAQMEAAKDAAAAAQAAAFMIAALpCAAAQwQAAUEEAADjCAADAQQAAfEIAABxCAADwwQAAgD8AACDBAACwQQAArMIAAHDCAACoQQAApEIAAMDAAADwQQAAqEEAAGDBAAAwwQAAmsIAADDCAACAwAAA6EEAAKBBAABYQgAAOEIAADzCAADwwQAAEMIAADBBAACAQAAAIMEAAAzCAADAQAAAEEIAAJhBAABAQgAAAMIAAIC_AABwwgAA0EEAADTCAABcwgAAQEAAACjCAAD4wQAAGEIAAJRCAACYwQAAAAAAACTCAACIwQAA5MIAALBBAACYQQAA6EEAAKjBAADUQgAAoMAAAKBBAACQwQAAlEIAAEDAAABAwQAAwMAAANDBAAAAwAAAkkIAAETCAABUwgAAwMEAABzCAACUwgAAUEEAAGBBAAAEQgAAkMIAAFxCAAAQQgAAYMEAAFzCAACGQgAAiEEAABhCAADQwQAAukIAAIBBAAAgQgAAmMEAAIDAAABwwQAAkEEAADBCAAAAwQAAVEIAAKDAAABMwgAASMIAAKDAAACCwgAAAMEAAAjCAAAowgAA4EEAABDBAABcQgAAwEAAAADAAADgwAAAQEEAALhBAABMQgAAQMEAAKDAAAAoQgAAXMIAAIA_AAAAwAAAYMIAAFzCAABMQgAAQEEAAGzCAAAkQgAAUEEAAIDBAACIQQAAIEEAAEBCAADgwAAA6MEAACDCAABUwgAAfMIAACTCAACIQQAAwMAAABBBAABAwQAAEMEAABBBAADYQQAAsEEAAIhCAAAEQgAAQMEAAKBBAAAQQQAAgEAAACzCAABEQgAAEEIAAFDBAACYwQAAWEIAAJxCAADUwgAAmMIAAEBBAAAoQgAATEIAALhBAACuwgAAmEEAAKjBAABYwgAAgEEAAFTCAACoQQAAoMEAAMDAAACoQQAAgMAAAKBBAACwQQAAqEEgADgTQAlIdVABKo8CEAAagAIAAJg9AACovQAAuj4AAOA8AAAQvQAAfD4AABy-AAABvwAA6L0AAFw-AACgPAAAML0AALg9AAAUPgAAhr4AACS-AACoPQAAmD0AABC9AAB0PgAAfz8AABA9AACgvAAATD4AAOi9AACgvAAADD4AADS-AAAcPgAAPD4AAEC8AABAPAAA4LwAAAw-AAA8vgAA4LwAALg9AACSvgAAZL4AACS-AACGvgAAfL4AAKi9AACIvQAA6L0AANi9AADYPQAAQLwAAPi9AAAQvQAAkj4AAEC8AACGPgAAyD0AAKa-AACYvQAAIz8AAIA7AACYvQAAmD0AAMi9AADYvQAADD4AABy-IAA4E0AJSHxQASqPAhABGoACAAA8vgAAoDwAADA9AAAfvwAAUL0AADC9AAAQvQAAFD4AAFC9AABUPgAAmL0AAHC9AACAOwAAfL4AAOg9AACgvAAAcD0AADM_AABcvgAAZD4AADy-AADYvQAAQLwAAKi9AABAPAAAVD4AAAw-AACgPAAA4DwAAIA7AABwvQAAmD0AABS-AABwvQAAQLwAAFw-AABQvQAAjj4AAPi9AAAMvgAAgDsAAMi9AACgvAAAQLwAAPi9AABwvQAAf78AANi9AADGvgAAgLsAAAS-AAAwPQAAyj4AAFA9AAA0vgAAcL0AAKA8AABMPgAA6L0AABS-AACgPAAAgLsAALg9AACgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=u2GTHoV4yhU","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["7234224056201505506"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7710768368219701697":{"videoId":"7710768368219701697","docid":"34-2-5-ZB5E2740E30892DBE","description":"Laplace Transform of cosh^2(kt) If you enjoyed this video please consider liking, sharing, and subscribing. Udemy Courses Via My Website: https://mathsorcerer.com My FaceBook Page...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3365045/0ea23f4a1083d64a582339280d792892/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/UtfoTwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2cssER3S3Fo","linkTemplate":"/video/preview/7710768368219701697?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Laplace Transform of cosh^2(kt)","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2cssER3S3Fo\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoVChM3NzEwNzY4MzY4MjE5NzAxNjk3WhM3NzEwNzY4MzY4MjE5NzAxNjk3arYPEgEwGAAiRRoxAAoqaGh6emxiam5vbXVnaGJ2YmhoVUNyN2xteklrNjNQWm5CdzNiZXpsLU1nEgIAEioQwg8PGg8_E74CggQkAYAEKyqLARABGniB8wkHCP8CAPgHBQgABv0CEwIE-fYBAQDyAPkNBQL_AAYABwcLAQAA8PcD9f0AAAD-BQYI_v4BAAb39Q0CAAAAB_ACBAEAAAACFPT4_wEAAP4BEvYCAAAAAgkEBQAAAAD3FPcE__8AAPvxB_sAAAAA_PgG9gAAAAAgAC3ZfdY7OBNACUhOUAIqhAIQABrwAX8JIAHP-9D_1SvTAPsU_AHGMQwA8C71AcXK3QPWBuEBE-30AOP92QAHHBIBrwDQARDf0ADv0uoAOP0E_yj1GQDnBO4BGwbuAR8SLQIL_P_-3yMS_xf17wDi39D-HRjHAAHxBf4HFeYC7gPEAg_-PAHm-SsEG9wR_szH-gft9g4GDNLY_vor-AHjwRT-9RwJByHcCgIVEgj66B_pAuLrD_r-8Ab1JRr1-vPmEQgBFgDy5-AR-Bf1_QUVICL-xvjh_9nyLAXn1vb38vX__zQZFP7ACwMK9gQACOP0Cv8K4Av8Bvjp8u_m4_3oFPwE5xjg8iAALezmGTs4E0AJSGFQAipzEAAaYBX4ABr4JtLhBy_jB9PMHOzqFO7t2xv_4PUAAyr2FDgO5NT9_wDx3R_TtgAAABDw7S_-AAxf_MTZIeEyBdvF_hT9fykWPt3q2v340wQYAhMh-BEbKgDX9coTMQXYOAZVDSAALdF3PTs4E0AJSG9QAiqvBhAMGqAGAACgwQAAIMIAADBCAACgwQAA4EAAAIA_AACuQgAA4MEAAETCAADIQQAAYMEAAHzCAACAvwAAUMIAAGDBAAA0QgAAgEEAAHDBAAB8QgAAUMIAAHTCAABgQQAAAMAAAIDBAAA4wgAASMIAACjCAAAQwQAAZEIAAMBAAACCwgAAMMEAACTCAAAEwgAAeMIAACBBAAAUQgAA8EEAAADAAAAYQgAAmEEAAFBBAAAcQgAAAMIAAKDAAABwwQAAAAAAACBBAADOQgAAAEAAACDBAACAQAAAcEEAAHDBAAAAwAAA4EAAAN7CAABAQAAAgMEAAGxCAABgwQAAcMIAABhCAABowgAAZMIAANzCAACgwQAAYMIAAADBAAA4wgAAdEIAAHBCAAAUwgAAYEIAAKDBAAB4wgAAkMEAADBBAADwQQAA6EEAABDCAABgQgAAFMIAAEjCAAAIQgAAoMAAABhCAAAoQgAAEEIAAHjCAACQwgAAikIAAPDBAABkwgAAsEEAABjCAAA4QgAAMEIAAMBAAAAcQgAAMMIAAKhBAAAAwQAA4MEAADzCAACAwAAAiMEAADRCAAAAAAAAJEIAAPhBAABEQgAAgD8AAABAAACIwQAAYEIAAPjBAAC4wQAAAEIAAEBBAABMwgAAJMIAAATCAADgwQAAgEEAAMDBAACowgAAAEIAAGjCAACYwQAAAEAAACRCAACAQAAAHEIAAIjBAADAQQAAQEEAAAzCAAA4QgAAkMIAADTCAADYQQAALEIAAHDBAABgQgAADEIAALDBAAA0QgAAyMEAAMDBAAAgQQAA0MEAABxCAADwwQAAoEEAAHBBAAAcQgAAEMIAAMjBAACAPwAAVMIAAIC_AAA8wgAABMIAACDCAABsQgAA4EEAAEhCAABQQgAAAMEAAARCAAAgQQAA2EEAADzCAACowQAADEIAAHDBAAA8wgAABMIAAOZCAADAwQAAQMIAAFDBAAAYwgAA4EEAAKTCAAA0wgAAWEIAAKDBAADgQAAAqMEAAGTCAAAgQQAA4MEAAEDCAACQQgAAGMIAAJDBAAAYwgAAgsIgADgTQAlIdVABKo8CEAAagAIAALi9AACIvQAADD4AAKi9AABAvAAAmj4AAI4-AABTvwAATL4AAIo-AADIPQAALL4AACQ-AACuPgAAgDsAAKi9AACiPgAA6D0AAOA8AAC-PgAAZz8AAPi9AACAOwAAgDsAAKK-AADgPAAAUD0AAIA7AADSvgAAPL4AAEw-AADIvQAALL4AABy-AAAQPQAAfL4AAKY-AABMvgAANL4AADA9AACgvAAAUD0AABS-AAAcPgAA6L0AAIg9AAAQPQAAuD0AAHA9AACCvgAADD4AAKK-AACePgAAlj4AAAy-AAAcPgAAfz8AAIa-AAC4PQAAEL0AACS-AADovQAAMD0AAJi9IAA4E0AJSHxQASqPAhABGoACAAC4vQAA4DwAAJi9AABDvwAAQLwAAIA7AACYvQAAED0AAHS-AACKPgAAoLwAACS-AACovQAAxr4AABy-AABQvQAAgLsAAB8_AABQvQAAqD0AAIC7AACCPgAAqD0AAIA7AABEvgAA-D0AACS-AADYPQAAmL0AAOA8AABMPgAAmD0AAJi9AADgvAAAiL0AAJi9AADiPgAAXD4AAMK-AABQvQAAuD0AAEC8AAA0vgAA-D0AAFC9AAAEPgAAf78AAKA8AAC4vQAAfD4AABQ-AABwvQAA1j4AAPg9AADYPQAAML0AAKA8AAAsPgAAcL0AAFS-AABwPQAArj4AAKA8AACYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=2cssER3S3Fo","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7710768368219701697"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4336102306689087442":{"videoId":"4336102306689087442","docid":"34-7-4-Z3BBEB033965C43F6","description":"(sinh(x))’=cosh(x) & (cosh(x))’=sinh(x). Then, we use the derivative rules to find the derivative of the function. If you have any questions or suggestions, let me know in the comments below.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4568404/a14aff28ed3706058fb487db8989946c/564x318_1"},"target":"_self","position":"7","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5qAHRHyogxY","linkTemplate":"/video/preview/4336102306689087442?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find the Derivative of sinh & cosh (Examples)","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5qAHRHyogxY\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoVChM0MzM2MTAyMzA2Njg5MDg3NDQyWhM0MzM2MTAyMzA2Njg5MDg3NDQyaq4NEgEwGAAiRBowAAopaGhtcHR2ZGZsa2Rid3R1aGhVQ1ltTERDSC1jMmRURUI1VkRIeWFjcGcSAgARKhDCDw8aDz8TigKCBCQBgAQrKosBEAEaeIH0AwL-_wEA-gQYB_wH_QIFEAgJ9wD_APb6-_3-A_8A5wH9__r_AADzBwIH9gAAAPL6AQb9AAAADQQB_gQAAAAMCe4E_QAAAA0BAQH_AQAA9PcHAgMAAAARBfb9AAAAAP4LCAT6_wAA9BH-_QAAAADt8f4JAAAAACAALdgy1Ds4E0AJSE5QAipzEAAaYCgVAEEo_f3qEVDL5wHF2fr-_BnPrzn_EwAA3RbA1hfrza8F2_8HpxcMoQAAAD_84Q0EAOR_xOzp_DTTA-PW5QA8YfAU_uvjLN2F-A_3GuDVGRomMACk-PoMAbr6WdQ3AyAALSwzGjs4E0AJSG9QAiqvBhAMGqAGAAAcQgAAQEAAALBBAABkwgAAdEIAAIhBAAAYQgAALMIAAPBBAABIQgAAgEEAAAzCAAAEwgAAGMIAAMhBAADgQAAAAMAAAETCAABQQgAAkMEAANjBAACQwQAAOMIAAKBBAABAQgAAcMEAAIA_AABUwgAAoEEAAJBBAABwwQAAAEIAAMDBAACQwQAA4MEAAOBBAACQQQAAukIAALDBAACGQgAAmkIAAEBAAACAQAAAKMIAAMhBAABMwgAAHMIAAGRCAAAIQgAAuEEAACDBAACgwAAAAAAAAKDBAACAQQAAsEEAALLCAACgQAAAgEEAALBCAABAQAAAhMIAADDBAACWwgAA4EEAAMrCAACgwQAAbMIAALDBAABUwgAAQEIAAJBCAAB4wgAAQEAAADDBAACmwgAAYMIAAEDAAADowQAA0EEAACDBAACIQgAAcMEAAABAAAAAwAAAIMEAANBBAABwQgAAQEEAAEDCAACAQAAAyEIAAFTCAACAQAAAAMAAAFTCAABEwgAAAEEAAHxCAAAwQQAAIMIAAMDAAACgQAAABMIAAOBAAACCQgAAuEEAAKDBAAAcQgAAVEIAADxCAAAAAAAAIMIAAKhBAACCwgAAaEIAAAxCAAAEwgAAjMIAANDBAABowgAAlMIAAIDBAABwwQAAQEEAAADBAAAgQgAA2MEAAIDBAABQQQAA0MEAANjBAACgQQAAgEIAAADAAACoQgAAgEAAAIA_AABAwAAAMMIAALhBAABkwgAAGEIAAIDAAAAUQgAA0EEAAITCAAAMQgAAEEIAAIDAAAAowgAAEEEAALBBAADwQQAA-EEAAGDBAACIwQAAksIAAFzCAADAwAAAQMIAAEBAAADowQAAPMIAABxCAADYQQAA0MEAAEhCAADgQQAAcMEAAMBAAACgwAAAUEEAAATCAABMwgAAIEEAAIBBAACMwgAAZEIAAFzCAAAMwgAAgEEAAFBBAADQQQAAaEIAAKzCAABMwgAAssIAAHBBAACQwQAAgEAAACzCAADgQQAALEIAAARCAADAwAAAWMIAAAhCAACoQQAA4EAgADgTQAlIdVABKo8CEAAagAIAAAw-AACIPQAAqj4AAHC9AABAvAAADD4AABw-AADmvgAAPL4AACw-AAAkvgAAZL4AAMg9AAAkPgAALL4AADA9AABQvQAAmD0AADA9AABcPgAAfz8AAOA8AACAuwAAfD4AAHy-AABAvAAA6D0AABS-AABwPQAADD4AADA9AADIvQAA4DwAAIK-AAAwvQAAbL4AAOC8AAAsvgAAur4AAAy-AACgvAAAgr4AADQ-AADovQAAdL4AAKA8AABMPgAAXL4AAIi9AAAsvgAAdD4AAKA8AACmPgAAiD0AACy-AACgvAAABz8AACw-AAAwvQAA6D0AAIg9AABAPAAA2D0AACy-IAA4E0AJSHxQASqPAhABGoACAADIvQAAQLwAAMg9AABPvwAAqL0AAFA9AABsPgAAuD0AACw-AAC4vQAApr4AACS-AAAcPgAAHL4AADA9AABAvAAA6D0AANo-AAAMvgAAij4AAJK-AAAQPQAAED0AALi9AABwvQAAyD0AAOA8AAAwvQAADL4AAMg9AABAvAAAkj4AAL6-AAAwvQAAbL4AAEA8AADOPgAAoj4AAGy-AAA0vgAAqL0AAKg9AADYvQAAmj4AAKA8AAAcvgAAf78AAKA8AABsvgAAuj4AABw-AAAMPgAApj4AAHQ-AAAcvgAAuD0AAEA8AAAMvgAAUL0AAIq-AACmPgAADD4AABC9AACSviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=5qAHRHyogxY","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4336102306689087442"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15973286579272085015":{"videoId":"15973286579272085015","docid":"34-6-11-ZB3F95A6B57A6DA57","description":"In this video, I derive the formulas for cosh and sinh from scratch, and show that they are indeed the hyperbolic versions of sin and cos. I also explain what the input x of cosh(x) means.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3819682/35315a6bd1fa3acfc03f92f34196827b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/sGG3DQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNVC1w4_ulzI","linkTemplate":"/video/preview/15973286579272085015?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivation of cosh and sinh","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NVC1w4_ulzI\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoWChQxNTk3MzI4NjU3OTI3MjA4NTAxNVoUMTU5NzMyODY1NzkyNzIwODUwMTVqiBcSATAYACJFGjEACipoaGdydGdmdHF4Ym1zZWtkaGhVQ29PalR4ei11NXpVMFczOHpNa1FJRncSAgASKhDCDw8aDz8T1Q2CBCQBgAQrKosBEAEaeIH7C_4A_wEA-gQYB_wH_QIBCP4I-P7-AP3x9Pj-BP4A7f38AwT_AAD8BgT_9wAAAP349wL7_gAAD_3-AwQAAAAeCfQF_QAAAA8D-P7-AQAA_PgC_wL_AAALGv0A_wAAAPsY_PkA_wAA9QcC-AEAAADz6vcFAAAAACAALQhh1Ts4E0AJSE5QAiqEAhAAGvABfxISAbAE0_0G9d8AEyUHAIEAAv8bI-MAtf4AANkMwgHu8gMA6v4AABMi9QDABwH_5PTz_wPNE_8oBBIALQ8aAPse-AFV6wAAUgYaAPMcDf7JDQoBD_kc_xLH7gAbF8sAEesk_fcJ5ALgC9kB_wQoAPwXIv8Z9-L84xj-ANsVLQH4-cz--B8FBPvmCf65GgYBDuzkAfwH8P_89woI_-IVBBX2-_gaGeT-FiXs_wX8-_4MBxX78uH-BOsLIQMGLOH5zwL7-AX4Cgj1Avn--uUB9_7wAQzp4AUPBPj-AgvyAO_q7woA-vr-7-4J7QYE3gIUIAAttdEkOzgTQAlIYVACKs8HEAAawAfF5wK_DA26vDu7Br0Prb89H2krvaGtuby-3Fc-325JPEz59bw5tk4-u2kuPSN3oryXx6q-E8fsO74RnbwUlEI-RkUcvXPoALyHNCq-nmmoPbZyZbwVHE6-rE3IPDWXHztssPA8CmuhOw7Zo7pyHmk9O2pxvby0PL0zOKW8gCXbO1sAZLz4oRo8H4XrvbyRebwwucG9OM6HvWSytDtWbKc9_wjDPNVSyryzzXI9QfuHPAr3yrx6tqi9ruLDuymL6zsFNPE9FSQNvDZDXzpQYiU7x98xPXJaJrwPqbM8j3gJPNhS9jtBCwk9vuxIPRFKqbxxyMY8cYQWvccpn7w_byq9UU50PRFIMruV3Fw9BkI3PXC2yDmu9Cq-bcXePYrUC7uaxwq7WJOCva71hbzPfKM9uDJSPafQVDz8qxc-Y2wXPVQLWzxdOTa9xuBhPc-pgrpsnAg9ZnFVPQvUorwJu9E7HLbNPe96RLyvgQQ72pP6u1BYe7sHHgQ79njGPDwYzrvzvVA9ImsRPNZufTvfZsY9ObXzvYcfGDz6VB-92WHnPFimhLxqNg08n3sqPTHJbbyvQzU9aL7JvWc7kbubXEc9ojiBvX99nbsCyIo9OIyNvRTHZLtqM0q7ffYyPd3ftTnYv8a8xN5VPH_xMbwx6VS9QDX5PAGCvTs0_hO9OOJEvUu-Bjsxgr47-F7yPDxLFTpCMlO8mLUePUv6pLrzWd49bvbsPPqBnLgJ6xK8EYF0vXVh_7pW0_U8uWCaPfMOK7nwl2A99XUuOxxL3jlK8Uy8EXpsvBFjwTiURsG9Bs-OvE0wpbiUYQG9WLi8u-UDwznR-gW9lpXDumXkzLjiA6s9cJMWPeMHwjha3YU9fooDvcxSd7nFAp-87v03PZoqs7cy4529GsCbPA_A9Dh5YUY9zAP9PCkG4DhDk489RcwWPSNy0jcTpK09lr6EOxz3Erm7j6u6tQW6PGP4BTlMqAA9x_Cdvf7uMDl5-am7pyXGPcSu_7ijC0W8dk-TPfYtRzhx6XO8cqbLuxoG_jeC4cG8YWvbvBqlZDenbY08aNxFPeD2xribLe6701vNPBnBAjkj0bC8clPDvOMQO7ibr209M-KdvFfmmzdhXva8_U_ZPJTiUTg72p09WVFDvXGV07gs7I48l65gvZPIlLhyNAk7cI60vTjSjbZUwqi9GoBXvBGEwjfZhOq8Ile1vdJCMLhVGKY9bQvFPYPH5zhmXAK9dBZMPYB4mLiYD4293R-EPYzD0TfAcmm9-DuvvFC4tLcgADgTQAlIbVABKnMQABpgOvgAC90f9vAQK-_pArYE8vLfCeepPf_nyv8SJd70EsbXuhjc__jyFAOhAAAAOfO7C_wA93-ryRD53vHaxd4LIhlt4wZPlYoG7bzRDhb-3fIk7TI3AMrtrS4b37AlDwD-IAAt304XOzgTQAlIb1ACKq8GEAwaoAYAANBBAAAEwgAAgkIAAATCAACAQgAAMMEAAKRCAACAwAAAiMEAAAhCAAAUQgAARMIAADTCAAC4wQAACEIAAKjBAAAwwQAAiMIAAIJCAAB8wgAAEMEAAIhBAAAgwQAAUEEAAADBAACgwAAAHMIAAHTCAABAQgAAsEEAANhBAAA0QgAA-MEAACDBAACIwgAAMMEAAMBAAACCQgAA4MAAACBCAACIwQAASEIAAKRCAADIwQAAIMEAAI7CAACowQAAEMEAAIxCAACAQgAA8EEAAABAAADoQQAACMIAAKBAAAAAwQAAgMIAAIDAAAAgwQAAIEIAAMBAAAA8wgAAiMEAACzCAADYQQAAuMEAAAzCAACEwgAAQEAAAJjBAADGQgAApkIAABzCAABMQgAAIEEAAADCAABUwgAAUMEAANBBAACIQQAA8MEAABBCAAAkwgAASEIAAPhBAACAwQAAqEEAAHRCAACGQgAAoMIAAHDBAACYQgAAJMIAAAzCAACwQQAAmsIAALhBAAAAwgAApEIAALBBAAAowgAAkkIAAERCAAAMwgAAdMIAABDBAABgwgAAgEIAAHDBAABsQgAALEIAALjBAAAgwgAATEIAACjCAACAQQAAoEAAAKjBAABcwgAAQMAAABjCAAC4wgAAGMIAAFDBAADgQAAAIMEAAIDAAADQQQAAMMIAAIDBAAAcwgAA0EEAAKLCAADAQQAAoEAAAGhCAABkQgAA6MEAADDBAABIwgAAOMIAACTCAAAgQgAAsMEAACRCAAAAwAAAPMIAACxCAADoQQAAqMEAANDBAACAPwAAOEIAAKjBAADwQQAAgEEAAJjBAAAgwgAA0MEAAMDAAACQwgAAQMAAADDCAABkwgAAcMEAAGRCAABUQgAAfEIAABxCAADgQQAA4EEAADBCAADYwQAANMIAAATCAABQwQAAuEEAAATCAADAQQAAqEEAAIjBAADQwQAA2MEAAChCAABsQgAAIMEAAETCAAAgwQAAuMEAAIC_AAAkwgAAgMEAAFBCAACAwAAAyEEAAMBAAACgQQAAAMEAALjBAABowiAAOBNACUh1UAEqjwIQABqAAgAAmL0AAOA8AABsPgAAqD0AAPi9AABsPgAAQDwAAP6-AADovQAAuD0AAEA8AACYvQAAHD4AABw-AABQvQAAqL0AAOC8AADIPQAAuD0AAFQ-AAB_PwAAPD4AAMg9AABsPgAARL4AAOg9AAAQPQAAmL0AABC9AABAvAAAUD0AAIA7AAAkvgAAXL4AABC9AABUvgAAMD0AAFy-AABkvgAAFL4AAMi9AACavgAAuD0AAOC8AAAMvgAAiL0AAKA8AABQvQAAML0AAMi9AAB8PgAAqD0AAGQ-AACIPQAAQLwAAKC8AAA_PwAAMD0AADQ-AACgvAAAmD0AACS-AABwPQAABL4gADgTQAlIfFABKo8CEAEagAIAAFC9AADgPAAAUL0AAEe_AADIvQAAmD0AAIo-AADgvAAADL4AAJg9AAAUvgAAdL4AAPg9AAAMvgAAqD0AAKC8AAD4PQAADz8AAEC8AACSPgAAEL0AAFA9AACYPQAABL4AAFC9AABQPQAABL4AAOi9AABQvQAAuD0AAIA7AAAEPgAAJL4AAIK-AABMvgAAQDwAAOg9AADIPQAAHL4AAHS-AACgvAAABD4AADA9AAD4PQAAUD0AAEw-AAB_vwAARL4AAOi9AAAcPgAAmj4AAHA9AACOPgAAPD4AAHS-AABwPQAAQDwAAIi9AABwPQAAHL4AAJI-AAC4PQAAuL0AAIq-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=NVC1w4_ulzI","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15973286579272085015"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11875323078133337089":{"videoId":"11875323078133337089","docid":"34-8-1-Z7AF8E4532AE221BD","description":"Inverse Hyperbolic Cosine, cosh^-1(x)=ln(x+sqrt(x^2-1)), Derivatives For You: https://teespring.com/derivatives-for... ⭐️Please subscribe for more math content! ☀️support bprp on Patreon...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4023388/ecf0544949ddf66aac5ebe15ee9bc8ad/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/iMJaSAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DsmFk73L5Ol0","linkTemplate":"/video/preview/11875323078133337089?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Inverse cosh(x)","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=smFk73L5Ol0\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoWChQxMTg3NTMyMzA3ODEzMzMzNzA4OVoUMTE4NzUzMjMwNzgxMzMzMzcwODlqkxcSATAYACJFGjEACipoaHJ3cGl6a2NucW5hZ3hiaGhVQ19TdllQMGswNVVLaUpfMm5kQjAySUESAgASKhDCDw8aDz8T9ASCBCQBgAQrKosBEAEaeIHy_P_1_gIA-gQYB_wH_QL2CwYC-f39APEB9wIHAf8A7vwA8_kAAADzCP32-QAAAAQD-voE_QEA_wf89QQAAAAFAO78AAAAAP8I8f3_AQAA9uv0AwP_AAD-D_8D_wAAAPoVCPz-_wAA9vMEAwAAAAD88v3vAAAAACAALR091js4E0AJSE5QAiqEAhAAGvABcfgO_8nsAP7vBtgAzCD4AIEiCv4cJOIA2Ab4AdcG4QHvNwb_z-n2ADb5DADRDiUAGwHHAA_aBQAe4_7_IvEHAMz-8gAy3NsAQAIV___z0v7PBRv__ecCABzn5wAdKuX_CvMS-g0Q-P4O_9cDIvwsAR7tJAIn7egG8ekMAfMFJAP-38T_3QH4BB7TCf3K_h0BHfHpA_AR-APGE_sE_MX5A_7hFv0FR_f9D-DtCwYG9QjT7vj4ERHm9gQHKv_87OH9EvYe9Nr1-wDrBfvzAvoGAhf98gj71gMFHPsB_gUAEQfP_-T47gDy8O0K7Abv-PwNIAAt_yEdOzgTQAlIYVACKs8HEAAawAcfvM6-sRKYO0btwDv3C9G8etlAPHhs-rwU2pi9J095PQsRibunzfg97CSsvLWGF704aYq-0Qw9PO2ufTzLgDM-5tGIvZhiMzyG4wm-3yD1PKwBKr20rBu-K7CGPWL4A71wiqg9aO6dOipAD72ydZo9pcvRvC3oAbyzrna96z3wvCCAL735Rrm9U5ecvWWa37wTXLS7McwOvS_6yDsgB7o9gpE3vYiynLzEwXQ9_By8ug6xi7t7rgW9wwd7PSPKDb1TeQs-u0c2PMocJrxwOu68Olq4O1jf5bxzdvy8M7i3PA8OdrwRFlu7V1x8PeMkI71dTi49MQP6vK13rDtfk7q9amc9vLCl7Lzshu09jPeDPXJbkTsdPd69vsAMPrsIC7oqcJI9ZXF_vBv2Vrw9Jlc9dxGmPCO2AD1Do4E7hpuSPeGQMjwFKi08RkEQPd3zVzwA01i8D1yKPIO2Br1Ojsw9HnohPT4u4LsZBDE8kMgtvAq6vbyCMME8P_X6O9KEs7vzvVA9ImsRPNZufTvFNUM9-FENvglvLLsmlHm9sQlavZGCfTl7DZY9ZL5tPcurxroVkFY9v16Wvd1DwrvUwos9y_UGvklKm7oDr7s9uMJAPeebHzu28GG8yIsWvNRM77s2GqW9W8qePOsqD7xzB1s9A1PHPXIMwTk7iQy8BGkQvUEWnjuccoA9ajxHPG06Aryn03U9AZklu7Ax-bpU-p49mug4vXhaTzhKShW9MVrMvbIjVbdi3iG7our8vG8-GbqPN9k9nWltuuEGCbm3Kf06f7pGPTX6TjnW7Ke94Pt2PPk7JDmsU6U8HlhpvH92oTkUnYu9iXrhvcYncDmxHlI8788APYVLmTlAhSM9GvBDvMmgsjmYOE095gfJvBMKFbnxQqE7dWB0PaW4bDk2vOo86OyePamjxrh30Da95hBnvaN-TTmFsYm7kvr8OzqMQrjBgXo9wWmmPOfY1zhB8QM9cU_Bvdc4ezkp23a85-yzPSefgDev4VO92gHXPctNPzeh7cI9uDNZOfAPD7iB7Ys9CMpNveesoDhiZE49cSEqPZocGrigUM-9Fe-GPcLSAjgW1Yc8XgiDO3NMlDjiHJo8BSK6vG47hLdandy99cBCPbwa_TcfnwA-pOSQvRXoOrmp2zm95n9JO8FR8DfDJv23s0OMvU2KDjfxnfi9EqQCPvaqmzgNEkc8dHz0vVZYWbjK9HA9IuErPvHLijiH1Uk9QC_8PbeqB7n7NxS9ic43Pa8Nj7dH25K9P28NPGVfqjcgADgTQAlIbVABKnMQABpgJAUADtIw6vr7bgH46cH1FRniAhPRMv_2Ev8HOtToJ_DEwyT3_wrtBuijAAAAFu8NEuIA93_g6gMAuiIIwrkAI0BZvxUSvO0D5wMJKBXjB-oIBAl1AKE0sTEWEuxhF_QMIAAt96ofOzgTQAlIb1ACKq8GEAwaoAYAAFRCAACYwQAAWEIAADzCAABUwgAA4EAAAJ5CAACoQQAAWMIAAOBAAADAwAAAwEAAAIDBAACgQAAAPEIAAODBAABUQgAAlMIAAKBCAABQwQAASMIAAKDAAAC4wgAAlkIAAABCAACQwQAAAMEAAODAAAAwQQAAJEIAAMjBAABAwAAAgMEAAGBBAADSwgAAiEEAAADAAACQQgAAoMAAAFxCAADgQAAAYMEAAMDBAAAwwgAAuEEAALjBAACwQQAAEEEAAIhCAAAUQgAAcMEAAKDAAABgwQAATEIAABBBAAAYwgAAssIAABhCAACgQQAAFEIAAMBBAADAQAAAosIAAMjBAABAwAAAdMIAACjCAADSwgAAAMIAAATCAABQQgAACEIAAODBAAAAQgAAiEEAAFjCAADmwgAAQMEAANhBAACAQQAAXMIAACxCAADowQAAAMAAADRCAADQQgAAZMIAAIjBAAAkQgAAEMEAAIBBAAC4QQAA0EEAAEDAAADIQQAA2MEAACBBAABQwQAAWEIAAIJCAADwwQAAUEIAAJhBAABAwQAAPMIAAARCAACIQQAAUEIAAPDBAABsQgAAgEIAABxCAAAIwgAAgEAAAADAAACuQgAAuEEAAMDBAABwwQAAiMIAAEDBAACAvwAAmEEAAIjCAAAAwAAA2MEAAAAAAAAcwgAAYMEAAHBBAAAIwgAAIMIAABBBAACEQgAAgEAAAHBBAACgQAAAgEAAAMjBAACiwgAAEEIAAMDAAAAoQgAAAMIAAHBBAABAQgAAmMEAAADBAADgQAAA4EAAAEDAAADYQQAAEEIAAIhBAABgwQAAXMIAAKDCAAAgQQAAmMEAAJBBAAAQwgAA6EEAAABBAACYQQAALEIAAEBBAABAwQAAgD8AAKBBAABcwgAAVMIAACBBAAAcQgAAAMEAANBBAABgQQAAhkIAACTCAABwQQAAUEIAAJjCAACIwgAAwMAAAADAAACWQgAAfMIAAEjCAAAUQgAA6MEAAKDAAAAMQgAAgEAAAJDBAADAwAAAgL8AAOhBAAD4wQAA-EEAALhBAAAcwiAAOBNACUh1UAEqjwIQABqAAgAAML0AAIi9AAA8PgAAjj4AAFS-AABkPgAAir4AAPa-AACKvgAAJD4AAGw-AACovQAALD4AAGw-AAB8vgAADL4AAKI-AAAwPQAAmD0AAFQ-AAB_PwAAUL0AAES-AABwvQAA-D0AAPi9AAAUPgAAmL0AALi9AAAMPgAA6D0AADC9AADovQAAML0AAKg9AACuvgAABD4AADy-AABUvgAADL4AAIC7AAA8vgAA2D0AAOi9AAAcPgAAnj4AAEw-AABAPAAAiL0AABy-AACOPgAAML0AADA9AABEvgAARL4AAOA8AABXPwAAUL0AAMY-AACIPQAAQDwAAFy-AAAQvQAA0r4gADgTQAlIfFABKo8CEAEagAIAAOg9AAC4PQAAuD0AAAG_AADIvQAAiL0AAIo-AADgPAAAED0AAL4-AAD4PQAAuL0AAJY-AAB8vgAAUL0AAEA8AADovQAAYT8AAI6-AACoPQAAQDwAAGS-AAC4PQAAEL0AAFC9AAA0PgAAuL0AAPg9AABAPAAAgLsAAFA9AADgPAAAqr4AABA9AABwPQAA2D0AAHQ-AABEPgAAgr4AAJK-AACePgAAuD0AAKC8AADIvQAAmD0AAOA8AAB_vwAAEL0AAFy-AACyvgAAqL0AAJo-AAAJPwAAEL0AAPi9AABQPQAAiL0AAEA8AAAEvgAAHL4AAHA9AABAvAAABL4AAEy-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=smFk73L5Ol0","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11875323078133337089"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14164279639636408542":{"videoId":"14164279639636408542","docid":"34-11-0-Z69FEED189FE1C794","description":"What do the hyperbolic functions have to do with the ordinary trig functions? For example, what does hyperbolic cosine, which is defined as (e^x+e^(-x))/2, have to do with cos(x)?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2468946/2ec74a792d7a101c39303edcba3d5fbc/564x318_1"},"target":"_self","position":"10","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_FoY4hDDEVA","linkTemplate":"/video/preview/14164279639636408542?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Is cosh(x) THE SAME as cos(x)?","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_FoY4hDDEVA\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoWChQxNDE2NDI3OTYzOTYzNjQwODU0MloUMTQxNjQyNzk2Mzk2MzY0MDg1NDJqrw0SATAYACJFGjEACipoaGxjem54YWlhYWFnaGFiaGhVQ3hub18wbXVZaXEwNXZkeTU1R3prSWcSAgASKhDCDw8aDz8TwASCBCQBgAQrKosBEAEaeIHxBQMB-wUA8gEPA_oE_wHx9QT6_P7-APYH_P__Av8A7fwD-gP_AADvCQABAAAAAAP7_fv9_gEAB_8C9QQAAAAJAvgA_QAAAAv6-AH_AQAA-Pjs_gL_AAD9CfcC_wAAAAYUBfcA_wAA_QT-_QEAAAD_A_XyAP8AACAALRIG4Ds4E0AJSE5QAipzEAAaYAIbAAkDHPLPBkTjCADE-f8xAQLZ9QYABhQABhna4h318ssAB_8WCwPiwgAAAAz_9hf0AP5W9erP6PEGAOvM7y4yf8rxA_oT9N37BRn07TEB9d8UKQDGKtYNGf4jR_8JNiAALZSuUjs4E0AJSG9QAiqvBhAMGqAGAADgQAAAwMEAAJZCAACSwgAAYEIAANhBAABcQgAABEIAAOjBAACIwQAA4EAAABDBAAAEwgAAgD8AAKBBAACoQQAAQMAAAFTCAABQQgAA6MEAACDCAAAAwAAA-MEAADBCAADoQQAAgEEAADTCAACCwgAApEIAAJhBAADgQAAAgEAAAAjCAACoQQAAlMIAABxCAACgQAAAxEIAAMDBAADAwQAAIEEAAPhBAAAQQgAAGMIAACxCAABMwgAA2MEAAMBAAADgQQAA8MEAAIbCAACAQQAAgMEAAGBBAACQQQAAUEEAAKDCAABAQgAA2EEAADRCAADAQAAAlMIAAMDBAACowgAAUEEAALLCAAAwQQAAhsIAAETCAAAAwgAAjkIAAIhCAABEwgAA6EEAAPDBAAC4wQAAKMIAAGDBAAAUwgAAAAAAAHzCAAAIQgAAoEAAAEBBAAAoQgAAaEIAAEDBAAAYQgAAWEIAAEDCAABQQQAAQEIAANjBAABwQQAAQEEAAHTCAACgwAAAgEEAAIRCAADoQQAA6sIAADRCAABYQgAAGMIAAEzCAABQQQAABEIAAABCAACowQAAlEIAAKBBAABEQgAAOMIAAIDBAACQwQAAHEIAAOBBAABwwgAAusIAAITCAAAAAAAAiMEAAFzCAAAgQQAAJEIAAODAAAAAwAAAMMIAAAzCAADAQAAARMIAACzCAADgQAAAcEIAAFDBAAAgQgAAgMEAAJjBAADgwQAAMMIAAEBAAAAAQgAABEIAALDBAAAUQgAAAEIAABDCAAAgwQAAkMEAAIC_AACAwAAABEIAACBBAABAQAAAJEIAALDBAAAIwgAAkMIAAIrCAAAIQgAAMMEAAHRCAADAQQAAoMEAAMDAAAAAQQAAIMIAAHBCAAAwQgAA6MEAAFDCAAAQwQAAQEEAAOjBAACAwgAAgL8AABBBAACYwQAAQEIAAEBBAAAswgAAQMEAAKDBAADAwAAAMEIAAJ7CAABswgAAQMIAADzCAAAAAAAAwEAAANDBAACwQQAA4MAAACBCAAAAwAAAQMAAADxCAACgwQAAOMIgADgTQAlIdVABKo8CEAAagAIAAPg9AAAwPQAAZD4AAMg9AAA8vgAA1j4AAAw-AADmvgAAmL0AABC9AAAUvgAAbL4AAAw-AABcPgAANL4AAIi9AACSPgAALD4AAFC9AADSPgAAcT8AAFC9AAAQvQAAND4AAFS-AABwPQAAZD4AAIC7AADYvQAAML0AAMg9AAAEvgAAQLwAAHC9AAAQvQAARL4AACQ-AACyvgAArr4AABS-AACAuwAAmr4AAFC9AABQvQAAmj4AAIY-AACovQAA-L0AABy-AAAMvgAAdD4AAEQ-AABEPgAAiD0AAHy-AABAvAAAfz8AAPg9AAA0PgAA4DwAABS-AAA8vgAA6L0AAKq-IAA4E0AJSHxQASqPAhABGoACAACAuwAA-L0AADC9AAAnvwAAcD0AACQ-AACGPgAAQDwAABA9AADIPQAAQLwAAOA8AAAkvgAAPL4AAOg9AACIPQAAgLsAADU_AACCvgAAZD4AANi9AACYvQAA2L0AAKg9AACovQAAsj4AAOi9AADgvAAAMD0AAHA9AACAOwAAJD4AAKa-AABMvgAAML0AAJ4-AAC2PgAAQLwAAJ6-AADKvgAAQDwAAAw-AAAQvQAADD4AAFQ-AACgvAAAf78AADS-AAC4PQAA6L0AAOi9AACYPQAAPD4AAKC8AABAvAAAqD0AAFA9AABEvgAAiD0AAAQ-AACOPgAAgLsAAEA8AABQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=_FoY4hDDEVA","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14164279639636408542"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18345411233428913217":{"videoId":"18345411233428913217","docid":"34-4-9-Z7382297E576DC822","description":"acos: https://www.tensorflow.org/api_docs/p... acosh: https://www.tensorflow.org/api_docs/p...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2732855/0c9e9595b7dc839d9604b682ef5da6c4/564x318_1"},"target":"_self","position":"12","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmNYnzD2sMlY","linkTemplate":"/video/preview/18345411233428913217?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"52: cos | acos | cosh | acosh | TensorFlow | Tutorial","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mNYnzD2sMlY\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoWChQxODM0NTQxMTIzMzQyODkxMzIxN1oUMTgzNDU0MTEyMzM0Mjg5MTMyMTdqrw0SATAYACJFGjEACipoaHNuamJ0YWlld21kbG1kaGhVQ3pVcEhRQWZqM3VsbUprVEFmQnRYTHcSAgASKhDCDw8aDz8T_AGCBCQBgAQrKosBEAEaeIH59_wD-wUA-QYLBvkG_QL_Bgj_-f7-AP4HAQb0BP4A9wT_9wEAAAD3BAn9_wAAAPz5Bwv__gAADwH4_AQAAAALCe8E_QAAAAYD9gH_AQAA_PgC_wL_AAAEAv0EAAAAAP8Q_wP__wAA9v38CAAAAAAA__7_AAAAACAALc534zs4E0AJSE5QAipzEAAaYOoWAA8ZEOqw_kbkH_zl8NjtE_jg4hYADQgA-ujn4g3k1NfmHP_7Jfz8wwAAAAj5CyzMAABMBPTjx_or7NrRBxEdf-f_Ft7Z7e7yEvb8ARAe2-buLADEF_YNHwsZFDAdJSAALewkUzs4E0AJSG9QAiqvBhAMGqAGAAAQQQAAbMIAAJRCAADYwQAAuMEAAADAAACgQAAABMIAAHjCAACAwQAAqEEAAIC_AAAwwgAAUMIAAAAAAAAEQgAAsEEAANTCAADgwQAAoEAAANBBAABUwgAAoMEAAJZCAACAPwAAMEIAADDCAACgwAAAAMEAAPBBAAAgwQAApEIAALBBAACswgAAoMEAAMDAAADAQQAAqEIAABDBAABgQQAAcMEAAEDBAACwQgAAREIAACDCAABAwAAADMIAAOhBAACcQgAA4EEAAAAAAAAgwQAAQEAAAEzCAABwQgAAQMEAAADAAAAYQgAAIEEAAChCAACgQQAAgL8AAGDBAAA8wgAADEIAAODBAABwwQAAKEIAAIDBAADgwQAA4EEAAJxCAAAkQgAAVEIAAHBBAAAIwgAAqsIAAODAAACgwAAAgEAAAODBAACIQQAAgMAAALBBAADAQQAALMIAALZCAAAQQQAAQEIAAGDCAACIwQAAUEIAAKBBAAB0wgAAIMEAAEDBAAAQwQAAeEIAAIJCAAAIwgAA8MEAAIA_AACYQQAA0MEAAIjCAACMQgAAZMIAACRCAAAwwQAAwEEAAFxCAADowQAADMIAAABAAABgwQAAEEEAAOBAAACIwQAA2EEAAIC_AACgwQAAxMIAADjCAADAwAAA-EEAAIhBAAAYwgAAAMEAABDBAABgwgAAQEAAAHBBAAC2wgAAJEIAAGDBAAAkQgAA0MEAAIDAAAA0QgAAjMIAANDBAADAwQAA0MEAAKDAAADYQQAAEEEAAEjCAADCQgAA0EEAAODBAABkwgAAEEEAACBBAADAwAAAQEAAAPDBAAD4QQAAVMIAAIBAAAB4QgAAgMAAABxCAAAYwgAAisIAAKDAAADwQQAAVEIAAFRCAABgwQAAIEEAAPDBAAAQQgAAoEAAABzCAAAAwAAA4EEAAEBAAACiwgAAkkIAAERCAABwwgAAcEEAABDBAADgwQAAxkIAAOBAAAAowgAAbEIAAITCAABAwQAAEMIAALrCAABYQgAAUEIAAFDBAADAwAAAsMEAAARCAABAQQAAgEAgADgTQAlIdVABKo8CEAAagAIAAES-AABcvgAADD4AAAy-AABQPQAAvj4AAEA8AABZvwAAJL4AAHA9AACoPQAA4LwAANi9AADWPgAAPL4AAGS-AACePgAAoDwAAOi9AADaPgAAUT8AACy-AADgPAAAUL0AALg9AABcvgAAXD4AAGS-AACGvgAA2D0AAJY-AADovQAAbD4AALi9AACyvgAAjr4AAFA9AACmvgAA1r4AAMo-AAC-vgAAuL0AAMi9AACIvQAAmD0AADw-AAC-PgAAkr4AABy-AAAEvgAA2D0AAKq-AACmPgAARL4AAES-AACAOwAAfz8AAFw-AACIvQAAgj4AADQ-AACYPQAAUL0AAJi9IAA4E0AJSHxQASqPAhABGoACAADIvQAAfD4AAAS-AAAPvwAABL4AAOC8AADgPAAAUD0AAOC8AAAwPQAAor4AAGy-AACSvgAAbL4AABA9AACgvAAAcL0AAAE_AABcvgAAND4AABw-AADgPAAAqL0AAKC8AAAUvgAAVD4AADy-AABwPQAAJL4AAPg9AADoPQAABD4AAFS-AABwPQAAFL4AAPg9AADqPgAAUD0AAJK-AABcvgAAmD0AAEw-AAAQvQAAZD4AAFA9AACIPQAAf78AALi9AACYvQAA2D0AAFC9AAAwPQAA-D0AAFw-AAAkPgAAuD0AAIC7AACgPAAA6L0AAOg9AACgPAAAdD4AAOg9AAAkviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=mNYnzD2sMlY","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["18345411233428913217"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"1628159026169086323":{"videoId":"1628159026169086323","docid":"34-6-15-Z346509AAD51F8E9C","description":"We will find the derivative of inverse hyperbolic cosine in two ways. Derivative sinh^-1(x), • Q14, derivative of sinh^-1(x), two ways 🛍 Shop math t-shirts & hoodies: http://bit.ly/bprpmerch 10...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4820479/86260b717ee5b9c179f473099cd84961/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/23AGFwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dz9rscwKcVyY","linkTemplate":"/video/preview/1628159026169086323?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative of cosh^-1(x), two ways","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=z9rscwKcVyY\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoVChMxNjI4MTU5MDI2MTY5MDg2MzIzWhMxNjI4MTU5MDI2MTY5MDg2MzIzarYPEgEwGAAiRRoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioQwg8PGg8_E54DggQkAYAEKyqLARABGniB-xIICgL-AAYFEAX5CfwCAQn-Cff-_gDiAfb_CvwCAOwI9QL7AAAA_AYE__cAAAAA-_EN-P0AAAQB9f4EAAAAEgDx9vwAAAAKB_P1_wEAAP_jC_oBAAAABhIBAP8AAAD7Gfz5AP8AAPH6AQIAAAAA_fL6BAAAAAAgAC1ohMw7OBNACUhOUAIqhAIQABrwAX8G-_7X9aYBvRXeAOD0IgLYNQ3_GgvhALEPxwHPELEB3jH2_-Iz5AAg9_QAxjT-_xbTqgPWug8AKdDu_jwD7wDS8AsAIfr3AE_uIv8bFur_9gT9_9Ph9_8w3NICBVvZ_QTSBf8RCOgCA0nhAin7NAEj_SQGHvkN_til_QHnyiv_9ve-_soaCgEM2xH33xEUCSPW8wsADBoCDgvtBwnu9v0JCCb2BB3gBiPa3AAOCAL4qM4P_-T2BwMi-CgHyf3sBdzBKwfRA_j_Fw8E8T8EAPz9Ju4LCtjmARfWFfrqBP76FxH38PcN7PfCBgEA4hza8CAALSyqAjs4E0AJSGFQAipzEAAaYD_wADICJewQ8wLh6PSsF-7mx_za0CT_AAwA6zzQECYD6Nrxzv8Hux8HpAAAADUdDSDiAN1_9toLF_gk7e6Z0QwQfdQaPZfbDem21BzqBfrDR_IgUgCY6sI3ItfkMRAWFSAALeZiGDs4E0AJSG9QAiqvBhAMGqAGAAB4QgAAeMIAAPZCAACIwQAAPEIAAHDBAABAQgAAYEEAAHjCAAAQQQAAQMEAAOBAAACQQQAAKMIAAMDAAACQwQAA2EEAAGjCAABsQgAAMMEAAKBAAADgwAAAfMIAAHBBAAB4wgAA8EEAABBBAABEQgAAIEIAADDBAACowQAAkEEAAEjCAAAwwQAAeMIAAABCAAAIQgAAtEIAABDCAACQQQAAwMAAAEBAAADIQQAAQEAAAADCAACwwQAAGEIAAIhBAAAwQgAAsEEAAMBAAABgwQAAHMIAAAzCAACAvwAAKEIAAHDCAABwQQAAMEIAAExCAACAvwAAvMIAAODBAABowgAAqEEAAJTCAACgwQAAHMIAAGTCAACgwQAATEIAAJhCAABMwgAAkkIAAPDBAAAYwgAAUMEAAJhBAACIwQAAgMEAAKDAAABgQgAAkMEAANhBAAAAwAAAMEIAALhBAADQQQAAoEEAAKjBAAC-wgAAlkIAAEDAAAAAwQAACEIAABjCAACgwQAAHEIAACRCAACGQgAACMIAAJBBAACgQAAA0MEAACjCAAAAQQAAHEIAAEBCAADAQQAA-EEAALRCAACAQAAAAMEAACBCAACYwQAAaEIAAMBBAABIwgAAmMEAADDCAAD4wQAA4MIAAIjBAAAEwgAAgMEAACDCAADowQAAYMEAADjCAADQwQAAQMAAAGDBAACowQAAKEIAAMBAAABkQgAApkIAACBCAACYwQAAusIAAMjBAAAwQgAAmEEAAATCAABYQgAAMEIAAJLCAAAkQgAAwMAAAGBBAACAQAAA2MEAAFRCAAAAwgAAAEAAADBBAADYwQAATMIAAKjBAACYwQAAQMIAAADBAADQwQAA4MEAAKjBAABAQQAA-MEAABxCAADoQQAAQEEAAMjBAADgwAAA0MEAADTCAAC0wgAAAEIAAPDBAABIwgAA0EEAAJpCAABowgAAEMEAAADBAADYwQAAPEIAANDBAACYwQAAcMIAAEDBAABEQgAAAEIAAADCAABkQgAAmEEAAIBBAAAEQgAACMIAAODAAAC4wQAAwMEgADgTQAlIdVABKo8CEAAagAIAAIA7AAAUPgAATD4AAHC9AAB0vgAABD4AALg9AAAHvwAANL4AABA9AAAQPQAAfL4AAKA8AACCPgAAuL0AAIi9AAAEPgAAiD0AADw-AAAEPgAAfz8AAAQ-AACYPQAAqD0AAEy-AACgPAAAoDwAAES-AADovQAAoDwAALg9AACgPAAAoLwAAKq-AAAwvQAATL4AALg9AAAsvgAARL4AABS-AAAwPQAAzr4AAEQ-AABwPQAAqL0AACw-AACAOwAAcL0AAHC9AAAcvgAAxj4AAKC8AAB0PgAAUL0AAMi9AACgPAAART8AAFC9AACoPQAAHL4AAKg9AAAkvgAAiD0AAES-IAA4E0AJSHxQASqPAhABGoACAAC4vQAAcD0AAOA8AAAfvwAAgDsAAKg9AAD6PgAAgr4AABQ-AAA8PgAA-L0AAKg9AADoPQAAfL4AABC9AADIPQAAQLwAAE0_AACCvgAAjj4AAJK-AAB0vgAAcL0AADA9AAA8vgAARD4AAAw-AAAwPQAAQDwAADC9AABAPAAADD4AAMK-AACavgAAPL4AAKY-AAC4PQAAVD4AADy-AAC6vgAA-D0AACQ-AAC4PQAAQDwAAPg9AACAuwAAf78AAP6-AAAEvgAAED0AAEw-AACCPgAA6j4AABS-AACIvQAA4DwAAHC9AAAQPQAAVL4AAKi9AACSPgAALD4AAIi9AACaviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=z9rscwKcVyY","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1628159026169086323"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1168415187337642287":{"videoId":"1168415187337642287","docid":"34-2-3-ZFF2C3CAD5F4EAAFC","description":"Differentiation of inverse coshx For sinh^-1 x go here • Differentiation of inverse sinh (sinh^-1(x)) For tanh^-1 x go here • Differentiation of inverse tanh (tanh^-1(x)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4518546/45bfeeaf6fa3075803e0772d71449548/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/EvOHLwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKxXBvRtW-Pc","linkTemplate":"/video/preview/1168415187337642287?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Differentiation of inverse cosh (cosh^-1(x))","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KxXBvRtW-Pc\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoVChMxMTY4NDE1MTg3MzM3NjQyMjg3WhMxMTY4NDE1MTg3MzM3NjQyMjg3arUPEgEwGAAiRBoxAAoqaGhhZXFxbmJlcG1taGlkY2hoVUNZeEZHT0p1dC1UVUIyWVotTGcwT2p3EgIAEioPwg8PGg8_EzuCBCQBgAQrKosBEAEaeIH9BQX7Af8AAPsGCfcJ_AIBCf4I9_7-AOwC-wQAAAAA5gH9__r_AAACCP8C_QAAAAAFCv_6_gEACQf7-QUAAAAGAO78AAAAAAwO7wL_AQAA8-cECQP_AAALG_0A_wAAAPsY_PkA_wAA8foBAgAAAAAF9AnuAAAAACAALYiXzjs4E0AJSE5QAiqEAhAAGvABf_T_ANLZywDSLtAAvywKAKUuJf_YLNwAwSYOAbf2xgDu9OYA4f3XAPH5__-0E-3_S93t_gTHFv89x-X_IM0CAOjzDAAg8eAAORAYAv_y4f7-DCT-A8X6Af3G3gAIC9D-EwsFAOoC7QPkDOgFD_4_AeT5LgQ6Ezn_A8ESAOz2Dwb3-90A9yMFBe326v_rFjsBHcohAAAHCvrUGdgAAPkQ_QgHIvcOE9AAGPgICQb7-_7Y9_4G6_kW-hMTBgHmDBMFFPUg8-MI-_j98RP4Kuf3ANwG9vUb9PQMAAcHAvEH6_gO9_z18Qz8_OzfBQDlGd7yIAAtpDcROzgTQAlIYVACKnMQABpg_PcAVhJE7xv_TNj94dAa9cMP5yjDIf_q7P__Gtj0Evy1uPAP_wwIB9egAAAAGOYC-dEAKH_g2uoE1Q3_3bzKNz1_ug4Uw8b8IPDPN-3pAAkXNTF9AJUXviElNcg_E_sQIAAt4noUOzgTQAlIb1ACKq8GEAwaoAYAAPBBAABwwQAAwkIAAMLCAAAoQgAAuEEAAIBCAACAwQAAEEEAAFBBAADgwQAADMIAAOjBAACwwQAAsEEAAIhBAAAMQgAAAMAAALBBAABgwQAAEMEAAHDBAACGwgAAoEEAABzCAAAswgAAQEEAAEzCAABQQgAAmEEAADzCAADgwAAAwMIAAFDBAAC8wgAAAEEAAIA_AACqQgAAQMAAAFBCAADAQAAAAMEAAIjBAABQQQAAKEIAAFTCAADQwQAAOEIAAKBBAACoQQAAdMIAAAAAAACYwQAAwEEAALBBAADwQQAA_MIAACBBAAAwQQAANEIAAOBBAACuwgAACMIAAITCAACgQAAAvMIAABzCAAAcwgAAsMEAAIjCAACUQgAAuEEAAITCAACGQgAAsMEAAEDBAAA8wgAAcMEAAKBAAACwQQAAmMEAAIZCAAAUwgAA0EEAAIDAAABgQQAAMEEAAATCAABwQQAAUEEAADBBAADAQgAAgMAAAABAAAAoQgAAAMEAAEBAAAAEwgAAMEIAAFRCAACOwgAAEMEAABhCAAAowgAAIMIAAIA_AAA4QgAA4MAAAKBAAABsQgAABEIAAHBBAADgwQAABMIAAADCAACYQgAAkEEAAGzCAABMwgAAYMIAAIhBAAD4wQAAAMEAAJhBAACIwQAAcEEAAKhBAABwwQAAMEEAAGBCAACQwQAAVMIAAKBBAAAAQgAAMEEAAJBCAADgQAAAbEIAAGDCAAAEwgAAgD8AAIDAAABUQgAA-MEAAARCAABMQgAAuMEAAIDBAABQQQAAwMAAAAjCAACQQQAAaEIAAMBBAABAQQAAAMIAAIbCAAAwwQAAJMIAAPDBAAB4wgAAsEEAAADBAAAQwgAAoMAAABDBAADwwQAA3EIAAERCAAAAQQAAAMAAAGBBAACAvwAAEMIAAHDCAAAMwgAA8EEAANjBAADAQQAAJEIAAHzCAAAwwgAAsMEAAMDBAAAQQgAAuMEAAETCAACWwgAAkEEAACDBAAAwQgAAOMIAAKBAAABQwQAAkEEAAChCAADAwQAAcMEAAIBBAACAvyAAOBNACUh1UAEqjwIQABqAAgAAJL4AAFS-AAAUPgAAML0AAAS-AACiPgAAUL0AABO_AABMvgAAiD0AAFA9AACavgAALD4AAAQ-AACCvgAAVL4AAGQ-AACIPQAAUD0AAIo-AAB_PwAAED0AAIA7AADovQAAoDwAABS-AAAEPgAAgDsAAHC9AAAEPgAATD4AAKC8AAAQvQAAmL0AAAS-AABwvQAAkj4AANi9AAAsvgAADL4AAEy-AAA8vgAAyD0AAMi9AAAEPgAAyD0AALg9AACYvQAAfL4AAES-AAB8PgAAfL4AAKI-AACgPAAADL4AAKC8AABJPwAAML0AABA9AADgvAAAgDsAALi9AAAwPQAAnr4gADgTQAlIfFABKo8CEAEagAIAAOC8AAA8PgAAmL0AACO_AABEvgAA4DwAALI-AAAwPQAAMD0AABw-AACAOwAAPL4AADQ-AABEvgAAoLwAAKA8AAAwvQAAJz8AAJq-AAAkPgAAmD0AAFS-AAAQPQAA2L0AADC9AABsPgAAqL0AAKg9AAAkvgAAoDwAADA9AACgPAAAqr4AAFA9AAD4vQAAoDwAAJg9AAAEPgAANL4AAJ6-AABUPgAA4DwAACw-AACYPQAAgDsAAHA9AAB_vwAA2L0AAKa-AACYvQAAQDwAAMo-AADaPgAAmD0AAGy-AACIPQAA6L0AAAw-AABQPQAAVL4AAMg9AAAQPQAAqL0AAFS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=KxXBvRtW-Pc","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1440,"cheight":1440,"cratio":1,"dups":["1168415187337642287"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14815462639359441119":{"videoId":"14815462639359441119","docid":"34-5-5-Z86202A70C24ADA4D","description":"In this video, we find the conventional expression for the inverse hyperbolic cosine function via the definition of hyperbolic cosine. First, we let the function... y(x) = cosh^(-1)(x) Thus...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4256516/fe8ff4636d6c2ac8630be4f24cb7eb48/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Y4yXJAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8DyhW_WUybk","linkTemplate":"/video/preview/14815462639359441119?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Inverse hyperbolic cosine [cosh^-1(x)] as a logarithm","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8DyhW_WUybk\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoWChQxNDgxNTQ2MjYzOTM1OTQ0MTExOVoUMTQ4MTU0NjI2MzkzNTk0NDExMTlqiBcSATAYACJFGjEACipoaHl0ZWJiY2NyeWxsZ3pjaGhVQ1loMjUxMGUwQUo1QkVjb3BydG13YmcSAgASKhDCDw8aDz8TgwSCBCQBgAQrKosBEAEaeIH69_z5_wEA8AgGCvcF_gH-C_jy9_7-APYH-_7_Av8A9fcD__cAAAABDPr9BQAAAPf9_vX6_wAACQf7-QQAAAAWBf3x-wAAAP0K-vf_AQAA__L7AQP_AAAJDPn4_wAAAP0O8Pv_AAAA-PgC-wAAAAAE5gDzAAAAACAALSsy1zs4E0AJSE5QAiqEAhAAGvABfwb7_tf1pgHWE9oA__UpAPNBI_8VNwIAsOrSANzc6wEFJdsA8wXZ_94hFf-rLvf_-_fF_unc-gAp0O7-QdPmAAQD7wFMAPUBayUz_CLv3gHb_Bb-FMgJAPXVy_4jM9_-JQUE-0IS___pKdAEJRgrAfXjJwYM4Br9FKsl_f3h-AH1z-4CAhPqC-3Y__n3Jx8F98AEAQrnFfkLGfoN-_Pg_PsHO_wYR-b_L9X2Ag3sAwSozg__BvMHBPUVFQjbEO0DyQ0iAdgY9f_rAhH4KfwF_dw68_ke8_MOISz69u8MBgQj4PkFAugBEOBH9xP4Pu37IAAtLKoCOzgTQAlIYVACKs8HEAAawAc1tcy-oXRYPL1NBD2cAYm849SYvDjtbr1NOJq90KRiu0jBE70eT-s92p-FvXMzt7xkUR47lDN0PUQbm7z9vXQ-klRLvQOx7DwZgaK9QLW7PeGkX73NpJe8HzG6vDGx-TztKPO89l2Ruwx547tUUwI-3Es6vXbMELwBnMW7ff7Bu6CSbr214CW-PaqrvPf8Fb0bf4c81zebva6pYrt8NAs9ZnWCu4Om5TxJPws9mbv2vWy6VLw4L-69JxFBPbiMIL3P4bU6WEogPdpfEbyJzw2-InyOvZhvmDxoor68KcoqvfYjybuoyjI9fxT1PIk8brxfjJI9ThE7vHHBvryX5DC-RG8sPeyCZrxGCuU9o5YgPFPN7jsH5He99bybPFAqq7zsfVQ9XvexvZV8kbwacic9zlGmO_tCArzEEDQ9BF7eO2f_TTzt7gM8Fy8UPHijhTxi-YM96iXmvSH3nTvHrLg9NImVPEpqGTz4nya9R9H2OQNkQzyJMxW9kKuXPYXy-Ds5T-u8PxkSOu-bUjvFNUM9-FENvglvLLt1-FW9wf4rvRcqf7ycogg8-oaIPXZlPLxIGAY-bsllve3VBbx5lZC88DU_vShgYDzr5v287U-9vBHXnDuyFQ-9GlDPvcaLYLsb2gC-Sc8-vFF9rbo5eEu8umfdO2-T3TovEbQ9SpoPvopX4rl5YqE9VbWuPbdIGDuKfLI8cmaQPYw5NDqiAhG9xymfvRMVAbsqWSm8m1RUvW8d0jsxl4S9qIkjvePEpjhtA9c9taPYvQyfrzljG8I9etCBOzhqK7le-Fy9jYK7PKbBWjd1tjY8q-gRvLsClzjpD008qDg-vnKfXTnFc_Y8ntHWPWpGBTkaoZS9d0xdPKmKrTgvUPK9qFycvUOAv7f_W0m8bl2gvP0yijmCqDs9FMpnPNRcJDiLa3w8yWP8PCdGLbmg-_I85ypnvRmtZziwcV09mYrDvKZZMjl46GC8-y8mvUMWKTV5-am7pyXGPcSu_7g1YiG9OaZdPITQwreAR4Q9ADCDPM-pp7h1Pvy8vlDAPJe_-DWrrHI9uRvAO_-s0bhYn8y9pi40PYN_LDldvwA9vxkLvclyYjh56o07_3gvPEmoILhKI5s93mkZPJc3B7fjbvA9Dkzuvclll7mr3xa9DfsdvqO8_rj1gs-96WD9vT_7orcdPoQ8kWHVPbj3vLe39hk9DlVHvWypWLgi_-w9NSkFPvN-W7jktLG9ZEC2vEuj0zanJQa-zxmLu_SONDaOfSQ8YNusvFGYibcgADgTQAlIbVABKnMQABpg-_cAKvFQ_-YGJ-kK7f736Pkk6iTrKf_X_gD_O_3aIujHz_ccAA7OB-mxAAAAJuvgGuUADWnX8vMDy-rytrPmKQx_tPE04dIY2tUOEg0XFw0SPSdCALEPzxQSDcMpDBkMIAAtaPcvOzgTQAlIb1ACKq8GEAwaoAYAABBCAADwwQAAjEIAAJrCAAAUQgAAkMEAAHhCAAAAQQAAiMEAAPhBAACwQQAAEMEAAEDAAACgQAAAJEIAABBBAABgQQAA8MEAAFRCAADowQAA6MEAACDCAAAswgAAwEAAAFTCAAAQwQAAkEEAAIDAAABQQQAAgEEAAFjCAACAQAAAIMIAAEBBAABIwgAAIEIAACBBAAAsQgAAAAAAAARCAAAgQQAAQEEAAARCAAAswgAAQEEAADTCAAAgQQAASEIAAPBBAAAwQQAALEIAADTCAAAkwgAAqEEAAJhBAAAQQQAAhsIAAFBBAACQQQAAoEIAAIhBAAAwwgAA-MEAAJDCAAAwQQAA6sIAAADAAAB8wgAACMIAAIjBAAAsQgAAkEIAAKjBAAAoQgAAQMIAAIbCAABAwQAAQEAAALjBAADAQQAAIMEAAKJCAACAwAAAgMAAAMDAAABcQgAAcEEAAGRCAABgQQAAFMIAADTCAABQQgAANMIAAAAAAADAQAAAKMIAAHTCAABMQgAAfEIAAMZCAABkwgAAgEEAAJhBAACOwgAANMIAAKBBAADgwAAAoEEAACBBAAC6QgAANEIAAABAAACQwQAAsEEAADDBAACAQgAAwMAAAJ7CAACAwAAALMIAAMjBAABMwgAAiMEAAAjCAADIwQAAYMEAACzCAACAvwAAOMIAAMBBAAAAwQAAoEEAALDBAACqQgAAiMEAAEBCAADAQQAAdEIAABBBAAC0wgAAqEEAAHhCAAAoQgAARMIAAHhCAAAUQgAASMIAAABCAADQwQAAAAAAAFDBAADgQAAAgD8AAPDBAACAPwAAAAAAAFTCAACAPwAAKMIAAGDBAACqwgAAkEEAAJjBAAAwwQAAgEAAABBCAAAwQQAAKEIAACRCAAAAAAAAuMEAALjBAACgwAAAgMIAAKbCAAA0QgAAsMEAAIjBAACIQQAAyEIAAKbCAABMwgAA6MEAAGBBAADQQQAA-MEAAPjBAABAwgAAyMEAANhBAACAvwAA4MEAALhBAAAEwgAA4MEAAGBCAAAYwgAAIEIAAGBBAABIwiAAOBNACUh1UAEqjwIQABqAAgAAqD0AAIi9AABEPgAAgDsAABC9AADgPAAAiL0AAAm_AAA8vgAAyD0AAHA9AAAQvQAAmj4AAGw-AAB0vgAAnr4AABw-AADYPQAAuD0AALo-AAB_PwAAgDsAAKg9AADIPQAAcL0AAES-AACKPgAAgDsAAOi9AADoPQAA6D0AAHC9AAD4vQAA4DwAAEQ-AABAPAAAPD4AAOi9AAA0vgAAVL4AAJq-AABQvQAAmL0AAFS-AADgPAAA2D0AAEw-AADgvAAA2L0AAFS-AAA8PgAAqL0AAOg9AAAMPgAAhr4AALi9AAArPwAAuL0AAIi9AAC4PQAAEL0AAEC8AACYPQAAmr4gADgTQAlIfFABKo8CEAEagAIAAKC8AAA0PgAADL4AABG_AACGvgAA4DwAACw-AAC4PQAALL4AAHw-AAAQvQAAkr4AAEC8AAAMvgAAML0AAKi9AACYvQAALz8AADS-AACCPgAAmD0AAI6-AADgvAAA6L0AAIg9AABQvQAATL4AAKA8AACYPQAAoDwAAIA7AACgPAAAbL4AAEA8AAAQPQAA-L0AABw-AAC4PQAAHL4AAOi9AAAkPgAAQDwAAKA8AADIvQAAoLwAAOg9AAB_vwAAcD0AAPi9AACovQAAqD0AAJg9AAAMPgAALD4AAAy-AAAQPQAAiL0AAGQ-AACovQAA2D0AAIg9AABAvAAAiD0AAPi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=8DyhW_WUybk","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14815462639359441119"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10535238265546568586":{"videoId":"10535238265546568586","docid":"34-11-12-Z5449B854354E6102","description":"Example in finding cosh of a complex angle.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2038455/512bab4e6da7804f41ec76ba2f5b3900/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/FAf3LAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5B4V3fkpFtk","linkTemplate":"/video/preview/10535238265546568586?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Easy way to Find Cosh and Sinsh of a Complex Number","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5B4V3fkpFtk\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoWChQxMDUzNTIzODI2NTU0NjU2ODU4NloUMTA1MzUyMzgyNjU1NDY1Njg1ODZqhxcSATAYACJEGjAACiloaGljb3N2ZW9heXBzdGZoaFVDazJlVTZmZF9zQVQtaGlTXzdVQnFIURICABEqEMIPDxoPPxPQAoIEJAGABCsqiwEQARp4gfv6AQT-AgD6BBcG_Af9AvUU_gH4_f0AAAnv_gME_gD1CfYDCgAAAPr9CAQAAAAA_fnr_v_9AAAGCgTxBAAAABcE_P0DAAAABwf_Av4BAAD8_AoEA_8AAAf8-woAAAAABhMGAv4AAAD_BfYDAAAAAO_5__0A_wAAIAAtwqTaOzgTQAlITlACKoQCEAAa8AF_FPv_xvvj_wEaAADnDtMBpQ0e_xpQ-AC1--cA3wDpAdIfBgDg_dQAzQ0sALQbCQAV1q4CBMbfACS79f7z9uEBGPMAATzFEQFL7yD_Dtr8_94kMf0I7BwALd7VAvsK_P3-5Rj_-QHD_-wDvQIQ_kMBNQArAfLjC_7z9wP65vX0AtbN4f0j4wkHDuIk_OjuGwQLzPz-8vb5-PwyD_8n8AL-AAEiAggy0v0pDQgPDQgC-LwJ6wDnB9IDFyMm_u_53Qvl7hr46-IT-QD4-wTs8gPo4gsCAPjL8xAkBOQG7ekACvgi9AXkA-0C4yX8B_r3-O4gAC1SbQk7OBNACUhhUAIqzwcQABrAB2ND774Pwae804CDOxzIP70J6ow7nMwuvfiBtbwDq888aRT3vBR2ET7fDt68Jr6DO6FId75zVro8pDYxvf29dD6SVEu9A7HsPBmBor1Atbs94aRfveRywr04glg7rD0HvfQ2Nryd-pu8cSSrvPM7DT52FMy8hktYPDMx_b01riS8wpDwvJita70X5UO9vEkCvQ044rdYjcY7QkSou4U4gD1v3rS6rtcUvf2AvD3liRY9ibcJvTgv7r0nEUE9uIwgvVb1srxPubg8DQScPAWzqL1HtUO9dmMrvUksqTxoXg49Nr0aPfdJJL20PoA8UNMdvXsyWj0iFla8XNslvHf1Cr6gny49XPlRvBeYij3ZQs47CxGLPNzvhb3dCfY9yJ3runeKED0CZ4S9vxwLvA-_hj3vnKw9w1WUPDw9JTwjPXu86qO-ui5MMD1C-bE9ylX5uQcp2D3_WfO8oImwvE6OzD0eeiE9Pi7gu1hrbb1Cj967iz7VvLHzm7zIJGM9VIeiu9kuBrzMofs82jPwOiRenrti-Oi9UxhnO5XcPL088cG9Q-nmu-nJZj2BsDM9nHU-O2786T1M5K29K3Opu96sAT0s0pm9pvSKu27_pT1Iory8Or6ou2BBhb1Nef48-dRWvPxlgb2OoVI83-tavF2iP72SPHw9WDA7vGp6mjzkCU69gsT6O6GGzz2lF9I7o-qyuy2Lkz2erx49oKIPOrgiUT0UW-G9Wy3JupUMAL1XX1i9M1NzOJp3nLqrdaK8oDVcO-6vDj6fEpG9ftCUOT_ekjsQCM8888TWuKkomL398QM9y0V9ODFNibuNHUS6i4KoOGr2I7vvnae9YkjcuMrmIrq3lO65o7NWOjpFAr1NiT89QskvOl39WDyA1vy9w6tsOT8-abnJA5E8OcoCud2cRT2tnjg9NnWpOMrDgrxp0we94AelOFGfZL1miam8mfFXOaGlRj1lOzo98H-_OCOsjD30bAa-z3ClOURBHz2qT408vzURObvPVj17JZo91swTOE8rWz07J6w9PEyEuNgFLT1-oRG99kBSN-exYT3tX349CEMguKBQz70V74Y9wtICOBbVhzxeCIM7c0yUOKDOaz3NJri7rqu9N610Tb3SRVk9rNawOB-fAD6k5JC9Feg6uWVRuD2NMHu9xIgzOCGNT73ugny9RhWOuJtLW72SPKc9bXCBOMOcIL1KKN297SBJuMr0cD0i4Ss-8cuKOLVXWj3SsoQ9kdm7uDEHQb1WHg0819-tNqx6L71anPE8qKPsNyAAOBNACUhtUAEqcxAAGmAs8wAy3QzUGvE55fsF1hHszQHK87we__3k_wwQx-jlDbq5A_v_7fYVx6EAAABCDs0lnAACf8TT6CoT1uG0yPACFXnkCTDMzAgMqcEtKeS2JDZJXj0A4gOrIUof9h0CDA0gAC0r1hI7OBNACUhvUAIqrwYQDBqgBgAAwEEAAAAAAACQwQAAmMEAAJjBAACAwAAAgEIAAMDBAAAQQQAAHEIAAJjBAACwwgAAAMIAABDBAACaQgAAbMIAAChCAACgQAAA6MEAAIDBAAAYwgAAXMIAAAAAAADIQQAAEEIAAIjBAABcwgAAYMEAAKhBAAAMQgAAoMIAAJDBAAAswgAAMMEAAEDCAACwQQAAYEIAAHRCAAAQwgAAlkIAABRCAACYQQAAeEIAAADBAAD4QQAA2MEAAFjCAADAwAAAQEIAAExCAAAMQgAAoEAAAIhBAADYQQAAgEEAALjBAADkwgAAgMAAAOjBAACkQgAAAEEAAATCAAAUwgAAWMIAADjCAAB0wgAAiMEAAJjCAADAwAAAIMEAACRCAAAIQgAAoMEAAADBAAAAwQAAxMIAAFTCAAAQwQAAMEEAAIhBAABQwgAAQEEAABzCAADgQAAAAAAAAIhBAACAQAAA4EEAAGBBAADwwQAAkEEAAIBAAACQwQAAksIAAKhBAABwwQAAsMEAAPhBAAAQQgAAAEIAABDCAAAoQgAAREIAAM7CAADAwAAAJMIAAAzCAABgwQAA6MEAAIpCAAC4QQAAQMAAABxCAADgwAAAUMEAACRCAACQwQAArsIAAEBBAABcwgAAAMEAAIDBAADIwQAAOMIAAKBBAAAUQgAAHMIAAIDAAABcwgAA6MEAAKDAAAAwQQAAqMEAAIxCAAD4wQAAYMEAAODAAABQQQAAEMEAAOTCAAAAAAAALEIAAERCAABwwQAA2EEAALhBAABgwgAAoEEAANDBAACAQAAA-MEAALBBAAAoQgAAJMIAACjCAAAAQAAA0MEAANDBAACGwgAAyEEAAGjCAAAAQQAAJMIAACBBAACYQQAAgkIAAKJCAACAQQAAPEIAAMDBAADYwQAA4EAAAADCAAAAQQAAUMEAAMDAAAAUwgAAiEEAAFRCAABAQgAAwMAAAJ7CAADIQQAAUEEAAMRCAACYwQAAPMIAABxCAABAwAAAiEEAALjBAABkwgAAkEEAALjBAABcwgAAYEIAAJrCAABUQgAAGMIAAJLCIAA4E0AJSHVQASqPAhAAGoACAACgPAAAML0AAL4-AACAuwAAQDwAAIC7AADYvQAA6r4AADS-AACYPQAAoDwAAJK-AACYPQAATD4AAES-AACgvAAAiL0AAFA9AABMPgAARD4AAH8_AADgvAAA4LwAAJo-AAC4vQAAMD0AABw-AACAOwAATD4AANg9AABQvQAAHL4AAMi9AACYPQAA6D0AADC9AAAQPQAAyr4AACy-AAAEvgAANL4AACy-AADoPQAAuL0AADy-AADgvAAALD4AAIg9AACoPQAAuL0AAGw-AABEPgAAND4AABA9AABMvgAAmL0AAA8_AAAcPgAAND4AAFC9AABUvgAAqD0AAFA9AACIvSAAOBNACUh8UAEqjwIQARqAAgAAfL4AAAy-AAAUPgAANb8AAKC8AAAQPQAAqD0AANg9AAAQPQAABL4AAGy-AAAQvQAAjj4AABC9AAD4PQAAQDwAAEA8AAAlPwAALL4AAFw-AACYvQAAQLwAAFA9AAAwvQAAmD0AAPi9AABwPQAAiD0AABC9AAAMvgAAcL0AAIo-AADYvQAAoDwAAOC8AADgPAAAfD4AALI-AAC4vQAAVL4AAKg9AABUvgAAPL4AAEC8AAAsPgAAtr4AAH-_AADYPQAAqL0AADQ-AAAcPgAABD4AAFw-AACaPgAA2r4AAPg9AAAwvQAA-D0AAKg9AADovQAAgj4AAAS-AABwvQAA-L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=5B4V3fkpFtk","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":718,"cratio":1.78272,"dups":["10535238265546568586"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11564991466595010862":{"videoId":"11564991466595010862","docid":"34-3-16-Z19EB352B707512DC","description":"Working through a method for integrating the hyperbolic cosine function.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2974197/2b581a14c88e277235244fa4e14baf9d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/vT4PCAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DGIfNeODbNr8","linkTemplate":"/video/preview/11564991466595010862?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to integrate cos(ix): The hyperbolic cosine function cosh(x).","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=GIfNeODbNr8\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoWChQxMTU2NDk5MTQ2NjU5NTAxMDg2MloUMTE1NjQ5OTE0NjY1OTUwMTA4NjJqtg8SATAYACJFGjEACipoaG5remZrZWd2c3p5ZnBiaGhVQ1BLYU9xRXF6WXpUUDFzTHU2U3hCa2cSAgASKhDCDw8aDz8TzwKCBCQBgAQrKosBEAEaeIHy_P_1_gIA9PwIB_gF_gEU_f0A9gEBAPEBAvz-AQAA8vcK8wgAAAD6EAT-BgAAAP_y__j4_QEADwYL_AUAAAASCff99gAAAPcP7wH_AQAA9_fr_gP_AAAFCPT9AAAAAA0P_PcAAAAA9f399gAAAAD_9QH-AAAAACAALR091js4E0AJSE5QAiqEAhAAGvABf-j0AdLZywDaEd4AxAz6_74iNP_vMfQBzOTrAbf2xgAADt8A9AXd__cdAgDYEOYANNXQ_-DlCABA_-f-Csz9ACMDAQAJ8ekBEPsxACIA5P7rNxD-4e_9ARjW0QPzMOX_C_IT-Qj72QH_Bt8ED_4_AegPNAEp4yn-3K79Aej29AL3-90A7ScN_8HcDP4C_A8L_bAGAfTuEPzUGdgA6dgR-f3qJgUsN9X_Dfv9-xjYCQXY3AQB9AYRBAYk9wXg8ekB4McmBtblAPjY6xj_IO8F964V7ATu7foLFdoT-wrx-AoO9_z15e71D-kC_P3fCPTsIAAtPDsROzgTQAlIYVACKnMQABpg2uoAI-0w3vHyV9AO0Nnzye0MyBPWNf_6Ff8RCej1NuLAteUoAN_mBcmeAAAA2uPyTL4AC3_g-gbg_D7Zy77iPT1q8QRFxaUC_9HoIgvW8B4eSSNLAJgdxvYg7elJKOwSIAAtWPAUOzgTQAlIb1ACKq8GEAwaoAYAAIRCAAAIwgAAgEIAAFDCAACeQgAAoMEAACBCAAAAAAAAwMAAAAjCAADYwQAAQEEAAFDBAACwwQAAwEEAABRCAADAQAAAUMIAAODAAAAIwgAAikIAAKjBAABgQQAAIMEAAKBAAADoQQAA2MIAAKjCAABEQgAACEIAAGjCAACoQQAAqMEAAEDBAAC0wgAAeEIAAAhCAACIQgAAUMEAAPBBAABAQAAA-MEAADRCAACYwQAAHEIAAIDCAAAQQgAAMMIAAL5CAAAEQgAA4MEAACBBAACQQQAAwEEAAJhBAACAQAAAeMIAAKhBAACkQgAAukIAAIhBAAAowgAAcMEAAATCAADAQAAAIMIAAMBAAAAEwgAAgMEAAEBAAAAAAAAAbEIAABTCAABgQgAAkEEAAEDCAACAvwAAoMAAAHBBAACgQAAAUMEAAPhBAAAgwgAADEIAAABCAADwQQAAcEEAAAxCAABEQgAAAMAAABBBAABoQgAAHMIAAGDBAAD4QQAAKMIAALhBAADAwQAAQMEAAADCAACswgAAXEIAAGhCAACAvwAAbMIAAODBAAAQwgAAkkIAAFDBAABYQgAAIEEAABBBAAAkwgAAsMEAAJjBAAAAQgAAoEAAABjCAABQwQAAwEAAAEBBAAAwwQAAlsIAAPDBAAAUQgAAaMIAAFBBAABAQAAAIMIAALjBAAAwQgAAIMIAAFDBAACqQgAAwEAAALBCAADQQQAArsIAAPDBAAAMwgAAqMEAAIBAAABYQgAAAMIAABhCAABgwQAAiMEAAIBAAACgQAAANMIAAERCAAA8QgAAqkIAADDCAACYQQAAikIAABTCAACiwgAAAAAAAPjBAAAowgAA0EEAAFjCAAAwwgAAQEAAABRCAADgwAAAgEAAAERCAABAQQAAEMIAAAAAAAAwwQAAjMIAAPjBAAAkQgAAgEAAAJjBAACYQQAAMEEAAPDBAAAEwgAAgL8AAKDAAAC4QQAAkMIAADBBAADYwQAAuMEAAGBCAACCwgAAIMEAAABAAAAAwQAAwEAAAARCAADowQAAuMEAAPjBAAB0wiAAOBNACUh1UAEqjwIQABqAAgAA4DwAAFC9AABsPgAABD4AAIC7AACgvAAADL4AAPa-AADIvQAA2D0AAKC8AABAvAAADD4AAFQ-AABkvgAAVL4AAAw-AAC4PQAAcL0AAJ4-AAB_PwAAED0AAAS-AACOPgAAyL0AAOC8AAAMPgAAHL4AABC9AAD4PQAAQDwAAOC8AAAcvgAA4LwAAFC9AADIvQAAgDsAAHS-AABsvgAADL4AAFS-AABwvQAAiL0AABS-AAAkvgAA-L0AAIY-AAAkvgAAfL4AACy-AABEPgAAgLsAAKI-AADYPQAAVL4AAAS-AAAnPwAAMD0AAPi9AAA0PgAAqD0AAJi9AACAOwAAPL4gADgTQAlIfFABKo8CEAEagAIAAAS-AACIPQAANL4AABW_AAA8vgAAQDwAAKg9AADIPQAAFL4AAPg9AAAMvgAAZL4AAAy-AACIvQAAyD0AAIi9AACoPQAAAz8AACy-AABsPgAAcD0AAFC9AACIvQAAQLwAAKC8AAAwPQAAML0AAHC9AADoPQAA6D0AAIA7AADYPQAAir4AAEA8AAC4vQAA2D0AAJI-AAAcPgAARL4AAIq-AACgvAAA6D0AAIg9AADoPQAAyD0AAGw-AAB_vwAAmD0AAKi9AABAvAAA4DwAADC9AABEPgAALD4AADS-AACYPQAAmD0AAMg9AACYPQAAiD0AAOg9AACAOwAAQDwAANi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=GIfNeODbNr8","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["11564991466595010862"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5329736165519296187":{"videoId":"5329736165519296187","docid":"34-7-5-ZEDC7AD6339C7DDF8","description":"Find the Derivative of y = cosh^2(5x) If you enjoyed this video please consider liking, sharing, and subscribing. Udemy Courses Via My Website: https://mathsorcerer.com My FaceBook Page...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3294622/533e85001acd795615eab89e019e9258/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/5-N15wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYqZMycEvJzQ","linkTemplate":"/video/preview/5329736165519296187?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find the Derivative of y = cosh^2(5x)","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YqZMycEvJzQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoVChM1MzI5NzM2MTY1NTE5Mjk2MTg3WhM1MzI5NzM2MTY1NTE5Mjk2MTg3aocXEgEwGAAiRBoxAAoqaGh6emxiam5vbXVnaGJ2YmhoVUNyN2xteklrNjNQWm5CdzNiZXpsLU1nEgIAEioPwg8PGg8_E2iCBCQBgAQrKosBEAEaeIH0CPsH_QMA-gQXBvwH_QIQCAML9gEBAPYH_P7_Av8A7gf2AfsAAAD9BQgJ-QAAAP7-_v_4_gAACfz4BQMAAAAFAO_8AAAAAAv6-AH_AQAA_-8FAQP_AAAFCvwB_wAAAP8R_gP__wAA_QT-_QEAAAD_9gH-AAAAACAALSM_3Ds4E0AJSE5QAiqEAhAAGvABf_v0AdD70v_vBtkAwwcMAY0X7wANCMH_2B79AtcNvwEABO8A0vvL_xLc4QDRDiUAIu3b_xfsNAAm7PH_H-IOAP0GBAED3xMCGwsA_-QH6P8TCfv_DwLnAPfc1P8NF_P-BwIN_gbx7QDuA8YC7w0uAhD3EQQa2iUFC-EJBu0sB_7t39v-CiIEAwLY__rmLiECBfAH_A0F8_rlE_wGAOPo-B70Gf30Edv_D-DtC_vNE_rvAQgACOz7CRfwEwDX_iMG2vMrBe0Q8PXmKf3zR_zxEM7--v4I0fgBJxL3DPXo9PDtA_Lz8gv8_MwFAQD9FwgIIAAtY8sdOzgTQAlIYVACKs8HEAAawAcrhO2-NwvFO7NsubsDFUS9AIlLPVSnKLtqTXO9qQjBPLZyBb0U5529HGHRvELvCbzScpC-_a5-PVwRDbqBsgk-7UcqvWnDIT2G4wm-3yD1PKwBKr2bdiG-GiU5vRtQCDtwiqg9aO6dOipAD72RAwC9YOstvWOuFDzqNhK9UxSevSdM-7uJC3C-tcSKvGKtEL0bf4c81zebva6pYrvlmfc9N-VlPE4d9TwRzCy8zQd_vY8-fzty_gG99BKIPPYCWLzqr_c9MbJROshNAz2JAy29B0BhvZ6W_rtHdE-8otAyvVY3jTwmQKg9kKgrPW_RrrwyVSA-PJPsvAVed7xAt7G9PSkTPZrcHDz9z7s9eLmIPasmiLzMIlq77C8APZwWvDta1wk8MWCJvO6ayjs9Jlc9dxGmPCO2AD2oE3W8rnoGu2Cp0zyCvOi8NV-lvOl2frpTyqA9LHdQveKxG7z3pbM9ZsinvPxlwbzNrbC9Dfv_u07dSzwzyZM9sud8PDQR9DtRdzQ9e8FHPcDwJbskXp67YvjovVMYZzvKmIw8EsewvKM_8jpmsgk988IEOmW3oDxIGAY-bsllve3VBbxBPFy9whrCvFNPDzxkshi9bVQKvLCpczybyIw8FHGfPKuGWTo6kKq9C1ApvQ9xHrxseDq9OgbkPRtAx7ovEbQ9SpoPvopX4rmeCc09h_SQPbt2krpThiA91i55uz8h-boCZj68bE0JvZuoZzuvMuQ7RlvVvHHBPrpoz-W8djCHPH6fGrs-YUQ95wN9vSeWvbjwTl49c7I-PcFWQjnRShC9bDBDvP9rsDk9LO88uH4wvNjVxLe-xeA7rFMVvqaMyTkDi8E5wZgjPSHL07i08Ku7M3V5OvKpjDmS5s-9dghSvPjNCDmfP8g8Uy2YvFf2ALleaA49PorEve_wZbbSP3c8G0CkPNuB-zhtnck8oqAvvX-jprltCKk8-MxIPCbJ4zR46GC8-y8mvUMWKTXEVnW8xLAoPcMVkzjbgLS96NsCvRO5SbhTgQk9yOsBvTbpXThSSM-7PjyrvU-y5DifyR69UhZ0PHQqGjltxf69otQ-vRov9Lhlc7C8yzwDvE2KYrjHICG9Nu7ovPA9grgtYpM9FFDyuwVmJbeAoFc9WNmIvU7JhbhuHmK9sSuyvRO_v7gGqF-8G54Ovpl_wDfmOzi9qC1_PcoQyLKCyAI-OaDAvTwBPzgi_-w9NSkFPvN-W7hEci294frmu7I9mbhLkQy-l-KaPa5NnzgmHms9Wi3QvR8IjrcgADgTQAlIbVABKnMQABpgMP0ALREb8ufjON_b-87_-N_5E-7NE__3_QD4JMQKH__cs_Xe_ynbEf6uAAAAPe0IDgQACm7Q7tkb6B4F1bzmEDd_BQ4rveAk68PLKAn3DQAOAjFCAM34yRkP7us-BU_4IAAtf80vOzgTQAlIb1ACKq8GEAwaoAYAALhBAACCwgAA3EIAALDBAAAgQgAAwEAAAEBCAADowQAARMIAABBCAAAAwQAA2MEAACBCAABQwQAA2MEAACRCAACoQQAAkMEAABhCAAAAwgAAwMAAAExCAAAMwgAAAEEAACzCAAAQwQAAcMEAAKDBAADIQgAAPMIAABjCAAAAQAAABMIAADjCAACYwgAAVEIAACBBAACcQgAAiMEAAMBAAACYwQAAAAAAACBBAAAswgAA-EEAAFTCAADAQAAA2EEAAERCAACowQAAsMEAAFBBAADoQQAA4MAAAMBBAAAoQgAA2MIAAIC_AABoQgAAEEIAAAxCAABgwgAAAMIAAIrCAACAQAAA6sIAACBBAAAAwQAAcMEAABDCAAAgQgAAEMEAALTCAAA8QgAA4MEAAJhBAADAQAAAwMAAAMDBAAAowgAAIEEAADBCAABkwgAAmMEAAEDAAACAQQAAJEIAAHBCAAC4QQAAoMEAACTCAABcQgAAHMIAACBCAACMQgAABMIAAFDBAABAwQAAAEAAAAhCAABEwgAAcMIAAGBBAADIQQAACMIAALhBAAAAwQAA6EEAALDBAAAIQgAAGEIAAMBAAAAQwQAAFEIAAL7CAABMQgAAMEIAAJBBAAAwwgAADMIAACTCAABowgAAqMEAAFBBAACAQQAALMIAAHBBAAAAwAAAoMAAAHDBAABgwQAAAAAAAFDBAABEQgAA4EAAAL5CAAA4QgAAQEAAAFBBAADAwQAAgMAAAFDBAAA4QgAAXMIAABxCAAAEQgAAgMEAAOBAAACAPwAA2MEAAMjBAABgwQAAPEIAAIDAAAAkQgAA4MAAAEDAAAAgwQAA0MEAAHDCAACCwgAAMEEAAFTCAACCwgAAkMEAAFxCAAAAwgAASEIAABRCAACoQQAAwEAAAIjBAAAgQgAAhMIAAILCAABIQgAAaMIAAHDBAAAkQgAA4EEAALDBAABgwgAAEMIAALjCAAAYQgAAHMIAABDCAABIwgAAUEEAAGxCAABEQgAAQMEAABBCAAAAwAAAIMEAAIBCAAAowgAAfMIAADBBAAAkwiAAOBNACUh1UAEqjwIQABqAAgAAoDwAAJg9AAB8PgAA-L0AAEA8AAA0PgAAMD0AAC2_AACWvgAAHD4AADy-AADWvgAABD4AAEw-AACYvQAAgDsAAIg9AABAPAAA-D0AAJI-AAB_PwAAoDwAAEw-AADgPAAAlr4AAFA9AACYPQAABL4AACy-AACAOwAAPD4AAHw-AACAOwAA2r4AAKA8AAA8vgAAQDwAAFC9AAAEvgAAyL0AAGy-AAAEvgAAPD4AAOi9AACSvgAAgDsAAKg9AAAsvgAANL4AACy-AAA0PgAAbL4AADw-AAAMPgAAiL0AAIC7AAA1PwAARD4AAIA7AACIvQAAiL0AABC9AAD4PQAAED0gADgTQAlIfFABKo8CEAEagAIAAKa-AAAUPgAAgLsAAEW_AACIPQAAoLwAACQ-AACgvAAA6D0AAKA8AABQvQAAuL0AAPi9AABEvgAAQLwAAKA8AADIPQAABT8AAAS-AACSPgAAPL4AAOA8AABAPAAA2L0AAMi9AABkPgAA4DwAAFA9AADovQAAuD0AAMg9AAAsPgAAPL4AAOC8AADovQAAQLwAABw-AABkPgAATL4AADC9AACIPQAA-L0AAOC8AAA0PgAA-L0AAFC9AAB_vwAA2L0AAFy-AADGPgAARD4AAKg9AACGPgAAuD0AADA9AACAOwAAoLwAAOA8AACgvAAANL4AANg9AADgPAAAgDsAAIA7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=YqZMycEvJzQ","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5329736165519296187"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7205744904036836832":{"videoId":"7205744904036836832","docid":"34-0-0-Z806E7FD60CD5C81C","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/399189/4561c5e7f191a3fc751a0f303fba4bd3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/VNPmjQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DGZGW5hcK86w","linkTemplate":"/video/preview/7205744904036836832?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration arccosh cosh^ 1 practice question","related_orig_text":"Cosh Qkr","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cosh Qkr\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=GZGW5hcK86w\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMTc3NTA1NjYzMTE1MTIxMDc0OAoUMTUyNjM2NTY0NTU4Mzg3Njc4MjEKFDEyNzc4NDI3NTMxODg1Njk4NjE4ChMxNzc3MjUzNTA3ODE2MDU2ODQ5ChM3MjM0MjI0MDU2MjAxNTA1NTA2ChM3NzEwNzY4MzY4MjE5NzAxNjk3ChM0MzM2MTAyMzA2Njg5MDg3NDQyChQxNTk3MzI4NjU3OTI3MjA4NTAxNQoUMTE4NzUzMjMwNzgxMzMzMzcwODkKFDE0MTY0Mjc5NjM5NjM2NDA4NTQyChQxODM0NTQxMTIzMzQyODkxMzIxNwoTMTYyODE1OTAyNjE2OTA4NjMyMwoTMTE2ODQxNTE4NzMzNzY0MjI4NwoUMTQ4MTU0NjI2MzkzNTk0NDExMTkKFDEwNTM1MjM4MjY1NTQ2NTY4NTg2ChQxMTU2NDk5MTQ2NjU5NTAxMDg2MgoTNTMyOTczNjE2NTUxOTI5NjE4NwoTNzIwNTc0NDkwNDAzNjgzNjgzMgoTNjA5MzE1NTU1NDA4ODk4Nzc2OQoTNzE5Njg0NTU1NTYxNTI5OTc1OBoVChM3MjA1NzQ0OTA0MDM2ODM2ODMyWhM3MjA1NzQ0OTA0MDM2ODM2ODMyaocXEgEwGAAiRBoxAAoqaGhhZXFxbmJlcG1taGlkY2hoVUNZeEZHT0p1dC1UVUIyWVotTGcwT2p3EgIAEioPwg8PGg8_EzGCBCQBgAQrKosBEAEaeIEFCgEA_AQA9PwIB_gF_gHuA_YA-v__AP4JDQT6BP4A8vv2-v8AAAD9AvwFAQAAAPz8BPv8_gAACwoMBgQAAAAd_fP6_AAAAP0C9wT-AQAA7vIE9QIAAAALDvYE_wAAAPoVB_3-_wAA-_8E-AAAAAAF_QL5AAAAACAALcUk3zs4E0AJSE5QAiqEAhAAGvABfwwA_MbPvQC9A-IBxxLgAY06Lv8WHMX_ySn8As7rywD9H_AAyirEAPcAGv_OJ_oAQsnD_hrTIP9MuN7_KN_pAOLK7wEi1dIAMiEj_w_q-_7lDTEA8MDo_8-52f8oOtv-BwX9_-ETyQEHPMwDH945AwX_VgE5-i8B05n8AdfrCgf0-dQAwQgFCADg9_7NBiwDD8AX_RsYC_jmGNL8APcU_PsIQvsRGMMA_PokCxAJAvfI_ef_ywooAFfpEPrJ_TAIARA9-dsJ-vYFuQr3NeD0AOcR5_cL0-MB7eUb9fHz7RL82fbc7Q_6-8fYHAXnIPABIAAtcN7mOjgTQAlIYVACKs8HEAAawAdn8q2-DHAGvVJqCr0cyD-9CeqMO5zMLr3joLm9HG2LPF4FI7wkQx4-k2uvOnOULb2i0X29ORc1vJYgkz3LgDM-5tGIvZhiMzx1dPy9LxOaPQsCEL2JCxC-Nmquus6P-TvlFV6964ioPJKLVrwLv6o9PwqNvNJpwjzJV8K85gwAPULuAr30Hy09P7m3vZ4_Er2t5SS9fIEZvQmlrztqBIE9k5CTvQ9YJDvidwM-xuymvR80lrzsaNy9L70BvBlYBTtmqjs9-KcUPTV_zLwrbRG-JQXYuwGsxLxHdE-8otAyvVY3jTwaagQ-4jGROIPdsLxik6k7cSrIvchqqbzD1Pa9WwWmvRsAYDwbKps9WJ1GPd9ML7tQw9e9xJJ3PWuMzjoZD8K7l02FvcDOTTw21Wk9vfzuPU85SzzeWrY9jyYNPbbfcztc68a9PrTPPCF97jxGp7i8QG6avTCQMbycJXI9VBGIPVvrizpNw0s8FjbevLfUXruyYIe9kdKcPflOCjvCZL89SIcMPecR6bsFI6U91gI7vknlmjrO8ga9kDiKvZzLQ7yhxoM9XIbJvMfbJbyLy5w9pBd6vV94SrxEII08V1OjvAn-Nzyl_0A82eqyvVOSN7o208i9fJQ2PC5zG7ytgTK9t1bFPP4w_LuqHIm8K6YCPg7qDbmg-qi7e8BcvYRRpLuKUDY8ZxhtvejIQjuLEJg9EZ_FPP5M8rm7XEk9HJXbPNZU9TphLSO9_HggPP5r3rjjCo49PYWnvbrnDjk8vfI9SshRvVfBjjkFbp29jC9avbOvFTkR3wm-H2faPcTLm7h1-YA962f7vFE5jbj8s1W9dz2yvYUbMLjfuzI9u6_vPCsU47fKkm-8-O2YOpWByDcTff68iA8cvpMllzfEsU69lf-aPGlBYbiluTo9W8GVvVMOKjgEHc09U4CDPKJvHzeC8og841VxPc9n07g_hx69CB8KvXy7qbgYCBI-kiICvhRrEDrDdyw97kigPW3tGzl9joQ95cI3PADH6rYXH7A8S6CHPTgzx7hgmwW8jERNvXadLzig3Hs9AZm3PVgANrgqTCm9DT29PfDPXzlm3gU96FoJPBMtbjelUkc8YIE-vb_m0jeux_M8zTSrvAtejzX3ASg-cGHdvfFnv7kr3BO8ZJUCvnE9G7irBPC8BLGHvH4FJriSzOq9hiFyPBSDkDiGECE9XHfTvd7zm7fK9HA9IuErPvHLijgny388wtaRPO3w7rhLkQy-l-KaPa5NnzgupJi9fbtbvJDlJ7ggADgTQAlIbVABKnMQABpgIv4AHSo5zRzqMN8F19Itz9To3yzpGP_dB__8BtPH-Ni1wskD___0FvioAAAAC-zvJNgADHX37OsI3xP_8rnNJwN_wB8rjbn5Cv36Gvrj5BH0CDRjAKgMwyn89wRYHQEGIAAty8ceOzgTQAlIb1ACKq8GEAwaoAYAADhCAAAQwQAAskIAAM7CAABQQQAAgMAAAIBCAABAwAAAAAAAAEDAAAAwwQAA4EAAANjBAAAAwAAAEEEAABBCAADAQQAAsMEAALhBAACgwAAA6MEAAKBBAABMwgAAmEEAADDCAAAcwgAAuEEAALjBAACcQgAAQEAAACDBAABwwQAAosIAAIA_AAC-wgAADEIAAABBAACkQgAAQMAAANBBAACYwQAAKEIAAMjBAAAgQQAAeEIAADDCAAAAAAAAHEIAAMhBAAAQQQAAdMIAACDBAADowQAAuEEAAKBBAAAYQgAAjMIAAADAAAAsQgAAAEEAAMhBAACQwgAAJMIAAHDCAADAwAAAzMIAADjCAABAwAAAmMEAABDCAABcQgAAqEEAAFTCAABQQgAAfMIAAOBAAABQwgAA2MEAAKhBAAA4QgAA8MEAAJhCAACIwQAAkEEAAMjBAAC4QQAA6EEAACjCAADQQQAA6EEAAIjBAABEQgAAgMEAAKBBAABQQgAALMIAAKjBAABgwQAAmEEAAJRCAACgwgAALMIAADBCAAAswgAAyMEAAEBAAAAwQgAAiEEAAKhBAABgQgAAwEEAAKhBAAAcwgAAAEAAAHDBAACOQgAAwEEAAILCAAAYwgAAEMIAAMDBAAAcwgAAQMAAAPBBAAAkwgAAcMEAADBBAAAQwgAAgEEAAKBAAAC4wQAAiMIAALBBAAAgQgAAUMEAAMpCAACoQQAApEIAAJrCAABAwAAAAMAAAJBBAABIQgAASMIAABhCAACUQgAAoEEAAHBBAACAQQAA-MEAABzCAADQQQAAQEEAAIhCAAAsQgAAYMEAAKjCAADQwQAAQMAAADzCAABkwgAAKEIAACBBAAAQwgAAEEEAAABAAAA8wgAAsEIAAABCAAAQQQAA8MEAABRCAABAQAAAMMIAAIbCAACgQAAAiMEAANjBAADIQQAAoEEAAIDCAAAMwgAAFMIAACzCAABMQgAAkMEAAEDCAACEwgAAUEEAANBBAABkQgAAAMEAAGBBAAD4wQAAAEAAAMBBAAAwQQAAiMEAACxCAAAQQSAAOBNACUh1UAEqjwIQABqAAgAAoDwAANi9AABkPgAAEL0AACS-AABsPgAA2L0AAPq-AABUvgAABD4AAEC8AACKvgAABD4AALg9AACyvgAAXL4AAFQ-AABwPQAADD4AAA8_AAB_PwAAgDsAAMi9AAC4PQAAEL0AALi9AAAkPgAAoDwAAEC8AABkPgAAgDsAAIC7AABwvQAAPD4AAMi9AACovQAAPD4AAI6-AADIvQAA6L0AAJa-AAB0vgAAED0AAEA8AAA0vgAAUL0AABC9AAAEvgAAmr4AAMi9AAAkPgAALD4AAHw-AACCPgAAmr4AAFC9AAA_PwAA6D0AALg9AACAOwAAHL4AADA9AAAQPQAAtr4gADgTQAlIfFABKo8CEAEagAIAAAS-AAAwvQAAHL4AADW_AAAEPgAADD4AAAQ-AACovQAAoLwAAIg9AADIvQAAiL0AAOg9AADgvAAAJD4AABC9AABAvAAAIz8AAI6-AABUPgAA-L0AAAS-AABMPgAA2L0AADA9AAA8PgAALL4AABC9AADgPAAA4DwAAEC8AAAMPgAALL4AALi9AABQvQAAQDwAALg9AADYPQAAQDwAAKa-AABcPgAA4LwAAOC8AACoPQAAcL0AAHC9AAB_vwAAqL0AAKC8AABEPgAAFD4AADC9AAD4PQAAZD4AAFy-AACYPQAAgLsAAAy-AAAQPQAAqL0AADQ-AABAvAAAiL0AAFy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=GZGW5hcK86w","parent-reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7205744904036836832"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"11775056631151210748":{"videoId":"11775056631151210748","title":"Integration of Inverse \u0007[cosh\u0007] (\u0007[cosh\u0007]^-1(x))","cleanTitle":"Integration of Inverse cosh (cosh^-1(x))","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Sp5ii6G46UI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Sp5ii6G46UI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWXhGR09KdXQtVFVCMllaLUxnME9qdw==","name":"Easymaths4u","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Easymaths4u","origUrl":"http://www.youtube.com/@Easymaths4u","a11yText":"Easymaths4u. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":110,"text":"1:50","a11yText":"Süre 1 dakika 50 saniye","shortText":"1 dk."},"views":{"text":"9,1bin","a11yText":"9,1 bin izleme"},"date":"27 oca 2013","modifyTime":1359244800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Sp5ii6G46UI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Sp5ii6G46UI","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":110},"parentClipId":"11775056631151210748","href":"/preview/11775056631151210748?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/11775056631151210748?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15263656455838767821":{"videoId":"15263656455838767821","title":"Derivative of \u0007[cosh\u0007](x)","cleanTitle":"Derivative of cosh(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=T2x2gklmwq8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/T2x2gklmwq8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUTNqYlZBMFVDdUJKZnFUV3hPYjFhUQ==","name":"Prime Newtons","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Prime+Newtons","origUrl":"http://www.youtube.com/@PrimeNewtons","a11yText":"Prime Newtons. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":199,"text":"3:19","a11yText":"Süre 3 dakika 19 saniye","shortText":"3 dk."},"views":{"text":"3,8bin","a11yText":"3,8 bin izleme"},"date":"30 haz 2023","modifyTime":1688083200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/T2x2gklmwq8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=T2x2gklmwq8","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":199},"parentClipId":"15263656455838767821","href":"/preview/15263656455838767821?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/15263656455838767821?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12778427531885698618":{"videoId":"12778427531885698618","title":"How to Integrate coshx - Step by Step Tutorial","cleanTitle":"How to Integrate coshx - Step by Step Tutorial","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xITx1h7UE5M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xITx1h7UE5M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGRhckJvNGpYRExzM2J0LTcyeHZOZw==","name":"The Complete Guide to Everything","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Complete+Guide+to+Everything","origUrl":"http://www.youtube.com/@TheCompleteGuide1","a11yText":"The Complete Guide to Everything. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":199,"text":"3:19","a11yText":"Süre 3 dakika 19 saniye","shortText":"3 dk."},"views":{"text":"3,1bin","a11yText":"3,1 bin izleme"},"date":"20 nis 2020","modifyTime":1587412210000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xITx1h7UE5M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xITx1h7UE5M","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":199},"parentClipId":"12778427531885698618","href":"/preview/12778427531885698618?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/12778427531885698618?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1777253507816056849":{"videoId":"1777253507816056849","title":"Inverse function of \u0007[cosh\u0007] x","cleanTitle":"Inverse function of cosh x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dlobxijULUs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dlobxijULUs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUEJJcjNtaW9QYllCS3BXWGFmV2k4QQ==","name":"Ah Sing TV","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ah+Sing+TV","origUrl":"http://www.youtube.com/@ahsingtv","a11yText":"Ah Sing TV. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":196,"text":"3:16","a11yText":"Süre 3 dakika 16 saniye","shortText":"3 dk."},"views":{"text":"6,7bin","a11yText":"6,7 bin izleme"},"date":"12 mar 2022","modifyTime":1647043200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dlobxijULUs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dlobxijULUs","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":196},"parentClipId":"1777253507816056849","href":"/preview/1777253507816056849?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/1777253507816056849?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7234224056201505506":{"videoId":"7234224056201505506","title":"How to differentiate the inverse \u0007[cosh\u0007] of x (\u0007[cosh\u0007]^-1x) | Step By Step","cleanTitle":"How to differentiate the inverse cosh of x (cosh^-1x) | Step By Step","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=u2GTHoV4yhU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/u2GTHoV4yhU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjY1ck5vN2lSajAxQUE0ZmlaRHlmdw==","name":"Quantum Mechanist","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Quantum+Mechanist","origUrl":"http://www.youtube.com/channel/UCN65rNo7iRj01AA4fiZDyfw","a11yText":"Quantum Mechanist. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":452,"text":"7:32","a11yText":"Süre 7 dakika 32 saniye","shortText":"7 dk."},"date":"17 oca 2021","modifyTime":1610866800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/u2GTHoV4yhU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=u2GTHoV4yhU","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":452},"parentClipId":"7234224056201505506","href":"/preview/7234224056201505506?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/7234224056201505506?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7710768368219701697":{"videoId":"7710768368219701697","title":"Laplace Transform of \u0007[cosh\u0007]^2(kt)","cleanTitle":"Laplace Transform of cosh^2(kt)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2cssER3S3Fo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2cssER3S3Fo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":318,"text":"5:18","a11yText":"Süre 5 dakika 18 saniye","shortText":"5 dk."},"views":{"text":"24,9bin","a11yText":"24,9 bin izleme"},"date":"1 kas 2020","modifyTime":1604188800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2cssER3S3Fo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2cssER3S3Fo","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":318},"parentClipId":"7710768368219701697","href":"/preview/7710768368219701697?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/7710768368219701697?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4336102306689087442":{"videoId":"4336102306689087442","title":"Find the Derivative of sinh & \u0007[cosh\u0007] (Examples)","cleanTitle":"Find the Derivative of sinh & cosh (Examples)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5qAHRHyogxY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5qAHRHyogxY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWW1MRENILWMyZFRFQjVWREh5YWNwZw==","name":"Ali BA","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ali+BA","origUrl":"http://www.youtube.com/@ali056966","a11yText":"Ali BA. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":266,"text":"4:26","a11yText":"Süre 4 dakika 26 saniye","shortText":"4 dk."},"date":"18 şub 2022","modifyTime":1645142400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5qAHRHyogxY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5qAHRHyogxY","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":266},"parentClipId":"4336102306689087442","href":"/preview/4336102306689087442?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/4336102306689087442?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15973286579272085015":{"videoId":"15973286579272085015","title":"Derivation of \u0007[cosh\u0007] and sinh","cleanTitle":"Derivation of cosh and sinh","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NVC1w4_ulzI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NVC1w4_ulzI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb09qVHh6LXU1elUwVzM4ek1rUUlGdw==","name":"Dr Peyam","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Dr+Peyam","origUrl":"http://www.youtube.com/@drpeyam","a11yText":"Dr Peyam. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1749,"text":"29:09","a11yText":"Süre 29 dakika 9 saniye","shortText":"29 dk."},"views":{"text":"32,2bin","a11yText":"32,2 bin izleme"},"date":"11 oca 2019","modifyTime":1547233202000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NVC1w4_ulzI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NVC1w4_ulzI","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":1749},"parentClipId":"15973286579272085015","href":"/preview/15973286579272085015?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/15973286579272085015?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11875323078133337089":{"videoId":"11875323078133337089","title":"Inverse \u0007[cosh\u0007](x)","cleanTitle":"Inverse cosh(x)","host":{"title":"YouTube","href":"http://www.youtube.com/live/smFk73L5Ol0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/smFk73L5Ol0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":628,"text":"10:28","a11yText":"Süre 10 dakika 28 saniye","shortText":"10 dk."},"views":{"text":"60,5bin","a11yText":"60,5 bin izleme"},"date":"3 kas 2018","modifyTime":1541278314000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/smFk73L5Ol0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=smFk73L5Ol0","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":628},"parentClipId":"11875323078133337089","href":"/preview/11875323078133337089?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/11875323078133337089?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14164279639636408542":{"videoId":"14164279639636408542","title":"Is \u0007[cosh\u0007](x) THE SAME as cos(x)?","cleanTitle":"Is cosh(x) THE SAME as cos(x)?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_FoY4hDDEVA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_FoY4hDDEVA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeG5vXzBtdVlpcTA1dmR5NTVHemtJZw==","name":"DFulks Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DFulks+Math","origUrl":"http://www.youtube.com/@DFulksMath","a11yText":"DFulks Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":576,"text":"9:36","a11yText":"Süre 9 dakika 36 saniye","shortText":"9 dk."},"views":{"text":"54,4bin","a11yText":"54,4 bin izleme"},"date":"16 tem 2025","modifyTime":1752624000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_FoY4hDDEVA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_FoY4hDDEVA","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":576},"parentClipId":"14164279639636408542","href":"/preview/14164279639636408542?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/14164279639636408542?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18345411233428913217":{"videoId":"18345411233428913217","title":"52: cos | acos | \u0007[cosh\u0007] | acosh | TensorFlow | Tutorial","cleanTitle":"52: cos | acos | cosh | acosh | TensorFlow | Tutorial","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mNYnzD2sMlY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mNYnzD2sMlY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDelVwSFFBZmozdWxtSmtUQWZCdFhMdw==","name":"learndataa","isVerified":false,"subscribersCount":0,"url":"/video/search?text=learndataa","origUrl":"http://www.youtube.com/@learndataa","a11yText":"learndataa. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":252,"text":"4:12","a11yText":"Süre 4 dakika 12 saniye","shortText":"4 dk."},"date":"23 tem 2023","modifyTime":1690070400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mNYnzD2sMlY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mNYnzD2sMlY","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":252},"parentClipId":"18345411233428913217","href":"/preview/18345411233428913217?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/18345411233428913217?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1628159026169086323":{"videoId":"1628159026169086323","title":"Derivative of \u0007[cosh\u0007]^-1(x), two ways","cleanTitle":"Derivative of cosh^-1(x), two ways","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=z9rscwKcVyY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/z9rscwKcVyY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":414,"text":"6:54","a11yText":"Süre 6 dakika 54 saniye","shortText":"6 dk."},"views":{"text":"47,5bin","a11yText":"47,5 bin izleme"},"date":"4 kas 2018","modifyTime":1541289600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/z9rscwKcVyY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=z9rscwKcVyY","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":414},"parentClipId":"1628159026169086323","href":"/preview/1628159026169086323?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/1628159026169086323?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1168415187337642287":{"videoId":"1168415187337642287","title":"Differentiation of inverse \u0007[cosh\u0007] (\u0007[cosh\u0007]^-1(x))","cleanTitle":"Differentiation of inverse cosh (cosh^-1(x))","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KxXBvRtW-Pc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KxXBvRtW-Pc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWXhGR09KdXQtVFVCMllaLUxnME9qdw==","name":"Easymaths4u","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Easymaths4u","origUrl":"http://www.youtube.com/@Easymaths4u","a11yText":"Easymaths4u. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":59,"text":"00:59","a11yText":"Süre 59 saniye","shortText":""},"views":{"text":"4,3bin","a11yText":"4,3 bin izleme"},"date":"27 oca 2013","modifyTime":1359244800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KxXBvRtW-Pc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KxXBvRtW-Pc","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":59},"parentClipId":"1168415187337642287","href":"/preview/1168415187337642287?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/1168415187337642287?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14815462639359441119":{"videoId":"14815462639359441119","title":"Inverse hyperbolic cosine [\u0007[cosh\u0007]^-1(x)] as a logarithm","cleanTitle":"Inverse hyperbolic cosine [cosh^-1(x)] as a logarithm","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8DyhW_WUybk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8DyhW_WUybk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWgyNTEwZTBBSjVCRWNvcHJ0bXdiZw==","name":"MasterWuMathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MasterWuMathematics","origUrl":"http://www.youtube.com/@MasterWuMathematics","a11yText":"MasterWuMathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":515,"text":"8:35","a11yText":"Süre 8 dakika 35 saniye","shortText":"8 dk."},"views":{"text":"16,2bin","a11yText":"16,2 bin izleme"},"date":"23 nis 2021","modifyTime":1619136000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8DyhW_WUybk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8DyhW_WUybk","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":515},"parentClipId":"14815462639359441119","href":"/preview/14815462639359441119?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/14815462639359441119?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10535238265546568586":{"videoId":"10535238265546568586","title":"Easy way to Find \u0007[Cosh\u0007] and Sinsh of a Complex Number","cleanTitle":"Easy way to Find Cosh and Sinsh of a Complex Number","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5B4V3fkpFtk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5B4V3fkpFtk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDazJlVTZmZF9zQVQtaGlTXzdVQnFIUQ==","name":"Unlimeted XP","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Unlimeted+XP","origUrl":"http://www.youtube.com/@unlimetedxp9656","a11yText":"Unlimeted XP. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":336,"text":"5:36","a11yText":"Süre 5 dakika 36 saniye","shortText":"5 dk."},"views":{"text":"20,5bin","a11yText":"20,5 bin izleme"},"date":"27 kas 2015","modifyTime":1448582400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5B4V3fkpFtk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5B4V3fkpFtk","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":336},"parentClipId":"10535238265546568586","href":"/preview/10535238265546568586?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/10535238265546568586?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11564991466595010862":{"videoId":"11564991466595010862","title":"How to integrate cos(ix): The hyperbolic cosine function \u0007[cosh\u0007](x).","cleanTitle":"How to integrate cos(ix): The hyperbolic cosine function cosh(x).","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=GIfNeODbNr8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/GIfNeODbNr8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUEthT3FFcXpZelRQMXNMdTZTeEJrZw==","name":"Andrew Chambers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Andrew+Chambers","origUrl":"http://www.youtube.com/@andrewchambers2941","a11yText":"Andrew Chambers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":335,"text":"5:35","a11yText":"Süre 5 dakika 35 saniye","shortText":"5 dk."},"date":"7 ara 2019","modifyTime":1575676800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/GIfNeODbNr8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=GIfNeODbNr8","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":335},"parentClipId":"11564991466595010862","href":"/preview/11564991466595010862?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/11564991466595010862?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5329736165519296187":{"videoId":"5329736165519296187","title":"Find the Derivative of y = \u0007[cosh\u0007]^2(5x)","cleanTitle":"Find the Derivative of y = cosh^2(5x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YqZMycEvJzQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YqZMycEvJzQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":104,"text":"1:44","a11yText":"Süre 1 dakika 44 saniye","shortText":"1 dk."},"views":{"text":"9,4bin","a11yText":"9,4 bin izleme"},"date":"7 ara 2020","modifyTime":1607299200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YqZMycEvJzQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YqZMycEvJzQ","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":104},"parentClipId":"5329736165519296187","href":"/preview/5329736165519296187?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/5329736165519296187?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7205744904036836832":{"videoId":"7205744904036836832","title":"Integration arccosh \u0007[cosh\u0007]^ 1 practice question","cleanTitle":"Integration arccosh cosh^ 1 practice question","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=GZGW5hcK86w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/GZGW5hcK86w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWXhGR09KdXQtVFVCMllaLUxnME9qdw==","name":"Easymaths4u","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Easymaths4u","origUrl":"http://www.youtube.com/@Easymaths4u","a11yText":"Easymaths4u. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":49,"text":"00:49","a11yText":"Süre 49 saniye","shortText":""},"date":"23 mayıs 2015","modifyTime":1432339200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/GZGW5hcK86w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=GZGW5hcK86w","reqid":"1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL","duration":49},"parentClipId":"7205744904036836832","href":"/preview/7205744904036836832?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","rawHref":"/video/preview/7205744904036836832?parent-reqid=1765326007312116-5587653578356334228-balancer-l7leveler-kubr-yp-sas-205-BAL&text=Cosh+Qkr","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"5876535783563342287205","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Cosh Qkr","queryUriEscaped":"Cosh%20Qkr","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}