{"pages":{"search":{"query":"Derivative","originalQuery":"Derivative","serpid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","parentReqid":"","serpItems":[{"id":"14699431959474668362-0-0","type":"videoSnippet","props":{"videoId":"14699431959474668362"},"curPage":0},{"id":"3819997292942217070-0-1","type":"videoSnippet","props":{"videoId":"3819997292942217070"},"curPage":0},{"id":"1705299247861181645-0-2","type":"videoSnippet","props":{"videoId":"1705299247861181645"},"curPage":0},{"id":"video-related-suggest-0-3","type":"relatedSuggest","props":{"title":"Bunlar aranıyor","columns":[[{"text":"Derivative vs slope","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Derivative+vs+slope&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Derivatives examples","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Derivatives+examples&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Implicit differentiation","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Implicit+differentiation&source=video-related-suggest&rq=1&src=int_discovery_recommender"}],[{"text":"Chain rule","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Chain+rule&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Second derivative","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Second+derivative&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Derivative calculator","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Derivative+calculator&source=video-related-suggest&rq=1&src=int_discovery_recommender"}]]},"curPage":0},{"id":"7956730164858765086-0-4","type":"videoSnippet","props":{"videoId":"7956730164858765086"},"curPage":0},{"id":"R-I-113683-5-0-5","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":5,"grab":"dERlcml2YXRpdmUK","statId":5,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","ui":"desktop","yuid":"2799475861765325754"}}},"isAdult":false,"position":5,"placement":"empty"},"curPage":0},{"id":"5047184969865005198-0-6","type":"videoSnippet","props":{"videoId":"5047184969865005198"},"curPage":0},{"id":"12797477848405756618-0-7","type":"videoSnippet","props":{"videoId":"12797477848405756618"},"curPage":0},{"id":"14808398322726514600-0-8","type":"videoSnippet","props":{"videoId":"14808398322726514600"},"curPage":0},{"id":"15861766112568300342-0-9","type":"videoSnippet","props":{"videoId":"15861766112568300342"},"curPage":0},{"id":"2119004810168048982-0-10","type":"videoSnippet","props":{"videoId":"2119004810168048982"},"curPage":0},{"id":"17094361778524435028-0-11","type":"videoSnippet","props":{"videoId":"17094361778524435028"},"curPage":0},{"id":"R-I-113683-5-0-12","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":12,"grab":"dERlcml2YXRpdmUK","statId":12,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","ui":"desktop","yuid":"2799475861765325754"}}},"isAdult":false,"position":12,"placement":"empty"},"curPage":0},{"id":"14925579327899708452-0-13","type":"videoSnippet","props":{"videoId":"14925579327899708452"},"curPage":0},{"id":"17994385035140575010-0-14","type":"videoSnippet","props":{"videoId":"17994385035140575010"},"curPage":0},{"id":"13410891452114116724-0-15","type":"videoSnippet","props":{"videoId":"13410891452114116724"},"curPage":0},{"id":"16879689330109543102-0-16","type":"videoSnippet","props":{"videoId":"16879689330109543102"},"curPage":0},{"id":"12017103862389653167-0-17","type":"videoSnippet","props":{"videoId":"12017103862389653167"},"curPage":0},{"id":"4725985985667336431-0-18","type":"videoSnippet","props":{"videoId":"4725985985667336431"},"curPage":0},{"id":"3252975346290198101-0-19","type":"videoSnippet","props":{"videoId":"3252975346290198101"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dERlcml2YXRpdmUK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","ui":"desktop","yuid":"2799475861765325754"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DDerivative"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"0743380137796380737222","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1374658,0,51;1419615,0,88;1336776,0,52;284409,0,52;151171,0,81;1281084,0,93;287509,0,14;1231501,0,34"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DDerivative","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Derivative","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Derivative","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Derivative: 3 bin video Yandex'te bulundu","description":"\"Derivative\" sorgusu için arama sonuçları Yandex'te","shareTitle":"Derivative — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y127105b6a6abcddc874b3598657a8b0c","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1374658,1419615,1336776,284409,151171,1281084,287509,1231501","queryText":"Derivative","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"2799475861765325754","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1441146,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765325872","tz":"America/Louisville","to_iso":"2025-12-09T19:17:52-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1374658,1419615,1336776,284409,151171,1281084,287509,1231501","queryText":"Derivative","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"2799475861765325754","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"0743380137796380737222","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":152,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"2799475861765325754","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1729.0__491d2077c35fc53c28577367d9c4833c662b0670","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"14699431959474668362":{"videoId":"14699431959474668362","docid":"34-9-16-ZF6F64B68AA78CA7F","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/ap-c... Sal solves a couple of problems where he interprets the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4270806/48d349d196275c4b56916ce6ad8479ce/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/noTqrwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DS-dcMvJlMJs","linkTemplate":"/video/preview/14699431959474668362?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative as slope of curve | Derivatives introduction | AP Calculus AB | Khan Academy","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=S-dcMvJlMJs\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhYKFDE0Njk5NDMxOTU5NDc0NjY4MzYyWhQxNDY5OTQzMTk1OTQ3NDY2ODM2MmqSFxIBMBgAIkQaMAAKKWhoZG92aXd4c2V2ZnFyZ2hoVUM0YS1HYmR3N3ZPYWNjSG1GbzQwYjlnEgIAESoQwg8PGg8_E_ECggQkAYAEKyqLARABGniBCQkFDgP9APX-BAb-Bf4BDwMTAfcBAADp9QH8-f8BAAX_-ur8AAAA_gwHAwAAAAD28v0K9_8BAA4A_QP7AAAAGAT8_QMAAAAKBvYJ_gEAAO3y_QwE_wAADQ4P9gAAAAD7Gfz5AP8AAPT9_fYAAAAAEP8DEAAAAAAgAC3wYMw7OBNACUhOUAIqhAIQABrwAXr9Of3Ay7YAs-v0_6z75AG6Qe8BOR7YALnZ4wHeGb4BkbLpAf9DIQDx7uQAqCpc_jPjyP_xkPIALdT-_u_z1wLzyVYB9hXqAjNCFgPcywX-8EH5_Q75DwAOy97_FlP2-xQVF_woKLT9zRHDAjP5QQEc5-sFJN4K_v_BDQfo5f79wBvA_PsKAwUe7gXy6w0mEf4MEwTdWfr_8MPF--ffKPwl1BgCC0HD_C8s9Pz1H_L-gdDl-hgBzwENJRgGv87ZB83_Ee3l1ev1APX5BffWAvK9TecJfgrvCBa16hDuJ_H1ydj94vfg9ADQ0PHz0sr82iAALdLb0jo4E0AJSGFQAirPBxAAGsAHy4S3vo97CDsWsHO9vToFO9YEDL2VcNe8-INGvVbBg7ztxPq7kKIePkoS3zy3QwE8IhiHPMNs-LytiYW7y4AzPubRiL2YYjM83PQXvn7UNT2qYg08T-XUvfr3jzy67CE9JAWLvQMWj73k-z28HQDxPfXVFb35njG99r08vdq9hj1saPm8omLcPXVWsLz3WBq9lGdevAOgwLzFgxc9G_IRPCxF0j3fQaK7bus9PYDAnLtEqoO8744cvjtqUb14nz69u3xrvG5unD1JvpI8WP68vcXZnr0qS187D6mzPI94CTzYUvY7lVKGPSMxwTy7ZWK8uavXvPO_pr0uqxC9wTMmvWZdrbxeR9w83bQZPj0W0TwDYPq7Ka5KvZUgrTwvdni6IbeVPNj1673xVqc6WH4vPXT1Pjw7eFw8PF23PdYleT2KNQo6CJvwvP9jHD0XDZk81MqOPEnTZb3x-LC7HLZNPZCuCL0SaZu8WqjrPKOmAr0sP5U7WpwUO7cGG7y5hj48FryJO6muMrzuWHC7yVNbPQCAjb2oMFs8bamjvdnFPr3Hi7-7Yy-fPSb_oz24YjW88PlhPRRfDb53hBG7xHvOPYU1r72HFY87OVkPvcGpz72ngww8IY8AvtV7uj0ri6G6anM1O695Fb0g9dO76ZPBPJnRhL3_dry7N0TGvZqHor0c-Vo5RTG3u48Y3T1Nn3c6L1O-PTj5LT7HFV86gVv3PQhLlr34X-44uHRMvSGH7zsElli6nsEVvd9lcD0MY0a6DW0gPqwmADt_Q8y44WLgvDjNjLwGZaW4rm7rvKbwID0Llp65PxmjvLL2V71D9Qu4iQ-3vbdCuL0xQro4vHf1O8ssAr2-mAG5r5-0PaaX2DxDyps5Ux6SvUobyL3hc5s3CK7SvVhqJz0SXiG5BFgkPmBZqTzwLuw4C0BIPGSvhz3t5hE2OMZpvb0Imb3SOxY56h4evcgXjj05yUc4bq6QPIl9ozv2i1q3klroPIvxqz26G9Y3eo5IPcrkTz1cU6U4ogipPTxQ5z3EjfY4zMgKvbNPNr22j9U47hC1PVb3wz2j8CG5mv-cvdCQmz0C2y44vTKUvVTrk73807q2rg5APnjTLb3sin22EBSePRDJUD1Jd7I3SeGlPdx3FDzUtiO5K9wTvGSVAr5xPRu4d0iGvez4L71Aaj-4Nay-vdgRYjwk22g4HeMMPGdG371pUBK4-WTlPcjZmj21QNY2T8sPPU4f5jyHNbe4fifMvSy8iz3JKcE4rHovvVqc8Tyoo-w3IAA4E0AJSG1QASpzEAAaYCzoABEGFOcIxyfg1Obp6tLiuNAOxiT_G8D_5jPiEOkKurb47gAV-fj9oAAAABQg1RsWAAV_y_oPHOcbB_alzBk6YPgGVZDL-xHI9i4P-gbSLAlHHADOJaxVAKHBUx84_iAALTCJFDs4E0AJSG9QAiqvBhAMGqAGAABAwAAAAMEAAAhCAAAYwgAA4MAAADDBAAC0QgAAAEEAAAjCAACAwAAAeEIAAIbCAACEwgAAPMIAAOBBAABgwgAA-MEAABzCAAAAwAAAuMEAAKDBAABYwgAAMMEAAFDBAABAwAAAMMEAAKbCAACgQAAAUEIAAChCAAAUwgAAsEEAAMTCAACgQAAAwMIAAJjBAACAPwAASEIAAJjBAADgQQAAoMAAAHRCAABgQgAAYEEAAOBBAABgwgAAJMIAAMDBAADKQgAAkEEAAFDBAABAQAAAoEEAAADAAACUQgAAqMEAAPbCAACAwQAAwEAAABRCAABQQQAAVMIAAEjCAACswgAAwEAAADjCAADgwQAAMMIAABjCAAAgwgAAPEIAABBCAAA0wgAAsEEAAPBBAACSwgAAoMEAAIDAAABsQgAAcEEAAAzCAAAwQgAAqMEAAAAAAABQQQAAIMEAAFxCAAAgQgAAGEIAAIbCAAD4QQAApkIAACDCAABUwgAAMEIAALjCAAAEQgAAwMAAADBCAACoQQAAUMIAAGBCAADAQAAAMMEAAETCAAAQQQAAoMEAADBCAAAwQQAAPEIAAFBCAAAAQAAA6MEAAKhBAADwwQAAiEEAAGBBAAAAAAAAUMIAAHDCAAD4wQAAkMEAACTCAAAYwgAAFEIAAJhBAADIQQAAQMEAAHjCAACgQQAA6EEAABDBAABcwgAAYEIAAFBBAADAwAAAYEEAAMBAAACYwQAAUMIAANDBAABgwQAA8EEAAJjBAABMQgAAMEEAAEzCAADIQQAAqEEAADDBAADYwQAAMEEAAEBCAADowQAAgEAAAODBAAAswgAAAMEAACDCAAAsQgAAjMIAAIhBAADgwAAACMIAAIA_AACoQQAASEIAAKpCAAAsQgAAyMEAACjCAABYQgAAyMEAADjCAAAIwgAAcMEAAEDBAAAAwgAAkEEAAJhBAACowQAAYMEAAJDBAADgQAAApEIAAFDBAACEwgAACEIAAJjBAACAQAAA6MEAADDCAAAQwQAAuEEAAKBBAADQQQAAAAAAAABAAAB4wgAAgsIgADgTQAlIdVABKo8CEAAagAIAAPi9AACCPgAAsj4AAEC8AABwPQAAbD4AAMI-AAAzvwAAlr4AAAS-AACAuwAATL4AAHC9AACWPgAAqD0AAAy-AAA0PgAA4DwAAFA9AADqPgAAfz8AAFC9AACovQAA2D0AAIq-AAAsvgAARD4AAKK-AABAvAAAJD4AAAQ-AAA0vgAAEL0AALK-AAAkPgAAiL0AAEA8AAD6vgAAir4AAEy-AACavgAAiL0AAJI-AABQvQAAyD0AAEC8AACKPgAAir4AAGy-AAABvwAAcL0AAOg9AABcvgAAmD0AAJq-AAAQvQAART8AABA9AACCPgAAmj4AAII-AADIvQAAyD0AAEQ-IAA4E0AJSHxQASqPAhABGoACAACivgAAgDsAAOC8AAA7vwAAyD0AABQ-AABwPQAAML0AAHS-AAB8PgAAEL0AAIi9AABEvgAALL4AABQ-AADgvAAAmD0AAC8_AAAkPgAArj4AABy-AAA0PgAAQLwAAIA7AACYvQAAcL0AAMg9AAAQPQAAcD0AABA9AAC4PQAAED0AADS-AABwvQAAND4AAIi9AABkPgAADD4AAN6-AACovQAAJL4AAEw-AADYvQAAND4AAHC9AAAQPQAAf78AAKC8AABMPgAAFD4AALg9AABsvgAAUD0AANg9AACGPgAAMD0AANg9AABAPAAA4DwAAJi9AADIPQAAgj4AADw-AAAUviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=S-dcMvJlMJs","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14699431959474668362"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3819997292942217070":{"videoId":"3819997292942217070","docid":"34-2-10-Z7B6651DAFC86433C","description":"This calculus video tutorial provides a basic introduction into the definition of the derivative formula in the form of a difference quotient with limits. It explains how to find the derivative...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2966453/8ed213eefe0ef3a78c52158866b10f99/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/eDRbtgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-aTLjoDT1GQ","linkTemplate":"/video/preview/3819997292942217070?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Definition of the Derivative","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-aTLjoDT1GQ\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhUKEzM4MTk5OTcyOTI5NDIyMTcwNzBaEzM4MTk5OTcyOTI5NDIyMTcwNzBqkxcSATAYACJFGjEACipoaHdkYWhpeWRwbWRxb2RiaGhVQ0VXcGJGTHpvWUdQZnVXVU1GUFNhb0ESAgASKhDCDw8aDz8TgguCBCQBgAQrKosBEAEaeIH_BPsB_gIA6QYOAwQB_wD4AAQJ-v79AO4E_PgFAAAA3f77BQD-_wAGAgMD9gAAAPb4___z_wEACP8EBAQAAAAO9e0B_gAAAA8A-wb-AQAA-AH8AQP_AAAABQj-_wAAAPkF_vj-AAAAAP_7DAAAAAD9_PYOAAAAACAALRPz2Ts4E0AJSE5QAiqEAhAAGvABev8dAJ4Fyf0X3roA9iTXAoH6Ef88FcAAxvX-ABj22QAX__AAwfwTAQggFQHVIvsA-RL1ANDdGQAj3v7-4c4eAckPMgA49gQBIA0A_yQA4v6yFu3_1AMsAQvW5f_uP_kAC_EU-fcGEPrU89AAOM8qAvgW_QIPIhYBB_kyBBsQEwHFANj8-_UICOgI9ALB_iIBDuX8Cfwn2vnt9gED_egMBiXm7QIW9NkAOfnfA-g0FvsPCRr5B_Ts-gQ7GP8INdr30tn3AfX1Du0dGxH2C_4D8wzl8gYK7fQIOu8ADiDzBuzdGQADGwgGERwh7wUlwBATIAAtxv0GOzgTQAlIYVACKs8HEAAawAdqFtC-rJQZPVMN97tmTge-_iqfu4L4pby726u8pTIgPZPb2zz2tkk-klKKvVFXDT00yR69qHOgPPzF7LzLgDM-5tGIvZhiMzx6Fy--CDwwPSmf1LxtO-29fbg_vBryFTzMvpG98bShvGr07juydZo9pcvRvC3oAbzD-ES8TIlEPS1ZWr28fMY8bg4fvCINeL3pQ6e9Q-icu6SDP7zr4LA9f3iMvHwVT7zxBZc9CyYevae0Gb0WkmK9EV51uz7007zw58o7H4NVPeKPhzxY_ry9xdmevSpLXzvr9rO91r4lPFXXxrvMehE-FocTPXyTi7xi9Iw9nn7Qvb52Xbut-QG-VKWSPCHR3zs-6r896LT4PHYKj7eu1wS-DZ8-PexFmbxz2P08SfaEOeXHKbws_qU850DFPalorDwgnCo9SKrOOsJs_rvDo2i9_k4JPWuU_zwWhNI9RXaPvSdnKLyqXag9S3APPG41a7xz6Um9A208O1E7MryDid-9XGupPfujOTz6_KQ6l9pcvUbRATwFI6U91gI7vknlmjrHg229VxCOvZ23VrzrE8o8CeZDPG5Cq7xO8M09ZjPnvf9XADwOHCe7GmsfPWI0abvA9kK9uP5ivU31gThrAMW9xHUxvYNujrv8ZYG9jqFSPN_rWrwzjea8MKCnPeCgHLyZNtK8vFrOvRicLzqccoA9ajxHPG06AryQg9I9RpRbPdUcFLhiL1Q9KaPAvL93I7viAD-9yd2MvMOp5jrFE0u9-I3KvT_tR7mhndM9UYGYvZedUTl0lAi9GmlOPE9RmjoHluO9-5vrPDSVejeJyNU8fT-FvUdahTmtL7c6_RLxvbwjiTkW85g9f1ayO1kE97qsi9s8OJbBPTtghDkvUPK9qFycvUOAv7c3U6G8s68VOf0yNTkWjbA9m5KHvJ58mTjO2ek6wEhjPdJLsTj9xhI9GZrhvNmVeriLqwg86AECPXE1Tjdar4M9AY_DvabRWjkp23a85-yzPSefgDe1ITW8L8vwulxEnrjclBw9TqKUPbrAhzeaBxA93jjJvQg0-zatLxc9W0SUPL8GHblYn8y9pi40PYN_LDlBaWI78EDTPGL7_Db2xjq9SJFvu3v9xrgQFJ49EMlQPUl3sjfB4ys-3KVovAeJdLmr3xa9DfsdvqO8_rjDEYM5UFUhvYShK7ebS1u9kjynPW1wgTi9rwU9pUkJvq2ehbjK9HA9IuErPvHLiji6E6y8cty5PXQwGLkjaMy9DQH6O28GBjfeAR69GbGNO9UDPjggADgTQAlIbVABKnMQABpgKP4APfYP5xnzOfDp38IT-cPq_O_AO__cz__aFLEp8CXlzvPN_y6-CgajAAAAKQ7uDMwA7H_K1ecL6hYSyMIJ6S9xDy0Bq78_27TYIzwg2gspGxE5ANDqqz8o0b4kESoeIAAtKO0XOzgTQAlIb1ACKq8GEAwaoAYAADxCAAAAwgAAwEEAAPDBAADoQQAAkMEAANZCAAAAQQAAyMEAACxCAAAIQgAASMIAAADCAACYQQAAAAAAAJhBAABgQgAALMIAAPhBAABAQAAAAMIAAODBAABgwgAAYMEAAEzCAAAgwQAAsEEAAGBBAADQQQAAYEEAAHzCAADAQAAAxMIAAABAAADKwgAAQEEAAEBCAAB8QgAAqMEAALhBAABwQQAAUEEAAOBBAAD4wQAAEEEAANrCAAAEQgAAhkIAABhCAACeQgAAYEEAAOjBAADIwQAAQEAAAHBBAACOQgAA0sIAAPBBAABgQQAA2EEAAIDAAACewgAAHMIAABTCAABAwQAAoMIAAFTCAABgwgAAPEIAABTCAACgQQAAhEIAABzCAAAAQQAAdMIAAPjBAABUwgAADEIAAABAAABQQQAAWMIAALhCAACgwAAAAEIAAADAAADgQAAAAAAAAMDAAAAcQgAAQMEAAABAAABkQgAATMIAAIC_AABgQgAAgMEAAODBAAAAwgAAcEEAAHBCAACGwgAAQEEAAOhBAADQQQAAgMIAAKBAAACYQQAAIMEAAIDAAACMQgAAUEIAACxCAADgwAAANEIAAAzCAACYQgAAIEIAADzCAACGwgAAmMEAADzCAACUwgAAkMEAAODAAAAMwgAAwMAAAODAAACAPwAAAAAAANBBAAA4wgAAMMEAACBBAACcQgAAEMIAAKxCAAAQwQAAkkIAAADCAACIwgAA2MEAAKhBAABwQgAAsMEAANBBAAAoQgAAHMIAAMBBAABQwQAAoEEAAGDBAABgQQAAGEIAABBBAADQQQAAQMAAAADCAAB8wgAAUMIAAGDBAACQwgAAgEEAAEDAAACIwQAA4EEAAIDAAAAAwgAABEIAAGhCAAAAQQAAUMEAAABBAACgwAAA6MEAADzCAABAwAAAAEAAAGDBAACYQQAALEIAACjCAACgwQAAOMIAAMDBAAAQQgAA4MAAAILCAAAQwgAAuMEAAEDAAACYQQAAgL8AAODAAADgwAAAuEEAAPBBAAAAwAAAqMEAAFDBAAAAACAAOBNACUh1UAEqjwIQABqAAgAA2L0AAAy-AABkPgAAgLsAADS-AAA8PgAABD4AAPa-AAD2vgAA2D0AABA9AAB0vgAAcD0AAHA9AACgPAAALL4AADC9AACgPAAAHD4AAFQ-AAB_PwAAHD4AACQ-AABUPgAAor4AAFC9AADgvAAALL4AAGw-AADYPQAAND4AAFC9AACovQAAor4AAHA9AAA0vgAAiD0AAJq-AABUvgAAQLwAAIC7AADSvgAAoj4AAIK-AABQvQAARD4AADA9AACavgAA4LwAAKa-AACYPQAAQLwAALg9AABAvAAAgDsAAIA7AAA9PwAA2L0AABw-AAB0PgAAqD0AAKi9AAAUPgAAML0gADgTQAlIfFABKo8CEAEagAIAAHy-AABAvAAAqL0AAE2_AACIvQAA-D0AACQ-AADIPQAAyD0AAFA9AACSvgAAoDwAAHA9AABQvQAAyL0AAIA7AABMPgAA_j4AACw-AAD6PgAATL4AABQ-AAD4PQAA-L0AAGy-AACgvAAAbD4AAHC9AACAuwAAuD0AADA9AAAcPgAAML0AADC9AAAcvgAAFL4AAFw-AAB0PgAATL4AAFA9AADgPAAA-D0AAHA9AAAMPgAAQLwAAEw-AAB_vwAA2L0AACy-AADSPgAAlj4AANg9AADCPgAAXD4AAKg9AACYPQAAmD0AAES-AACYPQAAnr4AAEQ-AADYPQAAir4AAES-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=-aTLjoDT1GQ","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3819997292942217070"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1705299247861181645":{"videoId":"1705299247861181645","docid":"34-4-5-Z6C30991012007EAF","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/ap-c... Our resources cover preschool thr...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3413479/ae7ab36c6524c77068b471bc6f3f1c6a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Hc6oQgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DN2PpRnFqnqY","linkTemplate":"/video/preview/1705299247861181645?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative as a concept | Derivatives introduction | AP Calculus AB | Khan Academy","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=N2PpRnFqnqY\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhUKEzE3MDUyOTkyNDc4NjExODE2NDVaEzE3MDUyOTkyNDc4NjExODE2NDVqkhcSATAYACJEGjAACiloaGRvdml3eHNldmZxcmdoaFVDNGEtR2Jkdzd2T2FjY0htRm80MGI5ZxICABEqEMIPDxoPPxOzA4IEJAGABCsqiwEQARp4gQQI_wUAAAD0CQ8JBQb8AQgDCQn4__8A7fwH-gcAAAD2BPb1-AAAAPoFCgMJAAAA9vL9Cff_AQAI_f78AwAAABES_vb8AAAA9w_vAf8BAADt8_0MBP8AAAwNDvcAAAAA-xj8-QD_AADx_PgAAAAAAAwD-woAAAAAIAAtAAfVOzgTQAlITlACKoQCEAAa8AF__x4A1_WlAdYE9gDpHeUAxzTyAf4R3QDO6g3_xTwAAh7eGQHs8PcAFBPZAIIT7AH5E_UA7AYhAB7nSf1L2x0AtB8TACgw8AE0IQYAJgDh_uEX5_8J_kUA8tWpAPI24v8P3RL-D-LW__Xx1gcq-zUBrf3oBd8d__7kBgMA0AkWBMwWzP3xGPoICPIH-vZXHQQs9gUFAAgL-dvB5wMoBTj7IQ7_CBkM3wT08N0EvPUgAgABBvz3vxEB9xUE_MvX4Abx9SsCveQF_tPoGv_8Df79EeAB-Q0P-gbxART5DQDz--sR-vkCEQD3HSLvBRD05AIgAC04HAI7OBNACUhhUAIqzwcQABrAB3HMur7mrws6R-EhvM2spTworJ69-SWsvPN3DrxiHDI9Xwh5vTm2Tj67aS49I3eivNh-Er1Ndyi9wpidO_jfKj6mwBe8uUgLvXoXL74IPDA9KZ_UvPAuzL0raYW8HM58vMy-kb3xtKG8avTuO-8RGz3BxL-9CJABvZFWRjy0jqq8lIAdvdQ6mz00VUa9Dp90vQ044rdYjcY7QkSouxpBGT0UQZw8yPVGu1fpvj2q-eC8iq2gvCMByb1wl429pF07PFpHNT2Dxqe7yIPjPD3BlL33k3E9Fc2gu98JDL3PKVA5to4evH7-Cz7NsZw9xg6PvBx1Wb08oCy97KmwvLN96L1STHw6NYr2u9wEqT2Dv989HDGpvDqTNr4ElUw8X4iLvGGCRD0qrom7frHSPFwdAD6QZpE8M1eCO1e1BD6DDTS9Ed6DvG7lIL30oQ28Rr_sPKZqMT0zzlU9S0KeuhWViD1FtU29M3-WPDZDw7sD7z898Bv8ulAIEz1VYy48xhaCO2nPkL2IXZU95SZqvI_gFj5beA6-A-cOvM7yBr2QOIq9nMtDvOfMUT24oIg9WX0evA1EAzzuCdK9NVOtuyxI87y6RrA83hbRO1ZrPLxSr7C9YscYO_wxsr3LQao9Ax9Aua2BMr23VsU8_jD8u1hJNb2TWK28xEcfPJo01zzyViM8aKfROy-yD7wmjrw8IDJ-u6iEjDyNHzQ9itK1u500CD2jsTY91InkN154j72712Q9OJpuOthKoz1ER1e9beyiuNU3dT0rFo-97rDLObVZkL0ZtCs9Ak2TOO3liLzMebY9v_E6uSk1hbwkH8W9yBgwOVQb_L1iu_u9E9PyORzWDz1aYqU8cF3luZbiND3zisy8d4OOudNS1Lx6Qbq8J34UujLXqL1W2q09cazSuLdETj2pewO5e7couNI_dzwbQKQ824H7OB86Mz3o8cC98p5LOXUB7zzW9bU9PRDxuK93j70b28Y8ZtdPucRWNT15YcY9tuYuuIapzb3t66W8pqHlNz_Ko7yd-IW8yG6QuMzICr2zTza9to_VOD5Iaj0g96O8U0CZOEXLi713YRK86NQ7tvfvMLzbRxg9Ud8NOchfOj7clcI8za9LOBX3qT3G6Zo9chH1N4JVRT50yDc9ydyEuflK4L0Mj929YzNEuDjnlrxGwDe9auIDuJdRkb2Hch09UziLtj-Oxj0r3gi-hyK0uAoQJT3u1YI9T_-7OK0yI76RkBI9taJruH4nzL0svIs9ySnBOJ8InT1wS5o8YjwlOCAAOBNACUhtUAEqcxAAGmBN7AAjC_4C3cpE1dToyBPi3cjzD8MU_-rb_-wuzRTU_ui5_-AAF-_79J8AAAALB8wwKgD-f9TmBxL7JzPWq9JJGWEOCCKcxPYRvAYSER0B4DwcPC0A2uekQwmbrUoPMvYgAC1gpRQ7OBNACUhvUAIqrwYQDBqgBgAAWEIAAJjBAAAkQgAAdMIAAIBBAAAwwQAAoEIAAJhBAAA4wgAAAMAAAABAAAA0wgAAJMIAAGTCAACIQQAAIMEAAEDBAAD4wQAAYEEAAHDCAABAwQAAlMIAAJjBAADIQQAADMIAAIDAAABgwgAAAMAAACRCAAA8QgAATMIAANBBAACMwgAAqEEAAHTCAABIwgAA4EAAAGxCAABAwAAA0EEAALBBAACYQQAAnkIAAMhBAAAgQgAAeMIAAMBAAABAQAAAxEIAADBCAABgwQAAkMEAAIBAAAAAwQAAwEEAAAAAAADiwgAAQMAAAIDAAABsQgAAEEIAAETCAADYwQAAaMIAAAzCAACQwgAA4EAAAKjBAACAvwAA2MEAAKBCAABkQgAAEMIAALZCAACAQAAAaMIAADzCAACAwQAAMEIAAMBBAAAEwgAA0EEAAKBBAAAAAAAAkEEAALjBAAAAQgAATEIAAGxCAACAwAAAQMAAAJ5CAABQwgAAtMIAAIA_AACewgAA8EEAAFBBAABkQgAAmEEAAITCAABMQgAAsEEAAFTCAAAQwgAAMMEAAAAAAAB8QgAAkMEAADRCAAB4QgAAwEAAAADCAADoQQAAYMEAANhBAAAAwQAAgMEAAIjBAAAAwgAAKMIAALjCAAC4wQAABMIAACBBAAAwQQAAdMIAAOBAAACAwgAAMMEAAIA_AACoQQAAwMEAAAxCAABwQQAAoEEAAEDBAAAQQQAAcMEAAJTCAADgwAAAFEIAALhBAAAEwgAAUEIAAJhBAAB0wgAAwMAAANDBAACIwQAAgEAAANhBAAAkQgAAIMIAALBBAAAQwQAAYMEAAFTCAABowgAALEIAAFzCAACYQQAAoMAAALjBAACIwQAALEIAACRCAACkQgAAmEIAAIhBAABgwQAAyEEAANjBAAAcwgAAhMIAAOBAAABQwQAA-MEAAODBAAB4QgAAFMIAAODBAADgwAAAwMEAADxCAACAvwAAhMIAAOhBAADIwQAAQMAAAIBAAACEwgAAMEEAAFBBAABAQQAAIEIAAODAAACoQQAAjMIAAITCIAA4E0AJSHVQASqPAhAAGoACAAAQvQAA6D0AAJI-AADgPAAAiD0AABQ-AACePgAAFb8AAL6-AACgvAAAMD0AAPi9AADgvAAAjj4AANi9AACovQAAlj4AAEA8AAAwPQAA3j4AAH8_AACgvAAAMD0AAIC7AAAsvgAAgDsAAAQ-AABcvgAAmL0AAAQ-AAAkPgAADL4AANi9AAB8vgAAFD4AAKA8AACAOwAAwr4AAKK-AABkvgAAyr4AAPi9AABsPgAAiL0AAKA8AACgvAAAbD4AAHy-AACovQAAor4AAHC9AAAQPQAARL4AADQ-AACuvgAAuL0AAA8_AABAvAAABD4AALI-AADIPQAADL4AADQ-AAAcPiAAOBNACUh8UAEqjwIQARqAAgAAir4AAHC9AAAQPQAAM78AADw-AABMPgAAUD0AAAy-AABUvgAAgj4AADC9AACIvQAALL4AAFS-AADoPQAAoLwAAEA8AAA7PwAAJD4AAKo-AADovQAA-D0AAIC7AACAuwAAQLwAAKi9AADYPQAAUD0AAFA9AABQPQAA2D0AAHA9AAAsvgAA4LwAAII-AADovQAAjj4AAHA9AADyvgAA4LwAAMi9AABUPgAAiL0AABQ-AAAEvgAAML0AAH-_AACgvAAAZD4AACQ-AABAvAAAhr4AAIC7AACYPQAAmj4AADA9AAC4PQAAQDwAAIi9AABAvAAAmD0AAGQ-AAA8PgAAuL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=N2PpRnFqnqY","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1705299247861181645"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7956730164858765086":{"videoId":"7956730164858765086","docid":"34-6-2-ZD7663412E46C94DC","description":"derivative of x^(2/3) using the definition of derivative and the conjugate of cube root, Power rule at 8:11, shop math t-shirts and hoodies: https://teespring.com/stores/blackpenredpen Another...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3186393/2bf9fb49ae00e20ea8cf28c127babff3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/tnqbEwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"4","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPDXUg0btWuY","linkTemplate":"/video/preview/7956730164858765086?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"derivative of x^(2/3) by using the definition of derivative","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PDXUg0btWuY\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhUKEzc5NTY3MzAxNjQ4NTg3NjUwODZaEzc5NTY3MzAxNjQ4NTg3NjUwODZqtg8SATAYACJFGjEACipoaHJ3cGl6a2NucW5hZ3hiaGhVQ19TdllQMGswNVVLaUpfMm5kQjAySUESAgASKhDCDw8aDz8T2QSCBCQBgAQrKosBEAEaeIH7BAEC_gMA8AsMAvoD_wEHAwkJ-P__AO348PwFAAAA7fwD-gP_AAD9BQgJ-QAAAPf1_f79_wAA__z_A_oAAAAQAPL3_QAAAA8A-wb-AQAA__UECAT_AAABDgD5_wAAAAAN-fIAAAAA9gb-CgAAAAD9_PYOAAAAACAALZ112zs4E0AJSE5QAiqEAhAAGvABf9wmAOHsyQG59uP_5Q4IAaEeCwA4Qd3_tPvnAN8A6QHLC_gA-vnpAAggFQHgMAcAFdWtA_nKAgAu0w___M_rAdPwCgAW2AUCMQAzARj29gHn9wIA4-ALAf3B2wBEJtEADvgD-hEH6QL_B90EEf5EASgTPwAe0ywGE98qAuYE6ADH2Mb7Bgn0AN-4Fv7B_iIBGuru_PsI7P-54PgA6_YUAAnuGvUwO9H_Ltb2AhIEFQe8DQQJIxTuBzUXDwL70-n30_AyBsDlBf704PX9Euz29hEY5ARA1fD5FwIcBALtBQj48fXu4xIDCOX47QLcCfPqIAAtfLMGOzgTQAlIYVACKnMQABpgP-oAPvQY1BLYGOP63dUK6uPF5gXHKf8Jwv_qN78IGhPX2iDFACfJEf-hAAAAJh3YD8oA6n_B9w8bARjqypjg7xl4BhwatchD_qboSRgp1dMcFTNOAMEGoykB36RB9RsOIAAtF4ESOzgTQAlIb1ACKq8GEAwaoAYAALpCAABkwgAA0kIAACzCAADIwQAAEMEAAHRCAACIQQAAcMEAACRCAABIQgAAQMAAANhBAADwQQAAMMEAAMBAAAAgQQAAcMIAABxCAAAAQAAAiEEAADhCAAB8wgAAcEEAADDCAACoQQAAoMEAAHDBAAA0QgAAcMIAAOjBAABAwQAAnsIAACzCAACCwgAAoEIAADBBAABgQgAAEMIAAFBBAAD4wQAAgD8AAOBBAAAIwgAAoEAAAJTCAACCQgAAbEIAADBCAABoQgAAwEAAAIDAAACgwAAAiEEAAIA_AADgQQAAjMIAAIDAAABAQQAAJEIAAABCAABIwgAA4MEAACzCAAAgwQAAPMIAAGzCAADgwQAAuEEAACDBAADoQQAAOEIAACTCAABQQgAADMIAACBBAACwwQAAEMEAABBBAAD4QQAAgD8AAJJCAADgwQAAMEEAABBBAACYQQAAyEEAABzCAAAYQgAAAEEAAKDBAACOQgAAEMEAAOBBAABgQgAAyMEAAFDCAABMQgAAKEIAAIpCAACgwQAAIMEAABBCAAAUQgAAjsIAAAAAAAAcQgAAKEIAALBBAABMQgAAkkIAAKJCAAA4wgAANEIAAKDBAACKQgAAwEEAALDBAAC4wQAA2MEAAEDAAACcwgAAAEAAAJjBAAAEwgAAcMIAAKjBAAAAQQAAKMIAAKBBAAAIwgAASMIAADDBAAB4QgAAdMIAAIZCAAAgQQAAyEEAAMDBAABswgAA4MEAABRCAADgQAAAWMIAADhCAAAYQgAA4EAAAHBBAACowQAAQEAAACzCAAD4QQAAHEIAAAhCAABUQgAA4MAAAOjBAAAAwQAAwMAAAITCAABkwgAAAEAAAOBBAAAMwgAAoEEAAI5CAADQwQAAgEEAABBCAAAAQQAAsMEAAPhBAACgwAAAhsIAAFDCAAAUQgAAoEEAABzCAABYQgAAXEIAALDCAABkwgAAqMEAAJDBAACMQgAAjMIAAABAAABYwgAAgEAAAOhBAACIQQAABEIAADDBAAAwQQAAEMEAAPBBAAAQwQAAuMEAAIBAAADQwSAAOBNACUh1UAEqjwIQABqAAgAAJL4AADw-AABkPgAAoDwAAPi9AACKPgAAJD4AABG_AABUvgAAQDwAAOC8AACOvgAAML0AADw-AACYPQAAmD0AAIi9AAAQPQAAQDwAADQ-AAB_PwAAcD0AANi9AAAEPgAApr4AABQ-AAA8vgAAbL4AALo-AABwPQAAmD0AAFC9AADgPAAA2r4AAKg9AAAcvgAAEL0AAJa-AAAEvgAAgLsAAMg9AABsvgAAjj4AAIA7AAAUvgAAmD0AAFC9AAAcvgAA4DwAAES-AACGPgAAuD0AAMg9AAAUPgAADL4AALg9AAAhPwAAiL0AAAw-AACYPQAAiD0AAK6-AABsPgAAiL0gADgTQAlIfFABKo8CEAEagAIAAPq-AAC4PQAA4DwAAE2_AABAPAAAoLwAABQ-AADIvQAAfD4AAEC8AADIvQAALD4AABS-AABEvgAAgDsAAMg9AABAvAAALT8AAJg9AADGPgAARL4AAMi9AADYPQAADL4AAHS-AAD4PQAAQDwAADA9AABAvAAAyL0AAEA8AABcPgAAyL0AAJq-AACYPQAABD4AAPg9AACiPgAAdL4AAKi9AACgPAAAEL0AAOC8AADgvAAALD4AAEA8AAB_vwAAkr4AABA9AABMPgAAnj4AAKC8AACCPgAA2D0AABQ-AAAwPQAAQLwAAFS-AABAvAAAJL4AAGw-AAC4vQAAEL0AAEA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=PDXUg0btWuY","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7956730164858765086"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5047184969865005198":{"videoId":"5047184969865005198","docid":"34-4-14-Z9A5733B07A491465","description":"After discussing differentiation at great length, it is time to connect this concept with the act of taking the derivative of a function. In actuality these mean the same thing, but using the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2746755/33d570bcf8a46a4e5b71f064affb0f40/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/eXqIPwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dx3iEEDxrhyE","linkTemplate":"/video/preview/5047184969865005198?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is a Derivative? Deriving the Power Rule","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=x3iEEDxrhyE\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhUKEzUwNDcxODQ5Njk4NjUwMDUxOThaEzUwNDcxODQ5Njk4NjUwMDUxOThqkxcSATAYACJFGjEACipoaG91Y25jb2NmcnNocWViaGhVQzBjZF8tZTQ5aFpwV0xIM1VJd29XUkESAgASKhDCDw8aDz8T3ASCBCQBgAQrKosBEAEaeIH-__j_-wYA_AAPBQcG_AEHAwkJ-P__AO_xBP0GAAAA9AD-_v8AAAACAA7_-wAAAPQD_gH6AAAAAwr3_wMAAAAABf35_gAAAAn6AgP_AQAA9_oFDQP_AAAIBQQBAAAAAPoN_fv_AAAA_Q70AgAAAAAC-_cGAAAAACAALdlt5Ds4E0AJSE5QAiqEAhAAGvABf_kNA6n56vwz5PsB-RriAYMV8P86COYA4uf-AO0O2wH-9f4A5P8N_xj_4ADW-g8A3u3zAPb0EQAS8Az_GPch__n1FABA5wsBChj6ABoA6v_qEO7_6g8f_wji7P8LFPX-EQAj_ijt3QAABeYDHfwlAfIJ7wL84fD-HxMTAd8SKAHpAuwAFADxAhDt8P7S_xkB_QzoBOkp7QAF9An8IQEG-v8LBAMF7fAE6xboBPYREvX__PwDF_jr-v0D_gIFDuMK5fwHBQDoCgcHBvgA-vMPC_L4AggFCQD5D_31B-fjB_nzEgj__fUO7_AI7wUJ8Pj4IAAtZrM4OzgTQAlIYVACKs8HEAAawAcpIM2-nYwAPYpCBr33C9G8etlAPHhs-rwjE_C91y0nPff9QLzusr89t7BTPVY1V729jpC-fOdcvdimKTsKL2E-F3GwvEHTxjnv5U6-EKhDPRiswLtEGF--1GRnO6WdPzxYwcQ9kZYPPUcagTxyHmk9O2pxvby0PL26S4I9_BPBvPI6B70y4_G7sVfzvMmW_roTXLS7McwOvS_6yDsvUf09sQVgup-rrbwRzCy8zQd_vY8-fztyta-9Ylk6vedt0byUwhw-5JPfu3qjGz0ptCw91aoiPcg2-jzrRi49xruIPOX4fLw27DI9AA0FPcTSO728Wm49t4u8Onblrzts6dG9qValPW0a27z7BTs-2jfXPUR1yjtQw9e9xJJ3PWuMzjor3sg8fJf3vKTDQzxLD5k9IRisvD-IJruWxQ49gZmaPf_HT7vLHte8dmG1PA38KDtO7GY9kE-IPF_waTyCb7-8iR1XvBWUGjtJFeC8z_dwO9Ny2rqkLI09nRwVvHlskTtReFo9_Y1RPJx-mrzFNUM9-FENvglvLLs_wlU8qlN0vRoFd7yg86Q8Xx4XPTCz-LoplbA8CjWnOOk_0ruMTMA8IDJbvblIDDyQ5dU7hRlHu-qzwTtz2ci9YjN7PQntybuQ42I9lfg3vEjGBbxxc427LmA4PUGvBzzxnmO9XXaOvYnVxrmJZlk9AfGUPdF-vLhNOCo80sLlPOBhvbsYsgo-ZZ7DuxjRgjhyVIk8JwUsveQViDtW0_U8uWCaPfMOK7nRSMo9C-qAvI7t4LhK8Uy8EXpsvBFjwTg4PT27V_MyPclPEbtoOkC9pkL8vPXKjzmzE7S91kWQvbRnMDn0RYw8zNC4PHmjJTqW4jQ984rMvHeDjrk-Qp296KpUvZaHTrne3W-86taWPSjdLjjaHl09CrRlvTtQxjdF6oc9lfSwPN5o9LeuHXs83HksvRdCBjcP0aq7b54KPqCiGbm_fzG7RqWCPfFHtzcUBA89EF0APo3Dcbi6F3O99DLKPJLaErWE8gA8oHraPE7vabfj8X693TRsvZLEvresJ6k8WA34vKs2uThUU9K96HTPvC_4xTeOiLU62cpwvf8JZzfIXzo-3JXCPM2vSzhvt4k8QlFqPIdCKTitp_Y9s-qYvHs7OrnNx3q90xXsveab-LjFxVE9CSnJvPjPn7ZdMi69cPsOPM6sULazMQa7CK-9vRx9prdqTxk-qW6ZPQgCMrcvwSm8CsTGPFtMlriX9EG9vLy_PekOEjga22u8sYMQPDqBJDggADgTQAlIbVABKnMQABpgTvwAGiIO7jbhLtnTxcf8AfvpDAenF__w8f8oQt__FvMMygvL_0-55AikAAAA-P_ZCBwABn_ivAAUAQQWrr_uDTRmEBYcrfIU58Lc6BT93_IW_l9aAKIRq0cXzb4iHy4BIAAtroEWOzgTQAlIb1ACKq8GEAwaoAYAAABBAAAEwgAAQEIAAADBAAAwQQAABEIAAKxCAACwQQAAcMEAAKBBAADQwQAAsMEAAEDBAAA4QgAAiMEAAIBAAACAwAAAsMEAAIBBAACAwQAAwEEAAIDAAAA4wgAAcMEAACDCAADgQQAA0EEAAGTCAAAkQgAAgEAAABTCAABEQgAAsMEAAChCAACQwgAA6EEAAARCAABMQgAAAAAAAOjBAAAQQgAAmMEAANhBAACgQAAAREIAAGTCAAAgwQAAAEAAADzCAADoQQAA8MEAABDCAACgwQAAoEAAAKBBAADQQQAAkMIAAIDBAACQQQAAqkIAAChCAAAgwgAAFMIAAEzCAAAgQgAAnMIAAKDBAACUwgAAQMAAAGTCAAA0QgAAmMEAAKLCAAA4QgAA0sIAALBBAACAQQAAIMEAAGRCAABwQQAAIMIAAMJCAACwwQAAGEIAAABCAAAowgAAuEEAAADAAAAwQQAAoMEAADTCAAAEQgAAZMIAAGxCAAAAQAAAOMIAAMDBAACwwgAAZEIAABDBAACwwQAARMIAAHBCAAAAQAAA-MEAABRCAADwwQAAAEEAAGBBAABgQgAAJEIAAOBAAADAwQAAYEIAAABAAABQQQAA8EEAAEDAAACEwgAA0EEAAMBBAACgwAAAoEAAAJjBAACYwQAADMIAADxCAABwQQAAAEAAAIBBAACAwAAAkMEAAFBBAACSQgAAsEEAAFBBAAAAQgAAgL8AALzCAACAQAAAgD8AANjBAAAwQQAAAAAAAIhBAAAwQQAAAAAAAHzCAADgQQAAkEEAAETCAABgQgAAOEIAAIBAAADAQQAAqEEAABTCAABgwgAAcMIAAKhBAACKwgAATEIAANDBAACQwgAATMIAAIC_AACgwAAAtEIAADRCAABwQQAAfMIAAMhBAAAAQQAAKMIAAIbCAAAcwgAAgD8AABjCAAAgwQAAYEEAALLCAADowQAAwMEAAGTCAABwQgAAKEIAALDBAABswgAAqEEAACDBAAAkQgAAgEEAAFRCAADgwQAA0EEAAMRCAADwQQAAsEEAABBBAABQwSAAOBNACUh1UAEqjwIQABqAAgAAir4AAHQ-AACaPgAAmL0AACy-AAB8PgAAoDwAAAe_AADivgAAJL4AAIi9AAC6vgAA2L0AAKo-AAAcPgAAir4AAHC9AAAEvgAAiD0AAJ4-AAB_PwAAuD0AAHw-AAAQvQAA1r4AAKA8AABQvQAA6D0AACS-AADIPQAAXD4AAKC8AAAMvgAAgLsAAOC8AADCvgAAFD4AAIq-AABEvgAAcD0AAHC9AAA8vgAA5j4AAFC9AADgvAAAiD0AAHA9AACGvgAAoDwAACy-AAAQvQAAqL0AAEA8AACgPAAAmD0AADA9AAArPwAAcD0AAOA8AAC2PgAAFL4AACQ-AABcPgAAJD4gADgTQAlIfFABKo8CEAEagAIAAHy-AAC4PQAAqL0AADW_AADIPQAAQLwAAFQ-AAAUvgAAyD0AAKA8AAAEvgAAPL4AACw-AADYvQAAoLwAADC9AAAkPgAAIT8AADC9AAC6PgAAML0AAHC9AABsPgAABL4AAIi9AABAvAAAiD0AAOC8AAAsPgAAiD0AAKg9AADoPQAAor4AAOA8AADovQAAuL0AAOg9AACoPQAATL4AADS-AAAQPQAAFD4AAEQ-AACYPQAA-L0AALo-AAB_vwAAmL0AAHS-AABEPgAADD4AAAw-AACGPgAAdD4AACy-AACIPQAA4DwAAFC9AACYPQAARL4AAEA8AAAEvgAAmL0AAFy-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=x3iEEDxrhyE","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5047184969865005198"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12797477848405756618":{"videoId":"12797477848405756618","docid":"34-5-16-Z5DF4DE4F46A9DDD1","description":"We differentiate arctan(1/x) using the chain rule. Support Wrath of Math on Patreon: / wrathofmathlessons ◆ Donate on PayPal: https://www.paypal.me/wrathofmath Outro music by Ben Watts and is...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/761548/005a7f2a7c39c7e23941e9edfa71322c/564x318_1"},"target":"_self","position":"7","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Db5Ep3o3QI1A","linkTemplate":"/video/preview/12797477848405756618?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative of arctan(1/x) | Calculus 1 Exercises","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=b5Ep3o3QI1A\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhYKFDEyNzk3NDc3ODQ4NDA1NzU2NjE4WhQxMjc5NzQ3Nzg0ODQwNTc1NjYxOGqvDRIBMBgAIkUaMQAKKmhoY2NheHpoYnpzbWpsaWJoaFVDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdxICABIqEMIPDxoPPxODAYIEJAGABCsqiwEQARp4gfsHBgIK9AD-AOsK_wn8Agn_AOz2__8A3-70__v8AgD8BAD49QEAABcY9gH-AAAABfr7Df_9AQAK8PXwAgAAABr3-wD_AAAA_P3oAAABAAD5AO4RBP8AAA4R9AX_AAAAGRUI-P3_AAHpA_cQAAAAAPr4CQz_AAAAIAAtKIyzOzgTQAlITlACKnMQABpgAhoANg3189IJIuP41_AqA-DcBuvjCv_u4AAAIfoBBxDeugLu_yfl6wq-AAAAEPTfJCoADFb55vDxDBML793f-R1_rhfp5Pkb48Pb9-cXCwDu_BIAAKED7x76w-ww_CzvIAAtrpVLOzgTQAlIb1ACKq8GEAwaoAYAAKBAAABEwgAAwkIAAETCAADYQQAAwMAAADBCAAA8wgAAgMEAAIDAAAAIwgAAiMEAAMhBAAAAwgAAMMEAACBCAADgwQAAYMEAAHBCAABEwgAAjsIAADBCAAAAQQAAcEEAACjCAABIwgAAQMEAAOjBAADSQgAAMMEAAETCAAAQwQAACMIAADzCAAAEwgAAJEIAAABCAABoQgAAiMEAAEBBAAAAwAAAEEEAADBBAABYwgAACEIAABTCAAAAQAAAoMAAALpCAADgwQAANMIAABBBAABQQQAAgMAAADxCAACAQAAAmsIAADDBAAAEQgAAwEEAAGDBAABkwgAAuMEAAIDCAAAswgAA-MIAAHDBAADIwQAA8MEAAFDCAAB4QgAAMEEAAOrCAACIQgAAMEEAAKDBAAAAAAAAQMEAAJjBAACQQQAAQEAAAEBCAACwwQAAsMEAADRCAAAAwQAAUEIAADhCAADoQQAAuMEAAKbCAACyQgAAuMEAAMBAAACGQgAAAMIAABBCAACwQQAAuEEAACxCAABAwgAAUMEAANhBAAAwwgAAOMIAAPDBAADAwAAAcEIAALjBAAAQQgAAQEIAAKDAAAA4wgAAgEAAACDCAADAQAAA4EAAAEDBAACAwAAAiMEAAKDBAABgwgAAoMEAAIDBAAAAQAAAUMIAAADCAACAvwAAEMIAACDCAABwwQAAoEAAAKDBAAAgQgAAQMEAAEBCAAA8QgAA2MEAAEBBAAAUwgAA8MEAAJjBAACaQgAA0MEAADxCAABgQgAAIMEAAJhBAAAAAAAAgMEAAIC_AACgwAAAUEIAAMDAAACoQQAAmEEAACBBAABQwQAAWMIAAKjBAADQwQAA4EAAABTCAACAwgAA6MEAAJJCAACwQQAAkEIAAAxCAABAQAAA4EEAAKBAAABAQgAAjsIAAKTCAADYQQAAmMEAAIjBAAAgQQAAaEIAAATCAABYwgAAgMAAAJjCAABYQgAAJMIAAODBAADAwQAAoEEAAFhCAACAQAAAOMIAAABCAAAAwQAA-MEAAExCAADQwQAAPMIAAEBBAABswiAAOBNACUh1UAEqjwIQABqAAgAA6L0AACw-AABUPgAAmL0AAIK-AAAkPgAAXD4AAPa-AAAsvgAANL4AAAy-AACqvgAAUD0AAEA8AAAMvgAAmL0AAIg9AACAuwAAgj4AAIY-AAB_PwAAcL0AANi9AACIPQAAUL0AAMi9AABQPQAA4LwAALg9AADoPQAAmD0AAHy-AACAuwAAdL4AAOA8AACIvQAAoDwAAM6-AABUvgAAFL4AAES-AAAwPQAA_j4AADC9AACAOwAA4DwAAOg9AAAMPgAAJL4AAAS-AABwPQAA4DwAAPg9AACIPQAABL4AABA9AAA3PwAA2L0AAFQ-AACOvgAAHD4AAEA8AADYPQAAZL4gADgTQAlIfFABKo8CEAEagAIAAPi9AAAcPgAAmL0AAC-_AAA0vgAA2D0AAM4-AAAQvQAAMD0AAEQ-AAAcPgAAcL0AAEA8AADgvAAA2D0AAKC8AACIPQAABT8AADS-AADePgAAyL0AAIA7AACIvQAA6L0AAJi9AADgvAAA2D0AAKg9AAD4PQAA4LwAAKA8AAC4PQAAqr4AAI6-AACgvAAAcD0AAMg9AAA0PgAAbL4AACS-AADIvQAAED0AAEC8AAC4PQAAQDwAAPg9AAB_vwAA4DwAAIg9AAAsPgAA4DwAAAw-AAC4vQAATD4AAMg9AADoPQAAgLsAAEA8AADoPQAAoDwAABw-AACIvQAAqj4AABC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=b5Ep3o3QI1A","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12797477848405756618"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14808398322726514600":{"videoId":"14808398322726514600","docid":"34-4-16-ZB27532E3BD54F2F8","description":"Finding a Derivative Using the Definition of a Derivative - In this video, I walk through two complete examples of finding the derivative using its definition. This step-by-step approach...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3668947/a052edf746d5c0d92bc1631862f2f060/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0Thz8wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvzDYOHETFlo","linkTemplate":"/video/preview/14808398322726514600?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding a Derivative Using the Definition of a Derivative","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vzDYOHETFlo\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhYKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwWhQxNDgwODM5ODMyMjcyNjUxNDYwMGqIFxIBMBgAIkUaMQAKKmhoY25hcXdneHRvbGZ4eGNoaFVDRmU2amVuTTFCYzU0cXRCc0lKR1JaURICABIqEMIPDxoPPxPJA4IEJAGABCsqiwEQARp4gQED_QL7BQD1CQ4JBAX9AQcDCQn4__8A8_v9_AcBAAD0AP7-_wAAAAb8BAz7AAAAAPUAAwD-AQAMAP0D-wAAABIA9AL_AAAABQH9Bv8BAAAC-fwGA_8AAAYRAQAAAAAA9QoD-gIAAAD3Bv4JAAAAAPb4-wcAAAAAIAAtd1vjOzgTQAlITlACKoQCEAAa8AF_FPv_-trlBNQFxAAKEvEBvzcNAPw4zwC1--cA4_n9ANM03__a8QQB1AvzAMBJ8wA30s3-FAfy_yS79f4iygIA1wL8ARTR7QJAFDH_HOYc_tvtFwDx0gb-BOjYABwc2wAQwwX-IQQEAf8H3QQZAyEBNQArAS_9QQPwwQj_7AT5AgH87P7yF_oHGvQZ_LrXKQLm-h4EDwXx-dEa1gD1-vb94gEQAQgy0v0i8fYGIv8NBbnpF_0G9AcERg0h_r0E9vrkBBgAswjq-v__GPr9HvL45x7T-hL_8AI0DhsK_v4J-QoFC-zgFgryFwPg-Pco_wQgAC1SbQk7OBNACUhhUAIqzwcQABrAB7nEub7teFi9zb2RPL6jhr3s6Xm9osSdvBTamL0nT3k9CxGJu_a2ST6SUoq9UVcNPTRNKL5ZLsA79AmPPCb_8z3xBbe9oGUnPHoXL74IPDA9KZ_UvPNZDr44bzc9dvssu5avUD3Ct1W8yKZmvbJ1mj2ly9G8LegBvIf76L2pWye93S-Xu5ita70X5UO9vEkCvViTor0P5wu9eM47PCAHuj2CkTe9iLKcvOAR1T1CWog7mLKCvHK1r71iWTq9523RvFpHNT2Dxqe7yIPjPHgANb1Xp_M6xYLvu0Nu67w5LLg9ncmIPGijxDxcKPC7nUUUvY6Sl7xCfnG9AKWGvCM9y7047rk83ralvP3Puz14uYg9qyaIvFDD173Eknc9a4zOOglfqT123Ru9kDpwvDBjqj2hkZk8JmmjPCCihzz5pG49oEiBvG62I735WHA9CRLAPMeOfD0wL8A7JtvlvBy2TT2Qrgi9EmmbvCUvobyjuYQ855RbvKi4njtCGVQ9YZ9nurgUQb3qM--7DxzAOwUjpT3WAju-SeWaOg_d4jx1dBy-GGL6uXR6Hj429yG7Jcusum786T1M5K29K3Opu7a_Lj1L8Ly8N-wtuxb1bjwwkBa9gVxiO5Ion73OF3u8E-PnO62BMr23VsU8_jD8uw-peD2oMIs9GDBUu_GeY71ddo69idXGuQwDFj19CCq8-tRSu7EwxD31Ree8wPZTulGX1jzl0W29oBpMu5vc1LzzTSS9_lwXOzUeMb14hj-94DucOpRAtD3gzWS94odqOfKsibxCtdy8mqmBuKw84b1pQ1Q9lVuyOKxTpTweWGm8f3ahOVxUC72cFfG93J51OfiZabxu3KI8VNNkua-ftD2ml9g8Q8qbOcwgw73UDQS-CFOFOcz77rxWPQk7u7uWubeCAb1fwZy91lMFubXRrzwtf3m9ZG8HOb0YirzZ1FS8kHtDOKd_RD280r09Jyr7NkUO0T0pI-694iy_Oalm-zy0cYk9YM_ruFSl0rwfzMc9ctVYtx6ezrv8lBk9a2zOt6_YGTzz2pa9SVoftxnqi7ykbPE9pd7HOKBQz70V74Y9wtICOPLQNz1cQhk9eXKOOAF7lj2W8_875g3lN9rYdr0aWUg9uKw0ODpd1j3sSo07HPtJuagmp71UPcS9HLiDuFnApD2zmu695xf_N9psob2N5rI9IXQJOB3jDDxnRt-9aVASuFUYpj1tC8U9g8fnODjCvT2Ljdk91Sngtn0JMD2atTQ94HEkuEspjr3yKJA94DNcuCAAOBNACUhtUAEqcxAAGmA_7wAyFxDkLN_96v3g4e7t3-bhCcIb_-nVAOg8rA0bGsri_9QAMtQVAagAAAAgD94d2wDed7fq9hoFMvy3ss8TMH8QFTDQ0C7zitYlHBzY5SsaJEEA6u64AArdqEn4HQIgAC1aABo7OBNACUhvUAIqrwYQDBqgBgAAaEIAAIC_AAAgQgAAAEAAABBCAAAwQgAAukIAABBBAABYwgAAuEEAAKBAAADgwQAACMIAACBBAAAgQQAAkEEAADBCAADAwQAAcEEAAHBBAABgQQAA2MEAAMjCAAAEQgAABMIAAKjBAACYwQAADEIAALBBAAAAAAAAXMIAAJDBAACcwgAAaEIAAIjCAADgwAAAHEIAAOBBAABwQQAAIEIAAGxCAADIwQAAgEEAAKDBAAAAAAAAqsIAANBBAABMQgAAuMEAAJpCAAA8wgAAQMEAAADCAADYQQAAoMAAAKxCAADKwgAAiMEAAMBAAACcQgAAUEEAAJDCAAAgwgAAUMEAAKBAAACEwgAAgL8AAAAAAABwQQAA-MEAAFhCAAA0QgAAVMIAAJhCAAAAwgAAgMEAADTCAAAAQgAAMEEAAPBBAAAMwgAAcEIAAODAAAAQwQAAiMEAABxCAADowQAAAEAAANhBAADAQQAAMMEAAGhCAACEwgAA0MEAABxCAACAwQAAuMEAADDCAADYQQAAGEIAAFTCAAAUQgAA2EEAADhCAACQwgAA8EEAABDBAABAQAAA2MEAAEhCAABoQgAAwMAAAADBAAAEQgAAAMIAAIBCAADYQQAAOMIAAMDAAAAEwgAAsMEAAFjCAADgQAAAbMIAAMjBAABAQQAAUEEAAEBAAAAAwQAAIEEAAMDBAAAgwQAA6EEAAJxCAABwQQAAzkIAAKDAAABEQgAADMIAAETCAACgwQAAqEEAAFRCAAAIwgAAGEIAAIhCAACYwQAAMEEAAOBAAABAQQAAQMIAAABCAAAAQgAANMIAAERCAABAwAAAPMIAACzCAACswgAAkMEAANjBAAAgQQAAAMAAAGBBAABUQgAAJMIAAIDBAAA8QgAAsEEAAOhBAACgQAAAQEIAAABAAACAwQAAfMIAAPjBAACgQAAAVMIAAOBAAABwQgAA2MIAANjBAACAPwAAAMIAADBCAACAQAAAZMIAAHDBAACYwQAAoMAAAJhCAAAAAAAAgL8AAIBAAACAQAAAkkIAAJjBAADgwAAAAMAAABDBIAA4E0AJSHVQASqPAhAAGoACAABQvQAAML0AACw-AACmvgAAqL0AAL4-AACqPgAAF78AAAO_AAA0vgAAJD4AANa-AAAEPgAARD4AAAQ-AACgPAAAyL0AAKC8AABAPAAAXD4AAH8_AABsPgAAPD4AAPg9AADWvgAAJD4AAKC8AACGvgAAmD0AADw-AADCPgAAJL4AAEA8AAC2vgAAfD4AABS-AABwvQAAfL4AAJa-AACgvAAAEL0AAL6-AADGPgAAir4AACS-AADCPgAAmD0AANq-AABQPQAA5r4AALg9AADYvQAAVD4AAMi9AACAOwAAgDsAAEk_AAAEvgAAjj4AAOo-AACYPQAAmL0AABQ-AADoPSAAOBNACUh8UAEqjwIQARqAAgAAnr4AAIA7AACgvAAAQ78AADA9AAAUPgAABD4AAHA9AAAQvQAA-D0AAKi9AADIPQAAiL0AAJi9AACgvAAAoLwAAEC8AAAhPwAA-D0AAOY-AADovQAA4LwAACw-AABUvgAANL4AAHC9AACgvAAAoDwAAOA8AABAvAAAcD0AAOg9AABAvAAAiL0AABQ-AAAUvgAARD4AAJ4-AABEvgAAUD0AACw-AAAQvQAAgDsAAIC7AAAQvQAA-D0AAH-_AACYvQAAUD0AAJo-AAB0PgAAgDsAAJY-AACCPgAAyD0AAFA9AACAOwAAhr4AAFA9AAAkvgAABD4AADA9AADYvQAAgLsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=vzDYOHETFlo","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["14808398322726514600"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15861766112568300342":{"videoId":"15861766112568300342","docid":"34-5-12-ZC9CDF00D7CFC792D","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/ap-c... Visualizing the derivative of a position vector valued...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4219332/a381b4663d3748db2433ffac9f365fd2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/CzXTDQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DE9Q_Lc0g1xE","linkTemplate":"/video/preview/15861766112568300342?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative of a position vector valued function | Multivariable Calculus | Khan Academy","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=E9Q_Lc0g1xE\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhYKFDE1ODYxNzY2MTEyNTY4MzAwMzQyWhQxNTg2MTc2NjExMjU2ODMwMDM0MmqHFxIBMBgAIkQaMAAKKWhoZG92aXd4c2V2ZnFyZ2hoVUM0YS1HYmR3N3ZPYWNjSG1GbzQwYjlnEgIAESoQwg8PGg8_E_QGggQkAYAEKyqLARABGniBCBMMCwn1AOz6-wsMBP0BCQMLC_b__wDw_AHz9AH_AOIB9vQA_gAAARwO_QIAAAD7AwQF9P4BABTp-vwCAAAAEQP-__wAAAAQ_-oB_wEAANr1AAgD_wEADxgLAgAAAAAPEvv2AAAAAP78_vwAAAAADv39AgAAAAAgAC2Ie7g7OBNACUhOUAIqhAIQABrwAX8QMADZ9qoB5f4UABQkyAK_Nw0AN0De_8beEwGgEAn_Gs_RAKj60f30CtkBzv_9_wQa8f_05ykBLdQP_zffCAHXAvwBN_YEAQ4L-gAuGeT_9wT9_wjsHADI59QB7APd_wYE_v8F9g7-C-mzCRD-QwEB7vv_IewUAuoEMwHMLAz__tq8_gIS6wvx7wj2ySQDByopDP0BFwL5ACDyAP7wHwT_4ewG_APkCCLy3QYCGQHw5fIU_tjx__QtAhQB1PXz9NwUEAEHDPv_0wEf-hoLBfv9Je8K3A7_AgoX_QYcqQAB_vUBAuAWCvLcKv_xCSb5ASAALeBpCTs4E0AJSGFQAirPBxAAGsAHnE2vvurCWbxJZ_27yXeEutU15Dz78c28SV4nveNVVj2mv828P3NGPg7uM72W-X07L27EO1z0H73KAsE8Ci9hPhdxsLxB08Y5dXT8vS8Tmj0LAhC9ZTQXvdgiszyUfaE8Tj8Nvc2QKrwMzgC9wX6-PfL3wb0XrW28yVfCvOYMAD1C7gK9u-RJPZXurjzQIoC8szQmvPHP8Tz_pKu8_1htPfSHhzo8VZk812gZPZwfNb0MkfQ7fc-ovfbaBzz0QBi8z-G1OlhKID3aXxG86_uFvT5oTL2HOxE8yRpKOgoxpz3TO40729vNPaG6qT2miMK87mURPefZkTwKVzS7d_UKvqCfLj1c-VG8cJedPR8TGT56rTk5rvQqvm3F3j2K1Au7EKeIPeDIUbpkVN-67r2-PbnKTr1_rJY8My02PSAqTT2lKx47CJvwvP9jHD0XDZk8KcEsPBtMQznNJ4I7rTPePSrm47lshPa7B7_DuyCN1LxkAbg8LLj_PQJhBz0VzZ483G8jvcox-jva5HC8BSOlPdYCO75J5Zo64ofUvIOIhL2AUbg7weTGPFL-tD3N2Yy8CSdYPIP5O747ONi73qwBPSzSmb2m9Iq7v7uVvVUwKry4nCA8IY8AvtV7uj0ri6G6nSFmvJQWDr2TLR68q4NyvHXQALzWnfo7xWUGPfoMCL5VIQO6VIWLPQ-b6D1epFE6-RuIPJuu5z2Vqwq6tyuyOyMfar0WEQu7KzWbvTszpjxaCIm5zbzLvafPTr3MSqm37q8OPp8Skb1-0JQ5jsApvdvgnzzFmr05ESYbvQEYij1YNZG5cdzzOyL8C70QL9s4HhGovc78Sr4Byw45bYZgPSKIo72H8ka5YqrPPFYw6LqpI1w45YySvZO5A73jfZ659F4KPE82yrxCyYK4Fo2wPZuSh7yefJk4JNYbut9foz2AIrC3oPvyPOcqZ70ZrWc4u4-rurUFujxj-AU5F1YAvb-GG72Cgh-4xFY1PXlhxj225i64BgpBvZDvtzwRB2M49kczPaY0cT0K7bG44_F-vd00bL2SxL63vDrLu7hcmDy-0JI2RcuLvXdhErzo1Du2AooHPJ85oL2zEZ23-KcUPgP6Tj0f9O02EBSePRDJUD1Jd7I3L6YZPng7zDz85hu5OcXEvWe3Jr7WR3I4bhuxvSwuzr0-8V647ZGXvEH2hT1-hZ-2oW9BuwuLkL1ihgm4ak8ZPqlumT0IAjK3gBa2vePYHz2nu8G4tBbAvVQ0uz08X7I4jogTPewdxL0xzgW4IAA4E0AJSG1QASpzEAAaYD_tADYWIPjk9hrL7tUEBfvaF-8K2Qj_BrX_-jXJCgTjuqT06wAu8xTsoQAAACXXzAobAAd_4PDuKPEQCb--whAjYyA2S7jENRa5ABc8AdTXLgYBOADR-aIxIpukLfIu-CAALZydFjs4E0AJSG9QAiqvBhAMGqAGAADYQQAAgEEAAABBAABkwgAAGEIAAEBBAAB4QgAAqMEAABDCAAAgwQAAgEAAAJbCAAB0wgAAaMIAAGRCAAAMwgAAcEEAAHDBAADgQAAAWMIAABjCAABQwgAA0MEAANBBAAAAQQAAIMIAAFTCAAAEwgAALEIAAAxCAAAUwgAAgEEAAJbCAAAcQgAAcMIAADzCAACoQQAAzkIAANjBAACIQgAACEIAAOBBAACOQgAAAAAAAEBBAACewgAA0MEAAKDBAACwQgAAMEEAAJjBAACAPwAAuEEAADBBAAC4QQAA4MAAAP7CAADwQQAAMMIAAFhCAABEQgAAZMIAAKDBAAB4wgAAFMIAACDCAACAPwAAgMEAAIBBAAAwwgAAZEIAAHRCAACIwQAAiEIAAGDBAABUwgAA6MEAAOjBAAA0QgAA8EEAABjCAABwQQAAAMAAAHxCAABAwAAAAMEAAIA_AABAQgAATEIAAMDBAAAIQgAALEIAADzCAAC2wgAAgMAAAETCAAAQQQAAgL8AAAxCAABwwQAAuMIAAHBCAABIQgAAoMIAABzCAAAAAAAA2MEAAGRCAAAowgAAFEIAAAxCAACAvwAAAAAAAJDBAADAwAAAAEAAAAjCAAAMwgAAwEAAAJDBAADYwQAASMIAAADCAACAwQAAQEAAAEBCAABYwgAAgL8AAEzCAAAgwQAAuEEAAKhBAADYwQAAREIAAEBAAAAgQQAAgMAAALhBAAAswgAAmsIAABTCAABwQQAA-EEAAKDBAAAMQgAAQEEAAIzCAABAwAAAUMEAALDBAACIwQAAREIAAERCAAAYwgAAgL8AAMDAAACAPwAAmMIAAKLCAABEQgAA0MEAAMBAAAD4wQAAQEAAAABAAADwQQAAOEIAAGBCAABEQgAAEEIAADTCAADwQQAA0MEAAABAAAAYwgAAgL8AABDCAACAvwAAEEEAAFBCAAAwQQAAMMIAAJBBAACAwQAAYEIAAJBBAACwwgAAKEIAAIC_AABAwQAAQMEAACzCAABwQQAAIMEAAJBBAAA0QgAABMIAAJBBAACYwgAAhsIgADgTQAlIdVABKo8CEAAagAIAACy-AADgPAAAhj4AAKC8AAAEPgAAqj4AAHw-AAAfvwAAnr4AAHC9AABAvAAAFL4AAAw-AAAcPgAAcD0AAIC7AABEPgAAQDwAAKA8AACiPgAAfz8AAHC9AAAUPgAA-D0AADy-AACAuwAADD4AADy-AAAwPQAAhj4AAEQ-AADgPAAAjr4AAKC8AAAcPgAAcD0AAEC8AADIvQAATL4AAI6-AAC-vgAA2L0AABw-AACAuwAANL4AACy-AAAcPgAArr4AADy-AABcvgAAUD0AAIA7AAAwPQAAQDwAAAy-AACYvQAAFz8AAHA9AADoPQAAoj4AAOg9AADgvAAAHD4AAIg9IAA4E0AJSHxQASqPAhABGoACAACWvgAAmD0AAKi9AAAzvwAA2L0AAJg9AABcPgAAgDsAACS-AAB8PgAAmL0AAEy-AAAQvQAAqL0AAKA8AABwvQAA4DwAABs_AAAEPgAAmj4AAHA9AAAkPgAAED0AAMi9AACYvQAAiL0AAPg9AACIPQAAcL0AAKg9AADYPQAAyD0AAHS-AAC4vQAAgDsAAFy-AACCPgAAdD4AALa-AAAwvQAAqD0AACQ-AAAwPQAADD4AAFA9AADoPQAAf78AAIC7AAC4PQAABD4AAFQ-AABwvQAAuD0AAAw-AACyPgAAqD0AAJg9AAAEPgAAgDsAAAy-AAAkPgAALD4AAIA7AABsviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=E9Q_Lc0g1xE","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15861766112568300342"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2119004810168048982":{"videoId":"2119004810168048982","docid":"34-3-0-ZB79B3DB57A06562B","description":"This calculus video tutorial provides a basic introduction into derivatives for beginners. Here is a list of topics: Calculus 1 Final Exam Review: • Calculus 1 Final Exam Review Derivatives...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2837418/b4018213a09ff50b91005973f7e307ba/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/16yUKwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFLAm7Hqm-58","linkTemplate":"/video/preview/2119004810168048982?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivatives for Beginners - Basic Introduction","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FLAm7Hqm-58\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhUKEzIxMTkwMDQ4MTAxNjgwNDg5ODJaEzIxMTkwMDQ4MTAxNjgwNDg5ODJqiBcSATAYACJFGjEACipoaHdkYWhpeWRwbWRxb2RiaGhVQ0VXcGJGTHpvWUdQZnVXVU1GUFNhb0ESAgASKhDCDw8aDz8TmxuCBCQBgAQrKosBEAEaeIHuBfwFAf8A9Q8FAvkE_wEcDgAG9AMDAPL6_fwHAf8ABf_66vwAAADv-wAH9QAAAAH2AQX1_QEAGAAD_gUAAAAVDAAB_gAAAAH59f__AQAA8-cECQP_AAAJBRD8_wAAAPQL9_MAAAAA___7DQAAAAAM6_0KAQAAACAALWoszzs4E0AJSE5QAiqEAhAAGvABfxMEA-MPywLKEeUA8ekGAMocEgAWQ_oAv_IKANgG4wEEHuMA6xLsAPIsBwGfJwABD-HTAAzn7gE14PwAItfwAd4C_QEd8-QAPEAh_fz7___NETMBCN38__j01QAHC-_-8vQJ_hYZ6P7tIdkDIfwqAfTdOgIX6gb_AqwBBvba_AL62AMA-QDzBAMCBfvj9isHCtT9_y_2BfvzLeX99_v4_dzsCQEHKtn-HfTjBSEDAP-52Az__OIKDRQeIP_U_vAE2_MqBeAU9wAAHRMBIgP0-dv7AwXvCN4AESD5CAz2CQAP7vMA4vn9-vUe9xPoF-LzIAAtBLoiOzgTQAlIYVACKs8HEAAawAfou6O-dew5O2-wgTyjUzy99MgbvOtNMbzZ38O9fjq7O4C-iDz2tkk-klKKvVFXDT0gNVe957cePdE6jzwKL2E-F3GwvEHTxjlxPVq-5xa_PYVMqLzE2m69eJAoPYhFMbz3R569QGIFPYGz0rthXYs9Ug_RPJALEz0CtV29X3obPdOwLr0oEzI9sF8rvbGnPb1pRI-9PpHMPBUvAL0gB7o9gpE3vYiynLy_40o99gtWPZb5_bzhH7u9AUCEvDm07bwvTXY9xpWJPcLrRDyJzw2-InyOvZhvmDxPZjK9CkJ-PbOXrTwmQKg9kKgrPW_Rrrx_wrQ8Wnc9vUcl7bvQKkO-mHOfvA-oiDzwf2w9ZqnAPeVlCTwY0gG-SYOrPZYmJbykbqc8_dJHPBa6t7ws_qU850DFPalorDyTuQO9FV4dvaPElbhutiO9-VhwPQkSwDzs-gU92Znivaurp7xGgZk9oaA0PVLfaLtKV9W8vR5sveIyuLyDid-9XGupPfujOTzPAw4933k4vUsPtzsFI6U91gI7vknlmjpXezi9L4f9vSqgZjqg86Q8Xx4XPTCz-LpDqR0-H2rbvcSaqTkw-mU8kqu7O93NFbv2RV87mmxtvU7WpLvU8Ti9iRiFvQb63bstfaO92YcmPV6pgLt4kbK7T0EZPaJE7Lsk8wQ8OCytvSm18rtiG6c803AFPeAWSbpPO_w9zQjKOnPqBLdas1o9PXaRveqG2Lrtz2q91f-evOr5e7pl04C8kCiZvVIDEzsfotE9WPgfvXnRijiykkC9Lb8CPY8myLkqYoe98OuRPA7EvTi50mE9Lt6UvXNP3Thq9iO7752nvWJI3LgSqIk90ZZOvDu567nQ1iG9mJaXPWB23Tnp9q28JTv2vbm8zDiMRGw7YcxxveoEmLiKojE9rlgLvOVln7hIWXq9JCYovPUXDrkCA1I9WpzxvCm8Nbl4fUY9ueanOwY1ADcjrIw99GwGvs9wpTkKJLI82_OAu27rbzh6jkg9yuRPPVxTpTi4RyW8F4LcPSYd5TeaBxA93jjJvQg0-zazQLu8AEApPZO2NTicenO910vTPZ-Nlzh2BZE9xzdKPXfkkDjYbrG9ZQPEvLzs3reeVzG6D2NSPWgutjjB4ys-3KVovAeJdLm2UXg8cxLqvS7r9rgeKng7JQTrvSO_ZzhVMRO8TplbPQ2vyzdDIsg8pU3VvVAHd7jK9HA9IuErPvHLiji6E6y8cty5PXQwGLlgRqe9F4EQu5N02TcaM5m9X4TfPGMYMbcgADgTQAlIbVABKnMQABpgRe8ALwEL6AIDDOfs09sI68zh7xS2HP_r9QAUNskMLRL05_nwABnSEg2zAAAAER3MG-kAEG2uvPcJAycCz6Th9zN_-Pwus_f57q_wLhElDe4sCRxHAP_hxhYQ3bUg7Sv3IAAtl2ApOzgTQAlIb1ACKq8GEAwaoAYAADxCAAA4wgAAFEIAADjCAACgQQAAgEEAANRCAAC4QQAAyMEAADhCAADIQQAAeMIAADTCAAB4QgAAsEEAAFDBAAAYQgAAeMIAAKBCAACgwQAAAMAAAIBBAABIwgAAuEEAAIC_AACgQQAAAEAAAADCAACAwAAAAAAAAEDAAAAQwQAAYMIAADDCAACkwgAAuEEAAADAAACGQgAATMIAAARCAAAwwQAAoEEAAHBCAACQwQAAAMAAAM7CAAAsQgAAWEIAADRCAABgQgAAUEEAAJhBAADgwAAABEIAADDBAAAAQAAAGMIAAODAAADAQAAAJEIAAKBBAACYwgAAJMIAAAzCAABwQQAA2MEAAKjCAAB4wgAAMEIAADTCAACQQQAAjkIAAOBAAACAvwAAZMIAAJjBAACgwgAAAMEAACBBAAAAQAAAIMIAALhCAAAAQAAACEIAADBCAAAAwAAAoMAAAEDAAABkQgAA8MEAALjBAACqQgAA0MEAAIA_AACgQQAAUMIAAIDBAABgwQAAmkIAAExCAAAswgAAHEIAAMBAAADAQQAAqMIAAFBBAAAAQAAAUEEAAMDAAACGQgAANEIAAExCAAAgwgAA6EEAABjCAAAcQgAADEIAANDBAAB4wgAAwMAAAEjCAADYwgAAoMEAAKjBAACAQAAAAMIAAOBAAAAwQQAAMMEAAODAAABEwgAAqMEAAFBBAADwQQAAnMIAALxCAACIwQAAMEIAALjBAAAMwgAAmMEAABTCAAAYQgAAmMEAAHDBAADQQQAA4MEAAARCAABQwQAA4EAAAGDCAADQQQAALEIAAADBAAAMQgAAVMIAACjCAACEwgAAOMIAAMDAAAAkwgAAMEEAAMDBAAA8wgAAkEEAAPhBAAAwQQAA0EEAAOBBAAAAwAAAKEIAALBBAADYwQAAuMEAAABBAAAUwgAA8EEAACjCAAAcQgAAiEEAANDCAAC4wQAAAMIAAGBCAABsQgAA-MEAABDCAABEwgAAgEAAADDBAACowQAAgL8AABBCAACAwAAA4EEAAMhBAAAgQQAAmEEAAABBAAAAwiAAOBNACUh1UAEqjwIQABqAAgAADL4AAKA8AABcPgAA-L0AAMi9AABUPgAAbD4AAOq-AACSvgAAqD0AABS-AACYvQAADL4AADA9AADgPAAAmL0AAOC8AAAQvQAAuD0AAOI-AAB_PwAA4DwAAIA7AACgPAAAlr4AAHC9AACovQAAUL0AAKi9AAAEPgAA2D0AAEA8AACYvQAAur4AAKA8AABcvgAAyD0AADy-AAA8vgAAcD0AAHC9AAB8vgAAPD4AADS-AAD4PQAAoLwAAJg9AAA8vgAAEL0AAIa-AACovQAAED0AAIg9AADoPQAAiL0AAHA9AAARPwAAmL0AAOg9AACiPgAAyD0AAIg9AAAkPgAAXD4gADgTQAlIfFABKo8CEAEagAIAAJi9AADIPQAA6L0AADm_AACoPQAAUD0AAJI-AACGvgAAUD0AANg9AAAwPQAAHL4AAFA9AAAcvgAADD4AADC9AACIPQAA_j4AAAy-AACqPgAAXL4AALg9AABAPAAAuL0AAHC9AADIPQAAoLwAABC9AABQPQAAcD0AAOg9AAAEPgAAlr4AAKi9AAAwvQAAgLsAABQ-AACKPgAAhr4AAHS-AAC4PQAAZD4AAEA8AAA0PgAATL4AAOg9AAB_vwAAoLwAABA9AAAcPgAAFD4AAHC9AAAUPgAAmD0AANg9AAC4PQAAMD0AAES-AACovQAADL4AAKg9AACoPQAAcD0AAAS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=FLAm7Hqm-58","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2119004810168048982"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17094361778524435028":{"videoId":"17094361778524435028","docid":"34-11-14-Z258D4031B2360A7A","description":"This calculus video provides a basic introduction into the derivatives of inverse trigonometric functions. It explains how to find the derivative of arcsin, arccos, arctan, and arcsec using...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/899530/a02a623f458cb843b23ab2a4a776b3a1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/dQX3cwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"11","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKbYW9FDm-Zk","linkTemplate":"/video/preview/17094361778524435028?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivatives of Inverse Trigonometric Functions","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KbYW9FDm-Zk\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhYKFDE3MDk0MzYxNzc4NTI0NDM1MDI4WhQxNzA5NDM2MTc3ODUyNDQzNTAyOGqTFxIBMBgAIkUaMQAKKmhod2RhaGl5ZHBtZHFvZGJoaFVDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQRICABIqEMIPDxoPPxP6AoIEJAGABCsqiwEQARp4ge72BwgC_gDzCg8KBQb8AREIAwv1AQEA7Pjv_AUAAADr-BH8_f8AAPcGAgIAAAAAA_v8-_39AQAI_PX99wAAAAwJ-fkAAAAAAQH4-v8BAADe9gAHA_8BAAkFBAH_AAAA-Q_8-v8AAAAE_O8GAAAAAAL8BQAAAAAAIAAtnf3MOzgTQAlITlACKoQCEAAa8AF_Bw0A-OO9A7wW3gD7BQgBtiY7_wo47wDL-uMB-fPxAe00ywAbLPMA9iECALtO8gAW06kD_-HiAS_o7v825fYA4-r2ACkJ2_9sJTT8FOEO_uPoC_4I9vj_8tWoADYq6AEM8BX4IxLvAgY20QMlGCwB9eIoBkTDGf8DlgEI5BbvBvbo__7HAfX68AUT_dzzNwj_2wX3EfP--fsE3AL1Gv8F4Q4f9SH_wPoO8_sPEgQWB58C_AQl5goLMvMZ-L77_A7IDiMBzUQA_OsDEfgh-_Tt4y7pCQkK1Q03DxwLGe77_DPe9_DiEgQJ8RHn8hEY8-4gAC1c0QA7OBNACUhhUAIqzwcQABrAB-RNtr5CBSw8a-ekO6Wdj71E5M-8hUu9vJ45db2HyS-8sWqQPPa2ST6SUoq9UVcNPSA1V73ntx490TqPPBh3Ez7VioC8_o2Hu3E9Wr7nFr89hUyovPNZDr44bzc9dvssu4z4mb32llU6xq04vJV6Wz0qnxc6_sG2PAK1Xb1fehs907AuvdxqGTr1EVi9E3xYvRL_y71EWGi8clz8vHcx7T2PACm9dpYRPLPNcj1B-4c8CvfKvOEfu70BQIS8ObTtvA_8jj38jCs93yD1PEQgvb20YD29W9VHOd8Ykr3Zv-E8AZnGO2YW4T1BtQY9E9aGvGKTqTtxKsi9yGqpvCY19L1-Ay49q7oCPSeSfj18-Yg94HyPPMhFJb5p0YE9nQjHvGZlHjwJAp67VhaBuyz-pTznQMU9qWisPDw9JTwjPXu86qO-usOjaL3-Tgk9a5T_PP4f8Tx8_mq9XBjOvIaYtj0KZIs9_K3Xu6ym0LyA4Yu8gemTuysyGr4QLqM9FJmYus8DDj3feTi9Sw-3OwUjpT3WAju-SeWaOpXcPL088cG9Q-nmuy1LiTshHYE72Hh6vEOpHT4fatu9xJqpOQ4cJ7saax89YjRpu-J5hLxpqHG99Yy3u52heL08yWy9sP2mOy19o73ZhyY9XqmAu66JAL2LH3497JF5Or49_jxHWqW9nbDQu2LfqTzTrng8tXdbuzVsuj0uYaM8e1LJOEkOfT1FwPy8KzLXu2kYH7wUIiC9OiakOhuIQLyxa_u9tr6euZRAtD3gzWS94odqOdlwQr0xfMS7JC8JukJMuL2u8j26bcGPtxMjkD2Ps5-9Cn64N9gCjDyDaM29LiTCuCCYkz02gw274hrzOR1gnLy8O5I9iDGwtxL1Qr0iGOe9eBrqN-iDpbwlEju9HnJ2uZ34hTziBCa8OHy1uEy8CL26UJG5MhlBuWJQwT12CBK99oFzuZ6WPz1U8Io85upJOCOsjD30bAa-z3ClOalm-zy0cYk9YM_ruGVFHj0ygTE9NFyVtkjWqzwbEKE9EflvN4dFVj3TZaa9vyj0Nr3YgzvKppw8BXkTN0QfJ71R-pI9NvDBOG-PhD3a86Y9V8EOOTloqr1joVG9PwgNuJzhBj2IN6E9YMEyOMHjKz7cpWi8B4l0uSvcE7xklQK-cT0buHP5ajxV-KO94xA7N5G_Cr2DHpU9i0ORN0MiyDylTdW9UAd3uMr0cD0i4Ss-8cuKOCmeabx4zZA9oeaauCumnb1Y8sK88Kilt4bZVb1-CQs9k2BwOCAAOBNACUhtUAEqcxAAGmBC_gAd_R65Hf_8-OjI3eoKvgHuJcES_-jsABJZ2gxB-tPMAwwAM88b4aQAAAATFvEBAAD_fty6DyHqSQKNnOsMJH_vCgzY7RAFu8UqL0wPrQ32OSgAExKkIi31nyX9Mv8gAC3NuhM7OBNACUhvUAIqrwYQDBqgBgAABEIAABDCAACQQQAAiMIAAOBAAACYQQAAmEIAAOBAAABcwgAAaEIAAABBAAAkwgAAFMIAABxCAABwQQAAgEAAADBCAAAcwgAAFEIAAGBBAAAQwgAALMIAAKDCAACgQQAA6MEAAOBAAAAMQgAAcEEAANDBAABQQQAAXMIAAKDBAACcwgAAAEEAAMrCAACAQAAAcEEAAIZCAAAcwgAANEIAACRCAACQwQAA2EEAACDBAADQQQAAvMIAAOBBAACuQgAAyEEAAHRCAAAwwQAAgMEAAJDBAAAEQgAAEMEAACxCAADEwgAAoEEAANBBAABgQgAA-EEAAIjCAAA4wgAAHMIAAMjBAACiwgAAPMIAAAjCAADYQQAAwMEAAMhBAACUQgAA0MEAABhCAABYwgAAfMIAAFjCAABAwQAAAEEAAOBBAADIwQAAukIAAFDBAADgwAAAgMAAADxCAAAQwQAAgEAAAIBBAADQwQAAqMEAAFRCAABgwgAAcEEAAIhBAACowQAA4MAAAJjBAAAgQgAAdEIAAEzCAABQQQAAyEEAAIC_AACawgAAEEEAADRCAABAQQAAAMEAAJ5CAAAMQgAAgEIAAKDBAAD4QQAAQMAAAKJCAADAQQAARMIAAJDBAAAEwgAALMIAAIbCAADgwAAAsMEAAIDBAAAgwQAAHMIAALDBAACYwQAA8EEAAFzCAAAwQQAAwEEAAIpCAADgwQAAfEIAAMDBAACAQgAAIMEAAJjCAADAwAAAMEEAAERCAABgwQAAJEIAAPBBAAAwwQAAYEEAACBBAACAQAAAsMEAAABCAAAwQgAAAMAAAFBBAACwwQAAXMIAAEzCAABEwgAAAEEAAGzCAADAQQAAMEEAAKjBAAA0QgAA6EEAAKBBAADYQQAAlkIAAIA_AADAwAAACEIAAEDAAADgwQAAHMIAAADAAACYwQAAPMIAAHBBAAB4QgAAoMIAAPjBAAAswgAA4EAAAIxCAAAUwgAAVMIAALjBAAAAAAAAmMEAAKhBAACAQQAAgMEAAFDBAADAQAAANEIAACDCAAAAwAAAAEAAADDCIAA4E0AJSHVQASqPAhAAGoACAACgvAAAmL0AAGQ-AACovQAAmL0AAOo-AADIPQAAFb8AAKq-AADIPQAAuL0AABy-AABkPgAAoj4AAFC9AABwvQAAyL0AAEA8AABUPgAA-j4AAH8_AAAUvgAAHD4AABQ-AAAsvgAA-D0AAEQ-AADovQAAdD4AAPg9AAAUPgAA-L0AAHC9AABsvgAA1j4AAKq-AAC4vQAAFL4AAIa-AABwvQAAqL0AAFS-AAA0PgAA0r4AAHC9AAC4PQAAdD4AAJa-AAAwvQAAnr4AAEA8AACYvQAAZD4AABC9AADgPAAAMD0AAEc_AABwvQAAlj4AAGQ-AAA0PgAAED0AAFA9AADYvSAAOBNACUh8UAEqjwIQARqAAgAAFD4AAIg9AAC4vQAANb8AAIq-AAC4vQAAjj4AAOi9AAA8vgAATD4AAPg9AABcvgAAcD0AAHy-AACgPAAAmL0AABC9AAATPwAAqD0AAKY-AABAPAAAgDsAAFC9AADovQAAHL4AAES-AADgvAAAoDwAAIA7AABQPQAADD4AAMg9AACWvgAAQLwAABC9AABwvQAAVD4AALI-AADCvgAA-L0AADw-AACCPgAA6L0AAOg9AABAvAAAmj4AAH-_AABwvQAAJD4AABy-AABMPgAAQDwAADw-AACgPAAA6D0AAMg9AACgPAAA2D0AAHC9AAAEvgAAqD0AAHQ-AADIvQAAdL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=KbYW9FDm-Zk","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17094361778524435028"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14925579327899708452":{"videoId":"14925579327899708452","docid":"34-6-16-Z589A4E966614C360","description":"How to Find the Derivative of 1/sqrt(x) using the Definition of the Derivative If you enjoyed this video please consider liking, sharing, and subscribing. Udemy Courses Via My Website...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/224964/fd040f0182a7c76f654743901a88a8a9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/GmSpKAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DsCchLn51h50","linkTemplate":"/video/preview/14925579327899708452?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Find the Derivative of 1/sqrt(x) using the Definition of the Derivative","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sCchLn51h50\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhYKFDE0OTI1NTc5MzI3ODk5NzA4NDUyWhQxNDkyNTU3OTMyNzg5OTcwODQ1MmqIFxIBMBgAIkUaMQAKKmhoenpsYmpub211Z2hidmJoaFVDcjdsbXpJazYzUFpuQnczYmV6bC1NZxICABIqEMIPDxoPPxPNA4IEJAGABCsqiwEQARp4gfwJAP37BQDzCQQBAwP-ARcADQn2AgEA8_v9_AcBAADoAf0A-_8AAAb7BAz7AAAA_fj4Avv-AAAD-_0CAwAAAAz6-fz-AAAADgP4_v4BAAD5-f4GA_8AAAUMCAAAAAAA_AgBAPz_AAD7AfwEAAAAAPf1AA8AAAAAIAAtowvhOzgTQAlITlACKoQCEAAa8AF_IwoD-ObDA9EvzwDhDPMBojAm_wkz8QC3--gAtiHtAP3o4gDbCPsABhHpALEr-P8m6tb_--v4ACO99v9Px_7_v_IXAB779wA7KhoACQkGAN78FP8Wz-0B89mwACAawgAU7AcBEPjz_B4XyAIQ_kEB4_kvBD7IF__eqScA5RYRAg4F3v3rA_4EB_MH--cIKAEJ6xYFEPT--ub-3QTvCR4G0PP8_A4UzgAZ9wgJIij-B7vpFv0J6foKBAgu_t4P7wPV8TAG6S4JANwZIv8M9_QO9ArzEQrt9AgQGwf_Ddz6BBz_8fbwHvTyAxTrBOQa3fEgAC229ww7OBNACUhhUAIqzwcQABrAB-l-xr58vgG9KJQqPKNTPL30yBu8600xvODi17x4tBA82JMGu_a2ST6SUoq9UVcNPTRNKL5ZLsA79AmPPIGyCT7tRyq9acMhPXV0_L0vE5o9CwIQvYkLEL42aq66zo_5O_Q2Nryd-pu8cSSrvNaiLz1UPfS82qQqu2D9ZL15uW26eHy5u7GczryXnEm8tu1gva3lJL18gRm9CaWvO7xa7j1AY0u8KwGnPK_HqT0oJhC7rNAWveEfu70BQIS8ObTtvC9Ndj3GlYk9wutEPOv7hb0-aEy9hzsRPG5Tl7xYU3k9t3njuyZAqD2QqCs9b9GuvPBuYD1bVTu9VthnvEC3sb09KRM9mtwcPJXcXD0GQjc9cLbIOWQ7xL0VdYE8pAt7vCNsdLsQ37I6UDqRvCz-pTznQMU9qWisPOlrET1NGn68TPIOPDEtRb0kYLY79LCGPBaE0j1Fdo-9J2covMesuD00iZU8SmoZPNl4MLyF7SO7S502vFTmBr3JfWY9FbnWPB9U2Dzbs4i9Bm8hPAUjpT3WAju-SeWaOld7OL0vh_29KqBmOkusELxnXN27_ugju_D5YT0UXw2-d4QRu7a_Lj1L8Ly8N-wtu0o6D72pORS95Qmpu0lwWb10LsG7K5DRO6xysb1l4-K7f1IKvJc6iL3H8r49FWRMuIXoVT01cLG9IscZOngfjD0isXM9gHIIu-3UDD4h1Ls8jqYLuFqzWj09dpG96obYuixCVr1IY_68oV0NO8UTS734jcq9P-1HuaGd0z1RgZi9l51ROQDy1LyGgR097SeduPubS737qAs9avTDOZrHhj0AUya-BV1AOWskLj0vFdu9u2o3OSUlmD32JZs82_SDOZ1ESb1uOYI90I-OOcwgw73UDQS-CFOFOSyoXrwfzo27N9cEujf_Dz0Y2zq9bGDEtYtrfDzJY_w8J0YtuW2dyTyioC-9f6Omuay6u7pQyI49ZMz6N-ci2TwDzPy9UknIOREeyLuRfVA97x2MNos0r7qaspE7ZcsguNyUHD1OopQ9usCHN9PPCDxmMdG9PkuXNp_JHr1SFnQ8dCoaOawJmL1IELY7BKbBN2beBT3oWgk8Ey1uN26AHr3Wg5M7Ik0KuIOHiT1OfLU9qijpN4JVRT50yDc9ydyEuW4eYr2xK7K9E7-_uHX19LxZ3eq9DSPxNU03JL2Nu8w9rO4ON0n3jjytUMS9c5zyuCL_7D01KQU-835buBgnOb2UQ6U9ZZTHuKclBr7PGYu79I40Nr12xLwmLhE9g9slOCAAOBNACUhtUAEqcxAAGmA49wA5GhbU_Osp5fno1f764_H49tEW_-_bAN0hyBclF93TDtsAJM4V_bUAAAAhDwMK8gALZNnj4ioCMx3Yu8MOLH8TCAnN1xTiz84yEC7i6iUcHUgA2g3DIRXguC_6LxIgAC2TnDA7OBNACUhvUAIqrwYQDBqgBgAAAEIAAKjCAAC4QgAASMIAAODAAABAwQAAykIAAAAAAAAMwgAAAEAAAJhBAABgwQAAxEIAAADBAABwwQAAYEEAAChCAAAcQgAA8EEAAMDAAAAEQgAAuEEAAFTCAACwQQAARMIAAEBBAADYQQAABEIAALBCAACAPwAAmMEAAPjBAACOwgAA0EEAADjCAABAQgAA4EAAALRCAACIQQAAmEEAAATCAABAQAAAHEIAADDBAADgwAAA0MIAAGRCAAA4QgAAqEEAAIDBAAAUQgAAAMIAABDBAADAwAAAwEEAACBCAACQwgAAQMEAAHxCAACGQgAAgMEAAJzCAAA4wgAAHMIAABjCAAC6wgAAsMEAAIBBAACIQQAAIMIAABxCAAAAQAAAgMIAAIBCAABswgAAgL8AAIBAAACAQQAAkMEAADDCAAAwwgAAokIAAKDAAADgQQAAMMEAACBCAAAQQQAAqEEAAMBBAAAkQgAANMIAACBBAAC4wQAAgD8AAKRCAAAQwQAAQMEAADBBAAAAwQAAQEIAAJjBAABUwgAAoMEAAIBBAABowgAADMIAABxCAABgQgAAwMEAACxCAABIQgAAUEEAAAzCAAAAwQAAfMIAAIhCAABQQgAA6MEAAAjCAAAcwgAAgD8AACjCAAC4wQAAQEEAAADBAACCwgAAPMIAAODBAACAvwAACEIAAAAAAAAAAAAAgMEAAIxCAAB4wgAAJEIAAIA_AACIQQAA0MEAAEzCAACAwAAAYEEAAPhBAAAcwgAAIEIAACxCAAAwwQAAAAAAABBBAAAQwQAAoMAAAIDBAABwwQAA6MEAAIhBAACAvwAALMIAAIDBAACEwgAAwMEAACjCAAAgQQAAIMEAABjCAAAIQgAAWEIAAKDBAAAwQQAAcEIAAGBBAABIwgAAoEEAAABBAAAwwQAAisIAAPBBAACkwgAAAEEAAODAAACQQgAAMMIAAKjBAABIwgAAusIAAFDBAACAwAAAwEAAAFBBAADAwAAAqEEAAEBCAADwwQAAAMIAAEBBAACgwAAAKEIAAJhBAABowgAAQMEAAETCIAA4E0AJSHVQASqPAhAAGoACAACgPAAAqD0AAII-AAC4vQAAnr4AAGQ-AACAOwAAEb8AAM6-AADgvAAABL4AAKK-AACAuwAA4DwAAMi9AACgPAAAXL4AALi9AACgPAAA6D0AAH8_AAAcPgAADD4AAAw-AABsvgAABD4AAFC9AABEvgAA4DwAAIA7AAAcPgAAgLsAAJi9AACuvgAAFD4AACy-AADIPQAA4r4AABy-AAAcvgAA2L0AAK6-AADGPgAAZL4AAJi9AAD4PQAAgDsAAFS-AADovQAA8r4AAOg9AAA0vgAAiD0AAOA8AAC4vQAAML0AAC0_AAAsvgAAFD4AAMg9AAD4PQAAqL0AACw-AABAPCAAOBNACUh8UAEqjwIQARqAAgAA0r4AAMg9AACIPQAAR78AABC9AADYPQAAJD4AAAw-AACIPQAAiD0AAEy-AACYPQAAQLwAAFC9AACovQAAgDsAAOA8AAALPwAAcD0AAMo-AACSvgAAoLwAABA9AAAcvgAALL4AAEC8AABkPgAAgLsAAHC9AACAuwAAUD0AAAQ-AABMvgAA4DwAAOC8AAAMvgAAZD4AAI4-AACOvgAAoLwAACy-AADgPAAAiD0AABQ-AACAOwAA6L0AAH-_AACIPQAAqL0AANo-AAB8PgAA-D0AAKI-AACWPgAAcD0AAEA8AADgPAAAcL0AAOA8AABUvgAARD4AADA9AABAPAAA-L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=sCchLn51h50","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14925579327899708452"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17994385035140575010":{"videoId":"17994385035140575010","docid":"34-2-14-ZEA27E4FFA2D0997C","description":"This calculus video tutorial provides a basic introduction into the first derivative test. The first derivative test can be used to locate any relative extrema in a function. When the first...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2918671/c8ef6a83d5bc63e70808b30ab42701a0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1WRgcQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DG5wlKltW7pM","linkTemplate":"/video/preview/17994385035140575010?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Test","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=G5wlKltW7pM\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhYKFDE3OTk0Mzg1MDM1MTQwNTc1MDEwWhQxNzk5NDM4NTAzNTE0MDU3NTAxMGqIFxIBMBgAIkUaMQAKKmhod2RhaGl5ZHBtZHFvZGJoaFVDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQRICABIqEMIPDxoPPxP1BYIEJAGABCsqiwEQARp4gfQI-wf9AwD4BwUIAAb9AhMPDQb2AgIA-vUF_gYE_gDoAf0A-_8AAP4LBwIAAAAA9_P9Cfj_AQAGA_0BBAAAAAMG-v4FAAAABgH9_v8BAAD8-QEI-gEAABEJCAH_AAAA-g78-_8AAAD6AgQHAAAAAP3z-gQAAAAAIAAtIz_cOzgTQAlITlACKoQCEAAa8AF_-SgBzPrN_6ofyv_8MQEBviI1__w10QC21gIByv_rAfj52f_mFNL_Fif0AJIs_wH_3doA79sS_0_hCgBE3xoA6R_yASz38AE-FC__IgEF_sod8f7aBAL_89mxAB8awwAPxgX--Rj3A-wDwALv8EgDBfgdAvfxAP3I2xQC7-z__vf73AANNPQCC98P-OsWPAHq5yAFEB8Z-fAL6gQMAwT-_e8G9BYL4gQCBOUDDhMAA9HtDfnY3xH6BAcu_tDb4wXy9icC4wj7-N70DPAhIvcGxRryCPUFAAgRCQn-6uUA_CUR6QP56PcA9w75_NkN8f8gAC3nWA87OBNACUhhUAIqzwcQABrAB7-6ur6AC9c8kf1ivCwuzrxxcI48Id6Au0vTtr2Wyys9rO4HvT9zRj4O7jO9lvl9O8N4V71BUps7GVkyvC0LVj6wily9QS0mvXV0_L0vE5o9CwIQvReho70Z9K880wUrPB7XwL1Js5683G1yvLJ1mj2ly9G8LegBvMlXwrzmDAA9Qu4CvdQ6mz00VUa9Dp90vUTPHL0UxMi7CSjevKXghD36R7o8QC2nu7PNcj1B-4c8CvfKvDeIBr6_sGM7AEKavC9Ndj3GlYk9wutEPFj-vL3F2Z69KktfOzTDwb3aVz49wRPAO9_8xj3sG_M8h1k-vdjCBz1Ex5m98juyvGO0Hr42Fnu7f2BYPNwEqT2Dv989HDGpvK70Kr5txd49itQLu81hMj1lUVg8-05dvFxJoTzYa9U84vLOPEIDVj3E3c88eWirOpAkELwQ36M9pmIDPYbiTj2Q_nK9RqBVvE6OzD0eeiE9Pi7guyIPbr09WRu9HYPjOt8zFLxDnYg9vZyGO_r8pDqX2ly9RtEBPI_gFj5beA6-A-cOvMeDbb1XEI69nbdWvJyiCDz6hog9dmU8vEOpHT4fatu9xJqpOXnLVTzSMcw8Qtcxuso-_ryK84a9Eo6TO1pquL2bNPI8FasGvChyUr10MDE9Pqn-uzd1-TzVQik94B-Au_5ByTxbDI69Hd9mOxR5Ej0rWi89JPsUuy2Lkz2erx49oKIPOhJQwT3BeEG9YdMKutkQEr1Jzei8WkKlOxuIQLyxa_u9tr6euTy98j1KyFG9V8GOOe65h70Pu8o805bRuCZstL1kQNY9XCYQOGvjPjx0CJy8bbVsuVxUC72cFfG93J51Odhi1z3YPg28LIi-uOWzvDw7WWU9MR-UugL0i71FNZC9O4YxOC09Hjw5SU68IehzuHiekz1uuNk8_aiduM9qQb358IE9hW8AuualCztTuzW9fdzCOIK_hD0-iE49DmtHOEHxAz1xT8G91zh7OcN3LD3uSKA9be0bOZvO6TzW8lQ9VMseuOg_NT1kHwQ-Z7EbOOXiubxxaJu95a0INslDOrwfWZo9N_MGN5r_nL3QkJs9AtsuODW2lzzntF08wUDnOEbx6DqWAre8xu9nN835Ez3i_II9T8q6NMHjKz7cpWi8B4l0ud68gjy0rxy-_IdluCGNT73ugny9RhWOuFUxE7xOmVs9Da_LNw0SRzx0fPS9VlhZuMr0cD0i4Ss-8cuKOAcLp7y9_O49g7QeuQahfL1gHIE8YXy1NzMOf71p7a660zyfNyAAOBNACUhtUAEqcxAAGmBD-gAZBx__EQvx6dDe5R4C3-8X8NYQ__AEAAAawAkbDPfs_vgALdYW8L0AAAATAusZBQDxXNvXBekLGgHAt9cNI38JDSiv6Q3xyu4LDwzz9iQQMwUA4e-7EgPhmxkG_PwgAC3ivUI7OBNACUhvUAIqrwYQDBqgBgAABEIAAHBBAAAwQQAAJMIAAABCAADMQgAAqkIAAFBBAABgwgAAqMEAAHBBAAAAwAAAOMIAAMhBAAAIwgAAMEEAAIJCAADgQAAAIEEAANBBAACYQgAAJMIAAGDBAAAQwgAAsMEAAEBCAAAYwgAA4EEAACDBAAAQQQAAQEAAAIjBAAAQwgAAGEIAAMjCAADIwQAAQEEAAFRCAAAgQQAA4EAAAIhCAACgwAAAikIAAEBCAABQQQAAtMIAAAhCAACSQgAAgEEAAOBBAACQwQAAwMEAACDCAABAwQAA4MEAAFxCAABUwgAAmMEAAKhBAAAoQgAALEIAADjCAAAUwgAAgMEAADDBAADOwgAAUMEAAKjBAACgQQAAwMAAACBCAAA8QgAAZMIAAJhCAADwwQAAfMIAAI7CAABAwQAA4EEAAMBBAACUwgAAmEIAALjBAAA0QgAAyEEAABRCAACQwQAAsEEAAGBBAABwwgAAAMAAAL5CAAD4wQAAVMIAABzCAAAgwgAAJMIAAGjCAABYQgAASEIAAMDAAADgQQAAoEAAAFBBAADOwgAAQMEAAMBAAACEQgAAAMEAAJRCAADIQQAAIEIAAKDAAADgQAAAAEIAAEDBAACMQgAAWMIAAJBBAACIQQAAkMEAADTCAACAPwAAisIAAEBBAAAQQQAAaMIAAEBCAADwwQAAAMEAACDBAADAwAAAuMEAAOBBAAAAwgAAXEIAAKjBAACAwAAAgMIAAGDCAABwwQAATEIAAJhBAADQQQAAEEEAADBBAAAQQQAATMIAAJjBAABAQQAAkEEAAHBBAABcQgAA2MEAABRCAAAAAAAA-MEAAGDCAAAswgAAmEEAAFjCAACgQAAAWEIAACBBAACAvwAAMMEAAAhCAABEQgAA-EEAAJhBAAAcQgAAqEEAACDCAAC4QQAAEMEAABDBAACAQAAAQMIAAKBAAACeQgAAZMIAAGDBAAAcwgAACEIAAAxCAABQwgAADMIAADDBAACAPwAA2MEAAIDBAAAAQQAAUEEAAOhBAAAgQQAAgkIAAADBAABAwAAAwsIAAFDBIAA4E0AJSHVQASqPAhAAGoACAABAPAAAyD0AAI4-AABwPQAALL4AACw-AABEPgAAA78AALK-AACoPQAAgLsAADy-AADgPAAA6D0AAOC8AABwvQAAoLwAAIC7AAAsPgAA1j4AAH8_AAAkPgAABD4AADA9AACavgAAoDwAAEC8AAAUvgAAEL0AAOg9AAAEPgAAED0AAIi9AAA8vgAAqD0AABy-AABQPQAAHL4AAES-AAC4vQAA4LwAALi9AADCPgAANL4AAHC9AAAkPgAAMD0AAAy-AAAQvQAAlr4AAEC8AAD4PQAAmD0AADQ-AADgPAAAoDwAACU_AABwvQAAqD0AAGw-AAC4PQAATD4AACw-AABAPCAAOBNACUh8UAEqjwIQARqAAgAA6L0AAFQ-AABEvgAAF78AANg9AACgvAAAZD4AACS-AAAUPgAAND4AAJi9AAAQvQAAiL0AACy-AADoPQAAgDsAALg9AAAdPwAAML0AAOI-AABMvgAAiL0AAJg9AACovQAA-L0AACw-AABAvAAA4LwAADC9AABQPQAAoDwAABQ-AAD4vQAAiD0AAOC8AAAwvQAAyD0AAIg9AAAcvgAABL4AACQ-AAAkPgAAQLwAADA9AAAMvgAAZD4AAH-_AACevgAA6L0AAIg9AACYPQAAMD0AAKg9AADYPQAADD4AAKg9AAAwPQAAXL4AABC9AABwPQAA4DwAAOC8AAAcvgAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=G5wlKltW7pM","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17994385035140575010"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"13410891452114116724":{"videoId":"13410891452114116724","docid":"34-1-2-ZC047492F4E485D5A","description":"Basic Derivative Rules - The Shortcut Using the Power Rule In this video, we cover some fundamental concepts of calculus by finding derivatives of simple functions using the power rule.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3429708/71662657e415b2f9211d77979b9e9c69/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9RWRtgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D54KiyZy145Y","linkTemplate":"/video/preview/13410891452114116724?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Basic Derivative Rules - The Shortcut Using the Power Rule , 3 Examples","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=54KiyZy145Y\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhYKFDEzNDEwODkxNDUyMTE0MTE2NzI0WhQxMzQxMDg5MTQ1MjExNDExNjcyNGqTFxIBMBgAIkUaMQAKKmhoY25hcXdneHRvbGZ4eGNoaFVDRmU2amVuTTFCYzU0cXRCc0lKR1JaURICABIqEMIPDxoPPxPNAoIEJAGABCsqiwEQARp4gQD3Bf78BAD9AAsO-Qn8Ag8IAwr2AQEA7_EE_QYAAAAH-wv1_gEAAAT4CAQAAAAA_fj4Avv-AAAQ-_75AwAAAAkC-AD9AAAAE_cJCv4BAAD3-gUOBP8AAAX-AwQAAAAACggD-v7_AAALBPcEAAAAAAj--wj88_4AIAAtzm3eOzgTQAlITlACKoQCEAAa8AF_9w__yxjqAN8l7wD2I9gCoTAm__w30AC18AwByQT7Aesc9gDbBOgA8Pn__8FH8wAGv9P_AuYYADC2DQIP3vIA_9feAAPgA_9zGQgBEAHh_7j2Gf3yy-z__cPcABwO4_3w1_kANefRAB8XyAIYAyABKSIkBfPjC_7axw0B6_UPB-vb1_3eDQsE8e8H9tYFJALs3_YGKRn69vMV9wD7AgEE4O0Y_xIX8QD7DPcKHB_pBtL97P_u0uUDMxYPAtwJ9fIRAg7_0vsK9gzSCAUC9xf0Cevx8SPX5wIU_PEJAA0G_BjU-vLGF_H06OL0DuYNCewgAC1O_As7OBNACUhhUAIqzwcQABrAB6cgv74tk8Y8KRAsvU5j-7036Qy9d-nwvCMT8L3XLSc99_1AvNqQHz6mBTM7562ZOqFId75zVro8pDYxvYmZDT7MP1-9652fuXoXL74IPDA9KZ_UvEQYX77UZGc7pZ0_PEBcKDy4bm-8_QSGu-DZfj1ScU29zTdHvH4d-LycTUc9i0ArvIlH_byTnai9a3ARvU2foTvKuHO9GI4RPSDrCT7Fbdm8qpk1vLPNcj1B-4c8CvfKvNg1TrsbdHg8FKFHvHMIsT1Avdm8hcOcPJuNWr3Dd6y8swhFPDTDwb3aVz49wRPAO0ELCT2-7Eg9EUqpvPRsablgqyS-gDKAu22s5L2mES49lE7BOycXEz5P1XM9FamwPFDD173Eknc9a4zOOmGIPD0hySy9Yd2dO898oz24MlI9p9BUPMCWhz1JO5Q9D7FmvOQ7xjuM9wM-vyzIPCBLqj2oFva8XHaIvLLLgTxqBIE9yQyKvJIqwLygp2E9pX1RuV8dwb1fNSA9eJkFuHmEKT0Q3xM9IGIDPcU1Qz34UQ2-CW8su_pYpr3LUJC9Haeuu6HGgz1chsm8x9slvHPzbT0tk4G9r1A1PC8yojsUFPW8GPaLO22kkTxeyHm9H6w1O0lwWb10LsG7K5DRO0-5GL0wZus9U2bCuf7Zuj0rEgM-y7FbuYQ_CTsVjYW9aHwZO0267TxEHN45jfUqO7CFqj12tjG9UT47OpWNjT3qN5i9hVVvOnkhHb1Ut2m8l87BOk7zabx7toO9HJvbuj5hRD3nA329J5a9uEGkujzsU-m8HvZBOXHgOr0uuks9chbHN5tw8TuARDi9tsNpOBSdi72JeuG9xidwOcVCY7x43jw9qHXDuEK8xD3piqW7-OowuRL1Qr0iGOe9eBrqN-ucFb1AbOk7Pg_tt534hTziBCa8OHy1uEy8CL26UJG5MhlBuTcccbyPOKS8o5ikuHUB7zzW9bU9PRDxuL7nxj0AHaa9akOGOUWc7zs90dU94glHuesPHrz6Y_U8DjI2twxMODyDrYg84SxCuZoHED3eOMm9CDT7NuexYT3tX349CEMguEpRqL1jbu08-wU-OC5BAT1D9gs9SL0NOLdp4jyaTqG84T2wuFfCA7wACI48jOKaOLEVBD7G__g7MtlTuJRsEL26SbG8g-Nzt0cn5jy-p629yTRvtwACdr3qEsQ8Pcjzt9mE6rwiV7W90kIwuMr0cD0i4Ss-8cuKOPI2ID2RGZ494xxiuLKrj718uvo8c5Q0N21rEL3FeZM91SAoOCAAOBNACUhtUAEqcxAAGmBc9gAgJSv5F_sg3v-85A3S0_7dELIk_w30AAsu5ABALNO2_-X_Lb4FAqEAAAAIAszXFAARf-i6B_Yc6QGZvtUeLV3aFirCEQ4M8NYf8v8I0vLSPVkAwPLAMjqwtSUHJ9AgAC0ntxc7OBNACUhvUAIqrwYQDBqgBgAAeEIAAMDAAAAwQgAAoMEAAIjBAAAMQgAAkkIAALhBAAB0wgAAZEIAAOhBAAC4wQAA2MEAADBBAACQQQAAYEEAAFRCAAA8wgAAgEAAABBBAACwwQAAKMIAAKrCAABMQgAALMIAAIBBAAAwwQAA0EEAAFDBAAAoQgAAaMIAANDBAACywgAAKEIAAKjCAADgQAAAyEEAACBCAACgwAAACEIAAEhCAAAAwgAA6EEAAKjBAADIQQAAjsIAAEBCAABoQgAAqEEAAIBCAADowQAA-MEAABDBAAAcQgAAAEEAAGhCAACCwgAAwMAAANBBAAB8QgAAoEEAAJDCAAAIwgAAsMEAAIA_AAB0wgAAAMEAADDBAABAQQAACMIAAOBBAACYQgAAQMIAABhCAADQwQAAVMIAAJTCAADoQQAAoEEAALhBAAA8wgAAlkIAAGDBAABAwQAAAMEAAHhCAAAcwgAAqMEAAABCAAAAwQAAIMEAAHRCAABIwgAAAMIAADBBAACAPwAAwMAAAPjBAAAAwAAAUEIAAHTCAAA4QgAAmEEAADxCAACswgAAFEIAAMjBAABAwAAAOMIAAEhCAABwQgAAyEEAAIA_AADoQQAA-MEAADxCAACIQQAANMIAADBBAACowQAADMIAALDBAAAAwAAA2MEAAEDBAADAwAAAAMEAAMBAAAAcwgAAyEEAAAjCAAAIwgAAuEEAAKJCAACAPwAAhEIAAKDBAAAgQgAAgEAAAJzCAADgQAAAEEEAAFxCAABcwgAA-EEAAChCAACAwQAAIEEAAJDBAACAQAAABMIAAMhBAAD4QQAA4MEAAEBBAAC4wQAAeMIAAFjCAACawgAAIMEAADzCAACIQQAA4EAAAEhCAAAsQgAAMMEAAKjBAABsQgAAEEIAAIC_AABQwQAAMEEAAMBAAAD4wQAA-MEAABDBAACYQQAARMIAABBBAACaQgAAAMMAAOjBAAAQwQAAUMEAAGhCAADgwQAAPMIAABBBAACowQAAmMEAADhCAADgQAAAuEEAAOjBAACIwQAAtEIAADTCAAAwQQAAwMEAAGDBIAA4E0AJSHVQASqPAhAAGoACAACCvgAAED0AAFQ-AAAEPgAAqD0AAEQ-AABkPgAA5r4AALa-AAC4vQAAsr4AAFS-AAB8vgAA-D0AAEQ-AAAwPQAAEL0AAMi9AAD4vQAAlj4AAH8_AACYPQAADD4AAIi9AACmvgAA4LwAAIi9AACIPQAA6L0AAOA8AABEPgAAdD4AAPi9AAAwPQAABL4AAOi9AABcPgAAVL4AAN6-AAAQvQAALL4AAAy-AAB8PgAAqL0AANY-AACovQAAUL0AAMK-AAAMPgAAlr4AADA9AABwvQAAqD0AAOA8AAB8vgAAEL0AACc_AADgPAAAgDsAANo-AAAcvgAAmD0AAPg9AAA0PiAAOBNACUh8UAEqjwIQARqAAgAANL4AAKi9AACovQAAJ78AABQ-AACIPQAAHD4AAEC8AABAPAAAqL0AADy-AADIvQAAoLwAALi9AADgvAAAgLsAALg9AAA1PwAAmL0AALo-AAAsvgAANL4AAIg9AADovQAAoLwAAIA7AAAkPgAAqL0AAGw-AAAUPgAAcD0AAOg9AACmvgAAEL0AAKi9AABAvAAAoDwAADA9AABMvgAA2L0AAAw-AACgPAAALD4AAFA9AAA0vgAALD4AAH-_AABcvgAAFL4AANg9AAAwPQAAED0AADA9AAAQPQAAcD0AAFA9AAAwPQAAuD0AADC9AABQPQAAuD0AAEy-AAAkvgAAXL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=54KiyZy145Y","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["13410891452114116724"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16879689330109543102":{"videoId":"16879689330109543102","docid":"34-1-4-Z8F1E9B5FDB9D853F","description":"Thanks to all of you who support me on Patreon. You da real mvps! $1 per month helps!! :) / patrickjmt !! Derivative Using the Definition, Example 2. In this video, I find the derivative of a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3429594/52d3313173071823047c003bc6a91f44/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/V_sypwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWERgBgi4hg4","linkTemplate":"/video/preview/16879689330109543102?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative Using the Definition, Example 2","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WERgBgi4hg4\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhYKFDE2ODc5Njg5MzMwMTA5NTQzMTAyWhQxNjg3OTY4OTMzMDEwOTU0MzEwMmqTFxIBMBgAIkUaMQAKKmhoY25hcXdneHRvbGZ4eGNoaFVDRmU2amVuTTFCYzU0cXRCc0lKR1JaURICABIqEMIPDxoPPxO3AoIEJAGABCsqiwEQARp4gQH9-gUAAAD0AgwAAwT-ARgADgn2AgIA6Pr8_gT-AQDnAf3_-v8AAP33BwX4AAAA__L_-Pj9AQAD-_wCBAAAABEA8vb9AAAAEQYADf4BAADu-g75AgAAAAkFBAEAAAAA-Q78-_8AAAD-CvkLAAAAAAIC_A0AAAAAIAAtLGDVOzgTQAlITlACKoQCEAAa8AF-Fhf85M_2AbjzyACbHuIAgUQE__tExACm4u7_zerKAMAO9gDj4xUACSYZAeoP0_9T8rn_AM_zAU3R-wD51_gA3Do1ASPU0QBD5y0ACdzm_tYsO_zZnSv-_LXUAAoQ6P4O7hj3FAnkAg8S3ANE6SoCKj0XBzjZFAIEsBcA8vTv_drzy_zdKuQE4Mwa--EKMQL7-PMHDNgB_5xS5wALxw37_dUe-zlGyP8n0AUCEOkDBakbC_YXAdIBEU0B_tDnBvrd2Cf_s98G_gXQ__sf2Sf45hHm90EL-RLt8QYJFR4ECPzY9tztBgwc3avzFsMaBPIgAC0-2OE6OBNACUhhUAIqzwcQABrAB7-6ur6AC9c8kf1ivHdlJ74VRJO8QcnuvKjhG77fFuw8h9tGPKfN-D3sJKy8tYYXvRToM77779w8WdOGvJjdIz6BSZC9Q_T1vHoXL74IPDA9KZ_UvEQYX77UZGc7pZ0_PJrMuDy-OYK9f8MfPKA0xD2m1VC9Ef_WOZ5LjL3tSLU8mctXvF2psr3BnCq9PR5EvFFWgjwrN8y9JXXCPCAHuj2CkTe9iLKcvKGUej1kaKu8waq6vB2tSj1iIF49ElAhvf5ukD3H7HI7oXMNPfElmb2H1P689VHhPDfd0r1rpIC8k2XSO6xjCz0NBjI8WuybvPRsablgqyS-gDKAu22s5L2mES49lE7BO_CLCz7zP7O74jrGO-_ks733kZs9zf26vBvccT3B-kS9zGJivHDdsz34EeQ8PTVquzMtNj0gKk09pSseO5AkELwQ36M9pmIDPSBLqj2oFva8XHaIvN3zdDvvDt88NfHROao-fL3vEKA9S48mPB1aZLx5hwU9wuyOuiGNLzyqR5o8vM9xPMU1Qz34UQ2-CW8suyaUeb2xCVq9kYJ9OX446D1CQIA7fH0QvORpuT1ddI28RwEgPJb40jxBdgi9IrH2uhb1bjwwkBa9gVxiO9n1sb1IRym6IzAZurLLgbz3DLw9cfINu3MHWz0DU8c9cgzBOZGgU7zfJq29Fu2eujEERT0vZx27euxtOsITuj1qm-q6mQCyutrHKj0hSzW9gLa4u5vc1LzzTSS9_lwXOxGQ77wdbIu94EIdOe50nD2s4s29Kv-9OeIdYD3Ua2m88W1Ruwq_T70mHtA9gCM5ue5vmjyjLDK9vPebuMui8LxbQh6-NwXjObaWc72INlY9umCZup4_kj2hA9w8O26xucwgw73UDQS-CFOFOTf74jq8VBE9XHC5tsiD4zx1DOM8vhzZtzzN-LzGN--8ZpzfOHFPPL1_1Ta8NKC_OL8gM7ysG889SQw0NeKSAz6Ow6W9gjGhOXn5qbunJcY9xK7_uINokrzkgx49p2upN3LCZD3f_wI9bA0MOPFZKD13loq91TXrOOFqcz1nPUE9ZfbpuGVTzr3C6Kg8_jLoN4NmHD35w6o8kqDwOA_bET0hVM48Yp1OtzjshLoR7sS8KwdeN8HjKz7cpWi8B4l0ubhdk73Pq5C92nVEuNU7gTzvPYe9zZO_N9psob2N5rI9IXQJONmE6rwiV7W90kIwuMr0cD0i4Ss-8cuKOJVfKzzPvIw9xfwGuW4Djb0naa49v_cWN7SRa73XSbI9UhvVNyAAOBNACUhtUAEqcxAAGmAr-QAvDxXVJNsk7PjX3vXcx_Tx9NMZ_wPaANUU0BUPO9HO8OUALMwEDbIAAAAnAu4BAAAFas0CBCUj-AXSl_HpKX8J_xi3wCwFngQ-FQPUGBEuBCwA49_IHwDc2E7rCA4gAC2OMSk7OBNACUhvUAIqrwYQDBqgBgAAdEIAAIDAAAA0QgAAMMIAAETCAACAwAAAKEIAABxCAACowQAAmMEAAIDAAAA8wgAAwMAAAIC_AADYQQAAAAAAAIxCAAAgwgAAhEIAAAjCAAAYwgAACMIAANTCAAAAQgAAOMIAAEzCAADIQQAANMIAAKBAAACgQQAA8MEAABBBAABUwgAA-EEAALDCAABAQQAAGEIAAJxCAACoQQAApkIAANBBAABwQQAA6EEAAADBAABQQQAA0MEAAKDAAABAQgAAoEEAAIDBAAAAwQAAkMIAAHDBAAA4QgAAWEIAAABCAACWwgAAoMAAAJBBAAAAwAAAgMAAAHjCAAAQwgAANMIAAKDAAABkwgAA2MEAAKLCAAAUwgAAgD8AACxCAAAAQAAAwEEAAABBAACgwQAA2MEAAHjCAAAQwgAA4EEAAADAAACIwQAAREIAAAAAAACIQQAAoMAAAIZCAACAwQAAfMIAAPBBAABswgAAHEIAALhBAAC4wQAAgMEAAEBBAAAkwgAAMMEAAOBAAABQQQAAOEIAALTCAABkQgAALEIAAKDBAAAUwgAAMEEAAPDBAAAwQgAAAEAAADxCAABYQgAAQEIAAKDAAADAwAAAQMAAAHhCAABAQAAAgsIAALjBAAB0wgAAHMIAAKDBAAAAwQAABMIAANjBAACAPwAAjsIAAEDBAACowQAAUMEAAIBAAAAAwgAAoEAAAJ5CAADAwQAAQEAAAFhCAAAgQgAAoEAAAIbCAACgQQAAQMAAANhBAAAQwgAAEEIAADBCAAAAQAAAMMIAAJDBAABQQgAAyMEAAJBBAACcQgAAgL8AAIC_AABEwgAAlsIAADTCAACCwgAAUMEAAOBAAACAQQAAJEIAALBBAACAPwAAKEIAAFDBAAB4QgAAzkIAAGDCAABMwgAAIMEAACDBAACgwQAAgEAAAMjBAACwwQAAgEAAAKBAAAAQQgAAYMIAAADDAACAPwAAoEAAADxCAABUwgAAZMIAAEBAAAAAAAAAwMEAAGxCAABgwQAAFMIAADTCAACIQQAAmEEAABzCAABsQgAAdEIAACzCIAA4E0AJSHVQASqPAhAAGoACAACYvQAAiL0AAHA9AABEPgAApr4AALY-AAADPwAAM78AAH-_AACoPQAAQLwAACe_AADIvQAARD4AAJg9AACIvQAAED0AADA9AAABPwAACT8AAHU_AACGPgAA2L0AAJg9AABEvgAAJD4AAHy-AAC2vgAApj4AAFw-AAC2PgAAyL0AAFA9AADevgAAsj4AAAS-AABQPQAAXL4AAKa-AABwPQAAqD0AAKq-AACaPgAAVL4AAIA7AADGPgAAuL0AAD-_AAA8PgAAtr4AAI4-AAAcvgAAoLwAADA9AAAkPgAAyD0AAEk_AABQPQAAJD4AAAk_AAAcPgAARL4AAEQ-AACAuyAAOBNACUh8UAEqjwIQARqAAgAAXL4AAIC7AAC4vQAAQb8AAKA8AAA8PgAALD4AAMg9AAAwPQAABD4AAPi9AABcPgAAoDwAAOg9AADovQAA4LwAALi9AAArPwAAUD0AAPo-AAA0vgAAPL4AAEw-AABkvgAARL4AACy-AAC4PQAAgLsAACw-AAD4PQAA4DwAALg9AAAsvgAAcL0AAJg9AAA8vgAAHD4AABw-AAAUvgAA4DwAAFQ-AABwvQAAoDwAAIg9AAAQvQAAHD4AAH-_AACgvAAADD4AALI-AABcPgAA2D0AABw-AACCPgAAHD4AAMg9AACAuwAAir4AAAQ-AAAMvgAAVD4AAOA8AAA0vgAAbL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=WERgBgi4hg4","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["16879689330109543102"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12017103862389653167":{"videoId":"12017103862389653167","docid":"34-8-7-ZF1F8952C03F74C2C","description":"This calculus video tutorial provides a basic introduction into the product rule for derivatives. It explains how to find the derivative of a function that contains two factors multiplied to each...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3566939/c5b520030e418ed24552bb23a26b7fce/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/aUfusQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D17X5g9QArTc","linkTemplate":"/video/preview/12017103862389653167?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Product Rule For Derivatives","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=17X5g9QArTc\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhYKFDEyMDE3MTAzODYyMzg5NjUzMTY3WhQxMjAxNzEwMzg2MjM4OTY1MzE2N2qIFxIBMBgAIkUaMQAKKmhod2RhaGl5ZHBtZHFvZGJoaFVDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQRICABIqEMIPDxoPPxOeBYIEJAGABCsqiwEQARp4gff-_AD-AwD6BBcG_Af9AhoOAAb0AwMA-P3-AwUC_wD2Bf_3AQAAAP34BwX4AAAA-AX6_vT_AQANBvUDBAAAAAIAA_4CAAAAAP8GC_4BAAD3-QUOBP8AAAAFCP7_AAAA-g78-_8AAAABCPj6AQAAAP3z-gQAAAAAIAAtAFPbOzgTQAlITlACKoQCEAAa8AF_HR8B4g_IAtUq1ADZERUBrhoJAPg2DP-_6vMAvPfKAA8P0QHqEusAEhL1_5cQ7wEj7dr_DebtATf9BP8zygoA_BD7ARoG7gE1JhgA8fPs_uwJJQD95wIA99zU_wgL0_4WABL-GxvM_uwj2AMO_jsBzvQjBS7f_vzyyAf_3eP_AwH97v70FPsG9AYA9gMLMP4K0v3_JRf69_EK7AT3Cv_52usJARsa4_357vYOFhQK_NPODf4K4wQAFR8h_usX9vXZ8isF1BL68gEIBPQ1AwD82e_58-j68Q0TDPgA9PT7_Rzz_ALg-f358iX_-OcY4PMgAC3j6xs7OBNACUhhUAIqzwcQABrAB08-xb5-2Nw8McawO_oN072QeMM8bHAHvV8lf70UrzI8GaKSuzMyGD4QNHC9fD3EPDNIq72ueHQ9hnCxvP29dD6SVEu9A7HsPHE9Wr7nFr89hUyovBeho70Z9K880wUrPOUYv72LAII8_iRjPGFdiz1SD9E8kAsTPcP4RLxMiUQ9LVlavdxqGTr1EVi9E3xYvTf0e71cYVE73Sx7uyAHuj2CkTe9iLKcvLdXSz1WdNa7xqcgver2KL3fWty80-OtvIRZEj2451k9YiAZPFj-vL3F2Z69KktfO3W9jr3OT1E9hZCYPJy0uj1K7UU8sHqbvNjCBz1Ex5m98juyvGO0Hr42Fnu7f2BYPLlmtz1zE7A9vxuBPFDD173Eknc9a4zOOqRupzz90kc8Frq3vAVbmzxOtmE9SVjlPK8HE71I5xO85DSfPJn7j72bRY49Z23JPFuVlD3qDqi9MDCGvKpdqD1LcA88bjVrvAA7N70MQOO8Lb6XvIOJ371ca6k9-6M5PJuoijy6JNi8EeZRPN9mxj05tfO9hx8YPJXcPL088cG9Q-nmuz0VRj3qa6c8egZDvE7wzT1mM-e9_1cAPEgIxbzaFxY8aRiEu4Zgjzk7OQO93ksrPJ2heL08yWy9sP2mOzSRiL30pmI9fmbauzcDt7z5rlI9NBE2vGwB57swR--9P5qgugwDFj19CCq8-tRSu0Br3j0KQ4m88m3luZWNjT3qN5i9hVVvOtLxsr0nqDy8t-qdOirogb2cPKC9zgB1uMo0-j0Te828WYZhOPA74bwsL9Q8Ee4lOypih73w65E8DsS9OAZ2Jj3q24i9As1mONgCjDyDaM29LiTCuCUlmD32JZs82_SDOW84Ar3Z7q491MswOBL1Qr0iGOe9eBrqNwyMITy44ie9fdXDuP7ymT3M1Wq7r9XEOJxETr0q4Yk8h_rGODAmQj3pMiu9J0wAubuPq7q1Bbo8Y_gFOSOsjD30bAa-z3ClOUYu07z2ARI9aAvxOGVFHj0ygTE9NFyVtkjWqzwbEKE9EflvN9PPCDxmMdG9PkuXNnAWpTzKlEU8V8yJuL2P4704Zc49OHOROLqsGD3xxU093NLLOMenlr0Dh4a8nY2KuGpcDj0Wd3I8U7nCt53Z7j2flZO6o2oOuSvcE7xklQK-cT0buHP5ajxV-KO94xA7N8ya2LzjtWE9kN-ht4YQIT1cd9O93vObt8r0cD0i4Ss-8cuKOOtc7LyqpKQ9AYvEuKdaC77Mmhi9Cpd0uJhnSr1BFCc88kRMNyAAOBNACUhtUAEqcxAAGmA_-wAlDhsKB_gW4eTU0w0Bx9AECrYi_-frAAA6wBMV7fj8A-oABb0q_K0AAAATHM8ZAwD7c9C36RQCHhnNx_MOSXMYAUqn3_3z5ush8A727BIHOTYA3NvGF-vNgQgGEOogAC162SU7OBNACUhvUAIqrwYQDBqgBgAA4EEAAKjBAABQQQAAmMIAAEDAAADQQQAArkIAANhBAAB4wgAAXEIAAABCAABwwQAAMMIAACBCAACQQQAAmEEAAFxCAAA0wgAALEIAABRCAACYwQAAcMEAAHTCAABgQQAAYMEAAEBBAAD4QQAAiEEAACDCAABAQQAARMIAAIjBAABYwgAAEEEAAKjCAAAEQgAAwEAAAKxCAAA4wgAAMEIAABhCAACgQAAAKEIAAOjBAACAQAAAuMIAAFBCAACuQgAANEIAAHBCAACgQAAA4EAAAIDBAABwQQAAgMAAAJhBAACwwgAAoEEAAEBBAAAkQgAA6EEAAGjCAAAwwgAAmMEAAIDBAACEwgAAmsIAAIjBAAAQQgAACMIAAJBBAADIQgAAAEEAAChCAACOwgAAZMIAAJbCAACAwAAACEIAAEhCAAAMwgAAtkIAAOBAAACAQAAAMEEAAEBCAAAAwQAAAMEAAAxCAAC4wQAAXMIAADhCAADgwQAAAMAAAPhBAABgwQAACMIAAEDAAACoQQAAgEIAAFDCAADYQQAAAMEAAHBBAACcwgAAkEEAABRCAAD4QQAAYMEAADBCAAAAQgAAcEIAACDCAABYQgAAwEAAAJRCAACwQQAAZMIAABDBAADowQAASMIAAIzCAACAwQAA8MEAAAzCAAAIwgAAIMIAABBBAACAwQAABEIAAFzCAACYQQAAsEEAADhCAABowgAAOEIAALDBAAAEQgAAAMEAAIrCAADQwQAAwMAAAABCAADAwAAAGEIAABBCAAAQwQAAJEIAAOhBAACAQQAAoMEAAEBBAADwQQAAQEAAAKBBAAAgwQAAYMIAAEDCAAAwwgAAgMAAACjCAACgQAAAUEEAAADCAAAYQgAA-EEAAKhBAAAwwQAAkEIAAFDBAACAQAAAHEIAAADAAAC4wQAA4MEAAMDAAACAQQAAlMIAADBBAACCQgAA0MIAACDBAAAMwgAAIEIAAHxCAABMwgAANMIAAIDAAAAAwQAAMMEAACDBAAAQQQAAEMEAAAjCAADgwAAANEIAAKjBAAAEQgAAcEEAANjBIAA4E0AJSHVQASqPAhAAGoACAABQvQAAUD0AAAQ-AABMvgAAPL4AAGw-AACCPgAA2r4AALa-AACgPAAAyD0AAK6-AAAkvgAAqj4AALg9AAAQPQAADL4AAIi9AABsPgAAND4AAH8_AAAMPgAARD4AAAS-AADevgAA-L0AAIi9AADoPQAAdL4AAOg9AABEPgAAEL0AADA9AAB8vgAAmD0AAHy-AABUPgAApr4AAMq-AAAcPgAAqL0AAEy-AAD6PgAAgLsAAAQ-AAC4vQAAiL0AAMq-AAAwvQAAur4AAKg9AAAUPgAAyD0AAAy-AACgPAAAiD0AAOY-AADYPQAApj4AAM4-AAAcPgAA-D0AAAw-AAAsPiAAOBNACUh8UAEqjwIQARqAAgAAuD0AAAQ-AAAkvgAAEb8AAIg9AAAQPQAAND4AABQ-AACIPQAAXD4AALi9AABwvQAAMD0AAFy-AACAuwAAoDwAAEA8AAAtPwAA4DwAAMo-AADYvQAAgLsAANg9AAAQvQAANL4AAJI-AAAMPgAAgLsAAOC8AAD4PQAAQLwAAKg9AACavgAA4DwAAN6-AABQvQAAEL0AAEC8AABcvgAA2L0AAKA8AAAkPgAAHD4AANg9AAAQPQAAnj4AAH-_AACevgAA-L0AAKC8AABUvgAAND4AACQ-AACgPAAAHD4AAIg9AAAQPQAAbL4AAKC8AADgPAAAgDsAAOi9AAB8vgAAir4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=17X5g9QArTc","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12017103862389653167"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4725985985667336431":{"videoId":"4725985985667336431","docid":"34-10-11-Z2EC984788437C413","description":"We find the derivative of f(x) = (2x + 1)^3(2x - 1)^4. I hope this helps someone who is learning calculus. amzn.to/3uyk1SV Linear Algebra https://amzn.to/3VHiN3G Abstract Algebra Books...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3187192/e831a0e8c37d495d564fe6651dfa5ffe/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/oJAcRgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZuQbwy8B12E","linkTemplate":"/video/preview/4725985985667336431?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative Example with the Product and Chain Rule","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ZuQbwy8B12E\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhUKEzQ3MjU5ODU5ODU2NjczMzY0MzFaEzQ3MjU5ODU5ODU2NjczMzY0MzFqiBcSATAYACJFGjEACipoaHp6bGJqbm9tdWdoYnZiaGhVQ3I3bG16SWs2M1BabkJ3M2JlemwtTWcSAgASKhDCDw8aDz8T6QKCBCQBgAQrKosBEAEaeIH4AAIGAf8A-gQZB_wH_QIXBgYC9QICAO7vBfwHAAAA9gX_9gEAAAD-7gwGAgAAAAMA8wD9_QEAFgT0APUAAAAKDfsC-gAAAAUB-xL_AQAA8QINCAP_AAD-_QoB_wAAAPYV9gT__wAA-Qft_gAAAAAI8vAKAQAAACAALfQJ0Ds4E0AJSE5QAiqEAhAAGvABfw0n_8rI4AHIN8YA8QXhAawF7P_8QMcAqM0DAb0bzQDoCOQA4v0AAPIM1AGb_eECLefP_wDS9AEhzc0AH9cAAdgx_AFCB9sBBBY-AjTxLALY_Bj-6ObvAR7NxwMlH7cAAODpACIr8fvpBLMCKBovAQX_UwH5-0EE6sAhBBDl8v0V8uD51iMDCs7jCvbjCS4CC-caBgAE-PXKHs8A7RAY9Pv-E_YKOcv9E9bnDyAk5QfGvxH-CgH--QVCG_-29tn_xA8lAbP07gX52R4AHSDs-q0PAw0DGfUW8iH29RTnChEJw-nu9PUO-Pb78vzgH9fvIAAt3JTvOjgTQAlIYVACKs8HEAAawAduE9a-UWrvvILWDzzJXV89sEJgvXjJybyRiOO7bFvzO_BtGj2YMNo9BSCkvB7WZTzEl1m-jGZlvPW6Jb2Y3SM-gUmQvUP09bxxPVq-5xa_PYVMqLxXsTi-R6V9PKXUCj3igfm79LZDvdXH6Lzg2X49UnFNvc03R7xviwi9Q0cHuiPYGL3cahk69RFYvRN8WL1lOxu8V_RdvZ_aYzp3Me09jwApvXaWETxgpSc8I9NGPTW6Pr2scOu98NOCPDIFqbt1Ziw9povDPP90qDy-Cro85RR4vLi4fLyTmMa9ho-IPI7RlTyzkpy7xtLBPTaow7t5KoY9RQcpvQqQF71-xQq-TyAMvaJG3zv9z7s9eLmIPasmiLwmDHS9XUa7PUwsujw5Hr28eO-oPPJi_LwOTuQ9WvoLvSt2ajtCA1Y9xN3PPHloqzotDh-8VVYuPRBCGz2G4k49kP5yvUagVbxrg668yUgsPN7Gi7xhkbo8nVmcPHVQ8DuMuAU90MWVPL7RmDynNRO5NvY2vLDQYjzFNUM9-FENvglvLLtjKn28o0XMvYcqRrx33PA8RvsuPfYNp7wNRAM87gnSvTVTrbswkqc9nIwFPVN0SbzfrhE8TKnrvb3d1DtNBUa9YarZPEdXabsBwLG8QHbNu-ZI2zogHxk92GGcPSSsFbvFZQY9-gwIvlUhA7q8KUA80sMwPRCaervPfkk83VxcPYJXxjnmWwA8RJCevCUhU7vQKUg7ky0cvfUHUjvTvvm9UwYuvcvkWznurw4-nxKRvX7QlDmQwtA8ybtZPZ42HjmdXp69QwFbvMEGGrmF-SE9ydAMvWo2_LVUG_y9Yrv7vRPT8jljOyk9enZ0PR_d0DiSAjA80TaTPaZF9DgU5-i9c8kivSLeQ7n34s26R7s7vajDE7mur_886kKsOnPC3bch7oU898-ePTZfobpqszs9zZGVvOBhCbl1U288SrzHPRmCf7jnItk8A8z8vVJJyDkK8hO94529PZVT1bhUpdK8H8zHPXLVWLepO8W8yWYdPROJBrkQrK8928PevcifPLiPTkK9oZTKPbJRAjlxgqU8SnA0PbM8hTj37zC820cYPVHfDTmNbN08gLA9vdtqbDhvt4k8QlFqPIdCKTg6XdY97EqNOxz7SbkKXAi94sORvTylWLhZwKQ9s5ruvecX_zfmOzi9qC1_PcoQyLLk1Z68eonxvWVVMLjK9HA9IuErPvHLijij7dK7pn5ePL-GB7ktZyW8nuLCPbB8K7guN_i9M3HGPPjSfrcgADgTQAlIbVABKnMQABpga_AAXjUnDwQHH8nh5fXn8cm8BwyoGv_38f_pKNwKNPjq2y3t_w_FIPugAAAAMA_HJScA438M-dcPA9403b3oBUl7IwpQmd4I_aPZDxH20gr5DU1KANrtyCr-vcMm9DfEIAAto3YROzgTQAlIb1ACKq8GEAwaoAYAAHBCAADQwQAAhEIAAOBAAAAEwgAAQEEAAJZCAAD4QQAARMIAABzCAAAgQQAAIMIAADRCAACAQQAAGEIAAPjBAABoQgAAOMIAABxCAACQwQAADMIAAJjBAACswgAA2EEAAHTCAADIwQAAAMAAAABAAADAQQAAQEIAADzCAABAQAAAdMIAABDBAABIwgAADEIAADRCAAAkQgAAJEIAAGRCAABQQQAA4MAAABBCAADowQAAAEEAADxCAAAAQQAAAEEAAARCAAAwQQAAgD8AACjCAACgwAAAREIAAEhCAACIwQAANMIAACjCAAAIQgAAkEEAAGDBAACCwgAAJMIAACjCAABAwQAAaMIAAFTCAACKwgAAdMIAAHBBAACgQQAAMMEAAFDBAABwwQAAgMAAAKTCAACywgAADMIAAHRCAACYwQAAZMIAAERCAACAvwAAsMEAACDBAAAoQgAAgMEAAGzCAAAYQgAAAMIAAABAAADAwAAA0EEAADDCAACYQQAAjsIAAMhBAABAwAAA2EEAAJBBAACswgAAqEEAACRCAAC4wQAA6MEAAOBBAAD4wQAAMEIAAKDAAAB4QgAA4EEAAAAAAAAAwgAAEMEAAFDBAAAIQgAAmEEAAMDCAAAAwQAAnMIAACjCAACAwAAAYEEAAODBAAC4wQAALMIAABjCAAAwwQAAbMIAAFDCAACwQQAA2MEAAJDBAACGQgAAQEAAALDBAAC2QgAAIMEAAMBBAADSwgAAAEEAAGDBAACoQQAAgL8AAKhBAABQQgAAiMEAAEDAAAAcQgAAOEIAAKDBAAAQwQAAhkIAAIDAAADAwQAAUMEAAKbCAACKwgAAFMIAAKBAAADAQAAAAMEAAOBAAAAsQgAAwMAAADBCAADgQAAAMEEAANZCAACewgAAAMAAAEBAAAAAwAAAcMEAAODAAACowQAAXMIAAATCAABQwQAANEIAAGzCAADAwgAABEIAAMBAAAAsQgAAYMIAABzCAADgQAAAkEEAANBBAABkQgAACMIAAIhBAAAwQQAAEMEAACRCAAAAQQAA8EEAAFBCAACYwSAAOBNACUh1UAEqjwIQABqAAgAAHD4AAEw-AACWPgAAML0AAFC9AAD4vQAAzj4AAA-_AACuvgAABL4AACy-AACivgAAlr4AAJo-AADgPAAAiL0AAKC8AADYvQAAgLsAAMo-AAB_PwAAVD4AAKC8AAA8PgAAVL4AAMi9AABQvQAAcL0AAPi9AAAMPgAAUD0AAKC8AABwvQAAVL4AAHA9AACevgAAJD4AAAW_AACevgAARD4AAGy-AAC4PQAAmj4AADQ-AADivgAA4LwAAAQ-AACivgAAJL4AAGS-AABAPAAAHD4AADA9AAD4PQAADL4AAKC8AAApPwAAQDwAAAQ-AABAPAAANL4AAKI-AAAUPgAAiD0gADgTQAlIfFABKo8CEAEagAIAADC9AACAOwAAiL0AAB-_AADYPQAA6D0AAFQ-AABAvAAAoLwAAAQ-AACIvQAAoLwAAEA8AAAMvgAAcD0AAKC8AABwPQAAFT8AAMi9AADaPgAAJL4AAOA8AACIvQAAuL0AAEC8AAAwPQAAVD4AAFC9AAAQPQAA-D0AAEC8AABEPgAAnr4AAAy-AACOvgAAgDsAABC9AAAkPgAAZL4AAMi9AABAvAAAoDwAAKg9AADIPQAAQDwAAKg9AAB_vwAA6L0AAOA8AAD4PQAAQLwAAIC7AAAwvQAAoDwAALg9AACIPQAAmD0AAFC9AACovQAADD4AAJg9AAAUvgAAoLwAAAy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=ZuQbwy8B12E","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4725985985667336431"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3252975346290198101":{"videoId":"3252975346290198101","docid":"34-0-5-Z2086FEA937EADD89","description":"This calculus video tutorial explains how to find the derivative of a problem with three functions multiplied together using the triple product rule. Derivatives - Free Formula Sheet...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3737404/f463feead68acf679df34ac19d85918e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/u2EC5wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcUXW9cj_CpE","linkTemplate":"/video/preview/3252975346290198101?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Product Rule With 3 Functions - Derivatives | Calculus","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cUXW9cj_CpE\",\"src\":\"serp\",\"rvb\":\"ErADChQxNDY5OTQzMTk1OTQ3NDY2ODM2MgoTMzgxOTk5NzI5Mjk0MjIxNzA3MAoTMTcwNTI5OTI0Nzg2MTE4MTY0NQoTNzk1NjczMDE2NDg1ODc2NTA4NgoTNTA0NzE4NDk2OTg2NTAwNTE5OAoUMTI3OTc0Nzc4NDg0MDU3NTY2MTgKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwChQxNTg2MTc2NjExMjU2ODMwMDM0MgoTMjExOTAwNDgxMDE2ODA0ODk4MgoUMTcwOTQzNjE3Nzg1MjQ0MzUwMjgKFDE0OTI1NTc5MzI3ODk5NzA4NDUyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTM0MTA4OTE0NTIxMTQxMTY3MjQKFDE2ODc5Njg5MzMwMTA5NTQzMTAyChQxMjAxNzEwMzg2MjM4OTY1MzE2NwoTNDcyNTk4NTk4NTY2NzMzNjQzMQoTMzI1Mjk3NTM0NjI5MDE5ODEwMQoTMzQxMTY3Njk3OTc1Mjk4MTE2NgoUMTc4MTQ4MTExNzUwMDg2OTYwNDUKFDE0NDc0NzcyNTUwNzI2MDY4OTA1GhUKEzMyNTI5NzUzNDYyOTAxOTgxMDFaEzMyNTI5NzUzNDYyOTAxOTgxMDFqtg8SATAYACJFGjEACipoaHdkYWhpeWRwbWRxb2RiaGhVQ0VXcGJGTHpvWUdQZnVXVU1GUFNhb0ESAgASKhDCDw8aDz8TtAKCBCQBgAQrKosBEAEaeIH4AAIGAf8A9P4KDQIH_AERCAML9QEBAOf6-_4E_gEA7AQI8gAAAAD__RAMAwAAAPcA9AL6_wAAGPf7-fMAAAAAAv7_-wAAAPz8_Qr_AQAA6_8CCQMAAAASCggB_wAAAAAOAfn9_wAABQTw_AAAAAAC9wYHAAAAACAALfQJ0Ds4E0AJSE5QAiqEAhAAGvABfwkgAeIPxwLHEuMA5wkbAqosI__wLvUBzff_ANrw2QAE-8IA9QTf_wIM-QC5Eu7_MdfS_-zi-wAfAfj_NMkKAO8tCwAAAuIBHxItAu3_Bf_cDxv__P4BAPTctwDuA-H_AxP7_A0L2gHuA8QCD_48AdviKwkp4w8B3Nn3Auv93gH-3sP_7Bz3_fPmGwDsFTgBHsz9_hUSCPrtEt799wr_-d3WBfowEeYB_9oFCg0cGP7b3gQBCuMEAAQ0Ff_tAfv_zeYUA8f_AfX56QX3MfUA9dD68Q4EAfMMAB0U_P7z6_sN9_z25u_2Dvj89f3cDPL_IAAt7OYZOzgTQAlIYVACKnMQABpgUPcAMggdAP3mJtMOxsYQ3bfQAOa8H__51_8ELbUdJ_7t1Pb9AAHDHvujAAAADyDbJwYACX-20QoRAigTq83UDEBzFgc7j_L_4tW8Ng8i__0e2hMqALzkrhb6wJU2DSP6IAAtygIVOzgTQAlIb1ACKq8GEAwaoAYAAFhCAABYwgAAKEIAABjCAADgQAAAAMEAAK5CAADoQQAACMIAAOhBAAAIQgAASMIAADDBAACAwQAAsEEAAADAAAAEQgAAjMIAAJZCAABAwgAAwMAAAFBBAAAQwgAA0EEAAADCAABAQAAAJMIAAETCAAA4QgAAgL8AAADCAAAQQQAAbMIAACjCAADUwgAAUEIAAABBAAB8QgAAXMIAADhCAACIwQAAYEEAAGBCAACgwAAAgL8AALDCAAAAAAAAMEEAAHRCAAAkQgAAAEEAAMDAAADQQQAAAEAAAABAAACwQQAA3MIAAODAAACYQQAADEIAAARCAABMwgAA2MEAAHzCAACgQAAAbMIAAFDCAACCwgAAsEEAAFzCAABcQgAApEIAAODAAACgQAAAOMIAANDBAAAAwgAAoMEAAMBBAAAQwQAA4MEAAExCAAAQwgAA0EEAAPhBAAAQQQAAyEEAAFBBAAA8QgAAisIAABBBAACWQgAANMIAAJDBAAAcQgAAFMIAAABAAAAAAAAAHEIAAERCAADEwgAAMEIAABhCAAAgwQAAWMIAABDBAABAQQAAkEEAAODBAAAsQgAATEIAAGhCAAAAwAAANEIAAADCAAAEQgAAqEEAAOjBAAA4wgAAJMIAAFDCAAC-wgAAJMIAANDBAAAQQgAAmMEAAMDAAAAkQgAA4MEAACBBAAAYwgAA4MAAAGDBAADIQQAAMMEAAHhCAACYQQAAAMAAAOBAAACGwgAAcMEAAOjBAAAwQQAAYMEAAJBBAACIQQAANMIAAJBBAACgQQAAwMEAAIjBAABQQQAAgEIAAADAAAAgQgAAMMIAAIjBAACCwgAAKMIAAEDAAACYwgAAyEEAAATCAABswgAAMMEAAFBCAAC4wQAAUEIAAFxCAAAAQAAA2EEAAIDAAADYwQAATMIAALDBAACgwAAA0EEAAFTCAAAsQgAAREIAAEDCAABkwgAAQMIAAKBBAACYQgAAsMEAAIjCAABYwgAAUMEAAADAAAAUwgAA4MEAAMBBAACgQAAAyEEAADRCAACYwQAAQMAAAFDBAAA8wiAAOBNACUh1UAEqjwIQABqAAgAAJL4AAIY-AAB0PgAAML0AAIC7AAB0PgAATD4AAMa-AAB8vgAALL4AAHy-AADOvgAAmD0AAP4-AACCPgAAoDwAABS-AABAvAAA6D0AAL4-AAB_PwAAuD0AAJg9AADgvAAA3r4AABC9AABUPgAA2D0AAOg9AABQPQAAcD0AAEy-AAA0PgAAhr4AANg9AACyvgAAmL0AAM6-AACuvgAAED0AAAy-AABQPQAA-j4AAOC8AAAsPgAAgLsAAFA9AAD2vgAA2L0AAHy-AAAUPgAAoj4AAFC9AACAOwAAFL4AAFA9AAD6PgAAij4AAKo-AAD-PgAAJD4AAOC8AAD4PQAA-L0gADgTQAlIfFABKo8CEAEagAIAAAQ-AAAcPgAAmL0AAB2_AACYvQAABD4AACQ-AABUPgAAoLwAAGw-AABAPAAAoLwAANg9AABcvgAAUD0AABA9AADgPAAALT8AAFA9AACuPgAAcL0AAMg9AADoPQAAEL0AACy-AABcPgAA6D0AADA9AACovQAAcD0AABC9AADIPQAAyr4AAGy-AADuvgAAiD0AABS-AABQPQAAhr4AAHy-AAA0vgAALD4AAEA8AAAUPgAApj4AADQ-AAB_vwAAVL4AABw-AABAPAAAmL0AABw-AABQvQAA2D0AAAQ-AADIPQAAoDwAACS-AACgvAAAgDsAACQ-AADgvAAAcD0AANK-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=cUXW9cj_CpE","parent-reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3252975346290198101"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"14699431959474668362":{"videoId":"14699431959474668362","title":"\u0007[Derivative\u0007] as slope of curve | \u0007[Derivatives\u0007] introduction | AP Calculus AB | Khan Academy","cleanTitle":"Derivative as slope of curve | Derivatives introduction | AP Calculus AB | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/S-dcMvJlMJs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/S-dcMvJlMJs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":369,"text":"6:09","a11yText":"Süre 6 dakika 9 saniye","shortText":"6 dk."},"views":{"text":"272bin","a11yText":"272 bin izleme"},"date":"18 tem 2016","modifyTime":1468800000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/S-dcMvJlMJs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=S-dcMvJlMJs","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":369},"parentClipId":"14699431959474668362","href":"/preview/14699431959474668362?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/14699431959474668362?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3819997292942217070":{"videoId":"3819997292942217070","title":"Definition of the \u0007[Derivative\u0007]","cleanTitle":"Definition of the Derivative","host":{"title":"YouTube","href":"http://www.youtube.com/live/-aTLjoDT1GQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-aTLjoDT1GQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1410,"text":"23:30","a11yText":"Süre 23 dakika 30 saniye","shortText":"23 dk."},"views":{"text":"2,8milyon","a11yText":"2,8 milyon izleme"},"date":"22 şub 2018","modifyTime":1519257600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-aTLjoDT1GQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-aTLjoDT1GQ","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":1410},"parentClipId":"3819997292942217070","href":"/preview/3819997292942217070?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/3819997292942217070?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1705299247861181645":{"videoId":"1705299247861181645","title":"\u0007[Derivative\u0007] as a concept | \u0007[Derivatives\u0007] introduction | AP Calculus AB | Khan Academy","cleanTitle":"Derivative as a concept | Derivatives introduction | AP Calculus AB | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/N2PpRnFqnqY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/N2PpRnFqnqY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":435,"text":"7:15","a11yText":"Süre 7 dakika 15 saniye","shortText":"7 dk."},"views":{"text":"1,3milyon","a11yText":"1,3 milyon izleme"},"date":"19 tem 2017","modifyTime":1500447600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/N2PpRnFqnqY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=N2PpRnFqnqY","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":435},"parentClipId":"1705299247861181645","href":"/preview/1705299247861181645?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/1705299247861181645?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7956730164858765086":{"videoId":"7956730164858765086","title":"\u0007[derivative\u0007] of x^(2/3) by using the definition of \u0007[derivative\u0007]","cleanTitle":"derivative of x^(2/3) by using the definition of derivative","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=PDXUg0btWuY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PDXUg0btWuY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/user/blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":601,"text":"10:01","a11yText":"Süre 10 dakika 1 saniye","shortText":"10 dk."},"views":{"text":"51,9bin","a11yText":"51,9 bin izleme"},"date":"19 haz 2018","modifyTime":1529366400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PDXUg0btWuY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PDXUg0btWuY","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":601},"parentClipId":"7956730164858765086","href":"/preview/7956730164858765086?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/7956730164858765086?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5047184969865005198":{"videoId":"5047184969865005198","title":"What is a \u0007[Derivative\u0007]? Deriving the Power Rule","cleanTitle":"What is a Derivative? Deriving the Power Rule","host":{"title":"YouTube","href":"http://www.youtube.com/live/x3iEEDxrhyE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/x3iEEDxrhyE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMGNkXy1lNDloWnBXTEgzVUl3b1dSQQ==","name":"Professor Dave Explains","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Professor+Dave+Explains","origUrl":"http://www.youtube.com/@ProfessorDaveExplains","a11yText":"Professor Dave Explains. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":604,"text":"10:04","a11yText":"Süre 10 dakika 4 saniye","shortText":"10 dk."},"views":{"text":"223,4bin","a11yText":"223,4 bin izleme"},"date":"5 mar 2018","modifyTime":1520273010000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/x3iEEDxrhyE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=x3iEEDxrhyE","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":604},"parentClipId":"5047184969865005198","href":"/preview/5047184969865005198?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/5047184969865005198?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12797477848405756618":{"videoId":"12797477848405756618","title":"\u0007[Derivative\u0007] of arctan(1/x) | Calculus 1 Exercises","cleanTitle":"Derivative of arctan(1/x) | Calculus 1 Exercises","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=b5Ep3o3QI1A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/b5Ep3o3QI1A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":131,"text":"2:11","a11yText":"Süre 2 dakika 11 saniye","shortText":"2 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"15 eyl 2024","modifyTime":1726358400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/b5Ep3o3QI1A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=b5Ep3o3QI1A","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":131},"parentClipId":"12797477848405756618","href":"/preview/12797477848405756618?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/12797477848405756618?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14808398322726514600":{"videoId":"14808398322726514600","title":"Finding a \u0007[Derivative\u0007] Using the Definition of a \u0007[Derivative\u0007]","cleanTitle":"Finding a Derivative Using the Definition of a Derivative","host":{"title":"YouTube","href":"http://www.youtube.com/v/vzDYOHETFlo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vzDYOHETFlo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmU2amVuTTFCYzU0cXRCc0lKR1JaUQ==","name":"Patrick JMT","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Patrick+JMT","origUrl":"http://www.youtube.com/@patrickjmt","a11yText":"Patrick JMT. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":457,"text":"7:37","a11yText":"Süre 7 dakika 37 saniye","shortText":"7 dk."},"views":{"text":"1,1milyon","a11yText":"1,1 milyon izleme"},"date":"3 nis 2008","modifyTime":1207180800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vzDYOHETFlo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vzDYOHETFlo","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":457},"parentClipId":"14808398322726514600","href":"/preview/14808398322726514600?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/14808398322726514600?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15861766112568300342":{"videoId":"15861766112568300342","title":"\u0007[Derivative\u0007] of a position vector valued function | Multivariable Calculus | Khan Academy","cleanTitle":"Derivative of a position vector valued function | Multivariable Calculus | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/E9Q_Lc0g1xE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/E9Q_Lc0g1xE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://gdata.youtube.com/feeds/api/users/khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":884,"text":"14:44","a11yText":"Süre 14 dakika 44 saniye","shortText":"14 dk."},"views":{"text":"285bin","a11yText":"285 bin izleme"},"date":"26 şub 2010","modifyTime":1267142400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/E9Q_Lc0g1xE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=E9Q_Lc0g1xE","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":884},"parentClipId":"15861766112568300342","href":"/preview/15861766112568300342?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/15861766112568300342?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2119004810168048982":{"videoId":"2119004810168048982","title":"\u0007[Derivatives\u0007] for Beginners - Basic Introduction","cleanTitle":"Derivatives for Beginners - Basic Introduction","host":{"title":"YouTube","href":"http://www.youtube.com/live/FLAm7Hqm-58","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FLAm7Hqm-58?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3483,"text":"58:03","a11yText":"Süre 58 dakika 3 saniye","shortText":"58 dk."},"views":{"text":"1,4milyon","a11yText":"1,4 milyon izleme"},"date":"27 tem 2020","modifyTime":1595808000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FLAm7Hqm-58?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FLAm7Hqm-58","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":3483},"parentClipId":"2119004810168048982","href":"/preview/2119004810168048982?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/2119004810168048982?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17094361778524435028":{"videoId":"17094361778524435028","title":"\u0007[Derivatives\u0007] of Inverse Trigonometric Functions","cleanTitle":"Derivatives of Inverse Trigonometric Functions","host":{"title":"YouTube","href":"http://www.youtube.com/live/KbYW9FDm-Zk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KbYW9FDm-Zk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":378,"text":"6:18","a11yText":"Süre 6 dakika 18 saniye","shortText":"6 dk."},"views":{"text":"932,1bin","a11yText":"932,1 bin izleme"},"date":"26 şub 2018","modifyTime":1519603200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KbYW9FDm-Zk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KbYW9FDm-Zk","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":378},"parentClipId":"17094361778524435028","href":"/preview/17094361778524435028?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/17094361778524435028?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14925579327899708452":{"videoId":"14925579327899708452","title":"How to Find the \u0007[Derivative\u0007] of 1/sqrt(x) using the Definition of the \u0007[Derivative\u0007]","cleanTitle":"How to Find the Derivative of 1/sqrt(x) using the Definition of the Derivative","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sCchLn51h50","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sCchLn51h50?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":461,"text":"7:41","a11yText":"Süre 7 dakika 41 saniye","shortText":"7 dk."},"views":{"text":"85,9bin","a11yText":"85,9 bin izleme"},"date":"31 mar 2021","modifyTime":1617148800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sCchLn51h50?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sCchLn51h50","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":461},"parentClipId":"14925579327899708452","href":"/preview/14925579327899708452?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/14925579327899708452?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17994385035140575010":{"videoId":"17994385035140575010","title":"First \u0007[Derivative\u0007] Test","cleanTitle":"First Derivative Test","host":{"title":"YouTube","href":"http://www.youtube.com/live/G5wlKltW7pM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/G5wlKltW7pM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":757,"text":"12:37","a11yText":"Süre 12 dakika 37 saniye","shortText":"12 dk."},"views":{"text":"673,1bin","a11yText":"673,1 bin izleme"},"date":"4 mar 2018","modifyTime":1520121600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/G5wlKltW7pM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=G5wlKltW7pM","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":757},"parentClipId":"17994385035140575010","href":"/preview/17994385035140575010?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/17994385035140575010?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13410891452114116724":{"videoId":"13410891452114116724","title":"Basic \u0007[Derivative\u0007] Rules - The Shortcut Using the Power Rule , 3 Examples","cleanTitle":"Basic Derivative Rules - The Shortcut Using the Power Rule , 3 Examples","host":{"title":"YouTube","href":"http://www.youtube.com/watch/54KiyZy145Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/54KiyZy145Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmU2amVuTTFCYzU0cXRCc0lKR1JaUQ==","name":"Patrick JMT","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Patrick+JMT","origUrl":"http://www.youtube.com/@patrickjmt","a11yText":"Patrick JMT. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":333,"text":"5:33","a11yText":"Süre 5 dakika 33 saniye","shortText":"5 dk."},"views":{"text":"967,4bin","a11yText":"967,4 bin izleme"},"date":"4 oca 2012","modifyTime":1325635200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/54KiyZy145Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=54KiyZy145Y","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":333},"parentClipId":"13410891452114116724","href":"/preview/13410891452114116724?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/13410891452114116724?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16879689330109543102":{"videoId":"16879689330109543102","title":"\u0007[Derivative\u0007] Using the Definition, Example 2","cleanTitle":"Derivative Using the Definition, Example 2","host":{"title":"YouTube","href":"http://www.youtube.com/v/WERgBgi4hg4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WERgBgi4hg4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmU2amVuTTFCYzU0cXRCc0lKR1JaUQ==","name":"patrickJMT","isVerified":true,"subscribersCount":0,"url":"/video/search?text=patrickJMT","origUrl":"http://www.youtube.com/@patrickjmt","a11yText":"patrickJMT. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":311,"text":"5:11","a11yText":"Süre 5 dakika 11 saniye","shortText":"5 dk."},"views":{"text":"309,6bin","a11yText":"309,6 bin izleme"},"date":"25 nis 2011","modifyTime":1303689600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WERgBgi4hg4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WERgBgi4hg4","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":311},"parentClipId":"16879689330109543102","href":"/preview/16879689330109543102?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/16879689330109543102?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12017103862389653167":{"videoId":"12017103862389653167","title":"Product Rule For \u0007[Derivatives\u0007]","cleanTitle":"Product Rule For Derivatives","host":{"title":"YouTube","href":"http://www.youtube.com/live/17X5g9QArTc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/17X5g9QArTc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":670,"text":"11:10","a11yText":"Süre 11 dakika 10 saniye","shortText":"11 dk."},"views":{"text":"1,6milyon","a11yText":"1,6 milyon izleme"},"date":"24 şub 2018","modifyTime":1519430400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/17X5g9QArTc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=17X5g9QArTc","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":670},"parentClipId":"12017103862389653167","href":"/preview/12017103862389653167?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/12017103862389653167?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4725985985667336431":{"videoId":"4725985985667336431","title":"\u0007[Derivative\u0007] Example with the Product and Chain Rule","cleanTitle":"Derivative Example with the Product and Chain Rule","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ZuQbwy8B12E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ZuQbwy8B12E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":361,"text":"6:01","a11yText":"Süre 6 dakika 1 saniye","shortText":"6 dk."},"date":"2 nis 2024","modifyTime":1712037647000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ZuQbwy8B12E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ZuQbwy8B12E","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":361},"parentClipId":"4725985985667336431","href":"/preview/4725985985667336431?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/4725985985667336431?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3252975346290198101":{"videoId":"3252975346290198101","title":"Product Rule With 3 Functions - \u0007[Derivatives\u0007] | Calculus","cleanTitle":"Product Rule With 3 Functions - Derivatives | Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/live/cUXW9cj_CpE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cUXW9cj_CpE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":308,"text":"5:08","a11yText":"Süre 5 dakika 8 saniye","shortText":"5 dk."},"views":{"text":"141,5bin","a11yText":"141,5 bin izleme"},"date":"19 ara 2019","modifyTime":1576713600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cUXW9cj_CpE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cUXW9cj_CpE","reqid":"1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL","duration":308},"parentClipId":"3252975346290198101","href":"/preview/3252975346290198101?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","rawHref":"/video/preview/3252975346290198101?parent-reqid=1765325872218981-7074338013779638073-balancer-l7leveler-kubr-yp-klg-222-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"0743380137796380737222","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Derivative","queryUriEscaped":"Derivative","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}