{"pages":{"search":{"query":"Digamma","originalQuery":"Digamma","serpid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","parentReqid":"","serpItems":[{"id":"10324348027082350021-0-0","type":"videoSnippet","props":{"videoId":"10324348027082350021"},"curPage":0},{"id":"13697165663649029984-0-1","type":"videoSnippet","props":{"videoId":"13697165663649029984"},"curPage":0},{"id":"11560262530415179227-0-2","type":"videoSnippet","props":{"videoId":"11560262530415179227"},"curPage":0},{"id":"16066974598077595788-0-3","type":"videoSnippet","props":{"videoId":"16066974598077595788"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dERpZ2FtbWEK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","ui":"desktop","yuid":"2049005031769523819"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"16331992064106964468-0-5","type":"videoSnippet","props":{"videoId":"16331992064106964468"},"curPage":0},{"id":"16576755372464592732-0-6","type":"videoSnippet","props":{"videoId":"16576755372464592732"},"curPage":0},{"id":"4837501241321823606-0-7","type":"videoSnippet","props":{"videoId":"4837501241321823606"},"curPage":0},{"id":"6983919376424678357-0-8","type":"videoSnippet","props":{"videoId":"6983919376424678357"},"curPage":0},{"id":"9063782064625721532-0-9","type":"videoSnippet","props":{"videoId":"9063782064625721532"},"curPage":0},{"id":"1837140159979730492-0-10","type":"videoSnippet","props":{"videoId":"1837140159979730492"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dERpZ2FtbWEK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","ui":"desktop","yuid":"2049005031769523819"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"8890054097271094988-0-12","type":"videoSnippet","props":{"videoId":"8890054097271094988"},"curPage":0},{"id":"6257141450402372188-0-13","type":"videoSnippet","props":{"videoId":"6257141450402372188"},"curPage":0},{"id":"6394999183746083189-0-14","type":"videoSnippet","props":{"videoId":"6394999183746083189"},"curPage":0},{"id":"10892085601122643381-0-15","type":"videoSnippet","props":{"videoId":"10892085601122643381"},"curPage":0},{"id":"2833021135614770703-0-16","type":"videoSnippet","props":{"videoId":"2833021135614770703"},"curPage":0},{"id":"8336916942847974874-0-17","type":"videoSnippet","props":{"videoId":"8336916942847974874"},"curPage":0},{"id":"15312819157099215055-0-18","type":"videoSnippet","props":{"videoId":"15312819157099215055"},"curPage":0},{"id":"15537749931035837838-0-19","type":"videoSnippet","props":{"videoId":"15537749931035837838"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dERpZ2FtbWEK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","ui":"desktop","yuid":"2049005031769523819"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DDigamma"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"1808068435997290278734","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472346,0,73;1466868,0,28;1414493,0,3;1460717,0,48;1459297,0,26;1465968,0,25;1459323,0,2;1461712,0,23;1470249,0,38;1470224,0,11;1282205,0,9;1466295,0,95;1465943,0,94;1475647,0,22;1452051,0,83;1146115,0,9;1349071,0,17;1471919,0,6;1470514,0,48;241535,0,30;1472080,0,44;1471182,0,16;1469393,0,99;66190,0,80;1357003,0,92;912217,0,11;1304310,0,45;284409,0,45;151171,0,91;126309,0,21;1281084,0,66;287509,0,17;1447467,0,62;1473596,0,65;1466397,0,59;681841,0,10"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DDigamma","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Digamma","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Digamma","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Digamma: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Digamma\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Digamma — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y12a978ea6b424614ca102abed3d2a8bc","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472346,1466868,1414493,1460717,1459297,1465968,1459323,1461712,1470249,1470224,1282205,1466295,1465943,1475647,1452051,1146115,1349071,1471919,1470514,241535,1472080,1471182,1469393,66190,1357003,912217,1304310,284409,151171,126309,1281084,287509,1447467,1473596,1466397,681841","queryText":"Digamma","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2049005031769523819","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769523930","tz":"America/Louisville","to_iso":"2026-01-27T09:25:30-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472346,1466868,1414493,1460717,1459297,1465968,1459323,1461712,1470249,1470224,1282205,1466295,1465943,1475647,1452051,1146115,1349071,1471919,1470514,241535,1472080,1471182,1469393,66190,1357003,912217,1304310,284409,151171,126309,1281084,287509,1447467,1473596,1466397,681841","queryText":"Digamma","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2049005031769523819","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"1808068435997290278734","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":160,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"2049005031769523819","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"10324348027082350021":{"videoId":"10324348027082350021","docid":"34-6-1-Z8A988EAB67718F07","description":"The proof at the end is from: https://math.stackexchange.com/questi...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/481127/c1ebd9564ffbb576bbe2bc9a24628425/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/o24KUAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dksna9jtQ6HE","linkTemplate":"/video/preview/10324348027082350021?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to the digamma function","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ksna9jtQ6HE\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFgoUMTAzMjQzNDgwMjcwODIzNTAwMjFaFDEwMzI0MzQ4MDI3MDgyMzUwMDIxaogXEgEwGAAiRRoxAAoqaGhhY3RkYndpYXB5ZmVuY2hoVUNBZjdFb3ZTRVFxTzFXeDgwZWl4RmxREgIAEioQwg8PGg8_E_EIggQkAYAEKyqLARABGniB7gH5_fwFAO4E_AIJAv8ABgb4APf__wDu_Ab6BgAAAPv9AP__AAAA-v0IBAAAAADzA_4B-gAAAAQB9v4DAAAAB__--f4AAAACC_gG_gEAAPH8_AMDAAAAFgT-BgAAAAD4Cgf7-_8AAP4IAwsAAAAA-fICBgAAAAAgAC1xht47OBNACUhOUAIqhAIQABrwAX_zGP7J5Nz_whz0AckHBgLWIAwA-0LFAKXnzACs5NYB1SXmAPn45QDFCx7_uxvwARXUwADQx_wBKdj-_hHI2P8bBfUB-eLhATbfSQI2Ht__Aiw4_uHBFgH8t9UAPC_lAhjnCQInFO0CDhLdAykbMQEF_1YBM9s0_um-IwT16t_8-9_V_e8b-QjFviz_9PEw_hSV5fvv9Pj2xgfdAwD3FPzuyi3_-Uzd-Cjv1wca__oJztMFAt__8hQnNvIBwv3pBdi5MAjb7vnwxusIBy77Bv23_NX8MOD0Ch3OEBMHEAwP_uTn_9_q6_nnDeQI3iDV7iAALR0G5zo4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6pZ2PvUTkz7yFS72846C5vRxtizxeBSO8FHYRPt8O3rwmvoM7aDePvSZ-1jxA_Je8xVWFPlQwb72bfyq82UNLvkOSdjspf4K9Rbz1vWfoxDysuCe8al0TPEZ8J70gcw67oOLYPWE8nrzFT4i8yVfCvOYMAD1C7gK9KBMyPbBfK72xpz29G8lUvJ_xM7y5cB48C1UbPeSf_Ls41Na7zvYNPXOL1Lzf0bG7e64FvcMHez0jyg29z-G1OlhKID3aXxG86_uFvT5oTL2HOxE8KQ9hvUA1-zv3dsu7NuwyPQANBT3E0ju9YvSMPZ5-0L2-dl27qMghvgJ8HD3o6W088IsLPvM_s7viOsY7erZdvWlAOD2PmsS7mscKu1iTgr2u9YW8fjb2u7Tnoj3B8F87xBA0PQRe3jtn_008brYjvflYcD0JEsA89PNQPdPAD727kq689IuSPVRxY71fdrS8GxRoveaszzzWXIm8T1xuPZG3PD1hfAe77N7KPFOeDz3hqnw8YGeEPfkRv709axI8bamjvdnFPr3Hi7-7HW3BPTlpED0uBX-8bvzpPUzkrb0rc6m7aebmu1hdorwjU5k7N6ruPCqZUr0LR2s8IYZnvTpoBDxdjJ67ByM2vbwcmzujyjC8nfiou-mRcD1V50W7shLzvZYxdL36Was5mxuoPcfJsztOqBY7JUi7PZ6gIz1gTyu5TQ9vPU9FJb2qKCM4Ls6DvWEIL72oqMq5zGG3vOMtXL0S8II37q8OPp8Skb1-0JQ51Qj9PL299TwirI65ofLPvU7tHD7Gqu257m-aPKMsMr2895u4y6LwvFtCHr43BeM5nhJrvfJjJzyNH0A5TmElvKzVuD2Ohha4ax7BvcSuor1Z-CI4o0cjvD10izxaUko5OBTePYs9nz0yrbe46Uw1PdR9hDv9wS45F8GavK4MTzwtk2E54lsTvUQ2qzz6uDM33wMPPcCwPL3QoBO4Rj86PfTOhz1s_re4WpUOO5DvVz23dY24-oG2PRv6Ij0G4n035eK5vHFom73lrQg2mYIFPvnzUj0erga5tJAQvtiMoj2ZewS3_mkevcj5kbzZfq24XlkUPBxkLT3Ca5E4AgHhPEQzD705Bp-4kl0ZPtlPUL2swj-5zcd6vdMV7L3mm_i41bl9PIwTH71xczC1QJCCvaa8cT2gfvW2SfeOPK1QxL1znPK4yvRwPSLhKz7xy4o47ZZGOnXopD0KbuO4rW3qvRQ7vzxv0uM3egyAvSmAPTzEWbe3IAA4E0AJSG1QASpzEAAaYBf4ACL2KeQdKO_jA9jj6NDa99AiwP8A_eQAHRDkBBcK977_AQDp8AfqvQAAABESCTXuABdUFy3-MQAa7uWxEwQifzswIN7Z9AXt-iQ8JPDyBOkPPQACEMcM_QXXJC8yJyAALc_vQTs4E0AJSG9QAiqvBhAMGqAGAAAAQQAAAEEAAHRCAACswgAAAEIAADDBAACeQgAAJMIAALhBAAAQwQAAuEEAAKDBAAAcwgAA4MAAAFDBAACAQAAA2EEAACDCAAAMQgAAAMAAAODAAACQQQAAmsIAAIA_AAD4wQAA4MEAAMhBAADYwQAAOEIAAMhBAABIwgAA0EEAAITCAADIwQAA2sIAAMDAAADYQQAASEIAAKDAAAA0QgAAYEEAADBBAABAwAAAEEEAACBCAACYwgAAAMIAAEhCAADQQQAAYEEAALDBAACQwQAADMIAANBBAABwQgAAmEEAAKzCAACYQQAAAEIAAEBBAACwQQAAXMIAAHTCAADIwQAAsEEAAMjCAAAswgAApMIAACDBAACUwgAAZEIAAHBBAADEwgAAHEIAAMDAAACowQAAMMIAAGBBAADgQAAAgEAAAOjBAACoQgAAJMIAAIC_AADAQQAAGEIAAIBAAAAQwQAAwEEAAEBBAAAQQQAAukIAAIDBAABAQgAAkkIAAODAAACQwQAACMIAADRCAADQQQAAYMIAAFzCAABgQgAAGMIAAMjBAAD4QQAAMEIAAPDBAABwQQAAkkIAAEhCAADIQQAAUMIAAKjBAAAkwgAAhEIAAIZCAACYwQAA8MEAANjBAACAwQAALMIAAOhBAAA0wgAAQMAAAOBAAAAUQgAAMMEAAODAAACAQgAAFMIAAKDBAACAvwAAKEIAAOhBAABoQgAAuMEAAHhCAABQwgAAQMEAAIA_AAAgwQAAlkIAAJLCAACAQAAAqEEAAKDAAACAPwAAAAAAAMDBAADIwQAA6EEAAFxCAAAkQgAAgL8AAAzCAACowQAAAMAAABDBAACCwgAAusIAAIC_AADgwQAAAMAAAFhCAACAQAAAKMIAAMBCAABIQgAAAMAAAHBCAACYQQAAAEEAABTCAAAEwgAA0EEAAKBAAADwwQAA-EEAAMBAAAAUwgAASMIAAMDAAAD4wQAAVEIAADDBAAAUwgAAUMIAAPBBAAAAQgAA-EEAALDBAADgQAAAEMEAAHBBAAAcQgAAGMIAAOjBAABAQAAAwEEgADgTQAlIdVABKo8CEAAagAIAAEC8AACgvAAAlj4AABQ-AAAQvQAAqD0AAIq-AADKvgAAZL4AAJg9AABQPQAAoLwAAJg9AAAcPgAA4LwAAAS-AAAMPgAAcD0AAEC8AACiPgAAfz8AAKA8AABwvQAAyD0AADS-AACgPAAAgDsAAOC8AACIPQAAFD4AAIg9AADgvAAAUL0AAIC7AACKPgAAcD0AAKC8AAA8vgAALL4AAHy-AABQvQAALL4AAJg9AABUvgAAUD0AAPi9AADoPQAAUL0AAMi9AABsvgAAMD0AAOC8AAAkPgAAVD4AADy-AABAvAAA9j4AAIA7AACgPAAARD4AAFA9AABQPQAAPD4AALi9IAA4E0AJSHxQASqPAhABGoACAADYvQAAoDwAAMg9AAAzvwAAdD4AAKg9AACKPgAAHL4AAHA9AABcPgAA4DwAABC9AAD4PQAAEL0AAKg9AABQvQAAMD0AADc_AADIvQAAoj4AAJq-AACYvQAA6D0AADC9AAAwPQAADL4AACQ-AABwPQAARD4AALg9AAAQPQAAHD4AAKq-AABAvAAAgLsAAFC9AACSPgAAgj4AAGS-AAA8vgAAFD4AADC9AAD4vQAA6D0AAFC9AACgPAAAf78AAIA7AABQPQAAoj4AAMg9AADgPAAA2D0AAOC8AAAwvQAAqD0AAKA8AACovQAA2D0AABC9AAB0PgAAgDsAAHC9AAAUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ksna9jtQ6HE","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10324348027082350021"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"558164450"},"13697165663649029984":{"videoId":"13697165663649029984","docid":"34-9-14-Z6ABDA97BB5F06E6D","description":"Help me create more free content! =) / mathable Merch :v - https://teespring.com/de/stores/papaf... https://shop.spreadshirt.de/papaflammy 2nd Channel: / @rockhardwooddaddy Digamma intro: • WAIT...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3924252/b362c45330be3e692f74ad98313113a2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XMGsFAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DH1JbQtSHhSA","linkTemplate":"/video/preview/13697165663649029984?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Digamma Function at Integer Values!","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=H1JbQtSHhSA\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFgoUMTM2OTcxNjU2NjM2NDkwMjk5ODRaFDEzNjk3MTY1NjYzNjQ5MDI5OTg0aogXEgEwGAAiRRoxAAoqaGhycGJ5YmhmYmJ4emd1YmhoVUN0QUlzMVZDUXJ5bWxBbnczbUdvbmh3EgIAEioQwg8PGg8_E_8FggQkAYAEKyqLARABGniB9v70AfwEAPYBAfn7AQABEwn8_PYCAgDs_Qz5-v8BAOr5AwYI_wAA9Q4BCQIAAADzA_4B-gAAABH_8AcCAAAAAPz-BvoAAAAEDvwDCQABAfb_9AID_wAAC_b8__8AAAD-_Av6-_8AAP_8AwoAAAAA_-8D-AAAAAAgAC1QGeE7OBNACUhOUAIqhAIQABrwAX8kMv3c6b8BmwfPAAUzHQGzKBkAYkD-AN81BgDl_c4B9vfP__EG0_8o_8z_ozklAc6-qQLwpsb__cH__xrp_gEH2BsAGLUEADfeSwIYww__lgsS_-wCEgPx2d0CN0vw_e3CG_wL-c0B5wSvAiDdOgMp_SkHNNTq-OXZ8gHgGe0HxRnF_ePk-AfgzBr7sxAVAy3PDgP4Nwz6DcvV_vfj9QEK6h_zJxn1CDHo8PXV_RcFxB329fsB3wUMIxYGCtXmDO70MgP2sAX_CfAC9uQhC_3hJcr4GbTdDBwCIQX_4wrv9u7z68sV6Q7P9AD9zxDt_yAALSNB4jo4E0AJSGFQAirPBxAAGsAHt-zYvl13qTyx1MS89vOBPMPKWDkaVHa83phZvf0Yzrzaqy-9gspIPsSUiLxVSpG7twz4vY34xLwjMic9xVWFPlQwb72bfyq8GYGivUC1uz3hpF-9HZHPveQKiT2NwgG8uO3WvMBDrDzgWSy9oOLYPWE8nrzFT4i8kVZGPLSOqryUgB29qU_yPYDzgr3AARK9-P7mvRk32jw_vxS8Vk4WPc_XMT2FTwS89WItPVlUnzxxu-E72xkWvq99ATzCxzu9gH8KPgL_Kj021Sw77tAwvVh6iLyLKs-7EXaVvQ8JX7ykJFq8PQo3PaZGaLyTxqi8f8K0PFp3Pb1HJe27FHtYvlm3C70lSBu8jTqEPLYPuTzxVqc8HT3evb7ADD67CAu6c9j9PEn2hDnlxym8TxTyPMQtuDtdmqo700qxPQIjWb0fjuS8CWTAPM9ZdT2FY7E8x4s7PeCV7jy0gL-8ssuBPGoEgT3JDIq834jOvZIZOby2oU-6e33SPFcseT1dLgc7rV-6vK-apTttJSq8BSOlPdYCO75J5Zo6dfhVvcH-K70XKn-8Db_hu0LzVD1yj4C8Q6kdPh9q273Emqk5lvjSPEF2CL0isfa6NfqHPQ79rrzjmaO7FqynvJe1gzyo2CA5_GWBvY6hUjzf61q87O-mPVpNsj1Pc6a58Z5jvV12jr2J1ca5Wt-2PCVuHz2nWqw7TBGaPUh9Yz06hV65wkzbPTsd6L12z9g5ydpQvSDfdL1I2SG5wihSPKggOr079p85k2KRPaaBP72Dk6y5B_VjO4IWljremg07LdEJvpYhLj2euGC49vhTPfqDHL0BNkK5FJ2LvYl64b3GJ3A5OQSTPY9MrLyKmRs6m6kVvZDXIz39ljy6fjM2vaRQlr0ug6O3o4h2vUeIVz3WMDi4KX2cvVYLkT3sx484xrILvG9dVrx0MJC3Mk94PLT08rxnr5m4HcAsPSGIvbwXsAQ5CilkvOtDbb2kWfM2kR-7vKPuXj00e-O2iaxaO_Z_Lj68OxW59kczPaY0cT0K7bG43ln7PNjxn70YDZc4LueSPRbgNj0nJxa5CrtovUUwmT1HvMI4Zsr9vH5xiT3FnAE5Xr5QvDi96jtKVrG4opQUvCnmwbs-SDg41GDaPQfjkb3Hl0-5cKc-vCfTbb10QV-4r2IsPXiUb72CXCQ3pNAIvSRECT6bFsE2HeMMPGdG371pUBK4VRimPW0LxT2Dx-c4rARGvRElMD0PcrO4tAH4vbVYRT1R4Fw4jZH0Oh7HCzxa8Jc4IAA4E0AJSG1QASpzEAAaYETsAEUeKu0N2xX_8c36AMrK3bMFwzT_897_IgkH8xYl6pUI8f_z2CLUlQAAAC0EDQfdABF8HvvtO_gI9buz4R7Wf0QJNdH1Ngjhxl97ItgAtO8RWwAIEaUQMfaxLj8_SyAALRkzCzs4E0AJSG9QAiqvBhAMGqAGAAA8QgAABMIAAMxCAABQwQAAJEIAAABCAABwQgAAyEEAAJLCAAAgQQAAMEEAAAhCAAA8QgAADMIAAEBBAAAQQQAAgEEAANjBAAAwQgAAkEEAAIxCAAAkQgAAvMIAAGRCAAAwwQAAiMEAAJjCAACAvwAAXEIAAEBAAABgQQAAIMIAALjBAAAAwAAAnsIAADxCAADgQQAAmEIAAFDBAAAAwAAASMIAANBBAAAgQQAAksIAAGhCAADgwAAAKEIAADxCAADGQgAAiMEAAKDBAACAPwAAgL8AACBBAABAQAAAwEEAAFjCAAAIQgAAPEIAABBCAAAAQAAABMIAAEDAAABAwgAAHMIAAJbCAACMwgAAFMIAAOjBAACYwQAAIEIAAKhBAAAAwgAAukIAABjCAAAAwgAATMIAAIBAAAA0wgAAwMAAAKBBAACiQgAAQMAAAKBAAACAQQAAMEIAAPDBAACAQQAAPEIAAGBBAAAEwgAAiEEAAOhBAAAQwgAASEIAADDCAADQwQAAEEIAAERCAAC4QQAADMIAAIBBAABcQgAAJEIAAIjCAABwwQAAoEEAAKZCAACQQQAAoEEAAKBBAAAcQgAAYMIAAADAAAAQwQAAYEIAABxCAAAgwgAAwMEAAHDBAABcwgAAiMEAACDCAAAQQQAAwEEAAKTCAADAwAAAEMEAANjBAADgwAAAQEEAAIA_AAD4wQAAEEIAAGTCAAAkQgAA6EEAAPDBAABwwQAAoMAAAI7CAACAQQAAcEIAAJzCAAAoQgAAMEIAAJDBAADQQQAAwMEAAPDBAADYwQAAgL8AAIC_AADgQAAAwEAAAKDBAACAwQAAqMEAAGjCAACAwQAAEEEAAPhBAACQwQAAGMIAAAhCAADYQQAAmMEAALhBAAAMQgAAAEEAAKBBAAAIQgAAwEAAALbCAADYwQAAgMEAAKBBAAAQwgAAmEEAAAhCAAB8wgAA6MEAAAzCAAB0wgAAXEIAAOLCAAAgQgAAiEEAAKDBAAA8QgAAQEIAABDCAADIQQAAPEIAABDBAAAEQgAAmEEAAMBAAAB8QgAAoMAgADgTQAlIdVABKo8CEAAagAIAAOi9AAAUvgAAhj4AAAy-AAAQvQAAqj4AAIi9AAANvwAANL4AAHA9AACgPAAADL4AAII-AADIPQAAML0AACy-AAAcPgAAED0AAPg9AACuPgAAfz8AADA9AABwPQAAXD4AADy-AAAcPgAAED0AAKC8AACAOwAAXD4AANg9AAAwvQAAyL0AAKC8AAAsPgAAmL0AAHA9AAD4vQAARL4AAI6-AAAwvQAAQLwAAPg9AAA0vgAAgLsAADA9AAAMPgAA2L0AAGy-AACWvgAA2D0AAOC8AABcPgAAmj4AACS-AACAOwAAIT8AAPg9AACgPAAAyj4AACQ-AACAuwAAiD0AAKK-IAA4E0AJSHxQASqPAhABGoACAABcvgAAyD0AAJg9AABPvwAA4LwAAKC8AACqPgAAVL4AAFA9AACoPQAAMD0AAES-AAAQPQAAuL0AALg9AAAQvQAAqL0AACs_AACgvAAAfD4AAJg9AAB0vgAAMD0AANi9AAAQvQAAED0AAAS-AAAwPQAAoDwAAFA9AACgPAAADD4AAAS-AAAMvgAAMD0AAIC7AAB0PgAATD4AABy-AAAMvgAAfD4AAFC9AAC4PQAA4DwAAKA8AACoPQAAf78AALi9AAAQvQAAqD0AAHQ-AABAPAAAbD4AABA9AADovQAA2D0AAFC9AABAvAAAiD0AAHC9AACGPgAA2L0AAES-AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=H1JbQtSHhSA","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13697165663649029984"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3336987796"},"11560262530415179227":{"videoId":"11560262530415179227","docid":"34-2-15-Z2B4CE421CF184C95","description":"Help me create more free content! =) / mathable Merch :v - https://teespring.com/de/stores/papaf... https://shop.spreadshirt.de/papaflammy 2nd Channel: / @rockhardwooddaddy Weier Def: • The...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3793178/fd53e5f3b181f4cb1d75a716b0adc4cb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/bpLkmwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkjK9WfmLElo","linkTemplate":"/video/preview/11560262530415179227?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"WAIT, WHAT?! Differentiating x Factorial x! - Introducing the Digamma Function","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kjK9WfmLElo\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFgoUMTE1NjAyNjI1MzA0MTUxNzkyMjdaFDExNTYwMjYyNTMwNDE1MTc5MjI3apMXEgEwGAAiRRoxAAoqaGhycGJ5YmhmYmJ4emd1YmhoVUN0QUlzMVZDUXJ5bWxBbnczbUdvbmh3EgIAEioQwg8PGg8_E7wIggQkAYAEKyqLARABGniB6gUC-v4CAPwAEAUHB_wBBAAAAvj__gDj6wL6AfwCAPcBEwEBAAAA8QYBAgkAAAD-_Qv98_4BAAP7_AIEAAAADfYIAvsAAAAMDu8C_wEAAPX-AwUDAAAAEAT48v8AAAD4Cwf6-_8AAP4IAwwAAAAABf0C-QAAAAAgAC26iNU7OBNACUhOUAIqhAIQABrwAX8sE_-mJtn_zAa6AAwV7gGQOS3_QErY_73ZFgLJCNcB9BD6ANQE5AAdAeUA1VIT_zjV7AAFvdoALsvs_lEq9ADv--YBS8_8AW_tQgQ44gr_qzUM_dIFAv8a7tL_Jzjc_u3FGv0RDs8BDeWmCy76OgE86xYCHDLkAOrNAAHYKP8D6xnJ_fYA7gYO1xL2x-clAvz83QkPNAn3ACbv_yvXCwIAAP_6BycIAi0R9QYZ__oJqsDsBQIh-wriDy4EAOkEBQEPO_no3hf3CfgOB-0H-PXdFuwK_fYCFhv6CBIR8g0AEb37_84U6g3JHwP98gT0ACAALasx7Do4E0AJSGFQAirPBxAAGsAHOSv6vhkDDLw277S6vln5PBLY3Lw8Hum8j52BPQNKPr2ntYS8aTorPmErEr0sP_o8s_B1vsfQlrxFZEA5y4AzPubRiL2YYjM8GYGivUC1uz3hpF-94Lttvl6Klj0WuUy8I2XwPMzU_zwrvVu80usFPWaDzLzVIgK9qarIu7JdJr1fwQy99B8tPT-5t72ePxK9P-XIvZHtPL2_Hp28oaOwPDZg67yq2os7s81yPUH7hzwK98q8rHDrvfDTgjwyBam7EQAsPpZbGj3bHe08Xd78PcD8H73-Ts26VYpdvRzjlLyNBQq9PSgIveO7Hj1nyyC85XrAPSkV4DvDCfG8Qgouvj5fDr1sw3K8KtGIPYoNDD0spsg8xmGqvatbnT3u1Jo75XjLOwL73jye6N-8BhbbPKnC-jz2kxa8YkY9PfFrvbsfTwa9L5G2PR_VhT0AeJ-83gvCPe1WoDxT7hk6k30GvWloSD2I0Ro8SRXgvM_3cDvTctq6LY-aPIZ7wDw9Eqs7V4ruvBppjj02AlC7xTVDPfhRDb4Jbyy73M26uyD0Z71JslS7ajYNPJ97Kj0xyW28i8ucPaQXer1feEq835twPVMYtb0a8ey7bCZfPevgxTwx2g86vS84Pee8rTv0jxe8v2unuzrDuTzWNX-8xJJ2O99vpD1cQMM6KcSrOyfrob1sBno7iWZZPQHxlD3Rfry4p9N1PQGZJbuwMfm6SQ59PUXA_LwrMte7ULVMvA4e3LwhyCS7kuYPvWxGAT1PfG-6yjT6PRN7zbxZhmE48r-bPTQEg7lGiAM5_uuRvWeHUz2cSPG4p4dSPTm5X72sQYa4qz2RvRpSFb4wUQo6qgF0PfV7Z70REeW5GqGUvXdMXTypiq04JdY4vRjMRL0fH8w5aQ9FPLgyEj329Ta5R3eLvYw4Uz0P9EK4vweUvCKqi7yyRQa55iqMPLXknL186IM4FwMVPb98dz09Bwc57Lmvu8XBmr0TgHY5QU0Ivd-HpDv2flU4VKXSvB_Mxz1y1Vi3mh-UPaOvAD2wZM43GuflPF0Pa724sI03IjPXPXIpmTv5LWw3WjSjvXxaSj1yIGw4g2LxuwbmNz0TQxO4C71ZPFDJFDwHGTy3jcIEvcxVvTtGP2a3wqTYPTYqJr17tC25_-VeO-lAi73LJa-4dfX0vFnd6r0NI_E1wkZ-vA974T0MtcE3d2FQvZ0GVr3BFqK4oBcOPRclvT0ofwA5DgqPvdA6ArrFAii4squPvXy6-jxzlDQ3gRFqPC34Ibzka_43IAA4E0AJSG1QASpzEAAaYETsACX_J-QTDSXz9b_m8P3UKMgh2xL_2Pf_FTfvzf8Wwa0d-P8hzArVmwAAACz2AwfAACl_FvLVLev8AdqHvEsIehsRJ8ToPQfd4DIOAeDf6_okTwDRNJIlTBfDUjwbOiAALRTYEDs4E0AJSG9QAiqvBhAMGqAGAAAUQgAAcMIAAIRCAAAAQAAAkkIAAIDAAAAkQgAA-MEAAATCAABQwQAAkMEAAHBBAACowQAAoEAAABBCAACAPwAAYMEAANDBAAAQQgAAMMEAAABBAABAwQAAqMEAABxCAADQwQAAikIAAM7CAAAwwQAAgEIAAPhBAAAIwgAA6EEAABDBAAAAwgAAOMIAABRCAABoQgAA1EIAAEDAAABAQQAAuMEAADDBAAAAQgAAXMIAAHxCAAA0wgAAoEEAAABBAAAoQgAACEIAAIjCAABgwQAAuEEAACBBAAAMQgAAAMAAAIA_AADIQQAA2EEAAIRCAABQQQAALMIAAAzCAAC0wgAANMIAAI7CAAAwwgAA2MEAAKjBAAAAwgAADEIAAEDAAACwwgAAEEIAAIjBAACAwgAAZMIAALDBAAAUwgAAQMEAAEDAAACGQgAAgL8AAODAAACAQQAAmEEAACBCAABEQgAA4EAAANjBAACGwgAAkEIAAABAAAAkwgAAWEIAAIDBAABQwQAAgMEAAMhCAACIQQAAjMIAAGhCAAD4QQAAgL8AAGjCAAAAQAAASMIAABBBAACIwQAAiEIAAKDAAACYwQAA0MEAADjCAAAgwgAAgEAAAGBBAAAYwgAAkMEAACDBAAAwwQAAdMIAAKjBAADAQAAAQEEAAJTCAAAQQQAACMIAAMjBAAD4wQAAoMAAAKBAAABgwQAAXEIAAADBAACKQgAAgEEAAJLCAABgQQAASMIAALDBAAC4wQAAjkIAABTCAAAUQgAAcEEAAAjCAADwQQAAuMEAACDBAAAAAAAAgkIAAOBBAAAAwQAAAMAAAABCAAAAwgAAUMIAAITCAAAgQgAAgMEAAEBBAAAkwgAALMIAAHBBAABEQgAAmEEAALJCAABAQgAAcEEAAOBBAACAwAAAikIAAHDCAAAowgAAEMEAAEjCAADAQAAAMEEAANhBAAC6wgAAFMIAAEBAAADYwQAAPEIAAKTCAABAQQAAOMIAACDBAADwQQAAIEEAACTCAAAgQgAAYEEAALBBAACMQgAAuEEAALjBAADIQQAAyMEgADgTQAlIdVABKo8CEAAagAIAALi9AABAvAAAqj4AAEC8AAAUvgAAuj4AAIi9AAC2vgAA-L0AADA9AABAvAAA4DwAAGQ-AAA0PgAAcL0AAEA8AACKPgAAmL0AAKg9AACOPgAAfz8AAFC9AAA0PgAADD4AAIK-AAAwPQAAQDwAAKg9AAC4vQAA6D0AAJg9AABAPAAABL4AALi9AAAUPgAA-L0AACQ-AADovQAARL4AAGS-AACgvAAADL4AANg9AAD4vQAAXD4AAKC8AADoPQAAPL4AAOi9AADWvgAAoDwAAKi9AAC4PQAAPD4AALi9AACgPAAAFT8AADA9AACAuwAAfD4AABC9AADovQAAMD0AABy-IAA4E0AJSHxQASqPAhABGoACAAA8vgAAfD4AAFA9AAAjvwAAuL0AALg9AADOPgAAEL0AANg9AABEPgAAgDsAACy-AAAQPQAA6L0AAIA7AACgvAAAbL4AADs_AABcvgAAgj4AABw-AAC-vgAAyD0AADS-AADgPAAAUD0AAGS-AAAMPgAAUD0AAOC8AADgPAAA4DwAAJa-AAA0vgAAXD4AAHC9AACyPgAA4DwAAFy-AACIvQAAZD4AAIC7AAAcPgAAgLsAADA9AACgPAAAf78AAIA7AAC4vQAAcD0AAHA9AAAsPgAAND4AAIg9AAAUPgAAqD0AAPi9AAAUvgAAEL0AAEC8AAAMPgAAQDwAAAQ-AAAwvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=kjK9WfmLElo","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11560262530415179227"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4134598646"},"16066974598077595788":{"videoId":"16066974598077595788","docid":"34-2-0-ZD049AB840DEC88B9","description":"1st video on this with integration method: • Can I turn this into an integral??? Digamma function cheat sheet: https://owlsmath.neocities.org/Digamm... Digamma function playlist: • Digamma...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3422135/ee391089fe556da08eb88430e8ad8509/564x318_1"},"target":"_self","position":"3","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4DRASU37XAw","linkTemplate":"/video/preview/16066974598077595788?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solve with the Digamma function?","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4DRASU37XAw\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFgoUMTYwNjY5NzQ1OTgwNzc1OTU3ODhaFDE2MDY2OTc0NTk4MDc3NTk1Nzg4aq4NEgEwGAAiRBowAAopaGhmeHJ3eXVybWtjZXdvaGhVQy1lZmg2Vk1xRTBBeXhrVHV3NFJmNHcSAgARKhDCDw8aDz8TzQSCBCQBgAQrKosBEAEaeIHuAfn9_AUA9QEDBQcE_QEM_vsI9___AO78BvoGAAAA_P8HAwEAAAD6_wEFCAAAAPMD_gH6AAAA__r5-wMAAAAIAAQE_AAAAAIL-Ab-AQAA_gD4BgP_AAAX-v4MAAAAAPgKB_v7_wAA_ggDCwAAAAD_8AcBAAAAACAALXGG3js4E0AJSE5QAipzEAAaYP8SABQSHAnzAQPz9PL4-eQC5fsB4Q4AC-4ADQUC4wsIA88UBgAU6wUF1gAAABQGEhMCAAUvFxLkEQUNBd3x_xL9fxoW1PL-BPbr_OUdCBzs5Qf-GwANCfvhG_ToDhMSGCAALU1flDs4E0AJSG9QAiqvBhAMGqAGAAAAQgAApMIAAMJCAACowQAAYEEAAFzCAACGQgAAMMEAAADCAADYQQAAYEEAABxCAACgQgAAsEEAADTCAADIwQAAMEEAAJjBAAA8QgAAYEEAAOhBAADIQQAAlsIAAAhCAACQwQAACEIAAADBAAAIQgAAGEIAAMDAAAAQwQAAkMEAADDCAAAAQgAAAMAAALBCAAAAAAAAxEIAAFTCAACAvwAAQEAAAABCAAA0QgAAQEEAAEDBAACEwgAAcEIAAHDBAAD4QQAAEMEAAMhBAABAQAAAoMEAACzCAAAEQgAA4EEAAIDBAADIwQAA3EIAAIJCAAAUQgAApMIAAIDCAABAQQAAAEEAAIDBAAAwwQAA6MEAAGDBAACQwQAAYEIAAHRCAABUwgAAWEIAAABAAACmwgAA0MEAAMhBAABYwgAA6EEAAJDBAAD4QQAAJMIAAJhBAADIwQAAmEEAAJhBAACYQQAAhkIAAIjBAACOwgAAJEIAAJDBAADwwQAAgMAAABDCAACgQAAA-EEAAKBAAACIQgAA4EAAADBBAACIwQAAmEEAAEjCAADwwQAAQEIAABBCAAAUQgAA8EEAAJZCAAAAQQAACMIAAGhCAAC4wQAA0EEAAIJCAABEwgAAqMEAAFDCAAAQQQAAUMIAAIjBAABYwgAAgEEAADDCAADAwQAAgMAAAGzCAAAgwgAAYEEAABzCAACQwQAALEIAAJrCAAC2QgAALEIAAEBAAAAQQQAAtsIAAOBAAACAwAAAoMAAAAjCAAC4QQAAMEEAAOjBAAAQQQAAEEIAAHBBAADwwQAADMIAAOBAAADgwAAAUEEAAODAAAAQwgAAHMIAAEDCAAD4QQAAOMIAAMBAAAAgQQAALMIAABBBAAAAQAAAIEEAALBBAACAwAAAYEEAAFzCAABQQQAAsMEAADDBAABgwgAAcEIAAKbCAAAowgAAJEIAAEhCAABIwgAAQEEAAEDBAACYwQAAaEIAACjCAAAEQgAAEMIAAJDBAABoQgAAFEIAANjBAAA0QgAAkEEAAOhBAADQQQAAuMEAACzCAAAQwgAAIMIgADgTQAlIdVABKo8CEAAagAIAAKi9AADgPAAAhj4AABA9AACgvAAApj4AADC9AAANvwAAbL4AAEw-AACYPQAAHL4AAJY-AACgPAAAoDwAAJi9AAAkPgAABD4AABw-AADaPgAAfz8AALg9AABAPAAAhj4AABS-AACAOwAAJD4AAKC8AABwvQAAuD0AAJg9AAA8vgAAQLwAABC9AADGPgAAcL0AAKA8AAAMvgAARL4AAKK-AAC4vQAAML0AAIg9AAAkvgAAuL0AAFA9AAC4PQAAcL0AAHS-AACKvgAAyD0AAEC8AAB0PgAAsj4AAES-AABAvAAANT8AAEA8AAAEPgAAED0AAAw-AAAkPgAAiD0AAKK-IAA4E0AJSHxQASqPAhABGoACAAC4vQAAFD4AAOg9AAApvwAA-D0AABQ-AAAHPwAAJL4AAJg9AABEPgAAHD4AAJi9AABAvAAALL4AAIg9AADgvAAAuL0AADk_AABcvgAAij4AABy-AACKvgAA4LwAABA9AABAPAAALL4AAPi9AABQPQAA-D0AANi9AABAPAAAFD4AAJ6-AADgvAAAyD0AABC9AACGPgAAJD4AAI6-AAAUvgAAHD4AABC9AACAOwAAEL0AAHA9AACYPQAAf78AAFA9AAAcPgAAEL0AAAQ-AAC4PQAAfD4AAAS-AADYvQAA2D0AAOC8AAD4vQAAuD0AAKg9AAAcPgAA6L0AAAy-AAC4PSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=4DRASU37XAw","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16066974598077595788"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16331992064106964468":{"videoId":"16331992064106964468","docid":"34-2-16-ZD349E8F5A6EA2273","description":"In this video, we introduce and establish several important properties for two integral-defined functions: the gamma function and the digamma function (the logarithmic derivative of the gamma...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3286218/42639e3b308846d0c1b050fa9cd88a61/564x318_1"},"target":"_self","position":"5","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-OyXXBKTaAk","linkTemplate":"/video/preview/16331992064106964468?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"(RA22) The Gamma and Digamma Functions","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-OyXXBKTaAk\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFgoUMTYzMzE5OTIwNjQxMDY5NjQ0NjhaFDE2MzMxOTkyMDY0MTA2OTY0NDY4aq8NEgEwGAAiRRoxAAoqaGhzenR2eWt4aXJudW5iY2hoVUN4ZmE0dXlKeDdQQXZyUnlua0pVeHVBEgIAEioQwg8PGg8_E8ESggQkAYAEKyqLARABGniB7gH5_fwFAOT_9_7-_gMABgb4APf__wDz-_38BwEAAPP6BwEEAAAA8v4NAgYAAADs_fsM9wEAAAv39_0DAAAAAPz-BvoAAAABEAAE_gEAAPgPAAQD_wAADwb5Dv8AAAD6Dfz7_wAAAAUM-QMAAAAA__AHAQAAAAAgAC1xht47OBNACUhOUAIqcxAAGmACGQAl_i7m__gN-wv-_BTx9fj6ANj5AADwABwcBuIOA-O7AwoACu4H_s4AAAAhDAQUCAAEOicO2Cb7_QzY4fcJCn8YHef09xnq6f_1IyIp6v32CgsADAb45RoE6BQcLSggAC3HSoA7OBNACUhvUAIqrwYQDBqgBgAANEIAAPBBAAAoQgAAQEEAAKjBAAAcQgAAKEIAAKDAAABcwgAAgD8AAJxCAACowQAAOMIAABDBAAAgQgAA6EEAAKhBAACAwgAAmMIAANhBAABgQQAAUMEAAEDAAADQQQAAwMAAANBBAABAwQAAYEEAAJhBAADgQQAAQEAAAODAAAAgwQAAgEEAAJhBAACgQQAAAMIAAP5CAACAvwAAGMIAAJhBAADYQQAAJEIAAODBAADgwAAAgEEAAMDBAACawgAAAEAAAIC_AAAAQQAA4EAAAKDBAAAQwgAAgEEAAKhBAAB4wgAAJMIAABBBAACYQQAADEIAAODAAADAQAAAcMEAALDBAAB4wgAAAEIAAGBBAACAwAAAlEIAAGRCAACyQgAACMIAALRCAACgwgAA0MEAAIjBAABAwAAAgMEAAChCAAAwwgAAAAAAALDBAADYQQAAEMIAAIhBAAAcQgAAIEEAANhBAADoQQAA0EEAAADAAAAQwgAABMIAAHBBAABwwgAAiMEAAIZCAACAvwAAmsIAADzCAABQQQAACEIAAKjCAAAUwgAAsMEAACjCAADgQQAAEEEAAFBBAAAsQgAAKMIAACTCAADIwQAAEMEAAFBCAABQQQAAmMIAAGBBAADoQQAAYMIAADBBAADIwQAAEMIAACBCAACIQQAAEEEAALjBAABgwgAAwEAAADTCAACEQgAAMMIAABRCAACMQgAAgD8AACBBAACAwQAArsIAAEDCAAAAQQAApEIAABRCAADgwAAAvkIAAMBBAACAvwAAfEIAAKBBAACIQQAAAAAAAIDBAACAQQAA0MEAAEBBAADYQQAAmEEAAJzCAACgQAAAEEEAAADAAADQQQAAIMIAAJDBAABYwgAAgMIAAIRCAAAAQQAAEEEAAKhCAAAwwgAAjMIAABBBAADQQQAAHMIAABhCAAAQwgAAdMIAAADCAACCQgAABMIAABzCAACwwQAAMEEAADhCAAAgwQAAmMIAAOxCAACAwAAAMEIAAHDBAACAvwAAIMEAAEDBAAAkwgAANEIAAFDCAACgQQAAwMEAALDBIAA4E0AJSHVQASqPAhAAGoACAAC2vgAAFL4AADQ-AABAvAAAgDsAALo-AADYvQAAG78AAI6-AABAPAAA4DwAAFy-AACCPgAAuD0AAIA7AABQvQAAPL4AADA9AABcPgAApj4AAH8_AADIvQAAMD0AAAQ-AABEvgAATD4AABw-AADYPQAALL4AAIA7AACSPgAAiL0AABS-AAAcvgAA7j4AAIC7AABAPAAARL4AALq-AAAQvQAAQLwAAGy-AABQPQAAdL4AAMg9AAB0PgAAnj4AAIi9AADYvQAAfL4AADC9AADCvgAAlj4AABQ-AADovQAAqD0AACs_AAAUPgAAED0AALI-AABkPgAAMD0AADC9AAAcviAAOBNACUh8UAEqjwIQARqAAgAAoDwAAKC8AAAMvgAAJ78AACy-AAD4PQAA8j4AABy-AACIPQAA-D0AADA9AAAwvQAAJD4AAOi9AADIPQAAgLsAAMg9AAA5PwAAcL0AAPo-AABkvgAANL4AADA9AAD4vQAAgLsAAKA8AAAsPgAA2D0AACw-AAC4vQAA4DwAAJg9AACKvgAAfL4AAIA7AAAEPgAAHD4AALI-AAAUvgAAZL4AAMo-AABQPQAA4LwAABA9AABAPAAAyD0AAH-_AACivgAAUL0AAFQ-AABUPgAADD4AAIi9AAAwvQAAUD0AANg9AACovQAAuD0AADC9AAAwvQAApj4AAPg9AACgvAAATL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=-OyXXBKTaAk","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16331992064106964468"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16576755372464592732":{"videoId":"16576755372464592732","docid":"34-7-6-ZCDF9D60179AB669E","description":"Follow me on twitter @abourquemath The digamma function is the logarithmic derivative of the gamma function. We play around with its definition to get some nice expressions, including the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1995642/63e5b20159e4d85bf82d0216266bf6b4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zmOgUAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dt1A3zNsP5DU","linkTemplate":"/video/preview/16576755372464592732?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Digamma Function","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=t1A3zNsP5DU\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFgoUMTY1NzY3NTUzNzI0NjQ1OTI3MzJaFDE2NTc2NzU1MzcyNDY0NTkyNzMyarUPEgEwGAAiRBowAAopaGh6b3F6c2xobHh4b2ViaGhVQ3pCUm90ZEpTM2JKUGNVWnllUGtIQncSAgARKhDCDw8aDz8TlgSCBCQBgAQrKosBEAEaeIHuAfn9_AUA9QP-AgAE_wH6A_8B-f39AO78BvoGAAAAAP4BAwcBAAD6_QgEAAAAAPMD_gH6AAAA__z1BAMAAAAIAAQE_AAAAAIL-Ab-AQAA_gD4BgP_AAAX-v4MAAAAAPkF_vj-AAAA_ggDCwAAAAD_8AcBAAAAACAALXGG3js4E0AJSE5QAiqEAhAAGvABf_sTAeXv0QHOAuoB2f_2AdJDIQD4HvAA0OXsAb0e7wDTDuUA6f4AANYW6gC4J_j_Etq4Ahvk_QAgw_b_I9XvAeISBAEI5fEBWh8r_RX3-ADxDBX_7OH9_xzn5wAeK-T_A9kEABX14wAFLNkDLiotAfT3EwH_-A_937T9AfbZ_ALj8vD-6S_j_PQGAPbK_h4BHt31CQAKFgLo_uEECeYFA_PYIv8OJPAEE-cQDi7-7wPK5_4F_OP3Bg04Af_UB9T9-AYPAdQT-vIR_BD89RkF8NYQ_AAn_PICAAcHAh8LCQ049vf36fUT9e0K6wbL-e4CIAAtXDAbOzgTQAlIYVACKnMQABpgL_UAK_VF6DsA_vkh594bvNsG0xCxAv8C_P8rJ9gKPhvDrggVAPjzGdqfAAAAMBz4Pt4A83wjHgNE6Codpc3PJP1_NR4Irr8lD-30KFQ6CcD8-PhJADAeo_YkDpcJNzktIAAtXF0ROzgTQAlIb1ACKq8GEAwaoAYAAJBBAACgwQAArkIAAFTCAAAAwQAAEMEAAFxCAAAYQgAAAMIAAGDBAACYQQAAqMEAAEDAAADAwAAAoMAAAADAAACGQgAAbMIAAIJCAACAPwAAgD8AAKDBAAD8wgAA4EEAAHDCAAAwwQAAAAAAAOBBAAAQQQAA6EEAAPDBAACQQQAAjsIAAKBAAAC-wgAAkEEAALjBAAAMQgAAMMIAABBCAADIwQAAgMAAAFDBAACIQQAAHEIAAAjCAAC4QQAAXEIAALBBAAAIQgAAAMEAAJ7CAAAQwgAAVEIAACBBAAAsQgAApsIAAMDAAAAMQgAA8EEAAADBAAA0wgAARMIAACzCAABAwAAAfMIAACzCAADgwQAASMIAAPjBAAAgQgAAcEIAADDBAAAAQAAAmMEAAGBBAAAUwgAAkMEAAEDAAAAAwAAAgD8AAKZCAABAwAAAEEEAAIBAAABQQgAAqMEAAIrCAACoQQAA6EEAAIBBAAD4QQAAaMIAACRCAAAoQgAAEMIAAAjCAADAwQAAoEAAAMhCAAAkwgAAwMAAAMBBAAAgwQAAZMIAAEBAAACgQAAAJEIAAEDAAACUQgAAbEIAABRCAABAwQAA8MEAAAAAAACGQgAA6EEAAFDCAAA0wgAAsMEAAFDBAAAowgAAiEEAAEDCAAAMwgAAEMEAAAzCAACAwQAAAMEAAOhBAABwwQAAeMIAABxCAACoQQAAEMEAAGhCAADQQQAAmEIAAADCAAAwwgAAoMEAAMBAAADwQQAAmsIAAMDAAAAkQgAAEEEAAKBBAAAAwAAAjEIAAPjBAAAAQgAAlEIAALBBAACwQQAAAMIAAJ7CAAAwwQAAYMEAAFDCAAB0wgAAFEIAANBBAACAvwAAQEIAADBBAABwQQAAyEIAAJxCAACIwQAA8MEAAKBAAADYwQAAMMIAAIbCAAAAQAAA4EAAADhCAADgQQAAXEIAALrCAABEwgAAqMEAANDBAACAQQAAkEEAAPDBAAAwwQAAqEEAAAzCAABoQgAAcEEAALDBAAAAwQAAAEEAAIRCAACQwQAAMEEAALhBAACAQCAAOBNACUh1UAEqjwIQABqAAgAA2L0AAJi9AABMPgAAUD0AAOC8AABkPgAA-L0AAPa-AACWvgAARD4AAKC8AADovQAAfD4AABA9AACoPQAAML0AAHA9AAAQPQAAPD4AAI4-AAB_PwAAQLwAAPg9AAAMPgAAmL0AALg9AABwPQAAED0AALi9AADYPQAABD4AADC9AADIvQAAqL0AAMo-AACYvQAAML0AAES-AABkvgAABL4AALi9AABkvgAA4LwAADy-AABwPQAAEL0AABw-AABwvQAAbL4AAKK-AABAvAAALL4AABQ-AABEPgAAqL0AAHA9AAAdPwAAqD0AAOg9AAAkPgAARD4AABA9AADgPAAAnr4gADgTQAlIfFABKo8CEAEagAIAAPi9AADoPQAA4DwAAD-_AABAPAAAMD0AAOI-AAAsvgAAyD0AAOg9AABQPQAANL4AAAQ-AAD4vQAAUD0AADC9AAAwPQAAMz8AALi9AACGPgAAXL4AAEy-AAAMPgAAEL0AAEC8AADovQAAQDwAADA9AAA0PgAAoLwAABA9AAAkPgAAtr4AALi9AACIvQAAgLsAAGw-AAB8PgAAJL4AAPi9AAB0PgAAiL0AAMi9AADYPQAAMD0AABw-AAB_vwAA2L0AAIC7AABsPgAAnj4AAOA8AAA8PgAAmL0AAKi9AAC4PQAAoLwAADA9AABQPQAA-L0AAI4-AACAuwAARL4AABy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=t1A3zNsP5DU","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16576755372464592732"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1137181933"},"4837501241321823606":{"videoId":"4837501241321823606","docid":"34-9-12-Z3CC8CDEB0EAD5C9E","description":"Notes: https://drive.google.com/file/d/1SWy6... Gauss's Integral for Digamma Function (used on page 2 in the notes): • Gauss's Integral for Digamma Function... 1/( t²+4π²k²) G(x) = Integral over...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1975414/728829523fdbc0fa261d79df37dcbadf/564x318_1"},"target":"_self","position":"7","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLefbuaF6jEw","linkTemplate":"/video/preview/4837501241321823606?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Bounds/inequalities for the digamma and trigamma functions","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LefbuaF6jEw\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFQoTNDgzNzUwMTI0MTMyMTgyMzYwNloTNDgzNzUwMTI0MTMyMTgyMzYwNmqvDRIBMBgAIkUaMQAKKmhobGtqaWprYmRwaHVxZ2JoaFVDWFV0T2xZMHBjU25pTC1oOVNvR05UQRICABIqEMIPDxoPPxPYCIIEJAGABCsqiwEQARp4gfb-9AH8BADxAvz_-gIAAQD89v34_v0A8gH4AgcB_wD4_AkKCQAAAPoFCQIIAAAA7v76AvsBAAAR9vkIAgAAAAgABAT8AAAADQv8A_4BAAD4AfwBA_8AAAoD7gEAAAAA-Q4E8gAAAAAEBP0GAAAAAAL4BQYAAAAAIAAtUBnhOzgTQAlITlACKnMQABpgERgAJAUW4_wJEfgQ9AMG-fTu_fPfEgAT-QATD_36GAvq2gkIAATwCgLZAAAACBb-GQgAACscB_IFBv8A3tbmDvx_Chjz_g8N89r-AxQhFen5AfwFAP3-B_QPE-0YGRsiIAAtXsuXOzgTQAlIb1ACKq8GEAwaoAYAANhBAABwQQAAlEIAAIzCAABgQQAAqMEAAHBCAAAwwQAAAMAAAKjBAABAQQAAEEEAADDCAAAQQQAANMIAADxCAADQQQAAWMIAAFxCAADgQAAAoMEAACDBAACiwgAAYEEAAILCAADIwQAAJEIAAADBAADgQQAAAEIAADTCAAC4wQAAtMIAAMjBAAC-wgAAoEAAAODAAAD4QQAAoMAAAGBBAAAwwQAAoEEAAFDBAAAwwQAAdEIAACTCAACAwAAATEIAAIDBAACAQQAANMIAAJDBAADwwQAABEIAABxCAAAkQgAAcMIAABDBAABMQgAAmEEAAKBAAABgwgAAhMIAAODAAABQQQAAjMIAANjBAAAgQQAAMMIAANjBAAAIQgAA8EEAALDCAABEQgAA2MEAAIBBAAAwwgAAwEAAAFDBAADgwAAAgMAAAIpCAABAQAAA-MEAAODAAABwQQAAMEEAAJjBAAAAQgAAsEEAAHDBAABkQgAAKMIAANhBAACQQgAAyMEAAODBAABAwAAAoEEAAFRCAADYwQAAKMIAADxCAAAAwAAAdMIAAERCAAAQQgAAcEEAAAhCAACOQgAA0EEAAABBAADQwQAAAMEAAKjBAACkQgAA6EEAANjBAABcwgAAKMIAAHDBAABEwgAAGEIAADTCAADYwQAAEEEAADRCAAA8wgAAgMAAAHBBAAA4wgAAAMIAAGBBAACMQgAABEIAAMpCAADIQQAAqkIAAI7CAADwwQAAIEEAAIjBAAAMQgAATMIAAKBAAAAsQgAAQEAAABhCAAAowgAAkMEAAAjCAABcQgAAKEIAAFRCAAAQQgAAQEEAACzCAAAQwgAAQEEAAIrCAACgwgAACEIAAADBAADAQQAAWEIAAJBBAAAUwgAAbEIAAGBCAADAwAAAgEAAAKBBAADAQAAALMIAAKrCAAAsQgAAoMAAAADCAAAYQgAAoEAAAFDCAAAEwgAAQMAAALDCAAA8QgAAUEEAACzCAACEwgAAwEEAALBBAABgQgAAQMEAAADCAAAQwQAAiEEAAMRCAACQwQAA-MEAAIhBAACAQSAAOBNACUh1UAEqjwIQABqAAgAAQDwAAOC8AAAMPgAAiD0AAIC7AACqPgAAbL4AAAO_AAAkvgAAJD4AACQ-AACIvQAAsj4AADA9AAAcvgAAFL4AANi9AACIPQAAqD0AAJY-AAB_PwAAQDwAADA9AABsPgAARL4AAHA9AAAwPQAAuL0AAHA9AACIvQAADD4AADS-AACgPAAAcL0AAL4-AADYvQAAUL0AAIq-AACKvgAADL4AAAS-AABkvgAAVD4AAJK-AACYPQAAMD0AADw-AAB8vgAAmL0AAKa-AACgPAAAiL0AAJY-AAAcPgAAPL4AADC9AAAHPwAAUL0AAOg9AADoPQAA2D0AAIA7AADgPAAAXL4gADgTQAlIfFABKo8CEAEagAIAAKg9AABQvQAAoDwAABG_AABQPQAAFD4AAKY-AABAvAAA6L0AABw-AADoPQAAML0AAAw-AABMvgAAFD4AABC9AABwvQAASz8AAEC8AACqPgAAPL4AAIK-AAAMPgAA6L0AAEA8AAAEvgAAMD0AAIA7AABEPgAA6L0AAEA8AAD4PQAAxr4AABy-AACgPAAAgDsAABA9AADWPgAAZL4AADS-AACGPgAAuD0AAFA9AADIvQAA-D0AANg9AAB_vwAAPL4AAIY-AACgvAAA6D0AAEA8AADoPQAAuL0AAFA9AAAwPQAAoLwAAHC9AAAcvgAAcD0AADw-AABQPQAAqL0AAEy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=LefbuaF6jEw","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4837501241321823606"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6983919376424678357":{"videoId":"6983919376424678357","docid":"34-6-17-Z7F733DCC05EAC527","description":"Digamma of 1/3 evaluated using the infinite sum definition and conversion to an integral. Feel free to suggest integrals or other problems for me to try in the comments!","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3430537/e4b44eee4b549984695d9ef685a62ee5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/idzGMwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAA7AlvXQr6w","linkTemplate":"/video/preview/6983919376424678357?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Calculate Values of the Digamma Function!","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AA7AlvXQr6w\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFQoTNjk4MzkxOTM3NjQyNDY3ODM1N1oTNjk4MzkxOTM3NjQyNDY3ODM1N2qIFxIBMBgAIkUaMQAKKmhobmpmeGNsZnh0Z2FyZmJoaFVDZGVsY0ZLZVI0aVc3SEcwakY3aWdIdxICABIqEMIPDxoPPxP-A4IEJAGABCsqiwEQARp4gfT89v4B_wD7_gP_AwT-AQsA7wH2__8A-P3-AwUC_wD1BgYBAQAAAPoRBP4GAAAA9Qj3Ef7_AAAQAff8BAAAAAwBDAT1AAAADw39AxL-AQH7C_cNBP8AAAv1AQcAAAAA9wsH-vv_AAD___sNAAAAAP_vBwEAAAAAIAAthUHROzgTQAlITlACKoQCEAAa8AF_IwoD2vasAcIU4QDu5QYBywkRABlO-QDL4-oBtPbEABERzAHrBO3_9h4CAIwS7QER3MwA_PfpAT39BP84xAsAGPMAAQrx6AEnOCj-Ceka_-oKKAADw_oBGPHC_-bw1__-5Rf_DwzXAewDvwIm-zEB4_kvBAHB_wPwwgj_9OUKBgbzCvIAH_L88e8H9_b0KP73xAQAEAYJ8_MV9wDvCR4G6eIK9Ckc9Prx9g0JRR_4A67SDv8L4AQAFyMl_s397QTV8TAG0_sK9hT2BOw09fQG6vj9_tvh8QoP_v78Dgv__TXn_QoG2-319Q_3DeQa3fEgAC229ww7OBNACUhhUAIqzwcQABrABzW1zL6hdFg8vU0EPZqCm72ptRe8AwVeveDi17x4tBA82JMGu_a2ST6SUoq9UVcNPTYoEL10bYk9w_zLO_29dD6SVEu9A7HsPHE9Wr7nFr89hUyovL7vub3Wj009QRa9PB7XwL1Js5683G1yvO9Iyz3uig08iQwmPXOvXTzzLII9JcHlvLx8xjxuDh-8Ig14vTf0e71cYVE73Sx7u52FeD28PpC7igU-vPEFlz0LJh69p7QZvTgv7r0nEUE9uIwgvfDnyjsfg1U94o-HPFj-vL3F2Z69KktfO98Ykr3Zv-E8AZnGO5y0uj1K7UU8sHqbvGKTqTtxKsi9yGqpvGO0Hr42Fnu7f2BYPJXcXD0GQjc9cLbIOQmp-72l50w8JUQWu3PY_TxJ9oQ55ccpvLjuA7vywmc9rCswuzw9JTwjPXu86qO-usOjaL3-Tgk9a5T_PFuVlD3qDqi9MDCGvCpxfT2nvj281X5GvKym0LyA4Yu8gemTu4OJ371ca6k9-6M5PM8Tz7u0GUw8ZsR9O4_gFj5beA6-A-cOvGMqfbyjRcy9hypGvD0VRj3qa6c8egZDvEOpHT4fatu9xJqpOdh1Gb0cako8M1Elu8D2Qr24_mK9TfWBOJUkhL2cRJ699S5euzYapb1byp486yoPvHiRsrtPQRk9okTsu5k20ry8Ws69GJwvOmGCBD36pfQ8IPusu087_D3NCMo6c-oEt5YvHj2u2I-99j_huj26wb1RuQ88W5uEuoimR71XYIO9dP9nOHlYCD64IL67D7aROJB_C71vTYU9kk-ZOCeI-r3apwQ8dfB4uVOzJz3SkEy9MxqUON0qo7xXPcC9kQYeObhW-zzZccu6y88Mulbmd70hAp49Ix9aOcwgw73UDQS-CFOFORW0wbu05zK8eL-2uEnVez0h_3G8TZRRN79oqrwB0V07cWCLuW0xyTwoSfK8tJ6sOPc8vz365868MknZOCOsjD30bAa-z3ClOTnlm7x9b908GLf8t-WOSDwJjiY86VuEuNyUHD1OopQ9usCHNxLRt7sM_Yi9UGX6N8xdizycDq48dd8GuACLIb1Y5u09nS7cOP_b2zycHWQ9voU8OYBg7r0EDwK9DBnDuG9PCz1nuAE9MGOYODpd1j3sSo07HPtJuSvcE7xklQK-cT0buHI0CTtwjrS9ONKNtpvSj7vi5I49YN5HNxp6NT1Sghm9mg5SuMr0cD0i4Ss-8cuKOPCyNb1czM89DEYKuaclBr7PGYu79I40NphnSr1BFCc88kRMNyAAOBNACUhtUAEqcxAAGmAhAABILzXD6-Uv0g3a6xbS0vrJ8scq_wHhAAT2GgYkNsLG6_wADO4pxasAAAAZ-hYE5gAiaxPxyQ75Fxm-us8nCn9I-R3k0wwO8cw8ayfz3fnXBGgACfraCB73sBT-PRwgAC0xwh47OBNACUhvUAIqrwYQDBqgBgAAyEEAAADCAACmQgAASMIAAABAAABYwgAA0EIAABBBAAAEwgAAuEEAANhBAACgQAAAUEEAAHBBAADAwQAA8EEAAAxCAADgQAAAqEEAAIDBAAAAwgAAIEEAAFDCAABAwAAAfMIAAADCAACAPwAAiEEAAHxCAACAwQAAcMIAALjBAADcwgAAqEEAADDCAADAQQAAUEIAAHBCAAAAQQAAJEIAAADCAAAwQQAAEEIAABjCAADAQAAAosIAAEhCAACAQgAAGEIAABDBAACgQAAA6MEAAODAAABAQQAAwEAAAHBBAACYwgAAAAAAAMBBAAAYQgAAEEEAAKbCAAAMwgAASMIAAOjBAADYwgAANMIAAHDBAAAIQgAATMIAAKhBAADgQQAAlMIAACxCAABEwgAAoMEAAODAAACwQQAAwMAAAEBBAADowQAAxEIAAAjCAADIwQAAUEEAAMhBAAAoQgAAEMEAAABCAACUQgAAfMIAAEhCAAAAQAAAAEAAAKxCAACowQAAwEAAALhBAABwQQAAsEIAACjCAAAkwgAAYMEAAJBBAAAUwgAAoEAAAMhBAAAYQgAA4EEAAFRCAAB0QgAAUEIAAJjBAADAQAAAEMIAAKhCAADgQQAAFMIAAIA_AACYwQAAyMEAAHjCAACgwAAAAEEAAETCAABQwgAAdMIAAKjBAADowQAAiEEAABTCAACAwQAAoEAAAHBCAACKwgAABEIAAABAAADoQQAAwMEAABzCAABgwQAAcEIAAFxCAAAwwgAAgkIAAI5CAACAQQAA4EEAAFDBAAA4wgAAAMIAAIDBAADAwQAAgMAAAKBAAACIQQAAAMIAAKjBAABswgAAmMEAAATCAADAQQAAEMIAAAjCAAAgQQAAZEIAAPDBAABMQgAAAEIAAADAAABwQQAA6EEAANhBAABwwgAAKMIAAJhBAAAQwgAAIMEAAIBAAACoQgAAdMIAAMDAAAAIwgAAdMIAAIA_AABMwgAAkMEAAMDBAACAwAAAwEEAACBCAACIwQAAIMEAAIDAAABAwQAAFEIAAGDBAAAMwgAAMEEAAAAAIAA4E0AJSHVQASqPAhAAGoACAACovQAA2L0AABw-AADIvQAAuD0AAHw-AADgPAAAI78AABy-AACYPQAADL4AAOi9AAAUPgAAoLwAAPi9AABMvgAAyD0AANg9AABQPQAA2j4AAH8_AACIvQAAqD0AAJo-AADIvQAAJD4AANg9AAAQvQAAFD4AAFQ-AAD4PQAAnr4AAEC8AACYvQAAyD0AADA9AABAvAAAgr4AADy-AAB0vgAAFL4AAIC7AABEPgAA2L0AAFy-AABAvAAAFD4AACy-AACavgAAEL0AAIA7AACgPAAALD4AAGQ-AADovQAA4LwAAB0_AADIPQAAiL0AAJI-AABsPgAAJD4AABQ-AABsviAAOBNACUh8UAEqjwIQARqAAgAAyL0AALg9AACAuwAAPb8AALi9AAD4vQAAdD4AAHC9AACAuwAAyD0AAIC7AABsvgAAJD4AABy-AACCPgAA6L0AAIg9AAAZPwAAoLwAAFQ-AAAEvgAAiL0AAIg9AABAPAAAMD0AAHC9AACYPQAAgLsAABw-AACIvQAAmL0AABw-AABsvgAAVL4AADy-AAAwPQAAhj4AAII-AAA0vgAAZL4AAJi9AADgPAAAiL0AABQ-AABUPgAAyD0AAH-_AADgvAAAmL0AAPg9AAAUPgAAqL0AAFA9AAAwPQAAbL4AALg9AABQPQAA6D0AAJg9AACAOwAApj4AAKC8AABwvQAANL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=AA7AlvXQr6w","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6983919376424678357"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"571089552"},"9063782064625721532":{"videoId":"9063782064625721532","docid":"34-11-6-ZD9EFFBCA41196354","description":"Help me create more free content! =) https://stemerch.com/ / mathable Merch :v - https://papaflammy.myteespring.co/ https://www.amazon.com/shop/flammable... https://shop.spreadshirt.de/papaflammy...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3296372/7149733d607f48966d6817b377634a7e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/aFwgOAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DE6WygdbGXl8","linkTemplate":"/video/preview/9063782064625721532?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Gauss' Representation for the Digamma Function","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=E6WygdbGXl8\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFQoTOTA2Mzc4MjA2NDYyNTcyMTUzMloTOTA2Mzc4MjA2NDYyNTcyMTUzMmqIFxIBMBgAIkUaMQAKKmhocnBieWJoZmJieHpndWJoaFVDdEFJczFWQ1FyeW1sQW53M21Hb25odxICABIqEMIPDxoPPxPGBIIEJAGABCsqiwEQARp4gfMN-v38BQDoBwT7-_8CABP1Bwb3AAAA-P3-AwUC_wD6BQcE-QEAAPAABAQAAAAA-AX6_vT_AQD__PUEAwAAABP6Cf0BAAAACRD7Dv4AAAD_AfP9Av8AABcA8gb_AAAA8QP7-v7_AAAREPUFAQAAAAL79gYAAAAAIAAtU2bdOzgTQAlITlACKoQCEAAa8AF_9DX-1PWeAYUL0wARJucCsSk__zI08gDVAwoA5RnmAeHdEgDV7wUBLBDsAI399gHxw-kAycTjABzoE_4l8jL_B-gKASP69gA04EYCFd4P_q4g__-6BBH__brXAFhH8f8v_Cz--9TXAukEtAIt-jkB9y74AxIMwgbS7wb_8CIM_sHUv_rwGvkI27AZ_gE9KAE03CkDCQ4s-xD-3AAKywz7Te__7iA6-_wL5-IK1Lf0_O_VAvn16wUCCyEVBvAC3_YY8yfwB8H_9hbWJgX9SQv54THoChLoAxYfIhj72dML9RTo7__OMfwF5Or1-Orz9v4gAC1Ne_E6OBNACUhhUAIqzwcQABrAB7kcA7-hv6u7mnP4u6n3FLxEJcO7dy7MvJsb07wXMx290F23vCaWuj1DHwy9XiqGPThpir7RDD087a59PJ1Ggj5_Fku8vhLIvERO37s8UJI9ypFJvfNZDr44bzc9dvssu529Iz54u7k8RcOYvKnB1D3qqDQ87UqmvCIUwDzWzPW8hSqQvPQfLT0_ube9nj8SvTf0e71cYVE73Sx7u48pmT0mUVQ9mHk8PMUA6Dvf5qi8398ePDgv7r0nEUE9uIwgveKSAz6Ho5A8OA9MPHA67rw6Wrg7WN_lvGIw_7xtQD-9C68JvdOZJb0XOXo8W6hGvNKjjj2ZpA29UN-yPGUXXL54p4w8KAS8u2LVAzz1WVA7Lr1HPANzWb0N5po9L2MvvM4op7wn8Y49VeC_u0sXBz3_iRs9NM9bPHDP8zwb3PG83j7rvAjNST1-baI86v_FOwDTWLwPXIo8g7YGvWuDrrzJSCw83saLvCcHrb0XVmC89Pt-vBvtXT1vFLQ8VUxBOqWFS7zBN028r-EzPI_gFj5beA6-A-cOvM7yBr2QOIq9nMtDvNCg_DxQidA8inEAvLQgBD4YCAK92CA3uo0LlTlFMLm9iPbOOz2RcT34YS69-eaKuzohdDzegbC8G2SWO2QntDsnUyI7voFuvCAfGT3YYZw9JKwVu1alSL3EGhm8YKDWO6q6hzxxEtQ8IqLeuzVsuj0uYaM8e1LJOIgkhD2lGba93Jkuuzx8o7yC56m91n9fuO9lrLxYbSO9LE8cO2regT1RZmi9AhaEOUgvLz0b1H68AsYGuS3RCb6WIS49nrhguIPhVz2G3LG8TLIUuYkPt723Qri9MUK6OHemS719cKO81hqHuVqhSLyLvFE8zhMfOadHybybE8W9AwKzOJ1SNL03n389mISSuMXinLyU3Qw9FL2ytwF0br354oa944mDOHaZKzwtiFK9VulcuJZSoT2a9iM9Zc1oN7fJcjxtLR29y6PCuIgjmb1WX8I8OyupOJLMqjwiVQQ-BQ0fN4TyADygeto8Tu9pt8c3aj0gX4K9dvnKNhjJgz1rywo9zqEyt1o0o718Wko9ciBsOIfbwrvzyI89ls2DOAu9WTxQyRQ8Bxk8t_AXU71na1i81_gTN6XTvz3vrH29oCwOuYXeTL1UqI696srDuKaGkTwjY1q99H6KN4bNi70IsOg9VLOWOLMxBrsIr729HH2mtyL_7D01KQU-835buAgOjr0Yc3y8LdyBuLQB-L21WEU9UeBcOM5mGr0P7s68kCQ_tyAAOBNACUhtUAEqcxAAGmAd8gALAiUA8RAR4fXL7AzV2AvfCsAOAOv9AP0yAPsNDw3KDd0AA8wa8LkAAAAuFvIaDgD5VPcd5yQZ4QrK1ekO7H8lGRHVBjj96_AWNh4K_fMGITAACQfXBiX_oTsoKlYgAC3--0A7OBNACUhvUAIqrwYQDBqgBgAAVEIAAEzCAADgQgAAgMIAAPhBAAAAAAAAQEIAAOBBAABEwgAABMIAAIhBAABgQQAAyEEAAHBBAAAAQAAAyEEAAIhBAAAcwgAAlEIAAADBAAAQQQAAyEEAABzCAABIQgAAFMIAAIBBAABIwgAAAMAAAHRCAACAwAAAUMEAAABBAAAQwgAAgMAAADDCAAAsQgAAUEEAAKJCAACgQAAAYEEAAPjBAABAwAAAMMEAALzCAAAgQgAAUMEAADxCAAAUQgAAlkIAAHBBAACIwgAAsMEAALjBAACIQQAAgEAAAHBBAAAcwgAAqEEAAAhCAABQQQAAAEIAAFBBAABEwgAAjMIAAPDBAAAAwwAAUMIAAEzCAADAwQAAwMEAAOhBAACYQQAAKMIAAKBBAAAswgAA4EAAACDCAAAIwgAAUMIAADBBAABAwQAAykIAAEDAAABgQQAA8EEAABxCAADgwAAAcMEAADRCAADoQQAAgMIAAOBBAACIwQAAoMAAAFhCAAA0wgAAaMIAABxCAAB8QgAAXEIAAJTCAABAQQAASEIAAABAAAAcwgAAoMAAAGRCAACEQgAA8EEAALBCAABIQgAANEIAAIjBAABwwQAAmMEAAEhCAAAEQgAAMMEAADjCAABYwgAAEMIAAIzCAAAAAAAABEIAALDBAACIwgAA4MEAAEBAAADIwQAAkEEAAEDAAAAcwgAAAMIAAEBCAACAwgAAJEIAAHBBAAAwwQAACMIAAAAAAAD4wQAAQEAAALhBAAAgwgAAPEIAAIZCAAAgwQAAQEEAAI7CAABgwQAAMMEAAGBBAABAwAAAMEEAAIC_AABwQQAA8MEAAATCAACSwgAAuEEAAIC_AAAIQgAAoMAAADDCAABAQQAAgkIAACzCAACKQgAAnkIAAJDBAAAIwgAAgMAAAIDAAACWwgAAXMIAADBBAADwwQAA4EAAAADAAAAAQgAAbMIAADDBAABwwQAAQMIAAGBBAABswgAAoMAAAFTCAADIwQAA2EEAAJBBAADAwQAAgEEAABDBAABwQQAAyEEAABRCAACAvwAADEIAAADBIAA4E0AJSHVQASqPAhAAGoACAAC4vQAAQLwAAIo-AAAQPQAAMD0AAKo-AABMvgAAI78AAKi9AAD4PQAAHD4AADC9AABMPgAAND4AAOC8AAAcvgAABD4AAKA8AAA0PgAAkj4AAH8_AACgvAAALD4AAII-AAAcvgAAQLwAABA9AACIvQAAUL0AABw-AADIPQAA6L0AAKA8AACovQAAuD0AAEC8AABwvQAAVL4AAFy-AAAkvgAAiL0AAIi9AABUPgAAPL4AAKC8AABAPAAAfD4AADy-AACevgAA8r4AAKC8AAC4PQAAJD4AAMg9AACCvgAA4LwAAB0_AACgPAAAuD0AAHw-AAAkPgAAcD0AAOA8AAA0viAAOBNACUh8UAEqjwIQARqAAgAAFL4AAGQ-AACAuwAASb8AAOi9AACgPAAAyj4AAAS-AACAuwAAkj4AABw-AADovQAAdL4AAEy-AACIvQAAiD0AAKi9AAA5PwAAoLwAAIY-AACAuwAAhr4AAEC8AADovQAAXL4AALg9AAA0vgAA4DwAAKC8AAAQPQAAcD0AAOg9AAB0vgAAir4AADC9AADYPQAAND4AACw-AABUvgAATL4AAFw-AABQPQAAQDwAABC9AAAEPgAAxj4AAH-_AACevgAABD4AAFC9AACiPgAAUD0AAJY-AADYvQAAiD0AADA9AABQvQAAiL0AADA9AAAQvQAAVD4AABC9AABsvgAAMD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=E6WygdbGXl8","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9063782064625721532"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2539322095"},"1837140159979730492":{"videoId":"1837140159979730492","docid":"34-2-8-Z259F6385DBA42740","description":"Help me create more free content! =) / mathable Merch :v - https://teespring.com/de/stores/papaf... https://shop.spreadshirt.de/papaflammy 2nd Channel: / @rockhardwooddaddy Digamma: • WAIT, WHAT?!","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/906227/d741a6c908df384d619d1bc3dcc59b81/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/r8y9ngAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSNUbR8lXD4M","linkTemplate":"/video/preview/1837140159979730492?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"An Integral Representation for the Digamma Function!","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SNUbR8lXD4M\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFQoTMTgzNzE0MDE1OTk3OTczMDQ5MloTMTgzNzE0MDE1OTk3OTczMDQ5Mmq2DxIBMBgAIkUaMQAKKmhocnBieWJoZmJieHpndWJoaFVDdEFJczFWQ1FyeW1sQW53M21Hb25odxICABIqEMIPDxoPPxO9BIIEJAGABCsqiwEQARp4gfMN-v38BQDwCAL8-wEAARP9_QD2AQEA9v8JAAYC_wDz-gcBBAAAAPAABAQAAAAA7wD4__EAAQAEAfb-AwAAAAzx_f_6AAAAABf2Bv4AAADu_vT5AgAAABcA8gb_AAAA8AQE_P7_AAAFAgcIAAAAAAL1DwYAAAAAIAAtU2bdOzgTQAlITlACKoQCEAAa8AF_4ij-vPm9_78e9AEQ_PABpgYo_koasgDODzIA1wDkAfMR-QDRC_n_9ivQ_9YR_P_lBMz9xL7hABTH8f8b6f4B-tANAEjMywFe6yj_H-Hn_rUZSwH19zYBH-yx_lMuxgAO7Rn3UxHWAhT_xQRG6SsDEgs7BQoi8v_k2PEB5xkCB_T1sv3t_9r938sa-scYDQYl6B__6icT9dW14gQlxfAKPtAs_u5J9QJAtM_31jA6_ePL6_fxGu4K4j0SAsLQ2gfc1yj_vpn_-vPJFu7KIfX39Bj0As7-Fg0KEyAE6uwQ7unW5vPmAezp3_bpA_fm5RMgAC3djNs6OBNACUhhUAIqcxAAGmA86AAZ9S3x7fMA9-fK7xjdvQfPH9cW_9_V__42-esXFfG9D_QAEuP91KcAAAAbCvQu0QAHaQcQ-DANFffDrxop7n8YBB-5xTLZ1tEwQSPg7QoTBUUAEAq6FhnsskJMJUkgAC2ySyM7OBNACUhvUAIqrwYQDBqgBgAACEIAAATCAAC0QgAAfMIAAOBBAAAswgAAikIAAFBBAACAwQAAyEEAAKhBAACAPwAAmEEAAIDAAADgwQAADEIAACRCAAD4wQAAwEAAACjCAAAAwQAAEMEAAJjCAACAPwAAbMIAACzCAACQwQAAIMEAAKZCAACAPwAAIMIAAIA_AACkwgAAAMAAAI7CAADYQQAAIEIAACRCAACwwQAAEEIAAMjBAADAQAAAmMEAAATCAACGQgAA8MEAAKhBAABUQgAADEIAAAAAAABgwQAAQMIAAEDBAACAQQAA4EAAAPhBAACswgAAQMEAAFBCAADgQAAASEIAACTCAAAswgAAnsIAABDBAADqwgAAOMIAABTCAAAAwQAAIMIAAKhBAAAAQAAAqMIAAIA_AAAwwgAAgD8AABzCAAAwQQAAwMAAAMDBAACwQQAA5kIAALjBAACYwQAAQMEAAADBAAB4QgAAwMEAABhCAAAcQgAAoMAAADRCAAC4wQAAqEEAAKRCAABAwQAAZMIAAEDAAACAPwAAvEIAAFzCAAAowgAAsEEAACBCAADwwQAAkEEAAAxCAAAAwAAAQEIAAKxCAAAYQgAATEIAAJjBAAAQQQAAFMIAAJ5CAAAsQgAAqMEAAILCAAAEwgAAoMEAAJzCAAAgwQAAsEEAAAzCAAD4wQAAQEEAAIC_AAAAwAAAIEIAABjCAADAwQAAwEEAAHBCAACwwQAAXEIAAAxCAAA0QgAAgMIAAODBAACQwQAAAAAAAOhBAABcwgAA2EEAAExCAABwwQAAGEIAAEDAAAAswgAAIMEAAODAAACAQAAAJEIAACBCAAAQQQAASMIAAIDBAADowQAAcMIAAGzCAAAcQgAADMIAAADCAADAQAAAMEIAAEDCAAB8QgAAiEIAADDBAACYQQAAEMEAAMBAAABowgAAWMIAAEBBAADAwQAAAEEAABBCAAD4QQAAOMIAAJjBAAAwwQAAnMIAAARCAAAQwQAAAMIAAPDBAADoQQAAEEIAABhCAADAwAAAoEAAAHDBAABAwAAA2EEAAHBBAAAUwgAASEIAAJhBIAA4E0AJSHVQASqPAhAAGoACAACIvQAABL4AAIo-AADIPQAAoDwAAKI-AAAkvgAAH78AACy-AADoPQAA6D0AAOC8AAB8PgAALD4AAFC9AAAcvgAAdD4AABA9AAAMPgAAuj4AAH8_AABAPAAAdD4AAFw-AABUvgAABD4AAHA9AACIvQAAyL0AAOg9AAAkPgAAUL0AABA9AACgvAAAJD4AAKA8AACYvQAAHL4AAFS-AABEvgAAEL0AAIi9AACKPgAAbL4AAKC8AAAEPgAAJD4AAJK-AACivgAAAb8AABC9AADIPQAAPD4AABQ-AACCvgAAiL0AADU_AAD4PQAAoDwAAI4-AAA8PgAAEL0AAKC8AABkviAAOBNACUh8UAEqjwIQARqAAgAAXL4AAGw-AACgPAAAV78AALi9AACIvQAAwj4AAFS-AADoPQAATD4AACQ-AACovQAAFL4AABy-AABAvAAAED0AADy-AAA3PwAAED0AAIY-AACIPQAAjr4AAHA9AAAMvgAATL4AABQ-AABMvgAAqD0AALi9AABwPQAAyD0AAAQ-AABcvgAAHL4AAFA9AABAPAAAhj4AADw-AAB8vgAATL4AAIo-AACoPQAAgLsAAFA9AAAcPgAATD4AAH-_AAB0vgAAFD4AAKC8AACaPgAAyD0AAJI-AACAuwAAqD0AALg9AACovQAAJL4AAIg9AAAMvgAAij4AABA9AABcvgAA4LwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=SNUbR8lXD4M","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1837140159979730492"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3739449375"},"8890054097271094988":{"videoId":"8890054097271094988","docid":"34-10-8-Z4A5C0AE9BF16443D","description":"Digamma function cheat sheet: https://owlsmath.neocities.org/Digamm... Digamma function playlist: • Digamma function Website: https://owlsmath.neocities.org Check out my other channel OWLS MATH...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4219177/9c18147a4e066de82dda7c2e883f09cc/564x318_1"},"target":"_self","position":"12","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8KIYW2tGL5w","linkTemplate":"/video/preview/8890054097271094988?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Digamma function: Quick formula derivation!","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8KIYW2tGL5w\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFQoTODg5MDA1NDA5NzI3MTA5NDk4OFoTODg5MDA1NDA5NzI3MTA5NDk4OGquDRIBMBgAIkQaMAAKKWhoZnhyd3l1cm1rY2V3b2hoVUMtZWZoNlZNcUUwQXl4a1R1dzRSZjR3EgIAESoQwg8PGg8_E8sBggQkAYAEKyqLARABGniB_Pf7AAABAOz-_QQBAv8AGwABCvUCAgDt-PD8BQAAAPj2BAAMAAAA8_0D_QYAAAD3APQC-v8AAAEA_ggEAAAACQj_9vcAAAD3D-8B_wEAAPn4_QYE_wAAFwX-BgAAAAD5Bv73_gAAAPMDCQIAAAAACfUIAwAAAAAgAC0GbtQ7OBNACUhOUAIqcxAAGmAHGAANDAn4BRII-vcB7Qjq8Or0--INABcDABwT8uYZAf_nGwEADt7_EtoAAAARCPAWBQD-KBAC_woADPrd8f8ICn8WC-v08wv36fL0Ax0Z9uoDDA8AIAAS8gHw4xgXIAYgAC3UMJ07OBNACUhvUAIqrwYQDBqgBgAAoEEAAIrCAACMQgAADMIAADxCAABUwgAASEIAACBBAACgwAAAUEEAAIA_AADQQQAAZEIAAKBAAABMwgAAwMAAAIBAAACowQAAJEIAAADAAAAQQQAAQEAAADTCAACQQQAAYMEAAOBAAAAgwQAAoEEAAFRCAABAQAAAoMEAAEDBAAAcwgAAUEIAAFBBAABUQgAACEIAAM5CAAAMwgAAcMEAAEDBAABAQAAAQEAAAKjBAADoQQAA6MEAAJBBAABQwQAAyEEAAJDBAACAvwAAmMEAABjCAABgwQAA8EEAAARCAADowQAAcMEAANhCAAAcQgAADEIAAJzCAACewgAA0MEAAOBAAAA8wgAAgEEAACDCAADgwQAA0MEAAOBBAACQQQAA3MIAANBBAAAAQAAAkMIAADDBAAAgQQAAlMIAAJhBAABAwAAAQEIAANjBAAAAAAAAGMIAAEBBAAD4QQAAPEIAAHBCAABAwQAAiMIAADRCAABYwgAAUMEAAIDAAACAwQAAUMEAADRCAADAQQAAXEIAAMDAAAAgQQAAQMEAACRCAADAwQAA0MEAAEBCAAD4QQAAEEIAAGBCAABEQgAAAEAAACDCAABEQgAAGMIAALBBAABIQgAANMIAAFDCAABgwgAA-MEAAEzCAADgwAAACMIAAIDBAABQwgAAiMEAAODAAAAAwgAALMIAACBBAAA8wgAAgMEAAGRCAACawgAAukIAAGxCAABAwAAAwMEAAJTCAADgwAAAcMEAADDBAACYwQAAoEEAACBCAADYwQAAgMAAAMBBAACQQQAAIMEAAETCAAAAwAAAmMEAAPBBAACIQQAAOMIAAFTCAAC-wgAAJEIAAEzCAABwwQAAgMEAADzCAAAAwAAAMEEAACDCAABYQgAAoMAAAEDAAABAwgAAgMAAAAzCAABQwQAATMIAAGBCAADUwgAAJMIAAIhCAABQQgAAMMIAALBBAACAQQAAhsIAALhBAAAwwgAA0EEAACjCAAAMwgAAaEIAAOBBAAAkwgAAjkIAACBBAABgQQAAOEIAAFDBAAAswgAAiMEAADDCIAA4E0AJSHVQASqPAhAAGoACAACgvAAAED0AAEw-AAC4vQAAMD0AAJo-AAAcPgAAK78AAIK-AABMPgAAQLwAALa-AAAUPgAAbD4AAPg9AAA8vgAAHD4AAPg9AAAsPgAAtj4AAH8_AAAEPgAAiD0AAOg9AADovQAAuL0AADw-AABwvQAAoLwAAKg9AACYPQAARL4AADC9AAA8vgAAnj4AAGy-AACAuwAAcL0AADS-AABEvgAA2L0AAGy-AACYPQAAoLwAAFS-AABAvAAAqD0AAFC9AACavgAAhr4AADQ-AABwPQAADD4AACQ-AACYvQAAoDwAAEc_AABQPQAADD4AAEC8AACKPgAAcD0AALg9AABkviAAOBNACUh8UAEqjwIQARqAAgAAHL4AAIo-AAAwPQAAF78AAFA9AABQPQAAmj4AAHC9AADYPQAA4DwAAIi9AABEvgAAuL0AAMi9AAAEPgAAgLsAAIA7AAAvPwAAED0AAKY-AACYPQAAhr4AAIg9AABwvQAAiL0AAOC8AADIvQAAgLsAAMg9AAAUPgAAQLwAAOg9AABUvgAAEL0AAEC8AAAQvQAATD4AABA9AAAsvgAAuL0AABw-AACIPQAARD4AAKg9AACYPQAAij4AAH-_AABcvgAAgLsAAPg9AAAcPgAA6D0AABQ-AADgvAAAiD0AAPg9AADgvAAAVL4AAKg9AAAEPgAAXD4AAEC8AAAsvgAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=8KIYW2tGL5w","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8890054097271094988"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6257141450402372188":{"videoId":"6257141450402372188","docid":"34-10-16-ZF246CD0419169EB9","description":"Digamma function- 3 - Integral representation of Digamma function Digamma function- 1 - • Digamma function - (1) - Properties of Dig... Digamma function- 2 - • Digamma function - 2 - Properties...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2394494/438cc8a9a65f20ba84d54005811c9bcb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lKlg_wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DP18KB6YI3n4","linkTemplate":"/video/preview/6257141450402372188?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Digamma function- 3 - Integral representation of Digamma function","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=P18KB6YI3n4\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFQoTNjI1NzE0MTQ1MDQwMjM3MjE4OFoTNjI1NzE0MTQ1MDQwMjM3MjE4OGqGFxIBMBgAIkMaLwAKKGhoc3dwd2hldWFqZWNyaGhVQ1pEa3hwY3ZkLVQxdVI2NUZldWo1WWcSAgAQKhDCDw8aDz8TuASCBCQBgAQrKosBEAEaeIH3BPr--gYA9QP-AgAD_wEEAAAC-f_-AO78BvsGAAAA9PoHAQQAAAD7_QgEAAAAAPYBA_z0_wEA__z1BAMAAAAG-v7_-gAAAAEPAAT-AQAA-AH9AQP_AAALBPkFAAAAAPYBAvv4AP8BBAIHCAAAAAAC-AUGAAAAACAALVpU5Ds4E0AJSE5QAiqEAhAAGvABfwb7_tQP2ADFAuYB4PUPALw6DgAJN-8Asubw_88H2wH0_PcB5P0AAO42CQHGNP7_FtOqA-3YE_80sQ4CKs3sAdwt_AEx9u4BRBUz_w0N8P7FJSD9B-4KAhvRzAMFKNX-I_IE_SMR8AIGNdIDEf5GAQPrFAMx_UUD26IqAOu6Av4E7vf66ysO__3PGwDvCh4NAtUJCRAGAwLwON78_PMD-fDQKP8xPdD_L9X2AjYAGgzA4v4GyvT9ByEoGArkAu0It8Ee9r3-AvPXJAf_JO0G9rUzAggT_-8CCBAbA_H6IgUd4vPx49z9Acoh9g_iHNrwIAAtLKoCOzgTQAlIYVACKs8HEAAawAdcH8a-AEF0PacSlDyagpu9qbUXvAMFXr3MpZe9car1PD08lTzUgQw-Ur2AvQLSwLuh4SO9ilAWPcYlWLz9vXQ-klRLvQOx7Dx1dPy9LxOaPQsCEL1KTcG9ZuY4O08ajzyCRIm8dSuKvfwrWLtUUwI-3Es6vXbMELzJV8K85gwAPULuAr2xnM68l5xJvLbtYL22QgK93q6XOuiKDT2q9C49R1L3vNQeQDxcEGA9AJdWvY5RqLymEIO9HwAnPTMb_7zw58o7H4NVPeKPhzwsuxC-2RavvPs8yjtWUIy90MEJvVoUkbzqB3U9v4TEO7HVCr1pM_M8Hm_yvdcl0zrQKkO-mHOfvA-oiDxGCuU9o5YgPFPN7jvZQpC9Nr26PEjsajsb3HE9wfpEvcxiYrx-oey6HuI_PQhGlDzpaxE9TRp-vEzyDjzg7AC94FiGPJ052jzs-gU92Znivaurp7xGgZk9oaA0PVLfaLtz6Um9A208O1E7MrwiezO9bLkOPbtg0zunNRO5NvY2vLDQYjzFNUM9-FENvglvLLsKQoO9bL-7vQyD6Ds9FUY96munPHoGQ7xDqR0-H2rbvcSaqTn50A-9196nun5a3jsrrmC8JmMmvVu0nbp3WcK9Lk5GvO6lOrz8ZYG9jqFSPN_rWryuiQC9ix9-PeyReTqnPeW864wPviXevbebfr89FHf8PPSIKzoUyDE9HvKQPbeQ4rkONFk6DcUdvR_bcLsEyia9vXdtu03mijoRkO-8HWyLveBCHTmqgqE9GhiZvUdKoDhmCbw8vXDGOxTvnTr-65G9Z4dTPZxI8bgxTYm7jR1EuouCqDjLovC8W0IevjcF4zlCQ9o8RtmRPGk3-jlLsX683XrNPMWpd7kvUPK9qFycvUOAv7eLfE08i7F9uRvZH7mDE9E9IfP1uzBLEDir-xG91oqbPC_jOLjEsGi9X-DiOizAkDm_hKU8RCgAve-CsjgiPKU95cKHvTuMUjkKgLG8JxfjPWJgkrkDABG9wj5QvYlZc7gjYYQ8ume9PSVfd7c0RhA9DhrVvAbq2jc1gII9V7CNPOXzq7a9j-O9OGXOPThzkTguQQE9Q_YLPUi9DTh56o07_3gvPEmoILioL1U9RArQOtaTDjaSXRk-2U9QvazCP7m2UXg8cxLqvS7r9rh6lwG9qwNlvbVi5rek0Ai9JEQJPpsWwTZcqKE9fcSUvbihljci_-w9NSkFPvN-W7ifW-Q7FSL7PAnGwLha7ca9DxQzPWjb-zfOZhq9D-7OvJAkP7cgADgTQAlIbVABKnMQABpgBwYAGBIt6_gKAPMF7_oH3uD04xPb-gD43QAXFfvpHQ3szxAFAA7vEffPAAAADx_vGN4A-ToID_gfCRv61csECRp_EBUO7N4X9OT3AygIBez9CAofABf-5Poj_MUkKBoVIAAt5rx7OzgTQAlIb1ACKq8GEAwaoAYAAABAAAAIwgAAuEEAAFDCAAAkQgAAQMIAAFhCAABAQQAAQEEAAEBBAADoQQAA6MEAAIDAAADIQQAAQMAAAOhBAADgQQAAEMIAAJBBAAAAwQAABMIAAIDAAAAEwgAAUMEAAATCAAAMwgAAMEIAAMDAAABgQgAAHMIAAEDCAAAwQQAArsIAAMDBAABkwgAA6EEAAJZCAAC4QgAAFMIAALBBAACwwQAAsEEAALjBAAA4wgAAfEIAAILCAAAQQQAAiEIAACDBAACAQQAA-MEAAGDBAACgwAAAsEEAAIBBAABIQgAAsMIAAEDAAACYQQAA4EAAAAhCAAAIwgAA4MEAAIDCAAAgwQAAuMIAAEDCAACMwgAA-EEAACDBAACgQAAAgEEAAMLCAADgwAAAYMIAAHDBAAAEwgAAoEAAAATCAACAPwAAYMIAAKRCAACAQAAAIEEAAJDBAAAAQgAAoEEAAKDBAACAvwAA4EAAADjCAACEQgAAWMIAADRCAAAMQgAAAMIAAFzCAABAwQAAAAAAAIpCAAAAAAAAbMIAACRCAAAAQQAABMIAADhCAAA0QgAAgD8AACxCAADMQgAA4EEAAGhCAAAAwgAAQMAAABjCAADqQgAAGEIAAKDBAACawgAADMIAAEjCAAB0wgAA-EEAAIDAAABAwQAAIMIAAIC_AADQwQAAgL8AAChCAACSwgAAsMEAABRCAAB8QgAAoMEAAMxCAABAwAAAeEIAACzCAABYwgAAgL8AAMDBAADwQQAAAMEAAAhCAABQQgAAgD8AACRCAACAwQAAmEEAAIBAAACwQQAAkEEAAAhCAAAEQgAAAEEAAJjBAAAcwgAAHMIAAKDBAABwwgAAkEEAAIjBAAAowgAAGEIAACBCAAAwwgAAukIAAFhCAADgwAAAcEEAAJhBAAAQwQAA8MEAABjCAAAQwQAASMIAADBBAAA8QgAAAEEAAIjBAABswgAAEMIAALjBAAAAQgAAAMAAABDCAACQwgAA6EEAAIA_AACoQQAAQEAAACDBAACowQAAoMEAAEBBAABwwQAA0MEAAFxCAAAIQiAAOBNACUh1UAEqjwIQABqAAgAARL4AABC9AAAsPgAAcD0AAEQ-AACmPgAABL4AAB2_AABMvgAADD4AAJi9AADYvQAAxj4AAEA8AADoPQAAML0AAMg9AACYPQAADD4AAOY-AAB_PwAAgLsAAFQ-AADYPQAAiL0AADA9AAD4PQAAqL0AABC9AADoPQAAJD4AAOC8AACAOwAABL4AAIo-AAAQvQAARL4AAPi9AABkvgAAZL4AAAS-AACgvAAAED0AAFy-AABwvQAA4LwAAGQ-AACSvgAA0r4AANa-AACovQAAmL0AAEw-AABkPgAAFL4AAEC8AAAjPwAALD4AAJg9AAAkPgAAdD4AAKA8AABwvQAAqr4gADgTQAlIfFABKo8CEAEagAIAAIK-AAAUPgAAcL0AAEm_AACgvAAAHL4AANo-AACavgAAmD0AAOg9AAAMPgAAuL0AAHC9AACCvgAADD4AAKC8AADYvQAAGz8AADA9AACKPgAAQDwAADy-AAC4PQAAEL0AAOi9AACAOwAA-L0AALg9AAAwvQAA-L0AABA9AAA0PgAAgr4AABS-AADgvAAA4DwAAGQ-AACCPgAAZL4AABS-AABEPgAAQLwAAOC8AABQPQAAZD4AACQ-AAB_vwAAhr4AAKg9AABAvAAAdD4AAIC7AAAkPgAAEL0AAIi9AADIPQAAML0AABC9AACIPQAAqL0AAEQ-AACAuwAALL4AAIA7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=P18KB6YI3n4","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6257141450402372188"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3813881980"},"6394999183746083189":{"videoId":"6394999183746083189","docid":"34-10-17-ZABB8DE06726ADFAA","description":"Find the value of sum_(n = 1 to ꝏ) 1/(9n^2 + 3n) (SS-223) #sequenceandseries #cipher Meditation Impromptu 02 by Kevin MacLeod is licensed under a Creative Commons Attribution 4.0 license...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1369961/9dc1ea095f0c4b2e2a4c6018782f308e/564x318_1"},"target":"_self","position":"14","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dut1uiE-lL2U","linkTemplate":"/video/preview/6394999183746083189?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Application of digamma function series representation and Guass's digamma theorem for required sum","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ut1uiE-lL2U\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFQoTNjM5NDk5OTE4Mzc0NjA4MzE4OVoTNjM5NDk5OTE4Mzc0NjA4MzE4OWquDRIBMBgAIkQaMAAKKWhoeXpicGpxaWlhcXBxYmhoVUNIN3N2alpLcU15T1YyeEhRYlRodHVREgIAESoQwg8PGg8_E_kBggQkAYAEKyqLARABGniB9_78AP4DAPD_A_7_AgABDAX_AvcAAADu_Ab6BgAAAP78AgT3AQAA__0PDAMAAAD2_vsI9P8BAAP7_AIEAAAAEAb-CPcAAAAAF_YH_gAAAAQI9gQD_wAAFgX-BgAAAAD9Bvn8-f4AAf4J_wMAAAAAA_AABQABAAAgAC0AU9s7OBNACUhOUAIqcxAAGmADGgAKGhEA7Qsa8vj89QHy6QPrAPL7AAPwAAca-OwO-ADlCP4AAPcPBOMAAAAGBfUN9ADuIBb-7gYIEfbwA_MABX8BFej_9gT13QQABQYJ9fECBAcA_wQXAg4FAgkCDRcgAC1R4LM7OBNACUhvUAIqrwYQDBqgBgAAPEIAALDBAADAQgAA5MIAACBCAAC4QQAAxEIAANhBAADIwQAAQMEAACDBAACAQAAAmMEAAKDBAADYQQAAYEEAAABBAACAwQAAMEIAAIBAAADIQQAA-MEAAKbCAABsQgAA6MEAAOBBAACAvwAAwMAAAADAAABgQQAAUMIAAKDAAADAwgAAuMEAAHjCAAC4QQAAmMEAAOBCAAAAQQAAgD8AAIDAAACgQQAAeEIAADBBAAAAQgAATMIAAABCAACQQQAAKEIAABxCAAAswgAA4MAAAFDBAAAAwAAAmEEAACBBAACwwgAAQEIAABBCAACgQgAAgkIAANbCAABAwAAAIMIAAEBBAACMwgAAUMIAAMjBAADgwQAAXMIAAFxCAABkQgAAcMIAANRCAACOwgAAcMEAAFTCAACQwQAA4EAAAKhBAADYwQAAKEIAAKDAAADYQQAA2MEAABBCAACAwQAAgMAAAPhBAABAQQAAWMIAADBCAABAQAAA2MEAAGBBAACowQAA4EAAAOhBAACWQgAAaEIAAHDCAAAkQgAAQMAAABDCAABswgAAQMEAAARCAADoQQAAUMEAADhCAAAUQgAAkMEAAADCAAAQwgAAJMIAAARCAACIQQAAjMIAAIjBAADgwAAAIMEAAEjCAAAAQAAAEEEAAKjBAAD4wQAAQEEAAMjBAABEwgAAgEAAACDBAADQwQAAQMEAAAhCAACgwQAABEIAAOBBAAAgQgAA6MEAAGTCAADgwAAAoEIAABhCAACowQAAREIAAExCAAA8wgAAUMEAAODAAACwwQAAHMIAAIA_AACAQQAAyMEAALhBAADQwQAAAMIAAJjCAACKwgAAoEAAAODBAAC4QQAAmEEAAIjBAAAAwQAAcMEAAIA_AAC6QgAA8EEAALBBAADgwQAAQEEAAADCAABAwgAAZMIAAKDBAAC4QQAAOMIAAEBBAACIQQAApMIAAADCAACQwQAAQMEAAGBCAAA0wgAAIMEAABDCAABQwQAAUEEAAMBAAAA8wgAAcEEAAEBAAAAUQgAABEIAAPDBAAA8QgAAMMEAALDBIAA4E0AJSHVQASqPAhAAGoACAABcvgAA4LwAACQ-AAC4PQAA4DwAABQ-AABkvgAAMb8AABS-AACYPQAAEL0AAKC8AABsPgAADD4AADC9AABcvgAADD4AADA9AACgvAAA8j4AAH8_AABwPQAAQLwAAKY-AABMvgAAgDsAAHA9AAAwvQAAiL0AAEC8AAC4PQAAhr4AAOA8AACgPAAAkj4AADC9AADovQAAJL4AALi9AADYvQAAVL4AAFC9AADYPQAAHL4AAHS-AABAvAAApj4AAK6-AABUvgAAvr4AACQ-AAC4PQAALD4AADQ-AACGvgAADL4AADs_AACCPgAAgDsAAFw-AACIPQAAQDwAAEA8AAAUviAAOBNACUh8UAEqjwIQARqAAgAAPL4AAEA8AABAvAAALb8AAEw-AADYPQAAuj4AAPi9AAAQvQAAVD4AAEC8AABAPAAAED0AACy-AAD4PQAAQLwAAIg9AABDPwAAuL0AALo-AABsvgAAir4AAFQ-AACovQAAoDwAALg9AACAuwAA4DwAAFA9AABAvAAAQLwAALg9AACGvgAAPL4AAEA8AAAQPQAAcD0AADw-AADovQAADL4AAGw-AACgvAAAiD0AAEA8AADgPAAAqD0AAH-_AACevgAAmL0AAEw-AABUPgAAiD0AAEQ-AACgvAAAuL0AAIC7AADgvAAAuL0AAKC8AACIvQAAPD4AAMg9AABwvQAAHL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ut1uiE-lL2U","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6394999183746083189"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10892085601122643381":{"videoId":"10892085601122643381","docid":"34-3-7-ZB988D3308094B835","description":"Digamma(1/2) - special value of Digamma function Digamma function 1- • Digamma function - (1) - Properties of Dig... Digamma function 2- • Digamma function - 2 - Properties of Digam...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2837802/1a352d8a6738ebe91d3b900c807e3b0d/564x318_1"},"target":"_self","position":"15","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DfNM2QishDBE","linkTemplate":"/video/preview/10892085601122643381?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Digamma(1/2) - special value of Digamma function","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fNM2QishDBE\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFgoUMTA4OTIwODU2MDExMjI2NDMzODFaFDEwODkyMDg1NjAxMTIyNjQzMzgxaq0NEgEwGAAiQxovAAooaGhzd3B3aGV1YWplY3JoaFVDWkRreHBjdmQtVDF1UjY1RmV1ajVZZxICABAqEMIPDxoPPxORAoIEJAGABCsqiwEQARp4gfcE-v76BgDyB_0JAAT-AQQAAAL5__4A7v0BBAgAAAD8_wcDAQAAAPgFAgIAAAAA-_3-Bv7-AAAD-_0CAwAAAAUGAf_-AAAAAgv4Bv4BAAD4Af0BA_8AAAsE-QUAAAAAAA0B-v3_AAAEBP0GAAAAAAL4BQYAAAAAIAAtWlTkOzgTQAlITlACKnMQABpgACcAEhMd_fwGEPUH_v4D7gPy8_jmCAAI-wAcAAriCxD85gkDAAbwCQTiAAAABhf-DvsA-SITCekJAQv-_Of6BwJ_FxTxBP0D_O0L_hoKFOrz-_0PAAYIA-sbAeUFEBoUIAAt2qeqOzgTQAlIb1ACKq8GEAwaoAYAAMDBAAAcwgAArEIAAATCAACAvwAAAEEAAGBCAADQwQAAgL8AAJhBAACAvwAAkMEAAPhBAACwwQAA8MEAANBBAAAUwgAA0MEAAHxCAACYwQAAsMEAAI5CAABAwgAAAEEAAGzCAAAwwgAAMMIAAKDAAACwQgAAsMEAADTCAACQwQAAyMEAACjCAAAcwgAACEIAAFBCAAAUQgAAoEAAAIBAAABIwgAAsEEAACBBAABcwgAAYEEAAHzCAADIQQAAIEEAAFxCAAAswgAAqMEAAJDBAACIQQAAoMAAAKBAAACQQQAAFMIAAFDBAAAEQgAAoEEAAIjBAACiwgAAQEAAAADCAAAswgAAgsIAAPjBAADgwQAAiMEAAIDCAAAAwAAAIMEAAMrCAACwQgAAmMEAANBBAABwQQAA6EEAAADCAAC4wQAAYMEAAIxCAAAgwgAAoMEAAOBBAACgwQAAWEIAALhBAACwQQAA0MEAAIzCAADgQQAAFEIAAOhBAAB4QgAAgL8AABBCAACgQAAAqEEAAMxCAAAAwAAA4MAAACBBAAC4wQAAlMIAAEjCAACAwQAAhkIAAKBBAABkQgAAOEIAADRCAABIwgAAAEAAAIjBAACQQQAAAMAAAIDBAAAkQgAACEIAAJjBAACYwgAACMIAANjBAACYwQAAQMIAAEDCAABgwQAAJMIAAOBBAAC4wQAAoEEAALBBAAAoQgAAPMIAAABCAAAEQgAAiMEAAAhCAAAYwgAA6MEAAEBAAACSQgAAHMIAAHxCAABQQgAA0EEAAPhBAACAPwAAgMAAAMDBAACwwQAAoEAAAIDAAAAQwQAAcMEAAEDAAAAQwQAAUMIAAIC_AAAkwgAAAEEAALjBAAC2wgAAgL8AAIxCAAAgQgAAmkIAACBCAADgQAAAUEIAADhCAACcQgAAZMIAAPDBAADAwQAAkMEAAODAAAAcQgAAmEIAAFTCAAB8wgAAUMEAACDCAABAQQAAMMIAAGBBAAAAwgAA-EEAALhBAAA8QgAA4EAAAMhBAAAAwAAASMIAAKRCAAAAwAAApsIAAABCAABcwiAAOBNACUh1UAEqjwIQABqAAgAA4LwAAOC8AAAEPgAA4LwAAIC7AABkPgAATL4AAA2_AAAEvgAAND4AAKC8AAC4vQAAoj4AAAS-AAD4vQAAoLwAAAQ-AADgPAAAmD0AAM4-AAB_PwAAQLwAAIg9AACIPQAAuD0AACw-AADgPAAAPD4AABy-AACYPQAAJD4AAGy-AAAQPQAAoLwAAKI-AAAQvQAA2L0AABy-AAA0vgAAmr4AAFC9AAAkvgAAJD4AAES-AAAcvgAA2L0AAGQ-AAAwvQAAkr4AAEy-AACAOwAABL4AAFA9AAB8PgAA2L0AAIA7AAADPwAABD4AAKA8AAAEPgAAVD4AAIC7AAC4PQAAXL4gADgTQAlIfFABKo8CEAEagAIAALi9AAD4PQAAQDwAAD2_AABAvAAAMD0AAM4-AAD4vQAAQDwAAAQ-AACgvAAANL4AAOC8AAAkvgAADD4AAFC9AAAQPQAADT8AAHC9AAC2PgAA2L0AACS-AAAQvQAAEL0AAKA8AAC4vQAAoLwAABA9AAAQvQAAgDsAAIC7AAAUPgAANL4AABC9AACovQAAML0AAGQ-AABcPgAAVL4AAHC9AAC4PQAAcL0AAKA8AACoPQAA4DwAAOg9AAB_vwAAmL0AAIi9AADYPQAAHD4AAIA7AAAMPgAAiL0AABS-AADYPQAAgLsAAIC7AAAcPgAAED0AADw-AACgvAAALL4AAHA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=fNM2QishDBE","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10892085601122643381"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"2833021135614770703":{"videoId":"2833021135614770703","docid":"34-7-9-Z122A9E68B344BA2C","description":"ψ | Advanced Maths | Digamma function of 1/3 Integral representation of Digamma function - • Digamma function- 3 - Integral representat...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1491919/14ed579a1a0cd853c98e901fc977b4ba/564x318_1"},"target":"_self","position":"16","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DIRoLjIAWSEw","linkTemplate":"/video/preview/2833021135614770703?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Digamma function of 1/3","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IRoLjIAWSEw\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFQoTMjgzMzAyMTEzNTYxNDc3MDcwM1oTMjgzMzAyMTEzNTYxNDc3MDcwM2qtDRIBMBgAIkMaLwAKKGhoc3dwd2hldWFqZWNyaGhVQ1pEa3hwY3ZkLVQxdVI2NUZldWo1WWcSAgAQKhDCDw8aDz8TlQSCBCQBgAQrKosBEAEaeIHuAfn9_AUA8gP1AgID_wEGBvgA9___AO4E_PgFAAAA_P8HAwEAAAD6Avv-BgAAAPMD_gH6AAAA-__8AQMAAAAN_PwG-wAAAA0Y-wL-AQAA8fz8AwMAAAAPBvkO_wAAAPoN_Pv_AAAA_ggDCwAAAAD_8AcBAAAAACAALXGG3js4E0AJSE5QAipzEAAaYAMgABUTH_f0Cg35Ev3vC_Tq__355_oACPwAHw_66xIM_9wIBwAA9QYG4AAAAAMYBQ_5APsmGgnvE_gJAPLzBQECfxoY8gz3B_bq-AMeExLl-Pv4BAATBwDuD_7lEx0ZDSAALWB8pDs4E0AJSG9QAiqvBhAMGqAGAABAQAAAMMIAAHxCAAB0wgAA0EEAAIDBAACgQgAAEMEAAIbCAABgQQAAEEIAAKDAAACIQQAAkMEAAGBBAAAYQgAAQEEAAHBBAACoQQAAsMEAADDCAAAAQAAAUMIAAOBAAACEwgAAgEEAANDBAAAgwQAAEEIAABzCAABIwgAAsEEAACzCAAAAQgAAIMIAAOBBAACIQgAA3EIAAIBAAACgQQAAQEAAAAhCAACEQgAAiMEAABDBAACKwgAAmEIAAI5CAADAQQAAHMIAAAjCAADAwAAA4EEAAIjBAAAIQgAA-EEAAJLCAACAQAAALEIAAEhCAACgwAAAZMIAAGBBAADYwQAA0MEAAJrCAACwwQAAgL8AAKhBAABgwQAAMEEAAKRCAABQwgAAvkIAABDCAADIwQAAAEAAAPBBAACYwQAAyEEAAIjCAAB0QgAAgMAAAADBAADgQQAA-EEAACBCAAA0QgAADEIAAOBAAACUwgAAUEIAACBBAAAMwgAAnkIAAADAAACgQQAAyEEAADhCAABgQgAA0MEAAOBAAACIwQAAqMEAAHTCAADAwAAAoEAAAExCAACAQAAAcEEAAHxCAAAAQgAAoMEAAMDAAABAQAAAikIAAABCAABEwgAAqkIAAJhBAAAswgAAbMIAAABAAABkwgAAoMEAAFDCAABcwgAAQMAAABDBAACgQAAASMIAAKhBAABQwQAAWEIAAPDBAACgQQAAAMEAAADAAADwQQAAXMIAAHBBAAAsQgAAfEIAAPDBAACeQgAAskIAAEDAAAA0QgAAoEAAADBBAABQwQAAAAAAAPjBAAAwwgAAQEEAAKBBAACAwAAAAMIAAKDCAAD4wQAANMIAAMDBAACgQAAAYMIAAAAAAABQQgAAIMEAALJCAAAcQgAAGEIAAERCAACIQQAA6EEAAEjCAAAswgAAQMEAANjBAACIwQAA4MEAAKhCAADGwgAAIMIAAGDBAACQwQAAAMAAACzCAACAPwAAAEAAADDBAACgQAAAqEEAAFDBAADoQQAAUEEAABzCAABUQgAAQEAAAHDBAAAAQQAA4MEgADgTQAlIdVABKo8CEAAagAIAACy-AADovQAAFD4AAIg9AAC4PQAAfD4AAOi9AAAHvwAAXL4AAGQ-AACIvQAAPL4AAJo-AACAOwAAED0AAPi9AABAvAAAuD0AAEQ-AADCPgAAfz8AABA9AAAcPgAAJD4AAEC8AADgPAAADD4AAOC8AAD4vQAAJD4AABQ-AACovQAAoLwAAKC8AACKPgAAEL0AAFC9AACCvgAAmr4AADy-AAD4vQAARL4AANg9AACGvgAAEL0AAHC9AAAkPgAAcL0AAKq-AACWvgAAcL0AANi9AABsPgAAdD4AAMi9AACAOwAAKz8AADA9AAAEPgAAVD4AAEQ-AAAcPgAAgLsAAKK-IAA4E0AJSHxQASqPAhABGoACAABwvQAAiD0AAMi9AABFvwAAUL0AAKi9AAD-PgAANL4AAOA8AADIPQAABD4AAIq-AAD4PQAAkr4AACw-AACIvQAAoLwAAB8_AACovQAAfD4AABy-AAAkvgAADD4AAFC9AACgvAAA-L0AAKi9AADgPAAAqD0AADy-AACgPAAALD4AAL6-AADovQAAUL0AAHC9AACWPgAAmj4AAIq-AAAEvgAAJD4AAKC8AADIvQAAqD0AAKg9AACGPgAAf78AAFy-AACYvQAA4LwAAEQ-AACgvAAAXD4AAMi9AAD4vQAAmD0AAIC7AABwPQAAyD0AAKi9AAB0PgAAgLsAAGy-AADIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=IRoLjIAWSEw","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2833021135614770703"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8336916942847974874":{"videoId":"8336916942847974874","docid":"34-0-10-Z3F929691E88D02A8","description":"Help me create more free content! =) / mathable Merch :v - https://teespring.com/de/stores/papaf... https://shop.spreadshirt.de/papaflammy 2nd Channel: / @rockhardwooddaddy Digamma: • WAIT, WHAT?!","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2091815/5d693f83e82b5540e4fd40747b6a6763/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Y8J4KQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DjHN-nnFbCcI","linkTemplate":"/video/preview/8336916942847974874?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"An Introduction to the Polygamma Functions - The Taylor Series of the Digamma Function!","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jHN-nnFbCcI\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFQoTODMzNjkxNjk0Mjg0Nzk3NDg3NFoTODMzNjkxNjk0Mjg0Nzk3NDg3NGqIFxIBMBgAIkUaMQAKKmhocnBieWJoZmJieHpndWJoaFVDdEFJczFWQ1FyeW1sQW53M21Hb25odxICABIqEMIPDxoPPxOGCIIEJAGABCsqiwEQARp4gfMN-v38BQD1A_4CAAT_AfUB-AD5_v4A6P0FAv_-AQDz-gcBBAAAAP4GBAoEAAAA8wP-AfoAAAANBvUDBAAAAAgABAT8AAAAAQbvCwABAADx_PwDAwAAAAsE-QUAAAAA9gEC-_gA_wEEBPwGAAAAAAj-BAYAAAAAIAAtU2bdOzgTQAlITlACKoQCEAAa8AFuHyn6vR_jALZH3v9GCvz_ufs1ABkN_P_aH_ABFy7xAOgLBwANLL8AHicFAIEZEAHq6dIAzdvlATnIEv8iEi8B7vvkARf-2wF47EcE7wIpAaQ5Df27It4C1tK9_ikisAABlwIBvQek_w7jnwzvqi4JSivzAB824gDX5OQCthsnAskt6Pr1AO0G1NM1AQY2Df819AYGBEElATkE6QdQx-T9LO8k-_Dz5vvw2ur96wj69_75-QXe9QgDC9Mb-9Xs4gEa8SvuKMD_-y_l_wHrNQz_9BjzAuXF1gsc8gTo1Joa6v7i5f8MD9T-7hTj8N_g9iAgAC1Ufdo6OBNACUhhUAIqzwcQABrAB5IH8r6mQAs94IOXvNAQyT1Qvb88CzDiu-bEortOE5G8ObStvGk6Kz5hKxK9LD_6PJaTQL6izKs86NJkPMVVhT5UMG-9m38qvERO37s8UJI9ypFJvdTYib2EDOQ9MhTeO_Tn0bzoOII9Be5KvdaiLz1UPfS82qQqu-TDxzzD8iC6g5rrvB5TJz7hIYG9M1-xu1yMxr0jC6A742covRpBGT0UQZw8yPVGu8bEgTwYcrE9zamJPOrVu72ixzk8kExHveKSAz6Ho5A8OA9MPHZNbby9B8O8jZG2u-VeAL1NmLq82P9vvBUWwTz2_Bu7GEq7Oy0dWD2Zcck8R3_cO0IKLr4-Xw69bMNyvI18fr1ChkQ8D1kOPR093r2-wAw-uwgLusFMAL1_tEk9U32CvHmDXLugKhG8lZuoPMWDdz09Jhe9UQfDvJrShT03LxM9QQsJPHBzTztndoI9SJK7vPFImzrRrkI8iZI1vHGvx71Iso29K5tevL1Lc70uIA8995jAu8_tSr0T6g494lszvN9mxj05tfO9hx8YPGMqfbyjRcy9hypGvHR-yjxqJHM9hcSou-QsTD7qV4-9AwyFO9-bcD1TGLW9GvHsuyttwT30CWo8b6djvCRTdD2hN3C9EMIrO_XFdL2zX5i7E08svEKfvjxcMY09R3uTO7a8Mr0r1hW97q51u_UrXT1zET89sJXpuiVIuz2eoCM9YE8ruYgkhD2lGba93Jkuu2nMP73QYzS9yI-duqRUQj3pZlo8Ld4Duh-i0T1Y-B-9edGKOB1dQD05TkC7zDbIuZs6z7247kE8LScKuVFupj1KbG295oIGOa4ZT7zsNkO9Gk61OewaiDyzgpq9VUMZuR1gnLy8O5I9iDGwt2sewb3ErqK9WfgiOMQALjz-D7A8RLust8jKxL1Sms080QwKOE4W7bzoCCo8RVtiN9VTkLxCLTy9NNFrN0MSxzxNELU8tbuDOJi0Ujs_cMW99y5gOUE7sTyzq7U8eSFWOYmsWjv2fy4-vDsVuQHGTj0mmrY8vyqGuGdnbD0FTeu9XyY1OMSr0TwYXcE7Q7ZVuACLIb1Y5u09nS7cOL6VNr20wEg9Fe8xORzvDj2d-4a8mAFIN4f287pgO4C5eYZ7OF9A1DyjzIa9ZJ9Vt6AzaTy7Tqm9H1CbuDxx1LzJnQi98RuAtwcUoLrJILc9wteat80zQLx55Tq90QZat1UYpj1tC8U9g8fnOERyLb3h-ua7sj2ZuFwor73eEiq9_CJjN7JStzxQiJU9ohkkNyAAOBNACUhtUAEqcxAAGmAZAQARAhwB__0E_A7oww7jzyL5EeINAP_tAPwHDvYRCfy-9vT_GM4i7MAAAAAfDgoJ8gAJSiT50BsOIf_WuwYM538UHgjR7Q4E--AwKh8Z-PvdBCoA_wjRBCnyyyc4I0AgAC17QVQ7OBNACUhvUAIqrwYQDBqgBgAAQEIAAMDBAADUQgAAUMIAAIBAAABAQQAAiEIAAMBAAACSwgAAwEEAABxCAACgwQAAMEEAAEDAAACgQAAAwEEAAOBAAAB0wgAAyEEAABxCAABAQAAAFEIAAL7CAAAAQgAAfMIAANDBAADgwAAAcEEAAIBAAACgwAAAUMIAALhBAAAMwgAAQMEAAKDCAAB8QgAAYEIAAHBCAADgwQAAcEEAAPjBAACAQAAAAMAAALjCAAAQQgAAgMEAAMhBAACmQgAAhkIAAGxCAABgwQAAgL8AAHBBAAAwQgAAIEEAACBBAABowgAAEEIAAKhBAABAQQAA4EEAAODBAAAAwgAAIMIAAKDAAAC2wgAAoMIAAEDBAADYQQAAPMIAAOBAAAAMQgAANMIAACBCAAB8wgAAcMEAAETCAABQQQAA4MAAAIBAAABEQgAAqkIAAMDAAACAPwAAUMEAABhCAABwQQAAgMAAAOBBAAAQwQAAUMIAAJhBAADgQAAAoEAAAFBCAACwwQAAAMIAAEBBAADYQQAAAEIAAEDAAAC4wQAABEIAAEBCAACgwgAAUEEAALhBAAA0QgAAkEEAADhCAACQQQAAhkIAAKDCAAAkQgAAmMEAAJpCAADYQQAAsEEAAEjCAACwwQAALMIAAHzCAACwQQAA4EAAAMDBAAA8wgAAIEEAAJjBAACIwQAAwEEAAADBAAAAQAAAVMIAADRCAAAowgAAcEIAAIhBAABAQQAAmMEAANDBAABMwgAAkMEAAEBCAACiwgAAwEEAAARCAACgQQAAjkIAAFDBAACAPwAA-MEAAIBAAACoQQAAGEIAAIC_AAAAQAAAmMEAAEjCAAA8wgAALMIAAIjBAAAAwQAAQMAAAHDBAACwQQAAVEIAANjBAADoQQAAxEIAAKDAAAAQQQAAgkIAAEBBAADOwgAATMIAAIBBAAAkQgAANMIAABBBAABAQAAAcMIAAAjCAAAEwgAA8MEAAGhCAABkwgAA4EAAAIDAAACAwAAAQEEAAIC_AACgQQAAAMEAAOhBAACgwAAAKEIAAABAAADAwQAAWEIAANhBIAA4E0AJSHVQASqPAhAAGoACAAA0vgAA2L0AAJY-AADgPAAAED0AAOg9AACYvQAAA78AAIa-AACIvQAA6D0AAKA8AAA0PgAABD4AAIA7AAA8vgAA2D0AABA9AACIPQAAzj4AAH8_AAD4PQAAyD0AANg9AABMvgAAgDsAAAQ-AACAuwAAqD0AAJg9AAAsPgAAgLsAAJi9AAC4PQAArj4AAKC8AACYPQAAHL4AAGS-AAAcvgAAiL0AAGy-AADgvAAAXL4AAOg9AACgPAAAmj4AABy-AACAOwAA1r4AADA9AAAQvQAADD4AAJY-AADYvQAA4LwAAC8_AACgPAAA4LwAAPg9AABwPQAAQDwAADA9AACeviAAOBNACUh8UAEqjwIQARqAAgAALL4AALg9AABQPQAAW78AADC9AABwvQAAsj4AAIK-AADYPQAAJD4AAKC8AAC4vQAA2D0AAMi9AACIPQAAcL0AAIA7AAAfPwAAuD0AALo-AABEvgAAZL4AAHA9AAAwvQAAUL0AAOC8AADYPQAAoDwAANg9AACYPQAAoDwAAIg9AAA8vgAANL4AAMi9AABQPQAADD4AAEQ-AAAUvgAAEL0AAKg9AACYPQAAQDwAACQ-AACgPAAAED0AAH-_AABwvQAA4LwAAII-AACSPgAAML0AADQ-AAAwvQAAyL0AALg9AAAQvQAAEL0AAIC7AABcvgAAfD4AANg9AAAEvgAADL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=jHN-nnFbCcI","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8336916942847974874"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2549105083"},"15312819157099215055":{"videoId":"15312819157099215055","docid":"34-4-7-ZC5FEAB4A412A639B","description":"In this video, I prove both: the Gauss and the Weierstrass Representations of the Gamma function and then use them to derive a formula for the Digamma function. (31:46) Outro: (38:57)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4606872/1b9bf9fde3405deeb61fcac4559b23da/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2J_WpQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJiRDtIRCtHk","linkTemplate":"/video/preview/15312819157099215055?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof of Representations of Gamma and Digamma functions","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JiRDtIRCtHk\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFgoUMTUzMTI4MTkxNTcwOTkyMTUwNTVaFDE1MzEyODE5MTU3MDk5MjE1MDU1arUPEgEwGAAiRBowAAopaGhvdWliemNveWd1cWxiaGhVQ05VVkIzN2xiTmxmRk5PNDhFdHZoREESAgARKhDCDw8aDz8TwhKCBCQBgAQrKosBEAEaeIHzDfr9_AUA5wb6-wT_AQAM_vsI9___APP7_fwHAQAA9wESAQEAAAD6_QgEAAAAAO7--QL7AQAABgP9AQQAAAAMCAYD_QAAAAkQ-w7-AAAA-Ar-_AMAAAALDvYE_wAAAPoO_Pv_AAAA_wr5CwAAAAAC-AUHAAAAACAALVNm3Ts4E0AJSE5QAiqEAhAAGvABfwcNANf1pAHUCwoA4sz7AdEdKgAiLNsAsebw_9TuuQH0_PcB3f3RAAo9_v-GMf8B_9rVAOLFLABE1_sAKs3sAfwLIgE05OoANCIGABsW6f8CJzL-F-EQ_zDc0gIFKdT-JO4W-yXv-vshGsMCEf5HAfcBLAcf-Q3-r6kfBunj8wQe69f9BhgoA_K-BAIMBfgGKNUMAhIGCfLfGPsH7w8W9QntG_T0L-gDDvP7DzYfBwDm0SoF-931BxkmKP7m2scC4-0c98Pl7PvT6Br__frz8NEmAQkX7fz_B_fs_PX8BgsP0fkMA8P--vcQ-fynK__vIAAtXNEAOzgTQAlIYVACKnMQABpgHPsAMgQx0_32IOTy4-sM1OLyzA7U7__x2gACLQj0EwjfvRkFAAfpB_y8AAAAMhn5GecA6lLsHeUoCSEX5MvsCAd_HhUJ7NcW6rnkEDUIFOID9P00AB76xPETCaA4HystIAAt0CBCOzgTQAlIb1ACKq8GEAwaoAYAALBBAABAwAAASEIAACjCAACAQAAAgMAAAN5CAAAAwAAASMIAANDBAAD4QQAAEMIAANjBAADwQQAAwMEAAADBAADYQQAA8MEAAKhBAACgwQAA8MEAABDCAACMwgAA-EEAAGDCAADAwQAAIMEAAOBBAAD4QQAAwEEAAJ7CAACAwAAAmsIAAJhCAACOwgAATMIAABhCAABQQgAAgEAAAK5CAACAQQAAkEEAAChCAAAQwQAAHMIAAEjCAABUQgAAcEIAAKBBAADwQQAAsMEAAGDCAACIwQAAoEEAAAhCAACwQQAAoMIAAKjBAACwQQAAJEIAANBBAAC4wQAAUMIAABjCAACwQQAAxMIAABDBAADwwQAAoMAAACzCAACUQgAAEEIAADDBAACgQgAA8MEAAOjBAABcwgAAyEEAABhCAABcQgAA4MAAAJ5CAACAwAAAgMEAAIC_AABkQgAACMIAAEDBAABYQgAAsEEAALBBAACcQgAARMIAANDBAACAPwAA4MAAAAjCAACAvwAAqEEAAIBCAACGwgAAQEAAAKBBAAAEwgAARMIAAOBBAAAwwQAAyEEAAADAAABcQgAAlEIAABRCAACowQAA0EEAAMBBAACUQgAA-EEAAJjBAACwQQAAEMIAACDBAADQwQAA0EEAAGTCAAAIwgAAYEEAAIBAAABwQQAAXMIAANhBAADowQAAMMEAAEBBAAD4QQAAIMEAACRCAADIwQAApkIAAODAAABgwgAAcEEAAAhCAADYQQAAOMIAAIJCAAAoQgAAyMEAAMBBAACowQAAgMAAANjBAAC4QQAAWEIAAEDBAAAgwQAA8MEAAAjCAAAAAAAASMIAAEDAAAB4wgAAZEIAADBBAACAQQAAFEIAADDBAAAMwgAAlEIAADhCAACgwAAA4EAAAIhBAAC4QQAAJMIAAIrCAACAQgAAMEEAACDBAACgwQAA2kIAAMTCAAAUwgAAQMAAACDBAACgQQAAyEEAAIDCAADYwQAAMMIAAAAAAAAMQgAAAAAAACDBAADgwAAA4MEAACBCAACAQQAAyEEAAIC_AACQwSAAOBNACUh1UAEqjwIQABqAAgAAmr4AAEC8AABAvAAAuD0AABQ-AACePgAAJL4AADG_AAAQvQAAUD0AAIA7AABwvQAAVD4AAAw-AAAsvgAAFL4AAEy-AACYPQAABD4AAL4-AAB_PwAANL4AABw-AABsPgAAir4AAII-AABMPgAAQLwAAJg9AACgPAAAij4AAGy-AAAMvgAAgLsAAJ4-AABQPQAA-L0AAGy-AAC-vgAAdL4AAIi9AABkvgAAHD4AAIK-AAAUvgAAcD0AAL4-AAAUvgAAPL4AADy-AAC4vQAAbL4AAFQ-AAAMPgAAML0AAEC8AAAxPwAAJD4AALi9AACmPgAAND4AAEC8AACAuwAA6L0gADgTQAlIfFABKo8CEAEagAIAAOC8AADgPAAAyL0AADG_AABMvgAA2L0AALY-AACGvgAAgDsAAIY-AAAMPgAALL4AAHw-AACCvgAALD4AAJi9AACYPQAAMz8AAMg9AADCPgAAmL0AALi9AADYPQAAoLwAABA9AAAMPgAA6D0AADw-AADIPQAAuL0AAIA7AACIPQAAVL4AAI6-AACYvQAAiD0AABw-AADOPgAANL4AADy-AACePgAABD4AAOC8AAAwPQAA6D0AAFA9AAB_vwAAfL4AAAS-AAD4PQAAFD4AAEC8AABAvAAAQLwAAOC8AAC4PQAAmL0AACw-AAAkvgAAJL4AAJo-AABUPgAAUD0AAEy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=JiRDtIRCtHk","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["15312819157099215055"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1977062966"},"15537749931035837838":{"videoId":"15537749931035837838","docid":"34-3-0-Z3FE525B5E5897F8B","description":"We discuss the digamma-function and its properties. https://www.edx.org/course/complex-an... The course is for physics students and reserachers who want to familiarize themselves with the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/936567/f5ab20808e34e10345b4b0b20cd1d3d1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/DOtKQAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dw7YLRHbZQJE","linkTemplate":"/video/preview/15537749931035837838?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Asymptotics i the complex plane. Digamma function properties and asymptotics, Part 1","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=w7YLRHbZQJE\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChMxODM3MTQwMTU5OTc5NzMwNDkyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChM2MjU3MTQxNDUwNDAyMzcyMTg4ChM2Mzk0OTk5MTgzNzQ2MDgzMTg5ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKFDE1NTM3NzQ5OTMxMDM1ODM3ODM4ChI5NjczMjU5NzQzMDYzNjM0MjcKEzI1OTM4OTQyNTM5MjIyMDMyNTAaFgoUMTU1Mzc3NDk5MzEwMzU4Mzc4MzhaFDE1NTM3NzQ5OTMxMDM1ODM3ODM4aogXEgEwGAAiRRoxAAoqaGh3ZWFnamp0ZnpnZXZ6YmhoVUNjT1B6cWV1QjhHVHQxemZoNkpLYlNBEgIAEioQwg8PGg8_E5UEggQkAYAEKyqLARABGniB9wwH_P4DAPID9QICA_8BBgf4APf__wDmAwT9Cf0BAAD8-Aj_AQAA_fgHBfgAAAD2_v7-_P8AAAEFCvbmAP8AHv3z-vwAAAABEAAE_gEAAPH7_AMDAAAAFgX-BgAAAAABBf0G-f8AAev7_vsAAAAAA_n-AwAAAAAgAC3EQtg7OBNACUhOUAIqhAIQABrwAX_oDgCv8ur96xkIAP751gHN_SYAQQj5AK64DgCqE8v-4_bzAOjgAQDVFukAoO8JAMj92f_v0eoAHAkUADQNCv8ADQ0BNNvaADLtIQDxBNr_yhI3AQELDf4X8sb_OwfP_gryEvoeD_IC_fjU_Q_-PQEd-RP95vsH_cvdEwIGCPr_9_jH_vv2BwcL4A741wL7BwIW8gbaBAn520LwAPu-2wEO-hkBBTT6ASP_CP_nGuD_5dvyC-IZ8_zpDCQDGSDgAv3qCPTo6P4C9-blCfXj9gDjLQjwCuT9_vL1BQf34hD8zN70CtP_7fbuCwXz2vL1-SAALdFCFzs4E0AJSGFQAirPBxAAGsAHCVLZvkUEkLqMoPE8tfMFvIZaTr1d9_s6XyV_vRSvMjwZopK7_dKnPQmyFL1L_aE8JEM-vohyWD1J6Jm6xVWFPlQwb72bfyq8ye5dveJ-9jwY1ki9tKwbviuwhj1i-AO9ulaxvMNUaTz2rma8XvZrPZQ2UTtW3NG6qarIu7JdJr1fwQy9GCEMPk0rqjzrdKC8C6cWvVVXtDyYCju8-I51PM6luDwUDU29rRsKvci-Wj08nZC8OC_uvScRQT24jCC9k-mbPUrqCjzN_uW73PQXvuQiSL2Xnvq7IkrFPBnjsz0JRu87MhNWvdBCAj2GOs06LmphPWbnYz3prY07Y7QevjYWe7t_YFg85e_ePPUr3TwNrvO7xmGqvatbnT3u1Jo7G9xxPcH6RL3MYmK8K8KNvDEGhj2ira88cM_zPBvc8bzePuu8kCQQvBDfoz2mYgM9IkQDPUWAU7xE3928NNk_PE67U72owVm8c-lJvQNtPDtROzK8ksgCPGWHHzzN3bY6DybFvMilYLxwkos7FkSuvI7Uhr0A6mE8Yyp9vKNFzL2HKka8weTGPFL-tD3N2Yy8bvzpPUzkrb0rc6m7MXZHvTq-jL2wfTe8A70mPTS_9byUULg7j6wXvUdxbj2qUBW8nSFmvJQWDr2TLR68Eo40PCbKOT3Qcuq7NP4TvTjiRL1LvgY7OpyfPdo6uDxcfEA7ZoWyPdY6cbyqC1s7wkzbPTsd6L12z9g59-ojvdYpxTy8-ke6vCLIvTKqwb2cAVK4PmFEPecDfb0nlr24EGd0Pd1ZsD18pr85mfIhvsW4Mb3CciK6btySPTuyKL0jTiO5BdP6u_hOgb0J-ZG5bQDWvaIYrLr8ctg4YqrPPFYw6LqpI1w4THdyvS_IDrz9jIe6o3CiPU2NSDu9eKc4UhefPFL2wT2Xju24Gq1ePRHJ67xtHgI5_cYSPRma4bzZlXq4QEW6vXN-bbt5eRU466RjPKKMor2_UmQ5rv3TPKWJkrz1BzE4u89WPXslmj3WzBM4Fx-wPEughz04M8e4088IPGYx0b0-S5c24YSoPXOV-LygQnW4aHUyvmSkKD0Xyky3mko6PYFWQ7vfTpE47UKYvH3HFT0QrUO20qsBvrkgFj2ugNU3L6YZPng7zDz85hu5l1YTvgwgrL05jfE1zC-evMoSwrzZIXE3IA3nvBUqDj0eLr429nR6PeAP370_mZu3Iv_sPTUpBT7zflu4KGXSvTYdgT31H9S4tBbAvVQ0uz08X7I4fnoiPWkvbLulV542IAA4E0AJSG1QASpzEAAaYCUDACn4JqvzFF_p6-veEdvmANEBvfj_AewA5Bzb_Dwk48UcBwAKySTjqwAAACb75ij9AAdq7A7u-w4ADMOV9woYf9Qq88b9HtOf7kQ-4_31C_k8LgDd97M7UBTYHRwZJyAALU2vHzs4E0AJSG9QAiqvBhAMGqAGAABAQQAAqEEAAFhCAABAwgAAQEEAAHDBAACEQgAAAMEAAJbCAACgQAAAkEEAALDBAADgQQAAVMIAACzCAABQwQAAAEIAAKBAAACgQAAALMIAANDBAACcwgAArsIAAFBCAABAwQAA8MEAAIrCAACAPwAAMEEAABxCAACowQAAIMEAAHDCAAA8QgAA-MEAAIDAAABwQgAAWEIAALBBAAAAQgAAuEEAAMDAAAAgQQAAoMAAAAAAAACwwQAAIEIAAMBAAAB8QgAAZMIAAEjCAACQQQAAREIAACRCAACgQQAAoMAAAIDCAABMQgAAMEIAALhCAABAQQAA8MEAAMBBAAAYwgAASMIAALLCAACAwQAAfMIAAPhBAACAQAAAIEIAAIhCAAAQwgAAqEIAADDBAACEwgAAosIAAABBAACIwQAAUMEAADDCAAAMQgAAAMAAALDCAADgQQAA6EEAAJ7CAABAwAAAlkIAALhBAAAswgAA2EEAAGDBAABowgAAXEIAALDBAABAQQAA4MAAAGBBAAAMQgAAlsIAAEBCAABAQAAAEEEAAEzCAAC4QQAAUMEAAAhCAAAgQQAALEIAABxCAACwQQAAAEAAAIC_AABgwQAAqEIAAIBBAAA4wgAAREIAAMDBAAAgwQAAiMEAACBBAAAAQAAA0EEAAKBAAAAAwQAAAMEAACTCAADAwAAAmMEAAEzCAACAwAAArEIAAEhCAABQwQAAgMEAAMDBAABIQgAA2MEAAKBBAADgQAAAfEIAABjCAACOQgAAfEIAAGzCAACQQQAACEIAAKjBAABAQAAAYEEAAOBBAAAUwgAAAMAAAHjCAACmwgAADMIAAFTCAAAQwgAAmMEAAExCAAAQwQAAUEIAAFxCAACoQQAAAEAAAIhBAAAAwQAAPMIAAIDAAABAwAAACEIAAOBBAAAcQgAAAAAAAOBAAAAAQAAAEMEAACBCAACWwgAAhsIAAAjCAAAswgAAIEEAAIjCAABgwgAAnkIAAATCAAD4QQAAAMEAAKDBAADQwQAAkEEAAIjBAAAIQgAAGMIAAFBCAADIwQAAuMEgADgTQAlIdVABKo8CEAAagAIAAEy-AADYvQAAyD0AAEC8AACIPQAAND4AADA9AAAxvwAATL4AABA9AADIvQAAEL0AAIY-AACoPQAAdL4AABy-AAAwPQAAoDwAAFw-AAD-PgAAfz8AAIC7AACCPgAAJD4AAIA7AAAkPgAAfD4AABA9AABMvgAAuD0AAEw-AABwPQAAgLsAALg9AADIPQAAyD0AAAw-AACmvgAAlr4AAHC9AACKvgAA-L0AAAw-AAC4vQAAcD0AANg9AACWPgAAEL0AAFy-AABcvgAADD4AAJ6-AACSPgAArj4AADC9AAAwvQAAXz8AALg9AAA8vgAA2L0AAIC7AABMPgAAUL0AANK-IAA4E0AJSHxQASqPAhABGoACAABsvgAADD4AAAw-AAA7vwAAEL0AAKg9AACKPgAAiL0AAKA8AACoPQAAgLsAAKq-AABQPQAA2L0AAOg9AAAwvQAAFD4AABc_AAAUPgAAnj4AAAQ-AABQPQAAyD0AALi9AAC4PQAAHL4AABC9AAAUPgAAQLwAAJi9AAAwPQAA-D0AAIi9AAAwvQAA6D0AAGS-AABEPgAAJD4AAHS-AACgPAAAJD4AAKg9AADgPAAAoLwAAEC8AABAvAAAf78AAHw-AAAsPgAAXD4AABQ-AACovQAAXL4AAII-AAAUPgAAJD4AAKC8AAAwPQAAgDsAABC9AABAPAAAXL4AAFA9AADYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=w7YLRHbZQJE","parent-reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15537749931035837838"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2943453671"}},"dups":{"10324348027082350021":{"videoId":"10324348027082350021","title":"Introduction to the \u0007[digamma\u0007] function","cleanTitle":"Introduction to the digamma function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ksna9jtQ6HE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ksna9jtQ6HE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQWY3RW92U0VRcU8xV3g4MGVpeEZsUQ==","name":"Daniel An","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Daniel+An","origUrl":"http://www.youtube.com/@daniel_an","a11yText":"Daniel An. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1137,"text":"18:57","a11yText":"Süre 18 dakika 57 saniye","shortText":"18 dk."},"views":{"text":"5,9bin","a11yText":"5,9 bin izleme"},"date":"27 kas 2020","modifyTime":1606435200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ksna9jtQ6HE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ksna9jtQ6HE","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":1137},"parentClipId":"10324348027082350021","href":"/preview/10324348027082350021?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/10324348027082350021?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13697165663649029984":{"videoId":"13697165663649029984","title":"The \u0007[Digamma\u0007] Function at Integer Values!","cleanTitle":"The Digamma Function at Integer Values!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=H1JbQtSHhSA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/H1JbQtSHhSA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdEFJczFWQ1FyeW1sQW53M21Hb25odw==","name":"Flammable Maths","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Flammable+Maths","origUrl":"http://www.youtube.com/@PapaFlammy69","a11yText":"Flammable Maths. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":767,"text":"12:47","a11yText":"Süre 12 dakika 47 saniye","shortText":"12 dk."},"views":{"text":"8,8bin","a11yText":"8,8 bin izleme"},"date":"20 mayıs 2019","modifyTime":1558310400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/H1JbQtSHhSA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=H1JbQtSHhSA","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":767},"parentClipId":"13697165663649029984","href":"/preview/13697165663649029984?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/13697165663649029984?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11560262530415179227":{"videoId":"11560262530415179227","title":"WAIT, WHAT?! Differentiating x Factorial x! - Introducing the \u0007[Digamma\u0007] Function","cleanTitle":"WAIT, WHAT?! Differentiating x Factorial x! - Introducing the Digamma Function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kjK9WfmLElo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kjK9WfmLElo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdEFJczFWQ1FyeW1sQW53M21Hb25odw==","name":"Flammable Maths","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Flammable+Maths","origUrl":"http://www.youtube.com/@PapaFlammy69","a11yText":"Flammable Maths. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1084,"text":"18:04","a11yText":"Süre 18 dakika 4 saniye","shortText":"18 dk."},"views":{"text":"203,3bin","a11yText":"203,3 bin izleme"},"date":"18 mayıs 2019","modifyTime":1558137600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kjK9WfmLElo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kjK9WfmLElo","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":1084},"parentClipId":"11560262530415179227","href":"/preview/11560262530415179227?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/11560262530415179227?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16066974598077595788":{"videoId":"16066974598077595788","title":"Solve with the \u0007[Digamma\u0007] function?","cleanTitle":"Solve with the Digamma function?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4DRASU37XAw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4DRASU37XAw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLWVmaDZWTXFFMEF5eGtUdXc0UmY0dw==","name":"owl3","isVerified":false,"subscribersCount":0,"url":"/video/search?text=owl3","origUrl":"http://www.youtube.com/@owl3math","a11yText":"owl3. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":589,"text":"9:49","a11yText":"Süre 9 dakika 49 saniye","shortText":"9 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"15 eki 2024","modifyTime":1728950400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4DRASU37XAw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4DRASU37XAw","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":589},"parentClipId":"16066974598077595788","href":"/preview/16066974598077595788?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/16066974598077595788?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16331992064106964468":{"videoId":"16331992064106964468","title":"(RA22) The Gamma and \u0007[Digamma\u0007] Functions","cleanTitle":"(RA22) The Gamma and Digamma Functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-OyXXBKTaAk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-OyXXBKTaAk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeGZhNHV5Sng3UEF2clJ5bmtKVXh1QQ==","name":"Let's Learn, Nemo!","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Let%27s+Learn%2C+Nemo%21","origUrl":"http://www.youtube.com/@LetsLearnNemo","a11yText":"Let's Learn, Nemo!. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2369,"text":"39:29","a11yText":"Süre 39 dakika 29 saniye","shortText":"39 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"25 haz 2023","modifyTime":1687651200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-OyXXBKTaAk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-OyXXBKTaAk","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":2369},"parentClipId":"16331992064106964468","href":"/preview/16331992064106964468?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/16331992064106964468?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16576755372464592732":{"videoId":"16576755372464592732","title":"The \u0007[Digamma\u0007] Function","cleanTitle":"The Digamma Function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=t1A3zNsP5DU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/t1A3zNsP5DU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDekJSb3RkSlMzYkpQY1VaeWVQa0hCdw==","name":"Essentials Of Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Essentials+Of+Math","origUrl":"http://www.youtube.com/channel/UCzBRotdJS3bJPcUZyePkHBw","a11yText":"Essentials Of Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":534,"text":"8:54","a11yText":"Süre 8 dakika 54 saniye","shortText":"8 dk."},"views":{"text":"4,7bin","a11yText":"4,7 bin izleme"},"date":"4 tem 2018","modifyTime":1530662400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/t1A3zNsP5DU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=t1A3zNsP5DU","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":534},"parentClipId":"16576755372464592732","href":"/preview/16576755372464592732?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/16576755372464592732?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4837501241321823606":{"videoId":"4837501241321823606","title":"Bounds/inequalities for the \u0007[digamma\u0007] and trigamma functions","cleanTitle":"Bounds/inequalities for the digamma and trigamma functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LefbuaF6jEw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LefbuaF6jEw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWFV0T2xZMHBjU25pTC1oOVNvR05UQQ==","name":"AKSS","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AKSS","origUrl":"http://www.youtube.com/@akss557","a11yText":"AKSS. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1112,"text":"18:32","a11yText":"Süre 18 dakika 32 saniye","shortText":"18 dk."},"date":"8 ara 2023","modifyTime":1701993600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LefbuaF6jEw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LefbuaF6jEw","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":1112},"parentClipId":"4837501241321823606","href":"/preview/4837501241321823606?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/4837501241321823606?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6983919376424678357":{"videoId":"6983919376424678357","title":"How to Calculate Values of the \u0007[Digamma\u0007] Function!","cleanTitle":"How to Calculate Values of the Digamma Function!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AA7AlvXQr6w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AA7AlvXQr6w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZGVsY0ZLZVI0aVc3SEcwakY3aWdIdw==","name":"dr3213","isVerified":false,"subscribersCount":0,"url":"/video/search?text=dr3213","origUrl":"http://www.youtube.com/@danielrosado3213","a11yText":"dr3213. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":510,"text":"8:30","a11yText":"Süre 8 dakika 30 saniye","shortText":"8 dk."},"date":"21 haz 2023","modifyTime":1687305600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AA7AlvXQr6w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AA7AlvXQr6w","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":510},"parentClipId":"6983919376424678357","href":"/preview/6983919376424678357?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/6983919376424678357?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9063782064625721532":{"videoId":"9063782064625721532","title":"Gauss' Representation for the \u0007[Digamma\u0007] Function","cleanTitle":"Gauss' Representation for the Digamma Function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=E6WygdbGXl8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/E6WygdbGXl8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdEFJczFWQ1FyeW1sQW53M21Hb25odw==","name":"Flammable Maths","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Flammable+Maths","origUrl":"http://www.youtube.com/@PapaFlammy69","a11yText":"Flammable Maths. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":582,"text":"9:42","a11yText":"Süre 9 dakika 42 saniye","shortText":"9 dk."},"views":{"text":"9,1bin","a11yText":"9,1 bin izleme"},"date":"28 eyl 2020","modifyTime":1601298196000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/E6WygdbGXl8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=E6WygdbGXl8","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":582},"parentClipId":"9063782064625721532","href":"/preview/9063782064625721532?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/9063782064625721532?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1837140159979730492":{"videoId":"1837140159979730492","title":"An Integral Representation for the \u0007[Digamma\u0007] Function!","cleanTitle":"An Integral Representation for the Digamma Function!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SNUbR8lXD4M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SNUbR8lXD4M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdEFJczFWQ1FyeW1sQW53M21Hb25odw==","name":"Flammable Maths","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Flammable+Maths","origUrl":"http://www.youtube.com/@PapaFlammy69","a11yText":"Flammable Maths. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":573,"text":"9:33","a11yText":"Süre 9 dakika 33 saniye","shortText":"9 dk."},"views":{"text":"9,6bin","a11yText":"9,6 bin izleme"},"date":"3 haz 2019","modifyTime":1559520000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SNUbR8lXD4M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SNUbR8lXD4M","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":573},"parentClipId":"1837140159979730492","href":"/preview/1837140159979730492?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/1837140159979730492?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8890054097271094988":{"videoId":"8890054097271094988","title":"\u0007[Digamma\u0007] function: Quick formula derivation!","cleanTitle":"Digamma function: Quick formula derivation!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8KIYW2tGL5w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8KIYW2tGL5w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLWVmaDZWTXFFMEF5eGtUdXc0UmY0dw==","name":"owl3","isVerified":false,"subscribersCount":0,"url":"/video/search?text=owl3","origUrl":"http://www.youtube.com/@owl3math","a11yText":"owl3. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":203,"text":"3:23","a11yText":"Süre 3 dakika 23 saniye","shortText":"3 dk."},"date":"11 şub 2025","modifyTime":1739232000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8KIYW2tGL5w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8KIYW2tGL5w","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":203},"parentClipId":"8890054097271094988","href":"/preview/8890054097271094988?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/8890054097271094988?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6257141450402372188":{"videoId":"6257141450402372188","title":"\u0007[Digamma\u0007] function- 3 - Integral representation of \u0007[Digamma\u0007] function","cleanTitle":"Digamma function- 3 - Integral representation of Digamma function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=P18KB6YI3n4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/P18KB6YI3n4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWkRreHBjdmQtVDF1UjY1RmV1ajVZZw==","name":"Mathematics MI","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathematics+MI","origUrl":"http://www.youtube.com/@mathematicsmi","a11yText":"Mathematics MI. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":568,"text":"9:28","a11yText":"Süre 9 dakika 28 saniye","shortText":"9 dk."},"views":{"text":"2bin","a11yText":"2 bin izleme"},"date":"12 nis 2022","modifyTime":1649721600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/P18KB6YI3n4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=P18KB6YI3n4","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":568},"parentClipId":"6257141450402372188","href":"/preview/6257141450402372188?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/6257141450402372188?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6394999183746083189":{"videoId":"6394999183746083189","title":"Application of \u0007[digamma\u0007] function series representation and Guass's \u0007[digamma\u0007] theorem for r...","cleanTitle":"Application of digamma function series representation and Guass's digamma theorem for required sum","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ut1uiE-lL2U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ut1uiE-lL2U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSDdzdmpaS3FNeU9WMnhIUWJUaHR1UQ==","name":"Cipher","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Cipher","origUrl":"http://www.youtube.com/@cipherunity","a11yText":"Cipher. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":249,"text":"4:09","a11yText":"Süre 4 dakika 9 saniye","shortText":"4 dk."},"date":"6 mayıs 2024","modifyTime":1714953600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ut1uiE-lL2U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ut1uiE-lL2U","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":249},"parentClipId":"6394999183746083189","href":"/preview/6394999183746083189?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/6394999183746083189?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10892085601122643381":{"videoId":"10892085601122643381","title":"\u0007[Digamma\u0007](1/2) - special value of \u0007[Digamma\u0007] function","cleanTitle":"Digamma(1/2) - special value of Digamma function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fNM2QishDBE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fNM2QishDBE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWkRreHBjdmQtVDF1UjY1RmV1ajVZZw==","name":"Mathematics MI","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathematics+MI","origUrl":"http://www.youtube.com/@mathematicsmi","a11yText":"Mathematics MI. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":273,"text":"4:33","a11yText":"Süre 4 dakika 33 saniye","shortText":"4 dk."},"views":{"text":"2,3bin","a11yText":"2,3 bin izleme"},"date":"25 mayıs 2022","modifyTime":1653436800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fNM2QishDBE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fNM2QishDBE","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":273},"parentClipId":"10892085601122643381","href":"/preview/10892085601122643381?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/10892085601122643381?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2833021135614770703":{"videoId":"2833021135614770703","title":"\u0007[Digamma\u0007] function of 1/3","cleanTitle":"Digamma function of 1/3","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=IRoLjIAWSEw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IRoLjIAWSEw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWkRreHBjdmQtVDF1UjY1RmV1ajVZZw==","name":"Mathematics MI","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathematics+MI","origUrl":"http://www.youtube.com/@mathematicsmi","a11yText":"Mathematics MI. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":533,"text":"8:53","a11yText":"Süre 8 dakika 53 saniye","shortText":"8 dk."},"date":"28 oca 2025","modifyTime":1738022400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IRoLjIAWSEw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IRoLjIAWSEw","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":533},"parentClipId":"2833021135614770703","href":"/preview/2833021135614770703?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/2833021135614770703?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8336916942847974874":{"videoId":"8336916942847974874","title":"An Introduction to the Polygamma Functions - The Taylor Series of the \u0007[Digamma\u0007] Function!","cleanTitle":"An Introduction to the Polygamma Functions - The Taylor Series of the Digamma Function!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=jHN-nnFbCcI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jHN-nnFbCcI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdEFJczFWQ1FyeW1sQW53M21Hb25odw==","name":"Flammable Maths","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Flammable+Maths","origUrl":"http://www.youtube.com/@PapaFlammy69","a11yText":"Flammable Maths. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1030,"text":"17:10","a11yText":"Süre 17 dakika 10 saniye","shortText":"17 dk."},"views":{"text":"12,6bin","a11yText":"12,6 bin izleme"},"date":"13 haz 2019","modifyTime":1560384000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jHN-nnFbCcI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jHN-nnFbCcI","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":1030},"parentClipId":"8336916942847974874","href":"/preview/8336916942847974874?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/8336916942847974874?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15312819157099215055":{"videoId":"15312819157099215055","title":"Proof of Representations of Gamma and \u0007[Digamma\u0007] functions","cleanTitle":"Proof of Representations of Gamma and Digamma functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JiRDtIRCtHk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JiRDtIRCtHk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlVWQjM3bGJObGZGTk80OEV0dmhEQQ==","name":"Gamma Digamma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Gamma+Digamma","origUrl":"http://www.youtube.com/@Gamma_Digamma","a11yText":"Gamma Digamma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2370,"text":"39:30","a11yText":"Süre 39 dakika 30 saniye","shortText":"39 dk."},"views":{"text":"3,5bin","a11yText":"3,5 bin izleme"},"date":"5 tem 2020","modifyTime":1593907200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JiRDtIRCtHk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JiRDtIRCtHk","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":2370},"parentClipId":"15312819157099215055","href":"/preview/15312819157099215055?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/15312819157099215055?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15537749931035837838":{"videoId":"15537749931035837838","title":"Asymptotics i the complex plane. \u0007[Digamma\u0007] function properties and asymptotics, Part 1","cleanTitle":"Asymptotics i the complex plane. Digamma function properties and asymptotics, Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=w7YLRHbZQJE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/w7YLRHbZQJE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY09QenFldUI4R1R0MXpmaDZKS2JTQQ==","name":"Stokes-Line","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stokes-Line","origUrl":"http://www.youtube.com/@StokesLine","a11yText":"Stokes-Line. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":533,"text":"8:53","a11yText":"Süre 8 dakika 53 saniye","shortText":"8 dk."},"date":"2 şub 2021","modifyTime":1612255174000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/w7YLRHbZQJE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=w7YLRHbZQJE","reqid":"1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL","duration":533},"parentClipId":"15537749931035837838","href":"/preview/15537749931035837838?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","rawHref":"/video/preview/15537749931035837838?parent-reqid=1769523930396721-11808068435997290278-balancer-l7leveler-kubr-yp-sas-34-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"1808068435997290278734","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Digamma","queryUriEscaped":"Digamma","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}