{"pages":{"search":{"query":"Epsilon Delta Clips","originalQuery":"Epsilon Delta Clips","serpid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","parentReqid":"","serpItems":[{"id":"825625113272262004-0-0","type":"videoSnippet","props":{"videoId":"825625113272262004"},"curPage":0},{"id":"10642644637897929149-0-1","type":"videoSnippet","props":{"videoId":"10642644637897929149"},"curPage":0},{"id":"13976163832986625684-0-2","type":"videoSnippet","props":{"videoId":"13976163832986625684"},"curPage":0},{"id":"11663571555310565497-0-3","type":"videoSnippet","props":{"videoId":"11663571555310565497"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEVwc2lsb24gRGVsdGEgQ2xpcHMK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","ui":"desktop","yuid":"6983807321769552905"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"14355973422493989798-0-5","type":"videoSnippet","props":{"videoId":"14355973422493989798"},"curPage":0},{"id":"16825619857541498966-0-6","type":"videoSnippet","props":{"videoId":"16825619857541498966"},"curPage":0},{"id":"1051802901966789010-0-7","type":"videoSnippet","props":{"videoId":"1051802901966789010"},"curPage":0},{"id":"5896448754157870200-0-8","type":"videoSnippet","props":{"videoId":"5896448754157870200"},"curPage":0},{"id":"1217347565808831842-0-9","type":"videoSnippet","props":{"videoId":"1217347565808831842"},"curPage":0},{"id":"13975034263071228424-0-10","type":"videoSnippet","props":{"videoId":"13975034263071228424"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEVwc2lsb24gRGVsdGEgQ2xpcHMK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","ui":"desktop","yuid":"6983807321769552905"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"7905860008281224333-0-12","type":"videoSnippet","props":{"videoId":"7905860008281224333"},"curPage":0},{"id":"2956946206858017951-0-13","type":"videoSnippet","props":{"videoId":"2956946206858017951"},"curPage":0},{"id":"7845073015293038095-0-14","type":"videoSnippet","props":{"videoId":"7845073015293038095"},"curPage":0},{"id":"8000520754930777188-0-15","type":"videoSnippet","props":{"videoId":"8000520754930777188"},"curPage":0},{"id":"10022051940782393796-0-16","type":"videoSnippet","props":{"videoId":"10022051940782393796"},"curPage":0},{"id":"18047139751631415245-0-17","type":"videoSnippet","props":{"videoId":"18047139751631415245"},"curPage":0},{"id":"13871446599888456092-0-18","type":"videoSnippet","props":{"videoId":"13871446599888456092"},"curPage":0},{"id":"1758462683104600578-0-19","type":"videoSnippet","props":{"videoId":"1758462683104600578"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEVwc2lsb24gRGVsdGEgQ2xpcHMK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","ui":"desktop","yuid":"6983807321769552905"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DEpsilon%2BDelta%2BClips"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"7772441120777813447207","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455699,0,81;1472348,0,94;1466868,0,48;151171,0,4;1281084,0,92;287509,0,47;1447467,0,85;1231501,0,16;1466397,0,59;1467129,0,90;1296808,0,62;912284,0,37"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DEpsilon%2BDelta%2BClips","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Epsilon+Delta+Clips","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Epsilon+Delta+Clips","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Epsilon Delta Clips: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Epsilon Delta Clips\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Epsilon Delta Clips — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y84313928d477f211503c8196f7d279eb","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1472348,1466868,151171,1281084,287509,1447467,1231501,1466397,1467129,1296808,912284","queryText":"Epsilon Delta Clips","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"6983807321769552905","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769552928","tz":"America/Louisville","to_iso":"2026-01-27T17:28:48-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1472348,1466868,151171,1281084,287509,1447467,1231501,1466397,1467129,1296808,912284","queryText":"Epsilon Delta Clips","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"6983807321769552905","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"7772441120777813447207","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":150,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"6983807321769552905","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"825625113272262004":{"videoId":"825625113272262004","docid":"34-4-4-ZB0D5CDAFFDEACDE9","description":"Kadokawa began streaming a character promotional video video from the television anime of Daisuke Aizawa's The Eminence in Shadow (Kage no Jitsuryokusha ni Naritakute!) light novel series on...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3244778/be0dd4b3d95d9ab806004cb70d0a5af5/564x318_1"},"target":"_self","position":"0","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DF8tFkkcrks8","linkTemplate":"/video/preview/825625113272262004?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Eminence in Shadow | Video Highlights Delta, Epsilon, Zeta, Eta","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=F8tFkkcrks8\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoUChI4MjU2MjUxMTMyNzIyNjIwMDRaEjgyNTYyNTExMzI3MjI2MjAwNGquDRIBMBgAIkQaMQAKKmhod2Frb3RoaWpmZGVqcmNoaFVDUGhGVGsweUdmdVA3b1VxQ19IVTdTZxICABIqD8IPDxoPPxNAggQkAYAEKyqLARABGniB8P0KAP4CAPT5C_b-AQABBAAAAvj__gDkBgcC9_wCAO0H9gH7AAAA9Pr2C_0AAAD3Awj8-_8AABb08AABAAAAGAT8Cv8AAAAIB_8C_gEAAAYI_wAE_wAABPr27_8AAAD8Bvj8-f4AAf4K_AD2_QAADAT9-wAAAAAgAC3oDdc7OBNACUhOUAIqcxAAGmAiDgARBfrStg0w4Aj57-kBBP37AcwAABTpAPHk8O4GAtmvI_r_Cwsa6sIAAAD6CgkMEwDYUf736OYWGhHm1_YoBH8M-MEdGfwB1P_3_gw-8tLqRUsA9w729TkGERsdHhYgAC1gYVA7OBNACUhvUAIqrwYQDBqgBgAA4EAAAJhCAABQwQAAHMIAAEBAAAB0QgAAiEEAAMjBAACQwgAAUMIAAIRCAADgQAAAisIAAMBAAABsQgAAqEEAAHDBAABwQQAAgkIAADRCAABgQQAAEMEAAIDAAACywgAATMIAAKDBAADAQQAAPMIAAOBBAABUQgAASEIAAEBCAABQwQAAGEIAAIBBAACQwQAAgMAAANJCAAC4wQAA6EEAABRCAAAIQgAAmEEAAIhBAACQQQAA2MEAAHDBAACeQgAAyEIAAABAAACIwQAANEIAAHDCAACoQQAAXMIAAMDAAADoQQAAKEIAAIhBAABQQgAAIEEAAILCAADYQQAAAEAAAAzCAACQQQAAQEIAAFhCAADMQgAAuMIAAEDBAAAsQgAA0EEAAAAAAAAgQQAAYMEAAMBAAACSQgAAMMEAAHDBAABwwQAAbEIAAKDAAABAwAAAeEIAAJBCAAAYQgAAMMIAAKBBAADgwAAAcEEAAARCAABMwgAAgEAAAKBAAADAwAAAkEEAAFBBAACAwQAAgMAAABDBAACgwQAAEEIAAJjBAACowgAAWMIAAHDBAAC4QQAAwEEAAKjBAACmwgAAAMAAAGTCAACAvwAAgL8AANhBAACqQgAADEIAAIjBAAAAwAAAkEEAANjBAACKQgAAgMEAAGBBAABAwAAA0MEAANjBAACMwgAAkMIAAPhBAABgwQAAgL8AALBBAAAQQgAAaMIAAMDAAACqwgAAaMIAAETCAAAQwQAAMMEAAABCAADowQAAHEIAAAhCAABIQgAANMIAAADBAAAkQgAAmEIAAFDBAAAMwgAAmMEAAOBBAABAQAAA6EEAAHTCAAAQQgAAcMIAAFxCAAAQQgAAsMIAADBCAABIQgAAgMAAAGBBAAAwQQAAMEIAAGBBAABIwgAAOMIAAJhBAACAQQAAiEEAAKjBAAAwQQAAMEEAAAAAAAAIQgAAyEEAAABAAAAAwAAAKMIAALBBAACAvwAAYEEAAMBCAACQQQAAyMEAAGTCAACgwQAAlEIAAADBAABgwQAAvEIAAOhBAAAAAAAAQEEAABTCIAA4E0AJSHVQASqPAhAAGoACAABAvAAAMD0AAIi9AACgvAAAlr4AAHC9AABkvgAACb8AAKC8AABwPQAAVD4AAKi9AADIPQAA4DwAAIK-AADWvgAAyD0AAIA7AAAwPQAAND4AAH8_AADIPQAA2L0AAPg9AACAOwAAiL0AAKC8AAB0vgAA6D0AAHC9AAAQPQAAmL0AAHC9AADoPQAANL4AAHy-AAA0PgAApr4AAL6-AACuvgAAxr4AAPg9AACgvAAAuD0AAIC7AABAPAAAfD4AADQ-AACYvQAAED0AAIi9AADgvAAAEL0AAI4-AABEvgAAUD0AACU_AABEPgAAuD0AAK4-AAAEPgAAqL0AANg9AACOviAAOBNACUh8UAEqjwIQARqAAgAA6L0AAHC9AACYvQAAP78AAOg9AABUPgAA2D0AAGQ-AACYvQAAVD4AAJi9AABQvQAAmD0AAFC9AADYvQAAgLsAAFQ-AAA1PwAAyL0AAKI-AAAUvgAA6L0AAFQ-AACIvQAAED0AAJI-AAD4PQAAoDwAAMg9AABkPgAAoDwAAFC9AABsvgAAgDsAAAy-AADYvQAAcL0AAEy-AACYvQAAgDsAAJg9AACovQAABD4AAAQ-AABcvgAAMD0AAH-_AACIvQAA5r4AAL4-AADovQAAlj4AAGw-AABEPgAAHL4AAIA7AACgvAAABD4AAJg9AAB0vgAA6D0AAEC8AACAuwAAXL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=F8tFkkcrks8","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["825625113272262004"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10642644637897929149":{"videoId":"10642644637897929149","docid":"34-5-11-ZFE1BAE5B47008581","description":"This animation correlates with my video explaining the epsilon-delta definition of limit.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2713610/d1e7368691ae1c4f184168711c46a00d/564x318_1"},"target":"_self","position":"1","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DuSjzJuih-r0","linkTemplate":"/video/preview/10642644637897929149?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon Delta Limit Animation","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=uSjzJuih-r0\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoWChQxMDY0MjY0NDYzNzg5NzkyOTE0OVoUMTA2NDI2NDQ2Mzc4OTc5MjkxNDlqrA0SATAYACJCGjAACiloaGJuamVldW10eXlmaWxoaFVDUjF1X1M3SjBMdVpZY3h1cmd4WVlPZxICABEqDsIPDxoPPxMBgAQkgAQrKosBEAEaeIH-_gEI-wUA9PkCAPoDAAEG9gD6-f7-APP9AfX2AQAA8vv2-v8AAAD7B_oPAgAAAPUEDQT3AAEAF_z6AAMAAAAO9PkDAgAAABIQBgn-AQAA_wX7_wP_AAD7_Pjz_wAAAPEEBP3-_wAA8QIBBAAAAAAGAgEAAAAAACAALXmg4js4E0AJSE5QAipzEAAaYA8AACrxDQzmNyDn6_naC_3Xy_ktsgsA-O4AAPfRwSck0LkI8wAy4gvxsQAAACMK4uspAAZd6gzSGy0AAwPs7DPofz8K4C5K-Pe1B-L9E_n_3_0dKADd6g0BKhy5ER1OMiAALSWfMzs4E0AJSG9QAiqvBhAMGqAGAABwQQAAoMEAABBCAACwQQAAUMEAAERCAABYQgAA-EEAAMDBAADQQQAAoEAAAABAAAAgQQAAIMEAANDBAADoQQAA6MEAALjBAAAgQQAAcMEAALDBAACQwQAAaMIAAIDAAAAkwgAADEIAAAzCAAAAAAAASEIAAEBAAAC4wQAA8EEAADDCAACwQQAAbMIAABhCAACIQgAAzEIAADBBAACAQQAAYMEAAADCAACUQgAAYMEAAOhBAADAwAAAIMIAADjCAACgQAAAHEIAAADBAAAwQQAALMIAANjBAAAQQgAAPEIAAJzCAADYwQAAEEEAAEBCAAAgQQAAVMIAACTCAAAAwgAAqEEAANTCAABQwgAARMIAAFDBAABswgAAIMEAAAzCAACmwgAA2EEAAK7CAAAoQgAAKEIAAEBCAACmQgAAuEEAAFDCAACGQgAAAMIAAIhBAABgQgAAXMIAADxCAAAQwQAAwMEAAOjBAAB4wgAAyEEAABDBAADAwAAAAEIAABjCAADYwQAAjMIAABxCAACoQQAAiMIAAEDBAACAPwAAPEIAACzCAADwQQAAHMIAAIBAAABgwQAAbEIAAFBCAACIQQAAfMIAAHxCAAAAQgAAgD8AACDBAADwwQAAgEAAAJjBAAAIQgAADMIAAKDBAADgwAAAMMIAAKjBAAA4QgAAYEEAALjBAACgQQAAoEEAAKbCAAAAwAAAkEEAAKDAAACAvwAAHEIAAPDBAAC0wgAAIMEAALhBAACQwQAAGEIAAIhBAADgQAAAoEEAABxCAAAUwgAAgEIAADRCAABEwgAAEEIAAHBBAABMQgAAMEEAAPhBAACgwQAAMMEAAIA_AAA8QgAAuMEAAERCAAAgwgAAmMIAAAzCAADAQAAA8MEAAKZCAABAQQAAgMAAAGTCAAAQQQAAAEAAAEzCAACowQAAyMEAABBCAACAwQAAYMEAAFBBAAB4wgAAQEEAAITCAACmwgAATEIAAJpCAADwwQAAQMEAAChCAAAowgAAMEEAAHxCAAAoQgAA4EAAAABBAADeQgAAkEEAAADBAADgQAAAQMEgADgTQAlIdVABKo8CEAAagAIAAFA9AAAUvgAARD4AACS-AACKvgAATD4AAKC8AAANvwAAmr4AAII-AADWPgAAoDwAABA9AADCPgAAdL4AAFy-AACOPgAAiD0AAIA7AADePgAAaT8AAMi9AACOvgAAvj4AABS-AABUvgAAiD0AAMa-AAAwvQAAMD0AAIA7AAD4vQAAqL0AACQ-AACgPAAA6r4AACw-AADOvgAAG78AABy-AADavgAA4LwAAHC9AABAPAAAXL4AAES-AAAQPQAAMD0AAGw-AAAUPgAAuD0AAIa-AAAEPgAA5j4AAOa-AABwPQAAfz8AAJI-AACIPQAA6j4AAJg9AACAuwAAJD4AAFy-IAA4E0AJSHxQASqPAhABGoACAACYPQAAEL0AAAy-AAAxvwAARL4AAJo-AACaPgAAPD4AAIC7AAAMPgAAgLsAABC9AAA0PgAA-D0AADC9AAAwvQAAUL0AADU_AABkvgAA4j4AALi9AAC2vgAA-D0AACy-AAAQPQAABL4AAOC8AACYvQAAlj4AANg9AACIvQAAmL0AADy-AAAEvgAAiD0AAKi9AABMvgAALL4AAOA8AADYPQAAPD4AAIi9AAAEPgAAoDwAAFy-AABwPQAAf78AABQ-AABAvAAA-D0AAFC9AABUPgAAED0AAHw-AABQvQAAuD0AAKi9AABwvQAA4DwAAKi9AAAUPgAA2L0AALg9AABMviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=uSjzJuih-r0","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["10642644637897929149"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"13976163832986625684":{"videoId":"13976163832986625684","docid":"34-8-4-ZDA04348C07CF3B22","description":"https://discord.gg/4KyWtTttXy official mindustry server: https://discord.gg/ces6yVFt9q...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4945510/ee6bcdc80fe804b66dd80e64c7935b3e/564x318_1"},"target":"_self","position":"2","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmIczdSSikvM","linkTemplate":"/video/preview/13976163832986625684?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"delta - epsilon soundtrack || mindustry","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mIczdSSikvM\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoWChQxMzk3NjE2MzgzMjk4NjYyNTY4NFoUMTM5NzYxNjM4MzI5ODY2MjU2ODRqrg0SATAYACJEGjEACipoaGdxbnlhbHNtZ2RxZ29jaGhVQ3Z6YlVtSnFYUWZfRXV1Rjc4MHJfd1ESAgASKg_CDw8aDz8TW4IEJAGABCsqiwEQARp4gfb0BQX9AwD2AQH5-wEAAfv8BP36_f0A8Pj9Bf8BAAD4AO3yAgAAAPoD8ggHAAAA9wMH_Pz_AAAk_ff9AAAAABDp_Ab_AAAABgME-v8BAAAI__YJBP8AAP0I-fj_AAAA8AgCBv4AAAD9-_z-CAMBAAYDAQAAAAAAIAAtSprcOzgTQAlITlACKnMQABpgIw8AI-wA2N8yHPAQ7Pr8A-_nCP_e_AD_7AD2ANPULhfwtgHkAC3mHAXBAAAAFg7wDBIA6Er2_ekVBAPy_-fjEiB_LwT9G0P_89zfKyPfRfIT1QLmAO_e--04F-8lDisgIAAt_fxUOzgTQAlIb1ACKq8GEAwaoAYAAADBAADIwQAAwkIAAJjBAAAAwAAAmEIAAChCAAAAQgAAJMIAAEDCAACwQQAAFEIAALhCAACgQQAAuEEAANBBAACQQQAAUMEAABRCAACAQQAAOEIAAIA_AADIwQAAcEIAAIBBAAA0QgAAMMEAAMBAAABQQQAAAAAAABzCAAA8wgAAoMAAANhBAADwwQAAEMEAAKjBAACmQgAANEIAAFhCAAA0QgAAuEEAAFhCAABAQQAAusIAAFzCAACcQgAAHEIAADxCAACowQAAjsIAAAxCAACAQQAApsIAAJTCAABwQQAAJMIAAIDAAACQQQAAkEIAAGBCAADQwQAAgEEAAIC_AAA0wgAAIEEAADDBAACAPwAAUEEAAKDAAAAAwQAApEIAAHDCAAAQQgAAJMIAAPBBAADAwAAA6EEAAIBAAAAgQgAAbMIAABBCAACIwQAAuMEAAKhCAABAwAAAIEEAAADAAACWQgAAeEIAAEBBAAAoQgAALEIAALrCAADgQAAAUMEAACRCAADoQQAAuEEAALjBAAAEwgAAIEIAACjCAACgQQAAqMIAAADBAACYQQAA4EAAAIjBAABwQgAAZEIAADBBAABgQQAAyEEAAHBCAABMwgAAHEIAAITCAADgQgAAGEIAAGBBAACAQAAA8EEAAIC_AAAAwAAAIMEAACDBAACgwQAAWMIAADhCAABgwQAAikIAABxCAADYQQAAKEIAAEDAAACAQAAAEMEAAADBAADgQAAAyMEAAPhBAAC4QQAA4EAAAKxCAADYQQAAoEEAACDBAABwQQAA6EEAAOBAAAAYwgAAgsIAABzCAACQQQAA4MEAAJhBAACywgAAiMEAAODAAADYwQAATEIAAJhBAACwwQAAUMEAAEBAAACKQgAAXEIAABBCAAAsQgAAREIAAKBAAAAAQQAAWMIAABDCAABAQAAANEIAACBBAAAAwAAAJEIAAMTCAAAcwgAA0EEAAIDBAACAwAAABEIAANjBAACWQgAABMIAAKjBAAAowgAAcMEAAIC_AAAswgAAFMIAAChCAACQQQAA-MEAAABBAADgwSAAOBNACUh1UAEqjwIQABqAAgAALL4AABw-AACOPgAATL4AAJg9AABQvQAAbL4AAA2_AAAHvwAA6j4AAKo-AAAcPgAADD4AAOi9AAAMvgAARL4AAGw-AAAwvQAAQLwAAGw-AAB_PwAAnr4AAJK-AAAMPgAAbD4AAK6-AADgvAAAmr4AAFw-AACmPgAAQLwAAMg9AAAUPgAAND4AAMg9AAAfvwAABD4AAJK-AADivgAAkr4AADQ-AABAPAAAUD0AAAS-AADIvQAA1j4AADQ-AACAuwAAFD4AALi9AAB8PgAAnr4AAII-AAAwPQAAC78AACQ-AAArPwAA4DwAAIo-AADmPgAAgDsAAKi9AABQPQAAjr4gADgTQAlIfFABKo8CEAEagAIAAAS-AACgvAAA6L0AADu_AACWvgAAzj4AACw-AACyPgAA4LwAAKC8AAABvwAAEL0AALI-AABUPgAAcL0AAFC9AACIvQAAOz8AAES-AAAVPwAA2L0AAKK-AAAsPgAAyL0AAAS-AADGvgAAXD4AAOC8AAB8PgAAyD0AAHA9AABEvgAAED0AANi9AAAMPgAA2L0AAOA8AACovQAAMD0AAKo-AABQPQAAyL0AADw-AADgPAAAnr4AAEA8AAB_vwAAED0AAO6-AADOPgAAcD0AAJ4-AACyPgAA3j4AAOC8AAAMPgAAJL4AAGw-AADYPQAAdL4AAHQ-AADOPgAALD4AAOK-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=mIczdSSikvM","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13976163832986625684"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11663571555310565497":{"videoId":"11663571555310565497","docid":"34-6-13-Z1F61AEDB5BCAF258","description":"Measure one is called absolutely continuous with respect to measure two if sets of measure-two zero are also measure-one null sets. But how is this a \"continuity\". Continuity, as we know it...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2732249/f2a9b7a8a3266894c84d9d9eb0d1bf52/564x318_1"},"target":"_self","position":"3","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtHhWex5VQWA","linkTemplate":"/video/preview/11663571555310565497?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Epsilon-Delta in Absolute Continuity of Measures","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tHhWex5VQWA\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoWChQxMTY2MzU3MTU1NTMxMDU2NTQ5N1oUMTE2NjM1NzE1NTUzMTA1NjU0OTdqrw0SATAYACJFGjEACipoaG1keGFuc3JycnljcHdjaGhVQ3F5U25KT0d3LXp1S09YelZ6eERROUESAgASKhDCDw8aDz8T0AWCBCQBgAQrKosBEAEaeIH8_wgBAAEA-QgN_PsE_wEB_Pb8-P39APn_BQD6BP4A7Qf1AfsAAAAFBP4K_gAAAPb-E_r6_wEAGwL79QMAAAAR6fwG_wAAAA0H__r-AQAA_gD4BwP_AAALA-0BAAAAAPUICAP__wAA_P8GBvX8AAAEBvj8AAAAACAALUrE1Ds4E0AJSE5QAipzEAAaYBUNADYXDATZGFTa8PrI9h7uIOoKwf7_7-8AzRAj6w0LzaAl4f82AiDbqgAAACQM0-UeAABy--mtHxwmE9Pm5AUYf-EI9SEv--Kfyg77DwBH1hMzKADb7NMFMPDWQfJbNCAALRJeIjs4E0AJSG9QAiqvBhAMGqAGAAAQQQAA4MAAACRCAACAQAAAyEEAAGxCAACAQgAAIMEAANDBAABAwQAAcEEAAKDCAAAYwgAAsMEAALDBAACQwQAAOEIAAITCAAAwQgAAMMIAAPDBAAAAQAAAhsIAACBCAAAYwgAAsMEAAJjCAACAQAAArkIAANhBAAA0wgAAuMEAAKrCAAC4QQAAcMIAADDCAACIQQAAYEIAALjBAABIQgAAMMIAAEBBAACAQQAAZMIAAIBAAAAowgAACMIAAKBBAACcQgAA0EEAACDCAAD4wQAAEMIAAAxCAAA4QgAAIEIAALbCAAAAwQAAIMEAABhCAAAIwgAALMIAACDCAAAswgAAmEEAAIrCAACwwQAAUMIAAJTCAABYwgAAJEIAAExCAACswgAAAMEAAABBAABwwQAAnMIAAODBAACowQAAQMAAAIDBAACGQgAAgMEAAOhBAACIwQAA2EEAAADBAACIwQAAoEIAAFBBAABgQgAAAEIAAJ7CAACAwQAAMEIAAIzCAACYQQAAmEEAADhCAABAwQAAFMIAAGBBAAAUQgAABMIAAL7CAACAwQAAoMAAADhCAACgwAAAjkIAAJDBAAAAAAAAgMAAAMDBAAC4wQAAlkIAAMBAAABwwgAABMIAAJDBAAAIwgAACMIAAPjBAAAIwgAAEMEAAKBAAADowQAAoMEAAMDBAACAPwAAwMAAAHzCAADAwAAA4EAAADDCAAB4QgAAQEIAACBCAAAMQgAACMIAACDBAACwwQAAGEIAAMjBAABwQQAADEIAALjBAACoQQAAcMEAAIBBAAAQwgAAEEIAAMpCAABAwAAAaEIAAHDBAAB0wgAAUMEAAEDBAACAwQAAAMIAANhBAABAQQAAIMEAADBCAABgwQAA0EEAAKJCAAAkQgAAHMIAAIBBAAD4QQAAdMIAABBBAAAswgAABMIAAMDBAACAPwAALEIAAIC_AAAQwgAAoMIAADDBAADAwAAAFEIAAADBAAB8wgAAwEAAABDBAACgwQAA8EEAAGzCAAAQQgAAKEIAAEBBAABcQgAAoMAAAMBAAACQQQAAqMEgADgTQAlIdVABKo8CEAAagAIAAI6-AACovQAAZD4AADC9AAAQvQAAiL0AAIY-AAAxvwAAPL4AABA9AACgvAAAgDsAALg9AAAkPgAAVL4AAAS-AABwPQAADD4AAKC8AAALPwAAfz8AABA9AABwPQAA2D0AAAy-AADgPAAAJD4AALi9AADYPQAAJD4AAPg9AADovQAA6L0AAIA7AAAkvgAABL4AAAw-AACKvgAAqr4AAES-AACovQAAqD0AAOC8AABQvQAA0r4AAIC7AACmPgAAHL4AAKC8AABUvgAAqD0AAHQ-AAAMPgAA7j4AADy-AABAvAAAYz8AAHw-AAAQPQAADD4AALi9AABQvQAA6D0AABe_IAA4E0AJSHxQASqPAhABGoACAACivgAAUL0AACS-AAB_vwAANL4AAOg9AACqPgAAqL0AAKi9AACoPQAAEL0AACS-AABkvgAAiL0AAHC9AACgPAAA4DwAACc_AADYvQAAzj4AAHC9AABkvgAAHL4AAPi9AACAuwAADD4AAJi9AACovQAAuD0AABQ-AACAOwAA4LwAABC9AADivgAA4DwAAOA8AADIvQAAiL0AAAy-AACIvQAAUD0AAJi9AAAMPgAAUD0AAAS-AAC4PQAAe78AACy-AAAsvgAAyD0AAIY-AACgPAAAXD4AAEA8AADYvQAAgLsAADC9AABUPgAAJD4AAEy-AACiPgAAED0AAIg9AACAuyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=tHhWex5VQWA","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11663571555310565497"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14355973422493989798":{"videoId":"14355973422493989798","docid":"34-5-12-Z32758B8BC84FD5C7","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1025915/f6c48719999c1aa4a49310d15d474d80/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/t7wIEAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAi7c3dmFGVQ","linkTemplate":"/video/preview/14355973422493989798?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon Delta with Cubic that Factors","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Ai7c3dmFGVQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoWChQxNDM1NTk3MzQyMjQ5Mzk4OTc5OFoUMTQzNTU5NzM0MjI0OTM5ODk3OThqtQ8SATAYACJEGjAACiloaGRnYWR2aWJ1bGJqaXNoaFVDaHBMU0hkZHB5bjZuV2txN25VVzJPZxICABEqEMIPDxoPPxODAoIEJAGABCsqiwEQARp4gfb0BQX9AwD1_goMAgb9AQQAAAL4__4A_gcBBvQE_gDuB_YB-wAAAAj-8ggCAAAA9wMH_Pz_AAAZ9P_2AwAAAA70-QMDAAAADQoDAAj_AQEH__gAA_8AAAT69u__AAAA8wv__vr_AAD8Bwb1AQAAAAgJ-wMAAAAAIAAtSprcOzgTQAlITlACKoQCEAAa8AF_6QL4xQnsAYIfJgAXB9MBpe4d_kJE7gDEzfsAweW-AO0vDgAE3s0AhGYLAMEy-AAbyLAAxNTgAl_H-gC80fEBSejTAeya8QJtBCX-7j_K_802SfzyyuD-8MO1_gj86gDtzQ8ADffCAc3x0gjjFk4DMvwzCdW5PQLGqRQBg7nzCdyK5_oNDRsN0JYh_d8jXgEr2vwB3f0O9MNt5gBCAgv1wt9G_A1Ku_xgGP0SBRISCYtCCwi2BdMGTiIWA8kN7-v42yj8GsIH5_ar9RAz5AjyGCTXBiq28xwd4OkCB_Qk9ArTEOzJKujrwwUXD9buAuogAC1rq7c6OBNACUhhUAIqcxAAGmAOAgAo7_sBCT4o2UDCGwfW1vDsJ6AG_w3V_yTdJqoaGb2IFez_IM8-65oAAAA88uom6QAaf-Ub7jlEId7yoaY4J3wnHUUJ8e0B9Mf5Fa3Y-s4aPWgAzz61DFcdxf41RAogAC2sKwg7OBNACUhvUAIqrwYQDBqgBgAAiEIAAMBBAAC-QgAASMIAAEBBAADIQQAAnkIAAMDAAABowgAAAAAAAPhBAAAowgAAyMEAAKBAAACAvwAAIMIAAIBBAACcwgAAfEIAAIBAAABgwQAAiMEAAN7CAABQQgAAPMIAACTCAAAAAAAAUEEAAOhBAADoQQAAAMIAABBBAABgwgAAsEEAAODCAACgwAAAQMEAAFRCAACQwQAAYEIAABhCAABwQQAA-MEAALDBAABQwQAAYMIAAIA_AAAkQgAAAEIAACxCAAA0wgAAhMIAANDBAAAMQgAAwEEAANBBAAC-wgAA2EEAAMhBAAAcQgAAqEEAAEzCAAAUwgAANMIAAKBBAABIwgAACMIAALjBAAB4wgAATMIAAERCAACUQgAAIMEAAEhCAABAwgAAiEEAAJTCAADAwAAAqEEAAEBBAADgQAAAxEIAAMBAAAAQQgAAMMEAAJ5CAAAAQQAAGMIAAJhBAAAEwgAA8EEAABhCAAAUwgAAmEEAALBBAABMwgAAMMEAAADAAAAkQgAAoEEAAHzCAABwQQAAbEIAALDBAAB0wgAAgEEAAMDAAAAkQgAAmEEAAExCAAAMQgAAoEEAAATCAABAQQAAQMEAAHRCAAAAwAAAcMEAAJDBAACwwQAAYMEAAOjBAABAwAAAFMIAAFzCAACAvwAAEEEAAFjCAACgwAAAcEEAAABBAABkwgAAuMEAAIhBAADQwQAAfEIAAJBBAACgQgAAHMIAAFDCAAAwwQAAuEEAAMBBAACewgAACEIAAPBBAABgwQAA8EEAAADBAADgwAAALMIAADBCAAAsQgAAsEEAAMDBAACgwQAAisIAAIjBAAAIwgAAAMIAACDBAAAIQgAAoEEAAKhBAAAAQgAA6MEAAPDBAABsQgAAMEIAAMjBAACIwQAA4EEAACzCAABIwgAAEMIAANBBAACAvwAA8MEAACBBAADAQQAAtMIAAKDCAADQwQAAiMEAAI5CAABQwgAAmMIAACBBAACAPwAAQEAAADBCAABAQAAAAEEAAIhBAACwQQAADEIAAMDBAACQQQAAOEIAABDBIAA4E0AJSHVQASqPAhAAGoACAAD4vQAAND4AAI4-AAA0PgAAXL4AADA9AACAOwAA9r4AAHC9AAAsPgAAlj4AAIi9AABwPQAAij4AAFA9AABwvQAABD4AAJg9AAAMPgAA8j4AAH8_AADoPQAAHL4AALo-AADYvQAAFL4AABS-AACKvgAA-D0AAEC8AAAMvgAAML0AAIi9AADIPQAA-D0AADy-AACKPgAAxr4AALK-AAAsvgAAvr4AAOC8AAAsvgAA2D0AABA9AAAQvQAAoLwAAKi9AACAOwAADL4AAMg9AACAOwAAqD0AAP4-AAC2vgAAUD0AADk_AACgvAAAED0AAOY-AACIPQAA-D0AALg9AACovSAAOBNACUh8UAEqjwIQARqAAgAA2L0AAOg9AAAQPQAAGb8AAJi9AAA8PgAAnj4AAEw-AAAwPQAAmD0AAIA7AAAMvgAAqD0AAIg9AACAOwAA4LwAADC9AAAnPwAADL4AAJY-AABwPQAAXL4AAJg9AAA0vgAAcD0AAOC8AABwPQAAoDwAAEQ-AADoPQAAML0AAOA8AAB8vgAAyL0AAIC7AADYvQAAML0AABS-AABwvQAAyD0AAAw-AAD4vQAATD4AAMg9AACovQAAoLwAAH-_AAAMPgAA4DwAAI4-AAAQvQAATD4AAOC8AAAkPgAAHD4AAIg9AABQvQAAoLwAAKC8AACgPAAA-D0AAEy-AADIPQAAyL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Ai7c3dmFGVQ","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":358,"cratio":1.7877,"dups":["14355973422493989798"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3305058662"},"16825619857541498966":{"videoId":"16825619857541498966","docid":"34-6-2-Z4278FE18C483015E","description":"The Certifieδ Epsilon Delta Chapter of Omega Psi Phi Fraternity, Inc Presents: S.S. 4 ConseQUEnces of UnbridlEΔ ConvictionACE DAWG: Trevontae' Haughton - G1Z...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2988938/299d83f64e784dc594f080584ee5ab0e/564x318_1"},"target":"_self","position":"6","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dc0_W6CTErTE","linkTemplate":"/video/preview/16825619857541498966?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon Delta Fall '21 Neophyte Presentation","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=c0_W6CTErTE\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoWChQxNjgyNTYxOTg1NzU0MTQ5ODk2NloUMTY4MjU2MTk4NTc1NDE0OTg5NjZqrg0SATAYACJEGjAACiloaGtkdG51bWlocnBiY3loaFVDU1J1ZEs2Qkl2UDJseTI3Yk02Q0xsURICABEqEMIPDxoPPxOPA4IEJAGABCsqiwEQARp4gQH9-gUAAADuAwYGAAP_AQgDCQn4__8ABfr6AvwD_wD1AfwB9QAAAAYD_AoJAAAA_A0T_Pv-AAAl_fb9AAAAAB38AgMCAP8ADhn6Av4BAAAH__gAA_8AAAT69u__AAAA8v8IBfv_AAD1-wYJAAAAAAMO8fgAAAAAIAAtLGDVOzgTQAlITlACKnMQABpgMhAAGQYJ2s1SMswG__rb9sgiAx6xAQAA9f_f4b7CExTOsRb1_0zSD--lAAAAFBr0JwwA8nkRErz4JRz7IN3kNxF_PO34LUj4577l-Q8Y3jS-GCdCAKjo7_40Dto040stIAAth4gbOzgTQAlIb1ACKq8GEAwaoAYAAJBBAAAIQgAA8EEAABBBAACAwQAAEMIAAAjCAABQwQAAGMIAALBBAACCQgAAUMEAACBCAAAIwgAAEEEAABDBAABAQAAAUMEAAJRCAACSwgAA2EEAAJBBAADwwQAAQEEAACjCAAAAQAAAgD8AADDBAABgQQAA4MAAAADBAAAAwgAAdMIAAEhCAACAvwAAQEAAAMBBAACgQAAAIMEAAPBBAABQQQAAzMIAAODBAACWQgAAPEIAAGDBAACQwQAAFMIAAKxCAACQwgAAQEAAAMBAAABgwQAAQMAAAADBAACgQQAA6MEAAKBAAADgQQAAmMEAAPjBAADgwAAABMIAAADBAABowgAAAEIAAGDBAACUwgAA6EEAAAAAAABAwQAAmEEAACBCAACIwQAAwMIAAABBAACgQQAAoEEAAETCAACoQQAA2MIAAAxCAAAEQgAA-MEAAEDBAABgQQAA8MEAAChCAAAMQgAA4MEAAIC_AACoQQAA8kIAABzCAADYQQAAgMAAAJBBAADIQQAAgD8AAODBAAAAwQAAsMEAAIpCAAAswgAAIMEAABBBAADowQAA6EEAAAzCAADGQgAAgD8AAAxCAAAQQQAAYEEAAIxCAACCQgAAQEAAAFjCAACiQgAAYEEAAMhBAADKwgAAAAAAAODAAAAoQgAAsEEAADTCAADoQQAA2MEAAITCAAC4QgAAfMIAAEDCAABQwQAAgkIAAHxCAACQQQAAYMIAADTCAAAoQgAAsEEAAEDAAABQQgAAbEIAAABCAAAgQgAAEMEAAMhBAAAwwgAAQEEAAMDAAACIwQAAQEAAAEDBAACQwQAAQMAAAHTCAAAwQQAADMIAADDCAAC8QgAAwMAAACjCAACYQQAA4EAAAADAAAAQQgAAcMIAAIhBAAAUQgAASMIAANjBAAAwwgAALMIAAIhBAADIQgAAHMIAALrCAACIwQAAQEIAAABCAAAgwgAAQEAAANDBAACAvwAA0MEAAKLCAADgQQAAEEEAABxCAAAEwgAAQEIAANhBAAAcQgAAoEEAAEBCAAAQwgAA8EEAAGDCAABEQiAAOBNACUh1UAEqjwIQABqAAgAAFL4AADC9AABkPgAAXD4AAKa-AAAQPQAAqD0AAP6-AAC2vgAAmj4AAHw-AABAvAAAQLwAAPI-AACAOwAA0r4AAFQ-AABQPQAArj4AAAU_AABzPwAAPD4AALg9AAAcPgAAmD0AABy-AABAPAAARL4AACQ-AAA0PgAAoDwAABA9AAC4vQAAiD0AAOC8AADWvgAAFD4AAJa-AAAHvwAAir4AAFy-AABwPQAATL4AAES-AABUvgAAgLsAAAw-AAAsvgAAUL0AACS-AACYvQAAoLwAADA9AACqPgAAlr4AAMg9AAB_PwAAcD0AACQ-AADGPgAA-D0AAMg9AAAUPgAAD78gADgTQAlIfFABKo8CEAEagAIAANi9AAD4PQAAQLwAADe_AAA8vgAAcD0AAEC8AAAcPgAAML0AADw-AABwvQAALL4AAJi9AAAQvQAAmL0AAIC7AAAMPgAALz8AAFA9AADuPgAA4DwAAAS-AACgPAAAhr4AAJi9AADgvAAAgDsAAEC8AAAwPQAAij4AABA9AABAPAAAiD0AADC9AAAEPgAAyL0AANi9AAAQPQAA-L0AABw-AAAsPgAAcL0AAOA8AABwvQAAkr4AAGQ-AAB_vwAAgLsAAEy-AAC4PQAA2D0AAFA9AACgPAAAgj4AABQ-AAAwPQAAoLwAAHA9AABAvAAA4LwAAKA8AAAcvgAA4DwAAOA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=c0_W6CTErTE","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16825619857541498966"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1051802901966789010":{"videoId":"1051802901966789010","docid":"34-0-10-ZDF7BC8384B52693B","description":"We will prove that the limit of x^2 is 4 as x goes to 2 with the epsilon-delta definition. We will also do it without the usual trick (setting deleta=min{1, something}). Will this be any easier?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1773140/7d371fe7887bec4f21c5ef12a8ace813/564x318_1"},"target":"_self","position":"7","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFobFTlT81W8","linkTemplate":"/video/preview/1051802901966789010?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to find a formula for delta (epsilon-delta definition of a limit)","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FobFTlT81W8\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoVChMxMDUxODAyOTAxOTY2Nzg5MDEwWhMxMDUxODAyOTAxOTY2Nzg5MDEwaq8NEgEwGAAiRRoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioQwg8PGg8_E7sFggQkAYAEKyqLARABGniBAvUACP0DAOYAAQL8AAEACwD7-vcAAAD2B_z__wL_AOcB-PYA_wAA-wf6EAIAAAD3Awf8_P8AABf8-gADAAAAB_v3BQEAAAAOC_wD_gEAAP_8-_8D_wAABQP69_8AAADz-v_8_P8AAPoCAwcAAAAAAQQG_v8AAAAgAC0d4947OBNACUhOUAIqcxAAGmAR_QA38u_aAhkz6x755Pf75ev1FrYmAODkAOr4zPYWHtDZEd4AMfIc97cAAAAo9QUV4QAlUgX00CARCvYQxNsGF39YCQQYFhERtuoHFB7_K-gjBhMA6uf4CCoD1vcJRTAgAC0UVkM7OBNACUhvUAIqrwYQDBqgBgAAnkIAACjCAADIQgAAUMEAAADCAADgQAAAikIAAGhCAABgwgAAwEAAAKBAAACwQgAAEMIAAADAAAAAQAAAGEIAAGBBAABEwgAAEEEAAIC_AACYQgAAsEEAADTCAADQQQAAAEEAAKBBAABMwgAAIMIAAExCAABgQQAA4EEAAKhBAADIwQAAgL8AAHjCAABEQgAAmEEAAK5CAACgQAAA0MEAADzCAAAQwQAALEIAAADCAABAQQAAJMIAAAxCAAAoQgAAhEIAAHBBAACAwAAAYMEAAGBBAAB4QgAAYEEAAEBBAADYwQAA2EEAAJpCAADQQQAACMIAACjCAACkwgAADMIAAKDBAABsQgAAOEIAADjCAADAwQAAiEEAAHhCAAAQQQAAfMIAALJCAACgQQAAtMIAAKDCAACAwAAAJMIAAADCAABAwQAAQMAAAEDAAACAQQAAwEEAAERCAADgwAAAIMEAAEDAAAAgwgAAEMIAABhCAAAAQQAA0MEAAIBBAAAswgAAHMIAAKhBAACuQgAADEIAAODAAAAMQgAAbEIAAIA_AACUwgAA8EEAAOBBAACkQgAA4MAAAHhCAACSQgAAAEEAAIzCAACAPwAAZEIAABBBAACAQQAA2MEAACBBAACUwgAAgL8AAATCAABgQQAAZMIAAABAAADowQAAoMAAAK7CAAAwQQAAGMIAAEBAAADAwAAACEIAAEhCAAAQwQAAcEEAADBBAABAwQAA8MEAAILCAABAwQAAcEIAAADAAADIwQAAIEEAAOhBAAAAwQAAgEEAACjCAABMwgAAQEEAAEBAAAAwwQAAlsIAADBCAACAPwAAiMEAAAAAAACAQAAAbEIAAOjBAABgQQAAUEEAAGDBAAAMQgAAgMAAAIBAAACgwQAAAEEAAAAAAAAgwgAAgEAAAGBBAAAwQQAAkMEAAKBBAAAkQgAAHMIAAGxCAACkQgAAYMIAAIDAAAAYwgAAmMIAAExCAADowgAAUEEAAARCAACYwQAAoMAAANhBAAAgQgAAQEEAAABCAACwwQAAMEIAANDBAAAwQQAAkMEAAADCIAA4E0AJSHVQASqPAhAAGoACAAAMPgAAwr4AAGQ-AAD2vgAAqD0AAFQ-AAAsPgAAUb8AADS-AADIPQAAxj4AAGS-AAAEvgAAkj4AAIK-AAAsvgAAkj4AAKA8AADIPQAAtj4AAH0_AABkPgAALD4AAK4-AAC2vgAABL4AAEQ-AACSvgAAHD4AAKC8AAB0PgAAir4AAIi9AAD4vQAABD4AAAm_AABEPgAAbL4AAOK-AABwvQAATL4AABy-AAD4PQAAdL4AAES-AABUPgAARD4AAJK-AACePgAALL4AAHA9AADgPAAAQLwAAKI-AAC4vQAAyL0AAH8_AACovQAAcL0AAPI-AAAEPgAAcD0AAHA9AACIvSAAOBNACUh8UAEqjwIQARqAAgAAFL4AAHC9AABQvQAAT78AAIq-AAA0PgAAPD4AAGw-AACIPQAAND4AANi9AABwPQAAML0AANg9AAA8vgAAEL0AABC9AAAVPwAAUD0AABM_AACovQAAwr4AAKC8AABsvgAAQDwAAAS-AAAEPgAA2L0AACQ-AAAkPgAAcL0AADA9AAC4vQAAgLsAAPg9AABEvgAAmD0AABC9AAAUvgAATD4AABA9AADgvAAABD4AAKA8AACovQAAoDwAAH-_AABkPgAA2L0AADw-AAAQPQAA2D0AACQ-AACCPgAAmL0AAIg9AABAvAAAqL0AAJg9AADYvQAAHD4AAEy-AADYvQAAED0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=FobFTlT81W8","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1051802901966789010"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5896448754157870200":{"videoId":"5896448754157870200","docid":"34-8-0-Z8726DBB2D8F53C3E","description":"In this video we look at proving the limit of a quadratic using the epsilon-delta definition of a limit.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3236879/8a5d611beb677a64e6bd12aa2b29a4ca/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hNQSKwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0kZVriyBV3M","linkTemplate":"/video/preview/5896448754157870200?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon Delta Quadratic Proof","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0kZVriyBV3M\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoVChM1ODk2NDQ4NzU0MTU3ODcwMjAwWhM1ODk2NDQ4NzU0MTU3ODcwMjAwaogXEgEwGAAiRRoxAAoqaGh6aGp3ZWxidmdyeW9iYmhoVUNNMnVqdDlRQkduVzVBVmlyOUdjazJnEgIAEioQwg8PGg8_E54GggQkAYAEKyqLARABGniB9_kE-_wEAOz7CAX9AgAAAgwA__j__wD9-AEC_wX-AOcB-PYA_wAA-gPyCAcAAAD7_f4H_v4AAB3z_gYCAAAAFgT8_QMAAAAGCQEJ_gEAAP4A-AYD_wAA-_z48_8AAADwBAT8_v8AAPb7Cv8AAAAAAP_-_wAAAAAgAC2W4N07OBNACUhOUAIqhAIQABrwAX8C-v_V6eP_7A3_AN0x_QCpHAoAHifgAMv2_gC39sYA7ggFAAL81gDRCRgAyRXzABHdzQDTzugAIr_2_xfu3wEH_hABE8YDAEnyBQAF9vAA4CIu_fjkEgD9xt4A_QPlAA0SIv8I-9kB9BXYAQ_-PwEE_0QAGucH_9zJDQHs5_UEBMXp-_H1_v7RzCP_4PUwBxCr6_wP9f765xgSAw_y6ADy8xz4BU32_Rj4CAn2_vEFz-Hm_Az67woeJBYJ3Cbk_vvpGf7E_wH16eMFCjT0APTK_vn-D-wCEiMI_QbpFAcW_wf278Hs-PfsCuoG-Av28SAALfjGETs4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6moKbvam1F7wDBV69zKWXvXGq9Tw9PJU8pg7yPZX0MLxkyWe6dLUVvpmDkD0tBg-9xVWFPlQwb72bfyq8dXT8vS8Tmj0LAhC9iQsQvjZqrrrOj_k751kEvemiPL3YbEA8VFMCPtxLOr12zBC8b4sIvUNHB7oj2Bi9IhehvTucirwFK1O9G3-HPNc3m72uqWK7-ERoPb3Dbbze2747zvYNPXOL1Lzf0bG7t9WsO-fMMT3ZPgS9UpCpPL93AD0hG6086_uFvT5oTL2HOxE8TLQavY-RB7yttg086gd1Pb-ExDux1Qq9aTPzPB5v8r3XJdM6l-QwvkRvLD3sgma8r126PY3rhDyVd_o80lebvd1IVD0a9C277H1UPV73sb2VfJG8odsGPQvoqj3nkX27s_tfPZDwYryRcO86Eg8LvCQUtjzuKK07U8qgPSx3UL3isRu8KnF9Pae-PbzVfka8GxRoveaszzzWXIm8HVpkvHmHBT3C7I667N7KPFOeDz3hqnw8cArrPEXvub32R-W5KLq-vabsub1DpI076xPKPAnmQzxuQqu8Q6kdPh9q273Emqk55xYfvY1Hqbz5A7O6N6ruPCqZUr0LR2s8gUqrvSVi5bzriwi8_GWBvY6hUjzf61q8qhyJvCumAj4O6g25n6a7PFH8s72XBps7eROiPScBA7uQw9y7kIPSPUaUWz3VHBS4UZfWPOXRbb2gGky7LEJWvUhj_ryhXQ07H01QvQZZAL04ixM6bQPXPbWj2L0Mn685XS-iPUSidTys0Ic4G-qhvbJblT0s2Zk4yEqCvNmDg7u4IsQ5vsXgO6xTFb6mjMk5GaHpvJQ7Aj20XdG51ne4uyaKgD2KppQ4ax7BvcSuor1Z-CI4aQ9FPLgyEj329Ta5RprYPbIzAD3WC5A488APvN2kWDzLBOy53c_pvHfkfry_NrW4ZXimuwCUGj02cdA466RjPKKMor2_UmQ5n_FxO6XYAT6orjG5-1H5vIv65rvON0644me9PcOv4jyY0rC48VkoPXeWir3VNes4IjPXPXIpmTv5LWw3aHUyvmSkKD0Xyky3axGsu4uA8bsFPYU4Th11vJDU5zyj39EyeXqAvEkI_zu4Hmc49wEoPnBh3b3xZ7-5If9xvI82jr3KEa64MpTuvLr4u702Fya4BxSguskgtz3C15q31ZTkPL42pr3zo024yvRwPSLhKz7xy4o4AEg3u3dVNj0-ld24I2jMvQ0B-jtvBgY34m1vPDVu-zzOSNc3IAA4E0AJSG1QASpzEAAaYCf4AEv7BPIfBgXTE8_z-Ljtq-UfoP3_3uYAFgHqyDUqwp_l-QASxCnanAAAAC3H5xIjAPh_x_QcOxRI8My3rhsYZUIGafgFFwri5yMXpdkK-fkUKADl3LsVUkm0KSwFDyAALawWEDs4E0AJSG9QAiqvBhAMGqAGAAA0QgAAYMEAACBCAACUwgAAAEAAAOjBAACwQgAADEIAAIBAAABEQgAAZEIAAJjBAADIwQAAOEIAADBBAAAAwQAADEIAAHjCAABAQgAAgMEAAIDBAADowQAAAMMAAEBCAABkwgAAYMEAAIA_AAD4wQAAoMAAAPhBAADgwAAAgD8AAFzCAAAwQQAA5sIAADDBAADQQQAAdEIAANDBAAB0QgAAUEEAAFBBAADYQQAAKMIAACxCAACEwgAAsEEAAI5CAADAQAAAgEEAAHDBAABkwgAAyMEAAJZCAACQQQAAQEAAAIjCAACYwQAAAEIAADBBAAAIQgAA0MEAAJrCAAAgwgAAmEEAAHDCAADIwQAAhMIAAMjBAAAMwgAA8EEAAIJCAAD4wQAAYEEAADDBAACowQAAaMIAAJDBAAAAAAAA-EEAAADBAAC8QgAAgL8AAADBAACowQAAJEIAAMjBAAA4wgAAEEIAACBBAADgQAAAWEIAADzCAADIQQAAyEEAAEDAAACUwgAAgL8AAFhCAABQQgAAEMIAABBCAACOQgAAEMEAAHTCAADYQQAAQMEAAMhBAADAQAAAoEIAAJxCAABkQgAAVMIAAADAAACgwQAAgEIAAIBAAADYwQAAPMIAAEDBAACwwQAAGMIAAHBBAAAgwgAA4MAAABBBAACAvwAAQMEAAOjBAAAkQgAALMIAAOjBAACAQAAAjkIAAHDBAAAcQgAAgD8AAIZCAADwwQAAXMIAAIDAAAAwwQAADEIAAKDCAACgwAAAuEEAANBBAABAQAAAuMEAAADAAAAkwgAAEEIAAARCAAAMQgAAgEEAAAzCAAAkwgAAEMEAAHTCAAAswgAAksIAAJBBAACAQQAAUEEAAOBBAABAQAAAyMEAAJxCAAAIQgAAuMEAAMBAAAAAQAAAUMEAADTCAAAQwgAA8EEAACDBAADAwQAALEIAAFBCAADGwgAAKMIAAIjBAACAQQAAVEIAAPDBAABcwgAAsMEAADDBAACAwQAA8EEAAMDAAABAQAAABMIAALBBAAAYQgAAAMEAAJhBAACoQQAAmMEgADgTQAlIdVABKo8CEAAagAIAABA9AACoPQAAiD0AAHA9AABwvQAAUL0AADS-AAATvwAAZL4AAJY-AACyPgAAQDwAAEC8AACKPgAAur4AACS-AABwPQAA2D0AABw-AACePgAAfz8AADC9AABEvgAAbD4AAKA8AADYvQAAoDwAAIK-AAAEPgAAMD0AAIA7AAAsvgAAQLwAAFw-AACYvQAATL4AAKg9AAAHvwAAAb8AAMq-AABUvgAAQDwAAKC8AADIvQAALL4AAJK-AAAUPgAAED0AAHQ-AAAwPQAAJD4AAOA8AABAPAAAjj4AAN6-AACAOwAAMT8AACQ-AAAMPgAAkj4AAJi9AADYPQAATD4AANq-IAA4E0AJSHxQASqPAhABGoACAADgPAAAqL0AAMi9AAA5vwAABL4AAGQ-AACYPQAAVD4AAMi9AABQPQAAuL0AAES-AADIPQAAED0AAEA8AACYvQAAMD0AAB0_AAAsvgAAtj4AAPi9AADovQAA6D0AAFy-AACIPQAAiL0AAIg9AACovQAAVD4AADQ-AACgPAAA4DwAAES-AADYvQAA4LwAAPi9AADIvQAAiD0AANi9AAAwPQAA2D0AAOC8AACYPQAAyD0AAI6-AACAOwAAf78AADw-AABAvAAAhj4AAEC8AABAvAAAoLwAAHQ-AADIPQAAMD0AAEA8AAC4PQAAcL0AAJi9AAAUPgAAEL0AABw-AABUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=0kZVriyBV3M","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1186,"cheight":720,"cratio":1.64722,"dups":["5896448754157870200"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4277894689"},"1217347565808831842":{"videoId":"1217347565808831842","docid":"34-4-2-ZEAD8023E7E0362FE","description":"Introduction to the Epsilon Delta Definition of a Limit. Watch the next lesson: https://www.khanacademy.org/math/diff... Missed the previous lesson? https://www.khanacademy.org/math/diff...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3415088/ca7d08178754e3290e3578bc757149ca/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0-NQIAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-ejyeII0i5c","linkTemplate":"/video/preview/1217347565808831842?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon-delta limit definition 1 | Limits | Differential Calculus | Khan Academy","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-ejyeII0i5c\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoVChMxMjE3MzQ3NTY1ODA4ODMxODQyWhMxMjE3MzQ3NTY1ODA4ODMxODQyapIXEgEwGAAiRBowAAopaGhkb3Zpd3hzZXZmcXJnaGhVQzRhLUdiZHc3dk9hY2NIbUZvNDBiOWcSAgARKhDCDw8aDz8T_wWCBCQBgAQrKosBEAEaeIEBAAIG_wIA7_v7CQsD_gAB_Pb8-P39APP9AfX1AQAA7Qf9_gP_AAD_DQAJ-gAAAPwCBAT2_gEAEPv--QMAAAAO__0IBAAAAA4M_AP-AQAA-AH8AQP_AAAQA_jy_wAAAPz9-wH5_gAA8fL7BgAAAAAL_wX-AAAAACAALV612Ds4E0AJSE5QAiqEAhAAGvABf8IfAtb1ogGeI8P-zC7dAbk8DwALJeH_zOkN_8AazwAn9yUA1_4S_yT_0f-MMycB8QX7_fjHAgA8wSf_J9sRAKkIEgEU_uABLh4g_w3s-_7ZLuAB0ikp_xzPygMSRvj8JPIE_RAU9v7qBLcCCyQ-A8v5AgIDDAwDwvL5BcEk9_7197z-8BoUBADj-P7oGkUBQuoaBgL4EPwD8OP98yEp_g0ACwYg3t4HJBTkBtsqM_7t6Sb1D-4WBw3JIwbt-NoM4dwj_-H7Bv___xr5OvTzB_QE-wMf8vIOCfsJ7hzy6AMYEvfw-OX2AA4i6_X5ye8BIAAtnlH7OjgTQAlIYVACKs8HEAAawAcfD72-omExvWp5D72-Wfk8EtjcvDwe6bztA6q9X_yjPDjYi70zqUE-2cQwOlizqTy9KDC9v6I2vLzngDwUlEI-RkUcvXPoALwZgaK9QLW7PeGkX73KopW95kcyPPF-AT2vCvS94N0EvEbfDbzvERs9wcS_vQiQAb3kw8c8w_IguoOa67zUOps9NFVGvQ6fdL2lmv47lcm6vHjl4bul4IQ9-ke6PEAtp7u0sLI9TCUyvenlILt0e-m9pRbKvLtak7yEWRI9uOdZPWIgGTws3L29yb-gPH_PWTzGKNI5D4dbvDb6ILt-_gs-zbGcPcYOj7yfEdc7-bV6vfZOnrtfk7q9amc9vLCl7Lzwf2w9ZqnAPeVlCTyE136-F8_FPD_GXLsr3sg8fJf3vKTDQzxkk9w9bv1PPGcxzDzWZJc9OCEDvbc1N7vg7AC94FiGPJ052jx2Px09Grm4vIChQzsVlYg9RbVNvTN_ljzZeDC8he0ju0udNrzd9EI7_QURPWNFqjtqxAc9ghB6Pf-BC7sFI6U91gI7vknlmjrB0g-9KNMIvTWfTrx0fso8aiRzPYXEqLv3kzG9s2jAvZ_iPLumP5C9fOC6u8CeJzsW9W48MJAWvYFcYjsjK4S9B_SdPXLAA7r8ZYG9jqFSPN_rWrz_sHY6-iT7uyxSFzwvgaA9cd7Fu1PF3DsqHCA8WOe4PV9QtrsGAnC7u1ksO5V-wrtJDn09RcD8vCsy17tlcqq9ZDs_PeXxE7uAqjs9yWCgvF_xejrudJw9rOLNvSr_vTnMQfC9etqGPcbNVTgyu7g7N6jdPZtsBDj_xXm7b5CavOgENrlUG_y9Yrv7vRPT8jnovtw9rpGuPA8bHDks5AC9US3iPOzks7nv9eI7iCqRvW2DDDky16i9VtqtPXGs0riur_886kKsOnPC3be5jLy7omrsO0NNujqpyQa85wapvVCANrZleKa7AJQaPTZx0DilZu-9mgibPEs5obnOr8E8SZPMPd9Eh7halQ47kO9XPbd1jbjr0D89s90zPcuPk7jl4rm8cWibveWtCDYYyYM9a8sKPc6hMrfK4QO-ENcePJf9Tjdu1FQ8tESdvDPnADgI0sA9i5KbPePxeTiDh4k9Tny1Paoo6TegVMs99_HGvC2P1bj5SuC9DI_dvWMzRLi8kM69N4KZvYJij7iXpSI9EFLBPRGZT7j2dHo94A_fvT-Zm7cUPTU9riNYPfTQnDgx0NW9tlfVPIYba7i0Afi9tVhFPVHgXDhbB4c8e636vP4scrcgADgTQAlIbVABKnMQABpgBuMAOfwU3vgCUOTs1ekSxNMO9xmkE__J1P_S6c0O1CO7vP3wAC3QGfOeAAAAK_fr_hEAIH8B8P8mAu4XE4WtURRjGhPy4_QECLEHADQP_hcgIilCALAPojo64pwnIWhCIAAtkywQOzgTQAlIb1ACKq8GEAwaoAYAAIhBAABQwQAAgD8AAHDCAADgQQAAgEEAAHxCAABQQQAAHMIAAFBBAAAAQAAALMIAABjCAAAgwgAAPEIAAAzCAAAAQAAAuMEAAIhBAABswgAAgMEAAETCAABwwQAAEEIAAEDBAABQQQAAOMIAALjBAABEQgAAKEIAAAjCAAAIwgAAjMIAAExCAABswgAAAMIAAIC_AAD-QgAAgD8AANBBAABMQgAAAEEAAJRCAAAEQgAAgL8AAJjCAABwQQAAAEAAABxCAAAwQQAAMMEAABDBAAAgwQAAgMEAAKBBAABwQQAAvMIAAOBBAAA4wgAAbEIAAFBCAAAAwQAAkMEAAKLCAAAEwgAAbMIAABDBAABAwgAAkEEAAATCAACOQgAAfEIAACjCAACmQgAAsMEAAHjCAAAUwgAAUMEAAIhCAABYQgAAIMIAAGhCAADAQQAAGEIAAIhBAADAQAAAoEEAAFBCAABgQgAAgL8AAJBBAACEQgAADMIAAMTCAADAwQAAXMIAAFBBAAAAwAAAWEIAAADBAACOwgAAREIAACRCAAAowgAAAMIAAIDAAAAcwgAAnEIAAAzCAACwQQAA6EEAAOBBAADgwAAAQMEAALBBAADIQQAAAMIAAIbCAAAgQgAAYMEAAIjBAAAkwgAAUMEAACDBAACAvwAAYEEAAGjCAAAAQAAAUMIAAFDBAABgQQAALEIAALDBAADAQQAAkEEAAMDAAACwQQAAwEEAAITCAACqwgAAEMEAAIBBAAAcQgAAoMEAADxCAAAgwQAA4MEAAHDBAACAPwAAmMEAALBBAADAQQAAWEIAABjCAACAwAAAuEEAAADBAACswgAAoMIAADBBAACEwgAAGEIAAJDBAABAwQAAAMIAAIhBAACCQgAAikIAAChCAAA4QgAAwMAAAPBBAADYwQAAqEEAAEjCAABQwQAA-MEAAIDAAAAQwQAAukIAAJDBAAAwwgAAQEAAAIDAAAAIQgAAyMEAAKTCAAD4QQAA-MEAAOjBAACgwAAAXMIAABDBAAAkwgAAUMEAABxCAABwwQAAuEEAAJLCAAAIwiAAOBNACUh1UAEqjwIQABqAAgAAPL4AAIK-AAA0PgAAVL4AANg9AAANPwAAkj4AABO_AACWvgAAoDwAAAw-AADovQAAND4AAMg9AADIvQAAmL0AAFw-AABQvQAAUD0AAAc_AAB_PwAAmL0AAFC9AACGPgAAuL0AAFC9AABsPgAABL4AAKA8AACGPgAAbD4AANi9AACavgAAuL0AABw-AAAUvgAAmD0AACy-AADKvgAAmL0AABm_AABkvgAAPD4AAES-AACmPgAA2L0AAEw-AAC6vgAAUL0AAEy-AAAcvgAApr4AAHA9AABMPgAAlr4AABC9AAA3PwAAEL0AAEC8AAAdPwAAPD4AACw-AAAEPgAA4LwgADgTQAlIfFABKo8CEAEagAIAACS-AACIvQAAhr4AAE2_AABUvgAAlj4AAJY-AAAUPgAAXL4AAFw-AABwvQAAoLwAAEy-AACYPQAAQLwAAHC9AAAwvQAAGz8AAOg9AAAdPwAAoDwAALi9AACIvQAA-L0AAOC8AACCvgAAqD0AABC9AAAcPgAAED0AAKA8AAD4vQAAQLwAANi9AAA0PgAAgr4AAFC9AAAcvgAAVL4AADw-AADgPAAADD4AAAQ-AAAwPQAAHL4AAOg9AAB_vwAAuD0AAEQ-AADYPQAAML0AAIg9AAC4vQAAhj4AAEQ-AAD4PQAAgLsAAFA9AAA0PgAAqL0AAIg9AAD4PQAA-D0AALi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=-ejyeII0i5c","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":320,"cheight":240,"cratio":1.33333,"dups":["1217347565808831842"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2099950270"},"13975034263071228424":{"videoId":"13975034263071228424","docid":"34-3-10-Z8ADCDDD9CF4870B5","description":"Epsilon + Delta Frequency combination. It is recommended to use stereo headphones. Check out our playlists: Solfeggio Frequencies : • 174 Hz - Pure Frequency Binaural Beats: • Slow 1 Hz to 1000...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1021545/4293587f5b56b5f9365da7ba25263b6b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/f8rFSAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DP8x3Bps5KjQ","linkTemplate":"/video/preview/13975034263071228424?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon + Delta","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=P8x3Bps5KjQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoWChQxMzk3NTAzNDI2MzA3MTIyODQyNFoUMTM5NzUwMzQyNjMwNzEyMjg0MjRqiBcSATAYACJFGjEACipoaHdzcmZ5bWF6ZWJnenVjaGhVQ21uVnVsT2V1SXdpa2dlVlIzc0dLd3cSAgASKhDCDw8aDz8TriGCBCQBgAQrKosBEAEaeIEC9QAI_QMA-P0I_vsD_wEAA__4-P7-AAX-BAH6A_8A5wH49gD_AAD7B_oQAgAAAO8HBf77AQAAGfT_9gMAAAAO9PkDAwAAAAYJAQn-AQAACP_2CQT_AAAA__T6_wAAAPYE_wD__wAA-gEFAAAAAAAGAgEAAAAAACAALR3j3js4E0AJSE5QAiqEAhAAGvABfw4YArkLBPwi7SoAwuDh_u4O-AD7AvIAqyAYAuDz3wAl8vwA3BQCAOrV-AEA2QX_4934AAgV-wBFAy8AKwsJ_7P5CgAtAA8B9RD4AgT48wDsBv3_-eXw_-fk2P_uDioAEf3b_PwMCQXkBwcA6BX7AxL9_gjlDAwE-vrZAywX9QEdFBL_DiPfAygHFP8jARIB9_4M-yfj-v3_IBsB_AAOBvQKC_7zBv360-kUAOn9AfsX_xv_9xD1Bg7o_AUND_0JJhkZ_iQbBfIP_vv6Dv_z_A7t_xTo-wEI2hr3Bxr6CBDgAgMHAgEKAfrvD_rzCgH_IAAt9Bc3OzgTQAlIYVACKs8HEAAawAfymB2_Ai7lO-2zkLuoUgM-_UrrO-TWyTuDhn49qkNuvHBfxzy4Apq-BlWJvblR5LzY1Hm-BQRJvfOGBb3ApLI9BNSKvJ-Scz0OMQ6-TQaRPEfoQrzjwTu9RA8hPVXZN71PCB2-qAZ1u7xRtTwZ7ac82iQaPetsjjqltQ69J8kpPF3cBjyo_Gu99gu2PC6MVL129yU9GCgkvayUubxtyiW-DL0vvfcpfTyt9Wq9O1ESPSXJmLzejwu-L7_Xu5aZLTzRxKC8_LXrPHbSjLzxJZm9h9T-vPVR4Txoor68KcoqvfYjybv6XuM997NTPXdqSzsatZw9MfC3vDDhJzskYX89tGCNPU7cAL2i1Zm9keYZPUjqsTskqMu9okk9vLQqGL11Rmq9qcwjPRVLW7zy2Jo9Xl6lPB2vAL2gMn69x6d4OxOUB71IU_29L79TvIWojLtwaGA9zYyjvI3pLjxF1Ok8qNHavJxgrLuvPC09VL1GPL7HUzstj5o8hnvAPD0Sqzsc47O63z02vbeQD7yxSIi9cP86O_cCFjyE23W9C-YUPBaFYbsoLAy9XZKevBF_ATxh2Ia8oOp_ucrFtbuGxji9hHsKPYfuIzwFUde9f-s0vTUp5LoROX096x3uPA3EMrwD4fE7ghHFPH1DH7vHHDo9rFIavfg9YrvXpoE9jhcaPL5hxzueCe09XRvFPLt7bbovKWg9DHyAvbVfqToGv4g9NPwCPPVRvjvrETQ7cuC0O8Jy37t5Wr68F0_YvLmaSDoNYWu7tjyFPETeNDstOK09lKQLPQ0KijmO6Yk8J5Twumbi_bn9UW89OwITPUUpJTjOuPq8xo4BvRJoxreqmmC9DVGmuypqRrkRaku9mMNJPLFlmTkGOzQ8_CNHPe5tgbk3U6G8s68VOf0yNTkWIyE9cFvAPD9gEjm5_Mm7cgO0POjykLlINx09uiMturTTXLn78Q28uEhwvTeKcThv80a8U8GyvBurkbhd8sk8PiDAvZle_Tgx4YE9Bx0evdhXd7WDcUs8Y3l8vUPL8jdSSM-7PjyrvU-y5DiUX0e6DWcGPB4xZTdWhu06--MivT0BnDi6rBg98cVNPdzSyzg6PMS8YaiDPCXd-rdcgr09AIAtPdvqLLYv7Iq9FpxmvKvSN7dJXqc9K-gsvJaBczdB5z-9M3uPOzi4LjcuQrc9fvoVO13XeTeLiY28AQ-xPEq-HDc9kMY8cOt8umX2M7fiIvc93OOLPVVQJjjps-g8_upWvYqGjbYRCZU8_TPjvaUSgbYgADgTQAlIbVABKnMQABpgNgoARxkQCuU8SsYBB9UG_f7cBhXGBwDv7gD-9-vbKh3d4hMOAB_tEQi_AAAA-_YCCgUA_VXrBuEnCAIP6-nSUvB_Mxz-Jjv6_sUd4xPx3Qf5DPYuAOjg0PcqG-ji2kUhIAAt-sxBOzgTQAlIb1ACKq8GEAwaoAYAAMhBAAAMQgAAFEIAAHBBAADYQQAAgsIAACzCAAAYwgAAIMIAAOBBAABUQgAA4MAAAJJCAAAgwQAAYMEAAABBAABQQQAAFMIAABBCAAAEQgAABMIAALhBAAAAAAAAjEIAAJJCAACAwQAAYMEAAPhBAAAAwAAAFEIAACjCAACgQQAAHMIAAIBBAACkwgAAoMEAAPBBAACyQgAAGMIAAI5CAADAwAAAwMAAABzCAAD4wQAA4EEAAIDBAAAoQgAAgEAAAKpCAAC4wQAA8MEAAHDBAACiwgAADMIAAGDBAABAwgAAUMIAABTCAADYwQAAhEIAAJDBAACMwgAAhEIAANjBAAAwwgAAsEEAABBBAABAwQAAsMEAADxCAADoQQAApkIAAEBBAACQQQAANMIAAJDBAACuwgAAyMEAAFjCAAAwQgAAjsIAAFxCAADIQQAAmMEAALjBAABAQgAAoMEAAHhCAAAAwAAAiEEAAFDBAAAAAAAAHEIAALjBAACAwQAAAEEAAMhBAACKQgAA4MAAADDBAADQwQAAAEEAAHDCAADwwQAAwMAAANDBAAAAwAAAEEEAANBBAABgwQAAPEIAAJhBAABAQQAAOEIAAP5CAABowgAAwEAAAODBAADoQQAAFMIAAKBAAAAUwgAAHMIAAIjBAADqwgAAMMEAAFhCAAAgQQAAqMIAAEzCAACAwAAA-EEAAEDAAACgwQAAwEEAAOBBAABMQgAAcEEAAPjBAAA0wgAAUEEAALBBAACcwgAA6MEAABDBAABAwAAAcMEAAIA_AAAMQgAArEIAAMBBAAAkwgAAwMEAAOBBAAAAwQAAFEIAANjBAAAgwgAARMIAAPhBAAD4QQAAjsIAADzCAABAQAAAsEEAAKjBAAAgQQAAJEIAALhBAAD4QQAA-EEAAOBAAAAswgAAgMIAAHjCAAAkQgAA4EAAAIDBAACAQAAAVEIAAIDAAAAcwgAAwMAAAAAAAACAvwAAQMAAANBBAAAYQgAADEIAAHBBAAAAQQAAskIAAKRCAAAIQgAA0MEAACBBAACoQgAAjMIAAHDBAACgwSAAOBNACUh1UAEqjwIQABqAAgAAUL0AABC9AAA0PgAA-L0AAIC7AADYPQAAND4AAG2_AACWvgAA3j4AAOo-AAAwPQAABL4AAIo-AACYvQAAcL0AAGQ-AACYPQAAyj4AACk_AAB_PwAAUD0AAAw-AADoPQAAqD0AAGS-AAAUvgAAnr4AAEC8AAC2PgAAgLsAABC9AAAsvgAAuD0AADC9AACyvgAAcD0AAOK-AADCvgAAcL0AALq-AAD4vQAAbL4AAOC8AACGvgAAQLwAABC9AAD4vQAAJL4AAJK-AADgPAAAgDsAAIi9AACuPgAA8r4AAIg9AAB_PwAALL4AADw-AADOPgAAqD0AAJI-AABQPQAAqr4gADgTQAlIfFABKo8CEAEagAIAAFA9AACIPQAAQDwAAEG_AABkvgAAXD4AAII-AAAcPgAAQDwAANg9AAAEvgAAPL4AADQ-AABwPQAAPL4AABC9AABAvAAALz8AAFC9AADSPgAAgDsAAGy-AABQPQAAJL4AALi9AABEvgAAyD0AADC9AAAEPgAAXD4AAFA9AACgvAAAyL0AAKi9AADIvQAALL4AAIi9AAAkvgAA2L0AAFQ-AADYPQAAEL0AABw-AABwPQAAVL4AAAQ-AAB_vwAA6D0AAJi9AABsPgAADD4AAFw-AAC4PQAARD4AAOg9AAC4PQAAcL0AAAw-AABAPAAAmL0AADQ-AACIvQAAML0AAES-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=P8x3Bps5KjQ","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13975034263071228424"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2790517645"},"7905860008281224333":{"videoId":"7905860008281224333","docid":"34-2-17-Z19CAFBA75FA30565","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/877971/26cdb08e0adf2cb20b54b0a5af678f7f/564x318_1"},"target":"_self","position":"12","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnkxQznueCsA","linkTemplate":"/video/preview/7905860008281224333?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"2. Epsilon-Delta Notation","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nkxQznueCsA\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoVChM3OTA1ODYwMDA4MjgxMjI0MzMzWhM3OTA1ODYwMDA4MjgxMjI0MzMzaq8NEgEwGAAiRRoxAAoqaGhyZWFpZ2t4aWZzc3FqYmhoVUMzU3JoTl9wc1RqbWxvMHJ1ZEppd05BEgIAEioQwg8PGg8_E-4EggQkAYAEKyqLARABGniB9_kE-_wEAOsECQH5AQAAE_39APYBAQDz-Ab__wH_AO4H9gH7AAAA-wf6EAIAAAAABAn_-_4BABb18AABAAAADvT5AwMAAAAGCQEJ_gEAAP_8-_8D_wAABPr27_8AAAD8CAEB_P8AAPAL_AUAAAAABgMBAAAAAAAgAC2W4N07OBNACUhOUAIqcxAAGmAfCAA2CQEJ9Bka6hAV2gbqC8QLGbTqANkBAPkO9uEBGMXRCuf_MPIg97oAAAAQCfsnOAADVg8W8Skf9Qz24tYNAH9eB-YfFugT8eYpHwLyLMTTFyoA1PgG-hMgxScJKx4gAC2ZwEM7OBNACUhvUAIqrwYQDBqgBgAA0EEAAFDBAAAQQgAAMMIAAMjBAAA4QgAAgEIAAHBBAADIQQAAPMIAAAAAAADIwQAANMIAAIA_AAAYwgAAyEEAAKDAAADAwQAAKEIAAKBAAAC4wQAAAMIAACDCAACAPwAAHMIAAGBBAAAgwQAAwEEAAGBBAACGQgAAmMIAAKhBAACCwgAAyEEAAJ7CAABAQQAA8EEAACRCAACYQQAAAEAAACBBAABUQgAAUMEAAIA_AACIQQAANMIAACDBAADgQAAANMIAANBBAABwwgAAlMIAANjBAAAAwgAAIEIAABBCAACMwgAAJMIAAAhCAACgQAAAREIAAHDCAABcwgAA2MEAAFDBAADywgAASMIAAAzCAAAwQQAAWMIAAIJCAACAvwAAhsIAAAxCAAAswgAAXEIAADjCAAAEQgAAFEIAANBBAACiwgAAlEIAAKBAAAAQQQAASEIAAGBBAAAsQgAAtMIAANBBAAAAwAAAGMIAADDBAABswgAAgD8AAGxCAAA8wgAAUMEAADTCAADgQQAAiEIAAIrCAABIwgAA-EEAAADAAACYwQAAWEIAAKBBAABAQgAAoEEAAIBCAACEQgAAGEIAACzCAABIQgAACEIAAEhCAACgQQAAoEAAAFzCAADgwAAA8EEAAHDBAACwQQAAMEEAAHzCAADgQAAAMEIAAKjBAACQwQAAVEIAAIC_AAB0wgAAiEEAADRCAADAwAAAgkIAADBBAAAAQgAAxMIAALjBAADYwQAASMIAABBBAAAMwgAAUEEAABhCAADgQAAAOEIAABBBAACgQAAAeMIAAIA_AADoQQAAEEIAABhCAAAEQgAAdMIAAIjBAAAowgAAUEEAAIrCAADwQQAAEEIAAJDBAADgwAAAsMEAAATCAABoQgAACEIAALjBAAAIwgAATEIAAIjBAACwwQAAoMIAAMDAAABAQAAAqEEAAEBAAACCQgAAZMIAADDCAAAcwgAA0MEAALhBAACAQQAAjMIAAEzCAACIQQAAIEEAACBCAAAMQgAAcEEAAEBAAADwwQAA4EEAAGxCAAAQQQAA4EEAAMDAIAA4E0AJSHVQASqPAhAAGoACAACAuwAATL4AAEQ-AABwPQAAML0AADA9AAAQvQAAJb8AABy-AACiPgAAuj4AAIi9AACgPAAAfD4AAJK-AACIvQAAhj4AANg9AAAsPgAAvj4AAH8_AAC4PQAAnr4AAJ4-AADgvAAADL4AALi9AAA0vgAAcD0AAFA9AABAPAAAEL0AABS-AACAuwAAcL0AAGS-AAAcPgAALL4AALa-AAAsvgAANL4AAPg9AAAEvgAAEL0AAGy-AAAkvgAA2D0AABC9AACYPQAAQLwAAIY-AACovQAAVD4AAJ4-AAC-vgAAgLsAAEM_AAA0PgAAyL0AAKI-AADYPQAAyD0AALg9AACOviAAOBNACUh8UAEqjwIQARqAAgAAgDsAAHC9AAAwPQAAUb8AAEy-AABsPgAAJD4AADw-AAAwvQAAbD4AAOA8AADgvAAAuD0AACQ-AAC4vQAA4LwAAEA8AAAtPwAAuL0AAMo-AACIvQAARL4AAMg9AAB0vgAAUL0AAOC8AABwPQAA4LwAAEw-AACaPgAAQLwAAEA8AAAcvgAAbL4AAKA8AACAuwAAyL0AAEC8AABQvQAAuD0AABw-AADYvQAAoDwAAOg9AABUvgAAqD0AAH-_AAAkPgAAED0AAI4-AAAQPQAA6D0AAKg9AACGPgAAqD0AAJg9AACgvAAAEL0AABA9AAA8vgAAdD4AAHC9AADIPQAADL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=nkxQznueCsA","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["7905860008281224333"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2956946206858017951":{"videoId":"2956946206858017951","docid":"34-10-3-Z344FFDE1E0417140","description":"Using the epsilon delta definition to prove a limit Watch the next lesson: https://www.khanacademy.org/math/diff... Missed the previous lesson? https://www.khanacademy.org/math/diff...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2918671/b9612572f867ef2548e9dc226dae9851/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/PQ7ZxgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFdu5-aNJTzU","linkTemplate":"/video/preview/2956946206858017951?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon-delta limit definition 2 | Limits | Differential Calculus | Khan Academy","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Fdu5-aNJTzU\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoVChMyOTU2OTQ2MjA2ODU4MDE3OTUxWhMyOTU2OTQ2MjA2ODU4MDE3OTUxapIXEgEwGAAiRBowAAopaGhkb3Zpd3hzZXZmcXJnaGhVQzRhLUdiZHc3dk9hY2NIbUZvNDBiOWcSAgARKhDCDw8aDz8TjwWCBCQBgAQrKosBEAEaeIEBAAIG_wIA7_v7CQsD_gAB_Pb8-P39APP9AfX1AQAA7Qf9_gP_AAD_DQAJ-gAAAPQFAwj8AAAAEPv--QMAAAAO9PgEAwAAAAoG9wj-AQAA_wX7_wP_AAAQA_jy_wAAAPX__wb6_wAA8fL7BgAAAAAL_wX-AAAAACAALV612Ds4E0AJSE5QAiqEAhAAGvABf_v0AdD70v_ZBMwAxCkJAK8aCQAJHef_zAEOAMAD4wAUDuYB0vvL_wQEBgDO-REAIu3b__rSAgAw7wD_QOL6APv2CAAy3NsAIzIk_gQV4v7nFQb-BOEMABbyyf_uA-H_7AMW_R8F6ADa9dcANgwqAO3YHgIJ9iH93s4MAdkh6QDyvdkA2xD6_82_Af7-Dx0CAtwICDD2BfvpFhECB__1_AcHH_cUCuUEC_X8DOX9Avrr2iIECuMEABQHEgbGA_f62vMrBcb38gQBCAT0JwnyB8ELAwoLDPsFBw0WAwzf-wMQ7vMACP8B__L4BgfdC_P_IAAtY8sdOzgTQAlIYVACKs8HEAAawAeA7tO-Ed7DuuXolrzJd4S61TXkPPvxzbzMpZe9car1PD08lTzUgQw-Ur2AvQLSwLuBCAG-Nz5JPa5tgLymQjw-ZWE5vTx8Qz3ZQ0u-Q5J2Oyl_gr39B7K9v63HO3sOE7yM-Jm99pZVOsatOLwwDu48LxkHvJi2STyRVkY8tI6qvJSAHb0iF6G9O5yKvAUrU732Oo692b0LvbnDpry8Wu49QGNLvCsBpzyhlHo9ZGirvMGqurzsaNy9L70BvBlYBTuEWRI9uOdZPWIgGTz0YQe9ww2IvS6dhTz-BWe9wENsPTyZB7uctLo9Su1FPLB6m7xKxMU9l9MUvTBjirxtrOS9phEuPZROwTuNOoQ8tg-5PPFWpzwY0gG-SYOrPZYmJbxmZR48CQKeu1YWgbu0yWE8FaePPf8WLjwseoy8dmVhPMkvLLtyE_e7LLmKPHMyzDzZzew9gPTtvddYP7rzh6s9iGABvBLuvjkeJSW9v9lBvNpr6rsK6uW81wRHPcUhFzwU5408xrMavScUILwFI6U91gI7vknlmjpXezi9L4f9vSqgZjrrE8o8CeZDPG5Cq7zw-WE9FF8NvneEEbsvMqI7FBT1vBj2izt95pG8MglyvBXXpbp1A8W810CUvcGhgbs2GqW9W8qePOsqD7yuiQC9ix9-PeyReTovEbQ9SpoPvopX4rkbdMg9QDdPPVcGVbs1bLo9LmGjPHtSyTgPgX48IpCGvcaDEDvtz2q91f-evOr5e7rHEUu9IE6WvNfoC7s8vfI9SshRvVfBjjkVykI8yrFrPZvM6jmDSZa8rRQEPC2IszkV14I9iU1avTnrkzjvqxI9zqYDvhah1rdd2jU9AQ6GvEA6Wrm-pmK8mPskPXqThDfMIMO91A0EvghThTmH4mk9ljW7vGLTwbirbVQ8tyhzvY6q1betGwq9TwU8PQ1TBLcwJkI96TIrvSdMALkXAxU9v3x3PT0HBzlB8QM9cU_Bvdc4ezliQ5w8wx2JPViwoTktnvC8duNdPMXGUbhLbIQ7lwQjPYCk8rhSSM-7PjyrvU-y5DiQmTC8reYPPccmFjjK4QO-ENcePJf9TjfWH7w8JTZEvMJCCDivOhU8-X96PHJGPDggSg08QzhGPQz4zDeSXRk-2U9QvazCP7m2UXg8cxLqvS7r9rhmErU8XqHPvYC6sjeOuaG8yQmuPWRuFLfsA707fNQPvhf63LjK9HA9IuErPvHLijhTU3y98PNkPSZxw7etbeq9FDu_PG_S4zeBEWo8LfghvORr_jcgADgTQAlIbVABKnMQABpgL-QAM9ol2AvuRtYO5vwFzsUa5ySmAf_X2P_D9sTy9hegsfIXABrY9wmgAAAAK-wGAhsABH_v7dpH2-_yCIm3Mw9cI_IK5ckIGKYX9zD88BYb-hpSAMsIqUcv3Kcu9VYQIAAt5bYSOzgTQAlIb1ACKq8GEAwaoAYAAIBBAACAwQAAiMEAAJDCAACoQQAAgEEAAHhCAABAQQAAIMIAAKhBAACYQQAAdMIAAAzCAACwwQAATEIAAFTCAADgQAAAwMEAAOBAAABswgAA-MEAAJTCAAA8wgAA-EEAAMjBAACAwQAAVMIAANjBAACoQQAA0EEAADDCAAD4wQAAlMIAAEBCAACEwgAAHMIAAIBAAADUQgAAwMAAAIhCAAAcQgAAgEAAAIxCAACAQQAAgEEAALrCAAAAwAAAEEIAAHRCAACIQQAAqMEAABDBAAAgQQAAkEEAAEBBAACoQQAA8MIAACxCAAAUwgAAcEIAAIBCAAAUwgAAiMEAAILCAAAMwgAAOMIAAHDBAADYwQAA4EAAACjCAABMQgAAeEIAANjBAACSQgAAgMAAAJrCAADgwQAA6MEAAMBBAADwQQAAwMEAACRCAAAAQQAACEIAAADAAAAkQgAAEEEAACRCAAA4QgAAAMIAAOBAAABcQgAAGMIAAKrCAAAgwQAA2MEAABDBAABwQQAAUEIAAJhBAACewgAAikIAACRCAABMwgAAdMIAAIA_AADwwQAAcEIAAAjCAAA8QgAA8EEAAFhCAADYwQAA0MEAAPBBAADAQQAABMIAABjCAAA8QgAAMMEAAMDAAAAQwgAAgMEAALDBAABAQQAAZEIAAITCAACAwAAANMIAAKDAAABwQQAAuEEAABDBAAAkQgAAmMEAAODAAAAgQQAAFEIAACTCAAC0wgAAgMAAAJBBAAAEQgAAYMEAABRCAACAwAAA0MEAAEDBAAAwwQAAEMEAAEBAAAAkQgAAWEIAACjCAAAwwQAA4EAAADDBAAB0wgAArsIAAKhBAAA4wgAAwEEAAIBBAACAQAAAoEAAAMhBAABMQgAAcEIAAFhCAADwQQAAAMIAAERCAADowQAA4EAAAMjBAAAQwQAAsMEAAADAAABAQAAAvkIAAMjBAABAwgAA4EAAAIA_AABYQgAAKMIAAHzCAAAUQgAAgL8AAODBAACAwAAAUMIAAHDBAAAEwgAAkEEAABRCAAAUwgAAmEEAAGDCAACiwiAAOBNACUh1UAEqjwIQABqAAgAAVL4AAHS-AABkPgAABL4AAPg9AAAFPwAAfD4AACG_AACGvgAA4DwAABQ-AAAMvgAAFD4AAGw-AAAQvQAA2L0AALI-AABAvAAATD4AAPI-AAB_PwAABL4AAIi9AACaPgAADL4AABC9AACoPQAAhr4AAMg9AACGPgAARD4AACS-AABEvgAAJL4AADQ-AAC4vQAAgDsAABC9AADGvgAAML0AAPa-AABAvAAA4DwAAAS-AAAUPgAAFL4AAJY-AADKvgAAgLsAAPi9AAC4vQAAmr4AAPg9AAAUPgAANL4AAIC7AAAZPwAAqD0AAMi9AAArPwAADD4AAIg9AAD4PQAAFD4gADgTQAlIfFABKo8CEAEagAIAACS-AADgvAAAPL4AAFG_AABcvgAAkj4AAJo-AABMPgAAJL4AAHQ-AAAQvQAAoDwAADy-AAD4PQAAML0AABC9AACYvQAAJz8AANg9AAAVPwAAmD0AAAS-AABQvQAADL4AAIi9AABcvgAA6D0AABA9AACoPQAA-D0AAKA8AADovQAAML0AANi9AAAkPgAAhr4AAHC9AAAUvgAAbL4AACQ-AABwPQAAcD0AACw-AACIPQAAuL0AAOg9AAB_vwAADD4AAEQ-AADIPQAAiL0AADQ-AAC4vQAAgj4AAGQ-AAAMPgAAgLsAAHA9AACKPgAA2L0AAPg9AACoPQAAuD0AAMi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Fdu5-aNJTzU","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":320,"cheight":240,"cratio":1.33333,"dups":["2956946206858017951"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4095548058"},"7845073015293038095":{"videoId":"7845073015293038095","docid":"34-8-7-ZC3DDBEEF14CD5ED1","description":"Why do calculus teachers make students write out epsilon-delta proofs for polynomial limits?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3005370/4ccc7556a342f7ab785dfd36a927feac/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3zgMcAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_VEU1G47cRQ","linkTemplate":"/video/preview/7845073015293038095?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon-Delta Part 1: Why do we do this?","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_VEU1G47cRQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoVChM3ODQ1MDczMDE1MjkzMDM4MDk1WhM3ODQ1MDczMDE1MjkzMDM4MDk1aq8NEgEwGAAiRRoxAAoqaGhkY2lydmZheGlnbXhpYmhoVUMyS3I4bVdIZXJ3WFQycmNVTldHYVhBEgIAEioQwg8PGg8_E6wCggQkAYAEKyqLARABGniBAQACBv8CAPf7FP39BP8BAAP_-Pj-_gD_9Qb5-AT-APcE9vX4AAAA-gj6EAIAAADu9wr_8wABABsC-_UDAAAADf_4-wcAAAAJAwcH_wEAAPn29QgD_wAACQz5-P8AAAD4Cwf6-_8AAPkJ-v8AAAAABQUB9gAAAAAgAC1etdg7OBNACUhOUAIqcxAAGmD2CQBW7xcj_RQP0-f4xvz2CbgYLKkV_xUQ_-Yh1sfzU9WS8OX_Krk16JkAAAAYCPP-OgDpfzxAkFwiDwzyzOkDF3tDJdgtRgb818v4FA3d-uLWNCwAugnqCSMQvEUVOzggAC0Tpg87OBNACUhvUAIqrwYQDBqgBgAAgEAAABhCAAB4QgAAAEAAAIBBAACSQgAAYEIAAGDCAACIwgAAiMEAAJhBAAAAwgAAoMEAACDCAACAQAAAjkIAAADAAACQQQAAFMIAAHTCAAAwQQAAkMEAAIA_AADQQQAA6MEAALjBAAAgwgAAgMEAAKZCAABwQgAAgsIAAIBBAABUwgAAoEAAAODBAABgQQAAwMEAAIRCAAAAwAAAsEEAAABAAAAwwQAAREIAAHBBAADgQAAA4EEAABBBAACAwQAA4EEAAMhBAAAcwgAAwMEAAADBAAAwwQAAEEEAAGRCAACawgAAgEAAAAAAAAAQQQAAqMEAAHjCAADowQAAiMEAACxCAAAIwgAAKEIAADBBAAD4wQAAQEAAAERCAAAsQgAAgEEAAMjBAAAswgAAgMEAAAjCAAAcQgAAMEIAAGBBAABAwgAAeEIAAKDBAADwwQAATMIAAEBCAACgQQAAUMEAAAAAAACoQQAAAMEAAOjBAACQwQAAuMIAAABAAACAQAAABEIAAOjBAAAwwQAAMEEAAHDCAADYQQAASEIAABjCAAAQwgAAKMIAABDCAAAAQgAAqEEAAJjBAAAwQQAAQMEAAJhBAACgwQAAYEEAAEBBAABAQAAApsIAAKJCAADgwAAASEIAAJbCAAA4QgAAHMIAAODBAAAQwgAA4MAAAPhBAACIwQAAEMIAAODBAABcwgAAQMAAAOBBAACGwgAAIEEAAEBAAAAgQQAAAMIAADjCAACAwAAA3kIAAJBCAADAwAAAgEIAAAAAAACowQAAFMIAAPhBAAAgQQAABEIAACzCAAAgQQAAoMEAAMBAAADIwQAAlMIAAFDBAAAAAAAAMMIAAKhBAAAAAAAA8MEAAFxCAAAAwAAAQEAAAGzCAAA8QgAA0EEAAIC_AAA0wgAAZEIAADDCAAAMwgAAuMEAAJhCAAD4wQAA0MEAAERCAACMQgAArsIAAMDBAABAwgAAisIAAFxCAACAQQAAmsIAAJpCAADQwQAAIEIAAFDBAAB0wgAAQEIAAADAAACEwgAAgkIAAKLCAACqwgAA4MAAAAjCIAA4E0AJSHVQASqPAhAAGoACAAD4PQAAqL0AABQ-AACIvQAANL4AABw-AACAOwAAE78AAIi9AADOPgAA_j4AAMg9AAAkvgAAED0AADy-AACovQAA2D0AABA9AADoPQAAxj4AAH8_AADIPQAAML0AAOI-AABcvgAA6D0AAEC8AABwPQAABL4AAFC9AACIPQAAgDsAABS-AABAPAAAcL0AAOq-AAB8PgAAdL4AAO6-AAA8vgAA6L0AAL6-AAAMvgAAFL4AAPi9AAAcvgAALD4AAHy-AABMPgAAJL4AAFw-AAAwvQAAgj4AALo-AAC2vgAA4DwAAFU_AACYvQAAUD0AADQ-AAA0PgAAqD0AADQ-AAD6viAAOBNACUh8UAEqjwIQARqAAgAAoDwAAKi9AABQPQAAR78AAOi9AAAwPQAAHD4AAOg9AADYvQAAFD4AAFA9AAAMvgAABD4AABC9AAAwvQAAML0AALg9AAAdPwAAMD0AALY-AAAMvgAAoDwAAIC7AABEvgAAEL0AAIA7AABAPAAAqL0AAMg9AACSPgAA4DwAADA9AAAwvQAA2L0AAKA8AAD4vQAAgLsAAFC9AAD4vQAARD4AAJg9AACIvQAA2L0AAEQ-AACmvgAAgDsAAH-_AACIPQAAqL0AAGw-AAD4PQAAED0AAKg9AAAcPgAA6D0AABA9AADgvAAAqL0AAEC8AAAMvgAAJD4AAKA8AABAvAAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=_VEU1G47cRQ","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7845073015293038095"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8000520754930777188":{"videoId":"8000520754930777188","docid":"34-10-0-ZADC3992C54FF280A","description":"📝 Find more here: https://tbsom.de/s/ra 👍 Become a member on Steady: https://steadyhq.com/en/brightsideofm... 👍 Or become a member on Patreon: / bsom Other possibilities here...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4890274/f645c7a4ddec2eacdab04915da9fae75/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/CaB7MAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUcFma9YNfaY","linkTemplate":"/video/preview/8000520754930777188?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Real Analysis 28 | Epsilon-Delta Definition [dark version]","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UcFma9YNfaY\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoVChM4MDAwNTIwNzU0OTMwNzc3MTg4WhM4MDAwNTIwNzU0OTMwNzc3MTg4aocXEgEwGAAiRBowAAopaGhnaWNsZ2ppdmVseW52aGhVQ2R3bzRrMVJRSFRjcV8tV1M3Q2F6cWcSAgARKhDCDw8aDz8TjQSCBCQBgAQrKosBEAEaeIH--wL0_QMA9AQH9wQBAAEEAAAC-P_-APEB_wX2AQAA6AH9APv_AAAP__wPBgAAAAAECf_7_gEAF_z6AAMAAAAH-vcFAQAAAA4L_AP-AQAAAfv8DwT_AAAM-_T6_wAAAPYE_wD__wAA7QP5DQAAAAAICfsDAAAAACAALRxy2zs4E0AJSE5QAiqEAhAAGvABf_koAdv2rgHH9tQA0g7mAaMvJf_8NdEA2vP1_7kD4AAP7tEA7ATu_wIN-QCzE-z_GdXg_-vf-wA92_wANeEIAbQHEAElCN7_OO4JACXi9f_O_gsA7OryAPbZ0P4bG9wAKu02_-jh9_3RE6_7CiA2A94RGv8G6An_36omAPsNFP33-9wA2TIJBAfzB_vWGyECC879_iUdEvzjBPEB7iIM_vvhBPoWC-IEGO4G_g4TAAPN0_b7IvgKA-YCFAb5Eu4E1vEvBuwJCvoS-xH8GAPiBdnx7wIU3vkKCQgDDgP0_fv6_fcBAQ8A-Bjx-wT7HvD6IAAt51gPOzgTQAlIYVACKs8HEAAawAeHFuG-uD7sPDlCJr31Cg88GjbnO1U9T73tA6q9X_yjPDjYi73akB8-pgUzO-etmToEVDi-lqGiuwRIvrzFVYU-VDBvvZt_KrwZgaK9QLW7PeGkX72-77m91o9NPUEWvTyPDom9qlNUO8k5MTxyHmk9O2pxvby0PL3kw8c8w_IguoOa67zcahk69RFYvRN8WL2rR_U86kd5veHs1rzr4LA9f3iMvHwVT7y0sLI9TCUyvenlILtsfOa9sK3fvBMhX71C0uc8McOQPMgljrxKDx67bcW-vMJRjTxuU5e8WFN5Pbd547t-_gs-zbGcPcYOj7wDaIo9d0ZAvUqC7Dr5oAe-9BqbPS-BgDtwl509HxMZPnqtOTkVORS-T5VvPKsZo7yzvje8tx0FvPq3iTvThuM9zHZqPdZ0vTzQgJU9Q5CDPMF9kbsxLUW9JGC2O_SwhjyG4k49kP5yvUagVbz3pbM9ZsinvPxlwbweJSW9v9lBvNpr6ruouJ47QhlUPWGfZ7o6Oz49GO0RvREicLuP4BY-W3gOvgPnDrzO8ga9kDiKvZzLQ7zRx987M92rPJdDAbxkAqO8z6zLvXFx1Dv50A-9196nun5a3jvRMho854xIvdk8Mzyhogq-G_z1O2ZvJbtUruy75Fl4PZYVFrxCPSI8LXFpPVnppDs5oAA8olcLvGlTDTgMAxY9fQgqvPrUUrv7m2s99gtWPQ4rJ7pSXxs9WWGEvG15WDlS-Y28Jw6FPBdyV7sVLAK8FgS1vTmdCrrdYZM9u5cLvqUOaDnkROC8AFqMO3Z2kLgyu7g7N6jdPZtsBDiF-SE9ydAMvWo2_LWrPZG9GlIVvjBRCjolJZg99iWbPNv0gznexSC9qKxhPTgRrbgUHIO9xyStvRpRFTh5-jI90dSBPeCsATkWIyE9cFvAPD9gEjkz7hm8fFdOPR51CDm9Jpo9gQaLvcsL47jaQqa9OymdPQIvjbcSZ7W9p4ZnvW6r3zjG86495J-pPeQCajZGGia9ftcRPVAAI7cYx6I944WZO5nb0TeRxCG9iwysvcgmfDirrHI9uRvAO_-s0bhDfry9m0ZJvHhLyDfeiLg8wm4zve2cr7fvLXY8L3KqPMV_3ThhoFA99NlGPSuYJjiCVUU-dMg3PcnchLnNx3q90xXsveab-Lg8cdS8yZ0IvfEbgLcKzgo9w2ebPZxVhTcd4ww8Z0bfvWlQErjK9HA9IuErPvHLijgYJzm9lEOlPWWUx7hgRqe9F4EQu5N02Tf5DqM8UXKgOpexFzggADgTQAlIbVABKnMQABpgHvIAOuUg7u8UKfEF89zu2hbl9RTODADd6gDX9uroCBvs4Qbu_zvVHgC6AAAAE-8FK_MA7Vf7F_Ek7zYr6MTFNhp_H-745NEA8uXbERwEDjjm8yQrAMj_zBsYD8otCiIhIAAtTA1EOzgTQAlIb1ACKq8GEAwaoAYAABRCAACowQAATEIAAHDBAAAQQgAAAEIAALxCAABgwQAAmMIAACzCAADYQQAAjsIAAEDAAAAowgAAwEEAAEBBAACYwQAAQMEAABxCAAAAQAAAAAAAADDCAABQwQAAHEIAAEDCAAAoQgAAIMIAAIBBAAA0QgAAAAAAAGzCAADgwAAAgMEAACBBAACgwgAAiMEAAFhCAACiQgAAyEEAAEhCAAA0QgAAgMAAAGhCAACAvwAAEMEAAEjCAABAQAAA6EEAAIhCAACAwAAAwEAAAETCAAAwwQAA2MEAALBBAABwwQAAKMIAALhBAACAwgAAWEIAAHxCAAAswgAAwEAAAIzCAAAgwgAA4sIAAKDBAABEwgAABMIAAFTCAAAQQgAA4EEAAIDCAACYQgAAuEEAAEzCAAC4wQAAHEIAAJBBAABEQgAAFMIAAIBCAACAQAAA4EEAADBBAAB8QgAA4EEAAHBCAADoQQAA-MEAAJjBAACkQgAAAEEAAGjCAACIQQAAgsIAABzCAAAAwAAAWEIAAKBAAAAgwgAAYEEAAADBAAAEwgAAtsIAAMjBAABwQQAAPEIAACDCAACMQgAAfEIAABhCAADAQAAAYEEAAHBBAABAQQAAAMEAAEzCAADAwAAAyMEAAPDBAADMwgAAFMIAAKBAAADwwQAAgD8AAKLCAAAgwQAAlMIAAMBBAADgwAAAgEEAABTCAAAcQgAAiMEAAMBAAAAwwQAAMEEAABTCAABMwgAAgEEAAIhBAACAvwAAgMEAAIBCAABgwQAAAAAAAOBAAAAAwQAAmEEAAIjBAAAcQgAABEIAAIDBAAAAwAAAsEEAAAjCAACSwgAAbMIAAJhCAAAMwgAAoMAAABxCAAAIwgAA8MEAADBBAADIQQAAokIAAFBBAAAwQQAAwMEAAHBBAACAQQAAEMEAAGTCAACAPwAAHMIAAMDAAADwwQAAxEIAAGzCAAAAwgAAIMIAAEBBAABQQQAA2MEAAAzCAADoQQAA4MEAALDBAAAMQgAABMIAAGBCAACAwAAAAEEAAHhCAAAwQQAAAMEAAIjCAAD4wSAAOBNACUh1UAEqjwIQABqAAgAAMD0AAI6-AADoPQAAoLwAABS-AAA0PgAAgDsAACu_AACCvgAAJD4AAAs_AABAvAAAQLwAAAk_AABAPAAAqr4AAJI-AAAwPQAA-D0AAPI-AAB7PwAAhj4AALg9AADiPgAAbL4AABA9AADIvQAAcL0AAEw-AAAQPQAAVD4AAAS-AAAkvgAAyL0AADQ-AAAkvgAADD4AABS-AAArvwAADL4AAN6-AABwvQAAcL0AAIa-AADIvQAAuD0AAJI-AACyvgAA1j4AAI6-AAAUPgAARL4AAEQ-AAD2PgAArr4AAHC9AAB_PwAA6D0AADC9AAD-PgAAHD4AAHy-AAB0PgAAEL0gADgTQAlIfFABKo8CEAEagAIAADS-AAAEvgAA2D0AAF-_AAAcvgAAkj4AADC9AACKPgAA2L0AAEQ-AACAOwAAUL0AAOA8AACAOwAALL4AAOA8AADYPQAAQz8AAJY-AADGPgAA2D0AAHC9AAA8PgAAhr4AAOC8AAAwvQAAyD0AAIA7AADYPQAAVD4AADA9AABAvAAAQLwAAGS-AACePgAAdL4AADC9AADYvQAAlr4AACw-AAAwPQAAiD0AALg9AADgvAAA-L0AAEC8AAB_vwAAgj4AAMg9AAB8PgAAmD0AAIA7AAAEvgAAvj4AAMo-AAAQPQAA4DwAAFA9AABAPAAAbL4AADw-AAD4vQAAPD4AAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=UcFma9YNfaY","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8000520754930777188"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1010080041"},"10022051940782393796":{"videoId":"10022051940782393796","docid":"34-7-6-Z0350C75C0E1D45A6","description":"My ultimate introduction to the epsilon-delta definition of limits in calculus! The epsilon-delta definition of a limit is commonly considered the hardest topic in Calculus 1 (it's also the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1001002/41ff370904a644ad8fd2fd50d3726d89/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/QXIu7AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDdtEQk_DHQs","linkTemplate":"/video/preview/10022051940782393796?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"epsilon-delta definition ultimate introduction","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DdtEQk_DHQs\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoWChQxMDAyMjA1MTk0MDc4MjM5Mzc5NloUMTAwMjIwNTE5NDA3ODIzOTM3OTZqiBcSATAYACJFGjEACipoaHJ3cGl6a2NucW5hZ3hiaGhVQ19TdllQMGswNVVLaUpfMm5kQjAySUESAgASKhDCDw8aDz8TjwmCBCQBgAQrKosBEAEaeIEA_f_-_gMA7foH-wQAAAAAA__4-P7-AOUGBwL3_AIA5wH49gD_AAAA-_gK_gAAAPcDB_z8_wAAJP32_QAAAAATAPQC_wAAAAcH_wL-AQAA-fb1CAP_AAAFA_r3_wAAAPwIAQH8_wAA-wH8BAAAAAAICfsDAAAAACAALVL32js4E0AJSE5QAiqEAhAAGvABVgrw_9QAGP_zJOAA9wPtAYEFC_8pDtUAzgT9APIE9QH-EvcA2uIAACUDIQDMEwYADuPIAgP7CwAR9fz_JukGAekOAwA25_MBDfIFAOnq8f_HCBn_7_wAAfDZ9QEjG_ABBgEK_hEm7QEE8usA-xMVARf-FwQV5PoCAQj9_v0JDv4H9OEA3gEK_BrxH_3p-CMFCe79BgUJ6gD4Nf4A-uMD_gHbCv8gKOH_AQn8_wbnCP3w2wUBEvPwBv37EggeBvL57fQS-u7eCQIO6fz5KvAM_Q3-AwPj3wMK_fb5-vDsAP3yHfH_Agr0B_v2_Qvu7_sSIAAtbidIOzgTQAlIYVACKs8HEAAawAdr88e-crKDvMjjk72p9xS8RCXDu3cuzLwNVEY9-jyAPUsdhL0-0Oo9mc7zPJ2HUbsUz-G-wa37vNXnCr2Y3SM-gUmQvUP09bzc9Be-ftQ1PapiDTxtO-29fbg_vBryFTy6Eww-rMDkOZAWl71B3iM7GTmbvWwqZrxAbAk-sFxKPAE35juJR_28k52ovWtwEb22_WE88aKKPIz-hjx3Me09jwApvXaWETz1Yi09WVSfPHG74TulUf273e16PelKwjtaSoY-KyXVPIiEzrt2TW28vQfDvI2RtrtsB4O9zRbaPJYwibzRG5O9TzRZvG5kgzxjkgK54F4-vCQVvLyllQw9n8izPU8foju7Sx09uG0EPRNxxDyhXY-8yXcJPgfSJDuQaQ09sxrcPFl9_zyqBmY9oeiLPRvVq7vWZJc9OCEDvbc1N7uQJBC8EN-jPaZiAz1YcJS9aGJ1PaLgFLunrRA6uYy7PVpiijw2PB48y6UMPeE8QbyXgh48Dg8EvHca3zw7s9W77diIPWIQu7u2FAs9kVSAveVrhbyD6tU6UZAQvBq4ybuNX1i9ACtRvCIZcjwLRqU8LhdWvdyIo7qmP5C9fOC6u8CeJzshHok9oK5pPUA4GTzYiDu8ycduPc46ITy_a6e7OsO5PNY1f7x580o9XC0FPLOaLjxQq-i9rhBWvAhafTtHTNo8KrcjvcXNXrpIqQS-wIEgOko1V7rjxQI-2Z0JPbDlxbkCPrk9OatvvVTt9jiIpke9V2CDvXT_ZzjRSMo9C-qAvI7t4Lj7g3e96PjoPbIUArplXGe9uHw_vVAulTlu3JI9O7IovSNOI7lkO1-9N1vvvHciyjivjcI8-sS7vVx5ebnFxIs8bFTxvFX2g7n6CHw8hWy6PW3Y5LgL1yG8HG98PYzBrLgWQEI8XtoQPdx5h7d6PwQ9vXRuvPyFSLhxZqW9cmKZPELo_jlJnwY-eKK_PEZATDm-58Y9AB2mvWpDhjkUBA89EF0APo3Dcbg-Jg09I-CbPbDrHLjabFE9mH-5vZ1F2zid8og9Pk13PS-gHTiq7cu804GRPQaTZre0wEi96QAyvVIzlzdvBIM9gGCjveME6jiC1ZI9cwT6vAvfO7Y8tq-9E0tFvf6vvDcbsHW8tEoavaEVujfmI-k84ovbvCMD1bb3YA09AokhPUHvALgMGMm8mLIAu3akLrfTM4g9hQv5vEB6JLiZDp285aiiPfxdMDhZlnk8xQxjPRu4jriETqM89uwYO2fQvbfveVk8BliFPRCIqDYgADgTQAlIbVABKnMQABpgFf8AKPUr0_QpOvcJ2OX66dri_xWhJP_H4v_--bXxFTTfyvryAB3HG_CoAAAA__L1COUA_Hje-ds9Bh7z3Y_fHBl_TR8G0_QF7rcGEiIA3j8A8gMaAMT6nxY_HrFMJBAjIAAtRt8dOzgTQAlIb1ACKq8GEAwaoAYAABRCAAAMwgAAiEIAAHDCAADAwQAAMMEAAIBBAADYwQAAtMIAAJjBAABAQQAAoEIAAPDBAACAwAAAdEIAAMBBAABAQAAAcMIAAADAAAA8wgAAqMEAAHBCAADAwQAAREIAAARCAAAAQgAAGMIAABDBAAB4QgAAJEIAAAxCAAAAQgAAUEEAAIBBAABAQAAAiEIAABDBAADSQgAA6EEAAAjCAABQwQAAuEEAAIhBAAAwwQAAgMAAAADBAABgQQAA8MEAALpCAAAAwAAAYEEAAIjBAAAAQgAAIEEAAABBAAAwwQAAyMEAAARCAAAEQgAAAEIAAGDBAAAAwQAALMIAAADCAACAwQAAMMEAALhBAABcwgAAgMIAALDBAACsQgAAuEEAAGzCAAC2QgAAMEIAAJDCAACowgAAkEEAAIhCAACowQAAGMIAACBBAACIwQAAIEEAAJhCAACAQgAAIMEAADBCAADgQAAAEMIAADjCAABoQgAA8EEAAEDAAACwQQAAFMIAAIDAAAAAQQAArkIAAMDAAABkwgAAVEIAAPhBAABcwgAAAMEAAJpCAAAAQQAAnEIAAFjCAAAYQgAAoEEAAIA_AACcwgAAAEAAAJRCAAAgQgAAEEEAAPDBAAAgQQAApsIAABTCAADgwQAAIEEAAFDCAAAEQgAAuMEAAIhBAACiwgAAoEAAADjCAACAwgAAMMEAAEDAAAB8QgAAQEEAAABBAAAIQgAADMIAAKDAAAAkwgAA4EEAAIhBAADwQQAAFMIAACBCAAAsQgAAOMIAADBCAADQwQAANMIAAPhBAAAQwQAAMMEAAPjBAACAwAAA0MEAAGDBAACAwQAAmEEAAAxCAAAMwgAA-EEAAKjBAADgwAAAqEEAAIDBAACAPwAAmMEAAIjBAAB0wgAAeMIAAAAAAABoQgAABMIAAABCAADwQQAAaEIAAGjCAACiQgAAgEIAANjBAACwwQAAQMIAAFTCAAAsQgAAgMIAAADCAABwQQAAEMIAAARCAAAQwQAA2EEAAEDBAABwQQAALMIAAJhBAAAgwQAAJEIAAODAAADQwSAAOBNACUh1UAEqjwIQABqAAgAAJL4AAFS-AADYPQAAgr4AAFS-AABUPgAABT8AAAG_AAArvwAAPL4AAM4-AAAUvgAAyL0AAAw-AADIvQAAhr4AAL4-AADYvQAAVD4AAD0_AAB_PwAAND4AAHC9AAAMPgAAtr4AAIC7AACgvAAA-L0AAMg9AACgPAAAxj4AANa-AACivgAAyL0AAJY-AAAlvwAAcD0AANq-AAAvvwAA2L0AALg9AADevgAA-D0AAJq-AABcPgAAtj4AANI-AADivgAAyj4AAMa-AADOvgAAnr4AAFy-AAALPwAA-D0AANg9AABvPwAAcL0AAGS-AABZPwAAFD4AAOA8AABQPQAANL4gADgTQAlIfFABKo8CEAEagAIAAIA7AADgPAAABL4AADe_AAD4vQAAGT8AALY-AAB0PgAAgDsAAHQ-AAAcvgAAyD0AACQ-AABEPgAAfL4AAIg9AABAPAAASz8AAKC8AAAbPwAAEL0AALK-AACOPgAAFL4AACS-AAC6vgAAoDwAAEC8AABwPQAAuD0AAPg9AAD4vQAAHL4AANg9AACaPgAAyr4AALi9AACSvgAATL4AAKg9AAAkPgAAmj4AAIY-AAAkvgAANL4AAEQ-AAB_vwAAZD4AAFQ-AAAUPgAABD4AAO4-AACYPQAACz8AAEw-AAAkPgAAuL0AANi9AAAUPgAANL4AAMg9AAC4PQAA4DwAAKq-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=DdtEQk_DHQs","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10022051940782393796"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3439391007"},"18047139751631415245":{"videoId":"18047139751631415245","docid":"34-0-5-ZA7A9DF225F38673C","description":"definition of the limit of a function. We will explain the definition of a functional limit in depth, see some visualizations of it, discuss the negation of the definition of a limit, and then...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3908092/7c50d010c7e4e4b2d275cf59ae68e14e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2q2oRQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkVQNhAIFZYc","linkTemplate":"/video/preview/18047139751631415245?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon-Delta Definition of Functional Limits | Real Analysis","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kVQNhAIFZYc\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoWChQxODA0NzEzOTc1MTYzMTQxNTI0NVoUMTgwNDcxMzk3NTE2MzE0MTUyNDVqiBcSATAYACJFGjEACipoaGNjYXh6aGJ6c21qbGliaGhVQ3lFS3ZheGk4bXQ5Rk1jNjJNSGNsaXcSAgASKhDCDw8aDz8TkQqCBCQBgAQrKosBEAEaeIH2-gL-AQAA7PoI-gQAAAAP_QYC9wEAAPb6-_z-A_8A7A8J-gQAAAD-CPMH_AAAAPsDBAX1_gEAEvX4CAIAAAAa9vUJ_QAAAAAY9Qf-AAAA8Pv8AwMAAAAN-_T5_wAAAPL5__v7__8A-_T_CQAAAAAZC_P7AAAAACAALa0-0Ts4E0AJSE5QAiqEAhAAGvABfxbvA_vsCALiDuUAwRPuAIzvGv8hEekAxt8CAd0LxwHgE9kA5e4X_wQDBgDGIxcBDeTXABfo_gAq8QD_EQELAOYg_QEP0QIAO_UEAOf66gDiDBf_HAIVAAjh7P8-Fwj_CPUP-9cEyf8M_9wCKtwgAQT6FwEZ8Q8C_-UI-94GEAPUAOL9BwYOBg0GCv3qKB0C_wcLAgUK6ADa9vcCDPXtAADzCwLzBv36MQz_CfP0BATNB_AA3hTn-xn7HQXvAPz_-AQS9OTgAAAVFA35DPMBBe0XBwIb4O0CEQv5APX7GAPr-wL49An8_e_8D_vs7foUIAAtnXU1OzgTQAlIYVACKs8HEAAawAcJUtm-RQSQuoyg8Tyagpu9qbUXvAMFXr1L07a9lssrPazuB71q-5I9B-v_PHcKHj2cTZe-6j1cuWSPFrwtC1Y-sIpcvUEtJr0r_rq9zPdCPZs5BL3n_iq-Xcv_PEh0KjxssPA8CmuhOw7Zo7rBfr498vfBvRetbbwBnMW7ff7Bu6CSbr2OgSu9nx3wvT_xbzv7ipo82ip3vOWtxDydhXg9vD6Qu4oFPrzeQHy9nL-qO5d7t7wX3oA9AyzNPNVcrryUwhw-5JPfu3qjGz2chLk7fjvJvOqrULwTUSO8wYYQvFC04bz3t7q8haaZO8tnubxpox890iMhuVqJVLzZP--9nPn1PQM2b7vdYDg-KaZcPeMbPjp83KK9v2D3PExELrxmZR48CQKeu1YWgbucnyc9a-8TvU3zjjwDmPI9E8rMPFxZ4rzyM788qmvjPHRiDz3dazc9jJyqPQR-g7yo7Ko8oV4VPf0dwLvDCpy9STXHPCQpiruT_t68KUfMPf2f5Ds5T-u8PxkSOu-bUjuEnp09Q_KEvZm3ajx7yZW9GBzvvNtkebzdwX49vLskPYh7kbwiGyg-sWnKvNulyzpICMW82hcWPGkYhLs3qu48KplSvQtHazwpW-S9G_chPV6rkLtuIqk8jKZOPZtR1ruvZni8LTeSPZ5VDzuVjXi9666HvAwiTjttWFM91e1HPDLn17oti5M9nq8ePaCiDzrVlQ8-1OxGveVHGbmVnuk8IqESvUfkMToPKcS7GusxPWol6TkRwig9NF_KvKnru7ryhX887SBAvPM64jgb6qG9sluVPSzZmTib80I8JIECPOEkpziox9a9WQ1TvcknP7hf3Ly91eK4vLQlXLfKegA9OahuPdwSmDoC9Iu9RTWQvTuGMTgn94u95nkLPZ8LuLbxRZA9Uq1PPJ6yvzi-jhM7nvggPZU7Tbja93K9mgwCvUmuojmeAzC9D_IqPr3F37guYp69oPlhPX5ybrkUBA89EF0APo3DcbioT5c8I0ItPc_afjgIm_A8uf3SPUdpZTj1_0M7x3lkva9jtbeJ8Lo9wxGkPOeMoLhKUai9Y27tPPsFPjiOiLU62cpwvf8JZzcKqLs9XFqgOWmrGjjMSi49m1JDvVq2S7gfnwA-pOSQvRXoOrmMnpu9yX2hPKR1ubfVXZm8EZeCvQdxA7iGzYu9CLDoPVSzljgdlww9SQ9DvlQxTbnOfeY7PB-UPb0Svzi44BG979QQPOjGBLk5F3O7el_Zufhti7ff-K89kynwvFIiuTcgADgTQAlIbVABKnMQABpgEwQAM90a0PsfNOoZ9u3z0fXtASfEIv_02wDm9djq_DPQwxD0ADXVHu-zAAAAHfbqKdEA8WjuENMz4xXe6aLzGBR_NxMa1e0C8LD5CDMN5hL_9AooAOcBpyk5B8YxESwnIAAt0CMuOzgTQAlIb1ACKq8GEAwaoAYAAIhCAABgwgAAQEEAABjCAAAEwgAACEIAAIxCAADYwQAAgMAAAAjCAADoQQAAQMEAAMDAAAAwQQAALEIAADBBAAAYwgAAsMEAAOBAAAB0wgAAJEIAABTCAABUQgAAkMEAANjBAAAcQgAAyMEAAMDBAAAAQQAAAAAAAPjBAABAQAAA2MEAABxCAAAswgAAEEEAAKhBAACwQgAAEEEAAGBBAABAQgAAwMAAAIRCAADQQQAA6EEAAIjCAAAAwgAAMMEAABRCAACQwQAAgsIAAEBAAAA4wgAALMIAAPBBAAC4wQAA3MIAALjBAADYQQAAHEIAADhCAABgQQAAmMEAAATCAACgwAAAvsIAAIC_AABwwgAALMIAAETCAACKQgAAkEEAAGDCAABwQQAAaEIAALrCAADQwQAAoEEAAHRCAAAEQgAA0MEAAPhBAAAAQAAA0MEAAFBBAAAwwQAAokIAAIBBAAAYQgAAmMEAAHDCAAD-QgAAAAAAACzCAABwQQAAvsIAAOjBAAAAQQAASEIAAMBAAADAwAAAkEEAADxCAADYwQAAHMIAAExCAACwQQAALEIAADDBAAAQQQAALEIAAOhBAACwwQAAoMAAAARCAADwQQAACEIAAATCAADIwQAAHMIAAMDAAAB0wgAA-EEAAGDCAADAQQAAfMIAACzCAAAQwQAAMMIAAABCAACgQAAABEIAAGDBAAB8QgAAAEEAAOBAAACwQQAANMIAAKTCAACowQAADEIAAIA_AAA8wgAAAMEAAAxCAADwwQAADEIAANjBAAA4QgAAwEEAABBBAADgQQAACEIAAMjBAACGQgAACEIAAETCAACMwgAA4MEAAMhBAABAQAAAoEEAAKBBAABcwgAAsMEAAGhCAABgQgAAPEIAALBBAAB4wgAAfMIAABxCAACYwQAAEMEAAIA_AADQwQAAAMIAAFjCAAC4QQAAIEIAAKLCAAAAwQAAIMIAAPhBAACQQgAA4MAAAADBAABwQQAAYMEAAAhCAADgwQAAoMIAAJhBAABAwQAALMIAACRCAADQwQAAgMEAAODBAACIwSAAOBNACUh1UAEqjwIQABqAAgAAPL4AAKK-AABEPgAA-L0AAKC8AACqPgAAMD0AAC2_AADCvgAAoDwAAIY-AABEvgAAMD0AAI4-AACKvgAABL4AADQ-AACAuwAAfD4AAAE_AAB_PwAAqD0AAKg9AAAcPgAAXL4AAMi9AAD4PQAAEL0AABA9AABwvQAAij4AAIq-AABsvgAAhr4AACw-AAC2vgAAHD4AADy-AAD2vgAAQLwAALK-AAA0vgAAUD0AAIq-AAAQPQAAgDsAANo-AAD-vgAAfD4AAKK-AADIvQAAHL4AAEC8AAC-PgAAcL0AAIi9AAA7PwAAmD0AAKC8AAAJPwAAHD4AAOA8AABQPQAANL4gADgTQAlIfFABKo8CEAEagAIAABS-AACAOwAAyL0AAEm_AAB8vgAAxj4AAL4-AABsPgAAgDsAANo-AACAOwAAqD0AAKg9AAA8PgAAdL4AABA9AACYPQAAMz8AAIg9AAAPPwAAqD0AAGy-AAAsPgAABL4AAOi9AACovQAABD4AABA9AAAwPQAAND4AAEA8AACYvQAAJL4AALi9AADIPQAAXL4AADC9AACCvgAANL4AAPg9AABQPQAAmD0AAHw-AADgvAAAUD0AAHQ-AAB_vwAAgj4AAIA7AADYPQAAqD0AAKI-AAC4PQAAxj4AAHA9AAAMPgAAQLwAAJi9AACSPgAAZL4AAAQ-AAAMvgAAEL0AALi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=kVQNhAIFZYc","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["18047139751631415245"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3258919429"},"13871446599888456092":{"videoId":"13871446599888456092","docid":"34-2-8-Z73980C61F78E5BDB","description":"Welcome to Godolkin Rush Week! To celebrate, The Deep filmed a new recruitment video for Gamma Epsilon Delta, where he spent seven fulfilling years as chapter president. If you’re social, strong...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2712281/c9f221be12816486d1a11a8acf8ec73a/564x318_1"},"target":"_self","position":"18","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2XQE5iuV-DY","linkTemplate":"/video/preview/13871446599888456092?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Deep - Gamma Epsilon Delta Recruitment Video","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2XQE5iuV-DY\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoWChQxMzg3MTQ0NjU5OTg4ODQ1NjA5MloUMTM4NzE0NDY1OTk4ODg0NTYwOTJqrg0SATAYACJEGjEACipoaGZ1dm5jdG5hanltZ2VjaGhVQ2VrWWd1NHFUaXFWdExjeGdCYmhqbncSAgASKg_CDw8aDz8TZIIEJAGABCsqiwEQARp4gff-_AD-AwDpB_QGBQEAAAQAAAL4__4A-f8FAPoE_gDd_vsEAP7_APoH-hACAAAA7vcK__MAAQAh_gX7BAAAAALw9QMDAAAAARAABP4BAAD_Bfv_A_8AAAT7_vf_AAAA_AgBAfz_AAD6AgQHAAAAAAgJ-wMAAAAAIAAtAFPbOzgTQAlITlACKnMQABpg9gEAGQEcCdsvEOYZEg7y3xndEga38wD47ADsIuHLCPjWnw8C_xb4AAS2AAAAEQ7tHjQA9FgmOM08_ej78OvUOQ9_Lx7hJS4W-dHhFTT98OMM4CoYAPcO3fNh8fofBvISIAAtFMw9OzgTQAlIb1ACKq8GEAwaoAYAAFBBAADAQAAA0EEAAFxCAABAQgAAWMIAANhBAADoQQAACEIAAJhBAABQwQAAFEIAAAjCAACIQQAAsEEAAEBAAADYwQAAWEIAABxCAAAkwgAAuMEAAPLCAAC4wQAA2EEAALhBAABQwQAAAEAAAILCAABwQQAA2MEAAAxCAACAwAAAUEEAAFBBAAAgQQAA2EEAAAjCAACgQQAAEMEAACBCAABUwgAAkEEAAIjBAABkwgAAgMEAAKDAAACYwQAABEIAAABCAACOwgAAQMAAANhBAACIQQAAgMAAADhCAAAwwQAAUEEAAIhBAACGwgAALEIAAFBCAADYQQAA2EEAAGDBAAB8wgAAcEEAABDBAABAwgAAbMIAAIhBAAAQQQAAqEEAAARCAACkQgAACMIAAEzCAAB0QgAAuEEAAIBBAABUwgAAQMIAAERCAAA0wgAAmMEAAKDAAABAwAAAlMIAABBBAADYQgAAgD8AACRCAAAsQgAAPEIAABBBAACoQQAAqMEAALjBAAAAwAAAVEIAAMBAAABQQQAAJMIAACxCAABwQgAAtMIAAEjCAAA0QgAAiEEAAHDBAADQQQAAQMEAAGBBAACQwQAAeEIAAKDAAAAAQgAABEIAABBBAADQwQAAQMAAAMxCAAAUQgAAIEIAAOjBAABgwgAAZEIAABRCAACSQgAAqEEAACjCAACQwQAAQEAAAAjCAACWQgAAiMEAAAAAAADYQQAAAMEAAIC_AAAQQQAAgD8AAFTCAAAwwQAAwMEAAIjBAACoQgAAAMEAALBBAACYQQAAcEEAANhBAACYwQAAZMIAABBBAACmQgAAGMIAAIBBAAAEwgAAKMIAAFDBAACAPwAAcMEAAJzCAACgwAAAAMAAABDCAAAAQQAA1MIAACTCAABQQQAAEEIAAIbCAABgwQAAPMIAADxCAACgQQAA4MAAACTCAACYQQAAeMIAAHhCAACAQAAA4EAAAAzCAAAgwQAANMIAABDCAAD-QgAAgMIAAAhCAABQwQAA0MEAADxCAACQwQAAlsIAAOhBAABUQgAAQEEAAKBBAACIwiAAOBNACUh1UAEqjwIQABqAAgAAQLwAABA9AADYPQAADD4AADC9AAA8PgAADD4AACG_AACKvgAAHD4AAEw-AAAUvgAALD4AAHw-AAAcvgAAVL4AAJg9AABcPgAAPD4AAA0_AAArPwAAEL0AAOi9AACGPgAAJL4AAEC8AAAMPgAATL4AABC9AABEPgAAVD4AAES-AAAkvgAAND4AAFy-AAA0vgAAUD0AAJ6-AAANvwAAVL4AADy-AABAPAAAbL4AAAS-AACKvgAAoLwAAII-AAAwvQAAiD0AAKA8AADIPQAAnr4AABA9AADiPgAAJL4AALg9AAB_PwAAlj4AABy-AAD-PgAAyD0AAIC7AADIPQAAvr4gADgTQAlIfFABKo8CEAEagAIAAJi9AADgPAAAyL0AAGG_AACivgAAhj4AAPI-AADIvQAAXD4AAAQ-AABQvQAABL4AAHw-AADIPQAAuL0AAKC8AAAQvQAANz8AABS-AAAFPwAA2L0AAPa-AAA0PgAATL4AADA9AAAkPgAAiD0AAOg9AAAsPgAAQDwAAIA7AAAwvQAA2L0AAI6-AAAwPQAAML0AAEC8AACAuwAAmD0AAOA8AADiPgAAgLsAACQ-AADgPAAAgr4AAMi9AAB_vwAAUL0AAFS-AAADPwAADD4AAFw-AAAQPQAAlj4AAKC8AADYPQAAPL4AABQ-AAAEvgAAir4AAMo-AABwPQAABD4AAPi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=2XQE5iuV-DY","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13871446599888456092"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1758462683104600578":{"videoId":"1758462683104600578","docid":"34-9-0-Z997801FC418265F8","description":"Epsilon, KAGE NO Jitsuryokusha Delta, EL Perkins, イプシロン, ゼータ, イータ, デルタ, Novela Ligera, Light Novel, Anime, Anime Trailer, Anime PV, Eminence IN Shadow, TV...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3298404/a4e95d53108e0041a48c600c0bb3294a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pA_hLwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVf7RVZREcF4","linkTemplate":"/video/preview/1758462683104600578?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Delta epsilon zeta eta | the eminence in shadow | trailer de personaje","related_orig_text":"Epsilon Delta Clips","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Epsilon Delta Clips\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Vf7RVZREcF4\",\"src\":\"serp\",\"rvb\":\"Eq4DChI4MjU2MjUxMTMyNzIyNjIwMDQKFDEwNjQyNjQ0NjM3ODk3OTI5MTQ5ChQxMzk3NjE2MzgzMjk4NjYyNTY4NAoUMTE2NjM1NzE1NTUzMTA1NjU0OTcKFDE0MzU1OTczNDIyNDkzOTg5Nzk4ChQxNjgyNTYxOTg1NzU0MTQ5ODk2NgoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTNTg5NjQ0ODc1NDE1Nzg3MDIwMAoTMTIxNzM0NzU2NTgwODgzMTg0MgoUMTM5NzUwMzQyNjMwNzEyMjg0MjQKEzc5MDU4NjAwMDgyODEyMjQzMzMKEzI5NTY5NDYyMDY4NTgwMTc5NTEKEzc4NDUwNzMwMTUyOTMwMzgwOTUKEzgwMDA1MjA3NTQ5MzA3NzcxODgKFDEwMDIyMDUxOTQwNzgyMzkzNzk2ChQxODA0NzEzOTc1MTYzMTQxNTI0NQoUMTM4NzE0NDY1OTk4ODg0NTYwOTIKEzE3NTg0NjI2ODMxMDQ2MDA1NzgKFDE2NzA4ODk0NzEwNTUwMDA5NjM1ChQxMjg5NDE5MzM4MDc5NDU3OTg2NxoVChMxNzU4NDYyNjgzMTA0NjAwNTc4WhMxNzU4NDYyNjgzMTA0NjAwNTc4aocXEgEwGAAiRBoxAAoqaGhwcG1zZGFzam56eG9tZGhoVUNhY2JYU2FLamo2V2lVeDdWWHR4bE9REgIAEioPwg8PGg8_E0CCBCQBgAQrKosBEAEaeIHw_QoA_gIA9PwIB_gF_gEBCP4I-P7-AOj9BQL__gEA7Qf2AfsAAAD0-vYL_QAAAAn8A_73_gEAFvTwAAEAAAAO__0IBAAAABAIBgP-AQAA_ggDAAP_AAAACPfu_wAAAPME9wP6__8B_Q_0AgAAAAAA__7_AAAAACAALegN1zs4E0AJSE5QAiqEAhAAGvABfyP2_9op8QDgGyUAptHT_tgI1gAjLtoAPe3WAPwF7AFJCsoB_OX3_0HOMP_eNAgA9xMj_jEDXQI96gD_2uQnAdMC_AHOFAcCGfrjAtUDCP7j6Mn9SyYvAPvx4gE7AC8D-fsXACbcCALS8hMD6BXsAujD4QTt-_oG9wbyArbACwPeA-IA0S3z_MIVFf7zBAX6_KMHAQAD-fb4L8ECKkQFAf8YAPYyq_X4IzMcBi8O1gIh5vQKFhP89_4P3wVHwRcB4VMDAAz28vwQ9uPx3P3ZCwK-2_na5QkHIO7h9rYG9BAJBvgLBSf0_s83Hfwo_wsKIAAtuAv6OjgTQAlIYVACKs8HEAAawAeunA2-NyC6O1m4kTxmTge-_iqfu4L4pbyNJKm-QkHpPLMjlTwU88c888CRPFrahDwSzGc9YMCcvO7KkzwR_uU9qrVVvLeGiDyldnU8oissPYHobjxeJcS8TqM_vb9DVbvahla9LqzbvadPPLw56zi9cByCPEmdQD0CtV29X3obPdOwLr1DBrA790TyvHM2OD3my4s9fJYMvW48zjy9NSC-fgX0uezkwjz1Yi09WVSfPHG74Ts9fm8-8NCBPKgMUjwsKDw-OoGfPP0CsLwU6hm-AXYEPUsomLy47Xe75P7-PIa7xDysqkc-KmQ4PfKo37uDbXS-l4sdvbPCozwE5qE7Xgc4vToFuTwzg429fDNgvdfyUrv8ShG9QTZ_vK4Mqjwr3sg8fJf3vKTDQzxKtS8-iUCaO4_q6rzpjcm858LtPOTumLuuLDG-VduNPPd5RruAnwG--SA6vCG_iDyTfQa9aWhIPYjRGjxaqOs8o6YCvSw_lTsGLDk8fY-fPIdlmLylMkW8i8iLPKOlG7ykGoY9YXxHva6njLt5Bwg-ZN-PvWc66DpLeEI9IOY3PN9Y6Tveqxa9zgAXvYZ8hrybhjK93yKGPV-3JbsXmSO8Zyx1vYu4SjyAr5K9M_Aru5R_UrxOKFQ-_jcFPXjxM7p33Iu8CcBEvcpjk7taxXE97yUIvUXzvjuu4qO9pMQuvd4YyDmtPKe9ns71Pcy7fbc3XYW9O703vfM2NTrKyDQ7xG2fu2hsWLt9esc8-vOIPLa3HbsH0Vo9D0wJvbOFgLq4JGa76OFfvUlw3jibOs-9uO5BPC0nCrkxs2899SNPPRA_uDhKAXM9n75vPRmmh7grVX097VycO6gS-beiVGy98l_gPAuglDnTUtS8ekG6vCd-FLroq1o9sWAMvbYQZDl5YUY9zAP9PCkG4DhUDoe9HtvXvNC8n7gPDQs9tZVNvOThqLielj89VPCKPObqSTiKkjC-xF09vICkhbmzRpi9qiufPan6Orj_MX69sy2uvbapEbkhdzG-J-Q5PEYdlri69Rq9KDaVPK0KDzilH0M9bMRdvSf-DDhr8em9edYkvO4vYDbTSgG-MC1qPLOjRDhZpKo7WT-8vZEY7jjSq-E92NshvaHngLhNW6287-u4uvDVn7fmI-k84ovbvCMD1bY4nI69j6O9OofR-7fvmPA8ix8du5YXZjYW9IO8JJUOvUsOMbgRY5O9jrAoPqwmJrn4C-y8_Zs8PM9kA7diglq9WyBmPWQ1uzdp7AG9DE3jPD9pkzggADgTQAlIbVABKnMQABpgLBgASOn76tcTPuwACNcCEMn1CAHrEP8j2QASxdroEvf43SDa_xsHHsyyAAAAGvD0-goAwWMiNdAH4TUW7PvtNA5_FsW5IRoI6N3xC_jfWSbdwB4vAAsp1e0q6AEjBjYhIAAtexkyOzgTQAlIb1ACKq8GEAwaoAYAAAAAAAAMQgAAkMEAAIDAAABQwQAAyEEAADBBAAAAAAAAHMIAAFzCAAA8QgAAwEAAAMzCAADAQAAAlEIAAEBCAACAPwAAgL8AAKxCAABwQgAAPEIAAEDAAACAwQAAHMIAANjCAAC4wQAAIEEAAFTCAAAgQQAAHEIAABBBAABMQgAAgMAAAARCAAA0QgAAAEEAAGzCAAAQQgAA-EEAAFRCAACIQQAAkEEAAIjBAADQwQAAAEAAAODAAACEwgAAtkIAAIxCAAAQwQAAEEIAAEhCAABgwQAAuMEAADzCAACwwQAA-EEAABBCAADAwQAAgEIAAJZCAACOwgAAMEIAAADCAAC4wQAAoEEAALDBAADIQQAAjEIAAEDCAAD4wQAAoEAAAIDBAAAAQQAA6EEAAPjBAAAEQgAAWEIAAEDAAABMwgAAcMEAAExCAACwwQAAGEIAACBBAACqQgAA6EEAAIC_AACcQgAA2MEAAADBAADoQQAA0MEAADBBAAAoQgAAuEEAADRCAABgQQAAHMIAAIhBAAAAwAAAAMAAALBBAAAAwAAAqMEAAJTCAAAAQQAAwEAAAIBBAAAAQgAAYMIAAEBCAAA0wgAAaEIAAPDBAAAMQgAAikIAAAAAAAAcwgAAIEEAAMJCAABgwgAAoEIAAAzCAACIwQAAiEEAAEzCAADQwQAAssIAAKDBAACCQgAAmMIAAABAAABAwQAAYEIAAMDAAADgQAAAoMIAAMDAAAAswgAAsEEAADhCAABQQQAADEIAALBBAABsQgAAgEIAAIBAAAAgwQAAMEIAAHRCAAAwwgAASMIAABxCAADgQQAAiMEAAExCAAAAwQAAUEEAADBBAACAvwAAqMEAACjCAAAgQgAAbEIAAKDBAACYQQAAgEAAAARCAAAsQgAAoMAAAADCAAAwwQAAEEEAAEDBAAAwQQAAREIAAKBBAAAAQQAA4MAAAMBAAAAoQgAA2EEAAPBBAABUQgAAQEAAANBBAADaQgAAQEEAADBBAAAUwgAAhMIAANBCAACgQAAAqMEAAFBCAAAEQgAAiMEAAMDAAABswiAAOBNACUh1UAEqjwIQABqAAgAAoLwAAIC7AACoPQAAgLsAAES-AAAQvQAAor4AANK-AAAwvQAAMD0AAFw-AACYPQAAoDwAAPg9AAB0vgAAkr4AAKg9AACAuwAAcL0AAOg9AAB_PwAAMD0AAPi9AABMPgAA4LwAAPi9AABAvAAANL4AABQ-AABAvAAAgDsAAIA7AAAQvQAAQLwAAOi9AAAUvgAA6D0AAIK-AAC-vgAAor4AAEy-AADgPAAA4LwAAJi9AAAwvQAAyL0AAK4-AADIPQAAQDwAAPi9AADgPAAAMD0AAPg9AAAcPgAAlr4AAEC8AAABPwAA2D0AAAQ-AACqPgAAiD0AAHC9AADYPQAAPL4gADgTQAlIfFABKo8CEAEagAIAACS-AACYvQAAoDwAADG_AACgPAAADD4AAIg9AACCPgAAgDsAALg9AACIvQAAUL0AADA9AACAuwAAQDwAAKA8AACGPgAAPT8AAOi9AACiPgAAmr4AAOi9AAAMPgAA6L0AAEA8AAB0PgAARD4AAIA7AAA8PgAAPD4AAEC8AACAuwAAir4AAEC8AACAOwAAyD0AAOi9AAAwPQAAiL0AAHC9AAAEPgAAuL0AAFA9AADYPQAAqr4AAEA8AAB_vwAA4LwAAK6-AABsPgAADL4AAEQ-AADoPQAAVD4AAIA7AACgPAAAgDsAAAQ-AACAuwAARL4AANg9AAA0vgAAUD0AAAy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Vf7RVZREcF4","parent-reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1758462683104600578"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"176110235"}},"dups":{"825625113272262004":{"videoId":"825625113272262004","title":"Eminence in Shadow | Video Highlights \u0007[Delta\u0007], \u0007[Epsilon\u0007], Zeta, Eta","cleanTitle":"Eminence in Shadow | Video Highlights Delta, Epsilon, Zeta, Eta","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=F8tFkkcrks8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/F8tFkkcrks8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUGhGVGsweUdmdVA3b1VxQ19IVTdTZw==","name":"AnimeWakana","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AnimeWakana","origUrl":"http://www.youtube.com/@animewakana","a11yText":"AnimeWakana. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":64,"text":"1:04","a11yText":"Süre 1 dakika 4 saniye","shortText":"1 dk."},"date":"30 tem 2022","modifyTime":1659139200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/F8tFkkcrks8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=F8tFkkcrks8","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":64},"parentClipId":"825625113272262004","href":"/preview/825625113272262004?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/825625113272262004?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10642644637897929149":{"videoId":"10642644637897929149","title":"\u0007[Epsilon\u0007] \u0007[Delta\u0007] Limit Animation","cleanTitle":"Epsilon Delta Limit Animation","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/uSjzJuih-r0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/uSjzJuih-r0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUjF1X1M3SjBMdVpZY3h1cmd4WVlPZw==","name":"Calculus Climber","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Calculus+Climber","origUrl":"http://www.youtube.com/@calculusclimber8730","a11yText":"Calculus Climber. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1,"text":"00:01","a11yText":"Süre 1 saniye","shortText":""},"views":{"text":"11,6bin","a11yText":"11,6 bin izleme"},"date":"4 nis 2022","modifyTime":1649030400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/uSjzJuih-r0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=uSjzJuih-r0","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":1},"parentClipId":"10642644637897929149","href":"/preview/10642644637897929149?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/10642644637897929149?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13976163832986625684":{"videoId":"13976163832986625684","title":"\u0007[delta\u0007] - \u0007[epsilon\u0007] soundtrack || mindustry","cleanTitle":"delta - epsilon soundtrack || mindustry","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mIczdSSikvM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mIczdSSikvM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdnpiVW1KcVhRZl9FdXVGNzgwcl93UQ==","name":"ACE","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ACE","origUrl":"http://www.youtube.com/@ACE1020spawn","a11yText":"ACE. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":91,"text":"1:31","a11yText":"Süre 1 dakika 31 saniye","shortText":"1 dk."},"date":"5 tem 2025","modifyTime":1751710264000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mIczdSSikvM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mIczdSSikvM","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":91},"parentClipId":"13976163832986625684","href":"/preview/13976163832986625684?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/13976163832986625684?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11663571555310565497":{"videoId":"11663571555310565497","title":"The \u0007[Epsilon\u0007]-\u0007[Delta\u0007] in Absolute Continuity of Measures","cleanTitle":"The Epsilon-Delta in Absolute Continuity of Measures","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tHhWex5VQWA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tHhWex5VQWA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcXlTbkpPR3ctenVLT1h6Vnp4RFE5QQ==","name":"Young Measures","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Young+Measures","origUrl":"http://www.youtube.com/@YoungMeasures","a11yText":"Young Measures. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":720,"text":"12:00","a11yText":"Süre 12 dakika","shortText":"12 dk."},"date":"8 ara 2024","modifyTime":1733616000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tHhWex5VQWA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tHhWex5VQWA","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":720},"parentClipId":"11663571555310565497","href":"/preview/11663571555310565497?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/11663571555310565497?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14355973422493989798":{"videoId":"14355973422493989798","title":"\u0007[Epsilon\u0007] \u0007[Delta\u0007] with Cubic that Factors","cleanTitle":"Epsilon Delta with Cubic that Factors","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Ai7c3dmFGVQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Ai7c3dmFGVQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaHBMU0hkZHB5bjZuV2txN25VVzJPZw==","name":"Shawna Haider","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Shawna+Haider","origUrl":"http://www.youtube.com/@shawnahaider7474","a11yText":"Shawna Haider. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":259,"text":"4:19","a11yText":"Süre 4 dakika 19 saniye","shortText":"4 dk."},"views":{"text":"2,6bin","a11yText":"2,6 bin izleme"},"date":"12 eyl 2016","modifyTime":1473638400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Ai7c3dmFGVQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Ai7c3dmFGVQ","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":259},"parentClipId":"14355973422493989798","href":"/preview/14355973422493989798?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/14355973422493989798?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16825619857541498966":{"videoId":"16825619857541498966","title":"\u0007[Epsilon\u0007] \u0007[Delta\u0007] Fall '21 Neophyte Presentation","cleanTitle":"Epsilon Delta Fall '21 Neophyte Presentation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=c0_W6CTErTE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/c0_W6CTErTE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU1J1ZEs2Qkl2UDJseTI3Yk02Q0xsUQ==","name":"ED Ques","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ED+Ques","origUrl":"https://www.youtube.com/channel/UCSRudK6BIvP2ly27bM6CLlQ","a11yText":"ED Ques. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":399,"text":"6:39","a11yText":"Süre 6 dakika 39 saniye","shortText":"6 dk."},"views":{"text":"1,5bin","a11yText":"1,5 bin izleme"},"date":"28 oca 2022","modifyTime":1643328000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/c0_W6CTErTE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=c0_W6CTErTE","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":399},"parentClipId":"16825619857541498966","href":"/preview/16825619857541498966?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/16825619857541498966?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1051802901966789010":{"videoId":"1051802901966789010","title":"How to find a formula for \u0007[delta\u0007] (\u0007[epsilon\u0007]-\u0007[delta\u0007] definition of a limit)","cleanTitle":"How to find a formula for delta (epsilon-delta definition of a limit)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FobFTlT81W8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FobFTlT81W8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":699,"text":"11:39","a11yText":"Süre 11 dakika 39 saniye","shortText":"11 dk."},"views":{"text":"17,7bin","a11yText":"17,7 bin izleme"},"date":"11 kas 2025","modifyTime":1762872761000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FobFTlT81W8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FobFTlT81W8","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":699},"parentClipId":"1051802901966789010","href":"/preview/1051802901966789010?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/1051802901966789010?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5896448754157870200":{"videoId":"5896448754157870200","title":"\u0007[Epsilon\u0007] \u0007[Delta\u0007] Quadratic Proof","cleanTitle":"Epsilon Delta Quadratic Proof","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0kZVriyBV3M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0kZVriyBV3M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTTJ1anQ5UUJHblc1QVZpcjlHY2syZw==","name":"Mr. Laskos","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mr.+Laskos","origUrl":"http://www.youtube.com/@mr.laskos1738","a11yText":"Mr. Laskos. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":798,"text":"13:18","a11yText":"Süre 13 dakika 18 saniye","shortText":"13 dk."},"views":{"text":"4,3bin","a11yText":"4,3 bin izleme"},"date":"16 eki 2020","modifyTime":1602806400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0kZVriyBV3M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0kZVriyBV3M","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":798},"parentClipId":"5896448754157870200","href":"/preview/5896448754157870200?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/5896448754157870200?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1217347565808831842":{"videoId":"1217347565808831842","title":"\u0007[Epsilon\u0007]-\u0007[delta\u0007] limit definition 1 | Limits | Differential Calculus | Khan Academy","cleanTitle":"Epsilon-delta limit definition 1 | Limits | Differential Calculus | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/-ejyeII0i5c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-ejyeII0i5c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":767,"text":"12:47","a11yText":"Süre 12 dakika 47 saniye","shortText":"12 dk."},"views":{"text":"1,3milyon","a11yText":"1,3 milyon izleme"},"date":"10 nis 2009","modifyTime":1239321600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-ejyeII0i5c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-ejyeII0i5c","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":767},"parentClipId":"1217347565808831842","href":"/preview/1217347565808831842?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/1217347565808831842?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13975034263071228424":{"videoId":"13975034263071228424","title":"\u0007[Epsilon\u0007] + \u0007[Delta\u0007]","cleanTitle":"Epsilon + Delta","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=P8x3Bps5KjQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/P8x3Bps5KjQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbW5WdWxPZXVJd2lrZ2VWUjNzR0t3dw==","name":"Frequency+","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Frequency+","origUrl":"http://www.youtube.com/@FrequencyPlus","a11yText":"Frequency+. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4270,"text":"1:11:10","a11yText":"Süre 1 saat 11 dakika 10 saniye","shortText":"1 sa. 11 dk."},"date":"5 mayıs 2024","modifyTime":1714867200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/P8x3Bps5KjQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=P8x3Bps5KjQ","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":4270},"parentClipId":"13975034263071228424","href":"/preview/13975034263071228424?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/13975034263071228424?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7905860008281224333":{"videoId":"7905860008281224333","title":"2. \u0007[Epsilon\u0007]-\u0007[Delta\u0007] Notation","cleanTitle":"2. Epsilon-Delta Notation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nkxQznueCsA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nkxQznueCsA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM1NyaE5fcHNUam1sbzBydWRKaXdOQQ==","name":"Bekhzod Alimukhamedov","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bekhzod+Alimukhamedov","origUrl":"http://www.youtube.com/@bekhzodalimukhamedov","a11yText":"Bekhzod Alimukhamedov. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":622,"text":"10:22","a11yText":"Süre 10 dakika 22 saniye","shortText":"10 dk."},"date":"8 tem 2025","modifyTime":1751932800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nkxQznueCsA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nkxQznueCsA","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":622},"parentClipId":"7905860008281224333","href":"/preview/7905860008281224333?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/7905860008281224333?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2956946206858017951":{"videoId":"2956946206858017951","title":"\u0007[Epsilon\u0007]-\u0007[delta\u0007] limit definition 2 | Limits | Differential Calculus | Khan Academy","cleanTitle":"Epsilon-delta limit definition 2 | Limits | Differential Calculus | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/Fdu5-aNJTzU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Fdu5-aNJTzU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/user/khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":655,"text":"10:55","a11yText":"Süre 10 dakika 55 saniye","shortText":"10 dk."},"views":{"text":"642bin","a11yText":"642 bin izleme"},"date":"10 nis 2009","modifyTime":1239321600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Fdu5-aNJTzU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Fdu5-aNJTzU","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":655},"parentClipId":"2956946206858017951","href":"/preview/2956946206858017951?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/2956946206858017951?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7845073015293038095":{"videoId":"7845073015293038095","title":"\u0007[Epsilon\u0007]-\u0007[Delta\u0007] Part 1: Why do we do this?","cleanTitle":"Epsilon-Delta Part 1: Why do we do this?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_VEU1G47cRQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_VEU1G47cRQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMktyOG1XSGVyd1hUMnJjVU5XR2FYQQ==","name":"Dan Gries","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dan+Gries","origUrl":"http://www.youtube.com/@dangries3868","a11yText":"Dan Gries. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":300,"text":"5:00","a11yText":"Süre 5 dakika","shortText":"5 dk."},"date":"16 nis 2020","modifyTime":1586995200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_VEU1G47cRQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_VEU1G47cRQ","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":300},"parentClipId":"7845073015293038095","href":"/preview/7845073015293038095?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/7845073015293038095?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8000520754930777188":{"videoId":"8000520754930777188","title":"Real Analysis 28 | \u0007[Epsilon\u0007]-\u0007[Delta\u0007] Definition [dark version]","cleanTitle":"Real Analysis 28 | Epsilon-Delta Definition [dark version]","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=UcFma9YNfaY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UcFma9YNfaY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZHdvNGsxUlFIVGNxXy1XUzdDYXpxZw==","name":"The Bright Side of Mathematics","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Bright+Side+of+Mathematics","origUrl":"https://www.youtube.com/channel/UCdwo4k1RQHTcq_-WS7Cazqg","a11yText":"The Bright Side of Mathematics. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":525,"text":"8:45","a11yText":"Süre 8 dakika 45 saniye","shortText":"8 dk."},"views":{"text":"2,3bin","a11yText":"2,3 bin izleme"},"date":"23 mar 2023","modifyTime":1679586244000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UcFma9YNfaY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UcFma9YNfaY","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":525},"parentClipId":"8000520754930777188","href":"/preview/8000520754930777188?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/8000520754930777188?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10022051940782393796":{"videoId":"10022051940782393796","title":"\u0007[epsilon\u0007]-\u0007[delta\u0007] definition ultimate introduction","cleanTitle":"epsilon-delta definition ultimate introduction","host":{"title":"YouTube","href":"http://www.youtube.com/live/DdtEQk_DHQs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DdtEQk_DHQs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1167,"text":"19:27","a11yText":"Süre 19 dakika 27 saniye","shortText":"19 dk."},"views":{"text":"514,4bin","a11yText":"514,4 bin izleme"},"date":"15 oca 2022","modifyTime":1642248011000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DdtEQk_DHQs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DdtEQk_DHQs","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":1167},"parentClipId":"10022051940782393796","href":"/preview/10022051940782393796?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/10022051940782393796?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18047139751631415245":{"videoId":"18047139751631415245","title":"\u0007[Epsilon\u0007]-\u0007[Delta\u0007] Definition of Functional Limits | Real Analysis","cleanTitle":"Epsilon-Delta Definition of Functional Limits | Real Analysis","host":{"title":"YouTube","href":"http://www.youtube.com/live/kVQNhAIFZYc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kVQNhAIFZYc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1297,"text":"21:37","a11yText":"Süre 21 dakika 37 saniye","shortText":"21 dk."},"views":{"text":"36,7bin","a11yText":"36,7 bin izleme"},"date":"20 haz 2023","modifyTime":1687219200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kVQNhAIFZYc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kVQNhAIFZYc","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":1297},"parentClipId":"18047139751631415245","href":"/preview/18047139751631415245?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/18047139751631415245?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13871446599888456092":{"videoId":"13871446599888456092","title":"Deep - Gamma \u0007[Epsilon\u0007] \u0007[Delta\u0007] Recruitment Video","cleanTitle":"Deep - Gamma Epsilon Delta Recruitment Video","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2XQE5iuV-DY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2XQE5iuV-DY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZWtZZ3U0cVRpcVZ0TGN4Z0JiaGpudw==","name":"Vought International","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Vought+International","origUrl":"http://www.youtube.com/@voughtintl","a11yText":"Vought International. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":100,"text":"1:40","a11yText":"Süre 1 dakika 40 saniye","shortText":"1 dk."},"views":{"text":"163,4bin","a11yText":"163,4 bin izleme"},"date":"12 eyl 2025","modifyTime":1757692940000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2XQE5iuV-DY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2XQE5iuV-DY","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":100},"parentClipId":"13871446599888456092","href":"/preview/13871446599888456092?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/13871446599888456092?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1758462683104600578":{"videoId":"1758462683104600578","title":"\u0007[Delta\u0007] \u0007[epsilon\u0007] zeta eta | the eminence in shadow | trailer de personaje","cleanTitle":"Delta epsilon zeta eta | the eminence in shadow | trailer de personaje","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Vf7RVZREcF4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Vf7RVZREcF4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYWNiWFNhS2pqNldpVXg3Vlh0eGxPUQ==","name":"EL PERKINS vs EL COPYRIGHT","isVerified":false,"subscribersCount":0,"url":"/video/search?text=EL+PERKINS+vs+EL+COPYRIGHT","origUrl":"http://www.youtube.com/@ELPERKINS-EXPERIMENTAL","a11yText":"EL PERKINS vs EL COPYRIGHT. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":64,"text":"1:04","a11yText":"Süre 1 dakika 4 saniye","shortText":"1 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"5 eki 2022","modifyTime":1664928000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Vf7RVZREcF4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Vf7RVZREcF4","reqid":"1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL","duration":64},"parentClipId":"1758462683104600578","href":"/preview/1758462683104600578?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","rawHref":"/video/preview/1758462683104600578?parent-reqid=1769552928610864-10777244112077781344-balancer-l7leveler-kubr-yp-klg-207-BAL&text=Epsilon+Delta+Clips","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"7772441120777813447207","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Epsilon Delta Clips","queryUriEscaped":"Epsilon%20Delta%20Clips","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}