{"pages":{"search":{"query":"Epsilon Delta","originalQuery":"EpsilonDelta","serpid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","parentReqid":"","serpItems":[{"id":"5197781152685392153-0-0","type":"videoSnippet","props":{"videoId":"5197781152685392153"},"curPage":0},{"id":"1217347565808831842-0-1","type":"videoSnippet","props":{"videoId":"1217347565808831842"},"curPage":0},{"id":"2956946206858017951-0-2","type":"videoSnippet","props":{"videoId":"2956946206858017951"},"curPage":0},{"id":"10022051940782393796-0-3","type":"videoSnippet","props":{"videoId":"10022051940782393796"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEVwc2lsb24gRGVsdGEK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","ui":"desktop","yuid":"4744224021769670077"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"81019178376311207-0-5","type":"videoSnippet","props":{"videoId":"81019178376311207"},"curPage":0},{"id":"12894193380794579867-0-6","type":"videoSnippet","props":{"videoId":"12894193380794579867"},"curPage":0},{"id":"10334247510564778155-0-7","type":"videoSnippet","props":{"videoId":"10334247510564778155"},"curPage":0},{"id":"2213329388011313485-0-8","type":"videoSnippet","props":{"videoId":"2213329388011313485"},"curPage":0},{"id":"7410965610038659343-0-9","type":"videoSnippet","props":{"videoId":"7410965610038659343"},"curPage":0},{"id":"18047139751631415245-0-10","type":"videoSnippet","props":{"videoId":"18047139751631415245"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEVwc2lsb24gRGVsdGEK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","ui":"desktop","yuid":"4744224021769670077"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"11663571555310565497-0-12","type":"videoSnippet","props":{"videoId":"11663571555310565497"},"curPage":0},{"id":"16162293523412166900-0-13","type":"videoSnippet","props":{"videoId":"16162293523412166900"},"curPage":0},{"id":"18112810240028558651-0-14","type":"videoSnippet","props":{"videoId":"18112810240028558651"},"curPage":0},{"id":"3256150442330517954-0-15","type":"videoSnippet","props":{"videoId":"3256150442330517954"},"curPage":0},{"id":"1051802901966789010-0-16","type":"videoSnippet","props":{"videoId":"1051802901966789010"},"curPage":0},{"id":"1979499066400446951-0-17","type":"videoSnippet","props":{"videoId":"1979499066400446951"},"curPage":0},{"id":"93747900681301327-0-18","type":"videoSnippet","props":{"videoId":"93747900681301327"},"curPage":0},{"id":"9094627377712248312-0-19","type":"videoSnippet","props":{"videoId":"9094627377712248312"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"correction":{"items":[{"kind":"reask","rule":"Misspell","query":"EpsilonDelta","url":"/video/search?text=EpsilonDelta&noreask=1&nomisspell=1","params":{"text":"EpsilonDelta","noreask":"1","nomisspell":"1"},"helpUrl":"https://yandex.com.tr/support/search/info/request-correction.xml","helpTarget":"_blank","helpAriaLabel":"Yazım hatası düzeltme servisi"}],"id":"120002353033"},"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEVwc2lsb24gRGVsdGEK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","ui":"desktop","yuid":"4744224021769670077"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DEpsilonDelta"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"5392221152795225479792","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1457147,0,77;1471991,0,33;1472346,0,3;1470499,0,12;1405819,0,67;1457620,0,24;1471438,0,23;1186712,0,0;1424968,0,17;1460923,0,85;1460716,0,44;1460214,0,58;1312966,0,13;1472010,0,59;1472029,0,40;1471623,0,81;30275,0,77;1461712,0,80;1470250,0,62;1463532,0,58;1466296,0,84;1465919,0,90;1470864,0,98;1467150,0,70;1464403,0,51;1349071,0,34;1471918,0,95;1474025,0,67;241534,0,13;1473864,0,76;1404017,0,97;263460,0,66;255407,0,66;1467158,0,32;1469413,0,31;805351,0,33;45973,0,77;151171,0,56;126356,0,79;1281084,0,67;287509,0,54;1447467,0,48;927444,0,6;1473595,0,10;1467129,0,20;912280,0,29"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DEpsilonDelta","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=EpsilonDelta","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=EpsilonDelta","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Epsilon Delta: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Epsilon Delta\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Epsilon Delta — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y44cdf6c3b3e898fbab8a0cd53a111f63","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457147,1471991,1472346,1470499,1405819,1457620,1471438,1186712,1424968,1460923,1460716,1460214,1312966,1472010,1472029,1471623,30275,1461712,1470250,1463532,1466296,1465919,1470864,1467150,1464403,1349071,1471918,1474025,241534,1473864,1404017,263460,255407,1467158,1469413,805351,45973,151171,126356,1281084,287509,1447467,927444,1473595,1467129,912280","queryText":"EpsilonDelta","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"4744224021769670077","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1475824,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769670119","tz":"America/Louisville","to_iso":"2026-01-29T02:01:59-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457147,1471991,1472346,1470499,1405819,1457620,1471438,1186712,1424968,1460923,1460716,1460214,1312966,1472010,1472029,1471623,30275,1461712,1470250,1463532,1466296,1465919,1470864,1467150,1464403,1349071,1471918,1474025,241534,1473864,1404017,263460,255407,1467158,1469413,805351,45973,151171,126356,1281084,287509,1447467,927444,1473595,1467129,912280","queryText":"EpsilonDelta","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"4744224021769670077","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"5392221152795225479792","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":144,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"4744224021769670077","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1757.0__1e42d45c824ef14ef6767326055fb713b0c3a145","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"5197781152685392153":{"videoId":"5197781152685392153","docid":"34-5-7-Z2A09B2E234B097B1","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/ap-c... More free lessons at: http://www.khanacademy.org/video?v=w7...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1658172/6e29fd6d0d360e93aaec596c0e8cdbe4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mqyXdAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dw70af5Ou70M","linkTemplate":"/video/preview/5197781152685392153?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon-delta definition of limits","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=w70af5Ou70M\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoVChM1MTk3NzgxMTUyNjg1MzkyMTUzWhM1MTk3NzgxMTUyNjg1MzkyMTUzapIXEgEwGAAiRBowAAopaGhkb3Zpd3hzZXZmcXJnaGhVQzRhLUdiZHc3dk9hY2NIbUZvNDBiOWcSAgARKhDCDw8aDz8TogOCBCQBgAQrKosBEAEaeIED-v0C-wUA7fsH-wMAAAAA_Pb9-P79APEAAvz-AQAA6QH9APv_AAD7B_oPAgAAAPP6Bfv8AAAAEvYBAAMAAAAO9PkDAwAAAA0L_AP-AQAA_wH0_QL_AAAGBO_2_wAAAPP6__z8_wAA-_sCAwAAAAD_B_7_AAAAACAALVlC4js4E0AJSE5QAiqEAhAAGvABf_8eANf1pQHEAuYBphwBAJo0Kf_8O8wA1tz9AK71vwET1-j_zBfh_zT67v-sFer_HQbP__jJAgAu6BX_VsP9_8UFBgET_uEBLB0f_wkKBwDiGgf-C_oMAPLVqQD1Ftz-FeoIARL48fzqBLkCKvs1AesMHAcs6wAB26EqAMD3-Aj2977-9icGBfDuCPb2Vx0ELPYFBQ4vCPjc7Mz-C-EGBP7E_vAhH939FN8DCBAVAATwCfcG-931BzcYEALZAvwG8fUrAuL7Bf_cxwT4-d4C9MP9-P7-4fn2KOoX-Avw9wvt3Or1zP_q9PcQ-fzbCfPqIAAtOBwCOzgTQAlIYVACKs8HEAAawAe_urq-gAvXPJH9YryjUzy99MgbvOtNMbwU2pi9J095PQsRibskQx4-k2uvOnOULb2tL6K9FuDWvENfVb3FVYU-VDBvvZt_KrwZgaK9QLW7PeGkX71Hjw--baSRPGg4yjznWQS96aI8vdhsQDyIZXM9pWqbvXACmTrD-ES8TIlEPS1ZWr3cmwQ81JPevPztAb2tf-E8s8W_vMRPLbwLVRs95J_8uzjU1rsv67Q8CQApvdtdFr1dHka8EAaePGGZLb2ZQ_c8Qjw3PTuWLbwVpIC7z5eYvYDRijzrayK9_oOjPBb7SzsmQKg9kKgrPW_RrrzYwgc9RMeZvfI7sryzfei9Ukx8OjWK9ruo_As-pYOVPSSOhrwY0gG-SYOrPZYmJby7KlA9-o1AvL_vvjoBmbc91qIqvFchijzSrn09wTKLPY4BmTwtDh-8VVYuPRBCGz2yVbg8xS-GvO8SB7ymE0Q91U5evfmNp7tl_x28WqirPKxjxzqgvro9PVl7vJqhpzw-jaA85gmAO370l7sFI6U91gI7vknlmjp1-FW9wf4rvRcqf7xjL589Jv-jPbhiNby9DDW8nBkNvuMVqbortD08XwEWvKPElTqx90e91o4Cve1e1TvqWhu-aHn-PSs4MThkJ7Q7J1MiO76BbrwOT688gzXpPAP4-jvFZQY9-gwIvlUhA7r1K109cxE_PbCV6bqKfLI8cmaQPYw5NDpE87U9liJvOV7L-Tq4dEy9IYfvOwSWWLrNvMu9p89OvcxKqbdtA9c9taPYvQyfrzm3Kf06f7pGPTX6TjnE93S9J2ZeO3P-EDmsU6U8HlhpvH92oTkeEai9zvxKvgHLDjn-9YU9AW0Lve72Hbr4PYU9MF8WuhSbBThTWfS9r-GzvIyMj7m8tLw73gQ_PfCspTmAKQM-dxvKPMjvOTny3y29SywfPZ-pzrfL_307jup0vVPqwDfaQqa9OymdPQIvjbfke0u9xHRGOwEUsLgUBA89EF0APo3DcbgRwY29ulaBPUni5TcjYYQ8ume9PSVfd7dv9ge9AhB3vXj4gTcB_gQ9Zl8DvFbUTzhtxf69otQ-vRov9LhZeiO9VWiwvQzoMbinJOs96XUYuuJaRbhqU4A9GwAAPVclQzjB4ys-3KVovAeJdLk5xcS9Z7cmvtZHcjjYyUq9DFBEvVrAqrhXv8i8-RXGPK5pq7dJ9448rVDEvXOc8riKllc9EFj5PY0XQDisBEa9ESUwPQ9ys7huA429J2muPb_3Fjfiy0Q8KIk7vTf01bcgADgTQAlIbVABKnMQABpgE-8AN90wyRoESt4B6fHp8t394R2dKf_n1__M6tno7Rakswf8ABLRLgKaAAAANfvfDOoA7H-2EPtYBu4Q_YngOSNWJuEG7-oGBqfkKDII0ST1Bx9RAOb_nShcBZoPE2AgIAAtJt0POzgTQAlIb1ACKq8GEAwaoAYAAPBBAABQQQAA-EEAAHzCAADIQQAAAMAAAKxCAAC4wQAARMIAAIBAAAAAQAAAlsIAAEDCAAA4wgAABEIAAPDBAACAvwAAgD8AAAAAAABEwgAAcMIAAEDCAADwwQAA8EEAAADBAACowQAA6MEAAFDBAAAAQgAAUEIAABzCAADoQQAAlMIAAOhBAACCwgAAQMIAAADAAADKQgAAQMEAAGxCAABAQgAAYMEAAFRCAABAQQAAIEEAAKzCAAC4wQAAAMEAANhCAACQQQAA2MEAAEBBAACQQQAAoMAAAMBAAABAwQAAAMMAAIA_AACAwQAAVEIAAGhCAABwwgAAuMEAAFTCAAAUwgAAlsIAADDBAAAYwgAAgMAAAEzCAACAQgAAdEIAADDCAAB4QgAAAEEAAKzCAACowQAAiMEAADxCAADAQQAACMIAAABCAACgQAAAEEEAAMBBAADAwAAAmEEAAExCAACKQgAAAMEAAEBBAACIQgAAgMIAAKrCAAAwQQAAbMIAALhBAABAQQAAuEEAALDBAACcwgAAIEIAAOhBAACKwgAAkMEAABBBAACAwAAADEIAAADCAABAQgAAREIAALBBAACAwAAAAEAAAGDBAABIQgAAoMAAAOjBAABAwAAABMIAAMjBAAAswgAAEMIAAPDBAADAQAAACEIAAPjBAADgwAAATMIAAIhBAAAwQQAAmEEAAMDBAACEQgAAUEEAAIBAAAAAwQAAwEAAAADBAABwwgAAEMEAAJhBAADYQQAA2MEAAHRCAADgQAAAaMIAAEBAAACYwQAAYMEAAABBAAAQQgAAYEEAADjCAAAwwQAAuMEAAGDBAABAwgAAlMIAABxCAABAwgAAsEEAAHDBAABwwQAAgD8AAPhBAABkQgAAjkIAAIRCAABAQQAAcMEAACBCAACYwQAAAMAAABTCAAAAQQAA0MEAAOjBAACowQAAjEIAAJjBAABEwgAAAEEAAJjBAAAwQgAAgD8AAJDCAABIQgAAIMEAAHDBAAAgwQAAdMIAAADAAADgwAAAwMAAACxCAACgwQAAwEAAAIzCAACQwiAAOBNACUh1UAEqjwIQABqAAgAAPL4AAJ6-AACKPgAAiL0AAOA8AAC-PgAADD4AAB-_AAAXvwAAND4AAMI-AAAEvgAA2D0AAFw-AAD4vQAArr4AADw-AACgPAAAiD0AAPo-AAB_PwAAJD4AADy-AABsPgAA6L0AAFy-AABMPgAA0r4AADQ-AACaPgAAVD4AANi9AABkvgAA2L0AAPg9AACyvgAAbD4AAJq-AAC6vgAAgLsAAAW_AACuvgAA4DwAADS-AADoPQAAMD0AADQ-AADivgAAgDsAAKK-AABwvQAAdL4AAOi9AAB0PgAAFL4AAKC8AABTPwAAUD0AAKg9AAA_PwAAfD4AAIA7AAAsPgAANL4gADgTQAlIfFABKo8CEAEagAIAALi9AABAPAAAJL4AAEe_AACKvgAAzj4AAEw-AACSPgAAFL4AAJ4-AAAcvgAAoLwAAJi9AADYPQAAJL4AAIA7AAAQPQAAOT8AABw-AAAZPwAAgLsAADy-AADgPAAAuL0AAOi9AACKvgAAuD0AAOC8AADoPQAAHD4AAEC8AAAEvgAAED0AAHC9AAA8PgAAmr4AAKC8AACqvgAARL4AAHQ-AABwvQAAuD0AAKg9AACgPAAA-L0AAGQ-AAB_vwAAyD0AAFA9AABEPgAAcD0AADQ-AAAwvQAAqj4AACw-AADYPQAAoLwAADA9AACKPgAAqL0AADQ-AAD4PQAAED0AAES-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=w70af5Ou70M","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5197781152685392153"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1444219964"},"1217347565808831842":{"videoId":"1217347565808831842","docid":"34-4-2-ZEAD8023E7E0362FE","description":"Introduction to the Epsilon Delta Definition of a Limit. Watch the next lesson: https://www.khanacademy.org/math/diff... Missed the previous lesson? https://www.khanacademy.org/math/diff...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3415088/ca7d08178754e3290e3578bc757149ca/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0-NQIAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-ejyeII0i5c","linkTemplate":"/video/preview/1217347565808831842?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon-delta limit definition 1 | Limits | Differential Calculus | Khan Academy","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-ejyeII0i5c\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoVChMxMjE3MzQ3NTY1ODA4ODMxODQyWhMxMjE3MzQ3NTY1ODA4ODMxODQyapIXEgEwGAAiRBowAAopaGhkb3Zpd3hzZXZmcXJnaGhVQzRhLUdiZHc3dk9hY2NIbUZvNDBiOWcSAgARKhDCDw8aDz8T_wWCBCQBgAQrKosBEAEaeIEBAAIG_wIA7_v7CQsD_gAB_Pb8-P39APP9AfX1AQAA7Qf9_gP_AAD_DQAJ-gAAAPwCBAT2_gEAEPv--QMAAAAO__0IBAAAAA4M_AP-AQAA-AH8AQP_AAAQA_jy_wAAAPz9-wH5_gAA8fL7BgAAAAAL_wX-AAAAACAALV612Ds4E0AJSE5QAiqEAhAAGvABf8IfAtb1ogGeI8P-zC7dAbk8DwALJeH_zOkN_8AazwAn9yUA1_4S_yT_0f-MMycB8QX7_fjHAgA8wSf_J9sRAKkIEgEU_uABLh4g_w3s-_7ZLuAB0ikp_xzPygMSRvj8JPIE_RAU9v7qBLcCCyQ-A8v5AgIDDAwDwvL5BcEk9_7197z-8BoUBADj-P7oGkUBQuoaBgL4EPwD8OP98yEp_g0ACwYg3t4HJBTkBtsqM_7t6Sb1D-4WBw3JIwbt-NoM4dwj_-H7Bv___xr5OvTzB_QE-wMf8vIOCfsJ7hzy6AMYEvfw-OX2AA4i6_X5ye8BIAAtnlH7OjgTQAlIYVACKs8HEAAawAcfD72-omExvWp5D72-Wfk8EtjcvDwe6bztA6q9X_yjPDjYi70zqUE-2cQwOlizqTy9KDC9v6I2vLzngDwUlEI-RkUcvXPoALwZgaK9QLW7PeGkX73KopW95kcyPPF-AT2vCvS94N0EvEbfDbzvERs9wcS_vQiQAb3kw8c8w_IguoOa67zUOps9NFVGvQ6fdL2lmv47lcm6vHjl4bul4IQ9-ke6PEAtp7u0sLI9TCUyvenlILt0e-m9pRbKvLtak7yEWRI9uOdZPWIgGTws3L29yb-gPH_PWTzGKNI5D4dbvDb6ILt-_gs-zbGcPcYOj7yfEdc7-bV6vfZOnrtfk7q9amc9vLCl7Lzwf2w9ZqnAPeVlCTyE136-F8_FPD_GXLsr3sg8fJf3vKTDQzxkk9w9bv1PPGcxzDzWZJc9OCEDvbc1N7vg7AC94FiGPJ052jx2Px09Grm4vIChQzsVlYg9RbVNvTN_ljzZeDC8he0ju0udNrzd9EI7_QURPWNFqjtqxAc9ghB6Pf-BC7sFI6U91gI7vknlmjrB0g-9KNMIvTWfTrx0fso8aiRzPYXEqLv3kzG9s2jAvZ_iPLumP5C9fOC6u8CeJzsW9W48MJAWvYFcYjsjK4S9B_SdPXLAA7r8ZYG9jqFSPN_rWrz_sHY6-iT7uyxSFzwvgaA9cd7Fu1PF3DsqHCA8WOe4PV9QtrsGAnC7u1ksO5V-wrtJDn09RcD8vCsy17tlcqq9ZDs_PeXxE7uAqjs9yWCgvF_xejrudJw9rOLNvSr_vTnMQfC9etqGPcbNVTgyu7g7N6jdPZtsBDj_xXm7b5CavOgENrlUG_y9Yrv7vRPT8jnovtw9rpGuPA8bHDks5AC9US3iPOzks7nv9eI7iCqRvW2DDDky16i9VtqtPXGs0riur_886kKsOnPC3be5jLy7omrsO0NNujqpyQa85wapvVCANrZleKa7AJQaPTZx0DilZu-9mgibPEs5obnOr8E8SZPMPd9Eh7halQ47kO9XPbd1jbjr0D89s90zPcuPk7jl4rm8cWibveWtCDYYyYM9a8sKPc6hMrfK4QO-ENcePJf9Tjdu1FQ8tESdvDPnADgI0sA9i5KbPePxeTiDh4k9Tny1Paoo6TegVMs99_HGvC2P1bj5SuC9DI_dvWMzRLi8kM69N4KZvYJij7iXpSI9EFLBPRGZT7j2dHo94A_fvT-Zm7cUPTU9riNYPfTQnDgx0NW9tlfVPIYba7i0Afi9tVhFPVHgXDhbB4c8e636vP4scrcgADgTQAlIbVABKnMQABpgBuMAOfwU3vgCUOTs1ekSxNMO9xmkE__J1P_S6c0O1CO7vP3wAC3QGfOeAAAAK_fr_hEAIH8B8P8mAu4XE4WtURRjGhPy4_QECLEHADQP_hcgIilCALAPojo64pwnIWhCIAAtkywQOzgTQAlIb1ACKq8GEAwaoAYAAIhBAABQwQAAgD8AAHDCAADgQQAAgEEAAHxCAABQQQAAHMIAAFBBAAAAQAAALMIAABjCAAAgwgAAPEIAAAzCAAAAQAAAuMEAAIhBAABswgAAgMEAAETCAABwwQAAEEIAAEDBAABQQQAAOMIAALjBAABEQgAAKEIAAAjCAAAIwgAAjMIAAExCAABswgAAAMIAAIC_AAD-QgAAgD8AANBBAABMQgAAAEEAAJRCAAAEQgAAgL8AAJjCAABwQQAAAEAAABxCAAAwQQAAMMEAABDBAAAgwQAAgMEAAKBBAABwQQAAvMIAAOBBAAA4wgAAbEIAAFBCAAAAwQAAkMEAAKLCAAAEwgAAbMIAABDBAABAwgAAkEEAAATCAACOQgAAfEIAACjCAACmQgAAsMEAAHjCAAAUwgAAUMEAAIhCAABYQgAAIMIAAGhCAADAQQAAGEIAAIhBAADAQAAAoEEAAFBCAABgQgAAgL8AAJBBAACEQgAADMIAAMTCAADAwQAAXMIAAFBBAAAAwAAAWEIAAADBAACOwgAAREIAACRCAAAowgAAAMIAAIDAAAAcwgAAnEIAAAzCAACwQQAA6EEAAOBBAADgwAAAQMEAALBBAADIQQAAAMIAAIbCAAAgQgAAYMEAAIjBAAAkwgAAUMEAACDBAACAvwAAYEEAAGjCAAAAQAAAUMIAAFDBAABgQQAALEIAALDBAADAQQAAkEEAAMDAAACwQQAAwEEAAITCAACqwgAAEMEAAIBBAAAcQgAAoMEAADxCAAAgwQAA4MEAAHDBAACAPwAAmMEAALBBAADAQQAAWEIAABjCAACAwAAAuEEAAADBAACswgAAoMIAADBBAACEwgAAGEIAAJDBAABAwQAAAMIAAIhBAACCQgAAikIAAChCAAA4QgAAwMAAAPBBAADYwQAAqEEAAEjCAABQwQAA-MEAAIDAAAAQwQAAukIAAJDBAAAwwgAAQEAAAIDAAAAIQgAAyMEAAKTCAAD4QQAA-MEAAOjBAACgwAAAXMIAABDBAAAkwgAAUMEAABxCAABwwQAAuEEAAJLCAAAIwiAAOBNACUh1UAEqjwIQABqAAgAAPL4AAIK-AAA0PgAAVL4AANg9AAANPwAAkj4AABO_AACWvgAAoDwAAAw-AADovQAAND4AAMg9AADIvQAAmL0AAFw-AABQvQAAUD0AAAc_AAB_PwAAmL0AAFC9AACGPgAAuL0AAFC9AABsPgAABL4AAKA8AACGPgAAbD4AANi9AACavgAAuL0AABw-AAAUvgAAmD0AACy-AADKvgAAmL0AABm_AABkvgAAPD4AAES-AACmPgAA2L0AAEw-AAC6vgAAUL0AAEy-AAAcvgAApr4AAHA9AABMPgAAlr4AABC9AAA3PwAAEL0AAEC8AAAdPwAAPD4AACw-AAAEPgAA4LwgADgTQAlIfFABKo8CEAEagAIAACS-AACIvQAAhr4AAE2_AABUvgAAlj4AAJY-AAAUPgAAXL4AAFw-AABwvQAAoLwAAEy-AACYPQAAQLwAAHC9AAAwvQAAGz8AAOg9AAAdPwAAoDwAALi9AACIvQAA-L0AAOC8AACCvgAAqD0AABC9AAAcPgAAED0AAKA8AAD4vQAAQLwAANi9AAA0PgAAgr4AAFC9AAAcvgAAVL4AADw-AADgPAAADD4AAAQ-AAAwPQAAHL4AAOg9AAB_vwAAuD0AAEQ-AADYPQAAML0AAIg9AAC4vQAAhj4AAEQ-AAD4PQAAgLsAAFA9AAA0PgAAqL0AAIg9AAD4PQAA-D0AALi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=-ejyeII0i5c","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":320,"cheight":240,"cratio":1.33333,"dups":["1217347565808831842"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2099950270"},"2956946206858017951":{"videoId":"2956946206858017951","docid":"34-10-3-Z344FFDE1E0417140","description":"Using the epsilon delta definition to prove a limit Watch the next lesson: https://www.khanacademy.org/math/diff... Missed the previous lesson? https://www.khanacademy.org/math/diff...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2918671/b9612572f867ef2548e9dc226dae9851/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/PQ7ZxgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFdu5-aNJTzU","linkTemplate":"/video/preview/2956946206858017951?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon-delta limit definition 2 | Limits | Differential Calculus | Khan Academy","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Fdu5-aNJTzU\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoVChMyOTU2OTQ2MjA2ODU4MDE3OTUxWhMyOTU2OTQ2MjA2ODU4MDE3OTUxapIXEgEwGAAiRBowAAopaGhkb3Zpd3hzZXZmcXJnaGhVQzRhLUdiZHc3dk9hY2NIbUZvNDBiOWcSAgARKhDCDw8aDz8TjwWCBCQBgAQrKosBEAEaeIEBAAIG_wIA7_v7CQsD_gAB_Pb8-P39APP9AfX1AQAA7Qf9_gP_AAD_DQAJ-gAAAPQFAwj8AAAAEPv--QMAAAAO9PgEAwAAAAoG9wj-AQAA_wX7_wP_AAAQA_jy_wAAAPX__wb6_wAA8fL7BgAAAAAL_wX-AAAAACAALV612Ds4E0AJSE5QAiqEAhAAGvABf_v0AdD70v_ZBMwAxCkJAK8aCQAJHef_zAEOAMAD4wAUDuYB0vvL_wQEBgDO-REAIu3b__rSAgAw7wD_QOL6APv2CAAy3NsAIzIk_gQV4v7nFQb-BOEMABbyyf_uA-H_7AMW_R8F6ADa9dcANgwqAO3YHgIJ9iH93s4MAdkh6QDyvdkA2xD6_82_Af7-Dx0CAtwICDD2BfvpFhECB__1_AcHH_cUCuUEC_X8DOX9Avrr2iIECuMEABQHEgbGA_f62vMrBcb38gQBCAT0JwnyB8ELAwoLDPsFBw0WAwzf-wMQ7vMACP8B__L4BgfdC_P_IAAtY8sdOzgTQAlIYVACKs8HEAAawAeA7tO-Ed7DuuXolrzJd4S61TXkPPvxzbzMpZe9car1PD08lTzUgQw-Ur2AvQLSwLuBCAG-Nz5JPa5tgLymQjw-ZWE5vTx8Qz3ZQ0u-Q5J2Oyl_gr39B7K9v63HO3sOE7yM-Jm99pZVOsatOLwwDu48LxkHvJi2STyRVkY8tI6qvJSAHb0iF6G9O5yKvAUrU732Oo692b0LvbnDpry8Wu49QGNLvCsBpzyhlHo9ZGirvMGqurzsaNy9L70BvBlYBTuEWRI9uOdZPWIgGTz0YQe9ww2IvS6dhTz-BWe9wENsPTyZB7uctLo9Su1FPLB6m7xKxMU9l9MUvTBjirxtrOS9phEuPZROwTuNOoQ8tg-5PPFWpzwY0gG-SYOrPZYmJbxmZR48CQKeu1YWgbu0yWE8FaePPf8WLjwseoy8dmVhPMkvLLtyE_e7LLmKPHMyzDzZzew9gPTtvddYP7rzh6s9iGABvBLuvjkeJSW9v9lBvNpr6rsK6uW81wRHPcUhFzwU5408xrMavScUILwFI6U91gI7vknlmjpXezi9L4f9vSqgZjrrE8o8CeZDPG5Cq7zw-WE9FF8NvneEEbsvMqI7FBT1vBj2izt95pG8MglyvBXXpbp1A8W810CUvcGhgbs2GqW9W8qePOsqD7yuiQC9ix9-PeyReTovEbQ9SpoPvopX4rkbdMg9QDdPPVcGVbs1bLo9LmGjPHtSyTgPgX48IpCGvcaDEDvtz2q91f-evOr5e7rHEUu9IE6WvNfoC7s8vfI9SshRvVfBjjkVykI8yrFrPZvM6jmDSZa8rRQEPC2IszkV14I9iU1avTnrkzjvqxI9zqYDvhah1rdd2jU9AQ6GvEA6Wrm-pmK8mPskPXqThDfMIMO91A0EvghThTmH4mk9ljW7vGLTwbirbVQ8tyhzvY6q1betGwq9TwU8PQ1TBLcwJkI96TIrvSdMALkXAxU9v3x3PT0HBzlB8QM9cU_Bvdc4ezliQ5w8wx2JPViwoTktnvC8duNdPMXGUbhLbIQ7lwQjPYCk8rhSSM-7PjyrvU-y5DiQmTC8reYPPccmFjjK4QO-ENcePJf9TjfWH7w8JTZEvMJCCDivOhU8-X96PHJGPDggSg08QzhGPQz4zDeSXRk-2U9QvazCP7m2UXg8cxLqvS7r9rhmErU8XqHPvYC6sjeOuaG8yQmuPWRuFLfsA707fNQPvhf63LjK9HA9IuErPvHLijhTU3y98PNkPSZxw7etbeq9FDu_PG_S4zeBEWo8LfghvORr_jcgADgTQAlIbVABKnMQABpgL-QAM9ol2AvuRtYO5vwFzsUa5ySmAf_X2P_D9sTy9hegsfIXABrY9wmgAAAAK-wGAhsABH_v7dpH2-_yCIm3Mw9cI_IK5ckIGKYX9zD88BYb-hpSAMsIqUcv3Kcu9VYQIAAt5bYSOzgTQAlIb1ACKq8GEAwaoAYAAIBBAACAwQAAiMEAAJDCAACoQQAAgEEAAHhCAABAQQAAIMIAAKhBAACYQQAAdMIAAAzCAACwwQAATEIAAFTCAADgQAAAwMEAAOBAAABswgAA-MEAAJTCAAA8wgAA-EEAAMjBAACAwQAAVMIAANjBAACoQQAA0EEAADDCAAD4wQAAlMIAAEBCAACEwgAAHMIAAIBAAADUQgAAwMAAAIhCAAAcQgAAgEAAAIxCAACAQQAAgEEAALrCAAAAwAAAEEIAAHRCAACIQQAAqMEAABDBAAAgQQAAkEEAAEBBAACoQQAA8MIAACxCAAAUwgAAcEIAAIBCAAAUwgAAiMEAAILCAAAMwgAAOMIAAHDBAADYwQAA4EAAACjCAABMQgAAeEIAANjBAACSQgAAgMAAAJrCAADgwQAA6MEAAMBBAADwQQAAwMEAACRCAAAAQQAACEIAAADAAAAkQgAAEEEAACRCAAA4QgAAAMIAAOBAAABcQgAAGMIAAKrCAAAgwQAA2MEAABDBAABwQQAAUEIAAJhBAACewgAAikIAACRCAABMwgAAdMIAAIA_AADwwQAAcEIAAAjCAAA8QgAA8EEAAFhCAADYwQAA0MEAAPBBAADAQQAABMIAABjCAAA8QgAAMMEAAMDAAAAQwgAAgMEAALDBAABAQQAAZEIAAITCAACAwAAANMIAAKDAAABwQQAAuEEAABDBAAAkQgAAmMEAAODAAAAgQQAAFEIAACTCAAC0wgAAgMAAAJBBAAAEQgAAYMEAABRCAACAwAAA0MEAAEDBAAAwwQAAEMEAAEBAAAAkQgAAWEIAACjCAAAwwQAA4EAAADDBAAB0wgAArsIAAKhBAAA4wgAAwEEAAIBBAACAQAAAoEAAAMhBAABMQgAAcEIAAFhCAADwQQAAAMIAAERCAADowQAA4EAAAMjBAAAQwQAAsMEAAADAAABAQAAAvkIAAMjBAABAwgAA4EAAAIA_AABYQgAAKMIAAHzCAAAUQgAAgL8AAODBAACAwAAAUMIAAHDBAAAEwgAAkEEAABRCAAAUwgAAmEEAAGDCAACiwiAAOBNACUh1UAEqjwIQABqAAgAAVL4AAHS-AABkPgAABL4AAPg9AAAFPwAAfD4AACG_AACGvgAA4DwAABQ-AAAMvgAAFD4AAGw-AAAQvQAA2L0AALI-AABAvAAATD4AAPI-AAB_PwAABL4AAIi9AACaPgAADL4AABC9AACoPQAAhr4AAMg9AACGPgAARD4AACS-AABEvgAAJL4AADQ-AAC4vQAAgDsAABC9AADGvgAAML0AAPa-AABAvAAA4DwAAAS-AAAUPgAAFL4AAJY-AADKvgAAgLsAAPi9AAC4vQAAmr4AAPg9AAAUPgAANL4AAIC7AAAZPwAAqD0AAMi9AAArPwAADD4AAIg9AAD4PQAAFD4gADgTQAlIfFABKo8CEAEagAIAACS-AADgvAAAPL4AAFG_AABcvgAAkj4AAJo-AABMPgAAJL4AAHQ-AAAQvQAAoDwAADy-AAD4PQAAML0AABC9AACYvQAAJz8AANg9AAAVPwAAmD0AAAS-AABQvQAADL4AAIi9AABcvgAA6D0AABA9AACoPQAA-D0AAKA8AADovQAAML0AANi9AAAkPgAAhr4AAHC9AAAUvgAAbL4AACQ-AABwPQAAcD0AACw-AACIPQAAuL0AAOg9AAB_vwAADD4AAEQ-AADIPQAAiL0AADQ-AAC4vQAAgj4AAGQ-AAAMPgAAgLsAAHA9AACKPgAA2L0AAPg9AACoPQAAuD0AAMi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Fdu5-aNJTzU","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":320,"cheight":240,"cratio":1.33333,"dups":["2956946206858017951"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4095548058"},"10022051940782393796":{"videoId":"10022051940782393796","docid":"34-7-6-Z0350C75C0E1D45A6","description":"My ultimate introduction to the epsilon-delta definition of limits in calculus! The epsilon-delta definition of a limit is commonly considered the hardest topic in Calculus 1 (it's also the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1001002/41ff370904a644ad8fd2fd50d3726d89/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/QXIu7AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDdtEQk_DHQs","linkTemplate":"/video/preview/10022051940782393796?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"epsilon-delta definition ultimate introduction","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DdtEQk_DHQs\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoWChQxMDAyMjA1MTk0MDc4MjM5Mzc5NloUMTAwMjIwNTE5NDA3ODIzOTM3OTZqiBcSATAYACJFGjEACipoaHJ3cGl6a2NucW5hZ3hiaGhVQ19TdllQMGswNVVLaUpfMm5kQjAySUESAgASKhDCDw8aDz8TjwmCBCQBgAQrKosBEAEaeIEA_f_-_gMA7foH-wQAAAAAA__4-P7-AOUGBwL3_AIA5wH49gD_AAAA-_gK_gAAAPcDB_z8_wAAJP32_QAAAAATAPQC_wAAAAcH_wL-AQAA-fb1CAP_AAAFA_r3_wAAAPwIAQH8_wAA-wH8BAAAAAAICfsDAAAAACAALVL32js4E0AJSE5QAiqEAhAAGvABVgrw_9QAGP_zJOAA9wPtAYEFC_8pDtUAzgT9APIE9QH-EvcA2uIAACUDIQDMEwYADuPIAgP7CwAR9fz_JukGAekOAwA25_MBDfIFAOnq8f_HCBn_7_wAAfDZ9QEjG_ABBgEK_hEm7QEE8usA-xMVARf-FwQV5PoCAQj9_v0JDv4H9OEA3gEK_BrxH_3p-CMFCe79BgUJ6gD4Nf4A-uMD_gHbCv8gKOH_AQn8_wbnCP3w2wUBEvPwBv37EggeBvL57fQS-u7eCQIO6fz5KvAM_Q3-AwPj3wMK_fb5-vDsAP3yHfH_Agr0B_v2_Qvu7_sSIAAtbidIOzgTQAlIYVACKs8HEAAawAdr88e-crKDvMjjk72p9xS8RCXDu3cuzLwNVEY9-jyAPUsdhL0-0Oo9mc7zPJ2HUbsUz-G-wa37vNXnCr2Y3SM-gUmQvUP09bzc9Be-ftQ1PapiDTxtO-29fbg_vBryFTy6Eww-rMDkOZAWl71B3iM7GTmbvWwqZrxAbAk-sFxKPAE35juJR_28k52ovWtwEb22_WE88aKKPIz-hjx3Me09jwApvXaWETz1Yi09WVSfPHG74TulUf273e16PelKwjtaSoY-KyXVPIiEzrt2TW28vQfDvI2RtrtsB4O9zRbaPJYwibzRG5O9TzRZvG5kgzxjkgK54F4-vCQVvLyllQw9n8izPU8foju7Sx09uG0EPRNxxDyhXY-8yXcJPgfSJDuQaQ09sxrcPFl9_zyqBmY9oeiLPRvVq7vWZJc9OCEDvbc1N7uQJBC8EN-jPaZiAz1YcJS9aGJ1PaLgFLunrRA6uYy7PVpiijw2PB48y6UMPeE8QbyXgh48Dg8EvHca3zw7s9W77diIPWIQu7u2FAs9kVSAveVrhbyD6tU6UZAQvBq4ybuNX1i9ACtRvCIZcjwLRqU8LhdWvdyIo7qmP5C9fOC6u8CeJzshHok9oK5pPUA4GTzYiDu8ycduPc46ITy_a6e7OsO5PNY1f7x580o9XC0FPLOaLjxQq-i9rhBWvAhafTtHTNo8KrcjvcXNXrpIqQS-wIEgOko1V7rjxQI-2Z0JPbDlxbkCPrk9OatvvVTt9jiIpke9V2CDvXT_ZzjRSMo9C-qAvI7t4Lj7g3e96PjoPbIUArplXGe9uHw_vVAulTlu3JI9O7IovSNOI7lkO1-9N1vvvHciyjivjcI8-sS7vVx5ebnFxIs8bFTxvFX2g7n6CHw8hWy6PW3Y5LgL1yG8HG98PYzBrLgWQEI8XtoQPdx5h7d6PwQ9vXRuvPyFSLhxZqW9cmKZPELo_jlJnwY-eKK_PEZATDm-58Y9AB2mvWpDhjkUBA89EF0APo3Dcbg-Jg09I-CbPbDrHLjabFE9mH-5vZ1F2zid8og9Pk13PS-gHTiq7cu804GRPQaTZre0wEi96QAyvVIzlzdvBIM9gGCjveME6jiC1ZI9cwT6vAvfO7Y8tq-9E0tFvf6vvDcbsHW8tEoavaEVujfmI-k84ovbvCMD1bb3YA09AokhPUHvALgMGMm8mLIAu3akLrfTM4g9hQv5vEB6JLiZDp285aiiPfxdMDhZlnk8xQxjPRu4jriETqM89uwYO2fQvbfveVk8BliFPRCIqDYgADgTQAlIbVABKnMQABpgFP8AKPUq0vQpOvcI2OX66dri_xWgJP_H4v_--bTxFTTfyfryAB3HG_CnAAAA__L1COUA_Hjd-ds-Bh7z3Y7fGxl_TR8F0_QF7rcGEiIA3kAA8gIaAMT6nhZAH7FMJBAjIAAt_GYdOzgTQAlIb1ACKq8GEAwaoAYAABRCAAAMwgAAiEIAAHDCAADAwQAAMMEAAIBBAADYwQAAtMIAAJjBAABAQQAAoEIAAPDBAACAwAAAdEIAAMBBAABAQAAAcMIAAADAAAA8wgAAqMEAAHBCAADAwQAAREIAAARCAAAAQgAAGMIAABDBAAB4QgAAJEIAAAxCAAAAQgAAUEEAAIBBAABAQAAAiEIAABDBAADSQgAA6EEAAAjCAABQwQAAuEEAAIhBAAAwwQAAgMAAAADBAABgQQAA8MEAALpCAAAAwAAAYEEAAIjBAAAAQgAAIEEAAABBAAAwwQAAyMEAAARCAAAEQgAAAEIAAGDBAAAAwQAALMIAAADCAACAwQAAMMEAALhBAABcwgAAgMIAALDBAACsQgAAuEEAAGzCAAC2QgAAMEIAAJDCAACowgAAkEEAAIhCAACowQAAGMIAACBBAACIwQAAIEEAAJhCAACAQgAAIMEAADBCAADgQAAAEMIAADjCAABoQgAA8EEAAEDAAACwQQAAFMIAAIDAAAAAQQAArkIAAMDAAABkwgAAVEIAAPhBAABcwgAAAMEAAJpCAAAAQQAAnEIAAFjCAAAYQgAAoEEAAIA_AACcwgAAAEAAAJRCAAAgQgAAEEEAAPDBAAAgQQAApsIAABTCAADgwQAAIEEAAFDCAAAEQgAAuMEAAIhBAACiwgAAoEAAADjCAACAwgAAMMEAAEDAAAB8QgAAQEEAAABBAAAIQgAADMIAAKDAAAAkwgAA4EEAAIhBAADwQQAAFMIAACBCAAAsQgAAOMIAADBCAADQwQAANMIAAPhBAAAQwQAAMMEAAPjBAACAwAAA0MEAAGDBAACAwQAAmEEAAAxCAAAMwgAA-EEAAKjBAADgwAAAqEEAAIDBAACAPwAAmMEAAIjBAAB0wgAAeMIAAAAAAABoQgAABMIAAABCAADwQQAAaEIAAGjCAACiQgAAgEIAANjBAACwwQAAQMIAAFTCAAAsQgAAgMIAAADCAABwQQAAEMIAAARCAAAQwQAA2EEAAEDBAABwQQAALMIAAJhBAAAgwQAAJEIAAODAAADQwSAAOBNACUh1UAEqjwIQABqAAgAAJL4AAFS-AADYPQAAgr4AAFS-AABUPgAABT8AAAG_AAArvwAAPL4AAM4-AAAUvgAAyL0AAAw-AADIvQAAhr4AAL4-AADYvQAAVD4AAD0_AAB_PwAAND4AAHC9AAAMPgAAtr4AAIC7AACgvAAA-L0AAMg9AACgPAAAxj4AANa-AACivgAAyL0AAJY-AAAlvwAAcD0AANq-AAAvvwAA2L0AALg9AADevgAA-D0AAJq-AABcPgAAtj4AANI-AADivgAAyj4AAMa-AADOvgAAnr4AAFy-AAALPwAA-D0AANg9AABvPwAAcL0AAGS-AABZPwAAFD4AAOA8AABQPQAANL4gADgTQAlIfFABKo8CEAEagAIAAIA7AADgPAAABL4AADe_AAD4vQAAGT8AALY-AAB0PgAAgDsAAHQ-AAAcvgAAyD0AACQ-AABEPgAAfL4AAIg9AABAPAAASz8AAKC8AAAbPwAAEL0AALK-AACOPgAAFL4AACS-AAC6vgAAoDwAAEC8AABwPQAAuD0AAPg9AAD4vQAAHL4AANg9AACaPgAAyr4AALi9AACSvgAATL4AAKg9AAAkPgAAmj4AAIY-AAAkvgAANL4AAEQ-AAB_vwAAZD4AAFQ-AAAUPgAABD4AAO4-AACYPQAACz8AAEw-AAAkPgAAuL0AANi9AAAUPgAANL4AAMg9AAC4PQAA4DwAAKq-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=DdtEQk_DHQs","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10022051940782393796"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3439391007"},"81019178376311207":{"videoId":"81019178376311207","docid":"34-6-11-ZEBD5A32E68E265D7","description":"Here's how to find a delta for a specific value of epsilon in the epsilon-delta definition of a limit. We will use the limit of x^2 as x goes to 2 as an example. Part 1: • How to find a formula...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2933743/8811f107178cef108aa07f5149827833/564x318_1"},"target":"_self","position":"5","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dpk7vxTbKpxk","linkTemplate":"/video/preview/81019178376311207?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to find a delta for a specific epsilon (epsilon-delta definition of a limit)","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pk7vxTbKpxk\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoTChE4MTAxOTE3ODM3NjMxMTIwN1oRODEwMTkxNzgzNzYzMTEyMDdqrw0SATAYACJFGjEACipoaHJ3cGl6a2NucW5hZ3hiaGhVQ19TdllQMGswNVVLaUpfMm5kQjAySUESAgASKhDCDw8aDz8TzQOCBCQBgAQrKosBEAEaeIH7-gEE_gIA8P8D_v8CAAELAPv69wAAAPn_BQD6BP4A5wH49gD_AAAA-_gK_gAAAPcDCPz8_wAAF_z5AAMAAAAH-vcFAgAAABEFAAz-AQAA_gD4BgP_AAAACPfv_wAAAPYBAvv4AP8B-gIEBwAAAAD_B_7__wAAACAALcKk2js4E0AJSE5QAipzEAAaYAEKADj18Or5FTDZGfjt-vH44f4QtBgA6eMA8PfK4QZB0NIS_ABB2RT0uAAAACfr9xDlABVbCP3BMiUb_Q_Y0QEMf0kF5BgfAwC67hMcEfUU4RUJFADk-Ov-NhG-GuhTPyAALcNtOjs4E0AJSG9QAiqvBhAMGqAGAABcQgAA2MEAAJZCAABQwgAAwMEAAMDAAAA0QgAAIEEAAEzCAACAQAAAwEAAALhCAAAEwgAAoMAAAJBBAACEQgAAMMEAAGDCAADgQQAAAEIAAABCAABgQgAAMMIAABRCAADwQQAAEMEAANjBAAAcwgAAMEIAAABBAABQQQAAQEEAAJDBAAAAwAAAmMEAAIRCAADgwAAA4kIAAABAAACwwQAAmMEAAEBBAADoQQAAeMIAALhBAADowQAAMEIAANBBAACKQgAAgEEAAKBAAAAIwgAAgL8AAEhCAADgQQAAkEEAACDCAAAQQQAAVEIAAChCAADwwQAAEMIAAGDCAAA8wgAAyMEAAABBAADQQQAAIMIAALDBAADAwQAAlkIAAIA_AABkwgAAtEIAAABAAACCwgAA1MIAABBCAAAIwgAAmMEAADDBAABwQQAAgD8AAKBBAABAQgAAkEIAAKDAAACQQQAAMEEAADzCAADwwQAAiEEAALBBAACQwQAAEEEAAEDBAAA0wgAACEIAALJCAABAQgAAsMEAAAhCAAAMQgAAyMEAAGTCAABwQgAAHEIAAKRCAACgwQAAcEIAADBCAACAQQAArMIAAABAAAAIQgAAEEIAABBCAAAAwgAAAMAAAJDCAABAwQAAFMIAAEBAAADAwQAAgMEAAFDCAAAAQQAA3MIAALBBAAAcwgAA2MEAAAAAAADwQQAANEIAAIjBAACwQQAA0EEAAIjBAADAwAAAbMIAAFBBAAAoQgAAMEIAAAzCAAAIQgAAZEIAAGDBAAA0QgAA8MEAANDBAACAwQAAAMEAAHDBAADYwQAAqEEAAADAAAAQwQAAEEIAAIhBAABMQgAAcMEAAOBAAAAAQQAAgMEAAARCAAAAwAAAEMEAADDBAACIwQAAYMEAAGDCAADgQAAAuEEAAAAAAADgwAAAwEEAAMhBAABEwgAAMEIAAFBCAAB0wgAAgEAAACjCAACAwgAAYEIAAADDAADgQAAAHEIAAMDAAABQwQAAJEIAAOBBAACAQAAAkEEAADTCAABoQgAAwMEAAFBCAAC4QQAAiMEgADgTQAlIdVABKo8CEAAagAIAADA9AACWvgAAij4AAAO_AABwPQAAPD4AAII-AABfvwAAdL4AADA9AADWPgAANL4AALg9AABEPgAAkr4AAJi9AABEPgAAUD0AAGw-AADqPgAAfz8AADw-AABMPgAAqj4AAJq-AACYvQAAgj4AAIq-AACIPQAAgLsAAJI-AACevgAAUL0AAMi9AAAUPgAA2r4AAKg9AACqvgAA1r4AABC9AACavgAA4LwAAHA9AACKvgAAZL4AAAQ-AACWPgAApr4AAKo-AAAcvgAA4DwAAIC7AACAuwAAvj4AAFC9AACovQAAcz8AAJi9AACIvQAA0j4AAAw-AABUPgAAqD0AAJK-IAA4E0AJSHxQASqPAhABGoACAACYvQAAgDsAAIi9AABJvwAAyr4AAIY-AACGPgAApj4AAKA8AAAsPgAAJL4AANi9AACIvQAAiD0AAES-AACgvAAAMD0AAO4-AABQPQAACz8AAFC9AAB0vgAAoLwAAGy-AACgvAAA2L0AAEA8AAC4vQAAoDwAAIg9AAAQvQAAcD0AADC9AABAPAAA4DwAAHy-AAAcPgAAuD0AAAy-AAAsPgAAuD0AADA9AAAMPgAAML0AAIi9AACYPQAAf78AAJI-AABQvQAAXD4AAAQ-AAD4PQAAPD4AAKY-AABAvAAAqD0AAKC8AACovQAAiD0AAMi9AAAMPgAANL4AAAy-AADoPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=pk7vxTbKpxk","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["81019178376311207"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12894193380794579867":{"videoId":"12894193380794579867","docid":"34-8-11-Z266CCF0D80589523","description":"This video introduces the precise epsilon-delta definition of the limit: for any epsilon greater than 0, there exists a delta greater than 0 such that if x is within delta of a, f(x) is within...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3482668/8615daa0bde7ffcc1a4b3c93f8cbae38/564x318_1"},"target":"_self","position":"6","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTzFjhxLwA_g","linkTemplate":"/video/preview/12894193380794579867?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to the Epsilon-Delta Limit Definition","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=TzFjhxLwA_g\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoWChQxMjg5NDE5MzM4MDc5NDU3OTg2N1oUMTI4OTQxOTMzODA3OTQ1Nzk4Njdqrw0SATAYACJFGjEACipoaHJ2d3Z3ZXB4bXdudXBjaGhVQ1hpTFVaamhaWTZ5N0dqQ1FDSUljN3cSAgASKhDCDw8aDz8T1geCBCQBgAQrKosBEAEaeIH7-gEE_gIA6P4A-wT_AQAEAAAC-P_-APEBAvz-AQAA5wH49gD_AAD6B_oQAgAAAPb-Evr7_wEAFgAD_wUAAAAO9PgEAwAAAA4L_AP-AQAA-AH8AQP_AAAE-vbv_wAAAPYBAvv4AP8B9gb-CgAAAAAICfsDAAAAACAALcKk2js4E0AJSE5QAipzEAAaYP4FACHw_vPxGh_pCe7aAP3z_Q8XsBEA3ecA6e7Z2wop4Mv47f8jywT_wwAAAB0DAgjpABNM8vvCHw8D8BnJ5AsSfzUI-Rb__vrD9vcLGfQj5PgKEgDrAfIRSwLUDxMvKCAALUn7Vzs4E0AJSG9QAiqvBhAMGqAGAAAkQgAAEEEAAABCAAAUwgAAgEIAAIDAAAC4QgAAwEAAAMjBAABUQgAAMEIAAETCAAA8wgAAcEEAALBBAACoQQAAoEAAAFDCAACoQQAAAEEAAEDBAACgwAAAbMIAAIDAAACowQAAEMIAAIC_AACiwgAAMEIAABBBAABQwgAADEIAANDCAABwwQAAnsIAABBBAAA0QgAAgkIAAPjBAAAQQQAA4EEAABRCAAAkQgAATMIAAIhCAACwwgAAwEAAABhCAACOQgAAcEEAACDBAADYwQAA2EEAAKhBAAAsQgAAyEEAALrCAACoQQAAgEAAAARCAAAUQgAAOMIAAJjBAACCwgAAmEEAAHzCAACAwgAAGMIAAMhBAABIwgAAHEIAAL5CAABkwgAAuMEAAEzCAADgwQAAYMIAACBBAABgQQAAqEEAAADBAADUQgAAsMEAAKBBAACIQQAAgEEAAGBBAADgQAAAbEIAAAjCAACAPwAAkkIAANjBAAAwQQAANEIAABzCAACAwAAAUMEAAPhBAADwQQAAQMIAANhBAADgQQAA-EEAADjCAADAQQAA4MEAAHDBAADgQAAATEIAAARCAAAIQgAAuMEAAKDAAABcwgAAoEIAABxCAABgwQAAosIAAIDBAABcwgAAgMIAAMDBAAAAQAAAAMAAAABAAABMQgAA8MEAAMDAAACQQQAAIMIAAODBAACIQQAAbEIAAODBAACMQgAAkEEAAMhBAACIQQAAPMIAABDBAACQwQAASEIAACDCAABwQQAAVEIAAFTCAAAgQgAAIMEAAOjBAAD4wQAAgD8AAIBAAADAQQAAoEEAABzCAADAwQAAVMIAACDCAACgwQAAeMIAAIA_AACgwQAA-MEAAEBAAAAAQQAAiMIAAFBCAABQQgAAkMEAAEBAAABAQQAAAMAAAETCAACgwQAAwMAAAPBBAADowQAAWEIAAEDCAACQwgAADMIAACTCAAAAAAAAnEIAAGzCAAB0wgAARMIAAKhBAABQwQAAAMEAAMDAAAD4QQAAgMAAAABCAAAcQgAAAMAAAIhBAACgQQAA-EEgADgTQAlIdVABKo8CEAAagAIAAPi9AACOvgAARD4AAAS-AABQvQAALD4AAEQ-AAARvwAA0r4AALg9AACaPgAAQDwAAKC8AAA0PgAAPL4AAFS-AABMPgAAEL0AACQ-AAArPwAAfz8AAHQ-AADYvQAAmj4AAIa-AABQvQAADD4AAIC7AACIPQAAoLwAAFQ-AACavgAABL4AAHC9AAA0PgAAjr4AAEw-AAB8vgAA9r4AAIg9AACSvgAAJL4AAPi9AAB8vgAAbD4AACw-AADGPgAAwr4AAJI-AACqvgAABL4AAGy-AABAvAAA5j4AAJK-AACAuwAASz8AAKA8AABcvgAAGz8AAOA8AAAMPgAAyD0AABy-IAA4E0AJSHxQASqPAhABGoACAADYvQAAQDwAACS-AABfvwAATL4AANo-AACePgAAmj4AAIA7AACSPgAAyL0AAMg9AABAvAAAlj4AAGS-AAAQvQAAQLwAAB8_AABwPQAAMT8AADS-AACOvgAADD4AAES-AACIvQAAjr4AABw-AAAwvQAAZD4AACw-AACAOwAA6L0AABS-AAAwPQAADD4AALK-AAAQPQAAHL4AAMi9AABUPgAAmD0AABA9AACIPQAAuD0AAFS-AAA0PgAAf78AAII-AABQPQAA5j4AAOA8AACKPgAAiD0AAN4-AADgPAAAFD4AAJi9AAAcvgAAlj4AAIa-AABMPgAAED0AAEC8AABEviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=TzFjhxLwA_g","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12894193380794579867"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10334247510564778155":{"videoId":"10334247510564778155","docid":"34-10-15-Z9FDD396B7CBB47A0","description":"The epsilon delta definition of limits makes much more sense with distance functions! 👉 More calculus ideas explored: • How can we be sure of the limit properties... Here are a few other shorter...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/788049/901b773e1a0bb82e910671e20831e1c5/564x318_1"},"target":"_self","position":"7","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJlP_1PLEXW8","linkTemplate":"/video/preview/10334247510564778155?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Taming the epsilon delta definition of limits.","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JlP_1PLEXW8\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoWChQxMDMzNDI0NzUxMDU2NDc3ODE1NVoUMTAzMzQyNDc1MTA1NjQ3NzgxNTVqrg0SATAYACJEGjAACiloaGx2YWtsbGh1ZXdwcnBoaFVDZk5yNUUtRHFmVGlvcGs4RnhzZ24yZxICABEqEMIPDxoPPxPxBYIEJAGABCsqiwEQARp4gfn3_AP7BQDx_wP__wIAAfz3_Qb6_v0A8gAC_P4BAADpAf0A-_8AAPsH-g8CAAAA-gQBAP__AAAS9gEAAwAAAA3__QcEAAAADwgFAv4BAAD__Pv_A_8AAAT69vD_AAAA9f4EAQEAAAD7-wIDAAAAAAYCAAAAAAAAIAAtznfjOzgTQAlITlACKnMQABpgAgsAKPQF6eMZOOkP-vL29vD_ER2ZFgDt8wDp5cznBTTGyPHuACnLDvi2AAAALPD8DewA8mDwALoyCBL8CsnhAA9_KwjeMRz2-Lfr-h4e-hDsCgQWAM353AJFGtEW_1Q0IAAt5-Y4OzgTQAlIb1ACKq8GEAwaoAYAAMhBAABUwgAAhEIAAMDBAACgwAAAQEIAAMJCAACAPwAAnsIAADzCAAAgQQAAqMEAAJjBAABEwgAAqMEAAABBAAAgwQAAgL8AAKBBAAAIwgAAwMAAABjCAADgwQAAsEEAAETCAACwQQAAZMIAAExCAADYQQAADEIAAIrCAADAQQAAQMIAAFDBAACKwgAAcMEAABxCAABgQgAAQEAAAGRCAABAQAAAgEAAAGxCAACgQAAAUEEAAJjBAAD4QQAAIEIAANJCAACQwQAAiMEAAFTCAADAwAAANMIAAABBAABgwQAATMIAAADBAAAAQQAAcEEAAFBCAAAowgAA2MEAAEDCAAAYwgAAAMMAABDCAABMwgAAYMEAABDCAAAoQgAAUEIAADDCAACMQgAAEEEAACTCAAB4wgAAUEIAAEBCAAAcQgAASMIAALhCAAC4QQAA6MEAAOhBAAAEQgAANEIAAAxCAACIQgAAiMEAABDCAABEQgAAMMEAAFjCAADAQAAAcMIAAFDBAABgQQAAuEEAAAhCAAA8wgAAAEEAAMDBAADgQAAArsIAABBBAACQQQAAVEIAAMhBAABsQgAAmEIAAIZCAADgwQAAgMAAAARCAABgQQAA4EEAAIDBAAAQQQAAiMEAAIjCAADAwgAAUMEAAJDBAABwwQAAoMAAAFjCAABgQQAAtsIAAKBBAABAwAAA2EEAAIjBAAAIQgAAuMEAAIC_AADgwAAAoEAAAODAAACEwgAAYMEAAKBBAABgQQAAAEAAAARCAACQQQAA4MEAAGBCAAC4wQAAEMEAANhBAAAgwQAAqEEAAATCAACAPwAA4MAAAAjCAABEwgAAnMIAAFxCAAD4wQAA4EAAAPBBAADwwQAAGMIAAOBBAADIQQAAREIAABBCAAAQwQAAAEEAABBBAADgQAAA0MEAAATCAABQQQAAfMIAACDBAAAYwgAAoEIAANDCAACAQAAAoMEAACDCAAAgQQAAAEAAAETCAACgQQAAUMEAAGBBAACYQQAACMIAABBCAADgQQAAEMIAAEBCAAAAQgAAAAAAAMjBAABAwCAAOBNACUh1UAEqjwIQABqAAgAAqr4AADy-AAAkPgAADL4AAIC7AACWPgAA-D0AAE2_AADuvgAATD4AAL4-AACovQAAqD0AAJY-AAAkvgAAlr4AAFA9AADgvAAAgLsAAPY-AAB_PwAAuD0AAOA8AAB8PgAAPL4AABC9AABQPQAAhr4AADA9AACAOwAAfD4AAAS-AABUvgAABL4AAIi9AADavgAAmj4AAK6-AADyvgAAoLwAAMK-AABwvQAA-D0AAHS-AACAOwAAJD4AAMo-AACOvgAAND4AAK6-AAAEvgAA1r4AAKg9AAAFPwAANL4AAEA8AABzPwAAML0AAJi9AAAtPwAAiD0AACQ-AAAcPgAAVL4gADgTQAlIfFABKo8CEAEagAIAAOA8AACgPAAAQLwAAFm_AACyvgAAsj4AAIY-AACWPgAAEL0AAIo-AACovQAAiL0AAOA8AACYPQAAbL4AAIC7AAD4PQAAJz8AADA9AAANPwAAiL0AAEy-AABQPQAALL4AANi9AAAsvgAAqD0AAEA8AACIPQAAND4AAOA8AACYvQAAuL0AALi9AACYPQAAJL4AAIi9AAAMvgAAJL4AAEQ-AAAwPQAAQDwAAIg9AAAwPQAAPL4AADQ-AAB_vwAAgj4AALi9AACKPgAAqD0AAJo-AABwPQAAsj4AAOA8AADYPQAAUL0AAJg9AABEPgAAjr4AAAQ-AACAuwAAmD0AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=JlP_1PLEXW8","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10334247510564778155"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2213329388011313485":{"videoId":"2213329388011313485","docid":"34-0-13-Z2A7339E6B4CF11D8","description":"Yes, it really did take a year. It's been a year since I started learning what the epsilon-delta definition meant, and I feel that only now I truly understand what it means. Are you tired of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2380126/2dcb6f051c54092ba4da7aaf6d11ac03/564x318_1"},"target":"_self","position":"8","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Da7YLaMqCbjY","linkTemplate":"/video/preview/2213329388011313485?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What the Epsilon Delta Definition of a Limit Really Means","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=a7YLaMqCbjY\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoVChMyMjEzMzI5Mzg4MDExMzEzNDg1WhMyMjEzMzI5Mzg4MDExMzEzNDg1aq4NEgEwGAAiRBowAAopaGhienV1dG95bnBrbHRtaGhVQzh2R01IVEhPMVpXN0NQaWJvYzRaa2cSAgARKhDCDw8aDz8T8gSCBCQBgAQrKosBEAEaeIEA_f_-_gMA7foH-wQAAAD4AAQJ-v79APn_BQD6BP4A5wH49gD_AAAA-_gK_gAAAO4ACfb4AAAAF_z6AAMAAAAO9PkDAwAAABIRBgn-AQAA_gD4BgP_AAAE-vbv_wAAAPP5__v8_wAA9vz8CAAAAAAHCwL8AAAAACAALVL32js4E0AJSE5QAipzEAAaYPQMADX4-efvDDjjIvfY8v_7DRALoyAA6O4A-fTP2RIiw7_89wBKwhj7swAAACL6FRPBABBiAADLQP0I-QLFzBUVf0_89R0I-PLA0wAKGAUT7wj9LQDTC_kEPQnZHxBPMiAALQw7Mjs4E0AJSG9QAiqvBhAMGqAGAACQQQAAEMEAAJDBAABAwgAAwEEAACBBAADoQQAAoMEAACzCAACIQQAAcMEAAJjBAAAwwQAAqMIAAEDAAAAMwgAAQMEAABBBAABwQQAAbMIAACDCAAAAwgAAQMAAANjBAABwwQAAcEEAAILCAACgQAAA8EEAANBBAAAwwgAAyMEAAEDCAABgQQAAQMIAABzCAACAPwAAYEIAAMhBAACCQgAAxEIAAADAAABMQgAAsEEAAIhBAABowgAAyEEAAPhBAABQQgAAAMIAAHTCAACgwQAAdMIAAOjBAACAQQAAQEAAAKbCAAAgQQAAqEEAAJhCAACgQAAAQMAAAODAAACgwQAAnsIAAP7CAAAQQQAAqMEAALjBAAAQwQAA1kIAAHRCAACcwgAAokIAAIBAAADIwgAAGMIAAEBAAAA0QgAAyEEAAFTCAACMQgAAAAAAAETCAAAsQgAAgEEAAMhBAAAIQgAALEIAABxCAADowQAA1kIAAPjBAACwwgAAJEIAAFzCAACoQQAADEIAANhBAADAwQAAOMIAANhBAADgwQAAQEAAAATCAADwQQAAiEEAAEBCAADwQQAAgD8AACRCAAAQQQAAyMEAAJhBAAAEQgAAKEIAAIC_AAAEwgAAXEIAABBBAACAwAAAiMEAAIA_AABMwgAAgEAAALBBAABwwgAAgMAAADzCAAA8wgAAIMEAAFBCAACAPwAATEIAAIBBAACYQQAAMMEAACDCAAAAAAAAXMIAADBBAAAAQgAASEIAAADAAAAkQgAABEIAAMDAAACAwAAACEIAAABBAABwQQAAIEEAAMBBAACYwgAAqEEAANhBAADgwAAAqMEAAGDCAABgwQAAIMIAAABCAACAQQAAAAAAAABBAAAAQgAAIEEAAExCAACEQgAAYMEAAHBBAACYQQAAAAAAAODBAAAAwgAA4EAAAFDCAABAwgAAjsIAANpCAACuwgAAMMEAAIC_AADAwQAAGEIAAEDCAAB8wgAAqEEAAEDBAADYQQAAiEEAABzCAACAPwAAQEEAAETCAABgQgAA4MAAAADAAABYwgAAoMEgADgTQAlIdVABKo8CEAAagAIAAIq-AABsvgAA6D0AAOi9AACivgAAVD4AAIg9AADGvgAA0r4AAHA9AAB8PgAAbL4AABQ-AACCPgAALL4AAIK-AADgPAAAFL4AAFQ-AACqPgAAfz8AAIC7AACYPQAA0j4AANa-AADYvQAAgDsAAIi9AACYPQAAcL0AAFQ-AABEvgAAmr4AAHy-AAAkPgAAKb8AAJY-AACavgAABb8AAKg9AACCvgAAnr4AAEQ-AAB8vgAAQLwAAEQ-AAC2PgAA1r4AAKI-AACWvgAAgr4AAMq-AADgvAAAxj4AAHw-AABwPQAAPT8AAFw-AAAEvgAAST8AABA9AACAOwAAUD0AABS-IAA4E0AJSHxQASqPAhABGoACAAAsvgAAyL0AAKa-AABLvwAAqr4AAJY-AAAEPgAA0j4AAKg9AABkPgAAPL4AACQ-AACOPgAAij4AAA2_AADgPAAAgDsAABk_AABwPQAAIz8AAJI-AABUvgAArj4AAIq-AACAuwAAlr4AADA9AABwPQAAuD0AALg9AACYPQAA2L0AADC9AABEPgAAND4AABO_AADoPQAAdL4AAOi9AABsPgAAqj4AADC9AABkPgAAHL4AAKA8AADoPQAAf78AAAc_AAAsvgAAuj4AAIg9AAATPwAAmD0AAE8_AAA0vgAAVD4AAFS-AABwvQAAmj4AAMa-AACAOwAAVL4AAJi9AABsviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=a7YLaMqCbjY","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2213329388011313485"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7410965610038659343":{"videoId":"7410965610038659343","docid":"34-7-17-Z7E5FFC4B3E315698","description":"continuity is the end of our quest for a rigorous definition of continuity. All quirks of continuity we have seen are consistent with this definition which mostly comes from the definition of a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4231465/741934fd8e77b7f5030d5b3a79ab4312/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/TEZ0MwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DO98eOlHyWmQ","linkTemplate":"/video/preview/7410965610038659343?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"This is the Epsilon Delta Definition of Continuity | Real Analysis","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=O98eOlHyWmQ\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoVChM3NDEwOTY1NjEwMDM4NjU5MzQzWhM3NDEwOTY1NjEwMDM4NjU5MzQzaogXEgEwGAAiRRoxAAoqaGhjY2F4emhienNtamxpYmhoVUN5RUt2YXhpOG10OUZNYzYyTUhjbGl3EgIAEioQwg8PGg8_E90FggQkAYAEKyqLARABGniB_v33_f8CAO3_EvoHAAAAAAP_-Pj-_gDxAf8F9gEAAO_8APT5AAAAAPv4Cv4AAAD-_Qv-9P4BAA8B9_wEAAAAGfb1CP0AAAAMDu8C_wAAAPn4_gYD_wAABwTu9f8AAAD3-AzyAAAAAPECAQQAAAAADQ33_gAAAAAgAC0Kb9k7OBNACUhOUAIqhAIQABrwAX8A7wLc4_wA9vXrANsg5wGKAAH_KzLl_8v8HADbBeUBAAPxAOP0AwHn_PL_1h0QAOTc5ADy4g7_O_b5ADX8AADr8PgAJMX3ATkCE__iAgb_5B4P__4AFQD44Nn_OgXqAfL0GP76AdH_Ce7EBx_8JwEfDzAACwMTAefiEP3kBh7_DRjj_fUGEQny6fL76SkeAgXxBvwLBPT72fb3AgELBAkA8gwC__8CAisf6_zvC_MA2_7w_-0F3AL18RcB_e_k_QT8Efv55_cC-REKAA38Af8BF_z4B9b5AfYL__8D-hP63gIDB9r2BwftAf393ucBBCAALX2cMDs4E0AJSGFQAirPBxAAGsAHEoPgvk_96Lz8Ilw9pZ2PvUTkz7yFS728S9O2vZbLKz2s7ge9FHYRPt8O3rwmvoM79pZivgV4gTx5Pw28xVWFPlQwb72bfyq8WMfRvQy8iTxsA3y9F34AvupgOD35rrc83PUSPZELzrygBxC7VFMCPtxLOr12zBC8s652ves98LwggC-9l9SeO6xbmL2h0Je8Zz0CPAASGbymBwc8ru59POBAEDx1FBC89BUJvZJQhLzbiyi9t9WsO-fMMT3ZPgS9ySJtPUWE2jslMyg8eAA1vVen8zrFgu-7-RSAvDZ0s7w9Cle8Y15sPDsODT0tTuu85XrAPSkV4DvDCfG8yqk9vtsWtT20TPu45Ib_PTl29TyMb5480lebvd1IVD0a9C27I2x0uxDfsjpQOpG8MGOqPaGRmTwmaaM8iReaPdUCHrwhFKW6iyE0PahRKD3fYYe7XBMcvQjwzLscn6S8zz6QPVz6_DwqH8K8VY-6vb45NzwXmSW8PbUfPbhzZj12z3C86TaXPOObN7xLoPM632bGPTm1872HHxg8WL-uvTJVMLwxoRm86L7MPQAwYz2u5gw75CxMPupXj70DDIU7j7pnPOdnL73DP7K7A8EtPey8cr2XuEG4KVvkvRv3IT1eq5C707arPLA6kj2J8fW7y5jnvFoNuT3sjIg7KMyVvYD5ILzLQ647C6ixPfHD97yYjPu5NWy6PS5hozx7Usk4oI0sPsuuBb0gAg25ZKuwvJbnhr2I5Ni6c1ZavUcQeDvauV07H6LRPVj4H7150Yo4FnYHPZG0wLxVcIc5rDzhvWlDVD2VW7I4qAXKvLEcvjqlhHO5FJ2LvYl64b3GJ3A5QwiDvUOWoLxfpwG6LidXPSPmuD1nVJm4Y3RqveAZaL1Zb_23xLFOvZX_mjxpQWG4nlCePdjpLD2Z_HW4xrILvG9dVrx0MJC3oB8BvUksqTzrG1o5iUUMvQgE-j1vcTq4CrWquzOx77wSTry4w3csPe5IoD1t7Rs5m87pPNbyVD1Uyx64YIksPTBXED0SDCo3r9gZPPPalr1JWh-3i9eWPZ8PBT0gjRW4IvsAvsZfJD0XmGU49dpsvDpZ6r1g-rg3cv-cPXc7sTyoF8A1gRWBvVBCH72HiR049wEoPnBh3b3xZ7-57AncvOEpX73EpWO4v4ihvbPt9LxLgmW4hs2LvQiw6D1Us5Y45NWevHqJ8b1lVTC4ipZXPRBY-T2NF0A4kqgcvUdVMz3mr3y4fy_FvOTWKT1MM4i4gRFqPC34Ibzka_43IAA4E0AJSG1QASpzEAAaYCUAACzxHuD0HUf1Df_l6uYM8QocygwA2-gA5QLf4Awu2soM-f800hrntQAAABTl7RzHAP5m2ArPFe8L6N2z0BkLfxcBD-TeAt_L3vU19vEl9_4ZOADW_qE8IQrLMAAzMSAALVOBMzs4E0AJSG9QAiqvBhAMGqAGAACQQgAAJMIAABBCAAAAwgAABMIAAKDAAABUQgAAGMIAAFDBAAB0wgAAQEIAAJjBAABQwQAAgEEAAKhBAABAQAAAAMIAAITCAAAEQgAAOMIAAOhBAABAwgAATEIAAADAAACowQAAMEIAAMjBAAAswgAAwMAAALDBAABcwgAAMEEAADDBAACAPwAA-MEAAMBBAAAAQQAAZEIAAKBBAADQQQAA4EEAAMBAAACcQgAA4MAAAEBBAABcwgAAgMEAAAzCAAB8QgAAIMEAAGjCAACgQAAAHMIAAFDCAABkQgAAyMEAALrCAAA4wgAABEIAAKBBAADwQQAA8EEAAKjBAAAYwgAA4EAAALrCAABAQAAAiMIAAFDCAAAcwgAAjEIAAAhCAAAwwgAAAEEAAHRCAACowgAAIMIAAABCAAAgQgAA4EEAALDBAABwQQAAoEAAAGDBAABQQQAAwEAAAKpCAABAQAAAOEIAADjCAABUwgAA0kIAAADBAADgwQAAmEEAAK7CAAC4wQAAiEEAAAxCAAAwwQAAuMEAAOBBAACQQQAAwMEAAEzCAABIQgAA4MAAAJZCAABQwQAAAEAAAOhBAADAQQAAYMEAABDBAAAAQQAA8EEAABRCAACAwQAAoMAAAJDBAACIwQAAsMIAANBBAAB4wgAAKEIAACzCAAA0wgAATEIAAGTCAAAAAAAAAEEAADxCAACIwQAAQEIAAIhBAADwQQAAgL8AADDCAAAkwgAA0MEAAFRCAAAcwgAAgMIAALBBAABwQgAAIMEAABRCAADIQQAATEIAAIhBAAAAQQAAqEEAALhBAAAMwgAAUEIAAOBBAAA0wgAALMIAAKBAAAA4QgAAmMEAAKhBAAAoQgAAWMIAABDBAABgQgAAOEIAACBCAAAwQQAAqsIAAMDBAACEQgAAUMEAAJjBAADgQQAA-EEAAJjBAACIwgAAUMEAAAhCAABswgAAMEEAABjCAADYQQAAgkIAAODBAADgwAAA4EAAABzCAAA0QgAAjsIAANbCAAAUQgAAQMEAAAjCAAB4QgAAAMIAAADAAAAAwQAAsMEgADgTQAlIdVABKo8CEAAagAIAAM6-AABkvgAAPD4AAJi9AABkvgAAij4AAIo-AAAdvwAAdL4AAMi9AADIPQAAMD0AANg9AACIPQAAfL4AAFC9AAA8PgAAgLsAAIo-AAAPPwAAfz8AAKg9AABEPgAAvj4AACy-AADgvAAA4DwAAMg9AAAcPgAAgLsAAGQ-AAC2vgAAir4AAIq-AABQPQAAmr4AADQ-AAA8vgAA4r4AAKA8AAAUvgAAkr4AANg9AAAcvgAAoLwAAJI-AADePgAAD78AAHQ-AACCvgAAED0AAFC9AADIPQAApj4AAJi9AAAQvQAAcz8AADQ-AAAMvgAAvj4AABw-AAAwvQAAML0AAMa-IAA4E0AJSHxQASqPAhABGoACAACOvgAA-D0AAMi9AABTvwAAkr4AAFQ-AACGPgAAXD4AAIC7AACmPgAAmL0AANi9AAAQvQAA2D0AAEy-AAAQPQAAij4AADU_AADIPQAABz8AAHC9AABwvQAA4LwAAOi9AAD4vQAAiD0AAAw-AAAwvQAA2D0AAEw-AABAvAAAUL0AAKC8AABMvgAAiD0AAAS-AAAQvQAAfL4AAPi9AACYPQAAyL0AAKg9AACoPQAAMD0AAAy-AAB8PgAAf78AALg9AAB8vgAAdD4AAFQ-AAB8PgAAmD0AALY-AADIPQAAiD0AAIC7AACoPQAAfD4AAFS-AABEPgAAyL0AANg9AADIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=O98eOlHyWmQ","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["7410965610038659343"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2039892774"},"18047139751631415245":{"videoId":"18047139751631415245","docid":"34-0-5-ZA7A9DF225F38673C","description":"definition of the limit of a function. We will explain the definition of a functional limit in depth, see some visualizations of it, discuss the negation of the definition of a limit, and then...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3908092/7c50d010c7e4e4b2d275cf59ae68e14e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2q2oRQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkVQNhAIFZYc","linkTemplate":"/video/preview/18047139751631415245?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon-Delta Definition of Functional Limits | Real Analysis","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kVQNhAIFZYc\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoWChQxODA0NzEzOTc1MTYzMTQxNTI0NVoUMTgwNDcxMzk3NTE2MzE0MTUyNDVqiBcSATAYACJFGjEACipoaGNjYXh6aGJ6c21qbGliaGhVQ3lFS3ZheGk4bXQ5Rk1jNjJNSGNsaXcSAgASKhDCDw8aDz8TkQqCBCQBgAQrKosBEAEaeIH2-gL-AQAA7PoI-gQAAAAP_QYC9wEAAPb6-_z-A_8A7A8J-gQAAAD-CPMH_AAAAPsDBAX1_gEAEvX4CAIAAAAa9vUJ_QAAAAAY9Qf-AAAA8Pv8AwMAAAAN-_T5_wAAAPL5__v7__8A-_T_CQAAAAAZC_P7AAAAACAALa0-0Ts4E0AJSE5QAiqEAhAAGvABfxbvA_vsCALiDuUAwRPuAIzvGv8hEekAxt8CAd0LxwHgE9kA5e4X_wQDBgDGIxcBDeTXABfo_gAq8QD_EQELAOYg_QEP0QIAO_UEAOf66gDiDBf_HAIVAAjh7P8-Fwj_CPUP-9cEyf8M_9wCKtwgAQT6FwEZ8Q8C_-UI-94GEAPUAOL9BwYOBg0GCv3qKB0C_wcLAgUK6ADa9vcCDPXtAADzCwLzBv36MQz_CfP0BATNB_AA3hTn-xn7HQXvAPz_-AQS9OTgAAAVFA35DPMBBe0XBwIb4O0CEQv5APX7GAPr-wL49An8_e_8D_vs7foUIAAtnXU1OzgTQAlIYVACKs8HEAAawAcJUtm-RQSQuoyg8Tyagpu9qbUXvAMFXr1L07a9lssrPazuB71q-5I9B-v_PHcKHj2cTZe-6j1cuWSPFrwtC1Y-sIpcvUEtJr0r_rq9zPdCPZs5BL3n_iq-Xcv_PEh0KjxssPA8CmuhOw7Zo7rBfr498vfBvRetbbwBnMW7ff7Bu6CSbr2OgSu9nx3wvT_xbzv7ipo82ip3vOWtxDydhXg9vD6Qu4oFPrzeQHy9nL-qO5d7t7wX3oA9AyzNPNVcrryUwhw-5JPfu3qjGz2chLk7fjvJvOqrULwTUSO8wYYQvFC04bz3t7q8haaZO8tnubxpox890iMhuVqJVLzZP--9nPn1PQM2b7vdYDg-KaZcPeMbPjp83KK9v2D3PExELrxmZR48CQKeu1YWgbucnyc9a-8TvU3zjjwDmPI9E8rMPFxZ4rzyM788qmvjPHRiDz3dazc9jJyqPQR-g7yo7Ko8oV4VPf0dwLvDCpy9STXHPCQpiruT_t68KUfMPf2f5Ds5T-u8PxkSOu-bUjuEnp09Q_KEvZm3ajx7yZW9GBzvvNtkebzdwX49vLskPYh7kbwiGyg-sWnKvNulyzpICMW82hcWPGkYhLs3qu48KplSvQtHazwpW-S9G_chPV6rkLtuIqk8jKZOPZtR1ruvZni8LTeSPZ5VDzuVjXi9666HvAwiTjttWFM91e1HPDLn17oti5M9nq8ePaCiDzrVlQ8-1OxGveVHGbmVnuk8IqESvUfkMToPKcS7GusxPWol6TkRwig9NF_KvKnru7ryhX887SBAvPM64jgb6qG9sluVPSzZmTib80I8JIECPOEkpziox9a9WQ1TvcknP7hf3Ly91eK4vLQlXLfKegA9OahuPdwSmDoC9Iu9RTWQvTuGMTgn94u95nkLPZ8LuLbxRZA9Uq1PPJ6yvzi-jhM7nvggPZU7Tbja93K9mgwCvUmuojmeAzC9D_IqPr3F37guYp69oPlhPX5ybrkUBA89EF0APo3DcbioT5c8I0ItPc_afjgIm_A8uf3SPUdpZTj1_0M7x3lkva9jtbeJ8Lo9wxGkPOeMoLhKUai9Y27tPPsFPjiOiLU62cpwvf8JZzcKqLs9XFqgOWmrGjjMSi49m1JDvVq2S7gfnwA-pOSQvRXoOrmMnpu9yX2hPKR1ubfVXZm8EZeCvQdxA7iGzYu9CLDoPVSzljgdlww9SQ9DvlQxTbnOfeY7PB-UPb0Svzi44BG979QQPOjGBLk5F3O7el_Zufhti7ff-K89kynwvFIiuTcgADgTQAlIbVABKnMQABpgEwQAM90a0PsfNOoZ9u3z0fXtASfEIv_02wDm9djq_DPQwxD0ADXVHu-zAAAAHfbqKdEA8WjuENMz4xXe6aLzGBR_NxMa1e0C8LD5CDMN5hL_9AooAOcBpyk5B8YxESwnIAAtzyMuOzgTQAlIb1ACKq8GEAwaoAYAAIhCAABgwgAAQEEAABjCAAAEwgAACEIAAIxCAADYwQAAgMAAAAjCAADoQQAAQMEAAMDAAAAwQQAALEIAADBBAAAYwgAAsMEAAOBAAAB0wgAAJEIAABTCAABUQgAAkMEAANjBAAAcQgAAyMEAAMDBAAAAQQAAAAAAAPjBAABAQAAA2MEAABxCAAAswgAAEEEAAKhBAACwQgAAEEEAAGBBAABAQgAAwMAAAIRCAADQQQAA6EEAAIjCAAAAwgAAMMEAABRCAACQwQAAgsIAAEBAAAA4wgAALMIAAPBBAAC4wQAA3MIAALjBAADYQQAAHEIAADhCAABgQQAAmMEAAATCAACgwAAAvsIAAIC_AABwwgAALMIAAETCAACKQgAAkEEAAGDCAABwQQAAaEIAALrCAADQwQAAoEEAAHRCAAAEQgAA0MEAAPhBAAAAQAAA0MEAAFBBAAAwwQAAokIAAIBBAAAYQgAAmMEAAHDCAAD-QgAAAAAAACzCAABwQQAAvsIAAOjBAAAAQQAASEIAAMBAAADAwAAAkEEAADxCAADYwQAAHMIAAExCAACwQQAALEIAADDBAAAQQQAALEIAAOhBAACwwQAAoMAAAARCAADwQQAACEIAAATCAADIwQAAHMIAAMDAAAB0wgAA-EEAAGDCAADAQQAAfMIAACzCAAAQwQAAMMIAAABCAACgQAAABEIAAGDBAAB8QgAAAEEAAOBAAACwQQAANMIAAKTCAACowQAADEIAAIA_AAA8wgAAAMEAAAxCAADwwQAADEIAANjBAAA4QgAAwEEAABBBAADgQQAACEIAAMjBAACGQgAACEIAAETCAACMwgAA4MEAAMhBAABAQAAAoEEAAKBBAABcwgAAsMEAAGhCAABgQgAAPEIAALBBAAB4wgAAfMIAABxCAACYwQAAEMEAAIA_AADQwQAAAMIAAFjCAAC4QQAAIEIAAKLCAAAAwQAAIMIAAPhBAACQQgAA4MAAAADBAABwQQAAYMEAAAhCAADgwQAAoMIAAJhBAABAwQAALMIAACRCAADQwQAAgMEAAODBAACIwSAAOBNACUh1UAEqjwIQABqAAgAAPL4AAKK-AABEPgAA-L0AAKC8AACqPgAAMD0AAC2_AADCvgAAoDwAAIY-AABEvgAAMD0AAI4-AACKvgAABL4AADQ-AACAuwAAfD4AAAE_AAB_PwAAqD0AAKg9AAAcPgAAXL4AAMi9AAD4PQAAEL0AABA9AABwvQAAij4AAIq-AABsvgAAhr4AACw-AAC2vgAAHD4AADy-AAD2vgAAQLwAALK-AAA0vgAAUD0AAIq-AAAQPQAAgDsAANo-AAD-vgAAfD4AAKK-AADIvQAAHL4AAEC8AAC-PgAAcL0AAIi9AAA7PwAAmD0AAKC8AAAJPwAAHD4AAOA8AABQPQAANL4gADgTQAlIfFABKo8CEAEagAIAABS-AACAOwAAyL0AAEm_AAB8vgAAxj4AAL4-AABsPgAAgDsAANo-AACAOwAAqD0AAKg9AAA8PgAAdL4AABA9AACYPQAAMz8AAIg9AAAPPwAAqD0AAGy-AAAsPgAABL4AAOi9AACovQAABD4AABA9AAAwPQAAND4AAEA8AACYvQAAJL4AALi9AADIPQAAXL4AADC9AACCvgAANL4AAPg9AABQPQAAmD0AAHw-AADgvAAAUD0AAHQ-AAB_vwAAgj4AAIA7AADYPQAAqD0AAKI-AAC4PQAAxj4AAHA9AAAMPgAAQLwAAJi9AACSPgAAZL4AAAQ-AAAMvgAAEL0AALi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=kVQNhAIFZYc","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["18047139751631415245"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3258919429"},"11663571555310565497":{"videoId":"11663571555310565497","docid":"34-6-13-Z1F61AEDB5BCAF258","description":"Measure one is called absolutely continuous with respect to measure two if sets of measure-two zero are also measure-one null sets. But how is this a \"continuity\". Continuity, as we know it...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2732249/f2a9b7a8a3266894c84d9d9eb0d1bf52/564x318_1"},"target":"_self","position":"12","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtHhWex5VQWA","linkTemplate":"/video/preview/11663571555310565497?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Epsilon-Delta in Absolute Continuity of Measures","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tHhWex5VQWA\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoWChQxMTY2MzU3MTU1NTMxMDU2NTQ5N1oUMTE2NjM1NzE1NTUzMTA1NjU0OTdqrw0SATAYACJFGjEACipoaG1keGFuc3JycnljcHdjaGhVQ3F5U25KT0d3LXp1S09YelZ6eERROUESAgASKhDCDw8aDz8T0AWCBCQBgAQrKosBEAEaeIH8_wgBAAEA-QgN_PsE_wEB_Pb8-P39APn_BQD6BP4A7Qf1AfsAAAAFBP4K_gAAAPb-E_r6_wEAGwL79QMAAAAR6fwG_wAAAA0H__r-AQAA_gD4BwP_AAALA-0BAAAAAPUICAP__wAA_P8GBvX8AAAEBvj8AAAAACAALUrE1Ds4E0AJSE5QAipzEAAaYBUNADYXDATZGFTa8PrI9h7uIOoKwf7_7-8AzRAj6w0LzaAl4f82AiDbqgAAACQM0-UeAABy--mtHxwmE9Pm5AUYf-EI9SEv--Kfyg77DwBH1hMzKADb7NMFMPDWQfJbNCAALRJeIjs4E0AJSG9QAiqvBhAMGqAGAAAQQQAA4MAAACRCAACAQAAAyEEAAGxCAACAQgAAIMEAANDBAABAwQAAcEEAAKDCAAAYwgAAsMEAALDBAACQwQAAOEIAAITCAAAwQgAAMMIAAPDBAAAAQAAAhsIAACBCAAAYwgAAsMEAAJjCAACAQAAArkIAANhBAAA0wgAAuMEAAKrCAAC4QQAAcMIAADDCAACIQQAAYEIAALjBAABIQgAAMMIAAEBBAACAQQAAZMIAAIBAAAAowgAACMIAAKBBAACcQgAA0EEAACDCAAD4wQAAEMIAAAxCAAA4QgAAIEIAALbCAAAAwQAAIMEAABhCAAAIwgAALMIAACDCAAAswgAAmEEAAIrCAACwwQAAUMIAAJTCAABYwgAAJEIAAExCAACswgAAAMEAAABBAABwwQAAnMIAAODBAACowQAAQMAAAIDBAACGQgAAgMEAAOhBAACIwQAA2EEAAADBAACIwQAAoEIAAFBBAABgQgAAAEIAAJ7CAACAwQAAMEIAAIzCAACYQQAAmEEAADhCAABAwQAAFMIAAGBBAAAUQgAABMIAAL7CAACAwQAAoMAAADhCAACgwAAAjkIAAJDBAAAAAAAAgMAAAMDBAAC4wQAAlkIAAMBAAABwwgAABMIAAJDBAAAIwgAACMIAAPjBAAAIwgAAEMEAAKBAAADowQAAoMEAAMDBAACAPwAAwMAAAHzCAADAwAAA4EAAADDCAAB4QgAAQEIAACBCAAAMQgAACMIAACDBAACwwQAAGEIAAMjBAABwQQAADEIAALjBAACoQQAAcMEAAIBBAAAQwgAAEEIAAMpCAABAwAAAaEIAAHDBAAB0wgAAUMEAAEDBAACAwQAAAMIAANhBAABAQQAAIMEAADBCAABgwQAA0EEAAKJCAAAkQgAAHMIAAIBBAAD4QQAAdMIAABBBAAAswgAABMIAAMDBAACAPwAALEIAAIC_AAAQwgAAoMIAADDBAADAwAAAFEIAAADBAAB8wgAAwEAAABDBAACgwQAA8EEAAGzCAAAQQgAAKEIAAEBBAABcQgAAoMAAAMBAAACQQQAAqMEgADgTQAlIdVABKo8CEAAagAIAAI6-AACovQAAZD4AADC9AAAQvQAAiL0AAIY-AAAxvwAAPL4AABA9AACgvAAAgDsAALg9AAAkPgAAVL4AAAS-AABwPQAADD4AAKC8AAALPwAAfz8AABA9AABwPQAA2D0AAAy-AADgPAAAJD4AALi9AADYPQAAJD4AAPg9AADovQAA6L0AAIA7AAAkvgAABL4AAAw-AACKvgAAqr4AAES-AACovQAAqD0AAOC8AABQvQAA0r4AAIC7AACmPgAAHL4AAKC8AABUvgAAqD0AAHQ-AAAMPgAA7j4AADy-AABAvAAAYz8AAHw-AAAQPQAADD4AALi9AABQvQAA6D0AABe_IAA4E0AJSHxQASqPAhABGoACAACivgAAUL0AACS-AAB_vwAANL4AAOg9AACqPgAAqL0AAKi9AACoPQAAEL0AACS-AABkvgAAiL0AAHC9AACgPAAA4DwAACc_AADYvQAAzj4AAHC9AABkvgAAHL4AAPi9AACAuwAADD4AAJi9AACovQAAuD0AABQ-AACAOwAA4LwAABC9AADivgAA4DwAAOA8AADIvQAAiL0AAAy-AACIvQAAUD0AAJi9AAAMPgAAUD0AAAS-AAC4PQAAe78AACy-AAAsvgAAyD0AAIY-AACgPAAAXD4AAEA8AADYvQAAgLsAADC9AABUPgAAJD4AAEy-AACiPgAAED0AAIg9AACAuyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=tHhWex5VQWA","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11663571555310565497"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16162293523412166900":{"videoId":"16162293523412166900","docid":"34-11-6-Z3516D69661666BDA","description":"Youngest NYU Student | Email, sb9685@nyu.edu CNN, https://www.cnn.com/us/new-york-12-ye... NYPost, https://nypost.com/2024/06/27/us-news... People | https://people.com/boy-12-graduates-f...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1778332/cc0e142dafc81ab4e88e493d278b6d2b/564x318_1"},"target":"_self","position":"13","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeTnatl9o-KE","linkTemplate":"/video/preview/16162293523412166900?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"#18 Real Analysis | Epsilon-Delta Definition of Functional Limits | Hunter College","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eTnatl9o-KE\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoWChQxNjE2MjI5MzUyMzQxMjE2NjkwMFoUMTYxNjIyOTM1MjM0MTIxNjY5MDBqrw0SATAYACJFGjEACipoaHhzbXFoemZzaHJ0Y2piaGhVQ2FqUkxiY1VFNDNqaUVjOFZwR1hlOXcSAgASKhDCDw8aDz8T2AeCBCQBgAQrKosBEAEaeIH0AwL-_wEA8v0J_g0D_gEU_fwA9gEBAPAB_wX2AQAA7Af9_gP_AAAQ__wQBgAAAPsCBAT1_gEAEvX5CAIAAAAJ9wAH_QAAAAAY9gf-AAAA7P8CCQMAAAAM-_T5_wAAAPwBAwb-_wAA8foBAgAAAAASC_QJAAAAACAALdgy1Ds4E0AJSE5QAipzEAAaYAUKACzmBOXtGjXdEOng6_kG7xP9xCYABO8A99vfzgco4LUR_P9BzRAMuAAAAAcOACMGAORXFgbLKvcD5u-r5RAdfw765i0GCebH6gEPLu4Z4vUJAgDhBfUaK_LXRiEwJyAALSpRQjs4E0AJSG9QAiqvBhAMGqAGAACgwAAAyMEAAJJCAAAEwgAAEMEAAIC_AACcQgAA4MAAANjBAABUwgAAwEAAAIxCAABEwgAA4EAAADRCAABEQgAAQEIAABBBAAAMQgAAwMAAAAAAAACYwQAAFMIAAABBAAC4QgAAoMAAAHjCAABwwQAAAMAAABxCAACAvwAAQEEAAGjCAAAAwgAAksIAABzCAABwwQAAjEIAAIhBAACwQQAAIMEAADDBAAB4wgAAAMIAAJBCAACAQAAAFEIAAEBBAAC0QgAA2EEAAIBAAAAQwgAAsMEAAMhBAABQQQAAIMEAANbCAACgQAAAoMEAAOhBAACAQAAAQMAAANzCAACQwQAA8EEAAETCAAAMwgAAKMIAAI7CAABQQQAAeEIAAODAAADgwAAA1kIAAABBAACgwAAAPMIAAADCAACoQQAAsEEAABTCAAAcQgAA4MEAAMBBAAAsQgAAoEIAAGTCAAAwQQAAQMEAAEBAAACAQQAA2EEAAABBAADIwQAAUEEAALLCAADAwQAAQMIAALBCAACWQgAAqMEAACxCAADgwQAAwsIAAKDCAAAgQgAAIEIAAJpCAADgwQAAiEIAAKBBAAAwwQAAgEEAAKBBAACAPwAAyEEAAOhBAACIQQAAuMEAAJDCAADAQAAAqMEAABBCAACYwQAA4MEAAJDBAAAAAAAAUMIAAODBAACAwgAAAMEAAGDBAAAAwQAAtEIAAODAAAAAQQAAAEIAAODBAAAEwgAAjsIAABRCAABgQgAAgEEAAIhBAABwQQAAUEIAAEDBAACowQAAgEEAAPjBAADgQQAAiEEAAKhBAACAvwAAcEEAALBBAABgwgAA0EEAANjBAABIQgAAmMIAAOBBAADAQQAAmEEAABBBAACAwAAAAEEAADhCAABgQgAAEMEAAPDBAAAIQgAA2EEAAIBBAAAAAAAA8EEAADxCAAD4wQAAMMEAAIBCAABowgAAksIAAIjBAADAwAAAREIAAAjCAABwwgAAoEEAADDBAABAwQAAgEEAAKBAAABAwQAAEEEAAHBBAAA4QgAAQMAAABRCAABAwgAAIMIgADgTQAlIdVABKo8CEAAagAIAAIi9AAAEvgAARD4AAFC9AAAwvQAAkj4AABC9AAAdvwAAuL0AAHA9AABEPgAAEL0AABw-AACSPgAAFL4AALi9AAAUPgAAgDsAACQ-AADaPgAAfz8AAEw-AAAQPQAAbD4AAPi9AADIvQAAqD0AAHy-AAA8PgAABD4AAOg9AADIvQAAgr4AAMi9AADYPQAAXL4AANg9AADgvAAApr4AABy-AACWvgAAML0AAIi9AAAEvgAAcL0AAMi9AACWPgAAbL4AAMg9AACevgAAgLsAAFC9AADoPQAAlj4AADA9AAAQvQAAMz8AAEA8AAAQvQAA7j4AAAw-AAAQPQAAuD0AAMi9IAA4E0AJSHxQASqPAhABGoACAABcvgAALL4AAMi9AABXvwAAdL4AALY-AAC-PgAA2D0AAIK-AACOPgAAgDsAACy-AAAwvQAAoLwAABy-AABAvAAAHD4AACU_AADoPQAA9j4AAOC8AAAQPQAAoLwAAMi9AABQPQAAVL4AAKg9AADgPAAABD4AAIA7AADgPAAAQLwAAAy-AACOvgAA6D0AAGy-AAAwPQAAUL0AAHy-AAAkPgAA4DwAAKC8AACAOwAAgLsAADC9AACoPQAAf78AABw-AACoPQAAbD4AAHw-AADgvAAAmL0AABw-AADIPQAAUD0AAIC7AABsPgAADD4AACy-AABMPgAAgLsAALg9AADgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=eTnatl9o-KE","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16162293523412166900"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18112810240028558651":{"videoId":"18112810240028558651","docid":"34-11-5-ZDE4D78CE8F25AA51","description":"then check out Krista’s website // http://www.kristakingmath.com ● ● ● Connect WITH Krista ● ● ● Hi, I’m Krista! I make math courses to keep you from banging your head against the wall. ;)","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/928463/86d83e271b7936b52a625d0cd05cd999/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/s8NrNwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DftAuCXNAvtE","linkTemplate":"/video/preview/18112810240028558651?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding delta from a graph and the epsilon-delta definition of the limit (KristaKingMath)","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ftAuCXNAvtE\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoWChQxODExMjgxMDI0MDAyODU1ODY1MVoUMTgxMTI4MTAyNDAwMjg1NTg2NTFqkxcSATAYACJFGjEACipoaHJkdWZ3enN5eGxiaXNiaGhVQ1VEbHZQcDFNbG5lZ1lYT1h6ajdERVESAgASKhDCDw8aDz8TkgOCBCQBgAQrKosBEAEaeIH7_wH_-wYA8AMGBgAD_wH7_AT9-v39APf7-_3-Av8A6QH9APv_AAAA_PgK_gAAAPj9BgP8_wAAFPsCCwMAAAAN9e4B_gAAABQF_wD-AQAA_gD4BgP_AAAFA_r3_wAAAPP6__z8_wAA9wb-CQAAAAABBAX-_wAAACAALcSf4zs4E0AJSE5QAiqEAhAAGvABf98_AAPLzQPF9tIAnzz4_7Aj-AD8N88AyBIE_9YdDAHY6Sv_6AwOACT-Av_ASfMAJ-rV_-7aEv8_2vwAD97yALgdEgAU_CUBKhwd___x3_70Mvv99-MTABrTzwMfPA79IfME_Qn61gH-48YAJ_syAe0M6gMp7AABBL4TAOUm5v_h9dX9JxcXBAkAI_4EDDb-Ff7pCg0tB_ng3d_-Ag4FDP3uBvQIMdL9Owrx-9QZBATu9_0GGvT9BfkjAAENOPUA9QUY8OsJCvkOHQ8ADAcR_uAA9gY-1vD5P9_tBN_0BQTS__nz5BEDCP0A5gjX8fT5IAAtrZcJOzgTQAlIYVACKs8HEAAawAeyDse-51kkPN8Kl7xOY_u9N-kMvXfp8LwU2pi9J095PQsRibsYmAU-gDPrO3-zvbugqEy-7KtmvalRozsUlEI-RkUcvXPoALxxPVq-5xa_PYVMqLzn_iq-Xcv_PEh0Kjz385w9AvQ7vUthFL1vwAI9ONFTvQoJorxtiow9F21pPalOh7zcmwQ81JPevPztAb19ADc9-1wNvXU_pzrjIMw94D78PF6R6zr1JUA8h7-mvKBsiry_tYO9eYqBPFppDLsED8I9IiaHPRBKTjxvh2E8qgptveKenbvfCQy9zylQObaOHryswms9nX9gPddFdrzYwgc9RMeZvfI7sryX5DC-RG8sPeyCZrz7BTs-2jfXPUR1yjtpSAa9xbJ0uyKxk7y3jOU8tw9UvIHMzjxcHQA-kGaRPDNXgjveWrY9jyYNPbbfcztutiO9-VhwPQkSwDxQU5s9tp4EvIauRLyx64s7cHpVu7IKwLwosZC81512uyfmETxdp1E9VZedPE2Dojwumak9ulc8PZ1uNDwFI6U91gI7vknlmjrHg229VxCOvZ23Vry1kSY9f6swPbsdzLvw-WE9FF8NvneEEbvvUaS8bvjdvDjEkTql_0A82eqyvVOSN7ohjwC-1Xu6PSuLobpoyN08DDa7O0HJLrxCn748XDGNPUd7kztOAmW88KyIvfj1xzqKhpa8i8nVO8hrkDtQvK88wM0CPe2MRrvVlQ8-1OxGveVHGbntz2q91f-evOr5e7qIeos8dGKsutAObbqUQLQ94M1kveKHajn9lR-9LpNcPb5Yp7jWDWq9Ar9hPfMoe7gEX4e8xZogvUbhPzkUnYu9iXrhvcYncDnrP2Y9IdgnvDCm-bg7v5094IdePOdXrrhjdGq94BlovVlv_bdt4uS9vt6dPYc_A7lZHJk9dYVoPeFOjjgz7hm8fFdOPR51CDnZ-Yo7QaihveU3vDl4fWY8O1TzPVMcKDixOWK9IXIfvEIjArn9WJc93Lf6PR1WxDXoUYy8WkByPQnlvDf2RzM9pjRxPQrtsbhv9ge9AhB3vXj4gTcMKXU8HuYGPYMtWDdDfry9m0ZJvHhLyDfhNLM83GF4vTj3qrfzAqw9gxddvRIqwDhsE908kFIkPYt16Tg6XdY97EqNOxz7SblUxdS9_3tLvRhRV7YhjU-97oJ8vUYVjrh5dty7EbWjPIHqjLidbcm91NQSvh8-kbhCy189Yxq3PW6Qjji4H7C8r4grPSLTlbha7ca9DxQzPWjb-zfeSfo777i3PW5jRzggADgTQAlIbVABKnMQABpg_vcARu0b9Q4WQ-jg5eTx6tAA1SmuKv_0yf_N9r3x3xOtwQL4ABDNMOCdAAAAF__eDAoA3H_k6voxANoi5ZDqFAhIFPc64fcUGNbjIh8B7DzcCm9AAMAevkFJA8Is-1E_IAAt0ygYOzgTQAlIb1ACKq8GEAwaoAYAAGBBAAAEwgAAqEEAAODBAACgwQAAUEEAAJpCAADIwQAAYMEAAKjBAACAQAAABEIAAIjBAADQQQAAMEIAAADAAAAwQgAAAMAAAAxCAACgwAAAJMIAAFjCAAAEwgAAAEAAAABAAAA4QgAAgMIAAIBBAAD4QQAAtkIAAMjBAACgwQAA0MEAAJBBAADSwgAAVMIAAHDBAADYQQAAYMEAABBBAAAAwAAAUEEAAKhBAADwQQAAFEIAAATCAAAAQAAAoEAAAIJCAAAcQgAAoMEAAIA_AAAswgAAwEEAAOBAAADAwQAAqMIAAABAAAAwQQAAwEIAACxCAABwwgAApMIAABTCAACAwAAAosIAABjCAADWwgAAJMIAAAzCAAAcQgAAOEIAAEDCAAAUQgAA4EAAAKDCAACiwgAAYMEAAARCAADgQAAAOMIAADRCAADwwQAAeMIAAOBAAACaQgAANMIAAKDAAAB8QgAAAAAAANDBAAAUQgAAAMEAAOBAAAAoQgAAaMIAAIA_AACAwAAAJEIAAKBCAAAgwgAALEIAAODAAAAwwQAA-MEAAFxCAAAAQQAAEEIAACDBAACwQgAAhEIAADxCAADAwAAA4MAAAMDAAABkQgAAmEEAACjCAAAUwgAAqsIAAIC_AADwQQAA8EEAAIjBAACAvwAAAEAAACBBAACwwQAAkMEAAABAAABQwQAAIMIAAIDBAABwQgAAEEEAAIDAAADIQQAAuMEAAJrCAADEwgAAZEIAAKhBAAAUQgAAIEEAACBBAAAkQgAAgEEAADzCAACAPwAARMIAADTCAADgQAAAYMEAAFTCAAAwwgAARMIAAJ7CAAC4wQAAyMEAAExCAABQwgAAGEIAANBBAAAwQQAAgD8AAIBBAABAwAAAgEAAAIxCAABMwgAAoMAAAFxCAABwQgAAgEEAAATCAACgQQAAwEEAABBBAADgwAAAiEIAAFDCAAAkwgAAQEEAAODAAABwQgAAoEAAAODBAAAMQgAAUEEAAGBBAADAQAAAAMIAAADBAABQwQAA8MEAAIhBAACowQAAREIAADDBAABEwiAAOBNACUh1UAEqjwIQABqAAgAAFL4AAHS-AACCPgAAfL4AAEC8AACyPgAAqD0AAD2_AACCvgAAuD0AANg9AACYvQAA6D0AABw-AAC4vQAARL4AAIY-AACgvAAANL4AANY-AAB_PwAAFD4AAEQ-AACiPgAALL4AAKA8AABsPgAA-L0AABC9AACovQAAPD4AAKA8AAAMvgAAUL0AADA9AACKvgAAhj4AABS-AAC2vgAAgr4AAL6-AACIvQAAmD0AACy-AACYvQAAJD4AAHQ-AAA0vgAAyL0AAKa-AABAvAAAgr4AABQ-AADuPgAAfL4AAJi9AABpPwAAiD0AALi9AAALPwAARD4AAJg9AAAEPgAAQLwgADgTQAlIfFABKo8CEAEagAIAAAS-AACAuwAAcL0AAEW_AABwvQAARD4AAHw-AABwPQAAoLwAAEw-AADIvQAAQDwAAKi9AAAwPQAAiL0AADC9AACoPQAAIz8AAHC9AAAXPwAAcL0AAEy-AABAvAAAVL4AADA9AAAwvQAAQDwAAIA7AACoPQAAbD4AAKC8AABAvAAAiL0AAOi9AAD4PQAA2L0AAOA8AAAEvgAA2L0AACQ-AAC4PQAA6L0AAIg9AAD4PQAAZL4AAKg9AAB_vwAAMD0AAEy-AACePgAAQLwAAFw-AACAuwAAXD4AAFC9AABwPQAAUL0AAKi9AAA0PgAAuL0AAKg9AAAwPQAAFD4AAEC8IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ftAuCXNAvtE","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18112810240028558651"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1758656482"},"3256150442330517954":{"videoId":"3256150442330517954","docid":"34-6-6-Z39C537A106E3B850","description":"We prove f(x)=x^3 is continuous on the real numbers using the epsilon delta definition of continuity. this course! https://amzn.to/3CMdgjI ★Donate★ ◆ Support Wrath of Math on Patreon...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3263765/93ea9b13a339b3996a3f864d0ac2d895/564x318_1"},"target":"_self","position":"15","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D01tcpSonAJs","linkTemplate":"/video/preview/3256150442330517954?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof x^3 is Continuous using Epsilon Delta Definition | Real Analysis Exercises","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=01tcpSonAJs\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoVChMzMjU2MTUwNDQyMzMwNTE3OTU0WhMzMjU2MTUwNDQyMzMwNTE3OTU0aq8NEgEwGAAiRRoxAAoqaGhjY2F4emhienNtamxpYmhoVUN5RUt2YXhpOG10OUZNYzYyTUhjbGl3EgIAEioQwg8PGg8_E8kDggQkAYAEKyqLARABGniBBvgF8AP8APH9Cv4OA_4BFAIF-fUBAQDxAPgOBQL_AOsECfEAAAAA_fP0CgcAAAAK_AP-9_4BABr7-QAEAAAAFAHyA_8AAAAND-4C_wEAAPj19AkE_wAAEgX2_f8AAAD8BQ7uAAAAAPX7BwkAAAAAFAsA-gAAAAAgAC1aHsg7OBNACUhOUAIqcxAAGmDyCwAsBQDw2D004vkJ-PYD_-0IBskXAOQAAPUG-sb8IeHJFPb_SN8G_7sAAAAU89gaCQAOV_MDzBMAA_XcwN0aIH8V8wj__wrVzvP3KSDwMcz0Gh0AugPiFRXpyjPtLiogAC0XZkY7OBNACUhvUAIqrwYQDBqgBgAAoEEAADTCAACiQgAAlMIAAEBBAADgwAAASEIAAAzCAADowQAAoMEAAKBAAAAwwgAA-EEAAMDBAAAwwQAAQMAAAKhBAADAwQAATEIAADDCAACYwgAAIMEAADBBAADQQQAA6MEAAKDBAABgwQAAiMEAAJpCAADgwQAAgsIAAIhBAAAswgAADMIAADTCAACIQgAA6EEAALZCAABAwgAAOEIAAOBBAAAIQgAAAEIAABDCAADQQQAAPMIAAEBBAAAgQQAAsEIAANDBAAAAwAAAgMAAAFBBAACAwAAAgkIAAIA_AADEwgAAwMAAAOBAAADwQQAAIEEAABDCAACwwQAAtsIAAKjBAADwwgAAmMEAAMjBAABwwQAAJMIAADBCAADQQQAA0MIAAPBBAACgwAAAcMEAABjCAABgwQAAAMEAAJBBAABQwQAAMEIAAADBAACYwQAA-EEAAOhBAABwQgAAVEIAADhCAAAMwgAAUMIAAJhCAACEwgAA0EEAAARCAABYwgAAYMEAAJhBAAD4QQAAJEIAAIDCAACwwQAAwEAAAETCAAAEwgAAkEEAAOBAAABQQgAAiMEAAEBCAACAQgAAyEEAAAzCAAAwQgAAdMIAAPhBAADAQQAAmMEAABDCAABQwgAAZMIAAJjCAABQwQAAqEEAAAAAAABUwgAAPMIAAIA_AAA4wgAAEMIAAKjBAABAwQAAYMEAAEhCAAA8wgAAJEIAAADAAAAAAAAAMEEAAODBAACIQQAAFMIAAAAAAAD4wQAAbEIAAOhBAADQwQAAuEEAAGDBAABAwAAAAMAAAKDAAABYQgAAkEEAABhCAAAQQQAAIMEAAADCAACWwgAAIEEAAMDBAACAQAAAUMEAAHTCAADAwQAAdEIAAMDBAACGQgAAcEEAAABAAADgQAAAqMEAAJhBAAAgwgAAeMIAAGBCAACMwgAA2MEAADhCAADwQQAAKMIAABjCAAAAwAAAIMIAABBCAAA8wgAAOMIAABDCAAAAwAAAWEIAAABAAABMwgAAaEIAAODAAABQwQAA6EEAABzCAADAwAAAAMEAACzCIAA4E0AJSHVQASqPAhAAGoACAACivgAA4LwAALY-AADgvAAA6L0AACQ-AACKPgAALb8AAJK-AAAwvQAAMD0AAOC8AAC4PQAAqj4AAAS-AAAMvgAAlj4AALg9AACCPgAAEz8AAH8_AADIPQAAFD4AAIY-AABEvgAAQLwAAFA9AAAEvgAALD4AAIA7AADIPQAAtr4AAOA8AABUvgAAED0AAHC9AADYPQAAmr4AAKK-AADovQAAfL4AAEA8AAAUPgAANL4AAJg9AAA0PgAATD4AAMK-AABcPgAAVL4AAIg9AAAcPgAAgDsAAMo-AADKvgAAmL0AAG0_AABQPQAAmL0AALY-AABwvQAAcL0AAPg9AAB0viAAOBNACUh8UAEqjwIQARqAAgAAfL4AAKi9AAAQvQAAP78AACy-AAD4PQAAmj4AAIg9AAAQvQAAZD4AAOA8AABAPAAAoDwAAMg9AACgvAAA4DwAAKg9AAAzPwAAcD0AAPY-AADgPAAAmL0AAKA8AAAsvgAA4LwAAOC8AABAPAAAgLsAAFA9AAA0PgAAoLwAAJg9AAD4vQAAlr4AAHQ-AACYvQAAED0AAOi9AAA8vgAAqD0AAFA9AAAQvQAAQLwAAKA8AABAPAAAoDwAAH-_AAAQPQAA4LwAAIC7AAA0PgAA6D0AAAS-AAB0PgAAPD4AAAQ-AACAuwAAcL0AACw-AABQvQAAXD4AABS-AADIPQAAmL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=01tcpSonAJs","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3256150442330517954"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1051802901966789010":{"videoId":"1051802901966789010","docid":"34-0-10-ZDF7BC8384B52693B","description":"We will prove that the limit of x^2 is 4 as x goes to 2 with the epsilon-delta definition. We will also do it without the usual trick (setting deleta=min{1, something}). Will this be any easier?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1773140/7d371fe7887bec4f21c5ef12a8ace813/564x318_1"},"target":"_self","position":"16","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFobFTlT81W8","linkTemplate":"/video/preview/1051802901966789010?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to find a formula for delta (epsilon-delta definition of a limit)","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FobFTlT81W8\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoVChMxMDUxODAyOTAxOTY2Nzg5MDEwWhMxMDUxODAyOTAxOTY2Nzg5MDEwaq8NEgEwGAAiRRoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioQwg8PGg8_E7sFggQkAYAEKyqLARABGniBAvUACP0DAOYAAQL8AAEACwD7-vcAAAD2B_z__wL_AOcB-PYA_wAA-wf6EAIAAAD3Awf8_P8AABf8-gADAAAAB_v3BQEAAAAOC_wD_gEAAP_8-_8D_wAABQP69_8AAADz-v_8_P8AAPoCAwcAAAAAAQQG_v8AAAAgAC0d4947OBNACUhOUAIqcxAAGmAR_QA38u_aAhkz6x755Pf75ev1FrYmAODkAOr4zPYWHtDZEd4AMfIc97cAAAAo9QUV4QAlUgX00CARCvYQxNsGF39YCQQYFhERtuoHFB7_K-gjBhMA6uf4CCoD1vcJRTAgAC0WVkM7OBNACUhvUAIqrwYQDBqgBgAAnkIAACjCAADIQgAAUMEAAADCAADgQAAAikIAAGhCAABgwgAAwEAAAKBAAACwQgAAEMIAAADAAAAAQAAAGEIAAGBBAABEwgAAEEEAAIC_AACYQgAAsEEAADTCAADQQQAAAEEAAKBBAABMwgAAIMIAAExCAABgQQAA4EEAAKhBAADIwQAAgL8AAHjCAABEQgAAmEEAAK5CAACgQAAA0MEAADzCAAAQwQAALEIAAADCAABAQQAAJMIAAAxCAAAoQgAAhEIAAHBBAACAwAAAYMEAAGBBAAB4QgAAYEEAAEBBAADYwQAA2EEAAJpCAADQQQAACMIAACjCAACkwgAADMIAAKDBAABsQgAAOEIAADjCAADAwQAAiEEAAHhCAAAQQQAAfMIAALJCAACgQQAAtMIAAKDCAACAwAAAJMIAAADCAABAwQAAQMAAAEDAAACAQQAAwEEAAERCAADgwAAAIMEAAEDAAAAgwgAAEMIAABhCAAAAQQAA0MEAAIBBAAAswgAAHMIAAKhBAACuQgAADEIAAODAAAAMQgAAbEIAAIA_AACUwgAA8EEAAOBBAACkQgAA4MAAAHhCAACSQgAAAEEAAIzCAACAPwAAZEIAABBBAACAQQAA2MEAACBBAACUwgAAgL8AAATCAABgQQAAZMIAAABAAADowQAAoMAAAK7CAAAwQQAAGMIAAEBAAADAwAAACEIAAEhCAAAQwQAAcEEAADBBAABAwQAA8MEAAILCAABAwQAAcEIAAADAAADIwQAAIEEAAOhBAAAAwQAAgEEAACjCAABMwgAAQEEAAEBAAAAwwQAAlsIAADBCAACAPwAAiMEAAAAAAACAQAAAbEIAAOjBAABgQQAAUEEAAGDBAAAMQgAAgMAAAIBAAACgwQAAAEEAAAAAAAAgwgAAgEAAAGBBAAAwQQAAkMEAAKBBAAAkQgAAHMIAAGxCAACkQgAAYMIAAIDAAAAYwgAAmMIAAExCAADowgAAUEEAAARCAACYwQAAoMAAANhBAAAgQgAAQEEAAABCAACwwQAAMEIAANDBAAAwQQAAkMEAAADCIAA4E0AJSHVQASqPAhAAGoACAAAMPgAAwr4AAGQ-AAD2vgAAqD0AAFQ-AAAsPgAAUb8AADS-AADIPQAAxj4AAGS-AAAEvgAAkj4AAIK-AAAsvgAAkj4AAKA8AADIPQAAtj4AAH0_AABkPgAALD4AAK4-AAC2vgAABL4AAEQ-AACSvgAAHD4AAKC8AAB0PgAAir4AAIi9AAD4vQAABD4AAAm_AABEPgAAbL4AAOK-AABwvQAATL4AABy-AAD4PQAAdL4AAES-AABUPgAARD4AAJK-AACePgAALL4AAHA9AADgPAAAQLwAAKI-AAC4vQAAyL0AAH8_AACovQAAcL0AAPI-AAAEPgAAcD0AAHA9AACIvSAAOBNACUh8UAEqjwIQARqAAgAAFL4AAHC9AABQvQAAT78AAIq-AAA0PgAAPD4AAGw-AACIPQAAND4AANi9AABwPQAAML0AANg9AAA8vgAAEL0AABC9AAAVPwAAUD0AABM_AACovQAAwr4AAKC8AABsvgAAQDwAAAS-AAAEPgAA2L0AACQ-AAAkPgAAcL0AADA9AAC4vQAAgLsAAPg9AABEvgAAmD0AABC9AAAUvgAATD4AABA9AADgvAAABD4AAKA8AACovQAAoDwAAH-_AABkPgAA2L0AADw-AAAQPQAA2D0AACQ-AACCPgAAmL0AAIg9AABAvAAAqL0AAJg9AADYvQAAHD4AAEy-AADYvQAAED0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=FobFTlT81W8","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1051802901966789010"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1979499066400446951":{"videoId":"1979499066400446951","docid":"34-10-3-Z1857913A5939864A","description":"in no way is this video intended to be demeaning towards any culture, race, nationality, or ethnicity. this is a skit video, teaching students how to epsilon-delta in 3D.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/467677/31a904306cb13f76e0f1cd9998b3425d/564x318_1"},"target":"_self","position":"17","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-Z5x45KZCL4","linkTemplate":"/video/preview/1979499066400446951?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"how to prove a limit using the epsilon-delta definition","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-Z5x45KZCL4\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoVChMxOTc5NDk5MDY2NDAwNDQ2OTUxWhMxOTc5NDk5MDY2NDAwNDQ2OTUxaq4NEgEwGAAiRBowAAopaGh2eHF3Y3RzeHl1dnJkaGhVQzBOZ0NSOHBnWVJoTmhIXzNoWWRFYVESAgARKhDCDw8aDz8TkQOCBCQBgAQrKosBEAEaeIEB-goG_gMA7foH-wQAAAAT9QcG9wAAAP8D__v5Bf4A6AH9__r_AAD6B_oQAgAAAPj9BwP8_wAAF_z5AAMAAAAO9PgEAwAAABIRBgn-AQAA__z7_wP_AAAA__T6_wAAAPYBAvv4AP8B__wDCgAAAAAICfsDAAAAACAALWmt2js4E0AJSE5QAipzEAAaYCEDAC7c_PML_xLoF-3X9OvwDAf-oyX_7uYA6QvR5gQmw9P0EgAt1w8EuQAAAB8O9h7_ABlYFfTD_SIZ7QSz1gkJfyL-4wMK8w3E7AEeNtU17AwXJADg_BYDLPncEgsmRCAALdNtQzs4E0AJSG9QAiqvBhAMGqAGAACAvwAAgEAAAMhCAABwwQAAiMEAAADBAACaQgAAQMAAAAjCAACgwAAADMIAAKBBAADIQQAAmEEAAHBBAACQwQAABEIAAKjBAADIQQAA6MEAALDBAADowQAA6MEAAJhCAACAvwAAAMAAAKbCAAAAwAAAaEIAAJpCAAAAQAAAAMIAADDCAAAwQgAAwsIAAFBBAAA8wgAACEIAAODAAAAEQgAA0MEAAGDBAABQQQAA6MEAAKBBAACoQQAAAAAAAMBAAABYQgAAyEEAABjCAABwQQAAIEEAANhBAADQwQAAtsIAAJDBAAAUQgAAwMAAAIhBAAAAQQAAYMIAAGjCAAAQwgAAmMEAAJLCAABIwgAA5MIAABzCAAAwwQAAGEIAAFBCAACIwQAAREIAAIBAAACWwgAAjMIAAKDAAAAAwAAAEMEAAITCAABIQgAAQEAAAKjBAABMQgAAlkIAABzCAADYwQAABEIAABxCAACYwQAA8EEAAABBAACYwQAAQEIAAEjCAAAkQgAAIMIAAEBBAAAgQgAATMIAAGBCAABwQQAACMIAAGzCAABoQgAAQEAAAGRCAAC4wQAArkIAAMhCAACKQgAAQEEAACBBAABAwQAAikIAAADAAABAwAAAIMEAAMDCAACgQAAAUEEAAIDAAABkwgAAyEEAAKDAAACQQQAAYMEAAEDBAAAYwgAAAAAAAATCAABgwQAAwkIAAEDAAAAwwgAAKEIAACDCAACgwQAAwMIAAAhCAAAUQgAABEIAAADBAAAwQQAAoEEAAEDAAADAQQAAkEEAALDBAAAAQQAAgMAAAGBBAABwwQAAmMEAAIbCAACCwgAAQMEAAAzCAACAwAAAgsIAAPBBAAAAQQAAUEEAAGBCAACgQAAA4MAAAGhCAABoQgAAfMIAAATCAACgQAAAoEEAAMDBAADgwAAA4EEAACBCAABwwQAAPEIAAHBCAABQwgAAuMIAAMDBAAAcwgAAPEIAAOjBAACAQAAA6EEAANDBAAAAQQAAIMEAAABAAABUwgAAAEEAAAAAAADIwQAAGMIAANhBAADYwQAACMIgADgTQAlIdVABKo8CEAAagAIAALi9AAA0vgAAij4AABC9AADovQAAFD4AAAw-AADqvgAAzr4AAPg9AACCPgAAmL0AAKC8AAAkPgAAuL0AACS-AABsPgAAMD0AACQ-AAC6PgAAfz8AAI4-AAAQvQAA9j4AALq-AAAwvQAAUD0AAKq-AACoPQAAFD4AAJg9AAAsvgAAcL0AAIC7AAC4PQAATL4AAPg9AADOvgAA0r4AABA9AADavgAADL4AAOi9AAD4vQAAJL4AACQ-AADoPQAAVL4AAAw-AAA0vgAA-D0AAIi9AAAcPgAA0j4AAKi9AADIvQAAVz8AAKA8AADgvAAAAz8AAKA8AAAwPQAAqD0AAHC9IAA4E0AJSHxQASqPAhABGoACAAAEvgAAyL0AADS-AAAvvwAA6L0AAIo-AABAPAAAij4AAJi9AAAEPgAAfL4AAIg9AABwPQAALD4AAFC9AACIvQAAiD0AACU_AACovQAABz8AAAy-AAA0vgAABD4AAES-AAAwvQAA6L0AAKg9AADYvQAATD4AADw-AACAuwAAgLsAAHC9AABAvAAABD4AANi9AACIPQAAUD0AAJi9AACIPQAAyD0AAFC9AAC4PQAAMD0AABS-AACYPQAAf78AADw-AAAEvgAAfD4AAKg9AAAQPQAAcD0AANI-AACAuwAAqD0AAKA8AAC4vQAAuD0AAOC8AAAcPgAAML0AAIA7AAA0viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=-Z5x45KZCL4","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1979499066400446951"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"93747900681301327":{"videoId":"93747900681301327","docid":"34-4-7-Z8482D027F3DE14AB","description":"The precise epsilon-delta definition of a limit #shorts 🔑 If you enjoy my videos, then you can click here to subscribe https://www.youtube.com/blackpenredpe... 🏬 Shop math t-shirt & hoodies...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3443305/4cc768eb8fe027c20d7a7e3e6d091a28/564x318_1"},"target":"_self","position":"18","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKSEwLfuYeJg","linkTemplate":"/video/preview/93747900681301327?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to epsilon-delta! #shorts","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KSEwLfuYeJg\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoTChE5Mzc0NzkwMDY4MTMwMTMyN1oROTM3NDc5MDA2ODEzMDEzMjdqrg0SATAYACJEGjEACipoaHJ3cGl6a2NucW5hZ3hiaGhVQ19TdllQMGswNVVLaUpfMm5kQjAySUESAgASKg_CDw8aDz8TMoIEJAGABCsqiwEQARp4gQX4AQP_AQD6CA38-wT_AQ_39Pf2AAAA_wP_-_kF_gD5C_EB_gAAAAj-8QgCAAAA9v4S-vr_AQAe8v4GAgAAAP3wAgICAAAACwQCCQoAAQEI__YKBP8AAAAI9-7_AAAA_AgBAfz_AAD-9gkFAAAAAAz1AAUAAAAAIAAtkCvXOzgTQAlITlACKnMQABpgAhMAGQoM-b8jMPkC2dcB9Q0T6hWFMf_78f_58tXYHiuxtwn4_ynY8tmhAAAAEevs_zoA83UN6s3wJwDy2tLYHhJ_QirvQlX6EeXwJx4zG_e74xhPALXh8vVPDOgn-lM4IAAtcQMcOzgTQAlIb1ACKq8GEAwaoAYAAPBBAAAUwgAACEIAAJTCAAAMwgAA4EAAAExCAACYwQAAVMIAAFDBAADAQAAAqsIAAIC_AACGwgAAAMEAANBBAAA8QgAAMMEAAOBAAACAwAAAAMIAAIC_AACewgAAMEIAADzCAABwwgAAiMEAAFBBAABEQgAA-EEAADTCAADwwQAAmsIAAAxCAAA4wgAAgEAAAOhBAACeQgAAYMEAAIRCAABAQgAAyMEAADxCAABwQQAA0EEAABDBAACAQAAAyEEAAJ5CAAAAQQAAAMAAAABAAAAQwQAA4MAAAIBAAAAwQQAAzMIAABhCAAAAwQAAREIAAEBAAADiwgAAQEAAAEzCAACgwgAA4MIAAABAAAB4wgAAEEEAAGzCAAAoQgAA8EEAALjBAAAUQgAAQMAAAIrCAACGwgAAwEAAAPhBAABQQgAAqMEAAGBCAADgwAAAsMEAALDBAABEQgAAgL8AAHBBAABQQQAA4EEAAEBBAAAwQgAA-MEAANbCAAAAwQAAyEEAAOhBAABAQAAAiMEAADxCAADawgAALEIAABxCAAAAwgAAkEEAAMjBAAAEwgAA2EEAAADAAACgQQAAQEIAAHxCAADYQQAAAMEAAHDBAAAUQgAAwEAAANDBAAD4QQAAJMIAAABAAAAAwgAAgEAAAEBBAABAQQAAQMEAAJbCAAAQQQAA6MEAACRCAAAwwQAAkMEAADBCAACgQQAAAAAAAEDAAAAUwgAAyEEAAOhBAABQwgAAkMIAAChCAABcQgAAEMIAALhBAABIQgAAwMEAABDBAADAwAAAgL8AAOBAAABQwQAAVEIAAMjBAADgQAAAgEAAAAzCAAAcwgAAvsIAAHDBAAAcwgAAgEAAAMjBAADQQQAAoMAAAPhBAAAAQQAAYEIAADRCAABAQAAAUMEAAKDAAAAgQQAAAEAAABjCAABAQAAAYEEAAGDBAACowQAAmEIAAJTCAACgwgAAAMEAADDBAAAYQgAAmMIAADjCAAAsQgAABMIAAOBAAAB0QgAA-MEAACDBAADwwQAATMIAAHRCAADwwQAAUEEAAIBAAAAkwiAAOBNACUh1UAEqjwIQABqAAgAABL4AAAS-AABcPgAAcL0AAOC8AACOPgAAHD4AADO_AABUvgAAFD4AAIY-AACgvAAAyL0AAIo-AAA0vgAALL4AAII-AAC4PQAAiD0AALo-AAB_PwAAoDwAAJg9AACyPgAAPL4AADy-AADgPAAAir4AAAw-AAAMPgAA2D0AAOi9AAAEvgAAoDwAAFA9AAC2vgAA6D0AAJK-AADyvgAAJL4AAHy-AACIPQAAQLwAACy-AAAcvgAAcD0AAAw-AADovQAAcD0AAJi9AADIPQAA4LwAAMg9AACiPgAAZL4AADC9AABTPwAAiD0AAEC8AAD2PgAAyD0AAJY-AADoPQAAPL4gADgTQAlIfFABKo8CEAEagAIAADC9AABAPAAAML0AAD2_AACevgAAFD4AAFw-AACKPgAAUD0AADA9AACIvQAAyL0AABw-AAAEPgAAmL0AABC9AAD4PQAACz8AAOA8AADyPgAAED0AACS-AAC4PQAAgr4AAHC9AADIvQAABD4AAFC9AADIPQAARD4AABA9AACAuwAAiL0AABC9AABwPQAAHL4AAOA8AACgPAAAFL4AACw-AAAEPgAAoLwAAGQ-AACYPQAA-L0AAPg9AAB_vwAAmj4AABy-AABsPgAA6D0AAFw-AAAQPQAAsj4AAJg9AAD4PQAAoLwAAEC8AAC4PQAADL4AABw-AABEvgAAEL0AADC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=KSEwLfuYeJg","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["93747900681301327"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9094627377712248312":{"videoId":"9094627377712248312","docid":"34-10-12-ZD3A301D3E93EF18E","description":"2 is continuous on the real numbers using the epsilon delta definition of continuity. This will require some finesse with our delta, inequalities, absolute value, and the triangle inequality...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3645155/1e93d2f25e2e5407a9578f10037a688b/564x318_1"},"target":"_self","position":"19","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhwhbvPwMXcI","linkTemplate":"/video/preview/9094627377712248312?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof x^2 is Continuous using Epsilon Delta Definition | Real Analysis Exercises","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hwhbvPwMXcI\",\"src\":\"serp\",\"rvb\":\"EqgDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxMDAyMjA1MTk0MDc4MjM5Mzc5NgoRODEwMTkxNzgzNzYzMTEyMDcKFDEyODk0MTkzMzgwNzk0NTc5ODY3ChQxMDMzNDI0NzUxMDU2NDc3ODE1NQoTMjIxMzMyOTM4ODAxMTMxMzQ4NQoTNzQxMDk2NTYxMDAzODY1OTM0MwoUMTgwNDcxMzk3NTE2MzE0MTUyNDUKFDExNjYzNTcxNTU1MzEwNTY1NDk3ChQxNjE2MjI5MzUyMzQxMjE2NjkwMAoUMTgxMTI4MTAyNDAwMjg1NTg2NTEKEzMyNTYxNTA0NDIzMzA1MTc5NTQKEzEwNTE4MDI5MDE5NjY3ODkwMTAKEzE5Nzk0OTkwNjY0MDA0NDY5NTEKETkzNzQ3OTAwNjgxMzAxMzI3ChM5MDk0NjI3Mzc3NzEyMjQ4MzEyChQxMDYzNjgxNjQ1MjI5NTI2MzMxMwoTNjY3Njc0NDU5MjA3MDg1MzY0NRoVChM5MDk0NjI3Mzc3NzEyMjQ4MzEyWhM5MDk0NjI3Mzc3NzEyMjQ4MzEyaq8NEgEwGAAiRRoxAAoqaGhjY2F4emhienNtamxpYmhoVUN5RUt2YXhpOG10OUZNYzYyTUhjbGl3EgIAEioQwg8PGg8_E60CggQkAYAEKyqLARABGniBCvQO9Qj2APD9C_4PA_4BDwb_AvUAAADwAPgPBQL_ANwNA_j9_gAA_PLzCwcAAAAL_AP-9v0BABv7-AAEAAAAIv3x-fwAAAAOEO0C_gEAAPj08woE_wAAHfvu-P8AAAAABQT1-_8AAPT7BwoAAAAAIRf9AwABAAAgAC39Hbs7OBNACUhOUAIqcxAAGmDxDAAw_gXt30I62fwR9vr-AecIDMQbAOD-APcC_L_yI9fKEPr_TtcM97QAAAAS-NMhCQAMYvIHyw8CA_fmu-AXH38Y-Pv_AAPZ1v37JyftLsX9HzQAsQfgGxDnuDvnPjcgAC0ZTzY7OBNACUhvUAIqrwYQDBqgBgAAuEEAAFDCAACgQgAAlMIAACBBAAAQwQAATEIAAATCAADgwQAAcMEAAMBAAAA4wgAABEIAAKjBAAAAwQAAQMAAAMhBAADgwQAASEIAACzCAACQwgAAMMEAAIBAAADwQQAA-MEAAHDBAAAwwQAAUMEAAJpCAAD4wQAAbMIAAHBBAABEwgAAAMIAAETCAACKQgAA6EEAAMJCAABEwgAANEIAANhBAAAIQgAA-EEAAADCAAC4QQAAVMIAACBBAABwQQAAqkIAAMjBAABAwAAAgMAAAEBBAACgwAAAaEIAAMBAAADKwgAA4MAAADBBAADYQQAAiEEAACDCAADAwQAAssIAAJDBAADswgAAuMEAAPjBAAAwwQAALMIAACRCAADYQQAA1sIAAPBBAAAQwQAAUMEAABDCAACAwQAAUMEAAFBBAACQwQAAOEIAAFDBAACQwQAA4EEAANBBAABoQgAAWEIAAChCAAAQwgAAXMIAAJRCAAB0wgAA6EEAABRCAABQwgAAcMEAAJBBAAAAQgAAJEIAAIrCAACowQAAQEEAADTCAADQwQAAoEEAAABBAABQQgAAcMEAADxCAAB4QgAA4EEAABTCAAA8QgAAeMIAAAhCAADQQQAAcMEAAAjCAABQwgAAaMIAAJzCAAAwwQAA0EEAAIA_AABgwgAARMIAAIA_AAAkwgAAAMIAAMjBAABwwQAAAMEAAExCAAA0wgAAMEIAAEDAAACgQAAAgEAAAPDBAACgQQAACMIAAKBAAADowQAAbEIAANBBAADIwQAAiEEAAFDBAAAAwAAAAMAAAADAAABsQgAAgEEAABxCAADAQAAAYMEAAATCAACOwgAAgEAAAODBAAAAQQAAQMEAAITCAACwwQAAcEIAAMDBAACIQgAAiEEAAIBAAADgQAAAuMEAAGBBAAAcwgAAaMIAAFxCAACKwgAAuMEAAEBCAAAEQgAAJMIAABDCAADgwAAAKMIAABBCAAA8wgAAKMIAADTCAADAwAAAVEIAAMBAAABQwgAAWEIAACDBAAAQwQAAuEEAACjCAADAwAAAgMAAACDCIAA4E0AJSHVQASqPAhAAGoACAABkvgAAPL4AABQ-AAAkvgAAir4AAFw-AACuPgAAR78AAKa-AADgvAAAZD4AADC9AAC4vQAAzj4AAGS-AAAEvgAAtj4AAFA9AADiPgAADT8AAH8_AABAvAAAmD0AAJI-AACWvgAADD4AABS-AAAcvgAAdD4AAIA7AAAsPgAAyr4AAOC8AACmvgAAVD4AAKi9AACoPQAAFL4AAMa-AAAwvQAAEL0AAMg9AAAMPgAA2L0AAKC8AAAEPgAAij4AANa-AADOPgAAPL4AAJg9AAD4PQAABD4AAM4-AAAsvgAAoDwAAFM_AADIPQAAyL0AAJo-AACgvAAAML0AABQ-AACOviAAOBNACUh8UAEqjwIQARqAAgAAhr4AABC9AACgvAAAQ78AAEy-AAAMPgAAtj4AAFA9AADgPAAAhj4AAIg9AAAwPQAAQLwAAKg9AABQvQAAoDwAADA9AAAfPwAA4DwAAAU_AAC4PQAAyL0AADC9AAAcvgAA4LwAAEC8AACIPQAAcD0AABC9AAA0PgAAgLsAAJg9AAAEvgAAgr4AADQ-AACovQAAMD0AAKC8AABkvgAA-D0AAIg9AACovQAAqD0AAOA8AAC4PQAAEL0AAH-_AAAUPgAA4LwAAOA8AAAEPgAADD4AALi9AABUPgAAJD4AABQ-AACgvAAAML0AACw-AABQvQAATD4AACy-AADYPQAAcD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=hwhbvPwMXcI","parent-reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9094627377712248312"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"5197781152685392153":{"videoId":"5197781152685392153","title":"\u0007[Epsilon\u0007]-\u0007[delta\u0007] definition of limits","cleanTitle":"Epsilon-delta definition of limits","host":{"title":"YouTube","href":"http://www.youtube.com/v/w70af5Ou70M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/w70af5Ou70M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":418,"text":"6:58","a11yText":"Süre 6 dakika 58 saniye","shortText":"6 dk."},"views":{"text":"509,9bin","a11yText":"509,9 bin izleme"},"date":"11 oca 2013","modifyTime":1357862400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/w70af5Ou70M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=w70af5Ou70M","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":418},"parentClipId":"5197781152685392153","href":"/preview/5197781152685392153?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/5197781152685392153?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1217347565808831842":{"videoId":"1217347565808831842","title":"\u0007[Epsilon\u0007]-\u0007[delta\u0007] limit definition 1 | Limits | Differential Calculus | Khan Academy","cleanTitle":"Epsilon-delta limit definition 1 | Limits | Differential Calculus | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/-ejyeII0i5c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-ejyeII0i5c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":767,"text":"12:47","a11yText":"Süre 12 dakika 47 saniye","shortText":"12 dk."},"views":{"text":"1,3milyon","a11yText":"1,3 milyon izleme"},"date":"10 nis 2009","modifyTime":1239321600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-ejyeII0i5c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-ejyeII0i5c","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":767},"parentClipId":"1217347565808831842","href":"/preview/1217347565808831842?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/1217347565808831842?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2956946206858017951":{"videoId":"2956946206858017951","title":"\u0007[Epsilon\u0007]-\u0007[delta\u0007] limit definition 2 | Limits | Differential Calculus | Khan Academy","cleanTitle":"Epsilon-delta limit definition 2 | Limits | Differential Calculus | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/Fdu5-aNJTzU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Fdu5-aNJTzU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/user/khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":655,"text":"10:55","a11yText":"Süre 10 dakika 55 saniye","shortText":"10 dk."},"views":{"text":"642bin","a11yText":"642 bin izleme"},"date":"10 nis 2009","modifyTime":1239321600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Fdu5-aNJTzU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Fdu5-aNJTzU","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":655},"parentClipId":"2956946206858017951","href":"/preview/2956946206858017951?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/2956946206858017951?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10022051940782393796":{"videoId":"10022051940782393796","title":"\u0007[epsilon\u0007]-\u0007[delta\u0007] definition ultimate introduction","cleanTitle":"epsilon-delta definition ultimate introduction","host":{"title":"YouTube","href":"http://www.youtube.com/live/DdtEQk_DHQs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DdtEQk_DHQs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1167,"text":"19:27","a11yText":"Süre 19 dakika 27 saniye","shortText":"19 dk."},"views":{"text":"516,5bin","a11yText":"516,5 bin izleme"},"date":"15 oca 2022","modifyTime":1642248011000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DdtEQk_DHQs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DdtEQk_DHQs","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":1167},"parentClipId":"10022051940782393796","href":"/preview/10022051940782393796?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/10022051940782393796?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"81019178376311207":{"videoId":"81019178376311207","title":"How to find a \u0007[delta\u0007] for a specific \u0007[epsilon\u0007] (\u0007[epsilon\u0007]-\u0007[delta\u0007] definition of a limit)","cleanTitle":"How to find a delta for a specific epsilon (epsilon-delta definition of a limit)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pk7vxTbKpxk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pk7vxTbKpxk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":461,"text":"7:41","a11yText":"Süre 7 dakika 41 saniye","shortText":"7 dk."},"views":{"text":"6bin","a11yText":"6 bin izleme"},"date":"16 kas 2025","modifyTime":1763309230000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pk7vxTbKpxk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pk7vxTbKpxk","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":461},"parentClipId":"81019178376311207","href":"/preview/81019178376311207?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/81019178376311207?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12894193380794579867":{"videoId":"12894193380794579867","title":"Introduction to the \u0007[Epsilon\u0007]-\u0007[Delta\u0007] Limit Definition","cleanTitle":"Introduction to the Epsilon-Delta Limit Definition","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=TzFjhxLwA_g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/TzFjhxLwA_g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWGlMVVpqaFpZNnk3R2pDUUNJSWM3dw==","name":"John's Solution Set","isVerified":false,"subscribersCount":0,"url":"/video/search?text=John%27s+Solution+Set","origUrl":"http://www.youtube.com/@johnssolutionset","a11yText":"John's Solution Set. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":982,"text":"16:22","a11yText":"Süre 16 dakika 22 saniye","shortText":"16 dk."},"date":"24 şub 2024","modifyTime":1708732800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/TzFjhxLwA_g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=TzFjhxLwA_g","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":982},"parentClipId":"12894193380794579867","href":"/preview/12894193380794579867?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/12894193380794579867?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10334247510564778155":{"videoId":"10334247510564778155","title":"Taming the \u0007[epsilon\u0007] \u0007[delta\u0007] definition of limits.","cleanTitle":"Taming the epsilon delta definition of limits.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JlP_1PLEXW8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JlP_1PLEXW8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk5yNUUtRHFmVGlvcGs4RnhzZ24yZw==","name":"The Why of Maths","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Why+of+Maths","origUrl":"http://www.youtube.com/@WhyofMaths","a11yText":"The Why of Maths. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":753,"text":"12:33","a11yText":"Süre 12 dakika 33 saniye","shortText":"12 dk."},"date":"13 mar 2025","modifyTime":1741824000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JlP_1PLEXW8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JlP_1PLEXW8","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":753},"parentClipId":"10334247510564778155","href":"/preview/10334247510564778155?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/10334247510564778155?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2213329388011313485":{"videoId":"2213329388011313485","title":"What the \u0007[Epsilon\u0007] \u0007[Delta\u0007] Definition of a Limit Really Means","cleanTitle":"What the Epsilon Delta Definition of a Limit Really Means","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=a7YLaMqCbjY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/a7YLaMqCbjY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOHZHTUhUSE8xWlc3Q1BpYm9jNFprZw==","name":"EasyDubs","isVerified":false,"subscribersCount":0,"url":"/video/search?text=EasyDubs","origUrl":"http://www.youtube.com/@easydubs1","a11yText":"EasyDubs. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":626,"text":"10:26","a11yText":"Süre 10 dakika 26 saniye","shortText":"10 dk."},"date":"21 tem 2024","modifyTime":1721520000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/a7YLaMqCbjY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=a7YLaMqCbjY","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":626},"parentClipId":"2213329388011313485","href":"/preview/2213329388011313485?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/2213329388011313485?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7410965610038659343":{"videoId":"7410965610038659343","title":"This is the \u0007[Epsilon\u0007] \u0007[Delta\u0007] Definition of Continuity | Real Analysis","cleanTitle":"This is the Epsilon Delta Definition of Continuity | Real Analysis","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=O98eOlHyWmQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/O98eOlHyWmQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":733,"text":"12:13","a11yText":"Süre 12 dakika 13 saniye","shortText":"12 dk."},"views":{"text":"40,1bin","a11yText":"40,1 bin izleme"},"date":"28 haz 2023","modifyTime":1687910400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/O98eOlHyWmQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=O98eOlHyWmQ","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":733},"parentClipId":"7410965610038659343","href":"/preview/7410965610038659343?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/7410965610038659343?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18047139751631415245":{"videoId":"18047139751631415245","title":"\u0007[Epsilon\u0007]-\u0007[Delta\u0007] Definition of Functional Limits | Real Analysis","cleanTitle":"Epsilon-Delta Definition of Functional Limits | Real Analysis","host":{"title":"YouTube","href":"http://www.youtube.com/live/kVQNhAIFZYc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kVQNhAIFZYc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1297,"text":"21:37","a11yText":"Süre 21 dakika 37 saniye","shortText":"21 dk."},"views":{"text":"36,7bin","a11yText":"36,7 bin izleme"},"date":"20 haz 2023","modifyTime":1687219200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kVQNhAIFZYc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kVQNhAIFZYc","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":1297},"parentClipId":"18047139751631415245","href":"/preview/18047139751631415245?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/18047139751631415245?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11663571555310565497":{"videoId":"11663571555310565497","title":"The \u0007[Epsilon\u0007]-\u0007[Delta\u0007] in Absolute Continuity of Measures","cleanTitle":"The Epsilon-Delta in Absolute Continuity of Measures","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tHhWex5VQWA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tHhWex5VQWA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcXlTbkpPR3ctenVLT1h6Vnp4RFE5QQ==","name":"Young Measures","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Young+Measures","origUrl":"http://www.youtube.com/@YoungMeasures","a11yText":"Young Measures. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":720,"text":"12:00","a11yText":"Süre 12 dakika","shortText":"12 dk."},"date":"8 ara 2024","modifyTime":1733616000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tHhWex5VQWA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tHhWex5VQWA","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":720},"parentClipId":"11663571555310565497","href":"/preview/11663571555310565497?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/11663571555310565497?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16162293523412166900":{"videoId":"16162293523412166900","title":"#18 Real Analysis | \u0007[Epsilon\u0007]-\u0007[Delta\u0007] Definition of Functional Limits | Hunter College","cleanTitle":"#18 Real Analysis | Epsilon-Delta Definition of Functional Limits | Hunter College","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eTnatl9o-KE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eTnatl9o-KE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYWpSTGJjVUU0M2ppRWM4VnBHWGU5dw==","name":"Bari Science Lab","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Bari+Science+Lab","origUrl":"http://www.youtube.com/@BariScienceLab","a11yText":"Bari Science Lab. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":984,"text":"16:24","a11yText":"Süre 16 dakika 24 saniye","shortText":"16 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"5 tem 2024","modifyTime":1720137600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eTnatl9o-KE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eTnatl9o-KE","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":984},"parentClipId":"16162293523412166900","href":"/preview/16162293523412166900?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/16162293523412166900?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18112810240028558651":{"videoId":"18112810240028558651","title":"Finding \u0007[delta\u0007] from a graph and the \u0007[epsilon\u0007]-\u0007[delta\u0007] definition of the limit (KristaKingMath...","cleanTitle":"Finding delta from a graph and the epsilon-delta definition of the limit (KristaKingMath)","host":{"title":"YouTube","href":"http://www.youtube.com/v/ftAuCXNAvtE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ftAuCXNAvtE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVURsdlBwMU1sbmVnWVhPWHpqN0RFUQ==","name":"Krista King","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Krista+King","origUrl":"http://www.youtube.com/@kristakingmath","a11yText":"Krista King. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":402,"text":"6:42","a11yText":"Süre 6 dakika 42 saniye","shortText":"6 dk."},"views":{"text":"199,5bin","a11yText":"199,5 bin izleme"},"date":"12 ağu 2012","modifyTime":1344729600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ftAuCXNAvtE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ftAuCXNAvtE","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":402},"parentClipId":"18112810240028558651","href":"/preview/18112810240028558651?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/18112810240028558651?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3256150442330517954":{"videoId":"3256150442330517954","title":"Proof x^3 is Continuous using \u0007[Epsilon\u0007] \u0007[Delta\u0007] Definition | Real Analysis Exercises","cleanTitle":"Proof x^3 is Continuous using Epsilon Delta Definition | Real Analysis Exercises","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=01tcpSonAJs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/01tcpSonAJs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":457,"text":"7:37","a11yText":"Süre 7 dakika 37 saniye","shortText":"7 dk."},"date":"10 eki 2024","modifyTime":1728518400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/01tcpSonAJs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=01tcpSonAJs","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":457},"parentClipId":"3256150442330517954","href":"/preview/3256150442330517954?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/3256150442330517954?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1051802901966789010":{"videoId":"1051802901966789010","title":"How to find a formula for \u0007[delta\u0007] (\u0007[epsilon\u0007]-\u0007[delta\u0007] definition of a limit)","cleanTitle":"How to find a formula for delta (epsilon-delta definition of a limit)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FobFTlT81W8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FobFTlT81W8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":699,"text":"11:39","a11yText":"Süre 11 dakika 39 saniye","shortText":"11 dk."},"views":{"text":"17,9bin","a11yText":"17,9 bin izleme"},"date":"11 kas 2025","modifyTime":1762872761000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FobFTlT81W8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FobFTlT81W8","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":699},"parentClipId":"1051802901966789010","href":"/preview/1051802901966789010?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/1051802901966789010?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1979499066400446951":{"videoId":"1979499066400446951","title":"how to prove a limit using the \u0007[epsilon\u0007]-\u0007[delta\u0007] definition","cleanTitle":"how to prove a limit using the epsilon-delta definition","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-Z5x45KZCL4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-Z5x45KZCL4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDME5nQ1I4cGdZUmhOaEhfM2hZZEVhUQ==","name":"yuemii","isVerified":false,"subscribersCount":0,"url":"/video/search?text=yuemii","origUrl":"http://www.youtube.com/@yuemiika","a11yText":"yuemii. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":401,"text":"6:41","a11yText":"Süre 6 dakika 41 saniye","shortText":"6 dk."},"date":"14 mar 2024","modifyTime":1710374400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-Z5x45KZCL4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-Z5x45KZCL4","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":401},"parentClipId":"1979499066400446951","href":"/preview/1979499066400446951?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/1979499066400446951?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"93747900681301327":{"videoId":"93747900681301327","title":"How to \u0007[epsilon\u0007]-\u0007[delta\u0007]! #shorts","cleanTitle":"How to epsilon-delta! #shorts","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/KSEwLfuYeJg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KSEwLfuYeJg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":50,"text":"00:50","a11yText":"Süre 50 saniye","shortText":""},"views":{"text":"189,3bin","a11yText":"189,3 bin izleme"},"date":"9 kas 2020","modifyTime":1604880000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KSEwLfuYeJg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KSEwLfuYeJg","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":50},"parentClipId":"93747900681301327","href":"/preview/93747900681301327?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/93747900681301327?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9094627377712248312":{"videoId":"9094627377712248312","title":"Proof x^2 is Continuous using \u0007[Epsilon\u0007] \u0007[Delta\u0007] Definition | Real Analysis Exercises","cleanTitle":"Proof x^2 is Continuous using Epsilon Delta Definition | Real Analysis Exercises","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hwhbvPwMXcI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hwhbvPwMXcI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":301,"text":"5:01","a11yText":"Süre 5 dakika 1 saniye","shortText":"5 dk."},"date":"9 eki 2024","modifyTime":1728432000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hwhbvPwMXcI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hwhbvPwMXcI","reqid":"1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL","duration":301},"parentClipId":"9094627377712248312","href":"/preview/9094627377712248312?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","rawHref":"/video/preview/9094627377712248312?parent-reqid=1769670119682866-15392221152795225479-balancer-l7leveler-kubr-yp-klg-92-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"5392221152795225479792","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"EpsilonDelta","queryUriEscaped":"Epsilon%20Delta","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}