{"pages":{"search":{"query":"First Derivative","originalQuery":"First Derivative","serpid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","parentReqid":"","serpItems":[{"id":"17994385035140575010-0-0","type":"videoSnippet","props":{"videoId":"17994385035140575010"},"curPage":0},{"id":"17732916430112212393-0-1","type":"videoSnippet","props":{"videoId":"17732916430112212393"},"curPage":0},{"id":"12553179094836549582-0-2","type":"videoSnippet","props":{"videoId":"12553179094836549582"},"curPage":0},{"id":"4688485220092352802-0-3","type":"videoSnippet","props":{"videoId":"4688485220092352802"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEZpcnN0IERlcml2YXRpdmUK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","ui":"desktop","yuid":"7787196881769703760"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"7577512816970717052-0-5","type":"videoSnippet","props":{"videoId":"7577512816970717052"},"curPage":0},{"id":"17553068153943474196-0-6","type":"videoSnippet","props":{"videoId":"17553068153943474196"},"curPage":0},{"id":"9230401023459517473-0-7","type":"videoSnippet","props":{"videoId":"9230401023459517473"},"curPage":0},{"id":"4173084706227657813-0-8","type":"videoSnippet","props":{"videoId":"4173084706227657813"},"curPage":0},{"id":"920554945366307492-0-9","type":"videoSnippet","props":{"videoId":"920554945366307492"},"curPage":0},{"id":"7000257627077379320-0-10","type":"videoSnippet","props":{"videoId":"7000257627077379320"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEZpcnN0IERlcml2YXRpdmUK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","ui":"desktop","yuid":"7787196881769703760"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"2535424305388646264-0-12","type":"videoSnippet","props":{"videoId":"2535424305388646264"},"curPage":0},{"id":"7098556959874438860-0-13","type":"videoSnippet","props":{"videoId":"7098556959874438860"},"curPage":0},{"id":"12595331351009957138-0-14","type":"videoSnippet","props":{"videoId":"12595331351009957138"},"curPage":0},{"id":"9987096937369008083-0-15","type":"videoSnippet","props":{"videoId":"9987096937369008083"},"curPage":0},{"id":"4578500393717569837-0-16","type":"videoSnippet","props":{"videoId":"4578500393717569837"},"curPage":0},{"id":"5945755551544767964-0-17","type":"videoSnippet","props":{"videoId":"5945755551544767964"},"curPage":0},{"id":"5933475088937339955-0-18","type":"videoSnippet","props":{"videoId":"5933475088937339955"},"curPage":0},{"id":"14904646514726857277-0-19","type":"videoSnippet","props":{"videoId":"14904646514726857277"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEZpcnN0IERlcml2YXRpdmUK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","ui":"desktop","yuid":"7787196881769703760"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DFirst%2BDerivative"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"2597313416787196887118","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472324,0,41;1472348,0,11;1466867,0,87;1457622,0,35;1433082,0,7;1476205,0,10;1472056,0,15;1460716,0,4;1460214,0,74;1472010,0,76;1459323,0,60;1471623,0,60;1461704,0,16;123830,0,5;43961,0,88;1464524,0,91;1282205,0,98;1469597,0,47;1466296,0,94;1475923,0,83;1471918,0,59;1467621,0,8;124066,0,40;1404017,0,37;1473797,0,52;45299,0,25;805351,0,45;151171,0,52;128378,0,89;126322,0,32;1281084,0,86;287509,0,17;86182,0,98;1447467,0,32;785125,0,10;1473596,0,48;1466397,0,21;1467128,0,79;1477657,0,14"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DFirst%2BDerivative","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=First+Derivative","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=First+Derivative","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"First Derivative: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"First Derivative\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"First Derivative — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y97fc9d1d21751252f0f3cfd5d2c280bf","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472324,1472348,1466867,1457622,1433082,1476205,1472056,1460716,1460214,1472010,1459323,1471623,1461704,123830,43961,1464524,1282205,1469597,1466296,1475923,1471918,1467621,124066,1404017,1473797,45299,805351,151171,128378,126322,1281084,287509,86182,1447467,785125,1473596,1466397,1467128,1477657","queryText":"First Derivative","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7787196881769703760","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1475824,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769703760","tz":"America/Louisville","to_iso":"2026-01-29T11:22:40-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472324,1472348,1466867,1457622,1433082,1476205,1472056,1460716,1460214,1472010,1459323,1471623,1461704,123830,43961,1464524,1282205,1469597,1466296,1475923,1471918,1467621,124066,1404017,1473797,45299,805351,151171,128378,126322,1281084,287509,86182,1447467,785125,1473596,1466397,1467128,1477657","queryText":"First Derivative","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7787196881769703760","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"2597313416787196887118","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":165,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7787196881769703760","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1758.0__92da10e6e1e89374a81e86c5e5366c3357f68658","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"17994385035140575010":{"videoId":"17994385035140575010","docid":"34-2-14-ZEA27E4FFA2D0997C","description":"This calculus video tutorial provides a basic introduction into the first derivative test. The first derivative test can be used to locate any relative extrema in a function. When the first...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2918671/c8ef6a83d5bc63e70808b30ab42701a0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1WRgcQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DG5wlKltW7pM","linkTemplate":"/video/preview/17994385035140575010?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Test","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=G5wlKltW7pM\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFgoUMTc5OTQzODUwMzUxNDA1NzUwMTBaFDE3OTk0Mzg1MDM1MTQwNTc1MDEwaogXEgEwGAAiRRoxAAoqaGh3ZGFoaXlkcG1kcW9kYmhoVUNFV3BiRkx6b1lHUGZ1V1VNRlBTYW9BEgIAEioQwg8PGg8_E_UFggQkAYAEKyqLARABGniB9Aj7B_0DAPgHBQgABv0CEw8NBvYCAgD69QX-BgT-AOgB_QD7_wAA_gsHAgAAAAD38_0J-P8BAAYD_QEEAAAAAwb6_gUAAAAGAf3-_wEAAPz5AQj6AQAAEQkIAf8AAAD6Dvz7_wAAAPoCBAcAAAAA_fP6BAAAAAAgAC0jP9w7OBNACUhOUAIqhAIQABrwAX_5KAHM-s3_qh_K__wxAQG-IjX__DXRALbWAgHK_-sB-PnZ_-YU0v8WJ_QAkiz_Af_d2gDv2xL_T-EKAETfGgDpH_IBLPfwAT4UL_8iAQX-yh3x_toEAv_z2bEAHxrDAA_GBf75GPcD7APAAu_wSAMF-B0C9_EA_cjbFALv7P_-9_vcAA009AIL3w_46xY8AernIAUQHxn58AvqBAwDBP797wb0FgviBAIE5QMOEwAD0e0N-djfEfoEBy7-0NvjBfL2JwLjCPv43vQM8CEi9wbFGvII9QUACBEJCf7q5QD8JRHpA_no9wD3Dvn82Q3x_yAALedYDzs4E0AJSGFQAirPBxAAGsAHv7q6voAL1zyR_WK8LC7OvHFwjjwh3oC7S9O2vZbLKz2s7ge9P3NGPg7uM72W-X07w3hXvUFSmzsZWTK8LQtWPrCKXL1BLSa9dXT8vS8Tmj0LAhC9F6GjvRn0rzzTBSs8HtfAvUmznrzcbXK8snWaPaXL0bwt6AG8yVfCvOYMAD1C7gK91DqbPTRVRr0On3S9RM8cvRTEyLsJKN68peCEPfpHujxALae7s81yPUH7hzwK98q8N4gGvr-wYzsAQpq8L012PcaViT3C60Q8WP68vcXZnr0qS187NMPBvdpXPj3BE8A73_zGPewb8zyHWT692MIHPUTHmb3yO7K8Y7QevjYWe7t_YFg83ASpPYO_3z0cMam8rvQqvm3F3j2K1Au7zWEyPWVRWDz7Tl28XEmhPNhr1Tzi8s48QgNWPcTdzzx5aKs6kCQQvBDfoz2mYgM9huJOPZD-cr1GoFW8To7MPR56IT0-LuC7Ig9uvT1ZG70dg-M63zMUvEOdiD29nIY7-vykOpfaXL1G0QE8j-AWPlt4Dr4D5w68x4NtvVcQjr2dt1a8nKIIPPqGiD12ZTy8Q6kdPh9q273Emqk5ectVPNIxzDxC1zG6yj7-vIrzhr0SjpM7Wmq4vZs08jwVqwa8KHJSvXQwMT0-qf67N3X5PNVCKT3gH4C7_kHJPFsMjr0d32Y7FHkSPStaLz0k-xS7LYuTPZ6vHj2gog86ElDBPcF4Qb1h0wq62RASvUnN6LxaQqU7G4hAvLFr-722vp65PL3yPUrIUb1XwY457rmHvQ-7yjzTltG4Jmy0vWRA1j1cJhA4a-M-PHQInLxttWy5XFQLvZwV8b3cnnU52GLXPdg-DbwsiL645bO8PDtZZT0xH5S6AvSLvUU1kL07hjE4LT0ePDlJTrwh6HO4eJ6TPW642Tz9qJ24z2pBvfnwgT2FbwC65qULO1O7Nb193MI4gr-EPT6ITj0Oa0c4QfEDPXFPwb3XOHs5w3csPe5IoD1t7Rs5m87pPNbyVD1Uyx646D81PWQfBD5nsRs45eK5vHFom73lrQg2yUM6vB9Zmj038wY3mv-cvdCQmz0C2y44NbaXPOe0XTzBQOc4RvHoOpYCt7zG72c3zfkTPeL8gj1Pyro0weMrPtylaLwHiXS53ryCPLSvHL78h2W4IY1Pve6CfL1GFY64VTETvE6ZWz0Nr8s3DRJHPHR89L1WWFm4yvRwPSLhKz7xy4o4BwunvL387j2DtB65BqF8vWAcgTxhfLU3Mw5_vWntrrrTPJ83IAA4E0AJSG1QASpzEAAaYEP6ABkHH_8RC_Hp0N7lHgLf7xfw1hD_8AQAABrACRsM9-z--AAt1hbwvQAAABMC6xkFAPFc29cF6QsaAcC31w0jfwkNKK_pDfHK7gsPDPP2JBAzBQDh77sSA-GbGQb8_CAALeK9Qjs4E0AJSG9QAiqvBhAMGqAGAAAEQgAAcEEAADBBAAAkwgAAAEIAAMxCAACqQgAAUEEAAGDCAACowQAAcEEAAADAAAA4wgAAyEEAAAjCAAAwQQAAgkIAAOBAAAAgQQAA0EEAAJhCAAAkwgAAYMEAABDCAACwwQAAQEIAABjCAADgQQAAIMEAABBBAABAQAAAiMEAABDCAAAYQgAAyMIAAMjBAABAQQAAVEIAACBBAADgQAAAiEIAAKDAAACKQgAAQEIAAFBBAAC0wgAACEIAAJJCAACAQQAA4EEAAJDBAADAwQAAIMIAAEDBAADgwQAAXEIAAFTCAACYwQAAqEEAAChCAAAsQgAAOMIAABTCAACAwQAAMMEAAM7CAABQwQAAqMEAAKBBAADAwAAAIEIAADxCAABkwgAAmEIAAPDBAAB8wgAAjsIAAEDBAADgQQAAwEEAAJTCAACYQgAAuMEAADRCAADIQQAAFEIAAJDBAACwQQAAYEEAAHDCAAAAwAAAvkIAAPjBAABUwgAAHMIAACDCAAAkwgAAaMIAAFhCAABIQgAAwMAAAOBBAACgQAAAUEEAAM7CAABAwQAAwEAAAIRCAAAAwQAAlEIAAMhBAAAgQgAAoMAAAOBAAAAAQgAAQMEAAIxCAABYwgAAkEEAAIhBAACQwQAANMIAAIA_AACKwgAAQEEAABBBAABowgAAQEIAAPDBAAAAwQAAIMEAAMDAAAC4wQAA4EEAAADCAABcQgAAqMEAAIDAAACAwgAAYMIAAHDBAABMQgAAmEEAANBBAAAQQQAAMEEAABBBAABMwgAAmMEAAEBBAACQQQAAcEEAAFxCAADYwQAAFEIAAAAAAAD4wQAAYMIAACzCAACYQQAAWMIAAKBAAABYQgAAIEEAAIC_AAAwwQAACEIAAERCAAD4QQAAmEEAABxCAACoQQAAIMIAALhBAAAQwQAAEMEAAIBAAABAwgAAoEAAAJ5CAABkwgAAYMEAABzCAAAIQgAADEIAAFDCAAAMwgAAMMEAAIA_AADYwQAAgMEAAABBAABQQQAA6EEAACBBAACCQgAAAMEAAEDAAADCwgAAUMEgADgTQAlIdVABKo8CEAAagAIAAEA8AADIPQAAjj4AAHA9AAAsvgAALD4AAEQ-AAADvwAAsr4AAKg9AACAuwAAPL4AAOA8AADoPQAA4LwAAHC9AACgvAAAgLsAACw-AADWPgAAfz8AACQ-AAAEPgAAMD0AAJq-AACgPAAAQLwAABS-AAAQvQAA6D0AAAQ-AAAQPQAAiL0AADy-AACoPQAAHL4AAFA9AAAcvgAARL4AALi9AADgvAAAuL0AAMI-AAA0vgAAcL0AACQ-AAAwPQAADL4AABC9AACWvgAAQLwAAPg9AACYPQAAND4AAOA8AACgPAAAJT8AAHC9AACoPQAAbD4AALg9AABMPgAALD4AAEA8IAA4E0AJSHxQASqPAhABGoACAADovQAAVD4AAES-AAAXvwAA2D0AAKC8AABkPgAAJL4AABQ-AAA0PgAAmL0AABC9AACIvQAALL4AAOg9AACAOwAAuD0AAB0_AAAwvQAA4j4AAEy-AACIvQAAmD0AAKi9AAD4vQAALD4AAEC8AADgvAAAML0AAFA9AACgPAAAFD4AAPi9AACIPQAA4LwAADC9AADIPQAAiD0AABy-AAAEvgAAJD4AACQ-AABAvAAAMD0AAAy-AABkPgAAf78AAJ6-AADovQAAiD0AAJg9AAAwPQAAqD0AANg9AAAMPgAAqD0AADA9AABcvgAAEL0AAHA9AADgPAAA4LwAABy-AACovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=G5wlKltW7pM","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17994385035140575010"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"514914182"},"17732916430112212393":{"videoId":"17732916430112212393","docid":"34-10-13-Z3B288D1DF043D09C","description":"Calculus is the mathematics of change and as such has had an incomprehensibly large impact on science and engineering throughout the world. This full and complete course explores all of the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1775351/6a0cda533b6d33ae02bc0a77e6cf18b8/564x318_1"},"target":"_self","position":"1","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DlTjiZHAPzIo","linkTemplate":"/video/preview/17732916430112212393?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Test - Calculus 1 - Lecture 15 (of 19)","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=lTjiZHAPzIo\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFgoUMTc3MzI5MTY0MzAxMTIyMTIzOTNaFDE3NzMyOTE2NDMwMTEyMjEyMzkzaq4NEgEwGAAiRBowAAopaGhybXh2d3l3ZWJ6bWt5aGhVQ1gxRnA4R2JmYmRJZ3VVakdhdFF1NmcSAgARKhDCDw8aDz8TnBuCBCQBgAQrKosBEAEaeIH0CPsH_QMA-_z_DwEI-wILCgcA9wEBAPb_CQAGAv8A9wT29fgAAAD_CQH3AAAAAAD78gz5_gAAEPv--QMAAAAJAvgA_QAAAP8I8v3_AQAA-gDxDgP_AAARCQgB_wAAAAMN-f3__wAA-QABEQAAAAD7__oFAAAAACAALSM_3Ds4E0AJSE5QAipzEAAaYEANACgYBQfgFSbqAeP5HgfmER3Z3AD_GvAA6SzCGgYhzsEACv88yQb-tgAAAA4G-in_AO5l4vXZ3RcXBfPdx_ZHf-kV19T7C-bS0wrsGQfnFO8YJgCg-usI9c24KPgb-iAALc7kOTs4E0AJSG9QAiqvBhAMGqAGAACgwAAAbMIAALhBAADYwQAAgL8AAMBCAACwQgAA4EEAAATCAADgwQAA6EEAACDCAADgwQAALMIAAIhBAACQQQAAgMAAALjBAABgQQAAEMIAACxCAACgQQAAQEAAAADCAACQwQAAoEAAAITCAADgQAAAUEEAAChCAADgwQAACEIAABDCAABwQQAAxsIAALDBAAAIQgAAhEIAADBBAACwQQAAQMEAAKhBAABAQgAAIEEAADhCAAAAwAAAIMEAAFDBAAAwQgAAgD8AABDBAABQwgAAAEEAAADCAAAsQgAAyMEAAJLCAABAwQAAwEEAACBCAAAMQgAAlMIAADzCAABkwgAAIMEAAPDCAABwwQAAWMIAADDCAAB8wgAAwEEAAKBAAACswgAAHEIAAATCAADAQAAAQMIAAOBAAABoQgAAgEEAADTCAACGQgAAoEAAAARCAABUQgAAEMIAAPhBAAD4QQAADEIAADTCAADAwAAAXEIAAPDBAADAwAAAgEEAAKLCAAAAAAAARMIAAEBCAADAQQAACMIAAABAAABgQQAABEIAALrCAAAgQgAAiMEAAARCAADgQAAAuEEAABxCAADAQQAAjsIAAEBAAAAwQgAAQEAAAKBAAAAQwQAAeMIAAAzCAABAQQAALMIAAOjBAAAQQgAAYMEAAABBAADwQQAA4MAAALrCAABEQgAAmEEAAADAAAC4wQAAcEEAALhBAACgwAAAZEIAAEBAAACswgAA6MEAADjCAABwwQAAAEIAAMDBAABAwAAAwMAAABzCAAAAQAAAJEIAABhCAADAwAAAAEAAAFBCAABQwQAAEEIAAADAAACawgAAFMIAABzCAACoQgAALMIAAHBBAADYQQAAXMIAAOjBAADQQQAAoEEAAIJCAAAkQgAAAAAAAHzCAACoQQAAkMEAAK7CAACywgAAWMIAADxCAAD4wQAAgEAAABhCAAAowgAAuMEAAIzCAAAwwgAATEIAAKhBAACAwgAAuMEAAMhBAACAvwAAQEAAADRCAAAQQgAA6EEAABDBAAAoQgAAMEIAAEDBAABwwQAAGMIgADgTQAlIdVABKo8CEAAagAIAAIA7AAD4PQAAmj4AAEA8AABQvQAAsj4AADQ-AAAFvwAAwr4AAKi9AABEvgAAVL4AADw-AAAkPgAAoLwAABS-AACoPQAA4DwAAAw-AAD2PgAAfz8AAOA8AABsPgAAoLwAAEC8AACYPQAAgDsAAEA8AADgvAAAnj4AAAw-AABwvQAAMD0AABC9AABAvAAABD4AAEA8AAA0vgAAhr4AACS-AAAwvQAAMD0AALY-AADIvQAAiL0AADw-AACYPQAAqL0AAFy-AACavgAA4LwAAIg9AABkPgAA6D0AAMi9AACgPAAAEz8AAIC7AAAwPQAAFD4AADC9AAAkPgAAJD4AAKi9IAA4E0AJSHxQASqPAhABGoACAAB0vgAAPD4AAEA8AAA7vwAAgLsAAIA7AACKPgAAPL4AADA9AADYPQAAEL0AAES-AACYvQAAPL4AAJg9AACgvAAAuD0AAAM_AACIvQAAtj4AAPi9AADgPAAA2L0AAFC9AADgPAAAyL0AABC9AADgvAAAuL0AAKC8AADgPAAAXD4AABS-AAC4vQAA4LwAALi9AAC4PQAABD4AAIq-AABwvQAADL4AAHA9AACYvQAAoDwAAEC8AACYvQAAf78AAIg9AABQPQAA-D0AAHw-AACIvQAAQLwAABQ-AABAvAAAmD0AAOA8AACIPQAAqL0AAHA9AACoPQAABL4AABw-AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=lTjiZHAPzIo","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17732916430112212393"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12553179094836549582":{"videoId":"12553179094836549582","docid":"34-4-6-ZFB3C0F2F58689577","description":"This video explains the first derivative test and shows how to use it to determine whether critical points of a function are local maximums, local minimums, or neither.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4571514/1eeeb5306ed90d5889a73a7326bec83c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/TbkULAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJSHX3TZn9dE","linkTemplate":"/video/preview/12553179094836549582?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Test","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JSHX3TZn9dE\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFgoUMTI1NTMxNzkwOTQ4MzY1NDk1ODJaFDEyNTUzMTc5MDk0ODM2NTQ5NTgyarYPEgEwGAAiRRoxAAoqaGhzaGZjd3F2d2F5ZHdtYmhoVUNMdUlmRlpEUHVNNEdHRWpUVGtNcl9nEgIAEioQwg8PGg8_E9wCggQkAYAEKyqLARABGniB9Aj7B_0DAPgHBQgABv0CEw8NBvYCAgD69QX-BgT-AOgB_QD7_wAA_gsHAgAAAAD38_0J-P8BAAYD_QEEAAAAAwb6_gUAAAAGAf3-_wEAAPz5AQj6AQAAEQkIAf8AAAD6Dvz7_wAAAPoCBAcAAAAA_fP6BAAAAAAgAC0jP9w7OBNACUhOUAIqhAIQABrwAX__HgDX9aUBwfXPAMFM5wGV9g0AFTcCAM7qDf8KAcf_xNjiAP0x4v8j5esBjzElATPZ7gD0pfUAJNz-_gvG_QDhMy4BE_D9ATQhBgD0wSb_40f7__MNLQMXuOkAJhzz_fr8FgAfKPP88Pnp_Cr7NQH_3vcIFez8BQHhI_0GCvn_sBTL-uwZIwgM2xH36RlCAQ8QEv32WeMADNLa_uzmIf0SBPr8MT3Q_z4K8PoQFQAEzOsO-SUV7ggDCh8D3O_nAbgEE_zO4hb2HhwR9vneAvThFO4JTgPz_CMd_wPqBP767uwJ7vnm9gDqxuAC-cvvASAALTgcAjs4E0AJSGFQAipzEAAaYEn7AB_sJ_AkBvvswfAJGwLSzBkMyCb_C_IABiieIvgK89Pu8QA1uA7jpQAAAADwBA_8AOx_vOEP1v4IEKrV2v41eRIQIpDjCfHK2ygEJ_H4HQVEEwDQ4qlGGMeSKBkQESAALecWGzs4E0AJSG9QAiqvBhAMGqAGAAAIQgAAIEEAAJBCAABkwgAAGEIAAKDBAADmQgAAwEEAAADBAADAwAAA0EEAAIC_AAAAwgAAoEEAAODAAACAQAAAfEIAAOjBAACOQgAAEMEAAMBAAABAwAAAbMIAAMjBAACAwQAAuEEAAPjBAABcwgAAkEEAANhBAACIwQAAOEIAAEDCAADQQQAAlsIAAADAAABUQgAASEIAAADBAACgQAAAcEEAAABCAAB8QgAAyMEAAJhBAADIwgAAUMEAAIhBAACAQQAA6EEAABBBAABAwgAA8MEAAKhBAAAAQQAA0EEAABTCAADYwQAAsEEAAPBBAACSQgAAoMEAAKDCAABowgAA-EEAAJzCAAAgwgAA5MIAAEBAAABwwQAAnEIAAERCAAAgwgAAuMEAAGDCAAAEQgAANMIAAADBAAAIQgAAoEEAAHTCAADgQgAACMIAABxCAABQQQAA4MAAAGDBAADwwQAAokIAANDBAAAQQQAADEIAAATCAABAQQAASEIAAGzCAACmwgAATMIAAIxCAACOQgAAgMEAAEDAAAAwQQAA-MEAACjCAADgQAAAUMEAAFBBAAAEQgAAPEIAABRCAACQQQAAgL8AAPhBAADowQAAcEIAACxCAABgwQAAxMIAAPhBAABUwgAADMIAAAAAAABAwAAAEMIAAPDBAAAgQQAAiEEAAADAAAAcQgAA0MEAAIDAAADIQQAAhEIAABjCAABEQgAAKEIAALDBAAAowgAAQEEAAIC_AADwwQAAoMEAABTCAADgwAAALEIAAIBBAABgQQAABEIAABBBAAAowgAA4EAAAABCAACAQQAApEIAACDBAACIwgAA4MEAAHzCAAAAwAAAJMIAAFBBAACQQQAAOMIAABDCAACgQAAA4MAAAIpCAACYQgAAwMAAAKDAAAAAQgAABMIAAADBAADQwQAAcMEAAKjBAABQwQAAwMAAAIDBAACswgAACMIAAAAAAAAEQgAAVEIAAMBAAACQwQAARMIAABzCAACAwAAAoMEAAEDAAABAQgAAYMEAAJjBAABsQgAAiEIAAPhBAACAQAAAqEEgADgTQAlIdVABKo8CEAAagAIAAKC8AABEPgAAgj4AAEA8AAA0vgAAND4AAEQ-AAAfvwAAur4AAAw-AABwvQAAXL4AALg9AAAUPgAAUL0AADC9AADYPQAAUD0AAGQ-AADSPgAAfz8AANg9AABcPgAAuD0AAIK-AACYPQAA4DwAACS-AABQvQAAHD4AALg9AAAEvgAAgDsAALi9AABwvQAAuL0AAIC7AABMvgAABL4AAGS-AADIvQAAQLwAAKo-AAAMvgAADL4AAOg9AACAOwAARL4AACS-AABsvgAAHD4AANg9AAD4PQAAqD0AAKC8AADgvAAAPz8AAHC9AABwPQAALD4AABA9AAAsPgAAJD4AALi9IAA4E0AJSHxQASqPAhABGoACAAAUvgAAPD4AABy-AAAhvwAAuD0AAFC9AABsPgAA2L0AAMg9AAA8PgAAoLwAAKi9AABAPAAADL4AANg9AACIvQAAmD0AAAc_AADovQAAuj4AANi9AABAPAAADD4AAIi9AAAwvQAAiD0AAKC8AACgvAAA4DwAAOA8AACAuwAAHD4AACS-AADgvAAALL4AAKi9AACoPQAAcD0AAPi9AABwvQAAUD0AAFA9AABAPAAAmD0AAOC8AAA0PgAAf78AALi9AACYvQAALD4AAFA9AAAQPQAAyD0AABw-AAAQvQAAmD0AADA9AAAsvgAAgLsAAIA7AABAPAAAyL0AABC9AABwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=JSHX3TZn9dE","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":694,"cratio":1.84438,"dups":["12553179094836549582"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2520748832"},"4688485220092352802":{"videoId":"4688485220092352802","docid":"34-10-6-ZEF938C83254E5CF3","description":"In this video I introduce what the first derivative test is and how you can use it to graph a function by first determining when the function is increasing or decreasing and thus where it has its...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4575830/cfa77ce802358451d36809a4121c8088/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9JoAMAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D60UMYG7Ppeg","linkTemplate":"/video/preview/4688485220092352802?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Test Introduction and Examples","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=60UMYG7Ppeg\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFQoTNDY4ODQ4NTIyMDA5MjM1MjgwMloTNDY4ODQ4NTIyMDA5MjM1MjgwMmqIFxIBMBgAIkUaMQAKKmhodmRlemlteGNpanl2aGRoaFVDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdxICABIqEMIPDxoPPxOqCIIEJAGABCsqiwEQARp4gfQI-wf9AwADCgoNAgr6AhMPDQb2AgIA8_v9_AcBAADv_AD0-QAAAPcECfz_AAAAAfYBBPb9AQAPAfj8BAAAAAIH9__6AAAABwf_Av4BAAD18v8BA_8AABEJCAH_AAAA_g0FCQEAAAD5EP0GAAAAAAL69gYAAAAAIAAtIz_cOzgTQAlITlACKoQCEAAa8AF_-SgB3xHDAurtyAHoDdUBgwos__w10QC21gIByRf8AQrlBwDQFeT_Fx4EANz_7f8xA-4A2sAOAB_2HQA78hYBBCoIAR779wAuADABDezbAOVA-_8G7wkC89mxAAQl2f4k_PD-wADXAAvqtgkQ_kABCwMIATbvGQHe5AAA8BohAfb4xP4ZIPoE9MQDAvdPGgPp_fEGDzYQA9QU8vzpCwoFCuf-Bh0L7_kY_vMDIRP-9ebeE_jV-fH4FiIk_uYC7gj76Bn-7OQT-fHXAAMY4R_64QD3Bf38CADzDv__AMn4AecC9gHt8v3_6QL8_ej96wQgAC3nWA87OBNACUhhUAIqzwcQABrAB3jQ5L6pPJE7DA3fvPcL0bx62UA8eGz6vEleJ73jVVY9pr_NvHYaCT5bAD89pA3RvJZdUL6Q7Nu8iSimPC0LVj6wily9QS0mvXE9Wr7nFr89hUyovEQYX77UZGc7pZ0_PKOKLLx9X7e7OUHAO3IeaT07anG9vLQ8vVuvLj03Wuk7-OddvSuIwbzDFxy9SVvmvKWa_juVybq8eOXhu-vgsD1_eIy8fBVPvDQ8xzxwA5O99V02vNLOj73nKaG8EN_wu8dMAj5IDCw9XhwLPcR5OLyyTL-7g_jhO4O-lL1T_RQ722POvCZAqD2QqCs9b9GuvGVDnT13NbS9kHYyvTlCtr2kZpQ9T7C_PPsFOz7aN9c9RHXKOxjSAb5Jg6s9liYlvGGIPD0hySy9Yd2dO69nfj3BQhw8QnkdPDMtNj0gKk09pSseO3IT97ssuYo8czLMPKTUEjzOQrG83o_bvFAIMz0Jvxq8JFBUuwPfvr0s3wk95_ITOzPJkz2y53w8NBH0O4hXKD2ljZk8fGfNusU1Qz34UQ2-CW8su1xNqLy5clG9b1azvD0VRj3qa6c8egZDvBWQVj2_Xpa93UPCu0gIxbzaFxY8aRiEu7idrLy0HA29l1MnPCMrhL0H9J09csADur9rp7s6w7k81jV_vL-vNrzcJ-w8QGnJO97gUL1gIfO92gh-unlioT1Vta49t0gYOxTIMT0e8pA9t5DiuTTgxz1RuIM8axvzOYy_yLx32S87Cr6Gu21Ybr05EZg8D-NBOWregT1RZmi9AhaEOcbgYbwJTuA6miMvuypFYb1qXI49h2QruJXmIL3D--A84dytOd0qo7xXPcC9kQYeOfDETD1YmT67bF9dOkrxvD0ESSk9ke7nuV8Kz704cCm6GEO1uXDpXb0X5Hy7J0UOtlwMtD1VbZI8VTQaONI_dzwbQKQ824H7ODJPeDy09PK8Z6-ZuLNNIry1aOY8425pN8CVibpEY3e9XtwVuBQEDz0QXQA-jcNxuOhRjLxaQHI9CeW8N8FYnz0LGZ49vRkjOOXiubxxaJu95a0INs3nXD1HM5s91S0luSL7AL7GXyQ9F5hlOFmnSr02Rwy9AVdLNwqouz1cWqA5aasaOIyjoj3Ssbk8tkQyuK2n9j2z6pi8ezs6uTnFxL1ntya-1kdyONVdmbwRl4K9B3EDuLxBL70logk9zb9mOEMiyDylTdW9UAd3uCL_7D01KQU-835buCmeabx4zZA9oeaauFIJpL0f-FM9CUMwOLK8q7wdsVG9Dha2NiAAOBNACUhtUAEqcxAAGmA_-QAZCx70_CwQ5drm7Pf82wMhAMkb_-rvAP8ct_0cF_PJ_vYAKLof9bQAAAAh_O0dCgACZtzoAx8i-QG1vuL2KH8eHT2x2gj8vuIK_wLaCCMLD_8A59y3MTfFtRcPCh4gAC2ovjE7OBNACUhvUAIqrwYQDBqgBgAAHEIAAADCAAAkQgAAqMEAAAzCAAAwQgAAXEIAAARCAAAowgAAYMEAAJDBAAAIQgAAHMIAACBCAAAAwAAAiEEAAJhBAABcwgAASEIAAKBAAACAvwAAyMEAAAzCAAAkQgAATMIAAIxCAACkwgAA-EEAAKhBAAAgQQAA4EAAACRCAAAkwgAAiEEAADDCAABgQQAAwEEAADRCAADgwQAAAMAAAEBAAAAcwgAAXEIAADjCAACYQQAAoMAAAHhCAADQQQAAoEEAAKBAAAAwwQAAoMEAAKDAAAC4QQAAiMEAAIC_AABAQAAAiMEAAIpCAAAAwAAApkIAAFDBAADCwgAAOMIAAKBAAACwwgAAgD8AAADCAAAAwQAAEMIAAJBCAAAoQgAAlMIAABBBAACgwQAAcMIAAKDCAAD4wQAAgkIAAFBBAAAIwgAAyEIAACTCAAAMwgAAiEEAADBBAABwQQAAAEAAADhCAACAQAAATMIAAKZCAAB8wgAAJMIAAPDBAAA4wgAA6MEAAADBAABgQgAA-EEAAODBAACQwQAAAEIAAMBAAAAYwgAAgEEAAIrCAACaQgAAwMEAAJhBAAAgQgAAbEIAACDCAADAQAAAQMAAAIA_AAAoQgAAYMEAAEDBAACgwQAAPMIAAMjBAACYQQAAuMEAAAAAAABAwgAAgD8AACBCAACGwgAAUMEAAMBBAAAQQQAAuMEAAFxCAADQwQAAEEEAAAxCAACgwQAAVMIAAIDCAABAwQAA4EEAALDBAADAQAAAwEAAAIhBAADoQQAAcMEAALjBAACgQQAAsEEAADhCAACWQgAAgMEAAMBBAABkQgAANMIAADDCAAB0wgAA2EEAABTCAABgQQAAwEEAABDBAAAAwgAAaEIAAARCAABEQgAAoEEAAADAAACAvwAAHMIAAHBBAAAgwgAAaMIAAMhBAADIwQAA6MEAAAjCAADwQgAAAMMAAETCAAAgQQAAoEAAAIRCAAC4wQAAAMIAACBBAADYwQAAYMEAAHBBAAAAQAAAMEIAAEDBAAC4wQAA2EIAAOhBAADoQQAA2MEAAMDAIAA4E0AJSHVQASqPAhAAGoACAABwPQAAiD0AAHQ-AACgPAAALL4AAKI-AACqPgAAD78AAOa-AABAPAAAML0AAIK-AAC4vQAAlj4AABy-AACYvQAAgDsAAFC9AAAcPgAAFT8AAH8_AACYPQAAiD0AAJi9AADGvgAAuD0AAJg9AADIvQAAcL0AAFA9AAA8PgAA4DwAAFS-AACCvgAAcD0AAJ6-AAAUPgAALL4AAKq-AAC4vQAAQLwAAAy-AACuPgAADL4AADA9AABEPgAADD4AAJK-AACgvAAAzr4AAPi9AADgvAAAyD0AACQ-AACgvAAAED0AADk_AABQvQAA4DwAAHQ-AABAvAAATD4AALg9AACAuyAAOBNACUh8UAEqjwIQARqAAgAAJL4AANg9AADovQAAE78AAPg9AADgPAAAxj4AABy-AAAUPgAA-D0AAIA7AAAQvQAAED0AACS-AAC4PQAAgDsAAAw-AAANPwAAqD0AAPo-AAAUvgAA4DwAABQ-AAAMvgAAiL0AAKA8AABAPAAAoLwAAOi9AADgPAAAcD0AAHw-AACevgAAiD0AAIg9AABMvgAAVD4AAEQ-AACCvgAAML0AACw-AAAsPgAA4LwAAKg9AABAPAAALD4AAH-_AACCvgAAiL0AAPg9AABUPgAA6D0AAMg9AADoPQAARD4AAMg9AACgPAAAor4AAFC9AACgvAAAUD0AAKA8AAA0vgAAFL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=60UMYG7Ppeg","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":984,"cheight":720,"cratio":1.36666,"dups":["4688485220092352802"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"624330147"},"7577512816970717052":{"videoId":"7577512816970717052","docid":"34-3-6-Z0850008064BC70D4","description":"This video explains how to find the first derivative in Calculus using the formula. Each step of the process will be explained as f(x+h) and f(x) is found. Also, the video will explain how to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/994802/19a2a85e7d6e41b76100308a1c23704d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RoroJwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKhz7fZOLV_Y","linkTemplate":"/video/preview/7577512816970717052?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Find Derivative - Using Formula (Definition of the First Derivative)","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Khz7fZOLV_Y\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFQoTNzU3NzUxMjgxNjk3MDcxNzA1MloTNzU3NzUxMjgxNjk3MDcxNzA1MmqTFxIBMBgAIkUaMQAKKmhoYmpvcXBmd291aHNrcGRoaFVDZ2xOWHpCbzZibUtjOW90S2YtT3VHURICABIqEMIPDxoPPxPqBYIEJAGABCsqiwEQARp4gQcB_gL-AgDrBAkB-QEAACMHDQv1BQQA8QH3AgcB_wDoAf3_-v8AAP34BwX4AAAA_fj4Avv-AAAGBP0BBAAAAAUA7_wAAAAADgP4_v4BAAD_9QQIBP8AAAwNDvcAAAAA-QX--P4AAAD6AgQHAAAAAP_4_goAAAAAIAAtbrLaOzgTQAlITlACKoQCEAAa8AF_FPv_4u3KAbr25P_aNP0AnzEn__w4zwDcD-UAxRjTAN4PAgDaBOgABxgFAMkx_v8a09__EcD1_yS79f4P3vIA5_INAR3c2QBJAxj_CvgO_tvtFwDyyuz__cLcADMn6QEi7xX7-QHD_wNG4wIjFykBBP9IAEDdCQXwwQj_3_Uf__Tp7vvbHgMJ6Oj-AtUFJQIZuAsEDS0H-eoU2f3r9hQA8fMe-C860v8F_QkKHCDoBvPq8gL--fkAIfkmBu7x8gDexCgH9w38-vjnBfYS7Pb30gjhCgUC8Q740AUI6eMA_BnU-vK96vj39_z0_d0J9OsgAC1SbQk7OBNACUhhUAIqzwcQABrAB7IOx77nWSQ83wqXvDVuwL3RUt68RTOJuxTamL0nT3k9CxGJu59bOD7nE3692Ao_vFBIfL1x0aS8ATzYvKDiKD5R28a8RA42PHV0_L0vE5o9CwIQvaN11L23T_28_S8XPUBcKDy4bm-8_QSGu1RTAj7cSzq9dswQvLKCX730CKS8eXyWvJita70X5UO9vEkCvRNctLsxzA69L_rIO6XghD36R7o8QC2nu0k_Cz2Zu_a9bLpUvDgv7r0nEUE9uIwgvUMEdzw_RZQ9ANUuvEgcjb0ndZe6ynIvu1WKXb0c45S8jQUKvSZAqD2QqCs9b9GuvGkz8zweb_K91yXTOm2s5L2mES49lE7BO0YK5T2jliA8U83uO9QotL1qGq-8tjv7O5zZUzzQsei8x1WSOaFWSbtNnvI9ktwrPDQFvD2Gg048G7IJPG7lIL30oQ28Rr_sPFuVlD3qDqi9MDCGvCpxfT2nvj281X5GvEkV4LzP93A703Laulq10Dwbj4g9xwjNPEQgzTwTOIa6ohUOPAUjpT3WAju-SeWaOii6vr2m7Lm9Q6SNO-sTyjwJ5kM8bkKrvG786T1M5K29K3Opu7892TxOHXW8OVtlu2S2YLuoBI-9mjQZu7dE7r3AnsS7BXqXu7lKgbzScCo97N8zu8uY57xaDbk97IyIO5-dwrs_dpg5G7P0uvIHwzwaXOm81xcHvK7yBD4JxfY9ocDiNsgjrT3eEd88CFVNu2kYH7wUIiC9OiakOkSzfDxPkwm-mwZiuWa2UD2J7tm9IZW9OR1dQD05TkC7zDbIuRvqob2yW5U9LNmZOHHc8zsi_Au9EC_bOFxUC72cFfG93J51OfRFjDzM0Lg8eaMlOkcJFb23Yn-8SzddOswgw73UDQS-CFOFOdUPpb3wOhY9MtjSuStziT1tFQm93SrGODF_YD3GK5o82Ar9OABWJ71YuaG82o2hORoAxTyNiWM9kX06NyOsjD30bAa-z3ClOZxrGL0EcQ4-ggmNubgZnLkmuKK8bfg5txwSrT1HoXY8zVBqOM2ZKD38HF-9XYCvNiIz1z1yKZk7-S1sNyL7AL7GXyQ9F5hlOFRd2TtnMco7LkoCOBO6yzvXoZq6Gl43tmwT3TyQUiQ9i3XpOJJdGT7ZT1C9rMI_uW4eYr2xK7K9E7-_uPcwZb0UxXW8x7EuNyBNq73ORIc9Zzw0OA0SRzx0fPS9VlhZuMr0cD0i4Ss-8cuKOEitCz0DdyU9hvZ4uK1t6r0UO788b9LjN9w5g71wggo9LaDDNyAAOBNACUhtUAEqcxAAGmBM-wA3Awi_LvIh1Rje1eUF0vDuCMU2__nIAOkvtRkZH-HL-ez_K8cgBaUAAAAtGegQ4QDzf87m-O73DfjWl93_LHMgChSk1yjg0JcTFD3v-wkvMi8A3OG2HRnQpFXnKxYgAC1t0hU7OBNACUhvUAIqrwYQDBqgBgAAcEEAABjCAABsQgAARMIAAJpCAABQwQAAAEIAAKBBAABAwAAA2EEAAIA_AAA0wgAAmMEAACDBAABgQQAAgEEAAMDBAAAowgAA4EAAANjBAAAwwQAA6MEAACzCAABwQQAAUMEAACBBAAAEwgAAfMIAAIhCAADYwQAAqMEAAABCAABcwgAAAMIAAHjCAABEQgAA2EEAAMpCAAAIwgAABEIAAJBBAACAvwAAwEAAAADBAACQQgAAqsIAACTCAADIQQAA-EEAAMBAAAC4wQAA6EEAACDBAABAQQAA4EEAANhBAAAAwwAAUEEAAIRCAACKQgAALEIAAEzCAABkwgAA5sIAACBBAACcwgAAIMIAAETCAADYwQAALMIAANBBAAAoQgAAhMIAAKhBAADQwQAAdMIAAEDAAAAIwgAAgMEAAIDAAAAAwAAAgkIAACDCAAAAQQAAkMEAAKhBAAAwQgAAZEIAAIBBAAAwwgAAiEEAAIhCAADCwgAAAAAAAChCAADgwQAAcMEAAIBBAADgQQAAoEEAAIjCAAAwQQAAikIAALDBAAAUwgAAMMEAAMDAAAAAQAAAwMEAADxCAACgQAAAgEAAAPDBAADQwQAAUMIAAFhCAACMQgAA-MEAAHDCAAAYwgAA4MAAACjCAADAwQAAgMEAAExCAADgwAAAMMEAAAzCAAAAQAAA4MAAAOjBAAAAQQAA8MEAAHhCAACAPwAAYEIAANhBAACgQAAAEMEAAFTCAACAQAAAkMEAANBBAAAgwQAA2EEAAIhBAADwwQAAUMEAANBBAAAMwgAAgL8AAEBCAADwQQAAYEEAABBCAAAYwgAAIMIAADjCAABEwgAABMIAAILCAACgQAAAYMEAAHzCAAAwwQAADEIAAKDAAACSQgAAVEIAAMDAAADgQAAAkEEAAJjBAABAwQAAVMIAAFBBAAAwwgAA-MEAAIhCAAAgwQAAAMIAACjCAAAcwgAAsMEAALpCAACQwQAAKMIAAHjCAAAAwQAA8EEAAADAAADgwQAA2EEAAOBAAAAMQgAAcEIAAOjBAAA8wgAAYEEAABDCIAA4E0AJSHVQASqPAhAAGoACAAD4PQAAuL0AAHQ-AAAkvgAAyL0AAIg9AAA8PgAAI78AAJa-AACoPQAA4DwAAIq-AADovQAAqD0AAIi9AAC4vQAAcL0AAOA8AACoPQAADD4AAH8_AAAsPgAARD4AAEQ-AACSvgAA4DwAADC9AAAMvgAABD4AAIA7AAAUPgAAyL0AANi9AADKvgAAQLwAAAS-AACoPQAAhr4AAFy-AACYvQAAcL0AAFy-AABMPgAA-L0AAHy-AAA0PgAAiD0AAFS-AACgvAAAfL4AALg9AABQPQAA6D0AAIi9AAC4vQAAML0AAB8_AAD4vQAA4DwAAKg9AABQPQAAQLwAABQ-AAAUPiAAOBNACUh8UAEqjwIQARqAAgAAnr4AANg9AABAvAAAKb8AAJg9AAAwvQAAED0AADA9AAAUPgAAqL0AAGS-AADgPAAAiL0AAAy-AACYPQAAoDwAANg9AAALPwAAPD4AAMY-AAAQvQAAcL0AABw-AAD4vQAAJL4AAOg9AADoPQAAEL0AAFC9AADIPQAAgDsAAHQ-AADYvQAA4DwAAOi9AADgvAAAbD4AACQ-AAA8vgAAEL0AAIC7AAAwPQAAmD0AAAw-AAAcPgAAFD4AAH-_AAB0vgAA-L0AAJ4-AABUPgAAgDsAABQ-AAA0PgAAcD0AAJg9AABQPQAAbL4AABA9AACAOwAAHD4AAHC9AABsvgAAuL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Khz7fZOLV_Y","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7577512816970717052"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1984889736"},"17553068153943474196":{"videoId":"17553068153943474196","docid":"34-1-10-Z0228A43C5076058C","description":"The first derivative test is used to determine if a critical point is a local extremum (minimum or maximum). ≤ 0 for [c − r, c] and f'(x) ≥ 0 for [c, c + r], then c is a minimum. -","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3905148/c95f56d6fc97bf68f8366a77e4489b17/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Wa42tgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dgy2eRIf93CU","linkTemplate":"/video/preview/17553068153943474196?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First and second derivative Tests | Calculus | Chegg Tutors","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=gy2eRIf93CU\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFgoUMTc1NTMwNjgxNTM5NDM0NzQxOTZaFDE3NTUzMDY4MTUzOTQzNDc0MTk2aogXEgEwGAAiRRoxAAoqaGhldnh1bHBua29weWFuZGhoVUNFQjM2N3pDeDJwLXR2NnhoaHp5eU13EgIAEioQwg8PGg8_E-cCggQkAYAEKyqLARABGniB-wr-CQL9AAQABQcBCfwCAg0A__f__wD49AHxAwP-APYF9fT4AAAADg4N9QEAAAAA-_EN-P0AAAj89f33AAAAA_73-PYAAAD_CPH9_wEAAAIB-gr5AQABFRIBC_8AAAD1EAEDAQAAAPH6AQIAAAAA--v-_wAAAAAgAC3gdcw7OBNACUhOUAIqhAIQABrwAX8C-v_J_OT_yPbUAPwFBwHtICT_EzECALwF_QDZ8MEB3h3sAPQE3f_rAwkAzC_-__PN7QD1r_YABbwI__P24gHwBBgBIPHhAG4YCAH_8uH-mx4I_czkDwDZyOH_Kzrz_gHwBv4x_-z_JPXQAyEVJwENCCwEC-MX_u7LGwPs5_UE693Y_fIWEQPivRX-6u8ZBO3g9gYSGPr97vcBAwjUCvwIByL3BTb5ASUN9wX0Cv4I3uvvBQz67woZ7xQA6d_NAcXzFfXB9vEEAPj7BOcEDvXFTPf9MtYDB_7hAfMe6vkN7-Ds9uXu9Q8C_vcP9ebx6CAALfjGETs4E0AJSGFQAirPBxAAGsAH2czhvia_arwZ-xa8zaylPCisnr35Jay8-DM8vIdLMz3EwZS79rZJPpJSir1RVw09i_vPvW6ukDydU-K7LQtWPrCKXL1BLSa9RE7fuzxQkj3KkUm98YTevYAfnzy3QQ487SjzvPZdkbsMeeO7ILQuPhMvKr29qF08soJfvfQIpLx5fJa8-KEaPB-F6728kXm8BaNSvVKpA70R7Zk8xjdPvd8TkDzUF9c6L-u0PAkAKb3bXRa91jEzvY1S-Dw0P8i8L012PcaViT3C60Q8JT28va2ZxrzZFpS8FxLLPMdE77wowVG7DWqEPar5Zb02GM-89GxpuWCrJL6AMoC7UYfVvRUOUz2oWXu8QV70PAARLD1sLeU7nrTwvfeK1Tv_2Nq8uypQPfqNQLy_7746NtVpPb387j1POUs8ONfwPVDIjrxoWkW7tDkuvfi3lTw1UVc79PNQPdPAD727kq68uod_PSXOd7pv02E7EY3uPKdULj1to6a8trVqvXqvVT2_1iU8m6iKPLok2LwR5lE832bGPTm1872HHxg85zjXvUjsCb0HT1e8d9zwPEb7Lj32Dae8Q6kdPh9q273Emqk5RCCNPFdTo7wJ_jc8wz6bPROPNb0lJBI82fWxvUhHKbojMBm6XGcNvArb7z3CziA7njqQvZMdiz3o9pK7Zd8XPL3KNTwCza07ilA2PGcYbb3oyEI7NqsOPmHApz2Qe2i6ElDBPcF4Qb1h0wq6CesSvBGBdL11Yf-6bZ8APKX3zb2T5p65MlcmPbjkmL2gavK3ROySvZmvHL1kz8q4ceA6vS66Sz1yFsc3qAXKvLEcvjqlhHO5FJ2LvYl64b3GJ3A5QkPaPEbZkTxpN_o5LrrpO8x5az0cvE05E33-vIgPHL6TJZc3YJLqvYz2GbwShxc58ROCPT-6oj3Hblk3jv68vBRGzjw1h8a32vdyvZoMAr1JrqI56h4evcgXjj05yUc4_94XvWu3Xb2XHhI4xFY1PXlhxj225i64BReLPYG6PD25Vi63cm_ePS9YsD2t8ag40VdVPZJmoDvZKYi4O6slPn-1NDwrILy4k4PhOzQ2rz3bvto4eCOYPIJnDD2TEdE4ldclPGIRYz1kB8A4Ad7CvLtPhDzolg841GDaPQfjkb3Hl0-5XEkBvcre0r0XIgS5i-NbvZzEf7ugHWO0pNAIvSRECT6bFsE2zTNAvHnlOr3RBlq3yvRwPSLhKz7xy4o4D4bVvIZ8xjwossa3b70BvY-JlD00ods3bWsQvcV5kz3VICg4IAA4E0AJSG1QASpzEAAaYFPvADQJOO4H9Qb5B8wK_7PiBefz3RL___EA2S7LERYQvfMVKAD14CbqpAAAACYd3S_rAAp4zNH73_MX6oSV0x0bf_89BqHJKO8GsBIFC-neFuYpFgDuA7Q4KOa0MgIg_iAALUqEGjs4E0AJSG9QAiqvBhAMGqAGAABAQQAALEIAABhCAACgwAAAgEEAANhBAAAcQgAAJMIAAGTCAAAAwAAAwEEAAHDCAABIwgAAssIAAHRCAAAwwgAAAAAAAIrCAADgwQAAksIAAABBAACQwQAAEEIAAFBCAADAQQAAIMIAAJLCAABgwQAApEIAAARCAAAEwgAAmEEAAIbCAADAwAAAKMIAAKjBAACIQQAA2EIAADzCAACIQgAA6EEAAKhBAABgQgAA8EEAAPBBAAAAAAAAYMIAAJBBAADAQgAAuEEAAHjCAABgQQAAwMEAAIDAAAAkQgAAEEEAAP7CAAC4QQAAiMEAANBBAACwQQAADMIAALDBAACwwgAAmEEAAIzCAACAwQAAoMEAACzCAAAIwgAASEIAAK5CAABAQAAAoEAAAMDBAAA0wgAAcMEAACBBAAB0QgAAwEAAADjCAADQQQAAYMEAAFhCAADAwQAAgMEAAEBBAAAwQgAAlEIAADTCAADQQQAAqEEAAKhBAAD4wgAAEMEAABzCAABwQQAALEIAAJhBAACCwgAAXMIAAChCAACAQgAATMIAADDBAACAPwAAYEEAAIhCAABAQAAAYEEAAIhBAADIQQAAmMEAAIjBAACAQQAAcEEAAIA_AABcwgAAQMAAAMBAAADYwQAADMIAAIjBAAA8wgAAAEIAAABBAADIwQAAgMAAAAzCAACwwQAAAMEAAKDAAAAUwgAAgL8AAKDAAACgQAAAQEEAAGDBAAAowgAApMIAALjBAACwQQAA0EEAAGDBAAAcQgAAOMIAAKbCAAAUQgAAUEEAADTCAAAAQAAA2EEAADhCAAAAAAAAiMEAAFTCAACAPwAAXMIAADDCAABwQQAAUMEAAKBBAACwwQAAPMIAAMjBAACgQQAAwEEAADhCAAAUQgAAkMEAAETCAABIQgAAMMIAAAAAAACIwQAAVEIAACxCAADYwQAAMEIAAJhBAACIwQAAUMIAAMhBAABAQAAAnEIAABzCAABowgAASEIAAEBBAADAQAAAuMEAAHDCAAAQQQAA0EEAAAAAAAAAAAAAisIAAAAAAAAgwQAAFMIgADgTQAlIdVABKo8CEAAagAIAADQ-AAA0PgAAcD0AAIg9AABcvgAARD4AAGQ-AAAbvwAAfL4AAFA9AAAEvgAALL4AALg9AACiPgAAbL4AADA9AAAQPQAAoDwAAOA8AAArPwAAfz8AABC9AABQvQAA4LwAADS-AACyPgAADL4AADy-AAC4vQAA6D0AAOg9AABsvgAAuL0AADy-AAD4PQAAPL4AAEA8AACCvgAAmr4AABS-AABEvgAAbD4AAI4-AAC4vQAAZL4AAMY-AAB0PgAAcL0AABA9AAAEvgAAQDwAAIC7AAAMPgAAgj4AADy-AAAQPQAASz8AAAS-AACGPgAARD4AACS-AACYPQAAyD0AAOi9IAA4E0AJSHxQASqPAhABGoACAACCvgAAyD0AAIC7AAA1vwAAmD0AAKg9AADOPgAAdL4AADA9AACAuwAAqD0AANi9AABwvQAAXL4AAPg9AACIPQAAPD4AAP4-AACgvAAAuj4AANi9AACgPAAA4LwAANi9AAAQvQAAQLwAAIi9AACIvQAALL4AAIC7AACoPQAAdD4AAIK-AADYvQAAoDwAAIC7AABAvAAAdD4AAIK-AAAcvgAA4DwAAJg9AACYPQAAoDwAAKA8AACYPQAAf78AABy-AABwPQAAmD0AAK4-AACgPAAAuD0AAIg9AADgvAAAiD0AAIC7AACIvQAAUL0AAEC8AADYPQAABL4AAKC8AACoPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=gy2eRIf93CU","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":590,"cratio":2.16949,"dups":["17553068153943474196"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2184731583"},"9230401023459517473":{"videoId":"9230401023459517473","docid":"34-1-15-ZE70867622974C3A4","description":"first derivative test, calculus, derivative, derivatives, first derivative, test, first derivatives test, first derivative test in hindi, first and second derivative tests, first, derivative test...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4230331/9d474b034f033b9cfa557766fb7b5dc4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/njRGGgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DpP_7NTm_XTc","linkTemplate":"/video/preview/9230401023459517473?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Test - Introduction","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pP_7NTm_XTc\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFQoTOTIzMDQwMTAyMzQ1OTUxNzQ3M1oTOTIzMDQwMTAyMzQ1OTUxNzQ3M2qHFxIBMBgAIkQaMAAKKWhobnp4ZGN2dWp5ZHZob2hoVUN0RU5zS09mUEVvaDJqZFZGWlRMUUZ3EgIAESoQwg8PGg8_E7cIggQkAYAEKyqLARABGniB9Aj7B_0DAPgHBQgABv0CEw8NBvYCAgDz-_38BwEAAPMA_v7_AAAA-AUCAgAAAAAB9gEE9v0BABQJ_f8EAAAABgYB__4AAAD9AvcE_gEAAPz5AQj6AQAAEQkIAf8AAAD_Ef4D__8AAP4IAwsAAAAAAvr2BgAAAAAgAC0jP9w7OBNACUhOUAIqhAIQABrwAX37EwHQ-9H_zufmAO406QCBIgr-HCTiAM73_wDNFdkA-AwVAOkUAgAk_xEAuSf5_xf0_f_dxg0AOOcYAP3yJgD9FysAGREOAToA_QDj5O3-sTAc_fgUGwHj4NH_Dzj5_RYAEv7vFe7__fnW_QnXOwPu_gkFOOEIBekFAgDyFx4B1RLV_hcd-gTizPf85i4hAgv8_Af-HvsG4PTw_fzF-QMK3_r6_QLnBzUg_ALlCwr6298EAef59P8d-iEF8OPnAffk__4G0P_48_bzBwDkGf_sHfkBBAH8AfMBEPr-zgn34PPtAdr-9wXuH-sKDMgF_CAALf8hHTs4E0AJSGFQAirPBxAAGsAHeNDkvqk8kTsMDd-89wvRvHrZQDx4bPq8S9O2vZbLKz2s7ge90v_SPWkqdT1UlAW8s_B1vsfQlrxFZEA5LQtWPrCKXL1BLSa9ehcvvgg8MD0pn9S8RBhfvtRkZzulnT88zbNNPUX9RL22Jbw8HQDxPfXVFb35njG9W68uPTda6Tv451298FUGPc2Edb3mNcC8pqiEPUzYiDyBCZw8nYV4Pbw-kLuKBT689SVAPIe_prygbIq8QxF8vahHBL2Zav-74pIDPoejkDw4D0w8Lz_Duy-xiTtygpu83MdAvbM4zrvW2Zq8NuwyPQANBT3E0ju9YpOpO3EqyL3Iaqm8XdIivZTJnzxzsyk9-wU7Pto31z1Edco7A3NZvQ3mmj0vYy-8K2W-vElY5bwWRZc7zR7oPUUCl7xoycg8x1TwPGKWhz0qo7Y8BKzVPDOimTz080s8X3CXPH0znDuyzoK8U6m-PMGrhrvsQ4e7A9--vSzfCT3n8hM7O8UKPlaDK71f8OU7v8ODPTQqlTwLD6m5YGeEPfkRv709axI8dZKtOzz2Mzws8xa8IrCYPRbGcTwju3e89xuzO8xunLxmcTW82HUZvRxqSjwzUSW7baSRPF7Ieb0frDU7J7FVvSO7Aj7YH7S3ByM2vbwcmzujyjC8Dk-vPIM16TwD-Po7OjmIvVOOvr1IDhS6ngnNPYf0kD27dpK65mYNPGspID2gN3Q748UCPtmdCT2w5cW5s_UGvC3fhjqiL0y5xxwava_-qT38qge69X6IPTPfAb1AfGw5-PuFvHtPQDwPZw06eRAvO9mtaj03cz85Oa8WvaB8Czvkjbq3RG_MvOxnlr2bzOo4utKHPcu4zrzPexE5rFu4PX7u2zvEp8K42FuUvcQ-JrySkdS61Q-lvfA6Fj0y2NK5kp4YPfrdCj1keAA4omkBvCKkE70JrWK5-acvPGIgmby9kO24yeE4vSLYPT1odDG41FY2vc0qAr3Vfiu4zq_BPEmTzD3fRIe4Go4EOyFC9zzlqz24Fx-wPEughz04M8e489r2vAj5yr1ah3u2D1Q3PfGC6D3pQYI3a_HpvXnWJLzuL2A2PympvRvW1L24fkG3iiLkPd5Vz7ybdlQ3AgHhPEQzD705Bp-4raf2PbPqmLx7Ozq5uF2Tvc-rkL3adUS4h2cOvfRlLr3N0hC4mZ-LvevaKLxuFUQ3va8FPaVJCb6tnoW4qw_KPaX-lT3BlJo3GCc5vZRDpT1llMe4fifMvSy8iz3JKcE4ZhxZvLZ7jr1WIsO3IAA4E0AJSG1QASpzEAAaYED0AP_wEfAHKgvj5ejjB_Te-y4IzC7__O8AHDCtBPoSC8vu9QAxxCYArwAAAAYZ6h4IAAVw0MMH9_kfAsig4wM3fycyF5vyDujO6CIJAPgAOAcfAwDe-K8pEsqxGzL6FiAALav0KDs4E0AJSG9QAiqvBhAMGqAGAADIwQAACMIAABBCAAAkwgAAIMEAAAhCAADqQgAAQEEAAOjBAAAwwQAAgEAAANhBAAAcwgAADEIAAPBBAAAAAAAAMEEAAAzCAABMQgAALMIAALBBAADAwAAA4MAAAERCAAAwQQAAsEEAAJbCAADowQAAMEIAAIBCAACYwQAAwEAAAJTCAADwwQAAyMIAAEzCAACIQQAAfEIAAIDAAACYQQAAPEIAADRCAAAgQQAAuEEAACRCAACSwgAAgD8AABBCAAB4QgAAcEEAAKjBAAAEwgAATMIAAIDAAABgwQAAAEIAANjCAADAwAAAcMEAAIhBAACAQgAAUMIAALjBAACawgAAcEEAAIDCAADQwQAA5MIAADBBAABgwgAAdEIAAABCAABwwgAAWEIAAMDBAABYwgAAJMIAAEDBAABAQAAAuEEAAJbCAABEQgAA0MEAAABBAADoQQAA2EEAAIhBAAAAQAAAWEIAAADCAAAAQQAAcEIAAKjBAAAUwgAAQEAAAJbCAACwQQAAWMIAABRCAABIQgAAYMIAAGBBAABgQgAAQMEAAGzCAAAoQgAAMEEAAFhCAABQQQAAqEEAACBCAABYQgAAEMEAAMhBAAAAAAAAmEEAAMBBAACgwAAAhsIAANDBAAAAwgAAcEEAAOhBAACIwQAAgD8AABDBAABAQgAAgMAAAOjBAABUQgAA4EAAABjCAADwwQAAFEIAAOBBAACgQAAATEIAAPDBAACAwgAAgsIAAEDAAACgwQAAkEIAAADBAADAwAAAAEAAAHBBAAAswgAAEEEAANDBAAAgwQAALEIAAKJCAADAQAAAAEEAAEDAAADAwQAAKMIAAI7CAAB8QgAAjsIAACxCAACAwAAAeMIAABDCAAA0QgAAmEEAAIpCAABQQgAAwMEAAJhBAAD4QQAAAMAAAMDBAAAgwgAAQMEAAJhBAAAAwQAAhsIAABRCAABkwgAAAMIAAHDBAACoQQAApEIAALjBAABUwgAAuMEAAKBBAABQQQAAgMEAAIA_AABwQQAADMIAANhBAABAQAAAyEEAANBBAAAgwQAABMIgADgTQAlIdVABKo8CEAAagAIAAKg9AADoPQAAoj4AAOg9AAAEvgAAND4AABA9AAD2vgAAtr4AAKA8AACAOwAAjr4AAIC7AAD4PQAAiL0AAKA8AABAvAAAQLwAAAw-AADCPgAAfz8AACQ-AABAvAAA4LwAAHy-AACgvAAAqL0AAAy-AACAuwAAmD0AALg9AABQPQAAFL4AADy-AAAwPQAAJL4AAOA8AAAkvgAANL4AAOi9AAAwvQAAiL0AAIY-AAC4vQAABL4AAOA8AAAwPQAA2L0AAKA8AACCvgAA4DwAALg9AABQPQAA-D0AAFC9AACAOwAADz8AAFC9AADIPQAABD4AABA9AADIPQAAHD4AADA9IAA4E0AJSHxQASqPAhABGoACAABEvgAAHD4AAIi9AAAfvwAAdD4AABA9AACOPgAAir4AAAw-AADoPQAAUD0AAKA8AACIvQAAHL4AAEQ-AABAPAAAoDwAAB8_AAAQvQAAyj4AABS-AAAwvQAAHD4AALi9AAAEvgAAcD0AAEA8AACgPAAAqL0AABA9AACYPQAARD4AADy-AABQPQAAcD0AAKC8AACgvAAA6D0AADS-AACIvQAALD4AANg9AABAPAAAqD0AAAy-AADYPQAAf78AAIK-AADYPQAAFD4AAJg9AAAwPQAAyD0AANg9AAAsPgAAqD0AAOA8AABsvgAAcL0AAOC8AABAPAAAUD0AADC9AAAwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=pP_7NTm_XTc","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9230401023459517473"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3381730357"},"4173084706227657813":{"videoId":"4173084706227657813","docid":"34-2-9-Z6CA2F2C5AC01845A","description":"This video introduces the First Derivative Test and then gives an example of how to use the First Derivative Test to find a local minimum. conclude that there must be a local maximum.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4029498/040e22a1f02564bd26875a9fd11c754a/564x318_1"},"target":"_self","position":"8","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0Z53Ee1SEtY","linkTemplate":"/video/preview/4173084706227657813?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"An Introduction to the First Derivative Test","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0Z53Ee1SEtY\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFQoTNDE3MzA4NDcwNjIyNzY1NzgxM1oTNDE3MzA4NDcwNjIyNzY1NzgxM2qvDRIBMBgAIkUaMQAKKmhocnZ3dndlcHhtd251cGNoaFVDWGlMVVpqaFpZNnk3R2pDUUNJSWM3dxICABIqEMIPDxoPPxPNBIIEJAGABCsqiwEQARp4gfMN-v38BQDvAwYGAAP_ARoOAAb1AwMA-vUF_gYE_gDnAfj2AP8AAP4LBwIAAAAA9_P-Cfj_AQANBvUDBAAAAAMG-v4FAAAABgP2Af8BAAD8-QEI-gEAABEJCAH_AAAA-g78-_8AAAD-CAMLAAAAAP_5_goAAAAAIAAtU2bdOzgTQAlITlACKnMQABpgNxEAIAoD_AEs9uzr-s8LGOv5DhHoDwD0AgACFML_DiAF2vn5AC_hDQjLAAAA9gH_Iv4A90b63uT9_hnn6N7qBhd_HhgV0vb188799vst7fUJ-hX7AO_u-xUX4sQiBg8FIAAtUH1yOzgTQAlIb1ACKq8GEAwaoAYAAJBBAACIwgAAgkIAAADCAACaQgAAkEEAAEhCAADAwAAAAMEAAHRCAACowQAAgMIAAODBAAAAwgAAMMEAAOBAAABQQQAAEMEAAIBBAAAAwgAAIEEAAEDAAACgwQAAIMEAAMDBAACgwAAABMIAAGjCAADOQgAAsMEAALDBAABAwQAAWMIAABjCAADGwgAAGEIAAChCAAB0QgAAOMIAAARCAACgQAAAEEEAAKBBAACYwQAAjkIAAJjCAADYwQAAgkIAADxCAACgQQAAYMEAAEBAAAAAwQAAQEAAACBBAAAsQgAA-MIAAKBAAAAkQgAAZEIAADBBAACiwgAABMIAANDCAABAQQAAusIAAIDBAABcwgAAcMEAAPDBAAAEQgAAgEEAAITCAADAQAAAyMEAAGzCAABAQAAAmMEAAGDBAACYwQAAgD8AALRCAADgwQAAUEEAALBBAAAQQQAADEIAAFRCAABwQQAARMIAALhBAACQQgAAUMIAADBBAAD4QQAATMIAAIDAAAAgwQAAVEIAAExCAABUwgAAQEEAAERCAAAAQQAAksIAAADBAACgwAAAuEEAAIBAAACgQgAACEIAAFBBAACowQAAMEEAADjCAABwQQAAeEIAAPjBAACOwgAAUMEAAADBAABowgAAIMIAAKDBAAAEQgAABMIAAMDBAAC4wQAAgEAAAIA_AABQwQAAAEAAAADBAABMQgAAMMEAAJZCAAAgQgAAAAAAAKDBAAAcwgAAiMEAAIC_AAB0QgAAoMEAAEBBAAC4QQAAAMIAAAzCAACAQQAA8MEAAIjBAAAsQgAAeEIAAABAAABkQgAAcMEAAJjBAAAkwgAAVMIAAOjBAACGwgAAoMAAAMDBAABIwgAAAAAAAFhCAABgQQAAiEIAAFhCAACgQQAA2EEAAEBBAACgwAAAFMIAAFTCAADgwAAAmMEAAKDBAABkQgAAcEEAAAzCAAAUwgAA8MEAANDBAACSQgAA-MEAAAjCAABswgAAQEEAACBBAADQQQAALMIAAJBBAACAwAAAQEAAABxCAAAQwgAAPMIAAADAAAAEwiAAOBNACUh1UAEqjwIQABqAAgAA4DwAAOg9AACWPgAAJD4AADC9AADgPAAAcD0AAAO_AACmvgAAcD0AAFA9AAD4vQAAqL0AABQ-AACIvQAAmL0AADA9AABwPQAABD4AANY-AAB_PwAAJD4AAKA8AACAuwAAhr4AAKC8AABQvQAAML0AAKA8AABwPQAA2D0AAOC8AACIvQAA6L0AAEA8AACAuwAAcD0AACS-AACCvgAAFL4AAIA7AABQvQAAXD4AAAy-AACgvAAAyD0AABw-AADovQAAiD0AAJ6-AADgPAAAFD4AAPg9AABkPgAAPL4AAKC8AAAHPwAAyL0AAKC8AAAsPgAAMD0AAAQ-AAA0PgAAQDwgADgTQAlIfFABKo8CEAEagAIAALa-AAAkPgAAgDsAACO_AAC2PgAAiL0AABw-AAAMvgAAHD4AADw-AABAPAAAqD0AAOi9AADYvQAAoDwAAKA8AACIPQAAOT8AABw-AADSPgAADL4AAJg9AAA8PgAAcL0AACy-AAAwPQAAFD4AAMg9AAAQvQAAHD4AAOg9AABkPgAAbL4AADQ-AADgPAAANL4AAIo-AACoPQAAkr4AAEC8AAA0PgAAQDwAABy-AAAMPgAAEL0AAEQ-AAB_vwAAjr4AAIA7AAB8PgAAuD0AALg9AABwPQAAyD0AAIo-AADYPQAA4DwAAHS-AADIPQAA4LwAAHA9AAAwvQAAdL4AAPi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=0Z53Ee1SEtY","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4173084706227657813"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"920554945366307492":{"videoId":"920554945366307492","docid":"34-1-2-Z89FC2D559226C2C6","description":"First Derivative Calculus Grade 12 | What Is the First Derivative? Do you need more videos? I have a complete online course with way more content.Click here: https://purchase.kevinmathandscience...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3862679/b570f55e37969f4596dd53c67782968f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/wa-QqAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DN3GBGiufKCk","linkTemplate":"/video/preview/920554945366307492?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Calculus Grade 12 | What Is the First Derivative?","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=N3GBGiufKCk\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFAoSOTIwNTU0OTQ1MzY2MzA3NDkyWhI5MjA1NTQ5NDUzNjYzMDc0OTJqiBcSATAYACJFGjEACipoaGF5dHNrcW1zbHZ3ZmlkaGhVQ1JmRE5BYmNSLVkzVDQ2WGlMNFNxc3cSAgASKhDCDw8aDz8TuQOCBCQBgAQrKosBEAEaeIH6BwAG-gYA9QEDBQcE_QEEDwgI-AD_APv2Bf4GBP4A9wT29fkAAAD3BAn9_wAAAPj6-w___wAADAD9A_sAAAAH__76_gAAAP8H8v3_AQAA_PkBCPoBAAAFDAgAAAAAAAAN-vIAAAAA9wb-CQAAAAAC-_cGAAAAACAALSv14zs4E0AJSE5QAiqEAhAAGvABfwcNAMb6x__RBcAAxhoFAJ0gCwD3JO0Asebw_7k-1ADX_hkAzR0DACkP7QCuMiABM9juABK79f8wCEr_ENvxAOsPLAAKBxsAIwcgAfbvF__KUyf_GAozABvQywMSRPj8DPklARAN0wHqBLkCEf5HAePmCQU48gsD7eQOAf7-8Ar1973-8Rj6CO3h7PrlCCsBH-X9AQQ6-gHpFdf8xusG-vvdBPkhH9z9IxPlBRoYDPvL6w75_wf3DAsfEwXLCcv9vfIY9O3QEu_s8RkFD-MK_LMOAwwv-_AD4QUHAwX56Qrs3On17dXuBukM5wfcy_T4IAAtXNEAOzgTQAlIYVACKs8HEAAawAe37Ni-XXepPLHUxLxc1_m873tvvbQFBL1qTXO9qQjBPLZyBb2AYC4-bzUBPZ9Ow7w7cZm9vLhjvcesqLzLgDM-5tGIvZhiMzyHNCq-nmmoPbZyZbypogi-okixu0hMVT2CRIm8dSuKvfwrWLvBfr498vfBvRetbbzomYM8JFT6PJspI730Hy09P7m3vZ4_Er2lmv47lcm6vHjl4btWThY9z9cxPYVPBLyl7i89tSWRvfi5K710e-m9pRbKvLtak7yEWRI9uOdZPWIgGTxIHI29J3WXuspyL7togEG9a5mxvP6co7txtbk9-ic4vE_qC72Cq_y8OJ_6vTJFL71N8469bG_BvCw8-Tz7BTs-2jfXPUR1yjuetPC994rVO__Y2rw5rrA9TP9Svf7MhTwA8oQ9iSsCPfgrLjw3TIk9jf02Pcsqz7pu5SC99KENvEa_7DwIeO87-i01vZGTLjw7me48aV05vTUS_DolL6G8o7mEPOeUW7xdp1E9VZedPE2Dojw5T-u8PxkSOu-bUjsFI6U91gI7vknlmjpcTai8uXJRvW9Ws7zdwX49vLskPYh7kbwNRAM87gnSvTVTrbvE6F48BzSFOxPThTzfTfm640w4vWUZwbqJFcS9pn_pPesQLLr-LNa8YVygvPO-O7yxlvE8MT5xPPLCCjznB-S8aJePvZm1GLuVa6U8eYucPWX-cjs7YkM9HYbAPUHibLkYsgo-ZZ7DuxjRgjiS2KS8s1bZPEchyTo860c77t9WOgxiWrsfotE9WPgfvXnRijj1KSy9NZiGvGMqOzkRJhu9ARiKPVg1kblvMoW9owVovdwyhzmrPZG9GlIVvjBRCjo4nSk9-XZcPIREMbivn7Q9ppfYPEPKmzlrHsG9xK6ivVn4Ijht4uS9vt6dPYc_A7mw87A9E999OxMsn7fFTZc9RCBNPf7K6jj9xhI9GZrhvNmVeriJRQy9CAT6PW9xOrgQ39O8Q_wJO4xMaLef8XE7pdgBPqiuMbm6F3O99DLKPJLaErUWp5o8jmttPf0WxDiuAma9_te5vK01oreL15Y9nw8FPSCNFbhlU869wuioPP4y6DeW5IW9SWm2vXbfprf4pxQ-A_pOPR_07TZ4t9I9Ry2ePdqWTTgfnwA-pOSQvRXoOrmr3xa9DfsdvqO8_rjKwyK9zhMVvBP0wLaXUZG9h3IdPVM4i7YNEkc8dHz0vVZYWbijubQ9yH2LPYDxgzib2HC71ZgLPb8U4bh-J8y9LLyLPckpwTgQvyy951ovPS2mZDggADgTQAlIbVABKnMQABpgVu4AQgUK2Bf2_dDcv-cS7fTeLvfNEP8U0ADaOL0WFRXh5PPkAEDBDQ6nAAAACgDkLPMADHyr9_znBDQE253E-kJ_FAgznM4e9c-3IBgQAwkuHD0qAKH2vAj07cocBP0NIAAtUlEZOzgTQAlIb1ACKq8GEAwaoAYAALhBAADAQQAAEMEAAGTCAAAAAAAAUMEAANBBAABAwAAAAMEAAJBBAAAQQQAAoMEAAGzCAACAwQAASEIAABDBAAAAwAAAgMIAACRCAAAswgAAiEEAAHjCAABwQQAAJEIAAHhCAAA8wgAABMIAAILCAADAQAAAaEIAAPjBAABAQgAA6MEAALjBAACQwQAAmEEAAABAAAD-QgAAIEEAAMhBAABsQgAAYEEAAAhCAAAQQQAAsEEAACBBAACGwgAAHMIAACxCAAAIQgAAWMIAANDBAACQwgAAQEAAABhCAACIQQAA3MIAACBBAADIQQAAqEEAAABCAADgwAAA2MEAAFTCAADwQQAAcMIAAIhCAADwwQAAeMIAAMjBAACWQgAAwEIAABDBAADgwQAAAAAAADjCAACYwQAAyMEAAMBAAABQQQAAdMIAAIDAAACwQQAAcEIAAFTCAABAwQAAMEEAAGBBAAAkQgAAFMIAAGBBAAAAQgAANMIAAAzCAAD4wQAAqMIAAIbCAAAAQgAACEIAAAzCAACUwgAAEEIAAIA_AACowgAAgMAAAJhBAADgwAAAuEEAACBBAAAAQgAAsEEAACDCAADIwQAAQEEAAFBBAAAAQgAAoMEAALTCAADAQAAAkMEAAEBAAABAQAAAFMIAAILCAABAQgAAQEEAAIBAAADAQAAA2MEAAEjCAABAwAAA6EEAABDBAACgQAAAQMAAAKBBAADowQAABMIAAADCAACiwgAAYEEAAMDAAADwwQAAGEIAACxCAAAQQQAAQMEAABRCAAB4QgAAMEEAALjBAACgwAAAEEIAAEDAAADgwAAAoEEAALhBAADCwgAAoMAAAFxCAAAkwgAA1kIAAHDBAABMwgAAAMEAAABCAADQQQAAEEEAAKDBAAD4wQAAuMEAAChCAAAgwgAA8MEAAMDBAACQQgAAcEEAAMzCAACIQgAA8EEAAOBAAACwwQAAYEEAAJBCAABMQgAAgMEAABDCAADQwQAANMIAACxCAACswgAAEMIAAJhBAACQQQAAYEEAAFBBAACMwgAA6EEAAFDBAAAgwiAAOBNACUh1UAEqjwIQABqAAgAATL4AAAQ-AAA8PgAABL4AAJi9AACAOwAAyD0AAAm_AACivgAAiL0AAIi9AADIvQAAHD4AAAw-AADgPAAAVL4AACw-AABQvQAAED0AAM4-AAB_PwAAQDwAADQ-AADgPAAAgDsAAFA9AAAcvgAA4DwAAHA9AACIPQAAcD0AAHC9AAAMvgAAcL0AAOA8AABEvgAAiD0AAOi9AACIvQAAVL4AAIC7AACoPQAAnj4AAOC8AABQvQAAuD0AAIA7AABEvgAA6L0AAAS-AADIvQAAmD0AAMg9AACoPQAAPL4AAOA8AAD6PgAA6L0AAKA8AAC2PgAAiL0AAGw-AAAUPgAAgDsgADgTQAlIfFABKo8CEAEagAIAALK-AACSPgAA-L0AADu_AACgvAAARL4AAKI-AAB8vgAAXD4AACy-AACgPAAAXL4AAOi9AABUvgAAND4AAIg9AADIPQAA6j4AABA9AAC2PgAAuD0AAPg9AACgPAAAbL4AALi9AACoPQAAyL0AAKA8AACKvgAAiL0AANg9AACaPgAAXL4AADC9AACAuwAA-L0AAKg9AACYPQAAlr4AAEy-AADgPAAAHD4AABC9AAD4PQAAUL0AAOg9AAB_vwAAkr4AAIA7AADoPQAAVD4AACw-AAAkvgAAkj4AACQ-AAAMPgAAEL0AAKC8AABwPQAAoLwAAOA8AAA8vgAAqD0AAFC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=N3GBGiufKCk","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":384,"cratio":2.22395,"dups":["920554945366307492"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"652490153"},"7000257627077379320":{"videoId":"7000257627077379320","docid":"34-7-2-Z9D2210F90C072029","description":"In this video, I illustrate the first derivative of a function graphically and show why the first derivative needs to be zero to identify an extreme point (maximum or minimum). This video is...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2837418/8e99b5168b17b08da669330addfb1104/564x318_1"},"target":"_self","position":"10","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DgouMOwLicVQ","linkTemplate":"/video/preview/7000257627077379320?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The First Derivative of a Function Explained Intuitively | Intuitive Maths","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=gouMOwLicVQ\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFQoTNzAwMDI1NzYyNzA3NzM3OTMyMFoTNzAwMDI1NzYyNzA3NzM3OTMyMGqvDRIBMBgAIkUaMQAKKmhoaGV2dnhzZmJscXByZmNoaFVDY21heWpQei1oeDJrcGt6aWZDMnA2QRICABIqEMIPDxoPPxO8AYIEJAGABCsqiwEQARp4gfwJ9QH7BQD1AgsAAgT-AQQAAAL4__4A6fv8_gT-AQD3BPb6BAAAAAD_AgT-AAAAAPUAAwD-AQAEBvsH-QAAAA4D_v_9AAAAAwoC-_4BAAD1-_78AwAAAAcCBfj_AAAA-wQE_QAAAAD6AgMHAAAAAAX8-f4AAAAAIAAtYD3hOzgTQAlITlACKnMQABpgGxMAGRr-B_vsD-LlBOYGBe4ABPznDwAO8wAdHdnuEQLs0wP5ABjSFAXTAAAA-hIEIQkA6zr38NkHDAz82t_4ABl_ERAC7wjz78b2AgAXC9gIAgsUAO4AB_8aANgu-xkRIAAtcoCGOzgTQAlIb1ACKq8GEAwaoAYAANDBAAAAQQAAMMEAAEDAAABQwQAAukIAAMJCAACIQQAAgEEAAPDBAAB0QgAAwEAAAJjCAAAAQAAAcEEAAOBAAAAcwgAAIEEAAMhBAABQwQAACEIAAFBBAAAAwQAAsMEAALhBAACYQQAAwMAAAPDBAADYQQAAgEAAAIDBAADwQQAAKMIAANhBAACswgAAIEEAAKRCAAB8QgAAUMIAABBBAABIQgAADMIAAIA_AAAQwQAA-EEAAHBBAAAUwgAA8MEAAKBBAADowQAA4MAAAAjCAACIwQAAGMIAAPhBAAAQQQAA7MIAABDCAAAAQQAAAMEAAPhBAACMwgAAoMEAAGjCAACAPwAAwsIAAHDBAACWwgAA6EEAANDCAADoQQAAuMEAALjCAACAPwAAkMEAACBBAAAwQQAAQEEAACxCAAA0QgAAvsIAALxCAAAMwgAAgEAAAHRCAADYwQAAFEIAAABBAACAwQAAwMAAAODAAAAMQgAAwMEAACRCAADgQAAAjMIAAIC_AADEwgAAmEEAANBBAACiwgAAoMEAADhCAADgQQAAFMIAAEhCAADAQAAAgD8AALhBAACYQgAAgkIAAAhCAACwwQAAgEAAAIjBAABQwQAAUEIAAEzCAABcwgAA-EEAAFBBAABAQQAAwMEAAABAAACAwQAAEEEAAARCAADAQQAAPMIAAExCAABwQQAAwMIAADTCAABEQgAAwEAAAADCAACSQgAAAMEAAKjCAABAwQAAWMIAAJhBAAAAQQAAUEEAACBBAADgwAAA4EAAAIA_AACYQQAAIEEAAIBAAADIQQAAgEEAAGBCAADIQQAAgL8AAOBAAABgwQAAAEEAAMBAAACYwQAAPEIAAKjBAAB8wgAANMIAANhBAAAgwQAAKEIAAEBAAACgwQAAIMIAADBBAAAQwQAAfMIAAKzCAAAwQQAA4EEAAIDBAACgQAAAEEEAADjCAAAMwgAANMIAACTCAABIQgAAMMEAAHTCAAC4wQAAGEIAAGDBAACIQQAAokIAAGhCAACAPwAAGEIAAFxCAABwwQAABEIAAJDBAAAcwiAAOBNACUh1UAEqjwIQABqAAgAALL4AAJi9AACIPQAAqL0AAKC8AAAEPgAAFD4AAA-_AACuvgAAQDwAAOg9AAAEvgAAoLwAAGQ-AACAOwAA6L0AAEC8AABQvQAA6D0AALY-AAB_PwAAqD0AAII-AAAQvQAArr4AACQ-AACgvAAA2L0AAOA8AACoPQAAXD4AANg9AABcvgAAhr4AADA9AACAuwAAuD0AABC9AACSvgAAPL4AAHC9AACgPAAA0j4AAKC8AABUvgAAND4AAGw-AABEvgAAoLwAALq-AABUvgAAUD0AAKo-AABMPgAAUL0AAKA8AAATPwAAUL0AACw-AAAUPgAAgLsAACQ-AAD4PQAAuL0gADgTQAlIfFABKo8CEAEagAIAAFS-AAA0PgAAHL4AACm_AAAQPQAAoLwAAK4-AAA0vgAABD4AABQ-AABQPQAA6L0AAAy-AABsvgAAgLsAABA9AADgPAAAFT8AAPi9AADSPgAAUL0AAIi9AAAQPQAATL4AAHC9AAAkPgAAcL0AALg9AACGvgAAUD0AABQ-AAAsPgAAbL4AAOg9AAC4PQAABL4AAGQ-AABUPgAAlr4AAJi9AACiPgAA4LwAAIC7AABQPQAANL4AABQ-AAB_vwAAhr4AAHS-AABwPQAABD4AABw-AAD4PQAAUD0AACw-AABwPQAAUL0AAEC8AAAQPQAAEL0AAIA7AABAvAAABL4AAJg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=gouMOwLicVQ","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7000257627077379320"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2535424305388646264":{"videoId":"2535424305388646264","docid":"34-4-8-ZF9A1C33DC0DCDEB7","description":"Watch more at http://www.educator.com/mathematics/c... Other subjects include Calculus BC/II, Algebra 1/2, Basic Math, Pre-Calculus, Geometry, Pre-Algebra, Statistics, Biology, Chemistry, Physics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/908197/08cddcf562381dd7a79634421217dfb0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/WuXjNgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZ7QWpBU1ePU","linkTemplate":"/video/preview/2535424305388646264?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus: First Derivative Test, Second Derivative Test","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Z7QWpBU1ePU\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFQoTMjUzNTQyNDMwNTM4ODY0NjI2NFoTMjUzNTQyNDMwNTM4ODY0NjI2NGqHFxIBMBgAIkQaMAAKKWhobXBremF5Y3F1d2d0ZmhoVUNmczYxeWJRUWxfaFhTa0RVbTM5anVREgIAESoQwg8PGg8_E5YCggQkAYAEKyqLARABGniB-gcABvoGAPX_CgsCBv0BEAMG-gf__wD79gX-BgT-APQA_v7_AAAAAgkN_AQAAAAA-_IM-f4AAAwG9gMDAAAACAL4AP0AAAABAfn6_wEAAP4EAQ8D_wAAEQkIAf8AAAD6Df37_wAAAPb9_AgAAAAA__n-CgAAAAAgAC0r9eM7OBNACUhOUAIqhAIQABrwAX8X8ADQFuwA7gbXAN4gCwKJGO8AERXTAJ3eEQKi9OcA-fncAO7v5QAl_xEAxkH0APDw3wAE-Q4AOw8X_wcAFQAL8hsAG-4RAVEU8gDxEub_8SXq_hH5Hv8X2NQD9QTPAQ35A_ux6-D-FezgAOTbJgEm-wgH8hohAtz__f3MHvn_7N7a_vMHEwvhy_f85TAiAvX-Dvn2GvX5C9wJAyQY7_krwPgBAh_4AR_y9wXS5wD8AiIJ_Ob59P8yGicJ7AH7_-fwGPkd0__8-RAm-ysCCQz5-gr4GQkNBxIi-An_6gjz7t4A9vgX-QDSFgsR1OoM-yAALe-5GDs4E0AJSGFQAirPBxAAGsAHZtoKv4-Amzxt8Z88e8KNPZav7DuUh4W8qgVbPR1rED0chsW86lGCPBE-b7wH9ci89pZivgV4gTx5Pw28Z2KaPk46m7wa71g8ehcvvgg8MD0pn9S8iQsQvjZqrrrOj_k7Oz1KPEEYLjwYYzs8f6GHPUO4F7vUfHq9bhsjPKomjb0-8fe8EfmTPNMjl7zcNgK8Zz0CPAASGbymBwc83GBtvacqo7w3Ode8zvYNPXOL1Lzf0bG7FpJivRFedbs-9NO8ImxdPR9vKDwhLq-8Lz_Duy-xiTtygpu85V4AvU2YurzY_2-8rGMLPQ0GMjxa7Ju856cYPYB3vLyVf628P28qvVFOdD0RSDK77IbtPYz3gz1yW5E7LnC5vATGij1fRjG6ipUsvOWfdDw34zS8pUuvPQDblj2ZYaO6N5kivVOIkTyGa5q8K23xu1IBgzvkg9w7OVAWvKekWL169K-6srJHPSXLFbq_zYc8xEMTvT8Y3Txlm-W8PjK3PbmdxzzKZac4ij6fPfy4BzyAbEi8xTVDPfhRDb4Jbyy70Y-ru-Q0H72ykTW8HW3BPTlpED0uBX-89gWpPcG80bxvfPG7K7Q9PF8BFryjxJU6fp-bPe-WP7z8CBU82fWxvUhHKbojMBm68NWWO7cfNT1inc-7hWbyvMlOKT11T3s6uc2vvLvQQb2iALy7OpyfPdo6uDxcfEA7IALYPGj9Nz2XuY47KHEHPQZUzTqfMV27crO-PUqBAD1GUg46p9lyvLDDGjwlTAO7lEC0PeDNZL3ih2o5qvBKu_R-7TuZZKK61g1qvQK_YT3zKHu4wdIQvP2TLjy9q4s5vsXgO6xTFb6mjMk5In-aPcJTI72f_fK4g52nPfWNHr3yRyy5PkKdveiqVL2Wh065miwpvYfu4zxyRb-5FiMhPXBbwDw_YBI5cvc-vf8m7zzeRoy4AFYnvVi5obzajaE5bQipPPjMSDwmyeM0xdDFvMg3JTwbLBy67YMsPN5kqj1e6b24ZOTRPMUPhD3eov63FnFXOzSkpT3tNwK43ln7PNjxn70YDZc4oNx7PQGZtz1YADa4WJ_MvaYuND2Dfyw5BEj-vLfTlr0YYy62TJJCPd2YHrpxTAc4LHkhvRwPgb33Zbk39wEoPnBh3b3xZ7-5ORzIuZ89171uKD-3xcVRPQkpybz4z5-2IE2rvc5Ehz1nPDQ4YQZ5PfM6Er5L56m4Iv_sPTUpBT7zflu4L8EpvArExjxbTJa4IawmvVQBdz1hK1K4R4i8OzWJBrr3wzw4IAA4E0AJSG1QASpzEAAaYE_4ACsR_-H59xrjyvvPPQrS-B7p1Cj_DwL_8iSzEu0s4K32JP9Z3P_uowAAADMB_CDwAAZ_xtnM9RYJ_MunyAwjZf0nJpfJGejWyjcs3swGKvAwFgAA15grGMqmG_wW9yAALUizFzs4E0AJSG9QAiqvBhAMGqAGAAAAQgAA4EEAAGBCAADgwQAA4MEAAODAAABMQgAAyEEAAMDBAADIwQAAcEEAAEDCAABowgAAAEEAABBCAABAQQAAQMAAAIjCAADIQQAAEMIAADzCAAAAwQAAUEEAAIhCAAAgwQAAAMEAAFjCAACYwQAA1EIAADhCAACgQAAAQMEAAMLCAADAwAAAYMIAAGjCAACgQQAAJEIAABBBAABYQgAAQEEAAFjCAABQQQAAQEAAABxCAADwwQAADMIAAPBBAABcQgAAOEIAAOLCAACAwQAAmMIAAEBAAADYQQAAKEIAAKjCAACwwQAAAAAAABxCAADIQQAALMIAAEzCAAAYwgAAAAAAAJDCAACgQQAAZMIAABTCAACwwQAAskIAAHxCAAAAwgAAuEEAABhCAAAgwgAA-MEAAJjBAABQQQAAAEIAAJzCAAA0QgAAQEAAABBBAAAUwgAAaEIAAHBBAAAgwQAAPEIAAPDBAAAAQQAAcEIAANjBAABQwgAAQMAAAIrCAACQwQAASEIAAERCAAD4wQAASMIAAOBBAABwQgAA8MEAAJjBAADQQQAATEIAAHhCAADIwQAAmEIAABxCAADIQQAAsMEAANhBAAAAQQAAjEIAACzCAABAwAAAyMEAACTCAAC4QQAAwMAAAKBBAACAwgAAgEEAAIBAAAAAwQAAkMEAAIjBAAAAwAAAkEEAALjCAACwQQAAQEIAAPhBAACoQgAAEEEAAAjCAACwQQAArMIAAMhBAABgQQAAEMEAAPjBAAD4QQAA4MAAAPjBAAAAwAAA0MEAABBBAADwwQAALEIAACBBAACAwAAAEMEAAIDCAAAEwgAAgMEAALhBAAAEQgAATMIAADhCAAAwQQAAVMIAAJhBAAAQQQAAkEEAAJhCAAAgQgAAAMIAABTCAAAYQgAA4EEAABBBAABwwQAA0EEAAHBCAACAPwAAgEEAAJ5CAABgwgAAWMIAAPhBAAAMwgAA2EEAAPjBAACIwQAAQEEAAAAAAABowgAAoMAAAIDBAAD4wQAAPEIAAEBBAABAQQAAcMEAABRCAABwwQAApsIgADgTQAlIdVABKo8CEAAagAIAALi9AAA0PgAAkj4AAOC8AAAEvgAAij4AAHw-AAAlvwAABb8AAJi9AACGvgAAzr4AAAQ-AACmPgAAUL0AABA9AAAMPgAAqL0AAEw-AAAvPwAAfz8AAOC8AACSPgAAUL0AAPi9AABUPgAA4DwAAAy-AABQvQAAij4AAFQ-AAAcvgAAQDwAAGS-AADgPAAALL4AAES-AABkvgAAVL4AALi9AAAkvgAALD4AAC8_AAA8vgAAmr4AAKI-AAAEPgAAmr4AACy-AACWvgAAJL4AAEA8AAD4PQAAmD0AAIg9AACgvAAAWT8AAGQ-AAAEPgAALD4AAKi9AACWPgAAuD0AAOg9IAA4E0AJSHxQASqPAhABGoACAACqvgAAgj4AANi9AAAzvwAAUD0AAPg9AADyPgAAXL4AAPg9AABQPQAAQLwAAFC9AAC4vQAAHL4AABQ-AABAPAAAiD0AAAk_AAAQvQAA8j4AAAy-AABwvQAAiD0AAKi9AACovQAAqL0AAHC9AABAPAAA-L0AAAy-AADgPAAAND4AAFS-AADIvQAA4DwAAPi9AAAQPQAAHD4AAFy-AAC4vQAAEL0AALg9AACYPQAAQDwAAFA9AADYPQAAf78AACS-AACoPQAAXD4AAIo-AADoPQAAiD0AADw-AAAQPQAAqD0AAKC8AAAMvgAAUD0AAIC7AAD4PQAAgLsAAOg9AACAuyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Z7QWpBU1ePU","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2535424305388646264"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2218244051"},"7098556959874438860":{"videoId":"7098556959874438860","docid":"34-0-12-Z5F333B8E69CA05DF","description":"In this video, you will be learning about the first derivative test and how to perform the first derivative test If you like my content, please consider liking this video and subscribing for more...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2833826/787c1124ffe833e903bbcecbd0bea18a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/-ERGOQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DG1n-ZTnzucQ","linkTemplate":"/video/preview/7098556959874438860?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Test | Quick Calculus","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=G1n-ZTnzucQ\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFQoTNzA5ODU1Njk1OTg3NDQzODg2MFoTNzA5ODU1Njk1OTg3NDQzODg2MGqIFxIBMBgAIkUaMQAKKmhocGx2ZXRncHBobnlldGJoaFVDT2RYZEZZRnBBRHJfMFIyUXFSX0g4QRICABIqEMIPDxoPPxPqAoIEJAGABCsqiwEQARp4gfz_CAEAAQD7_P8QAQn7AiIICQANAgMA9PD5_wUC_wDu_ADz-AAAAPoQBP4GAAAAAPvxDfj-AAAR-_74AwAAAAkC-AD9AAAA_QL2BP4BAAACAfoJ-QEAABIKCAH_AAAA-Q78-_8AAAD5AgQHAAAAAAL3BQcAAAAAIAAtSsTUOzgTQAlITlACKoQCEAAa8AF_3CYAvi71_9z26__PK98BnjIo__w5zgDg4jr_0AfcAbYEBQD86xj_Ge0SAbMcCQAY8uH-BMIX_0HZ_AAP3fIA8uYCABXR7QJnJDL9OwO-_uMZB_734hMAGtLOAw8b8f0m_O_-Dw3VAQfs4QEo-zMBCx35_fbwAP312xwFzPoKA8UA2PwbIvkEAwHf-fbzKf78-fUGISbu_NAC_QbvDhX18dEn_wYiBwIv_fIIDfPsCMLj_gYC8Nj6Ch0SBc0Jzv3p6wsA0-IA9_fPEQoC9xfz9y3_9i378AIV_PEJBQAUCAHm9w7TIxD69t70As_3A-sgAC18swY7OBNACUhhUAIqzwcQABrAB2dGt74sEm488IECPU5j-7036Qy9d-nwvCrgHr4D7lk9c1WPvEkTzz0iJhc7sK91vbPwdb7H0Ja8RWRAOS0LVj6wily9QS0mvYbjCb7fIPU8rAEqvVexOL5HpX08pdQKPSLklz2qoH29hADLO6A0xD2m1VC9Ef_WObOudr3rPfC8IIAvvZita70X5UO9vEkCvUKguT3bfRi9uAT9O52FeD28PpC7igU-vKsQBzypdwc9I3z5vDVx_DzJLbe8qT8Mveqv9z0xslE6yE0DPePMRb32rLU83mQGO0YmoLzbTwa8KahRO5V0_7qU2UW7HI8jvcjw8zw0AGq9vJ_LO3f1Cr6gny49XPlRvKj8Cz6lg5U9JI6GvO_ks733kZs9zf26vCpwkj1lcX-8G_ZWvM0e6D1FApe8aMnIPMQQND0EXt47Z_9NPOy_nj25dZI8GuFIPADTWLwPXIo8g7YGvajsqjyhXhU9_R3AuxhLJ72DWdc8ycK8PE9cbj2Rtzw9YXwHuw0lyby2ejg9mBT-ucU1Qz34UQ2-CW8su2MqfbyjRcy9hypGvOnJZj2BsDM9nHU-O3ahfj2iCdQ80hIgOgah17zOAHc9CxcoPLEpAT0rcqO8tiJ7PPwxsr3LQao9Ax9AudO2qzywOpI9ifH1u69meLwtN5I9nlUPO7jSBj0IVtW9ProSulaGjD3VtCa9zv7-u_kbiDybruc9lasKuhiyCj5lnsO7GNGCOJUMAL1XX1i9M1NzOG1Ybr05EZg8D-NBOW0D1z21o9i9DJ-vOXD3KD1UCrA8I04jOXaEeL2lngU-o0Oit6xTpTweWGm8f3ahOR4RqL3O_Eq-AcsOOaqaYL0NUaa7KmpGuZ4_kj2hA9w8O26xuS9Q8r2oXJy9Q4C_t7hU67uou507qIgjubhAAj4SNAG9tD8FObzUQ71BWBW7uUjmt--aRr20hCY9XBLSOHh9Zjw7VPM9UxwoOHjoYLz7Lya9QxYpNcbzrj3kn6k95AJqNozQmTzSa9g8TUrtt22TBT2ICCk9P_UJucPT6zxnJvi9IiQkuKgXnTsiFes8B6t-tqBQz70V74Y9wtICOGFM_rvUmLW9M7SCNsx73D2Sw3E8nEKKN9dGYT3GVFU8PVamt8HjKz7cpWi8B4l0uRZOAr4wq2a9VSpWOCGNT73ugny9RhWOuFUxE7xOmVs9Da_LNxp6NT1Sghm9mg5SuFUYpj1tC8U9g8fnOCfLfzzC1pE87fDuuLKrj718uvo8c5Q0N71AH73rnRu8g1A4NyAAOBNACUhtUAEqcxAAGmBX-AArARfqIgEh3_Lm8C_P7OznzM0f_yMMAAw0lPcdLdrqJg4AN7n99KIAAAAb_OEkBgDTf83mJdzxEwylsbsCMWf4GSidvUEa3twpFfjv4TYIOhAAwvvCJRHyx08cDSEgAC1yIhg7OBNACUhvUAIqrwYQDBqgBgAAiEEAAKDAAAC4QQAAIMEAADDBAAAAAAAAUEIAAJjBAABowgAAsEEAAFDBAADowgAAWMIAAIDBAADQQQAA0MEAAAAAAADIwQAAcMEAAHDBAADQwQAACMIAAIDAAACwwQAAuMEAAEDAAACMwgAAQEIAAABCAACAQAAAhsIAAGDBAACIwgAA2MEAAFTCAAAAwQAAnEIAAGhCAABgwQAAHEIAANBBAACAPwAAaEIAADBBAABQQQAAQMAAAODAAACYwQAA2EIAAJxCAACIQQAA4MAAAEBBAAA8QgAAQEAAAEDBAACuwgAAmMEAANDBAACMQgAAUMEAAJjBAAAgwgAAIMIAAFTCAAAQwgAAAMAAAGTCAADgwQAAyMEAADRCAAAYQgAAkMEAAAhCAAAAAAAA7sIAAEDCAADgwAAAyEEAAJDBAABowgAAqEEAAKjBAAAAwgAAwMEAAMBAAACAQQAAAEAAAGBBAACgwAAAcMEAAARCAACIwQAAfMIAAGBBAADAQQAAgD8AAAxCAAAwwQAAwEAAAKDBAAAIQgAA-EEAAJTCAAAcwgAAkMEAAOBAAADYwQAAQMEAANhBAAAsQgAALEIAABxCAAAAQQAA0EEAAADAAACIQQAAKMIAAABAAACYwQAAuMEAAMDAAACYwQAAnsIAAABBAAAQQgAA0sIAAMDAAACGwgAAIMEAAMhBAABEQgAAUMEAANBCAACYwQAAwMEAADzCAABQwQAAAEEAALLCAAAoQgAAgEEAAEDAAADAwQAAoEEAAEBBAACQwQAAiEEAAILCAAAEQgAAEEEAAMDBAAC4QQAAhsIAAIDAAADwQQAAIMEAAFDBAACgQAAAZEIAACjCAACgwAAABMIAAAxCAACwwQAAaEIAAIBCAADQQQAA0EEAACDBAAAEwgAAAEAAAKDAAABAwQAAUMEAAPhBAACmwgAAoEAAABTCAADeQgAACMIAACDCAADAwQAA8MEAAIBCAABQwgAA2MEAANJCAADYwQAADEIAAGDBAADwwQAAsEEAANDBAABAwgAAhEIAACjCAACAvwAA4sIAAJTCIAA4E0AJSHVQASqPAhAAGoACAADYvQAAFD4AAII-AABAPAAAHL4AAMg9AADoPQAA-r4AAI6-AACAOwAAcL0AAKa-AADoPQAAJD4AAIA7AAC4vQAA2D0AAEC8AACoPQAA-j4AAH8_AACoPQAAEL0AAOC8AAAcvgAA-D0AABC9AAAwvQAAiD0AABw-AACoPQAAyL0AAOi9AAAMvgAADD4AAGS-AADgvAAAuL0AAFC9AAA0vgAAyL0AALg9AAC6PgAA2L0AAES-AADIPQAAUD0AAES-AAAMvgAAJL4AAHC9AACOPgAAmD0AACQ-AADgvAAAQDwAABs_AADgPAAAgj4AAGw-AACAOwAAyD0AACw-AAD4vSAAOBNACUh8UAEqjwIQARqAAgAAVL4AAHw-AABcvgAAM78AAKi9AAAwPQAAXD4AAFC9AAD4PQAAgDsAAFC9AAA0vgAAmL0AADC9AACKPgAAoLwAAMg9AAD-PgAA-L0AAMI-AAC4vQAAcL0AAAQ-AADYvQAAgLsAADA9AAAMvgAAML0AAOi9AACAuwAAoDwAAAw-AAAMvgAAgDsAAKg9AAAkvgAAMD0AAEA8AAAcvgAANL4AAKC8AAB0PgAAEL0AAAQ-AABwvQAAgLsAAH-_AABwvQAAQDwAACw-AAAMPgAA6D0AALi9AADGPgAA4DwAAAQ-AACAOwAAEL0AADA9AACgvAAALD4AAOg9AAA0PgAATL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=G1n-ZTnzucQ","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7098556959874438860"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1073492474"},"12595331351009957138":{"videoId":"12595331351009957138","docid":"34-5-8-Z4F323954F7F11F7D","description":"In this video, I walkthrough a very common example of finding local extreme values using the first derivative test. If you have a question you would like for me to do in a video, please fill out...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3854860/6ec28844cc839da4182aff1e32a6fee1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/8c170gEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DI8c2iRXCP14","linkTemplate":"/video/preview/12595331351009957138?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Test | Example 1","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=I8c2iRXCP14\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFgoUMTI1OTUzMzEzNTEwMDk5NTcxMzhaFDEyNTk1MzMxMzUxMDA5OTU3MTM4atUQEgEwGAAiRBowAAopaGhjcnlsY2Z6cGZrcnlpaGhVQ2lnZ2RTcHpDbzZyX0Y5YjZ0b1hMd1ESAgARKhDCDw8aDz8TiAOCBCQBgAQrKosBEAEaeIHz_wML_QMA-AcFCAAG_QIhCAgADAIDAO_wBP0GAAAA9gH8AfUAAAD9BQgJ-QAAAPjt9P36_gAABgT9AQQAAAAJDPwC-gAAAP4G_gr_AQAA9fcHAgMAAAARCQgB_wAAAP8R_gP__wAA_AgIBQAAAAAJ-PoRAAAAACAALUKx2zs4E0AJSE5QAiqEAhAAGvABf_oEA9H70v_aBMwA1yTkAa0qIv8bJOIAzAEOANzx2gDvBwUA3wf7APcsGv-7Ee7_EejtAPa29wBB9fn_GOEAAewcGAAFCfUAPwIV__Dj3f_PHxr-3f8RABbZ1gMdKuX_Hg0V_wD_7QDuA8YCIvwrAfT3EgEgDQT_5d8S_e7p9gTQ38_8BRYNBP3Y7vz5IBkEJPgEBPv18QLtEd_9EPcC-_PZIf8DGOYFOM_6BBUD__ze0PoG8Ab-AxAJEfbiDfEC6PEX-dj7Cffm-AcAJvIaALYT7gQSBQMBFPwGDQz1CQAH0u7y8gv8_OsB_P3f4eUDIAAtrqAfOzgTQAlIYVACKs8HEAAawAdqFtC-rJQZPVMN97uNDf29VWxtu_yhfr28ytq9QBjDPSJPs7vusr89t7BTPVY1V73El1m-jGZlvPW6Jb3LgDM-5tGIvZhiMzxxPVq-5xa_PYVMqLxXsTi-R6V9PKXUCj07noA9KMAGvZGM5jqrTaI9VNwdvQl2Er1bry49N1rpO_jnXb1dqbK9wZwqvT0eRLz0lfY8eyAIvXiPfTxEac895MQyPHGqNbzO9g09c4vUvN_RsbtPJHO8uIIcPVoNibyCQsg92hPuPCLY3Tx2TW28vQfDvI2RtrvRXoi9-oIRvfal6TvqB3U9v4TEO7HVCr3yCO49exTOvceArLxtrOS9phEuPZROwTsnFxM-T9VzPRWpsDzv5LO995GbPc39urzFIgE9M7nivNNGu7sBmbc91qIqvFchijyWxQ49gZmaPf_HT7stDh-8VVYuPRBCGz3081A908APvbuSrrygm4c9CPh_PGu-iLuqOI-9ISNbPbM7qDszyZM9sud8PDQR9DvBi-M80uxwPOcZr7lE87U92NTZvTpxILzHg229VxCOvZ23VrznzFE9uKCIPVl9HryLy5w9pBd6vV94SrxBPFy9whrCvFNPDzwXmSO8Zyx1vYu4Sjz8MbK9y0GqPQMfQLnw1ZY7tx81PWKdz7tCn748XDGNPUd7kzvFZQY9-gwIvlUhA7obdMg9QDdPPVcGVbvrNzM9MWdRPcZx-Tpp5NM9ydK9vFKwBrib3NS8800kvf5cFzt-vae9XzWZOSbIYjmhndM9UYGYvZedUTnTCAc9VhdLvKfG67ltOZe8Tt6GPWWuT7o5rxa9oHwLO-SNurfLovC8W0IevjcF4zkc1g89WmKlPHBd5bkO_b49nxYIvaEoljkvUPK9qFycvUOAv7c3U6G8s68VOf0yNTkMhLM9jy8GPUh15ri_aKq8AdFdO3Fgi7ndz-m8d-R-vL82tbi_IDO8rBvPPUkMNDXAlYm6RGN3vV7cFbif8XE7pdgBPqiuMblR2fC8OeUbPZJKlDjmVWI9U5JVPQAuKjitaJi8bqRsvT9TMDgoWC09qw-KPVYUmrgi-wC-xl8kPReYZTg8asy88qVmvfr35benJOs96XUYuuJaRbgwuyc9_g7FPD6kZLeSXRk-2U9QvazCP7kKXAi94sORvTylWLh6lwG9qwNlvbVi5reBJmK9TagbPXYHdTjDnCC9Sijdve0gSbjK9HA9IuErPvHLijgvwSm8CsTGPFtMlrh9iYK9tN40PUVhPTjOZhq9D-7OvJAkP7cgADgTQAlIbVABKnMQABpgVfwAKggt7RQcHeLe4A4WANnxHATgK__98gDoCrweCCjY1f78AC2yGOWvAAAAIQzlNR0A_nDP6gPyBfQRx7zJ9iJ_-yQSmNwP4KnmLQD69OwZGCEiAO3mqBsNybE6FfMAIAAtwWsmOzgTQAlIb1ACKo8CEAAagAIAAOg9AAAcPgAALD4AAEw-AABUvgAAvj4AAEQ-AAAbvwAA7r4AAJg9AABMvgAAxr4AAOC8AAAMPgAAHL4AADC9AAC4PQAAgLsAANg9AAD6PgAAfz8AADA9AAAMPgAAmL0AAIi9AACoPQAAgLsAAMi9AAD4vQAAPD4AADw-AABQvQAA2L0AADA9AADgPAAA2L0AAMg9AABEvgAAvr4AALq-AAAwPQAAEL0AAAs_AAC4vQAA2L0AADw-AACovQAA6L0AAAy-AAC6vgAAQLwAALg9AACIPQAADD4AAMi9AABAvAAART8AAIC7AAAUPgAAZD4AAFA9AAAkPgAAHD4AANi9IAA4E0AJSHxQASqPAhABGoACAAA8vgAARD4AAHC9AAAjvwAAHD4AAJi9AACGPgAA-L0AANg9AAAkPgAA4DwAAKC8AABwPQAAJL4AAOA8AABwvQAAED0AABc_AACAOwAA1j4AALi9AADYvQAARD4AABy-AABwvQAAiL0AABA9AABAPAAAgLsAAKg9AAAQPQAALD4AAFS-AABwPQAAML0AAEy-AADYPQAAmD0AADS-AAAEPgAADD4AAIi9AACgPAAA2D0AALi9AABcPgAAf78AACy-AAAsvgAAgj4AAAQ-AADYPQAAHD4AALg9AADgPAAAcD0AAIC7AAAkvgAAgLsAAFC9AABAvAAA4LwAAPi9AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=I8c2iRXCP14","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12595331351009957138"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1423490936"},"9987096937369008083":{"videoId":"9987096937369008083","docid":"34-3-5-Z94F2CA8C2887E2CF","description":"In this video I go over the first derivative test for finding the local maximum and minimum of a function. The test is a consequence of the increasing/decreasing test and requires finding the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3369838/0974a8821adeba84fab8ab136b8175a5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/VH_PPgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9W4ejz0EMtE","linkTemplate":"/video/preview/9987096937369008083?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Test","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9W4ejz0EMtE\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFQoTOTk4NzA5NjkzNzM2OTAwODA4M1oTOTk4NzA5NjkzNzM2OTAwODA4M2rWEBIBMBgAIkUaMQAKKmhodmRlemlteGNpanl2aGRoaFVDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdxICABIqEMIPDxoPPxPtAYIEJAGABCsqiwEQARp4gfQI-wf9AwD4BwUIAAb9AhMPDQb2AgIA-vUF_gYE_gDoAf0A-_8AAP4LBwIAAAAA9_P9Cfj_AQAGA_0BBAAAAAMG-v4FAAAABgH9_v8BAAD8-QEI-gEAABEJCAH_AAAA-g78-_8AAAD6AgQHAAAAAP3z-gQAAAAAIAAtIz_cOzgTQAlITlACKoQCEAAa8AFi_A8Bvxn8_gX35QDjItEBgQUL_xYd6ADL4gIB2BDhAPv75ADW_g0BCQYQ_8wTBgAY7f3_6vQVACEDDgAiBCAB_hIiABn0AwEL_SMA_wTu_-cbDf8ACAr-8Nn1AQIR7gIL6vz90P7uAvcQ4wEL_y4BEf3-Bz3nF_7aAA3-8g4BBN8O3v4cAv4DBfcF_OIUGAED__389CP_A_P5AQIOAfcFCvsTARUI9PsR-gYHEAP__e8O8ALuBe__GQH8Cv7_Avzx5Qb58PcX-fAE_PYR5AsH-w0NCAjr_v719wMFC9j79e0FBAH2B_QH3REIDQP-BgUgAC1uJ0g7OBNACUhhUAIqzwcQABrAB_0WAb9Y0dU8VLeGu_UKDzwaNuc7VT1Pve8tdjwZR4s95upHvCurhD1piG89Dwlfu5sdob5GoZu8yGeoPC0LVj6wily9QS0mvXoXL74IPDA9KZ_UvE94kb5nFUw9qeaLujHPCj2oagc9MqlGPNLrBT1mg8y81SICvSCo6LoddRE8M9wAvfN_Xb2Bhg29HZGMuq1_4Tyzxb-8xE8tvC9R_T2xBWC6n6utvNdoGT2cHzW9DJH0O8o9c72k9cG8i0u6PLWMJD4_vum8ZGuHPKwVkj03sPA8OOGYu0YmoLzbTwa8KahRO6zCaz2df2A910V2vGL0jD2eftC9vnZduxbz2LxB-bY9raexuvsFOz7aN9c9RHXKO9JXm73dSFQ9GvQtuwO6yjxUYFe9GXdePAYW2zypwvo89pMWvCgC6zkWBqs9EBZfvC0OH7xVVi49EEIbPWLcaD3hspo9ytw-Ow5fDzzZFi-8iMLjuqwUJ73yqx492O8uvA-22D1co2-9sO2IPGrEBz2CEHo9_4ELu-eFP7thgam96wgWvL_HKjxdl6u8GTJovCKwmD0WxnE8I7t3vAtGpTwuF1a93IijukgIxbzaFxY8aRiEuwPBLT3svHK9l7hBuN6Fd70gJ8w9KAgXNxpVAb2LgR89dSwlvIUntLwsRt08uZBkO5GgU7zfJq29Fu2euhqcjT3kxw49npHvuyAC2Dxo_Tc9l7mOO8gjrT3eEd88CFVNu9cGXbxnSka8wAI5uzohE7xkKvM82ch5u9gu7Tzn6j29U3UmuQf1YzuCFpY63poNO-3liLzMebY9v_E6ueWMcr2_lny8gjRHOBxdpbw9Mmy9_RXLOJ7wULucqSu91YHFuaxbuD1-7ts7xKfCuB9iqL0-kH47ZZ_KueCiTr3uSKA9dAr7t18h2DwztRm8oTdnOP6C-DyhR4w85ubwuG2dyTyioC-9f6OmuSXXA70EtLg9qiequGuYxjzzPPi8onxOuBQEDz0QXQA-jcNxuFrG_LypUFg9KtoEtfZHMz2mNHE9Cu2xuNS6SL1qpZC9DrU2uBjJgz1rywo9zqEytwMaVr0XI_e8M7c2tzaL_Lz72--8kvuHuIoi5D3eVc-8m3ZUN8plTT2sxtK8b5QbN62n9j2z6pi8ezs6ubmfrb3DM7y8hoYQtzjnlrxGwDe9auIDuFpa17zhmju8AZkXuOTVnrx6ifG9ZVUwuFUYpj1tC8U9g8fnOIuDgL04aC89kLiKuLKrj718uvo8c5Q0N4VMqDxUf1O9ckKdtiAAOBNACUhtUAEqcxAAGmBL_wAV-yL0DBoR8Mnp7hYS3u4qAdgY_wL2AP0VtgcCBO3WDPQAR8kP9rYAAAAW5vcZCQDvZt3VBPMGD-6y0ukMMH8WKCyf4xDpy-r6Ev_o7xQZJBgA3OKvHh_Xsx8Y-g0gAC0dzzU7OBNACUhvUAIqjwIQABqAAgAAiD0AAOA8AACCPgAAgDsAAEy-AAB8PgAATD4AACu_AAC-vgAAgDsAAIA7AACKvgAAqD0AAEw-AABwvQAA2L0AAHA9AAAwPQAABD4AANI-AAB_PwAAVD4AAIY-AACIPQAAkr4AAIi9AAAQPQAANL4AABC9AADgPAAATD4AAFC9AAAwvQAABL4AAEA8AAAMvgAAMD0AAMi9AACGvgAALL4AAJi9AADYvQAAwj4AABS-AABcvgAAFD4AADA9AAAsvgAAEL0AAJ6-AABQPQAAuD0AALg9AACoPQAAuL0AABC9AABVPwAA4DwAAIg9AAD4PQAAgLsAADw-AAAkPgAAoLwgADgTQAlIfFABKo8CEAEagAIAAJq-AACWPgAABL4AABu_AACoPQAAHL4AAHw-AAD4vQAAij4AALg9AABAPAAAiD0AAJi9AADovQAAmD0AAIC7AACgvAAACT8AAHC9AADiPgAAML0AAKi9AACYPQAA6L0AABy-AABwPQAAoLwAABA9AACovQAAED0AABA9AABUPgAA6L0AAMg9AADgvAAAqL0AAOg9AAC4PQAADL4AABA9AAAMPgAAcL0AAOC8AACIPQAA4DwAAAQ-AAB_vwAALL4AANi9AADYPQAA6D0AAAQ-AAAEPgAAHD4AAIg9AAAEPgAAoLwAAIq-AABwPQAAoDwAABC9AAAsvgAAHL4AABA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=9W4ejz0EMtE","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":984,"cheight":720,"cratio":1.36666,"dups":["9987096937369008083"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2483548469"},"4578500393717569837":{"videoId":"4578500393717569837","docid":"34-3-7-ZE230B40DFF1D0B60","description":"This Calculus 1 video works through an additional example of using the first derivative test for local extrema, and to determine on what intervals a function is increasing or decreasing. In this...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/994702/25cadc0be72fafde1c078f5c6b3aa89b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/BYLhaQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHFwxQlBvoXg","linkTemplate":"/video/preview/4578500393717569837?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Test (Additional Example)","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HFwxQlBvoXg\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFQoTNDU3ODUwMDM5MzcxNzU2OTgzN1oTNDU3ODUwMDM5MzcxNzU2OTgzN2qvDRIBMBgAIkUaMQAKKmhod25kcXptZm92dXBiZGRoaFVDWlk5UG0tMDNHdjI2Y1JhcVdFcERZURICABIqEMIPDxoPPxOYA4IEJAGABCsqiwEQARp4ge4F_AUB_wD5ExAH-gf9AiMICQANAgMA7u8F_AcAAADyAAj8-wAAAAb7BA37AAAACur7___9AQD-Bvv_BAAAAAoN-wL6AAAA_gb-C_8BAAD7-AEJ-QEAABMKCAH_AAAABQsF_wAAAADzAwkCAAAAAAzr_QoBAAAAIAAtaizPOzgTQAlITlACKnMQABpgSxAAMxUcDvcSE9jkAPoKAuwCK-zbEP___QD-Eb39Cf_Tx-QB_zifFRi2AAAAICDwNCAA6mjw_-MaE94Mw8Xf4jt_GyTv0_0W1bsM-f8W8-QXDAQKAM_g8AcMwcJE7v4NIAAt_aE1OzgTQAlIb1ACKq8GEAwaoAYAAERCAAAcwgAAHEIAAADCAAA4QgAAAEIAAMJCAACAPwAAgMIAAGBBAADIQQAAHMIAAEDCAAA4wgAAPEIAAJjBAABcQgAAUEEAAKhBAAAAwgAANEIAAEDAAABUwgAAAEAAAFjCAACwQQAAoMEAAJhBAABAQgAAMEEAAKBAAAAAQQAAWMIAAFxCAACMwgAAIMEAAIA_AADGQgAAUEEAAHBCAACgQAAAqEEAAK5CAABgwQAAgL8AAGjCAAAgQQAA6EEAADxCAACQQQAAEMEAAKhBAAAAQAAAgMAAAGBBAAAgQQAA2sIAAIDAAACgQQAAjkIAAADBAACGwgAAAMIAAGzCAACAwAAAKMIAAJhBAACowQAAAAAAANjBAABoQgAApEIAABTCAACsQgAA0MEAAIbCAAAgwgAAQEEAAIhBAACYQQAAMMIAABxCAACgQAAAgkIAAPDBAABAQAAAgD8AAJpCAACgQQAAoMEAAMDAAABQQgAAcMIAALjCAAAkQgAAIMIAABBBAADIwQAAiEEAAADAAABQwgAABEIAAExCAABgQQAAkMIAALBBAADQwQAAjkIAAAzCAAAoQgAAOEIAAIjCAACAPwAAUMEAAHBBAAAQwQAAYMEAAIzCAACAwAAAYMEAAHDBAAAYwgAAsMEAAETCAACAQAAAUMEAAFjCAAAgQQAACMIAACDBAADAQAAAUEIAABTCAACCQgAA4EAAAIZCAAD4QQAAAEEAAIjBAACAwgAAQMIAACxCAAA4QgAAkMEAALBBAAAwQQAAcMIAABBCAADQQQAAIMEAAEDAAAAAwQAAEEEAAKDCAAAcQgAAwEEAANDBAABIwgAATMIAAADBAAAIwgAAgMAAACjCAAAgwQAAoEEAAIDAAAAQQgAAFEIAABRCAABUQgAAcMEAABRCAACgwAAA2EEAAGjCAADowQAACMIAAFTCAABQQQAAikIAAKTCAAAYwgAALMIAAOBBAAAsQgAAFMIAAEjCAABIQgAA2MEAAGBBAAAUQgAAqMEAAKBBAAAwQQAAUMEAAHxCAADIwQAAoMAAAFDCAABkwiAAOBNACUh1UAEqjwIQABqAAgAAmD0AAOA8AACyPgAAuD0AABy-AADCPgAAvj4AAEm_AADivgAAyL0AAKi9AAABvwAAbD4AABw-AADgvAAAoLwAADA9AACYPQAATD4AABk_AAB_PwAApj4AAHw-AABAvAAAgDsAALg9AAA0PgAA2L0AAAS-AAC4PQAAjj4AANi9AAAkvgAAbL4AABw-AABwPQAAND4AAKi9AAC-vgAAir4AAKi9AABwvQAAuj4AAEC8AABQvQAAdD4AAAQ-AACGvgAAML0AAMa-AACAOwAAMD0AAOA8AAB8PgAAgDsAAEA8AABPPwAAoDwAAIg9AAAcPgAAQDwAABQ-AAAUPgAA-L0gADgTQAlIfFABKo8CEAEagAIAAES-AAAUPgAA6L0AAB-_AAAQPQAAEL0AAJ4-AACIvQAAqD0AACQ-AADYPQAAED0AAKC8AAAwvQAAED0AAIC7AAAQPQAAFT8AAKA8AADmPgAAUD0AAIi9AAA8PgAAZL4AAAS-AACgvAAAgDsAAIg9AAD4vQAADD4AALg9AAA8PgAAfL4AADA9AABQPQAAHL4AAFA9AAA8PgAANL4AAJg9AACyPgAAuL0AAKA8AABwPQAAoLwAAIY-AAB_vwAAVL4AADC9AACYPQAALD4AADw-AABQPQAAHD4AAEw-AAAEPgAAoLwAACy-AACYPQAAcL0AAEA8AACovQAAVL4AAIi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=HFwxQlBvoXg","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["4578500393717569837"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1153523012"},"5945755551544767964":{"videoId":"5945755551544767964","docid":"34-4-4-Z3EF37600AFB63D68","description":"Смотрите любимые видео, слушайте любимые песни, загружайте собственные ролики и делитесь ими с друзьями, близкими и целым миром.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4010203/b6c1d1c4fbe687520f116245bd17ebcc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lN7EwQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRsoo1VpkZjI","linkTemplate":"/video/preview/5945755551544767964?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Test and Second Derivative Test","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Rsoo1VpkZjI\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFQoTNTk0NTc1NTU1MTU0NDc2Nzk2NFoTNTk0NTc1NTU1MTU0NDc2Nzk2NGq1DxIBMBgAIkQaMAAKKWhobGN0YWNjaGJqcmttdmhoVUNMaVIxaWVxU0VwOGlzSkk2VWxUQjhREgIAESoQwg8PGg8_E-IFggQkAYAEKyqLARABGniB-gcABvoGAPkHBQgABv0BCwkHAPcBAAD79gX-BgT-AO79_AME_wAAAQMG_f8AAAD9-PgC-_4AAAwG9gMDAAAAAwX6_gQAAAABAfn6_wEAAPz5AQj6AQAACgkE-_8AAAD6Df37_wAAAPoCAwcAAAAAAvv3BgAAAAAgAC0r9eM7OBNACUhOUAIqhAIQABrwAX8j9v_r_vQB3RqvAfs5AgGcDyH_PUba_6QbAQHMB9oB2CLoANz90AAf1gcA2yEi_0vzwP8d50IA_Nf2AP0K5gDQCOUAP9PSAEDsCgDG5NP-uBINAfrv2QAM0-P_Cg3I_hAVKP_t6Mz-IhrBAhjf_wEE_08BB-QK_wS3FQDx9gX98-fs-hIFBgDw4CEAsycdBMUCAf0R_xn8_Pr5CRT1A_kEDBP6EBbIAAir6QEpvOb40N4lAgsg8fwXJf30xdn3-9u-LAfaJv_29-QG9SXUA-_7G-T56MzbClIR8gEowv_8zv_48fQgCvvWAf4K3hDyFyAALbgL-jo4E0AJSGFQAipzEAAaYFX8ACcYGPoG_-fm1-_o9zLS-DP25i__HPUA6TmhABEO7N0ICwAx4hz8rwAAACgb7hcTAPRx1-Lr-wwf8bqk4-c0fxIZIqnFEu_Y8h0oE8vkJd8qGQDh6MYxFMeyORn58SAALeeAJTs4E0AJSG9QAiqvBhAMGqAGAACYQQAA4EAAAAzCAADIwQAA2EEAACDBAABEQgAAGEIAAPjBAAAAwgAA2EEAACDCAABswgAAKMIAAIhCAABQwQAAMMEAACzCAADYwQAA2MEAAKDAAABUwgAAkMEAAExCAACQQQAAIEEAADTCAAB0wgAA4EEAAIBBAABgwQAAoEEAAKzCAACwwQAAEMIAAGBBAAAUQgAA6kIAABzCAADQQQAALEIAAMBBAACIQgAAUEIAAERCAACywgAADMIAAJjBAACoQgAAAMAAAMjBAAAoQgAAcMEAAMjBAAA8QgAAoMAAAOjCAAAgQgAAAMAAAFBCAACGQgAAJMIAAOjBAADuwgAAcMEAAFDCAACYwQAAMMIAAODAAABwwQAAdEIAAIBCAAC4wQAAMEIAAKBAAACIwgAAkMEAADBBAADQQQAAiEEAAKjBAAAAAAAAgEEAADRCAACowQAAiEEAABxCAABAQgAAeEIAAFzCAABQQQAA2EEAAADBAACYwgAAHMIAAFDBAAAQwQAAoEEAANhBAAAQwQAAJMIAABBCAAB4QgAAOMIAADBBAACIwQAAHMIAABxCAAAIwgAAAEEAAABAAACQwQAAAEEAAILCAACgwAAAMMEAAGDBAABkwgAAIEIAAIA_AADgwQAANMIAADzCAABMwgAASEIAANBBAADowQAAAMEAAITCAABYwgAAkEEAAOBAAACwQQAAMEIAAJjBAADgQQAAAEAAAKhBAAAYwgAAxsIAAKDBAABAQgAAkEEAAABAAACAQQAAIEEAADDCAACQQQAAFEIAAOjBAACAwQAAwMAAAFBBAAAAQQAA2MEAAKjBAACwQQAAqsIAAJrCAAAYQgAAwMEAAGDBAADowQAA4MEAAKDAAADAQQAA6EEAABxCAAAQQQAA2EEAAJjBAAAsQgAAisIAAIBAAABQwQAAgEEAAKDBAAAYwgAAwEIAALBBAADAwQAAJMIAAEBAAAAAwAAAzkIAALjBAAAgwgAAHEIAAAAAAACgQAAARMIAADDCAAAwQgAAoEAAALBBAABcQgAAiMIAAOBAAAAAwgAAlsIgADgTQAlIdVABKo8CEAAagAIAAMg9AADIPQAApj4AAKg9AAB0vgAAgj4AABC9AAAPvwAAjr4AAEC8AABAvAAAur4AAMg9AABUPgAAuL0AAMg9AAAQPQAA4LwAAGQ-AAC2PgAAfz8AABQ-AAAkPgAAQLwAALi9AABwPQAA2L0AADS-AAC4vQAAmD0AAOg9AADYPQAAcL0AADy-AACgPAAARL4AAKi9AAD4vQAAor4AAOi9AAA0vgAAMD0AALo-AAD4vQAAZL4AABQ-AACoPQAAuL0AAKg9AAA0vgAAFD4AADA9AAAUPgAAyD0AAKi9AAAwvQAAPT8AAHA9AAAcPgAAqD0AABA9AAAQPQAAqD0AAKC8IAA4E0AJSHxQASqPAhABGoACAACivgAA6D0AADC9AAApvwAAPD4AAIC7AACuPgAAZL4AAKg9AAAEPgAAMD0AABA9AADYvQAAJL4AAKg9AADgPAAAgDsAACM_AACAuwAAxj4AAKi9AADovQAAcD0AAJi9AACYvQAA4DwAAIC7AACAOwAA6L0AAKA8AABAPAAALD4AAPi9AADgvAAAMD0AAMi9AACIvQAAmD0AABy-AABAvAAA-D0AADC9AAC4PQAA4LwAADC9AACYPQAAf78AAIq-AACAuwAAUD0AACw-AADIPQAAPD4AAEA8AAAQPQAAMD0AAEC8AADovQAAED0AAIA7AAAQPQAAcL0AAAS-AAAQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Rsoo1VpkZjI","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5945755551544767964"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2625681467"},"5933475088937339955":{"videoId":"5933475088937339955","docid":"34-10-15-ZF8AE556EC7CFE41F","description":"This video is attributed to RootMath, and the original version may be found at https://www.youtube.com/watch?v=HVHBcmBDTgQ.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1959345/4ab10145ec9112bc85952479ef2b1ddf/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/DByEHAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-L2EkhFZJ3E","linkTemplate":"/video/preview/5933475088937339955?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Test Example Part 2","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-L2EkhFZJ3E\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFQoTNTkzMzQ3NTA4ODkzNzMzOTk1NVoTNTkzMzQ3NTA4ODkzNzMzOTk1NWq2DxIBMBgAIkUaMQAKKmhoZHdoYmV5aXNlaWF1YWNoaFVDVWJucU5DV0ZMcU5Yc3d2VTlvV3lGQRICABIqEMIPDxoPPxOBAoIEJAGABCsqiwEQARp4gff-_AD-AwD5BwsG-Qb9AiEICAAMAgMA7f0BBAkAAADoAf0A-_8AAP0FCAn5AAAA_fj4Avv-AAAGBP0BBAAAAAIH9__6AAAABQH7Ef8BAAD8_AoEA_8AABIJCAH_AAAA_xH-A___AAD-DwUAAAAAAAn4-hEAAAAAIAAtAFPbOzgTQAlITlACKoQCEAAa8AF_Gwr_3-vFAbP14f_FGwUAjT4E_w0P7gCtEMQBwv_oAekI5QD5EOkBDwka_8AZ8QEr6NH_1LcQAFvcDAAsy-sBov_5ACbv2wBRAxv_KAEG_Q8LIv_24BUAMtvQAgAv9_8QFSj_JwbhAPUd6wYr-jcB0tw1CyHU9wMDkgEI1-3iBtHI3v3B7QcCGfEF9NvzOQkC0goKLh359QL09_oS8OQA_ewH8_EW0f4b_vEDGxkM-8bN9PoG8wgEFhYHAfUkAf8JKCoOvhPzBQoOCv4tGwYFzCX69RfZ-Aw1_w8MGj79BSD-7_UHF_LpsegCC_si7vkgAC3uWvk6OBNACUhhUAIqcxAAGmBF_AA1DhzpIQr13tXf_B0IxQb1F9Yq__LaAPf9sAQTFte88f0AOqwG16oAAAAbJu0QHAD2f_oUCQv58x3RyrTxH3wTGSWTrD4EvOgRBgTtDfAQFj0A8-a0QijXskTsJhggAC1_MR07OBNACUhvUAIqrwYQDBqgBgAAuEEAAEzCAAAAQgAARMIAAKhBAADQwQAA_kIAAADAAACowQAAgEAAAEBAAACwwQAAoEAAAEBAAACAPwAAiEEAAIhCAACIwQAAYEIAAOBAAABwwQAAUMEAAJjCAADAQAAAeMIAAMjBAABQQgAASMIAAGBBAABQQgAA4EAAABBBAACIwgAAgEEAALjCAACAPwAA2EEAADRCAACQwQAAKEIAAJjBAACwQQAAREIAAODBAABwwQAAsMIAABxCAAB0QgAAgMEAAARCAABgQQAA4MEAACDCAACgQAAAwMEAAHxCAACawgAAYMEAAKDAAABgQQAAyEEAAPjBAABMwgAAPMIAABTCAADywgAA0MEAAGzCAAAYQgAAoMEAAI5CAAD4QQAAkEEAAAxCAAC0wgAAgD8AAOjBAADIQQAA4EAAAJJCAAA0wgAA8kIAAIDAAACAvwAAgEEAAKBAAAAgQQAAcMEAALBBAACWQgAAQMIAAGBBAAA4wgAAkEEAACBCAAAcwgAAqMEAAMDBAABUQgAAmEIAADDCAADowQAAgD8AABDBAACowQAACEIAAABCAAAEQgAAFEIAACBCAACKQgAAaEIAALDBAADwQQAAgMEAAHhCAADgQQAAAEAAAMjBAAAswgAA4MEAAEDCAABAQQAAgL8AAMDBAADAQAAAgMAAAPjBAABgQQAA6EEAADDCAACIwQAA8EEAAARCAAAEwgAAvEIAAAAAAADgQQAAnsIAADjCAABAwAAAgEAAAKhBAAAAwQAAoEEAAKBCAADQwQAA0EEAAMDAAABAQQAAbMIAAHBBAAAAQAAA4MEAACRCAADgwAAAlsIAAIC_AACWwgAAIEEAAODBAAAoQgAAQMAAAADBAACgQQAAAEIAAIjBAABAQgAAeEIAAOBAAAAAwQAAsEEAACBBAAD4wQAAJMIAAADAAAB8wgAAgMEAAGDBAAAgQgAAGMIAAADAAAA4wgAAgMAAAFDBAACwQQAAPMIAALjBAADYwQAAUEEAAFBBAACAPwAAAMIAANjBAADAwQAAZEIAAAhCAAAgQQAACEIAAIDAIAA4E0AJSHVQASqPAhAAGoACAAAkPgAAND4AAI4-AABcPgAABL4AAMI-AAAkPgAAIb8AAAG_AADYPQAAQDwAALq-AACIvQAAND4AAOi9AAAMvgAAJD4AAKC8AAAkPgAAGT8AAH8_AAA0PgAAML0AAOC8AADIvQAA4DwAAIi9AAA0vgAAQDwAAFw-AADoPQAAFD4AAHC9AAAQvQAAgLsAADS-AADIPQAAiL0AAJa-AABcvgAAVL4AAAw-AACOPgAAiL0AAGy-AAA8PgAA-D0AANi9AAAQvQAAkr4AANg9AAD4PQAAUD0AAHw-AAA0vgAA4LwAAEc_AACIPQAAVD4AABQ-AAAwvQAAqD0AADw-AABQPSAAOBNACUh8UAEqjwIQARqAAgAALL4AABA9AABQvQAAKb8AAOg9AAAwvQAATD4AAAS-AABwPQAA-D0AALi9AACAOwAAUD0AAIi9AABQPQAAUL0AAKC8AAAjPwAAML0AAMY-AABwvQAALL4AADw-AAAsvgAA2L0AAKC8AACAuwAAgLsAAJi9AAAkPgAAUD0AAEw-AABUvgAAgLsAAKA8AACYvQAA-D0AACQ-AAD4vQAAcD0AAI4-AACovQAAgDsAALg9AAC4vQAAFD4AAH-_AAB0vgAAHL4AAPg9AAAEPgAAuD0AADQ-AAAUPgAAcD0AAJg9AACAOwAAuL0AADC9AADgvAAAyD0AAKA8AABUvgAAHL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=-L2EkhFZJ3E","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5933475088937339955"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"597011666"},"14904646514726857277":{"videoId":"14904646514726857277","docid":"34-4-5-ZEBD5BA4C3EF0D4C8","description":"Free Calculus Lecture explaining how the First Derivative Test is used to find whether a function is increasing or decreasing on an interval, and using that information to find local maximums and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3371248/4684aef71dfad7c341735d50e43dfbd1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zZetSgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dqx15wqTsj0Y","linkTemplate":"/video/preview/14904646514726857277?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Test - Calculus","related_orig_text":"First Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"First Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qx15wqTsj0Y\",\"src\":\"serp\",\"rvb\":\"EqkDChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTc3MzI5MTY0MzAxMTIyMTIzOTMKFDEyNTUzMTc5MDk0ODM2NTQ5NTgyChM0Njg4NDg1MjIwMDkyMzUyODAyChM3NTc3NTEyODE2OTcwNzE3MDUyChQxNzU1MzA2ODE1Mzk0MzQ3NDE5NgoTOTIzMDQwMTAyMzQ1OTUxNzQ3MwoTNDE3MzA4NDcwNjIyNzY1NzgxMwoSOTIwNTU0OTQ1MzY2MzA3NDkyChM3MDAwMjU3NjI3MDc3Mzc5MzIwChMyNTM1NDI0MzA1Mzg4NjQ2MjY0ChM3MDk4NTU2OTU5ODc0NDM4ODYwChQxMjU5NTMzMTM1MTAwOTk1NzEzOAoTOTk4NzA5NjkzNzM2OTAwODA4MwoTNDU3ODUwMDM5MzcxNzU2OTgzNwoTNTk0NTc1NTU1MTU0NDc2Nzk2NAoTNTkzMzQ3NTA4ODkzNzMzOTk1NQoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzcKEzI1MjQ2NzY1MTk1NDUwMjAzNTgKEzY3NzkzNDA0MzYxNDQzMzEyMDkaFgoUMTQ5MDQ2NDY1MTQ3MjY4NTcyNzdaFDE0OTA0NjQ2NTE0NzI2ODU3Mjc3arYPEgEwGAAiRRoxAAoqaGhjcnNxeGZ3bXBjb21kYmhoVUNfa19BXzItNzgyYVhfNDJwQ1pHVFR3EgIAEioQwg8PGg8_E-QDggQkAYAEKyqLARABGniB-wQBAv4DAPv8_w8BCPsCEQMG-gf__wD4_f4DBQL_APcE9vX4AAAA-hAD_gYAAAD4-vsP__8AABP69PUDAAAACQL4AP0AAAD9AvYE_gEAAAH7_A8E_wAAEQkIAf8AAAADDfn9__8AAPb8_AgAAAAA__j-CgAAAAAgAC2ddds7OBNACUhOUAIqhAIQABrwAX_0Nf7U9Z4BsPTg_8kR4gG4JRgA9kYP_9La_ADqM-8AzObzANYf8QAwIdYBqh8KAR7x_P_znvQADdU6_wblBgDlJSABASztAUQTHAMQ1fv_4Uz6_9H_F__00cf-BmLW_DgCEf4NL80Bz_HKAC36OQHTvfYDTvYNBOPzHf7__QgH3fPP_Pg39gEDy_743jwrAhf-FAnrKhYJ2erI_uj1FwD97AfyNULM_yIQ9vUJNPEEocoQ_-H2BwMANQYBx9TeB7nxGfPg6hD77tAAAwbQFfLFHuD3Pu__D-7yBggM7_cMCcPp7vL17fz9AeMJ-MfuASAALU178To4E0AJSGFQAipzEAAaYC74AB8HGez4DgTz4OwCEvLu2P3b6BkAIvYA8xWuHwse1-oICgAn2B_ltwAAAAUG_R_8APVfwOYS7woIEbrJywg5fw8KHbXxGgbqyigIF9TjMAsm_QCzBsgqDfS4I_sEJSAALaX5Ozs4E0AJSG9QAiqvBhAMGqAGAAAAwQAAAAAAABxCAABMwgAAiEEAAMBBAADMQgAAoEEAACjCAAAUwgAAQEAAAJBBAADgwAAAAEEAAOBAAAD4QQAAcEEAAFDCAADqQgAAgD8AAJjBAAAgwQAAPMIAADTCAACEwgAAMEEAALjBAAC4QQAAoMAAAHBCAADIwQAAoEIAADTCAAAwQQAA4MIAANBBAAAgQQAA8EEAACDBAAAAQAAAQEEAAEBCAAAgQQAAoEAAADBBAADQwQAAYMEAAOhBAAAkwgAAwMAAAPjBAADgwQAAHMIAADDBAADIQQAAwEAAAADCAABgwQAAYEIAABDBAAA4QgAATMIAAJTCAABAQQAAgEAAAMrCAACowQAAgsIAAATCAABgwQAAfEIAAAAAAADIwQAAREIAABzCAAAQQQAA4MAAADBBAABcQgAAiEEAAGzCAACgQgAAyEEAAKBAAACYQQAAwEEAAABAAACIwgAAQEIAAEDAAAAkwgAAoMEAAOjBAAAEQgAApEIAAMDBAABswgAAiMEAABBBAADMQgAAwMEAAJ7CAADAwAAAgMAAALjBAABUQgAAKEIAAKhBAADIQQAAIEIAAChCAAC4QQAAHMIAAPBBAABAQQAATEIAAODAAACgwQAAkMIAAEBAAAAAwAAA4MEAAABCAAAwwQAAFMIAAKBAAAB8QgAAYMEAAIC_AACCQgAAqMEAAADCAACAPwAAPEIAAKDBAACaQgAAwEAAADBBAAAAwwAAMMIAANDBAADIwQAAgMEAADzCAABAwQAACEIAAIhBAABkQgAAEMEAAExCAAAgwgAA4EEAADhCAADAwAAAUEIAABhCAACiwgAAcMEAAHzCAACgwAAAiMIAABBCAACwQQAAgEEAAIDAAAAIQgAAmMEAAAhCAACIQgAAAEEAACTCAABwQQAAAMAAAFDBAAA4wgAAqMEAAKBAAADYwQAAuMEAADhCAABowgAAbMIAAAzCAADAwAAAiEEAAOhBAAB4wgAATMIAABBBAACoQQAAmEEAAEBAAADYQQAAgEAAAPDBAADAQgAAXEIAAFBBAACgQQAAgEAgADgTQAlIdVABKo8CEAAagAIAADA9AACoPQAAZD4AAKi9AAAcvgAA6D0AAHQ-AAALvwAAjr4AAEA8AAA0vgAAXL4AALg9AABMPgAABL4AAKC8AADIPQAAoDwAAAQ-AADuPgAAfz8AAIi9AAC4PQAAoDwAAFS-AABwPQAAUD0AAMi9AABwPQAAHD4AAKg9AABEvgAAcL0AAFS-AACYPQAAJL4AABC9AABkvgAAHL4AACy-AAAcvgAAcD0AAOI-AABwvQAAfL4AALg9AABQPQAA-L0AANi9AAAwvQAAEL0AAEw-AABAvAAAqD0AAMi9AACgPAAALT8AADA9AAAcPgAADD4AADA9AAAUPgAALD4AACS-IAA4E0AJSHxQASqPAhABGoACAAAMvgAAoj4AAKi9AAArvwAAcL0AABA9AACaPgAAML0AAJg9AABsPgAAqD0AABS-AACIvQAAqL0AAEQ-AAAQvQAAiD0AAAE_AAAEvgAAuj4AAJi9AAAwPQAAED0AAKi9AADgvAAAoDwAAKi9AADgPAAAFL4AAKC8AACAuwAAJD4AABS-AAC4vQAAmL0AALi9AABwPQAA-D0AADS-AAAUvgAAiL0AAMg9AACIvQAAMD0AAIg9AABwPQAAf78AAOA8AAC4PQAA-D0AANg9AAC4PQAAQLwAAHw-AACAOwAA2D0AAOA8AACovQAAMD0AAFA9AAD4PQAAiL0AACw-AACAuyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=qx15wqTsj0Y","parent-reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":480,"cheight":270,"cratio":1.77777,"dups":["14904646514726857277"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2380562891"}},"dups":{"17994385035140575010":{"videoId":"17994385035140575010","title":"\u0007[First\u0007] \u0007[Derivative\u0007] Test","cleanTitle":"First Derivative Test","host":{"title":"YouTube","href":"http://www.youtube.com/live/G5wlKltW7pM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/G5wlKltW7pM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":757,"text":"12:37","a11yText":"Süre 12 dakika 37 saniye","shortText":"12 dk."},"views":{"text":"690,8bin","a11yText":"690,8 bin izleme"},"date":"4 mar 2018","modifyTime":1520121600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/G5wlKltW7pM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=G5wlKltW7pM","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":757},"parentClipId":"17994385035140575010","href":"/preview/17994385035140575010?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/17994385035140575010?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17732916430112212393":{"videoId":"17732916430112212393","title":"\u0007[First\u0007] \u0007[Derivative\u0007] Test - Calculus 1 - Lecture 15 (of 19)","cleanTitle":"First Derivative Test - Calculus 1 - Lecture 15 (of 19)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=lTjiZHAPzIo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/lTjiZHAPzIo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWDFGcDhHYmZiZElndVVqR2F0UXU2Zw==","name":"Math With Richard","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+With+Richard","origUrl":"http://www.youtube.com/@mathwithrichard3919","a11yText":"Math With Richard. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3484,"text":"58:04","a11yText":"Süre 58 dakika 4 saniye","shortText":"58 dk."},"date":"3 tem 2025","modifyTime":1751500800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/lTjiZHAPzIo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=lTjiZHAPzIo","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":3484},"parentClipId":"17732916430112212393","href":"/preview/17732916430112212393?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/17732916430112212393?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12553179094836549582":{"videoId":"12553179094836549582","title":"\u0007[First\u0007] \u0007[Derivative\u0007] Test","cleanTitle":"First Derivative Test","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JSHX3TZn9dE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JSHX3TZn9dE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTHVJZkZaRFB1TTRHR0VqVFRrTXJfZw==","name":"MillerMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MillerMath","origUrl":"http://www.youtube.com/@MillerMathVideos","a11yText":"MillerMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":348,"text":"5:48","a11yText":"Süre 5 dakika 48 saniye","shortText":"5 dk."},"views":{"text":"5,3bin","a11yText":"5,3 bin izleme"},"date":"11 eki 2013","modifyTime":1381449600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JSHX3TZn9dE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JSHX3TZn9dE","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":348},"parentClipId":"12553179094836549582","href":"/preview/12553179094836549582?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/12553179094836549582?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4688485220092352802":{"videoId":"4688485220092352802","title":"\u0007[First\u0007] \u0007[Derivative\u0007] Test Introduction and Examples","cleanTitle":"First Derivative Test Introduction and Examples","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=60UMYG7Ppeg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/60UMYG7Ppeg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/@mes","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1066,"text":"17:46","a11yText":"Süre 17 dakika 46 saniye","shortText":"17 dk."},"date":"19 tem 2012","modifyTime":1342656000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/60UMYG7Ppeg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=60UMYG7Ppeg","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":1066},"parentClipId":"4688485220092352802","href":"/preview/4688485220092352802?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/4688485220092352802?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7577512816970717052":{"videoId":"7577512816970717052","title":"How to Find Derivative - Using Formula (Definition of the \u0007[First\u0007] \u0007[Derivative\u0007])","cleanTitle":"How to Find Derivative - Using Formula (Definition of the First Derivative)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Khz7fZOLV_Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Khz7fZOLV_Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZ2xOWHpCbzZibUtjOW90S2YtT3VHUQ==","name":"TabletClass Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TabletClass+Math","origUrl":"http://www.youtube.com/@tabletclass","a11yText":"TabletClass Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":746,"text":"12:26","a11yText":"Süre 12 dakika 26 saniye","shortText":"12 dk."},"views":{"text":"124,6bin","a11yText":"124,6 bin izleme"},"date":"30 mayıs 2018","modifyTime":1527638400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Khz7fZOLV_Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Khz7fZOLV_Y","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":746},"parentClipId":"7577512816970717052","href":"/preview/7577512816970717052?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/7577512816970717052?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17553068153943474196":{"videoId":"17553068153943474196","title":"\u0007[First\u0007] and second \u0007[derivative\u0007] Tests | Calculus | Chegg Tutors","cleanTitle":"First and second derivative Tests | Calculus | Chegg Tutors","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=gy2eRIf93CU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/gy2eRIf93CU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRUIzNjd6Q3gycC10djZ4aGh6eXlNdw==","name":"Chegg","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Chegg","origUrl":"http://www.youtube.com/@chegg","a11yText":"Chegg. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":359,"text":"5:59","a11yText":"Süre 5 dakika 59 saniye","shortText":"5 dk."},"views":{"text":"22,2bin","a11yText":"22,2 bin izleme"},"date":"12 nis 2016","modifyTime":1460419200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/gy2eRIf93CU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=gy2eRIf93CU","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":359},"parentClipId":"17553068153943474196","href":"/preview/17553068153943474196?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/17553068153943474196?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9230401023459517473":{"videoId":"9230401023459517473","title":"\u0007[First\u0007] \u0007[Derivative\u0007] Test - Introduction","cleanTitle":"First Derivative Test - Introduction","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pP_7NTm_XTc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pP_7NTm_XTc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdEVOc0tPZlBFb2gyamRWRlpUTFFGdw==","name":"MaTH - Math Tutorials by Harpreet","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MaTH+-+Math+Tutorials+by+Harpreet","origUrl":"http://www.youtube.com/@math-mathtutorialsbyharpre970","a11yText":"MaTH - Math Tutorials by Harpreet. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1079,"text":"17:59","a11yText":"Süre 17 dakika 59 saniye","shortText":"17 dk."},"date":"21 nis 2020","modifyTime":1587427200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pP_7NTm_XTc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pP_7NTm_XTc","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":1079},"parentClipId":"9230401023459517473","href":"/preview/9230401023459517473?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/9230401023459517473?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4173084706227657813":{"videoId":"4173084706227657813","title":"An Introduction to the \u0007[First\u0007] \u0007[Derivative\u0007] Test","cleanTitle":"An Introduction to the First Derivative Test","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0Z53Ee1SEtY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0Z53Ee1SEtY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWGlMVVpqaFpZNnk3R2pDUUNJSWM3dw==","name":"John's Solution Set","isVerified":false,"subscribersCount":0,"url":"/video/search?text=John%27s+Solution+Set","origUrl":"http://www.youtube.com/@johnssolutionset","a11yText":"John's Solution Set. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":589,"text":"9:49","a11yText":"Süre 9 dakika 49 saniye","shortText":"9 dk."},"date":"9 nis 2024","modifyTime":1712620800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0Z53Ee1SEtY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0Z53Ee1SEtY","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":589},"parentClipId":"4173084706227657813","href":"/preview/4173084706227657813?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/4173084706227657813?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"920554945366307492":{"videoId":"920554945366307492","title":"\u0007[First\u0007] \u0007[Derivative\u0007] Calculus Grade 12 | What Is the \u0007[First\u0007] \u0007[Derivative\u0007]?","cleanTitle":"First Derivative Calculus Grade 12 | What Is the First Derivative?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=N3GBGiufKCk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/N3GBGiufKCk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUmZETkFiY1ItWTNUNDZYaUw0U3Fzdw==","name":"Kevinmathscience","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Kevinmathscience","origUrl":"http://www.youtube.com/@kevinmathscience","a11yText":"Kevinmathscience. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":441,"text":"7:21","a11yText":"Süre 7 dakika 21 saniye","shortText":"7 dk."},"views":{"text":"350,9bin","a11yText":"350,9 bin izleme"},"date":"18 eyl 2020","modifyTime":1600387200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/N3GBGiufKCk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=N3GBGiufKCk","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":441},"parentClipId":"920554945366307492","href":"/preview/920554945366307492?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/920554945366307492?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7000257627077379320":{"videoId":"7000257627077379320","title":"The \u0007[First\u0007] \u0007[Derivative\u0007] of a Function Explained Intuitively | Intuitive Maths","cleanTitle":"The First Derivative of a Function Explained Intuitively | Intuitive Maths","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=gouMOwLicVQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/gouMOwLicVQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY21heWpQei1oeDJrcGt6aWZDMnA2QQ==","name":"Klaus Prettner","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Klaus+Prettner","origUrl":"http://www.youtube.com/@KlausPrettner","a11yText":"Klaus Prettner. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":188,"text":"3:08","a11yText":"Süre 3 dakika 8 saniye","shortText":"3 dk."},"date":"15 eki 2025","modifyTime":1760486400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/gouMOwLicVQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=gouMOwLicVQ","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":188},"parentClipId":"7000257627077379320","href":"/preview/7000257627077379320?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/7000257627077379320?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2535424305388646264":{"videoId":"2535424305388646264","title":"Calculus: \u0007[First\u0007] \u0007[Derivative\u0007] Test, Second Derivative Test","cleanTitle":"Calculus: First Derivative Test, Second Derivative Test","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Z7QWpBU1ePU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Z7QWpBU1ePU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZnM2MXliUVFsX2hYU2tEVW0zOWp1UQ==","name":"Educator.com","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Educator.com","origUrl":"http://www.youtube.com/@EducatorVids","a11yText":"Educator.com. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":278,"text":"4:38","a11yText":"Süre 4 dakika 38 saniye","shortText":"4 dk."},"views":{"text":"33,9bin","a11yText":"33,9 bin izleme"},"date":"23 eki 2009","modifyTime":1256256000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Z7QWpBU1ePU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Z7QWpBU1ePU","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":278},"parentClipId":"2535424305388646264","href":"/preview/2535424305388646264?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/2535424305388646264?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7098556959874438860":{"videoId":"7098556959874438860","title":"\u0007[First\u0007] \u0007[Derivative\u0007] Test | Quick Calculus","cleanTitle":"First Derivative Test | Quick Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=G1n-ZTnzucQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/G1n-ZTnzucQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDT2RYZEZZRnBBRHJfMFIyUXFSX0g4QQ==","name":"JLearn PH","isVerified":false,"subscribersCount":0,"url":"/video/search?text=JLearn+PH","origUrl":"http://www.youtube.com/@JLearnPH","a11yText":"JLearn PH. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":362,"text":"6:02","a11yText":"Süre 6 dakika 2 saniye","shortText":"6 dk."},"date":"5 eyl 2023","modifyTime":1693872000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/G1n-ZTnzucQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=G1n-ZTnzucQ","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":362},"parentClipId":"7098556959874438860","href":"/preview/7098556959874438860?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/7098556959874438860?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12595331351009957138":{"videoId":"12595331351009957138","title":"\u0007[First\u0007] \u0007[Derivative\u0007] Test | Example 1","cleanTitle":"First Derivative Test | Example 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=I8c2iRXCP14","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/I8c2iRXCP14?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaWdnZFNwekNvNnJfRjliNnRvWEx3UQ==","name":"Dharma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dharma","origUrl":"http://www.youtube.com/@dharma8105","a11yText":"Dharma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":392,"text":"6:32","a11yText":"Süre 6 dakika 32 saniye","shortText":"6 dk."},"date":"11 kas 2020","modifyTime":1605052800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/I8c2iRXCP14?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=I8c2iRXCP14","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":392},"parentClipId":"12595331351009957138","href":"/preview/12595331351009957138?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/12595331351009957138?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9987096937369008083":{"videoId":"9987096937369008083","title":"\u0007[First\u0007] \u0007[Derivative\u0007] Test","cleanTitle":"First Derivative Test","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9W4ejz0EMtE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9W4ejz0EMtE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/user/MathEasySolutions","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":237,"text":"3:57","a11yText":"Süre 3 dakika 57 saniye","shortText":"3 dk."},"views":{"text":"4,5bin","a11yText":"4,5 bin izleme"},"date":"27 şub 2014","modifyTime":1393459200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9W4ejz0EMtE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9W4ejz0EMtE","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":237},"parentClipId":"9987096937369008083","href":"/preview/9987096937369008083?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/9987096937369008083?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4578500393717569837":{"videoId":"4578500393717569837","title":"\u0007[First\u0007] \u0007[Derivative\u0007] Test (Additional Example)","cleanTitle":"First Derivative Test (Additional Example)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HFwxQlBvoXg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HFwxQlBvoXg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlk5UG0tMDNHdjI2Y1JhcVdFcERZUQ==","name":"Houston Math Prep","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Houston+Math+Prep","origUrl":"http://www.youtube.com/@HoustonMathPrep","a11yText":"Houston Math Prep. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":408,"text":"6:48","a11yText":"Süre 6 dakika 48 saniye","shortText":"6 dk."},"views":{"text":"2,4bin","a11yText":"2,4 bin izleme"},"date":"27 mayıs 2020","modifyTime":1590537600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HFwxQlBvoXg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HFwxQlBvoXg","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":408},"parentClipId":"4578500393717569837","href":"/preview/4578500393717569837?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/4578500393717569837?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5945755551544767964":{"videoId":"5945755551544767964","title":"\u0007[First\u0007] \u0007[Derivative\u0007] Test and Second Derivative Test","cleanTitle":"First Derivative Test and Second Derivative Test","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Rsoo1VpkZjI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Rsoo1VpkZjI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTGlSMWllcVNFcDhpc0pJNlVsVEI4UQ==","name":"Math Center","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Center","origUrl":"http://www.youtube.com/@MathCenterdrwas","a11yText":"Math Center. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":738,"text":"12:18","a11yText":"Süre 12 dakika 18 saniye","shortText":"12 dk."},"views":{"text":"4,5bin","a11yText":"4,5 bin izleme"},"date":"10 nis 2019","modifyTime":1554854400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Rsoo1VpkZjI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Rsoo1VpkZjI","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":738},"parentClipId":"5945755551544767964","href":"/preview/5945755551544767964?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/5945755551544767964?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5933475088937339955":{"videoId":"5933475088937339955","title":"\u0007[First\u0007] \u0007[Derivative\u0007] Test Example Part 2","cleanTitle":"First Derivative Test Example Part 2","host":{"title":"YouTube","href":"http://learn.saylor.org/mod/page/view.php?id=37454","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-L2EkhFZJ3E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVWJucU5DV0ZMcU5Yc3d2VTlvV3lGQQ==","name":"Saylor Academy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Saylor+Academy","origUrl":"http://www.youtube.com/@SaylorAcademy","a11yText":"Saylor Academy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":257,"text":"4:17","a11yText":"Süre 4 dakika 17 saniye","shortText":"4 dk."},"date":"27 mayıs 2015","modifyTime":1432684800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-L2EkhFZJ3E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-L2EkhFZJ3E","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":257},"parentClipId":"5933475088937339955","href":"/preview/5933475088937339955?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/5933475088937339955?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14904646514726857277":{"videoId":"14904646514726857277","title":"\u0007[First\u0007] \u0007[Derivative\u0007] Test - Calculus","cleanTitle":"First Derivative Test - Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qx15wqTsj0Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qx15wqTsj0Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX2tfQV8yLTc4MmFYXzQycENaR1RUdw==","name":"FreeAcademy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FreeAcademy","origUrl":"http://www.youtube.com/@FreeAcademy","a11yText":"FreeAcademy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":484,"text":"8:04","a11yText":"Süre 8 dakika 4 saniye","shortText":"8 dk."},"views":{"text":"2,8bin","a11yText":"2,8 bin izleme"},"date":"5 eyl 2009","modifyTime":1252108800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qx15wqTsj0Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qx15wqTsj0Y","reqid":"1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL","duration":484},"parentClipId":"14904646514726857277","href":"/preview/14904646514726857277?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","rawHref":"/video/preview/14904646514726857277?parent-reqid=1769703760295657-1259731341678719688-balancer-l7leveler-kubr-yp-sas-118-BAL&text=First+Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"2597313416787196887118","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"First Derivative","queryUriEscaped":"First%20Derivative","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}