{"pages":{"search":{"query":"Justin Eloriaga","originalQuery":"Justin Eloriaga","serpid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","parentReqid":"","serpItems":[{"id":"4293333717254666089-0-0","type":"videoSnippet","props":{"videoId":"4293333717254666089"},"curPage":0},{"id":"15047652753738764023-0-1","type":"videoSnippet","props":{"videoId":"15047652753738764023"},"curPage":0},{"id":"11463766259252506133-0-2","type":"videoSnippet","props":{"videoId":"11463766259252506133"},"curPage":0},{"id":"17995647580524882457-0-3","type":"videoSnippet","props":{"videoId":"17995647580524882457"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEp1c3RpbiBFbG9yaWFnYQo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","ui":"desktop","yuid":"694487481765309111"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"9617549726963085593-0-5","type":"videoSnippet","props":{"videoId":"9617549726963085593"},"curPage":0},{"id":"12588126359084188325-0-6","type":"videoSnippet","props":{"videoId":"12588126359084188325"},"curPage":0},{"id":"11893120083136649420-0-7","type":"videoSnippet","props":{"videoId":"11893120083136649420"},"curPage":0},{"id":"8657537729533720915-0-8","type":"videoSnippet","props":{"videoId":"8657537729533720915"},"curPage":0},{"id":"14312559829676368883-0-9","type":"videoSnippet","props":{"videoId":"14312559829676368883"},"curPage":0},{"id":"7067230958716663321-0-10","type":"videoSnippet","props":{"videoId":"7067230958716663321"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEp1c3RpbiBFbG9yaWFnYQo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","ui":"desktop","yuid":"694487481765309111"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"3423467843955657050-0-12","type":"videoSnippet","props":{"videoId":"3423467843955657050"},"curPage":0},{"id":"2005407763602137415-0-13","type":"videoSnippet","props":{"videoId":"2005407763602137415"},"curPage":0},{"id":"11271638772277646637-0-14","type":"videoSnippet","props":{"videoId":"11271638772277646637"},"curPage":0},{"id":"16247212587197713890-0-15","type":"videoSnippet","props":{"videoId":"16247212587197713890"},"curPage":0},{"id":"17423239159334213927-0-16","type":"videoSnippet","props":{"videoId":"17423239159334213927"},"curPage":0},{"id":"16648993137409039248-0-17","type":"videoSnippet","props":{"videoId":"16648993137409039248"},"curPage":0},{"id":"17160200883658821327-0-18","type":"videoSnippet","props":{"videoId":"17160200883658821327"},"curPage":0},{"id":"16195272016378647431-0-19","type":"videoSnippet","props":{"videoId":"16195272016378647431"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEp1c3RpbiBFbG9yaWFnYQo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","ui":"desktop","yuid":"694487481765309111"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DJustin%2BEloriaga"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"9070668125577177837264","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1397829,0,66;1426274,0,23;1433082,0,48;124067,0,52;1424970,0,72;1402154,0,28;1436971,0,0;1437713,0,80;1436026,0,81;1430180,0,44;1427780,0,10;1434899,0,56;1428516,0,15;1428133,0,21;1427956,0,96;1433184,0,72;1418769,0,82;1428330,0,20;1425772,0,14;1282205,0,7;1417827,0,44;1432903,0,70;708540,0,17;1440101,0,29;1420353,0,59;1430505,0,95;1417539,0,85;1432056,0,25;263460,0,80;255407,0,80;40254,0,17;30277,0,47;1436781,0,92;1422266,0,51;1357003,0,99;1297911,0,56;1435598,0,53;1434302,0,38;850909,0,63;151171,0,76;1281084,0,81;704825,0,41;287509,0,96;785124,0,57"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DJustin%2BEloriaga","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Justin+Eloriaga","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Justin+Eloriaga","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Justin Eloriaga: 2 bin video Yandex'te bulundu","description":"\"Justin Eloriaga\" sorgusu için arama sonuçları Yandex'te","shareTitle":"Justin Eloriaga — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y5e56a10f8b746e88b974fc610a623e9d","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1397829,1426274,1433082,124067,1424970,1402154,1436971,1437713,1436026,1430180,1427780,1434899,1428516,1428133,1427956,1433184,1418769,1428330,1425772,1282205,1417827,1432903,708540,1440101,1420353,1430505,1417539,1432056,263460,255407,40254,30277,1436781,1422266,1357003,1297911,1435598,1434302,850909,151171,1281084,704825,287509,785124","queryText":"Justin Eloriaga","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"694487481765309111","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1437540,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765309368","tz":"America/Louisville","to_iso":"2025-12-09T14:42:48-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1397829,1426274,1433082,124067,1424970,1402154,1436971,1437713,1436026,1430180,1427780,1434899,1428516,1428133,1427956,1433184,1418769,1428330,1425772,1282205,1417827,1432903,708540,1440101,1420353,1430505,1417539,1432056,263460,255407,40254,30277,1436781,1422266,1357003,1297911,1435598,1434302,850909,151171,1281084,704825,287509,785124","queryText":"Justin Eloriaga","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"694487481765309111","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"9070668125577177837264","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":156,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"694487481765309111","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1729.0__491d2077c35fc53c28577367d9c4833c662b0670","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"4293333717254666089":{"videoId":"4293333717254666089","docid":"34-9-7-ZFBE8D985AA1DED5C","description":"This video derives and illustrates the expected utility concepts discussed in the lectures on the Expected Utility theorem and goes through the underpinnings of the suitable money function.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4055334/ad5bd4af9b9ddbcc5bd98d4e0c8af406/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/f-WsSQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYLvF60kgVTw","linkTemplate":"/video/preview/4293333717254666089?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Deriving and Illustrating Expected Utility","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YLvF60kgVTw\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhUKEzQyOTMzMzM3MTcyNTQ2NjYwODlaEzQyOTMzMzM3MTcyNTQ2NjYwODlqhAkSATAYACJFGjEACipoaGhmZnBkZGlveHJ6dm9iaGhVQzVzRXJRUzVoNEs3M0FkQ01kRGNUaFESAgASKhDCDw8aDz8TpwyCBCQBgAQrKosBEAEaeIH2Cf71_wEA-gQYB_wH_QIdAPz-9AMDAPL6_fwHAf8A5wX6Bwn_AAANBQQGAwAAAAMB-QXy_gEAFQP7BgQAAAAaAv0A9wAAAAP6_QH-AQAAAfv8DwT_AP8QAAj7_wAAAPcV9gT__wAABAED_AAAAAAB_OsEAP8AACAALUuj0js4E0AJSE5QAiqEAhAAGvABfhMEA7k4Bf5HD94A4Sv9AIEAAv8lE-YAwvzrAJnq2P8eHOAA0er3APP3JP_vFQL_LtrV_w7cBQAaDQb_Ih4mABoMHwAh3QoAOAD9AOYH6f_4A_3_Ie4Y_g_17QAMAAD8_RAJ_dMi2P0V8_ECCdk4AgP_PADx_PwE8g7-A98cEwD96eH-JvYWAPHg__r0Dw79BfAH_PwH8P_55hQKCRTt_AHxDAL7CRz6HPP3BfLf7QPyERD8Bwn0-i4YJAjx-uMJLO79AhvW__3wEBYHQegOCubjFf360xP-Bfnw_fHzC_Tx5O733A7wCfURBwIAFv_7IAAtv08kOzgTQAlIYVACKnMQABpgR_cAOhfz8f79Zerz4-QREAX5KfTa3f_-1AAAI9vpEwHyyjYT_0iW7RmtAAAAGQz5TUEA8HTX2er8A97ivd7cFz5_AxoM5Pwo6-7n1iDG__TkCjBIABX9vQ5KzJwTCEX1IAAtogweOzgTQAlIb1ACKo8CEAAagAIAAKg9AACAOwAAjj4AAMi9AACOvgAAoj4AAIA7AAAjvwAAvr4AAKC8AACIvQAAjr4AAAy-AAB8PgAAQLwAAJK-AAA0PgAAyL0AANg9AADePgAAfz8AAKi9AADYPQAAML0AAGy-AACYvQAAoLwAALi9AAAQvQAATD4AAPg9AACAuwAAgLsAAMg9AAAEPgAAur4AAJg9AACSvgAAlr4AAKC8AAC2vgAAMD0AAAQ-AACivgAAHL4AAEw-AACWPgAAdL4AAAS-AAC6vgAAHD4AAIg9AAC4PQAA6D0AABS-AACIvQAAdT8AAFy-AACePgAAkj4AAAQ-AACGvgAA-D0AADC9IAA4E0AJSHxQASqPAhABGoACAAA0PgAAcD0AAAy-AAAlvwAAbL4AAHQ-AADgvAAAuj4AACy-AADYPQAADL4AAGy-AABwPQAAnr4AACw-AAAwvQAATD4AAP4-AACIvQAAoj4AAEC8AAA0PgAAyD0AALi9AABwvQAAqD0AAAS-AAAwvQAANL4AAOA8AAAQPQAAgDsAANg9AABQvQAAiL0AABC9AACAOwAAjj4AACy-AADIPQAAqD0AAJg9AADgPAAAuD0AAHC9AAD4PQAAf78AABA9AACCvgAA6D0AAIg9AACAuwAAoj4AABQ-AACAOwAAUD0AAIC7AACYvQAAyL0AAES-AACAOwAApj4AAIC7AACovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=YLvF60kgVTw","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4293333717254666089"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15047652753738764023":{"videoId":"15047652753738764023","docid":"34-5-13-Z35D9A5FC961B6FBF","description":"This video gives a brief introduction of the Autoregressive Model Created by Justin S. Eloriaga...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3443305/001ecf6975b0d12bbcec94e077a6ccab/564x318_1"},"target":"_self","position":"1","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0rmPxzc6-Zk","linkTemplate":"/video/preview/15047652753738764023?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to the Autoregressive Model","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0rmPxzc6-Zk\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhYKFDE1MDQ3NjUyNzUzNzM4NzY0MDIzWhQxNTA0NzY1Mjc1MzczODc2NDAyM2qvDRIBMBgAIkUaMQAKKmhoaGZmcGRkaW94cnp2b2JoaFVDNXNFclFTNWg0SzczQWRDTWREY1RoURICABIqEMIPDxoPPxPLAYIEJAGABCsqiwEQARp4gfwR-Aj_AgD0A_4CAAT_ARAN-gII_wAA5gQLCAf9AQDzAAj8-wAAAAIBBfwKAAAAAfYBBPX9AQARAwL1BAAAAAPy_vX5AAAA_QTx8f8BAADqAQEA9gIAAQUK_AH_AAAA7A70_v8AAAD3Cwn9AAAAAA359wUAAAAAIAAttZPWOzgTQAlITlACKnMQABpgBw8AHxnY6egyGdrg8LgGFPgn8gbKBQD7AADxIPDzEvwUvuoBABTeEPHEAAAAAQMxEOgACVMP2-b8DC8T_8b_Bi1_MSgX4vj5E_Xs-eX_5Osh9dsnADcK6g0RxBYs8jsjIAAtQc1POzgTQAlIb1ACKq8GEAwaoAYAAExCAAAgQgAANEIAAJDBAAAMQgAAuEEAAKZCAADwwQAAHMIAAMDBAABgQQAAnsIAAGDCAAA0wgAAcEEAAMDBAAAAQAAAgL8AAMjBAAB4wgAAAMIAAPjBAACMwgAA6EEAAATCAAAYwgAArsIAABjCAABcQgAAqEEAAPjBAACIQQAAtsIAAKBBAABcwgAAyMEAAABBAACuQgAAqMEAAJxCAACAwAAAAAAAACBCAAAAwgAAiEEAADzCAAAAQAAAQMAAAKRCAACIQQAAOMIAAPBBAABQQQAAAMEAANBBAADgQAAAAMMAAOBAAADIQQAAyEEAAAhCAABYwgAAuMEAAFzCAADQQQAArMIAAOjBAAAowgAAyMEAACjCAABAQgAAOEIAAHDBAACYQQAAoMAAAJ7CAACKwgAA0MEAAHBBAAAIQgAAAMAAAHxCAACgwQAAIMEAAADBAAAAQgAAAEIAAKhBAAC6QgAAMMEAAOhBAABwQgAAgMAAAILCAAAAQAAA-MEAAIhBAACgQAAAAMEAAIBAAAB8wgAAjkIAACRCAACAwQAAiMEAAADBAAB4wgAATEIAAPjBAACYQQAAfEIAACRCAABgwQAADMIAAODBAABcQgAA4EAAADDBAABAwQAA8MEAACTCAABQwgAAMMIAAMjBAAAUQgAAkEEAAKDAAABAwQAAAMIAAMBAAACAvwAAdMIAAAzCAAAYQgAAiMEAANhBAACAQAAAQEEAABDBAAC4wgAA4MEAAKhBAABcQgAA-MEAAExCAACgQAAAhsIAANBBAAAAwQAA4MAAAIA_AACIQQAATEIAAHDBAAAswgAAiMEAALjBAADAwQAAtsIAAIC_AAAYwgAAoEEAANDBAACgQAAAwEEAAIBBAAAIwgAAaEIAAARCAADIwQAAyMEAACRCAACQwQAAoEEAALDBAADwQQAA4EEAAKjBAAAkQgAAwEAAAEjCAACSwgAAAAAAAATCAABkQgAAQEEAABDCAAA4QgAAYMEAAMDAAADAwAAAXMIAAMBBAAAcQgAAAAAAAABCAAA0wgAAAAAAABDCAABAwiAAOBNACUh1UAEqjwIQABqAAgAAZL4AAAw-AAAEPgAAbD4AAJK-AACgPAAABL4AAPq-AACSvgAAUD0AADA9AAAcPgAAUL0AAEA8AAAUvgAAfL4AAGw-AABAvAAAcD0AAOY-AAB_PwAAgDsAABC9AADgPAAAqr4AAKA8AAAEvgAA6L0AAKC8AAAEvgAAED0AAAw-AACAOwAAVD4AAFQ-AAAUvgAAyD0AABy-AABAPAAAmL0AAIC7AAAEvgAAiL0AAIi9AADoPQAAmD0AALi9AABkvgAAFL4AAEy-AAAcPgAA-D0AADA9AAAEPgAAbL4AAFC9AAARPwAAmD0AAPi9AAAMPgAAcL0AABy-AACIPQAAMD0gADgTQAlIfFABKo8CEAEagAIAADC9AAA0PgAAUL0AAEO_AAA0PgAADD4AAIY-AABEvgAAuD0AALg9AABQvQAAUD0AAIg9AAAcvgAAPD4AAOA8AABkPgAAPT8AANg9AAAJPwAAGb8AAPi9AABcPgAAEL0AAFy-AACYvQAAPD4AAKA8AAAMPgAAHL4AAEC8AAD4PQAABL4AADA9AAAEvgAAiD0AABA9AAAcPgAAiL0AAGy-AACAOwAAiD0AAJa-AADIPQAAgr4AALo-AAB_vwAA5r4AAIC7AADiPgAAZD4AAEA8AACovQAAPD4AAFS-AADoPQAAgLsAAAy-AAA0PgAAoLwAAFQ-AACgvAAAHL4AADS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=0rmPxzc6-Zk","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["15047652753738764023"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11463766259252506133":{"videoId":"11463766259252506133","docid":"34-8-5-ZE0EB6157C0E422F5","description":"This video discusses examples of the first-order and the second-order Taylor approximations. Created by Justin S. Eloriaga...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/924475/69b784d6cb7e2f930dd2daeb5557c763/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/tlNBZgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVNl6ILbYkZw","linkTemplate":"/video/preview/11463766259252506133?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Order and Second Order Taylor Approximation","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VNl6ILbYkZw\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhYKFDExNDYzNzY2MjU5MjUyNTA2MTMzWhQxMTQ2Mzc2NjI1OTI1MjUwNjEzM2q2DxIBMBgAIkUaMQAKKmhoaGZmcGRkaW94cnp2b2JoaFVDNXNFclFTNWg0SzczQWRDTWREY1RoURICABIqEMIPDxoPPxPjBYIEJAGABCsqiwEQARp4gQMABQH8BAAD_gr7_QP_AfIVAPb5_f0A6fv8_gT-AQD1AfYEAQAAAAEM-_0FAAAAAwH5BfP-AQACBwEPAwAAAAwHBgP9AAAA_gb-Cv8BAAD2_wD9-QEAAP4P_wL_AAAA__379_z_AAD2Df4RAAAAAPwD__j_AAAAIAAtHZbfOzgTQAlITlACKoQCEAAa8AF_D_kA0vzp_wwj-QDiHAoBnfsN_ywz5f_bBfgBwvjPAAAM5ADb6eYB1hYGAMAQ8P8O49UADs33_zT-1_4b1QIA-f8tASDa9QE1AP0A2ADl_wEdJf__0xAAA-3gABcL6f4ACRf93OfUAdndzgUN_jUB-QEhBQnoFP74-Bv_8wYHAATO7fv6DwP8_tsUAOwGIAEJ1_3_-xPt_9Ur5QP2DPP7DO4I_QMW6AQzDf4K__QD_d74_wX9AeoD7B4Z_vXe9Qzd9CcF0-zx_N3w-_wX9_gB9hcBCgH2EgkZ8_oLCeQK_PH1-_3zCvz96fj979_09vogAC1tAy07OBNACUhhUAIqcxAAGmAf9gAr9h_B6Oce7uTm4hnz_iIIIe7xAPmwAPP8z_0WDfPUABL_UfER1K8AAAAcONMlEQD1Z9vVyAzfNPTLq-P5CX8cFR6-6eYBA9hLLPjyDeT2MU8A5d20BTP33AEjKCQgAC398Cs7OBNACUhvUAIqrwYQDBqgBgAA4EAAAADAAAAgQgAAgD8AAKBBAACAvwAAvkIAADDBAABMwgAAoMAAAIBBAAAkwgAAjsIAAMjBAABgQgAA0MEAAIzCAADAwQAAEMIAAFTCAABQQQAAmMEAAKBBAABQwQAAgEEAAOjBAAB4wgAAgMEAACRCAAAcQgAAKMIAANhBAACSwgAAQMEAAGzCAADAwQAAAAAAAFxCAAAkwgAAgEAAAMBBAACIQQAAOEIAABBBAABkQgAATMIAABTCAAAQQQAAfEIAAAhCAAAowgAAAEEAAFDBAADIwQAACEIAAIA_AAAAwwAAGMIAAIC_AAD4QQAAoMAAAKzCAABcwgAAsMIAABBCAADEwgAAoEAAAMjBAABowgAA8MEAANRCAADoQQAAUMEAAAhCAACAQQAAmMIAAMDBAAAwQQAAnkIAACBCAAA8wgAABEIAAIDAAABAwQAAqEEAAKjBAABwQgAAUEIAABBCAAAIwgAAsEEAAHBCAADwwQAAZMIAANhBAAC0wgAA6EEAAPDBAAAQQQAAcMEAADTCAADgQQAAEEIAAADBAACwwQAAQEAAAJDBAABUQgAAqMEAAABBAACGQgAAiEEAANDBAADoQQAAIMEAALhBAABQQQAAwMEAAI7CAABMwgAAsEEAAOjBAADYwQAAwMEAAOBAAACAQQAAAAAAAAAAAABswgAAUEEAAADAAAAAwQAAVMIAABRCAADAQQAAkEEAAMBBAADgwQAAHMIAAMTCAAC4wQAAgL8AAI5CAABwwQAA4EEAABDBAACmwgAA6EEAAFBBAACAQQAAUEEAAHBBAAA4QgAAAEAAAODAAAAgwQAAVMIAAJjBAAAkwgAAPEIAABDCAACIQQAAAMIAANjBAADgwAAAcEEAAEBBAACwQgAAcEIAAPjBAABEwgAAkkIAADDBAAB0wgAA4MEAAIjBAADIwQAAGMIAAIBBAADAQAAADMIAAADAAACIwQAAAMIAAJRCAADwQQAATMIAALBBAAAAQQAAsEEAABTCAACwwQAAcEEAAIDAAACAQAAAQEIAAJjBAABAwAAAIMIAABDCIAA4E0AJSHVQASqPAhAAGoACAAAQvQAANL4AABQ-AAAsPgAA2L0AABA9AAAUvgAAJb8AAJ6-AABAvAAAmj4AAEC8AAAQPQAAwj4AADy-AAB0vgAAwj4AAKA8AACgPAAAFT8AAH8_AAAwPQAAgDsAANg9AACgPAAAdD4AAAS-AAB8vgAA0j4AAMg9AABMPgAAir4AAEA8AACqPgAAfD4AAIC7AACYPQAAnr4AALK-AAC-vgAA2L0AAIg9AAAwPQAATL4AAFC9AACoPQAAuj4AADy-AAAUPgAAdL4AAJi9AAD4vQAAhj4AAJI-AABsvgAAoDwAAGM_AADovQAAJD4AADQ-AABsvgAAHD4AACQ-AACmviAAOBNACUh8UAEqjwIQARqAAgAA6L0AANg9AACAuwAAV78AAOi9AACAOwAAfD4AAGS-AAAkPgAAUD0AAFy-AABEvgAAED0AACy-AABQvQAAoDwAAKC8AAAPPwAAcL0AAMY-AAAEPgAAmr4AAKC8AACAOwAAgDsAAOg9AAAsvgAAQLwAABS-AAC4PQAAEL0AAOg9AAAcPgAARL4AADS-AAAQvQAAMD0AAPi9AABwvQAA4DwAAHA9AABAPAAATD4AAJi9AAAQPQAAcL0AAH-_AAAwvQAAbL4AABQ-AAA8PgAAMD0AADw-AAAEPgAAqr4AAMg9AADIvQAAMD0AAEC8AABAPAAAND4AAPi9AADYvQAABD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=VNl6ILbYkZw","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1686,"cheight":1080,"cratio":1.56111,"dups":["11463766259252506133"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17995647580524882457":{"videoId":"17995647580524882457","docid":"34-1-7-Z53A16377C654C641","description":"Created by Justin S. Eloriaga Website: justineloriaga.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4023388/581a66af190ac2c7ae48842426e4dea1/564x318_1"},"target":"_self","position":"3","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dj327CNMEYt4","linkTemplate":"/video/preview/17995647580524882457?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"RCK Growth Model with a Specific Functional Form","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=j327CNMEYt4\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhYKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3WhQxNzk5NTY0NzU4MDUyNDg4MjQ1N2qvDRIBMBgAIkUaMQAKKmhoaGZmcGRkaW94cnp2b2JoaFVDNXNFclFTNWg0SzczQWRDTWREY1RoURICABIqEMIPDxoPPxOUBIIEJAGABCsqiwEQARp4gfATAAABAAAQABEAAgj_AQgBB_n3__8A-f8FAPoE_gD_BA30CAEAAAYCAwP1AAAABgj5-_n9AQAfAPYMAgAAAA3w_f_5AAAA-Ar8BAgAAQDtCe8FA_8AAA0OD_YAAAAA-RYI_P7_AAD___sNAAAAACEA9wQBAQAAIAAtdlDOOzgTQAlITlACKnMQABpgKxYAXhXTueYTGtQH2NEY9AYxCsgTFP8lJQAXV_zSCtHu1SIvADfDK_inAAAAGB82K9UA93cL4gMrEhQew98LFEV-eg8j0u_3BOnXCwvM8r4A_foKAO_8Ggz72gJWBX8jIAAtiUMZOzgTQAlIb1ACKq8GEAwaoAYAAFRCAABAwAAATEIAAIDCAADAQAAAAMEAAKJCAAAQwQAAHMIAAIC_AAAAQQAAksIAAKDBAACgwQAAEEIAAIDAAACwQQAAgMEAAJhBAAAEwgAAaMIAAIDCAACAwgAAPEIAABDCAAA8wgAAAMIAABjCAABkQgAAaEIAAEDCAACAPwAAtMIAACxCAACOwgAAEMIAAKBAAACkQgAAgMAAAFRCAAAwQgAAEEEAADhCAAAkwgAAMEIAALjCAACYwQAAuEEAAHRCAAAgQgAAwMEAAJDBAAAwwQAAsEEAAABCAADIQQAAAMMAAHBBAACAQAAAMEIAAHBBAACywgAAAMIAAGTCAAAAAAAA0sIAAMjBAAA8wgAAUMEAAFjCAAB0QgAAikIAALjBAAA4QgAA4MEAAITCAAA0wgAAMMEAACBBAAAgQQAAIMIAAIBCAADAQAAAwEAAAIA_AAAoQgAAsMEAAGBBAABUQgAAwMAAAMhBAABAQgAAQMIAAFDCAADYQQAAgMEAACBBAAAAQQAAyEEAANBBAAC4wgAAHEIAABhCAABIwgAAkMEAAIBAAACgwAAA-EEAAAjCAABAQgAAREIAAOBBAABAQAAAIMEAAPDBAACgQgAAwMAAAPDBAACwwQAAPMIAAIDBAAAYwgAAoMEAAADAAABQQQAAwEEAAKjBAACQwQAAgMEAAJhBAAC4wQAAQMIAAHDBAAAkQgAA0MEAANBBAACQwQAA2EEAAKDAAAB0wgAA4MAAANBBAABcQgAABMIAAFxCAADQQQAAZMIAAOBAAACIwQAA2MEAAFDBAAAUQgAAIEIAAODBAABwwQAAiMEAAADCAAAMwgAAnMIAADBBAAAQwgAAGEIAAEDAAAAQQQAAkEEAAIBBAABgwQAAgEIAAHxCAAAQwgAAPMIAADRCAACgQAAAgL8AAGzCAADgQQAAwEAAAKDBAAAQQQAAZEIAAAjCAACIwgAA2MEAADzCAAA0QgAAuMEAAHDCAACAPwAA4MEAAIC_AACYQQAAKMIAABDBAACAvwAAAAAAAAhCAAAswgAAqEEAAMjBAAAgwiAAOBNACUh1UAEqjwIQABqAAgAA4LwAAOA8AADaPgAADD4AAES-AADoPQAARD4AAAe_AACAOwAATL4AAJI-AABwvQAAbD4AAHw-AACovQAARL4AAEw-AACoPQAAjj4AAAE_AAB_PwAAUL0AACw-AACAuwAAQLwAAEA8AADoPQAAcL0AAGS-AAB0PgAAuD0AABS-AAAsPgAAkj4AAHC9AABQPQAAHD4AAAW_AAAHvwAALD4AACy-AAAMvgAAVD4AAII-AAAQPQAALL4AAOg9AACKvgAA-L0AAMi9AABQvQAAsj4AAHQ-AACmPgAAqD0AANg9AAATPwAA4LwAAPg9AABQPQAAUD0AAKi9AAC4PQAA1r4gADgTQAlIfFABKo8CEAEagAIAANi9AADIPQAAHL4AAEG_AACAuwAAFD4AAJY-AADgvAAA2L0AAOA8AADovQAAmr4AAOg9AABsvgAAmD0AAEC8AAAQvQAADT8AAFA9AACKPgAAmL0AANi9AAAcPgAA-L0AAFA9AACoPQAAZL4AAHC9AABMvgAAqL0AAKC8AAAEPgAAML0AAIA7AAA0vgAAvr4AAEw-AACgvAAADL4AAKi9AACIPQAAgLsAAIg9AACoPQAAUL0AAOg9AAB_vwAAhr4AAJi9AAB0PgAAmj4AAPi9AADIPQAA2D0AADS-AAAQPQAAcL0AAPi9AACoPQAAiD0AAHw-AACgvAAArr4AAAS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=j327CNMEYt4","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17995647580524882457"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9617549726963085593":{"videoId":"9617549726963085593","docid":"34-6-5-ZD27ED0D965313BEA","description":"Created by Justin S. Eloriaga Website: justineloriaga.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3254767/48e52aede7cb1ae8dfef8454b20f1b31/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/HMEyPQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYOxtwbE2YvE","linkTemplate":"/video/preview/9617549726963085593?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Setting up a Recursive Competitive Equilibrium in the RCK Model","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YOxtwbE2YvE\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhUKEzk2MTc1NDk3MjY5NjMwODU1OTNaEzk2MTc1NDk3MjY5NjMwODU1OTNqiBcSATAYACJFGjEACipoaGhmZnBkZGlveHJ6dm9iaGhVQzVzRXJRUzVoNEs3M0FkQ01kRGNUaFESAgASKhDCDw8aDz8T9AOCBCQBgAQrKosBEAEaeIH3_vwA_gMA7AUH_QMAAAAN_fkBCf7_AOUGBwL3_AIA-vMTAgQAAAD8BgT_9wAAAO4GAwXxAQEAFQn9_wQAAAAO_PwG-wAAAAUB_Qf_AQAA9QYCAgMAAAACCQQFAAAAAAUKBf8AAAAA-gIEBwAAAAAM9gAFAAAAACAALQBT2zs4E0AJSE5QAiqEAhAAGvABf_koAcEJ3QAJBusA6PPIAKH2Kf81Pd__whIlAc7b6gDjExT_9AXd_5kKCAHNECgAHQHCAB3h_QAc1dYADgjwARf0AAETxQMAQw7tABkE8__l-SX8BuUzAC7-DQEe_9j_C_ohAeT72APsA8ACEP5AARMeGv_sCQkGBhn-_NL57fwb7dv9DwUFABnWGf_39Cf-EOngAeYN7_f1Sv0AJf3lAtfpCgEEGuMFS-oFAwEYAfG_CewA5f_1EAMJHAP4DPv6-AYRAewJCvoJ6PH6D7zgA_sC9PMK7vUIIwPlBurJAPD48fbvtB4M-f0bBvsMHAT6IAAt51gPOzgTQAlIYVACKs8HEAAawAfmy_O-E8MEvWkF4Tz284E8w8pYORpUdrxfJX-9FK8yPBmikrsglsI9CqMZvRAGnryNtQ--p0OCPOWXgzvFVYU-VDBvvZt_Krx1dPy9LxOaPQsCEL1FvPW9Z-jEPKy4J7zlFV6964ioPJKLVrxHzp092L-GPHQjLLz9s-67-HptvWMWcL0ypRo9VbSDu0yZCr2lmv47lcm6vHjl4btsSFc9sez4vFSGlrwWrCc8cbWpPPvEJrs4L-69JxFBPbiMIL3hn608n9rqPHmoz7gTCYu9CjdUvbK2jrxDbuu8OSy4PZ3JiDxY8y28dRE1PXrhTrzuZRE959mRPApXNLvKqT2-2xa1PbRM-7g-6r896LT4PHYKj7fc74W93Qn2Pcid67rNYTI9ZVFYPPtOXbyE7Uw95PNqPVSQ-jwFeay8_KAYvYfeory3fvY7qolUPbjjsLqk1BI8zkKxvN6P27yEjgw9H4IqvJaVprxVj7q9vjk3PBeZJbwtj5o8hnvAPD0SqzstuBo9LZm-ujIcQDpgZ4Q9-RG_vT1rEjwu8h28by6Zvc3LfrvnzFE9uKCIPVl9Hrwiiuk9_fsnvcH-a7yhEY27ubAkvODC9LoOPgM95zrIvS8zbDyQ2Vm9sCNpvDWlCLz-LNa8YVygvPO-O7x4kbK7T0EZPaJE7Lt7LS29R2OzvfC-iDl4H4w9IrFzPYByCLsti5M9nq8ePaCiDzoW65o9Eav_vWzXAbqVDAC9V19YvTNTczh4jce9AmP9vMe21jfHZxI-rqDpvZAJtLlmYVQ9t_GHPUrcsTkHluO9-5vrPDSVejfXEME8QH30O_k5MrhcVAu9nBXxvdyedTm8d_U7yywCvb6YAbnWd7i7JoqAPYqmlDiYOE095gfJvBMKFbmMRGw7YcxxveoEmLjmVr09ZcjxPW8rajcezOC71vFOvT_mJbmChog8bXMhvEeU1bp1mrs8pN_-PBo22LcKKWS860NtvaRZ8zaxEpg9Z2_bOzK_STgzNH49T5Z6PbV1qzfclBw9TqKUPbrAhzeLFoA9RCrBvX0qIzjhanM9Zz1BPWX26bia_5y90JCbPQLbLjgEEI09er0AvQUwgDgpugS9hS2RvEudB7lPJHi9OCZVPH23PTfB4ys-3KVovAeJdLmTjJy8JrGqvfcB27hIlkK9LBHDvcHMj7hVMRO8TplbPQ2vyzcU9E09tL2nvZeXjbci_-w9NSkFPvN-W7h8Yo29IQPZPYE1MLmyq4-9fLr6PHOUNDfAcmm9-DuvvFC4tLcgADgTQAlIbVABKnMQABpgJwEAN-8V7S4FU9f2IwouxQQSzA3FQP9EBv_iVObxBg7bwjr8_yDHFv6eAAAAMebdI8UAHX_evAkSDSPPtdLVaTFbUA4uvsnwDN_cNvHH7-kZMSNhAPwD7yJSFfM5CiUUIAAtuTUUOzgTQAlIb1ACKq8GEAwaoAYAAEhCAADIQQAA-EEAAETCAADgQAAAwEAAAKxCAADQwQAAOMIAAFBBAACQQQAAosIAABDCAABQwQAAqEEAAFDBAADIQQAAYMEAAPBBAADwwQAAbMIAAETCAABMwgAAXEIAAIjBAAB8wgAAVMIAACjCAADIQQAAREIAADTCAABwwQAAtMIAAFBCAAA8wgAAKMIAAEDAAACoQgAA4EEAADxCAAAEQgAAkEEAADRCAABowgAAKEIAALzCAACAvwAAwEAAAK5CAABwQgAAQMIAAIA_AACgwAAAkEEAAPBBAADgQQAAAMMAAJBBAADgwAAAgkIAALBBAACOwgAAUMEAADDCAACAQAAAnMIAALDBAAAYwgAAJMIAADzCAABsQgAAhkIAAETCAAA0QgAAwMAAAI7CAACGwgAAUMEAABBBAADAQQAAAMIAADhCAACgwAAAkMEAAOBAAABMQgAAYMEAAJBBAACaQgAAoMEAAKBAAADIQQAA8MEAAFDCAAAgQQAADMIAAPhBAAAQQQAA0EEAANBBAACiwgAAMEIAAMhBAADowQAAWMIAAFBBAAAEwgAAJEIAAAzCAAAMQgAABEIAANBBAAAwwQAAQMEAALDBAACoQgAAoMAAAADBAACAPwAAyMEAACjCAADIwQAAwMEAAODAAACYQQAAcEEAADDBAADowQAACMIAABBBAACowQAAYMIAAEDBAAAwQgAAJMIAAIhBAACQwQAAuEEAAJBBAACawgAAAMAAAABBAAB4QgAAgMEAAGhCAAAgQQAAcMIAAMhBAACAwAAAEMIAAATCAAAUQgAAOEIAAOjBAABAwQAAMMEAABDCAACAwQAAkMIAABBBAADIwQAADEIAAIBAAAAwQQAACEIAAFBBAACowQAAKEIAABhCAAA4wgAACMIAAGhCAAAAQQAAQEEAABjCAADYQQAAqEEAACTCAABAQQAAKEIAANDBAABswgAA0MEAABDCAACGQgAAHMIAAFDCAAAEQgAAGMIAAIBAAACAPwAANMIAAIDAAAAwQQAA4EAAABRCAABYwgAAsEEAAAzCAABIwiAAOBNACUh1UAEqjwIQABqAAgAAkr4AAJg9AAAsPgAAoLwAALK-AAAUvgAAlj4AAAG_AAA0vgAAcL0AAMi9AAAcvgAAoLwAAHC9AACovQAANL4AABA9AACAuwAAuj4AAOo-AAB_PwAAuD0AAFC9AADgPAAAJL4AAKC8AACgPAAAqL0AAEA8AAC4PQAA4DwAABy-AAD4PQAAED0AAOg9AAA0PgAAyD0AAMi9AABwvQAAqL0AAPi9AADoPQAAPD4AAOC8AACAOwAAqD0AAAw-AABkvgAAEL0AAPi9AACoPQAAij4AAAw-AABwPQAAyL0AAOC8AAC6PgAAUL0AAJi9AACSPgAAgDsAALg9AAAUPgAAUD0gADgTQAlIfFABKo8CEAEagAIAAJ6-AAC4PQAA2L0AACW_AABwvQAADD4AAEw-AACgvAAAuL0AAIA7AABsvgAAdL4AABC9AADIvQAARD4AABC9AABwPQAAFT8AAOC8AACyPgAANL4AAFC9AADgPAAA-L0AAOA8AABQPQAAEL0AAIA7AABwvQAA2L0AAEC8AAAkPgAAcL0AAFC9AABwPQAAHL4AALI-AAB0PgAABL4AAGS-AACYPQAAmD0AAFC9AACIPQAA2L0AADC9AAB_vwAAdL4AAIi9AADCPgAAkj4AALi9AACAOwAAgj4AAIC7AADgPAAAgLsAAJg9AACAOwAADD4AAI4-AAAcPgAAoDwAABS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=YOxtwbE2YvE","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9617549726963085593"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"12588126359084188325":{"videoId":"12588126359084188325","docid":"34-10-17-ZDB3F20C4B331FB1C","description":"This is the second and last part of the consumption savings model with credit constraint series. Created by Justin S. Eloriaga Website: justineloriaga.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1535003/79eb0f28b4953c50a691fe1aa5c612d6/564x318_1"},"target":"_self","position":"6","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4jlM9kxLpi4","linkTemplate":"/video/preview/12588126359084188325?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Consumption Savings Model with Credit Constraint (Part 2)","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4jlM9kxLpi4\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhYKFDEyNTg4MTI2MzU5MDg0MTg4MzI1WhQxMjU4ODEyNjM1OTA4NDE4ODMyNWqvDRIBMBgAIkUaMQAKKmhoaGZmcGRkaW94cnp2b2JoaFVDNXNFclFTNWg0SzczQWRDTWREY1RoURICABIqEMIPDxoPPxPZA4IEJAGABCsqiwEQARp4gf8E-wH-AgAQABAAAgf_AQIOBvT3__8A7QL8BAAAAAACDA4GBAEAAAQG9wECAAAA9v7-_vz_AAAODf3--AAAABzwAgH7AAAACQf89wn_AQH2_wD9-QEAAA0BCgUAAAAA_AL_7gAAAAD5Cfr_AAAAAAnvAv4AAQAAIAAtE_PZOzgTQAlITlACKnMQABpgFAkAGB3mwewFSebSDOogChgh5unvCP8G7wDiLv3sMN3eyhHl_0vKAfe3AAAABQ_vCRUA-2Pz6PUZCTISzewOHSd5KxXzA_D5_AHqAOT6IfwBDesrABr4Fx0fzPR_1lUqIAAtJbM5OzgTQAlIb1ACKq8GEAwaoAYAABhCAAB8QgAAeEIAABTCAACYQQAAIEEAAJpCAADAwAAASMIAALDBAAAQQQAAeMIAAIjCAACwwQAA4EEAABjCAAAAwAAAhsIAAOhBAABkwgAADMIAAEDCAABMwgAAKEIAAOBAAAAUwgAAJMIAAIjBAACIQgAAGEIAAGzCAAAAwAAAvsIAADRCAABcwgAANMIAAIDAAACCQgAA4EAAAGxCAAAAwQAAsEEAAEBAAAAkwgAAgMAAAJTCAABwwQAAgD8AAEhCAABcQgAAnMIAAKDAAACAvwAAQEEAABBCAAAMQgAA5sIAAEBAAADAQAAAGEIAAADAAAB4wgAAUMEAAHDCAAA8QgAApMIAABTCAACwwQAAgsIAAFjCAACyQgAAikIAAJjBAAAgQgAALMIAADTCAABMwgAAMMEAANBBAADgQAAA4MEAAIpCAABAwQAAYEEAAIBBAABIQgAAuEEAAOBAAAA4QgAA2MEAAKBBAABkQgAABMIAAEDCAAAAwQAAiMIAAJhBAACQQQAA8EEAAHBBAABswgAAVEIAAERCAABQwgAAhsIAAOBAAAAAAAAACEIAANjBAABUQgAABEIAAMBBAADAwQAAQEAAAAAAAACcQgAAEMEAAODAAABAwQAAMMEAAMjBAACwwQAAgMEAABzCAACgwAAAoEEAAIA_AAAEwgAAgMEAACDBAACYwQAAcMIAAEDBAADQQQAAsMEAAFBCAAAwQQAAMEIAAABBAABswgAAsEEAAMBAAABMQgAAuMEAAJhCAACgwAAAhMIAAOhBAADwwQAAYMEAAJjBAABcQgAAVEIAAABAAAC4wQAAPMIAACDCAAAwwQAADMIAAADAAACYwQAAWEIAACDBAACowQAAyEEAAADAAAAAwgAAqEIAACBCAADAwQAAHMIAAKhCAABAwQAAMEEAACTCAACAvwAAkEEAALjBAABAQQAAVEIAAEDCAACAwgAABMIAAMDBAAB4QgAAQEAAAFTCAACAwAAA4MAAAJDBAACIQQAALMIAACDBAAAEQgAAwMAAABhCAAAgwgAACEIAAIjBAADYwSAAOBNACUh1UAEqjwIQABqAAgAAir4AABC9AAAwPQAAoDwAALq-AAAMPgAAJD4AAAO_AAAsvgAAuD0AAFA9AABwvQAAED0AACQ-AABQvQAAlr4AAHQ-AACoPQAATD4AAOI-AAB_PwAA-L0AAHS-AAC4PQAAUL0AAKC8AACovQAABL4AAIA7AAAsPgAAgLsAAJi9AAAEPgAA-L0AAEA8AABwvQAARD4AAPi9AADovQAA2D0AAIK-AAAkPgAALL4AAKC8AACYPQAA4DwAAI4-AADYvQAA6L0AADy-AAA8PgAALD4AAK4-AACCPgAAHL4AAKg9AAANPwAAJD4AAII-AACCPgAAcD0AAOC8AAAMPgAAhr4gADgTQAlIfFABKo8CEAEagAIAAI6-AAAQPQAAiL0AADe_AADoPQAARD4AAGQ-AAAEvgAA4LwAAEw-AACovQAAmL0AABA9AAAUvgAAmD0AAOC8AACIPQAAGT8AAFy-AADGPgAAFL4AAKC8AADoPQAADL4AAMg9AACIPQAANL4AAIg9AACovQAAyL0AAIA7AAAsPgAAgDsAAEy-AADoPQAA2L0AAHQ-AAAMPgAA4LwAAEC8AABEPgAAbL4AADy-AACAOwAA-L0AAMi9AAB_vwAABL4AAFS-AADOPgAAij4AAOi9AACIPQAARD4AAOi9AAAQPQAAcL0AAKi9AACAuwAAgLsAALg9AABQPQAAqD0AAJg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=4jlM9kxLpi4","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["12588126359084188325"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11893120083136649420":{"videoId":"11893120083136649420","docid":"34-2-8-Z0DA294133B1F71EC","description":"This video details the derivations on forecasting using the Autoregressive Model Created by Justin S. Eloriaga...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2205938/21c22fb67937defdf608b1f14b7be58a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lDkHwgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqcF4VyZq8Xs","linkTemplate":"/video/preview/11893120083136649420?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Naive Forecasting using the Autoregressive Model","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qcF4VyZq8Xs\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhYKFDExODkzMTIwMDgzMTM2NjQ5NDIwWhQxMTg5MzEyMDA4MzEzNjY0OTQyMGqIFxIBMBgAIkUaMQAKKmhoaGZmcGRkaW94cnp2b2JoaFVDNXNFclFTNWg0SzczQWRDTWREY1RoURICABIqEMIPDxoPPxPKBoIEJAGABCsqiwEQARp4gQYFAQn8BAD7CgD8_QMAAQYG-AD3__8A8gIRBf0B_wD9AwD59wEAAPr_AQUIAAAA_gUFB_7-AQAQAwL1BAAAAAz7AAABAAAA_wjy_f8BAAD9-_33AgAAAAQI-woAAAAA8BP_-____wD9AgwOAAAAAAP5_gMAAAAAIAAt0DXfOzgTQAlITlACKoQCEAAa8AF_3CYA2vbmAcoxAQDlDggB1cg7_zhB3f_hGfMBydICAcMg-AAC6d0An_wcALIIAf_898f-BPgQ_0Pl5v_8APoACAPFAQPCI_9CFTL_3_HPAO4OGf_x0Sv_IePjAA3e4f_6_BUAFAT8A87TwAfu700DIfkW_foVBv4T3yoC5gToAPXR7gIQF_39Frcb_d30NAhQ4tsGARgC-b5BBgP79OH88fIf-Nw46fo8_AIE7wf7-bwNBAnkHeQM9QUQ-80Jzv0J6wT_8-MJ_efhBgse3Ovz9_0PB_fK8hAlBOMG9NwQEtfdA_utBPzs5hT35_r3-O4gAC18swY7OBNACUhhUAIqzwcQABrAB3pR475vUSC6hTJDPL06BTvWBAy9lXDXvF8lf70UrzI8GaKSuxR6DT6NDqM8OgLdPBToM77779w8WdOGvLXhkD66ETa9GokwPRmBor1Atbs94aRfvW077b19uD-8GvIVPAj3hL09uze9xugQOyfAcD30zhm8T7HqvG-LCL1DRwe6I9gYvSgTMj2wXyu9sac9va1_4Tyzxb-8xE8tvAtVGz3kn_y7ONTWuxasJzxxtak8-8Qmu9YxM72NUvg8ND_IvFb1srxPubg8DQScPEq4i72tMtO8R1ACvNlsNj3cAKI8NhLXO6xjCz0NBjI8WuybvO5lET3n2ZE8Clc0u8qpPb7bFrU9tEz7uL-4FD7jC0m8prvGvLDi1L11Nsk9PI5VPHeKED0CZ4S9vxwLvPQ04D04k8A9dwJQPA9WbT2FIde8LzylPI1KJT3WIyg9LPOWPHXWnTx_ufs8KEmyvKYTRD3VTl69-Y2nu-nw0L1sejA96fORvC2PmjyGe8A8PRKrO0VO_LuSdRg9nSbYPKA9Uj3MHxi9SNoyPFxNqLy5clG9b1azvJJWsT25Nek9ukyPukOpHT4fatu9xJqpOUctTzpAFgE81pVHuwLIij04jI29FMdkuwjb2byRyp48oB42vP4s1rxhXKC88747vHrkCr0Teyo7_xLpu_GeY71ddo69idXGuQMnuz1NrIK83tsAuxTIMT0e8pA9t5DiuYFb9z0IS5a9-F_uOC7Og71hCC-9qKjKuV-UhbzwtEa8bMhfuMdnEj6uoOm9kAm0uSinjD3DjH89d26BOSMSFb4U9Rc8dbsCukf6_jyEkD09GhNNN_yzVb13PbK9hRswuLGWcbx-c1q89_8zO284Ar3Z7q491MswODrp_Tvtdw29h-1suS1BJr0iTsy7lH8LueLlCT7JucM9IMgVOZq2nz0ER7i8zRsHOHWkRLwS6a08FWNLuQWEHLxZuic8yAMbtgopZLzrQ229pFnzNmA84z34iF09-HB3OEPTmD3LYLE81H91NwxMODyDrYg84SxCubETgzy2sbO9FanpODhozz03dqS8K7NkuLSQEL7YjKI9mXsEt8gsVrxtG8a8HHskuJTdjLx4h8q8LidoOEIoSrzbk3a8SZwUOPcBKD5wYd298We_uYQPpTtr7UK9Bo6TuG9FZ720Fpu9TnD4t5vSj7vi5I49YN5HN_Z0ej3gD9-9P5mbt8r0cD0i4Ss-8cuKOB44gr0z8549nOfyuGKCWr1bIGY9ZDW7N3CZrrxw-um8D2e4NyAAOBNACUhtUAEqcxAAGmApBgAl9uPk9ANH4PDQ6wf7_CPvGMcR_wHmANdIBvMR8OvFHxMAGske6rQAAAA6Py5A6gAZa_vR-vvqLwDDu_v_Pn8XFyyn7NYLDtQvCukC8iILB2kAOwfaBBrhFir5Kh4gAC2Ewyk7OBNACUhvUAIqrwYQDBqgBgAAeEIAAEBBAAAwQgAA-MEAACBBAAAAQQAAhkIAALDBAACgwQAAQEAAAABBAACGwgAAAMIAAIDBAADYQQAAwMEAAPhBAACYwQAA6EEAABTCAAB4wgAAcMIAAL7CAAAIQgAACMIAAFzCAAAgwgAAAMIAAMBAAAAUQgAAZMIAANBBAACawgAAsEEAAIzCAABwwQAAAEEAAJZCAADYwQAAsEIAANhBAACwwQAALEIAACTCAABAQQAAqsIAAADBAAAEQgAAkEIAAAhCAADYwQAAiMEAAIA_AACIQQAABEIAAOhBAAAAwwAAsEEAAGBBAACgQQAAwEEAAILCAAAUwgAAYMIAAODAAACswgAA8MEAAETCAABQwQAAhMIAAFhCAABMQgAAwMEAANhBAACIwQAAbMIAAETCAAC4wQAAgL8AAJBBAAAgwQAAcEIAAHDBAACAQAAAEMEAAERCAAAgQQAA4EAAADhCAAAYwgAAGEIAAIxCAAC4wQAAFMIAAADBAAAwwQAAgMAAAKDAAACAPwAAiEEAAJrCAAAcQgAALEIAABjCAAAwwQAAgL8AAADCAACAQQAAGMIAACBCAACYQgAAPEIAAHDBAACIwQAACMIAAExCAABAwAAAkMEAABTCAABgwgAAwMEAACDCAAAowgAA4MEAABBCAAAwQgAAEMEAACDBAADQwQAA4EEAABDBAABIwgAACMIAADBCAAA8wgAAwEEAAMjBAAAYQgAAEMEAAMjCAACAwAAAoMAAABRCAAA4wgAAEEIAALBBAAAowgAAEEEAAKDBAAAAQAAAAMAAABhCAACUQgAAEMEAAETCAAD4wQAAkMEAAADCAADUwgAAIEEAAFjCAAC4QQAAoMAAAIBBAAAgQgAAFEIAABTCAABgQgAAKEIAAKDBAAAIwgAAEEEAAEBAAADAwAAAPMIAAPBBAADIQQAAwMEAAPBBAACgQQAAOMIAAKrCAAAAAAAADMIAAFRCAADAwAAAZMIAADBBAACwwQAAEMEAAIDAAAAEwgAAgD8AALBBAACoQQAAFEIAADzCAABAQAAAkMEAAEDCIAA4E0AJSHVQASqPAhAAGoACAADIvQAAND4AAFw-AACAOwAAtr4AAAQ-AACgPAAAAb8AAHy-AADYPQAADL4AABA9AAAQPQAAuD0AAIC7AADovQAABD4AAEA8AACYPQAAzj4AAH8_AAAUvgAAiD0AAMi9AABkvgAA4LwAAJi9AADYvQAAkr4AAKg9AACgPAAAyD0AABw-AACYPQAAXD4AAFy-AAAEPgAA6L0AABC9AABwPQAA2L0AAAy-AAA8vgAAuL0AANi9AAD4PQAAQDwAAFy-AACGvgAAZL4AAHQ-AAAsPgAA-D0AABA9AABcvgAAgDsAACs_AADgPAAATD4AADQ-AABAPAAAfL4AADA9AAAQvSAAOBNACUh8UAEqjwIQARqAAgAARL4AABw-AAAMvgAAI78AANg9AAAsPgAAJD4AAIi9AABQPQAAgLsAADS-AADgvAAAgLsAAHS-AAAEPgAAoDwAABw-AAA3PwAA2L0AAKo-AACevgAAbL4AAI4-AABwvQAA2L0AACw-AAAMvgAAoDwAAHA9AAA0vgAAgDsAAKg9AABQvQAAiL0AAIC7AADIPQAAUD0AAAw-AACAuwAAPL4AAGQ-AABAvAAAEL0AAOC8AAAMvgAAHD4AAH-_AACuvgAABL4AAK4-AACWPgAAmL0AAIg9AABUPgAA2L0AADA9AAAQvQAAuL0AAJi9AABAPAAA2D0AAIA7AACYvQAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=qcF4VyZq8Xs","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1874,"cheight":1080,"cratio":1.73518,"dups":["11893120083136649420"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8657537729533720915":{"videoId":"8657537729533720915","docid":"34-11-13-ZC48CE746D1BE0465","description":"This video derives the conditional forecasts of a Moving Average model Created by Justin S. Eloriaga...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3193982/29784e33f57450cce394b0bc9f0c0fec/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/sMeRdwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DasVnB6imZEI","linkTemplate":"/video/preview/8657537729533720915?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Naive Forecasting Using a Moving Average Model","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=asVnB6imZEI\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhUKEzg2NTc1Mzc3Mjk1MzM3MjA5MTVaEzg2NTc1Mzc3Mjk1MzM3MjA5MTVqhAkSATAYACJFGjEACipoaGhmZnBkZGlveHJ6dm9iaGhVQzVzRXJRUzVoNEs3M0FkQ01kRGNUaFESAgASKhDCDw8aDz8T8AeCBCQBgAQrKosBEAEaeIED-v0C-wUA9QILAAIE_gELCQcA9wEAAPMIB_z3Af8ABwn89_sBAAD29gAGBgAAAAEE_AP9_gEACAb7-QQAAAAR_gD5_wAAAAcG_wL-AQAA9voG-QIAAAAF_gMEAAAAAPUKA_oCAAAA__wDCgAAAAAH-_4JAAAAACAALVlC4js4E0AJSE5QAiqEAhAAGvABf9wmAL0K2gABGwAA0AYFAZr1LP8hKt0AxxIE_7jo3AHdDwIAAundAJwmIAKZ_vcBEtrJAA3m_wAvA9__8fH9AQ_18gEmryAASwMZ__7xy_73-S7_BuM2ADfz6gAIDez-FAwGAAn61QHrA7wCEf5EAfscKv8c5Qj_B_kyBPYK8v3l6_cI6gP-BAjHDgH28yn-OvLd__sI7P-sResAGQbm_fHyH_jdRvoDMO4FCOH8Avnb6e0GCRLkA-YOKATiFdwJB-357vDy_fzb8PIJHtzr898A9gYmsvoKJQTjBubTAgrC6_T6sPwKCLoL9fDxIQDvIAAtfLMGOzgTQAlIYVACKnMQABpgHAEAN9v8ACDsTdv_zvAk4f__BTDKE_8GzAC-XfrlDunExQYH_z_M6_moAAAALR0STAoACnj67t4X0Szq5MUEBSVlABtSvOrSBBG7SOXo3domH_R_ACbqzggcGPkxDBYvIAAtJAIeOzgTQAlIb1ACKo8CEAAagAIAAHy-AACKPgAAfD4AAGS-AABMvgAApj4AAJI-AAARvwAA4r4AALi9AAA8PgAATL4AADC9AACKPgAAgLsAAGy-AABsPgAAoDwAAIo-AACiPgAAfz8AAFS-AADYPQAAcL0AAHC9AABwvQAA-L0AAOi9AAAkvgAAkj4AAAw-AAC4vQAAJD4AAGy-AADYPQAABL4AAJ4-AACivgAAor4AAHC9AABAvAAAUL0AABA9AACgPAAAcL0AAKA8AAB0PgAAVL4AAEy-AACOvgAA-D0AAEA8AAB0PgAAqD0AABw-AAAEPgAA_j4AAIC7AADCPgAAXD4AABA9AACYvQAA-D0AAKg9IAA4E0AJSHxQASqPAhABGoACAACYvQAAMD0AACS-AAATvwAAgDsAABA9AACYPQAAHL4AAPi9AABQPQAAmL0AABS-AACovQAAVL4AAIg9AABAvAAA4DwAACU_AAAsvgAAjj4AABC9AADIvQAAUD0AAPi9AAAwvQAAiD0AAI6-AADgvAAAED0AABA9AABwPQAARD4AADy-AADgvAAAuD0AADA9AAB8PgAAyD0AACS-AABsvgAAXD4AAKA8AAA8vgAAoDwAAAS-AAAsPgAAf78AAIq-AABQvQAAQDwAAFQ-AADYvQAAQLwAACw-AAAQvQAAqD0AAEC8AAAQvQAAiL0AADw-AAC4PQAAoDwAAEC8AAD4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=asVnB6imZEI","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1634,"cheight":1080,"cratio":1.51296,"dups":["8657537729533720915"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14312559829676368883":{"videoId":"14312559829676368883","docid":"34-7-5-Z57482A58F0F67164","description":"This video goes through the Fixed Effects Model using a time averaged approach and the fixed effects model using dummy variables. Source: Econometrics: A Modern Approach Created by Justin S...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/998069/f256b38f9b849730d1f1a16481d141d4/564x318_1"},"target":"_self","position":"9","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dv57WozC3wiE","linkTemplate":"/video/preview/14312559829676368883?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Fixed Effects and LSDVs","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=v57WozC3wiE\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhYKFDE0MzEyNTU5ODI5Njc2MzY4ODgzWhQxNDMxMjU1OTgyOTY3NjM2ODg4M2qvDRIBMBgAIkUaMQAKKmhoaGZmcGRkaW94cnp2b2JoaFVDNXNFclFTNWg0SzczQWRDTWREY1RoURICABIqEMIPDxoPPxOmCYIEJAGABCsqiwEQARp4gfwJ9QH7BQDwCAL8-wEAARz3-fr1AgIA4w32BAL8AgDtBAjzAAAAAAT4CAQAAAAA9gT6AgL_AAAMBvUDAwAAAAT__gICAAAADgP4_v4BAAAIBA4GA_8AAAADAgH_AAAA_AEDBf7_AAD9DAD6AAAAAAX8-f4AAAAAIAAtYD3hOzgTQAlITlACKnMQABpgDwYAQwELt8NYNgAU6s4m1sH_B7YZ6f8S4_8CG7nr3NMAAFcYAErfAfefAAAAK94lIrQA8Xu028smAggOy-z-GwJ9IwD32eMo6OUCIcfGSrIW9Q0PAIHOBy7mDN8pFVAbIAAtYGITOzgTQAlIb1ACKq8GEAwaoAYAAARCAAAEQgAAMEIAAIDBAAAYQgAAMMEAAJJCAAAAQgAApMIAAEDAAAAwQgAAoMIAAJjCAADAQAAASEIAAADAAAAgwQAATMIAAKjBAAA8wgAAwEEAADDBAADQQQAAHEIAALDBAACgwQAAMMIAAKrCAAC2QgAAqEEAAFjCAADIQQAA8MIAAABAAAAIwgAA4MEAAMDAAACuQgAAUMEAABRCAACIQQAAgMAAAMhBAAAAQQAAEEIAAEjCAAAwwgAAUMEAAGRCAABwQQAA3sIAAOBAAACgQAAAkMEAAERCAACAQQAAAMMAAIDBAABgQQAAAMEAAABCAAAQwgAALMIAALDBAAD4QQAAqsIAAAjCAADQwQAA-MEAADDCAACkQgAAqkIAAIBAAAAAQAAAmMEAAIzCAABwwQAAMMEAAPhBAAAMwgAAiMIAACRCAACowQAAiEEAAAjCAACwQQAAgD8AAKhBAACQQgAA8MEAAPhBAADAQAAAAAAAAIzCAACgwAAAaMIAAABBAACIQQAAiMEAADTCAADgwQAAdEIAAEBCAACYwQAAiMEAAKjBAAAgQgAATEIAAEDCAAAkQgAAAMEAAHBBAACYQQAAHMIAAHBBAACaQgAAiMEAAKDAAAAEwgAA-EEAAIhBAABIwgAAMMIAAOjBAABQQQAAKEIAADjCAACIQQAAgMEAACBBAADIQQAAkMEAAKDAAADAQAAAUMEAAOhBAACgQQAAQEEAAEBAAACgwgAAgEEAAABAAACIQQAAgMAAAExCAAAwwgAAeMIAAKhBAADowQAAAEAAAEhCAAAAQAAAOEIAAEDAAABgwQAAXMIAAODBAABYwgAAqMEAAOBBAABwwgAA-EEAAKDBAACwwQAAAMAAAIA_AAAgwQAAikIAAEBCAAAAwgAAVMIAAJxCAAAEwgAAYEEAAIDAAAAAQgAAYEEAAHDBAAAAAAAAhkIAAODBAAA8wgAA2MEAAKDBAAAEQgAALEIAAEjCAAAUQgAA2EEAAFDBAAB0wgAAQMIAANhBAACgQAAAgMAAAAhCAAB8wgAAwMAAACTCAAAkwiAAOBNACUh1UAEqjwIQABqAAgAAgDsAAFw-AACIPQAAuj4AAHy-AABkPgAADL4AACO_AAAUvgAA-D0AABQ-AACCvgAAyD0AAJY-AADovQAA2L0AAHA9AADoPQAAij4AAAc_AAB_PwAARL4AANi9AABwPQAAFL4AADA9AADgvAAA4LwAACw-AAA0PgAAmD0AAES-AABMvgAAgj4AABw-AACIPQAAcD0AAI6-AACOvgAAlr4AAAS-AACIvQAAdD4AAOi9AAA8PgAAUD0AAKC8AADovQAAML0AAMK-AADYPQAA2D0AAM4-AADYPQAAML0AAOA8AABbPwAAmL0AAKI-AACgvAAAgLsAAIA7AACgPAAA6L0gADgTQAlIfFABKo8CEAEagAIAAIA7AADovQAAuL0AABu_AADgvAAAbD4AABQ-AAC4vQAAFL4AALo-AACIPQAAoLwAAGQ-AACovQAAyD0AADC9AADgPAAAQT8AAMi9AAB0PgAAEL0AAAy-AAAUPgAAQDwAAIA7AAAcPgAA4LwAAOA8AAC4PQAAMD0AADA9AACIvQAAoDwAABS-AAAEPgAAUD0AADQ-AABkPgAARL4AAES-AACGPgAAED0AAGQ-AABwvQAAqD0AAHA9AAB_vwAA6D0AAIA7AADgvAAAZD4AADS-AABcPgAAgDsAAFC9AABQPQAAMD0AAHC9AACAOwAAiD0AAGw-AACYPQAAFL4AAKA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=v57WozC3wiE","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14312559829676368883"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7067230958716663321":{"videoId":"7067230958716663321","docid":"34-4-1-ZD2BA999A0E881DF0","description":"We discuss the concept of the variance inflating factor or VIF as well as how it relates to tolerance and our overall lesson on multicollinearity. Created by Justin S. Eloriaga Website...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3578229/225d53fc04e937fdf9b4a61b70f29a17/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2_lCpgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAGBdDCbEBuU","linkTemplate":"/video/preview/7067230958716663321?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Variance Inflating Factor and Tolerance","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AGBdDCbEBuU\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhUKEzcwNjcyMzA5NTg3MTY2NjMzMjFaEzcwNjcyMzA5NTg3MTY2NjMzMjFqtg8SATAYACJFGjEACipoaGhmZnBkZGlveHJ6dm9iaGhVQzVzRXJRUzVoNEs3M0FkQ01kRGNUaFESAgASKhDCDw8aDz8T8gOCBCQBgAQrKosBEAEaeIH6__z3Af8A9fgGCQ8G_AH4AAUK-f39AP4MBQ__Bf4A8AsC-_kAAADzA_oHAQAAAPb-E_r6_wEAEwv19gQAAAAP-vz09QAAAAkI_PcJ_wEBCwACAAP_AAACCu8J_wAAAAIQEgT_AAAAAwQL9wAAAAD_BPTxAP8AACAALcszzjs4E0AJSE5QAiqEAhAAGvABbAT8AdIL_P8LBuIA3x3qAIEFC_8pDtUAw_8AAMv51gDyEucA2u75APgjFP_MEwYAG_Hi_w7zCQEm8wD_HAUMAAkRBAA76QoBHRMUAP4C-v_nGw3_DuYVAADt9AAKEvb-HPHxAN8H4gALAOACEuwhAg35DgMaBAsG7gQCAPYeEQP5_OcACfoFA__6AwTjAxkBBPTy_wkfBfvgAf4E_Pjr_f7oEf0QCOsDKf4BA_wIAv738fYBBgztAhf7GgT0Cf8E_u8G9wn0BPzpBgwBIt0NAe73EgQH7QoE8Qz4Af7YB_nt_AL57xYBAPr6Dgr8-vv0IAAtbidIOzgTQAlIYVACKnMQABpgKvoAMwQ-tMoAOerc4f4L7Pkx40HX5__kpP8FChXHB_bYuvMZAFbeDu6eAAAALuj7G6UACX_z4xUKy_Ud1rEOR-NkHTFBs9QfFP3w0hnl8S3tJuJkAOcIpBZBydciJSYDIAAtF3gVOzgTQAlIb1ACKq8GEAwaoAYAAIBAAAC4QQAAAEIAAIDBAADwQQAAgMAAABBCAADQwQAAVMIAAKDBAAAIQgAAgsIAAGTCAAAowgAAhEIAALDBAACYwQAARMIAAAzCAACIwgAAIEEAAPjBAACAwAAAXEIAADBBAABUwgAAjsIAAJjCAADAQgAAuEEAAMjBAACIQQAArsIAAKBBAAAAwgAAkMEAAHDBAACWQgAAAMIAAHxCAADgQQAAmEEAAEhCAACQQQAAXEIAAKzCAAAkwgAAAMIAAJxCAAAAQQAAmMIAANBBAABQQQAAwEAAAFBBAAAcQgAAAMMAAABBAADQwQAAiEEAAHBBAAA4wgAADMIAAEzCAAAkQgAAYMIAAJDBAAAwwQAAiMEAAEjCAABoQgAAgkIAAIjBAAD4QQAAwMAAAITCAACwwQAAwMAAABhCAAAkwgAAGMIAAMBBAADwwQAAQEIAAAAAAABAQQAAQMAAAJhBAACkQgAA0MEAABBCAACAPwAAoMAAALbCAACQwQAAOMIAAADAAABwQQAAAEEAACzCAABQwgAAlkIAAIRCAABwwgAAQMEAACDBAADAwQAAWEIAAEjCAAD4QQAAgMAAAJhBAAAAAAAA4MEAAMBAAADYQQAA4MEAAAjCAAAcwgAAAEEAAMBAAAAUwgAAgMIAAIDBAACwQQAA-EEAAJDBAABAQAAALMIAAKDBAAAwQQAA4MEAABTCAAAAQgAA4MEAAIA_AADQQQAA4EAAANjBAADOwgAAUMEAAKBAAABQQgAAgMAAABxCAAAgwgAAoMIAAIA_AAAwQQAA0MEAAKBAAADwQQAAJEIAAIBBAACQwQAAuMEAAKjBAAAgwgAAYMIAAKhBAADAwQAAqEEAAMDBAAC4wQAAQMAAAOBAAAAAQAAAFEIAAKhBAAAAAAAAlsIAAGhCAAAcwgAADEIAACDBAADgQQAAoEAAALDBAAAIQgAAwEEAANhBAABIwgAAAEAAAAjCAADEQgAAgD8AAGDCAACgQQAAMEEAAMDAAAAowgAAXMIAALBBAADAwQAAwEAAAOhBAACewgAAwMEAAFDCAAAowiAAOBNACUh1UAEqjwIQABqAAgAA2L0AAAS-AAA8PgAAFD4AAFS-AAC4PQAAmL0AAAe_AABQvQAADD4AAAQ-AADgPAAAND4AAAw-AAAsvgAAJL4AAHQ-AACYPQAAkj4AANI-AAB_PwAA4DwAAEC8AACoPQAAML0AALi9AACgvAAAoLwAAGy-AABUPgAAUD0AADA9AACWvgAAgDsAAPi9AADIPQAAHD4AADC9AABMvgAAmr4AAGS-AADYvQAAED0AAEC8AAAwPQAA2L0AAIA7AAC4vQAANL4AAHy-AACIPQAAoDwAAEw-AACAOwAARL4AABC9AAA7PwAAqD0AAFA9AACKPgAA2D0AACS-AACAOwAAMD0gADgTQAlIfFABKo8CEAEagAIAAEC8AABMPgAAiL0AAC2_AACgPAAAgLsAAFC9AABwPQAALL4AAIo-AADgvAAA2L0AAJg9AACevgAAEL0AAJi9AAB0vgAAIT8AAPi9AAA8PgAAoLwAALi9AABMPgAAHL4AAEC8AAAwvQAAvr4AABA9AABQvQAA6L0AAEA8AAC4PQAAgLsAAIC7AABwvQAAXL4AAIY-AAAMPgAALL4AAFC9AACIPQAABL4AAFS-AACovQAAgDsAADA9AAB_vwAAED0AAEC8AADoPQAAHD4AAAy-AACKPgAARD4AAEy-AACAOwAAcL0AADS-AABwvQAA4DwAAOC8AAAwPQAAEL0AAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=AGBdDCbEBuU","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":972,"cratio":1.9753,"dups":["7067230958716663321"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3423467843955657050":{"videoId":"3423467843955657050","docid":"34-2-14-Z52ED0D1B32BADDA2","description":"This video is a brief extension of the video in the last video on Building a Vector Error Correction Model in R. In particular, this goes through forecasting by visualization using a Fanchart.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2958157/50508598d0b5e3e537032a519675822e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XVsCgQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNZOG0zfkHMw","linkTemplate":"/video/preview/3423467843955657050?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Forecasting using VECM in R","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NZOG0zfkHMw\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhUKEzM0MjM0Njc4NDM5NTU2NTcwNTBaEzM0MjM0Njc4NDM5NTU2NTcwNTBqtg8SATAYACJFGjEACipoaGhmZnBkZGlveHJ6dm9iaGhVQzVzRXJRUzVoNEs3M0FkQ01kRGNUaFESAgASKhDCDw8aDz8T4QGCBCQBgAQrKosBEAEaeIEH8AEB_gIA_AAQBQcH_AEGB_gA9___APIPBfkEAQAA7_wA9PkAAAD5BAT3BwAAAP0GAfv6_gAAEPv--QMAAAAQBv4I9wAAAA3_7QH_AQAA-ff3_QP_AAAKBf38AAAAAPUKA_oCAAAA_QIMDgAAAAAD9gj7AAAAACAALY7u2zs4E0AJSE5QAiqEAhAAGvABUyDz_P2_9QPB_hAA_inzAYH6Ef84Qd3_-O_-AfkTrQDn8h4A1gIlAeII3wGHEu0Byv7tAB36_wD92BH_CuInAB0U9QE17ywARhcE_wDsBADqOxH9JOc1Akrf-gICGuUDGbsl_9LgxwHC--gAIxcqAS_7_fxCAv4B3hQIAtwIJ__l6_cI_O3tBdLuBQQW9-0DCyPn_jgq6P8KNOQAKxYiCv7cGfz57QoIDj0IANcH-wLPF-cEAQYIAg7fDQopFigC4wQYAPUF_OkB__bxNBn4_PZH6gEZ5Qj4Dtj4B_Pj8u3x-Av-9R4K-9MzG_zfBf8DIAAtxv0GOzgTQAlIYVACKnMQABpgD_4ADOcH9_sVPPn76QEQ6uIA9SXdCADj0ADvJwf2_erVwAzy_zLoE_y7AAAAJC3uNwYABFf02egB0jH86tv7FQd_HegW3g_YGDqsQwfvBeMF9Q5LAAv03PUrEe4kEg0oIAAtO2BIOzgTQAlIb1ACKq8GEAwaoAYAABTCAADgQQAA0EEAAEhCAACAQAAALEIAAFxCAADgQAAAmsIAAGTCAACYQQAAjMIAAMLCAAAAQAAAgEAAAGTCAAAowgAAFMIAAHTCAADAwQAACEIAACjCAACowQAAEMIAAADAAACAPwAAqMEAAJBBAAA8QgAAQMEAAJjBAAAUQgAAAMMAAARCAAAAQAAAFMIAAIBAAAAcQgAAYEEAAIBCAABQwQAAmMEAAERCAACYwQAAoMAAAIbCAAAUwgAAgD8AAMDAAABMwgAA6MEAAIC_AACIwQAAUMIAABxCAABIQgAAqMIAAMjBAAAAAAAAgEAAAFRCAABswgAAGMIAANbCAABAQAAAoMIAAEDBAABgwQAAiMEAABDCAAAAQgAAgL8AAFDBAADgQAAAHEIAAPhBAADgwAAABEIAABBBAABgwQAAEMIAAExCAACAwQAAgL8AAAxCAACgQQAAOEIAAIxCAAB8QgAAgMEAADRCAABAQgAAYMEAAGDBAABsQgAATMIAAMDAAABQwgAAKEIAACBBAABAwgAAJEIAABBCAACcQgAAUMIAABBBAACAvwAAAMAAAHDBAABkQgAAGEIAAEDBAAAQwQAATEIAAPBBAAD4QQAAMEEAAGBBAACwwQAAmMEAABBCAADwwQAA4EAAAFjCAACAwQAANEIAAEhCAABAQAAAZMIAACxCAACgwQAAIEEAAOBAAABAQQAAaEIAAEBAAABUQgAAFMIAADzCAAA0wgAA4MAAAJBBAABEQgAAgMAAAChCAACgwAAA4MEAAGBCAACAwAAADEIAABDBAAAwQQAAPEIAAODBAACAwAAAZMIAAGBBAABwwQAA4EAAABxCAADQwQAAXEIAADTCAABwwQAAsMEAAITCAABQQQAALEIAABBCAACgwAAATMIAAMRCAAAwwQAAEMEAAJjBAABsQgAArkIAAPhBAADowQAAskIAAJDCAABQwQAAlsIAAEDCAAAcQgAANEIAAK7CAABYQgAALEIAAEDAAACYQQAAQEEAAPjBAABAQQAAQMAAAABAAACAvwAA2MEAAOjBAAAAwSAAOBNACUh1UAEqjwIQABqAAgAABL4AAOA8AAAsPgAAQLwAAIK-AAB0PgAA6D0AANa-AACevgAAqD0AAMi9AAAMvgAAiD0AAKg9AAAwvQAANL4AABw-AABAPAAAgLsAALY-AAB_PwAAPL4AAKC8AAAQvQAAQLwAAAQ-AAC4vQAAuD0AAGS-AAB8PgAAuD0AAEA8AADIPQAAqD0AABC9AACYvQAATD4AAFy-AABcvgAAqD0AAFy-AADYvQAAgLsAAIA7AAAMvgAADD4AAAw-AACYvQAArr4AALi9AAAEPgAAgDsAALY-AADoPQAANL4AAJg9AAAPPwAAuD0AAI4-AACGPgAAMD0AANi9AAD4PQAAQLwgADgTQAlIfFABKo8CEAEagAIAAEy-AAAEPgAATL4AABe_AABAvAAARD4AAAQ-AADgPAAAED0AAPg9AABMvgAAyL0AANg9AAC4vQAAUL0AAKC8AADgPAAAGT8AADy-AAB8PgAAyD0AAFS-AACyPgAAFL4AABC9AACKPgAAJL4AAKg9AABAvAAA4DwAAKg9AAAQPQAABL4AAFC9AADgvAAA2L0AAKY-AAAkPgAAmL0AAAy-AADCPgAAML0AAHw-AADgPAAAcD0AAOg9AAB_vwAAqL0AAIa-AAD6PgAAhj4AAFA9AACGPgAAij4AAOC8AAAQPQAAmL0AANi9AACovQAAoLwAACQ-AAAEPgAAqL0AAPi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=NZOG0zfkHMw","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1728,"cheight":1080,"cratio":1.6,"dups":["3423467843955657050"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2005407763602137415":{"videoId":"2005407763602137415","docid":"34-3-9-Z67A78C7E79194E86","description":"This video discusses Theorem 2 to Theorem 5 of Arrow (1971) on Risk Aversion and Investment. Created by Justin S. Eloriaga Website: justineloriaga.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/474494/6b4ac1372db71f25a178f9895d06dfa6/564x318_1"},"target":"_self","position":"13","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dn5qk3RLtn-4","linkTemplate":"/video/preview/2005407763602137415?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Arrow's Theorems on Investment and Risk Aversion","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=n5qk3RLtn-4\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhUKEzIwMDU0MDc3NjM2MDIxMzc0MTVaEzIwMDU0MDc3NjM2MDIxMzc0MTVqrw0SATAYACJFGjEACipoaGhmZnBkZGlveHJ6dm9iaGhVQzVzRXJRUzVoNEs3M0FkQ01kRGNUaFESAgASKhDCDw8aDz8TmwWCBCQBgAQrKosBEAEaeIED9f4EA_0A8vgCAPoDAAEMCgj_9gEBAOUP_PgI_QEA3wwD-f3-AAD-DAcDAAAAAAEIAv7x_gEAFQP7BgQAAAARB_4J9gAAAAP6_QH-AQAA-AH8AgP_AAAGDQkA_wAAAPwD_-0AAAAA9A0GBgAAAAAL9AUNAAAAACAALULTyzs4E0AJSE5QAipzEAAaYA0IACsyIuCuAQnlrBT3Fhn8_xnt5gT_7vD_q1Hi4uXivtPi9f9P1vbupgAAADEIBS3iAPV_EdDY9ug82cvn8g8heg4f3qHFBO32yNwCFf_g-FoaZgDuC-wUDdRET-sPFyAALWzBGzs4E0AJSG9QAiqvBhAMGqAGAAAUQgAAQEAAAIpCAADYwQAA-EEAAODAAADAQgAAQEAAAGDCAABAwAAAEEIAAFjCAAAIwgAA6MEAADDBAAAAwAAATEIAAATCAAAwQQAAEMIAAKBAAACAPwAAbMIAALhBAAAswgAAEMEAAODBAABkwgAAskIAANhBAAAgwQAAAAAAAODCAACYQQAALMIAAEDAAAAQwgAAUEIAACBBAACGQgAAAAAAALjBAACAPwAAgMEAAKhBAADKwgAAAMEAAADAAABkQgAAQEIAAMDCAABwQQAAgEEAAPBBAAAAwQAAMEIAAP7CAAAYwgAAoEEAADxCAACgQQAAlsIAAJDBAABIwgAAZEIAALTCAABwwQAAkMEAAADBAAAwwgAA8EIAAKRCAAAgwgAANEIAAMDBAAAAwgAAPMIAAJBBAACAQAAAUEEAALjBAACiQgAAgsIAAJhBAABAQQAAAEEAAKhBAABgwQAA2EEAABjCAADgwAAAYEIAABjCAAAgwgAA0EEAAIrCAAAQQQAAMEEAAKhBAAAQwQAANMIAADhCAACIQgAAYEEAALLCAACoQQAAiEEAAChCAADgwQAAsEEAABRCAABwQQAAAAAAAIC_AAAgwQAAYEIAAEBBAADIQQAAMMIAAJjBAACAwAAAUMEAALjBAABgwQAAAMAAADDBAADgQAAAAAAAABDBAADYQQAAgL8AAJTCAAAAwAAAyEEAAEDAAACwQgAA6EEAAFDBAACAwQAAcMIAAEBAAACIwQAAUEIAAAjCAADAQQAAQMAAAKDCAAA8QgAAiEEAAFBBAAAEwgAAYEEAAADAAADgwQAAIMEAACzCAACQwgAAoMAAAAzCAACIQQAAEMIAADBCAABAwAAAiMEAALjBAAAgwgAAYMIAAJRCAABYQgAA4MAAALDBAAB0QgAAwMEAACDBAADYwQAA8MEAAABCAACIwQAAgEEAAERCAAAgwgAAqMEAAADCAAAAwgAAMEIAAIjBAABIwgAA8MEAACBBAAAQwgAAcEEAADTCAABQwQAAoEEAAFBBAABoQgAAIMEAAJBBAADQwQAAgL8gADgTQAlIdVABKo8CEAAagAIAAJi9AABMPgAA-D0AAJg9AABMvgAAiD0AAKC8AABDvwAAHL4AAEA8AACgvAAABL4AAAS-AABUPgAAUL0AAJ6-AACgPAAAUD0AABQ-AAD-PgAAfz8AANi9AAD4PQAAcL0AACy-AADgvAAAEL0AAFC9AACGPgAAPD4AAMg9AAAcvgAAEL0AAAw-AACIvQAAQDwAAEA8AAAsvgAAhr4AAJ6-AADIvQAAuD0AAAw-AAA8vgAAcL0AAOC8AAB8PgAAJL4AANi9AACevgAA4DwAAFQ-AACoPQAAXD4AABy-AABAPAAALz8AADC9AACgPAAAkj4AABQ-AACgvAAAfD4AAEy-IAA4E0AJSHxQASqPAhABGoACAAAMvgAAML0AAIg9AAAnvwAAQDwAAFC9AADIPQAA2L0AAKi9AAAcPgAAUL0AADC9AACGPgAAuL0AAEw-AABAPAAAqD0AADU_AAA8PgAAqj4AABA9AACAuwAAFD4AAAS-AABAPAAA-D0AABC9AADgPAAAUD0AAIg9AACovQAA2D0AAEA8AACuvgAAEL0AALg9AABwPQAAJD4AAKi9AABUvgAA6D0AAHA9AACAOwAAQLwAADQ-AACAuwAAf78AAFS-AACgPAAAqD0AAHQ-AACYvQAA4LwAACw-AAC4vQAAuD0AAKC8AABEvgAAEL0AAIC7AACCPgAAEL0AAOC8AABcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=n5qk3RLtn-4","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2005407763602137415"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11271638772277646637":{"videoId":"11271638772277646637","docid":"34-5-3-Z485FDB9F36E94CC6","description":"This video goes through the derivation of the expenditure function from the indirect utility function. Created by Justin S. Eloriaga...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2837723/c406f8f98ef4d3948b8e002d83a47cb8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/E-HwYwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dd0j5Nwm2_J0","linkTemplate":"/video/preview/11271638772277646637?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Deriving the Expenditure Function","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=d0j5Nwm2_J0\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhYKFDExMjcxNjM4NzcyMjc3NjQ2NjM3WhQxMTI3MTYzODc3MjI3NzY0NjYzN2q2DxIBMBgAIkUaMQAKKmhoaGZmcGRkaW94cnp2b2JoaFVDNXNFclFTNWg0SzczQWRDTWREY1RoURICABIqEMIPDxoPPxOIAoIEJAGABCsqiwEQARp4gQQH-Pz8BAD79Q3_BwX-AQ7-BgL3AAAA9gD19QMC_wD1Df_-BgAAAPoFCgIIAAAA_fj4Avv-AAAJ_fgFAwAAABIA9AL_AAAACAUJ__4BAAD59vUIA_8AABUE_gUAAAAA9f4EAQEAAAD6AgMHAAAAAPr08ggAAAAAIAAtEtTfOzgTQAlITlACKoQCEAAa8AF_4ij-9fzDBKojCgDgJ_cBv18u__tGwgC-Kdv-AO_UAejw3gDgGuIA5xcUALs-_f8ay5oDBbQd_1C03P8rvAMAye0NAAzs4QI8AT8B6QPt__QF_P_vvef_9Zb4ATlN7_0I4_gDExf0_gc_yQQsHDMBEgs7BTnXFQIDgwEJBsTw_vvd0vz0LwcGG6Yh_AzvOQUuzg4DMPn6_usO4wbW4hX3F9Uy-_hQ2_gQ2wv0KfXnCK0QBAsBDx0NOCb9AtQT6gPu8zMDuQ0HBsQH_g8dEfnq2xfrCxqx3AxH6wAREDQLDR_I-O7dA-gD3_bpA90i0-0gAC3djNs6OBNACUhhUAIqcxAAGmA2BwAWFwrzHPr_2RLX2fjw7wj499UdAArEAAQgzRod893LEQoAItsxFb0AAAAWLgU13gD6Xe70HCQE_-6hy-D-O3_5GSjLBRP92ufvEhvw1isSCzYAEv3SIw_bwDTsKgIgAC2PJT07OBNACUhvUAIqrwYQDBqgBgAAWEIAAABBAABwQgAAdMIAAADAAABQwQAAlEIAAMDBAADwwQAAgMAAAOhBAABYwgAACMIAAEDAAACgwAAAEEEAABRCAACAwQAA2EEAAFDBAACEwgAARMIAAKDCAAA0QgAAVMIAAEDCAADgwAAAqMEAAEDAAADIQQAAlsIAAIBBAACYwgAAkEEAAJTCAACwwQAAIEEAAFBCAAAEwgAAbEIAAMBBAABgwQAA2EEAAETCAADQQQAAsMIAAHBBAAA8QgAAQEIAAChCAACgwQAA6MEAAEDAAAA0QgAAREIAAGBBAADwwgAAQEEAALBBAAAsQgAA8EEAAIzCAABIwgAADMIAACBBAADAwgAAsMEAABTCAACIwQAAfMIAAIZCAABkQgAAGMIAACxCAACgwQAAYMIAABDCAACQwQAAQEEAABBCAACAQAAAnkIAAABBAADQwQAAcMEAADxCAAAAQQAAIEEAAOBBAADQwQAAwEAAAI5CAAA8wgAAEEEAAKhBAABQwQAAAEAAAJhBAABQQQAAPEIAAGjCAADAwAAA6EEAAATCAADAwQAAqEEAAOBAAAAQwQAA4MAAAFxCAACWQgAADEIAAJjBAABwwQAAmMEAALJCAAAIQgAAsMEAAEDBAABEwgAADMIAAGDCAACIwQAAcMEAAGBBAAC4QQAAQEAAAPjBAADYwQAACEIAAADCAAAkwgAA4MAAAGRCAAAEwgAANEIAAPDBAABcQgAAqMEAAKTCAACgQQAAAMAAAARCAABMwgAAUEIAAMhBAAAMwgAAUEEAAOjBAAAAwAAAIMEAAEhCAABMQgAAgEEAAHDBAADIwQAADMIAAODBAAB8wgAAQEAAAHTCAAAoQgAAqEEAAIhBAAA0QgAADEIAAFTCAACcQgAAgEIAAMjBAACgwQAAMEEAABBBAABAwgAAMMIAAI5CAADAQAAA-MEAAMBBAAA8QgAAksIAAFDCAADAwAAAfMIAAAxCAABwwQAAaMIAAIjBAADQwQAAQEAAAGBBAAC4wQAAMMEAAIBBAADAwAAAKEIAABTCAAAAwQAAAEEAACzCIAA4E0AJSHVQASqPAhAAGoACAABwPQAAEL0AAFQ-AAAQPQAAgLsAAKY-AAD4PQAAH78AALK-AACGPgAAQLwAAJq-AAAwvQAADD4AAPg9AABQvQAAoLwAAJi9AABEPgAA8j4AAH8_AAAsPgAA6D0AAKC8AADovQAAUD0AAEC8AACIvQAAMD0AAHQ-AACoPQAAmD0AALi9AABwPQAAqD0AAJq-AACoPQAAJL4AALa-AAAQPQAAsr4AAEC8AAAkPgAADL4AABC9AABUPgAATD4AADS-AAAwvQAAzr4AALg9AACYPQAA6D0AAK4-AAAEvgAAgDsAAEU_AABUvgAAdD4AAKI-AABEPgAA4DwAAPg9AACSviAAOBNACUh8UAEqjwIQARqAAgAA2L0AALg9AACIvQAARb8AAAy-AADgPAAAqD0AAKA8AAAMvgAA-D0AAMi9AABEvgAA4LwAACy-AADIPQAAiL0AAKg9AAAbPwAA4DwAAKI-AADIvQAAoLwAAIg9AADIvQAA6L0AABC9AAAUvgAAiL0AAKg9AACYPQAAoDwAAKg9AADgvAAADL4AAIC7AABwPQAAVD4AABw-AAD4vQAAgLsAAKA8AACAOwAANL4AACw-AAAwvQAAbD4AAH-_AAD4vQAADL4AAEQ-AACmPgAAHL4AAGw-AAD4PQAA6L0AAFA9AABAPAAAmL0AAHA9AAAMvgAALD4AADQ-AACovQAADL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=d0j5Nwm2_J0","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1656,"cheight":1080,"cratio":1.53333,"dups":["11271638772277646637"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16247212587197713890":{"videoId":"16247212587197713890","docid":"34-9-0-ZD2C2C4AA4C0BE0B1","description":"This video gives an intuitive interpretation of Third-degree price discrimination using a simple graphical and mathematical analysis. Created by Justin S. Eloriaga...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1550790/7e958bd280fce7eef67907760d393d20/564x318_1"},"target":"_self","position":"15","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DBDUoWUIZpSI","linkTemplate":"/video/preview/16247212587197713890?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Illustrating Third Degree Price Discrimination","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=BDUoWUIZpSI\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhYKFDE2MjQ3MjEyNTg3MTk3NzEzODkwWhQxNjI0NzIxMjU4NzE5NzcxMzg5MGqvDRIBMBgAIkUaMQAKKmhoaGZmcGRkaW94cnp2b2JoaFVDNXNFclFTNWg0SzczQWRDTWREY1RoURICABIqEMIPDxoPPxOFBIIEJAGABCsqiwEQARp4geoGCwIE_ADz_AkH9wX-AQ3--gn2__8A8AMI8QMBAAAEBRD9_gEAAAIOCff5AAAA9wb6_fP_AQAL8QH6AwAAACAK8wb9AAAA-gYE9f4BAAAFBwUIBP8AAPsA_AMAAAAA6w8K_f7__wAEAQP8AAAAAAIC-w4AAAAAIAAtTMXGOzgTQAlITlACKnMQABpg8xMAJAv86NQFLvHv-vLlGugaAuj5EgDs2gD7Bt_8Eczh5CT8_x3fDvjHAAAAAjDwMwgAAkfu5LwY-v_n9N3zGg9_QAsJ8Oz0-er_9dX1EOcRNAsMAPP0Bhsw6Qwu7gMdIAAteGVlOzgTQAlIb1ACKq8GEAwaoAYAAPBBAADgQAAAWEIAANDBAADgQAAAgD8AAP5CAABgQQAAwMEAAMDBAACgQAAAEMEAAIDBAADAwAAAgL8AADBBAAAAwAAAAAAAAEDBAAA0wgAA-EEAADjCAAAMwgAA4EAAAODAAAAAQQAAAMIAACzCAADQQQAAREIAAMDBAAAQwQAAhsIAAMBAAACIwgAAIMIAAKBBAACAQgAAAEIAAABCAAAAQQAAgMAAAHBCAACgQQAAOEIAAKjCAACAQQAAAMEAAKBCAABcQgAAgD8AACBBAAAAwgAAwMAAAEBBAAAsQgAAyMIAAAjCAAAAQAAAJEIAAEBBAABUwgAAPMIAAKjBAABAwAAAvsIAAMDAAAB8wgAAcEEAACDBAABAQgAAgEAAAFjCAACKQgAAXMIAAHzCAACgwQAA4EAAAExCAABsQgAAOMIAAJpCAAAwwQAA0MEAAGhCAACowQAA2EEAAHBBAACMQgAAAAAAAKBBAAAsQgAAXMIAABDCAADQQQAA4sIAAOBBAAAowgAADEIAAODAAAC4wQAA-EEAAABBAADgQAAAZMIAABDBAAC4wQAA6EEAAOBAAAAQwQAAHEIAAChCAADQwQAAAEIAAADAAAA4QgAAUMEAALjBAABkwgAARMIAANDBAACOwgAAiMEAAAzCAAD4wQAAAAAAAJjBAADgwQAAYMIAAJRCAADwQQAANMIAANjBAABEQgAAgEAAALBBAADgwAAADMIAAFzCAACewgAAkMEAALhBAAAQQgAAHMIAAEDAAABEQgAAFMIAAMjBAADgwQAA6MEAAOBAAACAQQAAIEIAABjCAACAwAAA-EEAAEzCAAAwwgAAhMIAAHBCAAAcwgAAREIAANDBAACYwQAA8MEAAIBBAACYwQAAvEIAALBCAACQQQAA4MAAABRCAAAcwgAAuMEAABDCAAAAwAAABMIAAKjBAAAUwgAANEIAAKjBAABgwQAANMIAADzCAABIQgAA8EEAAFjCAAAQQQAAHMIAAMBAAACgQAAATMIAADBBAAAAQQAAJEIAAGRCAAA8QgAAwMEAAJbCAABgQSAAOBNACUh1UAEqjwIQABqAAgAARL4AAHA9AADSPgAA4LwAAEA8AABUPgAAXD4AAA-_AAAMvgAAJD4AADC9AACSPgAA2L0AAEw-AADoPQAA2D0AAKI-AADYvQAAUD0AAOo-AAB_PwAAoLwAACQ-AACYPQAAUD0AAAy-AAA8vgAAyD0AABS-AACiPgAAMD0AABy-AABEPgAA6L0AACQ-AAC6vgAAiL0AAHA9AACGvgAADD4AAPg9AACgPAAARD4AAGS-AAA0vgAALD4AAEw-AACWvgAAMD0AAIK-AAAsPgAATD4AAOi9AADYvQAAor4AAIC7AAAvPwAAUD0AABA9AAD6PgAAcD0AAJi9AAAEPgAAMD0gADgTQAlIfFABKo8CEAEagAIAAKg9AACAuwAATL4AAGG_AAAJvwAAgDsAABQ-AACYPQAATL4AAJY-AAAMPgAARL4AAIg9AADIvQAAmD0AAKi9AAD4vQAANz8AAEC8AACyPgAABD4AAAy-AAAMPgAAZL4AAOi9AAC4PQAAmr4AADw-AACAuwAAML0AAEC8AABAvAAAQLwAAK6-AAAsPgAAEL0AAII-AAAUPgAAqL0AAJi9AACWPgAAqL0AAL6-AACYPQAAML0AACw-AAB_vwAALL4AADy-AACgPAAAuD0AAJg9AAAQvQAAtj4AAKi9AAD4PQAA6L0AACQ-AAAUPgAAZL4AALY-AACePgAA6D0AAFS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=BDUoWUIZpSI","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["16247212587197713890"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17423239159334213927":{"videoId":"17423239159334213927","docid":"34-3-17-Z52B5ABF9A71E9F38","description":"This video presents two cases of special indifference curves and discusses the concept of homothetic preferences. Created by Justin S. Eloriaga Website: justineloriaga.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1356029/c514538d9cfbdcf7736ad5f2bf44a9c6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/vR15jwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DaTjAsnsNGXo","linkTemplate":"/video/preview/17423239159334213927?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Homothetic Preferences and Special Indifference Curves","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=aTjAsnsNGXo\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhYKFDE3NDIzMjM5MTU5MzM0MjEzOTI3WhQxNzQyMzIzOTE1OTMzNDIxMzkyN2q2DxIBMBgAIkUaMQAKKmhoaGZmcGRkaW94cnp2b2JoaFVDNXNFclFTNWg0SzczQWRDTWREY1RoURICABIqEMIPDxoPPxPBA4IEJAGABCsqiwEQARp4gfcE-v76BgAOCgT__QUAAAQAAAL5__4A-v3zAwUE_gD4AAX6BwAAAAYIBwUKAAAA-PUGAfr_AAAPAfj8BAAAAAf__vr-AAAA_QD_A_8BAAD8-AL_Av8AAAoJBPv_AAAA7g0I_f8A_wD_AQAA-f4AAAP3CPsAAAAAIAAtWlTkOzgTQAlITlACKoQCEAAa8AFl-wMCvxn8_gX35QDyKe4AgQUL_xYd6AC05g0Cy_nWAAcI-QDd7wsABwUqAM32AQAo9ez_DOMEACbzAP8W9x4ABxoXACzj_gAlAgYA9fbw_9kYFf4F8hMA-fb4AQ_08wAP_v8CwALu_QAF6AMH4C4C-gEcBA4DBQXuBAIA9hUH__QP4P4h9wX_BfcF_OAkCwAE9PL_CR8F--f29P0ADPcIEvf8-g0VAPoSFgYE6_0B--wOA_sGCPb7FhoQBvoI_Pz2-P_3AO0I-u8JAwEi3Q0BCvEO_P79BgD4A_L__tgH-d75BP7iD_787Q_9A_z1CfwgAC1uJ0g7OBNACUhhUAIqcxAAGmBt7wAZCRm95dw08eLL0gv59PPeF738_xzlAOr16aD-AvXtQ___TusUC6IAAAA_3-vnFQD0f8u_-xz9-iOhwhMH_2gKMT3F0CXd5tD6EvIaCCULF1wA8-SlGRHLp0AEXA8gAC1K1BU7OBNACUhvUAIqrwYQDBqgBgAAKEIAABRCAAAkQgAAQMAAAIA_AADAQAAAREIAAMBBAABgwgAAUMEAAHBBAAA4wgAAFMIAABDBAABgQgAAAMEAAIjBAACQwgAAwEAAAITCAABAwQAAOMIAACTCAACIQgAAyMEAAADCAAAgwgAAosIAAJxCAAAAQgAAHMIAAJDBAADiwgAAcEEAAEjCAAC4wQAA4MAAAJxCAACAPwAAIEIAAOhBAACowQAAyEEAABDCAABsQgAAmMIAAODBAACYQQAA4EEAAABCAADSwgAAQMAAAADCAAAAwAAAoEEAABhCAAD8wgAAQEAAAIhBAACAPwAA6EEAACTCAABIwgAAGMIAAJhBAACuwgAAwMEAANDBAADwwQAATMIAAKxCAACkQgAAQMIAAAxCAADowQAA6MEAADzCAAAAQAAAYEEAAMDAAACCwgAAhEIAAMDBAAAAQgAAiMEAAARCAABQwQAAAAAAAFxCAAAkwgAAuEEAADhCAACYwQAANMIAANjBAAAcwgAAAMEAAMBAAAAYQgAA0MEAAHjCAACyQgAAlkIAABDCAACYwQAAAMEAADBBAAB0QgAANMIAADBCAACQQQAAIEIAAHDBAACQwQAAwMAAAIRCAAC4wQAAQEAAAJjBAABQQQAAgMAAADzCAACAvwAAyMEAAABBAACIQQAAwMAAAIjBAACAwQAAMEEAAJhBAACMwgAAcMEAAPBBAABgwQAAAEIAAKhBAABAQAAAQMAAAKTCAADwQQAAgMAAAChCAACYwQAAiEIAAODBAAAUwgAA4MAAAJDBAAD4wQAAMEEAADBCAABAQgAAAMEAAABAAABMwgAAOMIAAAzCAADAwQAAmEEAACjCAABsQgAAQEEAANjBAADgwAAAgMAAAMjBAACCQgAAyEEAAAzCAACSwgAAJEIAAODAAAAIQgAACMIAAIhBAAD4QQAAAEAAAJhBAAB8QgAATMIAAITCAAAAQAAAEMIAAIRCAABAQAAAjMIAAGDBAAAwwQAAuMEAAKBAAAA0wgAAgL8AAKBAAACoQQAAIEIAAI7CAADgQQAAuMEAAEjCIAA4E0AJSHVQASqPAhAAGoACAAAkPgAAcD0AAOA8AACgvAAAkr4AAHw-AAC4vQAADb8AAEy-AACKPgAAML0AAFA9AAAUvgAAdD4AAIi9AADIvQAAJD4AAJi9AAAwPQAADT8AAH8_AACovQAAZD4AAIK-AABAPAAAiD0AAJ6-AAAkvgAAgDsAAJ4-AADgPAAAgDsAAFA9AACgPAAAJL4AAFC9AAAsPgAARL4AAOq-AABEvgAAqr4AAHC9AADYPQAAgDsAAHA9AAAUPgAAoLwAAJK-AAAEvgAA8r4AACy-AABAvAAATD4AAII-AACqvgAAqD0AABU_AAD4vQAAJD4AAA8_AADYPQAAPL4AAFw-AACgvCAAOBNACUh8UAEqjwIQARqAAgAAEL0AAKg9AABMvgAAE78AANi9AACgPAAAiL0AAOA8AABMvgAAhj4AAGS-AABkvgAAML0AADy-AAAwPQAAuL0AAOC8AAAhPwAAXL4AAL4-AABwPQAAiL0AAEC8AAAwvQAAuD0AADC9AABcvgAAmD0AAHA9AACAuwAAoLwAAKg9AADIPQAAML0AAKC8AACIvQAAlj4AAKg9AAAQvQAAoLwAACQ-AADYvQAAdL4AAJi9AACovQAAcD0AAH-_AACovQAAhr4AANg9AAAQPQAADL4AAJg9AABEPgAAir4AAHA9AACIvQAABD4AAIC7AAAkPgAA4LwAABw-AABwPQAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=aTjAsnsNGXo","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17423239159334213927"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16648993137409039248":{"videoId":"16648993137409039248","docid":"34-9-6-Z7572745CCCDC1058","description":"This video goes through a heterogenous agents consumption savings model Created by Justin S. Eloriaga Website: justineloriaga.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4077160/c810ad68a597c3ab71eb11eba60c811f/564x318_1"},"target":"_self","position":"17","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dg7Ge93RBJDA","linkTemplate":"/video/preview/16648993137409039248?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Heterogenous Agents Consumption Savings Model","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=g7Ge93RBJDA\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhYKFDE2NjQ4OTkzMTM3NDA5MDM5MjQ4WhQxNjY0ODk5MzEzNzQwOTAzOTI0OGqvDRIBMBgAIkUaMQAKKmhoaGZmcGRkaW94cnp2b2JoaFVDNXNFclFTNWg0SzczQWRDTWREY1RoURICABIqEMIPDxoPPxO8CIIEJAGABCsqiwEQARp4gQIFAv7_AgAQABAAAgf_AfgABQn6_f0A4voD9gf7AgD7DPwG-QEAABIB9QEIAAAA-AX6_vT_AQAG-wL2-QAAAAn3BPn-AAAACQ3-7_4BAAAB__8D7QQAAQf-FAQAAAAA9P4EAQEAAADy__P2AQAAAATmAPMAAAAAIAAtMyDXOzgTQAlITlACKnMQABpgNhoAWB_qsSfgLtsX3uUT9ytvH9brCf8r-P_hPN_fJBXfog4eAGPbEh6eAAAAHBAED7sADn39wuoWCx8M_-QOPTp_FQno4fb4DtjTCvwq7jMT7dlBANMTHiAQs7tl53ovIAAtd5oQOzgTQAlIb1ACKq8GEAwaoAYAANhBAAAAQAAAAEIAADDBAAAwwQAAQEAAAIBCAADwwQAAwMIAACjCAAAwQQAABMIAAIrCAACwwQAAwEAAADDCAACAQQAASMIAAADAAAB4wgAAkEEAAAjCAAAAAAAAkEEAAADBAABgwQAAeMIAAFzCAACeQgAAAEIAAIzCAABwQQAAXMIAAMhBAAAEwgAABMIAAHDBAAAsQgAAQMEAACBBAAAwQQAAuEEAAIC_AACAwQAAEEEAAJDCAACQwQAAIMEAAExCAAAAQgAApMIAACDBAACAvwAAAAAAAABCAAAUQgAAzMIAAODBAAAwQQAAQMAAAIC_AABYwgAARMIAAEDCAACGQgAA2sIAAEDAAABAwAAAbMIAAATCAADKQgAAgEIAAIBBAADoQQAAYEEAAGzCAABcwgAAQEAAABhCAACAQAAAsMEAAHhCAAD4wQAAMEEAAKDAAAAAQgAANEIAABDBAADoQQAAGMIAAOhBAAD4QQAAQMIAAILCAACAwAAApMIAAChCAAAEQgAAIMEAAAjCAACywgAAuEEAABhCAADowQAAWMIAAMhBAAAcQgAAUEIAACjCAAAwQgAAHEIAAAhCAAAAQAAA2EEAALhBAABcQgAAAEEAAKhBAACAvwAAgMAAABBBAABAwQAAiMEAAAjCAAAAQAAAQEAAAGDBAACAQAAAyMEAAHDBAACYwQAAQMIAAPjBAAAQwQAAQMEAADhCAAAYQgAAAAAAAIA_AADkwgAAHEIAACDBAABgQQAAEEEAAIJCAAAQwgAAPMIAABBCAACgQAAAyMEAAMBBAAA4QgAAhkIAAMBAAACIQQAAoMAAAPjBAACQwQAABMIAAJhBAABAwQAAWEIAAJjBAAAAQQAAyMEAAEBBAAAEwgAA0kIAAGxCAAAIwgAALMIAAOZCAABAQAAAmEEAAKDAAACgQAAAVMIAAIDBAACAPwAAeEIAACBBAAAYwgAAIMIAAFDBAADEQgAA0EEAAIDCAAD4QQAAcMEAAOBAAACIwQAAMMIAAIhBAABAQAAAAMIAAIRCAAAgwgAAcEEAAIDAAADQwSAAOBNACUh1UAEqjwIQABqAAgAAqL0AADC9AABQPQAAML0AAK6-AABkPgAARD4AAPq-AAAUvgAA2L0AAIi9AACYPQAAMD0AAAQ-AADgvAAAfL4AAAQ-AADYPQAADD4AANY-AAB_PwAA2L0AAEC8AABQPQAAUD0AAEC8AAAcvgAAQLwAAPi9AADoPQAAMD0AAHS-AABwPQAAqL0AAGQ-AACgPAAAZD4AAEy-AACmvgAAqL0AAPi9AAAUvgAANL4AALg9AACYPQAAZL4AAFQ-AAAMvgAAFL4AAPi9AAAwPQAAND4AAPg9AAA8PgAATL4AAPg9AAD2PgAAPD4AAHQ-AAA0PgAAHD4AAKC8AAAkPgAAwr4gADgTQAlIfFABKo8CEAEagAIAAHS-AABcPgAAiD0AAC2_AABAvAAAiD0AAAw-AADYvQAAFL4AAJo-AACoPQAABL4AAIY-AAAsvgAAMD0AAJi9AAAEvgAAUz8AAIA7AACuPgAAmL0AANi9AABEPgAAPL4AAEC8AABkvgAAJL4AABw-AADgPAAAXL4AAOC8AADIPQAA4LwAAHC9AAA8PgAAhr4AACQ-AACgPAAAyL0AABA9AABAvAAAgr4AAL6-AAC4vQAAJL4AAMg9AAB_vwAA-L0AAJi9AAAsPgAAdD4AANi9AABwvQAAmj4AAAS-AABQPQAAmL0AADA9AADoPQAAUD0AADA9AACovQAA6D0AAKi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=g7Ge93RBJDA","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1164,"cheight":720,"cratio":1.61666,"dups":["16648993137409039248"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17160200883658821327":{"videoId":"17160200883658821327","docid":"34-0-15-Z5AA292187BB7BF1A","description":"This video goes through the difference between weak and strong stationarity Created by Justin S. Eloriaga Website: justineloriaga.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/222490/7be9f0ce4c694f1d334f6b1ae3dc742f/564x318_1"},"target":"_self","position":"18","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DsqZtT6o6B6U","linkTemplate":"/video/preview/17160200883658821327?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Weak Stationarity vs Strong Stationarity","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sqZtT6o6B6U\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhYKFDE3MTYwMjAwODgzNjU4ODIxMzI3WhQxNzE2MDIwMDg4MzY1ODgyMTMyN2qvDRIBMBgAIkUaMQAKKmhoaGZmcGRkaW94cnp2b2JoaFVDNXNFclFTNWg0SzczQWRDTWREY1RoURICABIqEMIPDxoPPxPGA4IEJAGABCsqiwEQARp4gfT__gX7BgD2DQUC-QT_AfoD_wH5_f0A7P0M-fr_AQAH-wv1_gEAAP34BwX4AAAA9QP--wMAAAAI_f79AwAAABL5Av_4AAAAAgP5AAcAAAADAAD8AgAAAAQI-woAAAAA-wv4Av4AAAD3Bv4JAAAAAB73A_4AAQAAIAAtTxjkOzgTQAlITlACKnMQABpgJBgAMOcH5bMKFe4JFfAT788PBAsN4P_tDwAGKPYD8uzl5PYnACmjHBK8AAAAJfnfZN0A5Vv17wk9Dfzt2dr96xF_BP4K6uMR2PkxDTsAIPQAGDLuANHlDAUJ6RVMBioWIAAtut5AOzgTQAlIb1ACKq8GEAwaoAYAAEBAAADAQAAAsEEAAJhBAABMQgAAgEEAAIhCAADAQAAAhsIAAABBAABQQgAAmMIAALTCAACAvwAAbEIAAKDBAAAIwgAAEMIAAEDBAABUwgAAPEIAAPDBAACgQQAAIEIAAADBAAAswgAARMIAAOjBAAC6QgAAoEEAAI7CAACCQgAAwsIAAJBBAADgwAAAgMIAANDBAACaQgAAIMEAAIBCAABwQQAAEEIAACBCAABQQQAAgEAAACzCAAAcwgAAqEEAAFRCAABAQQAAPMIAALDBAACgwAAAqEEAABhCAACQQQAAqsIAAIDBAABAwQAAgD8AAADBAABUwgAAaMIAAIDCAACMQgAAJMIAAKDBAAAgwgAAoMEAAEzCAACAQgAAlkIAAADAAACAQQAA0MEAABjCAACowQAA8EEAAFBCAAAIwgAApsIAACRCAADIQQAAcEEAAHDCAADgwAAAwEAAAFxCAACCQgAAwMEAAKBBAAAwQQAAiMEAAM7CAACQQQAAYMIAAEBAAACwQQAAIEEAAATCAAA8wgAABEIAALhBAADowQAAEMEAAABAAAAYQgAAdEIAAMDAAACKQgAAGEIAAMhBAAC4wQAAEEIAAOhBAAD4QQAAmMEAAMBAAADwwQAAyEEAAABCAADQwQAA6MEAAEDBAAAwQQAAgEIAACDBAAC4QQAA6MEAAKDAAAAAwgAAUEEAAADCAACYwQAAwMEAAGBBAAAwQgAAIEIAANDBAADEwgAAYEEAAOBAAAAQQgAAAMEAABRCAABQwgAAtsIAAAxCAACCwgAAgMAAAPhBAAC4QQAAREIAAODBAACAPwAAbMIAADDBAAAIwgAAyMEAALhBAAAMwgAAXEIAAAjCAADQwQAACMIAAAAAAACQwQAAoEIAAARCAACYQQAAoMIAAJJCAADIwQAAyEEAAEDBAABgQQAAwMAAAHDBAAAQQQAAqEEAAMhBAABgwQAAAMEAAMBBAAAoQgAAMEEAAKTCAAAcQgAAmMEAABBBAAA0wgAAcMIAAMBAAADQwQAAcEEAAIDBAABwwgAA4EAAAITCAAA4wiAAOBNACUh1UAEqjwIQABqAAgAAqL0AAPi9AACAuwAAmD0AAAS-AAAwvQAAkj4AANK-AAAQPQAALL4AAIA7AAAcvgAAUD0AAIA7AABAvAAANL4AAAw-AAAkPgAAmD0AAA0_AAB_PwAAMD0AAKi9AACoPQAAqL0AABy-AAAUvgAAij4AAKC8AADoPQAAPD4AAHy-AACIvQAA2L0AAMi9AACCPgAAgj4AAPi9AAC-vgAAcL0AAIC7AAAkvgAAqD0AAOA8AADgvAAAED0AACQ-AAA0vgAAUL0AAHS-AADYvQAAjj4AALY-AAB8PgAA6L0AAIg9AAAtPwAAgDsAAAw-AABsPgAAED0AAIC7AACgPAAAoLwgADgTQAlIfFABKo8CEAEagAIAAHy-AADIPQAAEL0AADW_AACYPQAALD4AANg9AACovQAA4LwAAHw-AADIPQAAcL0AAPg9AAAwPQAAiD0AAIC7AABAPAAALz8AAES-AACOPgAAVD4AALg9AAB0PgAAJL4AADC9AAA0PgAAbL4AACw-AACAOwAA2D0AADA9AABQPQAABL4AAHS-AAC4PQAAgLsAAAQ-AAA8vgAAiL0AADy-AAC4PQAADL4AANi9AADIPQAAiL0AAAQ-AAB_vwAA4LwAAIi9AABcPgAAiL0AACQ-AADovQAA5j4AAIi9AAAMPgAAmL0AABS-AACGPgAAqL0AAHA9AADIvQAAkj4AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=sqZtT6o6B6U","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["17160200883658821327"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16195272016378647431":{"videoId":"16195272016378647431","docid":"34-6-11-ZE03F26BBF69E9DFB","description":"This video goes through an exhaustive derivation of the model intercept and the slope coefficient in a bivariate CLRM Created by Justin S. Eloriaga Website: justineloriaga.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4351223/02c41349e8c27fcfd24495a683b78ac5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/5AzIegEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DiMrWMMUFSdM","linkTemplate":"/video/preview/16195272016378647431?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Deriving the Betas in a Bivariate CLRM","related_orig_text":"Justin Eloriaga","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Justin Eloriaga\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iMrWMMUFSdM\",\"src\":\"serp\",\"rvb\":\"ErADChM0MjkzMzMzNzE3MjU0NjY2MDg5ChQxNTA0NzY1Mjc1MzczODc2NDAyMwoUMTE0NjM3NjYyNTkyNTI1MDYxMzMKFDE3OTk1NjQ3NTgwNTI0ODgyNDU3ChM5NjE3NTQ5NzI2OTYzMDg1NTkzChQxMjU4ODEyNjM1OTA4NDE4ODMyNQoUMTE4OTMxMjAwODMxMzY2NDk0MjAKEzg2NTc1Mzc3Mjk1MzM3MjA5MTUKFDE0MzEyNTU5ODI5Njc2MzY4ODgzChM3MDY3MjMwOTU4NzE2NjYzMzIxChMzNDIzNDY3ODQzOTU1NjU3MDUwChMyMDA1NDA3NzYzNjAyMTM3NDE1ChQxMTI3MTYzODc3MjI3NzY0NjYzNwoUMTYyNDcyMTI1ODcxOTc3MTM4OTAKFDE3NDIzMjM5MTU5MzM0MjEzOTI3ChQxNjY0ODk5MzEzNzQwOTAzOTI0OAoUMTcxNjAyMDA4ODM2NTg4MjEzMjcKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxChMyNjQ5OTc3MDgwNzkyODYzODE2ChM0MDAyOTAzNjY3NzIzMzY4NjUwGhYKFDE2MTk1MjcyMDE2Mzc4NjQ3NDMxWhQxNjE5NTI3MjAxNjM3ODY0NzQzMWrBDxIBMBgAIkUaMQAKKmhoaGZmcGRkaW94cnp2b2JoaFVDNXNFclFTNWg0SzczQWRDTWREY1RoURICABIqEMIPDxoPPxPlBoIEJAGABCsqiwEQARp4gf_8BfoE_AAA-wYJ9wn8AvQE_Pf5_f0A-vQG_gYE_gD2-AD2AQAAAP0a_AUDAAAA9w_-CPH_AQAWA_sHBAAAABD6_PT1AAAAFPoH9P8BAAAC9QsH9AIAAQkFEPz_AAAA7hX_-v___wD4Ef0HAAAAAPbu7_wAAAAAIAAti_vHOzgTQAlITlACKoQCEAAa8AF_-_QBzvzn_90D-ADMIPgAsQwa__0w1QC92gIBvPfKAPcm8QH2Dv3_5REiAbom-f8w2NP_BM7kADjL5_8K3AsA_QYEAfzUBgJKFA8B8fPs_swRNAHhz_oA_Nb6ABYLC__y9An-6Q7YAe4DxgI2DCoABiAqCRzvEQLvzxkD3uP_A_zo4P0LAPYJ_dcWANXtHAIM6f0IDgUI9cYT-wT52wT9AdEM_hQ76_8oBhgA6xH-AtcD_fsQAd8BCRkQBPkV3P3n4xz_8-IB8Aj18QcE1AP79gn1Dwrl_f4M5_f0-fIOBQTh-frEC_oG9-7sCtb4A-4gAC1jyx07OBNACUhhUAIqcxAAGmAf_AAW6AvBIR4U3QHQAAfu_vbsA7Dx_wq-AMw_FCkF_avfCu0AVs4m7KUAAAAexQcN4AAOf7W67_QCINq6x9AeN3QBHhSKsCzxAdf8HOET2x07NX8ACAXTICP150bq_fYgAC1h2BU7OBNACUhvUAIqrwYQDBqgBgAAcEIAAPhBAACcQgAATMIAACDCAACAwAAAZEIAAMBAAAA8wgAAuMEAABhCAAAUwgAALMIAAMBBAABwwQAAgEEAALBBAABAwgAAQEIAALBBAAAQwQAAYMIAAIbCAACSQgAADMIAAFDCAABAwAAA4MEAAIA_AABwQgAAcMIAAMDBAAAQwgAAFEIAAODBAAAAwAAAIMEAAJhCAABAwQAA-EEAAPBBAACoQQAAgMAAADzCAACmQgAAhMIAAMBAAACIQQAAgD8AABxCAACEwgAAIMIAAKDAAABgQgAAgEEAADxCAACSwgAAIMEAAAhCAAA0QgAAwEAAAADCAABIwgAAqMEAAChCAACOwgAAgMEAAADAAADYwQAAqMEAABhCAACAQQAAFMIAAOBBAABQwQAAMMEAAJDCAAC4wQAAUEEAAMhBAACgwAAAnkIAAIC_AAAMwgAAgD8AAIJCAADIQQAAhsIAAFRCAAAAQQAAoEAAAMhBAACAwQAAiEEAAAAAAABYwgAAwMEAAMBBAAAgwQAAykIAADzCAACgwQAA0EEAAMDAAACgwgAA-EEAALhBAAAsQgAA4EAAAOBBAAC4QQAApkIAAADCAADwQQAA4MAAAHBCAAAAQQAAQMAAADTCAAA8wgAAMMIAAPDBAACgwAAAuMEAAKDBAADYwQAAwMEAAJTCAADwwQAAJEIAAEDBAADCwgAAAAAAACBCAAAQwgAAdEIAAIDBAAB8QgAADMIAAFjCAACAwAAAhsIAAMBAAACMwgAAUEIAAKhBAAAwwQAAQEAAABDCAACIwQAAmMIAAGhCAAAEQgAAOEIAAKhBAADgwAAAQMIAAEDBAACqwgAAYMEAAMjBAABMQgAA4EEAAGBBAAAkQgAAAMEAAFzCAACcQgAANEIAAODBAAD4wQAAcEIAAADAAAAcwgAAXMIAAPBBAADYwQAA4EAAALBBAAAMQgAAhMIAACjCAACwwQAAwMEAAIZCAACQwQAALMIAANDBAAAwwgAA4MAAAHBBAACQwQAAwEAAAEDBAABQwQAAKEIAAPDBAAAgwQAAgEAAABDCIAA4E0AJSHVQASqPAhAAGoACAAAwvQAAQLwAAEQ-AAAEvgAAfL4AAAQ-AACoPQAAFb8AAFy-AABQPQAAmD0AACy-AABAPAAA2D0AADC9AABsvgAAuD0AAKA8AAAcPgAAfD4AAH8_AAD4PQAA4LwAAKg9AAC4vQAA4LwAABy-AADIvQAA6L0AAIC7AACAuwAAuL0AAOA8AACYPQAA4DwAAHC9AAD4PQAALL4AAES-AAAEvgAAFL4AAIA7AABAPAAAQLwAAKC8AAAcvgAAED0AABA9AAD4vQAAhr4AAMg9AAAcPgAAfD4AACQ-AACuvgAAgDsAAAs_AACgPAAAmD0AACQ-AACgPAAAmD0AABQ-AACovSAAOBNACUh8UAEqjwIQARqAAgAALL4AAJg9AADgvAAANb8AAOi9AAB0PgAAmL0AAGQ-AAB0vgAAnj4AAIC7AAA8vgAAEL0AAKA8AABQvQAAgLsAALg9AAA5PwAABL4AAIY-AADIvQAAED0AAEA8AABUvgAAiL0AABQ-AABAvAAAQDwAABA9AAAcPgAAUD0AABA9AACIvQAAmL0AAKA8AACIvQAA2D0AAFQ-AADYvQAAXL4AAHA9AAAEvgAAuL0AAKC8AABMvgAABD4AAH-_AACAOwAAHL4AAEw-AAAsPgAAQLwAAGQ-AABsPgAAoLwAAKC8AADgPAAADD4AAAQ-AAAQvQAAJD4AAIi9AACgPAAAML0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=iMrWMMUFSdM","parent-reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16195272016378647431"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"4293333717254666089":{"videoId":"4293333717254666089","title":"Deriving and Illustrating Expected Utility","cleanTitle":"Deriving and Illustrating Expected Utility","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YLvF60kgVTw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YLvF60kgVTw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1575,"text":"26:15","a11yText":"Süre 26 dakika 15 saniye","shortText":"26 dk."},"views":{"text":"2,1bin","a11yText":"2,1 bin izleme"},"date":"28 eki 2020","modifyTime":1603843200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YLvF60kgVTw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YLvF60kgVTw","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":1575},"parentClipId":"4293333717254666089","href":"/preview/4293333717254666089?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/4293333717254666089?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15047652753738764023":{"videoId":"15047652753738764023","title":"Introduction to the Autoregressive Model","cleanTitle":"Introduction to the Autoregressive Model","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0rmPxzc6-Zk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0rmPxzc6-Zk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":203,"text":"3:23","a11yText":"Süre 3 dakika 23 saniye","shortText":"3 dk."},"views":{"text":"9bin","a11yText":"9 bin izleme"},"date":"3 nis 2020","modifyTime":1585872000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0rmPxzc6-Zk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0rmPxzc6-Zk","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":203},"parentClipId":"15047652753738764023","href":"/preview/15047652753738764023?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/15047652753738764023?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11463766259252506133":{"videoId":"11463766259252506133","title":"First Order and Second Order Taylor Approximation","cleanTitle":"First Order and Second Order Taylor Approximation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VNl6ILbYkZw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VNl6ILbYkZw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":739,"text":"12:19","a11yText":"Süre 12 dakika 19 saniye","shortText":"12 dk."},"views":{"text":"50,5bin","a11yText":"50,5 bin izleme"},"date":"9 haz 2020","modifyTime":1591660800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VNl6ILbYkZw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VNl6ILbYkZw","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":739},"parentClipId":"11463766259252506133","href":"/preview/11463766259252506133?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/11463766259252506133?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17995647580524882457":{"videoId":"17995647580524882457","title":"RCK Growth Model with a Specific Functional Form","cleanTitle":"RCK Growth Model with a Specific Functional Form","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=j327CNMEYt4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/j327CNMEYt4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":532,"text":"8:52","a11yText":"Süre 8 dakika 52 saniye","shortText":"8 dk."},"date":"13 eki 2022","modifyTime":1665619200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/j327CNMEYt4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=j327CNMEYt4","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":532},"parentClipId":"17995647580524882457","href":"/preview/17995647580524882457?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/17995647580524882457?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9617549726963085593":{"videoId":"9617549726963085593","title":"Setting up a Recursive Competitive Equilibrium in the RCK Model","cleanTitle":"Setting up a Recursive Competitive Equilibrium in the RCK Model","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YOxtwbE2YvE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YOxtwbE2YvE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"https://www.youtube.com/channel/UC5sErQS5h4K73AdCMdDcThQ","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":500,"text":"8:20","a11yText":"Süre 8 dakika 20 saniye","shortText":"8 dk."},"date":"21 eki 2022","modifyTime":1666310400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YOxtwbE2YvE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YOxtwbE2YvE","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":500},"parentClipId":"9617549726963085593","href":"/preview/9617549726963085593?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/9617549726963085593?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12588126359084188325":{"videoId":"12588126359084188325","title":"Consumption Savings Model with Credit Constraint (Part 2)","cleanTitle":"Consumption Savings Model with Credit Constraint (Part 2)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4jlM9kxLpi4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4jlM9kxLpi4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"https://www.youtube.com/channel/UC5sErQS5h4K73AdCMdDcThQ","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":473,"text":"7:53","a11yText":"Süre 7 dakika 53 saniye","shortText":"7 dk."},"date":"23 mar 2023","modifyTime":1679529600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4jlM9kxLpi4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4jlM9kxLpi4","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":473},"parentClipId":"12588126359084188325","href":"/preview/12588126359084188325?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/12588126359084188325?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11893120083136649420":{"videoId":"11893120083136649420","title":"Naive Forecasting using the Autoregressive Model","cleanTitle":"Naive Forecasting using the Autoregressive Model","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qcF4VyZq8Xs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qcF4VyZq8Xs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":842,"text":"14:02","a11yText":"Süre 14 dakika 2 saniye","shortText":"14 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"3 nis 2020","modifyTime":1585872000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qcF4VyZq8Xs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qcF4VyZq8Xs","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":842},"parentClipId":"11893120083136649420","href":"/preview/11893120083136649420?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/11893120083136649420?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8657537729533720915":{"videoId":"8657537729533720915","title":"Naive Forecasting Using a Moving Average Model","cleanTitle":"Naive Forecasting Using a Moving Average Model","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=asVnB6imZEI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/asVnB6imZEI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1008,"text":"16:48","a11yText":"Süre 16 dakika 48 saniye","shortText":"16 dk."},"views":{"text":"3,5bin","a11yText":"3,5 bin izleme"},"date":"2 nis 2020","modifyTime":1585785600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/asVnB6imZEI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=asVnB6imZEI","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":1008},"parentClipId":"8657537729533720915","href":"/preview/8657537729533720915?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/8657537729533720915?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14312559829676368883":{"videoId":"14312559829676368883","title":"Fixed Effects and LSDVs","cleanTitle":"Fixed Effects and LSDVs","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=v57WozC3wiE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/v57WozC3wiE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1190,"text":"19:50","a11yText":"Süre 19 dakika 50 saniye","shortText":"19 dk."},"date":"29 kas 2023","modifyTime":1701216000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/v57WozC3wiE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=v57WozC3wiE","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":1190},"parentClipId":"14312559829676368883","href":"/preview/14312559829676368883?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/14312559829676368883?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7067230958716663321":{"videoId":"7067230958716663321","title":"Variance Inflating Factor and Tolerance","cleanTitle":"Variance Inflating Factor and Tolerance","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AGBdDCbEBuU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AGBdDCbEBuU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":498,"text":"8:18","a11yText":"Süre 8 dakika 18 saniye","shortText":"8 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"18 nis 2021","modifyTime":1618704000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AGBdDCbEBuU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AGBdDCbEBuU","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":498},"parentClipId":"7067230958716663321","href":"/preview/7067230958716663321?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/7067230958716663321?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3423467843955657050":{"videoId":"3423467843955657050","title":"Forecasting using VECM in R","cleanTitle":"Forecasting using VECM in R","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NZOG0zfkHMw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NZOG0zfkHMw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":225,"text":"3:45","a11yText":"Süre 3 dakika 45 saniye","shortText":"3 dk."},"views":{"text":"5,4bin","a11yText":"5,4 bin izleme"},"date":"16 ağu 2020","modifyTime":1597536000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NZOG0zfkHMw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NZOG0zfkHMw","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":225},"parentClipId":"3423467843955657050","href":"/preview/3423467843955657050?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/3423467843955657050?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2005407763602137415":{"videoId":"2005407763602137415","title":"Arrow's Theorems on Investment and Risk Aversion","cleanTitle":"Arrow's Theorems on Investment and Risk Aversion","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=n5qk3RLtn-4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/n5qk3RLtn-4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":667,"text":"11:07","a11yText":"Süre 11 dakika 7 saniye","shortText":"11 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"31 ara 2020","modifyTime":1609372800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/n5qk3RLtn-4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=n5qk3RLtn-4","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":667},"parentClipId":"2005407763602137415","href":"/preview/2005407763602137415?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/2005407763602137415?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11271638772277646637":{"videoId":"11271638772277646637","title":"Deriving the Expenditure Function","cleanTitle":"Deriving the Expenditure Function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=d0j5Nwm2_J0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/d0j5Nwm2_J0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":264,"text":"4:24","a11yText":"Süre 4 dakika 24 saniye","shortText":"4 dk."},"views":{"text":"21,4bin","a11yText":"21,4 bin izleme"},"date":"11 nis 2020","modifyTime":1586563200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/d0j5Nwm2_J0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=d0j5Nwm2_J0","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":264},"parentClipId":"11271638772277646637","href":"/preview/11271638772277646637?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/11271638772277646637?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16247212587197713890":{"videoId":"16247212587197713890","title":"Illustrating Third Degree Price Discrimination","cleanTitle":"Illustrating Third Degree Price Discrimination","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=BDUoWUIZpSI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/BDUoWUIZpSI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":517,"text":"8:37","a11yText":"Süre 8 dakika 37 saniye","shortText":"8 dk."},"date":"4 ağu 2020","modifyTime":1596499200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/BDUoWUIZpSI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=BDUoWUIZpSI","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":517},"parentClipId":"16247212587197713890","href":"/preview/16247212587197713890?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/16247212587197713890?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17423239159334213927":{"videoId":"17423239159334213927","title":"Homothetic Preferences and Special Indifference Curves","cleanTitle":"Homothetic Preferences and Special Indifference Curves","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=aTjAsnsNGXo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/aTjAsnsNGXo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":449,"text":"7:29","a11yText":"Süre 7 dakika 29 saniye","shortText":"7 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"4 mar 2021","modifyTime":1614816000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/aTjAsnsNGXo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=aTjAsnsNGXo","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":449},"parentClipId":"17423239159334213927","href":"/preview/17423239159334213927?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/17423239159334213927?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16648993137409039248":{"videoId":"16648993137409039248","title":"Heterogenous Agents Consumption Savings Model","cleanTitle":"Heterogenous Agents Consumption Savings Model","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=g7Ge93RBJDA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/g7Ge93RBJDA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1084,"text":"18:04","a11yText":"Süre 18 dakika 4 saniye","shortText":"18 dk."},"date":"9 ara 2023","modifyTime":1702080000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/g7Ge93RBJDA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=g7Ge93RBJDA","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":1084},"parentClipId":"16648993137409039248","href":"/preview/16648993137409039248?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/16648993137409039248?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17160200883658821327":{"videoId":"17160200883658821327","title":"Weak Stationarity vs Strong Stationarity","cleanTitle":"Weak Stationarity vs Strong Stationarity","host":{"title":"YouTube","href":"http://www.youtube.com/live/sqZtT6o6B6U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sqZtT6o6B6U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":454,"text":"7:34","a11yText":"Süre 7 dakika 34 saniye","shortText":"7 dk."},"views":{"text":"9,9bin","a11yText":"9,9 bin izleme"},"date":"20 ağu 2023","modifyTime":1692489600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sqZtT6o6B6U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sqZtT6o6B6U","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":454},"parentClipId":"17160200883658821327","href":"/preview/17160200883658821327?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/17160200883658821327?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16195272016378647431":{"videoId":"16195272016378647431","title":"Deriving the Betas in a Bivariate CLRM","cleanTitle":"Deriving the Betas in a Bivariate CLRM","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=iMrWMMUFSdM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iMrWMMUFSdM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNXNFclFTNWg0SzczQWRDTWREY1RoUQ==","name":"Justin Eloriaga","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Justin+Eloriaga","origUrl":"http://www.youtube.com/@JustinEloriaga","a11yText":"Justin Eloriaga. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":869,"text":"14:29","a11yText":"Süre 14 dakika 29 saniye","shortText":"14 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"18 mar 2021","modifyTime":1616025600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iMrWMMUFSdM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iMrWMMUFSdM","reqid":"1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL","duration":869},"parentClipId":"16195272016378647431","href":"/preview/16195272016378647431?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","rawHref":"/video/preview/16195272016378647431?parent-reqid=1765309368209414-13907066812557717783-balancer-l7leveler-kubr-yp-klg-264-BAL&text=Justin+Eloriaga","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"9070668125577177837264","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Justin Eloriaga","queryUriEscaped":"Justin%20Eloriaga","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}