{"pages":{"search":{"query":"LIM","originalQuery":"LIM","serpid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","parentReqid":"","serpItems":[{"id":"17283634130819181775-0-0","type":"videoSnippet","props":{"videoId":"17283634130819181775"},"curPage":0},{"id":"16604177198580507826-0-1","type":"videoSnippet","props":{"videoId":"16604177198580507826"},"curPage":0},{"id":"17172360438050835267-0-2","type":"videoSnippet","props":{"videoId":"17172360438050835267"},"curPage":0},{"id":"video-related-suggest-0-3","type":"relatedSuggest","props":{"title":"Bunlar aranıyor","columns":[[{"text":"Limit calculator","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Limit+calculator&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Derivative vs limit","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Derivative+vs+limit&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"One-sided limits","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=One-sided+limits&source=video-related-suggest&rq=1&src=int_discovery_recommender"}],[{"text":"Limits at infinity","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Limits+at+infinity&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Taylor series","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Taylor+series&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Indefinite integral","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Indefinite+integral&source=video-related-suggest&rq=1&src=int_discovery_recommender"}]]},"curPage":0},{"id":"16425514083851026161-0-4","type":"videoSnippet","props":{"videoId":"16425514083851026161"},"curPage":0},{"id":"R-I-113683-5-0-5","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":5,"grab":"dExJTQo=","statId":5,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","ui":"desktop","yuid":"6042293411767143339"}}},"isAdult":false,"position":5,"placement":"empty"},"curPage":0},{"id":"4854704034011771436-0-6","type":"videoSnippet","props":{"videoId":"4854704034011771436"},"curPage":0},{"id":"1517196291537944431-0-7","type":"videoSnippet","props":{"videoId":"1517196291537944431"},"curPage":0},{"id":"4932103128310317999-0-8","type":"videoSnippet","props":{"videoId":"4932103128310317999"},"curPage":0},{"id":"16869108634055247080-0-9","type":"videoSnippet","props":{"videoId":"16869108634055247080"},"curPage":0},{"id":"11384685492776537482-0-10","type":"videoSnippet","props":{"videoId":"11384685492776537482"},"curPage":0},{"id":"17121486827325814383-0-11","type":"videoSnippet","props":{"videoId":"17121486827325814383"},"curPage":0},{"id":"R-I-113683-5-0-12","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":12,"grab":"dExJTQo=","statId":12,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","ui":"desktop","yuid":"6042293411767143339"}}},"isAdult":false,"position":12,"placement":"empty"},"curPage":0},{"id":"15078514460659736121-0-13","type":"videoSnippet","props":{"videoId":"15078514460659736121"},"curPage":0},{"id":"17138608207320744499-0-14","type":"videoSnippet","props":{"videoId":"17138608207320744499"},"curPage":0},{"id":"6933706395137267311-0-15","type":"videoSnippet","props":{"videoId":"6933706395137267311"},"curPage":0},{"id":"5630990719574320490-0-16","type":"videoSnippet","props":{"videoId":"5630990719574320490"},"curPage":0},{"id":"7715238162303438392-0-17","type":"videoSnippet","props":{"videoId":"7715238162303438392"},"curPage":0},{"id":"847745485155000854-0-18","type":"videoSnippet","props":{"videoId":"847745485155000854"},"curPage":0},{"id":"14804681058292170072-0-19","type":"videoSnippet","props":{"videoId":"14804681058292170072"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dExJTQo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","ui":"desktop","yuid":"6042293411767143339"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DLIM"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"2731012203224942057184","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["204184,0,24;1459210,0,5;1281084,0,58;287509,0,25;1447467,0,89;790811,0,72"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DLIM","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=LIM","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=LIM","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"LIM: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"LIM\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"LIM — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y53e86da027a2e2f8fbda7ef7c536b359","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"204184,1459210,1281084,287509,1447467,790811","queryText":"LIM","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"6042293411767143339","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1460915,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1767143342","tz":"America/Louisville","to_iso":"2025-12-30T20:09:02-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"204184,1459210,1281084,287509,1447467,790811","queryText":"LIM","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"6042293411767143339","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"2731012203224942057184","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":149,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"6042293411767143339","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1743.0__eecddcd035f1600a552b89c33e76f4a866ae10da","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"17283634130819181775":{"videoId":"17283634130819181775","docid":"34-1-13-Z3F950ED8F104F4A9","description":"Evaluating Limits. We learn how to evaluate the lim x-›-2^+ 1/(x^2-4). We learn how to find and evaluate a limit at a given point of lim x-›-2^+ 1/(x^2-4). These limits are at essential...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2073607/d1cf14155b1c7c87a142993731cb369e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ASkaagEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DM7lvFKCCJys","linkTemplate":"/video/preview/17283634130819181775?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate lim x-›-2^+ 1/(x^2-4)","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=M7lvFKCCJys\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhYKFDE3MjgzNjM0MTMwODE5MTgxNzc1WhQxNzI4MzYzNDEzMDgxOTE4MTc3NWq2DxIBMBgAIkUaMQAKKmhobmxqYWt6eHlyeW12Z2RoaFVDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZxICABIqEMIPDxoPPxPHAYIEJAGABCsqiwEQARp4gQH9-gUAAAD0_AgH9wX-AfT67v_5_v4A7vAE_AcAAADsCQ4D_gAAAAkW_gEJAAAABQn0Dv39AQASC_X2BAAAAAf6_f_5AAAACgb3Cf4BAADu_gD2AgAAAAcE7fX_AAAAAAgC9wMAAADw9wf7AAAAAP_9APAAAAAAIAAtLGDVOzgTQAlITlACKoQCEAAa8AF_D_kAyfjz_xIU8gD-IPYBmAkl_ywz5f_T-P8AwvjPAAAD8QC___n_Jd_yAOYODAAWBNv_Ds33_x_0A__9APwA9-vuABDb8QIzECf_BAXYALksGf756Q8A39Hm_xoVzgAc2wv_EPnJAfADywEV6SYCCwclAxT2HQL09fQB7_cMBdTh0_wKAPcI4-T6_MgcFQML6_0HDRoV-vbo7QXx6OwFDu7y_hkX5v4H89z_6xwHAQ3zBf0U_wD7AgcXAunqF_0BCin89PX-_QH_-PT75gH3Bfvx_ezdAAIU3wsN6fX89-Tv-vjn9QID9RAGAgX_-gYgAC1tAy07OBNACUhhUAIqcxAAGmA8BAAi9g7B9zYu7gET-Crez8n4x-4F_xkG_xP00-wkGefc_AX_D-H9v6YAAAAvxdgDJQADeCAM8WLiDe3lhd7_D38BJkauDx724O0y7QvTIwDIFD4AswOzUTv07g0UGBIgAC1QRB07OBNACUhvUAIqrwYQDBqgBgAAmMEAAEzCAADYQQAAmsIAAFhCAADIwQAAxkIAANhBAABwQQAAyEEAAIBAAAA4wgAAMMEAAEDAAAAQQQAAcEEAAHDBAAC4wQAAqEEAAIDBAACgwAAAAEEAANjBAADwQQAADMIAANDBAACwwQAAzMIAAHBCAACoQQAA6MEAADDBAACKwgAAEMEAAJ7CAABAQQAAgD8AAJZCAACgwQAAIMEAAODAAACwQQAANEIAAKDAAACsQgAA8sIAAIC_AAAYQgAAjkIAAIhBAACAPwAAQMEAALBBAAAIQgAAbEIAAJhBAACwwgAAcEEAAKDAAABIQgAAcEIAAM7CAABwwQAAksIAAADAAACAwQAAnMIAALDCAACoQQAAVMIAAEBCAAAkQgAAlMIAAFRCAAAYwgAAbMIAALBBAABwwQAA4MEAAADAAADAwQAAVEIAABDBAADQQQAAYEEAANhBAAD4QQAABEIAAABCAACAwgAAGMIAAJJCAACowQAAQEEAADBBAABIwgAAuEEAAIBBAABsQgAAjEIAAODAAAAcQgAAIEEAABDBAADEwgAAUMIAAOBAAAAAwAAAwMAAAIZCAABcQgAAKEIAAFTCAADQwQAAwMAAAKBBAACwQQAAkMEAAETCAAAgwQAAIMEAAFzCAAAcwgAAwEAAAERCAABgwQAAiMEAABDBAAAAwQAAgL8AABDCAAAAwgAAAMIAAMBBAABQwgAANEIAAKBBAACgQQAAMMEAADTCAACYQQAAMMEAAFBCAACgwQAA-EEAAFBBAABgwQAAMMEAADBBAAAwwQAAMMIAANBBAAAwQgAAoEAAAOhBAACEwgAAgMEAAHDCAABIwgAADEIAAFzCAAAwQQAAmEEAAGzCAABQwQAAuEEAAAAAAACoQgAADEIAAAAAAABQQQAAcEIAACjCAAAEwgAA4MEAAIDBAACowQAAYMEAABhCAAAAwAAAAEAAAMDBAAA0wgAA4EAAADhCAAAMwgAAQMAAACTCAAAgQQAAoMAAAMDBAAAMwgAAAMAAAKjBAACaQgAASEIAAGBBAAAYwgAAqMEAALDBIAA4E0AJSHVQASqPAhAAGoACAADovQAAUD0AADQ-AAAsvgAAMD0AANY-AACePgAAR78AAIK-AAAcPgAAlj4AAFS-AAAQPQAA6D0AAOi9AACGvgAAyj4AAIA7AACGPgAA_j4AAH8_AAAEPgAAsj4AAEQ-AABAvAAABD4AAEA8AACAuwAAMD0AAOI-AACOPgAAjr4AAKA8AAAQvQAAED0AAJ4-AAAMPgAAbL4AAPa-AAAsvgAAJL4AAI4-AAAPPwAABD4AAGy-AADoPQAA4LwAADy-AADIvQAAZL4AABy-AABAvAAAjj4AABE_AAC4PQAAoDwAAAU_AADgvAAAdL4AACw-AACgvAAA-D0AAMY-AACIvSAAOBNACUh8UAEqjwIQARqAAgAAML0AAAw-AABUvgAAR78AANK-AAAEPgAA3j4AABw-AAAEPgAAyj4AACw-AABAPAAAFL4AAIA7AAC4vQAAEL0AAI6-AADePgAAmr4AANY-AACoPQAALL4AADS-AAD4vQAAUL0AAIg9AACAOwAAZD4AANi9AADovQAAMD0AAEC8AADovQAAgLsAAOA8AAAcvgAA4j4AAJ4-AACSvgAAmL0AAGQ-AADYvQAAMD0AAKC8AAAMPgAAmL0AAH-_AAC2PgAAED0AABA9AAAsvgAAXD4AADw-AAAEPgAA4DwAACQ-AAC4vQAAoLwAAI4-AAAQvQAAHD4AAKi9AACAOwAApj4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=M7lvFKCCJys","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["17283634130819181775"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3712888459"},"16604177198580507826":{"videoId":"16604177198580507826","docid":"34-8-10-ZAC2AAF4DF95876F8","description":"Evaluating Limits. discontinuities. Visit our website for links to all of our videos: https://www.MinuteMathTutor.com Need a Math Tutor? https...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3372419/f1ac7e8cad424404fc9224f4f1634f9f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/owAp9AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQaR3mefaAoY","linkTemplate":"/video/preview/16604177198580507826?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate lim x-›2 f(x) where f(x)={-x^2+2 when x 2; -5 when x=2","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QaR3mefaAoY\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhYKFDE2NjA0MTc3MTk4NTgwNTA3ODI2WhQxNjYwNDE3NzE5ODU4MDUwNzgyNmqIFxIBMBgAIkUaMQAKKmhobmxqYWt6eHlyeW12Z2RoaFVDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZxICABIqEMIPDxoPPxOKAYIEJAGABCsqiwEQARp4gfcE-v76BgD4_Qj-_AP_AfYF8Pn5_f0A9PH6_wUC_wD0AAj8_AAAAPoPA_4GAAAABwT-BQX9AQAPAfj8BAAAAAPz_vX6AAAADgP4__4BAAD2-gb5AgAAAP0I-fj_AAAA_v_9-wIAAADzAQX7AAAAAP_-APEAAAAAIAAtWlTkOzgTQAlITlACKoQCEAAa8AF_1xD_zcviAajm6QDME7QAmDUq_zxF2__N6g3_0-64AenuAwDnACcAFvkJ_9MA2gAm4vv-BL4Z_xbQBgDs4NEA_Rw2ACftBQEd9BgC9Ob0AOwkIwAI6h8A9NTK_gsL_gUP3BP-7ejN_gznrQo8zC0C_QsVAhTLEgfuvAn_zwkXBN700fwUF8gB2dr4-79TDwL7KNEF-TEK-vL06wICDwz6EOcL_CIg3P1A_AIF6invBPEP_vXyAPD951Ac9ugB-v8BDjf6Ds4Z_y3P__kC-QcDyBzi9zQi6AQF9f0D_fHn-tDHA_PK_-n09hD5_MLU_fsgAC1MCf46OBNACUhhUAIqzwcQABrAB5xNr77qwlm8SWf9u98YIr7Ub5U7rz5DPPvnOb5iwkM8-63dvLw_jj3dkyg7ieApvfjBgb5_6Pi8RGlPPSB5Fz5c0cE83XL9unoXL74IPDA9KZ_UvPWhg748d_E7LsWXO-vFQD7DKeU5hM2KvKDi2D1hPJ68xU-IvO6zSj23mas7_chQuQ9YQ70_GWO8bInmvHjACjwEtwS9xkqxPJSE5D3WLrc8_BFQPCtXjr0xcya8gHwuvEdahTzEjYA825EDvBEALD6WWxo92x3tPC6Z2bx_-Hk8EcLguOyE2buSNGm9XcDLvHzxRT37BD05xYdhuwNoij13RkC9SoLsOvmgB770Gps9L4GAOycXEz5P1XM9FamwPJ2FmLzeEHS7pQ1lOmQ-IL3uqQG9Iwp3PJyfJz1r7xO9TfOOPDdMiT2N_TY9yyrPugjNST1-baI86v_FOysD_TzNtxm9tm8JvL5o0buQ3ks9rCMivAe_w7sgjdS8ZAG4PL2fxD1qnV08qe-hPCGNLzyqR5o8vM9xPN9mxj05tfO9hx8YPPpYpr3LUJC9Haeuu-fMUT24oIg9WX0evCKK6T39-ye9wf5rvEh8m7oxWze96CM6vCuuYLwmYya9W7Sdut6Fd70gJ8w9KAgXNwmZVT2qR5o8-QkQvP-wdjr6JPu7LFIXPNBPJ713ooS9ofeEOsz_M7tjcpQ9VDjEuiAC2Dxo_Tc9l7mOOwsk6D2rAS-97MnTOWkYH7wUIiC9OiakOpLmD71sRgE9T3xvugGj6z0S2108M-6HOAf1YzuCFpY63poNO205l7xO3oY9Za5PukMIgjsU8Ma8nERSOIkPt723Qri9MUK6OEa5L73cxQq9eEWzuX0FST0Lf6O7qwijuAL0i71FNZC9O4YxOMw1Vr3Wi-M7RkoAuUaa2D2yMwA91guQOL9oqrwB0V07cWCLuVGfZL1miam8mfFXOZ4DML0P8io-vcXfuLXp_rxlhJw81yaAuJ_xcTul2AE-qK4xuXToGbvJsCU9pMMROBcfsDxLoIc9ODPHuKr5BT0fDjK9weG_N-LX_rqKeqw91ViVuCq-y72osj6950aVN2kVAr2QvCO-zYOEuK4OQD540y297Ip9tlfCA7wACI48jOKaOLEVBD7G__g7MtlTuE7BkL0_vk69U05lN8wvnrzKEsK82SFxNyAN57wVKg49Hi6-NrMxBrsIr729HH2mtyL_7D01KQU-835buPgL7Lz9mzw8z2QDt1IJpL0f-FM9CUMwOM4rqLz6qQc6PVXjNyAAOBNACUhtUAEqcxAAGmAd-QBA-xXPGCUr9_f4_w3p2-ry4gzpACPzAAH13eAbAOLfJg7_A_f687kAAAAv9OgEFwDvUCUX9VL86fgCnuj49H8L9xzZEin4Ae088QrmIQDUIx4AyQ3dPRvx3QcW8y8gAC1-zkk7OBNACUhvUAIqrwYQDBqgBgAAwEAAADDBAADYQQAAeMIAALhBAAAYwgAApEIAAGBBAADgwAAAmEEAAGRCAABUwgAAFMIAAJhBAACIQQAAMEEAAKBAAAAQwgAAOEIAAIDBAAAEwgAAAAAAAEzCAACgQQAAFMIAAGTCAAAwwQAAlMIAAERCAAAAAAAA8MEAALBBAACcwgAAkMEAAJbCAACIQQAAgEAAAJRCAAAgwgAAsEEAAKDAAADQQQAAMEIAACTCAACEQgAA7sIAACDBAAAAQgAAjkIAAOhBAADgQAAAAMAAAMBBAAAYQgAAQEIAAJBBAADmwgAAgD8AAGBBAAAQQgAAaEIAAIjCAACowQAAdMIAABBBAAA4wgAAnMIAAIrCAACwQQAAIMIAADBCAACsQgAAFMIAAIhBAABkwgAAWMIAAIDAAACowQAAQMAAADBBAACIwQAAhEIAAIDBAADgQQAA4EAAAHRCAACIQQAAAEEAAAxCAACKwgAAsMEAAIxCAABQwgAA8EEAANhBAABwwgAAgMAAAPBBAADwQQAAbEIAAMjBAACQQQAAsEEAAEDAAACiwgAAQMEAAIA_AABAwAAAiMEAAIZCAAAEQgAATEIAADDCAABAwQAAoMEAAJJCAACgQAAAkMEAAFDCAAAAwQAAUMIAAHTCAAAQwgAAIMEAAPhBAABAwAAAYMEAAIDBAADYwQAAkEEAADzCAAAAwgAAsMEAAJBBAABswgAAdEIAAAAAAAAMQgAAoEAAAGjCAAAAQAAAiMEAAABCAADYwQAAYEIAAFBBAADAwQAAKEIAAEDAAABgwQAA4MEAAMBBAAAAQgAA4EEAAMhBAACAwgAAoMEAAI7CAAAYwgAAAEEAAIzCAACgQQAAsEEAAILCAAAQQQAAiEEAAADCAACCQgAASEIAAIjBAADgQAAAhkIAADzCAABAwQAA-MEAAKBAAABgwQAAIMIAADRCAACowQAAMMEAACzCAABkwgAAuEEAAEhCAACIwgAAJMIAAAjCAADAwAAAgMEAAPjBAACAwAAA4MAAAEDAAABAQgAAJEIAAKDAAADgwAAAwMAAAEDBIAA4E0AJSHVQASqPAhAAGoACAABUPgAAPL4AABA9AAC6vgAAJL4AAJI-AACgvAAAeb8AABy-AADIvQAADD4AAEy-AAAkPgAAjj4AAIa-AABwvQAA-j4AAOg9AAAQvQAAJT8AAH8_AACYPQAALD4AAOC8AACgvAAAQLwAADS-AAB8vgAAcL0AABC9AABsPgAAiL0AAIo-AADWvgAAML0AABA9AAAQvQAAJL4AALq-AAAcPgAAFD4AAKo-AADKPgAAyD0AAJK-AACovQAAFL4AAJq-AAAcPgAA3r4AABC9AADGPgAADz8AAC8_AADIvQAAoLwAAFc_AAB8PgAA4DwAALa-AACWvgAAlr4AALg9AAAMviAAOBNACUh8UAEqjwIQARqAAgAA-L0AAEA8AADIvQAAM78AAIa-AABAvAAA4j4AADQ-AABwPQAATD4AAKI-AACAuwAABL4AAPi9AADovQAAMD0AAHy-AAAPPwAAgr4AAGw-AAAkPgAA4LwAAHy-AACAOwAAyL0AANg9AACYvQAAHD4AAHC9AAC4vQAA6D0AAFA9AACOvgAAyL0AABA9AABwvQAAJD4AACQ-AAC6vgAAiL0AADw-AAAwvQAAcD0AAJi9AABEPgAAPL4AAH-_AAB8PgAAVD4AALK-AADYvQAAoj4AADQ-AABAPAAAXD4AAAQ-AADIvQAAuD0AANg9AADgvAAAUD0AAGS-AACAOwAAJD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=QaR3mefaAoY","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16604177198580507826"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1762311129"},"17172360438050835267":{"videoId":"17172360438050835267","docid":"34-10-15-Z24DF92E0C9C06042","description":"Evaluating Limits. We learn how to evaluate the lim x-›-2^+ 3x/(x+2). We learn how to find and evaluate a limit at a given point of lim x-›-2^+ 3x/(x+2). These limits are at essential...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3383014/e723ab46035c7bb65a6831ccc0ed35c5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Vm6uhQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0Ray_YTfWNg","linkTemplate":"/video/preview/17172360438050835267?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate lim x-›-2^+ 3x/(x+2)","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0Ray_YTfWNg\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhYKFDE3MTcyMzYwNDM4MDUwODM1MjY3WhQxNzE3MjM2MDQzODA1MDgzNTI2N2qvDRIBMBgAIkUaMQAKKmhobmxqYWt6eHlyeW12Z2RoaFVDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZxICABIqEMIPDxoPPxOOAYIEJAGABCsqiwEQARp4gff-_AD-AwAD_gr7_QP_AQH89v34_f0A9PH5_wUC_wDrAwYAAv8AAPoQA_4GAAAA_gb9CgP-AAAPAfj8BAAAAAz5-Pz-AAAADAH5Agj_AQH3BAL4AgAAAAcE7vX_AAAA9wML_AEAAAD2-gr_AAAAAAv8-u0AAAAAIAAtAFPbOzgTQAlITlACKnMQABpgJhkAMA0E0dg3Jer_Kegk7s3d_MLr7f8ZAgAI-tnQFQPl1PoR_x7iCM-wAAAAG8roAT8A-Gg8BMpTEPrx_pPY9xR_AgsbADIC693zPccv2x8E2RUiAL3u6Tot6wr3DBAvIAAt_cEsOzgTQAlIb1ACKq8GEAwaoAYAAFDBAAAIwgAABEIAAJjCAAAoQgAA8MEAAKZCAADYQQAAAEEAALhBAACQQQAATMIAAKDBAABAQAAAiEEAAABBAACQwQAACMIAAMhBAADgwQAA-MEAAIBBAACgwQAAEEIAAMjBAADwwQAA8MEAALjCAABQQgAA4EAAAADCAACAvwAAfMIAALjBAACMwgAAcEEAAMDAAACmQgAA0MEAAADAAABAwQAAsEEAAEBCAAAQwQAAlkIAAOrCAACAQAAAqEEAAKZCAADQQQAAgMAAALBBAADYQQAA4EEAAHBCAAAgQQAAvMIAAEBBAACAwAAAXEIAAI5CAADGwgAAoMAAAJLCAAAAAAAAoMEAAJbCAAC2wgAAiEEAAFDCAAA8QgAAOEIAAJjCAABAQgAAyMEAAHTCAABgQQAAqMEAABDBAACgQAAAyMEAACRCAACAwQAAMEEAABBBAAAkQgAA6EEAABRCAAAUQgAAhMIAAFjCAACOQgAA2MEAAFBBAABQQQAANMIAAMBBAAAYQgAAUEIAAGhCAADAwAAAJEIAACBBAACAwAAAzMIAADjCAAAAQAAAoMAAAKjBAAB8QgAAJEIAABBCAAB0wgAAoMEAAKDAAADIQQAAAEEAALjBAADwwQAAUMEAANDBAACAwgAABMIAACBBAAAsQgAA8MEAAJjBAACAwAAAqMEAAHDBAAAwwgAAHMIAAIDBAACwQQAAWMIAAEBCAACQQQAAMEEAAKBAAABMwgAAUEEAAKDBAABMQgAA0MEAADhCAACIQQAAYMEAABBBAACgQAAAIMEAACTCAAAgQQAAAEIAAIA_AACoQQAAisIAAIDBAABwwgAASMIAACxCAABwwgAAgEAAAKhBAACMwgAAYMEAAOBAAACgwQAAskIAAHBBAAAAwAAAwEEAAIJCAABIwgAAEMIAAJjBAABAwQAAAMIAAADCAABAQgAAgL8AAEBAAADYwQAAIMIAAKBAAAA0QgAAVMIAAEDBAAAswgAAAEEAAEBAAAAEwgAA0MEAADBBAABAwQAAcEIAAEhCAACAvwAAsMEAAPDBAACYwSAAOBNACUh1UAEqjwIQABqAAgAAlr4AAMi9AACuPgAAuL0AADw-AADWPgAAiD0AAD-_AAAkvgAAcD0AADQ-AAAMvgAAgLsAACQ-AADIvQAAqL0AAOY-AACgPAAAfD4AAA8_AAB_PwAAoDwAAMg9AACYPQAAEL0AAAw-AABwvQAADL4AAEQ-AAC6PgAAFD4AAI6-AABEPgAAUL0AAKC8AACWPgAAoDwAAGy-AAC6vgAA-L0AAJi9AACCPgAAuj4AACQ-AAAkvgAAgLsAAJg9AACovQAAoDwAAJi9AAAsvgAAqD0AADw-AAAFPwAAsr4AAKg9AAARPwAAQDwAAFC9AAA8PgAAmr4AAIC7AACKPgAA-L0gADgTQAlIfFABKo8CEAEagAIAAKi9AAA0PgAAqL0AAFO_AAC2vgAAuD0AAAE_AAD4PQAAVD4AAMo-AACWPgAAmD0AADy-AACIvQAADL4AAOA8AACCvgAABz8AAMa-AADCPgAAmD0AAFy-AAB0vgAAML0AAPi9AABQPQAAML0AAIo-AAAMvgAABL4AAIg9AACAuwAAyL0AAEC8AAC4PQAA4LwAAKY-AABsPgAAmr4AAEC8AABsPgAAbL4AAEC8AAC4vQAAyD0AAOC8AAB_vwAAsj4AAOC8AAAUvgAARL4AALI-AACiPgAAED0AAIi9AAA0PgAA6L0AADA9AAC2PgAA2L0AAIg9AABMvgAAoLwAAPI-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=0Ray_YTfWNg","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["17172360438050835267"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3476446148"},"16425514083851026161":{"videoId":"16425514083851026161","docid":"34-5-15-ZF94E05F9DD44A616","description":"Evaluating Limits. We learn how to evaluate the lim x-›-3^+ (x+2)/(x^2+5x+6). We learn how to find and evaluate a limit at a given point of lim x-›-3^+ (x+2)/(x^2+5x+6). These limits are at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4586719/49dc2abad182487412192025e584cb22/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kpsAVQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"4","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DA7nk-wGDtXM","linkTemplate":"/video/preview/16425514083851026161?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate lim x-›-3^+ (x+2)/(x^2+5x+6)","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=A7nk-wGDtXM\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhYKFDE2NDI1NTE0MDgzODUxMDI2MTYxWhQxNjQyNTUxNDA4Mzg1MTAyNjE2MWqIFxIBMBgAIkUaMQAKKmhobmxqYWt6eHlyeW12Z2RoaFVDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZxICABIqEMIPDxoPPxOqAYIEJAGABCsqiwEQARp4gfb-9AH8BAD1AgsAAgT-AQoA8AH2__8A-_YF_gYE_gDrAwYAAv8AAAkV_gEIAAAABwYDBfr-AQAPAfj8BAAAAAb6_v_6AAAADgD8Bv4BAAD5Afr5AwAAAAD_9Pr_AAAAAP8DAQQBAAD3____AAAAAP_-APAAAAAAIAAtUBnhOzgTQAlITlACKoQCEAAa8AF66Q0A7N35Ae78_QDMIPgAgSIK_jA44v_BBf0A7f7cAPb9-QDf_w__NeUFAL0HAf8i7dr_588kACDE9__w6fEA7wwkACPbCgAUFh0B5Pnn_-AiEf8J-woA4-DR_xkN5v4DE_v87xXu___nzQAx8B4C4SMYAhbG9wAX4BAE_v7zCO3f2_4XHfoEAwIG-u0UNwH9DuQFDCcH-uD08P31DfL7_OQD-xsa4_4XBwQEByj0AxAI9PkZ9Pny2zAJCOoW-QUBCy37Br_6BxgMCgcL9_UN7Qzt-i4M8_0gB_0G8_r-69X3Bf7u8_3_Av74DdLV-w0gAC3_IR07OBNACUhhUAIqzwcQABrAB2fyrb4McAa9UmoKvVWlzb3Ult88lThAOyMT8L3XLSc99_1AvFG7rz2ezjq8CKI4vL2OkL5851y92KYpOyB5Fz5c0cE83XL9utz0F75-1DU9qmINPE94kb5nFUw9qeaLusE6Pj6JrhA95StBvdaiLz1UPfS82qQqu_5ucD2q6Dm9eNkMPFGWa7yBdKa9m3PTOxNctLsxzA69L_rIO7xa7j1AY0u8KwGnPOZtFr1yD9M8CYeDu2tumjtJ-GO675EJPBEALD6WWxo92x3tPHbjGzy1ena6VuiNPOVeAL1NmLq82P9vvBxy_TyFrX4914T8N8jw8zw0AGq9vJ_LO6jIIb4CfBw96OltPOyG7T2M94M9cluRO1zxojuRFt08tG09vMMnwrysRoU9kPmbPApK0T0kPGu9qr5OvENUwT2yIjQ8OSt9vASs1Twzopk89PNLPCJEAz1FgFO8RN_dvDYtR737qLs9TaHSu5IdwLz3mKO8FelZPCy4_z0CYQc9Fc2ePC24Gj0tmb66MhxAOt9mxj05tfO9hx8YPJXcPL088cG9Q-nmu--imjs9MNs7e3qVOxPKDD2YJIW8mEKxu1rjYr03w-29DEsRvGS2YLuoBI-9mjQZu2i9Dr10znQ9DKoyPAmZVT2qR5o8-QkQvMHqH7tI7Ek80pcUPJsVlr0HJwG74rLlu8iTybyw5TU9Rq0XPEIyU7yYtR49S_qkutWVDz7U7Ea95UcZuUpKFb0xWsy9siNVtx_07LxYCpY7lZFlu5OMrD1c_ig9Skc6uWYJvDy9cMY7FO-dOmM3gTuxrM88grASOBEMhj3PSW-8FSWKOLMTtL3WRZC9tGcwOXXCcLym5dG83UtBNsXEizxsVPG8VfaDuQL0i71FNZC9O4YxOENxh73LvBe8AyGfuFwMtD1VbZI8VTQaOE4W7bzoCCo8RVtiN6Hlr7xUTRW9tRgxuNlTfD3qswM-PkUKuV3-A73l7xw8OBOvuM6vwTxJk8w930SHuC-zWT3h9fQ6QROwt6XUyjxieeO65ILiuLETgzy2sbO9FanpOGJXibyoYlc73mBBuLpqDr7mrO-9foq4N7yUurzuvb69SYubN_YnAT5EUku9G2w4OO5Rub3d1nE8V1ePN53Z7j2flZO6o2oOuWdE6b19WxC9mhI7uM5yNLxdD8u9qHCbt7uIpTzOyDs9RRyFt-TVnrx6ifG9ZVUwuCL_7D01KQU-835buHXJ9jtHGTY9wpKNuG_I9by9s2w9vzc2OI-5PD1QwcY8bXSVNyAAOBNACUhtUAEqcxAAGmA5_AA4-g3C_jcq5e8CAiXWy8bv2AD2_ybuABgFz_IPDubLFAv_Eunz16sAAAAg2dcGHgAJbiMN_VX38AXlgeD19H0LCTjXGRoO5_My7Q_iQCHNGyQArQa_YiP78QYjFDYgAC3v-iQ7OBNACUhvUAIqrwYQDBqgBgAAoMAAAMjBAAAoQgAAkMIAABxCAAAIwgAAlEIAAABCAADAQAAAuEEAAOhBAABIwgAA0MEAAMBAAACgQQAAEEEAAADBAAAgwgAADEIAANDBAAD4wQAAEEEAAODBAAAMQgAAwMEAADTCAACwwQAAusIAADxCAABAQAAA4MEAADBBAACUwgAAsMEAAGjCAACQQQAAEMEAALJCAADYwQAAgEAAAIDAAABwQQAAUEIAAOjBAACkQgAA4sIAAIDBAACgQQAAmEIAAKhBAAAQwQAAuEEAAJBBAADoQQAAWEIAAIhBAADywgAAAEEAAABAAABsQgAAkkIAAK7CAABgwQAAhMIAADBBAAAcwgAAnMIAALLCAADgQAAAHMIAAFBCAABcQgAAgsIAADhCAAAQwgAAbMIAAJhBAACQwQAAoMAAAOBAAAC4wQAAKEIAAGDBAACYQQAAAAAAADRCAABwQQAA0EEAAChCAAB8wgAAIMIAAJZCAAAowgAAmEEAAIhBAABIwgAAAEEAABxCAAAgQgAAXEIAAJDBAAAUQgAAEEEAAAAAAAC0wgAABMIAAADAAAAAwQAAoMEAAHBCAAAUQgAAKEIAAEjCAACQwQAAgMEAADxCAABAQQAAQMEAAEDCAAAgwQAAFMIAAGzCAADQwQAAoEAAACRCAABgwQAAiMEAAKDAAACYwQAAEMEAACjCAAAQwgAAyMEAAJBBAABAwgAAYEIAALBBAABwQQAAAEEAAFjCAAAwQQAAgMEAADRCAACwwQAAUEIAAHBBAACYwQAAoEAAAMBAAAAAwQAAAMIAAFBBAAAMQgAAEEEAAAxCAACGwgAAqMEAAIrCAAA8wgAAsEEAAILCAABwQQAA0EEAAHDCAABgwQAAMEEAAADCAACkQgAABEIAACDBAABAQQAAgkIAAGTCAADgwQAAyMEAAADAAAC4wQAAHMIAAEBCAABQwQAAAMEAAMDBAAAcwgAAwEAAAExCAABMwgAAmMEAAEjCAABAwQAAgD8AAOjBAACowQAAgD8AAJjBAACEQgAAOEIAAIC_AABgwQAAwMEAAMDBIAA4E0AJSHVQASqPAhAAGoACAAC2vgAAiD0AALY-AACAOwAAnj4AAIo-AAAkPgAAIb8AAKi9AACYPQAA-D0AAIa-AAAQPQAAuD0AAKC8AACgvAAAij4AADA9AACKPgAAAT8AAH8_AADoPQAATD4AAJi9AABwvQAAqD0AAEA8AAAUvgAAFL4AAHw-AAA0PgAA4DwAADQ-AABUvgAAUL0AABw-AADgvAAALL4AAAe_AACovQAAJL4AACQ-AACOPgAAcD0AAOi9AAAEPgAAND4AAOi9AACYvQAAmL0AAEy-AACYPQAAgj4AAAk_AACuvgAAgDsAAPo-AAAcPgAAmL0AAOg9AAAsvgAA-L0AAMg9AABwvSAAOBNACUh8UAEqjwIQARqAAgAAmD0AAJi9AABQvQAASb8AAEy-AAA0PgAA4j4AAEw-AADgvAAA3j4AAM4-AADYPQAARL4AAFS-AAA8vgAAcD0AACS-AAAdPwAAqr4AALI-AADIPQAAgDsAAEy-AACIvQAA6L0AAKA8AACgPAAAgj4AAJi9AAAkvgAABD4AAIC7AAAUvgAADL4AAKg9AABAPAAAND4AAEQ-AADKvgAAQDwAAKI-AABMvgAAEL0AAEy-AACgPAAA4DwAAH-_AACSPgAAJD4AAHy-AACWvgAAmj4AABQ-AABAvAAAND4AANg9AABwvQAADD4AAGQ-AACIvQAAcL0AAJa-AADgPAAA9j4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=A7nk-wGDtXM","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["16425514083851026161"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2568161362"},"4854704034011771436":{"videoId":"4854704034011771436","docid":"34-3-6-Z706B8AE33576E3A7","description":"Evaluating Limits. We learn how to evaluate the lim x-›0^- |x|/x. We learn how to evaluate a limit at a given point of lim x-›0^- |x|/x. This is a great introduction into Limits and Calculus.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3770812/9bebc9ca92d02ce116c2ce5b2b70d5ed/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/L1WLewEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLwhQhfNCpEY","linkTemplate":"/video/preview/4854704034011771436?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate lim x-›0^- |x|/x","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LwhQhfNCpEY\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhUKEzQ4NTQ3MDQwMzQwMTE3NzE0MzZaEzQ4NTQ3MDQwMzQwMTE3NzE0MzZqrw0SATAYACJFGjEACipoaG5samFrenh5cnltdmdkaGhVQ1pRUHkwa1JNVmtHU0tWQkFxLW82M2cSAgASKhDCDw8aDz8TlgGCBCQBgAQrKosBEAEaeIH0CPsH_QMA-_4NBPsG_QIA_Pb9-P39APTx-f8FAv8A7QQI8wAAAAD6EAP-BgAAAAEE-wP9_gEADAT57gMAAAAV-QAM-QAAAAoG9wj-AQAA9gbv-QIAAAAHBO71_wAAAAIDE_z_AAAA8P4R-gAAAAD88v3vAAAAACAALSM_3Ds4E0AJSE5QAipzEAAaYB8bACnw-cTUNhjr8g_-H_rk1-zP9vMAIQwA_wHmxAcH7-cWJ_8P6A3YtgAAABjR5AAkAPdeJxi6Nxvq_--L5gQXf-UFHgk3G-_a5yXLKtsVAeYzCwC_BeQnMPsZARf4KiAALeSYODs4E0AJSG9QAiqvBhAMGqAGAADYwQAARMIAAMhBAABwwgAAPEIAAOjBAACSQgAAyEEAACBBAACgQQAAoMAAAEzCAAAgwQAAoMEAAKBBAABAQQAA8MEAAABAAACIQQAAcMEAAMDAAACAPwAAgMAAACBCAAAEwgAAEMEAABTCAAC-wgAAdEIAAJhBAACowQAA4MAAAIDCAABAQAAAqMIAAEBBAABAwQAApkIAAEDBAADgwQAAgD8AAIC_AAA8QgAA0EEAAIxCAADGwgAAwEAAACBCAACaQgAA-EEAAIA_AAAQQQAAEEEAACBBAABIQgAAIMEAAILCAADAQAAA4MAAAHxCAACGQgAAxsIAAODAAACowgAAgD8AAADAAAB0wgAAoMIAAIhBAAA0wgAAYEIAAARCAAC6wgAAaEIAAIjBAADAwgAAQEEAAKDBAAAQwQAAQEEAAADBAABMQgAAiMEAADBBAAC4QQAAFEIAADRCAAAUQgAAyEEAAGTCAABAwgAApkIAAGDBAACAPwAAoEAAAEDCAAAsQgAAoEEAAIpCAABsQgAAUEEAAPBBAAAwQQAAIMEAALTCAACAwgAAgEEAAKBBAABAwQAAPEIAAEhCAADAQQAAeMIAADDCAABQQQAA4MAAAHBBAACQwQAAwMAAACDBAACAvwAAiMIAADTCAACAwAAAHEIAACzCAADQwQAAIMEAAIDAAAAEwgAALMIAACjCAAAEwgAAgEEAAFjCAAAAQgAAEEIAAABBAADAQAAAXMIAAKBBAACAwQAAokIAAOjBAAD4QQAAoEAAAMjBAACIQQAAMEEAABBBAAAQwgAAoEAAAMhBAACAwQAAuEEAAGTCAACwwQAANMIAAGjCAAA4QgAAWMIAAEDAAAC4QQAASMIAAADCAAAgQQAAEEIAAMxCAADwQQAAAMAAAABCAACmQgAARMIAAKDBAAAQwQAA-MEAALDBAACQwQAA-EEAAMhBAAAwQQAA6MEAAFjCAADAQAAAuEEAABjCAACQQQAAwMEAAFBBAAAEwgAAMMIAACTCAACAvwAA2MEAAGBCAABUQgAAgEEAANDBAACgwQAAqMEgADgTQAlIdVABKo8CEAAagAIAAPi9AAA8vgAAqj4AAHA9AACYPQAAij4AAIC7AADivgAAML0AAIA7AABwPQAAdL4AANg9AAC4vQAAmL0AAHA9AABkPgAAcL0AAAy-AABcPgAAfz8AAAw-AABAPAAA2D0AAJi9AACAOwAAqL0AAIA7AADgvAAAZD4AAGw-AACSvgAA4DwAAOA8AACYvQAAoDwAAKg9AACSvgAAzr4AAEA8AACGvgAADL4AALY-AAAwvQAAQDwAAPg9AAB0PgAAZL4AAAS-AABUvgAA6L0AAJi9AAAkPgAA6D0AAAy-AAAQvQAACT8AABA9AABAPAAAwj4AAKA8AABwvQAABD4AAOA8IAA4E0AJSHxQASqPAhABGoACAADgPAAADD4AADC9AAARvwAAjr4AALI-AAAbPwAABD4AAOA8AAALPwAAgj4AAKi9AADIPQAAUL0AALi9AABAvAAAHL4AAC0_AACSvgAAmj4AAIo-AABwvQAAQDwAAMg9AABAvAAA2L0AAMi9AACiPgAAgDsAAIK-AADYPQAALL4AAMi9AACgvAAAfD4AADS-AADuPgAAcD0AALK-AAAQvQAAoj4AAOg9AAA8PgAAbL4AAEw-AACgPAAAf78AAAE_AAAsPgAADL4AAFS-AADCPgAAgj4AADQ-AAC4PQAARD4AAPi9AAAQvQAARD4AAOC8AAAwPQAAQLwAAAQ-AACSPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=LwhQhfNCpEY","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["4854704034011771436"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2886736646"},"1517196291537944431":{"videoId":"1517196291537944431","docid":"34-3-1-Z874EC8D4E2E56213","description":"Join this channel to get access to perks: / @calculusphysicschemaccountingt Here is the technique to solve 3 limits and how to solve them in here: lim┬(x→64)〖(√x-8)/(∛x-4)〗 lim┬(x→6)〖(2-√(x-2)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3382066/31eb1dabe4ab8c623b1a28cfe2aa301e/564x318_1"},"target":"_self","position":"7","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXqu3FzF5WOs","linkTemplate":"/video/preview/1517196291537944431?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus Help: Find the limits lim (x 64) ( x-8)/( x-4) - lim(x 6) (2- (x-2))/(x^2-36)","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Xqu3FzF5WOs\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhUKEzE1MTcxOTYyOTE1Mzc5NDQ0MzFaEzE1MTcxOTYyOTE1Mzc5NDQ0MzFqrw0SATAYACJFGjEACipoaHlvYm5jZnNva3JiZHFiaGhVQ0ZocUVMU2hES0tQdjBKUkNEUWdGb1ESAgASKhDCDw8aDz8TmAOCBCQBgAQrKosBEAEaeIHuAfn9_AUA8fgCCAME_gES9wH39wEAAPD4_QX_AQAA8wAABv4AAAD-CwcCAAAAAAUJ9Q39_QEAEAQB8vMAAAAJBRD2-QAAAA389Av_AQAAAQb_9wIAAAAQBff9AAAAAAX1BAcAAAAA-PgC-wAAAAD-Cgb4_wAAACAALXGG3js4E0AJSE5QAipzEAAaYCIWADPz-J3hIDXFEekLGe_x4QGt8_L_MvMA5gnMvQwgAb8LIf_12vEIrQAAACAL2hD1AOxoHyXMTB8DAQ2Szv0Rfw4gx_kG_O37_VTVJvsKBckQEACgIwAZPN7zHScEMiAALTu0JDs4E0AJSG9QAiqvBhAMGqAGAAA4QgAAAMIAALZCAADkwgAASEIAAMBAAABoQgAAsEEAAIDAAADgQAAAgMEAAEDAAABcwgAAAMEAAODAAADwQQAAQEEAAIjCAADAQQAAgEAAAODAAADYwQAAosIAABBCAACgwAAAWMIAAFBBAAA0wgAAuEEAAKBAAAB0wgAAAMIAAL7CAADgwAAAoMIAAPhBAACowQAAdEIAAADCAAAoQgAAuEEAADRCAABAwQAAgEAAAL5CAABQwgAAIMEAAPBBAADIQQAAQEEAAITCAAAAwQAAIMEAABRCAADAQQAAAEIAAOrCAAC4QQAAYEEAAGhCAAAQQgAAoMIAACTCAAAwwgAAoEEAAIjCAADwwQAA-MEAABjCAAAcwgAACEIAABRCAACEwgAAdEIAAPjBAAAAwQAAFMIAANjBAADgwAAAgEAAABDBAABEQgAA2MEAAMjBAADYwQAAoEEAAHBBAAAQwQAAGEIAAAAAAAAAQAAAJEIAAMDBAABgQQAAdEIAAAzCAACgwQAAQEEAABhCAABgQgAAZMIAAIDAAACwQQAAYMEAAGzCAADgQAAAyEEAAJhBAACgQQAAfEIAABBCAAAMQgAABMIAAABBAAAswgAAkEIAAGBBAAA0wgAApsIAALjBAAC4wQAAHMIAACDBAABgQQAAMMEAAIBBAABwQQAAAMIAAGDBAACAQQAAwMEAAEDBAAAQQgAAcEIAABBBAACIQgAAQEAAAHRCAAC0wgAAEMIAAIBAAABgwQAA8EEAAMDBAACgwAAAEEIAAMDBAADwwQAAwEAAAIjBAAB8wgAAyEEAAIBCAABAQgAAFEIAAATCAABEwgAATMIAAFDCAABUwgAAgsIAABBCAABgQQAABMIAAEBBAACgQQAADMIAAHxCAAAsQgAAwEAAAKBAAAAAwAAA0MEAABTCAABgwgAAMEEAADDBAAAkwgAATEIAAAAAAAAMwgAAuMEAAAAAAACQwgAAjEIAAGDBAABQwgAAksIAANhBAADwQQAABEIAAKjBAAAgQQAAAAAAAFxCAAAYQgAAHMIAAIhBAAAAQAAAoMEgADgTQAlIdVABKo8CEAAagAIAAIC7AACgPAAAvj4AAGS-AAAMPgAABD4AAAS-AAAJvwAATL4AAOi9AAA0PgAA2L0AAGw-AAC4PQAAXL4AAIA7AAB0PgAAcD0AADw-AAD6PgAAfz8AAIA7AADIPQAAoDwAADS-AADgPAAAJD4AAFS-AABQPQAA-D0AABw-AAAwvQAAuD0AAES-AACiPgAAMD0AAKA8AADovQAAqr4AAFy-AABcvgAAXD4AAFA9AABEvgAADL4AAAQ-AACSPgAA2L0AABQ-AABEvgAALL4AAEw-AABwPQAABz8AANi9AABwvQAAAT8AAAw-AADoPQAARD4AALi9AACGvgAAcD0AAJi9IAA4E0AJSHxQASqPAhABGoACAABAPAAA4LwAADA9AABFvwAAXL4AAAQ-AABkPgAABD4AAEA8AAAMPgAADD4AABC9AABAvAAAJL4AABA9AAAQvQAAhr4AABk_AAA8vgAAnj4AABw-AAAEvgAAML0AADS-AACAOwAA4LwAAIC7AAA8PgAAqL0AAJi9AABwPQAAoDwAACy-AAAMvgAAHD4AAPi9AAAQPQAATD4AAL6-AACYPQAAuD0AABC9AAAUPgAA4LwAAIA7AACOvgAAf78AAKY-AAA8PgAA4LwAAJa-AAA0PgAAoDwAADw-AABsPgAAmD0AABC9AADYPQAAEL0AALi9AACYPQAAEL0AAKY-AAAEPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Xqu3FzF5WOs","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":480,"cheight":360,"cratio":1.33333,"dups":["1517196291537944431"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4932103128310317999":{"videoId":"4932103128310317999","docid":"34-2-3-Z11E0E8F19158A925","description":"calculus, Trigonometry, basic calculus, advance calculus, limit, math...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4302647/983cd13cb3fae322e1c2886ba11db5ac/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hkzCbQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dmfk13JFFE0o","linkTemplate":"/video/preview/4932103128310317999?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"lim(x 1) x^3-1/x-1 | Evaluating the limit | Calculus and Trigonometry","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mfk13JFFE0o\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhUKEzQ5MzIxMDMxMjgzMTAzMTc5OTlaEzQ5MzIxMDMxMjgzMTAzMTc5OTlqtQ8SATAYACJEGjAACiloaHZqYnRoc2xidW13Z25oaFVDaHp3N083d1VDLWx4bWFEdTBwR2txdxICABEqEMIPDxoPPxOuAYIEJAGABCsqiwEQARp4ge72BwgC_gD39vIOCAf8AhD38_b2AAAA9vr7_P4D_wD2ARQBAQAAAAYU9QD9AAAABQr0Dv39AQAV-fP0AwAAABH69QH0AAAADwz7BP4BAAD1__MCA_8AAAD_8_n_AAAABf4C9wEAAADw8foGAAAAAPz4BvUAAAAAIAAtnf3MOzgTQAlITlACKoQCEAAa8AF_2wD9x9C-AOXpuwH7PAIBtSYZAEFL2P-U-SMB5RnlAc7rwP_74_f_1Ufq_sX__f_-1tEA0cj8AQasCv_52fkA5CnXASju2QEu-QkBL_X1_-AK_P7Q_xj_89DF_uYavP4d_xn-JRsCAOgEsQJD0BcCEQo3Bfn7QwQEshYA1Pr7A_T2t_3TKskC4vj5-K7QMAIr0Q0D4yE6-4pACwPd6OP6_r3-7vsD8Pon1dgALTcb_8_TBQLy-wL4ti0j_rspDQvN7joH4OH-Ax_kDQH4CtQGSAn3DugL0QANLAwOJs7_CtH3E-wG-PwRBt7h_-VD-A4gAC0W--k6OBNACUhhUAIqcxAAGmBK9gAy9gCV9Qct6urAJh_xxOzx0LQU_xAE_w8jzA8gMdbmAyj_B_Hz3J8AAAAi-dUlFwDheuQN_kIOJCbIm-ozFWwG9_Tm0PgdvoEpTiXoDwb0IyUAytvORTru8BxMEBggAC0ghBc7OBNACUhvUAIqrwYQDBqgBgAA2EEAACjCAADEQgAAJMIAAHBBAAAQwgAAfEIAACBCAAAQwQAA8EEAAHBBAADAwAAAuEEAADRCAAAEwgAA4EEAAPBBAAAUwgAAJEIAADDBAACAQQAAPEIAAEDCAACAvwAAeMIAAEzCAABQwQAAIMEAAOJCAAAMwgAAAMEAAJjBAAAswgAAAMIAALbCAABsQgAATEIAABhCAABwwQAAoMAAABTCAACYQQAA2EEAACjCAADQQQAApMIAAPBBAAAoQgAA0EEAAJjBAADIwQAAUEEAAKBAAAAUQgAAmEEAABxCAADQwgAAcMEAAExCAABQQQAA0EEAAI7CAAAcwgAABMIAAIC_AACuwgAAHMIAAIjCAABwwQAAYMIAAMBBAACgwAAAosIAAERCAABgwgAAIEEAABBCAABAwQAAgMAAAKDBAAAAwQAAnkIAACDCAADwwQAAEEEAALhBAADoQQAAiMEAACRCAAAAQAAAQMIAABxCAAAAAAAAoEEAAKpCAAAAwgAA8MEAAOhBAACowQAApEIAAJjBAAA8wgAACEIAAOhBAAAEwgAAoMAAAABBAACAQQAAoEAAAHBCAABsQgAASEIAAETCAACAQAAAEMIAAJxCAACgQQAA8MEAABDCAACAwQAAmMEAAIDCAABQwQAAgEAAADDBAABIwgAAEMIAAIDBAACgwQAAJEIAALjBAAD4wQAAAAAAADRCAABkwgAAsEIAABBBAAAAQgAAdMIAAPjBAAAwwQAA0EEAAPBBAABEwgAA4EEAAHBCAADoQQAAgD8AAHDBAAD4wQAAOMIAABBBAABAQQAAWEIAAODAAAAwwQAAyMEAABDCAAAgwQAAQMIAAFjCAAAgQQAAyMEAAFjCAAAQQQAAUEIAALDBAACWQgAAGEIAACBBAAAQQgAA6EEAADBBAAB0wgAAwMEAAMBBAAAswgAAqMEAAERCAAB4QgAAbMIAAGjCAAAUwgAAKMIAAIBAAACwwQAAYMEAAFjCAACgQQAAcEEAAERCAABQwQAAiEEAALjBAADgwAAANEIAAMDAAAAMwgAABEIAAEDAIAA4E0AJSHVQASqPAhAAGoACAABQvQAAML0AAHQ-AABUvgAA2D0AAFQ-AAAMPgAA5r4AAIi9AABAPAAAkr4AAHC9AACSPgAAgDsAAES-AACIPQAAgj4AADC9AAD4PQAAFz8AAH8_AACgvAAAUD0AADw-AACOPgAA2D0AAIg9AADYvQAAEL0AAL4-AAAwPQAAsr4AAHA9AABwvQAA6D0AAEC8AAAwvQAApr4AAHy-AABsvgAAbL4AABC9AADOPgAALL4AAAQ-AAAkvgAAMD0AAIi9AABkvgAANL4AAAy-AAAkvgAAyD0AAAw-AAAMvgAA4LwAACM_AAAUvgAAEL0AAIY-AADgPAAAdD4AAIg9AACovSAAOBNACUh8UAEqjwIQARqAAgAADD4AAFA9AAAcvgAAL78AAK6-AAAUPgAAtj4AABQ-AADIvQAARD4AAOC8AADIvQAAoDwAAEA8AACoPQAAyL0AACS-AADaPgAAVL4AAMI-AADgvAAA2L0AAAS-AACYvQAAgDsAAIq-AAAQvQAAgDsAAIg9AACovQAAEL0AAHA9AABsvgAAFL4AANi9AACIvQAAPD4AAHQ-AAA0vgAAyL0AAEA8AADYPQAAQLwAAFA9AAAUPgAAiL0AAH-_AACWPgAAmj4AAHA9AACgvAAAyD0AAEC8AABkPgAAML0AABw-AAAQvQAA4DwAAOA8AACYPQAAHD4AAIg9AAAcPgAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=mfk13JFFE0o","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["4932103128310317999"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3875985935"},"16869108634055247080":{"videoId":"16869108634055247080","docid":"34-11-2-ZCA76E4E7EA1E39DD","description":"Join this channel to get access to perks: / @calculusphysicschemaccountingt Here is the technique to solve this question and how to find them in here #Integral #Limits #Techniques...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/218762/c01e6b111d39d6d61d8271b506b6f14b/564x318_1"},"target":"_self","position":"9","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKVIowp1RjIo","linkTemplate":"/video/preview/16869108634055247080?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus Help: Find the Limits: lim (x ) (x^2+1)/(x+1) - Techniques - Solutions - Answer","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KVIowp1RjIo\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhYKFDE2ODY5MTA4NjM0MDU1MjQ3MDgwWhQxNjg2OTEwODYzNDA1NTI0NzA4MGquDRIBMBgAIkQaMQAKKmhoeW9ibmNmc29rcmJkcWJoaFVDRmhxRUxTaERLS1B2MEpSQ0RRZ0ZvURICABIqD8IPDxoPPxNnggQkAYAEKyqLARABGniB-Q_0_gL-APj--QQNBf0BDf76Cfb__wDjAPAJAP0CAPIACPz7AAAA_RT68wQAAAAFCvQO_f0BAP0B-fPzAAAAIAEJ__kAAAANDu4C_wEAAPbq9AMD_wAADAPtAQAAAAD88gz9AAAAAPbyBAMAAAAAAQQG_v8AAAAgAC2O-ss7OBNACUhOUAIqcxAAGmA6GAAtAe2e2_xqxy_dAQHs_cnkzL8M_xvtAMcP36cARPKiHSz_HcrzEZcAAAAyEs829wDjfwoO7T8K-BcZkcEQIHMPC9f7EgjtzPFC8Uv-HQzYQA0AhCPzB0CrwUkFIhcgAC104ws7OBNACUhvUAIqrwYQDBqgBgAAiEIAAFDBAADKQgAAksIAAKDAAACAQQAAikIAADxCAABswgAAmEEAAEBBAAC4wQAAgL8AAIBBAAAgwQAAQEEAAABCAADwwQAABEIAABBBAABEQgAAyEEAAKTCAAAUQgAALMIAADDCAADowQAAQMEAAARCAAAgwQAAoMEAADTCAACYwgAAoMAAAILCAACYQgAARMIAAHhCAAAQwQAAyEEAAHBBAACAPwAAmEEAAODAAABEQgAAPMIAACxCAABMQgAAYEIAAOhBAAAowgAA4MEAAIDAAACoQQAA0MEAAJBBAADIwgAAAMEAAPBBAACKQgAAgL8AAKbCAABgwQAA-MEAAKBAAAB8wgAAGMIAAODAAABcwgAAqMEAABBCAAAwQgAAMMEAAJ5CAABswgAAuMEAAKDBAACAwQAABEIAAIDAAAAcQgAArkIAABDBAADQwQAA6MEAABBCAADoQQAAEMIAAABCAACoQQAAMEEAALhBAABAwQAA6MEAANBBAACYwQAAYMEAAMBBAACQwQAAwkIAAEjCAACgQQAAEEEAAABCAADIwgAA6MEAACBBAABQQgAA4EAAAEBBAADwQQAAUEIAAHDCAAAAQAAAsEEAAJxCAADAQQAAPMIAAADAAADAwAAAwEAAAEzCAACgwQAAAMAAAOjBAAAwwgAA-MEAADDBAADwwQAA2EEAAGDBAAAYwgAA0EEAABxCAADIwQAAUEIAAFBBAABEQgAADMIAAMjBAAAkwgAALEIAAFhCAAAYwgAAPEIAAIRCAACAQQAAiMEAAIBBAAAAAAAAYMIAAHBBAAAkQgAAQEAAALhBAACowQAAUMIAADDBAABMwgAAmMIAAJjBAACIQQAAgEAAAMDAAABgwQAA6EEAAKDAAAAsQgAANEIAAGDBAACwwQAAUEIAAJDBAAAUwgAA-MEAAMBAAACYQQAAaMIAAFDBAAB8QgAA7sIAAJLCAAAowgAAYMEAAJ5CAABowgAAiMEAACDBAABAwAAAQEEAAERCAADgwQAAgD8AAPjBAAAgQQAAgEIAAPDBAADgwAAA8EEAALjBIAA4E0AJSHVQASqPAhAAGoACAADgPAAAPL4AAIY-AAAsvgAA6L0AAK4-AADIvQAAMb8AADA9AAAQvQAAXD4AAEy-AACGPgAAcD0AAKa-AAAwPQAA3j4AAIC7AACAOwAABz8AAH8_AAAUPgAAFD4AAAw-AACIvQAAED0AAJY-AABkvgAAgDsAAIg9AAAkPgAAdL4AAEC8AADYPQAAFD4AAKg9AABwPQAAmL0AAIq-AADOvgAA8r4AAPg9AADmPgAARL4AAKC8AAAwvQAAXD4AAIC7AABwPQAAsr4AAIi9AACYPQAAJD4AABk_AACovQAARL4AAE8_AADgvAAAQDwAAIC7AABAvAAAQLwAACw-AAAEviAAOBNACUh8UAEqjwIQARqAAgAAHL4AAAw-AADgvAAAPb8AAIa-AADYPQAAsj4AAFw-AAC4PQAADD4AADA9AACYvQAA4LwAAAy-AACIPQAAiL0AAHS-AADiPgAAor4AAJY-AABwPQAADL4AAPi9AABwvQAAMD0AAOC8AACovQAAND4AAIi9AAA8vgAA4LwAABA9AAAEvgAADL4AAOA8AAAcvgAAdD4AAHw-AABkvgAAuD0AAKC8AABEvgAAmD0AAFA9AABEPgAAsr4AAH-_AAC2PgAAEL0AADQ-AADYvQAARD4AAHQ-AAAMPgAAUL0AAKg9AAC4vQAAED0AAKg9AAC4vQAA-D0AAKg9AACCPgAAJD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=KVIowp1RjIo","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":480,"cheight":360,"cratio":1.33333,"dups":["16869108634055247080"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11384685492776537482":{"videoId":"11384685492776537482","docid":"34-8-10-Z80FB8486E90DCA11","description":"calculus, trigonometry, limit, maths...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2838383/26b3c58967300d7aa6090f2491c7a7c2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/DhWlaAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dv4wR4aXNLSI","linkTemplate":"/video/preview/11384685492776537482?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"lim(x 2) x^3-8/x-2 | Calculus and Trigonometry | Evaluating the limit","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=v4wR4aXNLSI\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhYKFDExMzg0Njg1NDkyNzc2NTM3NDgyWhQxMTM4NDY4NTQ5Mjc3NjUzNzQ4MmqHFxIBMBgAIkQaMAAKKWhodmpidGhzbGJ1bXdnbmhoVUNoenc3Tzd3VUMtbHhtYUR1MHBHa3F3EgIAESoQwg8PGg8_E8UBggQkAYAEKyqLARABGniB8P0KAP4CAPb5BgkOBvwBD_f09_YAAAD98vT4_gT-APcBEwEBAAAA_Rj8BQMAAAAFEQIM__0BABT69PQDAAAAEPr1AfUAAAAZ_fYE_gEAAO4MAgMDAAAAAfPu9_8AAAAABAP2-_8AAPj3-wEAAAAAAQQG_v8AAAAgAC3oDdc7OBNACUhOUAIqhAIQABrwAXje9_v23rAEoibxAOP8_wGtRhEA-0fBAJ7rDwHQD_UBwBTZAPYCDADtUdr_yir5AMy7pAL3vQIAFMbw_wae6QHu-uMBGsXoA1IaPv8Y2hH-2x8J_QrnJADyzMD-Cw-__RL2BPhAI-b_7x3KAhDvLv8yGE8AO_xUBAOBAQnU6QsHKA2u-swC9QUExf73sv4rAS4C-_fpFBz_zD3vA9rm4foUxxH6FDTpBjnL8wIxOx3_puId_PAA7vz79yEP1EgFEcjsPwi33-n69wAgEzDw3fo-LPcRCOnUBSsj_wMI_QQH8swV9fb__wT9Ad8K1jX1CSAALTxN1zo4E0AJSGFQAirPBxAAGsAHz_cDv_nwkb2fchG9e8KNPZav7DuUh4W8Pom5PZClKj1VxXG71IEMPlK9gL0C0sC79pZivgV4gTx5Pw28LQtWPrCKXL1BLSa9huMJvt8g9TysASq98YTevYAfnzy3QQ48Tj8Nvc2QKrwMzgC9f6GHPUO4F7vUfHq9yi59vUnnrjvglx-9XAAeO3nIObxGIjS811YHvYPlY72pw2W8yNQYPWzLRb2IXJm7vE-PPSvWhT07n0u8ZAbqvZokFj2WW5o8k-mbPUrqCjzN_uW7ZftVvZu8krxpRvW8TLQavY-RB7yttg089ybhPF2GlD3wtfG8YpOpO3EqyL3Iaqm8hneEvUdULT3fmbu799a2Parw1DloVwQ73O-Fvd0J9j3Ineu6nxozu-eO_rwL1ei80pGaO3zeorswbt076XYAPTBiBD0bB8U7bV4LPYlNej0QYiE7x4s7PeCV7jy0gL-8QVliPe0bDj0XlVy72oiMPVKUcDzP9qY7pUNMPCAalz2FHOM7OU_rvD8ZEjrvm1I7RVylPHO49r3kBDc8k8czvZ2tkr1WeSc83cF-Pby7JD2Ie5G8bvzpPUzkrb0rc6m7iJtYPbyS5Lzw3Qk8A8EtPey8cr2XuEG4-CAfvYOMGz28-kK8Zh6_vYUtbD1qMVu7lKmNPbc6Kj3EmZ07pz3lvOuMD74l3r23DW7rPACbYjwQpeY6QeO4vF0qQD1EqTC65lsAPESQnrwlIVO79-ojvdYpxTy8-ke6QZoRvVk1Y70zSAe5oZ3TPVGBmL2XnVE5dJQIvRppTjxPUZo6KmKHvfDrkTwOxL049vhTPfqDHL0BNkK5FJ2LvYl64b3GJ3A5kulwPQ1iET0V9ji49pxvPb21wjymrmo4f35kvaOxMb1g3eM6Hs5SvXPshbz8GhW5eWFGPcwD_TwpBuA4Q5opO6Feujv5tXk4Pf2UOxwdAb0vpaK4HYi0uwwOZT0SZwc4mLRSOz9wxb33LmA5LcBtvaBN8zwCXRu5ZUUePTKBMT00XJW2SNarPBsQoT0R-W83ObSYPaaPir3MHdo3yUM6vB9Zmj038wY3bkuJvMprBT2oTXE4QWliO_BA0zxi-_w2QReoPVM1K720lqQ4eFiSvUl9BzpLFFI4kl0ZPtlPUL2swj-5XEkBvcre0r0XIgS5iZ_7u2aBW71MZfC35js4vagtfz3KEMiyL0UDvavpWr0tMPS3yvRwPSLhKz7xy4o4D4bVvIZ8xjwossa3tBbAvVQ0uz08X7I4WFjwvb-11bs6qRG4IAA4E0AJSG1QASpzEAAaYCP0ACgBAoEEDw8A9OICCeLT7vndyw3_DfMAFCvlASof2t4MIgAO5RHmrQAAACz74g8PAOhq2hITUhYV_tmX4h0fSQ74EfTj_wrjsjUvH9sI6ukQJADk2c1BK_rgIiUnGyAALfiMNTs4E0AJSG9QAiqvBhAMGqAGAAAcQgAA-MEAALxCAACSwgAAAAAAAEDCAACKQgAAiEEAAIDBAACgQAAAoEEAAIA_AAAQQQAAPEIAANjBAADIQQAAMEIAAGjCAABUQgAAyMEAAMDAAAAwQgAA-MEAAGBBAAAgwgAAUMIAAADBAAAAAAAAwEIAABzCAAC4wQAAMMEAAIbCAAAwwQAAmMIAAGBCAAAEQgAAKEIAAJjBAABAQQAA-MEAADhCAAAcQgAAsMEAALhBAACGwgAAHEIAAJBBAAAQQgAAQMEAANjBAADgQAAAUEEAABxCAAAYQgAA4EEAANTCAAAgwQAA2EEAAABBAAAUQgAAmsIAAOjBAABAwgAAIEEAALrCAABMwgAAfMIAACDBAAA0wgAAwEEAAJBBAACkwgAALEIAAGjCAAC4QQAAUEEAALjBAACAPwAAQMAAAODBAABwQgAARMIAAPDBAAAAQQAAqEEAABhCAABgwQAAJEIAAODAAAAowgAAXEIAAAAAAACIQQAAnEIAAFTCAADQwQAAAEIAAIC_AACQQgAANMIAACzCAAC4QQAAAAAAAIDBAAAgQQAAIEEAAMBBAABQQQAAYEIAAFxCAAA4QgAAOMIAAIhBAAAswgAAmEIAAAAAAAAMwgAA6MEAALjBAADowQAAcMIAAFDBAAAUQgAA8MEAADjCAAAIwgAAcMEAACjCAACoQQAAHMIAAFjCAAAAwAAAHEIAAI7CAACwQgAA4MAAAAxCAABkwgAAuMEAABBBAABQQQAAcEEAADjCAAD4QQAAdEIAACBBAAAwQQAAIMEAAMDBAABkwgAAoMAAAJhBAACKQgAAAMAAAEDBAABgwgAAIMIAAKjBAAAwwQAAaMIAAKhBAADYwQAAbMIAAADAAADwQQAAVMIAAJZCAAAAAAAAoEAAANhBAACgQAAAAEAAAITCAADIwQAA0EEAAGzCAABAwQAAcEIAAFxCAABkwgAAUMIAAATCAAAYwgAAgEEAADDCAADIwQAAXMIAADBBAAAUQgAAHEIAAKDAAAAYQgAAcMEAAKBAAADQQQAAkMEAAODAAADoQQAAwMAgADgTQAlIdVABKo8CEAAagAIAALi9AAAMvgAAnj4AAK6-AAAUPgAAnj4AAAQ-AAAvvwAAyL0AABA9AAAwvQAABL4AAJY-AACePgAAHL4AADA9AACyPgAAQLwAADw-AAAxPwAAfz8AAFy-AACgPAAAHD4AAJg9AAAsPgAAgDsAAHS-AAAUPgAACT8AAJg9AACKvgAAED0AAES-AABkPgAAED0AAMi9AAAsvgAAbL4AACS-AAAUvgAAoj4AAMo-AADYvQAA-L0AADy-AAAkPgAAgr4AANi9AAA0vgAAVL4AAKg9AABcPgAAnj4AAAy-AAAwPQAAHT8AAMg9AADIPQAAnj4AAFS-AAAUPgAA-D0AADy-IAA4E0AJSHxQASqPAhABGoACAAD4PQAAiL0AABC9AAA5vwAAxr4AAMg9AACGPgAAbD4AAJi9AABUPgAAFD4AAOC8AABwPQAAoLwAAKA8AAAQvQAA-L0AANo-AADYvQAAnj4AAEw-AAAQvQAAEL0AACy-AABAPAAAPL4AABC9AADYPQAAiL0AAOC8AABAPAAAqD0AAGS-AAA0vgAAML0AABC9AABQPQAAwj4AAIK-AACAOwAARD4AABC9AADgPAAAgLsAAKI-AACovQAAf78AAPI-AADGPgAA-L0AAEC8AACIPQAAML0AADw-AAAQPQAAPD4AAKC8AACAuwAAED0AANi9AABwPQAAFL4AAFA9AABwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=v4wR4aXNLSI","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11384685492776537482"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3310128241"},"17121486827325814383":{"videoId":"17121486827325814383","docid":"34-6-3-Z8AEFCE62FA2F6640","description":"A math video lesson on the Evaluating Limits which is a topic on Limits in Calculus. This video discusses how to evaluate the lim x^3-x^2-4 as x approaches 2 #limits #evaluatethelimit #calculus...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4900596/e92dbbe9d7512d43fa45f7860c464c1a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/QYG5bgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"11","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOFPHvh6jbM0","linkTemplate":"/video/preview/17121486827325814383?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate: lim (x^3-x^2-4) as x approaches 2","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OFPHvh6jbM0\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhYKFDE3MTIxNDg2ODI3MzI1ODE0MzgzWhQxNzEyMTQ4NjgyNzMyNTgxNDM4M2qIFxIBMBgAIkUaMQAKKmhobmxqYWt6eHlyeW12Z2RoaFVDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZxICABIqEMIPDxoPPxOXAYIEJAGABCsqiwEQARp4gfv6AQT-AgD6CA38-wT_AQsA-_r3AAAA9PH5_wUC_wDtB_3-A_8AAP0L_AUMAAAACAT-BQX9AQANBvUDBAAAAAgCAAD0AQAAEQUADP4BAADxCPryAgAAAAD_9Pr_AAAAAAgC9wMAAAD5Awz7AAAAAAv8-u0AAAAAIAAtwqTaOzgTQAlITlACKoQCEAAa8AF_D_kAn-Pt_BsJ6ADu_gABjR8J_0UX9AHGBP0A2wXkARYQEADT6_cAFADtAO0BBwDy8uMAA9AS_yvk3f89DOoAFuj5ACXE9gEN_CkA1uzf_ukTBf75-iIA5uPW_wYK8P_tCgcA8u_a_vADywEN6A0CCwclAwXsB_8P7xH__AsQ_RkIzfwVAPAD8uL_-tsqDQDa5vUAAAYJ-9j29gIJ_9sBJdz6Agcn2_4BBOoD5fMO-gz5DvcJ6hL13RcO_OoKEATqFR3-B-j_AAEHBPUY2PQEBfvx_eLn9AkABgYC9fr-7fv--AHnCPn29PH-AtbZ_AwgAC1tAy07OBNACUhhUAIqzwcQABrAB2KEAL_9cwe9wjABPMl3hLrVNeQ8-_HNvNOEbTuKgo27XqQrPB-m2DtBlLm8H9_WOrPwdb7H0Ja8RWRAOcVVhT5UMG-9m38qvGLZLL5yAqo7w2QKvUzEO76CnEW7VjLXuiNl8DzM1P88K71bvDuVAj2fRDo8J7QTO9JoNz1AbEm9_3XTvCuIwbzDFxy9SVvmvCXQGjybFLC7_3bZvLxa7j1AY0u8KwGnPBasJzxxtak8-8Qmu36tprwwDQM9MnRsPK3cKz7JoES9i6gJu8R5OLyyTL-7g_jhOxzmoL20-D69z9kivVjzLbx1ETU9euFOvM8w1T1PvWS9O08BPVGH1b0VDlM9qFl7vJXcXD0GQjc9cLbIOdzvhb3dCfY9yJ3rugWZLrwvy209Q4gQvby2L7txGzI8astvPLKnkzzAUxK9g44xvJuxgz36Hv-8APqiPMbEtr0-KEM9GbmdvGuDrrzJSCw83saLvMMKnL1JNcc8JCmKu1AIEz1VYy48xhaCO8zJpT3Xfpc8hf6yO82kdz2HZLK9bQhpvHX4Vb3B_iu9Fyp_vD0VRj3qa6c8egZDvLQgBD4YCAK92CA3umqgXr3ib0C9Bw8uPI510T1f4lm8myqOPMc5AL26GrS8P3kzvE8nhD3G7go8AstbvHiJID08HPg8m8iKO3hN_ryABfq8tMcPuzqcnz3aOrg8XHxAO_ubaz32C1Y9Disnugsk6D2rAS-97MnTOUpKFb0xWsy9siNVt8IoUjyoIDq9O_afOTy98j1KyFG9V8GOOUlaiz03mm28diA4uRbMzrzToXM960NuOto_6jwJRu-8cm1quokPt723Qri9MUK6ODidKT35dlw8hEQxuPUUGT3YDik7gGTSuGlZcr3TBja9LuDpuvReCjxPNsq8QsmCuOLlCT7JucM9IMgVOUIG0bu2UM28i0UmufEMPz0yqQK8RAyruLWNej3IoaQ9LdQBOEHjeLx8R-29YROrOd3zVz3HV1E9B3ofNxeFeD0nvOQ96I4yt6hvmbwWO9A8w95kOP-X6z1HiDe9C4mVNuuEIT3_gei84cqnON9so738LQm8zX2qtiemJj1p8p68ZDxVOE_UaD13fja9EwkjN4sCOL2fpya9Lep4OB-fAD6k5JC9Feg6ub6D37x4CQ69eXt4uLvtgryX5qG9-jj_t5vSj7vi5I49YN5HNxT0TT20vae9l5eNtyL_7D01KQU-835buHpTkbzZ1f88LwUFuQEtQr0kOjU9KNkdt8hBCb2urcm9bUm4tyAAOBNACUhtUAEqcxAAGmAxCQAp9BOd6PUw-fUU8SLh38j0xvjp_xQP_wgMx-n6Ht69EBj_BsQA6aYAAAAb4dYYJwABbQvxzEDx_fHQqPQO7H8M8yeoEj7x2-wY6_b3JvK1MAAAuvC7ahrq6CcbEwMgAC0lwiM7OBNACUhvUAIqrwYQDBqgBgAAmEEAALjBAABgQgAAmMIAABBCAACwwQAAtkIAABBCAAAQwQAAIMEAALhBAABQwQAACMIAAODAAABcQgAAsEEAAJhBAADAwQAAGEIAAHDBAACQwQAASMIAAIbCAABAQAAAYMIAAADAAAAAwQAAPMIAAJBBAAAAQAAAUMIAAMhBAADCwgAAMMEAAJrCAACYQQAAYEEAAOxCAACAPwAAAEAAAKjBAAAMQgAAWEIAANjBAAAsQgAASMIAAOBAAACwQQAAEEIAAABCAACgwQAAAAAAAEBAAACIQQAACEIAAAxCAADKwgAAmEEAAPhBAAB0QgAACEIAALDCAADIwQAAtMIAAIDAAACKwgAANMIAAOjBAADowQAAGMIAAHhCAACwQgAAgsIAAJxCAABUwgAAPMIAAIjBAAAkwgAAsMEAACDBAABwwQAAWEIAAEDBAAA8QgAA2MEAADBCAAAQQgAAmEEAACBBAABAwgAAYMIAAJRCAAAMwgAAQEAAAFBCAADAwQAAIEEAAOBBAAAIQgAAiEIAADzCAADoQQAAgD8AAPDBAACwwgAAoMAAAHBBAADAwAAAwMEAABhCAAAQQgAAUMEAALjBAAAYwgAA0MEAAJRCAAAQwQAAFMIAABDCAACIwQAAGMIAAHzCAADAwAAA4EAAAODAAAAgwQAAwEAAACTCAADQwQAA4MAAAPDBAABswgAA2MEAAEBCAACgwQAALEIAANhBAAAwQgAAYMEAAK7CAADgQAAAMEIAAJBBAADAwQAACEIAACBCAAA8wgAA2EEAAJDBAACAvwAAQMAAALhBAAAgQQAAmMEAABBBAAAUwgAAEMEAAHTCAAB0wgAAQEEAAFzCAAC4QQAAQEAAAIjBAABAwQAAUEEAAEzCAADcQgAAVEIAAIA_AADIwQAAwEEAAEDBAABAwQAAdMIAAKDAAABAQAAALMIAANhBAAAQQgAA-MEAANjBAADQwQAAyMEAAPhBAABAwgAAdMIAADjCAACIwQAAYEEAABDBAAAUwgAAcEEAAKBAAABoQgAAbEIAAEDBAACwQQAAkMEAAMjBIAA4E0AJSHVQASqPAhAAGoACAAA8vgAATD4AAN4-AADgPAAADD4AAP4-AADqPgAAN78AAGy-AAA0PgAAyL0AAIi9AAAQPQAAmj4AABQ-AABsvgAAzj4AAKC8AABAPAAAHz8AAH8_AAAwvQAABD4AAOC8AACIPQAABD4AADQ-AABsvgAAHL4AAPY-AAAsPgAAXL4AAAQ-AAAwPQAAMD0AANg9AAAQPQAAFL4AAB2_AAA0vgAAyL0AAPo-AACyPgAAUD0AABQ-AAAEPgAARD4AAJi9AAAQvQAAjr4AAHy-AABwvQAAij4AAMI-AABEvgAAmD0AAA8_AADIvQAAHL4AAMY-AACYvQAA4DwAALY-AAAwPSAAOBNACUh8UAEqjwIQARqAAgAAEL0AAJi9AACovQAAHb8AAAy-AACSPgAAzj4AAEw-AACovQAApj4AAIY-AABQvQAABL4AAPi9AABQvQAAoDwAAEC8AAALPwAAhr4AALo-AAA0PgAA2D0AAFC9AACovQAAED0AABA9AACovQAATD4AAEC8AAD4vQAA6D0AAFA9AACCvgAABL4AADw-AACovQAAtj4AAGQ-AAC-vgAAUL0AAIY-AACIvQAAUD0AAPi9AACYPQAAMD0AAH-_AACWPgAA6D0AADC9AABkvgAATD4AADA9AAAcPgAARD4AANg9AAAwvQAAQLwAAAQ-AADgPAAAoLwAADS-AABMPgAAqj4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=OFPHvh6jbM0","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17121486827325814383"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3219913308"},"15078514460659736121":{"videoId":"15078514460659736121","docid":"34-8-9-Z2E7A238E2FE5EE19","description":"Evaluating Limits. We learn how to evaluate the lim x-›5 -(x^2-5x)/(x-5). We learn how to find and evaluate a limit at a given point of lim x-›5 -(x^2-5x)/(x-5). These limits are at removable...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1997898/07d8984181eabf6411ff488f7fd48660/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/OeULNgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DwKMmE0QymIY","linkTemplate":"/video/preview/15078514460659736121?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate lim x-›5 -(x^2-5x)/(x-5)","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=wKMmE0QymIY\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhYKFDE1MDc4NTE0NDYwNjU5NzM2MTIxWhQxNTA3ODUxNDQ2MDY1OTczNjEyMWqHFxIBMBgAIkQaMQAKKmhobmxqYWt6eHlyeW12Z2RoaFVDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZxICABIqD8IPDxoPPxNtggQkAYAEKyqLARABGniB7gH5_fwFAPv-DQT7Bv0CCgDwAfb__wD98vX4_gT-AOsDBgAC_wAABBEB_v8AAAAABAn_-_4BAAkG-_kEAAAACPgAB_0AAAAOAPsG_gEAAP0L9_gC_wAA__ztA_8AAAAD_gYIAwAAAPv_BPgAAAAAC_z67gAAAAAgAC1xht47OBNACUhOUAIqhAIQABrwAX_5_wG96fz-EQ4BAPwoAQGKAAH_NRrmAOMCBwDE-NAABA4GANf9AAAT8g4B7gEHAC8J3_8D0RL_G-b___z6CQDvCfwAJMX3ASf8FAH_9Nj_uisY_gXyCAL44Nn_GP_g_wPeBAD0_Of78APMASvbIAELByQDEgsfA-rn3P7bEgIB1eLU_BUI-v3y4__7yhwVAwr8_QYDKBcB9vjxAfL56Aj85wP7DhL0AAf78gDeEwMD2fD5-QsLCvcIFg4E3P4fBQEKKPz99PL6APr8A_X-8QL3AO4C7N4AAgLuEAnp9fz38OMA-N8N8Qn2EAYC8fn8DCAALZx_MTs4E0AJSGFQAirPBxAAGsAHEW6avlXmnLxDFoC6zv4AvhlhQDxOneI8ms85vlLwND3iBle96lGCPBE-b7wH9ci8OGmKvtEMPTztrn08hO_CPXET_zwArkQ9YsrGvVrAXzwD5zG89aGDvjx38TsuxZc7SBeTPr-hDTw5_hU8-tXcPTd-cjyroBY8z92pvQO3ab0RrIU8siuFvgdsPTyAdYc7TZ-hO8q4c70YjhE9GJfqPaaEWz1m6d05M_cUvE2a67zQQw29Dx7HPZEGXDxjWM-84zVPPnna67yDXcM8K20RviUF2LsBrMS8eGSLuuO_Zb2l2HK7g0OYOQGk9jwW2YI6eSqGPUUHKb0KkBe9JjX0vX4DLj2rugI9eocgPTnsgz1CRZi52I6DPV_kL7zyAGA8a7nzPDANSD3jNQ480pGaO3zeorswbt073lq2PY8mDT2233M7DBsqPQWd2jviqaw8tDjGO0UdLL1eVIG8I6LYvMS1NT3hwJq8UEE0vWBht7wp5Zo8ESqyPRogKDt6UBK7LpmpPbpXPD2dbjQ8q2APPUBixbzi8Dg83M26uyD0Z71JslS7KCwMvV2SnrwRfwE8kWT2PWmjX7wAk5K7s83tvRm6KL20Adi7F5kjvGcsdb2LuEo8c_5cPIoB1DsDmHC7ByM2vbwcmzujyjC8y5jnvFoNuT3sjIg7kDNIPcjWTr1hnKa6uiXBO8AAZzwr4Ue7xxgOPeHgwTy7KNm7li8ePa7Yj732P-G6m9zUvPNNJL3-XBc7g4PiPL1XSL2yIg65Bf4LPeKpbLw56Pk4mcCIPfN23zzFB4q37NMbvdk7SDzWwuw27m-aPKMsMr2895u4cErUPMhRSr3NhYq5u-wXvnwiUzvIKdw4fQVJPQt_o7urCKO4Ux6SvUobyL3hc5s3qYRnvb4qPL2mK2q4_vKZPczVaruv1cQ4SFl6vSQmKLz1Fw65k499vd3q-Tys0pw54ZbPPXBeXD2mlHC4Sw3jPOqMlLx23eq3ER7Iu5F9UD3vHYw2LA63vX8mTD1KrMQ4H0dzPL8S4TvsFi-4ge2LPQjKTb3nrKA4RdhwvZOZIjyCXyI3a_HpvXnWJLzuL2A2FiCAPAhUwbsl5Hq2jEj5vJI8F73kLxs3TyR4vTgmVTx9tz03Qe63PTxh07tBGfy4o0D_vcZeObztWDa4dfX0vFnd6r0NI_E1m0tbvZI8pz1tcIE4dDCxPY5W2rxBX7G3Iv_sPTUpBT7zflu4m9hwu9WYCz2_FOG4tBbAvVQ0uz08X7I4UTgzOncmOb3_BeO3IAA4E0AJSG1QASpzEAAaYCQCABTvDL_mFxvwFAcZL_LW5PjWAQr_MfkA7vzO4wEj4tYcBP8I9gnXsQAAACjZ-v8XAP1mEgDjSfT_-eKX2QH9fw4bJ7wBJ-7U6hrvBskQHdEtLwC2CsRYNOfsFSj0HyAALYEyMjs4E0AJSG9QAiqvBhAMGqAGAAAAAAAAGMIAACRCAACcwgAANEIAACjCAACkQgAAsEEAABBBAACYQQAAsEEAACDCAADYwQAAQEAAALhBAADgQAAAwMAAAPjBAADgQQAAyMEAAPjBAAAAQQAA6MEAAPhBAACwwQAAIMIAAMDBAAC4wgAAXEIAAAAAAAC4wQAAAEEAAJLCAACAwQAAiMIAAMhBAACAwAAAwEIAAODBAABwQQAAAMEAAMBBAABcQgAAsMEAAJxCAADcwgAAwMAAANhBAACaQgAAqEEAAADBAACAQQAAYEEAAMhBAABIQgAAYEEAANzCAACgQAAAgD8AAFhCAACUQgAApsIAAJDBAACawgAAAAAAABzCAACgwgAAsMIAAIhBAAAwwgAALEIAAExCAAB4wgAASEIAABzCAABgwgAAEEEAAODBAACAwQAAgEAAAPDBAAAkQgAAyMEAAMBBAADAQAAAOEIAALhBAADgQQAAEEIAAETCAAAgwgAAmEIAABTCAACQQQAACEIAAEzCAADAQAAAHEIAAFxCAACAQgAAiMEAAAhCAADgQAAAsMEAALTCAAAcwgAAgEEAAEBAAABwwQAAaEIAAChCAAA4QgAASMIAAIDBAACYwQAAJEIAABBBAABwwQAAPMIAAIjBAAAAwgAAVMIAAADCAAAQQQAAEEIAANDBAADQwQAAwMAAAKDBAAAwwQAAHMIAABjCAADAwQAAgEEAAGzCAABUQgAAsEEAAFBBAADgwAAAOMIAAIBBAABwwQAAEEIAAJjBAAAoQgAAuEEAAIDBAADAQAAAoEAAAADBAAAgwgAAUEEAABRCAAAgQQAABEIAAJLCAADAwQAAfMIAAEzCAACwQQAAYMIAAHBBAACwQQAAjMIAAGDBAAAgQQAAsMEAALBCAAAEQgAAgMEAAIBBAABgQgAAXMIAAKjBAADAwQAAwMAAAAjCAADgwQAAKEIAAGDBAAAAQAAAmMEAACDCAACgQAAALEIAAFjCAACgwQAAUMIAAIDAAABAQAAAFMIAAPDBAAAAQQAAMMEAAIpCAAAcQgAAwEAAADDBAACwwQAAQMEgADgTQAlIdVABKo8CEAAagAIAAIa-AABAPAAAyj4AAOi9AADoPQAArj4AAAw-AAAhvwAA-L0AAPg9AABwPQAAoLwAAHQ-AAA0vgAAgr4AADC9AADIvQAAMD0AAKo-AAAPPwAAfz8AABA9AAA0PgAAgLsAAAy-AAAQPQAADD4AAHy-AACIvQAABT8AAAw-AABwPQAAQDwAAKi9AABwPQAATD4AAAQ-AABsvgAAkr4AAKC8AAAMvgAAEL0AAJY-AACYPQAAPL4AAGw-AADgPAAAEL0AAFS-AABEvgAADL4AALg9AABwPQAAvj4AABC9AAAQPQAACT8AABQ-AADYvQAAcD0AAKi9AAC4vQAAmD0AADy-IAA4E0AJSHxQASqPAhABGoACAAAwPQAAMD0AAKA8AAA7vwAANL4AAAw-AADOPgAA2D0AAOg9AACWPgAAPD4AAHC9AADgvAAAuL0AAJi9AACAOwAANL4AAA8_AAC2vgAAlj4AAIA7AACYvQAA6L0AAOC8AABQvQAAgDsAALi9AAAUPgAAcL0AAJi9AACIPQAAqD0AAEy-AAC4vQAAMD0AAIi9AACOPgAAND4AAKa-AABQvQAADD4AAIC7AADgvAAAyL0AABA9AAAUvgAAf78AAL4-AAA0PgAAHL4AABy-AABMPgAAFD4AAPg9AAD4PQAADD4AABC9AABQvQAAcD0AAIA7AACIPQAAVL4AANg9AAB0PiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=wKMmE0QymIY","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15078514460659736121"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3196987377"},"17138608207320744499":{"videoId":"17138608207320744499","docid":"34-11-13-Z239E10691316D4EF","description":"Limits Lesson: • Calculus First Lesson on Limits with Stude... Limits Examples: • Calculus Limits Lesson 2 Strategies to Ev... YouTube Channel: / @mathematicstutor Learn From Anil Kumar...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/932516/6b5a623b1d641a1e2659073c942e38bd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gw0eMwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9HexiJr_bRM","linkTemplate":"/video/preview/17138608207320744499?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limit of Function lim (x 1)〖(x^5-1)/(x^3-1)〗 with Three Methods","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9HexiJr_bRM\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhYKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5WhQxNzEzODYwODIwNzMyMDc0NDQ5OWqvDRIBMBgAIkUaMQAKKmhoeHNseGhha3RsZGxnYmJoaFVDNFlvZXkxVXlsUkNBeHpQR29mUGlXdxICABIqEMIPDxoPPxP1A4IEJAGABCsqiwEQARp4ge4F_AUB_wDuA_77BAEAABDz-QH2AP8A2_T39gf5AwD2ARQBAQAAAAsL9wr8AAAA-wMEBfX-AQAG_vf1BAAAAAn2AQbyAQAAExIGCv4BAAD49_f9A_8AAAn98AwAAAAABf4C9wEAAAD28gQDAAAAAAX0Ce4AAAAAIAAtaizPOzgTQAlITlACKnMQABpgDg4ARvURr_AeK-Qg7BUp78QO9c3r8f8C7_8SF-3e9ei_oT8M_wXECv2jAAAALi-7DusA7nQw7ulnEufm1JXyAf5_GwmkCx7x4JT8PuhNCs306wLxAMsE9vpK29IvGhAxIAAtF4AXOzgTQAlIb1ACKq8GEAwaoAYAADxCAABgQQAAgkIAAMjBAACQwQAAAAAAAJ5CAAAwQgAALMIAACDCAABAQAAAyMEAAGDBAABwwQAADEIAACBBAACAQAAAIMEAAEBBAACowQAAcMEAADDCAADKwgAAAMEAAFjCAABAwQAAYEEAAATCAACAQQAAFEIAAADCAADIwQAAsMIAAIDBAABYwgAAIMEAAJBBAABkQgAAYEIAAKxCAADgQAAAYEEAAEBAAACgwQAA-EEAAADCAAC4wQAAgD8AAHRCAADQwQAAgMAAADTCAABAQAAAQEIAAIZCAACwwQAAtMIAAATCAACIQQAAgEAAAODAAABQwgAAHMIAAMDBAABQQQAAWMIAALjBAABUwgAA-MEAAFDBAADwQQAA4EAAAEDBAACIQQAAQEEAAHTCAACUwgAAUMIAAIZCAAAAQgAAZMIAADhCAACAQAAABMIAAKDAAABwQQAAqEEAACzCAAAMQgAAdMIAAIBAAAAUQgAAgMAAADTCAACYQQAApsIAAMBBAADAwAAAhkIAAChCAADqwgAAiEEAADBBAABAwgAAyMEAAIhBAAAgwQAAUEIAALhBAACUQgAAMEIAAEBBAACwwQAAgD8AAEBBAABkQgAAMEEAAKTCAAAgwgAAiMIAACDCAACwwQAAkMEAAMDAAADAwQAAgL8AAODBAACAwQAAJMIAABzCAAAQwQAABMIAAEDAAACYQgAAiMEAAEBBAAB8QgAAAEAAAHDBAABgwQAABEIAAIC_AAAwQgAAoMEAAJhCAABoQgAAAMIAACzCAAAQQgAAREIAAPjBAACgwQAAQEIAAABBAADAQAAAsMEAAJ7CAAA4wgAAoMIAAFBBAAAAwAAADEIAALBBAACgQAAAwMAAAKhBAABIQgAAXEIAAMxCAABUwgAAIMEAAOBBAAAAAAAAcEEAAOjBAABQwQAAFMIAAAzCAAD4QQAA2EEAAHDCAAC4wgAAoMEAADBBAADQQQAAGMIAAEjCAABAwQAA8EEAAADAAABcQgAA4MEAABDCAACYQQAAyEEAAABAAACAwAAAXEIAAPBBAAAAwiAAOBNACUh1UAEqjwIQABqAAgAARL4AAHC9AACePgAAgLsAABQ-AAB8PgAAqD0AABO_AABAvAAAML0AAEA8AAAcvgAAXD4AALi9AADgvAAAQDwAAKA8AABwPQAAHD4AABM_AAB_PwAADD4AAFA9AAD4PQAA4LwAAAS-AABEPgAAHL4AACS-AABcPgAAND4AAOi9AADoPQAAyL0AAFw-AACYPQAAUD0AAMq-AACuvgAAoDwAAJq-AACGvgAAgj4AADS-AADoPQAA4LwAAEQ-AACgvAAAdL4AAPK-AAAkvgAA4LwAADA9AAAHPwAA2L0AAKC8AABHPwAAuL0AAFA9AADYPQAAgj4AADA9AABAPAAAbL4gADgTQAlIfFABKo8CEAEagAIAACS-AACYvQAAir4AAEW_AABsvgAA4DwAAAE_AABAPAAAQLwAAGw-AAAkPgAAgDsAAIC7AAAwPQAAUD0AAFC9AABEvgAA6j4AAIq-AACyPgAAcD0AAHC9AAAUvgAAUL0AADA9AACovQAAML0AAIg9AACgPAAAcL0AAIA7AAAwPQAAhr4AAES-AACYPQAAHL4AAJ4-AACAOwAAir4AAMi9AABAPAAAuL0AAFC9AAAEPgAALD4AAPi9AAB_vwAAJD4AAIg9AACovQAAEL0AACQ-AAAQvQAA6D0AAFC9AAAkPgAAUL0AAOA8AACqPgAAQDwAADQ-AAAQvQAAiD0AAOC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=9HexiJr_bRM","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17138608207320744499"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2438390490"},"6933706395137267311":{"videoId":"6933706395137267311","docid":"34-3-1-Z4544082284AB19B8","description":"Join this channel to get access to perks: / @calculusphysicschemaccountingt Here is the technique to solve 3 limits and how to find them in here #Limits #Techniques #Solutions...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2353022/ab2568197f95526a62a641b947197478/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/AgYeBAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQzUSYAXhbHI","linkTemplate":"/video/preview/6933706395137267311?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus: Find the limits: lim(x 3) (x-3)/(x^2-9), lim(x 2) (x^2-5x+6)/(x-2), lim(x 0) tanx/secx","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QzUSYAXhbHI\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhUKEzY5MzM3MDYzOTUxMzcyNjczMTFaEzY5MzM3MDYzOTUxMzcyNjczMTFqiBcSATAYACJFGjEACipoaHlvYm5jZnNva3JiZHFiaGhVQ0ZocUVMU2hES0tQdjBKUkNEUWdGb1ESAgASKhDCDw8aDz8TngGCBCQBgAQrKosBEAEaeIHuAfn9_AUA9QEDBQcE_QEP9_T39gAAAPTx-f8FAv8A9P0KCPwAAAAODP_9AwAAAA0I-Qb6AAAACPz2_fgAAAACBQb8-AAAAA4A-wb-AQAA-Qn2AgP_AAALA-4BAAAAAAX-AvgBAAAA-PgC-wAAAAAAAAj3_wAAACAALXGG3js4E0AJSE5QAiqEAhAAGvABfxsK_9IQ1gDQIxMA9R0TAZY2K__8PcoAwhME_60N_gH1MO0BzifJAAgbBgCsMyIBIgG4AA73AQBG1vsADMP8AN7bAgEm79sARxY2__Tl9ADWDw39780G_v282AAkHroA_uIa_ycG4QDZNucEGwMkARzpRQAz-_T_9bDyBMYE3wDp-_r31yEDCQ3aEvaz0y0CFtoL_g8yCPjfBe8BGRn8Ae4PEP0EHt4GAgXhBBsZDPvf19YA3_8SDTLWIwO_JgwK0O82B7viBf5bOBDsHB7t-vsb5PnwDO4T9AIVEeDx-vMLBgzqye8G8-YC-_wMA-r3IAAt7lr5OjgTQAlIYVACKs8HEAAawAc1tcy-oXRYPL1NBD3_VMG8s36zvZgQGLxfJX-9FK8yPBmikrtvLh4-LeCvvGEVlLyM4pu95vQrvMXjAj3LgDM-5tGIvZhiMzx1dPy9LxOaPQsCEL2-77m91o9NPUEWvTxOPw29zZAqvAzOAL2pwdQ96qg0PO1Kpryq_4291oOzvdSd57woEzI9sF8rvbGnPb2t5SS9fIEZvQmlrzuGHnE9T5snvdWCLb2pFbY9Or1jOb0f9Ts4L-69JxFBPbiMIL3QICo8d3YFO1Q7wzoNq_i9OvRMPWFairzcx0C9szjOu9bZmrxNngI-pcwXvcg3HLlik6k7cSrIvchqqbwvhvK9dJB8vP0hrDz9z7s9eLmIPasmiLx_6pm9ppikO5MgN7w-m3I7sB43vfuRhbrEzB496dUQPovpGbzvyi482AeCO_KIgLzbwA2-1tQJuz96eTxQhBq7jfaDvUXCkrzoIWg69PMrvfOuejyVYke86ZsUPbHojLx9W_C8SZSHPURSprz7y449QOl6vFXXRjwFI6U91gI7vknlmjrsQ7i9j1ADvn9AELsisJg9FsZxPCO7d7yRZPY9aaNfvACTkruprQc9x9UIvabYDzwW9W48MJAWvYFcYjtyh529W2EVvTwICzy1xbE7FFglvC450bvEknY732-kPVxAwzo6OYi9U46-vUgOFLreuzw875SJPZmL7LuVtS0-Ph6fPEkn2LhiL1Q9KaPAvL93I7vR1ZG99TasvCIn4TrauuW8wDWxvVJZDrrVN3U9KxaPve6wyznycTe8bomMvUNonDcR3wm-H2faPcTLm7g5QbA9HjbxvZIS7ThcVAu9nBXxvdyedTm8Uwa9dhx4OsvE9jl9BUk9C3-ju6sIo7hTHpK9ShvIveFzmzc1lSq92-K1vLpCD7lgAGG8lKWWvSIyTbkSuMo96zCAvQplDDiFf6y8Q5iRupS0XzYVlei8N-HeO-UqL7g8-fQ9Kz1pvXUPZTmxEpg9Z2_bOzK_STgktss9P-MivcZw9jhPK1s9OyesPTxMhLj1_0M7x3lkva9jtbdPpcA9m8dBPbLI3LhxgqU8SnA0PbM8hTguQQE9Q_YLPUi9DTjJIii8SP8mvdOaTbbYY6K8QdsDuxllNDjB4ys-3KVovAeJdLlUxdS9_3tLvRhRV7avYiw9eJRvvYJcJDemf-m9jGS0PTwo6ThJ9448rVDEvXOc8rhVGKY9bQvFPYPH5zglzV07LR5jPUERC7kVjrC9seEpPjhr-jhtaxC9xXmTPdUgKDggADgTQAlIbVABKnMQABpgIAMAJv4drgIGMOAW5QsNvdHW6ufc__8P6QD888_nFCD5vwAK__zm7NquAAAANwPqCucA12sDIfhC8yL47IG_IwdtGRcB2PEjAefhR_kR_Bz62BcgANANtiJc99grJhoxIAAtbS4rOzgTQAlIb1ACKq8GEAwaoAYAACBCAACIwQAApkIAAADDAAA8QgAAQMAAAJZCAAAAQQAAAEAAAJBBAAAwQQAAuMEAAODBAABgwQAAwEAAAPhBAADwQQAASMIAAHBBAACAwQAAQEAAAEBAAACIwgAAbEIAAAAAAAAowgAAgMAAAIbCAABEQgAA4EAAAKDBAAAowgAAlsIAAMDAAABcwgAAoEEAABDBAACUQgAAUMEAAIJCAADoQQAAJEIAANhBAACAQAAAjEIAAIDCAACAwAAADEIAAHhCAAAAQAAAcMIAABBBAACAQAAA-EEAACRCAAAwQQAAAMMAABBBAABAwQAAmEIAAERCAACYwgAA-MEAAILCAADgQAAAqMIAAETCAACMwgAACMIAAHzCAABIQgAAQEIAAJ7CAABkQgAACMIAAMDAAAAYwgAAFMIAAKhBAAC4QQAAsMEAAIRCAAAQwgAAgL8AABDBAACoQQAAiEEAAIDAAABwQgAAiEEAAHDBAABwQgAA2MEAAIDBAAAAQgAA6MEAAOjBAABwQQAAIEIAADRCAAB4wgAAEEEAAKBAAAAEwgAAIMIAAKhBAACAQAAAgD8AAFBBAABgQgAAAEIAAPhBAAAEwgAAAMEAAATCAACAQgAAEEEAACDCAABIwgAA-MEAAADBAADowQAAQMEAAARCAAAAwAAAAEAAAFBBAADAwQAAmMEAAHBBAADowQAADMIAAABCAAAgQgAAYMEAAJBCAABQwQAA2EEAAGDCAACAwQAAQEAAACzCAAAcQgAAuMEAAAAAAAAcQgAA4MAAADDCAACgQQAAMMIAAJDCAADAwAAAPEIAACRCAAAQQQAAPMIAAFDCAAAkwgAAaMIAAOjBAAAkwgAAAEEAABBBAAB8wgAAEMEAAEBAAAAwwgAApEIAAMBBAACAwQAA8EEAAMDAAADIwQAAJMIAALDBAACoQQAAoEAAAMDBAAAcQgAAAMAAAIbCAADYwQAAQMEAAIDAAABMQgAAZMIAADTCAACywgAAUEEAAIBBAADIQQAAHMIAAABCAADgwAAALEIAAABCAACAwAAA8EEAAPhBAAAwQSAAOBNACUh1UAEqjwIQABqAAgAAmL0AAJi9AAC6PgAABL4AAOA8AAAcPgAAuL0AAOq-AAAQPQAAEL0AACQ-AAAEvgAAND4AAOg9AAC4vQAAcL0AAEQ-AACAOwAAmD0AALI-AAB_PwAAmL0AAEC8AAA0PgAABL4AADA9AACgvAAA4LwAAPg9AADIPQAAMD0AALi9AABwPQAAiL0AAKA8AADgvAAAmL0AAOi9AAC6vgAAyL0AAIq-AABUPgAAHD4AAFy-AADgvAAA2L0AAJ4-AACAuwAA2D0AAAS-AADovQAADD4AALI-AAC-PgAAqr4AADC9AAANPwAA-D0AAHA9AADoPQAAyL0AAFS-AAC4PQAAEL0gADgTQAlIfFABKo8CEAEagAIAAHC9AABwvQAAoDwAAFO_AAAsvgAAfD4AAPo-AABEPgAAUL0AABw-AAB8PgAAgDsAAJi9AADIvQAAcL0AAEA8AAAkvgAABT8AAJK-AACWPgAALD4AAKC8AABwvQAAFL4AAFC9AABQvQAAcL0AAEw-AABwvQAABL4AAOg9AAAQvQAAJL4AAGy-AADoPQAA2L0AALg9AADIPQAApr4AAJg9AAAsPgAANL4AADw-AACgvAAAoDwAAAy-AAB_vwAAtj4AAEQ-AAC4PQAADL4AAKY-AAAcPgAADD4AAAw-AACoPQAAmL0AAIg9AABEPgAANL4AADA9AACovQAAfD4AAI4-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=QzUSYAXhbHI","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":848,"cheight":480,"cratio":1.76666,"dups":["6933706395137267311"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2089854157"},"5630990719574320490":{"videoId":"5630990719574320490","docid":"34-0-2-Z4F8FE55029B12D8B","description":"A math video lesson on the Evaluating Limits which is a topic on Limits in Calculus. This video discusses how to evaluate the lim -sqrt(2x+4) as x approaches 3/2 #limits #evaluatethelimit...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3141677/c9946d286a1973e12d64cddb4edc680a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1btgogAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DH7udDWr9r88","linkTemplate":"/video/preview/5630990719574320490?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate: lim - (2x+4) as x approaches 3/2","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=H7udDWr9r88\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhUKEzU2MzA5OTA3MTk1NzQzMjA0OTBaEzU2MzA5OTA3MTk1NzQzMjA0OTBqhxcSATAYACJEGjEACipoaG5samFrenh5cnltdmdkaGhVQ1pRUHkwa1JNVmtHU0tWQkFxLW82M2cSAgASKg_CDw8aDz8TeoIEJAGABCsqiwEQARp4gfT89v4B_wD7_gP_AwT-ARQK-_z1AgIA8_D5_wUC_wDnDwIDCP8AAP0Z_AUDAAAABQn0Dv39AQAMEO4AAwAAABoC_QD3AAAACQMICP8BAADxCPryAgAAAAD_8_r_AAAAAQoL-f7_AADw_hL5AAAAAAz8-uwAAAAAIAAthUHROzgTQAlITlACKoQCEAAa8AF_D_kAu-n8_igM8gDsGfoBjR8J_yoG7wDbG_0B2RXvARYL9wHI8P8AGuzwAffvDAAO49UA-tYBADPQ6f8o_AUACNf4AQrV1AAaDT795vTaAOMfEP8BCgv-6gfX_v0D6QAJ9BD6B_vfAfADywEZ7BMC-OoeBAvi__74-Bv_8xUcAf7iyv8KAPcICeQN-d0XHAHv9gADEhAH-9nh7wMJ_9sBGOf__RkX5v4BBOoD4AMi_wLwAPcW4_jz8RoFC-QWIAH3DhsC69gKAwUcB_IW9QwH7wvv-vLq9voS_AUMAt_59Pr0-PLjFvP15vX9DN_09vogAC1tAy07OBNACUhhUAIqzwcQABrAB0-s275jSyq9YjB_vEKk8LxxRC09CebDvJrMnbzrXbK8XMMUPB-m2DtBlLm8H9_WOpsdob5GoZu8yGeoPBSUQj5GRRy9c-gAvGLZLL5yAqo7w2QKvUQYX77UZGc7pZ0_PCs_Xz1-X3G7n80qvJrBqTsT-Ym7fQHiO_5ucD2q6Dm9eNkMPK9g273O4sW8aNQVOxydnzn7dee81YLNvLxa7j1AY0u8KwGnPFhuzjx_Gxw72NVkPKAlnj1I-F48ybSROq3cKz7JoES9i6gJu3gANb1Xp_M6xYLvu4bLCr7CGoK9w2M_vFjzLbx1ETU9euFOvFHBAT5QscC9C1V7PBbz2LxB-bY9raexuirRiD2KDQw9LKbIPKFdj7zJdwk-B9IkO84op7wn8Y49VeC_u8B1arx0E6u8NFwbuXoApjxi4FS9xB9JO3BdgT21q2u9OSWFPMbEtr0-KEM9GbmdvLHriztwelW7sgrAvHqslL3IluU84TOIPN30Qjv9BRE9Y0WqOy6ZqT26Vzw9nW40POVBejyxPWk8SaBBvK55er3APAm9-b44O1RkHj1YVQA673pEvJFk9j1po1-8AJOSuxbf0L36rDy9Nb9QPEKmxj0dMJk8g5zeOujn-roJ5gG8TxhevAmZVT2qR5o8-QkQvB4yZT3HNfQ8tmLmO6FYXb0OTwq8lo4evGjAij21wIM8FCaIO6NtgT2S45M9w4kcuKCNLD7LrgW9IAINuTx8o7yC56m91n9fuArMlDyoDdi8KeCFuh-i0T1Y-B-9edGKOElaiz03mm28diA4uQsxzTwPGpA9detzOYX5IT3J0Ay9ajb8tbMTtL3WRZC9tGcwOWpQTz0TfBM8lEsSuX0FST0Lf6O7qwijuBQcg73HJK29GlEVOIbuCL01bgC9-SukuDgU3j2LPZ89Mq23uJPY3jsDTE-9Rl8FuISpfD1F7xa6CwokubWNej3IoaQ9LdQBOOci2TwDzPy9UknIOWJDnDzDHYk9WLChOT4mDT0j4Js9sOscuFMlpTsCctM7bSRWuJhP9j1peXm8nW5sOE85izwh9pO8lhQAue6Jj71rn6m9cmQvN0DVzTwK4lE7Ag7KN200RT1tmq29VvWtOIsCOL2fpya9Lep4OONu8D0OTO69yWWXuewJ3LzhKV-9xKVjuLvtgryX5qG9-jj_tyTES7yOotg8wO2rt9MziD2FC_m8QHokuGpPGT6pbpk9CAIyt6Pt0rumfl48v4YHufzqBb2GsLU8Wcpqt6nl_bwyxqe9CyF5uCAAOBNACUhtUAEqcxAAGmAu_QAsBxmk7fw07ugM5zjY18Hr0tgC_xwK__kGvervIt-4FhL_DMcK4JcAAAAkxsEoIwDefwvXvDn0FvbO2PMPAGzz_COVBVPyvt7vCPjwMvTFNh0Art2yZgXj5hI7GO8gAC3UtBY7OBNACUhvUAIqrwYQDBqgBgAAsEEAAODBAACEQgAApsIAABhCAACAwAAAtEIAADxCAABwwQAAgEAAAAAAAAAAwQAA6MEAAABBAABgQgAAIEEAAIBAAAAwwQAA6EEAADBBAABAwAAADMIAALDCAACIQQAAMMIAADDBAADAwAAAKMIAAJBBAACgQQAAIMIAAAAAAADMwgAAkMEAALrCAACwQQAAgEAAANZCAAAAAAAAIEEAAFDBAADYQQAA4EEAAKDBAAB4QgAAiMIAAIA_AAA8QgAABEIAADBCAAC4wQAAUMEAAABBAAAYQgAAYEEAAJBBAADiwgAA8EEAAPBBAABcQgAA8EEAALzCAAAcwgAApsIAAJDBAABUwgAANMIAAPDBAAC4wQAAIMIAACxCAAB8QgAAaMIAAMRCAACCwgAANMIAADDBAAAwwgAA-MEAAMDAAAAgwQAAcEIAAIBAAAA4QgAAFMIAACRCAADoQQAAAEAAAIC_AAAMwgAAMMIAAGxCAACAwQAA4EAAAFRCAACIwQAAgEAAAJBBAAAYQgAArkIAABjCAAD4QQAAwEEAAFDBAAC8wgAA-MEAAAhCAACgQAAAqMEAAFxCAAAUQgAAEEEAANjBAAAcwgAAoMEAAEhCAADgwAAAPMIAADTCAADYwQAAQMEAADzCAABAwQAAQMAAAIC_AACAPwAAQEEAAGjCAACowQAAwEAAABDBAADgwQAAiMEAAHhCAACYwQAAREIAAMBBAABAQgAAJMIAAKTCAACIwQAAWEIAAPBBAADIwQAABEIAABRCAADowQAAgL8AAIBAAABAwQAAAMIAABRCAACgQQAAmMEAABBBAAAowgAAuMEAAEDCAACMwgAAQEAAAGzCAACYQQAAgEEAAKjBAADgwAAAoEEAAGDBAACuQgAAZEIAADBBAADQwQAAOEIAAODAAACYwQAAdMIAALDBAAAQQQAAEMIAAKBBAAAkQgAAFMIAAEDCAABAwgAA0MEAAFhCAAAkwgAAMMIAAADCAADgwAAAcEEAAEBAAAAQwgAAgMEAAMDAAAB4QgAAbEIAABDBAADAwAAA4MAAABzCIAA4E0AJSHVQASqPAhAAGoACAABAPAAALD4AAN4-AACCPgAAij4AAKo-AADWPgAAGb8AAAy-AAA8PgAAyL0AAHA9AABEPgAAVD4AAGw-AADgvAAACT8AAJg9AAD4vQAAET8AAH8_AABAPAAAgDsAAKg9AADYPQAALL4AAEQ-AAD4vQAAQDwAAIo-AAAUPgAAtr4AAJg9AAD4PQAAuD0AADC9AADgvAAA-L0AACu_AAC6vgAALL4AAMY-AAAcPgAANL4AAFQ-AAC4vQAAfD4AAFS-AABEPgAAsr4AABC9AAAwvQAABD4AAHw-AABcvgAAgLsAAEM_AACGvgAAQLwAAKo-AABQPQAAXL4AAHw-AACgPCAAOBNACUh8UAEqjwIQARqAAgAA6L0AADC9AADYvQAALb8AAMi9AAAsPgAAJD4AAHA9AAAUvgAAwj4AAKg9AABwvQAAHL4AAOC8AABwPQAAML0AADC9AAAfPwAA6L0AALo-AAAQPQAAmL0AABC9AADIvQAAoDwAAKg9AADYvQAA4DwAAMg9AADgPAAA4LwAABA9AADIvQAATL4AAAw-AACAuwAAND4AAEQ-AAA8vgAADL4AAAQ-AABQPQAAiD0AAAy-AACgPAAAqD0AAH-_AAAEPgAABD4AAIi9AAC4vQAAiL0AANg9AAAsPgAAQDwAAHA9AAAQPQAAyL0AAHA9AABwPQAAuD0AAAy-AADIPQAAND4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=H7udDWr9r88","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5630990719574320490"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"627560575"},"7715238162303438392":{"videoId":"7715238162303438392","docid":"34-9-14-ZC2B39F2B5A1334EE","description":"to improve your performance and Clear your concepts from basic for Class 6-12 School and Competitive exams (JEE/NEET) - https://doubtnut.app.link/POyZDvv5Lyb Contact Us: 👉 Have Any Query?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1029070/ae057a6457c064739af182d7d6e1da41/564x318_1"},"target":"_self","position":"17","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdgxIkE-_XMM","linkTemplate":"/video/preview/7715238162303438392?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"lim_(x rarr 3) (sqrt(x+3)+sqrt(x+6))/(sqrt(x+1)-2)=_. | 10 | Limits | Maths | Pearson IIT ..","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dgxIkE-_XMM\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhUKEzc3MTUyMzgxNjIzMDM0MzgzOTJaEzc3MTUyMzgxNjIzMDM0MzgzOTJqrw0SATAYACJFGjEACipoaHhjbHBoa2J5eGxyeW1kaGhVQ2N2N3BzcEdIbU03QU95d3VMTTF1ZkESAgASKhDCDw8aDz8TlwOCBCQBgAQrKosBEAEaeIHxBQMB-wUA8wkEAQMD_gEGAvP29___APTx-f8FAv8A8_oHAQQAAAAMBfsCAgAAAAP7_fv9_gEACPz2_fgAAAD_AwQF_QAAAAACAfz-AQAA__z7_wP_AAAFA_r3_wAAAAf9AAEBAAAAAQIJAAAAAAD__gDwAAAAACAALRIG4Ds4E0AJSE5QAipzEAAaYAYIADMJM7_cGyDw-v4BOerzAAHl-Rn_-P0ANyfCx_0k6NA8CP8SzvrjqwAAACkE7vsNANdo-vflWPL5_RSJ6_8Af_QlzQgA3dnmDjjEBhUJLfMaEgCeEg0aHefiGDsqQyAALc8WKjs4E0AJSG9QAiqvBhAMGqAGAAAgQgAAoEAAAIJCAAC6wgAAoMEAAIDAAAAEQgAA0EEAABTCAABgwQAA6EEAANDBAADwwQAAgEEAAEBAAABAwAAAgEEAAHTCAAAcQgAAqEEAANDBAACAwQAA-sIAAIpCAAAkwgAAIMIAAKBBAACAwQAAgMAAAGBBAADQwQAAEEEAADjCAACAQAAAusIAAABBAABwwQAAjEIAAFzCAACUQgAA4EEAAEDBAACAwAAA6MEAACBCAABAwgAAAEAAAJ5CAAAwQgAAEEEAAJDBAACAwgAAsMEAAHxCAACIQQAAcEEAANzCAABQwQAAcEEAAKBBAAAAQQAAOMIAAI7CAAA8wgAAoEAAAMLCAADowQAAPMIAAFzCAABkwgAACEIAAChCAAAAAAAA4EEAANDBAACgwAAAwMEAAKjBAAAwQQAAEEEAAIBBAACKQgAAQEEAAMDAAAC4wQAAkEIAACBBAACgwQAA2EEAAIBAAAAYQgAAMEIAAJDCAAAIQgAAcEEAAIDBAAA4wgAAyEEAADRCAAAwQgAAcMIAAEBAAAAwQgAAAMIAAEDAAADAwAAAqEEAABBCAADgwAAAlEIAADhCAAB0QgAAIMIAAIA_AABgwQAAgEIAABBBAADgwQAAmMEAACzCAABgwQAAPMIAAABAAABcwgAAuMEAADBBAABQwgAAuMEAAKjBAADQQQAAmMEAANDBAADQQQAAmEEAADTCAADYQQAAgEAAAGRCAACwwQAACMIAAAAAAACAQAAAwEEAAEzCAACgQQAADEIAAIBBAADAwAAAAMEAAABCAAAkwgAAHEIAAKRCAABEQgAAuEEAABTCAACIwgAAsMEAAEzCAAAUwgAAXMIAAARCAABgQgAAwEAAAPhBAACIQQAAQMAAAMpCAABwQgAADMIAAJDBAAAAQQAAoMEAACDCAAAQwgAABEIAAMDBAACgwQAAWEIAAEBCAACmwgAAUMIAACDBAAAgwgAASEIAABzCAAAMwgAAAMAAAIC_AAC4wQAAWEIAACDBAACAwAAAwEAAAKBBAAAoQgAASMIAAIBBAAAEQgAAAEAgADgTQAlIdVABKo8CEAAagAIAAKi9AAAQvQAArj4AACQ-AACAuwAAzj4AAFC9AADevgAA2L0AAOi9AABAvAAARL4AAFA9AACoPQAA4LwAABC9AAAEPgAAgLsAACw-AACWPgAAfz8AAAQ-AACIvQAA4DwAALg9AAB0vgAAQLwAALi9AAAwPQAABD4AAKg9AABwvQAAUL0AADC9AABAvAAA4LwAAHA9AAD4vQAA3r4AACy-AABcvgAAqD0AABQ-AAC4vQAA2D0AACy-AAAEPgAAMD0AANg9AAB8vgAAJL4AAOg9AAAkPgAAmD0AAHS-AABAvAAAGz8AAOC8AAB8PgAA-D0AABC9AACgPAAAcD0AADA9IAA4E0AJSHxQASqPAhABGoACAABQvQAAuL0AADA9AAAzvwAAuD0AAGw-AACSPgAAuD0AACy-AACaPgAAVD4AAKA8AACovQAADL4AAIC7AABQPQAAuL0AAFs_AAAMvgAArj4AAKC8AAAUvgAAoDwAADS-AABAPAAAUD0AADC9AAD4PQAAiD0AAHC9AAAQPQAAQLwAALi9AACWvgAAXD4AALi9AACgPAAAUL0AAI6-AACovQAAPD4AAKi9AABAPAAAJL4AABS-AABAvAAAf78AANi9AAAUPgAA4LwAAMi9AAAkPgAAuL0AAOA8AACGPgAAgDsAAOC8AAAwPQAAyD0AANg9AACoPQAAFL4AADQ-AADYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=dgxIkE-_XMM","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7715238162303438392"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"847745485155000854":{"videoId":"847745485155000854","docid":"34-3-8-Z9F63C4C9DF34BC9B","description":"lim[(x-1) Divides (x^2-(1))] REAL Numbers Function AS x Tends TO (1) IN Precalculus. Real numbers are all the numbers found on the number line, including zero. Limit functions that tends to zero...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3507180/7dd77dc5e765f09c56bebe6ad5a5095d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kt734wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0pjPXRJ5k5U","linkTemplate":"/video/preview/847745485155000854?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"lim[(x-1) Divides (x^2-(1))] REAL Numbers Function AS x Tends TO (1) IN Precalculus","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0pjPXRJ5k5U\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhQKEjg0Nzc0NTQ4NTE1NTAwMDg1NFoSODQ3NzQ1NDg1MTU1MDAwODU0aocXEgEwGAAiRBoxAAoqaGhrc3R2c3BwaWVidnBjYmhoVUNzdmJCZ2NqaGpXeWVIcV9Jb1lEUDdnEgIAEioPwg8PGg8_E1iCBCQBgAQrKosBEAEaeIH0AwL-_wEA-P75BA0F_QEQ9_T39gAAAPPw-f8FAv8A_BH8-vwBAAD2EQfzAAAAAAf39gID_QEA_QH59PQAAAAP-vz09QAAAAYM-v3-AQAA7QjwBQP_AAAZDvUF_wAAAPwC_-4AAAAA_AINDwAAAAAF__r2AAAAACAALdgy1Ds4E0AJSE5QAiqEAhAAGvABf-4AANL70__6CfAA1v_ZAKz4CgAuNuP_4AIHAMXs4gHwBwUA1hLo_9MYBgC8Jfn_Ie7c_xECDQAexvf_NNzrAOD1HAEw3d0AEhUIAeTl7v7x9REA6OYJAS327gD3EeT_Eesk_R4E6QDr3NsAIfwqAQP_PAAJ9iD98ssH_9gUAgHd1ub--AnXACz95f7F3iICBfLv__cY9vnzLeX9LvARA-78JQEMEdUAMf0BBAwRAAPV5en9IgT-CAzlCwm-CxT_6Rcf_toC-f8Z5_D98vL7_AX78P3s6Of_7Qn_Du8D_vshEvv7BRL17774Bfbr_u0EIAAtGCAkOzgTQAlIYVACKs8HEAAawAchrK6-uB2_OrHDmDz3C9G8etlAPHhs-rx3FUK-eAmOvIwfOb1Ru689ns46vAiiOLx_gxa-ogtqOyFQBz0UlEI-RkUcvXPoALx1dPy9LxOaPQsCEL30MyW-gIluPQjaLj1g1ho9szaHPdzJFrw86a496NS6uxNgZjogqOi6HXURPDPcAL3cahk69RFYvRN8WL0cnZ85-3XnvNWCzbwvUf09sQVgup-rrbyhlHo9ZGirvMGqurwFNDG-87oUPT4HlrwJeZM9DdbJPPyOYTwvbZi9Kyg2PVqNmzwGYn69HaVcvATmvjqBiYk9hBJBvJWsVLwUruc9pBiAvVMefrtdkbO9jEIYPD41h7vwf2w9ZqnAPeVlCTwX7xe-992OPWpQtDyzTeC8gv-MO-oFgrsLXYk9I5i_PVjJh7wXXP28lDwtPV_h7jtc68a9PrTPPCF97jy0OMY7RR0svV5UgbxTqb48wauGu-xDh7spFNi8oW8BPR2JQLqouJ47QhlUPWGfZ7pjJlE9nx1QvVFLc7yP4BY-W3gOvgPnDrz54-67W2H6vYUCvjvdRr49JifJvFh5vDt2NA49aYcEvbIyWLu8uyW7_RCLvdODo7dktmC7qASPvZo0GbuQ2Vm9sCNpvDWlCLwAam-9vth7PBBdIbpzB1s9A1PHPXIMwTmjaJQ8Ra6lvJaTs7siiPM9arElve977bpgOSI-rizRvHCVCroONFk6DcUdvR_bcLtIpO08f40_vRKkTrvauuW8wDWxvVJZDrrurw4-nxKRvX7QlDmBCkI9D9UQPGHNM7hfrX-9LuKwPQkCOjk5QbA9HjbxvZIS7Thq9iO7752nvWJI3LjrP2Y9IdgnvDCm-biZuPa7HpTmPKMfETttPkm9YvRMvururDn8t_06Sy9_u2oJWbc3_w89GNs6vWxgxLW10a88LX95vWRvBzl2mSs8LYhSvVbpXLjIL3I8l6iePYSQB7hB8QM9cU_Bvdc4ezmRH7u8o-5ePTR747Y_yXg8ngG_PXtAh7YXH7A8S6CHPTgzx7gS0be7DP2IvVBl-jeex_I8Bm5YPWyUdrjNcMm6iFFLPf_rGjkj0bC8clPDvOMQO7gcXvA9fQT-PPTnkLhsE908kFIkPYt16TixFQQ-xv_4OzLZU7iPFPi7W9_BvS3vdbiHZw699GUuvc3SELiUtKy8bK00PQQY87Veqki9OukdvrRj-rgi_-w9NSkFPvN-W7gFHF091hDmPPgQz7hMnhy9Fsq6uiTeyLdTUMu9LIQPPC4uTLcgADgTQAlIbVABKnMQABpgEAAARec5zRAHLOsN5xQd3sUe_AHN7P_-0v8WHsMX9jCssOz__zHxBteiAAAAJBUgLvEA5Xv0FPJN6xP31a7QKjF_-RwNreEo4KjgM_zuDwk-5zc5AMkGoCtZCNFcJgsvIAAtWvATOzgTQAlIb1ACKq8GEAwaoAYAABxCAABIwgAAUEIAAPjBAADIwQAAwMEAAHhCAAAAQAAAEEEAAABBAABAQgAAYEEAABzCAADQQQAA2EEAAHDBAACowQAAIMEAAABCAACAPwAABEIAAJDBAAAswgAAcMEAAAjCAABIQgAAqEEAAATCAACgwAAAMEEAAHBBAAAgQQAAUMEAAChCAADAwQAAAEEAACDCAABoQgAAQMEAABBBAAAEQgAAUMEAAIRCAABYwgAA4EAAAMTCAACQwQAAgMEAAFBBAABQQQAAQMEAANBBAADAwQAAAEEAAADAAACgQAAAmMEAAEDBAADEQgAAskIAACRCAABIwgAAeMIAAMBAAAA4QgAAAMEAAIhBAADIwQAAIMEAAJjBAADOQgAAXEIAAKDCAAAYQgAAsMEAAKbCAACuwgAAwMAAAEDBAAD4QQAAUMEAAFhCAAC4wQAA4EEAAMDBAAAYQgAAcEEAAEDBAACgQQAAYMIAALDCAAB4QgAAcMIAAIjBAADwQQAAtsIAAEDCAAA0QgAAoEIAAABCAAAAwAAAcEEAAADAAABAQQAAgsIAAKBBAAAgQQAAaEIAAABAAAA4QgAAFEIAAPDBAACawgAAQEEAAPDBAABgQQAA2EEAAGjCAAAUwgAAOMIAAMDBAAB8wgAAsEEAAITCAADAQQAA6MEAAKjBAAAAwAAA-MEAAHDBAADowQAAyEEAAADBAAD4QQAAisIAAOxCAACowQAAoMAAAOjBAACQwQAAAEIAAIDCAABQwQAAwEAAAOhBAABQQQAAUEEAACBBAACIQgAA8EEAAETCAACgwAAAwMEAADzCAAAwQQAAYMEAAGDCAAA4wgAAIMIAANBBAAA4wgAAHEIAAGBBAAA0wgAAWEIAAEBAAAA0QgAAZEIAAOhBAACwwQAAIMEAAIJCAADwwQAA4MAAAODBAADAQAAAqMIAAKzCAACYQgAAgD8AAHTCAADAQAAA6MEAADxCAAAAQgAARMIAAIC_AADwwQAAwEAAAABBAABAwQAA4EAAAPBBAABQQQAA4EEAAOhBAAAwwQAAEMEAAOBBAACAQCAAOBNACUh1UAEqjwIQABqAAgAAgDsAADy-AABkPgAAQLwAABC9AADmPgAAdD4AACG_AAA0vgAAMD0AAKC8AAB0vgAApj4AAJI-AAC4vQAAUD0AALg9AAAQPQAAND4AACk_AAB_PwAAQDwAAJi9AABsPgAAHL4AAIi9AADGPgAAUL0AAKC8AAAcPgAAiD0AACS-AACKvgAA6D0AAI4-AADgvAAA6D0AAI6-AACqvgAARL4AAIa-AAAcvgAAuj4AAKC8AAA0PgAA-L0AAKg9AADovQAAmL0AABu_AABQvQAAqD0AAI4-AADWPgAAdL4AAKC8AABzPwAAcL0AACQ-AAAEPgAAHD4AAII-AABAvAAAyr4gADgTQAlIfFABKo8CEAEagAIAACS-AABAPAAABL4AABe_AACYvQAAUD0AAJI-AABAPAAAQLwAAPg9AABQPQAAML0AAKC8AABwvQAAFD4AAHC9AAAQvQAADz8AAES-AADSPgAAgLsAAOi9AAAwvQAA2L0AAPg9AAAMvgAA4LwAABA9AACYPQAAgLsAAIC7AAC4PQAAkr4AABS-AAAcPgAAiL0AAOg9AAAsPgAAZL4AAIC7AACIPQAAiL0AAIA7AACgPAAAuD0AAPi9AAB_vwAAmD0AAKA8AABAvAAAgLsAAHA9AADYvQAA2D0AAHA9AADYPQAAML0AAKA8AACAOwAA6D0AAKg9AAAQvQAAZD4AAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=0pjPXRJ5k5U","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":490,"cratio":2.61224,"dups":["847745485155000854"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2486965866"},"14804681058292170072":{"videoId":"14804681058292170072","docid":"34-6-12-ZBFE0A21AE0AAE3D7","description":"In this video I have solved a question on limit of sequence.lim {1/(n+1) + 1/(n+2) +...+ 1/2n} as n tends to infinity. * * Connect with me on social media: 1)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2176385/c6a7ae6cf416604addd2a7b8f5c6b64d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/W4YaFQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJPLri-Dj7ag","linkTemplate":"/video/preview/14804681058292170072?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"lim {1/(n+1) + 1/(n+2) +...+ 1/2n. || What is this limit?","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JPLri-Dj7ag\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoUMTY2MDQxNzcxOTg1ODA1MDc4MjYKFDE3MTcyMzYwNDM4MDUwODM1MjY3ChQxNjQyNTUxNDA4Mzg1MTAyNjE2MQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoTMTUxNzE5NjI5MTUzNzk0NDQzMQoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChQxNzEyMTQ4NjgyNzMyNTgxNDM4MwoUMTUwNzg1MTQ0NjA2NTk3MzYxMjEKFDE3MTM4NjA4MjA3MzIwNzQ0NDk5ChM2OTMzNzA2Mzk1MTM3MjY3MzExChM1NjMwOTkwNzE5NTc0MzIwNDkwChM3NzE1MjM4MTYyMzAzNDM4MzkyChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChMyMzQ1MjM0NDMzNzM1NzAxOTkwChM3MDM3NTQ3ODEzMTQ2NTM3MDU3GhYKFDE0ODA0NjgxMDU4MjkyMTcwMDcyWhQxNDgwNDY4MTA1ODI5MjE3MDA3MmquFxIBMBgAImsaVlYotS_9Ix8gT3lWRQIAc8QPEYAAAAYQgczqruxVPUXq0VPsjCAdUgYrWMEKWDBq7fF4PJC0Hc4McYb3Eb_q8Xg8oM3ncTLo24BAoefxBMEDAQAkdQfLKhHCDw8aDz8T-gKCBCQBAIAEKyqLARABGniB8w36_fwFAPH9_A39Bf4B6f35BPsAAADm8fb__P0BAPMAAAf-AAAA_Rj8BQMAAAD-A_8Q9_4BAAkG-_kEAAAABPkCBwb_AAAFAf0G_wEAAAL3A_gCAAAAAgrxCAAAAAD0C_j0AAAAAPL2_hAAAAAACe8B_gABAAAgAC1TZt07OBNACUhOUAIqhAIQABrwAX_0_wDb9q8B1gXHAOgN1QHtICT_GUz5AMzk6wHUBt8B7y7RAOcWAgD2SfoAtBPt_x0BwgAEyeEAPNz8ACDNAgDAEvsAFCLz_z0TLv8M7_z-xxM5AfHUBf5A9dMAEDz5_Q34A_o1Kd3_9y7qAg_-PwHr1SAD_-EkA_a79APs9g8G8_ru__0HAgQNERX54PUxB_Dw8v4WEwn56xPc_foAEQfy1ST_HRzg_THr7QgOHhn-0MsO_gnq-wn8JhsL5RPfCNfxLwb_G_r8CAwJ_kYU7gTr6-oKCAnaDP_jBALwCwYEJvbp-QLqAQ_1D_cNDvXnASAALaQ3ETs4E0AJSGFQAirPBxAAGsAHLiCkviK42zxn81A5VDZMvZk8L70Rto66S9O2vZbLKz2s7ge99rZJPpJSir1RVw09jxv-vBQ0tzwpKrQ7oOIoPlHbxrxEDjY8GYGivUC1uz3hpF-9KD34vNZ-4Ty9Vj09gkSJvHUrir38K1i78zsNPnYUzLyGS1g8LpJ2vYmmQj0b7si73GoZOvURWL0TfFi9F9JmvXZ0Nzy1La88XuirPYDBCT3cEU48NpYrPezuizwSKVK9OC_uvScRQT24jCC9g5GtPbDxjz0McCY93PQXvuQiSL2Xnvq7-SlTvQQDCDxvuXo8PQo3PaZGaLyTxqi8UcEBPlCxwL0LVXs80CpDvphzn7wPqIg8iOoXvQgAjjzo4xA7Klwqvbdr-DygUqW8e_KVPAKsIbwj4Ra9ZJPcPW79TzxnMcw8w6t2PAcCCb0goRw8mfuPvZtFjj1nbck8W5WUPeoOqL0wMIa8RoGZPaGgND1S32i7HiUlvb_ZQbzaa-q7trVqvXqvVT2_1iU83B5uPYp3e72QCUI8j-AWPlt4Dr4D5w682HcqvRzNMb7XNIy6_FuNvek6njy_Xdk7Q6kdPh9q273Emqk5KHbZvFcIq700iIu7R1ToPMwoNr0qhQi8M96Gvef34rxk29S75sKivSnhoz20Kvi7cwdbPQNTxz1yDME5_kHJPFsMjr0d32Y7L7IPvCaOvDwgMn67LYuTPZ6vHj2gog86CyToPasBL73sydM5hHUNvYvYDL2_I3C7YEKAvYBfaL0Kzmg54luYPbokmLwdn3s5csIEvQMQMr1NeZO5B5bjvfub6zw0lXo3_8V5u2-QmrzoBDa5y6LwvFtCHr43BeM5Tz0CPrGz9Dttk2q5Z2szvTpySbzMw1y6zCDDvdQNBL4IU4U5R_govJBe3jxuXZa4qWIPPRsBC7zxGMs4GhbjvbBLfr0pUlE3AFYnvVi5obzajaE5u4-rurUFujxj-AU5UZQVPZR7a73iuHs5dh6wvQZPc7rwheA4SVODPeYdTLznevM0sLSCPWMIID4L5EA5GuflPF0Pa724sI03D1Q3PfGC6D3pQYI3opOqvVenxD29NqA4Yt8IPI_-dz1tDms4PGkBPf1xsT3ModA4DqY8PDoC2bviNkE4IguiPb6utb3a7AK53ryCPLSvHL78h2W4Qq-0vXrOTL1yy4i3F7woPYVBKT5cX3c4U2VOPHtclb1edby3QstfPWMatz1ukI443OJQPQHlJT1-1fa3n8e4vQocf72bN9i3SV6nvUasqj1UMog4IAA4E0AJSG1QASpzEAAaYDPpABD8Mt4fIRP0EN8cJuTO0tn23____vIAAAnu-iUBxNEC5QAc4QrpsgAAACru7QrmAPtmIQkIYuEm7vSiyRgWfxv4F9rMBOyn2SXoKAIhGfoORADuF8cHGQTNAissMyAALW5UMTs4E0AJSG9QAiqvBhAMGqAGAAAQQgAAAMAAAAxCAACMwgAAQMEAAAjCAADKQgAAFEIAADBCAAAAQgAAGEIAAIDBAADIwQAAAAAAALBBAADgQAAAEMEAABjCAAB4QgAAHMIAAGBBAABAQAAAIMIAABDBAABQwQAAcMEAAOjBAABQwgAATEIAAADAAABAQAAA6MEAAIjCAADYwQAAnMIAAABCAACoQQAAokIAANDBAAAsQgAAgEAAACRCAACCQgAAwMEAAJRCAADUwgAAwMAAAOBBAABIQgAAAEAAAMDBAACgQQAAIMEAAJBBAACAQQAAwEAAAO7CAACwwQAAYEEAADxCAABYQgAAhsIAALDBAABQwgAAkMEAAILCAACywgAApMIAAEBAAAD4wQAAOEIAAIxCAAA4wgAAyEEAACjCAADwwQAAAAAAAFDBAAAYQgAA4EEAAADCAACQQgAAgL8AAPBBAAAQQQAAwEAAAEBBAAAQwQAAVEIAAKDBAABgwQAAxEIAAEDAAAAgwQAAhEIAACjCAAAkwgAAIEEAAGhCAACIQgAAaMIAAMhBAABgQQAAQMEAAEjCAACAvwAA8EEAAHBBAADAQQAAVEIAAPhBAABAQgAAWMIAADBBAABwwQAAhEIAAOBAAAAgwgAAZMIAAADBAADowQAAcMIAAFDBAADAwQAAkEEAAHDBAADAQAAAwEAAAAjCAACYQQAAhsIAAIDAAACAwAAAqEEAAEjCAABMQgAAyEEAAMDAAABEwgAAwMEAAMDAAAAgQQAABEIAAPjBAABcQgAA2EEAAADBAABAQQAAiEEAACDCAAAowgAAwEAAACBBAADgQQAAXEIAADTCAADwwQAAgsIAAADBAAAswgAAJMIAACxCAADAQAAAmsIAAEBAAABAQgAAwMEAAChCAACGQgAAqMEAAAhCAAA8QgAAEMEAABDCAAAAwgAAQMAAACBBAABkwgAAWEIAABDBAACAwgAAoMEAAMDAAAAIQgAAVEIAAMTCAABYwgAAlsIAAGDBAACAQAAAcEEAAIjBAACQwQAAgL8AANhBAABAwAAAQMAAAMDAAABgQQAAAEAgADgTQAlIdVABKo8CEAAagAIAAPi9AACYvQAAFD4AAJi9AACovQAAkj4AAOi9AADivgAATL4AAKY-AAD4PQAA4LwAAIi9AAA8PgAAqL0AAAS-AAAUPgAA-L0AAKo-AAC2PgAAfz8AADS-AADoPQAAVD4AAOi9AAAMvgAA2D0AACw-AABEvgAA_j4AAOg9AACgvAAAXL4AAKg9AACgPAAAuL0AAIA7AAAcvgAA6r4AABy-AACCvgAAJL4AALo-AACSvgAAUL0AAES-AAB0PgAAiD0AAEA8AACWvgAAyL0AAFy-AACiPgAAXD4AAEy-AABAPAAAOT8AAHC9AAAEPgAAXD4AAIg9AAB0PgAAND4AAFC9IAA4E0AJSHxQASqPAhABGoACAABsvgAAMD0AAFy-AAAnvwAAJL4AAIi9AADuPgAAiL0AAEQ-AAAsPgAAUD0AAPg9AAAMPgAAiD0AAKA8AACIvQAAEL0AAPo-AAC4vQAAGT8AABy-AAA0vgAAgLsAAHS-AACgvAAAqL0AANg9AAAwPQAABD4AAOi9AACAuwAAMD0AADC9AAAQvQAATD4AAAS-AAA0PgAAnj4AAOC8AABAPAAAuj4AAHC9AADgPAAAmL0AABS-AAAwvQAAf78AABA9AAAEvgAAdD4AAAw-AACCPgAAmD0AAI4-AACgPAAA-D0AAAy-AAAsvgAAiD0AALi9AAAQPQAAiL0AAEC8AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=JPLri-Dj7ag","parent-reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["14804681058292170072"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3684915393"}},"dups":{"17283634130819181775":{"videoId":"17283634130819181775","title":"Evaluate \u0007[lim\u0007] x-›-2^+ 1/(x^2-4)","cleanTitle":"Evaluate lim x-›-2^+ 1/(x^2-4)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=M7lvFKCCJys","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/M7lvFKCCJys?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/@MinuteMaths","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":199,"text":"3:19","a11yText":"Süre 3 dakika 19 saniye","shortText":"3 dk."},"views":{"text":"5,9bin","a11yText":"5,9 bin izleme"},"date":"23 eyl 2020","modifyTime":1600889663000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/M7lvFKCCJys?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=M7lvFKCCJys","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":199},"parentClipId":"17283634130819181775","href":"/preview/17283634130819181775?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/17283634130819181775?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16604177198580507826":{"videoId":"16604177198580507826","title":"Evaluate \u0007[lim\u0007] x-›2 f(x) where f(x)={-x^2+2 when x 2; -5 when x=2","cleanTitle":"Evaluate lim x-›2 f(x) where f(x)={-x^2+2 when x 2; -5 when x=2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QaR3mefaAoY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QaR3mefaAoY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/@MinuteMaths","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":138,"text":"2:18","a11yText":"Süre 2 dakika 18 saniye","shortText":"2 dk."},"views":{"text":"6,8bin","a11yText":"6,8 bin izleme"},"date":"22 eyl 2020","modifyTime":1600803093000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QaR3mefaAoY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QaR3mefaAoY","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":138},"parentClipId":"16604177198580507826","href":"/preview/16604177198580507826?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/16604177198580507826?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17172360438050835267":{"videoId":"17172360438050835267","title":"Evaluate \u0007[lim\u0007] x-›-2^+ 3x/(x+2)","cleanTitle":"Evaluate lim x-›-2^+ 3x/(x+2)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0Ray_YTfWNg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0Ray_YTfWNg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/@MinuteMaths","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":142,"text":"2:22","a11yText":"Süre 2 dakika 22 saniye","shortText":"2 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"23 eyl 2020","modifyTime":1600889664000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0Ray_YTfWNg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0Ray_YTfWNg","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":142},"parentClipId":"17172360438050835267","href":"/preview/17172360438050835267?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/17172360438050835267?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16425514083851026161":{"videoId":"16425514083851026161","title":"Evaluate \u0007[lim\u0007] x-›-3^+ (x+2)/(x^2+5x+6)","cleanTitle":"Evaluate lim x-›-3^+ (x+2)/(x^2+5x+6)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=A7nk-wGDtXM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/A7nk-wGDtXM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/@MinuteMaths","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":170,"text":"2:50","a11yText":"Süre 2 dakika 50 saniye","shortText":"2 dk."},"views":{"text":"4,1bin","a11yText":"4,1 bin izleme"},"date":"23 eyl 2020","modifyTime":1600889665000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/A7nk-wGDtXM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=A7nk-wGDtXM","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":170},"parentClipId":"16425514083851026161","href":"/preview/16425514083851026161?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/16425514083851026161?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4854704034011771436":{"videoId":"4854704034011771436","title":"Evaluate \u0007[lim\u0007] x-›0^- |x|/x","cleanTitle":"Evaluate lim x-›0^- |x|/x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LwhQhfNCpEY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LwhQhfNCpEY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/@MinuteMaths","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":150,"text":"2:30","a11yText":"Süre 2 dakika 30 saniye","shortText":"2 dk."},"views":{"text":"13bin","a11yText":"13 bin izleme"},"date":"16 eyl 2020","modifyTime":1600214400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LwhQhfNCpEY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LwhQhfNCpEY","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":150},"parentClipId":"4854704034011771436","href":"/preview/4854704034011771436?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/4854704034011771436?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1517196291537944431":{"videoId":"1517196291537944431","title":"Calculus Help: Find the limits \u0007[lim\u0007] (x 64) ( x-8)/( x-4) - \u0007[lim\u0007](x 6) (2- (x-2))/(x^2-36)","cleanTitle":"Calculus Help: Find the limits lim (x 64) ( x-8)/( x-4) - lim(x 6) (2- (x-2))/(x^2-36)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Xqu3FzF5WOs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Xqu3FzF5WOs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmhxRUxTaERLS1B2MEpSQ0RRZ0ZvUQ==","name":"Calculus Physics Chem Accounting Tam Mai Thanh Cao","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Calculus+Physics+Chem+Accounting+Tam+Mai+Thanh+Cao","origUrl":"http://www.youtube.com/@calculusphysicschemaccountingt","a11yText":"Calculus Physics Chem Accounting Tam Mai Thanh Cao. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":408,"text":"6:48","a11yText":"Süre 6 dakika 48 saniye","shortText":"6 dk."},"views":{"text":"5,1bin","a11yText":"5,1 bin izleme"},"date":"3 şub 2022","modifyTime":1643846400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Xqu3FzF5WOs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Xqu3FzF5WOs","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":408},"parentClipId":"1517196291537944431","href":"/preview/1517196291537944431?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/1517196291537944431?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4932103128310317999":{"videoId":"4932103128310317999","title":"\u0007[lim\u0007](x 1) x^3-1/x-1 | Evaluating the limit | Calculus and Trigonometry","cleanTitle":"lim(x 1) x^3-1/x-1 | Evaluating the limit | Calculus and Trigonometry","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mfk13JFFE0o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mfk13JFFE0o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaHp3N083d1VDLWx4bWFEdTBwR2txdw==","name":"Grasp Education","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Grasp+Education","origUrl":"https://www.youtube.com/channel/UChzw7O7wUC-lxmaDu0pGkqw","a11yText":"Grasp Education. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":174,"text":"2:54","a11yText":"Süre 2 dakika 54 saniye","shortText":"2 dk."},"views":{"text":"14,7bin","a11yText":"14,7 bin izleme"},"date":"20 tem 2020","modifyTime":1595203200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mfk13JFFE0o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mfk13JFFE0o","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":174},"parentClipId":"4932103128310317999","href":"/preview/4932103128310317999?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/4932103128310317999?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16869108634055247080":{"videoId":"16869108634055247080","title":"Calculus Help: Find the Limits: \u0007[lim\u0007] (x ) (x^2+1)/(x+1) - Techniques - Solutions - Answer","cleanTitle":"Calculus Help: Find the Limits: lim (x ) (x^2+1)/(x+1) - Techniques - Solutions - Answer","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KVIowp1RjIo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KVIowp1RjIo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmhxRUxTaERLS1B2MEpSQ0RRZ0ZvUQ==","name":"Calculus Physics Chem Accounting Tam Mai Thanh Cao","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Calculus+Physics+Chem+Accounting+Tam+Mai+Thanh+Cao","origUrl":"http://www.youtube.com/@calculusphysicschemaccountingt","a11yText":"Calculus Physics Chem Accounting Tam Mai Thanh Cao. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":103,"text":"1:43","a11yText":"Süre 1 dakika 43 saniye","shortText":"1 dk."},"date":"16 mar 2022","modifyTime":1647388800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KVIowp1RjIo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KVIowp1RjIo","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":103},"parentClipId":"16869108634055247080","href":"/preview/16869108634055247080?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/16869108634055247080?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11384685492776537482":{"videoId":"11384685492776537482","title":"\u0007[lim\u0007](x 2) x^3-8/x-2 | Calculus and Trigonometry | Evaluating the limit","cleanTitle":"lim(x 2) x^3-8/x-2 | Calculus and Trigonometry | Evaluating the limit","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=v4wR4aXNLSI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/v4wR4aXNLSI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaHp3N083d1VDLWx4bWFEdTBwR2txdw==","name":"Grasp Education","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Grasp+Education","origUrl":"http://www.youtube.com/@GraspEducation","a11yText":"Grasp Education. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":197,"text":"3:17","a11yText":"Süre 3 dakika 17 saniye","shortText":"3 dk."},"views":{"text":"19,2bin","a11yText":"19,2 bin izleme"},"date":"20 tem 2020","modifyTime":1595203200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/v4wR4aXNLSI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=v4wR4aXNLSI","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":197},"parentClipId":"11384685492776537482","href":"/preview/11384685492776537482?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/11384685492776537482?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17121486827325814383":{"videoId":"17121486827325814383","title":"Evaluate: \u0007[lim\u0007] (x^3-x^2-4) as x approaches 2","cleanTitle":"Evaluate: lim (x^3-x^2-4) as x approaches 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OFPHvh6jbM0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OFPHvh6jbM0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/user/MinuteMath","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":151,"text":"2:31","a11yText":"Süre 2 dakika 31 saniye","shortText":"2 dk."},"views":{"text":"3,3bin","a11yText":"3,3 bin izleme"},"date":"20 şub 2018","modifyTime":1519084800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OFPHvh6jbM0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OFPHvh6jbM0","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":151},"parentClipId":"17121486827325814383","href":"/preview/17121486827325814383?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/17121486827325814383?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15078514460659736121":{"videoId":"15078514460659736121","title":"Evaluate \u0007[lim\u0007] x-›5 -(x^2-5x)/(x-5)","cleanTitle":"Evaluate lim x-›5 -(x^2-5x)/(x-5)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=wKMmE0QymIY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/wKMmE0QymIY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/@MinuteMaths","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":109,"text":"1:49","a11yText":"Süre 1 dakika 49 saniye","shortText":"1 dk."},"views":{"text":"7,2bin","a11yText":"7,2 bin izleme"},"date":"22 eyl 2020","modifyTime":1600732800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/wKMmE0QymIY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=wKMmE0QymIY","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":109},"parentClipId":"15078514460659736121","href":"/preview/15078514460659736121?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/15078514460659736121?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17138608207320744499":{"videoId":"17138608207320744499","title":"Limit of Function \u0007[lim\u0007] (x 1)〖(x^5-1)/(x^3-1)〗 with Three Methods","cleanTitle":"Limit of Function lim (x 1)〖(x^5-1)/(x^3-1)〗 with Three Methods","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9HexiJr_bRM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9HexiJr_bRM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNFlvZXkxVXlsUkNBeHpQR29mUGlXdw==","name":"Anil Kumar","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Anil+Kumar","origUrl":"http://www.youtube.com/@MathematicsTutor","a11yText":"Anil Kumar. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":501,"text":"8:21","a11yText":"Süre 8 dakika 21 saniye","shortText":"8 dk."},"views":{"text":"10,2bin","a11yText":"10,2 bin izleme"},"date":"8 ağu 2019","modifyTime":1565222400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9HexiJr_bRM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9HexiJr_bRM","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":501},"parentClipId":"17138608207320744499","href":"/preview/17138608207320744499?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/17138608207320744499?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6933706395137267311":{"videoId":"6933706395137267311","title":"Calculus: Find the limits: \u0007[lim\u0007](x 3) (x-3)/(x^2-9), \u0007[lim\u0007](x 2) (x^2-5x+6)/(x-2), \u0007[lim\u0007](x 0)...","cleanTitle":"Calculus: Find the limits: lim(x 3) (x-3)/(x^2-9), lim(x 2) (x^2-5x+6)/(x-2), lim(x 0) tanx/secx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QzUSYAXhbHI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QzUSYAXhbHI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmhxRUxTaERLS1B2MEpSQ0RRZ0ZvUQ==","name":"Calculus Physics Chem Accounting Tam Mai Thanh Cao","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Calculus+Physics+Chem+Accounting+Tam+Mai+Thanh+Cao","origUrl":"http://www.youtube.com/@calculusphysicschemaccountingt","a11yText":"Calculus Physics Chem Accounting Tam Mai Thanh Cao. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":158,"text":"2:38","a11yText":"Süre 2 dakika 38 saniye","shortText":"2 dk."},"date":"8 mayıs 2022","modifyTime":1651968000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QzUSYAXhbHI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QzUSYAXhbHI","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":158},"parentClipId":"6933706395137267311","href":"/preview/6933706395137267311?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/6933706395137267311?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5630990719574320490":{"videoId":"5630990719574320490","title":"Evaluate: \u0007[lim\u0007] - (2x+4) as x approaches 3/2","cleanTitle":"Evaluate: lim - (2x+4) as x approaches 3/2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=H7udDWr9r88","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/H7udDWr9r88?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/@MinuteMaths","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":122,"text":"2:02","a11yText":"Süre 2 dakika 2 saniye","shortText":"2 dk."},"date":"20 şub 2018","modifyTime":1519084800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/H7udDWr9r88?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=H7udDWr9r88","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":122},"parentClipId":"5630990719574320490","href":"/preview/5630990719574320490?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/5630990719574320490?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7715238162303438392":{"videoId":"7715238162303438392","title":"\u0007[lim\u0007]_(x rarr 3) (sqrt(x+3)+sqrt(x+6))/(sqrt(x+1)-2)=_. | 10 | Limits | Maths | Pearson IIT ..","cleanTitle":"lim_(x rarr 3) (sqrt(x+3)+sqrt(x+6))/(sqrt(x+1)-2)=_. | 10 | Limits | Maths | Pearson IIT ..","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dgxIkE-_XMM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dgxIkE-_XMM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":407,"text":"6:47","a11yText":"Süre 6 dakika 47 saniye","shortText":"6 dk."},"date":"1 kas 2021","modifyTime":1635724800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dgxIkE-_XMM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dgxIkE-_XMM","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":407},"parentClipId":"7715238162303438392","href":"/preview/7715238162303438392?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/7715238162303438392?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"847745485155000854":{"videoId":"847745485155000854","title":"\u0007[lim\u0007][(x-1) Divides (x^2-(1))] REAL Numbers Function AS x Tends TO (1) IN Precalculus","cleanTitle":"lim[(x-1) Divides (x^2-(1))] REAL Numbers Function AS x Tends TO (1) IN Precalculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0pjPXRJ5k5U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0pjPXRJ5k5U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDc3ZiQmdjamhqV3llSHFfSW9ZRFA3Zw==","name":"Kelvin Academy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Kelvin+Academy","origUrl":"http://www.youtube.com/@KelvinAcademyYouTube","a11yText":"Kelvin Academy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":88,"text":"1:28","a11yText":"Süre 1 dakika 28 saniye","shortText":"1 dk."},"date":"19 ara 2021","modifyTime":1639872000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0pjPXRJ5k5U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0pjPXRJ5k5U","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":88},"parentClipId":"847745485155000854","href":"/preview/847745485155000854?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/847745485155000854?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14804681058292170072":{"videoId":"14804681058292170072","title":"\u0007[lim\u0007] {1/(n+1) + 1/(n+2) +...+ 1/2n. || What is this limit?","cleanTitle":"lim {1/(n+1) + 1/(n+2) +...+ 1/2n. || What is this limit?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JPLri-Dj7ag","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JPLri-Dj7ag?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO2h0dHA6Ly93d3cueW91dHViZS5jb20vQHVnLXBnbWF0aGVtYXRpY3MzOTI1","name":"Ug-Pg Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ug-Pg+Mathematics","origUrl":"http://www.youtube.com/@ug-pgmathematics3925","a11yText":"Ug-Pg Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":378,"text":"6:18","a11yText":"Süre 6 dakika 18 saniye","shortText":"6 dk."},"views":{"text":"42,9bin","a11yText":"42,9 bin izleme"},"date":"15 mayıs 2020","modifyTime":1589493069000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JPLri-Dj7ag?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JPLri-Dj7ag","reqid":"1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL","duration":378},"parentClipId":"14804681058292170072","href":"/preview/14804681058292170072?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","rawHref":"/video/preview/14804681058292170072?parent-reqid=1767143342146163-15273101220322494205-balancer-l7leveler-kubr-yp-vla-184-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"2731012203224942057184","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"LIM","queryUriEscaped":"LIM","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}