{"pages":{"search":{"query":"Max-Absolut","originalQuery":"Max-Absolut","serpid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","parentReqid":"","serpItems":[{"id":"5186192123015564836-0-0","type":"videoSnippet","props":{"videoId":"5186192123015564836"},"curPage":0},{"id":"9719727530885348311-0-1","type":"videoSnippet","props":{"videoId":"9719727530885348311"},"curPage":0},{"id":"3868007723451392974-0-2","type":"videoSnippet","props":{"videoId":"3868007723451392974"},"curPage":0},{"id":"18207356004825383962-0-3","type":"videoSnippet","props":{"videoId":"18207356004825383962"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dE1heC1BYnNvbHV0Cg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","ui":"desktop","yuid":"8075480481769518517"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"15468081228990979225-0-5","type":"videoSnippet","props":{"videoId":"15468081228990979225"},"curPage":0},{"id":"12304318200942239478-0-6","type":"videoSnippet","props":{"videoId":"12304318200942239478"},"curPage":0},{"id":"2353191993793517691-0-7","type":"videoSnippet","props":{"videoId":"2353191993793517691"},"curPage":0},{"id":"6441010339655908053-0-8","type":"videoSnippet","props":{"videoId":"6441010339655908053"},"curPage":0},{"id":"6047507179516674605-0-9","type":"videoSnippet","props":{"videoId":"6047507179516674605"},"curPage":0},{"id":"12395442897416161778-0-10","type":"videoSnippet","props":{"videoId":"12395442897416161778"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dE1heC1BYnNvbHV0Cg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","ui":"desktop","yuid":"8075480481769518517"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"13476595090944907138-0-12","type":"videoSnippet","props":{"videoId":"13476595090944907138"},"curPage":0},{"id":"18234022481797172613-0-13","type":"videoSnippet","props":{"videoId":"18234022481797172613"},"curPage":0},{"id":"6303546921886937475-0-14","type":"videoSnippet","props":{"videoId":"6303546921886937475"},"curPage":0},{"id":"13463616609292941591-0-15","type":"videoSnippet","props":{"videoId":"13463616609292941591"},"curPage":0},{"id":"4633786685660225256-0-16","type":"videoSnippet","props":{"videoId":"4633786685660225256"},"curPage":0},{"id":"18375622381324672791-0-17","type":"videoSnippet","props":{"videoId":"18375622381324672791"},"curPage":0},{"id":"6723192984274939815-0-18","type":"videoSnippet","props":{"videoId":"6723192984274939815"},"curPage":0},{"id":"3571048297953882703-0-19","type":"videoSnippet","props":{"videoId":"3571048297953882703"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE1heC1BYnNvbHV0Cg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","ui":"desktop","yuid":"8075480481769518517"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMax-Absolut"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"7875782619335638757182","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1450763,0,33;1466868,0,19;1336775,0,39;284407,0,39;151171,0,11;1281084,0,37;287509,0,67;1447467,0,79;1037339,0,53;1466396,0,21"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMax-Absolut","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Max-Absolut","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Max-Absolut","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Max-Absolut: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Max-Absolut\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Max-Absolut — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"ycb0c70b512e3d3696651cca396eaff8a","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1450763,1466868,1336775,284407,151171,1281084,287509,1447467,1037339,1466396","queryText":"Max-Absolut","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"8075480481769518517","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769518604","tz":"America/Louisville","to_iso":"2026-01-27T07:56:44-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1450763,1466868,1336775,284407,151171,1281084,287509,1447467,1037339,1466396","queryText":"Max-Absolut","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"8075480481769518517","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"7875782619335638757182","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":162,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"8075480481769518517","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"5186192123015564836":{"videoId":"5186192123015564836","docid":"34-0-4-ZBAC71A2A99357922","description":"Meryl from Meryl's Magic Math helps a student find the absolute minimum and absolute maximum values during an online Calculus tutoring session. For a free 30 minute consultation, email Meryl at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4526667/71654ee6a8bf5b8b85c3322a4f572790/564x318_1"},"target":"_self","position":"0","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0_1bY6VAZSA","linkTemplate":"/video/preview/5186192123015564836?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Absolute Min/Max (Extrema) in Calculus","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0_1bY6VAZSA\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFQoTNTE4NjE5MjEyMzAxNTU2NDgzNloTNTE4NjE5MjEyMzAxNTU2NDgzNmqvDRIBMBgAIkUaMQAKKmhoa2d6bHhjcm9weHhvY2JoaFVDa1VhenRVZ1ExSTJ0ZlJRTzVjZ1NuZxICABIqEMIPDxoPPxOpAoIEJAGABCsqiwEQARp4gfsSCAoC_gAD-Q4PBgv5A_n99vH4_fwA6vj78gL_AQD6_AH__wAAAP8UCAsGAAAA-gf7B_v-AAAcAvv1BAAAABf4-wD_AAAAB_zw9wABAAD6EQYQA_8AAAsKBPr_AAAA7QkB8v__AADx-gECAAAAAAb5-f379f4AIAAtaITMOzgTQAlITlACKnMQABpg6BkAUAwOxbc5OvHvDw4x1u8G0s7O-_8TLf_KNerV9SfK2gMi__HhC8igAAAAOMvWBvUA73_6798YI-8DsejU_wxzpCe0vSH87cy8C6buISdD9ivsAK3uzhhT6R1HtgkdIAAtfjcTOzgTQAlIb1ACKq8GEAwaoAYAAIjBAABAwAAAYMEAAEBBAAAQQgAAAEAAAKhCAAAcQgAAQMAAAMBAAACUQgAAisIAACDCAAAIwgAAMEEAALBBAACQQQAAyEEAAFDBAABAwAAAOEIAAKhBAAAoQgAACMIAAGBBAABQwQAAKMIAAIzCAAC-QgAAkEEAAJBBAABIQgAAFMIAAPDBAACswgAAMEEAAMhBAABQQQAA4MEAAFDCAACAPwAAgMAAAIA_AAAAwAAAmEEAAGzCAAC4wQAABMIAALJCAADYQQAAAAAAAEDAAAAwwQAA6EEAAODBAADIQQAAeMIAADDCAADIwQAAiMEAAKjBAAAEwgAAyEEAAHDCAABAQQAAQEAAADDBAACgQAAA4MEAAIBAAAC4QgAAfEIAACBBAADQwQAAwMAAALrCAAAAwQAAoEAAADDBAAAMwgAAdMIAACxCAACAPwAAYEEAANDBAADAQAAAGEIAAABAAABAwAAAlMIAAADAAAC-QgAA4EEAAMDAAABAwAAABMIAAODAAAAUQgAARMIAAEBCAAAUwgAACEIAAIhBAAAUwgAAKMIAADDBAACGQgAAiEEAABRCAAB4QgAAQEIAAETCAACYQQAA4MAAAOBAAACwwQAAAMIAABzCAACAwQAA0EEAAAjCAABAwQAASMIAAIDBAABQwQAAmEEAAPjBAAAQwQAAnsIAAEDAAAAwQQAAkEEAANjBAADQQQAAAMIAADxCAAAkQgAAmMEAACzCAACcwgAA8MEAAGRCAADAwQAAoEEAAJBBAAB0QgAAnsIAACBBAAC4wQAAgEAAACRCAADAwAAAQEIAAPjBAAAwwQAAQMIAACBBAACywgAAoEAAAIpCAAAwwQAAQMAAAJLCAAAwQgAAmMIAAEBAAADoQQAAwEIAAGxCAADgQQAARMIAAARCAADgQAAAWMIAAAhCAACowQAAwEAAAOjBAAAIQgAAaEIAAABBAACAQQAAIMEAAODBAABwQQAAEEEAAHTCAAD-QgAAYMIAAEzCAACewgAAbMIAAEDBAACYwQAAWMIAAJhCAACwQQAAwMEAAITCAAAswiAAOBNACUh1UAEqjwIQABqAAgAAbL4AABQ-AADiPgAAgLsAAOg9AACOPgAAvj4AAFm_AACavgAAEL0AAKg9AAAMvgAAUD0AALo-AAAEvgAAyL0AAM4-AACoPQAAqD0AAC0_AABfPwAAnr4AAEQ-AACYvQAAfL4AADC9AACePgAAmD0AADw-AABwPQAAJD4AAGy-AADYvQAA4DwAAHC9AAB8vgAAoDwAAJK-AAAsvgAAjr4AAHC9AABQPQAAHD4AAMi9AADKvgAA4LwAAI4-AADIvQAA4DwAAFy-AABAvAAAPD4AACy-AACmPgAAyL0AADA9AAB_PwAAQLwAAEQ-AAAUvgAArr4AAAS-AAA8PgAALL4gADgTQAlIfFABKo8CEAEagAIAAFS-AACIPQAAEL0AAE-_AADovQAAED0AAFQ-AAD4vQAAoDwAAIi9AACgPAAAiL0AAOA8AAAMvgAARD4AAEA8AAAsvgAAEz8AALi9AAC6PgAABL4AAKC8AADYvQAAHL4AAFC9AAB0vgAAoLwAAEC8AAAMvgAAHL4AAFA9AABMPgAAFL4AAAy-AAC4PQAAyL0AADC9AACiPgAAor4AAAy-AAAUvgAA4DwAAPi9AADgvAAAQDwAAGy-AAB_vwAAQDwAAJY-AAAwvQAALD4AAEA8AAAwvQAAfD4AAIg9AADIPQAA4LwAAAQ-AABAPAAAgLsAAFQ-AADgvAAAfD4AAJi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=0_1bY6VAZSA","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5186192123015564836"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9719727530885348311":{"videoId":"9719727530885348311","docid":"34-7-1-Z71B338749FB325B2","description":"видео, поделиться, телефон с камерой, телефон с видео, бесплатно, загрузить...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4321890/399da1244aa2a3c8b84593140e236455/564x318_1"},"target":"_self","position":"1","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DjToJaXVApYA","linkTemplate":"/video/preview/9719727530885348311?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to find the Absolute Max and Min of a function: Fun- Sized Calculus","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jToJaXVApYA\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFQoTOTcxOTcyNzUzMDg4NTM0ODMxMVoTOTcxOTcyNzUzMDg4NTM0ODMxMWrNDRIBMBgAImMaTwAKR2hoZXRtdGZ2dWxiYnpqeGhoaGh4eHlhYXJkcW9oaGNqYmhoaHR0cDovL3d3dy55b3V0dWJlLmNvbS9AbWlzc2xpc2E2OTQxEgMAERIqEMIPDxoPPxM9ggQkAQCABCsqiwEQARp4gfv_Af_7BgD9AAsO-Qn8AgX2APr5_v4A9gD19QIC_wD9Av8E_wEAAPoFCQIIAAAA9gT6AgL_AAAH_Pb9-AAAABH-APn_AAAABvzx-AABAAD7CvcMBP8AAAgFBAEAAAAA8wr__vv_AAD2_fwIAAAAAAT-_wMH9QD_IAAtxJ_jOzgTQAlITlACKnMQABpgBw8AV_X_uPAbLO7s9dMS4egU4933AP8q8gDhROfPAw7XuQkFAAcvMAirAAAADC_JTtwA-l4b8f4O-jkEx_z92fx_Sh7sIifnJMr3AQEQ7_MB3C7XAN77Tfka3_ZM2iEnIAAtp6stOzgTQAlIb1ACKq8GEAwaoAYAABDBAAAYwgAASEIAAKhBAAAEwgAA4EAAADBCAAB0wgAAKMIAAMBBAABAwAAAHEIAAETCAACYwQAAUEEAAPhBAACgwAAAoMEAAADBAACuwgAAgMAAAJ7CAADIwQAA6EEAAIJCAADgQQAAQMEAALDBAADYQgAAIEEAAFBBAACIQQAAoEEAADxCAACSwgAAkEEAALBBAAAMQgAA6EEAAMjBAACQwgAAiEEAAKhBAABAQAAAEMEAALBBAADQwQAAgMEAAK5CAAAIwgAAhMIAAJDBAADwwQAAEEIAAOjBAACowQAA0MEAAABBAAAwwQAAbEIAAMBAAAAAwAAAMMIAAI7CAACYwQAAJEIAAIxCAAB4wgAAosIAAIBBAACsQgAAOEIAABTCAABEQgAAwMAAAODAAACCwgAAIEIAABDBAABgwQAAiEEAALBBAADgwQAAUEEAAHBBAAAgQgAASMIAALjBAAB8QgAAJMIAAMBBAADoQQAABEIAAHDBAAAQwgAA4MAAAKhCAAAAwgAACEIAACRCAAAgQQAAgD8AAFBCAACYwgAAbMIAACBBAACwQQAAsMEAACDCAACAQgAAIEIAAIhBAACAwgAAUEEAAIRCAAA4QgAAJEIAAEDBAACIQQAAhMIAABhCAAAAwAAATEIAAJTCAAAwwQAAAMAAAMDBAADgQAAAKMIAAJbCAACAwAAAJMIAAJBBAABgQgAAMEIAACBBAAAIQgAAmMEAAEDBAACUwgAAXEIAAFRCAAAcQgAAyEEAAIA_AACwQQAA2EEAAMDAAACYQQAA2MEAALBBAADgwQAA4EEAAADBAAAQwQAADMIAAJDBAAAIwgAAIMEAADDBAADIwQAAgD8AADzCAABwQQAAqMEAAJbCAABAwAAAEEEAALhBAACAwQAAqMIAAODBAACowQAAXEIAAKBBAADYQQAAiMEAAJDBAAAAwQAAgEEAAEBAAACEwgAAyEEAAGjCAABkQgAAAMIAAGjCAACwQgAAgD8AALDBAADgwQAAAEIAAJjBAACgQAAAwEEAAJhBAACawgAAMMIAAETCAAAgwSAAOBNACUh1UAEqjwIQABqAAgAAJD4AAAQ-AAAFPwAAuL0AAHA9AAD4PQAAML0AABu_AAA0vgAAyD0AAJg9AAA8vgAA2D0AADQ-AAAcvgAAED0AACQ-AABQPQAAMD0AAIY-AAB_PwAAML0AAFA9AAB0PgAANL4AABC9AAB0PgAAHL4AAFQ-AADIPQAAML0AAKA8AABQvQAA4LwAAJg9AABcvgAAgDsAAKq-AAAsvgAAbL4AABy-AAD4vQAAuD0AAIi9AACivgAAPL4AADw-AAAQvQAAiD0AANi9AACaPgAAJD4AAKA8AACmPgAAML0AAHC9AAATPwAAyL0AADA9AAAwvQAAUL0AAHC9AABkPgAAFL4gADgTQAlIfFABKo8CEAEagAIAAJq-AACivgAAoDwAAFO_AAAQvQAAuD0AAEA8AABkPgAA4DwAAIi9AABsvgAA6D0AANg9AABwvQAA6D0AAEC8AAAEvgAAGz8AAAS-AACiPgAAwr4AAKC8AABAvAAAEL0AAEA8AAA0vgAATD4AAHC9AAAMPgAAZL4AAPi9AAB0PgAAJL4AAFy-AABAPAAAoLwAABQ-AAC-PgAATL4AAHC9AABUvgAABL4AAGS-AACgvAAA2D0AANK-AAB_vwAAFD4AAPg9AAC4PQAAgDsAANi9AAD4PQAAdD4AAMi9AAAwPQAAcD0AAIg9AACgPAAAyL0AAII-AADovQAAUD0AAAy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=jToJaXVApYA","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["9719727530885348311"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3868007723451392974":{"videoId":"3868007723451392974","docid":"34-3-16-Z58B7A415DB8A9F6A","description":"This video screencast was created with Doceri on an iPad. Doceri is free in the iTunes app store. Learn more at http://www.doceri.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4319033/ae541f0ecf3c52ff3b792a7ccb0150d3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/OezALAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Di9Cw0vhz30k","linkTemplate":"/video/preview/3868007723451392974?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Absolute Max and Min in Multivariable Calculus","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=i9Cw0vhz30k\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFQoTMzg2ODAwNzcyMzQ1MTM5Mjk3NFoTMzg2ODAwNzcyMzQ1MTM5Mjk3NGqIFxIBMBgAIkUaMQAKKmhocmdpcWlvc3B3eWNlZGRoaFVDakx5WHFGeGYwMXV2ZUVRU29pb2l5dxICABIqEMIPDxoPPxPoA4IEJAGABCsqiwEQARp4gQUU_QkE_AD7_P8RAQn7Agj_AO73__8A9fr7_P4D_wAC7wT_-gEAAAoY_gEJAAAA-A8JBQH_AAAdAvv0BAAAABPwAfsDAAAADvT98_8BAAABBwgH9gIAAQ4XCwEAAAAA-BAF8P__AAD1_PwJAAAAAP___v8AAAAAIAAtS-THOzgTQAlITlACKoQCEAAa8AF_3CYA2PaoAcYC5wG-Gtv_njIo__w5zgDRB_YC0AfcAfP8EQDPHAMAFPkI_8cy_v878OL-9Kj1AC7TD_8pz-0BvPEYABcR-QExADMBCOLq_u0iIQDvAQ8D89esAAsx7AAi8wT99QzeAusDvAI4zyoC8vUWAh8D-wLaqP0B0Qv1Av7auv79OQgD7tr_-eYIKQEm1wwCFBr6_fjo1v396AwGExIX-zA70f8Z7Qf--B4EBtvp7QYO7xQHFRUGAdoC_Abx9ioCwOUF_gzQCAX53wL10QjgCjYJ-g__4AQC6RL3_Bzj9PHj7fQQ9evpC8XW_fwgAC18swY7OBNACUhhUAIqzwcQABrABy0lq77as4C7w1omvQoHzL1XDxS8NIUOvWbBNL4rNVY9ozuIPGYQPz56ETc8BzdjvG6KB76_asA85l11vMuAMz7m0Yi9mGIzPHoXL74IPDA9KZ_UvPNZDr44bzc9dvssu6OKLLx9X7e7OUHAO3b81z1PZZe9eCoAPSGVoryGRJC8Tt62vPlGub1Tl5y9ZZrfvHjACjwEtwS9xkqxPLxa7j1AY0u8KwGnPOAR1T1CWog7mLKCvBaSYr0RXnW7PvTTvJBRGT16hD89_GYsPev7hb0-aEy9hzsRPNFeiL36ghG99qXpO8x6ET4WhxM9fJOLvGL0jD2eftC9vnZdu2O0Hr42Fnu7f2BYPOSG_z05dvU8jG-ePO_ks733kZs9zf26vBvccT3B-kS9zGJivDGxGT6p9SM8O0iZPEQU0zxH0ok8XxbJPASs1Twzopk89PNLPN_LFDwvO6-9GIgvvM8-kD1c-vw8Kh_CvHUXrb0ZFzM813MtPJLIAjxlhx88zd22OnmEKT0Q3xM9IGIDPQUjpT3WAju-SeWaOs7yBr2QOIq9nMtDvFJI8Lsg1rY81aiRvIvLnD2kF3q9X3hKvHhilr0v1fG8XeIGO5rjAT335yK9y2S4O2BBhb1Nef48-dRWvC19o73ZhyY9XqmAuyAfGT3YYZw9JKwVu9PMaT0O3ey9j4o4uhqcjT3kxw49npHvu5Ol-zzo-Gg9HucRuxJQwT3BeEG9YdMKutApSDuTLRy99QdSOyOaJb3Qoae8potiOx-i0T1Y-B-9edGKOL-rD73tBri7PoraOQY70TvJPBI90pddOESAGL3V3vG8gBooucui8LxbQh6-NwXjOd-7Mj27r-88KxTjt54_kj2hA9w8O26xuWsewb3ErqK9WfgiOMw1Vr3Wi-M7RkoAuYVwdj1Rdkk9ZleEOOIlVbvugjm6OPgIuD39lDscHQG9L6WiuO8YwzzkBi47a73EOOy5r7vFwZq9E4B2OUWc7zs90dU94glHuWWE3Lysl5U9ei8JNwHGTj0mmrY8vyqGuN5Z-zzY8Z-9GA2XOFT-1jvO4uU9T1VaOCL7AL7GXyQ9F5hlOIqInL2Dshq9Q7ihtwqouz1cWqA5aasaONafTj3raJY9AXdbOPcBKD5wYd298We_uavfFr0N-x2-o7z-uPGdiL0rt769cbzSt465obzJCa49ZG4Ut72vBT2lSQm-rZ6FuCL_7D01KQU-835buD_6S7yqGSg9HvjDuH4nzL0svIs9ySnBOA9eAL3p8ga92cUpOCAAOBNACUhtUAEqcxAAGmAM9QA5ADHH_CEC7NoD_kHqFMPTFekA_x3p_9Yx8AAOAsi9__cADh0c0KEAAABDwNsA8gDweM_bPAb0Ez-BzOEW_HD0DRSh2DwU4dP1zukYH1oePgsAwhLHICvM2CvzySIgAC1YIho7OBNACUhvUAIqrwYQDBqgBgAAJEIAAEBAAABYQgAAIMIAAKDAAACCQgAAKEIAAPBBAAA4wgAAMMEAAGDBAACKwgAAAMIAAPjBAAAIQgAANMIAAJRCAACcwgAA8EEAACTCAABQwQAAgMAAAITCAACGQgAAAMIAAAAAAAAUwgAAIEEAAMBBAACAQAAA0MEAAMDAAABswgAA8EEAAMLCAADIQQAAPEIAAKJCAAAswgAAMEIAAIBBAACQQQAAuEEAAJBBAABAQAAAIMEAAMhBAABQQgAAYEIAADRCAADIwQAA-MEAACzCAABgQgAAEMEAAKBAAAC-wgAAcMEAAJjBAACIQQAAYEEAAJLCAAAAQAAApMIAAOjBAABYwgAAkMEAAILCAACCwgAAZMIAADxCAACiQgAA2MEAAODAAACAQAAADMIAAJ7CAAAkwgAAkEEAADBBAABwwQAAhkIAAODBAACQQQAAiEEAALZCAAC4wQAA4MEAAKBBAAAAwQAAFEIAAIhCAAAIwgAAQMIAAAzCAAAgwgAAEMEAAMDAAADAwAAAIEEAALTCAABYQgAAbEIAACDCAAAswgAAuMEAALDBAAAEQgAAsMEAAMhBAAAwQgAALEIAAKBBAAAQwQAAsMEAAAxCAADgwAAA6MEAAMBAAADYwQAA4MEAAMDBAABEwgAARMIAAIDAAACQwQAAgsIAAKBAAADowQAA4EEAAMBAAAAQwgAAgEEAAPBBAAAAwQAAqEEAAADAAADgQQAAQMAAAFDCAACAvwAAEEIAAIBAAAA8wgAAgEEAAPhBAABgwQAA4EAAANjBAAAoQgAAQEEAAOBAAAC2QgAAgMEAAMDBAAAswgAAMMIAAKbCAAB4wgAAwEEAAHDBAAAAwAAAIMEAACBBAACAwAAAgEEAAPBBAABUQgAA4EEAAMDBAAAAAAAAoMEAAKDBAAAwwQAAQMEAAIDBAACAQQAAwMAAAJhBAACQQgAAAMMAAJjCAACgQAAAEEEAADhCAABkwgAAosIAAHBBAADQwQAAFMIAANhBAAAAwAAAcEEAALjBAAAUwgAAZEIAAABAAABgQgAAIEEAAMDBIAA4E0AJSHVQASqPAhAAGoACAACYPQAABD4AAPY-AACAOwAAFL4AAOA8AAAQPQAAGb8AABy-AADYPQAALD4AAKC8AACoPQAAfD4AADC9AADgvAAArj4AAIA7AABQPQAApj4AAH8_AAAkvgAA4LwAABQ-AACovQAA4LwAANg9AADovQAAmD0AAPg9AADYvQAAoDwAALi9AAAUPgAAQLwAABS-AAAwvQAAhr4AALi9AACavgAAqL0AALi9AADgvAAAyD0AAMa-AACCvgAARD4AADA9AACIvQAAFL4AAFw-AABkPgAA4DwAAAQ-AACuvgAA4DwAADE_AACIvQAAFD4AAMi9AABsvgAA2L0AAFQ-AABEviAAOBNACUh8UAEqjwIQARqAAgAAUL0AAKi9AABQvQAAS78AAKi9AADoPQAA4DwAAJg9AAAcvgAABD4AAEC8AAAwvQAAqD0AAEC8AAAkPgAAcL0AALi9AAAjPwAA6L0AAJo-AAA8vgAAmD0AAKA8AADYvQAAiL0AAJi9AAAQPQAAiL0AAHA9AAAwPQAAoLwAAOg9AAAUvgAAfL4AAHC9AACgvAAAHL4AACQ-AAAEvgAABL4AAAy-AADYPQAAJL4AAJg9AAC4vQAADL4AAH-_AABQPQAAij4AAKA8AABAvAAAQLwAADA9AACOPgAAqD0AADA9AABwPQAAcD0AAEC8AAAMvgAAND4AAOg9AAB0PgAAkr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=i9Cw0vhz30k","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["3868007723451392974"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1899200538"},"18207356004825383962":{"videoId":"18207356004825383962","docid":"34-4-10-Z272FCCCA487B6F05","description":"visit: http://www.stevemeadedesigns.com/board join today!It actually took a LOT more than 2800w while being clipped hard! full video here: https://youtu.be/p...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2268407/ed27ee00fc86d694f0936b07362c1c91/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0TXzRAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhHlmCpAs1BE","linkTemplate":"/video/preview/18207356004825383962?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Insane Excursion Pushing a cheap sub to the absolute max trying to send it","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hHlmCpAs1BE\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFgoUMTgyMDczNTYwMDQ4MjUzODM5NjJaFDE4MjA3MzU2MDA0ODI1MzgzOTYyaocXEgEwGAAiRBoxAAoqaGhzdmp3b3BucXRtbWRjZGhoVUNBbjdLZnh1b3hVdXI4ZFAtbEZDamRBEgIAEioPwg8PGg8_EzuCBCQBgAQrKosBEAEaeIHwEwAAAQAAEAARAAII_wH6-gTy-fz8AOMC8PcD_AIA5_vwAwH_AAD9BwQLBAAAAPf39gQC_wAAEggBDPUAAAAd7wIB-gAAAAwCCwAJ_wEA-hEGEAP_AAD3-gH__wAAAPoM-AP9AAAA-_8F9wAAAAAC-vYGAAAAACAALXZQzjs4E0AJSE5QAiqEAhAAGvABR_kN__EFEgHSHBoA9vAUAYHw-__OKgIA-hETAA30AQH-9v4AChYgAOju-QDp6v7_KwP2__jwGwEVIBP_DAbkABgCAQD59P0BCiAQAOAW-__o-vUA-ujy_-nr7P8rF_3_yufs_9wb4P0m8gwC_wMgAOHlDAPt0gj_6fr1_-PcCP_7Ie7__CnuAhX86v8N5t0CDAEC_OkOEf363QMA3C8HAd4KBvof7OH-6ATu_g3k7wL8_fv4-fQDAfLo9Pf89wv_GO4FAg4eBvcU4wYDC-72BPvcCQQDAf0A9vgDBQT_AgT19Ab18-v59uUCCgcEBBEGIAAtkPpOOzgTQAlIYVACKs8HEAAawAdVhoG-BUGVO5S-kLyNDf29VWxtu_yhfr3IzQC-Cr6nu_iOFT3usr89t7BTPVY1V72ED1W-SkMNPS7pYz0xei6-cXNqvWcgu7zfhzO-QYJCPbbcFD1u32O-1W5FvQaeG737zNk9z3COvT48EL12CT09jmNavItSH7w9DM29ehFSPZs8BDzyRsU7zgODvbSPNT039Hu9XGFRO90se7uFOIA9b960uq7XFL1S99y8fYjHvTFBDzyKCYU8zU2lPe2AiDsm5CM-o6iYPfh-NDy-xd68HrXTvIzHu7ysO9a8kdKMvQgRurs9Cjc9pkZovJPGqLxFVi0928FIPX2wDrwcZwk97J32PCPmyLxZLsC9pQakvXITGLzZy1u9HouOu4Im-DxH3L29-n6qvCEEojuQXTO8LHAoPWpBubwZdQ09CvXUPY7VnLyFl4C9wj8bPJOH6ryPqAA-UWuavDgssjwBbqG9Xrzdu0BembzGl389Z-_MvVmu8Ts_KB49Q0uovFoxt7yZOlk8OaGrvF4pbDu_miO-wk8cvSyp5jvzkv89bFYCPcFBMbwzVvY8uJubvZYgpzmncwe8nF6IvaDC0TzNvhy9YG-nPZnApTvDPps9E481vSUkEjwVd5e7DAWMvQbGEzzblCE9pZlYPSWpcTyFJ7S8LEbdPLmQZDvNYS09CkDtPKBCorsyJpi9l5zkPIF8prqJziI-ZftQPXrt2ThE87U9liJvOV7L-TrkEzI-lnIjvUCaX7pb62s9n-i6PRId3rgNYWu7tjyFPETeNDuLWrA9ShisPYnewzkIfxW9W0SvPZiB-DigR5a9GjHTvTEWyTeEiys9hkG0PfcXNjmi13q8qBFkvd0ES7m0_re6HIQvPR-juLquwAu9pmkrvOY2wzlDcYe9y7wXvAMhn7gF-ak9wiS7PVrbvTezEk48EAToPeLQvbjFp-U8QQojPY6FQLmkb9I9z4nYPI57Czn4FxE-HDsRPFtygTkHXIw9q4EhPfvHpzimnfq92sqLPHm89jiaH5Q9o68APbBkzjfUuki9aqWQvQ61NrhveZO7czA2PbTFkLf_DEq70D-kux4TRzjNO4688JFIPV69uTipKlk90BSAPXyulDjA0J49dgURPTKzEriJL268tMfLvTz7hTjO6Qg9FDWivM1gJLgGqF-8G54Ovpl_wDdMx4e9XkvovZpTobiZprM9DP7jPAxLB7hgq6Q9aqB-vfAP1bdEp7c9gniYPb9SEzJE0IM77rqyPbrqrDcHyae8Aj5JPTAB2LYgADgTQAlIbVABKnMQABpgTPsAADZV9P0xNfcA8dsZtvvHsdXpDf8eEwDY9jwG8gIKxx7gAALg9QedAAAA68jLFOoATH4I3Aws5S7zhQT7OvF_Cwed7FLJ7tAOL_YS1kfkumzYANVMvhgPus1HHtD8IAAtVUEMOzgTQAlIb1ACKq8GEAwaoAYAAKDBAAAIQgAAyEEAANhBAAA4QgAAUEIAAKBAAACiQgAAjMIAADDBAABswgAAIEEAANjBAADgwAAAqEEAAODAAABAQAAAKEIAAADBAACAQAAAQMAAAAAAAABwwQAAEEIAADBBAAAAAAAAEMIAAIjBAABQwgAA2EEAACTCAAAAQAAAMMIAAABCAACYQQAANEIAAIDBAADgQQAAcMEAAMhBAABYwgAAYMEAAGRCAAAwwQAAEEIAACzCAACQwQAAAAAAAP5CAACAQQAAKMIAAABCAAAAQAAAjEIAAOBBAACowQAAwEAAACDCAABgQQAAYMEAAABAAABQwQAAMMEAAPDBAAB0QgAAcMEAAJ5CAABcQgAAwEEAALBBAACiQgAAAAAAAGDCAACcQgAAAEEAAABCAABcwgAAAMIAAADBAAAAwAAAJMIAAPhBAAAIwgAA4EAAAETCAACoQQAAlkIAAIZCAADYwQAA8EEAAJDCAADIQQAAAMIAAILCAAA0QgAAkMIAAIBBAABgwQAA2MEAADRCAAAIwgAAIEIAAJjBAABYwgAAIMIAAIjBAACwQQAA4MAAAABCAAA8QgAAwEEAAEDBAADQwQAAUMEAABRCAADgQQAAQMEAAIDBAACwwQAABMIAAFBBAACowQAA6MEAAODAAAAwQQAAGMIAAFBCAAB4QgAA-MEAAIDCAAAoQgAAoEAAAEjCAAB0QgAAMEEAAEBCAACuwgAAoEAAAITCAADowQAAUEEAAKJCAAA4QgAAAEEAAEBBAABAwAAAQEEAALDBAAD4QQAAyEEAAFhCAABQwQAAiMEAAADAAADAQQAAiEIAABjCAACEwgAAFEIAAIA_AABAQAAAIEIAAMDAAAA0QgAAyEEAAADBAAAAQAAABEIAAJ5CAAAAQgAALMIAABBCAABkwgAAJMIAALjBAABYQgAA6EEAAN7CAACiQgAAEEIAADBBAACIwQAAEMIAAKjBAABUQgAAgMEAAJLCAABIQgAAhkIAAAhCAAD4wQAACEIAAKBBAAAAQgAAoEEAAOBAAABkwgAA0sIAAKBAAACAwSAAOBNACUh1UAEqjwIQABqAAgAARD4AAPg9AAC2PgAAgj4AAIg9AADIPQAA2L0AABO_AACAOwAAHD4AALI-AAAEvgAARD4AAIY-AACYvQAA2L0AAAQ-AADYPQAAcD0AAIY-AAB_PwAAdD4AAPi9AACqPgAAoLwAAHC9AAAcPgAAPL4AAEQ-AACCPgAAoLwAAOA8AADYvQAA-D0AAHC9AABQvQAAUL0AAGS-AACWvgAAFL4AAGS-AAA0vgAAQDwAAIi9AACovQAADL4AACw-AACIPQAAmD0AAIK-AADWPgAALD4AAPg9AABsPgAAuL0AAKi9AAA3PwAAqL0AADA9AACgvAAA2L0AAAS-AAAkPgAAbL4gADgTQAlIfFABKo8CEAEagAIAAKA8AAD4vQAAkj4AAEu_AACgPAAAyD0AADS-AAC4PQAAyL0AAMg9AAA0vgAAJL4AAII-AADYvQAARD4AAJi9AAAwPQAAez8AAOg9AACCPgAARL4AAIK-AACCPgAA-L0AAHA9AACYPQAAiD0AADA9AAC2PgAAED0AADS-AAAwPQAAgLsAAIq-AACgvAAAFD4AAAy-AAAUPgAAgLsAAAy-AACYPQAA4DwAALi9AACYvQAAXL4AAKC8AAB_vwAAUL0AAKA8AAAkPgAAHL4AACS-AABQvQAAXD4AAMi9AACgPAAAUD0AABA9AAAEvgAA6L0AAII-AAAEvgAABD4AAGy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=hHlmCpAs1BE","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":720,"cheight":1280,"cratio":0.5625,"dups":["18207356004825383962"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"458574012"},"15468081228990979225":{"videoId":"15468081228990979225","docid":"34-5-7-ZF5F75091CD6679C2","description":"⭐️ Content Description ⭐️ In this video, I have explained on how to normalize the data using max absolute & min-max scaling in python. Data Normalization is very important for data with uneven...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/923592/a0f939e4c907ba507766d833f61304dd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/I8vxOAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DwSgWf-lUdDU","linkTemplate":"/video/preview/15468081228990979225?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Normalize data using Max Absolute & Min Max Scaling | Python","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=wSgWf-lUdDU\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFgoUMTU0NjgwODEyMjg5OTA5NzkyMjVaFDE1NDY4MDgxMjI4OTkwOTc5MjI1aogXEgEwGAAiRRoxAAoqaGhvZW1xbmx4dWFtZ3FlZGhoVUNYNy1XaTlpb3NsQTk2OTFJTnRGTzVREgIAEioQwg8PGg8_E9AGggQkAYAEKyqLARABGniBAwEPAAEAAPQCDAADBP4BHQD8_vQDAwD0Dvb0AwEAAPr0_Qf8AAAAEP_8EAYAAAD4_QcD_P8AAA4O_f74AAAAJwD9BvsAAAAE-Pr4_wEAAAYG_wH6AAAABQkB8v8AAAD8BQ3vAAAAAPr99AMAAAAAD_cG-wABAAAgAC0pb9E7OBNACUhOUAIqhAIQABrwAX_0Bf6jDev8-_EeABvnvAKQ9g4AbiLXAavPAwHWMNwC3PTwAOAXMQDyFOsBrgUcAOLou__1FTMAO_ku_xYwRwAb8BAAKacjADUM9QAWGw7-1BIh_gn2-P_7y_kAJTbd_vLaCwDjEs0ByRei-wzMSwNO6u7-CgvtBb0D_wH1C_H9zhng_x8RCQX9zBwA2OT1_i8uDf07MQn8ACTw_yDJHAIcxAED_v4CAw7y-g8OMAYKxcz0-hv-APkBAw8UHTTr-NgE6_sK3v4BFQrc_ibsBvUCBwQMDd78_Qsa_Qf_5Qnw1PcS7QUyD_e9Le3769YGAiAALUXi9jo4E0AJSGFQAirPBxAAGsAHOSv6vhkDDLw277S6yV1fPbBCYL14ycm8uaX1PTknhj0ayl-9FHoNPo0Oozw6At08mx2hvkahm7zIZ6g8LQtWPrCKXL1BLSa9hsrfvV-T2roFpei8_FQlvjHZLrwHc-Y3Xz_pPDfnmrsjrLy8fQUZPu6Ujr0V-K88s652ves98LwggC-9UZZrvIF0pr2bc9M7wcGzPehRTDzD-to86-CwPX94jLx8FU-8L2_pvCGp6DthZoS8QxF8vahHBL2Zav-7CXmTPQ3WyTz8jmE8dk1tvL0Hw7yNkba7VMNePf9x5zye7hw98bCavVAVFbvFIsC6hDS-vDbhAbzL1vo6ZdojvDjTmT2Obqm8dK3iPCqM7T3tEP-8HIS_vU2tDT03nOQ7xSIBPTO54rzTRru734iuPQSJEjxOGCC8a3Otu1zjOD0DnSS81V-KPWswiD1v4po86uPGPHrxjz3Sb6G7_g-LvN6XDj2hJsA7PiaiPRpylz3gqRW8hqS7u0FtSj0Dc5k8H1TYPNuziL0GbyE8TJgfPb0SbbwUUHK7yjJJPbx26bwJ8ZK8vazkPJpaOz0lriM8QZSJPW0lL707SPw6PB80PRVSkz1_WRA7Y3XAPX1RDL1aZyI6TRILPSYRuz1c9eu7ZCe0OydTIju-gW68CCedvXZFujxnjmc6_kHJPFsMjr0d32Y7dsHDO2_ZfLyD_h07USEqu3eQTT0mGRy7VPqePZroOL14Wk84aIh0vGGSJT1qGma6I5olvdChp7ymi2I7H6LRPVj4H7150Yo4kteJveutjL3--xK4ESYbvQEYij1YNZG5iJliPZcqx73hBte3_LNVvXc9sr2FGzC4qgF0PfV7Z70REeW5Prfpum0NG7ww5Uo5Ux6SvUobyL3hc5s3jERsO2HMcb3qBJi4JoqVPW6Ge70ra-c43FS0uqPAjLzQkW05Pf2UOxwdAb0vpaK4iUUMvQgE-j1vcTq4ojXQPAhkZTyLKMQ30SWnPc7ZZz3-jyQ55x84PQ_vuT20aLk49kczPaY0cT0K7bG4sA-xvbcMuL3-WDi4NYCCPVewjTzl86u2qL9DPSMXuTtLj-q3gNvuPKC2l705l3s47EqwPYzW0T1mp5Q4dCmuPE5Qeb2u0ag1HVQnPRX-jDwsll-30LsMPf-l1jxLoAI46XjUuzlMjzxsVpI4SIG_PTN-uz3FngM4oEWAvTaRmb2-B_e3Iv_sPTUpBT7zflu47AGOPPbnxzsbrPO4k8-hvM1imLytTog3OgoMu_De0TxI14Q4IAA4E0AJSG1QASpzEAAaYAH_ADDQKLP7PDLt-QcsHLQPEasixRD_CgT_1zH99Pv_3Mov9P8VKyfwoQAAAEb18Rv3AARyDdUdPtrgEq2Z9CbJf_EBF-AC5OunwioC6dYT-hxKOgDx8cMRaPfWPgXnNyAALVFEFzs4E0AJSG9QAiqvBhAMGqAGAACQQQAAAMEAAKBBAAC4QQAAAMIAAPBBAACcQgAAIEEAAGDCAACAwAAAAEIAAITCAADIwQAAcMIAAIBCAABQwgAA0EEAADzCAACYwQAA4EEAAKjBAACawgAA4MEAAIhBAACAQQAAiEEAAAjCAAAAQgAAFEIAAChCAACYwgAAuEEAAATCAADAQQAAyMEAABDBAADgQAAA_kIAAEDAAAAsQgAAPEIAAJBBAACiQgAAoMEAADDBAAAAwQAAAMEAAFDCAADgQQAAgL8AAADBAAAgwgAAoEEAAEDAAABgQQAAkEEAAL7CAACYwQAA4EAAAMBBAACyQgAAQEAAAHDBAACmwgAAyMEAAJDBAACYQQAAoEAAAKjBAAAQQQAA-EEAAIBCAAAwwgAAUEIAAHjCAADowQAAuMEAAEBBAACoQQAAgEAAAJLCAACoQQAAEEEAAIRCAAAswgAAoMEAAMBBAABAwAAAQEAAAIhBAADgwQAABEIAAADAAACwwQAAUEEAAFTCAACAwQAAOEIAAMBBAABQwgAAAMIAAABAAABwQQAAisIAAIjBAADowQAAqMEAABRCAAAQQgAAsEEAANhBAACgwAAAmMEAAIC_AADoQQAAQMEAACDBAACwwgAAyEEAAGBBAAAwwgAAQMEAAIDAAAAEwgAAUEIAAJxCAABQwQAAiMEAAJjCAACAwQAAyMEAAFxCAADwwQAAQEIAAABCAADgQAAAgMEAAHBBAABAwgAAfMIAAEBAAADYQQAAiMEAAEBBAAB4QgAAYEEAAPDBAABkQgAAwMAAAIBAAABsQgAAQMEAAIBBAABowgAAgD8AABDBAACAQQAAzMIAAAAAAABoQgAAcMEAAGxCAABowgAACMIAAGjCAAAUwgAAGEIAAFxCAAAoQgAAgEIAAMjBAAAEwgAAIEEAAEDAAADYwQAAIEEAAJTCAABIwgAAFEIAAJpCAABgwQAAgEAAAADAAAAQwQAAlkIAAEBBAADWwgAA0kIAABTCAABgQQAAUMEAAIrCAAAEQgAAoMEAAKDAAACAPwAAyMEAABRCAACIwgAAyMEgADgTQAlIdVABKo8CEAAagAIAAFC9AAD4PQAA9j4AAEA8AABwvQAATL4AAMg9AABbvwAATL4AAJg9AAC-PgAAyL0AAFQ-AACCPgAALD4AAEy-AAC-PgAAoDwAAEw-AACqPgAAfz8AAJg9AACGPgAAZD4AAIK-AAAQPQAAND4AAOC8AAAQPQAAgDsAAFQ-AAAMvgAAML0AAOi9AAAcPgAADD4AAFA9AABMvgAAoDwAAAy-AAAUvgAAiD0AAOA8AADIvQAALL4AAFw-AADePgAAbL4AAAy-AADavgAAuD0AAKi9AAAQPQAAyD0AABC9AABAPAAAXT8AAL6-AACYvQAAoLwAAOA8AABAPAAARD4AABC9IAA4E0AJSHxQASqPAhABGoACAAAEvgAAqL0AAIC7AAA7vwAAUL0AAOi9AABwvQAA2L0AAEA8AADIPQAAVL4AANg9AACovQAA4LwAABQ-AACYvQAARL4AABk_AACYPQAACz8AAKg9AABAvAAAML0AAIi9AAAcvgAABL4AAIA7AACIPQAAqD0AAAw-AABAPAAABD4AALg9AABUvgAAyD0AAKg9AACKPgAAoDwAAFy-AAAkPgAAmL0AAJg9AAA8vgAA2D0AAEC8AACovQAAf78AAIC7AADoPQAAED0AAFS-AACovQAAHL4AALY-AAAUPgAAND4AAIA7AABUvgAAQDwAANg9AACIPQAAFD4AAIY-AABQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=wSgWf-lUdDU","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15468081228990979225"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3539997256"},"12304318200942239478":{"videoId":"12304318200942239478","docid":"34-11-0-ZEF51978BF098BFFF","description":"Calculus, mathematics, applied calculus, absolute maximum, Absolute minimum, absolute extrema...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3936346/b39c8d02d49a55e5bdb61d8126da84d6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XtTrkAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbWvpP_qSwnk","linkTemplate":"/video/preview/12304318200942239478?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Applied Calculus 1 Absolute Extrema","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bWvpP_qSwnk\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFgoUMTIzMDQzMTgyMDA5NDIyMzk0NzhaFDEyMzA0MzE4MjAwOTQyMjM5NDc4asAPEgEwGAAiRBowAAopaGhyZ29zcmNncHFlbHJwaGhVQzlLaVJiamJGczFLQ191Tm1wX2VWSXcSAgARKhDCDw8aDz8TxAWCBCQBgAQrKosBEAEaeIECCQoFBfoA9fgHCg8G_AEG9AD5-P79APH8AfT0AQAABQoFAPcBAAAKGP4BCgAAAPb39gQC_wAAHPP_9QMAAAAc9fQJ_QAAAAcN-fz-AQAA-hIHEAP_AAARBAgRAAAAAOsP8_7_AP8A9_MLEP8AAAAC-vUHAAAAACAALds2xDs4E0AJSE5QAiqEAhAAGvABfv_VALz38f708-UAwRjd_4EKLf8fKd8AwuctALgD4AAAD94A2_8Q_88JGQC2GggAE-XqACHICAE_5BsAIgTpARkgFAEUxAMAWBXxAO4C8v_eIy_9B-0cACzf1gIcHNwA_uUX_-_r0v7M0Oj_JvsxAS0HEAMY9CMC3eMAAO0TAQX2-9wA-_UIBwDm-f7jMyUCHP7i_Cg58v7qJv4FHAEFBenZEAEIMNP9TAkiDTP4APvQF_j3_AHlBOcNJgT3IAH_--ga_uLx-_MA-PsENPX0Bvn6C_gV3fkKCRf9Bv7ICvbu8_r85jEKAczyBQziFv_7IAAtUCMNOzgTQAlIYVACKnMQABpgFwcALv8kyOcTTvYX4RkF19kR4fPr-v8DCwDrC-AC5zK5vQgnAPzZ_v-1AAAAG-LnBgEA_mPkCvfwBOce6wPLDBtO2wEOgfIG9M_OIOXWCCUQFjP-ANAErT4uBMYMGBDsIAAtBbk6OzgTQAlIb1ACKq8GEAwaoAYAAIBBAAC4QQAA4MAAAEhCAAAwwQAAoMAAACBCAADYwQAAqEEAAMDAAACwQQAA8MEAABDBAADwwQAAmkIAAJBBAACAwQAAQEAAALjBAAAcwgAAwEAAAABCAAAwQQAA-MEAAFBBAAA8QgAABMIAAKDAAADQQgAAoMAAAJBBAAAAwQAAuMIAANBBAAAIwgAAMEIAAMDBAACkQgAAcMEAAGDBAADgQAAAoMAAADBCAABAQQAA4EAAAMBAAACAwQAAIMIAAARCAAAAQAAAqMEAAFxCAABwwQAAYEEAAJhBAACGQgAAosIAAKDAAAAQwgAATEIAABTCAADYwQAAKMIAADzCAAAQwgAAiEEAAPhBAAAYQgAAAAAAAERCAACQQgAAMEIAAKBAAAAEQgAA6MEAAKDCAACAvwAAoMAAAMhBAABAQQAAlMIAACxCAABwQQAAHEIAACTCAACYQQAA6EEAAEBBAAAAQQAAHMIAAAAAAAAEQgAAMEIAAMLCAABQQQAAeMIAAABBAAAkQgAAMEEAAMBAAAAQQQAAuEEAAIxCAAAswgAAsMEAANBBAAA4wgAAmkIAAKjBAACAwAAAEEEAAMjBAACowQAAnsIAACBCAADowQAAnMIAAI7CAAAcQgAAgD8AAJDBAAAcwgAA4EAAAADCAAAQwQAAAAAAALDBAABEwgAAMMIAAPDBAAA4QgAAAMAAAFBBAAAoQgAAyMEAALBCAABkQgAAqMEAACzCAAD2wgAAgMIAAIhCAABUQgAAMMEAAADAAACgQQAAAMIAAKBBAAAAwAAA6EEAAIBAAACYQQAAcEEAABDBAACAwQAAmEEAAABBAACgwgAAAAAAAODBAADgwQAAwMAAADjCAACYQQAAQMAAADxCAAD4QQAAAAAAANBBAAB8QgAAyMIAAEBBAAAQQQAAoMAAAAzCAADoQQAA2MEAACDBAACgQgAAikIAAEDBAABgwQAAKEIAAEzCAAAUQgAAgMEAAKjBAADmQgAAmMEAALhBAAAAwAAAMMIAACTCAABQwQAAyMEAAJxCAAAQwgAA2sIAAJrCAAAgwiAAOBNACUh1UAEqjwIQABqAAgAAMD0AADA9AACuPgAA6L0AALg9AADoPQAArj4AABO_AAAUvgAATD4AALi9AAAQvQAAoDwAADw-AAA0vgAAqD0AAEQ-AACgvAAAuD0AAC0_AAB_PwAAdL4AANg9AADgvAAAiL0AAFC9AACePgAABD4AACQ-AACGPgAAQDwAABy-AABQvQAAVD4AAKg9AACKvgAAuD0AAIq-AACGvgAAjr4AAOC8AABcvgAA2D0AAPi9AAB0vgAAHL4AAJo-AADgvAAA-L0AAJK-AABAvAAAPD4AAEA8AACOPgAATL4AAHA9AABbPwAA-L0AAFw-AADIvQAARL4AAPg9AADYPQAAvr4gADgTQAlIfFABKo8CEAEagAIAAAS-AACIPQAA2L0AAE2_AAB0vgAAhj4AALo-AADYPQAAmD0AABy-AAAkvgAA2L0AAOi9AACAuwAAqD0AAKA8AAA8vgAAHT8AAKq-AADqPgAALL4AAFS-AAAEvgAAHL4AAOi9AACOvgAAgLsAADC9AAC4PQAAJL4AADA9AACIPQAADL4AAJ6-AACoPQAAQLwAAJi9AACYPQAATL4AAEC8AACIvQAA4DwAAFA9AACIvQAAHL4AAPi9AAB_vwAAED0AAII-AADIPQAAqD0AABw-AACYvQAAkj4AAII-AADIPQAAcL0AACw-AACAOwAAmD0AAGw-AACAuwAAtj4AAKi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=bWvpP_qSwnk","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12304318200942239478"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"79968655"},"2353191993793517691":{"videoId":"2353191993793517691","docid":"34-0-3-Z916B541F4205970D","description":"Extrema: absolute max/min, relative max/min...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4034668/a7e413d8ec613aef22851683f54f87bf/564x318_1"},"target":"_self","position":"7","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWo2DbGBf1HE","linkTemplate":"/video/preview/2353191993793517691?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus 1: Extrema: Absolute Max / Min, Relative Max / Min_Part 1","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Wo2DbGBf1HE\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFQoTMjM1MzE5MTk5Mzc5MzUxNzY5MVoTMjM1MzE5MTk5Mzc5MzUxNzY5MWqvDRIBMBgAIkUaMQAKKmhoZ2ZsanlzenR1aWdwcWRoaFVDbHRIcnZ3QXhBWmVKMVVWQTJRRGN3dxICABIqEMIPDxoPPxPQDoIEJAGABCsqiwEQARp4gfsPAgb9BADx-AIIAwT-Afr99vL5_fwA9vr7_f4C_wD9Av8E_wEAAP4GBAoEAAAA_An9AAT-AAAQAwL1BAAAABL-APj_AAAABPn6-f8BAAAEBgQHA_8AAAoTAfT_AAAA7ggB8___AAD79P8JAAAAAAj-BAYAAAAAIAAtMsjcOzgTQAlITlACKnMQABpg_PoAQwIm7esUFQfqCAgx3eD_xfTV6P_xOADhVAvQChvw1xUaAPIGDOiwAAAAQPvoIBgAAVsJ-uAgEw44xP4UFdl_1iOv9zbp4uv_G6cDGg0k5z3RAN37BvJA98xQAf75IAAtaNQxOzgTQAlIb1ACKq8GEAwaoAYAALDBAACgQQAAcEIAAEDBAABAQAAAUEIAAJJCAABAwAAA8MEAAPjBAABAQAAAVMIAAATCAACAQQAAAMAAAHBBAACYQQAAMMIAAKBBAACoQQAA4EAAADDBAABIwgAAsEEAAETCAACAQgAAOMIAAExCAAAkwgAAqEEAAOBAAACSQgAALMIAAIA_AADGwgAAqEEAAChCAABQQgAAiEEAACBBAAAgwQAAkEEAAOBBAACGwgAAQEEAAHRCAADgQAAAcMEAACxCAAAAQAAAgMAAAFTCAAAQwQAAIMEAAFBCAACQQQAAYMEAACjCAAAkQgAAgMAAABhCAABAwQAA6MIAACjCAAAYwgAAcMIAAHTCAAAUwgAA2MEAACDBAABQwQAAwMAAAKrCAACAwAAAqEEAACDBAACuwgAAQMAAALBBAAAsQgAARMIAAMJCAACEwgAAAEAAAIBAAACKQgAAHMIAAMhBAACYQQAAqEEAAIA_AAAAwAAAnsIAAAhCAACAvwAAlsIAALDBAAB0wgAAoEAAABRCAADQwQAAYMEAAEBBAAAkQgAAUMIAAIBAAABAwAAAmEEAAPjBAAAwQQAAAMIAAEBAAAAcwgAAQMEAAABCAAAgQQAAWEIAAIjBAABwQQAAiEEAAKDBAACgQQAAcEEAAIDAAADQwQAASMIAACBCAAAQQQAAgMIAABBCAACYQQAAMMEAAHzCAACSQgAAAAAAADjCAAAIQgAAgMIAADjCAABAwQAArsIAAMBBAABgwgAA-MEAAABCAACQQQAACEIAAFBCAABQQQAAlkIAABBBAABYQgAAYEIAACDCAAAkQgAAUMEAAJ7CAABwwQAAYMEAABBCAABIwgAA8MEAACDBAADAwAAAkMIAAJhBAABkQgAADEIAANBBAABYwgAAAMIAAFDBAAAgQQAAgMAAADTCAADYwQAANMIAANDBAABYwgAAREIAAJrCAACgwQAAgD8AAAzCAABEQgAA4MAAADTCAACgQAAALMIAAFBBAABgQQAAUEEAACBCAADYQQAAAMEAAHxCAACUQgAATEIAAIDAAAAEQiAAOBNACUh1UAEqjwIQABqAAgAA4DwAAJo-AAAFPwAA4DwAAKC8AADYPQAAmD0AAB2_AAAMvgAAJD4AAIY-AAD4vQAAUD0AAFQ-AAAQvQAA4LwAAJY-AABAPAAA4DwAAOI-AAB_PwAARL4AAKC8AAAsPgAAdL4AAPi9AACSPgAAqD0AAJg9AACoPQAAgLsAAMg9AABwvQAAHD4AANi9AAAsvgAAUD0AAJa-AABEvgAApr4AADy-AAAkvgAAiD0AAJi9AACavgAAVL4AALI-AAAwvQAAoLwAAGS-AACGPgAAyD0AAKg9AACuPgAAxr4AAEA8AABVPwAAHL4AANg9AAA0vgAAFL4AAMi9AACKPgAAdL4gADgTQAlIfFABKo8CEAEagAIAAHy-AABAvAAAoDwAAF-_AABwPQAAUD0AAMg9AAAEvgAAEL0AAOA8AAAQvQAAoDwAAFC9AAAEvgAAJD4AADC9AABcvgAAJT8AAPi9AACiPgAAjr4AAEC8AACgvAAAmL0AAHC9AAAcvgAAgLsAAIA7AABwPQAAHL4AAEC8AAA8PgAAmL0AAGy-AABAvAAAgLsAAOC8AABUPgAADL4AAHC9AADovQAAUL0AAJ6-AABQPQAAyL0AAKK-AAB_vwAAcL0AAKo-AABkPgAAuD0AAAS-AADgPAAAXD4AAOA8AAAwPQAAgLsAAIg9AACovQAAyL0AADw-AADIPQAAkj4AAAS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Wo2DbGBf1HE","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["2353191993793517691"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6441010339655908053":{"videoId":"6441010339655908053","docid":"34-6-9-ZCD64B9E59CAF8CE4","description":"adult (age 18 and older). * * Don’t forget guys, if you like this video please “Like” and “Share” it with your friends to show your support - it really...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2373590/d3989b4fb7f4335441ebbf37685551bb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3ndGPAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOyRFdmawLD4","linkTemplate":"/video/preview/6441010339655908053?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding Absolute Max & Min in Calculus 1","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OyRFdmawLD4\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFQoTNjQ0MTAxMDMzOTY1NTkwODA1M1oTNjQ0MTAxMDMzOTY1NTkwODA1M2qIFxIBMBgAIkUaMQAKKmhod2hvY2NwZXJweHVzbGJoaFVDS2w3TVhMUnJrNmhuV3VPYkZ3S3hkZxICABIqEMIPDxoPPxPjAYIEJAGABCsqiwEQARp4gfz_CAEAAQD7_P8QAQn7Avr99vL5_fwA7QT8-AUAAAAFBPsFAQEAAAkW_gEJAAAA9QT5AgL_AAAQBAHx8wAAABb5-wD_AAAA_PLy9wEBAAAMC_IMA_8AAA0JAQUAAAAA-AsH-vv_AADtA_kOAAAAAP4D_QD79P4AIAAtSsTUOzgTQAlITlACKoQCEAAa8AF19f8A7_72AN0Q4ADHFuD_gSIK_v0x1QDI6igAzRXZAAn94wDU6g4AGPkd_-IM_f9e7-X_AN32ACDE9_8d6O8A5iomARjq9gEfEiwCDN_8_90OGv8G8QkCF9nVAwcL7_4WABL-5_zbA-4DxQIw1iQB7goXBSr8IwHyyQf_4h4AAtXs5f8QE9MB__Ls_9oEIAIPAQP7AvoN_e0S3v3v6gH9_uEW_RQ76_8p8AUHBB37AOT2Avgp-vr6DDcB_-z6GQUBCy375fP79PL1__8p7AcF5AD4BRgU9f0QCQj-F-H6-gTh-foIDhMF3OYDAuQE_wMgAC3_IR07OBNACUhhUAIqzwcQABrAB9hEnr6e2k88UocQva2FKb7dfWk9lOmGOjVFQL6Dlbk8rKIJPLw_jj3dkyg7ieApvRx4db5qfBA9fDjSPBH-5T2qtVW8t4aIPHV0_L0vE5o9CwIQvU94kb5nFUw9qeaLuoKoKz6Okle98LPbO6tNoj1U3B29CXYSvSmrELzxpKC8JGG-us6MTr4rLF29QAgWvNfqwT038JS9CekfPLxa7j1AY0u8KwGnPO3IAj0rEjg8kTYjvBfegD0DLM081VyuvOqv9z0xslE6yE0DPe7QML1Yeoi8iyrPuzz5xL38hbO9d7-KvEELCT2-7Eg9EUqpvPII7j17FM69x4CsvK35Ab5UpZI8IdHfO-SG_z05dvU8jG-ePBSbCr1dNU89-CVRPGQ-IL3uqQG9Iwp3PJT_BD0JMVy9hCOOO9SF8zy60lc8M4lBuglkwDzPWXU9hWOxPAcp2D3_WfO8oImwvKjsqjyhXhU9_R3AuydXp7zY1k89KlrUPKC-uj09WXu8mqGnPEVO_LuSdRg9nSbYPDO707yEI6291A7nOPpYpr3LUJC9Haeuu3MPKT1sMMO8ts6Ju9wRzj3xk_Y6yvxTOX3oQr3wOxy9_Y33OaX_QDzZ6rK9U5I3ulV0mr2bVHQ92j4ePCJOzLzU_2g9i_WyunMHWz0DU8c9cgzBOdPMaT0O3ey9j4o4umjAij21wIM8FCaIO2OFlTt_log9ML-ROXrkqj0jX668b0iCuZWe6TwioRK9R-QxOvRTh71H_G07M9gQumregT1RZmi9AhaEOV0voj1EonU8rNCHOOQGjTyB8Kw9xnoqOQULr7spbfu8GxXfOMui8LxbQh6-NwXjOQmyNL0SlOw8hNxxuSWvzj0jPbu8o64Pucwgw73UDQS-CFOFOdc7kjyF-mc9aF1ouLckrDwfuRW90xoNOd4bqL22ZLo8O70KuWfvzL2aEZS8HsSMOcgvcjyXqJ49hJAHuCI8pT3lwoe9O4xSObNGmL2qK589qfo6uJzyjTyOOr46D2VRt7iYGr1V4hU93zjBuIhpqj32UkK9J-kqOBFMmryj0oM9Ix8MOEpRqL1jbu08-wU-OA1mDTqdkIy8PTO2uMhKZz3cJ6w8s6H4NanRFT2z_0u85d9Rt5JdGT7ZT1C9rMI_uSByZL2e2Sm9BCt_uEiWQr0sEcO9wcyPuCBNq73ORIc9Zzw0OEMiyDylTdW9UAd3uMr0cD0i4Ss-8cuKOIF4ALw4drs6PrASuVrtxr0PFDM9aNv7N712xLwmLhE9g9slOCAAOBNACUhtUAEqcxAAGmAECgAt8yXa4v0v4v7xMkHRzAS2COH7_wb8_88Yz-jWEqutFf7_Bf8L6p4AAABB27ME6QDaf_DyCyj2ByWQwuUiBHPFEQm5Bgrhir8W5_oqJDQcMRwAnAipGUXg2Vzw9RYgAC3HdRE7OBNACUhvUAIqrwYQDBqgBgAAHEIAAHDBAAC4QQAAVMIAAEBAAAAQwQAAwEIAAEBAAACAQAAAyEEAAARCAABAwAAAIMIAAKDBAABkQgAAuEEAAMBBAACYwQAAAEIAACDCAACoQQAASMIAALDBAACgwAAADMIAABxCAADowQAAwMEAAFBBAAAAwQAAEMIAAAjCAABgwgAAOEIAAPDBAACAvwAA0EEAALpCAACYQQAAqEEAAERCAAAQQQAAvkIAAMDBAABEQgAAwsIAAAxCAABgQQAAwEAAABRCAABcwgAAgL8AAKDBAAC4QQAAPEIAADhCAADIwgAAEMEAAKhBAAC-QgAAOEIAAJbCAADIwQAAjsIAADBBAACowgAAmMEAAFjCAADIwQAAWMIAAIRCAABgQgAAcMIAANBBAACAvwAAjMIAABjCAAAgQQAA-EEAAABCAAAQwQAAgEIAAIA_AADgQAAAJMIAAEDBAAAAQQAALEIAANhBAAAkwgAAEMIAAIpCAABgwgAAhMIAAKBBAABAwQAANMIAALhBAABIQgAA0EEAAHTCAAA8QgAAAEAAAABAAAAUwgAAwEEAAATCAACYQQAAcMIAABxCAAAkQgAAQMEAACDBAAAkQgAAgD8AAIBCAACAQAAAlMIAAAAAAACYwQAAcMEAAGDCAACAQAAAUMEAANDBAAAQwQAAuEEAAFDBAAA0wgAA8EEAADzCAADIwQAAYEEAAKhCAABAwQAAhkIAAABAAABwwQAAEMIAACDCAACwQQAAwEAAAIBBAACYwQAAiEIAAMBBAACgwQAAiEEAAPBBAACwQQAAwMAAAARCAAC4QQAA-MEAADxCAADQQQAAEMIAAHzCAABgwgAAAEEAAPjBAACoQQAAgMAAAODBAABQQQAAAEAAAIbCAACIQgAAAEIAADBBAABEwgAAAEIAAOhBAAAgwQAAkMIAAODAAACQwQAAYMIAAGBBAAAIQgAAvMIAANhBAADAwQAAyEEAAFRCAAA8wgAAWMIAACzCAACGwgAAqEEAADRCAABQwQAAmEEAALDBAAAQQQAAHEIAAAjCAAD4QQAAoMAAAIDAIAA4E0AJSHVQASqPAhAAGoACAABAPAAAMD0AANo-AADYvQAAPD4AADw-AACWPgAAUb8AACy-AABQPQAAEL0AAGy-AADYPQAALD4AAAy-AABwvQAAdD4AAOA8AAAwPQAAEz8AAH8_AADIvQAATD4AABC9AABkvgAAiL0AAPo-AADoPQAATD4AAHw-AAAsPgAAhr4AACS-AAB8PgAA4LwAANi9AABQPQAAhr4AAI6-AADivgAAuL0AAIi9AABUPgAAqL0AAMa-AABAvAAAxj4AAIA7AACgPAAAkr4AAIC7AADYPQAA-L0AALI-AABMvgAAgDsAAG0_AABUvgAA4DwAAIC7AAB0vgAA4LwAAII-AACqviAAOBNACUh8UAEqjwIQARqAAgAAXL4AAJi9AABAvAAAX78AALi9AADoPQAABD4AABA9AADYvQAAUL0AABA9AABQPQAAEL0AAPi9AABcPgAAEL0AAIK-AAAhPwAAcL0AAMY-AAAkvgAAgLsAANi9AACovQAAuL0AAJK-AABAPAAAED0AAAw-AAB0vgAAgLsAAMg9AABQvQAArr4AAAQ-AAAQvQAAgLsAAMg9AABsvgAAUD0AAJK-AADIvQAAXL4AAHA9AADgvAAAjr4AAH-_AACAOwAAjj4AABQ-AAAwvQAAQDwAAAS-AACSPgAAUD0AAKg9AAAwvQAABD4AANg9AADgvAAAXD4AAOg9AADOPgAAyL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=OyRFdmawLD4","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6441010339655908053"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"603035147"},"6047507179516674605":{"videoId":"6047507179516674605","docid":"34-4-5-Z85B68A65DEE762BC","description":"In this tutorial, we want to get to know the concept of using Envelope load combination.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/935322/4a1b896c1a8d36be45c91b250b8b5028/564x318_1"},"target":"_self","position":"9","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Drn7Cg_hgPQE","linkTemplate":"/video/preview/6047507179516674605?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is the concept of Envelope Load Combination? Max Min Absolute Max","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rn7Cg_hgPQE\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFQoTNjA0NzUwNzE3OTUxNjY3NDYwNVoTNjA0NzUwNzE3OTUxNjY3NDYwNWqvDRIBMBgAIkUaMQAKKmhod2N3Z3picG51Ym9ja2JoaFVDS0txbGJtMURlV0hwNnAyWW1SOE1lZxICABIqEMIPDxoPPxOuA4IEJAGABCsqiwEQARp4gfcMB_z-AwDr-xP8_AABAAcAAPD3__8A6_j78wL_AQDz-ggCBAAAAAL4BwQKAAAA-wv6__z-AAAJB_v5BAAAAA_9CfL9AAAA_f3_8_8BAAD8_AoEA_8AAAEPAPn_AAAA-QX-9_4AAAD49AoO_wAAAA4GAgMAAAAAIAAtxELYOzgTQAlITlACKnMQABpg6AIALN8G3OM7Muv9_uYuBfXv2P7rBf_v-QDDIBHbH-_dxPj0_yDSDfW1AAAAQQnPNNMAG10ZBuEz8f8Zzd35CQp_0wXh4CUA1dUE8vkJIA8sGTQ1AOneCwAy4gU25ikoIAAtNgg-OzgTQAlIb1ACKq8GEAwaoAYAACDCAAAwQgAAwMAAAGzCAACYwQAAoMEAADBBAABYwgAA2MEAAODAAABgwQAAgEAAAEzCAADIwQAAwEAAAKjBAACYQQAAdMIAAIjBAABgwQAAcEEAACjCAADwQQAAsEEAACBCAAAQwgAAuMEAABzCAACowQAAgL8AAEDCAABAwAAAQMAAAIBAAACgwAAAmMEAAPhBAAAgQgAA2EEAANjBAACoQQAAAMAAAEBBAACowQAAUMEAAGDBAAAUwgAAAEEAAOBBAAAkQgAAyMEAANDBAAAAwwAAHMIAAJhBAADgQAAAnsIAAGzCAADgQAAAAMAAAMZCAABAwgAAkMEAAKbCAACSQgAAcMIAACxCAADAwQAAdMIAAEzCAADGQgAATEIAADBBAACowQAAHEIAAIDCAAAEwgAA4EEAAMBAAAAgwQAAVMIAAFxCAAAMwgAAgMEAAABCAAAQwQAASEIAAMDAAADQwQAAuMEAAHBBAACMQgAAOMIAALjBAAAIwgAAtMIAALjBAACQQQAA2EEAANjBAAAgwgAAKEIAAOBBAAA4wgAAjsIAAFxCAAA0QgAAGEIAAMjBAACgQQAA0MEAAGBBAACAPwAA2EIAAEDAAAAgwgAALEIAALjCAACIwQAAFMIAANhBAACYwQAAhsIAAFDCAADYwQAAMMEAAIBBAACAPwAAyMEAADDBAACgQQAAAAAAAAzCAACEQgAAgMAAAJhCAADoQQAATMIAAFBBAAA8wgAAgL8AADTCAADowQAAwEEAACRCAADIwQAAmMEAACxCAADCQgAAQEIAAEDAAAC4wQAAgL8AALDBAADwQQAA4EAAAGDBAABowgAAKEIAABRCAACQwQAAgEEAAEzCAABwwQAAGEIAAPjBAAAsQgAAQEIAANhBAABUwgAAcEEAAK5CAADgwAAAmsIAAEDAAAAwwQAADMIAAMTCAACAvwAAuEEAAEDCAABAQgAAsMIAAJjBAAAcQgAAQMAAAAzCAAAAAAAAIEEAAABCAAA8wgAAoMEAAKhBAAAgwQAAQMIAAPBBAACQwQAAAMEAALhBAADQQSAAOBNACUh1UAEqjwIQABqAAgAAfL4AAKg9AADKPgAAUD0AANg9AAA8vgAAHD4AACu_AAAcvgAAyD0AABQ-AABAvAAA4DwAAIA7AADovQAAUD0AAEw-AAAQPQAAND4AAJ4-AAB_PwAA6L0AAL4-AAAEvgAAjr4AABy-AACePgAAoDwAAIg9AADIPQAATD4AAKI-AABQvQAAFD4AAPi9AACgPAAAgj4AAGS-AACSvgAAmr4AAKi9AABQvQAAgDsAAFC9AABMvgAAUD0AAKY-AACYvQAARD4AAAS-AABUPgAAoDwAACS-AAC-PgAAiD0AAIC7AAArPwAA2L0AAKi9AACIPQAAFL4AAIK-AABEPgAAFL4gADgTQAlIfFABKo8CEAEagAIAAJa-AACgPAAA-L0AAHG_AAAQvQAAbL4AAIg9AAC2vgAAyL0AAFw-AACgvAAAiL0AADC9AAC6vgAA-D0AAMi9AADevgAAQz8AABw-AAC-PgAAgLsAAHC9AACAuwAAQLwAAPi9AAAkvgAANL4AAMg9AABwvQAApr4AABC9AAAcPgAA2D0AAHS-AACIPQAATL4AAJo-AACoPQAArr4AAIi9AABsvgAAMD0AAKa-AAAEvgAAyD0AAOC8AAB_vwAAgr4AAAQ-AABEvgAA4LwAAFS-AABQPQAAZD4AABS-AABQPQAAQLwAAHA9AAAcPgAA4DwAACQ-AAAEPgAA2D0AAFC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=rn7Cg_hgPQE","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["6047507179516674605"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12395442897416161778":{"videoId":"12395442897416161778","docid":"34-2-14-Z70E00919A69B5823","description":"An overview of finding absolute minimum and absolute maximum values on closed intervals and on intervals using the second derivative test.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4079802/a02bdf9c06706f80044fb95510f48cb4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/LE_aGgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_Zl1KiOcESo","linkTemplate":"/video/preview/12395442897416161778?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus 1: Absolute Extrema","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_Zl1KiOcESo\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFgoUMTIzOTU0NDI4OTc0MTYxNjE3NzhaFDEyMzk1NDQyODk3NDE2MTYxNzc4arYPEgEwGAAiRRoxAAoqaGh4aWNhZ2N3ZGZqemJmZGhoVUNtYzFFV0Q0VFNzX3lPXzJnR1dBQkZREgIAEioQwg8PGg8_E7gTggQkAYAEKyqLARABGniBAgkKBQX6APX4BwoPBvwBEfbz9vUAAADgBQP0_vsCAPQB_AL0AAAADBH88_4AAAD8AfEIAv0AABzz__UDAAAAHPX0Cf0AAAAM-vcB_wEAAPoM9g4E_wAAEQQIEQAAAADwCfYKAQAAAPXxBQQAAAAACPHvCgEAAAAgAC3bNsQ7OBNACUhOUAIqhAIQABrwAX_74AHE4ur_NcwGAK_6B_7c8w0AETIWAIgSLADv5g8B7_XoAPPi8QDoFfMAz_kRAPDpBv726yMBKQED_yz7BgDq9AsAUQXo_hzuIQEMHen_-fon_-3tGQIeFPn9A_IHAPkTJ_3V3PX6Cuy9CCru-Qf36CAF6gsZAAvRJwLs_d8BIADo_QIP7gng--T95dkkA-r7GgP3Gfb5D8oH-ukc8wgB0Qz-PQXgAfkW8AEeEf72GgkB_PH16fjcLwkI_DH5_9ILHAEABQj_EUwGAiYJ8gcT2fsK_vkBEBAT8RAEvAL_CPQHAR7-EO7r5vUN-gP7DSAALV4AHzs4E0AJSGFQAipzEAAaYDcQAE34L-3cLVLgKeo4CtjQ_8jl1RP_KP__6wPY_PI2rrzvIwD2tOn1owAAABPn4wndABB_9P_x3wMIIgf_wh0BVssy9I3LFAqRwuMH6O0iF984CwDADJlpHPW1F_oVyiAALXUeFTs4E0AJSG9QAiqvBhAMGqAGAABwQQAAgMEAAKZCAAAQwQAAoMAAAIZCAAB0QgAABEIAAABAAABwwgAAHMIAAIZCAABQwQAA6EEAAFRCAABwQgAA4MEAAIDBAAB0QgAAQMIAAFBBAABgwQAABMIAAMBBAADQQQAAPEIAAODAAAAAAAAAhkIAAPhBAADwQQAAQEEAAAjCAAAAQAAA5MIAAFBBAACYQQAAskIAAAAAAABQwQAAYMEAACBBAADAQAAA4EEAAOhBAAAwQgAAMMEAAIBBAACQQQAAgMAAALDBAADAwAAALMIAAEDBAAAYwgAA-MEAANDBAAAMwgAAAEEAACRCAADowQAAssIAALLCAADYwQAALEIAAOjBAABAQAAAnsIAAGzCAAAcQgAAMEIAAGBCAACQwQAAxkIAAFjCAACGwgAAMMIAAMjBAABcQgAA8MEAAAAAAABgQQAAqMEAADTCAABwQgAAGEIAAKBAAAA0wgAAaEIAAEBAAAAgwgAAXEIAAOBAAAAUwgAA4EAAAOTCAABQQQAAXMIAANhBAABYQgAAHMIAADDBAACAPwAAXMIAAFTCAAAwQgAAgMEAAJJCAAAowgAAsEIAAOBBAAAAAAAAYMEAAEDAAAA0QgAAFEIAAIjBAAA0wgAAqMEAADzCAAAUwgAAgEAAAPhBAAAYwgAAaMIAAOjBAABwQQAA8MEAANjBAAAUwgAA8EEAAETCAABwwQAAZEIAABRCAADoQQAAdEIAADzCAACawgAA9sIAAOhBAAAAQgAAgMAAAEBBAADwwQAAAEEAAIDAAACAwQAA4EEAAAAAAAAAAAAAQMAAAEBAAADowQAARMIAAPDBAACMwgAAgMAAAABBAAAwQgAAYMEAAMBAAAAUwgAAFEIAAOBAAADwQQAA2MEAACxCAACeQgAAuMEAAOjBAADgQAAAmEEAADBBAAAEwgAAQEEAALBBAABAQAAAEMEAADRCAAAAwQAAmMEAAKjBAABUwgAAPEIAAChCAACAwAAAAEIAAABBAADgQAAA8EEAAI5CAABQwgAAAEAAAJBBAACYQQAAQEAAAMDAAAAAwAAAMMEgADgTQAlIdVABKo8CEAAagAIAAMg9AACYPQAApj4AAOg9AADgvAAAJD4AAFA9AADuvgAAqL0AAEQ-AABAPAAAML0AAIg9AACCPgAAVL4AAJg9AACOPgAA4DwAAJi9AAAHPwAAfz8AAEy-AABEvgAA2D0AAEA8AACgPAAA-D0AAOC8AABEPgAAVD4AAHC9AAAkvgAA-L0AABw-AABAPAAAkr4AAEC8AACWvgAATL4AAKa-AACYvQAAbL4AAFQ-AADgvAAAir4AAIq-AAAcPgAAgDsAAIi9AADIvQAABD4AADw-AAAwPQAARD4AAJa-AAAQPQAART8AAIi9AACGPgAA4LwAALi9AACAuwAAPD4AAKq-IAA4E0AJSHxQASqPAhABGoACAACAuwAAqD0AAHC9AABLvwAANL4AAEw-AACGPgAAED0AAIC7AACgPAAA2L0AAFy-AABAvAAAuL0AADw-AABwvQAA6L0AABk_AABcvgAAoj4AAEy-AAAMvgAAML0AAKi9AABAvAAAyL0AADC9AABwvQAAmD0AAMi9AAAwvQAAcD0AAJi9AACKvgAAiL0AAOC8AAC4vQAAuD0AAAS-AACIvQAAyL0AAOg9AABAPAAA4DwAAAS-AAAMvgAAf78AAKg9AAB8PgAAJD4AABA9AAAQvQAAQLwAAEw-AADIPQAAUD0AAEA8AADIPQAAuL0AAIA7AAB0PgAAiD0AAI4-AADIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=_Zl1KiOcESo","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["12395442897416161778"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"13476595090944907138":{"videoId":"13476595090944907138","docid":"34-3-4-ZF5E03F71AF346923","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/997555/25ec24392b168cefcb919030f282f920/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/QpjTWQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQEWXXQg4Vek","linkTemplate":"/video/preview/13476595090944907138?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find the absolute max and min of a quadratic function","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QEWXXQg4Vek\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFgoUMTM0NzY1OTUwOTA5NDQ5MDcxMzhaFDEzNDc2NTk1MDkwOTQ0OTA3MTM4arYPEgEwGAAiRRoxAAoqaGhhY3RkYndpYXB5ZmVuY2hoVUNBZjdFb3ZTRVFxTzFXeDgwZWl4RmxREgIAEioQwg8PGg8_E7wFggQkAYAEKyqLARABGniB7gH5_fwFAPQEBQH5A_8BCQj_-PcAAADs-PzzAv8BAPYDAQIHAAAABQP8CQkAAAAG9_cCAv0BAA8KDAD1AAAAGAcI-gEA_wAJ-gMD_wEAAPgPAAQD_wAABQEA_f8AAADtDgj9_wD_APb8BggAAAAA_wL9APv1_gAgAC1xht47OBNACUhOUAIqhAIQABrwAWT89gHLFun_Gv7UAAwn9AKBBQv_Jizp_9n5_wDL-dYAAxjoANDz_wD6FhEAzQMRAA8D7wAC7hEAIQMOAC30JAADHgYALOP-AA8HCwAK8uUA0Pro_w7mFQD-1ucA8BTr_xPy-v_fB-IA9xDjARLsIQIX8RwCIf0bAOYGFAP1EhgBAf7y_hT6_v_v-_z80BgSAv37-AQUE_gG8_kBAvT4BAYH7v8EBQLo-yD0BAUK-wb_-PUG_PT47vkfAQ4B9An_BP7vBvcA9P4D4AL1-DXsDAn7_Aj6-fUO-u4A8wr-2Af55gkB9eoPB_f3DgUCDgcD9iAALW4nSDs4E0AJSGFQAipzEAAaYC8FAD3oAt7-8iPjAvHcHvAQ6dQJ3uD_2en_9ULz5-j91aMJ4__95B7trgAAACnX3iEaAO5o_-DoROUSGJvj9fH4fxNEEekHDPTE1g0T8vA89u4V7wDn97D8OPvacSIT8CAALfQwLDs4E0AJSG9QAiqvBhAMGqAGAAA0QgAAgMAAAGRCAABYwgAAIEIAACRCAACGQgAAgD8AACDBAACwQQAAoEEAADjCAACAwQAAgL8AAKBBAACwwQAAHEIAABjCAAD4QQAAjMIAABDBAADgwAAAdMIAADxCAABYwgAA0MEAAGjCAACswgAAcEIAAARCAAAIwgAAoEAAAHjCAACAPwAAtMIAAMjBAABAQgAAxEIAABDBAACaQgAAMEEAACDCAADAQAAAHMIAABBCAACAwgAAOMIAADRCAACgQgAAiEEAAHDCAABQwQAA4MEAAIhBAADQQQAADEIAALzCAABQQQAACMIAAPjBAADgQQAAEMEAAFTCAADYwQAA8MEAAL7CAADIwQAAUMIAACjCAACYwQAAVEIAADBCAACYwgAA2EEAAOhBAAAswgAANMIAAHjCAAAgQQAAiEEAACjCAABoQgAAZMIAAARCAADgQAAAeEIAALDBAABgwgAAlkIAAKDAAACkQgAAKEIAAIjBAACIwQAA-MEAAFjCAADAwQAA2MEAAGBCAAAEwgAAosIAAI5CAAAEQgAAAMIAANjBAABAwQAAqMEAAJpCAADwwQAAyEEAAIhBAABoQgAAkEEAAGDBAACwwQAAAEIAAAAAAACgQQAAZMIAAODAAADowQAABMIAACzCAABAwQAAoEAAAPBBAABMwgAAqEEAABTCAABwQQAAUEEAAIrCAAAQwgAAMEIAAHzCAADgQQAAgEAAAOBAAABQwQAAJMIAAODAAACAQAAABEIAADDCAACgwAAAUMEAAEDAAAA4wgAAgMAAAEBAAACoQQAACEIAALxCAAAEQgAAwMEAAMjBAAAEwgAA-MEAABjCAABwQQAAbMIAAJhBAAAEQgAAwEAAAIC_AACQQQAAEEEAAHxCAACGQgAAEMIAACBBAAAAwAAAkMEAAADBAAAAwQAAAEAAAPjBAAAwQQAA4MAAAGxCAAA0wgAAhMIAAABBAAAAwAAAlkIAABTCAADYwQAAQMAAAMBAAABAQQAAQEEAACDCAABMQgAAgL8AACBBAADQQQAAEMEAAMjBAABgwQAAgMEgADgTQAlIdVABKo8CEAAagAIAAJY-AAA0PgAACT8AAEC8AACIPQAAcD0AAHC9AAAxvwAAXL4AACw-AACKPgAAir4AAPg9AABUPgAAVL4AABQ-AABEPgAAUD0AAIg9AACiPgAAfz8AAAy-AAAUPgAA-D0AAFy-AADovQAAjj4AAAS-AABMPgAAgLsAAJg9AACIPQAA4LwAAAQ-AADgPAAADL4AADA9AADqvgAAur4AAM6-AAA8vgAAdL4AAPg9AAAMvgAAjr4AAFS-AACOPgAAuL0AAHQ-AACSvgAATD4AABA9AAAwPQAA7j4AAAS-AAAQvQAAQT8AABy-AAC4PQAALL4AAES-AAD4vQAAZD4AACS-IAA4E0AJSHxQASqPAhABGoACAACmvgAAvr4AAAy-AABpvwAAQDwAABQ-AADIvQAAHD4AANi9AADgvAAABL4AAKC8AAC4vQAAEL0AAHA9AACYvQAAJL4AACU_AABMvgAAvj4AAJq-AAAQPQAAcD0AAAy-AAAwPQAA-L0AAJg9AAAQvQAATD4AAHC9AAAwPQAAJD4AAGy-AADgvAAAfD4AAEy-AAA0PgAAsj4AAJa-AAAQvQAAgLsAAIC7AACavgAAMD0AAJK-AACKvgAAf78AABQ-AADIPQAAmD0AABy-AAAMvgAATD4AAK4-AADYPQAAQDwAAKg9AAAUPgAA4DwAAIa-AAAcPgAAHD4AAFw-AABEviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=QEWXXQg4Vek","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13476595090944907138"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2591491455"},"18234022481797172613":{"videoId":"18234022481797172613","docid":"34-3-15-ZEC966DD33A6829C8","description":"In this lesson we study how to identify the absolute maximum and absolute minimum values a function takes on using derivatives. 0:00 Critical Numbers 1:40 Absolute Max and Min Points 4:10 Example...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1027890/802db72166f92a81297cf251548dd34e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MdYo4QEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4Tqfxdth5ik","linkTemplate":"/video/preview/18234022481797172613?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus - Extreme Values - Absolute Maximum and Minimum Points","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4Tqfxdth5ik\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFgoUMTgyMzQwMjI0ODE3OTcxNzI2MTNaFDE4MjM0MDIyNDgxNzk3MTcyNjEzaogXEgEwGAAiRRoxAAoqaGh1dnp3dWtpdGZxbHl3YmhoVUNUekh0dHliUWllUVhSWTM0R0tFN0ZREgIAEioQwg8PGg8_E5YFggQkAYAEKyqLARABGniB_QUF-wH_ABr2CgD_B_8B9Qbv-fj9_ADiBAP1_vsCAPT3A__3AAAAChf-AQkAAADwAPkJAQAAABEEAfHyAAAABgcB__4AAAACBPj_CP8BAAUP_goD_wAA9gkCBP8AAAD-DAkE-v8AAOr7_vsAAAAACf77Cfvy_gAgAC2Il847OBNACUhOUAIqhAIQABrwAX8ICAHgEMUC6u7KAc4XBACqHAoA_DTSALnxCwHJFtYA9Ovz_90D6QAa3AYArgQnARbz5P4EyBX_IuQmACTwCADeBiQBMw4GAicaG__-Avf-0C8C_vEBDQIY1tIDEDv5_fkFCfwDBvb-7QPCAjPUJwIb0QgEHwIY-wHuEv4I8hgA9_jG_gz4BgPq6v4Cx_4fARABA_vkNOkA9PbuAgfqEPYI7xf28xLZ_yv98wcOHhn-4_YC-Of4BgIDCRsD0tzkBebwGPnn6P4C5PcHAA3nCP3pHAkCIAnpCA7-_vwg8fL0-s_-_AAA8wSpIfgIytr9_CAALY27Ezs4E0AJSGFQAirPBxAAGsAHahbQvqyUGT1TDfe7HMg_vQnqjDuczC69S9O2vZbLKz2s7ge97rK_PbewUz1WNVe96dM6vnabIb2l6ui8LQtWPrCKXL1BLSa9cT1avucWvz2FTKi8_FQlvjHZLrwHc-Y33PUSPZELzrygBxC7q02iPVTcHb0JdhK9W68uPTda6Tv45129mK1rvRflQ728SQK9zocMPSUyPbzMndM76-CwPX94jLx8FU-8NDzHPHADk731XTa80s6PvecpobwQ3_C7D_yOPfyMKz3fIPU8SUcevK5-sLhZuPY8KQ9hvUA1-zv3dsu7nLS6PUrtRTywepu8FK7nPaQYgL1THn67OUK2vaRmlD1PsL88-wU7Pto31z1Edco77-SzvfeRmz3N_bq8PyiOPawfG70zvJ87Dk7kPVr6C70rdmo7x1TwPGKWhz0qo7Y8BKzVPDOimTz080s808JgParkLTuct5y7UAgzPQm_GrwkUFS7c-lJvQNtPDtROzK8u9ToPdV5VDycpfc5871QPSJrETzWbn07xTVDPfhRDb4Jbyy7XE2ovLlyUb1vVrO858xRPbigiD1ZfR68EiIvPeT-Pr06eZG771GkvG743bw4xJE6K65gvCZjJr1btJ263oV3vSAnzD0oCBc3_GVBvIXs2buHQjq8Dk-vPIM16TwD-Po73uBQvWAh873aCH66-wLaPeZ50D34Mva6inyyPHJmkD2MOTQ6B-7gPXrcHrv2pQ66KlkpvJtUVL1vHdI72CJzvT7HDD2upRQ6PL3yPUrIUb1XwY45APLUvIaBHT3tJ524bTmXvE7ehj1lrk-6nQeBvVNFijt7rQu5qz2RvRpSFb4wUQo6Xdo1PQEOhrxAOlq5fQVJPQt_o7urCKO4X3-9vR8YO70I1Te5e9qhvFlAFTxQb9m4RprYPbIzAD3WC5A4mDqjPIKxGT0uuro5oeWvvFRNFb21GDG4eH1mPDtU8z1THCg4wtD0PN3U_rvhjgs5n_FxO6XYAT6orjG5uTEivdX00TrafMu4SNarPBsQoT0R-W83K7FBvYyjTb0J2Iw3_NKRPMOOcD1y2Dg4yuEDvhDXHjyX_U43vTKUvVTrk73807q2xM8PPjxq6buey5U2FvPYPEq_szxlhZW3kl0ZPtlPUL2swj-53ryCPLSvHL78h2W41V2ZvBGXgr0HcQO4l1GRvYdyHT1TOIu2szEGuwivvb0cfaa3-WTlPcjZmj21QNY23oaDO61zuLkh0a64tBbAvVQ0uz08X7I4yEEJva6tyb1tSbi3IAA4E0AJSG1QASpzEAAaYCD-AEsBD7PmBT7PDPQ_CuLU6rTgyBH_CCX_3RbjBPVTyskLKAAG1BfaoAAAAEjH1x3IAA9_2ebjAAPsFbKxwDEPdtsS-6wGy-eJsQPU7BgLIONL-QDCCKVYYQjUKgAB1iAALYdEDDs4E0AJSG9QAiqvBhAMGqAGAAC4QQAAyMEAAEBBAAAAwQAAoMEAAEDBAACKQgAA2EEAAFjCAADAQQAALEIAAHBBAACgwAAA6MEAAIhBAAAgQQAAgEEAABDCAAA4QgAAIMEAAEBBAACgwAAAVMIAABDBAABwwQAALEIAALTCAACgQQAAGEIAAODBAACYwQAAFMIAAFjCAABoQgAAMMIAANhBAAAoQgAAfEIAALBBAACIQQAAIEIAAGxCAACgQgAAqMEAAEDBAACuwgAAJEIAAIBBAAD4QQAAYEEAAEBBAAAAQAAAYMEAAJjBAAAsQgAAhkIAAIDCAACgQAAA6EEAAKRCAACgwAAAosIAAODAAABQwgAANMIAAFDBAACgQAAAIMEAANBBAADAwQAAqEIAAJhCAAAkwgAAXEIAALBBAAA0wgAAFMIAAKBAAABAwQAAVEIAAHDCAABgQQAAMMEAAIhCAAAAwQAAMEEAADBBAABEQgAAIEIAAFDCAAAQwQAAkEIAAKjBAACYwgAAEEIAAODBAABAQAAAiMEAAChCAAAIQgAAOMIAAIBCAABwQQAAIEIAAJzCAADAwAAAAMIAABhCAAAswgAAkEEAAIpCAAAIwgAAAMEAAGBCAADgQQAAMMEAACBBAAC8wgAAREIAAMBAAAAEwgAAcMIAAADAAAAMwgAAgMAAAJhBAAAEwgAAwMEAAHTCAAAQwgAAcEEAAABAAACwwQAAnkIAAOjBAACOQgAAgL8AABjCAACYwQAAsMIAAADCAAAEQgAAKEIAAHDBAABQQQAAIEIAAHDCAACgQQAAEMEAAKDAAAAwwgAAcEEAAOhBAADQwQAAuEEAAJhBAAAAAAAAmMIAACzCAAC4QQAAMMIAAIDBAABAQAAAgL8AANBBAACgwAAAAMEAAABCAACAQAAAOEIAAKjBAADoQQAAgD8AAJDBAABIwgAAQMAAAJDBAAAQwgAASEIAAIRCAAC8wgAAkMEAADDBAADIwQAAkEIAALLCAABEwgAAgEAAAMjBAADQQQAAUEIAANDBAABoQgAAkEEAAFxCAABoQgAAiMEAABDBAACAwgAAuMEgADgTQAlIdVABKo8CEAAagAIAAHC9AAA8vgAAEz8AALq-AACqPgAA1j4AAFE_AAB_vwAAdL4AAKA8AAA8vgAAgr4AABw-AAAEPgAAQLwAABQ-AAAUPgAAED0AAIg9AABFPwAAcT8AAHS-AACaPgAAuL0AAHy-AAAMPgAA9j4AAPg9AAAUPgAA1j4AAHQ-AADovQAAhr4AAMg9AADoPQAA4LwAAIg9AAAUvgAApr4AAMi9AADYvQAA4DwAAMo-AAAsPgAAHb8AALi9AADoPQAAhr4AAIi9AAD4vQAAgDsAALg9AAC4PQAAoj4AAIg9AABQPQAAaz8AAAS-AACAOwAATL4AACy-AABEvgAAVD4AAKC8IAA4E0AJSHxQASqPAhABGoACAAC-vgAAcL0AAEA8AAB_vwAAML0AAFC9AACKPgAAFL4AAEA8AAB0vgAA4DwAAEA8AABQvQAAML0AABQ-AABwvQAApr4AAAc_AADIvQAApj4AABA9AAAMvgAA6L0AAJi9AAAwvQAA8r4AAIA7AADgPAAAUD0AABC9AACYPQAA6D0AABy-AABMvgAATD4AACy-AACgPAAA4LwAALK-AABEPgAATL4AAGy-AAC4vQAALD4AABC9AABcvgAAbb8AAMg9AAA0PgAAgDsAADA9AABwPQAAML0AACQ-AABAvAAALD4AADC9AAB0PgAAjj4AABS-AACKPgAAcD0AAEw-AADYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=4Tqfxdth5ik","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18234022481797172613"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6303546921886937475":{"videoId":"6303546921886937475","docid":"34-2-15-Z177E75C4618E2A4B","description":"Wanna buy me a coffee? Hit the \"Super Thanks\" button or / mrhelpfulnothurtful AP Calculus Review: https://www.youtube.com/c/MrHelpfulNo...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/900731/d677941329999eadbbc574ac8692dec7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0cC6AwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXIqZfUdZhJU","linkTemplate":"/video/preview/6303546921886937475?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"3.5D - Finding the Absolute Max without a Candidates Test (2004 FRQ 3c, TI-84) [AP Calculus]","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XIqZfUdZhJU\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFQoTNjMwMzU0NjkyMTg4NjkzNzQ3NVoTNjMwMzU0NjkyMTg4NjkzNzQ3NWqIFxIBMBgAIkUaMQAKKmhoaXB1eGRva3ZmY2d4Z2RoaFVDQjY4cVFlZUJZWjRSOHRjVjY3dXo0QRICABIqEMIPDxoPPxOwAoIEJAGABCsqiwEQARp4gfz3-wAAAQD4BwUIAAb9Avr6BPL6_fwA5ALw9wP8AgDzAAj8-wAAAAEN-v0FAAAA_fj3Avv-AAASC_X2BAAAAP378Ar_AAAAAwD4_fb7_QP7C_cNBP8AAAoG_fz_AAAA8f8IBfv_AAD2Cfj1AAAAAAD__v8AAAAAIAAtBm7UOzgTQAlITlACKoQCEAAa8AF_6g8BywjiAPb16gDsC9wBlRbxABoi5AC2-xgAshDq__cL_ADV_QAACwYT_90qKgAt29f_A_oNACjDCgEWCx4AAAwMABLgFQEwDhQC8eXf_-49Iv7z-_MA_dn7AAcK1_4SACb9-gHP_wntwggV6ScCBh4nCCXmDQH97P8A2i72APj84gAi9PUFK_UB-d3jDQD48eb8CyQG-vb38AEPAxH68PIJ_w8YAPkyN_kE9f0EAePu8QT97fr5-BAQBuwV9vb5BQ4B8tsO8wcLB_8-xgP9HPgBCvjU9vkF-fH9990A_Oj5AQjdEv781fQEChP1_wQgAC30Vio7OBNACUhhUAIqzwcQABrAByOiwL5uFk89YnSvvPoN072QeMM8bHAHvRrAC76b58i8-V8YvU0yEj6Zib08Y4fnvJsdob5GoZu8yGeoPMuAMz7m0Yi9mGIzPHoXL74IPDA9KZ_UvE94kb5nFUw9qeaLugeaDz5W3oS8RXjFPB0A8T311RW9-Z4xvbKCX730CKS8eXyWvPN_Xb2Bhg29HZGMuvgNvT0o-Ye82T05PRCxIT58WaQ8Kcz7vAohEDybDzm9dW-outYxM72NUvg8ND_IvMdMAj5IDCw9XhwLPd4NWLxywy-9oYshPetrIr3-g6M8FvtLO5V0_7qU2UW7HI8jvRq1nD0x8Le8MOEnOzlCtr2kZpQ9T7C_PN20GT49FtE8A2D6u-CgPb31keU8uG-aPD6bcjuwHje9-5GFugcmdz1cDT88zdIpvJniYDw16Ts9OZ8TPAlkwDzPWXU9hWOxPFBTmz22ngS8hq5EvN3zdDvvDt88NfHROawUJ73yqx492O8uvGCuZT2arze8kGXmu7_Dgz00KpU8Cw-puWBnhD35Eb-9PWsSPJXcPL088cG9Q-nmu7WRJj1_qzA9ux3Mu3Y0Dj1phwS9sjJYuwrbz7wqcBW8T3zSuwPBLT3svHK9l7hBuD2BUL3yYYE9sLGmO2jI3TwMNrs7QckuvF8gTT373Ho9h5fUO749_jxHWqW9nbDQu2jAij21wIM8FCaIO4fLgD1pjiw8AddguqCNLD7LrgW9IAINudSggTt0FbG9PrNbuFxQxLzDqWU9F7uCOuJbmD26JJi8HZ97OUgvLz0b1H68AsYGuXkQLzvZrWo9N3M_OazxiLycd6K9boVROVxUC72cFfG93J51ObeyzblrzgU8zWywuUTLsDyBjya98xjMulMekr1KG8i94XObN7iIuTxlAZ495ACouGJV0rs0dhO9FJIfuL2YnLyQbVS9nFSAubSw5bvbeyK9gBzwOAIyT70jgtE9dbe8OL6eFD1Iccy7-L-duc6vwTxJk8w930SHuBeFeD0nvOQ96I4ytwib8Dy5_dI9R2llOJoHED3eOMm9CDT7NtvQnj1245g9UAX1uFifzL2mLjQ9g38sOd-fVz3Rx2G97neqOBxe8D19BP489OeQuG-3iTxCUWo8h0IpOK2n9j2z6pi8ezs6uSKVmDuF-me9vsAsuNU7gTzvPYe9zZO_N9kWD70IvjO7mZxVuOTVnrx6ifG9ZVUwuIqWVz0QWPk9jRdAOAUcXT3WEOY8-BDPuB71PL0tDiK9F5JDNuS1F70fE2k9t2FyOCAAOBNACUhtUAEqcxAAGmAN-QAeJzG65_JH7LToBR2yAN7b2MMD_w7u_wkvkeDeI9e7DRQAF-on15oAAAAr5NfoywDdf-63GDY9MhC9tukxIG0VHiCr1C_1nrEiAq71BycHV_0AywDPLkzc2jon-CggAC0GgQw7OBNACUhvUAIqrwYQDBqgBgAAAEAAAEBCAACQQQAAkMEAAJhBAADYQQAALEIAAIC_AAAEwgAAiMEAAOBAAABMwgAAssIAABDBAAB0QgAAisIAAMDAAABswgAAwMAAALjBAAAgwQAA2MEAALBBAACYQQAA-EEAAKBAAADgwQAARMIAAABCAAAgwQAAKMIAABDBAADOwgAAwEAAAGDCAAAQwQAAgMEAAJBCAAAgQQAAYEIAAKBBAACMQgAAoMAAAMBBAADIwQAAnMIAABzCAACAPwAAaEIAAPBBAACKwgAAmEEAAHTCAACYQQAAaEIAAARCAADAwgAAAEAAACDCAACAQgAALEIAAHjCAABwwQAAwsIAAFBCAAAQwQAAgMAAAJjBAACewgAAYMIAAJxCAACIQgAAEMEAACxCAABAQQAAyMEAADTCAACAQAAAQEIAAIDAAABAwgAA-EEAAIDAAABkQgAAUEEAAIhBAACAQgAAGEIAAARCAABIwgAAQEAAAHBCAAAMwgAAiMIAAADAAACcwgAAoMAAAIBBAABwQgAAQMEAAHzCAABgQgAAPEIAABDCAACowgAACEIAAMDBAAA0QgAAuMEAADBCAACQwQAAQMAAADDBAAAQwQAAwMAAAOjBAACgQAAANMIAABBBAABQwQAAAAAAABTCAADYwQAADMIAAKjBAAAMQgAAoEEAADzCAAAgwgAAyMEAAETCAABQQQAAAAAAAMBBAACgwQAATEIAAJhBAABAQQAAPMIAALjBAABQQQAAwMEAAABAAABwQQAABEIAAODAAAB0wgAAcMEAAIxCAAAAQQAAPMIAAAhCAACAPwAAUMIAAGDBAABEwgAADMIAAIDCAABwwgAAqEEAAIhBAACYQQAAQMEAANjBAAD4wQAAMEEAAKhBAAAEQgAAqEEAAAAAAAAwwgAAWEIAAGjCAADowQAAQMAAABDCAACQwQAAdMIAALRCAACAQAAASMIAAFDBAAAYwgAAyEEAALJCAABAwQAAnsIAAIjBAABAQgAAAMAAABzCAADgwQAAgMAAAFDBAAAgQgAAEEIAAAzCAABAwAAAkMEAAOjBIAA4E0AJSHVQASqPAhAAGoACAACSPgAAgLsAAP4-AACAuwAARD4AAEQ-AACYPQAAE78AAL6-AADoPQAAXL4AAIg9AABEPgAA2D0AABS-AABwPQAAgLsAABQ-AAD4vQAAJT8AAH8_AAC4vQAAQDwAABQ-AACgvAAA6D0AAGw-AABQPQAAJD4AAEw-AACIPQAAgr4AAEA8AAAMPgAALD4AABS-AABwvQAAVL4AAOK-AACyvgAAML0AADA9AAAEPgAAwr4AAJa-AAA8PgAA1j4AAOg9AACaPgAAFL4AACQ-AADIPQAAqL0AAK4-AAD6vgAAML0AAEc_AADYPQAA6D0AAFw-AACovQAAyL0AAGw-AAAkviAAOBNACUh8UAEqjwIQARqAAgAAyr4AAPi9AADIvQAAbb8AAFA9AACIPQAAqL0AAEy-AABUvgAA6D0AAOA8AACIPQAAML0AAES-AABUPgAAEL0AALi9AABBPwAAoLwAAHw-AACivgAAQDwAAIC7AADgPAAABL4AAPi9AABAPAAAcL0AAEw-AABUvgAAMD0AAIA7AACAuwAAZL4AAHQ-AACIPQAAiL0AABw-AACmvgAAZL4AAK6-AAAMPgAAHL4AAEC8AAAMvgAA-L0AAH-_AACIPQAAjj4AAOi9AADYPQAAvr4AALg9AACKPgAAcL0AAKA8AADoPQAALD4AAFA9AAAcvgAA2D0AADA9AACWPgAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=XIqZfUdZhJU","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6303546921886937475"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"242440042"},"13463616609292941591":{"videoId":"13463616609292941591","docid":"34-0-15-ZE3C20AD194DBBA52","description":"This lecture video includes how to find the critical numbers, the absolute maximum and minimum values and also local maximum and minimum values with some exa...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2242503/942b32478797671a51b9d6339ed2d370/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/OxWkJAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCGcvvcC7C54","linkTemplate":"/video/preview/13463616609292941591?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"(AP Calculus) - Critical Numbers, Absolute Max/Min, and Local Max/min points (Part 1)","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CGcvvcC7C54\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFgoUMTM0NjM2MTY2MDkyOTI5NDE1OTFaFDEzNDYzNjE2NjA5MjkyOTQxNTkxaogXEgEwGAAiRRoxAAoqaGhtYWprZnZqdHZpaW5xZGhoVUNGYlhiQ1RPT3dkUEJtdkhMbkQ2U1ZnEgIAEioQwg8PGg8_E8QFggQkAYAEKyqLARABGniB_AIJ-_0EAPT4CAECBP4BCwD7-vcAAADkBAP1_vwCAAL6-___AAAABgkHBQoAAADxAPkJAQAAAAYF_fr7AAAAEv4A-P8AAAAAB_0A_wEAAAIB-gn5AQAACgoE-_8AAAD5Bf74_gAAAPb8_AgAAAAACP4EBgAAAAAgAC20dNw7OBNACUhOUAIqhAIQABrwAX_XEP_F-sb_8vHiAM0t3QGPPQT_FBnKAK3QAwHAGs8A2_oF_-YNEAAr6Qb_xDX-_xPYxgDVuBAARuEeABkCDwHl8Q4BGNUcAUYWNf_u8Of-0UXd_wEND_39vdkAEkX4_Dwc9_4MLNAB8hnTAgzNSQP3F_0CRtoJBgHgJPwGAR8D9fe8_hwk-QTl-fr50R8mAu8n6_4eJQcE-tgQ-Q4EBf0Z9AkC7yHl91QO3_7uB_v5y-sO-d_p-wIZJin-2-_mAfrlHf3tzxLv-AAbEDbIFAL2_RAHLOP1CQf37PwD8_363OL0DNbE9gfN6O8H7NcGAiAALUwJ_jo4E0AJSGFQAirPBxAAGsAHjzTYvj8tkLweLAi9qgudvcuBvzvA_pC8TTiavdCkYrtIwRO9ZhA_PnoRNzwHN2O8zSEpvoH_gr0Okx89FJRCPkZFHL1z6AC8hzQqvp5pqD22cmW8V7E4vkelfTyl1Ao9yTM0PTjoXL1QkDO8q02iPVTcHb0JdhK9rkUQPYOcwTxV7Lm83GoZOvURWL0TfFi9-4qaPNoqd7zlrcQ8VmynPf8IwzzVUsq8k2mJPb49rr1m0_g64R-7vQFAhLw5tO28BA_CPSImhz0QSk48SMsXPewHhjx383m8v3b6vNbsnDyTdym9rMJrPZ1_YD3XRXa8YpOpO3EqyL3Iaqm8QLexvT0pEz2a3Bw83WA4PimmXD3jGz46eHSYvYUzKT0j2_m8GQ_Cu5dNhb3Azk087r2-PbnKTr1_rJY86XYAPTBiBD0bB8U7brYjvflYcD0JEsA8KoQfPWmP9jtxyIa8RdTpPKjR2rycYKy7X91nvOxkFT1y9148O8UKPlaDK71f8OU7asQHPYIQej3_gQu7BSOlPdYCO75J5Zo6wdIPvSjTCL01n068imSePSAuFD14Zry6ybAKvQgzwr3HhZ68MPplPJKruzvdzRW7feaRvDIJcrwV16W6kdyVvVHcIT4-lA46v2unuzrDuTzWNX-8sZbxPDE-cTzywgo8bAHnuzBH770_mqC6VIWLPQ-b6D1epFE6FMgxPR7ykD23kOK5B-7gPXrcHrv2pQ66NA6au43AzjzNJ4s5_InvvGFBMD1dQ2C5H6LRPVj4H7150Yo4NlfNvBESjjwClfm65imjOn7trz3ujsE4qn7lvCEStDzgpoM5qz2RvRpSFb4wUQo6Xdo1PQEOhrxAOlq58UZmPWh-EDxFZZ64Y3RqveAZaL1Zb_23RkqOvXIfdD1YbS25l_y0PNXtWrqGime4ZoeoPZp93jyQT323JjfMOpH-qLyJCN45AjJPvSOC0T11t7w4D2T7O5zF5ryjkJy46ZPDulnaKT6WE4e5mPJGvQMaVj3k6YU48Vh9PHQXFz3FMOG3zMgKvbNPNr22j9U4HaGgPTSgXj0DScK4a_HpvXnWJLzuL2A2PCn4vHGP5b2JHby4xM8PPjxq6buey5U2O-SGPThwgj1BUgE4kl0ZPtlPUL2swj-5q98WvQ37Hb6jvP645R-wucPArTrs5882Nay-vdgRYjwk22g47AO9O3zUD74X-ty4Iv_sPTUpBT7zflu4cA2mO-e-QTwxzdK4cMrBvTMX-D263KY4X9LYvEmpuryR6gu3IAA4E0AJSG1QASpzEAAaYB8DABzmJMPx9WTj7uwRLcHA5cD94TT_BAf__C8M4AEu2MMpCAAP2BLhowAAABTf2A_lAMJ_zgoUF_ISB8HU0AAOcb4kI5jeBPyguw3Y4TowPiwzBAC9EJ8wVQv0EzAIGyAALV1OFTs4E0AJSG9QAiqvBhAMGqAGAAAAQQAAQEAAAKhBAABcwgAANEIAAFRCAABEQgAAYMEAAPBBAADYQQAA4MAAAIrCAADYwQAAkMEAAEhCAADYwQAAgEEAAEBAAACIwQAA2MEAAJhBAAAQwQAAoMAAAMBBAACYQQAAgL8AALjBAAAAwwAAHEIAAMBBAADIQQAAGEIAABDBAACAvwAAmMIAAIDBAADIQQAA8kIAAMDAAAAgQgAAEMEAANBBAACwQQAAREIAAFRCAADOwgAAGMIAABRCAAA4QgAAGEIAAMDCAADIQQAAmEEAABxCAAB0QgAAFEIAANDCAADgwAAAVMIAACBBAADgQQAAVMIAAADBAABgwgAAoEAAAIA_AAAAwgAARMIAAEBBAAAAwQAAIEIAAMBCAACWwgAAUMEAAAzCAAC0wgAA4EAAAOjBAAC4QQAA-EEAAHDCAACaQgAAmMEAAHRCAAAQQQAA4MAAAAhCAAA8QgAAbEIAAIjBAAA4QgAAeEIAAGRCAAAUwgAA8MEAACjCAACAQAAA8MEAAIZCAAAQQQAAAAAAAIhCAACAQgAAKMIAAIBAAACAwQAAgEAAABBBAADgwAAAXEIAAGBBAABAwAAAQEEAAIC_AABsQgAAIMEAAKDBAAAkwgAAPMIAAIBAAADIQQAADMIAAKjCAACAwQAAwEEAAJBBAACAPwAAuMEAALDBAAAgwgAAoMEAAFDBAACgQAAA4EEAAGDCAABQQQAA4EEAABDCAACQwQAAUMIAAJBBAACYQQAADEIAALDBAACAQAAAgMEAAJzCAADAwAAAfEIAAMBAAAAMwgAAkEEAAJBBAAAQQgAAEEEAAIBAAACowQAAUMIAAGDBAAAMQgAAwMEAAKDAAABgQQAADMIAACzCAACgQQAAWEIAAOBBAABwwQAAgL8AADDBAAAEQgAAQEEAAODAAAB0wgAAEMIAAHRCAACoQQAAokIAABDBAABAwAAAFMIAAABAAAAgQgAA0EEAAI7CAAAIwgAAqMEAACBBAAAAQQAA-MEAALTCAABMQgAAmMEAALBBAAAAQQAAhsIAAODBAAAIwgAAgEEgADgTQAlIdVABKo8CEAAagAIAALg9AAAQvQAA9j4AAEA8AADYvQAAUD0AAAw-AAAfvwAAEL0AAGQ-AAAcPgAAXL4AADw-AAA8PgAADL4AABA9AACuPgAAUD0AAFA9AAC6PgAAfz8AADy-AAD4vQAAsj4AACS-AAD4vQAAoj4AAIi9AAB8PgAAQLwAAIi9AAAcvgAAmL0AACQ-AACIvQAADL4AABA9AACuvgAAZL4AALq-AAAsvgAAcL0AAPg9AABQvQAAyr4AAI6-AACiPgAA4DwAAHA9AAA0vgAAND4AACQ-AADoPQAApj4AAKK-AABAvAAAWT8AACS-AADYPQAAQLwAABy-AABQvQAAZD4AAFS-IAA4E0AJSHxQASqPAhABGoACAAAsvgAABL4AAMg9AABRvwAAuD0AAFA9AACIvQAAoLwAAJi9AADIPQAAmL0AAHA9AAAQPQAAgLsAAPg9AACovQAAVL4AACs_AADYvQAAqj4AACS-AADgvAAAED0AAHC9AABAvAAAPL4AAFC9AACgPAAA2D0AAKA8AADgvAAAFD4AABC9AADIvQAAyD0AAFC9AADIPQAA2D0AABS-AACAOwAABL4AAKi9AACSvgAA4DwAAAS-AACavgAAf78AADQ-AABcPgAAyD0AAOi9AACYvQAAgDsAAK4-AAC4vQAAuD0AAEA8AAAwvQAAED0AAKC8AADoPQAAQLwAAHQ-AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=CGcvvcC7C54","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13463616609292941591"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2533430938"},"4633786685660225256":{"videoId":"4633786685660225256","docid":"34-8-0-Z945D13EE016BCBC7","description":"Mr. Kennedy shows examples of AP Calculus problems involving absolute extrema!!","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2783486/3133d60da553da9df60e59b284ff623e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/O3P1AAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0PpkR_uHrw4","linkTemplate":"/video/preview/4633786685660225256?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"AP Calculus: Absolute Maximum and Minimum of a Function","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0PpkR_uHrw4\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFQoTNDYzMzc4NjY4NTY2MDIyNTI1NloTNDYzMzc4NjY4NTY2MDIyNTI1NmqHFxIBMBgAIkQaMAAKKWhoamxjb2J0bHp4b2VuYmhoVUNhVzM1NkNSekVJdmVTVE9YWkJoaXRREgIAESoQwg8PGg8_E4sEggQkAYAEKyqLARABGniB9AMC_v8BAPoEGAf8B_0C-v328vn9_ADjBAP1_vwCAPb5APcBAAAAAQ36_QUAAAD5-_j6Av4AAP3-_-4DAAAAFPkK_QEAAAACC_cG_gEAAPsL9w0E_wAACA8CCwAAAAD2DwEDAQAAAPsB_AQAAAAACP77Cfzy_gAgAC3YMtQ7OBNACUhOUAIqhAIQABrwAX8WAQPh8Ov_8gXhAMYSAQCnBx__BiT1AL8LIAHgCs0AAxjoANz81gD48gr_2foNABvx4__05g3_K-b9ADcLCwD37wEAIe7yAC8K8wDc9fb_6Rkh_v8AEwACAQkCHgkA_uQEEAD7Adf_CPDLBibzFwH6ARwECv4C_Q3yD__SEOwAB_TiAO376AH79vz86wYK_eHoBgH5FPj63wTsAgb_-P3w5AsABQLp-yb86gIEEQj-AfL7BPcA9v7vCRsD6PoFCPgMFwLr9vz3DycEAvsHCQgACAP9-AMABgcQ_gQI6Aj96e34CPv7__LtD_0D-Ar3ByAALS14STs4E0AJSGFQAirPBxAAGsAH5svzvhPDBL1pBeE8HMg_vQnqjDuczC69FNqYvSdPeT0LEYm7EIBuPdlVbbw5e4i60nKQvv2ufj1cEQ26y4AzPubRiL2YYjM8nmKFvpG6fT0sc4S8Efw_vn9geD0QRBK8QIo6PSwTWTwueAy94Nl-PVJxTb3NN0e8_DaEvIl5GLvoHcA7mK1rvRflQ728SQK9G8lUvJ_xM7y5cB48IAe6PYKRN72Ispy89WItPVlUnzxxu-E7dvk7vf_jKTxLTUw89z8QPhegbbyfSfI70acaPagHW70mpxc7-n0_vRqUHz3GBWQ6aAimuucwhDxAJqO8-MwoPfQ7KDwbcqI8PGsHvjWEPjxoDfm8GyqbPVidRj3fTC-7sOLUvXU2yT08jlU8Vu-COmtuOzwOgvE6MGOqPaGRmTwmaaM8YhFDvPRn5Dw6a8G8chP3uyy5ijxzMsw8IkQDPUWAU7xE3928ufIjvKJ55TwaqVK8hwRivTeuej3-Nnq8cPUXPYPFHD2rjNA8v8ODPTQqlTwLD6m5xTVDPfhRDb4Jbyy7LvIdvG8umb3Ny367fEftPSA3DT1TXR-78PlhPRRfDb53hBG74W9lPaGGL706apq7KfRwPUhcNrxCnKC600SEPE_q7LuxAQk8Zh6_vYUtbD1qMVu7IB8ZPdhhnD0krBW7kaBTvN8mrb0W7Z66Aye7PU2sgrze2wC7sIWqPXa2Mb1RPjs6lyOfPfvGfL0DrBI6lQwAvVdfWL0zU3M4CS5bvUcVLLsa3YO7N6fSPaGD7jzIJFe5zaHWPHhSlTw8ypc4qSiYvf3xAz3LRX04QwiCOxTwxrycRFI4XFQLvZwV8b3cnnU5VNFOPY5Q_bw3l9u5e0_APAbH2zxTqcC6AjQjvE2rd70hs145uyDsvLcUJr3dxtc3CwWRPJ8x3TyDT5Q3YFnpvEiZnrzTRSC51VOQvEItPL000Ws3p39EPbzSvT0nKvs2q8wKOsurKb0JVcK3ER7Iu5F9UD3vHYw26X_7uvZ61z0rdK-2z8YFPdxMoDyH9ie4mBqsPdfwqb0C6F64KK-fvC0esz0TGaQ3IvsAvsZfJD0XmGU4pMKYPbc_3TuBA_84C71ZPFDJFDwHGTy3d3PnvPBjMb3Cw9w3wqTYPTYqJr17tC259cOvuWwb67yy5YC4znI0vF0Py72ocJu3pn_pvYxktD08KOk47AO9O3zUD74X-ty4yvRwPSLhKz7xy4o4lV8rPM-8jD3F_Aa5o2K3vOhY1DzE1fO2vUAfveudG7yDUDg3IAA4E0AJSG1QASpzEAAaYB4JAEjoBMzR-SPVFesuEcnLDOXmz___CST_DzfsA9s9xLUlIf_73PDUpgAAAB-y0BjcAPB_9uPUEesVD57SyTcZVf8S97bT2sKgwP0E6R0IMNMlCADFCqFOPOnuPvQL9SAALafoGDs4E0AJSG9QAiqvBhAMGqAGAABAQAAAqMEAAIBCAAAAwgAAgD8AAPBBAACUQgAAAAAAAJzCAACAwAAAAAAAAIhBAADAwAAAoMAAAABCAAAwwgAAbEIAAEDCAAAQQQAAGMIAAFjCAACYwQAAwMEAAKZCAAB0QgAAgEEAABDCAACYwQAAsEIAAIZCAABAQAAAUMIAAIDBAACAwAAAxMIAAHBBAACgQQAAbEIAABBCAAA0QgAAAAAAABxCAABAwQAAgMEAACRCAAAgQQAAuEEAACDBAACCQgAAiMEAAODBAABAwAAAcMEAAJBBAACYwQAAIMEAAPDBAAAEQgAAyEEAAGRCAACAPwAAEMIAAAjCAABAwAAAqEEAABTCAAAAAAAAuMIAAIzCAACwwQAASEIAAJhBAACAwQAABEIAANBBAABwwgAApsIAAMjBAAAkQgAA4MAAAJbCAAAYQgAAAMEAACDBAABAQgAA1kIAACDCAABAwAAAKEIAAMBAAAAAQgAAAEIAAKhBAAAAwAAAyEEAABTCAACYQQAAwMAAACxCAAAcQgAADMIAAHxCAAAsQgAAEMEAAEjCAABwQQAA6MEAAKJCAAAswgAAVEIAAHBBAADgQAAAuMEAAODAAAAQQgAAwkIAANhBAADowQAAIEEAAEDCAADAwQAAoEAAAJhBAACEwgAAiMEAALDBAADwwQAAqMEAACDBAACwwQAA8MEAAGjCAACoQQAA2kIAAODAAADYwQAAMEIAAIjBAACwwQAAqsIAAKJCAADAwQAAbEIAADDBAAB0QgAAOEIAADTCAAAEwgAAAMAAAFBBAAAQQQAAgEEAACRCAACAwAAA6MEAAITCAACIwgAA4MAAAJDBAABAwQAAAMIAADBCAADoQQAAYMEAAAhCAAAAwQAAYMEAAJjBAACgQQAAcMIAAFDCAAAAQAAAAAAAAIC_AABsQgAAgEEAAGRCAABwwQAAEEIAAJZCAABIwgAAqMIAAEBAAAAcwgAAokIAABjCAABIwgAAhkIAAIDBAAAQQQAAgEEAAABAAABgwQAAAEEAAFDBAACgQQAA2MEAAIBAAAAAwQAACMIgADgTQAlIdVABKo8CEAAagAIAAKg9AACAOwAAwj4AAHC9AAAEPgAAHD4AAM4-AAAdvwAAbL4AADQ-AACIvQAANL4AAJg9AAA8PgAAcL0AAMi9AAB8PgAAcD0AAIg9AAD-PgAAfz8AAIi9AAD4PQAAFD4AAKi9AACYPQAApj4AAOg9AAD4PQAAhj4AAHA9AAAsvgAA-L0AADQ-AABUPgAAuL0AABQ-AACGvgAAfL4AALa-AABAPAAALL4AAOg9AADgPAAAvr4AAAy-AABcPgAAgLsAAAS-AABEvgAAqD0AADQ-AAAQPQAAlj4AADC9AADgPAAART8AAFC9AAAEPgAAJL4AAFS-AACgPAAAPD4AAGy-IAA4E0AJSHxQASqPAhABGoACAAB8vgAAMD0AAEC8AABfvwAAFL4AABw-AAAMPgAAiL0AAIA7AACYPQAA2L0AAOi9AAD4PQAAUL0AANg9AADYvQAAbL4AAB8_AACovQAAvj4AAKi9AAA8vgAAuD0AAIi9AACAOwAAvr4AAKg9AACgPAAA6D0AANi9AABAvAAAqD0AAES-AABcvgAA4DwAACS-AADgPAAAyD0AAIa-AADYPQAApr4AAFC9AACgPAAA4DwAAOA8AAAEvgAAf78AADw-AAAEPgAAbD4AAKC8AACovQAAcD0AAKY-AACovQAAiD0AAIA7AABsPgAAMD0AAIi9AACKPgAAUD0AALI-AAAMviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=0PpkR_uHrw4","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":480,"cheight":360,"cratio":1.33333,"dups":["4633786685660225256"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1843507684"},"18375622381324672791":{"videoId":"18375622381324672791","docid":"34-8-15-Z5CB1BBE051214540","description":"Part two of section 14.7. We discuss how to find the absolute maximum and absolute minimum of a function of two variables on a closed, bounded region of the plane.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1576305/1f22d3a334b6074b1dd2fe282427c878/564x318_1"},"target":"_self","position":"17","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dy5UNKqjZ5tw","linkTemplate":"/video/preview/18375622381324672791?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus 3 Section 14.7 - Part 2 : Absolute Extrema","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=y5UNKqjZ5tw\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFgoUMTgzNzU2MjIzODEzMjQ2NzI3OTFaFDE4Mzc1NjIyMzgxMzI0NjcyNzkxaq8NEgEwGAAiRRoxAAoqaGhtcnRud2planNtcG5zY2hoVUNSZk1oTGk1el9vLThjdVE5bTZUZVBREgIAEioQwg8PGg8_E_UUggQkAYAEKyqLARABGniB-wQBAv4DAPv8_w8BCPsCDf35AQn-_wDxAQL8_gEAAPMAAAf-AAAABQ4D9wkAAAD9-PgC-_4AAArzAfoDAAAADvz8BvsAAAAOA_j-_gEAAPMHAg0E_wAA-_0DBgAAAAD-DQUJAQAAAPUHAfgBAAAABAH7BAAAAAAgAC2ddds7OBNACUhOUAIqcxAAGmADFABOCvbK3TY87CMTBPjkyAP50eLl__b1ABgL5uj8MNqkFg0AGcv9C7IAAAAh594l3AAXZxge8_wkEwv-E8jrKX_VEqam_ykC7OcKzREpOPz6H-0AwhXHPirO0BP4OxsgAC0drCk7OBNACUhvUAIqrwYQDBqgBgAAEMEAAMBBAABEQgAAdMIAADhCAADYQQAAmEEAABDCAADowQAA6MEAACDBAAA4wgAAgMIAAAjCAABAQgAA8MEAACDCAADgwAAA4MEAAEjCAAAcwgAA8EEAAOBAAAB0QgAAEEEAAKDAAAC2wgAAUMIAAJZCAAAIQgAAsMEAALjBAACQwQAABEIAAIrCAADAQAAAUMEAAL5CAAAYwgAAYEIAAPhBAAA8QgAABEIAAJhBAADAQQAAkMEAABDCAABgwQAAhkIAABBBAABUwgAAmkIAABxCAAC4wQAAREIAAEDBAADUwgAAAAAAADDCAAAUQgAAFEIAAMjBAAAcwgAAdMIAADBBAAAwwQAA-MEAAMDAAAAUwgAAEMIAADxCAAAgQQAA-MEAAHRCAAAwQQAAqsIAAEBAAAA4wgAAKEIAAOhBAADAwQAAQEAAAJjBAAA0QgAAAEEAAIhBAABEQgAAwEEAALhCAABQwQAA0MEAAARCAACIQQAAvsIAADBBAACQwgAAIEIAAKDBAADIQQAAcEEAAAzCAABoQgAAVEIAAITCAAA0wgAAGMIAAGzCAACCQgAAMMIAAIA_AAAwQQAAGEIAAPDBAABIwgAAEEEAAIBCAAAYwgAAOMIAAIA_AACgQAAAIMEAAMjBAABUwgAAYEEAAMBBAACAPwAAFMIAAKjBAABwwgAAuMEAABRCAADowQAAUMEAAFRCAABwQQAAoEEAAIBBAABgwQAAwEAAAJDCAADowQAA4EEAAGRCAADgwQAAsEEAACDBAABYwgAAGEIAAEBAAAAwQQAA0MEAALjBAAA8QgAAAEIAAADCAADgQAAAoMAAAIzCAABIwgAADEIAACDCAABgwQAAiMEAAIjBAAAkwgAAoEAAAKhBAABQQgAABEIAAMBBAABIwgAAcEIAAGDCAADwwQAAEEEAAAAAAABAQAAAiMEAAIhCAACYQQAA4EEAAJTCAACoQQAAsMEAAIZCAABwwQAAwMEAAEDBAAAAQQAAQMAAAEDAAACKwgAAXEIAAKjBAADIQQAAaEIAAJjCAAB8wgAAlMIAALDBIAA4E0AJSHVQASqPAhAAGoACAACAuwAAgDsAAL4-AAAQPQAAcL0AAKg9AACePgAAIb8AAHy-AAAwPQAAiL0AAIC7AACCPgAAHD4AALi9AAD4vQAAsj4AAAw-AAAUPgAAKT8AAH8_AAA8vgAAmD0AABC9AADIPQAAED0AANg9AABcvgAAlj4AAGQ-AACgPAAAUD0AADC9AAC4PQAANL4AAHC9AADgvAAADL4AAKK-AAC2vgAAuL0AADQ-AAC4vQAAUL0AAFS-AAD4vQAAmj4AAKA8AADgPAAAcL0AAKA8AABMPgAARD4AALY-AAAsvgAAuD0AAEU_AAAQPQAAFD4AAOC8AAAUvgAABL4AAAw-AACeviAAOBNACUh8UAEqjwIQARqAAgAAED0AAHC9AABwvQAAYb8AABS-AAAUPgAABD4AAIC7AACIvQAAgDsAAEA8AAAcvgAAoLwAADS-AABwPQAAoDwAAEA8AAARPwAATL4AAJ4-AAAQvQAA2L0AAJi9AAAEvgAA4LwAAOi9AAAQPQAA6L0AAEC8AADoPQAAMD0AAMg9AAAcvgAAtr4AADS-AAC4PQAAqr4AAIg9AACCvgAAcL0AABS-AACAuwAADD4AAKA8AAAwvQAAcD0AAH-_AAAQPQAALD4AAFC9AACIPQAAqL0AAKC8AABQPQAAQLwAABA9AAAQPQAAfD4AABC9AABAvAAABD4AAAy-AAA0PgAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=y5UNKqjZ5tw","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18375622381324672791"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6723192984274939815":{"videoId":"6723192984274939815","docid":"34-11-9-Z3D365772200F0B81","description":"In this lesson you will learn how to use the first derivative test to find local max/min points of a polynomial function. A local max exists at a point if at the point, the derivative is zero...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1769611/71c83fe03b528b77204fccfded50af09/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/sKaYSQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNacMYszT2ag","linkTemplate":"/video/preview/6723192984274939815?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"3.2 - Local & Absolute MAX & MIN Points (full lesson) | grade 12 mcv4u | jensenmath.ca","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NacMYszT2ag\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFQoTNjcyMzE5Mjk4NDI3NDkzOTgxNVoTNjcyMzE5Mjk4NDI3NDkzOTgxNWq2DxIBMBgAIkUaMQAKKmhod293eW9keGV1bGppaWRoaFVDWm92QzYxalROVDFhUV9KREZvZVp3URICABIqEMIPDxoPPxPRC4IEJAGABCsqiwEQARp4gfQMBvMF-gD6_Q8E-gf9AgwN9Pb0AAAA2vYC-_n5AwDxAAEH_QAAAPoI-RICAAAAAPvwDvj9AAAJ_wUEBQAAABIQDPL-AAAAAhIABf4BAADnAQH_9QIAAfoGBvb_AAAACgsE7QAAAAAFBO_8AAAAAAv3-RMAAAAAIAAtHI_BOzgTQAlITlACKoQCEAAa8AF27h8B6Q7tAc732QC7FewAgQAC__0u1wDC6_QAsRLP__kLFADWJA8AIBgUAMAnGQEh7tz_8eAP_y7QHv8h8QcA-PQXABD6DQApGgUA--Hs_tVHAv8O7AD__sziACY09f4dBAP8-gHN_xv95AAu2CMB7xoPAyzh_vzw2wAB6RMOAub33P0WHPsD5gMJ9dfuGwL97Pn_Ay77AfX38AIA-g79DfoXAQ0i8QQaJxUEEv_8BtXv-PgF9vD7CBgPBPoU3f3u4Af37fUc-Af6CgUV5Rv7-P0MBRoA9fkZ7__3-fMNBPkJ-v7b__cF7gD5EfrYAeogAC2_TyQ7OBNACUhhUAIqcxAAGmAY8wAiBRzH9RNJ6vnZ9xPc8_C7FuAD__EDAOkS5_z7GNatAe3_CNwI1bEAAAAdCtcYCwD2aezR7jb9NB3nmtQSCX_rEg-7CxDhyuwr1_0rHSL6HiwA1BSzEFrVyiEqAi4gAC2Jdys7OBNACUhvUAIqrwYQDBqgBgAAgEAAAIjBAACIwQAA6MEAAADBAAAsQgAAyEIAAKhBAADgQQAAgMAAAHDBAABEwgAABMIAAMBAAAAwQgAAAMAAAMDAAABgwQAAAEAAAODBAAA8QgAAAMIAADDBAACAvwAAcEEAAKhBAAA0wgAAJMIAAADAAAAAQQAAoMAAAABCAACWwgAAMEEAALDCAAAUQgAAwEAAALJCAAAAwAAAgL8AADhCAAAEQgAAcEEAAPhBAACKQgAAmMIAAADCAAAUQgAAFEIAABhCAACAQAAAUMIAAKDAAADgQAAADEIAABhCAACowgAAQMAAAKDAAABQQgAAcEIAAK7CAAAAwgAAtsIAAEDAAABIwgAAkMEAAJ7CAAAIwgAAGMIAAAhCAABgQgAAvsIAANjBAABgwQAAdMIAAJDBAACgwQAAsEEAAKBBAAC2wgAAkkIAAMjBAACGQgAAXEIAACDBAACwQQAADEIAAAhCAACewgAAyEEAAGhCAAAUwgAADMIAACDBAACSwgAAgMEAAGzCAADAQgAA4EEAAPDBAAAoQgAAQEAAAAxCAAAkwgAAQEAAAKDBAAAAwAAAkMEAAIRCAABAQQAAgEEAAEDCAAAAwAAAmEEAAADAAADYQQAABMIAAJbCAADgwAAA2EEAAATCAABQwgAA4MAAAAAAAAAIQgAATEIAABTCAAD4wQAA4EEAAMjBAADQwQAAGMIAALZCAADgwQAAsEEAAEBBAABgwQAAjsIAAIC_AADAQQAAqMEAADhCAAAAQQAAMEEAAEBAAAA0wgAA2MEAAMBBAAAAQQAAOMIAAJJCAACIQQAAgMAAAExCAAAIwgAAjsIAAAzCAACwwQAApEIAAFjCAADAQQAAmEEAAGTCAAAAAAAAgEEAAMhBAAAEQgAAgEAAAKDAAABcwgAAkEEAANjBAACAwQAAYMIAAEjCAADAQQAAQEEAAMDAAAAgQQAAhMIAAMjBAABkwgAAZEIAAIJCAADAwQAAsMEAANDBAADQQQAAoMEAADBBAACYwQAAIEEAAKBAAAAYQgAASEIAABxCAACIwQAAsMEAAAAAIAA4E0AJSHVQASqPAhAAGoACAABEvgAAhj4AAL4-AACAuwAAND4AAJY-AACSPgAAY78AAOq-AAAcPgAAiD0AAJq-AAA8PgAAuj4AAFQ-AAAUvgAA5j4AAKg9AACaPgAA3j4AAH8_AAB8vgAAgj4AAMi9AABcvgAAuL0AAI4-AACgvAAAyD0AADC9AAAcPgAAMD0AADA9AABQvQAAVD4AANi9AAAQvQAAfL4AAMi9AAA0vgAA2L0AADQ-AACgPAAA4LwAAHC9AACYvQAATD4AAAS-AACIvQAAbL4AACQ-AACAOwAAML0AAJo-AAC4vQAAqD0AAEU_AABsvgAA2D0AALi9AABwvQAAEL0AAEw-AAAUviAAOBNACUh8UAEqjwIQARqAAgAAyr4AAAw-AABAvAAAV78AAIC7AAAEvgAALD4AACS-AAAcvgAAgj4AACQ-AAAQvQAAiL0AABy-AACoPQAAML0AAIa-AAA7PwAAyD0AAKI-AACIvQAAML0AAFC9AAAMvgAAiL0AANi9AACAOwAAyD0AAJi9AAAcvgAAgLsAAPg9AADIvQAALL4AAFA9AABUvgAAQDwAADw-AACGvgAAiL0AAPi9AAAUvgAAbL4AALi9AAAQPQAA6L0AAH-_AAAsvgAABD4AAMi9AAAMPgAAiL0AAOA8AAC4PQAAoDwAAOA8AABAvAAATD4AAPg9AAAQvQAAFD4AAMi9AACoPQAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=NacMYszT2ag","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6723192984274939815"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3571048297953882703":{"videoId":"3571048297953882703","docid":"34-3-1-ZD70B14AB2188BA94","description":"BUY THIS BEAT (Untagged) : https://bsta.rs/JwlCAG FREE Download (Tagged): https://bsta.rs/JwlCAG This is a Travis Scott, Mike Dean and Utopia type sound. By clicking the link above, you can...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3010902/8ae02c5a81c60b0f7ce6acf912bb4ca9/564x318_1"},"target":"_self","position":"19","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRt7G4__qwsI","linkTemplate":"/video/preview/3571048297953882703?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"[mike dean intro] travis scott X utopia type beat ~ absolute maximum","related_orig_text":"Max-Absolut","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max-Absolut\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Rt7G4__qwsI\",\"src\":\"serp\",\"rvb\":\"EqwDChM1MTg2MTkyMTIzMDE1NTY0ODM2ChM5NzE5NzI3NTMwODg1MzQ4MzExChMzODY4MDA3NzIzNDUxMzkyOTc0ChQxODIwNzM1NjAwNDgyNTM4Mzk2MgoUMTU0NjgwODEyMjg5OTA5NzkyMjUKFDEyMzA0MzE4MjAwOTQyMjM5NDc4ChMyMzUzMTkxOTkzNzkzNTE3NjkxChM2NDQxMDEwMzM5NjU1OTA4MDUzChM2MDQ3NTA3MTc5NTE2Njc0NjA1ChQxMjM5NTQ0Mjg5NzQxNjE2MTc3OAoUMTM0NzY1OTUwOTA5NDQ5MDcxMzgKFDE4MjM0MDIyNDgxNzk3MTcyNjEzChM2MzAzNTQ2OTIxODg2OTM3NDc1ChQxMzQ2MzYxNjYwOTI5Mjk0MTU5MQoTNDYzMzc4NjY4NTY2MDIyNTI1NgoUMTgzNzU2MjIzODEzMjQ2NzI3OTEKEzY3MjMxOTI5ODQyNzQ5Mzk4MTUKEzM1NzEwNDgyOTc5NTM4ODI3MDMKEzQ2NjQ0Mjk1NTk1NDgzMjMzNTMKEzg3ODM0MzQzMjU5Mjk3NjUwNTkaFQoTMzU3MTA0ODI5Nzk1Mzg4MjcwM1oTMzU3MTA0ODI5Nzk1Mzg4MjcwM2quDRIBMBgAIkQaMAAKKWhoZWJ4d2JxdGlubGVsaWhoVUNJdkw1Z1Z6XzhwR0dxQXFHekRDbnVnEgIAESoQwg8PGg8_E68BggQkAYAEKyqLARABGniB-xIICgL-APQCDAEDBP4B5O4A9v0AAADYAfb_-vgEAOD3B_YC_gAAAv34AgoAAAD3CwUB-f8AAA8O_f73AAAADQEMBPUAAAAH_PD3AAEAAO3y_QwE_wAAA-_7Bv8AAAACEBIF_wAAAAf8Df8AAAAAFAL5AAAAAAAgAC1ohMw7OBNACUhOUAIqcxAAGmAxEAAlIdnU3izq3CAi9vrq-wX889wu__gjADw8sd8TLBWzJSsAyb7iCK0AAAAZCvYl8AAjaSDwGAH2DdsclgZMKX8oCPQVLwvvsfsN4Sbe88MbMv8A4i8DCwnNB101IfwgAC3MriM7OBNACUhvUAIqrwYQDBqgBgAAwMEAAIDAAAAQQgAAgEAAAEDBAACIwQAAiEEAAJjBAAAowgAAUMEAAOjBAABkwgAAPMIAABzCAABowgAAhEIAAADBAAAsQgAA2EEAADzCAABQQQAAUMIAAAjCAACKQgAAoEEAALjBAABgwQAAAMEAACBCAACwQQAAUEEAAJBBAADQwQAAnEIAAEzCAABQQQAAQMAAAEBCAACgQAAAUEIAAODBAAAMQgAA2MEAABDBAACAPwAAgEEAANjBAAAgwQAA_kIAAKDAAACAwQAAgD8AACDBAABAwAAAAAAAAMDBAABYwgAA0EEAAEDCAAC4QgAAGMIAAFBBAACEQgAAFMIAAADBAAAgwQAAXEIAAKBAAACowQAA-EEAACBBAAAgQgAAIEEAAFhCAACowgAAlMIAAFTCAAAwwQAABEIAAFDCAACqwgAAYMEAADhCAACIwQAA4EAAAIDAAACwwQAA6EEAABBCAACoQQAAQMAAAMDBAACAvwAAUMIAAIC_AADIwQAAsEEAAADCAACgwAAAZEIAALjBAADAQAAAoEAAAGDBAAD4wQAAAMIAABhCAABMQgAAlMIAAMhBAAAYQgAAaMIAACBBAAAAQAAA0EEAABxCAACcQgAAwEAAAOBBAAB0QgAA8EIAABxCAABAQQAAaEIAABTCAABAwQAAXMIAALhBAADAQQAAcEEAAAAAAABMwgAAgL8AAEDBAABMQgAANMIAABDCAAD4wQAAPEIAAPjBAAAYwgAAyEEAAARCAADoQQAA6MEAADBCAADIwQAADMIAANBBAAAAQQAA-MEAALDBAACYQQAAmEEAACBCAAC4QQAAQEAAAETCAABAwgAAoMAAAPBBAADowQAAjMIAAIRCAABMQgAADMIAAABCAADAwAAABEIAADBCAACAwgAAkMEAAJLCAABgwgAAQMEAAARCAADwwQAA-MEAAJDBAACgQQAAmMEAAIbCAAAYwgAAgsIAADzCAADcwgAA0MEAAJBCAAB0wgAA-EEAAFzCAABAQAAAAEEAAIjBAACAwQAAtEIAAJTCAAAkwgAAfMIAANhBIAA4E0AJSHVQASqPAhAAGoACAAAcvgAAjj4AAB0_AACOPgAAsj4AACw-AADgvAAAEb8AADS-AADoPQAAkj4AACS-AAA0PgAAZL4AAHA9AABQvQAAnj4AAAS-AABQvQAAsj4AAH8_AABcvgAARL4AAAS-AACIPQAAwr4AAOY-AABAvAAAbD4AAJo-AAAMPgAA9j4AALi9AACOPgAA6D0AAFy-AADIPQAAjr4AAJa-AAA8vgAAFD4AAKi9AADGPgAAHD4AACw-AACAuwAARD4AAIA7AABAvAAAgr4AADy-AAAwvQAAVL4AANY-AACAuwAAND4AAKY-AACGvgAAEL0AANg9AADYvQAAcL0AAFw-AADYvSAAOBNACUh8UAEqjwIQARqAAgAAdL4AAKa-AAAEvgAAf78AALg9AADSPgAAhj4AAPi9AABUvgAAhj4AAEy-AABkPgAAoLwAAOA8AACovQAAUD0AACy-AABpPwAARL4AAAU_AADovQAAJL4AAJg9AABwPQAA-L0AAJK-AACIPQAAyD0AAAw-AACAuwAAyD0AAEy-AADYPQAAC78AAGw-AABwPQAAPL4AAAm_AAAMvgAAXD4AAIi9AACYvQAAcL0AABC9AABMvgAAPL4AAHe_AADIvQAABD4AABw-AACYvQAADD4AALi9AACSPgAAiD0AALg9AADYvQAAij4AAGQ-AAB0vgAALD4AAMI-AADaPgAAbL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Rt7G4__qwsI","parent-reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3571048297953882703"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false}},"dups":{"5186192123015564836":{"videoId":"5186192123015564836","title":"\u0007[Absolute\u0007] Min/\u0007[Max\u0007] (Extrema) in Calculus","cleanTitle":"Absolute Min/Max (Extrema) in Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0_1bY6VAZSA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0_1bY6VAZSA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa1VhenRVZ1ExSTJ0ZlJRTzVjZ1NuZw==","name":"Meryl Weaver","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Meryl+Weaver","origUrl":"http://www.youtube.com/@merylweaver2815","a11yText":"Meryl Weaver. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":297,"text":"4:57","a11yText":"Süre 4 dakika 57 saniye","shortText":"4 dk."},"date":"25 haz 2020","modifyTime":1593043200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0_1bY6VAZSA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0_1bY6VAZSA","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":297},"parentClipId":"5186192123015564836","href":"/preview/5186192123015564836?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/5186192123015564836?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9719727530885348311":{"videoId":"9719727530885348311","title":"How to find the \u0007[Absolute\u0007] \u0007[Max\u0007] and Min of a function: Fun- Sized Calculus","cleanTitle":"How to find the Absolute Max and Min of a function: Fun- Sized Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/jToJaXVApYA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jToJaXVApYA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO2h0dHA6Ly93d3cueW91dHViZS5jb20vQG1pc3NsaXNhNjk0MQ==","name":"Miss Lisa","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Miss+Lisa","origUrl":"http://www.youtube.com/@misslisa6941","a11yText":"Miss Lisa. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":61,"text":"1:01","a11yText":"Süre 1 dakika 1 saniye","shortText":"1 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"12 eki 2021","modifyTime":1633996800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jToJaXVApYA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jToJaXVApYA","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":61},"parentClipId":"9719727530885348311","href":"/preview/9719727530885348311?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/9719727530885348311?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3868007723451392974":{"videoId":"3868007723451392974","title":"\u0007[Absolute\u0007] \u0007[Max\u0007] and Min in Multivariable Calculus","cleanTitle":"Absolute Max and Min in Multivariable Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=i9Cw0vhz30k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/i9Cw0vhz30k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDakx5WHFGeGYwMXV2ZUVRU29pb2l5dw==","name":"MrClean1796","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MrClean1796","origUrl":"http://www.youtube.com/@MrClean1796","a11yText":"MrClean1796. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":488,"text":"8:08","a11yText":"Süre 8 dakika 8 saniye","shortText":"8 dk."},"views":{"text":"6,1bin","a11yText":"6,1 bin izleme"},"date":"18 ara 2014","modifyTime":1418860800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/i9Cw0vhz30k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=i9Cw0vhz30k","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":488},"parentClipId":"3868007723451392974","href":"/preview/3868007723451392974?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/3868007723451392974?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18207356004825383962":{"videoId":"18207356004825383962","title":"Insane Excursion Pushing a cheap sub to the \u0007[absolute\u0007] \u0007[max\u0007] trying to send it","cleanTitle":"Insane Excursion Pushing a cheap sub to the absolute max trying to send it","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hHlmCpAs1BE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hHlmCpAs1BE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQW43S2Z4dW94VXVyOGRQLWxGQ2pkQQ==","name":"meade916","isVerified":true,"subscribersCount":0,"url":"/video/search?text=meade916","origUrl":"http://www.youtube.com/@meade916","a11yText":"meade916. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":59,"text":"00:59","a11yText":"Süre 59 saniye","shortText":""},"views":{"text":"5,5bin","a11yText":"5,5 bin izleme"},"date":"18 mar 2024","modifyTime":1710779489000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hHlmCpAs1BE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hHlmCpAs1BE","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":59},"parentClipId":"18207356004825383962","href":"/preview/18207356004825383962?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/18207356004825383962?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15468081228990979225":{"videoId":"15468081228990979225","title":"How to Normalize data using \u0007[Max\u0007] \u0007[Absolute\u0007] & Min Max Scaling | Python","cleanTitle":"How to Normalize data using Max Absolute & Min Max Scaling | Python","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=wSgWf-lUdDU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/wSgWf-lUdDU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWDctV2k5aW9zbEE5NjkxSU50Rk81UQ==","name":"Hackers Realm","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Hackers+Realm","origUrl":"http://www.youtube.com/@HackersRealm","a11yText":"Hackers Realm. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":848,"text":"14:08","a11yText":"Süre 14 dakika 8 saniye","shortText":"14 dk."},"views":{"text":"9,2bin","a11yText":"9,2 bin izleme"},"date":"27 nis 2022","modifyTime":1651017600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/wSgWf-lUdDU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=wSgWf-lUdDU","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":848},"parentClipId":"15468081228990979225","href":"/preview/15468081228990979225?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/15468081228990979225?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12304318200942239478":{"videoId":"12304318200942239478","title":"Applied Calculus 1 \u0007[Absolute\u0007] Extrema","cleanTitle":"Applied Calculus 1 Absolute Extrema","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bWvpP_qSwnk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bWvpP_qSwnk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOUtpUmJqYkZzMUtDX3VObXBfZVZJdw==","name":"Zekeriya Y. Karatas","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Zekeriya+Y.+Karatas","origUrl":"https://www.youtube.com/channel/UC9KiRbjbFs1KC_uNmp_eVIw","a11yText":"Zekeriya Y. Karatas. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":708,"text":"11:48","a11yText":"Süre 11 dakika 48 saniye","shortText":"11 dk."},"date":"4 nis 2021","modifyTime":1617494400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bWvpP_qSwnk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bWvpP_qSwnk","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":708},"parentClipId":"12304318200942239478","href":"/preview/12304318200942239478?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/12304318200942239478?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2353191993793517691":{"videoId":"2353191993793517691","title":"Calculus 1: Extrema: \u0007[Absolute\u0007] \u0007[Max\u0007] / Min, Relative \u0007[Max\u0007] / Min_Part 1","cleanTitle":"Calculus 1: Extrema: Absolute Max / Min, Relative Max / Min_Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Wo2DbGBf1HE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Wo2DbGBf1HE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbHRIcnZ3QXhBWmVKMVVWQTJRRGN3dw==","name":"Nara's Math Channel","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Nara%27s+Math+Channel","origUrl":"http://www.youtube.com/@narasmathchannel386","a11yText":"Nara's Math Channel. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1872,"text":"31:12","a11yText":"Süre 31 dakika 12 saniye","shortText":"31 dk."},"date":"10 şub 2021","modifyTime":1612915200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Wo2DbGBf1HE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Wo2DbGBf1HE","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":1872},"parentClipId":"2353191993793517691","href":"/preview/2353191993793517691?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/2353191993793517691?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6441010339655908053":{"videoId":"6441010339655908053","title":"Finding \u0007[Absolute\u0007] \u0007[Max\u0007] & Min in Calculus 1","cleanTitle":"Finding Absolute Max & Min in Calculus 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OyRFdmawLD4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OyRFdmawLD4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS2w3TVhMUnJrNmhuV3VPYkZ3S3hkZw==","name":"Cole's World of Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Cole%27s+World+of+Mathematics","origUrl":"http://www.youtube.com/@ColesWorldofMathematics","a11yText":"Cole's World of Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":227,"text":"3:47","a11yText":"Süre 3 dakika 47 saniye","shortText":"3 dk."},"views":{"text":"1,8bin","a11yText":"1,8 bin izleme"},"date":"10 eki 2023","modifyTime":1696888526000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OyRFdmawLD4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OyRFdmawLD4","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":227},"parentClipId":"6441010339655908053","href":"/preview/6441010339655908053?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/6441010339655908053?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6047507179516674605":{"videoId":"6047507179516674605","title":"What is the concept of Envelope Load Combination? \u0007[Max\u0007] Min \u0007[Absolute\u0007] \u0007[Max\u0007]","cleanTitle":"What is the concept of Envelope Load Combination? Max Min Absolute Max","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rn7Cg_hgPQE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rn7Cg_hgPQE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS0txbGJtMURlV0hwNnAyWW1SOE1lZw==","name":"Mr EngineerO","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mr+EngineerO","origUrl":"http://www.youtube.com/@MrEngineerO","a11yText":"Mr EngineerO. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":430,"text":"7:10","a11yText":"Süre 7 dakika 10 saniye","shortText":"7 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"25 mar 2024","modifyTime":1711324800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rn7Cg_hgPQE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rn7Cg_hgPQE","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":430},"parentClipId":"6047507179516674605","href":"/preview/6047507179516674605?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/6047507179516674605?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12395442897416161778":{"videoId":"12395442897416161778","title":"Calculus 1: \u0007[Absolute\u0007] Extrema","cleanTitle":"Calculus 1: Absolute Extrema","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_Zl1KiOcESo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_Zl1KiOcESo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbWMxRVdENFRTc195T18yZ0dXQUJGUQ==","name":"Dr. Kathryn Boddie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dr.+Kathryn+Boddie","origUrl":"http://www.youtube.com/@dr.kathrynboddie2831","a11yText":"Dr. Kathryn Boddie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2488,"text":"41:28","a11yText":"Süre 41 dakika 28 saniye","shortText":"41 dk."},"date":"22 mar 2020","modifyTime":1584835200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_Zl1KiOcESo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_Zl1KiOcESo","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":2488},"parentClipId":"12395442897416161778","href":"/preview/12395442897416161778?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/12395442897416161778?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13476595090944907138":{"videoId":"13476595090944907138","title":"Find the \u0007[absolute\u0007] \u0007[max\u0007] and min of a quadratic function","cleanTitle":"Find the absolute max and min of a quadratic function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QEWXXQg4Vek","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QEWXXQg4Vek?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQWY3RW92U0VRcU8xV3g4MGVpeEZsUQ==","name":"Daniel An","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Daniel+An","origUrl":"http://www.youtube.com/@daniel_an","a11yText":"Daniel An. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":700,"text":"11:40","a11yText":"Süre 11 dakika 40 saniye","shortText":"11 dk."},"date":"31 mayıs 2016","modifyTime":1464652800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QEWXXQg4Vek?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QEWXXQg4Vek","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":700},"parentClipId":"13476595090944907138","href":"/preview/13476595090944907138?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/13476595090944907138?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18234022481797172613":{"videoId":"18234022481797172613","title":"Calculus - Extreme Values - \u0007[Absolute\u0007] \u0007[Maximum\u0007] and Minimum Points","cleanTitle":"Calculus - Extreme Values - Absolute Maximum and Minimum Points","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4Tqfxdth5ik","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4Tqfxdth5ik?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVHpIdHR5YlFpZVFYUlkzNEdLRTdGUQ==","name":"Math Turtle","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Turtle","origUrl":"http://www.youtube.com/@MathTurtle","a11yText":"Math Turtle. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":662,"text":"11:02","a11yText":"Süre 11 dakika 2 saniye","shortText":"11 dk."},"date":"28 şub 2021","modifyTime":1614470400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4Tqfxdth5ik?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4Tqfxdth5ik","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":662},"parentClipId":"18234022481797172613","href":"/preview/18234022481797172613?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/18234022481797172613?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6303546921886937475":{"videoId":"6303546921886937475","title":"3.5D - Finding the \u0007[Absolute\u0007] \u0007[Max\u0007] without a Candidates Test (2004 FRQ 3c, TI-84) [AP Calculus]","cleanTitle":"3.5D - Finding the Absolute Max without a Candidates Test (2004 FRQ 3c, TI-84) [AP Calculus]","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XIqZfUdZhJU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XIqZfUdZhJU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQjY4cVFlZUJZWjRSOHRjVjY3dXo0QQ==","name":"MrHelpfulNotHurtful","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MrHelpfulNotHurtful","origUrl":"http://www.youtube.com/@MrHelpfulNotHurtful","a11yText":"MrHelpfulNotHurtful. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":304,"text":"5:04","a11yText":"Süre 5 dakika 4 saniye","shortText":"5 dk."},"date":"8 mayıs 2022","modifyTime":1651968000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XIqZfUdZhJU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XIqZfUdZhJU","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":304},"parentClipId":"6303546921886937475","href":"/preview/6303546921886937475?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/6303546921886937475?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13463616609292941591":{"videoId":"13463616609292941591","title":"(AP Calculus) - Critical Numbers, \u0007[Absolute\u0007] \u0007[Max\u0007]/Min, and Local \u0007[Max\u0007]/min points (Part 1)","cleanTitle":"(AP Calculus) - Critical Numbers, Absolute Max/Min, and Local Max/min points (Part 1)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CGcvvcC7C54","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CGcvvcC7C54?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmJYYkNUT093ZFBCbXZITG5ENlNWZw==","name":"DUCKY NOTE","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DUCKY+NOTE","origUrl":"http://www.youtube.com/@duckynote1337","a11yText":"DUCKY NOTE. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":708,"text":"11:48","a11yText":"Süre 11 dakika 48 saniye","shortText":"11 dk."},"date":"30 mar 2021","modifyTime":1617130844000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CGcvvcC7C54?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CGcvvcC7C54","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":708},"parentClipId":"13463616609292941591","href":"/preview/13463616609292941591?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/13463616609292941591?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4633786685660225256":{"videoId":"4633786685660225256","title":"AP Calculus: \u0007[Absolute\u0007] \u0007[Maximum\u0007] and Minimum of a Function","cleanTitle":"AP Calculus: Absolute Maximum and Minimum of a Function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0PpkR_uHrw4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0PpkR_uHrw4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYVczNTZDUnpFSXZlU1RPWFpCaGl0UQ==","name":"Scott Kennedy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Scott+Kennedy","origUrl":"http://www.youtube.com/@ScottKennedyMath","a11yText":"Scott Kennedy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":523,"text":"8:43","a11yText":"Süre 8 dakika 43 saniye","shortText":"8 dk."},"views":{"text":"3,6bin","a11yText":"3,6 bin izleme"},"date":"30 kas 2011","modifyTime":1322611200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0PpkR_uHrw4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0PpkR_uHrw4","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":523},"parentClipId":"4633786685660225256","href":"/preview/4633786685660225256?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/4633786685660225256?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18375622381324672791":{"videoId":"18375622381324672791","title":"Calculus 3 Section 14.7 - Part 2 : \u0007[Absolute\u0007] Extrema","cleanTitle":"Calculus 3 Section 14.7 - Part 2 : Absolute Extrema","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=y5UNKqjZ5tw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/y5UNKqjZ5tw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUmZNaExpNXpfby04Y3VROW02VGVQUQ==","name":"Burkemper Lectures","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Burkemper+Lectures","origUrl":"http://www.youtube.com/@burkemperlectures","a11yText":"Burkemper Lectures. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2677,"text":"44:37","a11yText":"Süre 44 dakika 37 saniye","shortText":"44 dk."},"date":"16 eyl 2020","modifyTime":1600214400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/y5UNKqjZ5tw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=y5UNKqjZ5tw","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":2677},"parentClipId":"18375622381324672791","href":"/preview/18375622381324672791?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/18375622381324672791?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6723192984274939815":{"videoId":"6723192984274939815","title":"3.2 - Local & \u0007[Absolute\u0007] \u0007[MAX\u0007] & MIN Points (full lesson) | grade 12 mcv4u | jensenmath.ca","cleanTitle":"3.2 - Local & Absolute MAX & MIN Points (full lesson) | grade 12 mcv4u | jensenmath.ca","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NacMYszT2ag","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NacMYszT2ag?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWm92QzYxalROVDFhUV9KREZvZVp3UQ==","name":"JensenMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=JensenMath","origUrl":"http://www.youtube.com/@MrJensenMath10","a11yText":"JensenMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1489,"text":"24:49","a11yText":"Süre 24 dakika 49 saniye","shortText":"24 dk."},"views":{"text":"8,4bin","a11yText":"8,4 bin izleme"},"date":"5 eki 2020","modifyTime":1601856000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NacMYszT2ag?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NacMYszT2ag","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":1489},"parentClipId":"6723192984274939815","href":"/preview/6723192984274939815?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/6723192984274939815?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3571048297953882703":{"videoId":"3571048297953882703","title":"[mike dean intro] travis scott X utopia type beat ~ \u0007[absolute\u0007] \u0007[maximum\u0007]","cleanTitle":"[mike dean intro] travis scott X utopia type beat ~ absolute maximum","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Rt7G4__qwsI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Rt7G4__qwsI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSXZMNWdWel84cEdHcUFxR3pEQ251Zw==","name":"Illusion","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Illusion","origUrl":"http://www.youtube.com/@lllusion_","a11yText":"Illusion. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":175,"text":"2:55","a11yText":"Süre 2 dakika 55 saniye","shortText":"2 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"30 tem 2023","modifyTime":1690675200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Rt7G4__qwsI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Rt7G4__qwsI","reqid":"1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL","duration":175},"parentClipId":"3571048297953882703","href":"/preview/3571048297953882703?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","rawHref":"/video/preview/3571048297953882703?parent-reqid=1769518604840108-6787578261933563875-balancer-l7leveler-kubr-yp-sas-182-BAL&text=Max-Absolut","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"7875782619335638757182","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Max-Absolut","queryUriEscaped":"Max-Absolut","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}