{"pages":{"search":{"query":"Minnesota Topology Seminar","originalQuery":"Minnesota Topology Seminar","serpid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","parentReqid":"","serpItems":[{"id":"8848515599247851829-0-0","type":"videoSnippet","props":{"videoId":"8848515599247851829"},"curPage":0},{"id":"12719092061279305827-0-1","type":"videoSnippet","props":{"videoId":"12719092061279305827"},"curPage":0},{"id":"2830028958342714320-0-2","type":"videoSnippet","props":{"videoId":"2830028958342714320"},"curPage":0},{"id":"10160919347774148329-0-3","type":"videoSnippet","props":{"videoId":"10160919347774148329"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dE1pbm5lc290YSBUb3BvbG9neSBTZW1pbmFyCg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","ui":"desktop","yuid":"2458223691765328854"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"11041614140751820880-0-5","type":"videoSnippet","props":{"videoId":"11041614140751820880"},"curPage":0},{"id":"8592766611126025876-0-6","type":"videoSnippet","props":{"videoId":"8592766611126025876"},"curPage":0},{"id":"9097650311774534451-0-7","type":"videoSnippet","props":{"videoId":"9097650311774534451"},"curPage":0},{"id":"8387457154470868122-0-8","type":"videoSnippet","props":{"videoId":"8387457154470868122"},"curPage":0},{"id":"14047037392267069341-0-9","type":"videoSnippet","props":{"videoId":"14047037392267069341"},"curPage":0},{"id":"18304123626273725467-0-10","type":"videoSnippet","props":{"videoId":"18304123626273725467"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dE1pbm5lc290YSBUb3BvbG9neSBTZW1pbmFyCg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","ui":"desktop","yuid":"2458223691765328854"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"1350485044789063974-0-12","type":"videoSnippet","props":{"videoId":"1350485044789063974"},"curPage":0},{"id":"14325860958204130371-0-13","type":"videoSnippet","props":{"videoId":"14325860958204130371"},"curPage":0},{"id":"17256008617320858932-0-14","type":"videoSnippet","props":{"videoId":"17256008617320858932"},"curPage":0},{"id":"18279123110972327710-0-15","type":"videoSnippet","props":{"videoId":"18279123110972327710"},"curPage":0},{"id":"17584372565814652769-0-16","type":"videoSnippet","props":{"videoId":"17584372565814652769"},"curPage":0},{"id":"11115615587708215908-0-17","type":"videoSnippet","props":{"videoId":"11115615587708215908"},"curPage":0},{"id":"11592166002218968281-0-18","type":"videoSnippet","props":{"videoId":"11592166002218968281"},"curPage":0},{"id":"17884208751006189830-0-19","type":"videoSnippet","props":{"videoId":"17884208751006189830"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE1pbm5lc290YSBUb3BvbG9neSBTZW1pbmFyCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","ui":"desktop","yuid":"2458223691765328854"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMinnesota%2BTopology%2BSeminar"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"5190054214798281620746","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1407484,0,79;1426275,0,95;1432976,0,59;1436972,0,16;1437713,0,94;1436030,0,12;1429981,0,64;1427780,0,60;1434899,0,47;1428502,0,62;1428124,0,8;1427951,0,77;1432570,0,68;260557,0,30;1418769,0,59;1434138,0,58;1425920,0,61;1282204,0,93;1417827,0,41;1366396,0,60;1428625,0,47;1432906,0,77;1430623,0,73;1419899,0,12;1349071,0,31;1430625,0,68;1188718,0,38;1434234,0,27;1428091,0,60;89014,0,66;1404022,0,98;1432055,0,83;30277,0,10;1427070,0,10;1422262,0,85;1357004,0,63;1352004,0,61;266846,0,81;259954,0,79;63007,0,66;151171,0,27;126309,0,72;1281084,0,92;287509,0,43;1005534,0,38"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMinnesota%2BTopology%2BSeminar","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Minnesota+Topology+Seminar","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Minnesota+Topology+Seminar","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Minnesota Topology Seminar: 2 bin video Yandex'te bulundu","description":"\"Minnesota Topology Seminar\" sorgusu için arama sonuçları Yandex'te","shareTitle":"Minnesota Topology Seminar — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y9c73fc6d0915946ddafe3e7e22bf0ec7","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1407484,1426275,1432976,1436972,1437713,1436030,1429981,1427780,1434899,1428502,1428124,1427951,1432570,260557,1418769,1434138,1425920,1282204,1417827,1366396,1428625,1432906,1430623,1419899,1349071,1430625,1188718,1434234,1428091,89014,1404022,1432055,30277,1427070,1422262,1357004,1352004,266846,259954,63007,151171,126309,1281084,287509,1005534","queryText":"Minnesota Topology Seminar","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"2458223691765328854","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1441146,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765328863","tz":"America/Louisville","to_iso":"2025-12-09T20:07:43-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1407484,1426275,1432976,1436972,1437713,1436030,1429981,1427780,1434899,1428502,1428124,1427951,1432570,260557,1418769,1434138,1425920,1282204,1417827,1366396,1428625,1432906,1430623,1419899,1349071,1430625,1188718,1434234,1428091,89014,1404022,1432055,30277,1427070,1422262,1357004,1352004,266846,259954,63007,151171,126309,1281084,287509,1005534","queryText":"Minnesota Topology Seminar","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"2458223691765328854","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"5190054214798281620746","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":157,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"2458223691765328854","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1729.0__491d2077c35fc53c28577367d9c4833c662b0670","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"8848515599247851829":{"videoId":"8848515599247851829","docid":"34-6-9-Z384DC8334C4ED7F5","description":"This is my talk from an algebraic topology seminar, which is reading adams blue book.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3009246/95363ddaae4ffd5bd51cf68df30f972f/564x318_1"},"target":"_self","position":"0","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXZsZBJZoLXA","linkTemplate":"/video/preview/8848515599247851829?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"On the (co) homology of spectra-Algebraic Topology seminar","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XZsZBJZoLXA\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoVChM4ODQ4NTE1NTk5MjQ3ODUxODI5WhM4ODQ4NTE1NTk5MjQ3ODUxODI5aq8NEgEwGAAiRRoxAAoqaGhyZ2NpdXV2ZXVnZ2RpZGhoVUNVcTg0aDhDTzR3QkRhV1pFQUJvVlpREgIAEioQwg8PGg8_E_sTggQkAYAEKyqLARABGniB-v_89wH_APkIDvz7BP8B9ggE7vn9_AANAgYGAQEAAAb0-wT4AQAAFvsNAAkAAADvEPb89QABABAFCQDZAP4AAxD_8v8AAAAKBvYJ_gEAAAAGCfgD_wAAFwX-BgAAAADyDP_--v8AAOMT-wEAAAAAAhcH9P8AAAAgAC3LM847OBNACUhOUAIqcxAAGmAYFgA89yL74xQtxgYb5gPy_UD7B9PwABTlABMf_NMCGP_pFCT_B9oZ-r8AAAAtFvAm7gDDV_37uygvHPUCxPUWJX_9IfkoFgv188MRKBnl5_b-4RoA3Q344yj7BREOJ1YgAC2wGUY7OBNACUhvUAIqrwYQDBqgBgAAIEEAAOhBAACgQQAAqMEAAMBAAACsQgAAEEIAAIA_AADOwgAAQMIAAIhBAACAvwAAfMIAAABAAADQQgAA6EEAALhBAACIwgAAUMEAABzCAABMQgAAoMEAADTCAABYQgAA6EEAABjCAADgQAAAZMIAAJpCAAAEQgAARMIAACDBAACIwgAAHEIAAADAAAAUwgAAcMEAALJCAACIQgAAcEEAALBBAAA8QgAA6EEAAEhCAADgwQAAwEAAAIBAAAAAAAAAgEEAAEBCAAD4wgAAIMEAAEDBAACIwQAAgEEAAPhBAABAwgAAYMEAAKBBAACAQAAAMEEAAIjBAACIwQAApMIAALhBAACSwgAAgD8AAGDBAADAQAAAMMIAAFxCAAB4QgAAwMEAACRCAAAAwAAAeEIAAADCAAAwQQAAEMEAALjBAACGwgAAkEIAACDBAADYQQAARMIAAHBBAAAcwgAAmEEAACDBAACAQAAAGEIAACTCAABQwQAAusIAADBBAAAIwgAAuMEAAKBAAAAAwQAAQMIAAHTCAABgQQAA-EEAAIA_AAAcwgAAwEEAADRCAAAEQgAAuEEAALhBAAC4QQAAAEIAAIDBAACwQQAA0EEAANBBAADAwAAAyMEAAIxCAADAQAAAREIAAADAAAA4QgAA8MEAAIBBAACoQQAAMMEAAMBBAADowQAAEEIAAPBBAABIwgAA0EEAAJDCAACoQQAAuEEAAKBBAACAwQAA6MEAAEjCAABkQgAAGEIAAJhCAADgQAAAqEEAAKBBAABwwgAAgEEAAOjBAADAwQAADEIAAGDBAAC4QQAAQMIAAMBAAADowQAAbMIAAFDCAACAQAAAgD8AAKBBAACwQQAA2sIAAMhBAABMwgAAdMIAAKBAAAAUQgAAkEEAANDBAACkwgAAAEEAAAAAAAAEQgAAsEEAACBBAACgQQAAOMIAACBBAACEQgAAWMIAACDCAADgQQAA-MEAANBBAAAIwgAAxMIAAERCAACgwAAAIMIAAPjBAAB8wgAAAEAAAAhCAABAwgAAHEIAACTCAABAQgAACMIAAJhBIAA4E0AJSHVQASqPAhAAGoACAACIPQAA4DwAAAQ-AAAQvQAAML0AADy-AAAMvgAA6r4AAFS-AAAkPgAAED0AALg9AADgvAAAij4AANi9AACAuwAA4LwAAIC7AAD4PQAAjj4AAH8_AAAwPQAAND4AADC9AACSvgAAML0AAMi9AAAkvgAA-L0AADw-AAAQPQAA6D0AAJi9AAAMPgAAiD0AAKA8AAAkPgAAdL4AAKa-AACYvQAAdL4AAIg9AACGvgAAmL0AADS-AABAPAAARD4AAAS-AACAOwAAqr4AAMg9AAAQPQAAJD4AADw-AABUvgAAcL0AAO4-AAAQvQAAMD0AALY-AAAMvgAAML0AAHA9AADYvSAAOBNACUh8UAEqjwIQARqAAgAA-D0AABQ-AADgvAAASb8AAI6-AAAEPgAAML0AAHw-AABcvgAAPD4AAAS-AADCvgAAQDwAALa-AACAOwAAcL0AAIA7AAApPwAAcL0AAGQ-AAAsvgAAED0AAIC7AADIvQAA6L0AAOA8AADYvQAAgDsAAPi9AACAuwAAED0AAEC8AACAOwAA-L0AADy-AACovQAA4DwAAEw-AABMvgAAUD0AAMi9AAAQvQAAHL4AADA9AABMvgAAmD0AAH-_AACYvQAAgr4AABQ-AAAwPQAAQLwAAJo-AACoPQAAoDwAAFC9AAAQvQAAjj4AAJi9AAAEvgAAFD4AAJo-AADYPQAAFL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=XZsZBJZoLXA","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["8848515599247851829"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12719092061279305827":{"videoId":"12719092061279305827","docid":"34-1-9-Z96F4EDC8A468D5FF","description":"Talk given at EPFL Applied Topology Seminar. It is presentation of the paper https://arxiv.org/abs/2005.12543...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4236601/7ac895e16f012f4f216844112a2ee288/564x318_1"},"target":"_self","position":"1","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-AGpfIo8RsA","linkTemplate":"/video/preview/12719092061279305827?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"EPFL Applied Topology Seminar - Persistent Stiefel-Whitney classes","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-AGpfIo8RsA\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoWChQxMjcxOTA5MjA2MTI3OTMwNTgyN1oUMTI3MTkwOTIwNjEyNzkzMDU4Mjdqtg8SATAYACJFGjEACipoaHNuaHFoeGhtYnh0ZmJjaGhVQ0U1T0xPbUJSN3ZEZllwTDlwOUxBUHcSAgASKhDCDw8aDz8T2RuCBCQBgAQrKosBEAEaeIEHAf4C_gIA_Pf_-f0CAAEOAxIA9wEAAPn_BQD6BP4ACwwDBwcBAAD8-wb8AgAAAP79Cv70_gEAEgv19wMAAAAW-fsA_wAAAP0QAQ_-AQAA__wJ-wMAAAAKCgT7_wAAAPwD-AL_AAAA_AgIBQAAAAAQ_QkEAAAAACAALW6y2js4E0AJSE5QAiqEAhAAGvABbw8R_t_4FgHLEeUAzjzsAYHtHP8xEswAwPIKAMXs4wEKKPoAvP_5_wcWI__f-wsAGQHKABAG9P8oAQP_MAwJ_-wbFwAi2PUBGwUZAdTr3v7RHhn-BOMMAPbl6AEN_-YAByHs_QwK3QEaFNABDv44AfkBIgUn_CEA6gUCAPQlFAMJ8tsADQQEAP8AEgDcGB0B7-T3BTcUDQDmAgUK-Ark_f7iFf0kAugCHPP3BfoJEvvt0wYBBwn0-gMIGAINGvX66QMUAOu_DgPuHgkDQMUD_er1FgX9_QcA6AQFAw_EGPr0-gn_6PD2DfYN-AsYAPHwIAAtQVolOzgTQAlIYVACKnMQABpgRv4AFfNE-NP_QdL_9QYSyeEY20TSCv8K4f8OHcvlGifSpxgi_wruKvOkAAAA_Te4GwkA7X_6C-s57_H8rM_dMiB28yEcrTn-79rhGODi81gOKghcALruvNxAA6Q2_PEwIAAtLJgWOzgTQAlIb1ACKq8GEAwaoAYAACRCAABQwQAAhEIAAHDBAACQQQAACEIAAMRCAADYwQAAEMEAAABAAAAQwQAAyEEAACDBAAAQwQAAEEEAAOBAAAA8QgAAkMEAAPhBAACowQAABEIAAKhBAACAvwAAkEEAAKBBAAAEQgAAcMEAALjBAAAEQgAAjkIAAIBAAACUQgAAGMIAALDBAAC6wgAA-MEAAGBBAACsQgAAqEEAAADAAACQQQAANEIAADhCAACQQQAAUMEAALjCAABwQQAAoEEAALBBAACAPwAAoMIAAEDAAADAwQAAQMAAAIBBAAC4QQAAysIAALBBAAAAQgAAVEIAAFxCAACKwgAAmMEAAGDBAAAQQgAAHMIAAEDBAACMwgAAUMEAAKDBAACCQgAAoEEAAFDCAACgQQAACMIAAIA_AABwwgAAcMEAAMBBAABIQgAAyMIAAGRCAABAwAAABEIAAHxCAADAQQAAAEEAADBBAAD4QQAAoMEAAPDBAABcQgAAaEIAAIA_AADAQAAAzMIAAOBBAADIwQAAmEIAAADCAAC8wgAAwMEAAJhBAABAwAAADMIAABBBAADAQAAA-EEAAIDBAAC4QQAAJEIAAFDBAACuwgAAjkIAADDCAACAwAAAQEIAAKBBAAB4wgAAcMIAAIA_AADowQAA4EAAAGDBAABAwgAAGMIAANBBAACYQQAAAMEAACRCAAD4wQAAAMIAAKLCAABAwgAAgD8AAI5CAAAgwQAAgEAAANhBAAAQQQAAAMAAAIC_AAAoQgAAUMIAAFBCAACgQAAA4MEAADBCAAAkQgAAgMAAALjBAAAYQgAAFMIAAARCAAAUQgAAoEEAAHjCAADAQQAASMIAABDBAADgwQAAAEIAAJDBAAAAwgAAoMAAABDBAAAQwgAApEIAAK5CAACwwQAAUEIAABDBAADYQQAAAMEAAADAAABIwgAACEIAAPDBAADgwQAAYEEAAMjBAAAwwgAAdMIAAIxCAAA8QgAADEIAACBBAAAgQgAAAEAAAFRCAACAQQAAQEEAAJpCAAB4wgAA6MEAACDBAAAwQgAAgMAAALhBAAAAQCAAOBNACUh1UAEqjwIQABqAAgAA2L0AAIi9AAB8PgAAMD0AADC9AAAQPQAAgDsAAAu_AACovQAAJD4AAEA8AAAEPgAAUD0AACw-AACCvgAAmD0AACQ-AABwPQAADD4AABM_AAB_PwAAJL4AAMi9AACovQAAyL0AAAS-AACAOwAAuL0AAJi9AACaPgAAgLsAADA9AAA8vgAAfD4AAJg9AACAuwAAUD0AAIi9AAAcvgAARL4AAJi9AAAMvgAAQLwAAFC9AADIvQAALL4AAAw-AACovQAA4LwAAFS-AAAUPgAAXD4AABQ-AAAkPgAAlr4AABC9AAAZPwAAyD0AABA9AABUPgAAcL0AAOC8AADgPAAABL4gADgTQAlIfFABKo8CEAEagAIAAKi9AAAUPgAAHL4AAEW_AAA8vgAAmD0AAOg9AADYPQAAHL4AAPg9AACgPAAAXL4AADS-AACWvgAAuD0AAOC8AACAOwAAAz8AAKi9AACePgAAyL0AANg9AABwvQAAHL4AAHC9AADYPQAATL4AAIC7AACCvgAAiL0AAKg9AACgPAAAyD0AAOC8AADgPAAAHL4AAHC9AAB0PgAATL4AADA9AADoPQAAED0AAJi9AABAPAAAbL4AALi9AAB_vwAAoLwAAHC9AAAQPQAABD4AAKC8AABsPgAA6D0AAAQ-AACAuwAAEL0AAKg9AADYvQAAPL4AAOC8AAA8PgAAmD0AAJg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=-AGpfIo8RsA","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12719092061279305827"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2830028958342714320":{"videoId":"2830028958342714320","docid":"34-0-8-ZDE44D69527F2712C","description":"Amorphic complexity (of group actions) - Gabriel Fuhrmann, Durham University Amorphic complexity is a conjugacy invariant which is particularly suitable to distinguish low complexity (specifically...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3778201/f8934634702a5591e42916493767d224/564x318_1"},"target":"_self","position":"2","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRycacXVujCE","linkTemplate":"/video/preview/2830028958342714320?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Durham Geometry and Topology Seminar - 2021/1/14 - Gabriel Fuhrmann","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RycacXVujCE\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoVChMyODMwMDI4OTU4MzQyNzE0MzIwWhMyODMwMDI4OTU4MzQyNzE0MzIwaoQJEgEwGAAiRRoxAAoqaGhzYW1oemNmbWVtZmVuZGhoVUNtWV9sLUpUSkgtenRvdXp1YzlwRE1nEgIAEioQwg8PGg8_E7cXggQkAYAEKyqLARABGniB4wEH-gzxAOcSAPkGAAAAFAsO8fMBAQDPAfT--fcEAADiCgEDAAAADP_3BPgAAAAYBvb-BAADABsF8QDyAAAAHBIK_vIAAAD2CPgA_gEAAPf2_QgE_wD_BvMX9v8AAAAGCfAC_wAAAOogAggAAAAAGA4A-QAAAAAgAC0lAKk7OBNACUhOUAIqhAIQABrwAX_5KAGkBc392RLdAPwFCAGpDR3__DXRALj76ACjE-b_9B4JAM36xf_3HxgAtuoYAOMGxP_v2xL_Pdv8ABYCDQAVBPcAMwT3AjD8GQHuJff-0RkB_hEHEf_z2bEACQzP_g_h-vz1INwBC-q2CfvrMAH7Gyf_5PsH_dUCCgff7wgFEPzvBA8FBQDn1xT8_hEfAyziIwLuPRv69i3yBAj_9PsP-RoBCfjoBRLr9f8NBwL5AMIGB_X8AfkI5ywHwvjf_-vbCPbl7g784_cIADrqEfvtCQUL3-kIBg8g8vDXyfX2EezyAMDr-PfxKP_36P3rBCAALedYDzs4E0AJSGFQAipzEAAaYC7zACHvEejkLOjnwOHqLuDGCwkqztH_8_gA7yTn4xsZBMDwEgAPxRn5sgAAADve8h_XAN5iC_rzSAIOFurE4Bn6fwAp-L8A_tT1uPEe_Q0PHRAgKgD-7a_6TyPSCzBBByAALSi6MDs4E0AJSG9QAiqPAhAAGoACAABwvQAAoDwAAFQ-AACePgAAMD0AAKA8AADgPAAAB78AANi9AAC4PQAAMD0AAIA7AACePgAAHD4AAEy-AABwPQAAmj4AANg9AADYPQAAzj4AAH8_AABcvgAA6D0AAFS-AAAwPQAA4DwAAIA7AACYvQAAqD0AABw-AAAMPgAAqD0AAJq-AABEPgAAVD4AABw-AACoPQAADL4AAI6-AADyvgAA6D0AAOi9AAC4PQAABD4AADy-AADgvAAAgLsAAHC9AACovQAAVL4AAIC7AACovQAAyD0AAEQ-AACAuwAAcD0AANo-AADovQAAiL0AAEQ-AABAPAAATL4AAHA9AACgvCAAOBNACUh8UAEqjwIQARqAAgAARL4AAEw-AAAwPQAALb8AAEC8AADgvAAA4DwAAHC9AABQvQAAND4AAHA9AAA0vgAAPL4AABy-AACAOwAAUL0AADC9AAAxPwAAyL0AAII-AADIPQAALL4AAKC8AABUvgAAyD0AAKC8AAAQvQAAiD0AADA9AABsPgAAmD0AAIC7AAAcvgAAqL0AAOg9AACYvQAAPL4AAKg9AAB8vgAAmD0AAEQ-AADIvQAA6D0AAOA8AAA8vgAAmL0AAH-_AAAMPgAAQDwAAJg9AACgvAAAML0AAKi9AADgPAAAZD4AAIA7AACgvAAAbD4AAFS-AABAvAAAML0AAJi9AACCPgAAQDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=RycacXVujCE","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2830028958342714320"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10160919347774148329":{"videoId":"10160919347774148329","docid":"34-2-5-Z8CB4E7CA77D27F8C","description":"International Seminar on Topology Algebra and Analysis, NBUDate: February 11, 2017Venue : Department of Mathematics , University of North Bengal , INDIAConv...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1024500/c2b9b389a65baec166263a8fe034399c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/tpofOwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DwATeDDPrgPY","linkTemplate":"/video/preview/10160919347774148329?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"International Seminar on Topology Algebra and Analysis - Inauguration Feb","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=wATeDDPrgPY\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoWChQxMDE2MDkxOTM0Nzc3NDE0ODMyOVoUMTAxNjA5MTkzNDc3NzQxNDgzMjlqiBcSATAYACJFGjEACipoaHdocmpsYm5rYWRkcmNiaGhVQ0tRWlU3a1RPYkNwMFl3ck5mWVlSeXcSAgASKhDCDw8aDz8T-weCBCQBgAQrKosBEAEaeIH_Ef_zAv0A6gYH_QMAAAAI_wDv9___AP4PAAEGBf4A8gAJ_PsAAAAFDvMLBQAAAPr88_n1_gEAFgTzAPUAAAATBQb59wAAAO8LBgH_AQAA6fUMCAMAAAAT9AMBAAAAAAEKDPn-_wAA4woH-QAAAAD___7_AAAAACAALZKEyjs4E0AJSE5QAiqEAhAAGvABf-LsAqcXB_tM6ggAKODyAOcD8wD95_4A1gELAM_V8QAiGggA7g7vABfu8gEYJfP_LQP2_xUP9QAX-RUA8w0DAAr66QH93AUC_RLL_wT49ADABfwAGwv7ANoh-P7dAwAA9PYH_g7dCwD4_gIA5QYTAib-8wMX8vUAKO_iAhYpCv4aDwUByPoFAAPn8QXi5wsAFPz5ABP59P8S6QT-7vv2_RTpDQHuIv759QT8-QMX_AAK7vUABx7u_v_6_f0Y9_EC5gTnA_EGB_sj-_z5C_QBBSTqAQYDAf0ABxD-BCTtCgYfDgsCIAkECPr9-P4AEv_8IAAtIDRFOzgTQAlIYVACKs8HEAAawAdm2gq_j4CbPG3xnzycau09fm90u0kJBr14tAE-OeoNPQ4MRTtSSZi90_MTvYmmAr0ZzQU9Z43LvMAPojyKrUA-DI0sPVxgRTxxPB--9xplu9NtpDzLg1S-mlWpvBGakzxfP-k8N-eauyOsvLy-uHk7VywUvUPY-rycOQE89suOuwKOUrvxgLq-ntMsvaEwBbxxHk48_OC8PPJudrxWbKc9_wjDPNVSyrz_Qqo8XzlMPb-pfrxEbiY-Q7ljPTqcL7zikgM-h6OQPDgPTDzlg3k9_4A9POAwUbxMtBq9j5EHvK22DTwVFsE89vwbuxhKuzvPMNU9T71kvTtPAT0XVRU90folPMH_97uEXI69qciXvLKzzTw5oCA91wtPvZHC8jgAEyK9nS-2vAlat7zLcZ287u4cPa_vHj1964M8LKuLN9o20jvRhYc8Go-MOidXCLvfyxQ8LzuvvRiIL7wq3De92_biPPtnvLw-JqI9GnKXPeCpFby9S3O9LiAPPfeYwLvkGpe6PHLaO3qJljwNTgo88miZPXbT-7tTQIq9ZsN1vbmpgTy1kSY9f6swPbsdzLsk6f-8gL2dvN8IQTz50A-9196nun5a3jtWazy8Uq-wvWLHGDuBiJ47BTX8vLGlR7zfLGq9m64jO09opzvmeoa9tE0YPOwAwrvikO096JDKvJW1crvEzxy8gYIivCeVHbvmKlG92ImmvB2KijuODh88D9D9PTDAaroCPrk9OatvvVTt9jgdEZ29GC5hPMD2Bzo1JM49EBVUPai6tbfHhT49AC-NvTdtprezCIU9pPxEvX6AA7k5WCk9COkpvNv1aTl3f2E9uqSFPEk6Hbm3ss25a84FPM1ssLk7v5094IdePOdXrriXJaU9E-PGPPrHXbkbZd09flSTvXqUU7gWQEI8XtoQPdx5h7esNh89EGmnumfebrnR4jG97ja5vb6gHDk86RM9r6EqPf_btTg4aVo9sRx8vMcZmbgHbeY7s8kmvXhFDLisYya8BlZEvOQuALnBSFk9pJEKvY3WJjhD8w89cruMPZy-mzfJQzq8H1maPTfzBjf0k4A9LMHyN_32oDcX1Tq6-VAxOtBY3DedcKU82ZcMvSMJd7g_1p28WGttvY78zDfkZIc8_B1FPZWcsLgmU4W8SGkbPb0hgLcX08y9gHUGvbpO4biOuaG8yQmuPWRuFLfXnGg93xE6vU9iGbijubQ9yH2LPYDxgzjtlkY6deikPQpu47j1jpk9kkHuvTtmzDhya_K91NVdPRFChbcgADgTQAlIbVABKnMQABpgFAMACAk0E8EGJ-H4Hdvs6REC4SPO6QAFzv_37zWXHPjNxtQj_zn0_-6lAAAAHAT-GwoA8HPk4pxT8yb7_4jrMP9_UvnkBvX_8b3dvBwdzhri6vUnANkHwAgu5vMrBCAhIAAtzuofOzgTQAlIb1ACKq8GEAwaoAYAAIBBAACYQQAAQEAAAMjBAAAcwgAAhkIAAADBAADYwQAAAEAAAODBAADowQAAMEEAABTCAAB4QgAAdEIAAABBAAAAQAAAQMEAAPhBAACAQAAA8EEAACjCAAB4wgAAYEIAAJhCAAAQQQAAhMIAAHzCAAB8QgAAmEEAAABAAACAQAAAMEEAAIhBAAAAwAAAUMEAANBBAABAQgAAcEEAAABAAAA4wgAALEIAANDBAABAQgAAfEIAAIA_AAAwQQAAHMIAAHxCAADAQQAAGMIAAERCAABQQQAANEIAAGDBAAAUwgAAusIAAIA_AABQwQAAAEEAAIDAAACwwQAAUMIAADDBAAAAAAAA4MAAAHDBAAAQwQAAKMIAAKBBAAA4QgAA0EEAAODAAAD4QQAAEMIAAEDBAACIQQAAEMEAACjCAABkQgAAYMEAAKBBAADAwQAAsEEAANjBAACWQgAADMIAAKDAAACAvwAAQMEAAGTCAABIQgAAQEIAAMjBAABQwQAAlMIAAFBBAACYQQAAFEIAAI5CAAAYwgAA4EEAAKDAAABowgAAgMAAAEDBAAAwwgAAgL8AAKLCAABQQQAAEEEAACBBAAA8wgAA0EEAAHDBAAAwQQAAPMIAAJjBAABQQQAAQEAAAEDBAABAwQAAEMEAALjBAAAcwgAAYMIAAPDBAACAwAAABEIAAIrCAAAAAAAARMIAAOBAAAAgQQAAwEAAAKhBAABsQgAAgMAAANDBAACawgAA4MAAAFhCAAAIQgAA2EEAADRCAAAQQgAAAMAAAEBBAADgQAAAEMEAAADCAABkQgAAcEEAAGDCAAC4wQAAxkIAAOBAAAAgwgAAcEEAAFBBAABgwQAAgD8AAKTCAADAQAAAEMEAAMDAAACYQgAACEIAAIJCAACwQQAAvsIAAKhBAADgQAAAQMAAAIhBAABwQgAAMEEAADDBAADYwQAAAMAAAAAAAACUwgAAOEIAAIzCAABQQgAAoMEAAODCAACsQgAAMEEAACzCAAAMQgAA0EEAAHTCAADAQQAA-EEAAIZCAACwwQAAAMIAAODBAACoQSAAOBNACUh1UAEqjwIQABqAAgAAQLwAACS-AACuPgAAQLwAABC9AACIPQAARL4AAC-_AACGvgAABD4AAHw-AAD4vQAABD4AAKI-AABEvgAAiL0AACQ-AADgPAAAfD4AAMY-AAB_PwAAiD0AAOC8AADgvAAAPL4AAEC8AABAPAAANL4AAHC9AAA0PgAA2D0AALi9AAB0vgAAMD0AAFC9AAAwPQAA4DwAACy-AACGvgAAfL4AAEy-AACoPQAAQLwAAIi9AAAUvgAAgLsAAKo-AAD4vQAAoLwAAM6-AACAOwAAQLwAADw-AABkPgAAjr4AAHC9AAApPwAAoDwAABA9AACuPgAAED0AAIA7AABwPQAANL4gADgTQAlIfFABKo8CEAEagAIAAEA8AAD4PQAAQLwAAE2_AAB8vgAADD4AAOA8AAAkPgAAfL4AAPY-AAAcPgAAJL4AAEC8AADIvQAA6L0AADC9AADIvQAAPT8AAFA9AAAcPgAAND4AANi9AAAkPgAAFL4AAJi9AACePgAAjr4AADQ-AABAPAAAJD4AAKA8AADovQAAiL0AAES-AACAuwAAmL0AAFw-AADIvQAA-L0AALi9AAA8PgAAiL0AAAS-AADYPQAAoLwAABQ-AAB_vwAAcD0AAIi9AAAsPgAAoDwAABA9AAAMPgAARD4AAEA8AAAwPQAAmL0AAEC8AAAUPgAAXL4AADw-AAAUPgAAoDwAAKi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=wATeDDPrgPY","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":506,"cratio":2.52964,"dups":["10160919347774148329"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11041614140751820880":{"videoId":"11041614140751820880","docid":"34-8-8-Z2C9CA8F62988226C","description":"深圳大学高等研究院2021-2022基础拓扑学讨论班实录 Record of the basic topology seminar at the Institute for Advanced Study (IAS) of Shenzhen University in academic year 2021-2022 教材:J. R. 曼克勒斯 - 拓扑学(第2版) Teaching...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2956601/a57e3046593a69494b6a15a81767d83f/564x318_1"},"target":"_self","position":"5","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DniyIHQvp7i4","linkTemplate":"/video/preview/11041614140751820880?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"基础拓扑学讨论班01 基础知识, 拓扑的定义 | Basic Topology Seminar 01: Preliminary, Definition of Topology","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=niyIHQvp7i4\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoWChQxMTA0MTYxNDE0MDc1MTgyMDg4MFoUMTEwNDE2MTQxNDA3NTE4MjA4ODBqrw0SATAYACJFGjEACipoaGtyaXhvdWFiY2FraWhkaGhVQ0ZtTUlnN1hPTURIdkpHMUVrUlhOZWcSAgASKhDCDw8aDz8T-DiCBCQBgAQrKosBEAEaeIEA_f_-_gMA8P8D_v8CAAHt_gHx-__-AP8LBA7_Bf4A7fwD-gP_AAD4_wEN_QAAAPcD-PIB_wAA_gH59PQAAAAL9__wAAAAAPgCBQb_AQAA7wgQ_AIAAQAX-f4MAAAAAPwIAQH8_wAA9gb-CgAAAAAA__7_AAAAACAALVL32js4E0AJSE5QAipzEAAaYB4kABb9FwbV_gvQCg8kGvzZFuUL8fAA_ugA-woN3Pj_9NHqHP8X4xAFzQAAAAYR2BXsANtF-RHMHA0P_w2o8fQcfwUV-SH-Cunz4AgOG_kEAB_pBgDd8_DlIwz_MQYPDyAALVf7bjs4E0AJSG9QAiqvBhAMGqAGAADgwQAAkEEAADBBAAAgwQAApkIAAJTCAADgQAAAFMIAAETCAACAwAAAIEEAAITCAAAEwgAAPMIAAIBBAACAwQAAEMEAAMjBAACoQQAAAEEAAIBBAACgQAAAIEIAAAhCAACAvwAAsMEAABzCAAAUwgAALEIAAEBCAACgwAAAdEIAAIDBAADQwQAANMIAAMDAAAAwwQAAdEIAABDBAAAgQgAACEIAAIhBAABgQQAAoEEAANhBAACgwAAAjsIAAIjBAAAkQgAAiEEAAFzCAAAAwAAAcMIAAFjCAABMQgAAUMEAAJTCAACwwQAAcEEAAMBAAACoQQAA0MEAAGDBAABwwgAAcEEAAPjCAAAgwQAAjMIAABTCAADAwAAAUEIAAJhCAAAgwQAAAEAAABhCAADQwgAAmMEAAOBBAAAAAAAAYMEAAPDBAAAgQgAAQMAAAMhBAACAQQAAgD8AAHBCAAC8QgAA0EEAAMTCAADIwQAAukIAAADBAAA8wgAA4EAAABzCAADAQQAAqEEAAGBBAABAwAAAoEAAAEBCAACYQQAAeMIAAEBAAAAAwAAABEIAANBBAADgwAAAPEIAABRCAAA8wgAAQEEAAKBAAABwQQAAgEEAAMBAAABQwQAAoMAAAADCAADAQAAAlsIAAHDCAABEwgAAoEEAANBBAAAQwQAAIEEAAHDBAACkwgAAwEAAAGBBAAD4wQAAgL8AAGBBAAB0QgAA2EIAAKjBAACIwQAAwMIAAKjBAAC4wQAABEIAAFBBAADYQQAAEEEAAMjCAACCQgAAgkIAABDBAAAIwgAAJMIAABRCAADgwAAAQEAAAJhBAADAQAAABMIAALDBAAAgQgAALMIAABzCAACWwgAAwMEAAOjBAAAQQQAAQEIAAIRCAACAPwAAYMIAAHBBAABAQgAAGMIAAIDBAADAwAAA8EEAAABAAABowgAAGEIAADBCAAAgQQAAoMEAAMDAAACAQAAAnkIAALjBAAA0wgAAqMEAAIBAAABwQQAAiMIAAIzCAACwQgAAwEEAAMBBAAA4QgAAYMIAABTCAAAAQAAADMIgADgTQAlIdVABKo8CEAAagAIAAIC7AACYvQAARD4AAFA9AACYvQAAcD0AAEy-AAAXvwAAuL0AAKg9AADYPQAAuD0AABC9AADoPQAAJL4AADC9AAAQvQAAgLsAAHC9AACqPgAAfz8AAIg9AACAuwAA4LwAAOi9AABAPAAAyL0AANi9AADoPQAA6D0AALg9AAC4PQAANL4AABw-AAAMPgAAUD0AAJg9AABwvQAATL4AAGS-AACovQAALL4AAAy-AAAMvgAA6L0AAAS-AABcPgAAEL0AAIi9AACivgAAmD0AAJi9AABEPgAAFD4AAI6-AAAwvQAAAz8AAIi9AACovQAAND4AAEC8AACgPAAA-D0AAKC8IAA4E0AJSHxQASqPAhABGoACAAD4vQAAJD4AAEC8AAA7vwAAuL0AAEA8AAAwPQAAVD4AADS-AABkPgAAqD0AAES-AAAQvQAAPL4AAEC8AAAQvQAAgLsAABU_AACAOwAARD4AABS-AAAwPQAAoDwAADS-AAAQvQAALD4AAIC7AACgvAAADL4AADA9AACIPQAAML0AAKA8AAAwPQAAuL0AADS-AAAMvgAAmD0AAJi9AADIPQAAMD0AAFC9AABwvQAAqD0AAIq-AAA8vgAAf78AAIA7AAAEvgAAfD4AAPg9AACYPQAAZD4AANg9AACYPQAAiL0AAFC9AAAsPgAA-L0AAFy-AACgvAAAED0AAIC7AAAQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=niyIHQvp7i4","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11041614140751820880"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"8592766611126025876":{"videoId":"8592766611126025876","docid":"34-10-16-Z416948A680084CD5","description":"This video forms part of the Ai3sd Winter Seminar Series 20/2021. This video is the first talk in the first seminar of the series: Topology & Applications in Chemistry. Topology: From shapes to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3111959/acfe0e6b2b75075ce1cd4395e8d4839b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/KOTB1gEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhbiuV1cH0gs","linkTemplate":"/video/preview/8592766611126025876?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Ai3sd Winter Seminar #1: Topology & Applications in Chemistry Talk 1 - Professor Jacek Brodzki","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hbiuV1cH0gs\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoVChM4NTkyNzY2NjExMTI2MDI1ODc2WhM4NTkyNzY2NjExMTI2MDI1ODc2aogXEgEwGAAiRRoxAAoqaGhzYWR5eHVtYWZsb3ZoZGhoVUNYT2tWOTQzZG1vNnJTaVZsbzdsc0J3EgIAEioQwg8PGg8_E9ASggQkAYAEKyqLARABGniBBRT9CQT8APT-Cw0CB_wBDAsI__YBAQD7FfoD-gT-AP3--fUBAAAAAQ36_QUAAADyA-r6-f8AABIIAQ31AAAAFAAFBPwAAAAEEPsECwABAfzt_Q8E_wAAEwoJAf8AAAD7Gfz5AP8AAO_-E_kAAAAAFAsA-gAAAAAgAC1L5Mc7OBNACUhOUAIqhAIQABrwAX_cHgHCCA_-9vEEAewL2wGE7Rz_Jf_cAMUE_QCZ1fb_J0QAALfwB_8DACL_5Qv9_wT54f8M8CEAJwQRAC4D8wAADAwAF-4dAgIA9ADXAOX_CP0C_wn7CgDq9Rv-_xcQ_hYM9wANBu4BDe34AvbxHQIMKgUDNOQHBOUQBwILBQgB9fvw_zwd9gH1BeIB7fIWA-kW5gEaCfT88fgBAhHv9wn3-gsGCPnsBEMR__7n_QH79_QH-x0RCPwkARABBBvuBgfp-P7ky_j7BwsH_yjWDwEO5BoC1goPA-P4_vkX2Q_02PgF_twj_QT9FwX8Du8K9iAALf-5KTs4E0AJSGFQAirPBxAAGsAH-u8Bv4Ebbzv-0mK9HeJEPEIhIj0nwLA8obfRuPCnRjxLKDO8n9ajPSHw9jxF9py8OGmKvtEMPTztrn08xmumPsiqUjzply28Wi5bvuqPlTxuYpK89aGDvjx38TsuxZc7xo0WPcLwtjvkG-U88zsNPnYUzLyGS1g891a0PWSgIT0ymSC9XamyvcGcKr09HkS8_tVDPWA-eb181rU84ZcKPnGolL26q2y7cPGLvOzYjLpDIsg5uhGWvRk8CDy-fQc99z8QPhegbbyfSfI7_3aJPdGxA7svHjk8xijSOQ-HW7w2-iC7Bhw4PXJFc7wNq5M8A2iKPXdGQL1Kguw6izzFO-e-QTx38SM85Ib_PTl29TyMb548Z-4BvQEAWzzLM8y7dUZqvanMIz0VS1u8AZm3PdaiKrxXIYo8RBTTPEfSiTxfFsk8iyE0PahRKD3fYYe78SoMPHNuTj0gNPG7lz0kPUEr8jtPwpa7qvMIvgdTHr0g22g82ChwPcXuob01yfY7PRRgPWuW8LznzTw8gPQNPVkIQT3zvyY80Y-ru-Q0H72ykTW8RLFLPXldHLz_1gi7we4KPR7cgjygGm07HxaVvSlZjjzzNOS6Vms8vFKvsL1ixxg7XLVhPXSZej3vu_U79-N7PRVQDb0QVgq8aSOuO2TbM7z6PBC7r8uFvYBx3zvU0rs6_IUjPWxXjTwPYgg7h4BtPZGUmbw81hk6AaXhPZurhj3EXTO53__iPDFQo7zjrZA72EMAPYZAyT1lHzW5lEC0PeDNZL3ih2o51Qj9PL299TwirI652_aSPT4xfDw9U4A4CShIOX2wjDzf95A6fb48vbMB_Tw_jEm5cPsvPG3GSb0F7A45x7wuPZJ0Er39D6o4fAKyPCA0gb1HcgW49F4KPE82yrxCyYK4pGc_PbsOlT3YPnY4NfBDPeTZCLy28NO4ZJEmPEkNcTvbVKg4sa6VvcAzKz1IgL43vIYqvakTkL0Ayqg4KfSwvHrQkj3ROUq35Y5IPAmOJjzpW4S4Wk8oPTPUcjwBYEy35eK5vHFom73lrQg2oNx7PQGZtz1YADa432yjvfwtCbzNfaq20NtzvY_iXL0bCpa3cdsoPRIF6bzJQ7g4LHkhvRwPgb33Zbk3j6GYPfPfKLyVJx65uWD6vLPGarwNQL839kbtPFSDujwnVoq3qv2MvFLkGr0lG_43t_YZPQ5VR71sqVi4yvRwPSLhKz7xy4o4UqSxvIQiZz2d6RO4cP2FPHqSTzydf_W3zWdvvSH0Ir2jUNK3IAA4E0AJSG1QASpzEAAaYBgWABL9Hvj2BD_r7u_tD_vuDP8U4v0A8_IACi_39AgH38kSKAAM6hz3ywAAAP4D5hb4AOBJDuDsJO0a_-DI-BEhf_4tCd31FeLi6Pb6-hATCRT8FwD4F8_mQOfbBB0JECAALYnkbDs4E0AJSG9QAiqvBhAMGqAGAADgwAAAUEEAABRCAAAowgAAwMAAAKDBAAA0QgAA4EEAABDCAADYQQAAoEAAAJDBAAB0wgAA8MEAAFBCAADowQAAAMAAAGjCAACAQQAACMIAAGBBAABIwgAAGEIAACBCAAA8QgAAmMEAANTCAACQwgAAQEIAABBCAABwQQAArEIAALDCAACAwQAAosIAAKjBAAAwwQAAqEIAAHDBAABQQQAAwMAAALDBAACAQAAAQEEAADhCAABcwgAAHMIAAADBAAAoQgAA4EEAACzCAAAkQgAA-EEAAKhBAABcQgAAAMAAAPLCAAA0QgAA4EAAAEBBAACMQgAASMIAAABBAAAUwgAAwMAAADDBAABUwgAAPMIAAHBCAACAwQAA4EAAAKpCAACGwgAAVEIAAEBCAACkwgAA-MEAAGzCAAAIQgAAYMEAAJzCAACIQQAAPMIAAChCAACQQQAAQEAAAHDBAAA8QgAAmkIAAHTCAACAQAAAnkIAAChCAAD4wQAAwEAAAIzCAAAwQQAAgD8AAJpCAAAMwgAAJMIAAKBCAADAQQAA2MEAAEDCAABgwQAAYMEAAABAAAA8wgAAUEIAAPhBAAAAQAAAPMIAALjBAACAwQAAoEAAALjBAADIwQAAuMEAAMDAAAAQwQAA8MEAACDCAADAwQAA6EEAAIhBAAAEQgAAgEEAAPBBAACIwQAAMEEAAEDBAACOwgAAoMAAALBBAACAwQAAwEAAAMDAAABAwQAAuMIAAIBAAADwQQAAsEEAAADBAAAgQgAA4MEAAGzCAAAAwQAAkEEAAGDBAABwwQAAUEIAAHBBAAAQwQAAFEIAAJjBAAAcwgAAbMIAABTCAABgQgAAUMIAAPhBAACowQAALMIAAADAAACIwQAA2EEAAKpCAADIQQAADMIAAEDCAADAQAAA2EEAAPBBAABQQQAAkMEAAIZCAACgQQAAFEIAAEDAAAAQQQAAqEEAAMDBAADIQQAAPEIAAODAAAC4wQAAAEAAACTCAACowQAA6sIAABDCAAAgQQAALMIAALhBAABAQQAAwMAAAKDBAABwwgAAAMEgADgTQAlIdVABKo8CEAAagAIAADC9AABQPQAAmD0AAOA8AADIvQAAoLwAAOC8AAD-vgAAor4AAPg9AAAMPgAAuD0AADC9AAAUPgAALL4AABy-AABQPQAAcL0AAOg9AADuPgAAfz8AADC9AADoPQAA2L0AABy-AAAwPQAAED0AABC9AAC4vQAAPD4AAMg9AADYPQAAyL0AAEw-AABwPQAAiD0AABw-AACSvgAAbL4AADC9AADmvgAA-L0AAAw-AADIvQAAdD4AABA9AAB8PgAALL4AAHC9AAC-vgAAoDwAAOA8AAAUPgAAfD4AAGy-AACYvQAA9j4AANi9AADYPQAALD4AAEA8AABQPQAA6D0AABy-IAA4E0AJSHxQASqPAhABGoACAACAOwAAHD4AAES-AAA3vwAAFL4AALg9AAAwvQAADD4AAJ6-AACePgAAEL0AAEy-AAA0vgAAjr4AAIA7AABwvQAAQLwAACc_AACgvAAAij4AAHC9AACIvQAAUL0AAOi9AACgPAAAiD0AACS-AAC4vQAAcL0AAFA9AACAuwAABL4AANg9AADIvQAAcL0AAOi9AADYvQAAQLwAADS-AACAOwAAEL0AAOA8AADgPAAAQLwAAAy-AAAwPQAAf78AABC9AAC4vQAAMD0AANg9AAAEvgAAPD4AAIC7AACgvAAAqL0AAEC8AAAMPgAAUL0AAIA7AABAvAAAJD4AADA9AADgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=hbiuV1cH0gs","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8592766611126025876"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9097650311774534451":{"videoId":"9097650311774534451","docid":"34-5-9-Z3D809ACA1B9C2D3D","description":"深圳大学高等研究院2021-2022基础拓扑学讨论班实录 Record of the basic topology seminar at the Institute for Advanced Study (IAS) of Shenzhen University in academic year 2021-2022 教材:J. R. 曼克勒斯 - 拓扑学(第2版) Teaching...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2956601/a57e3046593a69494b6a15a81767d83f/564x318_1"},"target":"_self","position":"7","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFsZsJup4YW8","linkTemplate":"/video/preview/9097650311774534451?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"基础拓扑学讨论班02 拓扑基与度量拓扑 | Basic Topology Seminar 02: Basis for a Topology and Metric Topology","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FsZsJup4YW8\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoVChM5MDk3NjUwMzExNzc0NTM0NDUxWhM5MDk3NjUwMzExNzc0NTM0NDUxaq8NEgEwGAAiRRoxAAoqaGhrcml4b3VhYmNha2loZGhoVUNGbU1JZzdYT01ESHZKRzFFa1JYTmVnEgIAEioQwg8PGg8_E4w6ggQkAYAEKyqLARABGniB-_8B__sGAPADBgYAA_8B9wcD8Pr9_QD_CwQO_wX-AAH5APj6AQAABQT-Cf8AAAD3A_nyAf8AAAoBAP_tAP8AB__--v4AAAD-AQQGCAEAAPgBCv4CAAAADv4BCAAAAAD7C_gC_gAAAPUMBQUAAAAABf_79wAAAAAgAC3En-M7OBNACUhOUAIqcxAAGmAdJAAXChj92QT31gQZExL-3RDrFOzqAArxAAsTB9sACfzY6R__I-ES-c4AAAAKCuQcAgDYRAcJ3gEYDO8BofADFX__CwgeGg_1-NYCKxv38-z77A8A7O_h4iQIBygAFAogAC0TAHM7OBNACUhvUAIqrwYQDBqgBgAA4MEAAJBBAAAwQQAAIMEAAKZCAACUwgAA4EAAABTCAABEwgAAgMAAACBBAACEwgAABMIAADzCAACAQQAAgMEAABDBAADIwQAAqEEAAABBAACAQQAAoEAAACBCAAAIQgAAgL8AALDBAAAcwgAAFMIAACxCAABAQgAAoMAAAHRCAACAwQAA0MEAADTCAADAwAAAMMEAAHRCAAAQwQAAIEIAAAhCAACIQQAAYEEAAKBBAADYQQAAoMAAAI7CAACIwQAAJEIAAIhBAABcwgAAAMAAAHDCAABYwgAATEIAAFDBAACUwgAAsMEAAHBBAADAQAAAqEEAANDBAABgwQAAcMIAAHBBAAD4wgAAIMEAAIzCAAAUwgAAwMAAAFBCAACYQgAAIMEAAABAAAAYQgAA0MIAAJjBAADgQQAAAAAAAGDBAADwwQAAIEIAAEDAAADIQQAAgEEAAIA_AABwQgAAvEIAANBBAADEwgAAyMEAALpCAAAAwQAAPMIAAOBAAAAcwgAAwEEAAKhBAABgQQAAQMAAAKBAAABAQgAAmEEAAHjCAABAQAAAAMAAAARCAADQQQAA4MAAADxCAAAUQgAAPMIAAEBBAACgQAAAcEEAAIBBAADAQAAAUMEAAKDAAAAAwgAAwEAAAJbCAABwwgAARMIAAKBBAADQQQAAEMEAACBBAABwwQAApMIAAMBAAABgQQAA-MEAAIC_AABgQQAAdEIAANhCAACowQAAiMEAAMDCAACowQAAuMEAAARCAABQQQAA2EEAABBBAADIwgAAgkIAAIJCAAAQwQAACMIAACTCAAAUQgAA4MAAAEBAAACYQQAAwEAAAATCAACwwQAAIEIAACzCAAAcwgAAlsIAAMDBAADowQAAEEEAAEBCAACEQgAAgD8AAGDCAABwQQAAQEIAABjCAACAwQAAwMAAAPBBAAAAQAAAaMIAABhCAAAwQgAAIEEAAKDBAADAwAAAgEAAAJ5CAAC4wQAANMIAAKjBAACAQAAAcEEAAIjCAACMwgAAsEIAAMBBAADAQQAAOEIAAGDCAAAUwgAAAEAAAAzCIAA4E0AJSHVQASqPAhAAGoACAAAQvQAAEL0AAGw-AAC4PQAAyL0AAMg9AABMvgAAJ78AALi9AADYPQAALD4AAIA7AACgvAAAJD4AAPi9AABwvQAAML0AAIC7AACAOwAAqj4AAH8_AACAOwAA4LwAAKC8AACYvQAAuD0AAPi9AAAkvgAAED0AALg9AAC4PQAAJD4AAFS-AAAMPgAADD4AAEA8AAAQPQAAUL0AAIK-AABEvgAAiL0AAMi9AABcvgAAyL0AAPi9AAD4vQAAdD4AABC9AABQvQAAfL4AAFA9AAAUvgAAij4AAAw-AACSvgAAgDsAAOo-AAC4vQAAqL0AAI4-AAAwvQAAiD0AAOg9AACIPSAAOBNACUh8UAEqjwIQARqAAgAAcL0AAEw-AAAQvQAANb8AAPi9AACAuwAAuD0AACQ-AAAUvgAAjj4AALg9AABcvgAA4LwAACy-AACgvAAAML0AAKA8AAAPPwAAgLsAAFw-AAAkvgAAUD0AAIA7AAAsvgAAML0AADQ-AAAwPQAAQLwAACS-AACIPQAAmD0AABC9AADgvAAAMD0AACS-AAA0vgAAFL4AAAw-AACovQAAMD0AAKg9AACgPAAA4LwAAJg9AACCvgAAFL4AAH-_AACAuwAAyL0AAGQ-AADYPQAAyD0AAFQ-AACoPQAA2D0AAHC9AAAwvQAAND4AACy-AABMvgAA4LwAADA9AABAvAAAcL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=FsZsJup4YW8","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9097650311774534451"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"8387457154470868122":{"videoId":"8387457154470868122","docid":"34-5-0-Z41F44976DD2217E6","description":"International Seminar on Topology, Analysis and Algebra Date: 11,12 February , 2017 Venue : Department of Mathematics,University of North Bengal , India Speakers include: Prof. Djamila Seba Prof.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1339051/30418d6aa4f84db070a8471bc8c128a3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/r-jCNAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DsxAtIQnqukQ","linkTemplate":"/video/preview/8387457154470868122?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"International Seminar on Topology, Analysis and Algebra- Lecture : Prof. Ljubisa Kocinac","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sxAtIQnqukQ\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoVChM4Mzg3NDU3MTU0NDcwODY4MTIyWhM4Mzg3NDU3MTU0NDcwODY4MTIyarYPEgEwGAAiRRoxAAoqaGh3aHJqbGJua2FkZHJjYmhoVUNLUVpVN2tUT2JDcDBZd3JOZllZUnl3EgIAEioQwg8PGg8_E6oZggQkAYAEKyqLARABGniBAQj6-QAAAO4DBgYAA_8BAg4G9Pf__wAHEvkEBQL_APr5CvoCAAAAAQ36_QUAAAAC_v328_0BAAwN-wIFAAAAIA39-fsAAAD9Af4D_gEAAOv3Av8DAAAAJAH8BP8AAAAEBf____8AAO0R__QAAAAA_wP18QD_AAAgAC0IsdI7OBNACUhOUAIqhAIQABrwAVnvCgCBEv_4L_P2AFsUCf_Y_OoABwn2ANoBCgDTFwgAHQoBAPAN8QDnIgb_3gobAAH7Cf8B7xAAHwMNAAUADwAXCg0AH-_zACccEQDu9gsAxQT8APLyEwH1CPMC8PLP_wf8FgEQ9gUBAfv5_woMEAUA9P3_AwDrAd8bBP_uDgsCCxTo_RTgAgH_-gME0uX3BSsF8AMQIeL_ABX3APUGFAQT7P_-EPoF_RD_-AIOHgb8AOkEAgzi9_4J-xT9IPHoBfDz9AL47gb-BBYACAH8BAL6_goE7-cDDN0I9gAc7Pz42wT7AhEC8gn58_EH_-f6CCAALe_HVjs4E0AJSGFQAipzEAAaYCTyAAMFPgjuGkfe6wL7AtcJ8-ccwfYA5McA6PQDuhTyytL2AP8q_ALhrgAAAB4G1iDvAO5nut3jFvoEFhGj6CbsfycN-9PK_vK7ycQSFuIN1RECQQDxB732Pd7KFDURHiAALR7VLTs4E0AJSG9QAiqvBhAMGqAGAAAIwgAAQMAAAN5CAADAQAAA2EEAAOBAAAAAQgAAIEIAACjCAACcwgAAUMEAACBCAABwwQAAEMEAAEBCAACewgAAFEIAABjCAAAAQAAAhMIAAFBBAABIwgAAgMIAAHhCAAAAAAAAkEEAAGTCAABgwQAAnkIAADhCAADoQQAAoMAAACzCAAAIQgAAMMIAAPhBAADAwAAABEIAACDBAAAgQQAAkMIAADDCAAAYwgAAoMAAACDBAAAsQgAA8MEAABDCAADQQQAA8MEAAEjCAABoQgAAqEEAAAAAAAAMwgAAwEAAAHBBAADgQQAAAEIAAPBBAADowQAAAMAAACzCAACgwAAAQMAAAMjBAACgQQAAAMEAABTCAAAAQgAAgMAAAGhCAAAkwgAAlkIAAJjBAADAwQAAyMEAADTCAAAEwgAA4MEAALDBAADQQQAA0MEAABzCAADgQAAAnEIAAAjCAACKwgAAokIAAAxCAACYwQAALEIAAIA_AABAwAAABEIAAIzCAAAMQgAAIMEAAExCAAAsQgAACMIAAEBBAACAQQAA0MEAAJTCAAAsQgAAbMIAAMBBAACIwgAAAEIAAADBAAAgQQAAUEEAAPDBAACgQQAAnEIAAIA_AACswgAAHEIAAOBAAAC4QQAADMIAADBCAADSwgAABMIAAMjBAAC4wQAAhsIAAOBAAABswgAAgD8AABDCAABQQQAAEEIAAAhCAABAwgAAOEIAAIzCAAAYwgAAwMIAAOhBAABgQgAAcEIAAOBAAADYwQAA2EEAAOjBAAAIQgAA0EEAAADAAABQQgAAAMEAAHBCAABkwgAAMMEAACRCAACIwgAAdMIAALDBAAAQQQAA6MEAAFDBAAAwwgAA-MEAADRCAACIQQAAAEEAAEBBAAAwQgAAkMEAABDCAABAwAAAMMEAAIDBAAAAwAAAwMAAAKDBAACwQQAAEEEAAFxCAAAIwgAAkMIAAKjBAABowgAAAMEAAPjBAACawgAASEIAAKhBAACYwQAAMMEAAKhBAACYQQAAPEIAANBBAABYQgAAoMAAAFjCAACwwQAAsEEgADgTQAlIdVABKo8CEAAagAIAAEC8AAAMvgAAXD4AADC9AAAwvQAAMD0AAJi9AAALvwAAbL4AABQ-AABMPgAAEL0AANg9AAAsPgAAPL4AAPi9AABUPgAAgLsAAGw-AACmPgAAfz8AAKg9AADIPQAAcL0AAGy-AACoPQAABL4AAAy-AACYvQAAPD4AAAw-AABAvAAANL4AAIC7AADIvQAA4LwAAKA8AACIvQAAlr4AABS-AACovQAAcD0AAFC9AABQvQAANL4AAEQ-AACiPgAALL4AADC9AACSvgAAoLwAADC9AACuPgAAVD4AAFy-AADgvAAAFz8AAHC9AACIvQAAbD4AAHC9AADovQAAgDsAAHS-IAA4E0AJSHxQASqPAhABGoACAACovQAAyD0AAIg9AABDvwAAHL4AAIo-AADYPQAABD4AAIq-AADCPgAAgLsAAHS-AAC4vQAAZL4AANi9AACAOwAAgLsAADs_AACYvQAAMD0AAGQ-AAAQvQAA2D0AAIA7AABQvQAAij4AAKa-AABEPgAA-L0AAEA8AADgPAAAEL0AAEC8AAB8vgAAmL0AAIC7AACGPgAAoDwAAES-AAA8vgAAPD4AAKi9AADgPAAAEL0AABw-AABQPQAAf78AAPg9AACgPAAAHD4AACw-AABAvAAAVD4AAOg9AABwvQAA4DwAADC9AAAMPgAAiD0AALi9AABMPgAAiD0AAEA8AACYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=sxAtIQnqukQ","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":506,"cratio":2.52964,"dups":["8387457154470868122"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14047037392267069341":{"videoId":"14047037392267069341","docid":"34-7-15-ZD11D665D6A742460","description":"Khalid Bou-Rabee (City College of CUNY) Abstract: The p-local commensurability graph of a group has vertices consisting of all finite-index subgroups, where an edge is drawn between two subgroups...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/762717/2da2500f261c5dc0a5d8b791ccf44cd7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Q5nlgwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D3PTQvThap8I","linkTemplate":"/video/preview/14047037392267069341?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The topology of local commensurability graphs (GGD/GEAR Seminar)","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3PTQvThap8I\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoWChQxNDA0NzAzNzM5MjI2NzA2OTM0MVoUMTQwNDcwMzczOTIyNjcwNjkzNDFqrw0SATAYACJFGjEACipoaG5hZnRxd2JscmhpZm5kaGhVQ1pDTFVrYXRRa2VZelVsc2ZYU2tyUkESAgASKhDCDw8aDz8T9BeCBCQBgAQrKosBEAEaeIHq-Pz7Av4A8_cIAQME_gEe9vn59AMCAPMK8wr7Af8A8-z_9AL_AAAYAAgLAQAAAPX4__7z_gEADf_r-wIAAAAQ_Qrx_QAAAAULAAMfAAIC__QECQT_AAAOCQEFAAAAAAMBBv_8_wAA-BH9BwAAAAAF_QL4AAAAACAALY5Oyzs4E0AJSE5QAipzEAAaYAkKAEAGIAGxEzDxFfP-_xX1Cff_zP__CbP_9RExogXvv6YWDP865gjppQAAACzs6PopAP1xEQCZC-buB_Wu2iAJfwEdJtUQLejg6L3kM_nXIPb0PADoDNX8M7rYKR9mKCAALeCoHjs4E0AJSG9QAiqvBhAMGqAGAABkQgAAwMEAAExCAAAAQgAAFMIAAFDBAACeQgAADMIAAIBBAADAQQAAiMEAABBBAABQQQAA-EEAACxCAACowQAAPEIAALDBAACAQQAA6MEAAPjBAACUwgAAsMEAABhCAAAAwgAAcMEAAJTCAAC4QQAAgEAAAIJCAACWwgAAQEAAACDBAADAQQAAiMIAAIA_AADgQAAAcEEAAIjBAAAAAAAAXMIAADDBAADYQQAAAMEAAPBBAAAgwgAAEMEAABzCAADAQQAAVEIAABBBAAAAQQAA-MEAAJhBAABAwQAAcMEAAKDCAADwQQAADEIAAIRCAADAwAAA0MEAAKjCAAAEwgAAuMEAAHzCAAAAwgAAusIAAMDAAACAvwAATEIAAChCAADgwAAA4EEAAKDAAACcwgAApsIAAGDBAACYwQAAmEEAAIjCAADgQQAAWMIAAEzCAAD4QQAApEIAADzCAACQwQAA6EEAANhBAABIwgAAoEEAAIBBAABwwQAAmEIAABDCAAAkQgAA4MAAAMBBAACqQgAADMIAAHBBAACwQQAAEMIAALDBAADYwQAAmMEAAEBBAAAMwgAAikIAALpCAAAgQQAAYEEAAABBAADYwQAAtkIAAIA_AAAAwgAAbEIAAKTCAADQQQAAIEEAAKhBAACQwgAAwMAAAIC_AAAYwgAAgD8AAHDBAAAAwQAAwMEAACTCAACAPwAAqEIAAEDBAAC4QQAAQEEAAATCAAAUwgAA5MIAAHhCAAAQQQAALEIAAODAAADwQQAA4EAAAETCAAA4QgAAgD8AALjBAADAwQAAsEEAAJhBAABQwgAAbMIAAMBAAACOwgAAqEEAAPDBAABAwAAAZMIAAOhBAAAQwQAASEIAAHBCAACAQQAAEEEAAIBBAACGQgAAKMIAAEDCAABgQQAACEIAAABAAACAwQAAHEIAADxCAAAwQQAAuEEAAGxCAACYwQAAwMIAANhBAAAswgAAHEIAAMDAAAAAwQAAgEIAAPjBAACIQQAAEMEAAGBBAABAwQAAoEEAALDBAACYQQAAyMEAAJBBAABwwQAAfMIgADgTQAlIdVABKo8CEAAagAIAAKA8AADgvAAAiL0AAGw-AACAOwAA2L0AAIi9AAAZvwAAsr4AADQ-AADYPQAAgLsAAAw-AAA0PgAAhr4AACS-AADoPQAADD4AADQ-AACuPgAAfz8AAJg9AABcPgAA-L0AAEy-AACIvQAAoLwAAIi9AACAuwAAcD0AAII-AABwvQAALL4AAJI-AABAPAAAgj4AADw-AABcvgAA4r4AALq-AADIvQAA-D0AAMi9AABAPAAABL4AAKC8AAD4PQAAhr4AALg9AADSvgAA6D0AAIi9AACiPgAAZD4AAKi9AACovQAAET8AAJg9AADovQAA4DwAABS-AAAMvgAAUD0AAIa-IAA4E0AJSHxQASqPAhABGoACAAAsvgAAnj4AAFC9AAA9vwAAqL0AAHA9AACYPQAAUD0AAJi9AACGPgAAqL0AAIq-AAAMvgAAhr4AALg9AABQvQAAFD4AABE_AADgvAAAxj4AAMi9AACoPQAAQLwAAHC9AAAQvQAA6D0AAPi9AABAPAAAFL4AABC9AAAwvQAAqD0AANg9AABUvgAAXL4AADC9AACAOwAABD4AAFC9AABwPQAABL4AAKi9AADIvQAAoLwAAHC9AADoPQAAf78AACS-AACSvgAAjj4AAOg9AAAwvQAAVD4AABw-AAAMvgAAgDsAAKC8AABQPQAAoLwAABC9AABwPQAAED0AAAw-AADYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=3PTQvThap8I","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14047037392267069341"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18304123626273725467":{"videoId":"18304123626273725467","docid":"34-10-7-ZA26979B834E074E6","description":"International Seminar on Topology, Analysis and Algebra Date: 11,12 February , 2017 Venue : Department of Mathematics,University of North Bengal , India Speakers include: Prof. Djamila Seba Prof.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3701493/e563e60d67e3e3f920e96975b1ca0251/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hWiMYAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DauvV9oNFeIc","linkTemplate":"/video/preview/18304123626273725467?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"International Seminar on Topology, Analysis and Algebra- Lecture : Prof. Djamila SEBA","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=auvV9oNFeIc\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoWChQxODMwNDEyMzYyNjI3MzcyNTQ2N1oUMTgzMDQxMjM2MjYyNzM3MjU0Njdqtg8SATAYACJFGjEACipoaHdocmpsYm5rYWRkcmNiaGhVQ0tRWlU3a1RPYkNwMFl3ck5mWVlSeXcSAgASKhDCDw8aDz8T4AqCBCQBgAQrKosBEAEaeIH9Avv5_AQA9QEDBQcE_QEAAw71-f7-AAMKAwP-A_4A9fcD__gAAAD6CvsDAgAAAPz8BPv8_gAADAb1AwMAAAAYBwj6AQD_AP4G_gr_AQAA_PgC_wL_AAAVBP4FAAAAAAANAfr9_wAA9QcB-AEAAAD8Afn7AAAAACAALYjv3js4E0AJSE5QAiqEAhAAGvABf9v2AqQIBfs_AO7_8SMRAbEa7v8aBP8AqwMLAMvu5gAQ-g4A7P4AAP0MDgD7I-r_W_oK_g3gBABI5u8A8urgAOcPAwEl7fAAPBTj__Ln4f_i-QH_E_fyACARCwEF3_v-3gYC_9_p7QMRzO8BJA4RBOzuBgQGFPf_DPACAN0I-AH0x98A8gIKAe0W9f3o_f78AQv9_Bgc8_3pEPwFFvX3_AbyE_gOEvUA_eTnAdrsAP0A5Pn7Bw3sAu4kCgHzCv8E_PgNAQf-__cHCBYFEQIYBwH3FAn9Dg0HEAv5ABfoDwYK3_sJKyUF9-4B_f0A-fX-IAAtKcU3OzgTQAlIYVACKnMQABpgV_MACAMiDMXxA8wVC_4T3-XZ2VOkGf8X3v_p7we0EhPBywIa_0IGAcqeAAAALAD_IAsA9X_c6sZE8fMcAZ_5OvBuMQP-vMn8Eavirg8Pyz7s9wJXAOUVsPE3z84dAioiIAAtNl8WOzgTQAlIb1ACKq8GEAwaoAYAAODAAAAwwQAAcEIAAI7CAABwwQAAmEEAACBCAAD4QQAAkMEAACDBAACAPwAAPEIAACTCAAA4QgAAJEIAAABCAAAAwQAAyMEAALZCAABUwgAAIMEAAOBAAAA4wgAAAMAAAKhBAABgwQAAJEIAAFjCAACEQgAAgMAAAEBAAAC4wQAA-MEAAERCAABMwgAAIMEAAMDBAADKQgAAkMEAAFBBAAC4QQAA2MEAAIBBAAA4QgAAAEIAALBBAAAgwgAA0MEAAPhBAAAMwgAApsIAACDCAAAQwgAABEIAACjCAAAwwQAARMIAABDBAADAQAAAmEEAAOjBAABMwgAA4MAAABzCAADgwQAApkIAAJhCAAB0wgAAQMAAAEBAAABUQgAAMEIAAGBCAABwQgAAFMIAAMBBAABwQQAAAEAAAMDCAACAwQAAYMEAAEBAAABgQQAAlEIAANBBAACwQgAAUMIAADBBAABEQgAAOMIAAJDBAADWQgAAMEEAAHzCAAAMwgAAMEEAAHDBAADgQAAACEIAAJhCAADowQAAgMEAAEhCAACgwgAAiEEAACRCAABAwAAAgMAAADjCAADgQQAANMIAADRCAABAQAAAHMIAAAhCAAAsQgAADMIAABDBAADIwQAAEEEAAJjBAABAwQAA0EEAANDBAADAQQAABEIAADzCAAA0wgAAAMAAAEzCAACaQgAAQMIAAOjBAABAQAAA6MEAABRCAADoQQAAAMEAAKTCAABcwgAAwEEAAKJCAADQQQAA6EEAAABBAAAgQgAAuEEAAKDBAADYwQAADEIAACBBAAD4wQAAsMEAADDBAADgwQAALMIAAEjCAABQQQAAmMEAAGBCAADgwAAAAEAAAIrCAABAQQAAQMEAANjBAACAvwAAgEEAACxCAADgwAAAhMIAAEDAAACAwQAAyMEAADBBAADoQQAAMMEAADBCAAAMwgAAlkIAAMBBAACAwQAAIMIAAI7CAAAEQgAAhsIAAITCAABEQgAATEIAAJDBAAAEQgAAyMEAAPjBAACQwQAAUEIAACBBAACEwgAAyEEAAKjBAAAcwiAAOBNACUh1UAEqjwIQABqAAgAAgLsAAAS-AABUPgAAED0AABC9AAA8PgAAUL0AABe_AACKvgAAND4AAHQ-AADgvAAAiD0AACw-AAAEvgAA2L0AACw-AACAuwAAgj4AALY-AAB_PwAA2D0AABw-AADYvQAANL4AANg9AAAcvgAABL4AAKi9AABkPgAAND4AABA9AAAEvgAAED0AABC9AAC4PQAAMD0AAFC9AAC-vgAANL4AAIi9AACgPAAAEL0AAIi9AAAEvgAALD4AAJo-AABEvgAAEL0AAMa-AACAOwAAUL0AALI-AABMPgAAZL4AAKC8AAAVPwAAyL0AAIA7AABUPgAAEL0AAAy-AAAwPQAALL4gADgTQAlIfFABKo8CEAEagAIAANi9AAD4PQAAyD0AAEW_AAA8vgAAVD4AAIg9AAA8PgAAjr4AAMo-AACgPAAAZL4AADy-AAAUvgAABL4AAIC7AACgPAAARz8AAOA8AADoPQAAbD4AAJi9AACIPQAAqL0AAJi9AACaPgAAnr4AAEw-AACYvQAA6D0AAIA7AACIvQAAoDwAADS-AADgPAAAEL0AAIY-AACovQAALL4AABy-AABcPgAAqL0AAKC8AABAPAAAgDsAABQ-AAB_vwAAcD0AAJi9AAAUPgAAmD0AALg9AAAkPgAAND4AAKC8AADgPAAAML0AAMg9AAAkPgAA6L0AADQ-AAAQPQAAQLwAAKg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=auvV9oNFeIc","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":506,"cratio":2.52964,"dups":["18304123626273725467"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1350485044789063974":{"videoId":"1350485044789063974","docid":"34-0-6-Z6D89B105EE4E20B2","description":"Seminars on The Geometry and Topology of the Freudenthal Magic Square Date: 9/10/2009 Video taken from: http://video.ust.hk/Watch.aspx?Video=98d80943627e7107...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3766558/75ee73f29b6907a04d1ac05c16d15b38/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ScTOWwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DlkGvymZqTDs","linkTemplate":"/video/preview/1350485044789063974?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Michael Atiyah, Seminars Geometry and Topology 1/2 [2009]","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=lkGvymZqTDs\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoVChMxMzUwNDg1MDQ0Nzg5MDYzOTc0WhMxMzUwNDg1MDQ0Nzg5MDYzOTc0aogXEgEwGAAiRRoxAAoqaGhwemZld3JwdWZuY2JuY2hoVUNJMnhxOU9YVVNiUUdiM0dkS3hfaXhnEgIAEioQwg8PGg8_E_UhggQkAYAEKyqLARABGniB-v_89wH_AO0E_AIJAv8A5O4A9v0AAADiA_wLCfwCAAL5-___AQAA_gjzB_wAAAALB-3-Af0BAP8H_PUEAAAAGAT8_QMAAAADCwL6_gEAAPX6BvkCAAAACPsHDP8AAAD9Bvf5AgAAAO0KA_4AAAAADg72_QAAAAAgAC3LM847OBNACUhOUAIqhAIQABrwAX_0AwKi_vj7HA8TADAV-wDKGugADRHdAMD_AADF9vgACCL7APPk3P8SCQkA2SP-_woABf_6Ag0AMQoE_ykKCP_1FwQASe4AABkV-wH-Avn_5_0P_wX0BwHfAN0B7vHK___rHwASFev-BfLqAOT6BAAWChYBC9z0_fQE7P_0ExkB8eXi_gsQ_v4U7gUC7xUUAP37-AToC-oBABf2ABgCEgMU6A0BGPz8Bxj25wT__gcI__z8AygT7fv6DgP9C-vmBuYC8v3t7f8CBgkG_zUJDQUMCgb-_-v7-sko_gQMBwz89i3-BBPr8AUWDvv-9Ov2_iAALTxbQTs4E0AJSGFQAirPBxAAGsAHxecCvwwNurw7uwa9eehbPn6Ko7xOPPG8n8dYPoCiqrtdbaS7_yPTPcFSXTyaC5w8FOgzvvvv3DxZ04a8xmumPsiqUjzply28I9cdvj1S8zzgFxI9TMQ7voKcRbtWMte64EMuvQEmmj3NK087iGVzPaVqm71wApk6nDkBPPbLjrsCjlK73GoZOvURWL0TfFi99jqOvdm9C725w6a8BFcJPuutXDwvREO6s81yPUH7hzwK98q82l8Rvcd2KL2mtP474zVPPnna67yDXcM8a9BcPUDYzrsW5Qg9kpGIPWn8wrxr2Mq8DgR3PQu-IzveIYU8yU90PLtlorxPB7K81RKBPSY9Bz3ft4w7o9WPPadyf7yswqi6UMPXvcSSdz1rjM46qx5VvYKDZrtdpga9WH4vPXT1Pjw7eFw83lq2PY8mDT2233M7tDkuvfi3lTw1UVc76uPGPHrxjz3Sb6G7vlvqPJbOlz2PNo65nBQLO6BGazytm5y7kWObvYPOVjtIX_e65BqXujxy2jt6iZY8qi9mPdZM47ze6ha88OXZvNdFtrwRwZ08gQixPHcVUrwL6oC8dImZPOhsjL01DlC8vz3ZPE4ddbw5W2W7NUtZu8LTljvMQCc7TYXIPdHOqTw8woY7iNmLvAF1uTwurXM6BXvCvXMuRb2na_W6vj3-PEdapb2dsNC7aMCKPbXAgzwUJog7WwNgvRxLjrzWNsW7A0hIvKwBSj08WLU6ObjEvZBuHz3vEgM78iKXOj7tED1YUWa79X6IPTPfAb1AfGw55ETgvABajDt2dpC4IYWsve5ZPL3zzHG5XY8dPSbVCDvcOM83gIKmPFtQKbx5lZG49eC0PcnqczvWpCa4bsXZPArkyLzf5QI6FG2oPV2ABz2hnIS5_1tJvG5doLz9Moo54AMqvU3cqjzUZ5g1Il84PfNl2DwhgiK5daREvBLprTwVY0u5dJIyPZXFFLx7AB84IjylPeXCh707jFI5KvQrPfKdczstXe63rGMmvAZWRLzkLgC5yd3TuahmoDyWZCg4mBqsPdfwqb0C6F64FUcvPer7Wj2eNvS4VobtOvvjIr09AZw4C89LvE6MWTmHCI-3_lxZPXMWgb0CMAY4JxiZveia7rxmJQU5ol87PUUfPT2H83K47JXouzPzKT04GlG4fQzxPBFzhL1NvpU32EuevcAasTyU1_e2hhAhPVx3073e85u3-WTlPcjZmj21QNY2cXxjvfolAj6pgSy5d2quPAoLk7wdWh03K3iQvWwL6rzrbDW4IAA4E0AJSG1QASpzEAAaYDTtAAnlHu7fARf1y9byNMm1EhAEtsr_-QT_Czrf9y8l5dkDGQANvhnYowAAAEMeDQTjAL98Kc0EQPcWQM2hBxzUfxg6z_fY7dijqrsP_vcUAxEXOwDw8q7nFyHnEDY5ACAALbOvGDs4E0AJSG9QAiqvBhAMGqAGAABAwQAAgEAAAGxCAABgQgAAqEEAAKhBAACgQgAAAAAAAHBBAADgwQAAYEEAAIZCAACIQQAAUMEAAIDAAACQwQAAEEIAAAAAAADgQAAAmMEAAEBAAAAwwgAAIMIAAKRCAAAUQgAAwEEAAODAAADIwQAAaEIAAERCAADgQQAAkEIAAOBBAAAcQgAAjEIAAEDBAACAQQAAgL8AAIjBAADgwQAA8MEAAKBAAAAsQgAAUEIAAMhBAACAQAAALMIAADzCAAAgwgAAkEEAABjCAAAwQQAAisIAAIDAAACkwgAAAMAAAAAAAABAQAAAMMEAABBBAABwwQAAHMIAADDCAABgwQAABMIAAMBAAACAPwAAMMIAAAzCAADAQQAAcMIAAAhCAAD4wQAAqkIAAAAAAAAgwQAAKMIAAEDAAAAgQgAA4MEAAGBBAABgwQAAcMEAAJLCAABMQgAAIEEAAPDBAACwwQAACEIAAEBBAADwwQAAFEIAAHxCAACAQQAAkMEAAJbCAAA0QgAAQMAAAGBBAAAUwgAAQEIAAFBCAAAAAAAAAEAAAKbCAACAPwAAhMIAAExCAACkwgAArkIAALhBAAA8wgAALMIAAGjCAACgwAAAUEIAAGxCAAB4wgAA4EEAABjCAAAIQgAAoMEAAFBBAAAwwQAAPEIAACTCAACgwQAAmMIAABjCAADewgAA4MAAAABAAACQwQAA8EEAALBBAABAQQAATEIAAKDBAADQwQAAmMIAAHDBAABAQgAAgMEAABhCAACAwAAAjsIAAJBBAACgQgAAmEEAAGDBAABAQQAAVMIAAExCAABQwgAA0MEAAJhCAACwwQAALMIAAPDBAAAgQQAA4MEAAERCAACSwgAALEIAAEBBAAAAwQAAGEIAAIA_AACSQgAAcMEAABzCAAAAQAAAQEAAAABAAACAwAAAJEIAACRCAACIwQAANEIAACBCAAAgQQAAoMEAAJLCAAAwwgAAAEEAAPjBAACQwgAAVEIAAFBBAAA0wgAA0MEAABhCAAAQwQAAkMEAACRCAAAQQQAAOEIAAMLCAACwwQAAFMIgADgTQAlIdVABKo8CEAAagAIAAEQ-AACIPQAAyD0AAEC8AAAkvgAAHD4AADS-AAAXvwAAlr4AAMY-AADgvAAAED0AAOA8AAA0PgAAQLwAAAS-AACYPQAAQLwAANg9AACePgAAfz8AACy-AABQPQAA2L0AADA9AABAvAAA6L0AANi9AABwPQAAkj4AAFA9AABAPAAAcD0AAFA9AABMPgAAiD0AAKg9AACovQAAZL4AAMq-AABAvAAAHL4AALg9AAAMvgAAmL0AAES-AAAMPgAAuD0AADy-AACyvgAAFD4AALa-AAAEPgAAoDwAAIq-AADYPQAACT8AAFy-AAAwPQAA6D0AABQ-AAC4vQAAmj4AAEC8IAA4E0AJSHxQASqPAhABGoACAADIPQAADD4AABy-AABZvwAA8r4AAKg9AAAkPgAAbD4AAJi9AACCPgAAoLwAAIa-AADYPQAABL4AABS-AABQvQAA6D0AABc_AABAPAAA2j4AAJi9AAAMvgAAcD0AAGy-AADIvQAAML0AACQ-AACgvAAAQLwAADQ-AADIPQAAJL4AAAS-AAC4vQAA-L0AALi9AACWvgAAgj4AABy-AABMPgAAND4AADA9AAA0PgAAiD0AAIq-AACCPgAAf78AAKg9AADCvgAADD4AALg9AAA0PgAAyj4AAMg9AADgPAAA4DwAAJi9AACmPgAA6L0AAP6-AACIPQAATD4AAKC8AABMviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=lkGvymZqTDs","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":576,"cheight":324,"cratio":1.77777,"dups":["1350485044789063974"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14325860958204130371":{"videoId":"14325860958204130371","docid":"34-1-9-ZD8F1A4BF65E70AAA","description":"This is the introduction to high speed digital signal routing and topology. more information is on www.siemc.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3499680/5037bd1914513913dc953f6bd462c535/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/eaikrQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOuiVpscr1tE","linkTemplate":"/video/preview/14325860958204130371?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Topology and Termination Introduction","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OuiVpscr1tE\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoWChQxNDMyNTg2MDk1ODIwNDEzMDM3MVoUMTQzMjU4NjA5NTgyMDQxMzAzNzFqtQ8SATAYACJEGjAACiloaG11c3JkYWRic2lpZ21oaFVDbGtfXy1ZVERLemlWLV8zWE1JUDVydxICABEqEMIPDxoPPxOLBIIEJAGABCsqiwEQARp4gfUEAPj8BQDs_gUCBwH_AAAD__j4_v4A9A0MBQYC_wD59fj7-AAAAAwF-wICAAAA7gD_-_sBAAAI_Pb9-AAAAA79CfP9AAAAAAf9AP8BAADr9gsHAwAAAA7-AQgAAAAA8AgCBv4AAAD5D_0GAAAAAPoI9v8A_wAAIAAtK-TeOzgTQAlITlACKoQCEAAa8AFl-wMC0wfnAPf37QDyKe4AgQUL__YM3ADN_O8Ay_nWAAP19ADQ8_8ABRId_8ge-gAQ9uv_A-IeABHyC_8O8w4A6hEuAB4LEQEWBBUB5ucO_wIpEgAPBiEAAPYKAAMa5P8P_v8C3PoPAfPr-wAH4C4CAQf1AR_LAwHcDgoC9h4RAwMJ9QABDPEHHQj_AuoLDQYU_-v9_Snw_hEFAgMEGxEH_OoD_P0C7QUpGf0B_AgC_gHyAPjqDwn2_BgAAfgd8f_o2_D7APT-AwcT9AUT9gsGBf8N_v79BgD4A_L_FgL79-sKDfn4-fX9-RcECADo_PsgAC1uJ0g7OBNACUhhUAIqcxAAGmAm9QAuxyPG8TEl-c4C4yDnyAIDP7X-_93M_yYX8AH1BRHF4REAHNY6050AAAAtCMVH1QDDf-LDHTEQDCLkufsOEHkyO1bQ9__y3b8L_xexIxfm-vYACdaj-2HnoxJADjQgAC25sRM7OBNACUhvUAIqrwYQDBqgBgAAwEAAAJDBAAAAwQAA8EEAACBCAACAQgAAjEIAABBCAABUwgAAsMEAAIDAAABIwgAA3sIAACBBAABAQAAAwMAAAIBBAABAwQAASMIAADDBAACoQQAAUEEAAAjCAAA0wgAAoEAAAABCAAA0wgAACMIAAKDAAABIQgAAFMIAAEhCAABowgAAgD8AAEjCAACIwQAA4EAAAKZCAADgwAAAMMEAAGBBAACAwQAATEIAAKDBAACIQQAAoMIAABjCAACAQAAAgEEAAJDBAADgQAAAyEEAALjBAAAowgAAMEIAAHBCAADewgAAkEEAADzCAAAEQgAAkkIAAJjCAADAwQAAzsIAAARCAAA0wgAAuMEAAIbCAABwQQAAiMEAAARCAAAUQgAABMIAAKBAAADAQQAA8EEAAIC_AABQQgAA2EEAADxCAAAMwgAAokIAAHDCAACoQQAAfEIAAJhBAACoQQAAgEEAAKBBAABAQAAAAMAAABxCAAAcwgAAwEEAAHxCAAB8wgAAQMAAAILCAACAQgAAuEEAADDCAAAgQgAAgEAAAGRCAADIwQAAUMEAAKjBAADYQQAABMIAAGRCAAAQQQAAUMEAADDCAADwQQAAEEEAAFRCAAAgQQAAoMAAAEzCAACYwQAANEIAAKDAAADAwQAA-MEAABDCAAAAQQAAIEIAAIBBAACwwQAANEIAAEjCAACgQQAA6EEAAEDAAADIQQAAQMEAAGBCAAAgwgAAgMIAAIDAAACAQAAAMEEAAFBCAABAwQAA0EEAAEjCAACAQAAAwEAAAKhBAACGQgAAUMIAACBBAABIQgAAQMEAANBBAAAUwgAARMIAABzCAADowQAA4EEAABTCAADYQQAA0EEAAHTCAABAwAAAEMIAAOBAAAAkQgAA2EEAAEDBAAA8wgAAnEIAAEBAAACIwQAAUMEAAEDAAACOQgAACMIAAOhBAACyQgAAgMEAAABAAACkwgAATMIAADRCAAAEQgAASMIAAEBAAAAYQgAAgL8AAOjBAAAAQAAAiEEAABDCAAAAwQAAgEIAADBBAABwwgAAYMIAAGDBIAA4E0AJSHVQASqPAhAAGoACAAAEPgAA-D0AABw-AABwPQAAJL4AAIi9AAAkvgAACb8AAGS-AABcPgAAij4AAMg9AACgvAAAXD4AAMi9AADgPAAAmL0AAKA8AACYPQAAuj4AAH8_AAAEPgAA4LwAABw-AACyvgAAoDwAABy-AABsvgAAED0AAEC8AAAwPQAAUD0AAFS-AAAEvgAAbD4AAFC9AADoPQAAmr4AACS-AABkvgAA2L0AAIa-AABwvQAABL4AAJi9AAC4vQAAMD0AANi9AAAcPgAAor4AAAQ-AAAkvgAAoDwAAEw-AAAUvgAAgDsAACE_AABEvgAAgLsAAFw-AAAQvQAAQDwAADQ-AADoPSAAOBNACUh8UAEqjwIQARqAAgAAMD0AAIC7AAAwPQAAMb8AAKC8AAAUPgAAMD0AAAw-AAAUvgAAmj4AABA9AABMvgAAjj4AADy-AACIPQAAUL0AAKA8AAAtPwAAQDwAAEQ-AACYvQAA2D0AAGQ-AAAcvgAAgDsAADA9AADgPAAAQDwAALi9AADIPQAAUD0AAIC7AAAQvQAAUL0AAEA8AAA8vgAAUL0AAFQ-AAA0vgAAuD0AABQ-AABQPQAA4DwAAHA9AABUvgAAEL0AAH-_AADYPQAAcL0AABQ-AABwPQAAUL0AAJo-AADIPQAATD4AAOC8AACAOwAAEL0AACS-AACavgAAUD0AAFQ-AAAwvQAALL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=OuiVpscr1tE","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["14325860958204130371"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17256008617320858932":{"videoId":"17256008617320858932","docid":"34-5-2-Z3F8F33C3D6B9FC68","description":"This video is an introduction to topology optimization. There are three videos in this series 1. Topology optimization 2. Multi physic optimization 3. Using Blender Source Code...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3486087/e65523b8fa0bb7615adb6ca8a5887db5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ndPpQQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_erS8dRxILM","linkTemplate":"/video/preview/17256008617320858932?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Topology Optimization (Introduction) Part 1","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_erS8dRxILM\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoWChQxNzI1NjAwODYxNzMyMDg1ODkzMloUMTcyNTYwMDg2MTczMjA4NTg5MzJqkxcSATAYACJFGjEACipoaGVjZGF1bmZtcmRneXZjaGhVQ0lVQUNjc040MGFrNkR4X0FOSXlZS3cSAgASKhDCDw8aDz8TlQSCBCQBgAQrKosBEAEaeIHzDfr9_AUA9AQFAfkD_wEc9_n69QICAPQNDAUGAv8A7_wA9PkAAAD9BAgJ-QAAAPwC-fv9_gAADQIG_f0AAAAS_gD4_wAAAP4G_gr_AQAA7PcC_wMAAAARCQgB_wAAAPgKB_v7_wAA9QwFBgAAAAD7__oFAAAAACAALVNm3Ts4E0AJSE5QAiqEAhAAGvABXgQa_ZfqBfsTEhAAAQq-AYEKLf9pDccAvfsiAPn1vQEABO0A1tEU_8sH5f-pzwAA1OjvACYHCP8PByYAAADZAAEcFAEx4wMAPODtABj-Hv8DOxoB5_4f_yzf1gIL9b0AKP0m_0UoAQK--coB7S47Ai0v-QQgKPoD5BcdABj7Gf8f_PwD_AcCBPHzEgAS3CoFHP7i_BIO0PwEMv4DFAL0B_YH8wH8A-UIOvwCBPH2DvYQ7wb9IhPvB-Dj-QMkG_ICt9L8Bfz3CPz8EPwBNPX0BvnhFwLl-fAO9gETDyb4BwC2FQ8C4RUK8wb5GPw5y_gHIAAtUCMNOzgTQAlIYVACKs8HEAAawAdr88e-crKDvMjjk73QEMk9UL2_PAsw4rs8izm9chsIPceBHjpi9Tc-gDCLPMmSOTycTZe-6j1cuWSPFrwUlEI-RkUcvXPoALwHCfG9cKFhvI7NjrsXoaO9GfSvPNMFKzyn7PS9oTPEPO7Kz7urTaI9VNwdvQl2Er05oja9-DNcvSlCqjxRzaY9ABsQvdaF6bxRVoI8KzfMvSV1wjzRzf48wb4jvO31ybxSo2u8uriCPYCRoTwr-M29ETndvTPtDTzKtJw94kCDvePXuLvqDl29u4kwPas01rpwJhY-lOZFPTziqzxHLBg8ti2KvEQcBLxMCmK8w1iwPKMHmby5asM8lfW2PIxtLTzwf2w9ZqnAPeVlCTyu9Cq-bcXePYrUC7thokY9q8A6PboXczzxZj0-fTVRvYlxyLvpaxE9TRp-vEzyDjzdkMs93rBoPUbjmjz5K4k9DK0ePmSWULqnrRA6uYy7PVpiijwD3769LN8JPefyEzvJ0Gy9ou9uPI8kd7wYpsC8WP_HvTFmprzdV7o9QzGTvS4d0rt_72A9iK2PvaHJFTzKF9S9g6sXPRtsg7t0iZk86GyMvTUOULyb17K97GryPMMzGbk1KWU9oYG4vWpQDztpF7g8VbCZu_x_Zry1xbE7FFglvC450bv1UzE7U60qPPDYE7xOAmW88KyIvfj1xzoxBEU9L2cdu3rsbTr_dS49KtelvB09Hztp5NM9ydK9vFKwBriYTwa-GFnXvNkmkToRYEc84-mQPVsAMDkC-MK8g2rjvfTWaDjhJI08zeA0PUkssrl8dqU9haTFvP_vf7mfnzO9FOkePVY7KbeaLhq9uU6oPRyCM7g5BJM9j0ysvIqZGzoVtWq8EokivQEW3bgi-IS9U3elvEXoeDpf02O9u-2HvUQcKzhPpnu90jNivF-OeLcgjKk8Z55XPVIANzg6O_k92YwZvI0WgbkkI2w9wEkqu7wFcDhZ08Y8UBxgvSDSFzgezrI8tiVXPatJTLfvpI073vYuvd3mPLjXhwU-fZeSvZABCbjeWfs82PGfvRgNlzhT-AK96c6oPW_n8DhPXfk6k22FvPNkJjgW1Yc8XgiDO3NMlDjJIii8SP8mvdOaTbbuUbm93dZxPFdXjzed2e49n5WTuqNqDrmEXC69fJJgPAPCvbd6lwG9qwNlvbVi5rdhqhm983HNvUqVgrg_jsY9K94IvocitLhVGKY9bQvFPYPH5zg_-ku8qhkoPR74w7itANe6LZftPcpIaDiqbXm8GySuvX0NVLggADgTQAlIbVABKnMQABpgSQgAG9E-1iBGRgXQB_Yk1McF7yHG_P_2z_86S9n1FBMpx_EJABbsPQ2aAAAABRDRMcwAFX_t7uYC8Bwe0rAQJ-9mFhMVyfj37LzsEP8KxccI9tIhAL-eofdEBJ80JUYtIAAtFrsUOzgTQAlIb1ACKq8GEAwaoAYAABjCAAAEQgAAoEEAAKzCAACEwgAA4EAAACRCAADIwQAAbMIAAKDBAABAwQAAIMEAAJjBAAAAQQAAoEAAAJBBAACwQgAAOMIAAMDBAAAQwQAAMEIAACzCAABAQAAA8EEAAMBBAADAQAAAIMEAAFTCAABAwQAA4MAAABxCAADAQQAAgD8AAILCAACAwQAAgEEAAChCAAAQQQAAWMIAAJLCAADowQAAgEAAABBCAABAQAAAoMAAADDBAAAAwgAAiEEAAFxCAAAkwgAAIEEAAOBBAAAswgAAkEEAABxCAACSQgAAnMIAAJDBAABAwAAAUEEAAGBCAABQwQAA4EAAANDBAADeQgAA4EAAAODAAAAAwgAAMEEAAIjBAACAQgAAcMEAAKhBAACqQgAAsMEAAPDBAADgwAAAqEEAAIBAAAAAQgAAQMEAALRCAACmwgAAkEEAACBCAACIwQAAUEEAADRCAABgQgAAUEEAAETCAACiQgAAEMIAAADBAADgQAAAlMIAAGjCAAAEwgAAsMEAABxCAACgwQAAgEAAAJpCAAAEwgAAgsIAAOhBAACEwgAAIEEAAJhBAADgQAAAPEIAABDCAACgwAAA2kIAADjCAADowQAA6EEAAODBAABQwQAAYEEAAPBBAAAoQgAA4EEAAMDBAAAIwgAAQEEAAJhBAACgwQAA-EEAADBBAACgwAAAVMIAAFzCAAC4QQAACMIAAAhCAAAAwQAAhsIAAKBBAACYwQAAoMEAABjCAACIwgAA4EAAAIxCAABEwgAAsEEAAABAAABgQQAArkIAAEzCAADgQQAAEMEAABDCAACgQgAAoMEAAMjBAADwQQAA4MAAAIC_AABwQgAAQEAAAGTCAACoQQAAIEEAAMDBAACAQQAAcEEAAGDBAACAwQAAgMAAAIRCAACGQgAA0MEAAEDAAAAQQQAASEIAAAjCAABwwQAAZEIAAJjCAACAQQAAisIAALDBAADgQQAAEEIAAEDAAAA4wgAAREIAAExCAAAMwgAAaMIAAEDAAAAMwgAAKMIAAHRCAABQQgAAAMIAAJbCAABcQiAAOBNACUh1UAEqjwIQABqAAgAAJD4AAAy-AACGvgAAEL0AACy-AADYvQAAyD0AAO6-AAAJvwAA4LwAABA9AADgPAAA2L0AAKg9AABQvQAAcL0AAEA8AACAOwAAED0AABc_AAB_PwAAiD0AAJg9AACGvgAAA78AANg9AAD4vQAA4LwAAGS-AADYvQAAvj4AAIg9AAAkvgAAJD4AAMI-AABwPQAABD4AABy-AACKvgAAUL0AABy-AABsvgAA6L0AABy-AABQPQAAUD0AAIA7AACevgAADD4AAJa-AAAsvgAANL4AAIo-AACYPQAAgLsAAOA8AABBPwAATL4AANg9AABAPAAANL4AACw-AAAwPQAAUL0gADgTQAlIfFABKo8CEAEagAIAAIA7AACSPgAAcL0AADW_AABwvQAABD4AADQ-AACoPQAAoLwAAGQ-AAC4PQAA2L0AAJi9AAB8vgAAuD0AABC9AADgvAAAHz8AAIC7AACyPgAAcL0AAKA8AADIPQAAHL4AAES-AAAQvQAAMD0AAHA9AACivgAAqD0AAEQ-AACYvQAAcL0AAGQ-AADYPQAADL4AABS-AAC4PQAAlr4AAGQ-AABEPgAA6D0AAHA9AAA0PgAAqr4AAKg9AAB_vwAAoLwAAFC9AACYPQAAEL0AACw-AABUPgAA6D0AAM4-AAAwPQAAEL0AAFA9AADovQAAlr4AAAy-AACiPgAAQLwAAJi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=_erS8dRxILM","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17256008617320858932"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18279123110972327710":{"videoId":"18279123110972327710","docid":"34-10-10-Z8600A65D2CFC909D","description":"Part of Modelling Id4135-16, a course in the master program of Integrated Product Design, at the Faculty of Industrial Design Engineering, TU Delft.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3243621/e5a8eb8ed4e7d4fea24b33b98e83a3b1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lRrJDAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DiBjtW53tmzI","linkTemplate":"/video/preview/18279123110972327710?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Topology optimization for additive manufacturing Part 1/4","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iBjtW53tmzI\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoWChQxODI3OTEyMzExMDk3MjMyNzcxMFoUMTgyNzkxMjMxMTA5NzIzMjc3MTBqiBcSATAYACJFGjEACipoaHl0cXVhZGJkbGNnZGtkaGhVQ0xCYUtpUHI5OERreEVsaXBDVVJucHcSAgASKhDCDw8aDz8T8QaCBCQBgAQrKosBEAEaeIHwEwAAAQAA7wwNAvoD_wEe9vn59AMCAPQGAv8IAv8A7vsA8_gAAAAH-wQN-wAAAAP7_Pv9_QEACAsEAgUAAAAQ_Qnx_QAAAAEJBgT-AQAA8-cECQP_AAAfAwj6_wAAAAMBBv_9_wAA8gcJDgAAAAD78vv5AAAAACAALXZQzjs4E0AJSE5QAiqEAhAAGvABfsY3AvMf-QEOK_cA4QzzAYEKLf8b7d0ArxgBAev-2AAbDvUB4_xD_j0j9QCq_eYCGwXT_x7h_QAG7g3_Dt7zAAAK3gEksh8AARXwAO7f2P_0DvL_y-MQAP36Af4F_vIAMAIO_xwl9PweF8gC7OX2AvfiEQUt4BABGgEkAT4GEAHHANr8NwkZAOoACQQyFxwC4sfaAfgcJQAi-_wD-NPx_wHK8gL1JPv3R_j0AN7wEfnE5f4G3gj9ACMSE_INN_UAxeP__gKpBfclLAv3FcEIBxofCwncIv794-ATACANAv_oJf78zgEB_PYhBQwX8v4FIAAtUCMNOzgTQAlIYVACKs8HEAAawAeA7tO-Ed7DuuXolrxCpPC8cUQtPQnmw7w2Ndg7m3yuPRvrJz0rq4Q9aYhvPQ8JX7uz8HW-x9CWvEVkQDmKrUA-DI0sPVxgRTwWL4a-p2MpPSk-Hj0R_D--f2B4PRBEEryxGeA9jJFbPDDBY7uTaK68Y36uvAGV4DzV7Sw-ekWiu4PzDr18zpK9Ji2mvHGNdLz-1UM9YD55vXzWtTxbMaI9sZFavU9sTzz5D448Wc9_vDZ13jx2-Tu9_-MpPEtNTDyt3Cs-yaBEvYuoCbshlNc96-J2PQKZHzzlXgC9TZi6vNj_b7wVFsE89vwbuxhKuzug_hM-UMMWO6ulCLvGKm-8t50xPcfj2DwtN8I9uUZVPfiunDxOAqU89J2puw1Mk7zmgqe7uw4VPS8JIT0KStE9JDxrvaq-TrzpaxE9TRp-vEzyDjzsv549uXWSPBrhSDw0zvC8_wPsPSCq_LtGgZk9oaA0PVLfaLusFCe98qsePdjvLrx8k6s9RgiPvYvb7DrZLga8zKH7PNoz8Dp5iiK8i_GKu5GM3LkXGt-7_FKiO3r3bDxiyMC90rc7PLTO1zuHYye8-7stvMbbSryLzMK9h6NwPbLzdDsDwS097LxyvZe4QbjTRIQ8T-rsu7EBCTwAam-9vth7PBBdIbomggK946bmvcYvB7mYmzm90ecjPSkQzbvaVQg-fN4wOlSdArtmhbI91jpxvKoLWzvaozw96OVGPfOtATrJ2lC9IN90vUjZIblb62s9n-i6PRId3rgJeym9dcsOvpP4gblGX-E9IslHPbsKXTmOmIQ9pufnvCxhrzkr-gO9LcegPT0iczccBak6ENBYPOjKBrrs3iq9eEarvXgV3bh7i-I7DLLAvXq66bd8ArI8IDSBvUdyBbhru0S9sdBYvQQj97jBIhq97BJ6vIEzrrizEk48EAToPeLQvbiuqk092MNbOuPPijmGM2S9Nc0ePA9tWbh7Zu68eIKYvJCgNbhFnO87PdHVPeIJR7nCfZ49IxMQPWHMcDccEq09R6F2PM1QajhFhnC9DRLHPJQ5iDi2WAA9un0qOaBivzcH_Cu92d1yvQ42KjjABM49_Hi_O-1rnjj1uO88EnYAPRKDvjhhUKY7czJMvaKXi7eiXzs9RR89PYfzcriwVRK-rYqwPHxrx7c7_ks9iIGuPIITyjZhqhm983HNvUqVgrgm3JC8FjAxvkGgWrmKllc9EFj5PY0XQDgpSAU7Mot1vDPLwrhnCZe8pgSJPZqypTd3FIS62roFvQVaUDggADgTQAlIbVABKnMQABpgNgMAF_Eo-cwNKuev698HusQH-RvUH__-9P8RGQ3qEgXirhETAOu8OCumAAAA-RXLL9QA4nL67_sW5gEdsbILIwZ_6CAT4QIaGdvS9RAFy9skI_xOAL72ueIG8q8xGUs4IAAtj74gOzgTQAlIb1ACKq8GEAwaoAYAANDBAADgwAAAGEIAAIDAAABwQQAAHEIAALxCAACWwgAAwMAAACjCAADgQQAAHMIAAKLCAABAQQAAAEEAAKDAAADIQQAA-MEAANhBAADAwQAAIEIAAIDBAAAEQgAADEIAAPxCAADYQQAA6MIAALjBAAD4QQAAMEEAAIDBAADAQQAAnMIAAJDBAAAYwgAAyEEAANDBAAAkQgAAMEEAAODBAADgwAAAwEAAADxCAAAAAAAAIMEAAFBBAAAgwQAAoEAAAPhBAADOwgAAUEIAAPDBAAAgwQAAFMIAAJDBAAC4QQAAyMIAAODAAACAQQAAcMEAAKRCAACIQQAA4EEAAJjCAACAwAAAcEEAAIDBAADgQAAAgD8AAIBAAAAQwQAAKEIAAM7CAADYQQAA4EAAAITCAAAwwQAAEEIAAJxCAACowQAAwMAAAHxCAABswgAAaMIAAEDAAADQwQAAJMIAAAjCAACoQQAA2MEAAKDAAAA4QgAAGEIAADDCAAAQwgAAgEAAAPjBAACYwQAAgMAAAATCAACowQAAIMIAABRCAACowQAALMIAAJDBAADgQAAAgL8AABDBAABEQgAAkEEAAKBBAACgwgAAJMIAAIBAAAAIQgAAtEIAAGBBAAAcwgAA8MEAACDBAABAwgAAUMEAAHBCAAAEwgAAsEEAABDBAAAcQgAAXMIAAFBBAABkQgAAJMIAAAjCAABAQgAAUMEAACBBAAB8QgAAjsIAALDBAAAgwgAApsIAAHBBAAAIwgAAkMEAAIhCAABQwgAA0EEAAGRCAAAMQgAAIEEAALjBAAAAwgAAUMEAAIA_AAAsQgAAUEEAAFTCAACYwQAAQMAAAKBAAACgQAAAYEEAABTCAACIwgAAWMIAABDCAAAgQQAAsEEAAJDBAADgQQAAGEIAACxCAACgwQAAPMIAANjBAABcwgAApEIAALBBAADIQQAAhkIAAIBBAAAIwgAAjsIAACjCAAA0QgAAIMIAAIhBAACYwQAAeEIAADBCAAAUwgAAZMIAAGDBAABgwQAAuEEAAAxCAADAwAAA2MEAAOjBAABswiAAOBNACUh1UAEqjwIQABqAAgAARD4AAPg9AABwPQAAuD0AABy-AAD4vQAAED0AAAO_AAB8vgAAMD0AAHA9AAAMPgAAML0AAOg9AAAQvQAAdL4AABw-AABAPAAAgLsAAM4-AAB_PwAAbD4AADA9AAAwvQAABL4AADA9AABwvQAAbL4AAJi9AABcPgAAmD0AAFw-AABkvgAABD4AALg9AAAQvQAA-D0AAHC9AABEvgAAZL4AAFy-AAD4vQAA4DwAAEA8AAAEvgAAMD0AAIg9AABEvgAAiL0AADS-AAB0PgAAiD0AACQ-AACYPQAAgDsAAIi9AAAdPwAAwr4AADA9AAAMPgAAuD0AAKi9AAAsPgAAmL0gADgTQAlIfFABKo8CEAEagAIAANg9AAAcPgAAqL0AACe_AACIvQAAMD0AABA9AACYPQAABL4AAKY-AACIPQAAPL4AAFC9AADOvgAAqD0AAIi9AACAOwAAJz8AAOA8AACuPgAAEL0AAKC8AAAEPgAAJL4AAOA8AACIPQAAcL0AALg9AABkvgAA4DwAAJg9AABAvAAAoDwAADA9AACgPAAATL4AALi9AABUPgAAir4AADQ-AABcPgAA4DwAAKC8AACAuwAAPL4AABA9AAB_vwAAuL0AAAS-AABQPQAAuL0AADC9AAAEPgAAgLsAAEQ-AADgvAAA4LwAAJg9AABkvgAA2L0AAJi9AACCPgAAED0AAIC7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=iBjtW53tmzI","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":2880,"cheight":1800,"cratio":1.6,"dups":["18279123110972327710"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17584372565814652769":{"videoId":"17584372565814652769","docid":"34-11-11-Z93CEB41E212D216B","description":"music,youtube,youtube music,music streaming...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2177248/571abd2758b063bf7f9b8981b25f28e3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/vB5tEgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWFrX_1o9tr0","linkTemplate":"/video/preview/17584372565814652769?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Topology optimization for additive manufacturing Part 4/4","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WFrX_1o9tr0\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoWChQxNzU4NDM3MjU2NTgxNDY1Mjc2OVoUMTc1ODQzNzI1NjU4MTQ2NTI3NjlqiBcSATAYACJFGjEACipoaHl0cXVhZGJkbGNnZGtkaGhVQ0xCYUtpUHI5OERreEVsaXBDVVJucHcSAgASKhDCDw8aDz8TzwSCBCQBgAQrKosBEAEaeIH2Cf71_wEA7wsMAvoD_wET9gH39gEAAOwK_wYI_wAA8wAI_PsAAAAG-wQN-wAAAAP7_Pv9_QEABgb9-vsAAAAd-QL0_QAAAAEJBQT-AQAA8e0K_QIAAAATCAP0_wAAAAIBBv_9_wAA9gkSBAAAAAD7-foAAP8AACAALUuj0js4E0AJSE5QAiqEAhAAGvABXAQz_sgN-__94Q8A-B3eAYEAAv80F_IAwNsCAewS7QH17fT_3NcR_x7-Af-o8QkACwUVACjrAwDtFhr_CdL9AAEYEQEC5QIAT_z8AQzg_P_gCwr-89kF_vkI_QH9E_sANB8I_woi2wEK_-0AFugoAiHAAQMx3uAA_hIKAjISHwLJEO7_GPn-_tPpGv8W-RcE5s_fAQMu-wHl4-X_IPn4CvH85_cZDgL7HA_rBBLnH_70DP73GyPw-BERBQHjDfECtOII_fXoCP7uHgkDF_QNBwb-D_4YIf8GLhz09__sB_TsIP_94uIH-OAmCRMP2v7_IAAtv08kOzgTQAlIYVACKs8HEAAawAcHB9u-eQOMPMpnMTpV2fc8ElXTPPgwIL18oZs8It0UPYDEZTzS_9I9aSp1PVSUBbyXx6q-E8fsO74RnbwgeRc-XNHBPN1y_boG9IK-rJ9IPPEhirlXsTi-R6V9PKXUCj1ssPA8CmuhOw7Zo7onwHA99M4ZvE-x6rxGlMY9WPE8vU9ZLb3cmwQ81JPevPztAb3X6sE9N_CUvQnpHzwgB7o9gpE3vYiynLztyAI9KxI4PJE2I7zIv8W8DkA0OhKOsLvr4AA-AsKivId0k7xgKqw8xU5CPCkqtDtqGq89yGuUPBBdkDxS2yG8_aq3vCRSqrtxpJ09JAbmPEBJBby9S6M9OYY7PV7-eTzkZvg9ZkzhPRgj1DtpSAa9xbJ0uyKxk7yQaQ09sxrcPFl9_zylaCU-2PinvE5IljkyzyU9JE0XPea63zzsv549uXWSPBrhSDxVZIk99pfdPZjyRryTfQa9aWhIPYjRGjxJaAu-OQsbPT_eDjxK3Fk9-hGavOsTyjwvr9K8oOL4vK0stLuqL2Y91kzjvN7qFryQHSo9wjWSPI3jEzxsNrC9x6sCPdDvezyNN4O8-kmAvYcNfTqb17K97GryPMMzGblktmC7qASPvZo0GbuZtM48Jh0FPQNPTrvOl5091FwzvS_X6LtHE3m99VWYvVHW0rpmhFe9NpIEvSwQ-ztoCCc-A16mPU-2GroUyDE9HvKQPbeQ4rk9SM899QZJPS2_oboqWSm8m1RUvW8d0jtAaag7k3HsPRJEOrlA1oG6f8iGvbseG7n-t5I8BlwBPdsdLDjsvhM-6hyoPMCOn7laWGG9mljFvPsiBbqV7ce6N-lSuGchTLoHPuu8D1hDvXm9Arr-6pY8QHK2vV5g2roKKHm8HF4OvORLU7m-gpm8gZqVvQXn-redJpY7S-KPu0S5Kri6UJS8F1-5PadIALdINx09uiMturTTXLlxB106L5WtPS_64rczD4q908gdPRLHyrgHFLC94BWcPMDmnLgzNH49T5Z6PbV1qzcWcVc7NKSlPe03ArgQma29eEBevSuds7hrDDo8ZyKRvD2-VjnHYqC9Im95vam4oLgEEI09er0AvQUwgDg3btE9J9BRPYcuajZCzIo8iupIveHpw7UdVCc9Ff6MPCyWX7cnd769OpsJvUTKMzgrtD286ZoJvZ59Tbd-Gte9KjYGvkuOqrYdlww9SQ9DvlQxTblhrMo8eNOdPZMLhTglzV07LR5jPUERC7kySXa9pCPvvApbLbgxaNc8mUyAvVnlCrYgADgTQAlIbVABKnMQABpgVwIAMugl6O8TG-3D4_kRx7_14hrqH_8W6P8ONPTW9BT0r-8VAO_FLxaiAAAAJwbXNrgA93Xq8AYJx-MNtMAtDOJ_Cholx-EhAdfE8iMK17f9AgcuAND6u9M5AMIhE2AmIAAt_yodOzgTQAlIb1ACKq8GEAwaoAYAAI7CAABwQQAAmMEAAIC_AABAwAAAMEEAAPRCAAAswgAAqMEAAODAAADgQQAACMIAADDCAAAAwgAATEIAANDBAAAAAAAAgMAAAETCAACYwgAAwEAAAEDCAAAwQQAAsEIAACBBAAAswgAAwMIAAFBCAADAQQAAREIAAABAAACgQAAAgMAAAEBAAACQwgAA0MEAAFBBAACQQgAAwMAAALhBAACAQAAA6EEAANhBAAAAAAAAbEIAAJjBAAA0QgAAsEEAAAAAAAA0wgAA6EEAAOBAAACcwgAAgMEAAEBAAACQQQAAjsIAALjBAADAQQAAQEEAAIJCAADowQAAJMIAABTCAAAkQgAAmMEAALDBAACgwQAANEIAAHTCAAAwQgAAUEEAAAzCAAAcQgAAUEEAAL7CAABgwgAAUMEAACxCAABQwQAAAMIAAHhCAAAowgAAqMEAAGRCAABwwgAA-MEAAMBBAAAgQgAAwMEAAHDBAACYQQAABEIAAFzCAABMwgAA8EEAADTCAACCQgAAgL8AALjBAACgQQAAoEEAAKBAAAAIwgAA2sIAALBBAADwwQAAAMEAADzCAABoQgAAQEAAAIA_AAAUwgAA0EEAAHhCAADgwAAAIEIAAPBBAAAQQQAA6MEAAABCAABAwgAAUMEAAFxCAAAoQgAAFEIAAIjBAABAQgAAWMIAANDBAABgwQAAAAAAADTCAAAAQgAAIMEAAHRCAACAwAAASMIAAHDBAADgwQAAEMIAACzCAAAIQgAAgMAAAIhCAAB4wgAAQMEAAIDBAADAQAAAYEIAAFDBAACwwgAA6EEAADhCAADoQQAA4EAAALjBAAAgQQAAMEEAAJhBAABAQAAAEEIAACDCAACYwQAAgEEAANDBAAAwQQAAMEEAAIBCAACYQQAAtEIAACBCAABAwAAAIMIAAIDAAABcwgAAKEIAAIBAAACgQQAAAEEAABDCAABQwgAA-sIAAIDAAAAkQgAAwMAAAGDCAAA0wgAAdEIAADDCAAC8wgAAiEEAAKBAAABAQAAAQEAAAFBBAAAAQgAAFMIAAFDBAACwwSAAOBNACUh1UAEqjwIQABqAAgAALD4AABw-AACIPQAAoLwAAAS-AACgPAAAPD4AACm_AADivgAAcL0AANg9AAB8PgAAML0AADQ-AACovQAAxr4AAEQ-AACgvAAAqD0AAPY-AAB_PwAAPD4AAGQ-AAAMvgAAEL0AAHC9AAAQvQAAjr4AAJq-AADKPgAARD4AAIY-AACivgAABD4AAGQ-AAAwPQAAhj4AACy-AAC2vgAAVL4AAIa-AABQPQAARL4AAJg9AAAsvgAA2D0AAOC8AACCvgAAFL4AAMq-AACoPQAAUL0AAJg9AABAvAAAMD0AADC9AAArPwAA9r4AAKg9AACKPgAAUL0AAFy-AADYPQAAiD0gADgTQAlIfFABKo8CEAEagAIAALg9AAAMPgAAmL0AADO_AADYvQAAQDwAAEC8AABAPAAAyL0AAM4-AAAEPgAATL4AAOC8AADOvgAAED0AAHC9AACgvAAAJT8AAJg9AACqPgAAgLsAAEC8AAAUPgAAFL4AABA9AAAcPgAAuL0AAAQ-AABkvgAAgDsAAJg9AABAvAAAuD0AAOA8AAAQPQAAZL4AAEC8AAA8PgAAgr4AACw-AABcPgAA4DwAAIi9AABwvQAAVL4AAIA7AAB_vwAAcL0AAAy-AACoPQAA6L0AAMi9AADYPQAAMD0AACQ-AADgvAAAUL0AALg9AABcvgAA6L0AAIi9AABEPgAAED0AANg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=WFrX_1o9tr0","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":2880,"cheight":1800,"cratio":1.6,"dups":["17584372565814652769"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11115615587708215908":{"videoId":"11115615587708215908","docid":"34-6-0-Z4C73027C2E292B60","description":"Topology optimization, second derivatives and OpenMDAO...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3574485/8826bdf32a7e6b1e3dcfa2f1a7bb97dd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ZIrGNAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-yciEWjPHu4","linkTemplate":"/video/preview/11115615587708215908?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Topology Optimization, second derivatives & Omdao - Graeme Kennedy - OpenMDAO Workshop 2022","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-yciEWjPHu4\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoWChQxMTExNTYxNTU4NzcwODIxNTkwOFoUMTExMTU2MTU1ODc3MDgyMTU5MDhqiBcSATAYACJFGjEACipoaHRvZHh3eWZhamhlbHRjaGhVQ3lIdDBtUUhnZnByOWxkZjJleDdMWlESAgASKhDCDw8aDz8ThhCCBCQBgAQrKosBEAEaeIH7EggKAv4A-QgO_PsE_wELAO8B9v__AOr9Dfj5_wEA9vgA9gEAAAAEAgkFAgAAAAQB-QXy_gEAEAH3_AQAAAAe-QL0_QAAAO4L-gL_AQAA9foG-AIAAAAMD_UF_wAAAAAEBPb7_wAA-Ar5_gAAAAAC_AUAAAAAACAALWiEzDs4E0AJSE5QAiqEAhAAGvABdfkMApkJ__o1_RMAPQ3_AIEFC_8fDf8AAw0HAagO_P8EHAcA5vYDASUBFADN9gEAHfr9ACwU9_8NExX_I_wEAD0hCgAO4PMBIQf5AAf6Cv_TCwgBDwYhAAr-HQD49wT-HhQH_vAC8gLr8gQD_-UVAggCBgAEAOkBBBL__fID-wIZDwUBDQ8P_wYI9v8UIPIB4P74AgoE9vv66xAI-xfyBBv49f4L-voFF_X5BPHqBf38JRAEExgOAQMm9PwL-AH68er2-gPx_ffz9hADEAIWBvr2GPbg7Q0K_fb5-vT1Cfbz9vz-7hL1A_gL-gkV6_v9IAAtbidIOzgTQAlIYVACKs8HEAAawAfBpwW_1JUVPHLD77wHJDE-h-HjvFslFrw-ibk9kKUqPVXFcbvSELw77FxiPQNUgry9jpC-fOdcvdimKTsKL2E-F3GwvEHTxjlXLpq98UkHPdGN1TxnJ6O-zhm0uqUmHro9e8M9_RBAPdUNb7zg2X49UnFNvc03R7wUrwI-aB9QPFNkA72X1J47rFuYvaHQl7yTGY892h49Ozu9d7xEac895MQyPHGqNbz_Qqo8XzlMPb-pfrw5yoY9nbK_vDb-TbpaSoY-KyXVPIiEzrsKf6s9ue9ivPCtfjxApH-9cNDevcPU1rx-LiS9SlH4PN5xrzy3ix-9h4nGPP97S7xGSmm8-M-JPBZV2jz31rY9qvDUOWhXBDvHe3o8sAYBPOR8ObvAIYS9ycNnPGniirllzaM8fMKnu4O5AryDwuA9FcA5vC9j1LyqVD882LaoPOAQy7pi3Gg94bKaPcrcPjswlnO98mZoPCaTrjxWH9m8ygNsu2TayLyoTow9VhEOPbRsdzzzvya93AKyu_caBrxG4k-9E1JtPKi4XDsk1ue5c_G3vI6WXjy2q0a9f_BrvNluq7rcCoa9e5H_vDWfTrymP5C9fOC6u8CeJzvDPps9E481vSUkEjzdK749vwo1PTLmzztiEBg9aGUxvcBDTbsf_SW9A7Truz1XwjvikO096JDKvJW1crus2v88EtjBvB1iNDsBG2u9CQg8PdPz8rk04Mc9UbiDPGsb8znsQKe8IUqou8-3CTtmFbY8Xm9xPT6SszkeXgY9sKP7vGggvDkMEhE9KlICux5HlThcbH88U-NKPONzvzkxC409F8zpPCRHLLlj3yQ9-lo8PEyvlTl2PAG9oHOSvKoVkLhiqs88VjDouqkjXDhH45A8YasfPcEPIbotQSa9Ik7Mu5R_C7ktf_i6142SPUxKXbggjKk8Z55XPVIANzgSz7s5uvuHPXm8BbgQWxq96XDfuDuQH7bsua-7xcGavROAdjlZPwy9ru8oPTOTTbhJU4M95h1MvOd68zQens67_JQZPWtszrfl4rm8cWibveWtCDZlCQE9ivljvQjDNThjqIS9Zpkvvcc-yTdISEm82QxLvOiJJbj89VQ9hhQNPX1KzrY-iJE7GE-evUyp6TcNnqM9TsjYvHYfv7gR5pG9sO95PSARjLj5V4W8YNcFPWAHtjgY6SW9ekktvcQzobem1IU9pJHLuxbsgLjrnTu9zMu2PXbGwLe1F_G9BVvbujdVubdWC-w8nycZPcyIgbfdIpU9XOSiO0AtcLggADgTQAlIbVABKnMQABpgbvcAC-sFBOXiLrbF0d4F_97_DfK5JAAo9P8ERM7J9gcQpAcX_yvLNPefAAAAIx3rMfAA8H-4rb7zBzMLvaHsCRNuChYPudQg0dfJCxjjurwP-SX-APnxtu5F56tGHwkiIAAtj0ASOzgTQAlIb1ACKq8GEAwaoAYAAADBAAAAAAAATEIAAIjBAADwQQAAAMAAAJJCAAAEQgAAOMIAAKBAAAAAQQAAiEEAAADCAADYQQAAVEIAAADBAAAwwgAAoMIAAJLCAABowgAAAEAAAIjBAAAAAAAAaEIAAMBAAAB4QgAAVMIAAEDCAACEQgAAiEIAAGBBAABAQQAAcMEAAIA_AABcwgAAgEEAAIjBAAAMQgAAkMEAAMBBAAAkwgAA4EAAACDBAABAwAAAAAAAAIDBAAAAwgAACMIAAHBCAAAswgAA4MAAAFhCAAAYwgAAAMEAAKDBAAAowgAAfMIAABBBAACQQQAA0EEAALjBAACIwQAAeMIAABDBAADIQQAADMIAADhCAABkwgAAUMEAAEBBAACAQgAAhEIAAPjBAADAQQAABMIAALzCAACgwQAAQEAAAKDBAACKwgAAUMIAAMDBAABUwgAA8MEAAODAAADAQgAAPMIAAIBAAABcQgAAAEIAABxCAABMQgAAEEEAAMDBAABAwQAA1MIAAFDBAAAIwgAAAMEAAIhBAADYwQAAwkIAAJ5CAABAwQAAYMIAANjBAADowQAAgL8AAJrCAAC6QgAAsMEAAABBAACYQQAAFMIAAIDAAADgQQAA2EEAACzCAABwwQAA4MEAAEBAAAAMQgAAMMEAAIC_AABAQgAAAAAAAAAAAAAAQQAAgD8AAJjBAAAoQgAAUMEAAKBAAABIQgAAUEIAAIjBAAAIQgAAAAAAAFjCAACCwgAAgD8AAABAAACEQgAAwMAAABBCAAAwQQAAgD8AABBBAACIwQAAsEEAADBBAACYwQAADEIAADjCAACAPwAAuMEAAKjCAAAowgAA-MEAABRCAADWwgAAkEEAAODBAADowQAAiEEAABjCAACQQgAACEIAAODAAABwwgAAcMIAACDBAADIwQAA0EEAACRCAABgQgAAnEIAAODAAADIQQAAGEIAAADAAACSwgAAEEEAACzCAADQQQAAAMAAALDCAACIQgAAgMAAABTCAABowgAAUMEAAAAAAAAoQgAAoEEAAOBAAADgwQAAgsIAAODBAABQwSAAOBNACUh1UAEqjwIQABqAAgAA2D0AAFC9AABsPgAAoLwAAES-AABAvAAAiD0AAPa-AACWvgAADD4AABA9AACAuwAAMD0AAII-AACoPQAAUL0AAJg9AACYPQAA6D0AAJY-AAB_PwAALD4AAFA9AABAPAAAFL4AAHA9AAAMvgAAHL4AAJi9AADoPQAAQDwAANg9AABwvQAAML0AAKg9AABQPQAAiD0AAFC9AABEvgAAUL0AAIq-AAAQvQAAuL0AAIA7AAAcvgAAMD0AADA9AAAQvQAAcD0AACS-AACGPgAABD4AAI4-AACIPQAAVL4AAOC8AAAdPwAAoLwAADw-AAC4PQAAiD0AAOi9AAAkPgAAED0gADgTQAlIfFABKo8CEAEagAIAAOi9AABsPgAAgDsAAEe_AAAwvQAAgDsAANg9AAC4vQAANL4AALY-AAC4PQAAyL0AABS-AACKvgAAQDwAAFC9AAAsvgAATT8AAKg9AACyPgAAoLwAADS-AADgPAAA2L0AAPi9AADIvQAAiL0AANg9AADgPAAA4LwAAKA8AAAwvQAA6D0AAGy-AADgvAAAqL0AAAy-AAB8PgAAJL4AADA9AAAcPgAAcL0AAOA8AABEvgAAmL0AADw-AAB_vwAALL4AAAQ-AABAPAAAFD4AAJi9AAB0PgAAyL0AANg9AADgvAAAML0AALg9AAAQvQAAcL0AAFA9AAAMPgAAoDwAAFA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=-yciEWjPHu4","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11115615587708215908"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11592166002218968281":{"videoId":"11592166002218968281","docid":"34-5-15-ZE58281696FB0B455","description":"同调、上同调和层的上同调 Teaching material: Zhou Jianwei - Lectures of Algebraic Topology; Jean Gallier, Jocelyn Quaintance - Homology, Cohomology, and Sheaf Cohomology for Algebraic Topology, Algebraic...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4088059/391e58bb6ec8940b425a685092a73e34/564x318_1"},"target":"_self","position":"18","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DT2eWv3Z5fQA","linkTemplate":"/video/preview/11592166002218968281?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"代数拓扑讨论班02 单纯同调群的计算 | Algebraic Topology Seminar 02: The Computation of Simplicial Homology","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=T2eWv3Z5fQA\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoWChQxMTU5MjE2NjAwMjIxODk2ODI4MVoUMTE1OTIxNjYwMDIyMTg5NjgyODFqrw0SATAYACJFGjEACipoaGtyaXhvdWFiY2FraWhkaGhVQ0ZtTUlnN1hPTURIdkpHMUVrUlhOZWcSAgASKhDCDw8aDz8TlTOCBCQBgAQrKosBEAEaeIH-_ff9_wIA9f4KDAIG_AHw_wH7-v__AP8LBA7_Bf4A8fr2-v8AAAAG-BYDAgAAAPkH-vP2_gEACwEA_-wA_wABAAb3_QAAAPsJCgv-AQAA-AEK_gIAAAAWBf4GAAAAAAAOAfn9_wAA-Br3_gAAAAD_B_7__wAAACAALQpv2Ts4E0AJSE5QAipzEAAaYCMaACICLAzvAxnS_xD7_fn5Fe743OwADPIADRof1PUA8c3zJ_8Y-Av7xwAAABcV4wcGANNPCgbFKBHo_fHA7gEkf-wQ-Q8XFuzF6g8dKfEK9yLrLADh9drcKA35LgccHyAALdQIXzs4E0AJSG9QAiqvBhAMGqAGAADAQAAAhkIAAABCAAAAAAAARMIAAGBCAABwQgAAQMEAAGTCAAAAQQAAEEEAACTCAACQwQAAkMEAAABCAACQwQAAKMIAAIDAAADgQAAAgEIAAFxCAAA0QgAAbMIAAMBBAACIQQAADMIAAHDBAAA4wgAAEMEAADBBAACYQQAANMIAABTCAABAQAAARMIAAKhCAADoQQAA_kIAAFDBAACuQgAAjkIAAHDBAACQQQAAAMIAAOBAAACoQQAAIMIAAJ5CAACKQgAAUEEAAADCAACIQQAAwMAAAIjBAACYwgAAAMIAAITCAAAQQQAAQMEAANhBAAAowgAAQMEAADDBAAAQwQAAyMEAAEBAAAAAwgAAEMEAADTCAAD4wQAAoEAAAPBBAACgQQAAIEIAABjCAAAcwgAAuMEAAABAAAA8QgAAXEIAAOBBAAAAQgAAsMEAACBBAACgwQAAkEEAAERCAADAwQAAuEEAAFDBAACIQQAAUEEAAHBBAADgQAAAgMEAAIhBAAAgQQAA-EEAAEDAAAAUQgAALMIAAAxCAAB4QgAA2EEAAFjCAADMwgAAgEAAAKxCAABAwQAAEMIAABDCAADKQgAARMIAAEBCAAB8QgAAIEEAAGBBAACQwQAAgEIAAODAAAAAQQAAsMEAAMhBAAA0wgAAPMIAAIBBAADowQAAHMIAAODBAAAAwQAA8EEAABBBAACgQQAAsEEAACDCAAAQwgAAoMAAADBBAACGwgAAJMIAAGDCAACoQQAAYEIAAKDAAAAAQAAA8EEAANBBAACQQQAAsMEAALhBAAA4wgAA2EEAAHRCAABAwAAAiEEAALhBAADQwQAAMMEAAEjCAADgwAAAkEEAACjCAADAQAAAdEIAAEBAAACIQgAAYEEAAGDBAABQQgAA4MAAAODBAAC4QQAAkMEAANDBAAAAQQAAmMEAAARCAACIwgAAUMEAAGRCAABwwgAAqMIAAMjBAAAAAAAA6kIAAAjCAACAQQAA_kIAANDBAADQQQAAgMIAAKDBAACowQAA4MEAABDBAACmQgAAhMIAAFDBAAAEQgAAQMEgADgTQAlIdVABKo8CEAAagAIAAOC8AADgPAAATD4AABw-AADgvAAAgLsAAEy-AADuvgAAML0AAAQ-AACoPQAAiD0AABC9AAA0PgAA-L0AAOC8AABQPQAAEL0AAOC8AACCPgAAfz8AAOA8AACYvQAAcD0AAFy-AABAvAAAyL0AABS-AABQPQAAiD0AAOA8AAAcPgAAFL4AAMg9AADYPQAAEL0AADA9AABQvQAAdL4AANi9AACovQAAiD0AAPi9AAAwvQAABL4AALi9AACCPgAAmL0AAIi9AAB0vgAAUD0AAFC9AACmPgAAFD4AAHS-AAAwvQAAyj4AAIA7AAD4vQAAHD4AAPi9AADIPQAAUD0AAIC7IAA4E0AJSHxQASqPAhABGoACAADovQAALD4AAKA8AAAnvwAAUL0AAEA8AACIvQAAdD4AAEy-AADOPgAAgDsAACS-AACAOwAAuL0AAMi9AACYvQAAiL0AACU_AAAwvQAADD4AAIi9AAAQvQAAcD0AANi9AABAPAAAPD4AAKA8AAAQPQAA4DwAAOg9AABAPAAAML0AAOC8AABAPAAATL4AABy-AACAOwAAqD0AADC9AACgPAAAUD0AAIi9AADgvAAAQLwAALi9AAA8vgAAf78AACQ-AACIvQAAjj4AABA9AACAOwAAbD4AAAw-AACAOwAAUL0AAOC8AAD4PQAAJL4AALi9AACAOwAAUL0AABA9AABwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=T2eWv3Z5fQA","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11592166002218968281"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17884208751006189830":{"videoId":"17884208751006189830","docid":"34-8-14-Z461FACD9F4685371","description":"This video provides a very basic introduction into topology optimization with OptiStruct. Due to the size of the original video, we had to split it in part I and part II.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3298404/aa52695c518eec1674858ab4e8d45d90/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/csKxXAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DspwVRlNcYG0","linkTemplate":"/video/preview/17884208751006189830?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Topology Optimization Basic Intro_I.f4v","related_orig_text":"Minnesota Topology Seminar","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Minnesota Topology Seminar\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=spwVRlNcYG0\",\"src\":\"serp\",\"rvb\":\"ErEDChM4ODQ4NTE1NTk5MjQ3ODUxODI5ChQxMjcxOTA5MjA2MTI3OTMwNTgyNwoTMjgzMDAyODk1ODM0MjcxNDMyMAoUMTAxNjA5MTkzNDc3NzQxNDgzMjkKFDExMDQxNjE0MTQwNzUxODIwODgwChM4NTkyNzY2NjExMTI2MDI1ODc2ChM5MDk3NjUwMzExNzc0NTM0NDUxChM4Mzg3NDU3MTU0NDcwODY4MTIyChQxNDA0NzAzNzM5MjI2NzA2OTM0MQoUMTgzMDQxMjM2MjYyNzM3MjU0NjcKEzEzNTA0ODUwNDQ3ODkwNjM5NzQKFDE0MzI1ODYwOTU4MjA0MTMwMzcxChQxNzI1NjAwODYxNzMyMDg1ODkzMgoUMTgyNzkxMjMxMTA5NzIzMjc3MTAKFDE3NTg0MzcyNTY1ODE0NjUyNzY5ChQxMTExNTYxNTU4NzcwODIxNTkwOAoUMTE1OTIxNjYwMDIyMTg5NjgyODEKFDE3ODg0MjA4NzUxMDA2MTg5ODMwChM2MjM4NDEyODg5MzcwNjkxNDI5ChQxMDc0MjEwNzM0MTc5MDgzNjMzORoWChQxNzg4NDIwODc1MTAwNjE4OTgzMFoUMTc4ODQyMDg3NTEwMDYxODk4MzBqkhcSATAYACJEGjAACiloaGpyeWJ4c2tlYWxreHdoaFVDdUxZMWtjWEFIWFB4MF8tejlIX2NfdxICABEqEMIPDxoPPxPkBYIEJAGABCsqiwEQARp4gfQDAv7_AQDvCAL8-wEAARD39Pf2AAAA7Ar_Bgj_AADu_ADz-AAAAPMGCgoBAAAAAv799vP9AQAPBgv8BQAAABP5Av73AAAA_P39Cv8BAADt8gT0AgAAAA8ACPv_AAAA-Q78-_8AAAD0DQYGAAAAAAD__v8AAAAAIAAt2DLUOzgTQAlITlACKoQCEAAa8AFpDw8B4QgPAfEJ_wDfDNAAgQUL_znr9gDaDAL_zgLpAOog-QDk-fQABwUqAJ_2_wEQEfIAHhQDABHyC_8v_AAAAx4GACLsAgAb_AUB_wTu_xQRB_8PBiEAEvwJAAcRAf42ChD94vjrAPX0-AQH4C4CDBjsASzoBgQFIhIA_wwfAPwIAgMh9wX_8Ab4Af4MAwLsAugB8gL0BAjkBwIZDPsIAdsK_ywI-f4y-vcA5gv6-AMVFf0BBAYBDg4EAfoI_PzxAQX8C_T5COUYBf8R5AsH7OIIBQEGE_kDCvYCAeP69uP_EQT4FREDAvMHEPXY__ggAC1uJ0g7OBNACUhhUAIqzwcQABrABz5d3b7KnCM63naRvcl3hLrVNeQ8-_HNvEkrvjxXsqO8mfLfu3YaCT5bAD89pA3RvJfHqr4Tx-w7vhGdvIqtQD4MjSw9XGBFPDV5Or4Oq5E7Sn5EPGcno77OGbS6pSYeulZvoz2xKzc9HUY3PaDi2D1hPJ68xU-IvFuvLj03Wuk7-OddvS-bSj23Siu91mgivOT7jT1n3O-8413kOuGXCj5xqJS9uqtsu_F4JD3ItDY97L6Eu3q2qL2u4sO7KYvrO-KSAz6Ho5A8OA9MPLklmD2hhxW9zpStu9lsNj3cAKI8NhLXOwkHMTy9Aiw8073OPMjw8zw0AGq9vJ_LOzHAdDyhMCg8YmsRPeSG_z05dvU8jG-ePCKudzyAZks9u95sPJtATL3n9ve83OqgO0sPmT0hGKy8P4gmuxnbpT2pUSO9IEmkPGLvKj1-QLk6jtj-uhFPHTzejws-btcIOr5o0buQ3ks9rCMivFkkV7375n68_YWBO9gocD3F7qG9Ncn2O0QgzTwTOIa6ohUOPHOKCb2YA7M8Xz5-vCXicj0WIMA8GpOMOAAOEL0HRMg8Q_JauhxjQr3mv1E8I7UavB0E3b2oaic8ryHZO0HYCT1CWKK95D8ium3enT2OwAU5BA1Lu0SnQj24huO834A_u_jsb7129S-9l_pcu-oDCb07DsO5dR7XO-sB0z2o0Zo8eTjkO0GH1Lyfxwg91iW6O4v6pD24uWc9sYJGu5vc1LzzTSS9_lwXO_Y3oj0TnNo9tcuqOc_oWLzfRK699UjKuAr3Cj3PBio99q29OWcM0z2UGH-9pf27uP_FebtvkJq86AQ2uSZXMbzl4YM9a5IOuBlNdLtUa4Y8UMi8udHLqDx0lIi99k--uY5xmj3cTSu9EAVsuS1BJr0iTsy7lH8LuaGkG72Qo3e7WB-it_6C-DyhR4w85ubwuFC1TDy4lLM8y6rkuCZzLDwUyRy9LyG0OMfTN70bArG97MJzOREeyLuRfVA97x2MNigzFD26b5A7SNLgt-UOGztlcNK7GCdnuK1omLxupGy9P1MwOFafhjz0QBy8IrgtOAMaVr0XI_e8M7c2t8e4Rz2jJI-9E_u4OPYnAT5EUku9G2w4OLCyMT02-bW7NcDzNumvgDsS-AM9_taYuN8MyDwRyWu8K-wEuMy5bz3f5549tBmat7S9B72-2Bu-XXwIuSbckLwWMDG-QaBaueobQbumqcQ97EGXOAP8lL1_qI89heReueEti72bf8s65gAKOCg1qrwz3CC9FZJMNiAAOBNACUhtUAEqcxAAGmBG_AAe2iPXBSY79dADExzKzePwIsIK_x_v_zQx5fXwDvKo7hMAOt4Z8ZsAAAD57MNHzAADf8Hc5wTPDP3OtQA58FoqAUTb-fkGwPQ_E_7Gwv_9-DwA09Gl_j70m0AcNSEgAC0gJRg7OBNACUhvUAIqrwYQDBqgBgAAMEEAAHDBAABAQQAAYMIAAFBBAABgQQAAjkIAABBCAACKwgAAgEAAANhBAABwwgAA0MEAAPjBAAAgQQAAwEAAAAzCAAAwwQAAwMAAAJDBAACSQgAACMIAACxCAAA4QgAA6EEAAIDBAABAQAAASMIAAKBAAADwQQAAAMIAANhBAABQwQAA4EEAAKbCAACAPwAAoMEAANRCAACIwQAAgMEAALZCAAAEQgAAFEIAAHhCAACYwQAAQMIAABDCAADQQQAAHEIAAEBAAACAwQAAQMAAAIbCAAAAwQAAhEIAABBBAADmwgAAMEIAAIjBAABwQgAAlkIAAJbCAAAAQAAAYMIAALRCAABgwgAA0MEAALDCAABYwgAA6MEAAHhCAACeQgAAgL8AAMBBAAAcwgAALMIAAMDAAAAUQgAAiEIAAABAAAAcwgAApEIAAKBBAAC4QQAAoEAAAGBBAAA0QgAAQEEAAPBBAAAwwgAAgEEAAIxCAACQwQAAHMIAALDBAACcwgAA4EAAAIDBAACQQQAAgMAAACBBAAA4QgAA2EEAAEzCAABgwQAAIEEAAADAAAAoQgAAMMEAADxCAACAPwAA6MEAAODBAABAQAAAoEAAAOBAAAAsQgAAjsIAAIjBAACwwQAA0EEAALjCAADYwQAAgMAAAADBAACIQQAAQEAAAMjBAAAAwQAAGMIAAAjCAABAQQAASMIAABDBAAAMwgAAeEIAANhBAABAwQAAmEEAABjCAABAwQAAIEEAAIhBAADgQAAAQEIAAAjCAACQwgAAUEEAAHBCAAAQQQAAuMEAACzCAABAwAAA0MEAALjBAABQwgAA4MEAAHTCAAAAwAAAkEEAAABAAAAAQQAA-MEAAKDAAABAwAAAqMEAAAhCAACEQgAAQMAAABzCAACAwQAAkEIAAGjCAACkwgAAmMEAAODBAADgQQAAaMIAADRCAAAAQQAAgMAAAFBBAAAUwgAAoEEAAFBBAACAwAAArsIAAAjCAABAQgAAgEEAAJzCAACCwgAAEEIAAIBBAAAgQQAAEEEAAIzCAADYwQAAQMAAABBBIAA4E0AJSHVQASqPAhAAGoACAAC4PQAATL4AAIi9AAAQPQAAZL4AAOC8AAAQvQAAA78AAO6-AADoPQAAQDwAADA9AAAMvgAA2D0AACS-AAAMvgAAoLwAAOC8AACgvAAAwj4AAH8_AADIPQAABL4AAAy-AABcvgAAcL0AABC9AABsvgAALL4AAKA8AAAEPgAAFD4AAI6-AABUPgAAqj4AAOA8AABcPgAADL4AAES-AABQvQAAmr4AAHC9AACgPAAA4LwAABw-AADIvQAAHL4AAOC8AADoPQAAmr4AAKC8AADIvQAAdD4AALg9AAAkvgAAmL0AABs_AAAsvgAAcD0AALg9AADgvAAAJD4AALg9AACgPCAAOBNACUh8UAEqjwIQARqAAgAAUL0AAHw-AAAkvgAALb8AABy-AAAEPgAAcD0AANg9AAC4vQAAvj4AAJg9AAAsvgAAuD0AAEy-AACgvAAAuL0AAOC8AAAfPwAAiL0AAMI-AADYvQAAEL0AABw-AAA0vgAAqL0AAIg9AAAMPgAA-D0AAOi9AAAQPQAA-D0AAJi9AAAUvgAAmD0AAHC9AABcvgAAmL0AAJY-AABEvgAABD4AABQ-AADgvAAAcD0AAIg9AACKvgAA6D0AAH-_AADgPAAAZL4AAJI-AACgvAAAQDwAADw-AABEPgAAbD4AAKC8AAAwvQAAVD4AACS-AABcvgAAML0AAGw-AAD4PQAA6L0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=spwVRlNcYG0","parent-reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["17884208751006189830"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"8848515599247851829":{"videoId":"8848515599247851829","title":"On the (co) homology of spectra-Algebraic \u0007[Topology\u0007] \u0007[seminar\u0007]","cleanTitle":"On the (co) homology of spectra-Algebraic Topology seminar","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XZsZBJZoLXA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XZsZBJZoLXA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVXE4NGg4Q080d0JEYVdaRUFCb1ZaUQ==","name":"Aareyan Manzoor","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Aareyan+Manzoor","origUrl":"https://www.youtube.com/channel/UCUq84h8CO4wBDaWZEABoVZQ","a11yText":"Aareyan Manzoor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2555,"text":"42:35","a11yText":"Süre 42 dakika 35 saniye","shortText":"42 dk."},"date":"7 tem 2022","modifyTime":1657152000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XZsZBJZoLXA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XZsZBJZoLXA","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":2555},"parentClipId":"8848515599247851829","href":"/preview/8848515599247851829?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/8848515599247851829?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12719092061279305827":{"videoId":"12719092061279305827","title":"EPFL Applied \u0007[Topology\u0007] \u0007[Seminar\u0007] - Persistent Stiefel-Whitney classes","cleanTitle":"EPFL Applied Topology Seminar - Persistent Stiefel-Whitney classes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-AGpfIo8RsA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-AGpfIo8RsA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRTVPTE9tQlI3dkRmWXBMOXA5TEFQdw==","name":"Raphaël Tinarrage","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Rapha%C3%ABl+Tinarrage","origUrl":"http://www.youtube.com/@raphaeltinarrage128","a11yText":"Raphaël Tinarrage. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3545,"text":"59:05","a11yText":"Süre 59 dakika 5 saniye","shortText":"59 dk."},"date":"3 kas 2020","modifyTime":1604361600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-AGpfIo8RsA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-AGpfIo8RsA","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":3545},"parentClipId":"12719092061279305827","href":"/preview/12719092061279305827?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/12719092061279305827?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2830028958342714320":{"videoId":"2830028958342714320","title":"Durham Geometry and \u0007[Topology\u0007] \u0007[Seminar\u0007] - 2021/1/14 - Gabriel Fuhrmann","cleanTitle":"Durham Geometry and Topology Seminar - 2021/1/14 - Gabriel Fuhrmann","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RycacXVujCE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RycacXVujCE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbVlfbC1KVEpILXp0b3V6dWM5cERNZw==","name":"DurhamUniversity","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DurhamUniversity","origUrl":"http://www.youtube.com/@DurhamUniversity","a11yText":"DurhamUniversity. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2999,"text":"49:59","a11yText":"Süre 49 dakika 59 saniye","shortText":"49 dk."},"date":"2 şub 2021","modifyTime":1612224000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RycacXVujCE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RycacXVujCE","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":2999},"parentClipId":"2830028958342714320","href":"/preview/2830028958342714320?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/2830028958342714320?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10160919347774148329":{"videoId":"10160919347774148329","title":"International \u0007[Seminar\u0007] on \u0007[Topology\u0007] Algebra and Analysis - Inauguration Feb","cleanTitle":"International Seminar on Topology Algebra and Analysis - Inauguration Feb","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=wATeDDPrgPY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/wATeDDPrgPY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS1FaVTdrVE9iQ3AwWXdyTmZZWVJ5dw==","name":"Manoranjan Singha","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Manoranjan+Singha","origUrl":"https://www.youtube.com/channel/UCKQZU7kTObCp0YwrNfYYRyw","a11yText":"Manoranjan Singha. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1019,"text":"16:59","a11yText":"Süre 16 dakika 59 saniye","shortText":"16 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"15 mar 2017","modifyTime":1489536000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/wATeDDPrgPY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=wATeDDPrgPY","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":1019},"parentClipId":"10160919347774148329","href":"/preview/10160919347774148329?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/10160919347774148329?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11041614140751820880":{"videoId":"11041614140751820880","title":"基础拓扑学讨论班01 基础知识, 拓扑的定义 | Basic \u0007[Topology\u0007] \u0007[Seminar\u0007] 01: Preliminary, Definition of \u0007[Topology\u0007]","cleanTitle":"基础拓扑学讨论班01 基础知识, 拓扑的定义 | Basic Topology Seminar 01: Preliminary, Definition of Topology","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=niyIHQvp7i4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/niyIHQvp7i4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRm1NSWc3WE9NREh2SkcxRWtSWE5lZw==","name":"David Lee","isVerified":false,"subscribersCount":0,"url":"/video/search?text=David+Lee","origUrl":"http://www.youtube.com/@Gradiveiprot","a11yText":"David Lee. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":7288,"text":"2:01:28","a11yText":"Süre 2 saat 1 dakika 28 saniye","shortText":"2 sa. 1 dk."},"views":{"text":"4,5bin","a11yText":"4,5 bin izleme"},"date":"7 nis 2022","modifyTime":1649289600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/niyIHQvp7i4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=niyIHQvp7i4","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":7288},"parentClipId":"11041614140751820880","href":"/preview/11041614140751820880?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/11041614140751820880?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8592766611126025876":{"videoId":"8592766611126025876","title":"Ai3sd Winter \u0007[Seminar\u0007] #1: \u0007[Topology\u0007] & Applications in Chemistry Talk 1 - Professor Jacek Brodz...","cleanTitle":"Ai3sd Winter Seminar #1: Topology & Applications in Chemistry Talk 1 - Professor Jacek Brodzki","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hbiuV1cH0gs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hbiuV1cH0gs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWE9rVjk0M2RtbzZyU2lWbG83bHNCdw==","name":"AI 4 Scientific Discovery","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AI+4+Scientific+Discovery","origUrl":"http://www.youtube.com/@AI4ScientificDiscovery","a11yText":"AI 4 Scientific Discovery. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2384,"text":"39:44","a11yText":"Süre 39 dakika 44 saniye","shortText":"39 dk."},"date":"20 kas 2020","modifyTime":1605830400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hbiuV1cH0gs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hbiuV1cH0gs","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":2384},"parentClipId":"8592766611126025876","href":"/preview/8592766611126025876?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/8592766611126025876?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9097650311774534451":{"videoId":"9097650311774534451","title":"基础拓扑学讨论班02 拓扑基与度量拓扑 | Basic \u0007[Topology\u0007] \u0007[Seminar\u0007] 02: Basis for a \u0007[Topology\u0007] and Metric \u0007[Topol...","cleanTitle":"基础拓扑学讨论班02 拓扑基与度量拓扑 | Basic Topology Seminar 02: Basis for a Topology and Metric Topology","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FsZsJup4YW8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FsZsJup4YW8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRm1NSWc3WE9NREh2SkcxRWtSWE5lZw==","name":"David Lee","isVerified":false,"subscribersCount":0,"url":"/video/search?text=David+Lee","origUrl":"http://www.youtube.com/@Gradiveiprot","a11yText":"David Lee. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":7436,"text":"2:03:56","a11yText":"Süre 2 saat 3 dakika 56 saniye","shortText":"2 sa. 3 dk."},"date":"7 nis 2022","modifyTime":1649289600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FsZsJup4YW8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FsZsJup4YW8","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":7436},"parentClipId":"9097650311774534451","href":"/preview/9097650311774534451?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/9097650311774534451?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8387457154470868122":{"videoId":"8387457154470868122","title":"International \u0007[Seminar\u0007] on \u0007[Topology\u0007], Analysis and Algebra- Lecture : Prof. Ljubisa Kocinac","cleanTitle":"International Seminar on Topology, Analysis and Algebra- Lecture : Prof. Ljubisa Kocinac","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sxAtIQnqukQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sxAtIQnqukQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS1FaVTdrVE9iQ3AwWXdyTmZZWVJ5dw==","name":"Manoranjan Singha","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Manoranjan+Singha","origUrl":"http://www.youtube.com/@manoranjansingha6296","a11yText":"Manoranjan Singha. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3242,"text":"54:02","a11yText":"Süre 54 dakika 2 saniye","shortText":"54 dk."},"date":"16 mar 2017","modifyTime":1489622400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sxAtIQnqukQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sxAtIQnqukQ","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":3242},"parentClipId":"8387457154470868122","href":"/preview/8387457154470868122?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/8387457154470868122?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14047037392267069341":{"videoId":"14047037392267069341","title":"The \u0007[topology\u0007] of local commensurability graphs (GGD/GEAR \u0007[Seminar\u0007])","cleanTitle":"The topology of local commensurability graphs (GGD/GEAR Seminar)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=3PTQvThap8I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3PTQvThap8I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWkNMVWthdFFrZVl6VWxzZlhTa3JSQQ==","name":"Illinois Dept. of Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Illinois+Dept.+of+Math","origUrl":"http://www.youtube.com/@MathMediaIllinois","a11yText":"Illinois Dept. of Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3060,"text":"51:00","a11yText":"Süre 51 dakika","shortText":"51 dk."},"date":"13 eki 2015","modifyTime":1444755631000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3PTQvThap8I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3PTQvThap8I","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":3060},"parentClipId":"14047037392267069341","href":"/preview/14047037392267069341?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/14047037392267069341?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18304123626273725467":{"videoId":"18304123626273725467","title":"International \u0007[Seminar\u0007] on \u0007[Topology\u0007], Analysis and Algebra- Lecture : Prof. Djamila SEBA","cleanTitle":"International Seminar on Topology, Analysis and Algebra- Lecture : Prof. Djamila SEBA","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=auvV9oNFeIc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/auvV9oNFeIc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS1FaVTdrVE9iQ3AwWXdyTmZZWVJ5dw==","name":"Manoranjan Singha","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Manoranjan+Singha","origUrl":"http://www.youtube.com/@manoranjansingha6296","a11yText":"Manoranjan Singha. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1376,"text":"22:56","a11yText":"Süre 22 dakika 56 saniye","shortText":"22 dk."},"date":"16 mar 2017","modifyTime":1489622400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/auvV9oNFeIc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=auvV9oNFeIc","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":1376},"parentClipId":"18304123626273725467","href":"/preview/18304123626273725467?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/18304123626273725467?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1350485044789063974":{"videoId":"1350485044789063974","title":"Michael Atiyah, \u0007[Seminars\u0007] Geometry and \u0007[Topology\u0007] 1/2 [2009]","cleanTitle":"Michael Atiyah, Seminars Geometry and Topology 1/2 [2009]","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=lkGvymZqTDs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/lkGvymZqTDs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSTJ4cTlPWFVTYlFHYjNHZEt4X2l4Zw==","name":"Graduate Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Graduate+Mathematics","origUrl":"http://www.youtube.com/channel/UCI2xq9OXUSbQGb3GdKx_ixg","a11yText":"Graduate Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4341,"text":"1:12:21","a11yText":"Süre 1 saat 12 dakika 21 saniye","shortText":"1 sa. 12 dk."},"views":{"text":"1,7bin","a11yText":"1,7 bin izleme"},"date":"27 eki 2016","modifyTime":1477526400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/lkGvymZqTDs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=lkGvymZqTDs","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":4341},"parentClipId":"1350485044789063974","href":"/preview/1350485044789063974?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/1350485044789063974?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14325860958204130371":{"videoId":"14325860958204130371","title":"\u0007[Topology\u0007] and Termination Introduction","cleanTitle":"Topology and Termination Introduction","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OuiVpscr1tE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OuiVpscr1tE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGtfXy1ZVERLemlWLV8zWE1JUDVydw==","name":"Terry Fox","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Terry+Fox","origUrl":"http://www.youtube.com/@tfoxwa","a11yText":"Terry Fox. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":523,"text":"8:43","a11yText":"Süre 8 dakika 43 saniye","shortText":"8 dk."},"views":{"text":"14,1bin","a11yText":"14,1 bin izleme"},"date":"6 eyl 2014","modifyTime":1409961600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OuiVpscr1tE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OuiVpscr1tE","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":523},"parentClipId":"14325860958204130371","href":"/preview/14325860958204130371?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/14325860958204130371?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17256008617320858932":{"videoId":"17256008617320858932","title":"\u0007[Topology\u0007] Optimization (Introduction) Part 1","cleanTitle":"Topology Optimization (Introduction) Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_erS8dRxILM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_erS8dRxILM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVVBQ2NzTjQwYWs2RHhfQU5JeVlLdw==","name":"Luchsio","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Luchsio","origUrl":"https://www.youtube.com/channel/UCIUACcsN40ak6Dx_ANIyYKw","a11yText":"Luchsio. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":533,"text":"8:53","a11yText":"Süre 8 dakika 53 saniye","shortText":"8 dk."},"views":{"text":"28,7bin","a11yText":"28,7 bin izleme"},"date":"17 mayıs 2016","modifyTime":1463443200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_erS8dRxILM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_erS8dRxILM","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":533},"parentClipId":"17256008617320858932","href":"/preview/17256008617320858932?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/17256008617320858932?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18279123110972327710":{"videoId":"18279123110972327710","title":"\u0007[Topology\u0007] optimization for additive manufacturing Part 1/4","cleanTitle":"Topology optimization for additive manufacturing Part 1/4","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=iBjtW53tmzI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iBjtW53tmzI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTEJhS2lQcjk4RGt4RWxpcENVUm5wdw==","name":"Jun Wu","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Jun+Wu","origUrl":"http://www.youtube.com/@JunWu2011","a11yText":"Jun Wu. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":881,"text":"14:41","a11yText":"Süre 14 dakika 41 saniye","shortText":"14 dk."},"views":{"text":"8,1bin","a11yText":"8,1 bin izleme"},"date":"18 mar 2020","modifyTime":1584489600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iBjtW53tmzI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iBjtW53tmzI","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":881},"parentClipId":"18279123110972327710","href":"/preview/18279123110972327710?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/18279123110972327710?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17584372565814652769":{"videoId":"17584372565814652769","title":"\u0007[Topology\u0007] optimization for additive manufacturing Part 4/4","cleanTitle":"Topology optimization for additive manufacturing Part 4/4","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WFrX_1o9tr0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WFrX_1o9tr0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTEJhS2lQcjk4RGt4RWxpcENVUm5wdw==","name":"Jun Wu","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Jun+Wu","origUrl":"https://www.youtube.com/channel/UCLBaKiPr98DkxElipCURnpw","a11yText":"Jun Wu. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":591,"text":"9:51","a11yText":"Süre 9 dakika 51 saniye","shortText":"9 dk."},"views":{"text":"3,5bin","a11yText":"3,5 bin izleme"},"date":"18 mar 2020","modifyTime":1584489600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WFrX_1o9tr0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WFrX_1o9tr0","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":591},"parentClipId":"17584372565814652769","href":"/preview/17584372565814652769?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/17584372565814652769?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11115615587708215908":{"videoId":"11115615587708215908","title":"\u0007[Topology\u0007] Optimization, second derivatives & Omdao - Graeme Kennedy - OpenMDAO Workshop 2022","cleanTitle":"Topology Optimization, second derivatives & Omdao - Graeme Kennedy - OpenMDAO Workshop 2022","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-yciEWjPHu4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-yciEWjPHu4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUh0MG1RSGdmcHI5bGRmMmV4N0xaUQ==","name":"OpenMDAO","isVerified":false,"subscribersCount":0,"url":"/video/search?text=OpenMDAO","origUrl":"http://www.youtube.com/@OpenMDAO","a11yText":"OpenMDAO. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2054,"text":"34:14","a11yText":"Süre 34 dakika 14 saniye","shortText":"34 dk."},"views":{"text":"5,8bin","a11yText":"5,8 bin izleme"},"date":"6 mar 2023","modifyTime":1678060800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-yciEWjPHu4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-yciEWjPHu4","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":2054},"parentClipId":"11115615587708215908","href":"/preview/11115615587708215908?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/11115615587708215908?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11592166002218968281":{"videoId":"11592166002218968281","title":"代数拓扑讨论班02 单纯同调群的计算 | Algebraic \u0007[Topology\u0007] \u0007[Seminar\u0007] 02: The Computation of Simplicial Homology","cleanTitle":"代数拓扑讨论班02 单纯同调群的计算 | Algebraic Topology Seminar 02: The Computation of Simplicial Homology","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=T2eWv3Z5fQA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/T2eWv3Z5fQA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRm1NSWc3WE9NREh2SkcxRWtSWE5lZw==","name":"David Lee","isVerified":false,"subscribersCount":0,"url":"/video/search?text=David+Lee","origUrl":"http://www.youtube.com/@Gradiveiprot","a11yText":"David Lee. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":6549,"text":"1:49:09","a11yText":"Süre 1 saat 49 dakika 9 saniye","shortText":"1 sa. 49 dk."},"date":"5 nis 2023","modifyTime":1680652800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/T2eWv3Z5fQA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=T2eWv3Z5fQA","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":6549},"parentClipId":"11592166002218968281","href":"/preview/11592166002218968281?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/11592166002218968281?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17884208751006189830":{"videoId":"17884208751006189830","title":"\u0007[Topology\u0007] Optimization Basic Intro_I.f4v","cleanTitle":"Topology Optimization Basic Intro_I.f4v","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=spwVRlNcYG0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/spwVRlNcYG0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdUxZMWtjWEFIWFB4MF8tejlIX2Nfdw==","name":"Altair Global Academic Program","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Altair+Global+Academic+Program","origUrl":"http://gdata.youtube.com/feeds/api/users/HyperWorksUniversity","a11yText":"Altair Global Academic Program. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":740,"text":"12:20","a11yText":"Süre 12 dakika 20 saniye","shortText":"12 dk."},"views":{"text":"7bin","a11yText":"7 bin izleme"},"date":"30 haz 2011","modifyTime":1309392000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/spwVRlNcYG0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=spwVRlNcYG0","reqid":"1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL","duration":740},"parentClipId":"17884208751006189830","href":"/preview/17884208751006189830?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","rawHref":"/video/preview/17884208751006189830?parent-reqid=1765328863479719-15190054214798281620-balancer-l7leveler-kubr-yp-sas-46-BAL&text=Minnesota+Topology+Seminar","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"5190054214798281620746","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Minnesota Topology Seminar","queryUriEscaped":"Minnesota%20Topology%20Seminar","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}