{"pages":{"search":{"query":"Non-Normal Vectors","originalQuery":"Non-Normal Vectors","serpid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","parentReqid":"","serpItems":[{"id":"5929453876490593941-0-0","type":"videoSnippet","props":{"videoId":"5929453876490593941"},"curPage":0},{"id":"14427970159829401829-0-1","type":"videoSnippet","props":{"videoId":"14427970159829401829"},"curPage":0},{"id":"9110072984625557179-0-2","type":"videoSnippet","props":{"videoId":"9110072984625557179"},"curPage":0},{"id":"3309045466181078120-0-3","type":"videoSnippet","props":{"videoId":"3309045466181078120"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dE5vbi1Ob3JtYWwgVmVjdG9ycwo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","ui":"desktop","yuid":"8621134691769552701"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"4892014443146111582-0-5","type":"videoSnippet","props":{"videoId":"4892014443146111582"},"curPage":0},{"id":"5518236947412282616-0-6","type":"videoSnippet","props":{"videoId":"5518236947412282616"},"curPage":0},{"id":"1638793129454849525-0-7","type":"videoSnippet","props":{"videoId":"1638793129454849525"},"curPage":0},{"id":"475998534144537393-0-8","type":"videoSnippet","props":{"videoId":"475998534144537393"},"curPage":0},{"id":"14988691049978038453-0-9","type":"videoSnippet","props":{"videoId":"14988691049978038453"},"curPage":0},{"id":"13998442716781962611-0-10","type":"videoSnippet","props":{"videoId":"13998442716781962611"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dE5vbi1Ob3JtYWwgVmVjdG9ycwo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","ui":"desktop","yuid":"8621134691769552701"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"3040722327564241817-0-12","type":"videoSnippet","props":{"videoId":"3040722327564241817"},"curPage":0},{"id":"9028058288204469576-0-13","type":"videoSnippet","props":{"videoId":"9028058288204469576"},"curPage":0},{"id":"10198891631578408057-0-14","type":"videoSnippet","props":{"videoId":"10198891631578408057"},"curPage":0},{"id":"2824172790821070088-0-15","type":"videoSnippet","props":{"videoId":"2824172790821070088"},"curPage":0},{"id":"10723838677854301802-0-16","type":"videoSnippet","props":{"videoId":"10723838677854301802"},"curPage":0},{"id":"6537011125351753722-0-17","type":"videoSnippet","props":{"videoId":"6537011125351753722"},"curPage":0},{"id":"2094659584749941789-0-18","type":"videoSnippet","props":{"videoId":"2094659584749941789"},"curPage":0},{"id":"9978663374244299698-0-19","type":"videoSnippet","props":{"videoId":"9978663374244299698"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE5vbi1Ob3JtYWwgVmVjdG9ycwo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","ui":"desktop","yuid":"8621134691769552701"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DNon-Normal%2BVectors"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"1500532082976238937257","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455699,0,33;1471990,0,21;1472350,0,81;1466868,0,47;1457616,0,84;1473738,0,78;1460717,0,3;1459297,0,66;1465968,0,0;1456929,0,23;1472029,0,65;1471623,0,39;1471380,0,99;1464524,0,27;1470249,0,71;1470224,0,6;1470853,0,61;1467161,0,55;1452016,0,45;1349038,0,16;1471918,0,18;1279758,0,79;1474025,0,57;1470515,0,66;133998,0,47;124064,0,29;1471183,0,13;45961,0,74;32740,0,31;1469414,0,59;19997,0,24;151171,0,71;1281084,0,50;287509,0,0;1447467,0,72;1473596,0,37;1466397,0,17"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DNon-Normal%2BVectors","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Non-Normal+Vectors","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Non-Normal+Vectors","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Non-Normal Vectors: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Non-Normal Vectors\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Non-Normal Vectors — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y9bd767ee71ce327b9a5cefe007267231","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1471990,1472350,1466868,1457616,1473738,1460717,1459297,1465968,1456929,1472029,1471623,1471380,1464524,1470249,1470224,1470853,1467161,1452016,1349038,1471918,1279758,1474025,1470515,133998,124064,1471183,45961,32740,1469414,19997,151171,1281084,287509,1447467,1473596,1466397","queryText":"Non-Normal Vectors","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"8621134691769552701","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769552749","tz":"America/Louisville","to_iso":"2026-01-27T17:25:49-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1471990,1472350,1466868,1457616,1473738,1460717,1459297,1465968,1456929,1472029,1471623,1471380,1464524,1470249,1470224,1470853,1467161,1452016,1349038,1471918,1279758,1474025,1470515,133998,124064,1471183,45961,32740,1469414,19997,151171,1281084,287509,1447467,1473596,1466397","queryText":"Non-Normal Vectors","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"8621134691769552701","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"1500532082976238937257","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":165,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"8621134691769552701","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"5929453876490593941":{"videoId":"5929453876490593941","docid":"34-1-3-ZA66928F6541C2934","description":"Dear students, based on students request , purpose of the final exams, i did chapter wise videos in PDF format, if u are interested, you can download Unit wise videos by clicking the below links...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4318448/dbfcda32b54f761a73465d736026369f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/C6Mn_gAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEAWmJX3xPe4","linkTemplate":"/video/preview/5929453876490593941?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Normal Vector/Unit Normal Vector/Tangent to the Vector/applications","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=EAWmJX3xPe4\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFQoTNTkyOTQ1Mzg3NjQ5MDU5Mzk0MVoTNTkyOTQ1Mzg3NjQ5MDU5Mzk0MWqIFxIBMBgAIkUaMQAKKmhoYnJkaHh5aHdoanFpcGJoaFVDSWlldDhXbmI1WnplbDlMQncyTThCQRICABIqEMIPDxoPPxOdBoIEJAGABCsqiwEQARp4gfEFAwH7BQDt_vICDgH_AAsKBwD3AQAA8QII8gMBAAD69f0H_QAAAA0NDPYBAAAA_AQI8_v-AQD-BP__3gD_AAYGAf_-AAAACQf09v8BAADu8wT1AgAAAAsE-QUAAAAA-v3-AwEAAAD5Awz7AAAAABT_A_0AAQAAIAAtEgbgOzgTQAlITlACKoQCEAAa8AF_9P8AzPrO_-ruyQHTJ-IBjxUN_zQ94P-qFBUBugPgAO0H6QDc_xD_BvAdANgf-wBB9cn_BNYpACXV8P8W8vAAuQkmACbT8wFFAxf___Lh_vANF__nzhIBHuXlAP0D5QAOEiL__uv9AO0DwQIXAx8BJRI7AA0DFwEDwRIA8x0K_uvc2P34APEEGNv4_9cFIwLs6AP5AAcK-tQZ2AD56fcA_sr-8h0c4P0g8fYG_vL2B94GC_QM4-gCBRIB_M0DCfwBDDD70Pnr9O_zFgU1z-8HDAT--_fy6wNGDvQBH9j_CO0P-vnnMAoB0-vxBtoM8f8gAC2kNxE7OBNACUhhUAIqzwcQABrAB-li076K8AU9kHjDPBzIP70J6ow7nMwuvY2PAL2AzLg9FpIju9Fg7jxXEi89PhR7vZxNl77qPVy5ZI8WvC0LVj6wily9QS0mve_lTr4QqEM9GKzAu_Whg748d_E7LsWXO9JIlT3-Is28Hu0JPe8RGz3BxL-9CJABvbKCX730CKS8eXyWvEOsLr4JQw69oKRlPNuZUz2SC5m9vOvsuyAHuj2CkTe9iLKcvK_HqT0oJhC7rNAWvfciGj3l8wQ8dYDWvB3owT2G_H656kmPPLHeCD0OG0C7eKevu-trIr3-g6M8FvtLOxEWW7tXXHw94yQjvUrExT2X0xS9MGOKvEC3sb09KRM9mtwcPKj8Cz6lg5U9JI6GvNzvhb3dCfY9yJ3ruvmE7Dz2lQc9sZuAuwcmdz1cDT88zdIpvGtzrbtc4zg9A50kvKoeRrqAgYA9VNNkPPFmzT2vV7-73Sz7u_FImzrRrkI8iZI1vNJtDr1Ikps9ON0PvFLtoz3F4Ma8JnyEO_TpZ7z6nDY9Pr8cPJuVCL0Idgy-zaXhu2MqfbyjRcy9hypGvFRkHj1YVQA673pEvF6ZPD2ThGm82wCHvC8yojsUFPW8GPaLO36fmz3vlj-8_AgVPOzJgr3eKCg9ocA3O9i_xrzE3lU8f_ExvCAfGT3YYZw9JKwVu5-muzxR_LO9lwabOzEERT0vZx27euxtOscYDj3h4ME8uyjZu1JfGz1ZYYS8bXlYOUZmST2pKpm8b6WROwkuW71HFSy7Gt2Du6qCoT0aGJm9R0qgOHD3KD1UCrA8I04jOa5u67ym8CA9C5aeuZBt9Dyy6Ee9bevAucui8LxbQh6-NwXjOf8NNbzO1d47RBCMuvg9hT0wXxa6FJsFOD5Cnb3oqlS9lodOuby0vDveBD898KylOWJV0rs0dhO9FJIfuLn8ybtyA7Q86PKQuVhyFb3CkiG9EeisObwvnbyLgZ890q5sN0HxAz1xT8G91zh7OQqAsbwnF-M9YmCSuV0X4buXbLE9XaNlOI4pM7zltOc8azS2uJoHED3eOMm9CDT7NqgXnTsiFes8B6t-tlRT0r3odM-8L_jFNxfVOrr5UDE60FjcNwF7lj2W8_875g3lN1xEyrt9xcM7fV2TN8HjKz7cpWi8B4l0ub5dAL3Iz146U6act-4B3zzVXQm-RxjEOK0kQ70Mc0c9HsEWNybckLwWMDG-QaBaucr0cD0i4Ss-8cuKOFmWeTzFDGM9G7iOuNoROL0tK6g89CIkuIKAazxMXag8tbgbOCAAOBNACUhtUAEqcxAAGmAn8QAt8i_iFhcI5wraGQToxRXjA_HW__6h_w8d0e8CLr3G6iEAQusc76YAAAAs2BQL1AAAdtYCEywECALIqtYOLX_2MjPI6DsIy_QgUvnR0yr6D18A8O-UJR2_oSgWGi8gAC2mGxg7OBNACUhvUAIqrwYQDBqgBgAADEIAAHDBAACMQgAAYMEAAEzCAACgQQAAqkIAAPhBAAAcwgAAyMEAAEBBAABAwQAA6MEAAIA_AAAkQgAA4MAAAJpCAACCwgAACEIAAGDCAAAswgAAoMIAAJjCAAB8QgAAKMIAAIDAAACAQAAA8MEAAKhBAACIQQAAbMIAAGBBAAB4wgAAMMEAAJDCAABAQAAAiEIAALRCAAAIQgAApEIAAEDAAAAgwQAA0EEAADDBAACoQQAA4MAAAKhBAAC4QQAACEIAAHDBAAAwwQAAQMIAAIhBAACgQQAAHEIAAGDBAABcwgAAMMEAAKBBAACQQQAAEEEAACTCAABgwgAAfMIAAIhBAABQwgAAkMEAAGTCAACwwQAAgMAAADxCAABAQQAAEMIAAEBBAAAQQQAANMIAALTCAADwwQAAQEIAALhBAAC4wQAAfEIAAAjCAAAYwgAAgD8AAGhCAACAwQAAHMIAACRCAABMwgAAcEEAAIhBAAAEwgAAiMEAAEBAAAAMwgAAMMEAALjBAABQQQAAhEIAALjCAAAkQgAAPEIAAODBAABwwgAAqEEAAIjBAAAMQgAAoEAAAGRCAAAQQgAAwEAAAEDBAAAAwgAAwMEAAFBCAADgQQAAfMIAAIjBAABkwgAAXMIAAJjBAACgQQAAyMEAABzCAAAgwgAAsMEAAEDAAAAswgAAGMIAAIC_AACOwgAAAAAAAKZCAAAAAAAA4EAAAIJCAAC4QQAAgD8AAIbCAAAAQgAAgMAAADBBAADAwAAAQEIAAGRCAABwwQAAQMIAAABCAAAEQgAAEMEAAIhBAABMQgAAUEEAAABBAADAwQAAoMIAADDCAAB0wgAAkMEAAKhBAACAPwAAQEIAABBBAAAAwAAADEIAANBBAAAUQgAA0EIAADDCAADowQAAwMAAACBBAABAQAAAmMEAANDBAAAIwgAAgMEAAIDBAAAoQgAApMIAAKrCAACgQAAAwEAAAIBCAABgwgAAyMEAAGBBAACAQAAAAEAAAFBCAAAwwQAACMIAAMBAAAAgQQAAGEIAAMDAAACOQgAAIEIAADjCIAA4E0AJSHVQASqPAhAAGoACAADOvgAAJD4AAOA8AAAMPgAAML0AABQ-AAAEPgAA-r4AADS-AABwPQAA4LwAACS-AAAsPgAAuL0AALi9AABAvAAA4DwAAKC8AABwPQAA2j4AAH8_AAD4vQAAJD4AAKC8AACavgAAgDsAALi9AACgPAAAgLsAAEQ-AACKPgAAuD0AADy-AABEPgAAuD0AAIg9AACCPgAABL4AAIa-AADovQAAzr4AALi9AAAwvQAAQLwAAAy-AABkPgAAVD4AAFy-AABcvgAANL4AABA9AADKvgAABD4AAEQ-AADgPAAAoDwAABM_AAAEPgAAuL0AANo-AACYvQAAyL0AABA9AAAsPiAAOBNACUh8UAEqjwIQARqAAgAAiL0AANg9AAD4PQAAC78AAAQ-AACIvQAAHD4AANg9AABAPAAA6L0AADy-AABsvgAARD4AADy-AAAkvgAAgDsAAES-AAAxPwAAML0AALg9AADSPgAAPL4AAAQ-AABcvgAAoLwAAOA8AAD4vQAAqD0AAHC9AABcPgAABD4AANg9AACSvgAATD4AAOi9AABsvgAAtj4AAIi9AACmvgAAmL0AAL4-AACYvQAApj4AAIg9AACgvAAAND4AAH-_AACAOwAA6L0AAEC8AACgPAAAZD4AABQ-AABwPQAAHD4AANg9AACovQAA2L0AAHA9AADYPQAAUL0AAIK-AAC6vgAANL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=EAWmJX3xPe4","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1762,"cheight":1080,"cratio":1.63148,"dups":["5929453876490593941"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3241029445"},"14427970159829401829":{"videoId":"14427970159829401829","docid":"34-9-11-ZEC9873777DB5477C","description":"These are the 2 normal vectors A and B. The mediant of these vectors can be defined as the sum of its components and it's equal to or less than the normal vector of A + B . Music by...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3526807/f7f7a46bab99d962f4f9632696fd9a86/564x318_1"},"target":"_self","position":"1","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKdEPRF59oZk","linkTemplate":"/video/preview/14427970159829401829?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Normal Vector VS Mediant","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KdEPRF59oZk\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFgoUMTQ0Mjc5NzAxNTk4Mjk0MDE4MjlaFDE0NDI3OTcwMTU5ODI5NDAxODI5aq0NEgEwGAAiQxowAAopaGhrbHZzZXVxaXd4dHR4aGhVQ1VjUXFRdXdsYkxzU0J1RlhiREwtUlESAgARKg_CDw8aDz8TPIIEJAGABCsqiwEQARp4gfEFAwH7BQD2BPcNBQb8Af4GBQAJ_f4A7vwG-wYAAADy9f8BAgAAAA4M__0DAAAA9QYA-P0AAAD89fv9-QAAAAsLAgkBAAAACv_7-P8BAAD6B_v59wEAAQQI-woAAAAAB_0AAQEAAAD0AwkCAAAAABT_A_0AAQAAIAAtEgbgOzgTQAlITlACKnMQABpgGw4ANxEg-uwG6vno_hL1ABHvFgPw3ADntgDyFwDnCQn30fUcABTZCf3IAAAACsz7-9EA40b1AegV-_LlFeHvByt_DRkQ6AsnG-AX9wvn1uT76_X5AAgN5w4R77oZ2xRBIAAtLG9kOzgTQAlIb1ACKq8GEAwaoAYAABRCAADYwQAAoEAAAADAAAB8wgAAQMAAAMJCAAAMQgAASMIAAIA_AAAkQgAAfEIAAEBAAADQQQAAFEIAAMhBAAAAwAAAAMAAAIC_AACYwgAANEIAAIA_AABwQQAAEMEAAEzCAACAPwAAIMEAACRCAACgQQAAlEIAAABBAACQQQAAbMIAABBCAADgwAAAisIAACBCAABgQgAAdEIAAIZCAAAoQgAAwEAAAMJCAABAQQAAAAAAABzCAAA0QgAA4MAAAAhCAABwwQAANMIAACBBAABEwgAA3sIAAKDBAACkQgAAgMIAAOjBAABQwQAAMEIAAEDBAAAwwgAAgD8AAKDAAACAwAAAUMIAADRCAAAUwgAACEIAAKDBAADwQQAAiEEAAIDBAAAEQgAAAAAAAOBBAADAQAAA4EEAAFhCAAAAwQAAGMIAADRCAACgQQAAbMIAADRCAABQwgAAAEIAAJBBAACQQgAAiEEAAIjBAACoQQAA4MAAAHTCAACKQgAAoMIAALDBAACgQAAAUEEAAIhCAACUwgAA2EEAACzCAACAvwAACMIAAMhBAACQQQAAgL8AAKjBAADoQQAAsEEAAKDAAABkwgAAIEIAAFhCAACAQAAA4EAAAFjCAAAgQQAA2MEAAODAAACQwgAA8EEAAMDBAABMwgAAyMEAAEBBAACAQAAAtsIAAMRCAAAUwgAAoEEAABDBAAAAQQAALEIAAMhBAAAwQQAAIMIAAITCAABcQgAAFMIAACxCAACAQAAANEIAALRCAADwQQAA-EEAAKBBAABoQgAAQEAAAJhBAACwwQAAgMEAAKBBAAAsQgAAGEIAAKDAAAAMwgAAiMIAAIDBAABwwQAAAEEAABzCAACAQQAAMEEAAAjCAAAAQAAAMEIAAJBBAACAPwAAEEIAAABBAABEwgAAeMIAAEDBAAAEQgAA4MEAAGBBAABQwgAAGEIAALrCAACAPwAASMIAAADAAACQQQAA0EEAALbCAACaQgAAiMEAAIC_AABQQgAAGEIAAAhCAACAQAAALMIAAIA_AADAwAAAgL8AAEBAAACAvyAAOBNACUh1UAEqjwIQABqAAgAAur4AAOg9AAAEPgAAXD4AAEy-AACoPQAAML0AABu_AAAMvgAAwj4AADw-AADovQAAkj4AABw-AAAkvgAAmD0AAKY-AAAwPQAAmj4AAAk_AAB_PwAAkr4AALo-AABAvAAAXL4AAAS-AABQPQAAED0AABC9AACaPgAAhj4AABC9AAAcvgAAqL0AAOi9AAAMPgAA2D0AAAy-AAA8vgAAdL4AAAe_AACqvgAALD4AACS-AAB8vgAA6D0AACQ-AADuvgAAtr4AAIK-AABwPQAA2r4AAMg9AABwPQAA4LwAAIA7AABfPwAAuD0AAKC8AACaPgAAqD0AAHy-AACYPQAADD4gADgTQAlIfFABKo8CEAEagAIAAGS-AADIPQAAED0AAC-_AACoPQAAML0AAIg9AADgPAAADL4AAIA7AAAEvgAAgr4AAKi9AABEvgAABL4AAIA7AACCvgAAMz8AAAS-AADgPAAA3j4AAIi9AADgvAAAFL4AAKi9AABAPAAAir4AAFA9AAAwvQAATD4AAAw-AACYPQAAUL0AABC9AADgvAAAHL4AALo-AACovQAAnr4AAKi9AACWPgAANL4AADw-AACgPAAA4LwAADw-AAB_vwAAEL0AAFC9AACovQAALD4AAOA8AACOPgAAML0AABw-AABwPQAAcL0AABA9AAAUPgAA2D0AADA9AADYvQAAmr4AAKC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=KdEPRF59oZk","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["14427970159829401829"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9110072984625557179":{"videoId":"9110072984625557179","docid":"34-10-7-ZFC83E845C43383D3","description":"A submanifold of a larger manifold has a tangent space that is a vector subspace of the tangent space of the larger manifold at every point. The fact that the tangent spaces themselves are...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4592283/661c457737f967c9e6b896c1a78d396d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/NrqBXgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdlmdxAsctJs","linkTemplate":"/video/preview/9110072984625557179?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Analysis II Lecture 13 Part 4 submanifolds and normal vectors","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dlmdxAsctJs\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFQoTOTExMDA3Mjk4NDYyNTU1NzE3OVoTOTExMDA3Mjk4NDYyNTU1NzE3OWq2DxIBMBgAIkUaMQAKKmhobXd3cmVycGRydmljYmJoaFVDaWc1YUswNlJvSFpvbUdyamhTXzZnZxICABIqEMIPDxoPPxPdBYIEJAGABCsqiwEQARp4gfcF9_z-AgD7AwMOCgj7AhQQDQb2AgIA_wsEDv8F_gD1AwECBwAAAAkH_f8LAAAADvv-C_f_AAAM9_f9AwAAABIEBvn4AAAAFwb1-f4BAAD58gD4AgAAABL1AgEAAAAAAv4B_An6Af_3Cwn9AAAAAAj--wj88v4AIAAtWiDYOzgTQAlITlACKoQCEAAa8AF_Bkb-uP0EAMQb9QH3B_IB2Qc5_wwn3__MCsf_yB7oAQcuDQDz7ggAMhC0_6Mz9v_mLaz-69PNAEq63_8O9-IB_8_YAQzqzQJKFzj_EgHc_-cd9wDw8Q4AHe63_gZk1vwcsir_TRCzAu755_wt-jkB8PQZAt7r_QHtBt_-vib3_u6nzQAA8hwEAOH4_tzMMAMX0en8KgkG__oOIw7z1QIIFdgu_N0t8AkL5-EK0T8VA7Hv1gAru-YEHPYHEB8o1wL64x_94OoQ-xXPDvAM_gPxvv34_gGh9gP2yQYK884B-wwI3gH09Q74_QHjCRPQ5fkgAC2OYO46OBNACUhhUAIqcxAAGmAk9wAoBhjmHhQZBfDq-BfaCgEUAML9__fEAO8K7v8mKujd7O8AI8wrALgAAAAU7QIh7gDqWv32BCcAJBnZrtUA9n_rEwPB9TH48PQGMQXsEBD5FSwA3he0ASLGpwj1TTIgAC0-qz07OBNACUhvUAIqrwYQDBqgBgAAiEEAALjBAACeQgAA0MEAAKDBAACgwAAA2EIAAAAAAAAowgAA-EEAAABBAAC4QQAAwMAAAGBBAACAQQAAOMIAAFxCAADIwQAA8EEAAADCAAAAwAAAYMIAACTCAAAQQgAAUMEAANhBAAA4wgAAYEEAABRCAACmQgAA-MEAABDBAAD4wQAAWEIAAMrCAAAQwgAAgL8AADBCAABAQQAASEIAAOBAAACAvwAAcEEAANDBAAAAwAAAgMEAADBCAABAwQAAaEIAAARCAAAcwgAAMEEAAIDAAAAUQgAAIMEAAKDBAACGwgAAMEIAANBBAAA8QgAAQEEAAJjBAACMwgAAQEAAADDBAACmwgAAJMIAAKbCAACAvwAA0MEAAPhBAADYQQAAVMIAAI5CAAAgQQAAlsIAAJjCAACAvwAAYEEAAABAAACOwgAAHEIAACDCAAAowgAAFEIAAFxCAACowgAAkMEAAI5CAAB4QgAAQMAAABRCAACQQQAAUMEAAIxCAAA4wgAA8EEAAOjBAAA8QgAAGEIAAI7CAAAsQgAAQEEAABBBAAA8wgAA2EEAAOBAAAA0QgAAwMEAALpCAAB4QgAACEIAACBBAAC4wQAAoMEAAJxCAAC4QQAAWMIAAKBBAACGwgAAEMEAAKBBAAAMQgAAksIAAKDAAACQQQAAsMEAAKDBAABMwgAAIEIAAABAAADIwQAAFMIAAK5CAACoQQAA6MEAAIBAAAAgwQAA4MAAAKzCAAAMQgAA6EEAADBBAACwwQAA8EEAAJhBAACIwQAAAAAAAAAAAADowQAAAMEAAMBBAACgQQAAbMIAAOjBAADQwQAAgMIAAABAAADYwQAAsMEAAGTCAABcQgAAYEEAAOhBAABkQgAAmEEAAADBAACoQQAAFEIAAEzCAADAwAAAgMEAABxCAADAQAAAwMEAAIBAAABwQQAAQMAAAMDAAADsQgAAbMIAALbCAAAAwQAAqMEAAAhCAAC4wQAAuMEAAEBCAAAYwgAAoEEAAABAAACAPwAAMEEAAIDAAADAQAAAGEIAAMDAAAAAAAAA4MEAACDCIAA4E0AJSHVQASqPAhAAGoACAABwvQAAoDwAADw-AABAPAAAgr4AAII-AADgvAAAF78AAHy-AABEPgAAoDwAAMg9AABkPgAA-D0AADS-AAAEvgAAhj4AAIi9AAC6PgAA2j4AAH8_AAAMvgAArj4AAEA8AACSvgAAoDwAAOC8AACgPAAAHL4AAEw-AAA0PgAA2L0AAJa-AADgPAAAMD0AAMg9AADYPQAAMD0AAJK-AAAkvgAAJL4AAEQ-AADgPAAAcL0AALi9AACSPgAAbD4AAEy-AACgvAAAzr4AAOi9AABEvgAAhj4AAFA9AACIPQAAgLsAACU_AABwvQAATL4AAJ4-AABAvAAARL4AAOA8AAA8PiAAOBNACUh8UAEqjwIQARqAAgAAXL4AAPg9AADoPQAAI78AALg9AACgvAAA2D0AABS-AAC4vQAAlj4AAIg9AAA8vgAAEL0AAEy-AADIvQAAoDwAALg9AAAtPwAAqD0AAHQ-AABUPgAAiD0AAIC7AAAUvgAAMD0AAMg9AAAQvQAAJD4AAMi9AAD4PQAAmD0AACQ-AAD4vQAAUL0AAEC8AAD4vQAAkj4AACw-AACuvgAAPL4AAEQ-AABwvQAAMD0AAHC9AADgPAAA6D0AAH-_AAAQPQAAgLsAAAQ-AAAcPgAAEL0AAEC8AACYPQAAcD0AAHA9AACAOwAAiD0AAOA8AACoPQAAQDwAAIK-AACgvAAAFD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=dlmdxAsctJs","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9110072984625557179"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1128969700"},"3309045466181078120":{"videoId":"3309045466181078120","docid":"34-9-14-Z115F3B3E13685EFB","description":"📝 Access all videos and PDFs: https://tbsom.de/s/mf 👍 Become a member on Steady: https://steadyhq.com/en/brightsideofm... 👍 Or become a member on Patreon: / bsom Other possibilities here...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/875077/8a121e77241756b19465fbfdcbd3b8b6/564x318_1"},"target":"_self","position":"3","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZyvyn60MRkc","linkTemplate":"/video/preview/3309045466181078120?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Manifolds 37 | Unit Normal Vector Field [dark version]","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Zyvyn60MRkc\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFQoTMzMwOTA0NTQ2NjE4MTA3ODEyMFoTMzMwOTA0NTQ2NjE4MTA3ODEyMGquDRIBMBgAIkQaMAAKKWhoZ2ljbGdqaXZlbHludmhoVUNkd280azFSUUhUY3FfLVdTN0NhenFnEgIAESoQwg8PGg8_E7MHggQkAYAEKyqLARABGniB-QsJ7Azw__P3CAsRB_sBJAL5_gQCAwDZ9A8J_foDAPDr7wIC_wAACAsJBg0AAAD9_A398P0BAArw9fACAAAAHwkK-AEA_wAdCPP4_gEAAO7oDP0DAAAACgUCDQAAAAAH6fkPAP__AQMVAQoAAAAADwT6DAAAAAAgAC2HSKw7OBNACUhOUAIqcxAAGmAbGgAyCAYB0xEV5e3i__f_CwH-_tjcAAflAPEI8Nr39QXi-gMAJNoNFc0AAAAW2g4j9ADBPQMJ4jMJHxrp6en3Hn_9D-IR-Rb1-gAEBfwFEgUbHCQA4QcJ8P4B1BEABxAgAC1rH307OBNACUhvUAIqrwYQDBqgBgAA8EEAACBBAAAEQgAAwEAAADxCAABAQAAA7kIAAMDAAABkwgAAhkIAAMBBAADIQQAAiMEAAMDAAABAQgAAcEEAAKBBAACwwQAAqEEAANjBAAB8QgAAEMIAAMjBAACAwAAAgMEAALBBAABgwQAAQEEAAABAAADQQQAAcMEAAKDBAADAwAAADEIAADTCAAAgwgAAgkIAAGRCAAAwQQAAhEIAALBBAAC4QQAArkIAAKDBAACwQQAA0sIAAOhBAAA8QgAANEIAAHBBAABgQQAAoEAAADDBAADIwQAAQMEAAEBCAADiwgAAUEEAAEBBAAC4QQAAMMEAAEjCAABQQQAAXMIAAGBBAABowgAA8EEAAIzCAACAwAAAEMEAAIBCAAAgQgAAgsIAAIRCAACgQAAAZMIAADTCAACIwQAAAEEAAAhCAACowgAAtEIAAAzCAACgQQAAgD8AANhBAACAwQAAUEIAAEBCAABAwQAAiMEAAK5CAAAAQAAAEMIAAHxCAABwwgAAAEEAAOBAAACgQgAAcEEAAITCAAAoQgAACEIAAIDCAAAowgAAIMEAAGDBAACAwAAAuMEAACRCAABUQgAAEEEAAJDBAABEQgAAQMIAAEDAAAAAwAAAIMIAALjBAAAwwQAAUMIAAPjBAADgwAAADMIAAADCAAAAwQAAkMIAACjCAABgwgAA8EEAADDBAAAkQgAAtMIAADRCAAAAwAAA-EEAAAhCAAAYQgAAksIAAHDCAABwwQAAJEIAAAxCAADAwAAAHEIAAJDBAABgQgAAMMEAAIhBAABAwQAARMIAAOhBAABAwQAAAMIAAOBBAAAoQgAAwEAAAGDCAABswgAAAEEAACzCAABAQQAAmMEAALDBAAD4wQAAcEEAADRCAACeQgAAgD8AALhBAAB8QgAAAEAAAEDCAADAwAAAwMEAAATCAACowQAApsIAAATCAAAkQgAA6MEAAMjBAACgwQAAgEIAAABCAADQwQAAiMEAAJhBAACowQAAAEAAAIBAAACgwAAAeEIAAAjCAACQQQAAlEIAAJBBAACAQAAATMIAAATCIAA4E0AJSHVQASqPAhAAGoACAACKvgAAHD4AAJI-AABEPgAAiD0AAJi9AAC4vQAA-r4AAHS-AAB8PgAAbD4AAFw-AACoPQAAPD4AAMg9AAAcvgAAhj4AAEA8AAAwPQAA7j4AAH8_AAAwvQAAZD4AAIC7AAB0vgAANL4AAFA9AADIPQAADL4AAPg9AAAMPgAAbD4AAES-AACCPgAAgj4AAFA9AAAkPgAAiD0AAOK-AACuvgAAfL4AAJi9AABAPAAAgLsAAES-AABwPQAATD4AAOi9AAAkPgAABL4AAIg9AACKvgAATD4AALY-AAC2vgAA4LwAACk_AACoPQAADL4AAIg9AADovQAAhr4AACQ-AAAkPiAAOBNACUh8UAEqjwIQARqAAgAAoLwAAIg9AACKPgAAJb8AAPg9AAAEvgAAED0AAOi9AAAwvQAAML0AAEA8AACWvgAAuD0AALq-AADgPAAAgLsAAOC8AABLPwAAUD0AAEw-AABcPgAAuL0AAIA7AABEvgAAyD0AADC9AADIvQAAqD0AAIg9AACYPQAAED0AAPg9AACIvQAA6L0AALg9AABQvQAAyD0AAAy-AACevgAAgDsAAHA9AABwvQAAgDsAABC9AABUvgAAoDwAAH-_AAD4vQAAJL4AAEC8AADovQAAcD0AAMi9AABAvAAAmD0AAKA8AABQvQAAyD0AAIi9AADoPQAAML0AAGS-AAAcPgAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Zyvyn60MRkc","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":null,"cheight":null,"cratio":null,"dups":["3309045466181078120"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4892014443146111582":{"videoId":"4892014443146111582","docid":"34-4-14-Z62E86A3F2275B145","description":"In this installment of our multivariable calculus series, we delve into the concepts of tangent planes and normal vectors. We begin with a brief review of these concepts in single-variable...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1539130/0defc2683ee9e9f503c2cb8b4bd1837f/564x318_1"},"target":"_self","position":"5","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Di7dKR2o-CZQ","linkTemplate":"/video/preview/4892014443146111582?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"(MC06) Tangent Planes and Normal Vectors","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=i7dKR2o-CZQ\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFQoTNDg5MjAxNDQ0MzE0NjExMTU4MloTNDg5MjAxNDQ0MzE0NjExMTU4MmqvDRIBMBgAIkUaMQAKKmhoc3p0dnlreGlybnVuYmNoaFVDeGZhNHV5Sng3UEF2clJ5bmtKVXh1QRICABIqEMIPDxoPPxOaDIIEJAGABCsqiwEQARp4gfgDCBAE-wD7AwMPCwn6AuwFBgf6__8A5A_8-Aj9AQD3AfcN-gAAAAEDB_z_AAAAAQgC_vD-AQAI_PT99wAAAAr2AQfxAQAACg7-7v4BAADs_vP4AgAAAP_6A_8AAAAA9gMM_AIAAAD6EwsOAAAAAP8BCwb_AAAAIAAt8xzHOzgTQAlITlACKnMQABpgLhEALxAFzdUu--bC5fsKDewHEA687__iwgD2BtTkHzPSsbAa_zvTJ-KmAAAAGM8MG_sA7XQfC-wzGBsd1dzd6hx_8wzwCxMZ5r3I2yQWrzPhCANNAPfc8RUTq8gj9VokIAAtGj0gOzgTQAlIb1ACKq8GEAwaoAYAACRCAADAwAAAYMEAALDBAABwwQAAcMEAAGxCAAAoQgAAgEAAABBBAACSQgAAAMEAADjCAACAQQAABEIAAHBBAAAwQQAAksIAAFzCAACgQQAAGEIAAODAAAAIQgAAMEEAAPBBAAD4wQAAUMIAAEBAAAA0QgAAAEEAAOBAAAAUQgAAWMIAAChCAADgQAAAgL8AAABAAAD-QgAA0MEAADDCAADAwQAANEIAAPBBAACAwQAAQMEAAEBAAACwwQAAEMIAAIpCAADwQQAAwEEAABzCAADgQAAABMIAAJJCAAAIwgAAFMIAAHTCAAAAwAAAAMAAAOBBAACowQAAwMEAAIA_AACYQQAA0MEAAHDBAAAgwQAAKMIAAKhBAABoQgAAfEIAAKBAAABkQgAACMIAAHjCAACAPwAAdMIAAIDBAABsQgAAAMAAAAxCAABAwAAAOEIAAKTCAADAQAAAAAAAAOBBAADoQQAA4MAAAKBBAAAAQgAAiMEAAFjCAADowQAAEMIAABzCAAB4QgAAcMEAACjCAACIwgAAAEEAAGxCAADOwgAAmsIAAPjBAACcwgAA6EEAADDBAACYwQAAnkIAAIDCAAAYwgAAAMAAAADAAABAQgAAwMEAAIDBAABowgAA4MAAADBBAAAwQgAAlMIAABDBAACAvwAAwEAAABDCAAAMwgAA0MEAACzCAABwwQAAAMAAABTCAACIQQAAWEIAAMjBAADgQQAADEIAALDCAABMwgAAwEAAAHRCAACAQQAA-MEAAJRCAACwQQAAgL8AAHhCAADwQQAA4EAAAEBBAADgQQAAmEEAABBBAAAEQgAAJEIAAJhBAAC4wQAAsMEAALpCAAAUwgAADEIAAILCAAAYwgAAwMEAAMBAAABIQgAAcEIAAKhBAADSQgAAAEAAAEjCAADgQAAAgMAAAFDBAAC4wQAAwMAAAEzCAACwQQAAhEIAAMBAAAAcwgAAAMAAAOhBAAAgQgAAwMEAAGTCAADGQgAA8MEAAMhBAABIwgAA2EEAALjBAACKwgAAQMAAAABCAAC4wQAAGMIAAFDBAABwwSAAOBNACUh1UAEqjwIQABqAAgAAdL4AADC9AABEPgAAUD0AALi9AABkPgAADD4AAA2_AACivgAAyD0AADC9AAAwvQAAZD4AAOg9AABUvgAAoLwAAHA9AACYPQAAJD4AAOY-AAB_PwAAyL0AAOA8AADoPQAAbL4AAAy-AABAPAAAuL0AAIi9AAD4PQAA6D0AAPi9AACevgAAcL0AAPg9AABwPQAAgj4AADS-AACKvgAAyL0AAAy-AAAwvQAAcD0AAPg9AADovQAAJD4AAOA8AAAsvgAA6L0AAJq-AABQvQAAZL4AALI-AACCPgAAgr4AABA9AAANPwAAqD0AABS-AACePgAAED0AAPg9AACAOwAAmL0gADgTQAlIfFABKo8CEAEagAIAAOC8AAAcPgAAmD0AABG_AABQvQAAmL0AAEQ-AACgvAAAoDwAAHA9AACAOwAAZL4AADA9AAA8vgAAML0AABC9AACAOwAAHT8AABC9AAB8PgAAoDwAAEC8AACAuwAAfL4AAKA8AADgPAAAmL0AADA9AABAPAAAyD0AAKg9AABEPgAAnr4AAKA8AACgPAAABL4AAKo-AAAcPgAApr4AABS-AAA0PgAAcD0AAKi9AAC4PQAA6L0AAOA8AAB_vwAAQLwAAOC8AAA0PgAA2D0AAAw-AACIvQAAHD4AAFw-AAAwPQAAEL0AAOC8AAAUvgAAyD0AAKg9AADYvQAAqD0AAAS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=i7dKR2o-CZQ","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4892014443146111582"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5518236947412282616":{"videoId":"5518236947412282616","docid":"34-11-10-ZC4F410110B574EC3","description":"In this clip explain Unit normal vector simple and easy problem. In two-dimensional space the unit normal vector to a curve is a vector that points in the direction perpendicular to the tangent...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1571374/417621946a9d0f70e4bcd038cad15339/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pITbewAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzFuOwYDp5pk","linkTemplate":"/video/preview/5518236947412282616?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Unit normal vector good and simple example 3","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zFuOwYDp5pk\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFQoTNTUxODIzNjk0NzQxMjI4MjYxNloTNTUxODIzNjk0NzQxMjI4MjYxNmq2DxIBMBgAIkUaMQAKKmhoc21jbGd4eWh6dHFsaWNoaFVDXzQtM3dzYXpZbnhOZnZpRVhROFhUURICABIqEMIPDxoPPxPVAYIEJAGABCsqiwEQARp4gfQDAv7_AQDr_gUDBwL_ABoABgoHAQEA4foD9gf7AgAG9PsE-AEAAAIKDvwFAAAA9Pb08f7_AAD79Pr9-QAAAAsLAgoCAAAADwP3_v4BAADh-Qr9AgAAAAz-_QEAAAAA_wL-__0B_wAGDAb8AAAAABT8AAUAAQAAIAAt2DLUOzgTQAlITlACKoQCEAAa8AFnBBz9AfcEBIwK1QDBKPYAgRgP__w7ywDD9f4A5-PVAd318AAQ8PsAGw4O_7kE0v5kuev9ANX0AES_4f_n1vkA6Q36ARfWBQJS0Sf-9u8X_wXwEv3wzwb-3dnH_gz0twD6_BYAAtkH_u_56fwz6g_8-h4s_ygGEQr9yPj71t3_BMXXw_oK7_kA-8g0_-A4KQI39PP-4g8E_OkV1_zl-PH7_e0H8xEs7AUotw__BwfzCqQDGQIbA_EBD0MB_sfa9_sW9CXx8NwB7PbNEgoT6_b2Fgjo-wvs8wkhEQPxJBXxCOrYAPTjA-wC1c_wCafx8wwgAC0BsAA7OBNACUhhUAIqcxAAGmAv9wAyCxXhACr66dzcEgb30hDi-uPv_wCzABcQ7f3lL-rFEAEAIMwm_bMAAABD7er99gABZ8IE_j0O0QvTvtHuFX_7JSvR4R8Hz_pFPRDd_gYZHjkA6v6wJxbBqCXsEx4gAC1w2Sw7OBNACUhvUAIqrwYQDBqgBgAAgD8AAABAAACsQgAAwMAAAGDBAABowgAAiMEAAEjCAAAAwgAAIMEAABBBAABgQQAAlsIAAPDBAAAAQgAAAEAAAIhCAACgwAAAmEEAAFBBAAAQQQAAsMEAAHBBAABsQgAA5kIAAEDBAADwwQAAwMEAAOBBAAAcQgAAAMEAAIBBAAAQQQAAoMAAAGjCAAAQQQAAfEIAAORCAABwwQAAoEAAAMBAAABgwQAAgEEAAMjBAACIwQAAKEIAADzCAAAEQgAAQEIAAPjBAAAUwgAAcMEAAODBAACgQAAAaEIAACBCAADwwQAAqEEAAIBAAACgQQAABEIAAJjBAAAswgAALMIAAPjBAACIQQAAMEIAALhBAACiwgAAoEEAAJRCAAAAQQAAUMEAAIhCAAAgwQAAUMEAAJhBAACQwQAAIMIAAMDAAADIQQAAEEEAAERCAACCQgAAgMAAALBBAADwwQAAiEEAAMhBAACowgAAoMEAAHBCAAAEwgAACMIAABTCAAC4wQAAQEEAAPhBAACWQgAAmEEAAGzCAAA8QgAAmEEAAIzCAABkwgAAREIAAPDBAACAQAAApMIAAKjBAAAAwQAASMIAAKBBAAAwwQAALEIAAMDAAAAAwQAAisIAALjBAAC4wgAAKMIAADTCAAAEQgAAOMIAAKhBAAAkQgAAcMEAAFzCAABQQQAAWMIAAAzCAADQwQAA8EEAAARCAABMQgAAAMEAACDBAADgwQAAJMIAAILCAADgQQAA0EEAAAAAAACowQAA4EAAALhBAABYwgAAjkIAAHBBAACAPwAANEIAADDBAADAQQAAoMIAAFBBAACMQgAAAEEAAOjCAACgwQAA_kIAAIA_AAD4wQAAsMEAAEBBAACYwQAAkEEAALBBAADQQQAA-EEAADBBAADgwQAA-MEAALhBAAAgQQAAUEEAAJhBAACAQQAAJMIAAOhBAACoQgAAZMIAAEjCAADIwQAAgMEAAHBBAABswgAAusIAAAxCAADgwQAA4EAAAMDAAAAAwQAAcEIAACBBAADYQQAAWEIAAJjBAADIQQAAgMEAAMDAIAA4E0AJSHVQASqPAhAAGoACAACWvgAAfD4AACw-AAAcPgAAHD4AACQ-AAC4PQAAD78AAFS-AABAPAAA6L0AAIa-AACAOwAA4DwAAKA8AAAwvQAADD4AAKC8AABAvAAA3j4AAH8_AABQPQAALD4AAPi9AACKvgAAmL0AADC9AAAwvQAAoLwAAFQ-AACGPgAAQDwAAKC8AACKPgAAcD0AALg9AABUPgAAbL4AAHS-AABUvgAAir4AAOC8AADgPAAA4DwAABA9AAAUPgAALD4AAGS-AAB0vgAAZL4AAOA8AACOvgAAgLsAAGw-AAA0vgAAgDsAAA0_AABwPQAALL4AAMI-AAAsvgAADD4AABQ-AAAwvSAAOBNACUh8UAEqjwIQARqAAgAAcL0AAEC8AAAEPgAAJb8AAEC8AABQPQAAJD4AAMg9AACAOwAABL4AADS-AABcvgAA6D0AACy-AAAcvgAA4DwAAOi9AAAtPwAA-L0AAEw-AACyPgAA6L0AAIA7AAAsvgAAqL0AAKi9AAA0vgAAQDwAAEC8AABsPgAA6D0AADw-AACGvgAAyL0AAOC8AACYvQAAwj4AADC9AAC-vgAAQDwAAAw-AAAUvgAALD4AADA9AABQPQAAZD4AAH-_AACAOwAAHL4AANi9AADIPQAABD4AACQ-AACIPQAAFD4AAPg9AAAQvQAAmL0AAMg9AAAcPgAA2D0AAGS-AAAkvgAAuL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=zFuOwYDp5pk","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5518236947412282616"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3664236677"},"1638793129454849525":{"videoId":"1638793129454849525","docid":"34-8-5-ZC1C35F034EF4E6D4","description":"For a Calc II workbook full of 100 midterm questions with full solutions, go to: http://bit.ly/buyCalcIIWkbk To see a sample of the workbook, go to: http://bit.ly/CalcIIWkbk For a Calc III...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1878541/b42a5ed0f5514c7aaad00feeca44d00b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/DzypKwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9TyWle31mpQ","linkTemplate":"/video/preview/1638793129454849525?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Normal Vector, Binormal Vector, and Oscillating Circle","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9TyWle31mpQ\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFQoTMTYzODc5MzEyOTQ1NDg0OTUyNVoTMTYzODc5MzEyOTQ1NDg0OTUyNWqHFxIBMBgAIkQaMAAKKWhoYmNmd3FxdGVkZmVoaGhoVUNqeHpLZjB4eGxZenpjNWhyZ0ptNWt3EgIAESoQwg8PGg8_E-sFggQkAYAEKyqLARABGniB8P0KAP4CAO_-8QgCA_8BEAgDC_YBAQDxAgjyAwEAAPL0_wECAAAACf0J_gMAAAD0A_77BAAAAAsBAP_sAP8ADQAEDv4AAAAS-PP4_wEAAO7-APYCAAAACAQCCgAAAAAAAPoFBQAAAPkDDPsAAAAAFf8D_QABAAAgAC3oDdc7OBNACUhOUAIqhAIQABrwAXX1_wC8HOL_7O_NAcw_6wGBIgr-MDji_7_r8wCtEs3_BB_hALj_-P8Y-R3_0SASADYL2_8DyxT_OOcYAAnmIQDPBAUAONv9ADwUA___8-P-wRj__wfvGQD15OYCBwvv_hEKBQD6Acv_Dv_XAw7-OwEE-RoCLvQJAtkCCgbpLyAD8RPX_QztFQjw5vD71y4OAP369gUMJwf64PTw_fDm6gUV9gcCGxrj_ij99AflCwr64AYK9f3s-vk9Cx3-9AAGAQEBBvjz4gHw-BMLACfyGwDv7gz7_f0IABIE6_oC3Pnz6QL3AeTzAgPXGAL--_j58CAALf8hHTs4E0AJSGFQAirPBxAAGsAHhxbhvrg-7Dw5Qia9U2AcvSRC47xvkQW9S9O2vZbLKz2s7ge9dhoJPlsAPz2kDdG82NR5vgUESb3zhgW9Ci9hPhdxsLxB08Y5ehcvvgg8MD0pn9S89aFrvoTTBz10NcO7JmeyPbMxBjvR05s8HQDxPfXVFb35njG9zvoUPamVE72UOVG9iUf9vJOdqL1rcBG9FuqPPcJVebzzbaQ7xr6pPU8qUDxJHAs8L-u0PAkAKb3bXRa9lWYOvSmdo7xE2zE84pIDPoejkDw4D0w8F8u-vHqysLtjwiC8aIBBvWuZsbz-nKO7D3uGPey5kT05oSu92MIHPUTHmb3yO7K8Mn2qvfeJiD1xfGW73WA4PimmXD3jGz46xmGqvatbnT3u1Jo7QCt2u6lj-rzZegQ8ZJPcPW79TzxnMcw8FqbvPfSxgT03IVC5BSotPEZBED3d81c8KoQfPWmP9jtxyIa8ql2oPUtwDzxuNWu8KlmJvSV0OLumtcy6nPrgPUD9Ar0Mddg7LbgaPS2ZvroyHEA6xTVDPfhRDb4Jbyy7E4kYvee6Oryk8ZW86xPKPAnmQzxuQqu8QZSJPW0lL707SPw6aebmu1hdorwjU5k7pf9APNnqsr1Tkje6j6wXvUdxbj2qUBW8aMjdPAw2uztByS68922tvN3vUDxpbio8yICHvJ3yqLw8mPs7G3TIPUA3Tz1XBlW7inyyPHJmkD2MOTQ6GLIKPmWew7sY0YI4clSJPCcFLL3kFYg7cvFhvUTJPz2zOda60UjKPQvqgLyO7eC4qvBKu_R-7TuZZKK6BjvRO8k8Ej3Sl104ETpjvZNGFr24rUW5FJ2LvYl64b3GJ3A5vFMGvXYceDrLxPY5g52nPfWNHr3yRyy55YySvZO5A73jfZ65011jvbvnCj0uuo84hXB2PVF2ST1mV4Q4xdRMPI-tQrzjHwi6mBk2vHnou7x-ebc6dQHvPNb1tT09EPG4CilkvOtDbb2kWfM2FAQPPRBdAD6Nw3G4lnZqPE9HVj1NzD646NgBPRITVD2qnIK25eK5vHFom73lrQg20IAVPYBKtT2WNJC4yuEDvhDXHjyX_U43luSFvUlptr1236a3xM8PPjxq6buey5U2wFWFOyLpKrvNBwO4kl0ZPtlPUL2swj-52V3iulC3or0Qm0G4OOeWvEbAN71q4gO4nHxEvQuoAb1Po4e37AO9O3zUD74X-ty4VRimPW0LxT2Dx-c461zsvKqkpD0Bi8S4-zcUvYnONz2vDY-3gRFqPC34Ibzka_43IAA4E0AJSG1QASpzEAAaYDb9ACQHJx7bKQ3d2NovFu7vDPAHsPX_BJn_CiHz6PkV0sL7Ff8lzh3powAAAFC57QQQAOt_zAD5Hez_8rHCrxYZa_1MQ7YCKQjy-xRFyeoAAB0ESAD46qAJPOShAg0zLCAALZvkGDs4E0AJSG9QAiqvBhAMGqAGAABAwAAAoMEAAKhBAACYwgAABEIAAJBCAADUQgAAEEEAALDBAAAAwQAAQEEAAOBBAAAAAAAA4MAAAGRCAAAAQgAA4EEAAADAAAA8QgAAMMIAACxCAADAwQAAoMAAAOhBAACoQQAAyMEAAGzCAAAkwgAAqEEAAAxCAABgwQAA2EEAAFTCAAAEQgAAjsIAAEDCAAA0QgAAtkIAALjBAACiQgAAAEIAAABAAADYQQAAIEIAACBCAACQwgAAgMEAAOBBAABAQgAAIEEAAFjCAACgwQAAoMAAAODBAADAwAAAAEAAALLCAABgQQAA6MEAAJhBAABwQgAAHMIAAGTCAACYwQAAgEAAAETCAAAAwgAASMIAADDBAADAwQAAlEIAAPBBAACmwgAAREIAACzCAABgwQAAkMIAAADCAACeQgAAAEAAAMjCAABoQgAAmMEAALhBAAAQwQAA6MEAAHDBAAAQwQAAgkIAACDBAABAwQAAJEIAABDBAAAYwgAARMIAANjCAACgwAAAosIAACBCAACgQQAA8MEAAGBBAADQQQAAQEAAAKDCAABEQgAAAEEAAFBCAAAQwgAAIEIAAMjBAABUQgAAgMAAAOBAAACoQQAA4EEAAEBAAACQQQAA0MEAAEDCAAAUwgAATMIAAEBBAADYQQAA4MAAAIA_AAAQwQAAAMEAAHjCAABMQgAAQMAAANBBAADAwAAAiEEAAKBBAACgwQAA4EAAANDBAACowQAAaMIAANDBAAAQwQAAgEEAAATCAAAAAAAAQMEAAI7CAAAEwgAAKEIAAJjBAABgQQAAMEEAAFhCAADQwQAABEIAAMBAAACawgAA2MEAAKTCAACQQgAADMIAABxCAACYwQAAOMIAAEBAAABAQAAAoEEAACxCAAB8QgAAUEEAAFBBAAAwQQAAFMIAAKjBAACwwQAAuMIAAADAAABAwQAAgL8AAPBBAAA4wgAAcMIAAODBAACqQgAAoEIAACBBAABgwgAAIMIAADBBAACQwQAAJMIAABBBAADwQQAAMMEAAKDAAAAIQgAAyEEAALDBAACwwQAAoMEgADgTQAlIdVABKo8CEAAagAIAADe_AAAsPgAAiL0AADy-AADgPAAAnj4AAEw-AAAzvwAA4r4AACw-AAA8vgAAPL4AADA9AACgvAAAFD4AAKC8AAAkPgAADL4AABQ-AABVPwAAfz8AACy-AAD-PgAAiL0AAIK-AADgPAAA6L0AABA9AAA0vgAAuj4AAKY-AAAQPQAAmL0AABA9AADYPQAA6D0AAEC8AABwvQAAqr4AAKa-AADuvgAAXL4AAI4-AABMvgAAqr4AACQ-AAAcPgAAD78AAK6-AADuvgAAgr4AAO6-AAB8PgAAnj4AAIK-AAAwvQAAWT8AAJ4-AABQvQAA9j4AAGS-AAAsvgAAiD0AAP4-IAA4E0AJSHxQASqPAhABGoACAAD4vQAAHD4AACw-AAAdvwAAyD0AAIi9AACAuwAAML0AAMi9AACIPQAAmL0AAKa-AAAcPgAAfL4AALi9AADgvAAAiL0AACs_AAAQvQAA2D0AAM4-AABwPQAA6D0AAEy-AACgvAAAUD0AAPi9AAD4PQAAqL0AAGQ-AAAkPgAADD4AACy-AACgPAAAuL0AAAy-AAB0PgAA4DwAAKK-AABQvQAAXD4AADC9AAD4PQAAUD0AAOi9AAA0PgAAf78AAFA9AAAEvgAAUD0AAHA9AABAPAAABD4AAAQ-AAAsPgAAmD0AAOC8AABQPQAAiL0AAKC8AADIvQAADL4AAEC8AACovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=9TyWle31mpQ","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1638793129454849525"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2882447650"},"475998534144537393":{"videoId":"475998534144537393","docid":"34-3-3-Z71DB4013922CE727","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/mult... Figuring out a unit normal vector at any point along a curve...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3160115/2b4499f1b59b59addec67507d2c79301/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pwkWDAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_9x2cqO7-Ig","linkTemplate":"/video/preview/475998534144537393?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Constructing a unit normal vector to a curve | Multivariable Calculus | Khan Academy","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_9x2cqO7-Ig\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFAoSNDc1OTk4NTM0MTQ0NTM3MzkzWhI0NzU5OTg1MzQxNDQ1MzczOTNqkhcSATAYACJEGjAACiloaGRvdml3eHNldmZxcmdoaFVDNGEtR2Jkdzd2T2FjY0htRm80MGI5ZxICABEqEMIPDxoPPxPfBIIEJAGABCsqiwEQARp4gQIJCgUF-gD39vEPCAj8Ag8IBwIZ_f3_6_sH-gcAAAAB-AD2-QEAABYZB_wBAAAA8w4J-PL_AQAO_-v7AgAAABAD_v_8AAAAGQf0-f4BAADoAQEA9QIAARUTAQv_AAAAAQ8B-f3_AAAFBwH1AQAAAAr0CAMAAAAAIAAt2zbEOzgTQAlITlACKoQCEAAa8AF_9DX-1PWeAavyBgDnH-MAxFYq_x0M3wDMJ_wCvRvNAAroHQD5EOkBIuywAI399gH7PdL_-MQCAD--Kf8tyeoBt-vmABXu_QEsOhMCK_XGA_7z-__4D_8DGAnE_CY33f476CcAFOT4AsgXoPs7NjoC5__3A8L_7v4B6hb-4RoUAwMV3v7ECAUH2AXy9ucbRwEP4vwKB_Is--rj6vck7xMEBfDpARsN3AUK7cz-tvQjA-vhBAkRmgz-BucJ99gR7APw9S8CwAwHBtYdKP_oIuEHzAncCyHy8Q87EB4LB_4DBgck6OLgFAQJ9vvz_AwD6vcgAC1Ne_E6OBNACUhhUAIqzwcQABrAB2fyrb4McAa9UmoKvb06BTvWBAy9lXDXvFGH9b3Xl4Y9hadhvYLKSD7ElIi8VUqRu4iKbTv02s87udDougovYT4XcbC8QdPGOVjH0b0MvIk8bAN8ved-mLxtqBy8DAAZPAj3hL09uze9xugQO3b81z1PZZe9eCoAPSCo6LoddRE8M9wAvdQ6mz00VUa9Dp90vT52Vz041gc8nsETvPPFg7y8uY07kiXOPMTBdD38HLy6DrGLu9d-p70L_V28d0tyvC_i1jzO3Kg9MMehPJ0u672vT2-8X5rDu0y0Gr2PkQe8rbYNPMx6ET4WhxM9fJOLvIiHTbt-TBC9_6ZBPJ2dDL6-EV28lXY0vF6dAz270ec9uBAYPMhFJb5p0YE9nQjHvKHccT1bFCw8gWi5u80e6D1FApe8aMnIPHoApjxi4FS9xB9JOwlkwDzPWXU9hWOxPHMH97vCgwu9ozwxuzylvj2YVIi9N9POOnuM6jt3e4W9fGHTO5ZLOT3WJHM9EzXqOzuz1bvt2Ig9YhC7uwUjpT3WAju-SeWaOsQFQL1uo8G85L-8u8PwET0sRaI9JkUWO3SJmTzobIy9NQ5QvGnm5rtYXaK8I1OZO0o6D72pORS95QmpuyGPAL7Ve7o9K4uhujSRiL30pmI9fmbauzuFhTqvV329uk8KPBpYIj2HISg9GOF1OzGCvjv4XvI8PEsVOvhULr1WViQ9GQsjOngqv7r_HuG8zb7AuiL4hL2H6wM8yfMNu9q65bzANbG9UlkOum0D1z21o9i9DJ-vOXjypL1--H49OScguU315DzyY8c9Ltc3OfJ8Bj3Pm6-9fRngOB4RqL3O_Eq-AcsOOfTSHj0gNfe8AMJeODaZbL0S81E9z0duOQooebwcXg685EtTuepZ9bwReeY8C-zbOMiD4zx1DOM8vhzZt04W7bzoCCo8RVtiN2NKv7yaOrS9_uV1OWFmabw1rT49AO6JuC-Lub2lu6u8tuX7uJyoJT1hKBE9zUPlOJZ2ajxPR1Y9Tcw-uGJHCD0C-OG7BHFQthUUkDxz5YK9j-l8OAwpdTwe5gY9gy1YN1ifzL2mLjQ9g38sORfVOrr5UDE60FjcNyIXDD5ZovM9PmJCuDvkhj04cII9QVIBOIJVRT50yDc9ydyEuc3Her3TFey95pv4uPvN5L1aUVm9V1XTt0tKED3pMPo8LHrFNcegAz5gjXi9F8haOELLXz1jGrc9bpCOODHQ1b22V9U8hhtruH4nzL0svIs9ySnBOHUIObsUnYC9N5eitiAAOBNACUhtUAEqcxAAGmBD6wA2_Br9_hcS88DO-hTb3BfoFd34__at__Is-RkF-7W02gMAHPUP5Z4AAAAlzt8aKQAPf8UE9Rf5Hx-4wrkXK24AAhqyrmgC5voJIwsF3joCJl0A4gSrShOcqED-HRogAC1XiBM7OBNACUhvUAIqrwYQDBqgBgAAqEEAAADAAABQQQAAMMIAAPBBAAAAAAAApEIAAGDBAAD4wQAAIEEAAABAAABgwgAAWMIAAFDCAACIQgAA2MEAAIBAAAC4wQAAQMAAAI7CAABgwQAAdMIAACDBAAD4QQAAAEEAAJDBAAAAwgAAEMIAAGRCAADgQQAADMIAAJBBAACqwgAAIEIAADzCAAAswgAAmEEAAPJCAADAwAAATEIAAAxCAABMQgAAmkIAAJhBAADgQAAAlsIAAOBAAACQwQAArEIAAOhBAACwwQAAAEAAAMhBAACAvwAAkEEAANBBAAAAwwAAMEEAABjCAABkQgAAAEIAAEDCAAC4wQAAeMIAAIDBAACgwQAAgEAAAJDBAAAQQgAAYMEAAHBCAACKQgAAFMIAALRCAABwwQAAHMIAANDBAACgwQAAREIAAOhBAAAIwgAAwEEAAEDAAABwQgAAQMAAANjBAAAgQQAAKEIAAJZCAABgwQAAwEEAABxCAABcwgAAyMIAAAAAAABgwgAAqEEAAKDAAAAgQgAAQMAAAKzCAABEQgAAJEIAAJTCAAA4wgAAwEAAACTCAACOQgAAGMIAAAhCAAAgQQAAAEAAAIDBAABAwQAAoMEAAIBBAADwwQAAVMIAAHBBAABQwQAAJMIAAFTCAADQwQAAIMEAAIDAAADQQQAADMIAAHDBAABcwgAAgMAAAFBBAADQQQAADMIAACBCAACAvwAAAEEAAKBBAAC4QQAAKMIAAJTCAADAwQAAsEEAABhCAACowQAAUEIAAIBAAACMwgAAEMEAAABBAADgwQAAgD8AAAhCAAAoQgAACMIAAABAAABAQAAAIEEAAKrCAACQwgAAoEEAAAjCAAAwQQAAFMIAAMDAAABwwQAAmEEAADxCAACEQgAAJEIAAFhCAADwwQAAqEEAAEzCAAAAAAAAVMIAAAAAAACYwQAAgMAAABDBAAAYQgAAuEEAAOjBAACgwAAAIEEAAJRCAACAQQAAosIAADRCAABAwAAA6MEAAAjCAABAwgAAMEEAAPDBAAAEQgAAgEEAALjBAACAQQAAgMIAAHDCIAA4E0AJSHVQASqPAhAAGoACAACivgAAVD4AAIY-AAA8vgAA4DwAADw-AABUPgAAJb8AAIK-AABAPAAA6D0AAKC8AABcPgAA-D0AAIA7AACgPAAAkj4AAEC8AACAOwAA2j4AAH8_AADYvQAAiD0AAKA8AABkvgAAED0AAJg9AAA0vgAAQLwAAHw-AAAsPgAA4DwAAFC9AADgvAAARD4AACQ-AAAMPgAAiL0AAFC9AACSvgAAzr4AAHA9AAAUPgAA2D0AAEA8AAAkPgAAHD4AALa-AACKvgAATL4AAOg9AAAUvgAAFD4AALg9AACavgAAgLsAAAc_AADYPQAAiD0AAJ4-AACgPAAAED0AABw-AAAQPSAAOBNACUh8UAEqjwIQARqAAgAAPL4AAEC8AADIvQAAKb8AABC9AADoPQAA-D0AADA9AABcvgAA2D0AAHC9AABEvgAANL4AAAS-AACYPQAAML0AAKA8AAANPwAAoLwAAKo-AADYPQAAZD4AAKi9AAAEvgAAUL0AABC9AADgvAAAQDwAAKC8AADYPQAA2D0AAAQ-AABUvgAABL4AAIA7AACYvQAAfD4AAOg9AACyvgAAUL0AAIA7AACIPQAAEL0AABw-AABwvQAAFD4AAH-_AACIvQAAuD0AAFA9AABAPAAAiL0AAEC8AAAEPgAAkj4AAKg9AABwPQAA4DwAAFA9AABwPQAAUD0AAJg9AAAEPgAAuL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=_9x2cqO7-Ig","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["475998534144537393"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1639725601"},"14988691049978038453":{"videoId":"14988691049978038453","docid":"34-7-7-ZC5E3C1C2BB3C70DC","description":"http://mathispower4u.wordpress.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1445507/fb752edea613341dfbb1d6614b00ae77/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Cr57wgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDRBNp7SZCvU","linkTemplate":"/video/preview/14988691049978038453?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Determining a Unit Normal Vector to a Surface","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DRBNp7SZCvU\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFgoUMTQ5ODg2OTEwNDk5NzgwMzg0NTNaFDE0OTg4NjkxMDQ5OTc4MDM4NDUzapMXEgEwGAAiRRoxAAoqaGhlaHZkdGhocWNleGtwYmhoVUNOVk14Uk1Fd3ZvOUFTLUpmaDZmUUZnEgIAEioQwg8PGg8_E8YBggQkAYAEKyqLARABGniB8P0KAP4CAPb5BgkOBvwBFgYFAvUCAgDy-_38BwEAAAHv9QgBAAAADAX7AwIAAAD3A_jxAf8AAAIM9AHwAP8ACAAEBPwAAAAJB_P1_wEAAPMECvICAAAAEQX2_QAAAADyAPkDAwAAAP0E_v0BAAAACvPw_AEAAAAgAC3oDdc7OBNACUhOUAIqhAIQABrwAXUQEv7rA98BzwLqAcw_6wGBIgr-_THVANbuC__AA-MA9ybxAdUT5_8bCCEByRzaADPy5_4A3fYAN978ADoBFgH9CRwBAuQD_zUmGAD-Ben_4iAq_fPYBf79yuAA9Czn__DzGv3WCNoADv_XAw7-OwENCBUEKvwjAd-0_QHJDQsA5fba_fkA8wTx3__65A4RByfoAwIsKB3-7RLe_QsDBP7v8Qn_Gxrj_gv1_Az0FBXz4O3wBQ4ACwEI4RP88RMF-PP3JALl8_v0--wFBCnsBwXkAPgFHgjrB_P_Af7szgDx__YBAdoT_vvq8QX95vEEBCAALf8hHTs4E0AJSGFQAirPBxAAGsAHt-zYvl13qTyx1MS8qgudvcuBvzvA_pC8KuAevgPuWT1zVY-8_g3aPV8tUjyc9OO8OGmKvtEMPTztrn08_b10PpJUS70Dsew87-VOvhCoQz0YrMC79aGDvjx38TsuxZc7Kz9fPX5fcbufzSq8VFMCPtxLOr12zBC8cC1uO6Mrh7yzVpm8Q-f1vX-2H71aIgG95YB4PUchRL0bCw674ZcKPnGolL26q2y7qRW2PTq9Yzm9H_U7v7WDvXmKgTxaaQy76q_3PTGyUTrITQM9GR2xu5XCcjyinjo75V4AvU2YurzY_2-8NuwyPQANBT3E0ju9vJsiPcADqL3DP7I7-aAHvvQamz0vgYA79bwrPs0seDz6er48GNIBvkmDqz2WJiW8FXUFvJ_EjLwxlDi8ZJPcPW79TzxnMcw8yG1qu8yRmTuuIoo7chP3uyy5ijxzMsw8IkQDPUWAU7xE3928UAgzPQm_GrwkUFS7kirAvKCnYT2lfVG5OhEzPUpKlbzUsZA7LpmpPbpXPD2dbjQ8xTVDPfhRDb4Jbyy7LvIdvG8umb3Ny367fjjoPUJAgDt8fRC8QZSJPW0lL707SPw65xYfvY1Hqbz5A7O6muMBPffnIr3LZLg7VCU9OvBVxjwpE-m6NJGIvfSmYj1-Ztq7xJJ2O99vpD1cQMM6aPYPPeKKsLyylHK7tfWYPTmCr7x5GAO7AjoCPWcOqb0rjK45tyuyOyMfar0WEQu7X7kZPcrAZr1QCog7POtHO-7fVjoMYlq7eW0gPWGPtL1b0Jc5Zgm8PL1wxjsU75065t0iPbTGpT2ASWq39vhTPfqDHL0BNkK5FJ2LvYl64b3GJ3A51BuUvd3a27vBgXA4h-T_PO67_Tzynac5Xf1YPIDW_L3Dq2w5Hr98vVyArLwJ3fo4-Z9bO_-fOb0Ohso3dCEcPJSpjb3zwCc32VcBvL3aVr18t5W4yC9yPJeonj2EkAe4TKgAPcfwnb3-7jA5Cd8bPYSPNz1cKfy4Xa44O4HznT2zGGK2OAkvPbmFU7wJ-g44ObSYPaaPir3MHdo3zedcPUczmz3VLSW5a_HpvXnWJLzuL2A2QT1oOxzr4rwBsfW3QReoPVM1K720lqQ4eSQ5PVNBRTyRmD22kl0ZPtlPUL2swj-5IpWYO4X6Z72-wCy41V2ZvBGXgr0HcQO4lLSsvGytND0EGPO1HZcMPUkPQ75UMU25yvRwPSLhKz7xy4o4lV8rPM-8jD3F_Aa5TJ4cvRbKurok3si3vUAfveudG7yDUDg3IAA4E0AJSG1QASpzEAAaYCj_ACTvA8wS_BXvBbEUGNjeG-X8vPP_EMf_ERD1BuLw-5X8JQBP8Dz9oQAAACjNDNXzANJ7_9P1RfgcHKnE1RYPfwEbIuTl_vzH4PgVDsgBMwD3XADZ8ZgyWuCMMfgFLiAALUjfFTs4E0AJSG9QAiqvBhAMGqAGAAAQQgAAiEEAAMBCAABEwgAAMEEAANhBAABsQgAAAEEAAEjCAAA0wgAAmEEAAKDAAADQwQAAIEIAAIC_AABwQQAAUEIAAHDBAAAMQgAAKEIAAMhBAADYwQAAgsIAAHhCAABswgAAkEEAAIC_AACAQAAAAMAAAKBBAABMwgAAwEEAACzCAADYQQAAqMIAALBBAAAQQQAAukIAAABAAAAAAAAAwEAAAMhBAAAEwgAAwMEAAJDBAAAQwgAA6EEAANBBAACAQQAAbEIAAHzCAACYwQAAGMIAAChCAABQQQAAAEAAAEzCAAAAAAAAWEIAADxCAABEQgAA0MEAAAjCAAA8wgAAIMEAACDCAABgwgAAEEEAABDCAACIwQAAQEIAAARCAABgQQAA6EEAALDBAAAoQgAAlsIAADDBAADwQQAAgkIAAMBAAACEQgAAoMAAAMhBAACAwQAAoEIAANBBAACOwgAAREIAABBBAABQwQAAFEIAAPjBAAAgwQAAAEEAADjCAAB0wgAAgEEAABRCAADeQgAAIMIAANBBAACEQgAAFMIAAFjCAABgQQAAUMEAADBCAAD4wQAAjkIAAKhBAACgQQAAKMIAAExCAADAwAAAikIAAMBBAACowQAAUMEAAADCAAAgwgAAEMIAALhBAAA8wgAAMMIAALDBAADgwAAANMIAAJhBAAAAQAAAsEEAALDCAAAYQgAA-EEAAATCAACYQgAAMEEAAERCAACAwQAAoMAAABTCAABQwQAA4EAAAMTCAAAwQgAAhEIAAADCAAAMQgAAmMEAAChCAACSwgAADEIAALhBAAAAQQAAIEEAAFDBAACowgAAAAAAAGDCAADAwAAA6MEAAJhBAAAcQgAAQMEAABRCAABQwQAAIMIAALBCAAAgQgAAsMEAALDBAADoQQAAFMIAADTCAAAYwgAAEMEAAKBAAACgwAAAYEEAAOhBAAC4wgAAFMIAAGDBAAAAwQAA0EEAADDBAAAcwgAAXMIAAJjBAAAIwgAATEIAAFDBAAAEQgAAJMIAAABBAAAMQgAA2EEAAKDBAABoQgAAREIgADgTQAlIdVABKo8CEAAagAIAAIq-AACoPQAATD4AAHC9AAAkvgAAiD0AAIC7AAD6vgAAFL4AABw-AAAMPgAAiL0AAFw-AACoPQAAUL0AAAy-AAAcPgAAQLwAAHQ-AADCPgAAfz8AAPg9AADoPQAAoLwAANi9AADYvQAAuL0AAOi9AAC4vQAApj4AALg9AACAuwAAUL0AACw-AADIPQAA-D0AAIY-AAC4vQAANL4AAEy-AACGvgAAED0AAKC8AABwPQAAUL0AAOC8AABQPQAAgDsAAHy-AACGvgAAUD0AAJq-AACGPgAAkj4AAOA8AACYPQAADz8AAOA8AAAcvgAATD4AAKC8AACIPQAA-D0AAMi9IAA4E0AJSHxQASqPAhABGoACAADIvQAAgDsAAHA9AAAhvwAAQLwAAOA8AACIPQAAFL4AANi9AACAOwAADL4AAJq-AAAQPQAAfL4AAKi9AABQvQAABL4AAD0_AAAQPQAATD4AAEw-AAC4vQAA4DwAABS-AACgvAAADL4AALi9AACIPQAAMD0AAIg9AADoPQAALD4AAEy-AACgPAAAQDwAAAy-AADCPgAA-D0AALq-AABwvQAAPD4AAOC8AABQPQAAQDwAAKi9AAA8PgAAf78AAMi9AADgPAAAUD0AAKg9AACovQAAoDwAAFA9AAA0PgAAMD0AAKC8AAAUPgAAEL0AADw-AADoPQAAML0AAKi9AACYvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=DRBNp7SZCvU","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14988691049978038453"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2337543632"},"13998442716781962611":{"videoId":"13998442716781962611","docid":"34-11-5-Z41C5F5514DF094FA","description":"TNB vectors example...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1616157/6af317efac2ee77c45da7c33e523a887/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/P1ky3gEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dy6xdfowOprE","linkTemplate":"/video/preview/13998442716781962611?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find Unit Tangent and Normal vectors","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=y6xdfowOprE\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFgoUMTM5OTg0NDI3MTY3ODE5NjI2MTFaFDEzOTk4NDQyNzE2NzgxOTYyNjExaogXEgEwGAAiRRoxAAoqaGh6eWdyZGx2ZGx0Z3JyYmhoVUNkeFZlSC1JaFN3WHg3VWpBd0l4YjZREgIAEioQwg8PGg8_E-kFggQkAYAEKyqLARABGniB8vr7B_8CAPsDAw4KCPsCDgMSAPcBAADyDwX5BAEAAOoA-wv-_wAACP0I_gMAAAD5B_rz9v4BAAj89f34AAAADwP-__wAAAAEBP70_wEAAPn4_gYD_wAAC_X7__8AAAD5BRIG_gAAAP0MAPoAAAAA8_sPBf8AAAAgAC0jf9g7OBNACUhOUAIqhAIQABrwAX37EwHg9-oBzwLqAbYXAQCBIgr-_THVAL3yCwDAA-MA4g0CAOn-AAD4CiUAuSf5_zDY0_8dzQcBKNkNABX-_AAADQ0AEsoDAFrrDwD-Avj_4CIR_wThDAD9yuAADRfz_v7oFf_6Acv_3gvXARfnKgIRHBj_HO8RAuTeEv3W6Q4C1RLV_v0HAgTr6_4C7RQ3AQzp_QgBFAL64PTw_QEMCvvv8Qn_ByvX_inwBQf7CgL-xQjuAAgP6AMcIRQI2ff09vv2DwHz4gHwEPH9_w3oCP3s7OwKGfX1Cw3tAQfs5wD97t8A98Eq-QXz7_0C3-IE-CAALf8hHTs4E0AJSGFQAirPBxAAGsAHsg7HvudZJDzfCpe8pZ2PvUTkz7yFS728UYf1vdeXhj2Fp2G906MZPqg2eD1hCfe69pZivgV4gTx5Pw28mN0jPoFJkL1D9PW8huMJvt8g9TysASq9RBhfvtRkZzulnT88jzI3Ou-cPL34cbQ8HQDxPfXVFb35njG9soJfvfQIpLx5fJa8K4jBvMMXHL1JW-a8zocMPSUyPbzMndM7BGvBPRCYQbthHi29bus9PYDAnLtEqoO81jEzvY1S-Dw0P8i8ySJtPUWE2jslMyg8z9kCvQkrALsGt1o862sivf6DozwW-0s7lVKGPSMxwTy7ZWK8YvSMPZ5-0L2-dl27bazkvaYRLj2UTsE75Gb4PWZM4T0YI9Q7GNIBvkmDqz2WJiW8UocPPFATorygbIq8D7-GPe-crD3DVZQ86XYAPTBiBD0bB8U7CWTAPM9ZdT2FY7E8KwP9PM23Gb22bwm8lz0kPUEr8jtPwpa7gzmlvfiTpz0EqZS8rec6Pb8QEj3Ytk28871QPSJrETzWbn07BSOlPdYCO75J5Zo6Yyp9vKNFzL2HKka8d9zwPEb7Lj32Dae8FZBWPb9elr3dQ8K7n24FvLnBdTxqKBw8A8EtPey8cr2XuEG4c9nIvWIzez0J7cm7rrCqPFx8AD2rBsC7MGbLPCqnDT5ukyi6TgJlvPCsiL349cc6IojzPWqxJb3ve-26J_SvPV9AlD2I2xa348UCPtmdCT2w5cW5H9XVvEqcsLxkZpe6CS5bvUcVLLsa3YO7oZ3TPVGBmL2XnVE5B_VjO4IWljremg07X61_vS7isD0JAjo5HaKbPHm5ALv73Qo53SqjvFc9wL2RBh45uFb7PNlxy7rLzwy6FK0BPQTAnTwq8KO4ax7BvcSuor1Z-CI4rL4EvVKfHz1Jkbw5sPOwPRPffTsTLJ-3ysOCvGnTB73gB6U4cU88vX_VNrw0oL846h4evcgXjj05yUc4mLRSOz9wxb33LmA5qWb7PLRxiT1gz-u45x84PQ_vuT20aLk4h1ORPfRfxj2quSQ3nQ5HO3efA75D3oy329CePXbjmD1QBfW4ZVPOvcLoqDz-Mug3PCn4vHGP5b2JHby4cv-cPXc7sTyoF8A1aqKuO1IoCzwCmFk4weMrPtylaLwHiXS5732wvWSKQ70ULkG4UbkOvely1Lw4_u82kb8KvYMelT2LQ5E35NWevHqJ8b1lVTC4Iv_sPTUpBT7zflu47cSbPEVJyD3uUgq5VdfGvbuZUbz5mlu3vUAfveudG7yDUDg3IAA4E0AJSG1QASpzEAAaYDv9ACwNFOXuAwbZ4sIP6eTdIcwpxOD_7tQACOzO4Oz93rz_Hv8ithgArAAAAErsBAkAAOp2AQIPVPwbGNe9yvoXf-sNKt69NPm-2yA-CcEm-SswQwAAA58-Dsu7KQIXKSAALdzoHTs4E0AJSG9QAiqvBhAMGqAGAAAkQgAAEEEAAKpCAABgwQAAokIAAMBBAAC6QgAAAAAAAIBBAACYQQAAoMEAAAjCAABwwQAA0MEAAEBBAACgQAAAiEEAAHzCAABgQQAAUMEAADBBAABQwQAAdMIAACBBAAAAQAAAEMIAACTCAACGwgAAFEIAALjBAAAQwQAAwEAAAJbCAABAwAAAoMIAAMBAAAAAAAAAWEIAAKBBAABAwAAAIMEAAJDBAAAAAAAAqEEAAGBCAACCwgAAwMAAAARCAACgQAAAMEEAALDCAAAgwQAA6MEAACxCAACwQQAAUEIAAJLCAAAQwQAAJEIAANpCAACYQQAA4sIAABzCAAAswgAAYEIAAEjCAABwwQAA8MEAAGjCAAB8wgAAgEIAAChCAACqwgAAREIAADDCAABAwgAA4MAAAODBAABwwQAAoMAAAABAAACOQgAAZMIAAIBBAACAwQAAYEEAAKjBAABQQQAA-EEAALhBAABgQQAAtEIAACjCAACIQQAAcEIAAGDBAAAgwQAAQMEAAJ5CAACAwQAAHMIAANBBAAA0QgAAAEAAAPDBAABwwQAAgMEAAADAAAAgwQAAFEIAADRCAACIwQAAUMEAAEDCAABcwgAAyEEAAARCAADYwQAAFMIAAAAAAAAQwQAAIMEAAABBAADgQAAA2MEAAMBAAABIQgAAIEEAABhCAACwwQAAoMEAAFTCAAAAQQAAjEIAAMBBAACIQgAA0EEAANBBAADAwAAA8MEAAGBBAABwQQAAQEIAAJTCAABAQAAAFEIAACzCAADAwAAAqMEAAJBBAAAcwgAAqEEAAHBBAABAwQAA-EEAAMjBAABQwgAA6MEAADjCAABQwgAAcMIAAFDBAADQwQAAgMEAAGBBAACwwQAAjMIAAJ5CAACAQAAAwMAAAIhBAADwQQAAAEEAAIjBAAAcwgAAwMAAAFRCAABEwgAAIEIAAEDAAADiwgAA4MEAAKDAAAAEwgAAaEIAANDBAADwwQAATMIAAEBBAABUQgAASEIAAOjBAABEQgAAgEAAAHBCAAC2QgAA4EAAAEBCAACgwQAAQEAgADgTQAlIdVABKo8CEAAagAIAAOg9AAAwPQAAqj4AAOA8AACIvQAAHD4AAHC9AADWvgAANL4AAJg9AAAQPQAAZL4AAGw-AAAEPgAAkr4AAAw-AAC4PQAAED0AAPg9AADGPgAAfz8AAKC8AAAQvQAAuD0AAFy-AAAQvQAAgDsAABS-AAAEPgAALD4AAEA8AAAUvgAAgr4AAAw-AACYPQAAUL0AACQ-AABsvgAAjr4AAJq-AACOvgAAmL0AAJg9AAAQPQAAZL4AAFA9AADIPQAAcL0AAOA8AAAUvgAAcD0AAAS-AAAMPgAAdD4AAIK-AABAvAAAAT8AABC9AACAuwAArj4AAPi9AACgvAAAuD0AAOC8IAA4E0AJSHxQASqPAhABGoACAACgPAAAiD0AAAQ-AAADvwAAEL0AAKA8AAAUPgAAPD4AAJg9AACgPAAA4LwAAES-AABMPgAAFL4AADA9AABQvQAAED0AADU_AACYvQAAgj4AALi9AAA0vgAAuD0AAES-AAC4PQAAoDwAAEA8AAAwPQAAuD0AAMg9AAAQvQAAJD4AAJa-AADoPQAAiD0AABS-AAB0PgAAXD4AAES-AACgvAAAbD4AAMi9AACgvAAAiD0AAAS-AACgvAAAf78AAEA8AABcvgAABD4AAEC8AAAUPgAAmD0AAKg9AADIPQAAMD0AAOC8AABQvQAA2L0AAIg9AAAMPgAA-L0AAIi9AAAcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=y6xdfowOprE","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1078,"cheight":720,"cratio":1.49722,"dups":["13998442716781962611"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3394902725"},"3040722327564241817":{"videoId":"3040722327564241817","docid":"34-2-5-Z8693140BF2D795AE","description":"13-3-14 TNB Frame, Normal Plane, Osculating Plane and Osculating Circle...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3788956/9c5c810db562917434768209c757e3f2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kT9l0wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dp3NOJE4fGSA","linkTemplate":"/video/preview/3040722327564241817?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"13-3-12 Normal Vectors and Binormal Vectors","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=p3NOJE4fGSA\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFQoTMzA0MDcyMjMyNzU2NDI0MTgxN1oTMzA0MDcyMjMyNzU2NDI0MTgxN2qECRIBMBgAIkUaMQAKKmhoa2VtbmVha2N1ZXFibWRoaFVDdk1QU05nSWJPYXY4aTEzZDhuQzJUURICABIqEMIPDxoPPxPrAoIEJAGABCsqiwEQARp4gfj-CAT8BAD2BPcNBgb8AfYLBgL5_f0ABwkEBAYD_wDu_fwDBP8AAAIBBPwKAAAA_QYB-_r-AAAH8Pz88QAAAAgCAAD0AQAABPz57v8BAAD9-_33AgAAAAgEAgoAAAAA9wML_AEAAAD3Cwj9AAAAAAYCAQAAAAAAIAAtk7jeOzgTQAlITlACKoQCEAAa8AF_1xIAzfrO_-Di5ADII_cAnjUD__w00gDA-yEApRPm__T8EADa9u__GtwGAM0PKAAUBOkA9a_2ADzc_AACFwoA3MjlACbT8wFH3wj_BAfQAdoPHP_f8RD-F_HE_-4Z-_0a7fj-DeXbAPbz2wYl-y8B9uYjBQ0DFgH09wP77DAI_tjQ4_4O6Of_8fAH96n-HAcT_hAIBxL0AucYEgMLF-v7JfXx_R3_x_sfEegF8xYX8gLtAPXv1OYDDvge_OMgE_3y9ycC8PcFC-zwE_ETzPz06PXu9vvTAwU28AANAtn48vct_PjXFf77vf4IEAz3AvwgAC1V0BE7OBNACUhhUAIqcxAAGmA6CgAV_SLuKDP1zs_VRBb8KhH08bPk_yecAO0N3tgTGwbL7AAAI-sR86YAAAA4vbUP7gDndewiIEABFw_yv7rqGn8EMjfOylwX7PgCbNnCICYSITcA9e-uAR_fxQQOOEUgAC0pSBY7OBNACUhvUAIqjwIQABqAAgAAUL0AAAQ-AAB0PgAAyD0AAAy-AAC4PQAAsr4AANK-AAA8vgAAFD4AAKg9AAD4vQAAuj4AAAQ-AADovQAAqD0AAFQ-AAAwPQAAqD0AAEw-AAB_PwAAoLwAAMg9AABEPgAA-L0AAIi9AAC4vQAAJL4AAHA9AADoPQAA4DwAAKA8AABMvgAAcD0AAES-AADYPQAAqD0AALa-AABsvgAA9r4AAGS-AABQPQAAEL0AAOA8AADYvQAA4DwAABC9AAA0vgAATL4AAK6-AACoPQAABL4AAGQ-AABwPQAAkr4AAOC8AAAbPwAALD4AAOA8AADiPgAAoLwAALi9AACgPAAAEL0gADgTQAlIfFABKo8CEAEagAIAACS-AACAOwAAFD4AACG_AACAOwAA6L0AAHA9AACAuwAAUD0AAEA8AAAEvgAAir4AAAQ-AACIvQAAqD0AAEC8AABAPAAAJT8AAJi9AAAUPgAA-D0AAKC8AACIPQAAPL4AABA9AAAMPgAAiD0AAIg9AADgPAAATD4AAIA7AAB8PgAAbL4AALi9AADIvQAAQDwAABQ-AACOPgAALL4AAFS-AACGPgAAoDwAAHA9AAAQPQAAML0AAFC9AAB_vwAAgDsAAEC8AACIPQAA4DwAAEC8AACgPAAAJD4AADQ-AAC4PQAAED0AAJg9AAAsvgAAQLwAABQ-AABMvgAAoLwAABS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=p3NOJE4fGSA","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1278,"cheight":720,"cratio":1.775,"dups":["3040722327564241817"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1393291522"},"9028058288204469576":{"videoId":"9028058288204469576","docid":"34-6-12-Z6F49323912599980","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/mult... Deriving a unit normal vector from the surface...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2302136/dd82751615076d0460b3e48f55661ce7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ZB0dnAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DusH9VUi2-Xg","linkTemplate":"/video/preview/9028058288204469576?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Constructing a unit normal vector to a surface | Multivariable Calculus | Khan Academy","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=usH9VUi2-Xg\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFQoTOTAyODA1ODI4ODIwNDQ2OTU3NloTOTAyODA1ODI4ODIwNDQ2OTU3NmqHFxIBMBgAIkQaMAAKKWhoZG92aXd4c2V2ZnFyZ2hoVUM0YS1HYmR3N3ZPYWNjSG1GbzQwYjlnEgIAESoQwg8PGg8_E_4CggQkAYAEKyqLARABGniBBQ4Q-gn2APb18BAICPwCFAQH-Qj__wDk-vv-BP4BAAH4APb5AQAACxr-AQoAAAD7BQrw-v4BAA7_6fsDAAAAEQP-__wAAAAV9_H3_wEAAOYBAf_1AgABFxQBDP8AAAD4EPz6_gAAAPwF_v0BAAAADv39AgAAAAAgAC3XP7k7OBNACUhOUAIqhAIQABrwAX8eHgDY9qcBlkfo_xUlxQK5-UT_ChgRALDvDQHGBPoBEezNAOvHBwETE9oAjOThAw8m_gD8KeoBGsUY_zneCQHnJNwBHtvYADnrJgAI4ur-zAnj_vkO_wLZ-qT8Ihy-ACTeIv_lENAB6wS7AgsiOwMI-vUD-tXq_df__PzOGAIC9ve__hL-HPzzACn-9lYcBCbWDAISKzYA6RXY_O70Bgj2CPIBGvjr-ya_7gPWBCz_8_weAv71HQUP9yH89eD1AuPuG_ji-wX__fAU9-sw--_37fEL8wMX_xgCHQTh7_QG-f32AQf66_LxEejzAfbx_SAALWpNBDs4E0AJSGFQAirPBxAAGsAHW0CovvOwi72XQ4G8qfcUvEQlw7t3Lsy8jY8AvYDMuD0WkiO7fbJCPqSFN7rDpmQ9dOrqvThCEL22YBC8xVjmPaonc7xqjXy9ehcvvgg8MD0pn9S8yqKVveZHMjzxfgE9T8vPveqLyrsOJ9k7UyQdPBsNQL296Ke7IZWivIZEkLxO3ra81DqbPTRVRr0On3S9EBcKvb7_qryZAuM6WzGiPbGRWr1PbE88v-NKPfYLVj2W-f28umetvUFSGr2Z2UI8Xv-Fuaj3uTyr9dU7RCC9vbRgPb1b1Uc5db2Ovc5PUT2FkJg8cR3DPVPPAj4gGJM7f8K0PFp3Pb1HJe27hneEvUdULT3fmbu7Ka6qPJZKrj34P9m7rvQqvm3F3j2K1Au7bPtovLwLrzynrEI5OGg_PofWLzz4pzc7QUcbPmcOib2CUME7CJvwvP9jHD0XDZk8n02oPfxvJT251JK8SKPiPYMRsD14O2c8slIYPAIJDz3ZvL87InszvWy5Dj27YNM7U7CGPLElNb32RaE7j-AWPlt4Dr4D5w68k8czvZ2tkr1WeSc8Cuqlux9AgD3HzFY1Wz6XPfikw72o1Dq7XSa5vNcbkL0aWz48OVkPvcGpz72ngww8t0TuvcCexLsFepe7lHckvS-Ftz0node7RYCTPE8wLT1t7bM7rMP2PI1wqLvXi3y7cyBVvWaiiDwy7fa7utduPK8qFjzXoJI7Yi9UPSmjwLy_dyO7PHyjvILnqb3Wf1-4L-nevI3w1r19jU45bQPXPbWj2L0Mn685Jo1xvS6SVj150Pa5XvhcvY2CuzymwVo3p4dSPTm5X72sQYa4avYju--dp71iSNy49eC0PcnqczvWpCa4Hgh_POZpSj3rswQ65YySvZO5A73jfZ65voKZvIGalb0F5_q3FkBCPF7aED3ceYe3vA92vShbiT3TClu5CgahPN7fRbzey_Q5dZq7PKTf_jwaNti3eXlVvVNd4L3Cl1g5Kdt2vOfssz0nn4A3rGMmvAZWRLzkLgC5MpllPeDaSb2T52k3w9PrPGcm-L0iJCS4kWQxvVmrkT21Rr84rAmYvUgQtjsEpsE3C89LvE6MWTmHCI-3cdsoPRIF6bzJQ7g4Cii5PP7dkT3Sr2U3glVFPnTINz3J3IS5Fk4CvjCrZr1VKlY4dfX0vFnd6r0NI_E1lrvHOzlHWD2eNgO4JtyQvBYwMb5BoFq5oBcOPRclvT0ofwA5cXxjvfolAj6pgSy56FWzvRYk7DzNuCE4GAxJPYVlB71H0rU3IAA4E0AJSG1QASpzEAAaYE3nACj_BvHxCxntzs0CEcrSCePw2Pr_7ab_5z3-D-vwxMH4_QA5_SPknAAAACDR5g4qABd_1dELQvQUFZav1TAhcvwNJLjRQgfgAP8hEezpOBMZVADkDp07I5OMMOYgFyAALcG2EDs4E0AJSG9QAiqvBhAMGqAGAAAEQgAAgL8AABBBAAB4wgAA2EEAAKhBAACeQgAAuMEAADzCAABAQQAAQEAAAHjCAAAowgAABMIAAEBCAAA8wgAAQEAAADDBAAAwQQAAUMIAADzCAACAwgAAAMIAAPBBAACAwAAAgMEAAFTCAACQwQAAsEEAAFhCAAAgwgAAgEAAAIzCAAAgQgAAhMIAAEzCAAAAQQAA2kIAAHDBAAB4QgAAHEIAAJBBAACAQgAAAAAAAABBAACewgAAoMAAAGBBAACsQgAACEIAAOjBAACAwAAAiEEAADBBAABQQQAAAMEAAPDCAADoQQAAGMIAAGhCAABUQgAAMMIAAKDBAABUwgAAEMIAACTCAACQwQAAmMEAAKBBAAAgwgAAlkIAAIpCAAAYwgAAsEIAAHDBAACEwgAAVMIAAJjBAAAoQgAAFEIAAATCAAA0QgAAIEEAAMhBAAAAwAAAAEEAABBBAAAsQgAAYEIAAEDAAACIQQAAcEIAAFTCAAC-wgAAMMEAADDCAABwQQAAgL8AAEBCAADAQAAAqsIAAFRCAADYQQAAgMIAAGzCAAAwQQAAIMEAAEBCAAAMwgAAVEIAABhCAADQQQAAMMEAAADAAABQwQAAsEEAALDBAAAwwgAAYEEAAODBAAAswgAAVMIAAMDBAACowQAAAAAAAAhCAABEwgAAAMEAADjCAACAQQAAMEEAAPBBAADQwQAALEIAAIA_AADAQAAAIMEAAAxCAAC4wQAAjMIAAADBAACYQQAA-EEAALDBAABUQgAAYEEAAGTCAACYwQAAoMAAAIjBAADAwAAAFEIAADBCAABAwgAAgMAAAIDBAABwwQAAfMIAAKbCAAD4QQAAEMIAAOBBAABQwQAAQEAAAGBBAADAQQAAcEIAAIZCAACiQgAABEIAAEDBAAAgQgAAUMEAAADBAADYwQAAYMEAAATCAADQwQAAAMEAAJRCAACgwQAATMIAAOBAAABAQQAAKEIAAIDAAACMwgAAGEIAAIDBAAAMwgAA2MEAADTCAADAwAAAyMEAAHBBAAAUQgAAyMEAAEBBAACWwgAAfMIgADgTQAlIdVABKo8CEAAagAIAAKK-AAAMPgAAfD4AAAS-AACgvAAAuD0AAFQ-AAATvwAAXL4AADA9AAD4PQAAQDwAAHw-AAC4PQAAmL0AADC9AACOPgAAQLwAAJg9AADiPgAAfz8AADC9AAAwPQAAED0AAOi9AACAOwAAiD0AACy-AACgPAAAmj4AAAw-AACAOwAA2L0AAIg9AADoPQAAZD4AADw-AACYvQAAuL0AAJa-AADivgAAyD0AANg9AADIPQAAoDwAAFA9AAAUPgAAdL4AAFS-AADYvQAAmD0AAFS-AABMPgAAFD4AAHS-AACAOwAABT8AAEA8AABAvAAAhj4AALi9AADoPQAALD4AAOA8IAA4E0AJSHxQASqPAhABGoACAAAEvgAAcL0AANi9AAA3vwAAyL0AAPg9AAD4PQAAgLsAAIa-AAAsPgAAoLwAAFy-AAAUvgAAJL4AAFA9AACIvQAA4LwAABk_AACoPQAAqj4AAMg9AABUPgAAUL0AAOi9AABwvQAAyL0AAOC8AAAQPQAA4DwAADA9AADoPQAAyD0AADy-AAAsvgAAED0AAPi9AACSPgAAJD4AAMa-AAAwvQAAoDwAAAw-AACIvQAA6D0AADC9AAAkPgAAf78AAFC9AAA8PgAAED0AAKA8AAAMvgAAoLwAAOg9AACePgAAmD0AAIg9AACIPQAAED0AAKA8AADIPQAAHD4AAOg9AADovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=usH9VUi2-Xg","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9028058288204469576"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1444219964"},"10198891631578408057":{"videoId":"10198891631578408057","docid":"34-4-1-ZFBE3335AB55EE9EB","description":"Related Example to convert Cartesian to Parametric and Vectors Form of Equation: • Vector Parametric and Cartesian Equation o... IIT JEE 2023 Question Intersection of Planes: • Vectors 2023 IIT...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4578630/699a657689ad1cc980cbdb64ab4bedd4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/G9B5JQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7VourTh6XTg","linkTemplate":"/video/preview/10198891631578408057?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Normal Vector to Plane Y Equal to Zero Ex 2","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7VourTh6XTg\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFgoUMTAxOTg4OTE2MzE1Nzg0MDgwNTdaFDEwMTk4ODkxNjMxNTc4NDA4MDU3apMXEgEwGAAiRRoxAAoqaGh4c2x4aGFrdGxkbGdiYmhoVUM0WW9leTFVeWxSQ0F4elBHb2ZQaVd3EgIAEioQwg8PGg8_E6QEggQkAYAEKyqLARABGniB8wkHCP8CAPLy9fr9AQEBDP77CPf__wDr-PvzAv8BAPH69fr_AAAADQUJ-gkAAAD8A_n7_f4AAP4E___dAP8AB_r9__oAAAAE_Pnt_wEAAOz09_8CAAAAAAT6_gAAAAADDfn9__8AAPcLCf0AAAAADgYCAwAAAAAgAC3ZfdY7OBNACUhOUAIqhAIQABrwAX_XEgDbBvMByPbUANguwAGFCiv_GEv5AMToKwCy8_UA4xIU__gMGwAg1Sf_uRoIAE729_8A2vYATuIKAPwA-wDYERYBG-siAlAWEQEX6e3-xxM5ARTAIgEr4NcCChgB_RoO9QDnD9UBBu3jABS-GwANCCwE-gEHAQzu8vzUNfQAzNvL-wjcAQEgAPL4viIZA_QC8PsMKgf54PQB_vnq9wDsAAf2HAvv-SzvBQfpByD32hD4Awvj6AL6IQAB6wH6__YFFvHv1RDxJvYOBwXYEfQY8_v67u36Cy71Cvr-ygr25wL2AdYo_QT7AAgTFvP-BSAALVXQETs4E0AJSGFQAirPBxAAGsAHt-zYvl13qTyx1MS8nAGJvOPUmLw47W69S9O2vZbLKz2s7ge9f6ISPoaOHT3Spm-9s_B1vsfQlrxFZEA5FJRCPkZFHL1z6AC8ehcvvgg8MD0pn9S89aFrvoTTBz10NcO7O56APSjABr2RjOY6ch5pPTtqcb28tDy9kVZGPLSOqryUgB29GBwqvb5Oir0GDgu8xFvnPeqdAL1fKUu7007tPXVADb2daR29jV6NPdKw8zwDoAK8yL_FvA5ANDoSjrC7HejBPYb8frnqSY88xHk4vLJMv7uD-OE7JgWRvfxnkzvYnaw7JkCoPZCoKz1v0a682MIHPUTHmb3yO7K8s33ovVJMfDo1iva75Gb4PWZM4T0YI9Q7rvQqvm3F3j2K1Au7UywtPRrwgzxVlCA8KJ4DPqytWLzx5c87lyHJPYEGyz18jIO8jUolPdYjKD0s85Y8nleBPcBfpzyKhha8hI4MPR-CKryWlaa8kirAvKCnYT2lfVG5StxZPfoRmrzrE8o8O7PVu-3YiD1iELu7xTVDPfhRDb4Jbyy7emKnvBvG07wj_ZG8ajYNPJ97Kj0xyW28Kr6rPA0CBj0PF-87N9JDvVXCcrsCuky7baSRPF7Ieb0frDU7_DGyvctBqj0DH0C58NWWO7cfNT1inc-7g23kPcKmmT1LomU5qMwoPf_-HLv_4Ko7TbrtPEQc3jmN9So7YzEAPVddhzx0Ygs748UCPtmdCT2w5cW5zwSUPDR6j70nmQi6X5SFvPC0RrxsyF-4FbN0PUBgr72NYn44NmrPu3s-lDyiz3E5CzHNPA8akD1163M5a-M-PHQInLxttWy5VBv8vWK7-70T0_I5A4vBOcGYIz0hy9O4h-2dPY-BhrzA0Ba4H2KovT6Qfjtln8q5qk7ivBOKYz3zha842bYivL_HKj1fhYa4vweUvCKqi7yyRQa5bZ3JPKKgL71_o6a5eH1mPDtU8z1THCg4vIYqvakTkL0Ayqg4xFY1PXlhxj225i644okqPXNWej1k2ak3Wk8oPTPUcjwBYEy3088IPGYx0b0-S5c2p22NPGjcRT3g9sa4rAmYvUgQtjsEpsE3mlazu53DC73d6L439icBPkRSS70bbDg4wFWFOyLpKrvNBwO4weMrPtylaLwHiXS5ZtiNvY58ezsSj583fOzTPKHyL72J3mo4yH3Mu51h7rvCoHw3HeMMPGdG371pUBK4QstfPWMatz1ukI4461zsvKqkpD0Bi8S4MQdBvVYeDTzX36026IamPBqXYDxWQHw4IAA4E0AJSG1QASpzEAAaYC8LAAsGGskNGAD0DeMjDOrUA9T50_7_OLkACATU_goe46jOB_8t0h_SoQAAABy2BPzuAO181yD4_fEV8duB3BsSftsdIq7zNRD16xokHs39Lc0hWADlEZckT9CYFPE7OiAALUEuFTs4E0AJSG9QAiqvBhAMGqAGAACIQgAAyEEAABxCAAAcwgAAmMEAAOhBAAC-QgAAEEIAAJjBAAAgwQAAwEEAAIDBAAAcwgAAJMIAADhCAACoQQAAIEIAAILCAABAQgAABMIAACjCAABUwgAAhsIAAOBBAABQwgAABMIAADRCAACqwgAAYMEAAPhBAAAMwgAAUMEAAJrCAACowQAALMIAAIDAAAA4QgAArEIAADhCAACcQgAACEIAAEhCAAAgQQAA2MEAACBBAABYwgAAgL8AAJBBAAAAQgAAyMEAAPDBAAAIwgAAwEAAANBBAACYQgAAgMEAAHzCAAAAQQAAgMAAAOhBAADQwQAAnMIAACTCAADIwQAAdEIAALjBAAAwwQAAOMIAAIjBAADwwQAANEIAAIhBAABAwgAA4MAAAEDAAADgwAAAlsIAALDBAACAQgAAHEIAABjCAABAQgAAgEAAABDBAAAwQQAAQMAAAKBAAAA4wgAAZEIAAFzCAAAwwQAAFEIAACDCAABgwQAAoMAAAJLCAABAQAAA6MEAAHBCAAAUQgAA1MIAAHBBAACgwAAA4MEAAFjCAAAQQgAAGMIAACRCAAAEQgAAOEIAAJhBAAAQwQAAkMEAAGBBAAAwwQAAMEIAABhCAACIwgAAeMIAAJDBAACOwgAAEMIAAAAAAAAYQgAASMIAAMDAAACAvwAAYMEAACDBAADIwQAAMMIAAAzCAACAwAAAlEIAABDCAAC4QQAAkEEAAOBAAACQwQAAAMEAABRCAAAwwQAAsEEAAMjBAACuQgAAUEIAAODBAACowQAAyEEAAKhBAADYwQAA2MEAALhBAAAQQQAA2EEAAKjBAACAwgAAfMIAAJDCAABQQQAAEEIAAGBBAAAYQgAAQEEAAABAAABwQQAAAAAAABBCAACMQgAAlsIAADBBAADQQQAAcMEAAEDBAADYwQAAoEAAAODBAAAswgAAwEEAAADCAACGwgAAlsIAAJDBAABQQQAA-EEAAAzCAACswgAAAMIAAEBAAAAQQQAAOEIAABTCAACAwAAAiEEAAJhBAACAPwAA2MEAAKxCAAAIQgAA4MEgADgTQAlIdVABKo8CEAAagAIAABy-AADIvQAAmD0AANg9AAD4PQAAqD0AACS-AAABvwAAiL0AAIA7AACAOwAATL4AAAw-AABkPgAAFL4AAOi9AAAUPgAAUD0AANg9AAA0PgAAfz8AAKC8AAAkPgAAqD0AABy-AAAkvgAAcD0AABC9AADIPQAAqD0AACw-AACgvAAAcL0AAEC8AABQPQAA6D0AAKg9AAAEvgAAqr4AAOi9AAAcvgAAUD0AAKA8AAAQvQAAJL4AAIi9AACCPgAAUL0AAGS-AABsvgAAoLwAABy-AACePgAATD4AAMi9AACgvAAA5j4AAPg9AAAMvgAA2D0AAJi9AACoPQAAMD0AADS-IAA4E0AJSHxQASqPAhABGoACAAAkvgAAgDsAAPg9AAAlvwAAoDwAAOC8AAAsPgAAML0AAEC8AAAQvQAAUL0AAGS-AABAvAAAEL0AAIC7AADgvAAAUL0AAB8_AACAuwAAkj4AAJY-AABwvQAAEL0AAPi9AADgPAAAVL4AAOA8AAC4PQAAuD0AAEQ-AAC4PQAALD4AAGy-AACAOwAAUD0AAAS-AACSPgAAgLsAAKa-AACAOwAADD4AAKi9AADYPQAAMD0AAEC8AADYPQAAf78AALg9AAAwPQAA4DwAAJi9AAD4PQAA-L0AAOg9AAD4PQAAHD4AAEC8AAD4PQAAJD4AADQ-AACYPQAAfL4AAEC8AABAPCAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=7VourTh6XTg","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10198891631578408057"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"975687729"},"2824172790821070088":{"videoId":"2824172790821070088","docid":"34-2-4-Z92E2052B0E8E515A","description":"Hello viewers, My self Sachin Cheekna.Welcome to my you tube channel \"Rise Your Mathematics\".About this video -#principal_normal#binormal_unit_vector#unit_ta...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2365657/99387da83b824d6d6c287862a45bc520/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/uWbEPQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dh_zQTHMATa4","linkTemplate":"/video/preview/2824172790821070088?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Fundamental unit vectors & fundamental planes | Principal normal vector | Binormal vector","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=h_zQTHMATa4\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFQoTMjgyNDE3Mjc5MDgyMTA3MDA4OFoTMjgyNDE3Mjc5MDgyMTA3MDA4OGqHFxIBMBgAIkQaMAAKKWhoaXR5eGlleXl6ZGpuaGhoVUN1ZnUtajdpZUFlQmZxc3RqSDRZd0pnEgIAESoQwg8PGg8_E-gTggQkAYAEKyqLARABGniB-AkPAQAAAO798QkCA_8BCAMKCfj__wDtBPz4BQAAAPj6_wUFAAAADgYTBAQAAAD-_v7_-P4AAAX5-wvxAP8ACAAEBPwAAAAEBf70_gEAAPLy-PUCAAAABAj7CwAAAAD0_gQBAQAAAAQFEwcAAAAAD_8DDwAAAAAgAC3KANE7OBNACUhOUAIqhAIQABrwAWz4Df_Z7Of_997bAOEr_QCBAAL_ORzkAMf8HgDF7OIBJin6AcTf7f8T6yMAAgQYADMK3f8DzRP_FBwN_z4gFwADJAcBId0KADIOFQLyBN3_4SEQ_y4ADgH82PoACBUB_fkFCPwHE-gCDv_YAxf7_wQD7xACHwQNCN___f3YFAIB5vfc_UIG6_7QC__-xR4WAxL_7QgQDhEE487sAggK6QYn2voCJALoAif99Abz9Pn4-wAM9hn36fn8IRgJ5gkG-ygBDvr05AHx9iH7CCS8C_0U9g4E4fcC9xIM-AAK4gr8zgUN9OsaAQD1EQcC8Pn8DSAALb9PJDs4E0AJSGFQAirPBxAAGsAHhxbhvrg-7Dw5Qia9oBRyvdu6AD3z7v68-IG1vAOrzzxpFPe8K6uEPWmIbz0PCV-7_Iy7vlpTD7zG6sW7FJRCPkZFHL1z6AC8dXT8vS8Tmj0LAhC9T3iRvmcVTD2p5ou6CWsjPqwpHz2jecA8iGVzPaVqm71wApk6fN_uvK2uGb1l7pA7G0YBvmItjr1G6yg7fQA3PftcDb11P6c6IOsJPsVt2byqmTW8wDEaPR5Pi7zQWrY8yL_FvA5ANDoSjrC79z8QPhegbbyfSfI7rLIqPZf8FD2ubiu8pOt4PCU2RLzWsPy7jX-fO6GOfT3_CS68u7upPZIkiL1yKFm6qMghvgJ8HD3o6W087IbtPYz3gz1yW5E7A3NZvQ3mmj0vYy-8sTfMPDJ2gjyK9T-6dA2uPR56Ib3Kyoa7tku7PTt8uD1YWVs8chP3uyy5ijxzMsw8AW-euyasjT1OuPk5vmjRu5DeSz2sIyK834jOvZIZOby2oU-6D7bYPVyjb72w7Yg8Y9S1PE6iOT3sPVm53Ve6PUMxk70uHdK7CSJBPN5cN73LCeK7GLAkPTEd3zxVhcg7V1gVPYtUeL2SEN27OcV0vKjOOb0hs_G7QdgJPUJYor3kPyK6UAKmvXofQj0EwUq7_GVBvIXs2buHQjq8r2Z4vC03kj2eVQ87ELJqO4LEO72Vhas7Y6SdPWoGJz2Qn_A6z35JPN1cXD2CV8Y5GLIKPmWew7sY0YI4WiiOvUd1ir2A9xi6asJ2PMOrNj2FTL25pgeqPHluRjzSNDa6HHoLPeLGEjxNLyi6U2-XvPJ3Dz34CCQ5qn7lvCEStDzgpoM5M3l5vYP2Kr3DzzK5--gUvROUBzzdBlu69pxvPb21wjymrmo4XwrPvThwKboYQ7W5_N7HuyfGLT3Dl2C4eJ6TPW642Tz9qJ241IlaPUc81Dn3l3Y5hbGJu5L6_Ds6jEK44xaYvNeufz3XUzg47Lmvu8XBmr0TgHY5429yOcm_oD25_Sc4PkLNvZfuZDwQ_rk49mnLPLE-FL2CTOq32AUtPX6hEb32QFI3pSXgPEGx-jxAO9O4RMpKvVYLkbzmV_-3AooHPJ85oL2zEZ23gtWSPXME-rwL3zu2rWOBvNzO4zxVcXU4ndnuPZ-Vk7qjag65Z0MDva3wGD2L1Dq4wxGDOVBVIb2EoSu3tT0QvS9n2zzw4QC45NWevHqJ8b1lVTC4yvRwPSLhKz7xy4o461zsvKqkpD0Bi8S4x4mKvHoklDxZoXS4vkM7vSPGobzeZyU4IAA4E0AJSG1QASpzEAAaYF_-ABwPF_rLGgu8-M0m9OT1LwgZ49f_Aov_7g3Wuxgf05TaEgAt5BoEngAAACLE0w4hAN5-_VPnQtYL7tDN_PT-YCIsQtEeIBnp0gdP9t0m5-gLKgDdFbACSOKBEwM3KiAALS-jEjs4E0AJSG9QAiqvBhAMGqAGAADIQQAAyEEAAFxCAAAcwgAAEEIAAAzCAAAAQgAAUEEAAMjBAADAwAAAAMAAAMjBAAAQwgAACEIAAAhCAACAPwAAAEAAAHzCAACgQAAAWMIAAFBBAAAwQQAAcMEAANhBAACQwQAAFMIAAIC_AADywgAAYEEAAABBAAAAQAAAgEAAADTCAAAQQgAAcMEAAGDBAAB4wgAAOEIAAFDBAAAwwQAACEIAAIjBAACgQQAAEEEAAKhCAADqwgAACMIAAPDBAAAUQgAAMEEAABTCAABAQAAAiEEAAMBBAACKQgAAQEEAAIjCAAAAAAAAGEIAAJZCAAAsQgAAoMAAANDBAAD4QQAAkEEAAIjBAADYQQAAOMIAAJDBAADQwQAAqkIAANJCAABgwgAAcEIAAKBAAAA0wgAA8EEAANDBAABswgAAAMAAADTCAABQwQAAMMEAAOBBAAAAwQAAgMAAABBCAACYQQAAgEEAAEzCAAAgwQAAoMAAADDCAACgwQAAgMAAADjCAAAEQgAAYEEAAKDAAACAvwAAgL8AABBCAAAMQgAAQMIAAILCAACwwQAAHMIAAODAAACAwgAAYEIAACDBAADowQAAgMEAAETCAAAQQgAA8EEAANjBAADowQAAAEAAAABCAADgwAAAkMIAABzCAADQwgAA8EEAAABAAACIwQAAEEEAACDBAACEwgAACEIAACBBAABAQAAAWEIAAODAAACmQgAA-EEAABRCAABAQAAAjMIAAABCAABAwQAABEIAANBBAABwQQAAcMEAAPhBAABQQQAATEIAABDCAAAswgAAgEEAADBCAAAAwgAA4EEAAFBBAACgwAAA0MIAACDCAABoQgAA2MEAABhCAACAvwAASMIAAPDBAACAQQAANEIAAK5CAACQQQAAkEEAACzCAAD4QgAA6MEAAHDBAAD4wQAAMMEAAJjBAAAEwgAA8EEAAChCAACAPwAAAMIAAADAAAAAwgAAgEIAACDCAAA4wgAAJMIAAJBBAACgQQAAoEAAANDBAAB4QgAAgMEAADBCAACMQgAAksIAAGjCAAAEwgAARMIgADgTQAlIdVABKo8CEAAagAIAACy-AAAQPQAAND4AAJg9AADovQAABD4AAES-AADCvgAAPL4AADA9AABAPAAAEL0AAAw-AACIPQAAFL4AAFC9AADgPAAAQDwAAHA9AACOPgAAfz8AABC9AAAQPQAAyD0AAFS-AAC4vQAAqL0AAKi9AAC4PQAAHD4AAJg9AABAPAAA-L0AAPg9AABQPQAAyD0AADw-AAAsvgAAjr4AAFS-AAC2vgAA-L0AABC9AACAuwAAyL0AAAy-AAAUPgAAJL4AAAS-AAD4vQAA6D0AAFy-AABEPgAAND4AAES-AADgvAAA3j4AACQ-AABwvQAAuj4AADA9AADIvQAA6D0AAKA8IAA4E0AJSHxQASqPAhABGoACAADgPAAAyD0AAHw-AAAbvwAA4DwAAKC8AAAkPgAAmD0AAKA8AADgPAAA4LwAAHy-AABsPgAATL4AAKA8AABwvQAAPL4AAEU_AACYvQAAcD0AABw-AACevgAA-D0AADS-AADYPQAAiD0AAJi9AADIPQAAMD0AAOg9AABAvAAAqD0AAIK-AACIPQAAoLwAANi9AABUPgAAMD0AAFS-AACYvQAAgj4AALi9AAAkPgAAqD0AAIi9AAC4vQAAf78AAJg9AACYvQAAiD0AAKi9AADoPQAABD4AAEC8AAAwPQAAMD0AAIi9AACgvAAAyL0AAKA8AAD4PQAAFL4AAMi9AAAEviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=h_zQTHMATa4","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2824172790821070088"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1996265921"},"10723838677854301802":{"videoId":"10723838677854301802","docid":"34-4-2-Z23CAECF8003B3075","description":"#vectordifferentiation #btechmathematics #engineeringmathematics #bscmathmaticlectures #alliedmaths...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/758402/d97d0623543e77ca2d99259485dd595c/564x318_1"},"target":"_self","position":"16","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbmsTmdF-YWA","linkTemplate":"/video/preview/10723838677854301802?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"unit vector normal to the surface|| lecture 8|| vector differentiation","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bmsTmdF-YWA\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFgoUMTA3MjM4Mzg2Nzc4NTQzMDE4MDJaFDEwNzIzODM4Njc3ODU0MzAxODAyaq4NEgEwGAAiRBowAAopaGh0ZmdmdHhmb2t0ZnBwaGhVQ1NPdGlCcXRtMHd3dkpNYy11R2hHeEESAgARKhDCDw8aDz8TtgKCBCQBgAQrKosBEAEaeIH4CQ8BAAAA7v3xCQID_wEXBgUC9QICAPL6_fwHAf8A8fT_AQIAAAAGCQcFCwAAAP0CAfcC_gAAAgzzAe8A_wAIAAQE_AAAABP48_j_AQAA6QEBAPYCAAERBfb9_wAAAAAA-gUFAAAA_wcF_QAAAAAMBP37AAAAACAALcoA0Ts4E0AJSE5QAipzEAAaYBoHACgb8vv_FwrlA7QDBvb5Pevr8On__pYADQvw1fUTA6n47_863hQJrwAAACPY6_0NABtgD-OpOxUJ9PzbzQUjf9MQ7PQXCgrwChkkFMkNDQoHVQCz8wIL5OO38-UdLyAALVEbMzs4E0AJSG9QAiqvBhAMGqAGAAB4QgAAAEAAAIZCAABswgAAMMIAAEDAAACUQgAAcEEAAKBAAADgQAAAYEEAAOjBAAAAwAAAgEAAABxCAAAAAAAAoEEAAGzCAAAEQgAAMMEAAIjCAADgwQAAwMIAAAhCAACowgAAsMEAAIBBAAC4wQAA0MEAAPhBAAAgwgAAkEEAAHzCAADAQAAAyMIAAEBAAADYQQAAqEIAAFDBAAB4QgAA-EEAAADBAACAwQAAFMIAAEhCAABcwgAAcMEAAABCAAAcQgAAsMEAAMDBAABIwgAAAMIAAGxCAAB8QgAAEEEAAJzCAACAwAAAYEEAAEBAAADwQQAABMIAAEjCAACgwQAAAMEAAIzCAAA0wgAAmsIAAOjBAAB4wgAA2EEAAFxCAABgwgAAAAAAAIBAAADgwAAAoMIAACjCAAAAwAAAIEIAAEDBAACGQgAAkMEAAKDAAABAQAAAlkIAAFDBAACiwgAAbEIAAKhBAACgwAAAYEIAAKDBAAAgQQAAQEIAAJjBAAAAwAAAsMEAABRCAABoQgAAqMIAAHBBAAAEQgAAUMEAABDCAACIQQAAQEAAAABAAABAwQAAPEIAAIJCAADgQQAAyMEAAADAAAAwwQAAREIAAGBBAAAkwgAAsMEAAADCAAAQwgAAkMEAAEDAAACowQAAPMIAAKBAAACgwAAAgMAAABjCAADAQAAABMIAAHDCAADAwAAAfEIAAMDBAADgQQAAoEEAADRCAAAYwgAAOMIAAMhBAADgwQAAcEIAAKTCAACAQQAA0EEAAFBBAADQwQAA4MAAAIDAAADowQAAgD8AAFBCAABYQgAAkEEAAADCAABEwgAADMIAABjCAABwwgAA-MEAALBBAADYQQAAJEIAANBBAAAgQQAAgEAAAJJCAAC4QgAAZMIAAADCAACwQQAAsEEAAHDCAADYwQAAoEEAAEBBAABgwQAACEIAAOBBAADAwgAAYMIAAKBAAABAwQAAGEIAABzCAABowgAAUMEAAIDAAAAgwQAATEIAANjBAACowQAAsMEAAIhBAACgQQAAkMEAAARCAABUQgAA4MAgADgTQAlIdVABKo8CEAAagAIAAGy-AADgvAAAhj4AADA9AACAuwAADD4AAFC9AAD-vgAAcL0AAOg9AACoPQAABL4AAEQ-AACAOwAANL4AAKA8AAD4PQAAoDwAAIg9AACSPgAAfz8AADA9AACgvAAAUD0AACS-AACIvQAAoLwAANi9AAAwPQAApj4AAPg9AAAwPQAAHL4AAAQ-AABwvQAARD4AAGw-AADIvQAALL4AACy-AACuvgAA4LwAAOA8AAAQPQAAHL4AAKC8AAAcPgAAqL0AACS-AAA8vgAAPD4AAAy-AABsPgAAHD4AAOC8AAAwvQAACT8AAIA7AABQvQAAlj4AADC9AAAMvgAA6D0AAJg9IAA4E0AJSHxQASqPAhABGoACAACYvQAA4DwAAKg9AAAxvwAAUD0AAIA7AAAQPQAAMD0AABy-AADYPQAAmL0AAIK-AACYPQAADL4AAKi9AABQvQAAXL4AAE0_AAAQvQAA6D0AADw-AACSvgAA6D0AADS-AACgPAAAED0AAIi9AACYPQAAuD0AAAQ-AACgPAAAED0AAAy-AAAQPQAAuL0AAES-AAAEPgAAoDwAAEy-AAD4vQAAhj4AAOi9AABUPgAAML0AABy-AAAMPgAAf78AAOC8AACgvAAAoDwAAKC8AABAvAAAJD4AAKA8AACAOwAAQDwAAOC8AAAMPgAAUD0AAIg9AACYPQAAVL4AAGy-AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=bmsTmdF-YWA","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10723838677854301802"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6537011125351753722":{"videoId":"6537011125351753722","docid":"34-11-12-ZA17518D37DF32A6D","description":"Vector; Normal; Binormal; Correction: r(t)= 1.5cos(2t) i+1.5sin(2t) j +t k Taken from Visual Calculus by Zine Boudhraa https://www.amazon.com/dp/B06xw4m1gh...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2358383/de8f53dd9c986056969a4d49a7e3d584/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ADzgGQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDPs886SDN0A","linkTemplate":"/video/preview/6537011125351753722?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Normal and Binormal Vectors","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DPs886SDN0A\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFQoTNjUzNzAxMTEyNTM1MTc1MzcyMloTNjUzNzAxMTEyNTM1MTc1MzcyMmqGFxIBMBgAIkMaMAAKKWhoYWx4emNqaHZpcmpteGhoVUN1MURmdHdpRU12bGRHZnVLdWhPSmtBEgIAESoPwg8PGg8_EySCBCQBgAQrKosBEAEaeIH-_gEI-wUA_AT8BgEG_QL3CgYC-f39AP8JCgAFBf4A9PDzAgIAAAAI_Qj-AwAAAPf-_v78_wAAB_D8_PEAAAAM9wgC-wAAAAT8-e7_AQAA_fv99wIAAAAIBAIKAAAAAPUKA_oCAAAA9wkRAwAAAAAD-f4DAAAAACAALXmg4js4E0AJSE5QAiqEAhAAGvABdQQIAcPv2__29usA4CXMAYEV8P_9KtsA7fgAAN0F5gEcGPYB6hAhAC_6CwCmDvIBDAsAAAn6AAAx6hUA-eIUAO4ZFQAA-QkBEx0GABbtAP79M-3_6gsMAMvr8_72Juv_GgwS_9cf3P3jCt0BDP4zAeMP7AEo9ggC-CcNA-bzBwT2-_H_-RwEBBXtBQLm9ycG_fv4BDITDAD2EPkA8gIuAibxBQAfFvf7FAYDA-X-DwMI8iL-9gUOBOnzBwYHHf8H9fgfAvrPAwDt-vb7F9r0BOXtBQMIDfD6-_YI_SDj8gHxIPD_9An8_REPAgwO3v7_IAAtUfQ1OzgTQAlIYVACKs8HEAAawAcfD72-omExvWp5D73Jd4S61TXkPPvxzbw8izm9chsIPceBHjrusr89t7BTPVY1V729jpC-fOdcvdimKTuJmQ0-zD9fveudn7l1ySi-2lSdPZOQozwx6iq-unDWOkESEb3NPbS9fFNnPZMvUr2Xgv88c73tvRrbDDxtiow9F21pPalOh7zwVQY9zYR1veY1wLzX6sE9N_CUvQnpHzwBMSk-mvduvQ-Q-Tx7eoY9Kke3PAQmpjwZWBe-FU0RvS4dczxp_ig-i13TO0cLKzzkgz-7fAM9vSsOjDzRXoi9-oIRvfal6TvPMFU-_OQovHp6Wzznpxg9gHe8vJV_rbz1KD-7fbNNvBraoTu7Sx09uG0EPRNxxDyndyG-UbYtPa_TozoPcDe9bnomPWUlHD2OIFU-e0jdvC-nwjtDVME9siI0PDkrfbyLITQ9qFEoPd9hh7u5vx895_mIPRvNmzzcIyM8UdMTPRy737yqPh2816ypvJ1OFjrqgoC9VZyfvXM3gLqAM6c86FjUPJLBPDuUids92O-JvRkU9jrzBCI9yGuBOSI_kbwisJg9FsZxPCO7d7xpRlW9HgKiPHMALjqLzMK9h6NwPbLzdDvfrhE8TKnrvb3d1DvsyYK93igoPaHANzvYv8a8xN5VPH_xMbymffM9Q1QEPHjV3jv0NjY9bZHUPcTQ6rpNuu08RBzeOY31KjsV9RO9UYiAvarBPzoYsgo-ZZ7DuxjRgjjqnBo9ntgePKGzEjvQzo49c_GcvDh4ljniW5g9uiSYvB2feznOGGa9v89dPCPtu7ns_qw9fKCQPWxFNLnXEME8QH30O_k5MrjOg6C9VhI0PNprYbpd2jU9AQ6GvEA6WrlwqAa844havFuSqLq0-xo9ryIDvRdmMLniDLm96SIqPGSaPbg0kB29zLMCPkixLLhski8-S623PNFrljfZ5HU9J2DFvGL2Obi7j6u6tQW6PGP4BTnm_I69MgyOvNleArlZDYM98Q3FPN277zic8o08jjq-Og9lUbceHbK8Tg6_vXZlFzhmCsY7IfwwvCngnjh-a5y97ozAPQUjSTl3ZXe98fl8vWDWajg2i_y8-9vvvJL7h7iC1ZI9cwT6vAvfO7bKZU09rMbSvG-UGzePoZg9898ovJUnHrlXJCa9iyTwPD6Qp7Z8cRO9KOyHPOZ_gzjjYAU9EQFHvdkMdDhhBnk98zoSvkvnqbghMrY8OznjPQQbBjl8Yo29IQPZPYE1MLkySXa9pCPvvApbLbgCmDc9PoZ9vfMMqTcgADgTQAlIbVABKnMQABpgLvcAIAIN5RssAufT7CIZ2zfnNdyYBf_rqf8SIAL5AhMGw_AFAEjpL9ieAAAAKLDxHBAA83_U5QJIAw8Yz6bRM_l4GjUo0wMbAO3h_TH1oxYdRyUxAP7QoOkhu8At81k5IAAtJkcTOzgTQAlIb1ACKq8GEAwaoAYAAARCAABAwAAAgkIAACBBAABQQQAA2EEAANJCAACIQQAAUMEAAKhBAACgwQAAfEIAACDBAADAwAAAUEEAAEBCAACgQQAAoEEAAIA_AABQQQAAgEEAAIDBAACgQAAAGEIAAIBAAAA0QgAAqEEAADRCAAAAAAAAAEIAAIDBAAAkQgAA-MEAABDBAABAwQAAbMIAAMBAAAB4QgAA4EEAAIC_AAAUQgAAqMEAABBCAABQQgAA4MAAAJrCAAD4QQAAQEAAAIhCAAAcQgAAoMEAAIC_AABkwgAAEMIAAPjBAACaQgAAvMIAAHDCAAAAwQAAJEIAAPxCAABowgAAgMAAADxCAADgwAAAmMEAAFzCAACAPwAAhkIAAIBAAAAUQgAA6EEAAGDCAACIQgAAQMEAAAAAAAAcwgAAGEIAAHxCAAAkQgAA0sIAAEhCAADgwQAAYEEAAABCAAAcwgAAwMEAANhBAADMQgAABEIAADDBAACOQgAAEEEAAIjCAADwwQAAyMIAABDBAACcwgAABEIAADBBAAAwwQAA0MEAAODAAABAQQAASMIAALhBAACAwQAAkEEAAPjBAABUQgAAyEEAALBBAACQwQAAjEIAAPjBAACwQQAA8EEAAATCAADIwQAAMMIAABDCAABEwgAA6EEAADDBAACAvwAAAAAAAMDAAAD4QQAAWMIAAGRCAACQQQAAUEEAADjCAAAAQQAAuEEAABBBAAAUQgAA2EEAAIDAAACgwgAAmMEAAOBBAAAAAAAAmMEAADRCAAAswgAAkEEAAAzCAAAsQgAAqEEAALhBAACGwgAAEEIAAABAAAAYQgAAKEIAAHDCAAAkwgAANMIAAABAAABowgAA-EEAAKjBAACAwQAAwMAAABTCAACQQQAAYEEAANhBAAAkQgAAoEEAAAxCAAAQwgAA0MEAAGDCAABAwgAAyEEAANjBAAD4wQAANEIAAADCAAAQwgAAOMIAAIA_AACEQgAAAMAAAFDBAABAwAAAwEAAACTCAACYwQAAdEIAAJBBAABQwgAAEEEAAMDBAAA8QgAAUMIAAKjBAACQQSAAOBNACUh1UAEqjwIQABqAAgAAgr4AAMg9AADYPQAAcD0AAFS-AACAuwAAoDwAANq-AACSvgAAmj4AAJg9AAAEvgAAhj4AAHA9AABMvgAAyD0AAAQ-AAAwvQAAhj4AAMo-AAB_PwAAJL4AAIg9AADYPQAATL4AAKi9AABQvQAA6L0AAMg9AAAsPgAA4DwAAKA8AABMvgAAED0AADA9AACIPQAAgj4AAIq-AAAkvgAAwr4AAI6-AACgPAAAfD4AAAQ-AADYvQAAMD0AAOC8AACCvgAAgr4AAKa-AADgvAAAur4AAJY-AABEPgAAjr4AAHA9AAADPwAAJD4AAFC9AAAEPgAA-L0AAOg9AABwPQAA-L0gADgTQAlIfFABKo8CEAEagAIAADC9AACIPQAAoDwAABm_AAAQPQAAQLwAAGQ-AAAEvgAAcL0AAAw-AAAQvQAAfL4AAFA9AAAMvgAAUD0AAIi9AADIPQAAAT8AAIi9AACWPgAAiD0AABQ-AADgPAAADL4AAIg9AABQPQAAmL0AAIg9AAAwPQAA2D0AADA9AABcPgAAXL4AAAS-AAAUvgAAEL0AALo-AABcPgAARL4AABy-AABcPgAAED0AAJi9AADYPQAAoLwAAMg9AAB_vwAAEL0AAKC8AACaPgAAqD0AAEA8AABAvAAAFD4AABA9AAC4PQAAQLwAAJi9AAC4vQAAiD0AAPg9AACAuwAAuD0AAIi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=DPs886SDN0A","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6537011125351753722"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"804847119"},"2094659584749941789":{"videoId":"2094659584749941789","docid":"34-9-11-Z62B87BACE062634C","description":"Join the free discord to chat: discord.gg/TFHqFbuYNq Join this channel to get access to perks: / @theunqualifiedtutor Shout out to the editor: https://thehalalmedia.carrd.co/ Chapters: Kind...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2132023/4376c869c14148f773fdbdfdbdc5fdcf/564x318_1"},"target":"_self","position":"18","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLuFh5odBewI","linkTemplate":"/video/preview/2094659584749941789?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Combining Functions Using Vector Normals","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LuFh5odBewI\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFQoTMjA5NDY1OTU4NDc0OTk0MTc4OVoTMjA5NDY1OTU4NDc0OTk0MTc4OWquDRIBMBgAIkQaMQAKKmhoanFybWt0bXpubGtpcWRoaFVDMzlWbkVkUnZnSm1JS0JEZG1qMGRJURICABIqD8IPDxoPPxMUggQkAYAEKyqLARABGniB6gYLAgT8AOr99fwEAAEAJAMHAvMEBADkD_z4CP0BAOj4BQX8_wAAAgsP_AUAAAAD-vz7_f0BAAju_PzvAP8ADQENBPQAAAAH_O_3AAEAAN_4Cv0CAAAAEQb4EP8AAAD5BgEGBAEAAAoECQEAAAAAFfsABQABAAAgAC1MxcY7OBNACUhOUAIqcxAAGmBKGwAlExIL5RIC3AbdBQgMEAwR_b4I_xi3APsT6uAOHBCY_P3_WfH4CLEAAAAD_uMiLQABYxQj2BEBJQKu0sX8Kn8lLf0Z_Cfp-ikgODPd9_j8_ykAA-MG-yf21lMRHyAgAC2d6TI7OBNACUhvUAIqrwYQDBqgBgAAQEEAAPDBAAAsQgAABEIAAEDCAAA8QgAAkEEAAKDCAACgwgAAwMAAACBCAABYQgAASMIAACTCAACgQAAAkMEAAKhBAABUwgAARMIAAK7CAAAQwgAAgD8AAFjCAACwQQAAREIAAABBAAAMwgAAlsIAAExCAADCQgAA0MEAADhCAABwQQAAMEIAAGDCAAAAAAAA8EEAAFhCAADgQQAAoEAAANjBAAAsQgAAWEIAAIpCAACIwQAAqEEAAAAAAAAswgAAhEIAADDCAABowgAAqMEAAFjCAABAQQAAJMIAAOBAAACgQAAAFEIAABBBAACYQQAAAAAAAIA_AACIwQAAMEEAAABBAABMQgAAYEIAAADBAABgwgAAGEIAAIBCAAB4QgAAGMIAAKhBAAAowgAA0EEAAGTCAABkQgAA0EEAAGjCAAAYwgAABEIAAKjBAAAwQgAA4EEAAHxCAACYwgAAgMAAAFBCAAAIwgAAgEIAADRCAAA8QgAAwEEAALDBAACIwQAANEIAAKhBAADoQQAAgEEAAKjBAACIQQAAVEIAAIDCAACCwgAATEIAAEBCAAAAQAAACMIAAEBBAAD4QQAAAEIAAETCAACAQQAAjkIAADxCAABAQAAAgL8AAAAAAACSwgAAAEIAAPDBAAAsQgAAJMIAAOhBAAAAQgAA4MAAABDBAACuwgAAbMIAAJDBAABAwQAAuEEAAGhCAAA0QgAAkEEAAIDAAACwQQAAuMEAADjCAABwQgAABEIAAHxCAABQQQAA6EEAAKZCAACAQAAAEEEAAABBAACQwQAATEIAAOjBAABUQgAAsMEAAGBBAADowQAAkEEAAJLCAAA8QgAA-EEAALjBAABsQgAAmMEAABxCAABgwgAA6MEAAMjBAACAwAAAUEEAABDBAACiwgAA2EEAAIA_AAAMQgAAOEIAACBBAAAsQgAAwMEAACBBAAA8QgAAAEAAAAjCAAAMQgAAOMIAAPBBAAAUwgAAnMIAADRCAAAQQQAAEEEAAIBAAAAAwAAADMIAAAxCAACAwAAA0EEAAADCAADAQQAANMIAAEDBIAA4E0AJSHVQASqPAhAAGoACAACKvgAAHD4AAIg9AAAwPQAA2D0AADw-AADoPQAAtr4AAES-AAAkPgAAXD4AABS-AACSPgAAgLsAAIi9AACIPQAADD4AAHA9AAC4PQAAkj4AAH8_AACoPQAAmD0AAEw-AACOvgAAuL0AAJg9AAAUPgAAoDwAAIg9AABUPgAAyD0AAOC8AACAOwAAxj4AAOA8AABkPgAATL4AAJa-AAAkvgAAfL4AAMi9AAAMPgAA-L0AABA9AAB0PgAAcL0AACS-AABAvAAATL4AAHw-AAA0vgAApj4AAL4-AACAuwAA4LwAAAs_AAC4PQAAqD0AAAQ-AADgvAAAiL0AAOA8AABAPCAAOBNACUh8UAEqjwIQARqAAgAARL4AAOC8AAAcvgAAL78AAIA7AACAOwAAMD0AAAy-AADovQAAUD0AAEC8AACovQAAML0AALi9AABAvAAAmL0AAFS-AAAnPwAAqL0AAAw-AABcPgAANL4AAFw-AAAEvgAAiL0AAKA8AABcvgAAMD0AAHQ-AAC4PQAAFD4AAOg9AACSvgAAyL0AAAQ-AABAvAAA8j4AAAQ-AACOvgAANL4AALI-AACAOwAAQDwAAAw-AADoPQAAHD4AAH-_AADgPAAALD4AABQ-AAA8PgAAVL4AAKg9AAAkPgAA-D0AANg9AACAuwAAmL0AAHC9AADgPAAAPD4AAKg9AAAwvQAANL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=LuFh5odBewI","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["2094659584749941789"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9978663374244299698":{"videoId":"9978663374244299698","docid":"34-5-16-Z1DFEEEE4EF4308FA","description":"Get the full course here https://www.udemy.com/course/vector-c... Support me with PayPal https://www.paypal.com/donate/?hosted...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/400250/b2eb8b066d4b2b38aec2ca4f1c4e7419/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/JJBbewAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdA6f__0INyE","linkTemplate":"/video/preview/9978663374244299698?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Vector Calculus Unit Normal Vector","related_orig_text":"Non-Normal Vectors","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Non-Normal Vectors\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dA6f__0INyE\",\"src\":\"serp\",\"rvb\":\"EqkDChM1OTI5NDUzODc2NDkwNTkzOTQxChQxNDQyNzk3MDE1OTgyOTQwMTgyOQoTOTExMDA3Mjk4NDYyNTU1NzE3OQoTMzMwOTA0NTQ2NjE4MTA3ODEyMAoTNDg5MjAxNDQ0MzE0NjExMTU4MgoTNTUxODIzNjk0NzQxMjI4MjYxNgoTMTYzODc5MzEyOTQ1NDg0OTUyNQoSNDc1OTk4NTM0MTQ0NTM3MzkzChQxNDk4ODY5MTA0OTk3ODAzODQ1MwoUMTM5OTg0NDI3MTY3ODE5NjI2MTEKEzMwNDA3MjIzMjc1NjQyNDE4MTcKEzkwMjgwNTgyODgyMDQ0Njk1NzYKFDEwMTk4ODkxNjMxNTc4NDA4MDU3ChMyODI0MTcyNzkwODIxMDcwMDg4ChQxMDcyMzgzODY3Nzg1NDMwMTgwMgoTNjUzNzAxMTEyNTM1MTc1MzcyMgoTMjA5NDY1OTU4NDc0OTk0MTc4OQoTOTk3ODY2MzM3NDI0NDI5OTY5OAoTNTQ3ODk0MzkyNzkxNDM4OTkyOQoUMTQyOTc3MTcwNDExODI5NTY0NTcaFQoTOTk3ODY2MzM3NDI0NDI5OTY5OFoTOTk3ODY2MzM3NDI0NDI5OTY5OGq1DxIBMBgAIkQaMAAKKWhodGF5b3drZHBremxmeGhoVUNkT3BsS3draGJySmlLU2JXcHk3bzl3EgIAESoQwg8PGg8_E6cLggQkAYAEKyqLARABGniB8P0KAP4CAO_7-wkLBP0ACAMJCfj__wDxAgjyAwEAAPn49wEDAAAADQ0N9QEAAADy-v72AQAAAAfv_PzwAAAABwT-CP0AAAAN_-0B_wEAAOz3Av8DAAAACwT4BQAAAAAAAPoFBQAAAP8HBf0AAAAADP7-AQAAAAAgAC3oDdc7OBNACUhOUAIqhAIQABrwAX8RE_7fEMQC4CTwABDv6QCpDRz_NT3f_8r2_gDRGewBNe3TAdwE6QAc770AoBMMAQwj2__z8RYAP_cU_0zyB__d-esAEf7kASgaHP8FB9ABwg8MAfEBDgLz2bIAC_W_ACDwFPz7JQEB0ROv--_wRwP6AQMANM_0BQf3GgXnNCME9_jF_tzr6wPg9wr_5DIkAv4JDgMQHxn5ECD1_P3pCwYAAAD7GPnt-_nt9Q8XFQr75t4S-AfJB_UO-B78-fv1A_L2JwLl7g78__8X-hL-7_r1CvQR3OLxCu8jDhAjyv_8C_nwBNDxBvXxKP_3AwjqEyAALR1GEDs4E0AJSGFQAipzEAAaYBr-ACX7GOnZFR7v8ssGAtIICg_R4ef_AbcADRHd-wwf4t3yGAAX2BT5uwAAAAvF-RnvAPpV1AfuFfwQAtvHzB0xfwUQDun2LAv82RAvANzxPfEVLQDj-9AWCsWjDuYHLiAALQhARDs4E0AJSG9QAiqvBhAMGqAGAABAQQAAFMIAAPjBAACgwAAA4MEAAIDBAAC4QQAAwEAAAIzCAACQwQAA4EAAAM7CAAA8wgAAPMIAABxCAAAgwgAA0EEAAFDCAABQwQAAOMIAAAjCAAAgwgAA0EEAADBBAAD4QQAAYMEAAKDCAABAwQAAMEIAAIhBAADwwQAAkMEAAEzCAADAQAAAnMIAAFBBAABsQgAA2kIAACjCAAAwQQAATEIAAOhBAAA0QgAAiEEAAIBAAADYwQAAUMIAAPDBAACSQgAAyMEAAIDBAACYwQAAwMAAADDBAADoQQAAoMEAAObCAABAQAAAQEAAAMBAAADAQAAAMMIAAEDBAADSwgAAOMIAAGDBAAAEwgAAbMIAAATCAAAQwQAAjEIAAIxCAAAwwgAAAMAAAJDBAABkwgAA8MEAAADCAAAAAAAAgL8AABDCAAAsQgAA4MEAAABBAADgQAAA0EEAAPhBAAAcQgAAwMAAAIrCAACgwAAAoEIAAKDAAACOwgAAEEIAAATCAACQQQAAwEAAADDCAACAvwAAksIAAOhBAABgQgAAbMIAAFTCAADowQAAmsIAAARCAAAAQQAAMEEAAABAAAAAQAAAmEIAAJjBAABgQQAAgD8AAIBBAAAUwgAAmEEAAGTCAACgwQAAMMIAAODAAAA4wgAAmEEAAKBAAAAkwgAAEMEAAAzCAADAQAAAGEIAALZCAACowQAAgEAAAOhBAAAAQQAAEEEAAIjBAADAwQAAcMIAADTCAAAEwgAAIEEAAOhBAAAEQgAAcEEAAOjBAABwQQAAgEAAAPhBAAAsQgAAqEEAAExCAAA4wgAA4EAAAADCAACAQAAAbMIAAEzCAACEQgAATMIAAMDAAABAwgAAsEEAAODAAAAsQgAAqEIAAKJCAAA8QgAAoMAAAEDBAABwQQAAQEEAAKjBAAAoQgAAIMEAAPDBAACgwAAAmEEAAHhCAAAswgAAoMEAAIBBAACgQAAAwkIAAOBAAACowgAAfEIAAFBBAAAMQgAALMIAAJDCAAAAwAAAyMEAALDBAABAQgAAqMEAAJjBAACAwQAAIMIgADgTQAlIdVABKo8CEAAagAIAAMa-AAB8PgAA-D0AAMg9AADgvAAAuD0AAJg9AADKvgAANL4AAPg9AACgvAAA2L0AAII-AACgvAAAmL0AAJi9AAAEPgAAcD0AAHA9AAAHPwAAfz8AAAy-AABQPQAA4DwAADy-AABAvAAAML0AADC9AAAwPQAAuj4AABw-AACAOwAAyL0AAGQ-AACAOwAAqD0AAGQ-AAA0vgAAbL4AAJq-AADKvgAA-L0AADA9AABQPQAAPL4AAPg9AACoPQAALL4AAHS-AAAwPQAAmD0AAJK-AAAcPgAAdD4AAIi9AACYPQAAEz8AABQ-AADgPAAA8j4AADC9AAAwvQAADD4AADA9IAA4E0AJSHxQASqPAhABGoACAACIvQAAED0AAKg9AAAhvwAAUD0AAIA7AADYPQAAiL0AAOi9AABAvAAAuL0AAHS-AAA0PgAAHL4AAIA7AABQvQAAVL4AAC8_AAAQvQAAFD4AAJo-AADIvQAAQDwAABy-AAAwPQAAUL0AAOi9AACAOwAAgLsAACw-AABwPQAA2D0AAES-AACgvAAAiL0AABy-AAA0PgAAuL0AAJa-AADIvQAAiD0AAKC8AABEPgAAqD0AAKC8AAAQPQAAf78AAFA9AACYPQAAcL0AADA9AACgvAAAoLwAALg9AACoPQAAuD0AAKC8AACAOwAAQDwAABw-AADIPQAALL4AAOC8AAAsviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=dA6f__0INyE","parent-reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9978663374244299698"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3453882591"}},"dups":{"5929453876490593941":{"videoId":"5929453876490593941","title":"\u0007[Normal\u0007] \u0007[Vector\u0007]/Unit \u0007[Normal\u0007] \u0007[Vector\u0007]/Tangent to the \u0007[Vector\u0007]/applications","cleanTitle":"Normal Vector/Unit Normal Vector/Tangent to the Vector/applications","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=EAWmJX3xPe4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/EAWmJX3xPe4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSWlldDhXbmI1WnplbDlMQncyTThCQQ==","name":"TEAM Education","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TEAM+Education","origUrl":"http://www.youtube.com/@TEAMEDUCATIONMATHEMATICS","a11yText":"TEAM Education. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":797,"text":"13:17","a11yText":"Süre 13 dakika 17 saniye","shortText":"13 dk."},"views":{"text":"8,7bin","a11yText":"8,7 bin izleme"},"date":"12 oca 2020","modifyTime":1578787200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/EAWmJX3xPe4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=EAWmJX3xPe4","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":797},"parentClipId":"5929453876490593941","href":"/preview/5929453876490593941?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/5929453876490593941?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14427970159829401829":{"videoId":"14427970159829401829","title":"\u0007[Normal\u0007] \u0007[Vector\u0007] VS Mediant","cleanTitle":"Normal Vector VS Mediant","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/KdEPRF59oZk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KdEPRF59oZk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVWNRcVF1d2xiTHNTQnVGWGJETC1SUQ==","name":"Mini Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mini+Math","origUrl":"http://www.youtube.com/@minimath5882","a11yText":"Mini Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":60,"text":"1:00","a11yText":"Süre 1 dakika","shortText":"1 dk."},"date":"5 kas 2023","modifyTime":1699142400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KdEPRF59oZk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KdEPRF59oZk","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":60},"parentClipId":"14427970159829401829","href":"/preview/14427970159829401829?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/14427970159829401829?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9110072984625557179":{"videoId":"9110072984625557179","title":"Analysis II Lecture 13 Part 4 submanifolds and \u0007[normal\u0007] \u0007[vectors\u0007]","cleanTitle":"Analysis II Lecture 13 Part 4 submanifolds and normal vectors","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dlmdxAsctJs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dlmdxAsctJs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaWc1YUswNlJvSFpvbUdyamhTXzZnZw==","name":"Arthur Parzygnat","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Arthur+Parzygnat","origUrl":"http://www.youtube.com/@ArthurParzygnat","a11yText":"Arthur Parzygnat. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":733,"text":"12:13","a11yText":"Süre 12 dakika 13 saniye","shortText":"12 dk."},"views":{"text":"3,8bin","a11yText":"3,8 bin izleme"},"date":"19 mayıs 2018","modifyTime":1526688000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dlmdxAsctJs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dlmdxAsctJs","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":733},"parentClipId":"9110072984625557179","href":"/preview/9110072984625557179?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/9110072984625557179?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3309045466181078120":{"videoId":"3309045466181078120","title":"Manifolds 37 | Unit \u0007[Normal\u0007] \u0007[Vector\u0007] Field [dark version]","cleanTitle":"Manifolds 37 | Unit Normal Vector Field [dark version]","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Zyvyn60MRkc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Zyvyn60MRkc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZHdvNGsxUlFIVGNxXy1XUzdDYXpxZw==","name":"The Bright Side of Mathematics","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Bright+Side+of+Mathematics","origUrl":"http://www.youtube.com/@brightsideofmaths","a11yText":"The Bright Side of Mathematics. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":947,"text":"15:47","a11yText":"Süre 15 dakika 47 saniye","shortText":"15 dk."},"date":"25 haz 2024","modifyTime":1719273600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Zyvyn60MRkc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Zyvyn60MRkc","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":947},"parentClipId":"3309045466181078120","href":"/preview/3309045466181078120?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/3309045466181078120?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4892014443146111582":{"videoId":"4892014443146111582","title":"(MC06) Tangent Planes and \u0007[Normal\u0007] \u0007[Vectors\u0007]","cleanTitle":"(MC06) Tangent Planes and Normal Vectors","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=i7dKR2o-CZQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/i7dKR2o-CZQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeGZhNHV5Sng3UEF2clJ5bmtKVXh1QQ==","name":"Let's Learn, Nemo!","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Let%27s+Learn%2C+Nemo%21","origUrl":"http://www.youtube.com/@LetsLearnNemo","a11yText":"Let's Learn, Nemo!. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1562,"text":"26:02","a11yText":"Süre 26 dakika 2 saniye","shortText":"26 dk."},"date":"6 kas 2023","modifyTime":1699228800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/i7dKR2o-CZQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=i7dKR2o-CZQ","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":1562},"parentClipId":"4892014443146111582","href":"/preview/4892014443146111582?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/4892014443146111582?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5518236947412282616":{"videoId":"5518236947412282616","title":"Unit \u0007[normal\u0007] \u0007[vector\u0007] good and simple example 3","cleanTitle":"Unit normal vector good and simple example 3","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zFuOwYDp5pk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zFuOwYDp5pk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDXzQtM3dzYXpZbnhOZnZpRVhROFhUUQ==","name":"EASY MATHS EASY TRICKS","isVerified":false,"subscribersCount":0,"url":"/video/search?text=EASY+MATHS+EASY+TRICKS","origUrl":"http://www.youtube.com/@EASYMATHSEASYTRICKS","a11yText":"EASY MATHS EASY TRICKS. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":213,"text":"3:33","a11yText":"Süre 3 dakika 33 saniye","shortText":"3 dk."},"views":{"text":"8,9bin","a11yText":"8,9 bin izleme"},"date":"29 eyl 2017","modifyTime":1506643200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zFuOwYDp5pk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zFuOwYDp5pk","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":213},"parentClipId":"5518236947412282616","href":"/preview/5518236947412282616?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/5518236947412282616?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1638793129454849525":{"videoId":"1638793129454849525","title":"\u0007[Normal\u0007] \u0007[Vector\u0007], Binormal \u0007[Vector\u0007], and Oscillating Circle","cleanTitle":"Normal Vector, Binormal Vector, and Oscillating Circle","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9TyWle31mpQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9TyWle31mpQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDanh6S2YweHhsWXp6YzVocmdKbTVrdw==","name":"Nakia Rimmer (CalcCoach.com)","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Nakia+Rimmer+%28CalcCoach.com%29","origUrl":"http://www.youtube.com/@NakiaRimmer","a11yText":"Nakia Rimmer (CalcCoach.com). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":747,"text":"12:27","a11yText":"Süre 12 dakika 27 saniye","shortText":"12 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"14 tem 2020","modifyTime":1594684800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9TyWle31mpQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9TyWle31mpQ","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":747},"parentClipId":"1638793129454849525","href":"/preview/1638793129454849525?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/1638793129454849525?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"475998534144537393":{"videoId":"475998534144537393","title":"Constructing a unit \u0007[normal\u0007] \u0007[vector\u0007] to a curve | Multivariable Calculus | Khan Academy","cleanTitle":"Constructing a unit normal vector to a curve | Multivariable Calculus | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/_9x2cqO7-Ig","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_9x2cqO7-Ig?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/user/khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":607,"text":"10:07","a11yText":"Süre 10 dakika 7 saniye","shortText":"10 dk."},"views":{"text":"135,2bin","a11yText":"135,2 bin izleme"},"date":"25 mayıs 2012","modifyTime":1337904000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_9x2cqO7-Ig?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_9x2cqO7-Ig","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":607},"parentClipId":"475998534144537393","href":"/preview/475998534144537393?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/475998534144537393?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14988691049978038453":{"videoId":"14988691049978038453","title":"Determining a Unit \u0007[Normal\u0007] \u0007[Vector\u0007] to a Surface","cleanTitle":"Determining a Unit Normal Vector to a Surface","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DRBNp7SZCvU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DRBNp7SZCvU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":198,"text":"3:18","a11yText":"Süre 3 dakika 18 saniye","shortText":"3 dk."},"views":{"text":"232,9bin","a11yText":"232,9 bin izleme"},"date":"13 şub 2011","modifyTime":1297555200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DRBNp7SZCvU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DRBNp7SZCvU","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":198},"parentClipId":"14988691049978038453","href":"/preview/14988691049978038453?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/14988691049978038453?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13998442716781962611":{"videoId":"13998442716781962611","title":"Find Unit Tangent and \u0007[Normal\u0007] \u0007[vectors\u0007]","cleanTitle":"Find Unit Tangent and Normal vectors","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=y6xdfowOprE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/y6xdfowOprE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZHhWZUgtSWhTd1h4N1VqQXdJeGI2UQ==","name":"MathSlopes with Julia","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathSlopes+with+Julia","origUrl":"http://www.youtube.com/@MathSlopeswithJulia","a11yText":"MathSlopes with Julia. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":745,"text":"12:25","a11yText":"Süre 12 dakika 25 saniye","shortText":"12 dk."},"date":"30 eyl 2021","modifyTime":1632960000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/y6xdfowOprE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=y6xdfowOprE","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":745},"parentClipId":"13998442716781962611","href":"/preview/13998442716781962611?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/13998442716781962611?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3040722327564241817":{"videoId":"3040722327564241817","title":"13-3-12 \u0007[Normal\u0007] \u0007[Vectors\u0007] and Binormal \u0007[Vectors\u0007]","cleanTitle":"13-3-12 Normal Vectors and Binormal Vectors","host":{"title":"YouTube","href":"http://www.sites.google.com/site/ncuocw/course/li-gong-wei/xue-xi-wen-jian2/13-3","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/p3NOJE4fGSA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdk1QU05nSWJPYXY4aTEzZDhuQzJUUQ==","name":"NCUx Media","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NCUx+Media","origUrl":"http://www.youtube.com/@NCUxMedia","a11yText":"NCUx Media. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":363,"text":"6:03","a11yText":"Süre 6 dakika 3 saniye","shortText":"6 dk."},"date":"3 mar 2014","modifyTime":1393804800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/p3NOJE4fGSA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=p3NOJE4fGSA","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":363},"parentClipId":"3040722327564241817","href":"/preview/3040722327564241817?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/3040722327564241817?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9028058288204469576":{"videoId":"9028058288204469576","title":"Constructing a unit \u0007[normal\u0007] \u0007[vector\u0007] to a surface | Multivariable Calculus | Khan Academy","cleanTitle":"Constructing a unit normal vector to a surface | Multivariable Calculus | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/usH9VUi2-Xg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/usH9VUi2-Xg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":382,"text":"6:22","a11yText":"Süre 6 dakika 22 saniye","shortText":"6 dk."},"views":{"text":"175,5bin","a11yText":"175,5 bin izleme"},"date":"30 mayıs 2012","modifyTime":1338336000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/usH9VUi2-Xg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=usH9VUi2-Xg","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":382},"parentClipId":"9028058288204469576","href":"/preview/9028058288204469576?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/9028058288204469576?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10198891631578408057":{"videoId":"10198891631578408057","title":"\u0007[Normal\u0007] \u0007[Vector\u0007] to Plane Y Equal to Zero Ex 2","cleanTitle":"Normal Vector to Plane Y Equal to Zero Ex 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7VourTh6XTg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7VourTh6XTg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNFlvZXkxVXlsUkNBeHpQR29mUGlXdw==","name":"Anil Kumar","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Anil+Kumar","origUrl":"http://www.youtube.com/@MathematicsTutor","a11yText":"Anil Kumar. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":548,"text":"9:08","a11yText":"Süre 9 dakika 8 saniye","shortText":"9 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"5 eki 2014","modifyTime":1412467200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7VourTh6XTg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7VourTh6XTg","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":548},"parentClipId":"10198891631578408057","href":"/preview/10198891631578408057?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/10198891631578408057?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2824172790821070088":{"videoId":"2824172790821070088","title":"Fundamental unit \u0007[vectors\u0007] & fundamental planes | Principal \u0007[normal\u0007] \u0007[vector\u0007] | Binormal \u0007[vec...","cleanTitle":"Fundamental unit vectors & fundamental planes | Principal normal vector | Binormal vector","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=h_zQTHMATa4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/h_zQTHMATa4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdWZ1LWo3aWVBZUJmcXN0akg0WXdKZw==","name":"Rise Your Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Rise+Your+Mathematics","origUrl":"http://www.youtube.com/@RiseYourMathematics","a11yText":"Rise Your Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2536,"text":"42:16","a11yText":"Süre 42 dakika 16 saniye","shortText":"42 dk."},"views":{"text":"1bin","a11yText":"1 bin izleme"},"date":"22 haz 2022","modifyTime":1655881200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/h_zQTHMATa4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=h_zQTHMATa4","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":2536},"parentClipId":"2824172790821070088","href":"/preview/2824172790821070088?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/2824172790821070088?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10723838677854301802":{"videoId":"10723838677854301802","title":"unit \u0007[vector\u0007] \u0007[normal\u0007] to the surface|| lecture 8|| \u0007[vector\u0007] differentiation","cleanTitle":"unit vector normal to the surface|| lecture 8|| vector differentiation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bmsTmdF-YWA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bmsTmdF-YWA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU090aUJxdG0wd3d2Sk1jLXVHaEd4QQ==","name":"HAMEEDA MATHTUBER","isVerified":false,"subscribersCount":0,"url":"/video/search?text=HAMEEDA+MATHTUBER","origUrl":"http://www.youtube.com/@hameedamathtuber","a11yText":"HAMEEDA MATHTUBER. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":310,"text":"5:10","a11yText":"Süre 5 dakika 10 saniye","shortText":"5 dk."},"date":"27 kas 2024","modifyTime":1732665600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bmsTmdF-YWA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bmsTmdF-YWA","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":310},"parentClipId":"10723838677854301802","href":"/preview/10723838677854301802?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/10723838677854301802?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6537011125351753722":{"videoId":"6537011125351753722","title":"\u0007[Normal\u0007] and Binormal \u0007[Vectors\u0007]","cleanTitle":"Normal and Binormal Vectors","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DPs886SDN0A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DPs886SDN0A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdTFEZnR3aUVNdmxkR2Z1S3VoT0prQQ==","name":"Zine Boudhraa","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Zine+Boudhraa","origUrl":"http://www.youtube.com/@zineboudhraa7282","a11yText":"Zine Boudhraa. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":36,"text":"00:36","a11yText":"Süre 36 saniye","shortText":""},"views":{"text":"9,5bin","a11yText":"9,5 bin izleme"},"date":"30 nis 2017","modifyTime":1493510400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DPs886SDN0A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DPs886SDN0A","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":36},"parentClipId":"6537011125351753722","href":"/preview/6537011125351753722?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/6537011125351753722?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2094659584749941789":{"videoId":"2094659584749941789","title":"Combining Functions Using \u0007[Vector\u0007] \u0007[Normals\u0007]","cleanTitle":"Combining Functions Using Vector Normals","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/LuFh5odBewI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LuFh5odBewI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMzlWbkVkUnZnSm1JS0JEZG1qMGRJUQ==","name":"The Unqualified Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Unqualified+Tutor","origUrl":"http://www.youtube.com/@TheUnqualifiedTutor","a11yText":"The Unqualified Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":20,"text":"00:20","a11yText":"Süre 20 saniye","shortText":""},"date":"23 ağu 2025","modifyTime":1755936231000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LuFh5odBewI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LuFh5odBewI","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":20},"parentClipId":"2094659584749941789","href":"/preview/2094659584749941789?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/2094659584749941789?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9978663374244299698":{"videoId":"9978663374244299698","title":"\u0007[Vector\u0007] Calculus Unit \u0007[Normal\u0007] \u0007[Vector\u0007]","cleanTitle":"Vector Calculus Unit Normal Vector","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dA6f__0INyE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dA6f__0INyE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZE9wbEt3a2hickppS1NiV3B5N285dw==","name":"Ross Mcgowan","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ross+Mcgowan","origUrl":"http://www.youtube.com/@RossMcgowanMaths","a11yText":"Ross Mcgowan. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1447,"text":"24:07","a11yText":"Süre 24 dakika 7 saniye","shortText":"24 dk."},"date":"14 kas 2018","modifyTime":1542153600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dA6f__0INyE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dA6f__0INyE","reqid":"1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL","duration":1447},"parentClipId":"9978663374244299698","href":"/preview/9978663374244299698?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","rawHref":"/video/preview/9978663374244299698?parent-reqid=1769552749442372-11150053208297623893-balancer-l7leveler-kubr-yp-vla-257-BAL&text=Non-Normal+Vectors","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"1500532082976238937257","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Non-Normal Vectors","queryUriEscaped":"Non-Normal%20Vectors","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}