{"pages":{"search":{"query":"OLS","originalQuery":"OLS","serpid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","parentReqid":"","serpItems":[{"id":"12510686480205665734-0-0","type":"videoSnippet","props":{"videoId":"12510686480205665734"},"curPage":0},{"id":"266254570793118974-0-1","type":"videoSnippet","props":{"videoId":"266254570793118974"},"curPage":0},{"id":"14761840332794381026-0-2","type":"videoSnippet","props":{"videoId":"14761840332794381026"},"curPage":0},{"id":"video-related-suggest-0-3","type":"relatedSuggest","props":{"title":"Bunlar aranıyor","columns":[[{"text":"Weighted least squares","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Weighted+least+squares&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Residuals in OLS","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Residuals+in+OLS&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"OLS formula","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=OLS+formula&source=video-related-suggest&rq=1&src=int_discovery_recommender"}],[{"text":"Linear regression","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Linear+regression&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"OLS vs GLS","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=OLS+vs+GLS&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Multicollinearity in OLS?","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Multicollinearity+in+OLS%3F&source=video-related-suggest&rq=1&src=int_discovery_recommender"}]]},"curPage":0},{"id":"14785955534566597745-0-4","type":"videoSnippet","props":{"videoId":"14785955534566597745"},"curPage":0},{"id":"R-I-113683-5-0-5","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":5,"grab":"dE9MUwo=","statId":5,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","ui":"desktop","yuid":"4759921551765306782"}}},"isAdult":false,"position":5,"placement":"empty"},"curPage":0},{"id":"1160340720020611526-0-6","type":"videoSnippet","props":{"videoId":"1160340720020611526"},"curPage":0},{"id":"1305661765141334130-0-7","type":"videoSnippet","props":{"videoId":"1305661765141334130"},"curPage":0},{"id":"15097749342097081352-0-8","type":"videoSnippet","props":{"videoId":"15097749342097081352"},"curPage":0},{"id":"7933422078132663566-0-9","type":"videoSnippet","props":{"videoId":"7933422078132663566"},"curPage":0},{"id":"1791708631952454186-0-10","type":"videoSnippet","props":{"videoId":"1791708631952454186"},"curPage":0},{"id":"16047248696185186337-0-11","type":"videoSnippet","props":{"videoId":"16047248696185186337"},"curPage":0},{"id":"R-I-113683-5-0-12","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":12,"grab":"dE9MUwo=","statId":12,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","ui":"desktop","yuid":"4759921551765306782"}}},"isAdult":false,"position":12,"placement":"empty"},"curPage":0},{"id":"4689151162899543818-0-13","type":"videoSnippet","props":{"videoId":"4689151162899543818"},"curPage":0},{"id":"5749352065150681342-0-14","type":"videoSnippet","props":{"videoId":"5749352065150681342"},"curPage":0},{"id":"10039189543869004426-0-15","type":"videoSnippet","props":{"videoId":"10039189543869004426"},"curPage":0},{"id":"17034863165776388745-0-16","type":"videoSnippet","props":{"videoId":"17034863165776388745"},"curPage":0},{"id":"12909171998806844401-0-17","type":"videoSnippet","props":{"videoId":"12909171998806844401"},"curPage":0},{"id":"9246679636020889961-0-18","type":"videoSnippet","props":{"videoId":"9246679636020889961"},"curPage":0},{"id":"6438076360991957265-0-19","type":"videoSnippet","props":{"videoId":"6438076360991957265"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE9MUwo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","ui":"desktop","yuid":"4759921551765306782"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DOLS"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"9889499707775868767244","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1374659,0,91;1419615,0,39;1407484,0,67;1426275,0,35;1410881,0,52;1432976,0,78;1436972,0,20;1437713,0,56;1436156,0,36;1430176,0,72;1427781,0,62;1434897,0,88;1428502,0,29;27383,0,46;1419694,0,90;1433793,0,90;1434396,0,55;1418769,0,5;1425772,0,8;1417819,0,94;1432895,0,25;1419905,0,54;1349071,0,66;1430507,0,40;260563,0,24;1404018,0,43;1432055,0,57;1432735,0,9;60,0,60;1422263,0,82;1433917,0,97;1145208,0,0;1435632,0,10;1434302,0,88;90497,0,12;151171,0,37;1281084,0,67;287509,0,31;86183,0,40;1006026,0,27;681841,0,10"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DOLS","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=OLS","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=OLS","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"OLS: 2 bin video Yandex'te bulundu","description":"\"OLS\" sorgusu için arama sonuçları Yandex'te","shareTitle":"OLS — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"ydd5de0e4259311be7fc0978ab552fc65","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1374659,1419615,1407484,1426275,1410881,1432976,1436972,1437713,1436156,1430176,1427781,1434897,1428502,27383,1419694,1433793,1434396,1418769,1425772,1417819,1432895,1419905,1349071,1430507,260563,1404018,1432055,1432735,60,1422263,1433917,1145208,1435632,1434302,90497,151171,1281084,287509,86183,1006026,681841","queryText":"OLS","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"4759921551765306782","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1437540,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765306978","tz":"America/Louisville","to_iso":"2025-12-09T14:02:58-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1374659,1419615,1407484,1426275,1410881,1432976,1436972,1437713,1436156,1430176,1427781,1434897,1428502,27383,1419694,1433793,1434396,1418769,1425772,1417819,1432895,1419905,1349071,1430507,260563,1404018,1432055,1432735,60,1422263,1433917,1145208,1435632,1434302,90497,151171,1281084,287509,86183,1006026,681841","queryText":"OLS","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"4759921551765306782","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"9889499707775868767244","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":157,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"4759921551765306782","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1729.0__491d2077c35fc53c28577367d9c4833c662b0670","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"12510686480205665734":{"videoId":"12510686480205665734","docid":"34-11-16-ZE7A9E043882CA9D5","description":"Introduction to Ordinary Least Squares Regression. The lecture continues from topics covered in the playlist on Basic Statistics and discusses the difference between correlation and regression...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2108104/f7421f71c4c7edcd87816f407316540a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/h71mUgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSH53lC4ZBow","linkTemplate":"/video/preview/12510686480205665734?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"1. Introduction to OLS","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SH53lC4ZBow\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhYKFDEyNTEwNjg2NDgwMjA1NjY1NzM0WhQxMjUxMDY4NjQ4MDIwNTY2NTczNGqTFxIBMBgAIkUaMQAKKmhoYXJ2ZWlsdXRueXl4amJoaFVDdTdNUFp3Q0tqam9sU1preFF0NmRDURICABIqEMIPDxoPPxOsFIIEJAGABCsqiwEQARp4gfMN-v38BQD1A_4CAAT_AQYH-AD3__8A8QEC_P4BAAD3BPb1-QAAAPoP_f77AAAA-QQBAP__AAAYCgTzAwAAAAT__QICAAAAA_v9Af4BAADx_PwDAwAAAAgEAgoAAAAA9g4BAwEAAAD-DwUAAAAAAPnyAgYAAAAAIAAtU2bdOzgTQAlITlACKoQCEAAa8AFyCwD9mgbH_fLsBgH7NwIBlvUu_wsk4v-e-SABryTrACYEAgHYCfoACBoFAIET7AHsEA__A_hLABz-BwD21h0A6w8sAEIiBgEP9vf-H-UA_az38P8MlBgBDNTk_9IS2_8h2gX95c_f_rj4xQFDDzMA7fzo-vACFvznS_wB2gMMAboU6f4g-w0K8PITAeo5DQQ8CPwCPgf9_-XaEAL-7yEEKxPIACwf8_km_Or4EPkK_hH4-_j95_n3I93i_PLA8QLpAgj5_x_5-84D7_QBECUEKgzqDD34BfrkAOwQ-N_uA_FiDAIWIfj8DRzxItfa3wQgAC3VrAA7OBNACUhhUAIqzwcQABrABz5d3b7KnCM63naRvTuqij0xWcG8IDljvM7cCL1VZYQ6Xw4WvWL1Nz6AMIs8yZI5PNjUeb4FBEm984YFvcZrpj7IqlI86ZctvHXJKL7aVJ09k5CjPPxUJb4x2S68B3PmN8L2g72GvO88p6F8PB0A8T311RW9-Z4xvbpLgj38E8G88joHvS-bSj23Siu91mgivOdazzzL9Au9kfUvPbefZzxFMZS8kAEPvKMysLsMjje9OfWcvLHh6b00XC69rBJ2PPBZzTyscoA7RtJuPEVoBD4rC1A9iQYtu2rUaD3ICZM8WTDWvCZAqD2QqCs9b9GuvGKTqTtxKsi9yGqpvC96Pb0JSvY8h78HvOSG_z05dvU8jG-ePOAsBb6c-VW8Wb3Hu_VSDD2gD2C8_E_EO4R-Fj6Nd5y9q7VNuymY8T2N-wU9ciJRuwwbKj0Fndo74qmsPF9wlzx9M5w7ss6CvKetEDq5jLs9WmKKPGGRujydWZw8dVDwO5z64D1A_QK9DHXYOyGNLzyqR5o8vM9xPCGfxj1izCe9Cs4HPGPsRD17MCk9uhQTvE2mJT1qeW8969gQPBoBkL09hJy9OWItvJeL3bxs6wc9WCB2uwPBLT3svHK9l7hBuLkALz3Zz-I9x3e1OvkMvb0kv6k9mKK_OxDycL1eah-864H_O9BPJ713ooS9ofeEOj0yMTtJWyY9k5PDO_FWTLxMEvC8NmOoO-x9pD1Yy509vs64uuQ1ar0ZZrI8UB44ORyKzLwmQOg8AEfxOqYHqjx5bkY80jQ2ugQ2jLw9LNQ8u2NTtwlxIL1fVxg9B-w2OT9jUL3t7Xu9D8o4t4kPt723Qri9MUK6OMMR5DzI6OW8YkYUuuPHUz2oZTW9y69puRVwD73dggC9lT9suTWVKr3b4rW8ukIPuckfCryR4YK8Yhq-uBOyeD3ISie954KxN6D78jznKme9Ga1nOBcDFT2_fHc9PQcHOURrlb1p46i9guRBN1dCFjyG6oE8RAOyOK0yw73uteA9UPZCOPFYfTx0Fxc9xTDht73IRD0u0Y88BKalNuaKpz2cFQE-eWQjN0N-vL2bRkm8eEvIN8a_b70Exhq9W2mbuMhfOj7clcI8za9LOPcoszt6MRk92XrcOHc9YjwdEUK9qj2ouVxJAb3K3tK9FyIEuT2_wzwv7pA9ypwbOECQgr2mvHE9oH71tm1yGD5hpBe-p_jeuGm1tLvOPFQ9eKURODHQ1b22V9U8hhtruJA42rwV5bI9xKItN7K8q7wdsVG9Dha2NiAAOBNACUhtUAEqcxAAGmBG_QAdyiP7-j4y7QzP5yve7RvdHLcO_9Hl_x0KqQ7h--Pc58MALdML_qMAAAAOF_I-6gARf_LV6Avm_CoBpdIeNXwYKwWT0ewrowwaCAfQ9CXhEjgAQ8-iMDnP2Q0bRBQgAC1R3hU7OBNACUhvUAIqrwYQDBqgBgAAYEEAANhBAABMQgAAIEEAAEBBAADoQQAAWEIAABDBAABAwgAAQMIAAATCAACgwAAAUMIAAERCAABgwgAAqMEAAABCAAC4wQAAcEEAAGDBAAAkQgAAwMEAAKBAAABAQQAAQEEAAIA_AADQwQAAIEIAAABCAABIQgAAkMIAAIDBAABgwgAAIEIAAGjCAABgwgAAikIAAMBBAAAwQQAAoMAAAKBAAAC4QQAAcMEAALhBAABcwgAAksIAAAhCAACgQAAACEIAAFxCAAAkwgAAMMIAAJrCAADAQAAAIMEAAMBBAAC6wgAAgMIAAADBAADoQQAAIEIAAIDBAADowQAAjMIAAIA_AACewgAAAMIAAIjBAABIwgAAIMEAAJRCAADIQQAAiEEAAHhCAABgQQAAgD8AALLCAAAAAAAAMEIAAMhBAAAAAAAAokIAAKDAAAAQQQAACEIAAJ5CAAAEQgAAVMIAAIJCAACAPwAAaEIAAEBCAADgQAAABMIAAKjBAACowgAAAMIAAJDBAAA0QgAAZEIAAOjBAAAAAAAAWEIAAIjBAABAwgAAqEEAAOBAAABgQgAAoMAAAExCAABsQgAAhEIAAAzCAABkQgAAHEIAAFBBAADYQQAA2EEAAMjBAABAwAAAgL8AAJDBAABUQgAApsIAAETCAAAMwgAANMIAAATCAAA4wgAAQMAAAIhBAAAwwQAAAEAAAABAAABgQQAATEIAAJDBAADAQQAA6MEAAHDCAAAAAAAA6MEAAEDBAAB0wgAAcEEAAAAAAADAwQAAIEEAAMBBAAA4QgAA4MEAAEBBAACSQgAAgEEAAKDBAAAAQAAA-MEAAAjCAAAgwgAA-EEAAFjCAABEQgAAoMAAAADAAADAQQAAwMAAAIbCAACmQgAAjkIAAEDAAAA0QgAAmkIAAEDAAABMwgAAoEAAAJBBAACIwgAAMEEAAOjBAADMQgAAFMIAAFjCAABQwgAAoEEAAGhCAAAQQgAAqMEAACzCAAAgQQAAEEEAALhBAADgQAAAAMAAAOjBAAC4wQAAmEEAAIZCAADgwAAAsMEAACRCIAA4E0AJSHVQASqPAhAAGoACAAA0vgAABL4AAKg9AACCPgAAmL0AAIg9AABwPQAAFb8AAMa-AACIPQAAoDwAAOA8AABkvgAADD4AANi9AAAkvgAAmD0AAIA7AAC4PQAAIT8AAH8_AABQPQAAoDwAAMi9AAAcvgAAiD0AAJg9AADoPQAA4DwAAMg9AABEPgAAML0AAGS-AABQPQAA4DwAABA9AACIPQAAnr4AADy-AACIvQAAiL0AABy-AAAsPgAADL4AAKA8AAAwPQAAqD0AAOi9AACCvgAAvr4AAIq-AACYPQAAND4AAAQ-AAAUvgAAoDwAAE0_AACYvQAAHD4AAOC8AACAuwAAhj4AAHA9AADIvSAAOBNACUh8UAEqjwIQARqAAgAA6L0AABC9AABwvQAAN78AAEQ-AABQPQAAJD4AAES-AAC4vQAAVD4AAPg9AABQvQAA6D0AAEy-AAAUPgAAgLsAAEQ-AAAvPwAAFD4AAK4-AAAMvgAAXD4AAGw-AAAwvQAAqL0AAEA8AAAwvQAAiD0AAHC9AABwvQAA6D0AAAQ-AACAuwAAoDwAALg9AAAEvgAAPD4AAFQ-AABkvgAAFL4AAHw-AADYPQAAPL4AAIC7AACYvQAABD4AAH-_AAAUvgAAuD0AABQ-AAB0PgAAUL0AABA9AAAkPgAA4DwAALg9AADgPAAADL4AAJg9AADYvQAAmD0AADA9AAA8vgAAML0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=SH53lC4ZBow","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12510686480205665734"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"266254570793118974":{"videoId":"266254570793118974","docid":"34-4-14-Z3BFA5800F36FB688","description":"Welcome to our YouTube channel! In this video, we delve into the fascinating world of statistics and regression analysis as we explore the derivation of the OLS (Ordinary Least Squares) Estimator...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3429594/6cccb7af6b78d31351aa4747f92c76e5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XNvrrgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1Tgjw7akZZU","linkTemplate":"/video/preview/266254570793118974?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"OLS Estimates in Linear Regression: Matrix Form Derivation","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1Tgjw7akZZU\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhQKEjI2NjI1NDU3MDc5MzExODk3NFoSMjY2MjU0NTcwNzkzMTE4OTc0aq8NEgEwGAAiRRoxAAoqaGh3dWRja2RoaHVrbmd3Y2hoVUNxNXZOaFQta1poUl82U2lWQ3hnVkVREgIAEioQwg8PGg8_E5IOggQkAYAEKyqLARABGniBBgf5BAP9APoEGQf8CPwCEQ36Agn_AAD7Bfn8BwX-APH2CvIIAAAA6wYI_PgAAAAEAfkG8v0BABkBA__6AAAAHwrzBv0AAAD_CPD9_wEAAPz7_fYC_wAAEwoJAf8AAAD7BAT9AAAAAPMDCgMAAAAACf4EBwAAAAAgAC0xgso7OBNACUhOUAIqcxAAGmD9AwAMFP7f5yEb9L4K3_kf5v_tAdv_AOTaAPwN3vAn8PPn9_8AI88b8cgAAAAT9_wVHADoR8_i3gcSCALb1QUSF38MAvr8DQ711hP5AA31B-kKJB4AJu8XHib71jMQHCYgAC1Tmmk7OBNACUhvUAIqrwYQDBqgBgAA0EEAAHDBAACKQgAA8MEAALBBAABgwgAAAEEAAAjCAAAQQQAADMIAAAAAAACIQQAApMIAACDCAAAMQgAAgD8AAEBAAABAQAAAkEEAAFDCAABQwQAAMEIAAATCAAAAQgAAhEIAAMbCAABEwgAAjsIAAExCAABUQgAAYMEAAAAAAADIwQAAqEEAADzCAACowQAAmMEAAGRCAACIwQAAcEEAAGRCAABAwAAAiMEAAMDBAAAIQgAAJMIAAGjCAABQQQAAxEIAANhBAACQwQAAAMIAALBBAAAMQgAADEIAADDBAABIwgAAqEEAAHjCAAC4QQAAPEIAAAjCAAAkwgAAisIAAIBBAACgQQAAGEIAACTCAACgwQAA8MEAADRCAAAAwAAAqMEAAKpCAACYQQAAhsIAABBCAAAAwgAAQMEAAIDBAAAAQAAAAEEAAIBBAADCQgAAoMAAADBCAACQwQAAgEAAAKRCAACgwgAA4MAAAEBCAACAwQAAIMIAAHDCAACowgAAgMAAAOhBAACkQgAAUMEAAMjBAAD0QgAAoMEAAMLCAAB8wgAAwMEAAIC_AABgwQAAiMIAAPhBAAAQQgAAUEEAABBBAAAYwgAAFEIAAADBAAAQwgAAkMEAAPjBAADQwQAACMIAADDCAAAQwQAAmMEAAFhCAAAwQgAAIMEAAILCAABAwAAAOMIAANjBAAAswgAAgL8AAPhBAAAAwQAAMEEAAMBAAACAQAAAqMEAAJDBAADAwAAAmEEAAOBBAADYwQAAIEEAAEBBAABowgAAwEEAAADBAADAwAAAwEAAAIBAAAA0QgAAoMEAAJhBAAB8QgAAIEEAAKrCAACAwQAA8EIAALjBAADQwQAAoMEAAEDAAACAQQAAUEEAAGRCAAC6QgAAGEIAAIhBAADYwQAACEIAAMDBAAAwwQAAGEIAAEBAAABgQQAAsEEAACxCAAAIQgAAqEEAAKDAAADAQAAA2EEAAGBBAACOwgAAosIAABxCAADAwQAAIMEAAFDBAABAwAAAcEEAAABAAABEQgAAgEEAACBBAACAwQAAfMIAABjCIAA4E0AJSHVQASqPAhAAGoACAABkvgAAbL4AADQ-AAB0PgAAoDwAAOI-AACgvAAAK78AAJ6-AAAwvQAA4LwAACw-AABEPgAAdD4AAHS-AAAcvgAAqj4AAAQ-AAA0PgAAKz8AAH8_AACYPQAAiD0AABQ-AACIvQAAQLwAAJY-AABMvgAA6L0AAOg9AAAUPgAA6L0AAJK-AABEvgAAZD4AAFS-AAAQPQAADL4AAI6-AABsvgAANL4AAKC8AAD4PQAAcL0AAAS-AABMPgAAVD4AAJ6-AADYvQAAZL4AAKC8AAAUPgAAoDwAAHQ-AAAkvgAAuL0AAHk_AAAwPQAAfD4AAFw-AAAcPgAAgDsAALi9AAD2viAAOBNACUh8UAEqjwIQARqAAgAAFL4AAJ4-AABAvAAAO78AAEy-AAAEvgAAzj4AADS-AADYPQAAmD0AABA9AACmvgAAgLsAABS-AAAUPgAA4LwAAKg9AAAzPwAA4DwAAMY-AAAcPgAAvr4AAKg9AAD4vQAAEL0AAJg9AACCvgAAmD0AAMg9AABQPQAAmL0AAKg9AAAcvgAALL4AAFA9AACgPAAAiD0AANi9AACAOwAA2L0AAFw-AACoPQAAoDwAABA9AAAQvQAAsj4AAH-_AACWvgAAVL4AAHA9AAD4PQAAbD4AAEC8AABcPgAAbL4AAPg9AADYvQAAgLsAANg9AABwvQAAND4AABC9AAAQPQAAyL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=1Tgjw7akZZU","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["266254570793118974"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14761840332794381026":{"videoId":"14761840332794381026","docid":"34-9-16-ZFCE87E4626CF7651","description":"OLS Regression in Stata | Step-by-Step Guide for Data Analysis Welcome to our comprehensive tutorial on Ordinary Least Squares (OLS) Regression in Stata! In this video, we take you through the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3309551/8b091b2bff09017016d3d1df4a5d9369/564x318_1"},"target":"_self","position":"2","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSKqEFwLjfvk","linkTemplate":"/video/preview/14761840332794381026?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"OLS Regression in Stata | Step-by-Step Guide for Data Analysis","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SKqEFwLjfvk\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhYKFDE0NzYxODQwMzMyNzk0MzgxMDI2WhQxNDc2MTg0MDMzMjc5NDM4MTAyNmqvDRIBMBgAIkUaMQAKKmhod3VkY2tkaGh1a25nd2NoaFVDcTV2TmhULWtaaFJfNlNpVkN4Z1ZFURICABIqEMIPDxoPPxPWCoIEJAGABCsqiwEQARp4gfn3BwME-wD-CwgBBQb9ASn-_wvzBQUA6_wBBQoAAADyAP3-_gAAAOkD-wz9AAAAFfAEAfIA_wAV-fPzAwAAABsC_QD3AAAACgfy9f8BAAD15f76AgAAABD-AQkAAAAA-PnuAwEAAAH4Ef0HAAAAABr6-PUAAAAAIAAt_JnHOzgTQAlITlACKnMQABpg-w4AERX_4a4w-drcANzmH_7v5PzY-P_aAwDs98ztBeAD0Ob3_0DhMvC9AAAACQrtPRMA8VkK58MADQYN3cvwEDp_B_oRBgkG0fwIBAbX7CHm1jItAPH6BDwPxwgx9-YMIAAtllNHOzgTQAlIb1ACKq8GEAwaoAYAAMhBAABAwAAAgEIAAKDBAAAQwgAAEMIAANBBAAD4wQAAQMAAAETCAAAAAAAAFEIAAJzCAAAEwgAAkkIAADBBAAAAQQAA0MEAAKjBAAA0wgAAoEAAAJBBAADIwQAAAAAAAFxCAAC6wgAAYMEAAHzCAADgQQAAbEIAAFDBAAAIQgAAlsIAAHBBAAAwwgAAgD8AABDBAAB4QgAAEEEAABBBAAD4QQAA4EAAADBBAAAgQQAAmEIAADjCAAAkwgAAUMEAAJhCAAAAQAAAEMEAAGDCAAAAQAAAsEEAACxCAACoQQAAZMIAAGBBAABgwgAAEEEAAJBBAAC4QQAAEMEAAGjCAAAwQQAAFEIAAJBCAACAwAAAIEEAAIDBAAAAQgAAsMEAACDBAACSQgAAiMEAAATCAABAQAAAgD8AAOBAAAB8wgAAkMEAAMBAAAAAQAAAzkIAAMDBAACYQgAATMIAAKBBAACMQgAAAMIAAAhCAAAkQgAA-EEAALjBAACAwgAArsIAADDBAADAQQAAYEIAAEDBAAAAQAAAvEIAAEDBAAD8wgAAFMIAADBBAAAgwQAAuMEAAGjCAAAQQgAAEMEAAIjBAAAAwAAAfMIAAJRCAACQwQAAMMEAACDCAABAwAAAgEEAAIjBAAAkwgAAIEEAAKDBAACeQgAAPEIAAOBBAADKwgAAQEAAACjCAAAEwgAAAMIAAIhBAADYQQAAUMEAACDBAADIwQAAAAAAAMjBAADAwAAAwMAAADhCAABsQgAAAEEAAFBBAABAQgAAsMEAACBBAABgwQAAgEEAAODAAAD4QQAA-EEAAPjBAABwQgAAREIAAMBAAACmwgAAAEIAAMRCAAAswgAAQMAAAMjBAACAQAAAEEIAALDBAACwQgAAREIAAABCAAAAQgAAKMIAAHBBAAAMwgAAYMEAACRCAAAQQQAAAEIAAIBAAADoQQAAqEEAAFTCAAAAQQAA-EEAAGBBAAAAAAAAmsIAAMbCAABgQgAAoEAAAEDCAACgwAAAoEAAAIA_AAAYQgAAkEEAAIjBAACAwQAAYEEAAPjBAACGwiAAOBNACUh1UAEqjwIQABqAAgAAuL0AAHy-AAAMPgAA4DwAAEC8AAAkPgAAmD0AAGO_AAAMvgAA4DwAALi9AAAEPgAAiL0AALg9AACWvgAAJL4AAGQ-AAAUPgAAND4AADM_AAB_PwAA4LwAAKC8AAAcPgAAJL4AAL4-AAAUPgAA4LwAAMi9AACAuwAAND4AAI6-AACAuwAAML0AAKK-AAAcPgAAmL0AAMi9AABMvgAAgr4AADw-AABQvQAAQDwAAPi9AADgvAAAMD0AAKo-AAC6vgAAcL0AAJK-AADoPQAAoj4AAKI-AACgvAAAur4AAHC9AABVPwAAcD0AAEA8AACmPgAAcD0AAIg9AACAuwAAyL0gADgTQAlIfFABKo8CEAEagAIAACy-AAAMPgAALD4AAFe_AAAcvgAA2D0AAHw-AAD4PQAAEL0AAI4-AADgvAAA2L0AAI6-AAA0vgAAMD0AAKg9AACGPgAANz8AADQ-AAC-PgAAuD0AAIg9AADgPAAAoLwAAIK-AACqPgAAbL4AAJg9AABAvAAAuD0AAKi9AACAuwAA2D0AAOK-AABAPAAAZD4AAFA9AACmvgAABL4AAJi9AAD4vQAAVD4AAOC8AABAPAAAoDwAAKo-AAB_vwAAJL4AALi9AABwPQAA4LwAAI4-AABwPQAAtj4AABA9AACIPQAAQDwAAGS-AAA0PgAAHL4AAAw-AAAwvQAAVD4AAAw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=SKqEFwLjfvk","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14761840332794381026"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14785955534566597745":{"videoId":"14785955534566597745","docid":"34-3-11-Z2568E7C8E01282BC","description":"Ordinary Least Square (OLS) is a method for fitting regression lines. In this video, we explain the OLS method with an example of a two-variable linear regression model.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1006685/e06687baae18f4c20da32f81e2258391/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/quruRwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"4","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTz9F2XqmqG0","linkTemplate":"/video/preview/14785955534566597745?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"OLS Estimator or Ordinary Least Square Method for Regression Analysis","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Tz9F2XqmqG0\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhYKFDE0Nzg1OTU1NTM0NTY2NTk3NzQ1WhQxNDc4NTk1NTUzNDU2NjU5Nzc0NWqIFxIBMBgAIkUaMQAKKmhoaGJpdGpncHhuZHFrcmNoaFVDSHJ2ZWNMalMyYndXTDdBXzlLQ2RpdxICABIqEMIPDxoPPxPJBYIEJAGABCsqiwEQARp4ge4F_AUB_wD5CA78-wT_AQ8N8gT1AAAA8RAF-QQBAAD4-vX3CwAAAPoQ8P8DAAAAAfYBBfX9AQAZ_PkAAwAAACgA_Qb7AAAAAgz3Bv4BAAD1_P7tAQAAAAv1AQcAAAAA9wsH-vv_AAD0DQYGAAAAAAkCBe4AAAAAIAAtaizPOzgTQAlITlACKoQCEAAa8AF__SIC5A7NAuXm6ADPO-0Bih8K_wgb6f-x6_4Ayi_fAPcL_ADP-vL_Iv8QANMo_v8i-f0AA88T_x3oIQAk9hcA4fUbASgGIwJQBhoABPfyANYpAv71EgoA_s7iAPUp6f8HAgz-C-ngAP_o0QAt2SIBAvkIBTLu9v_m4RH96hIOAvj5zf4FB_cA7e3_Ac7_GwEtBv0C-yUI_Ojm-AUg8wH---EDCBkY5f4l_fUG-ggR-9fw-Pn3_AH6GA8JDuoB8Qb-2hL32ukR-AUO_wgV5hr73fsDBRn2AvkK7gr7FeP7-90CAwjQEAMBwAb4CPHhBQEgAC0sVSk7OBNACUhhUAIqzwcQABrAB_Et5L4zxTc99UccvJqCm72ptRe8AwVevSMT8L3XLSc99_1AvLFu_D23T7093ATpvDRNKL5ZLsA79AmPPMVVhT5UMG-9m38qvJ5ihb6Run09LHOEvPWha76E0wc9dDXDu2yw8DwKa6E7DtmjulRTAj7cSzq9dswQvFuvLj03Wuk7-OddvVY_wLwX-EW9O3mJu_7VQz1gPnm9fNa1PBhaHT5qB3G7tIUQPAohEDybDzm9dW-oun3PqL322gc89EAYvIJCyD3aE-48ItjdPEjLFz3sB4Y8d_N5vN8JDL3PKVA5to4evN_8xj3sG_M8h1k-vdjCBz1Ex5m98juyvDJ9qr33iYg9cXxlu91gOD4pplw94xs-OiSoy72iST28tCoYvQO6yjxUYFe9GXdePK9nfj3BQhw8QnkdPP6Hjz2PyxM9rongPJAkELwQ36M9pmIDPf0fdj0i-EQ9y_J1vFOpvjzBq4a77EOHuwPfvr0s3wk95_ITO6QsjT2dHBW8eWyRO2rEBz2CEHo9_4ELu2BnhD35Eb-9PWsSPMHSD70o0wi9NZ9OvCKwmD0WxnE8I7t3vBIiLz3k_j69OnmRu0E8XL3CGsK8U08PPEHYCT1CWKK95D8iuph8fb0exmQ93VACvL9rp7s6w7k81jV_vHnzSj1cLQU8s5ouPJk20ry8Ws69GJwvOp6JHz1mycI97-beOIsQmD0Rn8U8_kzyuXAWZT3h4x09ErLBugTKJr29d227TeaKOrjI_Ty25Ec9hu-zut65pj07aBu92hnHOeRE4LwAWow7dnaQuO3liLzMebY9v_E6uUSAGL3V3vG8gBoouas9kb0aUhW-MFEKOrhD4DuKjDO8TSQ8uVrdhT1-igO9zFJ3uWN0ar3gGWi9WW_9tz9UWr2yRj09kNyDuQyEsz2PLwY9SHXmuMDyuzxKOxy8a2TOOEph3rtst3i9U2PDOeoeHr3IF449OclHOLBvq7vFPwU7ULBHuRQEDz0QXQA-jcNxuExKprzOZTQ8Y6OeuNyUHD1OopQ9usCHN-XiubxxaJu95a0INk_RrD3DjQo9qdyJuMJLtb2NTQI8DbpPNv4bqrx9ezK9qD7PN4oi5D3eVc-8m3ZUN6nRFT2z_0u85d9Rty-mGT54O8w8_OYbuaqex716nY69kk3VNw2fujvPXFG9oUWutlCLYb2rijo8FJhrt72vBT2lSQm-rZ6FuKAXDj0XJb09KH8AOR44gr0z8549nOfyuLKrj718uvo8c5Q0N7hLkbx-7yW8aZOSNyAAOBNACUhtUAEqcxAAGmBN-gASH0He1QAp3ebMAQP2-xnVIM3o_9rm_-kB-voj2eCx8fUAKdo726UAAAA1ArUL8gAUf9fp5VDo4B6qt8wr9H8MCims3gcL3_DuXd3_3ecCLVYAF_imNlYE6Bz0NDAgAC14WxY7OBNACUhvUAIqrwYQDBqgBgAAuEEAAJjBAACQQQAAAEIAAOBAAABwQQAAlEIAAOBBAAAgwgAA4EAAAMDBAACoQQAAkEEAAFDBAACAwAAAgEEAAOBBAAAwwQAAAEAAABjCAACowQAA8MEAAFjCAABQQQAALMIAALhBAAAswgAAEMIAADBCAACIQQAASMIAAABCAAAwwgAAgEEAAETCAADAQQAAMEIAALJCAACYQQAAGMIAALjBAAAIwgAAwEEAAAAAAADwQQAAAMEAAAAAAADAwAAAgMEAAKBBAAAQwQAAJMIAAGjCAAAQwQAAIEEAACBCAAB0wgAA4MEAAADCAABcQgAAcEIAAGDBAAAIwgAA1sIAAFBBAACmwgAASMIAAHDCAABAQAAAMMIAACBBAAAgwQAAssIAACBBAAC6wgAAEEIAAKBBAADYQQAA4EEAABRCAACgwQAAwkIAAKDBAACIQQAAmEIAAKLCAABMQgAAYMEAAEBAAACgwAAAAMIAAJhBAACAwQAAUMEAAMBAAACWwgAAQMEAAFDCAABAQgAAHEIAABTCAACQwQAAKEIAAEBCAAA0wgAAuEEAAFDCAACgQQAA2EEAAJhCAAA0QgAAEEIAAKzCAADYQQAA8EEAAARCAACYwQAAkEEAAIjBAAAIwgAAYEEAAAjCAADQwQAAuMEAALjBAACgwQAAAEIAAKDBAADAQAAAAEEAABDBAACSwgAAoMEAAHBBAAAUQgAAgMAAADhCAAC4wQAAiMIAAMjBAACAPwAAAMIAAPBBAADgwAAAmEEAADBCAACwQQAA4MEAAGhCAAAAQQAAPMIAAIJCAAAQQQAAcEEAAFBCAAAwQgAAiMIAAJhBAACQwQAAYEIAAIA_AAB0QgAAUMIAAJrCAABYwgAAgEEAAEzCAACiQgAAHEIAAADBAABgwgAAIEIAAKBAAAAowgAAQMIAADzCAAAQQQAAuMEAADTCAAAQQQAAyMEAABjCAAAkwgAAXMIAAIhCAABYQgAAkMEAALDBAACoQQAAaMIAANhBAADAQAAAAMAAAIDBAAAYQgAA0EIAAJBCAAAwwQAA0EEAALBBIAA4E0AJSHVQASqPAhAAGoACAACmvgAAZL4AABQ-AADIPQAAML0AAI4-AACYPQAAC78AAI6-AABAPAAAiL0AAK4-AABwPQAAcD0AAFy-AAAcvgAAdD4AAIg9AAAkPgAAHT8AAH8_AACKvgAADD4AAAw-AABsvgAAuL0AANg9AAC4PQAA-L0AADw-AAAMPgAARL4AAES-AAAwPQAAJD4AAAQ-AAA8PgAA2L0AAIK-AADgPAAAUD0AAMi9AAAcPgAAgLsAANi9AAAsPgAAhj4AADy-AACAuwAAgr4AAPi9AADIPQAAnj4AAEQ-AACivgAAgLsAADU_AADgvAAA4DwAAKg9AAA0vgAAED0AAKC8AAB0viAAOBNACUh8UAEqjwIQARqAAgAAkr4AAIo-AAAcPgAALb8AAHy-AADgPAAA3j4AADw-AAAcPgAADL4AAJi9AACavgAABD4AAIK-AADgPAAAfD4AAJg9AABTPwAA4DwAADw-AAAEPgAABL4AABA9AABMvgAAVL4AADw-AAD2vgAAFD4AAFy-AACivgAAyL0AAIY-AAAEvgAAmr4AABQ-AACgvAAA_j4AAIi9AAA8vgAA4r4AAKA8AADYvQAAkr4AABS-AACGPgAAhj4AAH-_AAD2vgAAVL4AAFS-AAD2PgAAoj4AAHC9AACOPgAAUL0AADQ-AAAsvgAAZL4AAOI-AAAEPgAAoj4AAMK-AABUvgAAuL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Tz9F2XqmqG0","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":974,"cheight":720,"cratio":1.35277,"dups":["14785955534566597745"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1160340720020611526":{"videoId":"1160340720020611526","docid":"34-6-2-Z77F07E2F17E8ABBD","description":"In this video we explore salary data from the carData package in R in order to build a more informed linear regression model. This is the first part of a multi part mini series for this example.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2038455/c4c58db3ecc924b9d3a36fbd5c6db682/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/DD-DDgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmILaUnSe_FA","linkTemplate":"/video/preview/1160340720020611526?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"OLS Regression Example - Part 1","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mILaUnSe_FA\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhUKEzExNjAzNDA3MjAwMjA2MTE1MjZaEzExNjAzNDA3MjAwMjA2MTE1MjZqtQ8SATAYACJEGjAACiloaG5oemx0b3Rhbnp0enVoaFVDRFdrUVRjQ05wNjljN0JuY1VzWUw4ZxICABEqEMIPDxoPPxOMDoIEJAGABCsqiwEQARp4gf7-AQj7BQD5BwsG-Qb9AgsA-_v3AAAA9v8JAAYC_wD0AP7-_wAAAAIADv_7AAAA_PwE-_z-AAAM-wb8BAAAAA8G_gj3AAAABQH9Bv8BAAD68gD4AgAAAAgEAgoAAAAA_Qb4-gIAAAD4Cgj9AAAAAAf4AP4AAAAAIAAteaDiOzgTQAlITlACKoQCEAAa8AF8Gtz-Adb3A6IK6v_NEOQBgRgP_y8Y3wDD9f4A5-PVAc_rCgDs0yL_tvbd_oET7AH798T-Mhoc_xrqEv4P-Sf_BAPuATfRLgND-tYC_h_t_hcyE_8H4jn_R-Tp_Q8AAPsP3BP-0fTfAKnf4gPsMkACIfneARgPKgTsJh754xgSA-naAgHb-AoGrvgEAx0NHfzwJuz-Iyjt_AAj8f8oE_gMAe0QAhQFBgIiMRsF7_H29br6AwH0FvAIBAgz_gD_IQTtKBoF8NwB7OcG-vArBPH4_EAH-_zc8QsMxwIEviAEAusR-vi7QQz36w0G8REY8-4gAC0BsAA7OBNACUhhUAIqcxAAGmARBAA1ExXVAi036-nGAfkI5v_sB78K__bgAOv06BAl6e-u_fT_DcMk6LIAAAA2DQcSFQAjZ_L81Ob1Bzu80OcVF3_eHxzN3BEPxLYnCMPfzP0U9DEAKu3JAirl7z0GG_4gAC1GvjI7OBNACUhvUAIqrwYQDBqgBgAAkMEAAIpCAADQQQAAIMEAAADAAAAEQgAAaEIAAOBBAABwwgAAMMEAAIC_AACWwgAAUMEAAABBAAD4QQAAwMEAAATCAAAwwgAAMMIAAIjBAAAAQgAAYMIAAJhBAAAAAAAACEIAAMjBAACwwQAANEIAAJxCAAAcwgAAoMAAAAhCAAAAwwAAlEIAAARCAAAkwgAAkEEAABxCAAAkQgAAzEIAADBBAABQwQAAsEEAAEDAAABAwAAAWMIAAChCAADAwAAA8EEAABDCAACMwgAAaMIAADBBAADwwQAAOEIAAARCAAC-wgAAqMEAANDBAABAQgAA4EAAADTCAACIwQAAwMIAAFBBAABowgAAQEEAAKDAAABoQgAAYMEAAABAAABAQAAA6MEAADxCAAAAAAAAsEEAAIDBAABQQQAALEIAAATCAABQwgAACEIAAADBAACAPwAAMMEAAIjBAAAwQQAAcEIAADhCAAAUQgAA4MAAAGhCAACAwAAAisIAANhBAACIwQAANMIAAI7CAAAgQQAAgEAAAPjBAAA0QgAA2EEAADRCAABAwQAAQEAAAHDBAAAQwQAAQEEAAGBBAACAPwAAoMEAACDBAAAsQgAAAEIAAFBCAAAAwQAAiMEAACBBAADIQQAAwEAAALDCAAAAQQAAdMIAACDBAAC4QQAAwEAAAIBBAABwwQAAoMEAANjBAACAwQAAAEIAAIC_AAC4wQAAJEIAAHBBAACIQQAA-MEAAATCAADAQQAA4EEAABhCAADgQAAAKEIAAAhCAABQwgAAOEIAAIA_AAC4QQAAAEEAAEDAAAAwQQAAPMIAALhBAACuwgAAMMEAALDBAADAwAAAMEIAAIZCAABYQgAAYMIAAFDBAABAwgAAgMIAAIBBAAAUQgAAaEIAAFDBAADAwAAApEIAAIDBAADgwAAAFEIAAExCAACMQgAAoMEAAADCAADiQgAAkMIAAEDAAAAwwQAAXMIAAIA_AABgwQAAhsIAAJZCAACcQgAAQMIAAHBCAAAAwQAABMIAABxCAACQwQAAIEEAAKLCAAAkQgAAUMIAAIBAIAA4E0AJSHVQASqPAhAAGoACAAAsvgAA2L0AAMi9AAB0PgAAVL4AABA9AAAcPgAAE78AAGy-AAAsPgAANL4AAFQ-AAD4vQAA2D0AAGS-AAC4vQAAqD0AANg9AACIPQAAOT8AAGE_AADYPQAAUL0AAOA8AAAsvgAALD4AAIC7AABwvQAAfL4AAKC8AADYPQAAiD0AACy-AACYPQAA4DwAABS-AAAUPgAA2L0AAHy-AACWvgAAED0AAFC9AACYPQAADL4AAMi9AABQPQAAiL0AAHy-AAAEvgAATL4AADQ-AAC4PQAAbD4AADw-AACCvgAAUL0AAH8_AABAPAAA6D0AAAw-AADIPQAAFD4AAOC8AAC6viAAOBNACUh8UAEqjwIQARqAAgAAFL4AACw-AACgvAAASb8AAIA7AAAwPQAARD4AACS-AAAQPQAALD4AAHC9AABwvQAAoDwAADS-AAAQvQAAgLsAAMg9AAA1PwAA2D0AAMo-AAD4vQAAPL4AAJo-AAAEvgAAbL4AAEA8AABsvgAAgDsAAMg9AADgPAAAQDwAANg9AACIvQAAJL4AAEA8AADgPAAABD4AAKi9AACgvAAAUD0AACw-AADgvAAAHL4AAHA9AAAUvgAA1j4AAH-_AACavgAA-L0AAJ4-AACuPgAAgLsAANg9AACaPgAAmL0AAJg9AAAQvQAAZL4AAEA8AAAEvgAADD4AAIC7AAAEvgAAuL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=mILaUnSe_FA","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1160340720020611526"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1305661765141334130":{"videoId":"1305661765141334130","docid":"34-2-6-Z2EBA94631FFDE2F5","description":"We conclude our discussion of linear regression modeling using salary data from the carData package in R. Model coefficient interpretations are briefly motivated and model predictions are compared...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3659831/c7c70cce29a4d7e6942b9d76cbedbf85/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/tmlbDgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEAbf-GS90jo","linkTemplate":"/video/preview/1305661765141334130?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"OLS Regression Example - Part 5","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=EAbf-GS90jo\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhUKEzEzMDU2NjE3NjUxNDEzMzQxMzBaEzEzMDU2NjE3NjUxNDEzMzQxMzBqtQ8SATAYACJEGjAACiloaG5oemx0b3Rhbnp0enVoaFVDRFdrUVRjQ05wNjljN0JuY1VzWUw4ZxICABEqEMIPDxoPPxOjDYIEJAGABCsqiwEQARp4gfn3_AP7BQD5BgsG-Qb9AhMJ_P32AgIA7vwG-wYAAAD0AP7-_wAAAAIADv_7AAAA_PwE-_z-AAAM-wb8BAAAAA8G_gj3AAAABQH9Bv8BAAD2_P7vAQAAAAX7_xMAAAAA_AP4Av8AAAD3FAb6AAAAAAPy_PwAAAAAIAAtznfjOzgTQAlITlACKoQCEAAa8AFqHin-3RLAAsMGAADpHOYAgfoR_ywX4QDJ4ekB6v7WAN_a6QDnDA8A4gjfAYsv_wHS5-8AHfr_ADECA_8O-iX_BCwJATXvLABh_Nb__t0pAMs0Av4y8hEAAOX_ASLl3f8ZuyX_8Pvf-c7TwAcR_kQBEgv0ASHr8AC5EikC3SP_A_AN5QWm4QsC2vHxAOgLAQQjGuAEJ1DZAfYOCgQRCQ4JAe4PAh4EFfwbEScIzPoICeXv7PUgu__5-iQU90H39gDbFRAB-dEGAgH_9vEZA-AG7AoFDDfxAA70Bev-BeX2-dEWEQblNAsB6yTnDO3lBPUgAC3G_QY7OBNACUhhUAIqcxAAGmAfEAA2GQzeAzYh69S8AQL04xj19s4W_-7U_wL08QYW5fKoAv3_Bcor4rIAAAAnABgGDgAda-7v2fAT-UK-ytkNF3_hMwO06CHsxsATJeLU-N8TAC4AJuKmIDTo6DrsJv0gAC0iPi07OBNACUhvUAIqrwYQDBqgBgAA-MEAAIxCAAAAQgAAAEEAAMBBAADwQQAAiEIAAAhCAAB0wgAA-MEAAKBBAAB8wgAASMIAAEBBAACAwQAAGMIAABDCAABkwgAAMMIAACDBAADIQQAARMIAAADCAACAQAAAcEEAAMjBAAD4wQAAgEAAAKJCAAAIwgAAwMEAAKBAAAAAwwAAqkIAAKBAAAA8wgAAGEIAAKBAAACUQgAAuEIAAKBBAAAwwgAA0EEAAIC_AADIwQAAeMIAAGxCAAAAwQAAqEEAALDBAACqwgAACMIAAGBBAABEwgAAKEIAACRCAAC4wgAA-MEAAEDCAABcQgAA6EEAADTCAADgwAAAjMIAAIBBAACMwgAAFEIAADBBAABAQQAAGMIAAFRCAAC4wQAAoMEAANhBAACwQQAA8EEAAIDBAACgwAAAHEIAAIDAAABIwgAA8EEAAODBAABAwAAAcEEAAPhBAAC4QQAA-EEAAIJCAABYQgAAQMAAAJxCAAAgwgAATMIAAPhBAACwwQAACMIAAFDCAACAQQAAgD8AAKjBAABUQgAA6EEAAIRCAAC4wQAAQEEAAETCAACYwQAAUMEAAFhCAACoQQAAgD8AAABAAAD4QQAAcEEAADBCAAAgQQAAwEAAABDBAACYwQAAcEEAAJ7CAADYQQAAosIAAKjBAABAQQAA-EEAACDBAACgwQAAAMEAAODBAADIwQAAIEIAAEBAAACIQQAAIEIAAEBAAACAQQAA2MEAAEDAAADgwAAAoEAAAKBBAACIwQAAAEIAAGBBAAAQwgAABEIAAIC_AADQQQAAKMIAADBBAABAQQAAIMIAAADAAACawgAAAMEAAOjBAAAEwgAAqEEAAARCAABgQgAA4MEAAIC_AACAvwAAVMIAAADAAADwQQAAQEIAAEBAAABAQQAAzEIAAIA_AADgwAAAwMAAADxCAADKQgAAqMEAABzCAADmQgAAlMIAALDBAAAswgAAZMIAAJhBAAAwwQAAnMIAABhCAACKQgAAgL8AAERCAAAAQAAAGMIAAFBBAAAUwgAAgD8AADDCAACwQQAADMIAADBBIAA4E0AJSHVQASqPAhAAGoACAACavgAA2L0AABy-AAC2PgAARL4AABQ-AABkPgAAG78AAIq-AADgPAAAPL4AAEw-AACAuwAAUD0AAHS-AAAcvgAAED0AANg9AACYPQAAQT8AAF8_AADIPQAAyL0AABA9AAAkvgAAij4AAIA7AABsvgAAZL4AADC9AAAsPgAA6D0AADS-AABAPAAAFD4AANi9AADYPQAAUL0AAIa-AACKvgAAgLsAAOA8AABAvAAA-L0AADS-AADIPQAAmD0AAGS-AAA8vgAAXL4AAKg9AADgvAAAXD4AACQ-AAAMvgAA4LwAAH8_AAC4PQAAND4AAJg9AACgvAAA4DwAANi9AACOviAAOBNACUh8UAEqjwIQARqAAgAA2L0AADQ-AACYPQAAV78AAEC8AADgPAAAVD4AAEy-AACIPQAAND4AAEA8AABAvAAAcD0AACy-AAAkvgAAcD0AAAw-AABNPwAAyD0AAL4-AACYvQAAdL4AAK4-AAAsvgAAlr4AABC9AACGvgAAUD0AALg9AABwPQAAiD0AAOg9AACIvQAAbL4AAKA8AADYPQAAQLwAACy-AACgPAAAcD0AAI4-AACovQAAir4AAEC8AAAcvgAA5j4AAH-_AAC-vgAAyL0AAIo-AADePgAAyD0AAOg9AACePgAABL4AAKg9AAC4vQAAHL4AAEC8AAB8vgAAuD0AALi9AAAcvgAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=EAbf-GS90jo","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1305661765141334130"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15097749342097081352":{"videoId":"15097749342097081352","docid":"34-1-14-Z1805688D12C8FC23","description":"`CausalInference` is a Python package for causal analysis. It has different functionalities such as propensity score trimming, covariates matching, ordinary least squares (OLS) treatment ef...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4034273/4a4b318bd9f62a6c9fdbd03f8afea516/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gBLCEgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9UFk4ArRYjs","linkTemplate":"/video/preview/15097749342097081352?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"OLS Treatment Effects Estimation Using Python Package Causal Inference","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9UFk4ArRYjs\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhYKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyWhQxNTA5Nzc0OTM0MjA5NzA4MTM1MmqHFxIBMBgAIkQaMAAKKWhoeWtjdHd4cGl3Z3d1dmhoVUNtYkE3WEI2V2I3Ykx3Snc5QVJQY1lnEgIAESoQwg8PGg8_E58CggQkAYAEKyqLARABGniBBAj_BQAAAAP-Cvr9A_8BEfkN9fcAAADyDwX5BAEAAPv9Bu79AAAAEP_8EAYAAAD2_vsI9P8BABL1-QgCAAAAHgn0Bf0AAAAK_P7_9vr9BAT6AwED_wAAHQf5-v8AAAD7AQoA-v8AAPb8_AkAAAAACf4EBgAAAAAgAC0AB9U7OBNACUhOUAIqhAIQABrwAX_f-gGmHBb9Hvb-AR8y4gCG4v7_VBrhAK7q_gDPFP0BAA3iAMTv_wD4HBUA8AoYANnr8QAa5f0AHeP__yMGDwAr_PoARf0HACz1-gAICAUA9ir8_hLnDf856e7-7QX8ATDZGP7HANwA8gTiAQnYOQI2EBgDDPz0AfAKGf0CIP4EyBDu_-ztDQfr-vv64ev4__jx5PwQLvH__fv7BwEMBAoG8vz5-vT4CwPuCwT5GQMF1hT5-SXvDvYDCBkCFz3xA-ru8APm8_v1EPH9_xHR_PUl7xQC-9cDBeAR7v345A_8_g8K9vcZCPzmGQ4I8OoD9yAALX-CITs4E0AJSGFQAirPBxAAGsAH2EX5viisP7uCnOY8e8KNPZav7DuUh4W89fRxPW4PZz2zid08zNJOPejoJzyT5X-8_Iy7vlpTD7zG6sW7Z2KaPk46m7wa71g8K2Ccvbse1rxOXkS9FAdQvpN2fjyKmh69OC_OPM5twrwxb588IxKVPfy9GT3x1IY7ZgOvvWj8DD2GuTO9DUHEPB5wGL3f_ly8yYrGPUHd2zx2PyS6j0T5PF-mnL2iuAC8u42nvfKkez0jZTC8zBtUu_YlG7z1GQa9cNBePbMl67yGYMs85IM_u3wDPb0rDow8K_vuvJnZIj1jrB88sBsGvhP9kDzD76a82MIHPUTHmb3yO7K8xipvvLedMT3H49g87IbtPYz3gz1yW5E7GW8QPfZVgz1GroA8OR69vHjvqDzyYvy8HzxkPT7jRz3QAdE71JnbvazmlDwcMyC8bV4LPYlNej0QYiE7v1paPHkXyT3DUAG8-8_1OrIFzjyy1Lo86O4EPRWtDD46DYs7C_vJO5cubbt6msC7RAhePXlycrwgJDC8PdgcvBsGPbxFYTw88wQiPchrgTkiP5G8POOWPCe-mjyYyrI6dnsfva-BiDu7mVG8kS4yO6KU9Ty3_uk7nDQNPsfegzo4KdQ6QXh-vLKcBLs4tNA7aMjdPAw2uztByS68XaI_vZI8fD1YMDu8hD8JOxWNhb1ofBk7Xj04PepRgr2Pr7k7YtkMPTXiU70ePGC5ElDBPcF4Qb1h0wq6rzLkO0Zb1bxxwT66PkLtvfx2bT3oz0O53WGTPbuXC76lDmg5n2ZUu2963buVQgO77xkuPKnZQz1pMAI5UW6mPUpsbb3mggY5HF2lvD0ybL39Fcs4_djkvKzCCbzPJWI7Mx9nuyZ4Hr1C6sI5aBaivdZ1g7wDJZM5Hk2KPXW0Ijtj0F659o15vQrxbTx8Ncw3dCEcPJSpjb3zwCc3BPHwPEHtnL21Xhy5sie2vT33OT2GnpI4d36TOs_zTLwpe0e5Ri7TvPYBEj1oC_E4ksyqPCJVBD4FDR83wVifPQsZnj29GSM4sEKQvUwAmb0hZWO4b3mTu3MwNj20xZC3lGA7vBFnzbuaZwo5AooHPJ85oL2zEZ23fOGEPDf8sLpszNQ2-XoIvVQBJ76BKh048aCXOwPM4bz-XOY1qds5veZ_STvBUfA3U5OgPMOWQz0MIEq30OaiPW-LiD3mn9G3BNl8PE9dOb15Yyq4Iv_sPTUpBT7zflu4vPehvZHOpTz_qKK4XtFyvfsptL00TRw41ghzPTvpGDxxpC83IAA4E0AJSG1QASpzEAAaYAgHABIfL9fkCVjyB_YIJrb_LtwatQ__G7j_IS3cywcf25EvBv9K8wcWnQAAACXx4RbTAO5__PDiJuD2957F7UT8cggkJ9PRHOfR9OANyCMLIO8pOgDP3rEYc_-cTw4WIyAALX_METs4E0AJSG9QAiqvBhAMGqAGAACoQQAA4EAAAJhBAACAQAAAYEEAAIhBAABAQQAARMIAACBBAABQwQAAPEIAAATCAACMwgAAMMIAAHxCAABcwgAAXMIAAIA_AACQwgAA8MEAACzCAAAQQQAAqMEAADRCAACwQQAAFEIAAEzCAADIwQAAfEIAAIJCAABgwQAASEIAAL7CAABQwgAAVMIAABhCAAAAwgAAqkIAAFTCAACYQQAAAEIAAADCAAAsQgAAIEIAAGhCAABIwgAAUMIAAIDAAADWQgAAQEIAAIC_AACcQgAAMEEAACzCAADoQQAAEMEAAKLCAADgQAAAcMIAAChCAACoQQAAkEEAABDCAAAgwgAAuEEAAABAAAAAQQAA4MAAAADBAADQwQAAnEIAAHBBAABwwQAACEIAAMjBAADqwgAAGMIAACDBAABQQgAAiEEAAADCAACwwQAAJEIAAIBBAAAAwgAAQEEAAHBCAABUwgAAdEIAAHBBAAAkwgAAgEIAAOBBAADIwgAAgMAAAODBAAAAwQAANEIAAAxCAABIwgAAAMEAADRCAAAQQgAANMIAAOjBAAAAAAAAIMEAAOhBAACIwQAAsEEAAHxCAAAcQgAA2MEAAFzCAACYQQAAcEEAACTCAABowgAAkMEAALjBAAAwwQAA4MAAAFDCAAAgwQAAbEIAAERCAACAwAAAAEEAAGTCAACgwQAAcEEAALDBAABQQQAAgEIAADBBAAAsQgAAoMAAAADBAAAgQQAAlMIAAI7CAABUQgAAuMEAADzCAAC4QQAAQEAAAODAAABgQgAAYEEAALBBAAAgwgAAoMAAAODBAAAQQQAAQMEAAFDBAAAQwQAAOMIAADzCAAAMQgAAsMEAAARCAAAMwgAAgMAAABDBAADAQQAAtkIAAAhCAABMQgAAwMAAAHjCAABwQgAAlMIAAKjBAAAQQQAAQEEAACDCAABYwgAAgEIAAAxCAACAQAAAKMIAABxCAADAwAAAfEIAADDBAABAwAAAVEIAAADBAACAwAAAQMIAAGTCAABwQQAAqEEAACDBAADAQQAAGMIAAOjBAACAwgAAqMEgADgTQAlIdVABKo8CEAAagAIAAFC9AAAcPgAAPD4AACw-AAAsPgAAZD4AAAQ-AABJvwAAsr4AABA9AACSPgAAFD4AAFA9AABUPgAAgLsAAI6-AAAMPgAADD4AACQ-AAANPwAAfz8AAJg9AADgPAAABD4AAFA9AADovQAAED0AAHC9AADgvAAALD4AAAQ-AAAsvgAAqL0AAHw-AACgvAAAij4AAFQ-AACmvgAA7r4AACy-AADyvgAADD4AAFA9AADoPQAAJD4AANi9AAAUPgAAbL4AABA9AADKvgAAqD0AAPg9AACWPgAAfD4AAJa-AABQvQAANz8AAJg9AAA8PgAA-D0AAHw-AACAOwAAyD0AAFA9IAA4E0AJSHxQASqPAhABGoACAAA8vgAAJD4AAFC9AAADvwAAQLwAAFC9AABEPgAAVL4AAOC8AACOPgAAmL0AANi9AAAwvQAA6L0AADQ-AAAQvQAAQLwAADk_AAAwPQAAvj4AAAQ-AABsvgAAED0AAEC8AACgvAAAMD0AALi9AADIPQAA4DwAALg9AABAvAAAuD0AAOi9AABQvQAAHD4AABA9AACiPgAA-D0AAFS-AAAcvgAARD4AAAQ-AACYPQAA4LwAAAw-AAAcPgAAf78AACS-AAAwvQAAcL0AAKg9AABwvQAAgDsAAMg9AADgPAAA-D0AAIC7AAC4vQAAQLwAAGQ-AAAEPgAAmD0AAIA7AAAQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=9UFk4ArRYjs","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15097749342097081352"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7933422078132663566":{"videoId":"7933422078132663566","docid":"34-10-2-Z73EC00AA653F63C7","description":"In this video we estimate a linear regression model using salary data from the carData package in R. We discuss both the econometric model as well as the basic regression results. This is the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3120328/a5356a5fad32933000c7d2c315cc5d58/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/dkF5DgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkSTatg6sivQ","linkTemplate":"/video/preview/7933422078132663566?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"OLS Regression Example - Part 2","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kSTatg6sivQ\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhUKEzc5MzM0MjIwNzgxMzI2NjM1NjZaEzc5MzM0MjIwNzgxMzI2NjM1NjZqgwkSATAYACJEGjAACiloaG5oemx0b3Rhbnp0enVoaFVDRFdrUVRjQ05wNjljN0JuY1VzWUw4ZxICABEqEMIPDxoPPxPkEIIEJAGABCsqiwEQARp4gfv_Af_7BgD5BgsG-Qb9AgYG-AD3__8A9v8JAAYC_wD0AP7-_wAAAAIADv_7AAAA_PwE-_z-AAAM-wb8BAAAAAgC-AD9AAAABQH9Bv8BAAD2_P7vAQAAAA7-AQgAAAAA9Qn6_wIAAAD3FAb6AAAAAAP5_gMAAAAAIAAtxJ_jOzgTQAlITlACKoQCEAAa8AFqHff_7_72AOEj8AD3INsBjvoP_0cK4ADM9v8A0NzrANXXzgDd8gQBsQX9AYEr1wHUEdoAGg8aACPzBP8J5SMAIQHuAC_XKAJADe4A8RLl_gIiK_4f2gICJ-IG_wcM7v4D2AX_8OzV_tPXxwbuJxkBO_sPAxMQD__mFRsA8RkgAewDB_3a6Qv80fby_wTxDQAL_dcAMybq_wAcDQUj-PcLDvoZASXz8gAKPSP_5_ju_tHt9_gM-vAKFSAj_hILHAIGDQYB8uEB7wH_9_MQ5_IG5x8E9hL_Bw7_5AQC2foK-N4NAfLeQwgCAA0W9Q4V9fAgAC0w8xU7OBNACUhhUAIqcxAAGmAiCABGEhDN_jk83NnK9PX34gwM-MoL_-jk_wvi5_su4gCq7fn_HcEO5KoAAABGCQ0MGgAPdfX60fP5-EGx1N8GI3_2LyLI2SoLz8ctDrzN4-EZ5UUAKNu1EDLo7z7xFwMgAC2g9SM7OBNACUhvUAIqjwIQABqAAgAAbL4AAAS-AACIvQAAij4AAGy-AAAMPgAAbD4AACe_AACCvgAAVD4AABC9AABsPgAAqL0AAFw-AABUvgAAfL4AAGQ-AADIPQAALD4AAF0_AAB7PwAAmD0AAFC9AACIPQAABL4AAI4-AAAQvQAABL4AAMi9AABAPAAA2D0AAIC7AACYvQAAyD0AABQ-AADovQAA4DwAADC9AACOvgAAJL4AAIi9AACgPAAAcL0AABy-AAAQvQAAiD0AAMg9AAA0vgAAyL0AACy-AACIPQAAyD0AAJo-AACOPgAAhr4AAKC8AAB_PwAABD4AAOg9AACYPQAAEL0AAHA9AACgvAAARL4gADgTQAlIfFABKo8CEAEagAIAALi9AAAsPgAAML0AAE-_AABQvQAAMD0AAEQ-AAAkvgAAQDwAACQ-AABAvAAAqL0AAKC8AABEvgAAcL0AAOA8AAD4PQAAMT8AAKg9AADGPgAAuL0AADy-AACOPgAAJL4AAIK-AACAOwAAnr4AAEA8AADgPAAAQDwAABA9AAAcPgAAiL0AACS-AACAOwAAMD0AANg9AADIvQAAoLwAAIA7AABMPgAAML0AAIq-AAAwPQAAFL4AAO4-AAB_vwAAsr4AALi9AABsPgAAwj4AAIA7AAAwPQAAoj4AAOi9AADIPQAAUL0AADy-AABwPQAA-L0AAMg9AABwvQAALL4AAIi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=kSTatg6sivQ","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7933422078132663566"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1791708631952454186":{"videoId":"1791708631952454186","docid":"34-10-6-Z067389F265A7E826","description":"Linear models with independently and identically distributed errors, and for errors with heteroscedasticity or autocorrelation. This module allows estimation by ordinary least squares (OLS)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/492095/3ade72461e847a5cffee9326f1be4262/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kh3YvAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dx-5VNCX8s14","linkTemplate":"/video/preview/1791708631952454186?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"OLS with Dummy Variables with statsmodels","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=x-5VNCX8s14\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhUKEzE3OTE3MDg2MzE5NTI0NTQxODZaEzE3OTE3MDg2MzE5NTI0NTQxODZqkxcSATAYACJFGjEACipoaGNld2R4aHpxaXN0Z2tjaGhVQ2sxM19FWGxqTlZPRVFUQWJhSm84ekESAgASKhDCDw8aDz8T1AOCBCQBgAQrKosBEAEaeIH7BPsAAf8A-P79AfkE_wH_Bwn_-P7-APQMBAb8Av8A_QMA-fYBAAD99PUKBwAAAPgO_gfx_wEAEuv7_AIAAAAN-gAAAQAAABP6B_T_AQAAAvUKBvQCAAEC_RAQAAAAAPsY_PkA_wAABQvuCgAAAAAR6Pv-AQAAACAALe3fzjs4E0AJSE5QAiqEAhAAGvABXh78AO3z_ALUDuoAxxHvAIEFC_8pDtUAze_2AM4C6QD0BtYA6e_3AN75-QC7DQkA4_LlABb5EgAS_wUADvMOAAcM-QAp2AwBMArzAPMC9v_8EjUBJgAMAQ3l-QAV_-T_CPsYAfTx4P_i998AB-AuAvrrDAMaBAsGAAEM_fYVB__f__YA8QL_A-H0AwMCCCX_CP7hAB4R4_7rAgQJCP_gAerzEQAEAwwAHAkFCuYL-vjg_vIA9wD2_u4JGwMIBP315AsIC-L3_AAKFAoAH-75AAH-Af8P6PsHAPT1CenlB_ni3AL47CH4_-EiEv4RDgD_IAAtbidIOzgTQAlIYVACKs8HEAAawAdK1Ou-ykBUPCWuozxzHC68g3Z9PfTspLvgoP29LgymOwWRHrx2Ggk-WwA_PaQN0bzScpC-_a5-PVwRDbr9vXQ-klRLvQOx7Dy5vJ69qTD4O9j-BL3wLsy9K2mFvBzOfLxEHRG9JPs2PUmwgjwKgSw-OUf4PCXstryq_4291oOzvdSd57xPCHw7ctJFvd-KRLzJisY9Qd3bPHY_JLr4RGg9vcNtvN7bvjuCXhO9k11EPDsvOjyscOu98NOCPDIFqbsfZxo9hmboO7M8k7pJdCW9CFwSvf5cerv3N509Cis1PWyY_Dss9Ze9DVa3PMpv8rtvU3I9_vhGPV2SGT2t-QG-VKWSPCHR3zv31rY9qvDUOWhXBDuw4tS9dTbJPTyOVTxhScM8HRc8O7ASHjwu5yI-waq6Paq-QLpF1dC7668yu42YWbwTRbg9k0b7vHXMubzaWRS9pi70vLCDtTuTfQa9aWhIPYjRGjzp8NC9bHowPenzkbxgrmU9mq83vJBl5rta2689ZByIvO4X_bw92By8GwY9vEVhPDxcTai8uXJRvW9Ws7xDSIy8B4dNPWIbAbkb1pQ9q-3mPA2Ydrxm-iC9FK_SvcHsljsp9HA9SFw2vEKcoLqx6y29a4q2vF7dSjstutC7kYRYvZ4He7vMN7y9CnmOvAjE7zsI_ty86-OhPA9bfrtOEMA96N8pvcoiWLpThiA91i55uz8h-bpND289T0UlvaooIzjf_-I8MVCjvOOtkDud6pq8kEMOPTRdOrsGmF49fus5vR4lzTmLdis9IJdYPfaoX7j8ffW8HPhnvRhM9DgFWtM7P48xPcjgjzjdKqO8Vz3AvZEGHjmxlnG8fnNavPf_MztyMZa9xR4aPSwgljnO9o09GlAvPccemjnr2oM9lZO1PAmlfTg3_w89GNs6vWxgxLU98Tw9o1guvdwAFLkAVie9WLmhvNqNoTkcObm5UaYsPIHCp7jrpGM8ooyivb9SZDntgyw83mSqPV7pvbjL4Q08mROPvHs1Z7hG0cO8qk4CvUuVYLjiz5u9M1D5vUbKDbgB_gQ9Zl8DvFbUTzjK4QO-ENcePJf9TjdhTP671Ji1vTO0gjYpugS9hS2RvEudB7kpkh--tPSivYdBqDjCpNg9NiomvXu0LbljKdI9lp2pvf8vnLeGvRo9UKYWvXWqWrfNW7U9ihOpPIUvNLhhBnk98zoSvkvnqbgi_-w9NSkFPvN-W7jtlkY6deikPQpu47hvyPW8vbNsPb83NjiFTKg8VH9TvXJCnbYgADgTQAlIbVABKnMQABpgUvgAJgcotwlGHfPswxIR7fDivRLbBf8R7v_XBNwLBuTiofrpACvjE_ahAAAAM9ErFdAAEX_n6vkO0cglptriE0ZbN_dIkSQF1-f-BxPACQEQIShqABLYyBH41vMW7B3mIAAtqVccOzgTQAlIb1ACKq8GEAwaoAYAALBBAAAgwQAAHEIAAMjBAACQQQAASEIAAAhCAACYQQAASMIAANDBAACGQgAAiMIAAMzCAACIwQAAyEEAAHBBAADIQQAAFMIAAMjBAAAYwgAAgMEAABzCAACAQQAAAEEAALjBAABUwgAAjsIAAHDBAAAAAAAAAEIAAJDBAAAQQQAAkMIAAMDAAACqwgAAoEEAAMBAAACKQgAACMIAAAxCAAAQQQAAHEIAACBBAABQQQAAAEAAAHBBAACCwgAA4MEAAOhCAACAQQAACMIAAADBAABQwQAAcMEAACBCAADYwQAAyMIAADDBAAAwwgAAoEEAAABBAABswgAAkMEAABzCAABAwAAAsMEAADTCAADgQAAAwMAAALDBAACaQgAAwkIAABhCAADOQgAAcEEAAIC_AACAvwAAeMIAANDBAACAvwAAoMAAAIDAAAAAQAAAAEIAAAAAAABgQQAAREIAAOBAAABYQgAACMIAANhBAACEQgAAwMEAACTCAADowQAAUMIAABDBAAD4QQAA-EEAAOjBAAB8wgAAGEIAAFxCAAC-wgAAlMIAAMjBAADgwQAAcEIAABDCAAAEQgAAjkIAADTCAAAowgAAPMIAAEDAAAAwQgAAYMEAAEBBAAAIwgAAYEEAAATCAACAwQAAWMIAACDCAACoQQAAAMAAAAAAAAA4wgAAHMIAABTCAAAwQQAAAEIAAADCAACgQQAAeEIAAIC_AADAQAAAfEIAAJDCAABUwgAAQMEAAEBCAABQwQAASMIAAEBCAADQQQAAFMIAAIpCAABgwQAAgD8AAKhBAADIQQAAYEIAADDBAACoQQAAcMEAAEBAAACewgAA0MEAAEhCAABQQQAAAMEAANjBAABgwQAAgMIAAGBBAABgQQAAgkIAAABBAACIQgAAEMIAAOBAAABAwQAAUMEAACDBAACgQQAAYMEAAEDCAABQQQAAyEEAACDBAADYwQAAcMEAACDBAABUQgAA4EAAAFTCAAB4QgAAMEIAANBBAACawgAAoMEAAABBAAAQwQAAQEEAAIRCAADUwgAAqMEAABTCAABUwiAAOBNACUh1UAEqjwIQABqAAgAAoLwAAIi9AADoPQAArj4AABy-AACCPgAAwj4AADW_AAAcvgAAmD0AAHA9AACAuwAABD4AAFQ-AACgPAAAPL4AAGQ-AAAEPgAA6D0AAO4-AAB_PwAAgLsAAOA8AABwPQAA2D0AAJI-AAD4PQAA-L0AAFA9AAAUPgAALD4AADw-AABAvAAALD4AAJY-AABEPgAAgLsAADy-AAA8vgAA6L0AANi9AACYPQAAVD4AAAS-AACgPAAAUD0AAIi9AACYvQAAgr4AACS-AAB8PgAATD4AAKI-AAAQvQAAEL0AAEC8AABVPwAAVL4AAJY-AAC4vQAA-D0AALi9AAD4PQAAmL0gADgTQAlIfFABKo8CEAEagAIAANi9AABcPgAABL4AABu_AADIvQAAyD0AACw-AAAwPQAA-L0AAIY-AACgvAAAgr4AACy-AABkvgAA4DwAAJi9AACgPAAAJz8AAKC8AACSPgAAQDwAAFC9AABQPQAAiL0AABA9AACAOwAAkr4AAOA8AACYPQAAiL0AAIA7AABQPQAAEL0AAHC9AADoPQAARL4AAM4-AADgPAAATL4AADC9AAAUPgAAUD0AAMi9AAAwvQAAoLwAADw-AAB_vwAAUL0AAOC8AABMPgAADD4AAFC9AAAEPgAAyD0AAKg9AACAOwAAoLwAAIi9AABAPAAABD4AAAw-AAAEPgAAgDsAAOA8IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=x-5VNCX8s14","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1791708631952454186"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16047248696185186337":{"videoId":"16047248696185186337","docid":"34-2-5-Z07D16BBC0DB372A3","description":"In week 12, we shift from asking where phenomena occur to why phenomena occur where they do. We do so with regression analysis. Regression models help us understand causal factors behind...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4079802/6537f007f87871e59aa5a20da7eb129e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qKBlIwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"11","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dh1vRniTFvI8","linkTemplate":"/video/preview/16047248696185186337?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"OLS Regression","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=h1vRniTFvI8\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhYKFDE2MDQ3MjQ4Njk2MTg1MTg2MzM3WhQxNjA0NzI0ODY5NjE4NTE4NjMzN2qIFxIBMBgAIkUaMQAKKmhoeHVudGdtY3BxcnJ2a2RoaFVDSl9jQWtBZUNoR1Q1TU1qNnpmVFJVZxICABIqEMIPDxoPPxOcEYIEJAGABCsqiwEQARp4gfj-CAT8BAD5BwsG-Qb9AvQI8QX5_v0A9v8JAAYC_wDu_fwDBP8AAPcECf3_AAAAAvoK__7-AQAV_Qv3BAAAAA38_Ab7AAAACv_7-P8BAADz8_j2AgAAAAf7Bgv_AAAA8gsCAQT6-AT3Cwj9AAAAAPvz-_kAAAAAIAAtk7jeOzgTQAlITlACKoQCEAAa8AF0-egDvwoD_RPw8gDyKe4AgQUL_ykO1QDXAQsAvw7Y__cVBgDa4gAAExEvAN0KBwAE-fMAJO8cABHZEP8e-BQAFgoZACLsAgA6EAwB9fbw_-kd_P8ZAhMAAOUHAAIR7gIK6Qz_4evaAPwJ8v388SIABBMHABfy9QAIBhQBACcHAvQa_fwIAPgH7_v8_PAUEwAU_-v9DRL8_v38_AUFFfwE9QoK_h4B7AIsC_8I9PUDBOwOA_sGAf_8CfX5AAMP_Pzx5Qb5CfQE_OoC_gIhAgcJDOgWAvT1Av8DCvYCEuj7--X6C_TvFgEA9w4FAvz6-_QgAC1uJ0g7OBNACUhhUAIqzwcQABrAB7kcA7-hv6u7mnP4u9AQyT1Qvb88CzDiu8Nkqj16U9E88kQrvQmy1LwFkkY9djs2vQ3jtr4GLm-9azPnO51Ggj5_Fku8vhLIvA4xDr5NBpE8R-hCvGcno77OGbS6pSYeuiZnsj2zMQY70dObPDzprj3o1Lq7E2BmOgGcxbt9_sG7oJJuvRgcKr2-Toq9Bg4LvOojMD7D3hq96R5Au0gDgz1dz8K72LaIvfL4TL1CE3E6OM63u3L-Ab30Eog89gJYvOM1Tz552uu8g13DPL3Uvj0Bz4e8efQWuw-pszyPeAk82FL2O2b3RL3I68G8Ozxfu8jw8zw0AGq9vJ_LOxIuhTuuD0s9NV3wO-yG7T2M94M9cluROyKudzyAZks9u95sPFrXCTwxYIm87prKOwcmdz1cDT88zdIpvEOjgTuGm5I94ZAyPHIT97ssuYo8czLMPBapCz0yItE9nmdHPOtvCb1kGyG4WZCBPFXJhr0CicG8vEYmvA-22D1co2-9sO2IPD6NoDzmCYA7fvSXu0O5o7wJslQ8L4wPPIXeUT3GfOk71F1rOQsSdj3doXY7W4ltu1VPBr0ZShe95rGDO5eL3bxs6wc9WCB2u4KrXD0vTZG8AcNyPNyCRjtHnJQ92wAFPA42ED0AqIK9IjM8vKlVD717FK68vgd5OpWNeL3rroe8DCJOO_UrXT1zET89sJXpuqvJeLzXcwo8uZGuOy3PgzyaGx09m2ZsuypZKbybVFS9bx3SO7jI_Ty25Ec9hu-zuqdJH70yk6i8DBB9u6jDSj1mZ9G8BLf1uCdmvTxp7hc8NMnQuJBt9Dyy6Ee9bevAuVMaOz2u75i9I9r6N6qxSb0_xGu9HsaSuYftnT2PgYa8wNAWuD4fyrx1XAg9pns0ud7db7zq1pY9KN0uOEZXUzgWLlC8FkjQuNI_dzwbQKQ824H7OIV_rLxDmJG6lLRfNroeW7029Uu8v38juNx7QLs-LOm7CHoUuM3yK7zjJpk92s4fuJZ2ajxPR1Y9Tcw-uLiYGr1V4hU93zjBuOXiubxxaJu95a0INm2pYz2oNOI8sUW0uKwJmL1IELY7BKbBNxQPXrwznhK9HJY3t0Fxdj3eNEI9X5yitjChgj24UY694oREuAssWz2m-C68ktCXuGCQdL31XZs8lKQYuIEWHjs8I9s8Jt-QOD5VqrsrqyS9jODmNxT0TT20vae9l5eNt1mScjxGNkE9mJ6_OPCyNb1czM89DEYKuXxOhb1jhEu8wsjotn56Ij1pL2y7pVeeNiAAOBNACUhtUAEqcxAAGmAmBQAKKxL40CUn6Mru6-ciDBEB_tD7APbnAO8K6-MF5QKwGwP_Ge4f9LkAAAA12S0QIwD0ZMjly-zo_SK92fkcIX_-GCe-3xrs69_VGNTb9hwTLRwAHgeqHSncACv0Cu0gAC0xHzs7OBNACUhvUAIqrwYQDBqgBgAAEEEAABBBAAAAAAAAlEIAAJBBAADIwQAAQEIAAMjBAABwwQAAHMIAADRCAACwwQAAcMEAAIDBAAA0QgAAYMEAALjBAAAAAAAA2MEAAIrCAAAEQgAABEIAAOhBAAC4wQAAkMEAACBBAABwQQAAAMEAAHBBAADIwQAAiEEAABzCAADgwQAAgMAAACDCAACIwQAAcMEAAMBCAAAgQQAAwEAAAJhBAADgQAAAPEIAAABAAADoQQAAmEEAAPjBAABAQQAAREIAAEBAAAAgwgAALEIAAFTCAABQwQAA0EEAADRCAACuwgAAREIAAOBBAAAMQgAAXMIAAKDBAAAAwQAAMMIAAAzCAABwwQAA-MEAAIDBAACcQgAAAAAAADDBAADowQAA5sIAAEDBAAAIwgAAwMAAAJzCAAAMQgAAEEEAAMjBAACYwQAAmMEAAGBBAAAwQQAAsEEAAGBCAABEwgAAEEIAABjCAABwQQAAxkIAAJhCAABgwQAAisIAAEDCAAAUwgAALMIAAGBBAACgwQAA6MEAAKrCAACaQgAAyEEAAGDCAAAAAAAAkMEAAKDAAAA8QgAAGMIAAFRCAACgwAAALMIAAIDCAAAAAAAAAEIAAFDBAAAgwgAAwMEAACBCAADIQQAAsEEAAEDAAADAwQAAIMEAAEDAAAAowgAAoEEAAMjBAABAwgAAsMIAALBCAADAQAAAyMEAAIRCAADAQAAAPEIAAIC_AACgwAAAQMEAAKDBAABswgAAdEIAAAAAAAAAAAAAQEIAANjBAAAwQgAAYEEAAAjCAAC6QgAAoMAAAFBCAACAQQAASEIAAHDBAAD4wQAAAMEAAEBAAADAwAAAwMAAAHBBAACKQgAABEIAACDCAACGQgAAsMEAAIBCAACQwQAAmEEAADzCAABgQQAAMEEAAOBBAACgwgAAoEEAAIJCAADgQQAAnEIAAJDBAACqQgAAyMEAAEzCAABAQAAARMIAAPhBAACIwgAAdMIAAABAAADAwAAAcEIAACxCAADAwAAA8MEAAFDBAADgQQAA6EEAALLCAABgwgAAoMEAAATCIAA4E0AJSHVQASqPAhAAGoACAAB0vgAATL4AABC9AABcPgAATL4AAEQ-AACAOwAAHb8AAFC9AAAkPgAABD4AAJI-AABwPQAA2D0AANi9AACYvQAAmj4AANg9AACoPQAAIz8AAHc_AADgPAAAMD0AACw-AABMvgAAqD0AAAS-AADIvQAAJL4AAFA9AAA0PgAAML0AACy-AABQvQAAFD4AANi9AADovQAA4DwAAFS-AABQvQAA2D0AAOi9AAD4PQAANL4AAPi9AACoPQAAcL0AAIq-AAD4vQAATL4AAFC9AADIPQAAzj4AAPg9AACGvgAAgDsAAH8_AAAwPQAAMD0AADA9AACAuwAAMD0AAKi9AACaviAAOBNACUh8UAEqjwIQARqAAgAA-L0AAJg9AADgvAAAYb8AAIg9AACgPAAAbD4AAFS-AACgvAAADD4AABw-AAC4vQAAoLwAAGS-AABQvQAAuD0AACQ-AAAtPwAAyD0AAIo-AACgvAAAoDwAAHQ-AABQvQAAfL4AAGQ-AACivgAAED0AAOg9AACgvAAAqD0AAHA9AADYPQAAir4AALi9AAD4PQAAML0AAPi9AADgPAAA2L0AAKI-AAAQPQAAHL4AAFC9AAAcvgAAvj4AAH-_AACKvgAAcD0AACQ-AACiPgAAoDwAACw-AABcPgAABL4AAMg9AACYvQAAVL4AADA9AACKvgAAUD0AACy-AABMvgAAqD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=h1vRniTFvI8","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16047248696185186337"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4689151162899543818":{"videoId":"4689151162899543818","docid":"34-1-8-Z8E748CEF39F69ABD","description":"Are you a beginner looking to understand Ordinary Least Squares (OLS) regression? This comprehensive tutorial will guide you through the essential theory behind OLS and show you how to implement...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4465713/3d0710f9c21f9ed5c5e5c66644a42ae9/564x318_1"},"target":"_self","position":"13","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcWPbGA1Qupo","linkTemplate":"/video/preview/4689151162899543818?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Beginner's Guide to Ordinary Least Squares (OLS) Regression: Theory & Python Code Explained!","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cWPbGA1Qupo\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhUKEzQ2ODkxNTExNjI4OTk1NDM4MThaEzQ2ODkxNTExNjI4OTk1NDM4MThqrw0SATAYACJFGjEACipoaHpuamhzenZpbXdxZWhiaGhVQ090TFhjcjlvNkc2cGota2dBWWlQV3cSAgASKhDCDw8aDz8TmQSCBCQBgAQrKosBEAEaeIH7Cv4JAv0A-QgO_PsE_wH9AvMH9_38APEQBfkEAQAA-_0H7v0AAAAMC_cK_AAAAAH2AQX1_QEAJ_32_QEAAAAoAP0G-wAAAAcB_f7_AQAAB_js-QL_AAAZ-f4NAAAAAP7zAfr7_v8A9ggBAAAAAAADCA_y_wAAACAALeB1zDs4E0AJSE5QAipzEAAaYAgJACMm5e7jATHa7vH4GgEJOP8N0_T_DPYA1yf5GgrbtqAp7v8S2xjysgAAAEcf4BzyABdo_tTeFv8J-8Hg4g4kef8W5wf_Gvbk9v0tA_TU2Sw-fwAEGQP3KNQMQ_NQJyAALQ49Ljs4E0AJSG9QAiqvBhAMGqAGAACoQQAAIMEAAFxCAACAwQAAXEIAACDCAADIQQAA-MEAAJrCAAAgQQAAiEEAAEBAAACewgAAYMEAAABCAABQwQAAQEAAAMDBAABQwQAA0MEAAGDBAACowQAAwMAAADBCAAA8QgAAcEEAANjBAABIwgAAmEIAAIZCAAA0wgAAGEIAABDCAADgwAAAAMIAAADBAABAQQAAzEIAADDBAAAgQQAAsEEAAPhBAACAQgAAJEIAAEDAAACgwQAAnsIAAEDBAACOQgAAYMIAAGjCAADgQAAAwEEAAABBAADgQQAAoMEAAOjBAAAMQgAAEMEAAKhBAAAUQgAAwMEAAMDAAACmwgAAIMEAAHDBAACgQAAAcMIAAODBAACAwAAAJEIAAHBCAADowQAApkIAAIBAAABQwgAASMIAAJBBAADoQQAADMIAAJjCAAAQwQAAAMEAAEBCAAAgQQAAgEEAABDBAAAgQgAA6EEAACDCAAAAwAAA6EEAAIBAAACIwQAAAEAAAGzCAABAQQAAgEEAAHxCAAAAwgAAyMEAAARCAAAgQgAA8sIAABjCAADgQQAAyEEAABBCAACgQQAAYEIAADBBAADgQQAAwEAAADjCAAAwQgAAJEIAAEBBAAAowgAAyMEAADjCAADIwQAASMIAAHDBAADIwQAAaEIAAGBCAAAkQgAAgsIAAGDBAAB0wgAA2MEAAABAAADoQQAAmEEAACRCAADgwAAAUMEAAOBBAAAQwQAAmsIAADBCAABQQQAAuEEAAIC_AAD4QQAAwMAAACTCAABEQgAAoEAAACTCAAAMQgAAgD8AAMBBAACMwgAA4EEAAFjCAABAQQAAxsIAAEBCAACqQgAAVMIAALBBAACIwgAAAMAAALjBAABowgAAGEIAABRCAAAAAAAAEMIAAOjBAAAUQgAAmMEAABRCAAAwQgAAKEIAAIDBAABYwgAAoEIAAABCAABgQQAAIEEAAEBBAAB4wgAAOEIAAIDBAACqwgAAREIAAIDBAACgwAAAoMIAAFzCAAAsQgAAkEEAAIhBAAAUwgAAQMIAAIZCAABIwgAAkMEgADgTQAlIdVABKo8CEAAagAIAANK-AABMvgAAuD0AAHw-AAA0vgAAdD4AABA9AABTvwAAgr4AADC9AABwvQAAoj4AAIA7AAAcPgAAhr4AAHy-AACWPgAA2D0AAAQ-AAA7PwAAVz8AAES-AAAwPQAAPD4AAIi9AAAwPQAAPD4AABS-AACOPgAAyL0AAFQ-AACSvgAAmL0AAKC8AAAcPgAAUD0AAEA8AABsvgAAmL0AAFC9AACIPQAAUD0AABA9AABUvgAAgDsAAEw-AACOPgAANL4AAOA8AACavgAAuL0AADC9AAAUPgAAuD0AALi9AACAOwAAfz8AAHC9AABQvQAAcD0AAKg9AAAUPgAAgLsAAOi9IAA4E0AJSHxQASqPAhABGoACAADWvgAA2D0AAGw-AABFvwAAUL0AAMi9AACWPgAAFL4AABA9AADYPQAAJL4AAIC7AAC4vQAA6L0AAOg9AADgPAAAcL0AAE0_AACSPgAA5j4AAOA8AABEvgAAgLsAAIi9AABsvgAANL4AABC9AACoPQAAML0AABA9AABAvAAABD4AADA9AABEvgAAnj4AAFA9AACePgAAcL0AAJK-AAA0PgAAEL0AAHA9AADovQAAmD0AAMg9AABwPQAAf78AAFy-AABwPQAAoLwAAJI-AACAuwAAqD0AACQ-AABUPgAA-D0AAIC7AAAcvgAAyD0AAEC8AABMPgAA-D0AAIC7AAAQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=cWPbGA1Qupo","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4689151162899543818"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5749352065150681342":{"videoId":"5749352065150681342","docid":"34-1-4-Z7FF48B1C51BA61AB","description":"This is a walk through of estimating an ordinary least squares regression using Excel. I work through all of the calculations and then check the answers using the Data Analysis tool in Excel.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/999223/59e341ae6594cdcd8a9ebc82d184efc7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/aQDdfgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbNx9aspX-TY","linkTemplate":"/video/preview/5749352065150681342?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"OLS Regression in Excel","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bNx9aspX-TY\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhUKEzU3NDkzNTIwNjUxNTA2ODEzNDJaEzU3NDkzNTIwNjUxNTA2ODEzNDJqwA8SATAYACJEGjAACiloaHh5dmttempxeGtzeXRoaFVDcEI2Vno1WEVhVjVOWXVfMENpeEc5dxICABEqEMIPDxoPPxOiDoIEJAGABCsqiwEQARp4gf7-AQj7BQAA_AUI-Aj9AhME-Ab2AQEA-v4B-QQD_wD4AAX6BwAAAPkEBPgHAAAABPoC_AT9AQAI_f79AwAAABwJ9AX9AAAAAQH5-v8BAAD8-_PzAQAAAA8DBw8AAAAA_Qb4-gIAAAD-Ew8BAAAAAAD6_PkAAAAAIAAteaDiOzgTQAlITlACKoQCEAAa8AF_Gwr_1fWhAbz-EQA56-QB2ewoABwL4ACG1xUDsQUWAKXFEgLkF-YAxR8IAK0eCQDzzQH-ygXy_yrwBf82wCX_OPv4AUwfMQE_IvH_NjgrAP4OKv4O3-IB9qP5ASU13v4btSj_BvUP_v7gwAAS_koBBh4MABbr_AW14fD_z-f5-rvu7v_k8CwC-qsP--YMAQUCCUII_yAY_xPs1Qj95g0H_A7e_yfc8PYT1-gOHyPmB-fECAEg4Qf5-ywgDNkR7APXBtgEJh7rCzsC7QvzuAP0HPH6-RUF_-4-M-MD3PMFBBD1-_PpAQH1GgPc9_Pi7uMgAC3uWvk6OBNACUhhUAIqcxAAGmAcCgAMHAPE9jMM7sDL8_cK5Pb49rcV_wrYAO8o5dETxvDf5hkAGcItua0AAAAV8fMD7gD5ccj74dUh60qw6ccXFX8ELDm7pBoADO3nShHNy_73MicAKhK6NTzkxCPkJhMgAC1vgR87OBNACUhvUAIqrwYQDBqgBgAAKMIAAGRCAAAAQAAADEIAAPDBAABsQgAA0EEAABBBAAAAwgAAoEAAABjCAACAwQAAcEEAAABAAAAAwAAAgMEAAIhBAAAgwQAAwMEAAPhBAAC4QQAAKMIAAIBAAADgQQAAAMIAACDBAABQQQAAfMIAAP5CAADAQAAAmMEAANBBAABYwgAANEIAAGDBAAAAwAAArsIAAHRCAADIQQAAQEEAAITCAACwQQAAqMEAAAjCAACIwgAAhMIAAMBBAAAYwgAAoEEAANhBAACowQAA2MEAAMBAAAAwQQAApkIAABxCAAAEwgAAwMEAAHBCAADAQQAAAMEAAIBCAADSwgAAssIAAIBBAABgwgAAgMAAADDBAAAEwgAAgD8AAKhBAABAQQAANEIAAGzCAAAAQAAAOEIAAOBBAACowQAAQEAAACxCAAAAwQAAtkIAAGTCAAAQwQAA6MEAAIA_AADQQQAA4EEAAIA_AADoQQAAgMEAAFDBAACAwgAAPMIAACBBAACYwQAAmEEAACDBAACkQgAAiEEAAFTCAAAEwgAAKEIAAEBCAADowQAAAEAAACjCAACgQAAAWMIAALBCAACgQgAAQEAAAODBAADGQgAA4MEAAMBAAACYQQAAAMEAANhBAACYwQAAmsIAAHDBAAAgQgAA0MEAAIBAAAA4QgAAmEIAABDBAADQwQAAuMEAAHTCAAAQwQAAQMAAAADCAABAwgAAEMEAAI5CAADAQQAAAEAAAHDBAABwwQAAIMIAAMDBAAAQwgAAWEIAADxCAABYwgAAXEIAAEBCAAB8QgAARMIAANBBAAD4QQAAbMIAAIBBAAD4wQAA6MEAAGzCAAC4QQAAUEEAAIBBAABYQgAAiMEAAGDCAADgwQAA-EEAAIA_AABAQAAAAEAAAEDCAACAPwAAoEEAAJBBAACYwgAAgEAAAOBBAADAwQAAgEEAAODAAAAIQgAANMIAAIhBAACwwQAAEMEAAPjBAAC4wQAAWMIAAGBBAAAUQgAA0MEAANhBAAAgQgAAsMEAAMjBAAAAQAAAgEEAAHzCAABMwgAAIEEAAMDBIAA4E0AJSHVQASqPAhAAGoACAACavgAAfL4AAHA9AAAsPgAA2L0AAMI-AABkPgAAN78AAMi9AAA0PgAAFL4AADw-AADgPAAAEL0AADC9AAAUvgAAMD0AAHA9AAC4PQAAKT8AAGM_AAAwPQAA4DwAAJo-AACKvgAAmD0AABw-AAD4vQAAoDwAAOA8AAD4PQAAcL0AABy-AACAuwAAjj4AAKC8AACIvQAAUD0AAMi9AADovQAAQDwAABC9AAC4PQAARL4AAAy-AACAOwAAML0AAIi9AABEvgAAxr4AAFC9AABQPQAALD4AABQ-AABsvgAA4LwAAH8_AADYPQAAcL0AAKA8AAAkPgAA-D0AAEA8AACIvSAAOBNACUh8UAEqjwIQARqAAgAAcD0AAGQ-AABAvAAAMb8AACy-AACgvAAA6D0AAOi9AAAEPgAAHD4AACy-AABQPQAAoLwAADS-AADoPQAAUD0AAEA8AABDPwAAyD0AAPo-AAC4vQAAnr4AANg9AACYvQAArr4AANg9AAC4vQAAgLsAAMg9AADoPQAAUL0AAKC8AADYPQAAhr4AAOC8AAC-PgAAcL0AABC9AACAOwAAqL0AABw-AABcPgAAgDsAAEC8AACYvQAAqj4AAH-_AADavgAAuL0AAKg9AACoPQAAFD4AAFQ-AAA8PgAA4LwAALg9AACovQAAir4AAIi9AACYvQAAHD4AAFQ-AACAuwAAFL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=bNx9aspX-TY","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5749352065150681342"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10039189543869004426":{"videoId":"10039189543869004426","docid":"34-4-10-Z2097ADB7A4F6A5E8","description":"OLS method of Estimation in economics. My telegram channel- Digvijay Economica My telegram channel link - @Dsrp1 The OLS method aims to minimize the sum of square differences between the observed...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1029070/75fb370edd4d13ebb77fe366b13b2dbb/564x318_1"},"target":"_self","position":"15","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHOBLSQ6HiU8","linkTemplate":"/video/preview/10039189543869004426?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"OLS - Ordinary Least Square Method || OLS Estimation Explained in Hindi","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HOBLSQ6HiU8\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhYKFDEwMDM5MTg5NTQzODY5MDA0NDI2WhQxMDAzOTE4OTU0Mzg2OTAwNDQyNmqvDRIBMBgAIkUaMQAKKmhoamN4Zmt0dmtocXFha2RoaFVDN3dKNjJIX0hTajRUQkpZQnpGdE9uURICABIqEMIPDxoPPxPxFYIEJAGABCsqiwEQARp4gfkP9P4C_gD6_Q4E-gf9AgsA7wH1__8A8RAF-QQBAADw__zrBAAAAP4I8wf8AAAA9vj__vP-AQAVA_sGBAAAACgA_Qb7AAAABwz6_f4BAAD4Afn4A_8AAAkFBAH_AAAAAQoM-f7_AAD9Cv8DAAAAAAUGAfYAAAAAIAAtjvrLOzgTQAlITlACKnMQABpgHwcAFh8M9MEcE9bv9RUB6goaAfXQ6gAB7gAMHO3s8dnlyvMP_yrCJQy9AAAADQ_QJhoA7VnmC9AkDfPxreHkGxt_IA_CCA4A79_syBX_C8n6AjBHAPoD_uVG9Pwj9wISIAAtDbVGOzgTQAlIb1ACKq8GEAwaoAYAAFBBAACAQAAA0kIAAADBAABgQQAAQMAAAAAAAABAwAAAWMIAAODBAABwQQAAikIAAGjCAACQwQAAdEIAAFjCAACgQQAASMIAAPBBAAAAQAAAAMEAAKhBAACAwgAAhEIAAIRCAACcwgAAwMEAACDCAAAAQAAAeEIAAEBBAABUQgAAFMIAAADBAABAQAAAAMAAAGDCAADeQgAAkEEAAIhBAAAoQgAAoEAAADBBAAC4wQAAMEIAAAjCAABMwgAAAMAAAKBCAABYQgAAgL8AAHDBAACgwAAAHEIAAIBBAAAIQgAAkMIAAKhBAACIwQAA2EEAALBBAAAQwQAAbMIAADBBAAA0QgAAwEAAAEhCAAAAwgAAjMIAAGjCAAAoQgAAVEIAAIDAAADUQgAAuMEAAIrCAADgwAAAMEEAAMBAAAAIwgAA8MEAAIBAAAAAwQAAqEIAAABBAAAsQgAAgMEAANDBAADwwQAAKMIAAKDBAADowQAA6MEAAKDBAACIwQAAjMIAAMDBAAAcQgAAuEIAAFTCAADgwAAAUEIAACxCAACYwgAApMIAABBCAADIQQAAAEAAAIjBAACgQAAANEIAACDBAADIwgAABMIAAIZCAAC4QQAAkMEAADjCAACowQAA4MEAAKDAAABQwgAAmEEAAHDCAAAwQQAAYEIAAKBAAAB8wgAAwEEAACzCAADgQAAAyMEAADDBAABoQgAAQMAAAADAAACAQQAAAAAAADjCAACKwgAAAEAAAJjBAACgwAAAoEAAABBCAAAAQQAAAAAAAOBBAACAwQAAgEEAAJDBAAAEQgAAAMEAAKTCAABAQQAAfEIAAADAAABgwgAAoMAAAHBCAADYwQAAFEIAACDBAACAwAAA4EAAAAAAAABUQgAAAEAAAOhBAAAQwQAASMIAAHRCAADQwQAAMMEAAPDBAACgwQAAAMAAACjCAAAUQgAAQEIAAIhBAAAQwQAAwMEAAHBBAAB0QgAAvsIAAMLCAADgQAAAsMEAAGBBAACgwAAAkEEAAEDAAADAwAAAfEIAAPhBAAAowgAADEIAAODBAACAPyAAOBNACUh1UAEqjwIQABqAAgAAqL0AALi9AADoPQAAiD0AAKA8AABsPgAAoDwAACO_AAAkvgAAqD0AAKC8AABQPQAAUL0AAKg9AAAUvgAADL4AANg9AABwPQAAuD0AAOI-AAB_PwAAEL0AAKA8AACgPAAAyL0AABy-AACIPQAAiL0AADw-AAD4PQAAqD0AAOi9AADIvQAAuD0AAIg9AACgPAAAcD0AAIi9AABkvgAAJL4AAAy-AACIvQAAgLsAAHC9AACYvQAAUL0AAJI-AADgvAAAmL0AAHS-AADgPAAAFD4AAEQ-AAAEPgAAhr4AAEC8AAAlPwAAUL0AAOg9AACAOwAAQDwAAAw-AADIPQAAVL4gADgTQAlIfFABKo8CEAEagAIAABC9AAC4PQAAyD0AADW_AAA8vgAAmL0AAJY-AADYPQAAoLwAALg9AADgPAAAgr4AABQ-AACGvgAAiD0AAHA9AAC4PQAALz8AAIA7AAA8PgAAuL0AAKC8AABAvAAAHL4AAHC9AACYPQAAXL4AAEA8AAAsvgAAML0AAOC8AAAcPgAA2L0AADS-AAAwPQAAoLwAAGQ-AAA8PgAAVL4AABy-AACoPQAAyL0AAFy-AACgvAAAcD0AAOA8AAB_vwAAJL4AACy-AAAcvgAAtj4AAMg9AADYPQAAoDwAAKC8AACYPQAAiL0AAFC9AAD4PQAAQDwAAFQ-AAAEvgAAVL4AAJi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=HOBLSQ6HiU8","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10039189543869004426"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17034863165776388745":{"videoId":"17034863165776388745","docid":"34-8-9-Z5EE74D63D47CD584","description":"[my XLS is here https://trtl.bz/2uiivIm] The ordinary least squares (OLS) regression coefficients are determined by the "best fit" line that minimizes the sum of squared residuals (SSR).","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1959594/56b066082849aa537dffd842f31368eb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ZdIxOAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dofis63hmIow","linkTemplate":"/video/preview/17034863165776388745?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Linear regression: OLS coefficients minimize the SSR (FRM T2-15)","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ofis63hmIow\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1WhQxNzAzNDg2MzE2NTc3NjM4ODc0NWqIFxIBMBgAIkUaMQAKKmhoZ2hqZGVjb2Zqa3NtbWNoaFVDUl93c0UtTVNBSG5Vbm9ETlF2Tk1qQRICABIqEMIPDxoPPxOMBoIEJAGABCsqiwEQARp4gfsSCAoC_gDz_AkH9wX-AQ3--gn2__8A5QQMCQf9AQDg9wf2Av4AAPkQ_f77AAAABAH5BfL-AQAgCwD98gD_AP7z_Az9AAAAAAj9AP4BAAD1_P7tAQAAAAkFBAH_AAAA_g4GCgEAAAD0Ef79AQAAAAX9AvkAAAAAIAAtaITMOzgTQAlITlACKoQCEAAa8AF02xEAgfff-S7wAQAxCNwBmwT0ACYU5gC-2gIB0P_tAQkK9wC9C-wA5Pzw_t_8HADdC_D_-AMPADfnGADm1hkAKNATATPNDwFFF97_-_v__9HwLgDvC__83QEgAOvuv_86ACX9DRD4_g7s-ALwKDQCNiAKBArmFf7z9PQB3hwUAOgODgT_xQsDCBTk_uTVAgMQFvn8GPvg__sKGgoG0Bv_7wD4-v7_AgI0IPwC9hIUBfQZ-QAW7-wH_AP-Ahce4gIPFO_7I-D8BQcoCwknCwTyFvseAPfyEvkEA-oQDs768_wa9vTlCfn1BAz-CAv4AfwgAC0X7R87OBNACUhhUAIqzwcQABrABwSqB78pCJ68mKt6PEEuUT4k7Hw7UnjYu-7RGz639c-7_AV2vZgw2j0FIKS8HtZlPPjBgb5_6Pi8RGlPPcZrpj7IqlI86ZctvHi3Ur38p7w7OFeDvEePD75tpJE8aDjKPEaO2zsQd3U97h17O1RTAj7cSzq9dswQvCGVoryGRJC8Tt62vNiofT3XMJO9vBk0Orb9YTzxooo8jP6GPEfaV70iqks8BMA9vS4fSb2BGZ096y0QvLpnrb1BUhq9mdlCPNvvij1jwym97BjTO4ZE0DyrmRC9pJz5vCJKxTwZ47M9CUbvOy3hmrzLXKo8-gZLvObUBLxRMsk9ONTWOyfddj0XXiw7Al2gvNFImr3AdtA9xBKFPFDD173Eknc9a4zOOmrwiL3430o9T7w5PN-Irj0EiRI8ThggvB0weT2T9ss9UMC4O6oeRrqAgYA9VNNkPFYNwjxoxTw9Hom4O-rPXr1j_Eo9HfLFPBGN7jynVC49baOmvFq10Dwbj4g9xwjNPP3Fpz1zLZq8FF5-u6-kpj0r0WO9p9zxuoABDj3uGJi9w3mdvP2k2ju6jbE9DQ20ukjzDbs82IO7MCAku5tcRz2iOIG9f32du5Dl1TuFGUe76rPBOyECEruh47k9Vsr8uwHAsbxAds275kjbOhOmfzvDrcy8JtEnujhxqLwZYgu9pTqROpVrpTx5i5w9Zf5yO5TDIj3T9Bm9eTG9OpWNjT3qN5i9hVVvOrrJXry2Eto9elMyu9ScPD2zzJc9jLDOuJMHiD3iNyo9wulyuVeX071yiQa7cgCWt3df3zsJrWI8wk0DuazxiLycd6K9boVROc2Rdb01RWC9HDIuORKoiT3Rlk68O7nrue56Brx86XK9LoWdOWsewb3ErqK9WfgiOMw1Vr3Wi-M7RkoAudWkBT0yuQe9Y9GZOKDF0rz2IGm9GN-juXEHRb1nJCe9Qh_cN4urCDzoAQI9cTVON_e29Lx5Vjc9nLqyuFkNgz3xDcU83bvvOGqJpT0bxYg9z6_QN6wTYTwChO89qBqeNu5ubz0UQRy9CRWxtt7mjT2BXvi8R4g2OJ5nR7zKv4s9TeXqOPrmSD1B2Am--rirODdu0T0n0FE9hy5qNtCgvLzHIpe9LzthOMSpkL3vaZg93Pu5N2CQdL31XZs8lKQYuGzuaDwpIJK8hxiqN-GZkDxVm6k9vZm4tzxGnjwlOQW9OM-8tahTvj0idKs8VymcOKeMZL1BRAo9eBTkuNrw7LstADK8e9ShNiiOTT2xOo09v8wCuCAAOBNACUhtUAEqcxAAGmAj_gD88xfW9EFBC-Gd7wftDw3k56cL__v5_-799-0f-r-oEu7_SfUZ8qAAAAAkAQQD0AALf9fO7hr1CDbW1d8-LnwDFBCh7TfUxve8COXZJ_smIkQAFuOlBET7sw0dUTAgAC032hc7OBNACUhvUAIqrwYQDBqgBgAAQEAAAADBAABAQgAAiMEAAPDBAADIQQAAiEIAABBCAAAwwgAAmMEAAPBBAACIQQAAQMIAANDBAABwwQAAEMEAAIBAAABwwgAAQEEAAIjBAAAUQgAA4MAAAKjBAABYQgAAQMEAABRCAABIwgAAnsIAAExCAADYQQAA6EEAAAhCAACuwgAAAMAAAKDBAAC4QQAAMEEAAMhCAABYQgAAiEEAANjBAADAQQAAaEIAAPDBAAAIQgAAGMIAABjCAACqwgAAEEIAAPhBAABAwgAAMEEAAJDBAAAwQQAANEIAAAjCAACQwgAA8MEAAODAAACwQgAAiEIAAEBAAACIwQAAfMIAADBCAADYwQAAUMEAAMbCAACgQAAAwMEAALhBAACQQQAAhsIAAAhCAACgQAAAKEIAAIDAAABMQgAAAEEAALhBAAC4wQAAyEEAAODBAACgQAAAqEEAAAjCAAAQwQAALEIAAOhBAADAQAAAiMEAAPhBAAAUQgAAMEEAANjBAADIwgAAiMEAAIDAAAD-QgAAmMEAAEDBAAAgQgAAuEEAAEhCAAB8wgAA4MAAAI7CAADAQQAAGMIAAJRCAAAAQQAAUMEAAMjBAAAAQgAAYMEAALhBAACgwAAAuMEAAADBAABQwQAA8MEAAATCAABAwQAA4MAAAChCAAAQwQAAukIAAJjBAADYwQAAiEEAAKjBAABgwgAAAMEAAKBBAACwQgAAUEEAALBBAADowQAAeMIAAMhBAAAgQgAAMMIAAABCAABwwQAAmEEAALhBAADAwQAA6MEAAJJCAACgQQAAhsIAACRCAAAAAAAA0MEAAEBCAAAAwAAARMIAANjBAADQwQAAYEIAAEBBAACOQgAAoEEAAKzCAAA8wgAAmMEAAJDBAACGQgAAsEEAAETCAACowQAAcEEAAAAAAAA0wgAAAMAAAAzCAABAQAAAwEEAAEBBAABQwQAAQMIAAIhBAAB4wgAAgMAAABhCAAAIwgAAcMIAABDCAAAAQAAAUMEAAADCAACgwAAAFEIAAIjBAABYQgAABEIAAEDBAAB8QgAAOMIAAAhCIAA4E0AJSHVQASqPAhAAGoACAABUvgAADL4AABQ-AABEPgAAcL0AAAQ-AABAvAAAC78AABy-AACoPQAAqL0AAHA9AAAsPgAAFD4AAIi9AAA8vgAAyD0AAJg9AAD4PQAABT8AAH8_AAAsPgAA-D0AAKA8AADgPAAAED0AAOg9AAAUPgAALL4AAEQ-AAAsPgAAMD0AAAS-AAD4PQAAyD0AAOg9AAAcPgAALD4AAJK-AABUvgAA-L0AANg9AACgPAAAVL4AAJi9AAC4PQAAZD4AAPi9AAAQPQAAJL4AABw-AACAuwAApj4AAAQ-AACovQAAqL0AADc_AABQPQAAoLwAAHQ-AACgvAAAoDwAAIg9AADYvSAAOBNACUh8UAEqjwIQARqAAgAARL4AAFQ-AABAPAAAV78AAFC9AAAQvQAA2D0AAIi9AABwvQAAbD4AAPg9AAC4vQAAJL4AAES-AABAvAAAQDwAAOC8AABFPwAAED0AAII-AABAvAAAfL4AAAQ-AAAEvgAAJL4AAGw-AACevgAAcD0AAIA7AACIPQAAoDwAAEA8AADgPAAABL4AAMg9AACAOwAAQDwAABS-AADYvQAAqL0AAMg9AAAwvQAA2L0AAEA8AAAkvgAATD4AAH-_AAA8vgAAUL0AAIg9AAAkPgAAED0AAPg9AABcPgAAuL0AAEA8AABQvQAAUL0AAMg9AAD4vQAA-D0AAJi9AACgvAAAMD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ofis63hmIow","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":852,"cheight":480,"cratio":1.775,"dups":["17034863165776388745"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12909171998806844401":{"videoId":"12909171998806844401","docid":"34-8-1-ZCCDF592E1696B57B","description":"Link for Derivation of Ordinary Least Square estimators: • Derivation of Ordinary Least Square (OLS) ... ui) = 0 4. No specification error or specification bias Specification error means...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2916479/040603f03724ebf53f6d901f04b6ca8a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Zas_PgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dso0CyCAHCSQ","linkTemplate":"/video/preview/12909171998806844401?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"10 Assumptions of the OLS Method","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=so0CyCAHCSQ\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhYKFDEyOTA5MTcxOTk4ODA2ODQ0NDAxWhQxMjkwOTE3MTk5ODgwNjg0NDQwMWqIFxIBMBgAIkUaMQAKKmhoYWF0a2h6cWd5cnJ3b2NoaFVDOXhaQWVubGE3Nmh5SEhyc0Vvc3IwURICABIqEMIPDxoPPxPwA4IEJAGABCsqiwEQARp4geoFAvr-AgAM_fgF-gf-AQH89vz4_f0A8vv9_AcB_wADBfIF_AEAAAII_wL9AAAA-vv4-gL-AAAXAAP-BQAAABgICgv7AAAACAAF8P8BAADxCPryAgAAAAH9DxAAAAAA9g8BAwEAAADrBP30AAAAAAvw-fQAAAAAIAAtuojVOzgTQAlITlACKoQCEAAa8AFu_PUBswvt_TD94wD-HvYBgRXw_xgf5gDG9AkA1BLeAAP-BQDa7QwAFwcdAcYjFwEQA-4AGPgUABXuNP4fBg0A6iQhASn4AwAxDyX_--Tu_vAT-gAF6igADuL5AAIT7AMk-gEA3_joAPYR4AHz8zkCIyX7AzMHEwACCP3-9SESA_b78f_u7_sEAOz7_ugMDwb9DOgEAyn8AeoD9AEcDgkDGgH-_Q4S9QAq--cC9PX5-OYbFQHbA-kDAwgKAv4E_QjS6v__CeH_CfsFBwAGAAUNE_waACD_DfcKGe0A_-4G9eYSAAL0Cfz96RYMB_Xv_wcgAC1R9DU7OBNACUhhUAIqzwcQABrAB5IH8r6mQAs94IOXvMnKbz3SkqI8ykMVO_gzPLyHSzM9xMGUuyurhD1piG89Dwlfu5fHqr4Tx-w7vhGdvP7Viz4gxJ88hqkxO-_lTr4QqEM9GKzAu_Whg748d_E7LsWXOyZnsj2zMQY70dObPLJ1mj2ly9G8LegBvM76FD2plRO9lDlRvSuIwbzDFxy9SVvmvEKguT3bfRi9uAT9O4YecT1Pmye91YItvc72DT1zi9S839Gxu7pnrb1BUhq9mdlCPGn-KD6LXdM7RwsrPJYa6zuqmbW7HyyEu6TreDwlNkS81rD8u9OZJb0XOXo8W6hGvBq1nD0x8Le8MOEnOxfF4Tx1enk92sh1POyG7T2M94M9cluRO-o0nLyyXLA9y3qWvGZlHjwJAp67VhaBuyxFEj6g3Du9z4mYPDyUMjxK35o8nmutOytt8btSAYM75IPcO_QLQDwWs489HCKTPFOdRLyGeCA7UYCNPCcHrb0XVmC89Pt-vMpsoD0kCWe8ZOSRvOk2lzzjmze8S6DzOrYUCz2RVIC95WuFvPMEIj3Ia4E5Ij-RvESxSz15XRy8_9YIu2oQyTtMk608c8i8OecWH72NR6m8-QOzuj2RcT34YS69-eaKu9NEhDxP6uy7sQEJPGQntDsnUyI7voFuvLOBL71k6xQ9BpG1u9BPJ713ooS9ofeEOmgIJz4DXqY9T7YausCOhL0d14U9Qf-nucgykz0KtCA9MDWdOanUgT09cF-8CDUmu7x7ez2kcYg9sVrBua50BjzBO1m91K8BuTJ1V73lUos9KrctOezTG73ZO0g81sLsNguwVL3ylis804tpOQ8KyrwSDTe9DHufOBFDoTx8iJ27dTR6OlrdhT1-igO9zFJ3uQooebwcXg685EtTuTBofL14-Yw9EQF4t6ttVDy3KHO9jqrVt3o_BD29dG68_IVIuNxzyzreIis9Y3WQt9hZgLv3bOO63YDBNzyGhzyTMHg8sX-ruJJa6DyL8as9uhvWN3ToGbvJsCU9pMMROICII72_6Jc8D-EBuJHEIb2LDKy9yCZ8OJRfR7oNZwY8HjFlN99so738LQm8zX2qtm7UVDy0RJ28M-cAOMTPDz48aum7nsuVNgIB4TxEMw-9OQafuMHjKz7cpWi8B4l0uQpcCL3iw5G9PKVYuEp62D1NLoa8Di1vNzy4QL26f1G8O0m3t2EGeT3zOhK-S-epuP_Naz2pekM9ykWnODmhC73REIQ95dPVuAEtQr0kOjU9KNkdt8HFjrtiFa-8QXEzNyAAOBNACUhtUAEqcxAAGmAlBAAR8RDo2AI68wDF5AztBzfZ6NveAAndAOwJ-QjzEuOrMQwAROAi6LQAAAATEfL4-ADraufU1_7_DR7P9wsYA38JHffi2Bn-nu7TIcgE_ircSCoADeakIjne0T_3KSMgAC1gyC47OBNACUhvUAIqrwYQDBqgBgAAwEEAAPhBAACAQQAAqMEAAKjBAABAwAAADEIAABjCAABYwgAAgMAAAMDAAADIwQAAgMEAADDCAAD4QQAABMIAAJhBAADgQQAAUMIAAHDBAACgwAAAQEAAAOBAAAAIwgAAkEEAAADAAAD4wQAAoMAAAFBBAABAwAAAyMEAAKBAAABUwgAAHEIAADRCAACQQQAARMIAANZCAAAQQgAAgEEAAHhCAACwwQAAPEIAACDBAAAwQQAAEEEAANDBAACUwgAAiEIAAFDCAAAAwgAAUEEAAODAAADwwQAAuEEAALhBAAAAwwAAfMIAABTCAABkQgAA0MEAABDBAAAAwAAAMEEAAMBAAACQwgAAEEEAAOBBAABAQAAAAMEAAL5CAAA8QgAABMIAAFBCAACAwAAAXMIAAADCAAAgwQAAYEEAAMDAAABgwQAADMIAAGDBAACAPwAAQEAAAKjBAAAgQQAAwEEAAGRCAACwQQAAcMEAAFBBAAAcwgAAmMIAAEBAAABIwgAA4MAAABxCAAAQQQAAoMIAANjBAAAQwQAAUEIAAFzCAACAwAAA8EEAANDBAABIQgAAAEAAALjBAAAYQgAAMMIAAPjBAADYwQAAQMAAAJZCAACAwQAAHMIAANjBAAAAwAAA4MEAAJhBAAAAwgAAYMEAAKBBAAA4wgAAhMIAAIDCAABgwgAAlMIAAABBAAAcQgAAuEEAAJJCAACGQgAAwMEAAMhBAACkwgAAKMIAABTCAADIwQAASEIAAABCAABMwgAA8EEAAKBAAADQwQAAWEIAABhCAAC4QQAA8EEAAADBAADgQAAAKMIAAJhBAABgQgAAAEEAAEzCAAAQQQAAMEEAAMDAAAAAwQAAGMIAAAAAAADgwQAAmMEAAARCAABQwQAADEIAADBBAACkwgAAwMAAAFjCAACwwQAAOMIAAFRCAAD8wgAAaMIAAMjBAACcQgAAgMEAABjCAADgwAAAwMIAAAhCAADgwAAA8MEAAMpCAACQQQAAgEIAAODAAAAwwQAAmEEAAMDBAACMwgAAZEIAAMLCAADQwQAAdMIAABjCIAA4E0AJSHVQASqPAhAAGoACAAAQvQAAgr4AAKC8AADoPQAAyL0AAFQ-AADgPAAAEb8AAJK-AABQPQAAgLsAAAQ-AACYPQAA6D0AACS-AAA8vgAADD4AAMg9AACoPQAA8j4AAH8_AAB8PgAAoLwAAAQ-AACgPAAAir4AAOC8AABMvgAAoLwAAOA8AAD4PQAARL4AABC9AABQvQAA6D0AALi9AAA0PgAALL4AAK6-AABAPAAAHL4AAFC9AAAUPgAAUD0AAAS-AAB0PgAA2D0AABA9AABwPQAAnr4AAOC8AACgPAAAoj4AAAw-AACivgAAgLsAAHE_AADIPQAADD4AAFy-AADgPAAAbD4AABC9AADSviAAOBNACUh8UAEqjwIQARqAAgAA2L0AAOA8AAAcPgAAWb8AAMi9AACgvAAAcD0AAIg9AABQPQAAZD4AADA9AAAsvgAAuD0AAI6-AAAwPQAAoDwAACQ-AAA7PwAAqD0AAHw-AAD4vQAAMD0AAEQ-AADIvQAAFL4AAJY-AABUvgAAqD0AANi9AAAwPQAA4DwAAPg9AACYPQAAZL4AALg9AAAwPQAAjj4AADQ-AABMvgAAgLsAAHA9AAAQvQAAir4AABA9AACIvQAA6D0AAH-_AADIvQAAgr4AALg9AABMPgAAiL0AAI4-AAAcPgAAQDwAAOA8AACAuwAAJL4AAFA9AAB0vgAAPD4AAEA8AADYvQAAiD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=so0CyCAHCSQ","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12909171998806844401"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9246679636020889961":{"videoId":"9246679636020889961","docid":"34-3-11-Z3F5A46DE2E39301C","description":"Three Stage Least Square Regression Model using Eviews. The simple tutorials from Econometrics Specialists and Freelance Consultants. Learn Econometrics using Eviews in Personal via Private...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3374889/c05c8997b568551a06b1f1209dfdd101/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MAgrCQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqYC9g3cFkiw","linkTemplate":"/video/preview/9246679636020889961?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"OLS, 2SLS, 3SLS using Eviews","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qYC9g3cFkiw\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhUKEzkyNDY2Nzk2MzYwMjA4ODk5NjFaEzkyNDY2Nzk2MzYwMjA4ODk5NjFqhxcSATAYACJEGjEACipoaHJ5a3F4YmdtZmplZmhjaGhVQ2NwaHRFTXVQRk80OEFHSEpmdk94LVESAgASKg_CDw8aDz8TbYIEJAGABCsqiwEQARp4gfb7-_v7BQD1AgsAAgT-AQYG-AD3__8A8gH4AgcB_wDvAAX_DQAAAP0C_AUBAAAA_gUFB_7-AQAI_f79AwAAAAT_9Qb2AAAAAwAEA_8BAAD5Afr5AwAAAAf6Av3_AAAA9g4BAwEAAAABB_j6AQAAAP3z-gQAAAAAIAAtWZHiOzgTQAlITlACKoQCEAAa8AFf_gP9-ObEA9IDIf4jIPgAgfLo_x0W8QCxFwEB7T37AcoDMAH_GBABzAfm_8_u8gAA3-3_UR7dAPzc-ADXK_UAOt0pATAjFwE74O4A3N0U_zEGN_4iyzf--x0i__TP_f8N-AP6whQMAa8p8AMKHzYDAuoq_B8D6wLwBeX_8QYnAwbzCvMB1PL-89X_Bizg4f0TDuoBAAoXAvTT1fzGEwr_1-kKAfUMDPgnDAcO3_ER-e8BMAD0APL9FRD3-xn-_gj9AwIFOPvk_tkSDfQc3-z0Av0C_9PlEg4VDfcAMgUWCMcFD_LsQPj_KhT6ExQEDfogAC3kRxA7OBNACUhhUAIqzwcQABrAB2Zrxb5-c3-8I036u5Z6lr3MxhY8YsOePV4eIb2cU-Y7KuK0PNZwIT5_-UQ9RdyHPZxNl77qPVy5ZI8WvG0b5j0fxho9QkO9uni3Ur38p7w7OFeDvBQHUL6Tdn48ipoevf-VNb0PG5a9QKd7PL5LWT6RHN07oHyLOitNCr5r_-45ZRkiPfDJOzuq0GW90iN8PE4q-j3VXh88IegoPXTrNT5wHEK8sVTyPM72DT1zi9S839Gxu7pnrb1BUhq9mdlCPNnRuLxkxIq98IwVPDX_GT2aaYE9z_7bvBh5KT7dKFI9ezLeuhXctDxU0EM9QSHMPBx1Wb08oCy97KmwvN6w7byb1TE92fYsPEYK5T2jliA8U83uOya6yL1PPpw7xYirO7ZgLr2m7Mm9S0iavGLglDzRQRK92LKAu-a7Sr1hQlu9nTUuvEg21z1I3yS8omkBuxapCz0yItE9nmdHPLLLgTxqBIE9yQyKvLBoZL1Jrzc9QGiiPI9tKT4CWmS9c6SOO3eptz0ECSW9cYWBPDTQxjxWsb09dck4vFwyOD0XWy28ZiCruHDC77oJXI28cQVvvCzHdbzzZr-7mujWO2MMbL042jE9DpiRvKd25j1cfIC8gpucO4F4rT0YYaW8J5CKu5zFCz3pdKq9QQ2-OiBmar0ofFs8GawVPGwB57swR--9P5qgug6BSDzr5de9PZ1pu156IL1Ai987c3TLu3deFD19ofY8WBHBugdCAr5PHtY9wi3JOaxCqb3fYi89qQcPtNWFnj2Tqm09SLgYub2iwDwEv5W7uXD6uaCCzTx5GCS8GX77uHHc8zsi_Au9EC_bOCZXMbzl4YM9a5IOuABHjL3yB0O9aYBVuW8NbLx5DVC9bCFuuTOiWTwLGTm9SNVAuY6Vc73vu7O9V4-fOGd8hDy3XKK8zVYauEWHm7zuJR2-zaCRuOKdwr0bgsM9kFTPOJuFBz2i13q8MiCCOF4JKT01zss8lFV9N3boaj2uvrW9rUZGuDooHD08C6e8fFpatnIpiD1m_my9i3KmNnkiiL1uyWC8272Lt6Ul4DxBsfo8QDvTuH40wTvaJbW9qPMrOUmMVLzvSoy9eSvXNsenlr0Dh4a8nY2KuNIvtj213xq9KoA5uK1M-Dw8mjQ8fsLruIjNEb1yD049_ovut6sE8LwEsYe8fgUmuAz_nj3M7km8Ar7EtySjHr3ZR5K9sOA0uGGsyjx40509kwuFOHxijb0hA9k9gTUwuVYL7DyfJxk9zIiBt3Lsv73Iq3g9F9mNOCAAOBNACUhtUAEqcxAAGmBA_ABPxhzNFB8IAvn64uHUAeQZ6LU8_3Hi_xb19PLO8cGwC_7_LRwY_ZcAAAACIPdd6AATf9230f_2GR-z3eoSDEACBgrUvgIN8rddRPST8t4cOFAAEdDO2_8HrhcoBP0gAC1bdxQ7OBNACUhvUAIqrwYQDBqgBgAATMIAALpCAAAMQgAAoEEAAAhCAACCQgAAyEEAABRCAAAowgAAYMIAAKBBAAAMwgAAwMEAAGBBAADwQQAAGMIAAFDCAACewgAACMIAABhCAADQQQAAOMIAAJhBAACgQQAA2EEAAADCAAAowgAANMIAAMpCAABYwgAAiMEAAIhBAADmwgAATEIAAIBBAAAowgAAUEIAAOhBAAC4QQAABEIAAEBBAABAQQAAQMEAADBBAACSwgAA4MEAAARCAAAgwQAAgEAAANDBAAA0wgAAqMEAACBCAABAwQAAzEIAAEBBAADKwgAA4EAAAIBBAABgQgAA2EEAAADAAADwQQAAQMIAALhBAABQwQAAOEIAAIhBAADgQQAAYMEAAFxCAABAwAAAwMAAAJDBAABAQQAAmEEAAMBAAACAwQAAAAAAAADAAAAUwgAAUEIAAAjCAACQQQAAUMIAAEDAAAAQQgAAYEEAAFRCAAAAQgAA4MEAAIRCAADQwQAAQMEAAIBAAACYwQAAUMEAAGzCAAAUQgAAEEEAAABBAADgQQAAmEIAAKZCAABYQgAAMEEAAJzCAABAwAAAIMEAALJCAABgQgAAUMEAAEDAAABoQgAAEEEAAKBAAAAYwgAAgMEAAEDBAADAwQAAAEAAAIzCAADIQQAAaMIAAJhBAABAwAAAqEEAAMBBAABAwQAAvMIAANjBAAAQwgAAiEEAAJhBAAAUwgAAiEEAAIJCAAAkQgAAwMAAAABBAAAYQgAAGEIAADBBAABIwgAAYEEAAJhBAADgwAAAOEIAALhBAABcQgAAGMIAAAjCAABAQAAACMIAAGjCAABUwgAAUMEAABzCAADIwQAAIEIAAABCAABoQgAABMIAAPjBAAAkwgAAFMIAAKhBAAAQQQAAgMEAAABBAAAwQQAAJEIAABjCAACAwQAAAMAAAPBBAACyQgAAGMIAAAAAAABIQgAAisIAALjBAAAgwgAAdMIAAAAAAABwQgAAisIAANhBAACsQgAASEIAAJBBAACwQQAAEMEAAAAAAABgQQAAgEAAACjCAAAgwgAAcMEAACBBIAA4E0AJSHVQASqPAhAAGoACAABMvgAAoDwAAPg9AABkPgAABL4AAEw-AACoPQAAUb8AAMq-AACoPQAAMD0AAIg9AAAsvgAAvj4AAKA8AACSvgAAUD0AANg9AAB8PgAAKT8AAH8_AADIPQAAqL0AAFA9AAA8PgAADD4AAFC9AACqvgAA4LwAAOg9AAC4PQAAZL4AAOA8AABwvQAAPD4AABC9AACgvAAAXL4AAKq-AADYvQAA6L0AAJi9AABAvAAAqL0AAKA8AABQvQAAXD4AALi9AAAwvQAAlr4AAFC9AAAwPQAAdD4AABA9AACavgAAcD0AAG8_AABQPQAAkj4AAKg9AABMPgAAZD4AAKg9AADIvSAAOBNACUh8UAEqjwIQARqAAgAALL4AAIg9AAAwvQAAK78AAEA8AAAwvQAAMD0AABS-AAAEvgAATD4AAEC8AACgvAAAgDsAAFS-AABwPQAAoDwAAJg9AAAxPwAAcD0AAKI-AAAkvgAAQDwAAHA9AAD4vQAAuL0AAFA9AACYvQAA4LwAAOC8AAAQPQAAUD0AAMg9AACAuwAA6L0AAFA9AADgPAAAQLwAABQ-AAAsvgAAuL0AAIg9AACIPQAALL4AAIC7AADIvQAAoDwAAH-_AABMvgAAoDwAAHA9AACqPgAA2L0AAJg9AAAMPgAAED0AAKA8AABAPAAA4LwAABy-AAAQvQAAmD0AADA9AAAQPQAA-L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=qYC9g3cFkiw","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9246679636020889961"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6438076360991957265":{"videoId":"6438076360991957265","docid":"34-9-15-Z313AFA15B2C66A0B","description":"This is from a series of short videos on econometrics. This video looks at the basic bivariate ordinary least squares model. What is it for?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3834552/de6803c653cdde639b49007308e82353/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ap7yFAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqcJGl0wxgaY","linkTemplate":"/video/preview/6438076360991957265?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Econometrics - The Bivariate Ordinary Least Squares (OLS) Model","related_orig_text":"OLS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"OLS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qcJGl0wxgaY\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjUxMDY4NjQ4MDIwNTY2NTczNAoSMjY2MjU0NTcwNzkzMTE4OTc0ChQxNDc2MTg0MDMzMjc5NDM4MTAyNgoUMTQ3ODU5NTU1MzQ1NjY1OTc3NDUKEzExNjAzNDA3MjAwMjA2MTE1MjYKEzEzMDU2NjE3NjUxNDEzMzQxMzAKFDE1MDk3NzQ5MzQyMDk3MDgxMzUyChM3OTMzNDIyMDc4MTMyNjYzNTY2ChMxNzkxNzA4NjMxOTUyNDU0MTg2ChQxNjA0NzI0ODY5NjE4NTE4NjMzNwoTNDY4OTE1MTE2Mjg5OTU0MzgxOAoTNTc0OTM1MjA2NTE1MDY4MTM0MgoUMTAwMzkxODk1NDM4NjkwMDQ0MjYKFDE3MDM0ODYzMTY1Nzc2Mzg4NzQ1ChQxMjkwOTE3MTk5ODgwNjg0NDQwMQoTOTI0NjY3OTYzNjAyMDg4OTk2MQoTNjQzODA3NjM2MDk5MTk1NzI2NQoUMTgyMjY2ODkzMzg0NTg4NTE1ODkKFDEwMzU3MDI0NzQzOTQ4NTc5MzgwChMzNTE4MjAzMjI5NzkxNjYwNTc5GhUKEzY0MzgwNzYzNjA5OTE5NTcyNjVaEzY0MzgwNzYzNjA5OTE5NTcyNjVqtQ8SATAYACJEGjAACiloaHVwZnNoZXhvZW54Y25oaFVDdVNBS2w2UTRKUEE5T19jRUZZRVBHZxICABEqEMIPDxoPPxPTA4IEJAGABCsqiwEQARp4gfMJBwj_AgD8ABAFBwf8AfYL-wT4_f0A8w0NBQYC_wAI-wv0_gEAAP4I8wf8AAAA_AP5-_3-AAAeAPcMAgAAABP5Av73AAAAC_r3Af8BAADxCPryAgAAAAUD_QQAAAAA-Q8E8f__AAD-Cf8DAAAAAAX_-vYAAAAAIAAt2X3WOzgTQAlITlACKoQCEAAa8AF_9RgB0_zp_-T48ADsC90Bjh4J_xkh5QDT5Q8BthDS_-ULAgDi_w3_CgYT_7EPCgH_5OEAAOD3ABTz_P8j9hYA7hoWACnzIgA2EgP_Ft_f_tQcGP75-iIAINr3ARom6P8p7xsADArfAfPz9gQf_CcBCygFAh0MA__u5_cB0hEYAfIR2_4KAPcIFQry_9UcAgUX_-j85QznAukE9AEZ9Q0DDu7y_g4T9AAvHf0C-RP4_-AN-gIF9_H8-BAPBgkN7v_aEQf29uoH_gEX_PwU4AwIB_X8_w7_9AED-P4CFOT7-9UW_QrSDwMB6R39BvHrA_ggAC0PbC87OBNACUhhUAIqcxAAGmA88wAe1wGy9h8y9O-9HSAA7jADDL_6__IF_9NAFCoO-tnC1_4ACcgk_6IAAAA5874d_QAIf9C9ER_wAgS-osoZF13zKhqvsw8WB78VMhTxyxIdG3YAAgCq_kwHCBIyGSUgAC0glBk7OBNACUhvUAIqrwYQDBqgBgAAIEEAAIDBAACEQgAAoEAAAOjBAAC4QQAA1kIAAFxCAAA0wgAANMIAAGDBAACEQgAAUMEAAFDBAACYQQAAFEIAAFBCAABYwgAAEEEAAKbCAACYQQAAQMEAABjCAAA0QgAAQMEAAMBAAADIwQAAgL8AAIRCAACEQgAAqMEAABDBAABswgAAmEEAAADCAACgQQAAkEEAALhCAAAgQgAA8MEAAMBAAABIQgAAJEIAAEDAAACQQQAAVMIAAKjBAACMwgAAYEEAAEhCAAA0wgAAsMEAAOjBAADAwAAALEIAAADBAAB0wgAAIMIAAKBAAACsQgAANEIAAIDBAACwwgAAxsIAAPhBAACowgAAEEEAAKjCAADAwAAAgEAAAFxCAABgQQAAkMIAAIhBAACYwgAAkEEAAODAAADIQQAAfEIAADBBAAAEwgAAYEIAAMBAAABgQQAAhEIAAHzCAAAIQgAAwMAAALhBAACAwQAAIEEAAIBBAABQwQAAcMEAAADAAADGwgAAcMEAAAjCAABEQgAAgEAAAPDBAACgQQAAQEIAAMBAAABEwgAAiEEAAEBAAADoQQAAyMEAAKJCAADIQQAALEIAADDBAACoQQAA8EEAAKBBAACAPwAAyMEAAODBAAAIwgAAAMAAAGDBAAAAQAAAYMEAAKBAAACQwQAAhEIAAIDCAAAAwgAAwEEAAIDBAABMwgAAsMEAAEBAAAAQQgAAsEEAAEBCAABkwgAACMIAAIBAAAAgQQAA6MEAAOBBAAAEwgAAyEEAAKBBAADowQAAEEEAADxCAADgwAAAyMEAAGhCAABgQQAAAEIAAKxCAACAwAAAhMIAAOjBAACQwQAAmkIAAJDBAABsQgAAkEEAAFjCAADowQAAmMEAABDCAABoQgAAIEIAABDCAABkwgAAWEIAAJDBAAAIwgAA4MAAADjCAACoQQAAEEEAAAjCAACowQAAcMIAAKDAAABYwgAAIMIAALZCAADgQQAAQMIAAIjBAAAQQQAA2EEAAAAAAACQQQAA4MAAAEBAAAAAwQAADEIAADBBAAAoQgAAIEEAAAhCIAA4E0AJSHVQASqPAhAAGoACAAA8vgAAcL0AAKg9AAC4PQAAJL4AALY-AABsPgAAM78AAGS-AABAvAAAgDsAAIY-AACAOwAAnj4AAGS-AABUvgAAFD4AAMg9AAAkPgAANz8AAH8_AAAMvgAA6D0AAOC8AADYPQAAEL0AAIA7AAA8vgAA4LwAAGQ-AACoPQAANL4AABy-AADoPQAAhj4AAIi9AAAEPgAALL4AAOK-AAA0vgAAoDwAAIi9AADgvAAAgLsAAAy-AAAUvgAAFD4AAMi9AADIvQAAlr4AAAy-AACYPQAAjj4AAI4-AABcvgAAMD0AAEk_AACIPQAAqD0AAHA9AAAQPQAAJD4AABA9AACyviAAOBNACUh8UAEqjwIQARqAAgAA4LwAABQ-AACgPAAAYb8AADy-AACgPAAAyj4AAHC9AABQvQAAqL0AABA9AACqvgAAHD4AAHy-AACYPQAAUD0AAIg9AAApPwAAgDsAADw-AAB0vgAAFL4AAKg9AABsvgAA6L0AAIC7AACavgAAUL0AAIi9AABMvgAAMD0AABw-AABUvgAAuL0AAOA8AACIvQAAij4AAOg9AABEvgAAwr4AAJg9AABwPQAAir4AALg9AAA0vgAAXD4AAH-_AACSvgAAoLwAANg9AAD6PgAAcD0AAKg9AABMPgAAPL4AAJg9AACYvQAAQLwAACw-AADYvQAAjj4AAMi9AABEvgAAPL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=qcJGl0wxgaY","parent-reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["6438076360991957265"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"12510686480205665734":{"videoId":"12510686480205665734","title":"1. Introduction to \u0007[OLS\u0007]","cleanTitle":"1. Introduction to OLS","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SH53lC4ZBow","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SH53lC4ZBow?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdTdNUFp3Q0tqam9sU1preFF0NmRDUQ==","name":"Learn Analytics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Learn+Analytics","origUrl":"http://www.youtube.com/@LearnanalyticsIn","a11yText":"Learn Analytics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2604,"text":"43:24","a11yText":"Süre 43 dakika 24 saniye","shortText":"43 dk."},"views":{"text":"18,4bin","a11yText":"18,4 bin izleme"},"date":"8 nis 2015","modifyTime":1428451200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SH53lC4ZBow?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SH53lC4ZBow","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":2604},"parentClipId":"12510686480205665734","href":"/preview/12510686480205665734?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/12510686480205665734?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"266254570793118974":{"videoId":"266254570793118974","title":"\u0007[OLS\u0007] Estimates in Linear Regression: Matrix Form Derivation","cleanTitle":"OLS Estimates in Linear Regression: Matrix Form Derivation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1Tgjw7akZZU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1Tgjw7akZZU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcTV2TmhULWtaaFJfNlNpVkN4Z1ZFUQ==","name":"FAM&FAMI","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FAM%26FAMI","origUrl":"http://www.youtube.com/@FAMFAMI","a11yText":"FAM&FAMI. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1810,"text":"30:10","a11yText":"Süre 30 dakika 10 saniye","shortText":"30 dk."},"views":{"text":"4,2bin","a11yText":"4,2 bin izleme"},"date":"27 ara 2020","modifyTime":1609027200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1Tgjw7akZZU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1Tgjw7akZZU","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":1810},"parentClipId":"266254570793118974","href":"/preview/266254570793118974?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/266254570793118974?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14761840332794381026":{"videoId":"14761840332794381026","title":"\u0007[OLS\u0007] Regression in Stata | Step-by-Step Guide for Data Analysis","cleanTitle":"OLS Regression in Stata | Step-by-Step Guide for Data Analysis","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SKqEFwLjfvk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SKqEFwLjfvk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcTV2TmhULWtaaFJfNlNpVkN4Z1ZFUQ==","name":"FAM&FAMI","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FAM%26FAMI","origUrl":"http://www.youtube.com/@FAMFAMI","a11yText":"FAM&FAMI. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1366,"text":"22:46","a11yText":"Süre 22 dakika 46 saniye","shortText":"22 dk."},"date":"18 tem 2023","modifyTime":1689638400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SKqEFwLjfvk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SKqEFwLjfvk","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":1366},"parentClipId":"14761840332794381026","href":"/preview/14761840332794381026?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/14761840332794381026?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14785955534566597745":{"videoId":"14785955534566597745","title":"\u0007[OLS\u0007] Estimator or \u0007[Ordinary\u0007] \u0007[Least\u0007] \u0007[Square\u0007] Method for Regression Analysis","cleanTitle":"OLS Estimator or Ordinary Least Square Method for Regression Analysis","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Tz9F2XqmqG0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Tz9F2XqmqG0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSHJ2ZWNMalMyYndXTDdBXzlLQ2Rpdw==","name":"RCD Sir","isVerified":false,"subscribersCount":0,"url":"/video/search?text=RCD+Sir","origUrl":"http://www.youtube.com/@rcdsir1297","a11yText":"RCD Sir. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":713,"text":"11:53","a11yText":"Süre 11 dakika 53 saniye","shortText":"11 dk."},"date":"6 eki 2021","modifyTime":1633522926000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Tz9F2XqmqG0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Tz9F2XqmqG0","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":713},"parentClipId":"14785955534566597745","href":"/preview/14785955534566597745?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/14785955534566597745?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1160340720020611526":{"videoId":"1160340720020611526","title":"\u0007[OLS\u0007] Regression Example - Part 1","cleanTitle":"OLS Regression Example - Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mILaUnSe_FA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mILaUnSe_FA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRFdrUVRjQ05wNjljN0JuY1VzWUw4Zw==","name":"helpR","isVerified":false,"subscribersCount":0,"url":"/video/search?text=helpR","origUrl":"http://www.youtube.com/@helpr875","a11yText":"helpR. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1804,"text":"30:04","a11yText":"Süre 30 dakika 4 saniye","shortText":"30 dk."},"date":"28 mar 2020","modifyTime":1585353600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mILaUnSe_FA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mILaUnSe_FA","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":1804},"parentClipId":"1160340720020611526","href":"/preview/1160340720020611526?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/1160340720020611526?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1305661765141334130":{"videoId":"1305661765141334130","title":"\u0007[OLS\u0007] Regression Example - Part 5","cleanTitle":"OLS Regression Example - Part 5","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=EAbf-GS90jo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/EAbf-GS90jo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRFdrUVRjQ05wNjljN0JuY1VzWUw4Zw==","name":"helpR","isVerified":false,"subscribersCount":0,"url":"/video/search?text=helpR","origUrl":"http://www.youtube.com/@helpr875","a11yText":"helpR. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1699,"text":"28:19","a11yText":"Süre 28 dakika 19 saniye","shortText":"28 dk."},"date":"13 nis 2020","modifyTime":1586736000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/EAbf-GS90jo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=EAbf-GS90jo","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":1699},"parentClipId":"1305661765141334130","href":"/preview/1305661765141334130?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/1305661765141334130?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15097749342097081352":{"videoId":"15097749342097081352","title":"\u0007[OLS\u0007] Treatment Effects Estimation Using Python Package Causal Inference","cleanTitle":"OLS Treatment Effects Estimation Using Python Package Causal Inference","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9UFk4ArRYjs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9UFk4ArRYjs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbWJBN1hCNldiN2JMd0p3OUFSUGNZZw==","name":"Grab N Go Info","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Grab+N+Go+Info","origUrl":"http://www.youtube.com/@grabngoinfo","a11yText":"Grab N Go Info. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":287,"text":"4:47","a11yText":"Süre 4 dakika 47 saniye","shortText":"4 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"29 ağu 2022","modifyTime":1661731200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9UFk4ArRYjs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9UFk4ArRYjs","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":287},"parentClipId":"15097749342097081352","href":"/preview/15097749342097081352?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/15097749342097081352?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7933422078132663566":{"videoId":"7933422078132663566","title":"\u0007[OLS\u0007] Regression Example - Part 2","cleanTitle":"OLS Regression Example - Part 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kSTatg6sivQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kSTatg6sivQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRFdrUVRjQ05wNjljN0JuY1VzWUw4Zw==","name":"helpR","isVerified":false,"subscribersCount":0,"url":"/video/search?text=helpR","origUrl":"http://www.youtube.com/@helpr875","a11yText":"helpR. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2148,"text":"35:48","a11yText":"Süre 35 dakika 48 saniye","shortText":"35 dk."},"date":"30 mar 2020","modifyTime":1585526400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kSTatg6sivQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kSTatg6sivQ","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":2148},"parentClipId":"7933422078132663566","href":"/preview/7933422078132663566?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/7933422078132663566?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1791708631952454186":{"videoId":"1791708631952454186","title":"\u0007[OLS\u0007] with Dummy Variables with statsmodels","cleanTitle":"OLS with Dummy Variables with statsmodels","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=x-5VNCX8s14","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/x-5VNCX8s14?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDazEzX0VYbGpOVk9FUVRBYmFKbzh6QQ==","name":"Data Science for Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Data+Science+for+Everyone","origUrl":"http://www.youtube.com/@DataScienceforEveryone","a11yText":"Data Science for Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":468,"text":"7:48","a11yText":"Süre 7 dakika 48 saniye","shortText":"7 dk."},"views":{"text":"3,4bin","a11yText":"3,4 bin izleme"},"date":"13 ağu 2021","modifyTime":1628882214000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/x-5VNCX8s14?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=x-5VNCX8s14","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":468},"parentClipId":"1791708631952454186","href":"/preview/1791708631952454186?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/1791708631952454186?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16047248696185186337":{"videoId":"16047248696185186337","title":"\u0007[OLS\u0007] Regression","cleanTitle":"OLS Regression","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=h1vRniTFvI8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/h1vRniTFvI8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSl9jQWtBZUNoR1Q1TU1qNnpmVFJVZw==","name":"Ian Boles","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ian+Boles","origUrl":"http://www.youtube.com/@ianboles8866","a11yText":"Ian Boles. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2204,"text":"36:44","a11yText":"Süre 36 dakika 44 saniye","shortText":"36 dk."},"date":"8 kas 2020","modifyTime":1604793600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/h1vRniTFvI8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=h1vRniTFvI8","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":2204},"parentClipId":"16047248696185186337","href":"/preview/16047248696185186337?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/16047248696185186337?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4689151162899543818":{"videoId":"4689151162899543818","title":"Beginner's Guide to \u0007[Ordinary\u0007] \u0007[Least\u0007] \u0007[Squares\u0007] (\u0007[OLS\u0007]) Regression: Theory & Python Co...","cleanTitle":"Beginner's Guide to Ordinary Least Squares (OLS) Regression: Theory & Python Code Explained!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cWPbGA1Qupo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cWPbGA1Qupo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDT3RMWGNyOW82RzZwai1rZ0FZaVBXdw==","name":"Data Science with Onur","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Data+Science+with+Onur","origUrl":"http://www.youtube.com/@onurdatascience","a11yText":"Data Science with Onur. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":537,"text":"8:57","a11yText":"Süre 8 dakika 57 saniye","shortText":"8 dk."},"date":"2 eyl 2025","modifyTime":1756771200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cWPbGA1Qupo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cWPbGA1Qupo","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":537},"parentClipId":"4689151162899543818","href":"/preview/4689151162899543818?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/4689151162899543818?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5749352065150681342":{"videoId":"5749352065150681342","title":"\u0007[OLS\u0007] Regression in Excel","cleanTitle":"OLS Regression in Excel","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bNx9aspX-TY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bNx9aspX-TY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEI2Vno1WEVhVjVOWXVfMENpeEc5dw==","name":"Shane Van Dalsem","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Shane+Van+Dalsem","origUrl":"http://www.youtube.com/@svandalsem","a11yText":"Shane Van Dalsem. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1826,"text":"30:26","a11yText":"Süre 30 dakika 26 saniye","shortText":"30 dk."},"views":{"text":"28,1bin","a11yText":"28,1 bin izleme"},"date":"15 kas 2017","modifyTime":1510704000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bNx9aspX-TY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bNx9aspX-TY","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":1826},"parentClipId":"5749352065150681342","href":"/preview/5749352065150681342?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/5749352065150681342?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10039189543869004426":{"videoId":"10039189543869004426","title":"\u0007[OLS\u0007] - \u0007[Ordinary\u0007] \u0007[Least\u0007] \u0007[Square\u0007] Method || \u0007[OLS\u0007] Estimation Explained in Hindi","cleanTitle":"OLS - Ordinary Least Square Method || OLS Estimation Explained in Hindi","host":{"title":"YouTube","href":"http://www.youtube.com/live/HOBLSQ6HiU8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HOBLSQ6HiU8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDN3dKNjJIX0hTajRUQkpZQnpGdE9uUQ==","name":"Digvijay Economica","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Digvijay+Economica","origUrl":"http://www.youtube.com/@digvijayeconomica","a11yText":"Digvijay Economica. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2801,"text":"46:41","a11yText":"Süre 46 dakika 41 saniye","shortText":"46 dk."},"views":{"text":"16,4bin","a11yText":"16,4 bin izleme"},"date":"11 nis 2024","modifyTime":1712849554000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HOBLSQ6HiU8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HOBLSQ6HiU8","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":2801},"parentClipId":"10039189543869004426","href":"/preview/10039189543869004426?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/10039189543869004426?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17034863165776388745":{"videoId":"17034863165776388745","title":"Linear regression: \u0007[OLS\u0007] coefficients minimize the SSR (FRM T2-15)","cleanTitle":"Linear regression: OLS coefficients minimize the SSR (FRM T2-15)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ofis63hmIow","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ofis63hmIow?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUl93c0UtTVNBSG5Vbm9ETlF2Tk1qQQ==","name":"Bionic Turtle","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bionic+Turtle","origUrl":"http://www.youtube.com/@bionicturtle","a11yText":"Bionic Turtle. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":780,"text":"13:00","a11yText":"Süre 13 dakika","shortText":"13 dk."},"views":{"text":"3,7bin","a11yText":"3,7 bin izleme"},"date":"26 mar 2018","modifyTime":1522096170000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ofis63hmIow?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ofis63hmIow","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":780},"parentClipId":"17034863165776388745","href":"/preview/17034863165776388745?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/17034863165776388745?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12909171998806844401":{"videoId":"12909171998806844401","title":"10 Assumptions of the \u0007[OLS\u0007] Method","cleanTitle":"10 Assumptions of the OLS Method","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=so0CyCAHCSQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/so0CyCAHCSQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOXhaQWVubGE3Nmh5SEhyc0Vvc3IwUQ==","name":"Garima Gupta","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Garima+Gupta","origUrl":"http://www.youtube.com/@GarimaGupta","a11yText":"Garima Gupta. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":496,"text":"8:16","a11yText":"Süre 8 dakika 16 saniye","shortText":"8 dk."},"views":{"text":"2,9bin","a11yText":"2,9 bin izleme"},"date":"6 mar 2022","modifyTime":1646524800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/so0CyCAHCSQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=so0CyCAHCSQ","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":496},"parentClipId":"12909171998806844401","href":"/preview/12909171998806844401?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/12909171998806844401?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9246679636020889961":{"videoId":"9246679636020889961","title":"\u0007[OLS\u0007], 2SLS, 3SLS using Eviews","cleanTitle":"OLS, 2SLS, 3SLS using Eviews","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qYC9g3cFkiw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qYC9g3cFkiw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3BodEVNdVBGTzQ4QUdISmZ2T3gtUQ==","name":"AnEc Center for Econometrics Research","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AnEc+Center+for+Econometrics+Research","origUrl":"http://www.youtube.com/@aneccenterforeconometricsr3698","a11yText":"AnEc Center for Econometrics Research. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":109,"text":"1:49","a11yText":"Süre 1 dakika 49 saniye","shortText":"1 dk."},"views":{"text":"31,5bin","a11yText":"31,5 bin izleme"},"date":"18 şub 2016","modifyTime":1455753600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qYC9g3cFkiw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qYC9g3cFkiw","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":109},"parentClipId":"9246679636020889961","href":"/preview/9246679636020889961?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/9246679636020889961?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6438076360991957265":{"videoId":"6438076360991957265","title":"Econometrics - The Bivariate \u0007[Ordinary\u0007] \u0007[Least\u0007] \u0007[Squares\u0007] (\u0007[OLS\u0007]) Model","cleanTitle":"Econometrics - The Bivariate Ordinary Least Squares (OLS) Model","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qcJGl0wxgaY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qcJGl0wxgaY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdVNBS2w2UTRKUEE5T19jRUZZRVBHZw==","name":"Econometrics, Causality, and Coding with Dr. HK","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Econometrics%2C+Causality%2C+and+Coding+with+Dr.+HK","origUrl":"http://www.youtube.com/@NickHuntingtonKlein","a11yText":"Econometrics, Causality, and Coding with Dr. HK. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":467,"text":"7:47","a11yText":"Süre 7 dakika 47 saniye","shortText":"7 dk."},"views":{"text":"2,9bin","a11yText":"2,9 bin izleme"},"date":"7 haz 2020","modifyTime":1591488000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qcJGl0wxgaY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qcJGl0wxgaY","reqid":"1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL","duration":467},"parentClipId":"6438076360991957265","href":"/preview/6438076360991957265?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","rawHref":"/video/preview/6438076360991957265?parent-reqid=1765306978651080-8988949970777586876-balancer-l7leveler-kubr-yp-klg-244-BAL&text=OLS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"9889499707775868767244","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"OLS","queryUriEscaped":"OLS","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}