{"pages":{"search":{"query":"Simpson Integrations","originalQuery":"Simpson Integrations","serpid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","parentReqid":"","serpItems":[{"id":"7724996081726460140-0-0","type":"videoSnippet","props":{"videoId":"7724996081726460140"},"curPage":0},{"id":"17583092230282287138-0-1","type":"videoSnippet","props":{"videoId":"17583092230282287138"},"curPage":0},{"id":"11433399204273096245-0-2","type":"videoSnippet","props":{"videoId":"11433399204273096245"},"curPage":0},{"id":"2772843383503300843-0-3","type":"videoSnippet","props":{"videoId":"2772843383503300843"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFNpbXBzb24gSW50ZWdyYXRpb25zCg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","ui":"desktop","yuid":"4853313451769579526"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"3409280575546457483-0-5","type":"videoSnippet","props":{"videoId":"3409280575546457483"},"curPage":0},{"id":"5894376776410279781-0-6","type":"videoSnippet","props":{"videoId":"5894376776410279781"},"curPage":0},{"id":"7673730355668229457-0-7","type":"videoSnippet","props":{"videoId":"7673730355668229457"},"curPage":0},{"id":"14651509719176006394-0-8","type":"videoSnippet","props":{"videoId":"14651509719176006394"},"curPage":0},{"id":"4716120940053949718-0-9","type":"videoSnippet","props":{"videoId":"4716120940053949718"},"curPage":0},{"id":"7114121126650346472-0-10","type":"videoSnippet","props":{"videoId":"7114121126650346472"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFNpbXBzb24gSW50ZWdyYXRpb25zCg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","ui":"desktop","yuid":"4853313451769579526"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"3570793524743949717-0-12","type":"videoSnippet","props":{"videoId":"3570793524743949717"},"curPage":0},{"id":"14565041602572409239-0-13","type":"videoSnippet","props":{"videoId":"14565041602572409239"},"curPage":0},{"id":"14760111242380436315-0-14","type":"videoSnippet","props":{"videoId":"14760111242380436315"},"curPage":0},{"id":"18014047031613014530-0-15","type":"videoSnippet","props":{"videoId":"18014047031613014530"},"curPage":0},{"id":"4452379387993914811-0-16","type":"videoSnippet","props":{"videoId":"4452379387993914811"},"curPage":0},{"id":"15126474517443423820-0-17","type":"videoSnippet","props":{"videoId":"15126474517443423820"},"curPage":0},{"id":"9924789226957970343-0-18","type":"videoSnippet","props":{"videoId":"9924789226957970343"},"curPage":0},{"id":"6806544176215780374-0-19","type":"videoSnippet","props":{"videoId":"6806544176215780374"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFNpbXBzb24gSW50ZWdyYXRpb25zCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","ui":"desktop","yuid":"4853313451769579526"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DSimpson%2BIntegrations"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"2503083031375920794759","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455699,0,0;1472350,0,63;1470499,0,0;1405819,0,3;1457620,0,73;1424968,0,37;1460717,0,84;1459297,0,48;1465969,0,43;1472029,0,24;27382,0,58;1469893,0,49;260554,0,90;1464523,0,15;1470224,0,25;1282205,0,57;1469608,0,12;1466296,0,79;1466086,0,75;1475652,0,73;1464404,0,64;1349071,0,45;1471918,0,60;1185074,0,92;90496,0,53;1404017,0,0;1470317,0,44;1357003,0,78;1396445,0,93;56262,0,71;124069,0,87;972817,0,14;151171,0,41;1281084,0,42;287509,0,32;1447467,0,79;1006737,0,25;1473596,0,86;1468028,0,55"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DSimpson%2BIntegrations","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Simpson+Integrations","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Simpson+Integrations","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Simpson Integrations: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Simpson Integrations\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Simpson Integrations — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yf7f57a52bccd36459a5b7f00a07de710","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1472350,1470499,1405819,1457620,1424968,1460717,1459297,1465969,1472029,27382,1469893,260554,1464523,1470224,1282205,1469608,1466296,1466086,1475652,1464404,1349071,1471918,1185074,90496,1404017,1470317,1357003,1396445,56262,124069,972817,151171,1281084,287509,1447467,1006737,1473596,1468028","queryText":"Simpson Integrations","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"4853313451769579526","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769579528","tz":"America/Louisville","to_iso":"2026-01-28T00:52:08-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1472350,1470499,1405819,1457620,1424968,1460717,1459297,1465969,1472029,27382,1469893,260554,1464523,1470224,1282205,1469608,1466296,1466086,1475652,1464404,1349071,1471918,1185074,90496,1404017,1470317,1357003,1396445,56262,124069,972817,151171,1281084,287509,1447467,1006737,1473596,1468028","queryText":"Simpson Integrations","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"4853313451769579526","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"2503083031375920794759","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":166,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"4853313451769579526","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"7724996081726460140":{"videoId":"7724996081726460140","docid":"34-9-2-Z38BB82D33BD79E6B","description":"This calculus video tutorial provides a basic introduction into Simpson's rule and numerical integration. It discusses how to estimate the value of the definite integral using Simpson's rule.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/904110/ebfb0592cfbc7fade876fecf56a95f39/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hr/I975AAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7EqRRuh-5Lk","linkTemplate":"/video/preview/7724996081726460140?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simpson's Rule & Numerical Integration","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7EqRRuh-5Lk\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFQoTNzcyNDk5NjA4MTcyNjQ2MDE0MFoTNzcyNDk5NjA4MTcyNjQ2MDE0MGqTFxIBMBgAIkUaMQAKKmhod2RhaGl5ZHBtZHFvZGJoaFVDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQRICABIqEMIPDxoPPxPaBYIEJAGABCsqiwEQARp4gfD9CgD-AgD1DgUC-QT_AfMI8QX4_v0A5gQLCAf9AQDxAg76BwAAAP_3AAICAAAA9w8C8f__AAANBvUDBAAAAAn3BPn-AAAAAQH5-v8BAAD7AAL9A_8AAAgEAgoAAAAA-PrvAwAAAAEIG_kAAAAAAAz6-foAAAAAIAAt6A3XOzgTQAlITlACKoQCEAAa8AF_ERP-3xDEAsoC6AHUABgCqQ0c_-8x9AHM4-sBtvbFABERzQHoFOkA9x8YALMq-P811M_-DuTrATXtAP83xgsA_QYFAQ388wI9Ey7__w4A_uX5JPwE3g0AGdXRAw7_4gAL8hP5DgzYAfMW2AEP_kAByvMmBSzhEAHcrv0B2uH_BPXq7_sFCfUA-uIL_uD1MQcYuwoDIggF_-sT2_3oFwL7zeL_AQ8n7wUM9PsNDhMAA9DKDv793xL9BDcW_8wV6_3gxycG2xIJ-fH1__8q5vcA6-vqCvfy6wMO7AEI_v4J-Rrk9PLmAu4CAv73D-Ua3vIgAC0dRhA7OBNACUhhUAIqzwcQABrAB08-xb5-2Nw8McawO6oLnb3Lgb87wP6QvDyLOb1yGwg9x4EeOjMyGD4QNHC9fD3EPDNIq72ueHQ9hnCxvKZCPD5lYTm9PHxDPXE9Wr7nFr89hUyovBeho70Z9K880wUrPE_Lz73qi8q7DifZO5V6Wz0qnxc6_sG2PMP4RLxMiUQ9LVlavbx8xjxuDh-8Ig14vQunFr1VV7Q8mAo7vOvgsD1_eIy8fBVPvLdXSz1WdNa7xqcgvRaSYr0RXnW7PvTTvPDnyjsfg1U94o-HPFj-vL3F2Z69KktfO3W9jr3OT1E9hZCYPJy0uj1K7UU8sHqbvLybIj3AA6i9wz-yO2O0Hr42Fnu7f2BYPCeSfj18-Yg94HyPPFDD173Eknc9a4zOOlMsLT0a8IM8VZQgPGAhEz0b3IE9TojOO_6emLxi-Aa8q4NVO262I735WHA9CRLAPFuVlD3qDqi9MDCGvKpdqD1LcA88bjVrvFhrbb1Cj967iz7VvLJgh72R0pw9-U4KO5k6WTw5oau8XilsO99mxj05tfO9hx8YPGMqfbyjRcy9hypGvDzjljwnvpo8mMqyOk7wzT1mM-e9_1cAPArhTL22vkg9tvNcO1ZrPLxSr7C9YscYO_gmrL3553O93m2DO_xlgb2OoVI83-tavK6JAL2LH3497JF5OmwB57swR--9P5qgupxygD1qPEc8bToCvMh-1j0ChXY7UnTbOPFoYz32bmK9wbcputHVkb31Nqy8IifhOjwilb1VLtS9WaDQODy98j1KyFG9V8GOOSTQxbxtJlU9QdmlN9bsp73g-3Y8-TskOaeHUj05uV-9rEGGuNgCjDyDaM29LiTCuCUlmD32JZs82_SDOU5hJbys1bg9joYWuGsewb3ErqK9WfgiOPwBCj1l84K8JqcTtj6-kz2RdZ28ME3zN6Yah72k3x49PRheuS1zPz0A-HG9nIObuLNNIry1aOY8425pNyOsjD30bAa-z3ClOXklN7hUZB49nqiSOKiE8Ty5nYe8_seCNSNhhDy6Z709JV93t9PPCDxmMdG9PkuXNgu1JjyVfy08YJkqOKBQz70V74Y9wtICODfIXz26EkE9z9CTOGoFrL029ra7K9qluE8ONT2cICA9ylJHOC-mGT54O8w8_OYbuSvcE7xklQK-cT0buLvtgryX5qG9-jj_t5G_Cr2DHpU9i0ORN_Z0ej3gD9-9P5mbt8r0cD0i4Ss-8cuKOOcgQ70LdHI9BXWVuMPz0r2OigS9h7LJtusWBr1JMoa8u4WfOCAAOBNACUhtUAEqcxAAGmAc9QAkClHj8Qwy6NfE9BLd1PS7DNDr__T7AP_03PT0QM-_JAj_CNoD1qwAAAD_9QgAsQAMb9vZ31LwCw39v-E3IX___R3Fv_7g9NM09wwhISAwNFIA5SW_C-7WwGAAMR8gAC3E2R87OBNACUhvUAIqrwYQDBqgBgAAJEIAAPjBAAAoQgAAVMIAAPBBAACgQAAAuEIAALBBAAA0wgAAKEIAAHBBAABIwgAALMIAADBBAAAwQQAAsEEAADRCAADQwQAAoEEAAABAAACgwQAARMIAAJTCAABAQAAAVMIAAODAAADYQQAAiMEAAGBBAAAAQAAAZMIAAKDAAACmwgAAYEEAAODCAAAwQQAABEIAAHxCAAC4wQAABEIAABxCAADgwAAA4EEAAMDBAABYQgAA0sIAAEDAAACmQgAA2EEAAExCAABAwAAAUMIAAPjBAAAIQgAA4EAAAIRCAADqwgAAyEEAAIBBAAAwQgAAuEEAAKTCAABMwgAAQMIAAHDBAACkwgAAEMIAAFzCAADoQQAAEMIAAARCAABkQgAA8MEAAOhBAABAwgAAaMIAABDBAACgwAAAQMEAAGBBAAAgwgAAnkIAAADBAAAEQgAAEMEAADxCAABAwQAAAEEAAABCAAAQwgAAsEEAAFRCAAB4wgAAmEEAALhBAAAEwgAAyMEAAPDBAAAAQgAAgEIAAIDCAADgQQAALEIAAABBAACQwgAAgMEAAJhBAAAAQQAAQMEAALBCAAAcQgAAUEIAAAAAAAC4QQAAMMEAAIBCAAAAQgAAHMIAAETCAADIwQAAqMEAAFDCAADYwQAAwMAAAADBAAC4QQAASMIAAFDBAABAwAAAFEIAAATCAADgwAAAAEEAAKJCAAAYwgAAbEIAAADAAABgQgAAqMEAAIbCAAAwwQAACEIAABRCAADAwQAA2EEAANhBAABAwQAAQMEAAGDBAADgwAAAcMEAAChCAAAoQgAAAEEAAMBBAACQwQAA8MEAAEzCAABgwgAAQEAAAJTCAADAQQAAAEEAAODAAAC4QQAAoEEAAFDBAAA0QgAAgkIAAIBAAADYwQAAyEEAAEDBAAAcwgAAdMIAAMBAAACowQAAcMEAAMBAAACAQgAAisIAABTCAABkwgAAcMEAAFhCAADQwQAATMIAAODBAABAwQAAmMEAAPhBAAAAAAAAEMEAAJDBAACYQQAAXEIAAIjBAACIwQAAwMEAANjBIAA4E0AJSHVQASqPAhAAGoACAABMvgAAE78AAGw-AABEvgAAJL4AALo-AAAXPwAA6r4AAKa-AACKvgAAFL4AANK-AACIPQAAvj4AABy-AAAUvgAAbD4AAHA9AAD4PQAALz8AAH8_AADgvAAABL4AAAS-AABsvgAAcL0AAJ4-AABMPgAAgDsAAGQ-AACGPgAAor4AAPi9AADgPAAA2D0AAAy-AACaPgAAir4AAOK-AABkPgAANL4AAIg9AAD-PgAAUD0AADQ-AABAPAAA4LwAAKq-AACgvAAAEL0AAHy-AAB0PgAAXD4AAGQ-AACAuwAAuD0AAFM_AABMPgAAJD4AAPI-AAAwPQAAZD4AAHA9AACSviAAOBNACUh8UAEqjwIQARqAAgAA4DwAAEQ-AABUvgAAKb8AALa-AADgvAAAqj4AAIg9AAD4PQAAgDsAABy-AACKvgAAuD0AAEC8AAAwPQAAgDsAABA9AAARPwAAHL4AANY-AACgPAAAlr4AAHC9AAAEvgAAQLwAAMg9AABcvgAAmL0AAIC7AAAMPgAAiL0AALg9AACCvgAAUL0AAIi9AABwvQAAHD4AAMi9AADovQAATL4AAKA8AAAcPgAAED0AAMg9AACAOwAATD4AAH-_AADIvQAAfL4AABy-AADoPQAAZD4AAKC8AACSPgAAJL4AACw-AABQvQAAiL0AAPg9AADIPQAAgj4AAOi9AABwvQAAkr4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7EqRRuh-5Lk","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7724996081726460140"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3999315767"},"17583092230282287138":{"videoId":"17583092230282287138","docid":"34-5-0-Z387CD48E32055E9A","description":"We introduce Simpson's 1/3 and 3/8 rules for numerical integration simpson's rule example • Simpson's rule example || numerical integr...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4578586/bdbf5aa24eb7fc9ab9a0803f1151ad00/564x318_1"},"target":"_self","position":"1","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnXUWwP9OUxw","linkTemplate":"/video/preview/17583092230282287138?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simpson's 1/3 and 3/8 Rules for Numerical integration","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nXUWwP9OUxw\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFgoUMTc1ODMwOTIyMzAyODIyODcxMzhaFDE3NTgzMDkyMjMwMjgyMjg3MTM4aq4NEgEwGAAiRBowAAopaGhidHVoeWlxbm5ybGpnaGhVQ25DN0JuVG9VVVBaNEFhSXNlZUJBM1ESAgARKhDCDw8aDz8TpgaCBCQBgAQrKosBEAEaeIH8_wgBAAEA9Q4FAvkE_wEBDO7_9v79AOYDBP0J_QIABPoP_gYBAAAJB_3_CwAAAP0GAfv6_gAAEAH3_AQAAAAN-fj8_gAAAAr8_v_2-v0E7fP9DAT_AAAD-v0EAAAAAPwG-Pz5_gABCBv5AAAAAAAA9fT-AAAAACAALUrE1Ds4E0AJSE5QAipzEAAaYDMIAB0kI__nCynjytHmGgj09t0P4AD__AcA_Q3m2ftC7NUq_P8e0fUAvwAAAP0L_AXIAAJQ-u_OPhMmFxbg_A_pf_kc6QX3_-UK4xjRCiwWBx8fKgDiCgAB0L_cSg4oBSAALcZDSzs4E0AJSG9QAiqvBhAMGqAGAADIQQAAAEEAAIxCAABgwQAAmEEAAMhBAACSQgAAgMEAAFBBAAAMQgAA4MAAAOjBAAAwwgAAoMAAAIjBAAAgwQAAAEIAAJDBAAB8QgAAcMEAAJhBAACwwQAAksIAAHDBAABwwgAAkEEAAIA_AAAAQQAAMEEAAFDBAABwwQAAoMAAALjCAACQwQAA_sIAAAAAAABAQQAAKEIAAMBAAACIQQAAUMIAAETCAADgwAAA0MEAAFBBAAAwwgAAAMEAAJBCAAAgwQAADEIAAMjBAACgQAAAEMIAAPBBAABwwQAAYEIAABTCAAC4wQAAlkIAACRCAABAwQAAssIAAEzCAAAIwgAAoEEAANjBAADgwAAAcMEAAJDBAACgwQAAHEIAAIhBAACkwgAAMEIAAETCAABgwQAAwMEAAIDBAABEwgAAHMIAAEBAAACCQgAAAMEAAIBBAAAQQQAAgL8AAADBAADgQAAAEEEAAJjBAACYwQAAukIAACzCAAAsQgAAfEIAAHjCAACQwQAAUMIAAPhBAAAoQgAAmMEAAODBAABcQgAAEEEAANzCAAAAQgAA2EEAADBBAADIQQAAgEIAABBCAAC4wQAALMIAAOjBAAC4wQAASEIAABRCAABQwQAAqMIAAEBAAAAYwgAAYMIAADBBAAAIwgAAiMEAAEBBAAA8QgAAwMAAAKhBAAAAQQAAcMEAAATCAAAgQQAAjkIAACBCAADWQgAA6EEAAKRCAADAwQAAPMIAALBBAACIwQAAgkIAABzCAACQwQAACEIAABTCAADAQQAATMIAAHBCAAAAQAAALEIAAKhBAAD4wQAAGEIAAEDBAADgwQAAHMIAAAAAAACEwgAAjsIAAIA_AABMwgAAQMAAACBCAAC4QQAAYMIAAKBCAACSQgAA6EEAAJDBAAAEQgAAIMEAAIA_AACmwgAAwMAAAMBBAADYwQAA-EEAAFBBAABowgAA-MEAAATCAABIwgAAYEEAAIhBAAAUwgAAKMIAALhBAAAAwgAAWEIAAEDAAACAwQAAkEEAANhBAACaQgAAIMEAADTCAACAwQAAmMEgADgTQAlIdVABKo8CEAAagAIAAKi9AAAVvwAAxj4AAAS-AAAEvgAAnj4AAL4-AAA1vwAAJL4AAGS-AACevgAAOb8AADQ-AAD4PQAARL4AALg9AABEPgAAiD0AALg9AABHPwAAbT8AAFQ-AACyvgAA4DwAAOC8AABEvgAA9j4AALi9AABsvgAA6D0AAGQ-AAAwvQAAML0AAOC8AABMvgAAZL4AALg9AAD4vQAAA78AAIA7AABUvgAAgj4AADk_AADgvAAAmL0AADA9AABQvQAAzr4AABA9AACYvQAAFL4AAJ4-AACOPgAAqj4AAJK-AABwvQAAfz8AAFw-AACYPQAAHz8AAFQ-AACuPgAAMD0AAJK-IAA4E0AJSHxQASqPAhABGoACAABAvAAAEL0AAGy-AAA5vwAAmr4AAKg9AABsPgAA4DwAAIC7AACovQAAPL4AAES-AAAQvQAAQLwAABQ-AABAvAAATL4AADE_AAA8vgAA9j4AAFA9AADWvgAA4LwAAEy-AAAwvQAAcL0AAAS-AACYvQAA4DwAAEC8AABQvQAAyD0AAMi9AABkvgAAED0AAIC7AACIvQAAiD0AAJi9AAAEvgAATD4AAIg9AACIPQAA6L0AAKi9AADIPQAAf78AAKK-AACAuwAAjr4AAEA8AAAwPQAAiL0AAGQ-AABAvAAAFD4AAHC9AAAkPgAAQDwAADw-AAB0PgAAuL0AAFC9AABEviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=nXUWwP9OUxw","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17583092230282287138"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11433399204273096245":{"videoId":"11433399204273096245","docid":"34-8-5-Z24D1924478D91340","description":"\"Learn how to solve single integrals using Simpson's 1/3rd Rule in this detailed tutorial! We’ll break down the concept, walk through step-by-step calculations, and solve examples to help you...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1385328/a37edace7444e5760d02d7484e146cc4/564x318_1"},"target":"_self","position":"2","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Daf7m38CZAys","linkTemplate":"/video/preview/11433399204273096245?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Numerical Integration | Simpson's (1/3) rd Rule | Unit- 03","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=af7m38CZAys\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFgoUMTE0MzMzOTkyMDQyNzMwOTYyNDVaFDExNDMzMzk5MjA0MjczMDk2MjQ1aq8NEgEwGAAiRRoxAAoqaGhsdHN4a2tyemFkc2ViZGhoVUNoZm9BOEw2a1dVQ0tvRjBzYmtCUXl3EgIAEioQwg8PGg8_E6EHggQkAYAEKyqLARABGniB-AkPAQAAAPIKBQEDA_4BCwDvAfb__wDlAwT9Cf0CAOwECPIAAAAA-_sG_AMAAAD5B_ry9v4BAA3_7PwCAAAAAvv4-gEAAAAAAgH8_gEAAPD7_AMDAAAADf79AQAAAAAA__D8AAAAARIR9QYBAAAAA_H7_AAAAAAgAC3KANE7OBNACUhOUAIqcxAAGmAXCAAFDQ8G3BMa8M_k3AsF-f7W_ef8__cAAA4IBOHqNt66DPv_GMD_-b8AAAD28f4N1AAHUOvszUYH9wb_3vIW-3_z8t3y8wDVBvE37BUnFwkTGjgA0yDoC_LO1VkUIgcgAC2odU87OBNACUhvUAIqrwYQDBqgBgAA2EEAAETCAADuQgAACMIAAKBBAABAwQAAAMEAAEDAAADAwQAAgL8AAMhBAADIQQAAcMIAAADBAAA4QgAAcEEAALBBAADowQAAmEEAANDBAADYwQAA0MEAAEzCAACAQgAAREIAAAAAAAA4wgAAhsIAAEDBAAB4QgAAgMEAANhBAAD4wQAAgMAAAGjCAAC4wQAAcMEAAKhCAABMQgAAIEIAAPDBAAAAQAAA-MEAABzCAACAQQAAXMIAAADBAABYQgAAAEIAAChCAAAIwgAAKMIAAIA_AAAAQgAAiEEAABBBAACowgAAQMAAAABAAAAoQgAAgEEAAODAAACOwgAAiMEAAAhCAAAAwgAA4EAAABjCAAC0wgAAiMIAAIpCAADIQQAA8MEAAL5CAABAwQAAbMIAABDCAAB4wgAAFMIAADBBAADowQAALEIAABjCAAAsQgAAiEEAAMRCAAAYwgAA6EEAALjBAAAMwgAA-MEAAKhBAADowQAAoMAAAJDBAACKwgAABMIAADDBAADcQgAAWEIAADDCAADGQgAA4EEAAK7CAADIwgAASEIAAEDBAAAIQgAAIMIAAFRCAAAoQgAAgL8AAMDAAABgwQAAuEEAAAxCAABgwQAAGMIAAFjCAAB4wgAAAAAAADzCAADYQQAAwMEAAEBAAADwQQAAgD8AABTCAABQQQAAUMEAACDBAADAwQAAUMEAAJZCAACAwAAAEMEAAHDBAACgQAAAhsIAAFTCAADgwAAAQMEAAMBAAACYwQAAVEIAAGBBAAAIwgAAQEAAAOBBAADAwAAAwEEAACxCAADAQQAASMIAAIC_AADAQAAAmMEAAOjBAAAYwgAApkIAAGzCAABEQgAAsEEAAJjBAABAQQAAAEIAALBBAACcQgAAIEIAAIC_AAA0wgAAJEIAAKBBAADgQQAAAMIAANDBAAAsQgAAOMIAAIBBAAAsQgAAdMIAAFzCAAAgwgAAAEIAAMBBAADwwQAAlsIAANhBAADIwQAAgMAAAIDBAABAwAAAQEEAAAAAAAAQQgAAsEEAAEDBAAAAQgAAuMEAABzCIAA4E0AJSHVQASqPAhAAGoACAACCvgAAlr4AALY-AACIvQAAcL0AADw-AACmPgAAC78AAFy-AACCvgAAFL4AAAO_AAD4PQAAFD4AADS-AACAuwAAFD4AADA9AABAPAAAFz8AAH8_AACoPQAAXL4AABC9AABUvgAAEL0AAPI-AADIPQAAgDsAABA9AAB0PgAAiL0AAOi9AABEPgAAiL0AAMi9AAAMPgAApr4AANa-AAC4vQAApr4AAMg9AACuPgAAQLwAAIg9AAD4PQAAND4AABS-AACIvQAAQDwAAIi9AADgPAAAXD4AAKo-AACSvgAAoLwAAFs_AABEPgAAgLsAANo-AAD4PQAAmj4AAJg9AACiviAAOBNACUh8UAEqjwIQARqAAgAAFD4AABQ-AADYvQAAC78AAHS-AACgvAAAfD4AAAQ-AAC4PQAAgLsAAAS-AAAsvgAAJD4AAIi9AADYPQAAQLwAAOC8AAAfPwAA-L0AAO4-AAAQPQAAkr4AAKi9AAAUvgAAQDwAAHC9AAC4vQAAqL0AAKA8AAD4PQAAmL0AAIg9AAA0vgAAEL0AAFC9AADgvAAAiD0AAHC9AAAMvgAAqL0AAKC8AADIPQAAqD0AAKA8AACAuwAABD4AAH-_AAAMvgAAXL4AAFy-AAAwvQAAZD4AAEC8AAAUPgAA6L0AABQ-AACovQAABL4AAFA9AABkPgAADD4AAPi9AAAwvQAAbL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=af7m38CZAys","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11433399204273096245"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2772843383503300843":{"videoId":"2772843383503300843","docid":"34-9-1-ZD1ACA7E269B9CD07","description":"Derivation of two methods for performing numerical integration – the first, the trapezium or trapezoidal rule, is a first order method and the second, Simpson’s rule, is second order.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1671742/bcef1640f8d771994b03a460a9f80566/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/YTRdRgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkQp4f_HZXYc","linkTemplate":"/video/preview/2772843383503300843?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Numerical Integration - trapezium rule and Simpson's rule","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kQp4f_HZXYc\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFQoTMjc3Mjg0MzM4MzUwMzMwMDg0M1oTMjc3Mjg0MzM4MzUwMzMwMDg0M2qIFxIBMBgAIkUaMQAKKmhodXVzbHd1a3VueGhnZWJoaFVDdjJ1NmJGYzdTU0ZzUEhmOThNNTBNZxICABIqEMIPDxoPPxPYBIIEJAGABCsqiwEQARp4gfj-CAT8BAD5BwsG-Qb9AvQI8QX5_v0A9QYC_wcB_wD4AAX6BwAAAAT4CAQAAAAA9w8C8v__AAAMBvUDAwAAAAf__vn-AAAA_QL3BP4BAAD1BgICAwAAAAD_AAkAAAAA-P74_P__AAAHGvkAAAAAAAX8-f4AAAAAIAAtk7jeOzgTQAlITlACKoQCEAAa8AFvEj791xW0As4MDP_HMtoBoCr2AAwp3v-B8e0B6E36ASbY_gDPHR__NObUAKcFHgBOBe_-A-EeAOreOv4cDwIA_tU0ASToFgJ2CCYATrzc_uooJwDt-e0Bx__FAdQ6yfxV9gL-GfatAQ3kowv55jwBCfnzAwjK9QYdyfsBExf2Cusax_z0LQcGv-Am_wQPQf7k_O0IGVwF_cPx8QNQ8v4GAb3uA0EX3QH_zQcOAArx-NoE_gXA6OcEMA8H_-ru7wDG6gf7Fc8G7AWwHQzK_w8C7xoI-SIMEQkFBOEW8swB--5M_QfgPQwBoQn1DAPFCAYgAC1Pk-Q6OBNACUhhUAIqzwcQABrAB2oW0L6slBk9Uw33u-YQZ70WqEC9LB-Dve0Dqr1f_KM8ONiLvU0yEj6Zib08Y4fnvLPwdb7H0Ja8RWRAOUC9OT7iG6o5DKXYuc_AeL6TgU28iLYIvbeyJL4pFcM8RNBivGyw8DwKa6E7Dtmjuu8RGz3BxL-9CJABvfdWtD1koCE9MpkgvaSYk7pqNLm6kXfzvG4wuTzZBUi9aqHHOy9R_T2xBWC6n6utvHPhdjwFSu88grmMPHK1r71iWTq9523RvMkibT1FhNo7JTMoPLHeCD0OG0C7eKevu-j-RTwUMRY9Gr39u5y0uj1K7UU8sHqbvOrxVjwwHtS8M3dUuXf1Cr6gny49XPlRvPsFOz7aN9c9RHXKOxK97L2F9gA99EOZO1w-rTz4u6G9RF1aPCieAz6srVi88eXPOymY8T2N-wU9ciJRuyTRDbyZaCs9WJBmPFVkiT32l909mPJGvPPnG72xeYu7ICQwvK-BBDvak_q7UFh7uzoRMz1KSpW81LGQO9kuBrzMofs82jPwOtmIlrtLnmG9kgUOvCRGDz2qO4C9TXQOuxiwJD0xHd88VYXIOw1EAzzuCdK9NVOtuy8yojsUFPW8GPaLO8o-_ryK84a9Eo6TO0M0n7wKAwA9CRUgu3DBiDwHlZ288HAavJSal73z2OQ7au7wO3stLb1HY7O98L6IOYlmWT0B8ZQ90X68uBr4Nr1qS_09aGbxuRiyCj5lnsO7GNGCOMBezL1gGFW9KaUQu2PELz2WNxE9642cu5NikT2mgT-9g5OsuSYDWz1pcUa88oRzO3kB2zxDyPk9CuouuKxTpTweWGm8f3ahOQOVob0XHVq9nbvPOfFrj70yv6S91aMPOqnTKrvAXmE83VtrNj5Cnb3oqlS9lodOuXTrtbxVubW8nbkeuSaKlT1uhnu9K2vnOLMSTjwQBOg94tC9uDJPeDy09PK8Z6-ZuA_Rqrtvngo-oKIZuQXsWbzAGca7udw5OYszFj40DvU9riWHNjViIb05pl08hNDCt4O41zwZfxM8C0WUOB75470b65y9HMKFuOuEIT3_gei84cqnOLjkKL7Rf4W8nfgauS_IUT3PVem8-VIzOKck6z3pdRi64lpFuC1ikz0UUPK7BWYlt9RD9D1WYE09lItduagmp71UPcS9HLiDuLIEAz2NlHO7o5FrtxGDar2r5XO80x_gN-wDvTt81A--F_rcuIqWVz0QWPk9jRdAOCXNXTstHmM9QRELuX4nzL0svIs9ySnBOOiGpjwal2A8VkB8OCAAOBNACUhtUAEqcxAAGmAs9QD-8ycI2hIm4N22wu_h_O2k-rEZ_wPh_w3rz9sNL8vSBgwAF9MXzJ0AAAD59cUe5wAkfdjVx1cJKCPXygQr838P5C3XvQ4n6NQtCOcXNSEXQTUArQfDF0zE40H-cDcgAC05yBI7OBNACUhvUAIqrwYQDBqgBgAAUMEAAIDAAAAEwgAA4EAAAIjBAADgQQAAvEIAABBBAAAkwgAAMMIAAMhBAADYQQAAWMIAALBBAAA4wgAAgMAAAKBAAADQwQAACEIAAKBAAAAgQQAAuMEAAEDBAAAQwgAASMIAAGxCAABMwgAAisIAAIA_AAAAwQAAYEEAAKJCAACAQAAAGEIAAETCAAAQQgAAiEEAAKRCAABwwgAALMIAAABAAAAQwgAAIEIAAEjCAAAcQgAAyEEAALDCAADYwQAAIMEAAKDAAAAowgAAkEEAAOjBAACowQAAyMEAAARCAACswgAAsMEAAMhBAACwQQAAZEIAAATCAABQwQAAiMIAANhBAADgwQAAQMEAAMjBAACgQAAA3sIAABBCAAAAwAAAhsIAADDBAAD4wQAA4MEAAABCAACAwAAAqEEAABhCAABwwQAAgEIAAAzCAACAwAAAlEIAAFDBAACQQQAAFEIAACjCAAAAQQAAiMIAAAhCAAAYQgAAgEIAAHDBAACOwgAAwEEAAHDBAACcQgAAcEEAAFDCAADQwQAAREIAALhBAACSwgAAkEEAAGDBAAAkQgAAJEIAAJZCAABYQgAA4EAAACzCAACAwAAAQMEAAJhBAADwQQAAgEEAABDBAACQQQAAQMEAAAjCAAB0wgAAEEEAAAjCAACYQQAAAMAAAPBBAAAAQAAA2MEAALjBAADywgAAyMEAANhBAAAQQgAAHMIAAIpCAACIwQAArsIAAOBAAACYwQAAREIAAEDBAACgQQAAUMEAAMDBAADIQQAAoMEAABDBAAAsQgAAwMEAACRCAAAEQgAAwEEAAABBAAAAQQAA8MEAANDBAACAQQAAEEIAAJBBAAAQQQAAFMIAAHzCAADQwQAAaEIAAIA_AACIQgAAVMIAAKjBAADYwQAAQEIAALhBAACGwgAAQMIAALDBAAAwQQAAoMEAAABAAAA0QgAAuEEAAAzCAAAAwgAAvsIAALhBAACowQAAYMIAAIBAAABIQgAAgMEAAGDBAACwQQAAEEEAAJjBAACWQgAApEIAAKBAAAAQQgAAOMIAABTCIAA4E0AJSHVQASqPAhAAGoACAAA8vgAAyr4AAKo-AAAcvgAAVL4AANI-AACGPgAA3r4AANa-AACOvgAAmL0AAK6-AAAEPgAAkj4AANi9AACYvQAA2D0AAKC8AAAcPgAAJz8AAH8_AADIPQAAFL4AABC9AAAEvgAAcL0AAHQ-AAA8PgAA6L0AAHw-AAAcPgAAJL4AAFS-AADIPQAAML0AAEy-AAAsPgAAlr4AAN6-AABcPgAAVL4AAKC8AAAPPwAAXD4AAPg9AAAwPQAAML0AAM6-AACIPQAAgLsAACy-AACSPgAARD4AADQ-AAAUvgAAMD0AADs_AACKPgAALD4AAAM_AACgPAAAfD4AAOA8AAB0viAAOBNACUh8UAEqjwIQARqAAgAADD4AAIo-AABQvQAADb8AALa-AADIvQAAfD4AAAw-AADYPQAAPD4AAJi9AABkvgAAoj4AAAy-AADIvQAA4LwAAFA9AAApPwAA4LwAAMI-AACIPQAAdL4AADA9AAAEvgAAgDsAAHA9AACYvQAAED0AAOC8AADoPQAAmL0AAJg9AABkvgAAgDsAAFS-AAAEvgAAqD0AADA9AADIvQAAyL0AAMg9AABwPQAA4DwAAKC8AADYPQAAPD4AAH-_AACovQAAzr4AAJi9AAD4PQAAqj4AACQ-AAAkPgAAZL4AAOg9AADYvQAAgLsAAKC8AACAOwAAHD4AAMi9AAD4vQAAqr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=kQp4f_HZXYc","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2772843383503300843"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"325869570"},"3409280575546457483":{"videoId":"3409280575546457483","docid":"34-5-17-Z6DC21BFB9682CE9D","description":"\"Learn how to use Simpson's 1/3rd Rule for solving double integrals in this comprehensive tutorial! We’ll break down the theory behind Simpson’s Rule for double integration, guide you through...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1964843/d42d8edb6c4f4572aad7d583dc377cc5/564x318_1"},"target":"_self","position":"5","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DyPemYOJYmYw","linkTemplate":"/video/preview/3409280575546457483?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Numerical Integration | Simpson's (1/3) rd Rule | Double Integration | Unit- 03","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=yPemYOJYmYw\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFQoTMzQwOTI4MDU3NTU0NjQ1NzQ4M1oTMzQwOTI4MDU3NTU0NjQ1NzQ4M2qvDRIBMBgAIkUaMQAKKmhobHRzeGtrcnphZHNlYmRoaFVDaGZvQThMNmtXVUNLb0Ywc2JrQlF5dxICABIqEMIPDxoPPxO8DIIEJAGABCsqiwEQARp4gfgJDwEAAADvCAL8-wEAAQsA7wH2__8A7QcHAAL_AADxAg_6BwAAAAQCCQUCAAAA-Qf68vb-AQANBvUDBAAAAAL7-PoBAAAAAwsC-v4BAADr9wL_AwAAAA3-_QEAAAAA9_34_P__AAASEfUGAQAAAAPx-_wAAAAAIAAtygDROzgTQAlITlACKnMQABpgHw4ACBkF-dwID-za3eEDA_vz3QH2BgDyAQAdBgjc9y7lwQH3_yTC-vTBAAAA3vEGHuIAB1Dt9s5ACAAGCM_vFfx_Cfn79PD4zA3qRPYXGw0SHgg7AMwX2wns3OdaBykOIAAtNv1ROzgTQAlIb1ACKq8GEAwaoAYAAOBAAABUwgAAlEIAACTCAAAAQAAAUMEAAFBBAADAQAAAHMIAALBBAABAQgAAQMEAAJ7CAADAwQAAaEIAAEDBAAAcQgAAuMEAAMDAAAAMwgAAoMEAAGDBAABEwgAAkEIAAFBCAAC4wQAARMIAAIjCAACAQQAAaEIAAADBAACQQQAABMIAAODAAABkwgAAsMEAABDBAACSQgAA-EEAAFhCAACIQQAAkEEAAKDBAADYwQAASEIAAJzCAACowQAAEEIAAIJCAABAQQAAuMEAAHDCAACAPwAA4EEAAPBBAACAQQAAysIAAIBAAAAQwgAACEIAAIxCAAAAAAAATMIAAKjBAACAQQAA2MEAAMDAAACGwgAALMIAAI7CAABcQgAA2EEAALjBAAA4QgAA4EEAAKDCAAC4wQAAGMIAAAAAAACAvwAALMIAAABCAACgwAAAIEIAAJhBAADYQgAACMIAAARCAAAAQQAA-MEAABBBAAAwQQAAQMEAALjBAACgwQAARMIAAPjBAACQQQAArEIAAAhCAACCwgAA8kIAAARCAACUwgAAisIAAJhBAAAQwQAAdEIAACTCAACKQgAA4EEAAERCAAAAQQAAgEEAAExCAAAUQgAAMMEAAKDBAABgwgAATMIAAARCAABIwgAA4EAAAIjBAAAoQgAAZEIAADDBAAA4wgAAQMEAAGDBAACYwQAAcMEAACDBAABgQgAA2MEAAADCAACAwQAAgEEAAFTCAAAcwgAAkMEAAOjBAAAgwQAA4MEAAFBCAAAQwQAAiMEAABTCAADgQQAAuMEAAMBAAAAMQgAA-EEAAJjBAADAQAAAcMEAABDBAAAEwgAAeMIAANZCAACawgAAiEIAACBCAADYwQAAQEEAAExCAABEQgAALEIAAABCAAAwwQAAVMIAAARCAACIQQAAAEEAAIDAAACAPwAACEIAAKjBAAAsQgAAMEIAAOjBAADQwQAAXMIAABRCAAA4QgAAOMIAAIbCAABIQgAAwMEAAIC_AACowQAAAAAAAEBAAACgwQAA8EEAAODAAAAwQQAAAMAAAETCAACQwiAAOBNACUh1UAEqjwIQABqAAgAAjr4AAJ6-AAC6PgAABL4AAOi9AAB0PgAA-j4AADG_AAAcvgAAZL4AAKq-AADmvgAAcD0AAEw-AACGvgAAqD0AAEQ-AABAvAAAmD0AAC8_AAB_PwAAoDwAABC9AADYPQAAZL4AAKg9AAADPwAAcD0AAEw-AACAuwAAND4AAMg9AAAMvgAAND4AAKC8AAA8vgAAPD4AAI6-AACuvgAAfL4AAES-AACWPgAAjj4AAPi9AADgvAAAcD0AAAQ-AACavgAAJL4AABS-AABQPQAAcD0AAEQ-AADOPgAAHL4AAHC9AABzPwAAhj4AACy-AAAFPwAA2D0AALI-AAAwPQAAor4gADgTQAlIfFABKo8CEAEagAIAAIg9AAD4PQAAuL0AAC2_AACGvgAAiL0AAHw-AABQPQAA-D0AADA9AADovQAAPL4AAAw-AAC4vQAA6D0AAEC8AADIvQAAFz8AAIi9AADKPgAAgLsAAIq-AAAQvQAAFL4AABC9AAC4PQAATL4AAMi9AABAPAAAUD0AANi9AADYPQAAFL4AADS-AACYvQAAQDwAACQ-AADgvAAABL4AABy-AACIvQAAND4AAEA8AADgPAAAMD0AAMg9AAB_vwAA-L0AAOi9AABkvgAA4DwAAIg9AACgPAAAVD4AAMi9AAAMPgAAML0AAHy-AADgPAAAFD4AAEw-AAAsvgAAmL0AADS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=yPemYOJYmYw","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3409280575546457483"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5894376776410279781":{"videoId":"5894376776410279781","docid":"34-9-11-Z061234BBF64533F2","description":"\"Learn how to solve single integrals using Simpson's 1/3rd Rule in this detailed tutorial! We’ll break down the concept, walk through step-by-step calculations, and solve examples to help you...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4264160/284c8a52360aa4457d9901f72f574e58/564x318_1"},"target":"_self","position":"6","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHIqAWqa5t5w","linkTemplate":"/video/preview/5894376776410279781?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Numerical Integration | Simpson's (1/3) rd Rule | Unit- 03","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HIqAWqa5t5w\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFQoTNTg5NDM3Njc3NjQxMDI3OTc4MVoTNTg5NDM3Njc3NjQxMDI3OTc4MWqvDRIBMBgAIkUaMQAKKmhobHRzeGtrcnphZHNlYmRoaFVDaGZvQThMNmtXVUNLb0Ywc2JrQlF5dxICABIqEMIPDxoPPxPABYIEJAGABCsqiwEQARp4gfgJDwEAAADyCgUBAwP-AQsA7wH2__8A5QME_Qn9AgDsBAjyAAAAAPv7BvwDAAAA-Qf68vb-AQAN_-z8AgAAAAL7-PoBAAAAAAIB_P4BAADw-_wDAwAAAA3-_QEAAAAAAP_w_AAAAAESEfUGAQAAAAPx-_wAAAAAIAAtygDROzgTQAlITlACKnMQABpgFwkABg0QB9sSHPHR49gMCPv91vzs-__7_gANAwPh6TTdvQz8_xnD_vbAAAAA-vX5DdMACk7q7M5GCfMI-9_wFPh_8_Hh8vEC0wfwN-sTKBYPFRw0ANgf5Q320tNWDiIJIAAtnSFSOzgTQAlIb1ACKq8GEAwaoAYAAABBAABYwgAAmEIAACzCAAAAAAAAMMEAACBBAACgQAAAHMIAAKBBAABAQgAAMMEAAKTCAADIwQAAbEIAACDBAAAUQgAAoMEAAIDAAADwwQAAqMEAAEDBAAA0wgAAlEIAAFxCAAC4wQAAQMIAAITCAACAQQAAcEIAABDBAACYQQAABMIAACDBAABcwgAAyMEAAADBAACOQgAA-EEAAERCAACAQQAAiEEAAMDBAAD4wQAAQEIAAJLCAACYwQAAIEIAAIBCAABQQQAAoMEAAGzCAADgQAAA4EEAAPBBAACQQQAAvsIAAABAAAAMwgAAAEIAAIpCAABAQAAAWMIAAKDBAACAQQAAyMEAAODAAACGwgAAMMIAAIbCAABYQgAAwEEAAKjBAABAQgAA4EEAAKjCAADIwQAAGMIAAIA_AACgQAAAIMIAAARCAAAAwAAAHEIAAIhBAADYQgAA6MEAAAhCAADgQAAABMIAAIBAAABAQQAAkMEAAMjBAACgwQAARMIAAAjCAACgQQAAtEIAAAxCAACAwgAA8kIAAPhBAACWwgAAlMIAAKBBAAAQwQAAhEIAACTCAACMQgAA6EEAAEBCAAAAQAAAiEEAAFxCAAAYQgAAYMEAAKDBAABYwgAATMIAAPBBAABMwgAAMEEAAIjBAAA0QgAAVEIAAHDBAAA0wgAAEMEAAHDBAACYwQAAmMEAABDBAABoQgAA0MEAAOjBAACAwQAAQEEAAFDCAAAgwgAAmMEAAPDBAACAwQAAyMEAAFBCAAAQwQAAiMEAAPDBAADYQQAAuMEAAOBAAAAQQgAA8EEAAJjBAAAwQQAAUMEAABDBAADowQAAXMIAANxCAACcwgAAikIAAChCAADYwQAAQEEAAFRCAABAQgAAKEIAAAxCAAAQwQAAYMIAAABCAACYQQAAAEEAAIDAAACAPwAA8EEAALjBAAAoQgAALEIAAOjBAADgwQAAcMIAABhCAAA0QgAAOMIAAILCAABgQgAA2MEAAIA_AACIwQAAgD8AAEBAAACIwQAA6EEAAMDAAABAQQAAwMAAAFDCAACKwiAAOBNACUh1UAEqjwIQABqAAgAAfL4AAJa-AAC2PgAAiL0AAFC9AAAsPgAAoj4AAAu_AABUvgAAfL4AABS-AAD-vgAA2D0AABQ-AAA0vgAAgLsAABw-AABQPQAAQDwAABU_AAB_PwAAuD0AAFS-AAAQvQAAVL4AAOC8AADuPgAA2D0AAEA8AAAQPQAAdD4AAHC9AADovQAAPD4AAJi9AAC4vQAADD4AAKq-AADWvgAAyL0AAKK-AADYPQAApj4AAEC8AABwPQAA-D0AACw-AAAEvgAAcL0AAOA8AABwvQAA4DwAAEw-AACmPgAAjr4AAEC8AABbPwAARD4AAEC8AADaPgAA-D0AAJY-AACYPQAAnr4gADgTQAlIfFABKo8CEAEagAIAABQ-AAAUPgAA2L0AAAu_AAB8vgAAQLwAAHw-AAAEPgAAuD0AAIC7AAAMvgAALL4AACQ-AACIvQAA2D0AAEC8AAAQvQAAHT8AAPi9AADuPgAAED0AAJK-AACovQAADL4AAEA8AACIvQAAyL0AAKi9AACgPAAA-D0AAKi9AACIPQAANL4AADC9AABQvQAAEL0AAIg9AACIvQAADL4AAJi9AACgvAAAyD0AALg9AACgPAAAgLsAAPg9AAB_vwAADL4AAFy-AABcvgAAML0AAGQ-AABAvAAAFD4AAOi9AAAUPgAAqL0AAAS-AABQPQAAbD4AAAw-AADovQAAML0AAGy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=HIqAWqa5t5w","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5894376776410279781"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7673730355668229457":{"videoId":"7673730355668229457","docid":"34-2-5-Z4449E319F77D8B0F","description":"📚 Approximating Definite Integrals Using Simpson’s Rule – Step-by-Step Example 📚 In this video, I demonstrate how to use Simpson’s Rule to approximate a definite integral. The process is...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3433222/1f3ad4c4d1c036e2efe473d116c5077a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/TVchnQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dns3k-Lz7qWU","linkTemplate":"/video/preview/7673730355668229457?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simpsons Rule - Approximate Integration","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ns3k-Lz7qWU\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFQoTNzY3MzczMDM1NTY2ODIyOTQ1N1oTNzY3MzczMDM1NTY2ODIyOTQ1N2qIFxIBMBgAIkUaMQAKKmhoY25hcXdneHRvbGZ4eGNoaFVDRmU2amVuTTFCYzU0cXRCc0lKR1JaURICABIqEMIPDxoPPxO4A4IEJAGABCsqiwEQARp4gQD9__7-AwAXAwYH-gr9AfcK-wT4_f0A6Pv8_gT-AQD49gQADAAAAPr_AQUIAAAA-xH_-_j-AQABCv8FBAAAAAgABAT8AAAA_gb-Cv8BAAD__An7AwAAAAv1-___AAAA-_P0-f8A_wEHG_kAAAAAAAb2APUAAAAAIAAtUvfaOzgTQAlITlACKoQCEAAa8AF_Avr_tOvR_rzkxP_5BvQBqg0c__w00gDHAg8A2fDBAewZ3QD5AgkA-QAU_7UT7f8m9O3_7unrACnrE_8a3gAB4RMEARPU7gIfBh0B7O4h_8zuMwDfy_oB9NqyAB8ZxAD27_f_0wnXAB0XygIl-y8BBP9EAP_hJAP2vPQD2-H_A_f4xf7lIesD_dQYAMb-IAEJ7BUFHPckA-sT3P3h_xL9--EE-kIG3QEPCRUG6RP-Atj3_gYO8P37BAct_vvuAPfX8S4GBsz_9xnpCgEH3_j89ADqA_IK8RH69Av8Atn48hv_8fft8v3_-vL8D-j96wQgAC34xhE7OBNACUhhUAIqzwcQABrABx-8zr6xEpg7Ru3AO5qCm72ptRe8AwVevY2PAL2AzLg9FpIjuyRDHj6Ta686c5QtvSRDPr6Iclg9SeiZupjdIz6BSZC9Q_T1vIc0Kr6eaag9tnJlvE_l1L369488uuwhPR7XwL1Js5683G1yvKA0xD2m1VC9Ef_WOcP4RLxMiUQ9LVlavZfUnjusW5i9odCXvK3lJL18gRm9CaWvO9NO7T11QA29nWkdva_HqT0oJhC7rNAWvWsRsb3HyMg8HxHTvA_8jj38jCs93yD1PJuNWr3Dd6y8swhFPEy0Gr2PkQe8rbYNPFXlVj0Wm6A89z60O2kz8zweb_K91yXTOjHNJL7hj2y9IWFzPEFe9DwAESw9bC3lOx093r2-wAw-uwgLuipwkj1lcX-8G_ZWvNOG4z3Mdmo91nS9PDxdtz3WJXk9ijUKOuQ7xjuM9wM-vyzIPAcp2D3_WfO8oImwvPcGOjwAQno9riQgPCwsOLzaYo09IY3xOwTYgb37NeM8eEiMPAZuFzw6gBS9k9E3PI_gFj5beA6-A-cOvJXcPL088cG9Q-nmuz0VRj3qa6c8egZDvE7wzT1mM-e9_1cAPL892TxOHXW8OVtlu22kkTxeyHm9H6w1O4FKq70lYuW864sIvE-5GL0wZus9U2bCuezvpj1aTbI9T3OmucCHjD3_hJm9hA9ju3tsJjwR1rG7uWlYu8ITuj1qm-q6mQCyuvFoYz32bmK9wbcputHVkb31Nqy8IifhOoyhRzqWuTS9HArJuGregT1RZmi9AhaEOY0lEb27jOw8FCCOuos8tL19NVE9OB8YOCKI8zy1nqu8ssYUOd0qo7xXPcC9kQYeOZLpcD0NYhE9FfY4uLyUOj2KP8o8BSDhN0oLF74K3Jq9qarhti09Hjw5SU68IehzuMS-8DrZLd08hecbubzUQ71BWBW7uUjmt0ph3rtst3i9U2PDOR2ItLsMDmU9EmcHOCOsjD30bAa-z3ClOXn5qbunJcY9xK7_uG4YBb15bJW8neFRtzywbT0k7Ys9wkavuPX_QzvHeWS9r2O1t2JkTj1xISo9mhwauJr_nL3QkJs9AtsuOG-PhD3a86Y9V8EOOVIJkbrXrj-9Jkbbt2GgUD302UY9K5gmOLUlsT3rUPI8erxIuYxxFL3be0K9xfxnuHI0CTtwjrS9ONKNtpvSj7vi5I49YN5HN_7NgL2tOHC9LpfttoqWVz0QWPk9jRdAOO2WRjp16KQ9Cm7juOhVs70WJOw8zbghOFgkgb0WCmI9jJI4uCAAOBNACUhtUAEqcxAAGmAd-gABBSPX9g8eBfXg_RAC_PfQEfgGAO4CABz9GeMHGtPHHAgAEPn_48IAAAD7-vIV7gAOSd3fzh3sLBPu0PUo_n8PBRvd5xf_7Ow16AAZGAkANSwA1RfDGAsA0zoX8icgAC2aQVw7OBNACUhvUAIqrwYQDBqgBgAA4EEAAJBBAABkQgAAMMEAAGBBAAAEQgAA1EIAAGBBAABcwgAAgEEAAHBBAABUwgAA-MEAAFBBAABAwAAAmEEAAFxCAACAvwAAUEEAAODAAADgwQAATMIAALrCAAAEQgAAPMIAADDBAADgwAAAFEIAAFBBAACQQQAAeMIAAJjBAACMwgAAfEIAAKjCAADAwQAAIEIAACBCAACgQQAATEIAAIZCAAAEwgAAqEEAAIjBAADIwQAAYMIAAAhCAACQQgAAiEEAAIxCAABgwQAA-MEAAIDBAAAgQgAAEEIAAGRCAAC8wgAAoMAAAFBBAACGQgAAQEEAAITCAAAAwQAAAMIAAMDAAACOwgAAMEEAAJDBAACwQQAAuMEAAFBCAACSQgAAHMIAAHxCAAD4wQAARMIAADzCAAAwQQAACEIAACRCAAAYwgAApEIAADDBAACwwQAAAMAAAExCAADAwQAAYMEAAARCAACAwQAAwEEAAKxCAAB4wgAA2MEAAEBBAAD4wQAAoEAAACTCAACgQQAA6EEAAAzCAAAsQgAAAEEAABRCAABQwgAAuEEAAIjBAABAwQAA8MEAAGxCAABkQgAAcEEAAIA_AADAQQAAUMEAAIZCAACgQQAAJMIAAKDAAADQwQAA2MEAACjCAABAQAAAXMIAAMjBAABgQQAAQMEAAIDAAAAwwQAAcEEAADDBAAAEwgAAIEEAAHhCAACAvwAAjkIAAODBAAAcQgAAQMAAAHDCAAAAQQAAuEEAACBCAABQwgAAgkIAAIJCAAAYwgAA6EEAAFDBAACAPwAAEMIAAARCAAAcQgAA6MEAADBBAACAvwAAAMIAAJrCAACOwgAAmEEAAMjBAAAcQgAAYEEAAMhBAACQQQAAwMEAAKjBAACsQgAAsEEAALBBAACIQQAA8EEAAKBAAADwwQAAaMIAADBBAADAQAAA-MEAAIDAAAC0QgAAzMIAACTCAABAwAAAwMEAALBBAADAwQAAjMIAAHDBAADIwQAALMIAAIpCAACYwQAA4EAAAIBBAAAAAAAAgEIAAEDBAADAwAAAkMEAAEBAIAA4E0AJSHVQASqPAhAAGoACAAAwvQAAnr4AAHC9AADoPQAAoLwAAKo-AACaPgAAur4AAIK-AADgPAAAQLwAAAS-AABQPQAAqj4AAJK-AAAcvgAArj4AALg9AADYPQAABT8AAH8_AADYPQAAuL0AAAQ-AAD4vQAAyD0AAKI-AAAUvgAAMD0AAJY-AABkPgAARL4AAFC9AABwvQAALD4AALg9AABcPgAANL4AAP6-AAB8vgAAnr4AAIi9AACqPgAA4DwAAII-AACgPAAAcD0AAO6-AACIvQAA6D0AAEA8AACgPAAAdD4AADA9AAAsvgAAML0AACs_AAAcPgAAND4AAKo-AAAUvgAARD4AAKg9AACeviAAOBNACUh8UAEqjwIQARqAAgAAoLwAACw-AAAsvgAAEb8AAIa-AAAwPQAAgj4AAKA8AACoPQAAHD4AAKi9AACCvgAAmD0AAFC9AAAwPQAAEL0AAAw-AAAdPwAAJL4AAMo-AAA8PgAAXL4AAKA8AABQvQAAmD0AAAQ-AAAMvgAAoDwAAOA8AAC4PQAA4LwAADA9AABwvQAAqL0AAKC8AABAvAAAED0AAHC9AABQvQAAyL0AAEw-AADIPQAAJD4AAIi9AAAwPQAA-D0AAH-_AABQPQAAdL4AAFC9AAAQPQAAJD4AAEC8AAB8PgAAJL4AAAw-AABwvQAAiD0AAKC8AAC4PQAAqD0AABy-AAAQPQAAEL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ns3k-Lz7qWU","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["7673730355668229457"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2247946223"},"14651509719176006394":{"videoId":"14651509719176006394","docid":"34-3-12-ZB79562842FDFD0D1","description":"Simpson's 1/3 rule : Evaluate integration limit 0 to 6 integration dx/1+x² using simpsons rule | Numerical integration B.Tech | M.Sc. | B.Sc. Simpson's 1/3rd rule integration dx/1+x² #exam...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1343348/16e68c0ad9a1d023a14cafe4988226af/564x318_1"},"target":"_self","position":"8","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D79K5LhWGE1M","linkTemplate":"/video/preview/14651509719176006394?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simpson's 1/3 rule :Evaluate integration limit 0 to 6 integration dx/1+x² using simpsons rule 1/1+x²","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=79K5LhWGE1M\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFgoUMTQ2NTE1MDk3MTkxNzYwMDYzOTRaFDE0NjUxNTA5NzE5MTc2MDA2Mzk0aq4NEgEwGAAiRBowAAopaGhkaXJibm1kZHVtaHN1aGhVQ1RWajNpQU5pME5PQ2REZnhsd3ViSUESAgARKhDCDw8aDz8T6QOCBCQBgAQrKosBEAEaeIH7BAEC_gMA_QIFAvoF_gIODPIE9QAAAOYDBP0I_QEA9O3_9QH_AAAI-_4GAQAAAAEIAf7y_gEABgT9AQQAAAD_-wD6-wAAAP4G_gr_AQAA7PT3_wIAAAAB-_z9AAAAAP70Afv7_v8ABxv5AAAAAAAA-vz5AAAAACAALZ112zs4E0AJSE5QAipzEAAaYCn9ABQLDeftLCTc6-b3Ff8DC9ES7AT_ACEAGA_8wQI32LQmAP8Y7-f_vAAAAPAR8gjuABBVE-e8NAIuARS68B_4fw8CBwXm5-jm0jTXFgYTAxI3LwDTGvXzANvIShoQDiAALRFXRTs4E0AJSG9QAiqvBhAMGqAGAAAwQgAADMIAADxCAACKwgAAgD8AAJjBAADGQgAAoEEAAMDBAABwQQAAAEEAADjCAACwwQAA4MAAAIhBAAAwQQAAMEEAAGDBAABgQQAAoMEAAEBAAACAPwAAOMIAAFhCAAAIwgAAAEEAAFDBAABAQAAAFEIAAABAAAAgwgAAcEEAAHTCAAAkQgAAOMIAAMDAAAAQwQAA5kIAAIBAAADoQQAAqEEAANBBAACqQgAAgD8AACxCAADEwgAA6EEAACBBAAB4QgAAJEIAAMBAAADgwQAAcEEAAEhCAAAMQgAAsEEAANDCAAAAQQAAAMAAAKRCAAA8QgAA3MIAAPDBAACEwgAAMEEAACTCAAAAwQAAjsIAAABBAABUwgAAnkIAAGhCAADAwgAAsEIAAKjBAADYwQAAQMEAAHDBAAC4QQAAuEEAAOjBAAAEQgAAoEAAABxCAADIwQAAGEIAAEBBAAAoQgAACEIAALjBAAAMwgAALEIAAHjCAACIwQAAuEEAADjCAAAAQQAAyEEAAFhCAAAMQgAAYMIAAKBBAAAAQQAAsMEAAFTCAABQwQAAqMEAACxCAADQwQAAWEIAAEBCAAAAQAAAgMIAAFBBAAAgwQAAGEIAAEDBAAAgwgAAAEAAAKjBAADYwQAAnsIAAPjBAAAAQgAAUMEAACDBAABcwgAAMMIAAGTCAAAAAAAAyMEAAKDBAACQwQAATEIAAFjCAABQQQAAQEEAANBBAADgwQAAQMIAAIhBAACwQQAAuEEAABzCAAA4QgAAoEAAADDCAABAQQAAgMEAAOjBAAC4wQAA2EEAAMDAAAAgwgAAiEEAAMDAAAAswgAAkMIAAJTCAAAEQgAAOMIAAJhBAAAwQQAAJMIAAADCAADQwQAAIMIAALJCAABQQQAA-EEAAFDBAAAMQgAA8MEAAKDBAACSwgAAgMAAAGTCAAAgwgAAkEEAAChCAADQwQAA0MEAAFTCAACYwQAA-EEAALLCAAAgwgAAQMAAABjCAADAQQAA-EEAAMDBAABQQgAAwMEAADBCAACgQAAAsMEAAKhBAAAkwgAAAMIgADgTQAlIdVABKo8CEAAagAIAAJi9AACqvgAAFD4AABA9AAAQPQAAHD4AALg9AADqvgAAcL0AABS-AABwvQAAqr4AAJg9AAD4PQAAmr4AAIA7AAB8PgAA4DwAAKA8AACyPgAAfz8AADw-AADYvQAAoDwAAOC8AAD4vQAApj4AAKg9AADIvQAAoDwAAEw-AADgvAAA-L0AAJg9AACAuwAAED0AAIY-AABcvgAAsr4AAFC9AADGvgAAqL0AAI4-AACIPQAALD4AAIA7AADoPQAAPL4AAKi9AABwvQAAmD0AAEA8AAA8PgAAPD4AABS-AAAEvgAAJT8AAFA9AAC4vQAAbD4AABQ-AAAcPgAAgDsAAFS-IAA4E0AJSHxQASqPAhABGoACAACIPQAAuD0AAOi9AAADvwAAHL4AAJg9AABsPgAAND4AAEA8AAB0PgAA2L0AAKA8AACoPQAAMD0AAIC7AAAwvQAAJL4AACk_AAAMvgAA5j4AANg9AACuvgAAQDwAAAy-AACAuwAA4LwAADA9AAAQPQAAqD0AAOg9AACYvQAAgDsAAFS-AAAwvQAAuL0AAFC9AACIPQAA4LwAALi9AAAwvQAABD4AAIA7AAA8PgAAQLwAAPg9AAAwPQAAf78AAKC8AAAwvQAAUL0AACy-AABsPgAAEL0AACw-AABAvAAADD4AAJi9AADYvQAA4DwAAFw-AACIPQAA-L0AAIC7AAA8viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=79K5LhWGE1M","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14651509719176006394"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4716120940053949718":{"videoId":"4716120940053949718","docid":"34-11-8-Z703E913B5D897AE8","description":"\"Learn how to solve single integrals using Simpson's 1/3rd Rule in this detailed tutorial! We’ll break down the concept, walk through step-by-step calculations, and solve examples to help you...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/937854/82402e4cff2a02a9f58f9a9731805dac/564x318_1"},"target":"_self","position":"9","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUV12fFAP3ZA","linkTemplate":"/video/preview/4716120940053949718?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Numerical Integration | Simpson's (1/3) rd Rule | Unit- 03","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UV12fFAP3ZA\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFQoTNDcxNjEyMDk0MDA1Mzk0OTcxOFoTNDcxNjEyMDk0MDA1Mzk0OTcxOGqvDRIBMBgAIkUaMQAKKmhobHRzeGtrcnphZHNlYmRoaFVDaGZvQThMNmtXVUNLb0Ywc2JrQlF5dxICABIqEMIPDxoPPxO_B4IEJAGABCsqiwEQARp4gfgJDwEAAADyCgUBAwP-AQsA7wH2__8A5QME_Qn9AgDsBAjyAAAAAPv7BvwDAAAA-Qf68vb-AQAN_-z8AgAAAAL7-PoBAAAAAAIB_P4BAADw-_wDAwAAAA3-_QEAAAAAAP_w_AAAAAESEfUGAQAAAAPx-_wAAAAAIAAtygDROzgTQAlITlACKnMQABpgFwkABg0QB9sSHPHR49gMCPv91vzs-__7_gANAwPh6TTdvQz8_xnD_vbAAAAA-vX5DdMACk7q7M5GCfMI-9_wFPh_8_Hh8vEC0wfwN-sTKBYPFRw0ANgf5Q320tNWDiIJIAAtnSFSOzgTQAlIb1ACKq8GEAwaoAYAANhBAABAwgAA6kIAANDBAACIQQAAUMEAACDBAADAwAAAuMEAABDBAACgQQAA6EEAAI7CAAAgwQAAMEIAAIBBAAC4QQAA0MEAAGBBAADYwQAA2MEAAKjBAABMwgAAeEIAAEBCAAAAAAAANMIAAHzCAABAwQAAeEIAAHDBAADQQQAAAMIAAEDAAABEwgAAuMEAAGDBAACuQgAANEIAADBCAADQwQAAAEAAAADCAAAwwgAAgEEAAEjCAADAwAAATEIAAARCAAAIQgAACMIAACzCAAAAwAAAEEIAAIhBAAAgQQAAmsIAAODAAABAwAAAHEIAANBBAAAAwQAAlsIAAKDBAADoQQAA8MEAAOBAAAAIwgAAuMIAAIbCAACKQgAAuEEAALjBAAC0QgAAwMAAAIDCAAAUwgAAgMIAABTCAABgQQAA2MEAACRCAAAQwgAAPEIAAKhBAADSQgAAAMIAAMhBAACYwQAAAMIAAAjCAACIQQAA-MEAAODAAACIwQAAmMIAABzCAADAwAAA2EIAAERCAAAkwgAA0kIAAJhBAACuwgAAysIAAEhCAAAAwQAAGEIAADDCAABAQgAABEIAAIBAAAAAwQAAiMEAAPBBAAAYQgAAkMEAABTCAAA0wgAAdMIAAMDAAABQwgAA-EEAAOjBAACgQAAABEIAAABAAAAkwgAAIEEAAJDBAADgwAAAuMEAAEDBAACMQgAAEMEAABDBAACAwQAAgL8AAILCAABUwgAA4MAAAFDBAAAQwQAAMMEAAGBCAAAAQQAA2MEAAOBAAADYQQAAEMEAANhBAAAcQgAA0EEAAGjCAACgQAAAAEEAALjBAADwwQAABMIAALRCAAB8wgAAKEIAAOhBAACAwQAAMEEAAABCAAD4QQAAiEIAABBCAADAQAAAQMIAABRCAAAAQQAAFEIAANDBAAC4wQAAGEIAADzCAACIQQAAOEIAAHjCAABgwgAARMIAANhBAADYQQAA-MEAAJrCAAAcQgAAwMEAAADBAABgwQAAAAAAAABBAAAAAAAAEEIAAOBBAAAAwQAAyEEAANDBAADwwSAAOBNACUh1UAEqjwIQABqAAgAAgr4AAJa-AAC6PgAAcL0AAHC9AAA0PgAApj4AAAm_AABUvgAAfL4AABy-AAD-vgAA6D0AAAw-AAA8vgAAgLsAABw-AAAwPQAAQDwAABc_AAB_PwAAuD0AAFy-AADgvAAATL4AAOC8AADyPgAA2D0AAIA7AAAQPQAAdD4AAHC9AADovQAAPD4AAJi9AAC4vQAADD4AAKq-AADWvgAAyL0AAKK-AADYPQAApj4AAEC8AACIPQAABD4AADQ-AAAEvgAAiL0AAOA8AACIvQAA4DwAAEw-AACmPgAAkr4AAKC8AABZPwAATD4AAKC8AADaPgAA-D0AAJY-AACYPQAAor4gADgTQAlIfFABKo8CEAEagAIAABQ-AAAUPgAA2L0AAAu_AAB8vgAAQLwAAII-AAAEPgAAqD0AAIC7AAAEvgAANL4AACQ-AACYvQAA2D0AAIC7AAAQvQAAHT8AAPi9AADuPgAAED0AAJK-AACovQAAFL4AAEA8AABwvQAAyL0AAKi9AACgPAAA-D0AAJi9AACYPQAANL4AADC9AABwvQAAEL0AAIg9AABwvQAADL4AAJi9AACgvAAAyD0AAKg9AACgPAAAgLsAAAQ-AAB_vwAADL4AAGS-AABcvgAAML0AAGQ-AABAvAAAFD4AAPi9AAAUPgAAqL0AAAS-AABQPQAAbD4AABQ-AADovQAAML0AAGy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=UV12fFAP3ZA","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4716120940053949718"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7114121126650346472":{"videoId":"7114121126650346472","docid":"34-0-0-Z3739DC8F4D008FD0","description":"Simpson's Rule is a numerical integration method used to approximate the definite integral of a function over a specified interval. It is named after the 19th-century mathematician Thomas Simpson.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3337269/31eed60cc9c14889e07eebc69c552dab/564x318_1"},"target":"_self","position":"10","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYdYd_0a5mGE","linkTemplate":"/video/preview/7114121126650346472?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Numerical Integration: Simpson's 1/3 Rule | Theory and Python & Numpy Implementation","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YdYd_0a5mGE\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFQoTNzExNDEyMTEyNjY1MDM0NjQ3MloTNzExNDEyMTEyNjY1MDM0NjQ3MmqvDRIBMBgAIkUaMQAKKmhobm5icnR6Z2t5ZGVzZ2RoaFVDN0tFZE9GVFlwZi1vcWk1SUN1U1VXQRICABIqEMIPDxoPPxObDIIEJAGABCsqiwEQARp4gfD9CgD-AgD1DgUC-QT_AQsA7wH2__8A8g8F-QQBAAD_Agb5_wEAAAoAAgH9AAAA_QYB-_r-AAAUA_sGBAAAABb5-wD_AAAADgz8A_4BAAD4AfwBA_8AAA7-AQgAAAAA_P37Afn-AAAIG_kAAAAAAAz-_gEAAAAAIAAt6A3XOzgTQAlITlACKnMQABpgHgwAGA8dA94KGOXw6PH78ggn8Anq2wD5BQADCPfdChzfzBv_AA7a-v7PAAAAFQD_C9sA70ML7dkwCxED-erwEwF_9g_wCeUH4Mf-EgkLCBTmGyEQAN8N6fcS9-xJ_iEbIAAtzgx3OzgTQAlIb1ACKq8GEAwaoAYAALBBAADIQQAAAEAAAIjBAAAQQgAAiEEAAExCAAAIwgAAcMIAAOBBAAAYQgAAOMIAAODBAADAwQAAuEIAAMDAAACAQAAAQEAAAHTCAAA4wgAAAEAAAGDBAACAPwAAqEEAAPhBAABAwQAATMIAAKDCAADYQQAAjEIAAIrCAABEQgAA6MEAAIRCAAD4wQAAWMIAABBBAAD2QgAA6MEAACBCAABIQgAAgD8AAKBCAABwQQAA2EEAAKzCAABQwQAAiMEAAJBBAACgQAAAlsIAAABAAAAAQAAAoMAAAPBBAAAMQgAAAMMAAFDBAACAwQAAyEEAAFxCAAAEwgAAQEAAABTCAADgQAAAEMIAAFBBAADgwQAAiEEAAODAAACGQgAAtkIAAEDBAAAMQgAAcMIAAAzCAAB4wgAAAMAAAPBBAACoQQAApsIAAEBCAABwQQAAHEIAABBBAAAAAAAAEEEAAExCAAAEQgAAyMEAAEBBAABAQQAAQEAAAAzCAAAQQgAAHMIAALBBAADAwAAAiEEAAAzCAACawgAAVEIAABBCAADAwQAARMIAADBBAACowQAA4EEAAIDBAADAwAAAiEEAAODBAAAEwgAAwMAAAJhBAACAQQAAyMEAALzCAAAwQgAAoMAAAJhBAABAwgAA6MEAAEzCAADQwQAA4EAAAJDBAABwwQAAOMIAAMDBAADwwQAAgMAAAIjBAABAQQAA4EAAACRCAACIQQAAcMEAAHjCAACcwgAAAMAAAABCAAAkQgAAQMEAAMhBAAAQQQAAVMIAAEDBAACAQgAAgEAAAOhBAAAAAAAAQMEAAMjBAADgwQAAgD8AAIBAAACiwgAACMIAAARCAABgQQAA4EEAABjCAACoQQAA6MEAABjCAABwwQAArEIAABRCAAA0QgAAYMEAAMhBAADgwQAAEMEAAEjCAABAQQAAgEEAAATCAACKQgAADEIAANjBAAAAwgAALMIAAIC_AAC-QgAALEIAAKLCAACSQgAAYEEAAABBAADgwAAAJMIAAOhBAAAAwgAAQMEAAMBBAADIwQAA2MEAALjBAACAwCAAOBNACUh1UAEqjwIQABqAAgAAiL0AANa-AACyPgAAcL0AAFC9AABcPgAApj4AADW_AACCvgAAFL4AAJi9AACmvgAAJD4AAHQ-AAAUvgAAJL4AAAw-AABwPQAAoDwAAOo-AAB_PwAAQLwAADC9AADIPQAAgDsAAPi9AADSPgAAyD0AAMg9AAAwPQAAPD4AABy-AABMvgAAmD0AAFC9AABwPQAARD4AAJa-AADCvgAAuD0AAN6-AABUPgAAsj4AAKA8AADgvAAAgLsAAGQ-AADovQAAqL0AACS-AAD4vQAAmD0AAJ4-AABcPgAAVL4AADC9AABNPwAAED0AABC9AABEPgAAXD4AADQ-AAD4PQAADL4gADgTQAlIfFABKo8CEAEagAIAAFS-AAAsPgAA4LwAACO_AAA0vgAAgDsAAHw-AABAvAAAoDwAACw-AAA0vgAABL4AAKC8AADgPAAA4DwAAOC8AACovQAAOz8AAFC9AAAFPwAARD4AAI6-AADgvAAAHL4AAKi9AAC4vQAAUL0AAFA9AAAQPQAAZD4AAOC8AACYPQAARL4AAEy-AAC4PQAAoLwAAAQ-AAC4vQAAPL4AADA9AABAvAAAgLsAAHA9AAAQPQAAMD0AAFw-AAB_vwAAFL4AABy-AADIvQAAUD0AAPg9AABAvAAAXD4AAOg9AAAMPgAAoLwAAOC8AAAEPgAABD4AABw-AADgPAAAFD4AAES-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=YdYd_0a5mGE","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7114121126650346472"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3570793524743949717":{"videoId":"3570793524743949717","docid":"34-7-15-Z878618D97724A3BD","description":"In this video, we dive deep into Numerical Integration, focusing on the Trapezoidal Rule and Simpson’s Rule with step-by-step solutions to Class 12 Math Problems. Trapezoidal Rule Explanation 15...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4215435/6c53d3822d06329067e57c435ee8c205/564x318_1"},"target":"_self","position":"12","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAV7UNUDVb9Y","linkTemplate":"/video/preview/3570793524743949717?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Numerical Integration: Trapezoidal & Simpson's Rule | Class 12 Math Problems Explained!","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AV7UNUDVb9Y\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFQoTMzU3MDc5MzUyNDc0Mzk0OTcxN1oTMzU3MDc5MzUyNDc0Mzk0OTcxN2qvDRIBMBgAIkUaMQAKKmhodWpsbmZoeXlncnR0ZWNoaFVDbWZqRjJDMmVJbW05dVl6eGNXalNSdxICABIqEMIPDxoPPxPmGoIEJAGABCsqiwEQARp4geoGCwIE_AD6_Q8E-gf9AgwA7gH1__8A5A_8-Aj9AQDwAhD6BwAAAPz3_fwJAAAA7xH1_PQAAQAFAusHAgAAAAj5B_jzAAAADQ_uAv8BAADz9ggCAwAAAA38BQD_AAAA___v_AAAAAEIHfgAAAAAAA35-PoAAAAAIAAtTMXGOzgTQAlITlACKnMQABpg6A0AIigTBMgeOtPC3-wbAO4AsQXoF__66wAT-f6_AiTVtysA_zjG_uyuAAAA9APrAfgA7Gny2a09FQHu8tr3MhZ_HBcRCAf00dcRGtsXFBj2FhdaAMAV-hsHyK9VAi4wIAAt_OwoOzgTQAlIb1ACKq8GEAwaoAYAAMhBAAAoQgAAoEEAAAjCAADoQQAAwEAAACBCAAAAQAAAKMIAAMDBAAAwQQAAMMIAAGTCAAAAQAAAqEIAABDBAACgwQAAFMIAAADBAACewgAA4EAAAOBAAACwQQAAgEEAAODAAAAAwQAAyMEAAMbCAABcQgAAyEEAALjBAAAUQgAAkMIAAHBBAABMwgAAQMAAABDCAADCQgAAwMAAAPBBAABQQQAACEIAAAxCAACIQQAAKEIAAIDCAACCwgAAUMEAABRCAAAwQQAAiMIAAFBCAAAAAAAAUEEAAEhCAACgQQAAAMMAAHBBAACIwQAAGEIAAIhBAADQwQAAwMEAAHTCAADoQQAAIMIAAAjCAABQwQAAmMEAANDBAACoQgAA4EIAAFDBAABIQgAAsMEAAI7CAACAwQAA4MAAAPBBAABAwAAAhMIAAMhBAADQwQAAeEIAAIC_AADoQQAAYEEAAARCAABQQgAAUMIAAIC_AACAQQAAAMEAAHDCAABAwAAAlMIAAIhBAACAPwAA-EEAAEDBAADIwQAAgEIAACRCAABQwgAA0MEAAIBAAADowQAAPEIAAIbCAAD4QQAA4MEAAADBAACAwAAAjsIAAKDAAACAQQAAZMIAAHzCAAAwwQAABEIAADDBAABcwgAAiMEAABTCAAAQQQAA0EEAAOBAAACgwQAAkMEAAHTCAABwQQAAAEAAAKBAAADAQQAAAEEAAERCAAAwQgAAqEEAANjBAADGwgAAgEAAAFBBAABEQgAAgEEAAMBBAAC4wQAAeMIAANBBAAA0QgAAIMEAAKBAAAAAQgAAUEIAAIhBAAAgwQAAEMEAAKDBAACuwgAA-MEAAEBBAAAMwgAAsEEAAKDBAABIwgAANMIAAPhBAAAUQgAAIEIAAHBBAAAAwAAAcMIAAERCAACowQAAAEEAACzCAAAgQQAA0EEAADDBAABgQgAAEEEAAIA_AAAYwgAAgD8AAFDBAACcQgAAwMAAAILCAABgwQAAyEEAAEBAAABMwgAAgsIAABBCAACowQAAWEIAAHBCAACqwgAA4MEAAATCAAAowiAAOBNACUh1UAEqjwIQABqAAgAATL4AAJK-AACOPgAAqL0AABQ-AACCPgAA-D0AABG_AACyvgAAhr4AAFC9AAB8vgAAyD0AAM4-AAAkvgAALL4AAJY-AABQPQAAEL0AAM4-AAB_PwAAQLwAANg9AAAkvgAAgDsAABy-AACWPgAAND4AABQ-AAAEPgAAdD4AAKA8AACIvQAAoDwAADC9AADgvAAAFD4AADy-AACyvgAA4DwAAFS-AABwPQAAmj4AAJg9AACgPAAAML0AABQ-AACSvgAAML0AAIC7AAAQPQAALD4AACQ-AAAMPgAAHL4AAOC8AAARPwAAfD4AAIg9AABsPgAAEL0AAAw-AAD4PQAAbL4gADgTQAlIfFABKo8CEAEagAIAAIi9AABsPgAAyL0AAB2_AACivgAABL4AAIY-AADYPQAALD4AAJg9AADIvQAALL4AAOC8AADIvQAAQDwAABA9AACAOwAAHT8AAIi9AAD2PgAAmD0AAFS-AAC4vQAABL4AALi9AAAEPgAA-L0AADA9AADovQAAHD4AAFC9AAAkPgAAhr4AAHC9AACYvQAAgDsAABQ-AAAwvQAANL4AAFC9AADgvAAAgDsAAKi9AACoPQAAyD0AACw-AAB_vwAAbL4AAKa-AABUvgAAgDsAAIo-AACgvAAALD4AAKC8AAAkPgAAqL0AAIi9AAAUPgAA2D0AABw-AADYvQAAQLwAADS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=AV7UNUDVb9Y","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3570793524743949717"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14565041602572409239":{"videoId":"14565041602572409239","docid":"34-2-3-Z07B5719C3D8D88F4","description":"❤️Subscribe ► https://bit.ly/drmanab In this video, you are going to learn how to perform numerical integration in python using trapezoidal and Simpson's rule. Here, you will learn how to compute...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3335487/e4b13ad0d2e21b491ef618246e18e7d7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_fXgDQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4XdVlALIEkk","linkTemplate":"/video/preview/14565041602572409239?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Numerical integration using trapezoidal and Simpson's rule in python","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4XdVlALIEkk\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFgoUMTQ1NjUwNDE2MDI1NzI0MDkyMzlaFDE0NTY1MDQxNjAyNTcyNDA5MjM5aogXEgEwGAAiRRoxAAoqaGh5dWpnaHBxeHpla25yY2hoVUNoVksxTjlnaUlVOUJ4VUhyelZLc1h3EgIAEioQwg8PGg8_E-sDggQkAYAEKyqLARABGniB-_YO_v8BAPkIDfz7BP8BCwDvAfb__wDyDwX5BAEAAPcABfoHAAAACO8CDAIAAAD7BAjy-v4BABL_7wcCAAAAEPr1AfUAAAAIB_8C_gEAAPn4_QYE_wAAEvUCAQAAAAAC_fQG_P8AAQUK7gkAAAAABvUA9QAAAAAgAC0q59Q7OBNACUhOUAIqhAIQABrwAWoR_P_kAwYByxHlANb_2QCB7Rz_GyPkAMDyCgDd8sgB7ub_AdzhMP7SBun_rP74AP_i3wAnFRb_IPQE_yP49f8YEPcBMeoSADcA_QD-Avj_AR8n_x7rKwIi1_YBF_X_ARHvBgHZze4A3PXZAP8EKAAb-hL9OfkKA970Bf_yG_j72xPo__QT-wbtAAcD-PYi_gwQ3v8uIuz__wX0_xEC9QYB0wz-DSLxBBYbBwX1_QQByAjuAAcB__sDBij_DzIVAe399v3p8Az87h4JAwja5_ryAhD3EuP6Cf4VA_3zBg735gwQ-MozCfnSDxD7BgQB-yAALUFaJTs4E0AJSGFQAirPBxAAGsAHK4TtvjcLxTuzbLm70rqnvbhAIj1VZYS8LqmfvQMLu7xT8G-8K6uEPWmIbz0PCV-7_Iy7vlpTD7zG6sW7pkI8PmVhOb08fEM9huMJvt8g9TysASq99aGDvjx38TsuxZc7IuSXPaqgfb2EAMs7qcHUPeqoNDztSqa8IbKzvU07rburMVe840EJvRk4oLzo9P67lPYGPqoAqTwTMtS57DRSPtm7-bu-f5g7K1eOvTFzJryAfC68zBtUu_YlG7z1GQa9HejBPYb8frnqSY88SXQlvQhcEr3-XHq7K_vuvJnZIj1jrB8805klvRc5ejxbqEa86vFWPDAe1Lwzd1S5yqk9vtsWtT20TPu43bQZPj0W0TwDYPq7suSeOwyk1TyFTdM86PJrPRETib1IIuo7hO1MPeTzaj1UkPo8n_W-uxJBBj1PyTk87L-ePbl1kjwa4Ug8UFObPbaeBLyGrkS8nASlPF0AdTyjJ4C8rBQnvfKrHj3Y7y685ZqSPcxO9Tz37zC8-HU7PZwOCT2WXCS7eYoivIvxiruRjNy5c1rBvFW9Qb36Dnq7tZEmPX-rMD27Hcy7hlqePSdQRLpdN4C8jo6QvQS7Kz1F1Cc7fp-bPe-WP7z8CBU8D0givfbYcTxdGCK6aPbvPLMqHb36NF28r2Z4vC03kj2eVQ87vxE4vJzslbwBVG27mxuoPcfJsztOqBY7h8uAPWmOLDwB12C6ElDBPcF4Qb1h0wq6lQwAvVdfWL0zU3M48iKXOj7tED1YUWa7oZ3TPVGBmL2XnVE5cPcoPVQKsDwjTiM5c0u7vfPt-Dzccuk4OVgpPQjpKbzb9Wk5FJ2LvYl64b3GJ3A51BuUvd3a27vBgXA4chO5uxKODz0mt0q6JdY4vRjMRL0fH8w5vip8PcWiMzwGxoi4tySsPB-5Fb3TGg05HAbYPNvHBb02V2k5AFYnvVi5obzajaE5GrdivYUDhj1hd7A4t2J_PD3PRL2FTso2Hs6yPLYlVz2rSUy3fEPhPCAvGj2sh6S4qG-ZvBY70DzD3mQ4laM7vUWbA74N2jM3KFgtPasPij1WFJq4-Pd-vVvFLD0YKb447DkEPSp2j7xTIJG3WDx1vJalqbtg58i2amgDvXp9V70alf83wqTYPTYqJr17tC25R8cXvPG50zxQT3S3KusQPH-e67waMYU3HT6EPJFh1T2497y3hhAhPVx3073e85u3yvRwPSLhKz7xy4o4PCn6u1UqbT3gMo244S2LvZt_yzrmAAo4xd1Fvf-r0Lqmgzw4IAA4E0AJSG1QASpzEAAaYCYCADT-LPH4HS7o7uLcDLr8IMkhyAz__MoABPT1-_Yex69ZBv8Z-xL9rgAAAB__1xLRACFw_NYCKNof7OXG5EHsf_H1TtLZ-PrJ11Is3gX25EcnMQD4-7kKKeHaTxA2GSAALcY6Ijs4E0AJSG9QAiqvBhAMGqAGAAAgQgAAwMEAAKBAAAAAwQAAFMIAABDBAACGQgAA2MEAAMDAAAAAwAAAEEIAAITCAABAQAAAIMIAAOBBAACAwAAAkEEAAIDBAAAQwQAAyMEAAFhCAADowQAAAMIAAHDBAACIQQAAgEAAACzCAAD4wQAAjkIAAAAAAABwwQAAQMEAAHzCAACGQgAALMIAAGDBAAAgwQAAvEIAAEDBAAAQwQAA-EEAAMBBAACgQgAAHEIAAKhBAAAowgAAOMIAAGBBAABkQgAAMEEAABBBAABAwgAALEIAABRCAABEQgAAiEIAAK7CAADIwQAAuMEAAIRCAACIQQAAYMEAALjBAACIwQAAHMIAAMhBAADgwAAA4EAAAOBAAACgwAAACEIAAJRCAADgwQAANEIAAIDBAACUwgAAgL8AANjBAAAAwAAAIEEAAMLCAACIQQAA4EAAAOxCAAAAwQAACMIAANhBAACQQQAAkEEAAAjCAAAEQgAAOEIAAIDBAADEwgAACEIAAJDCAAA8QgAAgD8AAABCAADAQAAAgEAAAOhBAAAoQgAAIMIAAJTCAADQwQAAcEEAAGxCAAAAwQAAFEIAAOBBAADIwQAAPMIAACjCAACSQgAAoEAAAIDCAABEwgAAYEEAAPhBAACQwQAAXMIAAHDBAAA8wgAAiEEAAFxCAACAwgAATMIAAIjBAAAQwQAADEIAADDBAABswgAA2EEAANDBAAAkQgAAUEEAACDBAAAIwgAAlMIAAADAAACAQAAAgL8AAEDBAACIQQAAQEEAAETCAAD4QQAAgD8AAAzCAADgQQAAikIAABxCAAD4wQAAIEIAAPBBAACAPwAAAMMAAIDBAAAsQgAAGMIAAHBCAABgwQAA4MAAAKBAAABQQQAAKEIAAAhCAADQQQAAOEIAAKrCAAAoQgAAMMIAAIC_AABUwgAAEMEAAFTCAACYQQAAiEEAAJRCAADgwAAAoMEAACTCAADgwAAAZEIAAODBAAB8wgAAhkIAADzCAABAQAAAAEIAAHjCAAAQwQAAwEEAABxCAABAQQAAYEEAAPDBAACWwgAAkMEgADgTQAlIdVABKo8CEAAagAIAAIa-AACOvgAA2j4AAJi9AADgvAAAnj4AAMo-AAA5vwAAsr4AAGy-AADIvQAAHL4AAFw-AAAsPgAA-L0AAKi9AABcPgAA-D0AAOC8AAANPwAAfz8AAEA8AADgvAAAyD0AANg9AACAuwAAZD4AAOA8AADYPQAA-D0AAFQ-AABUvgAAED0AALi9AACIvQAA6D0AAPg9AADevgAAmr4AAOg9AAC2vgAALD4AAIY-AADgPAAAgLsAAPg9AACYPQAAmr4AAHC9AABQvQAA4DwAABw-AABUPgAALD4AAFy-AABAvAAATT8AAOg9AAAkPgAAwj4AAPg9AADYPQAABD4AADC9IAA4E0AJSHxQASqPAhABGoACAAAcvgAAND4AAOi9AAAbvwAAjr4AAEC8AACWPgAAuD0AALg9AABMPgAAdL4AAFC9AABQPQAA6D0AAIA7AABAvAAAqL0AACU_AADYvQAA5j4AANg9AAB8vgAAcL0AAOi9AAAcvgAAgDsAANi9AACAuwAA4LwAAFQ-AAAQvQAAiD0AAEy-AADovQAAiD0AAEC8AAC2PgAAEL0AACS-AAC4vQAAQDwAANg9AABQPQAA6D0AACw-AAAMPgAAf78AAFC9AAA0vgAA-L0AAAQ-AAB0PgAAJD4AAJI-AAAQPQAALD4AADC9AABsvgAARD4AALg9AABsPgAAyD0AAOC8AACKviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=4XdVlALIEkk","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14565041602572409239"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"928721567"},"14760111242380436315":{"videoId":"14760111242380436315","docid":"34-9-17-Z66F062330E826ACA","description":"Simpson's 1/3 rule : Evaluate integration limit 0 to 1 integration dx/1+x³ using simpsons rule | Numerical integration B.Tech | M.Sc. | B.Sc. Simpson's 1/3rd rule integration dx/1+x³ #exam...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/406130/d00ede4a49e298e4399be4a70a913b9e/564x318_1"},"target":"_self","position":"14","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-ZkQ5DodgvY","linkTemplate":"/video/preview/14760111242380436315?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simpson's 1/3 rule : Evaluate integration limit 0 to 1 integration dx/1+x³ using simpsons rule","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-ZkQ5DodgvY\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFgoUMTQ3NjAxMTEyNDIzODA0MzYzMTVaFDE0NzYwMTExMjQyMzgwNDM2MzE1aq4NEgEwGAAiRBowAAopaGhkaXJibm1kZHVtaHN1aGhVQ1RWajNpQU5pME5PQ2REZnhsd3ViSUESAgARKhDCDw8aDz8TuwOCBCQBgAQrKosBEAEaeIEBAAIG_wIA_QIFAvoG_gIODPIE9QAAAOYDBP0J_QEA8-3_9QH_AAAFAAABBAAAAAEIAf7y_gEABgT9AQQAAAAG-v3_-gAAAP4G_gr_AQAA7v4A9gIAAAAB-_z9AAAAAP70Afv7_v8ABxv5AAAAAAAA-vz5AAAAACAALV612Ds4E0AJSE5QAipzEAAaYCn-AB0ICuztKyfg5ObvE_35EdIP6P___B4AEAn7yf02zbUfCv8W8-z7vwAAAPMO8Ar8ABFSCdy5LgYwBw_C7SH0fxMACQXw7uPm2izjFwQTChc6NgDZFfn799u9PgoZEiAALVpRSjs4E0AJSG9QAiqvBhAMGqAGAAA8QgAA8MEAAERCAACCwgAAwMAAAADAAADIQgAA6EEAALDBAAC4QQAAoEAAADzCAAD4wQAAAEAAAHBBAABAQAAAEEEAAFDBAABAQQAAcMEAAOBAAACowQAAXMIAAHRCAAAkwgAA4EAAALjBAAAwQQAAyEEAANBBAAAQwgAAMEEAAIrCAAA4QgAAiMIAAIjBAADgwAAA8kIAABBBAADgQQAAcEEAAIBBAACcQgAAUEEAAAhCAADcwgAAEEIAAJhBAACOQgAASEIAABBBAAAAwgAAoEEAABRCAAAIQgAA6EEAAMzCAADgQAAAAMEAAJRCAAAsQgAA2sIAAPDBAABkwgAAgEAAALjBAABAwQAAbMIAAEBBAABgwgAAkkIAAFxCAACmwgAAyEIAAMjBAAAUwgAA4MAAAFDBAADgQQAAuEEAAGDBAAA0QgAAUEEAABhCAADIwQAAHEIAAJBBAACwQQAAEEIAAJjBAADQwQAAeEIAAGzCAAAEwgAAQEEAADjCAACIQQAAwEEAAFRCAABMQgAAZMIAABhCAACQQQAAoMEAAHjCAABwwQAAoMEAADhCAAAUwgAANEIAADxCAACAQAAAjsIAAIBBAAAAwQAAyEEAAFDBAAAIwgAAgD8AAKDBAACgwQAAgMIAABTCAACoQQAAQMAAAMBAAABEwgAAJMIAAEzCAAAAQAAAiMEAALDBAACYwQAAPEIAAFDCAAAQQQAAYEEAACxCAADowQAAMMIAAIC_AAAkQgAAAEIAADTCAABIQgAAQMAAABzCAABgQQAAwMEAAGDBAACwwQAABEIAAKBAAAA8wgAA4EAAAEDAAAAowgAAcMIAAKTCAACgQQAANMIAAJhBAABgQQAA-MEAAPDBAADAwQAAmMEAALhCAADYQQAA0EEAAGDBAAAQQgAAEMIAAEDBAACQwgAAgMEAAPjBAAAQwgAAoEAAAIRCAADgwQAACMIAAGDCAAAAQAAAIEIAAJ7CAAAswgAAwEAAABTCAACAvwAAmEEAAMDBAAAAQgAAuMEAADRCAABAQQAAyMEAALhBAAA4wgAAJMIgADgTQAlIdVABKo8CEAAagAIAAMi9AADGvgAA-D0AAKA8AACIPQAAlj4AAAw-AADuvgAAPL4AAAy-AAC4vQAAvr4AAHA9AAAcPgAAjr4AAFC9AAAsPgAAQDwAAEC8AADOPgAAfz8AABw-AAAMvgAA4DwAABC9AADYvQAArj4AABQ-AAAQvQAABD4AAGQ-AADIvQAAHL4AANg9AAAwPQAAgDsAAHQ-AACKvgAAvr4AAIA7AACqvgAAmL0AAMI-AACAOwAAHD4AAOA8AADoPQAA2L0AAPi9AAAUvgAAgDsAAIC7AAB0PgAARD4AANi9AADYvQAANz8AAMg9AACAOwAARD4AALg9AAB0PgAAgDsAAGy-IAA4E0AJSHxQASqPAhABGoACAABQPQAAuD0AAAS-AAADvwAADL4AAEA8AABsPgAA-D0AAIC7AAAsPgAAUL0AAFC9AADIPQAAgLsAADA9AAAwvQAAcL0AACE_AACYvQAA3j4AACQ-AABkvgAAUD0AAAy-AACAuwAAEL0AAEA8AACgPAAAiD0AAAw-AAAwvQAAED0AAHS-AABwvQAAuL0AADC9AAAQPQAAQLwAAOi9AAAQvQAABD4AADA9AAA0PgAAoDwAAAQ-AAAUPgAAf78AAIi9AACIvQAAuL0AANi9AABkPgAAML0AACQ-AACgvAAAFD4AAFC9AADovQAAMD0AACQ-AABQPQAA-L0AAKC8AABcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=-ZkQ5DodgvY","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14760111242380436315"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18014047031613014530":{"videoId":"18014047031613014530","docid":"34-5-16-Z29D1085D763AA328","description":"\"Discover how to use Simpson's 3/8th Rule for solving single integrals in this comprehensive tutorial! We’ll take you through the theory, perform step-by-step calculations, and solve real-life...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3070536/14a709abe8d4b47ac6f69e5bd8ff36da/564x318_1"},"target":"_self","position":"15","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Df29aC7JZeJM","linkTemplate":"/video/preview/18014047031613014530?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Numerical Integration | Simpson's (3/8) th Rule | Unit- 03","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=f29aC7JZeJM\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFgoUMTgwMTQwNDcwMzE2MTMwMTQ1MzBaFDE4MDE0MDQ3MDMxNjEzMDE0NTMwaq8NEgEwGAAiRRoxAAoqaGhsdHN4a2tyemFkc2ViZGhoVUNoZm9BOEw2a1dVQ0tvRjBzYmtCUXl3EgIAEioQwg8PGg8_E70JggQkAYAEKyqLARABGniB8P0KAP4CAPQJDwkFBvwBAQzu__b-_QDmAwT9Cf0BAPECDvoHAAAAAvgHBAsAAAD3_f71-v8AABAB9_wEAAAACP_--f0AAAADAAQD_gEAAOz_AgkDAAAAEPv4BQAAAAD8A_gC_wAAABIR9QYBAAAAAvfz8wAAAAAgAC3oDdc7OBNACUhOUAIqcxAAGmAZCgABDwkD2RoR8sji2wn69wHY_uj5__T8ABP_BtrlOdS5Fvz_FsL7-b4AAAD48_8I0AD-Ut_vzU8K_A3w4_sY-H_18-L89ATSFfg16RIjEwYAEDcA1yDhD-vI1FsCJQsgAC2EJUo7OBNACUhvUAIqrwYQDBqgBgAAEEEAAHTCAACqQgAAHMIAAOBAAADgwAAAEEEAAMBAAAAswgAAkEEAAFBCAAAgwQAAqsIAANjBAABkQgAAAMEAABxCAACwwQAAoMAAAPjBAACQwQAAcMEAACzCAACUQgAATEIAAJDBAABQwgAAeMIAAJBBAABsQgAAMMEAAMBBAADwwQAAIMEAAGDCAACwwQAAoMAAAJBCAAAYQgAAGEIAAMBAAADAQQAAsMEAAATCAAA0QgAAjsIAABDBAAAQQgAAbEIAAFBBAADIwQAAVMIAAOBAAADoQQAAAEIAAMBBAAC4wgAAQMAAAOjBAAAUQgAAgkIAAABAAABEwgAAsMEAAJBBAACwwQAAgMAAAIDCAABIwgAAgsIAAHRCAADQQQAA0MEAAFRCAADgQQAAqsIAAOjBAAAYwgAAgMAAAIBAAAAowgAABEIAAIDAAAAIQgAAYEEAAM5CAAAEwgAADEIAAOBAAADQwQAA4EAAAEBBAACgwQAAwMEAAIDBAAA8wgAAAMIAALBBAAC4QgAAHEIAAITCAADsQgAAAEIAAI7CAACcwgAAAEIAAEDBAACGQgAAEMIAAIRCAADwQQAAFEIAAIA_AACAQQAAVEIAAAhCAAAAwQAAqMEAAGDCAABgwgAA4EEAADjCAABAQQAAsMEAAChCAABMQgAAiMEAAEDCAAAgwQAAQMEAAIDBAAC4wQAAMMEAAHhCAADIwQAA8MEAAGDBAAAAQQAAXMIAACDCAACowQAA8MEAAIjBAADYwQAAWEIAAIDAAADAwQAA6MEAAABCAADIwQAAQEEAAARCAADgQQAAwMEAAEBBAACIwQAAEMEAAODBAABwwgAA0EIAAJrCAACUQgAALEIAAOjBAABwQQAAPEIAADRCAAAsQgAACEIAABDBAABgwgAAAEIAAJhBAAAQQQAAAMEAAADAAADwQQAA-MEAADBCAAAkQgAAEMIAAODBAAB8wgAAFEIAADRCAABEwgAAdMIAAFxCAADYwQAAQEAAAJjBAABAQAAAIEEAAIjBAAC4QQAAIMEAAIBBAACAQAAATMIAAI7CIAA4E0AJSHVQASqPAhAAGoACAAAlvwAAqr4AAP4-AAAEvgAALD4AANo-AADyPgAAQb8AAKa-AACmvgAAoDwAAL6-AABUPgAAoLwAAAy-AACIPQAAnj4AAKg9AAA8PgAAGT8AAH8_AACIPQAAVL4AANg9AAA0vgAAgr4AAN4-AADoPQAAuL0AABA9AACePgAA-L0AAOC8AAAQPQAAgLsAAKC8AABUPgAAmr4AAOK-AABQvQAAEL0AAOY-AADmPgAADD4AADQ-AACYPQAAiD0AAN6-AAAwPQAA4LwAAOi9AACCPgAAJD4AAJY-AACGvgAAgDsAADk_AAAJPwAA4LwAALY-AACAOwAA1j4AAEC8AAC6viAAOBNACUh8UAEqjwIQARqAAgAAuD0AANg9AAAsvgAAKb8AALa-AABwvQAAij4AAIg9AADoPQAAgDsAAOi9AADYvQAA2D0AABC9AACgPAAAgDsAAES-AAAbPwAA2L0AAOI-AABwPQAAur4AAAS-AAA8vgAAcL0AAKC8AAC4vQAAiL0AAKA8AADYPQAAuL0AAKg9AAAsvgAABL4AAMi9AAAwvQAAyD0AALi9AAD4vQAA-L0AAIC7AAAQPQAA4DwAADA9AABwPQAAyD0AAH-_AABUvgAA2L0AAES-AACAOwAATD4AAFC9AAAcPgAA6L0AABQ-AADIvQAAmL0AAOg9AABcPgAAgj4AAAS-AADIvQAAfL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=f29aC7JZeJM","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18014047031613014530"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4452379387993914811":{"videoId":"4452379387993914811","docid":"34-10-7-Z710BF50A48AFA542","description":"https://engineers.academy Learn how to use numeric integration and Simpson's rule to approximate integrals. Calculate an estimate for the area under a function using Simpsons rule and improve...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3861042/c128cb106f887ceed64581e0d4469d77/564x318_1"},"target":"_self","position":"16","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DpVyaG94eAOY","linkTemplate":"/video/preview/4452379387993914811?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Numeric Integration Using Simpsons Rule","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pVyaG94eAOY\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFQoTNDQ1MjM3OTM4Nzk5MzkxNDgxMVoTNDQ1MjM3OTM4Nzk5MzkxNDgxMWqvDRIBMBgAIkUaMQAKKmhocWl1aHNnZ2duYWpjb2RoaFVDLUZ1M3hRWERXRzZLVVhIMk55MUs1dxICABIqEMIPDxoPPxPHBoIEJAGABCsqiwEQARp4gfsEAQL-AwAFBA4F-gj8AgEM7__3_v0A5gME_Qj9AQD9_ADxCQEAAAL4BgQKAAAA_AQI8vv-AQAEBPgHBAAAAAEABvf9AAAAAAf9AP8BAAD2-gb5AgAAAAf8-woAAAAA-_P0-v8A_wEHG_kAAAAAAAD6_PkAAAAAIAAtnXXbOzgTQAlITlACKnMQABpgHggADQIb9OIPFenr5OoHBBEFz_zdBQD__gAP_e2_AiHnxyX-_yzy8hDGAAAA6gsCBdgA60ny4MMoBB0NAuEKLAB_CgEJHs_75_vtIPIYFA8MJyglANEW9-7s6u9GDhMUIAAtAwNhOzgTQAlIb1ACKq8GEAwaoAYAAKDBAACQwQAAXEIAAJDBAACIQQAAQEAAAKhBAACAQQAAMMEAAEhCAAAgwQAAeMIAAILCAAAQwgAAHEIAAMDBAAAEwgAAyMEAAFDCAABAwQAAokIAALrCAACAQQAAoMAAACxCAAAwQQAAUEEAAGTCAAAkQgAAgD8AAKDAAACAQgAA7MIAAJDBAAAwQQAAgD8AABhCAAAwQgAADMIAAEBAAABIQgAAgEAAAAAAAACQQgAAyMEAADjCAAAswgAAMMIAAHBCAABgQQAAwMAAANBBAACAQQAAwMEAAMhBAABgQQAA-sIAANBBAACgQQAAfEIAALBBAACAQgAANMIAANjCAACYwQAAAMIAANDBAACAwQAAEEIAAEDBAAAQQgAAwkIAAGDCAAA8QgAAOEIAAGjCAADAQAAAAMIAACRCAADYwQAAuMEAAEBAAABwwQAAsEEAAEBBAAB8wgAAjkIAABDBAACAQQAA4MEAAFjCAACUQgAAFEIAACDCAADQQQAAbMIAAOBAAAAkQgAAiEEAAOhBAACIwQAAgMAAAADAAAC6wgAAuEEAAOBAAABMwgAAQEAAAHBBAADIQQAA2EEAAIDAAADIwQAAMMEAANjBAAAkQgAAPEIAAOBAAACIQQAAoEAAACDCAACIwQAAXMIAAODAAABgQgAA-EEAAOhBAADgwQAA6MEAAFDBAACwQQAAwEEAAKjBAAAUQgAAoEAAANDBAAAAQgAAMEEAACDBAAAIwgAAAEIAAGBBAADAQAAARMIAAIpCAACgQQAAoEEAAKDBAADoQQAANMIAAHBBAACAwQAAiEEAAMDAAAAAQQAAoMAAAIBBAAC8wgAAAEEAAIZCAADwwQAAQEIAAETCAADMwgAAAMAAAPBBAABoQgAAvEIAAEBBAABwQQAAwMEAAIpCAACcwgAAIMEAAKDAAAD4QQAAwEAAAATCAACQQgAA4EAAAOBAAACwwQAAiEEAAPhBAACEQgAA2EEAACzCAAAYQgAA6MEAANDBAABkwgAAkMIAAIDBAABQwQAAUMEAANhBAACgwAAAgMEAAHDBAACqwiAAOBNACUh1UAEqjwIQABqAAgAAFL4AAMa-AABcPgAA4LwAAPi9AACyPgAAsj4AAOa-AADGvgAARL4AAFC9AADuvgAAED0AAGQ-AACOvgAAgDsAAJ4-AACgPAAAyD0AAM4-AAB_PwAADD4AAHS-AAAwPQAAiL0AAEA8AAAMPgAAED0AAKi9AADIPQAAZD4AAHy-AADovQAAgDsAALg9AADovQAAhj4AAOK-AADavgAA2D0AALK-AADYPQAAmj4AANg9AAAMPgAAoDwAAKi9AABkvgAAMD0AAJg9AAAQvQAA4DwAAPg9AAAsPgAATL4AAEC8AAA_PwAAPD4AABQ-AADKPgAAyL0AAEQ-AAAQPQAANL4gADgTQAlIfFABKo8CEAEagAIAAFC9AABUPgAAXL4AABW_AACSvgAAuL0AAGQ-AACAuwAA6D0AACQ-AACYvQAADL4AAFA9AACAOwAAMD0AAOC8AACovQAAJT8AAOi9AADGPgAA6D0AALK-AACAOwAAyL0AAFC9AACIPQAA-L0AAIA7AABQPQAA2D0AABC9AABQPQAAPL4AAOA8AABAvAAA4LwAALg9AACgPAAAuL0AADS-AAAsPgAA6D0AAJg9AABAvAAAuD0AAFQ-AAB_vwAAqL0AABy-AACKvgAAUD0AAAQ-AABwPQAARD4AAAS-AAA8PgAAML0AADC9AACYPQAAyD0AAOg9AAAMvgAAHL4AAFS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=pVyaG94eAOY","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4452379387993914811"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15126474517443423820":{"videoId":"15126474517443423820","docid":"34-9-10-ZADECFC91F824D1A7","description":"Numerical Integration - Simpson's Rule (Part IV): We have seen that interpolating a parabola through three data points and integrating gives us Simpson's Rule. What happens if we interpolate a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/759959/08b08e9c870981b768194446803997c0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/TjF47wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbiI9UHTpatU","linkTemplate":"/video/preview/15126474517443423820?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Numerical Integration - Simpson's Rule (Part IV)","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=biI9UHTpatU\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFgoUMTUxMjY0NzQ1MTc0NDM0MjM4MjBaFDE1MTI2NDc0NTE3NDQzNDIzODIwaogXEgEwGAAiRRoxAAoqaGhuend1dHJueG9jcGJjY2hoVUNJNm55bHk3eG9QeVVrSzN4engzUGxREgIAEioQwg8PGg8_E5cDggQkAYAEKyqLARABGniB_P8IAQABAPkHCwf4Bv0CAQzu__b-_QDkEggBA_0CAO4ABf8NAAAAAP0P_QgAAAD7BAjy-v4BABAB9_wEAAAACfcE-f4AAAABAfn6_wEAAPsAA_0D_wAACQUEAQAAAAD4-u8DAAAAAQgb-QAAAAAAA_H7_AAAAAAgAC1KxNQ7OBNACUhOUAIqhAIQABrwAX_0Nf72_MgEwAPkAaEc5AC4JRgA_D_IAI3G8QCsBNoA6vHhAN4yB_8W7tsAqTUjAT_Mxv4D4hwAXtsMAC3J6gHw4wIAIOTzAkkXN_9D6e3-A0QeAeLDFQH9utcA9y8N_xD3BPkjI739Ev_KBC36OQH9CxYCEfwD-wS1FgD1z-ED9frWAAYdEQXs1f_49fIu_uLKDQAvQ_D95xfU_AIQDfr92Bz8NULM_xbm8v8HHA79uuD-B-PeDQcgUgj1-BXrBfD1LwLg6hD738ogAB4MBfvP-QQHFBwIBiT5Av7kGAgb_vMBAt0M9vLl3fIR2Ary6CAALU178To4E0AJSGFQAirPBxAAGsAHahbQvqyUGT1TDfe7moKbvam1F7wDBV69_YUevgFqajzh0Fu8GxARPtJUT7z0hRU9f4MWvqILajshUAc9_b10PpJUS70Dsew8nmKFvpG6fT0sc4S8Efw_vn9geD0QRBK87SjzvPZdkbsMeeO7oDTEPabVUL0R_9Y5bYqMPRdtaT2pToe83JsEPNST3rz87QG9-4qaPNoqd7zlrcQ8IOsJPsVt2byqmTW8Mi2gPQ2eMz2yuWo8axGxvcfIyDwfEdO8hFkSPbjnWT1iIBk8mnecPILnObzk8iQ93xiSvdm_4TwBmcY7nLS6PUrtRTywepu8vJsiPcADqL3DP7I70CpDvphzn7wPqIg85Ib_PTl29TyMb5487-SzvfeRmz3N_bq8l0dIvIXDPL2MrVY8z3yjPbgyUj2n0FQ86XYAPTBiBD0bB8U7kCQQvBDfoz2mYgM9TR1aPWPNbbwkin-8NNk_PE67U72owVm8fJ10vTbCDD2ifdc5r6b8PCDE37qYFnU8hBwIPMO2Kj2CChw8YGeEPfkRv709axI8Yyp9vKNFzL2HKka8HW3BPTlpED0uBX-8r0M1PWi-yb1nO5G7vLslu_0Qi73Tg6O3yj7-vIrzhr0SjpM7mHx9vR7GZD3dUAK8GlUBvYuBHz11LCW89XaVPB3_CTzMosm6zGyWvfNKk70H_1w3m36_PRR3_Dz0iCs6ixCYPRGfxTz-TPK5ElDBPcF4Qb1h0wq6nGOavfX1XL1u4Sk6By4HPKHCDL3EyYG77q8OPp8Skb1-0JQ5APLUvIaBHT3tJ524chGEvGIQ2D2E1A63IojzPLWeq7yyxhQ5XFQLvZwV8b3cnnU5QwiDvUOWoLxfpwG6HWCcvLw7kj2IMbC3Ux6SvUobyL3hc5s3TqixPAUgJLx7Y6O5RprYPbIzAD3WC5A4M-4ZvHxXTj0edQg52vdyvZoMAr1JrqI5rLq7ulDIjj1kzPo3auNjPZbLa72LqTc5Z9LmPALtMz3wSoM5PiYNPSPgmz2w6xy46NgBPRITVD2qnIK24_F-vd00bL2SxL63baljPag04jyxRbS4oFDPvRXvhj3C0gI4EylNPC_-Eb10l9u2cv-cPXc7sTyoF8A1qC9VPUQK0DrWkw42sRUEPsb_-Dsy2VO4zcd6vdMV7L3mm_i4berZO7ANS7w9lkY3vEEvvSWiCT3Nv2Y45NWevHqJ8b1lVTC4yvRwPSLhKz7xy4o4mJNlO4AL0j2Y5A-5rW3qvRQ7vzxv0uM3NgZYvTInwzwwg8M3IAA4E0AJSG1QASpzEAAaYCrpACwYRu0LFRrNysPnFeTl77ATz_D_CwoA8Rjk5Qg62esZAgAW4QPlswAAAN70Dfy2AOdo4v_kNfIRJxbH2jgKf-oALNev_hoC0xju-BBDBiA1PADaI8H49dfhXfwwJSAALZZWKTs4E0AJSG9QAiqvBhAMGqAGAAAwwQAAYMEAABBCAAAwwgAAqMEAALjBAAAQQQAAhsIAAGzCAAA0QgAAgEEAAIBAAACgQAAAyEEAADBCAABgwgAABEIAAIDAAACAwAAAsMEAAOhBAAAQQQAACEIAABBBAADsQgAAsMEAAIjBAAAowgAAbEIAAKBAAACAwAAA2EEAAIBAAAA0QgAAuEEAABxCAAAAwgAAmkIAAABCAADwQQAAKEIAAEjCAACoQQAA4EAAAODBAACQQgAAEEEAADjCAACAwQAA0MEAAIjBAACYwQAAMEEAAILCAABAwQAAdEIAAODBAAAwQQAAdEIAABBBAAAAAAAAeEIAAEBBAABAQAAAiEEAACzCAACGQgAAAEAAALDBAAAAAAAAjEIAAGBBAAA4wgAAuMEAAKBAAACwwQAA-EEAADxCAAC4QQAAaMIAAKrCAAAIQgAAIEEAABBBAAC4QQAA-EEAAABBAAAsQgAAcMEAAGDBAADgwAAAKEIAALDBAAAgwQAAQMIAABDCAAAcQgAANEIAADDBAACAQAAAiMIAAMBAAADIQQAAmsIAACTCAADkQgAAcEEAACxCAABAwAAAqEEAALBBAAB8wgAAQMIAAOBAAADSQgAAcEEAALDBAACSwgAAIMEAAGjCAAAkQgAAMMIAAHBBAADWwgAAuEEAAERCAADgQAAAoEAAAJjBAAAwwQAAUEEAACTCAADwwQAA0EEAAEBAAABgQQAAiMEAAIrCAADowQAAJMIAAHxCAACAQAAAAEIAABxCAAAoQgAASEIAALjBAABAQAAA2EEAAGBBAACOQgAAIEEAAAAAAACSwgAAQEAAAIZCAAAAwAAApMIAADBCAACoQQAAPMIAADBCAAAcwgAAoMEAAFxCAAAUQgAAmEEAALrCAACwQQAANMIAADDCAABYwgAAyEEAAEjCAABowgAAdEIAAMhBAAB4wgAAgEAAAOhCAACYwQAA-MEAANDBAACowQAAMEEAADBBAACmwgAABMIAAKjBAABwQQAATMIAAIC_AADoQQAAoEAAANDBAADoQQAADMIAAKDAAACAQAAAcEEgADgTQAlIdVABKo8CEAAagAIAAKC8AAC2vgAALD4AAOC8AAA8vgAAZD4AAMY-AADOvgAAZL4AAIa-AABMvgAANL4AAHA9AACOPgAARL4AACy-AACiPgAAuD0AAMg9AAABPwAAfz8AAFA9AAAEvgAAiD0AAEC8AAAwvQAAPD4AAIg9AACAuwAAij4AACw-AACGvgAA2L0AAIA7AACAOwAAoLwAADw-AACyvgAA6r4AADA9AAAEvgAAkj4AAIY-AADYPQAAgLsAAEC8AAAQvQAAFL4AAPi9AACAOwAALL4AAJo-AAA0PgAAqD0AAKg9AABwPQAAPz8AADQ-AAAcPgAAzj4AAMg9AAAcPgAAMD0AAIK-IAA4E0AJSHxQASqPAhABGoACAAA0PgAAPD4AADS-AAAfvwAA1r4AABC9AAB0PgAAyD0AABQ-AAAMPgAAuL0AAES-AABcPgAAQLwAAOC8AADgvAAAgLsAABc_AACYvQAA9j4AABw-AACqvgAAqD0AADy-AACAuwAAiD0AAPi9AACAuwAAQLwAADw-AABwvQAAUD0AADS-AADovQAAHL4AADC9AACAuwAAQLwAAOC8AAAQvQAAPD4AANg9AADYPQAAgDsAAKg9AAA8PgAAf78AAHC9AAB0vgAAuL0AAKA8AAB8PgAAoLwAAI4-AAAcvgAAPD4AAPi9AACIvQAAML0AAKA8AAA0PgAAyL0AAFC9AACOviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=biI9UHTpatU","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["15126474517443423820"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"12420891"},"9924789226957970343":{"videoId":"9924789226957970343","docid":"34-4-15-Z67191197ABE364B9","description":"Simpson's 1/3 rule : Evaluate integration limit 0 to 6 dx/1+x³ using simpsons rule | Numerical integration B.Tech | M.Sc. | B.Sc. Simpson's 1/3rd rule integration dx/1+x³ #exam Numerical...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4549071/69f4af03b538a6eb76ae23ddb345a1d8/564x318_1"},"target":"_self","position":"18","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DfSrzaq0-T4Q","linkTemplate":"/video/preview/9924789226957970343?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simpson's 1/3 rule:Evaluate integration limit 0 to 1 2dx/1+x³ using simpsons 1/3 rule|Computational","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fSrzaq0-T4Q\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFQoTOTkyNDc4OTIyNjk1Nzk3MDM0M1oTOTkyNDc4OTIyNjk1Nzk3MDM0M2quDRIBMBgAIkQaMAAKKWhoZGlyYm5tZGR1bWhzdWhoVUNUVmozaUFOaTBOT0NkRGZ4bHd1YklBEgIAESoQwg8PGg8_E7AEggQkAYAEKyqLARABGniB-_oBBP4CAP0CBQL6Bf4CCwDwAfb__wDmAwT9Cf0BAPv9Bu_9AAAACPv-BwEAAAD7Ef_7-P4BAAQB9v4EAAAAAPf9AQEAAAAGCQEK_gEAAO7-APYCAAAAA_r9BAAAAAD__fv3_P8AAAcb-QAAAAAAAPr8-QAAAAAgAC3CpNo7OBNACUhOUAIqcxAAGmAo_QAcAxXo9TAt3vHj7xf_-R3TEuT3__8hAB0OA8j9NtC8HQr_Hezo_bwAAAD3FeUFBAAKVxLlxzYGLAkJxPMV-38TBf4I-fDo0eA25x_8IQEXOT0A5Q_39QDXpz4bHxIgAC1fcEM7OBNACUhvUAIqrwYQDBqgBgAAZEIAAKjBAABAQgAAisIAAADAAAAgwQAAskIAAFBBAACQwQAAAAAAAIDBAAAgwgAAPMIAAKjBAACgQAAAUEEAAFBBAACgwAAA0EEAADTCAADAQAAAmMEAACzCAAA4QgAAAMIAACBBAABwwQAAAAAAAKhBAACQQQAAPMIAAIhBAABcwgAAcEIAAJrCAAC4wQAA4EAAAPhCAAAAQgAAQEIAAARCAADgQAAAkEIAAPhBAAA8QgAA3sIAAIhBAAA0QgAAeEIAANBBAACgwAAAUMIAAIDBAAAoQgAAREIAAOhBAADewgAAQMEAAEDAAACMQgAAlEIAANTCAABAwQAAXMIAAMBAAABkwgAAQMAAAIjCAAAwQQAATMIAAKRCAABoQgAAmsIAAK5CAADYwQAA6MEAAOBAAACIwQAAAEIAAABCAACAwAAABEIAAMhBAABAQgAAkMEAAARCAAAQQQAA8EEAALhBAAAUwgAAQMAAAIRCAAA8wgAAHMIAAEDAAABowgAAAAAAAADAAABwQgAAMEIAAHDCAACwQQAA6EEAACjCAABAwgAAgMAAAKDAAAAcQgAA-MEAAFhCAAAYQgAAgEEAAITCAACAwAAAIEEAAIhBAAAAwAAA-MEAABDBAABwwQAAqMEAAIbCAADowQAAEEEAAKBAAACAQQAAIMIAAMjBAAAowgAAgD8AAODAAAAAwQAAgMEAAEhCAAAMwgAAAEEAAEBAAADwQQAA8MEAADDCAADwQQAAWEIAAMhBAABEwgAAMEIAACDBAAAIwgAAgL8AAKDBAAAAwQAAQEAAAAhCAAAAAAAAIMIAAABBAAAQQQAAIMIAAIbCAAC4wgAAsEEAAEjCAABgQQAAAEIAAMDBAAA8wgAA0MEAAADAAACqQgAAOEIAAIBBAACYwQAAmEEAAOjBAACAvwAAfMIAAAAAAAAAwgAA4MEAAABBAAB0QgAAAMIAAAjCAABgwgAAgD8AAKBBAACYwgAAMMIAAGDBAAAQwgAAUMEAAHBBAAAwwgAACEIAABzCAAAwQgAAcEEAAADCAACwQQAALMIAAODBIAA4E0AJSHVQASqPAhAAGoACAACIvQAApr4AAMg9AACIPQAAmD0AAEw-AAAMPgAAzr4AAEy-AADovQAAJL4AALK-AAAwPQAA-D0AADy-AABQvQAAqD0AAKA8AABAvAAAqj4AAH8_AAA0PgAAFL4AABA9AADgvAAABL4AAHw-AAAMPgAAQLwAAPg9AABMPgAAqL0AABy-AADgPAAA4LwAADA9AABEPgAAVL4AANK-AAAwvQAAlr4AADC9AACmPgAA4LwAALg9AABQPQAALD4AADC9AABwvQAAHL4AAEC8AADgvAAAlj4AANg9AAA8vgAAqL0AAC0_AAAQPQAAUD0AABw-AABQPQAAbD4AAOA8AAAsviAAOBNACUh8UAEqjwIQARqAAgAAqD0AANg9AAC4vQAA-r4AAAS-AADgPAAAPD4AACw-AACYvQAAdD4AAKC8AACIvQAAmD0AAFC9AAAQPQAAML0AAKC8AAArPwAAcL0AANo-AAAsPgAAHL4AAJg9AAA8vgAA4LwAAEC8AABAPAAAcD0AABA9AAAUPgAAoLwAAKA8AABsvgAAqL0AAJi9AADgvAAAoDwAAKA8AAAMvgAAQLwAABw-AACgPAAA6D0AAEA8AACIPQAARD4AAH-_AADIvQAAqL0AAHC9AAAUvgAAZD4AAHC9AAAsPgAAmD0AAOg9AABQvQAAqL0AAEA8AAAMPgAAgLsAAJi9AABwPQAATL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=fSrzaq0-T4Q","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9924789226957970343"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6806544176215780374":{"videoId":"6806544176215780374","docid":"34-9-12-Z12887E0AF149CF2D","description":"News follow below link https://www.gatexplore.com/ For GATE 2021 Information Visit: https://www.gatexplore.com/gate-2021/ Next Videos: Trapezoidal Rule Video: • Numerical Integration Trapezoidal...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3336207/94726b58e2edb85f3b008501da989bc2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/YHpFsgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzadUB3NwFtQ","linkTemplate":"/video/preview/6806544176215780374?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Numerical Integration Introduction l Trapezoidal Rule Simpson's 1/3 Rule l Simpson's 3/8 l GATE 2021","related_orig_text":"Simpson Integrations","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Simpson Integrations\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zadUB3NwFtQ\",\"src\":\"serp\",\"rvb\":\"EqwDChM3NzI0OTk2MDgxNzI2NDYwMTQwChQxNzU4MzA5MjIzMDI4MjI4NzEzOAoUMTE0MzMzOTkyMDQyNzMwOTYyNDUKEzI3NzI4NDMzODM1MDMzMDA4NDMKEzM0MDkyODA1NzU1NDY0NTc0ODMKEzU4OTQzNzY3NzY0MTAyNzk3ODEKEzc2NzM3MzAzNTU2NjgyMjk0NTcKFDE0NjUxNTA5NzE5MTc2MDA2Mzk0ChM0NzE2MTIwOTQwMDUzOTQ5NzE4ChM3MTE0MTIxMTI2NjUwMzQ2NDcyChMzNTcwNzkzNTI0NzQzOTQ5NzE3ChQxNDU2NTA0MTYwMjU3MjQwOTIzOQoUMTQ3NjAxMTEyNDIzODA0MzYzMTUKFDE4MDE0MDQ3MDMxNjEzMDE0NTMwChM0NDUyMzc5Mzg3OTkzOTE0ODExChQxNTEyNjQ3NDUxNzQ0MzQyMzgyMAoTOTkyNDc4OTIyNjk1Nzk3MDM0MwoTNjgwNjU0NDE3NjIxNTc4MDM3NAoUMTQxMTU1MzY4MTg5MzkxNDIxMTcKEzExODg4NTg0NjcyOTAxMjcyNzIaFQoTNjgwNjU0NDE3NjIxNTc4MDM3NFoTNjgwNjU0NDE3NjIxNTc4MDM3NGqTFxIBMBgAIkUaMQAKKmhoaXJneHhtZ2JxbGp0dmNoaFVDUHR6VWVqZ3ZHSUx2ZFZRQ0E5RWtSQRICABIqEMIPDxoPPxOSBIIEJAGABCsqiwEQARp4gfj-CAT8BADzCQQBAwP-Af0B9Ab4_f0A7Qn_BQgAAAD7-Qr6AQAAAAr3__4AAAAA-xH_-_j-AQAMBvUDAwAAAAf__vn-AAAABQH9Bv8BAAD5-f4GA_8AAAH7_P0AAAAA_P37Afn-AAAAF_cLAAAAAAf4AP4AAAAAIAAtk7jeOzgTQAlITlACKoQCEAAa8AF_DSf_kgbD_M4lFAD3B_IBmA8i_wwn3__UAwoA6uzmAeXiz__q7_YAHQ8P_9X_6f8u8un_59n6AB2_G__lAREBEfTwAfvGCANrsgkBHOTp_uwPHP_B3hMAyv_IAfnw1P0JxyL-GPaxAQ3lqAs_yTACJzoWBuz6-gbX3gAA5d4nAKkWxvnl5vkHx8Eq_7tYEAIDHO8H-DQL-tnxAv4q1wsCHfL59lAH1gEque0D0QQx_-z2_Qbz-wL4-igX9s308fPzFCcDAOAO9imuDwEGv_QBGAjm-gvD9gHu4AT8_fDl-ucE7vDoTvf-DMvrEgf_9wkgAC3clO86OBNACUhhUAIqzwcQABrAB4iCub7FJQG8WkX_vLHfw708qF-9cL4HvT_pX73wZJw9Eo9avaYO8j2V9DC8ZMlnutJykL79rn49XBENuhGEdT0ne5W9SEbYvFouW77qj5U8bmKSvIkLEL42aq66zo_5O82zTT1F_US9tiW8PODZfj1ScU29zTdHvA14D73-LVy8Wy7tuTZEwL3o7Xm9LlJNPP7VQz1gPnm9fNa1PCAHuj2CkTe9iLKcvP2AvD3liRY9ibcJver2KL3fWty80-OtvI9w2j2lBcm9DFmdvP8sLD205mc91BayO8FlXzwt0447d5TUPA7WJLzKFd49k98CvX_CtDxadz29RyXtuy96Pb0JSvY8h78HvKj8Cz6lg5U9JI6GvANzWb0N5po9L2MvvAsC9bx7_Dm8cO-aPDhoPz6H1i88-Kc3O8CWhz1JO5Q9D7FmvGBtUb3wKhU9jJH4O59NqD38byU9udSSvJwEpTxdAHU8oyeAvBpAzzvKr6o93coYPBEqsj0aICg7elASu4Qv57zpPb89G58oO5uVCL0Idgy-zaXhu4ABDj3uGJi9w3mdvHR-yjxqJHM9hcSou48MqDwEx6W8XzICvM4U3zxXAUM9XjSeuzUpZT2hgbi9alAPO-paG75oef49KzgxOLbkJz2Y_iA9uV0gvHMHWz0DU8c9cgzBOb8ROLyc7JW8AVRtu1-1MrwzEJC9aHMDO7jlozw4no88RsIMuxmRGD74frQ8GeZtOTSTOTyZklY9ioYUOxM9Gr3qJgw7Jlv_OZRAtD3gzWS94odqOWYJvDy9cMY7FO-dOthbD727mfE9CUSKuawsGz0rAQw9X2RmOYkPt723Qri9MUK6OPFrj70yv6S91aMPOga44D0hK648_vgPuRTn6L1zySK9It5DudNdY7275wo9LrqPOIx13DqLql88QJxhONsGJLyl9Ow9jKmsuKAfAb1JLKk86xtaOaTfnr30-P09oAgVOOukYzyijKK9v1JkOe2DLDzeZKo9Xum9uJZ2ajxPR1Y9Tcw-uEtshDuXBCM9gKTyuFJIz7s-PKu9T7LkOPzSkTzDjnA9ctg4OG3F_r2i1D69Gi_0uAKKBzyfOaC9sxGdt_YnAT5EUku9G2w4OHl6gLxJCP87uB5nODpd1j3sSo07HPtJuVBUFr52iaq8UIr5tXjclj2Zdlu94b_HONhLnr3AGrE8lNf3tq8tt72gJBO9gyX7t6sPyj2l_pU9wZSaNxt31DzTJ2M9pTSguFIJpL0f-FM9CUMwOJURsrxlMKs8ixWPNiAAOBNACUhtUAEqcxAAGmAw5wAW9Cvy_ywZ9PfQ-hLb0wyxGNQK_wEN__Hn0ekCHfKtFfMADOT746wAAADzA8v65wDxbezs3jYHGhYkp-4Z838QDym2wfXt7t4v7-__Mf0hPC8A5PWqDxy6tFUZSxogAC3GfCY7OBNACUhvUAIqrwYQDBqgBgAAAMAAAODAAADIwQAAoMEAAGBBAABQwQAASEIAALDBAAAIwgAAIEEAAMBBAAC6wgAAeMIAACTCAAAkQgAAEMEAAFBBAAAwwQAAkMEAAIjCAADAQQAAkMEAAEBCAABgQQAAQEAAAKDBAACAwAAAmsIAAIZCAABQQQAAQMIAAGBBAACkwgAAEEEAAGDBAAAIwgAAFMIAAM5CAADQwQAACEIAAIJCAACoQQAArkIAAAhCAAAwQgAAnsIAACDCAABwwQAAlkIAACRCAAAowgAAmEEAAODAAACgQQAAOEIAANhBAAAAwwAAQMAAAIDBAACOQgAANEIAALDBAAAgwQAARMIAAODBAAB4wgAAQMEAAFzCAADoQQAAwMAAAJxCAACkQgAAMMIAAABBAAAowgAAjMIAAMBAAABgQQAALEIAAAzCAACSwgAAIEIAAKBAAACWQgAAoMAAAKDBAABgQQAAUEIAALBBAAA4wgAAKEIAABhCAACKwgAAjsIAAGBBAABMwgAAkEEAAMBBAADgQAAAVMIAAMDAAABwQQAAFEIAAEzCAAAgwgAAmEEAAEBAAABAQQAA0MEAAOBBAAAQQQAAIMIAAAAAAAD4wQAAAEIAANBBAAAcwgAAfMIAAIhBAAAQQQAAEEEAAFjCAADwwQAAVMIAALhBAAAQQQAA-MEAAKDBAADAwAAAsMEAAIDAAADwQQAAoMAAAKBAAAAAQQAAgEIAAJBBAADAwQAAQMEAAKjCAAAQwQAAgMEAAEBAAADgQAAA2EEAAODAAACIwgAAQEEAAMBBAAAQwQAAoEEAADBCAAAcQgAAgD8AAMhBAACAwQAAcEEAAJ7CAADgwAAAIEIAAODBAAC4QQAAHMIAACjCAACoQQAAMEEAAAhCAADwQQAAqEEAAAAAAAAQwgAAOEIAAGDBAACYQQAAIMIAAKhBAABAQAAAgMEAAFBCAAA4QgAAcEEAAAzCAAAAQQAAwMAAAL5CAAAcwgAAtMIAAEDBAADgQQAAQMAAAEzCAACKwgAAQEAAAMBAAACAQQAAMEIAAITCAABQQQAAmMEAADDCIAA4E0AJSHVQASqPAhAAGoACAABkvgAApr4AAKY-AAD4vQAAUD0AAKY-AAA0PgAABb8AAIK-AABcvgAAuL0AAHS-AAAsPgAAFD4AACS-AACAOwAA6D0AAEC8AAC4PQAA5j4AAH8_AADIPQAADL4AADA9AABQvQAAJL4AAIo-AABwPQAA4LwAABQ-AAA8PgAAgDsAAFS-AABEvgAAoLwAACy-AAA0PgAANL4AALq-AACIPQAALL4AAOA8AACOPgAA-D0AADA9AABQPQAAgj4AAIa-AACoPQAAmL0AALi9AAAMPgAA6D0AADw-AAAMvgAAoDwAABU_AABkPgAABD4AANo-AADYPQAAbD4AAOA8AAA8viAAOBNACUh8UAEqjwIQARqAAgAAMD0AAMg9AABQvQAAIb8AAIa-AABAvAAAcD0AAFw-AADgvAAAJD4AAMi9AAAEvgAAHD4AAEA8AAAwvQAAoLwAANi9AABHPwAAEL0AALI-AAAEPgAAnr4AABQ-AABMvgAAuL0AABQ-AAAwvQAAqD0AAEA8AAB0PgAAgDsAAIC7AABkvgAAcL0AAFC9AAC4vQAAQDwAAMi9AADovQAAiL0AANg9AADgPAAAED0AAHA9AAAQvQAAuD0AAH-_AAAcvgAAZL4AAIi9AACovQAAhj4AAEA8AACaPgAAED0AANg9AACYvQAAiD0AAFA9AACAOwAALD4AAEA8AACgPAAAyr4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=zadUB3NwFtQ","parent-reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6806544176215780374"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3489020997"}},"dups":{"7724996081726460140":{"videoId":"7724996081726460140","title":"\u0007[Simpson\u0007]'s Rule & Numerical \u0007[Integration\u0007]","cleanTitle":"Simpson's Rule & Numerical Integration","host":{"title":"YouTube","href":"http://www.youtube.com/live/7EqRRuh-5Lk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7EqRRuh-5Lk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":730,"text":"12:10","a11yText":"Süre 12 dakika 10 saniye","shortText":"12 dk."},"views":{"text":"802,7bin","a11yText":"802,7 bin izleme"},"date":"13 mar 2018","modifyTime":1520899200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7EqRRuh-5Lk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7EqRRuh-5Lk","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":730},"parentClipId":"7724996081726460140","href":"/preview/7724996081726460140?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/7724996081726460140?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17583092230282287138":{"videoId":"17583092230282287138","title":"\u0007[Simpson\u0007]'s 1/3 and 3/8 Rules for Numerical \u0007[integration\u0007]","cleanTitle":"Simpson's 1/3 and 3/8 Rules for Numerical integration","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nXUWwP9OUxw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nXUWwP9OUxw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkM3Qm5Ub1VVUFo0QWFJc2VlQkEzUQ==","name":"SparkTechUg","isVerified":false,"subscribersCount":0,"url":"/video/search?text=SparkTechUg","origUrl":"http://www.youtube.com/@SparkTechUg","a11yText":"SparkTechUg. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":806,"text":"13:26","a11yText":"Süre 13 dakika 26 saniye","shortText":"13 dk."},"date":"18 eyl 2024","modifyTime":1726617600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nXUWwP9OUxw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nXUWwP9OUxw","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":806},"parentClipId":"17583092230282287138","href":"/preview/17583092230282287138?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/17583092230282287138?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11433399204273096245":{"videoId":"11433399204273096245","title":"Numerical \u0007[Integration\u0007] | \u0007[Simpson\u0007]'s (1/3) rd Rule | Unit- 03","cleanTitle":"Numerical Integration | Simpson's (1/3) rd Rule | Unit- 03","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=af7m38CZAys","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/af7m38CZAys?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaGZvQThMNmtXVUNLb0Ywc2JrQlF5dw==","name":"Sound of Education","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sound+of+Education","origUrl":"http://www.youtube.com/@SoundofEducation0728","a11yText":"Sound of Education. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":929,"text":"15:29","a11yText":"Süre 15 dakika 29 saniye","shortText":"15 dk."},"views":{"text":"1bin","a11yText":"1 bin izleme"},"date":"18 eyl 2024","modifyTime":1726617600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/af7m38CZAys?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=af7m38CZAys","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":929},"parentClipId":"11433399204273096245","href":"/preview/11433399204273096245?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/11433399204273096245?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2772843383503300843":{"videoId":"2772843383503300843","title":"Numerical \u0007[Integration\u0007] - trapezium rule and \u0007[Simpson\u0007]'s rule","cleanTitle":"Numerical Integration - trapezium rule and Simpson's rule","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kQp4f_HZXYc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kQp4f_HZXYc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdjJ1NmJGYzdTU0ZzUEhmOThNNTBNZw==","name":"Caspar Hewett","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Caspar+Hewett","origUrl":"http://www.youtube.com/@CasparHewettFluids","a11yText":"Caspar Hewett. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":600,"text":"10:00","a11yText":"Süre 10 dakika","shortText":"10 dk."},"date":"4 nis 2024","modifyTime":1712255788000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kQp4f_HZXYc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kQp4f_HZXYc","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":600},"parentClipId":"2772843383503300843","href":"/preview/2772843383503300843?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/2772843383503300843?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3409280575546457483":{"videoId":"3409280575546457483","title":"Numerical \u0007[Integration\u0007] | \u0007[Simpson\u0007]'s (1/3) rd Rule | Double \u0007[Integration\u0007] | Unit- 03","cleanTitle":"Numerical Integration | Simpson's (1/3) rd Rule | Double Integration | Unit- 03","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=yPemYOJYmYw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/yPemYOJYmYw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaGZvQThMNmtXVUNLb0Ywc2JrQlF5dw==","name":"Sound of Education","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sound+of+Education","origUrl":"http://www.youtube.com/@SoundofEducation0728","a11yText":"Sound of Education. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1596,"text":"26:36","a11yText":"Süre 26 dakika 36 saniye","shortText":"26 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"30 eyl 2024","modifyTime":1727654400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/yPemYOJYmYw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=yPemYOJYmYw","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":1596},"parentClipId":"3409280575546457483","href":"/preview/3409280575546457483?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/3409280575546457483?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5894376776410279781":{"videoId":"5894376776410279781","title":"Numerical \u0007[Integration\u0007] | \u0007[Simpson\u0007]'s (1/3) rd Rule | Unit- 03","cleanTitle":"Numerical Integration | Simpson's (1/3) rd Rule | Unit- 03","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HIqAWqa5t5w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HIqAWqa5t5w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaGZvQThMNmtXVUNLb0Ywc2JrQlF5dw==","name":"Sound of Education","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sound+of+Education","origUrl":"http://www.youtube.com/@SoundofEducation0728","a11yText":"Sound of Education. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":704,"text":"11:44","a11yText":"Süre 11 dakika 44 saniye","shortText":"11 dk."},"date":"1 eki 2024","modifyTime":1727740800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HIqAWqa5t5w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HIqAWqa5t5w","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":704},"parentClipId":"5894376776410279781","href":"/preview/5894376776410279781?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/5894376776410279781?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7673730355668229457":{"videoId":"7673730355668229457","title":"\u0007[Simpsons\u0007] Rule - Approximate \u0007[Integration\u0007]","cleanTitle":"Simpsons Rule - Approximate Integration","host":{"title":"YouTube","href":"http://www.youtube.com/v/ns3k-Lz7qWU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ns3k-Lz7qWU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmU2amVuTTFCYzU0cXRCc0lKR1JaUQ==","name":"Patrick J","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Patrick+J","origUrl":"http://www.youtube.com/@patrickjmt","a11yText":"Patrick J. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":440,"text":"7:20","a11yText":"Süre 7 dakika 20 saniye","shortText":"7 dk."},"views":{"text":"910,3bin","a11yText":"910,3 bin izleme"},"date":"24 mar 2009","modifyTime":1237852800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ns3k-Lz7qWU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ns3k-Lz7qWU","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":440},"parentClipId":"7673730355668229457","href":"/preview/7673730355668229457?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/7673730355668229457?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14651509719176006394":{"videoId":"14651509719176006394","title":"\u0007[Simpson\u0007]'s 1/3 rule :Evaluate \u0007[integration\u0007] limit 0 to 6 \u0007[integration\u0007] dx/1+x² using \u0007[s...","cleanTitle":"Simpson's 1/3 rule :Evaluate integration limit 0 to 6 integration dx/1+x² using simpsons rule 1/1+x²","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=79K5LhWGE1M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/79K5LhWGE1M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVFZqM2lBTmkwTk9DZERmeGx3dWJJQQ==","name":"Classaholic","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Classaholic","origUrl":"http://www.youtube.com/@classaholic590","a11yText":"Classaholic. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":489,"text":"8:09","a11yText":"Süre 8 dakika 9 saniye","shortText":"8 dk."},"date":"15 tem 2025","modifyTime":1752537600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/79K5LhWGE1M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=79K5LhWGE1M","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":489},"parentClipId":"14651509719176006394","href":"/preview/14651509719176006394?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/14651509719176006394?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4716120940053949718":{"videoId":"4716120940053949718","title":"Numerical \u0007[Integration\u0007] | \u0007[Simpson\u0007]'s (1/3) rd Rule | Unit- 03","cleanTitle":"Numerical Integration | Simpson's (1/3) rd Rule | Unit- 03","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=UV12fFAP3ZA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UV12fFAP3ZA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaGZvQThMNmtXVUNLb0Ywc2JrQlF5dw==","name":"Sound of Education","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sound+of+Education","origUrl":"http://www.youtube.com/@SoundofEducation0728","a11yText":"Sound of Education. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":959,"text":"15:59","a11yText":"Süre 15 dakika 59 saniye","shortText":"15 dk."},"date":"1 eki 2024","modifyTime":1727740800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UV12fFAP3ZA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UV12fFAP3ZA","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":959},"parentClipId":"4716120940053949718","href":"/preview/4716120940053949718?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/4716120940053949718?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7114121126650346472":{"videoId":"7114121126650346472","title":"Numerical \u0007[Integration\u0007]: \u0007[Simpson\u0007]'s 1/3 Rule | Theory and Python & Numpy Implementation","cleanTitle":"Numerical Integration: Simpson's 1/3 Rule | Theory and Python & Numpy Implementation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YdYd_0a5mGE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YdYd_0a5mGE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDN0tFZE9GVFlwZi1vcWk1SUN1U1VXQQ==","name":"Paul Physics Classroom","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Paul+Physics+Classroom","origUrl":"http://www.youtube.com/@paulphysicsclassroom","a11yText":"Paul Physics Classroom. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1563,"text":"26:03","a11yText":"Süre 26 dakika 3 saniye","shortText":"26 dk."},"date":"31 eki 2023","modifyTime":1698726610000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YdYd_0a5mGE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YdYd_0a5mGE","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":1563},"parentClipId":"7114121126650346472","href":"/preview/7114121126650346472?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/7114121126650346472?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3570793524743949717":{"videoId":"3570793524743949717","title":"Numerical \u0007[Integration\u0007]: Trapezoidal & \u0007[Simpson\u0007]'s Rule | Class 12 Math Problems Explained!","cleanTitle":"Numerical Integration: Trapezoidal & Simpson's Rule | Class 12 Math Problems Explained!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AV7UNUDVb9Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AV7UNUDVb9Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbWZqRjJDMmVJbW05dVl6eGNXalNSdw==","name":"Lecturer Asad Ali","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Lecturer+Asad+Ali","origUrl":"http://www.youtube.com/@LecturerAsadAli","a11yText":"Lecturer Asad Ali. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3430,"text":"57:10","a11yText":"Süre 57 dakika 10 saniye","shortText":"57 dk."},"date":"4 mar 2025","modifyTime":1741046400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AV7UNUDVb9Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AV7UNUDVb9Y","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":3430},"parentClipId":"3570793524743949717","href":"/preview/3570793524743949717?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/3570793524743949717?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14565041602572409239":{"videoId":"14565041602572409239","title":"Numerical \u0007[integration\u0007] using trapezoidal and \u0007[Simpson\u0007]'s rule in python","cleanTitle":"Numerical integration using trapezoidal and Simpson's rule in python","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4XdVlALIEkk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4XdVlALIEkk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaFZLMU45Z2lJVTlCeFVIcnpWS3NYdw==","name":"Dr Manab","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dr+Manab","origUrl":"http://www.youtube.com/@DrManab","a11yText":"Dr Manab. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":491,"text":"8:11","a11yText":"Süre 8 dakika 11 saniye","shortText":"8 dk."},"views":{"text":"29,5bin","a11yText":"29,5 bin izleme"},"date":"24 nis 2020","modifyTime":1587686400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4XdVlALIEkk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4XdVlALIEkk","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":491},"parentClipId":"14565041602572409239","href":"/preview/14565041602572409239?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/14565041602572409239?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14760111242380436315":{"videoId":"14760111242380436315","title":"\u0007[Simpson\u0007]'s 1/3 rule : Evaluate \u0007[integration\u0007] limit 0 to 1 \u0007[integration\u0007] dx/1+x³ using \u0007[...","cleanTitle":"Simpson's 1/3 rule : Evaluate integration limit 0 to 1 integration dx/1+x³ using simpsons rule","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-ZkQ5DodgvY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-ZkQ5DodgvY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVFZqM2lBTmkwTk9DZERmeGx3dWJJQQ==","name":"Classaholic","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Classaholic","origUrl":"http://www.youtube.com/@classaholic590","a11yText":"Classaholic. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":443,"text":"7:23","a11yText":"Süre 7 dakika 23 saniye","shortText":"7 dk."},"date":"18 tem 2025","modifyTime":1752796800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-ZkQ5DodgvY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-ZkQ5DodgvY","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":443},"parentClipId":"14760111242380436315","href":"/preview/14760111242380436315?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/14760111242380436315?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18014047031613014530":{"videoId":"18014047031613014530","title":"Numerical \u0007[Integration\u0007] | \u0007[Simpson\u0007]'s (3/8) th Rule | Unit- 03","cleanTitle":"Numerical Integration | Simpson's (3/8) th Rule | Unit- 03","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=f29aC7JZeJM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/f29aC7JZeJM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaGZvQThMNmtXVUNLb0Ywc2JrQlF5dw==","name":"Sound of Education","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sound+of+Education","origUrl":"http://www.youtube.com/@SoundofEducation0728","a11yText":"Sound of Education. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1213,"text":"20:13","a11yText":"Süre 20 dakika 13 saniye","shortText":"20 dk."},"date":"19 eyl 2024","modifyTime":1726704000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/f29aC7JZeJM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=f29aC7JZeJM","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":1213},"parentClipId":"18014047031613014530","href":"/preview/18014047031613014530?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/18014047031613014530?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4452379387993914811":{"videoId":"4452379387993914811","title":"Numeric \u0007[Integration\u0007] Using \u0007[Simpsons\u0007] Rule","cleanTitle":"Numeric Integration Using Simpsons Rule","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pVyaG94eAOY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pVyaG94eAOY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLUZ1M3hRWERXRzZLVVhIMk55MUs1dw==","name":"Engineers Academy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Engineers+Academy","origUrl":"http://www.youtube.com/@EngineersAcademyLTD","a11yText":"Engineers Academy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":839,"text":"13:59","a11yText":"Süre 13 dakika 59 saniye","shortText":"13 dk."},"date":"1 ağu 2017","modifyTime":1501545600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pVyaG94eAOY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pVyaG94eAOY","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":839},"parentClipId":"4452379387993914811","href":"/preview/4452379387993914811?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/4452379387993914811?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15126474517443423820":{"videoId":"15126474517443423820","title":"Numerical \u0007[Integration\u0007] - \u0007[Simpson\u0007]'s Rule (Part IV)","cleanTitle":"Numerical Integration - Simpson's Rule (Part IV)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=biI9UHTpatU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/biI9UHTpatU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSTZueWx5N3hvUHlVa0szeHp4M1BsUQ==","name":"Computation Exploration","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Computation+Exploration","origUrl":"http://www.youtube.com/@computationexploration341","a11yText":"Computation Exploration. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":407,"text":"6:47","a11yText":"Süre 6 dakika 47 saniye","shortText":"6 dk."},"date":"11 eki 2019","modifyTime":1570752000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/biI9UHTpatU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=biI9UHTpatU","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":407},"parentClipId":"15126474517443423820","href":"/preview/15126474517443423820?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/15126474517443423820?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9924789226957970343":{"videoId":"9924789226957970343","title":"\u0007[Simpson\u0007]'s 1/3 rule:Evaluate \u0007[integration\u0007] limit 0 to 1 2dx/1+x³ using \u0007[simpsons\u0007] 1/3 ru...","cleanTitle":"Simpson's 1/3 rule:Evaluate integration limit 0 to 1 2dx/1+x³ using simpsons 1/3 rule|Computational","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fSrzaq0-T4Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fSrzaq0-T4Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVFZqM2lBTmkwTk9DZERmeGx3dWJJQQ==","name":"Classaholic","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Classaholic","origUrl":"http://www.youtube.com/@classaholic590","a11yText":"Classaholic. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":560,"text":"9:20","a11yText":"Süre 9 dakika 20 saniye","shortText":"9 dk."},"date":"30 haz 2025","modifyTime":1751241600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fSrzaq0-T4Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fSrzaq0-T4Q","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":560},"parentClipId":"9924789226957970343","href":"/preview/9924789226957970343?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/9924789226957970343?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6806544176215780374":{"videoId":"6806544176215780374","title":"Numerical \u0007[Integration\u0007] Introduction l Trapezoidal Rule \u0007[Simpson\u0007]'s 1/3 Rule l \u0007[Simpson\u0007]&...","cleanTitle":"Numerical Integration Introduction l Trapezoidal Rule Simpson's 1/3 Rule l Simpson's 3/8 l GATE 2021","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zadUB3NwFtQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zadUB3NwFtQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUHR6VWVqZ3ZHSUx2ZFZRQ0E5RWtSQQ==","name":"GATE Lectures by Dishank","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GATE+Lectures+by+Dishank","origUrl":"http://www.youtube.com/@GATELecturesbyDishank","a11yText":"GATE Lectures by Dishank. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":530,"text":"8:50","a11yText":"Süre 8 dakika 50 saniye","shortText":"8 dk."},"views":{"text":"130,7bin","a11yText":"130,7 bin izleme"},"date":"16 eki 2017","modifyTime":1508112000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zadUB3NwFtQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zadUB3NwFtQ","reqid":"1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":530},"parentClipId":"6806544176215780374","href":"/preview/6806544176215780374?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","rawHref":"/video/preview/6806544176215780374?parent-reqid=1769579528857700-12503083031375920794-balancer-l7leveler-kubr-yp-sas-59-BAL&text=Simpson+Integrations","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"2503083031375920794759","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Simpson Integrations","queryUriEscaped":"Simpson%20Integrations","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}