{"pages":{"search":{"query":"Sinh","originalQuery":"Sinh","serpid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","parentReqid":"","serpItems":[{"id":"10590746177809128157-0-0","type":"videoSnippet","props":{"videoId":"10590746177809128157"},"curPage":0},{"id":"5295224003495061258-0-1","type":"videoSnippet","props":{"videoId":"5295224003495061258"},"curPage":0},{"id":"15480460998496880186-0-2","type":"videoSnippet","props":{"videoId":"15480460998496880186"},"curPage":0},{"id":"17523267165095828762-0-3","type":"videoSnippet","props":{"videoId":"17523267165095828762"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFNpbmgK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","ui":"desktop","yuid":"3764180931769359382"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"16805173673408889215-0-5","type":"videoSnippet","props":{"videoId":"16805173673408889215"},"curPage":0},{"id":"2044698122944274791-0-6","type":"videoSnippet","props":{"videoId":"2044698122944274791"},"curPage":0},{"id":"15077722940164656386-0-7","type":"videoSnippet","props":{"videoId":"15077722940164656386"},"curPage":0},{"id":"5170435262536143833-0-8","type":"videoSnippet","props":{"videoId":"5170435262536143833"},"curPage":0},{"id":"5367781851392963145-0-9","type":"videoSnippet","props":{"videoId":"5367781851392963145"},"curPage":0},{"id":"17265245569370537539-0-10","type":"videoSnippet","props":{"videoId":"17265245569370537539"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFNpbmgK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","ui":"desktop","yuid":"3764180931769359382"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"6842126061420132112-0-12","type":"videoSnippet","props":{"videoId":"6842126061420132112"},"curPage":0},{"id":"2764854850698425498-0-13","type":"videoSnippet","props":{"videoId":"2764854850698425498"},"curPage":0},{"id":"4256560328730316735-0-14","type":"videoSnippet","props":{"videoId":"4256560328730316735"},"curPage":0},{"id":"4549862615314629736-0-15","type":"videoSnippet","props":{"videoId":"4549862615314629736"},"curPage":0},{"id":"1508885347244106023-0-16","type":"videoSnippet","props":{"videoId":"1508885347244106023"},"curPage":0},{"id":"18287096540364807853-0-17","type":"videoSnippet","props":{"videoId":"18287096540364807853"},"curPage":0},{"id":"6112811751310842772-0-18","type":"videoSnippet","props":{"videoId":"6112811751310842772"},"curPage":0},{"id":"12239458606191242435-0-19","type":"videoSnippet","props":{"videoId":"12239458606191242435"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFNpbmgK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","ui":"desktop","yuid":"3764180931769359382"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DSinh"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"7425363554694938344776","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472324,0,91;1466867,0,48;1457622,0,11;1460923,0,18;1460717,0,20;1464561,0,50;1459297,0,44;1456929,0,62;1459323,0,78;1461641,0,92;27382,0,76;1461600,0,41;123855,0,23;1461712,0,90;1470250,0,93;1373786,0,1;1465919,0,99;1472530,0,12;1463531,0,77;1464404,0,98;1466618,0,70;1470515,0,85;1465703,0,82;1467619,0,11;1472080,0,38;1466271,0,8;1469407,0,41;965705,0,70;1297911,0,58;1470415,0,93;1462740,0,12;856305,0,49;151171,0,71;1281084,0,88;287509,0,16;1447467,0,99;788004,0,46;1468028,0,56;1467129,0,47;912283,0,63"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DSinh","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Sinh","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Sinh","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Sinh: Yandex'te 3 bin video bulundu","description":"Результаты поиска по запросу \"Sinh\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Sinh — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y8d4616bbabbdaa9bafee62c5b37a0ecd","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472324,1466867,1457622,1460923,1460717,1464561,1459297,1456929,1459323,1461641,27382,1461600,123855,1461712,1470250,1373786,1465919,1472530,1463531,1464404,1466618,1470515,1465703,1467619,1472080,1466271,1469407,965705,1297911,1470415,1462740,856305,151171,1281084,287509,1447467,788004,1468028,1467129,912283","queryText":"Sinh","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"3764180931769359382","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769359420","tz":"America/Louisville","to_iso":"2026-01-25T11:43:40-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472324,1466867,1457622,1460923,1460717,1464561,1459297,1456929,1459323,1461641,27382,1461600,123855,1461712,1470250,1373786,1465919,1472530,1463531,1464404,1466618,1470515,1465703,1467619,1472080,1466271,1469407,965705,1297911,1470415,1462740,856305,151171,1281084,287509,1447467,788004,1468028,1467129,912283","queryText":"Sinh","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"3764180931769359382","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"7425363554694938344776","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":175,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"3764180931769359382","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"10590746177809128157":{"videoId":"10590746177809128157","docid":"34-7-7-ZE12758A3E8564070","description":"New videos every week! Subscribe to Zak's Lab / @zakslab Questions or requests? Post your comments below, and I will respond within 24 hours. differential equation f''(x)=f(x) by taking two...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4599102/3d30834849ad294ab8ad9f6bc97c90f7/564x318_1"},"target":"_self","position":"0","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnhZSQsoPdnQ","linkTemplate":"/video/preview/10590746177809128157?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"sinh(x), cosh(x) and their derivatives + derivative of sinh(3x) and cosh differential equation.","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nhZSQsoPdnQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoWChQxMDU5MDc0NjE3NzgwOTEyODE1N1oUMTA1OTA3NDYxNzc4MDkxMjgxNTdqrw0SATAYACJFGjEACipoaGt6eHZ6Y3dwcWdoanVjaGhVQ2czMS1ONEttZ0RCYWE3WXFON1V4VWcSAgASKhDCDw8aDz8T0AGCBCQBgAQrKosBEAEaeIHzDfr9_AUA-QcLBvkG_QIXAA0J9gICAP3y9fj-BP4A7_wA9PkAAAD8BgT_9wAAAAH2AQT2_QEADQb1AwQAAAACBfUIAgAAAA4D-P7-AQAA__L7AQP_AAAIDPr4_wAAAPkOBPEAAAAA8gEF-wAAAAD98_oEAAAAACAALVNm3Ts4E0AJSE5QAipzEAAaYCAKACUX8gTtEhjO4wu78AXT2_zeuij_-_cADSnF0STk1NIA5P8h7xIWtgAAAC3x8wQKAARY0-XbAAb76_zF5QxBf-MGBc_8EtPL-fLoFOzbEQJAIACzCCwWCt3WNPMOBiAALWh3PTs4E0AJSG9QAiqvBhAMGqAGAABIQgAAMMEAAOBBAAC4wQAAnEIAALBBAACuQgAAiMEAAAjCAAAMQgAAmEEAACzCAABgwQAAyMEAAChCAAC4QQAA0EEAAPjBAABMQgAA4MEAAJjCAADAwQAAgsIAAGBBAAAYwgAAyMEAADDBAACYwQAACEIAAJBBAABEwgAAYEEAAHTCAACgQAAAMMIAAKBAAAAAQgAAwEIAAATCAAB8QgAAVEIAAMBAAAAcQgAAyMEAALDBAAC4wgAAmEEAADxCAAAoQgAA4EEAAAAAAACgQAAAkEEAAIDBAACwQQAA-EEAAPDCAAAoQgAAQMEAAHxCAAAAQAAAosIAAIBAAACIwgAAoEAAANjCAACAwQAAhMIAALBBAAAswgAAJEIAAJxCAABQwQAA8EEAAAjCAABkwgAADMIAADBBAACYQQAAFEIAAJDBAACqQgAAgMEAAABAAADAQAAAEEEAAJBBAAAcQgAASEIAALjBAACgwQAAhEIAAFTCAADowQAAuEEAAPjBAAAAAAAAYMEAAMhBAAAAQQAAgMIAAHBBAABgQQAAoMEAAEDBAADwQQAABMIAAEBAAADYwQAABEIAAIhCAACgQQAAgEEAAARCAAAIwgAAokIAAIhBAABowgAA-MEAAKjBAABswgAAcMIAAEDBAABQwQAAkMEAAODBAABAQQAAwEAAAFDBAACgQQAA8MEAACDBAACoQQAAREIAAIjBAACGQgAAcMEAAIBBAACAvwAAnsIAAJDBAACgQAAAkEIAAAzCAACUQgAAokIAAILCAAA0QgAAQEEAAKBAAAAUwgAA4EAAAOhBAADgwAAAQMEAAKhBAAAQwgAAjsIAAKDCAACgwAAAwMEAAOBAAAAowgAADMIAAAAAAACwQQAA6MEAAChCAABYQgAA2EEAALBBAACgwQAA0EEAAMDBAAA8wgAAoEAAAOBBAAAAwgAA0EEAABBBAABYwgAAGMIAABDBAACgwAAAOEIAAHzCAACSwgAAbMIAAIA_AACAvwAACEIAABDCAACYQQAAwEAAAIBBAAA0QgAAOMIAACBBAACAQAAAMEEgADgTQAlIdVABKo8CEAAagAIAADA9AAAEPgAAij4AAAS-AACivgAAgj4AALg9AAAfvwAAUL0AAEy-AABwvQAAFL4AAKC8AAAcPgAAlr4AAAS-AADIPQAAoDwAABC9AABUPgAAfz8AAFC9AABQvQAAQLwAABS-AACoPQAAEL0AABS-AAA8vgAA2D0AAOg9AABQvQAAuL0AAFy-AABcvgAAuL0AADQ-AACKvgAAor4AAIq-AAAQPQAAuL0AAMg9AADIPQAAED0AAOA8AAA0PgAAqL0AAAy-AADovQAAdD4AAOC8AABcPgAAEL0AAFy-AABAPAAAJz8AABA9AADgvAAA4DwAABC9AACKvgAAmD0AACS-IAA4E0AJSHxQASqPAhABGoACAAAsvgAAML0AAAQ-AAA7vwAAED0AABQ-AADGPgAAoDwAAKC8AACIPQAAEL0AAHC9AADYPQAAqL0AAFA9AAC4PQAAoDwAADE_AAAEvgAAhj4AAIA7AAD4vQAAoLwAAHC9AABQvQAATD4AABA9AABAPAAA6L0AAAw-AACgPAAAuD0AAJK-AABcvgAABL4AALg9AACovQAAcD0AADy-AAB8vgAAoDwAAKg9AACGPgAAMD0AALg9AABwvQAAf78AABS-AAAwvQAAmL0AAIg9AACSPgAAqj4AAKA8AAD4vQAAmD0AABC9AAAQvQAAiD0AACy-AABcPgAAqL0AAHC9AAA0viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=nhZSQsoPdnQ","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10590746177809128157"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3868366787"},"5295224003495061258":{"videoId":"5295224003495061258","docid":"34-1-0-Z74BFC317D3CBD4B3","description":"In this video I go over the graph of hyperbolic sine or sinh(x) in a step-by-step manual method. To graph the function, I first show how to find the domain, range, concavity, and critical points.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/763189/74d6cf4be065f4965c7464dc151764e3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RgmUAQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DI0Nggu65DfA","linkTemplate":"/video/preview/5295224003495061258?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Hyperbolic Functions: Graphing sinh(x)","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=I0Nggu65DfA\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoVChM1Mjk1MjI0MDAzNDk1MDYxMjU4WhM1Mjk1MjI0MDAzNDk1MDYxMjU4aogXEgEwGAAiRRoxAAoqaGh2ZGV6aW14Y2lqeXZoZGhoVUNVVUJxMUdQQnZ2R056N2RwZ08xNE93EgIAEioQwg8PGg8_E_kHggQkAYAEKyqLARABGniB6gUC-v4CAO8DC_r7AQABGPvxBPUBAQDr-PvzAv8BAPL2CvIIAAAA-gv7AwIAAAD1AQP88_8BAA8GC_wFAAAAD_r89fYAAAD_CPH9_wEAAPb_9AID_wAACgb9_P8AAAADDfn9__8AAP78_v0AAAAACPL5AgAAAAAgAC26iNU7OBNACUhOUAIqhAIQABrwAX8ICAHEKvb_y-XlABA18ALAITP_Mzzg_83k6wG-6t8B7kDpAPkZ4AD1IjoAtSn4_zDcA_7u6ewAIOH-_gIWCgAEA_EBJtTzATbvCAAW9_cBrDMd_crm6QEE6toAGhrdAAHwBv7UCdcAHRbLAhnlLAMHIi0JAwoKAvT15AHPA-QA7N3Z_SYD_QT7uA384g8SCNnN9_wPHhn54xX8Bgjb-fkO6wr9HRvh_Rz6Ggf4GwQG3AXaA-kH1gMdJgr6-9fr9-vtCgAA5gv4CPTwBxjiHvr2A_wD6NcAAhLV6f0OyAsE_-rsAMAM-QbsCuoG-Av28SAALY27Ezs4E0AJSGFQAirPBxAAGsAHH7zOvrESmDtG7cA7U2AcvSRC47xvkQW9IxPwvdctJz33_UC8ZhA_PnoRNzwHN2O8dqU1vn0KW7yK0pg7xVWFPlQwb72bfyq8dXT8vS8Tmj0LAhC95_4qvl3L_zxIdCo83PUSPZELzrygBxC7tWsCPsSTXTugWKO7IZWivIZEkLxO3ra8l9SeO6xbmL2h0Je8Zz0CPAASGbymBwc8yNQYPWzLRb2IXJm79XmGPez3ZL3SW5c8N4gGvr-wYzsAQpq8D_yOPfyMKz3fIPU8pETBvJWSTz1R0ui8VYpdvRzjlLyNBQq9Y15sPDsODT0tTuu8gqv8vDif-r0yRS-9-aAHvvQamz0vgYA75Gb4PWZM4T0YI9Q7yEUlvmnRgT2dCMe8EKeIPeDIUbpkVN-6z3yjPbgyUj2n0FQ8Yz2KPSAghDz5SIo8LQ4fvFVWLj0QQhs9IkQDPUWAU7xE3928lz0kPUEr8jtPwpa79ikivVIxiT0wCic8gjDBPD_1-jvShLO74eEHPdlF7LyRcRY8xTVDPfhRDb4Jbyy7dfhVvcH-K70XKn-8d9zwPEb7Lj32Dae8IorpPf37J73B_mu8SAjFvNoXFjxpGIS7QdgJPUJYor3kPyK6UAKmvXofQj0EwUq7lHckvS-Ftz0node7MGbLPCqnDT5ukyi6gbEduxZKC72x0rC7VoaMPdW0Jr3O_v67JUi7PZ6gIz1gTyu5GLIKPmWew7sY0YI4PHyjvILnqb3Wf1-42rrlvMA1sb1SWQ66mbQOPf-zBr7_TG85WZNdPFhS8jtzYJy6ceA6vS66Sz1yFsc3m_NCPCSBAjzhJKc4VBv8vWK7-70T0_I5GU10u1RrhjxQyLy5FK0BPQTAnTwq8KO4SgsXvgrcmr2pquG2Pz5puckDkTw5ygK5FkBCPF7aED3ceYe3ZCeXPeNxEb1z0Uk4JjfMOpH-qLyJCN45vvHaPECWjz0C3QU5mLRSOz9wxb33LmA5xvOuPeSfqT3kAmo2g2iSvOSDHj2na6k3MQcRPlUhFD0uptk3lO3LO6_6Er1POA84pivYPUaYAj2BRn-4dz2HvaTDwzyAr8I4yCxWvG0bxrwceyS4mz3QPf6Ki73aoZI4rWOBvNzO4zxVcXU4oFTLPffxxrwtj9W4ClwIveLDkb08pVi4qwTwvASxh7x-BSa4rSRDvQxzRz0ewRY35NWevHqJ8b1lVTC4yvRwPSLhKz7xy4o45yBDvQt0cj0FdZW4djbkvNaSCT2rfBG45DmhvVLZIzpEHd-3IAA4E0AJSG1QASpzEAAaYAvzABrCRRjsEyLlJ-LxANTzEuAv2S3_Cdv_GT_w8hMhzrsPDf8ZxfcDqAAAABbx6A7nABF0BeEPByHt68Cm7DYSf_ZAOLraNv6x_wskA_8KExwcCgC2I60UMqKmNCU2KiAALRehHDs4E0AJSG9QAiqvBhAMGqAGAABAwQAAAMIAANBBAABAwQAAEMEAABRCAAC6QgAAgEEAAODAAABAwQAAgMAAAOBAAACQwQAAmMEAAMDAAAAAQAAAAMEAACDCAABQQgAAQEAAAIBAAAAAQAAAqMEAAHDBAACIwQAAsMEAAIDAAADAwQAAWEIAACBCAADYwQAAmEEAANjBAADAwAAAzsIAAPhBAAAgQgAAmkIAAMDAAABwQQAABEIAAKBAAACAPwAAmMEAADRCAAAMwgAAAMIAAABBAADAQAAAGEIAABzCAAAowgAAgEAAAJDBAADAQQAAKEIAAILCAACgwQAABEIAAJDBAAAsQgAAhMIAAEjCAABQwgAA4EAAAADDAAAkwgAAmMIAADDBAACawgAADEIAABDCAACqwgAAwEAAAKbCAACgQAAAAAAAAOBAAABUQgAABEIAACjCAAC8QgAAQMEAALjBAAA4QgAAmMEAAEhCAAAAwgAAyEEAAFDBAACgwQAALEIAAODBAACYQQAAVEIAANjBAACwwQAARMIAAFRCAAAUQgAAeMIAAETCAADYQQAAoEEAAIjBAABQQQAACEIAAIhBAAAUQgAAskIAAIRCAABEQgAAoMEAAGRCAAAgQgAAgMAAAIDBAABgQQAAUMEAAJBBAAAIQgAAJMIAAIA_AABQQQAALMIAAMBBAACKQgAAiMEAAKDAAABYQgAAFMIAAITCAADoQQAA-EEAAIBBAABAQgAAJEIAAPDBAADEwgAAqMEAAIjBAABIwgAAgEAAAADAAAAAwQAAIEEAALhBAAAAQAAAGEIAAIBBAABEwgAAAEIAANhBAAB0QgAAFEIAAIBBAAAAwgAA8MEAAPDBAABAQQAAZMIAAEBCAACAvwAAqsIAADzCAAAEQgAAgMEAAHxCAADAQQAAAMEAAKDBAAAEQgAAFEIAAKjBAAAswgAAYMEAAABBAAAQQQAAcMEAAODAAAAgwgAAQEAAAFTCAAAkwgAAKEIAAJjBAACewgAAAMAAABRCAACwQQAA8EEAACxCAAAIQgAAQEEAAODBAACIQgAAIEIAAKBAAACAwAAATMIgADgTQAlIdVABKo8CEAAagAIAAJi9AABQvQAALD4AAEw-AAC4PQAAqD0AAOA8AAC6vgAA2L0AAKC8AADgPAAA2D0AAFw-AAC4PQAANL4AAEA8AAC4PQAAiD0AAIA7AACOPgAAfz8AAMg9AABAPAAAND4AABS-AACIvQAA2D0AAKA8AACIPQAA4DwAANg9AAAwPQAABL4AAJi9AADGPgAAUD0AAFw-AAAMvgAATL4AAJi9AACYvQAAyL0AAFQ-AACgvAAA4DwAAAw-AACIPQAADL4AAOC8AABMvgAAPD4AAIg9AABEPgAADD4AAIA7AACYvQAA-j4AAIC7AAAwPQAAqL0AAOA8AACIvQAAQLwAAPi9IAA4E0AJSHxQASqPAhABGoACAACgvAAATD4AAIK-AAA1vwAA2r4AAHC9AADePgAAiL0AAKC8AAAMPgAAmD0AAGS-AABQvQAAHL4AABA9AABwvQAAiL0AAOY-AABUvgAAvj4AAFw-AAAsvgAAiL0AAES-AACAuwAAmL0AAL6-AABAPAAAoLwAAKC8AABQPQAAqD0AAEy-AABcvgAABD4AAIA7AACWPgAA-D0AAES-AACovQAAgj4AADA9AACYvQAAmD0AAOg9AABcPgAAf78AAIC7AAC4vQAAEL0AAIY-AAAEPgAAFD4AACQ-AADovQAABD4AAOi9AADgvAAAUD0AALi9AAAEPgAAPD4AALg9AACYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=I0Nggu65DfA","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1160,"cheight":720,"cratio":1.61111,"dups":["5295224003495061258"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"510888163"},"15480460998496880186":{"videoId":"15480460998496880186","docid":"34-10-14-ZB5A5D34EE316C5F2","description":"Did you enjoy the video? Did you find it useful? Was there anything I could have explained better? Thanks for watching!","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4067076/2c4e38165fa5fca62a838648e200ba08/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jcCaRQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dr76jFsDXkHw","linkTemplate":"/video/preview/15480460998496880186?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Hyperbolic Functions: sinh(x), cosh(x), and tanh(x) | Hyperbolic Functions","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=r76jFsDXkHw\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoWChQxNTQ4MDQ2MDk5ODQ5Njg4MDE4NloUMTU0ODA0NjA5OTg0OTY4ODAxODZqhxcSATAYACJEGjAACiloaHZndnhuYXN6andyaWhoaFVDTHgxWnpsa3RUdDlkM2RBWkg5MUs4URICABEqEMIPDxoPPxPDA4IEJAGABCsqiwEQARp4gfcE-v76BgDxAvz_-gIAAQsA-_v3AAAA6_YB_Pr_AQDv_AD0-QAAAP0L_QULAAAA8_oF-_wAAAAGAAv_BAAAAP_8APr7AAAA-Ab6AP8BAAD2__UCA_8AAAgM-vj_AAAAAA0B-v3_AAD7_wT4AAAAAAP5_gMAAAAAIAAtWlTkOzgTQAlITlACKoQCEAAa8AF_AxQD2uDUANH42wDbIecBtCcf_wgb6v_E8wkA3_LdAOYH9QDaFQIAABz1_8Aj-f8T9ej_9sXa_zv2-f8f8gYA3g4SASb81wAk6jEBA9H9_uMfD__2EgoAFN3ZAgMe4P4b8xD89xriAf352v0f_CcB5A4V_xoCFPzSzvoGyAb4Afj5z_4JHwQD9PMG-N4XGwEX7P4BFhsFA_MJ7gQG__b88fMI_ysP6QE74-8A9gj-BuPv8QQHCfX6-AQM_PL09QD1-CAC8P70-gnsDf4I_wL23QsBDfQI8w4M7wEH7N0BCP_t7wDe5wIJH-vx_gkC8fogAC3fXS47OBNACUhhUAIqzwcQABrAB4Du074R3sO65eiWvCNeqLy0rLu8pB6_uzyLOb1yGwg9x4EeOp9bOD7nE3692Ao_vHld_70Fbl28p0kAPMVVhT5UMG-9m38qvBmBor1Atbs94aRfvU_l1L369488uuwhPQSjV717yAy7paWNvIhlcz2lapu9cAKZOrOudr3rPfC8IIAvvb5SsbzhiwK8fUHLvBbQNb3wxhu7towrO8vIj7xjc5-8kTENvULBVj3XhBm91VHhuxaSYr0RXnW7PvTTvB3owT2G_H656kmPPCU9vL2tmca82RaUvPID_DtBTQi9s4mCvD0KNz2mRmi8k8aovNjCBz1Ex5m98juyvC-G8r10kHy8_SGsPBpCjz328MA8ZzGpOu_ks733kZs9zf26vAlfqT123Ru9kDpwvFwdAD6QZpE8M1eCO9CAlT1DkIM8wX2Ruy0OH7xVVi49EEIbPSJEAz1FgFO8RN_dvD99Gj28xtM8uECCO8HFjjspIZg8O5uEPKsCer3E8Gw8072xO_O9UD0iaxE81m59OwUjpT3WAju-SeWaOlxNqLy5clG9b1azvHsNlj1kvm09y6vGuiIbKD6xacq826XLOuJPnrwObZu8in1dPJrjAT335yK9y2S4Oylb5L0b9yE9XquQu1Su7LvkWXg9lhUWvJ46kL2THYs96PaSu0q5Nj3Neoy9k3GYN-b2gTw1qVI9YYLgO6NtgT2S45M9w4kcuNWVDz7U7Ea95UcZucrINDvEbZ-7aGxYu_mNZTwkzFm8XPLsum0D1z21o9i9DJ-vObgkZrvo4V-9SXDeODPFnLzjf5w9v-5aN_3eA7xJGKE8b44WupLzVL0nNoq9n6oJuStVfT3tXJw7qBL5t0fm8T0J2DO8RupQuUoLF74K3Jq9qarhtg6aIr0pQmo8OmCyuQRYJD5gWak88C7sOIBHFL25YDq8r3PguDcccbyPOKS8o5ikuB2ItLsMDmU9EmcHOLdifzw9z0S9hU7KNhQEDz0QXQA-jcNxuDBmS7z5NOE7VsMbuHJv3j0vWLA9rfGoOKmD4TzPKwO9-y3jNctemz0uD4g8ArQDtr2P4704Zc49OHOROIm247ysj4e8FNr9OIoi5D3eVc-8m3ZUN1fCA7wACI48jOKaOJJdGT7ZT1C9rMI_uavfFr0N-x2-o7z-uFSHob3viZq9vewbtk03JL2Nu8w9rO4ONxT0TT20vae9l5eNtyL_7D01KQU-835buJTKar1rBXK8fjGPuK3u4rwomuc9LZiIOBC_LL3nWi89LaZkOCAAOBNACUhtUAEqcxAAGmAK-QBC5C_h8Bwh3iTvwf3I7B_nItMf__TpACsi1esIDOmx5x8ACOQH_q4AAAAKDPMc2AD1ae3_JBjsGAjWsO04KH_7DDOq2CLrpgQZGQ_-KSEEGwMAyy2pADHeySdBFiogAC3HcCg7OBNACUhvUAIqrwYQDBqgBgAAcEIAAEDAAAAAQgAAfMIAANhBAACgQAAATEIAAMhBAABQwQAAAMEAABBCAADowQAAHMIAAOBBAAAEQgAAoMAAAGBCAABowgAAnkIAAIA_AAAkwgAAAAAAAGjCAAAgQgAAgMEAAABBAADIQQAAcMEAAEBAAABAQQAAUMIAAOBAAACYwgAAwMAAAKDCAAAkQgAAgEAAAJRCAAAwwgAAdEIAAGBBAAAAQgAAEEEAAATCAABAwQAApMIAAPBBAAAsQgAA-EEAAOBBAABQwQAAGMIAAIDBAADgQQAAQMEAALBBAAAwwgAAQMAAAGDBAAAEQgAAQMAAAODBAAD4wQAAUMIAAEBBAAA8wgAABMIAAOjBAABAwAAAsMEAALBBAADQQgAA-MEAAOBAAACSwgAAIMEAAGzCAACAwAAAkMEAADDBAAAcwgAAnkIAAADBAAAkQgAA4EAAADRCAACAQQAA4MAAAMBAAADIwQAAAMIAAIZCAABAwgAAMEEAABBCAAA0wgAASMIAAABAAAAgQQAAqEIAAI7CAACgQAAAMEIAADTCAACowgAAhEIAABhCAAAAwAAAoEEAAJ5CAAAgQgAACEIAAEDAAAAgQQAACMIAAJJCAAAgQQAASMIAAAzCAAC4wQAAlsIAAJbCAABQwQAA4MEAAPDBAADAwQAAgMEAAFjCAADwwQAAsEEAALDBAAAAwQAAgEIAAIJCAACYwQAAzEIAAJDBAACAQgAAwMAAAATCAADgQAAA2MEAAADBAACYwQAAgEAAABRCAACowQAAFEIAAEDAAAAEQgAAwMEAAKBBAAAIQgAAwMEAAIC_AACWwgAAWMIAAITCAACUwgAAQEEAACzCAACAQQAAcMEAADDCAADAQQAAsEEAAKDBAACUQgAAiEIAAKDBAACgwAAAoEAAALjBAAAEwgAAwMAAAIjBAADYwQAAMMEAACxCAADwQQAAsMIAAETCAACYwQAAsEEAAPhBAAAAwgAAtsIAALbCAAAQQQAA6MEAAHDBAACgwAAAkEEAAAAAAAAYQgAAsEEAANjBAAAcQgAAwEEAAIDBIAA4E0AJSHVQASqPAhAAGoACAACYPQAAgDsAAEQ-AAAcPgAAQDwAAPg9AAAUvgAAnr4AAJi9AABwvQAA4DwAAIC7AAB8PgAAED0AACy-AABQvQAAoDwAAOA8AABQPQAAJD4AAH8_AACAOwAA4LwAALg9AAA8vgAA2L0AAHA9AABAPAAA2D0AAIg9AADYPQAA4DwAADy-AADYvQAAij4AAIA7AAAMPgAADL4AAIq-AADIvQAAQDwAALi9AACYPQAAqL0AACw-AAAEPgAARD4AAIi9AACAOwAAkr4AAKg9AACgPAAAVD4AAOA8AACIPQAAoLwAAM4-AABwvQAAED0AAIA7AAAwPQAAjr4AAHC9AACIvSAAOBNACUh8UAEqjwIQARqAAgAAMD0AAPi9AAAMvgAAO78AAMi9AACYPQAAND4AAFC9AACCvgAAPD4AAFA9AAC4vQAAED0AABS-AACgPAAAUL0AAOi9AABDPwAARL4AAJI-AABwPQAAjr4AANg9AAA8vgAAgDsAABC9AAA8vgAAgDsAAAQ-AADYPQAAmD0AAIA7AACevgAARL4AABQ-AABwPQAAcD0AAIg9AABkvgAAPL4AAHQ-AABQPQAAoDwAAOA8AACIvQAAND4AAH-_AAD4vQAAgLsAAAS-AACYPQAAUD0AACQ-AADIPQAADL4AAOA8AADgvAAAuD0AAEC8AADIvQAABD4AADQ-AADYPQAAir4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=r76jFsDXkHw","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15480460998496880186"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3739163884"},"17523267165095828762":{"videoId":"17523267165095828762","docid":"34-8-2-Z9CB84D67A70B7B62","description":"that cosh(-y) = cosh(y) and sinh(-y) = - sinh(y). Thus the only that changes when compared to the sinh(x+y) identity is we subtract instead of add the two terms together. This is a simple and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3319405/79f36223aabf4aee750d7ac519c8bb12/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_-u6VQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DC1Vx3DaM0ig","linkTemplate":"/video/preview/17523267165095828762?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Hyperbolic Trigonometric Identity: sinh(x-y)","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=C1Vx3DaM0ig\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoWChQxNzUyMzI2NzE2NTA5NTgyODc2MloUMTc1MjMyNjcxNjUwOTU4Mjg3NjJqiBcSATAYACJFGjEACipoaHZkZXppbXhjaWp5dmhkaGhVQ1VVQnExR1BCdnZHTno3ZHBnTzE0T3cSAgASKhDCDw8aDz8T-gGCBCQBgAQrKosBEAEaeIH3_vwA_gMA9_cBCfgG_gIVAvL69QIBAOXx9v_8_QEA-_kK-gEAAAD_BgH_BQAAAP0GAfv6_gAABgAM_wQAAAARCPf99wAAAPsP-v_-AQAA9v_0AgP_AAAJ_AHv_wAAAP0G9_oCAAAA_vb57gAAAAD98_oEAAAAACAALQBT2zs4E0AJSE5QAiqEAhAAGvABfwgIAc4X6wDMAukB9yHaAcD6Pf_8NNIAwsX1AKgUyv7iK_f_CgT5AOAmKAG2E-3_GNbh_wDa9gAk1vD_BwAWAAn9AAAT1e8CMgIIABMXDP_gIi3969_9__Xi5QIaGt0ADeEQ_9bjzAH9-NP9CtQ_A_0JEgH58RcEy-UCAt7w5wXs3dn9Gg8HBOK-FP7XGyACDM4S_vAdDvjVE_P96fnz-w7rCv0ILtX9_fscCfgbBAbTFekE9RPyBw07Af_v8vMA5gMWABDaBPEOzvQCNNDvB90G9vX4z_MPCvbdAfXYAfwF7f70yRby9OcQBxbT-APtIAAtjbsTOzgTQAlIYVACKs8HEAAawAcHB9u-eQOMPMpnMTr6DdO9kHjDPGxwB70N_v69Ug6mPIhdgDwkQx4-k2uvOnOULb0EVDi-lqGiuwRIvrz9vXQ-klRLvQOx7DzZQ0u-Q5J2Oyl_gr31oWu-hNMHPXQ1w7sgMMo9wMtRvRe3k7upwdQ96qg0PO1KprzJV8K85gwAPULuAr0riMG8wxccvUlb5rxQ5ho9mBM0PFxabDv6dME9rk4Jve4y8jzHVR28QuoWvajHtjxy_gG99BKIPPYCWLyaP4Y96dVAPYTZ37t24xs8tXp2ulbojTyoMxy9ND9Ive9QGLsHJGE8MdC1PACmMbxpM_M8Hm_yvdcl0zqoyCG-AnwcPejpbTwnFxM-T9VzPRWpsDzSV5u93UhUPRr0Lbt8e5e87moovXsuU7y5O4Y8IK7iOx61eDwzLTY9ICpNPaUrHjstDh-8VVYuPRBCGz3-H_E8fP5qvVwYzryEjgw9H4IqvJaVpryNm5q9c5U4Pez7i7wRKrI9GiAoO3pQErshjS88qkeaPLzPcTxwCus8Re-5vfZH5bnHg229VxCOvZ23VrwdbcE9OWkQPS4Ff7xBlIk9bSUvvTtI_DpHLU86QBYBPNaVR7sOPgM95zrIvS8zbDx0oLK9uvJ-PBKF1DtUruy75Fl4PZYVFrzEknY732-kPVxAwzo0_hO9OOJEvUu-BjsLqLE98cP3vJiM-7lMEZo9SH1jPTqFXrk04Mc9UbiDPGsb8znJ2lC9IN90vUjZIbk7sQK9y_OgvLNxTLvudJw9rOLNvSr_vTkmA1s9aXFGvPKEczsKv0-9Jh7QPYAjObnaP-o8CUbvvHJtarqrPZG9GlIVvjBRCjp6KWa9c3sOvVHD4ji0DKe8MvNTPEWZXTmzPxC-yDgQvQyTSrntpSQ9a8YYPULW47Z4npM9brjZPP2onbisNh89EGmnumfebrmgHwG9SSypPOsbWjnqHh69yBeOPTnJRzg71lY8KWB2vclQULjOr8E8SZPMPd9Eh7hracm8One7PIrCw7cRc-k9v8I4PQaX6jdgmwW8jERNvXadLzhP0aw9w40KPancibgi-wC-xl8kPReYZTi9MpS9VOuTvfzTuraC1ZI9cwT6vAvfO7bMSi49m1JDvVq2S7g72p09WVFDvXGV07ggcmS9ntkpvQQrf7jpeNS7OUyPPGxWkjjMmti847VhPZDfobfk1Z68eonxvWVVMLjK9HA9IuErPvHLijhSpLG8hCJnPZ3pE7gGoXy9YByBPGF8tTd6DIC9KYA9PMRZt7cgADgTQAlIbVABKnMQABpgG_YAGd8YzfQ3Ne4h3esL9eoTxUG3Cf_98P9NJuMYJQeyvxkg_yi4AN-cAAAAMuPLKxIANn_G7hcYLw77sIyvMhpd-CsbzeYrA7rhJRoj8xPkETcEAOktpBdu3sU4Sh01IAAtXrEPOzgTQAlIb1ACKq8GEAwaoAYAABBCAABAwQAANEIAAEDCAAAkQgAAyEEAAJxCAABgwgAA2MEAAKBBAAAAQAAAUMIAAPDBAACIwgAAgEEAAMhBAACoQQAADMIAAPhBAABMwgAAUMEAAMhBAAD4wQAAQMEAALjBAABwwgAARMIAAFjCAAC4QgAAIEEAADDCAADAQQAAksIAAEDAAAC2wgAAiEEAAABAAAB8QgAAEMIAAGxCAACIQQAAQEEAANhBAAAQwQAAWEIAAAzCAAAAwgAAYEEAAK5CAACgQAAAgMEAADBBAACYQQAAEMEAAFBBAACYQQAAAMMAAMBBAAAwQQAAEEIAAEBBAAB8wgAAAAAAAL7CAAAAQAAAAMMAAADCAABEwgAA0MEAAEzCAAAMQgAAgkIAAOjBAACAQAAA8MEAADzCAAAwwgAAAEEAANhBAACgwAAAEMEAAIJCAAA0wgAA2EEAAIBBAABAwAAAyEEAADhCAABEQgAACMIAACxCAACQQgAA6MEAAMDBAABAQgAAOMIAAIBAAACQwQAAwEEAADBBAADEwgAAEEEAAOhBAACowQAAgMEAAKhBAACAvwAAAEAAAEDBAACAQAAAQEIAAABCAADgwAAAgD8AACjCAAD4QQAA6EEAACTCAAAUwgAA8MEAAPDBAAA8wgAAAMIAALDBAAAkQgAAAMEAABxCAAAQQgAAcMEAAMhBAADwwQAAwMAAABDBAAAMQgAAYEEAABxCAAAMQgAAcMEAALjBAAAgwgAAEMIAAOBAAAB4QgAABMIAAAhCAADIQQAAgMIAAGDBAAAAQgAAKMIAAKBAAADgwAAAUEIAAKBAAACAQQAAuMEAAIjBAABgwQAAYMIAAIDCAACKwgAAoMAAAFjCAAAgwgAAMMEAADxCAABAwQAA6EEAAJBCAABQwQAADEIAAHDBAACwQQAAQMIAAFTCAAAQQQAAFEIAADDCAADgQQAAcMEAANDBAABkwgAAIMEAAKjBAACWQgAAXMIAAGjCAAAgwQAAcEEAAPhBAAAAQAAA2MEAALBBAACAQAAA4EAAAEBCAAA8wgAAYMEAAIA_AACIwSAAOBNACUh1UAEqjwIQABqAAgAAiD0AAIi9AABkPgAAcD0AAFC9AAAwPQAAQDwAAAe_AAAQPQAAgLsAAIA7AAAUPgAAij4AAFw-AABsvgAAqL0AAPg9AAC4PQAAiL0AAOY-AAB_PwAAuL0AAFC9AAAEPgAA2L0AAFC9AADYPQAALL4AAIg9AABwPQAA2D0AAOi9AAC4vQAA2L0AAKo-AAC4vQAAoDwAAIA7AAB8vgAAZL4AAHA9AAAsvgAAiD0AAMi9AAC4vQAAED0AAIY-AAAkvgAA-L0AAAS-AAAwPQAAQLwAABQ-AACgPAAAhr4AAEA8AAAlPwAAiD0AAKi9AAC4PQAAcD0AAIC7AADgPAAAgr4gADgTQAlIfFABKo8CEAEagAIAAHS-AABEPgAADL4AADu_AAB0vgAAcD0AABQ-AABAPAAAqL0AADQ-AACYvQAA2L0AALi9AABQPQAAiL0AADC9AAA0vgAAMz8AAOC8AADOPgAA-D0AAMa-AAAQPQAAJL4AADy-AAA0vgAAHL4AAFC9AAD4PQAAyD0AAHA9AABAvAAAuL0AAIA7AABMPgAA6L0AAIg9AADoPQAAFL4AAHC9AADoPQAAyD0AACQ-AAAMvgAAUL0AAKI-AAB_vwAAED0AAIg9AADovQAAdD4AAHA9AACmPgAAjj4AABC9AAC4PQAA4LwAAEA8AAAEPgAA4LwAANg9AABAvAAAyL0AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=C1Vx3DaM0ig","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1160,"cheight":720,"cratio":1.61111,"dups":["17523267165095828762"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3874420798"},"16805173673408889215":{"videoId":"16805173673408889215","docid":"34-2-11-ZBAE9C668D1488DA6","description":"In this video I go over the derivations of the double angle (or double argument) identities for hyperbolic trig cosine and sine, namely cosh(2x) and sinh(2x). The derivation of both is pretty...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2890909/8119b80422114faa5bfb557f199b36d9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/CNRFEQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8d-CLGWFDH8","linkTemplate":"/video/preview/16805173673408889215?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Hyperbolic Trigonometric Identity: cosh(2x) & sinh(2x)","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8d-CLGWFDH8\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoWChQxNjgwNTE3MzY3MzQwODg4OTIxNVoUMTY4MDUxNzM2NzM0MDg4ODkyMTVqkxcSATAYACJFGjEACipoaHZkZXppbXhjaWp5dmhkaGhVQ1VVQnExR1BCdnZHTno3ZHBnTzE0T3cSAgASKhDCDw8aDz8TiAKCBCQBgAQrKosBEAEaeIH3_vwA_gMAAPsFCfgI_QIBDO__9_79AOkB-Pv5_gEA7fkQ_P3_AAAHCAX9AgAAAAEMAQH-_gEACP8EBAQAAAARCPf99wAAAAwN8AL_AAAA9voG-QIAAAAPA_jy_wAAAP0O8Pv_AAAAAPT--AAAAAD_9gH-AAAAACAALQBT2zs4E0AJSE5QAiqEAhAAGvABfwgIAcQq9v_J9tUA9yHaAYcKK_8eJ-AAyuASAagUyv7tGd4A7vL4APUiOgC1Kfj_Ld3wABDYBQA07gD_MhEdAAANDgETxwMAJQ4NABgE8__bDxz_A8b6Afba0v8HDO7-Bur6Aq7q3_4dFssCCtQ_Aw4IFwQX9CIC3-QAANUK9gLj9tj9JgP9BP3VGADXGyAC-OkKBQMwGwHTBuQC9vr3_RvhEQIWC-MEHPoaB_ntDwXU_e3_CRvz_TEN-QXk-gb45vAY-QDmC_gD2wD8LtARAvYD_AP71AMF-_L39wTn9_kN9_z12BDuCucQBxbk8AQEIAAtjbsTOzgTQAlIYVACKs8HEAAawAcHB9u-eQOMPMpnMTr6DdO9kHjDPGxwB73MpZe9car1PD08lTz-Ddo9Xy1SPJz047z2lmK-BXiBPHk_DbzFVYU-VDBvvZt_Krx1dPy9LxOaPQsCEL31oYO-PHfxOy7FlzsgMMo9wMtRvRe3k7u_Pq89F-ufu7UVAL3JV8K85gwAPULuAr2YrWu9F-VDvbxJAr0nHVs9IIjiO-cVETwuWaU9Y0JMvB8IWjzNwkO86VTDvJEejjv3Iho95fMEPHWA1rwJeZM9DdbJPPyOYTx24xs8tXp2ulbojTxKSWq9xXxvvdGXObwHJGE8MdC1PACmMbxi9Iw9nn7Qvb52XbuoyCG-AnwcPejpbTwnFxM-T9VzPRWpsDzGYaq9q1udPe7UmjsCxDO9WjMtvRD-7rtYfi89dPU-PDt4XDwzLTY9ICpNPaUrHjuqHka6gIGAPVTTZDz-H_E8fP5qvVwYzryyA3g866O4vA3PgbyHBGK9N656Pf42erw0R9Y99DY2vKFnPbpEIM08EziGuqIVDjxwCus8Re-5vfZH5bnHg229VxCOvZ23VrwdbcE9OWkQPS4Ff7xl8GE9aVHEvD90_zqRLjI7opT1PLf-6TtB2Ak9QliiveQ_IrrOJpa9-p6sPLXhMLvTtqs8sDqSPYnx9bt9O667taXOPT5q4bo0_hO9OOJEvUu-Bjs1hp89Pwg8vVBsiTsti5M9nq8ePaCiDzoNP549eeyCPMsnjjpkq7C8lueGvYjk2LoJLlu9RxUsuxrdg7vudJw9rOLNvSr_vTmc25Q9AoTqvE-5nbjYWw-9u5nxPQlEirnaP-o8CUbvvHJtarqrPZG9GlIVvjBRCjp3pku9fXCjvNYah7kmVkY8w7BQuj69XboU5-i9c8kivSLeQ7kqihw9QKDYPNdHtLnxRZA9Uq1PPJ6yvzjA8rs8SjscvGtkzjifuzO9JTubPNJ4IzmsTIK9MWexPav7SDgytds8eBIsvTheBDlFnO87PdHVPeIJR7laxvy8qVBYPSraBLWiU8E9pSNqPWinTDgS0be7DP2IvVBl-jejIIg9tqNzPTDeqLgi-wC-xl8kPReYZTjT4xK98SuGvdd_DrmGqng9tSIAvdovAzjMSi49m1JDvVq2S7g72p09WVFDvXGV07ggcmS9ntkpvQQrf7iN5YY6rQ4lPPAsvzeUtKy8bK00PQQY87Xk1Z68eonxvWVVMLjK9HA9IuErPvHLijhSpLG8hCJnPZ3pE7gGoXy9YByBPGF8tTfeAR69GbGNO9UDPjggADgTQAlIbVABKnMQABpgBfcADOQjy-4WW-0V3er66NIn4juqLP8F8v9JFd0IBwq8tw0Z_zDYDO6dAAAAId71HQcAC3-62xkKCQ_6uZnZOjRKBx0su8Yl98DsGBIC9BUBMTArAOAFoA1czNQsSDUPIAAtI3QYOzgTQAlIb1ACKq8GEAwaoAYAACRCAABwwQAAHEIAAIDCAABMQgAAmEEAAIxCAAAcwgAAAMAAALBBAACAPwAARMIAAPDBAABYwgAAcEEAAIBBAACQQQAAdMIAAARCAABcwgAA-MEAAIA_AADwwQAAyEEAAIDAAABswgAAdMIAAGjCAACGQgAAUEEAAIjCAAAQwQAAjMIAAIDAAABowgAAgEEAAADBAACMQgAAKMIAAIRCAACwQQAAsEEAAPhBAADYwQAANEIAAIzCAACgwQAAcEEAAKJCAABAwAAAcMEAADBBAADwQQAAgMEAAOBBAACIQQAAAMMAALBBAADgwAAAgkIAAJhBAACSwgAAQMEAALLCAAAQQQAAxsIAACTCAAB8wgAAkMEAAGzCAAAwQgAAXEIAADjCAABQQQAAUMEAADjCAAAswgAA4EAAAGBBAAAAwQAAwEAAAFRCAAAswgAAgMAAAJhBAACAPwAAwEEAAChCAABgQgAA0MEAAOBBAACMQgAAGMIAAADCAAD4QQAALMIAACBBAACAPwAAFEIAAJBBAADEwgAAEEEAAGBBAACwwQAAuMEAAIhBAABgwQAAQEAAAAAAAACQQQAAOEIAADxCAADIwQAAgEAAAILCAAAkQgAAAEIAAMjBAAAQwgAAcMEAAEzCAACAwgAAIMIAAADBAAAUQgAA4MAAAFRCAADIQQAALMIAAABBAAAEwgAAiMEAAADAAAAwQgAAgMAAADRCAACgQQAAQEAAAHDBAABAwgAA2MEAAMjBAAB0QgAAmMEAALBBAAC4QQAAaMIAAKDAAAC4QQAAFMIAABDCAABAwAAAgkIAAGBBAABAQQAAJMIAAADBAACwwQAAkMIAAFjCAABMwgAAwMAAACzCAAAwwgAAQEAAADxCAACgwQAABEIAADxCAACwwQAAKEIAAIDAAAAgQQAAGMIAACzCAACgQAAA4EEAAGTCAAAgQgAAwMEAAEDBAABUwgAAAAAAANjBAACqQgAAZMIAAJrCAAAYwgAAMEEAAMhBAADAQAAACMIAANhBAAAAQQAAAEIAACxCAABcwgAAMEEAAADAAADQwSAAOBNACUh1UAEqjwIQABqAAgAAUL0AALi9AABsPgAA4LwAAKA8AAAEPgAAEL0AABG_AAAQvQAAgLsAAIC7AAAMPgAAmj4AAGw-AABEvgAAcL0AAFw-AADYPQAAUD0AAOY-AAB_PwAANL4AADA9AAAUPgAAyL0AAIi9AACIPQAAoDwAANg9AAAcPgAAFD4AAHS-AAD4vQAAFL4AAEw-AADovQAAML0AADA9AAB8vgAANL4AAKg9AAA0vgAAcD0AABy-AAAsvgAA-D0AALY-AACCvgAAcL0AABy-AAAMPgAAuL0AAJI-AADgvAAAVL4AAKA8AAA1PwAAyD0AAJi9AAAEPgAAuD0AAJi9AACgvAAAhr4gADgTQAlIfFABKo8CEAEagAIAAAS-AAAUPgAAJL4AAEO_AAAcvgAAUD0AACQ-AAAQvQAAyL0AAOA8AABwvQAAPL4AABS-AABwvQAAUD0AAEC8AABQvQAAJz8AAIi9AACWPgAALD4AAJa-AAC4PQAABL4AAEy-AAAwPQAAlr4AAHC9AABAPAAA6D0AAKg9AAAQPQAABL4AAEA8AACoPQAAED0AABA9AACgPAAA-L0AAFS-AABEPgAAHD4AABQ-AACAuwAAcL0AAMI-AAB_vwAA2L0AADA9AAAMvgAARD4AAKg9AAB8PgAAjj4AAOi9AAD4PQAAQLwAAKC8AAAcPgAAiL0AAKg9AACgvAAAJL4AAOi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=8d-CLGWFDH8","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":2160,"cheight":1340,"cratio":1.61194,"dups":["16805173673408889215"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2140765076"},"2044698122944274791":{"videoId":"2044698122944274791","docid":"34-9-13-ZC0975FA3BE02B8A1","description":"In this video I go over the inverse hyperbolic sine or sinh^-1(x) function and show how it can be written as a logarithm and equal to ln(x+sqrt(x^2+1)). http://youtu.be/o_s_YYD6v3g Logarithms and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2101258/2832f918f7b225b666b7a1666e3e29e6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/-zjlLwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAQT2uHlyjEs","linkTemplate":"/video/preview/2044698122944274791?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Inverse Hyperbolic Trigonometry as Logarithms: sinh^-1(x)","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AQT2uHlyjEs\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoVChMyMDQ0Njk4MTIyOTQ0Mjc0NzkxWhMyMDQ0Njk4MTIyOTQ0Mjc0NzkxaogXEgEwGAAiRRoxAAoqaGh2ZGV6aW14Y2lqeXZoZGhoVUNVVUJxMUdQQnZ2R056N2RwZ08xNE93EgIAEioQwg8PGg8_E8EEggQkAYAEKyqLARABGniB9voC_gEAAPEH_QoABP4BAQzu__b-_QDw-vIE-AH_APXvCvz-AAAAAQ36_QUAAAD_-v7v__0BABEDAvUEAAAAD_r89PUAAAAJDv7v_gEAAO3z_QwE_wAAEwgD8_8AAAD9DvD7_wAAAPnrAPMAAAAA-_L7-QAAAAAgAC2tPtE7OBNACUhOUAIqhAIQABrwAX_3D__45sMD3-HjANIGBQHBNg0ACiHk_7f76ADSB94B3w4CAPojBf4AI_L_tS4eASfq1v8ExBb_HNTVAAvK_QDn8g0ADfzzAjsRGQIkDBYA3CYT_wXn8__9w9wAITDh_gHwBv71C-ACHxfIAif7MQEOCS4EKuEr_t6oJwDsvgL-9vvcAAsnBAPu4-761RwiAgLa8wITGfr96xTa_e3oAfzx0yX_LjnT_zr8AgQTFfD21vb-B-YH5_4bRwf37t_kAcPzFvXtGg30--kGBfngAvXVIwEIFd35C__iBAL2_AYKCMzs8NbgAwzlFvwE0fcD7CAALU78Czs4E0AJSGFQAirPBxAAGsAHahbQvqyUGT1TDfe7CgfMvVcPFLw0hQ694KD9vS4MpjsFkR68ZhA_PnoRNzwHN2O8i_vPvW6ukDydU-K7xVWFPlQwb72bfyq8hzQqvp5pqD22cmW8V7E4vkelfTyl1Ao9yTM0PTjoXL1QkDO80R8qPuqwIr1Qwsy8w_hEvEyJRD0tWVq9K4jBvMMXHL1JW-a8eMAKPAS3BL3GSrE8peCEPfpHujxALae7NDzHPHADk731XTa86tW7vaLHOTyQTEe9hFkSPbjnWT1iIBk87tAwvVh6iLyLKs-7VlCMvdDBCb1aFJG86gd1Pb-ExDux1Qq9YpOpO3EqyL3Iaqm8qMghvgJ8HD3o6W083WA4PimmXD3jGz46fNyivb9g9zxMRC68PptyO7AeN737kYW6XEmhPNhr1Tzi8s48My02PSAqTT2lKx47chP3uyy5ijxzMsw8_h_xPHz-ar1cGM68UAgzPQm_GrwkUFS73IsevQPSfjyJwAm8XadRPVWXnTxNg6I8RCDNPBM4hrqiFQ4832bGPTm1872HHxg8bamjvdnFPr3Hi7-73cF-Pby7JD2Ie5G8Wz6XPfikw72o1Dq77wsePbw-s7yvu5Q8F5kjvGcsdb2LuEo8mHx9vR7GZD3dUAK8GlUBvYuBHz11LCW8lKZ_O3ba_zx3iL07mTbSvLxazr0YnC86Ef8wPd5rTT1Hyek7c_yLPWRdxz3vqLC3a7uEPfuzerw3uWe72RASvUnN6LxaQqU7B8j8vNPMKb2DpVu6oZ3TPVGBmL2XnVE5KJnBPHHykbyh8gO42FsPvbuZ8T0JRIq5kG30PLLoR71t68C5y6LwvFtCHr43BeM55357u5jI4Dxllgu5c4nAOmQsyTwzHzQ4ax7BvcSuor1Z-CI4xLFOvZX_mjxpQWG4RprYPbIzAD3WC5A4nxBwPQmdvjs0ILK5NxxxvI84pLyjmKS4vH0RvfUnNj3h9bo466RjPKKMor2_UmQ5n_FxO6XYAT6orjG5owtFvHZPkz32LUc4_j-TPZvOaT1ltnQ3iCSju_WmHb1IdkQ4T6XAPZvHQT2yyNy4tJAQvtiMoj2ZewS3mhL_vL2yJr0Vuse3hXq6PTompjzH6Gg4qC9VPUQK0DrWkw42H58APqTkkL0V6Dq5zcd6vdMV7L3mm_i4h2cOvfRlLr3N0hC42myhvY3msj0hdAk4QyLIPKVN1b1QB3e4yvRwPSLhKz7xy4o4PCn6u1UqbT3gMo24Wu3GvQ8UMz1o2_s35DmhvVLZIzpEHd-3IAA4E0AJSG1QASpzEAAaYBL1AC_oPMD_ESjw-vkSAvTqE8c4owz_3t3_D1YDBzEJ37cMLQAx1QvkmwAAADPg2x7dAA5_5-MpJQP19ZidzkEdeNMEONveHQWd-RskN_fx3TJELgDALpsEKeK5OCMvGyAALf0kEDs4E0AJSG9QAiqvBhAMGqAGAACQQQAAMEIAAMBBAAAAQAAAUMEAADxCAAC6QgAAMEEAAJDCAABQQQAAyEEAAHDCAAAQwgAAgMEAAIhCAAAMwgAAuMEAANTCAADgQAAAaMIAAHDBAAAswgAAoMAAABBBAAAMQgAADEIAAI7CAAAgwQAAXEIAAKBAAABYwgAAkMEAAJDCAAAwQQAAnMIAANDBAAAQQgAAsEIAAGDBAABMQgAAAEIAAEBAAAAAQgAAuMEAADBBAAAgwQAAiMEAAEBAAAAEQgAAPEIAAMDCAACwwQAAIMEAAIhBAABgQgAAiEEAAMbCAAAgwQAA2EEAAEBBAABYQgAAgMEAABDCAACQwgAAQMAAADDCAADYwQAAMMEAAILCAAAYwgAAgkIAAJ5CAABwwQAAkMEAANDBAACGwgAAqMEAAEDCAACgQgAABEIAAFzCAABoQgAA4MAAAPhBAADAwQAA2EEAACBBAADQQQAA6EEAAADCAADQQQAADEIAAPDBAACIwgAAEMEAAJLCAAAAwQAA4EAAAHhCAAA8wgAAKMIAAIJCAAAgQgAABMIAADjCAAAAQQAAoMAAAKZCAADQwQAAQEEAAIC_AAAcQgAAEMIAAIhBAAAYQgAAREIAAGDBAAAwwgAAoEAAAAAAAABAQQAA6MEAABDBAABgwgAAAAAAAABCAACgwAAA4MAAACDCAAA4QgAAQMAAAMBBAAAAQQAAdEIAAIDAAACAQQAAiEEAAATCAAC4wQAAhMIAADhCAAAgQQAA2MEAAMBAAAAUQgAAwMAAAMjBAACAQAAALEIAAPBBAACQQQAAFEIAAEBCAAAAAAAAgMEAAABBAAB0wgAAZMIAACDBAAB4QgAAEMEAAFRCAADgwQAACMIAAABBAAAgQgAAsEEAAGhCAABgQgAA6MEAAIA_AABAQgAAEMEAAMjBAADgwQAAQEAAACTCAAAcwgAAFEIAAMZCAACowgAALMIAABBBAAAAwAAAiEIAABBBAACUwgAA0EEAAKhBAABAQQAADMIAAIjBAACAvwAAwEAAAKBBAAB4QgAAYMEAAABCAACAwQAAUEEgADgTQAlIdVABKo8CEAAagAIAAHA9AADIvQAABD4AABA9AABwvQAAmD0AADA9AAAhvwAA2L0AAKg9AABAPAAAHD4AAKY-AAB8PgAA2L0AABy-AAC4PQAA-D0AAMg9AAANPwAAfz8AADA9AAD4PQAAQLwAADC9AAAwvQAARD4AABS-AABQPQAAmD0AABQ-AAAsvgAAqL0AAOC8AADGPgAAED0AAKg9AACAOwAAXL4AAHy-AACovQAAEL0AAFA9AACCvgAAqD0AACQ-AABMPgAA6L0AAIC7AACOvgAAmD0AAMi9AAAMPgAAiD0AAFS-AABAvAAASz8AAK6-AACgPAAA-D0AALg9AADgPAAAcD0AAJq-IAA4E0AJSHxQASqPAhABGoACAABcPgAAgj4AAFS-AAAdvwAAD78AAAy-AACuPgAAMD0AAJi9AABEPgAAQDwAAIK-AACAOwAAHL4AAFC9AACovQAANL4AAAM_AADIvQAArj4AABQ-AACavgAARL4AAHC9AACIvQAATL4AAIa-AACgPAAAcD0AAOC8AABAPAAAED0AAFS-AACgPAAAEL0AAHC9AACKPgAAND4AADS-AADovQAARD4AAEQ-AAD4vQAAoLwAABw-AAAkPgAAf78AANg9AACYPQAAdL4AABw-AAAcPgAA6D0AABQ-AAAsvgAAND4AAAy-AACoPQAAUL0AAHA9AAC4PQAABD4AAOC8AABMviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=AQT2uHlyjEs","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":984,"cheight":720,"cratio":1.36666,"dups":["2044698122944274791"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3758816762"},"15077722940164656386":{"videoId":"15077722940164656386","docid":"34-5-8-Z9D0BBEB7077CF849","description":"In this video I go over another hyperbolic trig identity and this time derive the half angle (or half argument) identity sinx(x/2) from my earlier double angle cosh(2x) identity. The derivation...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1781711/00f67abfc3707bfacae4c122fee57e9e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9cbCTAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9GLQlJQ3lJk","linkTemplate":"/video/preview/15077722940164656386?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Hyperbolic Trigonometric Identity: sinh(x/2) + sign function sgn(x)","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9GLQlJQ3lJk\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoWChQxNTA3NzcyMjk0MDE2NDY1NjM4NloUMTUwNzc3MjI5NDAxNjQ2NTYzODZqtg8SATAYACJFGjEACipoaHZkZXppbXhjaWp5dmhkaGhVQ1VVQnExR1BCdnZHTno3ZHBnTzE0T3cSAgASKhDCDw8aDz8TiwSCBCQBgAQrKosBEAEaeIHuAfn9_AUA9_cBCfkG_gIcAvv_AwIDAObx9v_8_QEA-_kK-gEAAAD6Avv-BgAAAP0GAfv6_gAAAwMEAvwAAAAIAgAA9AEAAAIU9fj_AQAA9v_0AgP_AAAJ_AHv_wAAAAUF-_b-_wAAAPT--AAAAAAD-f4DAAAAACAALXGG3js4E0AJSE5QAiqEAhAAGvABf-oPAdUU7gDl5ugA2iLmAZcJJf8tNOT_wtwCAcH4zgDlDAIA6xICAPgKIgDTKP7_J-LyAPrWAgAl3AwACfsDAAEXEQEQzgIAKwIHACH4-QC4LBr96ecJARL04P8VH_sCAfMF_un83gMJ_-4ALNkiAQsHJgMbAhX8_-MJ-9we6wD4-c7-IBMTAwbTCwHt8hYDC-v9Bw0aFfrZBegC5-H5AyjhHf8TN-z_IQoGDPwKAv7a_u__Bw7qAxgPCQ0D_e_72fEE_drpEfgH9fIG8ugQ-vAIBAkX2PkP_tb69PfNBwb59Pjy3Q7xCdP87wrp9gH0IAAt9FYqOzgTQAlIYVACKnMQABpgL_IAD80b2vIdOegm1_0E4d8c0EHOAv_zzP8cMNgBIAi9oggXACfJAuyiAAAAHvXkLfoAJH_x6hc3HArkvIXONSRu_x8Iud05ALnsIxwIAxv0ASYjAPEhmTNY0ss2TDwzIAAtM58TOzgTQAlIb1ACKq8GEAwaoAYAAEBAAAAowgAAwkIAAKjCAAAAQgAAQEAAAJJCAAAAwAAA4MAAABxCAAAwQQAAoMEAABBBAACAQQAAuMEAAOhBAAAIQgAAAMIAACBBAADAQAAAQEAAAIjBAACiwgAAwEAAAMDBAABAwQAAmEEAAPDBAAA0QgAAgEAAACDCAAAwwQAAksIAAKjBAACuwgAAUEIAAJBBAACwQQAA0MEAAKBBAAAwQQAA8EEAAABAAACAvwAAhEIAAETCAABAQAAAOEIAAMBBAADAQAAAQMEAABDBAAAQQQAAREIAAJhBAACgQAAAqMIAAGDBAACIQQAAPEIAAIBCAACUwgAADMIAAKbCAADoQQAAvMIAADDCAACAwQAAMEEAAMDBAACoQQAAEEEAAObCAACQQQAAGMIAACBBAAB4wgAAAEAAADBBAADYwQAA4MAAANRCAABswgAAEMIAAJBBAAAQwQAAKEIAADDBAADwQQAA4EAAAIDBAACwQgAAIMEAAAhCAABgQgAAEMEAAOjBAADAwQAAPEIAADRCAADYwQAAXMIAAPBBAAAcQgAALMIAAKhBAABwQQAAoEAAADhCAADSQgAAJEIAAOhBAAAAQAAAGEIAAJTCAACQQgAAQEIAAGDBAADEwgAAyMEAAEDAAADYwQAAgL8AANhBAAAMwgAA8MEAAAxCAABgwQAAAEEAAODAAAAAwgAARMIAAKhBAABkQgAAgMAAALhCAABQQQAAJEIAAJzCAABwwQAA8EEAABjCAABkQgAASMIAAGBBAAAQQgAAAMIAACBCAAAAQAAAEMEAAJbCAAAAwQAA4EEAAIA_AABgQQAAsMEAACzCAAAAwgAAwMEAACDCAAB8wgAA6EEAADjCAAAcwgAAIMEAAABBAADAwAAAgkIAANhBAADYQQAAPEIAABBBAACgwAAAQMIAACzCAAAwwQAAAMEAAODAAAAwQgAAkMEAAOjBAADgwAAA6MEAACDCAAAkQgAAjsIAAKjBAABswgAAREIAAIBBAAAQQgAAiMEAAFBBAAAwwQAAsEEAACRCAAAQwQAAiEEAANhBAAAIQiAAOBNACUh1UAEqjwIQABqAAgAA4DwAAIC7AAAUPgAAcD0AAKC8AADoPQAAmD0AABW_AACAuwAAQDwAAEC8AAAkPgAAZD4AACw-AAAkvgAAQLwAAAw-AAAUPgAAuD0AAOI-AAB_PwAAyL0AAKA8AAA0PgAABL4AAMg9AADgPAAAcL0AAKg9AACYPQAAqD0AAPi9AACIvQAABL4AAM4-AACIPQAAgDsAAHC9AABMvgAABL4AAAQ-AACovQAA2D0AAOC8AABAvAAADD4AAAw-AAAkvgAAML0AACy-AAA0PgAALD4AAFw-AAAcPgAAHL4AAEA8AAALPwAAQDwAABC9AABwPQAAJD4AAHC9AACgPAAAgr4gADgTQAlIfFABKo8CEAEagAIAAEy-AACGPgAAuL0AADW_AACavgAAUD0AALo-AABwPQAAcL0AACQ-AABwPQAA6L0AAMi9AABwvQAAEL0AAIA7AAAcvgAAMT8AAOC8AAC6PgAAFD4AAK6-AAAQvQAAHL4AADy-AAAsvgAALL4AAOA8AACgvAAAQDwAADA9AAAQPQAAgr4AAOC8AAAsPgAA-L0AACw-AACoPQAAkr4AANi9AAAwPQAAED0AAJg9AAAQvQAABD4AAKY-AAB_vwAAmL0AABA9AABEvgAAij4AAEw-AAB0PgAABD4AAEA8AADoPQAAcL0AAKA8AACCPgAAgDsAADQ-AACAOwAAqL0AAPi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=9GLQlJQ3lJk","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1160,"cheight":720,"cratio":1.61111,"dups":["15077722940164656386"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1442478196"},"5170435262536143833":{"videoId":"5170435262536143833","docid":"34-4-17-Z8955FFC9DB4940C8","description":"i love math, i hate math, i like math, math is hard, math sucks, math, study, guide, free, online, video, tutor, tutorial, help, calculus, limit, limits, derivative, derivatives, example, examples...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1682426/58540487991177861b438b2868213ad2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/SshgaAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7eo6Jw6Bz8Q","linkTemplate":"/video/preview/5170435262536143833?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus I - Derivative of Hyperbolic Sine Function sinh(x) - Proof","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7eo6Jw6Bz8Q\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoVChM1MTcwNDM1MjYyNTM2MTQzODMzWhM1MTcwNDM1MjYyNTM2MTQzODMzarYPEgEwGAAiRRoxAAoqaGhrdnlxeHppemlvZnNpY2hoVUNjOFFCQnotSGx5UFJtTzhwR0lWcG1REgIAEioQwg8PGg8_E9IBggQkAYAEKyqLARABGniB_Qj69gT7APb0EQj6B_0CHQABCvQCAgDi8PX_-_0CAPfz9e3_AAAA_RX68gQAAAD99_cC-v4BABAGDPwGAAAAHAL9APcAAAAAGfUH_gAAAPoA8A8D_wAAFAkD8_8AAAAFCPIC_wAAAO_2B_oAAAAAAO_5DgAAAAAgAC3vosU7OBNACUhOUAIqhAIQABrwAX8N3gDR-9L_7O_OAc0g-ACmMAP_GyTiAMYiDQHF5fUAEw7mAc4B3_8LBxX_0Cv-_13v5v_60wIAItnx_yPkHADCGQ8AHvPjACINDADf__b_7AkkAOzi_f8D7N0A7wPi_-wLBwEe8vv87gPGAjDwHQL03TsC_-QhAvLKB__pEvIFC9PZ_uz58P_x5_D7y_4dAezpHQUaFiMA_APjAvb79_3-8QX2G__M_BPoEA76CRL79_MI-v_6-gD3EhEHvQwU_vT3IwLp6v8C9AL5_iL9BP7lAPgFBAHzDBQCGAMW4vr6CQbnARsR_vTN3vkG9Q30CSAALeSKHzs4E0AJSGFQAipzEAAaYBv1AEbjMu8DFCThJN4CAuvd9tUE0RD_DOj_FxzK9wgWrqkDHv8a2-77owAAACL41xjzAA1_zN_y_AHl_NHDyT8mXwMLLZvjHgmd8Q0aIOgPOOg0NAC4FrQxLKy-T_UZCCAALePrHDs4E0AJSG9QAiqvBhAMGqAGAABIQgAAMMEAAJRCAACcwgAAEMEAAIBBAABcQgAA-EEAAADCAACQwQAAQMEAAGDBAAAQwQAAQMEAADhCAAAAQAAALEIAACTCAACOQgAAJMIAAMjBAAAkwgAArMIAAHRCAAAgwQAAgEEAABBBAABwwQAAAEEAAOhBAACIwQAAyMEAADTCAAAAQgAA5MIAAIC_AACYQQAAvEIAAIBBAACeQgAAQEEAAHDBAACoQQAAEEEAAPBBAACAwAAAcEEAAGBCAACoQQAAMEEAADjCAAAcwgAAVMIAAMhBAAAAAAAAYEEAAEDCAADIQQAAwEAAALhBAADoQQAAhMIAAKjBAABUwgAAiEEAAIbCAAAcwgAAeMIAAJDCAACgwAAAMEIAADhCAADgQAAAREIAAPDBAAAEwgAAaMIAACzCAAAAQQAA6EEAAHDBAABUQgAAAMAAAOBBAADAwAAAjkIAAMDAAACgwQAAQEEAAMDBAACAQAAAGEIAAOBAAAC4wQAAAMAAAEjCAACQwQAAQEAAAI5CAACwQgAAmMIAAHBCAAAoQgAAfMIAADzCAAAAAAAAUMEAAIhCAADgwQAAGEIAAEhCAAAwQgAA6MEAACBBAABgQQAAJEIAAKBAAACQwgAAUEEAAAjCAACYwQAA4MEAABBCAADQwQAA0MEAAGBBAAA0wgAA2MEAACTCAAAMwgAAMEEAACzCAACAQAAAeEIAAJDBAAA0QgAALEIAAABCAAAwwgAAcMIAAOBAAAAMQgAADEIAADDBAACAQQAAPEIAAGDBAABQwgAAMEEAALBBAAAAwAAAQEEAAIpCAABQwQAAuMEAAATCAACCwgAAKMIAAHjCAADAwAAAsMEAAPBBAAAYQgAAoEEAAFDBAAAEQgAA4MAAAJBCAACgQgAAIMIAADzCAAAQwQAAkMEAAADBAADgwQAAgMEAAMDAAACAPwAAwEAAAKJCAACewgAAtMIAAGBBAABAwQAAcEIAAETCAAAQwgAAkMEAABDBAAAAwAAANEIAAIjBAADowQAABMIAACxCAADwQQAAGMIAAOBBAADIQQAA4MEgADgTQAlIdVABKo8CEAAagAIAABA9AACYPQAAZD4AAJg9AADgvAAAoDwAAAS-AAC-vgAAgLsAAEC8AADgvAAAmD0AACw-AADIPQAA2L0AAEC8AABQPQAAoDwAABA9AABUPgAAfz8AAEC8AACovQAAhj4AAAy-AACIPQAAED0AANi9AAAkPgAALD4AAOC8AADIvQAAHL4AAMi9AAAMPgAA6D0AAKC8AAAUvgAALL4AAHS-AADovQAAcL0AAEw-AABAPAAAcL0AANi9AABUPgAA4LwAAFC9AAAUvgAAFD4AAOg9AAAsPgAAUD0AAAy-AAAQvQAA2j4AABC9AABQPQAAED0AAKg9AAC4vQAABD4AAAS-IAA4E0AJSHxQASqPAhABGoACAAAsvgAAgDsAADC9AAA5vwAAyL0AAIg9AAAsPgAA4DwAALi9AAAQPQAAmL0AAFS-AACgPAAAoLwAABw-AACIvQAAcD0AAAs_AAAQvQAAnj4AAJi9AACAOwAA4DwAAJi9AAAwPQAAyL0AAKC8AABQvQAA2D0AAHA9AAAQvQAA6D0AAFy-AAAcvgAAML0AAHC9AACIPQAABD4AADS-AADYvQAA6L0AAJg9AABAvAAA6D0AAOA8AACgvAAAf78AAPg9AAD4PQAADD4AANg9AACYvQAAEL0AAHQ-AABQvQAAqD0AAOA8AADgPAAA4DwAAKC8AABEPgAAUL0AABw-AAA0viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7eo6Jw6Bz8Q","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["5170435262536143833"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"571419992"},"5367781851392963145":{"videoId":"5367781851392963145","docid":"34-7-3-Z5A01613BE222E536","description":"Visit http://ilectureonline.com for more math and science lectures! In this video I will solve sinh(2x)=? and cosh(2x)=? Next video in the series can be seen at: • Calculus 2: Hyperbolic...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4063615/97f63f0f7f25b798241434e76b2bf875/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/CB04CC8F66564EA42FFC8C57F6D20369D845CA58F56EB012A79C6B9E200C4132D380D7BF6C420A047E71EBDDDE7B3844B4F91E7E32D01E6203AA6E849CE195F2.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDU07Vv7tAQA","linkTemplate":"/video/preview/5367781851392963145?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus 2: Hyperbolic Functions (13 of 57) Determine sinh(2x)=? and cosh(2x)=?","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DU07Vv7tAQA\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoVChM1MzY3NzgxODUxMzkyOTYzMTQ1WhM1MzY3NzgxODUxMzkyOTYzMTQ1arYPEgEwGAAiRRoxAAoqaGh0eHl5Y3FwYmllamxqZGhoVUNpR3hZYXdoRXA0UXlGY1gwUjYwWWRREgIAEioQwg8PGg8_E8YCggQkAYAEKyqLARABGniB8vz_9f4CAPLwBgT6BP8BCwDvAfb__wD2-vv9_gP_AO0H_f4D_wAAAQz6_QUAAAD9-PcC-_4AAA37BvsEAAAACQIAAPQBAAD3D-8B_wEAAAEH__cDAAAAFgX-BgAAAAD9DvD7_wAAAP0B9PEBAAAAAvwFAAAAAAAgAC0dPdY7OBNACUhOUAIqhAIQABrwAX_mAv_Y9qgBxO_3__YbEQHsIyf_G1L4ALYG_ADQD7MB9Q76APkO6wHfIRX_vkvzABLayQDjxyoAL9IP_xgNAgD9BwUBHAQTAD4sHAA6-gT_xiQf_ePgCwH9wdsAIjLg_iTeIv9AEv__6wO7AhH-RQHi-DIEOu4bAcbjAgL94vkB_tm6_vYmBgXl1Bb7uCUbAyv2BQXuIBD3_Pr6COXE9__-2xr8LzPtAhr-8gMiKfP3re73_eUH5v71FRQI-BjV_MoNIQHg8Pry7RQbCSD79O0RJfkLCuz0Cf7eAfL1_AYLEurxAOvx_f_T-ur03Anz6iAALWrNBTs4E0AJSGFQAipzEAAaYCvoAELPOtvxJB74IefoBbrs_dgVyw7_9OX_Hx_qFDwGtb0XBv_73R3enAAAACnR9wAFAPl_5-UAIvj6-OCwxhY0e-okJbnUKe7J3AYeJRY5QezqPwCbD6guK9yJFyYwNiAALYBCFTs4E0AJSG9QAiqvBhAMGqAGAAA0QgAAgEAAAIRCAADMwgAA2EEAAEBAAACOQgAAIEEAAEBAAAAAQAAAsEEAANDBAABcwgAAAEEAAKhBAACIQQAA8EEAAITCAACgQgAAmMEAAADCAAAwwQAAbMIAABxCAACAQAAAFMIAAAxCAABgwgAAgEAAAJBBAABMwgAAoMAAALjCAABwwQAAosIAAMBBAACYwQAAikIAAPjBAACGQgAADEIAADxCAADQQQAAsMEAAERCAACswgAAoMAAALBBAAAgQgAA2EEAADDCAACAwAAAoMAAALBBAAAAQgAA-EEAAObCAACYQQAAYMEAAEBCAACgQQAAbMIAAETCAADYwQAAYEEAAHDCAAAUwgAAQMIAAGDBAAB0wgAA4EEAAKxCAAAgwgAAKEIAACjCAAAwQQAA8MEAAKDBAAAAQQAAcEEAACzCAAC4QQAAAMAAANhBAABAQQAAgEAAAGBBAABAQQAAOEIAACjCAACIwQAAikIAAFDCAAAwQQAAHEIAAETCAAAIwgAAQEAAAHRCAAAcQgAAjMIAAIBAAAD4QQAAZMIAAFzCAADIQQAAmEEAAIBAAAAQwQAAdEIAAFhCAAD4QQAAqMEAAPhBAABIwgAAcEIAACBBAACowQAAqMIAAADCAAB0wgAAdMIAAADBAABQwQAAQMAAAGBBAABwQQAAuMEAAKDBAACAQQAACMIAALDBAADAQQAAWEIAAMjBAACsQgAAQMEAAIpCAAAswgAAQMEAAEDAAAAowgAAkEEAAODAAACQQQAAwEEAACDCAACgQAAAEMEAAIC_AAAowgAA0EEAADBCAADYQQAAGEIAAFjCAAAQwgAAUMIAAETCAABwwQAAgsIAAABCAABwQQAAVMIAADBBAACAQAAAaMIAAIJCAACoQQAAAMEAAODAAACAPwAA4MEAACTCAABcwgAAMEEAAMDAAAAwwgAAJEIAADDBAAAYwgAA8MEAAIDBAADYwQAAREIAAPDBAACewgAAuMIAAIBAAADIQQAAAEAAADDBAACoQQAAgEAAAFxCAABwQQAAOMIAAFRCAADAwAAAqMEgADgTQAlIdVABKo8CEAAagAIAAIA7AACovQAAZD4AABS-AAAwPQAAuD0AADC9AAAfvwAAgr4AAIA7AACovQAAUD0AAII-AACGPgAAZL4AABy-AACePgAAUD0AAHQ-AAABPwAAfz8AAGS-AAAMPgAAXD4AAHC9AADgPAAAuD0AABC9AADoPQAAZD4AAPg9AACGvgAAJL4AAIa-AAAwPQAAoDwAAKA8AACIvQAAir4AAEy-AACIvQAAgDsAADQ-AABAvAAAHL4AABA9AAABPwAAqr4AADA9AAAMvgAAUD0AACS-AADGPgAAqD0AAKC8AACgPAAAHT8AAKg9AADIvQAAgDsAAOA8AAAwvQAAUD0AACS-IAA4E0AJSHxQASqPAhABGoACAADYvQAADL4AACy-AAA9vwAA6L0AAKC8AAAkPgAAML0AAI6-AABMPgAAoLwAAFS-AAAEvgAA-L0AAFA9AAAwvQAAUD0AAAU_AACYvQAAjj4AANg9AAA0PgAADL4AAFC9AABAPAAAgDsAAIi9AABAvAAAML0AALg9AACYPQAA6D0AADS-AAAUvgAAcL0AAEA8AABUPgAAFD4AAKa-AABcvgAAQDwAAPg9AAAQvQAAqD0AAHA9AACYPQAAf78AAKg9AADIPQAADL4AADA9AABwvQAAED0AACQ-AACIvQAAuD0AAHA9AAA8PgAA6D0AAEC8AACoPQAAgDsAAHA9AACIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=DU07Vv7tAQA","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5367781851392963145"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2522045445"},"17265245569370537539":{"videoId":"17265245569370537539","docid":"34-7-13-ZAAC77F18A533F136","description":"In this video I go over the derivative of hyperbolic sine or sinh(x) and show that it equals cosh(x). Download the notes in my video: https://1drv.ms/b/s!As32ynv0LoaIiJVL4... View video notes on...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2433052/eb04e8edf8cdf46997f306c95db7afaf/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/040KSAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9QpIDqYg52c","linkTemplate":"/video/preview/17265245569370537539?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivatives of Hyperbolic Trigonometry: sinh(x)","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9QpIDqYg52c\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoWChQxNzI2NTI0NTU2OTM3MDUzNzUzOVoUMTcyNjUyNDU1NjkzNzA1Mzc1MzlqtQ8SATAYACJEGjEACipoaHZkZXppbXhjaWp5dmhkaGhVQ1VVQnExR1BCdnZHTno3ZHBnTzE0T3cSAgASKg_CDw8aDz8TboIEJAGABCsqiwEQARp4ger4_PsC_gDz_AkH9wX-ARYF-Ab0AQEA7Pjv-wUAAAD17wr8_gAAAAEN-v0FAAAA9_3-9Pn_AAAQBgz8BQAAABMJ9_32AAAABwz5_f4BAADw-_sEAwAAAAr8Ae3_AAAABQLy8gAA_wH-9fjtAAAAAP3x-gQAAAAAIAAtjk7LOzgTQAlITlACKoQCEAAa8AF-9w__zwoDAev7_QDSKeEBgQot__w20AC18AwBtPbEAOwH6ADrBO3_Bx8UAbEr-P9N3O3-EdYFAD7b_AAOCO8BBuwIASfS8wFDFgP_DwHi_-oKKADzzO3__cTdAPUU3_76_BQAwenq__8H3gQ37iEC_QkTAgzwQAHr0ucE7AT6AuL11v0N6xcI88QDArwjGgMC2AkI-iwJ-8gi6v8J8Pf-8fMd-Agw0_0d-hwH9Ar-CL4J6wAP8P37OB7x9trsBfv1BRfwCv7_9PHXAAMu6QcG9QT8A_jN8xAc8OT39dYB_Pn-BfH2I-MD4w0c_u319_8gAC1QIw07OBNACUhhUAIqcxAAGmA08gAE5RW7ES0j5f_x8REZ1ta5P6AH_yDo_ywv0iUpD9XFBQoAIMgAEaEAAAAx584P8wAUf8zmLQgPBwS8ns89G3EEJhiv0h0NtewDMyTp4PYPTCAA6SGlFFy9tT8kQgkgAC2K6RE7OBNACUhvUAIqrwYQDBqgBgAAwEEAAHBBAAAAQgAAuEEAAPDBAACQQQAAuEIAAABAAACawgAAQMAAAKBBAAAkwgAAOMIAABjCAAA4QgAAQMEAAFDBAACywgAAQEEAAETCAACgwAAA4MEAADBBAABwwQAAIEEAAMBBAABAwgAAcMEAAKRCAADgwAAAmMEAAABBAACuwgAAQMEAAJzCAABAwQAAHEIAANpCAABAwQAAHEIAAMBAAACQwQAA-EEAAADBAACIQQAAoMEAACjCAABAwQAAUEIAAARCAACewgAAcEEAAMjBAABwwQAAREIAAKBBAACywgAAZMIAAExCAACgQAAA6EEAABzCAACCwgAAhsIAANjBAACMwgAAEMEAAODBAABkwgAAHMIAAJJCAACOQgAAcMEAAOBAAADgwAAAVMIAABDBAACgwAAApEIAAOhBAACCwgAAcEIAABDCAADYQQAAoEAAAIBAAACYQQAAsEEAABBBAACIwQAADEIAAPBBAAA0wgAAJMIAAKBBAAC2wgAACMIAAKBAAABgQgAAvsIAAIjBAADwQQAAGEIAANDBAAAYwgAA0EEAALBBAACOQgAA4MEAAEBBAACQQQAAOEIAAODBAACYQQAA-EEAAFxCAAAowgAAqMEAAJhBAACgQAAAsEEAAATCAADAwAAAUMIAAIjBAACQQQAABEIAAJjBAABEwgAA4EEAADBBAACAQAAAiMEAAJRCAAAcQgAAsEEAALhBAABYwgAA4MEAAKTCAADoQQAAiEEAAGjCAAAQQQAAmEEAADDBAACwwQAAwEAAAJhBAABAQQAAkEEAAKhCAAAAQgAA2EEAAOBAAADAwAAAYMIAAGzCAACQQQAAHEIAAGDBAAAUQgAA4MEAAGTCAACgwQAAGEIAAKBBAACCQgAASEIAAAjCAAAcwgAAPEIAAIBAAAAAwAAAoMAAAKhBAAAIwgAAgD8AAMhBAACOQgAAgMIAAADAAAAAAAAAcMIAAHhCAADYQQAAoMIAALhBAADgQAAADEIAAAzCAABAwAAAIMEAAKBBAAAAQAAAeEIAABDBAAAkQgAAHMIAAIC_IAA4E0AJSHVQASqPAhAAGoACAADIPQAAED0AABw-AACYPQAAuL0AAEA8AADovQAA1r4AAOC8AACIPQAA-L0AAGQ-AACOPgAABD4AACS-AAAQvQAAoLwAAHA9AABwPQAAmj4AAH8_AAAQPQAA2D0AAIg9AAD4vQAA4LwAAJi9AAAMvgAAMD0AAKg9AABQPQAA2L0AAMi9AACCvgAALD4AAFC9AACAOwAAiL0AAFS-AAAsvgAAgLsAAFC9AABEPgAA-L0AANi9AABAPAAA6D0AAPi9AABQvQAALL4AADA9AACgvAAAFD4AAIi9AAC4vQAAgLsAABE_AADovQAAgDsAAOA8AADIPQAARL4AABA9AADIvSAAOBNACUh8UAEqjwIQARqAAgAAuD0AAOg9AAAEvgAAQ78AAM6-AACIvQAAND4AAKA8AAAUvgAAuD0AAIi9AACWvgAAgLsAAAS-AADgvAAAiL0AAKi9AAAdPwAAgDsAAJ4-AAAsPgAAmr4AAKC8AAC4vQAABL4AAPi9AABkvgAAqL0AABQ-AADYPQAA4DwAAOA8AAD4vQAALL4AAMi9AAAQPQAAiD0AAKg9AADovQAABL4AAPg9AABsPgAAoDwAAOC8AACoPQAAqj4AAH-_AACYvQAAUD0AACy-AAB0PgAAUD0AAIo-AAAcPgAAPL4AAOg9AAAwvQAABD4AAEC8AACovQAAND4AAAQ-AAC4vQAAhr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=9QpIDqYg52c","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":984,"cheight":720,"cratio":1.36666,"dups":["17265245569370537539"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2500676398"},"6842126061420132112":{"videoId":"6842126061420132112","docid":"34-8-16-Z4733A6D9A027A171","description":"In this video, I discuss how to sketch the graph of sinh x (sine hyperbolic x). #PaperMuni...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3476669/674ff9d75a676315f9d48de01f216ac1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/KGakJwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWGI_SN9Qcvc","linkTemplate":"/video/preview/6842126061420132112?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How To Draw sinh x (sine hyperbolic x) Graph?","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WGI_SN9Qcvc\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoVChM2ODQyMTI2MDYxNDIwMTMyMTEyWhM2ODQyMTI2MDYxNDIwMTMyMTEyaoIJEgEwGAAiQxovAAooaGhsaHltY2NibXhkdnBoaFVDbzV0V0RUWmlPOFRSODdCV1hOVDMtQRICABAqEMIPDxoPPxOFAoIEJAGABCsqiwEQARp4gfYJ_vX_AQDsCAED-AIAARUC8fr0AgIA8_D5_wUC_wAO7wz9_wAAAP8JAfb_AAAA9_X9_f3_AAACCg39BAAAAAkI__b3AAAADA7vAv8BAAD_AfP9A_8AAPsW_Pb_AAAADwHu__8A_wHv_wfyAAAAAAPwAAUAAQAAIAAtS6PSOzgTQAlITlACKoQCEAAa8AF_wh8C1vWiAb8HAADMLt0B1jgO_0EXuwCxBvwA9w3YAdwwD_8RKQcAFQX5AKwzIQH798P-1bcQAEjj5P_m1fkAo__5ADoF9gNCLx0AFckN_9YPDf3gEBIALcvzAQVf2P0B7gf9Nx7q_wfq3wEr-jcBE9wYBPQyGAH85f8A5v3XAd700fwGGSkDHRT--Nb-DAkhJfkM9xIKA8ny8wID4-EIN9Yn__Mx5wNS2OgA5Qgl9bYK6QARC_8LBQsOA9K07QXlGBH0zwP3_-_z___-7wP24i_pCUabAwD-3AHxIyEC-fbjAv8dCAcS6QznCLC4AvogAC2eUfs6OBNACUhhUAIqcxAAGmDu-QBUmzHj3DMI4AXlCwL8BO_BDt43_-2n_yYX9vwWAbrMMRMAEQLr-50AAAAj7L8K7wABf-cQJQrJwfnwnug5_nXpFEXXvR8Vl_ow6h8nETsZGv8ApDy9QiCw7ShbCwsgAC3aHRE7OBNACUhvUAIqjwIQABqAAgAAUL0AAEA8AABcPgAAND4AALi9AAAwvQAAqL0AAJK-AAAwvQAAML0AAMg9AAB0PgAADD4AADA9AAAUvgAABL4AAFQ-AABwPQAAyL0AAEQ-AAB_PwAAoLwAAAS-AAAkPgAADL4AADC9AACAuwAABL4AADA9AAAUPgAAMD0AADC9AABQvQAAUD0AAFQ-AAAMPgAARD4AAFS-AAA8vgAAFL4AAOC8AABQvQAAJD4AAOg9AAAcPgAAMD0AAMg9AACovQAAyL0AAEC8AADIPQAA-D0AAFw-AACAuwAAmL0AAOC8AADKPgAAoDwAADA9AABAvAAAQDwAAAS-AAAQPQAA2L0gADgTQAlIfFABKo8CEAEagAIAAOC8AACgvAAAor4AABm_AACavgAA4LwAAIo-AADYvQAAmL0AAAw-AACOvgAAPL4AACQ-AACovQAAcD0AAKi9AABQvQAABz8AAJK-AADSPgAAED0AAHy-AADIvQAAcD0AAMg9AABQvQAAFL4AAFC9AAAcPgAAEL0AAHC9AACIPQAAPL4AAEy-AACYvQAAmD0AAMI-AACgPAAAuL0AAHy-AACAuwAAHD4AAIA7AABAPAAAJD4AADA9AAB_vwAAmL0AAKq-AABQvQAABD4AAFA9AAAsPgAAZD4AAPa-AAAEPgAAmL0AABw-AACAuwAABD4AAHQ-AABMPgAAqD0AAJa-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=WGI_SN9Qcvc","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6842126061420132112"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1918362479"},"2764854850698425498":{"videoId":"2764854850698425498","docid":"34-6-14-ZEFA959187CF43001","description":"In this video I go over the derivation for the hyperbolic trig identity sinh(x + y) = sinh(x)cosh(y) + cosh(x)sinh(y). This derivation is very similar to the one I did for cosh(x + y) in that I...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3604201/71cc15bdbe4e9b13309588f85f54ae16/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/CJfkSAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCtBzwqd4Rqc","linkTemplate":"/video/preview/2764854850698425498?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Hyperbolic Trigonometric Identity: sinh(x+y)","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CtBzwqd4Rqc\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoVChMyNzY0ODU0ODUwNjk4NDI1NDk4WhMyNzY0ODU0ODUwNjk4NDI1NDk4arYPEgEwGAAiRRoxAAoqaGh2ZGV6aW14Y2lqeXZoZGhoVUNVVUJxMUdQQnZ2R056N2RwZ08xNE93EgIAEioQwg8PGg8_E_kEggQkAYAEKyqLARABGniB9_78AP4DAPf3AQn4Bv4CFQLy-vUCAQDl8fb__P0BAPv5CvoBAAAA_wYB_wUAAAD9BgH7-v4AAAYADP8EAAAAEQj3_fcAAAD7D_r__gEAAPb_9AID_wAACfwB7_8AAAD9Bvf6AgAAAP72-e4AAAAA_fP6BAAAAAAgAC0AU9s7OBNACUhOUAIqhAIQABrwAX8o-v_FKvb_1dTX__wwAQGICiv_HSbgAMvhEgG49scA7y3SAN0D6QD1IjkAyhX0ADby5f777PgAIcH2_wcAFgDyHgUBGun1ATECCAAhAOX-swsi_s3S-AEX8cX_Gw3l_f7nFv_l-9kDD__UAxjlLAIOCBcEDf0D_Orv_QPoE_EF2dHk_hIUFP_91RgA8QMQBdrN9_wPHhn6sR_2_vnq9wAu3SH_CC7V_gzXGQf__QkK3uzvBf0lz_0dJgr6-Pnz7-fwGPnw1hDyAPj7BAXZEfXr-f3--9QDBf3i6PX2xQgH7-Ht9tgQ7wrdAf4I-vj58CAALfnnFDs4E0AJSGFQAipzEAAaYAzrAAnFC9fsLjnoItX27fjOI9dAwxb_7OT_NjnfGjcYzK8gJQAswvXtnAAAACTs1C4MABF_7e4PECIC6aeI2koiaPMjGdzcTxqw3hgUG_QQBA4vGgAAJ6wHYtLQP2E7PCAALReyDzs4E0AJSG9QAiqvBhAMGqAGAABIQgAAAEEAAIZCAAAkwgAAyEEAACxCAACaQgAAAMIAABjCAADAQAAAQMAAABzCAAAwwgAAhsIAAARCAAAAQQAA6EEAAHzCAAB8QgAAXMIAAJjBAAAQQQAAQMIAAMDBAACgwQAAbMIAABTCAABwwQAAjEIAAFBBAACIwgAAoEEAALrCAACgQAAAwMIAAKBBAACAPwAAcEIAAJjBAAAgQgAAkEEAAEBAAADAQQAAIEEAAABCAADowQAAgMEAAJhBAACUQgAAgEAAAAjCAAAAAAAAQEAAAAAAAABgQQAAFEIAAADDAADwQQAAIEEAAFhCAAAAwQAArsIAAKBAAACWwgAAMEEAANTCAADwwQAALMIAAFjCAABYwgAANEIAAKBCAADYwQAA0EEAAFTCAAAUwgAABMIAAIC_AADwQQAAsMEAABDBAACMQgAAuMEAAPBBAABAQAAAEEEAAGBBAAAIQgAA6EEAAADCAADIQQAAeEIAAMDBAAAQwgAAWEIAABzCAAAgwQAAUMEAAIBBAACgQAAArsIAAIBBAAAAQgAA4MEAACjCAADQQQAAgMAAAAAAAABgwQAAQMAAACRCAABgQQAAEMEAAFDBAAAMwgAAHEIAAIBBAAB8wgAA0MEAANjBAAAswgAAOMIAADDBAACwwQAAiEEAAIDAAAAUQgAAsEEAAADBAADgQQAAIMIAAGDBAAAgQQAASEIAANhBAABkQgAAwEEAAOBBAACAwAAAKMIAAPjBAAAUQgAAhkIAAEDCAAAMQgAAKEIAAHTCAADAwAAAgEAAAIDBAABwQQAAMMEAACBCAACIwQAAmEEAAJDBAAAUwgAAuMEAAEzCAACWwgAAXMIAAEBAAACSwgAAcMEAAIDAAAAoQgAALMIAAAxCAACCQgAAgMAAAIDAAAAQwQAAcEEAAMDBAABswgAAgMAAACRCAABMwgAA2EEAAIBAAACEwgAAjMIAAFDBAADYwQAAgEIAACzCAACWwgAAmMEAAIBBAAAEQgAAwEEAAMDBAACYQQAAoMAAAIC_AABgQgAAPMIAAIhBAACAPwAAQMAgADgTQAlIdVABKo8CEAAagAIAAKg9AAAwvQAAdD4AAIg9AACIvQAAcD0AABA9AAADvwAAED0AABA9AACAuwAATD4AALY-AABcPgAARL4AAMi9AADYPQAA-D0AAHC9AAAFPwAAfz8AALi9AACgvAAA-D0AANi9AABAvAAABD4AACS-AACgPAAA2D0AALg9AADYvQAA6L0AANi9AACqPgAAmL0AAOA8AACAOwAAbL4AAHy-AABQPQAAPL4AAKg9AADYvQAAUL0AAOA8AABUPgAANL4AAOi9AADovQAAED0AAIA7AAAEPgAAUD0AAIq-AADgPAAALz8AAIC7AACIvQAA6D0AADA9AACYvQAA4DwAAJK-IAA4E0AJSHxQASqPAhABGoACAAAUvgAA-D0AAOi9AABDvwAAXL4AAEA8AAD4PQAAEL0AADS-AABUPgAAoLwAACy-AABwvQAAEL0AAKi9AABwvQAAyL0AAD0_AACoPQAAuj4AAPg9AACyvgAAiD0AAAS-AAA8vgAAPL4AAPi9AABQvQAALD4AAOg9AACoPQAAEL0AAJi9AACgPAAAHD4AAAS-AAAQPQAAED0AACS-AABQvQAAJD4AADQ-AAD4PQAA6L0AAPi9AADOPgAAf78AAOC8AACIPQAABL4AAHQ-AADgPAAAkj4AAHQ-AABwvQAAmD0AAIC7AAD4PQAAuD0AAKi9AACIPQAA4DwAABS-AAAUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=CtBzwqd4Rqc","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1160,"cheight":720,"cratio":1.61111,"dups":["2764854850698425498"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3224898035"},"4256560328730316735":{"videoId":"4256560328730316735","docid":"34-9-13-ZC19D4C6E27C55C09","description":"Visit http://ilectureonline.com for more math and science lectures! In this video I will explain and draw the graphical representation of sinh(x). Next video in the series can be seen at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2789620/d3a0faa7ba638d841be9f2cab3ce96ac/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RJNaMwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Di83DwPBAeuc","linkTemplate":"/video/preview/4256560328730316735?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus 2: Hyperbolic Functions (7 of 57) Graphical Representation of sinh(x)","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=i83DwPBAeuc\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoVChM0MjU2NTYwMzI4NzMwMzE2NzM1WhM0MjU2NTYwMzI4NzMwMzE2NzM1aocXEgEwGAAiRBoxAAoqaGh0eHl5Y3FwYmllamxqZGhoVUNpR3hZYXdoRXA0UXlGY1gwUjYwWWRREgIAEioPwg8PGg8_E1WCBCQBgAQrKosBEAEaeIHtBPv3A_wA8AERBPkE_wEa-u8E9AIBAPH6_PsHAf8A-_0H7f0AAAD8DPwFDQAAAAH1AQX1_QEADfgVAAQAAAAU-AL-9gAAAAIM9wb-AQAA7AnvBQP_AAAVEwEL_wAAAAQO-Pz__wAA_QLz8AEAAAAG_gwOAAAAACAALZzVxjs4E0AJSE5QAiqEAhAAGvABf9cSANv2rwEA0_oA4gv0AZ41A_80POD_4eHrAe0G8QER2-r_7ATu_xgA6gDML_7_C-j7_ubMJwAr1g7_CuQkANjf7QEVEPoBCScsACT30ALmP_v_2CMj__TasgAEJNn-LecD_g4M2AHtA8ECCtRAA-TpGQAT7v0E_t4K-u0TAQX3-MX-Dx7oAu_d__kBMiEB-RgPCgZMGwDfx-kDDAME_hzi__z6POT6DPT7DeciCQH7AA715Oz8AQU08PvmDBMF8vcnAh7Q__z98RL4BCMNDN809Pkm5vcICQgDDvTm8-7rA_HyDNf4EQMT7ATk8AQEIAAtVdAROzgTQAlIYVACKs8HEAAawAfo952-lQI8vY1Ib71UNky9mTwvvRG2jro5ZOO9stILO4kDLb1QyD4-kG6-u6a5Nb0E2by84gP7vaiETD343yo-psAXvLlIC711dPy9LxOaPQsCEL23siS-KRXDPETQYrxdQFw767grvI2_4zzBfr498vfBvRetbbxhgmC7bxYKPRi6bbz0Hy09P7m3vZ4_Er2UZ168A6DAvMWDFz3Rzf48wb4jvO31ybyl7i89tSWRvfi5K71DEXy9qEcEvZlq_7u7L7I9Fjz7PKUFGruWGus7qpm1ux8shLsc5qC9tPg-vc_ZIr3f_MY97BvzPIdZPr25q9e887-mvS6rEL1Rh9W9FQ5TPahZe7zdYDg-KaZcPeMbPjrIRSW-adGBPZ0Ix7wmSBe85xGtvO-axjxeliA9KvcMve8ZS7spmPE9jfsFPXIiUbtc68a9PrTPPCF97jzSbpS9xdAgvWLf6bx79Ou8qVfCuz9v6rx6wYw8A0gIPPwEzLs7xQo-VoMrvV_w5TutX7q8r5qlO20lKrzfZsY9ObXzvYcfGDz6WKa9y1CQvR2nrruKZJ49IC4UPXhmvLo61Mq7OeCpvXYfujt5y1U80jHMPELXMboOPgM95zrIvS8zbDz8MbK9y0GqPQMfQLnw1ZY7tx81PWKdz7uUqY09tzoqPcSZnTvQTye9d6KEvaH3hDrHnXg56uFwPcxAgTosuas7111qPHapkbvjxQI-2Z0JPbDlxbk78jG9dgqYPUtXfTgf9Oy8WAqWO5WRZbt754Y8Qou2OpiupDnNodY8eFKVPDzKlzgb6qG9sluVPSzZmTgpNYW8JB_FvcgYMDlUG_y9Yrv7vRPT8jnnfnu7mMjgPGWWC7mVLBc-1Sh2OeXTqrnYW5S9xD4mvJKR1Lo74RW-f7xXPYwvDTjdnEU9rZ44PTZ1qTiARPg8Oq4mPX8eN7kDKGE9hJ_4vX8ex7i8L528i4GfPdKubDdEa5W9aeOovYLkQTef8XE7pdgBPqiuMbmv4VO92gHXPctNPzcWcVc7NKSlPe03ArijgwS9mRytvNw0IDd4ROU9irx2PYzSLbnsJZe9A5vOvER4ETgCigc8nzmgvbMRnbccXvA9fQT-PPTnkLiNk-e85NPru3RXdTjB4ys-3KVovAeJdLnNx3q90xXsveab-Lh6lwG9qwNlvbVi5rebS1u9kjynPW1wgTjCFYC9FHjnvdm0oLhqTxk-qW6ZPQgCMrej7dK7pn5ePL-GB7lV18a9u5lRvPmaW7dtDpa9LoRmPQTvtzcgADgTQAlIbVABKnMQABpgDOkAIeEn--0kJeb87dcdz9MA2wXdAP_4z_8PFfQPGCfMsSYOACHj5_SuAAAAHd3iJP4AD2TV_hUcJPQZ8cH2KAt_HPsgzPAl_czwFhj16iUvERoRALMiziYApqw6CTxOIAAtGhYtOzgTQAlIb1ACKq8GEAwaoAYAAEBBAACQwQAAQEIAAHjCAACgQAAA-EEAAOxCAAAQQgAAUEEAAIBAAABwwQAA0MEAAATCAAAIQgAA2EEAAOBAAACoQQAARMIAAKBCAAAAQAAAAAAAABRCAABYwgAAcMEAAEDAAAAAQAAAgEEAAIjBAABAQQAAgEIAAHzCAADoQQAATMIAAKBAAADmwgAAoEEAAPhBAACAQgAA4MAAAGBBAABAQQAA-EEAAFBBAABAQAAAAEIAAKjCAACgwAAAsEEAAEDAAAAwQgAA-MEAABDBAABwwQAAIMEAABDBAADgwAAAXMIAAIDAAABAQQAAcEEAAOBBAACSwgAALMIAADDBAACAwAAAwMIAAHzCAACQwgAAMEEAADTCAACUQgAA4EEAAHDCAAD4QQAAqsIAALBBAACGwgAAcEEAAEhCAAAAwAAAtsIAAHhCAAAAAAAAFEIAAPBBAADwwQAAAAAAAETCAABAQQAA4MAAAFDCAAAkQgAAIMEAAPBBAACMQgAAsMEAAPjBAAB4wgAAMEIAAEhCAADAwQAAGMIAAHBBAAC4wQAAwMEAABhCAAAYQgAAAEAAAAxCAADAQQAAPEIAAHhCAAAgwgAABEIAAFDBAABEQgAAAEEAAEDAAACGwgAAcMEAAIDAAACcwgAAUEEAABDBAACowQAAEMEAAARCAADYwQAA2MEAAIhCAADAQAAAYMEAAAhCAADgQQAAgMEAAI5CAABwwQAAmEEAAODCAADAwQAARMIAAJjBAADoQQAAGMIAAMDAAAC4QQAAQMAAAIC_AACYQQAACEIAAEDCAAAAwQAAPEIAAKjBAACAQQAAAMEAAJrCAABMwgAATMIAAJhBAACcwgAAIEIAAMBAAABswgAAgMAAAHBBAACYwQAAiEIAAI5CAADgQAAAgD8AAEhCAACAwAAAFMIAADzCAACOwgAA8EEAAIjBAAAMQgAAUEEAAIDCAABkwgAAEMIAAFBBAABMQgAAoEAAAFzCAABQwgAAUEEAADBBAACAPwAA4EEAAEBCAABAwAAAIMEAABxCAADwQQAAUEEAAKBAAAAowiAAOBNACUh1UAEqjwIQABqAAgAAHL4AAEA8AABMPgAAyD0AAEC8AACYPQAABD4AABO_AACGvgAAEL0AADC9AADIPQAAij4AABw-AACCvgAANL4AAEQ-AABQPQAAVD4AAAk_AAB_PwAAFL4AAEw-AAAUPgAAyD0AAIg9AABQPQAAuL0AAJo-AAA0PgAAqD0AAHC9AAD4vQAA6L0AAEA8AAAEPgAA6D0AAFS-AABsvgAAbL4AADS-AAAkPgAAfD4AAJg9AACuvgAAuL0AAJY-AACqvgAAuL0AAPi9AACYvQAA-D0AAHQ-AABEPgAAmD0AAIC7AADyPgAAHD4AAFA9AACYvQAAoLwAAAS-AADIPQAAiL0gADgTQAlIfFABKo8CEAEagAIAAAy-AABQvQAA-L0AAFm_AABsvgAAqL0AAFw-AACgvAAAbL4AAJo-AABwPQAAPL4AAAS-AABwvQAAgLsAAFC9AABQPQAACz8AAHC9AAC2PgAAgDsAAFA9AAAkvgAADL4AAIA7AACAuwAAEL0AAOC8AACAuwAAVD4AADA9AACYPQAAHL4AAJa-AABAvAAAQLwAAKg9AAAEPgAAfL4AAKi9AACgPAAAmD0AANi9AAD4PQAAEL0AAKg9AAB_vwAAMD0AAOA8AADgvAAALD4AAOC8AACoPQAA-D0AAIC7AAAwPQAAED0AAEQ-AACYPQAABL4AABw-AADIPQAADD4AANi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=i83DwPBAeuc","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4256560328730316735"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3134581550"},"4549862615314629736":{"videoId":"4549862615314629736","docid":"34-3-10-Z5F05D3CED82C6B54","description":"inverse sinh: • inverse sinh(x) T-shirt: https://teespring.com/derivatives-for... see full playlist: • Hyperbolic Functions, Calculus 2...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4825664/f11ec8e65eef9a1bb11dee05f4b2e51d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hG5JnQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7HothuBaYYM","linkTemplate":"/video/preview/4549862615314629736?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Q14, derivative of sinh^-1(x), two ways","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7HothuBaYYM\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoVChM0NTQ5ODYyNjE1MzE0NjI5NzM2WhM0NTQ5ODYyNjE1MzE0NjI5NzM2arYPEgEwGAAiRRoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioQwg8PGg8_E_cDggQkAYAEKyqLARABGniB-xIICgL-AAP-C_r9A_8BDw3xBPQAAADo9fQJCP8BAOwI9QL7AAAA-RD9_vsAAAD2_vsI8_8BAAQB9f4EAAAACP_--f0AAAAOB__6_gEAAP7uBQED_wAABg0JAP8AAAAADgH5_f8AAPoBBf8AAAAA8-n3BQAAAAAgAC1ohMw7OBNACUhOUAIqhAIQABrwAX0N-QHm79EBzPfXAMQpCQCBIgr-HCTiANgG-AHc8cYB7hfgAM_p9gAf_gL_0SASADDY0_8DyxT_Kvzx_y3q-ADs-_0AI9b0ASMNDAAM7t4A4CIR_wsK_gL9yuAABEzg_RLuBgH_DO0BDv_XAzHwHgIe7SQCLvQJAvfA9QPuBPoC5fba_evs-gUHzwwBwx8XAxHiCf8RFvv9_fv6B_nY8_8H8Bb3ByvX_gjt6Qfi8hD61e8M-vwM_f0d-iEF3hcD_ujxF_nlB_z49hT48xwJEAb1GgILE-H6CRnkAAIC9f777QPy8_MI8Qnj9P0N6v7tBCAALf8hHTs4E0AJSGFQAipzEAAaYEzoABr5LtQX-Pbw7dvpGe_7yerptQr_D_f_ATLNGRMF6MIJ6_8LvAgApAAAACz79vrpAP9_6On8KvEB3fKG5BQRZAYcJJENGO-y7SECJfP6M9ohVwC0A6w0KbXvLwgbGSAALT1HIDs4E0AJSG9QAiqvBhAMGqAGAABEQgAA8MEAAMhCAADgwQAAAEEAAARCAACcQgAAAEIAAETCAAAAwAAAQEAAAKjBAACowQAAdMIAAOBAAABAwAAAYEEAAMDBAAAQQgAAmMEAAMDAAACAwQAAqsIAACBCAAB8wgAA4EAAAEDBAACIQQAAiEEAAKhBAACwwQAAgEAAACzCAAAAwQAAjsIAAIBBAAAQQgAAhkIAAABAAAAUQgAAgL8AAKBAAABUQgAAwMAAAGDBAAAQwgAAQEEAABhCAACGQgAADEIAAIDAAAA0wgAAAAAAADTCAAAYwgAAkEEAAIzCAABQQQAAQEAAADBCAACgQQAAgsIAAIjBAABcwgAAEMIAAJ7CAAAgwQAAbMIAAADCAADgwQAAbEIAAJJCAAA0wgAA2EIAAAzCAADwwQAA2MEAAGBBAABwwQAAUEEAAIDBAABYQgAAkMEAAAxCAABQQQAAGEIAAAhCAADgQAAAIEEAAMjBAABIwgAAkkIAAEBBAACwwQAAyEEAACDCAACAwQAAuEEAAExCAACoQgAAYMIAACxCAAAMQgAAMMIAAGTCAAAEwgAAKEIAAExCAACIQQAAkkIAAIhCAABwQgAAwEAAADBBAAAQwQAA2EEAAOBAAAAswgAAGEIAAPDBAAA4wgAAvsIAAADCAAAowgAAgMEAAJhBAACuwgAAoMAAAI7CAADIQQAAgEAAAOhBAADQwQAASEIAAHDBAACIQQAA6EEAACxCAADAwQAAlsIAAAzCAACcQgAAMEEAAOjBAABsQgAAKEIAAKDBAACQQQAAVMIAAJjBAABAwAAAkMEAALBBAACMwgAAAEAAAKDBAACgwAAAgsIAAGjCAACgQQAAQMIAAOBAAACAwQAAmMEAAATCAAAMQgAA8EEAAHxCAABYQgAAAAAAADBBAAAQwQAAAMIAABTCAABEwgAAEMEAAMDAAABEwgAAUMEAAPBCAACYwgAAHMIAAEDBAACgwQAA4EEAACjCAADwwQAAQEAAAATCAACAwQAAMEEAAGzCAADoQQAAQEEAAGBBAABMQgAAQMAAAKBAAAAAwQAAJMIgADgTQAlIdVABKo8CEAAagAIAAEA8AAAMPgAAND4AAEA8AAA0vgAA4DwAAAw-AAD-vgAAML0AAFC9AADIPQAAHL4AAOA8AAAcPgAAmL0AAKg9AADoPQAAUD0AAFw-AAAkPgAAfz8AAJg9AAAQvQAAUD0AAOi9AAD4PQAAiL0AAES-AACIPQAAcD0AAIg9AACAOwAAHL4AAIa-AADoPQAAcL0AAOC8AABQvQAAfL4AAJK-AAA0PgAAXL4AAFw-AACoPQAA-L0AAKg9AACoPQAAQDwAADA9AAAkvgAAgj4AALg9AACKPgAAgLsAAIi9AABQPQAAFT8AABS-AADIPQAA6L0AABw-AAAMvgAAcD0AADS-IAA4E0AJSHxQASqPAhABGoACAACAOwAAgLsAAMg9AAAxvwAALL4AAPg9AADyPgAA-L0AAEA8AACWPgAAEL0AAOA8AAA8PgAAyL0AAOi9AAAwPQAAqL0AAEE_AAAkvgAAkj4AADS-AACCvgAAUL0AABC9AAD4vQAAgDsAANg9AABAPAAAyD0AAKA8AAAQvQAA2D0AAL6-AADOvgAATL4AAFQ-AAAwPQAAZD4AADS-AACCvgAAqD0AABQ-AAC4PQAAEL0AAEQ-AACAuwAAf78AAEy-AAC4PQAAQDwAAGQ-AABEPgAAwj4AAFC9AAC4vQAAMD0AAHC9AACgPAAAVL4AALi9AACmPgAAUD0AAKC8AACSviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7HothuBaYYM","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4549862615314629736"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"666814846"},"1508885347244106023":{"videoId":"1508885347244106023","docid":"34-7-17-ZF5F9F20856DB8F8A","description":"Wanna do this in one min? check out: • derivative of inverse hyperbolic sine | bp... 🔑 If you enjoy my videos, then you can click here to subscribe https://www.youtube.com/blackpenredpe... 🏬...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3429348/935297fc1b1f26c77cbf9262c12cc67c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/8wtiuQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DlRI7-vNfRtY","linkTemplate":"/video/preview/1508885347244106023?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"derivative of inverse sinh(x)","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=lRI7-vNfRtY\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoVChMxNTA4ODg1MzQ3MjQ0MTA2MDIzWhMxNTA4ODg1MzQ3MjQ0MTA2MDIzarYPEgEwGAAiRRoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioQwg8PGg8_E9gBggQkAYAEKyqLARABGniB-AwE_wL-AO8IF_37AgABEQgDDPUBAQDj8Pv_Cf0BAOUB9_UA_wAA8gj99vkAAAAD-vz7_f0BAAYFBfoFAAAADAn5-QAAAAD3EO4B_wEAAOr78gkD_wAAARAA-P8AAAD4EAXw__8AAPX6C_8AAAAA8-n3BgAAAAAgAC0wmMo7OBNACUhOUAIqhAIQABrwAX_mAv_n4-EC7TbQAMru7gOdMij_LRfgALMPyAHQB9wB6h31ANElzAAsH_EBxzP-_xXUrAPXz_0BJbn1_iPIAwC_2OsBOwffASEGHwEO6tgA1xEf_tcEAv8a0s0DGif5AgvxFfkaH-L9BiDhAP4FMgAOCTAEOu4bARnR_AGz-xoB9vfA_skA9foO4SX8uCUbAxrq7vwRIRv58Qj8BAnX-PgJ7Rr1-kHi-QoMBBDd8BL5re73_QPO-wb79Q_83BDuAwENNfq9JgQEGCf8_CPtBvb9Ju8K98ryERnVDhDyH_X4Bg3w-wQP7grqAPcV7Pf7ECAALWrNBTs4E0AJSGFQAipzEAAaYDv4ACv3E9L-7Qbw2eDZ9wj65QkQniv_DeX_AUjXAjQD57oh3P8Y6vzspAAAABgG4v4OAAB_4vIEEAs36LyrySQxc-4IOKvnOPq7-x0JH_DoJhA4VQCjAbw5FdHUXPPxCiAALdw4HDs4E0AJSG9QAiqvBhAMGqAGAACmQgAAQMIAAJZCAADQwQAAgMAAADBBAACKQgAAMEEAADDBAACAQQAA6EEAACTCAABAQQAAEMIAABhCAAAAwgAAQEEAAFjCAABkQgAAgsIAAGBBAACoQQAAYMIAAADBAABowgAAFEIAAGzCAAAgwQAAlkIAAFDBAAAwQQAAgL8AAHjCAADIwQAA2MIAANBBAADoQQAAXEIAAIDAAAAoQgAAAMIAAABBAADoQQAAgL8AABBBAABQwgAACEIAAIhCAADIQQAAgEEAABDCAADAwAAAIMEAAJjBAADIwQAAsEEAAKbCAADAwAAA4EEAAAhCAACAvwAAbMIAAEDAAACKwgAA-MEAAEjCAADowQAAAMIAAATCAACAwQAAjkIAAIpCAAB8wgAAaEIAAIDBAAAAwQAAIMIAAKDBAABAQQAAQEAAABDCAACIQgAAGMIAALhBAACwQQAAyEEAALBBAACAPwAAUEEAAPDBAACAwQAAqkIAAKDBAABwwQAAeEIAAATCAAAIwgAAgD8AAHxCAABEQgAAWMIAAPBBAABkQgAAwMAAAILCAAAgQQAAyEEAAIhCAACYQQAAGEIAAIxCAAAQQgAAwMEAAIDAAACoQQAAFEIAAABAAAAQwgAA0EEAAKDBAACAPwAAnsIAADBBAAAAwgAAQMEAALjBAADowQAAAEAAAIDBAACAQQAAiMEAAJDBAAAAwQAAWEIAAEBBAABsQgAAsEEAAMBAAADAwQAAlsIAAPDBAAA8QgAA4EEAAAzCAADQQQAADEIAABDBAACAQAAAAMEAAMBAAAAAwQAA0EEAAExCAAAAwQAABEIAADDBAAAkwgAA4MEAAFDBAAAcwgAAjsIAANBBAADgwAAAIMIAAJhBAABIQgAAuMEAAGhCAACIQgAAAEEAACxCAAAgQQAAiMEAABzCAAAkwgAAgL8AABBBAABAwQAANEIAAM5CAADOwgAAdMIAAABAAACYwQAAQEIAABjCAADgwQAATMIAAIBBAABQQQAA8EEAAIBAAABAQQAADEIAAIBAAABQQgAAgEEAABDCAAAwQQAAGMIgADgTQAlIdVABKo8CEAAagAIAALi9AAAEPgAATD4AAFw-AAAUvgAAXD4AAEC8AAANvwAAoLwAAKC8AABcPgAA-L0AAJg9AAAEPgAAUL0AAHA9AABwPQAAoDwAAKg9AADIPQAAfz8AADA9AAAkvgAAMD0AAHC9AADgPAAA-L0AAFy-AAAMPgAALD4AAAQ-AABAPAAATL4AADy-AAAMPgAATL4AAJi9AABQvQAAgr4AAIa-AABEPgAAcL0AAJo-AAAwvQAA-L0AACw-AABEPgAAED0AAHA9AAA0vgAAbD4AAMg9AAD4PQAAJL4AALi9AABwPQAAMT8AAMi9AACKPgAAgDsAAOg9AABMvgAAiD0AAHS-IAA4E0AJSHxQASqPAhABGoACAADovQAAiD0AADw-AAAbvwAADL4AAOi9AADCPgAADL4AAPg9AAAEPgAAoDwAABy-AAB8PgAAHL4AADC9AADgPAAA4DwAADM_AAAEvgAALD4AAIg9AAAEvgAAgLsAAFC9AADIvQAAmD0AAJg9AADYPQAAiD0AAKg9AACoPQAAJD4AALK-AAD4vQAAiL0AACw-AABUPgAAqj4AAGS-AABkvgAAkj4AAPg9AADIPQAAoDwAAPg9AACgPAAAf78AAHC9AAC4vQAAEL0AADQ-AAB0PgAA2j4AAEA8AADgvAAAuD0AADC9AAC4PQAATL4AADS-AAAsPgAA4LwAAJi9AAAsviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=lRI7-vNfRtY","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1508885347244106023"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1678469313"},"18287096540364807853":{"videoId":"18287096540364807853","docid":"34-8-13-ZD34D5E939BE1067C","description":"youtu.be/lDmwSqRZOUA Derivative of Inverse Hyperbolic Functions: inverse sinh(x), cosh(x), tanh(x): http://youtu.be/ubYbYbJOsNs Power Functions and their Properties Part 1 - A Simple Explanation...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2986509/aeb607f7100aa759990919d804196c48/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/U3BEEQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-Wqq4Wzi7O8","linkTemplate":"/video/preview/18287096540364807853?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Hyperbolic Trigonometry Identity Proof: sinh(-x) = -sinh(x) & cosh(-x) = cosh(x)","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-Wqq4Wzi7O8\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoWChQxODI4NzA5NjU0MDM2NDgwNzg1M1oUMTgyODcwOTY1NDAzNjQ4MDc4NTNqiBcSATAYACJFGjEACipoaHZkZXppbXhjaWp5dmhkaGhVQ1VVQnExR1BCdnZHTno3ZHBnTzE0T3cSAgASKhDCDw8aDz8TrQGCBCQBgAQrKosBEAEaeIH3BPr--gYA9PwIB_gF_gEEAAAC-f_-APf7-_3-Av8AAfkA-PoBAAD_BQH_BQAAAPwC-fv9_gAABgAL_wQAAAAJDPwC-gAAAAsN8AL_AAAA9v_1AgP_AAAACPfv_wAAAAAHAvcDAAAA-_kD8gAAAAD4-v75AAAAACAALVpU5Ds4E0AJSE5QAiqEAhAAGvABdf8cAN4l8wDH8PcA6hvnAIEKLf8SF88AuOjyALvp3gHdHusA9AXc_xAtGACxK_j_Tdzt_u7O6AA-2_wAFBsKABvj-AAUxAMAOe4JAPv7_v_cJhP_-8LGAv3E3QAcHNwA-vwUAL8A1wD9-NH9CtJCA_sbKP8g7RMC9rn0A8X4-Aj06e_7GPQoA_3TGQDE_iEBD-EgAA0sB_nmIucC-_Tj_O3vCv8IMNP9COwfBPQK_gi-CesADwr_CicMBv_77QD3FPUh8ifvCfP04fb9PtkA9-fn-AH4zfMQBvju_OvK8gL5_gXx0P_s9fj3FA769_jvIAAtUCMNOzgTQAlIYVACKs8HEAAawAe37Ni-XXepPLHUxLyimNy9IYNLO32QyLsyANS9YSYgPUKl2zwYmAU-gDPrO3-zvbv2lmK-BXiBPHk_Dbz9vXQ-klRLvQOx7DzZQ0u-Q5J2Oyl_gr1EGF--1GRnO6WdPzxAXCg8uG5vvP0EhrsKnRc-k5sVvBGKrbwhlaK8hkSQvE7etrykmJO6ajS5upF387znWs88y_QLvZH1Lz3mA0I-9j1PvUcBAbtu6z09gMCcu0Sqg7yscOu98NOCPDIFqbsJeZM9DdbJPPyOYTxbM2g8fO4kvahkqTspD2G9QDX7O_d2y7uVUoY9IzHBPLtlYry8myI9wAOovcM_sjs5Qra9pGaUPU-wvzzdtBk-PRbRPANg-rt6tl29aUA4PY-axLtAK3a7qWP6vNl6BDwrwo28MQaGPaKtrzyf9b67EkEGPU_JOTyNSiU91iMoPSzzljy3T309QGzpvChOh7uEjgw9H4IqvJaVprwLuOe9dlCJO1uEmLwRKrI9GiAoO3pQErvbYX09f9ZBPd64uTtwCus8Re-5vfZH5bnO8ga9kDiKvZzLQ7wisJg9FsZxPCO7d7yLy5w9pBd6vV94Srw30kO9VcJyuwK6TLu6mFA9HxtXvWJqpjzsyYK93igoPaHANztwwYg8B5WdvPBwGrxCPSI8LXFpPVnppDvxnmO9XXaOvYnVxrmeCe09XRvFPLt7bbqHy4A9aY4sPAHXYLpiL1Q9KaPAvL93I7ssQla9SGP-vKFdDTsTPRq96iYMOyZb_zmqgqE9GhiZvUdKoDhw9yg9VAqwPCNOIzkbH3u7axaOPcJ0YDkiiPM8tZ6rvLLGFDnYAow8g2jNvS4kwrieEmu98mMnPI0fQDmd-8Y8deENPGQSmLlff729Hxg7vQjVN7n83se7J8YtPcOXYLiPoII96IoyukK-IjiT2N47A0xPvUZfBbhbEQu9UJztvHDTAzlIdCq9e0MrPJW5tbdar4M9AY_DvabRWjliQ5w8wx2JPViwoTn-kh48zYSwPLfRlbWaH5Q9o68APbBkzjcGnCW8jGrRvfpT9zfN51w9RzObPdUtJblodTK-ZKQoPRfKTLf-G6q8fXsyvag-zzdG8eg6lgK3vMbvZzdBgwm8eUA5vc8ACTjB4ys-3KVovAeJdLmsG0-9cABivXH6orhR71M9bHESvfV-tTe8QS-9JaIJPc2_Zji9rwU9pUkJvq2ehbjK9HA9IuErPvHLijgHC6e8vfzuPYO0HrlSCaS9H_hTPQlDMDhwma68cPrpvA9nuDcgADgTQAlIbVABKnMQABpg7PsAH_ElwvIeRvobA9sA5dULwha_HP8QCv80Mdz3-PjasAod_w_aB_ilAAAANur9C-wAJHXR-A0MBBP6toHAODFd7Qwiu_Eh9tT_Jvj--Af2BTQaALk5ohtS6N0jMRA0IAAtnOUgOzgTQAlIb1ACKq8GEAwaoAYAACRCAAAUQgAA2EEAABDBAABgwQAAgEAAAMRCAACwQQAAksIAANjBAADAQAAAiMEAAEjCAADowQAAXEIAAJjBAAAMwgAAnMIAADBCAAAwwgAAoEAAALjBAACAvwAAgEAAAEBBAABAwQAAIMIAAEDBAACsQgAAQMAAAIjBAACgQQAAlMIAAADBAACewgAAQMAAAOhBAACOQgAAEEEAAMBBAAC4QQAA6EEAACxCAACYQQAAIEEAAHDCAABwwQAAgD8AAGhCAADwQQAAosIAAJBBAACYwQAAAMEAACRCAABAQQAA2MIAADDCAAAUQgAAQEAAAAhCAABEwgAAeMIAAIzCAACgQAAAksIAAAAAAAAowgAAJMIAADjCAADaQgAAmkIAAMBAAADYQQAAoMEAAETCAADowQAAAEAAANhCAAAUQgAAYMIAAJBCAADAwAAAcEEAABBBAAAgwQAA6EEAAMBBAAAIQgAAcMEAADRCAACAQgAAdMIAADTCAAAwQQAA2MIAAABAAACQwQAAWEIAAJTCAABwwQAAMEEAAKhBAAAQwgAA8MEAAIC_AABAQAAAhEIAAMjBAAAgQQAA8EEAACxCAABgwQAAGEIAAAhCAAAwQgAAHMIAANjBAADIwQAAwMAAAAAAAAAcwgAAAEAAABDCAAC4wQAAkEEAAPhBAADgwQAA-MEAAKDAAACAvwAAQMAAACDBAAA4QgAAYEEAAFRCAACoQQAAIMIAAJjBAAC4wgAAkEEAAFBBAAAkwgAAAMAAAEBAAADAQAAAMMIAAJhBAADAQAAAuEEAABBBAABIQgAADEIAAMhBAACQQQAAQMAAAFDCAABUwgAAIMIAABBCAACQwQAA0EEAAIjBAAA8wgAALMIAAEBCAADwQQAAjEIAACRCAABQwQAA4MAAAFxCAACowQAAAAAAAJjBAACYQQAA2MEAAIDAAAAYQgAAGEIAAJzCAADIwQAAoMEAAATCAABkQgAAkEEAAKrCAAAgwQAA2EEAACRCAAAAwgAAUMEAAIBAAADIQQAAAEAAAI5CAAAgwQAATEIAAOjBAAAwwSAAOBNACUh1UAEqjwIQABqAAgAAmD0AAIC7AAB8PgAAmD0AAKi9AADIPQAAiL0AAM6-AABAPAAAgLsAAKA8AAAsPgAAjj4AAAw-AABsvgAAiL0AANg9AAC4PQAA4DwAAI4-AAB_PwAAgDsAAOC8AACIPQAA2L0AADC9AABAvAAAJL4AABA9AAAsPgAAUD0AAPi9AACIvQAAiL0AACQ-AABwvQAAMD0AANi9AAB0vgAA2L0AABA9AAA0vgAA4DwAABC9AABAPAAA6D0AAFQ-AADovQAAiL0AABS-AAAsPgAAqD0AAFw-AABQvQAAZL4AAEC8AAARPwAAUL0AABA9AACAOwAAEL0AAFy-AAAQvQAAor4gADgTQAlIfFABKo8CEAEagAIAAOC8AABwPQAAML0AAD2_AABcvgAAyD0AAHQ-AACIPQAABL4AANg9AADovQAATL4AAOA8AAC4vQAAgLsAAKC8AAAEvgAAKT8AANi9AABsPgAALD4AAJq-AACgPAAAmL0AAOC8AAAQPQAAVL4AAOC8AAAwvQAAqD0AAIA7AAAwPQAAPL4AACy-AACovQAAoLwAANg9AACgPAAANL4AAFS-AABQPQAA-D0AADQ-AACgvAAAPD4AAFA9AAB_vwAAgDsAABA9AADIvQAAPD4AAOg9AACCPgAAFD4AAES-AACoPQAAUL0AAHA9AADgPAAAoLwAAHw-AAAwPQAAML0AAFS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=-Wqq4Wzi7O8","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":984,"cheight":720,"cratio":1.36666,"dups":["18287096540364807853"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1105938114"},"6112811751310842772":{"videoId":"6112811751310842772","docid":"34-8-4-Z19E8C983059151CF","description":"In this video I introduce what hyperbolic functions are and show how they relate to the hyperbola (and hence their name is derived) in the same way that trigonometric functions relate to the circle.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1599614/43ba233c6edc8a2a32d3002d0d924b62/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hfZZLgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEmJKuQBEdlc","linkTemplate":"/video/preview/6112811751310842772?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Hyperbolic Functions - tanh(x), sinh(x), cosh(x) - Introduction","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=EmJKuQBEdlc\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoVChM2MTEyODExNzUxMzEwODQyNzcyWhM2MTEyODExNzUxMzEwODQyNzcyapMXEgEwGAAiRRoxAAoqaGh2ZGV6aW14Y2lqeXZoZGhoVUNVVUJxMUdQQnZ2R056N2RwZ08xNE93EgIAEioQwg8PGg8_E7MFggQkAYAEKyqLARABGniB9QQA-PwFAPEC_P_6AgABCwD7-vcAAADs-Pz0Av8BAO_8APT5AAAA-gr7AwIAAAD2_v7-_P8AAA4FC_wFAAAAAAH___sAAAD_CPL9_wEAAPb_9AID_wAACAz6-P8AAAAGFAX3AP8AAPj4AvsAAAAAA_n-AwAAAAAgAC0r5N47OBNACUhOUAIqhAIQABrwAX_XEgDN-s7_yuXlANMQvgCh9wwA_DTSANUG9wG39sYA9PwQAOQpBf8C9QsA0f_9_0vd7f7bwg4AIr_2_yXwCAAH5fUA9u_7ARUYIAIJ0eoBBRoX_t_L-gH02rIAIhn1_iDwFPz1LML-7QPBAg_-PwH7Gib_HwMY-8wAEv3tBPoC693Y_fIWEQPe3_n89_Qm_gzNEv4QHhn55ATxAf4eC_gO6wr9LDbV__8PCQUOEwAD8gj4Bgnq-wkqAhMB5PoG-PYFFvHv1RDx380D-S_QEQLGGfIIG_T0DP_jBAIe2P8IB_fo8d75_Pn27esK9ebx6CAALVXQETs4E0AJSGFQAirPBxAAGsAHTz7Fvn7Y3DwxxrA7pZ2PvUTkz7yFS728IxPwvdctJz33_UC8gspIPsSUiLxVSpG77DPHvfpysDyIvTC9y4AzPubRiL2YYjM8hzQqvp5pqD22cmW8_FQlvjHZLrwHc-Y39nM0vX--rbxGOeK6oOLYPWE8nrzFT4i8yVfCvOYMAD1C7gK93GoZOvURWL0TfFi9ZTsbvFf0Xb2f2mM6qvQuPUdS97zUHkA8tLCyPUwlMr3p5SC7fc-ovfbaBzz0QBi8L-LWPM7cqD0wx6E8SXQlvQhcEr3-XHq7aIBBvWuZsbz-nKO7JkCoPZCoKz1v0a689GxpuWCrJL6AMoC7rfkBvlSlkjwh0d877IbtPYz3gz1yW5E7rtcEvg2fPj3sRZm8d4oQPQJnhL2_HAu8SxcHPf-JGz00z1s8NAW8PYaDTjwbsgk8LQ4fvFVWLj0QQhs9pNQSPM5Csbzej9u8oJuHPQj4fzxrvoi7-J8mvUfR9jkDZEM8lks5PdYkcz0TNeo75BqXujxy2jt6iZY8BSOlPdYCO75J5Zo6XE2ovLlyUb1vVrO83cF-Pby7JD2Ie5G8TvDNPWYz573_VwA8-dAPvdfep7p-Wt47FvVuPDCQFr2BXGI7KVvkvRv3IT1eq5C7GlUBvYuBHz11LCW8r2Z4vC03kj2eVQ87fMCXvFq_VL0v4-A7uI98PTwck7y4SzC7O2JDPR2GwD1B4my5g8BKPczOprsANwu7LEJWvUhj_ryhXQ07ZdOAvJAomb1SAxM7x2cSPq6g6b2QCbS5n2ZUu2963buVQgO7G-qhvbJblT0s2Zk4BF-HvMWaIL1G4T85_LNVvXc9sr2FGzC4-JlpvG7cojxU02S53_X-PPj2Mz0xNmk5U1n0va_hs7yMjI-5lw2hvEj1wjz0CJq4RprYPbIzAD3WC5A4xvIzPYncIj0Xfva33HPLOt4iKz1jdZC3S1aqPEO5Iz208h05mLRSOz9wxb33LmA5_ViXPdy3-j0dVsQ1CAMvvRS2qj0_6CU3oe3CPbgzWTnwDw-42AUtPX6hEb32QFI3i9eWPZ8PBT0gjRW4tJAQvtiMoj2ZewS36yNrvY2-uLxEt9O3Cqi7PVxaoDlpqxo447UBPXw3TD0xR4-2H58APqTkkL0V6Dq5OcXEvWe3Jr7WR3I4sjuuvOamdrvpRio4axOCvO2KDz1X0t231ZTkPL42pr3zo024yvRwPSLhKz7xy4o4cDNLPTSzyz3Z06e3Wu3GvQ8UMz1o2_s3htlVvX4JCz2TYHA4IAA4E0AJSG1QASpzEAAaYAPzACDQLMgKGTDaIPWh3sPSBMwbwhT_3P7_ODDM7On356P3J__93g3dnQAAAAX8BSH7APl_0w4jChACB_au4lYuXgYMPLG-BQy7AiH8-esx-gcrCgCgPbH3JZfWQ00kSSAALarjEjs4E0AJSG9QAiqvBhAMGqAGAAAwQQAA4MAAALhBAACAQQAAmMEAABRCAADAQgAACEIAAFjCAACgQQAA-EEAAEzCAABAwgAAgEAAADRCAAAEwgAAyMEAAMLCAABAQQAA0MEAAIDBAAA8wgAAgMAAAEBBAAAQwQAAEEIAAKLCAADIQQAAeEIAAPhBAAAMwgAAQEAAAJjCAACowQAAmMIAAKDAAABAQgAAikIAABjCAABEQgAAAEEAAOBBAABwQgAAFMIAAKDAAACAPwAAoMEAAEDAAAAYQgAAXEIAAEDCAADgwQAA4EAAAIBAAAAUQgAAAMIAAIjCAADgwQAAoEEAACDBAAA4QgAA8MEAAIbCAACywgAAQMAAAKDCAAAMwgAAYMIAAPDBAABQwgAAfEIAADRCAACYwQAAuMEAAMDBAACawgAAgMIAAOjBAACmQgAADEIAAIjCAACEQgAAUMEAAHDBAACAwAAAAAAAAKBBAAAgQQAAOEIAABzCAACAQAAAYEIAAIbCAABwwgAA2MEAAJzCAACAwQAAUEEAAJJCAADIwQAAPMIAABhCAABgQQAAiMEAAILCAAAgQQAA0MEAAChCAACQwQAAHEIAAPhBAACSQgAAcMEAAFBCAABwQQAAmEEAAEDBAAAwwQAANMIAAPDBAACAwQAAUMEAAKBBAAAMwgAAUEEAAIA_AABAwAAABEIAAKLCAAAgQgAAQEAAAIBBAAAMwgAAAEIAAABAAADgQAAAsEEAALjBAADYwQAAaMIAAEBBAACwwQAABMIAAEDAAACYQQAAuEEAAMDAAACgQQAAUEEAAIBAAAAAAAAA2EEAAJpCAABQQQAAgMAAAKhBAAAUwgAARMIAANjBAACeQgAAEMIAAABCAACgwQAAFMIAAADBAAB0QgAAPEIAAKRCAADwQQAA2MEAALhBAABgQQAAwMAAAEDCAAAAwQAAAAAAAGzCAACIwQAAUEEAAJBCAACswgAAqMEAAADAAAAMQgAAoEIAAIA_AACkwgAA6EEAALDBAACAQAAAAMIAADDBAACoQQAAUMEAAJjBAABsQgAAcEEAAFRCAACowQAAkMEgADgTQAlIdVABKo8CEAAagAIAAOA8AACAuwAAbD4AACw-AADgPAAAoDwAAJi9AADOvgAA2L0AAKC8AACoPQAADD4AAFQ-AAAUPgAANL4AAFC9AABQPQAAmD0AAOA8AACGPgAAfz8AAIg9AADgvAAA4DwAAES-AACovQAA4DwAAIi9AAAQPQAAED0AAMg9AABAPAAA6L0AALi9AABsPgAA4DwAAEQ-AAAcvgAARL4AAFC9AABQPQAABL4AADA9AABAvAAAqD0AAMg9AAA0PgAA6L0AAIA7AACKvgAA-D0AAFA9AABMPgAAMD0AAIi9AACgvAAA-j4AANi9AABAPAAAmL0AAEC8AABMvgAAoLwAAOi9IAA4E0AJSHxQASqPAhABGoACAACAOwAAEL0AAFC9AABBvwAAJL4AALg9AADCPgAAqL0AAAy-AAB8PgAAcD0AANi9AACIPQAA6L0AAIA7AACAOwAAgDsAADk_AAC4vQAAlj4AAPg9AAC2vgAAcD0AAJi9AABAPAAA2D0AAEy-AAAwvQAAHD4AAAQ-AABAvAAAoLwAAFy-AACqvgAAoDwAABw-AABAPAAA2L0AALi9AABkvgAAZD4AAEQ-AAAkPgAAQLwAALg9AABEPgAAf78AACy-AACIvQAA-L0AAEQ-AAAkPgAAmj4AAEA8AACGvgAAmD0AAJi9AAAQvQAAgDsAADy-AABMPgAA6D0AAFC9AABEviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=EmJKuQBEdlc","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":984,"cheight":720,"cratio":1.36666,"dups":["6112811751310842772"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"849925261"},"12239458606191242435":{"videoId":"12239458606191242435","docid":"34-7-5-Z6988283AF49ABEE0","description":"see playlist for more: • Hyperbolic Functions, Calculus 2 sinh^-1(x), Arcsinh(x), inverse sinh(x), inverse hyperbolic sine...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1571374/3abf751d9d0a2700f2978b792320bd24/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pY6TnwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_aqxprTMAso","linkTemplate":"/video/preview/12239458606191242435?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"inverse sinh(x)","related_orig_text":"Sinh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_aqxprTMAso\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMDU5MDc0NjE3NzgwOTEyODE1NwoTNTI5NTIyNDAwMzQ5NTA2MTI1OAoUMTU0ODA0NjA5OTg0OTY4ODAxODYKFDE3NTIzMjY3MTY1MDk1ODI4NzYyChQxNjgwNTE3MzY3MzQwODg4OTIxNQoTMjA0NDY5ODEyMjk0NDI3NDc5MQoUMTUwNzc3MjI5NDAxNjQ2NTYzODYKEzUxNzA0MzUyNjI1MzYxNDM4MzMKEzUzNjc3ODE4NTEzOTI5NjMxNDUKFDE3MjY1MjQ1NTY5MzcwNTM3NTM5ChM2ODQyMTI2MDYxNDIwMTMyMTEyChMyNzY0ODU0ODUwNjk4NDI1NDk4ChM0MjU2NTYwMzI4NzMwMzE2NzM1ChM0NTQ5ODYyNjE1MzE0NjI5NzM2ChMxNTA4ODg1MzQ3MjQ0MTA2MDIzChQxODI4NzA5NjU0MDM2NDgwNzg1MwoTNjExMjgxMTc1MTMxMDg0Mjc3MgoUMTIyMzk0NTg2MDYxOTEyNDI0MzUKFDE2NTIyMjcxNDE4MjUyMzg1NDY2ChQxMDM2ODUyMzgzNDA3MzExMDcyNxoWChQxMjIzOTQ1ODYwNjE5MTI0MjQzNVoUMTIyMzk0NTg2MDYxOTEyNDI0MzVqiBcSATAYACJFGjEACipoaHJ3cGl6a2NucW5hZ3hiaGhVQ19TdllQMGswNVVLaUpfMm5kQjAySUESAgASKhDCDw8aDz8T5QSCBCQBgAQrKosBEAEaeIH1BAD4_AUA-ggN_PsE_wEBCP4I-P7-AObx-wAI_QEA7_wA9PkAAAD8BfX8AAAAAAQD-voE_QEABgoE8QQAAAAH__75_gAAAPcP8AH_AQAA7v70-QIAAAACCAH8_wAAAO0NCP3_AP8A-_IH-wAAAAD17Pz4AAAAACAALSvk3js4E0AJSE5QAiqEAhAAGvABfwX7Asjk7P8gHuwADv7aAYUAAv83G-QAsADlAMYEEAD5CxMA5ez1APf17wDlDgwA6u7O__4R8gD94vkAGP0TAPfq7gBR6ucAHO8CAf4E6_-8Ch7__f4BABXc2AIpIO4BEewj_QwP-P4U9PIC5_ggAiAPMgAq4v78_hIJAsvyAv796eL-3usK_P8AEgDO_xsBEf_uCBMQ6gH3P_0AKdH9AODaBPoDFucEITPyABAC7f7e4QQBBffw_Az5Gf0MGvX66QMTAOET9wASKfYGAfsFAg0DDg_k7v__5gH2_wALBf3gB_H9-RT6APwc9f8K7_sGIAAt4OEpOzgTQAlIYVACKs8HEAAawAfYRfm-KKw_u4Kc5jwlm0Y9hHZDt0C2Fr3vLXY8GUeLPebqR7wP0vM9kO4svaAE0Tyf5Ja-G9hqPUoNTb3FVYU-VDBvvZt_Krzc9Be-ftQ1PapiDTwdkc-95AqJPY3CAbzwhvQ9p7PTPHebHL2ydZo9pcvRvC3oAbwJzKm9VMMDvWjDK7z5Rrm9U5ecvWWa37xZrWe9So6FvNQ-wrxT0K08FuwQvRJv-Lxu6z09gMCcu0Sqg7wjfpq9TXBlPW8wL7wEkiA-BpFaOiV0vLykRMG8lZJPPVHS6Lz6NhM9XtoQPf_GIrw9KAi947sePWfLILwGlg09IMo8vCRkezxfk7q9amc9vLCl7Lzshu09jPeDPXJbkTuw4tS9dTbJPTyOVTx8gM49fkw1vH_6j7xcSaE82GvVPOLyzjzo7oS8xyVzPemuLTqDbNm8cFMtPazYMjinSHS9c7lBvECjdLw_fRo9vMbTPLhAgjvAgmo9uxNaOssYm7uCMME8P_X6O9KEs7sxCdc8aCeePFDxibzNpHc9h2SyvW0Iabzczbq7IPRnvUmyVLt7DZY9ZL5tPcurxroSIi895P4-vTp5kbvUwos9y_UGvklKm7rmwnI9gD9hPTXtg7ue_r08GQzkvAigAbzPTMC9VfHrPEl18LogHxk92GGcPSSsFbvIgIe8nfKovDyY-zt5E6I9JwEDu5DD3LuHy4A9aY4sPAHXYLrmHCE9WV4DvR4GKTsSeDa98lsEvk4BbLnp5xc8EXMEvQrahTuPN9k9nWltuuEGCblpRB-97bydPQIHoLmURsG9Bs-OvE0wpbj2-FM9-oMcvQE2Qrn8s1W9dz2yvYUbMLhCQ9o8RtmRPGk3-jmW4jQ984rMvHeDjrmlgBc89UEeO9JqY7na82s9BPaCPbg8r7iv0ri88Go5PIle8LhZmC-9bh8NvS84XrlkkSY8SQ1xO9tUqDgfNBY98a_vPJoDiTi-58Y9AB2mvWpDhjlENNq9tR2OPXbAOjijC0W8dk-TPfYtRziTP3M9Q7i4OjQQB7i6r1k9KpGEvCrU-Df8oNO8K_uuPNbdlDigUM-9Fe-GPcLSAjhu1FQ8tESdvDPnADjvLXY8L3KqPMV_3Tg9Tke9MX9gPAnasTgiC6I9vq61vdrsArnIpHW8cu8rvKCB8bcH4gY94ZZPvZmkzjWmf-m9jGS0PTwo6Tjk1Z68eonxvWVVMLjK9HA9IuErPvHLijjiGK48b6WiPUwnUrgYqJi709YtPaNMTrhUH2i9CBMwPT0cjDggADgTQAlIbVABKnMQABpgOgcAHdUm0_MqJwj35vz3-Rb2ERicMf_uBP8BK9LeHxjstynx_wkV69-iAAAAGtfxCBgAEH_o6gge4zD2orTKPC1v5RUm08oL-Nj5M_0D2BIK5ytgALYhmTMq7_tMEs8KIAAtWycdOzgTQAlIb1ACKq8GEAwaoAYAAPhBAAAMwgAAjkIAAADAAAA0wgAAQEAAAFxCAAAAwQAAeMIAANBBAABgwQAA6EEAAFDBAACYQQAAGEIAACzCAADwQQAARMIAAERCAAAAwgAAgMEAAMBAAABgwgAAOEIAAMBBAABgQQAABMIAABBBAABQQgAAcEIAACDBAACAwQAA4MAAAKBBAAC6wgAA0EEAAIhBAACCQgAAAEAAAARCAADowQAAQMAAABjCAACQwQAA4EEAAAAAAAAUQgAAIMEAAJxCAADAQQAAmMEAAHBBAAAAwQAAHEIAANDBAACwwQAAmsIAADxCAACAQQAAmEEAAEDAAACAvwAAnsIAADDBAADIwQAAFMIAABTCAADgwgAA8MEAAHDBAABcQgAAKEIAABzCAABIQgAAqEEAAJDCAADUwgAA8MEAALBBAACgQQAAhMIAAPhBAAAowgAAoMAAAHhCAADQQgAAaMIAAODBAAAkQgAAoMAAACBBAAAIQgAAPEIAAIjBAADYQQAADMIAANBBAAAEwgAAmEIAAKBCAADwwQAAQEIAAOBBAADYwQAAZMIAAOBBAACoQQAAUEIAAODBAACSQgAArkIAADxCAACIwQAAQEEAAExCAAC2QgAAYEEAAKBAAACIQQAAhMIAAEDBAACAwAAAmEEAAI7CAAAAAAAAuMEAAPjBAADIwQAA6MEAABBBAACowQAAJMIAAGBBAACcQgAAkEEAAHDBAADQQQAAAEAAAIDBAACkwgAAXEIAAABAAACYQQAAqMEAACBCAAA8QgAAUMEAAEDAAAAAwQAAYMEAALhBAAAAQgAABEIAAPjBAABwwQAAKMIAAEzCAABwQQAAiEEAAIC_AABswgAAEEIAABDBAADwQQAA-EEAALBBAAAQwQAAAEAAABBCAACCwgAAeMIAAABBAAAIQgAAAEEAAABCAABwQQAAREIAABjCAAAIQgAArEIAAEzCAAC6wgAAAMEAAIjBAABoQgAAPMIAAJjBAABQQgAAqMEAAMBAAACQwQAAsEEAANDBAADAwAAAIEEAABBBAADIwQAAFEIAAIA_AAA8wiAAOBNACUh1UAEqjwIQABqAAgAAML0AAEC8AABMPgAAgj4AAMi9AAAEPgAA4LwAAO6-AAAwPQAAgDsAALI-AABQPQAADD4AAAw-AACovQAAHD4AAEQ-AABQPQAA-D0AAFQ-AAB_PwAAgLsAAEy-AACoPQAAEL0AAIg9AABwvQAALL4AADw-AABEPgAA6D0AAIi9AACCvgAAML0AAGQ-AAC4vQAAmL0AAJi9AACavgAAbL4AADw-AABQvQAALD4AAIA7AACAOwAAND4AAIo-AABAvAAA2D0AANi9AAAUPgAA6D0AAEw-AAD4vQAAmL0AAKg9AAApPwAATL4AAJI-AADgPAAAmD0AALi9AACAuwAAqr4gADgTQAlIfFABKo8CEAEagAIAAJ4-AACgvAAAyD0AABW_AADqvgAAEL0AAN4-AABQPQAAgDsAAKY-AACYPQAAVL4AAO4-AAC4vQAA2L0AADC9AADIvQAANT8AAGy-AAAUPgAAuD0AAEy-AADgvAAAgLsAADC9AAAEvgAAUL0AAMg9AABUPgAAQLwAABA9AABAPAAApr4AANi9AACgPAAA-D0AAK4-AACOPgAAbL4AAGS-AACqPgAAij4AABC9AAC4vQAADD4AAFA9AAB_vwAAmj4AABA9AACuvgAAED0AAIY-AADOPgAAyD0AABS-AAA8PgAAuL0AAHA9AAA0vgAANL4AACw-AACgPAAAiL0AAIq-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=_aqxprTMAso","parent-reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12239458606191242435"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1527820857"}},"dups":{"10590746177809128157":{"videoId":"10590746177809128157","title":"\u0007[sinh\u0007](x), cosh(x) and their derivatives + derivative of \u0007[sinh\u0007](3x) and cosh differential equati...","cleanTitle":"sinh(x), cosh(x) and their derivatives + derivative of sinh(3x) and cosh differential equation.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nhZSQsoPdnQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nhZSQsoPdnQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZzMxLU40S21nREJhYTdZcU43VXhVZw==","name":"Zak's Lab","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Zak%27s+Lab","origUrl":"http://www.youtube.com/@ZaksLab","a11yText":"Zak's Lab. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":208,"text":"3:28","a11yText":"Süre 3 dakika 28 saniye","shortText":"3 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"22 oca 2021","modifyTime":1611273600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nhZSQsoPdnQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nhZSQsoPdnQ","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":208},"parentClipId":"10590746177809128157","href":"/preview/10590746177809128157?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/10590746177809128157?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5295224003495061258":{"videoId":"5295224003495061258","title":"Hyperbolic Functions: Graphing \u0007[sinh\u0007](x)","cleanTitle":"Hyperbolic Functions: Graphing sinh(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=I0Nggu65DfA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/I0Nggu65DfA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/@mes","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1017,"text":"16:57","a11yText":"Süre 16 dakika 57 saniye","shortText":"16 dk."},"views":{"text":"12,4bin","a11yText":"12,4 bin izleme"},"date":"26 ağu 2017","modifyTime":1503705600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/I0Nggu65DfA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=I0Nggu65DfA","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":1017},"parentClipId":"5295224003495061258","href":"/preview/5295224003495061258?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/5295224003495061258?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15480460998496880186":{"videoId":"15480460998496880186","title":"Introduction to Hyperbolic Functions: \u0007[sinh\u0007](x), cosh(x), and tanh(x) | Hyperbolic Functions","cleanTitle":"Introduction to Hyperbolic Functions: sinh(x), cosh(x), and tanh(x) | Hyperbolic Functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=r76jFsDXkHw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/r76jFsDXkHw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTHgxWnpsa3RUdDlkM2RBWkg5MUs4UQ==","name":"Inexorable Videos","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Inexorable+Videos","origUrl":"http://www.youtube.com/@InexorableVideos","a11yText":"Inexorable Videos. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":451,"text":"7:31","a11yText":"Süre 7 dakika 31 saniye","shortText":"7 dk."},"views":{"text":"7,7bin","a11yText":"7,7 bin izleme"},"date":"1 mar 2023","modifyTime":1677628800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/r76jFsDXkHw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=r76jFsDXkHw","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":451},"parentClipId":"15480460998496880186","href":"/preview/15480460998496880186?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/15480460998496880186?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17523267165095828762":{"videoId":"17523267165095828762","title":"Hyperbolic Trigonometric Identity: \u0007[sinh\u0007](x-y)","cleanTitle":"Hyperbolic Trigonometric Identity: sinh(x-y)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=C1Vx3DaM0ig","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/C1Vx3DaM0ig?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/@mes","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":250,"text":"4:10","a11yText":"Süre 4 dakika 10 saniye","shortText":"4 dk."},"views":{"text":"3,1bin","a11yText":"3,1 bin izleme"},"date":"7 ağu 2017","modifyTime":1502064000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/C1Vx3DaM0ig?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=C1Vx3DaM0ig","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":250},"parentClipId":"17523267165095828762","href":"/preview/17523267165095828762?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/17523267165095828762?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16805173673408889215":{"videoId":"16805173673408889215","title":"Hyperbolic Trigonometric Identity: cosh(2x) & \u0007[sinh\u0007](2x)","cleanTitle":"Hyperbolic Trigonometric Identity: cosh(2x) & sinh(2x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8d-CLGWFDH8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8d-CLGWFDH8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/@mes","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":264,"text":"4:24","a11yText":"Süre 4 dakika 24 saniye","shortText":"4 dk."},"views":{"text":"15,6bin","a11yText":"15,6 bin izleme"},"date":"11 ağu 2017","modifyTime":1502409600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8d-CLGWFDH8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8d-CLGWFDH8","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":264},"parentClipId":"16805173673408889215","href":"/preview/16805173673408889215?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/16805173673408889215?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2044698122944274791":{"videoId":"2044698122944274791","title":"Inverse Hyperbolic Trigonometry as Logarithms: \u0007[sinh\u0007]^-1(x)","cleanTitle":"Inverse Hyperbolic Trigonometry as Logarithms: sinh^-1(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AQT2uHlyjEs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AQT2uHlyjEs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/@mes","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":577,"text":"9:37","a11yText":"Süre 9 dakika 37 saniye","shortText":"9 dk."},"views":{"text":"5,9bin","a11yText":"5,9 bin izleme"},"date":"18 ara 2013","modifyTime":1387324800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AQT2uHlyjEs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AQT2uHlyjEs","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":577},"parentClipId":"2044698122944274791","href":"/preview/2044698122944274791?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/2044698122944274791?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15077722940164656386":{"videoId":"15077722940164656386","title":"Hyperbolic Trigonometric Identity: \u0007[sinh\u0007](x/2) + sign function sgn(x)","cleanTitle":"Hyperbolic Trigonometric Identity: sinh(x/2) + sign function sgn(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9GLQlJQ3lJk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9GLQlJQ3lJk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/@mes","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":523,"text":"8:43","a11yText":"Süre 8 dakika 43 saniye","shortText":"8 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"14 ağu 2017","modifyTime":1502668800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9GLQlJQ3lJk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9GLQlJQ3lJk","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":523},"parentClipId":"15077722940164656386","href":"/preview/15077722940164656386?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/15077722940164656386?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5170435262536143833":{"videoId":"5170435262536143833","title":"Calculus I - Derivative of Hyperbolic Sine Function \u0007[sinh\u0007](x) - Proof","cleanTitle":"Calculus I - Derivative of Hyperbolic Sine Function sinh(x) - Proof","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7eo6Jw6Bz8Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7eo6Jw6Bz8Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYzhRQkJ6LUhseVBSbU84cEdJVnBtUQ==","name":"The Infinite Looper","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Infinite+Looper","origUrl":"http://www.youtube.com/@TheInfiniteLooper","a11yText":"The Infinite Looper. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":210,"text":"3:30","a11yText":"Süre 3 dakika 30 saniye","shortText":"3 dk."},"views":{"text":"27,2bin","a11yText":"27,2 bin izleme"},"date":"9 eyl 2012","modifyTime":1347148800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7eo6Jw6Bz8Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7eo6Jw6Bz8Q","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":210},"parentClipId":"5170435262536143833","href":"/preview/5170435262536143833?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/5170435262536143833?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5367781851392963145":{"videoId":"5367781851392963145","title":"Calculus 2: Hyperbolic Functions (13 of 57) Determine \u0007[sinh\u0007](2x)=? and cosh(2x)=?","cleanTitle":"Calculus 2: Hyperbolic Functions (13 of 57) Determine sinh(2x)=? and cosh(2x)=?","host":{"title":"YouTube","href":"http://www.youtube.com/v/DU07Vv7tAQA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DU07Vv7tAQA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUd4WWF3aEVwNFF5RmNYMFI2MFlkUQ==","name":"Michel van Biezen","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Michel+van+Biezen","origUrl":"http://www.youtube.com/@MichelvanBiezen","a11yText":"Michel van Biezen. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":326,"text":"5:26","a11yText":"Süre 5 dakika 26 saniye","shortText":"5 dk."},"views":{"text":"46bin","a11yText":"46 bin izleme"},"date":"17 eki 2017","modifyTime":1508223600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DU07Vv7tAQA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DU07Vv7tAQA","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":326},"parentClipId":"5367781851392963145","href":"/preview/5367781851392963145?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/5367781851392963145?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17265245569370537539":{"videoId":"17265245569370537539","title":"Derivatives of Hyperbolic Trigonometry: \u0007[sinh\u0007](x)","cleanTitle":"Derivatives of Hyperbolic Trigonometry: sinh(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9QpIDqYg52c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9QpIDqYg52c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/@mes","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":110,"text":"1:50","a11yText":"Süre 1 dakika 50 saniye","shortText":"1 dk."},"date":"10 ara 2013","modifyTime":1386633600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9QpIDqYg52c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9QpIDqYg52c","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":110},"parentClipId":"17265245569370537539","href":"/preview/17265245569370537539?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/17265245569370537539?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6842126061420132112":{"videoId":"6842126061420132112","title":"How To Draw \u0007[sinh\u0007] x (sine hyperbolic x) Graph?","cleanTitle":"How To Draw sinh x (sine hyperbolic x) Graph?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WGI_SN9Qcvc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WGI_SN9Qcvc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbzV0V0RUWmlPOFRSODdCV1hOVDMtQQ==","name":"PaperMuni - Physics Lectures","isVerified":false,"subscribersCount":0,"url":"/video/search?text=PaperMuni+-+Physics+Lectures","origUrl":"http://www.youtube.com/@PaperMuni","a11yText":"PaperMuni - Physics Lectures. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":261,"text":"4:21","a11yText":"Süre 4 dakika 21 saniye","shortText":"4 dk."},"views":{"text":"3,4bin","a11yText":"3,4 bin izleme"},"date":"22 haz 2020","modifyTime":1592784000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WGI_SN9Qcvc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WGI_SN9Qcvc","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":261},"parentClipId":"6842126061420132112","href":"/preview/6842126061420132112?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/6842126061420132112?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2764854850698425498":{"videoId":"2764854850698425498","title":"Hyperbolic Trigonometric Identity: \u0007[sinh\u0007](x+y)","cleanTitle":"Hyperbolic Trigonometric Identity: sinh(x+y)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CtBzwqd4Rqc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CtBzwqd4Rqc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/@mes","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":633,"text":"10:33","a11yText":"Süre 10 dakika 33 saniye","shortText":"10 dk."},"views":{"text":"12,2bin","a11yText":"12,2 bin izleme"},"date":"6 ağu 2017","modifyTime":1501977600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CtBzwqd4Rqc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CtBzwqd4Rqc","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":633},"parentClipId":"2764854850698425498","href":"/preview/2764854850698425498?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/2764854850698425498?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4256560328730316735":{"videoId":"4256560328730316735","title":"Calculus 2: Hyperbolic Functions (7 of 57) Graphical Representation of \u0007[sinh\u0007](x)","cleanTitle":"Calculus 2: Hyperbolic Functions (7 of 57) Graphical Representation of sinh(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=i83DwPBAeuc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/i83DwPBAeuc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUd4WWF3aEVwNFF5RmNYMFI2MFlkUQ==","name":"Michel van Biezen","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Michel+van+Biezen","origUrl":"http://www.youtube.com/@MichelvanBiezen","a11yText":"Michel van Biezen. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":85,"text":"1:25","a11yText":"Süre 1 dakika 25 saniye","shortText":"1 dk."},"views":{"text":"6,7bin","a11yText":"6,7 bin izleme"},"date":"11 eki 2017","modifyTime":1507680000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/i83DwPBAeuc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=i83DwPBAeuc","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":85},"parentClipId":"4256560328730316735","href":"/preview/4256560328730316735?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/4256560328730316735?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4549862615314629736":{"videoId":"4549862615314629736","title":"Q14, derivative of \u0007[sinh\u0007]^-1(x), two ways","cleanTitle":"Q14, derivative of sinh^-1(x), two ways","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7HothuBaYYM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7HothuBaYYM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":503,"text":"8:23","a11yText":"Süre 8 dakika 23 saniye","shortText":"8 dk."},"views":{"text":"39,7bin","a11yText":"39,7 bin izleme"},"date":"8 eyl 2018","modifyTime":1536364800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7HothuBaYYM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7HothuBaYYM","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":503},"parentClipId":"4549862615314629736","href":"/preview/4549862615314629736?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/4549862615314629736?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1508885347244106023":{"videoId":"1508885347244106023","title":"derivative of inverse \u0007[sinh\u0007](x)","cleanTitle":"derivative of inverse sinh(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=lRI7-vNfRtY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/lRI7-vNfRtY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":216,"text":"3:36","a11yText":"Süre 3 dakika 36 saniye","shortText":"3 dk."},"views":{"text":"41,9bin","a11yText":"41,9 bin izleme"},"date":"11 şub 2017","modifyTime":1486771200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/lRI7-vNfRtY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=lRI7-vNfRtY","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":216},"parentClipId":"1508885347244106023","href":"/preview/1508885347244106023?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/1508885347244106023?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18287096540364807853":{"videoId":"18287096540364807853","title":"Hyperbolic Trigonometry Identity Proof: \u0007[sinh\u0007](-x) = -\u0007[sinh\u0007](x) & cosh(-x) = cosh(x)","cleanTitle":"Hyperbolic Trigonometry Identity Proof: sinh(-x) = -sinh(x) & cosh(-x) = cosh(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-Wqq4Wzi7O8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-Wqq4Wzi7O8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/user/MathEasySolutions","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":173,"text":"2:53","a11yText":"Süre 2 dakika 53 saniye","shortText":"2 dk."},"views":{"text":"3,1bin","a11yText":"3,1 bin izleme"},"date":"3 ara 2013","modifyTime":1386028800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-Wqq4Wzi7O8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-Wqq4Wzi7O8","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":173},"parentClipId":"18287096540364807853","href":"/preview/18287096540364807853?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/18287096540364807853?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6112811751310842772":{"videoId":"6112811751310842772","title":"Hyperbolic Functions - tanh(x), \u0007[sinh\u0007](x), cosh(x) - Introduction","cleanTitle":"Hyperbolic Functions - tanh(x), sinh(x), cosh(x) - Introduction","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=EmJKuQBEdlc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/EmJKuQBEdlc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/@mes","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":691,"text":"11:31","a11yText":"Süre 11 dakika 31 saniye","shortText":"11 dk."},"views":{"text":"42bin","a11yText":"42 bin izleme"},"date":"6 haz 2012","modifyTime":1338940800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/EmJKuQBEdlc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=EmJKuQBEdlc","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":691},"parentClipId":"6112811751310842772","href":"/preview/6112811751310842772?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/6112811751310842772?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12239458606191242435":{"videoId":"12239458606191242435","title":"inverse \u0007[sinh\u0007](x)","cleanTitle":"inverse sinh(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_aqxprTMAso","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_aqxprTMAso?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":613,"text":"10:13","a11yText":"Süre 10 dakika 13 saniye","shortText":"10 dk."},"views":{"text":"140,3bin","a11yText":"140,3 bin izleme"},"date":"11 şub 2017","modifyTime":1486771200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_aqxprTMAso?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_aqxprTMAso","reqid":"1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL","duration":613},"parentClipId":"12239458606191242435","href":"/preview/12239458606191242435?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","rawHref":"/video/preview/12239458606191242435?parent-reqid=1769359420027279-17425363554694938344-balancer-l7leveler-kubr-yp-klg-76-BAL&text=Sinh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"7425363554694938344776","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Sinh","queryUriEscaped":"Sinh","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}