{"pages":{"search":{"query":"Sinx","originalQuery":"Sinx","serpid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","parentReqid":"","serpItems":[{"id":"9702782273856209522-0-0","type":"videoSnippet","props":{"videoId":"9702782273856209522"},"curPage":0},{"id":"10521502927327234044-0-1","type":"videoSnippet","props":{"videoId":"10521502927327234044"},"curPage":0},{"id":"5162845663731605537-0-2","type":"videoSnippet","props":{"videoId":"5162845663731605537"},"curPage":0},{"id":"16434848018229734070-0-3","type":"videoSnippet","props":{"videoId":"16434848018229734070"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFNpbngK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","ui":"desktop","yuid":"7311213311766785873"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"3558675010746594369-0-5","type":"videoSnippet","props":{"videoId":"3558675010746594369"},"curPage":0},{"id":"3510347273805204951-0-6","type":"videoSnippet","props":{"videoId":"3510347273805204951"},"curPage":0},{"id":"7115658726965199572-0-7","type":"videoSnippet","props":{"videoId":"7115658726965199572"},"curPage":0},{"id":"16832711258836347671-0-8","type":"videoSnippet","props":{"videoId":"16832711258836347671"},"curPage":0},{"id":"7274032980193768380-0-9","type":"videoSnippet","props":{"videoId":"7274032980193768380"},"curPage":0},{"id":"16695119574294562940-0-10","type":"videoSnippet","props":{"videoId":"16695119574294562940"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFNpbngK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","ui":"desktop","yuid":"7311213311766785873"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"1078198396457684037-0-12","type":"videoSnippet","props":{"videoId":"1078198396457684037"},"curPage":0},{"id":"8962178984720351069-0-13","type":"videoSnippet","props":{"videoId":"8962178984720351069"},"curPage":0},{"id":"6034884108748369310-0-14","type":"videoSnippet","props":{"videoId":"6034884108748369310"},"curPage":0},{"id":"16342854252893796219-0-15","type":"videoSnippet","props":{"videoId":"16342854252893796219"},"curPage":0},{"id":"18296953568037735358-0-16","type":"videoSnippet","props":{"videoId":"18296953568037735358"},"curPage":0},{"id":"16300095205356391244-0-17","type":"videoSnippet","props":{"videoId":"16300095205356391244"},"curPage":0},{"id":"13446867010820598488-0-18","type":"videoSnippet","props":{"videoId":"13446867010820598488"},"curPage":0},{"id":"3835607715371501451-0-19","type":"videoSnippet","props":{"videoId":"3835607715371501451"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFNpbngK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","ui":"desktop","yuid":"7311213311766785873"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DSinx"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"3581686106569554737111","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455698,0,27;1336777,0,30;284409,0,30;151171,0,14;1459210,0,81;1281084,0,51;287509,0,91;1447467,0,32;788004,0,13"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DSinx","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Sinx","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Sinx","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Sinx: Yandex'te 1 bin video bulundu","description":"Результаты поиска по запросу \"Sinx\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Sinx — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y957a7de8d568849f405bba84ad12332d","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455698,1336777,284409,151171,1459210,1281084,287509,1447467,788004","queryText":"Sinx","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7311213311766785873","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1460915,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1766785950","tz":"America/Louisville","to_iso":"2025-12-26T16:52:30-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455698,1336777,284409,151171,1459210,1281084,287509,1447467,788004","queryText":"Sinx","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7311213311766785873","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"3581686106569554737111","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":161,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7311213311766785873","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1743.0__eecddcd035f1600a552b89c33e76f4a866ae10da","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"9702782273856209522":{"videoId":"9702782273856209522","docid":"34-10-14-Z842202865E354961","description":"x approaches 0 | ... Get the textbook for this course! https://amzn.to/3PieD1M ★Donate★ ◆ Support Wrath of Math on Patreon: / wrathofmathlessons ◆ Donate on PayPal...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3302546/fc67e80e7bdf0e3eb4df8864f4b25ec0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/InPARQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DT36uC2pxwR4","linkTemplate":"/video/preview/9702782273856209522?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof: Limit of sinx/x as x approaches 0 with Squeeze Theorem | Calculus 1","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=T36uC2pxwR4\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFQoTOTcwMjc4MjI3Mzg1NjIwOTUyMloTOTcwMjc4MjI3Mzg1NjIwOTUyMmqIFxIBMBgAIkUaMQAKKmhoY2NheHpoYnpzbWpsaWJoaFVDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdxICABIqEMIPDxoPPxPsBIIEJAGABCsqiwEQARp4ge72BwgC_gAG8ggDBAj9Agb1APn4_v0A8xL6AgcC_wD2BfX0-AAAAP0a_AUDAAAA_gnuA_b-AQAQCw0A9AAAAA0BDAT1AAAAChH6D_4BAAD_BOoEA_8AAP_77AP_AAAACwgD-f7_AAD2CAEAAAAAAAzw-fQAAAAAIAAtnf3MOzgTQAlITlACKoQCEAAa8AF_Bw0Attvl_7wW3gABC7gBnw4g__w7ywDaEOMA2iT4AQ0z-ADgLwb_OwUBAa4yIAHVDez-1c39ATWwDgLb8PAA-LsBAArf7gJOAxr_FRTUAbMe___S4Pf_6trvADBC8v7vyhj9Fve3Adz13wYxABf99eIoBuH6CP3a4AAAsPsbAdIm7PvwGRMEy8Un_wQNOv4N-xv7Iyjt_PjWAwn_2RsFHRwN_wYkCALiIN0G3wjiBdno7Aby5t8KMvMZ-Pzo2vzD4BgE98sn_xbc-vXyFhj9AxkECCLkBQrv4gT96OIA_Cr15vjs4d78_QDlCADa-vggAC1c0QA7OBNACUhhUAIqzwcQABrAB8xdw75k0vi6S_D-O82spTworJ69-SWsvD_pX73wZJw9Eo9avaYO8j2V9DC8ZMlnuu-rMr6LTja9eFZ8vQovYT4XcbC8QdPGORl0or0Moh89ikG7ux2Rz73kCok9jcIBvHbaYDv20Sk9ciiNvIhlcz2lapu9cAKZOm-xDL1WWxu9UjjMvKz6AT2om6W9ZUH6O4XapbzZOAe94FawvI-yhL2PkYc8urWWvLxPjz0r1oU9O59LvPr_gry691C9cXexu4_97D20FWU9_GRgus_ZAr0JKwC7BrdaPPID_DtBTQi9s4mCvFjzLbx1ETU9euFOvFuDUr2zUz0728-YuzqWcr0sp3M9SJbCvF6dAz270ec9uBAYPMhFJb5p0YE9nQjHvGu58zwwDUg94zUOPM0e6D1FApe8aMnIPNC5Gz6PwS-8yoWvvG62I735WHA9CRLAPDTO8Lz_A-w9IKr8u0FZYj3tGw49F5Vcu7t8a72Dw2Y8IHucO_C3g7uD5Lg9CJk_PH1e0b1tNjY9iCcDPI_gFj5beA6-A-cOvHvJlb0YHO-822R5vBmocT3nCoU9JclzPHQjDD5cU0U7PPxzuuJPnrwObZu8in1dPAO9Jj00v_W8lFC4O5j5Dr7o3Yg9GrxxO5R3JL0vhbc9J6HXuzHpVL1ANfk8AYK9Ozsezrzh4309JkX5O3wVFL2tqpK97fWsu8ITuj1qm-q6mQCyuhiyCj5lnsO7GNGCOGbJcj3ogRQ90IedOzS1ET2Fx4i8ch-xuuQpMD2lVg698dgNO4LkPb0Fsqo7epIuO6i3ULx0tAo-_MVYN5to4TyPhhi9V650Ov8jQ75mZ9G9PPKQOaGXi72XPHm9lF0_OOWzvDw7WWU9MR-Uuh9iqL0-kH47ZZ_KuShEAL5rK7Y8tMC-uISGGT2RIay8YY_AuCrVdLxW7b88sx9xNw9SJrxg7s26QlgnOA_Rqrtvngo-oKIZuZ50p73i0SE9REhquVndqj2RxrI8I1RfOLvPVj17JZo91swTOLCv9T0TiqM8UFMMNeoMRz1Y7wY9zXCJN7DiVD2yV0y75dGFOGVTzr3C6Kg8_jLoN9BhPrw-VlW9LXhGuMhfOj7clcI8za9LOJ5XMboPY1I9aC62OHPgMD1DkMO9J9Tjt5dWE74MIKy9OY3xNTfMtr37srA71nIGNu-Y8DyLHx27lhdmNgTZfDxPXTm9eWMquEbkkD2BxjE95ZCPOB44gr0z8549nOfyuEoVubv2cDO95GAKuF5qXz1i1gs9R8OeNyAAOBNACUhtUAEqcxAAGmAB_AAb9hDe4Qks-ufb-he89-baz9wL_wfgAOET__jtFeHHIwD_AMX7_LAAAAAm4-k8DgDUXvLe-xMNCCXZvMQmHH_z6c6r_zD07dPxABL9E-rbLe0A0B7FNRPp3ywLHEcgAC3JJjc7OBNACUhvUAIqrwYQDBqgBgAAZEIAAITCAACYQgAAAMIAAAjCAABIQgAAYEIAAAjCAAB4wgAANMIAANhBAAAQwgAAgMAAACBBAACgQQAAAMEAAMDBAABUwgAAGEIAADzCAADYQQAAgD8AADRCAAAkQgAAPMIAADRCAACAwAAAkMEAAAxCAAAEwgAATMIAAADAAABYwgAAAMAAAAjCAACAwAAAmEEAAExCAABAQAAAIEIAAIBAAAAYQgAAFEIAAIC_AADAwAAA2MEAACBCAABgwQAAgkIAAEzCAAAYwgAAIMIAAIBAAAAwwQAAIEEAAJjBAABgwQAAyMEAAABCAACAwAAAHMIAAJDBAAAYwgAAgMAAAHBBAAAowgAAIMEAAKLCAAAIwgAAlMIAAARCAACEQgAAsMIAAGBBAACgQAAALMIAAILCAADwQQAAgMAAAGDBAABIwgAA2EEAAPDBAAAEQgAAiEEAANBBAAA8QgAAgL8AANhBAAAUwgAAgMIAAKpCAAC4QQAAVMIAADBBAAAUwgAAUEEAAPBBAACQQQAAoEEAAKjCAABQQgAAPEIAANDBAABswgAAQEEAAIDBAADiQgAAIEEAAIhCAACgQgAAUEEAAODBAADIQQAAoMEAACDBAAAAQAAAAMAAAABBAABkwgAAAMAAADjCAABAwgAAFMIAAJBBAABgwgAA2MIAAIhCAACUwgAA0EEAAJDBAAAsQgAAQMEAAKxCAABwwQAAmMEAADBCAAAkQgAAuMEAACDCAABAQAAAAEAAAIhBAABQQQAAIEIAAPBBAADQQQAACEIAAFRCAAAAQAAA0EEAAMDAAAAQQgAAQMIAADBBAABwQgAALMIAAMDAAAC4wQAAIEEAALDBAADwQQAA-MEAAJTCAAAwwQAAhEIAAFBCAADoQQAAMEEAACzCAABwQQAA4MAAAEBBAACYwgAAyMEAAIjBAAD4wQAAoMEAANDBAAD-QgAAksIAAOjBAADgwQAAyEEAABRCAABAQAAAAEEAAKBBAAAgwQAAqEEAAJDBAAAswgAAjkIAAABAAAAQwgAAREIAAKjBAABwwQAAgL8AABzCIAA4E0AJSHVQASqPAhAAGoACAAAwPQAA4DwAAOI-AACgPAAAiL0AAIY-AADgPAAAur4AAHA9AACgvAAAmD0AAFC9AAA0PgAAXD4AAFy-AAAwPQAAjj4AAKi9AACgPAAAPD4AAH8_AAD4vQAAML0AAKg9AABEvgAAQDwAAGw-AABwvQAAcL0AAAQ-AAAQPQAAZL4AANi9AABsPgAALD4AAGy-AAAQvQAAfL4AAMq-AAA0vgAABL4AAOA8AACSPgAAQLwAAJg9AABwvQAAdD4AAKA8AAAQPQAAJL4AAKA8AAC4PQAAHD4AALg9AABMvgAAUL0AAAk_AACIvQAAgDsAAIg9AAAwvQAAHL4AAHA9AACOviAAOBNACUh8UAEqjwIQARqAAgAAyL0AAIi9AACgvAAAJb8AAAy-AACuPgAABT8AAII-AACIvQAATD4AAAQ-AADgvAAA6D0AANg9AABwvQAAcD0AAKC8AAALPwAATL4AAGw-AABMPgAA4LwAAFA9AABAvAAAiD0AAOA8AAA0vgAA6D0AAFQ-AACovQAAoLwAAOA8AAD2vgAAsr4AAIA7AADgvAAAuj4AAFS-AABEvgAAhr4AAEC8AAAQPQAA2D0AAFA9AAC-PgAA4LwAAH-_AACqPgAAnj4AACQ-AACYvQAAlj4AACS-AADCPgAAiL0AAFQ-AADYvQAAdL4AAGw-AABwPQAAVD4AAJK-AACCPgAAyL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=T36uC2pxwR4","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["9702782273856209522"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3907169491"},"10521502927327234044":{"videoId":"10521502927327234044","docid":"34-6-0-ZF348A94CF84CF2FC","description":"Today, we use complex analysis to evaluate the improper integral of sin(x)/x, also known as the Dirichlet Integral. Laplace Transform Method: • Laplace Transforms: Integral of sin(x)/x f...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/222890/b1cbb862d4b9a10a1103eec002313438/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ctM90gAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFf4LRlflib0","linkTemplate":"/video/preview/10521502927327234044?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Complex Analysis: Integral of sin(x)/x using Contour Integration","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Ff4LRlflib0\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFgoUMTA1MjE1MDI5MjczMjcyMzQwNDRaFDEwNTIxNTAyOTI3MzI3MjM0MDQ0apMXEgEwGAAiRRoxAAoqaGhsaGVraGl3b2dwbGNkYmhoVUNLemFlb2t0YmY0bXEtcHpmX0F3UXZBEgIAEioQwg8PGg8_E6YIggQkAYAEKyqLARABGniB9wwH_P4DAPYBAfn7AQABDxMD-vUCAgD8E_oC-gT-AO4ABf8NAAAA_wYB_wUAAAD_8v_4-P0BABADAvUEAAAAHPACAfoAAAACC_cG_gEAAO7-APYCAAAAEPv4BQAAAAD__wn5AgAAAP_7B_4BAAAAC_UFDQAAAAAgAC3EQtg7OBNACUhOUAIqhAIQABrwAX_0Bf7K0sEApAbTAPoZ-wHPHiwA_D7JAMPf5wHS7rYB9THtAdYJ-gAPCRv_0SX6ABbh5___3gn_N6wOAvwA-gDaMPwBJu_bAFEDG_8O_P79ow0p_rTz9gAdzskDJTbd_vLaCwDzJdYBBjjPAzbpD_zw0kwCDd4c_dPP9QLK9-r88-bs-vg19gHcsRn-yegkAhLdJAAS_xn8-wTaAtvmEvj95i0GIiHb_Qb9CgvlFv4Dxcz0-t__Eg0yAhcC38vv_bK-IPbR2uL5BNT_-wz-A_LGQusIGxD7FTbzC_nvo-7-HM_58Mn_6fPiGfsE5P3nBSAALUXi9jo4E0AJSGFQAirPBxAAGsAH36WsvvyTEz0Zfqa8U2AcvSRC47xvkQW9FNqYvSdPeT0LEYm7Z5owPiCRW7xD5K05NMkevahzoDz8xey8FJRCPkZFHL1z6AC8dXT8vS8Tmj0LAhC9V7E4vkelfTyl1Ao9gkSJvHUrir38K1i7iGVzPaVqm71wApk6b4sIvUNHB7oj2Bi93GoZOvURWL0TfFi9ZTsbvFf0Xb2f2mM6nYV4Pbw-kLuKBT68t1dLPVZ01rvGpyC9v5oDvZGUOT1165C68OfKOx-DVT3ij4c8K732vaVDsb0tpDK8JRetvdtewbwLIc46JkCoPZCoKz1v0a689GxpuWCrJL6AMoC7DVMrvlyypjtiujW8Puq_Pei0-Dx2Co-3yEUlvmnRgT2dCMe8G9xxPcH6RL3MYmK8D7-GPe-crD3DVZQ8k8MnPrI40jwe1mW8kCQQvBDfoz2mYgM9TR1aPWPNbbwkin-8nCVyPVQRiD1b64s6wcWOOykhmDw7m4Q8hNOHvcZO2D16lW87QbltvHW227wQ1Yo8BSOlPdYCO75J5Zo6bamjvdnFPr3Hi7-7UkjwuyDWtjzVqJG8Q6kdPh9q273Emqk5aebmu1hdorwjU5k7baSRPF7Ieb0frDU7M96Gvef34rxk29S7NJGIvfSmYj1-Ztq7cwdbPQNTxz1yDME5_kHJPFsMjr0d32Y7e2wmPBHWsbu5aVi7c_yLPWRdxz3vqLC3BeoDPbZHD70dhM67BMomvb13bbtN5oo6ZdOAvJAomb1SAxM73WGTPbuXC76lDmg5tx4qPI1bsbz0mQu6LdEJvpYhLj2euGC4NeEoPDWVmr2o5Ec5FJ2LvYl64b3GJ3A5xUJjvHjePD2odcO4O7-dPeCHXjznV664SgsXvgrcmr2pquG2vMKMvRGFvzv1QsS4eJ6TPW642Tz9qJ24hD5CPfcEmT3G6uK5yy_DPCCVxbv8jkU6gr-EPT6ITj0Oa0c4EaBQPbpJnL2osHk5y6wUPZPFPT6tjkO57uCRvYo--jxCGKK3z1STPQu7w7zfXda37m5vPRRBHL0JFbG2yaqNPSOe7DrQ47Y4WjSjvXxaSj1yIGw4YA1mvRKPnzw9h784t2niPJpOobzhPbC4zfkTPeL8gj1Pyro0kl0ZPtlPUL2swj-5zcd6vdMV7L3mm_i4u-2CvJfmob36OP-3QJCCvaa8cT2gfvW2oW9BuwuLkL1ihgm4yvRwPSLhKz7xy4o4mJNlO4AL0j2Y5A-5qA0dvYncAj2iPPa29DxuvCa8nj3vkIU4IAA4E0AJSG1QASpzEAAaYBv7AA7vI9P8GCDv694A6PDrx9n45h__5-kA7wkBzRQm0NH6Bf8W6gHyugAAAPLw7irJABZY9fXaFQcL-PqZ7DoKf-gDG8LcKPTq1hIYAdL8BCcXGQDPI8YZGOzuVvwULiAALWlLQDs4E0AJSG9QAiqvBhAMGqAGAABgQQAA4MAAAIJCAACwwgAAoEEAAGBCAACgQgAAAAAAAIA_AAAwwgAA4EAAADBBAAB8wgAAmEEAAGBBAADAQQAA-EEAAHDBAADCQgAA6MEAADRCAABQwQAAwEAAADDBAADwwQAAkEEAAEBAAADgQAAAMMEAAABBAACowQAASEIAAAzCAABQQQAAtsIAACBBAAAYQgAAJEIAAKDBAABwwQAA2EEAAKBBAACgQQAAQMAAAOBBAACAwAAAGEIAAJBBAABAQAAAwMEAAILCAABgwQAAqMEAAPjBAACgwAAA-EEAAEjCAAA4QgAApEIAADBCAACoQQAAIMIAAIrCAAAowgAAmEEAAJDCAABAQAAABMIAAILCAACSwgAAtkIAAMhBAADYwgAAgkIAAGBBAAAQwQAAwMEAAFjCAAAwQQAAAMAAACzCAAB8QgAAEMIAAGDBAADoQQAAbEIAAIBCAADowQAAsEEAAMBAAACMwgAAJEIAAIjBAADwQQAAZEIAAKbCAACgQAAAQMEAACxCAACKQgAAtsIAACDCAABAQAAAyMEAAGDCAAAsQgAA-EEAAEDAAADQQQAAiEIAAEhCAABAQQAAOMIAAMDBAABQwQAA0EEAAChCAAAgQQAAQMIAAEBAAABUwgAAfMIAAOhBAAAwwQAAGMIAAIDBAACwwQAAoMEAANDBAADwQQAAgMAAAIjCAAA8wgAAUEIAAODBAABIQgAA6EEAADhCAACIwgAAqMEAAFDBAABQQQAAQEIAAIjBAAAAwAAAoEEAAPjBAAAAQgAAGMIAAHBBAAAEwgAAREIAAHhCAAAAQAAAoEEAACBBAABEwgAAaMIAADDCAAAYwgAALMIAAExCAADwwQAAuMEAAMBAAACKQgAAVMIAAGxCAAAsQgAAoEAAALBBAABAQQAAoMEAAAzCAABwwgAAoMAAAGDBAACowQAALMIAACRCAAC4wQAAjMIAAEBBAABgQQAAwEAAAMBAAABYwgAAdMIAAIBAAAAwQgAAsEEAAIBBAABoQgAAgEAAAIhBAAAgQgAA6EEAAADAAADAwAAA4MEgADgTQAlIdVABKo8CEAAagAIAAMi9AABsvgAAij4AAIC7AABwvQAAiD0AAAS-AADmvgAAgDsAAPg9AACgvAAAcD0AACQ-AACYPQAAXL4AAFC9AABMPgAAQLwAAJg9AADWPgAAfz8AAOA8AACAOwAAcD0AAHy-AACuPgAAoDwAANi9AAAwPQAAbD4AAKA8AACIvQAAgDsAAGw-AAAkPgAAQDwAAOg9AACmvgAAUL0AAOA8AABAPAAAgDsAACQ-AACgPAAAHD4AAJ4-AADgvAAAJL4AAK6-AABsvgAAcD0AAFQ-AACOPgAAND4AAAy-AAAwvQAAMz8AAFC9AACgvAAAuD0AAKi9AADovQAA6L0AAOK-IAA4E0AJSHxQASqPAhABGoACAACGvgAAUD0AAKC8AABTvwAAhr4AAFC9AAArPwAAkr4AAJ4-AAC-PgAAqD0AACQ-AABcPgAAED0AABy-AAAEPgAA0r4AACk_AAAwvQAALD4AALY-AADSvgAAQDwAAHw-AAAUvgAAuD0AAHy-AAB0PgAAUL0AAIK-AADIvQAA-D0AADS-AACavgAAmL0AABA9AAApPwAAjr4AAGS-AADSvgAAoDwAAPg9AABQPQAA2L0AAFU_AACIvQAAf78AADQ-AAC2PgAAmr4AABQ-AABEPgAAyD0AAGQ-AADevgAAsj4AACy-AACOvgAA3j4AAKg9AAC-PgAAur4AALK-AABQPSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Ff4LRlflib0","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10521502927327234044"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3274646636"},"5162845663731605537":{"videoId":"5162845663731605537","docid":"34-3-11-Z347277E6DAC608A7","description":"The sine and cosine functions, sin(x) and cos(x), are defined as the coordinates of a point moving around the circumference of a unit circle. In this video we learn how the values of sinx and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4528844/6db18edba10a8a76974c9f0fd21f75c4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/WfRKAwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzUgic_m8DjQ","linkTemplate":"/video/preview/5162845663731605537?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Defining cos(x) and sin(x) using a unit circle","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zUgic_m8DjQ\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFQoTNTE2Mjg0NTY2MzczMTYwNTUzN1oTNTE2Mjg0NTY2MzczMTYwNTUzN2qIFxIBMBgAIkUaMQAKKmhoZG9ndXhpYnhuZmdmcWJoaFVDeE8xZmNyeDVBQnQ3aEtRYV9teUNnQRICABIqEMIPDxoPPxPKBIIEJAGABCsqiwEQARp4gfL8__X-AgAE9RAE-wj8Ag_9BgL3AAAA8vv9_AcB_wD3AAX6BwAAAPoQBP4GAAAAAfL1-AD9AQAQAff8BAAAABkC_QD3AAAADgP4_v4BAAD_AfP9Av8AAPr89wD_AAAAAA358QAAAAAFA_D8AAAAAAD6_PkAAAAAIAAtHT3WOzgTQAlITlACKoQCEAAa8AF_zzr94t3aArcHAACm-qsAsGDoAftFwwDaLL0BqePUAd4RW__OHh__EroCAL4UNAAW0r4A2vYNAGupDP8S1e8AzscyAfnh4AFGJu___gfg_gYiHv0F1BEA9e_BAAUvzf0f_xr-Nu7eARod8wRNETv_EwseBv8C9wbU2wAAyAoaBPT50gDpShsCFezz-NbxPwoM5RwGKA3t-en0AQQFFR8FDgAMB_I35APbAv8IEDUGC_75-QXvm9YNC9Qa-_Ez5f_94wgJ6sgV7cKi8PgHzBfx2xfrC0ER7vwRtRPx7-_5_BJB-gvU1Ar1JtzuEA_m8_IgAC28p946OBNACUhhUAIqzwcQABrABx-8zr6xEpg7Ru3AO-YQZ70WqEC9LB-DvWpNc72pCME8tnIFvWeaMD4gkVu8Q-StOeVk4r2Cnoe98j_evEC9OT7iG6o5DKXYuQ4xDr5NBpE8R-hCvNFch72PPl47oG7iugj3hL09uze9xugQO6Di2D1hPJ68xU-IvNgnBT00g8g93XzjvNxqGTr1EVi9E3xYvWU7G7xX9F29n9pjOr-2vrz1H6M82YK1OjWYBj7Acuc7HHyhvBh9Jb5Joay8Ci9BvC_i1jzO3Kg9MMehPA2r-L069Ew9YVqKvOv2s73WviU8VdfGuw97hj3suZE9OaErvYKiQ7x1cqu90goAO6jQb73-NBo6YJmvu3CXnT0fExk-eq05Oad3Ib5Rti09r9OjOiveyDx8l_e8pMNDPA5O5D1a-gu9K3ZqO0F-dj3yHzk7nQgsvHvsiL1Ga1s9aF1EO1hwlL1oYnU9ouAUu8qExDzjAuu8e8RDPNJP_ju4E8k5-JnpPKVDTDwgGpc9hRzjO8JZgDxZi5o9DEYbPAUjpT3WAju-SeWaOr_HKjxdl6u8GTJovOYpxjzjB908CNh9PLN1Vb0gozK9O_dkO5wcWb2O1fu7-dNrPEfm0bzukIe75VSiOVACpr16H0I9BMFKuy19o73ZhyY9XqmAu2ynd721qgC9FHD4OzfqN715sns9YDbouvyFIz1sV408D2IIO61cJbqHMQk9GHKVu-WaIj3bsPk7AFSzO3khHb1Ut2m8l87BOk5_Fj2r54S9crRquTy98j1KyFG9V8GOOUTskr2Zrxy9ZM_KuF-tf70u4rA9CQI6OZBt9Dyy6Ee9bevAucO8B76pP2y92ntlN7p2mDyKKYc88FTZurYaDb0NN6A8obNPusC4r7zl_rg7y8ECOENxh73LvBe8AyGfuNXXqTqfGx89n46gt7KjzDykbDY8j1bsNw9SJrxg7s26QlgnOKGlRj1lOzo98H-_OBr4hr3PWEq9LnLFt4ro9z0_kKw9gu5mOImsWjv2fy4-vDsVuSiEST3wxOy9T6dhOJqKfj2G47m80gXUNkx1XDxEfTE56D-Ktmh1Mr5kpCg9F8pMt7zWGDwxs488ukW1OPinFD4D-k49H_TtNqjpDr0Z7x09Du6JOP7PhjzbrMW9dU4uODnFxL1ntya-1kdyOAyEo70ZPGw9ifoFuKOanT3b3m694HUNOFyooT19xJS9uKGWN20xKb1YVQ8-XgrfuIfVST1AL_w9t6oHua1t6r0UO788b9LjNzMOf71p7a660zyfNyAAOBNACUhtUAEqcxAAGmD98wAcBRXN_BtY8fvJqB-_3Pi02MEW__LV_wLw5PXQDczKFQz_DdQUA5sAAAA6FfInzgAjf7fQBir7FR-1xac8EHMA6PDatzD91OokIwHiHAclEFsArgLAEhrL6TQhJl0gAC0FyRM7OBNACUhvUAIqrwYQDBqgBgAADEIAAMjBAADQQQAAmsIAACDBAAAAAAAAfEIAALhBAADgQQAAAEIAAIC_AADWQgAAmMEAADBCAABwQgAAMEEAAGDBAAAQwgAAFEIAABjCAAAYQgAAMEEAAODAAAC4wQAAgD8AAMDAAABcQgAAPEIAAAAAAACgQgAACMIAAJhCAACowgAAIEEAAFTCAAC4wQAAOEIAAABCAAAkQgAAAEIAAFBCAAAkQgAAgMAAACBBAADYQQAALMIAABhCAACwQQAAAMAAAKDAAABswgAA4EAAAEBAAAA0wgAAMMEAAFRCAAAkwgAA2EEAAIRCAADwQQAAAMEAALjBAAAAwgAAIMEAAKDAAACmwgAAgL8AAETCAADAQAAAHMIAALhCAABAQAAAhMIAAEBBAACAPwAAyEEAALDBAAC4wQAASEIAAIA_AACAwgAAJEIAAOBAAAAMwgAA6EEAAHDBAACQQgAAbMIAAABAAADgQAAAMMEAADxCAACwwQAAkMEAAHBCAACAwgAAyEEAABjCAAAkQgAApEIAAKjCAAAcwgAAUEEAACDBAAAAQgAAqEEAAPhBAADgwQAAYEEAAJBCAADwQQAAwEAAAGTCAAD4QQAAyMEAAFBBAACYwQAAOEIAAGTCAACQwgAAssIAAIjCAABQQgAAkMEAAIA_AADgQAAAmEEAADTCAABYwgAAlkIAACTCAACwwQAADMIAAKBBAAAgQQAAbEIAAABBAABQQQAAYMIAAABBAACAwAAAYEEAAKhBAABQwgAANEIAAJ5CAAAAQQAAEEIAAHBBAADYwQAAIMIAAEDBAACAQQAAcEIAALBBAAAAQQAAaMIAAODAAACWwgAAkMEAAADBAAA8QgAAuMEAAMDAAAA0QgAATEIAAAjCAABwQQAAhEIAAJDBAABgQgAAUEEAABDBAACCwgAAmMEAABzCAAAwQQAAuMEAADzCAADIwQAAQEAAACTCAABgwQAAWEIAAIRCAAAIwgAAmsIAAMDAAABwQQAALEIAACRCAACMQgAAsEEAAIDAAAAwwgAAoMAAABBBAADYwQAAXEIAACjCIAA4E0AJSHVQASqPAhAAGoACAACoPQAAyL0AAMo-AAAEvgAA4LwAAJo-AACSPgAACb8AACS-AACYvQAAyL0AADA9AABQvQAAkj4AADy-AAAwvQAAbD4AADA9AAAkPgAAOz8AAGM_AACovQAAoDwAAHw-AAC-vgAAmD0AAGw-AABMvgAAVD4AAKI-AACYPQAAK78AAPg9AABMPgAAND4AALi9AABwvQAAE78AAN6-AAAwPQAAqD0AAK6-AAA8PgAAiL0AAHA9AAA0PgAAhj4AAEy-AACYvQAA2r4AANi9AACIPQAARD4AAJ4-AAAsvgAA4DwAAH8_AAAQPQAAXL4AAKC8AADgvAAAQLwAAKC8AADiviAAOBNACUh8UAEqjwIQARqAAgAAqL0AAIA7AACIvQAAE78AAOC8AAC4PQAAPD4AAKi9AACovQAAHD4AAIi9AACAOwAAMD0AAKi9AACgvAAAgDsAAMi9AAAjPwAAqL0AAMY-AABQPQAAmL0AALi9AADovQAAML0AAOi9AACAOwAAmL0AAIi9AAA0PgAAED0AACQ-AAC-vgAA4LwAAIC7AABQvQAABD4AAOC8AADCvgAABL4AABy-AAC4PQAAcD0AAMg9AADoPQAAmD0AAH-_AACovQAAcD0AADy-AAAQPQAAiD0AADA9AAAEPgAA4DwAALg9AADgPAAAiL0AAKA8AAA8PgAAyD0AAIi9AABwPQAAfL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=zUgic_m8DjQ","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5162845663731605537"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1198741596"},"16434848018229734070":{"videoId":"16434848018229734070","docid":"34-3-0-Z6D1A44B815A51D2E","description":"0 w... Calculus 1 Exercises playlist: • Calculus 1 Exercises Calculus 1 playlist: • Calculus 1 ◉Textbooks I Like◉ Graph Theory: https://amzn.to/3JHQtZj Real Analysis: https://amzn.to/3CMdgjI...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3442227/ab0afdb710ac5b83d4d76ad6ebeea676/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/5vXRPgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DquKbgSHUGn8","linkTemplate":"/video/preview/16434848018229734070?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limit of sinx/(x+sinx) as x approaches 0 | Calculus 1 Exercises","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=quKbgSHUGn8\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFgoUMTY0MzQ4NDgwMTgyMjk3MzQwNzBaFDE2NDM0ODQ4MDE4MjI5NzM0MDcwaocXEgEwGAAiRBoxAAoqaGhjY2F4emhienNtamxpYmhoVUN5RUt2YXhpOG10OUZNYzYyTUhjbGl3EgIAEioPwg8PGg8_E3GCBCQBgAQrKosBEAEaeIH9BQX7Af8AIAb7AgAHAgAB_Pb8-P39APUA9PQDAv8A_vPw_AQAAAAKF_4BCQAAAA799_X__wIABQcH-PcAAAARB_4I9gAAAAwO7wL_AQAA9Qbu-AIAAAAFCPT9AAAAAAkLBO4AAAAA8AIBBAAAAAAJ-gP_BwoAACAALYiXzjs4E0AJSE5QAiqEAhAAGvABa90N_8bKAP_93xAA6fTLAKX3J_9eIQUA9-oTAPn2wQHM3eYA2_bw_4EM7wP9HQUA1unwANXgFgAhwfb_5fjVAAEbEwE72f0APC8B_9M-7gHcDxv_F_XvAO3g8gD__BIA8tr6AP4M7AEcFswCJPstARnrDQAC0jD96AUCAM74Gv-uDAn-5QnvAQob8_8C_A4LGvr3AAEVAvrnIOkCCNUK_AHPDf7ZD_j8HjABAxod6gbQ1vb7tP3mAAMIGwIEChD4HgkPBfLz_v36BQkA2Q3q-wEGAwrn-fEN0vv2CPP5_urv4e32CAP-8s0REvv9GAgIIAAtfsUWOzgTQAlIYVACKs8HEAAawAdAS7--Efr-vMkaOj1mTge-_iqfu4L4pbw7xyC-LwqMvKsLU7xZCAG90TgZvWSg4TwdycW-ZgiRvH2ljT0foAs-6T26vHvJ9bxbICY9ndaOu5kMx7y4rBK-1a_UPQkdTzyw5ws-UbcauwWxAr2rTaI9VNwdvQl2Er183-68ra4ZvWXukDs5bMG9pMXZvTpjDjwFKYK8mn5EvWbPrzxdVVE99O2uPKD3azyDSXa9k6W5O9nwjzwdrUo9YiBePRJQIb3-bpA9x-xyO6FzDT3gPVG8kH0VPcb_Ojuk63g8JTZEvNaw_LuwGwa-E_2QPMPvprxtHDE8CGz3unZjizzZP--9nPn1PQM2b7v7BTs-2jfXPUR1yjsxwgq929AePfnfRrsjEC89WdGQPRMoYrxLD5k9IRisvD-IJrvvyi482AeCO_KIgLzyM788qmvjPHRiDz1wc087Z3aCPUiSu7yo7Ko8oV4VPf0dwLvH_JK9ol3FvA3TLTwK6uW81wRHPcUhFzw5T-u8PxkSOu-bUjszu9O8hCOtvdQO5zgkRg89qjuAvU10Drs3jc09lmJCvbmdRzvbMSU-3aGXPKLTEDtBPFy9whrCvFNPDzwrrmC8JmMmvVu0nbocfQy94WzpPBlrhzu25Cc9mP4gPbldILxiQEC9MeygPVgW8Tq2vDK9K9YVve6udbuZi648655mPWSiFLuJziI-ZftQPXrt2TiIJIQ9pRm2vdyZLrsAoY89s_C1vEniPDt4jce9AmP9vMe21jc3p9I9oYPuPMgkV7mZwIg983bfPMUHirdx4Dq9LrpLPXIWxzcFC6-7KW37vBsV3ziJD7e9t0K4vTFCujh3pku9fXCjvNYah7kdrSo93OFlPDDGXjhJp8m8GHrEu4bk9redUjS9N59_PZiEkrh1qLs9k_KEvVtPXzmfTuA7RvWxvBSnLLdRn2S9ZompvJnxVzmJRQy9CAT6PW9xOrgokEM9LdgcPZLofTiV4cs65wGHPTIxizesYya8BlZEvOQuALmAR4Q9ADCDPM-pp7jD0-s8Zyb4vSIkJLhP0aw9w40KPancibj_DEq70D-kux4TRzi8lLq87r2-vUmLmzexNLA8XjtHPbl4QDiNk-e85NPru3RXdTj3ASg-cGHdvfFnv7mwVRK-rYqwPHxrx7fVXZm8EZeCvQdxA7ibS1u9kjynPW1wgThJ9448rVDEvXOc8rgpV908jZZoPWCpcDg_-ku8qhkoPR74w7iX9EG9vLy_PekOEjhHiLw7NYkGuvfDPDggADgTQAlIbVABKnMQABpgEAAANQYfx9cwROMi3yUauvfc49nbK_8Dyv8LBOfZ5C3XqVb7_wwC2uyYAAAAJ-a6MfUA3X_oCuAN3gkEyr_mOf5q8xi5seD55ba5GCzQ2x0H8g0BAKLwoW_50-dHEgggIAAtqx0TOzgTQAlIb1ACKq8GEAwaoAYAABxCAABswgAAjEIAAGzCAABMQgAAYMEAADBCAACwwQAAEMEAAMBAAAAcwgAAAMIAAKDAAABgwQAAAMAAAKDAAAAQQQAABMIAADhCAABgwgAAMMIAAOBAAACAwAAAyEEAABjCAABwwQAAgD8AAAzCAABoQgAAgMAAALjBAABQwQAAcMIAAOjBAAAcwgAAUEIAACDBAACuQgAAoMEAADBBAABAQAAA4EAAABxCAACIwQAAdEIAAITCAABwwQAAQEEAAEBCAACQwQAAgMIAAABAAACowQAAwMAAAOBBAACIQQAAxsIAALjBAAA0QgAAKEIAABBCAABYwgAAMMIAAHDCAAAgwQAA8sIAACDCAACowgAAQMEAAHzCAABcQgAAIEEAANDCAAAcQgAAiMEAABTCAAAAwAAAcMEAALjBAADIwQAAAEEAAIBCAABAwAAAmMEAAPhBAABAwAAA4EEAACRCAAAkQgAAcMEAAJzCAADeQgAABMIAAAzCAABQQgAAyMEAAADAAADIQQAAUEIAABxCAACEwgAAUEEAAJhBAACAvwAAQMIAAIA_AACYwQAAYEEAAJDBAAAsQgAAMEIAAKDAAADwwQAAAMAAAFTCAAAgQgAAPEIAAIDAAABEwgAA6MEAANDBAACGwgAAYMEAAEDAAABQQQAAhsIAAIA_AAD4QQAAAAAAADjCAAAUwgAAAAAAAJjBAAAgQQAAoMAAAK5CAABsQgAA4EAAACDBAADYwQAAcEEAACTCAACcQgAA4MEAABRCAADoQQAAwEAAABDBAABAQQAA4EAAAIDAAAAAAAAALEIAAKjBAABoQgAAiMEAAEDBAADgwQAAmsIAACDCAAAEwgAAIEEAANDBAABkwgAAwMEAAIpCAACAwQAAdEIAABxCAACgwQAAGEIAAOBAAABAQAAAaMIAACDCAAAAQAAAUMEAADjCAABQQQAAuEEAAGDCAAAUwgAAwMAAAEjCAAB8QgAABMIAAPjBAACYwgAAAMEAAFBCAADAQAAAhsIAABBCAADowQAA4MAAANhBAACgwQAA2MEAAKBBAABkwiAAOBNACUh1UAEqjwIQABqAAgAAmD0AAIg9AAD2PgAAUL0AADC9AACCPgAAXD4AAPa-AADYPQAAmL0AAIg9AAAEvgAAVD4AAEQ-AAAkvgAAgDsAACQ-AACAOwAAiD0AAKY-AAB_PwAA2L0AAKi9AAAwPQAADL4AAOC8AABsPgAAmL0AAOi9AAA8PgAAoDwAACy-AADIvQAAXD4AAFw-AAAUvgAAEL0AAHy-AADCvgAAJL4AAOi9AABAPAAApj4AAKA8AABAPAAADL4AABw-AACIPQAAUL0AANi9AAC4PQAATD4AAEw-AADYPQAAdL4AABC9AAAVPwAADL4AADA9AABwvQAA4DwAAOi9AACIPQAATL4gADgTQAlIfFABKo8CEAEagAIAAFC9AAA0vgAAcL0AADu_AAA0vgAArj4AABM_AACYPQAAHL4AAAQ-AABQPQAAcL0AALg9AADIPQAAUD0AAIA7AAAQvQAA-j4AAGS-AACiPgAABD4AAPi9AABwvQAAcD0AAIg9AABEvgAAXL4AAIA7AAAkPgAA2L0AAOC8AADgPAAAkr4AAKK-AADIPQAA4LwAAJ4-AABEvgAALL4AABy-AABQvQAAuD0AAAQ-AACgPAAAfD4AAHC9AAB_vwAAoj4AAJ4-AABQPQAAMD0AADw-AACIvQAAsj4AAI6-AABUPgAAqL0AANi9AABsPgAA2D0AAGw-AAD4vQAAPD4AAEC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=quKbgSHUGn8","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["16434848018229734070"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4201573935"},"3558675010746594369":{"videoId":"3558675010746594369","docid":"34-11-3-ZF1F3C9762362806A","description":"We use the squeeze theorem to evaluate the limit of sinx/x as x approaches infinity. This is easy as soon as we recall -1 is less than or equal to sin(x) is less than or equal to 1, then just...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1019919/5d357488f963f744ece8aa534f594f1a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1aOX-wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4Ik0M0hbqv0","linkTemplate":"/video/preview/3558675010746594369?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limit of sin(x)/x as x goes to Infinity (Squeeze Theorem) | Calculus 1 Exercises","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4Ik0M0hbqv0\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFQoTMzU1ODY3NTAxMDc0NjU5NDM2OVoTMzU1ODY3NTAxMDc0NjU5NDM2OWqIFxIBMBgAIkUaMQAKKmhoY2NheHpoYnpzbWpsaWJoaFVDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdxICABIqEMIPDxoPPxPuAYIEJAGABCsqiwEQARp4gfgAAgYB_wAD9foJBwn7AgAE__j4_v4A4wDxCQD9AgD2BPX0-AAAAPYRB_MAAAAA_AP5-_3-AAARBAHx8wAAAAn2AQbyAQAA_f3sAAABAAAICO72Av8AAP_77AP_AAAAAQoL-f7_AAD2_PwJAAAAAAkCBe4AAAAAIAAt9AnQOzgTQAlITlACKoQCEAAa8AF_6hf-ttrl_8wEJf6lHQEAlPYNAPdCDv-u0QIB5BXKAfnpDwDlFuYAtfbd_rEFGgC7z-n_BNEvAETX-wAQ2_EAJwMBAATtHgBAEhsCCj7s_-lRLf0AD_D_9dTK_kcnzwAl3SP_EgjoAin0ygMXtR8A5BE7Ae32DwMVqib9yvkKAwQO7wHJFOUHDCDx_vfwAf0EFwr-9lvjAPL16wL-7yIEGfQJAuYgD_z7MuYEMuEBBOYW6AOn_eEBCx8TBcvX4AYIERz40eEA9hko-_znHQn9DeTxBhYGBAH7FQIQ3fQFBPnI_vzqAO_s1zsAA5fJ_QggAC2_TgA7OBNACUhhUAIqzwcQABrAB-2a2L5Wdku9jxLgPNzxJj0OVWe8vZh7u_iBtbwDq888aRT3vO0ZWD3_IzO99noXPb2OkL5851y92KYpOwovYT4XcbC8QdPGOVkMaL0KYoU9UJqXvALMtr3jUx28TQRgPd2P5byZeBE9GNmEvFRTAj7cSzq9dswQvIf76L2pWye93S-Xu5fUnjusW5i9odCXvM2Uhr3BdIq9Qpv3PJJS2DvmzzI99myMvLuNp73ypHs9I2UwvNlgvDx3iYU8dxeDPHDQXj2zJeu8hmDLPEgcjb0ndZe6ynIvu6TreDwlNkS81rD8u52ifjyXQXk66aduvHHIxjxxhBa9xymfvMTMjr02kdk9aOwmvBpCjz328MA8ZzGpOtJXm73dSFQ9GvQtu_1S3Dumtre75BGcPFh-Lz109T48O3hcPIPC4D0VwDm8L2PUvI1KJT3WIyg9LPOWPAH9Ob3zI5k9ZVmLvGWeZr3LfA88VGaUvJXY0DxS0mM9-9uvuoTTh73GTtg9epVvO-HhBz3ZRey8kXEWPKPHhD2DxxS8G4NKOxOJGL3nujq8pPGVvOfMUT24oIg9WX0evEOpHT4fatu9xJqpORwhSL2v3IE8SMCNuwLIij04jI29FMdku_ggH72DjBs9vPpCvBYthb15I9M9r0XOOQgnnb12Rbo8Z45nOi-_071yo-2817Reuw2ajLwXmWU9qtpJu5gyAD4Wf0A9LT-1t6xvMD7kns692ccruIygsTxt-0M8wZH-up3qmryQQw49NF06u2-A2TyIPeG7RYPuOSX8PL0TCUu9yerIOXNLu73z7fg83HLpOD8Zo7yy9le9Q_ULuDoiD75ZUeK7xuesuHopZr1zew69UcPiOKyL2zw4lsE9O2CEOcwgw73UDQS-CFOFOWqJ1b2WK3e9wZLeN3Wouz2T8oS9W09fOb6OEzue-CA9lTtNuPayrbwINSg9UedLuKTfnr30-P09oAgVOB2CtLxV7Pm8R10juOOncTyfeXQ98GkGuWqJpT0bxYg9z6_QN0cGlLxxch8-_cNmOL3IRD0u0Y88BKalNi7nkj0W4DY9JycWuZst7rvTW808GcECOew5BD0qdo-8UyCRt5RhJj3mQVU8eZKWNof287pgO4C5eYZ7OAFwZz2v7ti9oVCHuMRr6jpQ5KQ82dP9NsMRgzlQVSG9hKErt4bNi70IsOg9VLOWOMIVgL0UeOe92bSguCL_7D01KQU-835buERyLb3h-ua7sj2ZuGcJl7ymBIk9mrKlN1PCfT0j2Li8YZEXOCAAOBNACUhtUAEqcxAAGmAO6wBQ_hzGDhM06PTVCQqg8uPt9uoH_wLc_9Uq6O3x_-XLQhr_Bdra16MAAAAq0NI_uwD2c8T07gQu__jgps85DH_7_rC-uRPgwsQI_AH4Iw7UNeQAsv2eVBjX-ir-LhEgAC0Urxc7OBNACUhvUAIqrwYQDBqgBgAATEIAAGzCAAC8QgAARMIAAGhCAACAvwAASEIAACjCAABwwQAAQMAAAJDBAAB4wgAAUEEAADDBAAAgwQAAUMEAADhCAADgwAAAeEIAACjCAABgwgAA0EEAAMBAAAAAQgAAaMIAAIDAAAAAwQAAPMIAAJxCAADowQAAgMEAAIhBAAD4wQAAUMIAAFTCAACEQgAAUEEAAKhCAABQwQAAQEAAAKDAAACAvwAACEIAAADCAAAoQgAAiMIAADBBAAAQQgAAOEIAAADBAAAMwgAAoMEAAMDAAACgwAAAuEEAAIBBAACYwgAAuMEAAMBBAACwQQAAHEIAAGjCAAAEwgAAdMIAAIBAAACiwgAAwMEAAIjCAABwwQAAdMIAAFRCAABAQAAA6MIAANBBAADAQAAAYMEAADBBAAAAQQAA2MEAAOjBAAAAwAAAWEIAAJjBAABAwAAAFEIAAOhBAAD4QQAATEIAAKhBAADAwQAAuMIAAOBCAAAYwgAAIEEAAERCAAD4wQAAEMEAAIhBAADIQQAA0EEAAGjCAABQwQAAIEIAAODAAABIwgAAgEAAAIBBAADoQQAAgD8AAIxCAAA4QgAAMEEAAATCAACgQQAAQMIAAOBBAABwQgAAsMEAAATCAADgwQAAcMEAAIzCAADYwQAAQEEAAJjBAACIwgAAJMIAAMBAAACgwAAAYMEAAADCAACQwQAAFMIAANhBAADQwQAAvkIAADRCAACowQAAgEEAABTCAADAQAAAFMIAAERCAADYwQAAAEIAAABCAACQwQAAYEEAAGDBAACAQQAAMMEAAOhBAAAYQgAAiMEAAChCAABQwQAAgMEAAJjBAAB4wgAAgMEAACDCAACQwQAA-MEAAGjCAABIwgAAYEIAAATCAACuQgAATEIAABDBAAAgQgAAgL8AAMBBAAAwwgAAFMIAABBBAAAIwgAAqMEAAPhBAAAoQgAASMIAAJLCAABgwQAAKMIAAAxCAADYwQAA6MEAAI7CAABgwQAAIEIAAAAAAABQwgAAZEIAAMjBAACAwQAAVEIAAEDAAAAQwgAAiEEAACTCIAA4E0AJSHVQASqPAhAAGoACAAC4PQAALL4AAAU_AACAuwAAEL0AAJ4-AACIPQAA9r4AAIC7AAAEvgAA2L0AAMi9AAAkPgAARD4AAJK-AAC4PQAAkj4AABC9AAAwPQAAqj4AAH8_AAD4vQAAEL0AAII-AAAMvgAAQDwAAJ4-AADovQAAVD4AABw-AABAPAAAhr4AAMi9AAD4PQAAHD4AACS-AABQvQAAqr4AAK6-AADYvQAA-L0AABC9AAC2PgAAUL0AAKC8AABAvAAAdD4AABC9AAAQvQAAdL4AADA9AAD4PQAAPD4AAEQ-AABEvgAAqL0AAEM_AACgvAAAuL0AAPi9AABwPQAAqL0AAKA8AADWviAAOBNACUh8UAEqjwIQARqAAgAAQLwAAOi9AACgvAAALb8AAPi9AACWPgAA8j4AAIo-AABAPAAAXD4AADQ-AAAUPgAAHD4AADw-AAAkvgAAmD0AAEy-AAAtPwAAfL4AAMI-AADYPQAAdL4AADA9AACYvQAAoDwAAFy-AAAEvgAADD4AAHw-AAAwvQAAML0AAJg9AAAZvwAAXL4AAOg9AAAcvgAA0j4AAHS-AACOvgAAhr4AALi9AADYvQAAiL0AAEC8AAC2PgAAiD0AAH-_AAB8PgAAfD4AAFC9AAA0vgAA8j4AACy-AADCPgAATL4AAII-AAAEvgAAbL4AAAE_AAAkPgAAhj4AAK6-AAAUPgAAVL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=4Ik0M0hbqv0","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["3558675010746594369"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3839678723"},"3510347273805204951":{"videoId":"3510347273805204951","docid":"34-0-15-ZB1FAB77A7F869CAB","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3100815/c310c728d79df97ccc3ea033e4456494/564x318_1"},"target":"_self","position":"6","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DApZHGqqv738","linkTemplate":"/video/preview/3510347273805204951?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"#sinx fonksiyonu grafiği konu anlatımı #trigonometri #yks #ayt","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ApZHGqqv738\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFQoTMzUxMDM0NzI3MzgwNTIwNDk1MVoTMzUxMDM0NzI3MzgwNTIwNDk1MWquDRIBMBgAIkQaMQAKKmhoeGhhcHdndmhrdXhyamRoaFVDNTZPREdmYnkzdW5GeHYyVVhRaWhMdxICABIqD8IPDxoPPxNWggQkAYAEKyqLARABGniB8u4E_P8BAPkQ_A0FB_wBBAAAAvj__gDsAvsEAAAAAPnzFAIFAAAA9A4BCgIAAAD5B_ry9v4BABEHAQz1AAAAD_r89fUAAAADAPj99vv9A_wI_gYE_wAAEPv4BQAAAAAM_v_wAP__ABIC7wMBAAAA-uYBCQAAAAAgAC3J1tQ7OBNACUhOUAIqcxAAGmAjAwASDfKpzBri3t7VHTr_zdu7D7T4__Pi_wExE-4RysK9Rib_PhPiHKIAAAAxJLX9LQDvc83j-wMYKzW73fEfIX8rM8Ilug_mCcEs6yX3C9c0EuUA0SEx5QoEDkNYVRIgAC07ExY7OBNACUhvUAIqrwYQDBqgBgAAAEAAACBBAACAwQAAqsIAAIBAAACIQgAAykIAADzCAACIQQAAVMIAAIhBAACAQQAARMIAAEDAAAAQQQAAREIAAGDBAABAwAAA-EEAAJDBAAAQwQAAOEIAAODAAAAMQgAAQMAAAGBBAAAowgAAcMEAAAAAAAAIQgAAoEAAAKJCAAAgwgAAyMEAAFzCAACQwQAAWEIAAIBBAACgwQAACEIAAMBBAABgQQAAqMEAAIBBAACAvwAAgD8AAIBBAACIwQAAoEIAAGDBAAAgwQAAcEEAAMDAAADgQAAADEIAAHzCAACMwgAAwEAAAIhBAADAQQAAEEIAAGDCAADOwgAAmMEAAEhCAABEwgAASEIAACDCAACAPwAAwMAAALxCAABAwQAAIMEAAHBCAAAEQgAAEMIAAILCAADgwAAAqkIAAFxCAABwwgAApEIAAJDBAACwwQAA6MEAAABCAAAAQgAAksIAAHBBAAAAwQAAQMEAANhCAACAPwAAwEAAAHBBAACwwgAAYEEAAMDAAAAwQgAAlkIAAATCAACgwAAA6MEAABDBAAC0wgAAoMAAACRCAABMQgAAcEIAADxCAADYQQAAyEEAAKTCAACAwQAAAEEAABBCAAAwwQAAVMIAACDCAAAQwQAAIEEAAOBBAAAIQgAAOEIAAPDBAAAAwQAAiEEAAKhBAACowgAAMEEAAMjBAABUwgAA4MEAAAxCAAAowgAA-EEAAIA_AACCwgAAqMEAAEzCAADgwQAA8EEAAFzCAADAQAAAAMAAAPBBAABQwgAAwEEAABhCAACaQgAASMIAAADBAAAYQgAAoMAAAIC_AAAMwgAAeMIAACDBAAAAAAAAoEAAAEzCAACYQQAAVEIAAMBBAAAgwQAAAMAAAEBBAAAMwgAAfEIAAOjBAACgwQAAUEEAAFjCAABAwAAAZMIAAIhBAAAAQQAAnMIAAJjBAABAwAAA-EEAAHBBAAAgwgAAoEAAAPhBAABcwgAARMIAAEDCAADowQAAYEEAABzCAADIQQAAmMEAAKBBAAC4QQAAnkIAAIBAAABQwQAAwMAAAETCIAA4E0AJSHVQASqPAhAAGoACAAAcvgAABL4AALI-AAAkvgAAMD0AAP4-AAAQvQAAAb8AAIi9AABEPgAA2D0AAHC9AACGPgAABD4AAJi9AAAUvgAAFD4AAIg9AAAFPwAA-j4AAH8_AACovQAAmL0AAKI-AADIPQAA6L0AAFw-AACYvQAAlj4AAEQ-AAC4vQAAZL4AAAw-AAAMPgAAyD0AALq-AACmvgAAfL4AALq-AACYvQAAUL0AAHS-AADoPQAAir4AAOg9AACmvgAAUL0AADA9AAD4PQAA4LwAADQ-AAD4PQAAgj4AAHA9AACavgAAUD0AAEs_AAAEPgAAqD0AABw-AABkPgAAmL0AAKC8AACGviAAOBNACUh8UAEqjwIQARqAAgAAgLsAAPi9AADYPQAAQb8AAHC9AABwPQAA2D0AAIC7AABEvgAAyD0AAHA9AAA8vgAABD4AALi9AABEPgAAuL0AAIi9AABFPwAAoLwAACw-AABwvQAATL4AANg9AABQvQAAgDsAAES-AADovQAAgDsAADw-AABAvAAAQLwAAAw-AAD4vQAAqL0AADQ-AADgvAAADD4AAJ4-AAAkvgAAHL4AADw-AACgPAAADL4AAOC8AABAvAAAoLwAAH-_AADYPQAAjj4AAFC9AABEPgAAHL4AAPg9AAD4PQAAqL0AAIg9AABQPQAAyD0AAEA8AAAwvQAAbD4AAHA9AACYvQAABL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ApZHGqqv738","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["3510347273805204951"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7115658726965199572":{"videoId":"7115658726965199572","docid":"34-9-2-Z93985A5016DD149F","description":"In this video, we will learn to find the value of x when sin x cos x =1/2. The link of the video explaining the proof of trigonometry identity sin 2x = 2 sin x cos x is given below: • sin 2x...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3445400/3f2315ff3a5d1e67183b8b3bc0494615/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/fqvgEQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtIh11N7vNts","linkTemplate":"/video/preview/7115658726965199572?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"sin x cos x = 1/2, find value of x","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tIh11N7vNts\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFQoTNzExNTY1ODcyNjk2NTE5OTU3MloTNzExNTY1ODcyNjk2NTE5OTU3MmqSFxIBMBgAIkQaMAAKKWhoeW15bXhqcHJydHVwdGhoVUMwYkxBQ2hyY2NTTFJRU2paazE0M1dnEgIAESoQwg8PGg8_E5MBggQkAYAEKyqLARABGniB7gH5_fwFAPkHCwb5Bv0CCwD7-vcAAADyAfcCBwH_AOsDBgAC_wAA_Rj8BQMAAAAX-v3__gADAgcCDvMEAAAAGQL9APgAAAAWBvb6_gEAAPz78_MBAAAA_Qn3Av8AAAAICgPvAAAAAPwD_vYBAAAA-QQAAQAAAAAgAC1xht47OBNACUhOUAIqhAIQABrwAX_mAv_n4-EC3SfvAO7kBwG5JTn_ExjNAMICEAC0BN4A7AkGAPkO6wG9Efn_1BHkAB8BvQAC5RoAQsLi_wLOxADy5gIA7NbpAEIVMv8i8N8B6AsrAPLJ7P_3qfkBHR3aAAvxFfktBtP-6SjRBAsiOgMpE0AAC_Qn_AOaAQjo2vL46vv79_IX-gcM3BD3uNYqAgzL_P73-AgE5CTmAgj_9Pvx8h_48hTU_0IQ_g04B_8JvfoDAfD2K_8uAhUBxzoeAgENNfrOQgD8-BIr-i4L8AjRCOAKBu3cBDH_DgvlOf4KFxH38fMw-_bZAf4J-Dzu-yAALWrNBTs4E0AJSGFQAirPBxAAGsAHXB_GvgBBdD2nEpQ8TmP7vTfpDL136fC8--c5vmLCQzz7rd28MBxePaQ-4jv70vY8-MGBvn_o-LxEaU89FJRCPkZFHL1z6AC8ehcvvgg8MD0pn9S89fFwvv_-gLocpkw9Hq92PX27Gz0OeKq8qcHUPeqoNDztSqa8DXgPvf4tXLxbLu25Twh8O3LSRb3fikS8cEKhPYRtfrtfHpc8uyYEPq2Hn71Ad_i8gU6XPe6N57vcK_M8axGxvcfIyDwfEdO8cwixPUC92byFw5w8pETBvJWSTz1R0ui8c3b8vDO4tzwPDna805klvRc5ejxbqEa8ULEAvWfo6byq8RK9qMghvgJ8HD3o6W08-wU7Pto31z1Edco7qLIevVcJlryyhDW7J0hRPa3MKr3Xyc88mQznPfxHoD1GlaG8LHqMvHZlYTzJLyy7w6Novf5OCT1rlP88IkQDPUWAU7xE3928Dl8PPNkWL7yIwuO64ngOvsBq-jtU9fq6p3rNvKTB7TzkAiM8TzigPXbCqz0-3hQ8RVylPHO49r3kBDc8Yd6jPIY84r1ZSXG7dHoePjb3Ibsly6y6ZfBhPWlRxLw_dP86rHH2vHyPZL2Awo86Vms8vFKvsL1ixxg7QXh-vLKcBLs4tNA71HtPPNFCfb1N-pi7Eo40PCbKOT3Qcuq7L7_TvXKj7bzXtF67aP6tPXmocj3NGAs749GMPS4xYLzbCaM7li8ePa7Yj732P-G6KlkpvJtUVL1vHdI7xqQ_vOQEt7w8_vm4k2KRPaaBP72Dk6y5DBIRPSpSArseR5U41g1qvQK_YT3zKHu4U7MnPdKQTL0zGpQ4avYju--dp71iSNy4u-wXvnwiUzvIKdw44WsfPL4n4DyFwCG6d9cdvPofmr1E8Uo5N1OhvLOvFTn9MjU5P8dHPB97wr0hxyS4kUKJPaLjNLyGlpK4A90ovGSy-LyiMRA5i6sIPOgBAj1xNU43RQ7RPSkj7r3iLL85EnAjPQKeNDyk4WU41LqNPdvVT7rhcXS0CJvwPLn90j1HaWU4088IPGYx0b0-S5c2oyCIPbajcz0w3qi4ZFFdvfyvDj1lDy053oi4PMJuM73tnK-3v5iSPEd0j70GxLm3khLxPBsNQL30ZmM4kl0ZPtlPUL2swj-5Z0TpvX1bEL2aEju4k2tPPfzujL1tIg03GROMvSdQRDwV-FW4va8FPaVJCb6tnoW4Iv_sPTUpBT7zflu4h9VJPUAv_D23qge5ThIFO6dcgT3RCIa45LUXvR8TaT23YXI4IAA4E0AJSG1QASpzEAAaYB0IAD3bQr__EkXmKMTo797wA9Pa7Cz__83_Ae7g7P0Nx_wf9f8J8AfLoQAAADvfwhHtABB_2y_jMOXxGASJxRs3aPznNcn1E9jk5XP36gQpEBYpWADL_rAJHNntSRZRMiAALUuCFzs4E0AJSG9QAiqvBhAMGqAGAACIQQAAjsIAAFxCAACmwgAALEIAAGBBAACMQgAAMMEAAKDAAABIQgAAMMEAAEBAAAAwwQAA6MEAAABAAAAwQgAA4EAAAODBAABQQQAASMIAAMDAAADgwAAAOMIAAMhBAAAQwQAAgMAAAHDBAAAUwgAAkkIAAABAAABUwgAABMIAABDCAADAwQAAnMIAACxCAACwQQAA6EIAAETCAADgQAAA0EEAACRCAAD4QQAAEMEAAGxCAACawgAAwEAAAABCAACMQgAAcMEAALDBAABgQQAA2EEAAGDBAACgQQAAGEIAAOzCAAC4QQAAEEIAAJRCAADwQQAAksIAAIDBAACywgAAQMAAANjCAADYwQAA2MEAAHDBAABowgAAGEIAAKhBAACawgAASEIAAKDBAACgwQAAkMEAAIDBAACAwAAAEMEAADBBAABsQgAAyMEAAIDBAACAQQAAYMEAAIpCAABIQgAAGEIAAKjBAAAAwgAAOEIAAKjBAACAwQAA4EEAAIjBAADAQAAAwEAAAFhCAACYQgAApMIAAABAAADQQQAAgD8AAPjBAACAvwAAYMEAAOBBAAAgwQAA8EEAAGRCAAAQQgAA2MEAALhBAABswgAAREIAADRCAABwwQAAGMIAAHDBAAAkwgAAiMIAAEjCAACAvwAADEIAACzCAAAAAAAAcMEAAMjBAABQwQAAgMEAAKDAAAAAAAAACEIAAJjBAAA0QgAAGEIAACBBAAC4wQAAmMEAAIC_AACAvwAAhEIAAGjCAAAwQgAAyEEAAODBAAAQwQAAuEEAAGTCAAAswgAAcMEAABxCAAAgQQAAREIAAEjCAAAAwQAAJMIAAIrCAABQwgAAwMEAAEBBAACgwQAAqMIAAABAAABIQgAAAEAAADRCAAD4QQAAgEEAAKBBAACAPwAAcEEAAGzCAABkwgAAwMAAAODAAAAUwgAAeEIAAAAAAAAQwgAAkMEAAIDAAAC4wQAAkkIAAKbCAAA0wgAAgsIAAADAAACIQQAAQEIAAFTCAABgQQAAqMEAAIBBAACQQQAAVMIAAODAAADIQQAAIMIgADgTQAlIdVABKo8CEAAagAIAAJY-AAA8vgAAxj4AAKi9AAAMvgAAvj4AAAw-AAAfvwAADD4AAIi9AAAQvQAAfL4AACw-AAC4vQAAvr4AAEw-AACaPgAAgDsAAJ4-AACyPgAAfz8AABC9AADgPAAAbD4AAKi9AAAQPQAA2D0AAFC9AAA8PgAAdD4AADQ-AAAbvwAAQLwAAHC9AAA0vgAA-L0AAOi9AADGvgAA6r4AACS-AAB0PgAAqL0AANI-AADgvAAAoLwAADA9AAB0PgAAZL4AACS-AAC-vgAAqL0AADw-AADYPQAAiL0AAJg9AADgPAAATz8AABA9AADYvQAAgDsAAGQ-AAA8vgAAmL0AAL6-IAA4E0AJSHxQASqPAhABGoACAABAPAAAoDwAAKA8AABZvwAAlr4AAKC8AADyPgAAmL0AAEw-AAB0PgAAmD0AAKA8AACYPQAAoDwAABC9AACgPAAAdL4AAPY-AABsvgAAij4AABQ-AABkvgAAbL4AAMg9AADgvAAAgDsAABC9AADIPQAAML0AAAQ-AAAQvQAAND4AANq-AABkvgAALL4AAIg9AAAFPwAAHL4AAL6-AAAsvgAAgr4AAIC7AADIvQAAnj4AAPY-AAAMvgAAf78AAFQ-AABwPQAAmL0AAPi9AABcPgAAiD0AAMg9AACWvgAAij4AAFC9AACovQAApj4AAHA9AADWPgAAqL0AAOA8AAC4vSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=tIh11N7vNts","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["7115658726965199572"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"14255729"},"16832711258836347671":{"videoId":"16832711258836347671","docid":"34-11-17-Z5313A7C050E01846","description":"In this video, we dive into the proof of the derivative of sin(x) using limit definition of the derivative, also known as the first principle. Follow along as we break down each step and provide...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4581023/062aa469542888c4ccf3a4bb10c68ee3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/NfM8MwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmzT3GowiNuk","linkTemplate":"/video/preview/16832711258836347671?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof of the derivative of sinx: A Step-by-Step Proof and Explanation","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mzT3GowiNuk\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFgoUMTY4MzI3MTEyNTg4MzYzNDc2NzFaFDE2ODMyNzExMjU4ODM2MzQ3NjcxaogXEgEwGAAiRRoxAAoqaGhwdWh3eHN3aWVleXdjYmhoVUNNMF9aVzN5aGJKN1ZyUFJwOGdvdE1REgIAEioQwg8PGg8_E-0CggQkAYAEKyqLARABGniB9wwH_P4DAAQABQcBCPwCDf35AQn-_wD08fn_BQL_APsA9__8AAAA_gYECgQAAAAI9vf-9_4AAAsN-wIFAAAAEgQG-fgAAAAKBvcI_gEAAPb__A0E_wAABQP69_8AAADwA_v6_v8AAPIE-_0AAAAACfj5EQAAAAAgAC3EQtg7OBNACUhOUAIqhAIQABrwAX8C-v_b9q8B2hHeANYSFwGpHAoA_DTSALr76QClE-b_AN_6AOgU6gAFBAcAuCwdARHdzQAU3Rn_PNz8AED7AQDLBAUALujsADkpGQAb8w3_5gj8_xTkDv_02rIAIC7j_g3hEP8A_-sABS_WAw_-PwH4AScGGucH_9-rJQDd-_wCDQXg_QslBAML3w_42AUjAiPaCwIMKgf55v7fBPENFPbsAAf2BwLg-gnr5wgoEhL2sdQN__Tx8wcf-SQG4PHpAdfxLgbbEgn6_fES-AUF8wXkEvAI9_LrAxEJCP7u9wn_GuX08975_PnhHOz42gzx_yAALfjGETs4E0AJSGFQAirPBxAAGsAHzF3DvmTS-LpL8P47pZ2PvUTkz7yFS72846C5vRxtizxeBSO8aTorPmErEr0sP_o8FOgzvvvv3DxZ04a8y4AzPubRiL2YYjM8dXT8vS8Tmj0LAhC9V7E4vkelfTyl1Ao9Kz9fPX5fcbufzSq8vrh5O1csFL1D2Pq8IZWivIZEkLxO3ra83GoZOvURWL0TfFi911YHvYPlY72pw2W8BFcJPuutXDwvREO6tLCyPUwlMr3p5SC7phCDvR8AJz0zG_-8uy-yPRY8-zylBRq7z9kCvQkrALsGt1o8vNnRO6LGjjz99787D3uGPey5kT05oSu98G5gPVtVO71W2Ge8bazkvaYRLj2UTsE77IbtPYz3gz1yW5E7fJrTvbGiJj19XrG8s743vLcdBbz6t4k7NtVpPb387j1POUs8QgNWPcTdzzx5aKs6w6Novf5OCT1rlP88t099PUBs6bwoToe7uod_PSXOd7pv02E7DBgpvWrGvTwWpLo7qnMWPQSeKj189MQ76TaXPOObN7xLoPM6BSOlPdYCO75J5Zo6-ePuu1th-r2FAr47J7ZnPYjO27tKiKi88PlhPRRfDb53hBG7x3lJvHVnmjrNGyu7Vms8vFKvsL1ixxg72fWxvUhHKbojMBm6nSFmvJQWDr2TLR68y5jnvFoNuT3sjIg7TgJlvPCsiL349cc6nHKAPWo8RzxtOgK8mQ_oPQwDlj38XVW68WhjPfZuYr3Btym6zAybvPPArLzJKc87fmgwvSkrob2UTri43WGTPbuXC76lDmg5CvcKPc8GKj32rb05mzrPvbjuQTwtJwq5iJliPZcqx73hBte3rS-3Ov0S8b28I4k5HNYPPVpipTxwXeW50ZyrvLlhRT0F2qG6FByDvcckrb0aURU44KJOve5IoD10Cvu3cD1PPbhOLb1PJQQ51QIAPfry3TzHoje4MCZCPekyK70nTAC56h4evcgXjj05yUc4QfEDPXFPwb3XOHs5w3csPe5IoD1t7Rs5dUc1vB3TST37LDK3AcZOPSaatjy_Koa4sRODPLaxs70Vqek4sOJUPbJXTLvl0YU49aKxvahs_bxnsJq4AooHPJ85oL2zEZ23lN2MvHiHyrwuJ2g4YaBQPfTZRj0rmCY4weMrPtylaLwHiXS5l1YTvgwgrL05jfE1SJZCvSwRw73BzI-4lrvHOzlHWD2eNgO4HeMMPGdG371pUBK4Iv_sPTUpBT7zflu4fGKNvSED2T2BNTC5rW3qvRQ7vzxv0uM3mt1JvC5Adj1AIv03IAA4E0AJSG1QASpzEAAaYEP0ADYCDN_sExLu8d_gC_LwyOH60Qf_3-YA3DPyIRkV6uIG4f88xB3prgAAADkD6ij_AAprv9_5DwUEBNS1vh46fxb4NcAXB-rO4h0WBuTY-8YfRQDu8MI5MdS2Gus8FCAALZs1KTs4E0AJSG9QAiqvBhAMGqAGAAAAQgAA8MEAAIRCAABcwgAAcEIAAIBAAACiQgAAEEEAANDBAACoQQAAIEEAAFDCAAAkwgAACMIAAJhBAAAgQgAACEIAACjCAACAQQAAoMEAAJDBAAC4wQAACMIAAOBAAAAUwgAAQMEAAEBBAAD4wQAAJEIAAKjBAAB4wgAA4EEAAJLCAABAwQAAgsIAAOBAAADIQQAAlkIAAADBAACgQQAAWEIAAKhBAABgQgAAcMEAAEhCAACkwgAAMEEAAMhBAADwQQAA0EEAABDCAABgwQAAqMEAAEDAAAAsQgAAPEIAAADDAACoQQAAAEIAAI5CAADAQAAAnsIAAFDBAACAwgAAAEIAAPLCAACYwQAAeMIAAEDBAABgwgAAaEIAAHxCAACSwgAATEIAABzCAADYwQAAEMEAALhBAAAAQAAAAEAAAMjBAAAcQgAAIMEAAIA_AABAwAAAoEEAAHBBAACSQgAAwEEAACDCAACwwQAApkIAAJjCAACIwQAAQEIAAGDBAADIwQAAYEEAAAxCAACAQAAAlMIAAIDAAAC4QQAA4EAAAMDBAADgQQAAYMEAAADAAAAQwQAADEIAAIhCAAAQwQAAoMAAAABBAABwwgAAlEIAADBCAABQwQAAyMEAAOjBAAAUwgAAXMIAADDBAADgwAAAgL8AAJjBAAAwwQAAAEAAAKDAAAAAAAAAKMIAAADBAABAwAAAZEIAAIBBAACYQgAAgEAAAABCAAAAwAAAVMIAAADAAACAQAAAZEIAABDCAAAYQgAA2EEAAFjCAACQQQAAAEAAABBBAACYwQAAAMAAALBBAADYwQAATEIAAIC_AACQwQAAUMIAAFjCAAAEwgAAiMIAAAAAAABwwQAALMIAAADAAACgQQAAmMIAAEhCAAAAQgAAgL8AAKBAAABAwAAAQMEAADjCAACOwgAABEIAAODAAABwwgAA-EEAAIhBAABAwgAALMIAANjBAABgwgAALEIAAEDCAABcwgAAPMIAAIjBAAAwQgAA8EEAALjBAADIQQAAgEAAABBBAAAwQgAAUMIAAOBAAACIwQAAUMIgADgTQAlIdVABKo8CEAAagAIAAEC8AABwPQAAPD4AAAS-AACgvAAAlj4AAKg9AAAjvwAA-L0AAIg9AAC4vQAAoLwAAOA8AAAkPgAAFL4AABS-AACWvgAAoDwAACw-AACWPgAAfz8AAFA9AABsPgAALD4AAOK-AAAEPgAAED0AAIa-AADYPQAAXD4AAIg9AACIvQAAQLwAAAw-AAAEvgAAMD0AAHC9AAB8vgAAsr4AAIi9AABwvQAAyL0AAAw-AAAMvgAAPL4AALi9AACYPQAAUL0AAOC8AAC6vgAAyD0AAPg9AAC6PgAA2D0AAEy-AABwvQAAKT8AABC9AADIvQAAFD4AAOi9AACIvQAA6D0AAKC8IAA4E0AJSHxQASqPAhABGoACAABEvgAAmL0AANg9AABTvwAAPL4AAOC8AABcPgAA4DwAAIi9AAAUPgAANL4AAES-AACgPAAAFL4AAEA8AABAPAAAHD4AAP4-AAAUPgAAqj4AAFC9AABMPgAAUL0AAMi9AABwvQAAMD0AAKA8AABAvAAA-L0AAOA8AABAvAAAVD4AAIi9AACqvgAAFL4AAOA8AACKPgAAij4AAI6-AADYvQAA6L0AAOg9AACYvQAAED0AACQ-AABAvAAAf78AADA9AABAvAAA6D0AAIY-AABQvQAAyD0AAGQ-AACgvAAAuD0AADA9AADgvAAA4DwAAMi9AAB0PgAAuL0AAIC7AABAvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=mzT3GowiNuk","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16832711258836347671"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2578049568"},"7274032980193768380":{"videoId":"7274032980193768380","docid":"34-11-6-ZF418761B0D2786D5","description":"What is the integral of 1/sinx? This video will present a step by step explanation of how you integrate 1/sinx. The integration of 1 over sinx is a challenging integral that requires the use of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3919167/832b8418cc38c66be03cc10002125f44/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/EqrPBgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHOJRsTTnwwU","linkTemplate":"/video/preview/7274032980193768380?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to integrate 1/sinx","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HOJRsTTnwwU\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFQoTNzI3NDAzMjk4MDE5Mzc2ODM4MFoTNzI3NDAzMjk4MDE5Mzc2ODM4MGqIFxIBMBgAIkUaMQAKKmhoc3F3aHdmZHhqdmdtc2NoaFVDNGRhckJvNGpYRExzM2J0LTcyeHZOZxICABIqEMIPDxoPPxOiAoIEJAGABCsqiwEQARp4gfgMBP8C_gAd_gH9-gEA_g8N8QT0AAAA9AYC_wgC_wD78v_8AwAAAP8UCAsGAAAAAv799fL9AQAQBgz8BQAAAAf69gYCAAAADxr6Av0BAAD0-v78AwAAAAwD7AEAAAAAAA758AD_AAADBAv3AAAAAPnlAQkAAAAAIAAtMJjKOzgTQAlITlACKoQCEAAa8AF__PX-5N_dArYY2__iJPgBlhAj_wwn3_-Y_gEApvS5Ado29f_xBtX_zPgVAKggCgEV1cIA-MMCACqw9P4RytkA-fMLABfK6gJX7Cb_EgHc_7oXRgHiwhYB_bjWADVI8P0g6Pb-GPawASQcvQIOGy0ALhZIACbpFwPpvyIE6PMSCAH86P38CQIF4s4Z-9nyPAn4q-sC8PX49ssY7_zpAAn3_eUuBvlK3vk2_PAJJw_wA6Lr9f3g__ITNvIc994Y1wrf2iX_yvoM9PzuF_YM_gPxufzW_CHy8Q8O5g755icCA__k5_-8FwUC1AH9CtcK8ucgAC19v-w6OBNACUhhUAIqzwcQABrAB4ds2L4kXoM949G6O0a2E77Buou99Nwivdnfw71-Ors7gL6IPNqQHz6mBTM7562ZOhxCFb5Q8IM8m0gfvf29dD6SVEu9A7HsPHE9Wr7nFr89hUyovEzEO76CnEW7VjLXuskzND046Fy9UJAzvKtNoj1U3B29CXYSvclXwrzmDAA9Qu4CvfBVBj3NhHW95jXAvPSV9jx7IAi9eI99PERpzz3kxDI8cao1vNdoGT2cHzW9DJH0O3uuBb3DB3s9I8oNveGfrTyf2uo8eajPuO7QML1Yeoi8iyrPu0pF37sN9_a8zyqbuQ97hj3suZE9OaErvdjCBz1Ex5m98juyvLHhSb4ukvY8TwidPN20GT49FtE8A2D6uypcKr23a_g8oFKlvHeKED0CZ4S9vxwLvCz-pTznQMU9qWisPP6Hjz2PyxM9rongPAib8Lz_Yxw9Fw2ZPPTzUD3TwA-9u5KuvISODD0fgiq8lpWmvCz5k71iYEI8Dy-jvBoppTw47hk9mVupu4QcCDzDtio9ggocPAUjpT3WAju-SeWaOuC82L13YYC9Pn0CvN3Bfj28uyQ9iHuRvG786T1M5K29K3Opu6q1VbzmUNA8T9BkO0HYCT1CWKK95D8iutn1sb1IRym6IzAZup0hZryUFg69ky0evEI9IjwtcWk9WemkO8xslr3zSpO9B_9cNw1u6zwAm2I8EKXmOiVIuz2eoCM9YE8ruXrkqj0jX668b0iCuZUMAL1XX1i9M1NzOGGCpDyOFxy9XsWYuu50nD2s4s29Kv-9ObN4gT3LfgI8URy_NpSJ270J3Zo9773oOJtw8TuARDi9tsNpOMui8LxbQh6-NwXjOXj39rxY8qc8e-uZODpFAr1NiT89QskvOgYkRr3DV7W9CMhdNzBpl72tv0U93nMGuTTrpj1XZA-9JEs4OS4xmz0jJYc8hwKNuXFPPL1_1Ta8NKC_OLuPq7q1Bbo8Y_gFORGgUD26SZy9qLB5OcRWNT15YcY9tuYuuDgBH7wOg3k84MFEuBcfsDxLoIc9ODPHuGCbBbyMRE29dp0vOKYr2D1GmAI9gUZ_uGh1Mr5kpCg9F8pMt5oS_7y9sia9FbrHt5TdjLx4h8q8LidoOGpcDj0Wd3I8U7nCtx-fAD6k5JC9Feg6uU7BkL0_vk69U05lN9W5fTyMEx-9cXMwtfY8xL1GmAI9ZDUQOOwDvTt81A--F_rcuMr0cD0i4Ss-8cuKOO3EmzxFScg97lIKuVrtxr0PFDM9aNv7NxC_LL3nWi89LaZkOCAAOBNACUhtUAEqcxAAGmAW8wAXCRTE6hsPAAC1_wjo-c_C--Eo_8nMABUT9OQYKsXHCPT_DQDy67AAAADxCAcuxgAmbPLq7wvgSfPun9kLHn_9GDLHp_wR679I4P_t8jwZD0wA5BqoIhbq_Sgk_hAgAC3ixyY7OBNACUhvUAIqrwYQDBqgBgAAAMAAANjBAAC6QgAA2MIAAJBBAACAwAAAgkIAAAAAAABAQQAAAMEAADDBAACIwQAALMIAAAAAAACwwQAAcEEAANhBAADgwQAAQEEAAAAAAACYwQAAcMEAAIbCAACwQQAAgMIAAHjCAADoQQAAiMEAABBCAADgQQAAMMIAAABBAACUwgAA0MEAAKbCAACAPwAAiEEAAFhCAAAgwgAA4EEAAIC_AAC4QQAAgMEAAKDAAABAQgAAQMIAAKDBAACMQgAAMEEAAIDAAAAwwQAAiMEAAKDBAABkQgAAeEIAACBBAADWwgAAAMAAANBBAAAgQQAAVEIAAIDCAABYwgAAhsIAAABAAADWwgAANMIAAIbCAADgQAAAWMIAAFBCAACYQQAAcMIAAEBCAAAEwgAAAEAAAEDCAACgQAAAoEAAAOBAAABgwQAAwEIAAADAAACgwQAAIMEAALhBAADIQQAAIMIAAAhCAABQQQAAMEEAAJBCAAAcwgAAGEIAAHRCAAC4wQAAMMEAAODAAACYQQAAgEIAAODBAAA4wgAAEEIAAKDAAACgwAAA4EAAADBCAACAwQAAJEIAAMJCAAAoQgAAQEIAADjCAAAMwgAABMIAALRCAAAsQgAARMIAAJLCAABQwgAAgMAAAGDCAAAAwAAAiEEAAADAAAAgQQAAUEEAAKjBAAAAwAAAPEIAABzCAACYwQAAgD8AAIhBAABAwQAAhkIAAEDBAACOQgAAlMIAAEjCAACAPwAAYMEAAAhCAABAwgAAAEAAACRCAADAwQAAuEEAAKDAAAD4wQAA4MEAAGBBAAA4QgAAokIAAPhBAABAwQAAaMIAABDCAACQwQAA-MEAAGTCAADoQQAAgMAAAKDBAADgQQAAmEEAAKDAAACsQgAAfEIAAIBAAACgQQAAgEEAAFDBAAAQwgAAiMIAAKhBAACAQAAAwMEAAEhCAACAPwAAksIAALjBAABAwQAAIMIAAAhCAACAwQAAYMIAAGjCAAC4QQAAQMAAABBCAAD4wQAAYMEAAKDAAAAgwQAAIEIAAADAAABwwQAAOEIAAEBBIAA4E0AJSHVQASqPAhAAGoACAABUvgAALL4AAJg9AABsPgAANL4AAK4-AABMPgAAI78AAOA8AACIPQAABD4AAAy-AAAwvQAAUD0AADy-AAAUvgAAfD4AAEA8AABQPQAAHz8AAH8_AADgPAAA4LwAAAQ-AAA0vgAAwj4AAHA9AADYvQAAML0AAJo-AAAsPgAABL4AAK6-AADGPgAAuD0AAFC9AAAwvQAApr4AAGS-AACCvgAAED0AAGy-AACiPgAA4DwAAIi9AADoPQAAoLwAAES-AAABvwAAjr4AAIi9AAC4PQAAxj4AABQ-AABcvgAA4LwAAGk_AAD4vQAAQLwAAHA9AABwPQAAVD4AAFC9AADqviAAOBNACUh8UAEqjwIQARqAAgAAZL4AAFA9AAB8vgAAR78AAGy-AADIvQAArj4AADy-AACIPQAAgLsAAPi9AADIvQAA4DwAAOi9AABEPgAAML0AAEC8AADGPgAAMD0AAKI-AACAOwAA2L0AAOA8AACAuwAAqL0AAFC9AAAUvgAAUL0AAIA7AABEvgAA4LwAABw-AACAOwAAyL0AAEA8AACAuwAA1j4AAFw-AAAsvgAARL4AAJg9AAAUPgAAED0AALg9AABsPgAA6D0AAH-_AABAPAAAmD0AAKg9AACuPgAAJL4AALg9AABsPgAAbL4AACw-AACAOwAADL4AAAw-AABAPAAAdD4AAKC8AAB8vgAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=HOJRsTTnwwU","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7274032980193768380"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4223288759"},"16695119574294562940":{"videoId":"16695119574294562940","docid":"34-3-14-Z5BD8ED106B7FB28B","description":"We prove that f(x)=sin x, the sine function, is continuous on its entire domain - the real numbers. We complete this proof using the epsilon delta definition of continuity of a function at a point.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2802899/edc62bd5972842d93e58a2b229c77abf/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/vhh7jQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Do_OsB2KF4mQ","linkTemplate":"/video/preview/16695119574294562940?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof f(x)=sin(x) is Continuous using Epsilon Delta Definition | Real Analysis Exercises","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=o_OsB2KF4mQ\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFgoUMTY2OTUxMTk1NzQyOTQ1NjI5NDBaFDE2Njk1MTE5NTc0Mjk0NTYyOTQwasEPEgEwGAAiRRoxAAoqaGhjY2F4emhienNtamxpYmhoVUN5RUt2YXhpOG10OUZNYzYyTUhjbGl3EgIAEioQwg8PGg8_E74CggQkAYAEKyqLARABGniBA_369Qb6APMEB_YEAQABDgb_AvYAAADn9fQJCP8BAOoP-PMA_wAA-QTwCQgAAAAK_AP-9v4BAB0C-_QEAAAAHAL9APcAAAAND-4C_wEAAAH48QME_wAAEwX2_f8AAAAJCwTtAAAAAPT7BwkAAAAAIBb9AwABAAAgAC16F8Q7OBNACUhOUAIqhAIQABrwAX__HgC6CtkA1O8G_8In9gCRJef__DvMAMbg6QGu9b8BCAMcANgE5gAC-fsArBXq_xPZxwD0pfUARMDi_zbl9gDv_wwAFc_sAjQhBgAbFur_1hEg_ujb_f79v9oAGQHvAO_KGP0P4tb_6gS5AiUYKwHrDBwHDOAa_dfDDgHR6Pn79c_uAuUSBvvR0AwA3PQ2CAzJ_P4ZFeQCuhf5BPzzA_kv1gr2Blb1_eEC_wfK-ggK5vv1-ibb4QIhKwv52Qn08fH1KwLXFAr53McE-Av03vva5gcEALYIFAj7Ce_o4gD88xbk--8N-_zG--kO2wnz6iAALTgcAjs4E0AJSGFQAipzEAAaYAz4AC3sOu0EKVDpBtHpANfm6tksnwv_4Qv_3gXt2_wgwbwT-_9J3BTfoAAAADDu3APoABR_3ALcKP787tmBxjEOcRTtJL_sHt675A4p_gE24_QwKwC7BZ9OPuWwUOA8KSAALYzeEjs4E0AJSG9QAiqvBhAMGqAGAADQQQAAOMIAAHRCAABswgAAJEIAAABAAABEQgAAOMIAACTCAAAgwQAAMEEAAJbCAAAwwQAAkMEAAABBAABgwQAA8EEAAMjBAABgQgAANMIAAFjCAABgwQAAEEEAAKhBAAAUwgAAMMEAAJhBAADwwQAAVEIAAIjBAAAswgAAJEIAADzCAAD4wQAAeMIAABhCAAAgQQAAvEIAAADCAAA8QgAADEIAAARCAAAIQgAAkMEAABBBAACKwgAAcMEAAJhBAACsQgAAoMAAAODBAAAQwQAAgMAAANDBAAAEQgAAgD8AAMLCAADAQAAAMEEAAAhCAAAAAAAAuMEAAPDBAACewgAAAMAAAADDAAAwwgAAUMIAALDBAABUwgAAZEIAACBCAACmwgAAmEEAAMDAAAAEwgAAaMIAAAAAAACAQAAAQMAAAHDBAABwQgAAQMEAAKhBAAAsQgAAFEIAADhCAACOQgAAdEIAAJDCAABAwgAAvkIAAILCAACAQAAAIEIAAKbCAADgwAAAAEAAADxCAABAQAAAhMIAAABBAADAQQAAIMIAAEjCAAAUQgAAqMEAADxCAABAwQAAZEIAAERCAACgQAAA8MEAAKBBAABwwgAAQEIAAEBCAADAwAAAQMIAABjCAABowgAAjsIAAIDBAAAAwQAA4EAAAGzCAADwwQAAIEEAAHDBAAAAwgAA6MEAAABBAACQwQAABEIAANDBAAB8QgAAgEAAAIBBAACoQQAADMIAABBBAABYwgAA0EEAALDBAABoQgAAcEEAACjCAADAQQAAAEEAAKDAAAAAQQAAiEEAABBCAADAQAAAHEIAADDBAABwwQAAoMEAAHTCAACQwQAAYMIAAODAAACYwQAAfMIAAIA_AABkQgAAAEAAAIJCAAAsQgAAcMEAADxCAAAQQQAA4MAAAOjBAAAcwgAAEEIAAAzCAAAAwgAAqEEAAIC_AABcwgAAyMEAAHDBAACAQAAATEIAAOjBAABIwgAAOMIAAIjBAADgQQAAUMEAAFTCAABsQgAAAEAAAKDBAACoQQAAsMEAADDBAABwQQAAOMIgADgTQAlIdVABKo8CEAAagAIAAOi9AAAkvgAAfD4AANi9AACSvgAArj4AAKY-AAARvwAAVL4AAIC7AAAQvQAAgDsAALg9AAAsPgAAor4AAKA8AACOPgAAEL0AAJ4-AAAbPwAAfz8AAEC8AADIPQAAsj4AAKq-AAD4PQAAUD0AACy-AACCPgAA4DwAAMg9AAAVvwAAEL0AAIK-AACiPgAAVL4AAJg9AACuvgAAkr4AAEA8AAAwvQAA4LwAAII-AAAEvgAA4DwAAKI-AAB0PgAA1r4AAOg9AADevgAAHL4AACQ-AAAQPQAAuj4AAJi9AACgvAAAYT8AAJg9AADYvQAA-D0AADC9AAAQvQAAQLwAAO6-IAA4E0AJSHxQASqPAhABGoACAACSvgAAgLsAAMi9AABJvwAAdL4AAOC8AADCPgAAuL0AAIC7AACKPgAAgDsAAIg9AADgPAAA2D0AAKi9AADgPAAADL4AACU_AAAEPgAA-j4AAPg9AAD4vQAAyL0AAKi9AABwvQAA-L0AAKC8AAAwPQAAEL0AAKg9AADgvAAA6D0AAPi9AABUvgAAJD4AADy-AACGPgAARL4AAHS-AACgvAAAcL0AAFA9AAAEvgAAUD0AAGw-AADYvQAAf78AABA9AAD4PQAAUL0AAHw-AAAUPgAAHL4AAJI-AAAQPQAARD4AAIi9AABwvQAAgj4AAEA8AACOPgAAmL0AAKA8AAAkviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=o_OsB2KF4mQ","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16695119574294562940"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"168353505"},"1078198396457684037":{"videoId":"1078198396457684037","docid":"34-3-15-ZDB1FEEBAC7444EDF","description":"sin x - cos x = 1 then what is the value of x? Find value of x when sin x - cos x =1. You can email me at raviranjans@gmail.com You can follow me on Facebook. My Facebook account is...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3577491/b35a1d81b110a3b371bcde69c0d9c46e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/6KuZFAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dophx3gWGZGk","linkTemplate":"/video/preview/1078198396457684037?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"sin x - cos x = 1, find value of x","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ophx3gWGZGk\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFQoTMTA3ODE5ODM5NjQ1NzY4NDAzN1oTMTA3ODE5ODM5NjQ1NzY4NDAzN2qHFxIBMBgAIkQaMAAKKWhoeW15bXhqcHJydHVwdGhoVUMwYkxBQ2hyY2NTTFJRU2paazE0M1dnEgIAESoQwg8PGg8_E4kCggQkAYAEKyqLARABGniB7gH5_fwFAAELAwb4B_0CCwD7-vcAAAD2-vv9_gL_AOsDBgAC_wAA-hAD_gYAAAAX-v3__gADAgcCDvMEAAAAGQL9APgAAAAWBvb6_gEAAPYG7_kCAAAA_Qn3Av8AAAAICgPvAAAAAAEH-PoBAAAA_P0D_AAAAAAgAC1xht47OBNACUhOUAIqhAIQABrwAX_0Bf7N5d7_vgcAAMwGBgKVNyv__D7JAJ3-AQCq9LsBBRQJAAPm2gDILCH-5RTtABTXxADUthAASePj_xDM2wAH6QkBFszrAlTtJP8FG9r91BIh_vzgAgD9u9cAJTbd_hz_F_4b8twA8RnRAhL-SwEE_1ABB-QK_-66Cf_s6f_-8-bs-gIU6Az6qhD73c4uAxywDAQA6gT9zhwEBQ4EBf0JCCj1CTfM_QsMBBEsBAH-39LvDeH_8xMaCRcHyCb2CPrkHv25_gLz6_AaBiv8Bf27HvAJ98XxEikJ_AfnJQIDEPX787MP-AfC--gO2Qry6CAALUXi9jo4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6U2AcvSRC47xvkQW94KD9vS4MpjsFkR68mDDaPQUgpLwe1mU8hA9VvkpDDT0u6WM9_b10PpJUS70Dsew82UNLvkOSdjspf4K9FRxOvqxNyDw1lx87Xz_pPDfnmrsjrLy8J8BwPfTOGbxPseq8IKjouh11ETwz3AC98FUGPc2Edb3mNcC8zocMPSUyPbzMndM7IOsJPsVt2byqmTW8e3qGPSpHtzwEJqY8ZXuTvfuWpD3_da68dWYsPaaLwzz_dKg8LpnZvH_4eTwRwuC4-n0_vRqUHz3GBWQ6g0OYOQGk9jwW2YI6ccjGPHGEFr3HKZ-8qMghvgJ8HD3o6W083WA4PimmXD3jGz46Ka5KvZUgrTwvdni6fHuXvO5qKL17LlO8odsGPQvoqj3nkX27LHqMvHZlYTzJLyy7mfuPvZtFjj1nbck8x458PTAvwDsm2-W8woquvLKXor0Yh2k7h4C4vSqriT1XB6M7r6b8PCDE37qYFnU8wtbRPAVIiT2ZHdg8RVylPHO49r3kBDc8ldw8vTzxwb1D6ea79bkaPis0ED1LKaK7i8ucPaQXer1feEq8k64UvSieLr0QYt-7baSRPF7Ieb0frDU7HH0MveFs6TwZa4c7s_4iPHN1Ub1XB4C8IFh6PFR05DzsKuq7zKq5vTi0cr1D_7g5Y6SdPWoGJz2Qn_A6NWy6PS5hozx7Usk4CY3APafbqL3frNq5lQwAvVdfWL0zU3M4Yt4hu6Lq_LxvPhm6oZ3TPVGBmL2XnVE5SC8vPRvUfrwCxga5Jmy0vWRA1j1cJhA4EQyGPc9Jb7wVJYo4XFQLvZwV8b3cnnU5kWLgvbplLL0zVHy44WsfPL4n4DyFwCG6Y3RqveAZaL1Zb_23uFTru6i7nTuoiCO5hc1FPWGbnrxy39I3BKEmPUqqgLwv8zg53c_pvHfkfry_NrW49VXovI-JWT3WMUE42r9cPZtBN70Ezfs4Wd2qPZHGsjwjVF84MzR-PU-Wej21das3Ko5DPeIC0D27Afc4BpwlvIxq0b36U_c3T9GsPcONCj2p3Im4ZVPOvcLoqDz-Mug33oi4PMJuM73tnK-34hyaPAUiurxuO4S3AgHhPEQzD705Bp-4kl0ZPtlPUL2swj-5Fk4CvjCrZr1VKlY4r2IsPXiUb72CXCQ3AAJ2veoSxDw9yPO35NWevHqJ8b1lVTC4Iv_sPTUpBT7zflu4mJNlO4AL0j2Y5A-5b8j1vL2zbD2_NzY42OsCvSqjNj2Y8m00IAA4E0AJSG1QASpzEAAaYDMKAEr5Pcre_1bZIrn98tIFANXj7yT_5db_3_Tt4gwF5NQsBv_j5vzHogAAADX22y7ZAA97yxzNNvTg_fqF0RMrf_PtL8HsIszTw28V2QM8GxU2KQDH_akRJ_TuKSsXOSAALSZkFDs4E0AJSG9QAiqvBhAMGqAGAABIQgAAgD8AAGhCAACQwgAAiEIAADBCAABcQgAAoMAAAIC_AABgQQAAgMEAAJjBAABMwgAAUMIAABBCAACwQQAAgEAAAGDCAAAYQgAAMMIAAAAAAADIwQAAHMIAAIC_AABAQAAAMMEAAODBAAAkwgAASEIAAEDAAABYwgAAgL8AAITCAAAwQQAAWMIAABBCAAAQwQAA0EIAAEDAAACYQQAAkEEAAChCAAAsQgAAAEAAAGxCAABwwgAAqMEAANhBAAA0QgAAEMEAACDCAACgQAAAAEAAABDBAACYQQAABEIAANrCAACgQAAAqEEAAMxCAACAwAAAlsIAABTCAACmwgAAsEEAAJTCAAAgwQAAHMIAAIjCAABIwgAAPEIAAIJCAACAwgAAREIAAODBAAAQwgAAAMIAAAAAAAAAwQAAJMIAAIC_AABkQgAAsMEAAGBBAAAAwAAAAEAAABBCAACOQgAAAEEAAPjBAAAgwQAAcEIAAPjBAAB0wgAAMEIAALDBAADIwQAAgL8AAEhCAADAQQAAmMIAAJBBAAAEQgAA0MEAAFzCAACgQQAAsMEAAFBBAACgwQAAmEEAABhCAABAwQAACMIAALDBAABowgAAJEIAAOBBAABYwgAA4MEAAEDBAABgwgAAcMIAAPDBAACAwQAAQEEAAIjBAADIQQAAMMEAACDBAACowQAA6MEAAMDAAACoQQAAeEIAAMBAAABkQgAAyEEAAPhBAADQwQAALMIAAIC_AACQQQAAikIAALDBAABAQQAAyEEAAHTCAAAAwQAA4EEAABDBAADgwQAAYMEAAJhBAAC4wQAAEEIAACjCAAC4wQAASMIAAKTCAACQwgAA8MEAAODAAABowgAATMIAACDBAADIQQAAmMEAADxCAAA8QgAAoMAAAADBAABAQAAAQEEAAMDAAABcwgAAuMEAAMBBAABgwgAAZEIAAKDBAACKwgAA-MEAAADBAAAMwgAAfEIAAJjCAABgwgAAlsIAAAAAAACQQQAALEIAAEzCAAAUQgAAoMAAACRCAAA8QgAAZMIAADxCAADgQAAAMMEgADgTQAlIdVABKo8CEAAagAIAAIY-AABcvgAA0j4AAJi9AACYvQAA2j4AAMg9AAALvwAA6D0AALi9AACgvAAAVL4AAIo-AADIvQAArr4AAAQ-AABsPgAAQDwAAJ4-AACGPgAAfz8AAIi9AAC4PQAATD4AAJi9AACgvAAAHD4AAIC7AADoPQAAhj4AAEw-AAAZvwAAUL0AAEC8AAA0vgAA-L0AAIi9AAADvwAAB78AAOi9AABkPgAAuL0AANI-AACgvAAABD4AABw-AABMPgAALL4AAES-AAC6vgAALL4AAAw-AADoPQAAPL4AAKg9AABQPQAASz8AABA9AACYvQAAgLsAAHw-AAA8vgAAFL4AANa-IAA4E0AJSHxQASqPAhABGoACAACAuwAA4DwAABC9AABHvwAAhr4AAEC8AADaPgAAmL0AACw-AABUPgAAoLwAAEC8AAAwPQAAEL0AAKC8AACAOwAAir4AAOo-AACGvgAAgj4AACQ-AABcvgAAbL4AACQ-AABAvAAAoLwAAHC9AACoPQAAUL0AAJg9AAAwvQAAPD4AAMq-AAAMvgAATL4AAOA8AAAPPwAAFL4AAL6-AAA8vgAAjr4AAFA9AABQvQAAgj4AAAE_AAAsvgAAf78AAFw-AACYPQAAyL0AABS-AAAkPgAA2D0AAMg9AACivgAAfD4AABC9AABwvQAAhj4AAAw-AAC-PgAAEL0AAKA8AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ophx3gWGZGk","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["1078198396457684037"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"303411278"},"8962178984720351069":{"videoId":"8962178984720351069","docid":"34-0-5-Z9095C46FC0503416","description":"Derivative of (sinx)^(sinx)^(sinx), Derivative of Tetration of sin(x), ☀️Patreon: / blackpenredpen subscribe to @blackpenredpen for more fun math videos...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2107658/07596e3ff27135843261390d4bc14444/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/elTjngAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbHFBemBjhzg","linkTemplate":"/video/preview/8962178984720351069?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"how to take the derivative of (sinx)^(sinx)^(sinx)","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bHFBemBjhzg\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFQoTODk2MjE3ODk4NDcyMDM1MTA2OVoTODk2MjE3ODk4NDcyMDM1MTA2OWq2DxIBMBgAIkUaMQAKKmhocndwaXprY25xbmFneGJoaFVDX1N2WVAwazA1VUtpSl8ybmRCMDJJQRICABIqEMIPDxoPPxPtA4IEJAGABCsqiwEQARp4gfQDAv7_AQD5CA38-wT_AQz--gn3__8A9gf7_v8C_wAB7_UJAQAAAP4GBAoEAAAAEfP-9fz_AgANAgb9_AAAAAX_Ag71AAAAFwn2CP4BAADxB_oHAwAAAPT58Pz_AAAADQ_89wAAAAD9DQD5AAAAAAr4-REAAAAAIAAt2DLUOzgTQAlITlACKoQCEAAa8AF_8-f-zfvO_-ruyQH98ekBz0cj__w00gDT7Qv_7vDqAewb9gDcA-kAFBP0_-MtBwDm68b_1N8XAC66DAIP9cr__PL3AEre7wFJ8wUA-RH0ALwrCv3q2tH_GNbSAwQk2f4h4R__Mf_t_wYK-APwBBoBGO07ABv2-PsC8P0MuO3r_QzP1v7T8PQG_M8u_9LsHgIC2QgIHvkM-_wvDv_nyff_G-ERAg8m7wX__foD-e0PBcIMAwj--foADvge_CXk7vnX8i4G1uUA-Af0Avg4AwD89QDqAwC-BxEe-gH-4fUEBCQQ6gMTAvH_7ArqBrcS9wMgAC10cRI7OBNACUhhUAIqcxAAGmAS3wAB9PvsCvgL-PbEygjgB-Tn0LgZ_-7WAPkt3_EfMN7KG8YAFun17KwAAAAdIOoFAwATaurf6kACRenhgccG73r5Fu_s2xr11LsZAfz48j35KEYAxO_BLPy13CAWGiYgAC151ig7OBNACUhvUAIqrwYQDBqgBgAAMEIAACjCAAAUQgAAGMIAAMBAAADgwAAA1EIAAADAAACKwgAAgMAAAFxCAADAwgAAXMIAABzCAAAAwAAA8MEAAHDBAAC4wQAA-EEAAIBAAADgwAAAAMIAAEDCAAAgwQAAeMIAAJDBAABQwgAABEIAAHBBAABsQgAAyMEAAIC_AACOwgAAmEEAAMDCAABwwgAA-EEAAFBCAACAPwAAeEIAAMhBAACIQQAAYEIAAEDAAAAQQQAAHMIAADBBAACgwAAAqkIAAAxCAAAwwgAA0MEAAMBAAAC4QQAAQEAAAODAAADWwgAAsEEAAOBAAADgQQAAkEEAAIzCAAD4wQAA6MEAAGzCAACKwgAAQMEAAJTCAABMwgAAeMIAALhBAABUQgAAAMIAAIpCAADoQQAAmMIAAHjCAABAQQAAgEAAAJhBAABAwgAAPEIAAEBAAADgQAAAIEEAAAxCAACIwQAA6EEAAChCAAAAQAAAkMEAAGRCAAAAwQAAiMIAAEhCAAAIwgAAuEEAABBBAAAIQgAAGEIAAFzCAABAQgAAAAAAACDCAAA4wgAAcMEAAPBBAABEQgAAMEEAAHRCAACmQgAACEIAAEBBAAAwQgAAwEAAAARCAACgwAAA6MEAACDBAAAMwgAAQEAAADTCAADAQAAAgMIAAIBAAAAYQgAAXMIAAHBBAACGwgAAVEIAAAAAAADQQQAAcMEAAIhCAAAAwAAA4MAAADDBAADwQQAAsMEAAHDCAAAkwgAAIEIAAHBBAABwwQAAgEIAAKBBAAAwwgAAAEEAAJjBAAAAQQAAAAAAAKDBAADAQQAAlMIAAFDBAADAwAAAKMIAAJjBAAAowgAAIEEAAJTCAADgQAAAAMEAAGBBAAD4QQAA2EEAADRCAABQQgAAjEIAAAAAAACAQAAA6EEAACBBAACowQAAQMIAACBBAACAwAAACMIAADDCAADgQgAAkMIAAEDCAAAAwAAAqEEAAJhBAAAMwgAAVMIAADhCAACIwQAAqEEAALhBAADowQAAIEEAAAhCAABAwQAADEIAAMBAAABgwQAAWMIAAFzCIAA4E0AJSHVQASqPAhAAGoACAACIvQAAND4AAN4-AAA8PgAAcL0AALI-AACYPQAA9r4AAOC8AAAQvQAAJD4AALi9AAAQPQAAED0AAOA8AAAQvQAAgLsAAOC8AABAPAAA-D0AAH8_AADIvQAAcL0AANg9AACivgAA4DwAAAS-AAAMvgAARD4AAII-AADYPQAAgDsAACS-AADIPQAAED0AAES-AAAUvgAAfL4AAI6-AACYPQAAFD4AABy-AAC6PgAAqD0AAFS-AAAwPQAA6D0AAKi9AAAwvQAAiL0AAPg9AAA0PgAAij4AALi9AACAuwAAMD0AABE_AACAuwAA4DwAAAS-AAC4PQAAkr4AAKg9AAAwvSAAOBNACUh8UAEqjwIQARqAAgAArr4AAPi9AADYPQAAO78AAGS-AACIPQAAxj4AANi9AAAQvQAAVL4AAPa-AAC4vQAAbD4AAAQ-AABQPQAAiD0AAPg9AAD6PgAAgDsAAJo-AACIvQAAmL0AALi9AACAOwAAXL4AAIK-AAAMPgAAmL0AAEQ-AAC4vQAAoLwAAII-AAAsvgAAnr4AABy-AACiPgAA1j4AAHw-AADgvAAAsr4AAOC8AADoPQAAED0AALg9AACGPgAAiD0AAH-_AADovQAAcD0AAI4-AAAZPwAA4DwAADw-AAC2PgAArr4AAGQ-AABAvAAAiD0AAAQ-AABAvAAA0j4AAKi9AABcvgAAjr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=bHFBemBjhzg","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8962178984720351069"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4270569814"},"6034884108748369310":{"videoId":"6034884108748369310","docid":"34-6-2-Z16ABCB49F6433AAB","description":"We evaluate the limit of x+sin(x) / x + cos(x) as x goes to infinity using a simple strategy. As x is the dominant term in the numerator and denominator, simply dividing by x on the top and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2407804/4f0ba3b77e1708e7a01d76e233b7e33e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/6r2DHgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8K0hfFHwU5A","linkTemplate":"/video/preview/6034884108748369310?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limit of (x+sinx)/(x+cosx) as x approaches Infinity | Calculus 1 Exercises","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8K0hfFHwU5A\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFQoTNjAzNDg4NDEwODc0ODM2OTMxMFoTNjAzNDg4NDEwODc0ODM2OTMxMGqIFxIBMBgAIkUaMQAKKmhoY2NheHpoYnpzbWpsaWJoaFVDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdxICABIqEMIPDxoPPxPBAYIEJAGABCsqiwEQARp4gf0FBfsB_wAa9_wG_Qn_AQb1APn4_v0A7Pjv_AUAAAD2BfX0-AAAAPoRBP4HAAAABPoD-wX9AQAFBwf49wAAABoC_QD3AAAACgb2Cf4BAAD1Bu74AgAAAPoH7P__AAAACQsE7gAAAADo-fsHAAAAAP_9AO8AAAAAIAAtiJfOOzgTQAlITlACKoQCEAAa8AFuF-D-q_Hp_ez7_QCBGOD9ivoP_xMxAgC31gIB4SrCAd7fGwDnFgIA3AgL_7brFwDO5P__5csnAFK9CQAgzAIAKO0GAS_kAwAXJQgBHSre_uABPf70FQwA9OHkAiAu4v4I0Rz-EAfqAhjx7wMZ5S0DBfgcAugMGwDuyxwD7Ob1BAUczQDPEugG-APz_O7GEgLgAvb2_Dnq_vT27QIbAQUFDvkaAecE6vP4GO4BP-_7AekT6gOx_eUADAz8DNj3FP4BDDH77AgK-hU3BgMAK_wC-wL09Bv09AzUARQJBfnrCQoFC-35-f7t5hAHFtEUA_UgAC00zRA7OBNACUhhUAIqzwcQABrAB3EgzL7UPRy9Bi9VvPcL0bx62UA8eGz6vOCg_b0uDKY7BZEevB-BP7xNLNU8jVLXuxTP4b7Brfu81ecKvYofUz7LEOg7pPbHvKV2dTyiKyw9gehuPFexOL5HpX08pdQKPWyw8DwKa6E7DtmjukHeIzsZOZu9bCpmvCCo6LoddRE8M9wAvYlH_byTnai9a3ARvedhVz1GuCS9ZNdMPV7oqz2AwQk93BFOPEEcxb1AKPk8f116OyVasj1EBig9tMkBvZTCHD7kk9-7eqMbPXZNbby9B8O8jZG2u-VeAL1NmLq82P9vvA0XOb1EkSS8KpBZPFdp_ztMd4267ek0vNk_772c-fU9AzZvu-Rm-D1mTOE9GCPUO8wiWrvsLwA9nBa8O2JOK730fcC7wzQCPHAs67nchUG8d--su0NUwT2yIjQ8OSt9vGcOyTyBSLW8ASXPPAH9Ob3zI5k9ZVmLvA97lr1G12A8bckqvBsUaL3mrM881lyJvOB9Or1GIW49EqkCvI5fM71Rqlg8Uw4BPdvMF71MZoY862SdO3vJlb0YHO-822R5vE2mJT1qeW8969gQPEYtSD2XuII7ZhRLPPbwgL0cpJY8OWl1vD2RcT34YS69-eaKu1QlPTrwVcY8KRPpuun5bDuH16o9Ds_9u9w2Ir1RqEI93eraO6_Lhb2Acd871NK7OngfjD0isXM9gHIIu4sQmD0Rn8U8_kzyuaxvMD7kns692ccruBrkyTzXnr48JZgkO9FgLj2NXWc9XHM1t2sVmLzbPyU9G_LPuSfAsDo1UA-9MiCdOOYpozp-7a897o7BOOVCZbykb9K8hj8OuI6_vr1rcK-42swduXopZr1zew69UcPiOB1gnLy8O5I9iDGwtxQcg73HJK29GlEVOOrN6L1Mauw77iCTN0nVez0h_3G8TZRRNyWIJD0WXY082DXlOC7iP7uSgRG8wfjZOKxMgr0xZ7E9q_tIOJgMwb0BY8c8lQ6FuXQ-oTyFf5w9jJZEuXQGqz0k2089kTu7uC8Vi73sof097UMOOEaaU7yxQXA8zEjCt5grKD0opyy8DI-IOHc9h72kw8M8gK_CODnLkT3i0WG9uqxkOH0geT2wIgI8z7etN9Kr4T3Y2yG9oeeAuLp6_DsFIS-9cyFqOIRcLr18kmA8A8K9t5NrTz387oy9bSINN-Y7OL2oLX89yhDIshb0g7wklQ69Sw4xuGGsyjx40509kwuFOERyLb3h-ua7sj2ZuOIL7ryeUu-8fkO0t6C4TT33H6m9K02-tyAAOBNACUhtUAEqcxAAGmAEAwBn8R-p9f1R6gjdCROt9u7h--cZ__bR_-sazvndCNrLIg3_--Pg6Z0AAAAe5dkkzwDZf8QW2PT7KAvNntdVAnoLA8je2yjftcAGFvP8JRLbF-kAnvmlaBTg1lYhFxggAC2NnhI7OBNACUhvUAIqrwYQDBqgBgAAgkIAAGDCAACMQgAATMIAAChCAABAwQAANEIAAKjBAAAAAAAAQEEAAOjBAAC4wQAAgMAAAOBAAABAQQAAoMAAAFBBAABwwgAAkEIAAIbCAABcwgAAQEEAAIBAAACAQAAAiMEAAIDBAAAgQQAABMIAAExCAACIwQAAkMEAAMBAAABwwgAAOMIAABDCAABgQgAAoMAAAMZCAACgwQAA8EEAAIDAAAAwQQAALEIAAJjBAADwQQAAgMIAAIBBAABgQQAAUEIAACDBAAA8wgAAcEEAAADCAADIwQAA6EEAAIhBAACowgAA0MEAAHBBAAAIQgAAmEEAAAjCAABgwgAADMIAADDBAAD8wgAAWMIAAKDCAAAAwQAATMIAAFRCAABwQQAAfMIAAMBBAAAQwQAA4MEAAIDBAACQwQAAQMAAAIA_AACgwAAAhkIAAIC_AAAQwQAAAEIAAIBAAAC4QQAA-EEAAIpCAAAAQAAAisIAANJCAAAwwgAAFMIAAHRCAAAowgAAAMIAAPhBAABUQgAAsEEAAIjCAADgQQAAgMAAAEBAAAAEwgAAIEEAAIC_AABgQQAAUMEAANBBAAA8QgAAQMAAAATCAADYQQAAisIAAGRCAAAIQgAAgMAAAGjCAADwwQAAPMIAAKTCAAAAQQAAgEEAAKDAAACSwgAAgMAAABhCAACIwQAAdMIAAITCAACAwQAAuMEAALBBAAAQwgAAzEIAACxCAACAQAAAgL8AABjCAAAQwQAANMIAADhCAABwwQAA8EEAAAhCAABwwQAA0EEAAABAAADYQQAAAEEAABDBAAA8QgAAAAAAAHRCAAAAAAAABMIAAMDBAAAwwgAAaMIAAKjBAACgQAAAAMIAAGDCAACYwQAAqkIAAPDBAACQQQAAKEIAABjCAAAgQQAAwMAAAAAAAABIwgAAJMIAAJBBAACAwQAASMIAAIBBAAC4QQAAiMIAAKjBAAAAAAAAEMIAAFxCAABwwQAAOMIAAK7CAAC4wQAAlEIAACDBAAAowgAANEIAAIjBAABAwQAAcEEAABDBAAAAwAAAiEEAABDCIAA4E0AJSHVQASqPAhAAGoACAAC4PQAAUL0AAN4-AAD4vQAA4LwAAIo-AACiPgAACb8AAIA7AAA0vgAAEL0AAOi9AAAEPgAAZD4AAI6-AACgvAAAbD4AAIg9AADgPAAApj4AAH8_AADovQAAiL0AAPg9AACYvQAAcL0AAHw-AAC4vQAAgLsAAFw-AACIPQAAZL4AAKi9AABwPQAAHD4AAHC9AACYPQAAor4AANa-AABsvgAAuL0AADC9AABkPgAAgLsAAIA7AACovQAAVD4AAOA8AADIvQAALL4AACQ-AAAkPgAARD4AAPg9AACSvgAAUL0AADU_AAAQvQAAMD0AAKi9AAAwPQAA6L0AADA9AACqviAAOBNACUh8UAEqjwIQARqAAgAAEL0AAIi9AADIvQAALb8AABy-AACuPgAAwj4AACw-AADovQAATD4AAFA9AABwvQAAgDsAAFA9AADgvAAAgDsAAKi9AAANPwAAmr4AAL4-AABQPQAADL4AAFC9AAAwvQAAmD0AADS-AAA0vgAAED0AABQ-AABQvQAAQLwAADA9AACqvgAAfL4AAKg9AAD4vQAAdD4AAPi9AABsvgAA6L0AAPi9AAAQvQAAED0AABC9AAAUPgAA4LwAAH-_AACaPgAAVD4AABA9AABQvQAALD4AAAy-AACqPgAA6L0AABQ-AABwvQAAML0AAFw-AABEPgAAHD4AADS-AACWPgAAQLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=8K0hfFHwU5A","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["6034884108748369310"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1090914601"},"16342854252893796219":{"videoId":"16342854252893796219","docid":"34-2-15-Z0FDCB60F444A837B","description":"Steps on how to find the integral of 1/sin(x) using substitution method. Music by Adrian von Ziegler...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4119148/65d6040200b19f0ece4eea56dcaf9641/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/TJg-sgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZAkRWx_qVH0","linkTemplate":"/video/preview/16342854252893796219?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to integrate 1/sinx","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ZAkRWx_qVH0\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFgoUMTYzNDI4NTQyNTI4OTM3OTYyMTlaFDE2MzQyODU0MjUyODkzNzk2MjE5aogXEgEwGAAiRRoxAAoqaGhvZGZ3cG9wemh4eXRyY2hoVUM1RTVEUTVLYUdlU0hPYkNUc0tNM2x3EgIAEioQwg8PGg8_E8ACggQkAYAEKyqLARABGniB-AwE_wL-AB3-Af36AQD-Dw3xBPQAAAD0BgL_CAL_APvy__wDAAAA_xQICwYAAAAC_v318v0BABAGDPwFAAAAB_r2BgIAAAAPGvoC_QEAAPT6_vwDAAAADAPsAQAAAAAADvnwAP8AAAMEC_cAAAAA-eUBCQAAAAAgAC0wmMo7OBNACUhOUAIqhAIQABrwAX_oDgC6HeH_-grvAN0gCwKtDBv_NhPHALrxCwC9A-IA1y_i__QE3__uEA8Azw8mAOfsx_8Qxvb_JfPe_hkU5gAH_hABNsoQAT4VA__-Ben_3QwL_uvsLgEX19MDCAvS_gryEvoKJdcB7QPDAg_-PQEwACcBExAP_wACD_zWCfcCDNHX_g8U_f7w5e_72QQhAh7c9QoBFQL60wsRAxYF6f3-8Ab19BLa_x_z4AUACPT63M36BuoG1wMEByv_8PrhCvYEFvHo6P4C5Ov38DrbAPjnJ-0IB9oIEyAl4_j2xggH7_P6_dEAAfzeMgAC_Bzx-iAALdFCFzs4E0AJSGFQAirPBxAAGsAHu-7VvtsZJryC8UI7PGbgPLWS7ztSIYM87y12PBlHiz3m6ke8p834PewkrLy1hhe9xJdZvoxmZbz1uiW9xVWFPlQwb72bfyq8dXT8vS8Tmj0LAhC9iQsQvjZqrrrOj_k7Xz_pPDfnmrsjrLy8ch5pPTtqcb28tDy9qv-NvdaDs73Unee8mK1rvRflQ728SQK9G3-HPNc3m72uqWK7ampZvIaFRL2dIaa8wDEaPR5Pi7zQWrY8OBZPvav4cL2Dsh-9hNjZPdT1nzx3nTc6BHZwvV6sXjyo66S8KDA4Pdbpm7xLy-U7EGYJvRliSz0lIvy8V2n_O0x3jbrt6TS8PhltvW8zUD2wY5I85Gb4PWZM4T0YI9Q73O-Fvd0J9j3Ineu6G9xxPcH6RL3MYmK8cN2zPfgR5Dw9NWq76XYAPTBiBD0bB8U7BYiSvehDIbzvmHA8_LIKPXLIALxBU8S7K97oPbPIwDwTowA83IsevQPSfjyJwAm88XxrPcPu4Lw1wDu8V-T8PKJinLudiJm8m5UIvQh2DL7NpeG7zvIGvZA4ir2cy0O8Yy-fPSb_oz24YjW8bvzpPUzkrb0rc6m7P531Obt7QL3JsOk7A70mPTS_9byUULg7zxmsvFupoT0sVXW7_izWvGFcoLzzvju8lzqIvcfyvj0VZEy4clP_O7-C1L06i4M6eROiPScBA7uQw9y7ozwWPCPdzzynPQQ8lyOfPfvGfL0DrBI69iv4OfTvRDwrLJ86MZeEvaiJI73jxKY4bQPXPbWj2L0Mn685t6lLPS1aBT254mI5XvhcvY2CuzymwVo3NJ1iPQxzhz0uOx65XFQLvZwV8b3cnnU5In-aPcJTI72f_fK43_X-PPj2Mz0xNmk5SafJvBh6xLuG5Pa365wVvUBs6Ts-D-23Fo2wPZuSh7yefJk4G5CuPf_q8bu29iY5k499vd3q-Tys0pw5ys8bPCoblry79HG3jBgxPRcYiL0zlRw5xFY1PXlhxj225i64izSvupqykTtlyyC4WNyJPZd9LT0PaCG1v7meuh-durx5rj033uaNPYFe-LxHiDY4ZVPOvcLoqDz-Mug3PGrMvPKlZr369-W3m69tPTPinbxX5ps3hBtfvNoVPz0kVA449wEoPnBh3b3xZ7-5uF2Tvc-rkL3adUS4BqhfvBueDr6Zf8A32EuevcAasTyU1_e2szEGuwivvb0cfaa3Iv_sPTUpBT7zflu44hiuPG-loj1MJ1K4l_RBvby8vz3pDhI4UTgzOncmOb3_BeO3IAA4E0AJSG1QASpzEAAaYCHsABn1EcTdJTrw97b3JQQD2s_q1EH_vsT_GSLp2wwks64UAf8699_lnwAAAPIFESe9ADJ_5ejdHNg_6gGE7AgFeAQXHLWW6hjkqEXp5ub5Ti8VUQD9EJ4bCNoHNS0XFyAALb7YDzs4E0AJSG9QAiqvBhAMGqAGAADAwQAAbMIAAJ5CAABYwgAAjkIAAPBBAACkQgAAEMEAAIjBAABQQQAAEMIAAIrCAACgQQAAcMEAAHDBAADAQQAAcEEAAIC_AACAQgAA-MEAAMjBAADgQAAAEMIAAMBBAAAcwgAAcMEAAIDAAAD4wQAAjkIAAEDAAAAkwgAAwEAAAODBAACwwQAAosIAABhCAAAIQgAAiEIAAAzCAACIQQAAwMAAAFBBAABAQQAAiMEAAI5CAABswgAAgD8AAGRCAAA4QgAAwMEAAODAAAAMwgAAwMAAAMhBAABQQQAA4EAAAJrCAAAAQAAAAEIAANhBAAAUQgAAmsIAALDBAACgwgAAUMEAAPjCAAAwwQAAqsIAAPDBAACKwgAADEIAAIBBAACgwgAA-EEAAKDBAABMwgAAgL8AAGDBAACowQAAQMAAAKDAAACSQgAAoEAAAOBAAACwQQAAgEEAABxCAACEQgAAsEEAAGzCAADYwQAAvEIAAOjBAADQQQAAqEEAABDCAAAwQQAAoEAAAERCAACOQgAAYMIAAIBAAAA4QgAAiMEAAFzCAAAowgAAmEEAAKhBAAAAwQAAykIAAChCAABAQgAAEMIAAIDBAACgwAAAGEIAAAhCAAAgwgAAWMIAAPjBAACwwQAAtMIAABDCAAAgQQAAQEAAANjBAAAowgAAcMEAAJDBAADAQQAAqMEAAODAAABgQQAAJEIAAMjBAABoQgAABEIAAADAAAC4wQAAPMIAAMBAAACAwAAAGEIAAFDCAADwQQAAQEEAAHDBAAAAwQAAAEEAAEDBAACAPwAAAEEAACRCAAAgwQAABEIAAOjBAADAwQAAOMIAAKLCAADgQQAAaMIAAABAAADIwQAAYMIAALjBAACYQgAAgEEAAKxCAABcQgAAQMAAALhBAADgQAAAAEAAAAzCAAB0wgAAYEEAAKDBAABQwQAALEIAALBBAABIwgAAUMIAAMDBAADYwQAA0EEAAADAAABUwgAAdMIAAJBBAACYQQAAIEEAAFTCAAAEQgAA-MEAACDBAACIQgAAwMAAAAzCAACQQQAAPMIgADgTQAlIdVABKo8CEAAagAIAALi9AAAkvgAAXD4AACw-AABQvQAAbD4AAAw-AAAfvwAA4DwAALg9AADIPQAAuL0AAEC8AAAwPQAAgr4AABC9AAA8PgAAiD0AAIC7AAD6PgAAfz8AADC9AACIvQAAbD4AADy-AAA8PgAAuD0AANi9AACoPQAAVD4AANg9AADYvQAAbL4AAKI-AADgPAAAEL0AAOC8AAC-vgAAZL4AAHy-AABwPQAAXL4AAKY-AACgvAAAFL4AAHA9AACgvAAA6L0AAKa-AABUvgAAuD0AAAw-AAC2PgAA-D0AAJq-AACIvQAAVz8AALi9AABwvQAAcD0AANg9AABMPgAAgLsAAI6-IAA4E0AJSHxQASqPAhABGoACAAAkvgAAcL0AAFy-AABBvwAAbL4AAEC8AACGPgAA2L0AAKA8AABAvAAAPL4AAIi9AADoPQAAoLwAAGw-AAC4vQAAUL0AAM4-AAAwvQAApj4AAEC8AABEvgAAcD0AAIC7AACIvQAAML0AAHC9AABwvQAA6D0AABy-AAAQvQAADD4AAIA7AAC4vQAAQLwAAKg9AADaPgAAlj4AAMi9AABMvgAA2D0AALg9AAD4PQAAuD0AAGQ-AADgPAAAf78AAOg9AABQPQAALD4AAIY-AABEvgAAJD4AAI4-AACevgAAHD4AAKA8AADIvQAA6D0AAKA8AACSPgAAgDsAAGS-AADgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ZAkRWx_qVH0","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16342854252893796219"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3582724035"},"18296953568037735358":{"videoId":"18296953568037735358","docid":"34-1-4-ZD8A5BF98D0E1DAD3","description":"Solve the Trigonometric Equation sin(x)cos(x) = 1/4 by using Identities If you enjoyed this video please consider liking, sharing, and subscribing. Udemy Courses Via My Website...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3339432/c56904c9ee1649dc1287ee24d376c88c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/UL6DNwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVXhHMGgsJUg","linkTemplate":"/video/preview/18296953568037735358?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solve the Trigonometric Equation sin(x) cos(x) = 1/4 by using Identities","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VXhHMGgsJUg\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFgoUMTgyOTY5NTM1NjgwMzc3MzUzNThaFDE4Mjk2OTUzNTY4MDM3NzM1MzU4aogXEgEwGAAiRRoxAAoqaGh6emxiam5vbXVnaGJ2YmhoVUNyN2xteklrNjNQWm5CdzNiZXpsLU1nEgIAEioQwg8PGg8_E48DggQkAYAEKyqLARABGniB9voC_gEAAPr9DgT6B_0CFP38APYBAQD2-vv8_gP_APYBEwEBAAAA-hEE_gYAAAADAPMA_f0BABj3-_nzAAAAGgL9APcAAAAYBvX5_gEAAPj39_0D_wAAAfv7_QAAAAAJCgTuAAAAAAAS_P8BAAAABgMBAAAAAAAgAC2tPtE7OBNACUhOUAIqhAIQABrwAX8ICAHT2swA2xHeANMO5wGfNAP__DTSALvp8gCoFMr-_vL-AN0I-wDsAwkAthPt_xHdzgAA2vYANO4A_yXT7gHMBAUAK_fwAScaG_8W9_cB8A0W_xTlDv8Y1tIDCiztABUALP0H8OwA7QPCAgofNQPk-xkBG_oL_uCtJQDoE_EFCvDXAPcjBQUH8wb72AQiAiTE3wEiBwX_5yDoAv4BIvzm8vz6CC7V_TwP_gsQBBMGx-b-BRjk-QIRCRL17Sv2CPP3JgLDIgMDACAUAR3t3g3r6-sKCd3pAQ7sAQju9wn_C_nxBPEM_PwDE-wE-Av28SAALY27Ezs4E0AJSGFQAirPBxAAGsAHTz7Fvn7Y3DwxxrA7HMg_vQnqjDuczC69TTiavdCkYrtIwRO9MzIYPhA0cL18PcQ8i_vPvW6ukDydU-K7y4AzPubRiL2YYjM8dXT8vS8Tmj0LAhC98YTevYAfnzy3QQ48jPiZvfaWVTrGrTi8fnl8PRnFsrwWnjw8yVfCvOYMAD1C7gK9KBMyPbBfK72xpz29QeWJvYNdY73bNqe8yNQYPWzLRb2IXJm7r8epPSgmELus0Ba9axGxvcfIyDwfEdO8t6thPfeOvz31VD28ei-TvYZ2nr0_s9o8blOXvFhTeT23eeO7JkCoPZCoKz1v0a68YvSMPZ5-0L2-dl27L4byvXSQfLz9Iaw8ldxcPQZCNz1wtsg57-SzvfeRmz3N_bq8fHuXvO5qKL17LlO8hO1MPeTzaj1UkPo8LHqMvHZlYTzJLyy7mfuPvZtFjj1nbck8huJOPZD-cr1GoFW8oJuHPQj4fzxrvoi72wESvSiWAL3qRBu6pUNMPCAalz2FHOM74eEHPdlF7LyRcRY8BSOlPdYCO75J5Zo6KLq-vabsub1DpI07POOWPCe-mjyYyrI68PlhPRRfDb53hBG7P531Obt7QL3JsOk770kxvaySIz29rjq8ziaWvfqerDy14TC7LX2jvdmHJj1eqYC7rokAvYsffj3skXk6hD8JOxWNhb1ofBk7nHKAPWo8RzxtOgK8J_SvPV9AlD2I2xa3m6a0PLckt71rAEK7LEJWvUhj_ryhXQ07NR4xvXiGP73gO5w6_gw_Pskirb1NsI-4pQWaO1k1YzzROuI5734rvUocaTqOtXM4iJliPZcqx73hBte3vsXgO6xTFb6mjMk56z9mPSHYJ7wwpvm43sUgvaisYT04Ea24JdY4vRjMRL0fH8w5_AEKPWXzgrwmpxO2qWIPPRsBC7zxGMs41HTJuwYs-TweGyw5azOEPJuL5DyUDeW4HYi0uwwOZT0SZwc4wrS5vEyKn70GYHY4eKwjvK6ffj19BNM4ksyqPCJVBD4FDR835lViPVOSVT0ALio4BpwlvIxq0b36U_c3d7LlO9_7iz1a59S3aHUyvmSkKD0Xyky3SYxUvO9KjL15K9c2N27RPSfQUT2HLmo2zoZBPXtmbj0FC7E4kl0ZPtlPUL2swj-5q98WvQ37Hb6jvP64eTMUvWoslr1I6DC3Cs4KPcNnmz2cVYU3HeMMPGdG371pUBK4yvRwPSLhKz7xy4o47cSbPEVJyD3uUgq5p1oLvsyaGL0Kl3S473lZPAZYhT0QiKg2IAA4E0AJSG1QASpzEAAaYCT9ACIXHbYFGj3wAMcMF-D499_xqSL_1df_JjvXB04jwMn_AAA23xvzoAAAADL45x72ACd63uonNwo_EqymmkMufwr_BMvvD-TKvyMlLfLvIdIoTgDjHKskVwvMJCYsHiAALTWuEDs4E0AJSG9QAiqvBhAMGqAGAAAcQgAANMIAALBCAAAgwgAAAEIAAADCAADKQgAAwMEAAGTCAAAQQQAAgL8AABDCAACQQQAANMIAAKDBAAAsQgAAIEIAAIA_AACCQgAADMIAAADCAACIQQAA2MEAALDBAAB8wgAADMIAAGBBAAC4wQAAjEIAAFDBAAB0wgAAMEEAAJjCAABgwQAAbMIAAMhBAAAIQgAAVEIAAIhBAAA0QgAAqEEAAEBBAABUQgAACMIAAODAAABowgAABEIAAJBBAACUQgAAAMAAAIC_AACYwQAAUMEAALjBAADQQQAAYEEAAPLCAAAgQQAAMEEAAExCAADIwQAAnsIAAAAAAAAwwgAAwMEAAADDAADwwQAAuMEAAEDAAAA0wgAAdEIAAGBCAAAAwgAAWEIAANjBAACowQAAYMEAABxCAADAQAAAwEEAAJjBAACcQgAABMIAAKDBAAAkQgAAgEEAAOhBAABAQgAAVEIAAFBBAAAcwgAAikIAAAjCAAAQwgAAskIAAPjBAAAAQAAAiEEAAOBAAADgQQAAoMIAAEBAAACowQAAkMEAACDBAAAwQQAAgEAAAMhBAACAwAAAkEEAAIJCAACAQQAAYEEAAGBBAABcwgAAjkIAAJBBAACwwQAAgL8AAFDBAADQwQAAbMIAAEDBAACAwAAAMMEAADDCAAA4wgAA-EEAAAzCAACgQAAACMIAAJhBAACwwQAANEIAAKjBAAAwQgAAcEEAAKBAAADgQQAAPMIAABjCAADwQQAAZEIAABzCAAB8QgAAZEIAAADCAADoQQAAAAAAAIDBAACgwAAA8MEAALhBAADIwQAABEIAACBBAABgwQAAsMEAABDCAABkwgAAgsIAAIA_AAAowgAAJMIAAPjBAABsQgAA-MEAABxCAABMQgAAAAAAAKhBAAAAwQAAFEIAAFzCAACIwgAAEEIAAADAAADgwQAAAMIAAI5CAAAwwgAALMIAAAzCAAB0wgAAiEEAADjCAAA8wgAAMEEAAOjBAAB0QgAAiEEAABTCAADgQAAAAMEAAMDBAAA4QgAAgMEAAKjBAABgwQAAmMEgADgTQAlIdVABKo8CEAAagAIAACw-AAA8PgAAyD0AAIi9AACgvAAAjj4AAGw-AAA3vwAA4DwAAKA8AACCvgAAED0AAOg9AAAEPgAArr4AALi9AAB8PgAAED0AAIA7AAArPwAAfz8AAOi9AAC4PQAAhj4AAJi9AACyPgAAPD4AAAS-AAAMPgAA6D0AAOg9AADyvgAAUD0AAFC9AAAEPgAAQLwAAIi9AACyvgAAgr4AAJK-AAAQvQAA4LwAAFQ-AADYvQAABD4AALg9AABsPgAAXL4AAES-AAA0vgAAgDsAAFC9AABsPgAAVD4AANi9AACgvAAAST8AADy-AABkvgAA2L0AAMi9AAA8PgAAuD0AALK-IAA4E0AJSHxQASqPAhABGoACAACgvAAAHD4AAHC9AAA9vwAARL4AAEC8AACePgAABL4AAFA9AABEPgAAcL0AAIC7AACYvQAA4LwAAKg9AAC4vQAAhr4AABM_AAAQvQAA2j4AAAS-AADCvgAAqL0AAHC9AADYvQAAhr4AAKA8AADgvAAA2D0AAKA8AACAOwAAuD0AAKK-AACAOwAAUD0AAKC8AACSPgAAPD4AAKK-AAD4vQAAiL0AAJo-AADgPAAA6D0AAMg9AABQPQAAf78AAOg9AACiPgAAUL0AAIC7AADgvAAAmD0AAEw-AACgvAAAFD4AAKA8AADYvQAAML0AAJg9AAA0PgAAyD0AAHA9AAA0viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=VXhHMGgsJUg","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["18296953568037735358"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2898037055"},"16300095205356391244":{"videoId":"16300095205356391244","docid":"34-3-14-ZDD84208779583903","description":"In this video I present a derivation of the integral of sin(x^2) from -infinity to infinity using multivariable calculus. This approach is more straightforward than the complex analysis approach...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/897911/a238b4048fc7acc30db507f3ec585a7f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/evbpDwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Db6ra5MbauTc","linkTemplate":"/video/preview/16300095205356391244?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sin(x^2) from -infinity to infinity","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=b6ra5MbauTc\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFgoUMTYzMDAwOTUyMDUzNTYzOTEyNDRaFDE2MzAwMDk1MjA1MzU2MzkxMjQ0aogXEgEwGAAiRRoxAAoqaGhncnRnZnRxeGJtc2VrZGhoVUNvT2pUeHotdTV6VTBXMzh6TWtRSUZ3EgIAEioQwg8PGg8_E5MGggQkAYAEKyqLARABGniB9Aj7B_0DAPf9CP77A_8B_Qj4_fj-_QDkAff_CfwCAOsDBgAC_wAA-AcU-wEAAAAFAwP8_v4BAAUGB_j4AAAAEPr1AfUAAAAKBvcI_gEAAP0L9_gC_wAA__ztA_8AAADrCP4AAQAAAPIE-_0AAAAA9AEA-P__AAAgAC0jP9w7OBNACUhOUAIqhAIQABrwAX8RE_6lBc39B_PaAEAc-QCjCv__TTL_AMPoLADIF9UA5tH7AdwE6QAAIvL_uBoIAOrk7AAExhb_HQoVAAwRFwD8EvsBRg4SAUYDF_8VAwr_qjQe_esoBv73sPoBHxrEAD3uEv3-DewBwCjZAe_wRwMLAwgBLPz2_98c_QDeByX_9_jF_t8NCwPhvRX-rx4HATbz3__2HPX4Efn1B_XdAQcc4v_8Kwz7Axwj9gwa7PkC-wAO9PQA8v3oDSYECfzeBuIL_vP_4QwJ8fbyB_rhAvUZHwsI-eEUCvr0C_wN8ADt8e_2DQgD_vL4_PX9_9v3DCAALR1GEDs4E0AJSGFQAirPBxAAGsAHxecCvwwNurw7uwa9shmbPYLjsrwYMzO906REPgnn7jz8Kpq9f6ISPoaOHT3Spm-9oUh3vnNWujykNjG9_b10PpJUS70Dsew8Ghu1vazOxT394_e7t7IkvikVwzxE0GK8QIo6PSwTWTwueAy9ch5pPTtqcb28tDy9b7EMvVZbG71SOMy8joErvZ8d8L0_8W8711YHvYPlY72pw2W8VmynPf8IwzzVUsq8oZR6PWRoq7zBqrq88ijAva-txDyFcxE7hNjZPdT1nzx3nTc6Cvg1vMj20Dxlnbu8TBacPMEQQ72mqOU7QQsJPb7sSD0RSqm88G5gPVtVO71W2Ge8Iz3LvTjuuTzetqW8LqvyO9DsnzyvxF44HT3evb7ADD67CAu6fHuXvO5qKL17LlO814rWPXBt9jtUi6m6COdDPhZMQT356cs6HcgbvIq8mz3jWV28ddadPH-5-zwoSbK8CbvROxy2zT3vekS8nIxHu4Ghmjo42B08qnMWPQSeKj189MQ7FhgNPG5zXzspr3g7RYDzPbxhtr17Lx07lD5DvRapbrviBY27nKIIPPqGiD12ZTy8r0M1PWi-yb1nO5G7j7pnPOdnL73DP7K7wz6bPROPNb0lJBI8vYqMvBSQOz1SNyO8ByM2vbwcmzujyjC8IGZqvSh8WzwZrBU8mTbSvLxazr0YnC86DYQJvWJzhD1JXHU5trOZvW7ZRj3OTlu6yCOtPd4R3zwIVU27zjUKO7-Njr22QdS6asJ2PMOrNj2FTL258JdgPfV1LjscS945OpC1vAUqzrv65WM3mzrPvbjuQTwtJwq5Oa8WvaB8Czvkjbq36HYlvbEL0LwSqwi5EYC5PSFDojxjqJ-5QrzEPemKpbv46jC5bd1SvWNcszt5B4K5cOldvRfkfLsnRQ62nlCePdjpLD2Z_HW4HmtmPXPdTz3XAB05uuePPba2lTyYDci5aXsKPZMVaDwbkKk4t2J_PD3PRL2FTso2CoCxvCcX4z1iYJK5g2iSvOSDHj2na6k3_4AdvV2Ejrzbw4G3oBU9vGHIhbzdOz84DCl1PB7mBj2DLVg3lRKdvIZhNj2Dedk4SEhJvNkMS7zoiSW4hqp4PbUiAL3aLwM4QY53vaIMFT2WzPs3zoKqPcQK170s9ia5EUAAPT2Pe70dTK24u-2CvJfmob36OP-3l1GRvYdyHT1TOIu22YTqvCJXtb3SQjC4VRimPW0LxT2Dx-c4vPehvZHOpTz_qKK4bgONvSdprj2_9xY39jq-vQVTjbxzXxe4IAA4E0AJSG1QASpzEAAaYAD0AEvdCc_--iHrCerhAdPs7PXE3gz_0sIA1wbLy-b75cweEwAo5vn2swAAADsA_ibQAARgv-TyDwMj7PqU5RHwfyYf-uWnLu_T6SMeDucmB-Tc9QD2F7A6J-fTMxvnMyAALcdgKzs4E0AJSG9QAiqvBhAMGqAGAAAoQgAAUMEAAJZCAABwwgAAEEIAAMBBAACCQgAAAMAAAKjBAAAAwAAAIMEAAJ7CAADIwQAAyMEAAEBBAABgwQAAIEIAAGzCAAC4QgAAmMIAAHDBAAAgQQAAkEEAAJhBAADgwQAAMMEAANDBAADQwQAAFEIAAMDBAAAgwgAA2EEAAAjCAAAkwgAAosIAAMhBAAAwQQAAWEIAAEBAAADoQQAAAAAAAEBAAACAQQAAwEAAACBCAACGwgAA8EEAANhBAABwQgAAmEEAAADBAAAwwQAA8MEAADBBAACAQAAAUEEAAGDCAACAPwAAUEEAAEBCAACIQQAApMIAABzCAACcwgAAJEIAAMTCAADQwQAAYMIAAEjCAABEwgAAUEIAAChCAACuwgAA-EEAAOBAAABMwgAA0MEAACTCAADAQQAAoMAAADDBAACQQgAA6MEAAIhBAAAkQgAATEIAAIhBAABEQgAATEIAAI7CAAAMwgAAtEIAAGDCAADIQQAA6EEAAL7CAABwwQAAiEEAAIJCAABgQQAAiMIAAARCAABAQQAAOMIAALrCAABAwQAAoEAAABRCAACIQQAAjEIAAJBBAADAQAAAFMIAACBBAAAQwQAAEEEAANBBAADwwQAA-MEAAIBBAACYwQAArMIAAMDAAACAPwAANMIAACzCAAAAwgAAMEEAAMjBAADwwQAAHMIAAGTCAABAQAAAikIAADTCAABkQgAAkEEAAGBBAABwQQAAiMIAAMBAAABQwQAACEIAAIDBAADAQAAAIEEAAEDCAACAQQAA6MEAAPhBAADgQAAADEIAAMBBAAAgwQAA8EEAAGDBAAA4wgAAPMIAAAzCAAAgwQAAhMIAACDBAAC4wQAAWMIAAPjBAAAkQgAAMMIAAJhCAAD4QQAAUMEAABBCAADwQQAA4MAAAADBAABQwgAAgEEAAADAAACAvwAAiEEAABRCAACQwgAABMIAABDCAAAgwQAA-EEAAIDAAABUwgAATMIAAJDBAAAcQgAAiMEAAODBAACiQgAAQEAAAMDAAACOQgAAQEEAAABCAABgwQAA-MEgADgTQAlIdVABKo8CEAAagAIAAKg9AACavgAARD4AAKC8AACYvQAAZD4AAJ4-AAApvwAAQDwAAAy-AACgPAAAgDsAAFC9AACePgAA2L0AANi9AAAEPgAAPD4AACQ-AAARPwAAaT8AAOC8AACovQAAhj4AAEy-AACGPgAAUD0AADS-AADWPgAAvj4AABw-AADgvAAAcL0AAJg9AAAUPgAATD4AAIg9AABcvgAA2r4AAAy-AAAkPgAAyL0AAAQ-AACAOwAAgLsAAAQ-AABAPAAAQLwAABC9AADYvQAAXD4AABQ-AAC6PgAAjj4AABC9AADYPQAAfz8AADQ-AAAwvQAAcD0AAIo-AADIvQAAcD0AANK-IAA4E0AJSHxQASqPAhABGoACAAAwvQAA-L0AADA9AAB3vwAAHL4AAFC9AAAcPgAAQLwAAFA9AAAUPgAAMD0AAKA8AACIPQAA-D0AAIi9AACgvAAATL4AABM_AAC4vQAAtj4AAIC7AAAkvgAA2L0AAAS-AAAwvQAATL4AAMi9AACAOwAAQDwAAFQ-AACgvAAAHD4AACS-AACIvQAA4DwAAOi9AACOPgAAQDwAAFy-AABwvQAAiL0AACS-AACCvgAAFD4AAFA9AACIvQAAf78AAHw-AACYPQAAiL0AABC9AAAcPgAAMD0AAIo-AACqvgAAVD4AAHC9AADIvQAA0j4AAJi9AACCPgAAVL4AAAy-AABwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=b6ra5MbauTc","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16300095205356391244"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1611560572"},"13446867010820598488":{"videoId":"13446867010820598488","docid":"34-3-2-Z4A592D30536AA04A","description":"Visit https://www.mathmuni.com/ for thousands of IIT JEE and Class XII videos, and additional problems for practice. All free. Over 1 million lessons delivered!","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/474353/e3b2e6047eb9c8cca627041acba3ae1d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9KkVPgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D6IT-3V0xeQA","linkTemplate":"/video/preview/13446867010820598488?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find the integral of sinx / sin(x - A).","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=6IT-3V0xeQA\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFgoUMTM0NDY4NjcwMTA4MjA1OTg0ODhaFDEzNDQ2ODY3MDEwODIwNTk4NDg4aocXEgEwGAAiRBoxAAoqaGhycG9hd2h6bGF1d2ZiYmhoVUNoTHVQRjRscmF5QTRlbGI3RWplekRREgIAEioPwg8PGg8_E0uCBCQBgAQrKosBEAEaeIHtBPv3A_wAEAsE__0FAADsBQYH-v__AOsC-wQAAAAA8fb7DgUAAAD8DPwFDQAAABLy_vT8_wIABwsE7wQAAAAU-AL-9gAAABkK9Qn-AQAA9Abt-AIAAAD-9_YG_wAAAAkBDPT__wAA-wgH9AEAAAD58AIGAAAAACAALZzVxjs4E0AJSE5QAiqEAhAAGvABevQE_sb6x__VFNkAzS3eAYEYD__8O8sA1wMJAM4QsAH0_PcBxRD1_wL5-wDTI_sASfTC_yTCCQFE1_sAKs3sAQbqCQEh-vcAKz4s_hEB3__4Fwj-9trp_v2-2QAkNN_-DPAV-O_73fnqBLkCDfEm_wX3IAIy_UYD770J__PiCgb84tn9ESLlAtzB9fvoGUMBP80PAhkVCvnwOd386gAI-BTbK_wh_8D6EtnpDgvrBOvT9f4H6PkZ-isNBv_EHBwCAQ43-sr46fPN2wnuL-P1AOAU7gkf8_IOGPsHEfjf7gMb0fnx4wPsAusNBvHVDvD_IAAtAbAAOzgTQAlIYVACKs8HEAAawAdxIMy-1D0cvQYvVbwwSPq9eRVDPWFmaTzMpZe9car1PD08lTynzfg97CSsvLWGF70cQhW-UPCDPJtIH72mQjw-ZWE5vTx8Qz11dPy9LxOaPQsCEL0VHE6-rE3IPDWXHzsrP189fl9xu5_NKrxe9ms9lDZRO1bc0bpvsQy9VlsbvVI4zLzueim-3MunvUZ9bbwbf4c81zebva6pYrtGWMk9vH6MvUU7ODuTaYk9vj2uvWbT-DrMG1S79iUbvPUZBr33qY89gM1evGo39jslPby9rZnGvNkWlLw7RoO9tf-xvW_OEjwmQKg9kKgrPW_RrrxlQ509dzW0vZB2Mr2oyCG-AnwcPejpbTzdYDg-KaZcPeMbPjoxwgq929AePfnfRruXR0i8hcM8vYytVjxLFwc9_4kbPTTPWzz-h489j8sTPa6J4Dzg7AC94FiGPJ052jwBKqa8jeQ8vW8_qryqXag9S3APPG41a7y7fGu9g8NmPCB7nDtgrmU9mq83vJBl5rv4dTs9nA4JPZZcJLublQi9CHYMvs2l4bvczbq7IPRnvUmyVLtEsUs9eV0cvP_WCLu0IAQ-GAgCvdggN7qOjpC9BLsrPUXUJzul_0A82eqyvVOSN7pQAqa9eh9CPQTBSrv-LNa8YVygvPO-O7zLmOe8Wg25PeyMiDvFZQY9-gwIvlUhA7powIo9tcCDPBQmiDv7m2s99gtWPQ4rJ7qDwEo9zM6muwA3C7tSi_e8EmP8u6LhXjsuiVi93ekzvfSNprrudJw9rOLNvSr_vTkmA1s9aXFGvPKEczttOZe8Tt6GPWWuT7p1tjY8q-gRvLsClzjYAow8g2jNvS4kwrgt6GK8QLxTPJdANDqkDdU7W90BPFw1tjkvUPK9qFycvUOAv7fEsU69lf-aPGlBYbi4QAI-EjQBvbQ_BTnA8rs8SjscvGtkzjiFf6y8Q5iRupS0XzYVlei8N-HeO-UqL7har4M9AY_DvabRWjkp23a85-yzPSefgDfG0Iu9BfSpOvvOg7gBxk49Jpq2PL8qhrga5-U8XQ9rvbiwjTf8oNO8K_uuPNbdlDgi-wC-xl8kPReYZTiwrZ-8z7SOPGLQvrfvLXY8L3KqPMV_3Tip0RU9s_9LvOXfUbf3ASg-cGHdvfFnv7kKXAi94sORvTylWLjVXZm8EZeCvQdxA7gb9QC-fBQpPbYw9Dgy7qw9XCa-vexqQzfK9HA9IuErPvHLijjehoM7rXO4uSHRrrjpCyG-K3wHPe62WTh7uj-9UQsPvcgft7cgADgTQAlIbVABKnMQABpgJvcAIvwuuxECHeL-ugP46wL21dnAEv_m3v_i-9_O5xC-uxsPAP7iJPGoAAAADvP4HMsAC3G_A9RICxL-DYrIMQt_DwEex90SB9XZCwYIAB05_DcUAMcisCryqdxQCjAoIAAtZ0EfOzgTQAlIb1ACKq8GEAwaoAYAADRCAACgwAAAukIAAKrCAADAwAAAuEEAAERCAACwQQAA-MEAAEBAAABwQQAAuMEAAMDBAAAgwQAAYEEAAKBAAAB8QgAAKMIAACxCAAAUwgAA4MEAABzCAADYwgAAyEEAAHTCAAA4wgAAwMAAAATCAADwQQAAiEEAANjBAADIQQAAVMIAAIhBAADkwgAAwMAAAIhBAABoQgAA2MEAAKpCAABQQQAAkMEAAABAAAAgwQAANEIAADzCAADwwQAAdEIAAARCAACgwAAAuMEAADjCAAAYwgAAYEIAADhCAAAYQgAAusIAAIA_AADoQQAAgL8AAMhBAABUwgAAaMIAACTCAAAAQQAA3MIAAKDBAABowgAAPMIAADDCAABYQgAAOEIAACzCAADAQQAA2MEAAIDAAADwwQAADMIAAOBAAACgQAAAmMEAAMJCAACAwAAA2EEAABBBAABkQgAA0MEAAETCAAAUQgAAQEEAADxCAABUQgAAgMIAAOBAAACgQQAARMIAABDCAACYwQAA4EEAABxCAABEwgAAEEEAAMhBAABwwQAAIMIAANhBAAAQwQAAiEEAADDBAABwQgAACEIAAOhBAACAwAAASMIAAAjCAACAQgAAmMEAAPjBAABEwgAAJMIAALDBAAAowgAA4MAAAJDBAACowQAACEIAAAzCAABAwAAA4MAAAGxCAACgQAAAqsIAACBBAAA0QgAAEMEAAIRCAACgwAAAgEIAAATCAADgwQAAoMAAADBBAACwQQAApMIAAODAAAAsQgAAiEEAALjBAABQwQAAoEAAAIhBAADYQQAAdEIAABhCAABAQQAAmMEAAFzCAAD4wQAAOMIAAJDBAABQwgAA6EEAAJhBAABgQQAAYEEAAIBAAAAEwgAAukIAAJZCAACQwQAAgD8AAMBAAACYwQAALMIAADDCAACwQQAAEMEAACBBAABAQQAAUEIAAMbCAABswgAAcMEAALjBAAAIQgAAqMEAAILCAAAUwgAAAEAAAIjBAACOQgAAuMEAAIBBAACAvwAAEMEAACxCAABgwQAAEMEAAOhBAACAwCAAOBNACUh1UAEqjwIQABqAAgAARD4AAPi9AADePgAA4LwAANi9AACaPgAADD4AABG_AABAPAAA4LwAAKi9AAA8vgAALD4AADQ-AADovQAAUD0AAEw-AACAOwAA-D0AAOY-AAB_PwAAgLsAADQ-AAAsPgAAsr4AAI4-AADYPQAAVL4AAFA9AAA8PgAAyD0AAEy-AAAwvQAAJD4AAMg9AAAQvQAAqL0AAHS-AACuvgAALL4AAIA7AAAMvgAAqj4AAHA9AACIvQAA4DwAALg9AACKvgAARL4AAIq-AADYvQAATD4AAKI-AABMPgAAHL4AAIA7AABBPwAAiD0AAKi9AABQvQAAML0AAOC8AADgPAAA0r4gADgTQAlIfFABKo8CEAEagAIAAHS-AACYPQAAED0AAHu_AAC6vgAAoDwAAM4-AAD4vQAAdD4AAEA8AAC4vQAABL4AAIC7AADgPAAA4LwAABA9AABkvgAA1j4AAOC8AAB0PgAAqD0AADS-AABUvgAAgDsAABS-AADgvAAAJL4AABA9AAA0vgAAoLwAAIC7AACSPgAAZL4AAIA7AAAQvQAAqL0AABs_AACYPQAApr4AAJa-AAAcvgAAHD4AABS-AABMPgAAsj4AAAS-AAB_vwAAgj4AAII-AACAOwAAij4AAOA8AAAkPgAAuj4AAIq-AACGPgAAgLsAAOi9AACSPgAAiL0AANY-AAAsvgAAZL4AAEA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=6IT-3V0xeQA","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13446867010820598488"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"116325696"},"3835607715371501451":{"videoId":"3835607715371501451","docid":"34-1-9-ZD3E9E438F27CC764","description":"Integral |sin(x)| from 0 to 3pi/2 integral of absolute value of sine...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1370895/f2367fe12924cacea51e9ba2570604f5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/r5vVfwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-hUyBBmze-8","linkTemplate":"/video/preview/3835607715371501451?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral |sin(x)| from 0 to 3pi/2","related_orig_text":"Sinx","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sinx\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-hUyBBmze-8\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NzAyNzgyMjczODU2MjA5NTIyChQxMDUyMTUwMjkyNzMyNzIzNDA0NAoTNTE2Mjg0NTY2MzczMTYwNTUzNwoUMTY0MzQ4NDgwMTgyMjk3MzQwNzAKEzM1NTg2NzUwMTA3NDY1OTQzNjkKEzM1MTAzNDcyNzM4MDUyMDQ5NTEKEzcxMTU2NTg3MjY5NjUxOTk1NzIKFDE2ODMyNzExMjU4ODM2MzQ3NjcxChM3Mjc0MDMyOTgwMTkzNzY4MzgwChQxNjY5NTExOTU3NDI5NDU2Mjk0MAoTMTA3ODE5ODM5NjQ1NzY4NDAzNwoTODk2MjE3ODk4NDcyMDM1MTA2OQoTNjAzNDg4NDEwODc0ODM2OTMxMAoUMTYzNDI4NTQyNTI4OTM3OTYyMTkKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4ChQxNjMwMDA5NTIwNTM1NjM5MTI0NAoUMTM0NDY4NjcwMTA4MjA1OTg0ODgKEzM4MzU2MDc3MTUzNzE1MDE0NTEKEzY4MDczNDg4OTYwNTAyMzI0MjkKEzUzOTU3MzI5NzQyMjcyOTQ0ODQaFQoTMzgzNTYwNzcxNTM3MTUwMTQ1MVoTMzgzNTYwNzcxNTM3MTUwMTQ1MWqTFxIBMBgAIkUaMQAKKmhoenpsYmpub211Z2hidmJoaFVDcjdsbXpJazYzUFpuQnczYmV6bC1NZxICABIqEMIPDxoPPxP-AYIEJAGABCsqiwEQARp4gfATAAABAAAD_gv6_QP_AfwJ9_z3_f0A5_r7_gT-AQDo-AMHCf8AAPoRBP4HAAAAFf_0-_UC_wEI_wL1BAAAAAL09AD5AAAABwz6_f4BAADxCPryAgAAAAwE-AYAAAAA7QQN9QAAAAAMAQf4AAAAAPnxAgYAAAAAIAAtdlDOOzgTQAlITlACKoQCEAAa8AF_Bw0A1_WkAdUU2QDNLd4BnSALAPw7ywCu7w0BzgfbASLc_gDI-b__Eub8AeD_-gAXBOYABL8Y_y_o7v8-vwwA9hHoAQLy-gBFFjT_7xXh_vM1-v347_oA3dnH_ucf4P7u8Qv9Evjx_AznrgoLzkgDKdcXA0XbCQbD4QIC1iMZ_-nY0_0RIuUC8O4I9tEeJQInAxD9IwMZAgkd2_4T-yEG4vD7-Qne1QArDggQEPkK_u7pJfXl4AwGMNgiA9YcBP3x9SwC3_D68vEoIPJT7_773gD2BgUi_gDm9B4FD9j6BA_2-_TqAO_s1AYE8ukd8gEgAC1c0QA7OBNACUhhUAIqzwcQABrAB3jQ5L6pPJE7DA3fvDxm4Dy1ku87UiGDPO8tdjwZR4s95upHvJgw2j0FIKS8HtZlPARUOL6WoaK7BEi-vBSUQj5GRRy9c-gAvNlDS75DknY7KX-CvcVqrb0LHFq9MGi8PGyw8DwKa6E7Dtmjut_RkLxtzoy9n9I8vamqyLuyXSa9X8EMvbGczryXnEm8tu1gvWU7G7xX9F29n9pjOi5ZpT1jQky8HwhaPKXuLz21JZG9-Lkrvdd-p70L_V28d0tyvJo_hj3p1UA9hNnfu0l0Jb0IXBK9_lx6u0y0Gr2PkQe8rbYNPNvbzT2huqk9pojCvGVDnT13NbS9kHYyvTlCtr2kZpQ9T7C_PORm-D1mTOE9GCPUO_hYNb2SRVU9AK4EvVrXCTwxYIm87prKO1h-Lz109T48O3hcPJniYDw16Ts9OZ8TPJlrnL0UuiI8wZijPA016j0fRxO9TIrWOfelsz1myKe8_GXBvFXJhr0CicG8vEYmvD4ytz25ncc8ymWnOIAzpzzoWNQ8ksE8OwUjpT3WAju-SeWaOrVGLr0UGUe9ButrOlJI8Lsg1rY81aiRvE7wzT1mM-e9_1cAPDF2R706voy9sH03vMHNPbwze6q8vpEQPJh8fb0exmQ93VACvOkLYb3Zzre8ZOK9u69meLwtN5I9nlUPO9vIkLwTYUO-lFmUOXgfjD0isXM9gHIIu-s3Mz0xZ1E9xnH5OlJfGz1ZYYS8bXlYOUZmST2pKpm8b6WRO3iNx70CY_28x7bWN6qCoT0aGJm9R0qgOOEkjTzN4DQ9SSyyuSpih73w65E8DsS9ONcQwTxAffQ7-TkyuL7F4DusUxW-pozJObHrrT0C3l287kICOR2tKj3c4WU8MMZeOBTn6L1zySK9It5Ducz77rxWPQk7u7uWuTTrpj1XZA-9JEs4OWhGGj3Bw1k9pRsEOty0vjxcQpm8lzzLuIurCDzoAQI9cTVON8K0ubxMip-9BmB2OJxrGL0EcQ4-ggmNuT0jVr38_SK9nL78t4O41zwZfxM8C0WUOK1omLxupGy9P1MwOL3YgzvKppw8BXkTN2vx6b151iS87i9gNlx8oL3oe1e97HmEN-GIBD1JyQG9N_maNsDQnj12BRE9MrMSuMKk2D02Kia9e7QtuflK4L0Mj929YzNEuO4B3zzVXQm-RxjEOAX65L3tBnY9KnvPOOwDvTt81A--F_rcuCL_7D01KQU-835buJvYcLvVmAs9vxThuEuRDL6X4po9rk2fOAKYNz0-hn298wypNyAAOBNACUhtUAEqcxAAGmAZBAAV9R3HCBYK-_TDESzL5OXx79sL_8reAAkC-OMAA-nWDPoAHP8U97sAAAAO9v0ZzwDoWAry-Tj1FfEVockf-n8yCh7PxREZ78UZ7xHgFR3__xwA5AmsES3f3_wCGiMgAC3Ov0M7OBNACUhvUAIqrwYQDBqgBgAAYMEAAHDCAACkQgAAXMIAABBCAABAQQAAjEIAAPDBAABwwQAAoEAAAPDBAACCwgAAMMEAALjBAADQwQAAgEEAAOBBAACIwQAAPEIAAFzCAAAIwgAA0EEAAIDBAAAoQgAAIMIAAOjBAABowgAAoMEAAKpCAAAgwQAAeMIAAMBAAAAswgAACMIAAJjCAACwQQAADEIAADBCAACgwQAAAAAAAKjBAABwQQAAAMEAACDCAABMQgAAKMIAAKBBAACYQQAAgkIAAEDAAAAwwQAA-MEAANBBAAAAQAAAqEEAACBBAACCwgAAwMAAAABBAAAQQgAAKEIAAI7CAAC4wQAAssIAAADAAADuwgAAYMEAAFDCAABQwQAAhMIAACBCAADIwQAA3sIAANBBAABAwAAA6MEAAKDBAACgwAAAkMEAAMDBAADQQQAAnEIAANDBAAAEwgAAOEIAAODAAABQQgAAXEIAAMhBAAAMwgAABMIAAJxCAAAkwgAAHEIAALBBAAAgwgAAQEEAAKDAAAAoQgAAbEIAAHjCAACQwQAAmEEAALBBAABQwgAAUMEAABBBAAAIQgAAqEEAAJ5CAAAAQgAALEIAAFDBAADAQAAAWMIAACxCAAAwQgAAAEAAAAzCAABAwQAAGMIAALbCAAAAwgAA4EEAAAAAAAAwwgAAgMAAAMDAAAAAwgAAgMAAAIDBAACAwQAAgEEAAEBCAAC4wQAATEIAAFxCAACAvwAAgEAAAAjCAACAwQAA2MEAAI5CAAA4wgAAGEIAANBBAAAIwgAAIEEAACDBAAC4wQAABMIAAIBAAABkQgAAwEAAAPBBAABAwAAAAMEAAODBAAA0wgAAQMEAAHDCAADgwAAAUMIAAEzCAACYwQAAhEIAAEDBAADmQgAACEIAAIhBAABYQgAAoEEAAOhBAAAwwgAAiMIAAIBBAACowQAA4MEAABRCAAA8QgAA0MEAADjCAAAAwgAAbMIAACxCAADQwQAAJMIAAAzCAACYQQAABEIAAKBBAAAQwgAAJEIAAHDBAADgwQAAYEIAALjBAAAgwgAAEEEAAODBIAA4E0AJSHVQASqPAhAAGoACAAAwvQAAmL0AAMY-AABEPgAAcD0AAII-AADgPAAAF78AAIA7AADYPQAAyL0AALi9AADIPQAATD4AAKi9AADoPQAALD4AAMg9AABcPgAA-j4AAH8_AAAwvQAAiL0AADA9AAB8vgAATD4AAHA9AADIvQAARD4AAJ4-AAAQPQAARL4AAOC8AAA0PgAAcD0AAJg9AADYvQAADL4AAFS-AADovQAAHD4AADC9AAA8PgAAiD0AAOi9AACoPQAA-D0AAJi9AAAcvgAAJL4AADw-AABEPgAAjj4AAOg9AAAkvgAAMD0AADs_AACoPQAAcL0AAEC8AADgPAAAqL0AADA9AADOviAAOBNACUh8UAEqjwIQARqAAgAAJL4AAEC8AACYvQAAS78AAHC9AABAPAAAyj4AAES-AAAcPgAABD4AAEC8AAAcPgAAMD0AAAQ-AACIPQAA4DwAAIK-AADuPgAAbL4AAKo-AAC4PQAAVL4AAIi9AACAuwAAyL0AAKA8AAAsvgAAgDsAAKC8AABAPAAAUL0AADQ-AAB0vgAADL4AABC9AAD4PQAA1j4AAPi9AAAcvgAAtr4AANi9AABQPQAA4LwAAAQ-AACSPgAAyL0AAH-_AADYPQAAVD4AAIC7AAAwvQAARD4AALg9AAC2PgAA0r4AAHQ-AACIvQAApr4AAK4-AACYPQAAgj4AAEy-AACgvAAAoLwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=-hUyBBmze-8","parent-reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":448,"cratio":1.90625,"dups":["3835607715371501451"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"538714095"}},"dups":{"9702782273856209522":{"videoId":"9702782273856209522","title":"Proof: Limit of \u0007[sinx\u0007]/\u0007[x\u0007] as \u0007[x\u0007] approaches 0 with Squeeze Theorem | Calculus 1","cleanTitle":"Proof: Limit of sinx/x as x approaches 0 with Squeeze Theorem | Calculus 1","host":{"title":"YouTube","href":"http://www.youtube.com/live/T36uC2pxwR4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/T36uC2pxwR4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":620,"text":"10:20","a11yText":"Süre 10 dakika 20 saniye","shortText":"10 dk."},"views":{"text":"52,9bin","a11yText":"52,9 bin izleme"},"date":"13 haz 2023","modifyTime":1686614400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/T36uC2pxwR4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=T36uC2pxwR4","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":620},"parentClipId":"9702782273856209522","href":"/preview/9702782273856209522?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/9702782273856209522?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10521502927327234044":{"videoId":"10521502927327234044","title":"Complex Analysis: Integral of \u0007[sin\u0007](\u0007[x\u0007])/x using Contour Integration","cleanTitle":"Complex Analysis: Integral of sin(x)/x using Contour Integration","host":{"title":"YouTube","href":"http://www.youtube.com/live/Ff4LRlflib0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Ff4LRlflib0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS3phZW9rdGJmNG1xLXB6Zl9Bd1F2QQ==","name":"qncubed3","isVerified":false,"subscribersCount":0,"url":"/video/search?text=qncubed3","origUrl":"http://www.youtube.com/@qncubed3","a11yText":"qncubed3. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1062,"text":"17:42","a11yText":"Süre 17 dakika 42 saniye","shortText":"17 dk."},"views":{"text":"129,7bin","a11yText":"129,7 bin izleme"},"date":"2 tem 2019","modifyTime":1562025600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Ff4LRlflib0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Ff4LRlflib0","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":1062},"parentClipId":"10521502927327234044","href":"/preview/10521502927327234044?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/10521502927327234044?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5162845663731605537":{"videoId":"5162845663731605537","title":"Defining cos(x) and \u0007[sin\u0007](\u0007[x\u0007]) using a unit circle","cleanTitle":"Defining cos(x) and sin(x) using a unit circle","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zUgic_m8DjQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zUgic_m8DjQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeE8xZmNyeDVBQnQ3aEtRYV9teUNnQQ==","name":"Radford Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Radford+Mathematics","origUrl":"http://www.youtube.com/@RadfordMathematics","a11yText":"Radford Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":586,"text":"9:46","a11yText":"Süre 9 dakika 46 saniye","shortText":"9 dk."},"views":{"text":"8,2bin","a11yText":"8,2 bin izleme"},"date":"13 mar 2018","modifyTime":1520891208000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zUgic_m8DjQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zUgic_m8DjQ","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":586},"parentClipId":"5162845663731605537","href":"/preview/5162845663731605537?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/5162845663731605537?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16434848018229734070":{"videoId":"16434848018229734070","title":"Limit of \u0007[sinx\u0007]/(\u0007[x\u0007]+\u0007[sinx\u0007]) as \u0007[x\u0007] approaches 0 | Calculus 1 Exercises","cleanTitle":"Limit of sinx/(x+sinx) as x approaches 0 | Calculus 1 Exercises","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=quKbgSHUGn8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/quKbgSHUGn8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":113,"text":"1:53","a11yText":"Süre 1 dakika 53 saniye","shortText":"1 dk."},"views":{"text":"2,3bin","a11yText":"2,3 bin izleme"},"date":"8 kas 2023","modifyTime":1699401600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/quKbgSHUGn8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=quKbgSHUGn8","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":113},"parentClipId":"16434848018229734070","href":"/preview/16434848018229734070?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/16434848018229734070?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3558675010746594369":{"videoId":"3558675010746594369","title":"Limit of \u0007[sin\u0007](\u0007[x\u0007])/x as x goes to Infinity (Squeeze Theorem) | Calculus 1 Exercises","cleanTitle":"Limit of sin(x)/x as x goes to Infinity (Squeeze Theorem) | Calculus 1 Exercises","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4Ik0M0hbqv0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4Ik0M0hbqv0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":238,"text":"3:58","a11yText":"Süre 3 dakika 58 saniye","shortText":"3 dk."},"views":{"text":"79bin","a11yText":"79 bin izleme"},"date":"28 mar 2022","modifyTime":1648425600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4Ik0M0hbqv0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4Ik0M0hbqv0","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":238},"parentClipId":"3558675010746594369","href":"/preview/3558675010746594369?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/3558675010746594369?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3510347273805204951":{"videoId":"3510347273805204951","title":"#\u0007[sinx\u0007] fonksiyonu grafiği konu anlatımı #trigonometri #yks #ayt","cleanTitle":"#sinx fonksiyonu grafiği konu anlatımı #trigonometri #yks #ayt","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/ApZHGqqv738","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ApZHGqqv738?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNTZPREdmYnkzdW5GeHYyVVhRaWhMdw==","name":"Osman Karapınar","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Osman+Karap%C4%B1nar","origUrl":"http://www.youtube.com/@osmnkrpnr","a11yText":"Osman Karapınar. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":86,"text":"1:26","a11yText":"Süre 1 dakika 26 saniye","shortText":"1 dk."},"date":"9 şub 2025","modifyTime":1739059200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ApZHGqqv738?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ApZHGqqv738","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":86},"parentClipId":"3510347273805204951","href":"/preview/3510347273805204951?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/3510347273805204951?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7115658726965199572":{"videoId":"7115658726965199572","title":"\u0007[sin\u0007] \u0007[x\u0007] cos x = 1/2, find value of x","cleanTitle":"sin x cos x = 1/2, find value of x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tIh11N7vNts","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tIh11N7vNts?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMGJMQUNocmNjU0xSUVNqWmsxNDNXZw==","name":"Ravi Ranjan Kumar Singh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ravi+Ranjan+Kumar+Singh","origUrl":"http://www.youtube.com/@RaviRanjanKumarSingh","a11yText":"Ravi Ranjan Kumar Singh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":147,"text":"2:27","a11yText":"Süre 2 dakika 27 saniye","shortText":"2 dk."},"views":{"text":"10,2bin","a11yText":"10,2 bin izleme"},"date":"26 mayıs 2020","modifyTime":1590496131000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tIh11N7vNts?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tIh11N7vNts","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":147},"parentClipId":"7115658726965199572","href":"/preview/7115658726965199572?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/7115658726965199572?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16832711258836347671":{"videoId":"16832711258836347671","title":"Proof of the derivative of \u0007[sinx\u0007]: A Step-by-Step Proof and Explanation","cleanTitle":"Proof of the derivative of sinx: A Step-by-Step Proof and Explanation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mzT3GowiNuk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mzT3GowiNuk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTTBfWlczeWhiSjdWclBScDhnb3RNUQ==","name":"Math with Alex","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+with+Alex","origUrl":"http://www.youtube.com/@mathwithalex","a11yText":"Math with Alex. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":365,"text":"6:05","a11yText":"Süre 6 dakika 5 saniye","shortText":"6 dk."},"views":{"text":"5,2bin","a11yText":"5,2 bin izleme"},"date":"19 haz 2023","modifyTime":1687132800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mzT3GowiNuk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mzT3GowiNuk","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":365},"parentClipId":"16832711258836347671","href":"/preview/16832711258836347671?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/16832711258836347671?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7274032980193768380":{"videoId":"7274032980193768380","title":"How to integrate 1/\u0007[sinx\u0007]","cleanTitle":"How to integrate 1/sinx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HOJRsTTnwwU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HOJRsTTnwwU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGRhckJvNGpYRExzM2J0LTcyeHZOZw==","name":"The Complete Guide to Everything","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Complete+Guide+to+Everything","origUrl":"http://www.youtube.com/@TheCompleteGuide1","a11yText":"The Complete Guide to Everything. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":290,"text":"4:50","a11yText":"Süre 4 dakika 50 saniye","shortText":"4 dk."},"views":{"text":"16,9bin","a11yText":"16,9 bin izleme"},"date":"8 nis 2020","modifyTime":1586377843000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HOJRsTTnwwU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HOJRsTTnwwU","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":290},"parentClipId":"7274032980193768380","href":"/preview/7274032980193768380?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/7274032980193768380?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16695119574294562940":{"videoId":"16695119574294562940","title":"Proof f(x)=\u0007[sin\u0007](\u0007[x\u0007]) is Continuous using Epsilon Delta Definition | Real Analysis Exercises","cleanTitle":"Proof f(x)=sin(x) is Continuous using Epsilon Delta Definition | Real Analysis Exercises","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=o_OsB2KF4mQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/o_OsB2KF4mQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":318,"text":"5:18","a11yText":"Süre 5 dakika 18 saniye","shortText":"5 dk."},"views":{"text":"17,6bin","a11yText":"17,6 bin izleme"},"date":"24 nis 2021","modifyTime":1619222400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/o_OsB2KF4mQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=o_OsB2KF4mQ","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":318},"parentClipId":"16695119574294562940","href":"/preview/16695119574294562940?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/16695119574294562940?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1078198396457684037":{"videoId":"1078198396457684037","title":"\u0007[sin\u0007] \u0007[x\u0007] - cos x = 1, find value of x","cleanTitle":"sin x - cos x = 1, find value of x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ophx3gWGZGk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ophx3gWGZGk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMGJMQUNocmNjU0xSUVNqWmsxNDNXZw==","name":"Ravi Ranjan Kumar Singh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ravi+Ranjan+Kumar+Singh","origUrl":"http://www.youtube.com/@RaviRanjanKumarSingh","a11yText":"Ravi Ranjan Kumar Singh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":265,"text":"4:25","a11yText":"Süre 4 dakika 25 saniye","shortText":"4 dk."},"views":{"text":"6,7bin","a11yText":"6,7 bin izleme"},"date":"12 eyl 2022","modifyTime":1662988085000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ophx3gWGZGk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ophx3gWGZGk","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":265},"parentClipId":"1078198396457684037","href":"/preview/1078198396457684037?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/1078198396457684037?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8962178984720351069":{"videoId":"8962178984720351069","title":"how to take the derivative of (\u0007[sinx\u0007])^(\u0007[sinx\u0007])^(\u0007[sinx\u0007])","cleanTitle":"how to take the derivative of (sinx)^(sinx)^(sinx)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bHFBemBjhzg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bHFBemBjhzg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":493,"text":"8:13","a11yText":"Süre 8 dakika 13 saniye","shortText":"8 dk."},"views":{"text":"35,2bin","a11yText":"35,2 bin izleme"},"date":"16 kas 2018","modifyTime":1542326400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bHFBemBjhzg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bHFBemBjhzg","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":493},"parentClipId":"8962178984720351069","href":"/preview/8962178984720351069?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/8962178984720351069?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6034884108748369310":{"videoId":"6034884108748369310","title":"Limit of (\u0007[x\u0007]+\u0007[sinx\u0007])/(\u0007[x\u0007]+cosx) as \u0007[x\u0007] approaches Infinity | Calculus 1 Exercises","cleanTitle":"Limit of (x+sinx)/(x+cosx) as x approaches Infinity | Calculus 1 Exercises","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8K0hfFHwU5A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8K0hfFHwU5A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":193,"text":"3:13","a11yText":"Süre 3 dakika 13 saniye","shortText":"3 dk."},"views":{"text":"6,1bin","a11yText":"6,1 bin izleme"},"date":"21 ara 2022","modifyTime":1671580800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8K0hfFHwU5A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8K0hfFHwU5A","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":193},"parentClipId":"6034884108748369310","href":"/preview/6034884108748369310?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/6034884108748369310?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16342854252893796219":{"videoId":"16342854252893796219","title":"How to integrate 1/\u0007[sinx\u0007]","cleanTitle":"How to integrate 1/sinx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ZAkRWx_qVH0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ZAkRWx_qVH0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNUU1RFE1S2FHZVNIT2JDVHNLTTNsdw==","name":"Cowan Academy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Cowan+Academy","origUrl":"http://www.youtube.com/@CowanAcademy","a11yText":"Cowan Academy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":320,"text":"5:20","a11yText":"Süre 5 dakika 20 saniye","shortText":"5 dk."},"views":{"text":"242,5bin","a11yText":"242,5 bin izleme"},"date":"17 nis 2017","modifyTime":1492387200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ZAkRWx_qVH0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ZAkRWx_qVH0","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":320},"parentClipId":"16342854252893796219","href":"/preview/16342854252893796219?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/16342854252893796219?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18296953568037735358":{"videoId":"18296953568037735358","title":"Solve the Trigonometric Equation \u0007[sin\u0007](\u0007[x\u0007]) cos(x) = 1/4 by using Identities","cleanTitle":"Solve the Trigonometric Equation sin(x) cos(x) = 1/4 by using Identities","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VXhHMGgsJUg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VXhHMGgsJUg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":399,"text":"6:39","a11yText":"Süre 6 dakika 39 saniye","shortText":"6 dk."},"views":{"text":"22bin","a11yText":"22 bin izleme"},"date":"18 eki 2020","modifyTime":1603004403000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VXhHMGgsJUg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VXhHMGgsJUg","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":399},"parentClipId":"18296953568037735358","href":"/preview/18296953568037735358?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/18296953568037735358?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16300095205356391244":{"videoId":"16300095205356391244","title":"Integral of \u0007[sin\u0007](\u0007[x\u0007]^2) from -infinity to infinity","cleanTitle":"Integral of sin(x^2) from -infinity to infinity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=b6ra5MbauTc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/b6ra5MbauTc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb09qVHh6LXU1elUwVzM4ek1rUUlGdw==","name":"Dr Peyam","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Dr+Peyam","origUrl":"http://www.youtube.com/@drpeyam","a11yText":"Dr Peyam. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":787,"text":"13:07","a11yText":"Süre 13 dakika 7 saniye","shortText":"13 dk."},"views":{"text":"39,7bin","a11yText":"39,7 bin izleme"},"date":"4 tem 2018","modifyTime":1530662400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/b6ra5MbauTc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=b6ra5MbauTc","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":787},"parentClipId":"16300095205356391244","href":"/preview/16300095205356391244?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/16300095205356391244?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13446867010820598488":{"videoId":"13446867010820598488","title":"Find the integral of \u0007[sinx\u0007] / \u0007[sin\u0007](\u0007[x\u0007] - A).","cleanTitle":"Find the integral of sinx / sin(x - A).","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=6IT-3V0xeQA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/6IT-3V0xeQA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaEx1UEY0bHJheUE0ZWxiN0VqZXpEUQ==","name":"mathmuni","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathmuni","origUrl":"http://www.youtube.com/@mathmuni","a11yText":"mathmuni. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":75,"text":"1:15","a11yText":"Süre 1 dakika 15 saniye","shortText":"1 dk."},"views":{"text":"5,9bin","a11yText":"5,9 bin izleme"},"date":"4 eyl 2012","modifyTime":1346716800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/6IT-3V0xeQA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=6IT-3V0xeQA","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":75},"parentClipId":"13446867010820598488","href":"/preview/13446867010820598488?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/13446867010820598488?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3835607715371501451":{"videoId":"3835607715371501451","title":"Integral |\u0007[sin\u0007](\u0007[x\u0007])| from 0 to 3pi/2","cleanTitle":"Integral |sin(x)| from 0 to 3pi/2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-hUyBBmze-8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-hUyBBmze-8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":254,"text":"4:14","a11yText":"Süre 4 dakika 14 saniye","shortText":"4 dk."},"views":{"text":"62,8bin","a11yText":"62,8 bin izleme"},"date":"3 mar 2019","modifyTime":1551571200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-hUyBBmze-8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-hUyBBmze-8","reqid":"1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL","duration":254},"parentClipId":"3835607715371501451","href":"/preview/3835607715371501451?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","rawHref":"/video/preview/3835607715371501451?parent-reqid=1766785950367409-10358168610656955473-balancer-l7leveler-kubr-yp-vla-111-BAL&text=Sinx","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"3581686106569554737111","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Sinx","queryUriEscaped":"Sinx","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}