{"pages":{"search":{"query":"Tangent Line","originalQuery":"Tangent Line","serpid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","parentReqid":"","serpItems":[{"id":"9035287881799767985-0-0","type":"videoSnippet","props":{"videoId":"9035287881799767985"},"curPage":0},{"id":"8973942515979938152-0-1","type":"videoSnippet","props":{"videoId":"8973942515979938152"},"curPage":0},{"id":"14475028736590184882-0-2","type":"videoSnippet","props":{"videoId":"14475028736590184882"},"curPage":0},{"id":"16130598380154030183-0-3","type":"videoSnippet","props":{"videoId":"16130598380154030183"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFRhbmdlbnQgTGluZQo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","ui":"desktop","yuid":"1366391941769662117"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"6504802107459984995-0-5","type":"videoSnippet","props":{"videoId":"6504802107459984995"},"curPage":0},{"id":"299638132742191985-0-6","type":"videoSnippet","props":{"videoId":"299638132742191985"},"curPage":0},{"id":"2523793286917924259-0-7","type":"videoSnippet","props":{"videoId":"2523793286917924259"},"curPage":0},{"id":"10824873618621495871-0-8","type":"videoSnippet","props":{"videoId":"10824873618621495871"},"curPage":0},{"id":"4835873168551027610-0-9","type":"videoSnippet","props":{"videoId":"4835873168551027610"},"curPage":0},{"id":"9425554466446164018-0-10","type":"videoSnippet","props":{"videoId":"9425554466446164018"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFRhbmdlbnQgTGluZQo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","ui":"desktop","yuid":"1366391941769662117"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"7823682858381017620-0-12","type":"videoSnippet","props":{"videoId":"7823682858381017620"},"curPage":0},{"id":"277600099947289908-0-13","type":"videoSnippet","props":{"videoId":"277600099947289908"},"curPage":0},{"id":"392723384966310322-0-14","type":"videoSnippet","props":{"videoId":"392723384966310322"},"curPage":0},{"id":"3141078243235357561-0-15","type":"videoSnippet","props":{"videoId":"3141078243235357561"},"curPage":0},{"id":"6858983053086830972-0-16","type":"videoSnippet","props":{"videoId":"6858983053086830972"},"curPage":0},{"id":"15053475977637055980-0-17","type":"videoSnippet","props":{"videoId":"15053475977637055980"},"curPage":0},{"id":"483437616902485711-0-18","type":"videoSnippet","props":{"videoId":"483437616902485711"},"curPage":0},{"id":"7492532626219324277-0-19","type":"videoSnippet","props":{"videoId":"7492532626219324277"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFRhbmdlbnQgTGluZQo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","ui":"desktop","yuid":"1366391941769662117"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DTangent%2BLine"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"9185823183127502587757","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1466867,0,85;1405820,0,22;1457615,0,78;1471439,0,25;66182,0,41;1473742,0,87;1476203,0,77;1460712,0,78;1459297,0,96;1465968,0,68;1459323,0,56;138060,0,79;30276,0,13;1474907,0,53;260557,0,52;1461712,0,89;1470250,0,98;1282204,0,36;1469608,0,74;1465919,0,7;1470858,0,28;1466080,0,56;1467161,0,12;1349071,0,95;124066,0,19;88928,0,8;1404017,0,78;1471176,0,59;19996,0,55;1462741,0,26;151171,0,95;1269693,0,34;1281084,0,31;287509,0,5;1447467,0,22;1473595,0,53;1466396,0,15;1476846,0,63"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DTangent%2BLine","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Tangent+Line","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Tangent+Line","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Tangent Line: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Tangent Line\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Tangent Line — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"ye6b174cff7b002c598f5ce16c38116d0","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466867,1405820,1457615,1471439,66182,1473742,1476203,1460712,1459297,1465968,1459323,138060,30276,1474907,260557,1461712,1470250,1282204,1469608,1465919,1470858,1466080,1467161,1349071,124066,88928,1404017,1471176,19996,1462741,151171,1269693,1281084,287509,1447467,1473595,1466396,1476846","queryText":"Tangent Line","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1366391941769662117","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1475824,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769662154","tz":"America/Louisville","to_iso":"2026-01-28T23:49:14-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466867,1405820,1457615,1471439,66182,1473742,1476203,1460712,1459297,1465968,1459323,138060,30276,1474907,260557,1461712,1470250,1282204,1469608,1465919,1470858,1466080,1467161,1349071,124066,88928,1404017,1471176,19996,1462741,151171,1269693,1281084,287509,1447467,1473595,1466396,1476846","queryText":"Tangent Line","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1366391941769662117","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"9185823183127502587757","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":160,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"1366391941769662117","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1757.0__1e42d45c824ef14ef6767326055fb713b0c3a145","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"9035287881799767985":{"videoId":"9035287881799767985","docid":"34-8-1-ZC0A0B4822B37AE83","description":"In this video I show how to obtain the parametric equations of a line that is tangent to a given point on a helix, whose parametric equations are also given. I first convert the helix parametric...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3545023/eced2cbd8dafd7b3986204d5721e15c0/564x318_1"},"target":"_self","position":"0","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DoCaIp1b-2N0","linkTemplate":"/video/preview/9035287881799767985?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Example 3: Tangent Line to a Helix","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=oCaIp1b-2N0\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhUKEzkwMzUyODc4ODE3OTk3Njc5ODVaEzkwMzUyODc4ODE3OTk3Njc5ODVqrw0SATAYACJFGjEACipoaHZkZXppbXhjaWp5dmhkaGhVQ1VVQnExR1BCdnZHTno3ZHBnTzE0T3cSAgASKhDCDw8aDz8T3AWCBCQBgAQrKosBEAEaeIH2_vQB_AQA-hb_BvkG_gILAPv69wAAAOz4_PQC_wEA9P0KCPwAAAAICQkE_AAAAAH-AgP-_gEAAwv3_wQAAAAP-vYB9QAAAAUHCBL-AQAA8wcCDQT_AAAC9wUGAAAAAPYHCAP__wAA9wj49gAAAAAJ-PoQAAAAACAALVAZ4Ts4E0AJSE5QAipzEAAaYBYTACYEJev8EBPg-ePv__bKDeX08QIA7gkABt7jASQP1MbhJgBBzCEDwwAAAPr9CQ_5APVMIOoZHyDsBPPn7PPtf_oK5R4JFNuf-hIPLe8W-RIiEwDNCxUjNcbdKP7zESAALcaJUjs4E0AJSG9QAiqvBhAMGqAGAABwQQAAgMEAAHBCAAAgwgAADEIAAMBAAADCQgAAoEEAAODAAAA0QgAA4EEAABBCAAAwQQAAUEEAAKDAAADYQQAAHEIAAJDBAACgwAAABMIAAJhBAACgQAAAYMIAAPDBAACQQQAAiEEAAIDAAAA8wgAAEEEAAPBBAABUwgAAAEIAACTCAABAQAAAVMIAAMDAAACOQgAAAEEAAIDBAAB0QgAAAMAAAOhBAADgwAAAgEEAAGBCAADEwgAAEMEAAIBBAACAPwAA4MAAAGzCAADAwQAAIMEAALhBAAAAAAAAmEEAAJzCAAC4QQAAUEEAAGBCAAAYQgAAVMIAAOjBAAAAwgAAgEEAALLCAABcwgAATMIAACDBAADIwQAArEIAAIDAAADAwgAAAMEAACDCAAAYQgAAaMIAAJhBAAAQQgAAoMAAAEjCAACoQgAAwMEAAABCAACgwAAAwMAAAOBBAABMwgAACEIAANBBAADgwAAA0EEAAGTCAACQQQAAgEIAAILCAABswgAAWMIAAIhBAAAoQgAAuMEAAHTCAADoQQAAsEEAAFzCAACiQgAAyEEAAGDBAAAkQgAAiEIAAEBCAADoQQAAwEAAAIBCAACGwgAACEIAAIC_AACAwAAAoMIAAITCAACAwQAAkMEAACRCAAAwQQAA0MEAAABAAAAgQQAAmMEAAOBAAACUQgAAIEEAAKBAAAAMQgAAgkIAAJhBAACmQgAA4MAAAIBBAACuwgAAAAAAAODBAABIwgAAAAAAAHDCAADAwAAALEIAALhBAABgQQAAbEIAAIDAAAB4wgAAcMEAAJhBAAD4QQAATEIAABBBAACAwgAAUMEAAJrCAADAwQAAFMIAAFBCAACAwQAAXMIAADxCAAAUwgAARMIAAFhCAABYQgAAUEEAADxCAADoQQAAQEAAAIDCAABAwgAAAMIAAEBAAAAAQQAAkEEAAAhCAAAcwgAA4MEAAABAAACAPwAAikIAACBBAADwwQAAKMIAAPBBAAAsQgAA8EEAAABCAADoQQAAgEAAAKjBAADYQQAAqEEAAMjBAAB0QgAAgEEgADgTQAlIdVABKo8CEAAagAIAAJa-AABwPQAAPD4AAFw-AAAEPgAA4DwAAEw-AAA5vwAAZL4AACy-AACyvgAA2L0AAOg9AACePgAA6L0AACS-AADgPAAAXD4AABA9AAA1PwAAfz8AACS-AADoPQAA6L0AAFA9AADIPQAAJD4AAFy-AADYPQAABD4AAFQ-AABwPQAA-D0AABS-AAAsvgAA2D0AAIg9AAB8vgAAqr4AAI6-AACIvQAAoDwAAKi9AACKvgAAED0AANg9AACiPgAATL4AAJa-AACIvQAAED0AAFC9AAAkPgAAmD0AAJK-AABQPQAAbT8AAAQ-AADYPQAAXD4AAAS-AACoPQAAgLsAAGy-IAA4E0AJSHxQASqPAhABGoACAADYvQAAVD4AAEC8AAAxvwAAVL4AAIC7AAB0PgAAJL4AAJg9AABMPgAAqD0AAIq-AACAuwAAPL4AABC9AABAvAAA2D0AACE_AADgPAAAwj4AABw-AABwvQAAgDsAAJi9AACgvAAAQLwAAEC8AAAEPgAAuL0AAFA9AABQPQAAbD4AAES-AAA0vgAAyL0AAKi9AACSPgAAZD4AAKa-AAAEvgAAcD0AAOC8AABAvAAAcL0AAFQ-AAB0PgAAf78AADC9AABQvQAA2D0AAFQ-AACgPAAAqL0AAOg9AACgPAAAyD0AAIA7AABUPgAAcD0AADw-AACOPgAAHL4AAFA9AACYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=oCaIp1b-2N0","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9035287881799767985"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8973942515979938152":{"videoId":"8973942515979938152","docid":"34-8-16-Z9B583B96BC5ACAB2","description":"This calculus video tutorial shows you how to find the equation of a tangent line with derivatives. Techniques include the power rule, product rule, and implicit differentiation. This video...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4477327/15a28866b99e0295080b13db2e5eb712/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/8AGEQAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5-TKfOzwu9w","linkTemplate":"/video/preview/8973942515979938152?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding The Tangent Line Equation With Derivatives - Calculus Problems","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5-TKfOzwu9w\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhUKEzg5NzM5NDI1MTU5Nzk5MzgxNTJaEzg5NzM5NDI1MTU5Nzk5MzgxNTJqiBcSATAYACJFGjEACipoaHdkYWhpeWRwbWRxb2RiaGhVQ0VXcGJGTHpvWUdQZnVXVU1GUFNhb0ESAgASKhDCDw8aDz8T4gWCBCQBgAQrKosBEAEaeIH7BPsAAf8A-AsAD_kI_AIZAQ4K9QICAOr4-_MC_wEA8gAI_PsAAAD-DAcDAAAAAP_t9Aj9_QAAFgT0APUAAAAUAPMD_wAAAAP89Qj_AQAAB_L2DQP_AAAN_v0BAAAAAPUICAP__wAA7wz8BQAAAAD8BgUO_wAAACAALe3fzjs4E0AJSE5QAiqEAhAAGvABfxMEA-wC4QHbBM0Aywv6_5AX8AAJHej_zQEOALr19gAJ_eQAzwHg_wYVBAC_BwH_OvbP__YD9wA14PwARc_-_-QRBAEx3dwAMyUXAOUH6f_eDhn_AfXt_ffd1v_p8tz_AAoZ_RT15QDvA8cCNQwpAN3kKQgfBA0I4Lf9AfIc-Pv86OH--QDzBAb1Bvv25SUEHN72CSoFEv33KPQEFeX__u_yCf8HKtn-HfP3BQQc-wDE7BP9_OIKDRQHEQXIA_f72_MqBb0NCv34-QL1Huz9Durq-QH1_vj-JRUNARbi-vr5AfEOCP8B_-AB_gf8GvL7IAAtBLoiOzgTQAlIYVACKs8HEAAawAcfvM6-sRKYO0btwDv6DdO9kHjDPGxwB70jE_C91y0nPff9QLwP0vM9kO4svaAE0TyNtQ--p0OCPOWXgzvLgDM-5tGIvZhiMzxxPVq-5xa_PYVMqLzn_iq-Xcv_PEh0Kjz2czS9f76tvEY54roLv6o9PwqNvNJpwjxhgmC7bxYKPRi6bbyxnM68l5xJvLbtYL2qGN28uAkSvQ2Qorsg6wk-xW3ZvKqZNby3V0s9VnTWu8anIL0WkmK9EV51uz7007wvTXY9xpWJPcLrRDx6L5O9hnaevT-z2jx1vY69zk9RPYWQmDwmQKg9kKgrPW_Rrry7u6k9kiSIvXIoWbqoyCG-AnwcPejpbTy5Zrc9cxOwPb8bgTwY0gG-SYOrPZYmJbyKlSy85Z90PDfjNLzPfKM9uDJSPafQVDznDDu9H-SrPNCm2Tp24Qe9KjKfPRm0azxblZQ96g6ovTAwhrxd_yk9DLXBPD90nLwqWYm9JXQ4u6a1zLpjeue8TgCPPA7T47uimSc9YPtuvGfO3TvfZsY9ObXzvYcfGDyV3Dy9PPHBvUPp5rvQoPw8UInQPIpxALyvQzU9aL7JvWc7kbsw-mU8kqu7O93NFbtKOg-9qTkUveUJqbuSKJ-9zhd7vBPj5zsaVQG9i4EfPXUsJbzEknY732-kPVxAwzpyU_87v4LUvTqLgzp5E6I9JwEDu5DD3LtozBQ-NTyDu3EoGroSUME9wXhBvWHTCrppzD-90GM0vciPnbqRYaW9JUaKvfSouznurw4-nxKRvX7QlDm3Kf06f7pGPTX6TjkJcSC9X1cYPQfsNjm50mE9Lt6UvXNP3TitL7c6_RLxvbwjiTlqUE89E3wTPJRLErlvOAK92e6uPdTLMDgS9UK9IhjnvXga6jctPR48OUlOvCHoc7ieUJ492OksPZn8dbhUDoe9HtvXvNC8n7gwJkI96TIrvSdMALkdiLS7DA5lPRJnBzjnItk8A8z8vVJJyDl5JTe4VGQePZ6okjg-Jg09I-CbPbDrHLgjYYQ8ume9PSVfd7fD0-s8Zyb4vSIkJLj80pE8w45wPXLYODhYn8y9pi40PYN_LDlEr1U9f9h3vHMalTcSn2C7shw2u2ULMjYgSg08QzhGPQz4zDcvphk-eDvMPPzmG7lcSQG9yt7SvRciBLnDJv23s0OMvU2KDjdVMRO8TplbPQ2vyzfk1Z68eonxvWVVMLjK9HA9IuErPvHLijjrXOy8qqSkPQGLxLhV18a9u5lRvPmaW7d6DIC9KYA9PMRZt7cgADgTQAlIbVABKnMQABpgQwMAIQ4fyB76LtLy5uUO5av06fPUDv_68QAMGbT5JAibvN8LADrjH_ikAAAAIPzpAvoA8H_LxRcNCQf3nrzMMC586AAQtwoa15PUBxwyygQcHChMAOD7v1Iy2atADPwIIAAtqZsTOzgTQAlIb1ACKq8GEAwaoAYAADBCAADAwQAAgD8AABTCAAAQwQAAUEEAALxCAADYQQAADMIAAGBCAAAsQgAAJMIAAPDBAAAgQQAAIEEAAEDAAACEQgAAwMEAADhCAADwQQAAQMEAAEDBAACkwgAAgEEAAADCAADAQAAAMEEAAPhBAADgQAAABEIAANDBAAAswgAAgMIAALhBAACowgAAcEEAAABBAACgQgAA6MEAAIRCAAAYQgAAcEEAABBCAAAYwgAAgL8AAJrCAABMQgAAtEIAAIBCAACWQgAAAEAAAAAAAACAwQAAAEIAAKDAAABAQgAA1MIAALhBAACAQQAAKEIAAIC_AACKwgAAyMEAALjBAAC4wQAAWMIAAEzCAADQwQAAFEIAAGDBAADgQAAA1EIAANDBAADwQQAARMIAAEjCAADAwgAAqEEAAOBBAAAsQgAA6MEAAPRCAABgQQAA4EAAAGBBAABgQQAAAAAAAHDBAAAgQgAAMMEAAFDBAAAsQgAAwMEAAIDBAAAYQgAAkMEAAEDBAACgwQAAoEEAAIxCAABAwgAAMEIAAIA_AAA0QgAAuMIAALhBAAAAQQAA-EEAABDBAAAwQgAAbEIAAGRCAAAQwgAA4EEAAIDAAACAQgAAoEEAAEzCAABQwQAAkMEAAEzCAACMwgAAMMEAAPDBAADgwQAAsMEAAJjBAACYwQAAQMEAANBBAADYwQAAAAAAAIhBAABcQgAAKMIAAHxCAACAwAAANEIAAJDBAACewgAAMMIAAAAAAAAoQgAA6MEAAABCAAAQQgAAcMEAABRCAACIQQAAmEEAANDBAADAQAAAHEIAAIDBAADgQAAAEMEAADTCAABcwgAAgsIAACDBAAAYwgAAEEEAAKBBAAAQwQAAKEIAADBBAACYQQAAgL8AAExCAAAgwQAAAEEAAMhBAADgwAAAMMEAAKDBAADQwQAAAEIAAAzCAABQQQAAOEIAAMrCAAC4wQAAuMEAANhBAABkQgAAbMIAAETCAAAgQQAAwMEAALjBAADQQQAAQMAAANjBAACgwQAAiEEAAAhCAADgwAAAoEEAADDBAADgwSAAOBNACUh1UAEqjwIQABqAAgAAqD0AAHA9AAAEPgAAcD0AAJg9AAC4PQAA6D0AABe_AABMvgAAUL0AAAS-AACgvAAAMD0AAMY-AABsvgAADL4AAMg9AAAwPQAAqL0AAMo-AAB_PwAAML0AAEw-AAC4PQAA6L0AACw-AABUPgAAoLwAAJg9AACgPAAABD4AAOi9AADovQAALL4AAEC8AAAMvgAA4DwAAGy-AACyvgAAgr4AAIq-AADoPQAAqj4AACy-AAA8vgAAML0AAJ4-AABkvgAAiL0AAOC8AACYPQAAUD0AAFA9AAAEPgAADL4AANi9AAAZPwAAgLsAAFA9AAA8PgAA4DwAADA9AABEPgAAHL4gADgTQAlIfFABKo8CEAEagAIAABC9AAAEPgAAcD0AAD-_AACovQAAqD0AAIo-AABAvAAA4DwAACw-AACYPQAATL4AAFC9AAAkvgAA2D0AAHC9AAC4PQAAGz8AAIg9AADmPgAA2L0AANi9AAAwPQAAFL4AADA9AAAQvQAAMD0AABA9AAAQPQAAqD0AAKC8AADYPQAAgr4AAOi9AABAvAAABL4AAKC8AAA0PgAAir4AAEA8AACAuwAA6D0AAFA9AABwPQAAuL0AAAQ-AAB_vwAAoDwAAFA9AAD4PQAAML0AABA9AABQvQAAmD0AAOg9AACIPQAA4DwAAKC8AACgvAAAcL0AAOg9AAAwvQAAFD4AAEC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=5-TKfOzwu9w","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":394,"cratio":2.16751,"dups":["8973942515979938152"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4082466119"},"14475028736590184882":{"videoId":"14475028736590184882","docid":"34-4-2-Z914C4B7EE0964176","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/alge... How a tangent line relates to a hyperbola. Might be useful...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2733262/f5d570465cfe35f6739c8fa900a73207/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zX-C5wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dc_8QQbVQKU0","linkTemplate":"/video/preview/14475028736590184882?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tangent line hyperbola relationship (very optional) | Conic sections | Algebra II | Khan Academy","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=c_8QQbVQKU0\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhYKFDE0NDc1MDI4NzM2NTkwMTg0ODgyWhQxNDQ3NTAyODczNjU5MDE4NDg4MmqSFxIBMBgAIkQaMAAKKWhoZG92aXd4c2V2ZnFyZ2hoVUM0YS1HYmR3N3ZPYWNjSG1GbzQwYjlnEgIAESoQwg8PGg8_E9sEggQkAYAEKyqLARABGniB-Q_0_gL-AP4B-Qf4CP0CCgn_9_YAAADs_Af6BwAAAPMKCwUKAAAACAkF_QIAAAABCAL-8f4BAA4A_QP7AAAAGwL9APcAAAADCwL6_gEAAO4BBv8DAAAAEwoIAf8AAAAOEPz3AAAAAPr4A_EAAAAA_gAVB_8AAAAgAC2O-ss7OBNACUhOUAIqhAIQABrwAX_qF_74470DvBbdAOnw7wLXNg3_FBnLAK7q0QDMHOoB-ekPAO8m8f_zFOwBhTH_Af_Z1QDixSwARNf7ACXGAwDpDfoBD_zyAhA0GgAO_P7-8zX6_RXHCQAc0MsD8Tbi_wzwFfgxCQz-IRrDAhpPNQHozyUDC_Qp_BWqJv37DQEGGPD1-wYcEAUY8QT19fMr_h_59gH0AyP5-C7CAu4KIQfw8iD38RXT_ioP9gYn8RoAjb5A_eTgDAYDCiAD6jH0CtHwNQfLFvnvCgsgBxwe7frr9AIMB-3bBPvw9vYHDgsOBw7w-wr_Af_CGeYA3iv47iAALb9OADs4E0AJSGFQAirPBxAAGsAHt-zYvl13qTyx1MS89QoPPBo25ztVPU-9ak1zvakIwTy2cgW9FHYRPt8O3rwmvoM750aivesACLtaf8u8_b10PpJUS70Dsew8dXT8vS8Tmj0LAhC9E5BgvXNJdjt0JUI9AL7FvTdkTb1r50W8iGVzPaVqm71wApk6w_hEvEyJRD0tWVq91DqbPTRVRr0On3S95suLPXyWDL1uPM48S4PwO2pprjx2wLU8pe4vPbUlkb34uSu9QxF8vahHBL2Zav-7jPyVPBzt-D0U6gy8WP68vcXZnr0qS187aIBBvWuZsbz-nKO73_zGPewb8zyHWT692MIHPUTHmb3yO7K8TvKzvd7MqLxG8nA8J5J-PXz5iD3gfI887-SzvfeRmz3N_bq8xSIBPTO54rzTRru7uTuGPCCu4jsetXg81IXzPLrSVzwziUG6LQ4fvFVWLj0QQhs9huJOPZD-cr1GoFW8FZWIPUW1Tb0zf5Y8di3rvOOsI72oS6s8bayEPB0QNz2zW3A8RCDNPBM4hrqiFQ48BSOlPdYCO75J5Zo6WL-uvTJVMLwxoRm858xRPbigiD1ZfR688PlhPRRfDb53hBG7tr8uPUvwvLw37C27eNSIvau597wzLsE6IyuEvQf0nT1ywAO66QthvdnOt7xk4r270TMnPaxm57yVDMI7uNIGPQhW1b0-uhK6KhwgPFjnuD1fULa7O2JDPR2GwD1B4my5tyuyOyMfar0WEQu7PbrBvVG5Dzxbm4S6Ez0aveomDDsmW_85bQPXPbWj2L0Mn685BDaMvD0s1Dy7Y1O3ESYbvQEYij1YNZG55lyKPG0bhjx7e1o5HhGovc78Sr4Byw45F2X2PZOTBL2O3-I3HWCcvLw7kj2IMbC3f35kvaOxMb1g3eM665wVvUBs6Ts-D-23HTXLPVCWUD1brGE4ReqHPZX0sDzeaPS3oeWvvFRNFb21GDG4yCiqvOWiED0Mp5A4L4u5vaW7q7y25fu4n_FxO6XYAT6orjG5owtFvHZPkz32LUc4WNyJPZd9LT0PaCG1rWiYvG6kbL0_UzA4baljPag04jyxRbS4tJAQvtiMoj2ZewS3mhL_vL2yJr0Vuse3xmwpPdVyDD2bmYk3FfepPcbpmj1yEfU3raf2PbPqmLx7Ozq5q98WvQ37Hb6jvP64b0VnvbQWm71OcPi3m9KPu-Lkjj1g3kc3FPRNPbS9p72Xl423ipZXPRBY-T2NF0A4GCc5vZRDpT1llMe4tBbAvVQ0uz08X7I46xYGvUkyhry7hZ84IAA4E0AJSG1QASpzEAAaYDXsACoKTekO_Tzr3PLZ080CHssz4BL_3sD_GA8L_hESuar0HAAnCRbpngAAACf0ACHnABR_3fH-Uv_tKeqs2BE2db4CLc7fKgehFVIkIe4mISgbVADeIZ4rOc2sSCkyHiAALSBJETs4E0AJSG9QAiqvBhAMGqAGAACYQQAAUMEAAIBBAABowgAAAEEAAODAAADaQgAAYEEAAATCAACIQQAA6EEAAITCAABAwgAANMIAAERCAAAMwgAAgEAAAKDBAACAvwAAFMIAAIjBAACIwgAABMIAADBBAACIwQAAyMEAAGDCAACwwQAASEIAAFBCAACYwQAAIEEAALbCAAAoQgAAqMIAAAjCAABwQQAA2EIAAKDBAABIQgAAcEEAABhCAACOQgAAEEEAAJhBAACSwgAAAMAAAIA_AACQQgAAEEIAAODAAACAwAAA0EEAAEBBAADwQQAAcEEAAADDAACoQQAAiMEAAGxCAAAUQgAAaMIAAADCAACGwgAA-MEAACzCAABgwQAAsMEAAOBAAACYwQAAZEIAAI5CAADQwQAAsEIAAMjBAACCwgAAUMEAAMDBAAAsQgAA8EEAADzCAAAoQgAAoEAAADBCAAAwwQAAoEAAAEBBAABMQgAAWEIAAIDBAACQQQAAbEIAADjCAACcwgAA8EEAAFDCAABAQQAAoEAAAAxCAAAMQgAAdMIAAExCAADQQQAAZMIAADjCAACAPwAA-MEAAEBCAACwwQAANEIAAEhCAADAQQAAuMEAADDBAADAwAAAuEEAAODBAABMwgAAUEEAAODBAAC4wQAAOMIAAJjBAADwwQAAcEEAAPBBAAAgwgAAIMEAAETCAADAQQAAQEEAAABBAAAcwgAACEIAAIBAAAAQwQAA4EAAAPhBAAAkwgAAlsIAAPDBAAAoQgAAPEIAAADCAABMQgAAIEEAAFTCAAAwwQAA4EAAAOjBAAAwwQAAyEEAADBCAAAowgAAoMAAAKDAAABQwQAAdMIAAKDCAACAQQAAjMIAAOBBAABQwQAAqMEAAODAAAC4QQAA4EEAAKBCAABoQgAAPEIAAAjCAAAQQgAAkMEAAMDAAABcwgAAAAAAAADAAAAAwAAAgD8AAJBCAABAwAAAHMIAAHDBAABgQQAANEIAAIjBAACQwgAALEIAAJjBAACIwQAAQMAAAEDCAABgwQAAMMEAALBBAAAQQQAAoMAAAEDAAACYwgAAkMIgADgTQAlIdVABKo8CEAAagAIAAKA8AABAPAAADD4AAJ4-AAAMPgAAgLsAADQ-AAApvwAAdL4AAEA8AABAvAAAXL4AAKI-AACOPgAAQLwAANa-AAAEPgAAyD0AAMI-AAA1PwAAfz8AAMg9AACYPQAAFD4AADy-AACIvQAAJD4AABy-AADgPAAAND4AAEw-AADgvAAAPL4AABC9AAAsPgAARD4AAIg9AAAUPgAAyr4AAJi9AADuvgAAfD4AANg9AABAPAAARL4AAFA9AADSPgAAF78AAHC9AADovQAAUL0AAOi9AADGPgAAXD4AABy-AAC4vQAAIT8AADA9AABUvgAAcD0AAEA8AABQvQAAMD0AAEC8IAA4E0AJSHxQASqPAhABGoACAACivgAADD4AACS-AABDvwAATL4AABC9AACGPgAAqL0AAOC8AADGPgAAmD0AANi9AABEvgAADL4AAHC9AABAvAAAUL0AAD8_AAAUPgAArj4AAIC7AACOvgAA4LwAABC9AAD4vQAARD4AAJi9AABwPQAA4DwAAHA9AACgPAAAoLwAAIi9AABwvQAAND4AALi9AACKPgAAQDwAAI6-AADgvAAAXD4AAMg9AACYPQAA4DwAAEC8AAB0PgAAf78AAJi9AAAQvQAA-L0AAFw-AAA0vgAA-D0AAKC8AABcPgAAcD0AAKA8AABAPAAAqD0AABC9AAAcPgAAML0AAIK-AACoPSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=c_8QQbVQKU0","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14475028736590184882"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1639725601"},"16130598380154030183":{"videoId":"16130598380154030183","docid":"34-4-15-ZC0FE3EC55B8BB123","description":"To find the tangent line to the curves (y = x^2) and (y = x^3) at a given sample point, we use the concept of the derivative, which geometrically represents the slope of the tangent line at a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2461135/df4ef44f45079182179147fdc7f87234/564x318_1"},"target":"_self","position":"3","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dhmcjdvso8KA","linkTemplate":"/video/preview/16130598380154030183?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tangent Line to (y = x^3) Using the Difference Quotient","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hmcjdvso8KA\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhYKFDE2MTMwNTk4MzgwMTU0MDMwMTgzWhQxNjEzMDU5ODM4MDE1NDAzMDE4M2quDRIBMBgAIkQaMAAKKWhoYXZpaWxqb25mY3Jmd2hoVUM2X2hmNGtPeDVwZl8xQXlNRzJ2OWZ3EgIAESoQwg8PGg8_E8wDggQkAYAEKyqLARABGniB8QUDAfsFAPv8_w8BCPwCDAX_AvcAAAD49QHzAwP_APT9Cgj8AAAA_gYECgQAAAAKAwwC9P4BABH_8AcCAAAACfP3C_sAAAAJD_sN_gAAAP789_76AQAA_fb5-_8AAAD7BAkL_gAAAPr3-PkAAAAA-_oHCgAAAAAgAC0SBuA7OBNACUhOUAIqcxAAGmAnEwAbCxHN8Boe4Pbh4vAFxiLbD-X2__IwADXn0vk2GcG1ABD_T_4F-bMAAAAWFP4aEwAOXA_j_QYRDPgK7vYlAH_15-FBFBDmnc4CD0zaIdknF04AzQwQGCDc5ikE8ycgAC2nqjQ7OBNACUhvUAIqrwYQDBqgBgAAQEAAANhBAAAgQQAAmEEAAABAAADAQQAArEIAAIjBAAAUwgAAMMEAAJjBAAAgQQAAgL8AAHBBAAA0QgAAhEIAAJjBAABIwgAAgL8AADjCAABgQQAAMEEAABRCAAAAQQAAhkIAADTCAABwwQAAUMIAAJjBAABwQgAAgMAAAK5CAAAkwgAApMIAAKjCAACoQQAAWEIAAMxCAAA4wgAAgMEAAAhCAABwQQAANEIAAJhBAACcQgAA0MEAAMBAAACAQQAAIEIAAIBBAADgwAAAgMAAAKDBAAAgwgAAgEAAABRCAABwwgAAAEEAAIDBAAAEQgAAEMEAANjCAAAwQQAAUMIAABBBAAAswgAAwMAAABDCAABgwQAAAAAAADRCAAAwQQAAoMAAAADBAADAwAAACMIAAKDCAADwwQAAmkIAAHBBAACEwgAAXEIAAADBAACYwQAAuEEAAJDBAABEQgAAyEEAAJhBAADowQAAiEIAAGRCAABAwAAAgMEAAMDAAAD4wgAADEIAAIjBAAAwwQAAHEIAAFDBAAAIwgAAeEIAABzCAADQwQAAEMEAABDBAAC4QQAA0MEAAAhCAABAwAAA-EEAAHjCAAAsQgAAwEAAALhBAACQQQAAlMIAADzCAACawgAAYEEAAHDCAAAAwgAAEEEAABTCAABwwQAAAAAAAIDAAAC4wQAApEIAAIDAAAAEwgAARMIAAJhBAADAwQAA4MAAADBBAAAswgAABMIAAKTCAAAUQgAAQEEAAKhBAABYwgAAwEEAAIA_AABkwgAAIEIAACBCAAAUQgAA6MEAAEBBAABAQAAAQEIAAIhBAAAAQAAAgMIAAChCAAAUwgAAAEIAAJBBAADgQAAAnsIAAEDAAADAQAAAOEIAAHBBAACIQgAASEIAAIBAAADoQQAAkMEAAKDCAACSwgAATMIAAADCAACgwQAABMIAAAAAAACIwQAA-MEAAABBAABcwgAAlkIAADBCAAAgwQAA4MEAAJjBAABIQgAAEEEAALDBAABQQgAAnEIAAMDBAADgQAAAgMAAAHxCAAA0wgAACEIAAGDBIAA4E0AJSHVQASqPAhAAGoACAABQPQAAiD0AAKo-AACKPgAAgDsAADA9AAAcPgAAlr4AAIA7AACoPQAAHL4AAES-AAAUPgAAZD4AAOC8AAC4PQAAuD0AAJg9AABAPAAAqj4AAH8_AAAEvgAALL4AAIi9AAAsvgAAEL0AAIC7AADovQAAcD0AAGw-AACAOwAAUD0AAOA8AAAUvgAALL4AAES-AACgPAAAZL4AAJa-AACoPQAABL4AADA9AADoPQAAiL0AAHA9AADoPQAADD4AAAy-AAA8vgAA-L0AAHA9AABsPgAAdD4AABA9AAAEvgAAcD0AABk_AABwvQAAgj4AACw-AACAOwAAVL4AAIC7AAA8viAAOBNACUh8UAEqjwIQARqAAgAA-L0AABA9AADYvQAANb8AAKi9AADoPQAAbD4AALg9AAC4vQAAdD4AABw-AAA8vgAAJL4AAHC9AACAOwAAgDsAAJg9AAA3PwAABL4AAJo-AACAOwAA-L0AAMg9AAAMvgAAgLsAAOg9AABEvgAAED0AADA9AADIPQAAiD0AAIg9AABkvgAA-L0AADQ-AAAEvgAA6D0AADw-AAB0vgAAJL4AAJI-AADgPAAAED0AAMi9AACIvQAAbD4AAH-_AABAPAAAUD0AALi9AACoPQAAiD0AALg9AAAUPgAA-D0AAHA9AABAPAAAMD0AAKg9AACgPAAAJD4AAPi9AAAQvQAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=hmcjdvso8KA","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16130598380154030183"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6504802107459984995":{"videoId":"6504802107459984995","docid":"34-7-5-ZB6B3C3D513DB399A","description":"In calculus, you’ll often hear “The derivative is the slope of the tangent line.” But what is a tangent line? The definition is trickier than you might think. Tangent lines are important...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3957108/d3e5b70492333c871623211466dc8fa3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1F7SBgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DO_cwTAfjgAQ","linkTemplate":"/video/preview/6504802107459984995?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Tangent Line and the Derivative (Calculus)","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=O_cwTAfjgAQ\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhUKEzY1MDQ4MDIxMDc0NTk5ODQ5OTVaEzY1MDQ4MDIxMDc0NTk5ODQ5OTVqiBcSATAYACJFGjEACipoaGhvbG5uZWx2b2xlaGpkaGhVQ1c2VFhNWjVQcTZ5TDZfazVOWjJlMFESAgASKhDCDw8aDz8TugWCBCQBgAQrKosBEAEaeIH0CPsH_QMA-wMDDgoI-wLyAAgB-_7-APj0AfIDA_8A9gH8AfUAAAACCQ38BAAAAPj6-w___wAAFQT0APUAAAAQ-vUB9QAAAAUB_Qb_AQAAAfv8DwT_AAAIBQQBAAAAAPUHCAP__wAA8vz4AAAAAAAB_AISAAAAACAALSM_3Ds4E0AJSE5QAiqEAhAAGvABf98_AOfxDwLp7cYB1jG8AaAxJ_8aUPgAuAX8ANEH3QEUGD8BANIDACvq2wCbFA0BGBnsABXbG_9C9xX_D97yAN4r_AEy4gMAQBQw__7xzP7VQOD_yc73AfPYrgAEJtf-AxX6-ywG1f4fGMcCEP5DAQ0b9gwP_PIB_twL-gIdEALq2tb9GiL6BAT79vPqFz8B-wEkASYeE_zGI-n__ywDBgUC-QoKEgIFHBPX-PDy9_a--wMB-9_1Bi_0GPjv-d0L6uDx9_i_BP_sAhD4GgsF--bm-AELEev44wQGA_sB9_rSFREG7PL9_wog-wsa_fUTIAAtrZcJOzgTQAlIYVACKs8HEAAawAdqFtC-rJQZPVMN97v1Cg88GjbnO1U9T73goP29LgymOwWRHrynzfg97CSsvLWGF729jpC-fOdcvdimKTug4ig-UdvGvEQONjxaLlu-6o-VPG5ikrw_Hjq-IBkBvW3FvjxAijo9LBNZPC54DL0Rg4o8RnCtvOs9z7tbry49N1rpO_jnXb2iYtw9dVawvPdYGr34Db09KPmHvNk9OT2SUtg75s8yPfZsjLzO9g09c4vUvN_RsbuscOu98NOCPDIFqbuCQsg92hPuPCLY3TyJzw2-InyOvZhvmDxVp168aCslPfiZRLzqB3U9v4TEO7HVCr1Id7Y9AnhVPL8K1TwjPcu9OO65PN62pbzkZvg9ZkzhPRgj1DtQw9e9xJJ3PWuMzjpDebo8t1I5vaygM7xkk9w9bv1PPGcxzDz5psQ9zohSPXfkvrxR76M9WdDFu0tSvjz1fY29bwwBPlJMdzuWWak8ogGGPMA9sjtiU4I8ne8MvWNc1ry-qo48CWxuPWzEXbw6Oz49GO0RvREicLvFNUM9-FENvglvLLvyBwe7J2n-vAnc37yg86Q8Xx4XPTCz-LqGWp49J1BEul03gLyscfa8fI9kvYDCjzrjgIe9fqrqvbP7ITxz2ci9YjN7PQntybvLhUq8WKCnvBNyb7u_gF49CkcVvdYoGjww31C9UrBrPGk_jDveuzw875SJPZmL7LvMXja8g-5cPctSoTsYsgo-ZZ7DuxjRgjg-A2q7N-Hevdl8zrk0tRE9hceIvHIfsbofotE9WPgfvXnRijh0lAi9GmlOPE9RmjqRuni9KJwdPccBCbjj4ui8FViLvXpLsjeml_i986upvao0dTiRob68a4MPu7lmuLomVkY8w7BQuj69Xbo5oCC9xE06OzSklLky16i9VtqtPXGs0rid-IU84gQmvDh8tbhOCtM9H2PRu74KATkE8fA8Qe2cvbVeHLmx88s94XnpPd0Sgzfm_I69MgyOvNleArmK6Pc9P5CsPYLuZjhaxvy8qVBYPSraBLUPkk892FK2vD8rQ7hgmwW8jERNvXadLzi6jby8S48LvYqWnDhlU869wuioPP4y6DeEuT09z9AHPHhKT7cc2bA9QBeNvNQr4TdcRMq7fcXDO31dkzfB4ys-3KVovAeJdLk0UxA9glTqveUcjrhvSvm8VP9_u0sB17cKNZ48GbcnvWlznTe9rwU9pUkJvq2ehbgk3jA9dvHIPE6N_TjtxJs8RUnIPe5SCrm0FsC9VDS7PTxfsjjBxY67YhWvvEFxMzcgADgTQAlIbVABKnMQABpgMf0AHgcM2__xMezjzML53M_q-gTaBP_1DgACDtofKiC_4QL1_0PPDQWyAAAA8fQJIQ0A32nb3h3vDBoKzK3QHw9_2g0RzOtDEqfSGwkZzSYgKSQ-ANEazSYWwe4RIBohIAAtRwUtOzgTQAlIb1ACKq8GEAwaoAYAAIDAAADgwQAAwMAAAAzCAACgwAAANEIAAOxCAACIwQAAWMIAAIDAAADQQQAAgMEAANjBAADAwAAABEIAAFBCAAAEwgAABEIAAFDBAAA8wgAA6EEAAFBBAACwQQAA2MEAAPBBAAAMwgAAQEAAAETCAACAQAAAAMAAAAzCAAB8QgAAhsIAAADBAAA0wgAA8MEAAABCAACYQgAAUMEAAPhBAAA8QgAAuEEAAGxCAADQQQAAiEIAAIDAAAAwwgAAAMEAAFhCAADgQAAAgD8AAMjBAAAUwgAAXMIAAMBAAAAAQAAAAMMAAAAAAAA0QgAAyEEAAKhBAACMwgAAgMEAAFjCAACwQQAAAMMAABRCAACowQAAgEAAACjCAAA4QgAAcEEAABzCAACgQgAAYMEAAMDBAADYwQAA2EEAAI5CAABgQgAAhsIAABRCAADAQAAAYMEAAPhBAACYwQAAqEEAAFRCAABgQgAA0MEAAFDBAAB0QgAAJMIAAKBAAABsQgAAzMIAALhBAACQwQAA4EAAAARCAACSwgAAEMIAAFBBAACgwQAAbMIAACxCAADoQQAAuEEAACRCAAAgQQAAcEIAACxCAADowQAAAEAAAOBAAABAwAAAqEEAAAzCAABcwgAAGMIAAIC_AAA8wgAAgMEAABDBAACowQAAoEAAADBBAACAwAAAhMIAAIxCAAAAwAAAiMEAAHzCAAD4QQAAgMEAACBBAAAUQgAAsMEAAMbCAACGwgAAgMEAABRCAAAAQgAAAAAAAPBBAABAwAAA8MEAABBBAADgQQAAEEIAAKDAAABQQQAA6EEAABjCAACwQQAAgL8AANDBAAAQwgAAUMIAAARCAABAwgAAAEIAABDBAADAwQAAgMEAAEBAAACAwAAA6EEAAAxCAACAPwAAPMIAACBBAABIwgAAtsIAAK7CAADwQQAAQMAAABDBAABQwgAAGEIAACDCAAAAQAAAOMIAAFzCAADwQQAAREIAAILCAABAQQAAoMAAAJBBAAA4wgAAIMEAAKBBAACgQQAAoMAAAABBAABAQgAAQMAAADzCAAAEwiAAOBNACUh1UAEqjwIQABqAAgAAlr4AAOC8AABEPgAAVD4AADC9AACAuwAAHD4AAO6-AABsvgAA4LwAABS-AACovQAAUD0AAKY-AADgvAAAHL4AADA9AACgPAAAEL0AALo-AAB_PwAAVL4AABC9AAAMPgAA2L0AAJ4-AAAQPQAAUL0AAIg9AAC4PQAAiD0AAMi9AAA0vgAAmL0AAOA8AADovQAAoDwAAJq-AAAkvgAAUL0AABy-AAAwvQAAjj4AAMi9AABsvgAAUL0AAII-AABwPQAA6L0AAIA7AACYvQAA4LwAABw-AACoPQAADL4AABA9AAA3PwAAQLwAAFQ-AAAsPgAA6L0AABC9AADoPQAAQLwgADgTQAlIfFABKo8CEAEagAIAAEC8AAC4PQAAQLwAADO_AAC4vQAAuD0AAFw-AADgPAAA4DwAABw-AABwPQAAkr4AABA9AAAsvgAAMD0AAIA7AACKPgAAIz8AABA9AACuPgAADL4AADA9AADIPQAAPL4AALg9AADoPQAAUD0AAEA8AACovQAAqD0AADA9AAAEPgAAbL4AAMi9AAAwvQAAPL4AAKA8AACOPgAAmr4AADy-AADoPQAAHD4AAHA9AACgvAAAML0AALg9AAB_vwAAQDwAADC9AADoPQAAJD4AAIg9AABQvQAAqD0AABw-AAAwPQAAMD0AALg9AABwvQAAML0AAFQ-AADovQAAoDwAAKi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=O_cwTAfjgAQ","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6504802107459984995"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2236166917"},"299638132742191985":{"videoId":"299638132742191985","docid":"34-0-17-Z39DEF3A45F79229A","description":"In geometry, a tangent line is a straight line that touches a curve at a certain point but does not cross it. Let's take a look at tangent lines and derivatives in calculus with @TheMathSorcerer.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3316135/4d45a7fc32b5474e1fa5e4c1bbc9184c/564x318_1"},"target":"_self","position":"6","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmD5qWlrlMI8","linkTemplate":"/video/preview/299638132742191985?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tangent Lines and Derivatives Ft. The Math Sorcerer","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mD5qWlrlMI8\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhQKEjI5OTYzODEzMjc0MjE5MTk4NVoSMjk5NjM4MTMyNzQyMTkxOTg1aq8NEgEwGAAiRRoxAAoqaGhldnh1bHBua29weWFuZGhoVUNFQjM2N3pDeDJwLXR2NnhoaHp5eU13EgIAEioQwg8PGg8_E_0DggQkAYAEKyqLARABGniB8BECCAj3AOgRBQgBAv8A9wAFC_n9_QDW8_b1CPgEAPHq__MC_wAABvD5BPoAAAAMBA8C8f0BABX-7QgCAAAAHAT8DP8AAAAHDfn8_gEAAPXo8wMD_wAA_woO7v8AAAASHAwJ_gAAAP4IBvwAAAAA6_4EEP__AAAgAC1X6Lk7OBNACUhOUAIqcxAAGmAhDwARCgz01_gE5dQDzd8D4O7nFs4IAPv6ABj44ekP_9i9_P0ANN4UB8QAAAAHAfsMEgDRTu7R8wEaFPTU5BYQDn_sAf7S8P32w_zj4jX9HfvtDCAA8PgTLCHo3TUG_hkgAC0sb1w7OBNACUhvUAIqrwYQDBqgBgAAEEIAAATCAAAEQgAATMIAAOBAAAAkQgAAQEIAADhCAAAwwgAAiEEAAPBBAAB8wgAAKMIAAKDBAABUQgAAgMEAAMhBAAAcwgAAuMEAAKBAAABQwQAAaMIAAFzCAAB0QgAAMMIAAABBAAAQwgAAoMEAABDBAADoQQAAnsIAACBCAAAkwgAAAEIAAODCAABQwQAAsEEAALpCAACAQQAAZEIAAJhBAACwQQAALEIAAMDAAAAwwQAAosIAAAhCAAA8QgAAjEIAAIhCAACAwAAAAMIAAEDAAAA4QgAAMEEAAOhBAAD0wgAAgEEAABjCAACAQgAAWEIAADDCAAAYwgAAuMEAACxCAABwwgAAYMEAAGzCAABQQQAASMIAAFRCAAAwQgAAAMIAAEhCAAAwwgAASMIAAAjCAADIwQAAEEIAAADAAAAAwgAATEIAAABBAAAAwQAAyMEAAIBCAAAAAAAAoEEAABxCAACowQAAoEAAAKpCAABkwgAAAAAAAFBBAACIwQAAIMIAAKhBAACcQgAAkkIAAIjCAACwQQAA8EEAAEDCAAAgwQAAmEEAAADAAAAQQQAAuMEAAIpCAACYQgAA0EEAAEDBAADAQQAAEMEAAABCAAAgQQAAmMEAABBBAACCwgAAQEAAAFzCAAAAwQAAEMIAAABAAABEQgAANMIAABjCAADIwQAAAEAAACTCAAAwwQAAYEEAAOhBAACgwQAAIEEAAEBBAADwQQAAUEEAAILCAACAQQAAQEEAAIBAAAAgwgAASEIAAEBBAADYwQAAoMEAAKDAAACAQAAA4MAAAIC_AADYQQAAAMIAAIDBAACewgAAGMIAANjBAACEwgAAMEEAAHjCAAAsQgAAPEIAAIjBAABAwAAAuEEAAKhBAACqQgAA2EEAAODAAAAAQQAA4EEAAKDBAADgwAAAnsIAAFDBAABAQAAAiMEAAFhCAACSQgAAKMIAAGTCAAA0wgAA2EEAAFxCAABgwgAAgMIAAKDBAACIwQAABMIAAEDBAAAwwQAAMMEAAHDBAAAgQQAAgMAAABDCAACAQAAAqMEAAILCIAA4E0AJSHVQASqPAhAAGoACAACYPQAA2L0AAGw-AADYPQAAiL0AAEw-AACAOwAAMb8AAJ6-AACYPQAAlr4AACS-AADIvQAA0j4AABS-AACAOwAAjj4AAIA7AACgPAAAbD4AAH8_AAD4vQAAHD4AAOC8AAA0vgAAQDwAAKA8AABEvgAATL4AAIA7AAAEPgAAUD0AABy-AAB0vgAAoDwAACy-AACIPQAAJL4AAJa-AAAMvgAApr4AAHA9AABUPgAAQDwAALq-AADgPAAAPD4AABA9AACgvAAAcL0AAAQ-AAAUvgAAoDwAAIA7AAB0vgAAML0AAGE_AABwPQAAVD4AAEA8AADgvAAATL4AAAQ-AAAMPiAAOBNACUh8UAEqjwIQARqAAgAAuL0AALg9AACYPQAAIb8AAFA9AACIvQAAMD0AAOC8AABAPAAAED0AAEA8AAAEvgAAoLwAAES-AAC4PQAAoLwAANg9AAAZPwAADL4AAJI-AABAPAAA4DwAAOC8AABUvgAAoDwAAOg9AADgvAAAUD0AAKA8AABkPgAAiD0AABQ-AAA8vgAAmL0AAIA7AADIPQAAMD0AAIY-AABkvgAA2L0AAEw-AADovQAAgLsAAPg9AAAMvgAAUD0AAH-_AACAuwAAPL4AAJg9AABQPQAAQDwAAIg9AABAPAAAUD0AAHA9AACAOwAAML0AAHC9AABwvQAAgLsAAJi9AACYPQAAgLsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=mD5qWlrlMI8","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["299638132742191985"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2523793286917924259":{"videoId":"2523793286917924259","docid":"34-3-5-Z5E4F94D42CF7D6C5","description":"In this video I am gonna show you how we can find the equation of the tangent line to a curve at a given point on the curve using implicit differentiation method. In implicit differentiation, we...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2925823/6f785497680756f1e8a2bc56fb92fc83/564x318_1"},"target":"_self","position":"7","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8Rh0n6bufeY","linkTemplate":"/video/preview/2523793286917924259?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tangent Line and Implicit Differentiation- Finding Equation of Tangent line -Calculus","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8Rh0n6bufeY\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhUKEzI1MjM3OTMyODY5MTc5MjQyNTlaEzI1MjM3OTMyODY5MTc5MjQyNTlqrw0SATAYACJFGjEACipoaGhub3B5bGplbHJsdmNkaGhVQ0E5NDFBZjBkempzZjZqdzRPOWpsaXcSAgASKhDCDw8aDz8TzgSCBCQBgAQrKosBEAEaeIED-v0C-wUA-QoADvkH_QIL_vsI9___APj1AfMDA_8A_fkN__gAAAABAwb9_wAAAPv9_gb-_gAAFQ73BwMAAAAN_fwG-wAAAAcG_wL-AQAA-ff3_QP_AAAFAQD9_wAAAPsBCQD7_wAA8wT7_QAAAAD-ABMG_wAAACAALVlC4js4E0AJSE5QAipzEAAaYA0PACYFCuLyERTl-u_vAwLZGOME8_8A7A0AF_vm9B4Wwc3dGQAq5wL_ywAAABEN8hD5APM_AuABCxwE7fzk9QEEf9kI7R8QGOGr6Qf1MOcW-SIcGQDrFxcRHO3fKhbwHCAALfyWbDs4E0AJSG9QAiqvBhAMGqAGAAAMQgAAGMIAAJhBAAA8wgAACEIAAJhBAAC0QgAAgD8AABTCAAAQQgAA4EEAAADAAAAcwgAAREIAADRCAADgQQAAAMEAAGDCAABYQgAAYMEAAIjBAAAAAAAAgL8AAEBAAACAQAAAEMIAADBCAADgwQAAQMAAADhCAABwwgAAVEIAAHTCAAAAAAAAjsIAAABAAABAQgAAkkIAAIDAAACAQQAAhkIAAPhBAADgQQAA4MAAAEBCAAC4wgAAkEEAAOhBAAAAwQAAyEEAABDCAADIwQAAAEEAAIDAAAC4QQAAJEIAAJbCAABQQgAAmEEAAChCAABgQQAAnMIAANjBAAAowgAAcEEAALTCAACgwAAAosIAAAAAAABUwgAAhEIAAOhBAABgwgAAoEEAAAjCAAAcwgAAuMEAAODAAAAoQgAABEIAABzCAABQQgAA-EEAAEBAAAAwwQAA-EEAABRCAAAAQQAAuEEAABjCAABgwQAAAEIAAHTCAADgwAAAgEEAAILCAADAwAAAIMEAAARCAABMQgAAhsIAALDBAABQQQAAmEEAAJjBAACwQQAAAAAAADDBAACYwQAAgkIAABRCAAAYQgAAPMIAADxCAACAwQAAaEIAAIA_AAAowgAAuMIAAFDCAAAEwgAARMIAADDBAABQQQAAEMIAAIC_AAAEQgAAHMIAADzCAACeQgAAEMIAAIjBAACAPwAAbEIAAMDAAABsQgAAAMEAAEBCAABkwgAAiMIAAODBAAAgwQAAOEIAADDCAAAYQgAA-EEAABTCAAA0QgAAyEEAABDBAABUwgAAREIAAMhBAACwQQAABEIAAABBAACIwgAAXMIAAJTCAAAAQQAATMIAAFBCAADYwQAAEMIAAMhBAADIQQAAFMIAAIhBAABsQgAAoEAAAMjBAABgwQAAgD8AAJLCAACywgAAoMEAAEDAAAAMwgAAMMEAAIhBAAD4wQAAEMIAABzCAAAcQgAAokIAAAjCAAC8wgAAUMIAAEDAAAAUQgAAwEEAALBBAABYQgAA0MEAAABBAACgQQAAQMAAAEDAAADwQQAAsMEgADgTQAlIdVABKo8CEAAagAIAAOg9AAAwvQAAUD0AAKg9AAAcPgAA6D0AACw-AAAnvwAA-L0AAKA8AABkvgAAqL0AAFA9AACiPgAAjr4AANi9AAAkPgAAmD0AAJi9AAAVPwAAfz8AAKi9AAAwPQAAML0AANi9AAAsPgAA-D0AAAy-AACoPQAARD4AAAQ-AADIvQAAfL4AAEA8AAAEvgAAUL0AAEA8AAAEvgAAjr4AAIa-AABUvgAAFD4AAAQ-AAC4vQAADL4AAMi9AAA8PgAATL4AAPi9AAD4vQAA4LwAADA9AABkPgAALD4AAAy-AACovQAANT8AAAS-AAAwvQAADD4AACS-AACIPQAAqD0AAES-IAA4E0AJSHxQASqPAhABGoACAADIvQAAVD4AAHC9AAA7vwAANL4AAEC8AACSPgAAoDwAAIA7AAAsPgAAJD4AAKK-AACovQAAPL4AAIg9AABQvQAAFD4AABc_AACgvAAAuj4AAIC7AACIvQAAoDwAAPi9AACYPQAAMD0AAHC9AACYPQAAEL0AABA9AACgPAAAqD0AAGS-AACovQAAgLsAAES-AABQvQAAPD4AAGS-AADgvAAABD4AAIg9AADgPAAAoLwAALi9AADoPQAAf78AAHA9AABwvQAAMD0AABA9AADoPQAAcL0AAPg9AACoPQAAiD0AAKC8AAA8PgAAoLwAALi9AACoPQAAyL0AABQ-AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=8Rh0n6bufeY","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2523793286917924259"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10824873618621495871":{"videoId":"10824873618621495871","docid":"34-7-1-Z9EEFC8EBDF36B25E","description":"Thanks to all of you who support me on Patreon. You da real mvps! $1 per month helps!! :) / patrickjmt !! Finding the Equation of a Tangent Line Using a Derivative, Ex 2. Just another example...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2111535/8bd2d70a4a9020d66ecc6ea4073dc835/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/bzuDvgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dg8vAXGamm5c","linkTemplate":"/video/preview/10824873618621495871?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding the Equation of a Tangent Line Using a Derivative, Ex 2","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=g8vAXGamm5c\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhYKFDEwODI0ODczNjE4NjIxNDk1ODcxWhQxMDgyNDg3MzYxODYyMTQ5NTg3MWqTFxIBMBgAIkUaMQAKKmhoY25hcXdneHRvbGZ4eGNoaFVDRmU2amVuTTFCYzU0cXRCc0lKR1JaURICABIqEMIPDxoPPxPIAoIEJAGABCsqiwEQARp4gf0H_g3-AgD5BwsG-Ab9AhoAAQn1AgIA9QD19AMC_wD6BQcE-QEAAP8GAf8FAAAACPb3_vf-AAANAvgQAgAAABAA8vf9AAAABQH9B_8BAAD0-_78AwAAAAQC_QQAAAAA_AwH_wIAAADwC_wFAAAAAP0GBQ3_AAAAIAAtjY_aOzgTQAlITlACKoQCEAAa8AF_5gL_ztbGAMP10ADgDPMBow4f_yEr3QDG9f4A1e7TAMwQ4QDnDA8A_BEUAOcT7gAS2skA9Kj1AC3p7_8Lx_0AxwUZABkS2wI46yYA9tX__uP4J_vHzfcB_cHbACUb9P0V6wcBHifz_O8F3AEo-zMBDwkZBSHsFALcpCkA0OvRAPb3wP7lQvn_G9Mb_930NQgO5fwJCBTzAs4G4QII6BL1Ce0a9Qkz0P0v8hn4BwbzCscq_gL_BvcMIScYCdP18vTT8DIGrxAM_QzmEf0L_gPz5CzqCS778AMP6gEJ7wwGBAjJ6_DjEgMI68jhAsL46wMgAC1qzQU7OBNACUhhUAIqzwcQABrAB7-6ur6AC9c8kf1ivE5j-7036Qy9d-nwvCMT8L3XLSc99_1AvBiYBT6AM-s7f7O9u7cNk74bVBM8G7QcvSb_8z3xBbe9oGUnPHoXL74IPDA9KZ_UvMuDVL6aVam8EZqTPGpdEzxGfCe9IHMOu6tNoj1U3B29CXYSvWJRLL1kUqg8qJZjvPlGub1Tl5y9ZZrfvFFWgjwrN8y9JXXCPNNO7T11QA29nWkdva_HqT0oJhC7rNAWvcqUBT2NogI9u7ObvHMIsT1Avdm8hcOcPJuNWr3Dd6y8swhFPDfd0r1rpIC8k2XSO6jKMj1_FPU8iTxuvPRsablgqyS-gDKAu22s5L2mES49lE7BO-SG_z05dvU8jG-ePBjSAb5Jg6s9liYlvFcnpz05Ccq89QZrO9OG4z3Mdmo91nS9PB0weT2T9ss9UMC4O5AkELwQ36M9pmIDPSBLqj2oFva8XHaIvLLLgTxqBIE9yQyKvKvm3rzWR7Y9HlaTPLa1ar16r1U9v9YlPEVO_LuSdRg9nSbYPMU1Qz34UQ2-CW8su8eDbb1XEI69nbdWvCe2Zz2Iztu7SoiovHPzbT0tk4G9r1A1PECOQTwsRMe8sxJOvG2kkTxeyHm9H6w1O84mlr36nqw8teEwu5R3JL0vhbc9J6HXu-zvpj1aTbI9T3OmuYQ_CTsVjYW9aHwZO2GCBD36pfQ8IPusu4sQmD0Rn8U8_kzyuVT6nj2a6Di9eFpPONcGXbxnSka8wAI5u35oML0pK6G9lE64uNU3dT0rFo-97rDLORZ2Bz2RtMC8VXCHOXHgOr0uuks9chbHNwULr7spbfu8GxXfOMui8LxbQh6-NwXjOZ-J2Tswp189lcngOIftnT2PgYa8wNAWuGsewb3ErqK9WfgiOOpZ9bwReeY8C-zbOBYjIT1wW8A8P2ASOcpsgL04LTi9k5KZOAipwLwEqdS869lHOXVTbzxKvMc9GYJ_uL7nxj0AHaa9akOGOQqAsbwnF-M9YmCSuVrG_LypUFg9KtoEtc_GBT3cTKA8h_YnuBrn5TxdD2u9uLCNN22pYz2oNOI8sUW0uCL7AL7GXyQ9F5hlOPLQNz1cQhk9eXKOOHHbKD0SBem8yUO4OK1jgbzczuM8VXF1OMHjKz7cpWi8B4l0uU7BkL0_vk69U05lN3P5ajxV-KO94xA7NzILs70S_kA9snK2N9mE6rwiV7W90kIwuCEytjw7OeM9BBsGOeIYrjxvpaI9TCdSuLKrj718uvo8c5Q0N7SRa73XSbI9UhvVNyAAOBNACUhtUAEqcxAAGmA5-gAbDh3cHvMY6P_28gLh0fff_NwEAPjiAA8ezxAaB8bR6vsAKuET-rsAAAAlAPMb-gDjWuDuIiwMFuvWveYSEnP6-x_c-hzpgdoYDR3a6hMpMjAAAADcKBfrxS4UDw8gAC2z00A7OBNACUhvUAIqrwYQDBqgBgAAtkIAACDBAAB8QgAAksIAAMDBAABgwQAAqEIAAAxCAAAgQQAAwMAAACDBAADYwQAAuMEAAEDBAACgQAAAYEEAAExCAABMwgAAiEIAAMjBAABQwQAA0MEAAKDCAACwQQAAFMIAANDBAABQQQAAhMIAAFBBAADwQQAACMIAAAAAAABowgAAQEEAALTCAADoQQAAAEIAAFxCAAAAQQAAWEIAALBBAADIQQAAQEEAAKDAAAA4QgAALMIAALjBAAAUQgAAQMAAAKDAAABMwgAAhMIAAEDBAAAgQgAAbEIAAJhBAACAwgAAsMEAAFRCAABAQAAAcEEAAJrCAABQwgAAXMIAAKhBAACYwgAAmMEAAPDCAAAcwgAA8MEAADBCAAAgwQAAIMEAAGDBAACAwQAA0MEAAEDCAABgwQAAHEIAAFBBAACowQAAGEIAAODAAADQwQAAIMEAACBCAABgQQAASMIAAPhBAABgwQAAAEIAANBBAACQwQAAAEEAADRCAABYwgAAAEAAAJhBAACAQQAAUEIAAIbCAAAYQgAAUEEAANjBAADowQAAgD8AAIA_AAA0QgAAwEEAAGRCAAB4QgAAHEIAALjBAACAPwAAAMEAALJCAACYQQAAgsIAANjBAABEwgAAGMIAANDBAACAQAAA6MEAAOjBAACgwQAA4MAAANjBAADwwQAA2EEAAHDBAAAIwgAAQEAAALxCAACgwQAAoEEAABBCAACQQQAAAMIAACjCAABgQQAAgMAAAMhBAADwwQAAyEEAAFhCAADIQQAAgMIAAAAAAABAQQAAYMIAAKhBAABQQgAAYEEAACxCAAD4wQAAosIAAEDCAACkwgAAAMEAAIDBAADoQQAAoEEAAKBAAACAPwAAiEEAANjBAACMQgAAtkIAAILCAAD4wQAAMEEAABDBAADYwQAAoEAAADDBAACIwQAAFMIAAOBAAAAgQQAAsMIAAK7CAACAvwAAYMEAABhCAAAIwgAAgMIAAOjBAAAgwQAAoEAAAKBCAADwwQAAEMEAAPjBAAAAwAAAoEEAAGDBAABIQgAAREIAAMDBIAA4E0AJSHVQASqPAhAAGoACAACYPQAAED0AADA9AADoPQAAZD4AAFQ-AAD4PQAALb8AAPK-AAD4PQAAQLwAAJK-AABAvAAAzj4AAPi9AAB8vgAAQLwAAAw-AAC4PQAAlj4AAH8_AADoPQAAqD0AAOg9AAD4vQAALD4AAIg9AAAEvgAADD4AAIg9AABUPgAANL4AAEC8AAA8vgAA4LwAAPi9AADgvAAAXL4AAOa-AAAMvgAAgDsAAIC7AACSPgAAgr4AAMi9AADgPAAAJD4AANi9AACCPgAAFL4AACQ-AACAOwAAXD4AAHw-AABAPAAAEL0AABU_AABwvQAAgDsAAJo-AAAQvQAAoDwAAHw-AACYvSAAOBNACUh8UAEqjwIQARqAAgAAlr4AADA9AACYPQAAT78AAIA7AABAPAAAdD4AALi9AABwPQAA-D0AANg9AACIvQAAqL0AAMi9AABAvAAAEL0AABA9AAA1PwAAFD4AAOI-AAD4vQAAdL4AAMg9AABEvgAAoDwAABS-AACIPQAAUD0AAHA9AAAwPQAAED0AABQ-AABEvgAAED0AAFw-AABsvgAAqD0AAJ4-AACOvgAAUD0AAGw-AAAwvQAAED0AAIi9AADovQAAmD0AAH-_AABAPAAAED0AABw-AAAkPgAAED0AALg9AAC4PQAAiD0AAFA9AACAuwAAmD0AAOA8AADovQAAJD4AABy-AADYvQAAmD0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=g8vAXGamm5c","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["10824873618621495871"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3836205434"},"4835873168551027610":{"videoId":"4835873168551027610","docid":"34-5-8-Z6CAAE145525928A3","description":"A video which investigates the slope of a tangent line using the limit definition. Reminds us of slopes of secant lines and how we can use them to find the slope of a tangent line. Gives a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/750133/50cca86df7b04d3c48e3688c47fc5227/564x318_1"},"target":"_self","position":"9","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DBraIPe7fuUY","linkTemplate":"/video/preview/4835873168551027610?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"2.1.1 - Revisiting the Tangent Line","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=BraIPe7fuUY\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhUKEzQ4MzU4NzMxNjg1NTEwMjc2MTBaEzQ4MzU4NzMxNjg1NTEwMjc2MTBqrw0SATAYACJFGjEACipoaGJpa2l0d2pxY29zbWtkaGhVQzFlOXZ4U3VFUENmMHhTbUprRW90cncSAgASKhDCDw8aDz8TgAmCBCQBgAQrKosBEAEaeIH0__4F-wYA9gz6AwME_gEA_Pf9-P79APIAAvz-AQAA9P0KCPwAAAAIBwYPAQAAAAYGAwX6_gEADAb2AwMAAAAN9e4B_gAAAPsICgv_AQAA-vIA-AIAAAAF-_8TAAAAAPYHBwP__wAA-gEFAAAAAAAB8QcOAAAAACAALU8Y5Ds4E0AJSE5QAipzEAAaYBYOABQGEPEC_CrqBwHc_gDbDvgQ4_gA4CMABvrn6Qz-yc7zEABH2QQAyAAAAAUhFC8PAN1KH-H-KAIx4vvl_wYVfwj37hUK_Py12fcAOP0b6SEVHwD9DP8GF9_sGyUHISAALScpYjs4E0AJSG9QAiqvBhAMGqAGAACAQAAAAEAAAJhBAAAAQAAAAMEAAKZCAAC0QgAALEIAAEDBAAD4wQAADEIAABDBAABIwgAA-EEAAIDBAACAPwAAQMEAADDBAABgQQAAAMAAADBBAADgQQAAoMEAAOjBAAAgwQAAuEEAADDBAACgwQAA4EEAANhBAAD4wQAAlkIAAGzCAABAQQAA6MIAAGBBAACQQgAAdEIAAADCAACgQAAAHEIAAMDAAAAgQQAAQMAAAIBBAAAwwQAAoMAAADDBAABwQQAAgEEAAODBAAA0wgAAAMEAAEzCAABwQQAAkEEAAL7CAADIwQAAFEIAAMBAAADQQQAAjMIAABTCAADQwQAAQEEAAOLCAABwwQAAXMIAAIhBAACmwgAAfEIAAJDBAACAwgAAIEEAAGzCAAAUQgAAgEAAAOhBAABoQgAAwEEAALLCAAC6QgAAyMEAALBBAABwQgAAMEEAAPhBAAD4wQAAUEEAAADAAAAUwgAAwEAAACjCAAAsQgAADEIAAHTCAACgQAAAwsIAABBBAADYQQAArsIAACDCAAAcQgAAsEEAALDBAACaQgAAkEEAAADBAAAgQgAAkEIAAHBCAADwQQAAHMIAABhCAADgQAAAgEAAANhBAAC4wQAAUMIAABBBAABwQQAAgMEAACDBAADgwAAAUMIAACDBAABgQgAAAAAAACDCAAC4QgAADEIAAGjCAABAwAAAbEIAAMhBAABAwAAAhkIAAODAAACqwgAAiMEAACjCAADIQQAAAAAAAMDBAAAQQQAAoEEAAADAAACgQAAAAEAAAKBBAACIwQAAsEEAABRCAADQQQAAAEEAAKDAAABAwQAAYMEAALjBAAA8QgAAgsIAABhCAABAwAAAQMIAAAzCAADwQQAABMIAAFRCAAAsQgAAIMEAAADCAAAQQQAA4MAAAGjCAACKwgAAAMEAACRCAADQwQAAkMEAADRCAACAwgAAgsIAALDBAAAgwgAAGEIAALhBAACKwgAAgMEAACBCAABQwQAAsEEAALBCAABYQgAAAEAAAABBAAAoQgAALEIAAABBAADgwAAADMIgADgTQAlIdVABKo8CEAAagAIAAOC8AAAUvgAAVD4AAJI-AACAOwAA-D0AACQ-AACuvgAAor4AABQ-AACqvgAA0r4AALg9AACePgAAUL0AAKg9AACKPgAAgLsAAFw-AAC2PgAAfz8AAAy-AAAwvQAAED0AAAS-AACAuwAALD4AAFQ-AACovQAAND4AAKg9AAD4vQAAPL4AAIC7AADgPAAAcL0AAKA8AAD4vQAAjr4AAKi9AADovQAA4LwAANo-AAC4vQAAjr4AAAy-AAD4PQAAoLwAAOi9AAAcvgAAoDwAADS-AACiPgAAHD4AAOC8AABAPAAALz8AAHC9AADgvAAA2D0AAOA8AACYPQAA-D0AADC9IAA4E0AJSHxQASqPAhABGoACAADovQAAqD0AACy-AAAxvwAANL4AAMg9AABkPgAAiD0AAMg9AACGPgAAoLwAAJi9AADgvAAAcL0AAKi9AABQvQAAcD0AAA0_AACovQAA7j4AAOi9AAAEvgAA6D0AAFS-AADgPAAAMD0AAOC8AADIPQAAgDsAAKA8AAAwPQAAuD0AADC9AABQvQAA6D0AAHS-AACSPgAAvj4AABS-AADgPAAA2j4AAKi9AABAvAAAmL0AAKi9AADgPAAAf78AALg9AAD4vQAArj4AAFQ-AAAQPQAAuD0AABw-AAAsPgAAUD0AAHC9AABwvQAAoLwAAIi9AAAcPgAAUD0AAJi9AAC4PSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=BraIPe7fuUY","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["4835873168551027610"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9425554466446164018":{"videoId":"9425554466446164018","docid":"34-7-12-ZE149325A6C6CE99C","description":"This calculus 1 video tutorial explains how to find the equation of a tangent line using derivatives. Derivative Applications - Free Formula Sheet: https://bit.ly/4eV6r1b...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3381252/7a0639f775f70d7aa886cfbf7f105f3b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jW4ZPAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUOrS2qje2_o","linkTemplate":"/video/preview/9425554466446164018?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How To Find The Equation of a Tangent Line Using Derivatives - Calculus 1","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UOrS2qje2_o\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhUKEzk0MjU1NTQ0NjY0NDYxNjQwMThaEzk0MjU1NTQ0NjY0NDYxNjQwMThqtg8SATAYACJFGjEACipoaHdkYWhpeWRwbWRxb2RiaGhVQ0VXcGJGTHpvWUdQZnVXVU1GUFNhb0ESAgASKhDCDw8aDz8TkQWCBCQBgAQrKosBEAEaeIH4AAIGAf8A9P4KDQIH_AEj-AoK9QMDAOr4-_MC_wEA_QMA-fYBAAD0DwgA-wAAAP_t9Qj9_QAAEv_vBwIAAAARAPL2_AAAAA8A-wb-AQAA-fX0CQT_AAACCgQFAAAAAPwJAQH8_wAA8AIBBAAAAAD9BgUO_wAAACAALfQJ0Ds4E0AJSE5QAiqEAhAAGvABf_sTAd73tAHuBtgA5Av1AZcUDP8ILvIA0OXsAawTzP8UGQIB3gPqAAccEgG5Eu7_GwHGAPrRAgAx7wD_SM3-__kA-gAQ8v4BNSYYAP8NAP7OHxv-8gENAvfc1P8ZGd8A9_D4__L84_ruA8UCDv47Aeb6KwQb3PgC3Nn3Avjv6P0K8dkAABz0_fDf__raBCECEdzu_QwoB_nXEvP9ABX4-t3XBfoHLNf-LuzvCAMLCwXn6v38AtX7BfsfEvnmEuEI5-Mc_90RCfrq5QUJHt0C8unp-QH84vMJG-7_9xPpCPn_6-0A2g_vCvceBQvhCPXtIAAtXDAbOzgTQAlIYVACKnMQABpgS_UALPkPyQrsQtkF1N4U37v99vOyF__q4v_8Gb0TOCu0v_MDAC7bJuSiAAAADgHpKg0AGH_AwQMgGyz2wcK-Eihy7fUhs-YTyZSgIihE0QcjKjVBAPX-pyEoyK07_AkMIAAthEMPOzgTQAlIb1ACKq8GEAwaoAYAAIJCAADowQAAEEIAADDCAACAQQAAQEAAALhCAAAIQgAA6MEAADhCAABgQgAAlMIAACDCAAAwQgAAUEEAAJhBAAAcQgAAmsIAAJxCAAAMwgAAcMEAAOBAAAA0wgAAYMEAAODAAADgQAAAqMEAAATCAABgQQAAIMEAADDCAACgQQAANMIAACDCAACKwgAAoEEAADBBAABsQgAAIMIAABBCAACQQQAAcEEAADxCAADYwQAA0EEAANbCAAAgQQAAcEEAADRCAACSQgAAAMAAAODAAAAQQQAAmEEAAIBBAACgQQAAjMIAABBBAABAQQAAAEIAADRCAAAowgAATMIAACDCAACAQQAAkMIAAJ7CAACmwgAA4EAAABTCAADYQQAAlEIAANDBAACQwQAAfMIAAKjBAAB8wgAAsMEAABBCAACAPwAAQMIAAJ5CAABAwAAAQEIAAMhBAACwQQAAAEEAAEBAAAA8QgAAhsIAAMDAAACGQgAAfMIAAEBAAAAMQgAAnsIAABTCAACgwQAAaEIAABBCAAAgwgAAAEIAAOhBAADoQQAAuMIAAGBBAACYwQAAQEEAAIDAAABIQgAAmEEAAFxCAADAwQAA2EEAAATCAAB0QgAACEIAAIA_AABcwgAAAEEAAATCAACcwgAAmMEAALjBAABAwAAAAMEAAHDBAACAQAAAiMEAAJhBAAAAwgAAqMEAAABBAABkQgAAVMIAAJRCAADgwAAAAMAAAMDBAABMwgAA6MEAADTCAADgQAAA2MEAAMDAAADAQAAAIMEAAJhBAACgQQAAcEEAANjBAABIQgAAaEIAAMhBAABUQgAADMIAABzCAABMwgAALMIAACBBAACUwgAAmEEAAFBBAABkwgAAwEAAAKhBAACwwQAAsEEAAJhCAACYwQAAcEEAALhBAADwwQAAoMEAAJDBAACQwQAA4EEAAPjBAAAMQgAAwMAAALjCAAAQwgAA8MEAADBCAAC6QgAAHMIAAHzCAABcwgAAcMEAABBBAADAwQAAgD8AAABCAACgQAAAoEAAAChCAABAQQAAQEEAADBBAADowSAAOBNACUh1UAEqjwIQABqAAgAA-D0AAMg9AAAcPgAAmL0AAOg9AACAuwAAcD0AAB2_AAB0vgAA-D0AABS-AAAEvgAAoLwAAGw-AABsvgAADL4AABA9AABwPQAA2L0AALo-AAB_PwAAoLwAAIg9AADYPQAAuL0AAMg9AAAsPgAAuL0AABw-AAAwPQAAcD0AAGS-AACIvQAARL4AALi9AABMvgAAoDwAANa-AABsvgAApr4AACS-AACgvAAAtj4AACS-AAB0vgAABL4AAEw-AACYvQAA-L0AAAS-AACAOwAAED0AANg9AABkPgAAyL0AAIi9AAAdPwAA-L0AAJg9AACIPQAAUD0AACQ-AABUPgAA6L0gADgTQAlIfFABKo8CEAEagAIAABy-AABUPgAA4DwAAEW_AABMvgAAEL0AAFw-AABAPAAARD4AAIg9AADgvAAAVL4AALi9AACYvQAAcD0AAHC9AAAEPgAA0j4AAEA8AADePgAA-L0AAIi9AACAuwAAJL4AAEC8AABQPQAAFD4AABA9AABAPAAAqD0AAKA8AABUPgAAlr4AADC9AAAMvgAAML0AADQ-AADCPgAAdL4AAHC9AACAOwAA-D0AAOA8AAAEPgAAoLwAAHA9AAB_vwAALD4AADC9AACmPgAAED0AAKA8AACAOwAAbD4AAIg9AADYPQAAMD0AAKA8AADIvQAA2L0AABw-AAAcvgAA-D0AAHA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=UOrS2qje2_o","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9425554466446164018"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2501798204"},"7823682858381017620":{"videoId":"7823682858381017620","docid":"34-8-4-Z9EE91200B3AD0327","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/geom... Practice this lesson yourself on KhanAcademy.org right now...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1027641/f2b8f0c3e240ff81691e47bdd28b61fa/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XafDNAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dn5cKWjZqpIE","linkTemplate":"/video/preview/7823682858381017620?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Constructing a tangent line using compass and straightedge | Geometry | Khan Academy","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=n5cKWjZqpIE\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhUKEzc4MjM2ODI4NTgzODEwMTc2MjBaEzc4MjM2ODI4NTgzODEwMTc2MjBqkhcSATAYACJEGjAACiloaGRvdml3eHNldmZxcmdoaFVDNGEtR2Jkdzd2T2FjY0htRm80MGI5ZxICABEqEMIPDxoPPxPdAoIEJAGABCsqiwEQARp4gf8HBwUAAADs_vECDwH_ABMCBPn1AQEA4wLw9wP8AgD-_AIE9wEAAPv7BvwDAAAABgj5-_n9AQAMDfsCBQAAABIFBvn4AAAADwP3_v4BAADnAf0AAwAAAPj9BxAAAAAA_xH-A___AAD1_f32AAAAABAHDAz_AAAAIAAtZCbSOzgTQAlITlACKoQCEAAa8AF_707_ux0T__gN6gABDLEBoyj2AEBK2P-tK_AA17XZAVE5NQD4Dj0BAM34AMITMQAPKtP_NBLyAUC9Kv_OQdcAxKj9ADWo8gEkDwD_YA3K_ihM6P7o5u8B5_bXACT_0P_06_X-JCS8_fPw0gcoGjAB9hn8AtssIf0C6hf-4BoUA1vT4PkL7fkA5QAKBeq5FgLrx_YCIUL_CvJTIgIYHx8C-toE-QDv9_7t-u799wwZ-RH2FPPqvPL46ufo_gYn5gnREg0T8d8L_dMY-wAXtx3xC-_6_zMeAg0R5wEKEM4HEu9K_QclGP7wGg_wDzf4Av0gAC3Gnuw6OBNACUhhUAIqzwcQABrABwcH2755A4w8ymcxOvt28bsZtEY8mGn7PHyhmzwi3RQ9gMRlPBR2ET7fDt68Jr6DO--rMr6LTja9eFZ8vTsZbD6uDOo8gowlPN4y8by2wzo8_ViYusqilb3mRzI88X4BPeUVXr3riKg8kotWvEfOnT3Yv4Y8dCMsvF9lSDzQnWA885hcvJfUnjusW5i9odCXvObLiz18lgy9bjzOPIZnU7xNz-S6ecDlu74U3j2kpIw9nQ9PPBlYF74VTRG9Lh1zPC_i1jzO3Kg9MMehPO73urw63i69YRkbvcYo0jkPh1u8Nvogu_cm4TxdhpQ98LXxvCOpYL2QXJi96CQlvFMJar1ENqA9mGdFOsDRaTqSJBg-yjS7Onya072xoiY9fV6xvD6bcjuwHje9-5GFuixFEj6g3Du9z4mYPDQFvD2Gg048G7IJPAlkwDzPWXU9hWOxPJPrHL1M-zY-FlZWuj99Gj28xtM8uECCO1qzOj0hcTS8sTAGO22shDwdEDc9s1twPOGAEb1jMaC8JycDvCRenrti-Oi9UxhnO0LYX7yA33U8nfIHvKzRAT1HWb-7fnBHOkGUiT1tJS-9O0j8OpwcWb2O1fu7-dNrPEHYCT1CWKK95D8iuupaG75oef49KzgxONlgAb7O-pQ9-dBGuZMDsb1Hk5u9g3SpOh3X9bw9-MQ9uNVmO8CNWb1IUlK9fd0WO0mKA71OLTY85lE3Owa_iD00_AI89VG-O4aRrr3_KLW9iV6uOcyNMzyKZ5q9tbXmuO6vDj6fEpG9ftCUOVgEWr2N9L08HxHhORbMzrzToXM960NuOgULr7spbfu8GxXfOO5f-b2rCf28hegUuZD6xrz_4VO8ayWQuRIV6r0duLk8ASecOReG4bqziV08fOUxuiOHw73sjAy72UYNOMiD4zx1DOM8vhzZt7BlaD1FNxE9AEN9OFe2ar1ewKY8jZKCOKd_RD280r09Jyr7NkOmoTyaCYa8REGluBGnAz7_pGu8njBuOFSl0rwfzMc9ctVYt7n0uT2QFJG9f0FtOIJTvz3h1Q09HkxotyGem7zhk1M9yNDVt5r_nL3QkJs9AtsuOEvqH71-hyc9o3YSOMhfOj7clcI8za9LOIX4pr3sz888iFufOGWVyDy1Uui9S5EmOKvfFr0N-x2-o7z-uK-T2r0T1NA9cFtvt-vJ3D0cOoe98LAtN_j-Bj0X5eM8RMV8t4OKZb1vyJU9Pgwbt3AzSz00s8s92dOnt-cjn703wHE87WSXt1NQy70shA88Li5MtyAAOBNACUhtUAEqcxAAGmA45wAV4CzMGfY66cvm6A_NxQjiKtzo_8vy_-Mu5xDxIs3AFhgAQ98EFKIAAAAfFMk4LgAZfyCZK0wIAh3sntIdLnXiCuvg0DsZlAnoNSDVGCYePCgA-gamIjG35TkIQAEgAC13tBI7OBNACUhvUAIqrwYQDBqgBgAAoEAAAIC_AAAcQgAAgMAAAKBAAACgQQAAikIAAKDAAABUwgAAqEEAACBCAAB4wgAALMIAAFDCAAB4QgAAFMIAAEDBAABgwgAAYMEAAGzCAADAQQAAwMEAACBCAACgQQAAwEEAAJDBAABAwgAAyMEAAJZCAACwQQAAoMEAAGxCAACOwgAAsMEAABTCAAA8wgAAwMAAANZCAACgwQAAcEIAAARCAAAEQgAA4EEAAChCAADgwAAABMIAAGDCAACAQAAAwEIAAAAAAABIwgAA0EEAAIA_AADAQAAAVEIAAFDBAADgwgAAwEEAAEBAAACoQQAAEEIAALjBAABIwgAAwsIAAFBBAAAowgAATMIAABjCAADYwQAAHMIAAFhCAADCQgAAIMIAAABCAABAwAAAHMIAAGDBAACAvwAApkIAABDBAACMwgAACEIAAIDAAABMQgAAuMEAANDBAABEQgAAREIAAHBCAACOwgAAgMEAAAhCAACwwQAArMIAAJBBAADIwgAA8EEAAHRCAABAQQAAPMIAABjCAAAAwAAAAEIAAGTCAABgwQAAqEEAAMBAAABIQgAAkMEAABhCAADgQAAAsEEAAGzCAACgwQAAgL8AAIhBAAAQwQAA4MEAAIhBAACowQAAiMEAAIbCAADIwQAA6MEAANhBAAAEQgAABMIAAIA_AAAkwgAAqEEAAABBAAA0QgAAaMIAAJjBAACYQQAAgMAAAABCAADoQQAAEMIAAJTCAABgwQAAEMEAAKBBAACgwQAAHEIAAMDBAACOwgAAAEIAAABAAACMwgAAIEEAAMBAAAA0QgAA4EAAAIC_AAAowgAAwMAAABjCAACYwQAAEEIAAOjBAACoQQAAQMIAAI7CAADQwQAA6EEAAAxCAACYQgAA8EEAALhBAABAwQAALEIAABTCAACgQAAAgD8AAPhBAAAQwQAA6MEAAGhCAAAQQgAAQEAAAJjBAACgQAAAQEIAAKRCAADgwAAAjsIAAHxCAACAvwAAQEAAADjCAAAkwgAAyEEAAJDBAACAvwAAgMAAACjCAABgwQAAgD8AADzCIAA4E0AJSHVQASqPAhAAGoACAACKvgAAEL0AAJ4-AAAcPgAAUD0AAKI-AABQPQAAF78AAM6-AADIvQAAQDwAAMi9AABsPgAAnj4AAKi9AABcvgAAVD4AAFA9AABsPgAA6j4AAH8_AACAOwAAyD0AABw-AABMPgAA6D0AABw-AADovQAAhj4AAHQ-AAD4PQAAFL4AAAS-AABAvAAARD4AAAw-AABAPAAAsr4AAJK-AACCvgAA1r4AAFA9AAA8PgAARL4AAFC9AABQPQAADD4AAMi9AACYvQAAJL4AAIA7AAAEvgAAqD0AAAQ-AABUvgAAML0AADU_AAAUvgAAZD4AAK4-AACIPQAAgLsAACQ-AABQPSAAOBNACUh8UAEqjwIQARqAAgAAur4AAKA8AACovQAALb8AABC9AABAPAAARD4AAPi9AACYvQAAgj4AAHC9AAAMvgAABL4AANi9AADgPAAAoLwAALg9AAAvPwAAHD4AANo-AABQPQAAgLsAAKC8AABQvQAAML0AAFA9AAAUPgAAUD0AAIA7AAAkPgAAmD0AALg9AAAMvgAA6L0AAKg9AACYvQAADD4AAAQ-AACevgAAED0AAAQ-AADoPQAA6D0AAHA9AACAuwAADD4AAH-_AAAEvgAAML0AAOA8AAAUPgAABL4AAOA8AABAPAAAlj4AAJg9AABQPQAA-D0AAOC8AACgvAAA2D0AADA9AAAQvQAAUL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=n5cKWjZqpIE","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1270,"cheight":720,"cratio":1.76388,"dups":["7823682858381017620"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2673410027"},"277600099947289908":{"videoId":"277600099947289908","docid":"34-11-6-Z9D4745EAFFDA7C2F","description":"We use implicit differentiation to find the equation of a tangent line to an ellipse. We of course also use the point-slope form of a line, and the equation of the ellipse requires us to use the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3382490/2145ded002aeb6363630c56599a53d5f/564x318_1"},"target":"_self","position":"13","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZoaCP7unAQ8","linkTemplate":"/video/preview/277600099947289908?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tangent Line with Implicit Differentiation | Calculus 1","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ZoaCP7unAQ8\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhQKEjI3NzYwMDA5OTk0NzI4OTkwOFoSMjc3NjAwMDk5OTQ3Mjg5OTA4aq8NEgEwGAAiRRoxAAoqaGhjY2F4emhienNtamxpYmhoVUN5RUt2YXhpOG10OUZNYzYyTUhjbGl3EgIAEioQwg8PGg8_E_YDggQkAYAEKyqLARABGniBAP4AAAH_APD9_A79Bf4BFP38APYBAQD6_gH5BAP_APX3A__3AAAA9hEH8wAAAAD3CwUB-f8AACIL_AAEAAAACvL2DPoAAAAJEPsO_gEAAPj39_0D_wAAEAAI-_8AAAD6_P4EAQAAAOwC7gIAAAAA_gAVB_8AAAAgAC30mNA7OBNACUhOUAIqcxAAGmAFDAAW_Bb17Bou6Pzi-Ant0hjcENgM_-IfABj2_-4SHbLG8RT_Quf58rkAAAAX9u4XCgARVgTq5foi7v0E8dcM_3-3BOEb_hLppt_82jvmL9omIzIAthb-Fx4B1S8c6C8gAC1i70A7OBNACUhvUAIqrwYQDBqgBgAANEIAAADAAAD4QQAAQMEAADDBAAAQQgAApkIAAEhCAAB8wgAA2EEAAHhCAABQQQAAIMEAAJhBAADQQQAAIEEAAFBBAAC4wQAAoEAAAKjBAACcQgAAAMIAAADAAACgQQAAAEEAAIDAAABAwQAAwMEAAODAAABAQQAAoMEAAKBBAABwQQAAQEEAANjBAAAMQgAAhkIAAKZCAABcwgAAMEIAAOBAAAAgwQAA-EEAAAhCAAAkQgAAIMIAAEDBAAAkQgAA4EEAAGTCAAAQwgAAEMEAAGBBAABgQQAAAMIAABBBAADowQAAcEEAACBCAAAUQgAAAMEAAGzCAAAowgAA4MEAAKBBAACowgAAQMAAACjCAABYwgAAQMEAALxCAABgwQAAisIAAAAAAADAwAAAvMIAAJjBAACgwQAALEIAALDBAACGwgAAxkIAAMjBAABwQQAAwMAAAFRCAAAEQgAAgMAAAIDAAABwwQAA8EEAAJRCAABAQAAAqEEAAMBAAADKwgAAqMEAAPjBAABgQQAAjEIAALLCAAAIQgAAmEIAAIBBAABIwgAAUMEAAIDBAAAkQgAAKEIAAFxCAAAkQgAAcEEAAETCAAAAwAAAUMIAAADAAADwQQAAuMEAANBBAABYwgAAXMIAALjBAABIQgAA6MEAADzCAACSwgAAysIAAKDBAADIwQAAFEIAAADBAABgQQAAAEAAADhCAAAUwgAAgD8AAEBBAABAwQAAgL8AAFjCAABAwQAAnkIAAIDAAABMwgAAyEEAAFBBAABQQgAA0MEAAEBCAADAwAAAoEEAAOhBAACAPwAAiMEAAIA_AAAQQQAAAEAAAABAAAAQwgAAmMEAACDBAAAwQgAAgsIAABjCAABQwQAAcEEAAKBAAAAYQgAAcEIAAEDCAACWQgAAgL8AAOjBAACSwgAAJMIAAFjCAAA8QgAA-MEAALhBAACSQgAAhMIAADjCAADAQAAA8EEAAIpCAAC2wgAAHMIAAADAAACQwQAAgL8AAOhBAABwwQAASEIAAADCAADAwAAAdEIAAAzCAACAwQAA-EEAAMjBIAA4E0AJSHVQASqPAhAAGoACAAC4vQAAQDwAADw-AABwPQAAuD0AAL4-AACSPgAABb8AAIi9AAAQvQAAjr4AADy-AACgvAAApj4AAGy-AADgPAAAbD4AABC9AABwvQAAET8AAH8_AAAcvgAAQLwAAEC8AABcvgAAcD0AACQ-AAAwPQAALD4AAKI-AAAEPgAAPL4AADy-AABwPQAAgLsAAOi9AAC4PQAAHL4AAIK-AAB0vgAARL4AAFA9AACePgAAyL0AAOA8AAAMvgAAND4AAIq-AAAkvgAAVL4AABA9AACgvAAALD4AABw-AAAkvgAAEL0AACs_AADgvAAA4LwAACQ-AAA0vgAAJD4AABQ-AABsviAAOBNACUh8UAEqjwIQARqAAgAAJL4AAJo-AAAsvgAAPb8AAHS-AADYPQAAsj4AAFA9AAC4PQAA6D0AABQ-AACKvgAA2L0AALi9AACgPAAA4LwAAKA8AAAJPwAARL4AAL4-AAAwPQAARL4AAKA8AABcvgAAMD0AAJg9AADYvQAAuD0AAJi9AABAPAAAiD0AAFA9AACGvgAA4LwAAIg9AABsvgAAQDwAAOg9AABEvgAAcL0AADw-AADgvAAAyD0AAKA8AAAMvgAAuD0AAH-_AACYPQAAyL0AACQ-AABwPQAAND4AAHC9AABkPgAABD4AALg9AACYvQAAFD4AADA9AAAwvQAAuD0AAOi9AAAsPgAAMD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ZoaCP7unAQ8","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["277600099947289908"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1677665069"},"392723384966310322":{"videoId":"392723384966310322","docid":"34-8-10-Z05276CD383E02C0E","description":"A tangent line just touches a curve at a point, matching the curve's slope there. A secant line intersects two or more points on a curve. Clear explanations with examples make it easy to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3919086/024720334df8163ff42a5e29476234ec/564x318_1"},"target":"_self","position":"14","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQop5f49CrZ4","linkTemplate":"/video/preview/392723384966310322?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tangent and Secant Lines Introduction | Math is Fun","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Qop5f49CrZ4\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhQKEjM5MjcyMzM4NDk2NjMxMDMyMloSMzkyNzIzMzg0OTY2MzEwMzIyaq4NEgEwGAAiRBoxAAoqaGhiam1xZ2V0aHNpc3lyZGhoVUNpUGFZN0t5RG1UYkE4eXg5cDNoVURREgIAEioPwg8PGg8_EziCBCQBgAQrKosBEAEaeIH7C_4A_wEA-wMDDgoI-wL1A_z4-f39AOQC8PcD_AIA-Pv_BQUAAAAJ-_4HAQAAAPgO_gfy_wEAEQcBDPUAAAASCff99gAAAAwO7wL_AQAA6_zzCQP_AAAJCg0JAAAAAAAFCgMBAAAA9QcC-AEAAAD5_g4R_wAAACAALQhh1Ts4E0AJSE5QAipzEAAaYPkOABoNDuHfEhzu3OnS7PTiF-kW4QgA3QQAHfLr2v8RzMP5Gv855hruvAAAABMFBxcBAPVVAt_iHwQT_MrQ_hMJfwX_CxMNBvLK9AcENsMy2-sNIgAU-vEmOe_eRCUcLyAALXe-TTs4E0AJSG9QAiqvBhAMGqAGAACQQgAAQMAAAJBBAAAkwgAAoEAAAOhBAADyQgAAYEEAAKDCAAAAwAAAOEIAAIC_AACAwQAA4MAAAMBBAAD4QQAAwMAAAKBBAAAUwgAAPMIAAIBCAACAvwAAgEEAAKhBAAA0wgAAqEEAAIBBAACgQAAAQMEAAJhBAACwwQAAAEIAAEzCAAAAAAAAAEAAAJTCAADAQQAAhkIAAGhCAABgQgAAaEIAAPhBAADAQgAAPEIAAFxCAACAvwAA-EEAANDBAAC0QgAAwEAAAFDCAAAwQQAAAMIAAHTCAAAgQQAA8EEAAKbCAAAAAAAAYEIAAOBAAADoQQAAIMIAAKDAAAAgwgAAIEEAALjCAAAQQgAAEMIAAMhBAADgQAAA2EEAAODAAACowgAAmEIAAEDAAAAAwAAAoMIAAHBBAADgQQAA4EEAANDBAAAoQgAAAMAAAPjBAABAwQAAQEAAAKBBAACKQgAAkkIAAABBAACgwAAAeEIAAIDAAABwwQAAsMEAAPjCAAA0QgAAUMEAANBBAADgwAAAXMIAAKhBAAAQQQAAAMEAAJjBAADgQAAAoMAAAADAAAAMQgAAwEEAAFBBAABwwQAAAMAAADRCAACwwQAAwEAAAIBBAACAPwAAkMEAAGDCAAAkwgAAsMIAAKhBAADgwQAAFMIAACDBAADgwQAAMMEAAObCAACCQgAAIMEAAEDBAABAQAAA4EEAAGBBAABgwQAAgEEAAHBBAAAYwgAAiMEAALjBAAC8QgAAEEEAACBBAABIQgAAfEIAAIC_AABswgAABEIAABDBAAAMQgAA8MEAAKBBAACAwQAAqEEAAEDAAAAAwgAAUMIAAJLCAAAEQgAAiEEAAMBAAAAMwgAAIMIAAJDBAABAwAAAiEEAAEBCAAA0QgAAQEEAAFxCAADIwQAAisIAAHjCAAAQwgAAgL8AAKDAAAAswgAAnsIAAIA_AABgwgAAgMEAACDCAACAwAAAeEIAAABBAABkwgAASEIAAIDAAABgQQAAoEAAAMhBAABQQgAASEIAADDBAAAwQQAAAEAAAEDCAAAIwgAAwMEgADgTQAlIdVABKo8CEAAagAIAADC9AADovQAAfD4AAHA9AABwPQAA0j4AABw-AAAjvwAA7r4AAOg9AACGvgAAfL4AAKC8AAD2PgAANL4AAAS-AAB8PgAA4DwAAHQ-AAAVPwAAfz8AAKi9AAAQPQAAMD0AAFS-AABsPgAAVD4AAAy-AAAkPgAApj4AAOg9AAAEvgAAFL4AAMi9AACgPAAA2L0AAJg9AADIvQAAPL4AAAS-AAC4vQAAQLwAAJo-AAAwvQAAcL0AAEw-AACWPgAAJL4AABA9AAA0vgAABD4AAIi9AACCPgAAmD0AALi9AACAOwAAVT8AAAQ-AADIPQAAUD0AAEy-AACoPQAA2D0AAAS-IAA4E0AJSHxQASqPAhABGoACAACivgAADD4AACS-AAAbvwAAiL0AAKA8AABsPgAAoLwAAEA8AAAQvQAAoDwAAES-AAAsvgAAgr4AABQ-AAAQPQAATD4AAA8_AACgvAAA0j4AAEA8AACgPAAAQLwAAFS-AADgPAAAiD0AAOi9AADgPAAAUL0AADC9AABwPQAAND4AABy-AAC4vQAAXD4AADC9AAAUPgAAnj4AAGy-AABQvQAAmj4AAMi9AAAwvQAAoDwAADC9AABMPgAAf78AAIK-AABUvgAAiD0AAJY-AACIvQAAgDsAAEA8AAAkPgAAiD0AABC9AADgvAAAQDwAAIC7AACgPAAAEL0AAOC8AACoPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Qop5f49CrZ4","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["392723384966310322"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3141078243235357561":{"videoId":"3141078243235357561","docid":"34-1-7-Z46C5F336F7751F33","description":"Finding the Equation of a Tangent Line Using Derivatives - Step-by-Step Examples In this video, I show how to find the equation of a tangent line to a curve using derivatives. We work through 3...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/760430/d0cce3379c378049e57389acb2753aae/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/xpF0LwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D64mxT6b6qz4","linkTemplate":"/video/preview/3141078243235357561?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding the Equation of a Tangent Line","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=64mxT6b6qz4\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhUKEzMxNDEwNzgyNDMyMzUzNTc1NjFaEzMxNDEwNzgyNDMyMzUzNTc1NjFqkxcSATAYACJFGjEACipoaGNuYXF3Z3h0b2xmeHhjaGhVQ0ZlNmplbk0xQmM1NHF0QnNJSkdSWlESAgASKhDCDw8aDz8TyASCBCQBgAQrKosBEAEaeIH3_vwA_gMA-AsADvkH_QIEAAAC-P_-APj0AfIDA_8A9wESAQEAAAD-CwcCAAAAAP34-AL7_gAAFg_2BwMAAAAXBPwK_wAAAAb9AwAHAAAA-Pf3_QP_AAAAAPgL_wAAAPkFEgb-AAAA8Av8BQAAAAAAAAIGAAAAACAALQBT2zs4E0AJSE5QAiqEAhAAGvABfxET_unl4wLWBccA-Qb0AakNHP_8NdEAuwX9AOrm2QHvL9EA3P8Q_-EeE_-4GggAQfXI_-7P6QAl1fD-C9kMAMj-8QAFwucCPRMu_wnqGf-_3iMA39zpARnV0QMJC8_-BNby_A4S9_4yC9cCJvsvASYSOwAs_T4D9rv0A9rh_wQeCcP86h72_SPrK_y92ScCAfQCBwT4_QL5KckCB-oQ9vLzHPgOE88AEN3rDBAEFAbB-wMBC-EEADIVDgLW9vP1zgwfAbcH6_oL6BD9Ee339-gd1foICdoMFgIaBPsB9_oVD_jy_xcb8_XP9v_3Jv8EIAAtHUYQOzgTQAlIYVACKs8HEAAawAdma8W-fnN_vCNN-rulnY-9ROTPvIVLvbwN_v69Ug6mPIhdgDwUdhE-3w7evCa-gzuED1W-SkMNPS7pYz3LgDM-5tGIvZhiMzx6Fy--CDwwPSmf1Lzn_iq-Xcv_PEh0KjwTwa48DUEEvYJy27zg2X49UnFNvc03R7zKLn29SeeuO-CXH72YrWu9F-VDvbxJAr0_4yK9j8ldveCFiDzTTu09dUANvZ1pHb39gLw95YkWPYm3Cb1rEbG9x8jIPB8R07xSkKk8v3cAPSEbrTx2TW28vQfDvI2RtruTmMa9ho-IPI7RlTyVUoY9IzHBPLtlYrxi9Iw9nn7Qvb52Xbut-QG-VKWSPCHR3zsbKps9WJ1GPd9ML7uw4tS9dTbJPTyOVTy8bVA9kCX_uylptLzThuM9zHZqPdZ0vTwgooc8-aRuPaBIgbx24Qe9KjKfPRm0azwgS6o9qBb2vFx2iLycBKU8XQB1PKMngLyHBGK9N656Pf42erylQ0w8IBqXPYUc4ztGn6q8N8xpO0GwjzwFI6U91gI7vknlmjr54-67W2H6vYUCvjulGLs9nWyevEI7jLxu_Ok9TOStvStzqbvvUaS8bvjdvDjEkTqa4wE99-civctkuDshhme9OmgEPF2MnrsoclK9dDAxPT6p_rvs76Y9Wk2yPU9zprkpxKs7J-uhvWwGejthggQ9-qX0PCD7rLtvgJk9BtMVvERVhrs2rr88C8KbvcM9xrjPBJQ8NHqPvSeZCLoRkO-8HWyLveBCHTmhndM9UYGYvZedUTlK8Uy8EXpsvBFjwTgqYoe98OuRPA7EvTg6AQ87VwM5vAp0HzrLovC8W0IevjcF4zlXbhM9tzYePVkHKjn2nG89vbXCPKauajhrHsG9xK6ivVn4IjgtQSa9Ik7Mu5R_C7nJHwq8keGCvGIavriiaQG8IqQTvQmtYrkIqcC8BKnUvOvZRzmhpUY9ZTs6PfB_vzhFDtE9KSPuveIsvzntgyw83mSqPV7pvbhdF-G7l2yxPV2jZThTM7W8DiByPSSYIrnxWSg9d5aKvdU16zgZ6ou8pGzxPaXexzgKu2i9RTCZPUe8wji81hg8MbOPPLpFtTigzms9zSa4u66rvTeEG1-82hU_PSRUDjitp_Y9s-qYvHs7Orm4XZO9z6uQvdp1RLhjM1Y9dlG0vT-bnTjabKG9jeayPSF0CTjk1Z68eonxvWVVMLiKllc9EFj5PY0XQDhgmpg8W5r7PYSt_bhnCZe8pgSJPZqypTfcOYO9cIIKPS2gwzcgADgTQAlIbVABKnMQABpgJQQADAY70Qz3EuoM4_UD3rEU6RHX9__f9QAGDtkDDiWezs0M_xnPG-qvAAAAG-XrAfQA7mzv1ShJKAPpyrPXDhR_3A4OBAcs-4XMCRks2CsdJyQ-AAIRwyM41tpTOAUhIAAtx1ciOzgTQAlIb1ACKq8GEAwaoAYAAPBBAABYwgAAfEIAALjBAADwwQAAmkIAAHhCAABgQQAAEMIAAADAAAAUwgAAUMEAANhBAAAgwQAAEMEAAJBBAAAUQgAAOMIAAFDBAADowQAA0EEAACDCAAAgwgAAGEIAALDBAAAUQgAAEMIAAIDAAAAIQgAAyEEAAEBBAABgwQAALMIAAODAAACuwgAATEIAAFhCAAC0QgAA-MEAAPBBAAAcQgAA2MEAAMBBAAAsQgAAQEIAAODAAACAQQAAPEIAAIhBAAAQwgAAyMEAAJjBAADgwAAAkEEAAEDAAAAAQAAAuMEAABjCAAAMQgAAqEEAAJhBAACWwgAAWMIAAIDBAACowQAAvMIAAEDBAAB8wgAANMIAAIDAAACQQQAACEIAAFjCAADAwAAAIEIAANTCAACAwgAATMIAAHhCAAAgQQAA2MEAAKxCAABEwgAA2EEAALjBAABUQgAALMIAAEjCAABYQgAAAAAAALBBAACMQgAA4MEAAJzCAAAQQgAA4MEAAIDBAADQwQAAgD8AAKDBAAAcwgAAVEIAAJ5CAADgQAAAkMEAAHDBAABMwgAAsEIAAADCAABAQQAAREIAAEhCAACIQQAAwMEAAMBBAABAQQAABEIAACTCAAAAQQAAUMEAAEDBAABgwQAAQEEAAMDBAAC4wQAAiMEAACjCAAAAwAAAVMIAAMjBAACQwQAARMIAAJDBAACyQgAAHMIAADBBAAAAQgAAPMIAAMjBAACAwgAAIMEAAOBAAAA0QgAAqEEAAJjBAAAAQAAABMIAAOjBAADwQQAACEIAAABCAAAAQAAAZEIAAMDAAAAQwQAAqMEAANDCAACMwgAAXMIAADDBAAAMwgAAUMEAAPhBAAAQQQAAoMAAAIBBAABUQgAAuEEAAJRCAACYwQAA0MEAAIDBAAB0wgAABEIAABBBAABkwgAABMIAAIBAAAAgwQAADEIAALzCAACAwgAAgEAAAABAAABAQgAAJMIAAEjCAACAPwAAsEEAAIDBAAAwQgAAoMAAAJDBAADowQAACMIAADhCAABAQQAAiEEAAJhBAABgwSAAOBNACUh1UAEqjwIQABqAAgAABD4AAEC8AAAwvQAALD4AAII-AADgPAAAqD0AADm_AACWvgAA4LwAAIi9AAD4vQAAoLwAAL4-AABcvgAAZL4AADA9AAAEPgAAJL4AAOY-AAB_PwAA4DwAACQ-AACgvAAA-L0AABw-AABEPgAAiL0AAIg9AADgvAAAnj4AACS-AAAkvgAAoDwAAOC8AABwvQAAcD0AADS-AADuvgAAkr4AAJi9AABAPAAAqj4AABy-AAA8vgAAcD0AAIo-AAAMvgAAHD4AAEC8AACYvQAA4LwAACw-AABEPgAAqL0AAHC9AABJPwAA2L0AAKC8AAA0PgAA6L0AAFQ-AAA0PgAAJL4gADgTQAlIfFABKo8CEAEagAIAALi9AAD4PQAAMD0AAEW_AAA0vgAAiL0AAJI-AACAOwAABD4AAEw-AAAcPgAAfL4AAIi9AAA0vgAAUD0AAFC9AAD4PQAAGT8AAMg9AADiPgAA6L0AAJi9AADgvAAA-L0AAJg9AAAwvQAAED0AAIg9AABAPAAAMD0AAIC7AAAMPgAALL4AAKC8AADYPQAAdL4AAAw-AACKPgAArr4AAKg9AAC4PQAAmD0AAHC9AABAPAAAqL0AAJg9AAB_vwAAHD4AADC9AACgPAAAgDsAABA9AABAvAAAMD0AAAw-AACoPQAA4DwAADA9AADgPAAAyL0AAAQ-AAAMvgAAgDsAANg9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=64mxT6b6qz4","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["3141078243235357561"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2747570064"},"6858983053086830972":{"videoId":"6858983053086830972","docid":"34-6-8-Z2546C4F9B9BE31C3","description":"In this example, we find the equation of a tangent line by using the definition of a derivative (that is, we find the derivative the LONG WAY)! Of course one could find the derivative using the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2954033/f3431084af463e76d151c46f2da86ec3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/FaL3BgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0ejh2qD2onE","linkTemplate":"/video/preview/6858983053086830972?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find the Equation of a Tangent Line Using the Definition of a Derivative","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0ejh2qD2onE\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhUKEzY4NTg5ODMwNTMwODY4MzA5NzJaEzY4NTg5ODMwNTMwODY4MzA5NzJqkxcSATAYACJFGjEACipoaGNuYXF3Z3h0b2xmeHhjaGhVQ0ZlNmplbk0xQmM1NHF0QnNJSkdSWlESAgASKhDCDw8aDz8T8QGCBCQBgAQrKosBEAEaeIH_BPsB_gIA8QgGCvcE_gEIAwkJ-P__APUA9fQDAv8A6wMGAAL_AAD9BQgJ-QAAAPf1_f79_wAADQb1AwQAAAATAPQC_wAAABT-AwX-AQAA9Pv-_AMAAAAAAwIB_wAAAPsBCQD7_wAA9gb-CgAAAAD9BgUN_wAAACAALRPz2Ts4E0AJSE5QAiqEAhAAGvABf_QF_uvD1gLA4OAAyhHiAZU3K__8PskAwfT-AMbV5wDpHtcA0xsc_x8bTADRJfoATPO___jGAgBJ4-P_DdIOANoEEgH5-r0BVO0k_-HuFADg-Cv748UVAQzT4_8QHu_9Cwzq_yIiv_3fD-MGPcsuAhYjHv8_7B0B7roJ_-n0EQjZD_f0-DX2AR3zHPu8_iUBC-gZBvII_v7MHdEAFuIYA_v-EvYaTOX_SN4cAggH8gq2DgQKCyDx_DICFwK26f74_csZ87n-AvMi0AoFMw4G7vsb5Pn6BOX6AdMZ_OvmAQv83Pff4BMECeCy9BTZCvLoIAAtReL2OjgTQAlIYVACKs8HEAAawAeyDse-51kkPN8Kl7zt8h2-ppwvvXXeMjqo4Ru-3xbsPIfbRjwglsI9CqMZvRAGnrycTZe-6j1cuWSPFryJmQ0-zD9fveudn7nZQ0u-Q5J2Oyl_gr1XsTi-R6V9PKXUCj0i5Jc9qqB9vYQAyzug4tg9YTyevMVPiLw4G8a8C2H1PHVPpjtdqbK9wZwqvT0eRLwp6KY9PS-Avf8_Lj13Me09jwApvXaWETyhlHo9ZGirvMGqurwdrUo9YiBePRJQIb1XBN89Pn4KvTOTHj3xJZm9h9T-vPVR4Tw1JuS9KJ0ovZSqxLtY8y28dRE1PXrhTrz0bGm5YKskvoAygLt39Qq-oJ8uPVz5Ubz1vCs-zSx4PPp6vjwmusi9Tz6cO8WIqzs_KI49rB8bvTO8nzsBQIQ9-V_4PFE0DbyWxQ49gZmaPf_HT7vkO8Y7jPcDPr8syDwgS6o9qBb2vFx2iLzd83Q77w7fPDXx0TmqPny97xCgPUuPJjxjeue8TgCPPA7T47vC1tE8BUiJPZkd2DznhT-7YYGpvesIFrwmlHm9sQlavZGCfTl-OOg9QkCAO3x9ELxBlIk9bSUvvTtI_Do5xXS8qM45vSGz8btWazy8Uq-wvWLHGDshhme9OmgEPF2MnruUdyS9L4W3PSeh17u-7Mg9D7M8PaTSKzp7LS29R2OzvfC-iDm0YFg9z_npPMQvqzrIftY9AoV2O1J02zgJjcA9p9uovd-s2rkKo1m9jmnYu8sq8LrFE0u9-I3KvT_tR7nePSA9AjpdveTmyDniHWA91GtpvPFtUbsIfxW9W0SvPZiB-Dh1tjY8q-gRvLsClzitL7c6_RLxvbwjiTnRKIi9mam_PBzF97UXqJs9jLIduncZbLnMIMO91A0EvghThTmTm7K856YNPbEi57gWIyE9cFvAPD9gEjnKbIC9OC04vZOSmTgAVie9WLmhvNqNoTlBIx09SS_qPeRC7bhFDtE9KSPuveIsvzl4rCO8rp9-PX0E0ziLNK-6mrKRO2XLILjo2AE9EhNUPaqcgrYa5-U8XQ9rvbiwjTdiZE49cSEqPZocGrhlU869wuioPP4y6Dfy0Dc9XEIZPXlyjjidcKU82ZcMvSMJd7hqoq47UigLPAKYWTjB4ys-3KVovAeJdLlUxdS9_3tLvRhRV7ZyNAk7cI60vTjSjbYyC7O9Ev5APbJytjc8fOO8IiYXveGisrdVGKY9bQvFPYPH5zjya1o8bfMQPfPOirhciWW9ZDPRPKe9oDdtDpa9LoRmPQTvtzcgADgTQAlIbVABKnMQABpgGvcAGvoSxxnkO_cR5sX93qMG6RW-Ff_q7P8FGckf8jayxObiAEXHGfCgAAAALfUBGMgA13--2BxBFAX24ajl-xN67PYmyNtC45fmVyAnyCchOjI3AAASnigj0bhGBDcsIAAtp-YOOzgTQAlIb1ACKq8GEAwaoAYAAMBBAAAAQAAADEIAABTCAADAQAAA-EEAAMpCAADgQAAAOMIAAARCAABwQQAAoMEAAFDCAABgQQAAHEIAAFBCAAAAQgAAAEAAAJhBAAAAwAAAuMEAADDCAABwwgAAIEEAAJjBAABAwAAAIEEAAMhBAACgQAAA6EEAAFzCAAAUQgAAoMIAAChCAACiwgAAMMEAACRCAABEQgAAsEEAAABBAABkQgAAuEEAAFRCAAAAwAAAjkIAAMLCAABAQAAAaEIAAMBAAAD4QQAAYMEAAPjBAADgwQAAkMEAAEDAAACaQgAAcMIAAFDBAADoQQAAGEIAAMhBAACWwgAAOMIAAJDBAAAQwgAAwsIAAADBAADowQAA4EAAAIjBAAA4QgAAHEIAAKTCAAB4QgAA-MEAACDBAAAIwgAAgEEAAFxCAADAQAAAnMIAALBCAABwQQAAIEEAAAAAAACAPwAAoMEAAKjBAADIQQAAwMEAAKBAAADwQQAAmsIAAGBBAACAQgAAHMIAAIDAAACawgAASEIAADhCAAAEwgAA4MEAAKBAAAAQQgAAZMIAADxCAAAwQQAAIMEAAMDAAABgQgAAuEEAAAxCAACIwQAAOEIAALjBAABQQgAA8EEAAODBAAB4wgAA2MEAAFzCAAAcwgAA0MEAAIDAAAAowgAAgD8AACBBAAAEwgAAsMEAAK5CAABgwQAAUMEAAADAAADSQgAAkMEAAChCAADIwQAA-EEAAEDCAABwwgAAEMEAAMBAAADAQQAAPMIAAOBBAAAcQgAAAEAAAOhBAADgQAAAAMEAAMDBAAAcQgAAoEEAAATCAABoQgAAFEIAAJDCAABAwgAAzsIAAARCAABcwgAA0EEAAJBBAADAwQAAQEEAAABAAAAUQgAAQEIAAHRCAADAQQAAAEEAABxCAACwwQAAmMEAAFDCAADwwQAAqMEAAJDBAAA8wgAADEIAAKrCAAAYwgAAuMEAAGBBAAB0QgAAmMEAAFDCAACowQAAQMEAACBBAAA0QgAAwEAAAJhBAAAAQAAABMIAAHhCAADgQQAAmEEAALDBAAAAwiAAOBNACUh1UAEqjwIQABqAAgAARD4AADA9AAA0PgAAiL0AAEQ-AAAkPgAA6D0AAC-_AAARvwAA4DwAAMi9AADWvgAAiD0AAIo-AADIvQAA-L0AAIg9AABwPQAAML0AALY-AAB_PwAATD4AABQ-AAAEPgAATL4AAIg9AACKPgAATL4AAII-AAAMPgAAXD4AAIq-AACAuwAAHL4AAKi9AADovQAAoLwAAKK-AACivgAAjr4AABS-AACavgAAwj4AAEy-AAAkvgAAuL0AAEQ-AADivgAAUD0AAMq-AACoPQAA4DwAADQ-AACKPgAAqD0AAMi9AAAxPwAA2L0AAOA8AAA8PgAAML0AAJg9AAB8PgAARL4gADgTQAlIfFABKo8CEAEagAIAAKa-AADoPQAAgDsAAEu_AAA0vgAAgDsAAEQ-AAD4PQAAdD4AAMg9AACovQAALL4AAIi9AAAQvQAAHL4AADC9AABQPQAAET8AAFA9AADuPgAAFL4AABy-AADgPAAAPL4AAIC7AACAuwAAPD4AAHA9AABAvAAAqD0AAHA9AABEPgAAZL4AAAw-AABQPQAAmr4AAHw-AADePgAAhr4AALg9AABsPgAAgLsAADA9AADgvAAAqL0AAFC9AAB_vwAAVD4AABS-AACOPgAA6D0AAKg9AABcPgAAVD4AACw-AACIPQAAQDwAAMg9AABQvQAAVL4AACw-AAA8vgAABL4AAHA9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=0ejh2qD2onE","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["6858983053086830972"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4267428391"},"15053475977637055980":{"videoId":"15053475977637055980","docid":"34-3-6-Z5D0FB66036F0AAEB","description":"This math video discusses the difference between the tangent line, normal line, and secant line. Derivative Applications - Formula Sheet: https://bit.ly/4eV6r1b...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2162315/e54200d894c92a0eecd6a0c75ede6e00/564x318_1"},"target":"_self","position":"17","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DIYTo1W9sgy8","linkTemplate":"/video/preview/15053475977637055980?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is the Difference Between The Tangent Line, The Normal Line, and The Secant Line?","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IYTo1W9sgy8\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhYKFDE1MDUzNDc1OTc3NjM3MDU1OTgwWhQxNTA1MzQ3NTk3NzYzNzA1NTk4MGqvDRIBMBgAIkUaMQAKKmhod2RhaGl5ZHBtZHFvZGJoaFVDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQRICABIqEMIPDxoPPxO-AoIEJAGABCsqiwEQARp4gQIK-gb8BQD8BfwGAQb9AvYKBgL5_f0A_vv99fwF_gD5-_8FBQAAAAkHBg8BAAAA_fj4Avv-AAAVD_cHAwAAAAzx_f_6AAAABQH9Bv8BAAD8-AL_Av8AAA7-AQgAAAAA8QQE_P7_AADzBPv9AAAAAAX9DAEAAAAAIAAtwVrgOzgTQAlITlACKnMQABpgFRQAHAH_5ukCFuv_-eLsFfMC9_v1_AD6AgD68u_5KQPm5_oHAD7rFvnWAAAAAgALF_cA4DP26AMIEQ_59Nfz9RF_A_gLIAkV4t_x-gIn8g0FGBMrAAIKDxMO5gAi_QAoIAAtLaGMOzgTQAlIb1ACKq8GEAwaoAYAADBCAACYwQAAMEEAACTCAADYQQAAUEIAAO5CAAAwQgAA8MEAAIC_AABAwAAAAEEAAIzCAADgQQAAAMAAACRCAAAkQgAAAAAAAMBBAABAwQAAEEIAAODBAADgwAAAOMIAADDBAAAoQgAAOMIAAIC_AACAvwAA6EEAAPjBAAAQQgAAgsIAABRCAACawgAAoMEAABBCAACSQgAAyEEAAJBBAADgQQAAMEEAAJ5CAADgQAAAuEEAAHTCAABAQgAAAEIAAPhBAAAkQgAAAMEAAGzCAAAAwgAACMIAAIC_AAAwQgAASMIAAADBAACAvwAAmEEAAFxCAABkwgAAcMIAAJBBAABAwQAAjMIAAODBAAAIwgAAFEIAAODAAACAQQAAMEIAAEzCAABMQgAASMIAACDBAACewgAA2EEAAFhCAACoQQAAxMIAAIhCAACAwQAAeEIAAJhBAAAwwQAAkMEAAJhBAAC2QgAAgsIAAJDBAAAUQgAA4MEAACTCAACAQAAAeMIAAGjCAACewgAAaEIAAHxCAAAswgAAEMEAAPDBAAAQQgAAsMIAACxCAADgwAAAdEIAAOjBAAAQQgAAcEEAACxCAABwwQAAGEIAAOBAAAAAQQAA2EEAAAzCAADYwQAAMMEAACDCAACMwgAAAMEAAOjBAADgwQAACMIAAADAAAAcQgAARMIAAFhCAADgwAAAREIAAIjBAAAoQgAAsMEAAAxCAACgQQAAEEEAAJ7CAAB0wgAAAMIAAEBBAACAwAAAQEEAABBBAABwQQAAyMEAAMjBAAAIQgAAUEEAAJDBAAAAwAAAXEIAADTCAABcQgAALEIAAGTCAACQwgAAcMIAAOhBAACMwgAAQEAAABhCAAD4wQAAgMEAAAAAAAD4QQAAUEEAADhCAACQQQAAgL8AAMDBAAAMwgAAMMEAAGzCAACQwQAAgEAAABzCAAAUwgAAREIAAILCAAAIwgAAVMIAAFhCAABcQgAAAAAAAGDBAABQwQAA4MAAAKDBAADAwAAAAEIAAHxCAABAwAAAgMAAAFBCAAAYQgAAAAAAABDCAADAwCAAOBNACUh1UAEqjwIQABqAAgAA2L0AAEC8AACOPgAAij4AAIC7AACovQAA4DwAAM6-AAAEvgAABD4AALi9AACAOwAATD4AAHQ-AAAMvgAAqL0AAJg9AACIPQAAJD4AANI-AAB_PwAAHL4AAKg9AADYPQAAmL0AAHA9AAAEPgAAiL0AAJI-AAAcPgAAQDwAAOA8AABEvgAAUL0AALi9AAAEvgAAgLsAACy-AAA8vgAADL4AAOi9AAA8vgAARD4AAFy-AACgPAAAML0AAFQ-AABEvgAAEL0AAHC9AABQPQAAoDwAAEQ-AAAwPQAAoLwAAEC8AAAdPwAAuL0AAKC8AAAsPgAAQLwAAIC7AABQPQAAJL4gADgTQAlIfFABKo8CEAEagAIAAFC9AACIPQAAFL4AAFe_AABEvgAAML0AADQ-AACAOwAAED0AAMg9AACYvQAAwr4AAIa-AABsvgAAEL0AAEC8AAAMPgAAEz8AABC9AADGPgAA4DwAABC9AADYvQAA2L0AAOA8AACOPgAA-L0AAEC8AACAOwAAJD4AAKA8AADIPQAA4LwAAHS-AADYvQAAuL0AAAw-AADgvAAAdL4AALi9AADoPQAAJD4AABA9AACAOwAAVL4AAEw-AAB_vwAA2L0AAEy-AAAQPQAAgLsAAEA8AACgvAAAMD0AAAQ-AAAQPQAAQDwAAAQ-AAAQPQAAQLwAAAw-AACIvQAAQDwAAJg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=IYTo1W9sgy8","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15053475977637055980"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"483437616902485711":{"videoId":"483437616902485711","docid":"34-8-7-ZB8DA8B4B52E0CF32","description":"This calculus 2 video tutorial explains how to find the tangent line equation in polar form. You need to find the first derivative dy/dx of the polar equation and evaluate it to determine the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1251657/272d651b40db16b1a495a7380224b79e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/BuhYDgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DImtzLh8KhIE","linkTemplate":"/video/preview/483437616902485711?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tangent Line Equations, Slope, & Derivatives In Polar Form | Calculus 2","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ImtzLh8KhIE\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhQKEjQ4MzQzNzYxNjkwMjQ4NTcxMVoSNDgzNDM3NjE2OTAyNDg1NzExapMXEgEwGAAiRRoxAAoqaGh3ZGFoaXlkcG1kcW9kYmhoVUNFV3BiRkx6b1lHUGZ1V1VNRlBTYW9BEgIAEioQwg8PGg8_E-kGggQkAYAEKyqLARABGniBAgUC_v8CAO8DBgYAA_8BCwoHAPcBAQD6B__0AgT-APv9Bu79AAAABBIB_v8AAADw9_AH-wAAABUE9AD1AAAAB_r9__oAAAAHCQEK_gEAAOz09_8CAAAAFv4GAwAAAAD7BAT9AAAAAPb8_AkAAAAABf4LDQAAAAAgAC0zINc7OBNACUhOUAIqhAIQABrwAX8JIAHbDd4A3AP3ANYFBQGqLCP__TLUALzxCwC798kAAATvAOkT6wDuEA8AmSn_ARPatwL60QIAOd78ADfa6gDp8wsAEtbvAj9EI_0L_P_-7AklAAPI-gEd5-cAAhfoAw3iEP8HFeYCHBXNASP7LQHl-xgBHgIX_AKnAQfo2QkEDAD5-OYf7AME_Pf14vUuBxHiCf8PBQj08QrrBPD2BQfd1gX6CCzX_iMN-AUeEP8JuPD4_vXC_wExGicJ0x74B9nyLAXhH__48PMVBBH-8Pv57_MKBfDhAx36Af7i9gQDLAH4998Z8fTeAf4I4Qj17SAALezmGTs4E0AJSGFQAirPBxAAGsAHNbXMvqF0WDy9TQQ9U-RVvVHehzyL4jC8XyV_vRSvMjwZopK71IEMPlK9gL0C0sC7R5EFvpmvfD1pHEo9xVWFPlQwb72bfyq8dXT8vS8Tmj0LAhC9HZHPveQKiT2NwgG8uO3WvMBDrDzgWSy9YV2LPVIP0TyQCxM9yVfCvOYMAD1C7gK98FUGPc2Edb3mNcC8pZr-O5XJurx45eG7IAe6PYKRN72Ispy8UUzeu_Y5yDwp3Dy86tW7vaLHOTyQTEe9L-LWPM7cqD0wx6E8ei-TvYZ2nr0_s9o8T2YyvQpCfj2zl608LeGavMtcqjz6Bku8f8K0PFp3Pb1HJe270CpDvphzn7wPqIg8_c-7PXi5iD2rJoi8wrKYvZXp_DxoMLw8I2x0uxDfsjpQOpG8tMlhPBWnjz3_Fi48yG1qu8yRmTuuIoo75DvGO4z3Az6_LMg8W5WUPeoOqL0wMIa8lz0kPUEr8jtPwpa7HiUlvb_ZQbzaa-q7VOYGvcl9Zj0VudY8OU_rvD8ZEjrvm1I73Ve6PUMxk70uHdK7Yd6jPIY84r1ZSXG7CxJ2Pd2hdjtbiW27WYfDPQrPVb30glM7CtvPvCpwFbxPfNK7QdgJPUJYor3kPyK6FwmSva75TL1OcBy8_GWBvY6hUjzf61q89Z-1Oykzrzy1sMC65wfkvGiXj72ZtRi7tGBYPc_56TzEL6s6bQHhPeSeLr2s2iS4iCSEPaUZtr3cmS67atnavSND2Lxsl6M5G4hAvLFr-722vp65yjT6PRN7zbxZhmE4tyn9On-6Rj01-k45G-qhvbJblT0s2Zk4udJhPS7elL1zT904rS-3Ov0S8b28I4k5_djkvKzCCbzPJWI7GlSWveSldj3DJLU56fatvCU79r25vMw4Le4_PTwFWjrfEeW4y6nTPFBoHzxuiaK4cLx2vWMZDTxuoOq2zsaKPKsvgb2PmA04eB9MPaWv8TyXzwI5I6yMPfRsBr7PcKU5delaPRQDKb2jOK81dAarPSTbTz2RO7u41k1OPEolHD5Auz05zMgKvbNPNr22j9U4mLyiOyLrgLtZcMA4cpxCuydP-T01WAw5nNuZPXNuDj0nkL83x6eWvQOHhrydjYq4b7eJPEJRajyHQik4glVFPnTINz3J3IS5ClwIveLDkb08pVi48Z2IvSu3vr1xvNK3tGIuPZWtfz1siM61s5dtPDeYuDuM_mS4yvRwPSLhKz7xy4o48LI1vVzMzz0MRgq5hlWMvfRbir0sUeC2SV6nvUasqj1UMog4IAA4E0AJSG1QASpzEAAaYEMAAB8GPMsnCS3p_-UHF9K75dIGvQv_EvcA9w3bHDEmstncBgA7xSHloQAAAB7x7xfoAPZ_uNUO8xMm78KUzRpBatPuILcDPM7PvwQgPM7kF-stOgDh_K43SvShLw4mDyAALRvkEzs4E0AJSG9QAiqvBhAMGqAGAABkQgAAoMEAAPhBAACGwgAAUEEAAGBBAADuQgAADEIAAOjBAAAsQgAAAEIAAOBAAAA8wgAAUEIAACBCAAAIQgAAyEEAACjCAAA4QgAAQEEAAEBBAABgwQAAHMIAAMDBAAAAwAAAgEAAADhCAAAAQAAA8MEAAChCAABMwgAAgEEAAILCAAAgQQAAoMIAAFDBAAAoQgAAREIAABBCAAAIQgAAmkIAALhBAAAsQgAAUMEAAOhBAADmwgAA8EEAAFhCAABQQQAACEIAAATCAABAwAAAwMAAAMBAAACAwAAAZEIAAOLCAADAQQAAiEEAAGxCAACIQQAAhMIAADjCAAAAwQAAoEAAAIrCAABAwAAACMIAAEBBAACYwQAAUEIAAGhCAABMwgAAREIAAAzCAABAwAAAGMIAADDBAAAgQgAANEIAAGTCAACAQgAA4EAAAODAAADgQAAAFEIAAABBAAC4wQAAbEIAAADBAADwwQAAAEIAAPjBAAAAAAAAgkIAADDCAADIwQAAgMAAADBCAACIQgAAdMIAACDBAAAAQQAACEIAAEDCAABAQQAAEEIAAGDBAABAQQAAfEIAACBCAABEQgAA4MEAACBCAAAwwgAAjEIAALhBAAAowgAAgMIAANjBAABkwgAAfMIAAOBBAAAQwQAAEMIAALDBAADwwQAAEMIAACzCAABkQgAAYMIAAIC_AACgQAAAjkIAAMDAAACSQgAA0MEAAFBCAAAwwgAATMIAAIjBAABAQAAAOEIAAAjCAACoQQAAJEIAAKBAAABUQgAAyEEAAEBAAAB4wgAAEEEAABDBAAAQQQAAGEIAAKDAAACMwgAAcMIAAJDCAAAAAAAAZMIAABhCAACgQQAAuMEAAPhBAACgQQAAFMIAAFBBAABMQgAAAEAAAIhBAABAQQAAqMEAAFjCAAAcwgAA8MEAAMDAAABAwgAAAEAAAMhBAAA8wgAAuMEAAAzCAACoQQAATEIAAEjCAAC0wgAAwMEAAKBAAAAEQgAA6EEAALhBAADYQQAAAEAAACBBAADYQQAAoEAAAKBAAAAAQAAAGMIgADgTQAlIdVABKo8CEAAagAIAAOC8AAAUPgAAVD4AAIC7AADoPQAAkj4AAK4-AABJvwAAfL4AABA9AACKvgAAEL0AAEy-AAD6PgAATL4AAHS-AACmPgAAmD0AAEw-AAA5PwAAfz8AAI6-AAD4PQAAEL0AADA9AAAQvQAA2D0AAOi9AABMPgAAkj4AADA9AADYvQAAiD0AAKa-AABcvgAAuL0AADA9AABcvgAAmr4AAFS-AAAQvQAAoDwAAFQ-AADovQAAVL4AAJK-AACGPgAAir4AADy-AAB8vgAA4DwAAAQ-AACYPQAAPD4AANi9AAAQPQAALz8AAIi9AAAQPQAAbD4AADA9AADYvQAAZD4AAPg9IAA4E0AJSHxQASqPAhABGoACAACovQAAdD4AADC9AAB1vwAAkr4AABy-AAB0PgAANL4AAKC8AACGPgAAij4AAES-AAAsvgAANL4AAEA8AABwvQAAuL0AAAs_AAA0PgAAqj4AAIA7AAAMvgAAoLwAABS-AAAUvgAAuD0AAIC7AACYPQAAgLsAABQ-AACoPQAAED0AAIK-AAAkvgAAyL0AAHC9AABAPAAAFD4AAKK-AADYvQAAQLwAAHw-AADgvAAALD4AAHC9AABMPgAAf78AADC9AAA0PgAAuD0AADA9AACgPAAAmD0AALg9AADIPQAAcD0AAKC8AAD4PQAAQLwAAIq-AABEPgAA6D0AAOg9AACovSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=ImtzLh8KhIE","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["483437616902485711"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2335066213"},"7492532626219324277":{"videoId":"7492532626219324277","docid":"34-5-11-Z1EA5E28252B91ABC","description":"This calculus 2 video tutorial explains how to find the tangent line equation of parametric functions in point slope form and slope intercept form. Parametric Equations - Introduction...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3429434/2311aef8d96b8ae372257eb81c4fdff5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pP8snQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvcZPjuG8GrM","linkTemplate":"/video/preview/7492532626219324277?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tangent Lines of Parametric Curves","related_orig_text":"Tangent Line","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tangent Line\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vcZPjuG8GrM\",\"src\":\"serp\",\"rvb\":\"EqQDChM5MDM1Mjg3ODgxNzk5NzY3OTg1ChM4OTczOTQyNTE1OTc5OTM4MTUyChQxNDQ3NTAyODczNjU5MDE4NDg4MgoUMTYxMzA1OTgzODAxNTQwMzAxODMKEzY1MDQ4MDIxMDc0NTk5ODQ5OTUKEjI5OTYzODEzMjc0MjE5MTk4NQoTMjUyMzc5MzI4NjkxNzkyNDI1OQoUMTA4MjQ4NzM2MTg2MjE0OTU4NzEKEzQ4MzU4NzMxNjg1NTEwMjc2MTAKEzk0MjU1NTQ0NjY0NDYxNjQwMTgKEzc4MjM2ODI4NTgzODEwMTc2MjAKEjI3NzYwMDA5OTk0NzI4OTkwOAoSMzkyNzIzMzg0OTY2MzEwMzIyChMzMTQxMDc4MjQzMjM1MzU3NTYxChM2ODU4OTgzMDUzMDg2ODMwOTcyChQxNTA1MzQ3NTk3NzYzNzA1NTk4MAoSNDgzNDM3NjE2OTAyNDg1NzExChM3NDkyNTMyNjI2MjE5MzI0Mjc3ChMyNTgxMjU4OTUyODA4NDM0NTkxChM5MDc5Mzc2Mzc0NTkwNTMwODU2GhUKEzc0OTI1MzI2MjYyMTkzMjQyNzdaEzc0OTI1MzI2MjYyMTkzMjQyNzdqiBcSATAYACJFGjEACipoaHdkYWhpeWRwbWRxb2RiaGhVQ0VXcGJGTHpvWUdQZnVXVU1GUFNhb0ESAgASKhDCDw8aDz8TwwaCBCQBgAQrKosBEAEaeIH3_vwA_gMABgT-DvkL-wMAA__4-P7-APUA9fQDAv8A9fcD__cAAAAEAggFAgAAAPUGAPj8AAAADQL4EAIAAAAb8AIB-wAAAAACAfz-AQAA8fv8AwMAAAADAggHAAAAAPYOAQMBAAAA-_8E-AAAAAAF_gsNAAAAACAALQBT2zs4E0AJSE5QAiqEAhAAGvABfwkgAeIPxwLcA_cA7P3_AaMyA__9MtQAvurzAMwV2AD-F_QA5xPV_wcYJv_GQfQAE9q3AgPKFP853vwAHLbrAuXiAgAQ8v4BNicYAP4C-P_fIxL__s0SAArc6f8NGPP-Eu4GARcb5v4FLdkDD_48Aeb5KwQz8BgBAqcBB93j_wMR9ef65h_sAwPX__ni9S4HCtL9_hUSCPrlBPIBAPkP_e_xCv_6Oeb6Nf0BBCISEAjB6xT9AtX7BRwiFAjR_e8E5_AY-cYhAwPiBw8BEO73-PUJ9BAF8OEDHfoB_vnyDgUjE_r7-Avv-e0K6wbhCPXtIAAt7OYZOzgTQAlIYVACKs8HEAAawAfGNLO-rDkAPbtTDzyqC529y4G_O8D-kLwjE_C91y0nPff9QLy4GYM9lDlRvX_mAr0l2r-9gDczPVT0EzzFVYU-VDBvvZt_Krx1dPy9LxOaPQsCEL3zWQ6-OG83PXb7LLse18C9SbOevNxtcrx580o99V_MPAF5gDzD-ES8TIlEPS1ZWr2JR_28k52ovWtwEb2rR_U86kd5veHs1rxsSFc9sez4vFSGlryHr-U894Q2vN2grLwjntE8r6sNPK7LWr2Afwo-Av8qPTbVLDuJzw2-InyOvZhvmDw0KtW8baV8PDYSUj0TZ8G7loYvu-dPQLyOkpe8Qn5xvQClhrxlF1y-eKeMPCgEvLuo_As-pYOVPSSOhrwchL-9Ta0NPTec5DsqcJI9ZXF_vBv2VryE7Uw95PNqPVSQ-jyUqDK9Fa-NPJ0h5jyQJBC8EN-jPaZiAz1_e2i8oP3ovTZXTbzPPpA9XPr8PCofwrzmJG-8e4cbvYDwwrobSwi-0xZXOuqaAzzPE8-7tBlMPGbEfTtwCus8Re-5vfZH5bljKn28o0XMvYcqRrzpyWY9gbAzPZx1PjtbPpc9-KTDvajUOrvHeUm8dWeaOs0bK7sDvSY9NL_1vJRQuDuVJIS9nESevfUuXrs2GqW9W8qePOsqD7yno029aYVuPUOKBTu40gY9CFbVvT66ErpNuu08RBzeOY31KjvIftY9AoV2O1J02zgJjcA9p9uovd-s2rk9usG9UbkPPFubhLrFE0u9-I3KvT_tR7k8vfI9SshRvVfBjjm7zu07U4UVPYJvv7eRuni9KJwdPccBCbj2-FM9-oMcvQE2QrmtL7c6_RLxvbwjiTn46wQ896BWPCHc_zmdREm9bjmCPdCPjjlmUIg8gKi6vZhztDnoGgE9K726u_yDl7kbi3w9NckZPW07graZYbi9dd8WvCsIobmg-_I85ypnvRmtZzhDEsc8TRC1PLW7gzjnItk8A8z8vVJJyDn0Qos8k5zdO2cKPTeAnJA9SMCtPXy-4jisE2E8AoTvPaganjbeWfs82PGfvRgNlzgFPco8d39hvOrZLzjfgau95SgQPtk-sLf_xag9iwZ_PaQGJTnYbrG9ZQPEvLzs3rcB3sK8u0-EPOiWDzjB4ys-3KVovAeJdLluHmK9sSuyvRO_v7gylO68uvi7vTYXJrh2LGA90_SZPSb9ZLe4cwE9zCuCvS9mdLjK9HA9IuErPvHLijgYJzm9lEOlPWWUx7grpp29WPLCvPCopbeG2VW9fgkLPZNgcDggADgTQAlIbVABKnMQABpg_goAAvE4yOstLu_uvf8S9rNBxDrOCv_14_8LA_8WSBLExPc-ACHrHdGiAAAAOALvBOEA8n_twisqCEYFvazhFx17xxEl09Mb3dfGFCxP-S4bFSBCABgZlzBmys8uNzoQIAAt1xsQOzgTQAlIb1ACKq8GEAwaoAYAABxCAACYwQAAOEIAAILCAAAIQgAABEIAAMBCAAAMQgAAdMIAAHBCAAAEQgAA6MEAAFDCAADgQQAAQEEAAMhBAAAMQgAARMIAAIDAAAA8QgAAAEEAAAzCAACkwgAAMEEAALjBAACAwQAADEIAAIDBAAAQwQAAAEEAAEDCAADAwAAAlsIAALhBAAC-wgAAQEEAAIA_AABwQgAAkMEAAOhBAACAQgAAgEEAAKhBAADwwQAAVEIAANDCAAC4QQAAnEIAANBBAACKQgAAQMEAAMjBAABwwQAATEIAAGDBAABcQgAA1sIAANhBAACgQAAAPEIAAMhBAACQwgAATMIAAMDBAAAAQQAAjsIAAADCAADgwQAAiEEAABDCAADAQQAAfEIAABjCAABEQgAAYMIAABzCAAAEwgAAgEAAAIBBAAAkQgAA2MEAAKpCAAAAwAAAiEEAALjBAABEQgAAEMEAAADAAAAIQgAA6MEAAADBAAAQQgAAWMIAAOBBAACwQQAAMMEAABzCAAAgwQAABEIAAIRCAAAQwgAAuEEAADBCAAAsQgAAmsIAABDBAADgQAAA0EEAAKBAAACSQgAAQEIAAEhCAADwwQAAMEIAAJjBAAB8QgAAkEEAAADCAAAMwgAAUMEAAKDBAABQwgAAgL8AAOjBAACowQAAIEEAAODBAAAcwgAAAMEAAOBBAADQwQAAEMEAAAhCAACkQgAAqMEAAGBCAADAwAAAdEIAADDCAABgwgAAYMEAALBBAAA4QgAADMIAAAhCAADYQQAAQEAAAEDAAAAAQQAAEEEAAGTCAAAcQgAAEEIAAFBBAAA4QgAA4MEAABDCAAAswgAAhsIAADDBAABMwgAAcEEAAARCAABAwQAABEIAAMDAAACgwQAAuEEAACxCAACIQQAAUMEAAEBCAACAwAAAKMIAAFDCAAAAwQAAYEEAAEjCAADoQQAABEIAAJjCAACgwAAAUMIAAEDBAACgQgAAWMIAAEjCAACQwQAAwEAAAEDBAABYQgAAgEEAALjBAACYwQAAsEEAAGRCAADYwQAAYEEAAIBAAACowSAAOBNACUh1UAEqjwIQABqAAgAAUL0AAAS-AACOPgAAgLsAALg9AACWPgAAtj4AAN6-AABcvgAA6D0AAK6-AAD4vQAAuD0AAJ4-AAAwPQAAQLwAAAQ-AAAwPQAABD4AAJ4-AAB_PwAARL4AAGw-AACYPQAABL4AAIA7AAAwPQAA2L0AAEQ-AABMPgAAMD0AAPi9AAAwvQAAVL4AAAS-AABsvgAAoDwAAES-AADuvgAAoLwAAEA8AACoPQAAXD4AALi9AACivgAA4LwAAPg9AADYvQAA-L0AACy-AAAcvgAAMD0AANY-AAAwPQAAcL0AAMg9AAA7PwAAUL0AADw-AAAUPgAAED0AAAS-AAAwPQAAgLsgADgTQAlIfFABKo8CEAEagAIAADS-AAB0PgAAlr4AAD-_AAAsvgAAjr4AAOg9AAAUvgAAqL0AAHw-AACSPgAA6L0AACS-AACCvgAA4LwAAMi9AAAEvgAAHT8AAOi9AABsPgAAED0AAHA9AACAOwAAqL0AAAy-AACAuwAAmL0AAFQ-AACYPQAAoLwAAFQ-AACYPQAAkr4AAOA8AAAQPQAABL4AAHQ-AACiPgAAnr4AAAy-AACOPgAAcL0AALK-AADoPQAA4LwAACw-AAB_vwAAyL0AAOC8AADgPAAA-D0AAIg9AAAcPgAAMD0AAOg9AABwPQAAUL0AAKI-AAAwPQAAdL4AAKA8AACOPgAA6D0AADy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=vcZPjuG8GrM","parent-reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7492532626219324277"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4178903592"}},"dups":{"9035287881799767985":{"videoId":"9035287881799767985","title":"Example 3: \u0007[Tangent\u0007] \u0007[Line\u0007] to a Helix","cleanTitle":"Example 3: Tangent Line to a Helix","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=oCaIp1b-2N0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/oCaIp1b-2N0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/@mes","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":732,"text":"12:12","a11yText":"Süre 12 dakika 12 saniye","shortText":"12 dk."},"date":"29 eyl 2025","modifyTime":1759104000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/oCaIp1b-2N0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=oCaIp1b-2N0","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":732},"parentClipId":"9035287881799767985","href":"/preview/9035287881799767985?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/9035287881799767985?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8973942515979938152":{"videoId":"8973942515979938152","title":"Finding The \u0007[Tangent\u0007] \u0007[Line\u0007] Equation With Derivatives - Calculus Problems","cleanTitle":"Finding The Tangent Line Equation With Derivatives - Calculus Problems","host":{"title":"YouTube","href":"http://www.youtube.com/live/5-TKfOzwu9w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5-TKfOzwu9w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":738,"text":"12:18","a11yText":"Süre 12 dakika 18 saniye","shortText":"12 dk."},"views":{"text":"2,2milyon","a11yText":"2,2 milyon izleme"},"date":"20 şub 2016","modifyTime":1455926400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5-TKfOzwu9w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5-TKfOzwu9w","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":738},"parentClipId":"8973942515979938152","href":"/preview/8973942515979938152?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/8973942515979938152?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14475028736590184882":{"videoId":"14475028736590184882","title":"\u0007[Tangent\u0007] \u0007[line\u0007] hyperbola relationship (very optional) | Conic sections | Algebra II | Khan Aca...","cleanTitle":"Tangent line hyperbola relationship (very optional) | Conic sections | Algebra II | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/c_8QQbVQKU0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/c_8QQbVQKU0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://gdata.youtube.com/feeds/api/users/khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":603,"text":"10:03","a11yText":"Süre 10 dakika 3 saniye","shortText":"10 dk."},"views":{"text":"59,4bin","a11yText":"59,4 bin izleme"},"date":"28 ara 2010","modifyTime":1293494400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/c_8QQbVQKU0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=c_8QQbVQKU0","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":603},"parentClipId":"14475028736590184882","href":"/preview/14475028736590184882?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/14475028736590184882?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16130598380154030183":{"videoId":"16130598380154030183","title":"\u0007[Tangent\u0007] \u0007[Line\u0007] to (y = x^3) Using the Difference Quotient","cleanTitle":"Tangent Line to (y = x^3) Using the Difference Quotient","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hmcjdvso8KA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hmcjdvso8KA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNl9oZjRrT3g1cGZfMUF5TUcydjlmdw==","name":"Virgilio Armando Cerna Choto","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Virgilio+Armando+Cerna+Choto","origUrl":"http://www.youtube.com/@virgilio-armando-cerna-choto","a11yText":"Virgilio Armando Cerna Choto. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":460,"text":"7:40","a11yText":"Süre 7 dakika 40 saniye","shortText":"7 dk."},"date":"21 eyl 2025","modifyTime":1758412800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hmcjdvso8KA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hmcjdvso8KA","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":460},"parentClipId":"16130598380154030183","href":"/preview/16130598380154030183?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/16130598380154030183?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6504802107459984995":{"videoId":"6504802107459984995","title":"The \u0007[Tangent\u0007] \u0007[Line\u0007] and the Derivative (Calculus)","cleanTitle":"The Tangent Line and the Derivative (Calculus)","host":{"title":"YouTube","href":"http://www.youtube.com/live/O_cwTAfjgAQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/O_cwTAfjgAQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVzZUWE1aNVBxNnlMNl9rNU5aMmUwUQ==","name":"Socratica","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Socratica","origUrl":"http://www.youtube.com/@Socratica","a11yText":"Socratica. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":698,"text":"11:38","a11yText":"Süre 11 dakika 38 saniye","shortText":"11 dk."},"views":{"text":"236,6bin","a11yText":"236,6 bin izleme"},"date":"5 kas 2016","modifyTime":1478304000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/O_cwTAfjgAQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=O_cwTAfjgAQ","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":698},"parentClipId":"6504802107459984995","href":"/preview/6504802107459984995?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/6504802107459984995?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"299638132742191985":{"videoId":"299638132742191985","title":"\u0007[Tangent\u0007] \u0007[Lines\u0007] and Derivatives Ft. The Math Sorcerer","cleanTitle":"Tangent Lines and Derivatives Ft. The Math Sorcerer","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mD5qWlrlMI8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mD5qWlrlMI8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRUIzNjd6Q3gycC10djZ4aGh6eXlNdw==","name":"Chegg","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Chegg","origUrl":"http://www.youtube.com/@chegg","a11yText":"Chegg. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":509,"text":"8:29","a11yText":"Süre 8 dakika 29 saniye","shortText":"8 dk."},"views":{"text":"16,5bin","a11yText":"16,5 bin izleme"},"date":"12 nis 2024","modifyTime":1712880000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mD5qWlrlMI8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mD5qWlrlMI8","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":509},"parentClipId":"299638132742191985","href":"/preview/299638132742191985?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/299638132742191985?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2523793286917924259":{"videoId":"2523793286917924259","title":"\u0007[Tangent\u0007] \u0007[Line\u0007] and Implicit Differentiation- Finding Equation of \u0007[Tangent\u0007] \u0007[line\u0007] -Calculu...","cleanTitle":"Tangent Line and Implicit Differentiation- Finding Equation of Tangent line -Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8Rh0n6bufeY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8Rh0n6bufeY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQTk0MUFmMGR6anNmNmp3NE85amxpdw==","name":"Calculus","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Calculus","origUrl":"http://www.youtube.com/@calculus997","a11yText":"Calculus. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":590,"text":"9:50","a11yText":"Süre 9 dakika 50 saniye","shortText":"9 dk."},"date":"5 mayıs 2022","modifyTime":1651708800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8Rh0n6bufeY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8Rh0n6bufeY","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":590},"parentClipId":"2523793286917924259","href":"/preview/2523793286917924259?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/2523793286917924259?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10824873618621495871":{"videoId":"10824873618621495871","title":"Finding the Equation of a \u0007[Tangent\u0007] \u0007[Line\u0007] Using a Derivative, Ex 2","cleanTitle":"Finding the Equation of a Tangent Line Using a Derivative, Ex 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=g8vAXGamm5c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/g8vAXGamm5c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmU2amVuTTFCYzU0cXRCc0lKR1JaUQ==","name":"patrickJMT","isVerified":true,"subscribersCount":0,"url":"/video/search?text=patrickJMT","origUrl":"http://www.youtube.com/@patrickjmt","a11yText":"patrickJMT. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":328,"text":"5:28","a11yText":"Süre 5 dakika 28 saniye","shortText":"5 dk."},"views":{"text":"347,5bin","a11yText":"347,5 bin izleme"},"date":"11 tem 2011","modifyTime":1310342400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/g8vAXGamm5c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=g8vAXGamm5c","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":328},"parentClipId":"10824873618621495871","href":"/preview/10824873618621495871?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/10824873618621495871?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4835873168551027610":{"videoId":"4835873168551027610","title":"2.1.1 - Revisiting the \u0007[Tangent\u0007] \u0007[Line\u0007]","cleanTitle":"2.1.1 - Revisiting the Tangent Line","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=BraIPe7fuUY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/BraIPe7fuUY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMWU5dnhTdUVQQ2YweFNtSmtFb3Rydw==","name":"MATH and BEATS","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MATH+and+BEATS","origUrl":"http://www.youtube.com/@MATHandBEATS","a11yText":"MATH and BEATS. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1152,"text":"19:12","a11yText":"Süre 19 dakika 12 saniye","shortText":"19 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"19 ağu 2021","modifyTime":1629331200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/BraIPe7fuUY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=BraIPe7fuUY","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":1152},"parentClipId":"4835873168551027610","href":"/preview/4835873168551027610?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/4835873168551027610?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9425554466446164018":{"videoId":"9425554466446164018","title":"How To Find The Equation of a \u0007[Tangent\u0007] \u0007[Line\u0007] Using Derivatives - Calculus 1","cleanTitle":"How To Find The Equation of a Tangent Line Using Derivatives - Calculus 1","host":{"title":"YouTube","href":"http://www.youtube.com/v/UOrS2qje2_o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UOrS2qje2_o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":657,"text":"10:57","a11yText":"Süre 10 dakika 57 saniye","shortText":"10 dk."},"views":{"text":"87bin","a11yText":"87 bin izleme"},"date":"9 eki 2018","modifyTime":1539043200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UOrS2qje2_o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UOrS2qje2_o","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":657},"parentClipId":"9425554466446164018","href":"/preview/9425554466446164018?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/9425554466446164018?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7823682858381017620":{"videoId":"7823682858381017620","title":"Constructing a \u0007[tangent\u0007] \u0007[line\u0007] using compass and straightedge | Geometry | Khan Academy","cleanTitle":"Constructing a tangent line using compass and straightedge | Geometry | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/n5cKWjZqpIE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/n5cKWjZqpIE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":349,"text":"5:49","a11yText":"Süre 5 dakika 49 saniye","shortText":"5 dk."},"views":{"text":"66,7bin","a11yText":"66,7 bin izleme"},"date":"6 mar 2015","modifyTime":1425600000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/n5cKWjZqpIE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=n5cKWjZqpIE","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":349},"parentClipId":"7823682858381017620","href":"/preview/7823682858381017620?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/7823682858381017620?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"277600099947289908":{"videoId":"277600099947289908","title":"\u0007[Tangent\u0007] \u0007[Line\u0007] with Implicit Differentiation | Calculus 1","cleanTitle":"Tangent Line with Implicit Differentiation | Calculus 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ZoaCP7unAQ8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ZoaCP7unAQ8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":502,"text":"8:22","a11yText":"Süre 8 dakika 22 saniye","shortText":"8 dk."},"views":{"text":"4bin","a11yText":"4 bin izleme"},"date":"1 kas 2022","modifyTime":1667260800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ZoaCP7unAQ8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ZoaCP7unAQ8","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":502},"parentClipId":"277600099947289908","href":"/preview/277600099947289908?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/277600099947289908?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"392723384966310322":{"videoId":"392723384966310322","title":"\u0007[Tangent\u0007] and Secant \u0007[Lines\u0007] Introduction | Math is Fun","cleanTitle":"Tangent and Secant Lines Introduction | Math is Fun","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Qop5f49CrZ4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Qop5f49CrZ4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaVBhWTdLeURtVGJBOHl4OXAzaFVEUQ==","name":"Mathematics is Fun","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathematics+is+Fun","origUrl":"http://www.youtube.com/@MathematicsFun","a11yText":"Mathematics is Fun. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":56,"text":"00:56","a11yText":"Süre 56 saniye","shortText":""},"date":"6 eki 2025","modifyTime":1759708800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Qop5f49CrZ4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Qop5f49CrZ4","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":56},"parentClipId":"392723384966310322","href":"/preview/392723384966310322?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/392723384966310322?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3141078243235357561":{"videoId":"3141078243235357561","title":"Finding the Equation of a \u0007[Tangent\u0007] \u0007[Line\u0007]","cleanTitle":"Finding the Equation of a Tangent Line","host":{"title":"YouTube","href":"http://www.youtube.com/v/64mxT6b6qz4?rel=1","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/64mxT6b6qz4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmU2amVuTTFCYzU0cXRCc0lKR1JaUQ==","name":"patrickJMT","isVerified":true,"subscribersCount":0,"url":"/video/search?text=patrickJMT","origUrl":"http://www.youtube.com/user/patrickJMT","a11yText":"patrickJMT. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":584,"text":"9:44","a11yText":"Süre 9 dakika 44 saniye","shortText":"9 dk."},"views":{"text":"1,1milyon","a11yText":"1,1 milyon izleme"},"date":"3 nis 2008","modifyTime":1207180800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/64mxT6b6qz4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=64mxT6b6qz4","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":584},"parentClipId":"3141078243235357561","href":"/preview/3141078243235357561?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/3141078243235357561?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6858983053086830972":{"videoId":"6858983053086830972","title":"Find the Equation of a \u0007[Tangent\u0007] \u0007[Line\u0007] Using the Definition of a Derivative","cleanTitle":"Find the Equation of a Tangent Line Using the Definition of a Derivative","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0ejh2qD2onE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0ejh2qD2onE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmU2amVuTTFCYzU0cXRCc0lKR1JaUQ==","name":"Patrick JMT","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Patrick+JMT","origUrl":"http://www.youtube.com/@patrickjmt","a11yText":"Patrick JMT. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":241,"text":"4:01","a11yText":"Süre 4 dakika 1 saniye","shortText":"4 dk."},"views":{"text":"149,9bin","a11yText":"149,9 bin izleme"},"date":"11 eyl 2017","modifyTime":1505151603000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0ejh2qD2onE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0ejh2qD2onE","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":241},"parentClipId":"6858983053086830972","href":"/preview/6858983053086830972?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/6858983053086830972?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15053475977637055980":{"videoId":"15053475977637055980","title":"What is the Difference Between The \u0007[Tangent\u0007] \u0007[Line\u0007], The Normal \u0007[Line\u0007], and The Secant \u0007[Line\u0007...","cleanTitle":"What is the Difference Between The Tangent Line, The Normal Line, and The Secant Line?","host":{"title":"YouTube","href":"http://www.youtube.com/live/IYTo1W9sgy8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IYTo1W9sgy8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":318,"text":"5:18","a11yText":"Süre 5 dakika 18 saniye","shortText":"5 dk."},"views":{"text":"23,7bin","a11yText":"23,7 bin izleme"},"date":"22 şub 2023","modifyTime":1677024000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IYTo1W9sgy8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IYTo1W9sgy8","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":318},"parentClipId":"15053475977637055980","href":"/preview/15053475977637055980?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/15053475977637055980?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"483437616902485711":{"videoId":"483437616902485711","title":"\u0007[Tangent\u0007] \u0007[Line\u0007] Equations, Slope, & Derivatives In Polar Form | Calculus 2","cleanTitle":"Tangent Line Equations, Slope, & Derivatives In Polar Form | Calculus 2","host":{"title":"YouTube","href":"http://www.youtube.com/live/ImtzLh8KhIE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ImtzLh8KhIE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":873,"text":"14:33","a11yText":"Süre 14 dakika 33 saniye","shortText":"14 dk."},"views":{"text":"195,8bin","a11yText":"195,8 bin izleme"},"date":"5 nis 2018","modifyTime":1522886400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ImtzLh8KhIE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ImtzLh8KhIE","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":873},"parentClipId":"483437616902485711","href":"/preview/483437616902485711?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/483437616902485711?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7492532626219324277":{"videoId":"7492532626219324277","title":"\u0007[Tangent\u0007] \u0007[Lines\u0007] of Parametric Curves","cleanTitle":"Tangent Lines of Parametric Curves","host":{"title":"YouTube","href":"http://www.youtube.com/live/vcZPjuG8GrM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vcZPjuG8GrM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":835,"text":"13:55","a11yText":"Süre 13 dakika 55 saniye","shortText":"13 dk."},"views":{"text":"437,3bin","a11yText":"437,3 bin izleme"},"date":"3 nis 2018","modifyTime":1522713600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vcZPjuG8GrM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vcZPjuG8GrM","reqid":"1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL","duration":835},"parentClipId":"7492532626219324277","href":"/preview/7492532626219324277?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","rawHref":"/video/preview/7492532626219324277?parent-reqid=1769662154439217-9185823183127502587-balancer-l7leveler-kubr-yp-sas-57-BAL&text=Tangent+Line","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"9185823183127502587757","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Tangent Line","queryUriEscaped":"Tangent%20Line","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}