{"pages":{"search":{"query":"Tensor bundle","originalQuery":"Tensorbundle","serpid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","parentReqid":"","serpItems":[{"id":"8762202946764621090-0-0","type":"videoSnippet","props":{"videoId":"8762202946764621090"},"curPage":0},{"id":"16296046993660989150-0-1","type":"videoSnippet","props":{"videoId":"16296046993660989150"},"curPage":0},{"id":"13009867764253428401-0-2","type":"videoSnippet","props":{"videoId":"13009867764253428401"},"curPage":0},{"id":"13445765597002048478-0-3","type":"videoSnippet","props":{"videoId":"13445765597002048478"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFRlbnNvciBidW5kbGUK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","ui":"desktop","yuid":"9932000951769417536"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"1720590123713866184-0-5","type":"videoSnippet","props":{"videoId":"1720590123713866184"},"curPage":0},{"id":"18432236150441537691-0-6","type":"videoSnippet","props":{"videoId":"18432236150441537691"},"curPage":0},{"id":"10288858144530856715-0-7","type":"videoSnippet","props":{"videoId":"10288858144530856715"},"curPage":0},{"id":"11640970086896877245-0-8","type":"videoSnippet","props":{"videoId":"11640970086896877245"},"curPage":0},{"id":"14699814226962564882-0-9","type":"videoSnippet","props":{"videoId":"14699814226962564882"},"curPage":0},{"id":"2257417525591023728-0-10","type":"videoSnippet","props":{"videoId":"2257417525591023728"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFRlbnNvciBidW5kbGUK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","ui":"desktop","yuid":"9932000951769417536"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"9856994532268442583-0-12","type":"videoSnippet","props":{"videoId":"9856994532268442583"},"curPage":0},{"id":"12253591538338101501-0-13","type":"videoSnippet","props":{"videoId":"12253591538338101501"},"curPage":0},{"id":"12839996867003173050-0-14","type":"videoSnippet","props":{"videoId":"12839996867003173050"},"curPage":0},{"id":"14903190412506391483-0-15","type":"videoSnippet","props":{"videoId":"14903190412506391483"},"curPage":0},{"id":"8054963125669036454-0-16","type":"videoSnippet","props":{"videoId":"8054963125669036454"},"curPage":0},{"id":"1355218466143973820-0-17","type":"videoSnippet","props":{"videoId":"1355218466143973820"},"curPage":0},{"id":"5969047934941644309-0-18","type":"videoSnippet","props":{"videoId":"5969047934941644309"},"curPage":0},{"id":"8642826357474615052-0-19","type":"videoSnippet","props":{"videoId":"8642826357474615052"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"correction":{"items":[{"kind":"reask","rule":"Misspell","query":"Tensorbundle","url":"/video/search?text=Tensorbundle&noreask=1&nomisspell=1","params":{"text":"Tensorbundle","noreask":"1","nomisspell":"1"},"helpUrl":"https://yandex.com.tr/support/search/info/request-correction.xml","helpTarget":"_blank","helpAriaLabel":"Yazım hatası düzeltme servisi"}],"id":"579796154519"},"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFRlbnNvciBidW5kbGUK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","ui":"desktop","yuid":"9932000951769417536"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DTensorbundle"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"9214506997255517386786","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1460331,0,3;1466868,0,42;1336776,0,85;284409,0,85;151171,0,65;1281084,0,41;287509,0,17;86182,0,86;1447467,0,31;927444,0,5;1473596,0,19;1466396,0,12;912285,0,34"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DTensorbundle","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Tensorbundle","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Tensorbundle","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Tensor bundle: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Tensor bundle\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Tensor bundle — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yf63da41b9202067bfc9ec1e7fa574fb6","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1460331,1466868,1336776,284409,151171,1281084,287509,86182,1447467,927444,1473596,1466396,912285","queryText":"Tensorbundle","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"9932000951769417536","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769417579","tz":"America/Louisville","to_iso":"2026-01-26T03:52:59-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1460331,1466868,1336776,284409,151171,1281084,287509,86182,1447467,927444,1473596,1466396,912285","queryText":"Tensorbundle","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"9932000951769417536","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"9214506997255517386786","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":147,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"9932000951769417536","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"8762202946764621090":{"videoId":"8762202946764621090","docid":"34-1-0-ZB8AF4B05BACE04CC","description":"In this video we define vector bundles in full abstraction, of which tangent bundles are a special case.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/223629/28d2fd8ba8da799889f9d0773b194ffc/564x318_1"},"target":"_self","position":"0","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRqQ-Jm2wtAI","linkTemplate":"/video/preview/8762202946764621090?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Truth about Tensors, Part 9: Vector Bundles","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RqQ-Jm2wtAI\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhUKEzg3NjIyMDI5NDY3NjQ2MjEwOTBaEzg3NjIyMDI5NDY3NjQ2MjEwOTBqrw0SATAYACJFGjEACipoaGVwa3B1cXFtaGVxaGRjaGhVQ1JYQzZNNjVxaUZsSGFYR0ROQy0tVkESAgASKhDCDw8aDz8TyAWCBCQBgAQrKosBEAEaeIHzCQcI_wIA9PgIAQIE_gEQDfoCCP8AAAMGA_kFBP4A8wAAB_4AAAANDQ31AQAAAPUBA_zz_wEAF_f7-fQAAAAJAgAA9AEAAA3_7QH_AQAA8vP49QIAAAAD8PwG_wAAAP7uBgv_AAAA_hQQAQAAAAAB_OsEAP8AACAALdl91js4E0AJSE5QAipzEAAaYCATAEkc6tXgGw_k88HZ_wXXFBLE4AH_CsgAGQC7EgYk7rMQKQAwzRr6sQAAABn1BA0SAPxqAr_KGhIZ7-DXxgYjf-4PBckhEvDL6iA38_nv9_0RNwDXEd08ErTgzSBlECAALRaJKjs4E0AJSG9QAiqvBhAMGqAGAABcwgAA4EAAAABCAADQwQAAAEEAAFBBAABgQQAATMIAAKDCAADIQQAAiEEAAMDAAADAwQAACMIAABBBAADwwQAAiEEAAMDBAAAUwgAAkMIAAJZCAAAoQgAAoMAAAPhBAADgQgAAAEIAALDCAABQwQAAikIAACxCAAAAwAAA-MEAADjCAAAcQgAAjsIAAMhBAACAwAAAbEIAANjBAAAwQgAALEIAAPBBAAB4QgAAcEEAAJBBAAAwQQAAwMEAAEBAAACwQQAAiMIAAEDCAAA4QgAAgD8AAODAAACIwQAAQMAAAOjCAACQQgAAGEIAANpCAAAEQgAAcEEAAIDBAADIwQAAAMEAAJBBAABQwQAAcMIAAIhBAACQwQAAgEIAAPhBAAAkwgAAMEEAAAAAAAAIwgAAQMIAAGBBAABAwAAA8MEAAJjCAABAQQAAYEIAADRCAACAQAAAYEEAADjCAAAIQgAAOEIAADBBAACAvwAAkEEAAPBBAACYwgAAAEAAACDBAACAPwAAwMAAAMBBAADIwQAAuMIAADhCAABQQgAAbMIAALLCAABkQgAAKMIAADBCAAB0wgAAikIAAABBAACAPwAAEMEAAFTCAAA8QgAAQEIAACDBAAB0wgAAgMAAANjBAABgwQAAwMAAAAzCAAAAQQAA4MAAAIBBAACwQQAAAMEAALbCAACKQgAAmEEAALBBAAB8wgAABEIAAChCAABcQgAAMMEAANDBAADgwQAAQEEAAIDCAABAwAAA8EEAAKBAAACQQQAAcMEAAIC_AAAgwQAAoMEAACDCAAAsQgAAQEEAAKjBAACoQQAAAMAAADRCAACAQQAAoMIAABzCAAAAQgAAYMEAAOBAAABwwQAAZEIAALhBAAAAQgAAQEIAABBBAABAwAAASEIAAKDAAABgQgAAksIAAIjBAADAQQAAQMAAALBBAAA4wgAAgEEAAKxCAADgwQAAFMIAAEDCAACAPwAA4MAAAJDBAAAAwgAAGEIAACxCAACaQgAAMMEAAMjBAADAQAAAOMIAAOBAAACWQgAAEMIAABDCAACYwQAAoMEgADgTQAlIdVABKo8CEAAagAIAACy-AACYvQAAyD0AABQ-AABwvQAAlj4AAIi9AAAxvwAAqr4AAIg9AADIvQAAEL0AAJi9AAC2PgAAZL4AAIq-AACAuwAAMD0AABA9AADOPgAAfz8AAM6-AABUPgAAML0AAKq-AABQvQAABD4AAHC9AACovQAAsj4AALo-AACAuwAAgr4AAIo-AABwvQAAuL0AAIC7AACKvgAAAb8AAIC7AABkvgAADL4AABy-AADavgAAur4AAFC9AAC2PgAAqL0AANi9AAA0vgAAQLwAAPq-AABcPgAAqD0AAFA9AACAuwAAYT8AAHC9AACOvgAADz8AAKg9AAC4vQAALD4AAIC7IAA4E0AJSHxQASqPAhABGoACAAB8vgAAPD4AAKA8AAD-vgAA4DwAADC9AADgPAAAQDwAAMg9AACoPQAAhr4AAHy-AACIPQAALL4AAAy-AABQvQAAuL0AACE_AACovQAAij4AAHw-AAAcvgAA6D0AANi9AAAwPQAABL4AAOC8AACoPQAA4DwAAFA9AABQPQAAJD4AABS-AACYPQAAcL0AACy-AACqPgAAPD4AADy-AADoPQAAZD4AADy-AAAsPgAA2L0AALg9AABwPQAAf78AAFA9AABsvgAAVD4AAPg9AACgPAAAPD4AAKg9AAC4PQAAMD0AAIi9AADIPQAA6L0AABQ-AADgvAAADL4AAOi9AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=RqQ-Jm2wtAI","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8762202946764621090"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16296046993660989150":{"videoId":"16296046993660989150","docid":"34-7-0-ZDA088FCE7EA71D08","description":"In this video, we discuss the definition of the tangent bundle of a manifold, which in turns inspires the more general definition of vector bundles, to be discussed in the next video. The notion...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1729695/ac8a2bec8e78687bab1d6f075d1ea373/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/fZJXPQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKxH37F43Bqo","linkTemplate":"/video/preview/16296046993660989150?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Truth about Tensors, Part 8: Tangent bundles & vector fields","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KxH37F43Bqo\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhYKFDE2Mjk2MDQ2OTkzNjYwOTg5MTUwWhQxNjI5NjA0Njk5MzY2MDk4OTE1MGqIFxIBMBgAIkUaMQAKKmhoZXBrcHVxcW1oZXFoZGNoaFVDUlhDNk02NXFpRmxIYVhHRE5DLS1WQRICABIqEMIPDxoPPxPWBIIEJAGABCsqiwEQARp4gfD9CgD-AgD1AQMFCAX9Af4I9v0J_f4A9AYC_wcC_wDzAAAH_gAAAA0ECfoJAAAA9wsFAfn_AAAI_PX9-AAAAAwBDAT1AAAAFwb1-f4BAADy8_j1AgAAAAPw_Ab_AAAA_u4GC_8AAAD8CAgFAAAAAAYJ7QIAAAAAIAAt6A3XOzgTQAlITlACKoQCEAAa8AF_BMf9sgzUABMLzAAAFtQBqgYm_0YZtgCxLxIB2dUAAff30P_nBOn_rzXn_8ATMgDgH9D-9QQVAEvS-wAtBvsBD0H6ATDI8AE5ATsB-zf4_uZFFP3tDk_9Hu21_vMZ2P4Y4jP8Eg_OAegEsQIOHC4ATPkUAxc2PgDOFTwE7yQM_iYMtPqxAiEG5sXlAP0VJwPsDcf4MUbv_bNLBwQT7-IA7sot_xEYwwA3_PAJIwUS8s4fDgPU5NMEBQk5_sL96QXM7joH59nt9tAXEfIwHQcGyxABEwzp8gr7K_EK9-4TBgXW9vcL_gH_0xHy_B0V6AwgAC20k-c6OBNACUhhUAIqzwcQABrAB-qw6r7a0jy7-JcTPVxXDD2vSZI8NTUcvD_pX73wZJw9Eo9avdvdIz2UpfG8Vin9vPaWYr4FeIE8eT8NvMVVhT5UMG-9m38qvNlDS75DknY7KX-CvYkLEL42aq66zo_5OyNl8DzM1P88K71bvKnB1D3qqDQ87UqmvG4bIzyqJo29PvH3vCIXob07nIq8BStTvVDmGj2YEzQ8XFpsO7efZzxFMZS8kAEPvPUlQDyHv6a8oGyKvHR76b2lFsq8u1qTvHMIsT1Avdm8hcOcPBkdsbuVwnI8op46O_kUgLw2dLO8PQpXvJ2ifjyXQXk66aduvBq1nD0x8Le8MOEnO3f1Cr6gny49XPlRvPB_bD1mqcA95WUJPNJXm73dSFQ9GvQtu6HccT1bFCw8gWi5u2ST3D1u_U88ZzHMPJniYDw16Ts9OZ8TPJrShT03LxM9QQsJPFCEGruN9oO9RcKSvM8-kD1c-vw8Kh_CvBsUaL3mrM881lyJvD4ytz25ncc8ymWnOMgozz2--z48wpCLvN9mxj05tfO9hx8YPGMqfbyjRcy9hypGvHR-yjxqJHM9hcSouyKK6T39-ye9wf5rvDnFdLyozjm9IbPxu36fmz3vlj-8_AgVPFACpr16H0I9BMFKu9suersv_7o7BrlNu66JAL2LH3497JF5OrW-7Tyokye9aOqzu6GGzz2lF9I7o-qyu5CD0j1GlFs91RwUuBJQwT3BeEG9YdMKusVAsjwPm8i8slaHuTdNtL00BNE8wgr8OB-i0T1Y-B-9edGKOIEKQj0P1RA8Yc0zuAh_Fb1bRK89mIH4OBJz_7zrUgg9BDIwuVxUC72cFfG93J51OUx7OT0HTUG9KMKfuZ37xjx14Q08ZBKYuS9Q8r2oXJy9Q4C_t4xEbDthzHG96gSYuAyEsz2PLwY9SHXmuNTjCD1fPTO98WvLuJ2vA72OCIS7vxYlOSXXA70EtLg9qiequLyGKr2pE5C9AMqoOMRWdbzEsCg9wxWTOBqOBDshQvc85as9uE8rWz07J6w9PEyEuLETgzy2sbO9FanpOKDcez0Bmbc9WAA2uCL7AL7GXyQ9F5hlOMVCKL0_YDS9atiVNoV6uj06JqY8x-hoOBmDGL02ipG8zoeoN9Rg2j0H45G9x5dPuTkcyLmfPde9big_t3dIhr3s-C-9QGo_uAcUoLrJILc9wteat7MxBrsIr729HH2mtyL_7D01KQU-835buOIYrjxvpaI9TCdSuG4Djb0naa49v_cWN-yuQr068au9qN5LNSAAOBNACUhtUAEqcxAAGmAt_AA0DwHPAxAD5vOq9_fp2xP3-tP0_-zkABcNzQUaHei4FCwAK8YI-bUAAAAh4xoZ8wD2ZP7c8QX6KufZz8cYF3_1ESjU8Rf5sOMfNcbnDgL1I0cA5_22LTTRyfQiNQggAC1TfDE7OBNACUhvUAIqrwYQDBqgBgAAIEEAAHBCAAAgQgAAMEIAAMBBAADYwQAAhEIAABTCAAAQwgAAEMIAADhCAACawgAAjsIAABRCAAAcQgAAqEEAAHDBAACGwgAAPMIAAIBAAACYQQAAIMEAADTCAADgQQAA0MEAABRCAACAwAAAiMEAAABBAACAPwAAIEEAAIBAAAA0wgAA-EEAAGDBAABoQgAAEEEAAIZCAAAAwQAAdEIAABxCAABAwgAAwEAAAEDBAAAUQgAAIEIAAOBBAAAgQQAAyEIAAODBAAAowgAAuEEAAIC_AACsQgAAcEEAAEzCAABAQQAA-EEAAGDBAABAQgAAbMIAAEDBAAAAwQAAQEAAACDBAABUwgAAAEEAAGzCAADOwgAAmMEAABzCAACSQgAAAMEAAABBAADIQQAAkMIAADTCAABIwgAAwkIAANhBAABgQQAALEIAAEDBAABsQgAAyEEAAABCAACwwQAAgEAAAIBCAADIQQAAHEIAAExCAAAIQgAAlsIAAIC_AACIQQAA2EEAAARCAAAcwgAAYMEAACzCAABUQgAAlEIAAAjCAAC2wgAANMIAAHjCAABAQQAAQEAAAAAAAACoQQAAjEIAAODAAABMwgAAQEEAAPhBAAAwQQAAhsIAAABAAAAwwgAAiMEAAAjCAACAPwAAmsIAANjBAABgQQAAgEAAAADCAADIwQAAQMIAAFhCAACAvwAAYMIAAJRCAACQwgAAkEEAAKjBAAC4wQAAusIAAODAAADwwQAAUEEAAIBAAAAQQQAAXEIAALBBAACgwQAAgMAAANDBAACoQQAAoMEAAKDBAABQQgAAYMEAAJDBAADoQQAAqMEAABTCAABYwgAAAEAAAOjBAADYwQAALMIAAAhCAADAwAAAgEAAADhCAACwQQAAAMAAAMBAAABowgAADEIAAIDCAACgQQAAoEEAABDCAABQwQAAAMEAAHjCAACwQQAABMIAAMzCAACAQQAAEMIAADRCAADAQQAAWMIAAHxCAAAAQQAAgMAAAHDCAACAwAAAXMIAAADBAABQwQAALEIAAOjBAABAwAAAlsIAAIDBIAA4E0AJSHVQASqPAhAAGoACAAA0vgAA-L0AACQ-AABQPQAA2L0AAKo-AACgPAAAOb8AAKK-AACoPQAAFL4AAEC8AACYPQAAlj4AADS-AAD4vQAAQDwAAKA8AABMPgAAjj4AAH8_AACSvgAApj4AAIi9AACCvgAAcD0AAPg9AAC4vQAAFL4AAIo-AACOPgAAEL0AAKa-AAAUPgAAMD0AAEA8AADYPQAABL4AALq-AAD4vQAAEL0AABA9AABwvQAAZL4AACy-AACgPAAAvj4AAKC8AABQPQAAtr4AAIA7AAB0vgAARD4AAIg9AAAkPgAAoDwAADM_AACgvAAA6L0AANI-AACAuwAAiL0AAPg9AACovSAAOBNACUh8UAEqjwIQARqAAgAAjr4AAFQ-AADIPQAAB78AANg9AADIvQAAiD0AABS-AAD4PQAA4DwAABy-AAAsvgAAyD0AACy-AADYvQAAoLwAANi9AAAtPwAAgLsAAIY-AACGPgAAXL4AACw-AAA0vgAAUD0AAPi9AACAOwAALD4AAIC7AABwPQAAuD0AADQ-AABUvgAAqD0AAIA7AAAkvgAAkj4AADw-AABcvgAAQDwAAKY-AAA0vgAAFD4AAIi9AABwPQAAgDsAAH-_AAAQvQAADL4AAIY-AAAsPgAAiD0AAKA8AACoPQAAyD0AAJg9AADIvQAA2D0AAOi9AADIPQAAQLwAABy-AACYvQAAUL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=KxH37F43Bqo","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":682,"cratio":1.87683,"dups":["16296046993660989150"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1108500484"},"13009867764253428401":{"videoId":"13009867764253428401","docid":"34-4-17-ZBF43D17FE7A6188C","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1599979/ec0d8fcf3435288c6ae68e1b87a2d130/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/PpeRzQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVNdyYbFYLag","linkTemplate":"/video/preview/13009867764253428401?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor product of R-modules","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VNdyYbFYLag\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhYKFDEzMDA5ODY3NzY0MjUzNDI4NDAxWhQxMzAwOTg2Nzc2NDI1MzQyODQwMWqIFxIBMBgAIkUaMQAKKmhoZWVzdWJydWtnZHl0bGJoaFVDWWExV3RJLXZiX2J4LWFuSGRtcE5mQRICABIqEMIPDxoPPxPCEIIEJAGABCsqiwEQARp4geoFAvr-AgDx-hIFBgT-ARQK_Pz1AgIA_g8AAQUF_gDs-BD8_f8AAPj_AQ39AAAA7QYDBfEBAQAU-vP0AwAAAAYHAf_-AAAACAf_Av4BAADwD_j9AwAAAAMCCAcAAAAA8wEDCgEAAAAF-wQDAAAAAO738wEA_wAAIAAtuojVOzgTQAlITlACKoQCEAAa8AF_-_QB2fIFARPjxADEKQkAjgko_xwk4gCtDykCwuvhAeAb7QDB8On_-gAT_8n3L_9F3-_-E98X_0jkCQAiEvQB6vQLADjb_QA0DxYC-uDs_gTzD_4g7AUACtzp_w_y3f8HAg3--gHL_-4DxgIc6hUCDy4lAuAODgUB7xH_9CcVA_T77_8IBxAH-fP7-8MfFwPu6gP5Gur5--j-4QTqDOoG8d39_woA-_kP4O0L8vP49-fq_vz9B-jy9xIRB8YD9_oF_BP67wYPBfD0FAQa1PIE7-4M-__m-vgYNur-BPkV-fkJ-v72EgPo3OYDAuQE_wMgAC1jyx07OBNACUhhUAIqzwcQABrAByuE7b43C8U7s2y5u_cL0bx62UA8eGz6vPgzPLyHSzM9xMGUu-pRgjwRPm-8B_XIvJmAp75l-9A8n_oRPT0pcz6UwOa79XIOPVouW77qj5U8bmKSvPWha76E0wc9dDXDuwlrIz6sKR89o3nAPOkL4T2tHou8I9QxPIVgdb0bFl69gX46vDbKWr5qGm-8h6eAt9fqwT038JS9CekfPCAHuj2CkTe9iLKcvLdXSz1WdNa7xqcgveyzlLxr1e68i-jyvGn-KD6LXdM7RwsrPGAqrDzFTkI8KSq0OykPYb1ANfs793bLu-ITH7zo__A86M4dvRSu5z2kGIC9Ux5-u0C3sb09KRM9mtwcPHPB9Dx8yZA8ZA0PPE88B70Neco9h2DmO8FMAL1_tEk9U32CvMvHZD1Dl4u83rKeOzyUMjxK35o8nmutOwUqLTxGQRA93fNXPMeLOz3gle48tIC_vDPrezz9gAu7hFOVPJIqwLygp2E9pX1RuREqsj0aICg7elASu6cHZT1blNk82MJiPHAK6zxF77m99kfluWMqfbyjRcy9hypGvGReYj3O-tS8xx4QPDTOsDzEC2I9e7BWPDfSQ71VwnK7ArpMu_i5Sz04D0w8mTnuO84rCL2gBoQ71EKsO1Su7LvkWXg9lhUWvHLsj7yJk0A9TbAsO5AzSD3I1k69YZymup4J7T1dG8U8u3ttupTU8LuWIMS7Z-_vunrkqj0jX668b0iCuUGmmz1qJKO9DEQJuz_6K71CYjY93cK4OQfRWj0PTAm9s4WAumMbwj160IE7OGorufubS737qAs9avTDOYX5IT3J0Ay9ajb8ta4ZT7zsNkO9Gk61OXopZr1zew69UcPiOJMXfj02rCk9ZRMOObPFILtRQMS9bz3sOAbnHT1gXtu6Q9mqOCaKlT1uhnu9K2vnOEy8CL26UJG5MhlBuYV_rLxDmJG6lLRfNsgvcjyXqJ49hJAHuN8DDz3AsDy90KATuMRWdbzEsCg9wxWTOJvO6TzW8lQ9VMseuDqOxLz8t5w83RlYuYEE5T181Qq-l8dAubNAu7wAQCk9k7Y1OD-SDb0rFAg8dcfEON-fVz3Rx2G97neqOLfEOz0_3pC8Ud-FOBbz2DxKv7M8ZYWVt8HjKz7cpWi8B4l0uW4eYr2xK7K9E7-_uLvtgryX5qG9-jj_t9cFMj0IeE0978ccuB3jDDxnRt-9aVASuIqWVz0QWPk9jRdAODmhC73REIQ95dPVuEjUlbwinva8tPgAuL1AH73rnRu8g1A4NyAAOBNACUhtUAEqcxAAGmBW_QBJFBDp9SEk2jmv5wfs4Q-g7Nv5_xfh_-AUsgzi7AW0DQL__wED9aIAAAAmDbwBLwAHf8_k5da9VAfpqtb9DlMoL1jMBAkZ5BEkEd7SBvQJCz8A7uyqFyTLxvlBJ8YgAC0Kmxo7OBNACUhvUAIqrwYQDBqgBgAAyMEAALhBAACeQgAAIMEAABxCAABIQgAAWEIAADRCAACiwgAAHMIAAJhBAACwQQAAAEAAAAAAAACIwQAAcEEAAABAAACewgAAgD8AAGjCAAC4QQAAAMEAAHTCAAAMQgAAYEEAAAhCAACWwgAAGMIAAFBCAABAwAAAuEEAAHBCAADYwQAAAMEAALDBAAC4QQAAoMEAAIBBAACAwAAAYMEAAJrCAAAQwgAAgD8AAJ7CAADgQAAAoEAAAPBBAADQwQAASEIAAFDBAACCwgAAIMEAAJhBAAA8QgAAFEIAAIhBAADQwQAAQMAAANhBAACcQgAAqMEAAADAAACYwgAA6MEAAMBBAACWwgAAQEEAAAjCAACIwgAAuMEAAIRCAAAgQQAAkMIAAADAAAAAQQAAkMEAAAjCAADwwQAAHMIAANhBAADIwQAAYEEAACTCAACgwQAAQEAAAGBBAAAgwgAAEMEAAIpCAACgwAAAUMEAADRCAABAwgAA8EEAAIhBAADwwQAAsMEAADBBAABQQQAAoEEAAFTCAABAQAAAAEEAAIDBAADgQQAAoMEAADDBAAD4QQAAiMEAACBCAACIQQAAuMEAADBBAAD4wQAAYMEAANJCAACUQgAAbMIAAFBBAACgwgAA2MEAAHDBAAD4QQAAIMIAAGBBAACSwgAAcEEAALjBAACGwgAAgD8AAIDAAADewgAAZEIAAKDAAAD4wQAAAEIAAMBBAAAkwgAA4EEAAIjBAADwQQAAoEAAAIBAAACAQAAAgD8AABRCAAAwwQAAiEEAAABAAABgQgAAUMEAAEDBAAAkQgAA6EEAAHBCAADwwQAAfMIAAEzCAACKwgAAwEAAABTCAACoQQAAAEIAAHDBAACgQQAA-MEAAGBBAAC4QgAAIMEAAHjCAAAQwQAAGMIAABBCAACAQAAAMMEAAHBBAABgQQAAIEEAAIxCAAAMQgAAvsIAABBBAADAwAAA4MEAAEBBAAAEwgAACMIAAERCAAAwwQAAAAAAAADAAAD4wQAAmEIAAHBCAAAYQgAAtEIAAPDBAAAAAAAAAEIAAEBBIAA4E0AJSHVQASqPAhAAGoACAACiPgAAML0AAAw-AACYPQAAFL4AAAS-AACYvQAAqr4AACy-AACiPgAAJD4AAIi9AAAwPQAAFD4AAIq-AADIvQAAEL0AABA9AAD4PQAAxj4AAH8_AABQvQAAJL4AABA9AADYvQAAmL0AABA9AABwvQAAgDsAAJY-AADgvAAABD4AAOC8AACqPgAAoLwAADy-AADIPQAAVL4AAI6-AAAEPgAAnr4AAGS-AADgvAAA2L0AAAS-AAAcvgAA4DwAABy-AACovQAAoLwAAHw-AABUPgAApj4AAKg9AAAEvgAAEL0AAPo-AABAPAAA-D0AADQ-AABAvAAAcL0AAIg9AAD4vSAAOBNACUh8UAEqjwIQARqAAgAAFL4AAAw-AABcvgAAHb8AAOg9AADIPQAAED0AAFC9AADYvQAAgj4AAIa-AABMvgAAuL0AAHS-AABEPgAAuL0AADy-AAAxPwAA-L0AAJI-AACAuwAAQLwAAMg9AADIPQAAqL0AAAQ-AAAwvQAAcD0AADA9AAA0vgAAmL0AAKg9AACYPQAALL4AAKa-AADgvAAAgj4AAFA9AAC4vQAADL4AAHC9AAAQPQAAQDwAAFC9AAD4PQAABD4AAH-_AACKvgAAQDwAADw-AADIvQAAbL4AADQ-AACYPQAAML0AAOA8AABQPQAAgLsAAOA8AABkPgAA2D0AAAQ-AABAvAAAUL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=VNdyYbFYLag","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13009867764253428401"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3084626802"},"13445765597002048478":{"videoId":"13445765597002048478","docid":"34-7-8-Z26205DECCC4D7CC0","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4433979/7feef74aa87886db986e2e6a1ab51d73/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/d-udKwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDqvLRH7xL48","linkTemplate":"/video/preview/13445765597002048478?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Construction of the tensor product","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DqvLRH7xL48\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhYKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4WhQxMzQ0NTc2NTU5NzAwMjA0ODQ3OGqIFxIBMBgAIkUaMQAKKmhoZWVzdWJydWtnZHl0bGJoaFVDWWExV3RJLXZiX2J4LWFuSGRtcE5mQRICABIqEMIPDxoPPxPVEoIEJAGABCsqiwEQARp4geoGCwIE_AD47AkKBwf8AhUK-_z0AgIADA0P_AYB_wD6-Qv5AgAAAA7_DQf8AAAA7AcEBvABAQASBAHw8gAAAAr2AQfxAQAA_QL1Bf4BAADjCvf5AgAAAAj7Bw3_AAAA7AMRAv8AAAANEf8CAQAAAAr3-RIAAAAAIAAtTMXGOzgTQAlITlACKoQCEAAa8AF_7gAA0Pzo_9sEzgDgHgoCkwkn__0u1wCwDicCsRLP_9QJ-QDR6vcAAvYKAKsQCwEu2tX_GuX9AB7G9_8gBPwB7fv9ADLPDwFSBhoAAPADAO4FCQAG-Pr_EsfuABgY4QD-6RT_B_vdAe8DyAIh_CoBIRA0AOsLGADl4BL9AhgOAub33P0EFg0E6twS_MsLDwIL6v0HAAP6-NAd7f_gB_f6_OUD-_0C6AcI7uoH__P3Bt3gBAH4F-f7AwgZAuEH9vT76xb--Av8-yXmDAn9-voA3vPyAuvbAAI1LgEA9fX7_f8G9_HW8wX29PD9AvEMAf8gAC0YICQ7OBNACUhhUAIqzwcQABrAB4Du074R3sO65eiWvJwBibzj1Ji8OO1uvfgzPLyHSzM9xMGUu_3Spz0JshS9S_2hPDhpir7RDD087a59PD0pcz6UwOa79XIOPdlDS75DknY7KX-CvfWha76E0wc9dDXDuyZnsj2zMQY70dObPMF-vj3y98G9F61tvIVgdb0bFl69gX46vAIOEb4OOte8Jz4tvAXDeT0wzb69u-eKPPnQjz2FRIq9rqDEvP2AvD3liRY9ibcJveyzlLxr1e68i-jyvOqv9z0xslE6yE0DPcR5OLyyTL-7g_jhO_p9P70alB89xgVkOuITH7zo__A86M4dvWL0jD2eftC9vnZdu0C3sb09KRM9mtwcPKcOzTxHFlW7y56EPNzvhb3dCfY9yJ3ruh58h72TA5E8J-CyvH0TmT0PcBS7Sj-jO7P7Xz2Q8GK8kXDvOgUqLTxGQRA93fNXPP0fdj0i-EQ9y_J1vJZZqTyiAYY8wD2yO6vm3rzWR7Y9HlaTPFAIEz1VYy48xhaCO6cHZT1blNk82MJiPHAK6zxF77m99kfluceDbb1XEI69nbdWvIEIsTx3FVK8C-qAvE7_gz0ClTY9nti_O6Y_kL184Lq7wJ4nO4tqNj1C-4W70j9aO00FRr1hqtk8R1dpu4iV2zyvPr498R5Su2JAQL0x7KA9WBbxOiM4hD2BLWW9-HGPOp4J7T1dG8U8u3ttutgAGz0N7h09Sb0Gu6CNLD7LrgW9IAINuYuXXT0QBdO9ITqIutgic70-xww9rqUUOpRAtD3gzWS94odqOQMn2z2AdHu89oEnuqkomL398QM9y0V9OBXXgj2JTVq9OeuTOKk_kLsfXye9k46dOLhD4DuKjDO8TSQ8uUrxvD0ESSk9ke7nuadHybybE8W9AwKzOAbnHT1gXtu6Q9mqODTrpj1XZA-9JEs4OUhZer0kJii89RcOuci4ILqwZeg8L8J1uMgvcjyXqJ49hJAHuEyoAD3H8J29_u4wOZVBWrwSaZs8ITWwOKImqj3h3zE8_EJzOBZxVzs0pKU97TcCuMxi4j1pG7-9qOZsuJ7H8jwGblg9bJR2uMov6LyPD4S8Eqb0N4Db7jygtpe9OZd7OLfEOz0_3pC8Ud-FOIfpsTzX6gE9zvSkNsHjKz7cpWi8B4l0uaqex716nY69kk3VN7vtgryX5qG9-jj_t9cFMj0IeE0978ccuEn3jjytUMS9c5zyuFUYpj1tC8U9g8fnOK7vk70648A9HgLpuJVpT73nr6m78Ly3NjYGWL0yJ8M8MIPDNyAAOBNACUhtUAEqcxAAGmBK_gBm2f789xor4STQtgv43_7EIsnj__zB_wQe5v_jDQHBHQT_JQIr4KIAAAAm6dAvKgDyf9ng6__kJh21uePsDmMYKz3T_SoQEe8wTPTJCOG8MSUA9uisPkzlkholHfggAC05HRg7OBNACUhvUAIqrwYQDBqgBgAAwEEAAADBAACmQgAAcMEAAEBBAAAgQgAAgkIAAGBBAADowQAAqMEAABxCAAAgQQAAoEAAAIBAAACAvwAAiMEAAOhBAACqwgAAUEIAAHDBAAD4wQAAYMEAAMLCAAAQQgAA6MEAAOBAAAB8wgAAMMEAAAhCAACgQQAAQMEAACRCAAAMwgAAoMEAAITCAACgwAAAAEAAAOBBAAA0wgAAiEEAAADCAAAgwQAAEMIAAIjCAAAgwQAAMMEAADBBAABwQQAAyEEAADxCAABIwgAA4MEAAIA_AAA4QgAALEIAACBCAABcwgAAcEEAAABCAAAkQgAAwMEAAODAAACIwgAAFMIAAMhBAADSwgAA2MEAAFDCAABAwgAAPMIAAGRCAAAcQgAAPMIAAODBAABAQAAAoEEAACzCAACwwQAA6MEAAAhCAAAYwgAAKEIAAIA_AACAwAAA4MAAAAhCAABAwAAAHMIAAIRCAADwQQAAgMEAACBCAAAkwgAAOEIAAEBCAAAIwgAAHMIAAKhBAABQQQAAWEIAAFjCAABwwQAA2EEAAATCAAAAwAAA-EEAANBBAACQQQAAmMEAAIRCAABQQgAAgEAAAADBAACIwQAAGMIAAKRCAAB4QgAAWMIAAODAAACCwgAAdMIAAMjBAADgQQAALMIAAGDBAAA0wgAA4EEAAKBAAAAwwQAA2EEAAJDBAAC0wgAAiEEAALhBAAD4wQAAjEIAAKBAAADwQQAAQEEAAADBAAAgwQAAYMEAAOBAAAA0wgAAAEAAAKBCAABQwQAAREIAAJjBAACAQQAAmMEAAHBCAAB8QgAAeEIAAFRCAACAPwAAgMIAAKDBAAD4wQAAsMEAAKDCAABMQgAAZEIAACBBAACOQgAAwMAAAADBAADOQgAAREIAAEDCAACAwQAAIMIAAFBBAAAcwgAABMIAACBBAAAAQQAAmEEAAIJCAAAQQgAAoMIAAJjBAACAQQAAhsIAAABBAADgQAAAuMEAAMBAAABgwQAAwMAAAPBBAADQwQAABEIAAERCAACAQQAAkkIAAIDBAACAvwAAOEIAAIBBIAA4E0AJSHVQASqPAhAAGoACAACAuwAAML0AAIY-AACgPAAAUL0AANi9AAD4vQAA9r4AAES-AACqPgAAdD4AAIi9AAA0PgAAcD0AAHS-AAAQPQAAML0AAFA9AABUPgAAfD4AAH8_AACAOwAAyL0AAOA8AABcvgAAHL4AAKg9AACCvgAAED0AAHQ-AADgPAAATD4AADC9AACOPgAAML0AAOA8AACoPQAAgr4AABy-AABQvQAAqr4AAFC9AACAOwAAqL0AAMi9AABkvgAAEL0AAIi9AAAQvQAAEL0AAIo-AACYvQAAuj4AAAQ-AAAkvgAAML0AAAc_AAAQvQAAUL0AAIg9AABwvQAA6D0AANg9AAAcviAAOBNACUh8UAEqjwIQARqAAgAA4LwAAOA8AAAEvgAAN78AAOA8AADgPAAAcD0AAOi9AACYvQAAlj4AAPi9AAA0vgAAiD0AAJK-AAAsPgAA6L0AAJi9AAAtPwAAoLwAAI4-AABUvgAAMD0AABw-AABQPQAAqL0AAAw-AABQvQAAgLsAAKg9AAAcvgAAcL0AAKg9AABQPQAATL4AAFy-AABAPAAADD4AAPg9AADYvQAAEL0AAOC8AAD4PQAAJL4AAEA8AADgvAAAUD0AAH-_AAD4vQAAED0AAAQ-AABAPAAApr4AADQ-AACYPQAAQDwAAIA7AACYPQAAuL0AABS-AABQvQAAmD0AAAw-AACgvAAAmL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=DqvLRH7xL48","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13445765597002048478"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1891158870"},"1720590123713866184":{"videoId":"1720590123713866184","docid":"34-11-2-Z4676DBD28FA4A2AE","description":"video, sharing, camera phone, video phone, free, upload...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3819725/d459a97d102991887c2819989e95fafe/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/CC9yzAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUCN_Dr2Kf1E","linkTemplate":"/video/preview/1720590123713866184?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor products of modules over commutative rings","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UCN_Dr2Kf1E\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhUKEzE3MjA1OTAxMjM3MTM4NjYxODRaEzE3MjA1OTAxMjM3MTM4NjYxODRqiBcSATAYACJFGjEACipoaGVlc3VicnVrZ2R5dGxiaGhVQ1lhMVd0SS12Yl9ieC1hbkhkbXBOZkESAgASKhDCDw8aDz8T1wiCBCQBgAQrKosBEAEaeIH7BAEC_gMA-AEACvcG_gILAPv69wAAAPQNDAUGAv8A8_oHAQQAAADvCQABAAAAAPgGCw___wAAE_r09QMAAAAJ9wT5_gAAAA0KAwAI_wEB-AH8AQP_AAAA9g0G_wAAAAAFCgMBAAAABPsEAwAAAAD8_QP8AAAAACAALZ112zs4E0AJSE5QAiqEAhAAGvABdAYMANH6-f_ZEt0A0inhAYEKLf8SF88AoxAuApvz5QDAKuUAvO3_APkAFf-qBSgBL9zwAA3o_wAZyRf_JQX8AdgC_AEksh8AYAcfAN_h6_7lCPz__OQCAOrJ8QIcHNwAA9UF_-cP0wHsA78CGAMgATtAJALrCQkG3OoaBAIcEALvFdL9CQgSCNXnCffVHCIC_PziBwL5D_zYLvMC5xgC--jk_wcXC-IEIfH2Bvfl8vrqywcBJRD39w74H_zcCfXyBfsV-esJCvkT9h8H9OH1AN3oBgP60gMGJC7uDfb8Bgr-9QECz_EG9QHY-_7t9ff_IAAtUCMNOzgTQAlIYVACKs8HEAAawAcfvM6-sRKYO0btwDu9OgU71gQMvZVw17xJXie941VWPaa_zbyYMNo9BSCkvB7WZTw4aYq-0Qw9PO2ufTz-1Ys-IMSfPIapMTvZQ0u-Q5J2Oyl_gr3gu22-XoqWPRa5TLwQXAU-m5NVu-2sK7uydZo9pcvRvC3oAbyFYHW9GxZevYF-OrwCDhG-DjrXvCc-LbzlgHg9RyFEvRsLDrtsSFc9sez4vFSGlrwjfIQ9OVnEPaOV-7y1R_c7WpVuvfkC6bzHTAI-SAwsPV4cCz1KDx67bcW-vMJRjTwfoaS7ViYhPWaGqjst4Zq8y1yqPPoGS7y7u6k9kiSIvXIoWbpAt7G9PSkTPZrcHDxdigo8JIAbPS7NiLzc74W93Qn2Pcid67oefIe9kwORPCfgsrwBmbc91qIqvFchijyz-189kPBivJFw7zqqHka6gIGAPVTTZDz9H3Y9IvhEPcvydbyXPSQ9QSvyO0_Clrv2KSK9UjGJPTAKJzwzyZM9sud8PDQR9Ds_vPg8eUWLPA6zYTwvTnw8HyQ1vQXIzDtjKn28o0XMvYcqRrw845Y8J76aPJjKsjpQj809mVC3PJOty7pMule9UeeAvPkyLLyCq1w9L02RvAHDcjyYfH29HsZkPd1QAryIlds8rz6-PfEeUrtiQEC9MeygPVgW8TojOIQ9gS1lvfhxjzoLqLE98cP3vJiM-7kqATE9Fa3cPDW0PzuBW_c9CEuWvfhf7jhfVx09MIH7vXa-OLe5vMO8eFCPPU3PornKNPo9E3vNvFmGYTjyv5s9NASDuUaIAzm6OwG9Nx9SPaTDcrkTI5A9j7OfvQp-uDe756U8v5gSveJjAjqxrqO7Te2WvG30R7oUrQE9BMCdPCrwo7h31x28-h-avUTxSjmkEb08KmmsOsZnZbgHDNI9X2nPvNXf1bRwvHa9YxkNPG6g6raUyT-9F6X6PKh21zi-8do8QJaPPQLdBTlar4M9AY_DvabRWjnR0xe8_uZuO06N_Tjrycw94ZMzPUvOkDesE2E8AoTvPaganjbMYuI9aRu_vajmbLjaTuU8ZCyJPHyamLiM4su8d4bEPLwx4TjL61I8fGLdvUzbijigzms9zSa4u66rvTdqoq47UigLPAKYWTjB4ys-3KVovAeJdLkWTgK-MKtmvVUqVjhRuQ696XLUvDj-7zbj_449f986Pa3x07fgHwS7BDtevf19e7dVGKY9bQvFPYPH5zgHC6e8vfzuPYO0Hrmfx7i9Chx_vZs32LdUH2i9CBMwPT0cjDggADgTQAlIbVABKnMQABpgZPQAWAwvDRb7DvjoxcIUAunV0BbU6f8R0v_fQNzm8BTtpBYZ_zzzK_uYAAAAJfvcFCsA4n_lwPrjzEw6y83sCg9xMBZP3gExEyfMNhfuz_AFAWMzAAoBtPwtx5QjLDDVIAAtBp0ROzgTQAlIb1ACKq8GEAwaoAYAAABAAAAAQAAAjkIAAFDBAAAYQgAAAEIAAMZCAAAAQgAAdMIAAMDBAAAAQQAAQEEAAHDBAAAgwQAAwMAAAKDBAACoQQAAuMIAAEBBAAAwwQAAQMAAADTCAACswgAAOEIAAHDBAACwQQAAfMIAAIrCAAAMQgAAsEEAAADAAADQQQAADMIAABBBAACwwgAAqEEAAJhBAACAQQAAiMEAAKBAAADgwQAAQEAAALDBAABEwgAAyEEAAPjBAACowQAAgEAAADhCAADYQQAAYMIAAHTCAABAwAAAREIAAChCAACwQQAAcMIAAMBAAACIQQAAZEIAAPDBAABQwQAAmMIAAEjCAAAoQgAAzMIAAABAAAAEwgAAXMIAACjCAACUQgAAuEEAAKjCAAAAwQAAuEEAAJDBAADwwQAADMIAACzCAAAcQgAAKMIAAEBCAABwwQAAgL8AABBBAAAEQgAAkMEAABDCAACqQgAAOEIAAMBBAAAwQgAAKMIAANBBAAAMQgAAGMIAAAAAAACAQQAAyEEAAPhBAABcwgAAcEEAAPBBAAC4wQAAgMAAAAAAAABAQAAA-EEAADjCAACOQgAAWEIAAIDAAAAMQgAAAMIAAADCAABUQgAAhEIAACDCAACgwAAALMIAABzCAACoQQAAcEEAAPjBAACgwAAAsMEAABBCAAC4wQAAYMEAAABAAACAwQAAsMIAALBBAABAQAAAkMEAAFRCAADYQQAAuMEAAKhBAACAvwAAoEEAAMDBAAAAQgAAVMIAAIDAAAAUQgAA4MAAAFBBAABgQQAAgEAAAITCAACoQQAAgkIAACxCAAB0QgAAFMIAABjCAAAEwgAASMIAAJjBAAAowgAAPEIAAFhCAACwQQAAUEIAACTCAAAMQgAA1EIAAMBBAACYwgAAcEEAAIDAAADAQAAAFMIAAADBAAD4wQAAsEEAAKBBAABsQgAAAEIAAJrCAACIwQAAgMEAALjBAADAQQAAoEAAACzCAADgQAAAmEEAAIA_AABgQQAAbMIAAEhCAABsQgAAOEIAAMZCAABQwQAAqEEAANhBAADQQSAAOBNACUh1UAEqjwIQABqAAgAAHD4AAIA7AABwPQAAmD0AAPi9AACIvQAA-L0AAMq-AADIvQAAyD0AABA9AACgPAAAEL0AAGQ-AAAcvgAAEL0AAHC9AADIPQAA6D0AALI-AAB_PwAAMD0AACS-AACoPQAAhr4AACS-AAAwvQAAbL4AAPg9AAA0PgAAcL0AAGw-AABwvQAAyD0AAOC8AACIvQAA4DwAAIi9AABUvgAAqL0AAMi9AAAwvQAAgLsAAJi9AACIvQAA2L0AABC9AAAEvgAAUD0AANi9AACuPgAArj4AAK4-AAAQvQAAlr4AAHC9AAALPwAAED0AAEQ-AAAUPgAAmL0AAIC7AAAQPQAABL4gADgTQAlIfFABKo8CEAEagAIAAEy-AAAUPgAAgLsAACG_AAAMPgAAEL0AADA9AAA0vgAAUL0AAGw-AAA0vgAAVL4AAMi9AACKvgAAqD0AAIi9AAAwPQAAKz8AAIi9AACiPgAAoLwAAIg9AABQPQAAED0AAKA8AAAQPQAAmL0AAHA9AABQPQAA4LwAAFC9AAAUPgAAED0AAI6-AAA8vgAA4DwAAKg9AABAPAAAqL0AADA9AADgvAAA4LwAAAy-AAAwvQAAQLwAAOC8AAB_vwAAPL4AALi9AACKPgAAUD0AABS-AAAwPQAAmD0AAIA7AACAuwAAgLsAAIg9AAA0vgAAqD0AAEA8AACoPQAAZD4AAKC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=UCN_Dr2Kf1E","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1720590123713866184"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1724253695"},"18432236150441537691":{"videoId":"18432236150441537691","docid":"34-4-3-ZE8D2E11E406BCB78","description":"I discuss tensor products.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2706631/e9d56077c144eea55a0f80e9c1af8549/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3vRB6wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtpL95Sd7zT0","linkTemplate":"/video/preview/18432236150441537691?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor products","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tpL95Sd7zT0\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhYKFDE4NDMyMjM2MTUwNDQxNTM3NjkxWhQxODQzMjIzNjE1MDQ0MTUzNzY5MWqRFxIBMBgAIkMaLwAKKGhoaXZod2xjbml3eGxoaGhVQ3Qxbl9jX2xiUEl2el95Y3czRXE5NncSAgAQKhDCDw8aDz8TwQOCBCQBgAQrKosBEAEaeIH0__4F-wYA9v4DBf4F_gELEP0E9gEBAP8JCgAFBf4A9PIHCQAAAAD1DgcA-wAAAO7-BQL5AQAAEPz--QMAAAAKBAAABQAAAAwBAQH_AQAA_wT8_wP_AAAI7wT__wAAAPsECQv-AAAABAIHCAAAAAAA-vz5AAAAACAALU8Y5Ds4E0AJSE5QAiqEAhAAGvABfwX7Atn7-v8NB90AvRTsAIUAAv_9LdgAwvMKANgV7wH3C_wA0QHh_-YRAQC4BCIBDuLUAALrFAA99fn_Kez5APAPDAAQzgIARBMOAeb02QDxGxoA9NsF_gDr_wH74dX-G_IR_O0C8AMJ7cIIDf42Aej8FQEU9h0C_ez_AN0UKwEJ2vj8_un8_xD-CwPH3yEBEN_w_fcY9vnqHOsCCRPu_ObwFP8MENcANA3-CvIF_Pq_8vn-89_V_xv6HwXkDPIC9PghAtMHFgHuHQkDNN8A-fDvC_z72QMFGfP6DPjlDv3wDfv64hbz9e8HCgX9CwQCIAAt4OEpOzgTQAlIYVACKs8HEAAawAfYRfm-KKw_u4Kc5jwcyD-9CeqMO5zMLr3joLm9HG2LPF4FI7wQgG492VVtvDl7iLo4aYq-0Qw9PO2ufTzFVYU-VDBvvZt_Krx6Fy--CDwwPSmf1LwVHE6-rE3IPDWXHzv0Nja8nfqbvHEkq7wwUYM9QfyyPNsBEr1viwi9Q0cHuiPYGL2kmJO6ajS5upF387zOhww9JTI9vMyd0ztpGRk-vV87vWUX7zsgUoC6ZtaUO-yE17ymEIO9HwAnPTMb_7z-bpA9x-xyO6FzDT0VpIC7z5eYvYDRijyT1R69Mi-xPT_eULx88UU9-wQ9OcWHYbtfjJI9ThE7vHHBvrz5oAe-9BqbPS-BgDtGCuU9o5YgPFPN7jsUmwq9XTVPPfglUTxmZR48CQKeu1YWgbsfPGQ9PuNHPdAB0Ts8xvC8hQHPukfAMryQJBC8EN-jPaZiAz0gS6o9qBb2vFx2iLx5tTe8be2Dvf-RqbyNm5q9c5U4Pez7i7wzyZM9sud8PDQR9DvbYX09f9ZBPd64uTtwCus8Re-5vfZH5bmV3Dy9PPHBvUPp5rsdbcE9OWkQPS4Ff7xXWBU9i1R4vZIQ3buhEY27ubAkvODC9Lqa4wE99-civctkuDssvTG9-ow1Pe0IrzpwwYg8B5WdvPBwGryfKhU9sABmPQNmtrsx0FW9i5lOveb4_jlo_q09eahyPc0YCzu6np0903vTO3k1ijrMrC89xb2zvbqhxjpkq7C8lueGvYjk2LqYLqm8o4_5ujEHdTkfotE9WPgfvXnRiji3qUs9LVoFPbniYjmRuni9KJwdPccBCbiD4Vc9htyxvEyyFLndKqO8Vz3AvZEGHjmqmmC9DVGmuypqRrlFfTe8nfZUPeIyfzq9uQm9GH4rvbRQBrnWtew8lgIYPJvDgDn6WGY9cNWQPAwjYLjs2wu8tuyYux9FL7o9_ZQ7HB0BvS-lorjjFpi8165_PddTODi3yXI8bS0dvcujwrhBfVA9v84wO_rBiTYAIwM9DtvWPT5PjDeE8gA8oHraPE7vabedDkc7d58DvkPejLeex_I8Bm5YPWyUdrjK4QO-ENcePJf9TjcnpiY9afKevGQ8VTikSIg8du_yPAAWkrf3qKQ8qyDrvPFx3jaCVUU-dMg3PcnchLm4XZO9z6uQvdp1RLgH4gY94ZZPvZmkzjXmOzi9qC1_PcoQyLIdlww9SQ9DvlQxTbnK9HA9IuErPvHLijiYk2U7gAvSPZjkD7lgRqe9F4EQu5N02Tcgs_O8rzhBPEH9_zcgADgTQAlIbVABKnMQABpgGgIARw0k7e4ZOfkHwgn51tYG5RDB8f_c0AAV77D30fIF1AExACIKOtioAAAA_vjiFdoACHnByOPxACb32sDwBkB_HzJVyQkABtwNFwrYzAcRyPJEANHypE_7xpXvSwH4IAAtBsoaOzgTQAlIb1ACKq8GEAwaoAYAAEBCAACAQAAAHEIAAADAAAAIQgAAOEIAAK5CAADYwQAA8MEAAAxCAAAAQQAAbMIAAAjCAACYwQAAIEEAAARCAACCQgAAaMIAAABCAAAAQQAA0MEAAFDBAABswgAAgEAAABjCAACGwgAAwEAAANjBAABgQQAAEEEAAFDCAAAkQgAA1sIAAJhBAABUwgAA4MAAABBCAABkQgAA4EAAAPBBAACSQgAA0MEAAChCAACowQAABEIAAL7CAAAwQQAAOEIAAEBCAACoQQAAoEAAAEDBAAAgwQAAMEEAAJhBAACAQgAA6MIAAFBBAABgwQAAgkIAALDBAAC0wgAAqMEAAAzCAAAQQgAAwsIAAFDBAAAYwgAAQEAAAHDCAADoQQAAeEIAAKTCAAAgQgAAEMIAAPjBAAD4wQAAuEEAAMBAAAAAQAAAEMEAAIpCAABAwQAAAMEAAAAAAAAQQQAAAMEAANBBAACgQgAAyMEAAEBAAACwQgAARMIAAIC_AAD4QQAAoMEAAFDBAADowQAAIMEAAKjBAAAkwgAAgD8AAGBBAAAsQgAAsMEAADxCAADowQAA6MEAAADBAACAQQAAZEIAAIBAAAAQwQAAIEEAAGzCAACcQgAABEIAAHDBAAB0wgAACMIAAHzCAAAwwgAAcMEAADBBAAAQQQAAmEEAAAxCAAAgQQAAAEEAADhCAABYwgAAwMEAALBBAACaQgAAgD8AALRCAADAwQAAbEIAAIBBAABMwgAAEMEAAIjBAACYQgAALMIAALBBAABwQgAARMIAANBBAABAwQAAcEEAANDBAABAQQAA6EEAAJDBAAAEQgAAAAAAAEDCAADowQAATMIAADDCAABgwgAA4MAAALDBAACAwAAAGEIAAABAAACYwgAA0EEAADBCAAAAQAAAoMAAAEDAAABQQQAA-MEAACTCAADYQQAAZEIAAGzCAADYQQAAoMEAAFzCAABgwgAAkMEAACjCAAAQQgAADMIAAGTCAADowQAAoMAAAKBBAADAQQAAAMEAAABAAABAQQAAiEEAADBCAABEwgAAIEEAAJjBAAAAQSAAOBNACUh1UAEqjwIQABqAAgAAoLwAAMi9AACoPQAAuD0AAAS-AACAOwAA6L0AAA2_AABQPQAADD4AABw-AADovQAAQLwAANg9AAAUvgAAoDwAABC9AABAvAAAND4AALo-AAB_PwAAFL4AAOC8AAAEvgAARL4AALi9AAAEvgAAUL0AABy-AABsPgAA-D0AACQ-AAD4vQAAnj4AAOA8AAAQvQAAUL0AADS-AACGvgAA-D0AALK-AAD4vQAAML0AAMi9AABAPAAAgr4AAMg9AAAcvgAARL4AAMi9AACIPQAAUD0AAFw-AACAOwAALL4AAIC7AAABPwAAuD0AAHA9AAB8PgAAoDwAAIg9AACgPAAAEL0gADgTQAlIfFABKo8CEAEagAIAAJg9AAAMPgAATL4AACe_AACgPAAAqD0AAMg9AADYvQAAML0AAII-AAAkvgAAbL4AAKC8AACCvgAAcD0AAFC9AABwvQAAJz8AACy-AACCPgAAoDwAAOC8AAAkPgAAMD0AAHC9AAAsPgAABL4AAFA9AABAvAAAuL0AAIA7AACIPQAAMD0AABy-AAC-vgAA4DwAAIA7AADgvAAAML0AAPi9AAAcPgAAuD0AAOC8AADYvQAAgDsAANg9AAB_vwAAyL0AALg9AADoPQAAoLwAABS-AACgPAAA-D0AAOC8AABQPQAAQDwAADA9AADovQAAuD0AAIC7AAAwvQAA4LwAAKC8IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=tpL95Sd7zT0","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["18432236150441537691"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4283952652"},"10288858144530856715":{"videoId":"10288858144530856715","docid":"34-5-17-ZDE55B5EDE42B3A87","description":"Universal property introduction: • Complete Derivation: Universal Property of... This video proves the uniqueness of the tensor product of vector spaces (or modules over a commutative ring).","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2365106/7134d43ae2c2f4654b3d58c54de24909/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/iYn2KgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVJJK2BoIaD8","linkTemplate":"/video/preview/10288858144530856715?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof: Uniqueness of the Tensor Product","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VJJK2BoIaD8\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhYKFDEwMjg4ODU4MTQ0NTMwODU2NzE1WhQxMDI4ODg1ODE0NDUzMDg1NjcxNWqHFxIBMBgAIkQaMAAKKWhobWpnZGd4ZGV0end6ZGhoVUNvOFQwRDhteTFIejVLb0hDUllPQW5REgIAESoQwg8PGg8_E80FggQkAYAEKyqLARABGniB6gYLAgT8APwAEQUHB_wCEQP3ASH8_f_vAQL8_gEAAPL6CAIEAAAA8f0PAgcAAADsBwQG8AEBABEB9_wEAAAADggHA_wAAAAGFgD6_gEAAPP99QT1AgABGfv8_gAAAAD2Aw38AgAAAPD6AQIAAAAADvn2BgAAAAAgAC1MxcY7OBNACUhOUAIqhAIQABrwAX_qF_7Oy-IBwAcAANM_HQKzBSL_Ii3bAMLcFQK5PtQA8iEKAPTwBwDsBe8AyhALAOPpvf_e7iD_FLji_SUE5gH_09sBFs7sAkUWNP8E0NACwyYg_fHyDQAc0MsDIx28ACPyBP0mBuIA_uHCABzhMwPh-DQFPe0cAerZMv0JHe7-6djT_Q3_9AvetBj-tSYdBBKg6PvPBer3tt73AOzg5QYUAAr28T73AiTw2wYHB_MK0_X-B-YIzwPmKCH-4wLsCfD1LALR4QD2HOYMAeXV6wju-9ryAaj2Az0JBQEADgf84cDnAbX65wfF--kO3Cz3ByAALb9OADs4E0AJSGFQAirPBxAAGsAHu-7VvtsZJryC8UI7qfcUvEQlw7t3Lsy8P-lfvfBknD0Sj1q9FHYRPt8O3rwmvoM7gQgBvjc-ST2ubYC8_b10PpJUS70Dsew8GYGivUC1uz3hpF-978X3vSIoqD0pL6i8dtpgO_bRKT1yKI28oDTEPabVUL0R_9Y5JLoivQkMg71L6iS9Uc2mPQAbEL3Whem8F9JmvXZ0Nzy1La88o9DPO7lVDryJwt28a3MQvLZX1Tx9sA481jEzvY1S-Dw0P8i8mj-GPenVQD2E2d-7ILjqvTyX8zvEgSu9SkXfuw339rzPKpu5uQC0vGVNkT1MrGe8nxHXO_m1er32Tp67YaWKvnOcWzxVBO475Ib_PTl29TyMb5483O-Fvd0J9j3Ineu63fGhPUt6k71gK5e8qMlnvDZ7uzxFgJM81mSXPTghA723NTe7CWTAPM9ZdT2FY7E8-HG0vFgcDjzxR1G8I6LYvMS1NT3hwJq8HiUlvb_ZQbzaa-q73zMUvEOdiD29nIY7Nyk2vUIfEb3gffo6pBqGPWF8R72up4y7x4NtvVcQjr2dt1a8fkkTvK7IuT2_oGA8Q6kdPh9q273Emqk5XSa5vNcbkL0aWz48PZFxPfhhLr355oq7l-IqvcvdDrpA1OS7Zh6_vYUtbD1qMVu7MGbLPCqnDT5ukyi60E8nvXeihL2h94Q6GpyNPeTHDj2eke-7hijXO02xtDxL4m46q-a-PYkMK76M5pY6Gt4svtF6OL2hcsA52YTqvC_UK7zd_Uk6956hOz8Qqr047O23uyfvPQhaSrfd-uu4kl0pvnuamD0I9825SNEUPOXtyDz9jg06avYju--dp71iSNy4bPOVvSZf_7yxwES4tPCruzN1eTryqYw5X3-9vR8YO70I1Te565wVvUBs6Ts-D-23pzDAPCw8eT2CA6A2KDGEO4N8GLw4Fng53PWxOsz6gzyreTE4S1aqPEO5Iz208h05wrS5vEyKn70GYHY4UIiFPUYIbz0f1iY4Wsb8vKlQWD0q2gS1h1ORPfRfxj2quSQ3x_wUvK-ODT0PRJ04wOcHPt5C8rw5ERo4oFDPvRXvhj3C0gI4HeyIPW8hmTzbkDw49bjvPBJ2AD0Sg744WOeYu1gZcj2c3F84H58APqTkkL0V6Dq5wKRCPN8DT7xudCW4dfX0vFnd6r0NI_E1l6UiPRBSwT0RmU-4r3NqOnyihjxRiM-4yvRwPSLhKz7xy4o4OaELvdEQhD3l09W4K6advVjywrzwqKW3hUyoPFR_U71yQp22IAA4E0AJSG1QASpzEAAaYC0GAEAEB_3MFCrp9Nvw-vDJ-t3t1vr_9vIA9QHW_vQAEb4TEv8j-xfPswAAADHh8xj2APJm3unVAO8j-uy2_dcif98VM7wULO3Q5QAf_OsR9MbhUwDr87VQC-LA_ygLFSAALXrgMzs4E0AJSG9QAiqvBhAMGqAGAABQwQAAQMEAAGBCAAAAwQAANEIAAIDBAADmQgAAgEAAAABAAACAvwAAAEAAALjBAADYQQAAkEEAADDBAADgwAAAkkIAADBBAABEQgAAAMEAAI5CAAAAQQAAWMIAAMDAAAD4wQAAQEAAAIzCAADwwQAArkIAAOBBAADgQQAADMIAAHjCAABAQQAAysIAACxCAACoQQAAwEAAAKBAAACgQAAAEMEAAEBBAAAkQgAA8MEAAOBBAACkwgAANEIAANhBAAAcQgAADEIAANBBAABowgAAgMEAAMBAAAAAwQAASEIAANDBAAAAwgAAgkIAAMhBAACAvwAAaMIAANDBAABIwgAAAEAAACDBAAAkwgAAyMEAABBBAADgQQAAUEEAAABCAACUwgAAmEEAAGzCAAAowgAA4MAAAEBBAAAwwQAAhsIAAEDAAADWQgAAcMEAANBBAABwQQAAfMIAAFBBAAAgwQAABEIAAFDCAAB4QgAApEIAAMjBAACgwAAAYMEAACDCAABgwQAAKMIAAMBBAADiQgAAUMEAAAhCAADoQQAAYEIAAMrCAADYwQAAoEEAALBBAAAAQAAAeEIAAFDBAAAwQQAAAMEAAEDBAADowQAAAMEAAOhBAADowQAAHMIAAIDAAACAwAAAQMIAAFDCAABkwgAA4MAAAPDBAABQQQAAsMEAANDBAAAkQgAAEEIAAEBAAAD4wQAAQEIAAADCAADWQgAAcEIAANjBAABkwgAAgD8AADDBAADAwAAAAEAAABDCAADgwQAA0EEAAABAAACwwQAAwEEAABBBAAA4wgAALEIAAPhBAACwwQAAFEIAAOjBAAAUwgAABMIAAITCAADAQQAAPMIAAEDAAACAvwAASMIAAMjBAAAAQgAAKEIAAIhCAAAsQgAA6EEAANhBAAAwQgAA4EAAANDBAADgwAAAAMIAAABCAADowQAAmMEAAABCAAB0wgAANMIAAMDBAADgQAAAgkIAADzCAADgwAAAAMAAAPjBAACYwQAAkMEAAHDBAABQQQAAwEAAAExCAACWQgAA8EEAAL7CAADAwQAAbMIgADgTQAlIdVABKo8CEAAagAIAANi9AABQvQAAqD0AAKi9AACIPQAA-D0AAIq-AADivgAAdL4AAAQ-AABAvAAAuL0AAFC9AAAkPgAARL4AAAy-AADoPQAAcL0AAFQ-AAB8PgAAfz8AAOg9AACYPQAAPL4AAIi9AAA0vgAAUL0AAOi9AABAPAAAlj4AAHA9AADoPQAA4LwAABw-AAC4vQAAML0AAFA9AACIvQAAVL4AAKi9AAC6vgAAML0AAOA8AACIPQAAuL0AAEy-AAAQvQAALL4AAES-AAAEvgAAiD0AABC9AACKPgAAoLwAAFS-AACIvQAAzj4AAEw-AACAOwAABD4AAFC9AAC4PQAAcD0AADS-IAA4E0AJSHxQASqPAhABGoACAACIvQAAsj4AANi9AAD-vgAAyL0AADA9AADIPQAAED0AAHA9AABcPgAAlr4AAMa-AAC4vQAAtr4AAEA8AABAvAAADD4AACs_AADovQAAlj4AAOA8AACgvAAA4DwAAIg9AADovQAAgj4AAKi9AADIPQAAQDwAAAS-AADgvAAA2D0AAOC8AAAEvgAAor4AAKg9AACOPgAAQDwAAPi9AAAUvgAAQLwAAKg9AACAOwAA2L0AABA9AACmPgAAf78AAHS-AACmvgAAFD4AAIC7AABQvQAAqD0AAMg9AAAwPQAAED0AAKA8AADYPQAAuL0AAFw-AACAOwAAqL0AABA9AAAQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=VJJK2BoIaD8","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10288858144530856715"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2661775393"},"11640970086896877245":{"videoId":"11640970086896877245","docid":"34-2-17-ZE3E5355718E14320","description":"Lecture 21: We started this lecture by proving a result about spanning sets of tensor products of modules. We then saw that m \\otimes 0 = 0 \\otimes n = 0. We proved that for any finite abelian...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2950295/140d01f8e7127f8db288206fb55b51c8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hGofLQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dt11BsdWTfSA","linkTemplate":"/video/preview/11640970086896877245?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor Products of Free Modules (Algebra 2: Lecture 21 Video 4)","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=t11BsdWTfSA\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhYKFDExNjQwOTcwMDg2ODk2ODc3MjQ1WhQxMTY0MDk3MDA4Njg5Njg3NzI0NWqIFxIBMBgAIkUaMQAKKmhoYWt1a2Jjbm14anFrc2JoaFVDR0VoZWxJMnExMEZNd0cycjg1U3EtURICABIqEMIPDxoPPxOCB4IEJAGABCsqiwEQARp4gfL8__X-AgAA-f8D-gf-AgsA7wH2__8A7Qr_Bgj_AADp-QMGCf8AAPAV_v8EAAAA9fwJC_T_AQAW9PAAAQAAAAwJ-vkAAAAADQEBAf8BAAD2BAL4AgAAAAv1AQcAAAAA8Qj3CQEAAAAG_Qz_AAAAAAD6_PkAAAAAIAAtHT3WOzgTQAlITlACKoQCEAAa8AF8BOv_pw3p_R4K5QDEKQkAgSIK_hwk4gDPDwP_pfXoAB8d3wDB7-n_GPkd_-8WAv9e7-X_G-T9ACjZDQAE8_YB8gMWADLc2wAjDQwA5PPWAOIgKv0g7AUACtzp_wwAAPzr__D-D_n0_f_nzQAq7gz95voqBA39A_zw2gAB4h4AAuX22v39BwIE8_EH-OoHIwEC3vUCKxIIAsYT-wT4C-P94-8V_xAV8wAe8vcF7OQG_NsXCgIeEfEGFB8h_tHh-fz76hf-4sf3-_wO_AEr0xACDwwH_ej68Q0JBwMNFfH8_QYBAPvzCPEJCOz9__wb8vsgAC3_IR07OBNACUhhUAIqzwcQABrAB7vu1b7bGSa8gvFCO5xN571TlVa9XLVGPLzK2r1AGMM9Ik-zu-46gLwxXMK7HzaJOjhpir7RDD087a59PCb_8z3xBbe9oGUnPFouW77qj5U8bmKSvEQYX77UZGc7pZ0_PGyw8DwKa6E7DtmjuuDZfj1ScU29zTdHvGD9ZL15uW26eHy5u5iBb7wKc7O7uvETuwXDeT0wzb69u-eKPGoEgT2TkJO9D1gkO89Jnz2FmZG8LqqHuxCUmbvIK4s97ubOvMdMAj5IDCw9XhwLPS8_w7svsYk7coKbvJdXzr2gqTK8EPy5vGgIprrnMIQ8QCajvLybIj3AA6i9wz-yO6jIIb4CfBw96OltPPCLCz7zP7O74jrGO2w-LjzFxdE9_-aqPBCniD3gyFG6ZFTfun0TmT0PcBS7Sj-jO9SF8zy60lc8M4lBuglkwDzPWXU9hWOxPKTUEjzOQrG83o_bvFOpvjzBq4a77EOHu_KH1bymaWs9GPS5vBrfpz0xwFQ9TyDLujlP67w_GRI675tSO8U1Qz34UQ2-CW8suyaUeb2xCVq9kYJ9OdQq-j0rG7G8_3dXuq8iyDzfTie9Z2qtvEUb9jxPtho7PSwvPDCrU7nuzpq8bZOGu84rCL2gBoQ71EKsOyhyUr10MDE9Pqn-u8uY57xaDbk97IyIO5k20ry8Ws69GJwvOrRgWD3P-ek8xC-rOlt5ST0yLmY8yVo_u1T6nj2a6Di9eFpPOLh0TL0hh-87BJZYumKg6713S3K81zyGOWa2UD2J7tm9IZW9ObN4gT3LfgI8URy_NnNLu73z7fg83HLpOFOzJz3SkEy9MxqUOFxUC72cFfG93J51OUa5L73cxQq9eEWzuTcNmz1Rxzk9uSM-N-WMkr2TuQO9432eufQA8bsNPBK9ni2sNhZAQjxe2hA93HmHt7zUQ71BWBW7uUjmt93P6bx35H68vza1uFHumL0FN209avZNOMCVibpEY3e9XtwVuEYu07z2ARI9aAvxOBeFeD0nvOQ96I4yt8FYnz0LGZ49vRkjOIHtiz0Iyk2956ygONCAFT2ASrU9ljSQuFifzL2mLjQ9g38sOZxIVT1PLZE83qmcOGIvlD2taR68P3XctWFe9rz9T9k8lOJROPcBKD5wYd298We_uVTF1L3_e0u9GFFXtpNrTz387oy9bSINN6Z_6b2MZLQ9PCjpOLMxBrsIr729HH2mt4qWVz0QWPk9jRdAOJKoHL1HVTM95q98uG4Djb0naa49v_cWN8Byab34O6-8ULi0tyAAOBNACUhtUAEqcxAAGmBT_QA1Mh36xQM6xSrl0v7owAr87sX1__DC_9sC_BAIG_alG_X_HwD58aUAAAAs4i37FAADfwjjtxL0MRTsnsAIEXklNBmd7y8J1vEQ5Pz8_-vY3FwA0PCoK0PV9BEoSQkgAC30HRk7OBNACUhvUAIqrwYQDBqgBgAAgMEAAIA_AACIQgAAEMEAANjBAACAQQAAcEIAAIDBAAAowgAATMIAAMDBAABAwQAAcMEAAADAAAAgQgAAAAAAAI5CAAB4wgAAKEIAACzCAABUwgAA2MEAAJbCAACQQgAAUEEAAAjCAAAcwgAAPMIAAERCAAAIQgAAQMIAAGDCAAAswgAACEIAAIrCAACQwQAAkEEAAKhCAACwQQAAlEIAANDBAACQQQAAMMEAAIBAAAAQwQAAmEEAAKDBAADwwQAAkEIAAEDBAAAYwgAAwMEAAEDCAABgQgAA0EEAAJhBAACawgAAAMAAAODBAAAAQgAADEIAALDBAAA8wgAAksIAADBBAACCwgAAAMEAAJDCAADWwgAAIMEAAOhBAAAQQgAAAAAAAKhBAADYQQAANMIAAGzCAABwwQAAgD8AAKDBAAB8wgAAMEIAAAAAAACAwQAAsEEAAGBCAAAQwgAADMIAACRCAABAwAAA-EEAAABCAABgwQAAiMIAAAhCAACSwgAAwEAAAAAAAAAAQAAAwEAAAGzCAAC4QgAAPEIAAGTCAACSwgAALEIAACDBAACwQQAA4MEAAIhBAAB0QgAAAEIAAKBAAABUwgAACMIAAGhCAACowQAACMIAAAAAAACMwgAAqMEAALBBAACAQQAAOMIAAMDAAADgwAAASMIAAKDBAACCwgAAIEEAAExCAACUwgAADEIAANBBAAAwwQAAmEEAACxCAAAgQQAAwMAAABzCAAAYQgAAAMAAACBCAAAAwAAAKEIAAEhCAACQwQAAQMAAAFDBAAD4QQAAgD8AAIA_AAAoQgAAGMIAAJDBAAAgwgAAvMIAABjCAAA0wgAAAAAAANjBAAAwQQAAqEEAAABCAADAQAAA4EAAALhBAACaQgAACEIAABzCAACGwgAAMEEAAMBAAAAwQgAA2EEAACzCAACAwAAAgEAAAMBBAACIQgAAGMIAALrCAACAwAAAOMIAALhBAACiwgAAlMIAAJBBAAAwwQAAcMEAADBCAADwwQAADMIAAHDBAAAAQAAAsEEAABzCAACIQQAAEEEAAPDBIAA4E0AJSHVQASqPAhAAGoACAADoPQAAcD0AABA9AAA0PgAAqD0AABC9AADgPAAA1r4AAJ6-AABUPgAAoLwAAAy-AABAvAAAyj4AAAy-AAB8vgAAnj4AABA9AACaPgAAJT8AAH8_AACAOwAAyD0AAJi9AAAUvgAA4DwAAEC8AACAOwAAyD0AAEw-AAAwPQAA6L0AAEC8AAB0PgAAqD0AAFS-AABAvAAABL4AAKa-AAAQPQAAnr4AADw-AACYvQAALL4AAES-AACgPAAAPD4AAKK-AACYvQAAXL4AAEC8AAAsPgAApj4AAIY-AABAvAAAqL0AAAs_AAAwvQAAED0AAGQ-AAAUvgAA4DwAAEA8AADovSAAOBNACUh8UAEqjwIQARqAAgAAVL4AAOg9AAAEvgAAVb8AABA9AABwvQAAoDwAAGS-AABQvQAAlj4AAAy-AADovQAAxr4AAKa-AAC4PQAAcL0AAAS-AAARPwAAED0AAKY-AAD4PQAA2L0AAKi9AADIPQAAqL0AAAw-AAAcvgAAyD0AALi9AACIvQAA4LwAADw-AAAcPgAALL4AABS-AAAQPQAAyj4AACw-AABsvgAA-L0AAOA8AABAPAAAmL0AABC9AAB0PgAAuD0AAH-_AAAEvgAAUD0AACQ-AABAPAAAkr4AAOg9AACIPQAAPL4AAKg9AABwPQAAMD0AABA9AAAsPgAA-D0AAHA9AABQvQAAhj4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=t11BsdWTfSA","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11640970086896877245"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2947266852"},"14699814226962564882":{"videoId":"14699814226962564882","docid":"34-7-12-Z070DFA2EDF018F57","description":"Error: at around 13:25, on the last line, the input space should be V-tensor-(V*), not (V*)-tensor-V, although the two spaces are involve vector-covector pairs, the order is different, and so they...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4485678/156fdc25ef537e118d5abc48806b4ce9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/7ABqGwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DM-OLmxuLdbU","linkTemplate":"/video/preview/14699814226962564882?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensors for Beginners 15: Tensor Product Spaces","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=M-OLmxuLdbU\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhYKFDE0Njk5ODE0MjI2OTYyNTY0ODgyWhQxNDY5OTgxNDIyNjk2MjU2NDg4MmqTFxIBMBgAIkUaMQAKKmhoa2h3bWN1ZGRxY3ZqbGRoaFVDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdxICABIqEMIPDxoPPxOZB4IEJAGABCsqiwEQARp4gfP_Awv9AwD8-QYHAgf8Ag4M8gT1AAAA9gf8_v8C_wD19wP_9wAAAPz7BvwCAAAA-PQGAfr-AAAI_PX9-AAAAAb6_f_6AAAA_wjy_f8BAADyCPryAgAAABfsBPr_AAAA-gYBBgQBAAD79P8JAAAAAP8D9fIA_wAAIAAtQrHbOzgTQAlITlACKoQCEAAa8AF_FPv_6OTiAtQFxACgFcr_iRcO_xMXzgCk-h4BtgPfANwf6gDC_BIB7BIQAMkx_v868OP--_foATjsAP9P8Qf_7BMPARTCAwA8KxsA6PL7_94BQf4R6f__AOTvAAgN7P7-5Rj_-QHD_-wDvQI_DjAA-xwp_zXyCgO5ygP_3_Uf_yUA5Pz5MPcB_u0XAN70Mwj84eQBKhr69so23gQZ4P_-6OEK8w8UzQAu_fII-Bj1_rbJ7wT83ur6_CgdC-UuA_nk3yD_4fH68wkNCf4ezfAF9s_zBgUC8Q7x_wH9FeYJ-Q7U-gzjMPX_7OYNEvTk8OYgAC1SbQk7OBNACUhhUAIqzwcQABrAB7-6ur6AC9c8kf1ivAoHzL1XDxS8NIUOvTVFQL6Dlbk8rKIJPBR2ET7fDt68Jr6DO1T8H74nzCo9d_O5PKZCPD5lYTm9PHxDPXE9Wr7nFr89hUyovEzEO76CnEW7VjLXuq6Yxj2rMp27u_TpuwqdFz6TmxW8EYqtvJFWRjy0jqq8lIAdvZita70X5UO9vEkCvVrfNj3p2528U5HKPHTrNT5wHEK8sVTyPMTBdD38HLy6DrGLu9d-p70L_V28d0tyvA_8jj38jCs93yD1PMR5OLyyTL-7g_jhO6TYNr2gds87A4oCvZVShj0jMcE8u2VivLu7qT2SJIi9cihZumO0Hr42Fnu7f2BYPOSG_z05dvU8jG-ePMKymL2V6fw8aDC8PEArdrupY_q82XoEPITtTD3k82o9VJD6PMhtarvMkZk7riKKOwib8Lz_Yxw9Fw2ZPBaE0j1Fdo-9J2covPFImzrRrkI8iZI1vFWPur2-OTc8F5klvFLtoz3F4Ma8JnyEOyxnuj2R-gQ84hBgPN9mxj05tfO9hx8YPNh3Kr0czTG-1zSMuimMkjyAY5E79Ve8uyKK6T39-ye9wf5rvHFjib3MEb29LLUkO22kkTxeyHm9H6w1O00FRr1hqtk8R1dpu9i_xrzE3lU8f_ExvHMHWz0DU8c9cgzBOZ-muzxR_LO9lwabO9pVCD583jA6VJ0Cu94e5D1PxMc8iFcjOWIvVD0po8C8v3cjuzx8o7yC56m91n9fuB_07LxYCpY7lZFlux-i0T1Y-B-9edGKOBhVkD14izE9YMQSOdptvDxGj8Q8XPWZOFOzJz3SkEy9MxqUOMui8LxbQh6-NwXjORlNdLtUa4Y8UMi8uWdrM706ckm8zMNcuswgw73UDQS-CFOFOTaJKz3oByA8Ow1xuDf_Dz0Y2zq9bGDEteZvpzxheDu99cqptlGfZL1miam8mfFXOR2ItLsMDmU9EmcHOFqvgz0Bj8O9ptFaOVegDL1PdpM96khnuJzyjTyOOr46D2VRt8nd07moZqA8lmQoOLETgzy2sbO9FanpOM3nXD1HM5s91S0lubSQEL7YjKI9mXsEtzxqzLzypWa9-vflt8ZsKT3Vcgw9m5mJN6s_wrxvw568HjZsNK2n9j2z6pi8ezs6ub2VAD30W0q9O0ZnuA2fujvPXFG9oUWutvC7Dr3HFj09v9KzNuwDvTt81A--F_rcuMr0cD0i4Ss-8cuKOCcRIT1eOGY9tuOruCNozL0NAfo7bwYGN-2Ieb0Hva08ZMXANyAAOBNACUhtUAEqcxAAGmBCAwA6ATPMBAw_9CHQFAzW1hHEB8QR_wXa_wnuwA3iMOjALw0AJ_404aQAAAAbCOz57gDzfcK29P_2Zw2wqdYYMH_Z-jTSKDr6sxotJwLuI-UFCUgAz_maRRi3vAD1EBYgAC02kBM7OBNACUhvUAIqrwYQDBqgBgAALEIAAEDAAAAYQgAAkEEAAJhBAAAgQgAAPEIAAKjBAADgwQAAgD8AABRCAADowQAALMIAAMhBAACIwQAAMMEAAJBCAAB8wgAAcEIAAIjBAAD4QQAAoEEAAKjBAABYQgAAgL8AAABBAACewgAAEMIAAABAAAAEwgAAAMEAABDBAABIwgAAcMEAAADCAABwwQAAJEIAACxCAAAgwQAAUEEAAITCAACYwQAALEIAAAjCAAAAQAAAqMEAAIRCAADIQQAAaEIAAFRCAAAYQgAA0MEAAIjBAAA4QgAA4EAAAKhBAAAQQgAAmMEAAFhCAAB8QgAAQMAAAKjBAABcwgAAmMEAACxCAADAQAAABMIAAKBBAACAPwAAcEEAAEBAAABAwAAAcMEAAJjBAABAQgAAoMEAAJjCAABgQQAAEEEAAIDAAADwQQAAyEIAAITCAACgwAAA2EEAAIDAAACgwQAAQEAAABxCAADAwAAA2MEAAL5CAACowQAAQEAAAMhBAADKwgAAsEEAAPjBAADwQQAAaEIAAJDBAACwQQAAoEAAADRCAAAAwwAAFEIAADTCAAAoQgAAAMAAAKxCAAAkQgAAIEEAAFDBAAAIwgAA0MEAAJBBAAAgQgAAAMEAANDBAAAgQQAAYMIAAKjCAAAwwQAADMIAAADBAACAQAAAgD8AAETCAABgwQAAuMEAABBBAABIwgAAkEEAAOBBAACAwgAAzEIAAEDBAAC4QQAAHEIAAFzCAADAQAAAYMIAAEBCAAAAQAAAIMIAAAhCAAAAwQAA0EEAAIDAAABwQgAAusIAAJBBAADAQAAAMMIAAJBBAABYwgAAdMIAAAzCAAB8wgAA8MEAABBBAACIwQAAQMIAAODBAADAQQAAcEEAAIjBAACwQQAAyMEAACBBAADgQQAABEIAAEDBAACgwQAAMEIAAFDCAABAwQAAIEIAADBCAADQwQAAAMMAAMDBAAC4wQAAQEEAAABCAAAAAAAAgMAAADBBAABgQQAAwMEAAKBBAAAIQgAAtkIAAHDBAAA4QgAAMEIAALBBAACAwQAAcEEAAFjCIAA4E0AJSHVQASqPAhAAGoACAAB0PgAAML0AAGw-AAD4PQAAfL4AAIg9AADIvQAA0r4AAEA8AAAsPgAAcD0AALi9AABcPgAAZD4AAJi9AAA8vgAA2L0AAHA9AAAMPgAAzj4AAH8_AACIPQAAEL0AAKg9AACGvgAARL4AAAw-AACYPQAAHL4AALI-AACIPQAAiD0AACy-AACqPgAAMD0AAIA7AAAQPQAAUL0AAHy-AACAuwAAlr4AAGy-AACIvQAANL4AAHA9AAD4vQAAoLwAAJa-AADIvQAAZL4AAFw-AAA8PgAAnj4AAJi9AAAEvgAAcL0AABU_AACIPQAAiL0AAKo-AACgPAAAUL0AALg9AACYvSAAOBNACUh8UAEqjwIQARqAAgAAHL4AAGw-AACAOwAAV78AAFA9AAAwvQAAQDwAACS-AABwvQAAjj4AABC9AACqvgAAoLwAALa-AACoPQAAmL0AANi9AABTPwAAML0AAMg9AACAOwAAdL4AAFw-AAAQPQAAiL0AAIY-AACavgAAiD0AABA9AAAMvgAAoLwAAJg9AACAuwAAUL0AAMi9AADgvAAAND4AAJi9AAAcvgAAfL4AABC9AAAEPgAA2L0AAMi9AACIvQAARD4AAH-_AACovQAAuL0AAOC8AABAPAAAVL4AAJI-AAA0PgAAhr4AAEA8AABQPQAAmD0AAIA7AADovQAAcD0AANi9AAAwvQAA4DwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=M-OLmxuLdbU","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14699814226962564882"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"650941375"},"2257417525591023728":{"videoId":"2257417525591023728","docid":"34-1-14-ZBCFC15D874B05BC9","description":"Session by Syed Emad Uddin Shubha (RA, NSU Optics Lab) for CSE 499A...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3372419/9dd5d56c102d113b2f1dd8a4d52e9d49/564x318_1"},"target":"_self","position":"10","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvzD1zsZtAAg","linkTemplate":"/video/preview/2257417525591023728?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor Product, Entanglement, Bell Basis Measurement, Superdense Coding | Bangla","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vzD1zsZtAAg\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhUKEzIyNTc0MTc1MjU1OTEwMjM3MjhaEzIyNTc0MTc1MjU1OTEwMjM3Mjhqrw0SATAYACJFGjEACipoaHNtZWN4cXNzbGxvcmJjaGhVQ2FMNzgtdnZGOVV6LWR0UjNLQVdsWXcSAgASKhDCDw8aDz8TyyaCBCQBgAQrKosBEAEaeIHw_QoA_gIA8wQFAfkD_wH-BgUACf3-AO4E_PgFAAAA9wj8Af8AAAD1DgEKAgAAAPb--wj0_wEAGwL79QMAAAAPA_7__AAAAAQP-wQKAAEB-xAGDwP_AAAR-AwMAAAAAPkPBPH__wAA-gIEBwAAAAD98voEAAAAACAALegN1zs4E0AJSE5QAipzEAAaYDAOADQ0N9epISfX_OLa8fPhFc_syt__-On_MwD-3_sV1JfTGf9BAQf1oQAAAM8cr076AAJy8-zn7PwF8ajk9S4mfwwMCNRc_uu2VzIi_dBKzilLJwDg8x3pKunyKiAV_SAALdh-Fzs4E0AJSG9QAiqvBhAMGqAGAADIQQAAgEAAAAxCAADIwQAAMMEAACxCAACIQgAA2MEAAIrCAAAgwgAAAMEAAKhBAADwwQAAoMAAACTCAAAwwQAANEIAAKBBAAAQQQAAoMAAAHBBAACawgAAwMAAAFDBAAAAwQAAQEAAAJDBAABUQgAAMMEAANBBAADYwQAALEIAABzCAAAAQgAApMIAADjCAAAAQQAAUEIAALBBAABEQgAAEEEAADBBAACYQQAAXEIAAOBAAABwwgAAIEIAAJhCAACsQgAAEEEAANDBAABswgAAEMIAAMBBAAAEwgAAoMAAADTCAACAPwAAeEIAAJRCAADgQQAAZMIAAGzCAACAvwAAMEEAAPjCAADIwQAA6EEAADjCAADIwQAA4EEAABRCAAAAwgAAkEIAAIDBAADmwgAAAMIAAAzCAABEQgAAoMAAAODAAADQQgAALMIAAKjBAADgQQAAlkIAAJjBAACQQQAAXEIAABRCAAAAwAAApEIAAIBAAAAMwgAAREIAAADCAACQwQAAUEEAACRCAABUQgAAsMEAAODBAAA0wgAACMIAAIDCAABgQgAAYEEAACRCAADgQAAAQEIAAKBCAACIQQAAMMEAAODAAAAQQgAAUMEAAAhCAAAEwgAAREIAAADBAAA4wgAAEMEAAFRCAACqwgAA0MEAAEDAAAAYwgAAIEEAAEjCAADAwQAAMEEAAABAAACAPwAAlEIAAODBAABwQQAAMMEAAKBAAAAgwQAArsIAAMBBAABsQgAACEIAAIDAAAAIQgAA4EEAAEzCAADYwQAAoEEAABBBAABwQQAAgEEAANhBAABAwgAA8MEAADDBAACSwgAAMMEAALjBAACgwQAAgMIAAHxCAADwQQAANEIAAJhBAAAgwQAAAEAAAAhCAADQQQAAcMEAADBBAAAgQQAAMEEAAIDBAABwwQAAPEIAANDBAABgwQAACMIAAOBCAACUwgAAiMEAAFDBAAAgwgAAwEAAAABAAADAwAAAqMEAAEDBAACYQQAAQMEAAJjBAACgwAAAAMAAAIDAAABEQgAAMEEAAMDBAACwwgAAQEAgADgTQAlIdVABKo8CEAAagAIAAHC9AABQvQAAjj4AAKC8AACAuwAAyD0AAES-AADGvgAAiL0AAAw-AACOPgAA4LwAACQ-AAAEPgAAML0AAHC9AABkPgAA4DwAAIg9AABcPgAAfz8AACw-AABwvQAAuD0AAAS-AACSvgAAiD0AAOi9AADYPQAArj4AAIC7AACIPQAALL4AAAQ-AACAuwAAED0AAAw-AAC4vQAARL4AAFy-AACWvgAAUD0AAOC8AACYPQAALL4AAIi9AAD4PQAAEL0AAJi9AAB8vgAA-D0AAFQ-AABcPgAAXD4AADS-AAAwvQAACT8AAKA8AAAkPgAAJD4AAOC8AACIvQAAyD0AAIK-IAA4E0AJSHxQASqPAhABGoACAABsvgAAHD4AAMg9AABDvwAABD4AAAS-AACYPQAAHL4AANi9AACGPgAAUL0AACS-AADIvQAAnr4AAEC8AAAwvQAAmL0AAFc_AACIPQAAJD4AAAy-AAB8vgAAcD0AAIC7AAAwvQAAXD4AAJi9AACoPQAAcD0AAIA7AAAwvQAAqD0AAIg9AAAwvQAA2L0AAEC8AABQPQAAoDwAAFC9AACgvAAAdD4AAMi9AADovQAAoLwAAEy-AACgPAAAf78AAHy-AADovQAARD4AAEw-AAA8vgAAdD4AAHC9AACYvQAAcL0AAIC7AAAUPgAAJL4AAJi9AACIPQAAEL0AAFS-AADgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=vzD1zsZtAAg","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2257417525591023728"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9856994532268442583":{"videoId":"9856994532268442583","docid":"34-2-3-Z698BCBBBC5271C79","description":"Tensor product universal property explanation: • Complete Derivation: Universal Property of... the Cartesian product to linear maps on the tensor product. This video explains how we can use the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3502737/36a5acbab15bd037ab9cf074075ecab8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/psC0KQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5i8tp0rD2EA","linkTemplate":"/video/preview/9856994532268442583?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor Product Basis With the Universal Property","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5i8tp0rD2EA\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhUKEzk4NTY5OTQ1MzIyNjg0NDI1ODNaEzk4NTY5OTQ1MzIyNjg0NDI1ODNqhxcSATAYACJEGjAACiloaG1qZ2RneGRldHp3emRoaFVDbzhUMEQ4bXkxSHo1S29IQ1JZT0FuURICABEqEMIPDxoPPxOwBoIEJAGABCsqiwEQARp4gf7-AQj7BQD1AQMFBwT9AQ8IAwr2AQEA9BD6AgYC_wD19wP_-AAAAPgFAgIAAAAA8_oBBf0AAAAZAvz2AwAAAP71_Av-AAAACQb3CP4BAADpAf0AAwAAAAv2_P__AAAAAP8DAQQBAAAEBP0GAAAAAAb2APYAAAAAIAAteaDiOzgTQAlITlACKoQCEAAa8AF9yxX9w825ALP9EwDQLQ8CqS1F_zc58QDO1vwArUjNAOYk8wDi4hYAGhrx_8sp-gDe5bL_6tAX_wzb4_8uAMEBE_PvASvt1gF_LD38Gtqu_tUtPfzj1Pz-_LPSACQk0f8U2Pj7PyLn__z1w_xG6SsD9QEzCB_wLgMB2yr8HfYMBsPk2f8L0AEC2Kcc_agtIQRFw-EE3Ovx9MDw8QMA1t70IPD59e5J9QIq0tUA-BHdDM_eEA4NNd_9y0QNCwv61AjJ7T4I1a7z-fPIFu7w2PIAKe7Y--esDAI7DfT2FA0V-tu24wHKFegO3hz7BdQL8OUgAC3sXds6OBNACUhhUAIqzwcQABrAByuE7b43C8U7s2y5u6n3FLxEJcO7dy7MvEleJ73jVVY9pr_NvP8j0z3BUl08mgucPHS1Fb6Zg5A9LQYPvcVVhT5UMG-9m38qvBmBor1Atbs94aRfvfNZDr44bzc9dvssuzs9SjxBGC48GGM7PODZfj1ScU29zTdHvKmqyLuyXSa9X8EMvVHNpj0AGxC91oXpvAoC2rwiBcU8R1J3PFPQrTwW7BC9Em_4vIJeE72TXUQ8Oy86PL-aA72RlDk9deuQug25sz2Tf3w9XENfvP1avb2CA1Y7155-vHhki7rjv2W9pdhyu1jzLbx1ETU9euFOvLybIj3AA6i9wz-yO2Glir5znFs8VQTuO0YK5T2jliA8U83uO9zvhb3dCfY9yJ3rulU8BD0Qela9KlMMvajJZ7w2e7s8RYCTPKcqiD2_wpe72-Z8PI1KJT3WIyg9LPOWPFwTHL0I8My7HJ-kvHugNb2HbYs8Vi6vu3PpSb0DbTw7UTsyvKpzFj0Enio9fPTEO0G5bbx1ttu8ENWKPKPHhD2DxxS8G4NKO8eDbb1XEI69nbdWvP2k2ju6jbE9DQ20uuQsTD7qV4-9AwyFOyh22bxXCKu9NIiLuzX6hz0O_a6845mju84rCL2gBoQ71EKsOyhyUr10MDE9Pqn-uzBmyzwqpw0-bpMoutBPJ713ooS9ofeEOpt-vz0Ud_w89IgrOoO1-7w7BAk9Vlmlu6vmvj2JDCu-jOaWOhreLL7Reji9oXLAOXcXw7xSIhE8BFSbO9DQpDz205-9hFmyOVPqAj60-N68YBy_uS3RCb6WIS49nrhguFicoDwLT9480Y_FOIsGXzzTvKO9P3xBOEa5L73cxQq9eEWzuanTKrvAXmE83VtrNlNZ9L2v4bO8jIyPuaNHI7w9dIs8WlJKORbSKz28MGM9S-LANsXUTDyPrUK84x8IuoWxibuS-vw7OoxCuLuPq7q1Bbo8Y_gFOcK0ubxMip-9BmB2OMN3LD3uSKA9be0bOVHZ8Lw55Rs9kkqUOGCJLD0wVxA9EgwqN_cvmrxXNKU7jro6OA2p4j0ilTi97d5BN7SQEL7YjKI9mXsEtwQQjT16vQC9BTCAOPW47zwSdgA9EoO-OJZIWDyuSMw8H0dQOB-fAD6k5JC9Feg6ucCkQjzfA0-8bnQluDKU7ry6-Lu9NhcmuCPchD35l749blE1t3F-eTy-6cy7l-9hssr0cD0i4Ss-8cuKODmhC73REIQ95dPVuOEti72bf8s65gAKOFjqtDyzAJe93TNHNyAAOBNACUhtUAEqcxAAGmAyDQAv8gwT7yQi7xTz7PYB4QTu67oX_-jmAOsB0xz-C-7BF_D_R_Yb5bsAAAAD_f4yBwAJXe0C3fD1LurbpQkDGn_mCiqi7__l_BX7MBIDCfDYFyIA5vXDPhvhwQ8Q3hEgAC0RGD87OBNACUhvUAIqrwYQDBqgBgAAmEEAAKDBAACgQgAAQMEAAIpCAADgQQAAtEIAAAzCAABgwgAA4EAAANjBAACgQAAATMIAAAAAAAAsQgAAgD8AAMDBAACowQAAmkIAAHDCAAD4wQAAAMAAANDBAABEQgAAqEEAAADBAADwwQAA-MEAAFRCAABAQQAAgMAAAKDAAACYwQAAoEEAAJzCAAAgQQAAAMAAAI5CAABAwgAA4EAAAOBAAAAMQgAANEIAABDCAABQwQAA2MEAAEBBAACAQQAAjkIAADzCAAA8wgAAEMEAABhCAABcQgAAAMAAAKDBAACAPwAA6EEAAAjCAAC4QQAA-EEAAJLCAAAQwQAASMIAAIjBAACwwQAAAAAAAKDCAAA8wgAAgMEAAGBCAACiQgAA2MIAAKBCAACIQQAAwMIAAETCAAAAQAAA4EAAAMDAAACiwgAAgMAAABRCAACAvwAAhEIAAIhBAACgwQAA4EEAAKpCAAB8wgAAmMEAADBCAACAQAAAdMIAAIA_AACYwgAAqEEAADBBAABEQgAAAEAAAPDBAAAsQgAAUEIAAEzCAAD6wgAAOEIAAAxCAAAAQgAA4MEAADhCAAAYQgAAYEIAACzCAACAQAAAIMEAAGBCAABAwAAAgD8AAPDBAACCwgAAwMEAAADBAAAMwgAAgMEAACBBAAAgQQAAqMEAAABAAABAwgAAHMIAAEDAAACoQQAAAEEAAJpCAACAwAAAEMEAAOBBAAAsQgAAgL8AAILCAAAMQgAAkEEAAOBAAABUwgAAmEEAAMDBAACgwAAAYEIAAEBAAADwwQAAoEAAAKBAAAB4QgAAMMEAAPBBAABgwgAAUMEAADjCAADwwQAAKEIAAGzCAAB8QgAAAMAAALDBAABAQAAABMIAAIBBAABgQgAAQEAAAAjCAACAPwAAAMEAAMDAAACQwQAAGEIAAKDBAABQQQAAAMIAAKDAAADAQgAAwMAAACTCAAAIwgAASMIAAPhBAAAQwgAAAEEAADBCAACIwQAAoMEAAODBAADAQQAA6EEAABDCAAAIwgAAdEIAAIDBAADoQQAAgMIAAGDCIAA4E0AJSHVQASqPAhAAGoACAAC4vQAANL4AAGQ-AACgPAAAuD0AAPg9AAD4vQAAD78AAGS-AACIPQAAoLwAAAS-AABAPAAAuD0AANi9AADgvAAAZD4AAHC9AADIPQAAqj4AAH8_AACiPgAAVD4AAIC7AACAOwAAoLwAAKg9AABAvAAA-L0AAPg9AAAEPgAAXD4AAOi9AACYPQAAuD0AAIA7AAAMPgAAcL0AAGS-AADovQAA3r4AANi9AABEPgAAiD0AAHC9AAAUvgAAoLwAAHy-AAAkvgAAEL0AADQ-AAA0vgAAiD0AAII-AAB8vgAABL4AAAU_AACAOwAATL4AAEQ-AACYPQAAJD4AABw-AAAMviAAOBNACUh8UAEqjwIQARqAAgAA4LwAADw-AACIvQAAE78AAFC9AACIPQAAJD4AAKC8AACAuwAAVD4AAES-AACyvgAAUL0AAEy-AACYPQAAUL0AAIi9AAApPwAAoLwAAJI-AACoPQAAmL0AAEC8AABAPAAAMD0AAAw-AABQPQAA2D0AADA9AABQvQAA4LwAAMg9AAC4vQAADL4AAIK-AAAEvgAAkj4AAFA9AAB0vgAANL4AAIg9AAAcPgAADD4AAJi9AACIPQAAMD0AAH-_AABQvQAAED0AACQ-AAD4vQAAuL0AABy-AACYPQAATD4AAJg9AADgPAAABD4AANi9AACWPgAAJD4AAMi9AAAQPQAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=5i8tp0rD2EA","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9856994532268442583"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1124677718"},"12253591538338101501":{"videoId":"12253591538338101501","docid":"34-5-3-ZE478C500052FBA75","description":"The notion of tensor products of vector spaces appears in many branches of mathematics, notably in the study of multilinear algebra which is vital to differential geometry. However, one can...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3430537/da5c334a52f08b7aad453dd9a9ad7faf/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gqgZ3wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkGkOo7w8xeM","linkTemplate":"/video/preview/12253591538338101501?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor products of modules","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kGkOo7w8xeM\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhYKFDEyMjUzNTkxNTM4MzM4MTAxNTAxWhQxMjI1MzU5MTUzODMzODEwMTUwMWqIFxIBMBgAIkUaMQAKKmhoZ3VlcXJjdGlpdmljeWJoaFVDblR1SEJWYUJzSzlUQlJrOTZCSmhRdxICABIqEMIPDxoPPxPPB4IEJAGABCsqiwEQARp4ge4B-f38BQD39wEJ-Qb-AhMJ_Pz1AgIA_wkKAAUF_gDuAwUKBQAAAPUOAQkCAAAA9AQOBPcAAQAT-vT1AwAAAAsGA_YBAAAADAEBAf8BAAD2_wD9-QEAAAL3BQYAAAAA-wQJC_4AAAAE-wQDAAAAAPvz-_kAAAAAIAAtcYbeOzgTQAlITlACKoQCEAAa8AF_-f8Bwe7a_xXu8ADKBgsBkB4J_xkg5QDVDgP_3AXlARUL9wHm7PYAAfcJAMEi-f8YAM4AA9ES_yvxAP87-fIA8_8JABfwDgElACcBBAXZANoUAf4x6gQCCALlARYTBQD9BDT_9Pzn-__q0wAZ7BMC8BgOAwXsB_8F-yYD_AoABO_j3_7u7wwG9eoXAND_GgH96OoB--v399wB_gQX9fb7_OcD-xI17f8aDuwE2PsG--gD_wMO3PX-_R8WCe0T-gTqAxIA6PT89gomEfsN8gEF7wvw-h3F_AgUDggM79MA8-T17wH4Fwf82Bj5C_kJ-PQgAC2cfzE7OBNACUhhUAIqzwcQABrAB4Du074R3sO65eiWvMq7n71aRoo9fIZLvKsiDL4SAIc9m4ijPHi13LyL09470TERvZxNl77qPVy5ZI8WvKDiKD5R28a8RA42PHXJKL7aVJ09k5CjPG7fY77VbkW9Bp4bvUwZCD6mjO48M65Rux1mnjzzlxG9s2qGPHzf7rytrhm9Ze6QOwlBvb25JpM89pMWvEfVlT0z0Va9u5a1vPp0wT2uTgm97jLyPP0VsjzG_Ky9OOjcPCOdA7zN2jc8N5xDPOerVD7wXZQ8bMkNPAXuaj1Otda8Ux9tO792-rzW7Jw8k3cpvSHnvbyRqfE8nB-5O_zD1j1mgI87-_IXvNk_772c-fU9AzZvu_sFOz7aN9c9RHXKOxg-Yr12t3w9Ft8rPKH22z0Begs97rAJPQuWKj1wlSe8qsw5PJueYb0dPd49lqq8utrjprscnU68-j4BPSsD_TzNtxm9tm8JvKjsqjyhXhU9_R3Au9O2hjugJmk83ejIvLjq-j2E2SS9ZciMvPEplT3BxQo9RdA9vEVcpTxzuPa95AQ3PNKJhDv3RgO9uoFNOnto_z3Yq169rKNTO67k9Dx0v366Gr_0O7mNpj2br9K9okhlOu9JMb2skiM9va46vJDZWb2wI2m8NaUIvAcjNr28HJs7o8owvJ34qLvpkXA9VedFu9s7vDpKs3m8tx0BvJt-vz0Ud_w89IgrOlKTRT3O_Gq8OmbRu2nk0z3J0r28UrAGuNApSDuTLRy99QdSOwcuBzyhwgy9xMmBuz5hRD3nA329J5a9uKLHVju4zaQ9cRnCONnt87wXXBi9MtyzNzoBDztXAzm8CnQfOhSdi72JeuG9xidwOe4tm7wjSKm7kcD2Op4_kj2hA9w8O26xufaQOrwLVmY8PVeEOe-CMj1rjp09PS0VuZ34hTziBCa8OHy1uBMJS71Z2o68740luealCztTuzW9fdzCOB2ItLsMDmU9EmcHOJi0Ujs_cMW99y5gOc6vwTxJk8w930SHuGWE3Lysl5U9ei8JN_ZpyzyxPhS9gkzqt95Z-zzY8Z-9GA2XOGf4qrxhybC87CeNOFRT0r3odM-8L_jFN5OecTvbmRO9iwvaOKVSRzxggT69v-bSN_akQr0wJRc9g8PIN8HjKz7cpWi8B4l0uSByZL2e2Sm9BCt_uA2fujvPXFG9oUWutgX65L3tBnY9KnvPOOwDvTt81A--F_rcuFUYpj1tC8U9g8fnOJiTZTuAC9I9mOQPudoROL0tK6g89CIkuLhLkbx-7yW8aZOSNyAAOBNACUhtUAEqcxAAGmBA-QAr_iD33hk74xiU9xvs1CfCD8T4__vf_9380APy_g-yARv_D_7-0qMAAAAe6vv6CgD_f8q0wfDfKu3pre_3InsmGk_E-Bj-xfwNA878GxPV92oA7QaVPPfNs-dNNwcgAC1OzhY7OBNACUhvUAIqrwYQDBqgBgAAkMEAAEDAAAAcQgAAFMIAAEDAAACIQQAA4EIAAEDBAACkwgAAgD8AAABBAABgwQAAuMEAAOBAAAAAAAAA-MEAAIZCAABkwgAAgD8AANjBAABQwgAA8MEAAJDCAAB4QgAAKEIAAADAAAAQwgAA4MAAAJBBAACQQgAA4MAAAADCAACQwQAAHEIAAHjCAACgwAAAQEAAACxCAABAQAAATEIAADRCAADAQAAAAAAAAKBAAACIQQAAsMEAAARCAACgwAAAUEIAANhBAADgwAAAAMIAAEDBAAAEQgAAQMAAACDCAACOwgAATEIAAIC_AAA0QgAAoEEAAMDAAABEwgAA0MEAAEDBAAB4wgAAcEEAAKrCAAAAwgAAGMIAAFxCAABoQgAAMMIAAIBCAACIQQAATMIAAMzCAADgwAAA6EEAAEDBAADAwgAAZEIAAABAAAAAwgAAUEIAAKZCAABAwgAAUMEAAGhCAABgQQAAYEEAABxCAADAQQAA-MEAAGBBAADowQAAuEEAAIDBAAAcQgAAwEEAADzCAACkQgAAkEEAAKDAAABYwgAAoEEAAAAAAAAwQgAAcMIAAKpCAADIQQAATEIAAIA_AADgwAAAcMEAAKpCAAC4wQAAeMIAALhBAABowgAAmMEAACBBAABwQQAAbMIAAMDAAACgQQAAuMEAAFjCAAAUwgAA0EEAAPDBAABswgAAoMEAAJ5CAABQQQAA8MEAACDBAADQwQAACMIAAI7CAAB4QgAAUEEAAIhBAADAwAAAgEEAAMBBAACwwQAAIMEAAKhBAACYwQAAuEEAABBCAADYQQAAAMEAAADCAAD4wQAApMIAAJjBAAB8wgAAAAAAAJbCAADYQQAAYEEAAChCAACKQgAAEEEAAMhBAAAQQQAAmEEAABDCAAAYwgAAgD8AAJhBAAAgQQAAgMAAAKBAAABwQgAAoMEAAKBAAADMQgAAjMIAAK7CAABwwQAAEMIAADhCAAB0wgAAbMIAALhBAAAAwAAAQMAAAFBBAAAAwAAAwMEAAAAAAACowQAANEIAAPjBAAAIQgAAqMEAAOjBIAA4E0AJSHVQASqPAhAAGoACAAC4PQAAoLwAAOA8AAAwPQAAgLsAAOA8AACYvQAACb8AAMi9AAAkPgAAmD0AADy-AAC4vQAAVD4AAHy-AABAvAAAoLwAAHA9AAAkPgAA6j4AAH8_AADYvQAAcD0AAJK-AACevgAAgLsAAOC8AADgvAAAQLwAAHQ-AAAsPgAAEL0AALi9AAC2PgAA-L0AALi9AAAwvQAAZL4AAIq-AACgPAAAqr4AABS-AABAvAAARL4AALi9AACIvQAAyD0AACy-AABwvQAAmL0AAJg9AADoPQAAdD4AAMg9AADovQAAUL0AAB8_AABQvQAAmD0AAIY-AACYvQAAgLsAAHA9AADovSAAOBNACUh8UAEqjwIQARqAAgAAmL0AABQ-AABUvgAAG78AAOA8AABwvQAAPD4AABy-AACAuwAAHD4AAGS-AACivgAA6L0AAL6-AAC4PQAAEL0AABA9AAAhPwAATL4AAIY-AACIPQAAMD0AABA9AACYPQAAgLsAAMg9AAAUvgAAqD0AAEA8AAAsvgAAQLwAADQ-AABQvQAAjr4AAKa-AACoPQAAmj4AADA9AAAMvgAAJL4AAAQ-AACAOwAA2L0AAMi9AAAcPgAARD4AAH-_AACavgAAJL4AAKg9AAAwPQAABL4AAIC7AACgvAAAmL0AAIg9AACAuwAADD4AAFC9AABUPgAAMD0AABC9AAAQvQAAQDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=kGkOo7w8xeM","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12253591538338101501"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2846502744"},"12839996867003173050":{"videoId":"12839996867003173050","docid":"34-10-6-Z9E7B26A2C0F098EC","description":"lecture • Group theory lecture Category theory • Category theory Field theory in abstract algebra • Field theory (abstract algebra) Mathematical analysis • Mathematical analysis...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4370837/eaf8bf29cb4cabe585a04839879ceea5/564x318_1"},"target":"_self","position":"14","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOdPtwCRL9EU","linkTemplate":"/video/preview/12839996867003173050?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor product of Ox modules, locally free sheaves and Picard group","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OdPtwCRL9EU\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhYKFDEyODM5OTk2ODY3MDAzMTczMDUwWhQxMjgzOTk5Njg2NzAwMzE3MzA1MGqvDRIBMBgAIkUaMQAKKmhoeGpzaGVud2VhamhiZWJoaFVDTFNMOVlHVFUtQlpqcXRZd2tudjlmQRICABIqEMIPDxoPPxPuBYIEJAGABCsqiwEQARp4gfD9CgD-AgD79Q3_BwX-ARQF-Ab1AQEA8xH6AgYC_wDzAAj8-wAAAPr9CQUAAAAA7Q4EDPsBAAAZBfD-AwAAAAkN_AL6AAAACQMHB_8BAAD0-_78AwAAAP72AAz_AAAA8v8IBfv_AAD4-AL7AAAAAPXpB_MAAAAAIAAt6A3XOzgTQAlITlACKnMQABpgGBQAITP6ye3oaNcEztcCIuIMztjlTf8Q0P8I8MjNJcnGyyHy_x3xDeGhAAAA3PfvCTcA8HsKsqrmISbz5afsJxp_JhMhwgMq764H7fo0ANL7LfNlAMXp_yQFpg33GyT_IAAtlFcXOzgTQAlIb1ACKq8GEAwaoAYAAATCAADAQQAAdEIAAKDAAAAQQQAAIEIAAIhCAABswgAAgsIAABDCAAAYQgAAAMEAAK7CAABMwgAA-EEAACDBAACQQQAA6EEAADDBAAAQwgAAiEEAABzCAADwQQAALEIAABxCAACAQAAASMIAAEDAAAAAQgAAjkIAAOBAAAAoQgAAlMIAAATCAABcwgAAFMIAAOBAAAC-QgAAJMIAADBCAAAkwgAAgMAAAHBBAABQwQAACEIAAIC_AAAAwQAA2MEAAOBCAABQwQAANMIAAJhBAACQQQAAAEAAAOBAAADowQAA1MIAACDBAADAQAAAMEEAAIA_AABQwgAAAEAAAIDBAACAQAAAMEEAAIjCAABAwgAAqEEAAABBAABQQQAAHEIAAITCAADIQQAAQMEAACzCAACcwgAABMIAAIJCAAA0QgAAQMIAAJBCAAAAQAAAEEEAABxCAACAPwAAAMAAAAxCAACkQgAAQEEAAIhBAAB4QgAAqMEAAHTCAADoQQAAisIAAMDBAACowQAAQMAAAJDCAABowgAA8EEAALBBAACAwQAAgsIAAERCAABIwgAAAAAAAMDAAAAcQgAAWEIAAIxCAAAwwgAAsMEAAABAAABMwgAAqMEAABDBAABwwQAAksIAAGDCAABwwgAAsMEAACzCAAD4wQAA2EEAAATCAAAwwgAAfMIAAGRCAACwQgAAMEEAAGTCAACYQQAAuEEAAMBAAABQQgAAyEEAALjBAACQwgAAnsIAAMDAAACIwQAAOMIAADRCAAAQwQAAOMIAALDBAACAwQAAgMAAAKhBAADAwAAAqEEAAEDAAAAQQQAAAMIAAFzCAACIwgAAhMIAAIpCAADoQQAAqEEAAAzCAACAvwAAQEAAABBBAAAwQQAAPEIAAAxCAAAIQgAAUEEAAFxCAAAAAAAAgEAAAABBAAAQQQAAMMIAAMBBAABQQQAAVEIAADTCAAAcwgAAUMEAAIC_AAAkQgAAHEIAAIC_AABMQgAAmEEAANDBAAAQwQAAgD8AABBBAABIwgAAMEEAAIC_AAAAQgAAFMIAAJbCAACAwCAAOBNACUh1UAEqjwIQABqAAgAAgDsAADC9AAA0PgAAUL0AALg9AAAwPQAA6D0AAOq-AABkvgAAqD0AANg9AADIvQAAyD0AALo-AADovQAAUD0AAMg9AAAEPgAAgj4AAOY-AAB_PwAA6D0AAHA9AADovQAAjr4AALi9AAAcPgAAEL0AADQ-AABMPgAABD4AALK-AABAvAAAgDsAAMg9AACYPQAAqD0AAJi9AACavgAAJL4AACy-AACIvQAAUD0AAPg9AACSvgAAqD0AAHQ-AADCvgAA6D0AAGy-AAAcPgAAbD4AAKY-AACgPAAANL4AAOC8AAAFPwAAFD4AADw-AAAwPQAAQLwAAKi9AABQPQAAhr4gADgTQAlIfFABKo8CEAEagAIAAMi9AACOPgAAEL0AAA-_AACSvgAAiL0AAIY-AAA8vgAAuL0AAL4-AAAwvQAAbL4AAFS-AAAMvgAA6D0AAHC9AACovQAAMT8AADC9AADGPgAAND4AAFy-AABkvgAAMD0AAKi9AABwvQAAJL4AAAQ-AADIPQAAcL0AAHC9AADoPQAAFL4AACy-AACgPAAAPD4AALY-AACIPQAAPL4AAEy-AABAPAAAND4AAOi9AACYvQAAXD4AAHQ-AAB_vwAAmL0AALg9AAA8vgAAQLwAAKC8AABQvQAALD4AAMi9AAAcPgAAgLsAALg9AACAOwAAmj4AAOg9AABAvAAAND4AAFA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=OdPtwCRL9EU","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12839996867003173050"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14903190412506391483":{"videoId":"14903190412506391483","docid":"34-5-1-Z10EFBB83FD6304B4","description":"This playlist/video has been uploaded for Marketing purposes and contains only selective videos. For the entire video course and code, visit [http://bit.ly/2Do0Dek]. For this example, we will...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3431135/e8fab51ad2347f43fee63a6e1dd0287e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ZENTRwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNMPufa4IA3A","linkTemplate":"/video/preview/14903190412506391483?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"TensorFlow for Machine Learning Solutions: Working with a Linear SVM| packtpub.com","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NMPufa4IA3A\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhYKFDE0OTAzMTkwNDEyNTA2MzkxNDgzWhQxNDkwMzE5MDQxMjUwNjM5MTQ4M2qIFxIBMBgAIkUaMQAKKmhoa2hkZHZraWxhY3p0ZmNoaFVDM1Z5ZEJHQmwxMzJiYVBDTGVEc3BNURICABIqEMIPDxoPPxOhAoIEJAGABCsqiwEQARp4gfwR-Aj_AgD8ABAFBwf8ARQF-Ab1AQEA_Qn4CAMF_gAC-vv__wEAAAYD_AoJAAAA7wD4__AAAQAQAff8BAAAAP4DBAX8AAAABA_7BAoAAQH1_gMEAwAAAAkFBAEAAAAA-wQJC_0AAAAFB_7-AAAAAAUB-wUAAAAAIAAttZPWOzgTQAlITlACKoQCEAAa8AFb_fj-AfkDA8bk-ADZBQQBgQAC_yb_2wC5DuwA3fLIAfD16QDn_Dn-7w8OAKwQCwHuAt3-GxgrAAngK_8j-PX_GBD3ATLqEgAq_BYB8CD4_wEfJ_8j1hIAItf2ATD45_0v2hj-2_fmANXs6gD_BCgAEPMC_zTu9v_qBQIA7AYU_dcR1_4DCQz60_4X_xHqDQASLOIBIjH0_v37-wcxE_MLF_wnARsR-QXtFhcF7BH-AuwR7QIF9gYDAQILDw8yFQHoAxQABO389fMn8fY15_D-ARj7-B7d6wL6AfgE5_T89swwBwLnMQMO0Q8R--r-DvwgAC2_TyQ7OBNACUhhUAIqzwcQABrAB5IH8r6mQAs94IOXvMl3hLrVNeQ8-_HNvM3Aor0zJhO9lD8pPE0Tlj2jFYk9QW8APR3Jxb5mCJG8faWNPf29dD6SVEu9A7HsPGLZLL5yAqo7w2QKvfWha76E0wc9dDXDuztFXT2Zuiu8Xd-HPKnB1D3qqDQ87UqmvDM4pbyAJds7WwBkvPBVBj3NhHW95jXAvJT2Bj6qAKk8EzLUueYDQj72PU-9RwEBu1pXVr2eDC49CkoPPHL-Ab30Eog89gJYvOqv9z0xslE6yE0DPUl0Jb0IXBK9_lx6u0kL_DyZB1U9SbqoO2RAUbw3F388Zz6MPF1OLj0xA_q8rXesO635Ab5UpZI8IdHfO91gOD4pplw94xs-OuCgPb31keU8uG-aPLO-N7y3HQW8-reJOzBjqj2hkZk8JmmjPGtzrbtc4zg9A50kvJrShT03LxM9QQsJPLpjFj3k9ss8ptWMu9xhOLyzVVM98_sCPFWPur2-OTc8F5klvC2PmjyGe8A8PRKrO30J1T0RqrM66kKHO6PHhD2DxxS8G4NKO4Pq1TpRkBC8GrjJu7WRJj1_qzA9ux3MuxWQVj2_Xpa93UPCu0gIxbzaFxY8aRiEu6R9vT1zyYe9L8gvO_QTczwKOhA9Eh_tO7P-IjxzdVG9VweAvDppa700BzI94BKdO-cH5Lxol4-9mbUYuxqcjT3kxw49npHvu-8rhbw_eju7OM0OOxJQwT3BeEG9YdMKuh_V1bxKnLC8ZGaXuhFgRzzj6ZA9WwAwOWregT1RZmi9AhaEOarwSrv0fu07mWSiuglxIL1fVxg9B-w2Odo_6jwJRu-8cm1qut0qo7xXPcC9kQYeOWblLb1JdEC9pV-zOSnM-7xK3zW8hWDROdNS1Lx6Qbq8J34Uuot8TTyLsX25G9kfuZ34hTziBCa8OHy1uCWIJD0WXY082DXlOLVLAL1uUUa9u0pSOKxMgr0xZ7E9q_tIOMLQ9Dzd1P674Y4LOUY_Oj30zoc9bP63uOKJKj1zVno9ZNmpN7lIa7wBgyk9nlfSuHZTar1Xz8m9XDpquGJkTj1xISo9mhwauMJLtb2NTQI8DbpPNgKKBzyfOaC9sxGdt0ySQj3dmB66cUwHOL__hTyY3fO9KK26NhOGjD1N3UU6kNuduIzbKD1Ff029X0ATNzpZ6jz_AM47gaaitZ2ifjyeEBU9YSubNj-Oxj0r3gi-hyK0uMr0cD0i4Ss-8cuKOKVPK71mhg09DqvnuJVpT73nr6m78Ly3NsHFjrtiFa-8QXEzNyAAOBNACUhtUAEqcxAAGmAn-gA1BRGy6SBF5xvK6wz39QXBHagm_wzl_-kFExn0B7zDKvr_Ke4j7aAAAAAtA8UkFAAJefnG4N3fD_SslfEo33_EByLaJUoZuc4X8iHs8hf9VUUAFNvMETLy0iteBzEgAC1X_hU7OBNACUhvUAIqrwYQDBqgBgAAQMAAAJBCAAAoQgAAZEIAAFxCAADAQgAAXEIAAMBAAACcwgAALMIAAIBBAABMwgAAnMIAAAhCAADgQAAAfMIAAEDBAACkwgAAYMEAABzCAACAQQAA0MEAABzCAABwQQAAgEAAADDCAABQwgAAKMIAANpCAADIwQAAAMEAALBBAACewgAA-EEAAIjBAAAEwgAAUEEAAAhCAADIQQAAjEIAAIBBAADwwQAAkMEAANjBAAB4wgAAIMIAAMBBAACgQQAA6EEAALjBAACewgAAcMEAANBBAADAQAAArkIAALhBAABswgAA4MEAAFDBAAD4QQAAqEEAABBCAAAIwgAAOMIAALhBAACAwAAAgEEAAJjBAADgwAAAMMEAABxCAAAAwAAAUEEAAFDBAAAQwgAAAAAAACTCAACAwAAAUEIAAIDBAAAgwQAArkIAAGDBAADgQAAAHMIAAIjBAABwQQAADEIAAMZCAAAAwQAAQEEAAIJCAABwwQAAFMIAAEzCAAAQwQAAEMIAAEDBAACYQQAAdMIAADzCAACAPwAA-EEAABRCAAC4wQAAqEEAAADCAAA8QgAAoMEAAKJCAADAQAAAoMAAAJDBAAD0QgAAIMEAAGhCAAAAwgAA4MAAAOjBAACIwQAAMMEAAKbCAACAwQAAisIAACRCAADgQAAA4EEAACBCAACwwQAAUMEAABzCAACowQAAcMEAAJjBAACgwAAADEIAAJ5CAACAQAAAgEEAAOjBAACgQQAAUEEAALBBAAA0wgAAiEIAANDBAADYwQAAqkIAABBBAABUwgAAAMAAAAAAAAD4QQAAgMAAAHDBAAAkwgAAiMEAAIBBAAAAwAAAgEEAAEBAAACmQgAAQMIAAEjCAADQwQAAwMEAABRCAABgQQAAGMIAANBBAAAAwAAAZEIAAMDAAAAsQgAAAEEAAOBBAAB8QgAA6MEAAABBAAB0QgAAkMIAANDBAACAQAAAgEEAAEDAAABAQQAAfMIAAGhCAACIQQAAmEEAACBBAABQwQAAmEEAAMDAAAAQwQAAkEEAAIzCAAAYwgAA4EEAAOjBIAA4E0AJSHVQASqPAhAAGoACAAD4vQAAFL4AADw-AACmPgAAML0AAFA9AAAwvQAAD78AAHy-AAB0vgAAcL0AAJi9AABAvAAAdD4AALa-AACIvQAAxj4AAOC8AAB8PgAA9j4AAH8_AAAQPQAAUL0AAFC9AACYvQAAHL4AAII-AABUvgAAnr4AAEQ-AABMPgAAgDsAAOA8AABEPgAAuL0AADA9AACgPAAAyr4AAK6-AABwPQAArr4AAJi9AAB8PgAAqD0AAAw-AAA8PgAAzj4AAFS-AABwvQAANL4AAGw-AACgPAAAUD0AAGS-AAA8vgAAFL4AAFU_AAA0PgAADD4AABA9AAD4vQAA4LwAADS-AABAvCAAOBNACUh8UAEqjwIQARqAAgAAgr4AAPg9AAD4vQAAGb8AAAQ-AACAOwAAqL0AAIi9AAAQvQAAED0AAJa-AABMvgAATL4AAMa-AADoPQAAUL0AALi9AAAvPwAAcL0AAHQ-AACgPAAAFL4AAAw-AAD4PQAA4LwAAPg9AACCvgAAyD0AAKg9AABcvgAAED0AAAQ-AACgPAAAiD0AAIA7AACgvAAAqj4AAJg9AAA8vgAAML0AANg9AACYPQAAuL0AAIi9AABwPQAAoLwAAH-_AACIvQAAoDwAAPg9AABAPAAApr4AAIg9AABMPgAAoLwAAHA9AACgPAAAQLwAAEy-AAAkPgAAcL0AABA9AAAQPQAAUD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=NMPufa4IA3A","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14903190412506391483"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2895432942"},"8054963125669036454":{"videoId":"8054963125669036454","docid":"34-0-14-Z0E44D23CADE587FB","description":"Program written by Caio Adriano Silvano as a final assignment for Stanford University's Code in Place (2021) Software for calculating Tensor Products and Matrix Multiplications without using NumPy.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4022006/4329867e781a36db2867cb6fad196a52/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2I92ngEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D60YJBFE3bM0","linkTemplate":"/video/preview/8054963125669036454?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor Product and Matrix Multiplication (Python Code) - Code in Place 2021 (Stanford University)","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=60YJBFE3bM0\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhUKEzgwNTQ5NjMxMjU2NjkwMzY0NTRaEzgwNTQ5NjMxMjU2NjkwMzY0NTRqtA8SATAYACJDGi8ACihoaHBlcHV6Y2NicmNjZGhoVUNMSkp5aFhORUNzY090T0tyaTVoQ0R3EgIAECoQwg8PGg8_E_8BggQkAYAEKyqLARABGniB-gILAAT8APABEQT5BP8BKfb0AvMFBADzD_b0AwH_AOv4Efz9_wAABwMDBPUAAAD-_Av98_4BAA0R7QADAAAADwHzEP0AAAAND-4C_wEAAOr78gkD_wAAIfUGAwAAAAD_-AkF_P8AAA0HAQUAAAAACAYLA_8AAAAgAC1s-MY7OBNACUhOUAIqhAIQABrwAXME7P_O_gMAABUAANnv4QCByA_8QSv_AAbyBgDEA-UA5vf0AN8CHQGpCAcB0RL1AMri3_4uDQYBFuju_w_wNAAnJwQAENrxAj_0BADZG_r_BBYU_jTpBQIl7BgA4QnzAC_XBQDw7u0B2NzNBfLyPQIP8wL_BxcEAtvwMAQQ_yD-6vQPBN8B-QPS5fcCFfkWA_sNxgg0CN0A8SMQAwD4-gcAAAD8__8CAg0IEgX_9AP92gP9-_j8BQv1B_n4Ffgk_-wSDPfvBwj77Pr1-gsN5_n2IxP_-uURCeX4AAr_7Af1GvT8AuYSCPXoCxj-7xb1ASAALfdyKTs4E0AJSGFQAipzEAAaYBn8ADfsF93eBz3f9-LQIQDGHOgi-___-t0AAQLd8QADDasAJv8t3g8BswAAACcO8CjwAPlk4tPZ89w39-Pd9iEafwH3K9D5Cd3t2D0j0AIMzgsTEgAJusQOKBLLOEERCiAALcM4Nzs4E0AJSG9QAiqvBhAMGqAGAABgwQAAikIAACBBAAAwQQAAFEIAAJpCAABAQgAAgD8AAJbCAACwwQAAoEEAAOjBAACgQQAAqEEAAI5CAADIwQAAUMEAAIDAAACYwQAARMIAAEBCAADQwQAAfMIAAIBBAAAwQQAA-MEAAAzCAACAQQAAfEIAAMjBAABgwQAAwEEAAIjCAACCQgAAwEEAAJjCAACAPwAA8EEAANhBAAC6QgAAYEEAAFTCAACoQQAABMIAAMBAAABkwgAAIEIAABhCAABsQgAAcMEAAKDCAACwwQAAmEEAAFTCAADwQQAAoEEAAHzCAAAQwgAAIEEAANhBAAAAQQAAQMAAAETCAACawgAAcEEAAHjCAACQQQAAEEEAAGRCAABMwgAAMEEAAABAAADAQAAAGEIAAIBBAADIQQAAMMIAAMBBAABYQgAAYEEAAATCAACkQgAA0MEAAABAAABwQQAA4EAAAIDBAABQQgAASEIAAIBAAABAQQAAiEEAAIBAAAAcwgAAEEEAAOBBAABcwgAAoMEAAEBBAACgwQAAYMIAAGhCAAD4QQAAGEIAAFzCAADAQAAAiMEAACDBAACAPwAAPEIAAHDBAABQQQAA0MEAAFxCAABgQQAAmEEAANBBAACgwAAAVEIAAIDAAADAQQAAuMIAAJhBAABUwgAAQEAAAJhBAABAQQAAwEAAAHjCAACQQQAAqMEAAFTCAAAwQgAAuMEAAMDAAACwwQAAQEEAADjCAAAgwgAA4MEAAAAAAACAvwAAAEIAAAAAAAC8QgAAiEEAABjCAAAgQgAAMEEAADTCAACoQQAACEIAAHBBAAAYwgAAYEEAAIbCAACgwAAA4MAAAFBBAAAQQgAAZEIAACBCAADAwQAAMEIAAEBBAABIwgAAQEIAAIC_AABMQgAAIMEAAIDBAABgQQAAyMEAAMDAAAAAAAAAjEIAALZCAACQwQAAQEEAAPZCAACewgAARMIAAAxCAAA0wgAAVEIAAMhBAACIwgAAykIAAMBAAADowQAAVEIAAFTCAAAUwgAA2EEAACDCAABYQgAAjsIAANDBAACAQAAAAAAgADgTQAlIdVABKo8CEAAagAIAADC9AADYvQAArj4AADA9AAAwvQAAUL0AABC9AABJvwAA4r4AAKg9AAAUPgAAHL4AAKo-AACGPgAAqL0AAJ6-AABEPgAAJD4AAEQ-AACyPgAAfz8AAEQ-AACoPQAAbD4AABy-AAAMvgAA7j4AAIK-AAAwvQAAJL4AAAw-AABQvQAAUL0AAFA9AACCPgAAiD0AAIo-AACivgAATL4AADy-AADSvgAAZD4AAHy-AACgvAAAoDwAAGw-AACSPgAAir4AAEA8AAC6vgAA-D0AAHA9AAAkPgAApj4AAMi9AAC4vQAANz8AAHA9AABAPAAAkj4AAMg9AADYPQAAcD0AAFS-IAA4E0AJSHxQASqPAhABGoACAACivgAATD4AAFC9AAAjvwAAXL4AAKg9AABUPgAAED0AAEC8AACKPgAAdL4AAIg9AADIvQAAQLwAAOg9AABAPAAAlr4AAF0_AABEPgAAFz8AAKg9AACCvgAAML0AAMi9AACmvgAATL4AAFw-AADIPQAA-L0AABC9AACAOwAAQLwAAHA9AAC4vQAAPD4AAIi9AAAwPQAAVD4AAJK-AACYPQAAED0AAEw-AAAsPgAADL4AAAQ-AAAMPgAAf78AAJ6-AADoPQAAhr4AAKA8AAC4PQAAVD4AACw-AADKPgAADD4AAIC7AACAOwAAiD0AAKg9AAAUPgAAdD4AAFC9AAA8viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=60YJBFE3bM0","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8054963125669036454"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2460824967"},"1355218466143973820":{"videoId":"1355218466143973820","docid":"34-3-6-ZB84D053812696B1F","description":"Tensor products are the first step towards a theoretical framework of tensorial data, that, is scalars stored in arrays and grids. We define this beginning ...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4286047/d4b5cb3133ad90d5e0da256b470ceb83/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jn3_2wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNMi9XC-K8R4","linkTemplate":"/video/preview/1355218466143973820?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor Products are just Matrix Multiplication, Seriously.","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NMi9XC-K8R4\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhUKEzEzNTUyMTg0NjYxNDM5NzM4MjBaEzEzNTUyMTg0NjYxNDM5NzM4MjBqiBcSATAYACJFGjEACipoaGhieHh2Z3R6aGF5eXdjaGhVQ3V6OXhkOWJkTWZWeHV5N1ZMcE1pcFESAgASKhDCDw8aDz8T1AeCBCQBgAQrKosBEAEaeIHx-vwHCPcA_AANEfcL-wMfEAAH8gQEAOkR_P36_wEA6vcS-_z_AADkDQUL_QAAAPsECfD6_gEADv_q-wMAAAADBvMJAwAAAAsI8vT_AQAAB_UQ8QEAAAAP8wf2_wAAAO__EBD_AAAADgcU_AAAAAD_AQsH_wAAACAALQQPvDs4E0AJSE5QAiqEAhAAGvABfwzsAs3tAP7wBdsAyxTj_5YJJf_-DeUAsfEuArPW5QD-FfUA4QPsAP0NDwDE9QEA_-PgAP_o6QEz4f0AKfsFAAsVBABK0PcBRRMOAeYG6v_kATX_EgcnAP3Z-wALAAD8-gUI_PoBz__39eAFCdo3AhkMGQEu8hUB5uER_fAQAQQCD-j-8_b-_gMCBfvO_xsBDgED_Bof8f3M9AQFFwb9-vXd9foGAuT7MR79AvkT9__s_Pf7AvTg_PwgGAn2Iu7___kA_fXpCP4fGwoJJu0GBfTjAwEH3gcR3gPnAxHrCPr0-gn_3CP9BPUQBgL4_wT5IAAtkTcpOzgTQAlIYVACKs8HEAAawAcv_eu-CmIFPd3U_juoVMm8mOAUPSfca73joLm9HG2LPF4FI7z_I9M9wVJdPJoLnDzScpC-_a5-PVwRDbrFVYU-VDBvvZt_KryG4wm-3yD1PKwBKr31oWu-hNMHPXQ1w7uVLKc90sqYPBJCUbx_S0A-p0rKO4G4hrzO-hQ9qZUTvZQ5Ub1Rlmu8gXSmvZtz0zsFw_k9MYtavQuIHz27JgQ-rYefvUB3-Lwjk4K9VYfcPLoVQjyaOlS9TFOlu7gA-roFNPE9FSQNvDZDXzru97q8Ot4uvWEZG73o_kU8FDEWPRq9_bst4Zq8y1yqPPoGS7x6eXA7urUxPRr-7jxtrOS9phEuPZROwTvshu09jPeDPXJbkTsUmwq9XTVPPfglUTx1Rmq9qcwjPRVLW7xkk9w9bv1PPGcxzDzxAee5aUq8PNrKB7yNSiU91iMoPSzzljwiRAM9RYBTvETf3bxd_yk9DLXBPD90nLzDCpy9STXHPCQpirsR9vc8n0ytvFkPhDyrlhQ-070uPSUSGLygPVI9zB8YvUjaMjxcTai8uXJRvW9Ws7xEsUs9eV0cvP_WCLu2HI49kpexu0CZkDtcTBq8bXuxvP0RK7x-n5s975Y_vPwIFTxqM0q7ffYyPd3ftTlwwYg8B5WdvPBwGrzj4FI8b75sPPMT9zuEPwk7FY2FvWh8GTtiG6c803AFPeAWSbojmiU9ANOIvUR_jDkSUME9wXhBvWHTCrp5p6c7gIpZvaYJVrZre567dJvAPTj9MLnOd6Y9Kg7WPM5WKrmlBZo7WTVjPNE64jkGO9E7yTwSPdKXXTgGdiY96tuIvQLNZjiao429wDaMvbpRlrhGuS-93MUKvXhFs7kuQLa8zALSvFjjjTnp9q28JTv2vbm8zDi6ZWq71928vO4ByrjdnEU9rZ44PTZ1qTgtYQi9LZ2KveikMLlxB0W9ZyQnvUIf3DfqHh69yBeOPTnJRzjfAw89wLA8vdCgE7gJ3xs9hI83PVwp_Lh0Bqs9JNtPPZE7u7gIm_A8uf3SPUdpZTh2U2q9V8_JvVw6argdoaA9NKBePQNJwrigUM-9Fe-GPcLSAjjHuEc9oySPvRP7uDjvLXY8L3KqPMV_3TgxKNO95WwQvfrCWDigVMs99_HGvC2P1biIFz-9cpPHvHfPJrimhpE8I2NavfR-ijdlUiY7ILzRPHwBY7e9rwU9pUkJvq2ehbjK9HA9IuErPvHLijgHC6e8vfzuPYO0Hrl1HlW9lNmgvH8pSjfYEea7hD9NPR7HVTggADgTQAlIbVABKnMQABpgMP4ALwwu5OEFQfX11sYaCtkDzza-7P_c5P8zFbsIHeICq_oL_y7iKNmgAAAAFuXuOOQA4X_byeIY2Rb9paj7IhZZACFCygY20bwVACDTEBTu1eIgAOzbrUclBLYjNAcXIAAtve8bOzgTQAlIb1ACKq8GEAwaoAYAANhBAADgQQAAtkIAAGjCAADQQQAAREIAAGRCAAD4QQAApMIAABDCAABwwQAAEEEAAADCAACIwQAAXEIAAABBAACAvwAAfMIAAODAAAAgwgAAoMEAACzCAABQwgAAmkIAADRCAACowQAAPMIAAGDCAADOQgAASEIAACxCAACAPwAAUMIAAFBBAABswgAACEIAAABBAADAQgAAAEAAAMBAAACYwQAAREIAACBBAAAswgAAQEEAALDBAACwwQAA4EAAAIpCAAAgQQAAsMIAAExCAACgQAAADEIAALBBAAAIwgAAoMIAAKBAAADgQAAAJEIAAMDBAACKwgAAOMIAAIbCAAAwQgAALMIAAARCAACwwQAASMIAAEDAAAB8QgAAUEIAAFjCAACIQgAAsMEAAIzCAABswgAAsMEAAPBBAAAQwQAAFMIAACBCAADIwQAAiEEAAIBBAACCQgAAAMAAALBBAABEQgAAKMIAAIjBAADAQQAAAEEAAEDBAAAgwQAAqMIAAABCAAAAwAAAOEIAADBBAABowgAAaEIAAJBBAADQwQAAVMIAAKhBAACYwQAAYEIAAEzCAAAEQgAAUEEAAADAAAA0wgAAiMEAAAhCAABYQgAA4EAAAIDCAADYwQAAAMIAANjBAAC4wQAAqMEAAFDCAABwQQAAoMEAALBBAADMwgAAQEAAAPDBAAAAwgAAiMIAAKBAAADgQQAAYEEAAIBAAAAAQQAAJMIAAATCAAB4wgAAgEEAAAxCAACqQgAAgEAAAGBBAAAYQgAAlsIAAMhBAAAAAAAA2MEAAPDBAAAAQAAAiMEAAMjBAAAwQQAAcEEAACjCAAD4wQAAyMEAAPhBAACgQAAAqEEAAEDBAADgwAAAUMEAABDCAABgQQAAZEIAAEDAAACAQAAAEMIAAGBCAABwQQAAUEEAABDBAABAwQAAmkIAANDBAACSQgAAoEEAAJzCAABgwQAAGMIAAFDBAAAcQgAAgsIAAI7CAACAPwAA4MEAANDBAACYQQAAmMEAAIDAAADQQQAA4EAAAGBBAAA8wgAAoEEAACDCAADIQSAAOBNACUh1UAEqjwIQABqAAgAAEL0AALg9AADYPQAAHD4AAKC8AAAkvgAAyD0AAB-_AAD4vQAAoDwAAHA9AACIvQAA6D0AAHQ-AACSvgAARL4AAOC8AACYPQAAXD4AABk_AAB_PwAAED0AAEC8AAAwvQAAqL0AAIi9AACyPgAAmL0AANi9AABwPQAAyD0AAFA9AABsvgAARD4AAIY-AADovQAAgLsAANi9AAAkvgAAqL0AALq-AACivgAA-L0AAAy-AACIPQAAkr4AAEw-AACqvgAAQDwAADC9AAB0PgAADD4AAKi9AADYPQAAML0AAAy-AAAJPwAABD4AAOi9AAAcPgAAqL0AAOC8AAAwPQAABL4gADgTQAlIfFABKo8CEAEagAIAAKA8AACyPgAAgDsAAC-_AACIvQAAmL0AANg9AADovQAAuL0AAIY-AACAOwAAbL4AAKg9AACKvgAAPD4AADC9AACAOwAAPT8AAFw-AADOPgAA4LwAANi9AADIPQAABL4AABC9AACYvQAA2L0AAOA8AAAUvgAAcL0AAJi9AACgPAAABD4AAEC8AABQvQAAHL4AAEy-AAAwvQAA2L0AAEC8AABQvQAADD4AAOi9AADYvQAABL4AAAw-AAB_vwAATL4AAEC8AABQvQAAqD0AAKC8AACovQAAND4AAKi9AACIPQAAEL0AAKC8AACgvAAAoDwAAIC7AABQvQAAMD0AALi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=NMi9XC-K8R4","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1355218466143973820"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3522933209"},"5969047934941644309":{"videoId":"5969047934941644309","docid":"34-3-15-Z615A766493C4CA39","description":"Glad to have this one shipped! Today we'll explore how to build the rest of the explicit, unitary representations of SU2 from the two-dimensional case we considered in an earlier video.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4696891/fa43beedd26eb61ed817f7b6dc771d5d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/LUnTfgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DfDReFtcUimU","linkTemplate":"/video/preview/5969047934941644309?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Unitary Representations of SU2 via Tensor Products","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fDReFtcUimU\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhUKEzU5NjkwNDc5MzQ5NDE2NDQzMDlaEzU5NjkwNDc5MzQ5NDE2NDQzMDlqug0SATAYACJFGjEACipoaGprc2dibHJqamFzc21kaGhVQ1BMMnd1TFpYUVdyUFktcUxVeFVxZ2cSAgASKhDCDw8aDz8T9waCBCQBgAQrKosBEAEaeIH0CPsH_QMA_AAPBQcH_AEUBfgG9QEBAPsFAQgIBP4A-_0G7_0AAADtBQj9-QAAAPb8CQv0_wEADP_t_AIAAAATBAYFBAAAAA0KAwAI_wEB9fv-_AMAAAAO8u4C_wAAAP4NBQkBAAAADA__AgEAAADz-AQFAAAAACAALSM_3Ds4E0AJSE5QAipzEAAaYAcUACcJ-d3NHlzZEcy_8_LPNM8Cx-H_3t__4__d-MgB15r05_849Rj-pQAAACLn5x0UAPt2xdqfHhoLFO2_7PFOf_Ty3wgXLdm8FAEKOO5X_ukxNwDK9O8x-uGaHyQkFCAALX-CGTs4E0AJSG9QAiqvBhAMGqAGAAAIwgAAyEEAABhCAACAwAAA8MEAAFRCAACIQQAAHEIAAGjCAACYwQAAgEEAAEzCAADwwQAAMEEAAGxCAAAQwgAAYMEAAEBAAACAQAAAmEEAAILCAADYwQAAIMIAAHxCAADgwQAAyEEAAIrCAACgwQAAAEIAAFDBAABAwQAAAEAAAIrCAAA0QgAAEMIAAPhBAABAQgAAMEIAABzCAACGQgAAqMEAAFjCAABkQgAAGMIAAGRCAAAIQgAAgMEAAMDBAABYQgAAoEAAAEBAAAAMwgAAAEIAAFRCAABAQgAApMIAAHDBAADAwQAAgL8AAJBBAACgwAAA6MEAAJBBAABIwgAAusIAAAAAAACQwQAAAEEAAIDAAABUwgAAQEAAALBBAAC4wgAAAEIAAHBBAABYwgAASMIAAJjBAABoQgAACEIAAKDAAACSQgAAAEEAAAjCAADAQAAAlEIAAFBCAACwQgAAPEIAAFhCAAAkwgAA2EEAAKBAAABwwQAAKEIAALjBAACYQQAAyEEAAMDBAAAAAAAAmMIAAMhBAAB0QgAA8MEAACzCAABwwgAAFEIAAPDBAABUwgAAyEEAAGBCAABwQQAA8EEAAIBBAACGQgAAmMEAAMBAAAAQQgAAqMIAAFDBAACwwQAAgMAAAAjCAAAYQgAA0MEAABjCAACIwgAAoEAAADTCAABUwgAAwMAAACxCAABwQQAAgEIAAGBBAACgwAAAgMAAADBBAAAAwAAA4MEAAKBAAADgQQAAIMEAADBBAAAcQgAAIMEAAMDAAAAAAAAAPMIAAKBAAAA8wgAAQMEAAKDBAAAgwgAAAEIAAKBBAABMwgAAMMIAANLCAABYQgAACEIAANhBAAA4wgAAmMEAABDCAADAQAAAtkIAAPhBAAAIQgAAIEIAAIjBAAAIwgAAkMEAAAzCAACYQQAAkMEAAMTCAAAUwgAAIEIAAEDAAADAwQAAIMIAADxCAACowQAAqEEAAAjCAACCwgAAlEIAALzCAACQQgAA2EEAAAjCAACgQAAAmEEAAGDBAAA8QgAAIMEAACBCAACAPwAABMIgADgTQAlIdVABKo8CEAAagAIAAES-AAAQvQAAQDwAAFQ-AACoPQAAuD0AAEA8AAAZvwAABL4AAMg9AAAwvQAAqL0AAIC7AACKPgAAVL4AAAS-AACAOwAAiD0AAFQ-AAATPwAAfz8AAAS-AABwvQAAmL0AAHS-AABAvAAAoDwAAHS-AADIPQAAfD4AAKg9AAAUvgAANL4AAFQ-AABwPQAABD4AAKi9AAAUvgAAmr4AABS-AACavgAAqD0AACQ-AAAQvQAATL4AAFy-AAA8PgAAHL4AAMi9AACSvgAABL4AAMg9AACuPgAAVD4AAES-AACYvQAACz8AAPg9AADgPAAARD4AAKC8AACYPQAAED0AABC9IAA4E0AJSHxQASqPAhABGoACAABkvgAA6D0AAKi9AAAvvwAAgDsAABA9AADIPQAAqL0AABy-AACqPgAAoDwAAMi9AACIvQAANL4AAEA8AABAPAAAij4AABk_AAD4PQAA2j4AAOi9AAB0PgAA2D0AABy-AADYvQAAmD0AAIg9AABwPQAAQLwAAKA8AABQPQAA6D0AAIi9AAB0vgAAuL0AADC9AABAPAAAhj4AACy-AADYvQAAiD0AALg9AADYvQAAML0AAMi9AAB0PgAAf78AAEy-AAAQvQAAlj4AAIY-AABwvQAAoDwAAFQ-AAAMPgAAgDsAAOA8AACAOwAAqL0AANi9AADgPAAAQDwAAOg9AAAwvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=fDReFtcUimU","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5969047934941644309"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3244711261"},"8642826357474615052":{"videoId":"8642826357474615052","docid":"34-0-4-Z04F4375D414C25B3","description":"Crash course on tensors (what they are, what cross norms are, basic generalities about nuclear norm/operator and rank), followed by an application of this to the law of robustness conjecture for...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1381759/c7b60947de009fb862774991e3042202/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/c7TdTAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DxMXJ2zRyX7I","linkTemplate":"/video/preview/8642826357474615052?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Crash course on tensors with application to neural networks","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xMXJ2zRyX7I\",\"src\":\"serp\",\"rvb\":\"ErADChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTMyMzExMTAyNDE5OTE1ODMxOTkKFDEyMjg2ODI5MzU1Nzg1MDU5NzA0GhUKEzg2NDI4MjYzNTc0NzQ2MTUwNTJaEzg2NDI4MjYzNTc0NzQ2MTUwNTJqrw0SATAYACJFGjEACipoaG12a25lbWpkdWRtZ2hjaGhVQy1VQy1uRThCMzNVR25DLU5SYVNmdWcSAgASKhDCDw8aDz8TzxmCBCQBgAQrKosBEAEaeIH7AfkI_AUA-_YN_wcF_gEMBf8C9wAAAPwB-wX9Bf4A8_IHCgAAAAD9AvwFAQAAAO_3Cv_0AAEAAQr_BQQAAAAI6ff8_QAAAP0C9wT-AQAA_PgC_wL_AAAJ9wkCAAAAAPYHCAP__wAA8wYJDQAAAAAH-AD-AAAAACAALaLU4Ts4E0AJSE5QAipzEAAaYPgTAC4NK-jfFQDzBfG5EhPJHNjK2gb_78v_CRwJ_Q4G8rvsNv9exDbIngAAAB_b1wURABJ_49qTEv__IIrT8SIbV8fjDPkUFtrqB_ThJuAKwvsyCQDX4eQnJvDaRilBJSAALUOQIDs4E0AJSG9QAiqvBhAMGqAGAAA8QgAAgMAAALpCAADgwQAAgD8AAODAAACMQgAAmEEAAADBAACowQAAuEEAACBBAACAQAAAkEEAAOhBAACgwQAAKEIAAHTCAABgQgAAoMAAAKDAAACOwgAAwMIAACRCAACWwgAAAAAAAETCAAAgwQAAQEEAACxCAABAwQAAiMEAAFjCAAC4QQAAysIAAKBAAABwQQAAeEIAAODBAABQQQAAsMEAAEBAAABgwQAAMMIAACxCAADYwQAAYMEAAAhCAABgwQAAIEEAAFTCAAAcwgAAHMIAABhCAADgQQAAiEEAADTCAACQQQAAVEIAAPhBAAAYwgAAWMIAAITCAAAQwgAAQEEAAEzCAACAPwAAwMEAALLCAADwwQAAaEIAAFRCAABAwgAAKEIAAIC_AAAQQQAAnMIAAMDBAAAEwgAA4MAAAPjBAAAgQgAAkMEAAEDAAACAwAAAnEIAABjCAACKwgAAPEIAABhCAACIQQAA0EEAAADCAABAQgAAYEIAABzCAAAwwQAAQMEAACBBAACSQgAAPMIAAHBBAADwQQAAgD8AAIzCAADoQQAAUEEAAFRCAAAAwAAABEIAAChCAADQQQAAAMAAACjCAADQwQAAmEIAAEBBAABkwgAAoMEAAETCAAD4wQAAgD8AAJhBAABcwgAAPMIAABDBAADoQQAAwMEAAKDBAABgQQAAAMEAAJzCAADgQAAAXEIAAEBBAABMQgAAAEEAAFBBAAA8wgAAcMIAAEBBAACQQQAAoEEAAJDCAAAQwQAAEEIAAKjBAAAAQQAA4MEAACBBAAAMwgAAkEIAAHxCAABwwQAAoEAAAEBAAACIwgAAJMIAALDBAABUwgAAHMIAAJBBAACoQQAAcEIAAGBCAABwwQAAQMEAAIxCAACQQgAAhMIAAEDCAABgQQAAqEEAABDCAAAEwgAAoEAAAKBAAAAAQQAAYEEAAERCAACgwgAAfMIAAGBBAABwwgAAsEEAAPjBAABIwgAAkMEAAIjBAAAAQAAASEIAAEDCAADAQAAAwEEAAJBBAACiQgAAwEAAABBBAACgQQAAIEEgADgTQAlIdVABKo8CEAAagAIAALi9AAD4vQAARD4AAEA8AABwvQAA6D0AAOA8AABDvwAAiL0AABw-AACAuwAAcL0AAHA9AABcPgAAfL4AAKA8AAA8PgAADD4AAKg9AADePgAAfz8AABC9AADIvQAAmD0AAKa-AAA8vgAAFD4AAES-AADIvQAAPD4AAPg9AABQPQAA2L0AABC9AADovQAAgj4AAFw-AACavgAA6L0AAOi9AACSvgAAEL0AACQ-AAAwvQAAnj4AACQ-AADYvQAAQLwAAKA8AACevgAAfD4AAMg9AAA8PgAARD4AAJK-AABQvQAAcz8AAPi9AAC4PQAAfD4AAMi9AABAvAAAUD0AAKA8IAA4E0AJSHxQASqPAhABGoACAABkvgAAuD0AACS-AABBvwAADD4AAJi9AABQPQAAFL4AABC9AACYPQAAmD0AAFC9AADovQAAXL4AANg9AACIvQAAML0AAPY-AAAsvgAAvj4AADS-AACIPQAAgDsAACy-AACgPAAAMD0AAGS-AAAwvQAAgDsAAIC7AAC4PQAADD4AAAy-AADoPQAABD4AAOi9AAAMPgAAmD0AAFy-AAAQvQAAoLwAAFC9AACKvgAADD4AAJa-AADgvAAAf78AAHA9AACovQAAuD0AAKC8AAAMvgAAcD0AAIY-AADovQAAcD0AAKC8AABMvgAAgDsAAKi9AAAUvgAAiL0AACQ-AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=xMXJ2zRyX7I","parent-reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8642826357474615052"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"8762202946764621090":{"videoId":"8762202946764621090","title":"The Truth about \u0007[Tensors\u0007], Part 9: Vector \u0007[Bundles\u0007]","cleanTitle":"The Truth about Tensors, Part 9: Vector Bundles","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RqQ-Jm2wtAI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RqQ-Jm2wtAI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUlhDNk02NXFpRmxIYVhHRE5DLS1WQQ==","name":"K-Theory","isVerified":false,"subscribersCount":0,"url":"/video/search?text=K-Theory","origUrl":"https://www.youtube.com/channel/UCRXC6M65qiFlHaXGDNC--VA","a11yText":"K-Theory. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":712,"text":"11:52","a11yText":"Süre 11 dakika 52 saniye","shortText":"11 dk."},"date":"12 oca 2023","modifyTime":1673481600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RqQ-Jm2wtAI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RqQ-Jm2wtAI","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":712},"parentClipId":"8762202946764621090","href":"/preview/8762202946764621090?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/8762202946764621090?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16296046993660989150":{"videoId":"16296046993660989150","title":"The Truth about \u0007[Tensors\u0007], Part 8: Tangent \u0007[bundles\u0007] & vector fields","cleanTitle":"The Truth about Tensors, Part 8: Tangent bundles & vector fields","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KxH37F43Bqo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KxH37F43Bqo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUlhDNk02NXFpRmxIYVhHRE5DLS1WQQ==","name":"K-Theory","isVerified":false,"subscribersCount":0,"url":"/video/search?text=K-Theory","origUrl":"http://www.youtube.com/@k-theory8604","a11yText":"K-Theory. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":598,"text":"9:58","a11yText":"Süre 9 dakika 58 saniye","shortText":"9 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"2 mayıs 2022","modifyTime":1651449600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KxH37F43Bqo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KxH37F43Bqo","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":598},"parentClipId":"16296046993660989150","href":"/preview/16296046993660989150?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/16296046993660989150?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13009867764253428401":{"videoId":"13009867764253428401","title":"\u0007[Tensor\u0007] product of R-modules","cleanTitle":"Tensor product of R-modules","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VNdyYbFYLag","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VNdyYbFYLag?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWExV3RJLXZiX2J4LWFuSGRtcE5mQQ==","name":"NPTEL-NOC IITM","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NPTEL-NOC+IITM","origUrl":"http://www.youtube.com/@nptel-nociitm9240","a11yText":"NPTEL-NOC IITM. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2114,"text":"35:14","a11yText":"Süre 35 dakika 14 saniye","shortText":"35 dk."},"views":{"text":"4,1bin","a11yText":"4,1 bin izleme"},"date":"8 haz 2021","modifyTime":1623110400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VNdyYbFYLag?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VNdyYbFYLag","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":2114},"parentClipId":"13009867764253428401","href":"/preview/13009867764253428401?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/13009867764253428401?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13445765597002048478":{"videoId":"13445765597002048478","title":"Construction of the \u0007[tensor\u0007] product","cleanTitle":"Construction of the tensor product","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DqvLRH7xL48","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DqvLRH7xL48?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWExV3RJLXZiX2J4LWFuSGRtcE5mQQ==","name":"NPTEL-NOC IITM","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NPTEL-NOC+IITM","origUrl":"http://www.youtube.com/@nptel-nociitm9240","a11yText":"NPTEL-NOC IITM. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2389,"text":"39:49","a11yText":"Süre 39 dakika 49 saniye","shortText":"39 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"8 haz 2021","modifyTime":1623110400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DqvLRH7xL48?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DqvLRH7xL48","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":2389},"parentClipId":"13445765597002048478","href":"/preview/13445765597002048478?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/13445765597002048478?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1720590123713866184":{"videoId":"1720590123713866184","title":"\u0007[Tensor\u0007] products of modules over commutative rings","cleanTitle":"Tensor products of modules over commutative rings","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=UCN_Dr2Kf1E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UCN_Dr2Kf1E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWExV3RJLXZiX2J4LWFuSGRtcE5mQQ==","name":"NPTEL-NOC IITM","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NPTEL-NOC+IITM","origUrl":"http://www.youtube.com/@nptel-nociitm9240","a11yText":"NPTEL-NOC IITM. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1111,"text":"18:31","a11yText":"Süre 18 dakika 31 saniye","shortText":"18 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"8 haz 2021","modifyTime":1623110400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UCN_Dr2Kf1E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UCN_Dr2Kf1E","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":1111},"parentClipId":"1720590123713866184","href":"/preview/1720590123713866184?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/1720590123713866184?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18432236150441537691":{"videoId":"18432236150441537691","title":"\u0007[Tensor\u0007] products","cleanTitle":"Tensor products","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tpL95Sd7zT0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tpL95Sd7zT0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdDFuX2NfbGJQSXZ6X3ljdzNFcTk2dw==","name":"Jim Fowler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Jim+Fowler","origUrl":"http://www.youtube.com/@kisonecat","a11yText":"Jim Fowler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":449,"text":"7:29","a11yText":"Süre 7 dakika 29 saniye","shortText":"7 dk."},"views":{"text":"108,5bin","a11yText":"108,5 bin izleme"},"date":"21 ara 2011","modifyTime":1324425600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tpL95Sd7zT0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tpL95Sd7zT0","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":449},"parentClipId":"18432236150441537691","href":"/preview/18432236150441537691?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/18432236150441537691?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10288858144530856715":{"videoId":"10288858144530856715","title":"Proof: Uniqueness of the \u0007[Tensor\u0007] Product","cleanTitle":"Proof: Uniqueness of the Tensor Product","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VJJK2BoIaD8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VJJK2BoIaD8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbzhUMEQ4bXkxSHo1S29IQ1JZT0FuUQ==","name":"Mu Prime Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mu+Prime+Math","origUrl":"http://www.youtube.com/@MuPrimeMath","a11yText":"Mu Prime Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":717,"text":"11:57","a11yText":"Süre 11 dakika 57 saniye","shortText":"11 dk."},"views":{"text":"3,5bin","a11yText":"3,5 bin izleme"},"date":"7 nis 2023","modifyTime":1680825600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VJJK2BoIaD8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VJJK2BoIaD8","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":717},"parentClipId":"10288858144530856715","href":"/preview/10288858144530856715?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/10288858144530856715?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11640970086896877245":{"videoId":"11640970086896877245","title":"\u0007[Tensor\u0007] Products of Free Modules (Algebra 2: Lecture 21 Video 4)","cleanTitle":"Tensor Products of Free Modules (Algebra 2: Lecture 21 Video 4)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=t11BsdWTfSA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/t11BsdWTfSA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR0VoZWxJMnExMEZNd0cycjg1U3EtUQ==","name":"nckaplan math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=nckaplan+math","origUrl":"http://www.youtube.com/@nckaplanmath2660","a11yText":"nckaplan math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":898,"text":"14:58","a11yText":"Süre 14 dakika 58 saniye","shortText":"14 dk."},"date":"23 mar 2021","modifyTime":1616457600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/t11BsdWTfSA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=t11BsdWTfSA","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":898},"parentClipId":"11640970086896877245","href":"/preview/11640970086896877245?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/11640970086896877245?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14699814226962564882":{"videoId":"14699814226962564882","title":"\u0007[Tensors\u0007] for Beginners 15: \u0007[Tensor\u0007] Product Spaces","cleanTitle":"Tensors for Beginners 15: Tensor Product Spaces","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=M-OLmxuLdbU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/M-OLmxuLdbU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":921,"text":"15:21","a11yText":"Süre 15 dakika 21 saniye","shortText":"15 dk."},"views":{"text":"88,8bin","a11yText":"88,8 bin izleme"},"date":"3 mar 2018","modifyTime":1520035200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/M-OLmxuLdbU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=M-OLmxuLdbU","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":921},"parentClipId":"14699814226962564882","href":"/preview/14699814226962564882?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/14699814226962564882?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2257417525591023728":{"videoId":"2257417525591023728","title":"\u0007[Tensor\u0007] Product, Entanglement, Bell Basis Measurement, Superdense Coding | Bangla","cleanTitle":"Tensor Product, Entanglement, Bell Basis Measurement, Superdense Coding | Bangla","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vzD1zsZtAAg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vzD1zsZtAAg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYUw3OC12dkY5VXotZHRSM0tBV2xZdw==","name":"Schrodinger's Dank Knight","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Schrodinger%27s+Dank+Knight","origUrl":"http://www.youtube.com/@SchrodingersDankKnight","a11yText":"Schrodinger's Dank Knight. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4939,"text":"1:22:19","a11yText":"Süre 1 saat 22 dakika 19 saniye","shortText":"1 sa. 22 dk."},"date":"15 kas 2023","modifyTime":1700006400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vzD1zsZtAAg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vzD1zsZtAAg","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":4939},"parentClipId":"2257417525591023728","href":"/preview/2257417525591023728?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/2257417525591023728?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9856994532268442583":{"videoId":"9856994532268442583","title":"\u0007[Tensor\u0007] Product Basis With the Universal Property","cleanTitle":"Tensor Product Basis With the Universal Property","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5i8tp0rD2EA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5i8tp0rD2EA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbzhUMEQ4bXkxSHo1S29IQ1JZT0FuUQ==","name":"Mu Prime Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mu+Prime+Math","origUrl":"http://www.youtube.com/@MuPrimeMath","a11yText":"Mu Prime Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":816,"text":"13:36","a11yText":"Süre 13 dakika 36 saniye","shortText":"13 dk."},"views":{"text":"5bin","a11yText":"5 bin izleme"},"date":"1 nis 2023","modifyTime":1680296632000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5i8tp0rD2EA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5i8tp0rD2EA","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":816},"parentClipId":"9856994532268442583","href":"/preview/9856994532268442583?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/9856994532268442583?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12253591538338101501":{"videoId":"12253591538338101501","title":"\u0007[Tensor\u0007] products of modules","cleanTitle":"Tensor products of modules","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kGkOo7w8xeM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kGkOo7w8xeM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDblR1SEJWYUJzSzlUQlJrOTZCSmhRdw==","name":"DanielChanMaths","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DanielChanMaths","origUrl":"http://www.youtube.com/@DanielChanMaths","a11yText":"DanielChanMaths. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":975,"text":"16:15","a11yText":"Süre 16 dakika 15 saniye","shortText":"16 dk."},"views":{"text":"6,5bin","a11yText":"6,5 bin izleme"},"date":"14 eyl 2019","modifyTime":1568419200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kGkOo7w8xeM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kGkOo7w8xeM","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":975},"parentClipId":"12253591538338101501","href":"/preview/12253591538338101501?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/12253591538338101501?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12839996867003173050":{"videoId":"12839996867003173050","title":"\u0007[Tensor\u0007] product of Ox modules, locally free sheaves and Picard group","cleanTitle":"Tensor product of Ox modules, locally free sheaves and Picard group","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OdPtwCRL9EU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OdPtwCRL9EU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTFNMOVlHVFUtQlpqcXRZd2tudjlmQQ==","name":"Math Geeks","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Geeks","origUrl":"http://www.youtube.com/@mathgeeks3598","a11yText":"Math Geeks. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":750,"text":"12:30","a11yText":"Süre 12 dakika 30 saniye","shortText":"12 dk."},"date":"2 eki 2022","modifyTime":1664668800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OdPtwCRL9EU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OdPtwCRL9EU","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":750},"parentClipId":"12839996867003173050","href":"/preview/12839996867003173050?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/12839996867003173050?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14903190412506391483":{"videoId":"14903190412506391483","title":"TensorFlow for Machine Learning Solutions: Working with a Linear SVM| packtpub.com","cleanTitle":"TensorFlow for Machine Learning Solutions: Working with a Linear SVM| packtpub.com","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NMPufa4IA3A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NMPufa4IA3A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM1Z5ZEJHQmwxMzJiYVBDTGVEc3BNUQ==","name":"Packt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Packt","origUrl":"http://www.youtube.com/@OfficialPackt","a11yText":"Packt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":289,"text":"4:49","a11yText":"Süre 4 dakika 49 saniye","shortText":"4 dk."},"views":{"text":"3,1bin","a11yText":"3,1 bin izleme"},"date":"13 mar 2018","modifyTime":1520899200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NMPufa4IA3A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NMPufa4IA3A","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":289},"parentClipId":"14903190412506391483","href":"/preview/14903190412506391483?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/14903190412506391483?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8054963125669036454":{"videoId":"8054963125669036454","title":"\u0007[Tensor\u0007] Product and Matrix Multiplication (Python Code) - Code in Place 2021 (Stanford University...","cleanTitle":"Tensor Product and Matrix Multiplication (Python Code) - Code in Place 2021 (Stanford University)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=60YJBFE3bM0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/60YJBFE3bM0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTEpKeWhYTkVDc2NPdE9Lcmk1aENEdw==","name":"CaioAS","isVerified":false,"subscribersCount":0,"url":"/video/search?text=CaioAS","origUrl":"https://www.youtube.com/channel/UCLJJyhXNECscOtOKri5hCDw","a11yText":"CaioAS. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":255,"text":"4:15","a11yText":"Süre 4 dakika 15 saniye","shortText":"4 dk."},"date":"31 mayıs 2021","modifyTime":1622434326000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/60YJBFE3bM0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=60YJBFE3bM0","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":255},"parentClipId":"8054963125669036454","href":"/preview/8054963125669036454?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/8054963125669036454?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1355218466143973820":{"videoId":"1355218466143973820","title":"\u0007[Tensor\u0007] Products are just Matrix Multiplication, Seriously.","cleanTitle":"Tensor Products are just Matrix Multiplication, Seriously.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NMi9XC-K8R4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NMi9XC-K8R4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdXo5eGQ5YmRNZlZ4dXk3VkxwTWlwUQ==","name":"James Wilson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=James+Wilson","origUrl":"http://www.youtube.com/@algeboy","a11yText":"James Wilson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":980,"text":"16:20","a11yText":"Süre 16 dakika 20 saniye","shortText":"16 dk."},"views":{"text":"14,5bin","a11yText":"14,5 bin izleme"},"date":"13 ağu 2021","modifyTime":1628812800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NMi9XC-K8R4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NMi9XC-K8R4","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":980},"parentClipId":"1355218466143973820","href":"/preview/1355218466143973820?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/1355218466143973820?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5969047934941644309":{"videoId":"5969047934941644309","title":"Unitary Representations of SU2 via \u0007[Tensor\u0007] Products","cleanTitle":"Unitary Representations of SU2 via Tensor Products","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fDReFtcUimU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fDReFtcUimU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUEwyd3VMWlhRV3JQWS1xTFV4VXFnZw==","name":"Sean Downes","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sean+Downes","origUrl":"http://www.youtube.com/@SeanDownes","a11yText":"Sean Downes. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":887,"text":"14:47","a11yText":"Süre 14 dakika 47 saniye","shortText":"14 dk."},"date":"24 mar 2021","modifyTime":1616544000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fDReFtcUimU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fDReFtcUimU","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":887},"parentClipId":"5969047934941644309","href":"/preview/5969047934941644309?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/5969047934941644309?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8642826357474615052":{"videoId":"8642826357474615052","title":"Crash course on \u0007[tensors\u0007] with application to neural networks","cleanTitle":"Crash course on tensors with application to neural networks","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xMXJ2zRyX7I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xMXJ2zRyX7I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLVVDLW5FOEIzM1VHbkMtTlJhU2Z1Zw==","name":"Sebastien Bubeck","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sebastien+Bubeck","origUrl":"http://www.youtube.com/@SebastienBubeck","a11yText":"Sebastien Bubeck. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3279,"text":"54:39","a11yText":"Süre 54 dakika 39 saniye","shortText":"54 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"29 kas 2020","modifyTime":1606608000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xMXJ2zRyX7I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xMXJ2zRyX7I","reqid":"1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL","duration":3279},"parentClipId":"8642826357474615052","href":"/preview/8642826357474615052?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","rawHref":"/video/preview/8642826357474615052?parent-reqid=1769417579535453-9214506997255517386-balancer-l7leveler-kubr-yp-klg-86-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"9214506997255517386786","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Tensorbundle","queryUriEscaped":"Tensor%20bundle","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}