{"pages":{"search":{"query":"The Maximum Volume table","originalQuery":"The Maximum Volume table","serpid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","parentReqid":"","serpItems":[{"id":"11219408172770736746-0-0","type":"videoSnippet","props":{"videoId":"11219408172770736746"},"curPage":0},{"id":"194851750172632709-0-1","type":"videoSnippet","props":{"videoId":"194851750172632709"},"curPage":0},{"id":"7864404395797456771-0-2","type":"videoSnippet","props":{"videoId":"7864404395797456771"},"curPage":0},{"id":"558407875135350935-0-3","type":"videoSnippet","props":{"videoId":"558407875135350935"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFRoZSBNYXhpbXVtIFZvbHVtZSB0YWJsZQo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","ui":"desktop","yuid":"4407916001769578929"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"62503516882585486-0-5","type":"videoSnippet","props":{"videoId":"62503516882585486"},"curPage":0},{"id":"2172407050685480835-0-6","type":"videoSnippet","props":{"videoId":"2172407050685480835"},"curPage":0},{"id":"12401518518584123081-0-7","type":"videoSnippet","props":{"videoId":"12401518518584123081"},"curPage":0},{"id":"13545429552433560124-0-8","type":"videoSnippet","props":{"videoId":"13545429552433560124"},"curPage":0},{"id":"4965233073726740552-0-9","type":"videoSnippet","props":{"videoId":"4965233073726740552"},"curPage":0},{"id":"17421620790007121729-0-10","type":"videoSnippet","props":{"videoId":"17421620790007121729"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFRoZSBNYXhpbXVtIFZvbHVtZSB0YWJsZQo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","ui":"desktop","yuid":"4407916001769578929"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"697405543623073068-0-12","type":"videoSnippet","props":{"videoId":"697405543623073068"},"curPage":0},{"id":"10773391726168787184-0-13","type":"videoSnippet","props":{"videoId":"10773391726168787184"},"curPage":0},{"id":"14706560887007482489-0-14","type":"videoSnippet","props":{"videoId":"14706560887007482489"},"curPage":0},{"id":"5242236340499194940-0-15","type":"videoSnippet","props":{"videoId":"5242236340499194940"},"curPage":0},{"id":"18311710549798489506-0-16","type":"videoSnippet","props":{"videoId":"18311710549798489506"},"curPage":0},{"id":"5299367790727573597-0-17","type":"videoSnippet","props":{"videoId":"5299367790727573597"},"curPage":0},{"id":"599257945966469398-0-18","type":"videoSnippet","props":{"videoId":"599257945966469398"},"curPage":0},{"id":"2336812052699556439-0-19","type":"videoSnippet","props":{"videoId":"2336812052699556439"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFRoZSBNYXhpbXVtIFZvbHVtZSB0YWJsZQo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","ui":"desktop","yuid":"4407916001769578929"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DThe%2BMaximum%2BVolume%2Btable"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"1575809654367719797171","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1471992,0,56;1472323,0,57;1466868,0,18;1457620,0,22;1424968,0,51;1460710,0,91;1459297,0,4;1312967,0,81;1152685,0,53;1456929,0,95;1472031,0,71;1471624,0,61;182558,0,43;123843,0,54;1464523,0,4;1470249,0,42;1469608,0,64;1466296,0,76;1465919,0,82;1470857,0,17;1466080,0,80;1475649,0,30;1464404,0,83;1471919,0,42;1439206,0,43;1465681,0,82;1467619,0,56;124066,0,85;89013,0,28;1404022,0,23;1467157,0,45;1469407,0,72;1470414,0,21;1175955,0,54;124077,0,65;151171,0,19;1281084,0,5;287509,0,58;1447467,0,40;788004,0,16;1473596,0,23"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DThe%2BMaximum%2BVolume%2Btable","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=The+Maximum+Volume+table","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=The+Maximum+Volume+table","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"The Maximum Volume table: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"The Maximum Volume table\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"The Maximum Volume table — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yde02c61589fe5c3f57e8b891d5a714a2","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1471992,1472323,1466868,1457620,1424968,1460710,1459297,1312967,1152685,1456929,1472031,1471624,182558,123843,1464523,1470249,1469608,1466296,1465919,1470857,1466080,1475649,1464404,1471919,1439206,1465681,1467619,124066,89013,1404022,1467157,1469407,1470414,1175955,124077,151171,1281084,287509,1447467,788004,1473596","queryText":"The Maximum Volume table","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"4407916001769578929","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769578980","tz":"America/Louisville","to_iso":"2026-01-28T00:43:00-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1471992,1472323,1466868,1457620,1424968,1460710,1459297,1312967,1152685,1456929,1472031,1471624,182558,123843,1464523,1470249,1469608,1466296,1465919,1470857,1466080,1475649,1464404,1471919,1439206,1465681,1467619,124066,89013,1404022,1467157,1469407,1470414,1175955,124077,151171,1281084,287509,1447467,788004,1473596","queryText":"The Maximum Volume table","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"4407916001769578929","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"1575809654367719797171","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":155,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"4407916001769578929","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"11219408172770736746":{"videoId":"11219408172770736746","docid":"34-8-2-Z7B6CE99BD377160B","description":"An open box of maximum volume is to be made from a square piece of material, 18 inches on a side, by cutting equal squares from the corners and turning up the sides. Using Calculus, find the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3919167/ab986e3ae6da104b3440b9e396c242f9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ix6lLAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSxMkB3NhC10","linkTemplate":"/video/preview/11219408172770736746?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to find the height and maximum volume of an open box using Calculus","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SxMkB3NhC10\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFgoUMTEyMTk0MDgxNzI3NzA3MzY3NDZaFDExMjE5NDA4MTcyNzcwNzM2NzQ2arYPEgEwGAAiRRoxAAoqaGhwZ3V3emF0cGprbm9wYmhoVUNKTGplZ0ZYbm5vM3AwZFU1TVpYVGp3EgIAEioQwg8PGg8_E5wCggQkAYAEKyqLARABGniBBvgF8AP8AP_sAwr6CfwDDwMUAfYBAADp9_vyAv8BAPwS_Pn8AQAAAgIN8QMAAAD7GvYG-v4AAAvxAfoDAAAAKQD9BvsAAAAI8foE_wEAAPP99QT1AgABBgv8Av8AAAD8AQMG_v8AAPT48goAAAAACf4FBwAAAAAgAC1aHsg7OBNACUhOUAIqhAIQABrwAV8ENf6B99_5H-7fAUoJ2gCtKiH_NAAGALP-AAD0Bf8BHdIKAM4B4P_zN-b_9u0NABQW7gD2tvcA6tsZ_wz7H__f9R0BDA0FAULaIP4XBPT_sy8b_ecMDgDR9fwB7RPO__HzGv0Z9RwB2_XXACL8KwEl-wcGBADkAd3zBf__JucB9_nK_gv4BgPz8Qb4x_cHBR0W5QPtHAEC9yjzBAgL6AYE9O8BJPAC_f306_jrBh34IRP1-PwL_f0SHf738QcS9P0DAQQhKP3-GAwKB_wK_v4iAPP6Ef8HDRv7Af7zufL_8PT7_S0c8fr-wfj8POkOESAALRftHzs4E0AJSGFQAipzEAAaYF4YAB3OLePi9CXi-7sjGunY1-y2tx__G9AAx_bd8gIq2QcBSAAU5QLUpAAAACnW8xDbAAxw88QNJxntEIH62RAObDEf6s7sUPcF0u0uBgMQ-CYt9wDmIuNEV-XzZfYoOiAALdSgGjs4E0AJSG9QAiqvBhAMGqAGAACYQQAAsMEAAEBCAAAcQgAA0MEAAJhBAABwQgAAcEEAAJjBAADgwAAAoEAAAFDBAABAwAAAAMAAAEBCAAC4wQAAlEIAAMDAAAAAQAAAfMIAAFTCAAAAwgAAfMIAAGxCAACAwgAADMIAAGTCAAAMwgAAXEIAADxCAAB8wgAA-EEAAKDBAACYQQAAGMIAAMBAAACIQgAAUEIAAHDBAAAsQgAAMMIAAEDBAAAQQQAAAMAAADRCAABAQgAAmMEAAADBAAAQQgAACEIAABDCAAAMwgAAaMIAAPhBAACAQQAAyMEAAEDCAAC4wQAAmEEAAHBBAACgQQAAAEAAAMTCAACEwgAAgEAAABTCAAAgQQAAiMIAAPjBAACgwAAAOEIAAKBAAACAvwAAAMEAAMhBAAB0wgAAAMMAAMDBAACgQQAAwEAAAFzCAAAQQgAAHMIAACDCAAAwQQAAuEEAANjBAABkwgAAiEEAAMBBAACAwAAA0EEAAGBBAABIwgAAiEEAAADCAADAwAAAQMAAANjBAACSQgAACMIAADBBAABIQgAAoMIAAETCAACAvwAAAEEAANhBAACYQQAAgkIAAMBCAACowQAAyEEAAABAAAAwwQAAUEIAADDBAACAwQAABEIAAKDCAACAvwAAEEEAACBBAACAwgAAEEEAAETCAABYwgAA4EEAALDCAAA0wgAAoEAAAGDBAABgwQAAMEIAAIDBAABgQQAAGEIAADDBAACgQAAA1sIAAHxCAADwQQAAZEIAAIhBAADgQQAA2EEAAEDBAAA8wgAAkEEAAARCAACAwQAAsMEAAHBCAAAcwgAAQMIAABzCAAC2wgAAcEEAAFDCAAAwQQAAwMEAAKBAAAAIwgAATEIAALDBAABYQgAAyEEAAHBBAABIQgAA6MEAADTCAABAQAAAIEEAAMBAAAAgwQAAgEEAABjCAAAAQQAAEMEAAFRCAABAwgAAsMIAALhBAADYQQAAhkIAAFTCAABgwQAAsEIAAKDBAADQQQAAAEAAAIDBAADgwAAAwMEAADDBAACQwQAAJMIAAKDAAADgQAAALMIgADgTQAlIdVABKo8CEAAagAIAAHC9AAAEPgAA7j4AAIC7AACIPQAA2D0AAFQ-AAAfvwAAVL4AACQ-AADYPQAA6L0AACQ-AABsPgAAUL0AAMi9AADSPgAAiD0AAII-AAC6PgAAfz8AAIg9AAAkPgAAtj4AALi9AADYvQAAqj4AAI6-AABkPgAAND4AAFC9AACavgAAmD0AAFA9AAAUPgAATL4AAAy-AACyvgAAXL4AAES-AACSvgAAED0AAEw-AACYPQAAnr4AANi9AABQPQAAbL4AALi9AABQPQAA6D0AADw-AABQPQAAVD4AAIi9AACIvQAAHT8AAFC9AACovQAAoLwAAFC9AAA0PgAALD4AAES-IAA4E0AJSHxQASqPAhABGoACAADKvgAAuD0AAEA8AABTvwAAlr4AABS-AAAQPQAAcD0AABw-AABAvAAARL4AAGS-AACgPAAAML0AAAQ-AACIvQAA2D0AANY-AACgPAAAtj4AAFS-AAAwPQAAyL0AAOC8AACAOwAAJL4AADw-AACAOwAAUD0AAJi9AADgvAAAfD4AAAy-AADgPAAA4DwAAFC9AAC-PgAApj4AAGy-AACAOwAAZL4AAEC8AACOvgAAHD4AABA9AAD4vQAAf78AAHw-AABMvgAAPD4AABQ-AAA8vgAAoLwAAKo-AAAEvgAAJD4AAJg9AABcPgAAqD0AAMi9AABMPgAAJL4AADA9AACAuyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=SxMkB3NhC10","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":608,"cheight":1080,"cratio":0.56296,"dups":["11219408172770736746"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3326220732"},"194851750172632709":{"videoId":"194851750172632709","docid":"34-8-5-Z5594A1F833C2DD45","description":"and tuition ☑️ Guaranteed results or get your money back SIGN UP FOR A 7-DAY FREE Trial, THEN 20% OFF. https://share-eu1.hsforms.com/1fDaMxd... Online Courses AT...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3839958/904680c18f0414c58970c25fd6aaab24/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/16s7FgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnUXoQoTgDmE","linkTemplate":"/video/preview/194851750172632709?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to find the maximum volume of a box (Example) : ExamSolutions","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nUXoQoTgDmE\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFAoSMTk0ODUxNzUwMTcyNjMyNzA5WhIxOTQ4NTE3NTAxNzI2MzI3MDlqkhcSATAYACJEGjAACiloaGJoZG53eWp5cmttYWNoaFVDdHV2cFBOVFkxbEtBb2FWekJyemNMZxICABEqEMIPDxoPPxP7BoIEJAGABCsqiwEQARp4gff5BPv8BAD4-xT9_QT_AQsKBwD3AQEA5AX9AQD8AgDtCQIG-wAAAP8SCAoFAAAA-gXx_AP-AAADAwQC_AAAAAwIBgP9AAAADgD7Bv4BAAD2_gMEAwAAABIEAf3_AAAA9gcIA___AAD4Gff-AAAAAA4FAgMAAAAAIAAtluDdOzgTQAlITlACKoQCEAAa8AF_DAD8zhHTAOYQ_gDbDvEBnOglADQaKv-0Fy4B3vj8AAAS1gAlzREAGc_WAMPp7wBxAtP-4xzG_uHMI__v7v0B9e8hASyhJf9B5ywALfTEA_0PLf0J6CIAHu21_iUSK_4R9gT5GfauAegEsAJD6ikCH2EOBOO0ywAdyvsB8vTw_dvzzPz68wkJzOIL9hcnJAf7LMwG-DYM-skZ7_xQ8v4FAb7vA0AX3QE3_PAJiSgGAyQt_PcQ-esN5Vcf9Q4U5f7b6gfqFKcUCBjzJgjW1hHxE9wB-Rf-CRL58A37B_0EBrzU8Q66LBQKDcnrErvP_fsgAC1w3uY6OBNACUhhUAIqzwcQABrABywrzb7IMN06vUgyvaWdj71E5M-8hUu9vILUvL3k3JY9_IsgPVG7rz2ezjq8CKI4vKFId75zVro8pDYxvRSUQj5GRRy9c-gAvLB2FL6paVe91y9YvabUBb4_TKm6BWaqvE4_Db3NkCq8DM4AvTBHzzw4uo-98icqPNJoNz1AbEm9_3XTvFY_wLwX-EW9O3mJu7kXfT23lzS8dx1gPAXB4z3JOOa9FIxvOxGL2LzEorg90w6kPDgWT72r-HC9g7IfvckibT1FhNo7JTMoPC6Z2bx_-Hk8EcLguMkaSjoKMac90zuNO6xjCz0NBjI8WuybvJeCP712PP-7B8ihvHf1Cr6gny49XPlRvPB_bD1mqcA95WUJPNzvhb3dCfY9yJ3rupBpDT2zGtw8WX3_PI4gVT57SN28L6fCO4P8zD0lVUC97I0SvNVfij1rMIg9b-KaPI8Y3T3z-4M9DiaPvNwjIzxR0xM9HLvfvK-BBDvak_q7UFh7u2-df7znQTA829qnPBnPGz0Hldg9vElCPMU1Qz34UQ2-CW8su3pip7wbxtO8I_2RvE2mJT1qeW8969gQPCq-qzwNAgY9DxfvO5wcWb2O1fu7-dNrPBb1bjwwkBa9gVxiO0f57ryeedk9DWH_uW3FQ73j9ZU9N0yNuWJAQL0x7KA9WBbxOkWlDD1w7m89zf5lO_IHwzwaXOm81xcHvGMxAD1XXYc8dGILO0TztT2WIm85Xsv5OuPmr70hHyS--z9YOU5_Fj2r54S9crRquRWzdD1AYK-9jWJ-OMCQmzo8FIU9N-a0ONKJhD3p8gY-skiFOfLlaj3ctK49zY3kuGPfJD36Wjw8TK-VOWeK7zxaHjW957bVuDaZbL0S81E9z0duOeWMkr2TuQO9432euZ8_yDxTLZi8V_YAuZf8tDzV7Vq6hopnuDP8t734Gdc9lT3PuGx2pL1mD5m83C2tObwvnbyLgZ890q5sNyRGzzxuXIW9SVyfOFndqj2RxrI8I1RfOO1-1T2d2pk88dcxOAkcJD3Ur9m8_xwsuJ0ORzt3nwO-Q96Mt2UZoj3mu0q8RB5zOLjkKL7Rf4W8nfgauQmwrj3OCAW9qInyOKDOaz3NJri7rqu9N2Fe9rz9T9k8lOJROIJVRT50yDc9ydyEuc3Her3TFey95pv4uD48cLzn4zk7eGakNiTES7yOotg8wO2rt_Z0ej3gD9-9P5mbt8r0cD0i4Ss-8cuKOLVXWj3SsoQ9kdm7uK1t6r0UO788b9LjN8RA17yYBjS8q4C-NiAAOBNACUhtUAEqcxAAGmAZ9QA7xxvZ9-ZJ9v3IIxjsvsXb66r9_-vR_-QyMubuQtK3JSUABKcg1pgAAAAq_-FQPwASf-gPAks84zqPvPr28n_kBAbQmw0crvQmGw7_4PUeMSAA8ADEREvW12P_LV4gAC3v0wc7OBNACUhvUAIqrwYQDBqgBgAA8EEAAIC_AABQQQAAgMAAAAzCAABgwQAAMEIAAIC_AAAUwgAAMMEAAABAAAD4QQAAcEEAAKDBAACQQQAAQEEAAFjCAAC4wgAAAMIAAKDAAABgQgAAZMIAAIhBAACYQQAAAEIAAOBAAAB8wgAAZMIAACBBAAAwwQAAsMEAAADBAABgwgAAwEAAAPDBAADcQgAAYMEAAMJCAABwwQAAJMIAALBBAADowQAAgEEAAKBCAAD-QgAAeMIAAAxCAAAcQgAAFEIAAGBBAAAIwgAAgMAAACjCAABAwAAAQEAAAKZCAACIwQAAIMEAADBCAABoQgAAqEEAAHjCAACwwQAAgMEAADBCAACQQQAAGEIAAJBBAACoQQAAAAAAAIhCAAAwQQAARMIAAAxCAABgQQAAAMMAAHDBAABMwgAAjkIAACDCAABQwQAA3kIAAIDBAADAQAAAQEAAAHDBAABQQQAABEIAAHBCAABAQAAAcEEAAMBAAACmwgAA4MIAAGDBAADowQAA8MEAAAhCAAAgQgAAUEEAACDCAACAQgAAokIAAODBAADgwQAAqEEAAODAAADoQQAAoMAAADRCAABwQQAAMMIAAKDCAADIwQAAwEAAAAjCAAC4QQAAgMIAAKDAAACAwQAAgEAAAADCAABQwQAA4MEAABBCAAAswgAAUMIAAFjCAAA4wgAAgD8AALDBAADYwQAAgD8AAJRCAADgwQAA2EEAAEDBAAAAQgAAQEEAAKTCAAAAwAAAwEEAAABCAAAYwgAAcEEAAIDBAAAUwgAANMIAAExCAAD4QQAA8EEAAKBBAACowQAA0EEAAMDAAAAQQQAAFMIAAODAAABUwgAAoEEAAIBAAACgQQAAMEEAAMhBAABwwQAAoEAAALBBAACgQQAA0EEAAIBAAAAIwgAAQMAAAADBAADgwQAAUMEAAJjBAAAwwgAAZMIAAFBBAADgQQAAAMIAAJjBAADAwQAAoEEAAPxCAAAIQgAAQMEAAJBBAABIQgAAcEEAAPjBAAAgQQAAAEIAAADBAADwQQAAwEEAAAjCAAAQwgAAgMEAAIC_IAA4E0AJSHVQASqPAhAAGoACAACqPgAAQDwAAKY-AAAwvQAAlj4AAMo-AADmPgAAf78AAGS-AABQvQAAZD4AAP6-AACoPQAAuj4AABQ-AAC6vgAAdD4AAAw-AACAuwAADz8AAH8_AADoPQAA3j4AAEA8AADivgAAVL4AAMY-AACgvAAAHD4AAPg9AADePgAAyr4AAPi9AACuPgAAfD4AABC9AACovQAAFL4AACm_AACavgAAXL4AAJi9AACCPgAAQLwAAMa-AAAMvgAARD4AANq-AACIPQAAxr4AADS-AAAkPgAAND4AALI-AACgPAAAUL0AAH8_AACIvQAA6L0AAIq-AADIvQAAcL0AAIo-AAAEviAAOBNACUh8UAEqjwIQARqAAgAApr4AANg9AAAwvQAAN78AAOi9AADovQAABD4AAIg9AABkPgAADL4AAGS-AAAsvgAAiL0AABy-AAC4PQAAUL0AACw-AADCPgAAqL0AAAc_AAAEvgAAcD0AAIi9AAAkvgAAoDwAAES-AADYPQAAgLsAAOC8AACgvAAAoDwAAIY-AAAUvgAAUD0AAKg9AADYvQAAoj4AAJo-AAB8vgAATD4AAFC9AADIvQAAFL4AAOg9AAAEvgAAgDsAAH-_AADYPQAAxr4AAFw-AACgPAAAoDwAAOA8AACGPgAAgDsAAOg9AABAPAAAQDwAAOA8AACovQAA4LwAAAS-AAC4PQAA6D0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=nUXoQoTgDmE","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["194851750172632709"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2605480000"},"7864404395797456771":{"videoId":"7864404395797456771","docid":"34-11-13-Z54A5025A39324518","description":"Here is the answer of an open-top box with cutting the square in the corner. We will use first derivative to find maximum volume. #FirstDerivative #Calculus #Pre-calculus #Volume #Derivative...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3788956/cfe1eeead69231047165a2a2678d14b0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Dh2u1QEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D6kE7EgOliNo","linkTemplate":"/video/preview/7864404395797456771?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus Help: Finding the maximum volume from open-top box by first derivative.","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=6kE7EgOliNo\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFQoTNzg2NDQwNDM5NTc5NzQ1Njc3MVoTNzg2NDQwNDM5NTc5NzQ1Njc3MWqIFxIBMBgAIkUaMQAKKmhoeW9ibmNmc29rcmJkcWJoaFVDRmhxRUxTaERLS1B2MEpSQ0RRZ0ZvURICABIqEMIPDxoPPxOzBIIEJAGABCsqiwEQARp4gQADA_EB_gD29BAI-gb9AhQQDgb1AgIA5_r7_gT-AQD2BfX0-AAAAPkEBfcIAAAA-gf7B_v-AAALAQD_6wD_ABUMAAH-AAAA-P70-v8BAAAL-_QD9QIAAQ4JAQUAAAAAAhASBP8AAADsA_gOAAAAAPv_-gYAAAAAIAAt7zLOOzgTQAlITlACKoQCEAAa8AFv9QT_idzo-9UFxgDRD-YBgQot_x8p3wDZ3_0A0gbeAc8P4gDb_xD_E_oI_-0YAv9L9uAA-c0CACO99v8b3QAB3wMPASfS8wFL8gUAHOcA_e7zFADnzBIBFb7rABwO5P0i4CD_EAfqAv340f0Q_kEBITESBfjwGATs3S798h0K_vb4w_7XEvn_4fQe_N_1Mgjp_fEHGyEGA9IZ1wD89AP5_e8G9C440_8R3OsNCPYaCr4J6wASAdwBBDgX_9rsBfvl7xr45PwF_-7yFwUc9fYBH-fqEAUC8Q0kCPwGJMn__NkI7vzbSAkC7MvjAvr3-O8gAC1QIw07OBNACUhhUAIqzwcQABrAB2ND774Pwae804CDO1zX-bzve2-9tAUEvT6JuT2QpSo9VcVxu1G7rz2ezjq8CKI4vJ_klr4b2Go9Sg1NvZjdIz6BSZC9Q_T1vIc0Kr6eaag9tnJlvKbUBb4_TKm6BWaqvLpWsbzDVGk89q5mvBGDijxGcK286z3Pu2JRLL1kUqg8qJZjvFGWa7yBdKa9m3PTOxt_hzzXN5u9rqliu4YecT1Pmye91YItvf2AvD3liRY9ibcJve4YaL21Nk29fvRZO8kibT1FhNo7JTMoPOiwsTzvL4o7i5TcvN6O0zoiwVQ9a0yjPJYKar2ulIo9qX81vGmjHz3SIyG5WolUvCcWmL2LA4O8LKrVu2YwZj0Lypk984GTvKFdj7zJdwk-B9IkO7xtUD2QJf-7KWm0vJfmJj4l_Dc90ssDO8LUG72zYS09bx49vJt_qjwFxOQ9ZKgQvFN52z3W8Q49DUY2vHugNb2HbYs8Vi6vu4MU_jvnGIA9alxuvASicT3cIwW9QSsNPPh1Oz2cDgk9llwku8U1Qz34UQ2-CW8suyRGDz2qO4C9TXQOu3R-yjxqJHM9hcSou1dYFT2LVHi9khDdu7892TxOHXW8OVtluwLIij04jI29FMdku4-sF71HcW49qlAVvPx_Jr0ASm09kpbnu3MHWz0DU8c9cgzBOSnEqzsn66G9bAZ6O88Dbj0Ja0i9Yvw1OvOA6Ds6fE29AECpu9rHKj0hSzW9gLa4uxdV9bwDIy-8ZCnpu3iNx70CY_28x7bWN5RAtD3gzWS94odqOcCQmzo8FIU9N-a0OK5u67ym8CA9C5aeuXW2Njyr6BG8uwKXON0qo7xXPcC9kQYeOfDETD1YmT67bF9dOhTzpz1_PYU9zihiuBTn6L1zySK9It5DuTdTobyzrxU5_TI1OeKEEzzhDak8f99KOCCMqTxnnlc9UgA3OLSw5bvbeyK9gBzwOKxMgr0xZ7E9q_tIOEHjeLx8R-29YROrOdDwZr14i6E9850kuT_JeDyeAb89e0CHtrPTSj2tnY87REz2tsPT6zxnJvi9IiQkuJFkMb1Zq5E9tUa_OM2uO73c-y-8Sn0tOLqsGD3xxU093NLLOL-YkjxHdI-9BsS5t08keL04JlU8fbc9N0Hutz08YdO7QRn8uPZUWL1_wW68VLJTt-4B3zzVXQm-RxjEOOY7OL2oLX89yhDIssIVgL0UeOe92bSguMr0cD0i4Ss-8cuKOC_BKbwKxMY8W0yWuDhPUL041go9EHamNsXdRb3_q9C6poM8OCAAOBNACUhtUAEqcxAAGmA_AgA33Bb_-ugN1_e9KBTr097tz8oa_wnVALMpxukPHuTVJCoADb0NA6wAAAAp-A3s6wD3dO0BDgsLGxGqzM84K2P5B_q_vBzkz9X0G_AS3xQWMOIA1ePBJSL4x3_pCA4gAC35QSQ7OBNACUhvUAIqrwYQDBqgBgAABEIAAJjBAACaQgAAHMIAAJDBAABIQgAAhkIAAABBAADgwQAAgMAAAODAAAAIwgAAUEEAAAjCAAAAAAAAMMEAAJBCAAAAwgAAkEEAALjBAADAwQAAGMIAAITCAABcQgAADMIAAEDBAAAQQQAABMIAAKBBAAAEQgAAAMEAAIA_AABgwgAAsMEAALrCAAAcQgAASEIAAJhCAADwwQAAgkIAACxCAAA0wgAAiEEAAIjBAADwQQAAUMEAAJhBAAAUQgAAmkIAAKDBAACAwAAAYMEAAODAAACAQQAAoEEAAKhBAADQwQAAiMEAAGxCAADgQAAA8EEAABTCAADYwQAAeMIAAADBAAD4wgAAQMEAALbCAAAAwgAA2MEAAAhCAABQQgAATMIAAKDBAADIQQAAssIAALzCAABAwAAAIEIAABhCAAAAwQAArkIAAKrCAADAwAAAiMEAAHRCAADQwQAAaMIAAMRCAABAwAAAMEIAAGhCAAAIwgAAYMEAAKBBAACAwAAAyEEAANjBAAAgQQAAIEIAAEjCAABgQgAAYEEAAEDAAADAwQAAUEEAADzCAAAAQgAAQEEAAMBBAABMQgAAJEIAAMDAAADwwQAAQMAAADhCAADIQQAAQMIAAIBAAAAEwgAAIMEAAIDAAADAQAAACMIAABDCAACQwQAAAMAAACxCAABkwgAAgL8AAIDAAAC6wgAAAEEAAIJCAADowQAAUEEAAIhBAADoQQAAAMIAAFDCAACgQQAAAEAAAKRCAAAAwgAAsEEAAJBBAADYwQAALMIAAGBBAABAQAAAsMEAAIDAAACAQgAAPEIAAKBAAADYwQAAssIAADTCAAAwwgAATMIAAIA_AAAsQgAAJEIAAOBAAACAwAAA4EAAAABBAACWQgAAkkIAAOjBAABwQQAAcMEAAGDBAADIwQAALEIAAOBAAABgQQAAAEAAAPjBAACAQQAAmMIAAITCAABgQQAAcEEAADhCAAAswgAAPMIAAODAAACgQAAAEMIAAJJCAAD4wQAAAEAAAJDBAACgwQAAkEEAAEDBAACAPwAAXEIAAADBIAA4E0AJSHVQASqPAhAAGoACAABAvAAA-D0AALI-AACAuwAAgDsAAEw-AAAMPgAAC78AAFS-AAAwPQAAED0AAI6-AACKPgAAbD4AAEA8AADIvQAAnj4AAOA8AABMPgAAwj4AAH8_AACCPgAAdD4AAHA9AAAsvgAAEL0AAFQ-AABUvgAA2D0AAAQ-AAAwPQAAuL0AAKC8AAAwPQAA6D0AAKi9AADgvAAAED0AAEy-AACqvgAAZL4AAEA8AAAkPgAAmD0AAIK-AAC4PQAAXD4AAPi9AABAvAAA2L0AACQ-AAC4PQAAUD0AAGw-AABEvgAAiL0AAAs_AABQPQAAML0AAEA8AABsvgAAcL0AADQ-AAAkviAAOBNACUh8UAEqjwIQARqAAgAAnr4AAEQ-AABEPgAAYb8AAJi9AAD4vQAAqD0AAFA9AAA0PgAADL4AAES-AAB0vgAADL4AAEy-AAAcPgAA4LwAAEA8AAAPPwAAcD0AAJ4-AAAEvgAAML0AADC9AADYvQAA4LwAABC9AACAuwAAMD0AAKC8AACAuwAAUL0AADQ-AACAuwAA-L0AAEC8AACYvQAAuD0AAOg9AABkvgAABD4AABS-AACgvAAAyL0AAAw-AAD4vQAAPL4AAH-_AACgPAAAmL0AAII-AAAQPQAAEL0AAEC8AAA0PgAAyD0AAKg9AACgPAAAoDwAABC9AAD4vQAAHD4AANi9AAAMPgAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=6kE7EgOliNo","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":622,"cratio":2.05787,"dups":["7864404395797456771"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1157464751"},"558407875135350935":{"videoId":"558407875135350935","docid":"34-2-11-ZED7D581C16640BF8","description":"In this video, I go through an example of using calculus to find the maximum volume of a shape. I also advise on exam technique for this type of question.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2890909/eb59a0f452b67e471b96254bf3736a31/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/bQHcSQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeMtSxH5LYoI","linkTemplate":"/video/preview/558407875135350935?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to use calculus to find the maximum volume of a shape","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eMtSxH5LYoI\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFAoSNTU4NDA3ODc1MTM1MzUwOTM1WhI1NTg0MDc4NzUxMzUzNTA5MzVqtQ8SATAYACJEGjAACiloaGNxb2JwcGFib3NneW5oaFVDM0ZudnpvMFhZVXZpQk10VVluaGNEdxICABEqEMIPDxoPPxP3BIIEJAGABCsqiwEQARp4ge73CvcE-wAE9BIE-wn8Ag8DFAH2AQAA4gLv9gP8AgD1Bf_2AQAAAA4PDvQBAAAA-gz5__v-AAAo_fX9AQAAAB_5AvT9AAAAFPjy-P8BAAD-BQESBP8A_w0PD_YAAAAA_Ab4-_n-AAH1-gv_AAAAAA8SAgj_AAAAIAAt6ePEOzgTQAlITlACKoQCEAAa8AFaM0P11hWyAroD4QEBDKwBtfEY_w4R7ADT-x3_1Cr3AfAmCwD9Od3-BQPn_6MhCwEJFNX--eb1AAaoCv_s40wA--30AeUELgB_4hUAI-8R_7sHJv_19zUB3Br3_wsPwf0erC3_Eg_MAcPJswgx-j4BEgHiBszI3gDc0wwN2PIm_8QZxP3BozgB1_UN_sQV4QgaQdMB23vs_RXp0AgfvAL9GM3qA0jg8gYvHQb-mBoR_QEi6PLDBNsFBwIE8srz8PLrBd7x9q8F_1oO9_zCxO8MM9MG9xjP-fH81-DxzPgN9fH44__SRuLt_QHgCtfD8vcgAC0Gxd46OBNACUhhUAIqcxAAGmBB9AA37ufq5xgf4ge_GC6V99Kw5bnn_wrC_-_-4QoRGNrZFgr_HfMcl5gAAAAs69o9GwAMfOzSABEgESWM5LU--H8jDtLOwxQD6dRBJyEQ9gjLS0sACvrtYGH5tj8DOTQgAC1_mQs7OBNACUhvUAIqrwYQDBqgBgAAmMEAAFDBAAC2QgAAmEEAALhBAABAwAAApkIAAAjCAADYwQAAkEEAAIC_AACwQQAAgMAAABBBAADYQQAAgMAAAKBBAACIwQAAEMIAACTCAAAAwQAAgMIAAMDAAADAQQAAwMAAABxCAACAwgAAcEEAAHxCAABAQgAAKMIAAIDAAABwwQAAgEEAAHjCAACIwgAAYMEAACBBAABIQgAA6MEAABjCAADIQQAAsMEAABBBAAAAwQAAIEEAALhBAACwwQAAAEAAAPjBAAAswgAAgMAAADzCAAAUQgAA4EEAAJDBAACgwgAAgMAAAKhBAABEQgAAUEEAANDBAACiwgAAVMIAAADAAADwwQAAwMAAAHzCAABQwgAAqEEAAMBBAADIQQAAgEAAAGBCAAAAQQAAaMIAALDBAABQwQAAMMEAAIA_AACgwAAABEIAABzCAACAwgAAPEIAAMBCAAAMwgAA-MEAAFhCAACAQAAA4EAAAEDAAADQQQAAGMIAALhBAADSwgAAOEIAABBBAACOQgAArEIAAMDBAAAQQgAA8EEAACjCAABkwgAAwEEAAITCAABwQgAAgEAAALBCAACEQgAACEIAAARCAAAAAAAA8EEAAKxCAABAQAAAqMEAANhBAACUwgAAYEEAAIjBAAAIQgAAYMIAAABBAAC4wQAAkMEAADjCAAAUwgAAQMEAAJBBAAAQwgAAoMAAAMxCAABwQgAAQMIAACRCAADQwQAAAMIAAAzCAABAQgAADMIAACDBAABQwQAAOEIAAMhBAAD4wQAAgMAAAIBBAADAwQAAgEAAAABBAACAQQAAoMIAAHDBAAA0wgAAjMIAAMDAAACYwQAAhkIAAETCAAB4QgAAAEIAABjCAAA4QgAAMEEAAAhCAAA0QgAAlEIAAIDCAACSwgAAAEEAANhBAACYQQAAEMEAAIhBAAD4QQAAkEEAAMDAAAA4QgAAFMIAALzCAACQwQAAqMEAAFhCAABAwAAAwMAAALhCAAAwwQAAPEIAABDBAADIQQAABMIAAKhBAACAwQAAyEEAALBBAADgQQAAwMEAALjBIAA4E0AJSHVQASqPAhAAGoACAABcPgAA2D0AAOI-AAAkvgAAED0AAK4-AACoPQAAF78AADC9AAAkPgAAmD0AAFS-AABMPgAAJD4AABy-AABAPAAAkj4AAFA9AACIPQAAyj4AAH8_AACYvQAAUD0AAL4-AAAcvgAA4LwAAII-AAAUvgAAij4AALg9AACgvAAAfL4AAOC8AADgPAAAPD4AADS-AACAuwAAir4AAEy-AAAsvgAARL4AAPi9AACCPgAA2D0AAFS-AAC4vQAAML0AADC9AAC4PQAA6D0AAJg9AAAUPgAAqD0AAKo-AACIvQAAQDwAABU_AACIvQAAEL0AAKA8AABQvQAAqD0AAHQ-AACgPCAAOBNACUh8UAEqjwIQARqAAgAApr4AAOC8AAC4vQAAO78AAKC8AACgvAAAML0AADQ-AADYPQAAiL0AAHy-AABQvQAAUD0AAOC8AABwPQAAmL0AAKC8AADCPgAAJL4AAJY-AAA0vgAAHD4AAIg9AADovQAAMD0AAFC9AABEPgAAQDwAABw-AACYvQAA4LwAAIY-AAB8vgAAML0AABy-AAD4vQAAuj4AAHQ-AAAUvgAA4LwAAAy-AADIvQAAdL4AAFw-AACAOwAAbL4AAH-_AABMPgAAqL0AAAM_AACYvQAAuL0AAKC8AADKPgAAQDwAALg9AAAwPQAAoLwAADC9AADIvQAAyD0AAKi9AABEPgAAHL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=eMtSxH5LYoI","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["558407875135350935"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"62503516882585486":{"videoId":"62503516882585486","docid":"34-6-10-Z75BFC66963C05E70","description":"What is the maximum volume you could have for a rectangular box if you are given its surface area? This video shows you how to do it using calculus if you are given some information about its...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1956792/f2892e84e632894120fe1a85a6a4b9b7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qQ_eGQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOCwGfKeWb5Q","linkTemplate":"/video/preview/62503516882585486?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding the Maximum Volume with a Given Surface Area of a Rectangular Prism","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OCwGfKeWb5Q\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaEwoRNjI1MDM1MTY4ODI1ODU0ODZaETYyNTAzNTE2ODgyNTg1NDg2arUPEgEwGAAiRBowAAopaGh2cWV2Zndkem1rZXBvaGhVQ1YxUFZiRU9lazlSdmhjSzZ5ZFZ4NXcSAgARKhDCDw8aDz8TqwSCBCQBgAQrKosBEAEaeIH2AQr2AQAABAAFBwEJ_AL6_fbx-f38AOUDBP0J_QIA8AsC-_kAAAAFDwP2CgAAAPYE-PEB_wAAAA_zCgMAAAALAAf8_AAAAAb-AfYKAAEB-Qf6-fYCAAEUBAH9_wAAAPcLB_r7_wAA9gb-CgAAAAD-A_0A-_T-ACAALSODzzs4E0AJSE5QAiqEAhAAGvABcfgO_9jr5f_PAuoB2yvEAYEiCv4XRvkA1u4L_80V2QDuF-AA2t8y_gL1CgD6DM4ARPfjAO3i-wAWzhT_DdfjANYlFgEY6vYBKOc2ARX3-ADSLQL-6dEQAPXduAD7Cf39DeMP__oBy__29N0GMfAeAhEcGP8UDCID8ekMAf_9BgbP3s77EBPTAenbEvzrGhkAHgb8Bxz6C_zGE_sE5d74BBzrEPQpMtj_C-YI-PkaAwUKHfoABvbv-xEj_wj87OH98_ckAsnpBP777AUEHt0C8_n1-v0VDfwR8wEQ-gzf-wPy8PcMBwoBBffj9gIA9_T9IAAt_yEdOzgTQAlIYVACKnMQABpgDfoAHAAc6QnbDtQW5gYcwbDuzNnY7P_ynP_TKfMF-y3ZtAv-AErsHuWjAAAAP-jp--UACXkb7P5D9esZgd7vSu1s4xX9ursA-87F6gfv8-DyExkrANfcrjAh2s5p-ScSIAAt4VAZOzgTQAlIb1ACKq8GEAwaoAYAAIA_AAAwwQAA8EEAAAxCAAAQwQAAjEIAAIA_AAAQwQAAoMIAAODAAAAkwgAAwsIAAFBBAAAAwAAAREIAAABCAAC4QQAAbMIAAADAAAAIwgAAQEAAACTCAAC4wQAAZEIAAJhBAADYQQAA6MEAABjCAAAoQgAAAEEAACDBAABAQAAAaMIAAGDBAACEwgAA8EEAABRCAADMQgAAQMEAAOBBAABAQQAAkMEAABxCAADwQQAAiEEAAIBAAAD4QQAAwEEAAPBBAAAAAAAAyMEAAJDBAABgwQAAHEIAAOBBAAAsQgAAsEEAACDCAABEwgAAiEEAAADBAAAEwgAAYMEAAChCAACAPwAABMIAADDCAACawgAAwEAAAIhBAABQwgAAUEIAADzCAACgQQAAMEEAAMDCAAAgwgAAnsIAAIBBAACAQQAAaMIAAABCAABEwgAAiEEAALjBAABAQAAA0MEAABDBAACKQgAAgEAAANBCAADQQQAAUMIAAKDBAADQwQAAWMIAAKBAAABYQgAA0EEAAMDAAACqwgAAGEIAAIpCAACewgAAWMIAAATCAADQwQAAMEIAAJzCAABYQgAALEIAAKJCAACAvwAA4EAAAADBAACgwQAAYEEAAFTCAAAwQQAAZMIAAADCAACgwQAAQEAAAGzCAAAowgAAGEIAAOjCAADwwQAA4MEAAKBBAABIQgAAgL8AALDBAABYQgAAuMEAAHBBAACAQAAAQMEAAODBAAAcwgAAEEEAAKDAAAAAwAAAoEAAAHxCAABQwQAAoMAAAEzCAAAEwgAAGEIAAIC_AABAQgAAskIAAABBAAAQQgAAsEEAAKDCAAC6wgAAkMEAAAzCAAAswgAAIEEAAIA_AADYQQAAgMAAAJBCAACgQQAAYEIAAKBBAAAYwgAAgL8AAODBAAD4wQAABMIAAHBBAAAswgAAgMEAAAAAAABowgAALEIAAJjCAACOwgAAQMEAAMBAAADYQQAAHMIAAKDBAAA4QgAAjEIAAABBAADowQAAQMAAANBBAAAswgAAIEEAALDBAAAgQQAA4EAAAEBAAAAgwiAAOBNACUh1UAEqjwIQABqAAgAAUD0AAFC9AADYPQAAFL4AADC9AAB8PgAA2D0AABe_AAA8vgAAmD0AAOg9AACCvgAAqj4AAGQ-AAB8vgAAZL4AAIY-AADIPQAAdD4AAKI-AAB_PwAAiD0AAFQ-AABsPgAAqL0AAOi9AAAMPgAANL4AAAw-AABsPgAAyD0AAGy-AAAwvQAATD4AAKg9AAAsPgAAZD4AAHS-AABcvgAAfL4AAJq-AADYPQAA6D0AAMg9AAAcvgAAqD0AABy-AAAQPQAA-L0AABS-AAAQPQAAQLwAAHQ-AAA0PgAAoLwAABC9AAAtPwAA2D0AADC9AADYPQAAkr4AALg9AACIPQAAgDsgADgTQAlIfFABKo8CEAEagAIAAFy-AACAuwAAuL0AAF-_AABwvQAALL4AAHw-AAAEvgAAQLwAAFA9AAB0PgAAqL0AAEC8AAA0vgAA-D0AANi9AAA8vgAAEz8AAOC8AACGPgAAJL4AALi9AABAvAAAFL4AAEC8AAB8vgAAgDsAAJg9AACIPQAABL4AAMg9AADYPQAAdL4AAMg9AABkPgAAhr4AAJY-AADWPgAAvr4AADC9AADYPQAAyL0AADS-AAAUPgAAcL0AAJi9AAB_vwAA2D0AAOg9AABwPQAAmD0AAIA7AAA8PgAAUD0AADC9AACYPQAAoLwAAPg9AAAsPgAATL4AACQ-AADoPQAAEL0AAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=OCwGfKeWb5Q","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["62503516882585486"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"794657877"},"2172407050685480835":{"videoId":"2172407050685480835","docid":"34-8-3-Z7FBA1EA3E68A6E8C","description":"This lesson will use calculus to find the maximum volume of an open topped box created from a rectangle. Be sure to subscribe to Haselwoodmath to get all of the latest content! Follow me on...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4696492/4a557d5fc3a983108abd2554f2dc3a52/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_70lagAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrqcdchR55gA","linkTemplate":"/video/preview/2172407050685480835?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus - 4.4 Notes Example 3: Maximum Volume of a Box","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rqcdchR55gA\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFQoTMjE3MjQwNzA1MDY4NTQ4MDgzNVoTMjE3MjQwNzA1MDY4NTQ4MDgzNWqIFxIBMBgAIkUaMQAKKmhoYXRjeGtteGR2anl0aGJoaFVDYXp1S29ZQlYwMXRnU0hTTHpCNlhxdxICABIqEMIPDxoPPxPVBIIEJAGABCsqiwEQARp4gffqCwEE-wD1-AcKDwb8AQAEEPP4_v0A1_PxAwf4AwD5BQgE-AEAAAEaDf4CAAAAB_b2AgP9AQAH-gL1-AAAABkS_Q_8AAAABgH9B_8BAADwB_oHAwAAABQJA_P_AAAA9QX-AP__AAD1B_4LAAAAAA0D-wsAAAAAIAAt9tHFOzgTQAlITlACKoQCEAAa8AF_DSf_tBL6_sUb9QEAFdUBsfhL_zo5D_-2FiwB0OvNAPEkCwDUBOQAFgX5ANft-_8ZBeQAy97NAP-8NADqFQQAIRbzAfPkPP5rsgkB_u_b_r8pI_3L9O8A2tbD_jot5gHr7yP8-AG6_-kEswIe3zcDLRVHAMvj8P8B_eT-yeITA9zzzvz68wkJwuEk_7T0CQcnHdwE6kkg-OnkA_oA9fgK-dUEDFskBgAeCgUFs1YQABDj7v8SDP8MBQk3_uQe8vEUAhH_KK0V-0Hi__3f3v37DwX9-hTQCQT-3AUD99ztAwSl7PnGR_H--O_8EuvUBwIgAC3clO86OBNACUhhUAIqzwcQABrAB2Zrxb5-c3-8I036u76jhr3s6Xm9osSdvPgzPLyHSzM9xMGUuzMyGD4QNHC9fD3EPPaWYr4FeIE8eT8NvC0LVj6wily9QS0mvbm8nr2pMPg72P4EvbisEr7Vr9Q9CR1PPN2P5byZeBE9GNmEvG-bKT1xu0G9ztAuPKmqyLuyXSa9X8EMvbzrhzwv3Nm9pnrXPK3lJL18gRm9CaWvO9NO7T11QA29nWkdvetDDbz0KCa8tiJ7PLVH9ztalW69-QLpvNvvij1jwym97BjTO5yEuTt-O8m86qtQvLZeXT3JLTw9u1u-vFpAMr2Lmrk9zHICvPNrkL1wq7W9S1jbvJfkML5Ebyw97IJmvF6dAz270ec9uBAYPOvKgrz3e_08GFhsvO2ZijwjaEw8Y-YHPZfmJj4l_Dc90ssDO4KrTD4GJ8e8AQEGvJn7j72bRY49Z23JPDngqT31-5k94GgFvGuDrrzJSCw83saLvBhLJ72DWdc8ycK8PN30Qjv9BRE9Y0WqO4IE_zus0eE87S1AvKovZj3WTOO83uoWvNzNursg9Ge9SbJUu5mz47zeVAU8T4-Su-kLAT6oIJo8KKU5ObWpqr0LTN28QDyBPDUpZT2hgbi9alAPO3PZyL1iM3s9Ce3Ju-n5bDuH16o9Ds_9u5c6iL3H8r49FWRMuB30tjzcS9o9ofSwONsSPr3vHpC9xQwmO2-AmT0G0xW8RFWGu6CNLD7LrgW9IAINuSpZKbybVFS9bx3SO8DWsD3dOJO9-MVpuKYHqjx5bkY80jQ2utMIBz1WF0u8p8brudKJhD3p8gY-skiFOSixPzqCCfU7wwcGt64ZT7zsNkO9Gk61OV7JBL3tCfW7sf1RuvUUGT3YDik7gGTSuFNZ9L2v4bO8jIyPucSxTr2V_5o8aUFhuOKEEzzhDak8f99KODP8t734Gdc9lT3PuGTYl725P029hb57Ob8gM7ysG889SQw0NdRWNr3NKgK91X4ruCa_aj0aQ0o83aDQtrGYojwd4sS8XFsCuHIz3D0iVAk-GwuqOa_YGTzz2pa9SVoftw2p4j0ilTi97d5BN9oyibsfU6K9hkXaOC5BAT1D9gs9SL0NOG00RT1tmq29VvWtOFqd3L31wEI9vBr9Ny-mGT54O8w8_OYbuagmp71UPcS9HLiDuFRPizpW_5a8CPLZteGZkDxVm6k9vZm4twa_qLzmTJS9Cspkt8r0cD0i4Ss-8cuKOIuDgL04aC89kLiKuJ2mKr3N3Xi8fui7t3FBMT2OSrA9Q0DKNyAAOBNACUhtUAEqcxAAGmAZAgBV8QjK9hom2QntHRvS6NP7z7bn_xbhANvk-RQGQs_ZAR0ADMsczLAAAAAc2Pgk8AAQaRABFR0w2geo2ccQ_X8INs3D0UHr3uENLuz3_N70D-0AuBfWXjbxyTLnDzEgAC3o_CM7OBNACUhvUAIqrwYQDBqgBgAAiEEAAAAAAACQQgAAiMIAAABAAACQQQAAaEIAAODAAACewgAAMMIAAPDBAAC-QgAAgEAAAPDBAABAQQAAQEAAAHBBAABQwgAA8EEAAKDBAAAwQQAAwMEAAGjCAAAAAAAAAMEAAMBAAABwwQAAOMIAAIC_AACgQQAAAAAAACRCAACgQAAAKEIAANrCAABwQQAAUMEAADRCAABgwQAAfMIAAIZCAADwwQAAgsIAANBBAACuQgAAmMIAAHDBAAB8QgAAUMEAACDBAACEwgAAAMIAAKjCAAA8QgAAAMEAAOBAAAC4wQAAYEEAAERCAACWQgAAoEIAAJLCAAB4wgAADMIAABhCAABQwgAAyEEAAPjBAABowgAA6MEAAKpCAACgQQAAjMIAALhCAAAAwQAALMIAAABBAAAowgAAgMAAAJBBAABEwgAAbEIAAEDBAAAwwQAAcEEAAAhCAADAwQAAWMIAANBBAAAgQQAAEMIAAOBAAABAwQAAgL8AAKBAAADIwQAAYMEAAKhBAADQQQAAHEIAAOjBAAAAwQAASEIAAMDBAAAAAAAAmMEAAGhCAADoQQAAQEAAAJxCAAAQQQAAAMAAAMBAAACwQQAAEMEAAABBAADQQQAAHMIAALDBAAAgwgAAkMEAAOjBAADIQQAAAAAAADzCAACIQQAADEIAAFTCAACAwAAA-MEAAFDCAACcwgAA6MEAAIJCAABAQQAAOEIAAKBBAAAgQQAAAMAAAAjCAAA0QgAAQEAAAJBBAACSwgAAuMEAAJjBAABowgAAMMIAABjCAAAQwQAAEMIAAGRCAACAPwAA0EEAAABBAABQwQAAaMIAAATCAACcwgAAEEEAAMBBAACeQgAAoMAAAMhBAADAwAAAEEEAAIDBAACEQgAAgEIAABDBAAAEwgAACEIAAGRCAAC4wQAA2MEAAFDBAABAQQAADMIAALDBAAAsQgAAUMIAAFDCAAAQwQAAYEEAACRCAACYwQAARMIAAADBAACAQAAAgEEAAABCAABIwgAAQMAAALDBAAAIQgAA9EIAAKDAAAAAQAAAgL8AABDBIAA4E0AJSHVQASqPAhAAGoACAAD4vQAAZD4AAIo-AAD4PQAA8j4AANY-AAA0PgAABb8AAJq-AAAkvgAABL4AAPg9AAA8PgAA0j4AAAS-AAC-vgAAHT8AAIC7AABEvgAA6j4AAH8_AABQvQAAMD0AAIo-AABAPAAAbL4AAKI-AACgvAAAVD4AAMI-AAAEPgAAEb8AALi9AAAMPgAAsj4AADS-AACgPAAA3r4AAKa-AAAkvgAAHL4AAK4-AACCPgAAUD0AANi9AAAUvgAAoDwAAJi9AAD4vQAA6L0AAGS-AAAcPgAAgr4AAII-AADYPQAAmL0AADc_AABwPQAAUL0AAEC8AAD6vgAAmL0AABw-AAA8viAAOBNACUh8UAEqjwIQARqAAgAARL4AAEA8AACYvQAATb8AAGS-AABQPQAAML0AALg9AAC4PQAAmD0AAPi9AAAMvgAAED0AAKC8AABkPgAAmL0AAIA7AAAFPwAAoDwAAOo-AAD4vQAAiD0AAJg9AAC4vQAAUL0AAAS-AAD4PQAAoDwAAMg9AACIvQAAUL0AACw-AABQvQAAbL4AAEC8AACAOwAAuD0AALI-AAA0vgAAUD0AAES-AACgPAAAFL4AAEA8AABwPQAAUL0AAH-_AAA0PgAA2D0AABw-AADIvQAAdL4AABy-AADaPgAAqD0AABQ-AACIPQAAED0AAIA7AADgvAAAPD4AAAy-AACGPgAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=rqcdchR55gA","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":576,"cheight":360,"cratio":1.6,"dups":["2172407050685480835"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2464285710"},"12401518518584123081":{"videoId":"12401518518584123081","docid":"34-10-5-ZAC2EFF1A88A869CE","description":"View full question and answer details: https://www.wyzant.com/resources/answ... Question: Find the volume of the box If 1300 square centimeters of material is available to make a box with a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2841882/c0b8dda5bca496c9dc1411120c21d1d8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/vojGMwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKJlirnMT-k4","linkTemplate":"/video/preview/12401518518584123081?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find the maximum volume for a box with a square base and an open top, classic optimization problem.","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KJlirnMT-k4\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFgoUMTI0MDE1MTg1MTg1ODQxMjMwODFaFDEyNDAxNTE4NTE4NTg0MTIzMDgxaogXEgEwGAAiRRoxAAoqaGh1bXJ4b2V1eHZ3cG91Y2hoVUN5T1NySUU5enpHeC00NDhhOUZrTjBnEgIAEioQwg8PGg8_E_YCggQkAYAEKyqLARABGniB_w___gf4AO8C_P_5AgABLfwTAfMGBQHhAu72A_wCAPMB9QUCAAAA7QoAAQAAAAAFCvMP_f0BABILDgD0AAAAFvkL_QEAAAABAfj5_wEAAPHx9_QCAAAABfr-9f8AAAD0AQP69wD_AfkD8Q8AAAAACwL0AQAAAAAgAC3_AL87OBNACUhOUAIqhAIQABrwAXMqKgCvC-799PPlACEa3gCBCi3_bxDoAMYCEADSBt4B3R7rAPT7FwDzDf4AthoIAB4BwQD0BPYAKuoU_zL7BgAF4BYAOucVAGToEQAb19f-rjHnAPQMKgL22M_-GSX6Av7lF_8U-L0B7AO_Av4FLwATHxv_-hQG_vT3A_vp4yEA9vjD_vfQCP3y5B0ABAw1_iHw5gQTNO__0hnXACX39wvpEfcDHv_F-zf64AP5ChX6_vEKCEDe6gsO-B_88gLk-PUFF_AA7v4E-SwE-vHxDf_yFQf6G9D3EioZDwHxB-r47vP6_OQv9f_zFAgCH-foCCAALVAjDTs4E0AJSGFQAirPBxAAGsAHT6zbvmNLKr1iMH-8-3bxuxm0RjyYafs8-INGvVbBg7ztxPq7_g3aPV8tUjyc9OO8_Iy7vlpTD7zG6sW7nUaCPn8WS7y-Esi8K_66vcz3Qj2bOQS95_4qvl3L_zxIdCo8Xz_pPDfnmrsjrLy8fnl8PRnFsrwWnjw8S08CPUOHyDt_dhO8joErvZ8d8L0_8W87-4qaPNoqd7zlrcQ87a-IPYPuHL0u2mu7Zkj6vPFuOz0JaZG77GjcvS-9AbwZWAU7cwixPUC92byFw5w8UGIlO8ffMT1yWia8nm2PPTMCwzu66gm80sWmPHg7Jz22aja72MIHPUTHmb3yO7K8bazkvaYRLj2UTsE73ASpPYO_3z0cMam82UKQvTa9ujxI7Go7Wiqxu_9pND1cZa-4qTLsPfE_g70RFbI7D1ZtPYUh17wvPKU8EBZ_PY0Z1zxOdwM9ANNYvA9cijyDtga96tOVPVWGET4ucNy6UEE0vWBht7wp5Zo8-tePOsil-7z8RBQ8v8ODPTQqlTwLD6m5074JPrfrir3SRr87RRngvCYE5TtDk5-8gwyuOzVZCD0_7747LapqPVIRIzxDfb-72HUZvRxqSjwzUSW7pf9APNnqsr1Tkje6XdqVPUMdpj0d-i86gsQWvQLfqD05nWQ8bHjavbzmOj0uWC86hjETPbEcvDz2wJ47FFPzvHAAojzNY4M7jSN7PFXvOrywkUE7B-7gPXrcHrv2pQ66dfV5vbW3tb2s_5S6neqavJBDDj00XTq72C7tPOfqPb1TdSa5XC0hvbwHKD0nXLM5EoBEPWN_2T2rYzM5QwiCOxTwxrycRFI4HHfvPPhmZbwxagI6ga8oPYwub70hivy5c4nAOmQsyTwzHzQ4PkKdveiqVL2Wh065jERsO2HMcb3qBJi42bYivL_HKj1fhYa4nZubvN5ubjwPvQi4CKnAvASp1Lzr2Uc5Pg9EPf4PcD27dsO3JnJBvAoxJ76UA8Q5WQ2DPfENxTzdu-84AFoQO9aXWzxrvCi4EXPpPb_COD0Gl-o33ln7PNjxn70YDZc4h58EPWo9kj00IqS4Q368vZtGSbx4S8g3Jo3yu8np6zzsObo3t8Q7PT_ekLxR34U4qz_CvG_DnrweNmw0VbGCPJ0spb16R4M37AncvOEpX73EpWO4Qq-0vXrOTL1yy4i3-3kuPIP_iD2YyaA1t_YZPQ5VR71sqVi4Iv_sPTUpBT7zflu47ZZGOnXopD0KbuO4NWxKvWXflT2R1IM37K5CvTrxq72o3ks1IAA4E0AJSG1QASpzEAAaYDwAAED3BNT04Cne6rrnNNHd59n67QT_9dn_8Sf85_Aj6dEGAv8pwSrerAAAABjpATHjABNz49fr9uUFBI_f00EgfwETFsPcO_joFxkxzhXvEAIyPQAD_sk3JfusTgcfMiAALcHPIjs4E0AJSG9QAiqvBhAMGqAGAADwQQAA6EEAAExCAAAowgAAyEEAAHBCAACGQgAAgL8AANrCAAAAwgAAXEIAAJDBAABAwgAAgD8AAIDBAAAAwgAAFEIAAKLCAABIQgAAgL8AABxCAABgwQAAMMIAAEBCAABgwQAAmMEAAIDCAABgQQAANEIAAMBBAABEwgAAUEEAACzCAACwQQAApMIAAOjBAAAIQgAAikIAAEDAAAD4QQAAmEEAAERCAADwQQAAoMAAALDBAACYwQAAREIAAPBBAACSQgAAdEIAAADCAABUwgAA4MEAAAAAAAAgQQAAIEEAAKTCAACgwAAAGEIAALhBAADIQQAAIMEAANDBAABUwgAAoEEAAJbCAAAMwgAAQMAAAIbCAACQwQAAWEIAAHhCAABAQAAAeEIAAHDBAABQQQAAxsIAAJjBAABEQgAA4MAAANDBAADGQgAAUMIAAJBBAABAwQAAykIAAOjBAABIwgAAyEEAABTCAAA0QgAA0EEAALjBAAAMwgAAYEEAAJzCAAAYwgAAoMAAAHBBAADIQQAApsIAANBBAACMQgAAYEEAALjCAACgQQAAQEEAAMBCAADAQAAAFEIAANBBAAB4QgAAOMIAAADAAABYQgAAQEIAACxCAAAAwQAAMEEAAIjBAACgQAAAgEEAAIBAAABswgAAbMIAAKDBAAAswgAAkEEAACDCAACYwQAAIEEAAOjBAACwwQAAYMEAAODBAACYQQAAcMEAAJBBAACQQQAApMIAAODBAADQQQAA4MAAAAjCAADgQAAAgL8AAAzCAAAEQgAAoEAAAADBAACAwQAAmEEAAHhCAABQQQAAoMAAAAzCAAAEwgAAEMEAACjCAAAgwQAAAMEAABxCAAD4QQAAgMAAAJBBAAAMwgAAEMIAAERCAACIQgAAkMEAAFDBAAAEQgAAQMIAABDCAACgwQAADEIAAIjBAADgwAAACMIAAJBCAABwwgAAZMIAALjBAADIQQAAskIAAOjBAADYwQAAMEEAABBBAAAAwQAA4MAAAFBBAAAAAAAAyEEAAABAAADwQQAAMEIAAAxCAAAAQQAAkMEgADgTQAlIdVABKo8CEAAagAIAAIA7AAAQPQAAvj4AAEQ-AABQvQAA6D0AAKg9AAAnvwAAFL4AAEy-AADgPAAAjr4AANg9AABMPgAAgr4AADA9AADqPgAAML0AAMI-AADyPgAAfz8AAJo-AACqPgAA2D0AAFS-AAAcvgAAkj4AADS-AADovQAAQLwAAFw-AACYvQAA4DwAAOA8AACIPQAA4LwAAOA8AABcvgAAtr4AABy-AAB8vgAAML0AAJY-AADgPAAAyL0AAAw-AACiPgAAsr4AAFQ-AABUvgAA6D0AAKg9AABAPAAAZD4AAMg9AAAUvgAATz8AAOi9AAC4vQAAjr4AALq-AAAwPQAAQDwAAAS-IAA4E0AJSHxQASqPAhABGoACAADevgAAPD4AADA9AABVvwAAiL0AAFC9AACIvQAATD4AAOg9AABQPQAAuL0AAAy-AAAcvgAAPL4AAHC9AACgvAAANL4AAAs_AAA8PgAApj4AAEA8AACAuwAAED0AAOi9AAAwvQAAbL4AAIC7AAC4PQAA6L0AAKi9AABwPQAAyD0AADA9AAB8PgAADD4AAO6-AAAEPgAAqD0AAK6-AADKPgAAyL0AANi9AADovQAAQLwAAIi9AABEvgAAf78AAKI-AAAwPQAAuD0AABC9AAC4vQAAoDwAAIo-AAB8PgAA2D0AADC9AAAwPQAAED0AAAS-AAD4vQAAXL4AALi9AAAMPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=KJlirnMT-k4","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12401518518584123081"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3229719921"},"13545429552433560124":{"videoId":"13545429552433560124","docid":"34-9-10-Z428C35596E581BB0","description":"Mr. Adams shows his AP Calculus class how to find the maximum volume of a box given certain parameters. Purchase a TI-84 CE Calculator: https://amzn.to/3i2EgDm In this tutorial, Tom Adams will...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2980520/29004f677e68dbbf32e092a12b34727f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_ltsEgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhEcPp03XX30","linkTemplate":"/video/preview/13545429552433560124?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"AP Calculus - Optimization - Maximum Volume of a Box","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hEcPp03XX30\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFgoUMTM1NDU0Mjk1NTI0MzM1NjAxMjRaFDEzNTQ1NDI5NTUyNDMzNTYwMTI0aogXEgEwGAAiRRoxAAoqaGhxbGFtbmFobnBpcXVjYmhoVUNZcDc3LUVuNUdIQ0JMeWx4SDFscUtREgIAEioQwg8PGg8_E_EDggQkAYAEKyqLARABGniB7vcK9wT7APf6Fv39BP8BEvkO9fYAAADkD_z4CP0BAO37APL4AAAA-RIE_gcAAAD6Bu_7A_4AABL1CvryAAAAH_wCBAMA_wD6Efr__gEAAPX_8wID_wAAFAkD8_8AAAD5D_z6_wAAAPoC8g4AAAAAEwz0CQAAAAAgAC3p48Q7OBNACUhOUAIqhAIQABrwAXxBJ__I0_r_6AjJAP_x_QCMOy__dyXUAbgCEwDE6v4A5yDTAOPjFQCXB_wBgeoMAQixyP_Z_OgA_cH__xzv7AAJ_hUBMcfwAVTs5QAR0vv_6xAd_u0OUf367-ABIiLT_yXVBf0Z9q0BxMq1CP4GOgAfYg4E1O8QCP3A9_rZ8yX_DevKAOkCEQK__SH_8tk1BTYs9AD7SOT9z1jrAC719Q7kHNoDJNrbB04T_g_TFPXyKvAJ-Tj81gUFCTn-0R8F_d_rIPb2sQX_DOLt-f_o6_rzxfAHFf7tAjr_EQ397-T54xP2GeA9DAEAx_jl-OfmEiAALXXv4zo4E0AJSGFQAirPBxAAGsAHRSz6vu1kEL1UQYC9MSNhPXVBWDw3COk8aY1BPXZ6tL2PtqC8-RDUPanDRT2qu_I8_Iy7vlpTD7zG6sW7_tWLPiDEnzyGqTE7ELD2vQikTj1Ht1K7t7IkvikVwzxE0GK8I2XwPMzU_zwrvVu8VFMCPtxLOr12zBC8RtgmPBwfkLs4LI08UZZrvIF0pr2bc9M7BSmCvJp-RL1mz688RGnPPeTEMjxxqjW8krMQPXWKqj1L5e27seHpvTRcLr2sEnY8rMD1PLSuUb2wz_c8DdCMPcugmj0kN7m8gtSMPUoshD2xWNw6rMJrPZ1_YD3XRXa8vFpuPbeLvDp25a87Y7QevjYWe7t_YFg8tYzQO-NoUz0b26W6Ka5KvZUgrTwvdni61J4yvbBlQzx61ws8LEUSPqDcO73PiZg81EjrPfoZzTxoka08IqfPPQl3vT155FU7OeCpPfX7mT3gaAW864nwOzfjFD7Mf8S6-J8mvUfR9jkDZEM8oL66PT1Ze7yaoac8e_6PvE0-lz0vYqk8YGeEPfkRv709axI8laupPAoeFb0psMI7QKjmvJ49HD3-FL87rZibvMJ5wrxWEYm8rHH2vHyPZL2Awo86NSllPaGBuL1qUA87rjEDPf0gYT0vOck7_H8mvQBKbT2Slue7qgv4vR974jsgjj-6bcaKOkeakboFQh08EKgCvA2wSj2rMh08SYoDvU4tNjzmUTc7Br-IPTT8Ajz1Ub47wF7MvWAYVb0ppRC7g6mDO29DsTzqojE60JB7PaKvhbzja8-5pQWaO1k1YzzROuI5eRAvO9mtaj03cz858V7avI9_MDwRqXK5Y98kPfpaPDxMr5U5sCKfOxZBrb2AqIe6tAynvDLzUzxFmV05AvSLvUU1kL07hjE4LT0ePDlJTrwh6HO4yHSNPMebPL3EoJC4DAeCvLSLzLsPs_85bHakvWYPmbzcLa05GgDFPI2JYz2RfTo3JnJBvAoxJ76UA8Q5QTuxPLOrtTx5IVY5Wz1Mu7s0tDzLtZm44-PTPMaFAz3N4TK4aXezPaWy8rzT-Ps31_QlPZ8yCD1JDHC4Q368vZtGSbx4S8g3u54DvYdtizygA5i3yEpnPdwnrDyzofg1JmZnvU2cwTzyPwk4_s-GPNusxb11Ti442d3Nuzlkg7z2PrW36gE4vcMupbyuEcm3VTETvE6ZWz0Nr8s3va8FPaVJCb6tnoW4Iv_sPTUpBT7zflu4WZZ5PMUMYz0buI64tAH4vbVYRT1R4Fw4vkM7vSPGobzeZyU4IAA4E0AJSG1QASpzEAAaYDX-AGnH-OcIEjzgJs7-Oa8Eq9KxzO3_AuP_-zbk5Aks8sklPwAT_xfrmgAAABfg7lrRABd_vc8CFgIfPKIA61kBbDbyFcu9CQDN2kMG0_3SPO4XLQCz4NQ8RwncPu8lGyAALbU2Djs4E0AJSG9QAiqvBhAMGqAGAAAEwgAAyEEAAOBBAACAwQAAiMEAALxCAAAMQgAAsEEAALDCAABkwgAAhsIAAJBCAACgQAAA-EEAAMjBAADAwAAAEEEAAIDCAAAQQQAAuEEAAGRCAAAwwgAAwEEAAMjBAADYQQAAgL8AAIDBAABAwAAAgD8AAADBAACgwQAAmEEAAMDBAAAQQQAArsIAAKDBAADYQQAAHEIAALDBAABYwgAAoEEAAIBAAAAEwgAAKEIAAEDCAABcwgAAOEIAACxCAABwQQAAAAAAAOjBAADAwAAAOMIAAOhBAACAQQAAoMAAABDBAADgwQAATEIAABxCAACgwAAA2MEAAGDCAACYwQAAcEEAACTCAACAPwAAgEIAADzCAABAQAAAikIAANhBAAAAwAAAlkIAAAAAAACAwgAAdMIAAITCAAAwQgAAuMEAAMjBAADaQgAAOMIAAGDBAADAwQAAZEIAAJBBAAC-wgAAZEIAABDBAACgQQAApEIAAODBAAB4wgAAPMIAAIjBAADAQQAACEIAAEhCAABoQgAAQMAAAMhBAACEQgAAcMEAAADBAAAQwQAAoMAAAIhBAAA4wgAAYEIAABRCAAAQQgAAwEAAALpCAADIQQAAgL8AAFRCAADgQAAAyEEAAKBAAAD4wQAAAMAAAKRCAACQwQAAXMIAAIDAAAAgQQAAIMIAADDBAACGwgAAQMEAAODBAACIwQAAkEEAAADBAADgQQAAUEEAAFhCAAAcQgAAyMEAAChCAADgwQAAAMEAACDCAABAQQAAgMEAAODBAACQQQAAGEIAACRCAAAYwgAAwMAAACBBAADAQQAAOMIAAEDAAAAUwgAAoMEAABDBAAAIQgAAFMIAAK5CAAAgQQAAgL8AAOhBAABcQgAAMEEAAFBCAAA8QgAAgD8AAARCAAAYQgAAREIAACDCAADgwQAAuMEAAMDAAACQwQAAPMIAAGBCAACAvwAAZMIAADjCAACIQQAANEIAAFRCAABswgAAbMIAAEBCAADYQQAAgL8AALhBAACYwQAAkEEAAODBAACgQgAAqEIAAODBAAAwQQAAXMIgADgTQAlIdVABKo8CEAAagAIAAKA8AAAsvgAA6D0AABy-AABwvQAAQLwAAKI-AADWvgAAVL4AAFA9AABwPQAAQLwAAIA7AACCPgAAEL0AAKa-AADePgAAgDsAABw-AAABPwAAfz8AACQ-AABQvQAAhj4AAIq-AADIvQAAXD4AAHC9AACoPQAA-D0AAEA8AADyvgAAQLwAAII-AACSPgAAuL0AADA9AABMvgAALL4AAJi9AACKvgAAoDwAAEQ-AAAcPgAAVL4AAES-AACgvAAAcL0AAIA7AABQPQAA2L0AAI4-AAA8PgAAiD0AAFC9AAAwvQAAUz8AAEC8AACoPQAAhr4AAKq-AABEPgAAyD0AAOi9IAA4E0AJSHxQASqPAhABGoACAABwvQAAhj4AAMi9AABVvwAARL4AANg9AADYvQAAyD0AAFC9AACSPgAAuL0AAJa-AABQvQAAdL4AALg9AAD4vQAAuL0AAA0_AABQPQAAnj4AAJi9AAAQvQAA-D0AAFC9AAAwvQAAuL0AADA9AAAQPQAAcL0AAIi9AABAvAAAMD0AAHC9AACgPAAARL4AAFS-AADoPQAABD4AAIa-AAC4PQAAmr4AANg9AAC4vQAAiD0AABC9AADIPQAAf78AAFw-AABQPQAAZD4AABS-AACWvgAAgDsAAJo-AAAwPQAAcD0AAKg9AAAkPgAAEL0AAHC9AABQPQAAoDwAADQ-AABAvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=hEcPp03XX30","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":720,"cheight":480,"cratio":1.5,"dups":["13545429552433560124"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"485268912"},"4965233073726740552":{"videoId":"4965233073726740552","docid":"34-4-8-Z8261537117BDE2D3","description":"** Free Online Homework Help and Tutoring ** Submit your questions and problems to me and I'll make a video tutorial for you. https://www.TutorSalad.com/Problems Please Like, Subscribe, and Share!","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2205731/5eeab05aa799ca504120071c3068c029/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/X2gN-wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMN-LvXohhig","linkTemplate":"/video/preview/4965233073726740552?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Building a Box with Maximum Volume - Optimization with Calculus","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MN-LvXohhig\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFQoTNDk2NTIzMzA3MzcyNjc0MDU1MloTNDk2NTIzMzA3MzcyNjc0MDU1MmqIFxIBMBgAIkUaMQAKKmhocnR6bGtzeHJ1YWJ0a2NoaFVDaWNsMmhtdzJ3RXduVF82a0o1Umt4dxICABIqEMIPDxoPPxPpA4IEJAGABCsqiwEQARp4geoGCwIE_AD79AgA-gb-Ahz7Bv_1AgIA7ArvAAUAAADt-wDy-AAAAAgJBf0CAAAABA_1AgL9AQARBQkA1wD-ABsC_QD3AAAABw35_f4BAAD4Avn4A_8AABQJA_P_AAAA7hX_-v___wD6AvIOAAAAAA759gYAAAAAIAAtTMXGOzgTQAlITlACKoQCEAAa8AFrKUz9-93nA9Mt0QDJQ-oBvQUd_xI2FwCt_gAA5vr9AO0G6QD86fn_ExP1_4EXCQIkDeT_yyEF_wrdL_9B4BkA5SwoASgBDAEP_DAA9ur2APQN8__6DP8C9Nu0APMv5v8f9AT99R_dAe0DwgIP_j4B_SkKAvzx8QIStiD-1BYCAeP22P3yFhEDFOns_hUbMAP84-YBDzQQA9os9AIQ-x0FAc4N_kEG3gEE7QwE8_0EAevOBwEV9RT5-yAS-PD54Ar24v_-9vkWAwnp8voYCgT85RHwCCAJ6QgE9_0D3BoBBecHBgHb_wHo8w_q9Nry9fkgAC1CrRQ7OBNACUhhUAIqzwcQABrAB2Zrxb5-c3-8I036uxzIP70J6ow7nMwuvcyll71xqvU8PTyVPJ9bOD7nE3692Ao_vPaWYr4FeIE8eT8NvBSUQj5GRRy9c-gAvIbjCb7fIPU8rAEqvdFch72PPl47oG7iuk4_Db3NkCq8DM4AvTBHzzw4uo-98icqPMoufb1J56474Jcfvaz6AT2om6W9ZUH6O_SV9jx7IAi9eI99PFsxoj2xkVq9T2xPPAk9gT0iYZ49qhXBPMwbVLv2JRu89RkGvV4cizwuiK28hofZO2Qqs71BPjK8OsY6PBS9gj0hUbI9696vPPcm4TxdhpQ98LXxvFdp_ztMd4267ek0vJfkML5Ebyw97IJmvD7qvz3otPg8dgqPt6Fdj7zJdwk-B9IkO0ArdrupY_q82XoEPJfmJj4l_Dc90ssDO4P8zD0lVUC97I0SvJAkELwQ36M9pmIDPWycCD1mcVU9C9SivDhAm7slRpo9toPPuiIPbr09WRu9HYPjOt30Qjv9BRE9Y0WqOy24Gj0tmb66MhxAOkVcpTxzuPa95AQ3PFd7OL0vh_29KqBmOn_uFT18D9c9VdVTuxIiLz3k_j69OnmRu45PUr1JII-9s3XTO8TCOr3-95u9kzYVPFACpr16H0I9BMFKuxpVAb2LgR89dSwlvMSSdjvfb6Q9XEDDOjTPGz12kw69AeGeOwVdsTz8FoK8pe4xu2MxAD1XXYc8dGILOwfu4D163B679qUOukpKFb0xWsy9siNVtzUeMb14hj-94DucOsdnEj6uoOm9kAm0ufBOXj1zsj49wVZCOSpFYb1qXI49h2QruFmYnz0oZpg7A-VIuYsGXzzTvKO9P3xBOADxCDyQI6U6biS_uk5hJbys1bg9joYWuCXWOL0YzES9Hx_MOYH94bzAKBy8NWqxN9WW2j3ELys8QvA0OGdIgL1KkNs8uqC9t-wJPL1yJfG81mKAOR2ItLsMDmU9EmcHOEHjeLx8R-29YROrOSa_aj0aQ0o83aDQtnqOSD3K5E89XFOlOJEqijzMB8S8L6D-OLg-rLxsBvi9ef8guKUfQz1sxF29J_4MOG3F_r2i1D69Gi_0uIDb7jygtpe9OZd7OG6AHr3Wg5M7Ik0KuBCWsbtHsAw9utJ6OIJVRT50yDc9ydyEuQpcCL3iw5G9PKVYuG9FZ720Fpu9TnD4tx0-hDyRYdU9uPe8t8OcIL1KKN297SBJuCL_7D01KQU-835buJe7A7zS08E9UWrJuK1t6r0UO788b9LjN0eIvDs1iQa698M8OCAAOBNACUhtUAEqcxAAGmAl6wBK7uD79wov5O61-BWr6bnV3bgE_wXe__BNAAMAI-bh-vsAE9Ed1Z0AAAAM1RgY2wD8frvhCx76-ByBurJTCH4L-zUG6w0q1wQ2_OkN6QoRHEMAqPPaMC4Mp27cHUQgAC3C9hA7OBNACUhvUAIqrwYQDBqgBgAAAMIAAABAAAAwQQAAwMAAAABAAADAwQAA_kIAAFDBAADCwgAAYMEAAPBBAADIQQAAoEAAAPjBAADgwAAAaEIAAKBBAACkwgAAQMAAALDBAACwwQAApMIAAEDAAADAQAAAoMAAAKBAAACYwQAAcMEAADTCAAA8QgAAaMIAAIjBAABAwQAAoMAAAILCAACAQQAAMEEAAJZCAADgQAAAoEAAAJBCAACIwQAAwEAAAABCAADMQgAAGMIAAABBAACiQgAAwEEAAIBAAACYwQAA-MEAAPjBAACAQQAAYMEAAOhBAACCwgAAgMAAANhBAABsQgAASEIAAGDCAAD4wQAAOMIAAFBBAACEwgAAQMEAANjBAADowQAAoEAAAIpCAACwQQAAhsIAAK5CAAC4QQAA3MIAABTCAAAQwQAA2EEAAOhBAADIwQAA_kIAADDBAAAAwQAA0EEAAARCAAC4wQAAQMAAAExCAABcQgAAcEEAAAxCAABMwgAAPMIAACBBAADYwQAAGMIAAAAAAAAYQgAA6EEAAFjCAADQQQAAgEAAAODBAABQwQAAFEIAAEBBAAAQwgAAwMAAAL5CAAAUQgAA4EAAAKDAAADwQQAApMIAANDBAADgQQAAeMIAAEDBAAAwwgAAgsIAAODBAAAcQgAAsMEAAMDBAABwwQAARMIAALDBAAAswgAANEIAAEDCAACowQAAIMEAAEhCAAAwQQAAoEAAAHBBAACYQQAAmEEAAGTCAAAQQQAA0EEAADhCAABIwgAA4EEAAIDAAAAowgAAVMIAABDBAADYQQAABEIAAJhBAAAMQgAAiMEAACRCAABAwgAAAMIAAIjBAAAUwgAAkEEAABjCAABMQgAAqEEAADRCAACgQQAAgD8AAEBCAAC4QQAAdEIAAHDBAABwQQAAoMAAAARCAAB4wgAAAMIAAADBAAAQwQAAcMIAACzCAAB8QgAAUMIAADDCAABAwQAA0MEAACxCAACAQAAAgsIAAIBAAACoQQAAQEAAADDBAACgwQAAAAAAAMDAAAAQQQAAGEIAAIA_AACowQAAAMEAAMDAIAA4E0AJSHVQASqPAhAAGoACAABwvQAAuD0AAIC7AACgPAAA-L0AAHA9AADmPgAA3r4AAOC8AACAuwAA-D0AAJi9AAAUPgAALD4AANi9AAB8vgAAyj4AADC9AAC6PgAAGT8AAH8_AAA0PgAAcD0AACQ-AACmvgAAgDsAACQ-AACWvgAAgLsAAAQ-AABQPQAAhr4AAMg9AABkPgAAbD4AAOi9AACgvAAARL4AAGS-AACIPQAA6r4AADQ-AABEPgAATD4AABC9AAAUPgAA-D0AAES-AACYvQAAgLsAABA9AACYPQAAnj4AAAQ-AADgPAAAoLwAAC0_AAB0vgAAQLwAAIK-AACWvgAAPD4AAKC8AABsviAAOBNACUh8UAEqjwIQARqAAgAAiL0AANg9AACIvQAAJb8AAIC7AAA8PgAAUD0AALg9AACIvQAAmD0AALi9AABEvgAAuL0AADS-AAAkPgAAcL0AAHC9AAAFPwAAUL0AALo-AABwPQAAQLwAAEA8AAC4vQAAcD0AABy-AABwvQAAgLsAADC9AACgvAAAoDwAAKg9AABwvQAAgLsAAIC7AAA8vgAAmD0AABw-AACOvgAAcD0AAFC9AAAwPQAABD4AAEC8AACAOwAAQDwAAH-_AABUPgAAPD4AAIg9AAC4vQAAPL4AAKi9AAAsPgAA-D0AAMg9AAAQPQAAiL0AAOC8AAAsPgAAoLwAAKi9AADYPQAAqD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=MN-LvXohhig","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4965233073726740552"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"580134393"},"17421620790007121729":{"videoId":"17421620790007121729","docid":"34-6-5-ZF0BB70741ED1F4A5","description":"Finding the maximum volume for a box cut from paper with a simulation in GeoGebra...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3436337/8f73e4798c585ad894e423978b93321e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/itH9TwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DGUCPCzuKLYs","linkTemplate":"/video/preview/17421620790007121729?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Maximum volume for a box","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=GUCPCzuKLYs\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFgoUMTc0MjE2MjA3OTAwMDcxMjE3MjlaFDE3NDIxNjIwNzkwMDA3MTIxNzI5aocXEgEwGAAiRBoxAAoqaGhqZ3BkZ3NjZXR4d3ViYmhoVUN5N1pscGxDV21CU01ReWZmc3RvLVNBEgIAEioPwg8PGg8_EzeCBCQBgAQrKosBEAEaeIH1BAD4_AUABPUQBPsI_AL2CwYC-f39AO4E_PgFAAAA6gD7C_7_AAD6EAP-BgAAAP8L_PcB_gAADwoMAPUAAAANCvkEAwAAAAIFA_8H_wAA_wABAvsCAAEKBf39AAAAAOMOAP0A_v4B-wH8BAAAAAAM-vn7AAAAACAALSvk3js4E0AJSE5QAiqEAhAAGvABfxAwAK_pz_7PAyP-5w7TAbgFIP_8OM8Ax_b-AO0s8QAABO0A7SAY_wIO-ACo_eUCBBkT_s8F8wAZxxf_Fe3_AOwOKQAW2BoBS-8g_zDmCf8OSv_-AQwO_d3h4v_bI-v_H9wE_vQh2gHsA70CUPkuAAQOAgYO8hEJxsH5CNDmEAPh9dX98hf6B_IHAfUTIR4GNDHjBAZQHAD52AMJKOwg_O7Y_P4vOtL_CfntAMsXGAcH--4BC-UX8w4_Af_5HRMBwfMW9QDkDPca6AsB5e3tBPHdBAEwH-kEve75DPsB9_oJMfr0xRjx8_bf9ALG1_38IAAt4GkJOzgTQAlIYVACKs8HEAAawAfo952-lQI8vY1Ib72oVMm8mOAUPSfca70U2pi9J095PQsRibuQoh4-ShLfPLdDATyz8HW-x9CWvEVkQDnbT-Y9hbTGvT-Uk726ngi-1mDQOsmEKTzRXIe9jz5eO6Bu4rqVmce9otkQvUGbHDzBfr498vfBvRetbbxhgmC7bxYKPRi6bbwNQcQ8HnAYvd_-XLxwQqE9hG1-u18elzwFweM9yTjmvRSMbzsRi9i8xKK4PdMOpDzaXxG9x3Yovaa0_jvcIwA9A5PbvTlvkrx951c9RsXqu1JU9jjgnAE-doo1PVVi6DscHZE9WOievfxywbtF_Lm9NbFFPbidrLx-xQq-TyAMvaJG3zsbKps9WJ1GPd9ML7vt8QK-AblJPabOSDxaOI-9e6wPvQ_SkzzxZj0-fTVRvYlxyLuTwyc-sjjSPB7WZby37ko6AvEdPLS_Gry2-BQ-c6INPu14mzo2LUe9-6i7PU2h0rusptC8gOGLvIHpk7t9W_C8SZSHPURSprwZzxs9B5XYPbxJQjy2FAs9kVSAveVrhbzO8ga9kDiKvZzLQ7znzFE9uKCIPVl9HrzcCoa9e5H_vDWfTryRLjI7opT1PLf-6Ts3qu48KplSvQtHazw208i9fJQ2PC5zG7yP2DM9nYwAPdDQvzsQ8nC9XmofvOuB_zvcxpU8TwG0ujiLNDtpYvC8RTotvfgWVjvvK4W8P3o7uzjNDjsYsgo-ZZ7DuxjRgjjVyiS-hyvvu7lqDzmOq3Y9lYxSPRFFo7iTB4g94jcqPcLpcrmNDgM94rAUvcj9uzk0_Yg9MsozPo5XLjo5WCk9COkpvNv1aTklMh29lRCMvdIjqThm5S29SXRAvaVfszm8TLO9MhRBvNfZ7jhTHpK9ShvIveFzmzfgLMW9pm_IPM6kCrnIRIo9J9g_veqF_DcyH3C9r4fFPa1AULgY8Xi9wRQvvYVlQjkBFc69TD2GPZTp-zduKGY91BsEvWC55TgZktM942EMvDl1-TdSPLg8X8tQvRitEbgBxk49Jpq2PL8qhritaJi8bqRsvT9TMDimK9g9RpgCPYFGf7hUU9K96HTPvC_4xTc89N09rzf7vKk3LTn4pxQ-A_pOPR_07TatY4G83M7jPFVxdTgvphk-eDvMPPzmG7lUxdS9_3tLvRhRV7Z0oei8fZGAPaLT_Tib0o-74uSOPWDeRzc_jsY9K94IvocitLiKllc9EFj5PY0XQDg8Kfq7VSptPeAyjbgjaMy9DQH6O28GBjcCmDc9PoZ9vfMMqTcgADgTQAlIbVABKnMQABpgHxIANtoa_TMhA-L1zhZJxNqo37u17P_i3P_jKRDW_Rj7-AVGAPzRONCcAAAALN0_SNsADH_5qVJAERBFw_TYQw1k-BIirewKEwnqJRjY29jtCAUMAMvTzVBZJNM--95OIAAtRocQOzgTQAlIb1ACKq8GEAwaoAYAAATCAABoQgAAAEEAAEDBAAAgwQAAQEIAAGxCAABQQQAAZMIAAIzCAAAMwgAAikIAAIDAAACAvwAAnsIAAJDBAABAwAAAhsIAAPjBAACQwQAA6EEAAILCAAD4QQAAwMEAAARCAADoQQAA4MAAANDBAAAAQAAAUMEAAETCAACAwQAASMIAAOhBAACYwQAAAMAAACBCAADAQQAA2MEAACjCAADoQQAAAMEAAJjBAABwQQAAFEIAALTCAACIQQAA4EAAAABBAACAQQAAJMIAAABBAAC4wQAAUEEAANBBAAAAwQAA2MEAAGzCAAAgQQAAUEIAAIDAAABowgAAqMEAADDCAACGQgAAOMIAANhBAACQwQAAgL8AAJDBAACMQgAAMMEAAAzCAAAkQgAAwEAAACjCAAAAQQAAcEEAAIJCAAAQQQAAAAAAANhCAAAAwAAAoMEAAChCAADQwQAAdEIAAPDBAABMQgAAMMEAAOhBAABYQgAAAMIAAHDBAABwwgAAkMIAAODBAABQwQAAaEIAAGBCAADwwQAAQEAAAJRCAAAQwQAABMIAAGBBAADYwQAAwMEAAHBBAAC2QgAAJEIAAMDAAADQQQAA9kIAAJDBAABQwgAAoEAAAADBAABEwgAAQMEAAIDAAACAwQAAsEEAAODAAAB8wgAAuMEAAABCAAA4wgAAFMIAAOhBAAAQwgAASMIAANBBAADgQQAADEIAAEDAAADwQQAAWEIAAODAAACAPwAAWEIAAFTCAADgQAAAZMIAAADBAAAAQQAAhsIAAEBAAACYQQAANEIAAIjBAAAAQgAAAEIAAOhBAACgwAAAVMIAAIDBAACoQQAAkMEAAJhCAABAQQAAEEIAAKjBAACgwQAAgMAAANBBAAAAwQAAjEIAAIZCAAC4wQAAQMAAAK5CAACMQgAA8MIAABDBAACAQAAAkEEAAHTCAAAEwgAAyEEAAJjBAABAwAAALMIAACzCAACCQgAAukIAAJDCAAAUwgAATEIAABBBAABAQAAAFEIAAATCAAAAwQAAgEEAAIRCAACAQQAADMIAAABAAAAQwSAAOBNACUh1UAEqjwIQABqAAgAAHD4AAFC9AACaPgAAqD0AAEC8AAD4PQAAgDsAAM6-AACYPQAABD4AANY-AABMvgAAZD4AACQ-AAAwPQAADL4AAK4-AABwPQAAoj4AAJI-AAB_PwAAoj4AAKC8AACKPgAAXL4AAJ6-AAAcPgAAFL4AAIg9AAAsPgAAQDwAAAy-AAAwPQAAdD4AABQ-AACYvQAAoDwAACy-AACqvgAAUL0AAGy-AAB8vgAAQDwAADQ-AACYvQAADL4AAEC8AAAQPQAAgDsAADC9AAAcPgAABD4AAKg9AAAcPgAA2L0AADA9AAAvPwAAJL4AADA9AACYvQAALL4AAKA8AADIPQAATL4gADgTQAlIfFABKo8CEAEagAIAAHC9AABwPQAADL4AAEG_AAAUvgAAcD0AABA9AADYPQAA6D0AAHA9AABcvgAAfL4AAOA8AAAQvQAABD4AALi9AABwvQAADz8AANi9AACyPgAAjr4AAAS-AACoPQAAqL0AAKA8AAC4vQAA2D0AAIi9AAA0PgAAcL0AAKi9AACoPQAAiL0AADC9AAAsvgAA-L0AAEC8AAA8PgAAML0AADA9AACgvAAAiD0AAOC8AACgvAAARL4AAOC8AAB_vwAAFD4AAIg9AAAUPgAAuL0AAES-AABQvQAAdD4AAKg9AACoPQAAUD0AAHA9AADIvQAAQLwAAOg9AABMvgAAQLwAAIi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=GUCPCzuKLYs","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17421620790007121729"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4193504887"},"697405543623073068":{"videoId":"697405543623073068","docid":"34-3-6-Z35CB96FE030BEFE5","description":"Finding Out Maximum Volume Calculus Will really be thankful to viewers if anyone of them gets helped by seeing this video. Please keep praying for me and keep supporting me. But, it’s also fine...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4245847/1cf7cd280dd344a5d1f4177a195532af/564x318_1"},"target":"_self","position":"12","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVheMc1lEXH0","linkTemplate":"/video/preview/697405543623073068?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding Out Maximum Volume | #maths | #calculus","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VheMc1lEXH0\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFAoSNjk3NDA1NTQzNjIzMDczMDY4WhI2OTc0MDU1NDM2MjMwNzMwNjhqrg0SATAYACJEGjAACiloaGV2aGxqc29vYmZrcXVoaFVDMWs5aEM3WkJ6QzRSbTFHenluejFydxICABEqEMIPDxoPPxPnAYIEJAGABCsqiwEQARp4gQb4BfAD_AAV_QUJCgz9A_gNAPn4_f0A4gLv9gP8AgDt-wDz-AAAAA4FCvkKAAAA-wP4-_z-AAAXBPMA9AAAABcN8fkAAAAAFP4A_Az_AQEO_QD_Dgf_BBf-BwMAAAAA__8K-AMAAADnDAMMAAAAAP0LBvf_AAAAIAAtWh7IOzgTQAlITlACKnMQABpg9RwAIScH2aklLNLu-gUn3QkC4r_U7_8S5P_VIdrM-hnM6Usg_xyyCtWkAAAAI8Xo-BIAx3__7scSNeMIlMvOPAl6EyDLEiElrsrUAs8M8hkTyujsANry1C4ft-RiyjEgIAAtndkVOzgTQAlIb1ACKq8GEAwaoAYAAKhBAABgQQAAYEIAAIbCAAAAQQAAfEIAAJ5CAACYQQAA-MEAAIDAAABgwgAAIMIAAGjCAAAowgAAHEIAAIDBAACCQgAA8MEAAABCAACSwgAA0MEAACDCAADgwQAA0EEAALhBAAAcwgAAPMIAAI7CAAA0QgAAcEEAAADCAAAwwQAAPMIAAIDBAADCwgAAKEIAAJBCAACqQgAAmMEAABBCAAAAwQAAQEAAAPhBAABgQQAACEIAAEBBAACgwQAAiEEAAKhBAADAwAAAMMIAAABAAAAAwAAAwEAAANhBAADQQQAA-MEAAEBBAAAUQgAAUEEAAKDAAACwwgAAAEAAACTCAACwQQAAjMIAALBBAACUwgAANMIAAETCAACYQgAAhkIAAHDBAAAgQQAAkEEAAFTCAABIwgAAuMEAAIBAAAAYQgAAAMIAANhBAABAwgAAqEEAAIjBAAB0QgAAEMIAAIA_AACiQgAA4MAAAAxCAACAQgAAEMIAACzCAAAAQQAAsMEAABBBAAAQwgAAYEEAAFDBAAB4wgAApkIAAADAAAAUwgAAkMEAAADCAABUwgAAuEEAALDBAACgwAAAUEIAALhBAABAQQAAQMAAAADCAABMQgAAQEAAAHTCAABQQQAAAAAAANjBAACAPwAA2MEAAFjCAACwwQAAcMEAAJjBAACIQQAAEMIAAEjCAACgwQAAIMIAAIDBAACuQgAA-MEAAAAAAAD4QQAAQEEAAODAAACcwgAAyEEAAGBBAACiQgAAgL8AACxCAACAQAAAgsIAAHDCAACgQAAA6EEAAKDBAAAAQAAAyEIAACBBAAAwQQAAkMEAAIbCAACKwgAAVMIAAADCAADgQQAAMEEAAIA_AADAQAAA-MEAAIBAAAAAwAAA8EEAANBBAABQwQAAAMIAADBBAADwwQAAEEIAAIhBAAAwwQAAiEEAABjCAAAQQQAAAMEAAHDCAACSwgAAdEIAAKDBAADIQgAAaMIAAK7CAAAAQgAAwEAAANhBAACgQQAAPMIAAARCAAAgQQAA4MAAAGhCAACOwgAA-EEAAGDBAAAAwSAAOBNACUh1UAEqjwIQABqAAgAAED0AAOC8AACCPgAAmL0AADC9AACqPgAAQLwAAN6-AAA8vgAAQLwAABA9AACKvgAAZD4AAEQ-AADgPAAA-L0AANI-AABAPAAAXD4AAK4-AAB_PwAAEL0AABQ-AAA0PgAAUL0AAFy-AAD4PQAAgDsAAHw-AAB0PgAAcD0AAGS-AACYvQAAMD0AACQ-AABwvQAAiL0AAEC8AACivgAAmr4AAHS-AAAwPQAAdD4AAMg9AAA8vgAAUD0AAOg9AACIvQAAoLwAAKC8AAAMvgAA2D0AACw-AABEPgAAgr4AAFA9AAAZPwAAbD4AANg9AABQPQAA6L0AAAQ-AAAUPgAAfL4gADgTQAlIfFABKo8CEAEagAIAABS-AACCPgAA2D0AADm_AABMvgAAoDwAAL4-AAA8PgAAbD4AAOC8AADYPQAARL4AAOg9AADovQAARD4AAEC8AACgPAAAGT8AAES-AACaPgAAgLsAAPi9AACAuwAAHL4AAOg9AAAwvQAANL4AACw-AAAwvQAAqL0AANi9AAAsPgAARL4AADS-AAAsPgAA-L0AAEw-AAC4PQAAJL4AAIg9AABwPQAAlr4AAFS-AAAEPgAAiD0AACS-AAB_vwAAHD4AADS-AADIPQAAiD0AADQ-AABkvgAAHD4AAFA9AABMPgAAyL0AAIi9AAA8PgAAML0AAGQ-AABMvgAARD4AAKA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=VheMc1lEXH0","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["697405543623073068"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10773391726168787184":{"videoId":"10773391726168787184","docid":"34-5-6-ZD99AD64C0B380370","description":"Calculus Optimization Playlist: • Optimization Number Questions MCV Calculus Optimization of Time Application: Find the critical numbers and analyses for optimum value / @mathematicstutor Test...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3912165/0aef26ddb4119e90422e97924f498bd9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/S8aQSQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOBWf2SiAw-Q","linkTemplate":"/video/preview/10773391726168787184?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus Derivatives Maximum Volume of Cylinder in Cone","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OBWf2SiAw-Q\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFgoUMTA3NzMzOTE3MjYxNjg3ODcxODRaFDEwNzczMzkxNzI2MTY4Nzg3MTg0aogXEgEwGAAiRRoxAAoqaGh4c2x4aGFrdGxkbGdiYmhoVUM0WW9leTFVeWxSQ0F4elBHb2ZQaVd3EgIAEioQwg8PGg8_E44EggQkAYAEKyqLARABGniB-AkPAQAAAAP5Dg4GC_kC_gcFAAr9_gDtBPz4BQAAAO77APP4AAAAAgIM8gMAAAD5-_j6Av4AAAsBAP_rAP8AGAT8_QMAAAACBgP_B_8AAAH7_BAE_wD_DRYKAQAAAAD3Cwf6-_8AAOwD-A4AAAAA_wEKBv8AAAAgAC3KANE7OBNACUhOUAIqhAIQABrwAX_5KAHYDtwAuPUFANwy_QC8EQQACTLxAKj6HAHTBt8BBSLfAAT7I_8b-B__wATX_zsM2P_Y8vkAGMoW_-T40wDwBBkBHOsjAkYDF_82BxL9yiId_vjkEgDs-N4A-wr8_fDzCv35Acb_EP_TA1PnFADsHhEDzwEXA-nu_QPN1v0A9vjE_gnx-gDiAwvzCBgRAEvk3gYDMRwB-OMXC_3pCwYZw_D6CC_T_Qwb6f22-An82RD4Axjj-QMWIiT-_Ove_ebvGfjZygr3GekLAdHPAPkQI_kK7x33DQ3GD_UZ3vr63fLrAecZ8QUe5PIN7-Ty_iAALedYDzs4E0AJSGFQAirPBxAAGsAHLiCkviK42zxn81A5VDZMvZk8L70Rto66vMravUAYwz0iT7O7paJBPrBh_LzPLyq9aDePvSZ-1jxA_Je86iDvPfN4NTyRprA8NXk6vg6rkTtKfkQ8t7IkvikVwzxE0GK8yTM0PTjoXL1QkDO8kEYquy-vor1ni9o8zvoUPamVE72UOVG9iUf9vJOdqL1rcBG94gPbPYuH97rBU8i8Gh6GPfVOwL2Rxx29UqNrvLq4gj2AkaE89yIaPeXzBDx1gNa8D_yOPfyMKz3fIPU8duMbPLV6drpW6I088g1AvbftO71aQmM8nLS6PUrtRTywepu8gqv8vDif-r0yRS-93GbqvBSubLx3XvA6Xp0DPbvR5z24EBg8yEUlvmnRgT2dCMe8UOqBPQUCeDyTdKg8KJ4DPqytWLzx5c87_pwyPplmvznsL547LkwwPUL5sT3KVfm5cHNPO2d2gj1Ikru8seuLO3B6VbuyCsC8vplCPQ3mCj1g82C8XadRPVWXnTxNg6I8xB2UvBu5Hj7SDJi6JF6eu2L46L1TGGc7B2W3O2kNND3jgli8ew2WPWS-bT3Lq8a667nGPfomzT3c6bU62YWlvRrTXb0L5z881aGZPSKumDtjbxS8PYFQvfJhgT2wsaY7Fi2FvXkj0z2vRc45vuzIPQ-zPD2k0is6LrAFOtxn9T2PJsi5ebGwvc39urz_RMA6b4CZPQbTFbxEVYa7q1lsPUWVmz3Mcbi49-Y3PPuZlTz1_0M7QmadPaPPhbubRpU5NJe1Pbqp3LzmWHi4n2ZUu2963buVQgO7NP2IPTLKMz6OVy46Boy0vf1cHr1Ux2i5QdS9vdocB72FqYG5PPjpvSE9pb1K7ta4vJQ6PYo_yjwFIOE3_u79vYfLID3IMP65XOEiPdlVTT0Sxwy4u17_vKHj2TxcLLE3vA92vShbiT3TClu5HdxnPOPYRDx6mSW5ngMwvQ_yKj69xd-4sG-ru8U_BTtQsEe53fNXPcdXUT0Heh83Wsb8vKlQWD0q2gS1ufS5PZAUkb1_QW04DLG6PFFjp7zwN6c2KFgtPasPij1WFJq47CWXvQObzrxEeBE4VF3ZO2cxyjsuSgI4pyTrPel1GLriWkW4bzNQPTTOgL3GtWi3lS6oPSG4oD19HDC4UFQWvnaJqrxQivm16u6VPL6v3zsfBv034BV8PavVMr1JCxU2duymPeddjjsFYGa4Iv_sPTUpBT7zflu4tsqdPNzVKz1f2XC4nKMevo_5pb1mJ_i421q1PcQsnz1VIay2IAA4E0AJSG1QASpzEAAaYEb2ABPUJfjeFhraytL0K8Lbt83fsQb_ILn_1Sbq_h4P4PD59gD9zhz5ngAAACAA4xH9APF_vtwSHyAgJIrawyMrdQMrA6MaHBjg0woE9uzxIywRKwC9DMhjXfSZPegbOiAALQvyETs4E0AJSG9QAiqvBhAMGqAGAADYQQAAYEEAAHBCAACOwgAAEEEAAAhCAAC2QgAAAEAAAJBBAADQwQAAkMEAACBCAABowgAAQMEAAMBAAAAMQgAA-EEAAEjCAADAQQAA6MEAAIjBAAB8wgAAAMIAAFRCAACgwAAAMEEAAAhCAACMwgAADMIAACBCAABUwgAAiEEAAPrCAACgwAAAcMIAAIC_AABsQgAAjEIAALBBAAAAQgAAEEIAAAhCAACAvwAAiEEAAGBCAACiwgAAwMEAAMBBAAAkQgAAAMIAACDCAACMwgAAwMAAAJBBAACOQgAAQMAAADjCAABgwQAAkEEAADBCAACAPwAAvMIAAEDCAAAwwgAAEEIAAMDAAABgQQAAHMIAAEBBAAA4wgAAgEIAAJBBAADEwgAAEEIAAHBBAACAvwAASMIAANjBAAC4QQAAEEIAAETCAABEQgAAoMEAAIDBAABQQQAAgD8AAJBBAAAwwgAAkEIAADDBAABAQQAA4EEAAKjBAAAwQQAAQMAAAGjCAACAQQAAoMEAACRCAAAcQgAAzMIAAMBBAACAQAAAAMIAABjCAAA0QgAAIMEAAJhBAAD4QQAACEIAAHhCAACAwAAAQMAAABxCAAAgwgAAEEIAAARCAAAEwgAAusIAACDCAAB8wgAAIMEAABDBAADYQQAAJMIAAPBBAAAMQgAAbMIAAATCAACAPwAAwMAAADjCAAAAwQAArEIAAABBAAAQQQAAsEEAAEhCAAAYwgAAqMEAABRCAADowQAAbEIAAMjBAAAcQgAA0EEAABTCAABgwgAAMEEAALDBAABkwgAAQEAAAAxCAAAYQgAANEIAAKjBAACMwgAAFMIAAIzCAAAQwQAAAEAAAAhCAAAsQgAAAEAAAABBAADAQAAAEEEAAGBCAABMQgAA0MEAAPDBAAAAQAAAoEAAABjCAABcwgAAQEEAACBBAACwwQAA4MEAANjBAABEwgAAZMIAAMjBAACIQQAAeEIAAMjBAABgwgAALMIAAHBBAAAAQQAAUEIAAEDBAAAAwAAAcMEAADhCAACAwAAAQMEAAIxCAAAAQQAAwMEgADgTQAlIdVABKo8CEAAagAIAABC9AACIPQAAPD4AAMi9AACAuwAA9j4AAL4-AAAtvwAAjr4AABw-AACgvAAAVL4AACw-AACCPgAABD4AAES-AACePgAAoDwAAMg9AAD6PgAAfz8AACQ-AAAcPgAAmD0AAJa-AABwvQAAHD4AAHy-AACAuwAAlj4AALg9AABEvgAARL4AAAS-AACYPQAALL4AAOA8AADIvQAALL4AALi9AACOvgAA-L0AACQ-AACGPgAATL4AAOA8AABAvAAADL4AAGS-AACivgAAmL0AAPg9AAAQPQAAqj4AABC9AACIPQAAVT8AAIi9AADoPQAAUD0AAJi9AAAQvQAAND4AAI6-IAA4E0AJSHxQASqPAhABGoACAACGvgAATD4AAIi9AABXvwAAyL0AADy-AACCPgAAiL0AAIA7AABwPQAA-D0AAGS-AACovQAAdL4AANg9AABwvQAAoLwAAAE_AACYPQAAij4AAEA8AABwPQAAEL0AAAS-AADgPAAA4DwAAOC8AAAwPQAAoDwAAEC8AACgvAAAHD4AAES-AACOvgAATL4AAOi9AACoPQAATD4AAFy-AABwvQAAcL0AANi9AACovQAAJD4AACQ-AABQPQAAf78AANi9AABAvAAAVD4AADw-AAAQvQAA4DwAABC9AADgvAAAcD0AAKC8AACIPQAAqD0AACS-AAA0PgAAML0AAHA9AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=OBWf2SiAw-Q","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10773391726168787184"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"215389992"},"14706560887007482489":{"videoId":"14706560887007482489","docid":"34-6-13-Z666AD372B5DDB232","description":"For maximum/minimum, the derivative should be zero.Calculus Optimization Playlist: • Optimization Number Questions MCV Calculus Optimization of Time Application: Find the critical numbers and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2892181/b5f767602cf69d5082e777cf86b523a8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/AkOIDAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DY4gNy8c3_5c","linkTemplate":"/video/preview/14706560887007482489?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"101 Maximum Volume of Cylinder with Surface Area 384 pi Derivatives Calculus","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Y4gNy8c3_5c\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFgoUMTQ3MDY1NjA4ODcwMDc0ODI0ODlaFDE0NzA2NTYwODg3MDA3NDgyNDg5arYPEgEwGAAiRRoxAAoqaGh4c2x4aGFrdGxkbGdiYmhoVUM0WW9leTFVeWxSQ0F4elBHb2ZQaVd3EgIAEioQwg8PGg8_E9kEggQkAYAEKyqLARABGniB9gEK9gEAAP_tAwn6CfwC-gkSBPn-_QDtBPz4BQAAAO77APP4AAAA-QQF9wcAAAADAPMA_f0BAAIM8wHvAP8ACwAH_PwAAAAHAf3-_wEAAPT99QP1AgAADhYKAQAAAADvBAX8_v8AAPMDCQIAAAAA9wj7Ev__AAAgAC0jg887OBNACUhOUAIqhAIQABrwAX_sIQHTCgIAy_fWAO016ACLCin_F0j5AMoCDgDWBuEB4Q0CAPYP_f8w8ScA2g_oAEfe7v7v3dgAKdgN_wsnAQHxBBcBEfkOADHtIQAH5u3-tQsh_ufkCgEW8sf_CSvuAA35A_vQBb7_D__VAwrWPQMGISsJ8PcNA_T4A_vuEgEFzt3N-wz4BgMK4Q742QQhAgz7_AcPHRj64vQB_u_l6QUG8fz5HRP4BhHPA__G9xsC1v3t_wz78AohERLz6uX38vP3JQLw1w_yIMAMARLHFvQSBuv87-76CgvsC_vtzvMCBvfp8tkP7wr27uwK8Obz_iAALVTpGDs4E0AJSGFQAipzEAAaYDHzAAHzGubvBCDi5cwhHMjC4NXBvyr_KLX_1AjN-gYP1s30-gAf4hHvnQAAADcG2vwCAPp_ytAQJvkV-I6_2jYFXeshHpj8AvjW1BDh1ewAHxkhJACl_bk7S86XOgQHISAALV8wFzs4E0AJSG9QAiqvBhAMGqAGAAA0QgAAIMEAAIpCAACAwgAAAEAAAKhBAADAQgAAwEEAAOBAAABwQQAAsMEAABBBAADQwQAA4MAAAHBBAADIQQAAiEEAAHTCAABwQQAAwMAAAATCAABkwgAAiMIAAIBBAAAUwgAAMMEAACBCAACYwgAA-MEAAChCAABIwgAAcEEAAKrCAACIQQAAwsIAAJhBAAAsQgAAVEIAABRCAABsQgAANEIAAPBBAAAwwQAAoEEAAHRCAABQwgAA2MEAAERCAACQQQAAwMEAAFzCAACAwgAAQMAAANhBAABEQgAAIEEAAFDCAAAwwQAAgEEAACxCAAAQQQAArMIAAIjCAADwwQAAbEIAAPjBAACgQQAAKMIAAGDBAAAYwgAAeEIAAMhBAAC0wgAAqEEAAKBAAACIwQAAeMIAAIjBAABsQgAA0EEAAADCAACmQgAAmMEAAGDBAACYwQAAsEEAAMBAAACCwgAATEIAAAAAAADgQAAA4EEAALDBAADgQQAAQEIAABjCAACAvwAAMMEAAFBCAAA8QgAAlMIAAEDAAACwQQAAyMEAABTCAAAIQgAAAMEAAPBBAADYQQAAMEIAAGhCAABQwQAAQMEAADBCAABIwgAAeEIAAFxCAABQwgAAqsIAAAjCAABgwgAAYMEAAEBAAADgQQAASMIAAABAAABMQgAAMMIAAJDBAAAAwAAAbMIAAKjBAAAQQQAAykIAAAAAAABgQQAAiEEAAChCAABUwgAAkMEAAAxCAACAwQAAMEIAACDCAACwQQAAsEEAAMDBAADAwQAAHEIAAABAAAA0wgAAgEAAAKBBAADYQQAAyEEAAIDAAACCwgAAGMIAAJzCAACIwQAA2MEAAIhBAAAAQgAAYEEAAIBAAACAwAAA4EEAAIhCAAA4QgAAMMIAAEDAAADgQAAA4EAAABTCAAAAwgAAmMEAAADBAAAcwgAAQMAAAIjBAABswgAAOMIAAEDBAACAPwAAAEIAAAzCAACewgAA-MEAAERCAAAwQQAAMEIAAMjBAADgwAAAwMAAALBBAABAwAAAAMIAAJxCAAAIQgAA2MEgADgTQAlIdVABKo8CEAAagAIAAAy-AAAsPgAATD4AADC9AACoPQAATD4AAGQ-AAAdvwAAtr4AAMg9AAAEvgAAgLsAAEw-AABcPgAAUD0AAM6-AACyPgAAED0AAEQ-AADiPgAAfz8AAKg9AAD4PQAAPD4AAFy-AACevgAAhj4AAKa-AAAEPgAAwj4AAEA8AAB0vgAA-L0AALi9AACAOwAAQLwAAFC9AABAvAAA-L0AADS-AACGvgAABD4AABQ-AAAsPgAARL4AABA9AABUPgAADL4AAEy-AAB0vgAA4LwAAIg9AADoPQAAFD4AANi9AAAQvQAAMz8AAIg9AAAUvgAA-L0AAFy-AABAvAAAFD4AAHS-IAA4E0AJSHxQASqPAhABGoACAACOvgAA6D0AAFA9AAB5vwAA2L0AAMi9AABkPgAA6L0AAIi9AABQPQAA-D0AAHy-AABQvQAATL4AAHQ-AACAOwAAgLsAADU_AABMPgAAgj4AAKC8AAAQvQAA4DwAAAy-AAAwPQAAiD0AAOC8AADIPQAA6L0AAJi9AADgvAAAyD0AAKi9AACavgAAQDwAAAy-AABAPAAAcD0AAJ6-AABMvgAANL4AAOA8AAAMvgAA2D0AALg9AAC4vQAAf78AAES-AAC4PQAAuD0AACw-AAAwvQAARL4AAAQ-AAAQvQAAqD0AAIA7AABkPgAATD4AAPi9AADGPgAAEL0AAPg9AAAUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Y4gNy8c3_5c","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14706560887007482489"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3907261949"},"5242236340499194940":{"videoId":"5242236340499194940","docid":"34-10-8-ZBD4C29A9DC21778B","description":"Trapezoid Trough Rate of Change of Height: • Find Rate of Change of Water Level in Trou... / @mathematicstutor #IBSLmath #IBSLcalculus#Mcv4u_Calculus #rateofchange_calculus #optimization_calculus...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1729695/ba4176879e496908475f8e5180dd0d31/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Fq9ZZgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdJdCahJEKqU","linkTemplate":"/video/preview/5242236340499194940?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus Maximum Volume in Conical Cup constructed from a circular piece of paper IB Test","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dJdCahJEKqU\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFQoTNTI0MjIzNjM0MDQ5OTE5NDk0MFoTNTI0MjIzNjM0MDQ5OTE5NDk0MGqIFxIBMBgAIkUaMQAKKmhoeHNseGhha3RsZGxnYmJoaFVDNFlvZXkxVXlsUkNBeHpQR29mUGlXdxICABIqEMIPDxoPPxPmA4IEJAGABCsqiwEQARp4gfYBCvYBAAD79Q7-BwX9AQH89vz4_f0A8AMI8QMBAAD7_Qfu_QAAAAkEAPADAAAA-fv4-gL-AAAcAvv1AwAAAAwK7QT9AAAABA_7BAoAAQH6EQYPA_8AABQSAQv_AAAACP0C_Pn-_wH6AvIOAAAAABD9CgUAAAAAIAAtI4PPOzgTQAlITlACKoQCEAAa8AF_1xIA1vEFAb7g9wDTJ-IBivoP__w00gDT7Qv_2O_WAPQdCQDpCw4AFegnANH__f9m7uP_2tP9AT3lGgAaFeUA6wv7AArqCwEr5joB-wEO_-AiLv3y1AX-7PjfAAAo-P8ODxH9zgW7_w__0wMa-v4E3yYaAvD-JgIAAhD7wBfkAOvd2P0FF_0F1-gJ-NcbIQIG8Oz_JB0S_Ov_C_r56vcAC936-iw21f8g8fYG2gMo_-kT6wM-3-sLEQoS9ff58-_mGSP-2ssK9_bWEfMFsAj-Cf33DeoODAoiBxH2AMr4AfHv9g3XFf77Iv_0B_Xm8eggAC1V0BE7OBNACUhhUAIqzwcQABrAB3HMur7mrws6R-EhvDVuwL3RUt68RTOJu7zK2r1AGMM9Ik-zu28uHj4t4K-8YRWUvGzsUr53ZFE9AyoXvcuAMz7m0Yi9mGIzPGLZLL5yAqo7w2QKvef-Kr5dy_88SHQqPLGkvD3w9O-8GI1GPG-bKT1xu0G9ztAuPDG5LLy0lyi9opknvBgcKr2-Toq9Bg4LvKVUnT1Klku6Xf1YuvnQjz2FRIq9rqDEvCBXVD04rhU9xgTKunAOFTy-bxe9ZTEWvAQPwj0iJoc9EEpOPFszaDx87iS9qGSpOwZifr0dpVy8BOa-OgckYTwx0LU8AKYxvGKTqTtxKsi9yGqpvL7fQ7267vc8KioRvXqHID057IM9QkWYuRjSAb5Jg6s9liYlvLixmTxhBwQ9utt1PA5O5D1a-gu9K3ZqO3v0Bj5KLrk71rq_u8y9dj00RwY-ftK_u2ycCD1mcVU9C9SivKCbhz0I-H88a76IuykU2LyhbwE9HYlAur2fxD1qnV08qe-hPHLK97zmIOg9QsXAO0VcpTxzuPa95AQ3PEUZ4LwmBOU7Q5OfvOi-zD0AMGM9ruYMO-kLAT6oIJo8KKU5OUE8XL3CGsK8U08PPFtyBj0HU148pPDJOyexVb0juwI-2B-0txYthb15I9M9r0XOOezvpj1aTbI9T3OmuSh0qDnZWdk8rh2YO4pQNjxnGG296MhCO4sQmD0Rn8U8_kzyuQfu4D163B679qUOusVAsjwPm8i8slaHuZ2ovroD2ZG9GkoIujy98j1KyFG9V8GOOUgvLz0b1H68AsYGuai3ULx0tAo-_MVYN8hKgrzZg4O7uCLEOVQb_L1iu_u9E9PyOaqxSb0_xGu9HsaSud_1_jz49jM9MTZpOZSk670Rwf462PPSuLplarvX3by87gHKuEpNcbxJhbE8iU13uPeiJ70KQq49Z8vPNvTYW70yXk48fuzaOA224jzakSo-oWKNuUyoAD3H8J29_u4wOf1Ylz3ct_o9HVbENbJwSDx_6YM92_2AN2yXJj5IG0e9ZvweuKmD4TzPKwO9-y3jNShYLT2rD4o9VhSauLjkKL7Rf4W8nfgauQ1mDTqdkIy8PTO2uAqouz1cWqA5aasaOI2T57zk0-u7dFd1ON9PvT29rjo87Fdruagmp71UPcS9HLiDuDbcEbtz-qU989QQODV8i7wAPL874b49NjxGnjwlOQW9OM-8tcr0cD0i4Ss-8cuKOCXNXTstHmM9QRELubogUb1t91y9fHaEt5Dv9zqpwXQ9CWiwtSAAOBNACUhtUAEqcxAAGmAF_gAzGT3y6hc83Afm9xC82_DX6b0Y_yfk_w8FBODeRsO4DSwACLAm4aAAAAAX2u0bCwD9fLLeBBD-HRaB1s9aD2z_IxrF3kHf4dwSIN8QGhEZEPUAuQmbFkXpyEgAMSIgAC0njxY7OBNACUhvUAIqrwYQDBqgBgAADEIAAABAAABYQgAAkMEAAJjBAADIQQAApkIAAJBBAACQwQAAAMEAALBBAADowQAAAMIAAMDBAAD4QQAAEEEAABRCAABQwgAAsEEAAABAAAAUwgAAkMIAAHDCAAAAQgAAIMIAANjBAAD4QQAALMIAAMBBAACYQQAA0MEAALBBAADMwgAAYMEAAJDCAADYQQAASEIAAJRCAAAQwQAATEIAAGRCAAAUQgAADEIAADBBAABIQgAAjsIAAADCAACgQQAAyEEAACzCAADYwQAAbMIAAEDBAADQQQAAhkIAADDBAACywgAAgD8AANhBAACQQQAAcMEAALrCAACQwgAACMIAAGBBAADQwQAAgD8AAEzCAADwwQAACMIAAGhCAADYQQAAmsIAAKhBAAAYQgAA-MEAAFzCAADIwQAASEIAALBBAAB0wgAAnEIAAOjBAAAUQgAAEMEAAAxCAAAowgAAZMIAAChCAADIwQAAMEIAAAhCAADgwQAAgEAAAKhBAAB4wgAAUEEAAMjBAABgQgAAoMAAAPTCAADQQQAAyEEAAAzCAABAwgAAiEEAACzCAAA0QgAAmEEAANhBAAAgQgAAQMAAAGDBAABgQQAAPMIAAPBBAAAkQgAAZMIAAHDCAAAYwgAAPMIAAEDBAAAEwgAAwEEAADTCAABAQQAA4MEAAADCAACowQAAMMEAAIjBAADYwQAAJMIAAJ5CAACIwQAAIMEAANBBAAAwQQAAcMEAAPjBAAAMQgAAgL8AAPhBAAA0wgAAUEIAAMBAAADwwQAAEMIAAMBBAABQQQAAIMIAAMBAAAAkQgAA8EEAAGBBAADYwQAAgMIAACjCAACIwgAAQEAAAODAAAC4QQAA2EEAAGBBAACAQQAAgD8AAJBBAAAcQgAAbEIAAHTCAABQwQAAoEAAAJjBAAAAwgAACMIAAADAAACgwQAAoEAAAADBAABAwQAAUMIAAN7CAADowQAAgEEAAHhCAAAMwgAAuMIAAATCAABwQQAAgMEAADhCAADQwQAAEEEAACBBAAC4QQAAAAAAAJjBAACoQgAA6EEAACDCIAA4E0AJSHVQASqPAhAAGoACAACIvQAAED0AALg9AABwvQAA-D0AAEQ-AABQPQAAI78AAKC8AABAPAAAHD4AALi9AAD4PQAAhj4AAES-AAAMvgAAZD4AAPg9AADoPQAAGT8AAH8_AADoPQAA4DwAAFA9AAAUvgAAML0AAJY-AAA8vgAAPD4AAGw-AADoPQAArr4AAAS-AABQvQAARD4AADA9AACYvQAAmL0AAIa-AACGvgAAqr4AAPi9AACWPgAADD4AAJK-AABQPQAABD4AAMi9AACovQAAQLwAAMi9AABcPgAA4DwAALY-AABcvgAAUL0AACU_AAAQPQAAmD0AANg9AAAwPQAAED0AACQ-AABsviAAOBNACUh8UAEqjwIQARqAAgAAPL4AABQ-AADIvQAAOb8AACy-AADYvQAAoj4AAHC9AACgPAAAHD4AAMg9AABMvgAAoDwAAOi9AAA0PgAAiL0AAIg9AADuPgAAmL0AAI4-AACAuwAAED0AAKC8AAAQvQAAED0AAMg9AACgvAAAUD0AAKA8AAAQPQAAQLwAAMg9AACevgAAZL4AABS-AACAOwAA2D0AADQ-AABMvgAADL4AAMi9AABQPQAA4DwAADQ-AAA0PgAAgDsAAH-_AADgPAAAmL0AAPg9AAAQPQAAqD0AALg9AAD4PQAADL4AAKg9AABAvAAAUD0AADA9AADYvQAARD4AAOA8AABUPgAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=dJdCahJEKqU","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5242236340499194940"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2921500875"},"18311710549798489506":{"videoId":"18311710549798489506","docid":"34-6-6-Z96B9C83614AEE93C","description":"View full question and answer details: https://www.wyzant.com/resources/answ... Question: Please help with the rest of this An open-box (top open) is made from a rectangular material of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4239942/0f1e61b4fe5aa875cb588a0d36256c02/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/LC2kNwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEalnUIfPSPQ","linkTemplate":"/video/preview/18311710549798489506?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The typical max volume of an open box cutting equal squares from a rectangular sheet 12 by 11.","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=EalnUIfPSPQ\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFgoUMTgzMTE3MTA1NDk3OTg0ODk1MDZaFDE4MzExNzEwNTQ5Nzk4NDg5NTA2aogXEgEwGAAiRRoxAAoqaGh1bXJ4b2V1eHZ3cG91Y2hoVUN5T1NySUU5enpHeC00NDhhOUZrTjBnEgIAEioQwg8PGg8_E8YBggQkAYAEKyqLARABGniB9AwG8wX6AAP_BgEPBv4CHfsH__QDAgD1-vr8_QP_AAQFEf3-AQAAAgsP-wUAAAD5B_oH-v4AABMIAQ30AAAAABH__voAAAD9_eoAAAEAAOn78QoD_wAACP73_v8AAAAKCwTtAAAAAAUHBBcAAAAAEPcSDQAAAAAgAC0cj8E7OBNACUhOUAIqhAIQABrwAX8RE_7J--T_2gP3APYh2gGh9in__DXRAKj6HAHnEtAB9B4JAOcWAgD5INz_jxHuAfsIFP_-8tsBGMoW__rHFgD3_zUB7drrAEjwH__c3RT_2w0L_fgWHgHz2bIAIC7i_vHQFf35Acb_C-q3CSb7LwH8KgoCDwz8AOLbFPzSFgIC9_jF_u4CDQL91BgA5DIkAjUI_QL6PwcC__3O_BwBBQUW9QgCKQLlAvrU9QX1FBYFHuoUAAgB_vr79g786wH6_8TzFfUM1BYAFA4E8-H1B_jWDQEQGujr--n2GwXo-eEB8O4I8PgY-QAQ9fT13N7iAyAALR1GEDs4E0AJSGFQAirPBxAAGsAHLCvNvsgw3Tq9SDK9qgudvcuBvzvA_pC8JcrevTItW70AMa670v_SPWkqdT1UlAW8mx2hvkahm7zIZ6g8ih9TPssQ6Duk9se8hzQqvp5pqD22cmW89aFrvoTTBz10NcO7IuSXPaqgfb2EAMs7HQDxPfXVFb35njG90c2ePeRORLxiC6Y840EJvRk4oLzo9P675suLPXyWDL1uPM48dOs1PnAcQryxVPI8b2e6vHjCIT1iLPQ70s6PvecpobwQ3_C7OdawPZQpa72g8rk87WaGPBgzkz379yq8TszfPPV8Ej0hQyK9qMoyPX8U9TyJPG68gqJDvHVyq73SCgA7qMghvgJ8HD3o6W083WA4PimmXD3jGz46nYWYvN4QdLulDWU626fDvahpm7vUFs08TdOcPeQ29bwJbI48s_tfPZDwYryRcO86DBsqPQWd2jviqaw8x458PTAvwDsm2-W8ssuBPGoEgT3JDIq8_id_vajTkTqXk6s8ImWlPTE2Pr1o5zQ822F9PX_WQT3euLk7hJ6dPUPyhL2Zt2o8e8mVvRgc77zbZHm8oPOkPF8eFz0ws_i682ELvBXydzxty9-7sbwwveg5_Twc3C27QdgJPUJYor3kPyK63IJGO0eclD3bAAU8tql0O9P1BD3Aqww8IGZqvSh8WzwZrBU8ZoRXvTaSBL0sEPs7yJPJvLDlNT1GrRc85ipRvdiJprwdioo7IClCPiCMDDw7ZsS4clSJPCcFLL3kFYg70PFRPO_LtD2uGYM49X6IPTPfAb1AfGw5zaHWPHhSlTw8ypc4jMi2PeWisD1X1t251xDBPEB99Dv5OTK4mqONvcA2jL26UZa4nvBQu5ypK73VgcW5kaMUPVDQfL2C_-84BiRGvcNXtb0IyF034CzFvaZvyDzOpAq5-lhmPXDVkDwMI2C4nEROvSrhiTyH-sY47Ak8vXIl8bzWYoA5JdcDvQS0uD2qJ6q45yLZPAPM_L1SScg5jvZpPXkIjj2KXZ44joopPW0fsjzmZFk38Vh9PHQXFz3FMOG3dlNqvVfPyb1cOmq4FUcvPer7Wj2eNvS4uOQovtF_hbyd-Bq5axGsu4uA8bsFPYU4gtWSPXME-rwL3zu2GYMYvTaKkbzOh6g3AXBnPa_u2L2hUIe4GZtsvYmE5by0Ss43epcBvasDZb21Yua3axOCvO2KDz1X0t23YQZ5PfM6Er5L56m4QstfPWMatz1ukI44uB-wvK-IKz0i05W4VdfGvbuZUbz5mlu3dnoUPG8nFr3Re822IAA4E0AJSG1QASpzEAAaYCf5ACr3I_ML7Bjy5drjSr_V0OwX1w__Ccb_8yoYLd4j6NL6Cv8dwArepAAAACDhCUX8APBz3sv-DPgKG5vw6ToFf8wj79DWRAgH7QYKCSsK-hxBOgD0_7QdMN69SC1IUCAALQnJHjs4E0AJSG9QAiqvBhAMGqAGAACwQQAAUEEAAHRCAAAQwgAAgEAAAABCAACqQgAA0EEAAJzCAABEwgAAIMEAAABCAABQwgAAoMAAAEDAAAAIwgAALMIAAMzCAABgQQAAAMIAAFhCAABUwgAA4MAAAJDBAAAAQQAAqEEAAGDBAADgwAAAOEIAAIBBAABIwgAA-EEAAFzCAADAQQAA6sIAAIDBAAAkQgAAkEEAAIDBAABAQAAAkEEAAJhBAAAswgAAIEEAAKhBAACgwgAAQEEAAGxCAAAgQgAAbEIAAGTCAABQwgAAUMIAAAhCAADoQQAAEEEAADDCAADYwQAAKEIAAOBBAADIQQAAcMIAAETCAACOwgAAuEEAANDCAAAQQgAAmMEAANDBAABwwQAAskIAANBBAACAwQAAcEIAAIBBAABIwgAANMIAAIBAAABUQgAAUEEAAPjBAAC8QgAAAMIAAIA_AACAQAAAQEEAABRCAABAwgAAdEIAAPDBAABIQgAAfEIAAFDCAABMwgAAiEEAACDCAACwwQAAQMAAAGxCAACgQQAAVMIAABBCAABQQgAAKMIAAFDCAAAQQQAAuEEAACRCAADAwAAAmkIAADhCAAAgQgAAQEAAALRCAAAEQgAAwMAAAADBAABAQAAAkMIAACDBAAAMQgAAiMEAAOBBAAD4wQAAhMIAAAhCAAAAwAAACMIAAPDBAADAwQAA0MEAAIDCAACwwQAAyEEAAOBAAAAkQgAAFEIAAFhCAACAwAAAYMIAANhBAADgwQAAoEEAAGDCAAAwwQAAmMEAAJTCAACIwQAAwMEAAKBAAAAMwgAAMEIAADBCAAD4QQAAEEEAAEDCAADIwQAACMIAAAzCAAAEQgAAwMAAAHBCAADgQAAAYMEAAJDBAABQQQAAoEAAAMRCAADIQQAAgMEAAEDBAACYQgAAYEEAAIDBAADwwQAAYMEAADBBAADgwAAAUMEAAERCAACAwQAAAMEAAFzCAACAvwAAAEIAAABAAACOwgAAMMEAAPhBAAAAwQAAoEEAAPDBAACAwAAA8EEAAPhBAABcQgAAAMAAAODBAADgwAAAuMEgADgTQAlIdVABKo8CEAAagAIAAHS-AACePgAAvj4AAAQ-AADYPQAAuD0AAEA8AAA9vwAAPL4AAIC7AAAEPgAAJL4AAIC7AADOPgAAmL0AANi9AADqPgAAQDwAAMI-AAAFPwAAfz8AAKg9AACOPgAA4LwAAAS-AABwvQAAPD4AALi9AACAuwAABD4AAOg9AAAsvgAAED0AALg9AADIvQAA2L0AAOi9AAA0vgAAjr4AAJK-AAAsvgAARD4AAEQ-AAAwvQAAHL4AAMg9AACaPgAAir4AAKC8AAA8vgAAqD0AAAw-AADIPQAAJD4AALi9AADIvQAASz8AADC9AABQvQAAoDwAAKi9AADoPQAAUD0AAMi9IAA4E0AJSHxQASqPAhABGoACAACivgAA2D0AACQ-AABXvwAAHL4AABS-AAAwPQAAUL0AAOC8AADgPAAAUL0AAIq-AAA8vgAAqL0AADA9AAAQvQAA4DwAABs_AABkPgAAvj4AAIA7AAAwPQAAiL0AADy-AAAMvgAAVL4AAEC8AABQPQAADD4AADA9AACYPQAAPD4AANi9AACIvQAAFD4AAJi9AACePgAAZD4AAKq-AACgvAAAiL0AAAw-AABsvgAAUD0AABS-AAAkPgAAf78AAHA9AAAkPgAA2D0AAPg9AADIvQAAiL0AAJ4-AAAkPgAA2D0AADA9AACYPQAAmD0AAHC9AACYPQAADL4AAPg9AACgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=EalnUIfPSPQ","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["18311710549798489506"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3067131499"},"5299367790727573597":{"videoId":"5299367790727573597","docid":"34-2-1-ZC6DE23FB11F62118","description":"Earthwork volume in civil 3d stock piles volumes in civil 3d volume tables in civil 3d volume reports in civil 3d ~- ... -~ Please watch: \"How to plot GPS Coordinates from excel to Google...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/961267/e50535710eb8b42a69a35723d2d241e2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_SZhEQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYk7CcYRGyew","linkTemplate":"/video/preview/5299367790727573597?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to calculate earthwork volume in civil 3d and how to create volume table","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Yk7CcYRGyew\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFQoTNTI5OTM2Nzc5MDcyNzU3MzU5N1oTNTI5OTM2Nzc5MDcyNzU3MzU5N2qHFxIBMBgAIkQaMAAKKWhoanl3Y2xyb2dkYnd1ZGhoVUNoc2QwM1VIWUNFTEwzcGFVcnVJR3pREgIAESoQwg8PGg8_E7sIggQkAYAEKyqLARABGniB_An1AfsFAPj-_QD6BP8BBwEG-vj__wDz-_38BwEAAP35Df_4AAAABQ4D9wkAAAD9BQH7-v4AABMD-wYEAAAAFwP8Cv8AAAAMAQEB_wEAAPH8_AMDAAAACgkE-_8AAADtDfX-_wAAAP8IAwsAAAAADv4B9gAAAAAgAC1gPeE7OBNACUhOUAIqhAIQABrwAXAfLP4B1vcDrf3zANg3_ACW9S7_0isE_8P1_gC33_IA8-fx__zqGf_m2NsAgRPsAQ4GGwA4G8L-BuwP_wDpFwAELgkB-9b2AmUzBQD-8Mj-xCYg_Rz2EgAA8BAA2CXq_jPkA_21GOD_uPjFARz-6f8Zzi4FLCMM_zDLAgPjGBIDDgD3983u8wes6-r9zgz_-_vf4gE-B_3_6-YC-xQEFvjv7-wDBgUSADHyMwDACPP7Efj7-P3bFPw4GBAC8-sUEqPy8_sA4g339-UG9b8XDf_d-RETFk4D-yERA_ESGgMHEuIFAqz8CggS9PPztxAU9CAALdWsADs4E0AJSGFQAirPBxAAGsAHXB_GvgBBdD2nEpQ8HMg_vQnqjDuczC69TifZvTZhMTxEHow9HQCRPkS7nz28Uh67xJdZvoxmZbz1uiW9TOMXPnbEgT1Fd5q8SyMGvkz2tDy59Pk8iQsQvjZqrrrOj_k7al0TPEZ8J70gcw67O6wAPgKyfDwCfDy9PQztvXP-nL1Lfhu7KBMyPbBfK72xpz2964sUPtOAxbu3cgA9xUqmPd0wsL2YTSA9K1eOvTFzJryAfC68lWYOvSmdo7xE2zE83c3TvZ2WhDxgpSc8CChoPVivPb3lWW48bAeDvc0W2jyWMIm8s_wqPRpROr1naNU7s6IcvYl77L21c7O6qMghvgJ8HD3o6W089bwrPs0seDz6er48rMqZvcia0b1Oet-8PptyO7AeN737kYW6XB0APpBmkTwzV4I7NAW8PYaDTjwbsgk8gZgUPu9m17xghpA7CHjvO_otNb2Rky48I6LYvMS1NT3hwJq8GxRoveaszzzWXIm85ZqSPcxO9Tz37zC8TNEAvY9CyLw1xEI8Oe1JPVycBz1FxyO7yiUEPcO_hDsEJgk5gwyuOzVZCD0_77472Em7u5euq73HMli8i8zCvYejcD2y83Q7gqtcPS9NkbwBw3I8mbTOPCYdBT0DT067HTnSvfYoWLsV8co7obd9vaK2zb1ecC06Hd6NvXLbY73NSjs6Cw3EvO8S5rykkY07WCuJPCSVTr3fbZw7yDKTPQq0ID0wNZ05whUQvnWyDz1CPdY59FOHvUf8bTsz2BC63zH8vNTyg70kEB26XS-iPUSidTys0Ic4JUeVvPFIPL07mIw51UqXvBQRhD2rOxM48wqfPUbvlLxy39K437syPbuv7zwrFOO3OnUVPkr3Cb0rI6y5iAqKve0Kv7vKPB46VW_oPOTirr1JEMm4yR8KvJHhgrxiGr64lNHQur0tgr3Q6AA4Mk94PLT08rxnr5m4eH1GPbnmpzsGNQA3eXlVvVNd4L3Cl1g5GdCDO5hgwDv5usC4sOmcvHY2BD7X8123guIHvuoiJb1ur-O3YJsFvIxETb12nS84LtX7vPjrZD3Ad5g47omPvWufqb1yZC83GjUPPhIdOLx1sFg5XlkUPBxkLT3Ca5E4rXRNvdJFWT2s1rA4Ol3WPexKjTsc-0m5732wvWSKQ70ULkG4NQtUPWUaDT4mM6W458LIvAvaPzy4s8M3bXIYPmGkF76n-N64YsznvPgl0bvBIQq402mNvXiuxL2N2YY4I_HXPBHTdDwro5a45cEsPRSljrxsGQq3IAA4E0AJSG1QASpzEAAaYBjnADvj-Qb5NyPv9sj0H87Wvt_40vr_C4z_zAAjDSnxlM_bKwAa8SYPoAAAAB0aGDzJAA922vH8F9Y1JLrU8_wZfxbztqoGKB4DnQoHBifSE-odZQAWxsXxUwTFG-kyACAALXHEEzs4E0AJSG9QAiqvBhAMGqAGAAAMwgAA6EEAABjCAABQwQAAmEEAANjBAABMQgAAYMEAACjCAAAkwgAAOEIAANjBAADIwgAAoEAAAHhCAADgwQAAusIAAJDCAABgwQAACMIAAADBAABIwgAALEIAALDBAAAYQgAAAEEAABzCAAAMwgAAiEEAALhBAABwwgAA-EEAAKLCAACgwAAAEMEAADjCAABQwgAApEIAAIhBAACgwQAAOEIAAMBBAACQQQAA4EAAAJhCAABowgAATMIAAGzCAABQQgAAMEEAAMDBAACAQAAAAMAAACTCAACMQgAAIMEAAJDCAACIwQAAQMEAAJhBAADgQQAAYMEAADDBAAAswgAAKEIAAIA_AAAgQQAAYMEAAADAAACQwQAA4EIAAIJCAAB0wgAAbEIAABhCAACiwgAAaMIAAKDAAABwwQAAyEEAAATCAAAIQgAAEMEAAIBBAAAgwgAAFEIAAEBCAAAQQgAAhEIAAEjCAACQwQAAfEIAAIC_AACAwgAAgEEAAKbCAADIwQAAcMEAAJBCAAA0wgAAkMEAAIpCAABEQgAAjMIAAKbCAADoQQAApsIAAABCAAAAwQAAQMAAAOhBAAAIwgAAPMIAABjCAAAgQQAAIMEAAFjCAABUwgAAwMEAALjBAABAQAAAcMEAAADBAAAQwgAAIEIAAABCAADwQQAAAMEAAMjBAAA0wgAAoEEAAIC_AAAAAAAAZEIAAIpCAAA0QgAAAEEAALBBAABEwgAAeMIAAATCAABAQAAALEIAAFDBAABgQgAAKMIAAOjBAAAEQgAAVEIAABxCAAAEwgAAAMAAAPhBAADAQAAA4EEAAOBAAACAwAAALMIAAOBAAABQQgAACMIAAPBBAAAQQQAAgMEAAIhBAAAwwgAAaEIAAJBBAAA4QgAAqEEAAHzCAACSQgAANMIAACDCAADQwQAAPEIAAADAAACQwQAAAEIAAFBBAACAwAAA4MEAAIBAAAA4wgAAdEIAAADAAADQwQAAQMAAAGBBAADwQQAAPMIAAPDBAABAQQAAqEEAAFRCAADwQQAA4MEAAKDBAAA0wgAAPMIgADgTQAlIdVABKo8CEAAagAIAABA9AADYPQAAVD4AAFw-AACoPQAADD4AAAw-AAAlvwAATL4AAEw-AAAcPgAA6D0AABA9AADYPQAAED0AAGS-AAB0PgAA2D0AALi9AAAJPwAAfz8AADw-AAAQvQAARD4AABC9AAA8vgAAVD4AACy-AABQPQAAqL0AAJg9AADYvQAAED0AAHQ-AABsPgAA2L0AAKA8AACCvgAAmr4AALi9AABUvgAA2L0AAAS-AABAvAAAQDwAAKC8AABQPQAAuD0AALg9AAAMvgAAgDsAABA9AADgPAAAqj4AAPi9AABAvAAART8AABS-AADYvQAAFD4AAIg9AABcPgAAHD4AAAw-IAA4E0AJSHxQASqPAhABGoACAAC4vQAAgLsAABS-AAAdvwAAoLwAAMi9AACgvAAAMD0AAHC9AADYPQAAbL4AAMi9AAAQvQAAiL0AAAQ-AABwvQAAuD0AABk_AABAvAAAxj4AADC9AABwPQAAoLwAAFC9AAAwvQAA2D0AAAQ-AACgvAAAMD0AAIY-AABAPAAAyD0AACS-AADovQAADL4AAKA8AAAsPgAAoDwAAEy-AAAQvQAA4LwAAOg9AACAOwAAdD4AABC9AAAwPQAAf78AAPi9AAAcvgAABD4AAMi9AABQvQAAFL4AAEQ-AAA0PgAAmD0AAFA9AACgvAAA4LwAAPg9AAAMPgAA6D0AALg9AACSviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Yk7CcYRGyew","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5299367790727573597"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2768122073"},"599257945966469398":{"videoId":"599257945966469398","docid":"34-3-16-Z1195C8C62BEC3746","description":"Surface Area Volume Playlist: • Cylinder Introduction - Volume and Surface... Channel: / @mathematicstutor Learn From Anil Kumar: anil.anilkhandelwal@gmail.com Test question on Volume with Unit...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4302934/eb69a6d268b89e2b1f1e0d56fe73aeba/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/HRMprAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDJtNtgqM30w","linkTemplate":"/video/preview/599257945966469398?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Optimum Size of Cylinder Maximum Volume Minimum Surface Area","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DJtNtgqM30w\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFAoSNTk5MjU3OTQ1OTY2NDY5Mzk4WhI1OTkyNTc5NDU5NjY0NjkzOThqiBcSATAYACJFGjEACipoaHhzbHhoYWt0bGRsZ2JiaGhVQzRZb2V5MVV5bFJDQXh6UEdvZlBpV3cSAgASKhDCDw8aDz8T9QWCBCQBgAQrKosBEAEaeIHxBQMB-wUA9_cBCfkG_gL3CvsE-f39AO4E_PgFAAAA8wAI_PwAAAD6Avv-BgAAAPcD-fIB_wAABBIE_ukA_wAI-hL-_QAAAP__CPj_AQAA-P0JAfUCAAEKEwH0_wAAAPcLEfv_AAAA9v38CAAAAAD6B_EJAAAAACAALRIG4Ds4E0AJSE5QAiqEAhAAGvABfxET_s0Y6gDq7sgB2C-_AYQKLP8eKN8At_ALAZ305QDsGd0A1OXhARr4H__Q__3_WgLc_vz36gEYyhb_IQTpAeofGwA55xQAMPwZAQ3s2wDKIh3-A8X6ARjxxP8KLe0A_BIL_eT72AMeF8kCEdUY_yYSOwAp4in-I-QC_-0TAQX3-MX-_uX7_9boCfjVEwoF6v3xBgYcCgaxAwcA8-zR_-Xy_PopAuUC9OPv_ssOEPnTBP36CBHmAwkbEQXj0vH99QUX8ebT9fcL6BD9E8v89OwN7Pnx8g4IHg8D8_7JCvbm7AsA5gLuAtIL_RTo_esEIAAtHUYQOzgTQAlIYVACKs8HEAAawAcv_eu-CmIFPd3U_jscyD-9CeqMO5zMLr2NjwC9gMy4PRaSI7vusr89t7BTPVY1V729jpC-fOdcvdimKTvLgDM-5tGIvZhiMzx6Fy--CDwwPSmf1Lz8VCW-MdkuvAdz5jeazLg8vjmCvX_DHzxTJB08Gw1Avb3op7upqsi7sl0mvV_BDL2OgSu9nx3wvT_xbzs_P2c9e2GXvNILDrz50I89hUSKva6gxLxYbs48fxscO9jVZDwRrAU8VlsYPLwq67x3RVU99sn2u5Ou17v_LCw9tOZnPdQWsjvDJlc8j_t2PeeibDmNf587oY59Pf8JLrwDaIo9d0ZAvUqC7DpdkbO9jEIYPD41h7vkZvg9ZkzhPRgj1DsY0gG-SYOrPZYmJbyR-pE9giXyPJA2hjt0Da49HnohvcrKhrveWrY9jyYNPbbfczsQFn89jRnXPE53Az39H3Y9IvhEPcvydbwjoti8xLU1PeHAmry7fGu9g8NmPCB7nDsb7V09bxS0PFVMQTqCBP87rNHhPO0tQLyblQi9CHYMvs2l4btcTai8uXJRvW9Ws7wCZwQ9KE80PCJAHztRIog98O89Pd3JjLx5lZC88DU_vShgYDwXmSO8Zyx1vYu4SjxcTxu8uzMJPT3CHzxuIqk8jKZOPZtR1rswZss8KqcNPm6TKLqaNNc88lYjPGin0Tsxgr47-F7yPDxLFTrPfkk83VxcPYJXxjkZkRg--H60PBnmbTlfuRk9ysBmvVAKiDsHLgc8ocIMvcTJgbsVs3Q9QGCvvY1ifjjhJI08zeA0PUkssrlfrX-9LuKwPQkCOjn9UW89OwITPUUpJTj6FDu9aI-bOw2Imbml7xw8Vl_CPAVYu7om2Y88srYOPZcUlDmICoq97Qq_u8o8Hjr7m6Y9MIAQPSQdcLi1K669zXLZvaqbTriL6BI9MbbLPcvtFrlwl929ut7Tud1kpTkP0aq7b54KPqCiGbmYtFI7P3DFvfcuYDmO9mk9eQiOPYpdnjip8qI8oUgcvTh7GbgfR3M8vxLhO-wWL7gGnCW8jGrRvfpT9zdPmTY9jbKjvKwCaDdtxf69otQ-vRov9LgDhyY9HuwDvZ6K0jebPdA9_oqLvdqhkjiux_M8zTSrvAtejzUfnwA-pOSQvRXoOrlCxzM8j1MUvT1EJLhR71M9bHESvfV-tTcAAna96hLEPD3I87cNEkc8dHz0vVZYWbgi_-w9NSkFPvN-W7i8kpQ9RZtIPXdnRLfnI5-9N8BxPO1kl7cIZII71ixhvSjoXLggADgTQAlIbVABKnMQABpgCfsA-84E1d7x-bkEzigq1M7Yqsms9_840P_kPQXgERf4xSY0_y_zDuubAAAAPOHt8-sA3X_b3uFQ4uf4ja7gT_lqJRcQ3u3X47T3z_Hi8hQg9gQkANnZtT1tC7lDAxYHIAAtkmMROzgTQAlIb1ACKq8GEAwaoAYAAEDAAACAQQAASEIAAEjCAAAAQAAAIMEAAMJCAADQQQAAcMEAAADAAAAQwQAAoEAAAEBAAAAMwgAAuMEAAIBCAAAQQQAAGMIAAIhBAACgQAAA6MEAAOjBAAB8wgAAwEAAADDBAADAQQAAmEEAAGjCAAAgwgAAuEEAAFjCAACgQQAABMIAAJhBAADcwgAADEIAAGhCAAA0QgAA2EEAANhBAABcQgAA6MEAAMDBAABgQQAA8EIAAETCAABAwgAAmkIAAMBAAAAAQAAAksIAABDCAABwwgAAqkIAABBCAAAIQgAAHMIAABDBAABEQgAAREIAANDBAACswgAAYMIAALDBAAA0QgAAisIAAGBBAABgwgAA4MAAAMjBAAD4QQAAQEAAAMDCAAAAQgAACEIAAHTCAAAIwgAAHMIAAFBCAAAgQgAACMIAAKhCAADAwQAAIMIAAJjBAACAwAAAoMAAAFjCAACGQgAAgMEAAMBBAACWQgAAwMEAAFBBAAB0QgAAYMEAAMDBAADAQAAAkEIAAGBCAAAkwgAABEIAADBCAAAkwgAAUMEAAOBAAADoQQAAAMAAALhBAABwQgAAGEIAAGDBAADAwQAAlkIAAGDCAADAQQAAsEEAABDCAACOwgAASMIAACTCAACgwQAAAEEAAKhBAABYwgAAUEEAACxCAAAAwQAAEEEAAHBBAABwwgAAeMIAAKDAAACQQgAAgD8AAOBBAACAwAAAcEEAAAzCAACYQQAAgEAAAEDBAAAAAAAAjMIAAARCAACwQQAAKMIAAKDBAAAUQgAAkEEAADzCAAAsQgAAgEAAAEBCAADgQQAAwEAAALjBAAA0wgAAnsIAAKBAAACQwQAAQEEAAEBBAADYQQAAgMEAAEDBAAAAQQAAwEIAAKhBAAAYwgAAcMEAANDBAACAvwAAoMEAALjBAABAwQAAEMEAABTCAAAAQAAAAMEAABzCAADIwQAAAEEAAODAAACIQQAAIMIAAFjCAADwwQAAHEIAAKBBAAAoQgAA6MEAAIhBAADIwQAAuEEAAERCAAAQwgAAKEIAAIhBAACAQCAAOBNACUh1UAEqjwIQABqAAgAAUD0AADS-AAAQvQAAgDsAAHA9AAC2PgAAdD4AAB-_AAC4vQAA6D0AAII-AABEvgAAdD4AAIg9AAA0PgAApr4AAMI-AACgPAAAXD4AAAE_AAB7PwAA7j4AAKo-AAA8PgAAyL0AAB2_AACoPQAAUL0AAEC8AACWPgAAhj4AAHC9AADYvQAAdD4AAJI-AAD4vQAAkj4AAOg9AADmvgAABD4AALi9AABwvQAAgLsAAJI-AAC-vgAAXD4AAKC8AADovQAAoDwAAMq-AACYvQAAmL0AAJY-AAC6PgAAVD4AAHA9AAB_PwAAiL0AAAy-AACmvgAAmr4AACw-AABAPAAAkr4gADgTQAlIfFABKo8CEAEagAIAAIq-AAAQPQAAJL4AAGm_AAC-vgAArr4AAK4-AABAPAAAUD0AANi9AACoPQAAbL4AAAy-AABcvgAAiD0AAJi9AACivgAACT8AAFw-AADCPgAAqD0AAOi9AABMvgAA2L0AALi9AACqvgAAcD0AAAQ-AACoPQAAuL0AADA9AACIPQAAUL0AAAS-AAD4PQAApr4AAKY-AABUPgAAtr4AAMI-AAD4PQAAbL4AACy-AAAkPgAAED0AABC9AAB_vwAADL4AABC9AACAuwAAcD0AAEC8AABAvAAADL4AAJI-AAAEPgAA6L0AAJI-AABEPgAAyL0AAHw-AAAsPgAANL4AAFC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=DJtNtgqM30w","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["599257945966469398"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3691405203"},"2336812052699556439":{"videoId":"2336812052699556439","docid":"34-0-7-Z7EDB6C3CB2D7F56F","description":"Kalkülüs 2 - İntegral Uygulamaları - Hacim Hesaplama - Disk Metodu disk metodu,integralde hacim,hacim hesaplama,kalkülüs 2,disk metodu ile hacim hesaplama,kalkülüs 2 disk metodu,kalkülüs 2 hacim...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3985597/6d266e653523c67d86b3a8795da5c61a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RRUfiAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","summary":{"isFull":true,"fullTextUrl":"/video/result?ask_summarization=1&numdoc=1&noreask=1&nomisspell=1&parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=videoid:2336812052699556439","teaser":[{"list":{"type":"unordered","items":["Bu video, bir eğitmen tarafından sunulan matematik dersidir. Eğitmen, disk metodu konusunu detaylı bir şekilde anlatmaktadır.","Video, disk metodunun ne olduğunu açıklayarak başlıyor ve döner cisimlerin hacimlerini hesaplama yöntemini formülize ediyor. Ardından eğitmen, disk metodunun temel formülünü (V = π∫f²(x) dx) açıklayıp, koni, üçgensel bölge ve y ekseni etrafında döndürülen alan gibi çeşitli örnekler üzerinden konuyu pekiştiriyor. Her örnek için grafik çizimi yaparak, döndürülen bölgenin nasıl bir cisim oluşturduğunu gösteriyor ve integral hesaplamaları yaparak hacim değerlerini buluyor."]},"endTime":696,"title":"Disk Metodu Eğitim Videosu","beginTime":0}],"fullResult":[{"index":0,"title":"Disk Metodu Nedir?","list":{"type":"unordered","items":["Disk metodu, döner cisimlerin hacimlerini hesaplamak için kullanılan yöntemlerden biridir.","Döner cisim, bir fonksiyonun oluşturduğu R bölgesinin bir eksen etrafında (örneğin x ekseni) 360 derece döndürülmesiyle elde edilen üç boyutlu cisimdir.","Disk metodu, döner cismin hacmini hesaplamak için π·f(x)²·dx integralinin a'dan b'ye entegre edilmesiyle bulur."]},"beginTime":1,"endTime":94,"href":"/video/preview/2336812052699556439?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=1&ask_summarization=1"},{"index":1,"title":"Koni Hacmi Örneği","list":{"type":"unordered","items":["Koni, orijinden geçen bir doğru (y=x/3) ile x ekseni etrafında 360 derece döndürülmesiyle elde edilir.","Koninin hacmi, π·(x/3)²·dx integralinin 0'dan 9'a kadar hesaplanmasıyla 27π birim küp olarak bulunur."]},"beginTime":94,"endTime":246,"href":"/video/preview/2336812052699556439?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=94&ask_summarization=1"},{"index":2,"title":"Kök x Eğrisi Örneği","list":{"type":"unordered","items":["1'den 4'e kadar y=√x eğrisinin altında kalan alan, x ekseni etrafında 360 derece döndürüldüğünde 15π/2 birim küp hacimdeki bir cisim oluşturur.","Bu cisim, 1'den 4'e kadar π·(√x)²·dx integralinin hesaplanmasıyla bulunur."]},"beginTime":246,"endTime":416,"href":"/video/preview/2336812052699556439?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=246&ask_summarization=1"},{"index":3,"title":"İki Koni Örneği","list":{"type":"unordered","items":["Bir üçgensel bölge, x ekseni etrafında 360 derece döndürüldüğünde topaç gibi bir cisim oluşturur.","Bu cisim, 0'dan 1'e kadar π·x²·dx ve 1'den 3'e kadar π·(3-x)/2²·dx integrallerinin toplamı olarak hesaplanır."]},"beginTime":416,"endTime":564,"href":"/video/preview/2336812052699556439?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=416&ask_summarization=1"},{"index":4,"title":"Y Ekseni Etrafında Döndürme","list":{"type":"unordered","items":["Y=√x eğrisi ile y ekseni arasında kalan alan, y ekseni etrafında 360 derece döndürüldüğünde farklı bir hacim formülü kullanılır.","Bu durumda, hacim formülü π·(y²)·dy şeklinde yazılır ve 0'dan 2'ye kadar hesaplanır.","Disk metodunun temel özelliği, çevrilen bölgenin çevrilen eksene bitişik olmasıdır."]},"beginTime":564,"endTime":687,"href":"/video/preview/2336812052699556439?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=564&ask_summarization=1"}],"linkTemplate":"/video/preview/2336812052699556439?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Kalkülüs 2 Disk Metodu ile Hacim Hesaplama Volume Disk Method","related_orig_text":"The Maximum Volume table","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"The Maximum Volume table\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=TOmSC93-NVE\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMTIxOTQwODE3Mjc3MDczNjc0NgoSMTk0ODUxNzUwMTcyNjMyNzA5ChM3ODY0NDA0Mzk1Nzk3NDU2NzcxChI1NTg0MDc4NzUxMzUzNTA5MzUKETYyNTAzNTE2ODgyNTg1NDg2ChMyMTcyNDA3MDUwNjg1NDgwODM1ChQxMjQwMTUxODUxODU4NDEyMzA4MQoUMTM1NDU0Mjk1NTI0MzM1NjAxMjQKEzQ5NjUyMzMwNzM3MjY3NDA1NTIKFDE3NDIxNjIwNzkwMDA3MTIxNzI5ChI2OTc0MDU1NDM2MjMwNzMwNjgKFDEwNzczMzkxNzI2MTY4Nzg3MTg0ChQxNDcwNjU2MDg4NzAwNzQ4MjQ4OQoTNTI0MjIzNjM0MDQ5OTE5NDk0MAoUMTgzMTE3MTA1NDk3OTg0ODk1MDYKEzUyOTkzNjc3OTA3Mjc1NzM1OTcKEjU5OTI1Nzk0NTk2NjQ2OTM5OAoTMjMzNjgxMjA1MjY5OTU1NjQzOQoTMjg2MzQyMjQ1NjM5MDQ4ODQ0NQoUMTA2OTU5Mjk4OTMxOTcyNjkzODMaFQoTMjMzNjgxMjA1MjY5OTU1NjQzOVoTMjMzNjgxMjA1MjY5OTU1NjQzOWqTFxIBMBgAIkUaMQAKKmhobmRtZHZsb252aGF3Y2RoaFVDelRURjNGZDBhdVdIVUpaYWhweS1rZxICABIqEMIPDxoPPxO4BYIEJAGABCsqiwEQARp4ge4F_AUB_wD59P8CBAX-AR72-fn0AwIA7AL7BAAAAADyAAj8-wAAAPII_fb5AAAAAPvxDfj-AAAK8gH6AwAAABMJ9_32AAAABwoCCv4BAAD8DPb3A_8AABMIA_P_AAAABw3_APn_AAEBCPj5AQAAAAb1APUAAAAAIAAtaizPOzgTQAlITlACKoQCEAAa8AF__x4AxvrI_9YE9gC3MQsAoA4f__w7zADl9QEAzBzqARHszADA-O7-QhkKAKsv9_8pD-D_7u8GADrDJv825fYA2QcpASTw3QA1-xwBGxbq_9MM9__vAQ8D8tWpAAkNyv4l3SP_CO7qAP7hwwBCDjMA8-8HAv_3Ef3e1xb8yS4M_u0Xzv3xGPoI7dj_-f4TIwMC1AkJOvQG-v3U9fr95wwHJQL9-yEf3f3z4O390RsEBMzrDvklzQr-IigYCtzv5wHS8DQGvMEX_PXRE_Ho-CH8ziP69e0_Agcd8hAF5dECCwz47wT8EQYLGQPe9_Tj7-UgAC04HAI7OBNACUhhUAIqzwcQABrAB7-6ur6AC9c8kf1ivKNTPL30yBu8600xvCrgHr4D7lk9c1WPvIBgLj5vNQE9n07DvKFHDL5S3Iy8sCwCvfjfKj6mwBe8uUgLvXoXL74IPDA9KZ_UvLeyJL4pFcM8RNBivI8yNzrvnDy9-HG0PDBHzzw4uo-98icqPOTDxzzD8iC6g5rrvNxqGTr1EVi9E3xYva1_4Tyzxb-8xE8tvJituz3ZGyE82bzgPG7rPT2AwJy7RKqDvBCrZLxD-ae8Nc3guoRZEj2451k9YiAZPHBEEr0EG3y8nUgQPTfd0r1rpIC8k2XSO37-Cz7NsZw9xg6PvGL0jD2eftC9vnZdu3f1Cr6gny49XPlRvLlmtz1zE7A9vxuBPBU5FL5PlW88qxmjvGZlHjwJAp67VhaBuwGZtz3Woiq8VyGKPNCAlT1DkIM8wX2Ru-DsAL3gWIY8nTnaPCqEHz1pj_Y7cciGvCpxfT2nvj281X5GvJIdwLz3mKO8FelZPDPJkz2y53w8NBH0O9kuBrzMofs82jPwOgUjpT3WAju-SeWaOs7yBr2QOIq9nMtDvOfMUT24oIg9WX0evFs-lz34pMO9qNQ6u2qgXr3ib0C9Bw8uPLIRyLy9Ski97faTuupaG75oef49KzgxOL9rp7s6w7k81jV_vHiJID08HPg8m8iKO2p6mjzkCU69gsT6O7wpQDzSwzA9EJp6u6NtgT2S45M9w4kcuLbwsT328Ss9QqgcO_Yr-Dn070Q8KyyfOgcuBzyhwgy9xMmBu6Gd0z1RgZi9l51ROfA74bwsL9Q8Ee4lO9hbD727mfE9CUSKuazxiLycd6K9boVROVQb_L1iu_u9E9PyObYdJrt4FF29tdcwukWNOD3BbAc9CtIeOT5Cnb3oqlS9lodOuZcNobxI9cI89AiauPFFkD1SrU88nrK_OJdMH71tGts95pLnuD39lDscHQG9L6WiuA_Rqrtvngo-oKIZudRWNr3NKgK91X4ruMusFD2TxT0-rY5DuZjyRr0DGlY95OmFOFMlpTsCctM7bSRWuJHEIb2LDKy9yCZ8OCM28Ts7_zY911yWuMrhA74Q1x48l_1ON8VCKL0_YDS9atiVNhxe8D19BP489OeQuP0ZWT2n28g8O5DmN4JVRT50yDc9ydyEuc3Her3TFey95pv4uHqXAb2rA2W9tWLmt9AlAb3QRLs75TDQt72vBT2lSQm-rZ6FuIqWVz0QWPk9jRdAODmhC73REIQ95dPVuKclBr7PGYu79I40NuXBLD0UpY68bBkKtyAAOBNACUhtUAEqcxAAGmAj_QAxHxHh2_7x0RkHJACKyu_O8MwA_-TP_9BBwB0CL9jE1icADNbl6JwAAABQ5goAFAAIf9Ia9Uf2OjS_sMYFGm08HOmTBBX27OdfE-_w9yIeLB4A4-6n82YCxjggSzEgAC1VOA87OBNACUhvUAIqrwYQDBqgBgAAyMEAAMhBAABwQQAAoEEAAEDAAADgQAAApkIAAIpCAACwwQAAoMEAAMhBAABAQgAAeMIAABjCAADEQgAAuEEAAPDBAADwwQAAoMAAAMDAAACgQQAAgD8AABTCAAAQQgAAJEIAAABCAABEwgAA4EEAAABBAACIQQAAcEEAAKBBAADIwgAAgMEAAILCAACYQQAA4EAAABhCAABwwgAAXEIAAKDAAADAQQAAMEEAAFBCAAAwQQAAKMIAALLCAADQwQAA_kIAACDBAAAMQgAAHMIAAEBAAAB0QgAAmMEAAJDBAACWwgAAhkIAABDBAABwQQAAokIAAMDBAABAQAAABMIAACDBAACMQgAAgD8AAAzCAAA0QgAAcEEAALRCAABQQgAAZMIAAFRCAACgQQAAeMIAANBBAABkwgAAwMAAAABCAAC4wQAAwMAAAFzCAACAQgAAGMIAAEBAAACgQQAAREIAAARCAADAQQAAIMEAAJRCAACIwQAAgMIAAMDAAAA8wgAAfMIAAPjBAAAQQQAAUEEAAAzCAACSQgAAuEEAAPjBAACMwgAAJMIAAKDAAAAQwQAAyEEAAIBCAAC2QgAAAAAAADDBAADAwQAAiEEAAAzCAAB0wgAAdMIAAABCAAAgwgAADMIAAIBBAAB8wgAAUMEAAGRCAACUQgAAoMAAABjCAABQwgAAJMIAAARCAABgQQAAIMEAAHBCAACYQQAAAEEAAIBBAAAsQgAA8MEAAGDCAABAwQAAAEIAALhBAAAEwgAATEIAAMBAAAAwQQAA2MEAAGBBAABMQgAARMIAAAjCAAAAwAAAwMAAAMBBAABQQQAAMMEAALbCAAAUwgAA6EEAABDBAACoQQAA4MEAAGDBAAAAwgAAAMAAABhCAACgwAAADEIAAJBCAAAQwgAANEIAAKjBAADgwQAAAMIAAKDAAACAwAAAMMEAAIxCAAAQQgAAgD8AAFDBAACgwQAAWEIAADBCAAAgQQAA4MEAAFxCAADwQQAAwEEAACDCAABEwgAAsMEAACDBAAA8QgAAMEEAAHDBAAD4wQAA6MEAAOBBIAA4E0AJSHVQASqPAhAAGoACAAAQvQAALD4AAKI-AAAEvgAAJD4AAL4-AAC4PQAAVb8AAMi9AADYPQAABD4AANi9AABkPgAAND4AAAQ-AAAEvgAAqD0AAFA9AADIPQAAFz8AAH8_AACWvgAAQDwAAOg9AAAUvgAAML0AAIg9AAD4vQAAoDwAAI4-AAAUPgAAkr4AAEC8AABkPgAAHD4AAEC8AAAcvgAAoDwAACy-AABwvQAAqD0AAOA8AABAPAAAgLsAAKK-AABwvQAAoj4AAFS-AACCvgAAor4AACy-AACAuwAAzj4AAHA9AAA0vgAA2D0AAA8_AAAQvQAA6L0AAKY-AADYPQAAmj4AAOg9AAAcPiAAOBNACUh8UAEqjwIQARqAAgAAQDwAACQ-AACYvQAASb8AAJq-AAC4PQAAjj4AAKA8AACovQAAfD4AAMi9AAB0vgAAMD0AAPi9AAD4PQAA4LwAADS-AAAPPwAABL4AAHw-AAD4PQAAgLsAAKi9AABAvAAAFL4AABC9AACgPAAADD4AALa-AABAPAAA2D0AABA9AADgvAAARL4AAAy-AAC4vQAAXD4AAJo-AAC-vgAA6L0AADC9AAAUPgAA6D0AAFA9AABMPgAA6L0AAH-_AAAMPgAAFD4AABC9AADoPQAAoDwAAPg9AAD4PQAATD4AAPg9AACAuwAAXD4AAIg9AACAOwAAjj4AAJY-AADYPQAAyL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=TOmSC93-NVE","parent-reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2336812052699556439"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3406456266"}},"dups":{"11219408172770736746":{"videoId":"11219408172770736746","title":"How to find the height and \u0007[maximum\u0007] \u0007[volume\u0007] of an open box using Calculus","cleanTitle":"How to find the height and maximum volume of an open box using Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SxMkB3NhC10","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SxMkB3NhC10?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSkxqZWdGWG5ubzNwMGRVNU1aWFRqdw==","name":"ProfessorMcComb","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ProfessorMcComb","origUrl":"http://www.youtube.com/@ProfessorMcComb","a11yText":"ProfessorMcComb. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":284,"text":"4:44","a11yText":"Süre 4 dakika 44 saniye","shortText":"4 dk."},"views":{"text":"2,3bin","a11yText":"2,3 bin izleme"},"date":"18 nis 2013","modifyTime":1366243200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SxMkB3NhC10?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SxMkB3NhC10","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":284},"parentClipId":"11219408172770736746","href":"/preview/11219408172770736746?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/11219408172770736746?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"194851750172632709":{"videoId":"194851750172632709","title":"How to find \u0007[the\u0007] \u0007[maximum\u0007] \u0007[volume\u0007] of a box (Example) : ExamSolutions","cleanTitle":"How to find the maximum volume of a box (Example) : ExamSolutions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nUXoQoTgDmE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nUXoQoTgDmE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdHV2cFBOVFkxbEtBb2FWekJyemNMZw==","name":"ExamSolutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ExamSolutions","origUrl":"http://www.youtube.com/@ExamSolutions_Maths","a11yText":"ExamSolutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":891,"text":"14:51","a11yText":"Süre 14 dakika 51 saniye","shortText":"14 dk."},"views":{"text":"38,8bin","a11yText":"38,8 bin izleme"},"date":"29 eki 2010","modifyTime":1288310400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nUXoQoTgDmE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nUXoQoTgDmE","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":891},"parentClipId":"194851750172632709","href":"/preview/194851750172632709?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/194851750172632709?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7864404395797456771":{"videoId":"7864404395797456771","title":"Calculus Help: Finding \u0007[the\u0007] \u0007[maximum\u0007] \u0007[volume\u0007] from open-top box by first derivative.","cleanTitle":"Calculus Help: Finding the maximum volume from open-top box by first derivative.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=6kE7EgOliNo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/6kE7EgOliNo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmhxRUxTaERLS1B2MEpSQ0RRZ0ZvUQ==","name":"Calculus Physics Chem Accounting Tam Mai Thanh Cao","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Calculus+Physics+Chem+Accounting+Tam+Mai+Thanh+Cao","origUrl":"http://www.youtube.com/@calculusphysicschemaccountingt","a11yText":"Calculus Physics Chem Accounting Tam Mai Thanh Cao. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":563,"text":"9:23","a11yText":"Süre 9 dakika 23 saniye","shortText":"9 dk."},"date":"9 kas 2020","modifyTime":1604880000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/6kE7EgOliNo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=6kE7EgOliNo","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":563},"parentClipId":"7864404395797456771","href":"/preview/7864404395797456771?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/7864404395797456771?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"558407875135350935":{"videoId":"558407875135350935","title":"How to use calculus to find \u0007[the\u0007] \u0007[maximum\u0007] \u0007[volume\u0007] of a shape","cleanTitle":"How to use calculus to find the maximum volume of a shape","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eMtSxH5LYoI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eMtSxH5LYoI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM0ZudnpvMFhZVXZpQk10VVluaGNEdw==","name":"Maths in an empty classroom","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Maths+in+an+empty+classroom","origUrl":"http://www.youtube.com/@mathsinanemptyclassroom4125","a11yText":"Maths in an empty classroom. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":631,"text":"10:31","a11yText":"Süre 10 dakika 31 saniye","shortText":"10 dk."},"date":"27 eki 2020","modifyTime":1603830581000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eMtSxH5LYoI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eMtSxH5LYoI","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":631},"parentClipId":"558407875135350935","href":"/preview/558407875135350935?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/558407875135350935?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"62503516882585486":{"videoId":"62503516882585486","title":"Finding \u0007[the\u0007] \u0007[Maximum\u0007] \u0007[Volume\u0007] with a Given Surface Area of a Rectangular Prism","cleanTitle":"Finding the Maximum Volume with a Given Surface Area of a Rectangular Prism","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OCwGfKeWb5Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OCwGfKeWb5Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVjFQVmJFT2VrOVJ2aGNLNnlkVng1dw==","name":"MrRicciardi73","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MrRicciardi73","origUrl":"http://www.youtube.com/@MrRicciardi73","a11yText":"MrRicciardi73. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":555,"text":"9:15","a11yText":"Süre 9 dakika 15 saniye","shortText":"9 dk."},"views":{"text":"29,6bin","a11yText":"29,6 bin izleme"},"date":"8 kas 2015","modifyTime":1446940800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OCwGfKeWb5Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OCwGfKeWb5Q","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":555},"parentClipId":"62503516882585486","href":"/preview/62503516882585486?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/62503516882585486?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2172407050685480835":{"videoId":"2172407050685480835","title":"Calculus - 4.4 Notes Example 3: \u0007[Maximum\u0007] \u0007[Volume\u0007] of a Box","cleanTitle":"Calculus - 4.4 Notes Example 3: Maximum Volume of a Box","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rqcdchR55gA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rqcdchR55gA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYXp1S29ZQlYwMXRnU0hTTHpCNlhxdw==","name":"Scott Haselwood","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Scott+Haselwood","origUrl":"http://www.youtube.com/@ScottHaselwood","a11yText":"Scott Haselwood. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":597,"text":"9:57","a11yText":"Süre 9 dakika 57 saniye","shortText":"9 dk."},"date":"9 ara 2013","modifyTime":1386547200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rqcdchR55gA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rqcdchR55gA","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":597},"parentClipId":"2172407050685480835","href":"/preview/2172407050685480835?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/2172407050685480835?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12401518518584123081":{"videoId":"12401518518584123081","title":"Find \u0007[the\u0007] \u0007[maximum\u0007] \u0007[volume\u0007] for a box with a square base and an open top, classic optimizati...","cleanTitle":"Find the maximum volume for a box with a square base and an open top, classic optimization problem.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KJlirnMT-k4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KJlirnMT-k4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeU9TcklFOXp6R3gtNDQ4YTlGa04wZw==","name":"Wyzant","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Wyzant","origUrl":"http://www.youtube.com/@WyzAnt","a11yText":"Wyzant. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":374,"text":"6:14","a11yText":"Süre 6 dakika 14 saniye","shortText":"6 dk."},"date":"5 tem 2023","modifyTime":1688584557000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KJlirnMT-k4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KJlirnMT-k4","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":374},"parentClipId":"12401518518584123081","href":"/preview/12401518518584123081?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/12401518518584123081?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13545429552433560124":{"videoId":"13545429552433560124","title":"AP Calculus - Optimization - \u0007[Maximum\u0007] \u0007[Volume\u0007] of a Box","cleanTitle":"AP Calculus - Optimization - Maximum Volume of a Box","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hEcPp03XX30","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hEcPp03XX30?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWXA3Ny1FbjVHSENCTHlseEgxbHFLUQ==","name":"adamsmathtube","isVerified":false,"subscribersCount":0,"url":"/video/search?text=adamsmathtube","origUrl":"http://www.youtube.com/@adamsmathtube","a11yText":"adamsmathtube. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":497,"text":"8:17","a11yText":"Süre 8 dakika 17 saniye","shortText":"8 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"26 şub 2014","modifyTime":1393372800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hEcPp03XX30?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hEcPp03XX30","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":497},"parentClipId":"13545429552433560124","href":"/preview/13545429552433560124?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/13545429552433560124?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4965233073726740552":{"videoId":"4965233073726740552","title":"Building a Box with \u0007[Maximum\u0007] \u0007[Volume\u0007] - Optimization with Calculus","cleanTitle":"Building a Box with Maximum Volume - Optimization with Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MN-LvXohhig","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MN-LvXohhig?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaWNsMmhtdzJ3RXduVF82a0o1Umt4dw==","name":"Tutor Salad","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Tutor+Salad","origUrl":"http://www.youtube.com/@TutorSalad","a11yText":"Tutor Salad. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":489,"text":"8:09","a11yText":"Süre 8 dakika 9 saniye","shortText":"8 dk."},"date":"31 oca 2020","modifyTime":1580428800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MN-LvXohhig?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MN-LvXohhig","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":489},"parentClipId":"4965233073726740552","href":"/preview/4965233073726740552?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/4965233073726740552?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17421620790007121729":{"videoId":"17421620790007121729","title":"\u0007[Maximum\u0007] \u0007[volume\u0007] for a box","cleanTitle":"Maximum volume for a box","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=GUCPCzuKLYs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/GUCPCzuKLYs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeTdabHBsQ1dtQlNNUXlmZnN0by1TQQ==","name":"Jonas Hall","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Jonas+Hall","origUrl":"http://www.youtube.com/@themadmathematician","a11yText":"Jonas Hall. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":55,"text":"00:55","a11yText":"Süre 55 saniye","shortText":""},"views":{"text":"1,7bin","a11yText":"1,7 bin izleme"},"date":"9 şub 2013","modifyTime":1360368000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/GUCPCzuKLYs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=GUCPCzuKLYs","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":55},"parentClipId":"17421620790007121729","href":"/preview/17421620790007121729?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/17421620790007121729?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"697405543623073068":{"videoId":"697405543623073068","title":"Finding Out \u0007[Maximum\u0007] \u0007[Volume\u0007] | #maths | #calculus","cleanTitle":"Finding Out Maximum Volume | #maths | #calculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VheMc1lEXH0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VheMc1lEXH0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMWs5aEM3WkJ6QzRSbTFHenluejFydw==","name":"Towsif Hassan","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Towsif+Hassan","origUrl":"http://www.youtube.com/@LionelMaxwellCrKohli01237","a11yText":"Towsif Hassan. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":231,"text":"3:51","a11yText":"Süre 3 dakika 51 saniye","shortText":"3 dk."},"date":"24 oca 2025","modifyTime":1737676800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VheMc1lEXH0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VheMc1lEXH0","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":231},"parentClipId":"697405543623073068","href":"/preview/697405543623073068?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/697405543623073068?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10773391726168787184":{"videoId":"10773391726168787184","title":"Calculus Derivatives \u0007[Maximum\u0007] \u0007[Volume\u0007] of Cylinder in Cone","cleanTitle":"Calculus Derivatives Maximum Volume of Cylinder in Cone","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OBWf2SiAw-Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OBWf2SiAw-Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNFlvZXkxVXlsUkNBeHpQR29mUGlXdw==","name":"Anil Kumar","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Anil+Kumar","origUrl":"http://www.youtube.com/@MathematicsTutor","a11yText":"Anil Kumar. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":526,"text":"8:46","a11yText":"Süre 8 dakika 46 saniye","shortText":"8 dk."},"views":{"text":"3,5bin","a11yText":"3,5 bin izleme"},"date":"12 mar 2015","modifyTime":1426118400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OBWf2SiAw-Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OBWf2SiAw-Q","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":526},"parentClipId":"10773391726168787184","href":"/preview/10773391726168787184?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/10773391726168787184?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14706560887007482489":{"videoId":"14706560887007482489","title":"101 \u0007[Maximum\u0007] \u0007[Volume\u0007] of Cylinder with Surface Area 384 pi Derivatives Calculus","cleanTitle":"101 Maximum Volume of Cylinder with Surface Area 384 pi Derivatives Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Y4gNy8c3_5c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Y4gNy8c3_5c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNFlvZXkxVXlsUkNBeHpQR29mUGlXdw==","name":"Anil Kumar","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Anil+Kumar","origUrl":"http://www.youtube.com/@MathematicsTutor","a11yText":"Anil Kumar. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":601,"text":"10:01","a11yText":"Süre 10 dakika 1 saniye","shortText":"10 dk."},"views":{"text":"44,4bin","a11yText":"44,4 bin izleme"},"date":"12 nis 2015","modifyTime":1428796800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Y4gNy8c3_5c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Y4gNy8c3_5c","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":601},"parentClipId":"14706560887007482489","href":"/preview/14706560887007482489?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/14706560887007482489?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5242236340499194940":{"videoId":"5242236340499194940","title":"Calculus \u0007[Maximum\u0007] \u0007[Volume\u0007] in Conical Cup constructed from a circular piece of paper IB Test","cleanTitle":"Calculus Maximum Volume in Conical Cup constructed from a circular piece of paper IB Test","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dJdCahJEKqU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dJdCahJEKqU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNFlvZXkxVXlsUkNBeHpQR29mUGlXdw==","name":"Anil Kumar","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Anil+Kumar","origUrl":"http://www.youtube.com/@MathematicsTutor","a11yText":"Anil Kumar. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":486,"text":"8:06","a11yText":"Süre 8 dakika 6 saniye","shortText":"8 dk."},"views":{"text":"5,5bin","a11yText":"5,5 bin izleme"},"date":"12 mar 2015","modifyTime":1426118400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dJdCahJEKqU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dJdCahJEKqU","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":486},"parentClipId":"5242236340499194940","href":"/preview/5242236340499194940?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/5242236340499194940?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18311710549798489506":{"videoId":"18311710549798489506","title":"The typical \u0007[max\u0007] \u0007[volume\u0007] of an open box cutting equal squares from a rectangular sheet 12 by 1...","cleanTitle":"The typical max volume of an open box cutting equal squares from a rectangular sheet 12 by 11.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=EalnUIfPSPQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/EalnUIfPSPQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeU9TcklFOXp6R3gtNDQ4YTlGa04wZw==","name":"Wyzant","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Wyzant","origUrl":"http://www.youtube.com/@WyzAnt","a11yText":"Wyzant. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":198,"text":"3:18","a11yText":"Süre 3 dakika 18 saniye","shortText":"3 dk."},"date":"19 ağu 2023","modifyTime":1692432588000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/EalnUIfPSPQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=EalnUIfPSPQ","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":198},"parentClipId":"18311710549798489506","href":"/preview/18311710549798489506?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/18311710549798489506?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5299367790727573597":{"videoId":"5299367790727573597","title":"How to calculate earthwork \u0007[volume\u0007] in civil 3d and how to create \u0007[volume\u0007] \u0007[table\u0007]","cleanTitle":"How to calculate earthwork volume in civil 3d and how to create volume table","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Yk7CcYRGyew","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Yk7CcYRGyew?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaHNkMDNVSFlDRUxMM3BhVXJ1SUd6UQ==","name":"Shokit Asghar","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Shokit+Asghar","origUrl":"http://www.youtube.com/@ShokitAsghar","a11yText":"Shokit Asghar. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1083,"text":"18:03","a11yText":"Süre 18 dakika 3 saniye","shortText":"18 dk."},"views":{"text":"42,4bin","a11yText":"42,4 bin izleme"},"date":"17 mayıs 2020","modifyTime":1589732690000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Yk7CcYRGyew?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Yk7CcYRGyew","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":1083},"parentClipId":"5299367790727573597","href":"/preview/5299367790727573597?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/5299367790727573597?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"599257945966469398":{"videoId":"599257945966469398","title":"Optimum Size of Cylinder \u0007[Maximum\u0007] \u0007[Volume\u0007] Minimum Surface Area","cleanTitle":"Optimum Size of Cylinder Maximum Volume Minimum Surface Area","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DJtNtgqM30w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DJtNtgqM30w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNFlvZXkxVXlsUkNBeHpQR29mUGlXdw==","name":"Anil Kumar","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Anil+Kumar","origUrl":"http://www.youtube.com/@MathematicsTutor","a11yText":"Anil Kumar. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":757,"text":"12:37","a11yText":"Süre 12 dakika 37 saniye","shortText":"12 dk."},"views":{"text":"2,1bin","a11yText":"2,1 bin izleme"},"date":"16 haz 2019","modifyTime":1560643200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DJtNtgqM30w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DJtNtgqM30w","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":757},"parentClipId":"599257945966469398","href":"/preview/599257945966469398?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/599257945966469398?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2336812052699556439":{"videoId":"2336812052699556439","title":"Kalkülüs 2 Disk Metodu ile Hacim Hesaplama \u0007[Volume\u0007] Disk Method","cleanTitle":"Kalkülüs 2 Disk Metodu ile Hacim Hesaplama Volume Disk Method","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=TOmSC93-NVE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/TOmSC93-NVE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDelRURjNGZDBhdVdIVUpaYWhweS1rZw==","name":"Gokhan Kelebek","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Gokhan+Kelebek","origUrl":"http://www.youtube.com/@gokhankelebek","a11yText":"Gokhan Kelebek. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":696,"text":"11:36","a11yText":"Süre 11 dakika 36 saniye","shortText":"11 dk."},"views":{"text":"5,7bin","a11yText":"5,7 bin izleme"},"date":"27 şub 2019","modifyTime":1551225600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/TOmSC93-NVE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=TOmSC93-NVE","reqid":"1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL","duration":696},"parentClipId":"2336812052699556439","href":"/preview/2336812052699556439?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","rawHref":"/video/preview/2336812052699556439?parent-reqid=1769578980820212-10157580965436771979-balancer-l7leveler-kubr-yp-vla-171-BAL&text=The+Maximum+Volume+table","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"1575809654367719797171","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"The Maximum Volume table","queryUriEscaped":"The%20Maximum%20Volume%20table","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}