{"pages":{"search":{"query":"Theory of Constraints","originalQuery":"Theory of Constraints","serpid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","parentReqid":"","serpItems":[{"id":"1927264850794688119-0-0","type":"videoSnippet","props":{"videoId":"1927264850794688119"},"curPage":0},{"id":"12557080138247898919-0-1","type":"videoSnippet","props":{"videoId":"12557080138247898919"},"curPage":0},{"id":"12384038065803385136-0-2","type":"videoSnippet","props":{"videoId":"12384038065803385136"},"curPage":0},{"id":"3027762263201497404-0-3","type":"videoSnippet","props":{"videoId":"3027762263201497404"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFRoZW9yeSBvZiBDb25zdHJhaW50cwo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","ui":"desktop","yuid":"2789789471765353947"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"16452497712637735434-0-5","type":"videoSnippet","props":{"videoId":"16452497712637735434"},"curPage":0},{"id":"16442168340679803605-0-6","type":"videoSnippet","props":{"videoId":"16442168340679803605"},"curPage":0},{"id":"11755602784178284077-0-7","type":"videoSnippet","props":{"videoId":"11755602784178284077"},"curPage":0},{"id":"4859728344586010931-0-8","type":"videoSnippet","props":{"videoId":"4859728344586010931"},"curPage":0},{"id":"5461701676054485960-0-9","type":"videoSnippet","props":{"videoId":"5461701676054485960"},"curPage":0},{"id":"1575842049800826348-0-10","type":"videoSnippet","props":{"videoId":"1575842049800826348"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFRoZW9yeSBvZiBDb25zdHJhaW50cwo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","ui":"desktop","yuid":"2789789471765353947"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"13691971084643527631-0-12","type":"videoSnippet","props":{"videoId":"13691971084643527631"},"curPage":0},{"id":"17961204817337610477-0-13","type":"videoSnippet","props":{"videoId":"17961204817337610477"},"curPage":0},{"id":"3144238043201885304-0-14","type":"videoSnippet","props":{"videoId":"3144238043201885304"},"curPage":0},{"id":"12435632200560234244-0-15","type":"videoSnippet","props":{"videoId":"12435632200560234244"},"curPage":0},{"id":"11266653543367340230-0-16","type":"videoSnippet","props":{"videoId":"11266653543367340230"},"curPage":0},{"id":"17894065057241725856-0-17","type":"videoSnippet","props":{"videoId":"17894065057241725856"},"curPage":0},{"id":"9577946291816558100-0-18","type":"videoSnippet","props":{"videoId":"9577946291816558100"},"curPage":0},{"id":"12318776969907359429-0-19","type":"videoSnippet","props":{"videoId":"12318776969907359429"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFRoZW9yeSBvZiBDb25zdHJhaW50cwo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","ui":"desktop","yuid":"2789789471765353947"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DTheory%2Bof%2BConstraints"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"2964140489825925303745","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1397828,0,88;1414492,0,56;1433081,0,98;1410881,0,12;1402154,0,59;1436972,0,89;1437735,0,20;1429981,0,35;1312967,0,49;1434898,0,1;1421179,0,44;1432538,0,48;1418739,0,57;1425921,0,43;1432899,0,69;1430622,0,11;1435996,0,65;1419899,0,10;658770,0,86;364898,0,86;1426784,0,87;1440428,0,44;132360,0,73;1441296,0,73;1404022,0,63;1432055,0,52;1438903,0,9;1422266,0,9;1433915,0,20;1435632,0,53;1434558,0,95;46452,0,72;46451,0,24;151171,0,25;1281084,0,54;287509,0,53;787997,0,0"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DTheory%2Bof%2BConstraints","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Theory+of+Constraints","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Theory+of+Constraints","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Theory of Constraints: 2 bin video Yandex'te bulundu","description":"\"Theory of Constraints\" sorgusu için arama sonuçları Yandex'te","shareTitle":"Theory of Constraints — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"ydd65e41f524dd42a834884ecd9ecebc0","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1397828,1414492,1433081,1410881,1402154,1436972,1437735,1429981,1312967,1434898,1421179,1432538,1418739,1425921,1432899,1430622,1435996,1419899,658770,364898,1426784,1440428,132360,1441296,1404022,1432055,1438903,1422266,1433915,1435632,1434558,46452,46451,151171,1281084,287509,787997","queryText":"Theory of Constraints","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"2789789471765353947","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1441146,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765354065","tz":"America/Louisville","to_iso":"2025-12-10T03:07:45-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1397828,1414492,1433081,1410881,1402154,1436972,1437735,1429981,1312967,1434898,1421179,1432538,1418739,1425921,1432899,1430622,1435996,1419899,658770,364898,1426784,1440428,132360,1441296,1404022,1432055,1438903,1422266,1433915,1435632,1434558,46452,46451,151171,1281084,287509,787997","queryText":"Theory of Constraints","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"2789789471765353947","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"2964140489825925303745","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":150,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"2789789471765353947","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1729.0__491d2077c35fc53c28577367d9c4833c662b0670","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"1927264850794688119":{"videoId":"1927264850794688119","docid":"34-4-7-ZF1BEBAF0D245B782","description":"Welcome To The World of 'Theory of Constraints' “Give me lever long enough and a fulcrum on which to place it and I shall move the world” stated Archimedes. But this vital principle is not....","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4772376/b5f5f469044f64c8ef379b1f215ab92c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hr/tJ9EAAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAqzbZUL9Rh8","linkTemplate":"/video/preview/1927264850794688119?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Theory of Constraints : An introduction","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AqzbZUL9Rh8\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFQoTMTkyNzI2NDg1MDc5NDY4ODExOVoTMTkyNzI2NDg1MDc5NDY4ODExOWqSFxIBMBgAIkQaMAAKKWhodXVyaWNha2Nhemx2eWhoVUNXcWRiOXJQZkxHeVozTWRPNVF4WnBREgIAESoQwg8PGg8_E80BggQkAYAEKyqLARABGniB9Aj7B_0DAPQCCwACBP4BAgwA__j__wD2B_z-_wL_APf5APcBAAAACgACAf4AAAD8BAjy-_4BABQJ_f8EAAAAFfn8AP8AAAAOC_wD_gEAAPf5BQ4E_wAACAUEAQAAAADwBAT8_v8AAAAR_f8BAAAACP4EBgAAAAAgAC0jP9w7OBNACUhOUAIqhAIQABrwAX_uAADZ7Of_4vju__j3tAKcEwv_QQnjAN8KIQCxEs__BgIWANzXEf8R-wf_wRcHAPX38P4kAxMANw4V_2n-GgDwEAwA8NQSABoKAP_43f_-1CsC_iH8Af_r3QAAFQsL_wwQHv8NCt0BOvHVAgIlEwEYNPMBEQ8O_w4jAgPaBxEDGv39AwcHDwcXASMC5PYrBwIN_PsD-f0CCCrpAO_4EQDM79YCB-XeABX-9QLq3R39BRIOBC0P-Qbj1AYE4xciAfT4IgIE7fz18AIO-SPRAP358PQJ_f0HAPP1BAYW4vr6BwT6CNwT_vwgFgUABPAMCSAALRggJDs4E0AJSGFQAirPBxAAGsAH8S3kvjPFNz31Rxy8a3InPbmRLT2SOTs8JcrevTItW70AMa67K6uEPWmIbz0PCV-7-MGBvn_o-LxEaU893SefPhnrdj2UDZA8ubyevakw-DvY_gS9FRxOvqxNyDw1lx87xCRMPrKsqjxxwBg9snWaPaXL0bwt6AG86JmDPCRU-jybKSO9joErvZ8d8L0_8W87BcP5PTGLWr0LiB89LlmlPWNCTLwfCFo8ADqsvcsU8zxuY7282WSIvR4XFT1N9s886q_3PTGyUTrITQM9LpnZvH_4eTwRwuC4c3b8vDO4tzwPDna8NomLPW0Atj2ES0e8PDAAPoxZBb2jhZU7_2eDPOz9sT1b2K68J5J-PXz5iD3gfI88Q1XsvYi-OzxFkLk8aAQLvsBU2DxHFpW8GkyIPcAIWr1MqYk7oxe9OwUz6DsQtcg8jUolPdYjKD0s85Y8cHNPO2d2gj1Ikru89wY6PABCej2uJCA8qhlnO4XqJr0jwAY8BKJxPdwjBb1BKw083B5uPYp3e72QCUI8RYDzPbxhtr17Lx07mhEZPTDy8rztoiu6ZF5iPc761LzHHhA8ahDJO0yTrTxzyLw5w6qwvWXDOr3oJ8G78ydgvD_G3L0pysa7uQAvPdnP4j3Hd7U6ehOoPJvMUzxLXwQ7g23kPcKmmT1LomU5KMyVvYD5ILzLQ647MQKPvADQjD1yIaQ7xZlVvTtv4720bS66Ul8bPVlhhLxteVg5lZ7pPCKhEr1H5DE6xqQ_vOQEt7w8_vm4AvjCvINq47301mg41Qj9PL299TwirI65wV2svOAk1bqZ0-Q4udJhPS7elL1zT904mqONvcA2jL26UZa4pqOHPX_2Qz05JHs3WqFIvIu8UTzOEx85THdyvS_IDrz9jIe69ADxuw08Er2eLaw2j6CCPeiKMrpCviI4Pow6PXbav725YZa3F8GavK4MTzwtk2E5QxLHPE0QtTy1u4M4HYK0vFXs-bxHXSO44gQmPXwltbyHmR24zC95vTlJTjxyZ_C1b2tmvWhNYjxu5oG4mBqsPdfwqb0C6F64r81Gvdq4VD0y7aw4X4u3vYzKvL33Jj24u_jBvel8iL0mQU44Hcc0PRcLyD3xcnU3QYMJvHlAOb3PAAk4Wt82vRZLcT2d_Mm3yzg6OypcCj3rsIM328EIPcVSST11Mam2mpAAucDEabyoAYe4duymPeddjjsFYGa4WQ8EvKYdiD30-T04HjiCvTPznj2c5_K4LWclvJ7iwj2wfCu4XI5XvaIJ1L3fwiG3IAA4E0AJSG1QASpzEAAaYE7-AA3zH8D9BD745ubNAfDrAhI7zwz_2Nf_Bzbh7f4F6tMD7gADvE4NpAAAAOzg7g34APJ64LnWHukpGfOnAA8hfwcuMdfR-iO82ebJHBTWK_ETNQDd6p4aMcm-Q_04DiAALWUQHjs4E0AJSG9QAiqvBhAMGqAGAAAAAAAAwEEAAADAAACAwQAAwMAAABTCAACWQgAACMIAAMjBAACgQAAAKEIAAL7CAAA8wgAAzsIAAABCAADgwAAAgEAAAEDAAAAAQAAAwMAAAIDAAAC4wQAAoEAAAIDAAADQQQAAKMIAAKDBAAA0wgAAjEIAAGBCAADwwQAAoEAAAIrCAAAAwQAAiMIAAEDBAACgwAAAvkIAAADBAAAMQgAANEIAACBBAABsQgAAmEEAAOhBAADAQAAALMIAAEjCAACeQgAA2EEAABDCAADAwAAAAEAAABDBAABAQAAAQEEAAADDAAAQQQAAAMIAAJBBAABIQgAAMMIAAIA_AACkwgAAUMIAALzCAABAwAAAIMEAAADBAADgQQAAOEIAAJhCAADgwAAA-EEAAFjCAAAowgAAgMEAAMDAAACYQQAAkEEAACTCAABAQgAAwMAAAGRCAAAQQQAAuMEAADxCAAAMQgAAVEIAAEDCAABwQQAA8EEAAABBAACewgAA8EEAAFTCAAAEQgAAXEIAAJDBAAAQwQAAbMIAAChCAAD4QQAAvsIAAIjBAACAwQAAEMEAAIhBAACAvwAAAEIAAOhBAABwQQAAwEEAAJTCAACgQQAAmEEAAKDBAACgwgAA2EEAAGBBAAA4wgAAYMIAAIDAAADQwQAAQMEAAFBCAAC4wQAAQMEAADzCAAAgwQAAwMEAABhCAADIwQAAMMEAAMhBAACgQAAAwEAAAIhBAAAQwgAARMIAACzCAADYQQAAaEIAAMBAAAAkQgAAoEEAAFjCAADgwAAAyEEAAMjBAADIQQAAgD8AAJBBAADwwQAAQEEAAAzCAABIQgAAwMIAANjBAABwQQAAAMIAAIDAAACYwgAAqMEAAEzCAACQQQAA2EEAAIhCAABkQgAACEIAAKDBAABgQQAA6MEAALBBAADowQAAgMAAALhBAACQwQAA4EAAAHxCAADYQQAACMIAAPDBAAAAwAAAlEIAAEDBAADywgAAzkIAAIDAAACQwQAAEMIAAILCAACAwAAAEMEAAIC_AAAkQgAABMIAAPjBAADQwQAAqMEgADgTQAlIdVABKo8CEAAagAIAANq-AAAEvgAAgDsAAMg9AAA0vgAAUD0AAFA9AAABvwAA9r4AACQ-AAAMPgAAUL0AABC9AABcPgAAmL0AAIC7AACoPQAAoLwAAHQ-AADiPgAAfz8AAIC7AADYPQAAZL4AABe_AAAMPgAADL4AAHS-AABQvQAAJD4AAGQ-AAAQPQAAsr4AAMi9AACYPQAAMD0AACQ-AACuvgAAJL4AAIC7AADgvAAAoLwAAKg9AAAQPQAAdL4AAJY-AAAQPQAAML0AABC9AAAZvwAAir4AADS-AACiPgAAsj4AAKg9AACoPQAASz8AAEA8AAAEPgAALD4AACy-AAAkvgAAcL0AADC9IAA4E0AJSHxQASqPAhABGoACAACyvgAAqL0AABA9AAAvvwAAfD4AAMg9AADKPgAAzr4AAIC7AAAUPgAAqD0AAIi9AABAvAAAkr4AAFA9AAC4PQAAPD4AADE_AACIPQAApj4AAMg9AACaPgAAMD0AAFA9AADYvQAAUD0AAIg9AAAkPgAALL4AAIC7AACCPgAAND4AACy-AAAUvgAAND4AAIA7AACqPgAAND4AAPK-AAD4vQAAgj4AACw-AABQPQAAED0AAIg9AACoPQAAf78AAFS-AADIPQAAUD0AAJI-AABAPAAADD4AAJi9AACuPgAAuD0AAEA8AACAOwAAgDsAAMi9AABwPQAALD4AAFC9AABQPSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=AqzbZUL9Rh8","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1927264850794688119"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12557080138247898919":{"videoId":"12557080138247898919","docid":"34-8-7-ZBCB826B4ADEC8DD6","description":"Welcome To The World of 'Theory of Constraints'. “Give me lever long enough and a fulcrum on which to place it and I shall move the world” stated Archimedes. Watch this short video and fin...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3933514/f4ecb7f2fe0d7e8397bb6776dde9abd2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/P-EB5wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DxbinMOSsjnw","linkTemplate":"/video/preview/12557080138247898919?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Theory of Constraints: An Introduction | Vector Consulting Group","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xbinMOSsjnw\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFgoUMTI1NTcwODAxMzgyNDc4OTg5MTlaFDEyNTU3MDgwMTM4MjQ3ODk4OTE5aocXEgEwGAAiRBowAAopaGh1dXJpY2FrY2F6bHZ5aGhVQ1dxZGI5clBmTEd5WjNNZE81UXhacFESAgARKhDCDw8aDz8TzQGCBCQBgAQrKosBEAEaeIHwEwAAAQAA9AEEBggF_QEMEf0F9QEBAPMO9vQDAQAA6_gR_P3_AAALAwf4-wAAAPsECfH6_gEAGQED__oAAAAVDAAB_gAAAAwO7wL_AQAA3vYABwP_AQAMBPgGAAAAAP__CfgDAAAA_Q0A-QAAAAAYCgsBAAAAACAALXZQzjs4E0AJSE5QAiqEAhAAGvABf9weAdH86P_29eoAAQjJAZv7Df8_CeMAzwENAKz16QAD_gUA3eEv_gDhDADCJhkB-gbr_ycCKQAnBBEAZu3-AfAPDAAC5gIAFv_7AgjY7QG8KesAIPwB_-_j8wALAAD8AxsV_RT25gA48dYC-ycH_hcy9AERDg3__SQD_80MCgAS9Pj8CgD3CBoLEwDuEzMBDxT5_ADwA_70K-b98ggZBdUK3QYP0-AAFfkHCPXyHQD7AAz2LRbq-tjr9Qfa_iEG9PghAgn59v3v8hHzEM0U9RLc_AkLAg8A8_YEBiPn-vUEEfQJ0BP09hkQ-v4S9A4FIAAt_7kpOzgTQAlIYVACKs8HEAAawAe37Ni-XXepPLHUxLxayK08M9xAPZ5ilbwlyt69Mi1bvQAxrruKwhM9tE1bPbYOEDybHaG-RqGbvMhnqDzdJ58-Get2PZQNkDyPU_S8nZnFPPqC8bwVHE6-rE3IPDWXHzvEJEw-sqyqPHHAGD2ydZo9pcvRvC3oAbzwSrc8clI4PY85T7xRlmu8gXSmvZtz0zuVfw0-oqRWvbFVXTz_WG099IeHOjxVmTyWseG9z-X8PFNnpLyWZPi8Qt6cPfF2Arrqr_c9MbJROshNAz3jzEW99qy1PN5kBjukRJy8skOhPDsOjzv3JuE8XYaUPfC18bw8MAA-jFkFvaOFlTuaFYA8IVj1PYrHRbzwf2w9ZqnAPeVlCTzCspi9len8PGgwvDzvdOe9rl3_PPGw2rzGy2k9GyUUvb4N9ztEFNM8R9KJPF8WyTwJZMA8z1l1PYVjsTy_Wlo8eRfJPcNQAbz3Bjo8AEJ6Pa4kIDxNw0s8FjbevLfUXrs6ETM9SkqVvNSxkDsY64s9BVklvd5UZjtFgPM9vGG2vXsvHTtnowk96p5Lvb5rUDxkXmI9zvrUvMceEDzSUY489c4yPJ8EdDuzze29GboovbQB2Ls5WQ-9wanPvaeDDDyekS085IfqPd-j9DnAa2E8i11TOgBntbqDbeQ9wqaZPUuiZTkozJW9gPkgvMtDrjvM_zO7Y3KUPVQ4xLqHy0C9UzCpvcyz9bjmHCE9WV4DvR4GKTvFQLI8D5vIvLJWh7kKDYq7iUgovIKFwbkC-MK8g2rjvfTWaDgK9wo9zwYqPfatvTmpIqa8dWJFvEPRzbi50mE9Lt6UvXNP3Tiao429wDaMvbpRlriw5Eo9NWs_PXpNCblUXba8cYcXO9Ckfrqy7Ym9NNqqPAOLlrj0APG7DTwSvZ4trDaEhhk9kSGsvGGPwLgiIms9naSUvagXJLeFf6y8Q5iRupS0XzZ1mrs8pN_-PBo22LfFWay8xVytvAzYobhkHEg9Cc1kvCLqibfML3m9OUlOPHJn8LWf34y9oQk5PG53y7iYGqw91_CpvQLoXrii-0i9zgumPESj6jhfi7e9jMq8vfcmPbhcfKC96HtXvex5hDc8aQE9_XGxPcyh0Dg9W6y8kSEMvXqsQDhayE29qd0PPRZYgrjEiZq7--1GPFx9WrcD9dw8h89sPRqEvraNbnO85j1vu3Q1OLeZprM9DP7jPAxLB7jqG0G7pqnEPexBlzgD_JS9f6iPPYXkXrktZyW8nuLCPbB8K7hcjle9ognUvd_CIbcgADgTQAlIbVABKnMQABpgRQIAJucs4-v8OOLs2tT6DgUJMDPTDv_nrf_5MebCFg7s2_LzABq5OwGkAAAACuLp-xEAD3zwv-Em8T8T5pf1KS9__z0q2tciJOjv4QYCBNYc8iYgAN_sq-k-z6FDAygfIAAtMRUdOzgTQAlIb1ACKq8GEAwaoAYAAKjBAACAwQAAjkIAAKDBAABQQgAAAEAAAHhCAACAwQAAnsIAAIhBAACgQQAAusIAAGDCAABAwgAAVMIAADBBAADIQQAAiEEAABDBAAAEwgAA0EEAALjBAADoQQAAIEEAABBBAAAkwgAA8MEAAJjBAADAQQAA-EEAADDBAAAwQgAAgsIAAITCAACQwQAAdMIAAGxCAABwQgAAwMEAAChCAAAwQQAAcEEAAIpCAACCQgAAIEEAAMDAAAAgQQAACMIAAP5CAACIQQAAkMEAAGDBAACoQQAA0MEAAMhBAAAIwgAAvMIAALDBAAAYwgAAoEEAADDCAAAUwgAAEEEAAMjBAADIwQAAGMIAABBCAACgwAAADMIAAADCAABwQQAAMMEAAMDAAABcQgAAgEIAANjBAAB4wgAA4MAAAMBAAACAPwAAOMIAANDBAAAgQgAAcMEAAKDAAACEwgAA0EEAAHBBAAC2QgAAkEEAALjBAAC4QQAAqEEAANDCAADwwQAAHMIAADhCAACAQQAAFMIAAADAAADgwQAAbEIAAJBBAADAwQAADMIAAJjBAAAgwQAAHEIAAIhBAAAQQQAAnkIAALjBAACAPwAAQEIAALhBAADAwAAAIEEAAHBBAABAwgAAwEEAABDBAAAAQQAACMIAAKBAAAAAQQAATEIAAGDCAACIQQAAYMIAADDCAAAwQgAAkEEAAFBBAAAAQgAAEEEAAEDBAAB8wgAAoEAAAIhBAAAgwgAAeMIAAIBBAABAQAAAMEEAAJBCAAAwQQAAwsIAAPhBAAAIwgAASEIAAEBCAABowgAAoMAAAGjCAABQQQAAGMIAACDBAAAAAAAAcEEAAIZCAABAwQAAHMIAABjCAACAQQAAiMEAAOjBAAAIQgAAuEEAAGBCAAAsQgAAaMIAAADBAAAAwgAARMIAAPjBAAAoQgAALEIAAAjCAACywgAAXEIAAAjCAACgQAAAEMEAAPjBAADIQQAAgEEAAFTCAAB4QgAAQMAAAGDBAAAowgAAUMEAACRCAAD4QQAAmMIAAMBBAAAIQgAAwMAAAKDCAAC4wiAAOBNACUh1UAEqjwIQABqAAgAAEb8AAFS-AACAOwAAQLwAACS-AAC4PQAAUD0AANq-AACivgAAcD0AAKC8AADgvAAAqD0AAIA7AABwvQAAFD4AAIg9AABQvQAAPD4AAMY-AAB_PwAAQLwAAFQ-AACSvgAADb8AALg9AABcvgAAgr4AAGy-AAB8PgAAmj4AAKA8AABMvgAA4LwAAOA8AADoPQAAND4AADS-AACKvgAAgLsAAES-AABwPQAAED0AAEA8AACSvgAAgj4AADw-AAAEvgAAgLsAANa-AABkvgAAsr4AAJo-AAB8PgAAHD4AAFA9AAAxPwAAqD0AAIg9AAC-PgAAVL4AAIK-AACYvQAAmD0gADgTQAlIfFABKo8CEAEagAIAAL6-AABAPAAAMD0AACW_AAAMPgAAuD0AAMI-AACivgAAmD0AADw-AABAPAAABL4AAEA8AACSvgAAcL0AALg9AACYPQAALz8AAHA9AACWPgAAND4AAEQ-AADgPAAAEL0AAKi9AAAcPgAAMD0AADQ-AABsvgAA4DwAAFQ-AAAcPgAANL4AAPi9AAAcPgAAqL0AAL4-AAAMPgAA-r4AAHC9AACGPgAADD4AADw-AACgPAAAUD0AABA9AAB_vwAABL4AAEC8AAAwPQAAfD4AAEA8AAAUPgAAcL0AAOo-AABwPQAAgLsAAEC8AAC4vQAAmL0AAFA9AACYPQAAiL0AAKg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=xbinMOSsjnw","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12557080138247898919"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12384038065803385136":{"videoId":"12384038065803385136","docid":"34-9-14-Z31B994C3691D1B86","description":"Join our list for free Lean Resources: https://emsstrategies.com/newsletters... Theory of Constraints (TOC). What is TOC? In this brief video, we talk about Eli Goldratt's Theory of Constraint...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/474578/51f34d1d2596081fc9abed43eaf2d9a6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/asTqJQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DxJlnlMNGqY4","linkTemplate":"/video/preview/12384038065803385136?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Theory of Constraints","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xJlnlMNGqY4\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFgoUMTIzODQwMzgwNjU4MDMzODUxMzZaFDEyMzg0MDM4MDY1ODAzMzg1MTM2aogXEgEwGAAiRRoxAAoqaGhjbnpuZGltYmRqdXNjYmhoVUNyWnJFamhzNUpXVkxwRHN0cGVVUFF3EgIAEioQwg8PGg8_E64BggQkAYAEKyqLARABGniB9Aj7B_0DAPoIDfz7BP8B-AwA-vn9_QD0Dvf1AwEAAPv5CvoBAAAABwgF_QIAAAD8BAjy-_4BABEGBAQEAAAADvT5AwMAAAANCgMACP8BAf3_AgYE_wAABAL9BAAAAAD1AP_6AwAAAPQQ_v4AAAAAEvsAAfz1_gAgAC0jP9w7OBNACUhOUAIqhAIQABrwAV3iDQC3__39HOUBARYG8ACBBQv_MfbnAM8Z9gDMCP8AAw0FAPED8wAV-C8A7_koAD_jFv8UDBMA7QgKADMMJQAWARAAHAv9ADoQDAEc-foA3P8IACzsBAHmyBn_5wIA_f0NCP708eD__Any_ev5GwIZCP4FAAH7AwEI_f79CQ7-3__2ABXeAwLe_wMA8BQTAPcB9P3xFgEC9AjwA_0CAQP7FPH-7gPw9hwJBQr55w0DC_v9-yYS7fsqCuYAHA8bAvzvEv4IDAH2Eg__AhACFgYXBP7_AwH9APMm9QIS9_EC4xgI9_vv-QDKBfkHD_YMBCAALW4nSDs4E0AJSGFQAirPBxAAGsAHiQnyvu-ujrw9FtG8PGbgPLWS7ztSIYM8l6kLPI8lAr1gbyc9TTISPpmJvTxjh-e8FM_hvsGt-7zV5wq9OxlsPq4M6jyCjCU851TSvYdDID2feKk851Z4vgJaxLx4UhG6OSonPmCwejs56g88fnl8PRnFsrwWnjw8pbUOvSfJKTxd3AY88FUGPc2Edb3mNcC8QqC5Pdt9GL24BP07nFJePvoZ6Dx25rk83kB8vZy_qjuXe7e85Pf2vGMV5ztLavI8cwixPUC92byFw5w8yczlPcweMrx0Nq47qauBPWTJAb3r-HU7QQsJPb7sSD0RSqm8hhuwPORcFL2oAJg8mM8oPKAQmz1XqQU918N3Pdndjb1grVo8qBFEvDdtqTvrlY084bgcvrELUD2cWbC5KJ4DPqytWLzx5c87EQyWPYnXoL0QrE-8PGwdvQc2trtu_eK56uPGPHrxjz3Sb6G7Xf8pPQy1wTw_dJy88ofVvKZpaz0Y9Lm88RL8PcAonL2tKGu7jPyVvBNcMb1ARDQ7RgbZvX-WeL0bi7-6JEYPPao7gL1NdA67GTQZPRQAKL3y45a7Y15HPKRQOz35rz272e0DvmLY5bt0LIy6muMBPffnIr3LZLg7cvnvPdhsOz0tHkU6AGpvvb7YezwQXSG6v682vNwn7DxAack7qMwoPf_-HLv_4Ko75vaBPDWpUj1hguA7UpNFPc78arw6ZtG7NfHpPLd0ljz56wO4acw_vdBjNL3Ij526jLrWPSZxhj1jRL24ID7VPG80tjyyEKs55ETgvABajDt2dpC4_H31vBz4Z70YTPQ4rPGIvJx3or1uhVE5zrj6vMaOAb0SaMa3IJiTPTaDDbviGvM5TKWfOqaOn7xycHE3e0IgPR2mYr2GVAu46ln1vBF55jwL7Ns462kMvYKvY71pBGc3Za1cPQUhj7xRxJk5pxSVPTVcybz-1Em5AoMEvecltbyAJ621wrS5vEyKn70GYHY4V6AMvU92kz3qSGe4g2iSvOSDHj2na6k3MpllPeDaSb2T52k3EtG3uwz9iL1QZfo3yaqNPSOe7DrQ47Y4IayrPHAwijpvuPU1y-tSPHxi3b1M24o4Yi-UPa1pHrw_ddy1qdEVPbP_S7zl31G3X8MdPH_yfD2w7R64lh8ZvFwtkT3T-Bg2QfJuPYUPgLwSyFs3aW5FvX8jUL0dVlK4U2VOPHtclb1edby3WTp6vFXezj0o5a44gBa2vePYHz2nu8G4PbrRPJr6bz16yBO1J76aPa-hKr25uS64IAA4E0AJSG1QASpzEAAaYDYSAALWD9f-8EMC8ujD5wYXBQwX4SD_-84AARrb6ALrxsnm6v8HvCn6qwAAABH_wgsQAOhs6cLxEvIyCsO--_8Af-0PCgLSCBvor8jm_gWyFfMsCgD687gWR9HnSgkmGiAALRwmLTs4E0AJSG9QAiqvBhAMGqAGAAA8wgAAqMEAAHBBAADQQQAAvEIAAPBBAACQQgAAAMEAAADBAADoQQAAIEIAACzCAAAEwgAA2EEAAERCAAAAwQAAIMEAAHjCAAAAQQAAoEAAAAzCAACUwgAAwMAAAGhCAACAQAAAyMEAABjCAAAMwgAAqEIAAOBAAAAwwQAA4MAAACjCAAAAwQAAkMEAANBBAABsQgAAAEEAALBBAADgwAAAgMEAACBBAAAgwgAAcEIAANDBAACAwAAA4MAAAAAAAAAAQAAA-EEAAKDAAAAgQQAAIEEAABRCAACAQQAAtkIAAFjCAAB8QgAA4EAAAIA_AAAAwQAAoMAAACDCAACQwgAACEIAAHBBAAAgQQAAEMEAAKjBAADowQAArkIAAFhCAAAQwQAAwEEAABBCAABgwQAAdMIAALDBAAAAwAAAPMIAAPjBAAAEQgAAIEIAACBBAACAvwAAkEIAALDBAAAoQgAAPEIAAIBAAABcQgAAoEEAADBCAADGwgAA4MAAADzCAACCwgAAcEEAALhBAAAMQgAA6MEAADxCAAC4QQAAVMIAAEzCAADAQQAAAAAAAOBBAADYQQAA6kIAAIZCAAAIwgAAwMAAAJhBAABkQgAAsMEAALJCAADQwQAAkEEAAKjBAAAYQgAAQMAAAFTCAAB0wgAAwEEAAPDBAACwQQAA4MEAAOjBAAAAwAAAaEIAANBBAACWwgAAAEEAAEDBAABwwQAAIMEAAKDAAACSwgAAmsIAANBBAADAQQAAqEEAAPjBAABgQgAAoMAAACjCAADowQAAcEEAAChCAADgwQAABMIAACRCAACYwQAAwEAAAABAAAAowgAAGMIAAJTCAACQQgAAnMIAALBCAAAAAAAAKMIAAKDBAADwQQAAQEIAAPDBAACAvwAAgMEAALjCAAB4QgAAUEEAAFhCAAAQwQAAFEIAACBCAAD4wQAAgEAAAGxCAABAwAAAgMIAAFTCAAC4QQAAQEEAAIDBAAA0wgAAoEEAAIBAAADQQQAAPMIAACzCAABUQgAAuMEAAHDBAABwQQAAkEEAAGjCAACYwgAA-EEgADgTQAlIdVABKo8CEAAagAIAAM6-AACKvgAAML0AAEA8AABMvgAAMD0AAOC8AAAFvwAAwr4AAHw-AAA8PgAAmL0AAEC8AABsPgAAmL0AAIi9AADgPAAAoDwAAFw-AACaPgAAfz8AABy-AACAOwAAyL0AAKK-AADoPQAABL4AAHS-AAAsPgAAPD4AAAQ-AACgvAAAqr4AABS-AADYPQAAQLwAAEQ-AAC-vgAANL4AABA9AAAkvgAAQDwAABQ-AAC4PQAAbL4AAIY-AACAuwAAmD0AAAS-AACevgAAgr4AAAy-AADmPgAAdD4AAIi9AAAEPgAAUz8AADC9AAC2PgAAgDsAAHC9AACYvQAAUL0AAIa-IAA4E0AJSHxQASqPAhABGoACAACOvgAAiL0AABC9AAApvwAAHD4AAKg9AADKPgAApr4AAKC8AAD4PQAAqD0AAOi9AAAQPQAAlr4AAKg9AAAwPQAAZD4AACs_AACIvQAAqj4AABA9AAB0PgAAUD0AADA9AABwvQAAED0AAFA9AAAcPgAAQDwAALi9AAAcPgAAND4AACS-AACmvgAAUD0AAJg9AAB8PgAAND4AAK6-AAAEvgAAVD4AAIA7AACAOwAAQLwAAIg9AAAkPgAAf78AAIK-AADgvAAAHD4AAII-AACAOwAAMD0AAFC9AAA0PgAAcD0AAEA8AAAMPgAA4DwAAIC7AADYPQAAqD0AAKg9AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=xJlnlMNGqY4","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12384038065803385136"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3027762263201497404":{"videoId":"3027762263201497404","docid":"34-7-6-ZDA37FB518729BFDF","description":"#bottleneck #theoryofconstraints #constraints #toc In this video, we're going to learn about the Theory of Constraints and how it can help us overcome business bottlenecks. The Theory of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3382755/1c0923a113d51afb505edc541fe0784b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0bQ1RQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8kT2aIftf_4","linkTemplate":"/video/preview/3027762263201497404?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is the Theory of Constraints?","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8kT2aIftf_4\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFQoTMzAyNzc2MjI2MzIwMTQ5NzQwNFoTMzAyNzc2MjI2MzIwMTQ5NzQwNGqIFxIBMBgAIkUaMQAKKmhoc3NvcGJvcnd0bHNldWJoaFVDVEpwNXRRb3RtYXpjdTFBcFdRZnF2URICABIqEMIPDxoPPxP-BoIEJAGABCsqiwEQARp4gfQI-wf9AwD6CA38-wT_Ae4NAv_6_v4A9gD19AMC_wADBA_9_gEAAAcIBf0CAAAA_QYB-_r-AAALDfsCBQAAAAb0_fsEAAAADgv8A_4BAAD_9QQIBP8AAAz-_QEAAAAA9QD_-gMAAAD5EP0GAAAAABL7AAH89f4AIAAtIz_cOzgTQAlITlACKoQCEAAa8AFx-v8B1AAY_xPw8gDuFfsBgQUL_ykO1QDSGwoAufftAPIrBf_i3w4AHP8NANgP9wAS9_7_MP4C_-EOCf8nAvUAEw34ADvpCgEhB_kABPn0APrxBP8Z8AQAHeoFAAch8gAc_hv_7gvgAfwJ8v3_5RUCGPj1BPwBBQEUEgIBChID_wX1HPsT7gH8-gL2_QElGAEE9PL_7Bz4-vfr8AQI_-ABDfz0Byju-AMcCQUKB_IC8-cFCPcfI_0ABPMABwkXB_zl_wn2HQL--_AE_Pb95ggGAfgTCPHpA-8JF-8A7Pf8-AcDCPLf9wYGChoHCBYK-_ogAC1uJ0g7OBNACUhhUAIqzwcQABrAB7Ea-75sMIM9bRjHu3dRDz38AZo9JDMPvF4eIb2cU-Y7KuK0PB-BP7xNLNU8jVLXu5sdob5GoZu8yGeoPJ1Ggj5_Fku8vhLIvBfxXb7HGuQ8RD-JPPWhg748d_E7LsWXO0Sjaz7ThTg9ZBTVPDzprj3o1Lq7E2BmOrpLgj38E8G88joHvaYaDD2bkFa9mpa7O24wuTzZBUi9aqHHOyDrCT7Fbdm8qpk1vGgupr191QU97x21PI2m6TynkpE9sCziPGn-KD6LXdM7RwsrPJYa6zuqmbW7HyyEu3hki7rjv2W9pdhyu_Th9DxVuqA80C8EOwaWDT0gyjy8JGR7PLTTxbw5Org8DwJZO_W8Kz7NLHg8-nq-PKtOvbyRFKw8THDmO3djtr1dVjw8eyWdudY9vb0-oyO92ImmvLP7Xz2Q8GK8kXDvOoshND2oUSg932GHu0esRb3DJlc9vmGJOkM5cb0g1OA80c3AO-Ykb7x7hxu9gPDCupeCHjwODwS8dxrfPKWFS7zBN028r-EzPDf6HT3nCqU8M2AcvOg5mDzfbV48lGVKO72s5DyaWjs9Ja4jPIfQUjwpAqE99FY4PNrm5r1LYTk8IVU5vItqNj1C-4W70j9aOzlaGj3X3KE9g-79O0M_Lj1f_H490iXSuxDycL1eah-864H_O3D1l70QTaq8nOP1u6od8jsdoiS68pcWPOYqUb3Yiaa8HYqKOwfu4D163B679qUOumnMP73QYzS9yI-dutScPD2zzJc9jLDOuH0NXL3foYu7dAwnuZzblD0ChOq8T7mduBtoHr2QbMm896ULOQLvKT3NGba8nSUVOG0STbwrJC89qazit-d-e7uYyOA8ZZYLuZ1ESb1uOYI90I-OOROkjb1Fl7s7MLRkOQyMITy44ie9fdXDuCOTfT3zKZa9my8tOSKaCj3ibAK8kBb_OTZEsDwLcqE8SSEMuIurCDzoAQI9cTVON55JNj0ExfS8DvF9N2AncL2aEVk9B6eZt4apzb3t66W8pqHlNwkcJD3Ur9m8_xwsuG6CdD2H-Ow8KjxbuGXRir3kH0w9p0tfOCq-y72osj6950aVN03clT3IX9q9BOEOOYq1kzyWI4Q9bA2MOBV4oj0ZGcm8ug7JuG7oXL0R0pk9D_3Tt40LZ71Fo1Y9ntyetzwbLT1twrI97OWHtuAVfD2r1TK9SQsVNpyGyTtwMgC9wx0ZN6AXDj0XJb09KH8AOZiTZTuAC9I9mOQPuUTQgzvuurI9uuqsN1E4Mzp3Jjm9_wXjtyAAOBNACUhtUAEqcxAAGmAdFQAP8Q3qAfMo_Prv3vQJIAcK__AHAPfwAPQa_vkKBN7Y9vAAFtMUCNAAAAABAfEbAQDyPAfr7AvrJPjfxfb9BX_7BQkK4AYG89DZBv4F3AjjHg8A8RDiEBXu4CoEGh0gAC3T04M7OBNACUhvUAIqrwYQDBqgBgAAIMEAAIBAAAAYQgAAQMEAAIA_AABwQQAAGMIAABzCAABAwgAAkMEAAKBBAAAgQgAAvsIAAEzCAAAYQgAAQMAAAGTCAADwQQAAaEIAAFzCAABIQgAAwMEAAHzCAADQwQAAsEEAAABBAADgwQAAQMEAAERCAAAcQgAAgEAAAKxCAAAwwgAAAAAAAODAAACsQgAA6EEAAMJCAADwwQAAQEAAALhBAAAAQQAANMIAADxCAADIQQAAgsIAADTCAACowQAAYEIAAJjBAAAYwgAAiMEAAGBBAAAQQQAAQEAAAOhBAABMwgAAwMAAAPjBAAB0QgAAgEAAAADBAADgQQAAqEEAAADCAACAQQAAJEIAAODAAAC4wQAA4MEAAGBCAACIQQAAJMIAAFBCAABwwgAAwMEAAHTCAAAMQgAAyEEAAEjCAACAwgAAwEAAAChCAACAQAAA4EAAAFxCAAAUwgAAIEEAAOhBAAAwwQAAAMEAALjBAAAIwgAATMIAAOBBAABUwgAAJEIAAODBAAB0QgAAEMIAAPBBAADQwQAAqEEAAKrCAAAwwgAA2EEAAIpCAADIwQAA8MEAACDBAAD4wQAAJMIAADDCAABAwgAA0kIAAAxCAACIQQAAdEIAAJDBAAAAAAAAEEEAACjCAADAwQAAgEAAAChCAAAwQgAAgL8AAJDBAADwwQAAQMIAADjCAACAQAAAHEIAAPRCAAD4QQAAwMEAAFBCAADgwAAAgEEAAFzCAACIQQAAMEIAAKDAAAAEwgAAkEEAAODAAABkQgAAmEEAALjBAACAQAAAAAAAAPDBAABQwQAAyMEAAChCAAC4QQAA8EEAAOjBAADQQQAAwEAAANDBAACAQQAA4MAAAKBAAAAQQQAANMIAAL5CAADgwQAAikIAAJhBAADawgAAyMEAAABAAAAUQgAA4MAAACxCAADgwgAAjsIAAEDBAAA0QgAADEIAAJbCAADwwQAAoEAAANhBAADIwQAAuMEAAHxCAAAQwQAAAEAAAFDCAACgQAAAqMEAAJjBAACIQQAAEEEAAITCAACoQQAAqsIAAITCIAA4E0AJSHVQASqPAhAAGoACAACCvgAAFL4AAKC8AADgvAAAhr4AAIC7AACoPQAA7r4AAIa-AABcPgAA4DwAAMg9AABAvAAAVD4AABS-AAAwvQAAQDwAAOC8AAAsPgAA7j4AAH8_AAAUvgAA6D0AAMg9AACmvgAAcD0AAFC9AABEvgAALD4AABQ-AAAQPQAAQLwAAKa-AADIvQAA4LwAAOi9AACaPgAAwr4AABy-AABwPQAAmr4AAFC9AACWPgAA6D0AAHS-AACCPgAAoLwAADA9AABwPQAA6L0AAGS-AAAwvQAApj4AAHw-AADgvAAAuD0AAGk_AAAkvgAAqj4AAOA8AABUvgAAyD0AAIA7AACgvCAAOBNACUh8UAEqjwIQARqAAgAAbL4AAKA8AADIvQAALb8AAOA8AAAQvQAArj4AAJK-AAAwPQAAyD0AAHA9AABUvgAAgDsAAKK-AAAcPgAAQDwAAGw-AAAfPwAAML0AAKo-AABQPQAAgj4AAEA8AACgPAAAML0AABQ-AACgvAAA2D0AAFC9AADovQAAyD0AACQ-AAAQvQAAkr4AABA9AACIPQAAbD4AACw-AACavgAALL4AABw-AAC4PQAAoLwAAIC7AAAwPQAAHD4AAH-_AAB0vgAAFL4AAFA9AABUPgAAED0AAIg9AABAvAAAyD0AAIg9AACgPAAAuD0AAFA9AAAQvQAAuD0AAJg9AACIPQAAqD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=8kT2aIftf_4","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3027762263201497404"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16452497712637735434":{"videoId":"16452497712637735434","docid":"34-9-0-ZAD3C8EFF11D40818","description":"Theory of Constraints (TOC) is a system based philosophy which asserts that the constraint(s) determine the performance of the system. It was developed by Eli Goldratt and originally popularized...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3106276/603acb2ecf1e50cf6c775f1bde1d8364/564x318_1"},"target":"_self","position":"5","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWt1gFfgzgjs","linkTemplate":"/video/preview/16452497712637735434?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Theory of Constraints (TOC): An AI Generated Conversation","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Wt1gFfgzgjs\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFgoUMTY0NTI0OTc3MTI2Mzc3MzU0MzRaFDE2NDUyNDk3NzEyNjM3NzM1NDM0aq8NEgEwGAAiRRoxAAoqaGhjbnpuZGltYmRqdXNjYmhoVUNyWnJFamhzNUpXVkxwRHN0cGVVUFF3EgIAEioQwg8PGg8_E4IBggQkAYAEKyqLARABGniBBRT9CQT8AOwYCwD8AgAB7PD8BPv__wDkD_z4CP0BAPr5C_kCAAAACv33_AMAAAABCAL-8P4BABgQ9QgDAAAADfoAAAEAAAAPG_oC_QEAAPPmBAkE_wAAHRID_P4AAAAACAL2AwAAAAgd-AAAAAAAD_YG-wABAAAgAC1L5Mc7OBNACUhOUAIqcxAAGmAEDAAm_Pvc2u827Pzysu8E8BAUDtYDAP_nAAIj4ssHCta-9gsAEewb9b4AAAAS8u0YxgDsVBTc7PQHN_vp5wHpEn_bAOT83DgL6e_XCSrZEwz7KCQA1gsFITfS5yz0GhcgAC06LU47OBNACUhvUAIqrwYQDBqgBgAALMIAAExCAADIwQAA2EEAANhBAAAYwgAAUMEAAJjBAACoQQAA2MEAABxCAABAQQAAgMIAACBBAADMQgAA6EEAADDCAADAwgAAiEEAAEBAAAAkwgAAjMIAALBBAAAMQgAAuEEAAJzCAAC2wgAAaMIAAMBAAADYwQAAUEEAAOBAAAAgwgAAAEAAAMDAAACAQAAAoEEAAHhCAAAAwAAAiMEAAABCAABkwgAAcEEAABBBAACAvwAAgMEAAKLCAADAQAAAYEIAACBBAACYwQAA4EEAAGBBAADIwQAAPEIAAGDBAAB8wgAAIEEAAIjBAAAAQQAAYEIAAAjCAACEwgAAAAAAAGRCAADAwAAAQEAAAABAAACAQAAAYMEAAFBCAAAQQgAAAAAAAIBBAAAcwgAAVMIAAILCAAAAQAAAXMIAAHBBAADwwQAAgEAAAPBBAABwwQAADMIAABRCAAD4QQAANEIAACxCAAAkwgAAkEEAAABCAAAAAAAAhMIAAIBBAABgwgAA2MEAADBCAABYQgAA8EEAABDCAAAwQQAAyEEAAFjCAADgwQAAmMEAAPDBAAC4QQAACMIAACBBAAAYQgAAiEEAAADCAADgQAAAAMEAAOhBAACwQQAA4EAAAHBBAAD4wQAAiMEAAADBAACqwgAAQEAAAI5CAAAQwQAAEEEAAADAAABQwQAA8MEAABjCAACAwAAATMIAABBBAAB4wgAATEIAAIhBAAAswgAAHMIAADTCAAA8QgAANEIAAERCAABAwAAAXEIAAEzCAABQwQAA8EEAABRCAAAgQQAAmsIAAETCAADAQQAAgMAAAHRCAAA4QgAAkMEAANjCAACawgAAlkIAAGBBAACuQgAAQMAAAHDBAADQwQAAIEEAAIZCAACwQQAAoEEAAFBBAACIwQAATEIAAILCAAAAQgAAQMEAAIjBAAC4wQAAYMIAAIRCAAAwwgAAEMIAAKrCAACIwQAAOEIAAMhCAACAwAAAYMEAANhBAAAwwgAAgD8AAK7CAABswgAA6EEAABBBAABQQQAAtkIAAPDBAACgwQAAUMEAAMBAIAA4E0AJSHVQASqPAhAAGoACAADGvgAAHL4AACw-AAAcPgAAsr4AADA9AAAMvgAAHb8AAOK-AACOPgAALD4AAOC8AADYPQAA4j4AABS-AAAMvgAA6D0AABA9AACmPgAAET8AAH8_AAB8vgAAUL0AAPi9AABkvgAAqj4AAIC7AABMvgAAcL0AAJo-AACoPQAAoDwAAOi9AAAwvQAAFD4AAFw-AACCPgAApr4AABy-AACYPQAA6L0AAKA8AAA8PgAAQDwAABC9AAD-PgAAPD4AADC9AABwvQAA3r4AADC9AACovQAA-j4AAKY-AABUvgAAyD0AAFs_AABAvAAAvj4AAGQ-AAAMvgAAhr4AAEC8AADIvSAAOBNACUh8UAEqjwIQARqAAgAAuL0AADA9AAAwPQAAJb8AAIC7AACYvQAARD4AAEy-AAAQvQAAjj4AAFw-AAA0vgAABD4AAKq-AADgPAAAoDwAAJg9AAA1PwAA4DwAAII-AAC4PQAA6D0AAEC8AADIvQAAED0AAGQ-AACovQAAHD4AABy-AABwPQAAyD0AABQ-AAAsvgAAEL0AAOg9AACovQAAij4AALg9AADOvgAALL4AABw-AAAwPQAA-L0AADA9AABQvQAAUD0AAH-_AADIvQAA6L0AAOi9AABwPQAAQLwAAKC8AADgPAAA6D0AAFA9AACgvAAAoDwAAIC7AACgPAAAUD0AAIi9AACgPAAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Wt1gFfgzgjs","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16452497712637735434"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16442168340679803605":{"videoId":"16442168340679803605","docid":"34-1-11-ZBB780856697A0859","description":"Easy, short explanation about the theory of constraints, including bottlenecks. Online Lean Six Sigma Certification, Accredited Six Sigma Academy Amsterdam (SSAA) has trained and certified almost...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4314090/6f77ed761d865f3bd09719497519e9a8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/453POgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4z4ei_ouzdk","linkTemplate":"/video/preview/16442168340679803605?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Theory of constraints & bottlenecks (lean six sigma)","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4z4ei_ouzdk\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFgoUMTY0NDIxNjgzNDA2Nzk4MDM2MDVaFDE2NDQyMTY4MzQwNjc5ODAzNjA1arYPEgEwGAAiRRoxAAoqaGh6Ym9zb2tja2NwYmxnY2hoVUNPU2pHZDFxN0Q0aGNmMWJzQ1RaNkJBEgIAEioQwg8PGg8_E48EggQkAYAEKyqLARABGniB_BH4CP8CAPD6C__6AgABBgLy9ff__gDoAfj7-f4BAPUGBgEBAAAABQ70CgUAAAD1AQP88_8BAAoFAAkEAAAAFfgP-fcAAAD9EQEP_gEAAPb__A0E_wAADP79AQAAAAD6-gb8AQAAAPUHAvgBAAAADgYCAwAAAAAgAC21k9Y7OBNACUhOUAIqhAIQABrwAX_qDwG8_AH-BwXvAA7-2gGLHwr_LTTk__Tl_QCs9ekA6BARAOH0BAEW-Rr_-Qry_xDq7gBt8xkB5-sMADYBFAASA_gANu_7ACr1-gD_F_L-DwHf_xUMBAE09hIABgvw_iPwLf_rDdsBCgzoAgsGCf4vOQUACwMTAd4fGwX_E_79FQcT__4tBwPcCPICCgMdAhAM7gH8B_D_Ayr-Awz2CQb-_fL4BuvvBDv59gDX6gD89Qv--CQp_P_v_AICFSbx-vLo4gUM8vgJEPwP_THtDvwO5BoCwvQHAwn34QEg-QYA-OoBANYAAfwMFAT7JQj8AiAALfRWKjs4E0AJSGFQAipzEAAaYD_5ABK_977nCz_t-RGs8esQyjbvwEr_FOP_4SbW_gtT0rgeJgAMByIwnQAAACL79BrkAMt_xcbpEeAl8cfD9ybMZv3j_dje8xL1yvAG5tvJDvBBJAC46qbzbdy4MOE3GSAALWNAFTs4E0AJSG9QAiqvBhAMGqAGAAC4QQAAAMEAAATCAACAwQAAUEEAAMjBAABwQgAA8MEAAGBBAADgQQAAcMEAAExCAACIwQAAIEEAAGxCAACcwgAAiEEAACBBAABEwgAAHEIAADDBAABgwQAAAAAAADDCAAAMQgAAoMAAAGzCAACIwQAATEIAAEBBAAAcQgAAbMIAAJbCAADYQQAAgMEAALBBAADoQQAANEIAAEjCAABwwgAAbEIAAODAAAAgQQAAdEIAAATCAAAgQgAAIMIAANjBAAC6QgAAMMEAACBBAABQwQAAuMIAAJrCAAA0QgAAiMEAAPjBAAAowgAAcEEAAMhBAABAQQAAEMIAAEBBAACAQQAAoMAAAOjBAADAwAAAgD8AAFBBAABAQQAAAAAAAMJCAAA4wgAAYEEAAChCAACIwQAAqEEAAADBAADAwAAAMEEAAKjBAADgwAAAikIAALhBAACYQQAA-EEAAJ7CAABkQgAA6EEAAATCAABQQgAAmEEAAKBBAAAcwgAAPMIAADjCAAAswgAAgEEAAIhBAAC4wQAA-EEAAGxCAABAQQAAYMIAAGjCAABAwAAAsEEAADDCAABgwQAAuEEAALpCAAAYwgAAlMIAADjCAACSQgAAoEAAADDCAAAEwgAATMIAAFzCAACowQAASMIAAGTCAAB0wgAAsEEAAIDAAADgwAAA4MEAABDCAACawgAAXEIAAMDBAADQwQAAOEIAAHDBAAAQwQAAiEIAACTCAABkwgAAOMIAABBCAAAIQgAAAEAAAABBAACgQQAAoMEAANDBAACAwQAAREIAAOBAAAA4QgAAgL8AADBBAACCwgAA8EEAACBCAADwQQAAAMIAAJDCAAAkQgAA8MEAAARCAAAIwgAAQMIAAKDBAAC4wQAAkEIAAKjBAACQwQAAeEIAABDBAACAPwAA4MAAAFBBAAAwwQAAdMIAABhCAABEwgAA4EAAADxCAABQQgAAAEAAAGDCAACAQQAAMEIAADTCAACIwQAAaEIAALDBAACAvwAAUMIAANjBAACkQgAALMIAANBBAACmQgAAysIAAIrCAABAwAAACMIgADgTQAlIdVABKo8CEAAagAIAACG_AACavgAA-L0AAJo-AAAMvgAAoLwAALg9AADuvgAAzr4AAIg9AAAwvQAAyL0AADQ-AAC4PQAAqD0AAEy-AACIPQAA2D0AAL4-AAAZPwAAfz8AAKi9AABMPgAAPD4AAJq-AADovQAATD4AAHC9AADoPQAAoLwAAHw-AADgvAAARL4AAOC8AACmPgAAvj4AABQ-AAAUvgAAtr4AALi9AACGvgAAdL4AAOg9AABwvQAABL4AAGw-AAA8PgAAir4AAIi9AACyvgAAtr4AAKi9AADKPgAAdD4AAEA8AACgPAAAWT8AAI4-AAA8PgAAgj4AAKC8AADgvAAA-L0AAEQ-IAA4E0AJSHxQASqPAhABGoACAADavgAAQLwAALi9AABHvwAA-D0AAJi9AAA0PgAAZL4AAAy-AADoPQAAEL0AABS-AAAQvQAAir4AAKg9AACgvAAADD4AABs_AAA8vgAAND4AABA9AAB0PgAAqD0AAHA9AACIvQAAED0AANi9AAAkPgAA6L0AAHC9AAA8PgAADD4AANi9AAAMvgAAUD0AAOA8AACGPgAALD4AAJa-AABwvQAA-D0AABy-AAAUvgAAqD0AAEC8AADgPAAAf78AAJi9AABkvgAA6D0AAIo-AABQvQAAfD4AAOg9AACYvQAAUD0AAKA8AACaPgAAuD0AAGS-AACgPAAAND4AALg9AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=4z4ei_ouzdk","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1278,"cheight":720,"cratio":1.775,"dups":["16442168340679803605"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11755602784178284077":{"videoId":"11755602784178284077","docid":"34-2-9-Z96EBC2A722DEF1D8","description":"In this lecture, we will discuss the basic of TOC and the differences between Standard Costing, Activity Based Costing, and Constraint Based Costing. The power point slides are available at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4561878/4c23b5a2087aa29558befeca3827229f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/NLZ4GQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DsVyltL7O2KM","linkTemplate":"/video/preview/11755602784178284077?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Theory of Constraints - Introduction","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sVyltL7O2KM\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFgoUMTE3NTU2MDI3ODQxNzgyODQwNzdaFDExNzU1NjAyNzg0MTc4Mjg0MDc3aogXEgEwGAAiRRoxAAoqaGh4dXhyb2phZGdjbXh3YmhoVUNVWUhFaGxhRUpIM0kxYVI2WFYwYmVREgIAEioQwg8PGg8_E_0WggQkAYAEKyqLARABGniB9Aj7B_0DAPQEBQH5A_8B-AwA-vn9_QD2B_z-_wL_AAH5APf6AQAACgACAf4AAAD8BAjy-_4BABEGBAQEAAAAFfn8AP8AAAAOC_wD_gEAAPf5BQ4E_wAACAUEAQAAAAD1AP_6AwAAAAAR_f8BAAAACP4EBgAAAAAgAC0jP9w7OBNACUhOUAIqhAIQABrwAXX1_wDGCeAAJ_3vAPj3sQKBIgr-XwzNALESEwHCyu0AEDoEAdL8AADlESIB1A0JABDg0QAZ-_8AKgED_zoBFgEfDRIALOYCAAwJ-wDcE-P__R35_ywPMf_4DQ4A6f0JAyEaHQD6Acv_Dv_XA_oYGwIzPgYALuD-_Bo3FALYBxIDHwELAQz4BgPZ8AQExQ79Axn_5fz48OAEFSUU-xHoEwPz9Br5GuXlBTMJ8_sBAQv5JxkkAPXy9AYK9gsCMEHxAP0DAQQa4BAE2_8D-UTnDwsNChf-_BAPCPv1CvwOzfry6O4KAOcq9v8M_QcGGvAX_SAALf8hHTs4E0AJSGFQAirPBxAAGsAHxecCvwwNurw7uwa97tKhvAeoGj0gES48J4UZPX_1XTyjOp08H4E_vE0s1TyNUte7FM_hvsGt-7zV5wq9nUaCPn8WS7y-Esi8GXSivQyiHz2KQbu79aFrvoTTBz10NcO7_O-CPfFvxjyFoNk8q02iPVTcHb0JdhK9cC1uO6Mrh7yzVpm8NkTAvejteb0uUk081-rBPTfwlL0J6R88aRkZPr1fO71lF-87IFdUPTiuFT3GBMq6seHpvTRcLr2sEnY8af4oPotd0ztHCys8qU7nPcvE4zwuhGa8k1GlPMFHjjxb7ze8PSgIveO7Hj1nyyC8A2iKPXdGQL1Kguw6Ei6FO64PSz01XfA7GyqbPVidRj3fTC-7Iq53PIBmSz273mw8bPtovLwLrzynrEI5Dk7kPVr6C70rdmo7vfnyvKRZND3xKeU8bV4LPYlNej0QYiE7VWSJPfaX3T2Y8ka8vmjRu5DeSz2sIyK8KlmJvSV0OLumtcy68RL8PcAonL2tKGu78SmVPcHFCj1F0D282YiWu0ueYb2SBQ68JAlnPRsmv7yXTFu6zniRPRtrGr3170A7TceUuk7UEj0soG072e0DvmLY5bt0LIy6wz6bPROPNb0lJBI8yy-DPKlFiT0quwm72L_GvMTeVTx_8TG8cXONuy5gOD1Brwc8O4kMvARpEL1BFp47ow3GPZavyzpgbr078VZMvEwS8Lw2Y6g7-55nPcTTijvGBbk7jUEKPEB1ILxEaCk7KOB_OjR2gz1_46W6QNaBun_Ihr27Hhu5u87tO1OFFT2Cb7-3GO3xPG8ArLxK3Qm6oofQPJPOmzwq0La4HAWpOhDQWDzoyga68MRMPViZPrtsX106fQVJPQt_o7urCKO4tu92vCPXDb1cvSS5vLS8O94EPz3wrKU5uKcUPA_nCjzuXJ-4CHadu6tEpL0azC25cQdFvWckJ71CH9w3ys8bPCoblry79HG366RjPKKMor2_UmQ5kR-7vKPuXj00e-O2TEqmvM5lNDxjo564YkcIPQL44bsEcVC2qvkFPR8OMr3B4b83DCl1PB7mBj2DLVg3Y6iEvWaZL73HPsk3EmiPu06Dvbx1Moi2E7rLO9ehmroaXje2iwI4vZ-nJr0t6ng4Ol3WPexKjTsc-0m5qds5veZ_STvBUfA3hPovuwAjAbzqo183_m2FvbOKqzpF-La3uHMBPcwrgr0vZnS4ipZXPRBY-T2NF0A4uhOsvHLcuT10MBi5-zcUvYnONz2vDY-3QSgvvR5xk72kxqe4IAA4E0AJSG1QASpzEAAaYDQDAAXjFcz0_FfyDPC8DwgF_f4syBX_89oACRvB9QQK77336gAZthjvrgAAAAcL3yrtAAVu1sjbKPk39eTA9QwRfwo4Pd64AwbD0uz17Bb_HO4cIQD37KQPE7TiSRcrCCAALYI_KTs4E0AJSG9QAiqvBhAMGqAGAAAUQgAAsEEAACxCAABUwgAAAEAAAKDAAACiQgAA-MEAAKBAAAAAwAAAAAAAAKDBAACIwQAAQEEAAIZCAAAcwgAAIEIAAIbCAABMQgAAqMIAAIBAAAAwQQAAQMAAACxCAABQQQAAAMAAACTCAACawgAAeEIAABhCAACoQQAAAEEAAGTCAACAPwAAbMIAAGDBAAAAQQAAlkIAAMDAAAC8QgAAIEIAAGDBAAAAQQAAgD8AADBCAADgwgAABMIAAAAAAAA8QgAAYEEAAJ7CAABAwAAAyMEAAMhBAAAIQgAAAAAAAADDAAAAQQAAYEEAAPBBAABcQgAAEEEAAIrCAAAAQgAAgMAAAFTCAACAwQAAFMIAAKDBAAAUwgAAPEIAAIhCAACOwgAAgEAAABBBAABwwgAAiMEAAFDCAAA8QgAAEEIAAKTCAAAQQgAAGMIAAKhCAAD4QQAA2EEAALDBAAAQQQAAbEIAADDCAAD4QQAAMEIAAOhBAAAIwgAA0MEAAGDCAACowQAAQMAAAJxCAABcwgAAQMIAAIpCAABkQgAAUMIAAJjBAACgwQAAQMAAAOhBAAA8wgAA8EEAAEBBAABAQAAAiMEAAJDBAAAAQQAAgEEAAIC_AACAvwAACMIAAIhBAACAQAAANMIAAADCAACWwgAAIEEAAHBBAAAkwgAAAEEAAFDBAABAQAAADEIAAODBAAD4wQAAJEIAAI7CAAAAQQAA4MAAAGBBAAAowgAANMIAAChCAACIwQAAgEEAAIjBAAC4QQAA8MEAAIC_AADwwQAAPEIAAKjBAABQwQAAjkIAAGRCAAAEQgAAQMEAACDBAABswgAABMIAAHjCAAAkQgAAqMIAAGRCAAAwQgAASMIAAAAAAADgwAAAAEAAAHBBAACAQQAAFMIAABBBAACAQQAAQMAAABBBAACQwQAAkMEAAFBBAAAwQQAAwMAAAJBCAAAMwgAAXMIAAFBBAADgQAAAlEIAAAAAAACwwQAAgMEAAKhBAAD4QQAAYMEAABzCAAAUQgAAuMEAACBCAAB8QgAA2MEAAEzCAAAQwQAA6MEgADgTQAlIdVABKo8CEAAagAIAAHy-AABcvgAAoDwAAOC8AAAwvQAABD4AADw-AAADvwAA6r4AADw-AAAUPgAAcL0AAES-AACKPgAAcL0AAKi9AABwPQAAML0AACw-AAD2PgAAfz8AAKg9AACovQAAyL0AAJa-AABAPAAAiL0AACS-AADgPAAARD4AACw-AAAwvQAAnr4AAIq-AAAsPgAAcL0AAIY-AACqvgAAVL4AACw-AAAsvgAARL4AABQ-AAAMPgAAmL0AAGw-AABwPQAAcL0AAOC8AADmvgAAir4AAAS-AACSPgAAjj4AAIA7AADIPQAAQT8AAIC7AABcPgAAoDwAAIC7AAAwPQAA4LwAAKA8IAA4E0AJSHxQASqPAhABGoACAAA8vgAAML0AABC9AAAvvwAAPD4AAIA7AACqPgAAur4AAEA8AADYPQAAqD0AAOi9AACgPAAApr4AAPg9AAAwPQAAdD4AADE_AADgvAAAqj4AADC9AACCPgAAmD0AADA9AAC4vQAAyD0AAFA9AAAMPgAAQDwAAKC8AAAkPgAALD4AAFS-AACavgAAgDsAAAw-AAAkPgAALD4AAKa-AAAsvgAAXD4AAAQ-AADIvQAAiD0AAEC8AAAUPgAAf78AAKK-AACAuwAA-D0AAEw-AABAPAAAgLsAAFC9AABsPgAAiD0AAEA8AACIPQAAiL0AANi9AACoPQAALD4AAOg9AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=sVyltL7O2KM","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":600,"cheight":480,"cratio":1.25,"dups":["11755602784178284077"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4859728344586010931":{"videoId":"4859728344586010931","docid":"34-10-15-Z25F1BC80EA3CDC2B","description":"The Theory of Constraints with all the key concepts is summarized in this video. Eli Goldratt's theory condensed in 5 minutes. _ 👉 Optimize your production with our Lean Bulk!","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/759915/1323384c81b9fae97ed84e585e4d8851/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ltjPNgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLiAHtgFyRkA","linkTemplate":"/video/preview/4859728344586010931?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Theory of Constraints - A Complete Introduction","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LiAHtgFyRkA\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFQoTNDg1OTcyODM0NDU4NjAxMDkzMVoTNDg1OTcyODM0NDU4NjAxMDkzMWq1DxIBMBgAIkQaMAAKKWhoeXBqeGNtc2h6bm5qZGhoVUM3cE9GMmlmNTdXTjNoUEs5eVlLN3VREgIAESoQwg8PGg8_E6ICggQkAYAEKyqLARABGniB9wT6_voGAPADCvv8AQAB-QwA-vn-_QDuAvwEAAAAAP8CBfn_AQAACgACAf4AAAD7Cwf6AP4AABEFBAQEAAAAFfn8AP8AAAANC_wD_gEAAPf6BQ0D_wAACAUEAQAAAAD2AP_6AwAAAAAR_f8BAAAADQUCAwAAAAAgAC1aVOQ7OBNACUhOUAIqhAIQABrwAX_79AHY6-b_CAXtAOz9_wGCIgr-NhjyAL0nKAOuEs3_-frdANjn5AHz0g7_4xAz_zz2zf8T3xf_Dg0K_1EbAAEH_g8BE90XAS8CBwD_89L-9Qjl_wf4-v8n49oCDRfz_vwEO__dBO3__fnW_fXvHwIbDBsBDAMVAf_hCfreHRQACefr_zEFBADE__X6Awsv_gXx7v_09_r58PcBAh4vzP0PA_v9E_bfAO4K3Qjt5Qb8CuQM-xr36PgV-QUM4hgjAfvqF_7-_vv6CysT-iXPAP0H3gwH0vn1_hAT8RHbzvb33wwB8uUWF_7QEBH71PX6DiAALWPLHTs4E0AJSGFQAipzEAAaYD4HABb8IO38CT7h-_HK9xT1-gsQ1wsACfwA_xHM4g0M8MXt-v8MwA8CugAAAPr93Bf3APVcAs7TCPUeCufEBggrfwYAFPHRDiHAy_fuAh3nPectFAD29cElG_HoUB4lCiAALXkKRTs4E0AJSG9QAiqvBhAMGqAGAACwQQAAYMEAAAAAAADwQQAAoMEAACBBAABAQAAAgL8AAPhBAACAvwAA4EEAAIC_AADAwQAAGMIAADRCAADwwQAAwMAAADDBAACgQAAAmMEAAHBBAAA8wgAAwEEAAOBAAAAgQQAA4EAAAIhBAAA0wgAACEIAAKBAAAAUwgAACEIAAL7CAADAQQAAiEEAAJDBAABQQQAA_kIAAEDBAACowQAAgkIAAHDBAAAgQgAAQEIAAADAAABIwgAAYMEAAEDBAAAgQgAAJMIAAHDCAABEwgAAOMIAAPBBAACOQgAAQEEAALDBAADAwAAAcMEAADRCAAAgwQAA0MEAAKDBAAAYwgAA4EAAAOBBAABAQQAANMIAAKBAAAAcwgAAgkIAAGBCAADAwgAAgD8AAABBAADIwgAAHMIAAMBBAADQQQAAUMIAADjCAACIQgAA1EIAAFxCAAAUQgAAiMEAABhCAABsQgAAgEAAAHDBAADAwQAAPEIAAADAAACYwgAAcMEAAMDBAAAgQQAAwEEAAGRCAAAAwAAAQMEAAPBBAABMQgAAsMIAABTCAAAMQgAAAAAAAEhCAACCQgAAcEIAAEBCAACswgAAZMIAAAzCAACgQgAAMEEAACDBAACCwgAAqEEAAABAAADgQAAAMMIAAEjCAAAowgAAAEIAAIhBAAAwwQAArsIAABDCAADawgAAgL8AAIBAAABAQQAACEIAAADAAACIQQAAukIAAIDBAAAAwAAAzMIAAIDAAABAQAAAUEEAAFBBAAAcQgAA2MEAAGDCAAC4wQAA4EAAAADBAAAgQgAAgL8AABBBAACIwQAA-EEAAKhBAACQwQAAoMIAAMBAAAAAQAAA6MEAAPBBAAAAwQAAFMIAABBCAACAQQAA4EEAAMhBAABgQQAA4EEAAIzCAABQQQAAMMEAAEBBAACqwgAAmEEAAAzCAACAwAAAbEIAABxCAACIwQAAmEEAAIBAAACIQQAAZEIAAJbCAACIwQAAgMAAAOBAAABAQQAAAEIAADDCAACgQAAAMEEAAOBAAAC4wQAAkMIAAJJCAAAEwgAACMIgADgTQAlIdVABKo8CEAAagAIAAJq-AABUvgAAcD0AAIi9AADovQAAQDwAAFC9AAAVvwAA_r4AALg9AABcPgAAyL0AAOA8AACKPgAANL4AAAy-AADYvQAAQDwAAEw-AADWPgAAfz8AAAS-AACgPAAA6L0AANK-AAA0PgAA4DwAADC9AACoPQAAgLsAAEw-AACgvAAA6r4AAAS-AACOPgAAoLwAAEw-AADOvgAARL4AAIC7AACIvQAAyL0AAEw-AACgPAAA6L0AALI-AADoPQAADD4AAFA9AADavgAAir4AAEy-AACiPgAAvj4AADC9AADIPQAAPT8AAOA8AADIPQAAQLwAAKA8AABwvQAAUL0AAAy-IAA4E0AJSHxQASqPAhABGoACAACuvgAABL4AADQ-AAA3vwAAdD4AABQ-AADaPgAA9r4AAIi9AAC4PQAAiD0AAMi9AACIPQAAqr4AAFA9AAD4PQAArj4AAE8_AACAOwAAqj4AADA9AABcPgAAqD0AAKg9AAAUvgAA6L0AADQ-AABsPgAAUL0AADC9AACSPgAAVD4AAJq-AACevgAAHD4AAHw-AABcPgAAVD4AAOq-AAA8vgAAZD4AABA9AABQvQAAQDwAAHA9AABsPgAAf78AAMa-AABQvQAABD4AAMI-AACoPQAAqD0AAHC9AADYPQAAuD0AAIC7AACyPgAAED0AAOi9AAAEPgAAVD4AAMg9AAAwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=LiAHtgFyRkA","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4859728344586010931"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5461701676054485960":{"videoId":"5461701676054485960","docid":"34-2-12-Z0374FEEBC31EA7B3","description":"Welcome to Public webinars by Frappe! Kulkarni – Founder & CEO, Hybrowlabs Technologies | Specializes in ERPNext and automation 🔗 Get in touch Official ERPNext Website: https://frappe.io/erpnext...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3380818/b6a5461e2eb2391296488b69907c5608/564x318_1"},"target":"_self","position":"9","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWqYMI_Jz7w0","linkTemplate":"/video/preview/5461701676054485960?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Manufacturing in ERPNext and Theory of Constraints (TOC)","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WqYMI_Jz7w0\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFQoTNTQ2MTcwMTY3NjA1NDQ4NTk2MFoTNTQ2MTcwMTY3NjA1NDQ4NTk2MGquDRIBMBgAIkQaMAAKKWhoZnZiaWdnY3RiZHBvbmhoVUNuM2JWNWt4NzdIc1Z3dG5sQ2VFaV9BEgIAESoQwg8PGg8_E98aggQkAYAEKyqLARABGniB-wr-CQL9APIKBQEDA_4B7P4B8Pr-_gDzD_b0AwEAAPH2CvIIAAAAE_jz__0AAAAGDgj59_0BABwNCQAFAAAADf0E-gcAAAAOCwQACP8BAfz7CgQD_wAAEAAI-v8AAAAABQoDAQAAAO4aAQcAAAAAAvcGBwAAAAAgAC3gdcw7OBNACUhOUAIqcxAAGmAoEwAXB__axiAr5uDyyPcU8xz_-dsR_wUMABcY_tEE-sbGDCD_6NMc_bcAAAAZDtoTGgC9X-zM1AH4HO34vPUeI3_VCBQTAgvr88rR4iry_vkWKxIA7hjtDv_RI08vSxMgAC13xTw7OBNACUhvUAIqrwYQDBqgBgAAAEIAAATCAABYQgAA6MEAAARCAADgwQAAgEEAAOjBAAAUwgAAwMEAAHBBAADAwAAAYMIAACzCAAAwQgAAYEEAAJBBAAD4wQAAisIAAIzCAAAQQgAAmEEAAJDBAACQQgAAkkIAACDCAADOwgAAwsIAAIZCAACAQgAA-EEAAGRCAACAwAAAAMEAACjCAACgQQAAgD8AAAxCAABwQQAAoEEAACzCAABkQgAAUMEAAHDBAADAQQAAAEAAACzCAABAQAAANEIAACDBAACCwgAAAEEAAJDBAAAoQgAAuEEAAMBBAADUwgAASEIAAHDBAABQQQAAAAAAAMDBAACmwgAAEMEAAIjBAABEwgAAKEIAAAxCAACIQQAAuEEAAJjBAABkQgAAKMIAAFBCAADgQAAAiMIAAMBBAACIwQAAUMEAADBCAAAQwQAAmMEAAAjCAADIQQAAgEAAAARCAAAIwgAAHEIAANBCAABYwgAAkEEAAIxCAAAwQgAAEMIAAIjBAABYwgAAoEAAAFBBAACgQQAAPMIAAHjCAACmQgAA8EEAAETCAACgwAAASMIAACTCAAAswgAAgMIAAFRCAABAQQAAcEEAAKDBAADgwQAA-EEAADxCAAAowgAADMIAAAzCAADYwQAAQEEAADTCAACwwQAAQEEAAIJCAADQQQAAaMIAACDBAAAAwQAAQMEAAIBAAACWwgAAAEAAAPBBAADIQQAAEEEAAMDAAAAAwAAAqMEAAFDCAAAMwgAAIEIAAIBCAAAAQAAAMMEAAEDBAADEwgAATEIAAADBAABAQAAAoMAAAChCAACSQgAA4MAAAIhBAAA0QgAA4MEAAJTCAAAgwQAAaEIAAEBBAAAcQgAA4MEAABjCAABAwAAANEIAABRCAAD4QQAAHEIAAJDBAABYwgAAHEIAAEBBAADYwQAAEEEAAMBBAAAYQgAAAAAAAMhBAADgwAAA2MEAABTCAACAQgAAFMIAAABAAABEwgAAhMIAADDBAAAkQgAAoMAAADzCAAC4wQAAgEEAACjCAACAQQAA4EAAACTCAABIwgAAdMIAAMjBIAA4E0AJSHVQASqPAhAAGoACAABcvgAAuL0AAPi9AAA0PgAAsr4AAIA7AABAvAAAHb8AAKa-AADYPQAA-D0AAIC7AAA8PgAAJD4AANi9AABkvgAAuL0AAOA8AAAMPgAA8j4AAH8_AACovQAAEL0AAHC9AACGvgAAuD0AALi9AACivgAAUD0AAOC8AAAUPgAAqD0AANa-AAC4vQAAgj4AAOC8AAA0PgAATL4AAOi9AABQvQAAXL4AADA9AAAsPgAAuD0AAIa-AACKPgAAmD0AABA9AABwvQAAor4AAGS-AAAMvgAAmj4AAFQ-AABQPQAAqD0AAFc_AAAsvgAAlj4AAKC8AABAvAAA2L0AABC9AABAvCAAOBNACUh8UAEqjwIQARqAAgAAXL4AADC9AABwvQAAH78AANg9AABQPQAArj4AAHy-AADYvQAAHD4AAAQ-AADIvQAA4DwAAJK-AADIPQAAMD0AAEQ-AAApPwAAMD0AAK4-AABQPQAAVD4AADA9AADgvAAAEL0AAIg9AACgPAAA6D0AAOi9AACIvQAADD4AABw-AAAUvgAAZL4AABA9AADgvAAA2D0AAHw-AACuvgAAPL4AAFw-AACoPQAAiD0AAHC9AAD4PQAAyD0AAH-_AACGvgAAUD0AADA9AACKPgAAiD0AAFA9AAAQvQAAFD4AABA9AACAuwAAyD0AAEC8AACAOwAAqD0AAKg9AABAPAAAQLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=WqYMI_Jz7w0","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5461701676054485960"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1575842049800826348":{"videoId":"1575842049800826348","docid":"34-0-12-Z9995E37D34F9786C","description":"The best-seller “The Goal” by Eliyahu Goldratt described in the form of a novel how the Theory Of Constraints (TOC) could save a factory by quickly boosting its performance. But how exactly...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3070415/867f2c838e11536af9d667fcf624b6c6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/bNR6EgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcY5G85QN1g0","linkTemplate":"/video/preview/1575842049800826348?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Theory of Constraints applied to Production","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cY5G85QN1g0\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFQoTMTU3NTg0MjA0OTgwMDgyNjM0OFoTMTU3NTg0MjA0OTgwMDgyNjM0OGqIFxIBMBgAIkUaMQAKKmhobXR3eGtsdGh6a3lwZWNoaFVDdTJNeDd1eUVyaENVR0loMDBaTFFpURICABIqEMIPDxoPPxO0GoIEJAGABCsqiwEQARp4gfwR-Aj_AgD0AgwAAgT-Af8HCP_4_v4AAAr59fgE_gD9AgoACQEAAAcIBf0CAAAABg4I-vj-AQALDfsCBQAAABHp_Ab_AAAADw39AxH-AQH-AQ8OBP8AAA0BCgUAAAAA7P__A_0A_wD5EP0HAAAAABcJCgEAAAAAIAAttZPWOzgTQAlITlACKoQCEAAa8AF_DQQCoBkI-yH98QDxIxEBghXw_xb49gGt5A4CkwnR_gMOBgDu7g0AFvcz_-T_8f8e7-D_NfAQAAYPFQAnEPwBGAERAE3tAAAXCQD_DAHp_wIK_f8U-Q0AFPn__gYK8f8KFQQB2ATJ_xH_BwX_4hcDCQIGAPvq_wXs_OUE6xENAugA_QAt3wgD9gUA-Pkr-gDy2_kBBg_2AfLK-QIAEvn7CQAHBPTkCf_9I-4D9OPvA-UFCfcXFwAEBxUOBOMTA_4G6_j-APL-A_IOFAYd_QT-6eYT_fj0EPr0DuIDHvoFAPEM_PvpCPr32hMJDvLsA_ggAC11kzc7OBNACUhhUAIqzwcQABrAB4z2-L5eAiY88Q3qvB3iRDxCISI9J8CwPODi17x4tBA82JMGuytR9jxzvtg8OnR6vJxNl77qPVy5ZI8WvB8PvT57LKI9yDssvCbjWL4SyBu8Ksm6PGcno77OGbS6pSYeutogMz4mXha8l40OPekL4T2tHou8I9QxPJFWRjy0jqq8lIAdvRW2pb0ByhW9qcKfPMRb5z3qnQC9XylLuwRrwT0QmEG7YR4tvTkevbzmLni8UqhdvLoRlr0ZPAg8vn0HPYB_Cj4C_yo9NtUsO5rvuz2rbj882DttvPID_DtBTQi9s4mCvAYcOD1yRXO8DauTPMjw8zw0AGq9vJ_LO1UxFT2GMyQ9H0ufPPW8Kz7NLHg8-nq-PIsnzLt1jFC9yrqJPGJOK730fcC7wzQCPOc6KD0XNjk9H4LLu5O5A70VXh29o8SVuK06Rj3YXrA8op-EvFYNwjxoxTw9Hom4OzPrezz9gAu7hFOVPCJsnby5g_28d3u1vDvFCj5Wgyu9X_DlOz6NoDzmCYA7fvSXu9vMF71MZoY862SdO8pA1Dz3pPq7W_M-PK2aMT0DDJa92B9yPGNeRzykUDs9-a89uzfSQ71VwnK7ArpMu4tqNj1C-4W70j9aO02FyD3Rzqk8PMKGO89LJT03R2c8c-UiO9w2Ir1RqEI93eraO08CW70-SwY9Ox2GO95nRj0lo5S8qIvWOwAAjDelTsC8s17rOsQDLz1kvZI90wa4OdcGXbxnSka8wAI5u3_wuz3LzFY9tDQZOuGLwDwR_9C9ZAnCuD_ekjsQCM8888TWuLtg0D2SaSM9DKKTuCMFYD2sXAG8t5kZOBx37zz4ZmW8MWoCOp4Sa73yYyc8jR9AOTuYAz3OCvu7vTHruiLwUbwI19K8s3KrN-CiTr3uSKA9dAr7t7dulDzz9YY8OEFgOKDF0rz2IGm9GN-juZZTDD27N1A8kMk-uVEmnDtOtic6Pyo6Ny-Lub2lu6u8tuX7uIgjmb1WX8I8OyupOLUhNbwvy_C6XESeuLGFxTxGH5g8gJQ_uWdnbD0FTeu9XyY1OHey5Tvf-4s9WufUt3dld73x-Xy9YNZqOAEHI70frmu9Vr5ytuGIBD1JyQG9N_maNo9bgj3M8q-6QHIBuPGw2jwu0Mk8Zqk5uH5xib1rlbU9RnP6uNewhT2pFtG8p_hDN6EbUL2nHHi9LCICtuAfBLsEO169_X17t0obmLwZFT096pIrN1NTfL3w82Q9JnHDt_zqBb2GsLU8Wcpqt84YBj166_I8h7gJOCAAOBNACUhtUAEqcxAAGmBBAwAR6xvK7tpe7vXxsPESDRnyH84O_wTx_9sEzt39AMig_vv_MNAL_KEAAAACGMsvGwDLffnTtwXkFiXtsg_6738FFRbMvAc7-NjD-Pog3xXtWxQA7_ilKjT1vkIkNRAgAC3zmho7OBNACUhvUAIqrwYQDBqgBgAAoEAAAKhBAABkQgAADEIAAOBBAABAQAAAbEIAAEBAAACowQAAgMEAACBBAACAvwAA2MEAAJjBAACEQgAAXMIAAJDBAAAwwQAASMIAAIDCAAAEQgAAqMEAAJDCAAB4QgAAqkIAACDCAABowgAAwEAAABBCAAAsQgAAAEEAAIDAAAAAwgAAgL8AAJTCAAC4QQAATMIAAJRCAAAwwQAAgEAAAIhBAABgQQAAIEEAAKhBAAA4QgAA6MEAAHTCAAAAwQAAikIAANjBAADYwQAAsEEAAPBBAABAwQAAkEEAAGDBAABwwgAAAAAAAATCAACYQgAAAAAAAADAAAA8wgAAQMEAAEDAAAAQQQAAwEAAAAAAAABwQQAAAEAAAIpCAAAsQgAApsIAAM5CAAAgwgAAusIAAMDBAABQwgAAwMAAAKDBAABAwgAASMIAACDBAABgQQAA4EAAAJhBAABwwgAAQEAAAPBBAAAAQAAAAEAAAMBBAABAwQAA0sIAACBBAADmwgAAqEEAAOBBAABAQQAALMIAAKjBAABwQgAAZEIAAFjCAACkwgAAiEEAAGDBAADIwQAAEEEAAOBAAADAwAAANMIAADDBAACewgAAGEIAAPBBAAD4wQAAYMIAAADBAACAQAAAwMAAAGBBAABgwQAAisIAALBCAACQQQAAGEIAADDBAAAgwgAAWMIAAAxCAABgwQAAQMAAAKxCAABIQgAAAMIAAPDBAADYwQAAYMIAAADCAABIwgAA4MAAAGRCAABIwgAA2EEAAFBBAAAowgAAcEEAACBBAAAAwAAADEIAAHBBAADYQQAA4MAAAChCAAAAwQAAQMIAAKDCAACMwgAAZEIAAMjBAABwQgAAoEAAAJjBAAAAQgAAWMIAAMZCAACgQAAAmEEAAABAAABgwgAAQEEAAHzCAACAQQAAEEIAABDBAADIQQAAEMEAAFhCAAAUQgAA-MEAAJDBAACgwQAAJMIAAIRCAACAQAAAJMIAAJhBAABAQQAAYEEAAPDBAAAwQQAAkMEAAJBBAAAAwQAA0MEAAATCAAAcwgAAhsIAAHDBIAA4E0AJSHVQASqPAhAAGoACAAA8vgAAsr4AAAw-AAAwvQAAlr4AAJg9AADovQAAA78AALa-AADIPQAARD4AAPi9AADIvQAAnj4AAGy-AACovQAAuD0AAEA8AACoPQAAlj4AAH8_AADgvAAAiL0AAOA8AACGvgAAcD0AAKi9AABsvgAAPD4AADw-AADIPQAA4LwAAIq-AADgvAAAJD4AAFA9AABsPgAA6r4AAES-AADYvQAAmr4AALi9AAAQPQAAoLwAAES-AAAQPQAAoDwAAKg9AAAwvQAApr4AAMi9AAC4vQAAhj4AAK4-AABMvgAA4DwAAE8_AAAcPgAAhj4AAMg9AADIvQAAML0AALg9AABUviAAOBNACUh8UAEqjwIQARqAAgAARL4AACy-AADgPAAAK78AAGw-AADIPQAAPD4AAEy-AACYvQAAmD0AAKA8AADovQAAoDwAAJK-AADoPQAAED0AAJo-AAAxPwAA4LwAAMo-AAAwvQAAhj4AAKg9AACAuwAAgDsAABA9AACYPQAA6D0AAIA7AACAuwAABD4AAEQ-AAC4vQAAXL4AADA9AACYPQAAHD4AAFw-AACevgAAmL0AACQ-AAAwvQAAmL0AAEC8AABQvQAA2D0AAH-_AABUvgAAqL0AADw-AADYPQAAEL0AAEC8AAAwPQAAcD0AAFA9AADgPAAA2D0AAKA8AACgPAAAMD0AAIA7AADoPQAAqD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=cY5G85QN1g0","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1575842049800826348"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"13691971084643527631":{"videoId":"13691971084643527631","docid":"34-1-5-ZF93F112AF00B0552","description":"Software development organizations working in silos are often facing the situation of bottlenecks appearing on the delivery chain. The typical management reaction is to optimize locally, thus...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3117817/300f925c51667815f20d19d84ef5753b/564x318_1"},"target":"_self","position":"12","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmnP20bEJV80","linkTemplate":"/video/preview/13691971084643527631?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Theory of Constraints in Practice","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mnP20bEJV80\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFgoUMTM2OTE5NzEwODQ2NDM1Mjc2MzFaFDEzNjkxOTcxMDg0NjQzNTI3NjMxaq4NEgEwGAAiRBowAAopaGhqdGFhbHdhbmRzdXdyaGhVQ1NFa2dtekZiNFBuYUdBVlh0SzhkR0ESAgARKhDCDw8aDz8T6RSCBCQBgAQrKosBEAEaeIH0CPsH_QMA8gEPBPoE_wHxCvn8-f79APwF-v0GBP4A_wIG-f8BAAACB_8C_QAAAAUNCPr4_gEACwoMBgUAAAAV-fwA_wAAAAcH_wL-AQAA9_kFDgT_AAANCAEFAAAAAPsEBP0AAAAAABH9_wEAAAAP_QkEAAAAACAALSM_3Ds4E0AJSE5QAipzEAAaYPsTACn4Cu3b-Ez_--TMFgf6BgL76gX_AdQA6yLf9hwb2s4L7f8Ywx7xuAAAABcQ5TL-AOxUAM7lARUuCei3_hACf98dChkBCg_X6ebnGRLbFtke7gDv4REW4szpJBosPiAALUKaSzs4E0AJSG9QAiqvBhAMGqAGAADwQQAAyMEAAJ5CAAAAQQAAGEIAAAxCAACgQQAAgMIAANjCAACYwQAAOEIAAEBBAAA8wgAAIMIAABRCAABAwQAAKEIAABjCAABQwQAAJMIAAIBCAACgwQAAgD8AAIZCAAAUwgAAGEIAACDCAABwwgAA2kIAAABCAAA4QgAAXEIAAHTCAADAwAAAqEEAAFTCAACAPwAAjEIAADBBAADAQQAAisIAAOhBAACQQQAAoEAAAIC_AAAwwQAAOMIAAIDBAACIQgAAAAAAALrCAAB0QgAAMMIAAPhBAAAkQgAANMIAAFTCAADYwQAAGEIAAEBAAABAQgAAsMEAAKrCAAAAwQAAgEIAAMjBAACgwAAAoMEAAADBAADQwQAAoEEAANxCAAAgwQAAoEEAAKDAAACYwQAAUMEAACxCAABEwgAAgMEAAJLCAAAcQgAAEMIAACxCAABUQgAAYEEAAFBBAAAIQgAAbEIAADBBAADAwQAAQMAAAAxCAAAowgAA-EEAAJbCAACAQAAAikIAAHhCAAAgwgAADMIAAIBBAADAQQAAUMEAAGDCAAAAwQAAIEIAAIBCAACAQQAAnEIAADBBAACAQAAAUMEAAODBAACAQQAAiEIAABjCAABQQgAAMMEAAODBAAAwQQAAcMIAAFTCAAC-wgAAgD8AAMjBAACoQQAAAMEAAIDBAAAAwAAA4MAAADDCAAB8wgAAQMEAAKDAAACAQQAAfEIAAPjBAACAwAAAEMIAAMBBAAA0QgAABMIAAOBBAAAEQgAAEMEAAMDBAAC0QgAAUEIAAFDBAAAAwAAANEIAAATCAAAEwgAAUMEAAMBBAAA0wgAAgEAAAAAAAADgQQAAwEAAAMhBAACwwQAAAMIAALBBAABAwAAAgMAAAABCAAAQQgAAIMIAABDCAAC4QQAAFEIAAKBBAAAYQgAAGMIAAJjBAADgwAAAAEEAANBBAABowgAAuMEAAJrCAACQwQAA-EEAABRCAADgwAAAvEIAANDBAAAgQQAAYMEAAIjBAAAAQgAAoMEAAPjBAABAQAAAMMEAAIA_AABwwQAAuEEgADgTQAlIdVABKo8CEAAagAIAAGy-AAB0vgAAUL0AAEA8AAAkvgAAUL0AAFA9AAAbvwAArr4AAGw-AAAkPgAAyL0AAOA8AAA8PgAAmL0AAJi9AAC4PQAAqD0AAJ4-AAAlPwAAfz8AAMg9AACIPQAADL4AALq-AADgvAAAUD0AADS-AABAvAAAPD4AADQ-AABAvAAAbL4AAKC8AAAcPgAA-D0AAGw-AACOvgAA2L0AAPg9AAAUvgAAbL4AADA9AABQPQAAHL4AAFw-AADgvAAAyL0AAKC8AAABvwAA6L0AAKg9AAC6PgAAyj4AAJg9AABwPQAAeT8AAGS-AACiPgAA4DwAANi9AABAPAAAML0AAPi9IAA4E0AJSHxQASqPAhABGoACAABMvgAAUL0AAFS-AAAlvwAAqD0AAOC8AAAsPgAARL4AAKi9AAAEPgAAqD0AAPi9AACgvAAAkr4AANg9AABAPAAA6D0AACU_AADYvQAAkj4AAIA7AACCPgAAgDsAAOA8AAAQvQAA-D0AAFA9AADYPQAAgLsAAKC8AAAEPgAAFD4AADy-AABUvgAAUL0AAIA7AAA8PgAAPD4AAKq-AAA8vgAA2D0AAIA7AAAEvgAAiD0AAJg9AACoPQAAf78AAHy-AACgvAAAED0AACQ-AACovQAA4LwAAFC9AAA8PgAAUD0AAKA8AAAsPgAAoDwAADA9AACoPQAABD4AAHA9AAAEviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=mnP20bEJV80","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13691971084643527631"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17961204817337610477":{"videoId":"17961204817337610477","docid":"34-1-3-Z8B1832861BE4CF71","description":"Learn about the Theory of Constraints in this video from The Serious CTO. Discover how to focus on what improves things and optimize your processes for success. We make our videos available on a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1630121/7f1c07b9f689b72c50a7114a574594cf/564x318_1"},"target":"_self","position":"13","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKfPq6vC8roQ","linkTemplate":"/video/preview/17961204817337610477?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Theory of Constraints Finally Explained (Breakthrough Case Study)","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KfPq6vC8roQ\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFgoUMTc5NjEyMDQ4MTczMzc2MTA0NzdaFDE3OTYxMjA0ODE3MzM3NjEwNDc3aq4NEgEwGAAiRBowAAopaGh3eXppY3BpbWN3dW56aGhVQ2hfYlN5TF9Jb2EzdloyaDRyQ1FzRUESAgARKhDCDw8aDz8TvAKCBCQBgAQrKosBEAEaeIH0CPsH_QMA-_4C_wME_gH4DAD6-f39AOkB-Pv5_gEA_QMA-fcBAAD_9wACAgAAAO4A__v7AQAACw37AgUAAAAIAAQE_AAAAAUUAPr-AQAA-fn-BgP_AAAN8vkN_wAAAPLzBfsCAAAA_QwA-gAAAAAMBv3__PP-ACAALSM_3Ds4E0AJSE5QAipzEAAaYAwPAAksAwz29kbfAuPfDhEMAgPz1SsA5-IABir-3Qz_2MT9Df8XwSYCvQAAAPsW-BclANlYB_PNIfkZ-87DwRMmf_kZ5y3t8vgAyPP5EhrOHdoJLwDxE_YHBOAHRiQUDSAALQZHSTs4E0AJSG9QAiqvBhAMGqAGAABAwAAA4MEAAEBCAABAQAAAMMEAACBBAAAkwgAAjMIAAJBBAADAwQAAHMIAAJBBAACEwgAAgD8AACBCAACawgAAQEEAALDBAAAUQgAAIMEAALhBAADgQAAALMIAADBBAACgQQAAWEIAAEzCAACQwQAAgEEAADBBAAAwwgAAZEIAAMDBAAB0QgAAAEEAAARCAABAwgAA4EIAAFDBAADgwQAA-EEAABxCAACIQgAADEIAAHxCAADAwQAAHMIAADTCAAAkQgAAOMIAAIjBAAAAQQAAJMIAAIC_AAAQQgAAiEEAAMBBAACwwQAAKEIAAK5CAABcQgAAIEEAABBBAACgwQAAUMEAAPBBAABUQgAAiMEAAFjCAADAwQAAlkIAAIBCAACewgAAJEIAAARCAACawgAAnMIAAAhCAADAwQAARMIAAFzCAADIwQAAwEAAABxCAADIQQAA8EEAAKBBAABQQQAAmEEAAHDBAACKwgAA4MAAAFDCAABkwgAAMEEAAABBAADgQQAATEIAAExCAADAwAAA4MEAACBCAAAoQgAAKMIAAILCAABgQgAAQMEAAEBCAADAQAAAUEEAALDBAAAgQQAA8MEAAIC_AACCQgAAIMEAAIBAAABkwgAAQMAAAADBAAAkwgAAQMEAAHzCAAB4wgAAnEIAAKDBAADgQAAA2MEAAEDBAAC-wgAAuEEAAIBAAAAQwQAA6EEAAIDBAADgQAAAHEIAAGjCAADAwQAAiMIAAHRCAACoQQAAMEIAAADBAADAwAAAQEEAABBCAACIQQAAREIAAATCAAAAwAAADMIAALDBAABYwgAAYMEAAPjBAADgwQAAhMIAAADBAAC8QgAAAMAAAPjBAAAMwgAARMIAAPjBAABIwgAAGEIAAEDBAAAwwQAAAEEAAIDBAAAsQgAAAEEAABjCAAAUwgAAgL8AAJ7CAABowgAAQEIAAIpCAAAAwgAACEIAABjCAAC0wgAAdEIAAFTCAAAwwQAAIEEAAKBBAAAgQgAAYEEAALjBAACUQgAAMEEAAGDBAADYQQAAmsIAAARCAAAQwgAA0MEgADgTQAlIdVABKo8CEAAagAIAADS-AACqvgAADL4AAJ4-AADovQAA2D0AAOA8AAAlvwAAbL4AAEw-AADYPQAAhr4AAGw-AACOPgAA6L0AAIi9AAC4PQAAQLwAAIA7AACyPgAAfz8AALi9AAAwPQAATL4AAAe_AADYPQAAuL0AAOC8AABAvAAAmL0AALI-AABAPAAA5r4AAKA8AAAwPQAAyD0AAAQ-AAAQvQAADL4AAOg9AACmvgAAfD4AAJo-AACAOwAA-L0AAIY-AAC4PQAAFL4AAOg9AADKvgAAPL4AAIq-AADGPgAA-D0AAKA8AACgPAAAQT8AAPi9AABAPAAAqD0AAJa-AADYvQAAmD0AAHA9IAA4E0AJSHxQASqPAhABGoACAACCvgAARL4AABA9AAAhvwAAHD4AABQ-AACmPgAAfL4AAMi9AADYPQAAED0AACS-AAAQPQAAmr4AAJg9AABQPQAAij4AAEE_AAAwPQAAtj4AANg9AABcPgAA2D0AAHA9AACgvAAAQLwAABA9AAAkPgAAMD0AAJi9AAAEPgAAJD4AADy-AACuvgAABD4AAHA9AAAkPgAAiD0AALq-AADgvAAAND4AAOA8AABAPAAAML0AADA9AAAcPgAAf78AAHS-AABAvAAAMD0AAAQ-AABAvAAA-L0AAIA7AAB8PgAAmD0AAKA8AAA8PgAAgDsAAKA8AAAwPQAA4DwAAAw-AABAPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=KfPq6vC8roQ","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17961204817337610477"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3144238043201885304":{"videoId":"3144238043201885304","docid":"34-8-0-ZCB14ADA92F9A78C4","description":"Let's start with a bang: The Theory of Constraints can help you work smarter, not harder, and achieve better results with less effort. 💥 Now that we told you that, it's time to tell you why...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/760079/fdf83937ec110f351923821a39121d03/564x318_1"},"target":"_self","position":"14","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2isndtOUPNo","linkTemplate":"/video/preview/3144238043201885304?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Theory of Constraints: A Proven Methodology","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2isndtOUPNo\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFQoTMzE0NDIzODA0MzIwMTg4NTMwNFoTMzE0NDIzODA0MzIwMTg4NTMwNGquDRIBMBgAIkQaMAAKKWhodXNycXpnYnRzbGFmamhoVUNZOHN4MzhHWXpaMjAzR2tZa0RwZW5BEgIAESoQwg8PGg8_E5oCggQkAYAEKyqLARABGniB-AACBgH_APkIDfz7BP8BAg4G8_f__wDzDvb0AwEAAPL6CAIEAAAADf8MB_wAAAD3Bvr-8_8BABUD-wYEAAAAGgL9APcAAAATEgYK_gEAAPz8CgQD_wAAFwX-BgAAAAD3Agb1__8AAO4aAQcAAAAAEwsA-wAAAAAgAC30CdA7OBNACUhOUAIqcxAAGmAQDAAk9v_v-AAk-ADx6fMNEQgGDdoLAP3hAPkoAuLzDu_eBgAAFs4oAcsAAAAfB98U8wD1OwD51Bv2DhLs1PToHX8J_PsE9gYO6OjlEBnr6AvsLQ0A9wP_AhLuyCL7FCcgAC2_VYE7OBNACUhvUAIqrwYQDBqgBgAAAEEAAOBBAACwwQAAgEEAAEBBAAAAQAAAiEEAAEzCAAC4QQAAdMIAAHxCAAAwwQAAbMIAAIBBAAC0QgAAYMEAAIA_AACoQQAAoEEAAIDBAADwwQAAgMAAAMDAAABwQQAAaEIAAGBBAAAMwgAAlsIAAM5CAAA0QgAAGMIAAMhBAADAwQAAsEEAAFDCAACAwQAAKMIAALpCAAAUwgAADMIAALhBAACQQQAACEIAAABCAADgQAAAUMEAAILCAACQwQAApEIAABTCAAAowgAALEIAAADCAACIQQAA6EEAADTCAAA8wgAAwEAAABTCAAAUQgAAAEIAAMjBAABgwQAAisIAAIA_AAAgwgAAwEEAAFjCAACAwQAAEMEAAGRCAABUQgAAhMIAAKZCAACgQAAAtsIAACzCAACgwAAAAEEAAKBBAAAkwgAA4EAAAJjBAAAkQgAAwMEAANBBAADYwQAALEIAAMJCAACWwgAADMIAAIpCAAAAQQAAUMEAAKBAAAAswgAAIMEAAGRCAADAQAAAMMEAAILCAAC0QgAAiMEAAGTCAABAQAAA-EEAABBBAAAgwQAAmMEAAIBCAADgwQAA2EEAAIhBAABMwgAA0EEAABhCAABQwQAAgMEAAMDAAABMwgAA4MEAABDBAAAYwgAAUEEAAHRCAACgwQAAIMEAAODAAAD4wQAAusIAAGBBAAAQwQAAYEEAAKDAAAAoQgAA-MEAAMDAAAAwwQAAlMIAAIzCAABMQgAAjkIAAFRCAACgwAAAoMAAAADAAACowQAAuMEAAEBAAAB8wgAAwMAAAMjBAAAAQgAAUMEAAETCAACQwgAAcMEAAN7CAAAwwQAArkIAAGzCAABgQQAAPMIAABDCAAAQwgAAqMEAAEBCAABcQgAAOEIAAATCAACQwQAAyMEAAMBAAADAwQAAkEEAAARCAACYQQAAQEAAAHhCAAAsQgAAAMAAAGBBAADAQQAAMMIAABhCAACAPwAAVMIAAHDBAADQQQAAuMEAADDCAABkwgAAwEEAAEBAAABQQQAAQMAAACzCAAAwwQAARMIAAFjCIAA4E0AJSHVQASqPAhAAGoACAAAkvgAALL4AAJi9AACIPQAALL4AABS-AACgPAAA5r4AABy-AAC4PQAADD4AAKA8AACKPgAAmj4AANi9AADgPAAAmL0AAOg9AABwPQAA9j4AAH8_AAAkvgAA-D0AAJi9AADGvgAAqD0AAIi9AADovQAAML0AAKg9AABEPgAAML0AAKK-AADYvQAA6D0AAHQ-AAB8PgAAor4AAGS-AABAvAAAPL4AAEC8AACCPgAAoDwAACS-AAA0PgAAgDsAAFC9AAAQvQAApr4AAJK-AABQvQAA0j4AAJo-AABQPQAAqD0AAD0_AAD4vQAAdD4AABQ-AAAUvgAAuL0AADC9AACAOyAAOBNACUh8UAEqjwIQARqAAgAANL4AABC9AACovQAALb8AAOi9AACgPAAAnj4AAI6-AAD4vQAARD4AAKg9AAB0vgAAQLwAAJa-AACoPQAA4LwAAMg9AAA5PwAAQDwAAMI-AADIPQAAgLsAAIi9AACgPAAAQDwAAHC9AABAvAAA-D0AAEC8AAC4vQAA2D0AANg9AABQvQAATL4AABw-AACgvAAAJD4AAJY-AACmvgAAiL0AAIY-AACIPQAAED0AAPi9AAAwPQAABD4AAH-_AAAkvgAAML0AAAS-AABsPgAAuL0AAJg9AABQvQAAcD0AAIg9AACAuwAApj4AAHC9AADgPAAA-D0AAOg9AABAPAAAmD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=2isndtOUPNo","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3144238043201885304"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12435632200560234244":{"videoId":"12435632200560234244","docid":"34-4-4-Z417146776A8E0609","description":"Elliot introduces the Theory of Constraints by Eli Goldratt. He covers goals, constraints, focusing steps, changing steps, balanced factories and statistical fluctuations. The method of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1548413/a82e121b92c7968d8efc068a5318ff60/564x318_1"},"target":"_self","position":"15","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeQqtdN4As_A","linkTemplate":"/video/preview/12435632200560234244?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Theory of Constraints Introduction","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eQqtdN4As_A\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFgoUMTI0MzU2MzIyMDA1NjAyMzQyNDRaFDEyNDM1NjMyMjAwNTYwMjM0MjQ0aq4NEgEwGAAiRBowAAopaGh3cHJyaWJuZmtybWx6aGhVQ2JvRlFrcVlrVVc5UmRudmpid3llcGcSAgARKhDCDw8aDz8TtgOCBCQBgAQrKosBEAEaeIH0CPsH_QMA9AQFAfkD_wH4DAD6-f39APYH_P7_Av8AAfkA9_oBAAAKAAIB_gAAAPwECPL7_gEAEQYEBAQAAAAV-fwA_wAAAA4L_AP-AQAA9_kFDgT_AAAIBQQBAAAAAPUA__oDAAAAABH9_wEAAAAI_gQGAAAAACAALSM_3Ds4E0AJSE5QAipzEAAaYCQWABn487viBUXq-_mxChUBDwMO2Br_39P_DS_B4Qjw4cT97P8AsSEDrgAAAPAb2yrhAOFt8NPHHQ48A_LGABc2f_sa9Qfd9BLe1O7kJSvTHesiFwDZ9QYsA7_vUh1UHyAALYmmKzs4E0AJSG9QAiqvBhAMGqAGAADAwQAAHEIAAERCAACAQQAA4EAAAODAAADoQQAAAEEAAMDAAABswgAAIEEAAIjBAAAkwgAAvsIAAGxCAACMwgAAFEIAAADBAAAAQQAAbMIAAEBBAAAgwgAAgD8AAIpCAACgQgAARMIAAEDBAAAwwgAAuEEAACBBAABAQQAAXEIAAJDCAAAQQQAAHMIAAEDBAAC4wQAAgEEAABBCAABwQQAAAAAAAHBBAACYQQAAAEEAAIC_AADgwAAAdMIAAEjCAAA4QgAAUMEAAODBAAAIQgAAkMEAAOhBAAAAAAAAuMEAAPjBAACAQQAA6MEAAIBCAACgwAAAUMEAAKDBAAAwwgAALEIAAEDAAAD4wQAA0MEAAEDAAAAAQgAAsEEAABRCAAAUwgAA_kIAAKBAAADAwAAAqEEAAMjBAABAQgAAAEEAALjBAACIQQAA-EEAAExCAADgQQAAaEIAACjCAACYQQAAPEIAAILCAACgQAAAQEIAAABBAADwwQAAAMIAAPjBAAAgQgAAwEEAAMJCAADIwQAAhMIAACRCAACMQgAAjsIAAIzCAACAwAAAlMIAANBBAABEwgAAcEEAANDBAAAAQQAAYMEAAKLCAABcQgAAFEIAAEzCAABgwgAAGMIAAFDBAAAAAAAAkMEAAABAAAAwwQAAMEEAAADAAACAPwAAXMIAAODAAAB8wgAAJMIAAEDBAACAwAAAkEIAAOhBAACQwgAADMIAAKbCAADYwQAAvsIAAKBAAAAYQgAAJEIAAIjBAACYwQAAUEEAAJjCAADoQQAAQEIAABBCAABYQgAAgMAAAADBAADwwQAAmkIAAIhCAAAgwQAA9MIAAAjCAACIQgAAqMEAAHDBAAAwwgAAAAAAALDBAACoQQAAQMEAAKBAAABwQgAAwMAAAJjBAACgQAAAIMIAAIDBAACgQAAAgMAAAIDBAAD4QQAAqkIAALDBAABQQQAAYMEAAAjCAADoQQAAEEEAADDCAADEwgAAAEIAAIDAAAAAQQAAIMIAAMjBAAAcQgAAYEEAACBCAACAQQAASMIAANBBAAAcwgAAwEEgADgTQAlIdVABKo8CEAAagAIAABy-AACivgAAQLwAAEA8AADIvQAAcD0AAHA9AAAbvwAAwr4AAAw-AABcPgAAgDsAAPi9AACyPgAA6L0AAAS-AACAOwAAoDwAAAQ-AAAZPwAAfz8AADC9AABAPAAAmL0AAMK-AABQvQAAgDsAAAy-AABkPgAAFD4AAEw-AADYvQAAkr4AAJi9AABMPgAABD4AAEQ-AAC2vgAAgr4AAAw-AABEvgAAXL4AAIY-AABAPAAAcL0AAAQ-AAAQPQAAoDwAAAw-AADqvgAAor4AAMi9AACCPgAA1j4AABy-AACoPQAAWz8AADC9AACoPQAAED0AAIi9AAAQPQAAuD0AABA9IAA4E0AJSHxQASqPAhABGoACAAAUvgAA2L0AAKA8AAAhvwAAJD4AAIg9AABcPgAAhr4AAOi9AAA0PgAAQDwAACy-AAD4PQAAbL4AAOg9AADgvAAAZD4AADM_AADIvQAApj4AAKi9AAA8PgAAcD0AAEA8AADgPAAAqL0AAMg9AACIPQAAuD0AAHA9AAAEPgAAFD4AAHy-AAA8vgAAmD0AAIg9AAA0PgAAPD4AAKa-AADIvQAA6D0AABA9AAC4vQAAiD0AALi9AADIPQAAf78AAAy-AADYvQAA6D0AACQ-AABwvQAAiD0AAKC8AABwPQAAUD0AAFA9AAAsPgAAML0AABC9AACoPQAAHD4AAAw-AADovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=eQqtdN4As_A","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12435632200560234244"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11266653543367340230":{"videoId":"11266653543367340230","docid":"34-7-16-Z5AE6BDFCC857E680","description":"Dr Lisa Lang presents the Theory of Constraints conflict resolution process using the evaporating cloud. This process is just part of the full TOC Thinking Processes. You can download the 1 page...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1370527/7f0a0d9c9dd8b286de90a92dac2e21ad/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/DtnlaAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqHvmX0fq-Yo","linkTemplate":"/video/preview/11266653543367340230?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Theory of Constraints Conflict Resolution Evaporating Cloud - Thinking Processes","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qHvmX0fq-Yo\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFgoUMTEyNjY2NTM1NDMzNjczNDAyMzBaFDExMjY2NjUzNTQzMzY3MzQwMjMwaq4NEgEwGAAiRBowAAopaGhuZXVoYXZrc2xidnJnaGhVQ0VaQS1BVTdFaklEVnAwTjZKLW5YUkESAgARKhDCDw8aDz8ToB-CBCQBgAQrKosBEAEaeIH7BPsAAf8A7P8T-QcAAAAPAxMB9wEAAOIF_QEA_AIA-QUIBPgBAAAHCQcFCwAAAAAFCv_6_gEAFxD2CAMAAAAa9vQJ_QAAAA8M-wP-AQAA_PcC_wP_AAAA__P6_wAAAAAEBPb7_wAAABL8_wEAAAAeFf0DAAEAACAALe3fzjs4E0AJSE5QAipzEAAaYA8fABIcBv_jASvxAwTj_AT_-AL19goACPsA_w4F7RUD5Ob39QAH3hb42gAAAAoE4ST7ANotAvHk9AAF-_H2-P8ef_gGEB4CEffx_gvvEgH88e8KBwDu9BUQA_4IKg8XECAALSWJmjs4E0AJSG9QAiqvBhAMGqAGAABIQgAAwEAAAIxCAACAvwAAoEAAAIZCAACYQgAAkMEAALLCAABwwQAAksIAALjBAAAswgAAMEEAAAxCAAA8wgAAgEAAABDCAADgQAAAwMEAALjBAADwwQAAYMEAAAhCAAAQwQAAUMEAAATCAACowQAAyEEAAFBBAACGQgAAtkIAACDBAABkwgAAXMIAAHDBAAA0QgAAikIAACBBAABUQgAAIMEAAGhCAAC4QgAAoMAAAIDAAACgwQAAgL8AADxCAAA8QgAAoEAAAFzCAAAcQgAAMMEAAJBBAAAEQgAAjkIAAKTCAAAgwgAA6MEAAIRCAAAgwQAADMIAAIrCAAAEwgAAVEIAADzCAACgQAAATMIAAIA_AACAwQAAEEEAAIBBAAAMQgAAgMAAAI7CAACuwgAAfMIAAADBAACIQQAANMIAAKLCAAB8QgAAIMIAAPhBAADgQAAAqMEAAIhBAACiQgAAuEEAAIC_AAAQQgAAwkIAAFBBAACgwQAAkEEAAADAAADgQAAAGMIAAFBCAAAgwgAAgEEAALDBAAA8QgAA2MEAAChCAADgQAAAuMEAAFBBAACowQAA4EAAAGRCAACAQQAAEMEAADBCAADAQQAAgEAAABBBAACYwQAAMEEAAFTCAABkQgAAfMIAAKjBAABYwgAASMIAAODAAACwQQAAYMEAAJjBAACWwgAAMMEAAEBAAABgQQAAuEEAACBBAABQQQAAoMEAAIrCAACQQQAAgsIAAGDBAACKQgAAMEEAAAzCAABwQgAAPEIAAAjCAAAgQgAAIMEAACBCAAAAwQAAgEAAAIzCAADAwQAAgMAAALhBAABgQQAAsMEAAOBAAAAUQgAAIMEAAJDBAACIwgAAKMIAAMDBAAAwQQAAaEIAAPBBAABAQQAAIMIAAFBBAABAwAAAZEIAAEDAAAA0wgAAoMEAAHBBAADAwQAAgEEAAIC_AACqwgAABMIAAIBAAABAQAAAOEIAAEjCAAB8wgAAksIAAOhBAADIQQAAgEEAAMDBAAC0QgAAAEAAAKDBAABgQgAAQMIAANDBAABgwgAAkEEgADgTQAlIdVABKo8CEAAagAIAAEy-AAAwPQAAQLwAAHA9AABQPQAARD4AABC9AAALvwAAmr4AAIo-AACgvAAAoDwAAJi9AABMPgAA6L0AADC9AABcPgAAoLwAALi9AADCPgAAfz8AAFC9AAAQPQAAyL0AALq-AAAkPgAAUL0AAAy-AACAuwAA-D0AABQ-AACYPQAAgr4AACS-AACIPQAA2L0AADQ-AACAuwAARL4AADS-AADYvQAAiL0AAOg9AACoPQAAML0AADw-AAAEPgAAVL4AAEC8AACWvgAAQLwAAJi9AAB8PgAArj4AANi9AABAvAAAGz8AAOA8AABwPQAAZD4AAKi9AAAsvgAAuD0AANi9IAA4E0AJSHxQASqPAhABGoACAADOvgAAgLsAAIC7AAAZvwAAJD4AACS-AADgvAAAJL4AAHA9AACgPAAAHL4AAFC9AADgPAAAfL4AADA9AABQPQAAFD4AABs_AABAPAAAlj4AAKg9AACCPgAAcD0AABC9AAAkvgAAFD4AALg9AAC4PQAAUL0AAFA9AAD4PQAAbD4AAPi9AAAkvgAAyL0AACw-AAA8PgAAij4AAIa-AABwvQAAUD0AAIi9AACAOwAAoDwAALg9AAC4PQAAf78AAEy-AAA8vgAA4DwAAPg9AAD4vQAA6D0AANg9AAAsPgAAmD0AAOA8AABAvAAAuL0AAEC8AADYvQAAJL4AAEC8AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=qHvmX0fq-Yo","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["11266653543367340230"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17894065057241725856":{"videoId":"17894065057241725856","docid":"34-7-2-Z5614473A4CBE121D","description":"Here we explain the many techniques associated with the theory of constraints. Visit https://www.ForgeProgress.com to sign up for your Lean Six Sigma Yellow Belt Training and get certified by the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3373593/f468bd4eb9bb5ea2dfd2a214fa76d546/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Ugo9SQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCRQ42WyMMmk","linkTemplate":"/video/preview/17894065057241725856?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Theory of Constraints (TOC)","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CRQ42WyMMmk\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFgoUMTc4OTQwNjUwNTcyNDE3MjU4NTZaFDE3ODk0MDY1MDU3MjQxNzI1ODU2aogXEgEwGAAiRRoxAAoqaGhsZHprdGhzcGlueXF1YmhoVUNzdXUyREpJeDF6TDduU3BWM3FZd3lnEgIAEioQwg8PGg8_E6kBggQkAYAEKyqLARABGniB8_8DC_0DAO8MB_f9AAEA6wP8-vv__wD0Dvf1AwEAAPv5CvoBAAAACgACAf0AAAAFDQj6-P4BAA4N_f74AAAABP_9AgIAAAANCgMACP8BAfn4_gYD_wAACwT5BQAAAAD8Av_uAAAAAAAX9wsAAAAADgUCAwAAAAAgAC1Csds7OBNACUhOUAIqhAIQABrwAX_qDwG0Hfv-OPMIAAgP9AGFAAL_TxniALb7GACYEPz_5iX4_9Pr9wAX4QUA5Q8v_yD28P8_DCYA--gbADYBFADzAxUAUernABoFGAENAef_Bgrl_xHoDP8g6vUA7RsM_gAJF_3d9-cADPz_APz3BgQMKgUCEgsgAwABDvzSGvn_DQECAyf1Bf_7BwEC-R4YBOvx6vzx9PwGAuvxA_cRCwMXBvIAAPT6_xT-9QII8APw8CIM-B8DDPj49uD3-A4fAvcEE_P_F_EI1xj59Bb1DQcU9g0E0OoAAfMP3wP-9e384gsB8_cYCPznFw0HABX_-yAALfRWKjs4E0AJSGFQAirPBxAAGsAHdcsCv4RVKz2YQQa9tGREPJdKmT3TjtE8Xh4hvZxT5jsq4rQ80WDuPFcSLz0-FHu9mx2hvkahm7zIZ6g83SefPhnrdj2UDZA8I9cdvj1S8zzgFxI9FAdQvpN2fjyKmh69R8hQPkqnP7xfUkY8fnl8PRnFsrwWnjw8b7EMvVZbG71SOMy8mK1rvRflQ728SQK9ZeQcPoZisb3CVNC6GFodPmoHcbu0hRA88vhMvUITcTo4zre7dvk7vf_jKTxLTUw84pIDPoejkDw4D0w8IZTXPevidj0CmR88nPrAPBoAhbxDtmI8JkCoPZCoKz1v0a68GrWcPTHwt7ww4Sc7bazkvaYRLj2UTsE73bQZPj0W0TwDYPq7W3q0vPCdvTxRguM8qzHXvKKlIT268Ic7Vkt1PUEalL2rRxS8IKKHPPmkbj2gSIG8t-5KOgLxHTy0vxq8gIA1PNzxBj0lB6q73CMjPFHTEz0cu9-8Ig9uvT1ZG70dg-M6uakxPkiYuL0Jel68opknPWD7brxnzt07thQLPZFUgL3la4W80Y-ru-Q0H72ykTW8rzSaPar0c723JCw8dahLPAx_zD0vAU-7OcV0vKjOOb0hs_G7wc09vDN7qry-kRA8WrjsPfiwcjwvoDw7v2unuzrDuTzWNX-8xJJ2O99vpD1cQMM68uQfvbg2t7tRyGe7jyMOvDDuKzyZDj47bJ45vbTGJb2zKnw7XrOBPP5G-bv8XMg6PUoCvHwsfbwq1Ac8eCY0PDyqUDwDrze7eW0gPWGPtL1b0Jc5u87tO1OFFT2Cb7-3Ru8vvHu0ozo2ey85udJhPS7elL1zT904ZwEkvIl8lzyDaKU3pe8cPFZfwjwFWLu6RX03vJ32VD3iMn863BSqvcNJmjw1oqy6vMKMvRGFvzv1QsS4ttA6PQjSAL0l9xQ3sq-GvChPNL3tkgI6WHIVvcKSIb0R6Kw5HzQWPfGv7zyaA4k4q8wKOsurKb0JVcK3jvZpPXkIjj2KXZ44I72IvdhZPj3sirA49mnLPLE-FL2CTOq3mgcQPd44yb0INPs2QzQfva66KzssPek4yTirvfyUPr1TlPu3ibbjvKyPh7wU2v04wvPau2JN5bwcBcS3b08LPWe4AT0wY5g4gpESPWV74zr4uIO4JlOFvEhpGz29IYC31TuBPO89h73Nk783MyslvE7VPTxAHqM3uHMBPcwrgr0vZnS4mQ6dvOWooj38XTA4BwunvL387j2DtB65j6-YvFYDXj2d2Yu4e44jvUQ0er3L6BC3IAA4E0AJSG1QASpzEAAaYEgAAB7qB7vL9G7kBOq6CSju8v8T3yn_EuX_7iHI-QAQ1sEA4v8G0BcFowAAABYavw8TAPF_18TnGu9DEL6a_yULduYnOgnZByPeuc3-8-ejKOQ8OQD3-KknOdXwQiVGBCAALXb4FTs4E0AJSG9QAiqvBhAMGqAGAAAswgAAIMIAAIJCAAAgwgAATEIAAKhBAAAwQQAAisIAAJzCAABAwQAAbEIAACDCAADQwQAAYMIAAJBCAACQwQAAYMEAAMBAAABYwgAA2MEAADDBAAA0wgAAAAAAAGhCAACAQAAAYEEAAIDBAABAwgAAgkIAACDBAAAIwgAAiEIAAGDCAADAwAAAwEAAADjCAAAwQQAAsEIAAEDBAADQQQAAkEEAADhCAABsQgAAmEEAAPBBAABAwQAAAEIAAADAAACYQgAAIMEAABTCAABwQQAAoMAAABDCAACQQgAAgL8AADDCAADAwQAAQEEAAKBBAACgQQAAKEIAAEDAAABIwgAAAEEAAHDCAACIwQAAoMEAAKDBAADQwQAAXEIAAIRCAACWwgAAMEIAALhBAACywgAAAMIAAEhCAABcQgAAAMIAANDBAAAYQgAAKEIAAIDAAADQwQAAYMEAAAhCAADEQgAASEIAABDCAAAYwgAArEIAAFDBAADQwgAAwEEAAKDBAABAwAAAmEIAAEhCAAAQwgAAgEAAAHBBAAA4QgAAisIAAATCAACkQgAAAEEAACxCAAAAQQAA4EEAANBCAADIwQAA2MEAAABAAAAAQQAAkEEAACBBAADAwQAAqMEAABjCAABQwQAAOMIAAHDCAADgQAAAKEIAAAxCAAAMwgAAwMEAAITCAACgwQAAgMAAACBCAAC0wgAAkEEAAOhBAAAQQQAATEIAAKhBAABQwgAAlsIAAGDBAAC4QQAADEIAAFTCAAAYQgAAwMAAAIrCAADoQQAAEEIAAJhBAAAgwQAAAMAAACBBAAAkwgAAAMEAAHBBAABAwQAAAAAAAJjBAAAAQAAAEMIAAKBAAADIwQAAwMEAAETCAAAIwgAAZEIAAIhCAACAQAAAAMAAAFDCAAAAwAAASMIAAKjBAAAUwgAAUEIAAEzCAAAUwgAAgMAAAABCAAAgQQAAgMAAAGDBAACYwQAAuEEAAMBAAADwwQAAQEIAAADCAAAYQgAAaMIAALLCAADoQQAAgD8AABDBAAAAQAAAAAAAAMhBAABgwgAAOMIgADgTQAlIdVABKo8CEAAagAIAAKK-AACOvgAAED0AABA9AADYvQAAoLwAADC9AAAPvwAA1r4AAKg9AADoPQAAoLwAAHC9AABkPgAA-L0AADy-AAAwPQAAqD0AAEQ-AADSPgAAfz8AAKA8AABQvQAAyD0AAJ6-AAAQvQAAQDwAAFy-AAAEPgAAFD4AAAw-AACAOwAAdL4AAEy-AAA0PgAA6D0AAAQ-AADavgAAZL4AAKg9AAAMvgAAJL4AANg9AACAuwAArr4AAJo-AABAPAAAHD4AAIi9AACavgAABL4AANi9AACmPgAArj4AABy-AABQPQAAaz8AAIC7AABUPgAAqD0AADC9AACYvQAAML0AAHC9IAA4E0AJSHxQASqPAhABGoACAACSvgAA4LwAAEA8AAAvvwAAHD4AAKA8AACePgAApr4AAKC8AABUPgAAUD0AAIi9AADIPQAAbL4AAFA9AACAOwAAVD4AACc_AAAQvQAArj4AAEC8AABsPgAAED0AABA9AAAQvQAAmD0AAAw-AAAcPgAA4DwAAKC8AAAEPgAA-D0AAJi9AABsvgAAoLwAAKg9AAA0PgAAPD4AAIa-AAC4vQAATD4AAKA8AACAOwAAED0AAEC8AAAwPQAAf78AAAS-AABwvQAAdD4AAGw-AACAuwAA2D0AAEC8AADIPQAAUD0AAIA7AAD4PQAAEL0AAAS-AABwPQAAqD0AALg9AAAQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=CRQ42WyMMmk","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17894065057241725856"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9577946291816558100":{"videoId":"9577946291816558100","docid":"34-4-12-ZCE722A7F80AEEC22","description":"The VAT factory types are the Theory Of Constraints’ powerful classification system of the different kinds of industrial manufacturing systems, they determine how plants should be analyzed and how...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1012391/dbcc7b6383eb7e9d93d33f68a06079c5/564x318_1"},"target":"_self","position":"18","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dxc3dmjSUXdA","linkTemplate":"/video/preview/9577946291816558100?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"VAT factory types of the Theory Of Constraints","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xc3dmjSUXdA\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFQoTOTU3Nzk0NjI5MTgxNjU1ODEwMFoTOTU3Nzk0NjI5MTgxNjU1ODEwMGqvDRIBMBgAIkUaMQAKKmhobXR3eGtsdGh6a3lwZWNoaFVDdTJNeDd1eUVyaENVR0loMDBaTFFpURICABIqEMIPDxoPPxPnAYIEJAGABCsqiwEQARp4gfoHAAb6BgDxCwsC-wP_AQQAAAL5__4A7Q79_fv_AAD7-Qr6AQAAAAQAAAEEAAAA_AQI8_v-AQAWCgIMBAAAAAz7AAABAAAADQv8A_4BAAD9_AkEA_8AAAADAgH_AAAA-wQE_QAAAAAAEf3_AQAAAA_-CQQAAAAAIAAtK_XjOzgTQAlITlACKnMQABpgBBUAFwcK-ekIJPQO6eIKEvYV_f_y_gAA4QD9Ge7fBhXS0wAOAA_bDvDPAAAACATxCucA8Doe4d78DSDvEdn1DQJ_8xAGIQgOAuTf1_IdB-MC7x3_AOgR-hYE5uYrJCcSIAAtrfaCOzgTQAlIb1ACKq8GEAwaoAYAAJjCAADAwAAAgEIAAKDAAADAQAAAEEEAAKhCAACYwQAAdMIAACDBAABoQgAAIEIAALjBAABAQQAAiEEAAADAAACAQQAAdMIAAJjBAABAwAAAMEIAAMDBAADowQAAdEIAAGRCAADwQQAAZMIAAEDAAAA8QgAAUEIAAJ5CAACgQQAANMIAABjCAADQwQAAyEEAAMBBAAAEQgAAcEEAAGTCAAA0wgAA8EEAAKDBAADAQQAAAMIAAHBBAAAwQgAAdMIAAKBAAABkwgAAEMEAADBBAAAwwQAAHEIAAERCAAAAwAAAZMIAAABBAAB4QgAAQMAAAIBAAABQwQAAWMIAAPDBAACQwQAAskIAACDBAACAwAAAcEEAAHRCAACAPwAANEIAAOjBAAA8QgAA4EAAAKzCAACgQAAAcEEAAIzCAACUwgAAMEEAADBCAABMwgAAOMIAADRCAABgQQAAoMAAAJhBAABwQgAAQMEAADhCAADAQgAAkEEAAADAAABwQQAAbMIAAPBBAADgwAAAMMIAABRCAACgwQAA8EEAAGRCAAAAQQAAvMIAAARCAADQwQAAGMIAAABCAADQQQAAyEEAAFzCAAA4wgAAKMIAAEDBAADAQAAAEEEAACjCAACAQQAARMIAAEBCAAAYQgAA2MEAAEDCAABgQQAAYEEAAGBCAABswgAAIEIAANBBAAAoQgAAXMIAAFzCAAAMQgAAcEEAAKBBAAAAQgAAHMIAAIDBAACUwgAAAMAAABDBAACwwQAAeEIAAOhBAABgwgAA2EEAALBBAADAQQAAYMEAALjBAABAwQAAPMIAAJjBAAA0QgAAwEAAAKbCAAAowgAAQMEAAIJCAAAEwgAASEIAAODAAAAAQgAADEIAADRCAAAAAAAAIMEAAKDAAADAQAAAksIAAIRCAACAQgAAgMAAAIjBAABIQgAAmkIAAIDBAABAwAAAlEIAADjCAADowQAAlsIAAOjBAABsQgAAGEIAADDBAADgQAAAEEEAAADBAABQwgAAFEIAAFTCAAAoQgAA6EEAAGBCAAAwQQAASMIAADDBAADgwSAAOBNACUh1UAEqjwIQABqAAgAAsr4AADy-AAC4vQAALD4AAGS-AAAcPgAATD4AABO_AADKvgAAjj4AAMi9AABQPQAAoDwAACQ-AABcvgAA6L0AABC9AADgvAAAdD4AACs_AAB_PwAANL4AADA9AAAEvgAAJL4AAJg9AAC4vQAAir4AAOg9AAC-PgAAcD0AALg9AADyvgAAEL0AAHA9AAAUvgAAhj4AAJq-AAAsvgAA6D0AAFy-AADYvQAAXD4AANg9AACWvgAAFD4AAOC8AADgvAAATL4AAL6-AABMvgAAPL4AAIY-AACmPgAAyD0AAMg9AABhPwAALL4AAGw-AACoPQAA6L0AAMi9AAAwvQAA-L0gADgTQAlIfFABKo8CEAEagAIAAGS-AAAwvQAAUL0AACu_AADIPQAA4LwAAII-AACOvgAA2L0AAAQ-AAAQPQAAVL4AADA9AAC6vgAAuD0AAIA7AACKPgAAGT8AANg9AACSPgAAgDsAAKo-AAC4PQAA4DwAAHC9AAC4PQAAoLwAAPg9AACAuwAA-L0AAAw-AAAMPgAAyL0AACS-AABAPAAAgDsAAKo-AABcPgAAtr4AADy-AAAcPgAAND4AAKi9AADgPAAAoLwAAEw-AAB_vwAAVL4AABC9AAAkPgAAZD4AAJi9AABQPQAAmD0AAMg9AABwPQAA4DwAAIg9AAAQvQAAqL0AAKA8AADYPQAAMD0AAIC7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=xc3dmjSUXdA","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9577946291816558100"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12318776969907359429":{"videoId":"12318776969907359429","docid":"34-6-17-Z2426E44255898542","description":"The chain analogy is often used in helping people understand Dr Eliyahu M Goldratt's Theory of Constraints. There's more to the Theory of Constraints chain analogy than you might think.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4428155/6f7826432ac3f823a92c18e8ee3b3a8a/564x318_1"},"target":"_self","position":"19","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCorCHcxSn2Q","linkTemplate":"/video/preview/12318776969907359429?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Theory of Constraints Chain Analogy - 5-minute Maximizing Profitability Excerpt","related_orig_text":"Theory of Constraints","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Theory of Constraints\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CorCHcxSn2Q\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxOTI3MjY0ODUwNzk0Njg4MTE5ChQxMjU1NzA4MDEzODI0Nzg5ODkxOQoUMTIzODQwMzgwNjU4MDMzODUxMzYKEzMwMjc3NjIyNjMyMDE0OTc0MDQKFDE2NDUyNDk3NzEyNjM3NzM1NDM0ChQxNjQ0MjE2ODM0MDY3OTgwMzYwNQoUMTE3NTU2MDI3ODQxNzgyODQwNzcKEzQ4NTk3MjgzNDQ1ODYwMTA5MzEKEzU0NjE3MDE2NzYwNTQ0ODU5NjAKEzE1NzU4NDIwNDk4MDA4MjYzNDgKFDEzNjkxOTcxMDg0NjQzNTI3NjMxChQxNzk2MTIwNDgxNzMzNzYxMDQ3NwoTMzE0NDIzODA0MzIwMTg4NTMwNAoUMTI0MzU2MzIyMDA1NjAyMzQyNDQKFDExMjY2NjUzNTQzMzY3MzQwMjMwChQxNzg5NDA2NTA1NzI0MTcyNTg1NgoTOTU3Nzk0NjI5MTgxNjU1ODEwMAoUMTIzMTg3NzY5Njk5MDczNTk0MjkKEzg0Mzk5NTg0NDI3MDc3OTc0NzIKEzkwMDI5NzU0MzA1MTAwOTMyNDQaFgoUMTIzMTg3NzY5Njk5MDczNTk0MjlaFDEyMzE4Nzc2OTY5OTA3MzU5NDI5aq4NEgEwGAAiRBowAAopaGhuZXVoYXZrc2xidnJnaGhVQ0VaQS1BVTdFaklEVnAwTjZKLW5YUkESAgARKhDCDw8aDz8TpAKCBCQBgAQrKosBEAEaeIH0AwL-_wEA9v4DBf4F_gETAgT59gEBAO0E_PgFAAAA-vkK-gEAAAAFAAABBAAAAAYI-fv5_QEAFg_2CAMAAAAT-QL-9wAAAPsPBv7_AQAA9PcHAgMAAAARBfb9AAAAAAAOAfn9_wAA7hH_9AAAAAAUAfkAAAAAACAALdgy1Ds4E0AJSE5QAipzEAAaYA0TABYDCPzuCh7xCu_qCfsNDPcb5gkA__kA-RX-5gMF6eEQCAAE5xL92gAAAA8V1gn7APYtFPLt_PwAA_XO-goMfxEO-B799fnY8fIHFg3m-u8gAQDoBQgAEPHzIAgJDCAALY3kmTs4E0AJSG9QAiqvBhAMGqAGAAAAAAAA4MAAACRCAABAwgAACEIAAAjCAACgQgAA0MEAAITCAAAwwgAAbEIAAKDBAAAQwQAAosIAALBBAACAQQAAYEEAAKDAAAAoQgAAJMIAAADCAAAYwgAAQEEAAADAAACAQgAAgD8AABzCAACAwQAAgD8AAKBBAABkwgAAgkIAADDCAADgQQAArsIAAEDBAACYwQAA-EIAADBBAACQQgAAoEAAAHxCAACaQgAA0EEAAIBAAADwwQAADEIAAIBAAABEQgAAhMIAALjBAAAQQQAAQMEAAMjBAABAwQAAsMEAAADDAADAQAAAqEIAAOhBAACWQgAAAMEAABBBAACQwQAAKMIAACTCAABgwgAAMEEAAOhBAACgQAAACEIAAHBCAAAgQQAAgkIAAKBAAABcwgAABMIAALBBAAD4QQAAQEIAAHDCAACYQQAA2MEAAAAAAACIQQAA6EEAANjBAAAcQgAAgEIAAAjCAAC4wQAAkEIAAGxCAAAEwgAAKEIAAADCAACAwgAAEMEAAARCAAC2wgAAEEEAAARCAAAMwgAAkMEAAIbCAABAQQAAEEEAADhCAAA8wgAAIMEAAFBCAABQwQAAEMIAAGDBAACIQgAA8EEAAChCAAAowgAAoEEAAIhBAAAkwgAAUMIAAABAAADYwQAAgMAAAMBAAABQwQAABEIAAADCAACwwQAAkEEAAGxCAACwwQAADEIAAIA_AAAgQQAAgD8AAMjBAAAQQQAAhsIAAIC_AAAYQgAAMMEAAKDBAAAwQgAABMIAADBBAADAwQAAIMIAABxCAAAgQQAAwMEAAADAAACQwQAAsEEAAODAAACQQQAArsIAAJDBAABgQQAAgD8AAEDBAACwQQAAFMIAAMDBAADQwQAAwEEAACxCAACOQgAAWEIAAKBBAABwQQAABEIAAEjCAACowQAA4MEAADhCAACoQQAAoEEAABhCAACAwAAAwMAAAEjCAAA8wgAAbEIAAFBBAADwwQAAWEIAACBBAABwQQAAlsIAAHDBAADgQQAAHMIAABDBAABkQgAA6MEAANDBAADowgAAAEEgADgTQAlIdVABKo8CEAAagAIAAAS-AAAMvgAAcL0AAIi9AAA8vgAA6D0AAK4-AAAFvwAAZL4AAAQ-AAAUPgAA-D0AABA9AACIPQAALL4AALi9AADgvAAAoLwAAPg9AADOPgAAfz8AAPi9AAC4PQAAqD0AAOK-AADYvQAAmL0AAJK-AAC4PQAADD4AAAw-AADgvAAAzr4AAFC9AACePgAA-L0AAHw-AACOvgAAqr4AAKA8AADOvgAAmD0AAKC8AACIPQAAur4AAAw-AABUPgAA6L0AAOC8AADOvgAAbL4AAFC9AABsPgAAkj4AAHC9AACAOwAAST8AAJi9AABMPgAAuL0AAHC9AABUvgAAUL0AACS-IAA4E0AJSHxQASqPAhABGoACAABUvgAAoDwAAFC9AAArvwAAoDwAADA9AABEPgAALL4AAOi9AAAEPgAAcL0AACS-AAC4vQAAlr4AADQ-AAAQPQAAHD4AAC0_AACIvQAApj4AAKA8AADYPQAAEL0AAIC7AAAwvQAAmD0AAKC8AACYPQAA-L0AAIC7AACIPQAA2D0AAKC8AAC2vgAAQDwAAPg9AAAQvQAAPD4AAHS-AADYvQAAyD0AAIg9AAAwPQAAEL0AAOA8AACgPAAAf78AAJK-AACgvAAAQDwAACw-AAAQvQAAUD0AAIC7AAAMPgAAoDwAAEA8AABMPgAAyL0AAEA8AADIPQAARD4AADQ-AAAwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=CorCHcxSn2Q","parent-reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12318776969907359429"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"1927264850794688119":{"videoId":"1927264850794688119","title":"\u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007] : An introduction","cleanTitle":"Theory of Constraints : An introduction","host":{"title":"YouTube","href":"http://www.youtube.com/watch/AqzbZUL9Rh8?app=desktop","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AqzbZUL9Rh8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV3FkYjlyUGZMR3laM01kTzVReFpwUQ==","name":"Vector Consulting Group","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Vector+Consulting+Group","origUrl":"http://www.youtube.com/@VectorConsultingGroup","a11yText":"Vector Consulting Group. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":205,"text":"3:25","a11yText":"Süre 3 dakika 25 saniye","shortText":"3 dk."},"views":{"text":"79,3bin","a11yText":"79,3 bin izleme"},"date":"7 eyl 2016","modifyTime":1473206400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AqzbZUL9Rh8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AqzbZUL9Rh8","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":205},"parentClipId":"1927264850794688119","href":"/preview/1927264850794688119?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/1927264850794688119?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12557080138247898919":{"videoId":"12557080138247898919","title":"\u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007]: An Introduction | Vector Consulting Group","cleanTitle":"Theory of Constraints: An Introduction | Vector Consulting Group","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xbinMOSsjnw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xbinMOSsjnw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV3FkYjlyUGZMR3laM01kTzVReFpwUQ==","name":"Vector Consulting Group","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Vector+Consulting+Group","origUrl":"http://www.youtube.com/user/VectorConsultingGrp","a11yText":"Vector Consulting Group. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":205,"text":"3:25","a11yText":"Süre 3 dakika 25 saniye","shortText":"3 dk."},"views":{"text":"7,6bin","a11yText":"7,6 bin izleme"},"date":"14 tem 2017","modifyTime":1499990400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xbinMOSsjnw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xbinMOSsjnw","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":205},"parentClipId":"12557080138247898919","href":"/preview/12557080138247898919?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/12557080138247898919?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12384038065803385136":{"videoId":"12384038065803385136","title":"\u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007]","cleanTitle":"Theory of Constraints","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xJlnlMNGqY4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xJlnlMNGqY4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDclpyRWpoczVKV1ZMcERzdHBlVVBRdw==","name":"EMS Consulting Group","isVerified":false,"subscribersCount":0,"url":"/video/search?text=EMS+Consulting+Group","origUrl":"http://www.youtube.com/@emsconsultinggroup","a11yText":"EMS Consulting Group. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":174,"text":"2:54","a11yText":"Süre 2 dakika 54 saniye","shortText":"2 dk."},"views":{"text":"30,3bin","a11yText":"30,3 bin izleme"},"date":"14 eyl 2021","modifyTime":1631577600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xJlnlMNGqY4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xJlnlMNGqY4","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":174},"parentClipId":"12384038065803385136","href":"/preview/12384038065803385136?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/12384038065803385136?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3027762263201497404":{"videoId":"3027762263201497404","title":"What is the \u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007]?","cleanTitle":"What is the Theory of Constraints?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8kT2aIftf_4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8kT2aIftf_4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVEpwNXRRb3RtYXpjdTFBcFdRZnF2UQ==","name":"Dr. Haywood","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dr.+Haywood","origUrl":"http://www.youtube.com/@drdhaywood","a11yText":"Dr. Haywood. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":894,"text":"14:54","a11yText":"Süre 14 dakika 54 saniye","shortText":"14 dk."},"views":{"text":"44,1bin","a11yText":"44,1 bin izleme"},"date":"19 mar 2023","modifyTime":1679184000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8kT2aIftf_4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8kT2aIftf_4","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":894},"parentClipId":"3027762263201497404","href":"/preview/3027762263201497404?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/3027762263201497404?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16452497712637735434":{"videoId":"16452497712637735434","title":"\u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007] (TOC): An AI Generated Conversation","cleanTitle":"Theory of Constraints (TOC): An AI Generated Conversation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Wt1gFfgzgjs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Wt1gFfgzgjs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDclpyRWpoczVKV1ZMcERzdHBlVVBRdw==","name":"EMS Consulting Group","isVerified":false,"subscribersCount":0,"url":"/video/search?text=EMS+Consulting+Group","origUrl":"http://www.youtube.com/@emsconsultinggroup","a11yText":"EMS Consulting Group. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":130,"text":"2:10","a11yText":"Süre 2 dakika 10 saniye","shortText":"2 dk."},"date":"6 eki 2023","modifyTime":1696550400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Wt1gFfgzgjs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Wt1gFfgzgjs","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":130},"parentClipId":"16452497712637735434","href":"/preview/16452497712637735434?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/16452497712637735434?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16442168340679803605":{"videoId":"16442168340679803605","title":"\u0007[Theory\u0007] \u0007[of\u0007] \u0007[constraints\u0007] & bottlenecks (lean six sigma)","cleanTitle":"Theory of constraints & bottlenecks (lean six sigma)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4z4ei_ouzdk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4z4ei_ouzdk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDT1NqR2QxcTdENGhjZjFic0NUWjZCQQ==","name":"Six Sigma Academy Amsterdam (SSAA)","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Six+Sigma+Academy+Amsterdam+%28SSAA%29","origUrl":"http://www.youtube.com/@sixsigmaacademyamsterdam","a11yText":"Six Sigma Academy Amsterdam (SSAA). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":527,"text":"8:47","a11yText":"Süre 8 dakika 47 saniye","shortText":"8 dk."},"views":{"text":"16,2bin","a11yText":"16,2 bin izleme"},"date":"6 kas 2019","modifyTime":1572998400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4z4ei_ouzdk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4z4ei_ouzdk","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":527},"parentClipId":"16442168340679803605","href":"/preview/16442168340679803605?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/16442168340679803605?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11755602784178284077":{"videoId":"11755602784178284077","title":"\u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007] - Introduction","cleanTitle":"Theory of Constraints - Introduction","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sVyltL7O2KM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sVyltL7O2KM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVlIRWhsYUVKSDNJMWFSNlhWMGJlUQ==","name":"Ardavan","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ardavan","origUrl":"http://www.youtube.com/@ardavan1258","a11yText":"Ardavan. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2941,"text":"49:01","a11yText":"Süre 49 dakika 1 saniye","shortText":"49 dk."},"date":"22 şub 2016","modifyTime":1456099200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sVyltL7O2KM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sVyltL7O2KM","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":2941},"parentClipId":"11755602784178284077","href":"/preview/11755602784178284077?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/11755602784178284077?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4859728344586010931":{"videoId":"4859728344586010931","title":"The \u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007] - A Complete Introduction","cleanTitle":"The Theory of Constraints - A Complete Introduction","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LiAHtgFyRkA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LiAHtgFyRkA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDN3BPRjJpZjU3V04zaFBLOXlZSzd1UQ==","name":"LeanVlog","isVerified":false,"subscribersCount":0,"url":"/video/search?text=LeanVlog","origUrl":"http://www.youtube.com/@LeanVlog","a11yText":"LeanVlog. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":290,"text":"4:50","a11yText":"Süre 4 dakika 50 saniye","shortText":"4 dk."},"views":{"text":"68,1bin","a11yText":"68,1 bin izleme"},"date":"6 eyl 2020","modifyTime":1599419589000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LiAHtgFyRkA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LiAHtgFyRkA","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":290},"parentClipId":"4859728344586010931","href":"/preview/4859728344586010931?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/4859728344586010931?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5461701676054485960":{"videoId":"5461701676054485960","title":"Manufacturing in ERPNext and \u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007] (TOC)","cleanTitle":"Manufacturing in ERPNext and Theory of Constraints (TOC)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WqYMI_Jz7w0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WqYMI_Jz7w0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbjNiVjVreDc3SHNWd3RubENlRWlfQQ==","name":"Frappe","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Frappe","origUrl":"http://www.youtube.com/@frappetech","a11yText":"Frappe. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3423,"text":"57:03","a11yText":"Süre 57 dakika 3 saniye","shortText":"57 dk."},"date":"18 eyl 2025","modifyTime":1758153600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WqYMI_Jz7w0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WqYMI_Jz7w0","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":3423},"parentClipId":"5461701676054485960","href":"/preview/5461701676054485960?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/5461701676054485960?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1575842049800826348":{"videoId":"1575842049800826348","title":"The \u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007] applied to Production","cleanTitle":"The Theory of Constraints applied to Production","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cY5G85QN1g0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cY5G85QN1g0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdTJNeDd1eUVyaENVR0loMDBaTFFpUQ==","name":"Marris Consulting","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Marris+Consulting","origUrl":"http://www.youtube.com/@marrisconsulting","a11yText":"Marris Consulting. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3380,"text":"56:20","a11yText":"Süre 56 dakika 20 saniye","shortText":"56 dk."},"views":{"text":"5,7bin","a11yText":"5,7 bin izleme"},"date":"19 mayıs 2020","modifyTime":1589913221000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cY5G85QN1g0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cY5G85QN1g0","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":3380},"parentClipId":"1575842049800826348","href":"/preview/1575842049800826348?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/1575842049800826348?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13691971084643527631":{"videoId":"13691971084643527631","title":"\u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007] in Practice","cleanTitle":"Theory of Constraints in Practice","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mnP20bEJV80","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mnP20bEJV80?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU0VrZ216RmI0UG5hR0FWWHRLOGRHQQ==","name":"Think. Design. Work Smart.","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Think.+Design.+Work+Smart.","origUrl":"http://www.youtube.com/@tdws","a11yText":"Think. Design. Work Smart.. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2665,"text":"44:25","a11yText":"Süre 44 dakika 25 saniye","shortText":"44 dk."},"date":"13 mayıs 2022","modifyTime":1652400000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mnP20bEJV80?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mnP20bEJV80","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":2665},"parentClipId":"13691971084643527631","href":"/preview/13691971084643527631?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/13691971084643527631?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17961204817337610477":{"videoId":"17961204817337610477","title":"\u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007] Finally Explained (Breakthrough Case Study)","cleanTitle":"Theory of Constraints Finally Explained (Breakthrough Case Study)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KfPq6vC8roQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KfPq6vC8roQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaF9iU3lMX0lvYTN2WjJoNHJDUXNFQQ==","name":"The Serious CTO","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Serious+CTO","origUrl":"http://www.youtube.com/@theseriouscto","a11yText":"The Serious CTO. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":316,"text":"5:16","a11yText":"Süre 5 dakika 16 saniye","shortText":"5 dk."},"date":"17 haz 2024","modifyTime":1718582400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KfPq6vC8roQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KfPq6vC8roQ","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":316},"parentClipId":"17961204817337610477","href":"/preview/17961204817337610477?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/17961204817337610477?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3144238043201885304":{"videoId":"3144238043201885304","title":"\u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007]: A Proven Methodology","cleanTitle":"Theory of Constraints: A Proven Methodology","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2isndtOUPNo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2isndtOUPNo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWThzeDM4R1l6WjIwM0drWWtEcGVuQQ==","name":"ActiveCollab TV","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ActiveCollab+TV","origUrl":"http://www.youtube.com/@ActiveCollabTV","a11yText":"ActiveCollab TV. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":282,"text":"4:42","a11yText":"Süre 4 dakika 42 saniye","shortText":"4 dk."},"views":{"text":"25,8bin","a11yText":"25,8 bin izleme"},"date":"9 mar 2023","modifyTime":1678320000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2isndtOUPNo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2isndtOUPNo","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":282},"parentClipId":"3144238043201885304","href":"/preview/3144238043201885304?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/3144238043201885304?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12435632200560234244":{"videoId":"12435632200560234244","title":"\u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007] Introduction","cleanTitle":"Theory of Constraints Introduction","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eQqtdN4As_A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eQqtdN4As_A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYm9GUWtxWWtVVzlSZG52amJ3eWVwZw==","name":"Critical Fallibilism Philosophy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Critical+Fallibilism+Philosophy","origUrl":"http://www.youtube.com/@criticalfallibilism","a11yText":"Critical Fallibilism Philosophy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":438,"text":"7:18","a11yText":"Süre 7 dakika 18 saniye","shortText":"7 dk."},"date":"8 nis 2025","modifyTime":1744070400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eQqtdN4As_A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eQqtdN4As_A","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":438},"parentClipId":"12435632200560234244","href":"/preview/12435632200560234244?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/12435632200560234244?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11266653543367340230":{"videoId":"11266653543367340230","title":"\u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007] Conflict Resolution Evaporating Cloud - Thinking Processes","cleanTitle":"Theory of Constraints Conflict Resolution Evaporating Cloud - Thinking Processes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qHvmX0fq-Yo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qHvmX0fq-Yo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVpBLUFVN0VqSURWcDBONkotblhSQQ==","name":"Science of Business Inc - Theory of Constraints","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Science+of+Business+Inc+-+Theory+of+Constraints","origUrl":"http://www.youtube.com/@TOCexpert","a11yText":"Science of Business Inc - Theory of Constraints. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4000,"text":"1:06:40","a11yText":"Süre 1 saat 6 dakika 40 saniye","shortText":"1 sa. 6 dk."},"views":{"text":"6,2bin","a11yText":"6,2 bin izleme"},"date":"13 şub 2021","modifyTime":1613174400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qHvmX0fq-Yo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qHvmX0fq-Yo","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":4000},"parentClipId":"11266653543367340230","href":"/preview/11266653543367340230?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/11266653543367340230?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17894065057241725856":{"videoId":"17894065057241725856","title":"\u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007] (TOC)","cleanTitle":"Theory of Constraints (TOC)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CRQ42WyMMmk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CRQ42WyMMmk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDc3V1MkRKSXgxekw3blNwVjNxWXd5Zw==","name":"The Forge","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Forge","origUrl":"http://www.youtube.com/channel/UCsuu2DJIx1zL7nSpV3qYwyg","a11yText":"The Forge. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":169,"text":"2:49","a11yText":"Süre 2 dakika 49 saniye","shortText":"2 dk."},"date":"23 eki 2017","modifyTime":1508716800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CRQ42WyMMmk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CRQ42WyMMmk","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":169},"parentClipId":"17894065057241725856","href":"/preview/17894065057241725856?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/17894065057241725856?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9577946291816558100":{"videoId":"9577946291816558100","title":"VAT factory types of the \u0007[Theory\u0007] \u0007[Of\u0007] \u0007[Constraints\u0007]","cleanTitle":"VAT factory types of the Theory Of Constraints","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xc3dmjSUXdA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xc3dmjSUXdA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdTJNeDd1eUVyaENVR0loMDBaTFFpUQ==","name":"Marris Consulting","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Marris+Consulting","origUrl":"http://www.youtube.com/@marrisconsulting","a11yText":"Marris Consulting. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":231,"text":"3:51","a11yText":"Süre 3 dakika 51 saniye","shortText":"3 dk."},"date":"24 şub 2025","modifyTime":1740355200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xc3dmjSUXdA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xc3dmjSUXdA","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":231},"parentClipId":"9577946291816558100","href":"/preview/9577946291816558100?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/9577946291816558100?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12318776969907359429":{"videoId":"12318776969907359429","title":"\u0007[Theory\u0007] \u0007[of\u0007] \u0007[Constraints\u0007] Chain Analogy - 5-minute Maximizing Profitability Excerpt","cleanTitle":"Theory of Constraints Chain Analogy - 5-minute Maximizing Profitability Excerpt","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CorCHcxSn2Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CorCHcxSn2Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVpBLUFVN0VqSURWcDBONkotblhSQQ==","name":"Science of Business Inc - Theory of Constraints","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Science+of+Business+Inc+-+Theory+of+Constraints","origUrl":"http://www.youtube.com/@TOCexpert","a11yText":"Science of Business Inc - Theory of Constraints. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":292,"text":"4:52","a11yText":"Süre 4 dakika 52 saniye","shortText":"4 dk."},"date":"8 mayıs 2024","modifyTime":1715126400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CorCHcxSn2Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CorCHcxSn2Q","reqid":"1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":292},"parentClipId":"12318776969907359429","href":"/preview/12318776969907359429?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","rawHref":"/video/preview/12318776969907359429?parent-reqid=1765354065029016-2964140489825925303-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Theory+of+Constraints","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"2964140489825925303745","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Theory of Constraints","queryUriEscaped":"Theory%20of%20Constraints","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}