{"pages":{"search":{"query":"Tridiagonal Solutions","originalQuery":"Tridiagonal Solutions","serpid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","parentReqid":"","serpItems":[{"id":"684852079742109460-0-0","type":"videoSnippet","props":{"videoId":"684852079742109460"},"curPage":0},{"id":"9052460572985777219-0-1","type":"videoSnippet","props":{"videoId":"9052460572985777219"},"curPage":0},{"id":"13422317648429676805-0-2","type":"videoSnippet","props":{"videoId":"13422317648429676805"},"curPage":0},{"id":"2175454173808467933-0-3","type":"videoSnippet","props":{"videoId":"2175454173808467933"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFRyaWRpYWdvbmFsIFNvbHV0aW9ucwo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","ui":"desktop","yuid":"2811331461769765850"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"3198067581984912370-0-5","type":"videoSnippet","props":{"videoId":"3198067581984912370"},"curPage":0},{"id":"3304486850732498694-0-6","type":"videoSnippet","props":{"videoId":"3304486850732498694"},"curPage":0},{"id":"14773567794419749702-0-7","type":"videoSnippet","props":{"videoId":"14773567794419749702"},"curPage":0},{"id":"1196783451001923481-0-8","type":"videoSnippet","props":{"videoId":"1196783451001923481"},"curPage":0},{"id":"2883114321306586464-0-9","type":"videoSnippet","props":{"videoId":"2883114321306586464"},"curPage":0},{"id":"6149229976416164293-0-10","type":"videoSnippet","props":{"videoId":"6149229976416164293"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFRyaWRpYWdvbmFsIFNvbHV0aW9ucwo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","ui":"desktop","yuid":"2811331461769765850"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"16559948229897422277-0-12","type":"videoSnippet","props":{"videoId":"16559948229897422277"},"curPage":0},{"id":"8896019255493850925-0-13","type":"videoSnippet","props":{"videoId":"8896019255493850925"},"curPage":0},{"id":"8974404039232802490-0-14","type":"videoSnippet","props":{"videoId":"8974404039232802490"},"curPage":0},{"id":"12583882100149768970-0-15","type":"videoSnippet","props":{"videoId":"12583882100149768970"},"curPage":0},{"id":"16649978306081141728-0-16","type":"videoSnippet","props":{"videoId":"16649978306081141728"},"curPage":0},{"id":"14123318222982307926-0-17","type":"videoSnippet","props":{"videoId":"14123318222982307926"},"curPage":0},{"id":"5506720383299386939-0-18","type":"videoSnippet","props":{"videoId":"5506720383299386939"},"curPage":0},{"id":"15379509924379595580-0-19","type":"videoSnippet","props":{"videoId":"15379509924379595580"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFRyaWRpYWdvbmFsIFNvbHV0aW9ucwo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","ui":"desktop","yuid":"2811331461769765850"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DTridiagonal%2BSolutions"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"3683568053712266171774","expFlags":{"velocity_delay_drawer":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1470500,0,84;151171,0,68;1281084,0,39;287509,0,59;1447467,0,54;1231503,0,4;1473596,0,78;1466397,0,72;1478788,0,91"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DTridiagonal%2BSolutions","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Tridiagonal+Solutions","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Tridiagonal+Solutions","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Tridiagonal Solutions: 2 bin video Yandex'te bulundu","description":"\"Tridiagonal Solutions\" sorgusu için arama sonuçları Yandex'te","shareTitle":"Tridiagonal Solutions — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y3ae62df1d89d6fa7e5ac53b936d987a2","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1470500,151171,1281084,287509,1447467,1231503,1473596,1466397,1478788","queryText":"Tridiagonal Solutions","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"2811331461769765850","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1099741,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1152703,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1281110,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1364920,1478181,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769765861","tz":"America/Louisville","to_iso":"2026-01-30T04:37:41-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1470500,151171,1281084,287509,1447467,1231503,1473596,1466397,1478788","queryText":"Tridiagonal Solutions","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"2811331461769765850","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"3683568053712266171774","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":157,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":false,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":false,"wildcard":true,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":false,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":false,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"userAvatarUrl":null,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"2811331461769765850","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1758.0__92da10e6e1e89374a81e86c5e5366c3357f68658","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"684852079742109460":{"videoId":"684852079742109460","docid":"34-9-10-Z1F272AF83392FA86","description":"Artificial Intelligence (AI) accelerating industrial Computational Fluid Dynamics (CFD) simulations. Industries leverage CFD (Computational Fluid Dynamics) simulations to ensure proper chemical...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1029070/4f9e57d3ef0ad94260b838f65557013a/564x318_1"},"target":"_self","position":"0","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"CFD acceleration with AI (mastermind session: byteLAKE, Tridiagonal Solutions, Lenovo, Intel)","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IT7c0-EzkC8\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFAoSNjg0ODUyMDc5NzQyMTA5NDYwWhI2ODQ4NTIwNzk3NDIxMDk0NjBqkRcSATAYACJDGi8ACihoaGVzZHFheWdtb2d5Z2hoVUNZcDVvaFoxQmFoUnJYRzFvbnRuenB3EgIAECoQwg8PGg8_E7IfggQkAYAEKyqLARABGniBDQoJ-QP9AAP0-gkHCfsCEQgDC_UBAQDiBQP0_vsCAOj8EQUFAAAAC_X6BAgAAAD5CPry9f4BAPwHAgDuAP8AEQf-CfYAAAABAfj6_wEAAPMMBP_3AQABDf79AQAAAAD5Fwj8_v8AAP0C8_ABAAAA9gz-_P__AAAgAC0gLss7OBNACUhOUAIqhAIQABrwAXfx-wKBBxH3Qvn8AEcD_f-lGAf_LPn3APAA9wG-6wT_-xsUAPsBBgAX_wEA9BoI_wn4AgAcCvgACgkH_xgD_QE0_v8AGuL3ARYT-wD69g0A3Pr3_wMQ_gALBAf--ALeASQJEAAB_PoFDwYAAfUCEQH-BgwBGQfl__wS7v_5-vf-EAYP_wMG-QAO9wP56P8HBQzm8_78D_H_Bg_8CPTwFP4CBwv9FgMHBh_6BPgPCuwBFvcF_Qn2DATfBP7-Bv3qBOn6-AYX9O8C_AQGAA4CFAYJ8g38B-4JA_T49v_y7gD-9Pf8_vn8-QsBAf4AAOr8-yAALbwgWjs4E0AJSGFQAirPBxAAGsAHDmgNv-qIDT3YWkm9-YRcPocUQ73oMvM63EkkPtVp0zxEfPG8zT7PPUpnq71XZ6s8ofUgvmFL9LxbItc83SefPhnrdj2UDZA81tWDveqeC70WXY08FRxOvqxNyDw1lx87_O-CPfFvxjyFoNk8Cp0XPpObFbwRiq28zvoUPamVE72UOVG9qU_yPYDzgr3AARK9lGdevAOgwLzFgxc97VosveXECD1Vx4W8KBkvvaxgCr2F5p-8eraova7iw7spi-s76q_3PTGyUTrITQM9rBWSPTew8Dw44Zi7qDRCPS_hcL0zZIa8NomLPW0Atj2ES0e8bRwxPAhs97p2Y4s8WjF3PUPn1T3g0Ws8AdkQu8AOF710sx68_EoRvUE2f7yuDKo8FXUFvJ_EjLwxlDi814rWPXBt9jtUi6m6ONfwPVDIjrxoWkW7bkwPvVpFf71PBHG89_BbvRq6vry3kgI9Mi17vUKfHr1EdL4807aGO6AmaTzd6Mi8P6hrPVAKKTxC6MW8wYvjPNLscDznGa-5Oe1JPVycBz1FxyO7oSNDPWZSXj2Fp6E83cF-Pby7JD2Ie5G8kXALvTLk2DzbLwA8LzKiOxQU9bwY9os7bCZfPevgxTwx2g86XdqVPUMdpj0d-i86mlDSO3YGfD2cTAE7IL28vIJod71_y5Q7rMP2PI1wqLvXi3y78D9oO565YjtnTnw6J1szvYUqDrywHCW7TQ9vPU9FJb2qKCM4NJM5PJmSVj2KhhQ7ZhW2PF5vcT0-krM5RjX2PGg2VD3IHlm5maa-vc_r2Twkzeq470IpPUpHlLxjyYe6_iakvQHm0Lxmh303gZ8nPLAtDzw7eq25Tz0CPrGz9Dttk2q5luI0PfOKzLx3g465Ph_KvHVcCD2mezS5KbokvQ3lPz1Zsdm4qSiHu7OPWj0GG7a4Q5opO6Feujv5tXk4HAFBPUPGBjy_xGO5Udr7PX6bbz2DhEw4O7AWPDfXG7sW6Qy3eSU3uFRkHj2eqJI42fXBvOVkYr2iyGq4rQ-gvaEUzT2uyIy4YXyHPZLzEzwrAmG41_QlPZ8yCD1JDHC4Z8bsPJuMj7xwURA3wnVbvbow0r02w7u1KUwKvPRVLT3I6Ts3qh9FvWPQDTuECAU4_ZR0vYVBib1paaM3ZTMsPYUigrx_T-A3PDWiPX8C3jzLkga4k6csvAO8-7xb7Yk3JD4cPZmsWz2F3nu4xSmpPKYlGz0N7Bo4d8aNvaspBD2f04q4nizQPIjV_z1efug37Yh5vQe9rTxkxcA3IAA4E0AJSG1QASpzEAAaYFX8AA_zSs7TFS7szPUN-_LtBxILo-j_-8L_AjYFziYB46LQHABJHfDZmwAAAAAI-wUEABF_88XwF_zs_dOjERL8Zgw47rHmN_XA3eDu69IGFOgt6QCm5Kz8dcCcRSHhByAALZmXEjs4E0AJSG9QAiqvBhAMGqAGAAAowgAAyMEAAI5CAABgwQAAAEAAAJjBAACAQQAAuMEAAETCAAAEwgAAgMAAANBBAABswgAAcMEAACRCAADwwQAAqEEAAPDBAABgwQAABMIAAGBCAACIwQAAKMIAAOhBAACIwQAA8MEAAFDBAABQwgAALEIAALhCAACEQgAAmEEAAADCAACgQAAAsMEAAFzCAAAgwgAAIEIAADRCAACgwQAAAEAAAIA_AADgQAAABEIAABhCAADgwAAAXMIAADzCAABoQgAA2MEAAILCAACgQgAAAEEAAKRCAADgQAAANEIAAIrCAABAwQAAwMEAACDBAABwwgAAoEEAAJjCAAAwwQAAiMEAABBBAAAgwQAAAAAAAPhBAADAQAAAkEEAAM5CAAB0wgAAkkIAAJrCAADAwQAAgMAAAABCAABswgAANMIAAFDCAADgQAAAOMIAAKDAAABEQgAAlkIAADTCAABgQQAAgD8AAMhBAACAQQAAHEIAAGBCAACgwAAAZEIAAADDAAC4QQAAoEEAAODAAAAwQQAAAMAAAAAAAABwQQAATMIAAODBAAAAwQAAYEIAAIDAAADgQQAAQMIAAHBBAAAIwgAACMIAAKbCAABwQQAAYEIAAODBAABAQAAAiMEAADBBAACgQQAA0MEAAOjBAAAwwgAAgD8AAKBBAAAQQgAA8EEAABzCAACAwgAAeEIAAAzCAABMwgAADEIAABhCAAAEQgAALMIAAEDBAAA8wgAAKMIAAKDAAAAUQgAACEIAAIC_AABUQgAAiEEAAAzCAABsQgAACMIAAHBBAACAPwAAfEIAAOBAAABQwgAAoEAAADRCAACQwQAAZMIAAKBBAACgQQAAoEEAAFxCAABEwgAA2MEAANDBAAAswgAAskIAAPhBAAAwQgAAUMEAAODBAACYwQAAUEIAAEDBAACwwQAAbMIAABTCAACgQAAADMIAAEBBAAD4wQAAyEEAALhBAACQwgAAYEIAAAAAAACawgAAaEIAAJhCAAAQwQAAYMIAAATCAADAwQAA4EAAAODAAACQQQAAZMIAAEBAAABwwQAAMEEgADgTQAlIdVABKo8CEAAagAIAAEA8AAC4PQAATD4AALi9AACAuwAAiL0AABA9AAApvwAAgr4AACw-AABwPQAAQDwAAEQ-AADCPgAARL4AADS-AAAkPgAAqL0AAKC8AADiPgAAfz8AAIC7AAD4vQAAcD0AAAS-AADIvQAAPD4AAMa-AADovQAAxj4AAMg9AAAEvgAAqL0AAFS-AAA0PgAAQDwAACw-AABQvQAAyL0AAIC7AACOvgAAyD0AANY-AAAEPgAAmD0AABw-AADOPgAAur4AAOi9AADKvgAAmD0AABy-AACSPgAA6D0AAIi9AACIvQAAET8AANg9AAAkvgAAgDsAAOC8AAD4PQAA2D0AAGy-IAA4E0AJSHxQASqPAhABGoACAACAOwAAPD4AAIg9AAAXvwAA4LwAAIC7AAAkvgAAoDwAABS-AADmPgAAML0AADC9AADYPQAAlr4AAIC7AAAwvQAAhr4AAEs_AABsPgAAtj4AAII-AABQPQAA-D0AAIi9AADYvQAAHL4AAIC7AABMPgAAXL4AAKC8AAAwPQAAoDwAAEQ-AAAQvQAAQLwAAIa-AADIPQAA6D0AAKa-AAAsPgAAoLwAAKg9AACYvQAANL4AAAQ-AAAQvQAAf78AAEA8AAAkPgAABL4AAKi9AADYvQAA4DwAANg9AACSPgAAqD0AABC9AABwvQAAqL0AAJg9AADovQAAHD4AADA9AACIvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=IT7c0-EzkC8","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["684852079742109460"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2771718988"},"9052460572985777219":{"videoId":"9052460572985777219","docid":"34-7-5-Z5F051619E4D349D0","description":"Thomas Algorithm | Solution for tri diagonal system of equations | Tri-Diagonal Matrix Algorithm Steps for 4x4 matrix | The Thomas algorithm, also known as the tridiagonal matrix algorithm (TDMA)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2360949/52ffdcc7ac7d0012324c639944787855/564x318_1"},"target":"_self","position":"1","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"Thomas Algorithm | Solution for tri diagonal system of equations|Tri-Diagonal Matrix 4x4|Mathspedia","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KOwg6uSiMq0\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFQoTOTA1MjQ2MDU3Mjk4NTc3NzIxOVoTOTA1MjQ2MDU3Mjk4NTc3NzIxOWqvDRIBMBgAIkUaMQAKKmhoZmx6ZWdlenlxenVtemJoaFVDTEgyWWhwREJGeEhPMk05Ti1ucFk3URICABIqEMIPDxoPPxPwCYIEJAGABCsqiwEQARp4gQH8B_kAAAD4AQAK9wf9Ah4KA_r0BAQA9QD09AMC_wD58xQCBQAAAAQCCQUCAAAAAQX7A_3-AQAI_PX9-AAAAP0H_gLzAQAAFggC9f4BAAD2__QCA_8AAAz_DfL_AAAA__kIBfz_AAAADw31AAAAAAb-Cw0AAAAAIAAtp-LTOzgTQAlITlACKnMQABpgFg4ANhwR2tgS-PDA_-oQAeIO8QW9xv_Ms_88DvXoHu7iyOcRAPrYE9arAAAAN9rFIdsA5mzd6f5kLAsFwLwEDwF_BB7pGy0mA5ohEA4fxBba9g7FAP7s7AthBeEn3RwtIAAt2tIiOzgTQAlIb1ACKq8GEAwaoAYAAPhBAAAQwQAAhkIAACjCAAAEwgAAUMEAANhBAAAAwQAAoMEAAIDBAAAAQQAAAEAAAOjBAAAgQQAA4EEAAHBBAAC4QQAAXMIAACxCAABAwgAAqMEAABzCAABUwgAAmkIAAGRCAACAwQAAMMEAAGzCAADwQQAA-EEAABDCAACIQQAAuMEAAFBBAABYwgAAPEIAAMDAAACgQgAAuMEAAGBBAAC4QQAA6MEAAKBAAABEwgAAAAAAAFjCAACQQQAA4EEAAIpCAAAwwQAA4EAAALjBAAAowgAANEIAACxCAADgwAAAiMIAAIBBAAAAwAAAHEIAAJpCAABUwgAAQMEAAJzCAACowQAARMIAABhCAABkwgAAEMIAAKBAAACaQgAANEIAAJTCAACOQgAAUMIAACzCAAB8wgAAoMEAAEDAAAAIQgAAMMIAAOBAAACgQQAA-EEAAJhBAAC4QgAAGMIAANDBAADoQQAARMIAAMBAAABMQgAAOMIAAGDBAAAEwgAAbMIAAIDAAADYQQAA4EEAANBBAABwwgAAeEIAABBCAACIwgAAgsIAAHhCAACYQQAAuEEAABTCAABwQgAAgL8AADBCAADIwQAA4MAAAEBAAAAIQgAAAAAAACzCAAAgwgAAgMIAALjBAAA0wgAAkEEAAIC_AACEQgAAUMEAANjBAACEwgAAhMIAAIDBAABMwgAATMIAAABCAACYQgAAyEEAACBBAADAwQAAoEAAAMDAAACOwgAAqEEAANBBAAAQwgAA8MEAAJhBAACgQQAA-MEAAIDBAAAAwQAAwMAAAADAAACgQQAAAEEAAIC_AABQQQAAKMIAAHDBAACkwgAAUMIAANxCAACwwQAAfEIAABhCAAAowgAAgL8AAIDAAAAgQQAAkEIAAMBBAAAQwgAAIMIAAFTCAADgQQAAmMEAAFBBAABYQgAAAMAAACDBAACCQgAAFEIAAFjCAADAwQAAAEAAAABAAAAEQgAAuMIAAEDCAABgwQAATMIAALjBAAAUwgAAAMEAABhCAABAQQAAoEEAAKBBAAAUwgAAKEIAALjBAAA0wiAAOBNACUh1UAEqjwIQABqAAgAAqL0AALg9AACaPgAAFL4AABQ-AACKPgAAgLsAAEW_AAAcvgAAML0AAMi9AAAcvgAAiD0AAFw-AACAOwAAXL4AAIg9AABAvAAADD4AACs_AAB_PwAABL4AAPg9AABEPgAAQDwAADA9AAAEPgAAmL0AAMg9AACGPgAA-D0AAIK-AACovQAAUL0AAPg9AADIvQAAuL0AAPi9AACivgAAgr4AAES-AAC4PQAAUD0AAES-AAB0vgAAPD4AAPI-AAA8vgAAJL4AAHy-AACWvgAAEL0AADw-AABMPgAA4r4AABA9AABNPwAAuL0AAJg9AADKPgAAoDwAAMo-AAC4PQAABL4gADgTQAlIfFABKo8CEAEagAIAAIi9AAAMPgAAoj4AAAe_AADIvQAAuL0AABQ-AACIPQAAcL0AAII-AAC4vQAAZL4AAOg9AABUvgAAiD0AAOC8AACIPQAAOz8AAI4-AADCPgAAij4AAAQ-AAA0vgAAgDsAALi9AABsvgAATD4AAPg9AACIvQAARD4AAEA8AADIPQAA4DwAANi9AADgvAAAEL0AADQ-AAB8PgAAwr4AAAw-AADgvAAALD4AABw-AACYvQAATD4AAAQ-AAB_vwAAuD0AAKA8AABcvgAAgLsAAHA9AAAsPgAAcL0AAHw-AAAEPgAA4DwAAOC8AAAwvQAAqD0AAKA8AADgPAAAQLwAAEC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=KOwg6uSiMq0","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9052460572985777219"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"13422317648429676805":{"videoId":"13422317648429676805","docid":"34-11-7-Z1DF8D4CC6E8EE6F4","description":"Creating a Tridiagonal matrix in matlabHelpful? Please support me on Patreon: https://www.patreon.com/roelvandepaarWith thanks & praise to God, and with tha...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/996593/ff67def87544df74ab5cc714f5779485/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2gpfRQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"Creating a Tridiagonal matrix in matlab (3 Solutions!!)","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=31DfeQVH7bQ\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFgoUMTM0MjIzMTc2NDg0Mjk2NzY4MDVaFDEzNDIyMzE3NjQ4NDI5Njc2ODA1aocXEgEwGAAiRBowAAopaGhiamtkaHRvZ2hoaWRnaGhVQ1BGLW9ZYjIteE41RmJDWHkwMTY3R2cSAgARKhDCDw8aDz8TwgGCBCQBgAQrKosBEAEaeIH7BAEC_gMA-AsADvkH_QIaDgAG9AMDAPUA9fQDAv8A-vMTAgQAAAAGDP8FAwAAAAYI-fv5_gEABAH2_gQAAAALCe4E_QAAAAYL-v3-AQAA9gQCCfcCAAH-ARD6_wAAAPYE_wD__wAABQf-_gAAAAAF_gsNAAAAACAALZ112zs4E0AJSE5QAiqEAhAAGvABfwgIAcIP-__AGggA4eLrAMjgIwAzPOD_6fYBANUOugHN-foB7c0GAaUjHQK6GQgA3tXfACUHCP8g4f7-J_f0__fzGgFVyfYBQBUD_-MH5____j3-_-AhASjiBv8hGfX-3uw0_QL69wcK6rgJD_4-AR0NHQHyAhP8_en_ANMWAgEQDfME2gH4BBfQ5f714ikELQrUBPw46v7wC-sEIhH5Cwvd-voILtX9OCL8AgwHAvnA8t4A79XmAwv2DAIdFg4B1wn3Adf0-gAB__fyCdXk-Q8W5gPu_w0S2QPjA__pCPPn7QsA1yAP-9rkAwL0Cg8EIAAtjbsTOzgTQAlIYVACKs8HEAAawAfGNLO-rDkAPbtTDzyp9xS8RCXDu3cuzLw5ZOO9stILO4kDLb1vLh4-LeCvvGEVlLwceHW-anwQPXw40jwtC1Y-sIpcvUEtJr2_RPy9mHX1vIJZ_Lzvxfe9IiioPSkvqLxYwcQ9kZYPPUcagTxYHy8-7iyQPftGDzwkuiK9CQyDvUvqJL2vrYQ9LLugPUk86jy2ciO8OH5tPVk1xrpg5yY-DdMNvfEe8bz58re9LAmWO8IbLTz1Z_-9gfOYvYNWO7z54oY9EuktvZp6PT1JdCW9CFwSvf5cert_N6g9HUuZPX_5pLyRut28uTLNuyi5wzxAVf27dknmO-lc9ryzfei9Ukx8OjWK9rsaQo899vDAPGcxqTrLBqO9htVuPabc2DxhokY9q8A6PboXczy5ido9CesVPa4LhTtWWpA8VXH-PCqTFryqHka6gIGAPVTTZDxsnAg9ZnFVPQvUorwoBYK8xd6gPaY_4LyDOaW9-JOnPQSplLzKbKA9JAlnvGTkkbyOBws-nRo-vU9S6DsXU589LTiou2fQ8Tse05Q9FEmKvQeBcLw4DuE86_8MPggySLsiiuk9_fsnvcH-a7zaoes8tP77PDL-AbzZQtA9lBTYvSIRCbiSKJ-9zhd7vBPj5zsXPHY9gyUIPbfQlbuXGdu8eh73PPfnA7yRoFO83yatvRbtnrrM0cM9aYZ5vTRYJzxAa949CkOJvPJt5blp5NM9ydK9vFKwBrglPyI99ioNvDraP7rRYC49jV1nPVxzNbemB6o8eW5GPNI0NroK9wo9zwYqPfatvTmsPOG9aUNUPZVbsjjmXIo8bRuGPHt7Wjm2QpK9lxP-vFnCLzmd9jS9dK2DuuqIf7lWUp28Q8pPvLcDxTYvUPK9qFycvUOAv7dVb-g85OKuvUkQybh4npM9brjZPP2onbidm5u83m5uPA-9CLhT7Mg931N0vZqz0bjjFpi8165_PddTODhJtZQ9-SPGPeZScjl9gMk7a2ZtPZp44Tjrycw94ZMzPUvOkDfo2AE9EhNUPaqcgrbeWfs82PGfvRgNlzgH8Vy7EAGMPYOdXbhaNKO9fFpKPXIgbDjzRVG9Nt5HvZFMvLdqdF09Ja3YvTwhnDiaj4C9Zwr9vWksqTiiXzs9RR89PYfzcrgZm2y9iYTlvLRKzjerBPC8BLGHvH4FJriOuaG8yQmuPWRuFLcNEkc8dHz0vVZYWbgi_-w9NSkFPvN-W7gilA29MnZCvYVIxbcmvZQ8fKo0vVLqWDb5dCs9CdFrPEZ8pDQgADgTQAlIbVABKnMQABpgE_sANuY73gUR9hXZ3gMD3uXg5zTR9P_Z7QAdGgsPJfjh1_0hAO7NGuu1AAAAIAH7_wEA8l6y9Q0pGin018n5Kg1__ATrzAsDDMzu-gboCe_S3B_oACvXyCFWO9EiMeQuIAAtN6I5OzgTQAlIb1ACKq8GEAwaoAYAAKjBAAAgQQAAYMEAAJpCAADAwQAAEMEAALhCAABwQQAAQMIAAPjBAABYQgAAsMEAAAAAAADAwQAAUEIAABDCAADwQQAAOMIAAJhBAACAQAAAcEIAAJjBAACAwgAA2MEAAExCAAAQwgAAQMIAADxCAABAQgAAUMEAAJjBAADQwQAARMIAAIRCAACGwgAAMEIAAODBAACaQgAAiEEAAOBAAABAwAAA8EEAANBBAACwwQAAWEIAAMBAAAAwwgAAeMIAAGhCAADgwAAA6MEAACzCAAAAwQAAIEEAAMBAAAAoQgAAOMIAAMBAAACAQgAAkEEAAFBBAAC8wgAAsMEAAMDBAADYwQAAOEIAAAhCAAAMQgAAcEEAAERCAACgwAAAnkIAAOjBAAAMQgAAAEAAAJ7CAACUwgAAEEIAAHDCAACowQAA0MEAABhCAAAEwgAAbEIAAHjCAACAQQAAYEEAAFRCAAAAwAAAsMEAANhBAACAQAAAcEEAAAzCAACgwAAAwMEAAIDBAACAQAAACEIAAFDBAACQwQAAPEIAACBCAAAEwgAAFMIAAIrCAAAAQQAAyEEAAJhBAAAAQQAAQEIAAFTCAACgQQAAuMEAAGBCAABwwgAAoMEAAL7CAADAQAAAgMIAAADCAAAAwgAAQEEAAGzCAAAkQgAAAEIAALBBAAAQwgAAlsIAAGDBAAAwQQAAoMAAAEzCAACAQgAAJMIAANhBAAAMQgAAiEEAABjCAADAwgAAmEEAAJJCAAAoQgAAiEEAAMDAAABwQQAAiMEAADBBAAAAQQAAFEIAAMjBAACgwQAAgMAAAPjBAABgwQAA0EEAAChCAACuwgAA4MAAAKBAAACAQAAAFMIAANDBAACgQQAA4MEAAEjCAAAgQQAAuEEAAOBBAACOQgAAksIAAADAAAAQwQAAoEEAABBBAACAwAAASMIAAADAAAAYQgAAVEIAAFBBAACowQAA2MEAAIBAAADsQgAAgL8AAEDBAADGQgAAbMIAAJhCAAAAAAAAgEAAAABBAABAQAAAgD8AAIxCAAAAwgAAJMIAAKbCAADAwSAAOBNACUh1UAEqjwIQABqAAgAALD4AANi9AACWPgAAXD4AAKA8AAA0PgAAMD0AAAe_AADYvQAAyL0AAHC9AACYPQAAsj4AAIA7AADIvQAAZL4AAGw-AABcPgAAgDsAAB8_AAB_PwAA4DwAANi9AABMPgAAqD0AAHC9AABcPgAAzr4AACw-AAAUPgAAiD0AAFy-AACAOwAAPD4AABw-AABUPgAAiL0AAKa-AACmvgAA0r4AAGS-AABAvAAAgDsAALi9AACAOwAAML0AADA9AAAQvQAA-L0AAJg9AAAEvgAABD4AAOA8AACYPQAAzr4AAKC8AABNPwAAlr4AAPg9AAB8PgAAQLwAADA9AACIPQAADL4gADgTQAlIfFABKo8CEAEagAIAABC9AAAsPgAAQLwAACu_AACCvgAAEL0AAKI-AAAwvQAABD4AAGw-AAAMPgAAJL4AAJg9AAAQvQAAgj4AAJi9AACIvQAALz8AAFC9AADaPgAAuL0AALa-AADgPAAABL4AAEA8AACAOwAAoLwAAFA9AACIPQAAQDwAAPi9AADoPQAADL4AALi9AAAMPgAAQLwAAOA8AAB8PgAAqL0AAIi9AAA0PgAAED0AABC9AAAQvQAAUL0AADA9AAB_vwAAoLwAAOC8AADIvQAAQLwAADA9AABAPAAABD4AAIA7AADYPQAAgDsAAIC7AACAuwAAED0AAGw-AACYvQAA4DwAAEA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=31DfeQVH7bQ","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13422317648429676805"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3906707480"},"2175454173808467933":{"videoId":"2175454173808467933","docid":"34-3-15-Z811DF08B8B6DC0A9","description":"We compute the eigenvalues of a special tridiagonal matrix which arises in the study of a random walk with reflecting boundary conditions. These matrices also arise in the study of discretization...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3311779/8fe093afe1cfc8a085f16aabc5aee477/564x318_1"},"target":"_self","position":"3","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"The Eigenvalues of a Special Tridiagonal Matrix","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DMNgw3x3r9g\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFQoTMjE3NTQ1NDE3MzgwODQ2NzkzM1oTMjE3NTQ1NDE3MzgwODQ2NzkzM2qvDRIBMBgAIkUaMQAKKmhoamltZWtpdXZwdGVrbGNoaFVDX2puU2FVUndnNWJLM3BiQ3BfeGFiZxICABIqEMIPDxoPPxOiBYIEJAGABCsqiwEQARp4gfz3-wAAAQDwCAYK9wX-AQEI_gj4_v4A7fjw_AUAAADiAQoA-v8AAP0Z_AUDAAAAAQX7A_3-AQANBPnuAwAAAAcE_Qj9AAAAC_r3Af8BAADxBPr9AwAAAPcFCv7_AAAA-f0KBQEAAAD-_P79AAAAAAn1CAMAAAAAIAAtBm7UOzgTQAlITlACKnMQABpgGxoAJiYn1O4e9vHD8er6-9P68A3PBADm5QAr7PnlNA_v7dgXABjII-q7AAAAHObyBxoA7FDt9_AdLQkR5dzuDgl_Axf9NxUzGtMGBzIc2f2-4vL9AADIBxQVGvL0EkFBIAAt6ORIOzgTQAlIb1ACKq8GEAwaoAYAAADCAADAQAAA4EEAAIBAAAAAAAAAAAAAALJCAADowQAAbMIAAAAAAACYQgAAQMIAADTCAADAwAAAuEEAAEzCAABcQgAAiMEAAMBBAAAwwgAA4EAAAGDCAACwwQAArkIAAIC_AABQQQAAAMEAAFzCAACgQgAAZEIAAKBBAACgwAAAJMIAAGRCAAAQwQAAwMAAAFDBAADOQgAAAEEAAIZCAAAQwQAAQEIAAAxCAAB0wgAAmMEAADDCAAAQQgAAUMEAABRCAABgQQAAFMIAABRCAADgwQAAkkIAAExCAADgwQAASMIAALDBAACgwAAAJEIAAJBCAABwwQAAiEEAAFDCAAAQQgAAgMIAAGhCAACqwgAAFMIAAKBBAABMQgAA4EAAAADCAABAQQAA0MEAAMzCAABowgAA8EEAABxCAACYwQAAqMEAABhCAACgwAAAjsIAAPBBAACaQgAASMIAAOBAAABkQgAAIEEAAABAAACAwAAAIMEAAEBBAABAQAAAssIAAKhBAADAQQAAyEEAAKjBAAAwwQAAMEIAAEDAAACAQAAAgsIAAJRCAAAwwQAAdEIAAIjBAAA0QgAAgEEAAMhBAACgQQAAYMEAAERCAAAMQgAAqEEAAADCAAAwwQAAMMIAAOBBAAAgQQAAiMEAADzCAABoQgAAIEEAAMBAAAB8wgAAXMIAAAxCAAD4wQAAgMIAAADBAADwQQAAUMEAAADAAACQwQAAUMEAABTCAABgwgAANEIAAEDAAACgwQAAoMAAAJ5CAAAQQgAAHMIAAEBCAABAwQAAqMEAACDBAACwQQAA4MEAAKLCAACIwQAAHMIAAILCAADgwAAALMIAACRCAADgwAAAJEIAAGRCAAAgwQAA2EEAAADAAACgwAAA0EEAAIDBAADgwQAAUEEAAKDBAACgwAAAAMEAAADBAACIwQAAYMEAAMjBAACgQgAAREIAAI7CAAC2wgAAWMIAAOhBAABwQQAA3MIAAMDBAABgQQAAMMEAAKDAAABgwQAAYMEAAJhBAACAwQAAmMEAALBBAAAQwQAAFEIAAMDBAABgwSAAOBNACUh1UAEqjwIQABqAAgAA6L0AAOi9AACaPgAALD4AAKA8AACqPgAAgDsAAAu_AAAMvgAAMD0AABw-AAAcvgAAij4AAPg9AAD4vQAARL4AAGw-AABQPQAAqD0AANo-AAB_PwAAmL0AAKg9AABwPQAAqD0AAAQ-AAB8PgAAPL4AAAQ-AACKPgAAbD4AADy-AABUvgAAmD0AAHw-AAAwvQAA-L0AADy-AADCvgAAB78AAFS-AADIvQAAdD4AAIa-AADovQAAgDsAAKY-AADIvQAALL4AAIi9AACavgAA2L0AAKA8AAC4PQAAbL4AAIA7AAA9PwAAyL0AABw-AACGPgAAMD0AAEA8AAD4PQAAlr4gADgTQAlIfFABKo8CEAEagAIAAFC9AAB8PgAAiD0AACW_AACKvgAAuL0AAIo-AABAPAAA6D0AAIY-AAAwvQAANL4AAMg9AABAvAAAmL0AAHC9AADgvAAAHz8AABC9AADiPgAAMD0AAKi9AAC4vQAALL4AAOi9AACCvgAAMD0AANg9AAAQvQAAHD4AAOA8AABEPgAAjr4AAFA9AACgPAAADL4AAO4-AACKPgAAqr4AADC9AACAOwAA4LwAACy-AACIPQAAMD0AAI4-AAB_vwAAiD0AACy-AAAQvQAAmD0AAFQ-AAAcPgAATD4AAKC8AAAsPgAAQLwAADC9AACGPgAAUD0AACQ-AACYvQAAUL0AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=DMNgw3x3r9g","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2175454173808467933"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3198067581984912370":{"videoId":"3198067581984912370","docid":"34-0-10-Z972EC5AC7F474492","description":"#Shorts #algorithm #datastructures What is a tridiagonal matrix? and Algorithms: In Depth using Java https://www.udemy.com/course/data-str... 👉 R for Data Science: R Programming Bootcamp...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2919658/0cf6f5e3eb6dd7fc110daec40d6fd0de/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/QZKmRQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"5. What is a Tridiagonal Matrix #Shorts #algorithm #datastructures","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XbJNrlVD02k\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFQoTMzE5ODA2NzU4MTk4NDkxMjM3MFoTMzE5ODA2NzU4MTk4NDkxMjM3MGqHFxIBMBgAIkQaMQAKKmhoZ2hsc3B2dGViaXh5cmNoaFVDbGh2X0lDZ1d1UHZya1daZEdFLUlKdxICABIqD8IPDxoPPxMoggQkAYAEKyqLARABGniB_O4F8gf4AAYF_RD4DPoDHhAAB_MEBADyEPXzBAH_AOr4Evv9_wAA-wcF__YAAAAT8v70_P8CAAEM_wYFAAAACvUBB_EBAAAaB_T4_gEAAPEIAg8F_wAA_g8W_gAAAADxAQMLAQAAAPv_BfYAAAAACu0C_QABAAAgAC1Cj747OBNACUhOUAIqhAIQABrwAVHyD_-NB-z4XProAd4A4ACBBQv_PgD-APUH_QADAv0B8yLeANriAADm_94A6Q0o_yHn9AA67_wAFQcPAP0A_AAkDwoADuDzAUH9_QHxAAT_DPod__3-AQD38g0A6urxAPoM6AH1_er8-fblBBECFgD8ExwA_-oaAgcLCALq-BX_9QP7Auz76AEGCPb_6fgjBfn06v0L_xD97RjuAgb0-v79_wv6Hwn8Ag_tDQsEEQn-5gPkAu76BAIi5_QF-xQNASEBC_vd-_H4Df_7-ibc9AUA5Qn3AwH9APkBDQoL2Pv19PMG9OcT9ff6-g4KDgAJCiAALW4nSDs4E0AJSGFQAirPBxAAGsAHh9upvr1QpTwcIB091gIbvhMD7jwedjq9_YUevgFqajzh0Fu8CbLUvAWSRj12Oza9HcnFvmYIkbx9pY09mQeVPRudg71XgEo8dXT8vS8Tmj0LAhC99aFrvoTTBz10NcO7wTo-PomuED3lK0G9R86dPdi_hjx0Iyy8JAi6u6xBzjwI_tw86-Z9vYmukL3-HiM864sUPtOAxbu3cgA95gNCPvY9T71HAQG7fHKePFCPSL3Gp8A8TyRzvLiCHD1aDYm8af4oPotd0ztHCys85IM_u3wDPb0rDow8TLQavY-RB7yttg080ex1vfv1-byD_bK8J_KpPUcfcz2DO8i7yqk9vtsWtT20TPu4QV70PAARLD1sLeU7Iq53PIBmSz273mw8R6h-vUw0SDx8ZZ48NSXZPTL-v7vxt_28F1z9vJQ8LT1f4e47qh5GuoCBgD1U02Q8gsTGPZzEQL0o61w8_g-LvN6XDj2hJsA7X91nvOxkFT1y9148OhEzPUpKlbzUsZA7BDnoPScDFj3aiNC7L058PB8kNb0FyMw7Yd6jPIY84r1ZSXG7fjjoPUJAgDt8fRC8AO5ovQYbzbz6AkS7sbwwveg5_Twc3C27N6ruPCqZUr0LR2s8bQNyvQdkyjzJAok7Ul8WPexqsrzhhzm805SjPXuOfj0B9eo7eE3-vIAF-ry0xw-7BV2xPPwWgryl7jG7AjoCPWcOqb0rjK45iCSEPaUZtr3cmS673MXKPZRQqr2mxIW6OiETvGQq8zzZyHm7B9FaPQ9MCb2zhYC6zaHWPHhSlTw8ypc45imjOn7trz3ujsE4OVgpPQjpKbzb9Wk5FJ2LvYl64b3GJ3A5z4HlvdVoqDwWpig52DJ0vQrZGT2Skiw4qNr4PJHv0r17BSQ5qDxVPSusKj0VmZO4y6nTPFBoHzxuiaK4n07gO0b1sbwUpyy3rh17PNx5LL0XQgY3JdcDvQS0uD2qJ6q4K7R_uz-G8zx0F4-4eq3fPPUfozyZHoS5gJyQPUjArT18vuI4uJgavVXiFT3fOMG4j8ahPFd4N73RFC04cmw9vLOdaj0ogra3Ga1DvSfgsjwmzoc4wkvwPQbMy7v-wDU5hqp4PbUiAL3aLwM4ymVNPazG0rxvlBs31EP0PVZgTT2Ui125uWD6vLPGarwNQL83OOeWvEbAN71q4gO4VjdNPCiAg7uutRy4XqpIvTrpHb60Y_q4ipZXPRBY-T2NF0A47AGOPPbnxzsbrPO4Cdbhu7bLCL0cJ4C3EL8svedaLz0tpmQ4IAA4E0AJSG1QASpzEAAaYBAEAC4CPNzFKB3q4tjdB9XJ-fRLy87_36z_IyHeABTI8tgMFgBC7iXeoQAAABvqyArzAOF-4sgoLwQe9I6y9iYOfxQd8eoLLRWu6-Ig07ng195I5gD7rrNIMRbrIy0ZESAALWzAFDs4E0AJSG9QAiqvBhAMGqAGAAAcwgAADEIAABxCAAAoQgAAoEEAAKxCAACIQgAAeMIAAJzCAADgwAAAvEIAALDBAABAQAAAMMEAABhCAAAYQgAAkEEAAKBCAAAMwgAAyMEAAODAAAA0QgAAKMIAAJJCAABgwgAAPMIAABzCAAAQwgAAVEIAAIBAAAAYwgAAgEAAAEDCAAB8QgAACEIAAKBAAABgwQAAskIAAIBBAACWQgAACEIAAPDBAAAMQgAA-EEAACBBAABwwQAA2EEAAJDBAABwQgAAREIAAODAAACoQQAAZMIAALhBAAAAwAAAwEEAALTCAAAMwgAAgD8AAGBBAADgQQAA6MEAACBBAACoQQAAsEEAABzCAADAQQAAmMEAABDBAAAgQQAACEIAANhBAAAwQQAAIEIAAIBAAAA8wgAAhMIAAABAAAAoQgAAwEEAAKBAAAB8QgAAsEEAAATCAACgQAAAcEIAANBBAACAPwAAWEIAAGhCAAAMwgAAMEIAAKjBAADKwgAAQEEAANjBAAAgQgAACMIAAHDBAABwQQAAoMAAAKhBAAA0QgAAwEAAAFTCAACYQQAANMIAADBBAACYwQAAgMAAAI5CAAA8QgAAyMEAAIBAAAAUQgAAgEIAAMjBAABUwgAAyEIAADjCAAAIQgAAKMIAAODBAADIwQAAgD8AAMBBAAAcwgAAqMEAAJDCAAAIwgAAKEIAAJjBAADgwAAAqEEAAGDCAABIQgAABEIAAEBAAABwwQAAHMIAAPjBAAA4QgAAHEIAAJjBAACMQgAAuEEAADzCAACoQQAAqEEAAJBBAAC4wQAAXMIAAABBAAB4wgAAgD8AAABAAAA8wgAAHMIAAIDCAADgwAAAFEIAAFDBAAAAQQAAIEIAAADAAAAEwgAARMIAAKDBAACIwQAABEIAALjBAABEQgAAfMIAAIC_AACgQAAAwMAAAAjCAACqwgAAdEIAAAhCAACOwgAAXMIAAIhBAACAwAAAUEIAAJ7CAAAUwgAAkEEAAAjCAACoQQAADEIAAIDCAADAQQAAwEAAACDCAADwQQAA4MEAAHDCAACAvwAAgEEgADgTQAlIdVABKo8CEAAagAIAACy-AADovQAAHD4AADS-AABwPQAARD4AAEQ-AAAJvwAAzr4AABA9AACovQAAQLwAAKo-AACovQAA-L0AAIg9AAAwPQAAmD0AAIg9AAAnPwAAfz8AACy-AAAEPgAAcD0AABS-AAAEPgAAdD4AADS-AADYPQAAlj4AAII-AADovQAAXL4AAKi9AACGPgAAyL0AAOi9AADIvQAABL4AACS-AABsvgAAjr4AAAw-AABsvgAAgr4AAIo-AABcPgAAVL4AAOA8AACAuwAAJL4AAOi9AACYPQAAmD0AAKC8AAAQPQAANT8AAOi9AABsPgAAzj4AAIi9AABEPgAAuD0AAFC9IAA4E0AJSHxQASqPAhABGoACAABEvgAAFD4AADA9AAApvwAABL4AAEC8AABcPgAAMD0AAOA8AACgPAAANL4AALK-AABQPQAALL4AABQ-AABwvQAAcD0AACs_AACoPQAAyj4AAEQ-AAC4PQAA-D0AADy-AABQvQAABL4AAFS-AADoPQAAiL0AABC9AAAwPQAARD4AALi9AAD4vQAAfD4AAHy-AAAlPwAAyD0AALa-AACAOwAAUD0AANg9AAA8vgAA2D0AAIC7AAA0PgAAf78AAAS-AABUvgAAJD4AAKg9AAD4PQAAgLsAAKo-AACCPgAABD4AAKC8AAAEvgAAPD4AADA9AAAsPgAAZD4AADQ-AAAUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=XbJNrlVD02k","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":610,"cheight":1080,"cratio":0.56481,"dups":["3198067581984912370"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3060017193"},"3304486850732498694":{"videoId":"3304486850732498694","docid":"34-1-12-ZB5933F3D86538D1C","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1990709/3ed0b837c1c1df5d367d19349db3753e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/h3rV4wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"Tridiagonal system for cubic spline interpolation","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zhSoqOOD1pA\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFQoTMzMwNDQ4Njg1MDczMjQ5ODY5NFoTMzMwNDQ4Njg1MDczMjQ5ODY5NGqIFxIBMBgAIkUaMQAKKmhoZnNmYXhkb2h2enVsb2RoaFVDM3gwUWJ2SFBNRWZfTzBVc3A0ZW9DURICABIqEMIPDxoPPxOWCIIEJAGABCsqiwEQARp4gfsL_gD_AQD99_cM-Aj9AhUC_PL1AgIA9gf7_v8C_wD3_AoLCQAAAAQCCQUCAAAA-_z0-fX-AQAU-vP0AwAAAA78_Ab7AAAADQoDAAj_AQH5Afn4A_8AAP7yCP7_AAAA8wT3A_r__wH2A__tAAAAAAEEBv7_AAAAIAAtCGHVOzgTQAlITlACKoQCEAAa8AF_6hf-uQrZANUU2QDoHuQAnw4g_ztF2__PB_YCzBzqAdv6Bf-z7OT_2PIlAMcSLQAW0qgD3u4g_wrg5_8ZAg8BEAkbARbO7AJQ7iP_D-nWAO4OGv8H4jn_9dTK_gz0twAP3BP-D-LW_-oEuAL-BTQAKhRCAPHhDP7l8xv-7er__t3v7f0c_-sDCMQOAegZQwH27d37uRIN97kX-QU2wvwBDdj5-fQw6AMk7_UGDfLrCMAX0PnQ-PD3D0QB_qAb0gLh3SL_1MQL9vbNEgof2urz8RcH-grX5gEoMuwP4SEXBf70AQLR4vPz1w_0_d8P8hYgAC2_TgA7OBNACUhhUAIqzwcQABrABwcH2755A4w8ymcxOqn3FLxEJcO7dy7MvEleJ73jVVY9pr_NvCCWwj0Koxm9EAaevPaWYr4FeIE8eT8NvMVVhT5UMG-9m38qvHoXL74IPDA9KZ_UvLSsG74rsIY9YvgDvWyw8DwKa6E7DtmjunYJPT2OY1q8i1IfvG-xDL1WWxu9UjjMvCuIwbzDFxy9SVvmvD52Vz041gc8nsETvGxIVz2x7Pi8VIaWvLxPjz0r1oU9O59LvKXiOr3BKii8V6lKveKSAz6Ho5A8OA9MPL7F3rwetdO8jMe7vJ9MbbxC85Q8uVnXPPdJJL20PoA8UNMdvcwBTLvCz4k877MEvA1TK75csqY7Yro1vD7qvz3otPg8dgqPtx093r2-wAw-uwgLun9lSj2_0fO8_8ygvADyhD2JKwI9-CsuPJniYDw16Ts9OZ8TPEFcPbtr1MM9xBsCPJ5XgT3AX6c8ioYWvPzgHD2540g9arvsu5ViR7zpmxQ9seiMvPKwhT12YZU9uGUTvPACWzwtJyu6wXxovNmIlrtLnmG9kgUOvG2po73ZxT69x4u_u-fMUT24oIg9WX0evG786T1M5K29K3Opu2-7MD2eSiG9oybMOSn0cD1IXDa8QpygupDZWb2wI2m8NaUIvChyUr10MDE9Pqn-uyAfGT3YYZw9JKwVuynEqzsn66G9bAZ6Ow1u6zwAm2I8EKXmOo0jezxV7zq8sJFBO4Fb9z0IS5a9-F_uOIDTu71lUK28DuqNu9mE6rwv1Cu83f1JOu6vDj6fEpG9ftCUOVmTXTxYUvI7c2CcuiZstL1kQNY9XCYQOCnMe7who6w7p4JTORSdi72JeuG9xidwOc4Pbbyt3wc9qMXbuUV9N7yd9lQ94jJ_OovPMz2AFiG90jMpOdNdY7275wo9LrqPOKRnPz27DpU92D52OFQOh70e29e80LyfuKAfAb1JLKk86xtaOUMSxzxNELU8tbuDOFqvgz0Bj8O9ptFaOZYvjj3XGiW8zMaPOBeFeD0nvOQ96I4yt3Iz3D0iVAk-GwuqOfFZKD13loq91TXrOMtemz0uD4g8ArQDtpx6c73XS9M9n42XOINmHD35w6o8kqDwOPWbbDtwthS947r3NkGOd72iDBU9lsz7N5JdGT7ZT1C9rMI_uawbT71wAGK9cfqiuDKU7ry6-Lu9NhcmuIbNi70IsOg9VLOWOOTVnrx6ifG9ZVUwuMr0cD0i4Ss-8cuKOJiTZTuAC9I9mOQPuZ_HuL0KHH-9mzfYt3Lsv73Iq3g9F9mNOCAAOBNACUhtUAEqcxAAGmBO-gAo8QHAHh8VxPDkFh3-1OXZC-Hv_xrW_z0W-zVDFeucDNYAINcz2J4AAAA-yqEjDAD9f8YqKB85HuOtvQT9VWUVJUoD2C8t8RkxBf_AACv7DRQA9ezDMXwhtf5Y2zMgAC1HqQ47OBNACUhvUAIqrwYQDBqgBgAACEIAADDBAABoQgAAEMEAAFDBAABgQQAAhkIAABBBAABswgAAgMAAAKBAAACoQQAAgL8AAKBAAAAwQgAA4MEAABxCAACAwgAA4EEAABDBAACqwgAAmMEAAKjCAAC4QgAAUEEAANDBAADIwQAA-MEAAAhCAACOQgAAMMEAALjBAAAgQQAAoEEAAKTCAAAQQQAAIEEAAGBCAABAQAAASEIAAFDBAAC4QQAAEMIAAETCAAD4QQAA4MAAALhBAACQwQAAbEIAABBCAACowQAA0MEAAEDBAAAYQgAAmEEAAMjBAADIwgAA4EEAAIDAAAAUQgAAgEAAANBBAADCwgAAgMAAAMDAAAAIwgAAsMEAAMbCAACKwgAA-MEAAChCAADAQAAADMIAADRCAAAIQgAAjsIAAKLCAAAEwgAAoEEAAJhBAABwwgAAmEEAADDBAAAkwgAAUEIAAMJCAADYwQAAAMEAABxCAACgwQAAQEEAAAxCAABcQgAAMEEAACDBAABYwgAAMEEAALhBAABwQgAANEIAABjCAABMQgAA6EEAAMDBAABAwAAAgL8AAADAAABAQgAAbMIAAJxCAAAcQgAA2EEAAIDAAADgwAAAkEEAALBCAAAwwQAAAMEAAADAAACcwgAA6MEAAMDAAAAAQAAAjMIAAAAAAACgwAAAIMEAAHTCAAAAQQAAcMEAAGDBAACIwgAAcEEAAIBCAAAQwQAAcMEAAChCAACgQAAAUMEAAKLCAAAoQgAAcMEAANhBAADgwQAAMEIAADxCAACAwQAA4EAAAADAAACoQQAA2MEAAJBBAABQQgAAcMEAAIjBAABEwgAALMIAANhBAACgwQAAEEIAAHzCAADoQQAAQMAAAPhBAABEQgAAUEEAAEBBAAAAQQAAkEEAAITCAABowgAAKEIAAFhCAACgQAAAJEIAACBCAACQQgAAUMEAAFhCAAA8QgAA-MEAAMDCAADowQAAgMEAAHxCAABEwgAANMIAAJpCAAAUwgAAIMEAAMBAAACAvwAAoMEAAMBAAAAAwQAAiEEAAIDBAACoQQAAwEAAADTCIAA4E0AJSHVQASqPAhAAGoACAADgPAAAPD4AAKo-AABsPgAADL4AAEA8AAA0vgAAvr4AAKA8AADgPAAAQLwAANi9AACaPgAAHD4AAPi9AADovQAAiD0AAJg9AAD4PQAABT8AAH8_AAAwvQAAVL4AAJI-AADovQAA6L0AACQ-AACGvgAA-D0AAFw-AACYvQAA2L0AAKi9AADIPQAAFD4AAKi9AACIvQAAXL4AACS-AACGvgAANL4AAKC8AAAcPgAAyL0AAFy-AABAPAAALD4AADS-AADovQAAgDsAAKA8AABsPgAALD4AADA9AACCvgAAML0AABc_AADYvQAAND4AALY-AACIvQAAuD0AAOA8AABQvSAAOBNACUh8UAEqjwIQARqAAgAAoLwAADw-AAD4vQAAPb8AACy-AADgPAAAmD0AAEA8AADovQAAoj4AABA9AABUvgAAQLwAABy-AADYPQAAuL0AAMi9AAApPwAAEL0AAJ4-AACYvQAA6L0AAMg9AAAcvgAAUL0AAFA9AAD4vQAAQLwAAKg9AAAQvQAAmL0AAFA9AADgPAAAkr4AAPi9AAC4vQAAML0AADQ-AACIvQAAyL0AAIA7AACIPQAAML0AAKi9AABQvQAALD4AAH-_AABwvQAA-D0AANg9AADIPQAAHL4AANg9AAAMPgAAED0AAKC8AADgPAAAQLwAAFC9AACAuwAAHD4AAHA9AADIPQAAiL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=zhSoqOOD1pA","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3304486850732498694"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"793703243"},"14773567794419749702":{"videoId":"14773567794419749702","docid":"34-1-4-ZAAF22B3C5BFD2A11","description":"A tridiagonal system has a bandwidth of 3. The name tridiagonal comes from the fact that there are at most three non-zero entries per row of the coefficient matrix. These entries can only appear...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3115359/6d99ae10186af9ede874afa661146c1b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/E4B1C44A9BABD811E2B4D83EB6ED3AFB3DE171B93B936E72416F54D1129F3903D05A06DFEAE09718AFBBE61451F8711D5A2001AAEB7D9766BC9C149C137B80C6.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"Tridiagonal Systems in Matlab | Numerical Methods | Matlab Helper","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=C2IaMjzfxWg\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFgoUMTQ3NzM1Njc3OTQ0MTk3NDk3MDJaFDE0NzczNTY3Nzk0NDE5NzQ5NzAyapMXEgEwGAAiRRoxAAoqaGhlZWhna3llbGdxc2Z4Y2hoVUNGYTZBUDlUczRFRlpXQTZwX1RQSm1BEgIAEioQwg8PGg8_E4YCggQkAYAEKyqLARABGniB9AMC_v8BAAYF_g75C_sDFQX4BvUBAQD0Dvb0AwEAAOz4EPz9_wAABgP8CgkAAAADAfkF8v4BAAj89f34AAAAEQDy9v0AAAD7EPr__gEAAPf9CgH0AgABB_4UBAAAAAD8CAEB_P8AAP0P9AIAAAAAFf8D_AABAAAgAC3YMtQ7OBNACUhOUAIqhAIQABrwAXU9Jf8OEdMEpOXoALAJEAGB5-3-DCbg_6v65ADLEasB4d0SAAUSA__b--v-hzUoAf_X0wAWCPD_MeYX_xoCEAH8HTgANfbtAUAj8f8B2g4A2Sk3_QnpIABBAvz_MAHoAhDaFP7p6gL_5NDOAEIqIAT8MgwDXe70ANLO9QLlCBv83tfpAAQMEPj37_n69fgZ-g78zQBTP_UEDwzrCAU5Kf7evPIEMw76AzAlMf68CfP70NUFAQi_CPLjDy0EFg0jA8kZCvEY_gAAEefXA_7uA_XOKAEKbQnxB-ADAe7wOvf7ESIG6tVTCgIS1QcHyOUQ-iAALeqM8jo4E0AJSGFQAirPBxAAGsAHxjSzvqw5AD27Uw88I16ovLSsu7ykHr-793hBvorEKb0MoCm8PuxVPo7l3Tw9VwU9eV3_vQVuXbynSQA8PSlzPpTA5rv1cg49ehcvvgg8MD0pn9S8TMQ7voKcRbtWMte6165fPY7Krb1PiuA8_z5DPnd_BrgM60G9EfFgvSMFAL0dM5Y7C826PQSgvDsR9tK8JY-MPfpHHzwyFlI95Zn3PTflZTxOHfU8i2XfvEF_Ib2nDeI79Wf_vYHzmL2DVju8Xv-Fuaj3uTyr9dU7MUIYvcL6_zwxr4i8sn1NPcRnQT0cU4M7PQo3PaZGaLyTxqi8YpOpO3EqyL3Iaqm8qMghvgJ8HD3o6W089bwrPs0seDz6er48zqUIvswHJL3pPHQ8vj8UvWD9ZL2Pqbs8tMlhPBWnjz3_Fi48k7kDvRVeHb2jxJW4Yu8qPX5AuTqO2P66Vj6VPI-24LwbDaI7QVliPe0bDj0XlVy7xEMTvT8Y3Txlm-W8NEfWPfQ2NryhZz26xsHlPR1Vjb2M__G68DaPPeycy7zCm9o8Yyp9vKNFzL2HKka858xRPbigiD1ZfR68r0M1PWi-yb1nO5G78IXJPFskjT0RREy8NSllPaGBuL1qUA87l-IqvcvdDrpA1OS78NWWO7cfNT1inc-7Ryl3vZE-0jxFw5y7zGyWvfNKk70H_1w3V10HPVxnjb2uVW25IAj1PPSm5DsUMJG72qM8PejlRj3zrQE6XniPvbvXZD04mm46mKkkvMsLdT2KxdI6H6LRPVj4H7150Yo4pQWaO1k1YzzROuI5G-qhvbJblT0s2Zk4a-M-PHQInLxttWy5iQ-3vbdCuL0xQro4vHf1O8ssAr2-mAG5ypJvvPjtmDqVgcg36fatvCU79r25vMw47UCivbN7crtOd_e4k6kCPlx1fLvDyBA5IiJrPZ2klL2oFyS37Ak8vXIl8bzWYoA5FZXovDfh3jvlKi-4TKwnvW5mOrtdu924zq_BPEmTzD3fRIe4PhFaPRhuijxt8Fw47-cUPe3i7Dzj-pi1BpwlvIxq0b36U_c3oNx7PQGZtz1YADa4ZVPOvcLoqDz-Mug3YUz-u9SYtb0ztII2Yp3qvGG27jw5P3639qRCvTAlFz2Dw8g3DZ6jPU7I2Lx2H7-4GZtsvYmE5by0Ss43VHaVPNa1rDxGHiQ3uMPsu_MFLT13_v-0bXIYPmGkF76n-N64VRimPW0LxT2Dx-c461zsvKqkpD0Bi8S4mA-Nvd0fhD2Mw9E3egyAvSmAPTzEWbe3IAA4E0AJSG1QASpzEAAaYPYBAEjyJ8MVKgz24eEHKrbbAdMmsvT_9dL_Fg_aAOsuxZv_LgDq5EjtogAAACYQ_hrSAMx8u9MOPfvvJbfI4TgMd_AI6K8rJAnXJjEiD-X34dQ0AQAQBp4Jf2HCGykJIiAALeT-EDs4E0AJSG9QAiqvBhAMGqAGAAAAwAAA8EEAAPBBAACAPwAAoMEAAEBAAAC8QgAAmMEAAIA_AAAkwgAAmEIAAEzCAABUwgAAJMIAAMDAAAB0wgAAYEEAAJjBAABAQAAAoEAAAEBBAACYwQAAAMIAAEhCAACAwAAA2EEAADjCAADowQAAcEIAAEBCAAAAQAAAQEEAAKLCAABQwQAA-MEAAHDBAACCQgAAxkIAAADBAAAAwAAAMMIAAMjBAACYQQAAHMIAAChCAABEwgAA-MEAAPDBAACgQgAA8EEAABRCAACAwAAAwMAAABBBAABwQgAAqMEAAHzCAACIwgAAkMEAADBCAAB8QgAAmMEAAPjBAACiwgAA-EEAAODBAAAcwgAASMIAAIBAAAAAQQAAQEIAALDBAABEwgAAgMEAADBBAAB8wgAA6MEAABBBAACgwAAAAEIAAEDAAADWQgAAYMEAAKBBAAAoQgAAwEAAACRCAAAAQQAAYEIAAHBBAABAwAAAtkIAAIBAAABYwgAAAMAAAM7CAAAAQAAAwEAAAJRCAADoQQAAgMEAAEhCAADAwQAAAEEAAADDAADgwAAAqMEAACRCAABwwQAAPEIAAABAAAAwQgAAqsIAAGDCAADAwAAAsEEAAIC_AABQwQAAmMIAAODBAAC4wgAAHMIAABTCAACAPwAAaEIAAPhBAAAAwQAAmMIAACDBAAAwQQAAgMAAAKDCAABkwgAAsEEAAIBAAABoQgAAQMEAAEBBAABwwQAAgMEAAGDBAAC4wQAA8EEAAODAAAAYQgAAoEAAAEDCAADwQQAAIEIAAKBAAABwwQAAAAAAAFDBAAAAwgAAQEAAAAzCAABwwgAASMIAAEzCAACoQQAAcMEAAIBAAAAAwAAAAAAAAGDBAABAwQAAAEAAAGBCAACYQQAAYMEAAKBAAACGQgAAXMIAAKDBAABAwQAA-MEAAEzCAADAwQAADEIAAKBAAACIwQAAHMIAAJTCAADAQQAAGEIAAEDCAACAQQAAiEEAANjBAAB8wgAAGEIAAAjCAADgQQAAcEEAAEBCAAAAwQAAqEEAANjBAACgwQAA4EEgADgTQAlIdVABKo8CEAAagAIAAKC8AACovQAAuD0AAAS-AAAwvQAAcD0AADQ-AAAHvwAA2L0AAOi9AAD4vQAAyD0AALI-AACAuwAAED0AADy-AAAMPgAA2D0AAKA8AAAZPwAAfz8AAKi9AACYPQAAiL0AAPg9AACIvQAAFD4AABC9AAAMvgAAmj4AACQ-AACivgAAiL0AAAw-AACaPgAAZD4AAKA8AAA8vgAAdL4AAPi9AACGvgAAUL0AAIg9AACoPQAA4LwAABA9AACYPQAARL4AAJa-AAC4vQAAkr4AAAw-AAAsPgAAMD0AAES-AACIPQAAGz8AAEy-AABMPgAAgj4AAOg9AAAcPgAAUD0AAEy-IAA4E0AJSHxQASqPAhABGoACAABAPAAA9j4AAPi9AAANvwAAxr4AACy-AADGPgAATL4AACQ-AACSPgAAgDsAAGS-AABwvQAANL4AAKC8AABAvAAABL4AABs_AADYvQAAqj4AABw-AAC6vgAAZL4AAKA8AABQvQAAQLwAAFy-AAAcPgAALL4AAIC7AACAOwAABD4AACy-AAAsPgAAEL0AALi9AACyPgAADD4AAHS-AABsvgAAXD4AABQ-AABwvQAA4LwAAHQ-AAAEPgAAf78AADA9AACgPAAAgr4AAEw-AADoPQAAgLsAAHA9AAAEvgAATD4AAMi9AAAwPQAAUD0AAGQ-AAD4PQAAcL0AABS-AABAvCAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=C2IaMjzfxWg","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":680,"cratio":1.88235,"dups":["14773567794419749702"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1940349446"},"1196783451001923481":{"videoId":"1196783451001923481","docid":"34-0-1-ZF63D3945729C4C55","description":"Tridiagonal Sparse Matrix Watch More Videos at: https://www.tutorialspoint.com/videot... Lecture By: Mr. Arnab Chakraborty, Tutorials Point India Private Limited.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1549532/553f179d3f5da64414f354899652217b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/PDgjCgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"Tridiagonal Sparse Matrix","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XN6-A543zW4\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFQoTMTE5Njc4MzQ1MTAwMTkyMzQ4MVoTMTE5Njc4MzQ1MTAwMTkyMzQ4MWq2DxIBMBgAIkUaMQAKKmhoeWN6c3VlZXpmYXJpYWJoaFVDVkxiemh4VlRpVExpVktlR1Y3V0VCZxICABIqEMIPDxoPPxPBA4IEJAGABCsqiwEQARp4gfzwAfz9AwD4AQAK9wb-AgIT-vr3__8A9gD19AMC_wDt-RD8_f8AAPgFAgIAAAAA_wv89gH-AAAG_vj1BAAAAAkC-AD9AAAACQf09v8BAAD4Cv78AwAAAP7-CgH_AAAA8wD6AwMAAAD7-QPyAAAAAPv4CQEAAAAAIAAtxcPcOzgTQAlITlACKoQCEAAa8AF_6A4AzvvQ__Xz5wASIc0CzwgQAA0Iv_-v_gAA1QbgAe0a9wDo_gAAACHz_7co-P8UAPj_29T9ATrd_AAm9_T_xfD-AWUKBwJCAhb_MwYR_dD-CwDm4woBMfXsAPML8gMN4hD_ViLc_v341P0k-y0B-xkl_xnoB__oBQIA2BYxAR0JxvzbAfgEAwHj-rMdBgH9-vYF8A4U__8G8_8L2ysIGMbw-hwb4v0z-uIC7iLyA-QMDQk7wP0E3RQNDvD64Qrc_wzz5Af8-AkKGwYMIvb8COzy8gnv9Qjr4PT3E-kJ-fgB8A_2Gwn89CD2FSL18_8gAC3RQhc7OBNACUhhUAIqcxAAGmAS-wAb8DfW_RbVDtH2-hbl6PfcH8gC_9PL_zscryM-C-Pl4gEA39gjvp8AAAAp6NUOEADkf9jdLSv3HiejrQZUDmbcKA7sy0sV1TobNAbUEuPq6fUA3uyPQEItzRnxGT0gAC1BZBg7OBNACUhvUAIqrwYQDBqgBgAAREIAAEzCAACoQgAAHMIAAOjBAADQQQAAPEIAAOBAAAA4wgAAgMEAAKDAAABkQgAAFMIAAHDBAABgQQAAkMEAAOBAAADQwQAAoEAAAGTCAAAowgAAcMEAAHjCAABoQgAAIEEAAKDAAAA4wgAA4MEAALhBAAAkQgAAHEIAADxCAACQwQAAgMAAAHzCAABQQQAAgEEAABhCAAAYQgAAIEEAAHTCAAAgQQAAaMIAAADCAACwQQAAqMEAACBBAACAwAAAYEIAAOBBAABwwQAAgL8AABDBAADYQQAAgEEAAFDCAADYwgAAIEEAAGBBAAAAQgAAAEAAAKBAAADKwgAAiMEAAADAAABAwgAAgD8AAGzCAAAUwgAAYEEAAAhCAADIQQAAIMIAAGhCAAAAQAAAMMIAAMjBAAAMwgAAMEIAAOhBAACYwQAAfEIAAITCAABQwQAAOEIAANJCAAAMwgAA8MEAAERCAACAwQAAIMIAACxCAAAIQgAAYEEAAADAAADcwgAAoEEAAOjBAACGQgAAmEIAAITCAADAQgAAqEEAAAzCAACOwgAAkEEAAPjBAACIQQAAgMIAAJhCAABcQgAAwEEAADTCAAC4QQAAOEIAAGRCAADwwQAAQMAAAIBAAAB8wgAA0MEAACTCAACYQQAANMIAAMjBAADAwQAAQMAAAFjCAADgQQAAwMEAAHDBAAC4wgAA8MEAADBCAACQQQAAgD8AALBBAABwwQAAMMEAAJrCAACAQAAAiEEAABxCAABwwQAAIEIAAIRCAADIwQAAYEEAADDBAABwwQAAAMEAAFRCAAAgQQAAAMIAAHDBAACAQQAAaMIAABjCAADAwQAALEIAACjCAAAQQQAAUEEAAMDBAAAAQQAAkEEAAIA_AABAQQAAVEIAADTCAACowgAAKEIAAJhBAACgwAAAKEIAAGBBAACkQgAAUMEAAPhBAADwQQAAisIAAIDCAACAwQAAAAAAAEBBAAA8wgAAfMIAAKhBAAAwwQAAcMEAAEDAAAAAQgAADMIAADBBAABAQQAAEEEAAODAAAAwwQAAoEAAAADAIAA4E0AJSHVQASqPAhAAGoACAABQvQAANL4AAGQ-AAAQvQAAHL4AAIY-AABQPQAAHb8AACS-AACIPQAAUD0AALi9AABEPgAAPD4AAHC9AAAkvgAAXD4AAIg9AAAsPgAAFz8AAH8_AACIvQAAQDwAAJg9AADovQAAMD0AABw-AACSvgAATD4AAJo-AAAUPgAABL4AAHS-AABEvgAAVD4AAAS-AACIvQAAuL0AABy-AACKvgAAhr4AAOi9AACIPQAANL4AABS-AABUPgAAXD4AAI6-AABsvgAAcL0AAFS-AABwPQAAUD0AAKC8AACGvgAAUD0AAG0_AABsvgAApj4AAJo-AABQPQAA4DwAAIg9AACaviAAOBNACUh8UAEqjwIQARqAAgAAMD0AADQ-AACAOwAA2r4AADS-AACYvQAAcD0AADA9AAC4vQAAfD4AAIC7AAAcvgAAdD4AACy-AAD4vQAAUL0AABA9AABFPwAAiD0AAN4-AACGPgAA4DwAAAw-AABcvgAA-L0AALK-AAD4PQAAPD4AAOA8AAAUPgAAFD4AALg9AAAsvgAAMD0AAEA8AACovQAATD4AAHQ-AABcvgAAVD4AALY-AABcvgAAJL4AADC9AACAOwAA0j4AAH-_AABkvgAAjr4AAIg9AAAEPgAAXD4AAKg9AACYPQAAJD4AANg9AADovQAATD4AAIC7AAAQPQAAEL0AAOg9AABQvQAAbL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=XN6-A543zW4","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1196783451001923481"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4122239743"},"2883114321306586464":{"videoId":"2883114321306586464","docid":"34-10-12-Z108147744567CF9B","description":"This video demonstrates how to solve a system with a tridiagonal matrix using NCLab's Matrix Solver.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3579199/3ae1ac971b9f8bd8034be1fb4ace278b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/IShmvQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"Solving a System with a Tridiagonal Matrix","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=79A66ax1qcE\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFQoTMjg4MzExNDMyMTMwNjU4NjQ2NFoTMjg4MzExNDMyMTMwNjU4NjQ2NGq1DxIBMBgAIkQaMQAKKmhoc3hwcG10bnlrZHRyeWNoaFVDcDczb1RGcEVBUEt6OHN3ODlmV1BXZxICABIqD8IPDxoPPxNUggQkAYAEKyqLARABGniB-v_89wH_APf2AQr4Bv4CKwb5BwoEBgD1APT0AwL_AOj8EQUFAAAA4g3__wYAAAAGCPn7-f0BAAQB9f4EAAAADwHzD_0AAAAPA_f-_gEAAAQJ9AL4AgAB-f4PB_8AAADyAPkDAwAAAP72-O0AAAAABv4LDQAAAAAgAC3LM847OBNACUhOUAIqhAIQABrwAX_iKP6b5ML-5RH-AB7kswL2Qgr_VSrVAOIgMAHxzAQB0f3PALcC0f_HMvYA1tZE_9ThBv_rBdwAaNNFAB79-wDQ7yoBS7YWASBK3QAS5s8AQAhI_crb9f8axAoC0bzu_xLWFv7kARQKHKnkAgihBgPq--T54BpDAPOl8ATi2yoA7swv_sAX4AhcQvT9BdAL_9oh_vcTBwQC4_M9_i4W9w79--r0Ayv1AswR9g3lEeoAJuPyDPC4Lgor5O4D2Soa-wgQGhCrUvID4N_6-wzG2vY5HPn9_fYCGCfs9xLIBSHyBtT29_IaBd7xwhD6zPYABCAALd2M2zo4E0AJSGFQAipzEAAaYBYTADhAFsgTEfPcw_TsGObPwuz_vun_5qz_Tv-y_D35yt_dCwFM9jPWngAAAAfK5OAUAP9_5OVbPTscHZv4xB30eSkEATftKy-4Uw8rAJfzCb0F1gDmx9NHRgHrIBPTLiAALSE_DTs4E0AJSG9QAiqvBhAMGqAGAAAQwQAAqEEAAEBAAABwwQAAUMEAAFBBAACAQgAAUEEAAADAAACgQAAAVEIAAEBAAAAAwgAAkEEAACxCAABQQQAAgD8AAJDBAACYQQAAYMEAANDBAAAcQgAAgMEAAMBBAABAwQAAAMIAAIRCAABowgAAHEIAACBCAABgQQAAKEIAALjCAAAAwAAAwEAAAABAAACgQAAArEIAANDBAAAoQgAAgL8AABhCAAAwQQAAuMEAALBBAABwwQAAGEIAAMhBAACYQQAAQEAAABDBAABEwgAAOMIAAGBCAADgQAAAIEEAADDCAABAwQAAOEIAADBBAAAgwQAAMMEAACBBAACAvwAAcEEAAIrCAABYwgAACEIAAHDBAACQwQAAAEAAADxCAAAwwQAABMIAAKrCAADgwAAASMIAAABAAADgQQAAqEEAABBBAAD-QgAAyMEAAHDBAACEQgAACEIAADBCAACAQQAAOEIAAOhBAAAYwgAAvEIAAGzCAAAgQQAAJEIAAO7CAAAAAAAAOEIAAIhBAABYQgAAiMEAAATCAAAAwAAAmEEAAFDCAACOQgAAoMAAAERCAAAAwQAACEIAAIhBAAAEQgAAAMEAAFDBAABAQQAACEIAABhCAADAwQAAMEEAADDCAACswgAAWMIAAKDAAADYwQAA4MAAABTCAAAAwgAAjsIAAFBBAACAvwAAKMIAAIjBAABAQAAAHEIAAIbCAADcQgAAkEEAAK5CAABQwgAA4EAAAFxCAABIwgAA2MEAABDBAACIQgAAYEIAALDBAACUQgAAVEIAAADBAABYwgAAgEEAAHTCAAAcwgAAQMAAAEjCAACOwgAAnMIAACDCAACgwAAATEIAANhBAAAEwgAA2MEAAIhBAAAgQQAAHMIAAKjBAADIwQAAZMIAAIBAAACAQQAAEMEAAETCAACIwQAAiMEAALrCAAAkwgAAUEEAACDBAAB4wgAAAEEAACDCAACAQAAAgL8AAITCAADQwQAAMMEAAKBBAADoQQAA-EEAANhBAAAYQgAAAMAAAODAAAC4QQAAgEAAACBBAABEQgAAQEAgADgTQAlIdVABKo8CEAAagAIAAIC7AACovQAADT8AADA9AAAcvgAAVD4AAAS-AAAJvwAA6L0AAEA8AACGPgAA-L0AAKo-AADYPQAABL4AABA9AADoPQAA6D0AAIY-AAAFPwAAfz8AAEC8AACCvgAAoj4AAFC9AADgvAAAfD4AAM6-AAAEPgAAhj4AAFC9AACYvQAAyL0AABQ-AAB8PgAAED0AABS-AACavgAAhr4AALq-AADovQAAHL4AAHA9AACgvAAAhr4AAKA8AABQPQAAuD0AABA9AAAwPQAAgLsAABQ-AABwPQAAHD4AAAO_AABQPQAAQT8AAKi9AABsPgAAtj4AAOi9AAD4PQAAyD0AACy-IAA4E0AJSHxQASqPAhABGoACAABQPQAAED0AAMg9AAAbvwAAqL0AAIi9AAAQPQAAuD0AABC9AACOPgAAQLwAAPi9AAAcPgAAFL4AAKA8AABwvQAAmL0AAEM_AAAsPgAAqj4AAAS-AACovQAAUD0AABy-AAAwvQAADL4AAKg9AADgvAAAcD0AAMg9AACIvQAAJD4AAHC9AABAvAAAgLsAAES-AAAEPgAAlj4AAHS-AACgPAAAiD0AAHA9AAD4vQAAqL0AAKC8AACYPQAAf78AAIA7AAD4PQAAmL0AAKg9AADIvQAA-D0AABA9AAA8PgAA4DwAAIg9AAD4vQAAmL0AAKg9AAAUPgAAuL0AAES-AAAEviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=79A66ax1qcE","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":546,"cratio":2.34432,"dups":["2883114321306586464"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1115146836"},"6149229976416164293":{"videoId":"6149229976416164293","docid":"34-10-1-Z1538A968C710BBDC","description":"Advanced Linear Algebra: Foundations to Frontiers Robert van de Geijn and Maggie Myers For more information: ulaff.net...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/940734/43fd04b6eed11c7fbf9e774b51b145f2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/HhPrawEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"10 3 3 Simple tridiagonal QR algorithm","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_IgDCL7OPdU\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFQoTNjE0OTIyOTk3NjQxNjE2NDI5M1oTNjE0OTIyOTk3NjQxNjE2NDI5M2qECRIBMBgAIkUaMQAKKmhoZm9lZHpsbmlna2lja2RoaFVDLUZsTDlMUEVpcEdOZ2FhMXBTN2FQZxICABIqEMIPDxoPPxO9A4IEJAGABCsqiwEQARp4gfoB8wAG-AD3DAAQ-Aj8AhkHBgL0AgIA6ff78gL_AQD2ARUBAQAAAPn2E_r-AAAA9-rz_Pn-AAD_-fj6AwAAAAgO-BD7AAAADvT98v8BAADvF_kKBP8A_wv8Auz_AAAAAvwPAQAAAAD1BP_rAAAAAPnwEPoAAAAAIAAt9MHAOzgTQAlITlACKoQCEAAa8AF_ERP--ObEA9YFxwDSEL0ApC8l_yoW4wC7Bf0A0w65AewH6QDoFOkAKBzdALMq-P811M_-7tvWAD_n5_9e5gD_ygQFACz38AEYJQgBHdX6_t8iLv0J2fv_FB3qARsM-f8WAC39GBzk_QvqtwlM-iwAAvgJBgfV-AX74-790ucQAuTe7QDtJw3_JCL5BuD1MQfd6_f7Nwb9__4T6wDv9QYI9Nfz-TMS5AEfMgED7h4B9c7U9vv08fMH9UMTEPgM-_rlAxcA5fwF_wwvFfkR7ff3BxHzBwgJ2gwH-g4DMgUWCPT66v_lLvX_7AD4EzEU7PogAC0dRhA7OBNACUhhUAIqcxAAGmBO_gA3ET26Dhjy29z7Gg7ZxgvhHuIF_-uz_yoV0BEi7M7SEwgA-QNGzKMAAAAf-OcMvgDtf-f3JET2zPijwdcm9nXmJAH9uVoiqukfPjzf5vANRCYA0PqlPjb92jgQAwggAC1nRBU7OBNACUhvUAIqjwIQABqAAgAAbL4AADS-AACaPgAAJD4AAJ4-AAA0PgAARD4AAEO_AACKvgAAPD4AAJa-AAAkvgAAQDwAANg9AAAQvQAA2D0AANg9AABwPQAAHL4AAD8_AABpPwAAlr4AACy-AABQPQAAuL0AAAw-AADePgAAJL4AAAQ-AACWPgAAij4AAAS-AACGvgAAED0AAPg9AACYPQAA2L0AAKq-AACGvgAAkr4AALK-AAA8PgAAmj4AAHS-AAAcvgAAij4AADQ-AAAwvQAAgLsAAHQ-AACWvgAAor4AABS-AAA0PgAAF78AABA9AAB_PwAApr4AABC9AAAPPwAAcL0AAN4-AACWPgAA6L0gADgTQAlIfFABKo8CEAEagAIAABy-AACYPQAAoLwAADO_AACmvgAAmD0AACQ-AAB0PgAAFD4AAEA8AAAUvgAAhr4AADC9AABAvAAABL4AAMg9AAAQPQAADT8AAKC8AACKPgAAjj4AAFw-AABQPQAA-L0AAI6-AABQPQAAgDsAACw-AACgvAAA2D0AANg9AABkPgAAPL4AAL6-AAAsvgAAQLwAAO4-AAAQPQAAjr4AAOA8AACoPQAAmL0AABS-AAD4PQAATD4AAFw-AAB_vwAAoLwAAMg9AABkPgAAHD4AALg9AABkvgAAkj4AAB8_AABEPgAAgLsAADA9AAAUPgAA2D0AAI4-AAAEvgAAED0AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=_IgDCL7OPdU","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["6149229976416164293"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2535216481"},"16559948229897422277":{"videoId":"16559948229897422277","docid":"34-10-9-Z4728B365CE8D4A2E","description":"House holders method || Tridiagonal matrix|| SNME Problem || Bsc ,MSc & engineering mathematics #Tridiagonalmatrix #matrix #snme #bscmaths #Householdermethod #b.techmath...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1371218/33343ada227cbabfd0ae164fd1b142aa/564x318_1"},"target":"_self","position":"12","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"House holders method || Tridiagonal matrix|| SNME Problem || Bsc , MSc & engineering mathematics","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0N73JsZR8gA\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFgoUMTY1NTk5NDgyMjk4OTc0MjIyNzdaFDE2NTU5OTQ4MjI5ODk3NDIyMjc3aq8NEgEwGAAiRRoxAAoqaGhkd3dib2d4em9ic3ViYmhoVUN4ci1Fc2Y5V00zOGI3NXRxandxMmhREgIAEioQwg8PGg8_E9oHggQkAYAEKyqLARABGniBAgkKBQX6APoDAw8LCfoCMAgEBfQHBwDhAu_2A_wCAPnyFQIFAAAA-f8BBgkAAAALCOz-Af0BAA4A_AP7AAAAFAn2_fUAAAAZB_T5_gEAAAMAAPsD_wAADgELBQAAAAD4EPsS_wAAAAsAAAEAAAAAAg0QDP8AAAAgAC3bNsQ7OBNACUhOUAIqcxAAGmAxDgBAEwvMpQXg68LMAwICEy7nINXW_xvX_08HyPUX7-rnFzEACbEi4KMAAAAG8b_8GgC-esnn41VF-fSB2Q0JRXpCFOwiOR0Gu_4JAA7cJtjd9OAA7vn2DV4R0hwGMjUgAC1XLhY7OBNACUhvUAIqrwYQDBqgBgAAAAAAAKDAAACAQAAAiEEAAIBBAAAQQgAArkIAADBCAAAAwgAACMIAAEDAAAAwwgAAmEEAACBBAACQQQAAuMEAAFxCAACQwgAAkEEAADjCAAAEwgAAYMIAAKDBAACgQAAA8MEAAARCAACAQAAAoMIAAAhCAADgQQAAmMEAAGRCAAB0wgAA4MEAAPjBAAAUQgAAsEEAAIhCAABAwQAANEIAAAjCAACoQQAAAEIAALDBAACIQQAAQEAAADDBAADgQQAAEEIAAODAAADQwQAAZMIAABDCAABMQgAAWEIAADDBAACwwgAAgMAAAODAAABAQQAA4MAAAADCAACOwgAAfMIAABBBAACgwgAAMMIAAIrCAABwwgAAgEEAANhBAAAwQQAA6MEAALLCAAAAAAAAcMIAADTCAADYwQAAIEIAAChCAABswgAAokIAAMjBAAAwwgAAoEAAABRCAADAwAAAoMEAAFxCAACAwAAAUEEAAEBBAAAIwgAAYEEAADBBAACcwgAAoMEAALhBAAAkQgAAUEEAABjCAACAQQAAMEEAAIjBAACYQQAAUEEAAFDBAAAsQgAAcMEAADxCAAAEQgAAOMIAAIBAAACowQAAgMEAABhCAACMQgAAjMIAAMDAAABIwgAAOMIAAIDBAABEQgAAgMEAAEDAAACowQAAAMEAAAjCAABAwQAADMIAAIDAAAAQwgAAwEEAAMhBAACKwgAAcEEAACxCAAAAwAAAAEEAAHDCAADYQQAAQMAAAMBBAABwQgAADEIAAKBCAADgQAAA6EEAAMBBAADwQQAAgMEAAKjBAACkQgAAsMEAADBBAADYwQAAmsIAABDCAAA4wgAA-EEAAAAAAACgQAAA8EEAAIBAAAAAwQAAQEEAAFRCAACsQgAAikIAAMjCAAAQQQAAgMEAAKDAAADIwQAAUEEAACTCAABYwgAAMMEAAGRCAABkQgAAXMIAAAjCAADgwQAAqEEAAABAAAAAwgAAQMEAAFBBAAAgQgAAiMEAALBBAACOwgAA6EEAAJjBAABcQgAAmkIAAIDAAACiQgAAOEIAAABBIAA4E0AJSHVQASqPAhAAGoACAACgPAAAJL4AAHQ-AABAPAAAuL0AACw-AAC4vQAAA78AAES-AABAPAAAmD0AAOi9AAAUPgAA-D0AABS-AAAsvgAAhj4AAEA8AAAMPgAA0j4AAH8_AADgvAAAgLsAABw-AAAcvgAAiL0AAGw-AAAUvgAAPD4AAKg9AADoPQAAuL0AAKi9AACAOwAARD4AAEA8AABQPQAAiL0AAAy-AABkvgAAur4AAHC9AACAOwAAHL4AAPi9AABwPQAAvj4AAMi9AADovQAAuL0AAHC9AADgvAAA2D0AAKg9AABUvgAAML0AADE_AAAMvgAALD4AABQ-AABwvQAAUD0AALg9AABAvCAAOBNACUh8UAEqjwIQARqAAgAA4LwAAGw-AAAQvQAAB78AAM6-AACYvQAAJD4AAKg9AAA0PgAA6D0AALi9AAAUvgAAoDwAADS-AAAEPgAAED0AAKC8AAApPwAA4LwAAAU_AACIPQAAZL4AABS-AAAcvgAA2L0AABC9AAAwPQAA2D0AALi9AADgvAAAgLsAAOA8AADIPQAAUL0AAFQ-AAAMPgAAuD0AAJ4-AABcvgAA2D0AAEQ-AABAvAAAED0AAAS-AACIvQAA6D0AAH-_AACovQAAhr4AAJK-AABAvAAAED0AAKA8AAAwPQAAZD4AABw-AAC4vQAAoDwAAKC8AAAEPgAAoLwAALi9AABAvAAAJD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=0N73JsZR8gA","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16559948229897422277"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8896019255493850925":{"videoId":"8896019255493850925","docid":"34-6-17-Z3FF8A6AAE55AE89F","description":"Code in Python to verify if matrix is tridiagonal. 𝘁 𝗳𝗼𝗿𝗴𝗲𝘁 𝘁𝗼 𝘀𝘂𝗯𝘀𝗰𝗿𝗶𝗯𝗲 𝗮𝗻𝗱 𝘀𝗺𝗮𝘀𝗵 𝘁𝗵𝗲 𝗯𝗲𝗹𝗹 𝗯𝘂𝘁𝘁𝗼𝗻! https://gumroad.com/a/635769971/qdKKu Creating GUI...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2358383/0d503d5ecd4d80493f3645d12544b37e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XruaHAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"tridiagonal matrix in python","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eYjzFUbMmKc\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFQoTODg5NjAxOTI1NTQ5Mzg1MDkyNVoTODg5NjAxOTI1NTQ5Mzg1MDkyNWq0DxIBMBgAIkMaMAAKKWhoaXlhcWdrZmNtaW5wY2hoVUNCR0VOblJNWjNjaEhuXzlna2NyRnVBEgIAESoPwg8PGg8_EzqCBCQBgAQrKosBEAEaeIEA9wX-_AQA-QEACfcG_gIPCAMK9gEBAPYA9fQDAv8A7fkQ_P3_AAAFBP4K_wAAAP0GAfv6_gAACQb7-QQAAAANAfQO_QAAABP9_fz-AQAABAn1AfkBAAEM_QQA_wAAAPMBAwkBAAAA-vb4-QAAAAAC9Q8GAAAAACAALc5t3js4E0AJSE5QAiqEAhAAGvABcBgI_9z25wHZBPcArxjoAIEKLf86FcMA2QwnAOv-2ADh2-oAzucPAK8S4wCeEw0B7-7cAC7oBAA-2_wADtPgAAEcFAEV2RkBRPDqAO4C8v8CJC7-_gAbAQvY5v_y5OQADt8R_gX2Dv7Q1cMG_gUvAB_5Ff0u-ycBu8wD_-UWEQLm7PcIzQcEBuPnDwH29Cf-CiLo_iAl7_wEMv4DJvEC_vHzHfgPKO4FGhAlCM76CPnS_ez_AQwWCgocEgUKJib5ySUb-8nn7vztAhD4JfTl-9UjAQgFAvENBdsBFPEH6vjk4hjyzzz0_vnqFPjhJ_nwIAAtUCMNOzgTQAlIYVACKnMQABpgFAkAR_ov1Pwi-ebeAv8UzeEP9yjQ1__nuQBH7OcnHvXSzRkdAAUEG-KxAAAAP-_2__sA8WjO8zIe9zUDvcLXMhd__gsG9-EgI8AAQi7K9vvVCxTpAAbUtRdPKP42FfJEIAAtMrEoOzgTQAlIb1ACKq8GEAwaoAYAACBBAACIwQAAaEIAAOjBAAAwQQAAMEEAAJxCAAAAQgAArMIAAJjBAAAgQgAAnMIAADjCAAA0wgAAAMEAANBBAAAAQQAAAMIAADzCAAAYQgAANEIAALzCAADowQAAQEIAABDBAADAQAAAgL8AAADAAADAQQAAsMEAANjBAADEQgAAFMIAAABAAABUwgAAqMEAAIA_AADGQgAAyEEAAIDAAACOQgAAoEEAAAhCAADkQgAAlsIAAATCAACYwQAAwEAAAMZCAACQQQAAgD8AAABBAAAYQgAAGMIAAARCAACAQQAAXMIAAJxCAACgQAAAUEEAAHBCAAC4wQAAoEEAAETCAAAsQgAAyMEAAHzCAAAMwgAAQEAAALjBAACAPwAAyEIAAKBAAACGQgAAMEEAAIA_AACQwQAAkEEAAAxCAAAAwgAAlMIAAFhCAABYQgAALEIAAMjBAACwwQAAcEIAAPBBAAAgQgAAoEAAALjBAAAwQgAATEIAACTCAACAQQAACMIAABRCAADIQQAA2EEAAKBBAAAgQQAAwMAAALBBAAB4wgAAuMEAABBBAADgwAAALEIAAFBBAACYQgAAVEIAAPDBAACCwgAAWMIAAKBAAABAQQAAwEAAAIjBAABwQQAA6EEAABjCAADewgAA8MEAABBBAABgQQAAiEIAANjBAADowQAACMIAABDBAAAAwAAAEMEAACzCAAA8wgAAuEEAAGBBAADgwAAAlEIAAGBBAADowQAAAMAAAIDAAADAQAAA2MEAAIZCAAAoQgAAKMIAAFxCAAA4wgAAAMIAAChCAABAwAAAiEEAAAjCAACAwQAAEMIAAABBAACawgAA2MEAACRCAAAYwgAAIEEAAGDCAADgwQAABMIAAKDAAABQQgAAjkIAAIA_AABwQQAA0MEAADhCAAAwwQAAoMEAAAAAAAAQQQAAwEAAACzCAAAQQgAALEIAAADAAACYQQAAcMEAAJjBAAAsQgAAoEAAAJDCAAB4QgAAUMEAAOjBAAAQwgAAsMIAADBBAAAoQgAAEMEAADTCAAD4wQAAAEEAAABBAAAwwSAAOBNACUh1UAEqjwIQABqAAgAAiL0AADS-AACOPgAA6D0AAIi9AACoPQAAcD0AAEu_AADIvQAAUL0AAEQ-AAC4vQAAvj4AANg9AAAQvQAAVL4AAFQ-AAAkPgAA4DwAABc_AAB_PwAAML0AAFA9AABMPgAA6D0AAEA8AAB0PgAAvr4AAKY-AADgPAAAXD4AAEC8AAD4vQAAML0AAEw-AAAMvgAAiL0AABy-AABsvgAArr4AAJa-AACAOwAAQLwAAJ6-AABwvQAAPD4AAKY-AACyvgAAyL0AAEC8AAAcvgAAyD0AAFA9AABQPQAAZL4AAIA7AAB9PwAAVL4AAKI-AACyPgAAyD0AALg9AAAQPQAAdL4gADgTQAlIfFABKo8CEAEagAIAALi9AACKPgAAML0AANa-AACivgAAgDsAAL4-AABAPAAAHD4AACQ-AABMvgAA4LwAAMg9AADYPQAAgDsAAIA7AABMvgAANz8AAIC7AAAPPwAAmj4AAFy-AAAcvgAAQLwAAHS-AAD6vgAAFD4AABQ-AADgPAAAqD0AADA9AAC4PQAAHL4AAJg9AAA0PgAA-L0AAP4-AABAPAAAsr4AADA9AACgPAAABD4AAIg9AACgvAAAlj4AAI4-AAB_vwAA4LwAAIg9AABsvgAAED0AALI-AADgPAAALD4AAHw-AACKPgAAiL0AAFC9AACqPgAAqj4AABQ-AAAUPgAAML0AAFy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=eYjzFUbMmKc","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8896019255493850925"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3350852052"},"8974404039232802490":{"videoId":"8974404039232802490","docid":"34-6-6-Z866FE5AB4CE2A4A9","description":"Commands: from scipy.linalg import toeplitz toeplitz([2,-1,0,0,0],[0,-1,0,0,0]) Questions or more: ►Twitter: @gnisitricks ►Gmail: gnisitricks@gmail.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2989732/bbc0751606a51d96e0988d34e9e44a78/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MpxCJQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"Create a tridiagonal matrix with SciPy in Python","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tsK72kSgPoI\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFQoTODk3NDQwNDAzOTIzMjgwMjQ5MFoTODk3NDQwNDAzOTIzMjgwMjQ5MGqRFxIBMBgAIkMaMAAKKWhocGdkaGplaHptenZxbmhoVUNURkxReDZPQzhrOEZBYjRNQ29VRzNBEgIAESoPwg8PGg8_Ey2CBCQBgAQrKosBEAEaeIEDAQ8AAQAA_AAMD_gK_AIXBgUC9QICAPUA9PQDAv8A7PgR_P3_AAAGBP4K_gAAAAEIAf7x_gEAFQn9_wQAAAAeCfMF_QAAABr99gT-AQAABAn0AfgCAAEJBQ_8_wAAAPIA-QMDAAAA-gD3-wAAAAAG_Q0BAAAAACAALSlv0Ts4E0AJSE5QAiqEAhAAGvABaf_cANcJAgAK-fn_2QzqAYHID_wtNOT_-wADAO7-3wDmB_UA1PYfANcgGP_TKP7_DuLUAEAODwAO9_L_ERYIAB0NEAD38fwBKvX6APMLAv41LRsAMeAX_gDgCAAJ98kAA9z0_d8E7_-6-u4CFAIaAAL5CAUr9QgC8g3-AwwVA_7_5fgE6RzuA-fk4v4E8gsACv3cAP4c-wbuEOH9FiD5ARf8JgElCvsCPwgcCxHvD_rm9wL5BBIF_-oLAgAhEiACDgEM_-f0-_XYwvb6FALnBfn-DAXhyPMF9uf4BQ3Q-vMIBAnw6ykIAPn4EQsmCgXzIAAt93IpOzgTQAlIYVACKs8HEAAawAcfvM6-sRKYO0btwDuthSm-3X1pPZTphjrtftW9O-qDvOeUW7zQKN28NG_APfXV1buyL-G-johzPILA0rqBsgk-7UcqvWnDIT1iysa9WsBfPAPnMbz1oWu-hNMHPXQ1w7tkTFA9Rs-tPPuqnrowUYM9QfyyPNsBEr0kCLq7rEHOPAj-3DyX1J47rFuYvaHQl7yKW0U-IBKpvf0ozzzmA0I-9j1PvUcBAbsyT_i8sHZvvLmVlDxHWoU8xI2APNuRA7xp_ig-i13TO0cLKzyJAy29B0BhvZ6W_ruc-sA8GgCFvEO2YjwQZgm9GWJLPSUi_Lxpox890iMhuVqJVLz5oAe-9BqbPS-BgDseGTs-QaS6O6sQRbwirnc8gGZLPbvebDzV52q8CdFJOslEgDzfiK49BIkSPE4YILy9-fK8pFk0PfEp5TzdkMs93rBoPUbjmjxnh049vYDoPAlC5Dprg668yUgsPN7Gi7wqWYm9JXQ4u6a1zLo7dMU9BwEeva4UG7zbYX09f9ZBPd64uTvy2Oq810uIPdGscDvQA8Q8WCetPYEwR7shTFs9CJpFvcqEhLyoMjE9_3fEPO5ExbtMule9UeeAvPkyLLykfb09c8mHvS_ILzv0E3M8CjoQPRIf7TuFDoU9EafTvZs9UDtxc427LmA4PUGvBzyfncK7P3aYORuz9Lq7JT497KS-vLar57vvK4W8P3o7uzjNDjvCTNs9Ox3ovXbP2DnUoIE7dBWxvT6zW7h_vi29IVeqPHCOBLsGmF49fus5vR4lzTmzeIE9y34CPFEcvzZcbH88U-NKPONzvzk_GaO8svZXvUP1C7gM2a89idMJvXaWmDls85W9Jl__vLHARLgc20G99L_cPLocbjotzGI9vmyaO5m7yTgtPR48OUlOvCHoc7jI3oE8QA1JPajmUTiU0dC6vS2CvdDoADh2mSs8LYhSvVbpXLgVlei8N-HeO-UqL7hrmMY88zz4vKJ8TrjCd9E8UYJevd3DMTmtDiU8UcAWPQ3JVbfeAom8ui3RvPUXMTfj8X693TRsvZLEvrdwFqU8ypRFPFfMibjsJZe9A5vOvER4ETiaVrO7ncMLvd3ovje_mJI8R3SPvQbEubdNzS89ShCpvYrViDcfnwA-pOSQvRXoOrnLODo7KlwKPeuwgzeDlyq8B_wrPeVFMjef-zc9QTtxOxVHN7gy7qw9XCa-vexqQzchMrY8OznjPQQbBjmLg4C9OGgvPZC4irifx7i9Chx_vZs32Le-Qzu9I8ahvN5nJTggADgTQAlIbVABKnMQABpgKP8AGNcmzP8gJ_DCCusHweMt_CW7-v8Hzv9R79c0CtStrA4uABPmItyhAAAAQe_hHhQADX_fwRMq_AvOu8byFClUBBvr9_4qE7r-JCmWAPDX9xH0AA-8yiI7IfFqHBw1IAAtwSYaOzgTQAlIb1ACKq8GEAwaoAYAALhBAACIQQAAgL8AABTCAAAwQQAAUEEAAAxCAADgwAAAgL8AAMDAAACgwAAAkMIAAATCAAAUwgAApkIAAGDCAAAwwQAAGMIAANDBAABcwgAAwMAAAEjCAABwQQAAbEIAAFxCAAAgwgAAjsIAAFzCAAAcQgAA4EAAABTCAACYwQAAXMIAAJBBAABkwgAA4EAAAMhBAACwQgAABMIAAHBCAAAEQgAABEIAADhCAABQQQAAKEIAAJ7CAAAAwgAAUEEAADxCAACwQQAAWMIAAMBAAACAwAAAiEEAAABAAAAIQgAAAMMAAHBBAAAUwgAATEIAAMhBAACcwgAAkMEAAKbCAACIQQAAQMEAAMDAAACowQAAIMIAABzCAABoQgAAZEIAAPjBAAAAAAAAmMEAAFDCAAAAQQAAcMEAADRCAAAAAAAALMIAABRCAABAwQAAiEIAAIjBAACoQQAAyEEAAPBBAAAYQgAAPMIAADRCAABwQQAAsEEAAMjCAADgwAAAAMIAALDBAACAvwAAiEEAAOBAAACEwgAASEIAAJhCAAB8wgAAmMEAACDCAABAwgAAUEIAAAzCAACoQQAA-EEAAAAAAACgwAAAyMEAAIBBAACowQAAYMEAAKrCAACAPwAAgEAAAIBBAAAYwgAAFMIAAAzCAACoQQAAIEIAABTCAAAQwQAAoMEAAGDBAACgQAAAgEEAABjCAABkQgAAUMIAABBBAAAAAAAAcEEAAKzCAADUwgAAQMAAABBBAAAkQgAA4EAAAIA_AABgQQAAiMIAALjBAAAAQgAAcMEAABDBAADAQQAADEIAAKDAAABAwgAAiMEAAADBAACuwgAAtsIAAMhBAACgwQAAQMAAAMDBAABQwQAAUMEAABBCAAAQQgAA-EEAAABBAAAAwQAA8MEAAFxCAAAMwgAAcEEAAIDBAAC4wQAAgMEAAAAAAACWQgAAQEAAAEBBAAA4wgAAMEIAAGBBAACwQgAAIMEAAIjCAABgQQAAqEEAACDBAAAUwgAATMIAAHBBAAAYwgAAFEIAAIpCAABcwgAAoEAAAGzCAAC4wSAAOBNACUh1UAEqjwIQABqAAgAAMD0AAAS-AACSPgAAfD4AAPi9AADoPQAAcD0AACe_AAB0vgAADD4AADw-AACAuwAAlj4AAIY-AAAMvgAAVL4AAIY-AADYPQAA4DwAAB8_AAB_PwAAEL0AAHS-AABEPgAAcD0AAFA9AACOPgAA5r4AAJg9AAAcPgAAuD0AAKi9AADIvQAAQLwAALY-AAAEvgAA4LwAAOi9AABsvgAANL4AAKq-AACgPAAAgDsAADS-AADIvQAAdD4AALY-AACCvgAAiL0AABy-AAAQvQAAgLsAABQ-AAAUPgAAqr4AAKC8AABBPwAAkr4AAHQ-AADiPgAAmD0AAMg9AADoPQAAXL4gADgTQAlIfFABKo8CEAEagAIAACy-AAB0PgAAmL0AALq-AACKvgAAND4AAKI-AABEPgAA-D0AAFQ-AACOvgAAgDsAALg9AAA0PgAAEL0AAOA8AAAUvgAAQz8AAJi9AAADPwAAHD4AAJa-AACgvAAA6L0AABy-AACuvgAAUL0AAAQ-AACgPAAAoDwAAIA7AACIPQAATL4AABQ-AADWPgAAgr4AABs_AAC4PQAAjr4AAJi9AAAUPgAA-D0AAIA7AABwvQAATD4AAAw-AAB_vwAAiD0AADA9AADYvQAAFD4AAKo-AABAPAAAtj4AAJ4-AABsPgAAuL0AAIK-AACOPgAAoj4AADw-AAAkPgAAoLwAAJK-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=tsK72kSgPoI","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1072,"cheight":720,"cratio":1.48888,"dups":["8974404039232802490"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1834214910"},"12583882100149768970":{"videoId":"12583882100149768970","docid":"34-9-8-Z328C03EFC9D8056F","description":"Tridiagonal matrix in Matlab Creating diagonal matrix Example of tridiagonal matrix in Matlab IKCU - Doğan Kayadelen Electrical AND Electronics Engineering...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/917860/77ca296b1e993e63de19e209e8a3bb6a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XPKgDQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","summary":{"isFull":true,"fullTextUrl":"/video/result?ask_summarization=1&numdoc=1&noreask=1&nomisspell=1&parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=videoid:12583882100149768970","teaser":[{"list":{"type":"unordered","items":["Bu video, bir eğitim içeriği olup, konuşmacı MATLAB programında diagonal matris oluşturma konusunu anlatmaktadır.","Videoda, kullanıcıdan alınan bir vektör kullanılarak 10x10 boyutunda bir diagonal matris oluşturma süreci adım adım gösterilmektedir. Konuşmacı önce gerekli kodları yazıp, ardından for döngüsü kullanarak matrisin nasıl oluşturulacağını açıklamaktadır. Video sonunda, oluşturulan diagonal matrisin doğru şekilde oluşturulduğu test edilmektedir."]},"endTime":266,"title":"MATLAB'da Diyagonal Matris Oluşturma Eğitimi","beginTime":0}],"fullResult":[{"index":0,"title":"MATLAB'da Diagonal Matrix Oluşturma","list":{"type":"unordered","items":["Video, MATLAB'da kullanıcıdan alınan bir matrisin diagonal matrisini oluşturmayı gösteriyor.","Kullanıcıdan bir matris girişi alınacak ve bu matrisin diagonal matrisi oluşturulacak.","Kodda for döngüsü kullanılarak matrisin elemanları hesaplanıyor."]},"beginTime":2,"endTime":206,"href":"/video/preview/12583882100149768970?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions&t=2&ask_summarization=1"},{"index":1,"title":"Kodun Çalıştırılması","list":{"type":"unordered","items":["Kod çalıştırıldığında kullanıcıdan matris girişi isteniyor.","Kullanıcı 5x5 boyutunda bir matris girdiğinde, kod bu matrisin diagonal matrisini oluşturuyor.","Oluşturulan diagonal matris ekranda görüntüleniyor."]},"beginTime":206,"endTime":259,"href":"/video/preview/12583882100149768970?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions&t=206&ask_summarization=1"}],"linkTemplate":"/video/preview/12583882100149768970?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Creating Tridiagonal Matrix in Matlab","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UORjpVfrdpU\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFgoUMTI1ODM4ODIxMDAxNDk3Njg5NzBaFDEyNTgzODgyMTAwMTQ5NzY4OTcwaq8NEgEwGAAiRRoxAAoqaGhjdWZ1em9hbGxhZXRtYmhoVUNlaEN5dWp5Sm9NYm1fTnZXTkNUbzh3EgIAEioQwg8PGg8_E4oCggQkAYAEKyqLARABGniB9_78AP4DAPgLAA75B_0CGg4ABvQDAwD1APX0AwL_APrzEwIEAAAA_Qv8BQsAAAAGCPn7-f4BAAkG-_kEAAAAHQn0Bf0AAAAGC_r9_gEAAP8AAQL7AgABB_4TBAAAAAAAAPoEBQAAAAUGAfYBAAAABf4LDQAAAAAgAC0AU9s7OBNACUhOUAIqcxAAGmD5FgAn_iHq9Rj4DMUC9Q722AgFD9PuAN_wADHx6P0c8Onl-CEA69AQ6cIAAAAY-PseEADRTsfy8TQXBfPG3gUeFH8SDd0ZIxYB2C_zDhfyBtL3_M0ACejpBkI29_8OADEgAC0ju1U7OBNACUhvUAIqrwYQDBqgBgAAyMEAAKJCAABEQgAAQEEAAKhBAACAQgAAZEIAAJhBAABQwgAAWMIAAJhBAABQwgAAEMIAALDBAAAEwgAAwMEAAHDBAADGwgAAmMEAADDBAADgQAAAwMEAADjCAAAAQQAAMEEAABzCAABQwQAAYMEAAJhCAAAQQQAABMIAAEBAAACcwgAAIEIAAGTCAADgwQAAgD8AAIBAAABwQQAApkIAANBBAACYwQAAHMIAACDBAABIwgAAKMIAAKhBAABgwQAA2EEAABRCAACOwgAAEMEAANhBAACAwAAAQEIAAPBBAACSwgAAkMEAAOBAAAAcQgAAsEEAABTCAACQwQAAhMIAAEBCAABowgAAqMEAAIC_AADgwQAAKMIAAI5CAABgQQAAcMEAAODAAADwwQAAwMAAAIjCAABwQQAAMEIAAOhBAAAwwQAAsEIAAIDAAAAwQQAAQEAAAAhCAAAwQgAAAMAAAIhCAABwwQAAQEEAAP5CAACwwQAAHMIAAPDBAAC4wQAAoMEAAGDCAAAAAAAAIEEAACjCAADAQQAATEIAACRCAADQwQAAqEEAAADBAACAQAAAuMEAAI5CAAA4QgAAgL8AAOBAAACOQgAAEMEAAFRCAABwQQAAIEEAAJjBAAAswgAAgL8AABTCAAAMQgAAjMIAAPDBAABgwQAAnEIAAFBBAACAPwAAoMAAAAjCAABwwgAAKEIAAIBAAABwQQAAYEIAAChCAABAQQAAQEEAABBBAAAMQgAAQEEAAMBAAADgwQAAqkIAABRCAACOwgAAikIAAABAAAAAQAAAKMIAAKBBAABAQAAAEMEAACzCAACewgAA0MEAAADBAACgQAAAoEAAAJhBAACwQgAACMIAABDBAAAAQQAA-MEAALDBAACmQgAAQEEAAEDAAADgQAAAqkIAADBBAAAwwQAAgMAAAAAAAACQQgAAuMEAAHDBAACcQgAA4sIAADzCAADgwQAAYEEAACxCAACgQAAAaMIAACBBAAAkQgAAIMEAAHxCAABAwAAAAMAAABRCAABIwgAA2EEAAIBAAAAAQQAAPEIAAIBAIAA4E0AJSHVQASqPAhAAGoACAACgvAAAJL4AAEQ-AACKPgAAoLwAACQ-AABcPgAACb8AAEy-AACYvQAAoDwAAIg9AAC-PgAA2L0AAAy-AAB0vgAAij4AABw-AAA8PgAAVT8AAH8_AACovQAA2L0AAAQ-AAAEPgAAND4AAJY-AADavgAAyD0AAJI-AABsPgAADL4AAIi9AADIPQAAkj4AAKg9AADovQAAor4AAMa-AADGvgAAXL4AAOC8AABQPQAAbL4AAHA9AACmPgAAZD4AAJ6-AACGvgAA6D0AANa-AABAPAAAgDsAAIC7AAAkvgAAMD0AAG0_AADKvgAAlj4AAAE_AABQPQAAuD0AAKi9AABMviAAOBNACUh8UAEqjwIQARqAAgAAyD0AAK4-AADYvQAA3r4AAM6-AADYvQAAvj4AAIi9AAA0PgAAbD4AAHA9AAD4vQAA2D0AAIi9AADIPQAAEL0AALi9AAAhPwAAUL0AAP4-AAAsPgAAnr4AAMi9AADYvQAAUL0AACS-AACIPQAAJD4AABC9AACoPQAAgDsAAKg9AACOvgAA6D0AAKg9AACgvAAAbD4AACQ-AACCvgAAML0AAEQ-AACoPQAAgDsAABA9AAAcPgAATD4AAH-_AACIvQAA6L0AADy-AABQvQAAjj4AAMi9AACYPQAAuD0AAFQ-AADIvQAAMD0AAHA9AABUPgAA6D0AAHA9AABQPQAADL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=UORjpVfrdpU","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12583882100149768970"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"842655296"},"16649978306081141728":{"videoId":"16649978306081141728","docid":"34-3-10-ZF79672BCDBF9CDED","description":"A special introduction about myself is given in Lesson 01. Lesson 11 - Iterative Methods for solving tridiagonal System of Linear Equations, i.e., Ax = b, A is a tridiagonal matrix. Complete VB...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4857779/a3571e379a5ddbf3afad061ed31de46b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Xxh5KgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"Numerical Methods&VB-L11: Solve Tridiagonal SLEs-Jacobi, Gauss-Seidel, SOR, AGE, Download VB codes","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Imu1-JDZ_a8\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFgoUMTY2NDk5NzgzMDYwODExNDE3MjhaFDE2NjQ5OTc4MzA2MDgxMTQxNzI4arYPEgEwGAAiRRoxAAoqaGhkcHJtcnJldGZ5c2V5Y2hoVUNlMnJnS2Z1WXlBRzU5THF6TDNjRXBREgIAEioQwg8PGg8_E6QFggQkAYAEKyqLARABGniB7vcK9wT7AOv_FPkIAAAA-_X8B_n9_QDWAfX_-vgEAOv4Evz9_wAA-f8BBgkAAAAJ9fb-9v4AABzz__UDAAAAKgD9BvsAAAASEvn4_gEAAP789v75AgAACQUQ_P8AAADz-PcE_AD_AAgS7vwBAAAA-_H87QAAAAAgAC3p48Q7OBNACUhOUAIqhAIQABrwAX8jCgPmEOoBrwbZAK8Y6ACG-hD_HynfAMESJQG09sQA7AfoAN3pHv_hFAEAtS4eAfnp-_8lAuoANu0A_zAFLQEBHBQBU-APAi8L9gDw6gX--hpLAhTbHwAWBv0CBf7yAAvxFPnV9eIA8AXeARgDIAEPCBgFUPH1ANjxBf_lFhEC4QPmAOsD_gTP_gQB3PsT-foPugk2KOn_6ib-BREZCAX74AT6Hh3g_R36HAfaKAP70v3s_xr1_QUDCR0DB0QGB-sCB_rv1PsM8wP4_inJ__3bCBEBK_zxAvvy9vcMAPT74ykaAs889P7YAw8K-vf47yAALbb3DDs4E0AJSGFQAipzEAAaYDz3ACwPLvUX9ETs_c3uBM3p9d4CmPD_Brb_EA3XKwgCx58VBf8y11LonQAAACX28f3qAAJ_1unoLPEWKdWm1UMWZgIcHLP2R-3M9TEO3uAeDhspJgAt0qYUcNKuIfEQLyAALUUJFDs4E0AJSG9QAiqvBhAMGqAGAAAQwQAANEIAADBCAAAQQgAAIEEAAJhCAADYQQAAUEEAAEzCAABAwgAAuMEAAADCAABkwgAAYMEAAKjBAAAcwgAAUMEAALjBAACQwQAAMEEAAADBAAAswgAA4MEAAJjBAABowgAANEIAAODAAABQwQAAlEIAAFDBAACoQQAAQEIAANjCAADwQQAALMIAACBBAACQwQAAlEIAABhCAAAQQQAAXMIAAADBAAAgQgAAVMIAABzCAABkwgAASMIAAATCAAAIwgAAYMEAACDCAADIQQAAksIAABDBAAAsQgAAFEIAADTCAABAwgAAUEEAAIpCAABMQgAAAMEAAHTCAAC0wgAABEIAADjCAABEwgAAuMEAAIDCAAAkwgAA0EEAAIC_AAC4wQAAYMEAAEDBAABsQgAAsEEAAOhBAACwQQAA4EAAADDBAACAQgAAaMIAAEBCAABcQgAAoEEAABhCAADwQQAAEEEAAAAAAABgwQAA-EEAAGDBAACYwQAAIEIAAL7CAAAAQQAAmEEAALBCAACAQQAAAMIAAADAAABwQQAA2EEAAKjCAABAwAAA2MEAAOBBAACgwgAAqEIAAGBBAABwwQAAdMIAAJJCAACAQQAAGEIAAMjBAABgQQAAQEEAALDBAADgwQAAgMAAAADAAABEwgAAMMIAAOBAAAC0QgAAoMAAAAjCAAAAwAAA6MEAAFDCAACAvwAA-EEAAGBCAAAAQgAAkkIAAJjBAABQwgAAQEAAAABBAAAAQAAAAAAAAIA_AADIQQAAFEIAAEDBAACIQQAAWEIAAAhCAACKwgAAgkIAANBBAABAQAAAcEEAAEjCAAAcwgAAcMEAAABBAAAQQQAAAMAAAFRCAAAIwgAAIMIAALDBAAAYwgAA0EEAAAxCAAAAAAAALMIAAEzCAABwQgAAwMEAAIDAAACgwQAAUEEAALBBAAAQQQAADMIAAJxCAAB8wgAAMEEAADDCAABgwgAA4EAAAFRCAACgwgAAiEEAAAxCAAAswgAAAEIAANBBAAAowgAAIMEAAGBBAABUQgAAiEEAAOjBAAAEwgAAwEEgADgTQAlIdVABKo8CEAAagAIAADC9AADgPAAAND4AAJi9AACIvQAA6D0AAKC8AAADvwAAuL0AAEC8AADgvAAAcL0AAOg9AACIPQAA2L0AAIi9AAD4PQAA4DwAAIA7AAC-PgAAfz8AAHA9AAC4PQAAyD0AAAy-AAAQPQAAmD0AAIi9AAAMPgAAmD0AAKg9AADIvQAA4LwAAHA9AAAcPgAAuD0AAHA9AAAwvQAAPL4AAKq-AACGvgAAoLwAALg9AADIvQAAEL0AAOA8AABUPgAALL4AAKA8AAAUvgAAED0AAPg9AAAsPgAAXD4AAL6-AABwvQAA9j4AABC9AABwPQAAkj4AAIi9AAAMPgAARD4AABS-IAA4E0AJSHxQASqPAhABGoACAADmvgAAnj4AAHC9AAA1vwAANL4AAFC9AAA8PgAAyL0AABS-AACWPgAAoDwAAMi9AAAUvgAAcL0AAIA7AACAOwAAUL0AADk_AACYPQAAgj4AAOA8AAAMvgAA6L0AAHC9AAAMvgAAgLsAAHA9AACoPQAAMD0AADC9AACgPAAA4DwAABC9AAC4vQAA4DwAAKC8AAAwPQAALD4AABy-AACCvgAAyD0AADA9AACgPAAA2L0AAFA9AAAEPgAAf78AAIi9AADoPQAAgDsAANY-AACIvQAABD4AAKg9AAAQPQAAUD0AAEA8AACSPgAAuD0AAFC9AADoPQAAmL0AAHC9AADgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Imu1-JDZ_a8","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16649978306081141728"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14123318222982307926":{"videoId":"14123318222982307926","docid":"34-1-12-ZBB280CFFA91708AF","description":"This video explains how many elementary row operations and how many individual operations it could take to write a triangular matrix in reduced row echelon form.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3382768/bb3433a7f075696796749d9c19f84d0d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/R3Zy9AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"At Most How Many Operations to Write a Tridiagonal Matrix in RREF?","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0TkLxFWvuBc\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFgoUMTQxMjMzMTgyMjI5ODIzMDc5MjZaFDE0MTIzMzE4MjIyOTgyMzA3OTI2aogXEgEwGAAiRRoxAAoqaGhlaHZkdGhocWNleGtwYmhoVUNOVk14Uk1Fd3ZvOUFTLUpmaDZmUUZnEgIAEioQwg8PGg8_E8gCggQkAYAEKyqLARABGniBAvj9-AL-APwADA_4CvsCDBH9BfUBAQD1APT0AwL_AOz4Efz9_wAA9A8BCgMAAAD1AQP78_8BAAIOAPsFAAAAEQf-CPYAAAARFQf5_gEAAPf9CgH0AgAB_gER-v8AAAAC_f4J_gAAAAf8DP8AAAAAAfAIDwAAAAAgAC0R7c47OBNACUhOUAIqhAIQABrwAXX_HADMGOoA-B3fAOgN1AGBCi3_HynfAMjfEwGw8_UA7UPoAO3y9wDiEyYBxxbzADnx5P4O388BLwID_wIXCgAY8g4AOscRATLz-QAH4-v-_gwl_hTbHgAR8-oADPL4APr8FADMBrn_7AO_AgrSQgMTHxv_GPQjAuQXHQDaIBcA69vX_RvmAfsZ9Rj8yiMDBxT-6gn8Jtz6yQYE_OcYAvvz1vL5EhfyAEH-EwPwBvz5zuz39xIa7wsALgUBBBX6-usCB_oSxAf-Eu_9_zDOEgIk6PYA--YFCe3z8f_qyADw2fgQ8Lov-QXx-AcICPoV-iAALVAjDTs4E0AJSGFQAirPBxAAGsAHuqP3vjGDpzwifF48yXeEutU15Dz78c28nrVbvQ9faz1H-v4806MZPqg2eD1hCfe6oUh3vnNWujykNjG9cqesPi0la73hSHu8dXT8vS8Tmj0LAhC94Lttvl6Klj0WuUy8zaZIPPOOkzzMDUE9Cp0XPpObFbwRiq28kVZGPLSOqryUgB2940EJvRk4oLzo9P675pTgPebct7y20J88-dCPPYVEir2uoMS8FqwnPHG1qTz7xCa7umetvUFSGr2Z2UI8L012PcaViT3C60Q8-tsUPXOW47zAXl27TLQavY-RB7yttg08uQC0vGVNkT1MrGe82MIHPUTHmb3yO7K8XZGzvYxCGDw-NYe75Gb4PWZM4T0YI9Q7sOLUvXU2yT08jlU8ZmUePAkCnrtWFoG7zR7oPUUCl7xoycg8Q6OBO4abkj3hkDI8Y2A9PQ8uyD19-e48nleBPcBfpzyKhha854FZPTIVKDu7Heu8qj58ve8QoD1LjyY8mxBkPTyqdb3iuEK8MQnXPGgnnjxQ8Ym8L058PB8kNb0FyMw7HtOUPRRJir0HgXC8VGQePVhVADrvekS8Xpk8PZOEabzbAIe85xYfvY1Hqbz5A7O6wz6bPROPNb0lJBI8UAKmvXofQj0EwUq78NWWO7cfNT1inc-7oMz1PHDKwTxvuI-7clP_O7-C1L06i4M6ow3GPZavyzpgbr07lMMiPdP0Gb15Mb06DT-ePXnsgjzLJ446YS0jvfx4IDz-a964xxwava_-qT38qge6BphePX7rOb0eJc05CvcKPc8GKj32rb0504k_Pd5HATwYcG86g-FXPYbcsbxMshS5tkKSvZcT_rxZwi859iOFvNpIKL0nuY45xiZjPUvWl7z2b845NRlfvQX7D716nom6yZRqPCn4NzxcvAC44oQTPOENqTx_30o4FnCqvT6Ai73IR5Q25qULO1O7Nb193MI4OtbaOzkPZz3UOd83CilkvOtDbb2kWfM2LcBtvaBN8zwCXRu5BReLPYG6PD25Vi63h1ORPfRfxj2quSQ3sRODPLaxs70Vqek40IAVPYBKtT2WNJC4wku1vY1NAjwNuk82SYxUvO9KjL15K9c2S4-7PUI-CL08Y3w4gRWBvVBCH72HiR04Ol3WPexKjTsc-0m5VyQmvYsk8Dw-kKe2FIhovMCuSzxc_mg3lGvKPNpp9byH7cG37AO9O3zUD74X-ty4yvRwPSLhKz7xy4o48LI1vVzMzz0MRgq5CgZBvfwkjb1Mueg2ILPzvK84QTxB_f83IAA4E0AJSG1QASpzEAAaYAP-AArNPrDcABIAtvvrDtv7AuQz5PD_AMv_Hiy-Bxokzqv4Gv8ezy_loQAAACX_-R32ANFzyfEELPgWEdix8gAcfwUNJdvESf7k3jU83soe9AUQDQAb87wKexPkRUUBayAALVFnGDs4E0AJSG9QAiqvBhAMGqAGAACAPwAA2EEAAIBCAADAwAAAQMAAAHhCAADwQQAAyMEAADzCAAAAAAAAIEIAAATCAADIwQAAKEIAACRCAAAQwQAAsEEAAGBBAADgQAAAPMIAAHTCAACwQQAAMMEAANhBAACwQQAAKMIAAEDBAAB8wgAAPEIAAFRCAABAQQAA0EEAAKDCAADAwAAAgL8AAPBBAAAAwQAA_kIAACDBAAAAAAAAuMEAAPhBAADYQQAAiMEAABxCAACowQAAEMEAAMhBAAB0QgAAQEAAAIC_AABAQAAALMIAAHBCAACgQQAAgD8AACzCAACQwQAAwEAAAMBBAACwQQAA0MEAAIDAAAAAQAAAPEIAABzCAAAwQQAAQEAAAJjBAACAPwAAwEAAAJ5CAADAQAAADMIAAGzCAACMwgAAuMEAAODBAABYQgAAAMAAAADBAAD4QgAABMIAAJjBAACIQgAAkMEAAHBBAACwQQAA0EIAAMDAAAAYwgAA0EEAANDBAABowgAAoEEAAIzCAABQQQAAEEEAAIDBAAAwQQAAyMEAAPhBAAAQwgAAoEEAAL7CAACUQgAAlMIAAEhCAABkwgAAQEEAAEBAAAAYQgAAEMEAAKDBAAAsQgAAgEEAAKDBAABgwgAAoMEAAADAAABAwgAA4MEAAAjCAAAAAAAA0EEAAGDBAAAAQQAAhMIAAFBBAAAAwgAAgMAAABjCAAAAwQAAnkIAAFTCAACWQgAA6EEAANhBAAAAAAAAAMAAADBCAADgwAAAwEEAAIC_AAA0QgAAZEIAAEDBAADAQQAAmkIAAODAAABgwgAAAEIAAKLCAAAgwgAAAMAAAMDBAAAIwgAAysIAAIDBAACwwQAAqkIAABRCAACAwgAAQEEAAADCAAAAQQAAMMEAAPhBAAAAwgAAAEAAAKBAAAAcQgAAsMEAAPjBAACYQQAAoMEAADzCAAAAwQAAVEIAAABBAACSwgAAMMIAABjCAAAEQgAAcEEAAJ7CAABQwQAAYMEAANhBAADAwQAA4EEAAHzCAACIQQAAwMEAAJBBAADYQQAAgL8AABTCAACYQQAAcEIgADgTQAlIdVABKo8CEAAagAIAAAS-AABQvQAARD4AABC9AABQPQAAfD4AAOA8AABDvwAAfL4AAIC7AABAvAAAJL4AAGQ-AACqPgAAUL0AAAS-AAA8PgAA6D0AAHQ-AABLPwAAfz8AAOg9AAA0PgAAZD4AAJi9AACgvAAALD4AAJK-AACSPgAAFD4AAHA9AACevgAAVL4AAPi9AABQPQAAUL0AAIC7AAB8vgAAbL4AAIa-AACavgAAoLwAABC9AADgPAAAbL4AAIg9AADoPQAApr4AAHC9AACavgAAir4AAOA8AAAcPgAA2j4AAGy-AADgPAAAWz8AALi9AABQPQAAyj4AAPi9AADGPgAAcD0AAJK-IAA4E0AJSHxQASqPAhABGoACAAA0vgAAqD0AABC9AAApvwAABL4AAJ6-AABcPgAAZL4AAKA8AAAMPgAAiD0AAAS-AABAPAAALL4AABA9AADgvAAAED0AABM_AACKPgAA6j4AABw-AABQPQAAML0AAEy-AACovQAAyL0AAJg9AACoPQAAML0AAKg9AABQPQAAPD4AAEC8AACovQAAUD0AAOi9AACCPgAAij4AAIq-AABQPQAAjj4AAFA9AACYvQAAoDwAAEC8AABsPgAAf78AAFy-AAAQvQAAgDsAADQ-AAAQPQAAmL0AAKg9AABMPgAA6D0AAFC9AABAvAAAQDwAABA9AAAwPQAAML0AAAS-AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=0TkLxFWvuBc","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1278,"cheight":720,"cratio":1.775,"dups":["14123318222982307926"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"731127024"},"5506720383299386939":{"videoId":"5506720383299386939","docid":"34-10-7-ZEEEABEAC49F478A8","description":"Kamalavasan Kamalakkannan, Gihan R. Mudalige, Istvan Z. Reguly, Suhaib A. Fahmy Session 6: Algorithms on Accelerators...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/225814/991e5290c0f240e9a70ca88f6ab7087d/564x318_1"},"target":"_self","position":"18","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"High Throughput Multidimensional Tridiagonal Systems Solvers on FPGAs","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Cha5pqQ7qRk\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFQoTNTUwNjcyMDM4MzI5OTM4NjkzOVoTNTUwNjcyMDM4MzI5OTM4NjkzOWquDRIBMBgAIkQaMAAKKWhoYW12b211aGpmbWJyaWhoVUNvWkZiM0VHOTd0UVdtdnFCR1dQX0xnEgIAESoQwg8PGg8_E5EOggQkAYAEKyqLARABGniB-wv-AP8BAPYD9A32Bv4CEAgDC_YBAQDxAfcCBwH_APr5CvoBAAAA-gUKAwkAAAD4Bfr-9P8BABAEAfHzAAAAAPz-BvkAAAAGDPr9_gEAAP789_75AQAACvcKAgAAAADt9woFAAAAAPwD_vYBAAAA9v3-AAAAAAAgAC0IYdU7OBNACUhOUAIqcxAAGmAcCwARIhHk5hTu59Xu0SoDGtv92eDd__6_AP8mDdch--uw-BIAPAkQ_bcAAAAgyOALBQD4VO3l_CIN7y6vCPYfGX_8FutC8kwI3xrmOf3K9wsMPQwACP0VCzje9Bz7_vsgAC0D2j87OBNACUhvUAIqrwYQDBqgBgAAAEAAAIbCAACgwQAAsMEAALRCAABsQgAAWEIAADBBAABwwQAAwEAAAKBBAADAwAAAwsIAAFjCAABwQgAAQEEAACBCAAAgwQAA4MEAAABBAABQQgAAcMEAAIBBAAAgwQAAgEAAAPjBAABAwQAAmMIAAHDCAAAYwgAAQEEAAMDAAABAQAAAoMAAAKDBAACgQAAAgL8AANxCAAAQQQAAYEEAAFBBAAD4QQAAAMAAAJjBAAAwwgAADMIAAJpCAACgwQAA0EEAAEBAAACWwgAAqEEAABhCAABIQgAAjkIAAFDBAAAUwgAAAAAAAABAAAAwQgAAgL8AAMDBAAAIQgAARMIAAHBBAAAUQgAA0MEAANDBAABoQgAAAAAAADBBAACYQQAAMMIAAABAAAD4QQAA4EAAAEDCAAAAwAAAgMAAAEzCAABkwgAAmEIAANBBAABMQgAAIMEAADRCAAAIQgAASMIAAIBAAAAAQAAAAMEAACBCAABQQQAAEMEAAABBAAC4wQAAuMEAAMjBAABAQAAAyMEAAGDBAAAEQgAASEIAAIA_AACeQgAAHEIAAPhBAADgQAAAHMIAADhCAAAwwQAA0MEAAHxCAAAcQgAAcEEAAAxCAAAYwgAAsMEAAJDCAABwwQAAIMIAABzCAAA0wgAAMEEAAJrCAADIQQAAwMEAAABAAAAowgAAksIAABjCAADYQQAAQMEAAMhBAABgwgAAjEIAAIhBAABcwgAAGEIAAChCAABoQgAABEIAADjCAACIwQAAikIAADhCAACGwgAAgMEAAMBBAACeQgAAosIAABBCAACQwQAAKEIAAGBBAABQwQAAIMIAAIzCAABAQAAAQEAAACxCAABsQgAAwEEAAIDBAAAAwAAAAMEAAExCAACYQQAAHEIAAGDBAADoQQAA1kIAAJxCAAA0QgAAcMIAADBCAACIQgAAKMIAACBBAACIQQAAuEEAABjCAADswgAAQEAAADBBAABAQQAARMIAAEDAAAAsQgAAwMAAABDCAAA4wgAAgL8AABDBAAAgwQAAgMEAAFjCAABAwQAAoEEAAAzCIAA4E0AJSHVQASqPAhAAGoACAAAwvQAAoDwAAII-AACYPQAAEL0AAHA9AACIvQAA7r4AAKC8AACAOwAA4DwAAKg9AAB8PgAAjj4AAHC9AACAuwAAPD4AAKg9AABwPQAA2j4AAH8_AAAQvQAA4LwAAIg9AABAvAAAUD0AAIC7AAAMvgAA4DwAADQ-AACAuwAA4DwAADy-AABAvAAA2D0AAKA8AABQvQAAcL0AAEy-AACuvgAA6L0AAEC8AABwPQAA4DwAANi9AABkvgAA2D0AAOi9AACIvQAAEL0AAHA9AAAUPgAAXD4AAOg9AACmvgAAoDwAABE_AACgvAAARD4AACw-AADgvAAAMD0AAKg9AABkviAAOBNACUh8UAEqjwIQARqAAgAA4LwAACw-AADYPQAAJb8AAHC9AACgvAAAyD0AAMi9AAAUvgAABz8AAKg9AAD4vQAAHD4AACy-AADovQAA4LwAAFC9AABNPwAAHD4AAGw-AAC4PQAA-L0AACQ-AACYvQAAgLsAABw-AAAkvgAAJD4AAOi9AAAcPgAAoLwAAHA9AACIvQAAyL0AAJi9AAA0vgAA-D0AAKg9AAA0vgAAuL0AAFQ-AACgPAAAmL0AAIi9AADYPQAA4DwAAH-_AACgvAAAUD0AAJg9AABMPgAAQLwAAHA9AAD4PQAAoLwAADA9AABwvQAAcL0AALi9AACAOwAAPD4AAIC7AACIvQAABL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Cha5pqQ7qRk","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5506720383299386939"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15379509924379595580":{"videoId":"15379509924379595580","docid":"34-3-6-Z6E0D6040AC2CBA20","description":"Diagonalizing Tridiagonal Matrix...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4694975/3e4eef8a4d0ff47388801caed2d3ed02/564x318_1"},"target":"_self","position":"19","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","isAdultDoc":false,"relatedParams":{"text":"Mod 04 Lec 31 Diagonalizing Tridiagonal Matrix","related_orig_text":"Tridiagonal Solutions","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tridiagonal Solutions\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=waMdeAkskXA\",\"src\":\"serp\",\"rvb\":\"EqwDChI2ODQ4NTIwNzk3NDIxMDk0NjAKEzkwNTI0NjA1NzI5ODU3NzcyMTkKFDEzNDIyMzE3NjQ4NDI5Njc2ODA1ChMyMTc1NDU0MTczODA4NDY3OTMzChMzMTk4MDY3NTgxOTg0OTEyMzcwChMzMzA0NDg2ODUwNzMyNDk4Njk0ChQxNDc3MzU2Nzc5NDQxOTc0OTcwMgoTMTE5Njc4MzQ1MTAwMTkyMzQ4MQoTMjg4MzExNDMyMTMwNjU4NjQ2NAoTNjE0OTIyOTk3NjQxNjE2NDI5MwoUMTY1NTk5NDgyMjk4OTc0MjIyNzcKEzg4OTYwMTkyNTU0OTM4NTA5MjUKEzg5NzQ0MDQwMzkyMzI4MDI0OTAKFDEyNTgzODgyMTAwMTQ5NzY4OTcwChQxNjY0OTk3ODMwNjA4MTE0MTcyOAoUMTQxMjMzMTgyMjI5ODIzMDc5MjYKEzU1MDY3MjAzODMyOTkzODY5MzkKFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwChQxNjkxODY4MjkyMDcyODEyMTE4MQoUMTcyODkxODY2NDc5MjU5OTM3NjEaFgoUMTUzNzk1MDk5MjQzNzk1OTU1ODBaFDE1Mzc5NTA5OTI0Mzc5NTk1NTgwaq8NEgEwGAAiRRoxAAoqaGhpb3ZxbXJ4eXl5aXV4YmhoVUNjNXdodGI1ZUxsUE9CeEhDbEFQVlV3EgIAEioQwg8PGg8_E-QWggQkAYAEKyqLARABGniBAPcF_vwEAPH9_A39Bf4BGg4ABvUDAwD8Bfr9BgT-AO35EPz9_wAA-gUKAwgAAAAGB_n7-f4BAAz_7fwCAAAA-wP5C_kAAAAGAwT6_wEAAAIB-gn5AQAAAAYOBAAAAAD2BP8A__8AAPv5A_IAAAAAAvgFBwAAAAAgAC3Obd47OBNACUhOUAIqcxAAGmAOCQAiEivb9BzLA-D2Ewjf4CcACOHdAPrPACTu3Qcc5_Dc2wkAAvgHBcAAAAAP__ICCQDiR_EIDCIKBAPD3RADGH8wGOYq-DoN2hP2HBjj2eMi8NwA-fcFBEcA6uQB4iggAC3-AFw7OBNACUhvUAIqrwYQDBqgBgAANEIAAMBAAABsQgAAaMIAAIhBAABQQQAAokIAADBBAAAAwQAA-MEAAKBBAAAYwgAAgMAAAGhCAABgQQAAEMEAAFxCAAAgwQAABEIAAFTCAADAQAAAUMEAAIDAAACAQQAAFMIAAIBBAABYwgAAmMIAAADAAACAQQAAQMAAAFRCAAAwwQAA4MAAAITCAADIwQAAFEIAAKZCAADoQQAAHEIAAGBBAAA4wgAA4EEAAAzCAAAAQAAA0sIAAKBBAAAAQgAAHEIAAKhBAABIwgAAgD8AAKBAAAD4QQAAAEEAAKDBAACKwgAAwEAAAADBAAA0QgAAnEIAAIjBAABAwgAAfMIAAMhBAACGwgAAAMIAAITCAAAAQQAAgMAAAExCAABAQgAAfMIAAFBBAAAgwgAAIMIAAGzCAABYwgAAQEIAANhBAABYwgAA9EIAAFTCAAA0QgAAkMEAAPhBAAAAQAAAKMIAAIpCAAAswgAA4MEAAIJCAABgwQAAMMEAAKjBAADcwgAAQMEAACTCAACSQgAAQEAAAMBAAACCQgAAFEIAAABAAACcwgAAEMEAADTCAAAUQgAAYEEAAGxCAACYwQAAQEIAAGDBAAAIwgAAEEEAABxCAAAQQQAAsEEAAADCAAAQQQAAAMAAAATCAADoQQAAgMAAALjBAACAPwAAVMIAAMDBAACAvwAAMEEAANhBAACKwgAAuEEAAAhCAADYwQAAyEEAAIDBAABgwgAANMIAAOjBAACIwQAAwEAAACDBAAA0wgAAqEEAALBBAADgwQAAKMIAAHBBAAAAwQAAAMAAACxCAAD4QQAAgEEAAIC_AADIwQAAgsIAAFDBAABYwgAAcEIAAJDBAACoQQAAYEEAACDCAACawgAAIMEAAABBAADEQgAAREIAAKBAAAAoQgAAUEEAALjBAAAswgAA0MEAAPjBAACAwAAAyEEAAMhBAADQQQAAnMIAAGjCAACAvwAAlkIAACRCAABYwgAABMIAACzCAADgQAAA4MEAAFDBAADYwQAA6EEAAJjBAAAYQgAAaEIAAChCAABcwgAAIMEAAJBBIAA4E0AJSHVQASqPAhAAGoACAABMPgAAMD0AAJI-AAAEPgAAmL0AAIY-AABQvQAA3r4AABC9AACIPQAA4DwAAOi9AACaPgAAHD4AAFS-AAAwvQAAgj4AAHA9AACoPQAA5j4AAH8_AACgvAAAuL0AAII-AADgvAAAQLwAAAw-AACSvgAAfD4AAFQ-AABQPQAAHL4AACy-AABQPQAAbD4AAPi9AAD4vQAAFL4AAI6-AAC6vgAAPL4AAIC7AACIPQAAXL4AAPi9AACIPQAAND4AANi9AADgvAAA4LwAAFC9AACoPQAABD4AALg9AABMvgAAEL0AADE_AAA0vgAA-D0AAJ4-AAAwvQAAiD0AAIg9AAAcviAAOBNACUh8UAEqjwIQARqAAgAAJL4AACw-AACgvAAADb8AAGy-AAAwvQAAHD4AAFA9AAAQvQAAoj4AAIi9AABQvQAA2D0AAOA8AABQPQAAqL0AAPi9AAA9PwAAcD0AANY-AACAuwAAFL4AAIC7AACIvQAALL4AAIq-AABMPgAABD4AABQ-AACgPAAAoLwAAKg9AAAEvgAAUL0AAFA9AAAQvQAAfD4AAMo-AAA8vgAAQDwAANg9AABwvQAAUL0AADC9AAAcPgAATD4AAH-_AACAOwAAiD0AAIC7AAAUPgAA4LwAAOg9AADoPQAAND4AAPg9AABAPAAAcD0AANg9AACoPQAALD4AAHA9AABQvQAAHL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=waMdeAkskXA","parent-reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15379509924379595580"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"684852079742109460":{"videoId":"684852079742109460","title":"CFD acceleration with AI (mastermind session: byteLAKE, \u0007[Tridiagonal\u0007] \u0007[Solutions\u0007], Lenovo, Intel...","cleanTitle":"CFD acceleration with AI (mastermind session: byteLAKE, Tridiagonal Solutions, Lenovo, Intel)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=IT7c0-EzkC8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IT7c0-EzkC8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWXA1b2haMUJhaFJyWEcxb250bnpwdw==","name":"byteLAKE","isVerified":false,"subscribersCount":0,"url":"/video/search?text=byteLAKE","origUrl":"http://www.youtube.com/@byteLAKEBRAND","a11yText":"byteLAKE. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4018,"text":"1:06:58","a11yText":"Süre 1 saat 6 dakika 58 saniye","shortText":"1 sa. 6 dk."},"date":"2 tem 2021","modifyTime":1625213273000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IT7c0-EzkC8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IT7c0-EzkC8","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":4018},"parentClipId":"684852079742109460","href":"/preview/684852079742109460?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/684852079742109460?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9052460572985777219":{"videoId":"9052460572985777219","title":"Thomas Algorithm | \u0007[Solution\u0007] for tri diagonal system of equations|\u0007[Tri\u0007]-\u0007[Diagonal\u0007] Matrix 4x4...","cleanTitle":"Thomas Algorithm | Solution for tri diagonal system of equations|Tri-Diagonal Matrix 4x4|Mathspedia","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KOwg6uSiMq0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KOwg6uSiMq0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTEgyWWhwREJGeEhPMk05Ti1ucFk3UQ==","name":"Mathspedia","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathspedia","origUrl":"http://www.youtube.com/@MATHSPEDIAabhi","a11yText":"Mathspedia. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1264,"text":"21:04","a11yText":"Süre 21 dakika 4 saniye","shortText":"21 dk."},"views":{"text":"23,6bin","a11yText":"23,6 bin izleme"},"date":"17 ara 2023","modifyTime":1702771200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KOwg6uSiMq0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KOwg6uSiMq0","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":1264},"parentClipId":"9052460572985777219","href":"/preview/9052460572985777219?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/9052460572985777219?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13422317648429676805":{"videoId":"13422317648429676805","title":"Creating a \u0007[Tridiagonal\u0007] matrix in matlab (3 \u0007[Solutions\u0007]!!)","cleanTitle":"Creating a Tridiagonal matrix in matlab (3 Solutions!!)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=31DfeQVH7bQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/31DfeQVH7bQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUEYtb1liMi14TjVGYkNYeTAxNjdHZw==","name":"Roel Van de Paar","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Roel+Van+de+Paar","origUrl":"http://www.youtube.com/@RoelVandePaar","a11yText":"Roel Van de Paar. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":194,"text":"3:14","a11yText":"Süre 3 dakika 14 saniye","shortText":"3 dk."},"date":"28 oca 2021","modifyTime":1611829358000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/31DfeQVH7bQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=31DfeQVH7bQ","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":194},"parentClipId":"13422317648429676805","href":"/preview/13422317648429676805?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/13422317648429676805?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2175454173808467933":{"videoId":"2175454173808467933","title":"The Eigenvalues of a Special \u0007[Tridiagonal\u0007] Matrix","cleanTitle":"The Eigenvalues of a Special Tridiagonal Matrix","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DMNgw3x3r9g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DMNgw3x3r9g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX2puU2FVUndnNWJLM3BiQ3BfeGFiZw==","name":"Mike, the Mathematician","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mike%2C+the+Mathematician","origUrl":"http://www.youtube.com/@mikethemathematician","a11yText":"Mike, the Mathematician. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":674,"text":"11:14","a11yText":"Süre 11 dakika 14 saniye","shortText":"11 dk."},"date":"14 haz 2024","modifyTime":1718323200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DMNgw3x3r9g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DMNgw3x3r9g","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":674},"parentClipId":"2175454173808467933","href":"/preview/2175454173808467933?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/2175454173808467933?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3198067581984912370":{"videoId":"3198067581984912370","title":"5. What is a \u0007[Tridiagonal\u0007] Matrix #Shorts #algorithm #datastructures","cleanTitle":"5. What is a Tridiagonal Matrix #Shorts #algorithm #datastructures","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/XbJNrlVD02k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XbJNrlVD02k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGh2X0lDZ1d1UHZya1daZEdFLUlKdw==","name":"Syed Mohiuddin","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Syed+Mohiuddin","origUrl":"http://www.youtube.com/@Softlect","a11yText":"Syed Mohiuddin. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":40,"text":"00:40","a11yText":"Süre 40 saniye","shortText":""},"views":{"text":"2,4bin","a11yText":"2,4 bin izleme"},"date":"12 eki 2022","modifyTime":1665532800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XbJNrlVD02k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XbJNrlVD02k","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":40},"parentClipId":"3198067581984912370","href":"/preview/3198067581984912370?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/3198067581984912370?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3304486850732498694":{"videoId":"3304486850732498694","title":"\u0007[Tridiagonal\u0007] system for cubic spline interpolation","cleanTitle":"Tridiagonal system for cubic spline interpolation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zhSoqOOD1pA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zhSoqOOD1pA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM3gwUWJ2SFBNRWZfTzBVc3A0ZW9DUQ==","name":"Melvin Leok","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Melvin+Leok","origUrl":"http://www.youtube.com/@melvinleok","a11yText":"Melvin Leok. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1046,"text":"17:26","a11yText":"Süre 17 dakika 26 saniye","shortText":"17 dk."},"views":{"text":"3,5bin","a11yText":"3,5 bin izleme"},"date":"17 eki 2021","modifyTime":1634428800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zhSoqOOD1pA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zhSoqOOD1pA","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":1046},"parentClipId":"3304486850732498694","href":"/preview/3304486850732498694?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/3304486850732498694?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14773567794419749702":{"videoId":"14773567794419749702","title":"\u0007[Tridiagonal\u0007] Systems in Matlab | Numerical Methods | Matlab Helper","cleanTitle":"Tridiagonal Systems in Matlab | Numerical Methods | Matlab Helper","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=C2IaMjzfxWg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/C2IaMjzfxWg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmE2QVA5VHM0RUZaV0E2cF9UUEptQQ==","name":"MATLAB Helper ®","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MATLAB+Helper+%C2%AE","origUrl":"http://www.youtube.com/channel/UCFa6AP9Ts4EFZWA6p_TPJmA","a11yText":"MATLAB Helper ®. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":262,"text":"4:22","a11yText":"Süre 4 dakika 22 saniye","shortText":"4 dk."},"views":{"text":"43,6bin","a11yText":"43,6 bin izleme"},"date":"11 eyl 2017","modifyTime":1505088000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/C2IaMjzfxWg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=C2IaMjzfxWg","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":262},"parentClipId":"14773567794419749702","href":"/preview/14773567794419749702?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/14773567794419749702?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1196783451001923481":{"videoId":"1196783451001923481","title":"\u0007[Tridiagonal\u0007] Sparse Matrix","cleanTitle":"Tridiagonal Sparse Matrix","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XN6-A543zW4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XN6-A543zW4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVkxiemh4VlRpVExpVktlR1Y3V0VCZw==","name":"TutorialsPoint","isVerified":true,"subscribersCount":0,"url":"/video/search?text=TutorialsPoint","origUrl":"http://www.youtube.com/@TutorialsPoint_","a11yText":"TutorialsPoint. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":449,"text":"7:29","a11yText":"Süre 7 dakika 29 saniye","shortText":"7 dk."},"views":{"text":"21,4bin","a11yText":"21,4 bin izleme"},"date":"24 oca 2018","modifyTime":1516752000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XN6-A543zW4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XN6-A543zW4","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":449},"parentClipId":"1196783451001923481","href":"/preview/1196783451001923481?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/1196783451001923481?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2883114321306586464":{"videoId":"2883114321306586464","title":"Solving a System with a \u0007[Tridiagonal\u0007] Matrix","cleanTitle":"Solving a System with a Tridiagonal Matrix","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=79A66ax1qcE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/79A66ax1qcE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcDczb1RGcEVBUEt6OHN3ODlmV1BXZw==","name":"NCLab","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NCLab","origUrl":"http://www.youtube.com/@nclabedtech","a11yText":"NCLab. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":84,"text":"1:24","a11yText":"Süre 1 dakika 24 saniye","shortText":"1 dk."},"views":{"text":"6,7bin","a11yText":"6,7 bin izleme"},"date":"6 eyl 2019","modifyTime":1567728000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/79A66ax1qcE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=79A66ax1qcE","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":84},"parentClipId":"2883114321306586464","href":"/preview/2883114321306586464?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/2883114321306586464?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6149229976416164293":{"videoId":"6149229976416164293","title":"10 3 3 Simple \u0007[tridiagonal\u0007] QR algorithm","cleanTitle":"10 3 3 Simple tridiagonal QR algorithm","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_IgDCL7OPdU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_IgDCL7OPdU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLUZsTDlMUEVpcEdOZ2FhMXBTN2FQZw==","name":"Advanced LAFF","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Advanced+LAFF","origUrl":"http://www.youtube.com/@advancedlaff6453","a11yText":"Advanced LAFF. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":445,"text":"7:25","a11yText":"Süre 7 dakika 25 saniye","shortText":"7 dk."},"views":{"text":"2,1bin","a11yText":"2,1 bin izleme"},"date":"11 mar 2020","modifyTime":1583884800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_IgDCL7OPdU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_IgDCL7OPdU","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":445},"parentClipId":"6149229976416164293","href":"/preview/6149229976416164293?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/6149229976416164293?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16559948229897422277":{"videoId":"16559948229897422277","title":"House holders method || \u0007[Tridiagonal\u0007] matrix|| SNME Problem || Bsc , MSc & engineering mathematics","cleanTitle":"House holders method || Tridiagonal matrix|| SNME Problem || Bsc , MSc & engineering mathematics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0N73JsZR8gA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0N73JsZR8gA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeHItRXNmOVdNMzhiNzV0cWp3cTJoUQ==","name":"Dev prit","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dev+prit","origUrl":"http://www.youtube.com/@Devprit","a11yText":"Dev prit. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":986,"text":"16:26","a11yText":"Süre 16 dakika 26 saniye","shortText":"16 dk."},"views":{"text":"3,3bin","a11yText":"3,3 bin izleme"},"date":"17 kas 2023","modifyTime":1700179200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0N73JsZR8gA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0N73JsZR8gA","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":986},"parentClipId":"16559948229897422277","href":"/preview/16559948229897422277?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/16559948229897422277?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8896019255493850925":{"videoId":"8896019255493850925","title":"\u0007[tridiagonal\u0007] matrix in python","cleanTitle":"tridiagonal matrix in python","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eYjzFUbMmKc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eYjzFUbMmKc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQkdFTm5STVozY2hIbl85Z2tjckZ1QQ==","name":"AllTech","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AllTech","origUrl":"http://www.youtube.com/@AllTechPage","a11yText":"AllTech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":58,"text":"00:58","a11yText":"Süre 58 saniye","shortText":""},"views":{"text":"4,7bin","a11yText":"4,7 bin izleme"},"date":"12 haz 2018","modifyTime":1528761600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eYjzFUbMmKc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eYjzFUbMmKc","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":58},"parentClipId":"8896019255493850925","href":"/preview/8896019255493850925?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/8896019255493850925?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8974404039232802490":{"videoId":"8974404039232802490","title":"Create a \u0007[tridiagonal\u0007] matrix with SciPy in Python","cleanTitle":"Create a tridiagonal matrix with SciPy in Python","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tsK72kSgPoI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tsK72kSgPoI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVEZMUXg2T0M4azhGQWI0TUNvVUczQQ==","name":"gnisitricks","isVerified":false,"subscribersCount":0,"url":"/video/search?text=gnisitricks","origUrl":"http://www.youtube.com/@gnisitricks","a11yText":"gnisitricks. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":45,"text":"00:45","a11yText":"Süre 45 saniye","shortText":""},"views":{"text":"3,1bin","a11yText":"3,1 bin izleme"},"date":"27 haz 2020","modifyTime":1593216000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tsK72kSgPoI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tsK72kSgPoI","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":45},"parentClipId":"8974404039232802490","href":"/preview/8974404039232802490?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/8974404039232802490?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12583882100149768970":{"videoId":"12583882100149768970","title":"Creating \u0007[Tridiagonal\u0007] Matrix in Matlab","cleanTitle":"Creating Tridiagonal Matrix in Matlab","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=UORjpVfrdpU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UORjpVfrdpU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZWhDeXVqeUpvTWJtX052V05DVG84dw==","name":"Doğan Kayadelen","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Do%C4%9Fan+Kayadelen","origUrl":"http://www.youtube.com/c/Do%C4%9FanKAYADELEN","a11yText":"Doğan Kayadelen. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":266,"text":"4:26","a11yText":"Süre 4 dakika 26 saniye","shortText":"4 dk."},"views":{"text":"16,5bin","a11yText":"16,5 bin izleme"},"date":"18 nis 2017","modifyTime":1492473600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UORjpVfrdpU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UORjpVfrdpU","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":266},"parentClipId":"12583882100149768970","href":"/preview/12583882100149768970?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/12583882100149768970?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16649978306081141728":{"videoId":"16649978306081141728","title":"Numerical Methods&VB-L11: Solve \u0007[Tridiagonal\u0007] SLEs-Jacobi, Gauss-Seidel, SOR, AGE, Download VB cod...","cleanTitle":"Numerical Methods&VB-L11: Solve Tridiagonal SLEs-Jacobi, Gauss-Seidel, SOR, AGE, Download VB codes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Imu1-JDZ_a8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Imu1-JDZ_a8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZTJyZ0tmdVl5QUc1OUxxekwzY0VwUQ==","name":"Numerical & Visual Basic","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Numerical+%26+Visual+Basic","origUrl":"http://www.youtube.com/@numericalvisualbasic8459","a11yText":"Numerical & Visual Basic. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":676,"text":"11:16","a11yText":"Süre 11 dakika 16 saniye","shortText":"11 dk."},"date":"12 tem 2020","modifyTime":1594512000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Imu1-JDZ_a8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Imu1-JDZ_a8","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":676},"parentClipId":"16649978306081141728","href":"/preview/16649978306081141728?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/16649978306081141728?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14123318222982307926":{"videoId":"14123318222982307926","title":"At Most How Many Operations to Write a \u0007[Tridiagonal\u0007] Matrix in RREF?","cleanTitle":"At Most How Many Operations to Write a Tridiagonal Matrix in RREF?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0TkLxFWvuBc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0TkLxFWvuBc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlZNeFJNRXd2bzlBUy1KZmg2ZlFGZw==","name":"Mathispower4u","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mathispower4u","origUrl":"http://www.youtube.com/@Mathispower4u","a11yText":"Mathispower4u. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":328,"text":"5:28","a11yText":"Süre 5 dakika 28 saniye","shortText":"5 dk."},"views":{"text":"3,5bin","a11yText":"3,5 bin izleme"},"date":"13 şub 2022","modifyTime":1644765038000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0TkLxFWvuBc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0TkLxFWvuBc","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":328},"parentClipId":"14123318222982307926","href":"/preview/14123318222982307926?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/14123318222982307926?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5506720383299386939":{"videoId":"5506720383299386939","title":"High Throughput Multidimensional \u0007[Tridiagonal\u0007] Systems Solvers on FPGAs","cleanTitle":"High Throughput Multidimensional Tridiagonal Systems Solvers on FPGAs","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Cha5pqQ7qRk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Cha5pqQ7qRk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb1pGYjNFRzk3dFFXbXZxQkdXUF9MZw==","name":"International Conference on Supercomputing","isVerified":false,"subscribersCount":0,"url":"/video/search?text=International+Conference+on+Supercomputing","origUrl":"https://www.youtube.com/channel/UCoZFb3EG97tQWmvqBGWP_Lg","a11yText":"International Conference on Supercomputing. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1809,"text":"30:09","a11yText":"Süre 30 dakika 9 saniye","shortText":"30 dk."},"date":"4 tem 2022","modifyTime":1656892800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Cha5pqQ7qRk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Cha5pqQ7qRk","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":1809},"parentClipId":"5506720383299386939","href":"/preview/5506720383299386939?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/5506720383299386939?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15379509924379595580":{"videoId":"15379509924379595580","title":"Mod 04 Lec 31 Diagonalizing \u0007[Tridiagonal\u0007] Matrix","cleanTitle":"Mod 04 Lec 31 Diagonalizing Tridiagonal Matrix","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=waMdeAkskXA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/waMdeAkskXA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYzV3aHRiNWVMbFBPQnhIQ2xBUFZVdw==","name":"NPTEL - Indian Institute of Science, Bengaluru","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NPTEL+-+Indian+Institute+of+Science%2C+Bengaluru","origUrl":"http://www.youtube.com/@nptel-indianinstituteofsci8064","a11yText":"NPTEL - Indian Institute of Science, Bengaluru. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2916,"text":"48:36","a11yText":"Süre 48 dakika 36 saniye","shortText":"48 dk."},"date":"9 şub 2022","modifyTime":1644364800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/waMdeAkskXA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=waMdeAkskXA","reqid":"1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL","duration":2916},"parentClipId":"15379509924379595580","href":"/preview/15379509924379595580?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","rawHref":"/video/preview/15379509924379595580?parent-reqid=1769765861725615-13683568053712266171-balancer-l7leveler-kubr-yp-vla-74-BAL&text=Tridiagonal+Solutions","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"3683568053712266171774","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Tridiagonal Solutions","queryUriEscaped":"Tridiagonal%20Solutions","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}