{"pages":{"search":{"query":"gini","originalQuery":"gini","serpid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","parentReqid":"","serpItems":[{"id":"6485825538872331551-0-0","type":"videoSnippet","props":{"videoId":"6485825538872331551"},"curPage":0},{"id":"755345306670506372-0-1","type":"videoSnippet","props":{"videoId":"755345306670506372"},"curPage":0},{"id":"12064782095898347224-0-2","type":"videoSnippet","props":{"videoId":"12064782095898347224"},"curPage":0},{"id":"4736654219253476694-0-3","type":"videoSnippet","props":{"videoId":"4736654219253476694"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dGdpbmkK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","ui":"desktop","yuid":"7778417291769838838"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"9707642376333832810-0-5","type":"videoSnippet","props":{"videoId":"9707642376333832810"},"curPage":0},{"id":"18274937259603448066-0-6","type":"videoSnippet","props":{"videoId":"18274937259603448066"},"curPage":0},{"id":"1198249789771227924-0-7","type":"videoSnippet","props":{"videoId":"1198249789771227924"},"curPage":0},{"id":"1495906596575674678-0-8","type":"videoSnippet","props":{"videoId":"1495906596575674678"},"curPage":0},{"id":"3351844361722565288-0-9","type":"videoSnippet","props":{"videoId":"3351844361722565288"},"curPage":0},{"id":"7141436512473189965-0-10","type":"videoSnippet","props":{"videoId":"7141436512473189965"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dGdpbmkK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","ui":"desktop","yuid":"7778417291769838838"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"3178585320470255104-0-12","type":"videoSnippet","props":{"videoId":"3178585320470255104"},"curPage":0},{"id":"4404636156162545223-0-13","type":"videoSnippet","props":{"videoId":"4404636156162545223"},"curPage":0},{"id":"1227374094764222344-0-14","type":"videoSnippet","props":{"videoId":"1227374094764222344"},"curPage":0},{"id":"3889976522991017215-0-15","type":"videoSnippet","props":{"videoId":"3889976522991017215"},"curPage":0},{"id":"10328217660487483518-0-16","type":"videoSnippet","props":{"videoId":"10328217660487483518"},"curPage":0},{"id":"17493058098015167033-0-17","type":"videoSnippet","props":{"videoId":"17493058098015167033"},"curPage":0},{"id":"13018176668317766046-0-18","type":"videoSnippet","props":{"videoId":"13018176668317766046"},"curPage":0},{"id":"14686717975964391414-0-19","type":"videoSnippet","props":{"videoId":"14686717975964391414"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dGdpbmkK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","ui":"desktop","yuid":"7778417291769838838"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Dgini"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"5535872260923214507219","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472348,0,84;1457622,0,2;1433081,0,87;1476203,0,38;1460716,0,25;1459297,0,90;1312966,0,79;1472010,0,35;1472029,0,0;1469886,0,16;9346,0,61;50737,0,39;45958,0,53;123855,0,47;1461712,0,1;1470249,0,23;1470226,0,84;1282204,0,56;1466296,0,72;1476140,0,50;1467160,0,93;1467150,0,24;1464404,0,11;1470514,0,69;132360,0,16;1404017,0,43;1471179,0,40;1478800,0,64;1145219,0,24;151171,0,38;1281084,0,93;287509,0,85;1447467,0,57;1006024,0,1;1467128,0,20;1478789,0,44"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Dgini","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=gini","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=gini","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"gini: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"gini\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"gini — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y42c56874a704ef8b913473358b24e3f1","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472348,1457622,1433081,1476203,1460716,1459297,1312966,1472010,1472029,1469886,9346,50737,45958,123855,1461712,1470249,1470226,1282204,1466296,1476140,1467160,1467150,1464404,1470514,132360,1404017,1471179,1478800,1145219,151171,1281084,287509,1447467,1006024,1467128,1478789","queryText":"gini","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7778417291769838838","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1478181,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769838867","tz":"America/Louisville","to_iso":"2026-01-31T00:54:27-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472348,1457622,1433081,1476203,1460716,1459297,1312966,1472010,1472029,1469886,9346,50737,45958,123855,1461712,1470249,1470226,1282204,1466296,1476140,1467160,1467150,1464404,1470514,132360,1404017,1471179,1478800,1145219,151171,1281084,287509,1447467,1006024,1467128,1478789","queryText":"gini","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7778417291769838838","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"5535872260923214507219","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":156,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7778417291769838838","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1759.0__78afb7e0ef66aeda09c521d3b89f7cdbe661a72a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"6485825538872331551":{"videoId":"6485825538872331551","docid":"34-3-17-Z32679D0FC6951EAC","description":"#ginicoefficient #Gini #economics What is the Gini Coefficient? | Full Guide with Definition & Limitations 📊 What is the Gini Coefficient? In this video, we break down the Gini Coefficient—a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1783596/9c86f3550d3fcea9ff13e488f3ebc8fb/564x318_1"},"target":"_self","position":"0","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeYAG20CfbwU","linkTemplate":"/video/preview/6485825538872331551?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is the Gini Coefficient? | Full Guide with Definition & Limitations","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eYAG20CfbwU\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhUKEzY0ODU4MjU1Mzg4NzIzMzE1NTFaEzY0ODU4MjU1Mzg4NzIzMzE1NTFqrw0SATAYACJFGjEACipoaHR0bHl0ZXJ0d3FndHJkaGhVQ0haVldLWnl1Mkxmd3dEMHpaUTFtUEESAgASKhDCDw8aDz8T0QGCBCQBgAQrKosBEAEaeIH7A_MHAAAA8v0J_g0D_gH79v0G-v39AO0HBwAB_wAA7gAF_w0AAAD9__sG9QAAAPgF-v70_wEAFQT0APUAAAAR6PwG_wAAAAgH_wL-AQAA_Pv99gL_AAAcEQP9_wAAAPT__wb6_wAA8hDyCAAAAAAGBgMJ_wAAACAALZpM1Ds4E0AJSE5QAipzEAAaYBsIABgBAOjkCiLnHAnzAfgVGAQG-vwA4wsA6xnb_Pb-zsvcBP8j2xD_ywAAABP5Bh7SAOpL9_rg-hUnDdTY7gUcfwv94Q4CAump0-oFJeMY-v_xIgDbF9z9EPzsJvMBIiAALa0fZzs4E0AJSG9QAiqvBhAMGqAGAADAwQAAAMEAAIDAAADAwAAA-MEAAKDBAABAQgAAMMEAAKDAAABQwQAAZEIAACDCAACIwQAAKMIAAAhCAACAPwAAUMIAAIDBAAAUwgAA4MAAAGxCAAAQwgAAMMEAALBBAAD4QQAAEMEAAKBBAACQwgAAsEEAAPDBAAAUwgAAEEIAADzCAACgQAAAUMEAABDBAACAPwAAUEIAAOjBAAAUwgAAuEEAALhBAAAgQgAApkIAAIZCAABAwAAArsIAAMTCAADIQQAAiMEAAEDAAACgwAAA2MEAABDCAABgQQAAEMEAAKLCAACIwgAAYEEAAAhCAACgwQAAgEEAAPDBAAAUwgAAwEAAAPjBAACAPwAAgEAAACBBAACAvwAAYEIAAABAAACkwgAAWEIAAJDBAACMwgAAIEEAAIC_AAAUQgAABMIAABzCAAAEQgAAIMEAAIC_AACgwAAAWMIAAJhCAABEQgAAAMEAAEBAAADAwQAAwEIAAADAAABAQQAAIMEAANjCAAAgQgAARMIAAKBAAABMwgAAgEEAAMDBAACiQgAAwEAAALDBAAAAQQAA6MEAAEBCAADoQQAA4MAAAADAAADYwQAANMIAAEDCAADAQQAAoEAAADDBAAB0wgAAyMEAAJjBAADAQAAAcMEAAIzCAADwwQAAPEIAAIDAAAAUwgAAIMEAANjBAADAwQAA-EEAAJDBAACgwAAAPEIAADBCAAAQwgAAIEEAACDCAADgwQAA4sIAAMDAAAB8QgAAIEIAAFTCAABQQQAAAAAAABBBAADgQAAAuEIAAGRCAAAIQgAA2MEAACjCAAAcwgAAoMEAAIhBAABEwgAAgsIAAJDBAACIQQAAFMIAALBBAABswgAAEMIAACDCAACIwQAAQEIAABxCAACgQQAAGMIAANjBAABkQgAArMIAAMTCAAAQwQAA4EEAAJjBAABIwgAA6EEAAHBBAABMwgAAUMIAAAjCAAAAwgAA1kIAAAxCAABQwQAAIEEAAPDBAAAswgAAPMIAAGDCAACwQQAAcEIAAJDBAABIQgAAsMEAABTCAACAwQAAhMIgADgTQAlIdVABKo8CEAAagAIAAJK-AACWvgAA-D0AABA9AAA8vgAA9j4AABw-AADmvgAAXL4AAHA9AACYvQAAuL0AADw-AACIvQAALL4AAKK-AAA0PgAAMD0AAEw-AAATPwAAfz8AAAw-AAAwPQAAhj4AAGS-AAD4vQAAED0AAKg9AADgPAAAjj4AADQ-AACqvgAALL4AABA9AAAcvgAAMD0AAJo-AAD4vQAAlr4AAIA7AAAkvgAAfL4AAAw-AAD4vQAA4DwAAJI-AADIPQAATL4AABC9AAC-vgAA-L0AAOC8AAC2PgAAVD4AABS-AABAvAAAaT8AAOC8AACgvAAA2j4AAAy-AACovQAAQLwAAIA7IAA4E0AJSHxQASqPAhABGoACAAA0vgAAqD0AAIq-AAA5vwAArr4AAFA9AAB8PgAAgDsAAKC8AABEPgAAcL0AACS-AADoPQAAqL0AAOg9AABQvQAA2D0AABM_AAAMPgAAAz8AAKC8AAC4vQAA2D0AADS-AABwvQAA-D0AAKi9AABwvQAA4LwAAHC9AACIvQAAoLwAADA9AADovQAAJD4AADS-AACIPQAAQLwAAOi9AABAPAAAgDsAAEw-AADIPQAAoDwAAKi9AABUPgAAf78AAKi9AACSvgAAgDsAACQ-AAAwPQAAmD0AAK4-AADgvAAAqD0AAEC8AADovQAAyD0AABS-AAAMPgAAMD0AAEC8AACovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=eYAG20CfbwU","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6485825538872331551"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"755345306670506372":{"videoId":"755345306670506372","docid":"34-5-2-Z1C0BDFF9199902DB","description":"The topic of income inequality is still very much so in the spotlight pretty much everywhere in the world and thus, there's no time like the present to understand the Gini coefficient properly.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4087162/65cf35e11ab35ebe405b72b693a80e2f/564x318_1"},"target":"_self","position":"1","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOUN93JwBAY4","linkTemplate":"/video/preview/755345306670506372?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Gini Coefficient Explained in One Minute","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OUN93JwBAY4\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhQKEjc1NTM0NTMwNjY3MDUwNjM3MloSNzU1MzQ1MzA2NjcwNTA2Mzcyaq4NEgEwGAAiRBoxAAoqaGhpaWxzYm50aHFwdm9pZGhoVUNwc3JvSndzVktRdlJIM1pxZHZSZXRREgIAEioPwg8PGg8_E3eCBCQBgAQrKosBEAEaeIH-_gEI-wUAAPn_A_sG_gL0-voCCf8AAPH5CAX1AQAA9gYFAQEAAAD4-_0C_wAAAPAA-P_xAAEACgUACAQAAAAQ7wf3-wAAAAgFCf_-AQAA_fv99wIAAAALDfYE_wAAAPYE_wD__wAA9RD-_gAAAAAI_gQGAAAAACAALXmg4js4E0AJSE5QAipzEAAaYCgNABQSBAHj_SPwCgD5Fv0JF-0A7gEAAh8A9iD-B_4F1NQHBP8c_gvz0gAAABEQEBv8APs8-_Hg7An3CuDx7RIYfxUH7xsnBO3E3PL6FAj7ICEeOADkCQDvFvf0Je7fGSAALTpmgjs4E0AJSG9QAiqvBhAMGqAGAABgwQAAoEAAAIpCAAC4QQAAsMEAAHRCAABcQgAANMIAAODBAABEwgAAvEIAAFDBAACowQAAkMEAAIBBAACwQQAAnEIAACDBAACgwAAAQMIAAAhCAADIwQAAmMIAAJpCAADYwQAAAEEAAMjBAAAgwQAAqkIAAJhCAAAgQQAA-EEAAEDCAACOwgAAQEAAAEDBAADAwQAAqEIAALBBAAAgQQAAMMEAAGhCAAAMQgAAgEIAAMBAAACAPwAASEIAAGBBAAC8QgAAgD8AAKjBAACAwQAAoEEAAFhCAAAEQgAAgEAAAHDCAAAAQQAAsMEAAOhBAACowQAAUEEAACDBAAC4wQAASMIAAEjCAADYwQAAZMIAAAAAAAAAQAAAuEEAAPBBAAAkwgAAUMEAAPDBAABIwgAAgEEAAGBBAACQQQAABMIAAAjCAACQQQAAZEIAAABCAADIQQAAgkIAAADBAAB0QgAAEMIAANhBAAAQQQAAdEIAAIDBAADSwgAAkEEAAEDCAACAQAAAQEEAAKBAAAC4wQAAgEAAAMDAAAC4wQAAjMIAAIDCAABoQgAAWEIAAPhBAABwQQAAJEIAADxCAADwQQAAwEAAAOBAAABcQgAA6EEAAJRCAADQwQAA8EEAAIDBAABgQQAAuMEAAILCAAAAQAAAUEEAAADCAAAUQgAATEIAAKjBAAAQwQAAwEAAAIDAAADcwgAA4EAAAEDBAACCwgAAIMEAAIC_AACCwgAAvsIAAAAAAAAcQgAAIEEAABTCAAD4QQAAkEEAADRCAAAAwQAADEIAAAxCAADgwAAAAMAAAMDBAADgwAAAKMIAAAAAAAAMQgAAhEIAALrCAABAwAAAPMIAAIJCAAAQwgAAFMIAAGzCAACgwQAASEIAAFhCAACAPwAAbMIAAIDAAACYwQAAfEIAADBCAABQQgAAqEEAALDBAACcwgAAQMAAAHRCAADAwQAA2MEAAMBBAACgwQAAAEAAAMjBAAAgQQAAiEIAABBBAAAIQgAAmMEAALjBAABAQQAAoEAAAJrCAAAMQgAAGMIAANhBAADAwQAAJEIgADgTQAlIdVABKo8CEAAagAIAAGy-AABQvQAA6D0AANg9AADYvQAApj4AAKg9AAAJvwAARL4AAGw-AACGPgAAcL0AAFC9AADoPQAA4LwAAJq-AABkPgAAcD0AAKA8AADePgAAfz8AAEw-AADgPAAAgDsAACy-AABQvQAAHL4AAJg9AAAsvgAAjj4AAGQ-AADovQAAML0AAAw-AABsvgAAUD0AADQ-AADYvQAAvr4AABS-AAD4vQAAbL4AAAQ-AACIvQAAMD0AAKA8AACYPQAAuL0AAIC7AACCvgAA4DwAAHC9AAC6PgAAdD4AAK6-AADgPAAATT8AADA9AACgPAAAND4AADS-AADgPAAAVD4AACy-IAA4E0AJSHxQASqPAhABGoACAAC2vgAAgDsAAGy-AABPvwAAVL4AAEC8AABsPgAAyL0AACy-AACoPQAAED0AACS-AABcvgAAPL4AADA9AAAwPQAA6D0AACk_AACoPQAApj4AAMi9AACIvQAAcL0AAHC9AAAEvgAAuD0AAKi9AADYvQAAgDsAADC9AAC4PQAAML0AAFA9AAD4vQAATD4AAKA8AAAMvgAAgLsAACy-AABAvAAADD4AAOg9AAAwPQAA4LwAAES-AAAEPgAAf78AAHy-AADIvQAA-L0AAK4-AACgvAAAdD4AAMg9AADgPAAAgLsAAEC8AACWPgAAQLwAADy-AADYPQAAcD0AANi9AACgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=OUN93JwBAY4","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["755345306670506372"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12064782095898347224":{"videoId":"12064782095898347224","docid":"34-11-10-Z5614D1E65C21D203","description":"Keep going! Check out the next lesson and practice what you’re learning: https://www.khanacademy.org/economics... How the Gini Coefficient and Lorenz Curves are used to measure income inequality.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3186393/bf3d634e11b35111c810411223479f9e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RdE-oQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dy8y-gaNbe4U","linkTemplate":"/video/preview/12064782095898347224?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Gini Coefficient and Lorenz Curve","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=y8y-gaNbe4U\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhYKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0WhQxMjA2NDc4MjA5NTg5ODM0NzIyNGqHFxIBMBgAIkQaMAAKKWhoZG92aXd4c2V2ZnFyZ2hoVUM0YS1HYmR3N3ZPYWNjSG1GbzQwYjlnEgIAESoQwg8PGg8_E-8DggQkAYAEKyqLARABGniBBv0LDQL-APv8_xABCfsC_gj2_Qn9_gDoBwEN_f8BAOntCgAE_wAA8wcCB_YAAAD3Bvr-8_8BABcQ9ggDAAAAAgAD_gIAAAANAQEB_wEAAP_7-_8D_wAACxv9AP8AAADwCgYQAAAAAP4QBQEAAAAA-fECBgAAAAAgAC0BzdA7OBNACUhOUAIqhAIQABrwAX_sIQHd97MBy_fWAOkc-gGpLCP__TLUAN4DCADLFtgAE_gRAMwB3v8lEQQAuBLu_yPs2f_v6uwAKdgN_zLiBwHaEBUBNAbjASYZGv8rCfT-vykJ_vz-AQAX2NQDBE7f_RLtBwEdBAMA7gPEAjgMKwDN9CQFGekH__DoDAHRJwr_7N7a_vMU-wbjwRT-6hoZAQLbCAgPHRj68QrrBAD5D_3-8Ab1HBri_R_z4QXKB_X89vII-hj1_QUa_gn98PrhCtnyLAXN6fD85tUZAAsGD_7ALAIHE_D9_wf7DQPp2AIJJPbq-gT6_Q3-AOkH-_j58CAALVTpGDs4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6nAGJvOPUmLw47W69FNqYvSdPeT0LEYm7kKIePkoS3zy3QwE8JoaZvRXeijw8xnA8Ci9hPhdxsLxB08Y5dXT8vS8Tmj0LAhC9_FQlvjHZLrwHc-Y39nM0vX--rbxGOeK6iGVzPaVqm71wApk6AZzFu33-wbugkm69mK1rvRflQ728SQK9q0f1POpHeb3h7Na8nYV4Pbw-kLuKBT68k2mJPb49rr1m0_g6I36avU1wZT1vMC-80CAqPHd2BTtUO8M66_uFvT5oTL2HOxE8bAeDvc0W2jyWMIm829vNPaG6qT2miMK8YvSMPZ5-0L2-dl27-aAHvvQamz0vgYA7GyqbPVidRj3fTC-7rtcEvg2fPj3sRZm8YYg8PSHJLL1h3Z07D7-GPe-crD3DVZQ8e_QGPkouuTvWur-7LQ4fvFVWLj0QQhs91MqOPEnTZb3x-LC7rTPePSrm47lshPa7kh3AvPeYo7wV6Vk88LeDu4PkuD0ImT88uBRBveoz77sPHMA7BSOlPdYCO75J5Zo6dfhVvcH-K70XKn-8tZEmPX-rMD27Hcy7bvzpPUzkrb0rc6m7pj-QvXzgurvAnic7Vms8vFKvsL1ixxg7D9YPviV1wrwb_Ho6KHJSvXQwMT0-qf67xJJ2O99vpD1cQMM6vj3-PEdapb2dsNC7YhunPNNwBT3gFkm6-5trPfYLVj0OKye62hAtPejOHztGsgm8jUEKPEB1ILxEaCk7FSwCvBYEtb05nQq63WGTPbuXC76lDmg5qvBKu_R-7TuZZKK6J4j6vdqnBDx18Hi5hlyEvSzTn72B6je5qz2RvRpSFb4wUQo6ebbDu6LOYT1WBRO5vJQ6PYo_yjwFIOE3FOfovXPJIr0i3kO56ln1vBF55jwL7Ns4j6CCPeiKMrpCviI4IpoKPeJsAryQFv85xuChPcE4GL1S6UK5cQddOi-VrT0v-uK3_VptvVlThL1hRp84_ViXPdy3-j0dVsQ1PkLNvZfuZDwQ_rk4YkcIPQL44bsEcVC28VkoPXeWir3VNes4i9eWPZ8PBT0gjRW4RcuLvXdhErzo1Du2Nov8vPvb77yS-4e4t8Q7PT_ekLxR34U41p9OPetolj0Bd1s4weMrPtylaLwHiXS5XEkBvcre0r0XIgS5epcBvasDZb21Yua3uMPsu_MFLT13_v-0hhAhPVx3073e85u3ipZXPRBY-T2NF0A4d8aNvaspBD2f04q4fifMvSy8iz3JKcE4OgoMu_De0TxI14Q4IAA4E0AJSG1QASpzEAAaYDzjABcCOuD0-QbW9s0VH_nlO-sK4Bj_F93_2BH9FB7ptuPz_QA4FxbOnwAAAFPa4_IZABZ_w930yuX9POSqAAkpXhEBPZu_NQvlyOHaAt9PQx4KRgCsF7UdKtLN__ArQCAALb3nGDs4E0AJSG9QAiqvBhAMGqAGAACgwAAAQMEAADBCAACQwgAAyEEAAODBAACIQgAAiMEAABTCAABQwQAAkEEAAADCAABUwgAAKMIAABRCAACAwQAA6MEAAGBBAAAQQQAARMIAAIC_AADIwQAAgMEAAPBBAACIQQAAQMAAAHzCAABMwgAAKEIAAERCAAAYwgAAiEEAAIDCAABAQQAAusIAAIDCAAAAQAAArEIAAEBAAAAYQgAABEIAAIDAAACYQQAAoMAAAChCAABIwgAAHMIAAADAAACWQgAA4EEAAKDBAADowQAAoEAAAAxCAAAwQQAAoMAAAPTCAAAQQQAAHMIAAExCAACSQgAAKMIAAADCAAAswgAAGMIAAIbCAACgwQAABMIAAIC_AAA0wgAAGEIAAMBBAAB8wgAA1EIAAJDBAACYwgAAAEEAAATCAAAAQAAAwEEAACzCAACYQQAAQMAAADBCAADQQQAAcEEAACDBAADAQQAAJEIAAOjBAAAAwAAAkEIAAEjCAAAQwgAAqEEAAMDCAABwQQAAwMEAAFBCAADAQAAAlsIAADhCAACoQQAAgMIAAEzCAACAvwAAMEEAAOhBAADQwQAAfEIAAPBBAAD4QQAAsMEAABDCAABAQAAAUEIAABTCAADwwQAA4MAAABjCAADgQAAAKMIAAPDBAACYwQAAiEEAABBCAAAkwgAAIMIAAAzCAABkQgAAUEEAAAzCAAAAwgAAVEIAAARCAABAwAAAAAAAAEDAAABkwgAAaMIAACDBAADAwAAAUEIAAFzCAADAQQAAkMEAAFDCAABQwQAA-MEAAJDBAAC4QQAAsEIAAIZCAABMwgAAwEAAAKhBAAAgwgAAksIAAADCAABsQgAAYMIAAChCAADgQAAAkMEAAEBAAACwQQAAqEEAAJxCAACYQgAAEEEAABDCAAAUQgAAIEEAAIjBAACCwgAAoEAAAODBAACgQAAAyMEAAJBCAAAQQQAAPMIAANDBAACgwAAAsEEAAJjBAABkwgAA2EEAALDBAACIwQAAUMEAAFDCAAAgwQAAcMEAAGBCAAAkQgAA4EEAABDBAACAwgAAGMIgADgTQAlIdVABKo8CEAAagAIAAHS-AAA0vgAAij4AAIY-AADgvAAAbD4AAJ4-AAAPvwAAzr4AAEw-AAA0PgAA3r4AALg9AACgvAAA2D0AAGS-AACOPgAALD4AAGQ-AADGPgAAfz8AAIg9AADYvQAABL4AALq-AABcvgAA4DwAANi9AACCvgAAxj4AAJY-AADovQAAQLwAALg9AACqvgAARD4AAFw-AACGvgAAzr4AAKg9AACAuwAAdL4AALg9AACgPAAAiD0AAPI-AACYPQAAqr4AAES-AAAXvwAA4DwAABw-AAABPwAA4DwAAJa-AABQPQAAZT8AALi9AACKPgAAkj4AABS-AADKvgAAcL0AAAy-IAA4E0AJSHxQASqPAhABGoACAACavgAAoDwAAIq-AAAxvwAAuL0AAIg9AABcPgAAML0AACy-AAC4PQAAML0AALi9AABEvgAAuL0AAHA9AADgPAAAED0AABc_AAAUvgAAsj4AAJi9AADgvAAAFL4AAOi9AACAuwAAML0AACy-AACIvQAAQLwAABC9AADgPAAAiD0AABA9AAAMvgAALD4AAOi9AAAEPgAAMD0AADS-AAD4vQAAyD0AANi9AACIvQAAUL0AANi9AABQPQAAf78AAPi9AABAvAAA4LwAAMY-AAC4vQAAQDwAAHA9AABAPAAAED0AAEC8AADYPQAAND4AAAw-AADoPQAAML0AAIi9AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=y8y-gaNbe4U","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12064782095898347224"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1086770953"},"4736654219253476694":{"videoId":"4736654219253476694","docid":"34-9-12-Z1AF769EC394C0C67","description":"A numerical example of how to calculate the Gini coefficient of income inequality. Another example is here: • How to Solve for the Gini Coefficient: A P... Please consider a donation...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4112775/04bc883ca8ca97d6bae182b596e7cd84/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/B1GyEgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Da5EEJMZKz9I","linkTemplate":"/video/preview/4736654219253476694?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Calculate the Gini Coefficient","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=a5EEJMZKz9I\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhUKEzQ3MzY2NTQyMTkyNTM0NzY2OTRaEzQ3MzY2NTQyMTkyNTM0NzY2OTRqkxcSATAYACJFGjEACipoaHZ0d2tnaWdiYmV5eG9kaGhVQ2t3RmJ6Zm1QcmVYcnVnZzZRVXhLZncSAgASKhDCDw8aDz8T4gKCBCQBgAQrKosBEAEaeIH-9gT_AAAAA_X7CQcJ_AL-CPb9Cf3-APAB_wX2AQAA-vkK-gIAAAD2EQfzAAAAAO0OBAz7AQAAGPz5AAMAAAAS9QMHAgAAAA4M-wP-AQAABAn0AfgCAAESCggB_wAAAO8IAwb-AAAA9BH-_QAAAAAJ9QgDAAAAACAALR620js4E0AJSE5QAiqEAhAAGvABbPYUAbL57f0x8_UA-wT4AYHw-_8dD-wArur4AtkQ4gD-EfcA7_4AABv_DQDqFBT_DgPwAPTnDP8e4goAJgoIAP72HgAn7w4AOBAMAf8E7__yEfsAGQISAOD4Dv8FCfP_B_YN-_Tx4f8Z-N4CEu0gAv4dBwIB0_MAC-nvAf_-BAT1A_sCBgYMBu_7_PziDQcD_evtAewl7wDq9wH_AwsRAwMC-wcDEuwEFgzvAwEBCfv3Cf75Afbm_A0b_wb7EOT9-ev__wT6CAYECwAGMQgMBRD4CwMSCAz58gv4ARHxE_zjAgMG8gAB-eceBw_x2foGIAAtkPpOOzgTQAlIYVACKs8HEAAawAesOAm_uhXdPL9FBrwlm0Y9hHZDt0C2Fr3HIoc9fREjvBUDJLybt2A9wPq5Pbfgu7ybHaG-RqGbvMhnqDydRoI-fxZLvL4SyLzv5U6-EKhDPRiswLv1oYO-PHfxOy7FlzuxouY9UfqCvA4wszzg2X49UnFNvc03R7z3VrQ9ZKAhPTKZIL2OgSu9nx3wvT_xbzv0lfY8eyAIvXiPfTwEa8E9EJhBu2EeLb3eQHy9nL-qO5d7t7xy_gG99BKIPPYCWLzqr_c9MbJROshNAz3K1Zk9adQyvMKNb7y82dE7osaOPP33vztoCKa65zCEPEAmo7zq8VY8MB7UvDN3VLmI8NQ8ODRgPXOVtLv7BTs-2jfXPUR1yjsiyhK9ZMYAO_tZLDy-PxS9YP1kvY-puzwBmbc91qIqvFchijxDo4E7hpuSPeGQMjwSDwu8JBS2PO4orTvdazc9jJyqPQR-g7wwlnO98mZoPCaTrjxz6Um9A208O1E7Mrygvro9PVl7vJqhpzwtuBo9LZm-ujIcQDovTnw8HyQ1vQXIzDuD6tU6UZAQvBq4ybtgFXk9jjzQPEGvKjvE1oU7mCpCvcjg9rsvMqI7FBT1vBj2iztktmC7qASPvZo0GbvseII8nYu1PYtDbDs6eWw8fPN2PC7WJrwfjdg7K3QYO_a7KDuZNtK8vFrOvRicLzpFU6w8S68NPtl6hjoMc8K80X3zu7Nn6LsNP549eeyCPMsnjjqNQQo8QHUgvERoKTtW0_U8uWCaPfMOK7keXgY9sKP7vGggvDnZcEK9MXzEuyQvCbpJfkk9rMVHPWQKXrg14Sg8NZWavajkRzlq9iO7752nvWJI3Li8d_U7yywCvb6YAbkw2gM9pF4mvQHds7k-H8q8dVwIPaZ7NLk_VFq9skY9PZDcg7mrbVQ8tyhzvY6q1bdiwJI8lyL1OxTHXznctL48XEKZvJc8y7i_IDO8rBvPPUkMNDWMSgk8VRv3POC76bgp23a85-yzPSefgDdaxvy8qVBYPSraBLW_O0O8iBOjPbLHU7itaJi8bqRsvT9TMDi92IM7yqacPAV5Ezf1orG9qGz9vGewmrg8asy88qVmvfr35bf4pxQ-A_pOPR_07TbufJo9boSqvWr67LgCasU88uB4PXIp_bjjaBO9_OFnu1RC-bfelqM9WNeyvGOZJDhBSZG9kiWzvBO-Nrehb0G7C4uQvWKGCbhFEtg8ILKIPdNhzzilTyu9ZoYNPQ6r57hvvQG9j4mUPTSh2zfOGAY9euvyPIe4CTggADgTQAlIbVABKnMQABpgRgQAJh4Q-dn9ROQA7_4YwQ453hD2Jf8ZBv8P_9wZCy2ksOkS_ywD6s-mAAAADdD3CgQAHn_h0svjBREkrr_pFQd7LSgL2OUb6bml9wsH2CkvEdlxAL8Wjz884fId6fcHIAAtDcYXOzgTQAlIb1ACKq8GEAwaoAYAAKhBAACAwQAAmEEAAJBBAACAQAAAdEIAAIhCAAAUQgAAjMIAAEDBAACIwQAAJEIAAAjCAACowQAA8EEAAIC_AACowQAAyMEAAMDAAABkwgAABEIAAAjCAACUwgAAcEEAAHDBAAAMQgAAAMEAAAzCAACoQQAAgL8AAIhBAACQQQAAfMIAAIC_AACUwgAAAAAAAAxCAACwQgAAMEEAAKBBAABQQQAAqMEAAFxCAAAQQgAAikIAAATCAABEwgAAaMIAABhCAACAQAAAsMEAAGBBAAAYwgAAgD8AADBBAACAQQAAjsIAACTCAACQwQAAwkIAAIBBAAAgwgAAOMIAAEjCAADQQQAAXMIAAABAAAAcwgAAyMEAAJLCAAAAQQAAQEEAANTCAAB0QgAAcMIAAGBBAACgQQAAQEAAAIpCAACgQQAAFMIAAExCAAAQwgAAFEIAADBCAACYwgAAMEEAABxCAADAQAAAiEEAABTCAACQQQAAAMEAAMBBAACYQQAAKMIAACTCAACAwgAAZEIAACDBAABAwgAAqEEAAAxCAAC4QQAAmMEAAJhBAABAwgAAYEEAADDBAAAoQgAAFEIAAEDAAAC4wQAAREIAADBBAACwwQAAUMIAAADCAAAIwgAAmMEAAKBBAACQwQAACMIAAPjBAACAwQAAcEEAAERCAACgQAAAPMIAACDBAABgQQAAdMIAAKhBAAAcQgAA6EEAAHDBAABgQgAA4EAAALTCAABgQQAAwEEAAKDAAABEQgAA-MEAALDBAAAAwQAAwMAAAJDCAAA4QgAA0EEAAEDCAAA8QgAAEEIAAABCAAAkQgAA4MAAACzCAAAAwgAA4MAAABxCAACgQAAAHEIAALjBAAC4wgAAIMEAAIBBAACAPwAAiEIAAKhBAAAAwAAAmsIAAKhBAAAAQAAAWMIAACTCAAAcwgAAAEIAAODBAADwwQAAiMEAAEjCAAAgQQAAYMIAAJjCAACYQgAAoEIAAEzCAAAUwgAAEEIAANBBAACgwAAA8EEAAEhCAABAQAAAtEIAAKRCAAAAAAAAiEEAAHjCAADAwCAAOBNACUh1UAEqjwIQABqAAgAAfL4AAHC9AAAcPgAAML0AAJi9AAC-PgAA6D0AABO_AADIvQAAuD0AAFA9AAAUvgAAQDwAAIC7AABwvQAAfL4AAGw-AACoPQAA2D0AAA0_AAB_PwAA2D0AAJg9AACePgAAbL4AABA9AABwvQAAqD0AAKi9AABsPgAALD4AAPK-AADoPQAAPD4AABy-AAAkPgAAuD0AAGS-AACmvgAAXL4AAEC8AADovQAAJD4AAFC9AAB0vgAAHD4AAKg9AAAcvgAANL4AADy-AADYvQAA-D0AALY-AAA0PgAA9r4AAIC7AABdPwAALD4AAEC8AACmPgAAbL4AAEw-AAC4PQAAEL0gADgTQAlIfFABKo8CEAEagAIAAFy-AAAEPgAAPL4AADe_AADKvgAAEL0AAEQ-AAAUPgAAgDsAALg9AAAwvQAAPL4AAKi9AACIvQAAmD0AAIC7AABMPgAA-j4AABC9AAC6PgAANL4AAOC8AADYvQAADL4AAMi9AAAMPgAAUL0AAKi9AADgPAAAEL0AABC9AABQPQAAgDsAALi9AADIPQAAoDwAAEQ-AAD4PQAADL4AAKi9AACgvAAA4DwAAHC9AACIPQAAHL4AAEQ-AAB_vwAAQDwAAJa-AACAuwAAdD4AABC9AAAwPQAAfD4AAKC8AACYPQAA4DwAADA9AAD4PQAAgLsAABw-AABUvgAAuL0AAMg9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=a5EEJMZKz9I","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1278,"cheight":720,"cratio":1.775,"dups":["4736654219253476694"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3470046094"},"9707642376333832810":{"videoId":"9707642376333832810","docid":"34-0-10-ZB34057F187DD7888","description":"This video explains the concept of Gini Coefficient using simple illustrations. For more information on the Gini Coefficient and the Key Household Income Trends in Singapore, visit...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2816879/8ee7eb99f558bcca7b2d7b63ecafa722/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mfGA6QAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DBwSB__Ugo1s","linkTemplate":"/video/preview/9707642376333832810?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Understanding the Gini Coefficient","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=BwSB__Ugo1s\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhUKEzk3MDc2NDIzNzYzMzM4MzI4MTBaEzk3MDc2NDIzNzYzMzM4MzI4MTBqiBcSATAYACJFGjEACipoaHR1aXZ2YXdnZWJhYWdjaGhVQ0QyZ2NPVEtNWVM2MkZCeDk1eXJldmcSAgASKhDCDw8aDz8TugKCBCQBgAQrKosBEAEaeIEF-AED_wEA-_z_DwEJ-wLz-vkCCf8AAPEBAvz-AQAA8_oIAgQAAAABAwf9_wAAAPgF-v70_wEAHQD3DAIAAAAS9QMHAgAAAAkDBwf_AQAA8fIBAfYCAAENFQoBAAAAAPEKBhAAAAAA-hIKDQAAAAAA8PoNAAAAACAALZAr1zs4E0AJSE5QAiqEAhAAGvABf_44Aagh-v0f2B0ADv8IALki4QBCCPkApADhAKgTyv7gDgIABPUDACXsBf-uBCcBHRo0_jQgLgHJ-iT_IRwV__EEGAEu5AMALR0FAFQD9P81BgwACwr-Airh2ALzL-b_9OAJABP4wAEJDwoA_hYL_iceCf_E9RD-5Afz_tYIEwPzFPn9SQfp_v7vFgDXGyACJ_cEBPwk3frwC-sEDRUrBCT18v359tcC0-vjAQgX7wYDHRz9EdTz_iMG7QHg-AYK8iYE9QAs7P8R8P3_5_wQCDL4BQG58ggD6wr_Dwry-QoJQggCCf8B__sACBPR9PoPIAAtpO8TOzgTQAlIYVACKs8HEAAawAcjosC-bhZPPWJ0r7xbeN498fiRPGhG2jx75CU9GEY1vZXnizw5tk4-u2kuPSN3orzDzCi9nNVsvZXzBT1nYpo-TjqbvBrvWDzEJTe-whvtvJt28bz9B7K9v63HO3sOE7yoNc09c6nAvMVrw7xvwAI9ONFTvQoJorwhsrO9TTutu6sxV7zYqH091zCTvbwZNDrX6sE9N_CUvQnpHzx_o10-UZ8kPVKtj7yQhiO-kWykPIfeYjz8C5Q71gbAu6__ALzhhPi8Kw2hPIoZhrreDVi8csMvvaGLIT0JpOQ9f15hOnnxNDzYSS0-29L0vDMAL7x4k0a7H8iQPfX9ijz29t28vBlaPf-9yrzkhv89OXb1PIxvnjzqNJy8slywPct6lrxq8Ii9-N9KPU-8OTyU_wQ9CTFcvYQjjjsyzyU9JE0XPea63zxPBNG9OKvTu1Xt5DwsYe09LYTLPWemLLvuemm95Nc0PShRBLwiD269PVkbvR2D4zpPXG49kbc8PWF8B7sZUHM6xqKJvfGtmbx7ES0--SvHO7fUoLtcMjg9F1stvGYgq7gADhC9B0TIPEPyWrpP37w8Ayp3vQgFpTzUwos9y_UGvklKm7pWazy8Uq-wvWLHGDvbv7I9YDkiPtgKJzm1xbE7FFglvC450bvcNiK9UahCPd3q2jtxybG8l_wVPNG9WjtT6Se-KQfTPRRCgzplI4a9lgTovBP2ijrxFqO8vX6CPXWUA7srNZu9OzOmPFoIibkmOgY9AM7Fup6Khrv3nqE7PxCqvTjs7bdp5mS9nbv6ORhWU7n8ffW8HPhnvRhM9Dh5q1M8k3FsvaqGAzmml_i986upvao0dTjovtw9rpGuPA8bHDkuQLa8zALSvFjjjTmUpOu9EcH-Otjz0rgxgwy9l4YGPYKYvrrVpAU9MrkHvWPRmTgarV49EcnrvG0eAjnLL8M8IJXFu_yORTp1Ae881vW1PT0Q8bj2Y749zdBzPVP8wjgtQcY9zkwVPRbyhjgjvYi92Fk-PeyKsDjclBw9TqKUPbrAhzeLFoA9RCrBvX0qIzifyR69UhZ0PHQqGjnLWH68gMabvRC5ajj-aR69yPmRvNl-rbjISmc93CesPLOh-DVvt4k8QlFqPIdCKTgNnqM9TsjYvHYfv7jsI2G9vyeYu13D5bec3dq9yvsovgJFvrc1fIu8ADy_O-G-PTachsk7cDIAvcMdGTdcWSK71_oivRyhn7cYJzm9lEOlPWWUx7hCp_E8lfrNPMNBSrhbB4c8e636vP4scrcgADgTQAlIbVABKnMQABpgRAUAC9si_esE--T2-ecJ_Qgh4hIB_ADvC_8GGLYbCu7h0cH3_yH6_QK6AAAAHxH5IgcA6Fzryv7f-y0wuuwQNQN___344gsBGazawgAO8wIGDgUlAM4U1got7co44gogIAAt43JEOzgTQAlIb1ACKq8GEAwaoAYAAHDBAACYwQAAtEIAADRCAABQQQAAIMIAAFTCAAAIwgAAiEEAALhBAACmQgAAQMEAAIhBAAA4QgAAgL8AAIBAAACQwQAAbMIAAIzCAAAAQQAAcMEAABDBAACMwgAAcEEAAEBBAACgwQAAHMIAAEDAAAAAQQAADEIAAKhBAACGQgAASMIAAOBAAAA8QgAAIEEAAFDBAABsQgAA4MAAABDBAAB8wgAAwsIAAKDBAACAPwAA0MEAAABBAAAowgAAwEAAAIJCAACIQQAAwMAAAADAAADwQQAAJMIAAPhBAABcwgAAkMEAALjBAAAQQQAAmEEAAABBAAD4QQAAQMEAAPjBAACoQQAACMIAADxCAAAAwQAA4EAAAOBBAACwQQAA-EEAALBBAACoQQAAAEAAAOzCAAAgQQAATMIAAFhCAACAQAAAkEEAAGxCAAA8QgAAuEEAAMhBAABAwAAABEIAAEBCAADAQAAAOEIAAGzCAABEQgAA0MEAAJTCAAAMwgAAGMIAACTCAADyQgAAQEIAAAxCAACAwQAAFMIAAMBBAABgwgAAwEAAAEBBAACKwgAAwMAAAABBAAAwwQAAuEEAAAzCAADSwgAAiEEAAIA_AABwQQAAuEEAAIDCAABwQQAAoMEAACzCAAA0QgAAdMIAAIBAAACQQgAAREIAABDBAAAwwQAAoMAAAFjCAACwwQAATMIAAFjCAADAwAAAFMIAAJhBAADoQQAAEEEAAKjBAAD4wQAAKMIAAExCAAAAAAAAcMEAACxCAAD4QQAAYEIAAFDBAAD4QQAAVMIAAPDBAACewgAAgMAAAILCAADgwAAAWEIAAOjBAAAwwQAAisIAABxCAAAcwgAAqEEAAFjCAADgwQAAMMIAAHhCAADoQQAAgEEAAJRCAACgQQAAZMIAAIBAAADoQQAAUMEAABDCAABMQgAA4MEAALjCAACgwAAAQEIAALBBAAAgwgAAqEEAAOBAAADAQAAAAEEAAETCAACwQgAAiMEAAIBAAAAgQQAAlMIAABDCAAC4QQAAJMIAAEhCAACAvwAAUMIAADzCAABYQiAAOBNACUh1UAEqjwIQABqAAgAA4LwAAJi9AAA0PgAA6D0AAAy-AACmPgAAiL0AANa-AAB0vgAABD4AAEA8AADIvQAAcD0AAKA8AAAQPQAABL4AAFw-AABAPAAA2D0AAKo-AAB_PwAAND4AADA9AACAOwAAXL4AAOC8AABsvgAAML0AAAS-AACCPgAABD4AALi9AACYvQAAqD0AAIi9AAC4PQAAJD4AAEC8AACavgAA-L0AAKi9AACIvQAAuD0AAHA9AACAOwAATD4AAKA8AADovQAAuL0AAIK-AAAwvQAAUL0AAL4-AAD4PQAAor4AABA9AAAvPwAAoDwAAIA7AAA0PgAAqL0AALi9AACoPQAABL4gADgTQAlIfFABKo8CEAEagAIAANi9AAAsPgAAuL0AAD-_AACWvgAAQDwAAFw-AAAQPQAA4LwAAIo-AAAQPQAARL4AALi9AADIvQAAUL0AAIC7AACoPQAAGz8AAOA8AACyPgAAqL0AANi9AADYvQAA-L0AANi9AAAUPgAAiL0AAKC8AADgPAAA2D0AAKC8AACAuwAAED0AAMi9AACgPAAAcL0AALg9AABAPAAABL4AAIA7AAC4PQAA4DwAAIA7AABQPQAAPL4AADw-AAB_vwAAgLsAABy-AABQPQAAVD4AAIA7AAAUPgAAmD0AAIg9AAAwPQAAgLsAAEA8AACIPQAAiL0AAOg9AACovQAA6L0AAIg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=BwSB__Ugo1s","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9707642376333832810"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3279223640"},"18274937259603448066":{"videoId":"18274937259603448066","docid":"34-11-4-ZBEF8726F9282D0CC","description":"In the news and business reports, we often heard some economists, business analysts, and politicians claimed the rich get richer and the poor become poorer. Some of you could wonder how they get...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2885921/2cad1055cb22be7240e31c0bebc671dd/564x318_1"},"target":"_self","position":"6","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DD1IkosftXlc","linkTemplate":"/video/preview/18274937259603448066?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Gini Coefficient | International Business | From A Business Professor","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=D1IkosftXlc\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhYKFDE4Mjc0OTM3MjU5NjAzNDQ4MDY2WhQxODI3NDkzNzI1OTYwMzQ0ODA2NmqvDRIBMBgAIkUaMQAKKmhoc3ZqZnd6bWxqd3dvcGJoaFVDdlBXQlZRUzNtMUt0WEphTEtpam40URICABIqEMIPDxoPPxOaBIIEJAGABCsqiwEQARp4gQUKAQD8BAD8BfwGAQb9AvAF_wD6__4A-gb_9QIE_gDzAAAG_gAAAAII-fz4AAAA7Qb99vUBAAALDPsBBQAAAAcEDgv_AAAA_A4F_v8BAAD_8vsBA_8AABAN_f3_AAAA9f4EAQEAAAD8A_72AQAAAAL79wYAAAAAIAAtxSTfOzgTQAlITlACKnMQABpgDAoAOhrk_dUDGtgL7-__7esq2vbYFAD2CgAgLufi1hfXwPEf_xjv-wTAAAAAAg4dNgcAEVYM1dvdDAzv3cn9Fjp_HhAMAg3-B6L0-_oS0OgmGPISAAoPAR0WydU02uUkIAAtGkBIOzgTQAlIb1ACKq8GEAwaoAYAAJBBAAAQwQAAMEEAAADBAAC4wQAABEIAAMRCAACIQQAAHMIAAOBAAAAUQgAAiMEAAODBAAAAwgAAkEEAANhBAABAwgAAgEAAAIjBAAC4wQAAiEIAAKDAAAAAwAAAqEEAAEDBAABAQAAA0EEAAILCAAAAQQAAMMEAAFDBAACAQQAAEMIAACDBAAA8wgAA8MEAAJBCAAC2QgAAgMAAAPDBAADIQQAAAEAAAPhBAAA4QgAA_kIAAATCAABIwgAAoMEAAHxCAACgwAAAiMEAABDBAABcwgAAHMIAAJhBAAAIQgAAmMIAAEDCAACQQQAANEIAADBBAACEwgAABMIAAKjCAABgQQAAoMIAAKBAAACEwgAAAAAAAEjCAABQQQAAwMAAAO7CAABwQgAAkMEAALjBAABgQQAAMEEAAMhBAAAAQgAAfMIAALhBAAAAwgAAAEIAAMBBAAB0wgAAJEIAAGRCAADAwAAADMIAADBBAACaQgAAAMIAAJJCAACAvwAAqsIAAMBBAADMwgAAiEIAAPjBAACAwAAAgD8AAHRCAACQQQAARMIAAKBBAADgwAAAsEEAABBCAAAcQgAA-EEAAIC_AACgwAAAyEEAACDBAAAwwQAA4EAAANDBAAB8wgAAgMAAAGBBAACIwQAAgMIAAOjBAACYQQAA0MEAAHBBAACAvwAA8MEAABxCAACYQQAATMIAAMjBAACcQgAAHEIAABzCAABwQQAABMIAAEzCAABcwgAAyEEAAABCAABQQQAAHMIAAFDBAAAAwgAAkEEAAFTCAAAEQgAAmEEAAIBBAAAQQQAA4EAAAADBAADIQQAAgD8AAPDBAAAIwgAAEMIAADhCAABswgAAcEEAACzCAAB8wgAAUMIAALBBAABgQQAAnkIAADRCAAAgwQAAFMIAALBBAABQwgAAnsIAAAzCAACYQQAAAAAAAGDBAACQwQAA2MEAAGTCAAAAwgAAbMIAANjBAACyQgAAAEEAAPDBAABgwQAAgMAAAJhBAACgwQAA2EEAADBCAABQQQAALEIAAJpCAAAgQQAAYMEAABzCAAA0wiAAOBNACUh1UAEqjwIQABqAAgAAVL4AAGy-AAB8PgAAcL0AAMi9AAAsPgAA6L0AAP6-AABkvgAAuD0AADw-AACgPAAAgDsAAFw-AADgPAAAZL4AAIY-AABQvQAAVD4AAJo-AAB_PwAABD4AALg9AADgPAAAur4AACw-AABQvQAAuL0AABy-AABcPgAAyD0AABC9AAA8vgAADD4AAAy-AACYvQAA4DwAADA9AABUvgAAUD0AAFy-AADgvAAA4DwAAKg9AACgPAAAmD0AADQ-AACCvgAAuL0AAAy-AACAuwAAcD0AAK4-AADgPAAAgr4AABC9AAAhPwAABD4AAOC8AACmPgAAgDsAAAS-AAAwPQAABL4gADgTQAlIfFABKo8CEAEagAIAACy-AABwvQAA-L0AADm_AACqvgAAoDwAAHA9AAC4PQAA-L0AANg9AADIvQAAur4AAMg9AAAsvgAAoDwAAIA7AAAMPgAAKz8AAAQ-AABMPgAALD4AABC9AABwPQAAQLwAADC9AACKPgAAbL4AADA9AABAPAAA-L0AAEC8AACgvAAARD4AABC9AADYPQAAiL0AAGw-AACAOwAAmL0AAOi9AAA8PgAA2D0AAHA9AAAUvgAAiL0AALg9AAB_vwAAQLwAAJ6-AADIvQAAHD4AAKC8AAA8PgAAnj4AADS-AACoPQAAML0AADw-AACIPQAAmL0AAAw-AAAcvgAAbL4AAMg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=D1IkosftXlc","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18274937259603448066"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1198249789771227924":{"videoId":"1198249789771227924","docid":"34-6-0-ZF115E05CE66445B5","description":"What is the Gini coefficient, and what is it used for? And how does Singapore work out its Gini coefficient? If you've ever struggled to understand this concept, CNA's Grace Yeoh breaks it down...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2120847/48daf45218c4dfc92f7ad34b5c413eb7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ndm2QwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJFqsiFf0u_k","linkTemplate":"/video/preview/1198249789771227924?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is the Gini coefficient, and what is it used for? | CNA Explains","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JFqsiFf0u_k\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhUKEzExOTgyNDk3ODk3NzEyMjc5MjRaEzExOTgyNDk3ODk3NzEyMjc5MjRqiBcSATAYACJFGjEACipoaGxjdWZodXZmcHpoemFjaGhVQzgzanQ0ZGx6MUdqbDU4ZnpRcnJLWmcSAgASKhDCDw8aDz8TowOCBCQBgAQrKosBEAEaeIEDAAUB_AQAAPn_A_sG_gIEAAAC-P_-AOz9DPn6_wEA-gUHBPkBAADyAQD7_wAAAPEJ9wj4AAEADAb1AwMAAAAA-P0BAQAAAAwBAQH_AQAAA_oDAQP_AAAQDf39_wAAAPUA__oDAAAA9RD-_gAAAAAMBv3__PT_ACAALR2W3zs4E0AJSE5QAiqEAhAAGvABf80LAsrl7f__BAMB5_roANYHDgBP-A4AABz9AeUCDgAAA_EAE9D6ACsDAQGx_vkA7wLg_jb-A__z_AwAbAz6Ae4ZFgAm_NcABekRAP4C-f8KD_IAEQclAADs_wH78CX-6yod_gwP-f4f6fMBHCwDAR4QDALfDOkAEf7m--IaEgAdAOr97DL7AOTl-_3tFxYA2Db4_gYK5wDG9RoACf_bAfIY_gH1D9__1__a_uTmBwUiA_v2_SL2CeIRCwzC-Af-_tsS99EN9gMJCRP28_P8_P0T7Pv6Gw8PEgIVA-vpEgQIBekB_fQO7-3o9gvIAgQQIAAturswOzgTQAlIYVACKs8HEAAawAeHFuG-uD7sPDlCJr1tQao9trkWPQBppDzThG07ioKNu16kKzwJstS8BZJGPXY7Nr2gqEy-7KtmvalRozu14ZA-uhE2vRqJMD1V1MW8eARcvCArFbznfpi8bagcvAwAGTwriCE-YxWlvGhhKryawak7E_mJu30B4jvQGSc99R6dvMmXq7pdFx4-sDHUvP2qNzzqIzA-w94avekeQLtGWMk9vH6MvUU7ODuWsKa9YFmZPWV-5DxMnZE96CQlvaHFiLwm5CM-o6iYPfh-NDwKf6s9ue9ivPCtfjxKRd-7Dff2vM8qm7mVdP-6lNlFuxyPI719BB4-lDSKPblvNTyzfei9Ukx8OjWK9rsqO5i8AZQ1PcSmobuxiLE9bAnZPUgaHDyiduQ8AmvAPYhSVjzZJTo-mMPOvZDkBzuvBxO9SOcTvOQ0nzyUBk29P4zQPcZPozwHKdg9_1nzvKCJsLzz5xu9sXmLuyAkMLxQBgI9alukuxNAtTsFf6a7hLI1vbmDnjqPVP89XRjpvfVQNrxE87U92NTZvTpxILy4zdQ9wlHNPNnpCTx80Ng70YH-u9pQ1rq2HI49kpexu0CZkDvEe849hTWvvYcVjztKOg-9qTkUveUJqbuekS085IfqPd-j9DnPTMC9VfHrPEl18Lrp7Mk8TBjNPV_omrkdgx89L3QdPI_EbLuHy7C9IUcpPbYgCjx0wyW8_IKHvZZS3DkDSEi8rAFKPTxYtTrLbgG98RyAPHDpmDu2MZG9jEPiPElbi7cC-MK8g2rjvfTWaDg0G9q8Lc-zPQjELjj8sg28s9lHPD2ecboGdiY96tuIvQLNZjibJMG9vf7kPHK3UjlqUE89E3wTPJRLErlU8Mq9QHnOPJRk4zpf6xI9HcwDPIb72rkbWi69GB4gvcY-VLeKojE9rlgLvOVln7gZeJm9l_rcuxlCmbjmKow8teScvXzogzgXAxU9v3x3PT0HBzmgCqk9-wL6PSxEnjlXQhY8huqBPEQDsjioD569M7ptvbe_t7gGrIu8xnQcvQalIrjl4rm8cWibveWtCDbqY3m9GKoMvafCrTiTnjO88QG7vWb6HDlvj4Q92vOmPVfBDjliL5Q9rWkevD913LUDEZi8zwqhPdQTyTcCasU88uB4PXIp_bjQuww9_6XWPEugAjjOcjS8XQ_Lvahwm7dmED89q7QFPWA_gLjzt4M9WPMtPLEJVrhATS08tGtsPX67wTdtbLu9aqFHuyRjQLhuA429J2muPb_3FjeNkfQ6HscLPFrwlzggADgTQAlIbVABKnMQABpgXgYANgEIBOP_NcoV8f3jAxP_C_3qAgAAEgD3Id0JF_Lrz-4z_yfYBfa2AAAAEtoiJN4AA2IDA-vc5vvgwLrmAgV_P7z_DQf5EbDUywEB0-8a9gxPANb-6TAL1do24vAXIAAtJAg3OzgTQAlIb1ACKq8GEAwaoAYAAMBBAAAkQgAAYEEAAEBCAADQwQAAgkIAALhBAABcwgAAQMIAAADCAADgwQAAEEIAAKTCAADAQAAAgEIAAIhBAACYQQAAiMEAAChCAAAcQgAAoEEAAJhBAABUwgAAREIAAEBCAAAIwgAAoMEAACzCAACKQgAA0EEAAIBBAADwQQAAoMAAAIhBAADQwQAAUMEAAADCAAD8QgAAwMAAAFDBAAAYQgAAGMIAABRCAABgQQAAgEAAAMBBAABUQgAAgEAAAMDAAAAQQgAAiEEAAJjBAAC4wQAAuEEAAEDAAABAwAAAKMIAACjCAADAwQAA2EEAAPhBAADwQQAAMMIAAEBBAACSQgAAVEIAAARCAACQwQAA4MAAABBBAACgQAAA0EEAACjCAACWQgAAgD8AAADDAABUwgAAcEEAAKhBAACgQAAAoMEAAEDBAAAowgAAkEEAAAzCAAAwQgAADMIAAABCAAAMQgAAGEIAABDBAAAwQQAAIMEAAADAAAA0wgAABMIAAATCAADGQgAAMEEAAFBBAAAQwQAAkEEAAKhBAACKwgAAfMIAALJCAACgwAAAiEIAACjCAACoQQAAwEAAAExCAAB0wgAAkEEAAMhCAAAEwgAAYEEAANbCAAAgwQAAFMIAAPDBAAA0QgAA4EEAAFjCAADYQQAAoMAAAMDBAADIwQAAIEEAAGDCAABcQgAAkMEAAODAAACEQgAADEIAAMDAAAA0QgAA0MEAAL7CAAD6wgAA-EEAAKBAAAAAwgAAEEIAAHBBAAAEQgAAAEEAAAzCAAAAQQAAgMEAADDCAACgwQAAEMEAAFDCAABAwAAAFEIAAFDBAABAQQAAQEIAACRCAACUwgAAgMAAAGDCAADYwQAAZEIAALjBAACIQQAAcMIAAIBBAACAQQAANMIAAJBBAABIQgAA2MEAAIjBAAAEQgAAwEAAAFjCAAAAQQAAaEIAADDCAABQwQAAdMIAAGBBAABUQgAAEMIAAFBBAAAoQgAAREIAABzCAADwwQAAQEIAAEDAAACIQQAAQEEAAKjBAABYwgAA0EEAAKDBAABAwSAAOBNACUh1UAEqjwIQABqAAgAAPL4AAFC9AACYPQAAED0AANi9AAB8PgAAmD0AAAe_AADovQAAVD4AALi9AACAuwAA4DwAANg9AADovQAAZL4AAEw-AABwPQAAHD4AAP4-AAB_PwAALD4AAFA9AABAPAAAUL0AAHC9AADIvQAAEL0AAMi9AACePgAAED0AABy-AACYvQAAmL0AAAS-AABwvQAApj4AAIC7AABMvgAAuL0AADC9AADovQAAcD0AAMg9AAAQvQAAJD4AAFA9AAAkvgAAML0AAGy-AADIPQAABD4AAJo-AAA8PgAAgr4AAKA8AAAxPwAAUL0AAOg9AABMPgAARL4AADC9AABwPQAAXL4gADgTQAlIfFABKo8CEAEagAIAAJ6-AAAUPgAAXL4AAFW_AABMvgAAQLwAAKo-AABkvgAAUL0AABQ-AAAwPQAAgr4AABA9AABkvgAALD4AAOC8AACoPQAABz8AAHC9AACmPgAA4DwAAEA8AADgPAAAiL0AAJi9AAAcPgAAkr4AADC9AABwvQAAZL4AAKC8AACYPQAAQDwAAI6-AABQPQAAoLwAAAQ-AACYvQAA6L0AACS-AAAUvgAAuD0AABC9AADgPAAA4LwAADQ-AAB_vwAAFL4AAFy-AABwPQAAhj4AAIC7AABEPgAAmj4AAJa-AAAwPQAAEL0AAEA8AAAUPgAABL4AAPg9AACgPAAABD4AAJg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=JFqsiFf0u_k","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1198249789771227924"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3220533968"},"1495906596575674678":{"videoId":"1495906596575674678","docid":"34-6-10-ZF7E6DDFB232844B8","description":"In this insightful session, Vibhas Sir breaks down the concept of the Gini Coefficient — a key measure of income inequality used by economists and policymakers worldwide. Learn how this index...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/762330/c9924e3519941731e91566874cb5f2ac/564x318_1"},"target":"_self","position":"8","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3De15WGVIXr5k","linkTemplate":"/video/preview/1495906596575674678?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Understanding Gini Coefficient with Vibhas Sir | NEXT IAS","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=e15WGVIXr5k\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhUKEzE0OTU5MDY1OTY1NzU2NzQ2NzhaEzE0OTU5MDY1OTY1NzU2NzQ2NzhqrQ0SATAYACJDGjAACiloaHFzbWZ4Ym1nZXZibGloaFVDZ0tnQWFHYktTLVhXVUpHV3FQNVcwQRICABEqD8IPDxoPPxNAggQkAYAEKyqLARABGniB_PgGCwEAAPsDAw4KCfoC_gj2_Qn9_gDwAf8F9gEAAOz4EPz9_wAA-gv7AwIAAADvAPj_8AABABcAA_4FAAAAB_ACBAEAAAD-Bv4K_wEAAP32Afn2AgABCQUP_P8AAADxCPcJAQAAAPkQ_QcAAAAA-uYBCQAAAAAgAC24L9M7OBNACUhOUAIqcxAAGmAgCgAPCRPgwzED0O0O9Pf5KSPz-_buAO3yAAkkx-4E4uHT4CP_HvsB_70AAAAQ8e4iAQDkW_Lb29cOFgvA8-87NX_4_AQGBBPttc33-QvmH9AgChQAywrq6wz66FTh_w8gAC2BrEk7OBNACUhvUAIqrwYQDBqgBgAAAMIAAFDBAABUQgAAIMIAAJLCAACAvwAAcEIAAETCAABgwQAA4MEAADBBAAB4QgAATMIAAADCAAA8QgAAUEEAABDBAACAwQAAsMEAANDBAACowQAASEIAACTCAACWQgAAwEIAAADAAACAQQAAFMIAANhBAACAQgAAYEEAAFxCAACowQAAQMAAAOhBAAAAQgAAXMIAAFBCAAAAwAAAIEEAAMBAAACYQQAAEMIAAABBAAB8QgAADEIAAEDCAACgwQAA-EEAALDBAADAwQAADMIAADDBAACAPwAAUEEAAODAAAA0wgAAAMEAAFDBAAAAwAAAFEIAAI5CAACawgAAsEEAAIBAAAC4QQAAcEIAAIDAAACwwQAAYMEAAOBBAAC4QQAANMIAAKJCAAAAQQAAUMIAANDBAAAAQgAADEIAABRCAAAQwQAA2EEAABRCAAB4QgAA2EEAAKhCAADAwAAAAMAAADRCAADAwAAAUMEAAJBCAADQQQAAXMIAAEDCAACGwgAAiMEAACRCAABoQgAAgD8AAIBAAACwQgAAZEIAAHzCAADowQAAyMEAAJBBAACoQQAAbMIAADRCAAA4QgAAoEEAAJzCAAC4wQAAOEIAABxCAABcwgAAVMIAAIhBAAAAwQAAIEEAAKjBAACYQgAAOMIAAIZCAAAgQQAAgMAAANrCAACAvwAAZMIAAGBBAACOwgAAqMEAAKjBAAAAQQAAiMEAABDBAACAwQAAdMIAACTCAACYwQAAsEEAAIpCAACgwAAA4EEAAMBAAAAAwQAAVEIAAMBAAAAIQgAAUEEAAExCAAAsQgAAcMEAAIBBAACmQgAAgMIAADTCAAD4wQAAlkIAAJTCAADgQQAAJMIAANBBAADYwQAAUEIAANJCAAAEwgAAGEIAAIjBAAB0wgAA6EEAAHBBAAAAwgAAoMAAAMBAAAAcQgAA4MEAADBBAACoQQAAmMEAAMBBAACYwQAAIMEAABhCAACawgAAksIAACRCAAAAwAAAgEAAALhBAAAAwQAADMIAAOhBAACAQQAAqEEAAABAAACwwQAAQEEAAPDBIAA4E0AJSHVQASqPAhAAGoACAACYvQAAFL4AAAw-AAAEPgAAfL4AAII-AADYvQAA2r4AAFC9AAAQvQAAmD0AABy-AAC-PgAA4LwAAOA8AAD4vQAAkj4AABA9AADIPQAAAz8AAH8_AABMPgAAyL0AAJg9AAB8vgAAgDsAAIi9AABkvgAA-L0AACw-AAAUPgAAHL4AAAS-AADgPAAAED0AAOg9AAAwPQAAuD0AAEy-AAAcvgAADL4AAIC7AAAkPgAAiD0AAIi9AACuPgAABD4AACS-AAAEvgAApr4AAFS-AABQPQAABT8AAEw-AACKvgAAED0AAFE_AAC4vQAAJD4AACw-AAAkvgAAHL4AAIi9AAA8viAAOBNACUh8UAEqjwIQARqAAgAA6L0AAEA8AABQvQAAMb8AABS-AAC4PQAArj4AAOC8AAAcvgAAyD0AAOA8AACOvgAAED0AADy-AABAPAAAMD0AAGQ-AAAdPwAA2D0AAJY-AABwvQAAoDwAAKC8AAAMvgAAQLwAAMg9AABwvQAAUL0AAOC8AACAOwAA4DwAAHA9AACIvQAALL4AAOC8AACYvQAAQLwAANg9AAAMvgAA6L0AAGw-AADoPQAA6D0AABC9AAAMvgAAHD4AAH-_AABEvgAAiL0AAIg9AADCPgAAED0AAJg9AABAPAAAcD0AAOA8AADgvAAAuD0AAJi9AACYvQAADD4AALi9AABEvgAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=e15WGVIXr5k","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["1495906596575674678"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3351844361722565288":{"videoId":"3351844361722565288","docid":"34-3-2-ZBE72FA49DCF12BBD","description":"This video is the simplest hindi english explanation of GINI Index in decision tree induction for attribute selection measure. Here's what you will learn in this video In decision Tree Each node...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2848121/c34649787e4118805585df5c58cc5990/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/PzA5KgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D6614umIqeOc","linkTemplate":"/video/preview/3351844361722565288?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Gini Index | Decision Tree - Part 1 [Simplest Explanation]","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=6614umIqeOc\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhUKEzMzNTE4NDQzNjE3MjI1NjUyODhaEzMzNTE4NDQzNjE3MjI1NjUyODhqkxcSATAYACJFGjEACipoaGxxdWlqd3dnYXZzZ3BkaGhVQ3dyRnJJaHpfcmhkWWlpRzhXelhadVESAgASKhDCDw8aDz8TrASCBCQBgAQrKosBEAEaeIH36gsBBPsA9vQRCPoH_QIfAvr-AwIDAOwF_PcFAAAA_vsCBPYBAAANBvsDAgAAAPb9_vT5_wAAHQL79AQAAAAcAv0A9wAAAA4BAgH_AQAA7P7z-AIAAAAMA-wBAAAAAPUF_gD__wAA7BULAQAAAADv_vYO__8AACAALfbRxTs4E0AJSE5QAiqEAhAAGvABcADxAdX-AgAl7O8Ax__q_4EFC_8KBs__sgMKAM_w6AD4_foAygnwAOYFCADMEwYADOfbAA_mE_8r5v0AFewhAAX_DAA76QoBDxEGAecK1wAPDCP_G_IT_vfyDQDuCPP8_P0OAO4L4AH59uUEEuwhAgoGEQMW8g0C4QEHBeUXEAAB_vL-Hfb2BAL-9wLe8RYB-fTq_REk4P_rAgQJFvYLA_b3Ffvm-dz_EgwaBvX5Cvn49Qb87gXv_xAFDgTmHOz_DecEAe7u_wITCggGIPAFBAX_Df78CQb_AwLuDRPfDPbe-QT-4gzzCO0MBRAA6Pz7IAAtbidIOzgTQAlIYVACKs8HEAAawAesOAm_uhXdPL9FBry_jX49Hq4QPTQwzbz19HE9bg9nPbOJ3TyjARy9blQCPXnDxzxyNrW-3p5xPexZhLqdRoI-fxZLvL4SyLzv5U6-EKhDPRiswLunWYC-4tLiOAeaL73874I98W_GPIWg2TxBthw-wTCqPI1JezsBnMW7ff7Bu6CSbr19l4K9ZUZLOy2AhLwFw_k9MYtavQuIHz0g6wk-xW3ZvKqZNbzEwXQ9_By8ug6xi7u_tYO9eYqBPFppDLvjNU8-edrrvINdwzychLk7fjvJvOqrULzzfec82UD8OomgxbxSN6G8Vt4nu8rdxjpzUrM8rlIwPBbHnDxeo8C8DWKRPY7Tqzyo_As-pYOVPSSOhryy5J47DKTVPIVN0zxhScM8HRc8O7ASHjwBQIQ9-V_4PFE0DbzMT4C9-dqjPdiTijwFKi08RkEQPd3zVzymajE9M85VPUtCnrojNN08FbgrPbdvfzwbFGi95qzPPNZcibw0R9Y99DY2vKFnPboEOeg9JwMWPdqI0LsJhIA7833nvF5DlTwe05Q9FEmKvQeBcLyhxoM9XIbJvMfbJbyu5PQ8dL9-uhq_9DuH5hW85ZqCPKpAUrxu_6U9SKK8vDq-qLt2cVm6uO8svGet0zpkJ7Q7J1MiO76Bbrw5eEu8umfdO2-T3Tq2vDK9K9YVve6udbsLqLE98cP3vJiM-7ldab48xJZ-veC3Jbp7ubQ81d9cPI2if7uvMuQ7RlvVvHHBPrpYhfa70lebPYkK97dz8426KJz6u5tudzf-t5I8BlwBPdsdLDjabbw8Ro_EPFz1mTg5WCk9COkpvNv1aTmtunW7cmZgvPq2sbl6KWa9c3sOvVHD4jgdrSo93OFlPDDGXjg866K7VSlCvdM4vjisvgS9Up8fPUmRvDkCZVO8neQ9vUVFMbi9mJy8kG1UvZxUgLkIqcC8BKnUvOvZRzmLqwg86AECPXE1Tjd7Zu68eIKYvJCgNbg3Q_270MoCPQvkQDk-Jg09I-CbPbDrHLhjn7o7Co6BvJFQwLfTzwg8ZjHRvT5LlzaQmTC8reYPPccmFjhFy4u9d2ESvOjUO7YSaI-7ToO9vHUyiLa3aeI8mk6hvOE9sLhhUKY7czJMvaKXi7e1JbE961DyPHq8SLmEXC69fJJgPAPCvbevYiw9eJRvvYJcJDeakAC5wMRpvKgBh7jsA707fNQPvhf63LiKllc9EFj5PY0XQDiYk2U7gAvSPZjkD7nDldi8vzpYPHmbbbiNkfQ6HscLPFrwlzggADgTQAlIbVABKnMQABpgOAIAIPz63xIxOvHg6Of_APcl-SXC_QD-wgATA8cy9AS7pOkY_xoD-96rAAAACyf5B_EADXTJ-9sk9PIpudTUIzx_ByYN0_bvBo_E_Avi5_0YFAlSAOrhmh5QDeQc9A3tIAAtFhQjOzgTQAlIb1ACKq8GEAwaoAYAAMBAAAAAQQAAAEEAAPDBAAA0QgAABMIAAAhCAAAAwgAAIMEAABDBAAAQQgAAmMEAADDCAACAwgAAgD8AAEzCAACAQQAAwMEAAEBBAACAQQAAqEEAAHDBAAAgwQAAQMAAAADBAAAAQgAAwsIAAIBAAAAQQgAALEIAAABAAAAAQQAACMIAAExCAACmwgAAmEEAALhBAADKQgAAsMEAALhBAACgwQAAEEIAAFRCAAAAwAAAAMIAADDBAACAwQAAgEEAAEDAAAAwQQAAQEAAAEDBAAAMwgAAUMIAABRCAABQwQAAhMIAAETCAADAwAAACEIAAFRCAADIwQAAkMEAADzCAADAQQAAoEEAAIDAAAAowgAABMIAAKBAAAAgQgAAgkIAAJjBAACYQQAA2MEAANrCAACowQAAAMEAAGDCAAAwQQAA8MEAAHxCAAD4QQAAGEIAAMDBAACAQQAATEIAAERCAACIQQAAeMIAAKjBAACsQgAAgEEAAKzCAACwwQAASMIAAKBBAAAQQQAAsEEAAJRCAABAQAAAlkIAALhBAACYwQAARMIAAIBAAAAQwQAAQEIAAIA_AAAMQgAAOEIAAGDCAAAAAAAAUMEAACRCAAAAwAAAcMEAANTCAAAIQgAAkMIAAEDBAACewgAAqMIAAI7CAAAAQQAAQEEAAOBAAAAQwQAA4MAAAEBAAAAYQgAAEMEAAFjCAADgQQAAJEIAAIJCAADAQgAAAEAAAPjBAAB4wgAAiMEAAPBBAABwQQAAMEEAAIDAAACUQgAAaMIAABRCAABEQgAABEIAALDBAAAkwgAAgEAAADDCAACwwQAAwEEAALDBAACEwgAAsMEAAEhCAAB0wgAAuMEAAITCAACIQQAAAEEAANDBAACQQQAAeEIAAChCAADgQAAAAEEAAIBBAAAkwgAAIMEAAIjBAAAMwgAAAAAAAMrCAAAsQgAAikIAAEDBAADIwQAAFMIAAFhCAADAQQAADMIAAPjBAADAQAAACMIAAGTCAABQwgAAnMIAAJBBAADIQQAAcEIAAEBCAAD4wQAASMIAAIBAAACAPyAAOBNACUh1UAEqjwIQABqAAgAAyL0AAHC9AAAsPgAA4LwAAEy-AAAsPgAAiD0AAB2_AAAkvgAAJD4AAOg9AAAkvgAA4LwAAKA8AABcvgAAiD0AACQ-AACAuwAAFD4AACk_AABFPwAAZD4AAIg9AADgvAAAHL4AABQ-AAC4PQAABL4AACy-AADgvAAAFD4AAOg9AACYPQAAUD0AAEC8AAAkvgAATD4AACS-AAB8vgAAor4AAEy-AAAMvgAAED0AAES-AAAQvQAAsj4AAOg9AACCvgAABL4AAGS-AAAkPgAARL4AABQ-AADKPgAA3r4AABC9AAB_PwAANL4AAEA8AABsPgAAcD0AAAw-AACgvAAAlr4gADgTQAlIfFABKo8CEAEagAIAADS-AACgPAAAiL0AADe_AACevgAAFD4AAMI-AADYPQAAuL0AAAQ-AACgvAAAXL4AAIg9AAAsvgAA-D0AABC9AAA8PgAACT8AAPg9AADmPgAAqL0AANg9AABQvQAAML0AAOC8AAA8vgAA2L0AAEC8AACYvQAAJL4AAEA8AABwPQAAqD0AABS-AACSPgAALL4AALI-AABEPgAAhr4AADw-AABAvAAAED0AAIi9AABAPAAAoDwAAKA8AAB_vwAAuD0AAAy-AAAUPgAAuj4AAKC8AAAUPgAAXD4AAHA9AACYPQAAEL0AAIA7AACIPQAAUL0AAGw-AAA0PgAAED0AAMg9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=6614umIqeOc","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3351844361722565288"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2504636307"},"7141436512473189965":{"videoId":"7141436512473189965","docid":"34-4-5-Z33A2E37F7787FC0B","description":"The lecture explains what the Gini Coefficient is and how to calculate Gini Coefficient by applying the formula developed by Corrado Gini.With the help of Lorenz Curve, it is explained how to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2901564/50e6ac3776e90cd1eed95a82806c5083/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Y6tLHgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5KvrsBk_3fk","linkTemplate":"/video/preview/7141436512473189965?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Understanding Gini Coefficient, Calculation Gini Coefficient, Gini Coefficient and Lorenz Curve","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5KvrsBk_3fk\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhUKEzcxNDE0MzY1MTI0NzMxODk5NjVaEzcxNDE0MzY1MTI0NzMxODk5NjVqtQ8SATAYACJEGjAACiloaHVtZHRzYXRvYW5sZGJoaFVDek5IQURYVmxYbWExOU9zN09kSVlXURICABEqEMIPDxoPPxOpCYIEJAGABCsqiwEQARp4gQz7AgT9AwD4_PoGAQX9Ae8CAPgJ_wAA8QH_BfYBAAD18An8_gAAAAEDBv3_AAAA8wP4-vwAAAAUA_sGBAAAAAz7AAABAAAABwf_Av4BAAD4AfwBA_8AAAoTAfT_AAAA8AgCBv4AAAD-DwUAAAAAAAP5_gMAAAAAIAAtSHndOzgTQAlITlACKoQCEAAa8AF_9RgBvwnx_QjtAAAdAgcAtAn_ADHvzwGq4w8CoOzb_zAT9AHi9AMBIP8PAOH7CwDy6wX_A_oMAP0LHP9i_xkABPTrAEfS9wEf_AYB_gL5_wsLB_8vBPwAC-kLAerPF_4bDBP_E_bnACkb7AEZ7BMCGAAF_xXsBv_4J_H_4RoSAPjc8gEk5w394_vm_vAqCgMK_d0A5fb0BecFEf4NBwsHCR0BBOvxGAkoC9sCEe8O-_EhDPgW9fnzEgYQBQAjCAbv5_T5AwD8Cf__E_sU5xn7IvESAuP4AvcYAfX1JgoA8_gIAAfsAQAH4gH-BwzmBQEgAC0PbC87OBNACUhhUAIqcxAAGmBCBQAPEi7l0A4g2e3z_vfmBE__E_YM__n2_w8Xzf4bDrKj6Qz_I_T--rEAAAAV7Az57AAQbuHg1tXqAyrG3xkMI38EHRjR4BPWrsXc8g3RDQcR2UIAxAK2-lDcv_3hAgMgAC28TCw7OBNACUhvUAIqrwYQDBqgBgAADMIAAGDBAACEQgAAAMAAAKDBAADowQAAfEIAADBBAACGwgAACMIAAPhBAACAwgAAkMEAAJhBAABAwQAAQMEAAIA_AACIQQAAMMIAAKBBAADgQQAA0MEAANjBAADwQQAACMIAAIDAAAAUwgAASMIAAJpCAADwwQAAJMIAAARCAAAgwQAAFMIAALjBAABIQgAA4MAAANJCAABMQgAAgL8AADxCAAA8wgAAQMAAAHBBAABQQQAANEIAAIjBAAAYwgAATEIAAI7CAABQwQAAiMEAAIBAAADAwAAAwEAAAPhBAAAIwgAAEMIAAAjCAADAQQAAWEIAAEhCAADgQAAA4MEAALjCAACkwgAAssIAABDCAAAAwQAA6EEAACxCAACAvwAAYMEAAMjBAAAwwQAAtsIAADDBAACAwQAAEEIAACjCAAAIwgAAUMEAAAxCAAA4QgAAhEIAACBBAAAwwQAAAEAAAHBBAABAQQAAuMEAAEhCAACoQQAAtMIAAIBBAAAMwgAAEMIAAFBCAAAQwQAAgL8AAPDBAACAvwAAcEIAAILCAACgQAAAwEEAAODBAABMQgAA0EEAAAhCAAA8QgAATEIAAIhCAAAwwgAAuEEAACRCAABAQAAAEMIAAEDAAACEwgAAQMEAAJjBAAAswgAAkMEAAAxCAAD4wQAAgEAAACBBAACIwQAA4EAAADRCAACQQQAAXMIAAABBAAAMQgAATMIAABRCAACYwQAALMIAAGzCAABcwgAAAMEAANhBAAAIwgAAUEEAAMBAAABwQgAAEMEAAABAAAA0QgAAmEEAALhBAADAQQAAcMEAAIbCAAA8QgAAiMEAACTCAAA4wgAANEIAAJhBAAC4QQAA6MEAAIDAAAAIwgAAmMEAAJJCAABQQQAA6EEAAGTCAAA4wgAA8MEAADhCAADwQQAAKMIAAJBBAACAPwAAIMIAABDCAAD-QgAABMIAAJrCAADYwQAAoEAAAOjBAAAAwQAATMIAAOxCAAAAQAAAEEIAAKDCAADIwQAARMIAAKBBAADgwAAAtEIAAJhBAAAIwgAAKMIAABBCIAA4E0AJSHVQASqPAhAAGoACAAAUvgAAuL0AABw-AACgvAAAcL0AAKY-AACIPQAACb8AAMi9AACAOwAARD4AAGS-AAAcPgAAED0AAKC8AABUvgAAkj4AADA9AAAMPgAA2j4AAH8_AADIPQAAgLsAAIC7AABMvgAABL4AAMi9AAAwvQAAFL4AAJI-AABUPgAAfL4AAHA9AADIPQAALL4AAAQ-AACoPQAAEL0AALK-AAD4vQAAmL0AAHC9AADgPAAAED0AAOi9AAB0PgAAjj4AAJK-AACGvgAA6r4AAMi9AAAUPgAA_j4AAOg9AADKvgAAgDsAADc_AADIPQAAyD0AAII-AABwvQAALL4AAHC9AABcviAAOBNACUh8UAEqjwIQARqAAgAA2L0AAFQ-AAAMvgAAQ78AAI6-AABAvAAAkj4AAKC8AAD4vQAADD4AAMg9AABMvgAAcL0AAAS-AAD4PQAAgLsAAEA8AAANPwAAcL0AAJI-AACAOwAA6L0AADC9AAA0vgAAqL0AALg9AABEvgAAQLwAACS-AAAwvQAAQDwAAIC7AABAPAAAHL4AAEA8AABwvQAAqL0AAMg9AADIvQAA-L0AANg9AAAwPQAAED0AAEA8AACovQAAUD0AAH-_AACYvQAAoDwAAEC8AACSPgAAmD0AAKA8AAAsPgAA4LwAAFA9AAAwvQAA6D0AAIg9AAAwvQAA2D0AAKC8AADgPAAAQDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=5KvrsBk_3fk","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":null,"cheight":null,"cratio":null,"dups":["7141436512473189965"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3178585320470255104":{"videoId":"3178585320470255104","docid":"34-8-16-Z17850F6AF4CD78A0","description":"Gini Index and Entropy|Gini Index and Information gain in Decision Tree|Decision tree splitting rule #GiniIndex #Entropy #DecisionTrees #UnfoldDataScience Welcome! I'm Aman, a Data Scientist & AI...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1381748/39f045cd0ef0054af0c02ff47d0cdb52/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/-U0N8AAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-W0DnxQK1Eo","linkTemplate":"/video/preview/3178585320470255104?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Gini Index and Entropy|Gini Index and Information gain in Decision Tree|Decision tree splitting rule","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-W0DnxQK1Eo\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhUKEzMxNzg1ODUzMjA0NzAyNTUxMDRaEzMxNzg1ODUzMjA0NzAyNTUxMDRqtg8SATAYACJFGjEACipoaGlkeXd3a2J4bHZueWNiaGhVQ2g4SXVWSnZSZHBvcnJIaS1JOUg3VncSAgASKhDCDw8aDz8TtgWCBCQBgAQrKosBEAEaeIEC7gcGAf8A9vUQCPsG_QIU_fwA9gEBAPEDCPIDAQAAB_sIAfsBAAAcAP__AwAAAPgF-v70_wEAFQT0APUAAAATAPMC_wAAAAv9BAz_AQAA_vz3_vkBAAALBPgFAAAAAPwIAQH8_wAA_hAFAQAAAAD8-foAAAAAACAALY-z0zs4E0AJSE5QAiqEAhAAGvABfSj6_9Xe-wDbEd8AwSsJAKwbCgD9M9MAgQ0HAr3eFwAEEQcA0PrI_wH6-wDi1Br_GQXW_xHFMf8z7gD__gjqANng7QFX-McEMQIIAOrz-__JEjcB8QENAh0T4wIIC9L-8iUN_A8H6wLtA8MCIdMG__PbPgL7EhUA_98K-tUz9QAzuuz-0RHpBuTh3_7I_h8B1fcSAgwpB_nh6gsFD_PpAAHwDQL0Etn__N7iAfT9BAEL4wz73ureA_wkGgrgDvAC_QMCBMP38gQGD_8J7A_3Bt4F9vXRDBAD-gL3BP7MCvb_6u0A_PIR7OL0_Q3bDPL_IAAt99kWOzgTQAlIYVACKnMQABpgM_YANOoZ--UfDeT06d3988kS3xjNA__muv8bMcosON3Cwuso_wXM8d6jAAAAKQLDHBUA-n3Q89EeCQ0DnsC9KUt3EQkL1Pgt64G0-RP87DnzBRNNAOr9uEFL_ccl_x78IAAt8KQWOzgTQAlIb1ACKq8GEAwaoAYAAJBBAAAUwgAApEIAAJjBAAAMwgAA8EEAAKhBAADIwQAATMIAACjCAADYQQAAkkIAABDCAABUwgAAIEEAAHhCAAAYQgAA8MEAAABCAAAwQQAANEIAALDBAAAAQAAAUEEAABxCAACgwQAAWMIAAEBAAABQQQAAgD8AAIDBAAA0QgAAEMIAAOBBAAC0wgAA4EEAAAhCAACgQQAAiEEAABDCAADAwQAAUEIAABDBAAAAQQAA4MAAAKDBAAAAwAAAoEAAAOBBAACOwgAAoEAAAHzCAAAAwAAAkEEAAAhCAAB4QgAAjsIAAADBAAAcQgAAqEEAAJBBAAAwwgAAcMIAAODBAADAQAAA6EEAAOhBAABQwgAAeMIAAMDAAAAgQgAAMEEAAJDBAACwQgAAoMEAACjCAAAAwgAACMIAAMDAAACAQAAAEMIAALRCAAAAQAAAAEIAAOBBAACcQgAAFMIAAABBAACAQAAAYMIAAChCAACoQQAARMIAAIC_AACAwQAAtsIAAEBBAADAQAAAMEIAAChCAABIwgAAfEIAAChCAAA0wgAARMIAACBBAABQQQAAUEIAANjBAADoQQAAuEEAADjCAAAUwgAA4EEAACBCAAC4wQAA0EEAAPDBAACewgAA_sIAAIhBAADIwQAAIEEAADDCAACAvwAAwEEAAOBBAACwwgAAAMIAAOjBAAAcwgAARMIAAJBBAADeQgAA0EEAAIC_AABAQAAAwMEAACjCAABwwgAAFEIAALhBAAAAQQAAkMEAAFBBAAAEQgAAQMIAAAAAAACgQAAA4EEAANBBAABwQQAAOEIAAFjCAABgQQAAwEAAAJDBAABkwgAAoMEAAMJCAABAwgAAUEEAAEBBAADQQQAAiMEAALhBAACIQQAA2EEAAARCAACgQAAAZMIAAFDBAACwQQAAqMEAAIjBAACYQQAA4MAAAODBAAAgwQAAeEIAAKDCAAAQQQAAisIAACRCAABkQgAAoEAAAJzCAABgQgAAmMEAAKjBAADgQQAAOEIAAIBAAACYQQAANEIAABBCAAAkQgAADEIAAABAAACWwiAAOBNACUh1UAEqjwIQABqAAgAAiL0AALg9AABsPgAAqL0AAHy-AAAUPgAAyL0AACO_AACmvgAAmD0AABS-AACYvQAAED0AAOg9AABsvgAAcL0AAAQ-AACAuwAAoDwAAC8_AAB_PwAAUL0AAIg9AABwPQAAnr4AAOg9AAC4PQAA-L0AAIa-AAAEvgAADD4AAMi9AAAMPgAAcL0AABC9AACWvgAAbD4AAIa-AACevgAAVL4AAAy-AAAkvgAAQDwAAGy-AAAMPgAA2j4AAM4-AACyvgAA4LwAAHy-AAAMPgAAmr4AAGw-AACmPgAA3r4AAKC8AAB7PwAAmL0AAOC8AAC6PgAAQLwAAMg9AAAQvQAALL4gADgTQAlIfFABKo8CEAEagAIAAOi9AACgPAAA2L0AABe_AAC2vgAAoDwAAKo-AAAkPgAAHL4AAEQ-AADgPAAAhr4AAFA9AABEvgAA-D0AABC9AACSPgAAAT8AAHQ-AADyPgAAoDwAACQ-AACovQAA4DwAADA9AAD4vQAAqL0AAFA9AADIvQAAJL4AAIC7AACgPAAAUD0AAFA9AABsPgAAir4AAJI-AABEPgAAlr4AABQ-AAAQPQAATD4AAOC8AABwvQAAyD0AAIC7AAB_vwAAND4AAAS-AACYvQAATD4AAKg9AABAPAAAbD4AAEA8AADoPQAAML0AAHA9AABwPQAAQLwAAJg9AADoPQAAgLsAAJg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=-W0DnxQK1Eo","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3178585320470255104"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3261509172"},"4404636156162545223":{"videoId":"4404636156162545223","docid":"34-8-15-Z593FEE75165D4B84","description":"As I said in my video on GDP, one of the reason it is an unreliable metric is because of its lack of dimensions and one of these dimensions is inequality, however economists have come up with a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4234775/12222754f81bfd49d52db476c3b319f1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/fs-CbgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DIGad0Vn1_Go","linkTemplate":"/video/preview/4404636156162545223?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"gini coefficient explained / 2 Minute Economics","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IGad0Vn1_Go\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhUKEzQ0MDQ2MzYxNTYxNjI1NDUyMjNaEzQ0MDQ2MzYxNTYxNjI1NDUyMjNqtQ8SATAYACJEGjAACiloaGtnY2N1ZWxxaWJ5bGJoaFVDaEZ2V0lxcFlwblFVVFpmdEk5Q3c3QRICABEqEMIPDxoPPxPfAYIEJAGABCsqiwEQARp4gf8HBwUAAAAA-wYJ9wn8Ag79-QEK_v4A8AH_BfYBAADqAwcAAv8AAPr8-fn3AAAA9wb6_vT_AQAVA_sGBAAAAAn3BPn-AAAADQoEAAj_AQH7AAP9A_8AACQB_AT_AAAA8f8JBfv_AAD0Ef79AAAAAA__Aw8AAAAAIAAtZCbSOzgTQAlITlACKoQCEAAa8AFl-wMC1B_4_1z66AHHEe8AgQUL_wMDAwD9M9sAABD3APIS5wDE3AwA9fv_AA0U-QAtA_b_JPrrAPMVB_8wGfkAAvc3AAjb2gAhB_kA3QDp_woR__8S-QsADe_9APgiGf8eC-IABPkK_xEo8wEc-wL_AvoHBPwBBQEU-Aj__xLj_gwSFwEP6CUABA8HBNb_FwEMCf4EBggb_fELBPv-DuMD6vPkABj9_AcD8gkD__YC_QMhJgEQ-A_7Ce7dAeD3_AQRExb9_g8FARMKCAYP0wYF7OIIBQMB_QADAu4NCOgI_fwOEwH1Fff28uwWA_QKAP8gAC1uJ0g7OBNACUhhUAIqcxAAGmBUDwAOExfS8xRZ0wID9SkNATzo8dv8_yhC__5D5fTrDqOu9TL_FQL9CaUAAAAj_yUUxwAEeuf19gG-9x-22dkdHX9dJObtKgkCu7bQ4gjP8SH-RzsA7O--_lwM5VP4AhEgAC2jiRg7OBNACUhvUAIqrwYQDBqgBgAAgEEAAIDAAACoQQAAqkIAAABBAAAgwQAAQEIAAADCAADowQAAAEAAAKBCAAAUwgAAbMIAAKjBAACqQgAAGMIAAHDBAAA0wgAAFMIAAIzCAAAAQQAAEEIAADDBAAAAwAAAAEAAANBBAAAQwgAAwMAAALhBAACAQAAAOEIAACBBAABcwgAADEIAAODBAABAQQAAMMIAAP5CAAAAwAAAwEAAAAjCAACIQQAAFEIAAADCAABQQgAAsMEAAETCAAAAwgAA-EEAAKDBAACAvwAAPEIAACDCAADgwAAAqEEAABBBAACKwgAAAEEAAIA_AAAQQgAA2MEAABBBAACawgAAFMIAAJhBAADgQAAA0EEAAIA_AADQQQAAoMAAAABBAAAAQQAAzsIAAMhBAABIwgAAPMIAAEzCAAAwwQAAJEIAAMDAAACAvwAAQEAAAEBAAAD4QQAAjsIAACxCAABIwgAAMEEAADDBAADoQQAA8EEAAJBBAADgQAAAnsIAAEDCAAA4wgAAUMIAACRCAACAwQAAAMIAAFjCAABUQgAAUEIAAHzCAAAcwgAATMIAAGjCAACaQgAAHMIAAPBBAAAAwQAA4MEAADjCAADAwQAAyEEAAKDAAABowgAATMIAAMBAAABAQQAAAAAAAJhBAAAUwgAA4MAAAGRCAAAAwgAAAEIAAFBBAAAowgAAZMIAAHRCAAAMQgAAMMIAAJpCAACYQQAAuEEAACBCAAAAwAAABMIAADDCAACWwgAApEIAADBBAAAAwgAAWEIAAGzCAABAQgAA-EEAAEDBAAAAQQAAMMEAANhBAAAgQQAAmMEAAKDBAACoQQAANMIAAKBBAADgwQAAYMEAAABBAACSQgAAJMIAACDCAADAQQAAoEAAAK5CAACgQQAAAEIAAHBBAABgwgAAAAAAAOhBAACwwQAAGEIAAIpCAACgwQAAyEEAAGBBAACaQgAAAEAAAEzCAABIQgAAgMAAAFhCAAA0wgAAvsIAADRCAACQwQAAhkIAAKBAAAAgwgAADMIAANjBAABAwQAA0EEAACDCAAAswgAAyMEAADzCIAA4E0AJSHVQASqPAhAAGoACAADIvQAAQDwAALg9AADIPQAAXL4AAJI-AAD4PQAAK78AALi9AACiPgAAXD4AANi9AADgvAAAfD4AAPi9AACuvgAATD4AAJg9AABkPgAA5j4AAH8_AAAQPQAAMD0AAOA8AACivgAABL4AAMi9AAAcvgAAyL0AAJo-AAA0PgAAmL0AAKi9AACYPQAAUD0AAIA7AABEPgAA6D0AALK-AABcvgAAUD0AABC9AACgvAAAUL0AAAS-AAAQPQAAHD4AAHC9AAAQPQAAur4AAJg9AAAQvQAAwj4AAIo-AAAsvgAAcD0AADs_AADoPQAA2L0AAPg9AAA8vgAAyL0AADw-AAC4vSAAOBNACUh8UAEqjwIQARqAAgAAVL4AANi9AAAUvgAAVb8AAAS-AACYvQAAyD0AALi9AABsvgAAZD4AAIg9AAAUvgAAuD0AADS-AADgPAAAgLsAAKg9AAAlPwAAND4AAJo-AACgPAAAED0AABA9AADIvQAAiL0AAJg9AACYvQAAcL0AAIi9AACgPAAAMD0AAKC8AAAMPgAAcL0AANg9AADYvQAA4LwAAEC8AAAkvgAAQLwAAJg9AACgPAAAQLwAADC9AAAkvgAADD4AAH-_AADYvQAAVL4AABy-AABsPgAAcL0AAFQ-AAAcPgAARL4AABA9AACAuwAAFD4AAAw-AABUvgAAED0AAKi9AABsvgAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=IGad0Vn1_Go","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":852,"cheight":480,"cratio":1.775,"dups":["4404636156162545223"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"364328455"},"1227374094764222344":{"videoId":"1227374094764222344","docid":"34-7-10-ZDB7D3527690B64B1","description":"This video introduces the Gini coefficient, which is a way to summarize income inequality using a single number. economistsdoitwithmodels.tumblr.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/367017/b26d6b82b20efc215caeeffce1822c8d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lQnGfgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DpjeTlgkdXg0","linkTemplate":"/video/preview/1227374094764222344?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Gini Coefficient","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pjeTlgkdXg0\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhUKEzEyMjczNzQwOTQ3NjQyMjIzNDRaEzEyMjczNzQwOTQ3NjQyMjIzNDRqkxcSATAYACJFGjEACipoaHRzcnRpbWd6Z2dieXBjaGhVQ2pIemlTVnpBN0tOMGFka1JiZllzWGcSAgASKhDCDw8aDz8T2QKCBCQBgAQrKosBEAEaeIH-_gEI-wUA_PkGBwIH_QLuA_YA-v__APMBBgkDAv8A8_oHAQQAAAD4BQICAAAAAAEHAf7y_gEAEwP7BgQAAAAE-QIHBv8AAAMABAP_AQAA_vz3_voBAAAMFAkBAAAAAO0CBgICAP8A9RD-_gAAAAAD-f4DAAAAACAALXmg4js4E0AJSE5QAiqEAhAAGvABf_koAe7M3ALV0_gA1RIXAaMvJf81Pd__uwX8APn2vgHt9OYA5CoG_0XpFQDgHR3_Bffb_9rADgAh4P7-8vzxAc7X_gAK6gsBJzco_hvY1_7PSiP__P4CAP3F3QDqIA7-DfgD-gj72AEL6rYJU-cUACXbFQIfA-oCIPUcBAYO5AH-3L___AcCBMbwBfjXBSMCBf78-gQ0-wHC8gUF7egB_Cj7CPf1K-oCGxLZ-fQK_gjo-_b7DOLnAgAtBQHdCPXy5u8Z-MDO-PYAIRUBB9_4_PcT9gE08gANP_nxChne-vrR9wb-3QMOArQH9wr0A_YAIAAt51gPOzgTQAlIYVACKs8HEAAawAeHFuG-uD7sPDlCJr2agpu9qbUXvAMFXr3zdw68YhwyPV8Ieb2f1qM9IfD2PEX2nLzY1Hm-BQRJvfOGBb0KL2E-F3GwvEHTxjlxPVq-5xa_PYVMqLzzWQ6-OG83PXb7LLuw5ws-UbcauwWxAr2gNMQ9ptVQvRH_1jm6S4I9_BPBvPI6B71PCHw7ctJFvd-KRLzmlOA95ty3vLbQnzwJldE7TZEuOxGdLzwgV1Q9OK4VPcYEyrq46c88rKS6vK7lXzzqr_c9MbJROshNAz1Iyxc97AeGPHfzebyoMxy9ND9Ive9QGLvf_MY97BvzPIdZPr1dTi49MQP6vK13rDttrOS9phEuPZROwTv7BTs-2jfXPUR1yjsVORS-T5VvPKsZo7z9Utw7pra3u-QRnDxNhw4-hIUuvXqsdLxWZkU9DKhcPVtQ6bxdOTa9xuBhPc-pgrrq48Y8evGPPdJvobuaiCi9uMrTvFNgXLyqPh2816ypvJ1OFjozyZM9sud8PDQR9Dub4ww-zBmgPZIJO7oFI6U91gI7vknlmjrO8ga9kDiKvZzLQ7yDDK47NVkIPT_vvjtZh8M9Cs9VvfSCUzt96EK98Dscvf2N9znzO-09CdCVvbxQCrxK0-C9YyCEPbU_6TsD4fE7ghHFPH1DH7tfIE09-9x6PYeX1Dut5cS9hcfjPEXBxjo9MjE7SVsmPZOTwzvF2im8ci1_vEZn9DoYsgo-ZZ7DuxjRgjgf1dW8SpywvGRml7qYqSS8ywt1PYrF0jrMenE9BlVZPIHj7rmq8Eq79H7tO5lkoroyu7g7N6jdPZtsBDiQbfQ8suhHvW3rwLmml_i986upvao0dThDCIO9Q5agvF-nAbrQ4Ss9X2InPSbsvLmUpOu9EcH-Otjz0rjTXWO9u-cKPS66jzhnLNq8rSRIPc8MMLfG3BU9xxuPPTNoELeg-_I85ypnvRmtZzjaQmY9AUeHPRPRCjZDuUO9ck1BvXMQfDfjp3E8n3l0PfBpBrmjC0W8dk-TPfYtRzgCwr08aG9VvRULmziIJKO79aYdvUh2RDghnpu84ZNTPcjQ1begUM-9Fe-GPcLSAjhAi4A9O5eYvHWKBDinJOs96XUYuuJaRbhBR-u9bF5VvNQRrLetp_Y9s-qYvHs7OrmgM2k8u06pvR9Qm7jVO4E87z2Hvc2Tvzf9pDW934hNu1fFdDazRqi9erq0vRe5oLigSlI9BziOPRWSjDg8gry7YQUuvPW0y7h-J8y9LLyLPckpwTgPWIO8_OQjPS6xdzcgADgTQAlIbVABKnMQABpgKgMACuQVAxMJCvbx-wUIxAYz1ibrNP8RF__zFr0qBw6wruMP_x8K-uCnAAAANuMUBNUAN3Tb1w7M-fU8qK8i9Cd_IP4VwQoTLLjD6SIb3jsbKvxaAMsdtBfrANki8xImIAAtzVAgOzgTQAlIb1ACKq8GEAwaoAYAAFBCAADIQQAAkkIAAIDAAAAwwQAAREIAAJBCAABwwQAAgMAAAGzCAACwwQAAGEIAALDBAADQQQAAJEIAABxCAAAoQgAAoMEAAKhCAABAwgAAgD8AAMjBAAAcwgAA0EEAABDBAAAYQgAAsMEAALhBAAA0QgAAgEEAAIjBAABQQQAAoEAAACBBAAC0wgAAIMEAAAAAAABkQgAAyEEAAJDBAABAwgAAyEEAAFBBAABAwAAAuEEAAARCAABAwAAAQEAAANhBAAAwwQAA-MEAAKDAAAAwwgAANEIAABBBAABkwgAAoMEAANjBAAAMQgAAlkIAAOBAAADgwQAAssIAAGzCAACIQQAAMMIAALhBAACqwgAAkMIAAIhBAAAAQgAADEIAAEzCAACwQQAAoEAAAKTCAACAwgAA0MEAABxCAABgQQAAgEEAAIhBAADowQAANMIAAADBAAD4QQAAAMEAANjBAACQQQAAkMEAAPDBAAAIQgAAEEEAAMBAAAAwQQAAzMIAAEBCAACowQAAgEAAAM5CAAAYwgAAUEEAAGBBAAAAwgAAcMIAAABCAACwwQAAOEIAACDCAAB0QgAAhkIAAKDBAABAwQAAEEIAAMBBAAAYQgAAgMAAAGDCAACQQQAAUMIAAADBAADgQAAAQEIAAETCAAAEwgAAfMIAAIhBAAC4wQAACMIAAMjBAAAAQgAAXMIAADTCAACEQgAAJEIAAHBBAABYQgAA6MEAAIrCAADAwgAAkEIAAHBBAACwQQAAYEEAAODAAADYQQAAwEAAAADBAACAvwAA-MEAADDBAABQwQAA4EAAAGjCAACSwgAAVMIAAITCAAAAQAAACMIAAHRCAADowQAAgL8AAAjCAADQQQAAQEEAALhBAADAwAAATEIAAIxCAAAgwQAAmMEAAMDBAACQQQAAAMAAAJjBAAD4QQAA2EEAAIC_AACYwQAAOEIAABzCAACGwgAAQMEAACDCAACAQgAAHEIAADjCAADgwAAAQMEAANhBAACgQAAAPEIAAEzCAADQwQAAgEEAABBCAABQwQAAuEEAABBBAABEwiAAOBNACUh1UAEqjwIQABqAAgAAbL4AAPi9AAAkPgAAqD0AAGS-AACuPgAA6L0AAMK-AADovQAAHD4AAHw-AAAwvQAAED0AAIg9AACYPQAADL4AAIY-AACAuwAA-D0AAIY-AAB_PwAAJD4AAIi9AAAwPQAAFL4AAKi9AACqvgAA4LwAABy-AACqPgAA6D0AAOi9AACAOwAAJD4AAFC9AAAQPQAALD4AADC9AAC6vgAAUL0AABA9AACGvgAAoDwAAAQ-AACgvAAAHD4AAKA8AADgvAAAmL0AAKK-AABAPAAAgLsAAN4-AAD4PQAArr4AAOg9AAA3PwAAJD4AABw-AAB0PgAADL4AACy-AAAQPQAALL4gADgTQAlIfFABKo8CEAEagAIAACy-AADIPQAA-L0AADe_AACKvgAA2D0AAFw-AAC4PQAAoLwAACQ-AABwvQAAXL4AAHA9AACAOwAAcL0AAFA9AACGPgAAKT8AANi9AACaPgAATL4AAAy-AACAuwAAiL0AAAy-AAAkPgAA4DwAAFC9AAD4PQAAqD0AAOA8AAAQvQAAQLwAAOC8AAAwvQAAyD0AAMi9AACAuwAAcD0AANi9AABMPgAAoDwAAKA8AACAuwAAlr4AAGw-AAB_vwAAiL0AAJa-AACoPQAAnj4AALg9AABkPgAAVD4AACS-AACIPQAA4LwAAEw-AAAwPQAATL4AAKg9AABcvgAAXL4AADC9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=pjeTlgkdXg0","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["1227374094764222344"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"997622722"},"3889976522991017215":{"videoId":"3889976522991017215","docid":"34-5-13-ZCCB8A42CF9FEEEA1","description":"CORE, Economics, inequality, Gini coefficient, Principles of Economics, Principles of Macroeconomics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1016432/be5128f55543f9216b7df357a1253dd6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/o_2KtAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DC6Nl9_9tRgM","linkTemplate":"/video/preview/3889976522991017215?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculating the Gini Coefficient","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=C6Nl9_9tRgM\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhUKEzM4ODk5NzY1MjI5OTEwMTcyMTVaEzM4ODk5NzY1MjI5OTEwMTcyMTVqkhcSATAYACJEGjAACiloaHhzdGVwZm5obWZ0ZXdoaFVDRzNpN3Uyc0pJelpGZi1mTG5DRGkzQRICABEqEMIPDxoPPxOpA4IEJAGABCsqiwEQARp4gf72BP8AAAAD9fsJBwn8AvUG7_n4_fwA8PgJBvQBAADzAAj8-wAAAPYRB_MAAAAA8Ar2CfcAAQAa9P_2AwAAAA_z-AQDAAAADgz7A_4BAAD_AfP9A_8AABIKCAH_AAAA8wEDCgEAAAD-Cf8DAAAAAAf-Bv_79P4AIAAtHrbSOzgTQAlITlACKoQCEAAa8AFv-wQCvfTt_v8EAwEADuQBgRXw_w4S2gDG9AkAuRDU_-b8AwDBAg3-Hxwk_-cNCwAQA-4ADc_4___TIwAHBgEAEvULAB7gCQBYEwcBBPjzAOQeD_8S_f8A_eYaABkU0AAaBAP8EPrMAQz_3AIM_jMBGiYOBAv99QHl-vT_AhYMAuge-QQP7vwH__Tv_-MQ-wcNAQP8Bg_2Af0D5gIaAhMD_vMF9xDv_PwqHuz8-yD1-fEBBwAHCPX6-fEHCPoS4P3eB_kBIAL--_4E7wgu7w38GwoN9gYJAPkkCPn6HuoL_PX6CP_4EAPsAywCFAnw-PggAC1R9DU7OBNACUhhUAIqzwcQABrABxcrCr8jP461PNWIOyWbRj2EdkO3QLYWvcNkqj16U9E88kQrvYrCEz20TVs9tg4QPPyMu75aUw-8xurFu8Zrpj7IqlI86ZctvHoXL74IPDA9KZ_UvPWha76E0wc9dDXDu6xXAT5hJZU8pPHVPKtNoj1U3B29CXYSvVvZdD363AE8BcfAvOvmfb2JrpC9_h4jPOdhVz1GuCS9ZNdMPdHN_jzBviO87fXJvG9nurx4wiE9Yiz0O36tprwwDQM9MnRsPOqv9z0xslE6yE0DPVH7iD0N7pw7LC0jvdlsNj3cAKI8NhLXO2gIprrnMIQ8QCajvAaWDT0gyjy8JGR7PP9ngzzs_bE9W9iuvORm-D1mTOE9GCPUOxIdOLxJQJa8b4-vPLNN4LyC_4w76gWCu0sPmT0hGKy8P4gmuygC6zkWBqs9EBZfvAUqLTxGQRA93fNXPL9aWjx5F8k9w1ABvHUM47wNpww8EMvqOtl4MLyF7SO7S502vL2fxD1qnV08qe-hPPvLjj1A6Xq8VddGPEehpj3lS8O8kUNEPCTjAj3YLzO9SRsevOfMUT24oIg9WX0evBPKDD2YJIW8mEKxu7892TxOHXW8OVtluwO9Jj00v_W8lFC4OzlaGj3X3KE9g-79O2jI3TwMNrs7QckuvMHqH7tI7Ek80pcUPB3ejb1y22O9zUo7Oub2gTw1qVI9YYLgO8XaKbxyLX-8Rmf0OlT6nj2a6Di9eFpPOI1BCjxAdSC8RGgpO9ScPD2zzJc9jLDOuLgtgDxd28C8dywxulTHqrxeoyC9028POQY70TvJPBI90pddOPJ8Bj3Pm6-9fRngOCUyHb2VEIy90iOpOEa5L73cxQq9eEWzuce8Lj2SdBK9_Q-qOH9-ZL2jsTG9YN3jOgiu0r1Yaic9El4huSaKlT1uhnu9K2vnOLzrbDz7Yd-880mTuOwJPL1yJfG81mKAOb8gM7ysG889SQw0NbV2Fr0wybc8DsFtuZEfu7yj7l49NHvjtmTk0TzFD4Q93qL-txcfsDxLoIc9ODPHuI_GoTxXeDe90RQtOHBwEz0RXEA86t2AOZRgO7wRZ827mmcKOfXabLw6Weq9YPq4Nw8Vvj0tfxk9f9KauLCvtTyz5py96qksNib7p7yec9w8JxYwuKnbOb3mf0k7wVHwN6aGkTwjY1q99H6KNz3tVb0hvRc7ezVnOLhzAT3MK4K9L2Z0uKAXDj0XJb09KH8AOVKksbyEImc9nekTuG_I9by9s2w9vzc2OB2TJDv3UEe8wUjENyAAOBNACUhtUAEqcxAAGmBD-AASBiQM4gZG9AkFDfzJ9DvgG-sXAAEi_yIS7_PkJLCu7gX_MuwK0KUAAAAu4uIY7QAGf9zaEdMOCzW93ggqMmgSBBG58yXezbkBH__WL_g_5mIAnhG6-Tz0tSvnAzkgAC3LmR07OBNACUhvUAIqrwYQDBqgBgAA6MEAAMjBAAA8QgAAAAAAAIDAAABwQgAArEIAAKhBAACYwgAAUEEAAFBBAAD4wQAASMIAAAjCAADYQQAAmEEAAATCAAAMwgAA8MEAAJbCAAAQQQAAAMAAAEDAAACAQAAAwEAAAIhBAABYwgAAPMIAAIJCAABgQQAAQMAAABxCAACEwgAAFMIAAGjCAADAQAAAQEEAALRCAABwQQAACEIAAKDAAAAEQgAA-EEAAMDAAAA8QgAAYMEAALjCAAAQwgAAnkIAAEhCAADYwQAA4MAAAPDBAACAwAAAREIAAIBAAAD2wgAAoEAAAODBAABoQgAAAEIAAHDBAAAcwgAArsIAAMBBAAC0wgAAAMIAAKrCAADAQAAAPMIAACxCAAAUQgAAdMIAAKDAAADAwQAAyMEAAMBBAAA8QgAAREIAAKhBAABwwgAAHEIAAAjCAACSQgAAGEIAAAjCAACgQAAAeEIAAABBAAD4wQAAYEEAALhBAAAAQgAAMMEAAADBAADYwgAAoMAAACjCAACSQgAA4MAAAETCAAC4QQAA4EEAAMhBAAAwwgAAQMAAAODBAACgwAAA4MAAAIJCAADIQQAADEIAAKDBAAAgQQAA4EAAABBCAABAQQAAmMEAAAzCAACYwQAAAMEAANDBAAAIwgAAAAAAABBBAACAQQAAeEIAAADBAAAcwgAAgL8AAHDBAAA4wgAAiMEAAKBBAAAcQgAAYMEAACRCAAAMwgAAOMIAACBBAACYQQAAwMAAAKZCAACAvwAAmEEAALBBAAB0wgAAsMEAAIJCAACIQQAAEMIAAIJCAACwQQAAWEIAAAhCAADQwQAALMIAAODBAADIQQAAfEIAAIA_AACCQgAAoMAAAMLCAAAEwgAAgEEAAIhBAACKQgAAmEEAAEzCAABMwgAAGEIAALjBAABswgAAoMAAAMjBAAAoQgAA4EAAAEBAAADgQAAAQMIAACBCAAB8wgAAkMEAAIBCAACAwAAAJMIAANDBAADYQQAADMIAAOjBAADAQAAAcEEAAIA_AABgQQAAkEEAANjBAACAQQAAFMIAABDBIAA4E0AJSHVQASqPAhAAGoACAAAQvQAAgLsAADQ-AADgPAAAhr4AAHw-AAAEvgAAtr4AAIA7AAAUPgAA2D0AAHC9AAD4PQAAiD0AABS-AAAMvgAAbD4AAJg9AADYPQAAxj4AAH8_AACIPQAADL4AAGQ-AADYvQAADL4AAES-AAAMvgAAED0AAJo-AAAQvQAAhr4AALg9AAAEPgAAuL0AAFA9AABQPQAANL4AAI6-AACOvgAAmL0AADy-AADYPQAAoLwAADy-AABQvQAAML0AABC9AAAEvgAABL4AAHA9AAAMPgAAuj4AABQ-AADavgAA4DwAAC8_AADoPQAABD4AAGQ-AABMvgAAgLsAAMg9AAAUviAAOBNACUh8UAEqjwIQARqAAgAANL4AABA9AABAvAAAS78AAEy-AACgvAAABD4AAIC7AACIvQAAFD4AAHA9AABUvgAAUD0AAIi9AACIPQAAML0AANg9AAAbPwAAuL0AAFQ-AAAkvgAAQLwAAIA7AAAkvgAAQDwAABQ-AABwvQAAEL0AANg9AACYPQAAQLwAABA9AABQvQAARL4AABA9AACgPAAAoLwAAKg9AACIvQAAcL0AAIg9AACAuwAAqL0AAPg9AACGvgAA4LwAAH-_AAC4PQAAuL0AADw-AABEPgAAmL0AAPg9AAA8PgAA4LwAAIC7AABAPAAAyD0AAIi9AABUvgAAFD4AAJi9AADIPQAA4LwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=C6Nl9_9tRgM","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3889976522991017215"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2271787362"},"10328217660487483518":{"videoId":"10328217660487483518","docid":"34-1-12-Z3096257AF08F6B29","description":"Gini Index in Data Mining: Today, we will learn to calculate gain in Gini Index when splitting on A and B Attribute. Find out which attribute would the decision tree induction algorithm choose.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3435353/a7e0562c74e577d1f2e4c46233619e44/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qjNLcQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dc9Yg4Mrjztk","linkTemplate":"/video/preview/10328217660487483518?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"GINI Index With a Simple Example - Gain in Gini Index (Decision Tree Induction Algorithm)","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=c9Yg4Mrjztk\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhYKFDEwMzI4MjE3NjYwNDg3NDgzNTE4WhQxMDMyODIxNzY2MDQ4NzQ4MzUxOGq2DxIBMBgAIkUaMQAKKmhodnVtZXp2Y25kbmppcmJoaFVDVzk4N3JkRERjSHMzOHZtRk9NTmtfdxICABIqEMIPDxoPPxO8BIIEJAGABCsqiwEQARp4gQLuBwYB_wD0AgwAAwT-AQ_9BgL3AAAA8QMI8gMBAAAH-wgB-wEAABP6BQAAAAAA-vz0-fX-AQAUA_sGBAAAABIJ9_32AAAADPwLBP4BAAD5Afn4A_8AABkO9QX_AAAA-Ar_CfwAAAAADw31AAAAAAD__v8AAAAAIAAtj7PTOzgTQAlITlACKoQCEAAa8AF_8-f-xzEW_ibbAQHTDucBkBUN_xwV8QCV_y0D6-n6AeII8wDi_dcA9uAgACcNHv9A9cn_9a_2ACXV8P_S_xcABu0IAT_s-wFa3O0A9xnP_d3uFQAH9_n_LgnsAR_l8_4NEiL_7hft_-b8BgE00ycCOyMLBBf0IgLfJfEAxQ4MAL_M3_397-4E4vUc_NYC-gf1BQAEJxj69v8G8v8XBej9Ac0N_vnz9wwY-AgJ-BwEBtwF2QPl-fT_FiEj_vUn6__-HwgI6LcQBCb2Dgcoy__9FOHw-hIE__AEA-gR68oA8PDuCPDwDAsAzvIEC93LDPggAC10cRI7OBNACUhhUAIqcxAAGmArBQAY8vP21ScmywoH6PHx3zznENv4_wnP_w8Y0P7r5tSq_BX___z_6rMAAAAhEtMMEwD7b_X57hIiu_254dEcD2kFMQ_e6jj3gb4JGuvWJOo2GykA9_u4DzjzBUAJ-xMgAC029C87OBNACUhvUAIqrwYQDBqgBgAAFMIAAJDBAACQQQAAmEEAAGDBAAC6QgAAdEIAACDCAACkwgAADMIAABxCAAAIwgAAKMIAAGDBAABgQQAAmEEAAAxCAADYwQAAQEEAAMjBAAAEQgAAsEEAAIDBAAAIQgAAVMIAAFBBAACKwgAAcEEAAJhBAACIwQAAEMIAAIpCAACcwgAA8EEAAKDBAACYwgAAEEEAAJZCAADAQQAA3kIAAEzCAABQQQAAfEIAABBCAACcwgAA4EEAAPBBAADAwQAAKEIAAGBBAABwwQAAMMEAAGDCAACAQAAA4MAAABBBAABAwgAAKMIAAHDBAAAgwQAAiEEAABBBAACAwgAAkMIAAOhBAAAswgAAQEAAANDBAABAwgAASMIAAGhCAADAQQAAuMEAACRCAABcQgAALEIAAIDCAAAgQQAAZEIAAARCAAAwwQAAWEIAABzCAACQwQAAMEEAAHxCAACIwQAAQMAAAI5CAABIQgAAgEAAAMDAAABUwgAA1MIAAPhBAACiwgAAEEEAAABAAAD4QQAAgD8AADjCAACAwQAAcEEAAFDBAABIwgAAqEEAAODAAABcQgAAoEAAADRCAAAoQgAAAEIAADjCAACIQQAAVEIAAJhBAACYwQAAoEAAAEBBAAA8wgAAskIAALhBAACAwAAAFMIAAIDBAACgwAAAQMIAAIDAAAAAwwAAEEEAAIC_AACYwQAAoMEAABjCAAAcwgAAAMEAAHxCAAAwQgAAgD8AAIjBAADAwAAA2MEAAMjBAADAQQAA4MAAAIC_AAAQwQAA-EEAAIC_AAAQQgAA6EEAAODAAACIQgAA6sIAAJhBAACOwgAA5sIAAIjBAADYwQAAYEEAAKDBAABwQQAAgEAAAADBAACAwQAALMIAACBCAADIQQAAgMEAABBBAAAcwgAAEMEAAFDBAAAwQQAAsMEAACTCAABQwgAA6MEAAMBAAABAQgAA4MAAAODAAADgwAAAQEEAAABCAAAYwgAAbMIAACRCAACYwQAAQMAAAMjBAAAAQAAAkEEAAERCAAAAwAAAAAAAAEDBAABkwgAAIEEAAOBAIAA4E0AJSHVQASqPAhAAGoACAAAQvQAA6D0AAIY-AADYvQAALL4AAEC8AAAwvQAAWb8AAMK-AADIPQAA2D0AAGy-AADYPQAAED0AACy-AADgPAAAcD0AAOA8AADIPQAAJz8AAEE_AABUPgAAHD4AAKg9AABwvQAAhj4AAHQ-AAA0vgAAtr4AACS-AABcPgAAgDsAALY-AAAMPgAAoDwAAKA8AAAcPgAA6r4AAJK-AACqvgAAfL4AABA9AABAvAAALL4AABC9AAARPwAAij4AAIa-AACYvQAAir4AAHw-AACCvgAA4DwAAMY-AAAbvwAAcL0AAH8_AADgPAAAQLwAAK4-AABAvAAAJD4AAEA8AABMviAAOBNACUh8UAEqjwIQARqAAgAAiL0AAHC9AAAUvgAAO78AAOK-AAAkPgAA5j4AAEQ-AAA8vgAAcL0AANi9AACWvgAAoDwAADy-AADIPQAAgDsAABQ-AADePgAAyD0AAOI-AAAQPQAA6D0AADy-AAAQvQAAQLwAAHy-AAAsvgAAoLwAAJi9AABcvgAAgDsAAIg9AACYPQAAXL4AACQ-AABsvgAA1j4AABQ-AACWvgAAyD0AADC9AADgPAAAML0AAOA8AAAUPgAAED0AAH-_AACYPQAAUL0AALg9AADCPgAAMD0AAEC8AAA8PgAAQLwAAAQ-AACYvQAAiD0AAFw-AACoPQAAkj4AADw-AACgvAAAMD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=c9Yg4Mrjztk","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1080,"cheight":1920,"cratio":0.5625,"dups":["10328217660487483518"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1635837372"},"17493058098015167033":{"videoId":"17493058098015167033","docid":"34-0-17-Z5C357A680698E23F","description":"The Gini coefficient, also known as the Gini index or Gini ratio, named after Italian statistician Corrado Gini, is a measurement that describes how income is distributed across a population.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1221744/55d7c70f4a173fdfbdcaaace9e874442/564x318_1"},"target":"_self","position":"17","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDQje-4KRapo","linkTemplate":"/video/preview/17493058098015167033?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Gini Coefficient: Slicing the Economic Pie - Development Economics Series| Academy 4 Social Change","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DQje-4KRapo\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhYKFDE3NDkzMDU4MDk4MDE1MTY3MDMzWhQxNzQ5MzA1ODA5ODAxNTE2NzAzM2qvDRIBMBgAIkUaMQAKKmhoeWlhZGdjY3d5Ym91d2NoaFVDSnNtdzJzZU5CTzBXeDM5ejhZQTNQQRICABIqEMIPDxoPPxOaAoIEJAGABCsqiwEQARp4gQYFAQn8BAD1_goMAgb9AQD89v34_v0A8fkIBfUBAAD9-Q3_-AAAAAcIBf0CAAAA9vn___T_AQAI_wQEBAAAAA4D_v_9AAAA_f39Cf8BAADz8_j2AgAAABUE_gUAAAAA9vUFAvz_AADuEP_0AAAAAAPy-_wAAAAAIAAt0DXfOzgTQAlITlACKnMQABpgNAoADRYA58obSeP0CN0FAwQS_fnrFf8LEADhKOLdAfvBqwMv_xXnG_e2AAAAFxD2I88A92Xo8Mnx-QYXxd_hCRt_Mgzo3-0F59bPAPg3Awz6-QE8ANYU4ewh0fVb6z0cIAAtCqA6OzgTQAlIb1ACKq8GEAwaoAYAAPhBAADgQAAAmkIAAODBAABkQgAAoEAAALBBAACgQAAAhMIAALDBAACaQgAAgMAAABDCAACAvwAAcEIAADRCAADAwAAARMIAAMDBAABQwQAAYMEAAAjCAACAwAAAmkIAAIhBAADAwAAAmMEAAKrCAABYQgAAcMEAAHDBAABAQgAAhMIAAHTCAAAYwgAA8EEAADjCAADaQgAADEIAAABAAABsQgAAJEIAAJBCAABAQgAA4EAAAODAAABcwgAAgEEAAKhCAAAgQQAAJMIAAEBBAABgwQAAAMEAAHBBAABgwQAAUMIAAJhBAACgwQAA4EEAABDBAAAQQQAAUMEAAKrCAAAwwQAAgMIAAETCAAAQwQAAgL8AABDBAACoQgAATEIAALDBAAD4QQAAgD8AAJrCAADgwQAAQMAAABBBAADQwQAAPMIAAKDBAAA8QgAAEEIAADBCAAAQQQAAoEEAAMhBAAA0QgAAiMIAAODBAABYQgAASEIAAITCAABAwAAAgMIAAHDBAADYQQAAqEEAAEBAAAAIwgAAkkIAALhBAADUwgAACMIAAOhBAACAvwAAWEIAAODAAAB0QgAA4EEAABDBAAAgQQAAdMIAACxCAAAwQgAASEIAAFjCAABAQQAAIMIAAFDBAAC4wQAAiMIAAAAAAAAUQgAAgEAAABBCAAAgQQAAUMIAAPjBAACAwAAAQMAAAEBBAADgQAAAQMEAAMDAAACAPwAA6EEAAKjBAACwwgAAYMEAAARCAAAgQgAAKMIAABRCAABAQAAAiMEAAOhBAABQQQAAwEAAAHDBAABwQQAAAAAAAIBBAADwwQAAMMEAAAAAAACgQAAAzMIAABhCAACQwQAAjkIAAPDBAAAwwgAAkMEAAJhBAACuQgAAkEIAAKDBAAAgwgAAIMEAAHxCAADAwAAAKEIAAADAAABgQQAAUEEAAEjCAAA8QgAArEIAACzCAAAgwQAAUMIAAOjBAACQQQAAmEEAAODBAAAAAAAAMEEAAIC_AAB4wgAA4MAAAFBCAAAEQgAAgMEAAK5CAABwwQAAoEEAAJLCAAAwQSAAOBNACUh1UAEqjwIQABqAAgAA4DwAADw-AAAUPgAAoDwAAOi9AACSPgAALD4AAPq-AABEvgAAED0AADQ-AACgPAAAEL0AAMg9AAD4vQAAZL4AAEw-AAC4vQAAiD0AANY-AAB_PwAAPD4AABA9AACGPgAAXL4AAKC8AAAsvgAANL4AAKC8AABsPgAAqD0AAOC8AAAsvgAAJD4AACw-AAC4vQAAZD4AAKi9AACqvgAAHL4AAFS-AACIvQAAML0AAJg9AADgPAAA2D0AAFw-AAB0vgAAQLwAAMa-AAAwPQAAED0AAEw-AABkPgAARL4AAHC9AAANPwAAyD0AAFC9AABcPgAAZL4AAKg9AACIPQAAQDwgADgTQAlIfFABKo8CEAEagAIAAAy-AAAQvQAAcL0AADG_AAAcvgAA2D0AABQ-AACoPQAAFL4AADw-AAA0vgAAXL4AAIC7AAA8vgAA-D0AABC9AAAUPgAAHz8AAEQ-AAC-PgAAQLwAAFC9AADgPAAAgLsAAFC9AAAEPgAAoLwAADC9AACgvAAAED0AAEC8AACovQAAJD4AAJi9AADIPQAA4LwAAKg9AACAOwAAJL4AACw-AABQPQAAND4AAII-AACgPAAADL4AAKg9AAB_vwAAgLsAAFy-AABAPAAAqD0AAAy-AAB8PgAAqD0AAFA9AAAwPQAA4DwAAOC8AACIvQAADL4AADA9AACoPQAAFL4AAIg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=DQje-4KRapo","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17493058098015167033"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"13018176668317766046":{"videoId":"13018176668317766046","docid":"34-0-6-Z709BD91A3E57BFFC","description":"📝 Training & Certification: 👉 https://forms.gle/dhZhETccxuQTCBQB9 Code: https://t.me/tpointtech/79 Excel: https://t.me/tpointtech/78 Notes: https://bit.ly/machine-learning-decis...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4628673/c31f7a8b610323a70cb5ac6f03ba1b75/564x318_1"},"target":"_self","position":"18","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrDSK4SzqmdM","linkTemplate":"/video/preview/13018176668317766046?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"#7 Decision Tree Gini Index in Machine Learning | Machine Learning Full Course Basic to Advance |TPT","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rDSK4SzqmdM\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhYKFDEzMDE4MTc2NjY4MzE3NzY2MDQ2WhQxMzAxODE3NjY2ODMxNzc2NjA0NmqvDRIBMBgAIkUaMQAKKmhoa2NycWd5bG91cnd4bWNoaFVDVW5ZdlFWQ3JKb0ZXWmhLSzNPMnhMZxICABIqEMIPDxoPPxOnCYIEJAGABCsqiwEQARp4gfv6AQT-AgDw-gv_-wIAAQsA-_r3AAAA8vv9_AcBAAAH-wgB-wEAAAQCCAUCAAAA9_j3BAH_AAAODf3--AAAAAAF_fn-AAAACwQCCQoAAQH8-AL_Av8AABAN_f3_AAAAAQX9Bvn_AAEFB_7-AAAAAAcC8g0AAAAAIAAtwqTaOzgTQAlITlACKnMQABpg8gQAMxwG8cYUHeH2C-4RC_81wCu8C__5-v8dLOD4Cv7NresO_wPXEe-xAAAAGAraBx8AAWQH5M0NE_4Rr73hGBV_-iDWCyMQCa7W9eEf_dMkEjpQAAYR6uhb7Poz9gQRIAAtyOswOzgTQAlIb1ACKq8GEAwaoAYAAExCAADYQQAAmEEAAATCAAAwwgAA6MEAAChCAAAIwgAAMMEAAMDAAADAwAAA4MEAAMLCAACgQAAAnEIAAMjBAAA0QgAAmEEAAEBCAABAwAAAiEEAAPjBAAAAwgAAoEAAAKRCAADowQAAuMEAAJjCAAAkQgAATEIAAJjBAABwQQAASMIAAFBBAAA8wgAAMMIAAEzCAACGQgAAUMEAAAhCAAAgQgAA0EEAAERCAAAwQgAAkkIAAHTCAABkwgAAuMEAAJ5CAACgQQAAkEEAADDCAADowQAAwEEAAFxCAAAsQgAAhMIAALBBAAAowgAAaEIAAFBCAADgwQAAUMIAAODBAACAQQAAIEEAAJJCAABQwgAAYMEAACDBAABYQgAANEIAABzCAADAQgAAqEEAAL7CAABAwAAAsMEAAGBBAACoQQAAQMEAACDBAAA4QgAAskIAADjCAACAwAAA8MEAACRCAABIQgAAjMIAAADBAAAwQQAA0MEAAIjCAABUwgAAVMIAAIA_AABAwQAAVEIAAGDBAAAAwAAAqEIAAFDBAACYwgAAeMIAAOBBAACgQQAAIMEAACBBAABYQgAAcEEAAGDBAAAQwQAAMEEAAIJCAABwQQAAQMAAAKjBAAAYwgAAQMIAADDCAACQwQAAcMEAAPjBAACSQgAANEIAAADBAABUwgAAgMEAAKDCAABgQQAAMMEAAFDBAAAQQgAAcMEAAEDAAACYQQAAAMEAAHDCAABgwgAAVEIAAPBBAABQQQAA6EEAAABCAACgQQAAoMEAABzCAABQQQAA4MEAAEDBAABwwQAAgEAAAJDBAACIQQAAIMEAAFBBAAC0wgAAyEEAAPhCAACYwQAANEIAAEDBAADIwQAAiMEAAEDAAABMQgAAgEAAAIRCAAAgwQAADMIAAOBBAADgwQAAAEEAAIjBAAAwQgAA6MEAAADBAACAQQAANEIAAKhBAAAAwAAA-EEAABDBAACgQgAAaMIAANDBAACQwQAAMMEAAOBAAABwwQAA4MEAAIhBAACwQQAAoEAAAEDBAACAwgAAoEAAADzCAACawiAAOBNACUh1UAEqjwIQABqAAgAAyr4AAKA8AABMPgAAVD4AAIi9AAAUPgAAQLwAABO_AADWvgAAiL0AALi9AAAcvgAAoDwAADA9AACavgAAoDwAAI4-AACYvQAAlj4AAA0_AAB_PwAAED0AAIg9AABAvAAA4LwAAJg9AABEPgAARL4AAIi9AAAMvgAA-D0AAII-AAAQPQAAuD0AAKA8AADovQAAXD4AAJq-AABsvgAARL4AAKq-AACYPQAAiD0AAKC8AABwPQAAsj4AALY-AAC4vQAAED0AAIi9AAAEPgAAXL4AAAQ-AABcPgAARL4AAHC9AABPPwAAQDwAABQ-AADgPAAAZL4AAEQ-AADovQAAyL0gADgTQAlIfFABKo8CEAEagAIAAAy-AAA0vgAAJL4AAB-_AADIvQAAqD0AADw-AACgPAAARL4AAJg9AABEvgAALL4AAAS-AABMvgAAPD4AABC9AAAkPgAACT8AABA9AADWPgAAML0AAAQ-AAAEvgAALD4AABA9AAAMvgAAcL0AAIC7AABQPQAAmL0AAEA8AACYPQAAcD0AAPi9AAAMPgAAEL0AAJY-AAC4PQAAjr4AAAQ-AACAuwAA6D0AAHC9AADgPAAAmD0AAKi9AAB_vwAAcD0AAOA8AABQvQAAyD0AAES-AADIvQAA2D0AAFA9AAD4PQAAMD0AANg9AACAOwAAND4AALg9AAAsPgAAMD0AADA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=rDSK4SzqmdM","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13018176668317766046"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14686717975964391414":{"videoId":"14686717975964391414","docid":"34-1-12-Z9AC256F4837BED25","description":"What is Gini coefficient? The Gini coefficient is a measure of the overall extent to which these groupings of households, from the bottom of the income distribution upwards, receive less than an...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2111277/2a6106e9be268ede4891074ee7b58bf3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3abkGwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSsG3zISFEd8","linkTemplate":"/video/preview/14686717975964391414?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Gini Coefficient | Lorenz curve | Values of Gini Coefficient | Harpreet Kaur | Ecoholics","related_orig_text":"gini","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"gini\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SsG3zISFEd8\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NDg1ODI1NTM4ODcyMzMxNTUxChI3NTUzNDUzMDY2NzA1MDYzNzIKFDEyMDY0NzgyMDk1ODk4MzQ3MjI0ChM0NzM2NjU0MjE5MjUzNDc2Njk0ChM5NzA3NjQyMzc2MzMzODMyODEwChQxODI3NDkzNzI1OTYwMzQ0ODA2NgoTMTE5ODI0OTc4OTc3MTIyNzkyNAoTMTQ5NTkwNjU5NjU3NTY3NDY3OAoTMzM1MTg0NDM2MTcyMjU2NTI4OAoTNzE0MTQzNjUxMjQ3MzE4OTk2NQoTMzE3ODU4NTMyMDQ3MDI1NTEwNAoTNDQwNDYzNjE1NjE2MjU0NTIyMwoTMTIyNzM3NDA5NDc2NDIyMjM0NAoTMzg4OTk3NjUyMjk5MTAxNzIxNQoUMTAzMjgyMTc2NjA0ODc0ODM1MTgKFDE3NDkzMDU4MDk4MDE1MTY3MDMzChQxMzAxODE3NjY2ODMxNzc2NjA0NgoUMTQ2ODY3MTc5NzU5NjQzOTE0MTQKEzI1NDA1OTU4MzM0NTg0MzMyNTIKFDE0MDM1NDEwNjA0NDA4NTEwMzU0GhYKFDE0Njg2NzE3OTc1OTY0MzkxNDE0WhQxNDY4NjcxNzk3NTk2NDM5MTQxNGqIFxIBMBgAIkUaMQAKKmhoYm5ydGR3bHd0aWFjYWJoaFVDeTJtYW52R0RUUFBsa20wTjNnSVlUURICABIqEMIPDxoPPxPWBYIEJAGABCsqiwEQARp4gQkFCQb-AgDx_fwN_QX-AfD_Afv6__8A8QH_BfYBAADi9wf2Av4AAP0C-wYBAAAA_QYB-_r-AAAeCwD-8gAAAA0IBwP8AAAAAP8GC_4BAAD__Pv_A_8AAA0VCgEAAAAA8QoGEAAAAAD1BwL4AQAAAP_1Af4AAAAAIAAtXa7YOzgTQAlITlACKoQCEAAa8AF_-OYDAfoCA_EF3gDLBgsBkx0J_ycF8AC5DSMBxvjSAPgK_ADl7hf_Ne4uAfIfCv9R8un_HekO_wYFAQAhNvMA_hMlABXt9wEv_OMC6PXcAAHw9P5B5woACuoLAQsAAP0aCxL_1x_c_fTz9wQq8hoCGfAfAhjxDwIB6hn-5hoAAukC7AAMBAQA7wb3AdL_GQHiBwz-7Arz-dPX_QP28Nv_Fuj__QYC5vv-5_8B9OPvA-z1D_4HCPX6GfsdBfsS_goO-RcI_P7yAwoWCwAT6Bj7Bv4O_vP0A_8j_PoB-ecN_QPm-vsHDBAE1AUBAPj8BQUgAC2dajc7OBNACUhhUAIqzwcQABrABywrzb7IMN06vUgyvTBI-r15FUM9YWZpPDIA1L1hJiA9QqXbPNiLOjsb94E8U0MWvThpir7RDD087a59PDsZbD6uDOo8gowlPM0C7b12EIU95MAmPRU3Tr6tNOm8ZTpPvBWpiD4apSs9lEG_PJ87AT6PlCg9OxixPIVgdb0bFl69gX46vEOsLr4JQw69oKRlPB5w_T13gKu70e8Yu-AOFD7h9wU9BArQPPUlQDyHv6a8oGyKvDHn_jy8nGi92IkmPOerVD7wXZQ8bMkNPAp_qz2572K88K1-PNzHQL2zOM671tmavFjzLbx1ETU9euFOvGGLDT6k86s8ohl6PDJ9qr33iYg9cXxlu920GT49FtE8A2D6u7LknjsMpNU8hU3TPC3JJjv5SrA9t1TOugl8bz0mYwa9SVlQvFZakDxVcf48KpMWvGg6ATwZ5C68cYE6PN4Lwj3tVqA8U-4ZOjtu27t4gpi8XXSqO595NL1N00y9JNMfvI9tKT4CWmS9c6SOO50cxD0EuI-7pcMgvKQahj1hfEe9rqeMu7VGLr0UGUe9ButrOjNW9jy4m5u9liCnObjGjD0GzK09DezGO_Fum73Jy5q9Xm0BvPi5Sz04D0w8mTnuOw9IIr322HE8XRgiunDBiDwHlZ288HAavHFzjbsuYDg9Qa8HPJ-dwrs_dpg5G7P0umNMNT1QXya7dMI6vM0K4DwBlqa7IZ7bu7rpQD1sv4w7ZfoIOyMqOT2tJQ69JDZMOx4OfD1Mpoo8-yHlOQaYXj1-6zm9HiXNObcp_Tp_ukY9NfpOOfmY9DwkCi099ZcAOJtw8TuARDi9tsNpOKaX-L3zq6m9qjR1OOl_-b02ujm8lvRFOW84Ar3Z7q491MswOFsU7LwTLVS96aHFOag8VT0rrCo9FZmTuMKi4jwGuKC8HrEkuF5c9Lz1swI9PbuBuQ2wJb2KciG6xpYuOTzpEz2voSo9_9u1OHKuhz2zCju9YU4EOalm-zy0cYk9YM_ruHVHNbwd00k9-ywyt5EqijzMB8S8L6D-OLETgzy2sbO9FanpOADrzLh-Kji8Ry43OM3yK7zqA0697S2bOINmHD35w6o8kqDwOGn-2DyNzMi985AyOFqd3L31wEI9vBr9N5UuqD0huKA9fRwwuER4qrxBfYu8P3VCN3dIhr3s-C-9QGo_uGVSJjsgvNE8fAFjt16qSL066R2-tGP6uFUYpj1tC8U9g8fnOO_ys73aAgI-UPFguaAJoLrjvno8BGv0t94BHr0ZsY071QM-OCAAOBNACUhtUAEqcxAAGmBP_wAIFhnwxPMo5f75Cfj1CDTE-f4iADvp_-MFDPgA7Z-u8xb_Mv0M76UAAAA6AAEN8gD4e-bJtrHNAwTPrBIKCn_9CS26yDfnusfhCwzn4RUGEV4A1QvAAjjbxkjk_QogAC3yKRw7OBNACUhvUAIqrwYQDBqgBgAAAMAAAIhBAADgwAAAUMIAACTCAAAEwgAAoEEAAMjBAADAQQAAAMIAADxCAABwwQAAosIAANDBAACCQgAAmEEAAOBBAABQwQAATEIAACDBAAAMQgAAQEAAALhBAABoQgAAkEIAACBCAACgwAAAtsIAAIRCAADgQQAACMIAAPBBAACQwQAANMIAAIjBAACAwAAAIMIAAGxCAADIwQAAYMEAAHDBAAA0QgAAEEEAABhCAABIQgAAmMEAAEDCAADYwQAAokIAANjBAADgQAAAQMEAABTCAACgQAAAkEIAAMDBAAAwwgAAEMEAACzCAAAoQgAAAEIAAGBBAABAwgAAgL8AAIDAAABgQQAAiEIAACjCAACQwQAAkMEAABhCAACgQQAAisIAAP5CAAC4QQAABMIAAKDAAABAwQAAMEEAAFDBAADIQQAAwEAAAFBBAAAMQgAAuMEAABhCAAAAwAAAMEIAAJBCAACiwgAAcMEAAKBBAABwQQAALMIAAGzCAACAwgAA4MAAAGBBAAAAwAAAoMAAAETCAABUQgAAkMEAAJzCAAAEwgAAFEIAACDBAAC4QQAAYEEAAFhCAACAwQAAEMEAAGxCAAAIwgAAqEIAAHDBAABIQgAAYEEAAOhBAABAwAAAyMEAAKjBAACwwQAA2MEAAMxCAAAAwQAAgL8AAIjBAABgQQAArsIAABBCAADwwQAAMMEAAMBAAAD4QQAAwMAAAABBAACgwQAAUMIAAOjBAABAQQAAqEIAAK5CAACAPwAAcEEAAOBBAACYwQAAKMIAAJjBAABswgAAwMAAAJDBAACAwAAAwEAAAIBBAAAQwQAAMMEAAIDCAAAwQQAA_kIAAATCAABwwQAAeMIAAHTCAAAkwgAAwEAAAIBCAAC4QQAAsEEAAODAAAAQwQAAkEEAAJBBAACAQAAAAEAAAOBBAACAwAAAcMEAADRCAACUQgAAsMEAACBBAACAPwAAMMIAALBCAABAwgAAZMIAACBBAACgwAAAyEEAANBBAAAwwgAAOEIAAABCAADYwQAAHMIAAHDCAAD4wQAAoMEAANTCIAA4E0AJSHVQASqPAhAAGoACAAA0vgAAQDwAACQ-AABwPQAA4LwAAK4-AAAEPgAAOb8AAIi9AAAcPgAA2D0AACy-AAAcPgAAiD0AABC9AABsvgAADD4AAOg9AAAUPgAAET8AAH8_AADoPQAAuD0AAKi9AABkvgAA-L0AAEC8AACovQAAcL0AALo-AAA8PgAAHL4AAHC9AAAkPgAAJL4AAJg9AAA0PgAAUL0AAIa-AABUvgAAVL4AAIC7AACovQAA2L0AAKi9AAB0PgAAfD4AAJ6-AABcvgAABb8AAAQ-AABEPgAAfD4AAFQ-AACGvgAAcL0AAFk_AAAQvQAADD4AALo-AAAwvQAAur4AAEA8AAAcviAAOBNACUh8UAEqjwIQARqAAgAAXL4AACQ-AAAEvgAAQb8AAAy-AACgvAAAhj4AAKi9AAD4vQAA4DwAAOA8AACKvgAABL4AABS-AAD4PQAAQLwAAOA8AAAPPwAA6L0AAHQ-AACoPQAA2L0AAHC9AAAkvgAAQDwAALg9AAB8vgAAQDwAAHC9AABAvAAAED0AAHA9AACIvQAADL4AAHA9AABwvQAAMD0AAIC7AAAEvgAALL4AAPg9AABAvAAAED0AADA9AAAMvgAAqD0AAH-_AAC4vQAAUL0AABA9AABUPgAAoDwAAKC8AAAcPgAAmL0AAIg9AAAQvQAADD4AAMg9AACAuwAAqD0AALi9AAAQPQAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=SsG3zISFEd8","parent-reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14686717975964391414"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3301318558"}},"dups":{"6485825538872331551":{"videoId":"6485825538872331551","title":"What is the \u0007[Gini\u0007] Coefficient? | Full Guide with Definition & Limitations","cleanTitle":"What is the Gini Coefficient? | Full Guide with Definition & Limitations","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eYAG20CfbwU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eYAG20CfbwU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSFpWV0taeXUyTGZ3d0QwelpRMW1QQQ==","name":"MIM Technovate","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MIM+Technovate","origUrl":"http://www.youtube.com/@mimtechnovate","a11yText":"MIM Technovate. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":209,"text":"3:29","a11yText":"Süre 3 dakika 29 saniye","shortText":"3 dk."},"date":"12 haz 2025","modifyTime":1749686400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eYAG20CfbwU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eYAG20CfbwU","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":209},"parentClipId":"6485825538872331551","href":"/preview/6485825538872331551?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/6485825538872331551?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"755345306670506372":{"videoId":"755345306670506372","title":"The \u0007[Gini\u0007] Coefficient Explained in One Minute","cleanTitle":"The Gini Coefficient Explained in One Minute","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OUN93JwBAY4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OUN93JwBAY4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcHNyb0p3c1ZLUXZSSDNacWR2UmV0UQ==","name":"One Minute Economics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=One+Minute+Economics","origUrl":"http://www.youtube.com/@OneMinuteEconomics","a11yText":"One Minute Economics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":119,"text":"1:59","a11yText":"Süre 1 dakika 59 saniye","shortText":"1 dk."},"views":{"text":"19,7bin","a11yText":"19,7 bin izleme"},"date":"27 eki 2024","modifyTime":1729987200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OUN93JwBAY4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OUN93JwBAY4","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":119},"parentClipId":"755345306670506372","href":"/preview/755345306670506372?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/755345306670506372?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12064782095898347224":{"videoId":"12064782095898347224","title":"\u0007[Gini\u0007] Coefficient and Lorenz Curve","cleanTitle":"Gini Coefficient and Lorenz Curve","host":{"title":"YouTube","href":"http://www.youtube.com/v/y8y-gaNbe4U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/y8y-gaNbe4U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":495,"text":"8:15","a11yText":"Süre 8 dakika 15 saniye","shortText":"8 dk."},"views":{"text":"299,9bin","a11yText":"299,9 bin izleme"},"date":"16 nis 2019","modifyTime":1555372800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/y8y-gaNbe4U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=y8y-gaNbe4U","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":495},"parentClipId":"12064782095898347224","href":"/preview/12064782095898347224?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/12064782095898347224?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4736654219253476694":{"videoId":"4736654219253476694","title":"How to Calculate the \u0007[Gini\u0007] Coefficient","cleanTitle":"How to Calculate the Gini Coefficient","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=a5EEJMZKz9I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/a5EEJMZKz9I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa3dGYnpmbVByZVhydWdnNlFVeEtmdw==","name":"Economics in Many Lessons","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Economics+in+Many+Lessons","origUrl":"http://www.youtube.com/@EconomicsinManyLessons","a11yText":"Economics in Many Lessons. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":354,"text":"5:54","a11yText":"Süre 5 dakika 54 saniye","shortText":"5 dk."},"views":{"text":"79,2bin","a11yText":"79,2 bin izleme"},"date":"2 tem 2019","modifyTime":1562025600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/a5EEJMZKz9I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=a5EEJMZKz9I","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":354},"parentClipId":"4736654219253476694","href":"/preview/4736654219253476694?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/4736654219253476694?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9707642376333832810":{"videoId":"9707642376333832810","title":"Understanding the \u0007[Gini\u0007] Coefficient","cleanTitle":"Understanding the Gini Coefficient","host":{"title":"YouTube","href":"http://www.youtube.com/live/BwSB__Ugo1s","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/BwSB__Ugo1s?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRDJnY09US01ZUzYyRkJ4OTV5cmV2Zw==","name":"Singapore Department of Statistics (DOS)","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Singapore+Department+of+Statistics+%28DOS%29","origUrl":"http://www.youtube.com/@SingStatvideo","a11yText":"Singapore Department of Statistics (DOS). Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":314,"text":"5:14","a11yText":"Süre 5 dakika 14 saniye","shortText":"5 dk."},"views":{"text":"254,5bin","a11yText":"254,5 bin izleme"},"date":"28 mar 2018","modifyTime":1522195200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/BwSB__Ugo1s?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=BwSB__Ugo1s","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":314},"parentClipId":"9707642376333832810","href":"/preview/9707642376333832810?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/9707642376333832810?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18274937259603448066":{"videoId":"18274937259603448066","title":"\u0007[Gini\u0007] Coefficient | International Business | From A Business Professor","cleanTitle":"Gini Coefficient | International Business | From A Business Professor","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=D1IkosftXlc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/D1IkosftXlc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdlBXQlZRUzNtMUt0WEphTEtpam40UQ==","name":"Business School 101","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Business+School+101","origUrl":"http://www.youtube.com/@BusinessSchool101","a11yText":"Business School 101. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":538,"text":"8:58","a11yText":"Süre 8 dakika 58 saniye","shortText":"8 dk."},"views":{"text":"2,8bin","a11yText":"2,8 bin izleme"},"date":"11 eyl 2022","modifyTime":1662854400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/D1IkosftXlc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=D1IkosftXlc","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":538},"parentClipId":"18274937259603448066","href":"/preview/18274937259603448066?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/18274937259603448066?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1198249789771227924":{"videoId":"1198249789771227924","title":"What is the \u0007[Gini\u0007] coefficient, and what is it used for? | CNA Explains","cleanTitle":"What is the Gini coefficient, and what is it used for? | CNA Explains","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JFqsiFf0u_k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JFqsiFf0u_k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDODNqdDRkbHoxR2psNThmelFycktaZw==","name":"CNA","isVerified":true,"subscribersCount":0,"url":"/video/search?text=CNA","origUrl":"http://www.youtube.com/@channelnewsasia","a11yText":"CNA. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":419,"text":"6:59","a11yText":"Süre 6 dakika 59 saniye","shortText":"6 dk."},"views":{"text":"14,5bin","a11yText":"14,5 bin izleme"},"date":"22 şub 2024","modifyTime":1708598538000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JFqsiFf0u_k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JFqsiFf0u_k","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":419},"parentClipId":"1198249789771227924","href":"/preview/1198249789771227924?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/1198249789771227924?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1495906596575674678":{"videoId":"1495906596575674678","title":"Understanding \u0007[Gini\u0007] Coefficient with Vibhas Sir | NEXT IAS","cleanTitle":"Understanding Gini Coefficient with Vibhas Sir | NEXT IAS","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/e15WGVIXr5k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/e15WGVIXr5k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZ0tnQWFHYktTLVhXVUpHV3FQNVcwQQ==","name":"NEXT IAS","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NEXT+IAS","origUrl":"http://www.youtube.com/@nextias","a11yText":"NEXT IAS. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":64,"text":"1:04","a11yText":"Süre 1 dakika 4 saniye","shortText":"1 dk."},"views":{"text":"5,4bin","a11yText":"5,4 bin izleme"},"date":"11 eki 2025","modifyTime":1760140800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/e15WGVIXr5k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=e15WGVIXr5k","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":64},"parentClipId":"1495906596575674678","href":"/preview/1495906596575674678?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/1495906596575674678?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3351844361722565288":{"videoId":"3351844361722565288","title":"\u0007[Gini\u0007] Index | Decision Tree - Part 1 [Simplest Explanation]","cleanTitle":"Gini Index | Decision Tree - Part 1 [Simplest Explanation]","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=6614umIqeOc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/6614umIqeOc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDd3JGckloel9yaGRZaWlHOFd6WFp1UQ==","name":"Red Apple Tutorials","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Red+Apple+Tutorials","origUrl":"http://www.youtube.com/@redappletutorials6576","a11yText":"Red Apple Tutorials. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":556,"text":"9:16","a11yText":"Süre 9 dakika 16 saniye","shortText":"9 dk."},"views":{"text":"84,2bin","a11yText":"84,2 bin izleme"},"date":"14 ara 2017","modifyTime":1513209600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/6614umIqeOc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=6614umIqeOc","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":556},"parentClipId":"3351844361722565288","href":"/preview/3351844361722565288?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/3351844361722565288?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7141436512473189965":{"videoId":"7141436512473189965","title":"Understanding \u0007[Gini\u0007] Coefficient, Calculation \u0007[Gini\u0007] Coefficient, \u0007[Gini\u0007] Coefficient and Loren...","cleanTitle":"Understanding Gini Coefficient, Calculation Gini Coefficient, Gini Coefficient and Lorenz Curve","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5KvrsBk_3fk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5KvrsBk_3fk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDek5IQURYVmxYbWExOU9zN09kSVlXUQ==","name":"Jaweed Hassan Batooq","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Jaweed+Hassan+Batooq","origUrl":"http://www.youtube.com/@JaweedHassanBatooq","a11yText":"Jaweed Hassan Batooq. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1193,"text":"19:53","a11yText":"Süre 19 dakika 53 saniye","shortText":"19 dk."},"date":"30 mayıs 2020","modifyTime":1590796800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5KvrsBk_3fk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5KvrsBk_3fk","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":1193},"parentClipId":"7141436512473189965","href":"/preview/7141436512473189965?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/7141436512473189965?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3178585320470255104":{"videoId":"3178585320470255104","title":"\u0007[Gini\u0007] Index and Entropy|\u0007[Gini\u0007] Index and Information gain in Decision Tree|Decision tree splitt...","cleanTitle":"Gini Index and Entropy|Gini Index and Information gain in Decision Tree|Decision tree splitting rule","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-W0DnxQK1Eo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-W0DnxQK1Eo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaDhJdVZKdlJkcG9yckhpLUk5SDdWdw==","name":"Unfold Data Science","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Unfold+Data+Science","origUrl":"http://www.youtube.com/@UnfoldDataScience","a11yText":"Unfold Data Science. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":694,"text":"11:34","a11yText":"Süre 11 dakika 34 saniye","shortText":"11 dk."},"views":{"text":"175,7bin","a11yText":"175,7 bin izleme"},"date":"14 oca 2020","modifyTime":1578960000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-W0DnxQK1Eo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-W0DnxQK1Eo","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":694},"parentClipId":"3178585320470255104","href":"/preview/3178585320470255104?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/3178585320470255104?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4404636156162545223":{"videoId":"4404636156162545223","title":"\u0007[gini\u0007] coefficient explained / 2 Minute Economics","cleanTitle":"gini coefficient explained / 2 Minute Economics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=IGad0Vn1_Go","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IGad0Vn1_Go?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaEZ2V0lxcFlwblFVVFpmdEk5Q3c3QQ==","name":"Economics Matters","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Economics+Matters","origUrl":"http://www.youtube.com/@economicsmatters7507","a11yText":"Economics Matters. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":223,"text":"3:43","a11yText":"Süre 3 dakika 43 saniye","shortText":"3 dk."},"date":"16 eki 2020","modifyTime":1602864010000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IGad0Vn1_Go?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IGad0Vn1_Go","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":223},"parentClipId":"4404636156162545223","href":"/preview/4404636156162545223?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/4404636156162545223?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1227374094764222344":{"videoId":"1227374094764222344","title":"The \u0007[Gini\u0007] Coefficient","cleanTitle":"The Gini Coefficient","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pjeTlgkdXg0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pjeTlgkdXg0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDakh6aVNWekE3S04wYWRrUmJmWXNYZw==","name":"jodiecongirl","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jodiecongirl","origUrl":"http://gdata.youtube.com/feeds/api/users/jodiecongirl","a11yText":"jodiecongirl. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":345,"text":"5:45","a11yText":"Süre 5 dakika 45 saniye","shortText":"5 dk."},"views":{"text":"135,2bin","a11yText":"135,2 bin izleme"},"date":"5 eki 2011","modifyTime":1317772800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pjeTlgkdXg0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pjeTlgkdXg0","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":345},"parentClipId":"1227374094764222344","href":"/preview/1227374094764222344?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/1227374094764222344?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3889976522991017215":{"videoId":"3889976522991017215","title":"Calculating the \u0007[Gini\u0007] Coefficient","cleanTitle":"Calculating the Gini Coefficient","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=C6Nl9_9tRgM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/C6Nl9_9tRgM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRzNpN3Uyc0pJelpGZi1mTG5DRGkzQQ==","name":"Liam Malloy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Liam+Malloy","origUrl":"http://www.youtube.com/@liammalloy","a11yText":"Liam Malloy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":425,"text":"7:05","a11yText":"Süre 7 dakika 5 saniye","shortText":"7 dk."},"views":{"text":"117bin","a11yText":"117 bin izleme"},"date":"24 tem 2017","modifyTime":1500854400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/C6Nl9_9tRgM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=C6Nl9_9tRgM","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":425},"parentClipId":"3889976522991017215","href":"/preview/3889976522991017215?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/3889976522991017215?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10328217660487483518":{"videoId":"10328217660487483518","title":"\u0007[GINI\u0007] Index With a Simple Example - Gain in \u0007[Gini\u0007] Index (Decision Tree Induction Algorithm)","cleanTitle":"GINI Index With a Simple Example - Gain in Gini Index (Decision Tree Induction Algorithm)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=c9Yg4Mrjztk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/c9Yg4Mrjztk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVzk4N3JkRERjSHMzOHZtRk9NTmtfdw==","name":"TECHNOFUN","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TECHNOFUN","origUrl":"http://www.youtube.com/@TECHNOFUNS","a11yText":"TECHNOFUN. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":572,"text":"9:32","a11yText":"Süre 9 dakika 32 saniye","shortText":"9 dk."},"date":"17 kas 2018","modifyTime":1542412800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/c9Yg4Mrjztk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=c9Yg4Mrjztk","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":572},"parentClipId":"10328217660487483518","href":"/preview/10328217660487483518?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/10328217660487483518?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17493058098015167033":{"videoId":"17493058098015167033","title":"\u0007[Gini\u0007] Coefficient: Slicing the Economic Pie - Development Economics Series| Academy 4 Social Chan...","cleanTitle":"Gini Coefficient: Slicing the Economic Pie - Development Economics Series| Academy 4 Social Change","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DQje-4KRapo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DQje-4KRapo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSnNtdzJzZU5CTzBXeDM5ejhZQTNQQQ==","name":"Academy 4 Social Civics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Academy+4+Social+Civics","origUrl":"http://www.youtube.com/@Academy4SC","a11yText":"Academy 4 Social Civics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":282,"text":"4:42","a11yText":"Süre 4 dakika 42 saniye","shortText":"4 dk."},"date":"2 mar 2023","modifyTime":1677715200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DQje-4KRapo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DQje-4KRapo","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":282},"parentClipId":"17493058098015167033","href":"/preview/17493058098015167033?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/17493058098015167033?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13018176668317766046":{"videoId":"13018176668317766046","title":"#7 Decision Tree \u0007[Gini\u0007] Index in Machine Learning | Machine Learning Full Course Basic to Advance ...","cleanTitle":"#7 Decision Tree Gini Index in Machine Learning | Machine Learning Full Course Basic to Advance |TPT","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rDSK4SzqmdM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rDSK4SzqmdM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVW5ZdlFWQ3JKb0ZXWmhLSzNPMnhMZw==","name":"Tpoint Tech","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Tpoint+Tech","origUrl":"http://www.youtube.com/@tpointtechofficial","a11yText":"Tpoint Tech. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1191,"text":"19:51","a11yText":"Süre 19 dakika 51 saniye","shortText":"19 dk."},"date":"19 haz 2025","modifyTime":1750352281000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rDSK4SzqmdM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rDSK4SzqmdM","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":1191},"parentClipId":"13018176668317766046","href":"/preview/13018176668317766046?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/13018176668317766046?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14686717975964391414":{"videoId":"14686717975964391414","title":"\u0007[Gini\u0007] Coefficient | Lorenz curve | Values of \u0007[Gini\u0007] Coefficient | Harpreet Kaur | Ecoholics","cleanTitle":"Gini Coefficient | Lorenz curve | Values of Gini Coefficient | Harpreet Kaur | Ecoholics","host":{"title":"YouTube","href":"http://www.youtube.com/live/SsG3zISFEd8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SsG3zISFEd8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeTJtYW52R0RUUFBsa20wTjNnSVlUUQ==","name":"ECOHOLICS - Largest Platform for Economics","isVerified":true,"subscribersCount":0,"url":"/video/search?text=ECOHOLICS+-+Largest+Platform+for+Economics","origUrl":"http://www.youtube.com/@ECOHOLICS","a11yText":"ECOHOLICS - Largest Platform for Economics. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":726,"text":"12:06","a11yText":"Süre 12 dakika 6 saniye","shortText":"12 dk."},"views":{"text":"31,2bin","a11yText":"31,2 bin izleme"},"date":"6 ara 2022","modifyTime":1670351334000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SsG3zISFEd8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SsG3zISFEd8","reqid":"1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL","duration":726},"parentClipId":"14686717975964391414","href":"/preview/14686717975964391414?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","rawHref":"/video/preview/14686717975964391414?parent-reqid=1769838867148863-12553587226092321450-balancer-l7leveler-kubr-yp-vla-219-BAL&text=gini","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"5535872260923214507219","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"gini","queryUriEscaped":"gini","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}