{"pages":{"search":{"query":"log()","originalQuery":"log()","serpid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","parentReqid":"","serpItems":[{"id":"10976996452804996088-0-0","type":"videoSnippet","props":{"videoId":"10976996452804996088"},"curPage":0},{"id":"7571600836780285536-0-1","type":"videoSnippet","props":{"videoId":"7571600836780285536"},"curPage":0},{"id":"7830082392351449775-0-2","type":"videoSnippet","props":{"videoId":"7830082392351449775"},"curPage":0},{"id":"video-related-suggest-0-3","type":"relatedSuggest","props":{"title":"Bunlar aranıyor","columns":[[{"text":"Log grafiği","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Log+grafi%C4%9Fi&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Doğal logaritma","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Do%C4%9Fal+logaritma&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Log kuralları","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Log+kurallar%C4%B1&source=video-related-suggest&rq=1&src=int_discovery_recommender"}],[{"text":"Logaritma nedir","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Logaritma+nedir&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Log hesaplama","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Log+hesaplama&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"LOG fonksiyonu","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=LOG+fonksiyonu&source=video-related-suggest&rq=1&src=int_discovery_recommender"}]]},"curPage":0},{"id":"8656963995910585969-0-4","type":"videoSnippet","props":{"videoId":"8656963995910585969"},"curPage":0},{"id":"R-I-113683-5-0-5","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":5,"grab":"dGxvZygpCg==","statId":5,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","ui":"desktop","yuid":"3247849361765212090"}}},"isAdult":false,"position":5,"placement":"empty"},"curPage":0},{"id":"4445395765221431706-0-6","type":"videoSnippet","props":{"videoId":"4445395765221431706"},"curPage":0},{"id":"7767079940659926361-0-7","type":"videoSnippet","props":{"videoId":"7767079940659926361"},"curPage":0},{"id":"7053271034158960722-0-8","type":"videoSnippet","props":{"videoId":"7053271034158960722"},"curPage":0},{"id":"5038071766860444424-0-9","type":"videoSnippet","props":{"videoId":"5038071766860444424"},"curPage":0},{"id":"4492104543180505918-0-10","type":"videoSnippet","props":{"videoId":"4492104543180505918"},"curPage":0},{"id":"16204141382988967899-0-11","type":"videoSnippet","props":{"videoId":"16204141382988967899"},"curPage":0},{"id":"R-I-113683-5-0-12","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":12,"grab":"dGxvZygpCg==","statId":12,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","ui":"desktop","yuid":"3247849361765212090"}}},"isAdult":false,"position":12,"placement":"empty"},"curPage":0},{"id":"9226393431765810592-0-13","type":"videoSnippet","props":{"videoId":"9226393431765810592"},"curPage":0},{"id":"14108807468093584800-0-14","type":"videoSnippet","props":{"videoId":"14108807468093584800"},"curPage":0},{"id":"6805242242328194255-0-15","type":"videoSnippet","props":{"videoId":"6805242242328194255"},"curPage":0},{"id":"18408601991317161056-0-16","type":"videoSnippet","props":{"videoId":"18408601991317161056"},"curPage":0},{"id":"10762929386981784373-0-17","type":"videoSnippet","props":{"videoId":"10762929386981784373"},"curPage":0},{"id":"15306416043090727222-0-18","type":"videoSnippet","props":{"videoId":"15306416043090727222"},"curPage":0},{"id":"10023272982282718804-0-19","type":"videoSnippet","props":{"videoId":"10023272982282718804"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dGxvZygpCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","ui":"desktop","yuid":"3247849361765212090"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Dlog%2528%2529"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"4741112101098105887180","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["151171,0,25;126317,0,22;1281084,0,95;287509,0,56;1006024,0,95"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Dlog%2528%2529","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=log%28%29","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=log%28%29","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"log(): 2 bin video Yandex'te bulundu","description":"\"log()\" sorgusu için arama sonuçları Yandex'te","shareTitle":"log() — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y1a4f60649d83ccca0efcf6c77eca3ffe","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"151171,126317,1281084,287509,1006024","queryText":"log()","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"3247849361765212090","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1437540,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765212097","tz":"America/Louisville","to_iso":"2025-12-08T11:41:37-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"151171,126317,1281084,287509,1006024","queryText":"log()","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"3247849361765212090","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"4741112101098105887180","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":156,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"3247849361765212090","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1728.0__08d7da8c2bad1b707ab3442285ef2d22c008371a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"10976996452804996088":{"videoId":"10976996452804996088","docid":"34-3-2-Z7E1BA7B9117D9D80","description":"More Lessons: http://www.MathAndScience.com Twitter: / jasongibsonmath In this lesson, you will learn what a logarithm is and why they are important in all branches of math, science, and engineering.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3359710/834e9da5aa384434055f7dd16994b4f3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/V3aX_wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dmc8Ki0_yzWA","linkTemplate":"/video/preview/10976996452804996088?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"15 - What is a Logarithm (Log x) Function? (Calculate Logs, Applications, Log Bases)","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mc8Ki0_yzWA\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFgoUMTA5NzY5OTY0NTI4MDQ5OTYwODhaFDEwOTc2OTk2NDUyODA0OTk2MDg4apIXEgEwGAAiRBowAAopaGhta2xsZ2p4aWZna2RzaGhVQ1lnTDgxbGM3RE9MTmhuZWwxX0o2VmcSAgARKhDCDw8aDz8TixWCBCQBgAQrKosBEAEaeIHqBQL6_gIA7wUMBRED_QAJCf_49gAAAPUA9fQDAv8A_fgO__gAAAD3BQICAAAAAP356v7-_QAA_AP5_fsAAAAKAAf8_AAAAP0C9gT-AQAA8gcCDgT_AAAK9woCAAAAAOwO9P7_AAAAAhEBCAAAAAAF__r2AAAAACAALbqI1Ts4E0AJSE5QAiqEAhAAGvABfwD1A6YO5fwr_uYAFQbwALAPCQA6CwkB2vn_AM0X8wAfIfsA4e3qAQH7_QDqFBX_DgPwAADl-QDqBOP_UyL8_xD3CgAr5P4ACvn6_wMF3gACCf3_AAgJ_hvf-AEiGvEBHP4a_9MA5AD6AfkFC-wLAvMHEgTb__X_8ugf_vceEAMQ6_kAGwL-A-_7_PzwFBMABvIPA-31-Prp8AgE7wrvBA7p6fovBOcBCfj9CQ8E3QAY-fX9Cfz0Bxb7GgTpCvQCAucJAPMFCwQOCgP3NPX__fMBA_nt6A3_AwLvDP738PwDDQH_6OgG-tv98gnj6wEDIAAt9yVNOzgTQAlIYVACKs8HEAAawAcsK82-yDDdOr1IMr3D5r09wUsavRtLGDw-ibk9kKUqPVXFcbvUgQw-Ur2AvQLSwLu3DZO-G1QTPBu0HL39vXQ-klRLvQOx7DzUKU--rR5mvEfdc7wR_D--f2B4PRBEErxHzGc9forjPULooDswR888OLqPvfInKjxNsIm8i8GDvTTfe7tRzaY9ABsQvdaF6bzEHbU7JCVdvTU_o7wFweM9yTjmvRSMbzv1Yi09WVSfPHG74TvSzo-95ymhvBDf8Lu1jCQ-P77pvGRrhzwwdJk7w7ZlPQdVNDyk63g8JTZEvNaw_LsQZgm9GWJLPSUi_LzviO88uWeSPb8AjDxfk7q9amc9vLCl7Lw-6r896LT4PHYKj7cYPmK9drd8PRbfKzwSycY8Kk-FvEJDf7wPr5A8Hfp2OwUCuLwzLTY9ICpNPaUrHjudNp07EY1uvPGCxrtxcRa8I24pPEdI0Tsao9W9zsiAOr-qhDxmJAw9zzjDvGy7AbxpV8w9phMkPW0rCzyCBP87rNHhPO0tQLxwAS29r2SSvTiQIrs_wlU8qlN0vRoFd7x-SRO8rsi5Pb-gYDwTygw9mCSFvJhCsbsY7MY8OzO2vaDhLDunduY9XHyAvIKbnDtBuW092wNDPcUy5LtSXxY97GqyvOGHObxy7I-8iZNAPU2wLDs7iQy8BGkQvUEWnjuhl5s9nzmLvSSYTbt2D5q9yKUgvfWKRbrII6093hHfPAhVTbsqWSm8m1RUvW8d0juJVpM7sIWqvIoBlrs-YUQ95wN9vSeWvbgYVZA9eIsxPWDEEjltOZe8Tt6GPWWuT7rg-BW9Z1NkvVLrKbiml_i986upvao0dTgGlsg8KuQqPeWSEbmAVSS9Qrdyve4uDzojHyo9yEemvQOqgjjNI789SdWmPQvM2jZ7s7g7X_ZGPTSj3biRQok9ouM0vIaWkrhy4Zs90n5VvRQkfbkUo6g9bOr-OzroIDkjrIw99GwGvs9wpTkezrI8tiVXPatJTLeMCIA9S0zhPNKkHDi792u9_eWZPYFGMbnMyAq9s082vbaP1TiYKyg9KKcsvAyPiDgAiyG9WObtPZ0u3Djn8oA91YgqPaSBYDjISmc93CesPLOh-DVBR-u9bF5VvNQRrLegVMs99_HGvC2P1biXVhO-DCCsvTmN8TVmErU8XqHPvYC6sjfYS569wBqxPJTX97achsk7cDIAvcMdGTdqTxk-qW6ZPQgCMrf6iw-9f3aGvUFb57VgRqe9F4EQu5N02Tea3Um8LkB2PUAi_TcgADgTQAlIbVABKnMQABpgMQYALP8vGfjNQd_n-wgR3vYO--ja6v_2_gAFEgHq_wfNvQEV_1zAAu-xAAAAEv_UKwAAEGnn66oPDc70ob3pD-d_B_YavgAVuK7k3wgOAdr28Q9LANbmqRISAsgUIA8aIAAtqDkoOzgTQAlIb1ACKq8GEAwaoAYAABBCAACgwAAAjkIAADDCAAAIwgAAwEAAAKxCAADIQQAAyEEAAJDBAACAwAAAEEEAADTCAAAAQQAAoEEAABBBAAAwQQAAhsIAAK5CAADgwQAAEMIAACzCAAD4wQAA6EEAAGDBAADwQQAAMMEAALhBAAAwwQAAgEIAAOjBAAAUQgAAJMIAAEBAAAD-wgAAYEEAACRCAAB8QgAAQEEAAKBBAACAPwAAwMAAALBBAABQwQAAyEEAAETCAACgwAAAAAAAAOhBAAAQQgAAMMEAACjCAACYwQAAqMEAADhCAACowQAAVMIAADzCAABQQQAAAMAAAK5CAADIwQAApMIAANjBAAAAQAAAwMIAAEDCAAD-wgAAsEEAAFDCAACyQgAAIEIAAHDCAABgQQAAHMIAAMBBAAAYwgAAgEAAAHhCAABgQgAAksIAADxCAACgQAAA-MEAACRCAACQQQAAAEEAAEDCAACKQgAAgMAAAPDBAABMQgAADMIAANDBAAAYQgAAdMIAAPDBAABQwgAAPEIAAGRCAAAMwgAA8MEAACDBAADAwQAAAMIAACxCAABgwQAAQMAAADBBAAAMQgAAGEIAAPBBAADwwQAAQEIAABBBAAAwQQAAmMEAAMjBAACKwgAAgMEAAIDAAABYwgAAsEEAAJDBAADowQAAoMAAAPhBAAAQQQAAKMIAACxCAACAvwAATMIAAJDBAAAAQgAAoEAAAKhBAABAQAAAgMAAAGjCAAAkwgAAgMEAAFTCAABAQAAAPMIAAJDBAADQQQAAgEEAAFBBAACQQQAAmEEAABjCAACYwQAAREIAAKBBAADgQQAAUEEAAJDCAAAswgAAoMIAAAxCAAB0wgAA6EEAAJBBAAAwwgAANMIAAODAAAAYwgAAvEIAAMpCAACIwQAAMMEAAIA_AACQwQAARMIAANjBAAAowgAA4MAAAEBBAACAwAAAwEEAAJ7CAABMwgAAQMEAANBBAADQQQAAQMEAAIbCAAA4wgAAQMAAACDBAACAQAAAwEEAANhBAABwwQAAQEAAAEBCAAA0QgAAoEAAANBBAACQwSAAOBNACUh1UAEqjwIQABqAAgAAoDwAABS-AADgvAAAcL0AAHC9AAAlPwAAoj4AAFO_AADyvgAADD4AADS-AACuvgAAED0AACQ-AAB0vgAAcL0AAIC7AABAvAAAQLwAAOY-AAB_PwAAHL4AAFQ-AABwvQAARL4AAHA9AABUPgAATL4AADC9AAAwPQAAvj4AAPi9AACgvAAABL4AANg9AADovQAADD4AAKK-AAC2vgAAVD4AAIa-AAAsvgAA2D0AAES-AAA8PgAA7j4AAPg9AAAcvgAA4LwAAL6-AAAsvgAAZL4AAOC8AAA8PgAAML0AADA9AAA5PwAAuL0AAHC9AAAZPwAAcL0AAJ4-AAAUPgAA-L0gADgTQAlIfFABKo8CEAEagAIAAOC8AACePgAAPL4AAAu_AAB8vgAAEL0AAJI-AACuPgAAgLsAABw-AAAcPgAAJL4AAOA8AAB0vgAA6D0AAEC8AAAQPQAACT8AAMi9AADKPgAAQDwAACQ-AAAwPQAALL4AAHC9AAAUvgAAlr4AAAQ-AACGvgAAJL4AABA9AAD4PQAAdL4AAEA8AAA0PgAAur4AAK4-AAA0PgAAur4AAIC7AADgvAAAcL0AAKa-AABwPQAAPD4AANg9AAB_vwAA4DwAANi9AAAMvgAADD4AAKI-AADovQAAmj4AAFQ-AAAMPgAAuL0AACS-AACGPgAAiD0AAOA8AAAcPgAAPD4AAEy-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=mc8Ki0_yzWA","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["10976996452804996088"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7571600836780285536":{"videoId":"7571600836780285536","docid":"34-1-6-Z042D286849CA30A3","description":"See here, the meanings of the word log, as video and text. (Click show more below.) log (noun) The trunk of a dead tree, cleared of branches. (noun) A logbook, or journal of a vessel (or...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/934765/cb98069ec2b311669019c4e3c29f9ec3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0hpIvwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFbgwukQOkmc","linkTemplate":"/video/preview/7571600836780285536?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Log | Meaning of log","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FbgwukQOkmc\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFQoTNzU3MTYwMDgzNjc4MDI4NTUzNloTNzU3MTYwMDgzNjc4MDI4NTUzNmq2DxIBMBgAIkUaMQAKKmhoaXZia3R0bHhwcmRxaGRoaFVDN1UyWWEyd0xTZ1hoRHJwQkdMNE80ZxICABIqEMIPDxoPPxOnAYIEJAGABCsqiwEQARp4gfEFAwH7BQDu_xH6BwAAAAAD__j5_v4A-v4B-QQD_wD19wP_-AAAAAIH_wL9AAAAAwD0AP3-AQAI_f79AwAAAAr-CAQDAAAAEvn-EP4BAAD9_wIGA_8AAAMCCAcAAAAA7hL_B_8A_wAFDPkCAAAAAPX0-_8AAAAAIAAtEgbgOzgTQAlITlACKoQCEAAa8AFZGAcCqBcH-1jq-gH6-g0BgQUL_0oJ2ADNCtsBzgLpAAQcBwDb-BoAAfv9APD98f8E-fMAI_kLAAYEAQAOEwcACvn2ACDM-AE19gQAzf7X_gQZBQDm-DIADAMRAAz1DP4ZK_b-7gvgARH19AIM3wQEFgoVAfwBBQEN8g__BvYSAPECBf4h9wX_AgHq--IUGAHf-On-3BEKAQjyAQT8-Ov9FAX0ACUN7AEUGvgJ_wLhAP0QAv7wCRj8D-fyCeEJGPgE_Q_7_xT8_evw-fQZ7_4M7vcSBAHzB_wX6PEJANn6AfTzBvT0CQgA-voOCgvpBAEgAC1uJ0g7OBNACUhhUAIqcxAAGmBNBwAV6S7-__I19v3y_xHtBTQO8Ob-_yfoAAYd3vXzHuDVEQj_VP31_rMAAAAtEOwFFAADagXnvj7x5_vD6fMVAn8SLQzw9jLowqXa9vHi-wgR9kUA-t2zDv_pvjElJkEgAC21WzM7OBNACUhvUAIqrwYQDBqgBgAAQEAAAIjBAADgQgAAWMIAABxCAACAQAAAUMEAAHzCAADIwQAAkMEAABBBAABUQgAASMIAAOjBAAC4QQAAhMIAAAzCAAAMwgAAPEIAAAAAAAAQwgAAAMEAANhBAADcQgAAQEIAAABAAAAgwgAATMIAAGxCAACAQgAAEMEAANxCAAC4QQAAgD8AAAhCAACYQQAAEMEAALpCAABAQQAAwMAAAHDBAABgQQAAMEIAADDCAAAgwQAAQEAAADxCAADIwQAAGEIAAIDBAAAAwAAAQEEAACjCAAAQwQAADEIAAOjBAAAcQgAA4EEAALDBAACgQAAAwEAAAARCAACGwgAAkMEAAAhCAADowQAAgEIAAATCAACewgAAgEAAADBCAAAcQgAAssIAAIhCAADAwAAAQMEAAABBAAD4QQAAsMEAAMjBAABgwQAAkEEAADRCAABAwAAAWEIAACBBAABQwQAAkEEAAGhCAAAAwgAAzsIAAKhBAABgwQAAgL8AACTCAAAQwgAAqEEAAJxCAABkQgAAgMEAANjBAAAUQgAAUEEAAGDCAADEwgAADEIAACDBAAAcQgAAoMAAACRCAAAIQgAAhMIAADTCAADYwQAADEIAACRCAAAswgAANMIAAEhCAABUwgAANEIAACDCAACKwgAACMIAAMhBAACAQQAA2MEAAKBAAADowQAASMIAABzCAADgwAAAwEEAAIZCAAAIQgAAAEEAABBCAAAkwgAAEEEAAFzCAABMQgAAQMAAAMDAAACAwAAAwEAAAFRCAAD4wQAAwkIAAGBBAADIQQAAmEEAAODAAAAAwgAASMIAAJDBAADwQQAAMMEAAMDBAAD4wQAAFEIAAODBAABAQQAAoMEAAITCAAAowgAAyEEAAAAAAAAgQQAA4EAAAIC_AAAQwgAAgMEAAERCAABwwgAAsMEAAMDAAABwwQAA6MEAAMRCAADYQQAA0MEAADDBAAAAwgAAQMEAAIC_AADAQAAALMIAAADAAACAwgAAkEEAAKLCAAAQQgAATEIAAOBAAAA0wgAAPEIAAFDBAACgQQAAgL8AAEDCIAA4E0AJSHVQASqPAhAAGoACAADgvAAAbL4AAES-AACYvQAAFL4AAJo-AACOvgAAI78AADy-AAD4PQAAUL0AAN6-AACWvgAAPD4AAFy-AACIvQAABL4AAJi9AABQPQAALD4AAH8_AABcvgAAJD4AABy-AAAfvwAAHL4AAJg9AAAcvgAA-D0AAIg9AAC-PgAA2L0AAOC8AAB0vgAAiD0AAAS-AAAUPgAAgr4AAHS-AAAcPgAAyD0AABO_AACGPgAAmL0AAKi9AABEPgAAoLwAADS-AAAMvgAAnr4AAJq-AACGvgAAuL0AAIi9AADYPQAAFD4AAAs_AACgvAAAiL0AAPI-AAD4vQAAFD4AADw-AAAQPSAAOBNACUh8UAEqjwIQARqAAgAAML0AAIA7AAAPvwAAvr4AAAS-AAB0vgAAMD0AAJI-AAAwvQAAJD4AAGw-AADIPQAAgDsAAM6-AABQvQAAUL0AAJg9AAAXPwAAkr4AAFw-AAAMPgAAPD4AADA9AAAsPgAAoLwAAEA8AACavgAALD4AAFQ-AACYvQAABD4AAFA9AADGvgAAfD4AAIY-AAA8vgAAHT8AACQ-AADOvgAAQLwAAKo-AABEvgAA5r4AABw-AADGPgAARD4AAH-_AABQPQAAtr4AAJK-AADgPAAAXD4AAGQ-AABAvAAAgLsAAAw-AADovQAAcL0AAGQ-AACIvQAA2L0AAM4-AACIvQAArr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=FbgwukQOkmc","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7571600836780285536"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7830082392351449775":{"videoId":"7830082392351449775","docid":"34-8-15-Z3F27E64FAEB0482A","description":"log(-1), log of minus one, -1 log in complex analysis, minus one log, math is fun. Can we have a negative number inside of a logarithm? The answer is yes but the answer is not real! log(-1)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/402982/de42d0f73a9a33bfd8372f46afd77603/564x318_1"},"target":"_self","position":"2","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DgXhnx27Hww4","linkTemplate":"/video/preview/7830082392351449775?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"log(-1) | log of minus one | Negative one logarithm | log of a negative number | log of -1 | -1 log","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=gXhnx27Hww4\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFQoTNzgzMDA4MjM5MjM1MTQ0OTc3NVoTNzgzMDA4MjM5MjM1MTQ0OTc3NWquDRIBMBgAIkQaMQAKKmhoeGNxdWl3Z2puanNxcmJoaFVDT21CVnFMUkFFRXFGbGN5bTlmVzZEdxICABIqD8IPDxoPPxNbggQkAYAEKyqLARABGniB-gcABvoGAOECDPYF_AP_9QQH-vr-_QD3-_v9_gL_AP35Df_4AAAA_w0ACPsAAAD7_f4G_v4AAP_6-fsDAAAACggK_gMAAAAH-fwJ_wEAAP3_AgYD_wAAAgkEBQAAAAD6Df37_wAAAAMA-v8AAAAA8QEFAf__AAAgAC0r9eM7OBNACUhOUAIqcxAAGmAfCgArFxr46vEU2vDu-iAIBhUD8dffAAX8APEq_O7rC9-9BP7_KOkMAsUAAAAQG-Mp8wD1Tf_3tRsK6-zmyMwf93_4BNDsBwPatOXxAigB6wQbChsA3frz5A3-5Sz6DCwgAC03-lk7OBNACUhvUAIqrwYQDBqgBgAAEEIAABDBAADAQQAAwMEAAKBCAAAMQgAAKEIAALbCAAAgQQAAAMAAAChCAAC8wgAA8MEAAATCAACAQgAA-MEAAATCAAAMwgAAoEAAADjCAADwwQAA4EAAAEDAAAA4QgAAwEAAAIC_AAAwwgAAXMIAAPhBAABAwAAAQMEAACBBAAA4wgAADMIAAADCAABAQQAAAEIAALxCAACAwQAAVEIAAAhCAABAwAAAwEIAAMhBAACOQgAAlsIAAADAAAAsQgAAtEIAAIBAAACgwQAAoEEAALDBAABEwgAAAMEAAEDCAACewgAA-EEAACzCAABEQgAAgMAAAIjBAACAwQAAJMIAAOBAAACuwgAAIMIAAKbCAAC4wQAAAMEAAJZCAACwQQAAgMIAAOBBAAAoQgAApMIAAJjBAAAEQgAAEEEAAOhBAABkwgAA2EEAAKBBAAAEQgAAwEAAAGhCAAAwQgAAmEIAADxCAACqwgAAQEEAANJCAABwQQAAHMIAAJBBAADQwQAAIMIAAKBAAACMQgAAUMEAACTCAAAgQgAANEIAAIbCAACkwgAAAAAAACzCAABwQQAAMMEAAGxCAAAkQgAATEIAAEDAAACYwQAAAEIAAFBCAACAwAAAQMIAAIzCAABQwQAA6MEAAEjCAAAEwgAAqMEAAFBBAABgwQAAJMIAABDBAAAUwgAAsEEAAADBAACgwAAA0MEAALBBAAA0wgAArkIAABzCAAA4wgAAgMAAALLCAABwwQAAQMEAANBBAABAwAAAUEEAAOBAAAAEQgAA8EEAABxCAABgQQAAgsIAAHRCAADgwAAAEEEAAHBBAADAQQAAQEEAACjCAABYwgAA4EEAADTCAABQQQAAMEEAAIC_AADAQQAAYEIAAIhBAAB4QgAAkEEAAEBBAACgQAAAeEIAALDBAADAwAAA2EEAAABBAAC4QQAAYMEAAABAAABQQQAAgMIAAEDCAACAQAAAqEEAAKhBAABQwgAAEEEAAKBBAAAQwgAAQMEAAFDBAAAEwgAA6EEAAABBAACAvwAAAEIAAADBAADwQQAAuMEAACjCIAA4E0AJSHVQASqPAhAAGoACAAAwvQAAZL4AADS-AADWvgAA-D0AABE_AADgPAAASb8AADy-AAAQPQAAUD0AAP6-AABUvgAAyD0AAEy-AABsPgAAMD0AANi9AABEvgAAXD4AAH8_AAAwPQAAiD0AADS-AABcvgAANL4AAOg9AAAsvgAA6D0AAOg9AADePgAANL4AABC9AAAEvgAAgj4AACy-AABUPgAAXL4AANa-AABEvgAAQLwAAL6-AAB0PgAA6L0AAFA9AACOPgAAFD4AAIA7AACgPAAAB78AAIi9AAD-vgAAgDsAAGQ-AABsvgAAmD0AADk_AAAUvgAAcL0AAPY-AABAPAAAyj4AABQ-AABsviAAOBNACUh8UAEqjwIQARqAAgAAFL4AADA9AABcvgAA-r4AACy-AAAsvgAAyD0AAMY-AABQvQAAbL4AAKA8AACoPQAADL4AAFS-AADYPQAAED0AAAy-AAA1PwAAhr4AAMY-AAAEvgAANL4AANi9AABUvgAAPL4AABy-AADgPAAAND4AAPg9AAAsvgAA6D0AAPg9AAC2vgAALD4AAJ4-AABAPAAAZD4AAKI-AABsvgAAQDwAAJo-AADCvgAAtr4AAJg9AAAEvgAAMD0AAH-_AAC-vgAAjr4AAAS-AAAEvgAApj4AAJi9AAA0PgAAND4AAPg9AAAEvgAAhj4AABw-AAAEPgAAoLwAAMg9AABwPQAAhr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=gXhnx27Hww4","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7830082392351449775"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8656963995910585969":{"videoId":"8656963995910585969","docid":"34-8-1-ZAE73EFC08B9E6779","description":"Use the definition of the logarithm to rewrite it in exponential form. logarithm.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1523243/9c4b5dfd6f9af53c197fa658101d707a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2AaW-QEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"4","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2qEtpKOjXfM","linkTemplate":"/video/preview/8656963995910585969?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Write a Common Logarithm log(0.01) = -2 in Exponential Form (Definition of Log)","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2qEtpKOjXfM\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFQoTODY1Njk2Mzk5NTkxMDU4NTk2OVoTODY1Njk2Mzk5NTkxMDU4NTk2OWqGFxIBMBgAIkMaMAAKKWhodGdhaHJrZ2ZuZWxucmhoVUNtanAyTWVvdDA4MTQ3TGpGdFo3bklREgIAESoPwg8PGg8_Ez6CBCQBgAQrKosBEAEaeIEJBfr8AAAA6QYPAwQB_wAMAPv69gAAAPsFAQkIBP4A_fgO__gAAAD9__sG9QAAAPb--wj0_wEA-QX4BgMAAAAXBPz9AwAAABn99gT-AQAA-fj9BgT_AAANAQoFAAAAAPsH_vsG-gH_Cgv8DAAAAAD-A_0A-_T-ACAALRgE1Ts4E0AJSE5QAiqEAhAAGvABc-wV_sP9AwDq4_gAxiT3AIEKLf_8NtAAyREE_-0G8QHt9OUA4P3VAPTrD_-48gIATdzt_iHICAE-xeT_Fe7_AP7dKgEV2RkBLwAxARznAP34-Sz_A8P6AdjG4P8JDM7--vwUANXi6AQFMdUDGuQvAxMfG__p7Sv_Ap8BBwoQFwDi9db9AhHrC9_3C__E_iEBGvMI_hAfGvnm_t0E-SDsBeniCvQOFM4AK9UQAiL_DQXSBP36APkR9g3w9gC0DRf-DDQWAPkREfj2ugv9EeXxBgnr8fEJ8wIGLfv5Ahfw_P35_gXx6CkK7tLfFwTiFv_7IAAtUCMNOzgTQAlIYVACKs8HEAAawAfGNLO-rDkAPbtTDzzWAhu-EwPuPB52Or0N_v69Ug6mPIhdgDzRYO48VxIvPT4Ue738jLu-WlMPvMbqxbvLgDM-5tGIvZhiMzxi2Sy-cgKqO8NkCr31oWu-hNMHPXQ1w7ssEP09non6vNPeO7wdAPE99dUVvfmeMb0EF7O7zH1yPBaZSjvr5n29ia6Qvf4eIzwFw_k9MYtavQuIHz0BMSk-mvduvQ-Q-TyY7ZK72Ig7vPB2c7xHWoU8xI2APNuRA7zqr_c9MbJROshNAz2chLk7fjvJvOqrULwGYn69HaVcvATmvjqVdP-6lNlFuxyPI73wbmA9W1U7vVbYZ7yX5DC-RG8sPeyCZrzshu09jPeDPXJbkTsYPmK9drd8PRbfKzwmSBe85xGtvO-axjw3bNs9fuAPvekvz7yZ4mA8Nek7PTmfEzzdkMs93rBoPUbjmjzeC8I97VagPFPuGTp1DOO8DacMPBDL6jr-J3-9qNOROpeTqzzRk9I9fUXxu-jJq7wiPis95eegPdi69bq2A6K7kljSvCdNxbtTghU86KaovdtcCryhxoM9XIbJvMfbJbySMvM8AEs4PV15QbtHLU86QBYBPNaVR7sOPgM95zrIvS8zbDzPddC8lsY0PdQ_zjtPJ4Q9xu4KPALLW7yh_Bg90XxJPXYqKjxyU_87v4LUvTqLgzpjTDU9UF8mu3TCOryAY7K7lGD7PKDHpDsLJOg9qwEvvezJ0zkqWSm8m1RUvW8d0juS5g-9bEYBPU98b7ofotE9WPgfvXnRijhKoWc96QeaPPMaJzkyu7g7N6jdPZtsBDh1-YA962f7vFE5jbirPZG9GlIVvjBRCjrRKIi9mam_PBzF97U6RQK9TYk_PULJLzrWI6i8B7BtvUNsnLk_Pmm5yQORPDnKArn-8pk9zNVqu6_VxDgTCUu9WdqOvO-NJbl4c7K9drDVutzwizmJRQy9CAT6PW9xOrirzAo6y6spvQlVwrdZDYM98Q3FPN277ziOiik9bR-yPOZkWTcwLhG8qJtaPWNm-ridDkc7d58DvkPejLdiZE49cSEqPZocGrhr8em9edYkvO4vYDbfn1c90cdhve53qjhP1Gg9d342vRMJIzep0RU9s_9LvOXfUbfB4ys-3KVovAeJdLnsI2G9vyeYu13D5bfVXZm8EZeCvQdxA7g1Oba9812EOjgNXDe9rwU9pUkJvq2ehbiKllc9EFj5PY0XQDgxSFW95wjPPHnH-bgGoXy9YByBPGF8tTfkOaG9UtkjOkQd37cgADgTQAlIbVABKnMQABpgUfwAPvs04TTOSdr16QAU18zz2fytCf8Ewf_k7ef66erA7v0D_0_aKwSaAAAAXQfRMckABn_K-8hH6O8ItrixEvle6wMZxvtM4prdLC0n1_3c_QpPAADNtiIW-7E6FgU2IAAtiSQQOzgTQAlIb1ACKq8GEAwaoAYAACBBAAAAwQAAjEIAAJTCAABsQgAAAMEAAFhCAABQwQAAsMIAAFBBAABgQQAAwEAAABzCAADQwQAAFEIAAHBBAADAwAAA-MEAAIBBAABAwgAAQMEAAIjBAACYwQAAsEEAAHDBAADgQQAAoMEAAHDCAAB8QgAAIEEAAATCAAAkQgAAJMIAACxCAAD4wQAAqMEAAIjBAADCQgAAZEIAAADAAAAMQgAAEEIAAHBCAAAEwgAA8EEAAGDCAAAYQgAAwMEAAExCAADAQQAAoMIAAEBAAADgwAAAwMAAAOBBAACYQQAA0MIAABhCAADIQQAAWEIAAKBBAAAAwgAAYMEAAPjBAAC4QQAA8MIAAAAAAADgwQAAAMIAABzCAAC2QgAAoEIAAKLCAACuQgAAUMEAALDBAABYwgAAgL8AAABAAAAAwAAA-MEAAOBBAAAwwQAA8EEAAPBBAAAwQgAAsMEAAIJCAABAQgAABMIAAEjCAABcQgAAXMIAABDCAACEQgAAYMIAAEBAAAAoQgAASEIAAKDAAAC0wgAAFEIAAMhBAAAAwAAAJMIAAGRCAACAwQAAKEIAAEjCAAD4QQAAWEIAAKDBAADwwQAAJMIAAMDBAADGQgAA4MAAACDCAABAwAAARMIAACjCAABgwgAAMMEAAIA_AADgwAAAgD8AAHDBAABwwQAA6MEAAATCAABcwgAA0MEAALjBAABAQgAAgEEAADRCAAAAQAAAHMIAAEDAAAA8wgAAgEEAAIC_AAD4QQAAwMAAACxCAACgQAAApMIAAARCAACQQQAAYMEAACBBAAAoQgAAoEAAAKDBAAAIQgAAoMAAAADAAAB0wgAAHMIAAFDBAABwwQAA2EEAAABAAAAQwgAAgL8AAODAAABowgAAUEIAACRCAAAwwgAAAMIAADBBAACIQQAAoMEAAITCAADYQQAAkMEAAFTCAACQQQAAqEEAABjCAACwwQAAmMEAAETCAABcQgAAbMIAAGzCAACQwQAAiMEAADxCAACgQAAACMIAABxCAACYQQAAAEEAANhBAABIwgAASEIAAMDBAAAIwiAAOBNACUh1UAEqjwIQABqAAgAAMD0AALa-AACgPAAABL4AANi9AAADPwAAXD4AADO_AADKvgAADD4AANi9AACGvgAALD4AAJI-AABEvgAALL4AAHA9AAAwPQAANL4AAC0_AAB_PwAAQDwAABS-AACovQAApr4AADw-AACIPQAAmr4AADA9AAA0PgAAVD4AAJa-AAAkPgAAZD4AAEQ-AACIPQAATD4AAFC9AABsvgAAqD0AAGS-AACmvgAAjj4AAMi9AAAUPgAAiD0AAOC8AACOvgAADD4AAL6-AAAQPQAAML0AAJI-AACuPgAAfL4AAIC7AAA_PwAAyL0AABA9AAAVPwAArr4AADC9AABsPgAAMD0gADgTQAlIfFABKo8CEAEagAIAAFS-AAC4PQAABL4AABu_AACAOwAAJD4AAKY-AAA8PgAAFL4AAKg9AADoPQAAHL4AAMi9AAA8vgAAnj4AADC9AAAsPgAADz8AAMg9AADuPgAAyL0AAOg9AABwPQAAqL0AAEC8AAAEvgAA4LwAAIA7AADgvAAA-L0AAIC7AACYPQAAgr4AABC9AAA0PgAAir4AANg9AACKPgAAgr4AAKA8AACYvQAAiD0AAOA8AACYPQAA4DwAAFw-AAB_vwAAXL4AAOi9AACYPQAAQDwAAEQ-AAA0PgAAuD0AAIg9AABwPQAAgDsAANi9AABcPgAAiL0AALg9AAB8PgAAmD0AAPi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=2qEtpKOjXfM","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8656963995910585969"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4445395765221431706":{"videoId":"4445395765221431706","docid":"34-10-6-Z324878FD7D46E47A","description":"Simplify a logarithmic expression by applying the properties of the logarithm. Simplify a log. Playlist for logs and their graphs: https://www.youtube.com/playlist?list...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/906644/e0032c00ae24b5d3aa1259f45bc77f0e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/YfymMgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWIUmjCWdJBw","linkTemplate":"/video/preview/4445395765221431706?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simplify 1/3 log(27) - 1/2 log(36) a Common Logarithmic Expression (Properties of the Log)","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WIUmjCWdJBw\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFQoTNDQ0NTM5NTc2NTIyMTQzMTcwNloTNDQ0NTM5NTc2NTIyMTQzMTcwNmq_DxIBMBgAIkMaMAAKKWhodGdhaHJrZ2ZuZWxucmhoVUNtanAyTWVvdDA4MTQ3TGpGdFo3bklREgIAESoPwg8PGg8_E2mCBCQBgAQrKosBEAEaeIH1BAD4_AUA6gYOAwMB_wALAPv69wAAAPIB9wIHAf8A9fcD__gAAAAEBvcBAgAAAAMB-QXz_gEABAH2_gMAAAAN__0HBAAAABP3CQr-AQAA7vT9CwP_AAADAggHAAAAAP0G-fz6_gABBxDw_AEAAAD7-gEDAAAAACAALSvk3js4E0AJSE5QAiqEAhAAGvABc-wV_s8KAwHZBPcAvS0KAIEKLf_8NtAA0wb3AdIG3gHt9OUA9AXc_wL0DAC1CAH_Tdzt_gTFFv8-2_wAIOXtAOvlFgAksh8AIhQxAv4F5_8VETL_Befz__3E3QAcDuT9_BIL_dX14gAFHuMAJvsxAewLGgbk4xoBAp8BB94DCwHi9db98hb6B_HvB_fVHCICO-0YBSUeEvzlGvP38w7w-vLUJf8IMNP9FeUSDw4UAAPSBP36CAH--g3_AACy9Qj-MSAg_vX1Du72ugv9NPX0BusO6_nu7PoLEgoJ_vni8AMKBQvs8Az7_NLfFwTeCPTrIAAtUCMNOzgTQAlIYVACKnMQABpgVPAAFQst7zwWQOHc3QdA6t4NzBfhFf8e9P_oFw7zE_ni4A_0_0e3CvemAAAAPQbrKO4A73TtFtQl_uApvrfFHehy8AgLnBIj08bNOPEi8PH5IDV_APHpuCIW8bgwGu8UIAAtUkocOzgTQAlIb1ACKq8GEAwaoAYAAHBBAABQwQAATEIAAKjCAAAYQgAAAEEAAIhCAACAwAAAfMIAAJhBAABAQQAAQMAAAKDBAABAwAAAOEIAAHDBAABQwQAA0MEAALhBAABowgAAJMIAAEDCAAAwwgAAREIAAKBAAAAIQgAAHMIAACDCAAAAQgAANEIAAEjCAABQQQAAMMIAAPhBAABkwgAADMIAACDBAADWQgAA4EEAAABAAAD4QQAAoEEAAFBCAAAgwQAAGEIAAKDCAADIQQAAgL8AAIpCAADIQQAAdMIAAIBBAADQQQAAgEAAAARCAACAwAAAwMIAAEhCAAAAQAAAkEIAADxCAABkwgAAIMEAABDCAADgwAAAjsIAALDBAAAAwgAAyMEAAFDCAACkQgAAhEIAAJzCAADOQgAA4MEAACzCAAAwwgAAiMEAADBBAACwQQAAUMIAAOhBAAAwQQAAiEEAAOhBAABsQgAAcMEAAPhBAAAUQgAA-MEAAFDCAABcQgAACMIAACDCAAAAQgAAPMIAAMBBAAAEQgAAkEIAAIhBAACewgAAKEIAAMBBAAAkwgAAGMIAAPhBAAAgwQAAFEIAAEDCAABMQgAASEIAAIC_AAAEwgAALMIAAIjBAACiQgAA2MEAAHDCAADgwAAAQMIAAATCAABAwgAAoMEAAIA_AADQQQAAAAAAAFDBAAD4wQAAGMIAANjBAABAwgAA-MEAADDBAABAQgAAIMEAAJBBAADIwQAAcMEAAJDBAABgwgAAmEEAAKBBAABgQgAAIMEAAFBCAABAwAAAUMIAAGBBAACQQQAA2MEAAAAAAAA4QgAAyEEAAGDBAAAAQQAAYMEAAMDAAACmwgAAhMIAAJhBAAAAwAAASEIAAMBBAAAIwgAAAEAAAIDBAAAwwQAAnEIAACRCAADYwQAACMIAAOhBAAAwQQAAkMEAAGTCAACgQAAA8MEAACjCAAAEQgAAREIAAEjCAAAgwgAAcMEAAOjBAABcQgAAiMIAAFzCAADIwQAAwMEAAKBBAACAQAAAMMIAAJhBAACgQAAABEIAAMBBAABUwgAAdEIAANDBAAAwwiAAOBNACUh1UAEqjwIQABqAAgAAUL0AAOi9AACAOwAAPL4AAIC7AAB0PgAAbD4AAFG_AAAMvgAABD4AAOi9AABUvgAAoLwAAJg9AAB8vgAAqD0AAIK-AAAwvQAAiL0AAKI-AAB_PwAAED0AACw-AAAEvgAAFL4AAAQ-AAB8PgAAVL4AAOA8AACgPAAAgj4AABQ-AAD4vQAAmL0AABQ-AACAOwAAJD4AAEA8AACKvgAAVL4AAHy-AAAEvgAAyD0AACS-AABQvQAAEL0AAEw-AABQvQAAcD0AAJK-AAC4PQAAPL4AAOA8AAAcPgAADL4AAOC8AAAHPwAA2L0AANi9AACmPgAA4DwAADw-AACOPgAA2L0gADgTQAlIfFABKo8CEAEagAIAAKA8AADoPQAABL4AAD-_AAB0vgAAqD0AAOg9AACaPgAARL4AAGQ-AADYPQAAkr4AAAy-AABsvgAA2D0AAHC9AACgvAAAEz8AAIC7AACuPgAAoLwAAEA8AACoPQAATL4AADC9AACgvAAA-L0AANg9AAAMvgAAEL0AAJg9AAAQvQAAQLwAAPi9AAC4PQAAjr4AAJg9AACiPgAAhr4AADQ-AAAMPgAAqL0AAKi9AACgPAAA-L0AAKg9AAB_vwAAoLwAAIi9AADoPQAAgDsAAOA8AAC4PQAA2D0AAIo-AACgPAAAEL0AABw-AABQPQAAuL0AALg9AACGPgAAyD0AAIC7IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=WIUmjCWdJBw","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4445395765221431706"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7767079940659926361":{"videoId":"7767079940659926361","docid":"34-6-13-Z771C8403787B60A9","description":"Logarithms of complex numbers : How to find Log(-x) in general and log(-1) in particular Complex numbers prerequisite- A Basic introduction link • Complex Numbers for quick recap : Modulus ...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2973895/49d421101ea45ce32e9b1145fdc1d0dc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lZhGbgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_GUVreTw354","linkTemplate":"/video/preview/7767079940659926361?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Logarithms of complex numbers : How to find Log(-x) in general and log(-1) in particular","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_GUVreTw354\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFQoTNzc2NzA3OTk0MDY1OTkyNjM2MVoTNzc2NzA3OTk0MDY1OTkyNjM2MWqECRIBMBgAIkUaMQAKKmhodXllZ3VremxuenRkcWJoaFVDTzBzNzhYTHVvZjlIS1NNcFVzeE1zZxICABIqEMIPDxoPPxOXA4IEJAGABCsqiwEQARp4gfn3BwME-wDjEwr8DP4A_wj_AO73__8A8AL2AggB_wD9-A__9wAAAA0RCgMEAAAA_fjp_v79AAAG_ff0BAAAABD9CvH9AAAAEAD7B_4BAADs8v0MBP8AAAoLDgoAAAAA9wr_CfwAAAAI-_sGAAAAAPP7B_z_AAAAIAAt_JnHOzgTQAlITlACKoQCEAAa8AFk_ij42ee6AZ7wBwAMEUUDxyM0ACo30wCL_gEAgRrc_ucLBwABwwQB-uH5_8kr-QDZCK7_tBcE_xfUIv86MNYBFPbVAQzY6QJVG0D_OsPi_twL-_4QD_0DIeut_jxR7v3-2Dn_efUBBBAU2QMkFBb-Ny4wB_3CBfzd9g0F_SPJ_dXs6f0lFQoG1qMd_a_-LAEPteMG2dkt_JMFCgD24fQBGQAM9Owo4Pb9DsP6CyHoCADRCQMMF9wEAyIKFd0C6Avb1Sr_06ry-Bnp_P8s6Afz2RnqDAGU9AREEiMNIATtDOXPAPKuwAsAtB_gAC9O9wIgAC3SYNE6OBNACUhhUAIqcxAAGmAp8QA98R_n--YM7N7hIxL7wQjk9dEE_-rDAPIm7gIQINTJCQn_NNb14qwAAABBBNQ53gAQaub94D0K5ODRmwkG4X_e9RHR2z3txL_0GxDz7vk9HVMA4vDDFEEnwx33FjwgAC3JniU7OBNACUhvUAIqjwIQABqAAgAA2D0AAAW_AAAEvgAAyL0AAFS-AAABPwAAED0AAE-_AACKvgAAMD0AAJa-AADqvgAALL4AAEw-AAADvwAABD4AADC9AABAvAAAoLwAAM4-AAB_PwAA2L0AAJi9AAAkvgAAZL4AAKC8AAAsPgAAXL4AAEw-AACAOwAAhj4AAJa-AAAcvgAAyD0AAOg9AAC4vQAAlj4AAN6-AADCvgAAVL4AAJK-AAAQvQAAHD4AAEy-AADIPQAAyL0AAMg9AACAuwAAND4AAMK-AAAwPQAAmr4AAHC9AABsPgAAkr4AAOC8AABRPwAAgr4AANg9AADWPgAAPL4AAFw-AABMPgAAsr4gADgTQAlIfFABKo8CEAEagAIAADy-AACYPQAAuD0AAP6-AADIvQAAnr4AAEC8AABMPgAALD4AACy-AAAQPQAAmL0AAKA8AABcvgAADD4AAIC7AADYPQAACT8AAJi9AACGPgAAFL4AAHC9AAAkvgAAmL0AAAQ-AACovQAA4LwAAIA7AAAUPgAAML0AADC9AABkPgAAdL4AACw-AABMPgAAQDwAAJo-AACePgAAfL4AAEC8AAAwPQAAHL4AAIa-AABwPQAAUD0AAHy-AAB_vwAAPD4AAIK-AAAMvgAAgDsAAIg9AABwvQAAiD0AAKi9AADoPQAAcL0AAEC8AACIvQAAyD0AABC9AACevgAAQLwAABA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=_GUVreTw354","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7767079940659926361"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7053271034158960722":{"videoId":"7053271034158960722","docid":"34-1-0-ZFAE57337F800EB4D","description":"This one has a solution that is not so nice. We solve the equation log(x) + log(x - 2) = 2. We get two possible answers and we check them to see which is correct. I hope this helps someone...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/918064/09e78f6dc95623e31997b3013bbc2dda/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zyX1QwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmM3D-7hC6tc","linkTemplate":"/video/preview/7053271034158960722?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Equation with Two Logarithms: log(x) + log(x - 2) = 2","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mM3D-7hC6tc\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFQoTNzA1MzI3MTAzNDE1ODk2MDcyMloTNzA1MzI3MTAzNDE1ODk2MDcyMmqIFxIBMBgAIkUaMQAKKmhoenpsYmpub211Z2hidmJoaFVDcjdsbXpJazYzUFpuQnczYmV6bC1NZxICABIqEMIPDxoPPxPJA4IEJAGABCsqiwEQARp4gfEFAwH7BQDqBg4DAwH_AAYG-AD3__8A__r4_QYE_gD9-Q3_-AAAAP8GAf8FAAAAAQT7A_3-AQD__PUEAwAAAAEABvf9AAAAB_P6A_8BAADvAQX_AwAAAP7-CgH_AAAA8wv__vv_AAD-Cf8DAAAAAAX8-f4AAAAAIAAtEgbgOzgTQAlITlACKoQCEAAa8AF_EwQD0vvT_-cK7QDn9wwAnBMM__0v1gDW--kBxOziAQTz8QDv8OcA9Qv-AM8T9QAP4dMAAN73AC_vAP8xzAoA_QYEAR3z5AAoACoBCAgFAO0JIwAP7P__9d67AAgK1f4M-QP7EfnGAe8DxwIO_jkB9N06AhreEP7fzwsB-gTo_vj74QD4HwUE_dkWAOsHIgEcz_7-AAP6-MIP5wH4Cf_55wsY9wcq2f4O4e4LKxkGAMzo_gX84goNFB4g_9ET7f7b8yoFy_8B9v3zEfkm6fgA0_vyDRLi-gkABwcCCwD2_BLf7gLhF_L05x_9BugX4vMgAC0EuiI7OBNACUhhUAIqzwcQABrAB7vu1b7bGSa8gvFCO_cL0bx62UA8eGz6vF4eIb2cU-Y7KuK0PPa2ST6SUoq9UVcNPTNIq72ueHQ9hnCxvMuAMz7m0Yi9mGIzPHE9Wr7nFr89hUyovBeho70Z9K880wUrPMy-kb3xtKG8avTuO5V6Wz0qnxc6_sG2PMlXwrzmDAA9Qu4CvbGczryXnEm8tu1gvbd_hb3n09m80I_QOncx7T2PACm9dpYRPLdXSz1WdNa7xqcgvWsRsb3HyMg8HxHTvIRZEj2451k9YiAZPFj-vL3F2Z69KktfO09mMr0KQn49s5etPKbFjz3AnBQ90JEFPPBuYD1bVTu9VthnvK35Ab5UpZI8IdHfOyrRiD2KDQw9LKbIPHya072xoiY9fV6xvBLJxjwqT4W8QkN_vITtTD3k82o9VJD6PMhtarvMkZk7riKKOwp6qb0g7R89iVN3PNnN7D2A9O2911g_uhy2TT2Qrgi9EmmbvNyLHr0D0n48icAJvCJ7M71suQ49u2DTO5uoijy6JNi8EeZRPMU1Qz34UQ2-CW8su87yBr2QOIq9nMtDvNCg_DxQidA8inEAvE7wzT1mM-e9_1cAPCu0PTxfARa8o8SVOlU4Pb0dFhO7f-CmuxmBQr0jsQ69MVIYvPxlgb2OoVI83-tavF2iP72SPHw9WDA7vGwB57swR--9P5qgutW8eT2bffo5gtA0O087_D3NCMo6c-oEt1qzWj09dpG96obYutHVkb31Nqy8IifhOn0j2r0Ey5G9NlyBOaGd0z1RgZi9l51RORXKQjzKsWs9m8zqOY4Kl71a8RE7qdCNOAZ2Jj3q24i9As1mOO-rEj3OpgO-FqHWtyCYkz02gw274hrzOdB03TvsI7Y9FVQhuGsewb3ErqK9WfgiOPQA8bsNPBK9ni2sNo-ggj3oijK6Qr4iOF5c9Lz1swI9PbuBuTAmQj3pMiu9J0wAuTrW2js5D2c91DnfN-ci2TwDzPy9UknIOXklN7hUZB49nqiSOINokrzkgx49p2upN9yUHD1OopQ9usCHN7g-rLxsBvi9ef8guMSr0TwYXcE7Q7ZVuMrhA74Q1x48l_1ON5o8ijwqE8g8T0wLuSm6BL2FLZG8S50HuWpTgD0bAAA9VyVDODpd1j3sSo07HPtJuc3Her3TFey95pv4uNVdmbwRl4K9B3EDuE03JL2Nu8w9rO4ON72vBT2lSQm-rZ6FuMr0cD0i4Ss-8cuKOB44gr0z8549nOfyuKdaC77Mmhi9Cpd0uM4rqLz6qQc6PVXjNyAAOBNACUhtUAEqcxAAGmAr_QBEGT7VHAMO4u8kDCG43wf45Mfh__3iAAEm-uIVCeHKAwD_TND49KoAAABM8-snJQAHcAIC5Fbeyum0mrsWDn_r_yK7-xju094mCiDo9-DyDF4AyfG2G_8Pxh4MFx4gAC3pSiA7OBNACUhvUAIqrwYQDBqgBgAAgEIAAIDBAACOQgAA6MEAAFDBAAAgwQAAnkIAAMDBAACOwgAAoEAAABRCAACowQAAsEEAANjBAAAAAAAASEIAAI5CAADIwQAAQEIAANjBAABwwQAAGEIAAPDBAAAAQAAAfMIAAEDAAADYQQAAiEEAABxCAACAwQAAIMIAALBBAACSwgAAoEAAANDBAAD4QQAAwEAAAKJCAACgQAAAkEEAAIhBAABQQQAAqEIAANjBAAAgQQAAgsIAACBCAAAAAAAAaEIAAAAAAAAgQQAAIEEAAODAAABwwQAAHEIAAIhBAADYwgAAAAAAACRCAACCQgAAcMEAAKDCAADIwQAAFMIAAEDAAAAAwwAAcMEAAEBAAABAwAAA4MEAAFBCAACUQgAAHMIAAMhBAADQwQAAwMAAAJjBAADoQQAAGEIAACBBAAAAQAAAVEIAAPDBAAAAwQAAAEAAADxCAABAwAAAeEIAAFRCAAAgQQAAEMIAAChCAABswgAAEMIAALhCAAC4wQAAIMEAAJBBAACAwQAABMIAAHjCAACgwAAAAMAAALBBAABgwQAABEIAAMDBAACYQQAAuMEAAGDBAABQQgAAgMEAAKBAAACoQQAAfMIAALBCAAAkQgAAAMIAAMDAAACYwQAAWMIAAGTCAACAwQAA4EAAAKDAAABUwgAA0MEAANBBAAC4wQAAcMEAAFzCAABAwAAAmMEAAJRCAACwwQAAYEIAAIC_AADAwAAAIEIAAETCAADYwQAAoEEAAGRCAABwwgAAgEIAADxCAAA4wgAAgEIAAIC_AACgQAAAgMAAACzCAADYwQAAEMIAAMBBAAAwQQAAOMIAAATCAADYwQAAIMIAAFzCAAAAwQAAAMIAAAjCAADAQAAAcEEAAJDCAADIwQAASEIAAHDBAAAAwgAA4MEAAEBAAABkwgAAcMIAAIxCAADgwQAAAMIAAEDBAAAAQgAAnsIAAEjCAAAAwgAAosIAAJBBAABwwgAAKMIAABBBAAAkwgAAikIAAOBBAADAwAAAkEEAADBBAAAIwgAAYEIAAMjBAACAPwAAAMEAAKDBIAA4E0AJSHVQASqPAhAAGoACAADiPgAAmL0AAHy-AAB8vgAAMD0AAL4-AAAMPgAAf78AAEA8AACAuwAA4LwAAMq-AAC6vgAA0j4AAL6-AABAPAAAkj4AAKC8AAA0vgAABz8AAE0_AAB0vgAAQLwAADS-AAB8vgAAQDwAABw-AAC-vgAADD4AAJi9AACaPgAAyL0AAFA9AABwvQAA6D0AAAS-AAD4PQAAFL4AAKa-AABQvQAADL4AADA9AAAwvQAAJD4AABS-AACgvAAAuD0AADS-AACYPQAANL4AAKi9AADIvQAAEL0AAJo-AABsvgAAmD0AAB0_AAB0vgAAiL0AAFQ-AACWvgAAkj4AAGw-AAC4vSAAOBNACUh8UAEqjwIQARqAAgAAZD4AAPg9AADIvQAAFb8AAHy-AAAQPQAAvj4AAIY-AADoPQAADD4AAJY-AACIvQAAML0AAIq-AAAUPgAAQLwAABC9AAD-PgAAor4AAL4-AAA0vgAA2L0AAFS-AAC4vQAA6D0AAKi9AADovQAAmD0AAKC8AABwvQAAgLsAAKg9AADCvgAAoDwAADQ-AADYvQAAND4AAJI-AADOvgAAoLwAALg9AADgvAAADL4AAJg9AAAQPQAAuL0AAH-_AACKPgAAgLsAAHy-AABEvgAATD4AAHC9AABwvQAA-D0AAAQ-AABwvQAAyL0AAOA8AABwPQAA4DwAAIC7AAAsPgAAUD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=mM3D-7hC6tc","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7053271034158960722"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5038071766860444424":{"videoId":"5038071766860444424","docid":"34-0-16-Z302E90DAE53239DD","description":"In this video I go over a very useful example on derivatives of logarithmic functions but this time look at how to make simplify the derivatives by applying some very useful log rules before...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3962496/c2e13202bca6f11893366758e0ad57c0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/L8mYAQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DX2mv1_xHOIk","linkTemplate":"/video/preview/5038071766860444424?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivatives of Logarithmic Functions: Example on using Log Rules","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=X2mv1_xHOIk\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFQoTNTAzODA3MTc2Njg2MDQ0NDQyNFoTNTAzODA3MTc2Njg2MDQ0NDQyNGqIFxIBMBgAIkUaMQAKKmhodmRlemlteGNpanl2aGRoaFVDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdxICABIqEMIPDxoPPxOkBIIEJAGABCsqiwEQARp4gfQDAv7_AQDwDQ_7BwL_ABT9_AD2AQEA8vr9_AcB_wAB-QD3-QEAAP_9EAwDAAAACfb3_vb-AAD__PUEAwAAABIFBvn4AAAA__QCEQABAADt8_0MBP8AAAkFBAEAAAAA_xH-A___AAAHEe_8AQAAAA359wUAAAAAIAAt2DLUOzgTQAlITlACKoQCEAAa8AF_CAgB6ubkAsnx-AD3GBABpi4k__w00gDb9PX_2fHtAQUh4AD4CcT_CTX-ALUp-P8l69j_6-D7ACLA9v8N1eEA5ujiAS37zwBEAhf_IQEF_tsPHP_zzu3_9trS_x8t4_8K-iABE_jAAfQV2QEl-y4B6A8zATXwGQHdsP0BxO8C_uzfAgH4APIE8N3_-egHJgH9sQYBDwUI9Ocg6AL89QP6CO8X9iw21f8mDAcOBB_7AOMD_wT_BvgLHSYK-vPY8w7X8i4G2g7n_OT3BwAk_AT-1QfjCQUC8g0U2xL77MzzAizi-PLT9AgI_gDoB-AI9OwgAC2NuxM7OBNACUhhUAIqzwcQABrAB4Du074R3sO65eiWvGZOB77-Kp-7gvilvJ61W70PX2s9R_r-PG8uHj4t4K-8YRWUvOdGor3rAAi7Wn_LvKDiKD5R28a8RA42PHV0_L0vE5o9CwIQvVexOL5HpX08pdQKPWpdEzxGfCe9IHMOu1RTAj7cSzq9dswQvCCo6LoddRE8M9wAvUPn9b1_th-9WiIBvWmO7Ly35KK9JxHGPPhEaD29w2283tu-O1wQYD0Al1a9jlGovKYQg70fACc9Mxv_vAl5kz0N1sk8_I5hPH8V4L1uOyO98Z2YPEpJar3FfG-90Zc5vJy0uj1K7UU8sHqbvGkz8zweb_K91yXTOq35Ab5UpZI8IdHfO_X1_D2cogg96ytZvAWSlr3KfTy8cfLwu3eKED0CZ4S9vxwLvH429ru056I9wfBfO2M9ij0gIIQ8-UiKPGtmaL12U8q8TRsEPeOCGD0jp6q91tyXu0FZYj3tGw49F5VcuzZDw7sD7z898Bv8ugTYgb37NeM8eEiMPOzeyjxTng894ap8PMU1Qz34UQ2-CW8suyaUeb2xCVq9kYJ9OQtPHjzAAOe83ynwu2786T1M5K29K3Opu0njZr2KEv48ZrbxuheZI7xnLHW9i7hKPNn1sb1IRym6IzAZutvjIL1YB5u8_nrou307rru1pc49PmrhusVlBj36DAi-VSEDumLfqTzTrng8tXdbu5kP6D0MA5Y9_F1VurJb1TxroT-8gfRiu9kQEr1Jzei8WkKlO22fADyl9829k-aeuWa2UD2J7tm9IZW9Ob2iwDwEv5W7uXD6uXHgOr0uuks9chbHN3Hc8zsi_Au9EC_bOK0vtzr9EvG9vCOJOZ-J2Tswp189lcngOKnTKrvAXmE83VtrNswgw73UDQS-CFOFOTLjnb0awJs8D8D0OBaNsD2bkoe8nnyZOOoquDx15AU6YERTuNVTkLxCLTy9NNFrN20IqTz4zEg8JsnjNCOsjD30bAa-z3ClOZxrGL0EcQ4-ggmNuULqVr3PQze7TgliNf4_kz2bzmk9ZbZ0N6r5BT0fDjK9weG_Nz5Iaj0g96O8U0CZOKBQz70V74Y9wtICOKzyMz1jA5M9-s7UOE2Ebb17-mO8o_iOuDC7Jz3-DsU8PqRkt8HjKz7cpWi8B4l0uW4eYr2xK7K9E7-_uEiWQr0sEcO9wcyPuJtLW72SPKc9bXCBON7oXj145YS9QVK0uMr0cD0i4Ss-8cuKOEarP73fFqw8ZrP8trQB-L21WEU9UeBcONjrAr0qozY9mPJtNCAAOBNACUhtUAEqcxAAGmBE-AArDRHyFOQN2_bS_Avnuw7h-MUT_-_Y_wA37AoNBerQ_PD_QbcU6asAAABDF88GCQD_duXM7x0mAgGdrN8GG3_wGh6fExvKqs4P_in86vQgElYA2O-pEATVpSb5ORMgAC0QEBw7OBNACUhvUAIqrwYQDBqgBgAA0EEAAIC_AACAwQAAhsIAACTCAAC4QQAAuEIAAMDAAACgwQAAkEEAABDBAABEQgAAzsIAACRCAAAQQgAAMMIAAOhBAACQwgAAUMIAAIA_AABMQgAAMMIAABTCAABoQgAAIEIAAEBCAAAUwgAAoMEAAOBAAADYwQAAYEIAAIA_AAAMwgAAmkIAAADBAAAwwQAAIEIAAEBCAACYwQAAoMAAAExCAAA0wgAAUEIAAAjCAADoQQAAOMIAAADAAADYwQAAGEIAAJrCAAAIQgAAsMEAAHDBAABsQgAAgD8AAMjBAADowQAA4MAAADRCAAC4QQAAQMEAACDCAAC8wgAATMIAACDBAABAwQAANMIAAIDAAABwwQAAmMEAAGhCAABAwQAAEMIAADRCAACMQgAACMIAADjCAAAQwgAAgEIAAAhCAADgQAAAgEIAAFBBAAAMQgAAwEEAAKhBAAAEQgAAPEIAACxCAAAwQQAAAMEAAETCAAAgQQAAUMIAABxCAACgQAAAQMEAADxCAAAAwAAANMIAAADCAABQQQAAaEIAAAjCAABQQQAAwEAAAAAAAADwwQAApsIAAGDCAABEQgAAjMIAAIzCAACwwQAAyEEAAIhBAACgwQAAEEEAAOBBAABkwgAAAAAAABDBAACgQAAAEEIAAJBBAAAAwAAAPMIAADDBAABQQQAAjsIAAIBBAAAoQgAAWMIAADhCAABQQQAACMIAALBBAACAwAAAWMIAAMrCAADgwQAAQEEAAEDBAACYwQAAsEIAABRCAAAgwQAAoMAAAIC_AACKQgAAIMIAAHhCAAAAQAAAwMAAABDBAADwwQAAGMIAAHTCAACMwgAAFEIAAABAAAAQQQAAYMIAACzCAABAQAAAgEEAAERCAADgwAAAMEIAAK5CAAAEwgAAgMIAADBBAADYQQAAwEAAAIhBAAAAQAAAGEIAAJhBAABAwAAAHEIAAJLCAAAgQQAAIMIAAExCAACQwQAAlsIAAADAAADQQQAAAEIAAFDCAAA0wgAAyEEAAADCAADgwQAAsMEAAJzCAACQQQAARMIAAGjCIAA4E0AJSHVQASqPAhAAGoACAAC4PQAAED0AAPg9AABEvgAAmD0AAAs_AACSPgAASb8AAAO_AABQPQAATL4AAAW_AAAsvgAAvj4AAAy-AAC4PQAAlr4AAJi9AABAPAAAwj4AAH8_AADovQAAqD0AADS-AADivgAAiD0AABQ-AAA8vgAAgDsAAIC7AACOPgAAuD0AAEC8AAD4vQAAND4AALK-AABcPgAArr4AAL6-AACoPQAAXL4AADy-AADoPQAANL4AAOA8AAB0PgAAMD0AAFy-AACYPQAA1r4AABA9AABEvgAAcL0AAOA8AAAEvgAAcD0AADk_AABwvQAAPD4AAAk_AADIvQAARD4AAPg9AAAcPiAAOBNACUh8UAEqjwIQARqAAgAAUL0AAKg9AABMvgAAJ78AAPi9AAAwvQAAXD4AABA9AADIvQAAyD0AAIg9AACovQAAoLwAACS-AAAcPgAA2L0AAKC8AAALPwAAFL4AAM4-AACIvQAAQLwAADA9AAAcvgAAoLwAAIi9AAC4vQAAcD0AAOC8AACIPQAAqD0AAMg9AACevgAAFL4AAIg9AAC4vQAALD4AALI-AAB0vgAAoDwAACQ-AACovQAAHL4AADw-AAAQPQAAUD0AAH-_AADIvQAA-L0AALg9AAAEPgAAcD0AABA9AADYPQAAyD0AALg9AAAwvQAAgLsAAEC8AABwvQAAHD4AAKo-AAA8PgAAhr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=X2mv1_xHOIk","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":984,"cheight":720,"cratio":1.36666,"dups":["5038071766860444424"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4492104543180505918":{"videoId":"4492104543180505918","docid":"34-2-10-Z2608C36CF8631C82","description":"solving exponential equations using logarithms...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2101258/2ee34725b0f1f5e806765453e262532b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/x4EC6QEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrvqEcQx4f_k","linkTemplate":"/video/preview/4492104543180505918?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Logarithmic Equations Solving - log[log(2+log(base 2)(x+1))] = 0","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rvqEcQx4f_k\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFQoTNDQ5MjEwNDU0MzE4MDUwNTkxOFoTNDQ5MjEwNDU0MzE4MDUwNTkxOGqHFxIBMBgAIkQaMQAKKmhoY2d5c3FtanN5aXl0cWRoaFVDRlljcS1RRFpnM2xIR21kRmNuRTNKdxICABIqD8IPDxoPPxNfggQkAYAEKyqLARABGniB9AMC_v8BAOUSCf0L_gD_EwIE-fYBAQDy-v38BwH_AAHwBP_6AAAA-gv7AwIAAAD-Ce8C9_4AABAB9_wEAAAADQgHA_wAAAAI8voD_wEAAPn4_QYE_wAA_v0KAf8AAAD5Dvz7_wAAAP0P9AIAAAAA_gP9APv0_gAgAC3YMtQ7OBNACUhOUAIqhAIQABrwAX8bCv_UB_EB1AT1ALD7tACcDyH_CyXh_7X6JwDm4tMB8_z3AekE6__WCQ3_3BMQACIBuAAlwAkBKLT0_gHj0P_oDfoB-8gHAzzpKADuFuD-__1J_ufZ_f728cgA8gTEAf8NIPzt6Mz-6QS2Av4GNQD3AS0HG_IoA_Ww8gTV3P8EDc31-_0q2f8s5Pv72_M5CSXu4wQACAz57zvc_CvuAv7wzir_EBbIADTsBghNHRUBtQrpAOTPFvwaJyr-rT4H_BX2Iwvw2wLs79EAAyHI7wXyAOYDFP7vAh0UCxEjA_ny_wn07L8a7_LL2xoF5P3nBSAALe5a-To4E0AJSGFQAirPBxAAGsAHZmvFvn5zf7wjTfq7MEj6vXkVQz1hZmk84KD9vS4MpjsFkR68IJbCPQqjGb0QBp68lpNAvqLMqzzo0mQ8pkI8PmVhOb08fEM9cT1avucWvz2FTKi8syPVvYOXCj31HfK8XsUaPGxuljz8LOC8IxKVPfy9GT3x1IY7IZWivIZEkLxO3ra8Q-f1vX-2H71aIgG9zocMPSUyPbzMndM74ZcKPnGolL26q2y7QsFWPdeEGb3VUeG7v7WDvXmKgTxaaQy7Wkc1PYPGp7vIg-M8RCC9vbRgPb1b1Uc5JRetvdtewbwLIc46naJ-PJdBeTrpp268eSqGPUUHKb0KkBe9qMghvgJ8HD3o6W087IbtPYz3gz1yW5E7wrKYvZXp_DxoMLw8nNlTPNCx6LzHVZI5HzxkPT7jRz3QAdE7qBN1vK56BrtgqdM8w6Novf5OCT1rlP8838sUPC87r70YiC-8KnF9Pae-PbzVfka8VY-6vb45NzwXmSW8bY4zPVX6PTqki827CBuTPdCSrjshz8k8cArrPEXvub32R-W5V3s4vS-H_b0qoGY6HW3BPTlpED0uBX-8SBgGPm7JZb3t1QW8jk9SvUkgj72zddM7A8EtPey8cr2XuEG4VCU9OvBVxjwpE-m62L_GvMTeVTx_8TG8RYCTPE8wLT1t7bM7pz3lvOuMD74l3r232lUIPnzeMDpUnQK7up6dPdN70zt5NYo6UZfWPOXRbb2gGky7Ls6DvWEIL72oqMq5MZeEvaiJI73jxKY40UjKPQvqgLyO7eC4SqFnPekHmjzzGic5CH8VvVtErz2Ygfg4Au8pPc0ZtrydJRU4P6eAPSrmIL7etjw57i2bvCNIqbuRwPY6Prfpum0NG7ww5Uo5FByDvcckrb0aURU4kj6tPHEbzbyxv2Y4sPOwPRPffTsTLJ-3omkBvCKkE70JrWK53c_pvHfkfry_NrW46romPI2LGTxj1Aw4RQ7RPSkj7r3iLL85A7CmvBBx2jug1rs2_pIePM2EsDy30ZW1vztDvIgToz2yx1O4xzdqPSBfgr12-co2Lfe4PA-KjD2pvYq4oFDPvRXvhj3C0gI4Uqknu9cdZjwezxc4REC0PGpK9DvNYia4AgHhPEQzD705Bp-4wqTYPTYqJr17tC25oDNpPLtOqb0fUJu4wyb9t7NDjL1Nig43Bfrkve0Gdj0qe884P47GPSveCL6HIrS4yvRwPSLhKz7xy4o4vtUfPRAQgjxWhdO4I2jMvQ0B-jtvBgY30RCUvegYS71GaAa4IAA4E0AJSG1QASpzEAAaYCz-ADMbJsQs-xLa1_8nM93r7-HB0-r_-uD_BCYlywYYz9D26wB_3Q4WpgAAAC8G0RnbABtx3_r-WSnu8rC4yUHreA8CG6EELe-86CrvJPoSF9P1WADa2McGDgm0QPriNiAALaf9Fjs4E0AJSG9QAiqvBhAMGqAGAAB0QgAA2MEAAOBBAAA4wgAAjkIAAOhBAABAQgAAwMAAACDCAADIQQAAoEEAAATCAACwwgAA4MEAAChCAABwwQAAcEEAADzCAADwQQAAIMIAAGDBAABAwAAAcMEAANhBAABAwQAAPEIAACzCAAB0wgAAgEEAAJhBAACYwQAAikIAANDBAAAMwgAAjMIAAKBBAADIQQAA5kIAAMDBAAAoQgAAgMAAAGBBAACMQgAAFMIAABBBAABYwgAAiMEAABhCAABIQgAAwEEAAADCAADAQQAAEEEAAIjBAACgwAAAEMIAAIjCAACAQQAAgL8AACBCAAAEQgAABMIAAPjBAACYwgAA-EEAAGjCAACowQAAPMIAAIA_AAB4wgAAVEIAAJZCAACgwAAAAMAAAKjBAACCwgAAkMIAAIBBAAAQwQAAQEAAAADBAACgQQAAqMEAAKhBAACAQAAA4EAAAOBBAAB4QgAACEIAAGTCAAAYwgAAxEIAAAjCAAA4wgAAQEAAAIjBAAAcwgAAYMEAALRCAAC4QQAArMIAAChCAABIQgAAiMEAAADCAABQQgAA6MEAAKBBAAAYwgAAREIAACBCAABgwQAAoMEAAChCAABowgAAQEAAABRCAACwwQAA6MEAAHDBAAAgwgAApMIAADzCAABIwgAAiEEAALDBAAAgQQAAdEIAAMDAAABAwAAAmMEAAFBCAAAAQAAALEIAAMBAAAAgQgAAIEEAAATCAAAQQQAAJMIAAJDBAACQwQAAHEIAAEDAAAA8QgAAkEEAAJjCAAA8QgAABEIAAODBAADQwQAAQMAAAIBBAACgwAAAHEIAAMDBAACQwQAAQMIAAJLCAACAwQAAJMIAAODAAABkwgAAVMIAAIDAAAAoQgAABEIAAIZCAAAsQgAAQEEAAAxCAACAwAAACEIAACjCAADAwAAAcMEAAJBBAACCwgAAjkIAAOBBAACuwgAAQMEAAFDBAACSQgAAmkIAABjCAADYwQAABMIAAFDBAABwwQAAGMIAAGTCAABcQgAA2MEAAHDBAAAEQgAAZMIAABBCAABQQQAA8MEgADgTQAlIdVABKo8CEAAagAIAADQ-AABQPQAABL4AAGS-AACOPgAAwj4AABQ-AAB_vwAAvr4AAHw-AACAuwAADb8AAGS-AAC4PQAAlr4AAEA8AAD4PQAA6L0AABw-AADuPgAAYT8AAAS-AAC4PQAAjr4AAJi9AABwPQAATD4AAHC9AACovQAAmL0AAMo-AADgvAAAuD0AAOA8AAB0PgAAUD0AAII-AAC4vQAA1r4AAJ6-AABAPAAAmD0AALg9AADgvAAAUD0AABQ-AAAcPgAAmL0AAHA9AACOvgAAFL4AACO_AACgvAAAij4AAHS-AADIPQAA-j4AAJ6-AACyvgAAjj4AAI6-AADuPgAAbD4AAKg9IAA4E0AJSHxQASqPAhABGoACAABUPgAAhj4AAES-AAAhvwAAdL4AABC9AACuPgAAhj4AAIg9AAAEPgAAkj4AAIC7AAAUvgAAPL4AAPg9AABQvQAANL4AANI-AAC-vgAAwj4AAFC9AADovQAA6L0AACy-AABwvQAABL4AAFy-AAAcPgAA4LwAAKi9AABQPQAAMD0AAKa-AADgPAAAyD0AAOi9AAA0PgAAJD4AAIK-AABQPQAAJD4AAPi9AAB0vgAAFD4AAIi9AABwPQAAf78AAEQ-AACIPQAA6L0AAHy-AACKPgAAFL4AABw-AAAUPgAAPD4AANi9AAAsvgAABD4AAKA8AAAEvgAAoDwAAFQ-AACgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=rvqEcQx4f_k","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4492104543180505918"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16204141382988967899":{"videoId":"16204141382988967899","docid":"34-10-15-Z9BC152533CB48E4D","description":"How to simplify a logarithmic expression. Simplify a log. Playlist for logs and their graphs: • Logarithms and their Graphs Free math notes and steps on the rules of logs...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1650686/be10f9b2435e7344ae83d4fd6ed51096/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pE1fkwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"11","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCX3axffBAOI","linkTemplate":"/video/preview/16204141382988967899?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simplify 2 log x - (3log 7 - 1/2 log x) an Expression with Logarithms (Properties of the Log)","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CX3axffBAOI\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFgoUMTYyMDQxNDEzODI5ODg5Njc4OTlaFDE2MjA0MTQxMzgyOTg4OTY3ODk5apEXEgEwGAAiQxowAAopaGh0Z2FocmtnZm5lbG5yaGhVQ21qcDJNZW90MDgxNDdMakZ0WjduSVESAgARKg_CDw8aDz8TdYIEJAGABCsqiwEQARp4gfEFAwH7BQDmEQn9C_4A_xICBPr2AQEA8gH3AgcB_wD9-Q3_-AAAAAQG9wECAAAA_AL5-_3-AAD__PUEAwAAAAgABAT8AAAACPIDCf8BAADt_wIIAwAAAAAGDgQAAAAA-g38-_8AAAABB_j6AQAAAP_2Af4AAAAAIAAtEgbgOzgTQAlITlACKoQCEAAa8AFo9RT-3wMHAcIU4QC9LQoAgQot__w20ADGAhAA0gbeAeD28gD0Bdz_EOj8AbUIAf82087-BMUW_z7F5P8g5e0A-9sKACSyHwAgEEz9_w8A_v_9QP4Dw_oB2Mbg_xwO5P36_BQA4PTyAQUx1QMm-zEBHw4eAf_gJQMDwBMA3-8JBeL11v0FGP0G8e8H99UcIgIM-_wIFhQJ-eYi5wILF-r78tQl_wgw0_0d-hwHDhQAA8Tl_gYIAf76BgID9bQNF_4ZGh_79gX86gS_GAo2zu4H7_vd8_74ARIVDvcADAD0-w73_PXoKQru7OMfBN4I9OsgAC1QIw07OBNACUhhUAIqzwcQABrAB3HMur7mrws6R-EhvGZOB77-Kp-7gvilvPvnOb5iwkM8-63dvLw_jj3dkyg7ieApvZxNl77qPVy5ZI8WvPjfKj6mwBe8uUgLvdlDS75DknY7KX-CvfWha76E0wc9dDXDu8kzND046Fy9UJAzvKDi2D1hPJ68xU-IvJw5ATz2y467Ao5Su3zOkr0mLaa8cY10vOaU4D3m3Le8ttCfPAExKT6a9269D5D5PBasJzxxtak8-8Qmu7fVrDvnzDE92T4Evf5ukD3H7HI7oXMNPbet0rx2jOu8lF5lPFZQjL3QwQm9WhSRvGijxDxcKPC7nUUUvbybIj3AA6i9wz-yO8qpPb7bFrU9tEz7uCcXEz5P1XM9FamwPHq2Xb1pQDg9j5rEu0ArdrupY_q82XoEPBpMiD3ACFq9TKmJO6MXvTsFM-g7ELXIPN2Qyz3esGg9RuOaPE0dWj1jzW28JIp_vLIDeDzro7i8Dc-BvE5e5L3WQn88B6_EOzt0xT0HAR69rhQbvMLW0TwFSIk9mR3YPPoBGT2zVjm95flju5XcPL088cG9Q-nmuyKwmD0WxnE8I7t3vFEiiD3w7z093cmMvEgIxbzaFxY8aRiEuxeZI7xnLHW9i7hKPI-sF71HcW49qlAVvLbkJz2Y_iA9uV0gvA5PrzyDNek8A_j6O2wB57swR--9P5qgurRgWD3P-ek8xC-rOlC8rzzAzQI97YxGuwsk6D2rAS-97MnTOZUMAL1XX1i9M1NzOJ3qmryQQw49NF06u6Gd0z1RgZi9l51ROUqhZz3pB5o88xonOTK7uDs3qN09m2wEOCwWyj2F2BG8JnuLuas9kb0aUhW-MFEKOkh9o70ibeM8ROHeNrT-t7ochC89H6O4umN0ar3gGWi9WW_9t6NHI7w9dIs8WlJKOUaa2D2yMwA91guQOMpsgL04LTi9k5KZOHhzsr12sNW63PCLOSXXA70EtLg9qiequCRGzzxuXIW9SVyfOAdcjD2rgSE9-8enOAdqJz0fQgY9nnEmuG2TBT2ICCk9P_UJuZ0ORzt3nwO-Q96Mty7nkj0W4DY9JycWucrhA74Q1x48l_1ON46ItTrZynC9_wlnN4aqeD21IgC92i8DOK7H8zzNNKu8C16PNZJdGT7ZT1C9rMI_uRmbbL2JhOW8tErON7vtgryX5qG9-jj_t9hLnr3AGrE8lNf3tr2vBT2lSQm-rZ6FuMr0cD0i4Ss-8cuKODwp-rtVKm094DKNuFrtxr0PFDM9aNv7Ny6kmL19u1u8kOUnuCAAOBNACUhtUAEqcxAAGmAx9gAd-DPuOBEk4eT6Fibz1Bjb790V_xrT__QgD_L38ObaN-7_QsQV_agAAABDKvop9wDfcOEYxxvt0RHBrtQZ8H_sBCehICDQzd863jbp9eYEHngA1-rDEhn7zBkP-RQgAC2WyCE7OBNACUhvUAIqrwYQDBqgBgAAwEEAAAAAAABAQgAAkMIAAChCAABAQQAAaEIAAIC_AACewgAAkEEAAGBBAADgwAAA-MEAACDBAABEQgAAwMAAAHDBAAAQwgAAsEEAAIDCAAAEwgAALMIAAEjCAAAkQgAAAEAAAJBBAAAwwgAAWMIAABxCAAAcQgAAOMIAANBBAABMwgAAEEIAAGzCAAAUwgAAIMEAALxCAADwQQAAMEEAAARCAACwQQAAUEIAALDBAAAoQgAAosIAADBBAACAwAAAlkIAAMBBAACIwgAAgEEAAHBBAAAAQQAAqEEAAKBAAADkwgAAMEIAAABAAAB4QgAAPEIAAFzCAACgwQAAKMIAAEBAAACWwgAAQMEAAPjBAADIwQAAXMIAAK5CAACaQgAAksIAAMhCAAC4wQAACMIAACDCAACgwAAAkEEAADBBAABQwgAAgEEAABBBAAAAQgAAqEEAADRCAAC4wQAACEIAAAhCAAAswgAAIMIAAFhCAABMwgAAIMIAAAxCAABAwgAAQEEAAOhBAACGQgAAQMAAAJ7CAABIQgAAOEIAABzCAAAUwgAAEEIAAEDBAAAYQgAAYMIAAGBCAABAQgAAgEAAAAjCAAA0wgAAqMEAAJJCAAD4wQAAMMIAAJDBAABYwgAAJMIAAFTCAACwwQAAQMAAAIhBAADAQQAAcMEAAPjBAAAEwgAA2MEAACzCAADYwQAAAMEAAFBCAACAQAAA4EEAAFDBAABQwQAAYMEAAHTCAADAQAAAgEEAAERCAAAAwAAANEIAAHDBAAB4wgAAgEEAAIBBAADQwQAA4EAAADxCAADgQQAAoMEAAGBBAABgwQAAQEAAAJbCAACIwgAAEEEAAIDAAAAwQgAAiEEAAAzCAACAPwAAcMEAAHDBAAB4QgAAQEIAANDBAAAgwgAAGEIAAEBAAAAwwQAAaMIAADBBAADQwQAAPMIAANBBAAAcQgAA-MEAADDCAACYwQAA-MEAAHBCAABwwgAAfMIAADDBAACwwQAAiEEAAADAAAAEwgAAoEEAAMBAAAAAQgAAsEEAAGzCAAB0QgAAEMIAAFjCIAA4E0AJSHVQASqPAhAAGoACAACIvQAAgLsAAHC9AAD4vQAAbL4AAAE_AAB8PgAAQ78AAAy-AAD4PQAAyL0AAIq-AACOvgAAVD4AAL6-AAAQPQAA4DwAACS-AACAuwAAxj4AAH8_AAAUvgAAcD0AAFy-AACavgAAVD4AAKA8AAAcvgAAoLwAAHC9AABUPgAARD4AAOC8AAAwvQAAuD0AAKa-AAB0PgAAoLwAAIa-AADovQAAcL0AAKi9AABMPgAA2L0AAEA8AACAOwAA6D0AACy-AACgvAAAir4AABQ-AAAMvgAAqD0AACw-AABwvQAAQDwAABU_AADovQAAoLwAAJ4-AACYvQAAyD0AAEQ-AADgvCAAOBNACUh8UAEqjwIQARqAAgAAgLsAACQ-AABEvgAAFb8AAEy-AADYPQAAdD4AALI-AABQvQAAJD4AACw-AAD4vQAALL4AAFy-AAAwPQAAgDsAAKC8AAATPwAAXL4AAKo-AACAOwAA4LwAAOA8AAAkvgAAgLsAAFA9AACCvgAA2D0AABS-AADgvAAAmD0AAEA8AABkvgAAiL0AADQ-AAB8vgAADD4AAJ4-AACevgAA4DwAAHw-AACovQAAML0AAEC8AACIPQAAgDsAAH-_AABwPQAAoLwAAKi9AABQPQAAXD4AAHA9AABwPQAAoj4AAIg9AAC4vQAAmL0AAFA9AACgPAAAiD0AADQ-AADoPQAAcL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=CX3axffBAOI","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16204141382988967899"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9226393431765810592":{"videoId":"9226393431765810592","docid":"34-2-4-Z2E3E937E3015026E","description":"In this this video we are going to derive another logarithmic identity. It states that log (1/a) base a equals to -1. Logarithm Playlist: • Logarithm Enjoy... proof, what is the log of a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2350653/7cf370e94aaffc8fde6b3672f2ae7d3e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/s-plPQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1uWkvea2TYM","linkTemplate":"/video/preview/9226393431765810592?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Log 1/a Base a | Log of Inverse of a Number | Log of Reciprocal | Logarithms","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1uWkvea2TYM\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFQoTOTIyNjM5MzQzMTc2NTgxMDU5MloTOTIyNjM5MzQzMTc2NTgxMDU5MmqGFxIBMBgAIkMaMAAKKWhoZXVmeWJkZnF1a3RhcmhoVUMzYm40djNCRXlHUTlZNndQYklKM1pREgIAESoPwg8PGg8_EzWCBCQBgAQrKosBEAEaeIHxBQMB-wUA5hEJ_Qv-AP_3BwTw-f39APwF-v0GBP4A_fkN__gAAAAFDP8FAwAAAP0B8wcC_gAACQb7-QQAAAAKAAf8_AAAAAUB_Qb_AQAA9v4DBAMAAAD8DAIMAAAAAPML__77_wAABAT9BgAAAAD4-v75AAAAACAALRIG4Ds4E0AJSE5QAiqEAhAAGvABfwQJAdje0gDfD-IAzx74AKouA__9LtcA3-T9AMbs4wEAA_AA1xLo_wQDBgC-EO__OPfQ_xzQBwE1zuj_IdjwAc_-8wAY4uAAIS8i_wDwAwDtCSIACN78_wne6v8HCtb-9fok_fMI-v7vA8kCIPwpAej6KAQk5iT_Aq4BBtoJ9wL96eL-1g_rBfr0-_vdBB4CCtMQ_iIV-_j6JNEC9-IBBvT1GfkMEdYAEukPDe8L8gDK-wIBBfYGAxERBQHqChEE3PMoBdb67vb56wT4KhT6_e4L7_r76gQIDhcG__fdAPz_7O4AGhH_9N4FA_XmEv_8IAAtzR0nOzgTQAlIYVACKs8HEAAawAdnRre-LBJuPPCBAj36DdO9kHjDPGxwB70ZAiC-CGqAuzj8iTy8P4493ZMoO4ngKb1ZwFS-BIyMOSrP1zzLgDM-5tGIvZhiMzx1dPy9LxOaPQsCEL23siS-KRXDPETQYryumMY9qzKdu7v06bswDu48LxkHvJi2STxviwi9Q0cHuiPYGL35Rrm9U5ecvWWa37wFw3k9MM2-vbvnijwBMSk-mvduvQ-Q-Twv67Q8CQApvdtdFr38C5Q71gbAu6__ALyE2Nk91PWfPHedNzpkKrO9QT4yvDrGOjzJs0a9thqIvOhyuTzf_MY97BvzPIdZPr2gb-s9D9eFvEQ2C72oyCG-AnwcPejpbTwtN8I9uUZVPfiunDyw4tS9dTbJPTyOVTwLAvW8e_w5vHDvmjwPv4Y975ysPcNVlDxEFNM8R9KJPF8WyTwk0Q28mWgrPViQZjyG4k49kP5yvUagVbyqXag9S3APPG41a7xQQTS9YGG3vCnlmjwGLDk8fY-fPIdlmLyIVyg9pY2ZPHxnzboFI6U91gI7vknlmjpjKn28o0XMvYcqRryfsLQ96Y9LubhGfLu7z1Y9EhUKvaZPobznFh-9jUepvPkDs7rRMho854xIvdk8MzyAr5K9M_Aru5R_Uryz_iI8c3VRvVcHgLzp7Mk8TBjNPV_omrmF6FU9NXCxvSLHGTp5E6I9JwEDu5DD3LvCE7o9apvqupkAsrpND289T0UlvaooIzivMuQ7RlvVvHHBPrqorCa8Jt9MvXS5qrnHZxI-rqDpvZAJtLkYVZA9eIsxPWDEEjkb6qG9sluVPSzZmThRbqY9SmxtveaCBjm-xeA7rFMVvqaMyTl8Gfu8GAltPRlZjTcuuuk7zHlrPRy8TTnMIMO91A0EvghThTn8t_06Sy9_u2oJWbe4QAI-EjQBvbQ_BTn-sEo8xCAVvemxBzeuqk092MNbOuPPijlLVqo8Q7kjPbTyHTnnItk8A8z8vVJJyDmnvRc9aE5oPYZgOjk4AR-8DoN5PODBRLj12eC6GhrqvFhVyDfTzwg8ZjHRvT5LlzZveZO7czA2PbTFkLfK4QO-ENcePJf9TjeJtuO8rI-HvBTa_ThugB691oOTOyJNCrhqXA49FndyPFO5wrfB4ys-3KVovAeJdLm4XZO9z6uQvdp1RLh_iYO9Dtj1vQvRErggTau9zkSHPWc8NDgU9E09tL2nvZeXjbfK9HA9IuErPvHLijiP5pO9KwgvPAmWMLi0Afi9tVhFPVHgXDhf0ti8Sam6vJHqC7cgADgTQAlIbVABKnMQABpgKvYANhI3_gX3GtgF2Agv7sLy4wbB9__vyf__JxIK_wm4xgrz_0nYHumlAAAAPPfyIAsA_n_F2K0lDwP1t667PPJ-8QUckvUjxr3K5CUo7t8hGRhUAAPvqgIR-r5S7BwjIAAtgdMVOzgTQAlIb1ACKq8GEAwaoAYAAEBAAAAAwgAASEIAAEjCAACQwQAAQEAAAEBBAAAwwQAAcMIAAFBBAACQwQAAuEEAAOBAAACcwgAAuMEAAAxCAACAQQAAuMEAAEDAAAAAwgAA2EEAAEDAAADAQAAABEIAACTCAAAoQgAA8MEAAHBBAAA4QgAAoMAAAIzCAAAAwAAAEMEAADBBAABgQQAAyEEAADhCAABAQgAAAMAAAOBAAADwQQAAoMEAAJRCAACAPwAALEIAABTCAAB0QgAA4EAAABBCAACQwQAA4EAAAMDBAAAAwgAA8MEAABhCAAAwQgAATMIAAIDBAAAgQgAAjkIAAIC_AAAowgAAwEAAAGjCAACowQAAysIAAKhBAABwwQAAgMAAAADAAABQQgAAjkIAACjCAAAwQgAAYEEAAATCAADIwQAAQEIAAIDAAAAAwAAAAMAAAGhCAABwwQAANMIAAOBBAACAQQAAQEIAAPhBAAAgQQAAHMIAAKbCAABAQgAAmMEAAHjCAAAgQQAAgD8AAHDBAACUQgAAHEIAAFRCAACwwQAAiEEAAIBBAAAswgAAQMAAAOBBAAAgwgAAREIAAEDAAAAwQQAAgkIAAMDBAADAwQAAkEEAAEBBAABYQgAAqEEAAJLCAACYQgAAIEEAAHDBAACYwgAABMIAAEjCAABAQQAARMIAAMzCAACIwQAAksIAAFjCAAAwwQAAkEEAAEBAAAB8QgAAFMIAAABAAACoQQAAWMIAAFBBAACKwgAAQMEAAEBCAAAMQgAAKMIAAIZCAADAQQAADMIAAIJCAACAQAAAmMEAAIBAAACgwQAAUEEAACDCAADAwAAAAMAAADBBAADYwQAAbMIAAMBBAABAwQAA8MEAACDBAAA0wgAAKMIAABxCAACQwQAAREIAABBBAACAwAAADMIAAODAAADAQAAAPMIAAJrCAABcQgAAUMIAAFDCAAAcQgAA8kIAALDCAAAAQQAAQMAAAK7CAAA4QgAAkMIAAIC_AABwQQAAwMEAAKBBAABQQgAASMIAAKRCAACgwAAAgMIAAJpCAABswgAAyEEAABDBAAAowiAAOBNACUh1UAEqjwIQABqAAgAAuD0AAPi9AABQPQAA6L0AAFC9AAC2PgAAMD0AAD2_AAAUvgAA2D0AAKC8AAC2vgAAMD0AAEw-AACCvgAAmD0AAHC9AACAOwAAEL0AAHQ-AAB_PwAAEL0AAIg9AACAOwAAZL4AADA9AAAEPgAANL4AAKg9AACYvQAATD4AAES-AABMvgAAgLsAAGQ-AAAcvgAAmD0AAOi9AAB8vgAAPL4AAOi9AAAsvgAAyD0AAPi9AAAEvgAAqD0AABw-AAAQvQAAmD0AAIq-AACgPAAAqL0AAOg9AABwPQAAZL4AABC9AAAZPwAAJL4AAKA8AACOPgAAuL0AAFQ-AAAMPgAAcL0gADgTQAlIfFABKo8CEAEagAIAAFC9AACOPgAANL4AAPq-AACKvgAAHL4AANg9AAC-PgAAgLsAAOg9AACAOwAAyL0AANi9AABcvgAA4LwAADC9AAAwvQAA4j4AACy-AADGPgAAyL0AAKg9AAA0vgAADL4AAAS-AABMvgAAcL0AAOg9AAAcvgAAuL0AAKg9AABMPgAAkr4AALo-AABwPQAAir4AAPY-AADePgAApr4AAHA9AABwPQAAJL4AANq-AACoPQAAoDwAAJg9AAB_vwAAcD0AAHS-AAC4vQAAgLsAAII-AAAUPgAAXD4AAKg9AAAMPgAAcL0AADA9AAAMPgAAmD0AAPi9AACYPQAAML0AALi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=1uWkvea2TYM","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9226393431765810592"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"14108807468093584800":{"videoId":"14108807468093584800","docid":"34-6-12-Z85497FF031C9542A","description":"⭐ Join this channel to get access to perks:→ https://bit.ly/3cBgfR1 My merch → https://teespring.com/stores/sybermat... Follow me → / sybermath Subscribe → https://www.youtube.com/SyberMath?sub...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4580135/1f1b709244fbc47b266f6c5a110a2aa2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MZsiLAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DA62MN08MRew","linkTemplate":"/video/preview/14108807468093584800?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solving log(x + y) = log(x) - log(y)","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=A62MN08MRew\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFgoUMTQxMDg4MDc0NjgwOTM1ODQ4MDBaFDE0MTA4ODA3NDY4MDkzNTg0ODAwaocXEgEwGAAiRBowAAopaGh2YWtzZmR3eGdxY3F6aGhVQ1c0Y3pva3Y0MEpZUi13N3U2YVhaM2cSAgARKhDCDw8aDz8TvgSCBCQBgAQrKosBEAEaeIH8CQD9-wUA6gYOAwMB_wAJCP_49wAAAPf7-_3-Av8A_fkN__gAAAD6CvsDAgAAAPYE-gIC_wAA__r5-wMAAAD_BAwH9wAAAAXx9w4AAQAA8gb7BwMAAAD-_gkB_wAAAPAT__v___8A_wX2AgAAAAD2_f4AAAAAACAALaML4Ts4E0AJSE5QAiqEAhAAGvABfx4eANj2pwHKGfYB6P3_AaAfCwAbU_gAz-sM_7IM_gH70-QB3v3TAN8VAQCzBRoA-Ajl_-7wBgAk3f7-I8gDABcE9gEqz_IBL-NAAhnn6_7cJjL98vMMABrwvv_m6rH_LsRE_gje7f4M6LAKEf5GARvqQQD50hUE7MYeA-sE-QPUy-D9_AgCBAjGDgH03y4EIsP9_gDrBP3WMvMDAQ8M-v7bGvwEHOAGFQncBiwTE_Xk8RX-38f-CyL5KAfDJAsJ4t4h_wDt_gT29wPyJ_Pk-9AI4Ar83fELAQgIAgDF9wIX2OoC1_8B5cIGAQAJKPkCIAAtak0EOzgTQAlIYVACKs8HEAAawAcfvM6-sRKYO0btwDulnY-9ROTPvIVLvbxfJX-9FK8yPBmikrv2tkk-klKKvVFXDT1oN4-9Jn7WPED8l7zLgDM-5tGIvZhiMzxxPVq-5xa_PYVMqLxKTcG9ZuY4O08ajzwEo1e9e8gMu6WljbwLv6o9PwqNvNJpwjwCtV29X3obPdOwLr0oEzI9sF8rvbGnPb3pQ6e9Q-icu6SDP7ztr4g9g-4cvS7aa7u3V0s9VnTWu8anIL1rEbG9x8jIPB8R07zw58o7H4NVPeKPhzxEIL29tGA9vVvVRzl1vY69zk9RPYWQmDxmFuE9QbUGPRPWhrzwbmA9W1U7vVbYZ7xVFM-9zkP9O-j4qDwnkn49fPmIPeB8jzwY0gG-SYOrPZYmJbyKlSy85Z90PDfjNLwPv4Y975ysPcNVlDzIbWq7zJGZO64iijtutiO9-VhwPQkSwDxblZQ96g6ovTAwhrz-r489zCrsvGCoibtz6Um9A208O1E7MryouJ47QhlUPWGfZ7pB2AS77-73vEHxxjsFI6U91gI7vknlmjoKQoO9bL-7vQyD6DsdbcE9OWkQPS4Ff7xO8M09ZjPnvf9XADwrtD08XwEWvKPElTpH5tG87pCHu-VUojmAr5K9M_Aru5R_UrwoclK9dDAxPT6p_rty7I-8iZNAPU2wLDs6OYi9U46-vUgOFLqeCe09XRvFPLt7bbqYMgA-Fn9APS0_tbeVjY096jeYvYVVbzosQla9SGP-vKFdDTt-aDC9KSuhvZROuLjurw4-nxKRvX7QlDnhJI08zeA0PUkssrkHluO9-5vrPDSVeje50mE9Lt6UvXNP3Ti-xeA7rFMVvqaMyTlU0U49jlD9vDeX27lOYSW8rNW4PY6GFrgC9Iu9RTWQvTuGMTgtPR48OUlOvCHoc7gHDNI9X2nPvNXf1bSO_ry8FEbOPDWHxrcmN8w6kf6ovIkI3jlLVqo8Q7kjPbTyHTlar4M9AY_DvabRWjl5JTe4VGQePZ6okjhalQ47kO9XPbd1jbgIm_A8uf3SPUdpZThSSM-7PjyrvU-y5Diex_I8Bm5YPWyUdrigUM-9Fe-GPcLSAjgqWPe4rAk4vbZyazfvLXY8L3KqPMV_3ThvTws9Z7gBPTBjmDixFQQ-xv_4OzLZU7ir3xa9DfsdvqO8_rimhpE8I2NavfR-ijfmOzi9qC1_PcoQyLINEkc8dHz0vVZYWbjK9HA9IuErPvHLijgHC6e8vfzuPYO0HrlV18a9u5lRvPmaW7feAR69GbGNO9UDPjggADgTQAlIbVABKnMQABpgEgsABw8e_Q74H-jw6xgI2A0CBtveBQAE1wAb_P_XDAjf3Aj__1jZ9v3AAAAANvTqHQ0AFU3sEd0bHNIJ0sTbNSF_-fca2g8x7PvvLyIh8R0J8gRAANUE0wsOBcoSCQFIIAAtFyxMOzgTQAlIb1ACKq8GEAwaoAYAAKBBAABUwgAAiEIAADDCAACQQQAAQMEAAGhCAAAgQQAAksIAALhBAABQQQAAoMAAAEDBAADQwQAAoEEAAPBBAAA0QgAAFMIAACBBAAAgwgAACMIAAADBAAAgwgAAwEAAAETCAAAIQgAAAEAAAMBBAAAIQgAAkMEAAFTCAADoQQAAisIAAGBBAABQwQAAwEEAAJBBAAC6QgAAgD8AAIA_AAAQQQAA2EEAAJ5CAAAgwQAAQEEAAEzCAABwQgAAAEEAALBBAAAAwQAAcMEAAOBAAACIwQAA0MEAAMhBAAAMQgAAtsIAAAAAAAAsQgAAiEIAAHDBAACCwgAACMIAAEzCAAAwwQAA6MIAACDBAADowQAAAMAAAATCAABsQgAAiEIAAIjCAACqQgAAQMAAAPDBAAAEwgAAfEIAAFBBAADAwAAABMIAAHBCAACQwQAAEMEAAPhBAACwQQAAwEEAADBCAAD4QQAAkMEAAKzCAACOQgAAZMIAAGjCAACgQgAAEMEAAODBAAAAQgAAMEIAAEBAAABgwgAAAEEAAODAAADAQQAAiMEAAERCAACAwQAA8EEAAIDBAAAgwQAAgkIAAIDAAADQwQAAoEAAAIzCAACGQgAAFEIAAADCAAAoQgAAkMEAAFzCAABkwgAAgL8AAEDBAAAwwQAAgMIAACDCAADgQAAADMIAAAjCAAAkwgAAAEEAAJDBAACGQgAAcMEAAGxCAADgQAAA4EAAALBBAACOwgAAoMEAANhBAACIQgAAPMIAAAxCAAD4QQAAFMIAAFhCAADAQAAAwEEAAODAAAAMwgAAgMAAAGDCAACAQQAAIEEAAOBAAAAYwgAAisIAABjCAAAUwgAALMIAAAjCAADAwQAAAMIAALBBAAAUwgAAOEIAAMBBAACAQAAAiEEAAMDAAAAQwQAAYMIAAGzCAAAAQAAAAMIAAFzCAACAPwAAhkIAAMzCAACgwAAAcMEAADTCAAAwQgAAHMIAAOjBAACYQQAAyMEAAFBCAAAEQgAAgMEAAFBCAABgwQAALMIAAIZCAADgwQAANEIAAEDBAAAYwiAAOBNACUh1UAEqjwIQABqAAgAADD4AAKg9AABQPQAAQLwAAMi9AADSPgAA4LwAACO_AABwvQAAiD0AANg9AAC6vgAAUL0AADw-AADCvgAAgLsAABw-AACgvAAABL4AAJ4-AAB_PwAAkr4AACS-AAAQvQAArr4AAHC9AAAkPgAAJL4AADC9AABQvQAAgj4AAFA9AACYvQAAuL0AAKg9AAAcvgAABD4AADy-AADKvgAAhr4AAJg9AABUvgAAjj4AAIA7AABMPgAAyD0AAIg9AABwvQAA2L0AAAy-AACYvQAAXL4AABQ-AABEPgAAur4AAKg9AAANPwAAmD0AABy-AAB0PgAAuL0AAEQ-AAAMPgAA-L0gADgTQAlIfFABKo8CEAEagAIAAHA9AAC4PQAAFL4AAPa-AAAQvQAAgDsAAHA9AAB0PgAAiL0AAIY-AAA8PgAAQLwAAEC8AAB0vgAAUD0AAHC9AAAUvgAAIz8AAIK-AACGPgAAqL0AALi9AABAvAAAcL0AAOA8AABQvQAADL4AAFA9AAAEPgAAEL0AADA9AACgPAAAfL4AAKg9AAAUPgAADL4AAGw-AACSPgAApr4AAEC8AADoPQAAuL0AAOi9AAAwvQAAUD0AAKC8AAB_vwAAXD4AAKA8AABcvgAAyL0AAIC7AAAsPgAA4LwAAAQ-AABQPQAA4LwAAAS-AADgvAAABD4AAKi9AACgPAAAiD0AAEC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=A62MN08MRew","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14108807468093584800"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6805242242328194255":{"videoId":"6805242242328194255","docid":"34-2-11-Z8D30C8DA7623D694","description":"Get access to ALL videos on the website(Master Learner Pack): One Month Access(Rs.999/USD 12): https://tinyurl.com/DM-OneMonth Six Months Access(Rs.1,999/USD 24): https://tinyurl.com/DM-SixMonths...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2174832/f9c79b1669387d933fce4c62f09da5f1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/-KG2mwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4UNkQcBrLaQ","linkTemplate":"/video/preview/6805242242328194255?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Logarithms - Basics | What are Logs? | Infinity Learn","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4UNkQcBrLaQ\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFQoTNjgwNTI0MjI0MjMyODE5NDI1NVoTNjgwNTI0MjI0MjMyODE5NDI1NWqTFxIBMBgAIkUaMQAKKmhob3prcmVkaWRidmhrZmRoaFVDaVRqQ0lUXzlFWFYxV3AxY1kwemFVQRICABIqEMIPDxoPPxOvAYIEJAGABCsqiwEQARp4gf708wIC_gDpCQQDCwH_AAAE__j4_v4A4gP8Cgn8AgAECQUA9wEAAP8KEwgAAAAA8fj2_PkAAAACDPMB7wD_ABIFBvn4AAAA_fP7Bv8BAAD9APcHA_8AAA379Pn_AAAA7A70_v8AAAD2Cfj1AAAAAAX_-vYAAAAAIAAtzHDQOzgTQAlITlACKoQCEAAa8AF_CAgB5O7OAck15__o9MoAy_wnABhK-QDHBDoBwOP0APAIyAD7APn-wfoMAbsEFwAcAcMAKQ71AR8O6wAZ3gABDDP7AQLiA_8hEy8C3AMH_v_-Pf7f8Q_-FAfP_frz3P3z-in8OfD2__bz2wYP_j4BAusp_ADEGQL74-79uO3r_fzm3v35LfgBEPH2-uD1MAcOEtr_GiAGA_NN5gcI8Pj-yfUb_g4T0ABE-PQAJCsV__Ts8wH0BhEEB-cqB8w0GwIBDDD7_fHv-RL--vgc0fIE1-758g8s4wL2ARIOK_3q-ffnAgDeGvHzyQYBAOn-6wQgAC2NuxM7OBNACUhhUAIqzwcQABrAB1pov748XhI90owFPVNgHL0kQuO8b5EFvZXSA76WmKe8v7SsO9SBDD5SvYC9AtLAu_s8Nr4jsRG8rBCAPcuAMz7m0Yi9mGIzPHE9Wr7nFr89hUyovPGE3r2AH588t0EOPJavUD3Ct1W8yKZmvanB1D3qqDQ87UqmvBHxYL0jBQC9HTOWO9ybBDzUk968_O0BvWKJQj3-gMc8sj_aPCDrCT7Fbdm8qpk1vLxPjz0r1oU9O59LvAU0Mb7zuhQ9PgeWvJBRGT16hD89_GYsPePMRb32rLU83mQGO5OYxr2Gj4g8jtGVPKxjCz0NBjI8WuybvA92rz2KAya7RlEiumO0Hr42Fnu7f2BYPPB_bD1mqcA95WUJPOOl271FBRg9r7cIPcFMAL1_tEk9U32CvKVLrz0A25Y9mWGjujzG8LyFAc-6R8AyvOQ7xjuM9wM-vyzIPPTzUD3TwA-9u5KuvDtu27t4gpi8XXSqO05e5L3WQn88B6_EO1vlTj3jKk25D7guPC6ZqT26Vzw9nW40PAUjpT3WAju-SeWaOg_d4jx1dBy-GGL6ud3Bfj28uyQ9iHuRvIZanj0nUES6XTeAvBX9ITxSntm93iGFvN-uETxMqeu9vd3UO00FRr1hqtk8R1dpu2QntDsnUyI7voFuvDd1-TzVQik94B-Au1alSL3EGhm8YKDWOzCDET5ARBQ9NoxburEwxD31Ree8wPZTuhfeiz0imcA7tyiSu0pKFb0xWsy9siNVt07EbLxK1RG97Hifuzy98j1KyFG9V8GOOeEkjTzN4DQ9SSyyuXHgOr0uuks9chbHNxEMhj3PSW-8FSWKOJLzVL0nNoq9n6oJubx39TvLLAK9vpgBua_TA70IFFq7bVkdOQI0I7xNq3e9IbNeOcmLET34LcS81heIuaW5Oj1bwZW9Uw4qOMrDgrxp0we94AelOA9SJrxg7s26QlgnOANGkj09ze48tkfQOKsmiD3Pt5q9-5-HOa790zyliZK89QcxOGr4Jj517zw8ckG3OF6-Vb1EicY9AbOGt5oHED3eOMm9CDT7NlT-1jvO4uU9T1VaOCpMKb0NPb098M9fOUSvVT1_2He8cxqVN0bx6DqWAre8xu9nN0n-1jwvNR88StmDOJ3Z7j2flZO6o2oOuULHMzyPUxS9PUQkuMMRgzlQVSG9hKErtwACdr3qEsQ8PcjztybckLwWMDG-QaBauaO5tD3IfYs9gPGDOBNpdj3en1w9b79zuCumkrwGOd47DmafN3wkur05ibc8XGwKtyAAOBNACUhtUAEqcxAAGmAV-gBZBijLEO4Z3_nkFybm3PLqAtr1_-zp_9kc_OzD6enkBvwAVOMmBa0AAAA59NY2ugAZbc7s4xgJ3_uxgd4R6nIM-PbT0kH4rhka7yfhGALxKFQAzfrEFuoC0w4C9iMgAC3xaiQ7OBNACUhvUAIqrwYQDBqgBgAA0MEAAKBBAADowQAA4MEAAFzCAAA4wgAALEIAAKDBAAAQQQAAbEIAAKBAAACawgAAEMIAAL7CAACQwQAAUMEAAOBBAACoQQAAgL8AAEDBAAAgQQAAEMEAACxCAAAQQQAAIEIAAAjCAAAwQQAAWMIAAExCAAAkQgAAyMEAAEBCAABEwgAACMIAAIjBAAAAAAAAiEEAALxCAAAIwgAALEIAAEhCAACowQAABEIAAPBBAAAAwAAAgEEAABDCAACowQAAlkIAADDBAADQwQAADMIAAPDBAADAwAAAgL8AAKDAAAAAwwAAYMIAAJDBAACAwAAAoEEAAIhBAAAAQgAAksIAAEjCAADCwgAAsEEAAPDBAAAkwgAAYMEAACxCAACEQgAAwMEAAOBBAAAAwgAA0MEAAEDAAABwQQAAQEIAAABAAABswgAAsEEAADBBAADIQQAAmEEAAJ7CAABoQgAA4EEAAAxCAAAswgAAqMEAAEhCAAAAQQAAYMIAAMBAAABYwgAAJEIAAI5CAAB8wgAAEMEAAMDBAACIwQAAAEEAAMbCAADgQQAAQEEAAAxCAADIQQAADEIAAIBBAABEQgAAAEEAAMBBAABgwQAALEIAADBCAACgwAAAkMEAALhBAAAMQgAAsMEAAKjBAAAswgAARMIAAIBAAAAEQgAA0MEAAEDAAADYwQAALMIAAKBBAABoQgAAEEEAAAjCAAAIQgAAmEEAAADAAAAEwgAAAEAAAHDCAABwQQAAmMEAABDBAAAwQgAAyEEAAIhBAACMwgAADEIAAFBBAACAPwAAaEIAADDBAABAQAAAeMIAABRCAACowQAAXEIAALbCAAAEQgAAGEIAAPDBAADQQQAAvsIAAILCAABwwgAA4MAAACBBAAA8QgAAQEIAAIBBAADQwQAAmMEAABzCAACYwQAAAMAAAMBBAAAQQQAAcMIAAFDBAADMQgAA4EAAAHBBAAAAQAAAIMEAAABCAADgwAAAvMIAALRCAAA4wgAA2MEAAK7CAACkwgAAAMAAAADAAABUwgAAIEEAACzCAACAvwAAwEAAABzCIAA4E0AJSHVQASqPAhAAGoACAAA0vgAAhr4AAPg9AAAkvgAAqD0AAIY-AAAJPwAARb8AAN6-AABkvgAAVL4AAJK-AAAEvgAACz8AAES-AAC-vgAAQDwAAAQ-AAC4PQAASz8AAH8_AADSvgAAqL0AACS-AAAMvgAAmL0AAJo-AACYvQAA6D0AAPo-AADCPgAAlr4AAOi9AABQPQAAdD4AALg9AACuPgAAdL4AAA2_AABQPQAAQLwAAMa-AAAsvgAAbL4AAEw-AAA8PgAAmj4AAIa-AABQvQAAgr4AAHS-AAB8vgAADD4AAHA9AAAsvgAAHD4AAHM_AAAwvQAAgLsAAC8_AACGvgAAHD4AALg9AACIvSAAOBNACUh8UAEqjwIQARqAAgAAqD0AAEA8AAAcvgAAI78AAMi9AACgPAAADD4AAOg9AAAEvgAAoDwAABC9AABkvgAADD4AAFy-AABEPgAAqL0AAKg9AAAHPwAAiL0AAMY-AADYvQAA6D0AABA9AADIvQAAmD0AAES-AABUvgAAoLwAAFC9AACIvQAA4DwAAKg9AADgvAAAED0AAAQ-AACKvgAAfD4AAJg9AABsvgAAUD0AAOC8AACAuwAAdL4AALg9AAAUvgAAQDwAAH-_AADgPAAALL4AADA9AABwPQAAiD0AAMi9AACGPgAAuL0AANg9AABwvQAAML0AAOg9AACIPQAAcD0AACw-AADYPQAALL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=4UNkQcBrLaQ","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6805242242328194255"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18408601991317161056":{"videoId":"18408601991317161056","docid":"34-9-14-Z9E081BEDA42DF7AD","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1006844/8e7b594b5e388aded3af294aab93d6eb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/G5SFGwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DoUfVl8aIB5M","linkTemplate":"/video/preview/18408601991317161056?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate Logarithms without a Calculator: Log Base 10","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=oUfVl8aIB5M\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFgoUMTg0MDg2MDE5OTEzMTcxNjEwNTZaFDE4NDA4NjAxOTkxMzE3MTYxMDU2aogXEgEwGAAiRRoxAAoqaGh6Z2F2ZnNidmF2eGNsYmhoVUNJajFfNG8zb2hlSU5sRkpMS2pQakR3EgIAEioQwg8PGg8_E_IEggQkAYAEKyqLARABGniB-fcHAwT7AOgKBAMLAf8AHwD8_vMDAwD1CPv-_wL_APv9B-39AAAA-Qv6AwIAAAD8AfEIAv4AAAoH-_gFAAAAIQEK__kAAAAH_O_3AAEAAPX_-w4E_wAA-fkJ-v8AAAD1EAEDAQAAAAMSAQgAAAAADPz66wAAAAAgAC38mcc7OBNACUhOUAIqhAIQABrwAX_qF_7Oy-IB1QT2AMzp2ACqJfcA_DvLAJ35IAHEBPoB3fXwANgJ-gDHHgcA2EwS_0n0wf8F9xH_KfAF_wbmBgAAC9sBCt_tAmkHIgD20__-A9YK_eLeDAEiFt4C6gPa_xblLvwvBtH-IRrDAiUYLAESOC0DG_InAv3H-PueFBL-8Qvp9hwk-QQ5Chz-nv4gCPIC7vsA-9r54yXlAhXjFwPw8iD3CTXO_UXE-QU3_esEvuL-BuDp-wEwAhYC1yvg_gEON_rR8vkA3AkSAh_a6vMNAdL0JQrmCUb_E_4T6QoQBwIA-uYtC-313fMC-yHv-SAALb9OADs4E0AJSGFQAirPBxAAGsAH14XnvkS8Or0KoaQ7vToFO9YEDL2VcNe8fKGbPCLdFD2AxGU8n1s4PucTfr3YCj-8WcBUvgSMjDkqz9c8y4AzPubRiL2YYjM82UNLvkOSdjspf4K9rg6AvXxEDL2GRw88Xz_pPDfnmrsjrLy8dgk9PY5jWryLUh-8YlEsvWRSqDyolmO8K4jBvMMXHL1JW-a87xr0vGbGMrub6gM8007tPXVADb2daR29_fK-PX5wHby3pUS8dHvpvaUWyry7WpO8B7cUu0488TzFtvs8sd4IPQ4bQLt4p6-7Q27rvDksuD2dyYg8PSgIveO7Hj1nyyC8nFqsPKMexzt8SPi8DMiDvf8Zrzxe8XU7eocgPTnsgz1CRZi5xmGqvatbnT3u1Jo7uypQPfqNQLy_7746FuzAPUqrSz1jYnO8LOjHvD3awz1fDOW8brYjvflYcD0JEsA8-uwgPg82qzy9UVC8Nza7vJWqI726uDI8wwqcvUk1xzwkKYq7PjK3PbmdxzzKZac4pzUTuTb2Nryw0GI8BSOlPdYCO75J5Zo6mIGvvI_Cur2rvik8HW3BPTlpED0uBX-8V1gVPYtUeL2SEN27McYwuxKk8r1YK8m6A70mPTS_9byUULg7zisIvaAGhDvUQqw7v2unuzrDuTzWNX-805SjPXuOfj0B9eo7mTbSvLxazr0YnC86G3TIPUA3Tz1XBlW7mqdEPZwYUr0-_hi7m6a0PLckt71rAEK7zjUKO7-Njr22QdS6PCKVvVUu1L1ZoNA49X6IPTPfAb1AfGw5u87tO1OFFT2Cb7-3KmKHvfDrkTwOxL04IojzPLWeq7yyxhQ5y6LwvFtCHr43BeM5EUOhPHyInbt1NHo6luI0PfOKzLx3g465L1DyvahcnL1DgL-39-LNuke7O72owxO5YlXSuzR2E70Ukh-4Q5OPPUXMFj0jctI30bp8vSd1OLyYNlU5yC9yPJeonj2EkAe4RQ7RPSkj7r3iLL85p70XPWhOaD2GYDo5OAEfvA6DeTzgwUS4Fx-wPEughz04M8e4nQ5HO3efA75D3oy3nsfyPAZuWD1slHa4PhJFvaZxOTy1Mwk5NbaXPOe0XTzBQOc4Yi-UPa1pHrw_ddy1jSK_OdO5R7ypNxo4cRhxPa-6aTx8PDC5bh5ivbErsr0Tv7-408s-Pec54r2talo4G_UAvnwUKT22MPQ45NWevHqJ8b1lVTC4VRimPW0LxT2Dx-c4tVdaPdKyhD2R2bu4LWclvJ7iwj2wfCu4D14AvenyBr3ZxSk4IAA4E0AJSG1QASpzEAAaYC0LAFcwFu75-__l99dAGu3TC8H58gL_BOr_BB0D-uI3ydTyBv9S5yzHpwAAABzrvCXvAAp35OnuExsB277ArzkYZBMcW8jwJAfa3k8d-sro8g4RfwDh4r4OGQe_GxcNLyAALbGlHDs4E0AJSG9QAiqvBhAMGqAGAADYQQAAgMEAAJBCAAAkwgAAMMEAADhCAADYQQAAmEEAAHTCAAC4wQAAQMEAALDBAACQwQAAGMIAAJBBAACgwAAAuEIAADjCAAB0QgAAisIAAADCAABIwgAAAMIAADxCAADgwQAATEIAALhBAAC4wQAAsEEAAIhBAACgwQAAEEEAABjCAADIwQAAosIAAPBBAACAvwAAtkIAAGBBAACEQgAA4EAAAADBAAAkQgAA4EAAAJDBAABQQQAAZEIAAAhCAACAvwAAoMAAABzCAAAAwQAAwMEAAMDAAADAQQAAwMAAAABBAAAQQgAAgEIAAEhCAACgQAAASMIAAODAAABgwgAANEIAAN7CAAAUwgAACMIAAMDCAAAwwQAAQEIAALhBAABAwAAAcMEAABDBAAAgwgAAjMIAAKDAAABIQgAA4EEAAJBBAACKQgAAbMIAAEDAAACQQQAAMEIAAFBBAAAAQAAALEIAADzCAACAwQAAXEIAAEDCAACAwQAAAEAAAKLCAAAAAAAAYEEAABBCAABIQgAArMIAAFhCAADgQQAAFMIAAIDCAAAgQgAAnMIAAJBCAACgQAAAUEEAAGBCAACgwAAAyMEAAOBAAAAAwAAAQEIAAFBCAAC0wgAAZEIAAEDBAADIwQAAAMIAADxCAAAAwgAAGMIAACDCAADwwQAAiEEAAODAAABkwgAAAAAAABTCAACAwAAAmEIAAOjBAAB4QgAAJEIAAARCAAAwwQAAeMIAAARCAAAwQQAAiEIAAIjBAAAcQgAAMEEAALDBAADgQAAAwEEAAMhBAABAQAAAgD8AAARCAACAvwAAmMEAAIDAAACmwgAALMIAABTCAADQwQAAYEEAAIBBAABQQQAAwEEAAGDBAACAQAAAJMIAABxCAAB4QgAAVMIAAGBBAAAgwgAAgMAAAIjBAABAQQAAgMAAAJjBAADAQAAAIMEAADhCAADYwgAAMMIAAAhCAADAwQAAEEIAAADAAABwwgAAMMEAAIBAAAC4QQAADEIAACjCAAAoQgAAFMIAAHDBAABsQgAAuMEAAKBAAACQQgAAAMAgADgTQAlIdVABKo8CEAAagAIAALI-AABwPQAARD4AAKa-AACoPQAAqj4AAEA8AABlvwAAZL4AAII-AABAvAAA4r4AAOg9AABUPgAA2L0AAOA8AABQPQAA2D0AAJa-AAAsPgAAfz8AAEC8AABQPQAA8j4AAIA7AAA8PgAAdD4AAOi9AACgvAAAgLsAAAw-AAB8vgAAFD4AAOA8AAA8vgAAUD0AACQ-AAADvwAA0r4AALK-AAC-vgAAEL0AACy-AAAQvQAAor4AAIg9AADYPQAAML0AAHC9AABQvQAAxj4AACS-AAAQPQAAJD4AAE-_AABAvAAART8AAKg9AACAuwAADT8AAGy-AAAcPgAAzj4AAPi9IAA4E0AJSHxQASqPAhABGoACAACCvgAADD4AAOC8AAAdvwAAMD0AACy-AABcvgAARD4AAEC8AABwPQAAUD0AAOA8AACgPAAAiL0AAFw-AABQvQAABL4AABk_AACovQAAVD4AAPi9AADIPQAAcD0AAEy-AACAuwAAcL0AAOC8AAC4PQAA2D0AAFC9AADgvAAAbD4AAEy-AAAEPgAABD4AAOi9AACiPgAA0j4AAFy-AABkvgAAgLsAADy-AADuvgAA2D0AAEC8AAD4vQAAf78AANg9AACYPQAAuD0AAHC9AAAEvgAAmL0AAKI-AABQPQAADD4AAKA8AAAcvgAA6D0AAOA8AACgPAAAFL4AAAQ-AAAkviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=oUfVl8aIB5M","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":358,"cratio":1.7877,"dups":["18408601991317161056"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10762929386981784373":{"videoId":"10762929386981784373","docid":"34-0-13-Z1C672671B5F0445F","description":"In this video, we begin by going over logarithms as the "opposite" of missing exponents, and we use this understanding to move from log form to exponential form and back. Then, we evaluate ...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3008839/5d4e6044ec13b96a294d3e3fea6ec527/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RtAA6AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFbT1mMwKeFg","linkTemplate":"/video/preview/10762929386981784373?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Logarithms Intro - Solving Logs, Exponential Form, Logs of Fractions, Natural Log, and Log Base 10","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FbT1mMwKeFg\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFgoUMTA3NjI5MjkzODY5ODE3ODQzNzNaFDEwNzYyOTI5Mzg2OTgxNzg0MzczaogXEgEwGAAiRRoxAAoqaGhyc21yeGFubGd1bmhzZGhoVUNkWC1oN29GTEg1OEM0SHRIY2NSZUdnEgIAEioQwg8PGg8_E_EJggQkAYAEKyqLARABGniB_AkA_fsFAOYRCf0L_gD_CQj_-PcAAAD9CPgIAwX-AAf7CAH7AQAABQz_BQMAAAD--ev-__4AAAQG-wf5AAAAEgAEBP0AAAAD_PYH_wEAAPoA8g0D_wAABgAIAAAAAAD1CgP6AgAAAPkJ-v8AAAAAAP_-_wAAAAAgAC2jC-E7OBNACUhOUAIqhAIQABrwAX8SEgHkDssC2CjWAP762QDTCA8AFkP6ANf76QHd8-8BCQn4AOr-AADpFPQArBALARkBygAKCN4BNc3o_zPc7ADsG_MAEcwDACIwI__37PcA7QkjABzdAgH9AdIADf_mAA3l-_0M6N8ACe3ACCsoKwHn_BYB-PMA_fLLB__jAgoBEdEH_fs06gP69Pv7Awot_gzw-_sN9v_69EXpBhgBBQXi5Pj7BynZ_g0G8wYS__wGxe0T_fzjCQ3sHxr-4CLn__T4IgLtJwgA3hAM9g7p9AX59vr97wjeAPUM__8P7ggMBwT6COYJ-fb7HfX__Bry-yAALbXRJDs4E0AJSGFQAirPBxAAGsAH9UrJvuiTS7xf-_g89wvRvHrZQDx4bPq84KD9vS4MpjsFkR68MzIYPhA0cL18PcQ8g6fwvVpiijxTgB49y4AzPubRiL2YYjM8ehcvvgg8MD0pn9S8jkCsvaHxKT2aqZi72biJvddFtrxfIK28lXpbPSqfFzr-wbY8b4sIvUNHB7oj2Bi91DqbPTRVRr0On3S9Y4yZvB1NXLsP8lW8bM_MPUI6H7x3gVQ7jV6NPdKw8zwDoAK86tW7vaLHOTyQTEe9kFEZPXqEPz38Ziw93PQXvuQiSL2Xnvq7cN6uvYRHqz3LUVs8qMoyPX8U9TyJPG68aDqQPVAgRzxOaZi8seFJvi6S9jxPCJ08ZjBmPQvKmT3zgZO8sOLUvXU2yT08jlU8pG6nPP3SRzwWure8uTuGPCCu4jsetXg8k7kDvRVeHb2jxJW4kCQQvBDfoz2mYgM92c3sPYD07b3XWD-6ql2oPUtwDzxuNWu8RwiKveN9hr3oILu7WrXQPBuPiD3HCM08O38kvM8627r8QIs7BSOlPdYCO75J5Zo6mIGvvI_Cur2rvik8Yy-fPSb_oz24YjW8TvDNPWYz573_VwA8aebmu1hdorwjU5k7wPZCvbj-Yr1N9YE4tvBhvMiLFrzUTO-7KHJSvXQwMT0-qf679XaVPB3_CTzMosm6uNIGPQhW1b0-uhK6iWZZPQHxlD3Rfry4yH7WPQKFdjtSdNs4FuuaPRGr_71s1wG6Ls6DvWEIL72oqMq5H01QvQZZAL04ixM6_gw_Pskirb1NsI-4APLUvIaBHT3tJ524kbp4vSicHT3HAQm4dfmAPetn-7xROY24vsXgO6xTFb6mjMk5wO0kPVvvrjkej8W5TmElvKzVuD2Ohha4p0fJvJsTxb0DArM40NIXvA3jzr0sVQg5vEcRPX5UQzyc24W31zTKvGwA_Lv3a6-4JjfMOpH-qLyJCN45W614Pe70GT3ysZg45yLZPAPM_L1SScg5rv3TPKWJkrz1BzE4u89WPXslmj3WzBM4CJvwPLn90j1HaWU48VkoPXeWir3VNes4F3j4vNaN1z041Lo4nHpzvddL0z2fjZc4Oa4LPSiFFrwBT0M3nOWqOxYVsTzTVdu3qC9VPUQK0DrWkw42weMrPtylaLwHiXS5XEkBvcre0r0XIgS5dfX0vFnd6r0NI_E1m9KPu-Lkjj1g3kc3SfeOPK1QxL1znPK4Iv_sPTUpBT7zflu4GCc5vZRDpT1llMe4VdfGvbuZUbz5mlu3fCS6vTmJtzxcbAq3IAA4E0AJSG1QASpzEAAaYEb0ACsKMvkE8APi8dz6Bsjn9AL92Qj_9tAA_Cz6AxMb3dYIDwArwi0EtgAAACUKAzz8AANg2t68HQr5_866s0oIf871HOLvBem78BD9LOH2BPv_PADy_9gYA_WwIgAuHiAALabyNTs4E0AJSG9QAiqvBhAMGqAGAADgQQAAgEEAALjBAAA8wgAAMEIAAKBBAACmQgAAwMAAABTCAABgQQAA0EEAAIbCAACGwgAACMIAAJJCAACgwAAA4EEAALDBAABAwQAA0MEAAIjBAABEwgAAUMIAAGBBAAAAwAAAYMEAABzCAAA4wgAA6EEAACBCAADwwQAAwEAAAHzCAAA4QgAAjMIAAIDBAAB4QgAA4kIAAHDBAACiQgAAHEIAAOBAAACQQgAA4MAAADhCAACWwgAAwMAAAARCAACgQQAAoEEAAKTCAACwwQAAQEEAAABAAAAgQgAACEIAAADDAAAgQQAADMIAAIhBAAA4QgAAcMIAAIDAAACywgAAiMEAAEDCAADIwQAAKMIAADBBAAAgwgAAaEIAAJ5CAADYwQAAgEEAAOjBAACgwgAABMIAAKDAAACgQAAADEIAADzCAAAwQgAAAAAAAFBCAADAwQAAqEEAAOBAAAA0QgAAqEEAAATCAAAUQgAAlEIAAJjBAACqwgAAUMEAAKBAAACYwQAA4MEAAPhBAACAQQAAxMIAAJ5CAADwQQAAwMEAACDCAAAAQAAAJMIAACBBAABEwgAA-EEAAJBBAABQQQAAoEAAAEDAAABAQQAAmEEAALDBAACKwgAAgEEAAEDBAABwQQAA2MEAAADCAADAwQAAQMAAAOBBAACwwQAAgD8AACzCAABwQQAA4MEAAIBBAACYQQAATEIAAFDBAACoQQAAgL8AAKDBAAAwwgAAeMIAAIDAAADAQQAAmEEAAKBAAAAUQgAAmEEAAETCAACAvwAAXEIAAIjBAADgQAAADEIAAPhBAACYwQAA8MEAAJBBAACAPwAAnsIAANrCAAAYQgAAEMIAAKBAAAAkwgAAgD8AAADAAAAgQQAAQMAAAJRCAAAMQgAAAEIAAHDBAABgQQAAsEEAAMDAAAAMwgAA-MEAAMDAAAAIwgAAuEEAAGBCAAA4wgAAMMIAAAAAAAAkQgAAqEIAAOjBAACUwgAAqEEAAIA_AACQwQAAAEEAAETCAADAQQAAyMEAAKBAAACMQgAAYMIAAKBAAAAkwgAAwMEgADgTQAlIdVABKo8CEAAagAIAAHw-AAAQvQAAuD0AAMi9AABwvQAAGT8AAJg9AABdvwAAbL4AAAQ-AAA8vgAAjr4AAEA8AAAkPgAAvr4AABC9AACIvQAAQDwAAOi9AADuPgAAfz8AAFy-AAAQvQAAoLwAACS-AABwPQAAUD0AAIK-AACoPQAAuD0AAEQ-AACgPAAA6L0AADA9AAC4PQAAUD0AAKI-AACevgAAlr4AAFS-AACovQAA-L0AACw-AAAwvQAAhj4AACQ-AAAwPQAAuL0AAIA7AADKvgAAED0AABS-AAD4PQAAoj4AAJK-AAAQPQAAIT8AAFy-AADovQAA2j4AAFC9AAB8PgAATD4AAHC9IAA4E0AJSHxQASqPAhABGoACAAAEvgAA-D0AAKA8AAAnvwAAqD0AADy-AACgvAAAyD0AANi9AAAMPgAA4DwAAEC8AAD4vQAATL4AAAw-AABwvQAAgDsAABU_AACgvAAA0j4AAES-AAC4PQAAEL0AABy-AAAQvQAA2L0AAMi9AABQPQAAoDwAABQ-AACgPAAAJD4AAES-AACAuwAA2D0AAIi9AABUPgAAFD4AAFy-AAAMPgAAoLwAABS-AADqvgAAbD4AACy-AACgvAAAf78AAMi9AAAEvgAADD4AAKC8AACAuwAAmL0AACQ-AAC4PQAAiD0AABC9AAAcvgAAgDsAABC9AABwvQAAND4AAEw-AAA0viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=FbT1mMwKeFg","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10762929386981784373"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15306416043090727222":{"videoId":"15306416043090727222","docid":"34-6-10-ZB54D6EBCF6C6FCDA","description":"We solve this equation for y and do some examples. log(2+2) = log2 + log2 log(Φ+Φ^2) = log(Φ) + log(Φ^2) math,algebra,calculus,numbers,integration,differentiation,derivative,integral,math elite...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3324642/5459efb3653fd14505ed09480fe41308/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MHSWtQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeMUsFVqDYZI","linkTemplate":"/video/preview/15306416043090727222?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"log(x+y) = log(x) + log(y)","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eMUsFVqDYZI\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFgoUMTUzMDY0MTYwNDMwOTA3MjcyMjJaFDE1MzA2NDE2MDQzMDkwNzI3MjIyaocXEgEwGAAiRBoxAAoqaGhnYXFmcmpqaW5tbGViZGhoVUNuLUhycXpZSW1rRDNyVHZ6RG1aT1dREgIAEioPwg8PGg8_E3GCBCQBgAQrKosBEAEaeIH6BwAG-gYA6gUOAwMB_wAAA__4-f7-APr-AfkEA_8A_fkN__gAAAD_BQH_BQAAAPwJ_gAE_gAA__r5-wMAAAD_AwQF_QAAAAf5_An_AQAA9v4DBAMAAAAABQf-_wAAAPAT__v___8AAwD6_wAAAAD8-voAAAAAACAALSv14zs4E0AJSE5QAiqEAhAAGvABfw0n_9T0nQG3F9v_9wfyAdkHOP8KPO4ArQb8AQu_0gLz_PYBDPLpALIz6P-4Jc4BGM-iAxzx7wEqsfT-BajrARgP3QH2E9cANwE5AQz2EP4GIBz-_v8gAdG82v_0GNn-9Ov1_zcJ-gHpBLMCQesnAvXdFAYaEC0E1Z38Ae3e0QH74Nb9ED7xAx7OHv_nG0gBIxcKAgAE-PXwX-AJ98vu_wKoJv75Sd75E9bnDyYV_gyv5Rr88QcVBfooF_awHAL2AQ87-vQG_Obe9QkAECvz_BMb4AT17-cEJiD_A-rmAQwF1_f4DfAA8xPz8vLgH9fvIAAt3JTvOjgTQAlIYVACKs8HEAAawAfpfsa-fL4BvSiUKjzO_gC-GWFAPE6d4jzMpZe9car1PD08lTwglsI9CqMZvRAGnrx_gxa-ogtqOyFQBz2g4ig-UdvGvEQONjx1dPy9LxOaPQsCEL39B7K9v63HO3sOE7yCRIm8dSuKvfwrWLuVels9Kp8XOv7BtjzKLn29SeeuO-CXH72xnM68l5xJvLbtYL0TXLS7McwOvS_6yDu8Wu49QGNLvCsBpzz1JUA8h7-mvKBsirymEIO9HwAnPTMb_7yEWRI9uOdZPWIgGTwrvfa9pUOxvS2kMrwlF629217BvAshzjo27DI9AA0FPcTSO71lQ509dzW0vZB2Mr35oAe-9BqbPS-BgDv19fw9nKIIPesrWbx4dJi9hTMpPSPb-bx78pU8AqwhvCPhFr2nSd88_KKMu1KE7zxGKLa6zuAvvaE1mjz9cbE8eES1PbVXejxblZQ96g6ovTAwhrzmQM8970irPFHAtryAa8K9PyoPvSyLeDylQ0w8IBqXPYUc4zunNRO5NvY2vLDQYjwFI6U91gI7vknlmjomlHm9sQlavZGCfTl0fso8aiRzPYXEqLtDqR0-H2rbvcSaqTmlB4-8YAAGu0FZQjzA9kK9uP5ivU31gTjsyYK93igoPaHANzu_a6e7OsO5PNY1f7zcNiK9UahCPd3q2js_QZw7VyQWviKaCroUeRI9K1ovPST7FLuLEJg9EZ_FPP5M8rmXI589-8Z8vQOsEjosQla9SGP-vKFdDTvNvMu9p89OvcxKqbehndM9UYGYvZedUTm0WCu7WWAZPc15UDmLPLS9fTVRPTgfGDhTsyc90pBMvTMalDhcVAu9nBXxvdyedTkDi8E5wZgjPSHL07ioZws9QymQPW1igzlTHpK9ShvIveFzmzfS3gW9-AvMvZeDzzgMhLM9jy8GPUh15rjzwA-83aRYPMsE7Lk6Dcc8XnQDPB2iDbk86RM9r6EqPf_btTiYtFI7P3DFvfcuYDntREk9W-z2PON8ZzgAWhA71pdbPGu8KLiHU5E99F_GPaq5JDfxWSg9d5aKvdU16zjQgBU9gEq1PZY0kLhodTK-ZKQoPRfKTLd4-re8e7zQPHKqmjctt8-8uDhwO-SljLgPw309CvM-PYj3vzaSXRk-2U9QvazCP7nNx3q90xXsveab-Lh_iYO9Dtj1vQvRErjabKG9jeayPSF0CThcqKE9fcSUvbihljfK9HA9IuErPvHLijg8Kfq7VSptPeAyjbi0Afi9tVhFPVHgXDjj8b69c5NCvTbHsLcgADgTQAlIbVABKnMQABpgKfoAGgU99x0LBfXu8woD4vkR793mDgAU6gAkLt_0DRTn7AAU_yb_Aeq9AAAAMxH9EgsAB1TbHsYyDOUEz7bPIxt_4gAU2AkZ9PbZF-8b6f4JBQNEANwG2BH9ALYaDQJPIAAtKedLOzgTQAlIb1ACKq8GEAwaoAYAAGhCAAAAwgAAJEIAAPDBAAAEwgAA4MAAAJJCAAAAwAAAdMIAAABAAABgQgAAjsIAAIA_AACQwQAAgMAAAADBAABcQgAAUMIAAJhBAACAQAAAFMIAACDCAABkwgAAqEEAAJLCAAC4wQAAYMEAAChCAAAIQgAA-EEAAIDCAACoQQAAwsIAAEBBAACiwgAAEEEAAABCAAA4QgAADMIAAChCAACoQQAAEMEAABxCAADAwQAAgMAAANDBAAAwQgAALEIAAFxCAABsQgAA4MAAACjCAACAPwAAgEEAAMBBAACYQQAA0sIAAKBBAAAoQgAAEEIAABDBAACWwgAAyMEAAEDCAAAAwgAA5MIAAODBAAA4wgAAgMAAAADCAADwQQAAgkIAAIDAAADAQQAAKMIAAGzCAACkwgAA4EEAAOBBAABAQQAA8MEAAMZCAAAQwQAAQMEAAIDBAACKQgAAoMEAAIC_AADIQQAA4EEAAOBAAAAUQgAAXMIAAAjCAAB4QgAAUEEAABDBAACAvwAAkMEAACBCAACYwgAAAEEAAKBBAACgwAAA6MEAANBBAACAQQAA4EAAAKDAAAD4QQAAlkIAAPhBAACQQQAAUEEAALjBAACUQgAAoEEAAADCAACoQQAABMIAAODBAAAEwgAAsEEAAOjBAADgwAAAwMEAAJDBAADwQQAAgMEAADBCAAAQwgAA2MEAAJBBAABQQgAAQMAAAMhBAAAIwgAATEIAANhBAADEwgAA0MEAAGhCAAAAQgAAKMIAACxCAACAQgAAGMIAAOBBAACAQAAAAMAAADDBAABAwAAAJEIAAODBAACIwQAAAMEAAEjCAAAwwQAASMIAAODBAACawgAAYEEAAEDBAAAAQgAA0EEAAHBBAADwwQAAGEIAAIpCAADAwQAA2MEAAIC_AACIQQAANMIAAETCAAAcQgAAgMAAAEDBAAAEwgAAzEIAALbCAAB4wgAAyMEAAMjBAAAMQgAAYMEAADTCAAAcQgAAHMIAAJhBAAAEQgAAAMAAADDBAACAwAAATMIAAGRCAAAQwQAAqEEAABDBAACIwSAAOBNACUh1UAEqjwIQABqAAgAAUD0AAKC8AACAuwAAMD0AABS-AADiPgAAML0AADO_AAAwPQAAQDwAAKC8AAAHvwAADL4AAGQ-AACavgAAmD0AAJg9AABQvQAAUL0AAKY-AAB_PwAATL4AALi9AAD4vQAAnr4AAEC8AADgPAAAdL4AAPg9AACIvQAAdD4AALg9AABQvQAAuL0AAKA8AABsvgAAmD0AAFS-AACuvgAA-L0AAEA8AABEvgAAyD0AABC9AADYPQAAuD0AAKg9AAAsvgAAqr4AAGy-AACovQAANL4AAMg9AACoPQAAbL4AALg9AAAdPwAAcD0AANi9AAC2PgAA4LwAAFw-AADgPAAABL4gADgTQAlIfFABKo8CEAEagAIAADA9AAA0PgAArr4AAOq-AAAUvgAAHD4AAFQ-AADCPgAAED0AAII-AAAEPgAAMD0AAIi9AAAUvgAAcL0AAIA7AABkvgAAET8AAAO_AACCPgAA6L0AAAS-AADgvAAAUL0AAJi9AAAQPQAAPL4AALg9AABAvAAA2L0AAIg9AACgPAAAvr4AAPg9AABQPQAANL4AAJ4-AACCPgAAkr4AAAy-AAAcPgAALL4AADC9AABwvQAA-D0AABA9AAB_vwAAND4AAKC8AAA8vgAA2L0AAGQ-AABMPgAAqD0AACQ-AACYPQAAqL0AAOi9AAAMPgAAPD4AAIA7AACgvAAAQLwAAFC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=eMUsFVqDYZI","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":686,"cratio":1.86588,"dups":["15306416043090727222"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10023272982282718804":{"videoId":"10023272982282718804","docid":"34-8-4-Z33BEF0A6BA1EE69B","description":"How to solve logarithms without a calculator using established index and log laws. In this Video we cover the log example Log2(1/16) = x...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/788049/f18b095ec4b35363dad9b3b5fbf7c53f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/aHDCnAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhwZP265NK0I","linkTemplate":"/video/preview/10023272982282718804?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Log2(1/16) = x How to Solve Logs by Hand","related_orig_text":"log()","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"log()\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hwZP265NK0I\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMDk3Njk5NjQ1MjgwNDk5NjA4OAoTNzU3MTYwMDgzNjc4MDI4NTUzNgoTNzgzMDA4MjM5MjM1MTQ0OTc3NQoTODY1Njk2Mzk5NTkxMDU4NTk2OQoTNDQ0NTM5NTc2NTIyMTQzMTcwNgoTNzc2NzA3OTk0MDY1OTkyNjM2MQoTNzA1MzI3MTAzNDE1ODk2MDcyMgoTNTAzODA3MTc2Njg2MDQ0NDQyNAoTNDQ5MjEwNDU0MzE4MDUwNTkxOAoUMTYyMDQxNDEzODI5ODg5Njc4OTkKEzkyMjYzOTM0MzE3NjU4MTA1OTIKFDE0MTA4ODA3NDY4MDkzNTg0ODAwChM2ODA1MjQyMjQyMzI4MTk0MjU1ChQxODQwODYwMTk5MTMxNzE2MTA1NgoUMTA3NjI5MjkzODY5ODE3ODQzNzMKFDE1MzA2NDE2MDQzMDkwNzI3MjIyChQxMDAyMzI3Mjk4MjI4MjcxODgwNAoUMTI4MzkxNDk3MDExMjk1Mzg5NzEKFDE0NTY3NzcyMTU1Njg1NTA4NDU1ChI1NzkyNjUyMjg3OTQyMDE5OTMaFgoUMTAwMjMyNzI5ODIyODI3MTg4MDRaFDEwMDIzMjcyOTgyMjgyNzE4ODA0apMXEgEwGAAiRRoxAAoqaGhvZGZ3cG9wemh4eXRyY2hoVUM1RTVEUTVLYUdlU0hPYkNUc0tNM2x3EgIAEioQwg8PGg8_E4kBggQkAYAEKyqLARABGniB_QL7-fwEAOX9Cf8I_gH_FALy-vUCAQD0CfQJ-wH_AAT7AQUBAAAA_Qv8BQsAAAD-CfAC9_4AAPz1-_35AAAAAAH___sAAAD4BvoA_wEAAAH58wMD_wAAA_D8Bv8AAAD3Agb2__8AAAQIAwQAAAAA-_oHCgAAAAAgAC2I7947OBNACUhOUAIqhAIQABrwAX8D5f63C9cA6fv8AMwGBgKVNiv__D7JAKoyMwTG1ecA6R3XAOEXy_7oBAsA0SX6AD3Nx_4T0AYASePj_xv9-wAG3BkABrjjAkMTHAPIANv-__1J_uHdDAH9vNgA6gPZ_-8tEPwK-tIB5yzNBCz6NwEE_1ABHPIoA-3jDwHOCRcE--HY_fUpBgbj0Rf70AUpAg3H_P4rIhX7_hbnAAPj4QgSzw_7EBfHADLS9QL4DBf54-3q9OL2BwMe7BgB2R4tAQEPOfrP4P_27_P__0ff6v3A_fj-C-vzCfoWAhHn4AD89-_07eMd7wXD7Pvz8wT0ACAALccN-Do4E0AJSGFQAirPBxAAGsAHv7q6voAL1zyR_WK87fIdvqacL7113jI6F59SvsfXXj3wWEe8uBmDPZQ5Ub1_5gK9dqU1vn0KW7yK0pg7FJRCPkZFHL1z6AC8ehcvvgg8MD0pn9S8_FQlvjHZLrwHc-Y3bLDwPAproTsO2aO6-tXcPTd-cjyroBY8MbksvLSXKL2imSe8-Ua5vVOXnL1lmt-852FXPUa4JL1k10w9WzGiPbGRWr1PbE889XmGPez3ZL3SW5c8zBtUu_YlG7z1GQa9BTTxPRUkDbw2Q186SriLva0y07xHUAK85V4AvU2YurzY_2-8QQsJPb7sSD0RSqm8I6lgvZBcmL3oJCW8d_UKvqCfLj1c-VG8JxcTPk_Vcz0VqbA8SdV7vZ_ziby1IBA86PJrPRETib1IIuo7XB0APpBmkTwzV4I76O6EvMclcz3pri06brYjvflYcD0JEsA8Ai09vW4kir1WhWG85kDPPe9IqzxRwLa8c-lJvQNtPDtROzK8Bx4EO_Z4xjw8GM67ZJXSPa0LCT1GXWs8xTVDPfhRDb4Jbyy7ldw8vTzxwb1D6ea7fEftPSA3DT1TXR-7thyOPZKXsbtAmZA7h-YVvOWagjyqQFK81a80PUFQybyVfgS8nFtXvFQEE73CwzQ8Ik7MvNT_aD2L9bK66ezJPEwYzT1f6Jq58Z5jvV12jr2J1ca5ucMmPSDPTr1T1JW7Zi2KPTSdQr1Ztj27ElDBPcF4Qb1h0wq62RASvUnN6LxaQqU7xRNLvfiNyr0_7Ue5sXWZOAcLB76sMvi4gQpCPQ_VEDxhzTO4CH8VvVtErz2Ygfg4ogaoPeUtsjzEjCe5y6LwvFtCHr43BeM5bQDWvaIYrLr8ctg4rZtXPTQmST0t6IW4bT5JvWL0TL7q7qw5G1ouvRgeIL3GPlS3iqIxPa5YC7zlZZ-4_rBKPMQgFb3psQc3F8GavK4MTzwtk2E5OtbaOzkPZz3UOd83Wq-DPQGPw72m0Vo5w3csPe5IoD1t7Rs5Bs5jPQ0rJj3L1Uu2-oG2PRv6Ij0G4n033ln7PNjxn70YDZc4baljPag04jyxRbS4WJ_MvaYuND2Dfyw5J6YmPWnynrxkPFU48-5DvWQVIL3bhhe4jSK_OdO5R7ypNxo49wEoPnBh3b3xZ7-57AncvOEpX73EpWO4dfX0vFnd6r0NI_E1_aQ1vd-ITbtXxXQ21ZTkPL42pr3zo024Iv_sPTUpBT7zflu4gw6vPUIW2DxpSdm3squPvXy6-jxzlDQ3GttrvLGDEDw6gSQ4IAA4E0AJSG1QASpzEAAaYDP8ABPnQdkw7QnY1egNENAI0N0UxkD_Gb3_ElMDC_QXztgeGQAuAwDgowAAADEJ-ArtADx_8QbmKtP-ILrAzSXdTgIEJqvrEBu54SoD2fQMDPQyfADQzr3zKszGBur9LiAALbwPHjs4E0AJSG9QAiqvBhAMGqAGAACAPwAAiMIAANZCAACUwgAAdEIAAEBBAACmQgAAQMAAAFDBAAC4QQAAgD8AAIBBAABQQQAAEEEAAMDAAAAcQgAAgMAAADjCAABUQgAAgEAAAKDAAAAAQgAAYMIAAPBBAACgQAAAgEEAALBBAADQwQAAMEIAAMDBAACAwgAAAAAAAFDCAAB0wgAAYMIAAIRCAAAQQQAA1kIAADTCAACAPwAAEMEAAERCAACoQQAAMMEAAIhCAABUwgAAgEIAAFhCAABUQgAAoMEAACjCAAAAwAAA4EAAAAxCAAA8QgAAwEAAAHzCAAAgQQAAHEIAADxCAABMQgAAsMIAAMDAAABgwgAAAEAAAJbCAABcwgAAXMIAAKjBAACEwgAAIEIAAGhCAAB4wgAAyEEAAPDBAACowQAAuMEAAEDBAABQwQAA2EEAAADBAABoQgAAgEAAAMBAAADAQAAAqEEAAMBBAABYQgAA-EEAAIjBAAB8wgAAgkIAADBBAAAwQQAAGEIAAIBAAACAQQAA0EEAAERCAABYQgAAaMIAAIjBAAAAQgAAsMEAAGTCAADgwQAAwEAAAODAAAAgwQAAgEIAAJRCAACQQQAAQMIAACBBAADowQAAbEIAABhCAAAIwgAAuMEAAKjBAACowQAArMIAAIjBAABgQQAAIMEAAGDCAABwwQAAAAAAAIjBAACAwAAASMIAANDBAABAQAAACEIAAOjBAABMQgAA0EEAAHBBAACAwAAAQMIAAIBBAACQQQAAjkIAAKbCAABoQgAAYEEAACjCAACgQQAAQMEAAEBAAADIwQAAgMEAAFBBAABAQAAAwEAAAFzCAACYwQAA8MEAAEDCAADAwAAAFMIAAABBAAAAwQAAkMIAAIA_AAA0QgAAmMEAAIRCAACgQQAAUEEAAIDAAABQQQAAiEEAAGTCAABEwgAAsEEAAFDBAABAQAAAbEIAAIC_AACiwgAAWMIAAIDBAADAwQAACEIAAETCAAAEwgAAmMIAACxCAACCQgAAJEIAALjBAABMQgAAAMIAAAAAAAC4QQAAwMEAAKBAAADQQQAAoMEgADgTQAlIdVABKo8CEAAagAIAAOg9AADIvQAAyL0AAOi9AAD4vQAAVD4AANi9AABBvwAA-L0AABw-AACgvAAAdL4AAES-AABwPQAAFb8AAOC8AAAwvQAAFD4AABw-AADyPgAAfz8AAKK-AADYvQAAgDsAANK-AACgvAAAcD0AAPg9AAAkvgAAEL0AAGw-AAAEvgAA2L0AABQ-AABAPAAAiD0AAHQ-AAB8vgAAwr4AAJ6-AADgvAAAcL0AAFC9AACuvgAAsr4AAHA9AABwPQAA4DwAAIA7AAAEvgAAdD4AAPi9AACSPgAALD4AAN6-AAC4vQAATT8AADy-AABQvQAAtj4AAIC7AADIvQAAiD0AAAQ-IAA4E0AJSHxQASqPAhABGoACAAAsvgAA4LwAABy-AAAfvwAAqL0AAHw-AACGPgAAkj4AAKC8AABkPgAAiD0AABQ-AADgvAAATL4AAIg9AACgPAAAiD0AABU_AAAUvgAA2j4AAOq-AADgPAAAoDwAAMi9AADYvQAAMD0AAHC9AACgPAAAQLwAAJq-AACAuwAAuD0AADC9AACovQAApj4AAAy-AAD6PgAAAT8AAJq-AAC4vQAA2D0AAAy-AAAUvgAA2L0AAOC8AACgPAAAf78AAEC8AAAMvgAAyD0AAIY-AACAuwAATD4AACQ-AAAsPgAAQDwAAIC7AAB0vgAA-D0AAOg9AABkPgAAED0AANi9AAAsPiAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=hwZP265NK0I","parent-reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10023272982282718804"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"10976996452804996088":{"videoId":"10976996452804996088","title":"15 - What is a Logarithm (\u0007[Log\u0007] x) Function? (Calculate \u0007[Logs\u0007], Applications, \u0007[Log\u0007] Bases)","cleanTitle":"15 - What is a Logarithm (Log x) Function? (Calculate Logs, Applications, Log Bases)","host":{"title":"YouTube","href":"http://www.youtube.com/live/mc8Ki0_yzWA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mc8Ki0_yzWA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWdMODFsYzdET0xOaG5lbDFfSjZWZw==","name":"Math and Science","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+and+Science","origUrl":"http://www.youtube.com/@MathAndScience","a11yText":"Math and Science. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2699,"text":"44:59","a11yText":"Süre 44 dakika 59 saniye","shortText":"44 dk."},"views":{"text":"440,4bin","a11yText":"440,4 bin izleme"},"date":"4 mar 2020","modifyTime":1583335493000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mc8Ki0_yzWA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mc8Ki0_yzWA","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":2699},"parentClipId":"10976996452804996088","href":"/preview/10976996452804996088?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/10976996452804996088?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7571600836780285536":{"videoId":"7571600836780285536","title":"\u0007[Log\u0007] | Meaning of \u0007[log\u0007]","cleanTitle":"Log | Meaning of log","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FbgwukQOkmc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FbgwukQOkmc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDN1UyWWEyd0xTZ1hoRHJwQkdMNE80Zw==","name":"Words and Meanings Explained","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Words+and+Meanings+Explained","origUrl":"http://www.youtube.com/@WordsMeaningsExplained","a11yText":"Words and Meanings Explained. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":167,"text":"2:47","a11yText":"Süre 2 dakika 47 saniye","shortText":"2 dk."},"views":{"text":"33,3bin","a11yText":"33,3 bin izleme"},"date":"13 mar 2019","modifyTime":1552427245000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FbgwukQOkmc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FbgwukQOkmc","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":167},"parentClipId":"7571600836780285536","href":"/preview/7571600836780285536?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/7571600836780285536?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7830082392351449775":{"videoId":"7830082392351449775","title":"\u0007[log\u0007](-1) | \u0007[log\u0007] of minus one | Negative one logarithm | \u0007[log\u0007] of a negative number | \u0007[log\u0007]...","cleanTitle":"log(-1) | log of minus one | Negative one logarithm | log of a negative number | log of -1 | -1 log","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=gXhnx27Hww4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/gXhnx27Hww4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDT21CVnFMUkFFRXFGbGN5bTlmVzZEdw==","name":"Ways of Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ways+of+Mathematics","origUrl":"http://www.youtube.com/@hammadnafis","a11yText":"Ways of Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":91,"text":"1:31","a11yText":"Süre 1 dakika 31 saniye","shortText":"1 dk."},"date":"13 ara 2022","modifyTime":1670889600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/gXhnx27Hww4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=gXhnx27Hww4","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":91},"parentClipId":"7830082392351449775","href":"/preview/7830082392351449775?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/7830082392351449775?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8656963995910585969":{"videoId":"8656963995910585969","title":"Write a Common Logarithm \u0007[log\u0007](0.01) = -2 in Exponential Form (Definition of \u0007[Log\u0007])","cleanTitle":"Write a Common Logarithm log(0.01) = -2 in Exponential Form (Definition of Log)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2qEtpKOjXfM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2qEtpKOjXfM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbWpwMk1lb3QwODE0N0xqRnRaN25JUQ==","name":"Prof. Redden","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Prof.+Redden","origUrl":"http://www.youtube.com/@ProfRedden","a11yText":"Prof. Redden. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":62,"text":"1:02","a11yText":"Süre 1 dakika 2 saniye","shortText":"1 dk."},"views":{"text":"2,6bin","a11yText":"2,6 bin izleme"},"date":"17 kas 2012","modifyTime":1353110400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2qEtpKOjXfM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2qEtpKOjXfM","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":62},"parentClipId":"8656963995910585969","href":"/preview/8656963995910585969?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/8656963995910585969?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4445395765221431706":{"videoId":"4445395765221431706","title":"Simplify 1/3 \u0007[log\u0007](27) - 1/2 \u0007[log\u0007](36) a Common Logarithmic Expression (Properties of the \u0007[Log\u0007...","cleanTitle":"Simplify 1/3 log(27) - 1/2 log(36) a Common Logarithmic Expression (Properties of the Log)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WIUmjCWdJBw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WIUmjCWdJBw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbWpwMk1lb3QwODE0N0xqRnRaN25JUQ==","name":"Prof. Redden","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Prof.+Redden","origUrl":"http://www.youtube.com/@ProfRedden","a11yText":"Prof. Redden. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":105,"text":"1:45","a11yText":"Süre 1 dakika 45 saniye","shortText":"1 dk."},"views":{"text":"5,9bin","a11yText":"5,9 bin izleme"},"date":"17 kas 2012","modifyTime":1353110400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WIUmjCWdJBw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WIUmjCWdJBw","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":105},"parentClipId":"4445395765221431706","href":"/preview/4445395765221431706?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/4445395765221431706?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7767079940659926361":{"videoId":"7767079940659926361","title":"Logarithms of complex numbers : How to find \u0007[Log\u0007](-x) in general and \u0007[log\u0007](-1) in particular","cleanTitle":"Logarithms of complex numbers : How to find Log(-x) in general and log(-1) in particular","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_GUVreTw354","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_GUVreTw354?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTzBzNzhYTHVvZjlIS1NNcFVzeE1zZw==","name":"Mathsmerizing","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathsmerizing","origUrl":"http://www.youtube.com/@Mathsmerizing","a11yText":"Mathsmerizing. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":407,"text":"6:47","a11yText":"Süre 6 dakika 47 saniye","shortText":"6 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"5 mar 2020","modifyTime":1583366400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_GUVreTw354?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_GUVreTw354","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":407},"parentClipId":"7767079940659926361","href":"/preview/7767079940659926361?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/7767079940659926361?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7053271034158960722":{"videoId":"7053271034158960722","title":"Equation with Two Logarithms: \u0007[log\u0007](x) + \u0007[log\u0007](x - 2) = 2","cleanTitle":"Equation with Two Logarithms: log(x) + log(x - 2) = 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mM3D-7hC6tc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mM3D-7hC6tc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":457,"text":"7:37","a11yText":"Süre 7 dakika 37 saniye","shortText":"7 dk."},"views":{"text":"6bin","a11yText":"6 bin izleme"},"date":"7 mar 2023","modifyTime":1678147200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mM3D-7hC6tc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mM3D-7hC6tc","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":457},"parentClipId":"7053271034158960722","href":"/preview/7053271034158960722?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/7053271034158960722?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5038071766860444424":{"videoId":"5038071766860444424","title":"Derivatives of Logarithmic Functions: Example on using \u0007[Log\u0007] Rules","cleanTitle":"Derivatives of Logarithmic Functions: Example on using Log Rules","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=X2mv1_xHOIk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/X2mv1_xHOIk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/@mes","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":548,"text":"9:08","a11yText":"Süre 9 dakika 8 saniye","shortText":"9 dk."},"date":"1 ara 2013","modifyTime":1385856000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/X2mv1_xHOIk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=X2mv1_xHOIk","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":548},"parentClipId":"5038071766860444424","href":"/preview/5038071766860444424?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/5038071766860444424?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4492104543180505918":{"videoId":"4492104543180505918","title":"Logarithmic Equations Solving - \u0007[log\u0007][\u0007[log\u0007](2+\u0007[log\u0007](base 2)(x+1))] = 0","cleanTitle":"Logarithmic Equations Solving - log[log(2+log(base 2)(x+1))] = 0","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rvqEcQx4f_k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rvqEcQx4f_k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRlljcS1RRFpnM2xIR21kRmNuRTNKdw==","name":"Math Booster","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Booster","origUrl":"http://www.youtube.com/@MathBooster","a11yText":"Math Booster. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":95,"text":"1:35","a11yText":"Süre 1 dakika 35 saniye","shortText":"1 dk."},"date":"5 oca 2022","modifyTime":1641340800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rvqEcQx4f_k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rvqEcQx4f_k","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":95},"parentClipId":"4492104543180505918","href":"/preview/4492104543180505918?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/4492104543180505918?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16204141382988967899":{"videoId":"16204141382988967899","title":"Simplify 2 \u0007[log\u0007] x - (3\u0007[log\u0007] 7 - 1/2 \u0007[log\u0007] x) an Expression with Logarithms (Properties of the...","cleanTitle":"Simplify 2 log x - (3log 7 - 1/2 log x) an Expression with Logarithms (Properties of the Log)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CX3axffBAOI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CX3axffBAOI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbWpwMk1lb3QwODE0N0xqRnRaN25JUQ==","name":"Prof. Redden","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Prof.+Redden","origUrl":"http://www.youtube.com/@ProfRedden","a11yText":"Prof. Redden. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":117,"text":"1:57","a11yText":"Süre 1 dakika 57 saniye","shortText":"1 dk."},"date":"17 kas 2012","modifyTime":1353110400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CX3axffBAOI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CX3axffBAOI","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":117},"parentClipId":"16204141382988967899","href":"/preview/16204141382988967899?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/16204141382988967899?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9226393431765810592":{"videoId":"9226393431765810592","title":"\u0007[Log\u0007] 1/a Base a | \u0007[Log\u0007] of Inverse of a Number | \u0007[Log\u0007] of Reciprocal | Logarithms","cleanTitle":"Log 1/a Base a | Log of Inverse of a Number | Log of Reciprocal | Logarithms","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1uWkvea2TYM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1uWkvea2TYM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM2JuNHYzQkV5R1E5WTZ3UGJJSjNaUQ==","name":"Clarity Education","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Clarity+Education","origUrl":"http://www.youtube.com/@ClarityEducation","a11yText":"Clarity Education. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":53,"text":"00:53","a11yText":"Süre 53 saniye","shortText":""},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"12 tem 2021","modifyTime":1626048000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1uWkvea2TYM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1uWkvea2TYM","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":53},"parentClipId":"9226393431765810592","href":"/preview/9226393431765810592?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/9226393431765810592?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14108807468093584800":{"videoId":"14108807468093584800","title":"Solving \u0007[log\u0007](x + y) = \u0007[log\u0007](x) - \u0007[log\u0007](y)","cleanTitle":"Solving log(x + y) = log(x) - log(y)","host":{"title":"YouTube","href":"http://www.youtube.com/live/A62MN08MRew","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/A62MN08MRew?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVzRjem9rdjQwSllSLXc3dTZhWFozZw==","name":"SyberMath","isVerified":true,"subscribersCount":0,"url":"/video/search?text=SyberMath","origUrl":"http://www.youtube.com/@SyberMath","a11yText":"SyberMath. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":574,"text":"9:34","a11yText":"Süre 9 dakika 34 saniye","shortText":"9 dk."},"views":{"text":"28,7bin","a11yText":"28,7 bin izleme"},"date":"19 nis 2023","modifyTime":1681916411000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/A62MN08MRew?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=A62MN08MRew","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":574},"parentClipId":"14108807468093584800","href":"/preview/14108807468093584800?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/14108807468093584800?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6805242242328194255":{"videoId":"6805242242328194255","title":"Logarithms - Basics | What are \u0007[Logs\u0007]? | Infinity Learn","cleanTitle":"Logarithms - Basics | What are Logs? | Infinity Learn","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4UNkQcBrLaQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4UNkQcBrLaQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaVRqQ0lUXzlFWFYxV3AxY1kwemFVQQ==","name":"Infinity Learn NEET","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Infinity+Learn+NEET","origUrl":"http://www.youtube.com/@InfinityLearn_NEET","a11yText":"Infinity Learn NEET. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":175,"text":"2:55","a11yText":"Süre 2 dakika 55 saniye","shortText":"2 dk."},"views":{"text":"1,5milyon","a11yText":"1,5 milyon izleme"},"date":"14 kas 2016","modifyTime":1479081600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4UNkQcBrLaQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4UNkQcBrLaQ","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":175},"parentClipId":"6805242242328194255","href":"/preview/6805242242328194255?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/6805242242328194255?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18408601991317161056":{"videoId":"18408601991317161056","title":"Evaluate Logarithms without a Calculator: \u0007[Log\u0007] Base 10","cleanTitle":"Evaluate Logarithms without a Calculator: Log Base 10","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=oUfVl8aIB5M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/oUfVl8aIB5M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSWoxXzRvM29oZUlObEZKTEtqUGpEdw==","name":"Paddy MATH","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Paddy+MATH","origUrl":"http://www.youtube.com/@paddymath","a11yText":"Paddy MATH. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":626,"text":"10:26","a11yText":"Süre 10 dakika 26 saniye","shortText":"10 dk."},"views":{"text":"10,2bin","a11yText":"10,2 bin izleme"},"date":"24 kas 2022","modifyTime":1669248000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/oUfVl8aIB5M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=oUfVl8aIB5M","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":626},"parentClipId":"18408601991317161056","href":"/preview/18408601991317161056?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/18408601991317161056?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10762929386981784373":{"videoId":"10762929386981784373","title":"Logarithms Intro - Solving \u0007[Logs\u0007], Exponential Form, \u0007[Logs\u0007] of Fractions, Natural \u0007[Log\u0007], and \u0007...","cleanTitle":"Logarithms Intro - Solving Logs, Exponential Form, Logs of Fractions, Natural Log, and Log Base 10","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FbT1mMwKeFg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FbT1mMwKeFg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZFgtaDdvRkxINThDNEh0SGNjUmVHZw==","name":"Inman Tutors","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Inman+Tutors","origUrl":"https://www.youtube.com/channel/UCdX-h7oFLH58C4HtHccReGg","a11yText":"Inman Tutors. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1265,"text":"21:05","a11yText":"Süre 21 dakika 5 saniye","shortText":"21 dk."},"date":"2 oca 2022","modifyTime":1641081600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FbT1mMwKeFg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FbT1mMwKeFg","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":1265},"parentClipId":"10762929386981784373","href":"/preview/10762929386981784373?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/10762929386981784373?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15306416043090727222":{"videoId":"15306416043090727222","title":"\u0007[log\u0007](x+y) = \u0007[log\u0007](x) + \u0007[log\u0007](y)","cleanTitle":"log(x+y) = log(x) + log(y)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eMUsFVqDYZI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eMUsFVqDYZI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbi1IcnF6WUlta0QzclR2ekRtWk9XUQ==","name":"Math Elite","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Elite","origUrl":"http://www.youtube.com/@MathElite","a11yText":"Math Elite. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":113,"text":"1:53","a11yText":"Süre 1 dakika 53 saniye","shortText":"1 dk."},"date":"16 mar 2021","modifyTime":1615852800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eMUsFVqDYZI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eMUsFVqDYZI","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":113},"parentClipId":"15306416043090727222","href":"/preview/15306416043090727222?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/15306416043090727222?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10023272982282718804":{"videoId":"10023272982282718804","title":"\u0007[Log\u0007]2(1/16) = x How to Solve \u0007[Logs\u0007] by Hand","cleanTitle":"Log2(1/16) = x How to Solve Logs by Hand","host":{"title":"YouTube","href":"http://www.youtube.com/v/hwZP265NK0I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hwZP265NK0I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNUU1RFE1S2FHZVNIT2JDVHNLTTNsdw==","name":"Cowan Academy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Cowan+Academy","origUrl":"http://www.youtube.com/@CowanAcademy","a11yText":"Cowan Academy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":137,"text":"2:17","a11yText":"Süre 2 dakika 17 saniye","shortText":"2 dk."},"views":{"text":"85,7bin","a11yText":"85,7 bin izleme"},"date":"5 mar 2017","modifyTime":1488672000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hwZP265NK0I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hwZP265NK0I","reqid":"1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL","duration":137},"parentClipId":"10023272982282718804","href":"/preview/10023272982282718804?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","rawHref":"/video/preview/10023272982282718804?parent-reqid=1765212097305459-7474111210109810588-balancer-l7leveler-kubr-yp-klg-180-BAL&text=log%28%29","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"4741112101098105887180","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"log()","queryUriEscaped":"log%28%29","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}