{"pages":{"search":{"query":"nonlinear","originalQuery":"nonlinear","serpid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","parentReqid":"","serpItems":[{"id":"1247126265467330445-0-0","type":"videoSnippet","props":{"videoId":"1247126265467330445"},"curPage":0},{"id":"3984702637855749013-0-1","type":"videoSnippet","props":{"videoId":"3984702637855749013"},"curPage":0},{"id":"14561786995808920249-0-2","type":"videoSnippet","props":{"videoId":"14561786995808920249"},"curPage":0},{"id":"13499078381409308141-0-3","type":"videoSnippet","props":{"videoId":"13499078381409308141"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dG5vbmxpbmVhcgo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","ui":"desktop","yuid":"2716065251769600722"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"14271049266196933787-0-5","type":"videoSnippet","props":{"videoId":"14271049266196933787"},"curPage":0},{"id":"4534234298688515101-0-6","type":"videoSnippet","props":{"videoId":"4534234298688515101"},"curPage":0},{"id":"6302571623471483933-0-7","type":"videoSnippet","props":{"videoId":"6302571623471483933"},"curPage":0},{"id":"10365424983180949547-0-8","type":"videoSnippet","props":{"videoId":"10365424983180949547"},"curPage":0},{"id":"7794190064125254041-0-9","type":"videoSnippet","props":{"videoId":"7794190064125254041"},"curPage":0},{"id":"1317848411501213456-0-10","type":"videoSnippet","props":{"videoId":"1317848411501213456"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dG5vbmxpbmVhcgo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","ui":"desktop","yuid":"2716065251769600722"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"12196782357027928786-0-12","type":"videoSnippet","props":{"videoId":"12196782357027928786"},"curPage":0},{"id":"14518975797698556316-0-13","type":"videoSnippet","props":{"videoId":"14518975797698556316"},"curPage":0},{"id":"16779677888216629190-0-14","type":"videoSnippet","props":{"videoId":"16779677888216629190"},"curPage":0},{"id":"2312090356372764160-0-15","type":"videoSnippet","props":{"videoId":"2312090356372764160"},"curPage":0},{"id":"17620786386229563561-0-16","type":"videoSnippet","props":{"videoId":"17620786386229563561"},"curPage":0},{"id":"15442270435995052214-0-17","type":"videoSnippet","props":{"videoId":"15442270435995052214"},"curPage":0},{"id":"14245146727441832390-0-18","type":"videoSnippet","props":{"videoId":"14245146727441832390"},"curPage":0},{"id":"15698849593703722022-0-19","type":"videoSnippet","props":{"videoId":"15698849593703722022"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dG5vbmxpbmVhcgo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","ui":"desktop","yuid":"2716065251769600722"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Dnonlinear"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"7676011940585297317194","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455699,0,56;1470499,0,5;1414493,0,24;1473738,0,18;1471964,0,42;1460712,0,10;1460214,0,82;1312966,0,47;1465968,0,23;1459323,0,70;898801,0,94;754545,0,94;1383554,0,28;15353,0,97;182561,0,17;66185,0,58;123850,0,29;1461715,0,17;1470225,0,88;1282205,0,80;1466296,0,71;1466086,0,64;1475652,0,97;1452015,0,93;1146114,0,89;1476027,0,2;132361,0,37;1404022,0,23;30278,0,33;1469396,0,21;856305,0,34;151171,0,97;1281084,0,96;287509,0,27;1447467,0,41;790823,0,78;1468028,0,66;1467128,0,59"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Dnonlinear","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=nonlinear","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=nonlinear","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"nonlinear: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"nonlinear\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"nonlinear — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yadac27b1df344fa6ee29f05e239fb04e","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1470499,1414493,1473738,1471964,1460712,1460214,1312966,1465968,1459323,898801,754545,1383554,15353,182561,66185,123850,1461715,1470225,1282205,1466296,1466086,1475652,1452015,1146114,1476027,132361,1404022,30278,1469396,856305,151171,1281084,287509,1447467,790823,1468028,1467128","queryText":"nonlinear","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2716065251769600722","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769600814","tz":"America/Louisville","to_iso":"2026-01-28T06:46:54-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1470499,1414493,1473738,1471964,1460712,1460214,1312966,1465968,1459323,898801,754545,1383554,15353,182561,66185,123850,1461715,1470225,1282205,1466296,1466086,1475652,1452015,1146114,1476027,132361,1404022,30278,1469396,856305,151171,1281084,287509,1447467,790823,1468028,1467128","queryText":"nonlinear","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2716065251769600722","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"7676011940585297317194","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":144,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"2716065251769600722","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1757.0__1e42d45c824ef14ef6767326055fb713b0c3a145","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"1247126265467330445":{"videoId":"1247126265467330445","docid":"34-2-9-ZDD3270A0BAF3A440","description":"SSE should be...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3996139/e3cc3c735e216bd022198fbd43f410ce/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3bP4MwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4hYGiG4qVf4","linkTemplate":"/video/preview/1247126265467330445?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nonlinear regression - the basics","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4hYGiG4qVf4\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFQoTMTI0NzEyNjI2NTQ2NzMzMDQ0NVoTMTI0NzEyNjI2NTQ2NzMzMDQ0NWqIFxIBMBgAIkUaMQAKKmhobmtycHpubWxnanZ3b2RoaFVDWlFxckZXMlZraXJCRjJhLWFWMUZkdxICABIqEMIPDxoPPxOCCYIEJAGABCsqiwEQARp4gf38_Q7-AgDxCAYK9wT_AQEI_gj4_v4A7f0BBAkAAAD1AwECBwAAAAUE_gr-AAAA_PwE-_z-AAAXAQP_-gAAABb5-wD_AAAABPj6-f8BAAAB9f7tAQAAAAb7_xMAAAAA_Qb3-gIAAADyAQX7AAAAAA7-AfYAAAAAIAAt06TaOzgTQAlITlACKoQCEAAa8AFs_BEBqPjq_CL98QAYB-7_gRXw_zQZ5gDG3wIB1BLeAPb9DADZCgr_Afv8AOcOLP8E-eP_AuwTABvqHwD7ChIB_vUiACfeIQJIJAQAHvn5AMkiCP4RByQA-_MiAQcJ2v4TABD_-gHS_wz_3AIM_jMBLxwJA_n0AP7mFv4A-PsQ_vMQ3f4P7vwHA_72A9L_GQEaE-kDEDoD_gQOAgD_9BgDBfT9-hcJ8_oqHuz8AQEK-ucb__wF9_H8AQIKDfoS4P319__2KP8I_QcG-AAT4QwHHQULAw3_9AEM_v79CeUJ_OQKAfTfEf782Rj5C__i-QkgAC1R9DU7OBNACUhhUAIqzwcQABrAB2oW0L6slBk9Uw33u5wBibzj1Ji8OO1uvWpNc72pCME8tnIFvdOjGT6oNng9YQn3uvjBgb5_6Pi8RGlPPZ1Ggj5_Fku8vhLIvHoXL74IPDA9KZ_UvPWha76E0wc9dDXDu1jBxD2Rlg89RxqBPB0A8T311RW9-Z4xvVvZdD363AE8BcfAvA1BxDwecBi93_5cvPuKmjzaKne85a3EPC9R_T2xBWC6n6utvDwE4TqYnEE76OEhu0MRfL2oRwS9mWr_ux3owT2G_H656kmPPEjLFz3sB4Y8d_N5vPo2Ez1e2hA9_8YivFjzLbx1ETU9euFOvHhnijvTiBm9BfnZvFMJar1ENqA9mGdFOvsFOz7aN9c9RHXKO2Q7xL0VdYE8pAt7vJdHSLyFwzy9jK1WPDds2z1-4A-96S_PvJbFDj2BmZo9_8dPu5AkELwQ36M9pmIDPVVkiT32l909mPJGvHugNb2HbYs8Vi6vu6o4j70hI1s9szuoO6C-uj09WXu8mqGnPOk2lzzjmze8S6DzOoSenT1D8oS9mbdqPNzNursg9Ge9SbJUu02mJT1qeW8969gQPLvPVj0SFQq9pk-hvIxMwDwgMlu9uUgMPN-uETxMqeu9vd3UO0f57ryeedk9DWH_ud566rvMfwM9S22Qu-3bATwiVTS9dibEOzo5iL1Tjr69SA4UuoHSCz0DaYU9kxsRukd0Tzw1hec7-Nf6uwsk6D2rAS-97MnTOSU_Ij32Kg28Oto_umdbgj3OSwo9KthhuQfRWj0PTAm9s4WAuuFi4Lw4zYy8BmWluAsxzTwPGpA9detzOSyONL2FnzO9mOOWOfyzVb13PbK9hRswuKLXeryoEWS93QRLuZTrFz0lNJO93viYt2sewb3ErqK9WfgiOJosKb2H7uM8ckW_uUDj3Ty1npu9Fq-4tuNMODw_FzI84v4Butn5ijtBqKG95Te8OZ4DML0P8io-vcXfuPZjvj3N0HM9U_zCOJ_xcTul2AE-qK4xuWtpybw6d7s8isLDt08rWz07J6w9PEyEuPPa9rwI-cq9Wod7tgsNtD2O5gg8Qa9fNmOohL1mmS-9xz7JN4Db7jygtpe9OZd7OMhfOj7clcI8za9LOBfTET1G2YG9O_4TODc3lj2Digo9eYaSuL6D37x4CQ69eXt4uA2fujvPXFG9oUWutv5thb2ziqs6Rfi2tw0SRzx0fPS9VlhZuELLXz1jGrc9bpCOOA-G1byGfMY8KLLGt76gCTydoZg9ygOFN0eIvDs1iQa698M8OCAAOBNACUhtUAEqcxAAGmA1AgANNB7Byjgl8tC20hXbCwvX6875_xH8_-Pp_f0l_eOb7s7_LBIP56UAAAAQ5vzy6QAQd7Da1fz99h3Y1OQVDX85JybM0Tr7BfYVL9W76Rz8H3wAFw-oLVwR9SEUQhMgAC3YoRk7OBNACUhvUAIqrwYQDBqgBgAA2EEAAJjBAAAQQgAAEEEAANDBAACGQgAAXEIAAPBBAABswgAAuEEAAFBBAAAgwQAA-MEAAOjBAAAswgAAwMAAAPDBAAAEwgAAQMAAAADBAAAwQQAAMMEAADTCAABAwAAAmMEAAFBCAABkwgAAAAAAAChCAADAwAAAcEEAADhCAAC4wQAAwEEAACjCAAA8QgAAjkIAAM5CAABgQQAAAEAAAIDAAACgwAAAkkIAAIDBAAD4QQAAAAAAAK7CAABcwgAA8EEAAEhCAADAQAAAgL8AAATCAAAAwQAABEIAAOhBAAC6wgAA4MAAAGBBAABsQgAAmkIAAAjCAADYwQAASMIAAEhCAACMwgAAAMIAAIbCAABwwQAAVMIAABBBAABAQQAAzMIAACBBAAAAwgAAoEEAAPBBAAB4QgAAXEIAAIBCAACIwQAAaEIAACzCAAAsQgAAgD8AAMDBAAAAQQAAGEIAABTCAACgwQAAQMIAANBBAACAQAAABEIAAJDBAACWwgAA0MEAALjBAACoQgAAYEEAAEjCAABwQQAAMEIAAFBCAAA0wgAAoMAAAETCAADgQAAAoEAAAORCAADYQQAAEEEAAIbCAACmQgAAQMEAAHDBAAAAQAAAYMEAABBBAACwwQAAqMEAAKjBAACIwQAAEMEAAODBAABAQQAAaEIAAIhBAAAAwgAAYMEAAMDAAACgwgAAHMIAADhCAACAQQAAMMEAAERCAAAwwQAAhMIAAMhBAAAAQgAAgMEAAHBBAABAwAAAAEEAADBBAABAwAAAmMEAAIZCAAAkQgAAjsIAABhCAADQQQAA8EEAAChCAACAvwAAJMIAAJjBAACgQAAALEIAACBBAAAIQgAAcMEAAKjCAAB8wgAA4MAAALjBAACIQgAAqMEAAIDBAAB4wgAAUEEAAKDBAACswgAAmMEAAODAAADoQQAA4EAAAGBBAAAwQQAACMIAADhCAABkwgAAjMIAAPBBAAAAQQAAAMIAACDCAADgQQAAmMEAAIBBAACAQgAAgEIAAHDBAABgQQAAXEIAAIBAAAA8QgAAwMAAAKDAIAA4E0AJSHVQASqPAhAAGoACAADGvgAAzr4AAKg9AACaPgAA2L0AACQ-AAAQPQAAD78AAAy-AACoPQAAiD0AADQ-AADYPQAAMD0AAGS-AACAuwAALD4AAHA9AABkPgAAEz8AAHs_AADoPQAAXD4AAMg9AAAQvQAAkj4AAIA7AAC4PQAAor4AAHA9AACSPgAAqD0AAHy-AABwPQAA2L0AAEC8AACAuwAAHL4AANK-AACovQAAyD0AAFy-AAA0PgAAhr4AAEA8AAAkPgAABD4AAJa-AADovQAAjr4AAOA8AAAcvgAA5j4AAEA8AACAOwAAiL0AAH8_AACYPQAAqL0AABQ-AACIPQAA4DwAAFS-AABkviAAOBNACUh8UAEqjwIQARqAAgAAdL4AAFQ-AAAwvQAAY78AAKC8AABAvAAAHD4AAMi9AAAUPgAABD4AAJg9AAAEvgAAgDsAANi9AAAQPQAAMD0AABw-AAAFPwAAoDwAAGQ-AAAwvQAAED0AAJI-AADYvQAANL4AAKY-AACmvgAAmD0AAJi9AABQvQAAUD0AAMg9AADgPAAAiL0AAOC8AACgvAAAFD4AAOA8AACgvAAAVL4AAEQ-AADIPQAAFL4AAIg9AADovQAARD4AAH-_AADgPAAA4LwAAHQ-AAB0PgAAoDwAAAw-AADePgAAJL4AABQ-AABQvQAAnr4AAPg9AACqvgAAMD0AAGS-AAAkvgAAqD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=4hYGiG4qVf4","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1247126265467330445"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1854279830"},"3984702637855749013":{"videoId":"3984702637855749013","docid":"34-6-1-Z1D7AA13AA2622AC1","description":"These are videos from the Nonlinear Dynamics course offered on Complexity Explorer (complexity explorer.org) taught by Prof. Liz Bradley. These videos provide a broad introduction to the field...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3506298/e4bc71d9fddcb8fe510bbf2b5e19cd06/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/snDneQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9YvqdWbnTGc","linkTemplate":"/video/preview/3984702637855749013?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nonlinear Dynamics: Nonlinearity and Nonintegrability","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9YvqdWbnTGc\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFQoTMzk4NDcwMjYzNzg1NTc0OTAxM1oTMzk4NDcwMjYzNzg1NTc0OTAxM2qIFxIBMBgAIkUaMQAKKmhob21nenF2YmFicGhrd2NoaFVDNnMtMVRZYS0xZkJyVVVJR2lqc2hDURICABIqEMIPDxoPPxPbA4IEJAGABCsqiwEQARp4gfn3_AP7BQD2DQUC-QT_AfYB-AD5_v4A7gYGAAH_AAD3-QD3AQAAAA789g76AAAA_QIB9wL-AAADDQUG-QAAAAf__vr-AAAAAgP5AAcAAAABBv_4AgAAAAsE-QUAAAAAAQkK-f__AAD8A_72AQAAAAX_-_cAAAAAIAAtznfjOzgTQAlITlACKoQCEAAa8AF-9w__2vasAakfyf_SKeEBgQot_-4y9AHiDwMA4SvAARQGCADjKwb_KR3cALYaCAAEGvH_7trVACPjKAA88hYB9_IbAR779wBSFxEB7t_Y_-Ap-v_Y_xT_89mwAERj4gZB5_z-5w_TAf340f0Q_kEBxh4oAg788gHY1fYC5jUkBO8V0v3fDQsE-7UO_AE0IgEk2QsCFhQJ-fjp2P7vCR4GEhEW-wn46AUF_gkJ2QMp__Pr8gL1_AH5Cd4V_PkS7gTy9igC2MkK9-vvFPAC9xb04xLwCQrt9Ajx6hb38_P6_fr99wHlA-4CFwPg-BDX6fogAC1QIw07OBNACUhhUAIqzwcQABrAB4iCub7FJQG8WkX_vFzX-bzve2-9tAUEvUvTtr2Wyys9rO4HvT9zRj4O7jO9lvl9O6H1IL5hS_S8WyLXPKDiKD5R28a8RA42PGLZLL5yAqo7w2QKvVexOL5HpX08pdQKPaOKLLx9X7e7OUHAOzBHzzw4uo-98icqPG4bIzyqJo29PvH3vBFClj3r2oO9mjvfvGc9AjwAEhm8pgcHPOvgsD1_eIy8fBVPvP2AvD3liRY9ibcJvUMRfL2oRwS9mWr_u3DQXj2zJeu8hmDLPOoOXb27iTA9qzTWuuVeAL1NmLq82P9vvH7-Cz7NsZw9xg6PvAmuTbxvuVq9cD8FvfmgB770Gps9L4GAOycXEz5P1XM9FamwPK70Kr5txd49itQLu9XnarwJ0Uk6yUSAPAGZtz3Woiq8VyGKPFe1BD6DDTS9Ed6DvPIzvzyqa-M8dGIPPWycCD1mcVU9C9SivEaBmT2hoDQ9Ut9ou_YpIr1SMYk9MAonPJhbED25edk86fEAOmnPkL2IXZU95SZqvAUjpT3WAju-SeWaOpkhf715ys27RdqGvJyiCDz6hog9dmU8vORpuT1ddI28RwEgPBwhSL2v3IE8SMCNuzUpZT2hgbi9alAPOyMrhL0H9J09csADupELDj0h07U8zpwBvH07rru1pc49PmrhuthzY72PQLI8DMfWu-pu6LtLVf-863KMOi2Lkz2erx49oKIPOqCNLD7LrgW9IAINufYr-Dn070Q8KyyfOgfI_LzTzCm9g6Vbum0D1z21o9i9DJ-vObHiL7z4MrS6Uad6OzK7uDs3qN09m2wEOO5z47vSoYi9wyM8ObMTtL3WRZC9tGcwOZSnNjrpa4y9w7Fquvacbz29tcI8pq5qOGsewb3ErqK9WfgiOO1Aor2ze3K7Tnf3uBZAQjxe2hA93HmHt5g6ozyCsRk9Lrq6OWqzOz3NkZW84GEJueoeHr3IF449OclHOMK0ubxMip-9BmB2OEY_Oj30zoc9bP63uOWOSDwJjiY86VuEuBFz6T2_wjg9BpfqN9PPCDxmMdG9PkuXNuaKpz2cFQE-eWQjN6wJmL1IELY7BKbBNzvVm70J3aW8p5rAt_YnAT5EUku9G2w4OGpcDj0Wd3I8U7nCt_cBKD5wYd298We_uZdWE74MIKy9OY3xNVSHob3viZq9vewbtrU9EL0vZ9s88OEAuD1zkD3Ir2S9JLIEN_yEuD2oz4Y7wG7COMW_mb1zOEk9XU7juH4nzL0svIs9ySnBOI2R9Doexws8WvCXOCAAOBNACUhtUAEqcxAAGmA05QAB9xXs3TYB6unQ7SDUA-oDItr-_-jkAAX88RUIGN23D_kA89sq9bgAAAD59dkG3QAeX-z78vkHCjTivNcpAH8jK-vA9B_u9e0l4RPk9C0aQkkA9QfMGysGqDUXCkIgAC20gjg7OBNACUhvUAIqrwYQDBqgBgAAMMIAADjCAABwQQAAgL8AACDCAADgQAAA4EIAAKjBAABswgAAAAAAAIhCAACAQAAAcEEAAPhBAADgwAAAAEEAAFBCAACIQQAAMEEAAIbCAADIQQAAoEAAADhCAAAUQgAAfEIAADhCAAD4wQAAwEEAAKBAAAAoQgAAbMIAABBCAACQwQAAMEEAANDBAACowgAAgMAAAIJCAAC4QQAAqkIAAEBBAACAPwAAkEEAADDBAADoQQAA6EEAANBBAADAwQAAPEIAAJbCAAAEwgAAAMIAANjBAAA0wgAAGMIAAADCAABgwgAAiEEAAABCAABwQgAAqEEAAEDCAABAQQAAqEEAAEDAAACwQQAADMIAABDCAAAwQQAAwMAAAABAAAAAwQAA-MEAADDBAABgwQAAgMEAADjCAABgQgAANMIAAJBBAABEwgAAKEIAAKDBAABgwQAAIEIAAFDCAAAAAAAAIEEAAGhCAADoQQAASEIAAAxCAAAgQQAAgEAAAJhBAAA8wgAAMMIAAAzCAACAwQAAyMEAALrCAABgwQAAAMAAAMDBAABQwgAAjEIAAHDBAACAPwAAqEEAAPhBAACqQgAAAMEAAFzCAACIQQAAJEIAABzCAAAUQgAAZMIAAFBCAACmwgAAFEIAAIrCAAAgwQAAQMEAADTCAADgwAAAGMIAAHBBAACowQAA_kIAAHDBAABUQgAAMMEAALJCAACqQgAACMIAAOhBAADAwQAAGMIAAHTCAAAAAAAABMIAAIhBAADYwQAAYEIAADDCAAAgwQAAIMIAAFxCAADwQQAADEIAAFjCAABIwgAA4MAAAJBCAABwQQAAgMEAAKDAAABAwQAAJEIAADjCAADgQAAAAMIAAIjBAADwQQAAoEAAAILCAACAvwAAOEIAAPhBAABYQgAAVEIAAEDAAABcwgAAAMIAAJjBAACwQQAAkEEAABhCAADoQgAAEMIAAGBBAABcwgAA6MEAACBBAABwQgAAAEAAAIBCAACAvwAAsEEAAHhCAAAQQQAAaEIAADDBAABAwAAA2EEAAADBAAAwwgAAQMAAAOjBIAA4E0AJSHVQASqPAhAAGoACAACavgAAzr4AAPi9AABsPgAA4DwAAJY-AACuPgAANb8AAI6-AACovQAAyD0AAEy-AACWPgAAFD4AADy-AAAQvQAAij4AAOg9AACAOwAA-j4AAH8_AAAwvQAA-D0AAFC9AACIPQAATD4AALg9AAAwvQAAiD0AAKC8AADSPgAAXL4AAL6-AACYPQAAuD0AADC9AACgvAAAhr4AAPq-AACgvAAAUD0AAFS-AADIPQAAUD0AABA9AADIPQAAjj4AAKa-AADIvQAAur4AAAS-AAA0vgAA_j4AAFw-AAC4PQAAUD0AAFk_AAC4PQAAoLwAAKi9AABwvQAAgLsAAAy-AAAbvyAAOBNACUh8UAEqjwIQARqAAgAALL4AADA9AADIvQAAV78AAKA8AACAuwAA6D0AAFS-AACavgAAVD4AAKC8AAAsvgAAEL0AAGy-AABQPQAAQDwAAEA8AAAJPwAAmD0AAGQ-AAAUPgAAVD4AAIg9AACovQAABL4AAKC8AACavgAAgDsAAGy-AACovQAA6D0AAMg9AAA8PgAAJL4AAPi9AAAwvQAA2D0AALg9AAAEvgAANL4AANg9AACoPQAA6L0AAFC9AADgPAAAHD4AAH-_AAAEvgAADD4AABA9AAC6PgAA6L0AAHQ-AABsPgAAjr4AAJg9AADgvAAAgDsAAMg9AAAcvgAAoLwAAFA9AAAkvgAAED0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=9YvqdWbnTGc","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["3984702637855749013"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1105914162"},"14561786995808920249":{"videoId":"14561786995808920249","docid":"34-6-13-Z05096281F6CEB32D","description":"Nonlinear Dynamics and Chaos — Online Course (Lecture 1) An introduction and historical overview of nonlinear dynamics and chaos, designed for students and researchers new to the subject.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4055429/bf39c597cb47eac9a0c45223d97c3768/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XSQasQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbOpxQ7hGpmM","linkTemplate":"/video/preview/14561786995808920249?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nonlinear Dynamics and Chaos — Introduction (Lecture 1)","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bOpxQ7hGpmM\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFgoUMTQ1NjE3ODY5OTU4MDg5MjAyNDlaFDE0NTYxNzg2OTk1ODA4OTIwMjQ5aogXEgEwGAAiRRoxAAoqaGh3aGVhamdweXV1cHFnY2hoVUM5WnZuSHd2QVI0WGtqS3pLeGhZRERnEgIAEioQwg8PGg8_E_QQggQkAYAEKyqLARABGniB7gX8BQH_APAI_QoABf4BBvUA-vj-_QDbAQ39BfkDAPn0-Pv4AAAAFQjvCQAAAAAFAwP8_v4BABD7CQQEAAAAEwn3_fYAAAACDPcG_gEAAPX6BvkCAAAADAT4BQAAAAD-DAkE-v8AAOsC7gIAAAAACwL1AQAAAAAgAC1qLM87OBNACUhOUAIqhAIQABrwAX8dHwGUCgX7HgrlABQnCACNCSn_NBPJAMsBDgAG7vsBGRISAND2IgDq_RgBvRgIANvu3f8S7wwBIOYkAPsIBwDZ8fgA_NMGAjUPFgLY8wX-2jjk_-Le6wHh5eb_BCLc_gHxBf4NC9sBAAbhAzHWJQEKAwgBCSn2AP4TCgLyGB8BHAnH_AD1FgML2gIEAgQS__369gURF_v95RP8BvcV_wT73wMJAxjlBS0M1wINHBf-JgT69R8e3AUZ5QoG-RXb_eH4-_oRygf_Gubw_QsoC_3j-g4QMPMADPP_Af7huBLw7QPy8_rq-ADyJf_4BNwCFiAALePrGzs4E0AJSGFQAirPBxAAGsAHOSv6vhkDDLw277S6eHvAPWlRn7uMgbe7lyy4PLcN_jwxdXy8cemzPSZr-bwvh429OGmKvtEMPTztrn08xVWFPlQwb72bfyq8WMfRvQy8iTxsA3y9V7E4vkelfTyl1Ao9uYZpud2D6zsp2DW8dgk9PY5jWryLUh-8nDkBPPbLjrsCjlK7iUf9vJOdqL1rcBG9Pz9nPXthl7zSCw6874dkvWm-7zp-6jO812gZPZwfNb0MkfQ7136nvQv9Xbx3S3K8gH8KPgL_Kj021Sw70acaPagHW70mpxc7-RSAvDZ0s7w9Cle8aAimuucwhDxAJqO88G5gPVtVO71W2Ge8OpZyvSyncz1IlsK8Ka6qPJZKrj34P9m70lebvd1IVD0a9C27odxxPVsULDyBaLm7zR7oPUUCl7xoycg8KZjxPY37BT1yIlG7aDoBPBnkLrxxgTo8ANNYvA9cijyDtga9-8_1OrIFzjyy1Lo8x_ySvaJdxbwN0y08gjDBPD_1-jvShLO75BBxvAilhL36RWg7L058PB8kNb0FyMw7E4kYvee6Oryk8ZW80KD8PFCJ0DyKcQC89gWpPcG80bxvfPG7RRv2PE-2Gjs9LC88N6ruPCqZUr0LR2s8iRXEvaZ_6T3rECy6aMjdPAw2uztByS68IGZqvSh8WzwZrBU883FtvJTOsLspO6I7tfWYPTmCr7x5GAO7ARjKPdJTxD0XWPC5oI0sPsuuBb0gAg25ZKuwvJbnhr2I5Ni6JnIRvgDTGD2CxxE53j0gPQI6Xb3k5sg5jQ4DPeKwFL3I_bs5J_PRu69LwzwBMRK67D_BvQRjM7xhZie5mqONvcA2jL26UZa4a1KQPYEfir3XgIe5Ha0qPdzhZTwwxl44F4_BvBvUA73XkfU5vMKMvRGFvzv1QsS4EMlwPTSA1z0f0iO3gET4PDquJj1_Hje5A90ovGSy-LyiMRA5iUUMvQgE-j1vcTq4e2buvHiCmLyQoDW4WT8Mva7vKD0zk024wn2ePSMTED1hzHA31k1OPEolHD5Auz05YJsFvIxETb12nS8457FhPe1ffj0IQyC4xIiDva9ybT0Za6o4WJMivZUrzL0eFYu4-KcUPgP6Tj0f9O02ly0DvS9q97xaKdw3427wPQ5M7r3JZZe5q98WvQ37Hb6jvP64T2NxvVJWHT0057s33kiPvLYRjzxu6dG2jvEZPCCLH7s6tzo4qw_KPaX-lT3BlJo3-k_tOux1wTyL7aC4NzWOOoKBUT2VLEY3qeX9vDLGp70LIXm4IAA4E0AJSG1QASpzEAAaYG_uAAbvKfsBQzDp8NnGEeL1BfAz1Nz_6dr_GBnpFOcjEZ4AAv8p2x7zogAAAP7V0RzNABR_B-jyJfHuMNSy-wEAbSQy5Lf1Ftq39T7s9-1F-PJMQQDZ_6gTRu3GMDRHICAALeRUGTs4E0AJSG9QAiqvBhAMGqAGAADowQAAgL8AAJ5CAACYQQAAEEEAAJjBAAA0QgAARMIAAMLCAADowQAAQEAAACBBAAAwwgAA8MEAABRCAABcwgAA4EEAAAhCAACYQQAAMMIAACBCAABAQQAAmEEAADBBAACUQgAACEIAABjCAACwwQAAYEIAAChCAAAYQgAAIEEAAKjBAAD4QQAAFMIAAAzCAAAEwgAAsEIAAExCAAD4wQAAHEIAAIhBAADAQQAAwMEAALBBAACYQQAAAAAAABDCAABAQgAAgsIAAODAAACAQAAAgMEAAADAAAAowgAA4MEAAIDBAACQQQAA8EEAAABCAAAAQQAA6MEAACzCAADwwQAAAAAAAJBBAACAQAAABMIAABDCAADIQQAANEIAAOhBAACOwgAAAEIAABxCAACCwgAAWMIAAOBBAAAQwQAAPMIAACzCAAAYwgAAgMEAAGRCAACIQQAA4MAAAKjBAADwQQAAJEIAAKDBAAC4QQAAUEIAAADAAACQwQAAaEIAALDCAADgwAAAAAAAAMDAAABEwgAA2MEAAIjBAABUQgAADMIAAKzCAAB8QgAAAAAAADhCAACowQAAIEEAACRCAABQwQAAEMEAAMDBAACMQgAAIEEAACDBAACswgAAIEEAANzCAAAwwQAAbMIAACDBAACEwgAA0MEAAIBBAAAgwQAAKMIAAKBAAABgQQAA2EEAAARCAADQwQAAWEIAAPBCAAAUwgAAIEEAADDBAACAwgAAxMIAACBCAAAAwgAAAEEAALDBAACAQQAAOMIAABDCAACwQQAASEIAAKBAAACAwAAAQEAAAEDCAABkwgAABEIAAGxCAAAAQAAAhsIAAKhBAABwQgAAPMIAAIDAAABYwgAAIEEAABhCAADIwQAAQMEAAAAAAACKQgAAUEEAAKjBAABUQgAA8MEAAEBAAAAQwQAAuEEAAIDAAACAvwAAiEIAAP5CAAAgQQAAuMEAAJTCAABkwgAAAEEAAOBAAAD4wQAASEIAADDBAAD4QQAAoMAAAFDBAAB4QgAAEEIAABDBAABUQgAAcMEAAAzCAADowQAAwEAgADgTQAlIdVABKo8CEAAagAIAAEA8AAA0vgAAMD0AAMg9AAC4PQAA-D0AALg9AAAlvwAA0r4AADC9AACYvQAAiL0AAIg9AABMPgAAZL4AAFC9AADSPgAAMD0AAEA8AAAHPwAAfz8AAEA8AAAkPgAAFL4AAJg9AABUPgAAgj4AAIi9AAAMvgAA6D0AAKY-AACYvQAAdL4AAIi9AADgvAAAQDwAAKC8AACavgAAqr4AAJa-AACYvQAAhr4AAOg9AAC4vQAABD4AAFC9AACKPgAAVL4AAPi9AACyvgAADL4AAAS-AAAMPgAATD4AAEQ-AACgvAAATz8AAMi9AAAwPQAAmD0AAEA8AAAUPgAAED0AAKq-IAA4E0AJSHxQASqPAhABGoACAADgvAAAmL0AAIC7AAA3vwAAdD4AAOg9AACoPQAADL4AAJa-AACaPgAA-D0AAAy-AADgPAAAXL4AALg9AAAwvQAA6D0AABc_AACAuwAAlj4AAEA8AACaPgAAqD0AAFC9AAAwPQAAFL4AAMi9AAAQPQAA4LwAAHA9AAD4PQAAqD0AABC9AAAEvgAAoDwAACS-AABwPQAAFD4AAJq-AABwvQAAcD0AABA9AAD4vQAAEL0AAPi9AADIPQAAf78AAOg9AAA0PgAA4DwAAKg9AAAUvgAAQDwAAKg9AACAuwAAmD0AADA9AACIvQAAUD0AADC9AADYvQAAgDsAAJg9AAAQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=bOpxQ7hGpmM","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14561786995808920249"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"23039939"},"13499078381409308141":{"videoId":"13499078381409308141","docid":"34-5-11-ZF854F2804F212EC7","description":"Learn how to include physics insights and knowledge of your system for estimating nonlinear models using Hammerstein-Wiener and nonlinear ARX models. This demonstration shows how to include...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4032051/5658b42392376f5f919bf12d0a5580f1/564x318_1"},"target":"_self","position":"3","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7H-YO088DLw","linkTemplate":"/video/preview/13499078381409308141?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Estimate Nonlinear Models of Dynamic Systems using Nonlinear ARX and Hammerstein-Wiener Models","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7H-YO088DLw\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFgoUMTM0OTkwNzgzODE0MDkzMDgxNDFaFDEzNDk5MDc4MzgxNDA5MzA4MTQxaq8NEgEwGAAiRRoxAAoqaGhmbWltYWdnb25yeWtqYmhoVUNnZEhTRmNYdmtONk8zTlh2aWYwLXBBEgIAEioQwg8PGg8_E8wCggQkAYAEKyqLARABGniBAgr6BvwFAPT4CAECBP4BCwkHAPcBAADyDgX5BAEAAPMA_v7_AAAA-f3yAgAAAAAFAwP8_v4BAB0KAP7zAAAAEQQF-fgAAAD4BvoA_wEAAPkB-vkDAAAA_Qj5-P8AAAD_EP8D__8AAPkJ-v8AAAAABvYA9gAAAAAgAC3BWuA7OBNACUhOUAIqcxAAGmAM8QAl9QzY8jEMAMXe4i4BEgjSFbsD__zd_-EV2u0dLOys9_EAKfgG9q8AAAAN_Qf44gAhYwrn30D4DRvZr_EU-38-Atf5LAMHAihI1x_cPADyHkQALwf890MdsjIPDyYgAC13pjA7OBNACUhvUAIqrwYQDBqgBgAAgL8AAPjBAACUQgAAbEIAAABAAACgQAAAMEIAABTCAAD8wgAA2MEAAHRCAAAMQgAAwMAAAFDBAABQQQAAyMEAAFDBAAAkwgAAUMIAADBBAABEQgAAoMAAAADAAADYQQAA4EAAAFxCAACOwgAAcMEAACxCAAC4QQAAqMEAAHhCAADGwgAAqMEAACTCAACgwQAAEMIAAJpCAAAMQgAALMIAACTCAAAoQgAAQEAAAPBBAAAowgAARMIAABDBAAAUwgAAMMEAAIbCAAAwwgAAgEAAAJLCAABQwgAAIEIAAChCAACYwgAAAEEAAEBCAAAEQgAAwEEAAMjBAACMwgAAQMIAAOBAAADgwQAAwEAAAEDAAACowQAAgL8AAMDAAAAAwQAAAEEAAGBCAADgQAAAJMIAADBBAADgQAAADMIAANDBAABIwgAAvEIAAJLCAADAQAAAuEEAAIJCAADAwQAAwEAAAABCAAAwwQAA6EEAAFBBAADgwAAAIEEAAFhCAADUwgAAKEIAACxCAAAsQgAAgEAAAADCAAA4QgAAXEIAAMhBAABMwgAAgD8AAARCAAB0QgAABEIAAKhBAADQQQAAgL8AAKDAAADQwQAA8EEAAFRCAACYQQAAqEEAAPjBAACiwgAAqEIAAIhBAABAwAAAgEAAADBCAAAwQgAApkIAAEjCAACAwQAA4EEAABTCAAC4wQAAYMEAADxCAAAwQgAAYMEAACBBAACYwQAABMIAAIrCAAAUQgAAgMAAACBCAADAQAAAMEEAAKhBAADYwQAAsEEAACBBAADwQQAAcEEAAJBBAADgQAAA-MEAAMBAAADAwAAAPMIAABBBAACIwQAAvkIAAOjBAADoQQAAQMAAAEDAAAAAwgAAoEAAAADAAABIQgAAuEEAAEjCAAB8wgAA2EEAAABAAAC4QQAAkMEAAGBCAABQQQAAgL8AADDBAADIQQAASMIAANhBAACkwgAAUMIAADxCAABsQgAAEMIAABBCAAAAQAAAuEEAABDCAACQQQAAKMIAAHxCAAAAQQAA0EEAADhCAABgwQAAksIAAODBIAA4E0AJSHVQASqPAhAAGoACAAAsvgAAyL0AAGw-AAA8PgAAML0AANg9AABQPQAAEb8AAHy-AAB0vgAABL4AABA9AABEPgAAZD4AACy-AABcvgAAtj4AAIg9AABAPAAAAz8AAH8_AACYPQAAcL0AAEA8AAB0PgAAmD0AAEw-AADovQAAmL0AAAQ-AAAUPgAATL4AABy-AAA0PgAAPD4AAOi9AACgPAAAbL4AAJK-AADIvQAAcL0AADC9AAAwvQAA2D0AAIA7AACgvAAAXD4AAJa-AAAcvgAAML0AAJg9AACgPAAAuj4AABC9AABQvQAAML0AAEs_AACIPQAAqD0AANi9AAAQvQAAUD0AANi9AAC-viAAOBNACUh8UAEqjwIQARqAAgAAqL0AACQ-AAAcvgAAI78AAOi9AACIvQAAFD4AAFy-AACYvQAAdD4AAFC9AAA0vgAAiL0AAHS-AADYPQAAcL0AAHC9AAAPPwAAqL0AALY-AADgPAAAcL0AAFC9AACAuwAAoLwAAEC8AAA0vgAAMD0AAEC8AACovQAAgLsAAOg9AABQvQAALL4AAKi9AACAOwAAFD4AAMg9AAA8vgAA-L0AABC9AAAEPgAAyL0AADC9AACoPQAAcD0AAH-_AAAQvQAAmD0AAFC9AAD4PQAANL4AAFC9AAAMPgAAuL0AAKg9AACAOwAAED0AAJi9AAAEPgAAgLsAABA9AAAcPgAAgLsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=7H-YO088DLw","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13499078381409308141"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14271049266196933787":{"videoId":"14271049266196933787","docid":"34-3-5-Z3FD22A406A4F80B5","description":"Topics covered : 00:35 \"Nonlinear\" in control system sense 00:50 Why nonlinear systems 01:49 Difference with linear system 04:29 Mathematical model of nonlinear systems 09:10 Equilibrium points 09...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4255704/05b54455511fe8cd9c37a59369dbc31f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ousrAAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXgnwn0G9qoo","linkTemplate":"/video/preview/14271049266196933787?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction | Nonlinear Control Systems","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Xgnwn0G9qoo\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFgoUMTQyNzEwNDkyNjYxOTY5MzM3ODdaFDE0MjcxMDQ5MjY2MTk2OTMzNzg3aogXEgEwGAAiRRoxAAoqaGh6bGp4empucG5xb2R6Y2hoVUNyMnlSdE5UbzE0OVhHU003X0J6RUV3EgIAEioQwg8PGg8_E7wIggQkAYAEKyqLARABGniB_An1AfsFAOwH_gIBAQAAFwANCfYCAQDnAwT-CP0BAO_8APT5AAAA_QL8BQEAAAACAg_5AP4BAA8KDAD1AAAADfz8BvsAAAD_B_L9_wEAAP8B9P0C_wAABf4DBAAAAADuAw8C_wAAAAL9_PYAAAAAC_7-AQAAAAAgAC1gPeE7OBNACUhOUAIqhAIQABrwAVX69v_68fkC4gPXAMYSAQCBBQv_LxfpAM8Z9gC59-0A8hLnAPLaBAH1-_8AywUAAA7jyAIW-RIADRP_ADMMJQAACgoAJfkDADD18QD6Etz-EwIE_xvyE_4f6eIBEAH1AAj7GAHs_eMC5Rj5_gn3Gf8IAgYAFOIeBO_4Ef__IRwABPf_BO0KGP3ZCf_-4hQYAfUNB_4J8OcA3u4RAvkh2_4IAAcEAxPrBAsF9QXm1Pj-_AYRBBgX5AQQGBr_6xcO_fzvEv73BOf89hoU9yrwDP36_goF6O8FBScF7P7x2AD08_b8_ucCCgL7_QX67_7xAyAALW4nSDs4E0AJSGFQAirPBxAAGsAHkgfyvqZACz3gg5e89vOBPMPKWDkaVHa8wsqXPHF2RjwrDSa90WDuPFcSLz0-FHu9l8eqvhPH7Du-EZ28teGQProRNr0aiTA9dXT8vS8Tmj0LAhC99aGDvjx38TsuxZc7EFwFPpuTVbvtrCu71qIvPVQ99LzapCq7s652ves98LwggC-9-Ua5vVOXnL1lmt-85PuNPWfc77zjXeQ6ru59POBAEDx1FBC8eWWLug_Jqr1RC0q8zVDBveY3UT1-Opo76-AAPgLCoryHdJO8iQMtvQdAYb2elv67UKFfPfB21rtrmIa8EYdxvZJviz0q9ye9SsTFPZfTFL0wY4q8rfkBvlSlkjwh0d87LTfCPblGVT34rpw8IpStvHRLoT3OwbM89VIMPaAPYLz8T8Q7cN2zPfgR5Dw9NWq7IKKHPPmkbj2gSIG8bV4LPYlNej0QYiE73gvCPe1WoDxT7hk6_q-PPcwq7LxgqIm734jOvZIZOby2oU-6u9ToPdV5VDycpfc5V-T8PKJinLudiJm8vFwkvc_30737iv878wQiPchrgTkiP5G8gwyuOzVZCD0_7747j47rPBSW-DwSQlG8OcV0vKjOOb0hs_G7muMBPffnIr3LZLg7ajNKu332Mj3d37U56QthvdnOt7xk4r27lzqIvcfyvj0VZEy40E8nvXeihL2h94Q6eB-MPSKxcz2Acgi7Sh_jO9yhh7keOrk6li8ePa7Yj732P-G6eaenO4CKWb2mCVa2aM_lvHYwhzx-nxq74YvAPBH_0L1kCcK4CvcKPc8GKj32rb05cxIqvcMDNL2d3BY5_o4yvUxREbwxQUE5RG_MvOxnlr2bzOo4CbI0vRKU7DyE3HG59pxvPb21wjymrmo4Cih5vBxeDrzkS1O5vLS8O94EPz3wrKU5nfiFPOIEJrw4fLW4gET4PDquJj1_Hje5zzvCO2BBtTycEtu5wYF6PcFppjzn2Nc4eOhgvPsvJr1DFik1n_FxO6XYAT6orjG5QupWvc9DN7tOCWI1U-NKPLValrt4aLK31LpIvWqlkL0OtTa4p22NPGjcRT3g9sa4yuEDvhDXHjyX_U43AkMYvH6ECDyDi7A34hyaPAUiurxuO4S3hBtfvNoVPz0kVA44H58APqTkkL0V6Dq5d48gPKSfurz4DFO4r2IsPXiUb72CXCQ3lfpovTh4rrtXZQ249nR6PeAP370_mZu3Iv_sPTUpBT7zflu4L8EpvArExjxbTJa4l_RBvby8vz3pDhI4X9LYvEmpuryR6gu3IAA4E0AJSG1QASpzEAAaYCvzABYLGKEXPUPs3t3SGvLx49AAwBj_4tf_GgS58hA39JfFAQAk8QUEnwAAAALc4fXrACB_2e32I8Ay6ry7_xYPXEz0IgLc-wXwJmsk_6TqAdz_LgA376UYQPWPJhz__SAALSycFTs4E0AJSG9QAiqvBhAMGqAGAAAQQQAAmMEAABDBAAAswgAAkMEAAMhBAAD6QgAAcMEAAMDBAADAwAAA0EEAAHBBAAAAwAAAYMEAAMhBAACowQAAUMEAAMBBAACYQQAAGMIAACBCAAAMwgAAgD8AAEBAAAAIQgAAAEAAAMjBAACQwQAA2EEAAHBBAADgwQAAkEEAACjCAACAQgAApsIAAADCAABAwQAAxEIAAIDBAADgQQAAhkIAAMjBAAA8QgAAmkIAAIJCAACQwgAAEMEAAFBBAAA8QgAAAEAAAABBAACwwQAAsMEAAIjBAAC4wQAAAEIAAPLCAAAwwgAAyMEAAHxCAACsQgAAEMIAAIjBAACowQAA4MAAAHjCAABAwAAANMIAABBBAABAwgAAEEIAAKhBAADOwgAAfEIAADTCAADKwgAAAMEAAMDAAADAQgAAIEIAAJjCAACAQgAAcMEAADBBAABAQQAAJMIAACBBAADwQQAAKEIAAFDBAACIwQAAoEIAAIjBAAA8wgAAkMEAAHTCAACYQQAAXMIAABRCAABQQQAAsEEAAEDBAAAQQgAAUMEAAFzCAABQQQAA6EEAANhBAACIQQAAqEEAAADBAACgQAAAMMIAAIDAAADYQQAAhEIAAGBBAAAkwgAAyMEAABDCAADgwAAAjsIAALjBAADAwQAA4EAAAIDAAACIwQAA4MEAAFjCAAA0QgAAkMEAAMDAAACYwQAAWEIAAPBBAAAAwQAAcEEAAKDBAAAkwgAAuMIAAEDBAADIQQAAoMAAALDBAAAwQQAAMMIAACTCAACYwQAAEEIAACDBAABUQgAAAMAAAGBBAABAwgAAQMAAALhBAABUwgAAZMIAAFjCAAAkQgAAMMIAAHhCAAAwwQAAfMIAAGDBAADgQQAAMEIAAABCAAAUQgAAmEEAANjBAAA0QgAAIMIAAJjBAABowgAAWMIAANDBAADwwQAAQMAAAJhCAACgwAAAiMEAAEDCAADQQQAAPEIAAAAAAABgwgAAQMAAAEBBAAAYwgAAiMEAAFDBAABAwQAAgEAAAMhBAACUQgAAoEAAAMDAAACiwgAAYMEgADgTQAlIdVABKo8CEAAagAIAAKi9AACCvgAAmj4AADQ-AACoPQAA4DwAABw-AADyvgAAIb8AADC9AADIPQAA4LwAAGw-AABQPQAABL4AABy-AAB8PgAAJD4AACw-AAAZPwAAfz8AAPi9AAAQvQAAvr4AABC9AAA0vgAADD4AAEC8AACmvgAATD4AAKI-AAAwPQAAdL4AAHQ-AADoPQAALL4AAOC8AABkvgAA5r4AABQ-AABQPQAAlr4AAHC9AABAvAAAgDsAAMg9AACYPQAAsr4AAOA8AACAuwAAqL0AAHC9AACiPgAA-D0AABA9AAAQPQAAJT8AAPg9AABQvQAA4DwAABA9AABwvQAA6L0AAKa-IAA4E0AJSHxQASqPAhABGoACAABMvgAAdD4AAEA8AAAxvwAAEL0AAIA7AADgPAAAHL4AAEA8AACaPgAAqL0AAJ6-AADIPQAAHL4AAEA8AAAwvQAAED0AACc_AADoPQAALD4AAKA8AACIPQAAZD4AAHA9AAAMvgAA6D0AAAS-AADoPQAAiL0AAEA8AAC4PQAAHD4AACy-AAD4PQAAuL0AABy-AADiPgAAuD0AAIa-AABEvgAA4LwAAHw-AAA0vgAAmD0AAJg9AAAUPgAAf78AALg9AABwPQAADD4AAGQ-AAA8vgAAyD0AAKI-AABQPQAA-D0AAFA9AAAwvQAA4LwAADC9AAAMPgAAQLwAAMi9AAAUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Xgnwn0G9qoo","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1072,"cratio":1.79104,"dups":["14271049266196933787"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1091084843"},"4534234298688515101":{"videoId":"4534234298688515101","docid":"34-7-7-Z406BAB0940675B71","description":"Practice this lesson yourself on KhanAcademy.org right now: https://www.khanacademy.org/math/alge... Watch the next lesson: https://www.khanacademy.org/math/alge... Missed the previous lesson...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1474684/2cb72a90b412467c8e3b43b3354ffb9a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Pp3IKwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcdY0b4ziR5U","linkTemplate":"/video/preview/4534234298688515101?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Systems of nonlinear equations 1 | Algebra II | Khan Academy","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cdY0b4ziR5U\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFQoTNDUzNDIzNDI5ODY4ODUxNTEwMVoTNDUzNDIzNDI5ODY4ODUxNTEwMWqGFxIBMBgAIkMaMAAKKWhoZG92aXd4c2V2ZnFyZ2hoVUM0YS1HYmR3N3ZPYWNjSG1GbzQwYjlnEgIAESoPwg8PGg8_E1eCBCQBgAQrKosBEAEaeIEEC_MBAAAA8Qf9CgAE_gHy8AoE_P7_AOYDBP0J_QIA9Q7__gYAAAABDPr9BQAAAP7-_v_4_gAABgT9AQQAAAAXBPz9AwAAAAT4-vj_AQAA8QT6_QMAAAAFC_wB_wAAAPQL-PQAAAAA9gP_7QAAAAATCwD7AAAAACAALXgc1Ts4E0AJSE5QAiqEAhAAGvABf8oW_br5vP_hvQ3_wxPeAbs_7wEfEBP-pAf7Ad8ZwAG8vRUB-EX3_xgG-ACd4x8AHu7Z_u-hw_9Rz_sAutgUAP3TNwFC6zcAFD4fABm_D_8ILwn_1-r8ARyp5AAoEy_-NPwx_vIP1gPb-PQJFf1VAhMB4AblDAwI8SME-_DdDQfCGsL85sXv_9IkAgOy_isBG0PSAfhUCQIe0_HyMR0c9UnNEgf4Udv4Vf4YA-Yw7AXBHvb1BqHs-OkqCRHDW_35GvEs7tv6B_806wrs7_3nAgvk7ex7Cu8HK9TkEQf35AzK2f3i8hsF3e8aCgPMm_v7IAAttlzXOjgTQAlIYVACKs8HEAAawAcPf22-IoACPNHInL0sLs68cXCOPCHegLsq4B6-A-5ZPXNVj7xNMhI-mYm9PGOH57xQSHy9cdGkvAE82Lz43yo-psAXvLlIC71A3CW-xCskPPP2b7u-77m91o9NPUEWvTz_lTW9DxuWvUCnezz-fhE-6Sq9vTiUa7whsrO9TTutu6sxV7z0Hy09P7m3vZ4_Er3rixQ-04DFu7dyAD34RGg9vcNtvN7bvjs0PMc8cAOTvfVdNrx0e-m9pRbKvLtak7yDka09sPGPPQxwJj2AStW87mq4vaYNybtKRd-7Dff2vM8qm7mBiYk9hBJBvJWsVLzrHAO-kStVvQrTHL31IA69ckXDvfQC5Lsnkn49fPmIPeB8jzw1U2s89U-LvNJvALu7KlA9-o1AvL_vvjrZJTo-mMPOvZDkBzvDq3Y8BwIJvSChHDxV7zq8qmtIvJHEgTtGp7i8QG6avTCQMbyWWak8ogGGPMA9sjvmJG-8e4cbvYDwwrq5MSI9ST0VvZkuo7vCWYA8WYuaPQxGGzwqbxc-VhnMvffDFbux0SO9Oh4zPHFz7LtjL589Jv-jPbhiNbxRjt28rxi_ugYZXLwIiBM9MolOOaXwpLs9kXE9-GEuvfnmirtz2ci9YjN7PQntybvpC2G92c63vGTivbtd4AI-p9WrvcNTwLqK1VU87N8VPQdQnTs5gF69gCvZPYFIljprFVi8ckolvX4gM7sYsgo-ZZ7DuxjRgjjiAD-9yd2MvMOp5jqn2XK8sMMaPCVMA7veuaY9O2gbvdoZxzmOwCm92-CfPMWavTnsic49FYhjPRbfJrk14Sg8NZWavajkRzn_I0O-ZmfRvTzykDm4Q-A7iowzvE0kPLkzH2e7JngevULqwjnp9q28JTv2vbm8zDht4uS9vt6dPYc_A7k2vOo86OyePamjxrjKbIC9OC04vZOSmTjlOje9ol0VviMgfjmqYNS9ej0TPb-p6DdU5Ru-QQqzPXHUpLmri7W9PXZcPfjOATnnHzg9D--5PbRouTj-P5M9m85pPWW2dDfubm89FEEcvQkVsbbWYuY8CykfPkgHjTjK4QO-ENcePJf9Tjc_Kam9G9bUvbh-QbfIXzo-3JXCPM2vSzhgDYY85RkoO5chHTiZSt89gHPQPFS4vrifrm69V_DXOwab7rdCr7S9es5MvXLLiLeU2YW8TD5RvE94ELc_jsY9K94IvocitLhVGKY9bQvFPYPH5zjiGK48b6WiPUwnUrhurYo8XW8bPXgIvbfYEea7hD9NPR7HVTggADgTQAlIbVABKnMQABpgJugAJxE44xzzOwTM6ekQ0OrjwyXB___nyv_rE-UW3_m7rODyACcdA_ibAAAAKOny-_oAFH_-HCtw6xn7_JjL-QJw8hkgwuAVI846UDAd8_k0-iFuAAUVolEf77gtSy5IIAAtRf4QOzgTQAlIb1ACKq8GEAwaoAYAAIhBAACAPwAA-EEAAFzCAAAAAAAAkEEAAP5CAAAAQAAAoMAAANjBAABQQQAAQEAAAAzCAACYQQAAbEIAAJDBAADowQAAoMIAAAxCAAB4wgAAAEAAACDBAABQwQAA4EEAADBBAACAPwAAcMEAANBBAABQQQAApEIAACTCAACIQQAAxsIAAODAAABAwgAAHMIAABBBAAB4QgAA4EAAAChCAAC4wQAAXEIAAGRCAAA8QgAA-MEAAJDCAABEQgAAoMAAAIxCAAAoQgAAoEAAAGDBAACAQAAA0MEAAHRCAABgwQAAqMIAAGDBAADwwQAAcEIAAJBBAABMwgAAhsIAAJ7CAAAAQgAAJMIAADDBAABQwgAAkMEAAFDCAAC6QgAAcEIAAIA_AACQQgAAPMIAAADBAABUwgAAGEIAAJhCAAAAQgAAJMIAAIxCAAAQQQAAgD8AAHxCAACAwAAAUEIAAMBAAACaQgAAHMIAAMDAAAB0QgAAPMIAAJ7CAAAMQgAAoMIAAKhBAAAAwgAA6EEAALhBAADgwQAAwEEAAEDAAACYwQAAmsIAABRCAAAAQAAAQEIAAADBAACQQQAAAEEAAIBBAADIwQAAOEIAAOBAAABwQQAAUMEAALDBAAAgwgAAHMIAAKBAAAA4wgAAEMEAAJjBAAAQwQAAwEAAABhCAAAAwgAAhMIAAJhBAAAQwQAAgL8AADDCAACQQQAAHMIAABhCAACIQQAAgL8AADjCAAAUwgAA8MEAAAzCAADAQQAAsMEAANhBAACAvwAAbMIAAHxCAACYQQAAAAAAAFTCAACQQQAADEIAAPjBAACAvwAAIMIAAGzCAAAIwgAA4MEAABxCAADAwQAAFEIAAHDBAAAQwgAAQEEAAKjBAACYQQAAIEIAAI5CAADYwQAAqMEAABRCAAB0wgAASMIAAHzCAAAowgAAMEEAACjCAAD4wQAAcEEAANjBAACIwQAA8MEAAHBBAABgQgAAsEEAAKbCAABAwQAAgEAAABRCAAAswgAAYMEAABDBAABQQgAA-EEAAMhBAADgQQAAmEEAAIDAAAAgwSAAOBNACUh1UAEqjwIQABqAAgAAiL0AAGS-AAAsvgAATD4AAOY-AAAJPwAABL4AAH-_AABdvwAAhj4AADw-AAAbvwAAQDwAAMo-AABMvgAACb8AAO4-AAAwPQAA0j4AADs_AABvPwAAQDwAAEA8AADGvgAA4LwAAES-AAD-PgAA3r4AANi9AACOPgAACz8AACS-AAAUvgAApj4AAJI-AACAuwAA4LwAAKA8AAAXvwAAbL4AABG_AAAcvgAAsj4AAKA8AAAEPgAAiL0AABQ-AAAVvwAAoLwAACS-AAA8vgAAPb8AALY-AABEPgAAHL4AANi9AABrPwAAML0AAIK-AAD4vQAAQDwAACw-AADIPQAAur4gADgTQAlIfFABKo8CEAEagAIAAKK-AACAuwAAHL4AAGW_AAAkvgAA-L0AAFw-AABEvgAAUD0AAJ4-AACgPAAAuL0AALK-AADIvQAAQDwAADC9AAD4vQAAGz8AANg9AAC2PgAAoDwAAJi9AAAEvgAAmD0AABy-AAAwPQAAqD0AAMg9AADoPQAA2D0AAJg9AADIPQAAFL4AADS-AABwPQAAgDsAAOo-AAAQPQAAzr4AAKA8AAAwPQAATD4AAAy-AABcPgAAuD0AAAQ-AAB_vwAAgDsAAEQ-AAAQvQAAoLwAAIq-AACgvAAAQDwAAJo-AAAkPgAAqD0AAJg9AAC4PQAAcL0AADQ-AACoPQAAqL0AABA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=cdY0b4ziR5U","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4534234298688515101"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"379350132"},"6302571623471483933":{"videoId":"6302571623471483933","docid":"34-8-5-ZB0113F9214D99436","description":"These are videos from the Nonlinear Dynamics course offered on Complexity Explorer (complexity explorer.org) taught by Prof. Liz Bradley. These videos provide a broad introduction to the field...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/470405/2c9d127d9220bfd615dabc4c3f28ad17/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/xj0xcwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMizhVorgywY","linkTemplate":"/video/preview/6302571623471483933?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nonlinear Dynamics: Introduction to Nonlinear Dynamics","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MizhVorgywY\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFQoTNjMwMjU3MTYyMzQ3MTQ4MzkzM1oTNjMwMjU3MTYyMzQ3MTQ4MzkzM2qTFxIBMBgAIkUaMQAKKmhob21nenF2YmFicGhrd2NoaFVDNnMtMVRZYS0xZkJyVVVJR2lqc2hDURICABIqEMIPDxoPPxP3BYIEJAGABCsqiwEQARp4gfn3_AP7BQDxBwYK-AT_Afv8BP36_f0A5wMD_gj9AQDy-_b6_wAAAAoK-An8AAAA9QYA-P0AAAAKAQD_7QD_AAT__gIBAAAABQH9Bv8BAAD8AAL9A_8AAAoF_f0AAAAA_gsIBPr_AAD5Cfr_AAAAAAX_-_cAAAAAIAAtznfjOzgTQAlITlACKoQCEAAa8AF_-Q0DvvXu_h7iAQHQE-X_jwAB_wAP-wCk6PcC6ADvAUUuEwDg5Cv-MBoXAL7-7AH8BhD_Av4ZADH5D_8nEPwB6iQgAfHhAwAE-AsAFeHg_uQS3_8I_AkA8u4CAQT-9QD76vz5GQz0AfgSD_4VCw3_Ev74_foL-wQkAvcABQf7_xwA6_0T5PX8Dv4KA_3oFP0CEvUFMxL2_-cF__wO-AL8DQP8_fMG_frwCeIH8hcB9wHw-gQMMfsC_OcLA_cf8P_Y1gP_0ewE_xTuCAEHF_sG7gsSAvgEAAfa6wcFFb8AAfUv_gT0BAcRCv33AQ3O-gkgAC1mszg7OBNACUhhUAIqzwcQABrABzkr-r4ZAwy8Nu-0ur-Nfj0erhA9NDDNvF4eIb2cU-Y7KuK0PBTzxzzzwJE8WtqEPMSXWb6MZmW89bolvTsZbD6uDOo8gowlPNR9sL4YT468OcCGu0ePD75tpJE8aDjKPDs9SjxBGC48GGM7PJEDAL1g6y29Y64UPHxi_T33fpm8V4uZvOt_rzwKvmk8GXHBPKw8YT6_OyO9PFkAPfnQjz2FRIq9rqDEvHPhdjwFSu88grmMPBVdUj0cvOW8zxudvDnWsD2UKWu9oPK5PP92iT3RsQO7Lx45PKgzHL00P0i971AYu9LFpjx4Oyc9tmo2u2mjHz3SIyG5WolUvC96Pb0JSvY8h78HvBeYij3ZQs47CxGLPDMuQbxImNi8uON8OnaeQr3hCII95cckukr9Zj0WBAW812ArvEF-dj3yHzk7nQgsvI1KJT3WIyg9LPOWPGycCD1mcVU9C9SivNxhOLyzVVM98_sCPPifJr1H0fY5A2RDPJp6Db7OZfS8zlY5PKTt7zuRgFE9HCUvvCyhNj1aKlK7SoiovI2kVbsmDJQ8ObfoOyyRFTxEXE89IzQAPE3HlLpO1BI9LKBtO-9RpLxu-N28OMSROvZFXzuabG29Ttaku6jiBLsJWRe6ljI6PMa-iT2Pbue7PaKdOzd1-TzVQik94B-Au70fMj1ZhY09HUtMu3bBwztv2Xy8g_4dO5l7Db2OqaK7VSMqOxmRGD74frQ8GeZtOXxIUzwVzBM9UxgqungmNDw8qlA8A683u-QpMD2lVg698dgNOxhVkD14izE9YMQSOQSN-T0OSCc9N9uxuXHc8zsi_Au9EC_bOMO8B76pP2y92ntlN7syXr141QO-jdLsuVZSnbxDyk-8twPFNi4UuryjMo881E9IunvaobxZQBU8UG_ZuH7UNb0v58g92Lt4udUCAD368t08x6I3uI0OpzsFQ6m70DgxucnhOL0i2D09aHQxuDMPir3TyB09EsfKuDXLyjz0T_C9Sk24Ny2e8Lx24108xcZRuAkcJD3Ur9m8_xwsuLETgzy2sbO9FanpOCivn7wtHrM9ExmkN-WST7wvlx69XG5-OBYggDwIVMG7JeR6thxe8D19BP489OeQuDjshLoR7sS8KwdeN-uEYT0rGNW8PJPxuD9TP77Ata68XewVOVPKSz11BFA9ghG8t8TOlDxC3ly9h7g0NoLIAj45oMC9PAE_ODcVjrw1y4o802G8t1ryeL2YS647aOleuAEtQr0kOjU9KNkdt0eIvDs1iQa698M8OCAAOBNACUhtUAEqcxAAGmBc9AD60S7l5joa3N_R0ie6CQHgTs7i__Px___h3QsXTdmpEOIAHOsc-6AAAAD44fLv2wD8f_L2z0j5-y_XnwEhBnBMGNrl_SvmvAcr7gnVHi8CVSMA2OG4JWAutzkWEiogAC3QBhU7OBNACUhvUAIqrwYQDBqgBgAAAMEAAMjBAABUQgAAAEAAAIjBAAAAQgAAIEIAAJjBAABAwgAALMIAAOjBAABAQAAAAEEAAADAAAA0QgAAUEEAAJhBAAAEwgAAQEAAAITCAAAAAAAALMIAAKDAAAC6QgAAZEIAAABAAABswgAAZMIAAPRCAAAMQgAATEIAAFjCAADAQAAA2EEAAEDCAAAgQQAAaMIAAEBCAADQQQAAXEIAAGBBAACwQQAAEEIAAHBBAAAQwQAApEIAABDBAABMwgAAgMAAABBBAABgwQAATEIAAGDBAADIQQAAoMIAABTCAADIwQAAAEEAAAAAAABoQgAAQMEAAHDBAAAowgAAbMIAAHBBAACIQQAADEIAACDBAADgwQAA4EAAAEDBAABcQgAA2MEAADxCAAAgQgAAmMEAAEDBAACsQgAAMMEAAKDCAABQwgAA4EAAAABAAAAwQgAA6EEAADRCAABUwgAA4EEAAJJCAACIwQAAgMEAADRCAAB0QgAARMIAAADBAABcwgAAUEEAAIhBAAA0QgAAQEAAAGBBAABwwQAA4MAAAKjBAABEwgAAyEEAAEDCAACoQQAAsMIAAEhCAAAwQQAAEEEAANjBAAAwwgAAgL8AAIJCAAAwwQAAbMIAAKDBAACgQAAAQMIAAGBBAACAQAAAPMIAAMBAAACgwQAA2EEAABDCAADwQQAAUMIAAIC_AAAowgAA4EEAADBBAACAQAAAAEAAAPBBAABQwgAAvMIAAIbCAAAgQQAA_kIAAAhCAACsQgAAoMEAAMBBAABAwAAABEIAAIBBAAAsQgAAgEEAAIDCAAC4wQAA4EAAAIA_AAD4wQAABMIAAPjBAACQwQAAoEEAAJjBAADQwQAARMIAAHBBAABAQQAAoMEAAABBAABkQgAAGEIAAOBAAACYQQAAwEAAACDBAADgwQAAuEEAAEBCAAAAAAAAQEAAABxCAACYQQAAuMEAAKjBAACwQQAAAMIAAIC_AADAQQAAisIAAJBCAAAIQgAAQMAAAIBBAAAAQgAA2MEAAKBBAABUQgAA-EEAAHDCAACAwQAAhMIAABTCIAA4E0AJSHVQASqPAhAAGoACAAA8vgAAvr4AAMi9AAD4PQAAJD4AAII-AACaPgAAL78AAMq-AADovQAAQLwAAAS-AACoPQAAbD4AAGS-AADgvAAAjj4AALg9AADYvQAA2j4AAH8_AADYvQAAcD0AACS-AACgPAAALD4AAEw-AABQvQAAQDwAAIg9AADaPgAANL4AAK6-AAAQvQAAED0AAKi9AABAvAAApr4AAOK-AABAPAAAyD0AAK6-AABAvAAAiD0AAMg9AAAwPQAAoj4AAIK-AAC4vQAAlr4AAPi9AAAUvgAAij4AAOA8AAA8PgAAiD0AAEM_AAAUPgAAED0AAOA8AABwvQAAmD0AAKi9AADiviAAOBNACUh8UAEqjwIQARqAAgAAFL4AABA9AAAQvQAASb8AABw-AABAvAAAUD0AAJK-AACavgAApj4AALg9AADYvQAAQDwAAES-AAAQPQAA4LwAAIA7AAAbPwAAmD0AAGw-AADIPQAAnj4AACQ-AACYvQAAFL4AABS-AAA8vgAAyD0AANi9AAAwvQAATD4AALg9AABwPQAAmL0AAEC8AACovQAAND4AACw-AABsvgAAHL4AACQ-AAD4PQAAfL4AADC9AACYvQAAPD4AAH-_AACgvAAAhj4AAIg9AACCPgAA-L0AAAw-AAB8PgAAmL0AAMg9AACAOwAAoLwAAJg9AAA0vgAA2L0AANg9AAAwvQAA4LwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=MizhVorgywY","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["6302571623471483933"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"659335886"},"10365424983180949547":{"videoId":"10365424983180949547","docid":"34-4-11-ZB4E76E6CCB2C22EF","description":"In this video, we'll discuss numerical methods for solving nonlinear equations. Numerical Methods - • Numerical Methods Setting Up Python and Calculating Numerical Errors - • Setting Up Python...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/897622/fa61bf61af0535a9e47b9a485e80c8d8/564x318_1"},"target":"_self","position":"8","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dm55U4dWUN_Y","linkTemplate":"/video/preview/10365424983180949547?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nonlinear Equations","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=m55U4dWUN_Y\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFgoUMTAzNjU0MjQ5ODMxODA5NDk1NDdaFDEwMzY1NDI0OTgzMTgwOTQ5NTQ3aq8NEgEwGAAiRRoxAAoqaGhiYXNibml2Zmt4c2RmZGhoVUNqaXJBX1Q3THBKcnZReGMwS2dscmVnEgIAEioQwg8PGg8_E8IBggQkAYAEKyqLARABGniB9v70AfwEAPkHCwb5Bv0C9goGAvn9_QDxAgfyAwEAAPYDAQIHAAAAAgf_Av0AAAD2_v7-_P8AAA0A_QP7AAAAAgAD_gIAAAAS_f38_gEAAP37_fcCAAAAAAD5Cv8AAAD2DgEDAQAAAPECAQQAAAAADPr5-wAAAAAgAC1QGeE7OBNACUhOUAIqcxAAGmAcBAAMDiv27BcZBNbn8D7R3_v27akV_w3hACUO2yUlO7-vz_j_IfDv8qQAAAACxOzb3gAxcOUP-kwoEgPGzOLnJ38VKL35_SgI-w0R1zHD6k0wHE8AKPf0Ji0EpjUsID4gAC3gux47OBNACUhvUAIqrwYQDBqgBgAAFEIAACDBAAC6QgAA4MEAANBBAABAQQAALEIAACjCAADIwQAAREIAAODAAACgwAAAUEEAAIC_AACAQAAA6EEAADBCAABQwQAA8EEAABDBAADAwAAAEEEAAGTCAAAQQQAA6MEAAADCAACYQQAA6MEAACRCAAAAQAAAUMIAADRCAAC8wgAAQEEAAODBAACgQQAAIMEAAMRCAAAwwQAA2EEAAABBAAAwwQAAQEEAAADCAACgQQAASMIAAIA_AAAQQQAA2EEAAMBAAABQwgAAUEEAAKBBAABwQQAAAEIAAJpCAAAAwwAAgMAAAFBCAABsQgAAwMAAAIzCAAAUwgAAGMIAAFxCAADOwgAAAAAAAOBAAAAEwgAAPMIAADBCAACcQgAApsIAAOhBAABkwgAAQMAAAJDBAADAwQAAkEEAALDBAADYwQAAfEIAAMjBAABgQQAAwMAAAIA_AACAQQAAAAAAACxCAACgwAAA0MEAAHhCAAAQwgAAAMAAAJ5CAAAwwgAAIMEAAGBBAAAAwgAAQEAAAIjBAAAQwQAAQMAAAIA_AAAkwgAAbEIAAFDBAABAQAAAYMEAACDBAAA0QgAAAMAAAKjBAADAQAAAcMIAAMJCAADAQQAAoMEAAMzCAABQwgAAgsIAAHDBAAAAAAAAqEEAADDBAABAwQAAaEIAAPjBAAAwQQAAgEAAAATCAABowgAAgD8AAHhCAAAAQgAAwkIAAARCAAAcQgAAgEEAADjCAAAQQgAAeMIAADBCAAAowgAAUEEAAFxCAABQwgAAJEIAAAAAAAAoQgAAgEAAAMBAAAAAwAAAgMAAAMBBAABgQQAAEMIAAETCAACYwQAAhMIAAIrCAABQQQAAUMEAABjCAAAAAAAAgD8AANLCAABgQgAAuEEAAEBBAABcwgAA8MEAAHBBAABAwgAArMIAAJhBAACQQQAAAMIAAARCAAAAwQAAIMIAAGDBAACAwQAAlsIAAHBBAAAgQQAAQMIAAJbCAABAwAAAgMEAANhBAADYwQAAoEAAAJBBAAAQQQAANEIAABjCAABAQAAAIEEAAIhBIAA4E0AJSHVQASqPAhAAGoACAACIvQAAXL4AADS-AAC4PQAAsj4AAFw-AADIPQAATb8AAOq-AAC4PQAAJD4AAOC8AAA8vgAAjj4AAFy-AACWvgAAqj4AAHA9AACAuwAAET8AAH8_AADYPQAAJD4AAAy-AAA0PgAAmL0AADA9AABAvAAAiL0AAMg9AADCPgAAgr4AAKC8AAD4PQAAiL0AADA9AAA0PgAAZL4AAA-_AADIvQAA6L0AAHC9AACOPgAAgDsAAEC8AADgPAAABD4AAHy-AACIvQAAir4AADy-AABcvgAA3j4AALg9AAAkvgAAoLwAAFc_AAAMvgAA4DwAABC9AAAQvQAAxj4AAFA9AABMviAAOBNACUh8UAEqjwIQARqAAgAAUL0AAIY-AABQvQAAMb8AADS-AAAkvgAAnj4AADy-AAA8PgAA-D0AAKg9AABkvgAAyL0AABy-AAAcPgAA4LwAAHC9AAADPwAAqL0AAKI-AADgPAAAUL0AAKi9AACYvQAAqL0AAIA7AAC4vQAAUD0AAIi9AADgPAAAiD0AACw-AAAkvgAA4LwAAEC8AAAQPQAAVD4AAEQ-AACOvgAAyL0AAAw-AABUPgAAqL0AALg9AABAPAAAyD0AAH-_AABwPQAAJD4AANi9AABQPQAAoLwAAEC8AAC4PQAAJD4AACQ-AACgPAAAiL0AAIi9AACAOwAAiD0AANi9AABAvAAAUD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=m55U4dWUN_Y","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10365424983180949547"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7794190064125254041":{"videoId":"7794190064125254041","docid":"34-0-17-Z0BA65238F4934225","description":"Organized by textbook: https://learncheme.com/ Discusses assumption in nonlinear regression (NLR) and uses data for vapor pressure versus temperature to fit to an Antoine equation. Discusses how...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4667875/b52db95593d630cf0db1c56482194708/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/b1JiCgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvDRBlImmVas","linkTemplate":"/video/preview/7794190064125254041?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Nonlinear Regression","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vDRBlImmVas\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFQoTNzc5NDE5MDA2NDEyNTI1NDA0MVoTNzc5NDE5MDA2NDEyNTI1NDA0MWqHFxIBMBgAIkQaMAAKKWhodmdkZ216cGNzdnJycWhoVUNLVkd4V3FBY3lHaWJLQzJSS0QxOVJREgIAESoQwg8PGg8_E5kEggQkAYAEKyqLARABGniB-wH5CPwFAPkHBQgABv0B_xH4Bvf-_gDnAwP-CP0BAO78A_oD_wAABwgF_QIAAAAC-gr___4BABYAAv8EAAAAFfn8AP8AAAAG_PH4AAEAAPb8_u8BAAAAB_z7CQAAAAD7BAT9AAAAAO8JA_4AAAAAAPr8-QAAAAAgAC2i1OE7OBNACUhOUAIqhAIQABrwAX_sIQHFCd8A9fTnAOP55ACpCv8A_TLUALvxCwDLFtgAyxz5AN4I-wDuEA8ApRIMARXz5f4EzOMAEtgFACPwBwDY8gkAIbgcAGkWCAES5MX-vykJ_v_hIAER3PcABCLb_gryEvr5Acn_Cuu7CUj6KQAfLREFCuUW_v3q_wDV6A8C8BTW_QgIEAgD_fQDyf4eAQzp_Qj6KQn71N3tAygBB_kG8fz5BUn3_TIWEgXtDPAA5ALuBgb17_v3EhIH-Pn08P0DAgT99wj8J_TxBATTA_sX_fIIINrpAirk_fr22QH8-Qn6_dkU_vv4Dvr88cz_9SAALVTpGDs4E0AJSGFQAirPBxAAGsAH8S3kvjPFNz31Rxy8Xx4cPfNW3bzjxIe9-IG1vAOrzzxpFPe8kKIePkoS3zy3QwE8twz4vY34xLwjMic9nUaCPn8WS7y-Esi8QNwlvsQrJDzz9m-79aGDvjx38TsuxZc7sRngPYyRWzwwwWO7HQDxPfXVFb35njG90YQ8PdV2cz1fAEu9Vj_AvBf4Rb07eYm7-A29PSj5h7zZPTk9VmynPf8IwzzVUsq812gZPZwfNb0MkfQ7136nvQv9Xbx3S3K8hFkSPbjnWT1iIBk8vgq6POUUeLy4uHy8mLj6vPfRhD0gEx-9E2fBu5aGL7vnT0C8zmGIPPkFhbyXY0M8OpZyvSyncz1IlsK85Gb4PWZM4T0YI9Q7fJrTvbGiJj19XrG8PyiOPawfG70zvJ87SYLwPWIW9TwqyuW8lsUOPYGZmj3_x0-78L2kvDI76z2VJue69qeOPeIEZj1l10U76kFhvS7oGLySXq88LPmTvWJgQjwPL6O8cPUXPYPFHD2rjNA8V-T8PKJinLudiJm8yVNbPQCAjb2oMFs8AwyWPZVQsLxb5EO8imSePSAuFD14Zry6EiIvPeT-Pr06eZG7jIHVPd3f6rzMWwe5uphQPR8bV71iaqY8J7FVvSO7Aj7YH7S3biKpPIymTj2bUda7lKZ_O3ba_zx3iL078HiZvWt2Lr1EHvs7aP6tPXmocj3NGAs7W3lJPTIuZjzJWj-79z-rPUMh3bsq-bu7WiiOvUd1ir2A9xi6f06BvCl7pjxXSqW49X6IPTPfAb1AfGw5YMRDvZEl2LyU7AU5Gx97u2sWjj3CdGA5m2jhPI-GGL1XrnQ6_LNVvXc9sr2FGzC45gRtPUOFtLxAFRq6F6ibPYyyHbp3GWy5sz8Qvsg4EL0Mk0q5MuOdvRrAmzwPwPQ4ryuhPaXCs72T0xc5_4qGvfXTZD373oO5SKcOPVYYMb00ehS3vyAzvKwbzz1JDDQ1nJugPWe8yDzugvs4_ViXPdy3-j0dVsQ1hA2_PSsW3z3zDaK36D81PWQfBD5nsRs4mMynvD9GKr3CnQA4pivYPUaYAj2BRn-4jOLLvHeGxDy8MeE4x7hHPaMkj70T-7g4xM8PPjxq6buey5U2qdEVPbP_S7zl31G330-9Pb2uOjzsV2u56UA7vQknGL1YaCi4d0iGvez4L71Aaj-4OTHavHeB97zGrGe3HeMMPGdG371pUBK4_81rPal6Qz3KRac4ZtkTvYQYnjx2U3a4ktccvGszKTyWX6u3jZH0Oh7HCzxa8Jc4IAA4E0AJSG1QASpzEAAaYDX-AOcSH9jtOg_jzcHc-fLjEMYkuhr_7tz_AxTBChD6963e4wAiASnfpQAAAAcAA-TvABR_tu7wGPEGKtu87RMmfDYoNa64FgTgBSoNFK0OF_r8XQAyDJVgSP7QKCIpMyAALfLlFjs4E0AJSG9QAiqvBhAMGqAGAADgwQAAAEAAAIhCAABgwQAAqMEAAI5CAAAsQgAAuEEAAHDCAACYwQAAIMEAALDBAAC4wQAAyMEAADTCAACoQQAACMIAADTCAAAUwgAAwEAAAIjBAAAIwgAAwMEAAMBAAABwQQAAgEEAAMBBAAAgwQAAJEIAAKjBAAAgwgAALEIAAGzCAAAsQgAApsIAAIBBAACUQgAAREIAAEBAAAAQwgAAgEAAAFBBAABgwQAA6MEAADBCAAD4wQAAIMIAADDBAADgQAAAZEIAAAzCAADYwQAA4MAAAAxCAACGQgAAYMEAACzCAADgwQAAGEIAAEBCAADgQAAAjsIAAETCAABMwgAA-EEAANrCAAAAwAAA6MEAACDCAAAswgAAWEIAAEBBAACSwgAAgEEAAIDAAAAAQQAAQEAAADRCAAAEQgAApEIAABDBAACmQgAAJMIAAAAAAACYQQAAyEEAAIpCAAAEwgAAAEAAAABAAADgwQAAPEIAAFDCAAAkQgAAAEIAAHDCAACowQAAMMEAAFhCAAAUQgAAJMIAAADCAAAkQgAAwEEAAEzCAAAEQgAAoMEAADBBAACYQQAAyEIAADxCAACwQQAAQMIAAMxCAABgwQAA4MAAALBBAAAAwQAADMIAAFDBAACAQQAAoEAAAAAAAACwwQAApMIAADDBAABEQgAANMIAAABAAAAgQgAAkMEAANLCAAAQwgAAcEEAAKjBAABAwQAAUEEAALBBAAAgwgAA4EEAAAAAAACGwgAA6EEAAJTCAACoQQAACEIAAPDBAADYQQAAiEEAAOhBAACYwgAAhkIAAGBBAAAwQQAAYEEAAADCAAA8wgAAQMAAAMDAAAD4QQAAgD8AAHxCAAAAQQAAPMIAAMjBAAAAQQAAwMAAAIpCAABgQQAA2MEAAMDBAAAcQgAAAMAAALrCAADgwQAAoEAAABhCAACgwAAAiEEAAMhBAAAYwgAAEEEAAIbCAABYwgAAPEIAAPBBAACOwgAAiMEAAEBCAAAMwgAA8EEAAERCAABAQQAAwEAAAJjBAACgQgAA2EEAAMBAAAD4QQAA0MEgADgTQAlIdVABKo8CEAAagAIAABy-AACCvgAABD4AAOg9AABwvQAAUD0AAEC8AAAXvwAA5r4AAHA9AADIPQAAiD0AAIg9AABUPgAAFL4AAAS-AACGPgAAUD0AAPg9AAAJPwAAfz8AADA9AABAPAAAoDwAADy-AADoPQAAEL0AABA9AAAUvgAA4DwAAFQ-AABcvgAATL4AADA9AAAsPgAAUL0AAFC9AAAsvgAAHL4AAIA7AABwPQAAqL0AAFA9AADYvQAAiL0AAJg9AADYPQAAqr4AALi9AACivgAAmL0AABA9AAC-PgAAcD0AAOi9AAAwvQAAOT8AAPg9AAAQvQAAiD0AAEC8AAAcPgAAML0AAFS-IAA4E0AJSHxQASqPAhABGoACAAAEvgAAND4AAIi9AABDvwAAUD0AAHA9AABcPgAAXL4AAFC9AABUPgAAMD0AADy-AAAMvgAA6L0AANg9AADgvAAABD4AABE_AABAPAAAuj4AAOC8AAAwPQAAFD4AAHC9AADYvQAAgLsAAJK-AAAwPQAAQDwAAEA8AAC4PQAA-D0AAIC7AABwvQAAUD0AAKC8AABUPgAA4DwAAMi9AADYvQAATD4AAAQ-AABMvgAA4DwAAAS-AACSPgAAf78AADC9AAAUPgAARD4AAHw-AACovQAAoLwAAJY-AABwvQAADD4AAIC7AABMvgAAiD0AAFC9AACgPAAAQLwAAEC8AACYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=vDRBlImmVas","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1070,"cratio":1.79439,"dups":["7794190064125254041"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"346502703"},"1317848411501213456":{"videoId":"1317848411501213456","docid":"34-7-2-Z57468E7570198B63","description":"A video game with nonlinear gameplay presents players with challenges that can be completed in a number of different sequences. Each player sees only some of the challenges possible, and the same...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3643459/e0bb87befa3e142c6fe52e0ecc524bc7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/o5lHRgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbkMECONQCs8","linkTemplate":"/video/preview/1317848411501213456?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nonlinear gameplay","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bkMECONQCs8\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFQoTMTMxNzg0ODQxMTUwMTIxMzQ1NloTMTMxNzg0ODQxMTUwMTIxMzQ1Nmq1DxIBMBgAIkQaMAAKKWhoY3ZodWJ0cmFycWFhYmhoVUNWNjNGU2NIblNob29iZmFFTkM4Ul9REgIAESoQwg8PGg8_E44GggQkAYAEKyqLARABGniB9v70AfwEAO0DAgwHA_4A-QwA-vn-_QDnAwT-CP0BAPUB9gQBAAAAFQj-Af4AAAD3Awf8_P8AAAj_BAQEAAAADPsAAAEAAAAK-_gB_wEAAP_8CfsDAAAABAL9BAAAAAAABQoDAQAAAPME-_0AAAAA-Pr0-AAAAAAgAC1QGeE7OBNACUhOUAIqhAIQABrwAW4LBAKU_A75fwH9Af4a-AGTEvL_PP7yAOIE-gHg9P8AFwIBAN79AADrFQ3_9OgEAAT59AAcAg8ABhD4AAYFAQAW9vUAKeX-ACwPAgAQDfL_Agj9___qFwES-BIA__0NABoc6f4KCOUAIQn1AgDnBwD8AQIA-_UQAwv88gICEwoB9fMY_w_1C_73BQD5FAH7Bgff_v8MCw0D9voPAuwBGP_5_AkFHucCABMY-QgM7vT6AfMA-QkiCfkTDAcL4Bb6BQLoCQARA_EE-Br8Bxn-A_7nBQsB-fUO-wr__v36Cg8D6fL7-eH4Bgb7-g0J-gj59iAALZi1VDs4E0AJSGFQAipzEAAaYDTxACbwO_H8Gg_ZDMbtLNMf49jv7RD_MPD_CeLFIBcz947__f8y_tkGpAAAAOcF3tvsAB94BRnY89LlAtDY6QoAf1Bd0O7gFCP06-fR49niAO7OegD-F7MaTBXPIVYdGyAALYsHGzs4E0AJSG9QAiqvBhAMGqAGAAD4wQAAUEEAAPBBAAAYwgAAAEEAAMDAAAAgQgAAYMEAAGDCAAAowgAAAMAAAI7CAABYwgAAksIAAIRCAABgwQAAUMEAAAjCAADwQQAAWMIAAJDBAABQwQAA4EEAAJjBAABgQQAAUMIAAFjCAACAwAAAhEIAAKBBAACAwQAAAMAAAGzCAAAQQQAAXMIAAHDBAACwQQAAvkIAAJjBAABQQQAASEIAABxCAABcQgAAYEEAADBBAAAgQgAAgsIAACzCAABYQgAA4MEAAIrCAABAQQAAAEEAACDBAABwQQAAwMAAAADDAABAwAAAiMEAAOBBAACgwQAAZMIAAIC_AAB8wgAAAMIAACDCAACwwQAA4EEAAJDCAAAAwAAAgkIAAGRCAACYwQAAuEEAANDBAAAwwgAAiMEAAHzCAABoQgAADMIAAATCAAAAQgAAQEAAABBCAACAvwAAwMEAAAxCAABcQgAAoEEAAIjCAAAAwgAAYEIAABhCAACowgAABEIAAHTCAADAQAAATEIAAEDAAACAPwAAZMIAABxCAABAQgAAlMIAABzCAADAwAAAGMIAAGBCAAAAQQAA6MEAADBCAAAYwgAAEEEAAJDBAAAwQQAAsEEAAJjBAACWwgAA4EEAAODAAACowQAAFMIAAOjBAAAcwgAADEIAAOBAAACOwgAACMIAAKDBAADYwQAAiEEAACxCAADAQAAAsEEAAJBBAAAgwQAAHEIAAODAAACiwgAAqMIAADjCAAAkQgAAhkIAAEBBAAD4QQAAgL8AAJ7CAADAQAAAoMAAAPhBAADQQQAAAMAAAIpCAAAMwgAAAEEAAIDAAAAAAAAAkMIAABzCAAAAQgAAwEAAAABCAABwwgAAAAAAANDBAACAQAAAIEIAAFBCAABMQgAAqEEAAHTCAADAwAAAQMAAAKDAAABMwgAAAAAAAEBAAAAIwgAAMEIAAEBCAACAwgAAPMIAAIDAAACQwQAAbEIAAOBAAACUwgAAjEIAAIC_AAAYQgAA0MEAAFDCAADQwQAA2MEAADTCAAAQQgAAYMIAADTCAABswgAA8MEgADgTQAlIdVABKo8CEAAagAIAAKA8AACSvgAAiD0AAM4-AADIvQAAoj4AAOg9AADWvgAA1r4AAHA9AAAwPQAAbL4AABQ-AAC4PQAAmr4AAHA9AAC6PgAA2D0AAK4-AAB8PgAAfz8AANi9AAAQvQAAQLwAADA9AACYPQAAiD0AACw-AACYvQAABD4AALI-AAAsvgAADL4AABA9AABwPQAAXL4AAAS-AADOvgAAGb8AAKC8AABcPgAABL4AAMY-AADovQAAQDwAAHA9AABwPQAA4DwAABQ-AACYPQAAND4AADS-AACKPgAAmL0AAFQ-AAC4PQAAaz8AADw-AABMPgAAgr4AAKA8AADYvQAAcL0AAN6-IAA4E0AJSHxQASqPAhABGoACAACKvgAA6L0AABy-AAA_vwAAdD4AAKA8AAD4vQAAVL4AAHA9AADIvQAA6L0AAEA8AABwPQAADL4AAAQ-AABAvAAAqL0AACM_AACGvgAATD4AALi9AABAPAAAbD4AAHC9AADgvAAAQLwAAIK-AABAPAAAPD4AABy-AAAkPgAAFD4AAHA9AAAwPQAAfD4AABA9AAC2PgAALD4AABy-AABEvgAAfD4AADC9AACOvgAAQLwAAAy-AAAUvgAAf78AABw-AADYPQAAFD4AAFQ-AACSvgAA-D0AAJI-AAD4vQAABD4AAIA7AAAkvgAAoDwAANi9AAAQvQAAUL0AAIC7AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=bkMECONQCs8","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["1317848411501213456"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3733951952"},"12196782357027928786":{"videoId":"12196782357027928786","docid":"34-0-10-ZC6B887B55DC8659E","description":"Follow along with the eBook: https://goo.gl/PxDvHt See the full course: http://complexitylabs.io/courses Having now laid down our foundations this is where our discussion on nonlinearity really...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3818691/f0e6cbe502572172928a3fac9ef0bd3d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2MMXVwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOaDoU4FTjbM","linkTemplate":"/video/preview/12196782357027928786?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nonlinear Systems: 3 Nonlinearity Overview","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OaDoU4FTjbM\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODZaFDEyMTk2NzgyMzU3MDI3OTI4Nzg2apMXEgEwGAAiRRoxAAoqaGhvdnhjcXZmeWhqeHJtYmhoVUN1dENjYWp4aFIzM2s5VVItRGRMc0FREgIAEioQwg8PGg8_E5YDggQkAYAEKyqLARABGniB_vn1Bf0DAOwOBAYBAv8AAgwA__j__wDnDv35B_0BAPgABfoHAAAABQT-Cv8AAAAB_gID_v4BAAoBAP_tAP8ADPsAAAEAAAABAfn6_wEAAP8F-_8D_wAA_vj3Bv8AAAD3CxH7_wAAAPX9_fcAAAAAAwb5_AAAAAAgAC3W8t47OBNACUhOUAIqhAIQABrwAX_1GAHBHAr-FAP6AP4g9gGkA_UAWg3tANT4_wC2ENL_-SIZAPDvIQAS7CEA1R0QAO0E8P9DEwEADRA4ADX8AADxCyAAH98JAAsa-QD_9eb_BPUO_hojE_8A9AwAIO0BAfQgC_33CeYCAfr3_xb7_wMxHgkD7wcHBdsM-APTGvr_5w72BB0hDgMpDO8AEhcoA-UC-Pj48uQE5PXy_fEmEAbe9e4E_MTxAQ4T_P_u5wX99OMB-w0z-wLTFfj-2Rr5Bvz3DgEc-fkG6fkGAC8DAP0K8QUHygYABQ_v9AHy9Ar15PD6-OH_AOsXDg8KBQQB-yAALQ9sLzs4E0AJSGFQAirPBxAAGsAHdcsCv4RVKz2YQQa974zWPXoIOT2KyRu9J4UZPX_1XTyjOp08n9ajPSHw9jxF9py8vY6QvnznXL3Ypik7xmumPsiqUjzply28lcZZvYIZuLyjC0W8t7IkvikVwzxE0GK84bYGPh7gSb2YOgI8lXpbPSqfFzr-wbY8IKjouh11ETwz3AC9joErvZ8d8L0_8W871-rBPTfwlL0J6R88IOsJPsVt2byqmTW8VdfGvQJrMDylhAA9dvk7vf_jKTxLTUw8EQAsPpZbGj3bHe08eAA1vVen8zrFgu-7by8pPXjcJr2zvQw8rMJrPZ1_YD3XRXa8tqOTvKMPDjzFuic8r4ogvJozbDwjOhm8qPwLPqWDlT0kjoa8W3q0vPCdvTxRguM8OSxovNRPDj2AURu8TdOcPeQ29bwJbI48zJAPPYIjPL2C4dw8dmH1PGXbjrxZP6q70aRevGasLD33Xle7lz0kPUEr8jtPwpa7za2wvQ37_7tO3Us8fJOrPUYIj72L2-w6Ojs-PRjtEb0RInC7qi9mPdZM47ze6ha8GeaEPSitST2aOIM7jV9YvQArUbwiGXI8rAOrPbdxFT3deos7cWOJvcwRvb0stSQ7NSllPaGBuL1qUA87mSnNPa0ImD3jQJW3mG3nPOnnE7yeP9C7HjJlPcc19Dy2YuY7Or0hvb2x1jwHu2M4ith2vRP38zxOBiW6fQ0cvXJZ-7wq-m26Lc-DPJobHT2bZmy7CqNZvY5p2LvLKvC6mphOPR6hKz0YO4Y6NU2OPMwieb25wpS4u87tO1OFFT2Cb7-3XGx_PFPjSjzjc785ZOuJPfiBdTz1GV64le3HujfpUrhnIUy635hUPdO3kT1qRco3vqZivJj7JD16k4Q3Ph_KvHVcCD2mezS50nhdvQ74_LyF6pa4nlCePdjpLD2Z_HW46wHzPRerV71uapu3MmTrPNXVGbuZN8u4duoAPaR2ur0klAM4d36TOs_zTLwpe0e5l3nlOw1a47wZNMQ2y-ENPJkTj7x7NWe4bZMFPYgIKT0_9Qm5ObSYPaaPir3MHdo3AOvMuH4qOLxHLjc49aKxvahs_bxnsJq4iRDCvflpHL0nxxc3bypyvQ8SfT0nDAu4S5dZPS_mQry3lcC3SdX2vYPN7zxD5yg4CMC5vbQGqj2LHbm4h2cOvfRlLr3N0hC4yH3Mu51h7rvCoHw3AcmNu31I7jxl_pC3mQ6dvOWooj38XTA4cXxjvfolAj6pgSy5slhUvJDWPT3xFeu37K5CvTrxq72o3ks1IAA4E0AJSG1QASpzEAAaYFIEAA31K8DqKFXnAADiHhQR-CMM4BD_-Nb_Fw3NEPMi1pQA6f9U_CMRogAAABO65OvXAPR_29j7L9QQB9my0uv_RQYT0-u6GQ_aOQz9ENoLGfdBVgAH_sIRZPu7TycWNSAALQjoHDs4E0AJSG9QAiqvBhAMGqAGAACQwQAAMMIAAJRCAADgwQAAEEIAAARCAAC8QgAAoEAAAI7CAACewgAABEIAAFzCAADgQAAA8MEAAKBBAAAQQgAAiMEAACjCAACAwAAAQEEAAFRCAACqwgAALMIAAKDBAACAwQAAQEAAAADAAACwwQAAwEEAANjBAACGwgAAxEIAAGzCAADwwQAAYMEAAKjBAACIQQAA0kIAAIA_AADYQQAAMEIAAIhCAABwQgAA4kIAACTCAACowQAAcMEAAMDAAACgQgAAAMIAAEjCAACgwgAA4MAAAKBAAAAsQgAAQMAAAHDCAACIQgAAoEAAAChCAAAQQgAAgL8AAIDBAAA0wgAAYEEAABDBAACUwgAAAEAAAFzCAAAQwQAAQEAAAKRCAACYwQAAOEIAAJjBAACoQQAALMIAABxCAACoQQAAdMIAAKrCAACgQQAAQEIAADhCAACAwQAATMIAAHxCAACAQQAAJEIAABjCAADgwAAAOEIAADRCAADAwQAAwMEAAETCAAAowgAA4MAAABhCAACYQQAAgEEAAIDBAADAQAAA0MEAAILCAACgQQAAwMAAAKJCAACQQQAAwEEAABRCAACowQAAXMIAAEzCAAAAQgAAAEIAADDBAAAIwgAAEEEAAGBCAACYQQAAksIAAKDBAABQwQAATEIAAKhBAAD4wQAAQMEAABDCAADgQAAAqMEAAIxCAACAvwAAgEAAABDBAAAgQQAAwMEAABRCAACAwAAAVMIAABRCAADQQQAABMIAAAjCAAB0QgAAgEAAAEDCAAAUQgAAisIAAOBAAACKQgAAQEAAAMBBAABQwQAAiMEAAGDCAAAQwQAAcMIAANDBAAAYQgAAgMAAAGBBAAAwQQAAGMIAAAzCAABgQQAAAEAAAExCAADQwQAAPEIAAEjCAADgQQAAqMEAACjCAACAPwAAGEIAAODBAAAUwgAAiEIAAMBAAAAgwQAA4MEAAADBAAAAwAAAfEIAADhCAABswgAABEIAAIC_AACIwQAAwMEAAPDBAACAQAAAEEIAAJDBAAAsQgAAJMIAABRCAABAwQAAEMIgADgTQAlIdVABKo8CEAAagAIAAJK-AAB8vgAAij4AAKI-AADYPQAAcD0AAOA8AAAHvwAA6r4AADC9AADovQAAoLwAAKY-AAA8PgAAQDwAAAS-AACKPgAATD4AADQ-AAD2PgAAfz8AAIA7AABQPQAALL4AAFw-AAC4vQAAqD0AAEA8AADovQAALD4AAGQ-AACYvQAADL4AACQ-AAAwPQAAML0AALi9AABkvgAAyr4AAIC7AACgPAAAEL0AAIA7AABwvQAAiD0AABC9AABwPQAARL4AAIg9AACgvAAA4DwAAJg9AACePgAAcD0AAAy-AACgPAAAUT8AADQ-AAAcPgAAQDwAABA9AADIvQAAqL0AAO6-IAA4E0AJSHxQASqPAhABGoACAADgvAAAFD4AAPi9AABDvwAAJL4AAMi9AABQPQAAqL0AAHC9AABkPgAAQLwAAHS-AABAvAAAkr4AAMg9AACAuwAAML0AABc_AACgvAAARD4AAOA8AADgPAAAMD0AAEC8AACYvQAAZD4AAFy-AACgPAAAPL4AADC9AAAQPQAA6D0AABA9AAAcvgAAJL4AAIA7AAD4PQAA2D0AAGS-AABMvgAAQLwAAEQ-AAAkvgAAgLsAAAQ-AADgvAAAf78AAOC8AADIPQAA2L0AAEQ-AABMvgAAiD0AABQ-AACAuwAAmD0AAOA8AAAQPQAA2L0AABC9AADoPQAAQDwAAEC8AACIvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=OaDoU4FTjbM","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12196782357027928786"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3652085173"},"14518975797698556316":{"videoId":"14518975797698556316","docid":"34-8-4-ZF05A51CA2DE4D0FA","description":"Video shows what nonlinear means. not lying on a straight line. whose atoms do not lie in a straight line. having a product of independent variables, or a variable with an exponent not equal to one.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3778624/4deb684c5287d1b946dbffd515cbf805/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/e4BOdQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dr5MkAyJelTk","linkTemplate":"/video/preview/14518975797698556316?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nonlinear Meaning","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=r5MkAyJelTk\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFgoUMTQ1MTg5NzU3OTc2OTg1NTYzMTZaFDE0NTE4OTc1Nzk3Njk4NTU2MzE2aoIJEgEwGAAiQxowAAopaGhpY3R6amRmcGNwcGVxaGhVQ3FhNUZsdDhISFJSUEVqOGhOTmFYQXcSAgARKg_CDw8aDz8TI4IEJAGABCsqiwEQARp4gfb-9AH8BAD5BwUIAAb9AfkMAPr5_v0A-gb_9QIE_gD3BPb6BAAAAAwF-wICAAAA_wr89wH-AAARBQQEBAAAAAj1CP8FAAAACvv4Af8BAAAABQj4A_8AAAsE-QUAAAAA8gsCAQT6-AT9BP79AQAAAPzz_e8AAAAAIAAtUBnhOzgTQAlITlACKoQCEAAa8AFoBgsApCXS_GsP2QDW7d8AgSIK_hwk4gDNMuEBDPzzAB8d3wCn-PUA8t_0AO8WAv8R6OwARQ8QABwOBv8V_vwAKM8UARLKAwAX9hMB7yH4_xD5Jf_4-iYAFAb-Afb79PoLJdT-8gn5_gfmBgMx8B4CIOv-AvH-IwL5-dMDA_owANbUIAAS6_wIC_jZAOL2LQf1_g760hYMAu3_CvoKFez7DewJ_QPnCv4O6y8CHPED-A75_PnZCB0AKx7rCgkiIvkaBSAA9vYM8PXk9_0VAuUF3g4N8_Du-woV3AwOAtz58_HJ-O_lCfn18xQaBwYFFgggAC3_IR07OBNACUhhUAIqcxAAGmAsEQAA6FPQFP8g0A3w3R7XMhbyEt4p_y7nAA_g1jcIGajWAe7_QDPh86wAAADw5uLd0wD5cOgZ6Unm9Bni7NHzAH9XLMcA1CAQ3-UH2f_BN_oBEVsAJ-7XCCP5zyVBE1AgAC025CE7OBNACUhvUAIqjwIQABqAAgAARL4AANa-AAAMPgAAXD4AAES-AABQPQAAPL4AAMq-AACevgAAUD0AALg9AACgvAAAUD0AAIY-AABMvgAA6L0AAMg9AACIPQAATD4AAII-AAB_PwAAgLsAAKA8AAAEPgAAgLsAAAS-AAAQvQAAFD4AAOA8AAAcPgAAPD4AAFy-AAA8vgAA6L0AAIA7AADIvQAAmD0AAIK-AACivgAA2D0AALg9AADOvgAAdD4AAOi9AADIvQAA6L0AACw-AACKvgAAEL0AAFS-AACAuwAAcD0AAJ4-AABkvgAA6D0AAEA8AAA1PwAAkj4AAEQ-AACoPQAA2D0AAKA8AAAQvQAABL4gADgTQAlIfFABKo8CEAEagAIAAPi9AACgvAAAmr4AABu_AACAOwAA6L0AAKC8AAAcvgAA2L0AADQ-AACovQAAHL4AAPg9AACCvgAAgLsAALi9AACYPQAAEz8AAIA7AAAcPgAARD4AABQ-AACOPgAAUD0AAOC8AAAUPgAAXL4AAHA9AABEPgAAmL0AAJg9AAC4PQAAuL0AAOC8AAAMvgAAUL0AAMY-AADIPQAAFL4AAHS-AACKPgAALD4AAJi9AACAOwAAVD4AAFQ-AAB_vwAAgDsAABC9AAAsPgAALD4AAAS-AABcPgAAZD4AAEy-AACIPQAAoDwAABC9AABwvQAABL4AAIC7AADoPQAAyL0AADy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=r5MkAyJelTk","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14518975797698556316"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"590256418"},"16779677888216629190":{"videoId":"16779677888216629190","docid":"34-10-2-ZC80D8D02B6A4776C","description":"many other scientists because most systems are inherently nonlinear in nature.[9] Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1648649/8526d46dc99b660e4ce89d994280792a/564x318_1"},"target":"_self","position":"14","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvKUde5EyOmQ","linkTemplate":"/video/preview/16779677888216629190?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What Is Nonlinear System? Nonlinear System Definition & Meaning","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vKUde5EyOmQ\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFgoUMTY3Nzk2Nzc4ODgyMTY2MjkxOTBaFDE2Nzc5Njc3ODg4MjE2NjI5MTkwaq4NEgEwGAAiRBowAAopaGhmenh6Y3V3b2ttZWFvaGhVQ2lfYVhWcWJJd0R3ZlFzQjVPdzlJdncSAgARKhDCDw8aDz8TowGCBCQBgAQrKosBEAEaeIEDAvMD_QMA7wMGBgAD_wEHAwkJ-P__APIPBfkEAQAA8vv2-v8AAAAJ__kD-gAAAPP6_vYBAAAACgUACAQAAAAR8gH8AwAAAAYD9gH_AQAAAwAA_AIAAAALBPkFAAAAAAAEA_f8_wAA-v30AwAAAAADBvn8AAAAACAALXVL3js4E0AJSE5QAipzEAAaYBH_AAv3Dsv5IzPfCuvXDvsU-PTf2PP_8eEA8AfOAxJHx6nh_gBEBh_1uAAAAAPl7_G9ABNc4hXzPQIxFOXy3NwLf0b4wyPzEvPoKRIIDLYpFO4aDwAUDwMRPve2L_cENCAALYHgNjs4E0AJSG9QAiqvBhAMGqAGAADwQQAA4MAAABBCAABkQgAAQMAAANjBAADoQQAA2MEAAIDAAACwwQAAskIAAHDBAACgwAAAqEEAAGRCAAAUwgAAsEEAALjBAADgQAAAWEIAAMBAAABUwgAATMIAAFBBAACgQQAADEIAADzCAADowQAApkIAAMhBAAAQwQAA6EEAAIjCAABwwQAAgMEAADhCAACAvwAAvEIAAEBBAACAwQAAgEAAAOhBAADYQQAAAEEAAABCAACAwAAAdMIAAKhBAAA0QgAAUEIAAMDAAABwwQAAAEIAAEhCAAAIQgAAiEIAAFjCAADwwQAAEMEAAFhCAAAUwgAAuMEAAADCAADwwQAAmEEAAPhBAACAwQAAkMEAAAzCAAC4wQAAaEIAAJpCAAAwwgAA2EEAAKBBAADYwgAAYEEAAAAAAACgQAAACMIAAETCAACAQQAAQMAAAGxCAACgwgAA-EEAAGBBAADgQAAAIMIAAMDAAAAQQQAAQMAAAIC_AAD8wgAAYEEAAKDBAABcwgAAsEEAAPBBAAAMQgAAoEAAAPBBAAAYQgAAdMIAAIzCAADIQQAAhkIAALhBAAA4QgAAOEIAAFhCAAAEwgAA0MEAAHDBAACaQgAAUEEAAGBBAADMwgAAwMEAAKjBAAB0wgAAqMEAABjCAABwwQAAoEEAAEBAAACQQQAAAAAAAGTCAABAwAAAwEEAAAAAAADiwgAAEEIAACjCAADQwQAAMMEAAAzCAADIwgAA4MIAAADBAAAcQgAA2EEAAFDBAAAEQgAAwEEAAIDBAAD4QQAA8EEAAKjBAABUwgAAcMEAABDBAACgwQAAQMIAAIDBAADAQAAAXMIAALDBAACaQgAAAMEAADBCAACIwQAAcMEAAEDAAABgQQAA0EIAAKDAAADAQAAAuMEAAKDCAAAQQgAAMEEAAIJCAABgwQAAsEEAAODBAABAwgAAJEIAAKRCAACYQQAA2MEAADBBAACAwQAAUEEAACjCAABwwQAA0EEAADDBAACgQAAAEMEAADjCAACgQQAAqMEAANDBAACgQAAAAMIAAJjBAACOwgAAOMIgADgTQAlIdVABKo8CEAAagAIAAIa-AAD-vgAAij4AAEw-AAC4vQAAkj4AALi9AAADvwAA7r4AANi9AACAOwAAcL0AADQ-AACaPgAAgr4AABS-AABwPQAAUD0AAIo-AADuPgAAfz8AADA9AADYPQAAQLwAABA9AADYvQAAND4AAIA7AABQPQAAnj4AAHQ-AADovQAApr4AAIg9AACAuwAAiL0AAEw-AACivgAAlr4AAII-AACoPQAA1r4AAJo-AAAkPgAAmL0AAPg9AAAUPgAAir4AAAw-AABwvQAAgDsAAHC9AAB8PgAAFL4AACQ-AABQPQAAPT8AACw-AACoPQAAuD0AAPi9AAAcPgAAcL0AAEy-IAA4E0AJSHxQASqPAhABGoACAACoPQAA-D0AAK6-AABDvwAAvr4AADy-AABAvAAAEL0AAKi9AACSPgAAcL0AAGy-AAAsPgAA0r4AANg9AADgvAAAqD0AABU_AACePgAAfD4AALI-AAC2PgAAoj4AAHA9AACOvgAAjj4AAJa-AAAcPgAAgr4AACS-AACIPQAAyD0AAIg9AABEvgAARL4AAKi9AADmPgAAND4AALa-AADKvgAAQDwAAAs_AABsvgAAgDsAAP4-AADCPgAAf78AAFy-AADgvAAAFL4AABw-AACoPQAAXD4AANo-AABwvQAAJD4AAOA8AADovQAADD4AAKK-AAA0PgAAAz8AAKC8AADSviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=vKUde5EyOmQ","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16779677888216629190"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2312090356372764160":{"videoId":"2312090356372764160","docid":"34-6-4-ZB8E7928F86335F34","description":"Join the community → https://www.systemsinnovation.network... Find the complete set of Si Toolkit here → https://www.systemsinnovation.network...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1538637/87c31776d87f4613409c5cb51c69c15c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/JyLsnQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dqz6gXyfzV9A","linkTemplate":"/video/preview/2312090356372764160?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nonlinear Systems: 9 Nonlinear Dynamics & Chaos","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qz6gXyfzV9A\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFQoTMjMxMjA5MDM1NjM3Mjc2NDE2MFoTMjMxMjA5MDM1NjM3Mjc2NDE2MGqTFxIBMBgAIkUaMQAKKmhob3Z4Y3F2ZnloanhybWJoaFVDdXRDY2FqeGhSMzNrOVVSLURkTHNBURICABIqEMIPDxoPPxOjAoIEJAGABCsqiwEQARp4gf38_Q7-AgDrDgUGAQL_AA7-BgL3AAAA5gQLCAb-AQD3BPb1-AAAAAj-8ggCAAAA_QIB9wL-AAAK_AgI-QAAABL-APj_AAAA_gb-Cv8BAAAABQj4A_8AAAEB9QQAAAAA-wEJAPv_AADy__P2AQAAAAX_-_YAAAAAIAAt06TaOzgTQAlITlACKoQCEAAa8AF_9RgBvOn8_gcF7wD4HOABjh4J_zUa5QDE8wkA3_PMAfYYBwDe4i3-CgYT_7sEIQGsCe0ASfsUAAn2Hf8IBgEA7N31AUPmDAEmCPgACvL9_v0a-v8GGxL_8e0CAQgl8AAACRf98u_b_uzf3QDxERADLA8EBRILHwPXIQX_5AIJAecO9gQgA_4DDQYK_QYUDgD48uf9Fvzj_wMo_wP7AA4G9PPxAhH34gAcGvn9-vANBAvO-_w3EwAA6fb4-eUsAwoEAQTuFNjxAv4L7vkq9_YFCgP-_OofBgjy8v_1BOv4-uUTAALk5Af5ERACDS37-vYgAC0PbC87OBNACUhhUAIqzwcQABrAB2oW0L6slBk9Uw33u7-Nfj0erhA9NDDNvCMT8L3XLSc99_1AvLFu_D23T7093ATpvPjBgb5_6Pi8RGlPPQyQgD6fRJ89l1v3uqD9GL5N7Ou8Z3kBvPxUJb4x2S68B3PmN1jBxD2Rlg89RxqBPPgFKjwdQwE5AR3BvOHlLj1DN3u8N32svBFClj3r2oO9mjvfvD6w4z2ffgg8DO6iPERpzz3kxDI8cao1vHPhdjwFSu88grmMPPoStb1lI2u8sg3BPAGFOj4b_3S8-O3Wu5uNWr3Dd6y8swhFPEYmoLzbTwa8KahRO2YW4T1BtQY9E9aGvGKTqTtxKsi9yGqpvCGZKT3ip4Y9n52CvLlmtz1zE7A9vxuBPE89Ur63CIE9f-1Lu4hX47wPR5e8ZywYvKQlZT2FYFC9Q5oHPZPDJz6yONI8HtZlvAjNST1-baI86v_FOzTO8Lz_A-w9IKr8u4aYtj0KZIs9_K3Xu2X_HbxaqKs8rGPHOguql7xYo8O79gg1vPr8pDqX2ly9RtEBPM2kdz2HZLK9bQhpvHwggzzYyKK7pcKWug1yN73Dagc8OXD3u-kLAT6oIJo8KKU5OZCkRL6e8NK8Vm-FuxtnMz3bifK92apqu-x4gjydi7U9i0NsO7XFsTsUWCW8LjnRu8gb6jy2K9m8Qm0sOfLkH724Nre7Uchnu6N70rt4lgA9qp-SO7PmbLxSgdM81cSKuxmRGD74frQ8GeZtOTx8o7yC56m91n9fuCuaWD2BIdA8sK6iudDQpDz205-9hFmyOf2VH70uk1w9vlinuL8hB7rkPsU7TtYMOiixPzqCCfU7wwcGt-Q-Q73LOBy9QCTUuOi-3D2uka48DxscOeFrHzy-J-A8hcAhumb0qL3DUAI9XSGIuXDpXb0X5Hy7J0UOtoVwdj1Rdkk9ZleEOMDQAz5g8rW8inbtN4QMtD1maPw8EaoSue50vD3ge2S9XIYVOcVZrLzFXK28DNihuJbtnjxsGys9Ex1uuF5GVrzFCu28BAj0tyGKjj2jo4e7AK-NtycDlj04-AK9qrxnN5FkMb1Zq5E9tUa_OMk4q738lD69U5T7t2VzsLzLPAO8TYpiuIV6uj06JqY8x-hoOKs_wrxvw568HjZsNJXAQT17vNA8xC8KubBVEr6tirA8fGvHt4T6L7sAIwG86qNfN1yIn7xobUS9BQzCN9WU5Dy-Nqa986NNuIrdyLxasJ68r1IsuAcLp7y9_O49g7Qeuc6GYb3Q7Po9wBKWONK1hb2yyra9C99WuCAAOBNACUhtUAEqcxAAGmBj-wAJ0zHI-SU48ALwxifeCe3rCcMZ_98B_wHx5S0RMNWRDQAALQMu_6EAAAACz_bS3AD_f-Ps8jvrCTu-ueEW_WhFL_vZ_B743U0-5_jrFR3tR0IA8fS1_movsDj_-CMgAC3_bBc7OBNACUhvUAIqrwYQDBqgBgAALMIAAODBAACYQgAAHEIAAOBBAABsQgAADEIAACxCAABMwgAARMIAAI5CAABswgAAsEEAADDCAABwQQAA4EEAAKDBAABQwQAAMEEAAOBAAAAYQgAAOMIAAKBBAABAwAAAWEIAAFDBAAD4wQAAoMEAANBBAADYwQAAkEEAAEBCAAC8wgAAQMIAAFDCAAA0wgAAAEIAAFhCAACAQQAAgEIAABDCAADAQAAAQMIAALhCAADgwAAAUMEAAHDBAADgwQAA4EIAADDCAAAwwgAA4EAAAJDBAABQwQAAbMIAAHDBAAB4wgAADEIAAIDBAAAQwQAAMMEAADzCAACAQAAAAEAAAGRCAABAQQAAIEEAAKjBAADAwAAAwEAAAOBAAAAEQgAAksIAAIxCAAAQQQAA2MEAAKBAAADQQQAAKEIAAHBBAAB4wgAAAMAAALjBAADgQQAAMMIAAJBBAABQQQAAgMAAAFBCAABowgAAVMIAAABCAAAUQgAAAMIAALBBAACIwgAAYMIAAKhBAABQwQAA-MEAAFjCAADQwQAAMEEAADBBAABgwQAAwMEAAMBAAAAYQgAAQEAAAOBBAACGQgAA4MEAALDBAAAcwgAAmMEAAMDBAADwwQAAqEEAAGRCAADAwQAAZMIAAEBBAABwwQAAUMEAAAAAAACYQQAAFMIAACBBAADQwQAAQMEAACRCAABAwAAAsEEAAFRCAABoQgAAwMEAABDCAABYQgAADMIAALjCAAAYwgAAhkIAAEBAAADAQAAANEIAAJDBAACYQQAAWEIAAJBBAADAQQAA4EEAAATCAACAQAAAMMIAAABBAABEQgAA6MEAADjCAABAwgAAOEIAADDBAACgQQAAGMIAANDBAABEwgAAgMEAAMDAAADAwAAAkEEAABBBAAC4QQAA-EEAADjCAACCwgAAYEEAAKDAAAAMQgAAAMEAAJBCAAD-QgAAAEEAAMDBAADIwQAAZMIAAIJCAACMQgAAJMIAACBCAABwQQAAJMIAAILCAABUwgAABEIAAGBCAACgQQAAkEIAADBBAACuwgAAEMEAABDBIAA4E0AJSHVQASqPAhAAGoACAAD4vQAAFL4AAHA9AACSPgAABD4AABQ-AAAEPgAAF78AAOK-AACAOwAAEL0AAAy-AAAsPgAAZD4AANi9AACGvgAAqj4AANg9AACAuwAA9j4AAH8_AAD4vQAA4DwAANi9AACCPgAA6D0AADw-AACgPAAABL4AAFQ-AACSPgAAoDwAAK6-AAAQPQAAoLwAAIq-AADIvQAAJL4AAAO_AAAQvQAAiL0AAFS-AACAOwAAML0AAEC8AABAPAAAnj4AAI6-AAAMvgAAqL0AAEC8AAAMvgAAsj4AABQ-AAAQPQAAoDwAAEE_AACoPQAA4DwAAAQ-AAAUPgAAiL0AAKC8AAALvyAAOBNACUh8UAEqjwIQARqAAgAAqL0AAJg9AACoPQAANb8AAOA8AACAuwAAoLwAANi9AAA8vgAArj4AABC9AABUvgAAQLwAAEy-AACgvAAAgLsAAHA9AAAhPwAA2D0AAFQ-AABEPgAAND4AAFA9AABAvAAAmL0AADA9AAAsvgAAMD0AACS-AAAkPgAAuD0AAAQ-AABQPQAAiL0AALi9AABwvQAAXD4AAIg9AACGvgAAyL0AAKA8AAAsPgAAiL0AADC9AACYPQAA-D0AAH-_AACoPQAAyD0AAFC9AAAcPgAABL4AAEQ-AAAkPgAA4LwAALg9AAAwPQAAcL0AAOC8AACgvAAAQLwAAOC8AACovQAAoDwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=qz6gXyfzV9A","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2312090356372764160"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1058313906"},"17620786386229563561":{"videoId":"17620786386229563561","docid":"34-3-3-Z65D489F55DF56C3A","description":"Practice this lesson yourself on KhanAcademy.org right now: https://www.khanacademy.org/math/alge... Watch the next lesson: https://www.khanacademy.org/math/alge... Missed the previous lesson...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4586719/601407cf178eadb062899e08c7bc2b11/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Cfi-FQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DwUb7tWgv49U","linkTemplate":"/video/preview/17620786386229563561?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Estimating a solution to nonlinear system with calculator part 2 | Algebra II | Khan Academy","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=wUb7tWgv49U\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFgoUMTc2MjA3ODYzODYyMjk1NjM1NjFaFDE3NjIwNzg2Mzg2MjI5NTYzNTYxaocXEgEwGAAiRBowAAopaGhkb3Zpd3hzZXZmcXJnaGhVQzRhLUdiZHc3dk9hY2NIbUZvNDBiOWcSAgARKhDCDw8aDz8TiAKCBCQBgAQrKosBEAEaeIH7A_MHAAAA-e0JCQYH_AEUCvz89QICAOQGBwL3_AIAAQv6AAYBAAD9C_wFDAAAAP4D_xD3_gEA-_T6_fkAAAAWDPL5AAAAAP8I8f3_AQAA_QQBAvkNAAIPAAj7_wAAAAAOAfn9_wAABQYB9gEAAAANBv3__PP-ACAALZpM1Ds4E0AJSE5QAiqEAhAAGvABZw33-sD5wf_m3fcAgQr6_5QP5gDrKAMAwN3mAdozswHCwxQB-SkG_toYAgCDNyoB4Oa3_xnUIP9M3iAALuwKAP3vNQBEB9oBGQwSAPXuGf_VLhf_DPkOAPPQxf4nOdv-GOMz_CoG3wAAydIGE_5PAdYVH_4g4Qn_1OUgBcX5CwP3O-D-0D4LBRYlAgTG5iYC4vkkBC1d0wEqF94D6eIk_PraBfnzNOUD-zfjBCj58fb-veYCwenoBBoU9frY7uQB4Osf98zyDwgnBxX32fMI9gkU8AghG_H72PUADwJDBwb27vTsFckC7OQC-_zU1wX1IAAtX4HpOjgTQAlIYVACKs8HEAAawAeM9vi-XgImPPEN6rzc8SY9DlVnvL2Ye7uXLLg8tw3-PDF1fLwYmAU-gDPrO3-zvbugqEy-7KtmvalRozuY3SM-gUmQvUP09bzv5U6-EKhDPRiswLtKTcG9ZuY4O08ajzxzL9C9rgyvvV428LwdAPE99dUVvfmeMb1hgmC7bxYKPRi6bbypT_I9gPOCvcABEr3Ohww9JTI9vMyd0ztWThY9z9cxPYVPBLwWrCc8cbWpPPvEJrvq9ii931rcvNPjrbyT6Zs9SuoKPM3-5buJAy29B0BhvZ6W_rsfoaS7ViYhPWaGqjsGHDg9ckVzvA2rkzz54oa9QAn9vKxcA72o0G-9_jQaOmCZr7uo_As-pYOVPSSOhrxXSZq8CTifvK6SWbyXR0i8hcM8vYytVjxYfi89dPU-PDt4XDzAloc9STuUPQ-xZrwtDh-8VVYuPRBCGz1WPpU8j7bgvBsNojsOXw882RYvvIjC47oRje48p1QuPW2jprzVBie9zJKlPDUbtTw5PZQ9Y9kHvfNwBz3JU1s9AICNvagwWzznONe9SOwJvQdPV7x8R-09IDcNPVNdH7tbPpc9-KTDvajUOrvhKKk9JSmEvHW3obtktmC7qASPvZo0GbvehXe9ICfMPSgIFzfb4yC9WAebvP566LvLogs9MuS7O_nRgrre4FC9YCHzvdoIfrqVBd28-ZazPbdjh7qLEJg9EZ_FPP5M8rmgjSw-y64FvSACDbmkW6q9p0MCPTamwjeewRW932VwPQxjRrp5WAg-uCC-uw-2kTiC5D29BbKqO3qSLjszxZy843-cPb_uWjcROmO9k0YWvbitRbkceNW9BT51vLHapLW45Di8dXPRvQ-CObr2nG89vbXCPKauajjMIMO91A0EvghThTkcFe680BWbPFGLBLlWt7o9ZS46vahCMDm6UJS8F1-5PadIALeFsYm7kvr8OzqMQrhF1e-9ouZQPVPRSzb0QIo9T2ZyPCTEmzgXvnk9f1SuPTkx1TjnHzg9D--5PbRouTiFVIu9sOIkPlgCJTkQma29eEBevSuds7jRRBM9zYotPclnNLgAiyG9WObtPZ0u3Di1cDQ8YaoJvi27Rrf4pxQ-A_pOPR_07TYbgC0-JcB6u23Ftrh6Cu885i8jPfPmmrh36Qa3DdMovbpSHzf3YA09AokhPUHvALj-bYW9s4qrOkX4trcvRQO9q-lavS0w9LdqTxk-qW6ZPQgCMrdmXAK9dBZMPYB4mLioDR29idwCPaI89rbibW88NW77PM5I1zcgADgTQAlIbVABKnMQABpgLOQARCow4hr0QvDe6vTsq_HvzUTw8__Iyf_3IhsPBAnSwvvsACUJAs2hAAAAFOjc9xsAEH_lARhV8S3vAanPLxJaMwUUzfwKFNUiSC0G3hIQtR5aAP3cnTY3A6M9MxVHIAAtdN4WOzgTQAlIb1ACKq8GEAwaoAYAABzCAADgwAAAQMAAABDBAACIwQAAMEIAALhCAAAEwgAAGMIAAAjCAACIQQAAPMIAAJjCAAAEwgAA0EEAAAjCAAAgwgAAgMEAAEDAAABwwQAA-MEAAODAAACgQAAAAAAAALjBAAAgQQAA8MEAALBBAABEQgAAwEEAAEzCAAA4QgAAuMIAAMBBAACEwgAAJMIAAMDBAACGQgAAgL8AAI5CAABgQQAAEEIAAEBCAAAwQQAAgL8AAKLCAABAwQAAAEEAAAxCAACAwQAAqEEAAKDBAACgwQAAAEAAAARCAACAQAAA1MIAAOjBAACwwQAA4EAAABRCAACWwgAALMIAAITCAADgQQAA3MIAAHDBAABowgAAGMIAAJrCAACCQgAA8EEAAIjCAABUQgAAEEEAAIDBAAAUwgAAOEIAAERCAABAQgAAfMIAAHRCAADIQQAAwMAAAIJCAAAUQgAAUEIAACBCAAAgQgAA8MEAAMBAAACEQgAATMIAABjCAACgQgAAxsIAAFRCAABgwQAAJEIAAJhBAAB0wgAAEEEAAADAAABAQQAAAMIAADxCAACAQQAADEIAAHBBAABkQgAAFEIAAOhBAADgwQAAuEEAAIhBAABQQQAAgL8AAIBAAAAwwQAAksIAABBCAAAwwgAAoMEAALDBAADAwQAAgkIAAMhBAAA8wgAAXMIAAKhBAAD4wQAAgD8AALDBAABAQAAAuEEAALhBAABEQgAAQEEAAAjCAAAswgAAAEEAAFTCAAD4QQAAYMEAAMBAAADgwAAAeMIAACRCAACAQAAA4EEAAFDBAADoQQAABEIAAHDCAADoQQAAVMIAAPjBAABIwgAAbMIAAChCAAAIwgAAGEIAAIhBAADAwQAAGMIAALDBAABgQQAAJEIAADBCAAAAAAAAAMIAAFxCAAC4wQAAwMEAAILCAACwwQAAYMEAADjCAADoQQAAAMAAAADBAAAAQAAAjsIAAIA_AAAkQgAAgMAAAMzCAACAwAAAiEEAALDBAAAQwQAAgD8AAADCAACwQQAAuEEAAMBBAAAAQQAAcMEAAIDAAABYwiAAOBNACUh1UAEqjwIQABqAAgAANL4AADy-AABsPgAAcD0AAOA8AADqPgAAPD4AAGu_AADWvgAABL4AAEw-AADevgAAtj4AAKY-AAA8vgAAgr4AAAU_AADYPQAA5j4AAGc_AAB_PwAAiL0AABy-AAA0PgAAdL4AAIg9AADKPgAA5r4AAKC8AACSPgAAsj4AACy-AACAOwAAhj4AAKo-AACCPgAAdL4AABA9AACmvgAADL4AAB-_AACGPgAAgDsAAFA9AACmvgAA2D0AAOY-AADevgAAgLsAAKA8AABwPQAAgr4AAL4-AABkPgAAor4AAMi9AABpPwAAwj4AALi9AABEPgAAHL4AAMg9AACIPQAAJD4gADgTQAlIfFABKo8CEAEagAIAAKa-AAAwPQAAyL0AADu_AADIvQAA4DwAAHA9AABQPQAAQLwAAIo-AACgvAAAuL0AACy-AAAQvQAADD4AABC9AABQvQAAHT8AAFA9AACqPgAAcD0AAEA8AABAPAAA-L0AADC9AADIPQAAqD0AAOg9AABwvQAAmD0AAOA8AAD4PQAAuL0AADy-AAC4PQAA2L0AAJ4-AACmPgAAqr4AAMi9AAC4PQAAQDwAAEA8AABwPQAAJD4AAIA7AAB_vwAAcD0AANg9AABwPQAAED0AAFS-AACYvQAADD4AAKY-AADoPQAAqD0AAEA8AADYPQAAiD0AAFw-AACgvAAAoDwAABA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=wUb7tWgv49U","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17620786386229563561"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2243283883"},"15442270435995052214":{"videoId":"15442270435995052214","docid":"34-10-2-Z70EFBEE83CA78E0E","description":"In this Statistics 101 video, we learn about the fundamentals of nonlinear regression. To support the channel and signup for your FREE trial to The Great Courses Plus visit here...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4370617/841d3574dd25754ba57d3f5e27bf014f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ONifkAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRb8MnMEJTI4","linkTemplate":"/video/preview/15442270435995052214?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Statistics 101: Nonlinear Regression, The Very Basics","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Rb8MnMEJTI4\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFgoUMTU0NDIyNzA0MzU5OTUwNTIyMTRaFDE1NDQyMjcwNDM1OTk1MDUyMjE0apMXEgEwGAAiRRoxAAoqaGhzYXRxemxyZm5wdXhyZGhoVUNGcmpkY0ltZ2NRVnlGYkswNE1CRWhBEgIAEioQwg8PGg8_E6IKggQkAYAEKyqLARABGniB__v7AAT7APgBAQv2B_0CAQn-Cff-_gDkBAwJB_0BAAD8-An_AQAA_QL7BgEAAAD3_QcE-_8AAA4A_QP7AAAADQEMBPQAAAACFvP3_wEAAPv78fECAAAACv3wDAAAAAAGBvv1_v8AAfEHCg4AAAAADf3-AQAAAAAgAC1VNMc7OBNACUhOUAIqhAIQABrwAX_s_wPmDdEB9vIEAQEHzQCL_ucAGgT_ALfs_gC5ENT_5vwDAM0HAwEXBx0B1xwQAOIJ8v8C-jUAIt8LAA4FLwAaDA8ANfUdATIA_QAX3vv_3BMB_h3wFf4L_iAACxT1_jMAIP3q_OADBQj5Aun5HgIgGAf_HAsD_-YW_gDxDwEE4BMDAfUR_AUCAej74xD7Bw4T-vwOKPP__fz7Bv_0FwMAAAD8EgnpAwwF9AXl5wYF8w8O_AX38fwSAPkEF__eAuUD8v0b-vkGDBD19xQIBPwZBf7_8BQO_AoZ7QAe-gUA8yULDN8aDPwDCv4HCtAE_CAALdhuNzs4E0AJSGFQAirPBxAAGsAHZtoKv4-Amzxt8Z88e8KNPZav7DuUh4W8SSu-PFeyo7yZ8t-7FPPHPPPAkTxa2oQ8HcnFvmYIkbx9pY09Z2KaPk46m7wa71g8QNwlvsQrJDzz9m-79aFrvoTTBz10NcO7rFcBPmEllTyk8dU8R86dPdi_hjx0Iyy86JmDPCRU-jybKSO92Kh9Pdcwk728GTQ664sUPtOAxbu3cgA9C1UbPeSf_Ls41Na732qyvZegkLzSb5-8fc-ovfbaBzz0QBi8K9nxPT19BL0vAVM877PeOXc0ib2A4-G8sn1NPcRnQT0cU4M7wdO6vRFxMz11c7E8ezJaPSIWVrxc2yW8TPobvbPprTthzZa7uWa3PXMTsD2_G4E8gcaWPfHcVjwDVcg8vj8UvWD9ZL2Pqbs8pWglPtj4p7xOSJY5PMbwvIUBz7pHwDK8oFRWPKuaGz1w1ju8S5ZuvAnusT2kJBi8uF-pvV2H6jxjY7k8SRXgvM_3cDvTctq6YK5lPZqvN7yQZea7kYuQPYrR77pVK9k6imjFPO5UZTwg3ik86k2rPUnDhLokptm7Yy-fPSb_oz24YjW8YdiGvKDqf7nKxbW7JomKPAHUeb3Wj8m7ZLZgu6gEj72aNBm78SkFPXp58DzXZBU8wGthPItdUzoAZ7W6dNVXvX8T6TpdRTG7uc2vvLvQQb2iALy7Y6SdPWoGJz2Qn_A6joSHvKmfXL03kZE6BeoDPbZHD70dhM67B5BGPYfYhb3l7z27OH4tPc6C9TxxZmQ7eCm1vEq2Wr1o5_-5seIvvPgytLpRp3o72m28PEaPxDxc9Zk4rPGIvJx3or1uhVE5qT-Qux9fJ72Tjp04qppgvQ1Rprsqaka5HEXxPPJ5hbx2Hz-5pYAXPPVBHjvSamO5011jvbvnCj0uuo84q21UPLcoc72OqtW3mDqjPIKxGT0uuro5xgAkPdoJ5TzwC7K5HYi0uwwOZT0SZwc4KJBDPS3YHD2S6H04eq3fPPUfozyZHoS5dUc1vB3TST37LDK38CeUvWlTFT3BQOe4oBU9vGHIhbzdOz84AOvMuH4qOLxHLjc4Ga1DvSfgsjwmzoc40GE-vD5WVb0teEa4_PVUPYYUDT19Ss62EvWXPRjr-71qz9m4Jhqkuysnaz0hKjW4cKc-vCfTbb10QV-43pajPVjXsrxjmSQ4mpAAucDEabyoAYe4FPRNPbS9p72Xl423oBcOPRclvT0ofwA5n5wXvXfV6DxKAkC43hHfu74TszxaaK23WweHPHut-rz-LHK3IAA4E0AJSG1QASpzEAAaYET9APcKBd7MOSoF1NLx9ekBBMIKsCP_6Af_zgYA3PLn9ZvhAP8l4R3iogAAAAsN7xLjAO5_y9jeDvQMLNDM4xsUcgIiI8L1C_YEHkoiw8T97AhQfQD7z54ETgW4PBb5AyAALcL-GTs4E0AJSG9QAiqvBhAMGqAGAACIwQAAsMEAANBBAADYwQAANEIAAIBAAACUQgAAUMIAAKDBAADQwQAAIEEAAFDBAACQwgAABMIAAHBBAAAQQQAAHMIAAKBBAAAgwgAAHMIAABRCAAAYQgAA6EEAAADAAAC4wQAASEIAANDBAAAkwgAAXEIAAABCAADIwQAA0MEAAEDBAACQwQAAgMIAADjCAAAowgAALEIAAABBAAAUQgAAkEEAAChCAABsQgAAqEEAAIRCAADwwQAAQMEAACTCAABEQgAAGEIAADDBAADQQQAAyMEAAHjCAACSQgAAEEEAAKzCAACAwgAAkMEAAIhCAACIwQAAGMIAAATCAAAAwgAA6EEAAJjCAAAgwQAAiMIAABDBAADIwQAANEIAAAzCAAAowgAA0EEAAPBBAAAEwgAAgMEAAPhBAAA4QgAAOEIAAFDCAADgQAAAMMEAAMBAAACCQgAAAMAAAIBCAABcQgAAqkIAAGjCAADgwAAAqEIAACDBAABUwgAAiEEAAM7CAAAQQgAAqMEAADRCAADgwQAAAMEAAGhCAACIQQAAUEEAANzCAACoQQAA8MEAAMhBAADAwAAALEIAAExCAAAMQgAAwMEAAABBAAAAQAAAiEEAAAjCAABAwQAAaMIAAIDBAADAQAAA4MEAAIjCAAAAAAAAuEEAAAzCAAAMwgAAMMEAAFTCAABAQQAAEEIAACDCAADowQAAZEIAAABCAADQQQAAUEIAAAzCAAAowgAAUMIAABTCAACgwAAAQEIAAGDCAAAgwQAA8MEAADzCAAA0QgAAQEEAAERCAAAowgAAEMEAAOhBAABwwQAAMEEAAPBBAABgwQAALMIAAFBBAABoQgAArsIAAGDBAADQQQAAHMIAABzCAACYwQAA2EEAAGRCAAAsQgAAsMEAAFjCAAC2QgAAqsIAADDCAAAQwQAAAMAAAMjBAAAgQQAAyMEAADDBAACwwQAAJMIAAIjCAABQwgAAEEIAAIA_AAAAwQAAIEEAAGDBAAAwQQAAyMEAAAAAAAAQQgAAwEAAACBBAABwQgAAgD8AAAjCAADCwgAAEMEgADgTQAlIdVABKo8CEAAagAIAAI6-AABMvgAAmD0AAAQ-AAAMPgAABL4AANi9AAAdvwAAFL4AAKA8AABkvgAARD4AAIC7AABAvAAAVL4AAEy-AAB0PgAA4LwAAAQ-AAATPwAAfz8AAHw-AAAcPgAAFD4AAEC8AAAsvgAAED0AAIi9AAAEvgAARD4AADQ-AACAuwAAqL0AAHC9AADYvQAAMD0AAEA8AACYvQAAPL4AACy-AABEvgAAjj4AAHQ-AACCvgAADL4AABA9AACCPgAAqr4AADy-AACSvgAAUL0AAEA8AAAkPgAAEL0AABy-AABUvgAAVT8AANg9AAAUvgAAcD0AAAS-AABUPgAAiL0AAHC9IAA4E0AJSHxQASqPAhABGoACAACGvgAAFD4AAJi9AABfvwAAcL0AABA9AABMPgAAmr4AAOg9AADoPQAAFL4AAAy-AADgPAAABL4AAOA8AABQPQAAcL0AACc_AABAPAAAfD4AALg9AABcvgAALD4AANi9AAD4vQAAxj4AAIa-AACYPQAAqL0AABA9AABAPAAAUD0AAKA8AACOvgAA4LwAAFA9AACOPgAAZL4AAPi9AACSvgAAiD0AABQ-AADIPQAADD4AAOC8AAD4PQAAf78AAES-AAAwvQAAlj4AAGw-AACovQAAML0AAKo-AACYvQAA6D0AAHC9AAAsvgAAuD0AAIi9AACGPgAAEL0AAIA7AABwvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Rb8MnMEJTI4","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15442270435995052214"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1720888319"},"14245146727441832390":{"videoId":"14245146727441832390","docid":"34-0-14-Z404B6980D7C464F4","description":"These are videos from the Nonlinear Dynamics course offered on Complexity Explorer (complexity explorer.org) taught by Prof. Liz Bradley. These videos provide a broad introduction to the field...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3070731/ac9ec3964f220967f75f87bb7571a913/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1CcmfAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DuJxfAUN5xBQ","linkTemplate":"/video/preview/14245146727441832390?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nonlinear Dynamics: Nonlinearity and Nonintegrability Homework Solutions","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=uJxfAUN5xBQ\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFgoUMTQyNDUxNDY3Mjc0NDE4MzIzOTBaFDE0MjQ1MTQ2NzI3NDQxODMyMzkwaocXEgEwGAAiRBoxAAoqaGhvbWd6cXZiYWJwaGt3Y2hoVUM2cy0xVFlhLTFmQnJVVUlHaWpzaENREgIAEioPwg8PGg8_E32CBCQBgAQrKosBEAEaeIH0__4F-wYA8wkEAQMD_gH9CPj9-P79AO4GBgAB_wAAAvIH9gQAAAAO_PYO-gAAAAAECf_7_gEABBEE_ukA_wAH__76_gAAAAID-QAHAAAAAwAA_AIAAAAP-_gFAAAAAAEJCvn__wAA9wj59gAAAAAF__v3AAAAACAALU8Y5Ds4E0AJSE5QAiqEAhAAGvABVegaAMf9AP4T8PIA3x3qAIEFC_8GJPUA0fwYAOYe6gEDDQUA1vv0__kVAQC3IBgAEPbr_w7zCQEm2Bn_B-waAP4SIgAEB_cAGwoJANDn9_7pHfz_EvkLAO_kAAAGCN3_Iwb__fMR8v_W_fAAC_8uAQEH9QEaBAsG-fkX_-8v9f_YAOX9BAb4APsGAQLjAxkB-AQAAyUwCgHr6vkEBRX8BBD4BQETI_3-IPQEBQEBCfr4_e__DQ7s-AQD9QEJFwf82wgDA-_LDAMBFP39E_YLBgrxDvwTEPf9_Rn3BvjiAP3rCg35Bfzy9wP3BADs5_sEIAAtbidIOzgTQAlIYVACKs8HEAAawAcjosC-bhZPPWJ0r7wKB8y9Vw8UvDSFDr05ZOO9stILO4kDLb0rUfY8c77YPDp0ery9jpC-fOdcvdimKTs7GWw-rgzqPIKMJTzPwHi-k4FNvIi2CL3gu22-XoqWPRa5TLwQXAU-m5NVu-2sK7uydZo9pcvRvC3oAbzPorc81p24PMMduTxudIS9OBWpPPrNyDsFw_k9MYtavQuIHz0vY4Q9u8oEve3UnDxUf049xuqDO-yW7jwut2o9VuD5O3KHTb051rA9lClrvaDyuTw9wZS995NxPRXNoLvAiTK8vQiJPMFwDbw27DI9AA0FPcTSO727u6k9kiSIvXIoWbqoyCG-AnwcPejpbTzkZvg9ZkzhPRgj1DudhZi83hB0u6UNZTpkPiC97qkBvSMKdzzxZj0-fTVRvYlxyLs3TIk9jf02Pcsqz7ptXgs9iU16PRBiITtfcJc8fTOcO7LOgrycBKU8XQB1PKMngLyAa8K9PyoPvSyLeDyGpLu7QW1KPQNzmTxigvo9COpPPYtgLTyEnp09Q_KEvZm3ajw_wlU8qlN0vRoFd7w845Y8J76aPJjKsjpxeUc9vz-tuwtMwLqxvDC96Dn9PBzcLbsXmSO8Zyx1vYu4SjzPddC8lsY0PdQ_zjvY7oM8jV4NvaCVzbuFZvK8yU4pPXVPezrQTye9d6KEvaH3hDoxAo-8ANCMPXIhpDuwWCO9BSK6PMx_5TrjxQI-2Z0JPbDlxblyVIk8JwUsveQViDtTk6C9F6a1PYPQeLnRSMo9C-qAvI7t4LiBCkI9D9UQPGHNM7hu4ZQ8lPoiPpWhpbgRDIY9z0lvvBUlijiJD7e9t0K4vTFCujgZoem8lDsCPbRd0bkvdQg8Tzo2vNEsNbnvuR292FeovG86Ibo-aqK9GiSzvDGMObiZUm09FinevBPzjbiARxS9uWA6vK9z4LjctL48XEKZvJc8y7isTIK9MWexPav7SDgXVgC9v4YbvYKCH7hgPOM9-IhdPfhwdzhGGia9ftcRPVAAI7crqhm95qkzPALBAbmHRVY902Wmvb8o9DYt97g8D4qMPam9irjK4QO-ENcePJf9TjeaSjo9gVZDu99OkTi-MDk9o0uuPPCORjhxT-E8uYDAuqTMrbeSXRk-2U9QvazCP7m4XZO9z6uQvdp1RLhyNAk7cI60vTjSjbbE9cE77g4kPYf5zbc_jsY9K94IvocitLigFw49FyW9PSh_ADl1yfY7Rxk2PcKSjbgntQK8hUNvPZeuN7jREJS96BhLvUZoBrggADgTQAlIbVABKnMQABpgaOUAGOML29tDLuXjvPMh2-HZ6zbJ6_8Bzf8O-g8T4zLKwyP9ACfaAuykAAAAFObT9tUAB3_V-gQW3h0qz8jRHAhYIyb5mdEj9d_aMd0L2gQw-lFdABDdpxI1B8VAMxghIAAtQwMaOzgTQAlIb1ACKq8GEAwaoAYAADTCAAA4wgAAYEEAAIC_AAAgwgAAAEEAAORCAACwwQAAbMIAAAAAAACGQgAAgEAAAHBBAAAAQgAAEMEAAOBAAABUQgAAkEEAACBBAACIwgAA0EEAAKBAAAA8QgAAEEIAAIBCAAA8QgAA-MEAAMhBAACgQAAAKEIAAGzCAAAUQgAAgMEAACBBAADQwQAAqsIAAKDAAACEQgAAsEEAAKpCAABAQQAAAAAAAJhBAAAwwQAA4EEAAOBBAADYQQAAwMEAADxCAACUwgAAAMIAAPjBAADQwQAALMIAABTCAAAAwgAAYMIAAIhBAAAAQgAAdEIAAKhBAAA8wgAAQEEAAKhBAAAAwAAAsEEAAAjCAAAQwgAAMEEAAODAAAAAQAAAAMEAAPDBAAAwwQAAcMEAAIjBAAA8wgAAYEIAADDCAACYQQAARMIAAChCAACgwQAAcMEAABxCAABMwgAAgD8AADBBAABkQgAA6EEAAEhCAAAMQgAAMEEAAIBAAACIQQAANMIAADDCAAAIwgAAgMEAAMjBAAC6wgAAUMEAAIC_AAC4wQAAUMIAAIpCAABwwQAAAEAAAKhBAAD4QQAAqkIAABDBAABkwgAAgEEAACRCAAAkwgAAFEIAAGTCAABQQgAApMIAABhCAACKwgAAEMEAACDBAAA4wgAA4MAAABjCAACIQQAAoMEAAP5CAACAwQAATEIAAEDBAACyQgAArkIAAAzCAADwQQAAwMEAABTCAAB0wgAAgL8AAPjBAACIQQAA6MEAAGRCAAAwwgAAIMEAABjCAABUQgAA8EEAABBCAABcwgAASMIAAMDAAACQQgAAcEEAAIjBAADAwAAAMMEAACRCAAA8wgAAAEEAAADCAACAwQAA6EEAAMBAAACEwgAAAAAAADRCAADoQQAAVEIAAFRCAACAwAAAXMIAAPDBAACYwQAAuEEAAJBBAAAcQgAA6kIAABTCAABwQQAAYMIAAODBAAAgQQAAcEIAAIA_AACAQgAAAAAAAKhBAAB0QgAAEEEAAGBCAAAwwQAAgMAAANhBAAAAwQAALMIAAEDAAADwwSAAOBNACUh1UAEqjwIQABqAAgAAFL4AAK6-AAAMvgAA-D0AADA9AACOPgAAij4AADu_AAAsvgAAmL0AAJg9AAA0vgAAjj4AADQ-AABEvgAAUL0AAIo-AADYPQAAoLwAANo-AAB_PwAAED0AABQ-AABwvQAAoLwAAMg9AACoPQAADL4AAIC7AACAuwAAtj4AAHS-AACivgAAUD0AAJg9AABAvAAAgDsAADS-AADqvgAAEL0AAOC8AAAcvgAA6D0AABQ-AABwPQAA2D0AAKI-AACWvgAAEL0AAMq-AADgvAAA2L0AAOo-AABMPgAA4DwAAIC7AABFPwAAyD0AAKi9AAAcvgAAqL0AABC9AADovQAAF78gADgTQAlIfFABKo8CEAEagAIAAAy-AAAwPQAA2L0AAEm_AAAwPQAAED0AAAw-AAAMvgAAjr4AAEQ-AACAuwAATL4AAIC7AAB8vgAAiD0AAEC8AABQPQAACT8AAEC8AABsPgAAHD4AAAw-AAD4PQAAqL0AADC9AACgPAAAsr4AAEA8AABEvgAAuL0AALg9AACYPQAABD4AAAy-AAC4vQAAmL0AAJg9AACYPQAAuL0AAPi9AAAsPgAAED0AAFC9AACYvQAAgDsAABQ-AAB_vwAAmL0AAFA9AABQPQAAlj4AAKi9AAB0PgAAbD4AAJq-AABwPQAAEL0AABC9AABQPQAAFL4AAJi9AACgPAAA6L0AAHA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=uJxfAUN5xBQ","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14245146727441832390"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"628049859"},"15698849593703722022":{"videoId":"15698849593703722022","docid":"34-2-2-ZFA6843EC1DEA57FD","description":"Nonlinear Systems We introduce the concept of nonlinear systems of ode, which are infinitely harder but also infinitely more interesting. In particular, we will see some really cool applications...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2123737/f6672944ccf70990f4581ef1c6b010c4/564x318_1"},"target":"_self","position":"19","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMrYo0o-L1mI","linkTemplate":"/video/preview/15698849593703722022?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nonlinear ODE","related_orig_text":"nonlinear","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"nonlinear\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MrYo0o-L1mI\",\"src\":\"serp\",\"rvb\":\"Eq8DChMxMjQ3MTI2MjY1NDY3MzMwNDQ1ChMzOTg0NzAyNjM3ODU1NzQ5MDEzChQxNDU2MTc4Njk5NTgwODkyMDI0OQoUMTM0OTkwNzgzODE0MDkzMDgxNDEKFDE0MjcxMDQ5MjY2MTk2OTMzNzg3ChM0NTM0MjM0Mjk4Njg4NTE1MTAxChM2MzAyNTcxNjIzNDcxNDgzOTMzChQxMDM2NTQyNDk4MzE4MDk0OTU0NwoTNzc5NDE5MDA2NDEyNTI1NDA0MQoTMTMxNzg0ODQxMTUwMTIxMzQ1NgoUMTIxOTY3ODIzNTcwMjc5Mjg3ODYKFDE0NTE4OTc1Nzk3Njk4NTU2MzE2ChQxNjc3OTY3Nzg4ODIxNjYyOTE5MAoTMjMxMjA5MDM1NjM3Mjc2NDE2MAoUMTc2MjA3ODYzODYyMjk1NjM1NjEKFDE1NDQyMjcwNDM1OTk1MDUyMjE0ChQxNDI0NTE0NjcyNzQ0MTgzMjM5MAoUMTU2OTg4NDk1OTM3MDM3MjIwMjIKEzMzMDY4NzQ2OTg0NDQyMzA3ODMKEzM2Nzk5NDUyNDc4MzI2Nzg2NzQaFgoUMTU2OTg4NDk1OTM3MDM3MjIwMjJaFDE1Njk4ODQ5NTkzNzAzNzIyMDIyaq8NEgEwGAAiRRoxAAoqaGhncnRnZnRxeGJtc2VrZGhoVUNvT2pUeHotdTV6VTBXMzh6TWtRSUZ3EgIAEioQwg8PGg8_E-YDggQkAYAEKyqLARABGniBBv76CPwEAOwOBAYBAv8A-gP_Afn9_QDuBPz4BQAAAO4G_v4D_wAAAgf_Av0AAAD3Awf8_P8AAA0CBv39AAAABvX9-wQAAAAK-f_9AAEAAAj_CPkDAAAABAj7CgAAAAD-_Av6-_8AAPME-_0AAAAA-Pr0-AAAAAAgAC11HeA7OBNACUhOUAIqcxAAGmACBAAKBUUL7Roa-frbyCDbDOQK7sI5_x_ZAO7R1BEpEbu18Of_IPb5BK4AAADyGy_J6gD5ZvQxrCgA8xYA2O_9JX9BNcj03SDu_ycm3R_T7jXg9lYA2CT8ATYV6gA1J0IgAC2Suyk7OBNACUhvUAIqrwYQDBqgBgAASEIAABBBAAB8QgAA0MEAAEhCAACYQQAAjEIAAABBAABgwQAAJEIAAJBBAACgwAAAFMIAAMBBAABAQgAAAEEAADxCAABowgAAskIAAFDBAAAgwgAAqEEAABDCAACAwAAAyMEAAMBAAAD4QQAAuMEAALhBAAAgQQAALMIAANBBAACiwgAAiMEAAKDCAAA8QgAAAEAAAJpCAACQwQAAUEEAAIA_AAAgQgAAFEIAADDCAACAPwAAmMIAAOBBAAA8QgAAYEEAAKBBAABAwQAAUEEAAIjBAACgQAAAgEEAANhBAABEwgAAwMAAAKBBAABgQgAAAMEAAGDCAACQwQAAYMEAABBCAABwwgAATMIAALjBAAAQwQAAIMIAABRCAADCQgAALMIAAKhBAACMwgAAwMAAANDBAABAQQAAEEEAAADAAADIwQAAmEIAAIDBAAAQQgAAqEEAAIBAAADgQAAAsEEAAChCAAAwwgAAmsIAALJCAACwwQAAAMEAAKBCAAAcwgAAsMEAAOBAAADIQQAAEEIAAFjCAADgQAAAoEEAAKBAAACywgAAVEIAAEDBAAAgwQAA4MAAAPBBAACYQQAAoMAAAIDBAABwQQAAfMIAAHRCAAAUQgAARMIAAGjCAAAQwQAApMIAAHzCAAAAwAAAGMIAAPDBAADgwQAAbEIAAMDBAABAQAAAuMEAANjBAAC4wQAAAEEAAJBCAACIwQAA_kIAANBBAAAMQgAAwMAAAODBAADAQAAAHMIAAEBCAAAYwgAAgD8AAPhBAABIwgAAjkIAAIDAAAAcQgAA4MEAAIBBAABgwQAACMIAAHBBAAAwwgAAYMIAAGDCAAAcwgAAKMIAAEDCAACIQQAAJMIAADTCAABAQQAAEEEAAFTCAADwQQAAjEIAALDBAACAwAAAQEEAAAAAAAAkwgAAyMEAAHDBAADoQQAAPMIAAARCAADAwQAAuMIAAGDBAACIwQAAgEAAADxCAAAgwgAAosIAALzCAAAwQQAAqEEAADDBAADwwQAA8EEAAIjBAACYQQAANEIAAEBAAADgQAAAUEEAACDBIAA4E0AJSHVQASqPAhAAGoACAADgvAAAPL4AADw-AACCPgAAcD0AAII-AAC4PQAADb8AAI6-AAAwPQAA-D0AAKi9AAAQPQAAgj4AAOi9AAAwvQAAbD4AABQ-AABcPgAABT8AAH8_AACAOwAA6D0AABA9AADgPAAAUL0AAIA7AAAQPQAA4LwAAHQ-AABcPgAAgLsAAAy-AAA8PgAAoLwAAIA7AACgvAAAfL4AAAG_AACYvQAAEL0AAFS-AAAcPgAAuL0AAIi9AACovQAAiD0AACS-AACAOwAAVL4AAEA8AABMPgAA3j4AAAw-AABAvAAAgLsAAFM_AAAkPgAAij4AAIA7AABAPAAAJD4AAOC8AAAcviAAOBNACUh8UAEqjwIQARqAAgAAoLwAACQ-AAAcvgAAQ78AALi9AADgPAAA6D0AABC9AACovQAAHD4AAKi9AACSvgAAUL0AAIK-AACoPQAAML0AAFC9AAAJPwAAuL0AAFQ-AAAwvQAA2D0AAFA9AACYvQAAcL0AAMg9AACCvgAAoLwAAAy-AACovQAAUD0AANg9AACIPQAA6L0AACS-AAAEvgAATD4AAAQ-AABMvgAAHL4AADA9AAD4PQAABL4AAEA8AACgvAAA4DwAAH-_AACAuwAAuD0AAOg9AABsPgAAFL4AABQ-AAAEPgAAgDsAADA9AACgPAAA4LwAAOC8AACgvAAA6D0AAIg9AACIvQAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=MrYo0o-L1mI","parent-reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["15698849593703722022"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"1247126265467330445":{"videoId":"1247126265467330445","title":"\u0007[Nonlinear\u0007] regression - the basics","cleanTitle":"Nonlinear regression - the basics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4hYGiG4qVf4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4hYGiG4qVf4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1154,"text":"19:14","a11yText":"Süre 19 dakika 14 saniye","shortText":"19 dk."},"views":{"text":"33bin","a11yText":"33 bin izleme"},"date":"25 nis 2023","modifyTime":1682380800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4hYGiG4qVf4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4hYGiG4qVf4","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":1154},"parentClipId":"1247126265467330445","href":"/preview/1247126265467330445?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/1247126265467330445?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3984702637855749013":{"videoId":"3984702637855749013","title":"\u0007[Nonlinear\u0007] Dynamics: Nonlinearity and Nonintegrability","cleanTitle":"Nonlinear Dynamics: Nonlinearity and Nonintegrability","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9YvqdWbnTGc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9YvqdWbnTGc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":475,"text":"7:55","a11yText":"Süre 7 dakika 55 saniye","shortText":"7 dk."},"views":{"text":"4,5bin","a11yText":"4,5 bin izleme"},"date":"7 mar 2019","modifyTime":1551916800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9YvqdWbnTGc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9YvqdWbnTGc","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":475},"parentClipId":"3984702637855749013","href":"/preview/3984702637855749013?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/3984702637855749013?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14561786995808920249":{"videoId":"14561786995808920249","title":"\u0007[Nonlinear\u0007] Dynamics and Chaos — Introduction (Lecture 1)","cleanTitle":"Nonlinear Dynamics and Chaos — Introduction (Lecture 1)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bOpxQ7hGpmM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bOpxQ7hGpmM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOVp2bkh3dkFSNFhrakt6S3hoWUREZw==","name":"Dr. Shane Ross","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dr.+Shane+Ross","origUrl":"http://www.youtube.com/@ProfessorRoss","a11yText":"Dr. Shane Ross. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2164,"text":"36:04","a11yText":"Süre 36 dakika 4 saniye","shortText":"36 dk."},"views":{"text":"53,5bin","a11yText":"53,5 bin izleme"},"date":"27 oca 2021","modifyTime":1611705600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bOpxQ7hGpmM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bOpxQ7hGpmM","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":2164},"parentClipId":"14561786995808920249","href":"/preview/14561786995808920249?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/14561786995808920249?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13499078381409308141":{"videoId":"13499078381409308141","title":"Estimate \u0007[Nonlinear\u0007] Models of Dynamic Systems using \u0007[Nonlinear\u0007] ARX and Hammerstein-Wiener Mode...","cleanTitle":"Estimate Nonlinear Models of Dynamic Systems using Nonlinear ARX and Hammerstein-Wiener Models","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7H-YO088DLw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7H-YO088DLw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZ2RIU0ZjWHZrTjZPM05YdmlmMC1wQQ==","name":"MATLAB","isVerified":true,"subscribersCount":0,"url":"/video/search?text=MATLAB","origUrl":"http://www.youtube.com/@MATLAB","a11yText":"MATLAB. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":332,"text":"5:32","a11yText":"Süre 5 dakika 32 saniye","shortText":"5 dk."},"views":{"text":"8,2bin","a11yText":"8,2 bin izleme"},"date":"23 ağu 2023","modifyTime":1692748800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7H-YO088DLw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7H-YO088DLw","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":332},"parentClipId":"13499078381409308141","href":"/preview/13499078381409308141?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/13499078381409308141?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14271049266196933787":{"videoId":"14271049266196933787","title":"Introduction | \u0007[Nonlinear\u0007] Control Systems","cleanTitle":"Introduction | Nonlinear Control Systems","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Xgnwn0G9qoo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Xgnwn0G9qoo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjJ5UnROVG8xNDlYR1NNN19CekVFdw==","name":"Topperly","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Topperly","origUrl":"http://www.youtube.com/@Topperly","a11yText":"Topperly. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1084,"text":"18:04","a11yText":"Süre 18 dakika 4 saniye","shortText":"18 dk."},"views":{"text":"109,8bin","a11yText":"109,8 bin izleme"},"date":"1 oca 2020","modifyTime":1577836800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Xgnwn0G9qoo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Xgnwn0G9qoo","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":1084},"parentClipId":"14271049266196933787","href":"/preview/14271049266196933787?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/14271049266196933787?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4534234298688515101":{"videoId":"4534234298688515101","title":"Systems of \u0007[nonlinear\u0007] equations 1 | Algebra II | Khan Academy","cleanTitle":"Systems of nonlinear equations 1 | Algebra II | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cdY0b4ziR5U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cdY0b4ziR5U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":87,"text":"1:27","a11yText":"Süre 1 dakika 27 saniye","shortText":"1 dk."},"views":{"text":"28,2bin","a11yText":"28,2 bin izleme"},"date":"5 haz 2013","modifyTime":1370390400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cdY0b4ziR5U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cdY0b4ziR5U","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":87},"parentClipId":"4534234298688515101","href":"/preview/4534234298688515101?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/4534234298688515101?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6302571623471483933":{"videoId":"6302571623471483933","title":"\u0007[Nonlinear\u0007] Dynamics: Introduction to \u0007[Nonlinear\u0007] Dynamics","cleanTitle":"Nonlinear Dynamics: Introduction to Nonlinear Dynamics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MizhVorgywY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MizhVorgywY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":759,"text":"12:39","a11yText":"Süre 12 dakika 39 saniye","shortText":"12 dk."},"views":{"text":"63,5bin","a11yText":"63,5 bin izleme"},"date":"7 mar 2019","modifyTime":1551916800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MizhVorgywY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MizhVorgywY","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":759},"parentClipId":"6302571623471483933","href":"/preview/6302571623471483933?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/6302571623471483933?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10365424983180949547":{"videoId":"10365424983180949547","title":"\u0007[Nonlinear\u0007] Equations","cleanTitle":"Nonlinear Equations","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=m55U4dWUN_Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/m55U4dWUN_Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDamlyQV9UN0xwSnJ2UXhjMEtnbHJlZw==","name":"Aziz Kudaikulov","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Aziz+Kudaikulov","origUrl":"http://www.youtube.com/@azizkudaikulov993","a11yText":"Aziz Kudaikulov. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":194,"text":"3:14","a11yText":"Süre 3 dakika 14 saniye","shortText":"3 dk."},"date":"5 tem 2025","modifyTime":1751673600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/m55U4dWUN_Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=m55U4dWUN_Y","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":194},"parentClipId":"10365424983180949547","href":"/preview/10365424983180949547?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/10365424983180949547?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7794190064125254041":{"videoId":"7794190064125254041","title":"Introduction to \u0007[Nonlinear\u0007] Regression","cleanTitle":"Introduction to Nonlinear Regression","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vDRBlImmVas","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vDRBlImmVas?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDS1ZHeFdxQWN5R2liS0MyUktEMTlSUQ==","name":"LearnChemE","isVerified":false,"subscribersCount":0,"url":"/video/search?text=LearnChemE","origUrl":"http://www.youtube.com/user/LearnChemE","a11yText":"LearnChemE. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":537,"text":"8:57","a11yText":"Süre 8 dakika 57 saniye","shortText":"8 dk."},"views":{"text":"31,1bin","a11yText":"31,1 bin izleme"},"date":"19 mar 2020","modifyTime":1584576000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vDRBlImmVas?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vDRBlImmVas","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":537},"parentClipId":"7794190064125254041","href":"/preview/7794190064125254041?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/7794190064125254041?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1317848411501213456":{"videoId":"1317848411501213456","title":"\u0007[Nonlinear\u0007] gameplay","cleanTitle":"Nonlinear gameplay","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bkMECONQCs8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bkMECONQCs8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVjYzRlNjSG5TaG9vYmZhRU5DOFJfUQ==","name":"Audiopedia","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Audiopedia","origUrl":"http://www.youtube.com/@audiopedia5493","a11yText":"Audiopedia. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":782,"text":"13:02","a11yText":"Süre 13 dakika 2 saniye","shortText":"13 dk."},"date":"19 eki 2015","modifyTime":1445212800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bkMECONQCs8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bkMECONQCs8","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":782},"parentClipId":"1317848411501213456","href":"/preview/1317848411501213456?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/1317848411501213456?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12196782357027928786":{"videoId":"12196782357027928786","title":"\u0007[Nonlinear\u0007] Systems: 3 Nonlinearity Overview","cleanTitle":"Nonlinear Systems: 3 Nonlinearity Overview","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OaDoU4FTjbM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OaDoU4FTjbM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdXRDY2FqeGhSMzNrOVVSLURkTHNBUQ==","name":"Systems Innovation Network","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Systems+Innovation+Network","origUrl":"http://www.youtube.com/channel/UCutCcajxhR33k9UR-DdLsAQ","a11yText":"Systems Innovation Network. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":406,"text":"6:46","a11yText":"Süre 6 dakika 46 saniye","shortText":"6 dk."},"views":{"text":"25,2bin","a11yText":"25,2 bin izleme"},"date":"5 nis 2015","modifyTime":1428192000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OaDoU4FTjbM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OaDoU4FTjbM","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":406},"parentClipId":"12196782357027928786","href":"/preview/12196782357027928786?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/12196782357027928786?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14518975797698556316":{"videoId":"14518975797698556316","title":"\u0007[Nonlinear\u0007] Meaning","cleanTitle":"Nonlinear Meaning","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=r5MkAyJelTk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/r5MkAyJelTk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcWE1Rmx0OEhIUlJQRWo4aE5OYVhBdw==","name":"SDictionary","isVerified":false,"subscribersCount":0,"url":"/video/search?text=SDictionary","origUrl":"http://www.youtube.com/@SDictionaryEd","a11yText":"SDictionary. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":35,"text":"00:35","a11yText":"Süre 35 saniye","shortText":""},"date":"24 nis 2015","modifyTime":1429902244000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/r5MkAyJelTk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=r5MkAyJelTk","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":35},"parentClipId":"14518975797698556316","href":"/preview/14518975797698556316?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/14518975797698556316?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16779677888216629190":{"videoId":"16779677888216629190","title":"What Is \u0007[Nonlinear\u0007] System? \u0007[Nonlinear\u0007] System Definition & Meaning","cleanTitle":"What Is Nonlinear System? Nonlinear System Definition & Meaning","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vKUde5EyOmQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vKUde5EyOmQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaV9hWFZxYkl3RHdmUXNCNU93OUl2dw==","name":"Audiopedia","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Audiopedia","origUrl":"http://www.youtube.com/@audiopedia9108","a11yText":"Audiopedia. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":163,"text":"2:43","a11yText":"Süre 2 dakika 43 saniye","shortText":"2 dk."},"date":"12 eki 2018","modifyTime":1539302400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vKUde5EyOmQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vKUde5EyOmQ","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":163},"parentClipId":"16779677888216629190","href":"/preview/16779677888216629190?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/16779677888216629190?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2312090356372764160":{"videoId":"2312090356372764160","title":"\u0007[Nonlinear\u0007] Systems: 9 \u0007[Nonlinear\u0007] Dynamics & Chaos","cleanTitle":"Nonlinear Systems: 9 Nonlinear Dynamics & Chaos","host":{"title":"YouTube","href":"http://www.youtube.com/watch/qz6gXyfzV9A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qz6gXyfzV9A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdXRDY2FqeGhSMzNrOVVSLURkTHNBUQ==","name":"Systems Innovation Network","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Systems+Innovation+Network","origUrl":"http://www.youtube.com/@SystemsInnovationNetwork","a11yText":"Systems Innovation Network. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":291,"text":"4:51","a11yText":"Süre 4 dakika 51 saniye","shortText":"4 dk."},"views":{"text":"90bin","a11yText":"90 bin izleme"},"date":"19 tem 2015","modifyTime":1437264000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qz6gXyfzV9A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qz6gXyfzV9A","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":291},"parentClipId":"2312090356372764160","href":"/preview/2312090356372764160?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/2312090356372764160?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17620786386229563561":{"videoId":"17620786386229563561","title":"Estimating a solution to \u0007[nonlinear\u0007] system with calculator part 2 | Algebra II | Khan Academy","cleanTitle":"Estimating a solution to nonlinear system with calculator part 2 | Algebra II | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/wUb7tWgv49U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/wUb7tWgv49U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":264,"text":"4:24","a11yText":"Süre 4 dakika 24 saniye","shortText":"4 dk."},"views":{"text":"30,7bin","a11yText":"30,7 bin izleme"},"date":"14 tem 2015","modifyTime":1436832000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/wUb7tWgv49U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=wUb7tWgv49U","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":264},"parentClipId":"17620786386229563561","href":"/preview/17620786386229563561?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/17620786386229563561?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15442270435995052214":{"videoId":"15442270435995052214","title":"Statistics 101: \u0007[Nonlinear\u0007] Regression, The Very Basics","cleanTitle":"Statistics 101: Nonlinear Regression, The Very Basics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Rb8MnMEJTI4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Rb8MnMEJTI4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRnJqZGNJbWdjUVZ5RmJLMDRNQkVoQQ==","name":"Brandon Foltz","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Brandon+Foltz","origUrl":"http://www.youtube.com/@BrandonFoltz","a11yText":"Brandon Foltz. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1314,"text":"21:54","a11yText":"Süre 21 dakika 54 saniye","shortText":"21 dk."},"views":{"text":"153,3bin","a11yText":"153,3 bin izleme"},"date":"26 mayıs 2018","modifyTime":1527343060000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Rb8MnMEJTI4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Rb8MnMEJTI4","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":1314},"parentClipId":"15442270435995052214","href":"/preview/15442270435995052214?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/15442270435995052214?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14245146727441832390":{"videoId":"14245146727441832390","title":"\u0007[Nonlinear\u0007] Dynamics: Nonlinearity and Nonintegrability Homework Solutions","cleanTitle":"Nonlinear Dynamics: Nonlinearity and Nonintegrability Homework Solutions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=uJxfAUN5xBQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/uJxfAUN5xBQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":125,"text":"2:05","a11yText":"Süre 2 dakika 5 saniye","shortText":"2 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"6 eyl 2015","modifyTime":1441494127000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/uJxfAUN5xBQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=uJxfAUN5xBQ","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":125},"parentClipId":"14245146727441832390","href":"/preview/14245146727441832390?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/14245146727441832390?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15698849593703722022":{"videoId":"15698849593703722022","title":"\u0007[Nonlinear\u0007] ODE","cleanTitle":"Nonlinear ODE","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MrYo0o-L1mI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MrYo0o-L1mI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb09qVHh6LXU1elUwVzM4ek1rUUlGdw==","name":"Dr Peyam","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Dr+Peyam","origUrl":"http://www.youtube.com/@drpeyam","a11yText":"Dr Peyam. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":486,"text":"8:06","a11yText":"Süre 8 dakika 6 saniye","shortText":"8 dk."},"views":{"text":"3,5bin","a11yText":"3,5 bin izleme"},"date":"22 eki 2024","modifyTime":1729555200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MrYo0o-L1mI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MrYo0o-L1mI","reqid":"1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL","duration":486},"parentClipId":"15698849593703722022","href":"/preview/15698849593703722022?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","rawHref":"/video/preview/15698849593703722022?parent-reqid=1769600814301403-17767601194058529731-balancer-l7leveler-kubr-yp-klg-194-BAL&text=nonlinear","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"7676011940585297317194","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"nonlinear","queryUriEscaped":"nonlinear","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}