{"pages":{"search":{"query":"2B1M: Subspace Division - Topic","originalQuery":"2B1M: Subspace Division - Topic","serpid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","parentReqid":"","serpItems":[{"id":"5167705045800054009-0-0","type":"videoSnippet","props":{"videoId":"5167705045800054009"},"curPage":0},{"id":"17710806972671227299-0-1","type":"videoSnippet","props":{"videoId":"17710806972671227299"},"curPage":0},{"id":"10262475373804762531-0-2","type":"videoSnippet","props":{"videoId":"10262475373804762531"},"curPage":0},{"id":"7795122807747346401-0-3","type":"videoSnippet","props":{"videoId":"7795122807747346401"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dDJCMU06IFN1YnNwYWNlIERpdmlzaW9uIC0gVG9waWMK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","ui":"desktop","yuid":"9751651901765236561"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"104905091591845283-0-5","type":"videoSnippet","props":{"videoId":"104905091591845283"},"curPage":0},{"id":"6526480153725234204-0-6","type":"videoSnippet","props":{"videoId":"6526480153725234204"},"curPage":0},{"id":"8383968432153433679-0-7","type":"videoSnippet","props":{"videoId":"8383968432153433679"},"curPage":0},{"id":"5195727867619466116-0-8","type":"videoSnippet","props":{"videoId":"5195727867619466116"},"curPage":0},{"id":"14567423978629428351-0-9","type":"videoSnippet","props":{"videoId":"14567423978629428351"},"curPage":0},{"id":"2688617223639389733-0-10","type":"videoSnippet","props":{"videoId":"2688617223639389733"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dDJCMU06IFN1YnNwYWNlIERpdmlzaW9uIC0gVG9waWMK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","ui":"desktop","yuid":"9751651901765236561"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"8864193332842948797-0-12","type":"videoSnippet","props":{"videoId":"8864193332842948797"},"curPage":0},{"id":"1501226271627675557-0-13","type":"videoSnippet","props":{"videoId":"1501226271627675557"},"curPage":0},{"id":"17368565127022310986-0-14","type":"videoSnippet","props":{"videoId":"17368565127022310986"},"curPage":0},{"id":"6080192297332527141-0-15","type":"videoSnippet","props":{"videoId":"6080192297332527141"},"curPage":0},{"id":"15975269254794390257-0-16","type":"videoSnippet","props":{"videoId":"15975269254794390257"},"curPage":0},{"id":"9963845881789767316-0-17","type":"videoSnippet","props":{"videoId":"9963845881789767316"},"curPage":0},{"id":"14259313912225894495-0-18","type":"videoSnippet","props":{"videoId":"14259313912225894495"},"curPage":0},{"id":"16985229742374813300-0-19","type":"videoSnippet","props":{"videoId":"16985229742374813300"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dDJCMU06IFN1YnNwYWNlIERpdmlzaW9uIC0gVG9waWMK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","ui":"desktop","yuid":"9751651901765236561"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3D2B1M%253A%2BSubspace%2BDivision%2B-%2BTopic"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"6556389401225103777206","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["151171,0,18;1281084,0,49;287509,0,82;784778,0,69;912285,0,36"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3D2B1M%253A%2BSubspace%2BDivision%2B-%2BTopic","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=2B1M%3A+Subspace+Division+-+Topic","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=2B1M%3A+Subspace+Division+-+Topic","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"2B1M: Subspace Division - Topic: 1 bin video Yandex'te bulundu","description":"\"2B1M: Subspace Division - Topic\" sorgusu için arama sonuçları Yandex'te","shareTitle":"2B1M: Subspace Division - Topic — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y14b9324f1894bec0a7ceb55629c178f2","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"151171,1281084,287509,784778,912285","queryText":"2B1M: Subspace Division - Topic","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"9751651901765236561","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438701,1437540,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765236612","tz":"America/Louisville","to_iso":"2025-12-08T18:30:12-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"151171,1281084,287509,784778,912285","queryText":"2B1M: Subspace Division - Topic","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"9751651901765236561","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"6556389401225103777206","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":152,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"9751651901765236561","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1728.0__08d7da8c2bad1b707ab3442285ef2d22c008371a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"5167705045800054009":{"videoId":"5167705045800054009","docid":"34-3-3-Z261BFCFC68D587A2","description":"Provided to YouTube by QRS Holding Pulse Spectrum 104 · 2B1M: Subspace Division Wavelength Distortion ℗ 2025 QRS Holding Released on: 2025-08-29 Main Artist: 2B1M: Subspace Division Lyricist: 2B1M...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3069745/8bef425ffea4599590e67da69fab5f0e/564x318_1"},"target":"_self","position":"0","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPVLu2lJGHlg","linkTemplate":"/video/preview/5167705045800054009?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Pulse Spectrum 104","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PVLu2lJGHlg\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoVChM1MTY3NzA1MDQ1ODAwMDU0MDA5WhM1MTY3NzA1MDQ1ODAwMDU0MDA5aq8NEgEwGAAiRRoxAAoqaGhld3l1ZmNzem94bWRiYmhoVUNzSWMzNE80Q2JPcjZaV2EtQnJsQ2dnEgIAEioQwg8PGg8_E9YBggQkAYAEKyqLARABGniB_vn1Bf0DAPID9QICA_8BCQj_-PcAAAD1BQL_BwH_APTw8wICAAAA9P0D_QYAAAADAPQA_f4BABD7_vkDAAAACwsCCQEAAAAGCQEJ_gEAAAcK-PsDAAAAEgQB_f8AAAD4AAACBvr_Af0E_v0BAAAAAwb5_AAAAAAgAC3W8t47OBNACUhOUAIqcxAAGmABFgAmFgUS5Co99u8R7R7U--LUxNrqAALpAPYi__rvHwjHHQkAHOj5_cIAAAAT5AkgAwDhS_bmyy_5LB_89u4vHn8VF-MgKxUW6TcI7Nvg6vjs-wQA7_vqCCrgzAHwAgIgAC233Fc7OBNACUhvUAIqrwYQDBqgBgAAmMIAAGDBAABgQQAAhsIAANDBAADowQAAoEAAAKDCAAAowgAAqMEAAKZCAAB0wgAAoMAAAEDAAACIwQAABMIAAKhBAABYQgAAHEIAAODBAADQQQAADMIAAODAAADgQAAAZMIAANjBAAAQwgAAlMIAAIhBAACwQQAAkMEAAATCAAAIQgAAgL8AALjBAABswgAAAMAAAGxCAACwwQAAgMEAAMDAAACoQQAAkEEAAGRCAAAAwAAAAEEAAPhBAABMQgAAgEAAAJrCAACMwgAAQEEAABBBAABAwAAAWMIAAMDAAADEwgAAfEIAAMJCAAA0QgAAuMEAAJRCAABwwQAAkEEAAFTCAAAAQQAA2EEAAHTCAAAQwQAAoMAAACTCAAA0QgAAoMEAALjBAADQQQAAEMIAAJLCAACEQgAAgL8AAATCAABIwgAAokIAAJDBAAAQQQAAcEIAALhBAACgwAAAGEIAAAxCAADIQgAAXMIAACBCAABQQgAAEMIAAADAAACgQAAA6MEAACRCAABYQgAAnMIAAOjBAAAUQgAAQMEAANDBAAAYwgAAcEEAAMBAAADoQQAAOEIAAOhBAAAYQgAAwMAAAILCAACgwQAAYEIAADTCAACYQgAANMIAAFhCAACAvwAAYEEAAFBBAACIQQAAgD8AALDBAACIQgAAgL8AAMBAAAD4wQAAMEIAAIBBAACwQgAAyEEAAOJCAABAQgAAiMIAAIA_AAD4wQAAYEEAAMBBAAAAQAAAwEAAAIjBAAAwQQAAyEEAAMhBAACYwgAAyMEAABDCAACwQQAAoMAAAFDBAABwwgAAEEEAADhCAAAIwgAAFMIAAOhBAAAAwQAAwMEAAADCAAC4QQAAoMAAANBBAACAwQAA-MEAAIBBAABAQQAAMEIAAFhCAADAQQAA4EEAAABAAAAgwgAAUEEAADjCAABQQQAAgMEAAKjBAAAYQgAA8MEAAJhBAABQQQAAAEEAAGDBAABQQgAAQMAAAP5CAABAQQAAwEAAAIDBAADwQQAAHMIAACxCAABwQQAAWEIAALhBAABAwQAAYMEAAFDBIAA4E0AJSHVQASqPAhAAGoACAAAkvgAAJL4AAO4-AACGPgAAgDsAAKg9AAA8vgAA2r4AACS-AABsPgAAgj4AAEA8AACOPgAA4LwAAEQ-AAA0vgAAfD4AAKC8AAAMPgAAVD4AAH8_AACYPQAAFL4AAJg9AAAMPgAAnr4AABw-AADIPQAA-L0AAII-AACgPAAAgj4AADy-AACCPgAAQDwAAIC7AACoPQAAED0AAJq-AACIvQAA4LwAANg9AACoPQAAED0AADA9AABwPQAAyD0AAEQ-AABwvQAAVL4AAKA8AACoPQAARD4AAHA9AAA8vgAAUD0AABE_AACovQAAmD0AAIY-AAD4PQAAJL4AAHA9AADIPSAAOBNACUh8UAEqjwIQARqAAgAAJD4AADC9AACAOwAAN78AAEC8AAC4PQAAED0AAHC9AACKvgAA0j4AAFC9AACGvgAAuj4AAHy-AAAHvwAAML0AAJq-AABxPwAAyL0AANg9AABcPgAAiL0AAHQ-AADYvQAAyL0AADy-AAA0PgAAhj4AAM4-AAAQvQAAbD4AAOi9AABUvgAAfL4AAK6-AABsvgAAZD4AALi9AACSvgAAiL0AAK4-AAAQvQAAmD0AAIK-AABkvgAAoj4AAH-_AAAQPQAAmD0AAFQ-AAAwvQAAUD0AALg9AADgPAAAgj4AAEC8AACovQAABT8AAAS-AAC4vQAA4LwAAJi9AACgvAAAmr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=PVLu2lJGHlg","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["5167705045800054009"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"17710806972671227299":{"videoId":"17710806972671227299","docid":"34-0-3-Z6506BE0436330136","description":"видео, поделиться, телефон с камерой, телефон с видео, бесплатно, загрузить...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/400250/56d128710d19a5e320a2090ff039fe61/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/C26aGQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D94WMB6cdEbA","linkTemplate":"/video/preview/17710806972671227299?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Class 10th sub division topic Relationships with zeroes and coefficients of the Quadratic polynomial","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=94WMB6cdEbA\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoWChQxNzcxMDgwNjk3MjY3MTIyNzI5OVoUMTc3MTA4MDY5NzI2NzEyMjcyOTlqtg8SATAYACJFGjEACipoaHdtb2lhaW1sc2J4enpjaGhVQ2dXcW1VZk8ycF9fVnZPajlEV2VKa1ESAgASKhDCDw8aDz8T_geCBCQBgAQrKosBEAEaeIHzCQcI_wIA9_cBCfgG_gLv_wH6-v__AOkHAQ39_wEA9wAF-gcAAAAJBwYQAQAAAP349wL7_gAAF_f7-fQAAAAd-QL1_QAAAAYHCBP-AQAA7v70-QIAAAD6AQT__wAAAPL_CAX7_wAAAQIJAAAAAAABBAb-_wAAACAALdl91js4E0AJSE5QAiqEAhAAGvABfPcP_4H99vkC4u0AQxMUAbsFHv8SF9AAsBgBAdwq4QFeKfIC1OXhAeso9P_g6uQBHQHBAO3o6wDyxRAAFgINAO4xDABi6AD_cBgIAQkJBgC1-PH_Bu8JAi7-DQEL9b4A8_kq_CwIC_7289oGAAYbAgsDCAEQ8ecB1QIKB_MqFwT-3L7__Aka_cDcDf7b_goIDP3VAPw66v73DQoEJfj3C_787_c-AgQL_irW-_H2DvbgIv_7DfrvC_YUEwgZLe75AvTkAO_V-wwkIAwKDuYJ_Q3tBwjODfkS9AXs_rTVD_vaCO_8AADyBAXl5_8P9ecBIAAttwkPOzgTQAlIYVACKnMQABpgewwA7Bcz9QEnHOwEu-Ibv9ob7dnd6f8a9P_vGfSwUzcKrv3xABWbAQOWAAAAG6_wFg0AwH_d7QAB2_NJtf366v1qsRIL0Ns-FNLi2-TsDRsg3AElAKkHwE1QL6EWJS81IAAtcn8OOzgTQAlIb1ACKq8GEAwaoAYAAAxCAABEQgAAdEIAAIpCAADgwAAAEEEAABRCAADgwQAAMEEAAPBBAAAgwQAAjEIAALzCAACwQQAASEIAAEhCAACCQgAAoEAAAEDAAACSwgAAAEEAACzCAABQwgAAaEIAAGBBAADAQAAAfMIAAEBBAACEQgAAcMEAAEDCAABIQgAAgEEAAAxCAACEwgAAEEEAAOBAAAD4QQAAcEEAAHjCAAA8wgAACMIAAEBAAAAgwQAAMEEAALpCAABgwQAA0MEAABhCAAAAwgAAsMEAAMDBAAAEwgAAHEIAAMDAAABUwgAAAAAAACDBAAA0QgAAQEEAAEBAAACAQAAAksIAAJjCAACIwQAAIEEAAAxCAAC2wgAA6MEAAMBBAAAgQgAAmEEAAABAAAAAQAAAmEEAACBBAAD-wgAAyMEAAPBBAACAPwAAqMEAAMBBAABQwQAAOMIAABxCAAAQwQAAmMEAAIrCAACAwQAAIEEAADzCAACgQQAAoEEAABTCAACAwAAAGMIAAGBCAABAwQAAAMIAAIZCAADoQQAAuMEAAExCAADAwgAAAMIAANhBAABAwAAAmEEAANjBAACIQgAAWEIAAOjBAAAUwgAAwEAAAOhBAAD4QQAAQEEAAJTCAAA4QgAAoMEAAIRCAABAwAAA2EEAADTCAACgQAAAeMIAAPDBAACAQQAAUMIAAJbCAADIQQAALMIAAIDAAADYQQAALEIAAMhBAACIQQAAYEEAAETCAAC0wgAAlEIAAJBBAACIQgAAMEEAAABAAAAAwAAAyMEAAKjBAAAoQgAAUMEAACBCAAAkwgAAUMEAAIjBAABIwgAAiMEAAAzCAAAAwQAASMIAAFhCAAAEQgAAqEEAADjCAACAQQAAqMEAAPBBAABAQAAAoEAAAIBBAAAAwAAAJMIAAADCAACMwgAAgD8AAIBBAADAQQAAwEEAALDBAADwwQAAcEEAAIDAAAAYwgAAkMEAALDBAABYQgAAHMIAACjCAADgQgAAIMEAAJxCAADIwQAAQEIAADTCAAAwQgAAuEEAAADAAAA8wgAAwMEAAHBBAADgQCAAOBNACUh1UAEqjwIQABqAAgAAcD0AAKA8AACSPgAAJD4AAJg9AABAvAAATL4AAOa-AAAUvgAAmD0AAPg9AAAQvQAALD4AAPg9AABsvgAAPL4AAEA8AACoPQAAML0AACw-AAB_PwAAmD0AAEy-AABsPgAAiD0AANi9AADYPQAADL4AABw-AAAMPgAAoLwAAPg9AADovQAAgLsAAIi9AADoPQAAJD4AAGy-AABEvgAATL4AAOi9AAC4vQAAgDsAAOA8AADgPAAABL4AAMg9AAAwvQAAqL0AAFS-AABsPgAAuD0AAJI-AABAPAAAfL4AAJi9AADWPgAADD4AAEC8AACgvAAAyL0AADC9AACYPQAAuL0gADgTQAlIfFABKo8CEAEagAIAACy-AAAwvQAAuD0AADO_AABAPAAADD4AAKA8AACAuwAAFL4AAKo-AACIvQAAUL0AAIg9AACIvQAA4DwAAFC9AABAPAAAUz8AAOC8AAC6PgAALL4AAOi9AAC4PQAA-L0AAKg9AACIPQAAgDsAAHA9AAAEPgAAuD0AAKi9AACAOwAAcD0AAJK-AADoPQAAML0AAOi9AACAOwAAoLwAAIg9AACoPQAAmL0AAJi9AACYvQAAfL4AADy-AAB_vwAAQLwAADC9AAB0PgAAMD0AALi9AACgvAAAPD4AAIg9AAAQvQAAoLwAAHA9AAAkvgAAcL0AABQ-AABQPQAAhj4AAKi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=94WMB6cdEbA","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17710806972671227299"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10262475373804762531":{"videoId":"10262475373804762531","docid":"34-7-13-ZA3D0AFE7F3757EF0","description":"Provided to YouTube by QRS Holding Sacrament upon Drone · 2B1M: Techno Division The Priestess Calls — Will You Answer ℗ 2025 QRS Holding Released on: 2025-09-26 Main Artist: 2B1M: Techno Division...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/965950/02b138ced4f434127ce1fdee0f6e22e3/564x318_1"},"target":"_self","position":"2","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DBXR66bblvpk","linkTemplate":"/video/preview/10262475373804762531?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sacrament upon Drone","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=BXR66bblvpk\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoWChQxMDI2MjQ3NTM3MzgwNDc2MjUzMVoUMTAyNjI0NzUzNzM4MDQ3NjI1MzFqrw0SATAYACJFGjEACipoaGlncWZtb2V0a2xuemViaGhVQ09WOVY5ckhJcEVDRHZTRzRSM210b3cSAgASKhDCDw8aDz8T4wGCBCQBgAQrKosBEAEaeIH0__4F-wYA_PUHAPsF_gH5AAQJ-v79APXwAP74Av8A_QL_BP8BAAAQ9wEI_AAAAO8ECQcBAQAAEPz--QMAAAAFEPb_AQAAAAgDBwf_AQAA-Qj3AgP_AAD-_gkB_wAAAPn68AMAAAAA-xEJDAAAAAD98_oEAAAAACAALU8Y5Ds4E0AJSE5QAipzEAAaYAIZACfiCgTWICDr9u_lDfsGA_cU4_YABecACRr38yMC2M_1_gAY-wjl0AAAAAj8-w_-AP87CgDWFfY-KO4L8xcUfw0XAREHDwYP-BXy99MG9vgM-wDsCwHxPBfpG_oMKyAALXVRgTs4E0AJSG9QAiqvBhAMGqAGAABswgAAMEIAAGxCAAAEQgAAqMEAAODAAACAPwAAkMIAAITCAAAwwQAAlEIAADBBAAAYQgAAIMIAAKDAAABQQQAAAAAAAIJCAAAwQgAA2EEAAHBBAAAQwgAAgMEAACxCAACAwAAA6EEAAAAAAACowgAADEIAAOBBAABcwgAAYMIAAEDBAAAUQgAA6EEAAL7CAABwQQAApEIAAMBAAACAQgAAkEEAALhBAACUQgAALEIAAKBAAABAQQAA8EEAADhCAAD4QQAAisIAAJbCAABwwQAAEEEAAAzCAACAwQAAEMIAAJjCAABMwgAAqEEAAJ5CAABcwgAAsMEAAARCAAA8QgAAMMIAAGBBAABAQAAAbMIAAABBAAC2QgAAHMIAAFDBAADAwAAAUMEAAMDBAAAwQQAANMIAAKBAAAAIwgAATEIAACDBAAAQQQAAgEEAACBCAADCQgAAkMEAACDBAADQQQAAHEIAAJBBAACSQgAAsEEAAMBBAABwwQAAZEIAAPjBAABswgAA2MEAADRCAAB8wgAAFMIAAMDBAACAQAAASMIAAHDBAACYQQAAAEIAAEBAAAAwQgAAKEIAAJJCAAAgwQAAmMEAAIDAAACUQgAALMIAAGRCAACewgAAmMEAACxCAAA0wgAAQMEAANBBAACgQQAAlMIAAMDAAADAQQAAQMAAAOjBAADQQQAALMIAAIBAAACAPwAAHEIAAIBBAACGQgAA4EAAACDBAAAQwQAAwMEAAAzCAACIwQAAgEEAAIBAAAAwQgAAgEIAADxCAADAwAAAUEEAACBBAAAEQgAACMIAAPTCAAB4wgAAGEIAACzCAACswgAAmMEAAKBAAABAwAAAEMEAADRCAAAAwAAA4MAAAODAAACQQQAA2EEAAEDAAACgQAAAgEEAAKhBAABAQQAAgMEAAPBBAACAQQAAQEAAAChCAACIQQAAoEAAAAhCAAAQwQAAYMIAAADAAABcwgAAeMIAAJDBAADAQAAA_kIAABTCAABcQgAAAAAAAOBAAACoQQAAwMEAAMDBAADoQQAAMEEAAIbCAABwQQAAMMIgADgTQAlIdVABKo8CEAAagAIAADC9AAAQPQAAXD4AAKA8AAAwvQAAuD0AALi9AACmvgAAMD0AADQ-AABcPgAANL4AAHw-AABwvQAAuD0AAPi9AAA8PgAAQDwAAMg9AABsPgAAfz8AADC9AABEvgAADD4AAKC8AACCvgAAQDwAAIg9AADYPQAAVD4AAMi9AACoPQAA2L0AAEQ-AABwvQAA6L0AALg9AAB0vgAAzr4AAGy-AACIvQAA4DwAAOg9AAD4PQAAdD4AAHC9AACgPAAAND4AAOi9AAC6vgAAiL0AAMI-AABsPgAAnj4AAHy-AADIPQAABT8AAGw-AAC2PgAAPD4AAIi9AACGvgAAqL0AAHC9IAA4E0AJSHxQASqPAhABGoACAAA0vgAAND4AADQ-AAA3vwAAJD4AAIg9AAAQPQAAPL4AAIg9AABkPgAAQLwAABC9AAC2PgAA6L0AANi9AACAOwAAMD0AAFM_AAAMPgAAwj4AADC9AACgPAAAuj4AAFy-AAD4vQAAEL0AAEw-AABUPgAATD4AAIC7AAC4PQAAgLsAAIA7AABsvgAA2L0AAHC9AABEvgAAiD0AAKC8AABQPQAAVD4AADC9AAAQPQAABL4AAJq-AADoPQAAf78AAPi9AAAwvQAAAT8AAKg9AADoPQAAQLwAAI4-AAA8PgAAMD0AALi9AABAPAAANL4AAJK-AAAQvQAABL4AAEw-AAAcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=BXR66bblvpk","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["10262475373804762531"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"7795122807747346401":{"videoId":"7795122807747346401","docid":"34-11-3-Z577A6C1BC651FBF7","description":"#controltheory #mechatronics #systemidentification #machinelearning #datascience #recurrentneuralnetworks #timeseries #timeseriesanalysis #signalprocessing #dynamics #mechanics #statics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/927963/c043b6b78ed0482701df34531d70a145/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/i_RgQgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZET7WgJVLjA","linkTemplate":"/video/preview/7795122807747346401?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Subspace State-Space System Identification: Derivation and Python Implementation - Control Theory","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ZET7WgJVLjA\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoVChM3Nzk1MTIyODA3NzQ3MzQ2NDAxWhM3Nzk1MTIyODA3NzQ3MzQ2NDAxaogXEgEwGAAiRRoxAAoqaGhvY2NuaGJqeXlzZnRkYmhoVUNKYjc1RnR0NVZ1a0Zpb3hrNU9vY0ZREgIAEioQwg8PGg8_E6MaggQkAYAEKyqLARABGniBAgUC_v8CAPMEBQH5A_8BGgABCvUCAgDuBPz4BQAAAPUB_AH1AAAACgACAf0AAAD-_Qv-9P4BAAr8CAj4AAAAGfb1CP0AAAAMDu8C_wAAAPb_9AID_wAAGPsD9P8AAAD2BP8A__8AAPoH7f4AAAAAEP0JBAAAAAAgAC0zINc7OBNACUhOUAIqhAIQABrwAX8t5ADj7fkEyhn2ATvpwgGQ3FH_LhjgANgDCQDV77oB6h71AA4XIgCpRwgAiDD_AdvmBf_9FtYAD_8V__rd-gD9GzQA-dPSAUcYBP_kABkAzRsB_RcJMgAM9Pj_IzPg_v7hLQDS9OAA5tTSAP4FMgATJeECDOXv_9w8C_wDJ_4FITTr_rDuIv8kAPH4z-gBCRb-6AoiJ-38BDb-BP4BJvwByA_-LQLiAvsWIPz3GfX-GM3xC_b7Bg8ECDL-OCPXAdn28wsCogb2CvLuCOLh_fvl8hsG5-Lh_-_jBP398ej68QUU-dMS7AzxEejzMQwH8CAALeLEAzs4E0AJSGFQAirPBxAAGsAHPl3dvsqcIzredpG9qgudvcuBvzvA_pC8XyV_vRSvMjwZopK7zhpsPkYVlD3zIaS7nE2Xvuo9XLlkjxa8LQtWPrCKXL1BLSa9WMfRvQy8iTxsA3y9p1mAvuLS4jgHmi-9ttrDvAG_xryQPAY93sstPrBSBbzY5N87fh34vJxNRz2LQCu8EUKWPevag72aO9-8pqiEPUzYiDyBCZw8IOsJPsVt2byqmTW8k9STvdUqlTw84Z27LFAuuvwXTb0ceaA82--KPWPDKb3sGNM7SXQlvQhcEr3-XHq7_gVnvcBDbD08mQe7LeGavMtcqjz6Bku8vJsiPcADqL3DP7I7s-0UvXeGZD17HDw9JxcTPk_Vcz0VqbA8HIS_vU2tDT03nOQ7wzl5vRyTar1rfyk7HzxkPT7jRz3QAdE7RBTTPEfSiTxfFsk8LkwwPUL5sT3KVfm5_R92PSL4RD3L8nW8Z4I8PXoNuz3dbGK8kirAvKCnYT2lfVG5BX-mu4SyNb25g546HFzaPbXu8LxEbI86HDBePb_Xq7wYx5I8RRngvCYE5TtDk5-8PRVGPeprpzx6BkO8C0alPC4XVr3ciKO62HUZvRxqSjwzUSW7G2czPduJ8r3Zqmq7VXSavZtUdD3aPh48kQsOPSHTtTzOnAG8xJJ2O99vpD1cQMM65tKTPDeGBb0PH2A7rNr_PBLYwbwdYjQ7Z2ptPb5TPL0lDck7oI0sPsuuBb0gAg25jUEKPEB1ILxEaCk7mKkkvMsLdT2KxdI6PL3yPUrIUb1XwY45guQ9vQWyqjt6ki475t0iPbTGpT2ASWq3U7MnPdKQTL0zGpQ4zZF1vTVFYL0cMi45sR5SPO_PAD2FS5k5Wt2FPX6KA73MUne567yXvA6TOr3nVqW4xiX9vPd8qLxvp524u-zXvOW6hD1gPOa4SMV_vDOMi71U34c5HzozPejxwL3ynks5lT2zvRhh5Ty2zQK5TKgAPcfwnb3-7jA5xFY1PXlhxj225i646X_7uvZ61z0rdK-2bZMFPYgIKT0_9Qm5uD6svGwG-L15_yC4zedcPUczmz3VLSW51YogvQOzwryeYP81vTKUvVTrk73807q2sARNPSx6DL1W4vg3m2ghvOkcjb3Na4Q4Qe63PTxh07tBGfy4xyOSPS8n8jzN-hg4UY64PJBB-DzHh2o3m5fePHB1JTxHEqu3DRJHPHR89L1WWFm4VRimPW0LxT2Dx-c4vPehvZHOpTz_qKK4XCivvd4SKr38ImM3dxSEutq6Bb0FWlA4IAA4E0AJSG1QASpzEAAaYCz1AEjwEd0WMUbo__HcFsjvFuML1-X_5OEABS8PAP4dAbfp5AATxiXJrQAAACHw4TrfACht8sryEPBL97T3_yD4f_YMHuQoDNe30k8y7tw52vooHgDz7rP6NxOsVNf7JyAALd11IDs4E0AJSG9QAiqvBhAMGqAGAACAQQAAIEEAALDBAACwQQAAgD8AAChCAABMQgAA8EEAAMDBAABwQQAAIEIAAFjCAABQwgAABMIAAJhBAAAEwgAAyMEAAFzCAACAPwAACMIAALDBAABgwQAAAMEAAMjBAADowQAADEIAALLCAACAwgAAqEEAAADBAAAAwAAABEIAAIzCAAAwwQAALMIAAABCAADIwQAA6EIAAKDBAABgQgAAMEEAAIBAAAA4QgAAEMIAAERCAACywgAAvMIAAEDBAAAAQgAAAMEAAEDBAADQQQAABMIAAKjBAAAMQgAACEIAAOLCAADAQAAAmMEAAARCAACwQgAAkMEAAATCAADEwgAAgMAAADDCAABUwgAAlMIAAMDAAACYwgAAQEEAAIZCAACowgAAAEEAAJBBAAC4wQAAEMIAAOBAAADAQQAAAEEAAHDCAAAEQgAAPMIAAJhCAABEQgAA-EEAABDBAABQQgAAIEEAAIjCAACAQQAAcEEAADDBAABwwQAAqEEAAJLCAAAQwQAAUMEAAJRCAADAwQAAmsIAAIpCAAAIQgAAAEEAAEjCAADgwAAAwMEAACBCAAAgwgAASEIAAHBBAABAQQAAPMIAAGBBAAC4QQAAwEEAABDBAAC4wQAAyMEAAEDAAACYQQAANMIAAIDCAADAQAAAYMEAAFBBAABYQgAAEEEAADDCAADgQAAAQMAAACDBAADowQAAhEIAABhCAACAwAAAAEIAAKjBAACiwgAAjsIAAIBBAADgwQAAQEEAAMBBAAAAQQAAAMIAAMBAAACIwQAAeEIAAMBAAAAQwgAAZEIAAEBCAAAQQgAAoEEAAHDBAAAQwgAARMIAAADBAAA8QgAACMIAALhBAACAwQAAmsIAAJDBAABAQQAAAEIAAIJCAADYQQAAyMEAAEjCAABIQgAAqMEAAKBAAACgwQAA8EEAAFBBAADgQQAAPEIAALhBAABAwQAAAEEAAATCAACgwAAApkIAAFBBAACIwgAAMMEAAMhBAAAQwQAACMIAAIjBAADQQQAAAEAAAGBCAAAgQgAAQMEAAMDBAAAYwgAAUMEgADgTQAlIdVABKo8CEAAagAIAAHS-AACCvgAAnj4AABw-AABQvQAAmj4AABQ-AABHvwAAzr4AAEA8AABwPQAAoLwAAHw-AAAUPgAARL4AAIK-AABAvAAAqD0AABQ-AAAHPwAAfz8AAEC8AABcPgAAoDwAAHS-AADIvQAAbD4AAIC7AADgPAAAED0AAHw-AACAuwAAjr4AADw-AAAwvQAAND4AAGQ-AACCvgAAVL4AAFA9AADKvgAAED0AALi9AACovQAALL4AAII-AAAkPgAAkr4AADS-AADevgAAML0AAHC9AABUPgAAHD4AAKa-AADIvQAAaz8AAOA8AAC4vQAARD4AAKC8AACovQAAQLwAALi9IAA4E0AJSHxQASqPAhABGoACAAB0vgAAVD4AAKg9AAAbvwAAgLsAAOC8AABQPQAAUL0AABC9AACqPgAAoLwAABy-AACIvQAALL4AAJi9AAAwvQAAgLsAAFE_AAAsPgAAnj4AAAQ-AACgvAAA6D0AAHC9AAA8vgAAMD0AADA9AABEPgAAoLwAAAw-AADoPQAAiD0AAAy-AAAwPQAAuD0AABy-AACaPgAA6D0AAMK-AACAOwAA6D0AAPg9AACAOwAAQDwAAEC8AACKPgAAf78AAJi9AACgvAAAED0AADA9AAAQPQAABD4AAAQ-AADCPgAAUD0AADA9AAAQPQAAgDsAAEA8AAAQPQAAyD0AAIA7AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ZET7WgJVLjA","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["7795122807747346401"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"104905091591845283":{"videoId":"104905091591845283","docid":"34-0-11-ZC7587F33F4538832","description":"In this video we discuss the topic of subspaces. This corresponds to part of section 3.2 of the textbook Linear Algebra with Applications, 5th ed, by Otto Bretscher.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1030268/c63eec69f57361c43863d262fd973cf2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/K2_pHQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEWoha9-8DWQ","linkTemplate":"/video/preview/104905091591845283?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Section 3.2 (1) Subspaces","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=EWoha9-8DWQ\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoUChIxMDQ5MDUwOTE1OTE4NDUyODNaEjEwNDkwNTA5MTU5MTg0NTI4M2qIFxIBMBgAIkUaMQAKKmhoem1zaGRwZ2piamJzbmNoaFVDZTFheXBfZmhJLTBnUUpRSHhfWW5ydxICABIqEMIPDxoPPxPcBYIEJAGABCsqiwEQARp4gf8E-wH-AgD0_vgG-AT_AQsA-_r3AAAA5QLw9wP8AgD8_gINAAAAAAYM_wUDAAAA_fj4Avv-AAAE-QT-AwAAABn29Qj9AAAADgP4_v4BAAD2__QCA_8AAAX39QH_AAAA9An6_wIAAAD3BwEAAAAAAPv5BwoAAAAAIAAtE_PZOzgTQAlITlACKoQCEAAa8AF_3B4Bzv4DAAn5-f_rGfoBlgkl_xUaF_-u1_UAtBHR__4V9QD6CisB9Qr_AMQEFADt6O8AH-gP_ysO9wAg2fEA_RUoAD_i8QFfFAcBCv3__uo2_P8s9yQBFuwKABQKC_8cDBT_9xvhAfgB-AYN_jYBIhwdBA0K_QAB6Bv95PIHBOf33f0VAPAD-iDn--wGIQEu9eT_BgrmANkF6AIBCwQJ5fj9BRkY5f5RJfMC__QD_eYD_wMK5-sB-BAQBuYq9P3_-QD96uv_AuUHDgERywcG-vsJ-ST89AL89Pj4DPYJANj4Bf7cHA38ABIJFAz36wEgAC3_uSk7OBNACUhhUAIqzwcQABrABwcH2755A4w8ymcxOsl3hLrVNeQ8-_HNvKjhG77fFuw8h9tGPNL_0j1pKnU9VJQFvPaWYr4FeIE8eT8NvMVVhT5UMG-9m38qvFouW77qj5U8bmKSvLeyJL4pFcM8RNBivI8yNzrvnDy9-HG0PPM7DT52FMy8hktYPLOudr3rPfC8IIAvvbx8xjxuDh-8Ig14vUpGHj5f-WI8QN0gPVsxoj2xkVq9T2xPPOtDDbz0KCa8tiJ7POEfu70BQIS8ObTtvAl5kz0N1sk8_I5hPCU9vL2tmca82RaUvOtrIr3-g6M8FvtLO2gIprrnMIQ8QCajvIiHTbt-TBC9_6ZBPGO0Hr42Fnu7f2BYPORm-D1mTOE9GCPUO8Zhqr2rW5097tSaOwLz0D0UJme8jFAmOyxFEj6g3Du9z4mYPOAUsbwRT9u8cgunPBuerj1fnDM99VKMu_hxtLxYHA488UdRvJpdd7wCJQq9UsscuycHrb0XVmC89Pt-vNPn2Tyi85y4fiq4vMJkvz1Ihww95xHpu0WA8z28Yba9ey8dOwMMlj2VULC8W-RDvOfMUT24oIg9WX0evFNTXD3boQY9-pUQvEgIxbzaFxY8aRiEu8M-mz0TjzW9JSQSPA9IIr322HE8XRgiurP-IjxzdVG9VweAvAOUhjyEIge9TjmRu_NxbbyUzrC7KTuiOyocIDxY57g9X1C2u1OGID3WLnm7PyH5umIvVD0po8C8v3cjuy7Og71hCC-9qKjKuYte2zv8zxA9GMhcO5NikT2mgT-9g5Osubcp_Tp_ukY9NfpOOT-g_TwVkuc8e1-rOHp99zwqHrS6lhint8O8B76pP2y92ntlN-X2Q7v8AwC9rOsKuSel4LwDjo48Abf7OO-5Hb3YV6i8bzohui1BJr0iTsy7lH8LuRuLfD01yRk9bTuCtjzN-LzGN--8ZpzfOATx8DxB7Zy9tV4cubx9Eb31JzY94fW6OIz6v73iQfE7XScGuXisI7yun349fQTTOOcfOD0P77k9tGi5OAkcJD3Ur9m8_xwsuDTc2zzmXSW-BpznuM3nXD1HM5s91S0luSL7AL7GXyQ9F5hlOEE9aDsc6-K8AbH1txKfYLuyHDa7ZQsyNo2T57zk0-u7dFd1OIJVRT50yDc9ydyEubhdk73Pq5C92nVEuHqXAb2rA2W9tWLmt85-TTuL_5q7yef0t21yGD5hpBe-p_jeuMr0cD0i4Ss-8cuKOBgnOb2UQ6U9ZZTHuKNit7zoWNQ8xNXztsHFjrtiFa-8QXEzNyAAOBNACUhtUAEqcxAAGmBNDQAuDz3MJ-9l8wXd4yq8zRLezOvr_-y7_w0H5_UWHvGpFtz_DdYk4aEAAAAh6ushAgAofx_W41jUKwbw7Pb37HWsOCW3wAERzN86EMk5DPX07GMAAuSfJS_4sxgMSRkgAC37YhI7OBNACUhvUAIqrwYQDBqgBgAAMEEAAI5CAABwQgAAgEEAABDBAABAwAAAbEIAAJjBAACGwgAAfMIAAOBBAACAwAAAksIAADDBAADgwAAAoEAAAAhCAADowQAAAMAAADTCAABcQgAAyMEAAAxCAABgwQAAbEIAADTCAACwwgAAwEEAAKhBAACUQgAAsEEAACBBAABMwgAARMIAAFDCAACgwAAAYMEAACxCAABAwAAAiMEAAIDCAAAEQgAACEIAABzCAABsQgAAgkIAAMhBAABUwgAAbEIAAHDBAAAQQQAAkMEAAPDBAADAwAAAGEIAABBBAAAYwgAAMMEAAJJCAAAcQgAAoMEAACDCAADAQAAA4MAAAABCAAAQwgAAIEEAAFDBAAAcwgAApkIAAIC_AACIQgAAoMEAABzCAABQwQAAAEEAAJrCAAAAQQAAFEIAABRCAADAwAAA8kIAAIDBAAAwwgAAhEIAACRCAAAMQgAAYMEAAJxCAACAwAAAvkIAAIhBAAAAwgAAxsIAABBBAAAwwgAAoMEAAIA_AAAEwgAAgL8AACTCAACYQQAAgEEAALDBAAD4wgAAwEEAAETCAAAAQgAAkEEAAIC_AACwQQAAmEEAAFzCAACYwQAA-EEAAJjCAACwQQAAkMIAAEDAAAD4wQAAgEAAAJTCAADYwQAABMIAANDBAABAwAAAiMEAAJjBAABAwgAAUEEAADhCAAAwwQAAjsIAAAhCAACAQQAAQEEAAFBCAACIQQAAgEAAAODBAAC4wQAANEIAABTCAAB0wgAAAEAAADDBAABgwQAAmEEAAFDBAABYQgAAoMEAAFTCAACAwQAAmMEAAAhCAABQwQAAkMEAAIDBAAAAQQAAsEEAAOhBAACAPwAAuMEAAGhCAACgQQAA8MEAANjBAAAgQgAAoEEAAHBBAACAQAAAcEIAAPjBAADYwQAAGMIAACxCAABQwgAAgEEAAARCAABQQgAAAMIAADDCAACmwgAAYMIAAIJCAACAPwAAIMEAALhBAAAAwAAA4MAAAJ7CAADAwAAAwEEAANjBAACAvwAAJEIAAFDBAAB8wgAAaMIAAABAIAA4E0AJSHVQASqPAhAAGoACAAD4PQAA6L0AAOg9AACOPgAAXL4AAIC7AACePgAAB78AANa-AACOPgAAgDsAAPK-AABsPgAAyD0AACw-AAC6vgAAFD4AAMg9AACiPgAAvj4AAH8_AACoPQAA-D0AACS-AAAcvgAAJL4AALg9AACAOwAAMD0AAIA7AABEPgAAbD4AANi9AACAuwAAVL4AAEA8AAAQPQAAiL0AAJK-AABAPAAAzr4AAPg9AACGPgAAZL4AADQ-AAA8vgAA2L0AAIi9AACAuwAAZL4AABC9AACgPAAAxj4AAFw-AAAQvQAA4DwAAG8_AADIvQAAuD0AAOa-AACIvQAAjr4AACw-AACSviAAOBNACUh8UAEqjwIQARqAAgAAcD0AAIq-AACIvQAANb8AAOA8AAAwPQAAZL4AAAQ-AABMvgAAgj4AAFA9AABQvQAAmD0AAHS-AAC4vQAAQLwAADA9AAAxPwAAgLsAACw-AADovQAAuD0AAFw-AAAcvgAAgLsAAAw-AABQvQAA4DwAAGQ-AAAwPQAAUD0AAAw-AACYvQAARL4AABC9AACAOwAAkj4AAKI-AABUvgAABL4AAJ4-AAD4vQAAir4AAIi9AAAQvQAAyD0AAH-_AACAuwAAiD0AADw-AACoPQAAnr4AAFA9AAC4PQAAmD0AAEC8AAAQPQAAgLsAAOi9AACgvAAA6D0AANi9AAAcvgAAgLsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=EWoha9-8DWQ","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1080,"cheight":720,"cratio":1.5,"dups":["104905091591845283"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6526480153725234204":{"videoId":"6526480153725234204","docid":"34-3-6-Z14D918D7246EBBEF","description":"Subject: Mathematics Course: Vector Spaces...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/758402/17f49147e1f9baac65c41ce7b806b401/564x318_1"},"target":"_self","position":"6","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTK7DuspVyug","linkTemplate":"/video/preview/6526480153725234204?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Lecture II Subspaces, Basis and Dimension","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=TK7DuspVyug\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoVChM2NTI2NDgwMTUzNzI1MjM0MjA0WhM2NTI2NDgwMTUzNzI1MjM0MjA0aq8NEgEwGAAiRRoxAAoqaGhpeHRva3RkaXRqZmtyYmhoVUNCTXZkWFhKN0JjWmNUS0dQajlXeEtnEgIAEioQwg8PGg8_E68PggQkAYAEKyqLARABGniB9P_-BfsGAPj8-gYBBf4B-gP_Afn9_QDyAfgCBwH_APUB9gQBAAAABQv_BQMAAAAG-PcCAv0BABkC_PYDAAAADf38BvsAAAAJBvT2_wEAAPIE-_0DAAAADP7-AQAAAAD1Cvj0AAAAAPMP8wgAAAAAAvv3BgAAAAAgAC1PGOQ7OBNACUhOUAIqcxAAGmAZGQAXHAzIxyAr3xvs3_ftE_fh29Hi_-rkAOYC9c3xEgGi7uD_IvoS_rgAAAD52s8pFgD8Ye7YpwH7IvEB6Nsj-X8A8fHo8-Ln1xwIDxcS_gfPKVAA0Pn8FeLi9zPSSCcgAC3Njjk7OBNACUhvUAIqrwYQDBqgBgAAHEIAAJhBAAAoQgAAQMAAAHBBAAAgQQAA7kIAAFBBAABYwgAAmMEAAIjBAADAQQAAuMEAANhBAADAwQAAsEEAAERCAAAkwgAAgL8AAIC_AADwQQAAmMEAAEjCAADgQQAAYMEAAKBBAAAgwQAAOEIAACBBAACUQgAAYMEAADBBAABQwgAAIEEAACzCAAA0wgAAmEEAAIZCAACaQgAAQMAAANBBAACowQAAXEIAABRCAACwwQAAfMIAAHhCAAAAwgAAgEIAAKxCAAAAwAAAQMEAAODBAABgwQAAgEEAADhCAABwwgAAOMIAAGBBAABwQQAAZEIAAHzCAACGwgAAAMEAAJDBAADMwgAAMEEAAIjBAAAwQQAAEEEAAKxCAADQQQAA2MEAAMRCAACgwQAAAEAAAGzCAAAoQgAAPEIAAKxCAACYwQAApkIAAIjBAAAswgAAeEIAALhBAABwQQAA4MAAAP5CAAAcQgAAmEEAAPBBAACGwgAAHMIAAPjBAACIwgAAQEEAAKjBAAAwQQAAgMAAAOjBAACAQAAA2MEAAGBBAADIwQAAoMAAAAjCAACowQAA4MAAAEDAAAA8QgAAFEIAAPDBAACgQgAAQMEAAKBAAACAPwAAAMEAACBBAACgwAAAwMAAAHjCAAAgQgAAOMIAAFTCAAAowgAA4EAAAODAAACCwgAAmEEAAEDBAABcwgAAEMIAAABAAABAwQAAMEEAAKBBAAAwwQAA8MEAALDCAAAAwQAAAMAAAKhBAABEwgAA-EEAAOBBAAAwQQAABEIAADBBAAAQwQAALMIAABDBAAAcQgAAIMEAAHBBAADgQAAAlsIAADjCAACgwgAADEIAAKjBAADQQQAAREIAAABAAAAEwgAAYMEAAIDBAABoQgAAUEIAAOBBAAAcQgAAoEAAACzCAACwwQAAUMEAAIDAAACYwQAA4MEAAEDCAACyQgAAKMIAAKDBAACgwQAAIMIAADhCAABgQQAARMIAADDBAACIwQAALEIAABBCAABQQQAABEIAAGDBAACgwAAAREIAAIhCAAAwwQAAXMIAANBBIAA4E0AJSHVQASqPAhAAGoACAACuvgAAjr4AAIg9AACYvQAA6L0AAIo-AABcvgAAJb8AAHy-AACOPgAA6D0AAEy-AADoPQAAZD4AAAS-AABUvgAA9j4AAIC7AACmPgAA2j4AAH8_AAD4vQAAuD0AADQ-AACGvgAAQDwAAIA7AABcvgAAFD4AAGw-AAD4PQAAUL0AAJi9AAAQvQAAMD0AADQ-AACIPQAAML0AAKi9AABUvgAAqr4AANg9AAAkPgAAUL0AAJi9AAAwPQAA4DwAAGS-AABUvgAAVL4AABC9AABkvgAA8j4AAGQ-AABkvgAAoLwAAFU_AACgPAAAgLsAADQ-AAD4vQAAgDsAAFA9AABQvSAAOBNACUh8UAEqjwIQARqAAgAAQLwAAPi9AABQPQAAJ78AADA9AACoPQAAQDwAAIg9AADgvAAAVD4AAJi9AAAMvgAATD4AAJi9AADgPAAAmL0AABA9AAA3PwAAiL0AAGw-AADovQAA2L0AACw-AAD4vQAALD4AAKg9AAAQvQAAUD0AAOg9AACoPQAAcL0AAOg9AAC4vQAAqL0AAEA8AAAUvgAAdD4AAJ4-AAAEvgAA-L0AAJY-AAAMvgAAoLwAAHC9AAAwvQAA-L0AAH-_AAAMPgAA6L0AADw-AACIPQAAyL0AAHA9AAC4PQAAqL0AADA9AACAOwAA4LwAAHC9AAAwPQAAXD4AABy-AAAMvgAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=TK7DuspVyug","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6526480153725234204"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8383968432153433679":{"videoId":"8383968432153433679","docid":"34-9-5-Z359EEBF7A539F444","description":"We bring together the ideas of subspaces, independence, dependence, span, and basis using a single example. One of the subtleties is that vectors can be independent in a subspace but dependent in...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/486876/c67d3561a5c7232f24922376235fc665/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/iIghdwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcLD4pHmFXHI","linkTemplate":"/video/preview/8383968432153433679?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Summary of Subspace, Span, and Basis","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cLD4pHmFXHI\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoVChM4MzgzOTY4NDMyMTUzNDMzNjc5WhM4MzgzOTY4NDMyMTUzNDMzNjc5aogXEgEwGAAiRRoxAAoqaGh1a3RvaGViZG1wcWltZGhoVUNNREN6VkZzOGJBcFBtUWVrR0Zheld3EgIAEioQwg8PGg8_E5oEggQkAYAEKyqLARABGniBAPcF_vwEAPf3AQn5Bv4C7Q35Bfn-_gDuCfEABAAAAPUI9gMKAAAAAgL59wgAAADt9wf0AAEAABn2CgIDAAAACfP3C_sAAAAJB_T2_wEAAPgK_vwDAAAACgkE-_8AAAD1AP_6AwAAAPkJ-v8AAAAA--z-_wAAAAAgAC3Obd47OBNACUhOUAIqhAIQABrwAW0GCwDc97EByvbVAOP55ACz7R0ACR_m_7zp8gC9A-EA7Rr3APX7FgDjHRL_gSvXAQnV_v8Ey-IALAID_x_OAgDuDSUAFQ_6AQUNDQLV7BkA6womAPj5KAAX8sb_ACf5__DyHP31H90BwvnNAQ_-PQHl-SwE_tQE_t7rGQQH8xgADCbs_egQBfz0ACT_49cmAzTN_gD7B-7_-SjLAvUcIv773QMKHBvh_Q4JFAYDRQr796v6-iDUCf7pIxz-BzDe-Mnl__7k8vv0O-v2DQr14_sU1_sLCe71COnU9QQG_gMFD-YFAvYTBOcp7P_-Ar7u9yAALTDzFTs4E0AJSGFQAirPBxAAGsAHeNDkvqk8kTsMDd-8yXeEutU15Dz78c28FNqYvSdPeT0LEYm7TTISPpmJvTxjh-e8FOgzvvvv3DxZ04a8Ci9hPhdxsLxB08Y5ehcvvgg8MD0pn9S8Rbz1vWfoxDysuCe8TiUTvhAJGj0Xk4g8dvzXPU9ll714KgA95MPHPMPyILqDmuu8vlKxvOGLArx9Qcu8fQA3PftcDb11P6c64ZcKPnGolL26q2y78XgkPci0Nj3svoS7hViSvYwBaL10P0w8_m6QPcfscjuhcw09dk1tvL0Hw7yNkba7wIkyvL0IiTzBcA28ZJPcPdHUlr1HZwu8IJDVPIqXQLv7FoS7E0OSvfccPb25x1I7uWa3PXMTsD2_G4E8rvQqvm3F3j2K1Au7EKeIPeDIUbpkVN-6jiBVPntI3bwvp8I7RBTTPEfSiTxfFsk8jUolPdYjKD0s85Y8_h_xPHz-ar1cGM68Xf8pPQy1wTw_dJy8JS-hvKO5hDznlFu8gubTvSGTDryPJYM6fQnVPRGqszrqQoc7j-AWPlt4Dr4D5w68-ePuu1th-r2FAr47Yy-fPSb_oz24YjW8ryLIPN9OJ71naq28lvjSPEF2CL0isfa61a80PUFQybyVfgS8hSziugLMwjsoyu-6NJGIvfSmYj1-Ztq7Eo40PCbKOT3Qcuq77eGRPVY5Hr0VhYK7DW7rPACbYjwQpeY6Zi2KPTSdQr1Ztj272hAtPejOHztGsgm8LPHgvS5w_bsgJxg6VtP1PLlgmj3zDiu5R0-2PRbSKzw0zoc4kH8LvW9NhT2ST5k4icC3Pe61-zzilRK4K-nXPLYhED2pZ1S2HAWpOhDQWDzoyga6fdrXPJqCa72ke_m526CbPAKj6LtdQCw6fjM2vaRQlr0ug6O3jERsO2HMcb3qBJi4-sRLPC0cdLrb_0i3SFl6vSQmKLz1Fw655qULO1O7Nb193MI4YWZpvDWtPj0A7om4wrS5vEyKn70GYHY4zq_BPEmTzD3fRIe4GDxRPQse8DwLgwG3yd3TuahmoDyWZCg48VkoPXeWir3VNes4cmw9vLOdaj0ogra3uOQovtF_hbyd-Bq5kOqVPRGAibwn8AY5oM5rPc0muLuuq703jcIEvcxVvTtGP2a3ndnuPZ-Vk7qjag65jHEUvdt7Qr3F_Ge4wyb9t7NDjL1Nig43xLj2O578Jzw2Hoq4YQZ5PfM6Er5L56m4yvRwPSLhKz7xy4o47ZZGOnXopD0KbuO4XCivvd4SKr38ImM3goBrPExdqDy1uBs4IAA4E0AJSG1QASpzEAAaYAUVACwBLtj-8jbxAPHxFL0G1czp0wz_9t4AEN0AHvoZ-sYB4f_5xDfctAAAAAXd_R3uAPJe8r3IBPM-JtP9-lMLf_LtDu_3DtzmGTchFxwSAbQRGAAIBeBTHuHZMtsfSyAALWpfMjs4E0AJSG9QAiqvBhAMGqAGAACYQQAAYMEAANhBAACgQQAA-MEAABhCAACMQgAAgL8AALDBAACAwQAA8EEAAJpCAAAgQgAAbEIAAKBAAABAwQAA6EEAAHDCAABgwQAArMIAAMBAAAAwwQAAOMIAAODAAACQwQAAoEAAABTCAACQwQAA4MEAACxCAAAAwQAAwEEAAIbCAACmwgAAYEEAAKDAAACgwQAAcEIAAAxCAAAYwgAAEMEAADDBAAAwQQAAqEEAALhBAACGwgAAgD8AAGDCAAAQQgAAiMEAABTCAADAwAAAQMIAAPjBAAAAwgAAgEEAANDBAACuwgAAyEEAAODAAADQQQAA0MEAAGDBAAAAwQAAyEEAAPjBAABEwgAAiEEAAJBBAAA0QgAAMEIAAFjCAADowQAAWEIAAODAAABQQgAAyEEAADRCAAAgQgAAJMIAAIhBAACyQgAAGMIAAETCAABQQgAAYMIAANhBAADgwQAAXEIAALhBAADQQQAAlEIAANDBAADgwQAAYMEAAILCAACAvwAAmMIAAABAAAA4QgAA4MEAAABAAABcQgAAmMEAACTCAACCQgAAlMIAAEBBAACAvwAACEIAAFBBAACQQQAAQEEAAKxCAACuwgAAAMIAAIjBAACswgAAaMIAADDCAADowQAAOMIAAOBAAAC4QQAALMIAANDBAABQwQAARMIAABjCAADmQgAAIEEAAPjBAADYwQAAiEEAAIhCAADAQQAAqEIAACTCAAAQwgAABMIAABDBAAAwwgAAEEEAABDCAADoQQAAgL8AANhBAAAQwQAAUEEAAIBBAACAvwAAgMIAABRCAADQwQAADEIAAIBAAACiwgAAFMIAAGDBAABQQQAAiMEAAKhBAACCwgAAQEAAAKjBAAD4QQAAuEEAAJxCAADMQgAAoEAAAIDAAAAcQgAAIEIAAM7CAAAAwAAA8MEAAJBBAAAEwgAA8MEAAJBBAAAAQAAAEMIAABDCAABUwgAAGEIAABBBAAAAwQAAUMEAABDBAAAQQgAAFMIAANBBAADgwAAAwMAAACBCAAD4QQAAeEIAAETCAAAAAAAAFMIgADgTQAlIdVABKo8CEAAagAIAAMi9AACOvgAAmD0AANi9AAAFvwAAPD4AANi9AAAfvwAAmD0AAFQ-AABMPgAA4LwAAHA9AABMPgAAoLwAAL6-AABcPgAAmL0AACQ-AAAsPgAAaz8AANg9AACSPgAAPD4AAMi9AACIPQAAqL0AALi9AABQvQAA4LwAAHA9AACIvQAAJL4AAIg9AAB0vgAAXL4AAEw-AABUvgAAvr4AANi9AAAEvgAAbL4AABC9AAAMPgAAoLwAAEC8AACoPQAA4LwAACS-AACevgAAEL0AACS-AACyPgAA6D0AAGy-AADIPQAAfz8AAKC8AAAwvQAAiD0AADA9AACevgAAED0AAJK-IAA4E0AJSHxQASqPAhABGoACAACYPQAAiL0AAIg9AAAvvwAAoDwAAEC8AAAsvgAAED0AAIa-AACqPgAA4LwAAGy-AAA8PgAAXL4AAAS-AADYvQAAJD4AAB0_AAAcPgAAdD4AABA9AACmPgAAXD4AAIi9AACAuwAAyL0AAKg9AAAMPgAAVD4AAKg9AADIPQAA-D0AAES-AACYvQAAkr4AAMi9AACmPgAAZD4AAIK-AADgvAAAcD0AABA9AACCvgAAiD0AAOC8AAB0PgAAf78AACQ-AADgPAAAzj4AADC9AAD4vQAAoDwAAI4-AAAQvQAAUD0AABA9AADoPQAA2L0AAAS-AAAQvQAAMD0AALg9AAA8viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=cLD4pHmFXHI","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":962,"cheight":720,"cratio":1.33611,"dups":["8383968432153433679"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5195727867619466116":{"videoId":"5195727867619466116","docid":"34-2-16-Z67647AAF047FED0D","description":"Now that we know what vector spaces are, let's learn about subspaces. These are smaller spaces contained within a larger vector space that are themselves vector spaces.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2747705/50a71da30cc4dab18cf454b34b9dd847/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1emGlQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtM4TDL9Hj8U","linkTemplate":"/video/preview/5195727867619466116?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Subspaces and Span","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tM4TDL9Hj8U\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoVChM1MTk1NzI3ODY3NjE5NDY2MTE2WhM1MTk1NzI3ODY3NjE5NDY2MTE2aogXEgEwGAAiRRoxAAoqaGhvdWNuY29jZnJzaHFlYmhoVUMwY2RfLWU0OWhacFdMSDNVSXdvV1JBEgIAEioQwg8PGg8_E90CggQkAYAEKyqLARABGniBA_r9AvsFAPT5AgD6AwAB_Qj4_fj-_QDvCfEABAAAAAAF7wQJAQAACQf9_woAAAD2AAf3Av8AAA77CAQEAAAAB_EBBAEAAAD_B_L9_wEAAPkI9wID_wAACgX9_QAAAADtAP8D_QD_APUF9gQAAAAAA_EABQABAAAgAC1ZQuI7OBNACUhOUAIqhAIQABrwAX8N-QEB3fkDsB3O_6o2-f-WFAz_ERXUAMUkDQHb8cUB9BwIANDdzP8CDPkAoSkfAPz5zv4XDgIBOcrm_z37AADiEgQBOdr9AEsVEAHx4xL-Cf0C_-3sGgIJAuEBBCLb_v7oFf8I-9sBDv_WAyP7LAENCBYE_-MiAs3mAgG9JiMDCtf3_OEMCgMcDBUA4vYuBwXx7f8dIfD8BC7-AxkH_fr02vT5HP_K-_wp6gPpIAgBAN_4-vUA8_3pDCMD5C_z_ejwF_nlB_z4_fIR-CgJ8gfs7OwK7dbiCPX04frszQDxBRIGEt3_AOn5-BIM_fD-ASAALfWKGjs4E0AJSGFQAirPBxAAGsAHXB_GvgBBdD2nEpQ8U-RVvVHehzyL4jC8ZsE0vis1Vj2jO4g8K1H2PHO-2Dw6dHq8s_B1vsfQlrxFZEA5oOIoPlHbxrxEDjY8nmKFvpG6fT0sc4S8FTdOvq006bxlOk-8XMWHPcb_iD1WIyC9b5spPXG7Qb3O0C48W9l0PfrcATwFx8C8UGIBvQ5TFzy8jl28bjC5PNkFSL1qocc7GFodPmoHcbu0hRA8h6_lPPeENrzdoKy8-hK1vWUja7yyDcE86q_3PTGyUTrITQM9dzvxPKjfhTzng-88l1fOvaCpMrwQ_Lm8fPFFPfsEPTnFh2G7xCy_PVFphLzMeas8xMyOvTaR2T1o7Ca8uWa3PXMTsD2_G4E8sOLUvXU2yT08jlU8qzHXvKKlIT268Ic7cN2zPfgR5Dw9NWq7VlqQPFVx_jwqkxa8kCQQvBDfoz2mYgM9OeCpPfX7mT3gaAW8llmpPKIBhjzAPbI79ikivVIxiT0wCic8Uu2jPcXgxrwmfIQ7yCjPPb77PjzCkIu8BSOlPdYCO75J5Zo6Yyp9vKNFzL2HKka8rdSYPN8GzjpAez88YHKoPUc-Djygfwq7k64UvSieLr0QYt-7FvVuPDCQFr2BXGI7ggLPvSbXzrdUYBY807arPLA6kj2J8fW7vuzIPQ-zPD2k0is6mxWWvQcnAbvisuW72lfePSfrwbza9Wy5lMMiPdP0Gb15Mb06oI0sPsuuBb0gAg25LeCfPY480L33yb65eCY0PDyqUDwDrze70UjKPQvqgLyO7eC4YxvCPXrQgTs4aiu5CXEgvV9XGD0H7DY59vhTPfqDHL0BNkK5zoOgvVYSNDzaa2G6sZZxvH5zWrz3_zM7VF22vHGHFzvQpH66L1DyvahcnL1DgL-3yZRqPCn4NzxcvAC4JoqVPW6Ge70ra-c45m-nPGF4O731yqm2HdxnPOPYRDx6mSW5p39EPbzSvT0nKvs2nkk2PQTF9LwO8X03A7CmvBBx2jug1rs2B2onPR9CBj2ecSa4A8zhPPHejL0kShQ5EKyvPdvD3r3Inzy4EUyavKPSgz0jHww4a_HpvXnWJLzuL2A21h-8PCU2RLzCQgg4Cqi7PVxaoDlpqxo4JmZnvU2cwTzyPwk4O9qdPVlRQ71xldO4k4ycvCaxqr33Adu4nqagPKSp3ryd9yE35jApPDdwB72uYyU47AO9O3zUD74X-ty4QstfPWMatz1ukI44JKaaPTvhFT6kXG64x4mKvHoklDxZoXS4ILPzvK84QTxB_f83IAA4E0AJSG1QASpzEAAaYCgUAEADQNUR-2Lr8-X-KMPqCsXs0vL_-N__E-_cMfk9-dEJ7wDmtTbdoQAAADjj7AbpANd9CZvSB-0xKNDbEEvjf5wHLN37BgXdHvsM9R8w6cXxEACl6qtZBPHLLclEPCAALceTEjs4E0AJSG9QAiqvBhAMGqAGAACoQgAAEMIAACRCAADgwQAAFEIAACxCAADIQgAAgMEAAEDBAABAQQAAkEEAAADAAADIwQAAMEEAABRCAACgwAAAAAAAAIA_AADgQQAAmMEAAKBCAADAwAAAwEEAAEBAAABAQQAABEIAAOBAAACOwgAAsEEAABBCAACAwAAA-EEAAIBBAADgwAAAOMIAAMBBAACgQQAApEIAAEDBAAAAwQAAYEIAAADAAAAEQgAAQEAAAJBCAADEwgAAkMEAAEBCAAAIQgAAqMEAADzCAAAAwQAA4MAAABBBAADYwQAA0EEAAKrCAACoQQAAHEIAALRCAACwQQAAisIAAEDBAADgwQAAYEIAALDBAACgQAAAgsIAADDBAAAYwgAAVEIAAFhCAADCwgAAAMEAAKDAAAAYwgAARMIAAEDAAAAgQQAAiEEAALrCAADYQQAAAEEAAIxCAAAcQgAAQEAAAEBCAAAUQgAADEIAAGjCAABgQQAAwEIAAPhBAACQwQAAAEAAAFTCAAAwQQAAfMIAAKhCAACAvwAAUMIAAMjBAACwQQAABMIAAFTCAADgQAAAgMEAAOBBAAC4wQAAdEIAAKBAAADYwQAAEMEAAPhBAAAQwgAABMIAANBBAACQwQAAJMIAAFDBAADwwQAAfMIAAEDBAAAkwgAARMIAAIbCAADgwAAAwMEAAKjBAAAwQgAAgMAAABBBAAAQwgAAAAAAAIjBAAC2QgAA-EEAAEDBAABgwQAAcMEAAJhBAAAgQgAAoEEAAJDBAAAgQQAAFEIAACDBAAD4wQAASEIAAMBAAAAYwgAAgkIAADTCAAAwwQAAqEEAAADCAACCwgAAbMIAAKrCAACwQQAAUMIAACxCAACIwQAAKMIAAADBAADgwAAAMEIAAK5CAAAwQgAAwEAAANhBAACQQQAAsMEAAAjCAAAIQgAAlMIAAEBAAADAwAAAsEEAAIC_AACswgAAqMIAADjCAAAAQgAAwEEAAKDBAACQwQAAoEAAAJjBAAC4wQAAgMEAAOjBAAC-QgAAIMIAAIDAAAAQQgAAgD8AANjBAADAQQAAqMEgADgTQAlIdVABKo8CEAAagAIAAFS-AABcvgAAED0AAGS-AADqvgAAZD4AAFA9AAARvwAAgLsAAAQ-AABUPgAA6L0AAEC8AADmPgAAgDsAAJK-AAAQPQAAEL0AAEw-AACKPgAAbz8AAEA8AADKPgAAuD0AANa-AADoPQAAUL0AAIg9AAC4vQAAMD0AADw-AAAwvQAABL4AAHA9AADovQAATL4AAGw-AABMvgAAfL4AABQ-AABcvgAAxr4AAOC8AABQvQAA2L0AANg9AADgPAAAJL4AAJi9AAA0vgAAcD0AAES-AADOPgAAoLwAAPi9AAC4PQAAfz8AAOA8AABwPQAAFD4AACy-AAAsvgAAqD0AADC9IAA4E0AJSHxQASqPAhABGoACAACIvQAAmL0AAKC8AAAbvwAABD4AAKg9AADYvQAAqD0AABS-AABUPgAAgDsAADS-AADIPQAA-L0AAAS-AACIvQAAMD0AADc_AACYvQAA6D0AAAQ-AAA0PgAAvj4AAJi9AADYvQAAUD0AAGS-AAD4PQAAnj4AAOA8AAA0PgAABD4AAI6-AABwPQAA4DwAAFC9AAAbPwAAuD0AAIa-AAA8vgAAkj4AAKA8AAB0vgAAMD0AADC9AACyPgAAf78AACQ-AAAwPQAAXD4AAIC7AAAwvQAALD4AAL4-AAAwPQAAyD0AADA9AAAEvgAAiD0AAJi9AADgvAAAqL0AAKi9AAD4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=tM4TDL9Hj8U","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5195727867619466116"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14567423978629428351":{"videoId":"14567423978629428351","docid":"34-0-15-Z131C716DC14E853E","description":"This video Lecture of "Prove that intersection of two subspaces of a vector space is a subspace" will help B.Sc. Sem VI students of Rtmnu, other B.Sc & Engineering Students to understand th...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3509048/898cf80d5fb7dc7cb17ae9c5c621345c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/eZnZ7wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0IjJsC3hKgU","linkTemplate":"/video/preview/14567423978629428351?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Prove that intersection of two subspaces of a vector space is a subspace| Subspace|In Hindi","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0IjJsC3hKgU\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoWChQxNDU2NzQyMzk3ODYyOTQyODM1MVoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTFqiBcSATAYACJFGjEACipoaGhjb3h3dW5mbmN3ZWJiaGhVQ3N6UHYyVmsxSFNJOGlSTG5XbUM1VGcSAgASKhDCDw8aDz8TsASCBCQBgAQrKosBEAEaeIEDAAUB_AQA8QL8__oCAAEEAAAC-P_-AO4J8QAEAAAA-AD4C_oAAAAHCAX9AgAAAP0CAfcC_gAAAwMEAvwAAAAG-v7_-gAAAAsN8AL_AAAA8QT7_QMAAAAM_v0BAAAAAPYE_wD__wAA9QX2BAAAAAALA_sJAAAAACAALR2W3zs4E0AJSE5QAiqEAhAAGvABf_TzArwK8f0G9eAAzQr7_58SC_8wEc0AvBQBAav16QDkDAIA2unmAdz6DwDUDSIADuLUAA7dBAAz4f0ACfsDAP0FBAFK0PcBP_QEABUD9f_kHSf-A-MLABXc2AL3-_T68fQZ_foBz__vA8oCDf42ARoMGQEn_CAA7PYV__4r-fvT4NL83usK_PvnCf7k9ioGF__n_CIV-_jcFAMECf_aAQABHAINIfEEHPP4BfIF_Pre-P8GJv7jAwMGJ_8KDu3_9w4cAtzoAPn__xP7GOPv9vABBPgX2PkPDO8BB-7RAPIE4_n66Q4DB-78EPv7-fryIAAteAApOzgTQAlIYVACKs8HEAAawAeV8-2-gFggPc2abr3Jym890pKiPMpDFTueOXW9h8kvvLFqkDz90qc9CbIUvUv9oTyhSHe-c1a6PKQ2Mb1xcrc-y6upPOgRKD1aLlu-6o-VPG5ikry3siS-KRXDPETQYrzbsHw9kCFRPYWcEDw86a496NS6uxNgZjoiFMA81sz1vIUqkLxD5_W9f7YfvVoiAb19ADc9-1wNvXU_pzogB7o9gpE3vYiynLzPSZ89hZmRvC6qh7ux4em9NFwuvawSdjwd6ME9hvx-uepJjzzkgz-7fAM9vSsOjDwTUSO8wYYQvFC04bwtjhI8keaZPUz-JzwUruc9pBiAvVMefrt_VSm9Z_mlPf0XA714Qi-8RZA5PL4lSjxQw9e9xJJ3PWuMzjpaKrG7_2k0PVxlr7hN05w95Db1vAlsjjw8PSU8Iz17vOqjvrqqHka6gIGAPVTTZDxNHVo9Y81tvCSKf7xGgZk9oaA0PVLfaLsqWYm9JXQ4u6a1zLotj5o8hnvAPD0SqzuRi5A9itHvulUr2TqUids92O-JvRkU9jrRj6u75DQfvbKRNbxexZg819tmvPNhBrp2NA49aYcEvbIyWLuzze29GboovbQB2LvRMho854xIvdk8MzzYYfE7TpgQvUc3xjuUdyS9L4W3PSeh17v_WEi93DaCPG_BzrqjaJQ8Ra6lvJaTs7ubfr89FHf8PPSIKzqNI3s8Ve86vLCRQTtU-p49mug4vXhaTzjPBJQ8NHqPvSeZCLrYInO9PscMPa6lFDo0l7U9uqncvOZYeLhKoWc96QeaPPMaJzkoYSa8iD6pvKbmPDmOT5K7aLApvV3eh7dq9iO7752nvWJI3Ljpi3M8Gw0lvaHFG7q8lDo9ij_KPAUg4TdTHpK9ShvIveFzmzctpZg9ZCoYvTSWErh5YUY9zAP9PCkG4Di862w8-2HfvPNJk7g6Dcc8XnQDPB2iDblBIx09SS_qPeRC7bgkRs88blyFvUlcnzgZ0IM7mGDAO_m6wLg4AR-8DoN5PODBRLjBWJ89CxmePb0ZIzi71Mg9A0A1vdi-ezcPVDc98YLoPelBgjfJOKu9_JQ-vVOU-7f-G6q8fXsyvag-zzcc2bA9QBeNvNQr4TeVbYa9CobvOzi7jjeSXRk-2U9QvazCP7m2UXg8cxLqvS7r9rgH4gY94ZZPvZmkzjVlUiY7ILzRPHwBY7dhBnk98zoSvkvnqbgi_-w9NSkFPvN-W7jb2628a_AePpA5IbnDldi8vzpYPHmbbbiWkR-99z1KvWJTabUgADgTQAlIbVABKnMQABpgJRsAKAESyQXxUuoh5vYa3vUT4tLY4_8FuwDuEer2_kvzxwDu_wrVEd2xAAAAHsr89eQA8m5CzrQG1lD47MDkH_9_yh8O3xIQ9czw8ifaBQX48fMiAObppkEk6uIZvComIAAtKN8oOzgTQAlIb1ACKq8GEAwaoAYAAMhBAADQwQAASEIAAMDBAACAvwAAAEEAAJjBAADAwAAADMIAAODBAADAQAAAyEEAAObCAACgwQAApEIAAKBAAACgQQAAgEAAAEBBAAAMwgAAUMIAADDBAACwwgAAqEEAAIxCAAAEwgAAgMAAAJDCAACwwQAA6EEAAADAAADQQQAA-MEAABDBAAAIwgAACEIAAIA_AADmQgAAyMEAAKDAAACIQQAAoMAAAODAAABAwAAAqEEAAFjCAACIwgAAAEEAAKJCAADgwQAABMIAACDCAAAYQgAAqEEAADBCAAAQQgAAisIAAAxCAAAwwQAAQEEAAI5CAAAAAAAAgsIAABTCAADQwQAAUMEAABBBAADIwQAAQMIAAIjBAACwQgAAIEIAAJjBAAC6QgAAYMEAAEDBAADgwQAARMIAAAAAAADYQQAAcMEAAERCAAAgQQAAmEIAAJBBAACkQgAAQMEAAMDAAACAwAAAfMIAAGDBAAC4QQAAkMEAAHDBAACYwQAA0MEAAGDCAADQQQAArEIAAHDCAAA8wgAAOEIAANhBAADawgAAKMIAAABAAACAQAAAkEEAAJDCAABAQQAAAEAAAMhBAAAQwQAAoMEAAJJCAACgwQAALMIAAMDBAAAYwgAAYMIAAIDAAAC4wQAAcEEAAKBAAAAwQQAAbEIAABBCAACowgAAgL8AAHTCAADIwQAAgMEAAIBBAADMQgAAEMEAABDBAACgwAAAUEEAAAjCAABYwgAAyEEAAOBBAADYQQAA6MEAAEhCAABgQQAAmMEAAIhBAADAwQAAAEAAAAxCAADAQQAAyEEAACDCAABMQgAAGEIAAJhBAADcwgAAQMAAAOJCAABQwQAAAEEAAADBAAAMQgAA8MEAAKBAAABIQgAAIEEAAFBBAAAMQgAAOMIAAOBBAAAAwAAAkEEAAOBBAABAwAAAuMEAAKjBAAC4QQAAFEIAAOBBAACgwAAAEMEAALDBAACAQgAAbMIAAMDCAADYQQAAoMEAAKDAAAAowgAAQMAAAEBBAAAMwgAAFEIAACBBAACAvwAAOEIAALjBAABIwiAAOBNACUh1UAEqjwIQABqAAgAANL4AAPi9AACIPQAAmL0AAAy-AAAsPgAAQLwAAAm_AABQvQAAEL0AANg9AABEvgAADD4AANg9AAC4vQAAqL0AAOg9AABwPQAAdD4AAHQ-AAB_PwAAgDsAAFw-AAAwPQAAur4AAES-AABwvQAAEL0AAOg9AACAOwAAJD4AAEC8AABsvgAAQDwAABC9AABQPQAAuD0AABC9AABUvgAAPL4AAHy-AACYvQAABL4AAMi9AACovQAAQLwAAPg9AACIvQAA2L0AAIa-AACgPAAAQLwAAKY-AAAwPQAAHL4AADC9AABDPwAAoDwAAOA8AAAQvQAA-L0AANi9AACIvQAAQLwgADgTQAlIfFABKo8CEAEagAIAADy-AABAvAAALD4AACW_AAA8PgAANL4AAJi9AACovQAA6L0AAJI-AABQPQAABL4AAJg9AADmvgAAPL4AAEA8AACgPAAALz8AABA9AACAOwAAZD4AAK4-AAA8PgAAEL0AABy-AAAsPgAAiL0AAKY-AAAkvgAAcL0AAJY-AABEPgAAXL4AAGw-AAAwPQAAUL0AAEc_AAC6PgAAD78AAFS-AACePgAAgDsAAIK-AAAwPQAAcD0AAHA9AAB_vwAAuD0AABS-AADYPQAAgLsAAHA9AADKPgAAFD4AALg9AABwPQAAgDsAAJg9AACgvAAAZL4AABy-AACoPQAAuL0AAIg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=0IjJsC3hKgU","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1020,"cratio":1.88235,"dups":["14567423978629428351"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2688617223639389733":{"videoId":"2688617223639389733","docid":"34-11-15-Z468388443C2C47DE","description":"intersection,subspaces,proof,linear algebra,intersection of subspaces...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4584022/c823054941f5e940c07fe6f0a5681b7b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3458944D6CA80293E2F167A1D205BE3C8B45A94D1DCC77F430F2618E80D2F7FB4996C4EEBFC21D0A5F86AFBCB07AA55FEFE1A1EF2E48B3B5DC48B0E6EC76D258.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8CXyi21zgPg","linkTemplate":"/video/preview/2688617223639389733?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Prove that the intersection of two subspaces is a subspace","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8CXyi21zgPg\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoVChMyNjg4NjE3MjIzNjM5Mzg5NzMzWhMyNjg4NjE3MjIzNjM5Mzg5NzMzaogXEgEwGAAiRRoxAAoqaGhwbmx0YWFpcGh4eHBrZGhoVUNtbDZyNWNoSUoxX1pQZXZuM3B1QVNnEgIAEioQwg8PGg8_E6cIggQkAYAEKyqLARABGniBA_r9AvsFAPT8CAf4Bf4B-gP_Afn9_QDvCfEABAAAAP0J9wsDAQAAAP8CBP4AAAD8Avn7_f4AAAMDBAL8AAAADvT5AwMAAAALDfAC_wAAAPX7_vwDAAAADP7-AQAAAADsCP4AAQAAAPUF9gQAAAAAB_v-CQAAAAAgAC1ZQuI7OBNACUhOUAIqhAIQABrwAX_0Bf7D-cX_nfbEACwDxgHWOQ7__D7JANAaFwCVEgr_6QjlANYE5QDtOgkB1PkPAOgD0v74xgIAbNnmACTyMf_TAvwBOwX1AzwCCgDb3Oj-xjkC_tL_Fv_00sj-I__S_ycFBPoQAgv_DOaqCxL-SwEm6C0D9DMYAcYXEAOvQRUC_da0_vAJGA4A4vj-5xpGAefjJgYBGgP45yz9BuzzBwkM4_4HFQjzBybw2QYnFv70AAEH-wPK-gYk-CoHwxjn_QcyKO4HrfgI6gMS90fTAPa7HvAJExsIBh_xEQUN2Q36I_D7AtgDEAMS8_LzOwPmDCAALUXi9jo4E0AJSGFQAirPBxAAGsAHY0Pvvg_Bp7zTgIM7ycpvPdKSojzKQxU7E7gFPnwBlz2-vla8UbuvPZ7OOrwIoji8xJdZvoxmZbz1uiW9xVWFPlQwb72bfyq8dXT8vS8Tmj0LAhC9Yt6uvWEZm7y-Nx88o4osvH1ft7s5QcA7Qd4jOxk5m71sKma8JLoivQkMg71L6iS9Vj_AvBf4Rb07eYm7QeWJvYNdY73bNqe8U9CtPBbsEL0Sb_i8jV6NPdKw8zwDoAK80s6PvecpobwQ3_C7L012PcaViT3C60Q8cDruvDpauDtY3-W8k9UevTIvsT0_3lC8ERZbu1dcfD3jJCO90HA0PaW12bkT6Bi9F8XhPHV6eT3ayHU8Xp0DPbvR5z24EBg8HT3evb7ADD67CAu6EWh6PISsXT3JE9K7XB0APpBmkTwzV4I7l7MSPeFdDr3wngc7CJvwvP9jHD0XDZk8_R92PSL4RD3L8nW8RoGZPaGgND1S32i7qj58ve8QoD1LjyY8n9LHPd6VuDwJjqa84YARvWMxoLwnJwO8BSOlPdYCO75J5Zo6qNkoPFhIT70TsS08LJEVPERcTz0jNAA8WYfDPQrPVb30glM7aqBeveJvQL0HDy48sfdHvdaOAr3tXtU7DNZNu3HigD3UW-q7rHKxvWXj4rt_Ugq8r2Z4vC03kj2eVQ87bAHnuzBH770_mqC6MIMRPkBEFD02jFu62Kt-vIY3qzxcvbc7TQ9vPU9FJb2qKCM4ppbSPJPH9LvelkA7KuiBvZw8oL3OAHW43WGTPbuXC76lDmg5rYCnvFZjiT3pNZk5Qky4va7yPbptwY-3MQuNPRfM6TwkRyy5cErUPMhRSr3NhYq52GLXPdg-DbwsiL64O7-dPeCHXjznV664XhPSvc7e2TzMNki5yYsRPfgtxLzWF4i5yHSNPMebPL3EoJC4W9pfvNImHT1I3tG4-MDzvCEtZD1QnLs4HcAsPSGIvbwXsAQ55yLZPAPM_L1SScg5YkOcPMMdiT1YsKE5AFoQO9aXWzxrvCi4wVifPQsZnj29GSM4Z2dsPQVN671fJjU4IzbxOzv_Nj3XXJa4yXl6veKBFjxZzWU4C89LvE6MWTmHCI-3S4-7PUI-CL08Y3w4AJQavRsSdzzjhrM4O9qdPVlRQ71xldO4XEkBvcre0r0XIgS5ZhK1PF6hz72AurI39jzEvUaYAj1kNRA49nR6PeAP370_mZu3Iv_sPTUpBT7zflu4KZ5pvHjNkD2h5pq4AS1CvSQ6NT0o2R23WtFNOww3tb2O8oS4IAA4E0AJSG1QASpzEAAaYB0OADMBFckM2ifcIuLqC9TmFQWm6Ar_AfMA6xbp7gdH_8EGB_8j3y_OsQAAAB_z_iPGAPZmR8fSFfllCvXU2h_xf8MZBffsAh3V7RIP4AceAuEWQwDt58QfHebIJf5ARiAALRY6Kjs4E0AJSG9QAiqvBhAMGqAGAACgQgAAgMAAAJZCAAAowgAAgEAAADRCAABQQgAA4MEAAJDBAADowQAA8EEAAMhBAADIQQAAwEAAABBCAAAwwQAABEIAAGTCAACAQQAAAEAAAIBAAACIwQAAGMIAAERCAABYwgAAaEIAAATCAAAwQQAAgEAAAIBBAABwQQAA-EEAAJBBAABQwQAAqMIAAJBBAAAwQgAAlEIAALhBAADAQQAAQMAAADjCAAAQQQAAcMIAALhBAABQQQAAAEIAAAhCAAAwQgAA2EEAAJTCAADAwAAA4MAAAIRCAADAQAAAuMEAAPjBAADYwQAATEIAAEBAAAA4QgAAqMEAAIjCAAAgwQAABEIAAJbCAACowQAAPMIAAJDCAAA0wgAA4EAAAABCAADawgAAwEAAAExCAAAIwgAA-MIAAEjCAAAoQgAAIEIAAFzCAACQQgAAWMIAACBBAAAcwgAAoEIAAATCAAAgwgAAHEIAACBCAAAAQQAAAEIAAMDBAADIwQAAQMAAAEjCAAB4wgAAEMIAAI5CAACgwAAAQMIAAPhBAAAwwQAAQMAAAPDBAABgQQAA4MEAAIA_AABAwQAA6EEAAFxCAADQwQAA6MEAAFBBAAA0wgAAEMEAAFBCAADAwAAAJEIAAOBAAABcwgAAuMEAAEBCAABAwgAA6MEAACjCAAAUwgAAOEIAABTCAAAAAAAAGEIAAHzCAACKwgAA-EEAAEDAAADYQQAAAMAAAEzCAAAAwgAAEMIAACDBAADgQQAA-MEAAEjCAAD4wQAAJEIAALhBAADoQQAA6EEAAHDBAACYQQAA-EEAAEBAAABgQQAAmMEAAMDAAABowgAAIEEAABDCAACAwQAAOMIAADDBAAAQQQAA4EEAACjCAACAPwAAEMEAAIRCAAA8QgAANMIAAPhBAAAAwAAABEIAACDCAAAkQgAAAEEAAFDCAACAwAAACMIAAIxCAACewgAAEMEAACBCAAAAAAAAIEIAAFjCAADwwQAAeEIAAKDBAAAIQgAA4EEAAJjBAACCQgAAoMAAAAAAAACQQgAAREIAALDBAACIwQAA6EEgADgTQAlIdVABKo8CEAAagAIAALg9AACAOwAADD4AAOA8AACuvgAAUL0AAMi9AAD2vgAAgDsAABA9AAA8PgAAPL4AABQ-AACCPgAAJL4AAMi9AACgPAAA6D0AAJY-AACCPgAAfz8AADC9AABAPAAAbD4AAM6-AACovQAA4LwAADS-AABEPgAAgLsAAIC7AACAOwAAlr4AAFA9AADIvQAAqD0AAKg9AAAcvgAAJL4AAHy-AACKvgAAuL0AAEC8AABAPAAABL4AAHC9AACYvQAAQLwAANg9AACIvQAADD4AAPg9AACuPgAAED0AAFy-AADgvAAAUT8AADA9AABAPAAAqL0AADS-AAAMvgAAoDwAAOC8IAA4E0AJSHxQASqPAhABGoACAADgvAAAcL0AAKg9AAAtvwAAmD0AAJi9AACgvAAAgLsAAJi9AACKPgAAyD0AABy-AAC4PQAAvr4AABA9AAAQvQAAuD0AADk_AAAsvgAAoDwAAES-AAAMPgAAPD4AAKC8AAAQvQAAZD4AAMi9AAAUPgAAiD0AAAS-AACYPQAAJD4AAFS-AADYPQAAiD0AAJg9AADiPgAAhj4AAJK-AACGvgAAPD4AABA9AADKvgAAuD0AABy-AABAvAAAf78AABA9AAAUvgAADD4AAJi9AAAQvQAAuj4AABw-AAAEvgAAoLwAAFA9AACIPQAA6L0AAIa-AACgvAAAyD0AAKA8AADgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=8CXyi21zgPg","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":596,"cratio":2.14765,"dups":["2688617223639389733"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8864193332842948797":{"videoId":"8864193332842948797","docid":"34-3-15-ZC10EA408F130278B","description":"How can you can you find the basis and dimension of a subspace given by a Cartesian equation?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4044168/2b63a9c60c884dd5bc052b35f74300a2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1jY0NwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DESQvS3Bbqi8","linkTemplate":"/video/preview/8864193332842948797?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The basis and dimension of a subspace. Vector spaces","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ESQvS3Bbqi8\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoVChM4ODY0MTkzMzMyODQyOTQ4Nzk3WhM4ODY0MTkzMzMyODQyOTQ4Nzk3arYPEgEwGAAiRRoxAAoqaGh0aGZmYXhoemFzb3VoZGhoVUNvY3hGS0gxemx6eWEtcVFUZVUyWWhREgIAEioQwg8PGg8_E7gCggQkAYAEKyqLARABGniB-P4IBPwEAPT--AX4BP8BAQj-CPj-_gDuCfEABAAAAPgA-Av6AAAACQf9_woAAAD_-v7w__4BAAr2AAH6AAAACPgAB_0AAAAJB_T2_wEAAO7-APYCAAAABf4DBAAAAAD9Bvj6AgAAAPUF9gQAAAAAC_7-AQAAAAAgAC2TuN47OBNACUhOUAIqhAIQABrwAX8RE_7j7s0BxwYAAL4dHACECiz__DXRAKv-AAC29sUA9f34Adn27_8oEgQAkyz_ARnV4P_v3BL_JdXw_kbf-QAOCBgAIu8FAS4AMAEM7_z-3SUT_wbvCQL22dD-7QPf_xPoKf0H8OwAC-q3CUz6LADtCxoGKO0AAe3LHAP05gkF9_vdAAUJ9QAD1P_56xY8AfjGBAAABwr6ySHq__z1A_r8_hD3-j3k-g8H8QfsDfAA6swHAQ_w_fsJGxEF5BTfCAEMMfvW5AD4C-gQ_RDvAgbcBvb13OLxChT88gkB7gUH_-nsAOIK-PTkI_wH0vcD7CAALR1GEDs4E0AJSGFQAipzEAAaYBQGACQOE8fyGyzXDd4E8OMQHNvn0_v_7dIA6BP5_Qsn3cT_5gAO8BPNvAAAAAjh3AXnAP9a-ejJDAI9Bt7B7Dz2fxnzItsDEefyCgM6_ugAHfQmMQDX7sc2DezLMbkjPiAALZ5iPTs4E0AJSG9QAiqvBhAMGqAGAAAsQgAAUEEAAERCAABAwQAAkEEAAIDAAAAQQgAAFMIAAIDCAACIwQAAHEIAAKBBAAC2wgAA2MEAABBCAAAowgAAwMEAABDCAABwQQAAiMIAACDBAACYwQAAsMEAAI5CAACAQgAAPEIAAKrCAACEwgAAlEIAAMpCAABAQQAAcMEAAPjBAABcQgAAcMEAACBCAADYwQAAkkIAAFDBAACoQQAAYEEAADDBAABUQgAAwEEAADxCAADAwQAARMIAADDCAACyQgAALEIAADDBAADAQQAA4MAAAKBAAAAgwgAAAMIAAAzCAADIQQAAgEAAAPBBAAAwQQAAcMEAAFzCAABwwQAAqMEAADzCAAAYQgAAQMIAAIA_AACYwgAAIMEAALZCAACQwgAAlkIAABRCAACowgAAYMEAALhBAAAYQgAAEMEAAPjBAADYwQAA4EEAADDBAACAQgAAoMEAACDCAADIQQAAVEIAADTCAAAIwgAAbEIAAHBBAACQwQAAYMEAAIzCAADgwAAAgMAAALJCAAC4wQAAbMIAAHRCAACgQQAA4MEAAHzCAAAAAAAABMIAABDBAACYwQAAfEIAAMhBAABAwQAAyMEAALrCAADwQQAAcEIAACTCAACowQAAEMEAAEjCAACgQAAAiMEAABDCAAB4wgAASEIAAFBBAACAwQAARMIAAPjBAADIwQAACMIAAGDBAABAwAAAWEIAAKhBAAAYwgAAGEIAAPDBAAA8wgAAwMIAAAxCAABgQQAAwMAAAMBAAACYwQAAgMIAAIBAAACSQgAAgMAAAADBAADIQQAAMEEAAMBAAAAQwQAAMEEAACBBAABwwQAAuMIAAADBAABMQgAA0EEAAHhCAABQwgAAyMEAAIDAAAAIQgAAUEEAAADCAAA4QgAADMIAANjBAAC4QQAA4EEAAKDAAACwQQAAoEEAAEjCAABAQAAAjEIAADRCAAAAwQAAIMIAADDBAAAAwQAAcEIAABzCAAAMwgAAcEEAAIBAAACoQQAAiMEAAHDBAAAQwQAAAMEAAABAAADIQQAAAEAAAODAAACcwgAAQMIgADgTQAlIdVABKo8CEAAagAIAAIa-AAA8vgAATD4AADA9AACuvgAAVD4AAJa-AAC-vgAAuL0AAOg9AAA8PgAA6L0AACQ-AAD4PQAAQLwAAFS-AACCPgAAiL0AAHA9AAA8PgAAfz8AAFA9AACgvAAAjj4AACy-AABwvQAAUL0AABy-AAAEPgAAND4AAIC7AAC4PQAAPL4AAOg9AABAvAAAoDwAAEQ-AABEvgAAFL4AAHS-AAC-vgAAyL0AAJg9AABAPAAA4LwAAKC8AAAQPQAAED0AAEy-AAB0vgAAED0AACy-AACePgAARD4AAIa-AACAOwAAST8AAKA8AAAMPgAAVD4AAOi9AAAMvgAAqD0AAHC9IAA4E0AJSHxQASqPAhABGoACAACovQAA-L0AAAw-AAAdvwAAqD0AAKA8AABUvgAAFD4AABC9AABcPgAAnr4AAPi9AACqPgAAuL0AAI6-AAAwvQAAmL0AAEM_AABwvQAA2D0AAFA9AAAEvgAAnj4AAAS-AADIPQAA4DwAAPg9AAA0PgAALD4AANg9AADgPAAADD4AADy-AAC4PQAARL4AAAy-AADePgAAqj4AACS-AAAMvgAAzj4AAEy-AACAOwAA2L0AAEA8AABwvQAAf78AAFQ-AABMvgAAwj4AAOA8AADgvAAAhj4AAEQ-AAAEvgAAED0AADC9AAAUPgAA-L0AAMi9AAC4PQAALL4AAHS-AABEviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ESQvS3Bbqi8","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8864193332842948797"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1501226271627675557":{"videoId":"1501226271627675557","docid":"34-4-5-Z19C81B7ADE0294B7","description":"We present two simple but interesting examples about how to calculate the basis and dimension of a subspace that’s given by its Cartesian equations.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3148725/a650942df34f8ccc0f22bc944dbd8a2f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/T3jvPQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmGQfz0YWoW0","linkTemplate":"/video/preview/1501226271627675557?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Basis and dimension of a subspace given its Cartesian equations","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mGQfz0YWoW0\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoVChMxNTAxMjI2MjcxNjI3Njc1NTU3WhMxNTAxMjI2MjcxNjI3Njc1NTU3aoQJEgEwGAAiRRoxAAoqaGh0aGZmYXhoemFzb3VoZGhoVUNvY3hGS0gxemx6eWEtcVFUZVUyWWhREgIAEioQwg8PGg8_E5MDggQkAYAEKyqLARABGniB9_78AP4DAAv9-AX6B_4BAQj-CPj-_gDxAfcCBwH_APcI_AEAAAAAAQz7_QUAAADy-Pb8-gAAABUJ_f8EAAAAB_EBBAEAAAAJB_z3Cf8BAfcEAvgCAAAACgoE-_8AAAD5Bf74_gAAAPMQ8wgAAAAAEwH5AAAAAAAgAC0AU9s7OBNACUhOUAIqhAIQABrwAXAYCP_j7cwBxzfm_70eHACBCi3__DbQAK8YAQGw8_UA-PnZ_-UU0f4ZAOkAkC3_ARTXsAL16CgBNd3W_0je-QAJ_QAAI-8FATXsJADw6gX-3CYT__f5KgHz2bAA7APe_xYALv353fABC-m1CRD-QQEOCC4ELfz2_wPAEwDwCAn_G-3b_fgSBPsD0__56hc9AffEBAATERMF5iLnAgj_9Pv8_hD39SvqAw8H8QfiGxkA49jxDBr1_QUfJRYJ2yjj_uXvGvji8fvzC-cQ_Q0Q4vfOGeX49_LrAyQI_Ab09fEP-f4F8eIK-PTn-O4C3gj06yAALVAjDTs4E0AJSGFQAipzEAAaYBz-ADENDsL3FyzTBOvx_eUCCN4Ex_f_5twA9SMK9BQv3aXm6QAWAAjctwAAAADk3QPUAAxh0eDaDgg8-7vA5joFfxH3HuDsHubZ7_8PE_UJMg82SwDh9cIjH-XMSNAWLSAALZjMMjs4E0AJSG9QAiqPAhAAGoACAACIvQAAJL4AABQ-AACAOwAAqL0AAFA9AABsvgAA3r4AADy-AAD4PQAADD4AAAS-AABcPgAAbD4AAES-AABkvgAAgj4AABA9AABAPAAAPD4AAH8_AABwPQAAUL0AABw-AACgvAAAEL0AAOg9AAAUvgAAjj4AAAw-AABAvAAAgDsAAAy-AACIPQAAqL0AAJg9AABMPgAARL4AAMi9AAC-vgAAur4AAPg9AAAEPgAAcD0AAAS-AAAEvgAAgDsAAKg9AAAkvgAAqL0AAKg9AAAQvQAAbD4AAAw-AABkvgAAEL0AACM_AABwPQAADD4AAKA8AAA0vgAAEL0AAAw-AABcviAAOBNACUh8UAEqjwIQARqAAgAAML0AAEC8AACYPQAALb8AALi9AACovQAA-D0AAIi9AAC4PQAAmj4AABS-AAC4vQAAJD4AAIC7AACgvAAAyL0AAKi9AAArPwAAmL0AAI4-AAA0vgAAqr4AAJg9AACgvAAAqD0AAIi9AABEPgAAmD0AAIY-AADgPAAA6L0AAEQ-AAB8vgAAML0AAES-AAAwPQAAyj4AALI-AADIvQAAPL4AAEQ-AABAvAAAmL0AAOC8AAAMPgAAEL0AAH-_AAAMPgAA4DwAAHQ-AACAOwAA2L0AAAQ-AADYPQAAgr4AAKg9AADgPAAAuD0AAKi9AABwPQAAgj4AABy-AAAsvgAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=mGQfz0YWoW0","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1501226271627675557"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17368565127022310986":{"videoId":"17368565127022310986","docid":"34-8-10-ZF402017C3CA0F5C2","description":"Linear Algebra Pt.5 0:00 What does Span mean? 0:28 Why is Span a Subspace? 1:56 Why is Span the Smallest Subspace? 3:22 When are 2 Spans Equal? (featuring crazy add... 3. Extra Vector Space...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3472888/dbb2ba37d70c0f9bc92b36ce387b31de/564x318_1"},"target":"_self","position":"14","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTjhLGIuXiac","linkTemplate":"/video/preview/17368565127022310986?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Span! Why is it the smallest subspace? When are 2 spans equal?","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=TjhLGIuXiac\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoWChQxNzM2ODU2NTEyNzAyMjMxMDk4NloUMTczNjg1NjUxMjcwMjIzMTA5ODZqrw0SATAYACJFGjEACipoaGZxZHZnZ2Zzb3ZxY3NiaGhVQzltbWJtQU9nYnFiSEVZcmRqTHh0WVESAgASKhDCDw8aDz8TpgWCBCQBgAQrKosBEAEaeIEW9gL3BvoA_-wDCvoJ_AP0Fv4B-P39AOEB9v8K_AIA8wH1BQIAAAACAQX7CwAAAPX9_v78_wAAF_oCDQMAAAAA8AAB-AAAAAoH8vX_AQAA9_fp_QP_AAARBPjx_wAAAOMLCQf_AP8A8RLxCQAAAAAK9_kTAAAAACAALU_txTs4E0AJSE5QAipzEAAaYBwgACMtGN3eCmC9_EIEFdwKOPDE2O3_EPX_NQzS9PpA77IDF_8Zqx3dpgAAADPc7CjhAO5_M9W6LwQuE7P8BFcifrb52iorBtv19RIIGv5CzNTyIwCvG8ohD-MBTrkkNSAALWiPFDs4E0AJSG9QAiqvBhAMGqAGAAAwQgAALMIAAGBBAAAAwAAAyEEAACxCAACMQgAAAEEAAIBAAADAwAAA8EEAALbCAABowgAAEMEAANhBAABkwgAAEEIAACjCAAAAQAAAYMEAAODAAAAcwgAA4MAAABhCAAC4wQAAEEIAAHjCAAAUwgAADEIAAKhBAAAAwQAAFEIAADDCAAD4wQAApMIAAIhBAABIQgAA3EIAANjBAAAQQgAAEEEAAABBAAAkQgAAgL8AACxCAACOwgAA4EAAAEhCAACYQgAABEIAAMDBAAAUwgAAMMEAAFBBAACwwQAA4EAAANDBAADgwQAAMMEAAAxCAADAwAAAmMIAAADCAACywgAAAMIAAEBAAAAwwQAAIMIAAFzCAACIwgAAdEIAAHBCAACkwgAA6MEAABRCAADYwgAAaMIAAJhBAACAwAAAQMEAAGDCAADYQQAA4EAAAChCAACAPwAAFEIAAOhBAADwQQAAUEEAAMbCAAAAwAAAsEIAABDCAAAYwgAAMMIAACDBAAAgwgAAEEEAADBCAACQQQAArMIAAGhCAAAoQgAAcMEAAI7CAACAwAAAoEEAAARCAABAwAAAtEIAACRCAAAgQQAAoMEAAOhBAABwwQAAHMIAANhBAAAIwgAAQMIAAJjBAAC4wQAAPMIAAJTCAADAwAAAYEEAADBBAADQwQAAoMAAADzCAAAkQgAAoMAAAADBAACIwQAAjEIAAKjBAABAQQAAAEAAAHDBAAAAwgAAbMIAAJDBAAAgQQAAoMEAAKDAAACgwQAAQEAAAHDCAADAQQAAgMEAAHDBAAAAwAAAwEEAAAxCAACAwQAAAEEAAKjBAAAAwAAArMIAAHzCAACIQgAAEMIAADDCAAAAAAAAmMEAAAjCAABUQgAADEIAAJhCAADwQQAAAMEAAEBBAACYQQAAAMEAAEBBAACoQQAA6MEAAFDBAABQwgAAgEIAAKBBAABswgAAEMEAAAAAAAAUQgAAaEIAADzCAAAswgAA-EEAACDCAADgwQAAGMIAAAjCAAAYQgAAAEAAAABCAAAcQgAAQMEAADRCAABQwgAATMIgADgTQAlIdVABKo8CEAAagAIAAGy-AABkvgAA6L0AAHS-AACuvgAAqD0AAPi9AABDvwAA4DwAAAw-AADYPQAAuL0AAEA8AADOPgAAjr4AAKK-AAAkPgAAQDwAAIY-AADWPgAAcT8AAHA9AAB8PgAAgDsAAHS-AABQvQAA4DwAAKg9AABAvAAAUL0AABQ-AADKvgAAQLwAAEA8AAAEvgAADL4AAEQ-AABQPQAABL4AAIA7AAAMvgAAiL0AAEw-AABwvQAAHL4AABw-AAAkPgAAFL4AAMg9AACWvgAAUD0AAKg9AACuPgAAcD0AADy-AABwvQAAfz8AAIY-AAAwvQAAQLwAADS-AABMvgAAQDwAABS-IAA4E0AJSHxQASqPAhABGoACAABQvQAAQLwAABC9AABDvwAAiL0AAFC9AAAQPQAADD4AAIK-AACAuwAAJD4AAIK-AADIvQAAir4AACQ-AAAwvQAAHD4AACc_AAAsPgAAZD4AAMi9AAB8PgAAUD0AADy-AADovQAAcL0AAMi9AACgPAAABD4AAOi9AADIPQAABD4AAFy-AACgPAAA-D0AALi9AACiPgAAXD4AANK-AAB0vgAAQDwAAMg9AACqvgAA-D0AABS-AACyPgAAf78AAJi9AAAUPgAAgDsAAFA9AACYvQAAML0AAEQ-AADoPQAAiD0AAMg9AAAwPQAAZD4AAKi9AABwPQAAcL0AADC9AACovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=TjhLGIuXiac","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17368565127022310986"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6080192297332527141":{"videoId":"6080192297332527141","docid":"34-6-9-ZF27D30EB3ABC1CBD","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3695592/55b4d5b16b13d3f52c807b4c58c3dc64/564x318_1"},"target":"_self","position":"15","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Df16rzHKxDfU","linkTemplate":"/video/preview/6080192297332527141?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Example 1: Showing a subspace using the span of vectors.","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=f16rzHKxDfU\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoVChM2MDgwMTkyMjk3MzMyNTI3MTQxWhM2MDgwMTkyMjk3MzMyNTI3MTQxaq8NEgEwGAAiRRoxAAoqaGhvandmdnFpeWlzYW1mY2hoVUNoOVlfcUNlODFJWnNGbzh6M1hnZkJBEgIAEioQwg8PGg8_E7sBggQkAYAEKyqLARABGniBBfgBA_8BAPv-Av8DBP4BGw4ABvQDAwDtCv8GCAAAAPsM_Ab5AQAABQAAAQQAAAD59gvz_P4AAAbyCQADAAAACfYABvMBAAAN_-0B_wEAAO7-9PkCAAAABAj7CgAAAAD5BgEGBAEAAPkJ-v8AAAAAC_UFDQAAAAAgAC2QK9c7OBNACUhOUAIqcxAAGmA3HQA3GhYmCQI3yO7w6yD1Hgzi39T8_xe9AOkc8-oNN-jRDMf_F7QC464AAAAn-OkRRQAbZ03owSQlGyfV-_Mb7n_7LuZBEf0OCA8hFxDoFsAL8R8AuesIAObq4FLfOyAgAC0pyis7OBNACUhvUAIqrwYQDBqgBgAAuEEAAEBBAACCQgAAwsIAAADCAAAAAAAAkEIAAODAAAAIwgAAwEAAAIDAAACgQQAAQMAAAGBBAABAQQAAIMEAAERCAACIwQAAuEEAAADCAABUwgAAZMIAAKDCAAAAQgAAeMIAAOBAAACgwQAAkMEAAEBAAABgwQAAgD8AABBCAACEwgAAUEIAAOjCAAAAAAAA0EEAALpCAADgQAAAwEEAAADAAACQwQAA2MEAAADAAABsQgAAlsIAADDBAACAQgAAAEEAAAAAAAD4wQAAiMEAACzCAABQQgAAgEEAAABBAABMwgAA6MEAADxCAABEQgAAeEIAAIrCAACwwgAAaMIAAOBAAABMwgAAgMAAAOBAAAAgQQAAgMEAAIBCAABgQgAAjMIAAAAAAACAwgAA4MAAAPjBAAAQwgAAcEEAAGBBAACYwQAA_kIAAKjBAAD4QQAAAEAAAMhBAAAAAAAATMIAACxCAADgQQAAiMEAAARCAAA4wgAAGEIAANBBAAB0wgAAcMEAAATCAACaQgAACEIAAGDBAADAQAAAWEIAAJDBAABAwgAAyEEAAHDBAABQQgAAAEAAAFBCAACIQQAACEIAAOjBAABAQAAAUEEAADxCAABEQgAAYMEAAAAAAADIwQAAlMIAAOjBAAAAQQAACEIAADzCAACAvwAAEMEAACDCAABgQgAAwMEAAJDBAABowgAAyEEAAGhCAACgwQAAmEEAAPBBAAAQQgAAqMEAAIC_AACowQAAcMEAADxCAACuwgAAoEAAACxCAACAwQAAcEEAAIBAAABAQAAAZMIAADRCAAAIwgAAMEEAAAxCAACwQQAAjMIAAMhBAAAowgAACMIAABzCAACYQQAAsEEAAODBAABQQQAAJMIAAIBAAADGQgAAgEIAAODBAACoQQAAWEIAACTCAACYwQAASMIAAPDBAAAAwAAAQMEAAFBBAABkQgAAqsIAACDCAAAQwQAAoMEAAHBBAADIwQAAsMEAAKDBAAC4QQAAwMEAAGRCAAAEwgAAMEEAAKjBAACAvwAAjEIAAADAAACwQQAA0EEAACBBIAA4E0AJSHVQASqPAhAAGoACAACoPQAAqL0AABw-AABwvQAA5r4AADQ-AABQPQAABb8AACS-AAAcPgAAUL0AAKi9AADYPQAAPD4AAFy-AADgvAAAML0AALg9AAAQPQAAsj4AAH8_AAD4PQAABD4AAHQ-AACOvgAA4DwAAOA8AADIvQAAFL4AALg9AAAwPQAAuD0AAIA7AAAUPgAAHL4AAAQ-AAC6PgAA2r4AAGS-AAAkvgAAqr4AAKK-AACgvAAAEL0AAFC9AADgvAAAhr4AAPi9AABsvgAAnr4AANY-AAAwvQAAZD4AAPg9AABkvgAAUL0AAG8_AACYPQAAED0AAIY-AACAuwAADL4AAAQ-AACAOyAAOBNACUh8UAEqjwIQARqAAgAAiL0AAPi9AABAvAAAN78AABA9AABAPAAAUL0AABA9AAAUvgAABD4AAIi9AAAEvgAAQLwAAES-AADgvAAA2L0AABC9AAATPwAAEL0AAEQ-AADIvQAAmD0AACw-AADYvQAA4LwAAKC8AAD4vQAAQDwAAEw-AACgPAAAiD0AACQ-AAAcvgAAiL0AAIA7AACIvQAAsj4AAJY-AABcvgAAgLsAAFQ-AABAvAAAXL4AAKg9AADovQAAoDwAAH-_AAAEPgAA6D0AAIY-AACIPQAAdL4AACw-AAA0PgAAqD0AAOA8AABQPQAAuL0AACS-AADYvQAA4DwAAJg9AACAuwAAmL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=f16rzHKxDfU","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["6080192297332527141"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15975269254794390257":{"videoId":"15975269254794390257","docid":"34-3-11-ZC649DF463AFA026E","description":"Algebra 1M - international Course no. 104016 Dr. Aviv Censor Technion - International school of engineering...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1024343/98ffb5c0c380132948ed0abe462407ea/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lN26ugAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRcj1-E3SAhs","linkTemplate":"/video/preview/15975269254794390257?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"24 - Intersections and sums of subspaces","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Rcj1-E3SAhs\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoWChQxNTk3NTI2OTI1NDc5NDM5MDI1N1oUMTU5NzUyNjkyNTQ3OTQzOTAyNTdqiBcSATAYACJFGjEACipoaGhpc3Bhcm56cHVucXBjaGhVQzRfaTdjWU1kTTBNa1AtMnl3VmxoS1ESAgASKhDCDw8aDz8T2AyCBCQBgAQrKosBEAEaeIH8-AYLAQAABvMIAgQI_QICDAD_9___AO0K8AAFAAAA_Qr2DAMBAAAHBf37AAAAAP7-_v_4_gAACwEA_-wA_wAS9QMHAgAAAAwO7wL_AQAA8AT6_QMAAAANAQoFAAAAAPQJ-v8DAAAA7ALuAgAAAAAI8vkCAAAAACAALbgv0zs4E0AJSE5QAiqEAhAAGvABfwgIAeUT_QHf9-z_wCsJAIUZ7gD8NNIAshcBAbj2xwAO9f8Bve7n_yb-EgDOIhMAZx7V_xnrOABN4goAMhEdANoC_AFe5uQAJxob__AE2f_QLwL-Cdr7_xXy3P_689z9_wsb_AcW5QIK6rgJLe0N_fP2FAIgGhsB6-L1Ab427AcK5en_JhvpAPny-vvqGxoBDOj9CBwYJgD09u4CCuQFAw_XDPwdG-H97AvaCO4dAfX5CB706ePw-fwlGwrP_e4EHAYiAN3ZAADuAg_5_N0LCe4JBQv8Evj9B_sOA-DbCfcIBfkJCvMA9QIC_QDp_usEIAAtjbsTOzgTQAlIYVACKs8HEAAawAeSB_K-pkALPeCDl7xayK08M9xAPZ5ilbz4gbW8A6vPPGkU97wrq4Q9aYhvPQ8JX7uWXVC-kOzbvIkopjz9vXQ-klRLvQOx7DxxPVq-5xa_PYVMqLwx6iq-unDWOkESEb122mA79tEpPXIojby-uHk7VywUvUPY-rz3VrQ9ZKAhPTKZIL0sDue9TLDTPERgFr2qGN28uAkSvQ2Qorsg6wk-xW3ZvKqZNbz98r49fnAdvLelRLwZWBe-FU0RvS4dczyAfwo-Av8qPTbVLDsDZlk9asErvT1Ij7wpD2G9QDX7O_d2y7vb2809obqpPaaIwrxlQ509dzW0vZB2Mr0_byq9UU50PRFIMrtwl509HxMZPnqtOTkY0gG-SYOrPZYmJbwSycY8Kk-FvEJDf7yR1ng9n8I2vBBJ4zyZ4mA8Nek7PTmfEzyDbNm8cFMtPazYMjh11p08f7n7PChJsrzPPpA9XPr8PCofwrzfiM69khk5vLahT7qMskg8iFZdPMgZlDyKPp89_LgHPIBsSLxE87U92NTZvTpxILzEBUC9bqPBvOS_vLvRx987M92rPJdDAbwVkFY9v16Wvd1DwrtcTBq8bXuxvP0RK7yxKQE9K3KjvLYiezwcfQy94WzpPBlrhzvYv8a8xN5VPH_xMby_rza83CfsPEBpyTvQTye9d6KEvaH3hDr44us9fJVBPUX-srqwz7m7_CqKPLDA_Lpp5NM9ydK9vFKwBrgqWSm8m1RUvW8d0jusQqm932IvPakHD7QqVAc-nLvCPCsnKDj4-4W8e09APA9nDTqDSZa8rRQEPC2IszlNx1K8BOx-vDKGpDqycp68eSWkvFmLS7kWXjO9-MhBPDruh7l9BUk9C3-ju6sIo7g-H8q8dVwIPaZ7NLkbWi69GB4gvcY-VLcUfK49K8KNPeBkZTjjTDg8PxcyPOL-AbqNDqc7BUOpu9A4MbnAzeI9Nt9SvJ5vHDnAlYm6RGN3vV7cFbjEVjU9eWHGPbbmLrg_yXg8ngG_PXtAh7Yhio49o6OHuwCvjbeHRVY902Wmvb8o9DamLhS9J-5CPbpoCbdKUai9Y27tPPsFPjgqWPe4rAk4vbZyazdLj7s9Qj4IvTxjfDiqaaK9JG_vOxZGoziSXRk-2U9QvazCP7mPFPi7W9_BvS3vdbjDJv23s0OMvU2KDjeZn4u969oovG4VRDcd4ww8Z0bfvWlQErjK9HA9IuErPvHLijiYk2U7gAvSPZjkD7l9iYK9tN40PUVhPTjUepS9KQnpva3LaDcgADgTQAlIbVABKnMQABpgQ_gAHfAa1QvLK-wX3tkT7u_13-PaA__2tf_qJOoBAUXWrhfaABrnI9GkAAAALe379t4A4n8NttopBGQu67D3NfN_5gwQyNUcKMEN2RrlGCYm8gBEAO77nzQjzdNB7F0-IAAtOSEXOzgTQAlIb1ACKq8GEAwaoAYAAMBBAACAPwAAeEIAAKDAAAAAwQAAcEEAANRCAACAwAAAgL8AAJDBAAAAwQAAgL8AAMjBAACYQQAAoEEAAJjBAAB4QgAAgEEAACBCAAAQwgAAAAAAAPjBAAAkwgAAJEIAADBBAABAwAAAiMEAAAAAAAAUQgAAJEIAADzCAADAwAAAgMAAAJBBAADAwgAAYMEAAFBBAAAwQgAAiEEAADBCAAAQwQAAoEEAAIC_AACIwQAALEIAAKDBAABAQAAAAAAAAJBCAABAQAAA0MEAAJDBAAAYwgAAJEIAALBBAAAUwgAAtMIAACRCAAAwQQAAEEIAAABAAADgwQAAgsIAADTCAACIwQAAeMIAAMjBAADKwgAAXMIAAKDBAABoQgAAGEIAAPDBAABQQQAAIEEAALDCAAC4wgAAJMIAAIBBAAAgQQAAWMIAAOBBAACgwAAAAEAAAAhCAACSQgAATMIAABTCAADgQQAA4MAAAMBAAACgQQAAMEEAACTCAAA0QgAArMIAAIBBAAAAQQAAWEIAAHBCAAAIwgAAEEIAAFBCAACUwgAABMIAAChCAAAwwQAAbEIAAPjBAADYQgAAkkIAABBCAAC4QQAAmMEAAKBBAABYQgAAwMEAAGDBAABAwQAAmMIAAKBBAADAwAAA6EEAAJzCAABAwQAAQMAAAODBAACSwgAADMIAAEBBAADgQQAA8MEAAKDAAADKQgAAuEEAAIDAAACwQQAAAEIAAKDBAACywgAA-EEAAODAAACgQAAAsMEAAPBBAADgQAAAEMIAAIA_AACgwQAAQEAAACBBAADIQQAAHEIAAJjBAABQwgAARMIAAJDCAADgwAAAbMIAABBCAABYwgAAAEIAALDBAACoQQAAbEIAAHBCAAAIQgAAGEIAAHRCAAAQwgAA2MEAAMBBAABAQAAA-EEAAIC_AACoQQAAPEIAAMBBAACAwQAAgkIAAFTCAADcwgAAgMAAAKDAAAAoQgAACMIAALDBAAAYQgAAUMEAAGDBAAAAAAAAqEEAAIDAAAAAAAAAAAAAAPBBAADAwAAACEIAAODAAABkwiAAOBNACUh1UAEqjwIQABqAAgAAQLwAAEy-AACAOwAAij4AACS-AAAMPgAA2L0AAAe_AACyvgAAEL0AAIC7AABsvgAAgDsAAHw-AACKvgAALL4AAEA8AABwPQAADD4AAL4-AAB_PwAAiL0AAMi9AAAsvgAAlr4AAPi9AACgPAAAmL0AACy-AADgvAAATD4AADA9AADGvgAAUD0AANi9AADYvQAAyD0AAGS-AAC-vgAA2L0AAIq-AADovQAAMD0AAMi9AABQvQAATL4AADQ-AAAUvgAAcL0AAMa-AAAwvQAAyL0AALI-AAC4PQAAJL4AAIi9AABXPwAAgLsAACQ-AADYvQAAQLwAADy-AACYvQAAfL4gADgTQAlIfFABKo8CEAEagAIAAOg9AAAUvgAAJL4AACG_AAAEvgAA2D0AAOC8AAC4PQAAgr4AAMo-AAAQPQAA6L0AABC9AACuvgAAqL0AAIA7AACoPQAALz8AAES-AAAUPgAA2L0AADQ-AAAkPgAA4LwAAPi9AABMPgAAqr4AABQ-AABwPQAA2L0AAOg9AADoPQAA6L0AADy-AABwPQAAJD4AAAU_AAC2PgAARL4AAFy-AADmPgAAoDwAAOq-AAAwvQAAgDsAACw-AAB_vwAAuL0AAIC7AACYPQAAHD4AABS-AAB0PgAARD4AAOA8AACgPAAAoLwAAIC7AABEvgAA6L0AADA9AACSPgAAEL0AAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Rcj1-E3SAhs","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["15975269254794390257"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9963845881789767316":{"videoId":"9963845881789767316","docid":"34-10-16-Z9618B91D698A4DCC","description":"Provided to YouTube by DistroKid Subspace Distortion (DVD Mix) · Hollie Taylor Fallen Star ℗ Silica Pillar Records Released on: 2022-07-01 Auto-generated by YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1000846/57a1f2c4ae748ef634656d0238158a9d/564x318_1"},"target":"_self","position":"17","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dzlp9maUT_Qw","linkTemplate":"/video/preview/9963845881789767316?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Subspace Distortion (DVD Mix)","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zlp9maUT_Qw\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoVChM5OTYzODQ1ODgxNzg5NzY3MzE2WhM5OTYzODQ1ODgxNzg5NzY3MzE2aq4NEgEwGAAiRBoxAAoqaGhrY2xmem5kcGt6a29kZGhoVUNEVVh0ZnFTYUNlUFJOM1M5TG8wZjVREgIAEioPwg8PGg8_E2uCBCQBgAQrKosBEAEaeIEJBQkG_gIA7P79BAEC_wAEAAAC-P_-AOEO9gQD_AIA-AD4DPoAAADoD_79-gAAAOsG_PwCAQAACvYAAfoAAAAD_QD_CvwCAA4D-P7-AQAA_gD4BgP_AAAJDPn4_wAAAPT4-AT8AP8A_gn_AwAAAAAGBgMJ_wAAACAALV2u2Ds4E0AJSE5QAipzEAAaYP8fABMSEN_sGTL4AxP4BOoFH_HX5vQACd8A6RHM7xES5ePh4ADu19rtygAAAPgJCDEbAPdCIPjTIfIj_BDtJyMFf_sYASEv-CrmIwny6_7uIQYQ-wDm5QIIFO8HHeIEESAALfX6bTs4E0AJSG9QAiqvBhAMGqAGAABAQQAAdEIAAHhCAACQQQAAYMEAAHDBAAAwQgAAQMEAAETCAAB8wgAAKEIAAIC_AAAIwgAAAAAAAGxCAAAEQgAAAEAAAIrCAAAQwgAAIEEAAKJCAAD4wQAAiMEAACBBAACOQgAALEIAAMBAAAAQwQAAGEIAALhBAAC4QQAAQMAAAILCAACUwgAAwMAAAOhBAACYwQAAdEIAAHDBAACEwgAAEMIAABRCAADwQQAAHMIAAJDBAAAMwgAAwEAAAJTCAACgQQAAiEEAABDBAAAAwQAAOMIAAOjBAAAgwQAAwEEAAADCAABIwgAA6MEAAIZCAADIwQAAoMAAAAhCAAAQwQAAmMEAAADBAACAPwAAoEEAACDBAABwQgAAUEIAAJhCAABEwgAAEEIAABDCAABQQQAA8MEAAADAAADIwQAA4MAAAMzCAADIwQAAqEEAACDBAACoQQAAsMEAAABCAAAswgAA4EAAAAhCAAD4QQAADEIAAMBAAAC2wgAANMIAANjBAAAwwQAAuEEAAEDCAACIQQAAVMIAAK5CAADwwQAATMIAAJzCAADgwAAAuMEAAFhCAADAwAAAgD8AAEDBAAAAQQAAgEAAAIDBAADQQQAAPMIAAHhCAACCwgAAKEIAAGxCAAAkwgAAmEEAAOjBAACgQAAAoMEAAIxCAABAQAAA4EEAAGDCAACmQgAAhEIAAMBAAACAPwAAoEEAAKZCAACsQgAAwEAAAMjBAADgwQAAwMAAAAAAAACsQgAADEIAAIjBAACMQgAAGEIAAARCAADoQQAAQMAAAIRCAADwQQAAzMIAABjCAAAgwQAAEMEAAJDBAAAgwQAAdMIAABBCAAAUQgAAgD8AAIC_AADwwQAAOEIAAGzCAACQwQAAlkIAABRCAADwQQAAGEIAAETCAAD4wQAA6MEAAATCAAAAQAAAkMEAAGBBAAA0wgAAgEEAADxCAADwwQAAfMIAANjBAACAPwAApEIAAHBBAABcwgAALEIAAIC_AACWwgAAPMIAANDBAAAEQgAAgL8AAAAAAABwQgAA8EEAAKhBAADAQAAADMIgADgTQAlIdVABKo8CEAAagAIAAKi9AACevgAAzj4AAOC8AADIvQAAcD0AAFy-AAAXvwAAjr4AADw-AACiPgAAJD4AAEQ-AABAPAAADD4AAOA8AABwPQAAmL0AAIi9AACSPgAAfz8AABC9AABAvAAA-D0AACw-AABMvgAAoDwAAKA8AACgPAAAJD4AAKC8AAALPwAAFL4AAHQ-AABkPgAAiL0AACQ-AAAcvgAAxr4AABC9AAC4vQAAhr4AAMi9AADoPQAAoDwAADC9AABkPgAAQLwAAFC9AAARvwAALD4AALg9AAA8PgAAXD4AABm_AACoPQAAGz8AAJI-AACiPgAATD4AAFA9AABkvgAAgLsAAOi9IAA4E0AJSHxQASqPAhABGoACAAA8PgAAEL0AAPg9AAArvwAAUD0AABA9AAAQPQAAfL4AADC9AAAJPwAAJL4AAIA7AAANPwAAhr4AANq-AACAOwAAgLsAAGU_AAAEPgAApj4AAOi9AACYvQAA3j4AAPi9AAAUvgAAyD0AAEQ-AAB0PgAAkj4AADC9AAD4PQAAmL0AAKA8AAB0vgAAmr4AAOA8AACoPQAAij4AAIA7AAAkvgAAKT8AAII-AAAQPQAAqr4AAIa-AABEPgAAf78AAES-AAD4vQAA2j4AAPg9AAAEPgAAyj4AAAw-AADgvAAAgLsAACS-AACgPAAAAb8AAOq-AACIvQAAFD4AAAS-AACqviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=zlp9maUT_Qw","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["9963845881789767316"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"14259313912225894495":{"videoId":"14259313912225894495","docid":"34-0-7-Z165D36B725393799","description":"This lecture explains the row-reduced Echelon form and its illustrative examples. Other videos @DrHarishGarg Row reduced Echelon form: • Row Reduced Echelon Form | Linear Algebra ... Rank of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4866660/4166cec93aeb4afae4d6d40e84ff6ef2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/BZ7TAQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdT0DHyE2Fz4","linkTemplate":"/video/preview/14259313912225894495?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Linear Span, Combination | Smallest Subspace | Vector Space","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dT0DHyE2Fz4\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoWChQxNDI1OTMxMzkxMjIyNTg5NDQ5NVoUMTQyNTkzMTM5MTIyMjU4OTQ0OTVqhxcSATAYACJEGjAACiloaGp1dXFrYW9iZ2JpZmtoaFVDODhyVWhmS1NhNXVMWVhqUm43SDNRURICABEqEMIPDxoPPxPOCYIEJAGABCsqiwEQARp4gf0ECQ3_AgDz9fUCBgP_ARAIAwv2AQEA7gnxAAQAAADy-PcG-wAAAA8BAPoEAAAA9_3-9fr_AAAK9gAB-gAAAATvDQD8AAAACQfz9v8BAADu_vT5AgAAAAf_-P7_AAAA-v3-AwEAAADwAgEEAAAAAAn-BAYAAAAAIAAtOO7XOzgTQAlITlACKoQCEAAa8AF_BOr_3_fpAcv31gDLIfgAqiwj__0y1ADD-yAAu_fJAO44Bv_o_gAA_Q8RAOM38gAx19L_-tECACDC9v_h8_IA6fMLADXLEAE9FQP_B-bt_rULIf4E4AwA_cnfAA4XEP_7_BIA8OzW_vb03QYj-y0BDQgqBCr8JAHj3hP94BD_--Py8P4a-P3-8N7_-uL1LgcP6-IBAAP6-L4P5gEUyuf_EOEk_So01_8kCwcN6xL-AtYE_fv8AegEFSAi_vj59PD76hj-2uHo-voFCQAa4P4B6en5ARnT-BEO_v78Ae8EB-Dt-vfLEgQC7QD4Evv4-fAgAC2uoxk7OBNACUhhUAIqzwcQABrAB2oW0L6slBk9Uw33uwoHzL1XDxS8NIUOvf2FHr4Bamo84dBbvHYaCT5bAD89pA3RvPaWYr4FeIE8eT8NvP29dD6SVEu9A7HsPHoXL74IPDA9KZ_UvBUcTr6sTcg8NZcfOyZnsj2zMQY70dObPB0A8T311RW9-Z4xvZFWRjy0jqq8lIAdvVY_wLwX-EW9O3mJu_uKmjzaKne85a3EPCDrCT7Fbdm8qpk1vFFM3rv2Ocg8Kdw8vHL-Ab30Eog89gJYvIJCyD3aE-48ItjdPLet0rx2jOu8lF5lPN8JDL3PKVA5to4evJVShj0jMcE8u2VivPBuYD1bVTu9VthnvKjIIb4CfBw96OltPCcXEz5P1XM9FamwPLDi1L11Nsk9PI5VPLNN4LyC_4w76gWCu898oz24MlI9p9BUPEIDVj3E3c88eWirOglkwDzPWXU9hWOxPP4f8Tx8_mq9XBjOvF3_KT0MtcE8P3ScvAPfvr0s3wk95_ITOzRH1j30Nja8oWc9upGLkD2K0e-6VSvZOsU1Qz34UQ2-CW8su_pYpr3LUJC9Haeuu3fc8DxG-y499g2nvPYFqT3BvNG8b3zxuzF2R706voy9sH03vAPBLT3svHK9l7hBuD2BUL3yYYE9sLGmO79rp7s6w7k81jV_vH07rru1pc49PmrhurnNr7y70EG9ogC8u9vcCD6ewsC8r0yNOswucz1QGb88Xb4aOwsk6D2rAS-97MnTOV-5GT3KwGa9UAqIO1-UhbzwtEa8bMhfuKGd0z1RgZi9l51ROZnAiD3zdt88xQeKt65u67ym8CA9C5aeuYTgpz0BaDm8B9Rsub7F4DusUxW-pozJOUX-zzyQ4707IBaNOeFrHzy-J-A8hcAhugYkRr3DV7W9CMhdN_y3_TpLL3-7aglZt0aa2D2yMwA91guQON595TtXnmy5NBGruEMVk73uHLE70kPcObwvnbyLgZ890q5sN0HxAz1xT8G91zh7ORe-eT1_VK49OTHVOJZ2ajxPR1Y9Tcw-uG2TBT2ICCk9P_UJuQacJbyMatG9-lP3N83nXD1HM5s91S0luWh1Mr5kpCg9F8pMt8J1W726MNK9NsO7tQqouz1cWqA5aasaOIEVgb1QQh-9h4kdOMKk2D02Kia9e7QtuQpcCL3iw5G9PKVYuCrrEDx_nuu8GjGFN8ya2LzjtWE9kN-htw0SRzx0fPS9VlhZuMr0cD0i4Ss-8cuKOAcLp7y9_O49g7QeueEti72bf8s65gAKOAsxTbytIee8gxjLNyAAOBNACUhtUAEqcxAAGmAdDQAH3CnjC_9I3wDqIQrHAhLE6Nf2_wqp_w0Q6_0YVNLG5fUACLEhxKYAAAAZ1v0J7ADsdPrZySoNKxjUtf1WQn-uLTntLSgD1wsVMOflKfkr4yYA8_a6NiwEvCjKEEwgAC3X6Rk7OBNACUhvUAIqrwYQDBqgBgAAUEEAACDBAABIQgAAmEEAAIjBAABYQgAAKEIAAAAAAAAowgAAwMEAADBBAABEwgAAgsIAAADBAAB8QgAAmMIAAEBCAAAUwgAA4EEAAKDBAACIwQAAQEEAAIBAAAC-QgAAOEIAAIjBAACqwgAAZMIAAGBCAACGQgAAQEAAANBBAAA0wgAA-MEAAGTCAACKwgAAgMEAAORCAAAAwAAA-EEAAKhBAADwQQAADEIAAEBAAABgQQAAYMEAABzCAABAQgAANEIAAIxCAACmwgAAgD8AADjCAABwQgAAwEAAAABBAAAowgAAgD8AAFjCAACAQAAAAEIAABzCAADgwQAAKMIAADBBAADgQAAAgL8AAITCAAAwwgAAYMEAACRCAACGQgAAPMIAALjBAAAMwgAA3MIAAITCAADgwQAAgMEAALDBAACEwgAAREIAAPhBAACAQgAA4MEAACxCAACQQQAAMEEAAIC_AACOwgAAgEEAAGRCAABAwgAAVMIAAABAAABIwgAAEMEAACxCAAAUQgAAMMEAAIrCAAAAQgAAaEIAABDBAACawgAAyEEAAERCAACEQgAAgMAAAPhBAACQQQAAQEAAAIDBAACAwAAAEEIAAEDBAADgwQAAgMEAAABBAAAswgAAgEEAAKDBAACIwQAAuMEAAKhBAADYQQAAgL8AAKBAAAAAQQAA-EEAALDBAACgwAAAgMEAAHBBAAAQQQAAAEEAADBBAAAgwgAAeMIAAHzCAACAvwAAwEAAAMBAAABgQQAAYMEAAKBBAAA8wgAA0EEAAEDAAAC4wQAAoMAAAKhBAAAoQgAAqMEAACDCAAAwwQAAoMEAABTCAABAwgAAqEIAAKjBAADYQQAAKMIAAADBAAAcwgAAREIAAIBCAACUQgAA4EAAAOjBAACoQQAATEIAACxCAAAAwQAAgMAAAHTCAAAgQQAAIMIAAEhCAABkQgAAaMIAAFDBAAAAwgAA4EEAAJBCAABEwgAAtMIAANhBAABAwQAAwMEAAFDCAAA0wgAAcMEAAIDBAADoQQAAYEIAAMDBAACAQgAA4EAAAIDAIAA4E0AJSHVQASqPAhAAGoACAADWvgAAqL0AAKg9AADYvQAAPL4AAEC8AABsPgAA8r4AAOA8AACAuwAADL4AAIi9AAAkPgAAFD4AAOi9AAAcvgAAmD0AAIC7AACCPgAAsj4AAE8_AABAPAAA4j4AAEC8AAAcvgAAgDsAABw-AAB8PgAAED0AAGQ-AABEPgAA6D0AAES-AAAMPgAAhr4AADC9AACaPgAAHL4AAFy-AABEvgAANL4AAHC9AAAEvgAAFL4AAPi9AAAcPgAAyD0AAPi9AADCvgAAFL4AAGQ-AACavgAAZD4AAJi9AAAMPgAAoDwAAH8_AACIPQAAuL0AAFA9AADovQAAhr4AAMi9AADIvSAAOBNACUh8UAEqjwIQARqAAgAAXL4AAEQ-AACIvQAAQ78AADC9AACIvQAAFL4AAMi9AACYvQAARD4AAHC9AACmvgAABL4AAHS-AABEvgAAML0AAEy-AAAzPwAAgLsAAKg9AACmPgAA4LwAAJY-AACYvQAATL4AANg9AAB0vgAAlj4AAPg9AABwvQAAXD4AADQ-AACSvgAAMD0AAOi9AAAEvgAANT8AAMg9AADCvgAAhr4AAFQ-AABAPAAAZL4AADA9AACIPQAAyj4AAH-_AACAuwAAqD0AAHw-AACgvAAAFL4AAEA8AAC2PgAADD4AAOg9AABAPAAAPD4AAOg9AADgPAAAUD0AAFC9AACAOwAAiL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=dT0DHyE2Fz4","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":690,"cratio":1.85507,"dups":["14259313912225894495"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16985229742374813300":{"videoId":"16985229742374813300","docid":"34-4-12-Z38E02E4F66BCEA82","description":"Important references: [1] Williams et al. "A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition", 2015. DOI: https://doi.org/10.1007/s00332-015-92...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/760583/f23051ca8197082351facd276a611861/564x318_1"},"target":"_self","position":"19","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DGFk8TXJ3IOc","linkTemplate":"/video/preview/16985229742374813300?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Extended Dynamic Mode Decomposition 1 - Finite dimensional subspaces (Ds4ds 8.05)","related_orig_text":"2B1M: Subspace Division - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"2B1M: Subspace Division - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=GFk8TXJ3IOc\",\"src\":\"serp\",\"rvb\":\"EqsDChM1MTY3NzA1MDQ1ODAwMDU0MDA5ChQxNzcxMDgwNjk3MjY3MTIyNzI5OQoUMTAyNjI0NzUzNzM4MDQ3NjI1MzEKEzc3OTUxMjI4MDc3NDczNDY0MDEKEjEwNDkwNTA5MTU5MTg0NTI4MwoTNjUyNjQ4MDE1MzcyNTIzNDIwNAoTODM4Mzk2ODQzMjE1MzQzMzY3OQoTNTE5NTcyNzg2NzYxOTQ2NjExNgoUMTQ1Njc0MjM5Nzg2Mjk0MjgzNTEKEzI2ODg2MTcyMjM2MzkzODk3MzMKEzg4NjQxOTMzMzI4NDI5NDg3OTcKEzE1MDEyMjYyNzE2Mjc2NzU1NTcKFDE3MzY4NTY1MTI3MDIyMzEwOTg2ChM2MDgwMTkyMjk3MzMyNTI3MTQxChQxNTk3NTI2OTI1NDc5NDM5MDI1NwoTOTk2Mzg0NTg4MTc4OTc2NzMxNgoUMTQyNTkzMTM5MTIyMjU4OTQ0OTUKFDE2OTg1MjI5NzQyMzc0ODEzMzAwChQxNTk0MzgyNzI1NzE3MDMyNzk2NQoTNDQ3MDQ4ODg3MTkwNzIxOTEwMRoWChQxNjk4NTIyOTc0MjM3NDgxMzMwMFoUMTY5ODUyMjk3NDIzNzQ4MTMzMDBqrw0SATAYACJFGjEACipoaGpqb25oenBudWplZmxjaGhVQ0U3cVVTSlRvVVFlM0JaOUVmTDV4dncSAgASKhDCDw8aDz8T-gaCBCQBgAQrKosBEAEaeIH_BPsB_gIA8fv__wgC_wAVAvzz9QICAOkB-Pv5_gEA-Pv_BQUAAAD9C_wFDAAAAPwD-fv9_gAAD_sIBAQAAAAV-QAM-QAAAPsQ-v_-AQAA-QH6-AP_AAAD-v0EAAAAAPwBAwb-_wAA-RD9BgAAAAAC-vYGAAAAACAALRPz2Ts4E0AJSE5QAipzEAAaYCT7AC7o_LPPIAfp6-3kEunvQeUD2-z_7Ar_0Tjo7f4n6KEI9v8f1gbfqQAAACcNBgYWAOdzAfqmKPs1L9zJ5voYfwQm3vUZAtm49ATJF_D7Ev0mPADZ3-QIMArMZPAsKSAALf_VKDs4E0AJSG9QAiqvBhAMGqAGAABAQAAAUEEAAGRCAACIwQAACEIAAAAAAACaQgAAoEAAAILCAADgQAAAqMEAACDCAADgwQAAcMEAAEBBAADgQAAANEIAAOjBAABQwQAAVMIAAEBAAACywgAAVMIAAEhCAAAIQgAAYMEAAGDCAAAAAAAAIEIAAERCAACIQQAAgsIAAIC_AAC2QgAAmMIAAFBBAAAgQgAAbEIAANjBAACAQQAAwEEAAMDBAAAQQgAAlMIAAKDBAAAAwAAAFEIAAHBBAAAQQgAAAAAAADzCAAAAQgAAYEEAAHhCAACAvwAAMMIAABDCAAD4QQAAUMEAADhCAACwQQAAbMIAACjCAABcwgAAEMIAAJTCAADAQAAAmMIAABDBAACAPwAANEIAAFRCAAB4wgAAZEIAAKDAAAB0wgAAnMIAAAAAAAAAAAAAuMEAANTCAAD4QQAAmEEAAIrCAAAgQgAAREIAAHjCAACAwAAAfEIAAEBCAADQQQAAIEEAAIjBAACYwgAADEIAAJDBAACIQQAAYMIAAKhBAAAQwQAAVMIAAGxCAABQQQAAEMEAANjBAAAQQgAAJMIAACxCAACIwgAAhkIAAMBBAADoQQAAjkIAABBBAADgwAAArkIAAIA_AADYwQAAwEAAAETCAAD4wQAAEEIAAGTCAABAwAAAgL8AANhBAADAQAAABMIAACDCAAAwQQAAIEEAAJjBAAAAwQAAZEIAAARCAAA8wgAAIEEAABDCAACYwQAAmMIAAIjBAAAAQgAAAMAAABzCAAAgQgAA6EEAAKjBAACIQQAAJEIAAADCAAAcQgAABEIAANhBAAAswgAAAMEAAPjBAAAMwgAAAMIAAPjBAAAIQgAAKMIAAAAAAACQwQAANEIAAIRCAACAPwAAoEEAAABAAACgwAAA-MEAAIjBAACIwQAAQEEAAKhBAACgQAAAoEAAAIDAAABswgAA8EEAALBCAABAwQAA3MIAAFjCAACYwgAAsEEAADjCAACIwQAAWEIAAEDBAACIQQAAgEAAAOhBAAAAAAAAAMAAABjCAACWQgAAsMEAAAxCAAD4wQAALMIgADgTQAlIdVABKo8CEAAagAIAAJi9AAD4vQAAiD0AAIg9AADgPAAAoj4AANi9AABPvwAADb8AACS-AADoPQAAiL0AAIY-AAAQPQAAnr4AAOi9AABMPgAAUD0AAFQ-AAAnPwAAfz8AAHQ-AADoPQAAqL0AABA9AACIvQAAfD4AAFy-AAC2vgAAqL0AAJ4-AAAQPQAAyL0AADw-AADOPgAAJD4AAAQ-AABUvgAAhr4AAIa-AACWvgAAmL0AAAQ-AACgvAAAFD4AAAQ-AAAUPgAAgr4AAOC8AAAHvwAAMD0AAOi9AABQPQAAmj4AALa-AAAkvgAAMz8AALg9AAAQPQAA4DwAABA9AAB8PgAAML0AAHS-IAA4E0AJSHxQASqPAhABGoACAAA0vgAADD4AABC9AAA3vwAA-L0AADA9AAA0vgAAoDwAAGy-AADePgAAyL0AABA9AABwvQAAVL4AAIC7AACgvAAADL4AAEU_AABUPgAAvj4AAPi9AACAOwAAoDwAAMi9AAAUvgAAoLwAAKA8AAC4PQAARL4AAIA7AAAwPQAAgLsAACw-AABAvAAAuD0AABy-AAAsPgAAVD4AAJa-AADgPAAAqL0AAFA9AAAsvgAAEL0AAEC8AAD4vQAAf78AALi9AADgPAAA-D0AABQ-AAAcvgAA2D0AAGQ-AAAcPgAAgLsAAEC8AACYPQAAcL0AAOA8AAAsPgAAkj4AAJg9AADYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=GFk8TXJ3IOc","parent-reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16985229742374813300"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"5167705045800054009":{"videoId":"5167705045800054009","title":"Pulse Spectrum 104","cleanTitle":"Pulse Spectrum 104","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=PVLu2lJGHlg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PVLu2lJGHlg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDc0ljMzRPNENiT3I2WldhLUJybENnZw==","name":"2B1M: Subspace Division - Topic","isVerified":false,"subscribersCount":0,"url":"/video/search?text=2B1M%3A+Subspace+Division+-+Topic","origUrl":"http://www.youtube.com/channel/UCsIc34O4CbOr6ZWa-BrlCgg","a11yText":"2B1M: Subspace Division - Topic. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":214,"text":"3:34","a11yText":"Süre 3 dakika 34 saniye","shortText":"3 dk."},"date":"28 ağu 2025","modifyTime":1756413970000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PVLu2lJGHlg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PVLu2lJGHlg","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":214},"parentClipId":"5167705045800054009","href":"/preview/5167705045800054009?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/5167705045800054009?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17710806972671227299":{"videoId":"17710806972671227299","title":"Class 10th sub \u0007[division\u0007] \u0007[topic\u0007] Relationships with zeroes and coefficients of the Quadratic po...","cleanTitle":"Class 10th sub division topic Relationships with zeroes and coefficients of the Quadratic polynomial","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=94WMB6cdEbA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/94WMB6cdEbA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZ1dxbVVmTzJwX19Wdk9qOURXZUprUQ==","name":"MARAJ UDIN MIR","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MARAJ+UDIN+MIR","origUrl":"http://www.youtube.com/@marajudinmir4565","a11yText":"MARAJ UDIN MIR. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1022,"text":"17:02","a11yText":"Süre 17 dakika 2 saniye","shortText":"17 dk."},"date":"24 nis 2020","modifyTime":1587686400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/94WMB6cdEbA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=94WMB6cdEbA","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":1022},"parentClipId":"17710806972671227299","href":"/preview/17710806972671227299?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/17710806972671227299?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10262475373804762531":{"videoId":"10262475373804762531","title":"Sacrament upon Drone","cleanTitle":"Sacrament upon Drone","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=BXR66bblvpk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/BXR66bblvpk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDT1Y5VjlySElwRUNEdlNHNFIzbXRvdw==","name":"2B1M: Techno Division - Topic","isVerified":false,"subscribersCount":0,"url":"/video/search?text=2B1M%3A+Techno+Division+-+Topic","origUrl":"http://www.youtube.com/channel/UCOV9V9rHIpECDvSG4R3mtow","a11yText":"2B1M: Techno Division - Topic. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":227,"text":"3:47","a11yText":"Süre 3 dakika 47 saniye","shortText":"3 dk."},"views":{"text":"17,7bin","a11yText":"17,7 bin izleme"},"date":"25 eyl 2025","modifyTime":1758794669000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/BXR66bblvpk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=BXR66bblvpk","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":227},"parentClipId":"10262475373804762531","href":"/preview/10262475373804762531?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/10262475373804762531?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7795122807747346401":{"videoId":"7795122807747346401","title":"\u0007[Subspace\u0007] State-Space System Identification: Derivation and Python Implementation - Control Theor...","cleanTitle":"Subspace State-Space System Identification: Derivation and Python Implementation - Control Theory","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ZET7WgJVLjA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ZET7WgJVLjA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSmI3NUZ0dDVWdWtGaW94azVPb2NGUQ==","name":"Aleksandar Haber PhD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Aleksandar+Haber+PhD","origUrl":"http://www.youtube.com/@aleksandarhaber","a11yText":"Aleksandar Haber PhD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3363,"text":"56:03","a11yText":"Süre 56 dakika 3 saniye","shortText":"56 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"10 eyl 2023","modifyTime":1694304000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ZET7WgJVLjA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ZET7WgJVLjA","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":3363},"parentClipId":"7795122807747346401","href":"/preview/7795122807747346401?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/7795122807747346401?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"104905091591845283":{"videoId":"104905091591845283","title":"Section 3.2 (1) \u0007[Subspaces\u0007]","cleanTitle":"Section 3.2 (1) Subspaces","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=EWoha9-8DWQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/EWoha9-8DWQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZTFheXBfZmhJLTBnUUpRSHhfWW5ydw==","name":"Dr. Hagen's math videos for Davidson Academy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dr.+Hagen%27s+math+videos+for+Davidson+Academy","origUrl":"http://www.youtube.com/@dr.hagensmathvideosfordavi6818","a11yText":"Dr. Hagen's math videos for Davidson Academy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":732,"text":"12:12","a11yText":"Süre 12 dakika 12 saniye","shortText":"12 dk."},"date":"17 ağu 2021","modifyTime":1629158400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/EWoha9-8DWQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=EWoha9-8DWQ","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":732},"parentClipId":"104905091591845283","href":"/preview/104905091591845283?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/104905091591845283?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6526480153725234204":{"videoId":"6526480153725234204","title":"Lecture II \u0007[Subspaces\u0007], Basis and Dimension","cleanTitle":"Lecture II Subspaces, Basis and Dimension","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=TK7DuspVyug","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/TK7DuspVyug?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQk12ZFhYSjdCY1pjVEtHUGo5V3hLZw==","name":"CH-08:ARYABHATT [Mathematics, Physics, Chemistry]","isVerified":false,"subscribersCount":0,"url":"/video/search?text=CH-08%3AARYABHATT+%5BMathematics%2C+Physics%2C+Chemistry%5D","origUrl":"http://www.youtube.com/@ch-08aryabhattmathematicsp94","a11yText":"CH-08:ARYABHATT [Mathematics, Physics, Chemistry]. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1967,"text":"32:47","a11yText":"Süre 32 dakika 47 saniye","shortText":"32 dk."},"date":"2 eyl 2021","modifyTime":1630540800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/TK7DuspVyug?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=TK7DuspVyug","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":1967},"parentClipId":"6526480153725234204","href":"/preview/6526480153725234204?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/6526480153725234204?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8383968432153433679":{"videoId":"8383968432153433679","title":"Summary of \u0007[Subspace\u0007], Span, and Basis","cleanTitle":"Summary of Subspace, Span, and Basis","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cLD4pHmFXHI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cLD4pHmFXHI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTURDelZGczhiQXBQbVFla0dGYXpXdw==","name":"Keith Wojciechowski","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Keith+Wojciechowski","origUrl":"http://www.youtube.com/@MathKJW","a11yText":"Keith Wojciechowski. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":538,"text":"8:58","a11yText":"Süre 8 dakika 58 saniye","shortText":"8 dk."},"views":{"text":"4,3bin","a11yText":"4,3 bin izleme"},"date":"10 tem 2017","modifyTime":1499644800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cLD4pHmFXHI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cLD4pHmFXHI","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":538},"parentClipId":"8383968432153433679","href":"/preview/8383968432153433679?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/8383968432153433679?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5195727867619466116":{"videoId":"5195727867619466116","title":"\u0007[Subspaces\u0007] and Span","cleanTitle":"Subspaces and Span","host":{"title":"YouTube","href":"http://www.youtube.com/live/tM4TDL9Hj8U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tM4TDL9Hj8U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMGNkXy1lNDloWnBXTEgzVUl3b1dSQQ==","name":"Professor Dave Explains","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Professor+Dave+Explains","origUrl":"http://www.youtube.com/@ProfessorDaveExplains","a11yText":"Professor Dave Explains. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":349,"text":"5:49","a11yText":"Süre 5 dakika 49 saniye","shortText":"5 dk."},"views":{"text":"523bin","a11yText":"523 bin izleme"},"date":"26 mar 2019","modifyTime":1553558400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tM4TDL9Hj8U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tM4TDL9Hj8U","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":349},"parentClipId":"5195727867619466116","href":"/preview/5195727867619466116?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/5195727867619466116?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14567423978629428351":{"videoId":"14567423978629428351","title":"Prove that intersection of two \u0007[subspaces\u0007] of a vector space is a \u0007[subspace\u0007]| \u0007[Subspace\u0007]|In Hi...","cleanTitle":"Prove that intersection of two subspaces of a vector space is a subspace| Subspace|In Hindi","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0IjJsC3hKgU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0IjJsC3hKgU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDc3pQdjJWazFIU0k4aVJMbldtQzVUZw==","name":"Shende Sir Maths Solution","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Shende+Sir+Maths+Solution","origUrl":"http://www.youtube.com/@ShendeSirMathsSolution","a11yText":"Shende Sir Maths Solution. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":560,"text":"9:20","a11yText":"Süre 9 dakika 20 saniye","shortText":"9 dk."},"views":{"text":"1bin","a11yText":"1 bin izleme"},"date":"23 oca 2022","modifyTime":1642896000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0IjJsC3hKgU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0IjJsC3hKgU","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":560},"parentClipId":"14567423978629428351","href":"/preview/14567423978629428351?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/14567423978629428351?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2688617223639389733":{"videoId":"2688617223639389733","title":"Prove that the intersection of two \u0007[subspaces\u0007] is a \u0007[subspace\u0007]","cleanTitle":"Prove that the intersection of two subspaces is a subspace","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8CXyi21zgPg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8CXyi21zgPg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbWw2cjVjaElKMV9aUGV2bjNwdUFTZw==","name":"Cesare Spinoso","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Cesare+Spinoso","origUrl":"http://www.youtube.com/@cesarespinoso","a11yText":"Cesare Spinoso. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1063,"text":"17:43","a11yText":"Süre 17 dakika 43 saniye","shortText":"17 dk."},"views":{"text":"3bin","a11yText":"3 bin izleme"},"date":"26 ara 2017","modifyTime":1514246400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8CXyi21zgPg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8CXyi21zgPg","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":1063},"parentClipId":"2688617223639389733","href":"/preview/2688617223639389733?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/2688617223639389733?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8864193332842948797":{"videoId":"8864193332842948797","title":"The basis and dimension of a \u0007[subspace\u0007]. Vector spaces","cleanTitle":"The basis and dimension of a subspace. Vector spaces","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ESQvS3Bbqi8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ESQvS3Bbqi8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb2N4RktIMXpsenlhLXFRVGVVMlloUQ==","name":"discovermaths","isVerified":false,"subscribersCount":0,"url":"/video/search?text=discovermaths","origUrl":"http://www.youtube.com/channel/UCocxFKH1zlzya-qQTeU2YhQ","a11yText":"discovermaths. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":312,"text":"5:12","a11yText":"Süre 5 dakika 12 saniye","shortText":"5 dk."},"views":{"text":"4,7bin","a11yText":"4,7 bin izleme"},"date":"6 eyl 2020","modifyTime":1599350400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ESQvS3Bbqi8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ESQvS3Bbqi8","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":312},"parentClipId":"8864193332842948797","href":"/preview/8864193332842948797?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/8864193332842948797?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1501226271627675557":{"videoId":"1501226271627675557","title":"Basis and dimension of a \u0007[subspace\u0007] given its Cartesian equations","cleanTitle":"Basis and dimension of a subspace given its Cartesian equations","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mGQfz0YWoW0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mGQfz0YWoW0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb2N4RktIMXpsenlhLXFRVGVVMlloUQ==","name":"discovermaths","isVerified":false,"subscribersCount":0,"url":"/video/search?text=discovermaths","origUrl":"http://www.youtube.com/@discovermaths","a11yText":"discovermaths. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":403,"text":"6:43","a11yText":"Süre 6 dakika 43 saniye","shortText":"6 dk."},"date":"18 eki 2020","modifyTime":1602979200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mGQfz0YWoW0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mGQfz0YWoW0","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":403},"parentClipId":"1501226271627675557","href":"/preview/1501226271627675557?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/1501226271627675557?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17368565127022310986":{"videoId":"17368565127022310986","title":"Span! Why is it the smallest \u0007[subspace\u0007]? When are 2 spans equal?","cleanTitle":"Span! Why is it the smallest subspace? When are 2 spans equal?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=TjhLGIuXiac","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/TjhLGIuXiac?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOW1tYm1BT2dicWJIRVlyZGpMeHRZUQ==","name":"Learning with Leanne","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Learning+with+Leanne","origUrl":"http://www.youtube.com/@LearningwithLeanne","a11yText":"Learning with Leanne. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":678,"text":"11:18","a11yText":"Süre 11 dakika 18 saniye","shortText":"11 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"20 nis 2023","modifyTime":1681948800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/TjhLGIuXiac?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=TjhLGIuXiac","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":678},"parentClipId":"17368565127022310986","href":"/preview/17368565127022310986?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/17368565127022310986?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6080192297332527141":{"videoId":"6080192297332527141","title":"Example 1: Showing a \u0007[subspace\u0007] using the span of vectors.","cleanTitle":"Example 1: Showing a subspace using the span of vectors.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=f16rzHKxDfU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/f16rzHKxDfU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaDlZX3FDZTgxSVpzRm84ejNYZ2ZCQQ==","name":"Doctrina","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Doctrina","origUrl":"http://www.youtube.com/@DoctrinaMathVideos","a11yText":"Doctrina. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":187,"text":"3:07","a11yText":"Süre 3 dakika 7 saniye","shortText":"3 dk."},"date":"11 eki 2020","modifyTime":1602374400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/f16rzHKxDfU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=f16rzHKxDfU","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":187},"parentClipId":"6080192297332527141","href":"/preview/6080192297332527141?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/6080192297332527141?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15975269254794390257":{"videoId":"15975269254794390257","title":"24 - Intersections and sums of \u0007[subspaces\u0007]","cleanTitle":"24 - Intersections and sums of subspaces","host":{"title":"YouTube","href":"http://www.youtube.com/live/Rcj1-E3SAhs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Rcj1-E3SAhs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNF9pN2NZTWRNME1rUC0yeXdWbGhLUQ==","name":"הטכניון - מכון טכנולוגי לישראל","isVerified":false,"subscribersCount":0,"url":"/video/search?text=%D7%94%D7%98%D7%9B%D7%A0%D7%99%D7%95%D7%9F+-+%D7%9E%D7%9B%D7%95%D7%9F+%D7%98%D7%9B%D7%A0%D7%95%D7%9C%D7%95%D7%92%D7%99+%D7%9C%D7%99%D7%A9%D7%A8%D7%90%D7%9C","origUrl":"http://www.youtube.com/@technion.israel","a11yText":"הטכניון - מכון טכנולוגי לישראל. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1624,"text":"27:04","a11yText":"Süre 27 dakika 4 saniye","shortText":"27 dk."},"views":{"text":"72,4bin","a11yText":"72,4 bin izleme"},"date":"23 kas 2015","modifyTime":1448236800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Rcj1-E3SAhs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Rcj1-E3SAhs","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":1624},"parentClipId":"15975269254794390257","href":"/preview/15975269254794390257?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/15975269254794390257?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9963845881789767316":{"videoId":"9963845881789767316","title":"\u0007[Subspace\u0007] Distortion (DVD Mix)","cleanTitle":"Subspace Distortion (DVD Mix)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zlp9maUT_Qw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zlp9maUT_Qw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRFVYdGZxU2FDZVBSTjNTOUxvMGY1UQ==","name":"Hollie Taylor - Topic","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Hollie+Taylor+-+Topic","origUrl":"http://www.youtube.com/channel/UCVat82bMvCn0g23pvMgqtAw","a11yText":"Hollie Taylor - Topic. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":107,"text":"1:47","a11yText":"Süre 1 dakika 47 saniye","shortText":"1 dk."},"views":{"text":"4bin","a11yText":"4 bin izleme"},"date":"27 oca 2023","modifyTime":1674775172000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zlp9maUT_Qw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zlp9maUT_Qw","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":107},"parentClipId":"9963845881789767316","href":"/preview/9963845881789767316?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/9963845881789767316?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14259313912225894495":{"videoId":"14259313912225894495","title":"Linear Span, Combination | Smallest \u0007[Subspace\u0007] | Vector Space","cleanTitle":"Linear Span, Combination | Smallest Subspace | Vector Space","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dT0DHyE2Fz4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dT0DHyE2Fz4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDODhyVWhmS1NhNXVMWVhqUm43SDNRUQ==","name":"Dr. Harish Garg","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dr.+Harish+Garg","origUrl":"http://www.youtube.com/@DrHarishGarg","a11yText":"Dr. Harish Garg. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1230,"text":"20:30","a11yText":"Süre 20 dakika 30 saniye","shortText":"20 dk."},"views":{"text":"46,3bin","a11yText":"46,3 bin izleme"},"date":"2 mayıs 2022","modifyTime":1651500278000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dT0DHyE2Fz4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dT0DHyE2Fz4","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":1230},"parentClipId":"14259313912225894495","href":"/preview/14259313912225894495?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/14259313912225894495?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16985229742374813300":{"videoId":"16985229742374813300","title":"Extended Dynamic Mode Decomposition 1 - Finite dimensional \u0007[subspaces\u0007] (Ds4ds 8.05)","cleanTitle":"Extended Dynamic Mode Decomposition 1 - Finite dimensional subspaces (Ds4ds 8.05)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=GFk8TXJ3IOc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/GFk8TXJ3IOc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRTdxVVNKVG9VUWUzQlo5RWZMNXh2dw==","name":"Data Science for Dynamical Systems (DS4DS)","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Data+Science+for+Dynamical+Systems+%28DS4DS%29","origUrl":"http://www.youtube.com/@DataScience4DynamicalSystems","a11yText":"Data Science for Dynamical Systems (DS4DS). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":890,"text":"14:50","a11yText":"Süre 14 dakika 50 saniye","shortText":"14 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"2 tem 2024","modifyTime":1719878400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/GFk8TXJ3IOc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=GFk8TXJ3IOc","reqid":"1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL","duration":890},"parentClipId":"16985229742374813300","href":"/preview/16985229742374813300?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","rawHref":"/video/preview/16985229742374813300?parent-reqid=1765236612691612-655638940122510377-balancer-l7leveler-kubr-yp-sas-206-BAL&text=2B1M%3A+Subspace+Division+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"6556389401225103777206","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"2B1M: Subspace Division - Topic","queryUriEscaped":"2B1M%3A%20Subspace%20Division%20-%20Topic","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}