{"pages":{"search":{"query":"6sin","originalQuery":"6sin","serpid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","parentReqid":"","serpItems":[{"id":"10136284155863276293-0-0","type":"videoSnippet","props":{"videoId":"10136284155863276293"},"curPage":0},{"id":"11480459098036203019-0-1","type":"videoSnippet","props":{"videoId":"11480459098036203019"},"curPage":0},{"id":"7825432348471234761-0-2","type":"videoSnippet","props":{"videoId":"7825432348471234761"},"curPage":0},{"id":"17068200133100701957-0-3","type":"videoSnippet","props":{"videoId":"17068200133100701957"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dDZzaW4K","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","ui":"desktop","yuid":"7442728511769556122"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"11984091205286355336-0-5","type":"videoSnippet","props":{"videoId":"11984091205286355336"},"curPage":0},{"id":"15554430983713316380-0-6","type":"videoSnippet","props":{"videoId":"15554430983713316380"},"curPage":0},{"id":"12656047934986159189-0-7","type":"videoSnippet","props":{"videoId":"12656047934986159189"},"curPage":0},{"id":"1735340823335824392-0-8","type":"videoSnippet","props":{"videoId":"1735340823335824392"},"curPage":0},{"id":"4394382289317178469-0-9","type":"videoSnippet","props":{"videoId":"4394382289317178469"},"curPage":0},{"id":"12085514649226199707-0-10","type":"videoSnippet","props":{"videoId":"12085514649226199707"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dDZzaW4K","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","ui":"desktop","yuid":"7442728511769556122"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"12869527084064335257-0-12","type":"videoSnippet","props":{"videoId":"12869527084064335257"},"curPage":0},{"id":"396828828681532378-0-13","type":"videoSnippet","props":{"videoId":"396828828681532378"},"curPage":0},{"id":"11552225514020835071-0-14","type":"videoSnippet","props":{"videoId":"11552225514020835071"},"curPage":0},{"id":"11811395714606783974-0-15","type":"videoSnippet","props":{"videoId":"11811395714606783974"},"curPage":0},{"id":"17507382255696577976-0-16","type":"videoSnippet","props":{"videoId":"17507382255696577976"},"curPage":0},{"id":"10639994337318570015-0-17","type":"videoSnippet","props":{"videoId":"10639994337318570015"},"curPage":0},{"id":"2955425740921319200-0-18","type":"videoSnippet","props":{"videoId":"2955425740921319200"},"curPage":0},{"id":"2140596872490462976-0-19","type":"videoSnippet","props":{"videoId":"2140596872490462976"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dDZzaW4K","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","ui":"desktop","yuid":"7442728511769556122"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3D6sin"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"8232958217025245339759","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455698,0,43;1472348,0,1;1466867,0,29;1405820,0,82;1457616,0,49;66286,0,19;1471964,0,90;1460710,0,27;1459297,0,86;1152685,0,81;1456929,0,41;1472031,0,38;1471624,0,66;1339938,0,63;124074,0,13;1464524,0,10;1470250,0,0;1463532,0,13;1466296,0,92;1465943,0,79;1466081,0,91;1467161,0,58;1475650,0,72;1349038,0,55;1470514,0,58;133991,0,17;1465679,0,6;1471678,0,86;1404022,0,54;1470317,0,77;663893,0,97;1470415,0,97;151171,0,80;1281084,0,42;287509,0,40;1447467,0,45;1231503,0,39;1466397,0,12"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3D6sin","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=6sin","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=6sin","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"6sin: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"6sin\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"6sin — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yc896fc722e55b79b0f6ae4dfa38ec74c","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455698,1472348,1466867,1405820,1457616,66286,1471964,1460710,1459297,1152685,1456929,1472031,1471624,1339938,124074,1464524,1470250,1463532,1466296,1465943,1466081,1467161,1475650,1349038,1470514,133991,1465679,1471678,1404022,1470317,663893,1470415,151171,1281084,287509,1447467,1231503,1466397","queryText":"6sin","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7442728511769556122","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769556126","tz":"America/Louisville","to_iso":"2026-01-27T18:22:06-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455698,1472348,1466867,1405820,1457616,66286,1471964,1460710,1459297,1152685,1456929,1472031,1471624,1339938,124074,1464524,1470250,1463532,1466296,1465943,1466081,1467161,1475650,1349038,1470514,133991,1465679,1471678,1404022,1470317,663893,1470415,151171,1281084,287509,1447467,1231503,1466397","queryText":"6sin","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7442728511769556122","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"8232958217025245339759","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":158,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7442728511769556122","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"10136284155863276293":{"videoId":"10136284155863276293","docid":"34-10-1-Z9039CC33449D9F71","description":"This video works to determine the exact value of the sine of 6 degrees. It uses the difference formula for sine and employs two values of sine that have previously been calculated from scratch in...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3922429/ab4bfb2fbbcfb6a7a7c2d4732c598db5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jLIPLgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQvbOfKoey5g","linkTemplate":"/video/preview/10136284155863276293?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Exact Value for Sine of 6 Degrees, sin(6)","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QvbOfKoey5g\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhYKFDEwMTM2Mjg0MTU1ODYzMjc2MjkzWhQxMDEzNjI4NDE1NTg2MzI3NjI5M2qIFxIBMBgAIkUaMQAKKmhobGlwbHhxdWVkZG1wb2JoaFVDbVFqZUZSRXRsSGxxS3JOa1pQaHFFdxICABIqEMIPDxoPPxPkAYIEJAGABCsqiwEQARp4gf8E-wH-AgD3-xT9_QT_Af0B9Ab4_f0A8QEC_P4BAADt_fwDBP8AAAkW_gEJAAAACPb3_vf-AAAQAwL1BAAAAAwBCwT1AAAADQf_-v4BAAAFAfj4A_8AAAf7Bwz_AAAABvr6-gEAAAAIB_bwAQAAAAf4AP4AAAAAIAAtE_PZOzgTQAlITlACKoQCEAAa8AF__x4A9vLjAcH1zwDHGgUArCX3APw7zADE9f4A6f7VANoh6QD5D-oBFfkI_98yBwAgAbsABMAY_ya39f763fkA6Pr8AQrv5gFEFjP_-dnn_v_9Rv4EvvkB_b_aAB4e2QD8FAz9GfLeAAY10QM6ziwCDwkyBDjyCwMDlwEI2e7jBunY0_33APAF_c8bALYmHAQb6u77LBv59fsE3AIBDwz6E9sq_Ak0z_0nuA7_J_EZAMUr_QL7Dvz9RRAD9dH18vTS8DQG8gX9BQkOCv41Bxn25SDR-SQK5gkX1hX64e7zBvze9-Dr8f3_5-DzD9Tw8_ggAC04HAI7OBNACUhhUAIqzwcQABrAB2oW0L6slBk9Uw33u6KY3L0hg0s7fZDIuzvHIL4vCoy8qwtTvFG7rz2ezjq8CKI4vDhpir7RDD087a59PCb_8z3xBbe9oGUnPFouW77qj5U8bmKSvPXxcL7__oC6HKZMPSLklz2qoH29hADLO-DZfj1ScU29zTdHvGGCYLtvFgo9GLptvF2psr3BnCq9PR5EvP7VQz1gPnm9fNa1PCDrCT7Fbdm8qpk1vKkVtj06vWM5vR_1Ox2tSj1iIF49ElAhvVcE3z0-fgq9M5MePZuNWr3Dd6y8swhFPA6YrL0JbG69sgyWu-oHdT2_hMQ7sdUKvdjCBz1Ex5m98juyvPmgB770Gps9L4GAO_W8Kz7NLHg8-nq-PNJXm73dSFQ9GvQtuz6bcjuwHje9-5GFuscS97p-bgg99UbzOyCihzz5pG49oEiBvC0OH7xVVi49EEIbPYbiTj2Q_nK9RqBVvFOpvjzBq4a77EOHu4cEYr03rno9_jZ6vKd6zbykwe085AIjPHmEKT0Q3xM9IGIDPSRenrti-Oi9UxhnO87yBr2QOIq9nMtDvH446D1CQIA7fH0QvHcvBz4Ie269k-Q5PCu0PTxfARa8o8SVOqX_QDzZ6rK9U5I3uhx9DL3hbOk8GWuHO9566rvMfwM9S22Qu3MHWz0DU8c9cgzBOZk20ry8Ws69GJwvOnWirj3GzZ88Ny7nu8wucz1QGb88Xb4aO5cjnz37xny9A6wSOswMm7zzwKy8ySnPO_TRlLuOUWg8jxIduB-i0T1Y-B-9edGKOOHDOz08sE29fto1Ogq_T70mHtA9gCM5uToBDztXAzm8CnQfOlxUC72cFfG93J51Oc-B5b3VaKg8FqYoObyUOj2KP8o8BSDhN2sewb3ErqK9WfgiOMQALjz-D7A8RLust4DM2Dx_6mm9LFR4ONUCAD368t08x6I3uHWkRLwS6a08FWNLuXVTbzxKvMc9GYJ_uPxWyz0IFzy9A-4DOc6vwTxJk8w930SHuFrG_LypUFg9KtoEtb87Q7yIE6M9ssdTuKr5BT0fDjK9weG_N6dtjTxo3EU94PbGuGVTzr3C6Kg8_jLoNxMpTTwv_hG9dJfbtpuvbT0z4p28V-abN4-BZj07RT29LqMjuB-fAD6k5JC9Feg6uYXeTL1UqI696srDuH0M8TwRc4S9Tb6VNyBNq73ORIc9Zzw0OA0SRzx0fPS9VlhZuCL_7D01KQU-835buO2WRjp16KQ9Cm7juH2Jgr203jQ9RWE9OL12xLwmLhE9g9slOCAAOBNACUhtUAEqcxAAGmBg_wARCSPX5xcL8f-yKujz5t_V4bAs_xTiAAXg19btNLfHHyT_FfQN5qIAAAAX7-cPvQAFe9rv6g704e0Ou6k5938b8ka_ywgP3u4yHwbXHSAQRksA2R2xQBmv6zW4TiQgAC2OvRQ7OBNACUhvUAIqrwYQDBqgBgAAIEEAAOBBAADgQAAA-MEAANhBAACgQAAAWEIAAAjCAAAkwgAAmMEAAABAAACYwgAAksIAAGjCAAAgQgAAGMIAAOBAAADAwAAAgMAAABjCAAAQwgAAAMIAAKBAAACgQQAAREIAAAjCAAAUwgAAAEAAAABBAADIQQAAUMIAAIA_AABkwgAAYEEAADzCAAAgQQAABEIAANRCAABQwgAAZEIAAJhCAAAgQQAAdEIAAHDBAABQQgAAqMEAABzCAAAMwgAAxkIAALjBAADowQAAZEIAAPBBAADgQAAA4EEAACjCAAC6wgAA4MAAAJDBAAA8QgAAMEEAAFDCAACIwQAATMIAABjCAAB0wgAAMMEAANDBAACwwQAAcMEAAHhCAABQQgAAIMIAAABCAADAQQAA2MIAAGzCAAAAwgAAgkIAACBCAAAgQQAAwMAAAAzCAABwQgAAkEEAAKDBAAD4QQAAEEIAAPBBAAAowgAA-EEAAChCAABAwAAAnsIAALBBAADwwQAAYEEAAPhBAAAQQQAAFMIAAADCAABgQQAAokIAAMbCAABAwQAAFMIAADjCAAAAQQAAoMEAAIBBAADgQQAAQEAAAIhBAAAMwgAAMEEAAIhBAACAwQAANMIAABBBAABwwgAAMMEAADDBAABAwQAADMIAAJBBAACAQQAAGMIAACBBAAAkwgAAosIAAJBBAADwQQAAIMEAAFRCAABgwQAAQMAAANBBAABgwQAAVMIAAJrCAAAUwgAAEEEAAExCAACwwQAAiEEAAFBBAABwwgAABEIAADBBAACAQQAA0MEAANBBAAA4QgAAIMEAAFBBAABAwAAAUEEAAIjCAACQwgAAOEIAADBBAAAAQAAAXMIAAEDBAACAQAAAcEIAAJRCAAAQQgAAQEIAAGBBAADQwQAA4EAAAIzCAABgQQAAsEEAAKjBAABAwgAAEMEAANBBAADAQAAAyMEAAJjCAAAcQgAAwMAAAL5CAACYwQAAisIAAOBBAADoQQAAuEEAANDBAABQwgAAmEEAANjBAABQwgAAYEEAAJrCAABAwAAAAMIAAKbCIAA4E0AJSHVQASqPAhAAGoACAADgvAAAML0AAEw-AADoPQAAoLwAAEQ-AACAuwAA0r4AAHQ-AAAQvQAAVL4AAPi9AABAPAAABD4AAIC7AAC4PQAADD4AAOC8AACWPgAAwj4AAH8_AADovQAAXD4AAGw-AADSvgAAND4AANg9AAAwPQAADD4AABA9AAAQPQAArr4AAKA8AAAUPgAAgLsAAKg9AADovQAAVL4AAKq-AACovQAAgLsAAAS-AACaPgAA2D0AAIg9AABAPAAALD4AAHS-AAAUvgAAHL4AABy-AAB8PgAALD4AAHA9AADYvQAA4DwAAAM_AACoPQAATL4AAHw-AAC4PQAAuD0AAIC7AAD4vSAAOBNACUh8UAEqjwIQARqAAgAA2L0AAGS-AACIvQAAZb8AAHC9AAAwvQAAED0AAOi9AAAQPQAAuL0AACy-AACgvAAAZL4AADC9AACIPQAAQDwAABA9AAABPwAAmL0AAM4-AADovQAA-L0AAFy-AAAQvQAAoLwAAPi9AABQPQAAmL0AAEC8AABcPgAAMD0AAHw-AABsvgAAND4AAKg9AAC4PQAAnj4AAOC8AADCvgAADL4AAOi9AADgPAAAVL4AAI4-AAAEvgAAoDwAAH-_AABwPQAA4LwAAIi9AAAkvgAAiL0AAMi9AABsPgAAjr4AAEQ-AADIPQAABD4AAI4-AAAQPQAAHD4AAES-AADovQAAQDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=QvbOfKoey5g","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1440,"cheight":1080,"cratio":1.33333,"dups":["10136284155863276293"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3639988199"},"11480459098036203019":{"videoId":"11480459098036203019","docid":"34-5-1-Z8DA7C8FDC82DA4C1","description":"Derivative of y = 6sin(6pix) using the Chain Rule If you enjoyed this video please consider liking, sharing, and subscribing. Udemy Courses Via My Website: https://mathsorcerer.com My FaceBook...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3655401/538d3fd994b7735268b34071626a7209/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/KjzDtQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9q6yL5Wz0LU","linkTemplate":"/video/preview/11480459098036203019?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative of y = 6sin(6pix) using the Chain Rule","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9q6yL5Wz0LU\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhYKFDExNDgwNDU5MDk4MDM2MjAzMDE5WhQxMTQ4MDQ1OTA5ODAzNjIwMzAxOWqHFxIBMBgAIkQaMQAKKmhoenpsYmpub211Z2hidmJoaFVDcjdsbXpJazYzUFpuQnczYmV6bC1NZxICABIqD8IPDxoPPxNdggQkAYAEKyqLARABGniB-AACBgH_APoEGQf8B_0CGQEOCvUCAgDt_Af6BwAAAPUO__4HAAAA__0QDAMAAAAA-_EN-P4AAA_9_gMEAAAACwAH_PwAAAAL_AQM_wEAAP3_AgYE_wAAAP8E-v8AAAAOCPkA__8AAPkH7f4AAAAA-vPxCAAAAAAgAC30CdA7OBNACUhOUAIqhAIQABrwAX_7EwG7HeL_CAXtAPkF9QGqCv8AJxTlAMP7HwDb8NkAMe7WAcDv6f_sBMMA1-geAAYO4f4C_R4ABwYBADfa6gAJIh0A2O4SAhH_CADVHfr_EyoQ__T1CwDo8fAB7xj7_eAe7v8U5xH86trZAPDxQgIY6w0AKLwEAQACD_zoFA8Cz97O-xsJ4v8L6v8D7BU3Afwh2QQZHgYDFSn7CR4DFwTv8Qn_Gxri_ULf7QAfEv72ChYF8fHuEAMECQwDzjIaAfP3JAIVGf76ADcA-xr29wHp6fkB3uTyCS0h_gwL3OcA-fP38eUJ-fXLJQb_ECwBESAALVwwGzs4E0AJSGFQAirPBxAAGsAHuqP3vjGDpzwifF48HeJEPEIhIj0nwLA8qp2fO4QtdryhsLW9Vu9AvgMP57yWSL080nKQvv2ufj1cEQ26v_Oou0hZN7udw-s8mGPevCahurt201e9owUIvuPh_bxEyb88Tj8Nvc2QKrwMzgC9dQzjvIqzjb0VMCY8J2GNO9lXs72zYeo6_uSZvbsELD1_Vjy5q0f1POpHeb3h7Na89gyRPcq1Mrw--xs972CKvaxUsL1iWqW8fq2mvDANAz0ydGw8D_yOPfyMKz3fIPU8_Vq9vYIDVjvXnn68D6mzPI94CTzYUvY7NuwyPQANBT3E0ju9K006PhOMFjwbOR68gBNlvciMVjp__as8Xp0DPbvR5z24EBg8Ho3ePOVNVD3sbAi8WLs3PNSk7zwgaq25ZJPcPW79TzxnMcw8qBN1vK56BrtgqdM8IaQYvUUtzbygsWU89PNQPdPAD727kq685kDPPe9IqzxRwLa8gGvCvT8qD70si3g8LQnQPfxbXT303IK8pTJFvIvIizyjpRu8Pc3NO_g7j72omDk88OXZvNdFtrwRwZ0876KaOz0w2zt7epU7bvzpPUzkrb0rc6m7-dAPvdfep7p-Wt47VK2wvS7mRz2fVlE8Qo0MPXScNj2XgRa8PdGlvVPngb1shgY7fTuuu7Wlzj0-auG6vH1RPRhBM76xnJG5ZW7-PQlCmD34BKI6IAj1PPSm5DsUMJG7AmY-vGxNCb2bqGc7mERHvZrTID0ivnq7TBOLvXI6RD3wgf857q8OPp8Skb1-0JQ5CvcKPc8GKj32rb05OhcQu1cbiDxqqfY6hfkhPcnQDL1qNvy12AKMPINozb0uJMK4_w01vM7V3jtEEIy6Prfpum0NG7ww5Uo5nOyAvV_XKj0sCPe4UBDGPIAOU70bgTW5cVAGvBUZ_b3AtzA3M-4ZvHxXTj0edQg5yy_DPCCVxbv8jkU6dNZCvYBSo7pzbma1Q7lDvXJNQb1zEHw3xFZ1vMSwKD3DFZM4vHCsvZq2r72lPtW4OAkvPbmFU7wJ-g441LpIvWqlkL0OtTa4XTvMvaHznjtM1n44a_HpvXnWJLzuL2A2EmiPu06Dvbx1Moi2nOWqOxYVsTzTVdu3XIK9PQCALT3b6iy2gKBXPVjZiL1OyYW4jxT4u1vfwb0t73W4dfX0vFnd6r0NI_E1kb8KvYMelT2LQ5E33uhePXjlhL1BUrS4VRimPW0LxT2Dx-c4RHItveH65ruyPZm4S5EMvpfimj2uTZ84vu0zPQDE_b2ozv-3IAA4E0AJSG1QASpzEAAaYCsHABQXLO3b6y3R5_XvAPnl6_3cwh7_BAQAEBf5IBX93b8d3P833QkDuQAAAB_x5fcaAAla9e7iEfIC_8MC8DYYfyn1KuHZBebK0R_kEP4E7_84NwDRBfQOHrX3E_VQESAALX0fQjs4E0AJSG9QAiqvBhAMGqAGAACIQQAA0MEAAEhCAACAwQAAWEIAANjBAACaQgAA2EEAAIrCAAD4wQAA-EEAAMDBAADAwAAAFMIAABxCAACwQQAAIEEAAABAAACgQQAAAMEAAFDBAACAvwAAIMIAAJDBAABcwgAA2EEAAMDAAADQwQAAXEIAAFBBAAAAwgAALEIAAHjCAABgwQAAWMIAAARCAAAAQAAApkIAAABBAACgwQAAYEEAAMBBAABUQgAAHMIAAOBBAABkwgAAAEAAAPjBAABoQgAAgMAAAABBAADIQQAAgD8AAKDBAAAIQgAAAEEAAKjCAACowQAAjEIAAFBCAADAwAAAIMIAAATCAACswgAAiMEAANjCAAAAwQAAAAAAAADAAACoQQAAqkIAAJZCAAB8wgAAZEIAABTCAAB8wgAAOMIAAAxCAABQwQAAmMEAAMjBAAA8QgAAyMEAAEBBAACIwQAA2EEAACRCAACIQgAAkEEAAIzCAAAswgAAkEIAAIbCAAAAAAAAkkIAANjBAAAAwAAA2EEAACBBAACgQAAAQMEAAKhBAACIQQAA4EAAAMDBAADgQAAAmMEAANBBAACwwQAADEIAAOBBAABswgAAgMAAAEzCAACEwgAAwEEAAEBBAAAEwgAAQEAAAIDBAACCwgAALMIAAATCAAA0wgAAcEEAABjCAAAUwgAAAMIAADTCAABQwgAAwEAAAOhBAACwwQAAiEIAAEBBAACiQgAAQEIAAOjBAACYQQAAsMIAAJDBAABEQgAAMEIAABDCAAAUQgAAWEIAAFTCAABkQgAA4EAAAODAAABwwQAAuMEAAAAAAAA4wgAAmEEAABTCAABgQQAAJMIAAEzCAABQQQAAlsIAAKDBAADgwQAAwMEAAMjBAAAAQQAAYEEAAI5CAAAgQgAAUEEAAMDAAACgQAAAQMEAAADCAABgwgAAAEIAAGzCAAA0wgAA2EEAACxCAAAowgAAPMIAABTCAACawgAA0EEAAOjBAAAEwgAAWEIAAOjBAADwQQAAwMAAAAzCAADQQQAAREIAAEDAAACwQgAAEMEAAIDBAABQwgAAjMIgADgTQAlIdVABKo8CEAAagAIAAHA9AABUPgAAbD4AAEC8AAD4PQAAcL0AAJo-AADivgAAfL4AAJi9AADYvQAAVL4AAFC9AAA0PgAAgDsAAOC8AABwvQAAiD0AABA9AABMPgAAfz8AAIg9AADovQAARD4AALq-AAAUvgAAcD0AAKi9AADgvAAAMD0AAIg9AADIvQAAmL0AABy-AABAPAAA2L0AABA9AADavgAARL4AAKg9AAA8vgAAuL0AAHA9AACoPQAA-L0AAAy-AAAwPQAAuL0AAKi9AAAcvgAAuD0AAEw-AABwPQAAgLsAABS-AACgvAAADT8AALg9AABwPQAAML0AAHC9AAAkPgAAmD0AAOC8IAA4E0AJSHxQASqPAhABGoACAAAMvgAAJD4AABC9AAAPvwAAQDwAAKA8AABwPQAAQLwAAIA7AAB0PgAAcL0AAOC8AABAvAAAML0AANg9AACgvAAAcD0AAB0_AACovQAAwj4AAKi9AAAQvQAAUL0AADC9AABAvAAABD4AAKg9AACAuwAAQDwAAPg9AADgvAAAqD0AAMi9AABwvQAAyL0AADA9AAAQPQAAPD4AACS-AABcvgAAcL0AANg9AAC4PQAAQLwAAOA8AAAQvQAAf78AAFA9AACAOwAAcD0AAIA7AABAPAAAgDsAADw-AABAvAAAmD0AAOA8AACYvQAAEL0AADw-AACIPQAADL4AAAQ-AABQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=9q6yL5Wz0LU","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":680,"cratio":1.88235,"dups":["11480459098036203019"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"613493785"},"7825432348471234761":{"videoId":"7825432348471234761","docid":"34-4-9-ZBBD25FDBDF40FCC0","description":"📢 Join us on telegram : https://t.me/bhannatmathsofficial Here we will learn how to find the answer to this kind of trigonometry questions. Can you find the value of sin 6 degrees or similar...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3385322/2c2d0e1b6a781a1909b3491b42a249cb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9Xn3RAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYslyVzJwUAQ","linkTemplate":"/video/preview/7825432348471234761?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to find Sin 6 degrees ?","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YslyVzJwUAQ\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhUKEzc4MjU0MzIzNDg0NzEyMzQ3NjFaEzc4MjU0MzIzNDg0NzEyMzQ3NjFqhxcSATAYACJEGjAACiloaGFqcHRoZWdkdmxlYWdoaFVDRFNQLXNaNWtobHltNE11Y0xoNzdKdxICABEqEMIPDxoPPxP9AoIEJAGABCsqiwEQARp4gfT89v4B_wD4BwwH-Af9AgEI_gj3_v4A4gH2_wr8AgDnBfoHCf8AAAIKDvwFAAAAFPD0Cfz_AgERAwL1BAAAABIFBvn4AAAAFP39_P4BAAAT-vP6A_8AABL4DAwAAAAA__j4____AAD-Dv_vAQAAAPbzBP0AAAAAIAAthUHROzgTQAlITlACKoQCEAAa8AF-9w__serQ_u0G1ADBGN3_gQot_y3_1ADGAhAAtPbEANH35QDK1QAA9PPJ_9YzMgA2087--c0CAA_T9P8B5tYA1fEKADHjAwAu2wQA-tzp_t78FP_h9OQAGPHC_x7_2P8WAC79LyQC__7kyAAiFigB-AEoBh3Z-APtyhwD50Lw_vb73ADtKA3_-uIL_tYFJAILHgEH3SgR_goX-gwd0vMIMf8e_x4d4P0aCAQEvfX7BtDtDfkSAdwB5w0mBAT96_rl7xr48-QJ_iwMEgrs8gPpB_4S_v74ARIBuP_-1_oK-PgK-f0F-f0O2PcA_gH28v0gAC1QIw07OBNACUhhUAIqzwcQABrAB3HMur7mrws6R-EhvAoHzL1XDxS8NIUOvTvHIL4vCoy8qwtTvFG7rz2ezjq8CKI4vDhpir7RDD087a59PMVY5j2qJ3O8ao18vcnuXb3ifvY8GNZIvRH8P75_YHg9EEQSvI7IJz7zRGY9sGgjvNLrBT1mg8y81SICvQnMqb1UwwO9aMMrvO56Kb7cy6e9Rn1tvBvJVLyf8TO8uXAePDPEET6PIIA9zRPbO7PNcj1B-4c8CvfKvHL-Ab30Eog89gJYvJAyEj6FlGS9mnyzPGQqs71BPjK8OsY6POj-RTwUMRY9Gr39u52ifjyXQXk66aduvGg6kD1QIEc8TmmYvCM9y7047rk83ralvKcOzTxHFlW7y56EPO_ks733kZs9zf26vBvccT3B-kS9zGJivBIUf726VvE8tDEgPSmY8T2N-wU9ciJRu3IT97ssuYo8czLMPLpjFj3k9ss8ptWMuxO8rD1wJNA9-vdPvGqTeTwyq3u6szwTPPhVWb4B2sY9ZxWROqc1E7k29ja8sNBiPAUjpT3WAju-SeWaOr-Gi72fedS8Ap-fPMPwET0sRaI9JkUWO_D5YT0UXw2-d4QRu10mubzXG5C9Gls-PG2kkTxeyHm9H6w1O5h8fb0exmQ93VACvDqQqr0LUCm9D3EevA5PrzyDNek8A_j6O-tz9T20-jS8CnJEO2j-rT15qHI9zRgLO-8rhbw_eju7OM0OO6xvMD7kns692ccruHmnpzuAilm9pglWtsyNMzyKZ5q9tbXmuDUkzj0QFVQ9qLq1t72iwDwEv5W7uXD6uQh_Fb1bRK89mIH4OP_FebtvkJq86AQ2ua4ZT7zsNkO9Gk61OQaWyDwq5Co95ZIRuRxF8TzyeYW8dh8_ucwgw73UDQS-CFOFOZObsrznpg09sSLnuEaa2D2yMwA91guQON4bqL22ZLo8O70KuXWkRLwS6a08FWNLuYK_hD0-iE49DmtHOEyoAD3H8J29_u4wORnQgzuYYMA7-brAuOhRjLxaQHI9CeW8N2CJLD0wVxA9EgwqN3WvIz6Ytd48lXb7uDhozz03dqS8K7NkuPJREL28W5k8LuxvOPCVDz1Klqg9fzjROBzZsD1AF4281CvhN_1xET2iRdY9GQbTOLEVBD7G__g7MtlTuL57ob3GtjY9GKlvtkiWQr0sEcO9wcyPuDWsvr3YEWI8JNtoOHZ-Oz3tkgK8tE1ZuFUYpj1tC8U9g8fnOJ9b5DsVIvs8CcbAuMOV2Ly_Olg8eZttuBozmb1fhN88YxgxtyAAOBNACUhtUAEqcxAAGmA__gAMGQbCyfcT3-m2Htjx7xPh7Lce_wCy_-700u8KEPm8NiQA-xn8_6sAAAAVCPn5DwAKaArj-iHZJP7npt8uAn9TDBDJwigHxtsVKgX-LTIiSSgA5hjGMCfL6x0GOTQgAC1g_SQ7OBNACUhvUAIqrwYQDBqgBgAA4EEAAGjCAACSQgAAYMIAALBBAACAwAAAoEEAAIzCAADAwgAA4MAAAARCAACAvwAAdMIAABDCAADoQQAAwMAAAIDAAABMwgAA4EEAAMDBAAAMQgAAMMIAAKDAAAAoQgAAIEIAAMhBAAAIwgAAiMEAADBBAAAUQgAAqsIAAJpCAACgQAAAiMEAAIDBAAAEQgAAcEEAAKBBAACMQgAAgMEAAIBCAAAAQgAAkEEAAOBBAADYwQAAMMEAAEDAAADAwQAAHEIAAFjCAAAAQAAATMIAAADCAABgwgAAREIAAEDAAAAgwQAAGEIAAHBCAAD4QQAArkIAADBCAADgwQAAgMAAAHDBAAAAwgAAYMEAAPjBAABowgAA4MAAABBCAADIQQAAjMIAAIBCAABAQAAAiEEAAFDBAAAgQgAAwMEAADzCAAAcwgAAoEEAAABCAACkQgAAoEEAAGhCAACwwQAAsEEAANBBAACgQAAAEMEAAFhCAACwQQAAoEAAAIBAAAC4wQAAAMIAAFxCAAAcQgAA2EEAAEDBAACkQgAAmEEAAIjCAAAYwgAAAEEAAEhCAACeQgAAqEEAAEBCAADYQQAAAMAAAEBBAAD4QQAAukIAANBBAADAwAAAGMIAAMjBAADIwQAAFEIAALLCAADAwQAAeMIAAJhBAAC2QgAACMIAAIA_AABAwgAABMIAAEDAAAAIwgAAiEEAAIZCAABwwQAAcEEAAKBAAAAAwAAA8EEAABTCAAAIQgAAuMEAALDBAAAwQQAAhkIAAJxCAABcwgAAGEIAAEDAAACwQQAAQEIAAHBBAACgQQAAkMEAAPBBAADIwQAAGEIAAO7CAACAwQAA0EIAAEjCAACYQQAAAEAAAFDBAABAwgAAKMIAADBBAAAwQQAAmEEAAIjBAADYwQAAgEAAAEBAAAAcwgAAuEEAAExCAACAwAAAnMIAAKBAAABEQgAAaMIAAODBAABAwgAA0MEAAABBAAD4wQAAiMEAAGBBAABAwQAAyEEAAJDBAACwwQAAvEIAAMBBAADAwAAAwMAAAODAAACeQgAAAMAAAGjCIAA4E0AJSHVQASqPAhAAGoACAAAEPgAAfL4AANY-AACIvQAAQDwAABQ-AACYvQAAB78AAOg9AADgPAAAqL0AANi9AAAQPQAAHD4AANi9AAD4PQAARD4AAEC8AACOPgAAsj4AAH8_AAA0vgAAXD4AAJo-AAAPvwAA4LwAAPg9AABEvgAAfD4AABw-AACIPQAAtr4AAES-AAC4PQAAoLwAABS-AABEvgAALL4AAMK-AADYvQAA6D0AALi9AABMPgAAML0AACy-AABwPQAAdD4AAIK-AACIPQAAPL4AAIa-AAAkPgAARD4AAKg9AAAEvgAAoDwAAC0_AABAvAAAkr4AAJY-AABAvAAAHD4AAEC8AABkviAAOBNACUh8UAEqjwIQARqAAgAAXL4AAHC9AADYPQAAYb8AAKi9AABMvgAA2D0AAAS-AABUPgAA-L0AAFC9AACoPQAAUL0AAKC8AADgPAAAQLwAACy-AAD6PgAABD4AAMY-AADgvAAAir4AAAS-AACovQAAcL0AALK-AAAcPgAAgLsAAPg9AAAQPQAAML0AALI-AACGvgAAXD4AADA9AACIvQAA9j4AAFC9AAC-vgAAoLwAAEy-AAC4vQAAdL4AAGw-AAAUPgAAgLsAAH-_AABEPgAAHD4AAIg9AACovQAAcL0AAES-AACWPgAAmr4AAGw-AACYPQAAcL0AAIY-AAAEPgAAXD4AAOq-AABEvgAAuD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=YslyVzJwUAQ","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7825432348471234761"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3455277298"},"17068200133100701957":{"videoId":"17068200133100701957","docid":"34-11-7-ZE347E16C8810DCB6","description":"Trigonometry Playlist: • sin(3pi/5).cos(pi/15)+cos(3pi/5).sin(pi/15... Trigonometric Identities Playlist: • (tanx-cotx)/(tan^2x-cot^2x)=sinx.cosx - Tr...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2744558/34a8d7f4005823359517445d7637a075/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qhym7QAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DObOkA9xrYjs","linkTemplate":"/video/preview/17068200133100701957?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solving Trigonometric Equations sinx=6sin(2x), How to Solve Trigonometric Equations","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ObOkA9xrYjs\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhYKFDE3MDY4MjAwMTMzMTAwNzAxOTU3WhQxNzA2ODIwMDEzMzEwMDcwMTk1N2q2DxIBMBgAIkUaMQAKKmhod215YWZjemNib3NtYWNoaFVDdUYwVWpDa0d1eXhLUHB0WHkwMFRyZxICABIqEMIPDxoPPxOzAYIEJAGABCsqiwEQARp4ge_6AQD8BQDxCAYK9wT_AQz--wj3__8A_vv99fwF_gDz-gcBBAAAAP0L_AULAAAA-vv4-gL-AAAW-Pv59AAAAAwIBgP9AAAAE_39_P4BAAD59_f9A_8AAAP0AP__AAAABQX79v7_AAD_BfYCAAAAAAj-BAYAAAAAIAAtfGXeOzgTQAlITlACKoQCEAAa8AFg21H657jOAosN5P8mHRb_-BxA_xkfvv-e3-z_9_DtAcPmDQAwCQgArxu8_pwkCwHJ5cv__9gL_zzFE__jBkEC-jDUAQTNHQN_60sEChAc_gm0C__V6fwBybHU_wf97QDQ7-38VRMb_w_-4gEvSwUCBOUZAx4SNAUVpvMHrNXjARK7xf3dVff_I8Yj_9PwRAoDIewIxAj_Cso_7wMezLwF7MMz_vE74gMs0NMARCcJAJHBE_8R-OgPATD-7NEU6ATbJDH97NMC6PjTIwDu_eYDFiDbBQjo0gUjGA4U9DYMEf2dFvnVHQ3uIPYH974cBPEgAC3K8c46OBNACUhhUAIqcxAAGmAW8QAcIvmaCxL38d3GNADs4ADh5Z8b__vL_yJKCfVGJN7xJAcAPAAF_6cAAAAS6AMSDwAcZ9HuTE4BKf6vrd44AH8S_OcU0BAkwN4kUkr7-BnNHPwADCHhDknozhcmGCsgAC0EVh07OBNACUhvUAIqrwYQDBqgBgAABEIAACBBAABwQgAAAEEAAMBCAACAvwAAPEIAAIDAAAAQwQAAgEAAACDBAACwwQAAmMEAALDBAABoQgAAkMEAAAAAAABAwQAAQMAAABzCAABAQAAAAMEAABjCAABwQQAAwEAAABBBAACCwgAADMIAAGBCAADAQQAAMEEAAMhBAADowQAAgD8AAIzCAAC4QQAACEIAAKpCAAAwwgAAXEIAAMDAAACowQAAZEIAADDCAACcQgAAgMIAANjBAAAEQgAASEIAAMBBAAA8wgAAUEIAAJBBAADgwQAAEEIAAEBAAADYwgAAgL8AABRCAABMQgAAgMAAACzCAAAEwgAAisIAAKBBAABswgAAIMEAAADCAADYwQAAuMEAAHhCAAAcQgAAKMIAALBBAACwwQAA2MIAACTCAABAwQAAHMIAAMBAAABgwQAAwEEAAATCAAAEQgAA4MAAAOBAAAAUQgAAlkIAAMBBAACGwgAAoEEAAKBCAAAQwgAAcMIAAEBBAADQwQAAQEEAAADBAAA0QgAAMMEAABTCAABgQgAAhkIAABBBAABIwgAAoMEAACzCAABQQQAAZMIAABBCAADwQQAAOMIAAKjBAAAMwgAAyMEAAHDBAACIQQAA8MEAAHjCAACIwQAAPMIAAPjBAACAwQAA2MEAAABCAACAPwAAAMEAADDBAADwwQAAPMIAABDBAACgQAAA-MEAAJJCAACgwAAAyEIAABhCAAAowgAACMIAACjCAABMwgAAMEEAAAxCAABAwQAAgD8AAADAAACEwgAAmEEAAOBBAACAQAAAEMIAABxCAADwQQAAoMEAAOBBAACgwQAAsMEAADDCAADWwgAAqEEAAIDCAAD4wQAAAMIAABDCAAAgwQAADEIAAPBBAACUQgAAKEIAABDBAABwwQAAJEIAAFDBAAAQQQAAdMIAAEDAAADgwQAAgMIAAJRCAACQwQAAcMEAAETCAACAQQAAUMEAAJpCAADowQAAuMEAAATCAACAwQAABEIAAFBBAAAYwgAASEIAAKhBAABIQgAAnkIAACDCAADowQAAIMIAAITCIAA4E0AJSHVQASqPAhAAGoACAAAMPgAAED0AAGQ-AABcvgAA6D0AAJ4-AABAvAAAVb8AAOA8AAAwPQAA-D0AAKC8AADYPQAADD4AAIK-AAC4vQAARD4AAKC8AAAEPgAAOT8AAH8_AADIvQAALD4AACw-AADgvAAAoLwAAJg9AACYvQAAXD4AABQ-AAAsPgAApr4AABC9AABwPQAALD4AACS-AAA8vgAAuL0AAMK-AACyvgAAUL0AAEC8AAD4PQAAhr4AAIK-AABAvAAAtj4AAHy-AACYvQAAJL4AAFS-AAA0vgAArj4AABw-AADGvgAAQLwAAFc_AABUvgAALL4AAOC8AAAEvgAAvj4AABA9AADYvSAAOBNACUh8UAEqjwIQARqAAgAALD4AAIg9AACAOwAAO78AAJ6-AAAQvQAAnj4AAKA8AAC4vQAA-D0AAIA7AAAkvgAAUL0AAAS-AAAkPgAAEL0AAOC8AAD6PgAAcD0AALI-AACAOwAA2L0AADy-AABQvQAADL4AADy-AADIvQAAcL0AAHC9AACAOwAAgDsAALg9AACgvAAAoLwAAEA8AAAwPQAALD4AAEw-AACKvgAAyL0AAJg9AACePgAAoLwAAOA8AABQPQAAFD4AAH-_AAAkPgAAoj4AAJa-AADoPQAAoLwAAOA8AAD4PQAAgDsAAEQ-AAAwPQAAyL0AAOA8AACIPQAAcD0AADC9AAA0vgAAMD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ObOkA9xrYjs","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":706,"cheight":480,"cratio":1.47083,"dups":["17068200133100701957"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4284174186"},"11984091205286355336":{"videoId":"11984091205286355336","docid":"34-0-0-Z464EBABDD1D69504","description":"Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Converting the polar equation r = -6sin(theta) - 6cos(theta) into rectangular form...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2864554/93ec217bf18f39e197b320d10f6c77ec/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/T0rsNAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DBFxONWCdLcw","linkTemplate":"/video/preview/11984091205286355336?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Converting the polar equation r = -6sin(theta) - 6cos(theta) into rectangular form","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=BFxONWCdLcw\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhYKFDExOTg0MDkxMjA1Mjg2MzU1MzM2WhQxMTk4NDA5MTIwNTI4NjM1NTMzNmqIFxIBMBgAIkUaMQAKKmhoenpsYmpub211Z2hidmJoaFVDcjdsbXpJazYzUFpuQnczYmV6bC1NZxICABIqEMIPDxoPPxO8AYIEJAGABCsqiwEQARp4gfYJ_vX_AQDlAAEC-wABABP2Aff2AQAABQIF-_AC_wD2ARMBAQAAAPoQBP4GAAAAAPvxDfj-AAAWBPQA9QAAAAn5E_79AAAA_v8I-P4BAADr9wL_AwAAAA0BCgUAAAAA_v_9-wIAAAADEQEIAAAAAAYDAQAAAAAAIAAtS6PSOzgTQAlITlACKoQCEAAa8AF_ERP-wQndANYFxwDcIgsCjxYN__w10QDa9PX_tvbFAADf-gDU5eEBIv4C_7QT7P838eT-BMYW_yvWDv9D3xoA-_UJACHx4AA9Ey7_DwHi_90lE_8MC_4C89myAN0u1Pz4BQn88fzh-u0DwAIm-y8B69QgAyjtAAH2u_QDxvj4B_zl3f0CEewKB8oNAeQyJAIdyiEAFhMJ-eYh6AIA-RD86eIK9BYL4gTy5RIIAQEM-NjcBAH27gQCGu8UAN_4Bwvy9icC4_L78-PiCvcc9fYByf75_gnu9QgABwcC-eLwAwv58AT09_D88xMHAsf57QMgAC0dRhA7OBNACUhhUAIqzwcQABrAB3pR475vUSC6hTJDPMl3hLrVNeQ8-_HNvF4eIb2cU-Y7KuK0PDMyGD4QNHC9fD3EPBToM77779w8WdOGvMuAMz7m0Yi9mGIzPNlDS75DknY7KX-CvW077b19uD-8GvIVPPZzNL1_vq28RjniuhGDijxGcK286z3Pu3AtbjujK4e8s1aZvFbgHDwSlkI8jBI0va3lJL18gRm9CaWvO3cx7T2PACm9dpYRPDaWKz3s7os8EilSvX3PqL322gc89EAYvFKQqTy_dwA9IRutPPRhB73DDYi9Lp2FPN8Ykr3Zv-E8AZnGO2YW4T1BtQY9E9aGvErExT2X0xS9MGOKvPmgB770Gps9L4GAOyeSfj18-Yg94HyPPBjSAb5Jg6s9liYlvLNN4LyC_4w76gWCu36h7Loe4j89CEaUPEK--LorVui8XS_yu-DsAL3gWIY8nTnaPJNSED4xJl29lbsqvPelsz1myKe8_GXBvCpZib0ldDi7prXMuqpzFj0Enio9fPTEO88DDj3feTi9Sw-3OwUjpT3WAju-SeWaOvpYpr3LUJC9Haeuu3fc8DxG-y499g2nvE7wzT1mM-e9_1cAPD-d9Tm7e0C9ybDpO8D2Qr24_mK9TfWBOFMRjb33ZFW7EJSZOq2BMr23VsU8_jD8u69meLwtN5I9nlUPO5-muzxR_LO9lwabO3Wirj3GzZ88Ny7nu8ITuj1qm-q6mQCyuk0Pbz1PRSW9qigjONkQEr1Jzei8WkKlOyrogb2cPKC9zgB1uKGd0z1RgZi9l51RObvO7TtThRU9gm-_t0oi4LyMh1I8SI2FObnSYT0u3pS9c0_dONgCjDyDaM29LiTCuPXgtD3J6nM71qQmuC666TvMeWs9HLxNOWsewb3ErqK9WfgiOJ8_yDxTLZi8V_YAuRaNsD2bkoe8nnyZOHL3Pr3_Ju883kaMuGqzOz3NkZW84GEJueMWmLzXrn8911M4OOci2TwDzPy9UknIOTdD_bvQygI9C-RAOUxKprzOZTQ8Y6OeuG2TBT2ICCk9P_UJuZ0ORzt3nwO-Q96Mt8_g3Tn6umc9CgWHuG3F_r2i1D69Gi_0uCPRsLxyU8O84xA7uM4lCzy7ZWK8gbyZtv0ZWT2n28g8O5DmN62n9j2z6pi8ezs6uVxJAb3K3tK9FyIEubvtgryX5qG9-jj_t5tLW72SPKc9bXCBOL2vBT2lSQm-rZ6FuMr0cD0i4Ss-8cuKOPCyNb1czM89DEYKua1t6r0UO788b9LjN4Rz_Lxig2W9IXoPuCAAOBNACUhtUAEqcxAAGmAe9QAPAT3qHds53R_c9S_KngvaF7ru__v3_-UXBi4p-7_E6-8AQNMo7Z0AAAAz7QQ1HQD8f7CZ-QIJ_xDEy9QvFln76gy2BRH67ub-KS3tBiD-KEsA69vIGlQRrSb7Wi8gAC2FVBk7OBNACUhvUAIqrwYQDBqgBgAAqEEAAODBAACAQgAA0MEAAJ5CAACYwQAAgEIAANDBAAD4wQAAIEEAAHDBAACgwQAAQMEAAODAAAA0QgAAAEEAAOBAAADowQAAXEIAAEDBAADYwQAAgL8AAFDBAACIQQAAQMIAABBBAAAgQQAAeMIAAHhCAADIwQAAYMEAAExCAAAIwgAAqEEAAKDBAAAUQgAAwEEAAOZCAAAwwgAAQEEAAKhBAAAQQQAAFEIAADTCAABMQgAAqMEAAFBBAAC4QQAADEIAAHDBAACQwQAAUMEAAIBAAACgQQAAOEIAAKBAAACwwgAAoMAAAFBCAACgQQAAgD8AAKDBAADQwQAAjsIAAERCAAAAwwAAEEEAAGDCAAAkwgAAUMIAAHRCAABkQgAAksIAAABBAAC4wQAAeMIAAKjBAAAAAAAAYMEAAJhBAACIQQAAUEIAADjCAACAQQAA0MEAALhBAAAgQQAAjkIAAAhCAAAAwgAA4MEAALBCAACiwgAAAMEAAMhBAACIwQAA4MEAACRCAAC4QQAAQMAAAI7CAAAwQQAAMEIAAFDBAABQQQAA-EEAABzCAADAQQAAGMIAAHBBAACOQgAA4EAAAHDBAADQQQAAVMIAAERCAACCQgAAKMIAAATCAABgwgAAbMIAAABAAAAAwQAAQEEAAEBAAABYwgAACEIAAGBBAACQwQAA2MEAADzCAACowQAACMIAAIRCAAAQQQAAhEIAAExCAAC4wQAAUMEAAGzCAAAQwQAA8MEAADRCAACgwQAAOEIAAKBBAACgwgAAIEIAADxCAACYQQAAAAAAAIhBAABQQQAAkMEAAMhBAADAQQAAmMEAAAjCAACewgAASMIAAMjCAACAQQAAisIAAEzCAACAwQAA0EEAAGTCAABwQgAAYEIAACBBAAAAwQAAFMIAAOBBAADgwQAAnsIAAAhCAAAgwQAAAMIAAChCAAAwwQAA8MEAABzCAADgQAAAkMEAANhBAAAMwgAARMIAAEzCAADYwQAAaEIAAKDBAADYwQAAwEEAANjBAACAPwAAOEIAACjCAAAwQQAAwMAAALDBIAA4E0AJSHVQASqPAhAAGoACAACIPQAAQDwAABC9AADovQAAiD0AAFQ-AACgvAAATb8AAHC9AABwvQAAJD4AABA9AACovQAAij4AALq-AACSvgAARD4AAHA9AAAQvQAA5j4AAH8_AABQvQAA4DwAABQ-AABMPgAAmD0AAKA8AADYvQAAXD4AAII-AAAMPgAAoDwAADy-AACIPQAANL4AAIC7AAAUPgAAkr4AAPK-AACuvgAAir4AAIi9AADgvAAA6D0AABA9AACmvgAAHD4AACy-AADYvQAA2L0AANg9AACovQAAZD4AAJI-AABUvgAAgDsAAB0_AABEPgAA6L0AAAw-AABQPQAA-D0AADw-AADGviAAOBNACUh8UAEqjwIQARqAAgAAuD0AAHA9AABwvQAAR78AADy-AABcvgAAlj4AAAy-AAAQPQAADD4AAAw-AAD4vQAAcL0AACS-AAC4PQAAuL0AAIC7AADqPgAAcL0AAMI-AAAMvgAATL4AACy-AACIvQAA4LwAAJg9AAAMPgAAQLwAAFQ-AAAEPgAAQDwAAHA9AACWvgAAUL0AAGy-AABEPgAAUL0AAFQ-AAAkvgAA2L0AAAQ-AABMPgAAMD0AAEw-AAAUvgAAyD0AAH-_AAAwPQAAED0AABA9AAAsvgAAUD0AAPg9AACAuwAARL4AAMg9AACAuwAAiD0AABy-AABEvgAAQLwAADC9AABwPQAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=BFxONWCdLcw","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":700,"cratio":1.82857,"dups":["11984091205286355336"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2034894549"},"15554430983713316380":{"videoId":"15554430983713316380","docid":"34-6-16-ZAFEFEAFE0EAC1B30","description":"Welcome to this informative video where we delve into the fascinating world of trigonometry and take on the task of determining the exact value of sin(6 degrees). With my clear explanations and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4407993/329c6a2c275bc6f7eadbfaa73d5dc121/564x318_1"},"target":"_self","position":"6","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4wM_JhqaZ2Y","linkTemplate":"/video/preview/15554430983713316380?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sin(6 degrees): Exact Value!","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4wM_JhqaZ2Y\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhYKFDE1NTU0NDMwOTgzNzEzMzE2MzgwWhQxNTU1NDQzMDk4MzcxMzMxNjM4MGquDRIBMBgAIkQaMAAKKWhoc2dmdWJzYnlzYXF3c2hoVUNkNFdSN0txeVpoTy1fMVJjZ24wcTV3EgIAESoQwg8PGg8_E-kHggQkAYAEKyqLARABGniB-AACBgH_AAz9BgP5Bv4BDwzyBPUAAAD1APT0AwL_APL6CAIEAAAAARkN_gIAAAD_7fUI_f0AABEDAvUEAAAADAEMBPUAAAAKB_P1_wEAAA789_ACAAAAAvYFBgAAAAAH-fr6AQAAAQUGAfUBAAAAE_sAAfz0_gAgAC30CdA7OBNACUhOUAIqcxAAGmA_IwA4Kwr-pQcX0vi4Atzo9gHvw7IP_-8OAA_T_qn1Fc7IIQ7_BOIN_a0AAAAH7Q4I9wAdaQPcrP8Z_gsTzc5EEX8xCSTr5Qna3ATyBQbSG-kKFzIAthoFF_2tIhvVZAsgAC14vCQ7OBNACUhvUAIqrwYQDBqgBgAALEIAACjCAAAgQgAAOMIAAHBCAACgwQAAsEIAAEBAAAAkwgAAQMAAAFRCAABQwQAAyMEAAIC_AACQwQAAwEEAAHRCAADQwQAAyEEAANDBAACIwQAAcMEAABTCAABQwQAAEMIAAIBAAADYwQAAwMEAAChCAADQwQAAEMIAAABAAACQwgAA4EEAAFDCAACgwAAAGEIAAABCAACgwAAA2EEAAPBBAAAwQQAAdEIAAHjCAABQQQAAsMIAAJ5CAAAoQgAAAMEAAOBAAACYwQAAmMEAABzCAABAwAAA-EEAAAhCAABwwgAAgEAAAIhBAABEQgAAQEAAADjCAAAEwgAAHMIAAMhBAADcwgAAgMAAAJjBAAAQQQAAMMEAAHRCAAAYQgAAmMIAAFBCAACAwQAAQEAAAADBAAAYQgAAkMEAAPBBAAAcwgAAmEIAAADAAAAAwQAA4EAAAJBBAABAQQAAFEIAAHBCAAAAwAAAJMIAAKBCAAB8wgAAHMIAAChCAAAEwgAAVMIAAOBBAADIQQAAbEIAAKDCAACIQQAAgMAAAABCAAA0wgAAEEIAAADBAAA0QgAAgEAAAIRCAACEQgAAmMEAAMhBAAA4QgAAEMIAAOBBAAAsQgAAVMIAAMDAAABgwQAAEMIAAETCAACAwAAAYMEAAHDCAAAwwgAAmMEAABxCAABIwgAAcEEAALDBAAAwQQAAAAAAAMJCAABgwQAAvEIAABhCAACAQQAAsMEAAMjBAACAwAAA8EEAAAhCAADYwQAAyEEAAJ5CAAAwwgAAuEEAADDBAAAAAAAA4MEAAJBBAACgQAAAwMEAADxCAAAQQQAANMIAAKDBAAB0wgAAAMEAAIjCAACQwQAAUEEAACDBAAAAAAAAMEEAAFjCAAA4QgAABEIAAGxCAADAwQAAyMEAAABCAACUwgAAjMIAAIBBAACQwQAAIMIAAMBBAABMQgAAysIAAHDBAAAAAAAAQMIAACRCAABwwQAAbMIAALjBAABAwgAAIEIAAAxCAACAvwAAQEIAAMDAAADAwAAAmEIAAIC_AACAQAAAwMAAANjBIAA4E0AJSHVQASqPAhAAGoACAABQPQAAED0AAEw-AAD4PQAAqD0AAIY-AACYPQAA4r4AAHA9AABMPgAABL4AABS-AADgvAAA2D0AAKC8AACoPQAAhj4AAEA8AAC2PgAA8j4AAH8_AADIvQAAyD0AAGw-AAAXvwAA6D0AALg9AACIPQAADD4AAAw-AACgvAAAyr4AAHC9AACOPgAAUL0AAOi9AADovQAAfL4AAJq-AACYvQAA2L0AABA9AABEPgAAqD0AAKg9AACgPAAAML0AAHy-AACYvQAADL4AABC9AACiPgAA4DwAAFQ-AAAMvgAAQDwAABM_AACgPAAANL4AAL4-AABQPQAAgDsAABA9AABsviAAOBNACUh8UAEqjwIQARqAAgAAMD0AAOC8AAAEvgAAYb8AAHC9AAAUvgAAmD0AABS-AAAkPgAAiD0AAHA9AABQPQAAUL0AAIC7AADIPQAA4LwAAEy-AAAfPwAAyL0AAM4-AAAEvgAA0r4AAPi9AAAUvgAAoDwAABC9AABQvQAAiL0AANg9AAA8PgAAcL0AADw-AAAsvgAAND4AAJg9AABAvAAALD4AAIi9AABEvgAAJL4AALg9AACovQAAbL4AADQ-AAAMvgAAMD0AAH-_AAAwPQAA4DwAAAy-AABEvgAAiL0AABy-AABEPgAAtr4AAFQ-AACgPAAAyL0AAHw-AACYPQAAND4AALa-AABsvgAAQLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=4wM_JhqaZ2Y","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["15554430983713316380"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12656047934986159189":{"videoId":"12656047934986159189","docid":"34-0-13-Z46BC3ADB7EDFF5DF","description":"Derivative of 6^sin(3x) Workbooks that I wrote: https://www.amazon.com/stores/Mohamme... Derivative (Specific problem types) playlist: • Derivatives (Calculus) Just Derivative (Random) playlist...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2388952/b817a8c1ccf5447ae18a2f40140ec7f3/564x318_1"},"target":"_self","position":"7","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DfLkbLrlLGrM","linkTemplate":"/video/preview/12656047934986159189?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative of 6^sin(3x)","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fLkbLrlLGrM\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhYKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5WhQxMjY1NjA0NzkzNDk4NjE1OTE4OWquDRIBMBgAIkQaMQAKKmhoY3VzaWJzeW93aGVtc2JoaFVDb09lM1pPU0ZaMktsdG0xMDZkSEJHdxICABIqD8IPDxoPPxNaggQkAYAEKyqLARABGniB9Aj7B_0DAPAIFf37AgABAQj-CPj-_gD08fn_BQL_AO39_AME_wAA_gsHAgAAAAD_7vUI_f4AABL1AQADAAAAGQL9APgAAAAM_AsD_gEAAAQC_gUD_wAABgAIAAAAAAAACAL3AwAAAP0E_v0BAAAACPPxCQAAAAAgAC0jP9w7OBNACUhOUAIqcxAAGmBIEAAuFAHwB-EA3t3o0zX86bwM0LUh_xvmABRC5eUU7fjOJ9H_Js8KGqsAAAApBtYNKQD8b8fn0R8T-g713eD_I38CGPO62h3qoePj-Sfj3iohKRsAqd0B_f240wzoRvMgAC19OyY7OBNACUhvUAIqrwYQDBqgBgAA6EEAAILCAADQQgAAYMEAAOhBAABAwAAAYEIAAAzCAAAkwgAAAEIAABDCAAAgwgAA-EEAAEDBAACYwQAAyEEAAOBBAAAswgAAQEIAAEDCAADQwQAA-EEAANDBAADAwAAAUMIAAKjBAADQwQAA2MEAAMpCAAAMwgAAQMIAAKBBAAAcwgAAZMIAAIzCAABAQgAADEIAAFBCAABQwQAA0EEAAAAAAACIwQAAoEAAALjBAACAQQAAIMIAAEBAAACwQQAAJEIAAIC_AACgwQAAMEEAAIBBAAAAQAAAiEEAABRCAAAAwwAAoEAAAAhCAADwQQAAHEIAAFjCAABgwQAAoMIAAIBAAADawgAAQMEAADTCAABQwQAAOMIAACBCAAC4wQAAssIAAEhCAABAwQAAkEEAAABAAADAwAAAoMEAAHDBAAAgQQAABEIAAI7CAACYwQAAuEEAABBBAAAwQgAADEIAAFBBAADYwQAAyMEAAKxCAADAwQAAEEIAAIRCAADQwQAAEMEAAIDAAACYQQAATEIAAIzCAAA4wgAAkEEAAIBAAADAwAAAyEEAAIBAAAAwQQAAUMEAAAhCAABUQgAA4EEAAIBAAAAcQgAApsIAAEBCAADgQQAAgEEAANDBAAAMwgAAEMIAAIjCAAAAQAAAAEEAAFBBAAAgwgAAQEEAAJhBAADQwQAAAMEAAOjBAADAwAAAuMEAAAxCAACIQQAAnkIAACBCAACgQAAAAEEAADTCAAAAwAAAgMAAAGxCAAAcwgAAKEIAAPhBAADQwQAAoEAAAKDAAACwwQAAgMEAAADAAACYQgAAMEEAAPhBAAAQQQAAwMAAAMjBAACAwQAAIMIAAILCAABwQQAAZMIAAEzCAADwwQAAfEIAAATCAACMQgAA4EEAAIBBAAAcQgAAAMIAAExCAACWwgAAWMIAACBCAAAEwgAAiMEAAGBCAABkQgAAYMEAAHDCAACAwQAAhsIAAEBCAAAgwQAAJMIAADjCAAAQQQAAlkIAAPBBAAAwwQAAMEIAAGDBAADgwAAAjEIAAHzCAABkwgAAQMAAAADCIAA4E0AJSHVQASqPAhAAGoACAABAvAAAqD0AANI-AACYPQAAqL0AAEA8AABAPAAAor4AAIC7AABAvAAAqL0AAEA8AAAQPQAAcD0AAAw-AABQPQAA2D0AAKA8AAB8PgAAdD4AAH8_AAC4PQAAFD4AAEw-AADSvgAAgDsAAOC8AADIvQAAMD0AADA9AACAuwAAgLsAAEA8AADovQAAiL0AAKC8AABwvQAA6L0AAIq-AAAMvgAAyL0AADS-AAAcPgAAMD0AAKi9AACgPAAAJD4AAKi9AACgPAAA4LwAAFA9AABMPgAAmD0AAEC8AABkvgAA4DwAACc_AADgPAAA4DwAAOA8AACIPQAALL4AAJg9AABAvCAAOBNACUh8UAEqjwIQARqAAgAAyL0AAEA8AACoPQAAP78AAEw-AABAvAAAMD0AAGy-AADgPAAA2D0AAIi9AACYPQAA2D0AAAS-AAC4PQAAoLwAAIi9AAAhPwAAoLwAALI-AAAEvgAAoLwAAHA9AAAcvgAAiL0AAFA9AAA0PgAAQDwAABC9AAAUPgAAED0AADw-AAD4vQAAqL0AAFy-AABwPQAAmL0AAEQ-AAAkvgAANL4AAKA8AACgPAAAQDwAANg9AACIvQAAqL0AAH-_AAAsvgAAiD0AAIY-AACgPAAAoDwAACQ-AADIPQAA2L0AABA9AAAQPQAAUL0AAMi9AAC4vQAA6D0AAKC8AACgPAAAFL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=fLkbLrlLGrM","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12656047934986159189"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1735340823335824392":{"videoId":"1735340823335824392","docid":"34-2-12-ZE37D8E8ABB64CA0A","description":"Prove that 2 sin 2^(@)+4sin 4^(@)+6sin 6^(@)+.+180sin 180^(@)=90 cot 10^(@). Doubtnut is a Q&A App for Maths, Physics, Chemistry and Biology (up to JEE Advanced and NEET Level), Where You...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3985597/68e72f2bb39af4ed839e97982cff0ec1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/stGpMAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLdKlh_lEZLU","linkTemplate":"/video/preview/1735340823335824392?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Prove that 2 sin 2^(@)+4sin 4^(@)+6sin 6^(@)+.+180sin 180^(@)=90 cot 10^(@). | 12 | Trigo...","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LdKlh_lEZLU\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhUKEzE3MzUzNDA4MjMzMzU4MjQzOTJaEzE3MzUzNDA4MjMzMzU4MjQzOTJqgRUSATAYACJFGjEACipoaHhjbHBoa2J5eGxyeW1kaGhVQ2N2N3BzcEdIbU03QU95d3VMTTF1ZkESAgASKhDCDw8aDz8T4gSCBCQBgAQrKosBEAEaeIH59_wD-wUA9QP-AgAD_wH_EfgG9_7-AAD-AwIHBf4A6vkDBgj_AAD6Avv-BgAAAAv__AH-_wEAEPz--QMAAAAJBBD3-QAAAAYB_f7_AQAA_f4F9AIAAAAH-gL9_wAAAAUC8_QAAAABCwYBBQAAAAAAAAIGAAAAACAALc534zs4E0AJSE5QAirPBxAAGsAHelHjvm9RILqFMkM85hBnvRaoQL0sH4O9-IG1vAOrzzxpFPe8_g3aPV8tUjyc9OO8tw2TvhtUEzwbtBy9xVWFPlQwb72bfyq8hzQqvp5pqD22cmW8RBhfvtRkZzulnT8883TOPW_MXL0M0Rw9_n4RPukqvb04lGu8-icIvpATZj2fPh28839dvYGGDb0dkYy65YB4PUchRL0bCw67L1H9PbEFYLqfq628OR69vOYueLxSqF28Ha1KPWIgXj0SUCG9lMIcPuST37t6oxs9ObfJvCtutzyGVqc88gP8O0FNCL2ziYK8UjehvFbeJ7vK3cY6vJsiPcADqL3DP7I7rfkBvlSlkjwh0d875Ib_PTl29TyMb548FEcaPFbwmz2V8vc79VIMPaAPYLz8T8Q7BhbbPKnC-jz2kxa86O6EvMclcz3pri06LQ4fvFVWLj0QQhs9pNQSPM5Csbzej9u8f5IOPOfKu7yUyHQ8GkDPO8qvqj3dyhg8vtuMPUtV-zo7tak8gDOnPOhY1DySwTw7hJ6dPUPyhL2Zt2o8zvIGvZA4ir2cy0O83cF-Pby7JD2Ie5G8FZBWPb9elr3dQ8K7l2Qyu0ZsQT1oNjQ88djPPcijSLtyLni6-DhTvSIvED0L4Hc8aMjdPAw2uztByS68njqQvZMdiz3o9pK7TgJlvPCsiL349cc6tGBYPc_56TzEL6s6O2JDPR2GwD1B4my5SQ59PUXA_LwrMte7ZlalPPbRab21bE47eCY0PDyqUDwDrze74YvAPBH_0L1kCcK4HV1APTlOQLvMNsi57eWIvMx5tj2_8Tq5tfSNPHCY6LxroOI3XFQLvZwV8b3cnnU5nvBQu5ypK73VgcW5RY04PcFsBz0K0h45zCDDvdQNBL4IU4U5nVI0vTeffz2YhJK4rq__POpCrDpzwt23VcUPvVd8gz14NgW4cQdFvWckJ71CH9w3GrdivYUDhj1hd7A4IS6tO5hxDTyr8gG5FAQPPRBdAD6Nw3G4iaxaO_Z_Lj68OxW5W8gMvIuvgT03bjq5dlNqvVfPyb1cOmq4ZRmiPea7SrxEHnM4ZFFdvfyvDj1lDy05x7hHPaMkj70T-7g4N27RPSfQUT2HLmo2j4FmPTtFPb0uoyO4Cu-HPSHaWD0VQNO4TsGQvT--Tr1TTmU36u6VPL6v3zsfBv03BxSguskgtz3C15q3w5wgvUoo3b3tIEm4ucF1PC3sCT6GJ-c4o-3Su6Z-Xjy_hge5naYqvc3deLx-6Lu3WOq0PLMAl73dM0c3IAA4E0AJSG1QASpzEAAaYCkKACYOK_b1Ef_hBAQRJeL8A_bW8v8ACRkAKBwP4AQb38Ar_v8u7_DyvgAAACQN5vklAPtSFRD0S_AZ9xCi6vsdfxwZ9izmBuYEBD_uFvsxDP4i-wDQEwMJJNX_Gi_5KCAALU9eTjs4E0AJSG9QAiqvBhAMGqAGAABQQgAA-EEAADBCAABwwgAAkEEAAODAAACqQgAAEMEAAAzCAACAvwAACEIAALjBAABIwgAAcMEAAMjBAABQQQAAgL8AAKjCAABcQgAAsMEAABzCAAAAwgAAzMIAAIBAAAAMwgAAgMEAAPDBAADAwQAAsEEAAKhBAAA4wgAAiEEAACzCAACAQQAA2MIAADzCAADAQAAA8EEAAOjBAAAAQgAAUEEAAKDBAAAwQQAAUMIAAARCAABYwgAAAMAAAJBBAABwQQAAUEEAAIjCAABcwgAAQMAAAEBCAACcQgAAmEEAAMzCAACgwAAAcEEAAOBBAAA4QgAAKMIAAITCAABowgAAoEEAAJTCAAAcwgAAlsIAAIrCAABgwgAANEIAAJhCAADowQAAEMEAAEBBAACgwAAANMIAAAAAAAAAwQAAHEIAAIBAAAB0QgAAEEEAAJDBAAC4QQAAcEIAAMBAAACQwQAAdEIAAIC_AAAYQgAAdEIAACjCAAAwQQAANEIAAFDCAADowQAAUEEAAFRCAABAwAAAMMEAAPhBAADgwAAAEMEAANDBAADAQAAAwMAAAKhBAADAwAAAbEIAAHhCAACQQQAABMIAAABBAADgwQAArkIAAKBBAACQwQAA-MEAAMjBAADIwQAAOMIAAADAAAD4wQAAAMEAAMBBAADwQQAAEMEAAATCAAA8QgAAEMIAAGDCAABAwQAAkEEAANDBAAAcQgAABEIAACBBAAD4wQAAPMIAANBBAAAIwgAAoMEAAGzCAADAQAAA6EEAAEDAAADwQQAAUMEAAFBBAADwwQAABEIAAMBCAACMQgAAkEEAAKjBAABowgAAJMIAACDCAACAwQAAgsIAAABCAACIQQAAEMEAADhCAAAAwAAADMIAALBCAACUQgAAYMIAAIjBAAAQQQAAoMEAAMjBAAA4wgAAwEEAACBBAADgwQAAYEIAABBBAACKwgAAoMAAAIBAAAAowgAANEIAAAjCAACMwgAAUMEAAABBAACgQQAAGEIAAPjBAADgQAAAWEIAAIhBAACQQgAAkMEAAIC_AABQQQAA4EEgADgTQAlIdVABKo8CEAAagAIAAEC8AACIPQAAqj4AAOA8AABAvAAAgj4AAGQ-AAAVvwAAJD4AAES-AACYPQAAQLwAAFA9AAAkPgAANL4AADC9AABMPgAAUD0AAHw-AADOPgAAfz8AAAS-AACgvAAAsj4AAAS-AAD4vQAAUL0AAHC9AACCPgAA2D0AAKA8AAD4vQAAHL4AABC9AAAQvQAAcL0AAOC8AACCvgAAvr4AAEC8AABQvQAAEL0AADC9AADYPQAAMD0AAPi9AABsPgAAuL0AAEC8AADIvQAAQDwAAEQ-AAA8PgAABD4AAIq-AAAwPQAAGT8AAFw-AABcvgAAUL0AABC9AABAPAAAQLwAAMi9IAA4E0AJSHxQASqPAhABGoACAACWvgAAPL4AALi9AABnvwAAiL0AAEC8AAAwPQAANL4AADS-AAAkPgAAmD0AABw-AACYvQAAcD0AALg9AACAOwAAVL4AADc_AAAMPgAA0j4AAFC9AAAkvgAAyL0AACy-AADYvQAAoLwAAKg9AACAOwAAQLwAAHA9AABwPQAA2D0AAKA8AADgvAAAdD4AAFC9AAAUPgAARD4AAIa-AABsvgAAqD0AAIA7AAAMvgAA4DwAAEC8AAAsvgAAf78AAMi9AACCPgAAiL0AACQ-AAAMvgAAoLwAAHw-AACYvQAA-D0AAKA8AAC4PQAAND4AAIC7AACWPgAAmL0AAKi9AAAQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=LdKlh_lEZLU","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1735340823335824392"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4343522"},"4394382289317178469":{"videoId":"4394382289317178469","docid":"34-10-17-Z535FA079F18EEFB9","description":"graphs of the sine functions, graphs of the cosine functions...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4318726/28cf546ba3e439586ac9d124491cf7e4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/WgXdgAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DoSgvigeae00","linkTemplate":"/video/preview/4394382289317178469?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"y = -6sin(pi/3 * x) + 4 graph each function.","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=oSgvigeae00\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhUKEzQzOTQzODIyODkzMTcxNzg0NjlaEzQzOTQzODIyODkzMTcxNzg0NjlqkhcSATAYACJEGjEACipoaHZubGN6YmJrY3Bub2ZjaGhVQ0dROWJNTEk5UzBJcVplRHVUMUVIZWcSAgASKg_CDw8aDz8TKoIEJAGABCsqiwEQARp4ge_6AQD8BQDwAwv7_AEAAQz--wj3__8A8QII8gMBAADy9wnzBwAAAPIBAPv_AAAAAv799vT9AQAEAfb-AwAAAAf6Bvn1AAAA-w_6__4BAAD5Afr5A_8AAA3-__j_AAAA_Q7x-_8AAAAFB_7-AAAAAPz6-gAAAAAAIAAtfGXeOzgTQAlITlACKoQCEAAa8AF_Fhf8neTD_s8F9AHhEckCkBEk__tExADG5w__5f3OAfTXJwHpSbkAMxcFAKMhCwEICPD9z68SADjJEv_X0A7_Cf4VAQsDBAMzIiT_B6IM_9Qz3QLh-gECzbfY_wZq0_wf_xr-4BPIAecErgJExTMC9NjkAhwRMAWyCeMB1uoLB_T2s_30LgcG78n_CMojKwIeKh33_yQb_xUp8vvX_xf9PdEs_9sw7wkPFQn_-Q8D_cb85v_FFfX17uglAcPE_gve6iD26sgV7fOoDvz70g8Mxhb7AE3M7fjt8QYJD87eAeuz9enp3Nn75tYHAM6wDBMgAC09IeA6OBNACUhhUAIqzwcQABrAB0mfpr50uxK9k0-0u1NgHL0kQuO8b5EFvTlk472y0gs7iQMtvXYaCT5bAD89pA3RvLcM-L2N-MS8IzInPSb_8z3xBbe9oGUnPIc0Kr6eaag9tnJlvFexOL5HpX08pdQKPXkTLjtgGu27ffUnvaA0xD2m1VC9Ef_WOWJRLL1kUqg8qJZjvPQfLT0_ube9nj8SvW4wuTzZBUi9aqHHO_hEaD29w2283tu-O3lli7oPyaq9UQtKvOxo3L0vvQG8GVgFO4_97D20FWU9_GRgur7F3rwetdO8jMe7vIPvh7ydVqC9QICxPJy0uj1K7UU8sHqbvNjCBz1Ex5m98juyvOrQlL1p78I8b90IPeSG_z05dvU8jG-ePO_ks733kZs9zf26vL4_FL1g_WS9j6m7PB88ZD0-40c90AHROzdMiT2N_TY9yyrPunvsiL1Ga1s9aF1EO1Y-lTyPtuC8Gw2iO_zgHD2540g9arvsu6ym0LyA4Yu8gemTu4HF6zyyZuQ83fulvC24Gj0tmb66MhxAOiRenrti-Oi9UxhnO2MqfbyjRcy9hypGvHxH7T0gNw09U10fu_D5YT0UXw2-d4QRuxgGzD38c6w8sWRYO1ZrPLxSr7C9YscYOyGPAL7Ve7o9K4uhusZ8bTvVb7C8DVHMOaDM9TxwysE8b7iPuzHQVb2LmU695vj-OU267TxEHN45jfUqOztiQz0dhsA9QeJsuQsk6D2rAS-97MnTOTGEUjyd99899ifsuQdVFD0ZT6k8QqJJuXlYCD64IL67D7aRODt1wDz72FO9bi7FOPaTFr0UXTc-9IWBuUSAGL3V3vG8gBoouVxUC72cFfG93J51OUx7OT0HTUG9KMKfuZ4_kj2hA9w8O26xucwgw73UDQS-CFOFOUNxh73LvBe8AyGfuFwMtD1VbZI8VTQaOPphhD2dqIs9HnGUOKmUDb1U7hQ9y8mCOAIyT70jgtE9dbe8OIZHwT3NOLK8phm1OKlm-zy0cYk9YM_ruDM0fj1Plno9tXWrNxcfsDxLoIc9ODPHuK4CZr3-17m8rTWit-aKpz2cFQE-eWQjNz2T4rxXxgs9Ns02OJbkhb1Jaba9dt-mt8TPDz48aum7nsuVNnMw2z1CAus88Caet62n9j2z6pi8ezs6uSvcE7xklQK-cT0buJIT3LzbedE8gbVgN4EmYr1NqBs9dgd1OL2vBT2lSQm-rZ6FuCL_7D01KQU-835buESCjrz-hI487aK1uLQWwL1UNLs9PF-yOLK8q7wdsVG9Dha2NiAAOBNACUhtUAEqcxAAGmAN9wAm5TTwDw3c5RHX6QquuOba_sUO_xHX_zb-xzzj6eKpGfwAKMgYC5cA_wAZ5w4N5wAff_vdBgkeFgn2ogkYFGoyQROX8AgS-LIOBQj4_Sq8HvkAohm1Wkut0DMnWRQgAC3HiRM7OBNACUhvUAIqrwYQDBqgBgAAikIAACDBAADAQgAAEMIAAJhBAADowQAAqEIAANhBAABwwQAAIEEAAKBBAACAPwAAIMEAAHDBAACAvwAA6EEAACRCAABIwgAALEIAAMDBAACAwAAAoEEAAFjCAAAwwQAAIMIAAADCAABgQQAA4MAAAOBCAABgwQAA8MEAALjBAACgwgAAiMEAAKTCAAAwQgAACEIAAFRCAACowQAA-EEAAKDAAAC4QQAAAEEAAPjBAAAYQgAAbMIAAKhBAAAgQgAAuEEAADDBAAC4wQAAQMEAAMDBAABQQQAAAEAAAFxCAACuwgAAgL8AAJhBAAAgQgAAUMEAAITCAABQwQAAUMIAAJBBAADGwgAASMIAANDBAAAgwQAAqMEAACBCAADIQQAAZMIAABxCAACawgAAwMAAAIBAAACAwAAAUEEAAABAAAAQQQAApEIAALjBAACgQAAAQMAAADhCAADYQQAAgMAAAABAAABAQAAAqMEAABxCAAAwwQAAQEEAAK5CAABIwgAAsMEAAKBAAADgwQAAnkIAAJTCAABAwgAAZEIAAOBAAABkwgAAgL8AAKBBAADQQQAADEIAAHBCAABoQgAAMEEAAKjBAAAAQQAACMIAAKRCAAAcQgAAGMIAAMDBAABAwQAA0MEAAHzCAABgwQAAmMEAAMDBAAAgwgAAMMEAAMDAAACQwQAAsEEAAEDBAACwwQAAgD8AAFxCAABAwAAArEIAAKBBAAB0QgAAVMIAAMjBAACowQAAKEIAAIRCAABAwgAAXEIAAERCAACAPwAAyEEAAIjBAACIwQAAUMEAALhBAACoQQAAGEIAAKBBAADAwAAAUMIAAAjCAADAwAAArMIAAILCAACoQQAAsMEAABDCAAAAQgAAmEEAAIDCAAAQQgAAdEIAAEBBAABAQQAABEIAAHBBAABYwgAAXMIAABDBAACwwQAAwMEAALhBAADAQQAAbMIAAIrCAACEwgAAgsIAAEhCAAAMwgAAWMIAAHjCAABAQAAAUEIAAHxCAACgQAAA4EAAAPDBAAAAQAAAwEEAAKjBAADgwQAAgEAAAABAIAA4E0AJSHVQASqPAhAAGoACAACAuwAAyD0AAN4-AAAsPgAAoDwAABA9AACIvQAApr4AAMi9AAAwvQAAED0AAAS-AABsPgAAqD0AAPi9AACIvQAAUD0AAJg9AABwPQAALD4AAH8_AADgPAAA-L0AAEw-AADovQAAFL4AAEQ-AAAEvgAAqD0AAKA8AABAvAAA4DwAAPi9AAD4PQAAyD0AAJi9AAAwPQAAur4AAJq-AAB0vgAABL4AAPi9AAAwPQAA4DwAAOg9AAA8vgAALD4AAHA9AACIvQAADL4AANg9AAAUPgAA2D0AABQ-AADYvQAAEL0AAO4-AABsPgAAQLwAAIC7AACoPQAAQLwAAKA8AABcviAAOBNACUh8UAEqjwIQARqAAgAALL4AAHC9AAAsvgAARb8AAOi9AABsPgAAmj4AADC9AABwvQAATD4AALi9AADovQAAoDwAABA9AAAcPgAA4LwAAFC9AAAnPwAAfL4AAKY-AAAkvgAANL4AABA9AAAQvQAAQLwAALg9AABAvAAAcL0AAIA7AACAOwAAML0AAIA7AAC4vQAAir4AAHA9AAAQvQAAcD0AAEC8AAAMvgAAHL4AAFC9AAC4PQAADD4AAKA8AADYvQAAcL0AAH-_AAAQvQAAgDsAADA9AADIPQAAEL0AAKg9AABEPgAAED0AAOA8AABQPQAA2D0AAJg9AAAwPQAAnj4AADA9AADIPQAAqL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=oSgvigeae00","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4394382289317178469"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3927368280"},"12085514649226199707":{"videoId":"12085514649226199707","docid":"34-2-7-Z22BDE9E0884504B5","description":"Lesson on the basic trigonometric ratios: sine, cosine and tangent.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1781433/22adeb03c2ba28e3294667c6bbe7837a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/01TPKQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHFjO6Hs-cbk","linkTemplate":"/video/preview/12085514649226199707?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Lesson 7.5-7.6 Sin, Cos, Tan","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HFjO6Hs-cbk\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhYKFDEyMDg1NTE0NjQ5MjI2MTk5NzA3WhQxMjA4NTUxNDY0OTIyNjE5OTcwN2q2DxIBMBgAIkUaMQAKKmhodHZ3bWR6b25mbHlyc2NoaFVDalZWaENBNXM1VTlpQTNFemFILVhRZxICABIqEMIPDxoPPxOvC4IEJAGABCsqiwEQARp4gfL8__X-AgDvDQj3_QABAAYH-AD3__8A8QEC_P4BAAAC-vv__wEAAPkQ_f77AAAABu8F-_79AQAC9wD3BAAAABgICgv7AAAAEvoH9f8BAAD59fUIA_8AAPfxCQ3_AAAAExT7A_3__wD8EfX1AQAAAAL8BQAAAAAAIAAtHT3WOzgTQAlITlACKoQCEAAa8AFp4QD-9_PlAeG63P-9LQoAgQot_xgK5ADC5y0AtPbEAOwH6AD18QYAG9oHAMwQKQBHAQX_BMUW_z_kGwD9CekA7Q4oAAkCAwJL8gUA__Lg_skjHf4U2x4AE9n3ABgMDf8IAg7-FPi9AfcC9ggv7A39ITESBdkc7wMg6O4B1AgUA9QW5P8M__UKx__eBNUcIgIT3wr-_Cbc-tLdAP4f8hAEHeH__PMT1_864AMA9RUXBfId-AAj3uMCEgoT9M397QQU9SHy5s8NA-vvFPAC9xb0-O7yChwn_gcb8w8EBOb2-cXs9frWFv771tn_GBDX6fogAC1QIw07OBNACUhhUAIqcxAAGmBH-wAf7BXr2gEH9AzPADLfDRDKCdIF_xMGACLuyNPwMA3KEhQA-eoc8bMAAAAq1fgbzgDva8PwChYAHQj9pPEKCn_d8R_YuyPy1f4qBvL_QT7rWTEA7wS-LhPH4CgrOx8gAC3I3ys7OBNACUhvUAIqrwYQDBqgBgAAMMEAABjCAADIQQAARMIAAFBBAAAEQgAAcEIAAAAAAACAPwAAgD8AAADAAAAwwQAAwMAAAHBBAABQwQAAmEIAANhBAABgwgAAqEEAAJjBAAAMQgAAnsIAAIA_AACCQgAA2MEAAJDBAABsQgAAgL8AAFTCAACgQAAApMIAADDBAACAwgAAkEEAAILCAADAwAAAfEIAABRCAAAAwgAAuMEAABxCAABAQQAAEEIAAERCAACKQgAAcMEAAKDAAAAkQgAABEIAAODAAAAwwQAAmsIAAADBAAD4QQAAbEIAAFBBAAAwwQAAgEAAAKDAAAC0QgAAdMIAAKbCAAAswgAAlsIAAKhBAABAwQAAMMEAAADCAACAwgAA8MEAAIBBAADoQQAA4MIAAJxCAAAgQgAAmMEAAOjBAACwwQAAAMEAAABAAADAwQAAhEIAADBBAAAgwQAAIEIAAKhBAAAIQgAAmMEAAJBBAAAcwgAAKEIAAHRCAAC6wgAAwMEAAMhBAAB4wgAAiEEAACTCAAAIQgAAuEEAAJbCAAAAQgAAoEEAAEBAAABgwQAALEIAAOjBAAB4QgAAwEAAALhBAADAwAAA8MEAAIBAAAAgwQAAPMIAAMDAAAA0QgAAgD8AALbCAAAQwQAAFMIAAEDAAACgwAAAAEEAAAAAAABAQQAA2EEAADTCAADIwQAAJEIAAJDBAAAMwgAA6MEAAIpCAADAwQAA0EEAAABAAACAQQAAFMIAAJjBAADIwQAA-MEAAHRCAAAcwgAAUMEAAIhBAABwwgAAAMEAALhBAABAwQAAAMEAAPBBAABAQgAAQEAAAIBBAAA4wgAAqMIAAKbCAADowQAAAMAAAJDBAAAIQgAAUMEAAOBAAAAwwQAAoEEAAJBCAADgQQAA4EEAAEDBAABEwgAAgMAAAOBAAACqwgAAyMIAAKjBAADgQQAAYMEAAIjCAAAEwgAANMIAAODBAACIwQAAUMEAALRCAADYwQAAsMIAAAjCAAAAAAAAgMEAAABBAACAwQAA4EAAAAxCAABMQgAAgEIAAIjBAAAQQQAAuEEAAIDAIAA4E0AJSHVQASqPAhAAGoACAACovQAAor4AANY-AAAQPQAAmD0AAJY-AACqPgAApr4AAHS-AACgvAAAzr4AAMg9AACAuwAAfD4AAEy-AACgPAAARD4AAKA8AACKPgAAJz8AAH8_AABwvQAAiD0AAIo-AAAcvgAAoDwAAFw-AAB8vgAAPD4AAPI-AADgvAAA-L0AAIC7AAAQPQAA-L0AAEy-AABAPAAAZL4AAN6-AACoPQAA2L0AAFC9AACYPQAA-L0AAL6-AAB8vgAALD4AAIa-AAAsvgAAFL4AADC9AADIPQAAtj4AADA9AAD4PQAAgLsAAD0_AADgPAAAMD0AAHw-AABQvQAAQDwAAKC8AACgPCAAOBNACUh8UAEqjwIQARqAAgAA2D0AADC9AACSvgAAPb8AAEy-AADgPAAAfD4AAAQ-AACAOwAA4LwAAOC8AAAcvgAA4DwAAIC7AAAsvgAAoLwAANi9AADyPgAAhr4AAGQ-AAAwPQAAEL0AAKC8AABkvgAAcL0AAOi9AACIPQAAQLwAABA9AAA8PgAAPD4AABQ-AAD-vgAAMD0AAEy-AAA8vgAApj4AALg9AADOvgAARL4AAFQ-AABAPAAAML0AAJI-AACgPAAA-D0AAH-_AAAcPgAALD4AAMg9AADIPQAA6D0AABy-AAAkPgAAfD4AABQ-AABAPAAAHD4AAKg9AAAQPQAAHD4AALi9AADovQAAur4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=HFjO6Hs-cbk","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1004,"cheight":720,"cratio":1.39444,"dups":["12085514649226199707"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2342529598"},"12869527084064335257":{"videoId":"12869527084064335257","docid":"34-9-15-ZFA6CC50D0E23EC69","description":"graphs of the sine functions, graphs of the cosine functions...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3445360/14ef0017785d16e7b6e5b8f69d9b9dcf/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jbGWagAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4qV7LUeDiA0","linkTemplate":"/video/preview/12869527084064335257?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"y = 6 sin(pi*x) determine the period and amplitude","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4qV7LUeDiA0\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhYKFDEyODY5NTI3MDg0MDY0MzM1MjU3WhQxMjg2OTUyNzA4NDA2NDMzNTI1N2qHFxIBMBgAIkQaMQAKKmhodm5sY3piYmtjcG5vZmNoaFVDR1E5Yk1MSTlTMElxWmVEdVQxRUhlZxICABIqD8IPDxoPPxMdggQkAYAEKyqLARABGniB8u4E_P8BAPkIDfz7BP8BDP76Cff__wD4-RD2AgP-AAH5APf5AQAA-hDw_wMAAAD9-er-_v0AAA37BvsEAAAADAEMBPUAAAAKDwMA_gEAAAH1_u0BAAAACPz7Cv8AAAD7A_gC_wAAAP4O_-8BAAAAB_v-CgAAAAAgAC3J1tQ7OBNACUhOUAIqhAIQABrwAX_0Bf7N5d7_8vHhAMsu3AGVNyv__D7JAMPf5wHS7rYB9A_6APkQ6QH4ABj_0SX6AB3O2_8EvBn_YLIL_xDM2wAm7u4A_PvsAjj7HQEO_P79Aik0_u_NBv7Svtv_BSvS_gHtB_3P3eQEBjjPAx3gNQMc6UYAGQ8sBOjL5AXU2_8E3fTQ_AIU6AwDzP74zyAnAiLAJwASBgryw_DW_fbRBfzo-zEB8zHnAxz2CQsPCQL4tg4ECs747_ZUCAMKzP0tCAEPOfrw2gLs9LAN_Dv08gfMJfn1GNn4DCDdAAPYHOj3CPXk7tcf7vHTAxEL0u_y-CAALUXi9jo4E0AJSGFQAirPBxAAGsAHg6GmvugeiLx7ZFg9AxVEvQCJSz1Upyi74KD9vS4MpjsFkR68by4ePi3gr7xhFZS85GXNvcYf4Dz6umc9_b10PpJUS70Dsew8WQxovQpihT1Qmpe8jkCsvaHxKT2aqZi7dtpgO_bRKT1yKI28FFK4PQHgiD3H9ho9fcoBvpo_pjz_uBi82dm2PdxGw70Lcba8BaNSvVKpA70R7Zk8UPcmPSBBhr0Gasw8NDzHPHADk731XTa8N4gGvr-wYzsAQpq8TaeQPW3OHD1-Rx697ve6vDreLr1hGRu9vUeXPfVUXb0d6x48rGMLPQ0GMjxa7Ju82MIHPUTHmb3yO7K8seFJvi6S9jxPCJ08_c-7PXi5iD2rJoi8Er3svYX2AD30Q5k7XD6tPPi7ob1EXVo8GnInPc5Rpjv7QgK8a3Otu1zjOD0DnSS8kCQQvBDfoz2mYgM9ZH8vvaQAUb0rOxQ8E7ysPXAk0D3690-8za2wvQ37_7tO3Us8GRp0PF0dOz2DdOe8HOOzut89Nr23kA-8M7vTvIQjrb3UDuc4U4IVPOimqL3bXAq89bkaPis0ED1LKaK7bvzpPUzkrb0rc6m7DXK3PdtvKD0BVMy6G2czPduJ8r3Zqmq7difJvRocwLyQGos7AGpvvb7YezwQXSG6YkBAvTHsoD1YFvE6MN9QvVKwazxpP4w71cZdPUc95L2QOvC4h8uAPWmOLDwB12C6aeTTPcnSvbxSsAa4wMdlvXbmeT0_VPm6NxbUPOxArL0DV9C40UjKPQvqgLyO7eC4J8CwOjVQD70yIJ049pMWvRRdNz70hYG5Kcx7vCGjrDunglM5iQ-3vbdCuL0xQro43hjnvCIpE71L8om5VuZ3vSECnj0jH1o5Ux6SvUobyL3hc5s3e9qhvFlAFTxQb9m4dKgQPXEghD2VTgK4RLjuPJkEeT2QrTq5llMMPbs3UDyQyT65QZR5PCLCnrrKP0w3Wq-DPQGPw72m0Vo5dN2qPUsClL2krAK4L7NZPeH19DpBE7C3u7UcPl7VCT5s2085GuflPF0Pa724sI03D1Q3PfGC6D3pQYI39AtAvIVFsD05Z-s4B7GzvIFBEDtq8mQ3anRdPSWt2L08IZw4XUrCvBHpwr3eR504kl0ZPtlPUL2swj-5732wvWSKQ70ULkG4fKNsvUc52DzbcbU35js4vagtfz3KEMiydn47Pe2SAry0TVm4Iv_sPTUpBT7zflu4L8EpvArExjxbTJa4lWlPveevqbvwvLc2vUAfveudG7yDUDg3IAA4E0AJSG1QASpzEAAaYBcLACjWK8cPKRfq4fUACu_qD98Kzu3_L_IAG9ffDCv33bkiFP9AySD1qwAAAC3M2P_nANdp9wLZN_r9DeG65_hHfwwTOKPWHeTd1jj-7hgmSezlGgDVEsYROODZIBkGISAALUf9KDs4E0AJSG9QAiqvBhAMGqAGAADQQQAAAMIAAIZCAABMwgAAoEEAAEBBAABYQgAAkMEAAFzCAACgwQAAmMEAADDBAAAAQQAAzMIAABDCAABcQgAAaEIAAHDBAAAEQgAAhsIAAMhBAABwQQAAHMIAAJDBAADQwQAA6MEAABTCAACowQAA1kIAANDBAABAwAAADMIAAIDBAADQQQAAQMIAANBBAAAwQQAAyEEAAEBBAACYQQAAgEEAAEBBAAAMQgAA-MEAAKBBAAAAwAAAgL8AAABAAAAkQgAAWMIAACzCAAAAQAAA0MEAAETCAAAAQQAAHEIAAMbCAABgwQAAIEIAAHBCAAAwwgAAgMIAAAhCAABQwgAAIMEAAOTCAAAQQQAAAEAAAFDCAADQQQAAmkIAAERCAAAkwgAAJEIAAMDAAAAAwQAAoEAAAIBBAAAwQgAAMEEAAGBBAAC6QgAADMIAAODBAAAgQQAAuEEAAEBCAABAQgAAgL8AAHTCAADAwAAABEIAAEDCAABcwgAAEEEAAGzCAAAAQAAAPEIAAIDBAAAQQQAAmMIAACBBAAB4QgAAEEEAAPjBAACoQQAAmsIAAFxCAAAAQQAAIMEAAOhBAADIwQAAgMAAAHDBAAAQwgAAEEIAAFRCAABowgAAXEIAAKBAAADQwQAAJMIAAATCAAB4wgAAIEIAACjCAACAwgAAcEEAAJDBAAAkwgAAuEEAABxCAACgwAAABEIAAKBAAABcQgAAOEIAAPjBAACgwAAAGMIAAMDBAAAEQgAAfEIAAEDBAAAUQgAAFEIAAABAAABgQQAAgL8AAMDBAADAQQAAYMEAAEBCAADowQAAYEEAAJhBAADgwAAAUMEAAOjBAAB4wgAA8MEAAADAAADYwQAA2MEAAFDBAADAQQAAQMAAALBBAABkQgAAwMAAALhBAADAwAAAAAAAACjCAAAwwgAAwEEAAMDBAAA4wgAAYEEAAKZCAACOwgAAZMIAAEDBAADEwgAATEIAAEDCAAAkwgAAmEEAAAjCAACQQQAAEEIAAHzCAADwQQAAgMEAAI7CAADWQgAAWMIAAOjBAADYQQAAJMIgADgTQAlIdVABKo8CEAAagAIAAIg9AACAOwAAvj4AAMg9AAC4vQAAUD0AAFS-AACWvgAAUD0AAMg9AACAOwAAQLwAABQ-AACCPgAAHL4AAOA8AABQPQAAUL0AADw-AAAUPgAAfz8AADC9AABQvQAAnj4AAIq-AADYvQAAFD4AAJ6-AAC4PQAAuD0AAAS-AABQvQAA6L0AADA9AAAUPgAAJL4AADC9AACCvgAAnr4AABy-AAA0vgAAqL0AAHA9AABAvAAAcL0AACS-AACOPgAAUD0AAKi9AABMvgAAcD0AAEC8AAAsPgAAgDsAAEy-AAAwvQAACT8AAKg9AACYvQAAED0AADC9AADgvAAAoLwAAAS-IAA4E0AJSHxQASqPAhABGoACAAAEvgAAML0AALi9AAAvvwAAuL0AAGQ-AADgPAAABD4AAMi9AACOPgAAir4AACS-AABAvAAAQLwAAOA8AABQvQAAiD0AACE_AAAMvgAAsj4AAIa-AABQvQAA4LwAAIC7AADIPQAAoDwAABQ-AABQvQAAuD0AAIA7AADovQAAcD0AAHC9AAAsvgAA-L0AAKi9AAAcPgAAED0AAAy-AAAMvgAAdL4AAHA9AABAvAAA4LwAAHC9AAAMvgAAf78AAPg9AACIvQAAhj4AAIC7AAAMvgAAgDsAAII-AAC4vQAAQLwAAKg9AAA0PgAAQLwAAAw-AABsPgAAUL0AACw-AACovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=4qV7LUeDiA0","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12869527084064335257"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"707223287"},"396828828681532378":{"videoId":"396828828681532378","docid":"34-5-16-Z861AFA15ABA330F0","description":"video, sharing, camera phone, video phone, free, upload...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3184263/d2898287e9ccc4241c50944fa8edfb6d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/QI0BGAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D6NvmrSbONxQ","linkTemplate":"/video/preview/396828828681532378?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculate the value of `(sin^(6) alpha +cos^(6) alpha + 3sin^(2) alpha cos^(2) alpha).","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=6NvmrSbONxQ\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhQKEjM5NjgyODgyODY4MTUzMjM3OFoSMzk2ODI4ODI4NjgxNTMyMzc4aogXEgEwGAAiRRoxAAoqaGh4Y2xwaGtieXhscnltZGhoVUNjdjdwc3BHSG1NN0FPeXd1TE0xdWZBEgIAEioQwg8PGg8_E74BggQkAYAEKyqLARABGniB__n8-_wFAOsECQH5AQAACwD7-vcAAAD2B_z__wL_AO4G_v4D_wAABQ4D9wkAAAAE-_wK__0BAAn9-AUDAAAADwb-CPcAAAAHBv8C_gEAAPgB_AED_wAA__sD_wAAAAAFAvP0AAAAAQEH-PoBAAAABgIBAAAAAAAgAC1bBuE7OBNACUhOUAIqhAIQABrwAVkT4_8B-gID8gXhAL0p-_-BBQv_Hh_4ANH8GADYEOEA6gb2APDvDAAFEh3_2xkOACbg3f8M4wQAGdH5_wP2-AH-EiIALOP-AB0TFAD19vD_8AccABv9Af_-1ucABxEB_gj2Dvvi-OsA5QngAQzfBAQFGSEHIP4tAvPaFALuDvUE6_ji_ggA-Af05v_7-fcc_wYE8v4ABQf7-x7ZAfvw-gD-6BH9FRTp_iTw8gYBAQn60_wCART3-vUUDfkG2hISAfgMFwL19v79_AQHAAnk_wkI7vcEK_btCAMK9gIKAQL4__cP-e8WAQDy7BYD2gP__iAALW4nSDs4E0AJSGFQAirPBxAAGsAHxjSzvqw5AD27Uw88paM8vstHkjxt19W8-KgPvqfz1zzlXiC9SRPPPSImFzuwr3W9s_B1vsfQlrxFZEA5pkI8PmVhOb08fEM9ehcvvgg8MD0pn9S8RBhfvtRkZzulnT88jGlGPhI3Ir0fgQO8Cp0XPpObFbwRiq28BCHEvRRJ6jyM_QC8Ag4Rvg4617wnPi285pTgPebct7y20J88GFodPmoHcbu0hRA88vhMvUITcTo4zre7t9WsO-fMMT3ZPgS9lMIcPuST37t6oxs9SUcevK5-sLhZuPY8SklqvcV8b73Rlzm8jZ8BvfxZB72BxIC8u7upPZIkiL1yKFm6qMghvgJ8HD3o6W085Ib_PTl29TyMb548_4ycPA962zy0fWE7Vu-COmtuOzwOgvE6CFTUN8AE7rzxCgq85ww7vR_kqzzQptk6jUolPdYjKD0s85Y8UIQau432g71FwpK8R2I4vG0bhjwnMpQ7DBgpvWrGvTwWpLo7O8UKPlaDK71f8OU7bV0lPUiVNz2BfGQ8yVNbPQCAjb2oMFs8-limvctQkL0dp667n7C0PemPS7m4Rny7Afy-PXkdVj0KoO052HUZvRxqSjwzUSW7jOgIPbs8QryWQda77MmCvd4oKD2hwDc7KEIvPdafqzqATc67y5jnvFoNuT3sjIg7hD8JOxWNhb1ofBk7TbrtPEQc3jmN9So7z35JPN1cXD2CV8Y5a7uEPfuzerw3uWe7X1cdPTCB-712vji38iKXOj7tED1YUWa7eW0gPWGPtL1b0Jc5nNuUPQKE6rxPuZ24Mru4Ozeo3T2bbAQ4en33PCoetLqWGKe3qz2RvRpSFb4wUQo6bPOVvSZf_7yxwES4ylOWPJOHqjwSrwA6Ux6SvUobyL3hc5s3XOEiPdlVTT0Sxwy4qWIPPRsBC7zxGMs4W9pfvNImHT1I3tG4QxWTve4csTvSQ9w5JdcDvQS0uD2qJ6q4wsOPPBEZ1ryFBKG3zq_BPEmTzD3fRIe4ZUUePTKBMT00XJW2vztDvIgToz2yx1O489r2vAj5yr1ah3u2LueSPRbgNj0nJxa5ZVPOvcLoqDz-Mug3gNvuPKC2l705l3s4zHvcPZLDcTycQoo3EquFPZ-bDL38wQa5oFTLPffxxrwtj9W4TsGQvT--Tr1TTmU3m-UyvMzryDwLF3c1kb8KvYMelT2LQ5E3JKMevdlHkr2w4DS4ipZXPRBY-T2NF0A4cA2mO-e-QTwxzdK4fE6FvWOES7zCyOi2D14AvenyBr3ZxSk4IAA4E0AJSG1QASpzEAAaYEEAABwdOOA_7VLRJxJPF7bF7ePe2TL_FLT_CuES5hRU1K01_P_sBvsPmgAAADjc8Pn7ADN_SSTYTgn5Fg_AxVTNWRUIL-u47CrV2TwSztbu4T4TMAC55rM9Ieq6KSQtEyAALR_pDjs4E0AJSG9QAiqvBhAMGqAGAAA0QgAAcEEAAGRCAACAwQAAoEEAAOhBAACMQgAAIEEAACDCAAAAQAAAGEIAAGjCAAAkwgAAAMEAACBBAAAQwQAAyEEAAKrCAAB8QgAA4MEAAGzCAACowQAApsIAAAhCAABEwgAAMMEAABjCAACAwQAA2EEAAOBAAABEwgAAWEIAACjCAADAwAAAvMIAAMDAAABQQQAABEIAAILCAAA8QgAAgEAAANDBAACAQQAAfMIAAABBAACYwQAAYMEAAMhBAABQQgAALEIAAOjBAABIwgAAgL8AABxCAABsQgAAAEEAAMzCAAAwQQAAEEEAANBBAAAQQgAAFMIAAGzCAABgwgAACEIAAJ7CAABMwgAAoMIAADTCAABwwgAAREIAALRCAAD4wQAA0MEAAIDAAABAwQAANMIAAIjBAACAPwAA2EEAAIjBAABUQgAAAAAAANBBAABgwQAAhEIAAEDAAADAQAAAdEIAADDBAAD4QQAAgEIAAJTCAACoQQAAoEAAAGzCAACwwQAAgD8AAExCAAAAQQAAZMIAAABBAACYQQAAAMIAAEDBAAAAwAAAAMEAAIC_AABwwQAAqEIAADxCAAAAAAAAmMEAAOBBAAAowgAAukIAAChCAAAQwgAAkMEAANjBAABAwgAANMIAAIDAAAA4wgAAoMAAAMDAAAAAAAAAuEEAABDCAAAUQgAA4MEAAEzCAADowQAAEEEAAETCAAAAQgAA0EEAAGBBAAAgQQAA4MEAAIBAAADAwAAAIMEAAAzCAAA0QgAAREIAAKjBAABYQgAAUMEAAABBAADAwAAA6EEAAMJCAABMQgAA-EEAANDBAABcwgAAAMIAAKDBAADAwAAAYMIAAKhBAABAQQAAgMAAAOhBAAAwwQAAQMEAALRCAAB8QgAAKMIAAFBBAACAwAAAAMEAABDCAAAUwgAAQEEAAADBAADIwQAAWEIAALBBAACWwgAAEMIAAGBBAAAAQAAADEIAAODBAAB4wgAAAEAAAMDAAAAAwAAAuEEAANjBAABcQgAAMEEAAARCAACUQgAA4MEAAFBBAADIQQAAcEEgADgTQAlIdVABKo8CEAAagAIAAEC8AAAMvgAAnj4AAJi9AADgvAAAVD4AAKC8AAADvwAAPD4AABC9AABwvQAAgr4AAPg9AACgPAAAqL0AALg9AABcPgAAML0AABw-AACuPgAAfz8AAHy-AAAsvgAAmj4AACy-AAAwPQAAMD0AAOA8AAB0PgAA4DwAADA9AAA0vgAA2L0AAKA8AACoPQAAEL0AABy-AACYvQAATL4AAEC8AAC4vQAAoLwAAEQ-AABQPQAA4LwAADy-AACOPgAABL4AAOC8AACYPQAAgDsAAMg9AACCPgAAgLsAADS-AADgPAAACT8AAAQ-AAAkvgAAJD4AAKg9AACAOwAA4DwAAFA9IAA4E0AJSHxQASqPAhABGoACAABAPAAAEL0AAEA8AAA1vwAAoLwAADA9AADIPQAA4DwAAJi9AADIPQAABL4AAMi9AADYvQAAqL0AAKA8AABQvQAAZL4AAA8_AAAsvgAAVD4AADC9AAD4vQAALL4AAJi9AAAQPQAAyL0AAIA7AABAvAAAUL0AABQ-AADgPAAAHD4AAES-AABQPQAA2L0AAJi9AACSPgAARD4AAJq-AAAEvgAAiD0AAOC8AAAwvQAADD4AABA9AAB0vgAAf78AADw-AAB8PgAAMD0AAKC8AACovQAAiD0AAEC8AADgPAAAmD0AAOA8AAAwPQAAgDsAABw-AAAsPgAAgLsAAHC9AABwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=6NvmrSbONxQ","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["396828828681532378"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"751681117"},"11552225514020835071":{"videoId":"11552225514020835071","docid":"34-5-5-ZB749481EEF5207BC","description":"Trigonometric transformations| Question 21 Contact us : Telegram:- https://t.me/youredutainment Whatsapp : - https://wa.me/917893380114 Instagram : - / youredutainment Facebook...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1032116/4d6427431ad7847f57970471b2561c84/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Dtca0AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7Y7tFUtnbGQ","linkTemplate":"/video/preview/11552225514020835071?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate 6sin20° - 8sin^3(20°) | Trigonometric Transformations | Edutainment Online","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7Y7tFUtnbGQ\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhYKFDExNTUyMjI1NTE0MDIwODM1MDcxWhQxMTU1MjIyNTUxNDAyMDgzNTA3MWqHFxIBMBgAIkQaMQAKKmhoZ2hkaHRza2toY2Rtb2JoaFVDUVVRZ1hoTE1NYVhfaF94TnF4UEVWZxICABIqD8IPDxoPPxNcggQkAYAEKyqLARABGniB-_D8B_8BAPH7EgUGBP4BDgzyBPUAAAD1APX0AwL_APcBEwEBAAAABgz_BQMAAAAIEfwD9f0BAAX5-wvyAP8ADAEMBPUAAAAQEfr5_gEAAPH7_AMDAAAAAP8E-v8AAAAGFAb3AP8AAAcR8PwBAAAAA_n-AwAAAAAgAC0g_9c7OBNACUhOUAIqhAIQABrwAXEY3_61IN__Dh_A_-YOBwGBCi3_VRzyAd0w8v_JBPsBBPu8AM36xP_18-sAFP4F_xsF0_8V2xr_-wHX_woHAQAkAwEALbb0ATnNEgATEtcB9A7y_wbkNAAKAt4BBCXY_gkvDP78290B3hwGBSb7MQEZ7D0A7_cOAwEnNPwCHBAC4vXW_fzu7QXy99T-6hc9AcnwAwX1Ah_69PbtAiE0xv0OCuD7KgLkAgX-CQn2_vAF6Pv2-gLx2vsMDPwM5QwUBRL3HgoKB-n09_gD8yPo_REA2g3zCcz4ARkSCg_z5fPu-TsM8eYxCgHd8BMKEhoIDSAALVAjDTs4E0AJSGFQAirPBxAAGsAHKSDNvp2MAD2KQga9QqTwvHFELT0J5sO89pJrvXg-KLzBi7O9EIBuPdlVbbw5e4i6OGmKvtEMPTztrn08LQlQPtT4YDzmZBg9ELD2vQikTj1Ht1K751Z4vgJaxLx4UhG67wKFPoZzvT1WM0Y8G_YLPsxMBDyzd-s8_mXXvbGm8r0pEAu8zoxOvissXb1ACBa8XWyaPJUcBj0DhEU9LlmlPWNCTLwfCFo8xQDoO9_mqLzf3x48seHpvTRcLr2sEnY8OdawPZQpa72g8rk8PcGUvfeTcT0VzaC71SifPQEvUz0wNy69uQC0vGVNkT1MrGe8ZFr7PbQWMLxpJg49xMyOvTaR2T1o7Ca8u0sdPbhtBD0TccQ8suSeOwyk1TyFTdM8JalxvJufvD3gha28CXxvPSZjBr1JWVC8QgNWPcTdzzx5aKs6dknmPF2ABz2Cy526MhJrvDP017u4UtO7QScpvVn2yTy1HIM8_O3Bvff7Kj3cOsk88RL8PcAonL2tKGu7pwdlPVuU2TzYwmI8L058PB8kNb0FyMw7HtOUPRRJir0HgXC8AA4QvQdEyDxD8lq60GMUvanctD0l9Gm8Ff0hPFKe2b3eIYW8Y3XAPX1RDL1aZyI6kNlZvbAjabw1pQi8aMjdPAw2uztByS68bHg6vToG5D0bQMe6vxE4vJzslbwBVG27aP6tPXmocj3NGAs7O2JDPR2GwD1B4my5DT-ePXnsgjzLJ446CoCRPeeyh72CVAW61Jw8PbPMlz2MsM64DWFru7Y8hTxE3jQ7SqFnPekHmjzzGic5xPd0vSdmXjtz_hA5RydGvRdyrDlbQ1s3zrj6vMaOAb0SaMa36noSvqYJkL0RwEO5vqZivJj7JD16k4Q3-cDpu_mkbrwOL5C44q3zPN6wCD2gE8O4uEACPhI0Ab20PwU5HAbYPNvHBb02V2k59kIhPWqNXD2H9ie5gr-EPT6ITj0Oa0c4sTlivSFyH7xCIwK5dD6hPIV_nD2MlkS5e0AKvdVCyTwTpuc2ngYxvYPA6r0zzJA4mgcQPd44yb0INPs2b3mTu3MwNj20xZC332yjvfwtCbzNfaq2vJS6vO69vr1Ji5s3ziULPLtlYryBvJm2PVusvJEhDL16rEA4oFTLPffxxrwtj9W4uIWYvT-CC7zCD963q2IivMetk7xM5n633kiPvLYRjzxu6dG25NWevHqJ8b1lVTC4Iv_sPTUpBT7zflu4Jc1dOy0eYz1BEQu5UG8IvEqomj0jJgq2dxSEutq6Bb0FWlA4IAA4E0AJSG1QASpzEAAaYCLlAAbiCJzOFxXnDc39CAXnGr8ruxP__d7_IxbV5R0p7ML4AAA-2ev4pwAAACn6Dho8AApt8u_zFt4o9qbS3i_4fyQAKwDECSDKxgdLAu4DAOQqGAAO5cgDT9jgJixjISAALQTmITs4E0AJSG9QAiqvBhAMGqAGAAAcQgAAAMAAAIA_AADYwQAA8EEAAADBAACYQQAA2EEAAMBBAAAAQQAA8EEAABDCAAAkwgAAJMIAAGRCAADYwQAAQMIAAIjCAAAAQgAAKMIAAIjBAACwwQAAiEEAAABBAAAAQQAAwMAAAL7CAAAcwgAA6EEAAMBBAABgwQAAHEIAAAzCAAAQwgAANMIAAKBAAABAwAAAqkIAAFDBAABcQgAADEIAAMhBAABoQgAAgL8AALBBAACYwgAA4MAAAEBAAACEQgAAKEIAADTCAACQQQAADMIAAIjBAABAQgAAoEEAAJzCAABwQQAAAMEAAHxCAADIQQAAEMIAAIDBAACowgAA4MAAANjBAAAQQQAAKMIAAEDBAADgwQAAskIAAJJCAABAwgAAdEIAALhBAACIwgAAaMIAAIDAAADoQQAAYMEAAPjBAACoQQAAuEEAAJhBAADQwQAAkMEAAGBCAABQQgAAGEIAALjCAADowQAAkEIAADDCAACSwgAAqMEAACzCAACSwgAAcEEAALpCAABgwQAALMIAAFRCAADoQQAAeMIAAJjBAAAEQgAA8MEAAGhCAACIQQAATEIAAKRCAAAkwgAAPMIAAIBBAAAQQQAAAAAAALjBAACYwQAA0EEAAIDAAACAwQAAwsIAANjBAADwwQAA2EEAAJhBAABAwAAA0MEAADzCAACWwgAAYMEAAOBAAACgQQAASEIAAEBAAABQQgAAqEEAALjBAAAMwgAAoMIAAMDAAADAQAAAgD8AAADAAADQQQAAIMEAAHTCAAAwQQAAuEEAANjBAADowQAAiEEAAKBBAACQQQAA4EEAAIjBAABQQQAAcMIAALjBAAAwQQAAgMEAAMhBAACowQAAjMIAADDBAAAoQgAA4EAAAGBCAACgQQAAkEEAAAzCAADAQQAAEMEAAIA_AAA0wgAA4EEAACDBAAAcwgAAwkIAAIBBAAAAwgAAMEEAAEBCAAC4wQAArEIAAKjCAABkwgAA6MEAAPjBAAAwQQAAyMEAAFTCAAAcQgAA-EEAAPhBAACgQAAAiMIAAHBBAADowQAAhsIgADgTQAlIdVABKo8CEAAagAIAAOA8AACgvAAAoj4AAGQ-AAC4PQAAgj4AAGQ-AAANvwAAEL0AADA9AAAsvgAAUL0AAJY-AAAUPgAAgDsAAKA8AAAUPgAAgLsAAKA8AAAfPwAAfz8AALi9AACgPAAAmL0AAKg9AABUPgAAUD0AAPi9AADIPQAAUD0AANg9AAAQvQAAFL4AACS-AADYPQAAlr4AACy-AACIPQAA0r4AAFy-AAAwPQAA6D0AAHQ-AAAkvgAA-L0AAIA7AADSPgAAqL0AAOA8AAAsvgAAjr4AAMi9AABcPgAAjj4AAIK-AADoPQAAMT8AANi9AAAQvQAAEL0AAKA8AAC4vQAAqD0AAJ6-IAA4E0AJSHxQASqPAhABGoACAAC4vQAAoDwAAKC8AAAtvwAAyL0AAIA7AACgvAAA2L0AAES-AABsPgAABD4AALi9AABAvAAAbL4AAOC8AABAvAAAEL0AAEE_AADYPQAAZD4AAGQ-AAAQvQAA2D0AANi9AABQvQAAyL0AALi9AAAEPgAAEL0AAIC7AAD4PQAAuD0AADC9AADovQAABD4AABC9AADYPQAAvj4AAKK-AAAMvgAAsj4AAOA8AACgvAAADL4AADQ-AACYPQAAf78AAFA9AACiPgAAuL0AAJY-AAAsvgAAcL0AAJg9AAA8PgAAqD0AAEC8AAAkPgAA2L0AAOA8AACIPQAAoLwAAOC8AABAvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7Y7tFUtnbGQ","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11552225514020835071"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3570714109"},"11811395714606783974":{"videoId":"11811395714606783974","docid":"34-10-10-Z09FDB8F05A6E3DE8","description":"integral. 2020 combined maths paper. 2020 integral first part. 2020 anukalanaya 2020 anukalanaya (cos(x))^6*(sin(x))^3 Integral 0 to pi (cos(x))^6*(sin(x))^3 Calculus Question Integration...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4829884/6e52dc1c467f79c7c32897c644b9f409/564x318_1"},"target":"_self","position":"15","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4O9OkY3RD3I","linkTemplate":"/video/preview/11811395714606783974?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of (cos(x))^6*(sin(x))^3","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4O9OkY3RD3I\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhYKFDExODExMzk1NzE0NjA2NzgzOTc0WhQxMTgxMTM5NTcxNDYwNjc4Mzk3NGqvDRIBMBgAIkUaMQAKKmhoYmpseXJyaGZldGt4a2RoaFVDQ1NuZkZ2bk80YXZ4ZlA4T0JxdE9GZxICABIqEMIPDxoPPxOxAoIEJAGABCsqiwEQARp4gfUEAPj8BQD6CA38-wT_AfYD_fj5_f0A9gf8__8C_wDq-QMGCP8AAPEU_v8EAAAAA_v9-_3-AQAM9wPwAwAAABgC_QD4AAAADAH5Agj_AQH8-_PzAQAAAPcIAQT_AAAAAQkL-f7_AAAFBgH2AAAAAAD__v8AAAAAIAAtK-TeOzgTQAlITlACKnMQABpgExgAJOocwq8UM-EBzQkO_Pfg-MTwEf8C2QD__uql-gnlxQUc__XZ-QKxAAAADPDrJ7MA8WEbBLse8yD2LKX1IQ1_AhAO_NkH6xTYEtsY2-0M7tf0ALgr7QkKxghJJSceIAAttIsxOzgTQAlIb1ACKq8GEAwaoAYAAPBBAABwwQAAuEIAAFDCAACgQAAAKEIAAFxCAABQwQAALMIAAPjBAACgwQAAMMIAADDCAAAowgAAUEEAAHBBAABgQgAAIMIAAJpCAACCwgAAJMIAAPjBAAAAwgAABEIAAETCAAAQwQAAWMIAAADAAADQQQAAmMEAALjCAABAQAAAZMIAAEDAAACiwgAAqEEAAIBAAACwQgAAgMEAAODAAAAAwQAAMMEAAEBAAAAAwgAAXEIAAFDBAAC4QQAA4EEAAPhBAACQwQAAyMEAANDBAABwQQAAQEEAAEBBAAC4QQAAQMIAAJBBAADQQQAAgEIAAMhBAACqwgAADMIAALjCAAC4QQAAvsIAAEDBAAAAwQAAgsIAACjCAAAgQgAABEIAAK7CAAD4QQAA8MEAACDCAADowQAA-MEAACBBAACwwQAAmEEAAJRCAADAwQAA4MAAAADAAADgQQAAOEIAABhCAAAgQQAALMIAAJjBAABgQgAAjsIAABBBAACQQQAAcMIAAEBAAACgQAAA6EEAAHRCAACewgAAMMEAAKBBAAAwwQAArsIAAFBBAABwwQAAOEIAAMDAAABMQgAAUEEAAIhBAABwwQAAiMEAANDBAACEQgAA2EEAACDCAACQwQAAuMEAAGTCAACmwgAAQMEAAKhBAACQwQAA0MEAADBBAAD4wQAA2MEAAIjBAAAQwgAAUMIAAEBBAABQQgAAQMAAACxCAAAYQgAADEIAACBBAABwwgAAQEAAAGBBAAAkQgAAYMIAAARCAAC4QQAAGMIAABBCAADAwQAAgL8AAIDAAACoQQAAeEIAAJDBAADQQQAAAAAAAFzCAABMwgAAaMIAAHDBAAAIwgAAgEEAADTCAACQwQAAAMEAAGhCAAAMwgAAuEIAAExCAAAgwQAAMMEAAADAAABgQQAAuMEAAIbCAAAgQQAAkMEAAKjBAAAYQgAALEIAAJrCAAAowgAAwMAAACjCAAAUQgAAqMEAAKzCAAAcwgAAQMEAAIhBAAAUQgAACMIAADhCAAAQwQAAAAAAALRCAADwwQAAAMAAAJBBAABgwSAAOBNACUh1UAEqjwIQABqAAgAAqL0AAEC8AACePgAADD4AADA9AACiPgAAuD0AAOa-AABEPgAAuL0AAKi9AAC4vQAAPD4AAHw-AAD4vQAAqD0AALY-AAAMPgAAFD4AAPo-AAB_PwAAcL0AAOA8AACYPQAAhr4AALg9AACgPAAAgr4AAEC8AAAMPgAAuD0AAMi9AAC4PQAAED0AALi9AAC4vQAAML0AAGS-AADSvgAA-L0AACw-AABUvgAAMD0AAJg9AABkPgAAcD0AAIC7AACWvgAAhr4AAAS-AABAPAAARD4AALI-AAC4PQAAVL4AADA9AABRPwAAfD4AANi9AADIPQAA4LwAACy-AABMvgAAvr4gADgTQAlIfFABKo8CEAEagAIAAIA7AACYvQAAUL0AAF2_AACovQAA6L0AALI-AACOvgAAyD0AAFQ-AAD4PQAA2D0AAHC9AABQvQAAEL0AAEA8AAC-vgAAGT8AAES-AABsPgAAXD4AAEy-AAAEvgAAQLwAALi9AAAwPQAAfL4AAFA9AABQvQAABD4AAOA8AAA8PgAAbL4AAHS-AABAPAAAcD0AAMI-AABUvgAAtr4AAHy-AADgPAAA2D0AABy-AAAkPgAAkj4AALi9AAB_vwAAmD0AALI-AACCvgAAML0AAKg9AACgvAAA-D0AAOi9AABcPgAAEL0AAES-AAA0PgAAUD0AAGQ-AACovQAAQLwAAKi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=4O9OkY3RD3I","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11811395714606783974"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17507382255696577976":{"videoId":"17507382255696577976","docid":"34-0-8-Z1ED65B30CB9112E6","description":"The value of the expression `(sin7alpha+6sin 5 alpha+17sin3alpha+12sin alpha)/(sin6alpha+5sin 4alpha+12 sin 2 alpha)`, where `alpha=(pi)/(5)` is equal to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/219153/c18ba44c53d561718d10d89b5bc91a22/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/llUSNAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DaTVRTEtIlgw","linkTemplate":"/video/preview/17507382255696577976?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The value of the expression `(sin7alpha+6sin 5 alpha+17sin3alpha+12sin","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=aTVRTEtIlgw\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhYKFDE3NTA3MzgyMjU1Njk2NTc3OTc2WhQxNzUwNzM4MjI1NTY5NjU3Nzk3NmqIFxIBMBgAIkUaMQAKKmhoeGNscGhrYnl4bHJ5bWRoaFVDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQRICABIqEMIPDxoPPxOeA4IEJAGABCsqiwEQARp4gf0C-_n8BADpDwT_-gABAAQAAAL4__4A7QL8BAAAAADtBv7-A_8AAAUM_wUDAAAAAf4CA_7-AQAICgQCBAAAAP4HAw__AAAADgv8A_4BAAD4AfwBA_8AAAgEAgoAAAAADgHv__8A_wH9EPX2AQAAAAIC_A0AAAAAIAAtiO_eOzgTQAlITlACKoQCEAAa8AF19f8A7_72ANkEzADMP-sBgSIK_v0x1QDE-x8AwAPjANIK-QDU6g4AAwAk_98-D_8w2NP__-YHACu-CwL9APsA4gMOARLKAwBS_PwB__Pj_uAiEf8I3Pz_Eer8AA0X8_4K8xL6-gHL_wAG4gMa-hAEJB4gBQn2If3_4An63h0UAOX22v0LAPYJ3_PzALD-Ggf85egBARQC-sAP5wEg4QkC89gh__Yh_Pgp8AUH__MD_cYLAwjqBtgDFAcSBtn39Pb76hf-5fP79AkJGgUa4P4B-ub2_SPo9wcTDPgA7_gI__D0-_3lCfn10fMEC_f_BPggAC3_IR07OBNACUhhUAIqzwcQABrAB8xdw75k0vi6S_D-O-YQZ70WqEC9LB-DvSMT8L3XLSc99_1AvM_b2D3I5Im91i9ivfjBgb5_6Pi8RGlPPcuAMz7m0Yi9mGIzPNz0F75-1DU9qmINPPQzJb6AiW49CNouPSuIIT5jFaW8aGEqvPM7DT52FMy8hktYPKOTJb4rfwQ8trWJu-NBCb0ZOKC86PT-u0KguT3bfRi9uAT9OyDrCT7Fbdm8qpk1vFFM3rv2Ocg8Kdw8vKXiOr3BKii8V6lKvREALD6WWxo92x3tPElHHryufrC4Wbj2PG5Tl7xYU3k9t3nju6_FqL1R7LK8jKkqvI99Or3rLAS9Az6_O9k_772c-fU9AzZvu-Xv3jz1K908Da7zu0fFpDuoC0c9hFUKvGGiRj2rwDo9uhdzPBbswD1Kq0s9Y2JzvOjuhLzHJXM96a4tOpAkELwQ36M9pmIDPXXWnTx_ufs8KEmyvKq_-TzyKVs8pF27PCxsPLy6oek9HDkYOxEqsj0aICg7elASu_h1Oz2cDgk9llwku0WA8z28Yba9ey8dO2MqfbyjRcy9hypGvJjgBD6cb2Q9zCvTOy2qaj1SESM8Q32_uzD6ZTySq7s73c0VuzXDtz2AUw49piSQPCy9Mb36jDU97QivOvDVlju3HzU9Yp3Pu5Smfzt22v88d4i9O4Q_CTsVjYW9aHwZO7nDJj0gz069U9SVu0wRmj1IfWM9OoVeuRJQwT3BeEG9YdMKuoAb2Dxob7W9dDtGucakP7zkBLe8PP75uBWzdD1AYK-9jWJ-OD_ekjsQCM8888TWuCpFYb1qXI49h2QruCMFYD2sXAG8t5kZOMui8LxbQh6-NwXjObhW-zzZccu6y88MuvFGZj1ofhA8RWWeuG0-Sb1i9Ey-6u6sOT8-abnJA5E8OcoCudoeXT0KtGW9O1DGN8rDgrxp0we94AelOChak70Lcfa8biauOZ4DML0P8io-vcXfuPcp_TzNH9M8R-0dONElpz3O2Wc9_o8kOYC0hD3jFx4-sueCt787Q7yIE6M9ssdTuNS6SL1qpZC9DrU2uKYr2D1GmAI9gUZ_uETrFTxY_kE9TtsHOW8Egz2AYKO94wTqOPinFD4D-k49H_TtNqnRFT2z_0u85d9Rtzc3lj2Digo9eYaSuJdWE74MIKy9OY3xNTbNNr3P0c88IJMAOI65obzJCa49ZG4Ut3dhUL2dBla9wRaiuEbkkD2BxjE95ZCPOESCjrz-hI487aK1uHJuEz0kjPC80z17tnwnJr1OM5M8XTXKOCAAOBNACUhtUAEqcxAAGmBB_wD7Dh3xUQZT2R3rQROyuxTT38Uc_ya6_-rhDPcgT_GvOPcA9fsC-p4AAABG3_j_ywATfywKykn00wY5sNZA91jsFDLyoxb9v9cSFOzV6gdBFz8A3A2fQS_ppSXzPAcgAC3NLBA7OBNACUhvUAIqrwYQDBqgBgAAEEIAAFxCAACKQgAAgMEAACBBAACQQQAAukIAAOhBAAD4wQAAsMEAAOhBAADgwAAAOMIAAPjBAAAwwgAAQMEAAHBBAACcwgAA0EEAAMBAAADIwQAAgMEAAMzCAAA4QgAASMIAAKBAAAAowgAAwMEAAMBBAACAQQAAgMAAAKBBAABQwgAAEMEAAKLCAACgwAAA4EAAACRCAACwwQAAoEAAACBBAADAwAAAgEEAAKDCAACoQQAAyMEAADBBAADwwQAAoEEAABRCAACOwgAAFMIAAOBBAACoQQAAgEIAACBBAACMwgAAYMEAANhBAADYQQAAJEIAADjCAACqwgAAIMEAABRCAACMwgAAaMIAAETCAACAwgAANMIAABxCAABMQgAAOMIAAADBAABAQQAACEIAABzCAACgwAAAmEEAAKBCAACgwQAAEEIAAMDAAAAwwQAA4MEAABxCAABQQQAAGMIAAKBCAACYQQAAUEEAALBBAAAAwgAA2EEAAFBBAABgwgAAyMEAALhBAAA0QgAAgEAAABjCAACgQQAAEEEAAFDBAAAgQQAAgMEAACDCAADQQQAAgL8AAExCAAAkQgAAmMEAAEBAAABUQgAA6MEAAKxCAAB4QgAAgMAAACBBAAAwwQAAgMIAAFTCAADYQQAAPMIAAKjBAAAAwgAAWEIAAMDAAADwwQAA4EEAAATCAADKwgAAMMEAAIjBAABUwgAAREIAAJBCAADAwAAAAMAAAIA_AAAwQQAA6MEAAEDAAAAMwgAATEIAAFxCAACYQQAAhkIAABBBAAAIwgAAaMIAANhBAACIQgAAREIAAEBCAAC4wQAAlsIAADDCAACAPwAA4MAAABjCAAAwQgAAEEIAABDBAAAQQgAA-MEAANjBAACuQgAA2EEAAEDCAACAQAAAYEEAAODAAAAgwgAAFMIAAEBBAACgwAAAYMEAAERCAABgQQAAgMIAAADAAACgwAAAFMIAACBCAACIwQAAPMIAAHBBAABgwQAAiEEAAAxCAADQwQAAgEIAAMBBAACIQQAAnEIAAEDAAABQQQAAOEIAAPBBIAA4E0AJSHVQASqPAhAAGoACAAAwvQAAEL0AAL4-AACgPAAAmL0AACQ-AACovQAA2r4AAAQ-AACIvQAA4DwAAMi9AABEPgAAQLwAAOi9AACoPQAAoDwAAFC9AAC4PQAATD4AAH8_AACYvQAALL4AAGw-AACgvAAAHD4AAEC8AADgvAAAhj4AAPg9AABQvQAAoDwAAEy-AACIPQAAmD0AAKi9AABQvQAAFL4AAPi9AAAMvgAAiL0AABA9AABUPgAAmD0AACS-AAAMvgAA6D0AAOA8AADIvQAAoDwAAKg9AAA8PgAAFD4AAIA7AAAkvgAAED0AANY-AADgPAAAED0AACQ-AAAEPgAAgLsAALg9AAAUviAAOBNACUh8UAEqjwIQARqAAgAAEL0AAOi9AAAMPgAAHb8AABA9AADoPQAAQDwAACQ-AAAkvgAAmD0AAFS-AADovQAAiD0AADC9AACAuwAAoLwAAKC8AAAtPwAA-L0AABQ-AADovQAA2L0AADC9AACIvQAAED0AAOi9AABAPAAAuL0AAIg9AAAcPgAAgLsAAAw-AAAUvgAAgDsAADC9AACgvAAAND4AADQ-AAA0vgAA-L0AAOA8AAAwvQAAgDsAABA9AACAOwAATL4AAH-_AAAcPgAA2D0AALg9AAA0PgAA4LwAAEw-AABwPQAAcL0AAKA8AAAwPQAAUD0AAHC9AAAEPgAARD4AAIi9AADovQAAHL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=aTVRTEtIlgw","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17507382255696577976"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4168468138"},"10639994337318570015":{"videoId":"10639994337318570015","docid":"34-10-3-Z316FC5FDA257C954","description":"Example: V 1.3 (Page 7) Question: Page 32 Q 22 (every second question)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3509934/19269b8c694a300a90e4ec8a98bda9ab/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/wZS5wwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEdZJ6oV40o8","linkTemplate":"/video/preview/10639994337318570015?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"General Maths 3 - Trigonometry Video 6 (sin, cos tan - Finding lengths)","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=EdZJ6oV40o8\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhYKFDEwNjM5OTk0MzM3MzE4NTcwMDE1WhQxMDYzOTk5NDMzNzMxODU3MDAxNWq2DxIBMBgAIkUaMQAKKmhobHpja3Nhc2NqcWZqdWNoaFVDTktjUkl1NnVKMmtNN1pvM0RqbzE1ZxICABIqEMIPDxoPPxOkBIIEJAGABCsqiwEQARp4ge73CvcE-wDuDA0C-gP_Af8U9wf2_v0A9Ab0_PQD_wD3_AoMCgAAAAYV9QD9AAAADv339f__AgAY8-4AAQAAABgQCf70AAAAEhYI-f0BAAD49PQJBP8AAP7xCf3_AAAAFwUG8____wAIEu78AQAAAP8BCwb_AAAAIAAt6ePEOzgTQAlITlACKoQCEAAa8AFsCyH_zBjqAOLqHf_2ItkCgQot_w4e-QC18AwB0w-3Ae4w0AD0-xcA9wwpALIT7P9L9uAAEvfjACAFMv_z-R0AEBgnASfXCwBk6BEA__Lg_qk2H_3-ABsB9vH1AQgN7f7u8R399S7A_rDi5QMm-zEBFxEGAvsUFgDo7v0D3gMLAeAv1f8FGP0G3d75_Ow0DAQh8OYEKDny_t3y7_wk3gkCEPnj_Q4UzgA6_AIE8f4VBAML-gAq7iIFC_UMAwsG_PDa_wzy-dMFAgkI9QDfzhsAEQ4I_e8U_wASCgn-DgEC9OgHFA3PPPT-MvUCDRHU_v8gAC1QIw07OBNACUhhUAIqcxAAGmAp7wAN2yuz9x_w8hPf-iLKxhjMK9QI_-HF_x7w8vEV-8fM9vgAB85KA6EAAAA73ucR_ADbf9TCaiXqGxm9vu82_GABGeXUwy0JwMX2LPkBPPkEGgEAFgSuID3UtjFULSYgAC17fxk7OBNACUhvUAIqrwYQDBqgBgAABEIAACxCAABAwQAAGMIAANBBAAD4QQAABEIAADzCAADgwQAAUMIAAEBBAAD4wQAAmMIAADzCAAAwQQAA4MEAAIRCAADQQQAAuEEAANjBAABUQgAAgD8AAIBCAAC4QQAAPEIAAADAAACGwgAAwMEAADBBAAAUQgAABMIAAERCAADQwQAAMMEAAEjCAACowQAA4MAAAK5CAAA0wgAAIEEAABTCAADAwQAA0EEAAFDBAACYQQAAUMIAAETCAAAEwgAAhkIAAGDBAABQwQAAgL8AAEBCAADIQQAAAEAAAAjCAADKwgAAiMEAAEjCAAAEQgAAWEIAAJDCAAAAQgAAwsIAALBBAAAowgAAuMIAABTCAACoQQAAcMEAAMDAAABcQgAAnMIAAIDBAAAgwQAARMIAADzCAACIwQAAEEIAANhBAACiwgAACEIAAIBBAAAAQgAAjkIAAODBAACCQgAAKEIAADBCAAA0wgAA6EEAALZCAACQwQAAgMEAAMBAAADowgAAIMIAAODAAACIQQAAEMIAALDBAADYQQAAgMAAANDBAAB0wgAAREIAAKhBAABgQQAABMIAAEBCAABQQQAAgEEAAADBAADIQQAAPEIAAIbCAACQwQAAEEEAAMhBAAAAwQAAgMIAABDCAAAcwgAAGMIAAGDBAACgwQAAQMEAALhBAABcwgAAMEIAAFRCAACIQQAAAMIAALDBAABQwQAAIEIAABxCAADQwQAAGMIAABTCAADQQQAAAEAAACzCAACAPwAAGEIAAIBAAACEwgAAAMEAAABBAADwQQAAUMEAAADBAAAAQQAAoMAAAPBBAABkwgAAnMIAAGTCAAC4wQAAiEIAAHDBAABwwQAAiMEAAJTCAAAAwgAAwMEAAMBBAACIQgAAHEIAADhCAADQQQAAkEEAAJBBAACAPwAAUEIAAIDBAABwwQAABEIAAERCAAAYQgAAAMEAAIjBAAA8wgAAQEAAAOBBAAAgwgAAqMEAAChCAAAYwgAAKMIAADDCAAAQwgAAMEIAAFjCAADowQAANEIAADxCAAAMwgAAiMIAAJBBIAA4E0AJSHVQASqPAhAAGoACAACAOwAA2L0AAM4-AAAwvQAAQDwAAFw-AABAvAAA-r4AAJi9AABQvQAA2L0AAKA8AABQPQAAoj4AAKg9AAAEvgAABD4AALg9AABsPgAAxj4AAH8_AACYvQAA2D0AAEw-AABkvgAAZL4AAKA8AAAEvgAAND4AAGw-AADgPAAAZL4AAOA8AABAPAAAML0AABC9AAAwvQAAiL0AAO6-AADYvQAAML0AAEA8AACgvAAAuL0AALi9AACIvQAArj4AACS-AADYPQAAmL0AABC9AAAMPgAAjj4AAJg9AADavgAAMD0AADU_AAC4PQAA4LwAAHw-AACYPQAAED0AAMg9AABMviAAOBNACUh8UAEqjwIQARqAAgAAUL0AAFC9AAA0PgAAN78AAEA8AAA0vgAA4LwAAJi9AADgvAAAuD0AAIg9AACoPQAA4LwAALi9AAAwPQAAEL0AABy-AAA_PwAA-D0AALI-AAD4vQAAPL4AAOi9AABkvgAAqL0AAOi9AABEPgAAQDwAAEQ-AABkPgAAgDsAAFw-AAB8vgAAcL0AALg9AABwPQAA-D0AABw-AACivgAAEL0AADA9AACgvAAAdL4AADw-AADYvQAAEL0AAH-_AACYvQAAXD4AAIA7AAAwvQAA-L0AACS-AACgPAAAZD4AAJg9AACIPQAA4LwAAMi9AACIPQAA-D0AAAS-AADgPAAALL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=EdZJ6oV40o8","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10639994337318570015"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3951578850"},"2955425740921319200":{"videoId":"2955425740921319200","docid":"34-8-16-Z67FFC5A3AA901174","description":"A FREE Course ON Human Calculator- • How to Become a Human calculator if you have any questions you can ask me in comments. I hope you will watch this video till the end and subscribe to my...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1015806/3e9cdd02ad2b05cfa50ffa9086f38f7d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/4VEy6QAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DiFpWUetNqYc","linkTemplate":"/video/preview/2955425740921319200?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to find Sin6° and sin84° | mathocube","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iFpWUetNqYc\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhUKEzI5NTU0MjU3NDA5MjEzMTkyMDBaEzI5NTU0MjU3NDA5MjEzMTkyMDBqhxcSATAYACJEGjEACipoaHludWNuemVlcXRuZGFjaGhVQy1rOTBpUkZsZlpUMVVNZmZoTlhPTmcSAgASKg_CDw8aDz8TfIIEJAGABCsqiwEQARp4gfT0-f79AwD0_AgH-AX-ARMJ_Pz1AgIA7gnxAAQAAADuAAX_DQAAAAEDBv3_AAAABQn1Df39AQAQ-_75AwAAAAsI-vkAAAAAFQX_AP4BAAD_Bfv_A_8AAAgFBAEAAAAA-g78-_8AAAAAEf3_AQAAAPP4BAUAAAAAIAAt55jcOzgTQAlITlACKoQCEAAa8AFk_S7-z-bg_7wW3gCn_t7_gRgP_yIs2wCY7D0CrfW-AbocEQEF4Ar-3uwJAMYnFgAc0Nz_H_r_AC_o7v8Y8e4ADhsGABW-AwBHAfwA9Ob0ANwBRf4nAx0AMNzSAgoNyv7t8CD9L_DjAeoEuQL-BTQARBQeBPr8PQT-2Qz52gMMAewj5_wSDen9BPv287XVLAIVD-gB8fb599RO7QAa3v_-1vgS9gQd3wY46OsJIu4E99bE-QfqD_H2H98MB8Q8HwLR8DQH8NwB7PcXDgAgyu8F-OH0_Abt2wT58gz8Ge77_P_yF_asIQ34x-8O9QYQ9QIgAC0BsAA7OBNACUhhUAIqzwcQABrABx-8zr6xEpg7Ru3AO05j-7036Qy9d-nwvO1-1b076oO855RbvA_S8z2Q7iy9oATRPDhpir7RDD087a59PCb_8z3xBbe9oGUnPNlDS75DknY7KX-CvfWha76E0wc9dDXDu7DnCz5Rtxq7BbECvWmEyD2tchw9JJO4vAnMqb1UwwO9aMMrvFY_wLwX-EW9O3mJu1rfNj3p2528U5HKPHcx7T2PACm9dpYRPAz4qbtXG409cujjvNYxM72NUvg8ND_IvPBZzTyscoA7RtJuPP1avb2CA1Y7155-vPp9P70alB89xgVkOuITH7zo__A86M4dvRq1nD0x8Le8MOEnO_mgB770Gps9L4GAO_sFOz7aN9c9RHXKOyKUrbx0S6E9zsGzPIqVLLzln3Q8N-M0vADyhD2JKwI9-CsuPP6emLxi-Aa8q4NVO5n7j72bRY49Z23JPMeLOz3gle48tIC_vB_EKbwJyum6kstiuwu45712UIk7W4SYvBEqsj0aICg7elASuyxnuj2R-gQ84hBgPMU1Qz34UQ2-CW8su5iBr7yPwrq9q74pPJ-wtD3pj0u5uEZ8u4vLnD2kF3q9X3hKvCh22bxXCKu9NIiLu0HYCT1CWKK95D8iuhasp7yXtYM8qNggOWQntDsnUyI7voFuvCAfGT3YYZw9JKwVu8xslr3zSpO9B_9cN54J7T1dG8U8u3ttug2boj2zYOK8YRPtuVT6nj2a6Di9eFpPOFoojr1HdYq9gPcYujThLb3KdAW8PbShOR-i0T1Y-B-9edGKOEqhZz3pB5o88xonOf7rkb1nh1M9nEjxuAZ2Jj3q24i9As1mOIsGXzzTvKO9P3xBONQblL3d2tu7wYFwOOjKVjxqXEk8oDeROQI0I7xNq3e9IbNeOTWVKr3b4rW8ukIPubckrDwfuRW90xoNOcDyuzxKOxy8a2TOOL0YirzZ1FS8kHtDOBcDFT2_fHc9PQcHOb7nxj0AHaa9akOGOSa_aj0aQ0o83aDQtnQGqz0k2089kTu7uFWZlDuTTIM9lA-ZuJ0ORzt3nwO-Q96Mt57H8jwGblg9bJR2uFifzL2mLjQ9g38sOd6IuDzCbjO97Zyvt_2GCT0myOe7Lu-kt5ctA70vave8WincN8Kk2D02Kia9e7QtuQpcCL3iw5G9PKVYuImf-7tmgVu9TGXwt8ckuL0MxNe80nn5tuwDvTt81A--F_rcuMr0cD0i4Ss-8cuKOBt31DzTJ2M9pTSguJVpT73nr6m78Ly3NnoMgL0pgD08xFm3tyAAOBNACUhtUAEqcxAAGmAr-QAxARvY9AcO-_TSLwPd9AjLCbwn__DG_wj45vXjDOvMS_YA_fgh1asAAAA37uP37wAlesTa_iP6FOigst0aEn89_xvQoQMVvug-9ePpHSDNITIAEeidPS3u5B_aHTggAC2b_h47OBNACUhvUAIqrwYQDBqgBgAAwMAAADhCAABQQgAAQMAAANBBAABQQQAAEEIAAEBAAACMwgAAQMIAALjBAAAYwgAAUMIAAFzCAACgQQAAhsIAAODAAAAAAAAAIMIAAJDBAAD4QQAA4MAAAEDBAABQQQAAoMEAAAhCAACGwgAAqMEAAGRCAADYQQAAMEEAAEDAAACMwgAAgD8AAPjBAACQQQAAYMEAAEBCAACoQQAAsEEAACBBAACOQgAA8EEAAIBBAAA0QgAAgMEAAETCAADgwQAAwkIAAABAAADgQAAARMIAAMBBAADQwQAAFEIAAODBAAAUwgAAJMIAAMDAAACgQQAADMIAAAzCAAAUwgAACMIAACDBAACYQQAAEMEAAODBAACAwQAA4EEAAJxCAADAQQAAjsIAADxCAADAQQAAAMMAAAjCAABgwQAAlkIAAADAAAAMwgAAgEEAAEDBAACYQQAACMIAAGzCAADYQQAAgkIAAERCAADowQAAOEIAAEBBAABwwQAAqMIAAKBAAABMwgAA-EEAAKRCAAAQQgAAgMEAAEDCAADIQQAAlEIAAIjBAACKwgAAwMEAABTCAACAvwAAgL8AANhBAAAwQgAAwMEAADTCAACAwQAAuEEAAFDCAAAUwgAAcMEAAKjBAADAwQAAcMEAAGjCAABYwgAADMIAAIRCAADwwQAAbMIAAIC_AAC2wgAAlMIAAAhCAADoQQAAGMIAAJpCAAAgwQAAyMEAAIxCAAAUQgAAQMEAAFDCAAAQwgAAsEEAAKpCAABQwQAAbEIAAKBBAAAwwQAAgEEAABjCAABkQgAAXMIAAAzCAAA0QgAA0MEAAKBBAACgQAAAgD8AAKjBAAAAwQAAAMEAAHDBAAAgQQAAJMIAABhCAAAMwgAAQMEAANxCAADYQQAAAEAAAOBBAABUwgAAkEEAAIA_AADYQQAAgEAAAIjBAAAkwgAAKMIAAIhBAAA0QgAAisIAADjCAACYwQAA6MEAANhBAAAUwgAAgD8AAIBCAAAQwQAAQMAAABBBAABQwgAAAEEAAKBAAAAowgAAwEEAAMjBAACowQAANMIAAODCIAA4E0AJSHVQASqPAhAAGoACAADYvQAAiL0AAOo-AADIPQAAQDwAAHQ-AACovQAAIb8AAHC9AABwPQAAuD0AACy-AADIPQAAqD0AANi9AAAQvQAAED0AAJg9AACePgAAyj4AAH8_AAC4vQAAoDwAAKo-AADIvQAAcD0AAEA8AABAPAAAyD0AADQ-AAAQPQAAvr4AAJq-AADgvAAAMD0AADC9AACgvAAAlr4AAKa-AABMvgAA4DwAAFA9AACKPgAAEL0AAFy-AABQPQAARD4AANi9AACYPQAA2L0AACy-AAAsPgAAfD4AABQ-AAA0vgAAQDwAABc_AAAQvQAAmD0AAIY-AAAwPQAAdD4AADA9AAAwvSAAOBNACUh8UAEqjwIQARqAAgAAXL4AAMg9AAAcPgAAFb8AACy-AACIvQAAdD4AANg9AADYPQAAED0AABC9AAAcvgAATD4AAMi9AADgPAAA4DwAAJI-AADqPgAA4DwAAGQ-AABAPAAAJD4AALi9AABAvAAAMD0AABC9AAC4PQAAED0AADC9AAAwvQAAoLwAAIo-AAA0vgAAgLsAAKC8AAAwvQAA4j4AAFQ-AACSvgAA6L0AAMi9AACAuwAA2L0AAPg9AACWPgAADL4AAH-_AACWPgAA-L0AAFQ-AACqPgAA-D0AAEC8AAB0PgAA6L0AABQ-AADgPAAAoDwAAOA8AACIPQAAND4AAJK-AACAOwAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=iFpWUetNqYc","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2955425740921319200"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1430706340"},"2140596872490462976":{"videoId":"2140596872490462976","docid":"34-7-10-Z0E67223E13C351A4","description":"2020, up board exam,up board sample paper, cbse class 12, cbse class 10, nageen prakashan, nootan publication jee mains 2020, jee main january, class 12, jee main maths, jee 2020, cbse board, jee...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3490055/535d5e8230eee8c8e5d26fb6ea9e9412/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/xbleRAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJZzF6pUE3OI","linkTemplate":"/video/preview/2140596872490462976?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Prove that : `sin^(6) A+cos^(6) A+3sin^(2) Acos^(2) A=1","related_orig_text":"6sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"6sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JZzF6pUE3OI\",\"src\":\"serp\",\"rvb\":\"ErADChQxMDEzNjI4NDE1NTg2MzI3NjI5MwoUMTE0ODA0NTkwOTgwMzYyMDMwMTkKEzc4MjU0MzIzNDg0NzEyMzQ3NjEKFDE3MDY4MjAwMTMzMTAwNzAxOTU3ChQxMTk4NDA5MTIwNTI4NjM1NTMzNgoUMTU1NTQ0MzA5ODM3MTMzMTYzODAKFDEyNjU2MDQ3OTM0OTg2MTU5MTg5ChMxNzM1MzQwODIzMzM1ODI0MzkyChM0Mzk0MzgyMjg5MzE3MTc4NDY5ChQxMjA4NTUxNDY0OTIyNjE5OTcwNwoUMTI4Njk1MjcwODQwNjQzMzUyNTcKEjM5NjgyODgyODY4MTUzMjM3OAoUMTE1NTIyMjU1MTQwMjA4MzUwNzEKFDExODExMzk1NzE0NjA2NzgzOTc0ChQxNzUwNzM4MjI1NTY5NjU3Nzk3NgoUMTA2Mzk5OTQzMzczMTg1NzAwMTUKEzI5NTU0MjU3NDA5MjEzMTkyMDAKEzIxNDA1OTY4NzI0OTA0NjI5NzYKFDEwMjM3MTA4NzUzNjE0NzE3NDkzChMzNjMwMTY3NjcyMzU3MTU5NzEzGhUKEzIxNDA1OTY4NzI0OTA0NjI5NzZaEzIxNDA1OTY4NzI0OTA0NjI5NzZqkhcSATAYACJEGjEACipoaHhjbHBoa2J5eGxyeW1kaGhVQ2N2N3BzcEdIbU03QU95d3VMTTF1ZkESAgASKg_CDw8aDz8TWYIEJAGABCsqiwEQARp4gfb7-_v7BQD5BwsG-Qb9AvoD_wH5_f0A9gf8__8C_wDu_fwDBP8AAPoPA_4GAAAAC__8Af7_AQAI_f79AwAAAA4D_v_9AAAABwb_Av4BAAD8AAL9A_8AAP_7A_8AAAAA-xb8-QD_AAABB_j6AQAAAAT8-f4AAAAAIAAtWZHiOzgTQAlITlACKoQCEAAa8AFVGub80wkCAO38_QCjHOr_geH9_yco9QDeAwgA6RHTAeUREwDc9vD__Q4RAMdA9AAS2rcCANz2ACy9CwLs7w8BDAImADXpEwBLFRAB__PS_v4LIv4TCPQAE8TtABkVBv8f4x3_8vzj-vL0DwYr7vkHERwY_wERJf3vzhoD6RLyBcLP4P38498A8Obw-_zkF_08GP4C9xr1-fNJ5wcZB_36EOEk_QUz-gEp8AUHH_8MBcQI7QAG9u_7CRjwAtgLH_YK_AkJ7QgJ-hH--vnE9Qn6HOnsDzfJ8wTsCf8O7A_4_RQO-fPqHAEA7eYcBOgMCO4gAC0UBRs7OBNACUhhUAIqzwcQABrAB33Qi748-yW8LN0YPXdlJ74VRJO8QcnuvPvnOb5iwkM8-63dvLw_jj3dkyg7ieApvb2OkL5851y92KYpOxpr_z3u1QK9MpFSPHoXL74IPDA9KZ_UvPWha76E0wc9dDXDu3ZvdT6t8ES6OcFMu0G2HD7BMKo8jUl7O8Tu270HgyU7ZhUVPAIOEb4OOte8Jz4tvL3jJD4ftIO8ZB79O-w0Uj7Zu_m7vn-YOwA6rL3LFPM8bmO9vPciGj3l8wQ8dYDWvJTCHD7kk9-7eqMbPQ_rcr3xJw077_ibPA78A71lSqW9Ebj_vGNJNL3kaA68L426vHsyWj0iFla8XNslvPmgB770Gps9L4GAOycXEz5P1XM9FamwPHXvhz2NPzY94rmtPOaCp7u7DhU9LwkhPQhU1DfABO688QoKvBdc_byUPC09X-HuO1Hvoz1Z0MW7S1K-PCsVVLw33bK8ooalvMSx8Dt4wCs9sZ7_O6Abtbzcj4o8AA9WPJz64D1A_QK9DHXYOx9VYz0qyYo9DzSVPCGfxj1izCe9Cs4HPGMqfbyjRcy9hypGvHMPKT1sMMO8ts6Ju6wDqz23cRU93XqLO4gkH71DVcw85eFzvMpYmD1mOT88GnUGPGi9Dr10znQ9DKoyPFJfFj3sarK84Yc5vHLsj7yJk0A9TbAsO-cH5Lxol4-9mbUYuwgXl7yyZmS87KXnO0IyU7yYtR49S_qkunrkqj0jX668b0iCuYAb2Dxob7W9dDtGuWYVtjxeb3E9PpKzOe7vJz2RKJO7Nh7_uSfAsDo1UA-9MiCdODK7uDs3qN09m2wEOKeHUj05uV-9rEGGuIsGXzzTvKO9P3xBOHxO1bwd5LW9d73HuSbZjzyytg49lxSUORN9_ryIDxy-kyWXN_zex7snxi09w5dguISGGT2RIay8YY_AuI1bMb36iRg85KGMuXFmpb1yYpk8Quj-OWFmabw1rT49AO6JuMvtYrtOrYg8wMO8txEeyLuRfVA97x2MNoCckD1IwK09fL7iOLv3a7395Zk9gUYxuZWjO71FmwO-DdozN6Dcez0Bmbc9WAA2uMJLtb2NTQI8DbpPNmfZDj3Ncl69wIanN_inFD4D-k49H_TtNrRVrjzuMUe8gEyft99PvT29rjo87FdruRQhlb22C_I8qQ0bOMrDIr3OExW8E_TAtsJGfrwPe-E9DLXBN6FvQbsLi5C9YoYJuOBgFD14_Tg99YjHOPgL7Lz9mzw8z2QDt0t-j71a2T69pHd_NuEfm7xh_xW-6cJWuCAAOBNACUhtUAEqcxAAGmBYBwAs7lb9Eq8n2Aj9Dw_O_-arE-Qo_xI8_xsPFfPoHMqxCOr_-eQA_KMAAAAt8uoG8QDYfzQ89TLTPQj-jdYHGlHrDSrX49IE-_Y68eYZ_CT0AicAw_vCUjrf4kpMBkQgAC3Hzxo7OBNACUhvUAIqrwYQDBqgBgAAwEEAAMhBAAA0QgAAQEEAANhBAABEQgAArEIAAKBBAABgwgAAmMEAAAhCAADwwQAAOMIAAIBAAADAQQAA8MEAAMhBAACEwgAAZEIAAADCAABAwQAAwMAAAMLCAADoQQAAOMIAAEDAAACSwgAAsMEAALBBAACIQQAAIMEAAPhBAADowQAAMEEAAKLCAAAAwQAAgD8AAOBBAAAYwgAA-EEAAEjCAADgwAAAqEEAALjCAADwQQAAQMAAANBBAAAkQgAAMEEAAAAAAAAAwQAAIMIAAIhBAAB4QgAAAEIAAODAAABIwgAAYMEAANhBAACEQgAAiEEAAODBAACkwgAArMIAAGRCAACUwgAAAEEAAGDBAACcwgAAsMEAAABCAAAUQgAA8MEAAGDBAAAQQgAAIMEAAOjBAACYwQAA4MAAABRCAADAQQAAbEIAAIC_AABAQAAAqMEAADBCAAAgwQAAYEEAAJpCAABQQQAAUEIAAGBCAACOwgAA0EEAACBBAAAgwgAAHMIAAIBAAAAwQgAAmEEAAODBAAAAAAAAsEEAAIDAAADIwQAA0MEAAPjBAAAYQgAA6MEAAKJCAAAEQgAAoEAAACDBAABAQAAAMMEAAI5CAABoQgAA2MEAABDBAABwwQAAbMIAACDBAABgQQAAQMIAAADBAADAwQAAAEIAAABCAAAIwgAAAEIAAOjBAACIwgAAAMIAAEDAAAAYwgAAGEIAAAxCAABwQQAAAAAAAKjBAACgQQAAgL8AAIDAAAAQwgAAMEIAAFBCAAAQwQAAnEIAABzCAADwQQAAUMIAADhCAAC2QgAAEEEAAHRCAACAPwAA5sIAAIBAAACIwQAABMIAAJbCAABwQQAAYEEAAIA_AAAwQgAAgL8AAGBBAADAQgAAXEIAALDBAADwQQAAoMEAAHDBAAAIwgAAVMIAAOBAAAAAAAAAUEEAACBCAADAQQAAjMIAAFTCAAAAQQAAAMAAANhBAACAwQAABMIAAJhBAACIwQAAIEEAAKBBAACIwQAAeEIAAMBBAADAQQAA2EIAAKjBAABwQQAA4EEAADBBIAA4E0AJSHVQASqPAhAAGoACAAAQvQAAML0AAK4-AACIPQAAEL0AAIC7AACAOwAA6r4AAEQ-AAD4vQAAPD4AAAy-AAAQPQAAhj4AAEy-AABQvQAATD4AAFA9AACSPgAAuj4AAH8_AABwvQAAML0AABw-AACovQAAiL0AADC9AAAwvQAAuD0AAJg9AACAuwAAmL0AAOi9AACgPAAAQDwAALi9AACAOwAAyL0AALa-AACovQAAgDsAAJi9AADgvAAAoDwAAHC9AABQvQAAij4AAPi9AAAwvQAAoLwAAEC8AABsPgAAoj4AADA9AAB0vgAAgLsAAAM_AABwPQAAUL0AALg9AACovQAAQLwAAOi9AACAOyAAOBNACUh8UAEqjwIQARqAAgAAPL4AALi9AABwvQAARb8AAHA9AACAOwAA-D0AAMi9AACovQAAHD4AAEA8AADIPQAATL4AAFC9AADYvQAAMD0AADS-AAAnPwAABL4AAGQ-AACAuwAA4LwAAOi9AADYvQAAFL4AAAw-AACAuwAAiD0AALi9AABMPgAADD4AAFQ-AAB8vgAAmL0AADC9AABAvAAAhj4AAAQ-AACuvgAAbL4AADw-AAAQvQAA6L0AANg9AACIPQAA6L0AAH-_AACIvQAAjj4AAIC7AADoPQAAQLwAAKA8AAC4PQAARD4AAKg9AADgPAAA4DwAAKA8AACYPQAATD4AAIi9AACovQAAyL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=JZzF6pUE3OI","parent-reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2140596872490462976"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3526760495"}},"dups":{"10136284155863276293":{"videoId":"10136284155863276293","title":"The Exact Value for Sine of 6 Degrees, sin(6)","cleanTitle":"The Exact Value for Sine of 6 Degrees, sin(6)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QvbOfKoey5g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QvbOfKoey5g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbVFqZUZSRXRsSGxxS3JOa1pQaHFFdw==","name":"James Elliott","isVerified":false,"subscribersCount":0,"url":"/video/search?text=James+Elliott","origUrl":"http://www.youtube.com/@hsmathsolutions","a11yText":"James Elliott. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":228,"text":"3:48","a11yText":"Süre 3 dakika 48 saniye","shortText":"3 dk."},"views":{"text":"3,3bin","a11yText":"3,3 bin izleme"},"date":"13 ara 2020","modifyTime":1607817600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QvbOfKoey5g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QvbOfKoey5g","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":228},"parentClipId":"10136284155863276293","href":"/preview/10136284155863276293?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/10136284155863276293?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11480459098036203019":{"videoId":"11480459098036203019","title":"Derivative of y = \u0007[6\u0007]\u0007[sin\u0007](6pix) using the Chain Rule","cleanTitle":"Derivative of y = 6sin(6pix) using the Chain Rule","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9q6yL5Wz0LU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9q6yL5Wz0LU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":93,"text":"1:33","a11yText":"Süre 1 dakika 33 saniye","shortText":"1 dk."},"date":"1 eyl 2020","modifyTime":1598918400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9q6yL5Wz0LU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9q6yL5Wz0LU","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":93},"parentClipId":"11480459098036203019","href":"/preview/11480459098036203019?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/11480459098036203019?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7825432348471234761":{"videoId":"7825432348471234761","title":"How to find Sin 6 degrees ?","cleanTitle":"How to find Sin 6 degrees ?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YslyVzJwUAQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YslyVzJwUAQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRFNQLXNaNWtobHltNE11Y0xoNzdKdw==","name":"BHANNAT MATHS","isVerified":true,"subscribersCount":0,"url":"/video/search?text=BHANNAT+MATHS","origUrl":"http://www.youtube.com/@BHANNATMATHS","a11yText":"BHANNAT MATHS. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":381,"text":"6:21","a11yText":"Süre 6 dakika 21 saniye","shortText":"6 dk."},"views":{"text":"63,7bin","a11yText":"63,7 bin izleme"},"date":"16 ara 2023","modifyTime":1702679239000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YslyVzJwUAQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YslyVzJwUAQ","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":381},"parentClipId":"7825432348471234761","href":"/preview/7825432348471234761?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/7825432348471234761?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17068200133100701957":{"videoId":"17068200133100701957","title":"Solving Trigonometric Equations sinx=\u0007[6\u0007]\u0007[sin\u0007](2x), How to Solve Trigonometric Equations","cleanTitle":"Solving Trigonometric Equations sinx=6sin(2x), How to Solve Trigonometric Equations","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ObOkA9xrYjs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ObOkA9xrYjs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdUYwVWpDa0d1eXhLUHB0WHkwMFRyZw==","name":"Dr. Masi","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dr.+Masi","origUrl":"http://www.youtube.com/@DrMasi","a11yText":"Dr. Masi. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":179,"text":"2:59","a11yText":"Süre 2 dakika 59 saniye","shortText":"2 dk."},"date":"27 oca 2020","modifyTime":1580083200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ObOkA9xrYjs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ObOkA9xrYjs","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":179},"parentClipId":"17068200133100701957","href":"/preview/17068200133100701957?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/17068200133100701957?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11984091205286355336":{"videoId":"11984091205286355336","title":"Converting the polar equation r = -\u0007[6\u0007]\u0007[sin\u0007](theta) - 6cos(theta) into rectangular form","cleanTitle":"Converting the polar equation r = -6sin(theta) - 6cos(theta) into rectangular form","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=BFxONWCdLcw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/BFxONWCdLcw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":188,"text":"3:08","a11yText":"Süre 3 dakika 8 saniye","shortText":"3 dk."},"views":{"text":"11,6bin","a11yText":"11,6 bin izleme"},"date":"22 ara 2014","modifyTime":1419206400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/BFxONWCdLcw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=BFxONWCdLcw","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":188},"parentClipId":"11984091205286355336","href":"/preview/11984091205286355336?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/11984091205286355336?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15554430983713316380":{"videoId":"15554430983713316380","title":"Sin(6 degrees): Exact Value!","cleanTitle":"Sin(6 degrees): Exact Value!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4wM_JhqaZ2Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4wM_JhqaZ2Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZDRXUjdLcXlaaE8tXzFSY2duMHE1dw==","name":"MathOrient","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathOrient","origUrl":"http://www.youtube.com/@MathOrient","a11yText":"MathOrient. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1001,"text":"16:41","a11yText":"Süre 16 dakika 41 saniye","shortText":"16 dk."},"views":{"text":"2,5bin","a11yText":"2,5 bin izleme"},"date":"19 mayıs 2023","modifyTime":1684454400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4wM_JhqaZ2Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4wM_JhqaZ2Y","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":1001},"parentClipId":"15554430983713316380","href":"/preview/15554430983713316380?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/15554430983713316380?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12656047934986159189":{"videoId":"12656047934986159189","title":"Derivative of \u0007[6\u0007]^\u0007[sin\u0007](3x)","cleanTitle":"Derivative of 6^sin(3x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fLkbLrlLGrM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fLkbLrlLGrM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb09lM1pPU0ZaMktsdG0xMDZkSEJHdw==","name":"Screened-Instructor","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Screened-Instructor","origUrl":"http://www.youtube.com/@ScreenedInstructor","a11yText":"Screened-Instructor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":90,"text":"1:30","a11yText":"Süre 1 dakika 30 saniye","shortText":"1 dk."},"date":"29 ara 2024","modifyTime":1735430400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fLkbLrlLGrM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fLkbLrlLGrM","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":90},"parentClipId":"12656047934986159189","href":"/preview/12656047934986159189?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/12656047934986159189?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1735340823335824392":{"videoId":"1735340823335824392","title":"Prove that 2 sin 2^(@)+4sin 4^(@)+\u0007[6\u0007]\u0007[sin\u0007] 6^(@)+.+180sin 180^(@)=90 cot 10^(@). | 12 | Trigo.....","cleanTitle":"Prove that 2 sin 2^(@)+4sin 4^(@)+6sin 6^(@)+.+180sin 180^(@)=90 cot 10^(@). | 12 | Trigo...","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LdKlh_lEZLU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LdKlh_lEZLU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":610,"text":"10:10","a11yText":"Süre 10 dakika 10 saniye","shortText":"10 dk."},"views":{"text":"3,3bin","a11yText":"3,3 bin izleme"},"date":"9 kas 2021","modifyTime":1636416000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LdKlh_lEZLU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LdKlh_lEZLU","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":610},"parentClipId":"1735340823335824392","href":"/preview/1735340823335824392?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/1735340823335824392?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4394382289317178469":{"videoId":"4394382289317178469","title":"y = -\u0007[6\u0007]\u0007[sin\u0007](pi/3 * x) + 4 graph each function.","cleanTitle":"y = -6sin(pi/3 * x) + 4 graph each function.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=oSgvigeae00","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/oSgvigeae00?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR1E5Yk1MSTlTMElxWmVEdVQxRUhlZw==","name":"MSolved Tutoring","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MSolved+Tutoring","origUrl":"http://www.youtube.com/@mathematicssolved","a11yText":"MSolved Tutoring. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":42,"text":"00:42","a11yText":"Süre 42 saniye","shortText":""},"date":"29 eki 2017","modifyTime":1509235200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/oSgvigeae00?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=oSgvigeae00","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":42},"parentClipId":"4394382289317178469","href":"/preview/4394382289317178469?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/4394382289317178469?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12085514649226199707":{"videoId":"12085514649226199707","title":"Lesson 7.5-7.\u0007[6\u0007] \u0007[Sin\u0007], Cos, Tan","cleanTitle":"Lesson 7.5-7.6 Sin, Cos, Tan","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HFjO6Hs-cbk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HFjO6Hs-cbk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDalZWaENBNXM1VTlpQTNFemFILVhRZw==","name":"Ryan Dull","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ryan+Dull","origUrl":"http://www.youtube.com/@enixis85","a11yText":"Ryan Dull. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1455,"text":"24:15","a11yText":"Süre 24 dakika 15 saniye","shortText":"24 dk."},"date":"28 mar 2013","modifyTime":1364428800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HFjO6Hs-cbk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HFjO6Hs-cbk","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":1455},"parentClipId":"12085514649226199707","href":"/preview/12085514649226199707?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/12085514649226199707?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12869527084064335257":{"videoId":"12869527084064335257","title":"y = \u0007[6\u0007] \u0007[sin\u0007](pi*x) determine the period and amplitude","cleanTitle":"y = 6 sin(pi*x) determine the period and amplitude","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4qV7LUeDiA0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4qV7LUeDiA0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR1E5Yk1MSTlTMElxWmVEdVQxRUhlZw==","name":"MSolved Tutoring","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MSolved+Tutoring","origUrl":"http://www.youtube.com/@mathematicssolved","a11yText":"MSolved Tutoring. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":29,"text":"00:29","a11yText":"Süre 29 saniye","shortText":""},"views":{"text":"2bin","a11yText":"2 bin izleme"},"date":"29 eki 2017","modifyTime":1509235200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4qV7LUeDiA0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4qV7LUeDiA0","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":29},"parentClipId":"12869527084064335257","href":"/preview/12869527084064335257?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/12869527084064335257?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"396828828681532378":{"videoId":"396828828681532378","title":"Calculate the value of `(sin^(6) alpha +cos^(6) alpha + 3sin^(2) alpha cos^(2) alpha).","cleanTitle":"Calculate the value of `(sin^(6) alpha +cos^(6) alpha + 3sin^(2) alpha cos^(2) alpha).","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=6NvmrSbONxQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/6NvmrSbONxQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":190,"text":"3:10","a11yText":"Süre 3 dakika 10 saniye","shortText":"3 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"9 mayıs 2020","modifyTime":1588982400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/6NvmrSbONxQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=6NvmrSbONxQ","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":190},"parentClipId":"396828828681532378","href":"/preview/396828828681532378?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/396828828681532378?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11552225514020835071":{"videoId":"11552225514020835071","title":"Evaluate \u0007[6\u0007]\u0007[sin\u0007]20° - 8sin^3(20°) | Trigonometric Transformations | Edutainment Online","cleanTitle":"Evaluate 6sin20° - 8sin^3(20°) | Trigonometric Transformations | Edutainment Online","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7Y7tFUtnbGQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7Y7tFUtnbGQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVVRZ1hoTE1NYVhfaF94TnF4UEVWZw==","name":"EDUTAINMENT ONLINE","isVerified":false,"subscribersCount":0,"url":"/video/search?text=EDUTAINMENT+ONLINE","origUrl":"http://www.youtube.com/@EDUTAINMENTONLINE","a11yText":"EDUTAINMENT ONLINE. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":92,"text":"1:32","a11yText":"Süre 1 dakika 32 saniye","shortText":"1 dk."},"date":"12 mar 2021","modifyTime":1615507200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7Y7tFUtnbGQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7Y7tFUtnbGQ","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":92},"parentClipId":"11552225514020835071","href":"/preview/11552225514020835071?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/11552225514020835071?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11811395714606783974":{"videoId":"11811395714606783974","title":"Integral of (cos(x))^\u0007[6\u0007]*(\u0007[sin\u0007](x))^3","cleanTitle":"Integral of (cos(x))^6*(sin(x))^3","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4O9OkY3RD3I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4O9OkY3RD3I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQ1NuZkZ2bk80YXZ4ZlA4T0JxdE9GZw==","name":"Mathmatika Pret","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathmatika+Pret","origUrl":"http://www.youtube.com/@mathmatikapret5712","a11yText":"Mathmatika Pret. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":305,"text":"5:05","a11yText":"Süre 5 dakika 5 saniye","shortText":"5 dk."},"date":"28 ara 2023","modifyTime":1703721600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4O9OkY3RD3I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4O9OkY3RD3I","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":305},"parentClipId":"11811395714606783974","href":"/preview/11811395714606783974?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/11811395714606783974?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17507382255696577976":{"videoId":"17507382255696577976","title":"The value of the expression `(sin7alpha+\u0007[6\u0007]\u0007[sin\u0007] 5 alpha+17sin3alpha+12sin","cleanTitle":"The value of the expression `(sin7alpha+6sin 5 alpha+17sin3alpha+12sin","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=aTVRTEtIlgw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/aTVRTEtIlgw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":414,"text":"6:54","a11yText":"Süre 6 dakika 54 saniye","shortText":"6 dk."},"date":"24 mayıs 2020","modifyTime":1590278400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/aTVRTEtIlgw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=aTVRTEtIlgw","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":414},"parentClipId":"17507382255696577976","href":"/preview/17507382255696577976?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/17507382255696577976?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10639994337318570015":{"videoId":"10639994337318570015","title":"General Maths 3 - Trigonometry Video \u0007[6\u0007] (\u0007[sin\u0007], cos tan - Finding lengths)","cleanTitle":"General Maths 3 - Trigonometry Video 6 (sin, cos tan - Finding lengths)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=EdZJ6oV40o8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/EdZJ6oV40o8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTktjUkl1NnVKMmtNN1pvM0RqbzE1Zw==","name":"Andrew McKenzie-McHarg","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Andrew+McKenzie-McHarg","origUrl":"http://www.youtube.com/@andrewmckenzie-mcharg4002","a11yText":"Andrew McKenzie-McHarg. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":548,"text":"9:08","a11yText":"Süre 9 dakika 8 saniye","shortText":"9 dk."},"date":"4 şub 2019","modifyTime":1549238400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/EdZJ6oV40o8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=EdZJ6oV40o8","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":548},"parentClipId":"10639994337318570015","href":"/preview/10639994337318570015?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/10639994337318570015?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2955425740921319200":{"videoId":"2955425740921319200","title":"How to find Sin6° and sin84° | mathocube","cleanTitle":"How to find Sin6° and sin84° | mathocube","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=iFpWUetNqYc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iFpWUetNqYc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLWs5MGlSRmxmWlQxVU1mZmhOWE9OZw==","name":"Mathocube","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathocube","origUrl":"http://www.youtube.com/@Mathocube","a11yText":"Mathocube. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":124,"text":"2:04","a11yText":"Süre 2 dakika 4 saniye","shortText":"2 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"15 ara 2019","modifyTime":1576368000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iFpWUetNqYc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iFpWUetNqYc","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":124},"parentClipId":"2955425740921319200","href":"/preview/2955425740921319200?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/2955425740921319200?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2140596872490462976":{"videoId":"2140596872490462976","title":"Prove that : `sin^(6) A+cos^(6) A+3sin^(2) Acos^(2) A=1","cleanTitle":"Prove that : `sin^(6) A+cos^(6) A+3sin^(2) Acos^(2) A=1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JZzF6pUE3OI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JZzF6pUE3OI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/channel/UCcv7pspGHmM7AOywuLM1ufA","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":89,"text":"1:29","a11yText":"Süre 1 dakika 29 saniye","shortText":"1 dk."},"date":"27 ara 2019","modifyTime":1577404800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JZzF6pUE3OI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JZzF6pUE3OI","reqid":"1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL","duration":89},"parentClipId":"2140596872490462976","href":"/preview/2140596872490462976?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","rawHref":"/video/preview/2140596872490462976?parent-reqid=1769556126505592-18232958217025245339-balancer-l7leveler-kubr-yp-sas-59-BAL&text=6sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"8232958217025245339759","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"6sin","queryUriEscaped":"6sin","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}