{"pages":{"search":{"query":"MathOrient","originalQuery":"MathOrient","serpid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","parentReqid":"","serpItems":[{"id":"12179933601022391728-0-0","type":"videoSnippet","props":{"videoId":"12179933601022391728"},"curPage":0},{"id":"10835852304036409683-0-1","type":"videoSnippet","props":{"videoId":"10835852304036409683"},"curPage":0},{"id":"12786903690904208607-0-2","type":"videoSnippet","props":{"videoId":"12786903690904208607"},"curPage":0},{"id":"16735905871151276474-0-3","type":"videoSnippet","props":{"videoId":"16735905871151276474"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dE1hdGhPcmllbnQK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","ui":"desktop","yuid":"1260294671769559969"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"15128102216029748506-0-5","type":"videoSnippet","props":{"videoId":"15128102216029748506"},"curPage":0},{"id":"16236313836207369077-0-6","type":"videoSnippet","props":{"videoId":"16236313836207369077"},"curPage":0},{"id":"15554430983713316380-0-7","type":"videoSnippet","props":{"videoId":"15554430983713316380"},"curPage":0},{"id":"4669924250988262719-0-8","type":"videoSnippet","props":{"videoId":"4669924250988262719"},"curPage":0},{"id":"3503566750191083399-0-9","type":"videoSnippet","props":{"videoId":"3503566750191083399"},"curPage":0},{"id":"11089392645847258668-0-10","type":"videoSnippet","props":{"videoId":"11089392645847258668"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dE1hdGhPcmllbnQK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","ui":"desktop","yuid":"1260294671769559969"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"1466846448708318662-0-12","type":"videoSnippet","props":{"videoId":"1466846448708318662"},"curPage":0},{"id":"16585698837436112157-0-13","type":"videoSnippet","props":{"videoId":"16585698837436112157"},"curPage":0},{"id":"9419372645395013001-0-14","type":"videoSnippet","props":{"videoId":"9419372645395013001"},"curPage":0},{"id":"7465871848568810627-0-15","type":"videoSnippet","props":{"videoId":"7465871848568810627"},"curPage":0},{"id":"12569785014542806215-0-16","type":"videoSnippet","props":{"videoId":"12569785014542806215"},"curPage":0},{"id":"17465886506856812272-0-17","type":"videoSnippet","props":{"videoId":"17465886506856812272"},"curPage":0},{"id":"17289199492350563244-0-18","type":"videoSnippet","props":{"videoId":"17289199492350563244"},"curPage":0},{"id":"4975834320389420338-0-19","type":"videoSnippet","props":{"videoId":"4975834320389420338"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE1hdGhPcmllbnQK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","ui":"desktop","yuid":"1260294671769559969"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMathOrient"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"8671388576710159167113","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1471995,0,18;1470499,0,0;1457615,0,69;1433081,0,24;1473738,0,10;1460923,0,46;1470058,0,69;1460716,0,49;1460214,0,94;1312966,0,58;1472010,0,47;1472029,0,13;1471624,0,12;1201469,0,62;1464523,0,11;1470250,0,94;1470224,0,51;1373787,0,17;1466295,0,91;1465919,0,86;1467148,0,6;1470514,0,99;1465688,0,60;1404022,0,39;60,0,39;1357004,0,92;965705,0,49;46453,0,78;89890,0,58;151171,0,87;126352,0,26;1269693,0,28;1281084,0,49;287509,0,42;1447467,0,90;1006026,0,23;1473596,0,67;1468028,0,56"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMathOrient","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=MathOrient","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=MathOrient","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"MathOrient: Yandex'te 410 video bulundu","description":"Результаты поиска по запросу \"MathOrient\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"MathOrient — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y8946f76405f8949e1e12959ceda51f8d","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1471995,1470499,1457615,1433081,1473738,1460923,1470058,1460716,1460214,1312966,1472010,1472029,1471624,1201469,1464523,1470250,1470224,1373787,1466295,1465919,1467148,1470514,1465688,1404022,60,1357004,965705,46453,89890,151171,126352,1269693,1281084,287509,1447467,1006026,1473596,1468028","queryText":"MathOrient","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1260294671769559969","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769560085","tz":"America/Louisville","to_iso":"2026-01-27T19:28:05-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1471995,1470499,1457615,1433081,1473738,1460923,1470058,1460716,1460214,1312966,1472010,1472029,1471624,1201469,1464523,1470250,1470224,1373787,1466295,1465919,1467148,1470514,1465688,1404022,60,1357004,965705,46453,89890,151171,126352,1269693,1281084,287509,1447467,1006026,1473596,1468028","queryText":"MathOrient","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1260294671769559969","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"8671388576710159167113","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":161,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"1260294671769559969","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"12179933601022391728":{"videoId":"12179933601022391728","docid":"34-6-4-ZB5D0A4C104CE83CA","description":"In this captivating video, we delve into the world of trigonometry to solve a complex and intriguing equation. Join me as we unravel the enigma, step by step, and conquer this challenging problem...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4119414/5923a1a7f1da93fa690e6e30ff69f1af/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hdG6LwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DjwwIyhJW75s","linkTemplate":"/video/preview/12179933601022391728?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"From Complexity to Clarity: Demystifying a Tough Trigonometric Equation","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jwwIyhJW75s\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFgoUMTIxNzk5MzM2MDEwMjIzOTE3MjhaFDEyMTc5OTMzNjAxMDIyMzkxNzI4aocXEgEwGAAiRBowAAopaGhzZ2Z1YnNieXNhcXdzaGhVQ2Q0V1I3S3F5WmhPLV8xUmNnbjBxNXcSAgARKhDCDw8aDz8TrAWCBCQBgAQrKosBEAEaeIHx-vwHCPcA9wgGCgAH_AIfEAAH8gQEAOHv9P_7_AIA9QEWAQEAAAD9DQgDAAAAAAMB8PH9_QEAFP7tCAIAAAAFDvHz-gAAAAz--vb_AQAA-Pf9BwT_AP8A8vEQ_wAAAAcWBwL-AAAA-gD1-wAAAAAVDAD6AAAAACAALQQPvDs4E0AJSE5QAiqEAhAAGvABfwL6__nnxQPaEd4Azt0CAdwFGf8YS_kAy_b-ALsD4QD2DfsA5hTT_84bBwCUK_8BJevX__UE9gA-9xP_H-buAAn9AAD80AYDOSkZAAX28ADqCicAA8X6ARQHzv0D8eoBB9Ec_g4M2AH_Bt8ED_4_AegPNAEN3f_9ycT5B-fXCQQG9ArzCyUEAxDx9vrg9TAHC8_9_gnqE_rNM-AEB-oQ9uby_PoIL9T9JgwHDi4w_wCx1A3_9L7_ARYhJP7cJuT-8vcnAu0ZDfX98RL4EObyBuvr6wogCekI-_L39wYMCQwu9_IHCAP-8vYD_wffCPTsIAAt-MYROzgTQAlIYVACKs8HEAAawAcv_eu-CmIFPd3U_jv1Cg88GjbnO1U9T734g0a9VsGDvO3E-rvNPs89SmervVdnqzyBCAG-Nz5JPa5tgLz9vXQ-klRLvQOx7DwZgaK9QLW7PeGkX72-77m91o9NPUEWvTwe18C9SbOevNxtcrw86a496NS6uxNgZjogqOi6HXURPDPcAL3cmwQ81JPevPztAb32Oo692b0LvbnDprztr4g9g-4cvS7aa7u3V0s9VnTWu8anIL04L-69JxFBPbiMIL3w58o7H4NVPeKPhzxY_ry9xdmevSpLXzv6fT-9GpQfPcYFZDqctLo9Su1FPLB6m7zwbmA9W1U7vVbYZ7yt-QG-VKWSPCHR3ztEaI055PyIPRTBSTwSvey9hfYAPfRDmTuOm1C9nHdSvI7M4buhVkm7TZ7yPZLcKzxF1dC7668yu42YWbzDo2i9_k4JPWuU_zzZzew9gPTtvddYP7rzh6s9iGABvBLuvjlWH9m8ygNsu2TayLyJMxW9kKuXPYXy-DsGbhc8OoAUvZPRNzzfZsY9ObXzvYcfGDyV3Dy9PPHBvUPp5rvrE8o8CeZDPG5Cq7xO8M09ZjPnvf9XADww-mU8kqu7O93NFbsrrmC8JmMmvVu0nboXCZK9rvlMvU5wHLw2GqW9W8qePOsqD7ycZFA8j32KPS7LF7xOAmW88KyIvfj1xzobdMg9QDdPPVcGVbuYMgA-Fn9APS0_tbfaxyo9IUs1vYC2uLs9usG9UbkPPFubhLpO82m8e7aDvRyb27pPIx0-lbgOvQ170ji7zu07U4UVPYJvv7cRJhu9ARiKPVg1kbkV14I9iU1avTnrkzjvqxI9zqYDvhah1rcrVX097VycO6gS-bdjXpe9b0o5PeOHkTnMIMO91A0EvghThTl_EVk9Xk15PJZArzeEhhk9kSGsvGGPwLjWrpS9vPAaPP7Zo7kD3Si8ZLL4vKIxEDm1EIk7iOAzPRqwtLjnItk8A8z8vVJJyDlBO7E8s6u1PHkhVjmbzuk81vJUPVTLHriHU5E99F_GPaq5JDd2U2q9V8_JvVw6arjMXYs8nA6uPHXfBria_5y90JCbPQLbLjiBe948sMSoPDkUJLeLUde6NadcPZSiQThPDjU9nCAgPcpSRzjB4ys-3KVovAeJdLnevII8tK8cvvyHZbghjU-97oJ8vUYVjrgdPoQ8kWHVPbj3vLe4cwE9zCuCvS9mdLjK9HA9IuErPvHLijg5oQu90RCEPeXT1bisOuu9-dqDvRn-BLiNkfQ6HscLPFrwlzggADgTQAlIbVABKnMQABpgFfkAIhMGxPcYM-v4zfcw9ej-6AnH5ADx6AARLOsCJfDb0w4DACbJI_K6AAAAJfzqIe8AC1zh9xFCFgv4saqxEy9_Bgr68e0h5L_7GRonGub_4x5EAPYYzw8oFuIcKiQYIAAt3ZY4OzgTQAlIb1ACKq8GEAwaoAYAAABCAAAUwgAAQEIAABjCAADAwAAAoMEAAKJCAAAAwAAAZMIAABhCAAAAQgAAQEAAAKBAAABwwQAAcMEAAABBAAB0QgAAoMEAABBCAAAgwgAAiMEAAKhBAABEwgAAAMAAAFjCAAAAQAAAmMEAAJhBAABEQgAAMMEAABzCAAAAQAAAisIAAFxCAABwwgAAIEEAABRCAACqQgAAQEAAAEBCAADAQQAA4EAAAJhCAACQwQAAFMIAAETCAADGQgAAcEIAAEBBAAAAwQAAMEEAAMBAAACIwQAAmMEAAKBBAACIQQAAUMIAAMBAAADwQQAAVEIAAEBBAABMwgAAgMAAAMDBAACgwAAA1sIAALjBAAAIwgAAIEEAAIjBAAAwQgAAWEIAABzCAACQQgAAgMEAADzCAACAPwAATEIAABRCAACCQgAAYMEAAI5CAAAAwgAAqMEAAEBBAACYQQAAEMEAACxCAABYQgAAEEIAAFTCAACiQgAAiMEAAEDCAAAcQgAAAMAAAMDAAAD4QQAAsEEAAFRCAACQwgAA4EAAAKjBAADgQAAAuMEAAEBBAAAQwgAAyEEAAMjBAAAwQQAAmkIAACBBAABQwQAAFEIAAIDAAAB8QgAAREIAAFzCAABkQgAAwEEAACDBAADwwQAAgEEAACzCAADowQAAQMIAAIC_AABMQgAATMIAAEBBAABUwgAAEEEAACBBAAAAQgAAIMEAAKBBAABAQAAAkEEAANBBAADowQAAgMAAAFRCAACaQgAAQMIAAMZCAABsQgAAUMEAACBCAAAAQAAABEIAAHDBAAAQwQAAgD8AABjCAACgQAAAsEEAAEjCAACAwAAAfMIAAIbCAAB0wgAAgL8AAADBAAAIwgAAmEEAAOBAAABcwgAAhkIAAOBBAAAoQgAACEIAAJjBAAAQQgAARMIAAHzCAACgQQAAqEEAAJDBAAAgwQAAuEIAAPzCAAAAwgAAoMAAALhBAAAQQQAAoMEAABjCAADAwAAAXMIAAAxCAAAIQgAAIEEAALhBAABEwgAASMIAAERCAAAAwQAAcEEAAOBAAACAwSAAOBNACUh1UAEqjwIQABqAAgAAuL0AAJg9AADYPQAAoLwAAAQ-AADmPgAAPD4AAD-_AACevgAA4DwAAAy-AAD4vQAAFD4AAKY-AAD4vQAAHL4AADA9AADIPQAAiD0AADs_AAB_PwAAJL4AABA9AADIPQAADL4AAMg9AADIPQAA-L0AANg9AACePgAAFD4AANK-AAAQvQAAuD0AAI4-AABQvQAAHL4AAEy-AADSvgAAFL4AAHy-AAA8PgAAdD4AAEy-AAA8vgAATD4AAGQ-AAAMvgAAoLwAAIK-AACovQAA4LwAALI-AAC6PgAApr4AAOC8AABLPwAAmD0AAOA8AABsPgAAiL0AAFw-AADIPQAAor4gADgTQAlIfFABKo8CEAEagAIAAKC8AABUPgAAyL0AADe_AACSvgAAcL0AADQ-AACIPQAAiL0AADQ-AAC4PQAAor4AAEA8AABEvgAAmD0AAKi9AAAwPQAAGT8AAFA9AACuPgAAuL0AAAy-AACYPQAAVL4AAOC8AAAwvQAAZL4AAKA8AADgPAAA-L0AAIC7AAAEPgAA-L0AAOA8AACIPQAAJL4AAHw-AADWPgAAyL0AAAS-AACKPgAAMD0AAHS-AACIvQAAmL0AAII-AAB_vwAAiL0AAJi9AAAwPQAAhj4AAKC8AAAkPgAATD4AABS-AACYPQAAcL0AAIC7AACAuwAAyL0AAMg9AACgvAAANL4AADC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=jwwIyhJW75s","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1200,"cheight":720,"cratio":1.66666,"dups":["12179933601022391728"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"141440668"},"10835852304036409683":{"videoId":"10835852304036409683","docid":"34-2-15-ZE0DA822267E23050","description":"In this video, I'll be showing you how to simplify a tricky algebraic expression that's mixed with trigonometry. By breaking down the expression into manageable pieces and using key algebraic...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3380165/bfa4b6f9973347f1f2bc491dfca9bb41/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/dkZdLwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPp1jRfp7S-I","linkTemplate":"/video/preview/10835852304036409683?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mastering Algebra: How to Simplify a Tough Expression","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Pp1jRfp7S-I\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFgoUMTA4MzU4NTIzMDQwMzY0MDk2ODNaFDEwODM1ODUyMzA0MDM2NDA5NjgzaocXEgEwGAAiRBowAAopaGhzZ2Z1YnNieXNhcXdzaGhVQ2Q0V1I3S3F5WmhPLV8xUmNnbjBxNXcSAgARKhDCDw8aDz8TxQKCBCQBgAQrKosBEAEaeIEGAf7-A_0A-RH8DQUI-wIsBvkHCwUGAOz47_sFAAAA8_38_AkAAAD89_38CQAAAAICEPgA_QEADA77AgUAAAAD7_QDAwAAAAcAD_b_AQAA-_gBCfkBAAAFAQD9_wAAAAsIA_n-_wAA_hURAQAAAAAY8_UDAQAAACAALcdayzs4E0AJSE5QAiqEAhAAGvABfwcNAPjjvQPB9c4A0f_0AbYmO__8O8sAxuDoAa31vgHqHNgA7ybx_wIP-ACqL_f_IQG7AOjc-gBH9hb_Ttv4APjS-AApCdv_RRY0_w78_v7j6Av-CtT7_xvvvP7xNuL_Jd0j_xsg4f31NOcCEf5HAQT_TQEqww4B2KT9Ae3q__4PBdv8_AgCBAPP_vjn7R0F3pcWASn6-_7j_toF_u8hBOkACPUhH9z9-Or0ECMU_gvKxBD-974SASIpGArZAvwG3MArB8QLBgXp7hbvJOwG9qQY6QUi5AUKIvkC_gf-AwYnu_T74uzt-uoA9xbiHdnwIAAtXNEAOzgTQAlIYVACKs8HEAAawAcJUtm-RQSQuoyg8Typ9xS8RCXDu3cuzLzg4te8eLQQPNiTBrv2tkk-klKKvVFXDT1oN4-9Jn7WPED8l7z9vXQ-klRLvQOx7Dx1dPy9LxOaPQsCEL2-77m91o9NPUEWvTwe18C9SbOevNxtcrx-eXw9GcWyvBaePDwgqOi6HXURPDPcAL28fMY8bg4fvCINeL1O0dG9fiq4vM4N2bvr4LA9f3iMvHwVT7y3V0s9VnTWu8anIL2scOu98NOCPDIFqbvw58o7H4NVPeKPhzzr-4W9PmhMvYc7ETz6fT-9GpQfPcYFZDoXY-A9TfjxuR0vTbvYwgc9RMeZvfI7srwvhvK9dJB8vP0hrDwXQN871PscPVRxYzyu1wS-DZ8-PexFmbwH_da8awqmuu8ip7yhVkm7TZ7yPZLcKzxSpdw8QXE2vMR-C7yZ-4-9m0WOPWdtyTzZzew9gPTtvddYP7pBWWI97RsOPReVXLss-ZO9YmBCPA8vo7yJMxW9kKuXPYXy-Dv6_KQ6l9pcvUbRATyP4BY-W3gOvgPnDrwKQoO9bL-7vQyD6DuBCLE8dxVSvAvqgLxO8M09ZjPnvf9XADw82c08V40vPe4zeDwrrmC8JmMmvVu0nbprAMW9xHUxvYNujrs2GqW9W8qePOsqD7yd-Ki76ZFwPVXnRbuEPwk7FY2FvWh8GTv1K109cxE_PbCV6brt1Aw-IdS7PI6mC7hJDn09RcD8vCsy17sIzqS9GxGpO3zsETvauuW8wDWxvVJZDrqhndM9UYGYvZedUTm0WCu7WWAZPc15UDnWDWq9Ar9hPfMoe7i50mE9Lt6UvXNP3TitL7c6_RLxvbwjiTn14LQ9yepzO9akJrjexSC9qKxhPTgRrbjMIMO91A0EvghThTm4VOu7qLudO6iII7lfIdg8M7UZvKE3ZzheXPS89bMCPT27gbnctL48XEKZvJc8y7i7j6u6tQW6PGP4BTlar4M9AY_DvabRWjnEVnW8xLAoPcMVkzh06Bm7ybAlPaTDETiHU5E99F_GPaq5JDfz2va8CPnKvVqHe7bX9CU9nzIIPUkMcLhaNKO9fFpKPXIgbDicSFU9Ty2RPN6pnDg6PMS8YaiDPCXd-rfjtQE9fDdMPTFHj7Yvphk-eDvMPPzmG7mr3xa9DfsdvqO8_rjVXZm8EZeCvQdxA7jCRn68D3vhPQy1wTfVlOQ8vjamvfOjTbjK9HA9IuErPvHLijgYJzm9lEOlPWWUx7jD89K9jooEvYeyybYa22u8sYMQPDqBJDggADgTQAlIbVABKnMQABpg_PQAFR0b8gANH-3kzeYU6AITxhPlBgDv-AD5Fw8FF_rc3PwM_xrUHN_AAAAAGgv6HgAABlXx5_k--dYDrcXVCyh_5_wgzfUQ5NnyKAYP9wkJDjZfAOkG1f0P8cwUBwgYIAAtFddMOzgTQAlIb1ACKq8GEAwaoAYAAFBBAACCwgAAqkIAADDCAAC4QQAA-MEAAMxCAAAoQgAAOMIAABhCAADgQAAAEEIAAABBAADAQQAAEMEAAOBBAABIQgAAgL8AAMDAAACIwQAAQMEAAAAAAABgwgAAmMEAAPjBAABQQQAAwEEAAIBAAADIQQAAIEEAAAjCAAAgwQAAeMIAABBCAACQwgAAqEEAACBCAACmQgAAEMEAAIBBAAAgQQAAgD8AALBBAAAAAAAAYMEAAJjCAAC4QgAAskIAABzCAACAwAAA4EAAAODAAABgwgAA4EAAAJhBAABQQgAAfMIAAIC_AACwQQAAmEIAAAxCAACCwgAAEMIAADjCAABAQAAA2MIAAKDBAADwwQAAgEEAAIBBAADQQQAAEEEAAEDBAACGQgAAbMIAAAjCAAAgQQAAiEEAAAAAAAA8QgAATMIAAKRCAAC4wQAAYMEAAKjBAABgQQAA4MAAAEDAAAB8QgAADEIAAHDBAABYQgAAjsIAAADAAABwQQAAwMAAAFzCAAC4QQAAgEEAAMBCAABQwgAA2MEAABDBAAAQQQAAsMEAAIBAAACAPwAA2EEAAIC_AAAIQgAAgEIAAKBBAABQwQAAVEIAABjCAABsQgAAXEIAAIbCAADYwQAAEMIAAHDBAABQwQAABEIAABDBAAAIwgAAPMIAAEDBAADQQQAAJMIAAFBBAAAYwgAAAAAAAIhBAABcQgAA4MAAAI5CAACgQAAAgEIAADDCAAAUwgAAgEEAAExCAABwQgAAiMIAAGxCAACWQgAAMMEAAHBBAADAwAAAoMAAACjCAAAAAAAAMMEAAODAAADQQQAAQEEAAETCAABwwQAAWMIAANDBAABwwgAA2EEAAABBAAAAwAAAUEEAAOBAAAAgwgAAeEIAAABCAABgQgAAqMEAAMDBAAAEQgAAQMIAAMzCAADgQQAAuMEAALDBAADIQQAAvkIAAKDCAAAAwAAAsMEAAOjBAACYQQAAmEEAACDCAABEwgAA6MEAAKBBAABAQgAAYEEAAIDAAAAswgAAqMEAAERCAACAwAAAwEAAAABBAAAQwSAAOBNACUh1UAEqjwIQABqAAgAATL4AAFS-AAD4PQAAFL4AAIA7AADCPgAAMD0AAD-_AADSvgAA-D0AAGw-AACGvgAAoDwAAHw-AAAMvgAAhr4AAKo-AACgvAAAZD4AAAU_AAB_PwAAHL4AAKg9AACovQAAGb8AABy-AABEPgAAfL4AABy-AAAkPgAAVD4AABC9AABUvgAAhj4AALY-AACSvgAAuL0AAIi9AAAEvgAAgLsAAPa-AACOPgAAhj4AACy-AACOvgAAUD0AAHC9AAAsvgAA4LwAABy-AADovQAAoDwAAAQ-AACCPgAAXL4AABS-AABLPwAAqL0AAIg9AACCPgAADL4AAOg9AABwPQAAQLwgADgTQAlIfFABKo8CEAEagAIAACy-AABsPgAADL4AACu_AADGvgAAML0AAEw-AACYPQAAbD4AAAw-AAAkvgAAJL4AADS-AABsvgAA2L0AAIC7AAAMvgAAAz8AADS-AADuPgAAyD0AAFy-AABwvQAAHL4AACS-AAC4PQAArr4AANg9AACovQAAqL0AAKA8AAAUPgAAuD0AAAS-AAB0PgAAoLwAAB8_AAAEPgAAVL4AAFQ-AAB0PgAAFL4AADy-AADgvAAAcL0AABQ-AAB_vwAAEL0AANa-AABQPQAAJD4AAEA8AABcPgAAJD4AADQ-AADYPQAA2L0AADy-AABQPQAAMD0AAJg9AADIPQAAUL0AAIo-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Pp1jRfp7S-I","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1200,"cheight":720,"cratio":1.66666,"dups":["10835852304036409683"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3426461256"},"12786903690904208607":{"videoId":"12786903690904208607","docid":"34-4-15-Z3EF4532ACAD33C15","description":"In this captivating video, join me as I tackle a complex trigonometric equation like never before. Witness the power of innovative problem-solving as we explore fresh strategies and techniques to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3316739/d84c07d2e0bb713b6f9b01ff606cd5ee/564x318_1"},"target":"_self","position":"2","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7SlDgmacvnQ","linkTemplate":"/video/preview/12786903690904208607?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Beyond Traditional Methods: Solving a Difficult Trigonometric Equation in a New Way","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7SlDgmacvnQ\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFgoUMTI3ODY5MDM2OTA5MDQyMDg2MDdaFDEyNzg2OTAzNjkwOTA0MjA4NjA3aq4NEgEwGAAiRBowAAopaGhzZ2Z1YnNieXNhcXdzaGhVQ2Q0V1I3S3F5WmhPLV8xUmNnbjBxNXcSAgARKhDCDw8aDz8TkQyCBCQBgAQrKosBEAEaeIH--gj7CfYA8gsRCwUG_AEp9wIA8gQEAOj3-_EC_wEA9vwLDQoAAAD4Evz9-gAAAAQB-Abw_QEAK_z1_QEAAAAdAv0A9gAAABMA--3_AQAA-_YC_wP_AAAL9gsDAAAAAAgP_wD4_gAB6QLsAgAAAAAJCvoEAAAAACAALQHTuTs4E0AJSE5QAipzEAAaYA4RACcv9M_v_Azl4eb3GfjgFPPiuQH__OcAHDoO7i4I18cK_wBFugAGuAAAACjvBAEIABtU_uv4QCDxBNfA2DMAfxEN3wQLDuGm8gksNuv-BfQtGAD8Af_8SwDyLg5BDSAALd-APDs4E0AJSG9QAiqvBhAMGqAGAABgQgAAcMEAAFRCAADgwAAAAAAAAIBAAACcQgAAwMEAAJLCAAAAQQAABEIAAIjBAACAQAAAwEAAAEDAAAAEQgAAmkIAACjCAAAIQgAA-MEAACjCAABQQQAAdMIAAARCAABkwgAAmMEAACDCAACIQQAABEIAACDBAAAgwgAAIEEAAI7CAABMQgAAgMAAAKBAAACIQQAAcEIAAIC_AAA0QgAA-EEAAODBAABwQgAAJMIAAKjBAAAgwgAAokIAANBBAABAwAAAIMEAABDBAAAAwAAAgEAAABBBAAAYQgAAEEIAAETCAACIQQAAGEIAAIZCAACQQQAAaMIAAKjBAAAUwgAA0EEAANzCAACgQQAAwMAAAIDBAABAwQAAIEIAAPhBAABUwgAAcEIAAIDBAACowQAAEMIAAEBCAADoQQAAGEIAAFBBAAAsQgAAIMIAAATCAADIwQAAEEIAALjBAAAQQgAAZEIAAKhBAADIwQAAeEIAAI7CAADIwQAAyEEAAADBAABAwQAAmEEAAODAAAAgwQAAXMIAAGDBAADAwAAAgEEAADDBAAAMQgAAeMIAANBBAAAQwgAAUMEAAJBCAAAAQQAAAAAAAPhBAAAowgAArEIAABBCAAAMwgAAKEIAALDBAAAkwgAAmMEAAABCAABgwQAA-MEAANDBAAAYQgAACEIAAFzCAAAQQQAAQMIAALjBAAAwQQAAhkIAAEBBAACMQgAAAMEAAIBBAAD4QQAAVMIAAGDBAADQQQAAUEIAAITCAACuQgAApEIAABjCAABQQgAAkMEAACBCAAAIwgAAwEAAAIA_AADwwQAAUMEAAARCAACIwgAAwMAAAJ7CAADgwQAAaMIAACDBAAC4wQAAgD8AAMBBAADgQAAArsIAADRCAACgQQAAqEEAACDBAABEwgAAUEIAAETCAABQwgAAjEIAAABAAABAwQAAAAAAADxCAADcwgAA6MEAAJhBAAAwwgAAcEEAAEDBAABswgAAoMAAADDCAAB8QgAAJEIAAOBBAABAQgAAYMEAAADCAACkQgAA-MEAAEBAAAAAQAAAqMEgADgTQAlIdVABKo8CEAAagAIAADC9AAAsvgAAij4AAOq-AAD4PQAA6j4AAI4-AABjvwAAsr4AABQ-AAAsPgAAHL4AAKI-AACAOwAAfL4AACw-AAC-PgAAqL0AAPg9AAArPwAAfz8AAFC9AAB0PgAAQLwAAKC8AACOPgAAbD4AAIA7AACovQAAED0AAGQ-AADyvgAAgDsAABA9AABkPgAAmL0AAKC8AACKvgAAgr4AAHy-AACmvgAAuD0AAL4-AAA8vgAAgDsAAPg9AAAMPgAAoLwAAJg9AADavgAAZL4AAGy-AACoPQAACT8AAKq-AACAuwAAaT8AAM6-AABQPQAAuD0AAES-AABMPgAAFD4AAJa-IAA4E0AJSHxQASqPAhABGoACAABAPAAA4DwAAIg9AAA9vwAArr4AALi9AAA8PgAALD4AAIC7AAAQvQAAND4AADy-AADYPQAA-L0AAKg9AADgPAAADL4AABU_AAAQPQAArj4AAIC7AABQvQAAFL4AAJq-AAC4vQAAjr4AANi9AADgPAAAoLwAAHC9AABwPQAAVD4AAGS-AACAOwAAhj4AADy-AAB0PgAACz8AAMK-AADIvQAALD4AAEC8AACGvgAAML0AAEC8AABQPQAAf78AABQ-AABcPgAAsr4AAFw-AACAOwAAQLwAAPg9AAA0PgAAPD4AADC9AACYvQAA2D0AAKC8AADoPQAALL4AABS-AABwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7SlDgmacvnQ","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["12786903690904208607"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16735905871151276474":{"videoId":"16735905871151276474","docid":"34-1-8-Z9538B91C2A9F0314","description":"In this video, I prove a complicated trigonometric identity using fundamental algebraic identities, complex number theory and trigonometry. 💠Support the channel💠 Please consider to subscribe to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4077901/75c0bf4f65262a3d32b7a1c4401c2099/564x318_1"},"target":"_self","position":"3","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7QU8qw14DHE","linkTemplate":"/video/preview/16735905871151276474?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"A Formidable, But Beautiful Trigonometric Identity","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7QU8qw14DHE\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFgoUMTY3MzU5MDU4NzExNTEyNzY0NzRaFDE2NzM1OTA1ODcxMTUxMjc2NDc0aq4NEgEwGAAiRBowAAopaGhzZ2Z1YnNieXNhcXdzaGhVQ2Q0V1I3S3F5WmhPLV8xUmNnbjBxNXcSAgARKhDCDw8aDz8T9RGCBCQBgAQrKosBEAEaeIH29AUF_QMAAPsFCPgI_QIGB_gA9___APQJ9Ar7Af8A8wAI_PsAAAD_ChIHAAAAAP0GAfv6_gAADwH4_AQAAAAV-fwA_wAAAA0H__r-AQAA9v8A_fkBAAAN9Qb3_wAAAPwC_-4AAAAAAvn2_AAAAAABBAb-_wAAACAALUqa3Ds4E0AJSE5QAipzEAAaYAIOABkV89LRCwsA8d7qJvrqGP4J3OwA6fAAES4CERvv5t31AwAb2gbyyQAAAAwHBCAiAAFB7uD8FBH9B9HM5goIfxoR4BIR-vvD-gMQI_7o-uIYLwAH5_0DKhwFBxwwFSAALZtlbzs4E0AJSG9QAiqvBhAMGqAGAAAwQQAADMIAAIpCAACGwgAAAEEAAATCAABgQgAAwMAAAJTCAACAwQAALEIAAARCAACAwAAAgkIAABjCAACIwQAAlEIAALDBAACwQQAA4EAAAIDAAACAPwAAXMIAAIDAAAAswgAAUMEAAFDBAAAkQgAAgL8AAODAAAAUwgAAQEAAALbCAAAQQQAAaMIAAMBAAADwQQAAoEEAAFDBAADQQQAAQMAAAEDBAABQQQAAUMEAAKBAAACawgAAukIAAIJCAAD4wQAAcEEAAKBAAAAgwgAAKMIAAOBAAACwQQAA4EEAAJDBAACAQQAAfEIAADRCAABAQQAASMIAAFDCAADQwQAAQEEAALLCAAAwwQAA8EEAAABCAAD4QQAAgEAAAODAAABIwgAAkkIAAPjBAAAUwgAAQMEAAKBBAABgQQAAAEEAAMDAAABsQgAAPMIAACTCAADYwQAAgEEAAIDBAABQwQAAlEIAAEBBAAAQwQAAHEIAAIrCAACQQQAAgD8AALjBAADIwQAAcEEAAEDBAADEQgAAsMEAAMjBAAAwwQAAAEIAAJ7CAACIQQAAuEEAAAhCAAAwQQAAiEIAAAhCAADQQQAAwEAAAIJCAACAwQAAdEIAAFhCAACKwgAADMIAAOjBAABQwQAAcMEAAARCAACYwQAAWMIAAPDBAAAwQQAAGEIAAEzCAABkQgAAGMIAAIC_AABQQQAArkIAANjBAABUQgAAQMEAAHhCAACIwgAASMIAAADAAAA8QgAA0EEAADzCAABgQgAAkkIAABTCAACYQQAADMIAAABAAABowgAA6EEAAKBAAABAQgAA4MAAABBBAACKwgAAMEEAACzCAAAAwAAAvsIAAAxCAABAQQAAgEEAADBCAADYQQAAAMEAANhBAAC4QQAAUEIAAODBAACwwQAAOEIAAHTCAABowgAAeEIAAMDBAACwwQAAwMAAAKBCAABgwgAAQMAAAODAAABwwgAASEIAAPBBAAAIwgAAHMIAAEDBAADgQQAAuEEAAJBBAACAQAAAAMAAAIBAAACYQgAAMMEAADTCAABgwQAAuMEgADgTQAlIdVABKo8CEAAagAIAAKg9AACgPAAAfD4AAHC9AABkvgAAtj4AANg9AADuvgAA4LwAAGQ-AAAQvQAAML0AAL4-AABsPgAAyL0AABC9AABEPgAAED0AABA9AAAPPwAAfz8AAIa-AABwPQAA2D0AAJi9AADIPQAAoDwAAMi9AABAPAAAoj4AADA9AAA0vgAAmD0AAOg9AAB0PgAANL4AAKC8AACIvQAAgr4AAPi9AAA8vgAAFL4AAIA7AACSvgAAcD0AALi9AACIPQAAPL4AAEy-AACivgAAQDwAADC9AAB0PgAAbD4AAGS-AACoPQAAJT8AAEC8AACYPQAA5j4AAEA8AACovQAAHD4AAFy-IAA4E0AJSHxQASqPAhABGoACAAAkvgAATD4AAAy-AAA5vwAADL4AAOC8AABUPgAAQLwAANi9AAAUPgAADD4AAIq-AAAwvQAALL4AAJi9AACovQAAuL0AAEM_AAAEvgAATD4AAIA7AAAcvgAAuD0AACy-AABMvgAABL4AAJi9AABQPQAALD4AAIA7AABsPgAAgDsAAJq-AABQPQAAPD4AACy-AABsPgAApj4AAL6-AAD4vQAAkj4AALg9AACAOwAA4DwAAFS-AADSPgAAf78AAIA7AABQPQAAML0AAIo-AAAwPQAArj4AALg9AACKPgAAQDwAAEA8AABkPgAAQDwAABy-AAAQPQAADD4AAFC9AABUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7QU8qw14DHE","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["16735905871151276474"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15128102216029748506":{"videoId":"15128102216029748506","docid":"34-9-16-Z2D7DF85D82A5B40D","description":"Unlock the mystery of a perplexing order 6 equation in this thought-provoking video. Explore the depths of algebraic manipulation and witness firsthand the power of mathematical reasoning.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3258877/8bea25b9fac5cf5ed32b2c2f58df5fd1/564x318_1"},"target":"_self","position":"5","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DpBnb-bhkLQ8","linkTemplate":"/video/preview/15128102216029748506?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mastering the Enigma of a Difficult Order 6 Equation","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pBnb-bhkLQ8\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFgoUMTUxMjgxMDIyMTYwMjk3NDg1MDZaFDE1MTI4MTAyMjE2MDI5NzQ4NTA2aq4NEgEwGAAiRBowAAopaGhzZ2Z1YnNieXNhcXdzaGhVQ2Q0V1I3S3F5WmhPLV8xUmNnbjBxNXcSAgARKhDCDw8aDz8T5AiCBCQBgAQrKosBEAEaeIH7EggKAv4A9AIMAQME_gEb-wb_9QICAOf6-_4E_gEA-Qb_BxEAAAD5EP3--wAAAAD78Q34_QAAGAAD_gUAAAAN-fj7_gAAAA74AwYO_wEB_vz2_vkCAAATCggB_wAAAP_4CAX8_wAA-hMKDQAAAAAODvb9AAAAACAALWiEzDs4E0AJSE5QAipzEAAaYAwKACQZ-drwJSfjx-PVBB3__Av03OEAE80A6Sfr1TEC7cQYBgA42gPxuwAAABje8_fZAPJZ8P7eViMZ-9D85QXof-0f2_4h_97J5fgfCA3nDAohPADPF-wDMuDUMPZRIiAALX-VPTs4E0AJSG9QAiqvBhAMGqAGAADwQQAAUMEAADBBAAB8wgAAoMAAAAjCAACgQgAAsEEAAIjBAABgQQAATEIAADxCAAAAQAAA8EEAAKDAAAB4QgAAKEIAAGTCAABAQQAADMIAAODBAABAQAAAUMIAAABCAABAwAAAyMEAAODAAABQwQAAoEAAAADBAAAMwgAAiMEAAFzCAACCQgAALEIAAFBBAACIQQAAuEIAALBBAAC4QQAAAEEAAKBBAACSQgAAWMIAABDBAABYwgAAzkIAAIBAAABQwQAAAMAAACDBAABgwQAAgMEAAGBBAAA0QgAABEIAAODAAAC4wQAAAEEAAI5CAAAMQgAA8MEAAFjCAADAwQAAsEEAALjCAACAwQAAAEAAAIDBAACQQQAAEEEAALhBAAA8wgAAwEEAALjBAAAAwQAA4MEAAOhBAADoQQAASEIAAADAAABsQgAA0MEAANDBAADwwQAAHEIAAAAAAACgQQAAbEIAALhBAACqwgAAUEIAAEDCAAAowgAAgL8AAKjBAABkwgAAcEIAAADAAAAYQgAACMIAAFDBAAAIwgAAMEEAAADBAAA0QgAAOMIAALhBAACAwAAAiEEAAHxCAABgQQAAYMEAAFxCAABgwgAArEIAAMhBAAAcwgAAGEIAABDBAAAswgAAPMIAAChCAAAwQQAASMIAACzCAABAQQAAYEEAAL7CAACAQAAAoMIAANjBAAAEQgAATEIAAITCAABgQgAAwMAAACRCAAAAAAAAwMEAAJhBAAAAwQAAEEIAADTCAACYQgAAhEIAAIDAAAA0QgAAEMEAAKhBAAAswgAA-MEAAETCAABAwQAAiMEAALBBAACGwgAA4MEAAKDCAACwQQAA6MEAAGDBAAAgwQAAkMEAABRCAACAwAAA4sIAABRCAAAAwQAAIEEAADzCAAAgwgAAAEIAACjCAAAMwgAAIEIAAKDBAACQwQAAMEIAACRCAAC6wgAAWEIAAIhBAACAwQAAQEAAACTCAACMwgAAuMEAAGDCAACCQgAAoEEAABRCAAA0QgAAJMIAAGDBAACQQQAAmMEAABBCAADwQQAAMEEgADgTQAlIdVABKo8CEAAagAIAADQ-AABwPQAAmL0AAIC7AABcPgAAiD0AADS-AAAdvwAAyL0AADA9AABsPgAArr4AABA9AABwPQAAUL0AAL6-AAC6PgAAgDsAAPg9AACiPgAAfz8AAJo-AABkPgAA2L0AAJ6-AACKvgAA6D0AAIC7AACqvgAAXL4AAJI-AACIvQAAMD0AAOg9AABUPgAAEL0AAJ4-AADIvQAA_r4AAIa-AABcvgAAdD4AAPg9AACAOwAALD4AAHw-AAAQPQAABD4AAHw-AABsvgAAXL4AABS-AADgvAAAFT8AAAS-AAAwvQAAHz8AAJ6-AACCvgAAFD4AAIq-AACgPAAAuD0AANi9IAA4E0AJSHxQASqPAhABGoACAACOvgAA2D0AAJg9AABjvwAAdL4AAGy-AAAkPgAAuL0AALo-AACYPQAAXL4AABS-AAA0vgAAuL0AALi9AACAOwAAiL0AACM_AAAwPQAACT8AACS-AADuvgAARL4AABS-AACYvQAAQDwAAGw-AACAuwAAyD0AAEQ-AAC4vQAAbD4AAOi9AADovQAAUL0AAOg9AAA0PgAAmD0AABy-AAB8PgAAMD0AABS-AACovQAAuD0AAAS-AAAwPQAAf78AAPi9AACuvgAABD4AAKC8AADovQAA4DwAAKA8AACgPAAA2D0AAIA7AAAkPgAAcL0AAOC8AABMPgAAor4AACy-AAAcPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=pBnb-bhkLQ8","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["15128102216029748506"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16236313836207369077":{"videoId":"16236313836207369077","docid":"34-1-11-Z5ED9E38B5B936F7D","description":"In this video, I am solving a simple algebraic problem. Here is the link to another video, where I solve the above problem using complex numbers: • Why Is the Sum of Two Positive Numbers Neg...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4695184/699c8b2f8c2d81623a21da5a34eff0cd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/rdqWLwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DIbHjZ38AZ3U","linkTemplate":"/video/preview/16236313836207369077?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"A Simple Trick to Calculate an Algebraic Expression With Giant Powers","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IbHjZ38AZ3U\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFgoUMTYyMzYzMTM4MzYyMDczNjkwNzdaFDE2MjM2MzEzODM2MjA3MzY5MDc3aocXEgEwGAAiRBowAAopaGhzZ2Z1YnNieXNhcXdzaGhVQ2Q0V1I3S3F5WmhPLV8xUmNnbjBxNXcSAgARKhDCDw8aDz8ThQKCBCQBgAQrKosBEAEaeIED_fr1BvoA-OwKCgcI_AIFEgkJ9v__AOPv-v8K_QEA_wIG-P8BAAAaC__0AgAAAOv___r7AQAAGvv5AAQAAAAY-AAO-AAAAB0T_wD-AQAA4wr3-QIAAAAgBQgKAAAAAAcWBvYA_wAA_A4A-QAAAAAYAw7yAAAAACAALXoXxDs4E0AJSE5QAiqEAhAAGvABfxT7_wAUwwTMGPYBA-UNArv5Qv_uM_MBs9QCAcj_6gH-GvIA_i7k_-oq9P_BINQAGPLi_g_j6gE_2vwAI-a8AA_43wEU0e0CQBQx_w38_v7_5hsAILX8AfXXzv4PG_H9-uP79x8fxf4GMtQDEP5DAfLXRAIL4hn-9rf0A8Hg6gEG8wry2urqA_jx-vq61ykC7_Dy_SYeE_wIG93-APgR_Pz-EfcIMtL9IvH2BkgK9v-qAxgC-90LD0YNIf7bAvwG8vYpAuZA_f_uFwruKhbg--ce0_oICtgMEP7-_OPv9AUv4PjxARAA-OgC_PwSK_D9IAAtUm0JOzgTQAlIYVACKs8HEAAawAd6UeO-b1EguoUyQzyp9xS8RCXDu3cuzLyRiOO7bFvzO_BtGj2ZKS0-WlW1vVNtAb3DeFe9QVKbOxlZMrz9vXQ-klRLvQOx7Dx1dPy9LxOaPQsCEL1bEEW9NvfjO2XkSTskBYu9AxaPveT7Pbz61dw9N35yPKugFjxhgmC7bxYKPRi6bbwypRo9VbSDu0yZCr0QFwq9vv-qvJkC4zr4RGg9vcNtvN7bvjv0Z-Q8TiyLvMTBL73q1bu9osc5PJBMR73hTIK8G0xDPfxHUD3r-4W9PmhMvYc7ETzrayK9_oOjPBb7SzuctLo9Su1FPLB6m7zYwgc9RMeZvfI7sryt-QG-VKWSPCHR3zsaQo899vDAPGcxqTrUKLS9ahqvvLY7-zsVdQW8n8SMvDGUOLw3dVm9EDuYPftDzDtSpdw8QXE2vMR-C7zg7AC94FiGPJ052jxblZQ96g6ovTAwhryqXag9S3APPG41a7weJSW9v9lBvNpr6rvwt4O7g-S4PQiZPzxM0QC9j0LIvDXEQjzfZsY9ObXzvYcfGDzsQ7i9j1ADvn9AELsntmc9iM7bu0qIqLxDqR0-H2rbvcSaqTlHLU86QBYBPNaVR7vKPv68ivOGvRKOkztrAMW9xHUxvYNujrv8ZYG9jqFSPN_rWrxy7I-8iZNAPU2wLDvnB-S8aJePvZm1GLt4H4w9IrFzPYByCLuYMgA-Fn9APS0_tbdRl9Y85dFtvaAaTLss8eC9LnD9uyAnGDov6d68jfDWvX2NTjkfotE9WPgfvXnRijgA8tS8hoEdPe0nnbhfrX-9LuKwPQkCOjkTI5A9j7OfvQp-uDfpD008qDg-vnKfXTlqUE89E3wTPJRLErnt2b69KTlsPefK1TnMIMO91A0EvghThTnJlGo8Kfg3PFy8ALg-vpM9kXWdvDBN8zetGwq9TwU8PQ1TBLcPFgS9XHgaPMyuXbiYvOY8laLwu8olujgjrIw99GwGvs9wpTlwex88iyoNPeegpLjL4Q08mROPvHs1Z7gqjkM94gLQPbsB9zj1_0M7x3lkva9jtbc7elI9OKdtPKulPbiik6q9V6fEPb02oDh4I5g8gmcMPZMR0TiS4V29eOBNPXTJUbiPW4I9zPKvukByAbjB4ys-3KVovAeJdLmr3xa9DfsdvqO8_rhvRWe9tBabvU5w-LfCRn68D3vhPQy1wTfTM4g9hQv5vEB6JLjK9HA9IuErPvHLiji6E6y8cty5PXQwGLkjaMy9DQH6O28GBjd6DIC9KYA9PMRZt7cgADgTQAlIbVABKnMQABpgGvYASCog9hMZCuPqwN8D8OsvzyHMIf_k9QAIEQX-NATT2v0X_y3pF-CzAAAAHAwOBO8AGmbx5N4ZA872vcvLOjF_0SUXEfYc8sfTUwoQ2A7o2xdUAN4eyy82DNNC7-0EIAAt7N4sOzgTQAlIb1ACKq8GEAwaoAYAAGDBAACgQAAAdEIAAAjCAABIQgAAMMEAAI5CAADAwAAAFMIAAEjCAACgQQAANEIAAKjBAACgwAAAYMEAAHxCAAAwQQAAKMIAAChCAAC4wQAA4MAAAOjBAADIwQAAgMAAABzCAADAQAAAjMIAAIhBAACAwAAAKEIAAI7CAAAwQQAAkEEAAExCAADQwQAAQEAAAFBBAAAQQgAAqkIAADBBAACAQAAAsMEAANhBAAAIwgAAEMEAAAjCAABsQgAAoEEAAEDBAACIQQAAlMIAACBBAAA8wgAAGEIAACBBAAAAAAAAtsIAABBBAACGQgAA8EIAAEDAAACcwgAAkEEAANjBAACQQQAAYMIAAABCAAAQQQAAIEEAAExCAAAEwgAABEIAAEjCAABIQgAA6MEAADBBAAAEQgAA8EEAAIDBAADwQQAAmMEAAK5CAABAwQAAyEEAAChCAACYQQAAIMIAALjBAACUQgAAEEIAANjBAAAcQgAAAEEAAIDBAABMQgAAKMIAANBBAAAEQgAAiMEAAIxCAAB0wgAAoEEAALBBAACMQgAAYMIAAIDBAADgwAAAEEIAAAAAAACMQgAAFEIAAADAAAAYwgAAUMIAAADCAABoQgAAgEAAACDBAAAQQgAAksIAAADAAAD4wQAAMEEAAOjBAADIwQAA2MEAAABBAABAwQAAOMIAAEDBAACawgAAgMEAAADAAACAQgAAgD8AAPhBAACgwAAAQMEAADjCAAAcwgAA-MEAAAhCAADoQQAAwMEAAMxCAACaQgAAiEEAAPjBAAAgwgAAUEEAAPjBAACAQQAAUEEAADDBAAAAQAAAPEIAABDBAAAwwQAAssIAACBBAADgwQAAAEIAAOhBAADAwQAAAMEAAADAAABcwgAADEIAAABCAADgQAAAnsIAABzCAAAAQQAAmsIAAADCAAAQwQAA6MEAADzCAAAMwgAAlEIAAMLCAADwwQAAkEEAAFjCAACoQQAAYMEAAEDAAACQwQAAXMIAAGBBAADIQQAABEIAAODAAAD4wQAAEEEAAJBBAABkwgAAIEEAAIBAAACEwiAAOBNACUh1UAEqjwIQABqAAgAAUL0AAIC7AACKPgAAUD0AAHC9AACaPgAAuD0AABO_AABAvAAAQLwAAAQ-AABMvgAARD4AAGw-AADYvQAAJL4AADQ-AACAuwAAED0AAPI-AAB_PwAAcD0AABA9AACuPgAAVL4AAIg9AABkPgAAyL0AANg9AAAkPgAAcD0AACy-AAAwvQAAVD4AANg9AACAOwAAgLsAAAy-AACevgAAuL0AAP6-AABMPgAAnj4AADC9AAD4vQAAmD0AADQ-AADIvQAAEL0AAFC9AADgvAAAND4AAJY-AACOPgAAhr4AALi9AAAzPwAAED0AAFA9AAAsPgAAPL4AAGQ-AAAkPgAA6L0gADgTQAlIfFABKo8CEAEagAIAADy-AADgvAAAuL0AAG2_AAA0vgAAFD4AAGQ-AADYPQAA2L0AAKg9AACoPQAA2L0AACy-AADYvQAAuD0AAKC8AABQvQAACz8AADy-AACePgAADL4AAKC8AACgvAAAFL4AAIi9AADgvAAA0r4AABC9AAAQvQAAqL0AAOA8AACYPQAAoLwAAIq-AACSPgAAyL0AAIo-AAAkPgAAVL4AAIi9AABAPAAAyL0AAHy-AADgPAAAqL0AAEC8AAB_vwAAmD0AAFA9AABwPQAAfD4AABA9AABEPgAAhj4AALi9AABwPQAAcL0AABS-AAB0PgAA-L0AAIY-AAAcPgAA6D0AADA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=IbHjZ38AZ3U","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1200,"cheight":720,"cratio":1.66666,"dups":["16236313836207369077"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1222633836"},"15554430983713316380":{"videoId":"15554430983713316380","docid":"34-6-16-ZAFEFEAFE0EAC1B30","description":"Welcome to this informative video where we delve into the fascinating world of trigonometry and take on the task of determining the exact value of sin(6 degrees). With my clear explanations and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4407993/329c6a2c275bc6f7eadbfaa73d5dc121/564x318_1"},"target":"_self","position":"7","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4wM_JhqaZ2Y","linkTemplate":"/video/preview/15554430983713316380?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sin(6 degrees): Exact Value!","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4wM_JhqaZ2Y\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFgoUMTU1NTQ0MzA5ODM3MTMzMTYzODBaFDE1NTU0NDMwOTgzNzEzMzE2Mzgwaq4NEgEwGAAiRBowAAopaGhzZ2Z1YnNieXNhcXdzaGhVQ2Q0V1I3S3F5WmhPLV8xUmNnbjBxNXcSAgARKhDCDw8aDz8T6QeCBCQBgAQrKosBEAEaeIH4AAIGAf8ADP0GA_kG_gEPDPIE9QAAAPUA9PQDAv8A8voIAgQAAAABGQ3-AgAAAP_t9Qj9_QAAEQMC9QQAAAAMAQwE9QAAAAoH8_X_AQAADvz38AIAAAAC9gUGAAAAAAf5-voBAAABBQYB9QEAAAAT-wAB_PT-ACAALfQJ0Ds4E0AJSE5QAipzEAAaYD8jADgrCv6lBxfS-LgC3Oj2Ae_Dsg__7w4AD9P-qfUVzsghDv8E4g39rQAAAAftDgj3AB1pA9ys_xn-CxPNzkQRfzEJJOvlCdrcBPIFBtIb6QoXMgC2GgUX_a0iG9VkCyAALXi8JDs4E0AJSG9QAiqvBhAMGqAGAAAsQgAAKMIAACBCAAA4wgAAcEIAAKDBAACwQgAAQEAAACTCAABAwAAAVEIAAFDBAADIwQAAgL8AAJDBAADAQQAAdEIAANDBAADIQQAA0MEAAIjBAABwwQAAFMIAAFDBAAAQwgAAgEAAANjBAADAwQAAKEIAANDBAAAQwgAAAEAAAJDCAADgQQAAUMIAAKDAAAAYQgAAAEIAAKDAAADYQQAA8EEAADBBAAB0QgAAeMIAAFBBAACwwgAAnkIAAChCAAAAwQAA4EAAAJjBAACYwQAAHMIAAEDAAAD4QQAACEIAAHDCAACAQAAAiEEAAERCAABAQAAAOMIAAATCAAAcwgAAyEEAANzCAACAwAAAmMEAABBBAAAwwQAAdEIAABhCAACYwgAAUEIAAIDBAABAQAAAAMEAABhCAACQwQAA8EEAABzCAACYQgAAAMAAAADBAADgQAAAkEEAAEBBAAAUQgAAcEIAAADAAAAkwgAAoEIAAHzCAAAcwgAAKEIAAATCAABUwgAA4EEAAMhBAABsQgAAoMIAAIhBAACAwAAAAEIAADTCAAAQQgAAAMEAADRCAACAQAAAhEIAAIRCAACYwQAAyEEAADhCAAAQwgAA4EEAACxCAABUwgAAwMAAAGDBAAAQwgAARMIAAIDAAABgwQAAcMIAADDCAACYwQAAHEIAAEjCAABwQQAAsMEAADBBAAAAAAAAwkIAAGDBAAC8QgAAGEIAAIBBAACwwQAAyMEAAIDAAADwQQAACEIAANjBAADIQQAAnkIAADDCAAC4QQAAMMEAAAAAAADgwQAAkEEAAKBAAADAwQAAPEIAABBBAAA0wgAAoMEAAHTCAAAAwQAAiMIAAJDBAABQQQAAIMEAAAAAAAAwQQAAWMIAADhCAAAEQgAAbEIAAMDBAADIwQAAAEIAAJTCAACMwgAAgEEAAJDBAAAgwgAAwEEAAExCAADKwgAAcMEAAAAAAABAwgAAJEIAAHDBAABswgAAuMEAAEDCAAAgQgAADEIAAIC_AABAQgAAwMAAAMDAAACYQgAAgL8AAIBAAADAwAAA2MEgADgTQAlIdVABKo8CEAAagAIAAFA9AAAQPQAATD4AAPg9AACoPQAAhj4AAJg9AADivgAAcD0AAEw-AAAEvgAAFL4AAOC8AADYPQAAoLwAAKg9AACGPgAAQDwAALY-AADyPgAAfz8AAMi9AADIPQAAbD4AABe_AADoPQAAuD0AAIg9AAAMPgAADD4AAKC8AADKvgAAcL0AAI4-AABQvQAA6L0AAOi9AAB8vgAAmr4AAJi9AADYvQAAED0AAEQ-AACoPQAAqD0AAKA8AAAwvQAAfL4AAJi9AAAMvgAAEL0AAKI-AADgPAAAVD4AAAy-AABAPAAAEz8AAKA8AAA0vgAAvj4AAFA9AACAOwAAED0AAGy-IAA4E0AJSHxQASqPAhABGoACAAAwPQAA4LwAAAS-AABhvwAAcL0AABS-AACYPQAAFL4AACQ-AACIPQAAcD0AAFA9AABQvQAAgLsAAMg9AADgvAAATL4AAB8_AADIvQAAzj4AAAS-AADSvgAA-L0AABS-AACgPAAAEL0AAFC9AACIvQAA2D0AADw-AABwvQAAPD4AACy-AAA0PgAAmD0AAEC8AAAsPgAAiL0AAES-AAAkvgAAuD0AAKi9AABsvgAAND4AAAy-AAAwPQAAf78AADA9AADgPAAADL4AAES-AACIvQAAHL4AAEQ-AAC2vgAAVD4AAKA8AADIvQAAfD4AAJg9AAA0PgAAtr4AAGy-AABAvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=4wM_JhqaZ2Y","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["15554430983713316380"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4669924250988262719":{"videoId":"4669924250988262719","docid":"34-3-9-ZE5C6179275E20A62","description":"Despite the constant advent of latest technologies, there’s still an area for scientific calculators in academia, and not only for math-oriented students. This is as a result of scientific...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2848702/be10af23128b2c4de7c057b5fb8b96d4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/olBlzQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTMhwMCrjRs8","linkTemplate":"/video/preview/4669924250988262719?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Top 10 best algebra calculators in 2019 reviews","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=TMhwMCrjRs8\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFQoTNDY2OTkyNDI1MDk4ODI2MjcxOVoTNDY2OTkyNDI1MDk4ODI2MjcxOWq1DxIBMBgAIkQaMQAKKmhodHluamxqcWJnY21kbWNoaFVDMFdzdUxIdHp4dXlja2RiRkxIc2gyURICABIqD8IPDxoPPxNUggQkAYAEKyqLARABGniB_vTzAgL-AOv-BgMHAv8ADv35AQr-_gDsCv8GCP8AAPj1BQAMAAAABQ8D9goAAAD6B_sH-_4AABEEAfHzAAAACQj_9vcAAAD9BfHw_wEAAPoRBg8D_wAADgkBBQAAAAD8DQf_AwAAAAbzCP4AAAAACRAM__8AAAAgAC3McNA7OBNACUhOUAIqhAIQABrwAUcUGvwDAPAC1hP4AOEdCgKB_uUACxn7ALMoAgC1JBgA1w3nAOv-AAD2D_EBEAok_y_z6P9fAQAA6eXw__8d-AAVKwoAWQQhAgMWAgDvAAT_GRcZ__P78wDu5BEA9gPUAQXt-wLKAgr8B-gFA_r99wLS9SAEMRAx_yTYAQLrN_P-4PkL_-n64wEZ--b_zPH3_vn11AQACRQC6hzrAhcBBQTY9f384_Tw__MoF__H2vn9xNPyAx8vEgEeBe8B-A4fAhP4__zN6gT_3u4U_xjj_gEU9g0EEP8GDPIO7hEaAvv29PoJ__Um_PjqDgYT9gkNBCAALQmXKTs4E0AJSGFQAipzEAAaYPn-AENYNRIU_0IH9AwSEOT7DQ8UzBz_O-n_7frv8BY_053hSQAyNBXpoQAAAPwSC_73APV_t-f2HQs2Ge2g6SclY80a4vf7FyEAEGcPx6zo7gUyOwDd9LAFWSTCcCcEDSAALaesFTs4E0AJSG9QAiqvBhAMGqAGAABQwgAAgEEAAFBBAABQQQAAmMEAAMBAAABAQgAAqEEAAKDBAABAwQAAOEIAAJDCAACSwgAAAEEAAJ5CAADgwAAA4EEAAFDBAAAgwgAA-EEAAGDBAACAQAAA4MAAAMBCAACwwQAAoMEAACTCAABgQQAAhEIAAMjBAAAgQgAAAEIAALjCAADQwQAAGEIAANhBAACwwQAAsEIAAJhBAADKQgAAWEIAAFxCAACwQQAAYMEAAIC_AAA0wgAAqEEAAKDAAAA4QgAAsEEAAOBAAACIQQAAhsIAAERCAAC2QgAAIEEAAPTCAAAAAAAAIEEAANBBAADQQQAACMIAAMDAAAAQQQAAkEEAAPDBAADAQQAAQMAAABjCAACgwQAAoMEAAMDAAAAkwgAAHEIAAOBAAABAwAAAhMIAAOBAAACQQQAAQMIAADzCAACyQgAAJEIAAJDBAAA4QgAAfEIAAChCAAAQQQAAEEIAAIA_AACgwAAA8EEAADDBAAAowgAAmEIAABDCAAAwwQAAwMEAAABAAACAQQAAOMIAAPBBAAAoQgAAFEIAAKBBAACUQgAA0MEAAKBAAACwwQAA0EEAACBBAADgQQAA8EEAANDBAABQwQAAkkIAAFTCAADIwQAAQEAAAPDBAABwQQAAPMIAACDBAADYwQAAiEEAAIhCAABgwgAAZMIAAGDCAAAIwgAAosIAAIDAAADAwAAA4MAAAOBBAAAgQQAAJEIAAADAAAAgQgAAkMEAABRCAADgwAAA8MEAAEBAAABoQgAAoMAAACDCAAAAwgAAFEIAAKhBAACCwgAAQEAAAFBBAACYwgAAUEEAAKLCAAAIwgAAkMIAAPTCAADgwAAAQEAAAKDBAADAwAAAgL8AAETCAAAQQQAAgEAAAIC_AABgQQAAgD8AADjCAACgQQAA8MEAALhBAADYwQAAyEEAAAzCAACiwgAAtEIAAIDAAADwwQAARMIAAMDAAAAQQgAAZEIAAATCAACUwgAAEMEAAOhBAAAAwAAA4MAAAMDAAAAAwQAAAEAAAJhBAACAwAAAoMAAABDCAAAgwQAAoMEgADgTQAlIdVABKo8CEAAagAIAAL6-AABMPgAADD4AAOA8AACavgAABD4AANi9AAANvwAAhr4AAIK-AAD4vQAAxr4AAOY-AABMPgAAor4AAIK-AABwPQAAED0AAJ4-AAApPwAAfz8AAPi9AAAsPgAAXL4AAIg9AABwPQAAUD0AAAy-AACavgAAfD4AAII-AAAkvgAAML0AADC9AAAwPQAAuL0AAHC9AACOvgAAjr4AADS-AACivgAAJD4AAL4-AABkvgAAmD0AADQ-AAAcPgAAqL0AAJg9AAD4PQAANL4AABy-AACAOwAAXD4AAFC9AAAwPQAAJz8AAIY-AAC4PQAAoj4AAMa-AAB8PgAA-D0AAJq-IAA4E0AJSHxQASqPAhABGoACAADIvQAAmj4AAKA8AABVvwAADL4AAFC9AACSPgAAUL0AAEA8AAA0PgAAuD0AAIq-AADgvAAAir4AABA9AABAPAAAyL0AACc_AAAkvgAAMD0AAKC8AABAvAAAQLwAAEA8AAAQvQAAgDsAAKa-AADIPQAAFL4AAAS-AACAOwAAJD4AADy-AAB0vgAAcL0AADy-AACSPgAADL4AAKq-AACGvgAAVL4AADA9AACivgAAuD0AAEw-AACYvQAAf78AAOA8AAAUPgAAQDwAAHw-AAD4PQAAcL0AABQ-AAAQvQAAqD0AAOC8AADoPQAAJD4AAOA8AACOPgAAED0AACw-AABEviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=TMhwMCrjRs8","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4669924250988262719"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3272120630"},"3503566750191083399":{"videoId":"3503566750191083399","docid":"34-6-11-Z902B8706D842B4B8","description":"In this video, I share with you my solution to a seemingly unsolvable equation. 💠Support the channel💠 If you enjoyed this video and found it helpful, please consider subscribing to my channel.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1841219/ad629acbf3b487381b1657eb2e985a87/564x318_1"},"target":"_self","position":"9","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3De_OAexn2Wzo","linkTemplate":"/video/preview/3503566750191083399?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solving the Insolvable: My Technique for a Formidable Equation","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=e_OAexn2Wzo\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFQoTMzUwMzU2Njc1MDE5MTA4MzM5OVoTMzUwMzU2Njc1MDE5MTA4MzM5OWquDRIBMBgAIkQaMAAKKWhoc2dmdWJzYnlzYXF3c2hoVUNkNFdSN0txeVpoTy1fMVJjZ24wcTV3EgIAESoQwg8PGg8_E_QIggQkAYAEKyqLARABGniBBAD99_8BAOv8A_36AAEAE_UHBvcAAADz_QH19QEAAP32BwQCAAAA-hDw_wMAAAD-Ce8C9_4AABAB9_wEAAAAGAT8Cv8AAAAKBvcI_gEAAP8B8_0C_wAAA_QA__8AAAD3Agb2__8AAPcJEgQAAAAABwYKA_8AAAAgAC3MZtY7OBNACUhOUAIqcxAAGmANDgAaJg3l8PAf9dT47h7RANfs3ckhAAfgAAEw8dIbGtzR8u3_Jc4HA7QAAAAOwxEw9QAVUwgIDSMox_TF7NwT7H_-ENL4IRAS3RAVAxP5AiLr8SoAu_czFg_LxCTm3CYgAC3sMEM7OBNACUhvUAIqrwYQDBqgBgAAqEEAADzCAACSQgAAWMIAAIDBAAAQwgAAkkIAAFBBAABUwgAAgEEAANBBAACAvwAA-EEAACBBAABQwgAA2EEAAHxCAACYQQAAAMAAABDBAADAQAAAqMEAAFjCAABAQAAAbMIAAODBAADYwQAA6EEAACRCAACAwQAATMIAAKjBAADwwgAAMEEAAFTCAABwQQAAFEIAAAhCAAAQQQAAmEEAAADAAABAQAAA4EEAAEDBAADoQQAAgMIAAKpCAABAQgAAUEIAABhCAABAwAAAZMIAALDBAABAwQAAQEAAACRCAACGwgAAQEEAAHhCAABwQgAAqMEAANTCAACQwQAAXMIAALjBAAC-wgAADMIAAKhBAADAQQAAoMAAAABAAADgwAAAZMIAAFBCAAAUwgAA6MEAABDCAADgQQAAMEEAAHDBAACAQQAA2EIAADDBAAAUwgAAYMEAAEDBAAAUQgAAwMEAAKZCAABoQgAAiMEAAJBBAACgwQAACMIAACRCAABAwAAA4MAAAKBBAABAwQAA-EIAAGDCAABAQQAAEMEAAIJCAAA8wgAAQMAAAHBBAAAUQgAAgEEAAFBCAABcQgAA4EEAAIC_AAAQQgAAuMEAAGxCAAB4QgAAbMIAAFDBAAAAQAAAoMAAAGTCAAC4wQAAoEEAACTCAABEwgAA2MEAAKDAAACowQAAAEIAAIjBAACAPwAA6EEAAKJCAABEwgAAUEEAAABBAAAoQgAAAMIAAJjBAAAYwgAAjkIAACRCAABMwgAAikIAAJRCAACwwQAAcEEAAEDAAACYwQAA4MEAAFDBAACIwQAAMEEAAKBBAADAQAAAaMIAADDBAABwwgAABMIAADzCAAAgQQAAoMAAACDBAAAAQQAANEIAAGDBAADQQQAAFEIAANBBAAD4wQAAcMEAAJBBAACIwgAASMIAADBBAACIwQAA4MAAAAjCAACIQgAAmsIAAKBAAACIwQAAnsIAAExCAADYwQAAYMEAAFBBAABgwQAAYEEAADBCAABgwQAAMMEAAADAAACIQQAADEIAAADBAAA0wgAAgD8AAADAIAA4E0AJSHVQASqPAhAAGoACAADIPQAA-D0AAHQ-AAAEvgAAij4AAJI-AACgPAAAO78AAGy-AADIPQAAoDwAAIi9AAC4PQAAFD4AAKC8AABAvAAAVD4AAIg9AADovQAAxj4AAH8_AABwPQAAVD4AABC9AAC4vQAAuL0AANg9AACgPAAA2L0AAK4-AABMPgAA4LwAAFC9AAC4PQAAqD0AAEQ-AACIPQAA4LwAAIK-AADCvgAALL4AAOA8AAAsPgAABL4AAKi9AAAwvQAAED0AAFC9AABQvQAAur4AAOg9AACAOwAABD4AADQ-AACKvgAAmL0AACc_AAAcvgAAMD0AAEQ-AAD4vQAAuD0AAHw-AACgPCAAOBNACUh8UAEqjwIQARqAAgAATL4AABQ-AACAOwAAYb8AAFS-AACIvQAAVD4AAKC8AADoPQAA-D0AAJg9AACWvgAA6L0AAJK-AAC4PQAA2L0AAEA8AAAXPwAAuL0AAHw-AABMvgAA-L0AAKC8AACgvAAAEL0AALg9AACovQAAcD0AACw-AAAcvgAAMD0AAOA8AACgvAAAuL0AACQ-AACAuwAAZD4AAKY-AABsvgAA6D0AACQ-AABQPQAA-L0AAFA9AAB0vgAAQDwAAH-_AAB8PgAAyL0AAKg9AAC4PQAAbL4AAIY-AADgPAAA6D0AADA9AAAQPQAA2D0AAAS-AACevgAAUD0AAEA8AABAPAAAXD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=e_OAexn2Wzo","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3503566750191083399"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11089392645847258668":{"videoId":"11089392645847258668","docid":"34-8-12-Z4A15EA56DCD38BFF","description":"#shortsvideo #shortsvideo #shortsyoutubevideo...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2121721/c4fba3bc9ac987dde7be75890ce80e3a/564x318_1"},"target":"_self","position":"10","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqL_IJNvKH7M","linkTemplate":"/video/preview/11089392645847258668?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Multiply Cosines of Unexpected Values","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qL_IJNvKH7M\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFgoUMTEwODkzOTI2NDU4NDcyNTg2NjhaFDExMDg5MzkyNjQ1ODQ3MjU4NjY4aq0NEgEwGAAiQxowAAopaGhzZ2Z1YnNieXNhcXdzaGhVQ2Q0V1I3S3F5WmhPLV8xUmNnbjBxNXcSAgARKg_CDw8aDz8TJ4IEJAGABCsqiwEQARp4gQH9-gUAAAAQABAAAgf_AfUD_Pj5_f0A5gME_Qn9AgD37P4GBwAAAAUOA_cJAAAA9v77CPT_AQAYCwXzBAAAAAD8_gb5AAAADw39AxH-AQED9_j4A_8AAAz-_QEAAAAAAAgC9wMAAAAD_PAGAAAAAAb6-v379f4AIAAtLGDVOzgTQAlITlACKnMQABpgGhYAL0UU6_8AO_P95eAC_O8W9NfUGAAI-QAC6PbYG_XwyPEC_w_zDfPAAAAADff-8SYACFHW9sEMDO0Fy8P_FUV_8gP7IRkf8NnxBBMe5xHaBQ5NAPQA5wr2_dsQGTcPIAAtt4RSOzgTQAlIb1ACKq8GEAwaoAYAADxCAADowQAA_kIAAETCAACgQQAA4MAAAGBCAAD4wQAADMIAABBBAAAAAAAA2MEAAABAAAAgQQAAGMIAAIBAAABYQgAAyMEAAFBCAACQwQAAAMEAAJpCAABswgAAoEAAAILCAABAwQAA4EAAADBBAADWQgAAJMIAADjCAACAwAAApMIAAATCAACswgAAoEIAACBBAACAQgAAgL8AAAxCAAAEwgAAqEEAAMhBAACAwQAAgD8AAEDCAAAYQgAAhEIAAEhCAAAwwQAAyMEAAOBAAABAwQAAoMAAAPBBAACgQQAAwsIAAIBAAACIQgAAAEEAANBBAACEwgAA4MEAACTCAACgQAAAxMIAAEDCAAAgwQAAoMEAAEzCAAAwQQAAYEEAAGjCAABoQgAAXMIAAABBAACgwAAAAEEAAHDBAABAwQAAAAAAAGBCAABwwgAAYMEAAKhBAAAYQgAAgEEAAJBBAABAQQAAgEEAAADCAABwQgAAEEEAABBCAABYQgAAkMEAAABBAABAwQAAMEEAAChCAABQwgAAhMIAABBCAABAwQAAgMIAAIA_AACYQQAAqEEAAKBAAAAsQgAATEIAACxCAAAowgAAoEAAADzCAACaQgAAKEIAAIjBAABQwQAA0MEAAGDBAABowgAAsMEAAKDAAAAQwQAAEMIAAJDBAADgQAAAyMEAAIBBAABQwQAAkMEAAKDAAACQQQAAwEAAALJCAAAwQQAAMEIAAEDAAACYwQAAQMAAANBBAABgQgAARMIAAFhCAADgQQAAwEAAAEBBAAC4wQAAUEEAAFDBAACAvwAALEIAAIhBAAAQQQAAwMAAAODBAACAPwAAoEAAAILCAACAwgAAMEEAABDCAABcwgAAQEAAAHhCAAAcwgAAikIAACxCAADgwAAAmEEAAOBAAADIQQAAPMIAACjCAABUQgAAwMEAAJjBAABAQQAAbEIAAIzCAAB8wgAAUMIAAEjCAACgQQAAqMEAAIjBAACOwgAAyEEAAFBCAAAAQgAAAMEAAKhBAABgwQAAmMEAAEhCAABAwgAAMMIAAABAAADQwSAAOBNACUh1UAEqjwIQABqAAgAA-D0AAKA8AABsPgAA2L0AAOi9AAAMPgAAcL0AABO_AAAkvgAA-D0AABC9AAA8vgAA4LwAAIY-AAA8vgAA-L0AADQ-AABAPAAAQLwAAKo-AAB_PwAAmL0AABS-AAC4PQAAHL4AANi9AABwPQAAJL4AAEQ-AACmPgAAoLwAAIC7AAAkvgAA6D0AAMi9AAAUvgAAiD0AAJi9AAAUvgAAdL4AACy-AABAPAAAFD4AAOA8AADKvgAAPL4AAAQ-AABQvQAAiL0AAPi9AACaPgAAyD0AAL4-AACoPQAADL4AAOC8AAAtPwAA2D0AAIg9AADgvAAAcL0AALi9AABEPgAA6L0gADgTQAlIfFABKo8CEAEagAIAAJi9AACovQAA2L0AACm_AADIvQAAUD0AAHA9AADoPQAALL4AAJg9AABwvQAAfL4AAIC7AAAEvgAA2D0AADC9AAD4PQAALT8AAHS-AAD4PQAA4LwAAOA8AACAOwAAQDwAAIA7AAC4PQAAuL0AADC9AADYPQAA-D0AABA9AACYPQAAHL4AALi9AACAuwAAyD0AAFA9AAD4PQAA6L0AAOi9AABcPgAA4LwAAFC9AADYPQAAuL0AAIg9AAB_vwAA4LwAABy-AABQvQAAuD0AAOC8AACOPgAAcD0AAKi9AAAQPQAAMD0AAGw-AABQvQAADL4AABw-AAC4PQAAqL0AADy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=qL_IJNvKH7M","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11089392645847258668"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1466846448708318662":{"videoId":"1466846448708318662","docid":"34-10-2-Z1A83083FC9381B55","description":"Recently, I posted a video wherein I calculated the amount of an algebraic expression using a simple algebraic trick. Here, I come to the same result using complex numbers.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3070214/00bf2b33641ff3f826f53b925a91ce9e/564x318_1"},"target":"_self","position":"12","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DyU7_cbH7LhI","linkTemplate":"/video/preview/1466846448708318662?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Why Is the Sum of Two Positive Numbers Negative?","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=yU7_cbH7LhI\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFQoTMTQ2Njg0NjQ0ODcwODMxODY2MloTMTQ2Njg0NjQ0ODcwODMxODY2MmquDRIBMBgAIkQaMAAKKWhoc2dmdWJzYnlzYXF3c2hoVUNkNFdSN0txeVpoTy1fMVJjZ24wcTV3EgIAESoQwg8PGg8_E5cFggQkAYAEKyqLARABGniB7gX8BQH_AOT-Cvv9_gIA7_8B-vr__gDl-fsL-P0BAP8LAwAAAQAA9wUCAgAAAADo8wYJ_AIAAAAA__oEAAAACfYE-f4AAAAKEfsP_gEAAAT6AwED_wAAHgUICQAAAAAABAT2-_8AAP_6-gUAAAAABwsC_AAAAAAgAC1qLM87OBNACUhOUAIqcxAAGmD8FAAwERMB4vwC4_vg1xn9_iIS3dL3AP__AOsQ3vv-COjV_f3_H-oP8MoAAAATGgke-ADlSPnV1gkT_OTR2u4QGn_yJeQG_urgyunwIQkDB_vvAxkA3_TsACAGFDHnMCAgAC2qEGw7OBNACUhvUAIqrwYQDBqgBgAAMMEAAIA_AACIQgAARMIAAEhCAADAwAAAoEIAAODAAAAAwgAAGMIAAEBBAAAoQgAAoMEAAGDBAACQwQAAREIAAIBBAAAYwgAAOEIAADDBAAAAAAAA6MEAAMjBAAAwwQAAPMIAAIBBAACGwgAAMEEAAOBAAAA0QgAAeMIAAMBBAACQQQAAQEIAAEDCAADgwAAAwEEAAAxCAAC2QgAAIEEAAKBAAACgwQAA0EEAALjBAACAvwAAIMIAAHhCAACAQQAAAMAAAIhBAACGwgAAQEEAAFDCAAAUQgAAgD8AAADAAADIwgAAYEEAAJBCAADaQgAAgEAAAJzCAADQQQAA2MEAAEBAAACQwgAAiEEAAHDBAABAQQAAIEIAACDCAACYQQAAPMIAAHBCAAAQwgAAMEEAAMBBAAC4QQAAkMEAAKhBAAAwwQAAzEIAAFDBAABgQQAAFEIAAKhBAAAwwgAAwMEAAIBCAAD4QQAA6MEAAHRCAACgQAAAsMEAAERCAAAAwgAAuEEAANhBAAAQwQAAqEIAAFjCAAAgQQAAFEIAAKJCAABMwgAAgMEAAABBAAC4QQAAQEAAAIJCAAAwQgAAgL8AAEzCAABIwgAABMIAAFRCAACAQQAA4MAAALhBAACcwgAAwEAAABzCAABwQQAA6MEAAMDBAACAwQAAgEEAAIC_AAAQwgAAUEEAAIDCAAAAwQAAYMEAAFBCAACAQQAAFEIAAEDBAADAwAAANMIAABzCAADwwQAA2EEAAPhBAAAEwgAApkIAAKBCAACYQQAAJMIAADTCAABwQQAAuMEAAIBBAACwQQAAyMEAACBBAAA0QgAAoMAAAODAAACYwgAA4MAAACDCAACwQQAAoEAAAMjBAACgwQAAIEEAAEDCAABMQgAAREIAAIDAAACKwgAAMMIAAIBAAACKwgAAJMIAAGDBAACYwQAATMIAAATCAACWQgAA0sIAABjCAAAwQQAALMIAAMhBAACowQAAgD8AAMDBAAA4wgAA4EAAANhBAADwQQAAwMAAANjBAAAwQQAAmEEAAGTCAACAwAAAQMAAAFjCIAA4E0AJSHVQASqPAhAAGoACAADgPAAA1r4AANi9AABMvgAAyL0AAPg9AADgPAAAKb8AAJg9AABQPQAAgLsAAL6-AADgvAAA2D0AAMi9AADoPQAAdD4AAIA7AAA8PgAAxj4AAH8_AAB0PgAA-D0AAHw-AABMvgAAwr4AAEw-AAAcvgAAsj4AACQ-AABcPgAAdL4AAPi9AACAuwAAoj4AAOg9AACoPQAADD4AAGS-AAA0vgAAfL4AAGy-AACqPgAAML0AAGS-AACoPQAA6D0AADC9AABsPgAAlr4AAFA9AACYvQAADD4AAFQ-AADovQAAiL0AAFU_AAAQvQAADL4AAFQ-AABAvAAAwj4AACQ-AACIvSAAOBNACUh8UAEqjwIQARqAAgAAyL0AAES-AAD4vQAAP78AAAS-AACGvgAAgj4AADy-AAB0PgAAUL0AAFA9AACgvAAAQLwAAHy-AAAwPQAAoLwAAKC8AAAxPwAAVL4AANY-AABsvgAAZL4AABy-AACovQAA4DwAAOA8AADgvAAAoDwAADQ-AADgPAAAED0AACw-AAAUvgAAqL0AALY-AACoPQAAwj4AANg9AACmvgAAiD0AAJY-AAAcvgAAfL4AAMg9AACGvgAAUL0AAH-_AAAkvgAAwr4AACy-AAAQvQAAED0AAKA8AABwvQAAED0AAJg9AAAQvQAAyD0AAOA8AADgPAAALD4AADC9AAC4vQAAUD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=yU7_cbH7LhI","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["1466846448708318662"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16585698837436112157":{"videoId":"16585698837436112157","docid":"34-7-15-Z330F6FE14C86906B","description":"In this video, I prove a challenging, yet beautiful trigonometric identity, which I stumbled upon recently. You will learn a helpful method, which you can use to not only prove similar identities...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3072787/847f98b939f9d875a6dedbc043d4879f/564x318_1"},"target":"_self","position":"13","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeF3BWPiP7UU","linkTemplate":"/video/preview/16585698837436112157?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Prove an Insane Trigonometric Identity like a Pro","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eF3BWPiP7UU\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFgoUMTY1ODU2OTg4Mzc0MzYxMTIxNTdaFDE2NTg1Njk4ODM3NDM2MTEyMTU3aq4NEgEwGAAiRBowAAopaGhzZ2Z1YnNieXNhcXdzaGhVQ2Q0V1I3S3F5WmhPLV8xUmNnbjBxNXcSAgARKhDCDw8aDz8T6QuCBCQBgAQrKosBEAEaeIH9_P0O_gIA_AALDvgJ_AIUBfgG9QEBAOkB-Pv5_gEA-gUHBPkBAAAEAggFAgAAAAP7_fv9_gEAAA70CQMAAAAJDPwC-gAAAAMABAP-AQAA8fv8AwMAAAAS8_r2_wAAAAMN-f3__wAAC_H59wAAAAAL_wX-AAAAACAALdOk2js4E0AJSE5QAipzEAAaYCgOACYe29jaBf_zA9QPHf3XKecQ3BT_6fMAKE3v-BLd2rooHwBCyQftsgAAAB_z-xU7ABVhIucMChVBDrvG4PsofxL_3B8YD-ya1B_tOczw-fUtHAAgBBYYJPrwHUQhJSAALdW6Ljs4E0AJSG9QAiqvBhAMGqAGAAAMQgAAgMEAABRCAADQwQAAsEEAAPjBAACmQgAAUMEAAAzCAABAwAAAAEIAAHBBAADgQAAA4EAAAAAAAABMQgAAYEIAACjCAACAQQAAyMEAAODBAAAAQAAAKMIAAKBAAABswgAAQMAAAODAAACAPwAA0EEAAADAAAAgwgAAgMAAAHDCAACOQgAAgMAAAEBBAADgQQAAgkIAAAxCAAAUQgAAwEEAAIjBAAAsQgAAuMEAAMBAAABgwgAAeEIAALBBAADowQAAkMEAALjBAACQwQAA8MEAAIBBAAA4QgAAGEIAAETCAABAwQAAwEEAAIBCAAAsQgAAFMIAADzCAAAowgAA4EEAAPTCAABAQAAAQMEAAMjBAADgwAAAuEEAABBBAACiwgAAIEIAAIjBAADgwQAA-MEAADRCAAAAQAAAEEIAAIhBAABwQgAAeMIAAIDBAADYwQAAIEIAAIA_AADgQQAA-EEAAABCAAA4wgAAmkIAAHTCAAC4wQAAEEIAAIA_AAB8wgAAsEEAAKBAAADoQQAALMIAAAjCAACgwAAAkEEAAIDAAAAMQgAA6MEAAMBBAACowQAAYEEAAIhCAABgQQAAoMAAAABCAAA0wgAA0EIAABBCAAAAwgAABEIAABjCAACgwQAA4MAAAFhCAABAQAAAYMIAAOjBAAAQQgAANEIAAIbCAABAQQAApsIAACDBAADQQQAAikIAACDBAACOQgAAIEEAABhCAADIwQAATMIAANhBAACAvwAASEIAAEzCAACOQgAAfEIAAHDBAABIQgAAQMEAAOBBAADYwQAAkMEAAGDBAAC4wQAAgL8AAABCAACOwgAAQMAAAIzCAACowQAAosIAAAAAAAD4wQAAAMAAAPBBAAAAwAAA1sIAADBCAADIQQAAwMAAAJDBAAAgwgAAbEIAAEjCAABgwgAAUEIAAADBAADgwAAAsEEAAJpCAACqwgAAMEEAACBBAAAMwgAAoEAAAODBAAB4wgAA4MEAABDCAACEQgAA8EEAAABCAAAQQgAAyMEAAEDBAACUQgAAyMEAAMDAAACIQQAAIEEgADgTQAlIdVABKo8CEAAagAIAAMg9AADIPQAAVD4AAIC7AAAMvgAAlj4AAEQ-AADKvgAAqL0AAFA9AACAOwAAEL0AAGw-AACYPQAABL4AAJi9AAAEPgAAUD0AAAw-AAD-PgAAfz8AADC9AAAsPgAAXD4AALa-AAAwPQAAUD0AAEy-AADoPQAAnj4AANg9AAAkvgAAoLwAANi9AAB8PgAAiL0AACS-AACYvQAAlr4AANi9AADCvgAAZL4AAPg9AAB0vgAA2L0AAI4-AADoPQAAXL4AALi9AAAEvgAAgLsAALg9AABQPQAAHD4AAIa-AAAQvQAAKT8AAKC8AABQPQAAZD4AAHC9AABEvgAA6D0AACS-IAA4E0AJSHxQASqPAhABGoACAAAsvgAAEL0AAOC8AAA5vwAAyL0AAFA9AABQvQAAqD0AADS-AACYPQAAiL0AADy-AABAvAAAyL0AAJg9AAAQvQAAED0AAF0_AADIPQAAnj4AAJi9AAAMvgAAFD4AABy-AAA8vgAAmL0AAJi9AADgvAAAMD0AAAQ-AAAMPgAAMD0AAOC8AAAwPQAArj4AAMi9AACYPQAAqj4AAHy-AACgvAAAlj4AANg9AABwvQAAcL0AAFS-AABEPgAAf78AAMi9AACAOwAAFL4AAJI-AACYvQAAdD4AAGQ-AAB0PgAAED0AAFA9AAAUPgAAML0AAPi9AAAsPgAATD4AAAy-AABsviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=eF3BWPiP7UU","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["16585698837436112157"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9419372645395013001":{"videoId":"9419372645395013001","docid":"34-8-9-Z1422ABC615FFF769","description":"We find a beautiful mathematical way, to calculate the integer part of a complicated sum of fractions. 💠Support the channel💠 Please consider to subscribe to my channel, and like my videos if you...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3096777/d11519eb41fb95022ce4b560d68f8681/564x318_1"},"target":"_self","position":"14","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DK6QwNlDsRhw","linkTemplate":"/video/preview/9419372645395013001?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"From Fractions to Wholes: Exploring the Integer Component of Summed Fractions","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=K6QwNlDsRhw\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFQoTOTQxOTM3MjY0NTM5NTAxMzAwMVoTOTQxOTM3MjY0NTM5NTAxMzAwMWquDRIBMBgAIkQaMAAKKWhoc2dmdWJzYnlzYXF3c2hoVUNkNFdSN0txeVpoTy1fMVJjZ24wcTV3EgIAESoQwg8PGg8_E-8FggQkAYAEKyqLARABGniB_AkA_fsFAAMABQYBCPwC_gv48vj-_gD2B_z__wL_APv9AP__AAAABQP8CQkAAAD2_v7-_P8AAAoBAP_tAP8AEfYDBwIAAAAQBQAM_gEAAPX7_vwDAAAAB_z7CgAAAADzAPoDAwAAAP79_v0AAAAA_fUA-_z1_gAgAC2jC-E7OBNACUhOUAIqcxAAGmAhIQANGgj72e0l8OzeAhD48Az26d3-AAXsAP77CuAAGN7eEfb_B9P7-c4AAAANCgYUDADuQR_wxw8c4v0K2-sTDX_fHucHBBTy9-0E4SoYBfz-9ysA5wLiBgPrBSHkOSEgAC2gmHk7OBNACUhvUAIqrwYQDBqgBgAAAEEAACDCAABMQgAAWMIAAABBAACKwgAAyEIAAOBBAAAwwgAAwEAAADxCAABIQgAAiEEAAOBBAACYwQAAYEEAAIpCAADgQQAAQEAAAIjBAADQQQAAoMAAAHzCAACAvwAAdMIAAAAAAADQwQAAgEAAAFRCAAAAQAAAQEAAACDCAACiwgAAokIAAKjBAAAgwQAAgEEAAExCAADYQQAA2EEAAIC_AAAAQQAAmkIAAKjBAABAQAAAkMIAAPRCAAAkQgAAiMEAAODAAADgwAAADMIAADDCAACAPwAAAEIAAJhBAADIwQAAkMEAAEhCAACOQgAAMEIAABDCAAD4wQAAmMEAAAAAAAC4wgAAQMEAAADAAADgQAAAmEEAAARCAAAAQQAAFMIAAIhCAADgwQAAsMEAAEDBAAAUQgAAoEEAAAhCAACAQAAAvEIAAAzCAAAMwgAAMMEAADDBAAAAQQAAAMAAANRCAAB8QgAAoMEAAERCAABUwgAAhsIAALBBAACgwQAAFMIAAHxCAACAvwAA1kIAACDCAABAQQAALMIAAGBCAABgwgAAyEEAANjBAAAEQgAAmMEAAAxCAAA0QgAAiEEAACDBAAAAQQAAQEEAAHxCAABUQgAAfMIAAJhBAACAwQAAmEEAAKDBAACgQAAABMIAACjCAADwwQAAAEAAAMhBAACQwgAAYEEAABDCAACgQAAAwMAAAFBCAADYwQAAJEIAAPhBAACYQQAAyMEAAAAAAADAQAAABEIAAIBBAACEwgAAhkIAAJRCAACAQQAAMEEAAGBBAACAwQAAeMIAAIDAAACwwQAAQEAAAHBBAAAgQQAAdMIAAIC_AACOwgAAqMEAAAzCAACwQQAAcEEAADDBAACYQQAAkEEAABDCAAAQQgAA0EEAABRCAAC4wQAAgMAAAPBBAABEwgAAisIAAOhBAACgwQAABMIAAIDBAABkQgAAzMIAAABBAACQwQAAEEEAAFRCAAAAQAAAqMEAAHDBAABAwgAAmEEAAFBCAAAwQQAAAEAAANjBAAAAwAAAcEIAAAxCAAAQwgAAIEEAAABAIAA4E0AJSHVQASqPAhAAGoACAAAsvgAAFL4AAHA9AABQvQAAgLsAAK4-AACgPAAAHb8AADS-AABAvAAA2L0AAEy-AADIPQAAjj4AAMi9AAAcvgAAHD4AALg9AACgvAAAGT8AAH8_AACgPAAAoDwAAOC8AABEvgAAgLsAAIC7AAAQvQAAkj4AABQ-AADoPQAANL4AAFC9AABUPgAA6D0AABC9AADIPQAA-L0AAHy-AACCvgAATL4AAFA9AADoPQAARL4AAIC7AAAwvQAAED0AAMi9AABAPAAArr4AAFA9AACoPQAAyj4AAMY-AABsvgAAEL0AAGM_AADIPQAAFD4AAAQ-AAAsvgAAmD0AAFA9AACaviAAOBNACUh8UAEqjwIQARqAAgAAlr4AAAw-AADgvAAAO78AABS-AABwvQAAqj4AAOi9AABwPQAA6D0AAJg9AAAEvgAAuL0AAAy-AAAUPgAAQLwAAGw-AAADPwAAUD0AANY-AACgvAAAQDwAANg9AAAMvgAAyL0AAJg9AAAkvgAAmD0AAIg9AACIvQAAQDwAAPg9AAAwvQAAir4AANg9AAAkPgAABD4AAII-AACgvAAA4DwAAII-AADgvAAAuL0AAHA9AABAvAAAgj4AAH-_AAD4vQAAyL0AAIY-AACWPgAAgDsAAJg9AABsPgAAmL0AAOg9AABwvQAAHL4AAIA7AABUvgAAMD0AABC9AAAQPQAABD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=K6QwNlDsRhw","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["9419372645395013001"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7465871848568810627":{"videoId":"7465871848568810627","docid":"34-0-11-ZDF7AD56849F7F110","description":"💠Support the channel💠 Please consider to subscribe to my channel, and like my videos if you enjoy my content 😊...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4010826/31e9213b782d6c08939cc28a102c998f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/NyFrMgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DR4nD_tJAb6k","linkTemplate":"/video/preview/7465871848568810627?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Domain Detectives: Uncover the Scope of this Algebraic Expression","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=R4nD_tJAb6k\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFQoTNzQ2NTg3MTg0ODU2ODgxMDYyN1oTNzQ2NTg3MTg0ODU2ODgxMDYyN2qHFxIBMBgAIkQaMAAKKWhoc2dmdWJzYnlzYXF3c2hoVUNkNFdSN0txeVpoTy1fMVJjZ24wcTV3EgIAESoQwg8PGg8_E7ABggQkAYAEKyqLARABGniB9wX3_P4CAPb5BgkOBvwBEQMG-gf__wDjAff_CfwCAPPt__UB_wAA-v0JBQAAAAD_7vUI_f4AAAkH-_kEAAAAEgj3_fYAAAAeAwMH_gEAAPH7_AMDAAAACQoNCQAAAAAJCgTvAAAAAPv_BPcAAAAABfz5_gAAAAAgAC1aINg7OBNACUhOUAIqhAIQABrwAX_qF_7bE7wC1AsKALv86QG2-Ub_HFb4AMq-FADau9wB3fXwAPIF2f_LChv_0hLjACro0v8h3v0AUfL3_w_O3AD8FPoB69XoACMRVP3u8Of--R1SAufb_f4LA9sB6fnoAAz5JQEbIOH96CrPBCr7NQH3ASwHH_kN_u-8Cf_ixO4FC-Hm__oW3_wb1vf_3PM3CDLd7_sIDt4A8Dnd_AjnEvTWzgb5CTXO_RXeAwhNCvX_uQ4ECeXQFfwgSxgHsD0H_PD1LALi7A_70_8E-Dn08wbv0u_vBQLwDwHt7w71_AYLBdr3-OE09P_UAxAL3iv47iAALb9OADs4E0AJSGFQAirPBxAAGsAHelHjvm9RILqFMkM80rqnvbhAIj1VZYS8njl1vYfJL7yxapA8uBmDPZQ5Ub1_5gK9M0irva54dD2GcLG8_b10PpJUS70Dsew8dXT8vS8Tmj0LAhC9Kl11vc0P0jxfDMQ7CPeEvT27N73G6BA7tWsCPsSTXTugWKO7X2VIPNCdYDzzmFy8qPxrvfYLtjwujFS99JX2PHsgCL14j308-nTBPa5OCb3uMvI89SVAPIe_prygbIq8dwi9vfgSbz294xS9Zcz4vEAXTT3_5sU8qoHmvQIrB77SYl88sgKdvR9hPbySWNI8rGMLPQ0GMjxa7Ju88G5gPVtVO71W2Ge8seFJvi6S9jxPCJ08LOVGPYZNrjxjUJ47wrKYvZXp_DxoMLw8nxozu-eO_rwL1ei8qMlnvDZ7uzxFgJM8feuDPCyrizfaNtI78jO_PKpr4zx0Yg89YvmDPeol5r0h9507ql2oPUtwDzxuNWu8VcmGvQKJwby8Ria8VOYGvcl9Zj0VudY8pzUTuTb2Nryw0GI8LcoRPV8XhL2aQ_M7V3s4vS-H_b0qoGY6d9zwPEb7Lj32Dae85CxMPupXj70DDIU75xYfvY1Hqbz5A7O6F5kjvGcsdb2LuEo8awDFvcR1Mb2Dbo67_GWBvY6hUjzf61q8H43YOyt0GDv2uyg7xWUGPfoMCL5VIQO6Y6SdPWoGJz2Qn_A6LYuTPZ6vHj2gog86tyuyOyMfar0WEQu7LPHgvS5w_bsgJxg63WsXvUqqAL0eTD25yjT6PRN7zbxZhmE44SSNPM3gND1JLLK51g1qvQK_YT3zKHu4en33PCoetLqWGKe3y6LwvFtCHr43BeM5Rf7PPJDjvTsgFo05y6yUvWdT5DyOpwA6zCDDvdQNBL4IU4U5LT0ePDlJTrwh6HO4RprYPbIzAD3WC5A43huovbZkujw7vQq5NxxxvI84pLyjmKS45s2hPF4lRLxeYxc5TKgAPcfwnb3-7jA5QTuxPLOrtTx5IVY5ckswvRJDvLyc0163wVifPQsZnj29GSM4rWiYvG6kbL0_UzA4mCsoPSinLLwMj4g4vY_jvThlzj04c5E4FiCAPAhUwbsl5Hq2OjzEvGGogzwl3fq3ymVNPazG0rxvlBs3kl0ZPtlPUL2swj-5ORzIuZ89171uKD-3f4mDvQ7Y9b0L0RK4lrgIPPOvBT6pyT2z-kHdPb9FJ71n6Ra3yvRwPSLhKz7xy4o45yBDvQt0cj0FdZW4p1oLvsyaGL0Kl3S4vkM7vSPGobzeZyU4IAA4E0AJSG1QASpzEAAaYAD3ADEVJAckD0TZ_-nWDAjjFuUNzv7_BNsA3ifSHxLV2sDoFv8Z6x_rswAAACMKIj32APZo9QTxPBQf9LDZ2wZLf7MlKNH6D_HaxTofFeoDFxomZADmGM8NBP3gMw0rISAALes9LDs4E0AJSG9QAiqvBhAMGqAGAADYwQAA0EEAAIxCAADgwQAAjEIAAJDBAABIQgAAsEEAAADCAADYwQAAsEEAACRCAADowQAAiEEAAIDAAAAEQgAADEIAAATCAACGQgAAcEEAAKDBAAAQwgAAqMEAAIA_AABMwgAAqMEAAGzCAACAwAAAoEAAADBCAAA0wgAAoEAAANDBAABUQgAAgsIAANDBAAAYQgAA6EEAALjBAABgQQAAMMEAAOjBAADQQQAARMIAAKDAAABgwgAAlEIAAADBAAB4QgAAiEEAADjCAAAgQQAAAMIAACBCAADAQAAAgEEAACDCAADAQQAAXEIAAERCAAAAQQAAfMIAALBBAACIwQAAsMEAAIbCAAAAQQAAkMEAAKBBAACwQQAA6MEAACxCAADgQAAAhEIAAODBAAD4QQAAkMEAAERCAAAgQQAAgEAAAIDBAACaQgAAuMEAAKDAAABgQgAAAEIAADDBAABQwQAAzEIAABBCAABQwgAAOEIAAFjCAAAAwQAAmEIAAJLCAAA8QgAAwMEAAJhBAAB8QgAAhsIAAKBBAAAAQAAAsEEAANDCAAAgQgAA0MEAAIxCAADAwAAAhEIAAIBAAACgwQAAVMIAAHDCAADYwQAAzEIAAIA_AAA0wgAAFEIAAPjBAAC4wQAA-MEAAJjBAAAswgAAiMEAAADCAACowQAAAAAAADDCAABAwQAAgMEAACzCAABgwQAAzkIAAODBAADIQQAAYEEAABjCAAAAwAAAHMIAAMBAAACAQQAABEIAADzCAADCQgAArEIAAODBAAAAQgAAIMIAAKBAAAAQQQAACEIAAAAAAACUwgAAAMEAAJBCAAAIwgAAAEAAALDCAAAwwQAAgEAAAIhBAADQwQAAOMIAABRCAADYQQAAfMIAAJhBAABoQgAAwMAAAIbCAADAwQAAoMAAAHTCAACQwQAAgMAAAMDAAAAwQQAA4MEAADBCAACYwgAAAMEAAEDBAABAQQAAUMEAAAzCAAAQwgAAAMAAABjCAADAwQAAgD8AAODAAACgQAAAEMIAAABBAABUQgAAoMEAAIA_AACgwAAAaMIgADgTQAlIdVABKo8CEAAagAIAACy-AAA8PgAAFD4AAAw-AAAEvgAAmD0AADS-AADCvgAANL4AAKA8AAAwvQAADL4AACw-AACYPQAAML0AACy-AACAOwAAQLwAAFA9AACSPgAAfz8AAKA8AAAQPQAA6D0AABy-AAA0vgAAiL0AAMg9AADYPQAAcL0AAIC7AADovQAAML0AAI4-AAAMPgAAir4AAAQ-AABUvgAAZL4AACS-AAC6vgAARD4AADA9AABMvgAA2L0AAEy-AAAEPgAAmL0AAIg9AAA0vgAA6D0AAIg9AAD4PQAApj4AAOi9AACIvQAA_j4AADA9AADIPQAAPD4AAKi9AAAwvQAADD4AACy-IAA4E0AJSHxQASqPAhABGoACAABMvgAAsj4AANi9AABpvwAAor4AAKC8AAAkPgAAmL0AAOC8AACuPgAAcD0AAJ6-AABcvgAATL4AAIA7AAC4vQAAJL4AACk_AAA0vgAA6D0AAKC8AABkvgAAqD0AAIi9AACovQAAuD0AALa-AADoPQAAgLsAACy-AADgPAAAgLsAAIC7AAA0vgAA2D0AAFC9AACOPgAAHD4AAES-AABMvgAAyD0AAFA9AAAsvgAAoLwAAOC8AAC4PQAAf78AACQ-AABQPQAA-D0AAHw-AAD4vQAAfD4AAHQ-AADYvQAAED0AAKC8AAA0PgAAMD0AAES-AAB0PgAA-D0AAOg9AABwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=R4nD_tJAb6k","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1200,"cheight":720,"cratio":1.66666,"dups":["7465871848568810627"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"146497810"},"12569785014542806215":{"videoId":"12569785014542806215","docid":"34-7-9-Z84BA58B2D130D6BD","description":"Unlock the fundamentals of Trigonometry with Teach Tech! 📐 In this CBSE Class 10 English-medium lesson, we dive into **Chapter 8: Trigonometric Ratios - The Basics**—explaining sine, cosine...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1775867/bd4e598d7e9572e0cdfdb57d9cc7b11f/564x318_1"},"target":"_self","position":"16","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYGDEUZQ76sU","linkTemplate":"/video/preview/12569785014542806215?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Class 10 Trigonometry – Trigonometrical Ratios Basics | CBSE/State Board","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YGDEUZQ76sU\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFgoUMTI1Njk3ODUwMTQ1NDI4MDYyMTVaFDEyNTY5Nzg1MDE0NTQyODA2MjE1aq8NEgEwGAAiRRoxAAoqaGh5bGxxeWdjcXRydmdiZGhoVUN0Z3h1TjBWWEsyZlZNSGI5dnE4dGFBEgIAEioQwg8PGg8_E4wZggQkAYAEKyqLARABGniBAfoKBv4DAPgBAAr3Bv4CBgf4APf__wDxAfcCBwH_AAH9Dgn_AQAA_wYB_wUAAAD0A_77AwAAABD7_vkDAAAAFAwAAf4AAAAL__v4_wEAAO7-APYCAAAAA_QA__8AAAD9DvD7_wAAABIC7wMBAAAABf0C-QAAAAAgAC1prdo7OBNACUhOUAIqcxAAGmAlAQAsLPSpuxsc9e3X7UUIvxncHaYO_-YF_01S-gkdHdGrCRoANbj175gAAAAYBcg-HwARftvTGAMAEQC2gcI0EWj9D9Uv5wIfuRNGQioV5eO6RQAA7_r_BEH3CDxHSAcgAC34iQ47OBNACUhvUAIqrwYQDBqgBgAAMEEAAIjBAACQQgAAqEEAAHDBAABAQAAA0EEAABTCAAAwwgAAYMIAAJJCAABgQQAAjsIAAGDCAAAMQgAAcMEAAMDAAABQQQAAyEEAAAzCAABIQgAAqsIAAPjBAACgQAAAMEIAAADBAADgwQAAcMEAAKBBAACAwAAA4MEAAExCAABIwgAAIEIAAIA_AACAQAAAoMAAAJpCAABEQgAAcMIAAABCAACAvwAAuMEAAIBAAAAAwQAA8MEAAEDCAAB8wgAApkIAAPBBAAAwwQAAAMAAAKhBAABgQQAA6EEAAPBBAACEwgAAUEEAAMjBAAB4QgAAFEIAAFDBAADowQAAiMEAACDBAACgQQAA8EEAAIBAAACIwQAAwMAAAGBCAAC4QQAA0MEAANBCAACMwgAAFMIAAFDBAABQQQAAuMEAAJDBAAAQwQAAoEEAAKDBAABIQgAAkMEAAARCAAAcwgAA8MEAADBCAAAcwgAANMIAAEDBAABAwgAAOMIAAMDAAADEwgAASEIAAHDBAAC4QQAAiMEAAGzCAADUQgAAyEEAAK7CAADGwgAAgEAAAJjBAADAQAAAwMEAAOBAAABAQQAAdMIAAILCAAAcwgAAfEIAAOBAAAAcwgAAoMEAAMDAAAAcwgAAkMEAAJzCAABwQQAAXMIAABRCAAC0QgAADMIAAIC_AACgQAAAkMEAAJhBAAA0wgAAMMIAAHRCAAAcQgAAIEEAALjBAAAEwgAAQMAAAETCAAAwQQAAuMEAALhBAACAPwAAjEIAAIBAAADowQAAdEIAAEDBAAD4wQAAkkIAAIA_AAAAQgAAeMIAAIjBAAB0QgAAUMEAAPrCAACYwQAAKEIAAMBAAACQQQAAAEEAAEBAAADIQQAAAMAAAGxCAADAQAAAlkIAAHBBAABMwgAAIMEAAJjBAAAAQAAAbMIAAHBBAAA0wgAAAMAAAIhBAACWQgAAgD8AADTCAAAowgAAHEIAALhBAAAQwQAAnsIAAIhBAAAYwgAAEMIAAEDBAABAQAAAMEEAAOBAAACgQgAAwEAAAMDAAAAwwQAAMMIAABDCIAA4E0AJSHVQASqPAhAAGoACAAAwvQAA4DwAAHQ-AADgvAAAQDwAAI4-AABUPgAAG78AAEC8AACIvQAATL4AAJg9AAAMPgAAbD4AAPi9AABwvQAA4DwAAEC8AACoPQAANz8AAH8_AAC4vQAABD4AAIg9AAA8PgAAuD0AAMg9AAAMvgAAXD4AAN4-AAAEPgAARL4AAEA8AACIvQAAPD4AAFA9AABwvQAADL4AAIq-AAAwvQAANL4AACy-AAD4PQAAPL4AABA9AABwPQAAqj4AAES-AAAcvgAAPL4AADS-AADgPAAATD4AAIi9AAAMvgAAcD0AAD8_AAD4vQAA-D0AAIg9AAAMvgAAfD4AAJg9AAC4vSAAOBNACUh8UAEqjwIQARqAAgAAqL0AAKA8AACgPAAASb8AAEC8AACgvAAA4LwAAKi9AABUvgAA-D0AAHA9AAA8vgAAiL0AAIK-AACIPQAAUL0AAJi9AAA_PwAA2D0AAII-AAAQvQAAoLwAAEC8AAAQvQAAiL0AADy-AACovQAA4DwAAIA7AACgPAAA6D0AAMg9AADYvQAAcD0AAAw-AABEvgAA-D0AACw-AADavgAAqL0AAJi9AAAUPgAAPL4AAEC8AABwvQAA4DwAAH-_AACoPQAAij4AADS-AAAEPgAAPL4AAIA7AADIPQAA6D0AAHA9AACYPQAAND4AABA9AACgPAAAmD0AAHA9AABQPQAA-L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=YGDEUZQ76sU","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12569785014542806215"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17465886506856812272":{"videoId":"17465886506856812272","docid":"34-4-16-Z81587FFCDED8FE55","description":"The second (general) meeting of the \"APL ∊ BCN\" Spanish APL user group done virtually on 2022-01-29. -- - An introduction to J for the mathematically curious. Info: https://aplwiki.com/wiki/J...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2407868/13fd3dee061e30c33ba40e770212144c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/FEL-8QEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D74dP7VLMftU","linkTemplate":"/video/preview/17465886506856812272?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"J: A modern math-oriented APL","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=74dP7VLMftU\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFgoUMTc0NjU4ODY1MDY4NTY4MTIyNzJaFDE3NDY1ODg2NTA2ODU2ODEyMjcyaogXEgEwGAAiRRoxAAoqaGh3cmVkaWN2bHJid21yYmhoVUMtdk1fVGtaVEE5LW55Q0V1T3ZySTZBEgIAEioQwg8PGg8_E58lggQkAYAEKyqLARABGniB-wH5CPwFAPz5BgcCB_wC9wcE8Pn9_QD3-_v9_gL_APYGBQEBAAAA7Qzz-wAAAAD2B_gQ_v8AAAn9-AUDAAAADv0J8_0AAAD7D_r__gEAAPz4Av8C_wAAB_oC_f8AAAD8CAEA_P8AAPwHBvUBAAAAAwwDBAAAAAAgAC2i1OE7OBNACUhOUAIqhAIQABrwAVj-A_7k5Q0ByBIYAOwY6QCB4f3_IgQRAPnx_gGqEuj_2xfSAO_z-ADfBwr_vRgIAOsF7v84GvT_GwkTABPv_wADJwgBKfjxAT4N7wAM3vz_DUH__hIe-_8_5h8CGRUG_yT9Iv8C0vsA9cYOAgAGGQIDPP4CJuDw-vgF9QLxGB8Bz-wXARXxD_3v9-z_HjMcADft8wb4S-gA9RP4ABsN1QIEAvkJRrr-_0UM5f4NEgAD-0z4-gMu-fkI9-UFF_gn_-0BBvoKGgYACAj2ACUq6_kOGwL7FugH-fX04frOAggAAycY_Nkm_QQ5DvoAENj-_yAALRQFGzs4E0AJSGFQAirPBxAAGsAHlfPtvoBYID3Nmm699vOBPMPKWDkaVHa8zcCivTMmE72UPyk8-RDUPanDRT2qu_I8_Iy7vlpTD7zG6sW7Ub-LPh1sFj2b6HM9SyMGvkz2tDy59Pk8T3iRvmcVTD2p5ou6zbNNPUX9RL22Jbw8_yE9Ps6J_TxOEFA8soJfvfQIpLx5fJa82Kh9Pdcwk728GTQ66iMwPsPeGr3pHkC7IOsJPsVt2byqmTW8GED4vSo7fTxFz7U7J-4ivQFDID1cFrg896mPPYDNXrxqN_Y7ZCqzvUE-Mrw6xjo8qcSQPRFIkzzHRLE7O-WsvXp-hzwiiV48vaCqvLwffL3t6wY6QLexvT0pEz2a3Bw83bQZPj0W0TwDYPq7Eh04vElAlrxvj688Yk4rvfR9wLvDNAI8MGOqPaGRmTwmaaM8l7MSPeFdDr3wngc7pKjDPTKVib1FRFY8Vg3CPGjFPD0eibg7vmjRu5DeSz2sIyK8HiUlvb_ZQbzaa-q7BKJxPdwjBb1BKw08-8uOPUDperxV10Y8JsILPVEJ2Ty1a0I8aA35PAzIQz1KG5i86I2Lu5rfGj04eZ27rU-Yu-5KwbzJd-e6k64UvSieLr0QYt-7AsiKPTiMjb0Ux2S7z8PkPOcyWrzZmd-6AwDBPSTyGD0PG5c7YtgBvhB6Mb1ZyLe6KHSoOdlZ2TyuHZg7dsHDO2_ZfLyD_h075mYNPGspID2gN3Q7RPO1PZYibzley_k6VGGivJz9Ab3M4cW6Rg1BvWI_lT0noiY6BphePX7rOb0eJc05guQ9vQWyqjt6ki4719B3PXEpvrp6X7Y4rPGIvJx3or1uhVE5HF2lvD0ybL39Fcs40SiIvZmpvzwcxfe1e4sCvQ_FE73icl04TBjNOljdsLv-F9W4dOu1vFW5tbyduR65DbwEvedIeDzyS1u3IiJrPZ2klL2oFyS3Pf2UOxwdAb0vpaK4HYi0uwwOZT0SZwc4b8uxvTxOMb0F-Hu1OeWbvH1v3TwYt_y3-1H5vIv65rvON064W8gMvIuvgT03bjq5K7FBvYyjTb0J2Iw3y16bPS4PiDwCtAO2Kr7LvaiyPr3nRpU3BO4vvMu8Bb45ecK47BiyPHn8KLymXey30KC8vMcil70vO2E40WXgvNYxk7yxaJw33wzIPBHJa7wr7AS4PDWiPX8C3jzLkga4QULWO3z2t7xuT5i39nR6PeAP370_mZu3o7m0Pch9iz2A8YM4ru-TvTrjwD0eAum4BqF8vWAcgTxhfLU3UTgzOncmOb3_BeO3IAA4E0AJSG1QASpzEAAaYC0AADcJDOLhBAPmsP_3Ju_0FM4f1x7_6wz_OQ7g-vQbEpgkGv_2-R_TpgAAADreBwzTAAF1BcmxG-QgWtvXHD4Gfw0PLKj9Du3L8CHQ7tr99A8FJQAMAsoYLjzUNhxBSCAALWbdIDs4E0AJSG9QAiqvBhAMGqAGAADAQQAAYMEAACBCAABEwgAAuEEAAJhCAAAcQgAAEMEAAObCAAAswgAABEIAALDBAABEwgAAoMEAAMBCAAAkQgAAwMAAADTCAAB8wgAAVMIAAPhBAAA8wgAAGMIAAEhCAAAIwgAAgEAAALDBAAB0wgAAjEIAAOhBAAAowgAAUEIAAIDCAABEQgAA0MEAADDCAAC4wQAA6EIAAABBAABgwQAAAEAAAEBCAABoQgAAFEIAACBBAACgwQAAUEEAAIjBAAAAQgAABEIAAKrCAAAcQgAA-EEAAJDBAADIQQAA4EAAAMLCAACwwQAA4MAAANBBAABQQQAASMIAALjBAAAwwgAAZEIAAAjCAACAwAAAmEEAAGDBAADQwQAAgEIAALBCAACAwAAAnkIAAHDCAABUwgAAoMEAAIC_AACwQQAA4MEAADDCAABkQgAAQMAAADhCAACAwQAAqEEAAABAAACAwAAAgEEAABBCAACgwAAAoEAAAIA_AACiwgAA6EEAAAjCAAC4QQAAkEEAAEBBAABQQQAAaMIAAIZCAAA8QgAA4MAAAKLCAAAwQQAAIMEAALBCAADIwQAAcEEAALBBAACQwQAA4MEAAFzCAAAQQQAA6EEAABjCAABAwgAAYEEAAATCAAAAQgAA-MEAAEjCAABAQAAAEEEAAIhBAAAgQQAAAEAAAODBAACgwQAAwMEAADzCAAC4wQAAMEEAAEBAAACoQQAA-EEAAAAAAAAswgAAxMIAALjBAACSQgAAOEIAAFDBAABkQgAAkEEAAKjCAACAQQAAQEEAAEBAAABQQQAAgMAAAAxCAADQwQAAgMEAAEDAAAAkwgAAbMIAACzCAACAvwAAoEAAAADAAAAMwgAAkEEAAJjBAAAkwgAAmEEAAJBCAABgQgAAgD8AAHjCAAAIQgAAoMEAABTCAAAswgAAwMEAABBBAAA4wgAAkMEAABhCAABYwgAASMIAAJjBAADIwQAAQEIAACxCAAA4wgAA2EEAAJBBAABAwAAAoMEAAIjCAADAQAAAcEEAAKjBAAAAQgAAhsIAAKBBAABQwgAAQMAgADgTQAlIdVABKo8CEAAagAIAAFA9AABcvgAABD4AAFC9AAD4vQAArj4AAEC8AAD2vgAArr4AABw-AAAwPQAAPL4AADw-AADKPgAAHL4AAEy-AAAUPgAAPD4AAPI-AABXPwAAfz8AAJ6-AADYPQAAmD0AAOq-AADovQAAoj4AAMi9AACAOwAA4DwAAAw-AACAOwAA2D0AAEC8AADaPgAA2L0AABA9AABUvgAA6r4AAFA9AADovQAARL4AAKg9AAB8vgAArr4AAIi9AACYPQAAQLwAAKC8AAAEvgAAjr4AAMg9AADePgAAFz8AAEQ-AAAEPgAATz8AAKg9AAC2PgAAmD0AABC9AADoPQAAgDsAANg9IAA4E0AJSHxQASqPAhABGoACAABMvgAAHD4AAES-AAAhvwAAqL0AAOg9AACiPgAAPD4AAGw-AAAkPgAAFL4AAKi9AAB0vgAAhr4AADC9AABQPQAAcL0AAA0_AAAsvgAA4j4AAIC7AAAwPQAAiL0AAKC8AABQvQAAXD4AAAy-AAA0PgAATL4AAPi9AABAPAAAiD0AABQ-AAAMvgAAED0AAFy-AADiPgAAMD0AAHS-AABcPgAAdD4AACy-AABAvAAAoLwAAOA8AAAEvgAAf78AAMi9AAB0vgAAdD4AAEC8AAAkPgAAyD0AABC9AADKPgAAiD0AAPi9AABEvgAAqD0AALg9AACoPQAABD4AADC9AAB8PiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=74dP7VLMftU","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17465886506856812272"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1907062097"},"17289199492350563244":{"videoId":"17289199492350563244","docid":"34-8-12-ZE170C4B2AAB61130","description":"understand the concepts clearly, making it easier to grasp the logic behind these theorems. Watch till the end to strengthen your fundamentals! 📌 Don't forget to Like, Share & Subscribe for more...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2831900/98066626908aed5c6e74e7f38acbe00f/564x318_1"},"target":"_self","position":"18","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQ679hJ1MtE8","linkTemplate":"/video/preview/17289199492350563244?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Class 10 Maths | Master Circle Concepts in 15 Minutes | CBSE / Ncert","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Q679hJ1MtE8\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFgoUMTcyODkxOTk0OTIzNTA1NjMyNDRaFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0aq8NEgEwGAAiRRoxAAoqaGhndmdlenBoY2R2YnB4Y2hoVUNxLVlqczBsRVVaYTBJcUdIYnZybkZBEgIAEioQwg8PGg8_E9oGggQkAYAEKyqLARABGniBAgD0_QL-APD9_A79Bf4BCwDvAfb__wDjAvD3A_wCAPkJBg4BAQAA9AXw-woAAAAHBgHv-_0BABf9DPYEAAAACv4JBAMAAAAGA_UB_wEAAPT99QT1AgAACvcKAwAAAAADBgIIAAAAAPYIAQAAAAAAGAb_7wAAAAAgAC3Os847OBNACUhOUAIqcxAAGmDzAQAPEB8ezCIy7dfyCDr09yvDGNbm__XuAAIiMOTuGLrEPw7_HKoO1qsAAAAkF-n7AwDRbtzd7zESMRya5v0VFH_qKLs3E_ENCSAIyAgy4f3xIkUA8u_x9zrU2lYW_BsgAC1iriU7OBNACUhvUAIqrwYQDBqgBgAAMEIAAJBBAAAMQgAAqEEAACDBAADwQQAAYEEAABRCAADowQAA4EAAACRCAACowQAADMIAACDCAACWQgAAAMEAADBBAACowQAAqMEAABjCAABUQgAA4MEAAAAAAAAAQAAAiEEAACTCAACcwgAAiMEAABxCAADAwAAAPMIAAIBBAACKwgAAQEIAAIBCAACgwQAAgL8AAOJCAABQwQAAVEIAAADBAADgQAAAgEIAAPDBAADAQQAASMIAAEDAAACgwAAAWEIAALhBAACcwgAADEIAAJjBAADgQAAA6EEAAJxCAAAAwwAAXMIAAKBBAAA8QgAAiEEAAIjBAABQwQAAAMAAAARCAACAQAAAyEEAAIC_AAD4wQAAUMEAAKBCAACCQgAALMIAAABBAACewgAAAMIAAKDBAABAwQAA8EEAAPDBAACOwgAAsEEAABBBAADIQQAAysIAAHzCAADAwQAAmEEAAIBBAABgQQAAFEIAANDBAACAwgAAgMIAABDBAABUwgAAoMEAAJhBAACAQAAAPMIAAODAAAAwQQAAXEIAAMBAAADAwAAAoEAAAIC_AADgQAAAmMEAAODAAAAAQAAAlMIAAJzCAAAAQAAA6EEAAADAAAAgwQAAqMIAAPhBAACYQQAAkEEAAHDCAAAcwgAAosIAAIZCAADIQQAAQMIAABDCAABAwAAAJMIAAGDBAAAIQgAACMIAAABCAAAowgAAVEIAAIjBAAA0wgAAOMIAAIbCAAAAwAAAgL8AAADCAADgQQAAuEEAACDBAAAwwgAAMEIAAMBAAAAwwQAAQEIAADDBAABAwAAAgMIAADRCAAC4wQAAkEEAAFzCAADAQAAA6EEAAChCAACkQgAAUMEAAMBAAABAQQAAUMIAAIA_AACYQQAA0EEAAADBAADwwQAANEIAAFTCAAAAQQAAaMIAAOhBAAA4wgAAhMIAAJBCAACOQgAAaMIAACjCAAC4QQAAYMEAAJBBAAAQwQAAjMIAACRCAAAAwgAA4EEAAADBAAAswgAAAAAAAGBBAACAPwAAAAAAADTCAACAQQAA8MEAALjBIAA4E0AJSHVQASqPAhAAGoACAAAMvgAAuL0AACQ-AAC4PQAA2D0AAKY-AACgPAAAF78AAJa-AAAwvQAAEL0AADA9AADgPAAAXD4AAJg9AAD4vQAAqD0AADA9AACAuwAA1j4AAH8_AAAMPgAAJD4AABC9AAAwPQAALL4AAEC8AACovQAAFD4AAGQ-AAA0PgAA-L0AAFC9AABAvAAAbD4AAEQ-AACYPQAADL4AAK6-AABQvQAAVL4AANi9AADIPQAAgLsAADA9AAA8PgAARD4AABA9AAAUPgAAyr4AAMi9AAAEPgAAqD0AAAQ-AACavgAAgDsAADc_AADgvAAAgj4AAKC8AAAkvgAAgDsAABw-AADovSAAOBNACUh8UAEqjwIQARqAAgAAkr4AAJg9AAAQPQAAKb8AABA9AABwPQAAMD0AANi9AACIvQAAsj4AADA9AACgvAAA6L0AAFy-AAAUvgAAMD0AAIi9AABtPwAAmL0AAMI-AAAQvQAAEL0AAIi9AACIvQAAJL4AAHC9AACYPQAAJD4AALi9AADYPQAAND4AAMg9AAAsvgAAQDwAAIo-AAAwvQAAcD0AAIC7AADSvgAADD4AAIg9AAD4vQAAPL4AAJi9AACGvgAAcD0AAH-_AADovQAAyL0AAFS-AACAOwAAQLwAAIC7AACYPQAA1j4AABA9AABAPAAAlj4AAKC8AADgPAAAiL0AAJi9AAAMPgAAQDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Q679hJ1MtE8","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17289199492350563244"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4975834320389420338":{"videoId":"4975834320389420338","docid":"34-11-4-Z0C416FF8ED42A742","description":"An innovative and interdisciplinary program at the intersection of major scientific fields: mathematics, computer science, physics, and economics, all crucial for analyzing natural and social...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3578229/4953eb536f9cf14091ff02a4664d766b/564x318_1"},"target":"_self","position":"19","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DATMJ7o7IZHk","linkTemplate":"/video/preview/4975834320389420338?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathematical and Computing Sciences for Artificial Intelligence","related_orig_text":"MathOrient","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathOrient\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ATMJ7o7IZHk\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMjE3OTkzMzYwMTAyMjM5MTcyOAoUMTA4MzU4NTIzMDQwMzY0MDk2ODMKFDEyNzg2OTAzNjkwOTA0MjA4NjA3ChQxNjczNTkwNTg3MTE1MTI3NjQ3NAoUMTUxMjgxMDIyMTYwMjk3NDg1MDYKFDE2MjM2MzEzODM2MjA3MzY5MDc3ChQxNTU1NDQzMDk4MzcxMzMxNjM4MAoTNDY2OTkyNDI1MDk4ODI2MjcxOQoTMzUwMzU2Njc1MDE5MTA4MzM5OQoUMTEwODkzOTI2NDU4NDcyNTg2NjgKEzE0NjY4NDY0NDg3MDgzMTg2NjIKFDE2NTg1Njk4ODM3NDM2MTEyMTU3ChM5NDE5MzcyNjQ1Mzk1MDEzMDAxChM3NDY1ODcxODQ4NTY4ODEwNjI3ChQxMjU2OTc4NTAxNDU0MjgwNjIxNQoUMTc0NjU4ODY1MDY4NTY4MTIyNzIKFDE3Mjg5MTk5NDkyMzUwNTYzMjQ0ChM0OTc1ODM0MzIwMzg5NDIwMzM4ChI1MzA4MTA2MTE5MTQ3MDUzNTUKEzY3MTIwOTk0NjEyNTM4Mzg4ODUaFQoTNDk3NTgzNDMyMDM4OTQyMDMzOFoTNDk3NTgzNDMyMDM4OTQyMDMzOGqvDRIBMBgAIkUaMQAKKmhoa2xzdG15cWhrcHJwYWNoaFVDZFpJU2E4VU5GYndoYXpiWXlfdVd2URICABIqEMIPDxoPPxPfGYIEJAGABCsqiwEQARp4gfQI-wf9AwD7_gL_AwT-AfoD_wH5_f0A9QsDBv0C_wD9_P39BwAAAAYT9gD-AAAA_g0JCfb-AQAM_-38AgAAABIA9AL_AAAADA3wAv8AAAD-_Pf--QEAABEJCAH_AAAA9wML_AEAAAAFBgH2AQAAAAAE9QQAAAAAIAAtIz_cOzgTQAlITlACKnMQABpgIBEAICET-NYLOPLq8-jp_PIT6hHc-QDhCgACAQPNB_3w5vomAA7oBvTMAAAAGRQJHRkA8EYS1_L8CfUPB88GAhh_9wca9DIO8cgVB_cS_SDt-eoxAAbv9Rfv8r0f_TYtIAAtGaZqOzgTQAlIb1ACKq8GEAwaoAYAAOBAAAAkQgAA4MAAAADBAACAQAAAgL8AAMDAAACYwQAATMIAAHDCAAAsQgAAcMEAAAAAAAAwwgAAVEIAABDBAAA0wgAA0EEAAI7CAADowQAAuMEAALhBAABMwgAAKEIAAMBAAAAMQgAAgMIAAIjCAADQQQAAsEEAAMBAAAB0QgAAfMIAALBBAAAswgAAkEEAAILCAAD-QgAAgMEAAABAAABAwQAAsMEAAOhBAABQQQAAgMEAAEDBAABQwQAAfMIAAABBAAAYwgAAQEAAAKZCAACAPwAAYMEAAKBBAABwQQAA_MIAADDCAAAgQQAAgMAAAJBBAABgQgAARMIAAGDBAAD4QQAAEMIAAIC_AABMQgAAmEEAAJhBAAAEQgAAGEIAAHBBAABEQgAAJMIAAIbCAADAwQAA4MEAADBBAAD4wQAABMIAABxCAAAYwgAAwEAAAOjBAABoQgAAHEIAACBBAACOQgAAgMAAAMjBAABQQQAANEIAAMDBAABMQgAAjMIAAKhBAACIQQAAWMIAAODAAACwQQAAIEEAADRCAADgwQAAIEIAABDCAAAcwgAAWEIAADDCAABgQQAA0EEAAMjBAAAgwQAAaMIAAKjBAABEQgAA2MEAAIhBAADYQQAAMMIAAJjBAABMwgAAYMIAANDBAAAAQQAAqMEAAABAAADAwQAAgMEAALjBAACAQgAAEMIAANjBAACgQAAAREIAAJhBAAAsQgAAAEEAAHDBAAD-wgAAqMEAAHhCAACgQQAAkMEAAOhBAABQQQAAkMEAAIpCAACAPwAA4MAAAAAAAACgwQAAwEAAAEDBAACKwgAADMIAAABAAACYwgAABMIAAABBAABswgAAQMAAACTCAADAQAAAQMAAANBBAAC4QQAAiEEAADRCAACAwAAAusIAAEBCAAAcwgAAYMEAAOBAAABYQgAAoMEAAEDBAADYQQAAoEEAABBCAABQwgAAwMEAAIzCAABQQQAArEIAAMDBAABgQgAA6MEAAADBAABcwgAAiMEAAKDBAABAQgAAgEAAAExCAAAgwgAAzsIAAIrCAAAQwiAAOBNACUh1UAEqjwIQABqAAgAAXL4AAIK-AADIPQAA2D0AAGy-AADOPgAAML0AADO_AABQvQAAHD4AABw-AACCvgAAXD4AAEQ-AABQvQAAoLwAALY-AACYvQAALD4AAAk_AAB_PwAABL4AAEQ-AACgPAAAEL0AADw-AACAuwAA-D0AAEy-AAAkPgAAjj4AAJ6-AACIvQAAHD4AAKg9AACaPgAAUL0AAAy-AACyvgAAFL4AALa-AACAuwAA7j4AAOi9AABwPQAAEL0AAFQ-AAB8vgAAnr4AAPq-AACSvgAAZL4AAAU_AAAsPgAAyL0AAKC8AABfPwAAiD0AAOA8AADoPQAAMD0AAOA8AAAQPQAAuD0gADgTQAlIfFABKo8CEAEagAIAAKi9AAAEPgAAUL0AAC-_AABMvgAA4LwAAI4-AAA8vgAAML0AAKo-AACgvAAAfL4AAOi9AABkvgAAcD0AAOC8AADIPQAA-j4AAKC8AADaPgAAfD4AAOg9AAAUvgAAoLwAAKA8AABAPAAANL4AAMg9AACGvgAAcD0AABA9AADIPQAABD4AACy-AADgPAAAiL0AACQ-AAD4PQAAfL4AABA9AAAkPgAAND4AAOA8AACovQAAED0AAIg9AAB_vwAAqD0AAIi9AAAcvgAAyD0AAOA8AAC4PQAAyD0AAIA7AAD4PQAAoLwAAKA8AADgvAAAEL0AADC9AADoPQAAmD0AAEw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=ATMJ7o7IZHk","parent-reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4975834320389420338"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"12179933601022391728":{"videoId":"12179933601022391728","title":"From Complexity to Clarity: Demystifying a Tough Trigonometric Equation","cleanTitle":"From Complexity to Clarity: Demystifying a Tough Trigonometric Equation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=jwwIyhJW75s","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jwwIyhJW75s?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZDRXUjdLcXlaaE8tXzFSY2duMHE1dw==","name":"MathOrient","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathOrient","origUrl":"http://www.youtube.com/@MathOrient","a11yText":"MathOrient. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":684,"text":"11:24","a11yText":"Süre 11 dakika 24 saniye","shortText":"11 dk."},"views":{"text":"8,5bin","a11yText":"8,5 bin izleme"},"date":"11 mayıs 2023","modifyTime":1683763200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jwwIyhJW75s?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jwwIyhJW75s","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":684},"parentClipId":"12179933601022391728","href":"/preview/12179933601022391728?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/12179933601022391728?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10835852304036409683":{"videoId":"10835852304036409683","title":"Mastering Algebra: How to Simplify a Tough Expression","cleanTitle":"Mastering Algebra: How to Simplify a Tough Expression","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Pp1jRfp7S-I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Pp1jRfp7S-I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZDRXUjdLcXlaaE8tXzFSY2duMHE1dw==","name":"MathOrient","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathOrient","origUrl":"http://www.youtube.com/@MathOrient","a11yText":"MathOrient. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":325,"text":"5:25","a11yText":"Süre 5 dakika 25 saniye","shortText":"5 dk."},"views":{"text":"6,7bin","a11yText":"6,7 bin izleme"},"date":"7 mayıs 2023","modifyTime":1683417600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Pp1jRfp7S-I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Pp1jRfp7S-I","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":325},"parentClipId":"10835852304036409683","href":"/preview/10835852304036409683?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/10835852304036409683?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12786903690904208607":{"videoId":"12786903690904208607","title":"Beyond Traditional Methods: Solving a Difficult Trigonometric Equation in a New Way","cleanTitle":"Beyond Traditional Methods: Solving a Difficult Trigonometric Equation in a New Way","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7SlDgmacvnQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7SlDgmacvnQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZDRXUjdLcXlaaE8tXzFSY2duMHE1dw==","name":"MathOrient","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathOrient","origUrl":"http://www.youtube.com/@MathOrient","a11yText":"MathOrient. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1553,"text":"25:53","a11yText":"Süre 25 dakika 53 saniye","shortText":"25 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"24 mayıs 2023","modifyTime":1684886400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7SlDgmacvnQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7SlDgmacvnQ","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":1553},"parentClipId":"12786903690904208607","href":"/preview/12786903690904208607?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/12786903690904208607?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16735905871151276474":{"videoId":"16735905871151276474","title":"A Formidable, But Beautiful Trigonometric Identity","cleanTitle":"A Formidable, But Beautiful Trigonometric Identity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7QU8qw14DHE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7QU8qw14DHE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZDRXUjdLcXlaaE8tXzFSY2duMHE1dw==","name":"MathOrient","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathOrient","origUrl":"http://www.youtube.com/@MathOrient","a11yText":"MathOrient. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2293,"text":"38:13","a11yText":"Süre 38 dakika 13 saniye","shortText":"38 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"24 nis 2023","modifyTime":1682294400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7QU8qw14DHE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7QU8qw14DHE","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":2293},"parentClipId":"16735905871151276474","href":"/preview/16735905871151276474?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/16735905871151276474?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15128102216029748506":{"videoId":"15128102216029748506","title":"Mastering the Enigma of a Difficult Order 6 Equation","cleanTitle":"Mastering the Enigma of a Difficult Order 6 Equation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pBnb-bhkLQ8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pBnb-bhkLQ8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZDRXUjdLcXlaaE8tXzFSY2duMHE1dw==","name":"MathOrient","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathOrient","origUrl":"http://www.youtube.com/@MathOrient","a11yText":"MathOrient. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1124,"text":"18:44","a11yText":"Süre 18 dakika 44 saniye","shortText":"18 dk."},"date":"26 mayıs 2023","modifyTime":1685059200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pBnb-bhkLQ8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pBnb-bhkLQ8","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":1124},"parentClipId":"15128102216029748506","href":"/preview/15128102216029748506?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/15128102216029748506?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16236313836207369077":{"videoId":"16236313836207369077","title":"A Simple Trick to Calculate an Algebraic Expression With Giant Powers","cleanTitle":"A Simple Trick to Calculate an Algebraic Expression With Giant Powers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=IbHjZ38AZ3U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IbHjZ38AZ3U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZDRXUjdLcXlaaE8tXzFSY2duMHE1dw==","name":"MathOrient","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathOrient","origUrl":"http://www.youtube.com/@MathOrient","a11yText":"MathOrient. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":261,"text":"4:21","a11yText":"Süre 4 dakika 21 saniye","shortText":"4 dk."},"views":{"text":"9,3bin","a11yText":"9,3 bin izleme"},"date":"11 nis 2023","modifyTime":1681171200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IbHjZ38AZ3U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IbHjZ38AZ3U","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":261},"parentClipId":"16236313836207369077","href":"/preview/16236313836207369077?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/16236313836207369077?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15554430983713316380":{"videoId":"15554430983713316380","title":"Sin(6 degrees): Exact Value!","cleanTitle":"Sin(6 degrees): Exact Value!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4wM_JhqaZ2Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4wM_JhqaZ2Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZDRXUjdLcXlaaE8tXzFSY2duMHE1dw==","name":"MathOrient","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathOrient","origUrl":"http://www.youtube.com/@MathOrient","a11yText":"MathOrient. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1001,"text":"16:41","a11yText":"Süre 16 dakika 41 saniye","shortText":"16 dk."},"views":{"text":"2,5bin","a11yText":"2,5 bin izleme"},"date":"19 mayıs 2023","modifyTime":1684454400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4wM_JhqaZ2Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4wM_JhqaZ2Y","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":1001},"parentClipId":"15554430983713316380","href":"/preview/15554430983713316380?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/15554430983713316380?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4669924250988262719":{"videoId":"4669924250988262719","title":"Top 10 best algebra calculators in 2019 reviews","cleanTitle":"Top 10 best algebra calculators in 2019 reviews","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=TMhwMCrjRs8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/TMhwMCrjRs8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMFdzdUxIdHp4dXlja2RiRkxIc2gyUQ==","name":"MyBestSpec","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MyBestSpec","origUrl":"http://www.youtube.com/@mybestspec8421","a11yText":"MyBestSpec. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":84,"text":"1:24","a11yText":"Süre 1 dakika 24 saniye","shortText":"1 dk."},"date":"6 eki 2019","modifyTime":1570320000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/TMhwMCrjRs8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=TMhwMCrjRs8","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":84},"parentClipId":"4669924250988262719","href":"/preview/4669924250988262719?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/4669924250988262719?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3503566750191083399":{"videoId":"3503566750191083399","title":"Solving the Insolvable: My Technique for a Formidable Equation","cleanTitle":"Solving the Insolvable: My Technique for a Formidable Equation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=e_OAexn2Wzo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/e_OAexn2Wzo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZDRXUjdLcXlaaE8tXzFSY2duMHE1dw==","name":"MathOrient","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathOrient","origUrl":"http://www.youtube.com/@MathOrient","a11yText":"MathOrient. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1140,"text":"19:00","a11yText":"Süre 19 dakika","shortText":"19 dk."},"views":{"text":"5,9bin","a11yText":"5,9 bin izleme"},"date":"30 nis 2023","modifyTime":1682812800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/e_OAexn2Wzo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=e_OAexn2Wzo","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":1140},"parentClipId":"3503566750191083399","href":"/preview/3503566750191083399?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/3503566750191083399?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11089392645847258668":{"videoId":"11089392645847258668","title":"Multiply Cosines of Unexpected Values","cleanTitle":"Multiply Cosines of Unexpected Values","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qL_IJNvKH7M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qL_IJNvKH7M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZDRXUjdLcXlaaE8tXzFSY2duMHE1dw==","name":"MathOrient","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathOrient","origUrl":"http://www.youtube.com/@MathOrient","a11yText":"MathOrient. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":39,"text":"00:39","a11yText":"Süre 39 saniye","shortText":""},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"27 mayıs 2023","modifyTime":1685145600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qL_IJNvKH7M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qL_IJNvKH7M","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":39},"parentClipId":"11089392645847258668","href":"/preview/11089392645847258668?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/11089392645847258668?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1466846448708318662":{"videoId":"1466846448708318662","title":"Why Is the Sum of Two Positive Numbers Negative?","cleanTitle":"Why Is the Sum of Two Positive Numbers Negative?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=yU7_cbH7LhI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/yU7_cbH7LhI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZDRXUjdLcXlaaE8tXzFSY2duMHE1dw==","name":"MathOrient","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathOrient","origUrl":"http://www.youtube.com/@MathOrient","a11yText":"MathOrient. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":663,"text":"11:03","a11yText":"Süre 11 dakika 3 saniye","shortText":"11 dk."},"date":"15 nis 2023","modifyTime":1681516800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/yU7_cbH7LhI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=yU7_cbH7LhI","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":663},"parentClipId":"1466846448708318662","href":"/preview/1466846448708318662?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/1466846448708318662?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16585698837436112157":{"videoId":"16585698837436112157","title":"Prove an Insane Trigonometric Identity like a Pro","cleanTitle":"Prove an Insane Trigonometric Identity like a Pro","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eF3BWPiP7UU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eF3BWPiP7UU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZDRXUjdLcXlaaE8tXzFSY2duMHE1dw==","name":"MathOrient","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathOrient","origUrl":"http://www.youtube.com/@MathOrient","a11yText":"MathOrient. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1513,"text":"25:13","a11yText":"Süre 25 dakika 13 saniye","shortText":"25 dk."},"date":"27 ağu 2023","modifyTime":1693094400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eF3BWPiP7UU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eF3BWPiP7UU","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":1513},"parentClipId":"16585698837436112157","href":"/preview/16585698837436112157?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/16585698837436112157?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9419372645395013001":{"videoId":"9419372645395013001","title":"From Fractions to Wholes: Exploring the Integer Component of Summed Fractions","cleanTitle":"From Fractions to Wholes: Exploring the Integer Component of Summed Fractions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=K6QwNlDsRhw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/K6QwNlDsRhw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZDRXUjdLcXlaaE8tXzFSY2duMHE1dw==","name":"MathOrient","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathOrient","origUrl":"http://www.youtube.com/@MathOrient","a11yText":"MathOrient. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":751,"text":"12:31","a11yText":"Süre 12 dakika 31 saniye","shortText":"12 dk."},"views":{"text":"3bin","a11yText":"3 bin izleme"},"date":"23 nis 2023","modifyTime":1682208000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/K6QwNlDsRhw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=K6QwNlDsRhw","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":751},"parentClipId":"9419372645395013001","href":"/preview/9419372645395013001?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/9419372645395013001?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7465871848568810627":{"videoId":"7465871848568810627","title":"Domain Detectives: Uncover the Scope of this Algebraic Expression","cleanTitle":"Domain Detectives: Uncover the Scope of this Algebraic Expression","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=R4nD_tJAb6k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/R4nD_tJAb6k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZDRXUjdLcXlaaE8tXzFSY2duMHE1dw==","name":"MathOrient","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathOrient","origUrl":"http://www.youtube.com/@MathOrient","a11yText":"MathOrient. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":176,"text":"2:56","a11yText":"Süre 2 dakika 56 saniye","shortText":"2 dk."},"date":"11 nis 2023","modifyTime":1681171200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/R4nD_tJAb6k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=R4nD_tJAb6k","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":176},"parentClipId":"7465871848568810627","href":"/preview/7465871848568810627?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/7465871848568810627?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12569785014542806215":{"videoId":"12569785014542806215","title":"Class 10 Trigonometry – Trigonometrical Ratios Basics | CBSE/State Board","cleanTitle":"Class 10 Trigonometry – Trigonometrical Ratios Basics | CBSE/State Board","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YGDEUZQ76sU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YGDEUZQ76sU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdGd4dU4wVlhLMmZWTUhiOXZxOHRhQQ==","name":"Teach Tech School","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Teach+Tech+School","origUrl":"http://www.youtube.com/@TEACHTECHBhopal","a11yText":"Teach Tech School. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3212,"text":"53:32","a11yText":"Süre 53 dakika 32 saniye","shortText":"53 dk."},"date":"13 haz 2025","modifyTime":1749774606000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YGDEUZQ76sU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YGDEUZQ76sU","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":3212},"parentClipId":"12569785014542806215","href":"/preview/12569785014542806215?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/12569785014542806215?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17465886506856812272":{"videoId":"17465886506856812272","title":"J: A modern \u0007[math\u0007]-\u0007[oriented\u0007] APL","cleanTitle":"J: A modern math-oriented APL","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=74dP7VLMftU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/74dP7VLMftU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLXZNX1RrWlRBOS1ueUNFdU92ckk2QQ==","name":"Mi Lia","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mi+Lia","origUrl":"http://www.youtube.com/@mlliarm","a11yText":"Mi Lia. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4767,"text":"1:19:27","a11yText":"Süre 1 saat 19 dakika 27 saniye","shortText":"1 sa. 19 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"29 oca 2022","modifyTime":1643414400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/74dP7VLMftU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=74dP7VLMftU","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":4767},"parentClipId":"17465886506856812272","href":"/preview/17465886506856812272?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/17465886506856812272?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17289199492350563244":{"videoId":"17289199492350563244","title":"Class 10 Maths | Master Circle Concepts in 15 Minutes | CBSE / Ncert","cleanTitle":"Class 10 Maths | Master Circle Concepts in 15 Minutes | CBSE / Ncert","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Q679hJ1MtE8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Q679hJ1MtE8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcS1ZanMwbEVVWmEwSXFHSGJ2cm5GQQ==","name":"1Math2Bytes","isVerified":false,"subscribersCount":0,"url":"/video/search?text=1Math2Bytes","origUrl":"http://www.youtube.com/@1math2bytes","a11yText":"1Math2Bytes. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":858,"text":"14:18","a11yText":"Süre 14 dakika 18 saniye","shortText":"14 dk."},"views":{"text":"2bin","a11yText":"2 bin izleme"},"date":"8 mar 2025","modifyTime":1741392000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Q679hJ1MtE8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Q679hJ1MtE8","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":858},"parentClipId":"17289199492350563244","href":"/preview/17289199492350563244?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/17289199492350563244?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4975834320389420338":{"videoId":"4975834320389420338","title":"Mathematical and Computing Sciences for Artificial Intelligence","cleanTitle":"Mathematical and Computing Sciences for Artificial Intelligence","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ATMJ7o7IZHk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ATMJ7o7IZHk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZFpJU2E4VU5GYndoYXpiWXlfdVd2UQ==","name":"Bocconi University","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bocconi+University","origUrl":"http://www.youtube.com/@UniBocconi","a11yText":"Bocconi University. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3295,"text":"54:55","a11yText":"Süre 54 dakika 55 saniye","shortText":"54 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"19 eki 2020","modifyTime":1603065600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ATMJ7o7IZHk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ATMJ7o7IZHk","reqid":"1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL","duration":3295},"parentClipId":"4975834320389420338","href":"/preview/4975834320389420338?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","rawHref":"/video/preview/4975834320389420338?parent-reqid=1769560085881386-15867138857671015916-balancer-l7leveler-kubr-yp-klg-113-BAL&text=MathOrient","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"8671388576710159167113","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"MathOrient","queryUriEscaped":"MathOrient","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}