{"pages":{"search":{"query":"ASRatIUB","originalQuery":"ASRatIUB","serpid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","parentReqid":"","serpItems":[{"id":"9182929377525883101-0-0","type":"videoSnippet","props":{"videoId":"9182929377525883101"},"curPage":0},{"id":"17435311853037844082-0-1","type":"videoSnippet","props":{"videoId":"17435311853037844082"},"curPage":0},{"id":"4488929495351411365-0-2","type":"videoSnippet","props":{"videoId":"4488929495351411365"},"curPage":0},{"id":"14724440890146978366-0-3","type":"videoSnippet","props":{"videoId":"14724440890146978366"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEFTUmF0SVVCCg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","ui":"desktop","yuid":"7566553971769681956"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"7816444158175772222-0-5","type":"videoSnippet","props":{"videoId":"7816444158175772222"},"curPage":0},{"id":"16917928376609375-0-6","type":"videoSnippet","props":{"videoId":"16917928376609375"},"curPage":0},{"id":"383753005836522159-0-7","type":"videoSnippet","props":{"videoId":"383753005836522159"},"curPage":0},{"id":"6146798669405809941-0-8","type":"videoSnippet","props":{"videoId":"6146798669405809941"},"curPage":0},{"id":"5283047873593758409-0-9","type":"videoSnippet","props":{"videoId":"5283047873593758409"},"curPage":0},{"id":"7746559343159806917-0-10","type":"videoSnippet","props":{"videoId":"7746559343159806917"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEFTUmF0SVVCCg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","ui":"desktop","yuid":"7566553971769681956"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"9181173915123760509-0-12","type":"videoSnippet","props":{"videoId":"9181173915123760509"},"curPage":0},{"id":"2775037285058409357-0-13","type":"videoSnippet","props":{"videoId":"2775037285058409357"},"curPage":0},{"id":"6995465591241570468-0-14","type":"videoSnippet","props":{"videoId":"6995465591241570468"},"curPage":0},{"id":"17306785467396322779-0-15","type":"videoSnippet","props":{"videoId":"17306785467396322779"},"curPage":0},{"id":"17815972021937988973-0-16","type":"videoSnippet","props":{"videoId":"17815972021937988973"},"curPage":0},{"id":"8807874392284340079-0-17","type":"videoSnippet","props":{"videoId":"8807874392284340079"},"curPage":0},{"id":"9288603640561859314-0-18","type":"videoSnippet","props":{"videoId":"9288603640561859314"},"curPage":0},{"id":"1026786511878830793-0-19","type":"videoSnippet","props":{"videoId":"1026786511878830793"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEFTUmF0SVVCCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","ui":"desktop","yuid":"7566553971769681956"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DASRatIUB"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"2355171613401266586747","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1457140,0,80;1466867,0,94;1457622,0,21;1433082,0,21;1476204,0,3;1460956,0,3;1460717,0,51;1459297,0,58;1441068,0,16;1472031,0,98;1464523,0,33;1470223,0,7;1466296,0,11;1475918,0,7;1475651,0,93;1349071,0,39;1471918,0,16;1470514,0,32;133991,0,62;88927,0,41;1404017,0,22;63007,0,55;151171,0,11;1281084,0,91;287509,0,30;1447467,0,76;1006024,0,25;1468028,0,27"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DASRatIUB","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=ASRatIUB","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=ASRatIUB","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"ASRatIUB: Yandex'te 52 video bulundu","description":"Результаты поиска по запросу \"ASRatIUB\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"ASRatIUB — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y15a3b4590a206335f97aebbd2171b0cc","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457140,1466867,1457622,1433082,1476204,1460956,1460717,1459297,1441068,1472031,1464523,1470223,1466296,1475918,1475651,1349071,1471918,1470514,133991,88927,1404017,63007,151171,1281084,287509,1447467,1006024,1468028","queryText":"ASRatIUB","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7566553971769681956","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1475824,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769682000","tz":"America/Louisville","to_iso":"2026-01-29T05:20:00-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457140,1466867,1457622,1433082,1476204,1460956,1460717,1459297,1441068,1472031,1464523,1470223,1466296,1475918,1475651,1349071,1471918,1470514,133991,88927,1404017,63007,151171,1281084,287509,1447467,1006024,1468028","queryText":"ASRatIUB","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7566553971769681956","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"2355171613401266586747","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":158,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7566553971769681956","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1758.0__92da10e6e1e89374a81e86c5e5366c3357f68658","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"9182929377525883101":{"videoId":"9182929377525883101","docid":"34-6-9-Z7F572A577C5B0D14","description":"In this problem we look at ways to solve problems about probabilities.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4282970/f13947240ac1d8b8ccc3ab9d6ab3cf75/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/YK0wCgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeLCjXGltPw0","linkTemplate":"/video/preview/9182929377525883101?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite Mathematics - Probabilities, Events and equally likely outcomes. Part A","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eLCjXGltPw0\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhUKEzkxODI5MjkzNzc1MjU4ODMxMDFaEzkxODI5MjkzNzc1MjU4ODMxMDFqtg8SATAYACJFGjEACipoaG9idGd4dHdmbHdzeGliaGhVQ2JjUnAwbDRydHZ6X3p5MVFxdEhkNUESAgASKhDCDw8aDz8TxwGCBCQBgAQrKosBEAEaeIH69QT0Af8AA_kODwYL-QINBv8C9gAAAOAO9QQD-wIABPkQ_gYBAAALFQEJ_gAAAPr9_gf9_gAAEggBDPUAAAAXDwj-9QAAAAUSDfv-AQAA-Pf3_QP_AAAZ-wP0_wAAAO_8AvH__wAA_AgJBQAAAAAL8u_7AQAAACAALUNSzzs4E0AJSE5QAiqEAhAAGvABfxw1AObv-gPTAyD_0v_VAMAhM_9YOt8AzBAD__L7CgHvLdIA5SgF_83pAADNLv7_JOzY_w3h0gEZ5ev_Jvf0_wQD8QE-7fsBD_wvAAfl7P4uIwj_9Br6AyL_3wEF_vMA5OsT_PkByP_289wGIBUmARDhFAQFAOIBAqQBB9jNC_8M0Nf-ryHiAvwPDfz39SX-H_HoA_o9BgIWTfQAOtbs_t4RCwMILtX-K_3zB_QK_gj07PMBGO7rCAEh_vLWDCD2DDEVAMwJBQUIDAj_7d_r8h3o6w_tCdsA8BDrE_XYAfwK-fED4hQJ89rkAwLw5fP-IAAtdw4VOzgTQAlIYVACKnMQABpgO_sAThgszQTgLesQ2fT5BOX-8BfCIP8P-P8LBcfNLhmvvOJL_wzHD96gAAAAJ_Uf-SgAAH_-yfL5CeIuqQW7Ov57Ie_4rOMmJMgS6uMEG0Uu2jtnAOwHxFknM9xYMgANIAAttMATOzgTQAlIb1ACKq8GEAwaoAYAAIA_AADQwQAAREIAALjBAAAwQQAAIEIAAKxCAACoQQAAoEEAAHDBAACoQQAAYMIAAIzCAACAPwAAYEIAACBBAABQwQAAsMEAAETCAACwwQAAVEIAAABCAAAwwQAAHEIAAJBBAACwQQAA6MEAAILCAACOQgAA4EAAAIC_AAAAwAAAYMEAAAhCAADAwAAAQEEAAIBAAADMQgAAoEAAAFDBAACYQQAAiMEAAKhBAACIQQAAMEIAAAzCAACIwQAACMIAAKpCAAAAQgAA6MEAADBCAABEQgAA6EEAANBBAAAkQgAA0MEAAIrCAACwwQAALEIAAODBAAAYwgAAmMEAADDBAAAAwgAAEMEAAIDBAAAswgAAmMEAALDBAACEQgAAikIAAKDCAAAYQgAABEIAAADDAACAPwAAuMEAADBBAADYQQAA8MEAALhBAABAQQAAgkIAAABAAABQQQAAwEEAAEhCAACWQgAAkMEAAIDBAABUQgAAUMEAAOjCAACwwQAA2MEAAOhBAAAUwgAA-EEAAIDAAACAPwAAlEIAAI5CAAAQwgAAxMIAAIDAAABQwgAANEIAAHDCAABQQgAALEIAABRCAABgwgAAUMEAACRCAADgQQAAoEAAAKjBAADowQAA4EAAANDBAADgwAAAXMIAAMjBAAAgQgAAoMAAAITCAAA0wgAAJMIAALDBAAAoQgAAdMIAADDCAACiQgAAMMIAAEDAAABgwQAADMIAAIjBAADIwQAANMIAAIhBAAD4QQAAqEEAACBBAABgwQAAkMEAAADAAACQQQAAoEEAAKBBAACIwQAAAMEAAFBBAAAAwQAABEIAAIDCAACqwgAAJMIAAKhBAADgwAAAEEEAAPhBAAAQQQAAgMAAAIpCAABIQgAALEIAAADAAACIQQAAJMIAAK5CAACUwgAATEIAAOjBAAAQwQAAqMEAABzCAACAQAAAikIAAIjCAABcwgAAiEEAAAAAAAAAwAAAusIAAIDBAABwQQAAAMEAAFBBAAAAQQAAEMIAAOBBAACAwQAAAEAAABBBAADAwQAAAMAAALjCAADQwSAAOBNACUh1UAEqjwIQABqAAgAAqD0AAKA8AADgvAAAJD4AALi9AAAUPgAAcL0AACO_AAD4vQAAiD0AABw-AABAvAAAHD4AAJo-AAAEvgAAVL4AAJ4-AACoPQAAND4AAPo-AAB_PwAA2D0AAFw-AACoPQAAQLwAALg9AAAwvQAARL4AAOA8AABEPgAAfD4AAIq-AADgPAAAMD0AALg9AACGPgAAiD0AAIi9AADivgAA0r4AACS-AABAPAAAML0AALi9AADYvQAAcD0AAK4-AAC-vgAA6L0AAJq-AABQvQAAHL4AAMY-AADYPQAA2L0AAEC8AAAxPwAA6L0AAEA8AAB8PgAAiL0AAIg9AAD4PQAALL4gADgTQAlIfFABKo8CEAEagAIAAJi9AACgPAAAUL0AAB2_AABUvgAAUD0AAHA9AABkPgAAcL0AAEw-AAAQvQAATL4AAJi9AACIvQAAgDsAAKC8AAAEPgAAJT8AAKi9AACuPgAAUD0AAFC9AACgvAAANL4AAJg9AAAEPgAAyL0AAIg9AABAvAAAyD0AAEC8AADYPQAAuL0AABC9AADoPQAAmL0AAOg9AACOPgAAHL4AAJi9AACuPgAAML0AADC9AADIvQAAML0AAEC8AAB_vwAAFD4AANi9AACIvQAAMD0AAFA9AAAQvQAATD4AANg9AAC4PQAAgLsAAJg9AAAwvQAAoDwAAFA9AABMvgAAoLwAADA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=eLCjXGltPw0","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["9182929377525883101"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3469213075"},"17435311853037844082":{"videoId":"17435311853037844082","docid":"34-6-14-Z3219AE228CC43441","description":"In this video we look at ways to find expected values of random variables.This video follows problem 31 from Section 4.2 in the book \"Finite Mathematics\" by ...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2109878/a254d0be556dafb114395d1ee3bd7e0c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/GVNRZwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJ6glMrJhafU","linkTemplate":"/video/preview/17435311853037844082?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite Mathematics - Expected Values and Standard Deviations of Random Values","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=J6glMrJhafU\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhYKFDE3NDM1MzExODUzMDM3ODQ0MDgyWhQxNzQzNTMxMTg1MzAzNzg0NDA4Mmq2DxIBMBgAIkUaMQAKKmhob2J0Z3h0d2Zsd3N4aWJoaFVDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QRICABIqEMIPDxoPPxPdBYIEJAGABCsqiwEQARp4gf799_3_AgD3-xT9_QT_AQ4M8gT1AAAA7gT8-AUAAADuAAX_DQAAAAYM_wUDAAAA-Pn7D___AAAVBPQA9QAAABgICgv7AAAADQoDAAj_AQH2__QCA_8AAPoI__3_AAAA9QoD-gIAAAD-Cf8DAAAAAA0G_f_88_4AIAAtCm_ZOzgTQAlITlACKoQCEAAa8AF_Gv8AvPTt_kLx2gD4FA0BkR4J_yER6ADJBP0Awfb3APgK_ADY-9EA9Pr__-YOLf8ZB_n_DPEfACrxAP82Cv4ABPAGAUcE6_455QYA_wTs_9UX9P8F8wgCCALlAewJ8fz9BDP_9wnnAvADzQEP9wcAA_83AAIICALz7AoB9AYHAAnc-PwG_en_1P_lA-b3JwYC4vYC8xgM-dwB_gQd_uoCABMPBSEC6gIN5O8KHPUSAAnoCvsH0-8AEhsd_-gJBfsOAQv_-_7xA-4KAwH94wkH5e0FA_P0A_8aFf8C-ecN_fTy-Ars9xH25_b9C_vw7wsgAC1-MzQ7OBNACUhhUAIqcxAAGmBM-wBI_wXY3NcazurXx_T0zfjaEt39__Tw_8nrw-0VD-yf-AD_H9kG6qwAAAAm9gAMJwD1cO7EtSrv-xLK2_AMGH8eBgrb5hX3oeAGO9PuLPuxITcAAuKzLjAb0i0PIAUgAC2jkiM7OBNACUhvUAIqrwYQDBqgBgAAHEIAAILCAACmQgAAiMIAAPBBAADgQAAAjEIAAPhBAABMwgAAmMEAAKDBAACQwQAA6MEAAHBBAABAwQAAkEEAACBCAABcwgAAjkIAANjBAABgQQAAsMEAAJDCAAA8QgAA4MAAAIjBAAAAQAAAuMEAADBBAAC4QQAAoEAAAAAAAABgwgAAAMAAALzCAACIQQAA4MAAAKhBAABkwgAAOEIAAADBAAAAAAAAIMEAAADBAACKQgAATMIAAJBBAAAUQgAAqEEAAJDBAAAQwgAA-MEAAOjBAABwQgAAqMEAALBBAACEwgAAEMEAALBBAACYQQAAYEIAAETCAACCwgAAgMIAALBBAADowgAA0MEAABjCAABAwAAAiMEAADxCAACYQQAAAMIAAADBAABMwgAAGEIAADTCAAAwwQAAIEEAAPBBAAAswgAAoEIAAODAAABQwQAAAEAAABhCAACIQQAAHMIAAEBCAADQQQAAoEAAAARCAABYwgAA4EEAADBBAACWwgAAOMIAAMDAAABAQgAAgkIAAFDCAADowQAAiEEAAIDAAADAwAAAuEEAAABAAABQQgAAEEEAACRCAACoQgAACEIAADDBAADQQQAAcMEAAFBBAADAQQAAoMAAAILCAABwwQAAfMIAAETCAAD4QQAAcEEAAGDBAACAwAAAHMIAAGDBAAAQwQAA2MEAAFDBAAAwwgAAIEIAAEBAAAAkwgAA0kIAAAhCAAAsQgAAxMIAABDCAADgQQAASMIAAAhCAABAwAAAmMEAAGRCAAAgQQAAgL8AAADAAACAvwAAhMIAAChCAABcQgAAGEIAAOBBAABQwQAAyMIAALDBAACgwgAAEEEAAFjCAAB4QgAAVEIAABjCAACAQAAAAAAAAIDBAACcQgAAikIAAJjBAAAwwQAAgL8AAIDBAAAkwgAAgD8AAKDAAABwwgAAmEEAAFxCAAAMQgAAJMIAAMjBAAAwwQAAJMIAAKhBAADYQQAAcMEAAHDCAAAgQQAAAMEAAPBBAAAAwQAA8EEAABTCAADgQAAAiEIAAIBBAADYQQAAJEIAAADAIAA4E0AJSHVQASqPAhAAGoACAADgPAAAgr4AAAw-AACIPQAADD4AAM4-AAAcPgAAOb8AAHy-AADIPQAAUL0AAJa-AACgPAAAPD4AAGy-AADIvQAARD4AAEA8AADYPQAAAz8AAH8_AACgPAAAZD4AAEA8AABwvQAAqD0AAEC8AACgPAAAjj4AAN4-AACWPgAAHL4AAAS-AABMPgAAEL0AAFQ-AADIPQAALL4AAOa-AABMvgAANL4AABA9AACKPgAAmL0AAOa-AACovQAAVD4AAM6-AABkvgAAor4AABC9AABQvQAA0j4AAFQ-AAC4PQAAiL0AACE_AAAQPQAAcL0AAGQ-AACIvQAAEL0AADw-AABQPSAAOBNACUh8UAEqjwIQARqAAgAAUD0AAIA7AACAuwAAH78AAGy-AAC4PQAAZD4AAK4-AAAUvgAABD4AABC9AACCvgAAUD0AABy-AADoPQAAoDwAAEw-AAAfPwAAQLwAAKI-AACoPQAAPD4AAAy-AAA0vgAAiD0AAJg9AABAvAAAgDsAACS-AADYPQAAiL0AAFA9AACgvAAAZL4AAHC9AAC4vQAAgDsAAAw-AABEvgAAED0AABQ-AABwvQAAoDwAABA9AABAPAAAED0AAH-_AACIvQAAZL4AABy-AABwPQAAJD4AAOA8AADgvAAAHD4AAKg9AACgvAAAoDwAAJg9AAAQvQAA6D0AAIi9AAD4vQAAmL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=J6glMrJhafU","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["17435311853037844082"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"94727289"},"4488929495351411365":{"videoId":"4488929495351411365","docid":"34-10-1-Z535E7A3B89E3CA59","description":"In this problem we review defining and constructing sets, basic set operations and set notation. This video follows problem 29 from Section 1.1 in the book \"Finite Mathematics\" by Daniel P. Maki...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3435811/757819da61bfb01b1a7d35d4a636f1b3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/m2_MgwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DabbsodiwlJk","linkTemplate":"/video/preview/4488929495351411365?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite Mathematics - Review of Sets and Set Operations","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=abbsodiwlJk\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhUKEzQ0ODg5Mjk0OTUzNTE0MTEzNjVaEzQ0ODg5Mjk0OTUzNTE0MTEzNjVqiBcSATAYACJFGjEACipoaG9idGd4dHdmbHdzeGliaGhVQ2JjUnAwbDRydHZ6X3p5MVFxdEhkNUESAgASKhDCDw8aDz8TnweCBCQBgAQrKosBEAEaeIEA_f_-_gMA_PUIAPsF_gILEP0E9gEBAO4E_PgFAAAA-PYEAAwAAAAMBfsCAgAAAAH-AwP-_gEACwEA_-wA_wAZAv0A-AAAAA0Y-wL-AQAA6AH9AAMAAAAN_v_4_wAAAP4I_gACAQAABg0KCQAAAAD0AQD4__8AACAALVL32js4E0AJSE5QAiqEAhAAGvABf_oEA9wN4AD18AUB1u3gAKr3Jf8wN-P_oeAQAtzx2gDkB_QA3wf7ANQiGv-dJ_8B_-HeAPHfEP8n2g0AJPf1_x4NEQA32_0ANA4WAvAC8__iHyr9BOEMABPz3v_9A-cA_uYlABX15AAK7L4IDv46AQ0HFQQa3RH-4Lb9Afba_AL86OH99BT7Bv_4BAXk7Qr__OXoAQsnBvrdKfUC_fYD-uvlCfXdGtX9M_0BBBUD__ze6QsK1QPmBOsgG_74HAH_6AMUANrnAPjz9_MHD-_4-PD2AgoY1fgQEgPs-vIGD_fvDvv66A8DBwL--A3W-APuIAAtrqAfOzgTQAlIYVACKs8HEAAawAd40OS-qTyROwwN37yp9xS8RCXDu3cuzLztftW9O-qDvOeUW7wUdhE-3w7evCa-gztZwFS-BIyMOSrP1zz-1Ys-IMSfPIapMTt1dPy9LxOaPQsCEL3kcsK9OIJYO6w9B70Twa48DUEEvYJy27wbEFE-I-57vVW0g7zJV8K85gwAPULuAr2uH6y8fBtRPFd1uTuwNzE9qQpXPUluCD3jIMw94D78PF6R6zrEwXQ9_By8ug6xi7uvIhO-ERRkPbLd2jsP_I49_IwrPd8g9TxBaUM9or5AvNgex7yyfU09xGdBPRxTgzuVdP-6lNlFuxyPI704oZA8zFiZPESL7Ls8awe-NYQ-PGgN-byj1Y89p3J_vKzCqLomusi9Tz6cO8WIqzsqcJI9ZXF_vBv2VrwOTuQ9WvoLvSt2ajuz-189kPBivJFw7zpjYD09Dy7IPX357jwo7p09OtUQPK3yyjsTvKw9cCTQPfr3T7zcix69A9J-PInACbyWSzk91iRzPRM16jvs3so8U54PPeGqfDwtyhE9XxeEvZpD8zsJIkE83lw3vcsJ4rvovsw9ADBjPa7mDDuLy5w9pBd6vV94SryLF8s8JgaaO5hqZry-Clo91yfKvEUHajuPrBe9R3FuPapQFbx5sdC9NZnRPXaNcbsQ8nC9XmofvOuB_zuRoFO83yatvRbtnroR_zA93mtNPUfJ6Tslo9S8Rd3_OhjcLjoX3os9IpnAO7cokrvR1ZG99TasvCIn4TrI6lY8dh7wPNTvQrsBo-s9EttdPDPuhzjkeG-9QgkTPfoi3rgqRWG9alyOPYdkK7gItaq9on6XPOqtTDYUnYu9iXrhvcYncDk-jBU912kkvFZzxTlAc3G9JJd_vPIz7rizxSC7UUDEvW897Di6ZWq71928vO4Byrj-8pk9zNVqu6_VxDhZmC-9bh8NvS84Xrny8o-87taNvf4cNzh1mrs8pN_-PBo22Ldar4M9AY_DvabRWjlBO7E8s6u1PHkhVjmbzuk81vJUPVTLHrjoPzU9ZB8EPmexGzi-UIA866srvMKyDrag3Hs9AZm3PVgANrgAiyG9WObtPZ0u3DgmjfK7yenrPOw5ujccXvA9fQT-PPTnkLgSMpA8xIM8PYrFozcBcGc9r-7YvaFQh7jErlI9SBnRvWA9hrhvSvm8VP9_u0sB17dNNyS9jbvMPazuDje9rwU9pUkJvq2ehbjK9HA9IuErPvHLijib2HC71ZgLPb8U4bhQbwi8SqiaPSMmCrb61729Fji0u-PbWLcgADgTQAlIbVABKnMQABpgKP0ATfQYxwr7QPT46-EBzu4AxiW5Bv_22__mFNYJGhjbxxQEAAbmGOWvAAAAKez8GNgA3Gu-2_UdBDYox8oIByN_Chcb0cQXCN7pLybmDkohwQASAOj8qC49K8AgNRUiIAAtq9smOzgTQAlIb1ACKq8GEAwaoAYAAMBBAAA0QgAACEIAAEDBAABAwgAAuEEAAOBBAAAgQQAAeMIAAKjBAADoQQAAdMIAAFzCAACIQQAA6MEAAADBAABMQgAApMIAAHhCAACAwQAAuMEAAGDBAAC4wQAASEIAANDBAAAQwgAADMIAANBBAADYQQAAQEAAAJbCAADowQAAgsIAADhCAAAwwgAA6MEAAFBBAADAQQAA4MEAAFBCAAAwQQAAEEEAAIA_AACwwQAAEMIAAFzCAAAEQgAAwEAAADxCAADAQQAAJMIAAFDBAABgwQAASEIAAGBCAAAMQgAAqsIAAATCAACgQAAAZEIAAOhBAAAYwgAAoMEAADjCAAAgQgAATMIAAAjCAAAAwQAAksIAAETCAAA8QgAAkEIAAIDBAAAEQgAAAMIAABBBAADSwgAAYMEAABhCAACgQQAAiEEAAJhCAACQwQAAcEEAAEBBAACwQgAAUEEAABTCAABYQgAASMIAADBBAACOQgAAWMIAAAjCAABAwQAApsIAAEDBAACAQAAAQMEAAOhBAABEwgAAIEEAAJZCAABwwQAAoMIAAFxCAAA0wgAAAEIAAIDBAABkQgAAIEIAAAxCAADowQAAgEEAAPhBAACGQgAAAEEAABDBAABQwQAAoMEAAPjBAABAwQAA4EAAABjCAADQwQAAIMIAAIDAAACYwQAA-MEAABDBAAAEwgAAVMIAAPhBAABAQAAADMIAAJJCAAAIwgAASEIAAHBCAABwwgAACEIAAGDCAADIwQAAaMIAAJZCAABAQQAAyMEAAJJCAAAAwAAAsEEAACTCAAD4QQAA4EEAAHBBAADowQAAIMIAAPDBAAAgwgAA6MEAAGBBAABQwQAAJEIAAODAAAAAwQAADEIAAKjBAAAswgAAkkIAAEBBAAAwwgAAgD8AAFxCAABAwQAADMIAAHDBAADQQQAAiMEAAIDAAABgQQAAUEIAALLCAACewgAA6MEAABRCAAAoQgAAiMEAAKzCAAD4wQAAiEEAAADAAAAMQgAAkEEAADBBAACAvwAAkMEAAChCAAAwwQAAyEEAADxCAAAQwSAAOBNACUh1UAEqjwIQABqAAgAAfL4AAAS-AAAkPgAAuj4AAIA7AAB0PgAADL4AACm_AADgvAAAMD0AADA9AAA0vgAAqD0AAFQ-AABMvgAAgLsAAJo-AAAMPgAAHD4AAF0_AAB_PwAARD4AAJg9AADYvQAA4LwAAOC8AABwPQAAyD0AAHC9AACePgAAij4AAIC7AAAwvQAAmj4AAFA9AAB0PgAA-D0AAKC8AACmvgAAyr4AAIi9AACmvgAABD4AAAS-AAAwvQAAyL0AAHQ-AADavgAADL4AAHy-AAA8PgAA4DwAAJY-AACuPgAAyL0AAKi9AABvPwAALD4AABA9AADoPQAATL4AAOg9AACgPAAAHL4gADgTQAlIfFABKo8CEAEagAIAAAS-AAAUPgAAqL0AACe_AABMvgAAFD4AAI4-AAA8PgAAQDwAAII-AACgPAAALL4AAEC8AAD4vQAAQLwAAIA7AADIPQAAPT8AAHC9AADKPgAAQLwAAJi9AACoPQAATL4AAOC8AACCPgAA2L0AAAw-AACgPAAAoLwAAFC9AABAPAAAuL0AAJa-AACYPQAA2L0AAAQ-AACoPQAA-L0AAFC9AACCPgAAmL0AAEC8AABQvQAAyL0AADw-AAB_vwAAHL4AAHy-AACoPQAAuD0AAAQ-AACYvQAAJD4AAJI-AAAwPQAAML0AABC9AABQPQAAgLsAABw-AACovQAAMD0AAKC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=abbsodiwlJk","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1440,"cheight":1080,"cratio":1.33333,"dups":["4488929495351411365"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"950811165"},"14724440890146978366":{"videoId":"14724440890146978366","docid":"34-5-12-Z5B4CA4D751B27794","description":"In this video we use some set notation and some Venn diagrams and shade in the described areas on the Venn diagrams. This is really similar to some homework problems you may see.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3994755/d8f2aa87aebf9d8b0399447a25195199/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zxHvIgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTdFqOglzNh8","linkTemplate":"/video/preview/14724440890146978366?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Venn Diagram notation examples","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=TdFqOglzNh8\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhYKFDE0NzI0NDQwODkwMTQ2OTc4MzY2WhQxNDcyNDQ0MDg5MDE0Njk3ODM2NmqIFxIBMBgAIkUaMQAKKmhob2J0Z3h0d2Zsd3N4aWJoaFVDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QRICABIqEMIPDxoPPxOtBYIEJAGABCsqiwEQARp4gfoCCwAE_AD4BwwH-Af9AhL5DvX2AAAA__UG-PcF_gDgAQoA-f8AAOUMBAr9AAAA_vwL_fP-AQAOB_QDBAAAAAkABAT8AAAAFAMPC_4BAAD49vb9A_8AABP3DQ0AAAAA_g4GCgEAAAAIHfgAAAAAAP___v8AAAAAIAAtbPjGOzgTQAlITlACKoQCEAAa8AFY-CX-sAzs_Xbz-wET7tABowP1AH8A4__QAQ0ABtkYAUoyFADXCwv_4v_ZAP_sK_8fC-j_9A4HACzSHP8M5fUAEzXvAPjy_AH2EA4BBAXYAO8U-gDg4x3_-ODY__MAJ_0UIP799xriAQUI-QL7_fcCEw4FAg7ZDgUJBhcB_w4kAPjb8gEG6wn62hvz_Qj1JAP69tUE_hz7BgAa9QAGCfr_COv_BSIC6QL9-AX8CgYB-vIQD_wA-g74ECHpBR4q9Qvv4Qf4CtwSAP3X-PUU3w0I9OMHEQIR-A8ABgYCBMIB_-ILAfQc_g4AGcbwB-_S-AcgAC3Hdy07OBNACUhhUAIqzwcQABrAB9nM4b4mv2q8GfsWvPt28bsZtEY8mGn7PMNkqj16U9E88kQrvao9Nr0wuMs8aZCCvBtkor74GiK9lVdYvZ1Ggj5_Fku8vhLIvAcJ8b1woWG8js2OuwLMtr3jUx28TQRgPcL2g72GvO88p6F8PEHrJr0mxZe9c8V7vFWVZz04pNE9U-t9O1GWa7yBdKa9m3PTO3b3JT0YKCS9rJS5vJSE5D3WLrc8_BFQPNFjyj3Ofi49mpfDu96PC74vv9e7lpktPITY2T3U9Z88d503OqlO5z3LxOM8LoRmvD_ULL14ojo9VX24vJVShj0jMcE8u2VivLybIj3AA6i9wz-yO7rzST3atVM9nUekOy1uTb3Hgw0-N1l-u1D-rry9EFw9moKQvD8ojj2sHxu9M7yfO4R-Fj6Nd5y9q7VNu6MXvTsFM-g7ELXIPJAkELwQ36M9pmIDPUSKoT0PuM49x-JtPAm70Tscts0973pEvBhLJ72DWdc8ycK8PG-df7znQTA829qnPA0lyby2ejg9mBT-uXAK6zxF77m99kfluZaRWLrwI0098B6YOmayCT3zwgQ6ZbegPKgyMT3_d8Q87kTFu97IDL4Lskq9wnlEOwqHGb3yBj292TobPJ6RLTzkh-o936P0OQcjNr28HJs7o8owvCBmar0ofFs8GawVPMyqub04tHK9Q_-4ORH_MD3ea009R8npO-LAhb3buAo9eh2AOuCi0z0gib09vMX2OdSggTt0FbG9PrNbuGe8mL166_K81BQMOTSXtT26qdy85lh4uFwtIb28Byg9J1yzOSfz0buvS8M8ATESukM7lz36-5s9l7gxuQYT_zxH6ns6age0uVevtz3vhl69KnApN5MXfj02rCk9ZRMOOa_CN719qIk9quTEuaNwoj1NjUg7vXinOB01yz1QllA9W6xhOLBlaD1FNxE9AEN9OJ-7M70lO5s80ngjObdXED0qtOY63j8NOZi0Ujs_cMW99y5gOUY_Oj30zoc9bP63uAg5FD0djlO9oP0ctdH9sT3SPQa9SEUQOPPMxj3l04O9YwmPN_3oar3o6RI9IjD0NmRRXb38rw49ZQ8tOfB_ETu2ugw-NQ4NOcTPDz48aum7nsuVNrRVrjzuMUe8gEyft_tRebzh6-u9e-0AOYXeTL1UqI696srDuBYzQr3MMho9K97nNxv1AL58FCk9tjD0OFyooT19xJS9uKGWNwoQJT3u1YI9T_-7OHAzSz00s8s92dOnt0jUlbwinva8tPgAuNEQlL3oGEu9RmgGuCAAOBNACUhtUAEqcxAAGmAzCgAz9QboqkcxxcK67vHux8ErGNT8__DP___muewJEuXN6yT_Jc4q-6UAAAD13w0OKQAJdw_5AiEnxg-BCc3hGHRGMw3Yyi0i1u7kJt6iBCgQBxsA1fvBMiS69D736RUgAC0ukhc7OBNACUhvUAIqrwYQDBqgBgAADEIAAIBAAACWQgAAYMEAAJjBAADiQgAA0EEAABDCAACQwgAASMIAAIjBAADIQQAAuMEAAFBBAAAcQgAAEEEAANDBAADIwQAAIEIAAFBBAACgwAAAiEEAAAhCAACIQQAAkEIAAJjBAABwwQAAJEIAAOBBAADYwQAAJEIAAGBCAACAwAAAJMIAAKjCAADoQQAATEIAAKhBAACQwQAAcEEAAEBCAACYwQAAbEIAACBBAACAQAAA4MAAAEhCAACwQQAAeEIAAIDCAACQwQAAyEEAADDBAACoQQAADMIAAHDBAAAUwgAAgD8AALhBAABQQQAAfEIAAHDCAAC4wQAAEEEAAKBCAACuwgAAcEEAACzCAACgwQAA4MEAAABAAAAYQgAARMIAAIjBAAC4QQAAwMIAAJDBAAAIwgAAuEIAAIC_AABAwgAAXEIAAFTCAACIwQAAqEEAAJxCAAAIwgAA2EEAAGxCAAAAwgAAQMEAAJhCAAD4QQAAmMIAAMDAAAC4wgAAIEIAABBBAADgQQAAAEAAAPDBAAAAQAAAYMEAAIC_AABMwgAAQEAAAOjBAABkQgAAOMIAAJhBAAA8QgAAgMEAABTCAAAAAAAAgMAAAOjBAACAQQAAUMEAAEBBAADYQQAAQMAAAJDBAAAAwAAAdMIAAAjCAAAUwgAAosIAAEhCAAAgwgAAgMAAACxCAABUwgAAmsIAACxCAAAEwgAAREIAAEDBAAAQwQAA8EEAAIDBAAAAQAAASEIAAEDAAADgQAAAqMEAAIBBAABwQQAAyEIAAFBCAACIQgAAHMIAABxCAACwwQAAdEIAALjBAADgQQAAgsIAAIBAAAAgQQAAIMEAAOjBAAAIQgAAwMAAACjCAACgwQAAgEEAAIDAAACwQQAAQEEAABDCAAAYQgAA0MEAALjBAACAwgAAYEEAABDBAADQwQAAgMEAAPjBAACoQgAAPMIAABjCAAAswgAAwEEAAHBBAADIQQAAcMEAAEDAAACIwQAAkEEAAJjBAAAMQgAASEIAAHBBAAAAwAAAWEIAAMhBAACYwgAAkMEAAADBIAA4E0AJSHVQASqPAhAAGoACAACAuwAAZL4AAAw-AACyPgAAEL0AAIg9AAB8PgAAur4AADS-AAAEPgAAHL4AAMi9AACCPgAArj4AAEC8AABAPAAAdD4AALg9AACAuwAA_j4AAH8_AABcvgAAUD0AAAQ-AAAcvgAAij4AALg9AAAwPQAABL4AADw-AABEPgAABL4AAAy-AABQPQAAuD0AAIg9AAAQPQAALL4AAJ6-AABQPQAAQDwAAFy-AACgPAAAgDsAAJi9AACYPQAAPD4AAAu_AACKvgAAFL4AANi9AACYPQAA0j4AAAy-AABwvQAAcD0AAA8_AABQPQAABD4AAOI-AAD4vQAA2D0AAOC8AACYvSAAOBNACUh8UAEqjwIQARqAAgAA2D0AACw-AABUvgAAE78AAIK-AACgvAAAoDwAACQ-AACIvQAAvj4AADC9AAAUvgAAoDwAABS-AACgvAAAqL0AAIC7AAABPwAAcL0AAJ4-AADgvAAAyD0AABA9AABwvQAA4LwAAHA9AADovQAAED0AAKg9AABAPAAAiL0AABw-AAAUvgAAHL4AAIK-AACYvQAA0j4AAJo-AAAEvgAAFL4AAJg9AAAwPQAAir4AAEA8AACGPgAA-D0AAH-_AAAwPQAAQLwAACQ-AAD4PQAAmL0AAIg9AAAkPgAAoLwAAKg9AABAvAAAFL4AAJi9AADIPQAAPD4AAKg9AACgvAAANL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=TdFqOglzNh8","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["14724440890146978366"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4266283919"},"7816444158175772222":{"videoId":"7816444158175772222","docid":"34-6-2-Z590DA0A94ADFE35D","description":"In this problem we look at ways to solve problems about probabilities, specifically problems with weighted probabilities.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2950295/12031c9238f40a3bc0a948302e63069a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/H_oWVgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dm1lknj1sA5A","linkTemplate":"/video/preview/7816444158175772222?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite Mathematics - Probabilities, Events and equally likely outcomes. Part B","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=m1lknj1sA5A\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhUKEzc4MTY0NDQxNTgxNzU3NzIyMjJaEzc4MTY0NDQxNTgxNzU3NzIyMjJq1hASATAYACJFGjEACipoaG9idGd4dHdmbHdzeGliaGhVQ2JjUnAwbDRydHZ6X3p5MVFxdEhkNUESAgASKhDCDw8aDz8T-wSCBCQBgAQrKosBEAEaeIH69QT0Af8AA_kODwYL-QIKCf_39gAAAOAO9QQD-wIABPkQ_gYBAAALFQEJ_gAAAPb--wj0_wEAEggBDPUAAAAUFQoDAgAAAAUSDfv-AQAA-Pf3_QP_AAAZ-wP0_wAAAO_8AvH__wAA_AgJBQAAAAAL8u_7AQAAACAALUNSzzs4E0AJSE5QAiqEAhAAGvABf_sTAcUJ3wDs5vkA_vrXAbbuHABVN-EAxtIlAM4D-wHwK9QA7QPvAOQcEv_U__7_FfTl_gDc9gBD9Pj_Ler4ABU77QAS1_ACDQAbAfv7__8BISr-_gAYAQUA9QP79N79_ugV__Ye3gEK67wIDv47AQ8vJQIN9A8I3PMF_-LwCAUB_e7-7Bz3_ewACAPaBCECIyHG_g8cGPrzSecHCPH4_t3XBfoT9d4AO_4RAhs06wHb_RAE8Ab-A_wjGgoCKAr08_ckAvPiAfAH-gsGGtPyBBzp7A_kDfoP6OIBBRnVEPPm-QEI1PIF9urv9_oL7foHIAAtXDAbOzgTQAlIYVACKs8HEAAawAfBpwW_1JUVPHLD77z284E8w8pYORpUdrw8izm9chsIPceBHjruc7E9BjGKu6hkKj32lmK-BXiBPHk_Dby14ZA-uhE2vRqJMD16Fy--CDwwPSmf1LzxhN69gB-fPLdBDjwt7dS9vFZHPRmPkrwLv6o9PwqNvNJpwjxzr1088yyCPSXB5bzwVQY9zYR1veY1wLyUZ168A6DAvMWDFz3r4LA9f3iMvHwVT7yPN9k9i7tmPHtkVjsYfSW-SaGsvAovQbx1Ziw9povDPP90qDyssio9l_wUPa5uK7zDJlc8j_t2PeeibDn04fQ8VbqgPNAvBDvAKSc98EeLvTfYwDwMyIO9_xmvPF7xdTsqO5i8AZQ1PcSmobvSV5u93UhUPRr0LbvfbNM9QPuRPCMsqjuX5iY-Jfw3PdLLAzs8PSU8Iz17vOqjvrqQJBC8EN-jPaZiAz2fTag9_G8lPbnUkry6h389Jc53um_TYTt8nXS9NsIMPaJ91zmMskg8iFZdPMgZlDzhRuU8th2JvKq-jjzfZsY9ObXzvYcfGDyYga-8j8K6vau-KTxgFXk9jjzQPEGvKjuLy5w9pBd6vV94SrxqMYi99h9evWl0A7nRMho854xIvdk8Mzzy7xI8ajXBOxlQ8ztffue9y9lbPXY5ALsgWHo8VHTkPOwq6rvQTye9d6KEvaH3hDp5E6I9JwEDu5DD3LtSk0U9zvxqvDpm0btes4E8_kb5u_xcyDrJ2lC9IN90vUjZIbltWG69ORGYPA_jQTnKNPo9E3vNvFmGYTj9lR-9LpNcPb5Yp7jE93S9J2ZeO3P-EDndsf28sco7PSaETjiLBl8807yjvT98QThU0U49jlD9vDeX27nQ4Ss9X2InPSbsvLkvUPK9qFycvUOAv7cMjCE8uOInvX3Vw7iPoII96IoyukK-Ijgiy508WlKkvBy1ADnRuny9J3U4vJg2VTmVmmw5ZqQ5vPUe2zjnItk8A8z8vVJJyDnYl1G9iuPlPBHUATmID-w8HNP3OVzznzfmVWI9U5JVPQAuKjjJy3o9-rYQvt1TpLjmiqc9nBUBPnlkIzc9k-K8V8YLPTbNNji-lTa9tMBIPRXvMTkJERU9LKdzvRsJODjtCKs75W2bPEfKWDhNW6287-u4uvDVn7er3xa9DfsdvqO8_rhR71M9bHESvfV-tTc1rL692BFiPCTbaDj2dHo94A_fvT-Zm7ci_-w9NSkFPvN-W7hwM0s9NLPLPdnTp7dNcAC9uxZjvCfozLeb17e9q538vB10C7cgADgTQAlIbVABKnMQABpgHQkAR_krtPf7TOn81PX1BvcHAPbFMP8e4_8qBtzQLx24uAgp_xK5KuyhAAAAHuklARwAA3va0QUHJuQYmeDmMwp2AhIegd8YCtj1FufsFkUW-hdtAPv7uiNAKr1DROYSIAAtNV0VOzgTQAlIb1ACKo8CEAAagAIAAPg9AADgvAAAmL0AAEw-AABQvQAAHD4AAKi9AAApvwAA2L0AAMg9AAAMPgAAMD0AAOA8AAC2PgAALL4AAHy-AACePgAAmD0AAEQ-AAAHPwAAfz8AANg9AABkPgAAuD0AAEC8AACIPQAAML0AADS-AABAPAAAgj4AAHQ-AABUvgAAoLwAAFA9AADoPQAAgj4AAJg9AACAOwAA5r4AALa-AAA0vgAAmL0AAOC8AACYvQAADL4AAIC7AACiPgAA6r4AAPi9AACevgAAgLsAANi9AADCPgAAUD0AALi9AAAwvQAAMz8AAMi9AABAvAAAZD4AABC9AABwPQAA6D0AABS-IAA4E0AJSHxQASqPAhABGoACAADYvQAAMD0AABC9AAAhvwAAZL4AAIA7AACoPQAAZD4AAOC8AABEPgAA4LwAAHS-AACovQAAqL0AABA9AADgvAAAqD0AACk_AACIvQAAlj4AANg9AAC4vQAAgLsAABy-AADIPQAARD4AAMi9AADYPQAAgDsAALg9AADgvAAAyD0AAOi9AABQvQAA-D0AAMi9AABUPgAAgj4AADy-AACovQAAsj4AAIC7AABAvAAAiL0AAIA7AABwvQAAf78AABQ-AAAEvgAAUL0AAIC7AAAwPQAAUL0AAEQ-AAAUPgAAyD0AAEC8AAC4PQAAcL0AAEA8AADYPQAALL4AAIA7AADgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=m1lknj1sA5A","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["7816444158175772222"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"718651257"},"16917928376609375":{"videoId":"16917928376609375","docid":"34-7-17-Z062A42C811EF41CF","description":"In this problem we look at ways to solve problems asking about probabilities using Venn diagrams.This video follows problem 21 from Section 3.1 in the book \"...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3932245/a79491209aa71cf3d76917e6582ef830/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/BTEaOgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DBHs5bdhFfb0","linkTemplate":"/video/preview/16917928376609375?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite Mathematics - Probability measures","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=BHs5bdhFfb0\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhMKETE2OTE3OTI4Mzc2NjA5Mzc1WhExNjkxNzkyODM3NjYwOTM3NWqIFxIBMBgAIkUaMQAKKmhob2J0Z3h0d2Zsd3N4aWJoaFVDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QRICABIqEMIPDxoPPxOYBYIEJAGABCsqiwEQARp4gfr3_Pn_AQAU_gUICQv9A_8S-Ab3_v4A9QX1_fUC_wD4-_8FBQAAAAsK-Ar8AAAA9AUDCfwAAAAODv3--AAAABcE_P0DAAAACg8DAP4BAAD2-gb5AgAAABYF_gYAAAAA8gv__vr_AAAGDAb8AAAAAAL_8fsAAAAAIAAtKzLXOzgTQAlITlACKoQCEAAa8AFsC_oAwf0B_ijq7QAR8f4CgRXw_1IK1ADM_BsA2vL_APEvBf_Y_QAA3h76AOcOLP_uBPH_PA0OAAYFAQA6-fIAFQ_4AR_c9gEs8gcAHej3__AT-gD6ERgBDQf0APwI_f4RACT-7AzdARcS1QH8JAb_HRAMAiHoIf_4-gsF9AQfAvnv__73CvT_5_kI__QIFgoW_-n98xcL-fUo6P3-GAn66goW-DUF5AEj_fYGNgf4__EBBwAj_uUDCBYOBPoWDwHZ_QwCBfLtBe369vsEwAb_Bv4O_uT4Avf9G_YG5skFBPsZBfnZAAH98OYEAO3-7wMgAC1R9DU7OBNACUhhUAIqzwcQABrAB8XnAr8MDbq8O7sGvUGFPj15B5O88kvzPILhHD1Pcd47DIAnvGuU_TpkZEG7qe_hPPyMu75aUw-8xurFu3KnrD4tJWu94Uh7vCv-ur3M90I9mzkEvYkLEL42aq66zo_5O_dHnr1AYgU9gbPSu_gFKjwdQwE5AR3BvK5FED2DnME8Vey5vKz6AT2om6W9ZUH6O61_4Tyzxb-8xE8tvCDrCT7Fbdm8qpk1vCBXVD04rhU9xgTKupdSV76fo8A6tr_OPMkibT1FhNo7JTMoPGIQeD0JYko9_JhFvILUjD1KLIQ9sVjcOhxy_TyFrX4914T8N2g6kD1QIEc8TmmYvN6w7byb1TE92fYsPCmuqjyWSq49-D_ZuzHCCr3b0B49-d9Guztlrz2rOBs8WGB-vDGxGT6p9SM8O0iZPOAUsbwRT9u8cgunPG62I735WHA9CRLAPGycCD1mcVU9C9SivPcGOjwAQno9riQgPHUXrb0ZFzM813MtPIy4BT3QxZU8vtGYPKWFS7zBN028r-EzPGBnhD35Eb-9PWsSPCQJZz0bJr-8l0xbuhiwJD0xHd88VYXIO1CPzT2ZULc8k63LumqgXr3ib0C9Bw8uPBeZI7xnLHW9i7hKPFQlPTrwVcY8KRPpugkTi725Ioy8MbH5ukcpd72RPtI8RcOcu-cH5Lxol4-9mbUYu2j-rT15qHI9zRgLOyWj1LxF3f86GNwuOrJb1TxroT-8gfRiuzx8o7yC56m91n9fuHcXw7xSIhE8BFSbO5NikT2mgT-9g5OsuXdOTr1nfD89kdwNOqkomL398QM9y0V9OOwWnrvj0BE9NV_ZuWPfJD36Wjw8TK-VObhD4DuKjDO8TSQ8uRStAT0EwJ08KvCjuImAXr24U588tpZMueirWj2xYAy9thBkORaNsD2bkoe8nnyZOCKaCj3ibAK8kBb_OQ0zuLu6-Ju8sL4Junh9Rj255qc7BjUANyOsjD30bAa-z3ClOTdD_bvQygI9C-RAObB9ebsCZ5S9xxOLt4HAhD3_moe8MCUluIsWgD1EKsG9fSojOBVHLz3q-1o9njb0uOoQDr2apMe7wNltONWnJr0LKHQ9dD2dOEEXqD1TNSu9tJakOLCyMT02-bW7NcDzNseiSLupwh-9zUg3ODkcyLmfPde9big_t56moDykqd68nfchN9dnHr4sRMc8hPwAOT-Oxj0r3gi-hyK0uCL_7D01KQU-835buOIYrjxvpaI9TCdSuCe1AryFQ289l643uHuOI71ENHq9y-gQtyAAOBNACUhtUAEqcxAAGmAl_QA84x3X4PIz7x7c4eXt7SzWAM0S__j1__v148H-AeCyDzcAH-EV76wAAAAq2vb8LQDvdNfHyQH98B6Z7RQIFn8EFRzN2QAMxvTR0-TiKwjeIy0AFgKpI0Errz9ABxwgAC1rrCM7OBNACUhvUAIqrwYQDBqgBgAAsEIAAJjBAACEQgAAQEEAAIC_AAAoQgAA8EEAAHjCAABIwgAAPMIAAPjBAAAgQgAADMIAAIhBAADgQAAAmEEAAIjBAACGwgAADEIAAOjBAADAQQAAMMEAALBBAAAAQgAA0MEAAPhBAAB0wgAAFEIAAMBAAACYQQAAMEEAANBBAABAQAAAwMAAAIrCAADAQAAAQEIAAIBBAACIQQAAUEEAAOjBAAB0wgAAiEIAAIDBAAC2QgAAHMIAAExCAACwQQAAhkIAAPjBAABAQQAAQMAAAHBBAABgwQAAgL8AAGRCAACYwQAAAMEAADhCAACAQAAAqEIAAETCAABEwgAAwMEAAJBBAADAwgAAQMIAABDCAACAQQAA4MEAABBBAACYQQAATMIAACDBAACAvwAA-MEAAHDCAABAwQAAuEEAAKDBAAAYwgAAvEIAAJDBAADgQAAAVEIAADxCAADowQAAwEAAAJRCAAAMQgAA4MAAAI5CAAAwQQAAgEEAABBCAACGwgAABMIAACzCAAAEQgAAYEEAABTCAADgwQAACEIAAADAAAAEwgAAgEEAAGTCAAAkQgAASMIAAJRCAAA0QgAAgEEAAIDCAABgwQAA0MEAADTCAAA8QgAA2MEAAKDBAABQwQAAQMIAAADBAABEQgAAuMEAADDCAACkwgAAiMIAAIDAAADIwQAAiEEAACDBAACYwQAAnMIAAADBAABEwgAA-EEAAJhBAABEwgAAAMIAAETCAABAwgAAgEAAAHBBAAAAQAAAEMEAAEBBAAB0QgAASEIAAEBCAAAgQgAAUMEAAFBCAAAEwgAAAAAAAHDBAADAQQAARMIAAOhBAACkwgAAqMEAAITCAADgQQAAgEAAAEBAAABgwgAAMEEAAFBBAACGQgAAgkIAAHjCAADgQAAA6EEAAAjCAACcwgAAAMAAACTCAADgQQAAoEAAACBBAAD-QgAAFMIAADjCAAAAQQAANMIAAFBBAAAQwgAASEIAADBBAADwwQAAYEEAAFBBAAAwQgAAGEIAAOBAAAAEwgAAGEIAAOhBAAAgwgAAQEEAAMBBIAA4E0AJSHVQASqPAhAAGoACAABEvgAAdL4AADA9AAB8PgAAUD0AAIg9AAAkPgAAEb8AAPi9AABAPAAAVD4AAEC8AABEPgAAhj4AAHC9AAA0vgAA0j4AAAw-AAAsPgAACz8AAH8_AAD4PQAAqD0AAHw-AAD4vQAAyL0AAMg9AACYvQAAPD4AAJo-AACGPgAA0r4AADC9AAAkPgAAJD4AAII-AACAuwAAZL4AALq-AABUvgAANL4AAEA8AAAkPgAAmL0AAKq-AAC4vQAAnj4AALq-AADYvQAAhr4AAJi9AAAEPgAArj4AAGw-AACAuwAAML0AAGE_AADgPAAAFD4AADA9AAC4vQAAuD0AALg9AAC2viAAOBNACUh8UAEqjwIQARqAAgAAuL0AAKg9AACIvQAAH78AADS-AAAMPgAAND4AADQ-AADgvAAAJD4AAKi9AABkvgAAUL0AAAS-AABAPAAAgDsAAPg9AAApPwAAqL0AAJ4-AADoPQAAEL0AAIC7AAAMvgAAED0AACw-AAA0vgAAmD0AAOA8AACgPAAAML0AAIg9AABQPQAAhr4AADA9AAAQvQAATD4AAAw-AADYvQAAcL0AAJ4-AACovQAAUD0AANi9AAAQPQAAiD0AAH-_AACAuwAA-L0AAMg9AAA0PgAAED0AAIC7AADYPQAAFD4AAJg9AAAwvQAAUL0AAIA7AAC4PQAAJD4AAPi9AACgvAAAqD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=BHs5bdhFfb0","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["16917928376609375"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"612735516"},"383753005836522159":{"videoId":"383753005836522159","docid":"34-2-3-Z64183323F6AA4625","description":"Specifically unions, intersections and complements.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3468183/57db2b75b675d9b74fe1f6fa8d767ffc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/AoPlEAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7pj5ht2lsRo","linkTemplate":"/video/preview/383753005836522159?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Venn Diagram Notation","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7pj5ht2lsRo\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhQKEjM4Mzc1MzAwNTgzNjUyMjE1OVoSMzgzNzUzMDA1ODM2NTIyMTU5arYPEgEwGAAiRRoxAAoqaGhvYnRneHR3Zmx3c3hpYmhoVUNiY1JwMGw0cnR2el96eTFRcXRIZDVBEgIAEioQwg8PGg8_E9oCggQkAYAEKyqLARABGniB9wwH_P4DAOsD-Ab4AgAAE_cB9_YBAAD_9Qb5-AT-AOn8EAUEAAAA6wP7C_0AAAD2_vsI9P8BAAQE9wcEAAAADPoAAAEAAAAM_AsD_gEAAPb_9AID_wAAB_sHDP8AAAD2DwEDAQAAAPga9_4AAAAABf0C-QAAAAAgAC3EQtg7OBNACUhOUAIqhAIQABrwAXYg9v-U__z7ZebpADLwDwGB-hH_bg7EAN3uKQHsBvAB_RryAAXiCf7ICOT_2fwhAPL17P5JNxMAD_8V_0737gAaNg0AUNvtASnpFAElAQX-3PwV_wjsHQAWCMv9DgAA_BcAMP35AcL_IBjGAgwYKAArIQr_Ab7_A_PrPgT_Ei4A8A3lBe0CDgLC7wX3BA03_hHo3gHuHw_39TDxBQcg-gX97gb0L-HR_S_98gg5BhP81fb-B0kC6gL1FRQI-QsQCMDyF_Ub4fMC4Oj27h7b_gH1BPsD7hX_AO4r_QPVxfT2_8_jCNsDDgLe2QbsD_TlAiAALcb9Bjs4E0AJSGFQAipzEAAaYFMKACPbHtieHhDltcTP6v_awyEY1O__7Mz_4SGj5PEV6M7rJP8h9x4GngAAAAHQEikKAA5_8Of2FffbCdDl4QUSfGQTF5K1PhQA1e4k4a7fMdQrGAAA-803LMvKURaz-iAALXmuETs4E0AJSG9QAiqvBhAMGqAGAAAgQgAAEMEAALRCAACAwQAAAEEAAIBCAADYwQAAJMIAALbCAADQwQAAQMAAAABAAACgwQAA4EEAAEDBAADAwAAA4MEAACDCAABQQQAA4EEAAKDAAACAQAAAoMAAAIhCAAAsQgAAkEEAAADBAADowQAAgEEAACTCAACgwAAALEIAAEBBAABMwgAAjMIAABxCAABEQgAA-EEAAFDBAADAwAAAuEEAABjCAACEQgAAQEEAAABAAAAAQQAAoEIAAFhCAAA8QgAATMIAAEBAAABIwgAAuMEAAIBBAAAMwgAAiMEAAEBBAAAMwgAAPEIAAIBBAACYQQAAaMIAADjCAACAQAAAkkIAANrCAAA0QgAAgEAAAEjCAAAAwgAAYEEAADBCAAAwwQAAkMEAAChCAABswgAAMMEAACTCAACgQAAAEMEAAKBBAAB0QgAA0sIAAGDBAAAQQgAATEIAAMhBAAAgQQAAJEIAANjBAACIwQAAmkIAAJhBAABAwgAAkMEAAKDBAABgQQAAAAAAAKhBAAAsQgAAhsIAALhBAAAIQgAAoMAAACjCAACAQAAAgsIAAMRCAACAwAAAOEIAAMxCAACoQQAAGMIAAKDAAAAgQQAAwMEAAJpCAABEwgAAaEIAAIpCAADwQQAAAEAAALjBAADQwQAAcMEAAGTCAAC6wgAAEEEAALjBAACMwgAAgEAAAIBBAABgwgAAvkIAAHTCAADAQQAAiEEAANDBAABEQgAANMIAAEBBAABAwAAAREIAAJBBAADAwAAAQEIAACDBAACOQgAAVEIAAERCAAC4wQAAEEEAABDCAAAoQgAAkMEAAChCAADIwQAAqEEAAJBBAABYwgAAAMIAABDBAAAQwQAAEMEAAAzCAADIQQAAiEEAADxCAACAvwAAEMIAABRCAACgwQAAQEEAAEjCAABwQQAAuEEAACDBAAAQwQAAQEAAAJpCAACMwgAAqMEAAAjCAAAUwgAAOEIAANhBAACwQQAAJMIAAOBBAACAvwAAUMEAAKBBAABYQgAAgEAAAMDAAACGQgAAwEAAADzCAACAQQAAwMAgADgTQAlIdVABKo8CEAAagAIAAIA7AABsvgAAVD4AAKo-AACgPAAAED0AAAQ-AADWvgAAXL4AANg9AAAwvQAA4LwAAI4-AACePgAAQLwAAIC7AACWPgAA2D0AABC9AAABPwAAfz8AAHy-AACAOwAAHD4AAIi9AAA8PgAAoDwAADC9AADYvQAApj4AACw-AABQvQAAHL4AAMg9AAAwPQAADD4AABC9AABkvgAAfL4AALg9AADgPAAARL4AAMg9AACoPQAAVL4AAIg9AADYPQAABb8AAMa-AAA8vgAABL4AABw-AAD6PgAALL4AAMi9AABQPQAAFT8AAOg9AAAsPgAArj4AAKi9AADIPQAAcL0AAIi9IAA4E0AJSHxQASqPAhABGoACAADgPAAAdD4AADS-AAAdvwAAdL4AAIA7AABAPAAAyD0AAJi9AADePgAAQDwAABS-AABQvQAA6L0AAOC8AADIvQAAFL4AABc_AADovQAAfD4AAJg9AACAOwAAcD0AAHC9AACYvQAAuD0AAGS-AADYPQAAqD0AAKC8AADgvAAAqD0AAOC8AAA8vgAAHL4AAHC9AADmPgAAlj4AAOi9AAA8vgAAJD4AAKA8AABcvgAAiL0AAHw-AAAEPgAAf78AALg9AAC4PQAABD4AAPg9AACovQAAHD4AADQ-AABAvAAAmD0AABC9AAAMvgAAEL0AANg9AABEPgAA2D0AAIA7AACIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7pj5ht2lsRo","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["383753005836522159"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1027022720"},"6146798669405809941":{"videoId":"6146798669405809941","docid":"34-1-3-ZB317DF17CEE6EAC7","description":"In this problem we look at ways to solve problems dealing with matrix algebra. In this problem we look at matrix multiplication. This video follows problem 35 from Section 6.1 in the book...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4109310/d343b31f1da9ca6d9aff6872e0b2e8fd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2T5XPQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmYrXi4-U5ps","linkTemplate":"/video/preview/6146798669405809941?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite Mathematics - Matrix Notation and Algebra","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mYrXi4-U5ps\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhUKEzYxNDY3OTg2Njk0MDU4MDk5NDFaEzYxNDY3OTg2Njk0MDU4MDk5NDFqiBcSATAYACJFGjEACipoaG9idGd4dHdmbHdzeGliaGhVQ2JjUnAwbDRydHZ6X3p5MVFxdEhkNUESAgASKhDCDw8aDz8TvweCBCQBgAQrKosBEAEaeIH09Pn-_QMA_QALDvgJ_AITCfz89QICAPYA9fQDAv8A6-4KAAT_AAD6CvsDAgAAAAcGAwX5_gEADA_vAAMAAAAhDgMEAAD_ABoQ_wD-AQAA9woI_QMAAAAM_QQA_wAAAP4I_gACAQAAAQIJAAAAAAADDAMEAAAAACAALeeY3Ds4E0AJSE5QAiqEAhAAGvABfyj6_9Xq5P_t_P0A0-zdAI36D_8zO-D_1O0L_7wD4QD3KPAB0ekOAMQP-v-6GQgAJOzY_w3h0gEk1vD_WOPkAAEbEwEl2QsAPQD9AAfl7P76GUcCEfgf_xjX0gMO_-MAE-ko_fYK4QLtA8ICD_4-AQ0IKwQR0xAGANQJBfjwIgMB_e3-3CHVAeMDCvTpByUBG_HNAgwpB_n2K_IEDvQKBu7wCv8ILtX-K_3zBxBO6v_D-wMBDPrvCgQHLP8CKgv08_cmAuX8Bf8A-PsE_-7w_Avo8wXn-fEOEwTq-v_qCPPx7_YM1yAO-_cD_wcO9egBIAAt-ecUOzgTQAlIYVACKs8HEAAawAcrhO2-NwvFO7Nsubslm0Y9hHZDt0C2Fr2azJ28612yvFzDFDzuc7E9BjGKu6hkKj38jLu-WlMPvMbqxbv9vXQ-klRLvQOx7DyHNCq-nmmoPbZyZbwR_D--f2B4PRBEErwQhHq9OpzUPF3vKL1-eXw9GcWyvBaePDxiUSy9ZFKoPKiWY7xPCHw7ctJFvd-KRLx9ADc9-1wNvXU_pzp4JTk-ohEJPHZyALy-FN49pKSMPZ0PTzxeLiK-TY-cPFidpjz-bpA9x-xyO6FzDT3osLE87y-KO4uU3LwUvYI9IVGyPeverzyBpcS8YctmPZG0QDxdTi49MQP6vK13rDsvhvK9dJB8vP0hrDwprqo8lkquPfg_2bsP6Ry9zdNPPYl1Dz00tVE9Z_8NPcaJ7bvThuM9zHZqPdZ0vTzDq3Y8BwIJvSChHDyQJBC8EN-jPaZiAz3PpK09YGQ4PObilLxngjw9eg27Pd1sYrxZJFe9--Z-vP2FgTtvnX-850EwPNvapzze9WM9Y875u_3tmTpFgPM9vGG2vXsvHTth3qM8hjzivVlJcbs845Y8J76aPJjKsjqLy5w9pBd6vV94SrznFh-9jUepvPkDs7oOPgM95zrIvS8zbDzr6gg8YGYuPTN1MrxmHr-9hS1sPWoxW7vSUnm9bHEyPQD17rtAnkI9oiWPvII1lDsR_zA93mtNPUfJ6TsNm6I9s2DivGET7bnMrC89xb2zvbqhxjp19Xm9tbe1vaz_lLohfeo7X1ntu4C7CTvKNPo9E3vNvFmGYTgydVe95VKLPSq3LTkoYSa8iD6pvKbmPDlNx1K8BOx-vDKGpDpj3yQ9-lo8PEyvlTm8d_U7yywCvb6YAbknpeC8A46OPAG3-zjzqmW66kRdvYspQzrJOAY9vBUzvWUJWrnIdI08x5s8vcSgkLhCBtG7tlDNvItFJrnVU5C8Qi08vTTRazehpUY9ZTs6PfB_vzgjrIw99GwGvs9wpTmu_dM8pYmSvPUHMTjbm7k9Xg7gPGZUHDg5BJI7DwoKPramqbca5-U8XQ9rvbiwjTfJQzq8H1maPTfzBjenosI8HkScPYRnmTi81hg8MbOPPLpFtTilUkc8YIE-vb_m0jeo1xY84V55PbfDiDftHT89iYMfPO2Ixrgs7I48l65gvZPIlLjDEYM5UFUhvYShK7cgDee8FSoOPR4uvjYNEkc8dHz0vVZYWbhCy189Yxq3PW6QjjiYk2U7gAvSPZjkD7kX8d28X6RbOhiG87dy7L-9yKt4PRfZjTggADgTQAlIbVABKnMQABpgC_QAPfk12uUKEwLs8uHvzOXyxz7J-__D5P8D79zyGAzN2fUnAAnTLN-qAAAAJ_IMDw8A8XOg3e81AxYcwML-Ig1_JeYI49gR-b8AOiTk6Tvvzv0eAP3ZsTw9Qb00KAhJIAAtxQohOzgTQAlIb1ACKq8GEAwaoAYAACBCAABQwQAAmEIAALbCAACwwQAAwEEAANBBAACAPwAADMIAAKDAAAAUQgAAAAAAAGDBAADQQQAAgL8AAIA_AAA0QgAASMIAAKBBAACYQQAACMIAANjBAACiwgAAmkIAAJrCAABAQQAAwEEAAEBAAABAwQAAQMAAABzCAADgQAAAQMIAAAxCAAC-wgAAEEIAAFDBAABUQgAAuMEAANhBAAAIQgAAqEEAAMDBAADAwAAAgEAAABzCAABAQgAAmkIAANhBAAAUQgAAPMIAABTCAAAQwQAAJEIAAHDBAADgQAAAMMIAANjBAAAUQgAA6EEAAAhCAADwwQAA0MEAAGjCAABAQQAAmMIAAEDCAAC4QQAATMIAACjCAABMQgAAdEIAABTCAAAAQgAAUMIAAKhBAAC2wgAA4MAAADxCAAAQQQAAgMAAAKhCAADIwQAAAMEAANDBAACIQgAAqEEAAKDCAABgQQAAgL8AABDCAAA8QgAARMIAAJhBAADoQQAACMIAAAjCAACoQQAAAAAAAJZCAAAQwgAAoEAAAHhCAABAwQAAPMIAAIpCAACYQQAALEIAAOhBAACIQgAADEIAAKhBAABQwQAA2EEAAIC_AAAcQgAAoEEAAIrCAAAAwQAAqMEAAMDBAAD4wQAAgEAAAABAAACGwgAAXMIAAKDBAAAAwgAAAMIAAARCAABAQAAAJMIAADhCAABQQgAA4MEAAIJCAACIwQAANEIAAAzCAAAkwgAAQEAAAADBAADAQAAAgsIAAIC_AACaQgAAAMAAAMBBAAC4QQAAUEEAADjCAACoQQAAYEEAACBCAAAgwQAA4MEAAKbCAABkwgAATMIAAEBAAACowQAA2EEAADhCAAAAQAAAUEEAAFDBAADYwQAAnEIAAHBCAACQwQAAAMIAAIDAAAAwwQAAnsIAAKjBAABAQQAA4MEAAMDBAAAgQgAA4EEAAPjCAACAwQAAUEEAAIjBAAAQQgAASMIAAHjCAAAowgAA-EEAADDCAAAYQgAAoEAAAIA_AABAwQAAwMAAAChCAAAAwAAAUEEAAIJCAACIQSAAOBNACUh1UAEqjwIQABqAAgAAuL0AALq-AADoPQAAfD4AACw-AADaPgAAgDsAADe_AACavgAA4DwAAN4-AACavgAAhj4AAAQ-AAA0vgAALL4AAP4-AADIPQAAbD4AADc_AABtPwAA6D0AAOA8AACIPQAAJL4AALi9AACGPgAARL4AAIg9AAB8PgAA3j4AAJq-AABMvgAAnj4AAIg9AADIPQAA-L0AAAS-AAD-vgAAjr4AAPK-AABwvQAAoLwAACS-AACGvgAAQLwAAMo-AAAHvwAAUL0AAGy-AACmvgAA-L0AAJY-AACKPgAAJL4AANi9AAB_PwAA4LwAABQ-AAAMPgAAhr4AAMg9AADgvAAApr4gADgTQAlIfFABKo8CEAEagAIAAEC8AAA0PgAAoLwAAB2_AAC-vgAA2D0AALo-AABcPgAABD4AAAw-AABQvQAATL4AAEC8AADgvAAAcD0AAKA8AAAwPQAAHT8AAPi9AADiPgAABD4AACS-AADovQAAZL4AAKC8AABQPQAA6L0AAKg9AADYvQAAqD0AAHC9AACoPQAAiL0AABy-AAA8PgAAUL0AAFw-AAC4PQAALL4AAKA8AACKPgAAQLwAAKA8AABAvAAAEL0AAKg9AAB_vwAA4DwAADS-AADYvQAAED0AAHQ-AADIvQAARD4AAIo-AAAsPgAAmL0AAMi9AAC4PQAAyD0AAAw-AAD4vQAAoDwAAHA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=mYrXi4-U5ps","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["6146798669405809941"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1853046479"},"5283047873593758409":{"videoId":"5283047873593758409","docid":"34-1-7-Z9C117D6C66EE743D","description":"In this problem we look at ways to solve problems that can be solved using tree diagrams. This video follows problem 27 from Section 1.4 in the book \"Finite Mathematics\" by Daniel P. Maki and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1031964/0376e2963ec9bf330aec7160e117d91c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/vi-fHwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOv5L-fhUDW4","linkTemplate":"/video/preview/5283047873593758409?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite Mathematics - Trees","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Ov5L-fhUDW4\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhUKEzUyODMwNDc4NzM1OTM3NTg0MDlaEzUyODMwNDc4NzM1OTM3NTg0MDlqiBcSATAYACJFGjEACipoaG9idGd4dHdmbHdzeGliaGhVQ2JjUnAwbDRydHZ6X3p5MVFxdEhkNUESAgASKhDCDw8aDz8T-wWCBCQBgAQrKosBEAEaeIH2-_v7-wUA9vkGCQ0F_AH3CvsE-f39APYA9fUCAv8A-PYEAAsAAAD-B_QH_AAAAPIA-gkBAAAAEwP7BgQAAAAgDgMEAAAAABYJ9gj-AQAA9fgHAgMAAAAABPv-AAAAAPQJ-v8CAAAAABH9_wEAAAD7__oFAAAAACAALVmR4js4E0AJSE5QAiqEAhAAGvABcBfb_4H33_ku5-sAIgLTAYoe0P9dDM4A2xQSANXw_gD5-t0A9fwUALIg-v--KBoB2voC_xMcCQAbDQb_HejvAAAMDQBF_QcALgIHAB8IJv_cCvkAEwgpAAkC4gH05-cA-RMn_Qj73AHyBOIB9E0RAif8_fz58hUE0xIMAgfzFgAU5fcA6g8F_P_y7f_yAw8EMfTi_xj74P8DLP4DB_IpA-cLGfcb_8z8AQv7_jnx_AEb7BIAEAHgAegLAgAMMPYA-Q78ByDw6QPlJvIF_OAKCBX2DgT2IQcF_R_1Bwz1CQDqAvcB7gEB9_7oBgMNE_XxIAAtF-0fOzgTQAlIYVACKs8HEAAawAf67wG_gRtvO_7SYr1stQc-6AC3vPFROj3HIoc9fREjvBUDJLwrUfY8c77YPDp0erwN47a-Bi5vvWsz5ztRv4s-HWwWPZvocz1ZDGi9CmKFPVCal7zn_iq-Xcv_PEh0Kjyn7PS9oTPEPO7Kz7sRg4o8RnCtvOs9z7thgmC7bxYKPRi6bbyX1J47rFuYvaHQl7w_P2c9e2GXvNILDryYrbs92RshPNm84Dxf8Ok9IL28PHUOlDyXUle-n6PAOra_zjz-bpA9x-xyO6FzDT1FaAQ-KwtQPYkGLbsetYM9_tj_PIkevrvZ-vM8bFXHPRrrUbzyCO49exTOvceArLwMyIO9_xmvPF7xdTuI6he9CACOPOjjEDsH5He99bybPFAqq7wqcJI9ZXF_vBv2VrwsRRI-oNw7vc-JmDxEFNM8R9KJPF8WyTzyM788qmvjPHRiDz25vx895_mIPRvNmzwJu9E7HLbNPe96RLz-J3-9qNOROpeTqzz61486yKX7vPxEFDynNRO5NvY2vLDQYjzJU1s9AICNvagwWzzFIPA8UxIIPSuJbDyPlvm8MrL9u2teuLt2oX49ognUPNISIDoGdcu97x2FvWEWVblB2Ak9QliiveQ_Irpd2pU9Qx2mPR36Lzob2gC-Sc8-vFF9rbrgTde9PisEve018zo7iQy8BGkQvUEWnjta37Y8JW4fPadarDsBG2u9CQg8PdPz8rk18ek8t3SWPPnrA7hpzD-90GM0vciPnboo4H86NHaDPX_jpbrkKTA9pVYOvfHYDTtp5mS9nbv6ORhWU7lG7y-8e7SjOjZ7LzlnLLW8MjgPPVwMsbfVFok7LECAPZb0Rbn-9YU9AW0Lve72Hbom2Y88srYOPZcUlDnpnB88iMllPNpI_TnEAC48_g-wPES7rLepYg89GwELvPEYyziRQok9ouM0vIaWkrhbEQu9UJztvHDTAzn0I7Q87FwnvTLoSjdar4M9AY_DvabRWjlkHEg9Cc1kvCLqibczfRo6O4lovZG6pLgfNVK6FRvzPGYSyLiBOko9bdhAvTker7cH8Vy7EAGMPYOdXbjqEA69mqTHu8DZbTjKUaC9cRL3OtqOFbX-XFk9cxaBvQIwBjjtCKs75W2bPEfKWDjlBNK8MqqxvTQ39zf-GYQ9CUZvvYWzE7YrtD286ZoJvZ59Tbf-bYW9s4qrOkX4tre39hk9DlVHvWypWLijubQ9yH2LPYDxgzhwM0s9NLPLPdnTp7c3NY46goFRPZUsRjfj8b69c5NCvTbHsLcgADgTQAlIbVABKnMQABpgIwgAO-0Vw9wJIeAE5eny1PYLzAbFA__X6__85bTxChbetwoCAP7OAeyxAAAAROgWFB4A6We-uNYV6AQxzdvuHRN_KyYN-e0GGLwE__Ti_jj_vvgPABAAviw-MNUxIQ0sIAAtBi8tOzgTQAlIb1ACKq8GEAwaoAYAAJhBAABAQQAAUEIAAAjCAAAAwgAAeEIAAABCAABgwQAA1MIAAHDBAABIwgAAQEEAADDCAACYQQAA4EAAALDBAAAwQgAASMIAABBBAAC4QQAAwMAAADDCAABQwQAAikIAAIhBAAAAQgAAgEAAAEDAAABAQgAA2EEAAMBBAAC0QgAAmMIAAOjBAACMwgAANMIAAIhBAACIQgAAIEIAAChCAADIwQAAEEIAAOBBAACgwAAAwsIAAABBAABgQgAAHEIAAMhCAABAwAAAQMIAAODBAAAwQQAA-EEAAABCAACAwAAA2MEAAABBAAAcQgAAjEIAADxCAAAAwAAALMIAADDBAABQQgAAAAAAAFDCAABsQgAA2MEAAAzCAACowQAAREIAAABAAADQwQAA6MEAAIjCAACKwgAA8MEAAExCAAAAwQAASMIAAM5CAAD4wQAAuEEAAFBCAAAAwAAA8MEAADRCAACYQgAAIEEAAOBBAADaQgAAYMEAAHjCAAAwwQAAyMEAANDBAAB4QgAAoMAAAKBAAACgwQAAgL8AAOhBAAAUwgAAIMIAAFhCAACwwQAAEEIAADDBAAAAQgAAokIAACBBAAC4wQAAqMEAACBCAACAwAAAAEAAABDBAACIQgAAGMIAAKDAAAC4wQAAYEEAAL7CAAA4wgAAYMEAAMhBAABAwAAAAMIAAFDBAAAYQgAAIEEAALDBAADAQAAAMMEAAAxCAACAPwAAGEIAAOhBAAAwwgAAkMEAABxCAAAIwgAAQMEAAI5CAAA8QgAAoMEAABBBAAAYQgAA4EAAABDBAAAoQgAANMIAAODBAADAQAAAmMEAAJ7CAABgQQAAcMEAAAxCAAAgQQAAqEEAAABBAABwwQAAsEEAALBBAABMQgAAsEEAAADBAAAcwgAA2MEAAKBAAACkQgAAmMEAALBBAABcQgAAQMEAAGBBAACQwQAAmEIAAM7CAACgwAAAcEEAAFBBAACQQgAAikIAAGDBAABQQQAAHEIAAADBAACQwQAAgMEAADDBAADQwQAAYMIAAADAAAAYQgAAqMEAAJjBAABAwCAAOBNACUh1UAEqjwIQABqAAgAAML0AAMi9AAB8PgAAJD4AADS-AAA0PgAAUD0AAPa-AAB0vgAAmD0AAIA7AACovQAAND4AAFw-AACgPAAAXL4AAJo-AACIPQAAXD4AAEM_AAB_PwAAUD0AAFA9AABEPgAAuL0AAKA8AAD4PQAANL4AAHw-AACiPgAAmD0AAIa-AABAvAAAdD4AAIg9AAAQPQAA4DwAAEy-AACmvgAAXL4AAJK-AAAsvgAA2D0AAKi9AADYvQAABL4AACw-AACivgAAyL0AALi9AABUvgAAqD0AAJ4-AAC2PgAAqL0AAIg9AABxPwAABL4AAFQ-AAA0PgAADL4AAFQ-AAAkPgAApr4gADgTQAlIfFABKo8CEAEagAIAAOi9AAC4PQAAuL0AABe_AACovQAAiD0AAI4-AACoPQAA2D0AAAQ-AACAOwAADL4AAHC9AACgvAAAiD0AAEC8AAAMPgAAEz8AABy-AADiPgAA4LwAAIA7AABwvQAAHL4AABA9AACoPQAAML0AAOA8AACgPAAABD4AAEC8AADoPQAAyL0AALi9AAD4PQAAuL0AABw-AABQPQAAFL4AAJg9AABEPgAAyL0AAOC8AABQPQAAFL4AAOA8AAB_vwAAoDwAAFS-AADIPQAAoDwAAAw-AACYvQAA-D0AAFQ-AADoPQAAoLwAANi9AABQPQAAuD0AAKg9AAAcvgAAUD0AAJg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Ov5L-fhUDW4","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["5283047873593758409"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4011749361"},"7746559343159806917":{"videoId":"7746559343159806917","docid":"34-10-9-Z35FA213D279CDC16","description":"In this problem we look at ways to solve problems dealing with equations and graphs of lines. This video follows problem 23 from Section 5.1 in the book \"Finite Mathematics\" by Daniel P. Maki and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/221868/346a072b44aff06c83636df2641a3b25/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/x8baTwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZ77L2NfUg28","linkTemplate":"/video/preview/7746559343159806917?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite Mathematics - Review of Equations and Graphs of Lines","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Z77L2NfUg28\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhUKEzc3NDY1NTkzNDMxNTk4MDY5MTdaEzc3NDY1NTkzNDMxNTk4MDY5MTdqiBcSATAYACJFGjEACipoaG9idGd4dHdmbHdzeGliaGhVQ2JjUnAwbDRydHZ6X3p5MVFxdEhkNUESAgASKhDCDw8aDz8TxQSCBCQBgAQrKosBEAEaeIH0AwL-_wEA_AAMD_gJ_AILDPX39QAAAO348PwFAAAA-PYEAAwAAAACCP8C_QAAAAD78Q34_gAAFQT0APUAAAAgDf35-wAAABcG9fn-AQAA7f4A9gIAAAAJBQQBAAAAAPkGAQYEAQAA-hIKDQAAAAANDff9AAAAACAALdgy1Ds4E0AJSE5QAiqEAhAAGvABagMHAa4M9vwXCOsA_QMFAYEFC_8mLOn_zgT9AM8DDgDyBe8A6v7iAO_9EwHpFBX_L_jY_wnv_wARAO3_EAEKAA4GBQEp2AwBNeIZ_xID9v_tBv3__wATACX38QDuCPP8EAAg_uHr2gAI8MsHEQIWAAHwHv3n9gkF7_P-AugYAALs8AH89wn1_-r4Ff3jAxkBHu0CAuIS__3tEvb6FAX--_YIFAQV_9f8F-foABsCAP_8_fv4GejsAhAYGv_0DwT68vj-BQUJ_f_46vn-Cu0G_gblCgXdCQwCFxP_AvbH9f_mCQH12BoMBuDw9QT07Pb-IAAtbidIOzgTQAlIYVACKs8HEAAawAfF5wK_DA26vDu7Br14e8A9aVGfu4yBt7uC4Rw9T3HeOwyAJ7xrlP06ZGRBu6nv4TwdycW-ZgiRvH2ljT39vXQ-klRLvQOx7DwaG7W9rM7FPf3j97vgu22-XoqWPRa5TLz_LEy9hNU4PbXZv7s7lQI9n0Q6PCe0EztwLW47oyuHvLNWmbzyRsU7zgODvbSPNT0p6KY9PS-Avf8_Lj0g6wk-xW3ZvKqZNbyDpQo-GQxEPctpbDsYfSW-SaGsvAovQbyswPU8tK5RvbDP9zyMsV09YUAFPUL2EL1qPq09TDPdPTlOo7u9bKC9JuZUPaEWvToGlg09IMo8vCRkezxbPx297sMJPOfZUTxEb7E83AN-PZtntrz866677h5lPYgDsjw7Za89qzgbPFhgfrw4aD8-h9YvPPinNzur3DW9-N6-OlRtnzkJZMA8z1l1PYVjsTz9H3Y9IvhEPcvydbz3Bjo8AEJ6Pa4kIDxf3We87GQVPXL3XjxQCBM9VWMuPMYWgjtBuW28dbbbvBDVijykGoY9YXxHva6njLsCE6M9lM98vZCa-jt4bUU9CQQQPXHOozzSUY489c4yPJ8EdDs30kO9VcJyuwK6TLsCyIo9OIyNvRTHZLu15Ew8iPlNPecXpTs6kKq9C1ApvQ9xHryUmpe989jkO2ru8DuEPwk7FY2FvWh8GTsR_zA93mtNPUfJ6Tuhkik9QKAUPONqiTuWLx49rtiPvfY_4bpAwSW9KdaUvYg_lzlzVlq9RxB4O9q5XTveuaY9O2gbvdoZxzmykkC9Lb8CPY8myLkmXlQ89mE9vN7xCzp4Xs-8WV_uvN2CGDmobH09f-vYu6fhVbrahra88BSyvKKX1bq8lDo9ij_KPAUg4Te273a8I9cNvVy9JLmjRyO8PXSLPFpSSjmeZ4W7U2JyvUeHrbf-sEo8xCAVvemxBzfVU5C8Qi08vTTRazd-v_085B9MPQdrKDlar4M9AY_DvabRWjkEa4E8rQx0vLGKAzgajgQ7IUL3POWrPbjo2AE9EhNUPaqcgrbNmSg9_BxfvV2ArzbX9CU9nzIIPUkMcLjGEns8sLRCvGmWKDewrZ-8z7SOPGLQvre3xDs9P96QvFHfhTjjtQE9fDdMPTFHj7btHT89iYMfPO2IxrhOwZC9P75OvVNOZTfVuX08jBMfvXFzMLUZE4y9J1BEPBX4Vbgy7qw9XCa-vexqQzci_-w9NSkFPvN-W7iYk2U7gAvSPZjkD7kYqJi709YtPaNMTrhLKY698iiQPeAzXLggADgTQAlIbVABKnMQABpgLv0AT-cV3Of6LuLt3twG8OzxxwjL_P_63v_e9c3W_gzXqusH_wbM7_irAAAANdfm_xAA4XC_xNsXCAsf6OD6DyN_ARcMzuAvCaf_9wze5jYVxhoaAAgFpzdTErVASBgjIAAtrHwiOzgTQAlIb1ACKq8GEAwaoAYAAFRCAAAcwgAA3kIAAIzCAAAAAAAAIEEAAGhCAABQQQAAfMIAALBBAAAgwQAAwMAAANhBAACoQQAA0MEAAPBBAADYQQAAOMIAAOBAAAAAQQAAJEIAAHBBAADAwgAAokIAALjBAABAwAAAyMEAAKjBAAAwQQAAgEEAAEDAAABgwgAAaMIAAADAAACEwgAAXEIAABjCAABAQAAAgEAAAGBCAAAYQgAAMMEAABBBAADwQQAAkkIAAADCAADoQQAAQEEAAKBBAACAvwAAisIAAMDAAACAPwAAQEIAABzCAABAQAAAhsIAABDCAABcQgAAVEIAADBCAACYwgAAhMIAADTCAABcQgAAsMIAAKDAAACIQQAALMIAAMjBAAAoQgAAAEAAAJDCAABsQgAAAMAAAOBBAAC4wgAAcMEAAPBBAABQQQAAwEAAAPhBAACcwgAAHMIAAADCAABcQgAAUEEAAHzCAAAsQgAA4EEAAMBAAACoQQAAkMEAAEDAAACwQQAAEMEAAODAAABAwQAAqEEAAABCAAAYwgAAgL8AAPBBAABAQgAAwMAAAIC_AADowQAAXEIAAOBBAAAAwQAArkIAADhCAAAQwQAAyEEAAEjCAADQQQAADEIAAOBAAAAAQAAAuMEAANBBAABQQQAAKEIAAAAAAACgwAAAcMEAAIA_AACQwQAAOMIAAPjBAACAvwAAhsIAAAhCAACYQQAA2MEAALZCAACwQQAAoMAAAKbCAAAwwgAAgEEAADzCAABcQgAASMIAANjBAAD4QQAA0EEAAEDBAAAAQgAAgMAAALrCAACgQAAAPEIAABRCAADgQAAAAMAAALLCAAAAwAAAnsIAACjCAACOwgAAEEEAAFxCAACgwAAAgL8AAKDBAADwwQAAIEIAAARCAADYwQAAEEIAAEBAAABAwQAAQMIAAKBAAAAgQQAAIMEAAADBAAAgQgAAJEIAAJzCAABwwQAAQEEAAMjBAABIQgAAEMIAAABAAAC4wQAAwEEAAFRCAABMQgAAIEEAABxCAACYwQAAwMAAAJpCAACAvwAAwMAAAKhBAACIwSAAOBNACUh1UAEqjwIQABqAAgAATL4AAGS-AABQvQAATD4AAGw-AACuPgAADL4AAEG_AAAMvgAAUD0AAOC8AACOvgAAmD0AAKo-AAAMvgAAor4AAOI-AADYPQAA4DwAAB8_AABjPwAAXD4AAGQ-AADIvQAAoDwAAEC8AAAsPgAAyL0AAIA7AAAMPgAAxj4AAK6-AACAuwAAND4AAHC9AADoPQAAyD0AAFC9AADWvgAAtr4AALi9AAAkvgAA6D0AAKC8AABEvgAAbL4AAFw-AAC6vgAA-L0AABy-AABsvgAAfL4AAMI-AACaPgAAUD0AADC9AAB_PwAA4DwAALi9AABAvAAAmr4AAAw-AACYPQAARL4gADgTQAlIfFABKo8CEAEagAIAAKi9AAC4PQAAUL0AACm_AACCvgAAiL0AAK4-AAAwPQAAQLwAAAw-AACgvAAAjr4AALi9AAAUvgAA2D0AAOC8AABMPgAADz8AALi9AADiPgAAoDwAADA9AABUvgAA2L0AAHA9AADgvAAAoLwAADA9AABwPQAAmD0AABC9AAD4PQAAmL0AAJq-AAAQPQAA4DwAAAQ-AAD4PQAALL4AAHA9AAAcPgAAoLwAANi9AAAQPQAAcL0AAPg9AAB_vwAAML0AAFS-AAAQvQAA2D0AAFA9AAD4vQAAMD0AAPg9AADoPQAAoLwAAAQ-AACAuwAAUD0AALg9AABwvQAA-D0AADA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Z77L2NfUg28","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["7746559343159806917"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2262290258"},"9181173915123760509":{"videoId":"9181173915123760509","docid":"34-11-15-Z5E0735071116C4E9","description":"In this problem we look at two kinds of problems from the review section of chapter 1 that are similar to problems you will see on your midterm or final. This video reviews how to answer...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/468275/fb0b4f7810f0c1198ac73b53dccb7d39/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/DUNKMAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrWjsVmhq0nk","linkTemplate":"/video/preview/9181173915123760509?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite Mathematics - Review of Venn Diagrams and Tree Diagrams","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rWjsVmhq0nk\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhUKEzkxODExNzM5MTUxMjM3NjA1MDlaEzkxODExNzM5MTUxMjM3NjA1MDlqtg8SATAYACJFGjEACipoaG9idGd4dHdmbHdzeGliaGhVQ2JjUnAwbDRydHZ6X3p5MVFxdEhkNUESAgASKhDCDw8aDz8T1QaCBCQBgAQrKosBEAEaeIH_CQL1_gMA9_cBCfgG_gIIAQf69___AP77_PX8Bf4A-vMTAgQAAAD6D_3--wAAAPv9_gf-_gAAFQT0APUAAAAUDAAB_gAAABAIBgL-AQAA8fv8AwMAAAAIBAIKAAAAAPQJ-v8CAAAACBYG_gAAAAD5BAAB_wAAACAALei92Ts4E0AJSE5QAiqEAhAAGvABfw35Abb8Af4H9N0AD_DqAK8MGv81E8gArvsaAc7_7QH0HAgA0fwAAO3u_QGxBCUB-Qfp_xLvDAEy7wD_PfsAAAANDQEs6e0AJA0MAAvw_P7SLQL--fL7ACwR0f79A-cAEuom_SA-2AQK67sICxUjACUfIAUW9SAC9xgdBd0dFQAR9ef60AD3-9D-GP_i9i4H_A7jBQwoB_kWS_UA6hYC--38JwEm1esBFv70AiYREfbZ5R4BKv3hBAfoKAcKDwYD6PAX-fjUIP_k6_fwKOj3AAvp9AXh6gcG2wPkAwDN-AERDvkE6QIBCNz3AP4a3vQQIAAt9YoaOzgTQAlIYVACKnMQABpgK_gAS-AVrMgeCe7Lq8ze9ejv3TPIE__ixf_r98XYGhjr2AIEAPHcDPuiAAAABNwH8QQAC3_cufoiFQIz0r4EI_ppLy8ftcNDJdz1DPriwUgu8yoXAOTrpitOANs9AfkTIAAtuaIbOzgTQAlIb1ACKq8GEAwaoAYAAIBAAABAQAAAjkIAAEDCAADgwAAAPEIAAGRCAACgQAAAOMIAAODBAAAAwgAAAMAAALDBAABQQgAAyMEAAGDBAAC2QgAAMEEAAKhCAAAQwQAAdEIAAAzCAAA4wgAAqEEAAKDAAACEQgAAIMEAAKBBAAAkQgAAcEEAAAxCAABYQgAAkMEAAMhBAADCwgAAgEAAAJBBAAAQQgAAIEEAAIBAAAAQQQAAgMAAAGhCAAAoQgAAgMEAAGjCAACIQgAAGEIAAPBBAABAwQAAqEEAAOjBAAAgwgAAIEEAAJhBAACAwQAA4MEAAEDAAADUQgAAXEIAANBCAADQwQAADMIAAGDBAADIQQAAnsIAAGTCAACQQQAAsMEAAJjBAADAQQAAQEAAABjCAACAQAAADMIAAEDAAACiwgAA-MEAAMhBAAAAAAAAUMEAAORCAAC6wgAADEIAAIBAAAA0QgAAsEEAAIBAAACOQgAAOMIAALjBAADOQgAAQMAAAIDBAAC4wQAAOMIAAHDBAAAUwgAAXEIAAGRCAACowQAA6MEAACDBAACowQAA-MEAAKBAAACgwQAAPEIAAAzCAABAQgAAZEIAAFBCAAAQwgAAGMIAAKhBAADgQAAAxkIAAEDBAAAAQQAA8EEAAODAAAAIwgAAwEEAAHDCAADAQAAAkMIAAKDBAAAAQgAAoEAAAIjBAAAAwQAAIMIAAODBAADowQAAuMIAAChCAABQQQAAwMAAAHDBAAAcwgAAJEIAAKBBAADQQQAAEEEAAExCAAAMQgAAqMEAAEDAAAAAQQAAaEIAAABBAACQQQAAqEEAANBBAADgQAAAqEEAAMTCAABgwQAA8MEAADDBAABIwgAADEIAAGRCAACYwQAAcMEAAGBBAAAwQgAAZEIAABhCAACQwQAAyEEAAODBAADAwAAA-EEAAJhBAACQQQAA4EAAAOBAAAAMQgAAhkIAAGzCAAAAwgAAwEAAAIBBAADgwAAAIEIAAGhCAAAUwgAAEEEAAGzCAAAgQQAAMMEAAHBBAAAEwgAAoMEAACBCAACwQQAA8MEAAOBBAAAAQCAAOBNACUh1UAEqjwIQABqAAgAAqD0AAGS-AACCPgAADD4AAFC9AABcPgAAEL0AACO_AACIvQAAiD0AAAy-AAAkvgAAZD4AANY-AAAsvgAAbL4AAKo-AACYPQAAyD0AAFk_AAB_PwAAiL0AADw-AACAOwAAuL0AALo-AAA0PgAATL4AAFw-AACCPgAALD4AAJq-AAAEPgAAdD4AAAQ-AACovQAADL4AAHC9AAA0vgAAHL4AABC9AABsvgAAEL0AAJa-AACSvgAAQLwAAMI-AADyvgAAZL4AAAS-AAAMvgAA-D0AAK4-AAAUPgAAML0AAIC7AABtPwAABL4AAMg9AABkPgAApr4AAKA8AACIPQAAbL4gADgTQAlIfFABKo8CEAEagAIAALi9AAAMPgAAHL4AABe_AACWvgAA2L0AAOg9AAD4PQAABL4AAII-AADYvQAAdL4AAAS-AABkvgAAQDwAAKi9AADgPAAACT8AAOC8AAC-PgAAUD0AAFA9AAA0vgAAmL0AAIC7AADgvAAA2L0AAOA8AADoPQAAgLsAAHC9AACoPQAAgLsAAIq-AABwvQAAgLsAALI-AACOPgAAJL4AADA9AADIPQAAcL0AAAS-AAAwvQAABD4AACw-AAB_vwAAUL0AAGS-AABAPAAAND4AANi9AAAUPgAAoLwAADA9AAAQPQAAoLwAABA9AAAwvQAAuD0AAKg9AADIPQAAQDwAAKA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=rWjsVmhq0nk","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["9181173915123760509"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3011642350"},"2775037285058409357":{"videoId":"2775037285058409357","docid":"34-7-15-ZD47BEA093F98F3C6","description":"In this problem we look at venn diagrams, sets and partitions. This video follows problem 29 from Section 1.2 in the book \"Finite Mathematics\" by Daniel P. Maki and Maynard Thompson. This is a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4562514/b54df15593d3c30c93ca989966a91bcd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/EG4lMgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dj6lrjfS_3jk","linkTemplate":"/video/preview/2775037285058409357?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite Mathematics - Venn Diagrams and Partitions","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=j6lrjfS_3jk\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhUKEzI3NzUwMzcyODUwNTg0MDkzNTdaEzI3NzUwMzcyODUwNTg0MDkzNTdqiBcSATAYACJFGjEACipoaG9idGd4dHdmbHdzeGliaGhVQ2JjUnAwbDRydHZ6X3p5MVFxdEhkNUESAgASKhDCDw8aDz8T-QSCBCQBgAQrKosBEAEaeIH3Bff8_gIA_PkGBwIH_AIMAPv69wAAAAAK-fX4BP4A6fwQBQQAAAD6C_sDAgAAAP4D_xD3_gEABALtBgIAAAAc-QL1_QAAAAoPAwD-AQAA8fv8AwMAAAAJBQQBAAAAAOsI_gABAAAACBv5AAAAAAAGAwEAAAAAACAALVog2Ds4E0AJSE5QAiqEAhAAGvABffsTAdD70f_h-O7_3u4BAIEiCv4wOOL_v_vqAL0d7wDxB8sA7QPvAPcbAgDKAfD_Iu3a__TyFAA2_QT_U-TmAAkb8wAY6vYBKgAsAQwa_P7tMw_-_gAYARfZ1QP1A9AB_REK_Qj73AEK7L0ICR0xA_kBJAUMAxUB8skH__3m-gH3--AAABz0_fPxB_j-Dx0DEd3u_RoWJADRL-IDGQf9-vP0Gvkb_8v7NP0BBD8I9__o9BL-__r6APwjGQrxEwX42vMrBeUH_Pj8BQIOGuD-AeQA-AX84_QJDv7-_Bfh-voB6vgM2g_wCgEpBALq_u0EIAAt_yEdOzgTQAlIYVACKs8HEAAawAf9FgG_WNHVPFS3hrtV2fc8ElXTPPgwIL3joLm9HG2LPF4FI7xU15s9z5KRPK-49jsU6DO---_cPFnThry14ZA-uhE2vRqJMD16Fy--CDwwPSmf1Lzn_iq-Xcv_PEh0KjzZuIm910W2vF8grbwnwHA99M4ZvE-x6rzRhDw91XZzPV8AS73cmwQ81JPevPztAb2tf-E8s8W_vMRPLbyq9C49R1L3vNQeQDwViMM9dbehvHyAbjzyKMC9r63EPIVzETuEWRI9uOdZPWIgGTzP2QK9CSsAuwa3WjwGYn69HaVcvATmvjpjXmw8Ow4NPS1O67xi9Iw9nn7Qvb52XbtjtB6-NhZ7u39gWDwbKps9WJ1GPd9ML7vv5LO995GbPc39urwb3HE9wfpEvcxiYrwBmbc91qIqvFchijx964M8LKuLN9o20jv9cbE8eES1PbVXejy0OMY7RR0svV5Ugbx1Heo9W3QXvVp6WbzDCpy9STXHPCQpirsK6uW81wRHPcUhFzwWGA08bnNfOymveDtgZ4Q9-RG_vT1rEjzRj6u75DQfvbKRNbxjL589Jv-jPbhiNbxu_Ok9TOStvStzqbscIUi9r9yBPEjAjbuyEci8vUpIve32k7oI29m8kcqePKAeNrw2GqW9W8qePOsqD7w5LZO8FYCQu-Bi6ruZNtK8vFrOvRicLzoanI095McOPZ6R77vmZg08aykgPaA3dDvaxyo9IUs1vYC2uLsuzoO9YQgvvaioyrlzVlq9RxB4O9q5XTs8vfI9SshRvVfBjjlMswy8QKP0PMQV5blx4Dq9LrpLPXIWxzfB0hC8_ZMuPL2rizndKqO8Vz3AvZEGHjkrVX097VycO6gS-bcuuuk7zHlrPRy8TTnljJK9k7kDveN9nrkMjCE8uOInvX3Vw7g4FN49iz2fPTKtt7i_aKq8AdFdO3Fgi7kyZOs81dUZu5k3y7hEDhu8DJvcvGVgmDdB8QM9cU_Bvdc4ezlXQhY8huqBPEQDsjgGzmM9DSsmPcvVS7aiU8E9pSNqPWinTDixE4M8trGzvRWp6Tjb0J49duOYPVAF9bigUM-9Fe-GPcLSAjhL6h-9focnPaN2Ejigzms9zSa4u66rvTcwuyc9_g7FPD6kZLdYvpg9zeaRvZJbHbmr3xa9DfsdvqO8_rjVXZm8EZeCvQdxA7jwuw69xxY9Pb_Sszb2dHo94A_fvT-Zm7fK9HA9IuErPvHLijiVXys8z7yMPcX8Brmtbeq9FDu_PG_S4zfj8b69c5NCvTbHsLcgADgTQAlIbVABKnMQABpgJfYATOIft74FAM3GyOfz9OYIyTXe-__b4__q9sDbCyLFwfwWAA3T_-KnAAAALukCC_wA6nbW2gAqDBIx07foIA9_Hv8gzKIy_cz9JPnk8EYf5e0qAMz9qz0qCMFDB_snIAAtuwgdOzgTQAlIb1ACKq8GEAwaoAYAAHRCAAAwwQAAxkIAABTCAABQwQAAUEEAAFBCAADoQQAAJMIAAODAAADoQQAAFMIAAAjCAAAAAAAAiEEAAIjBAAA8QgAAcMIAAIxCAACAPwAAiMEAAJjBAACQwgAAwEEAAJjCAAAAwAAAuMEAAGBBAAAgQQAAYEEAABzCAAAsQgAAVMIAAMBAAAAAwwAAqEEAAKBBAAAkQgAA8MEAAIBAAAAgQQAAiMEAAPBBAABwwQAA4EEAACTCAACAPwAASEIAABBBAAAgQQAAqMEAABjCAADowQAAoEEAABBCAAAQQgAAPMIAAOBAAABYQgAAYEEAAPBBAACGwgAAOMIAADjCAADIQQAA4MIAADzCAACewgAARMIAAETCAABwQgAAXEIAABjCAAAQQgAANMIAAJDBAAAQwgAAcMEAAIhBAAAQQQAAUMEAAIRCAAAkwgAA6EEAAIC_AACMQgAAgMEAADzCAADQQQAAQMEAABBBAAB4QgAASMIAAKBBAABsQgAAQMIAAFDBAADAwQAAEEEAAGxCAABAwgAAgD8AANhBAAAgQQAAWMIAAJBBAACwwQAA4EAAAKDAAAAwQgAABEIAADBBAAAwwQAAHMIAAAAAAAB4QgAA2EEAACjCAAD4wQAAMEEAANDBAAC4wQAA4EAAALjBAABIwgAA4MAAAMBAAAAEQgAAiMEAALhBAABAQAAArsIAAMDAAABgQgAAYMEAAIZCAACgwAAADEIAADDBAACEwgAAAEAAAPhBAADQQQAAoMIAAIjBAABcQgAAgD8AALBBAACIwQAAyEEAACDBAAAMQgAAGEIAACxCAADAQAAAQMEAAIjCAAAwwgAAuMEAANjBAABwwgAAyEEAAABBAACgQQAA4EAAAIC_AABswgAAtEIAAKJCAADowQAA6MEAAOBAAAAwwQAAKMIAANjBAADoQQAA4EAAADBBAACQQQAAYEIAAPjCAABUwgAAsMEAAIjBAAAwQgAAiMEAADDCAAAIwgAAgMAAAEDAAABUQgAAgMAAANBBAACAvwAAEMEAAMxCAACQQQAAoEAAAOBBAABQwSAAOBNACUh1UAEqjwIQABqAAgAAQLwAAKq-AABMPgAA2D0AABS-AACGPgAABD4AABu_AAAkvgAAEL0AAOC8AAAsvgAAXD4AALI-AAAQvQAARL4AAKI-AAAMPgAAqD0AACc_AAB_PwAAcL0AACQ-AABQPQAA2L0AABQ-AACYPQAAmD0AAAQ-AACKPgAAXD4AAJa-AABQvQAATD4AADA9AABUPgAAMD0AAJi9AACSvgAAZL4AADC9AAB8vgAAMD0AADS-AABcvgAAuL0AAHQ-AADCvgAAHL4AAJ6-AACAuwAALD4AAMI-AAAsPgAA6L0AAKA8AABjPwAAQDwAADw-AACKPgAAFL4AAMi9AAAMPgAAVL4gADgTQAlIfFABKo8CEAEagAIAAHC9AADYPQAABL4AAA-_AABUvgAAQLwAAFA9AADYPQAAuL0AAJI-AADgvAAAHL4AAEC8AAAMvgAAUL0AABC9AAC4PQAAGz8AAFC9AACyPgAABD4AAKA8AACAOwAAXL4AAFA9AAC4PQAAJL4AAIg9AABAPAAAyD0AAKC8AADIPQAA4LwAACy-AAAQPQAAmL0AAGw-AACKPgAA6L0AAIi9AACqPgAAuL0AAHC9AACovQAAMD0AAAQ-AAB_vwAAgDsAADS-AACIPQAAPD4AAIA7AACgPAAADD4AAJg9AABQPQAAUL0AAFC9AACIvQAAcD0AAFA9AABwvQAAgLsAAEA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=j6lrjfS_3jk","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["2775037285058409357"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"514226509"},"6995465591241570468":{"videoId":"6995465591241570468","docid":"34-11-6-Z1D4286420E322FB5","description":"In this problem we look at ways to solve problems asking about probabilities given independent events.This video follows problem 23 from Section 3.2 in the b...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3885079/91fcea591974270e6022bb97f35e0dfc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Zw4iaQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDwjEWdFCDNw","linkTemplate":"/video/preview/6995465591241570468?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite mathematics - Conditional Probability and Independence","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DwjEWdFCDNw\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhUKEzY5OTU0NjU1OTEyNDE1NzA0NjhaEzY5OTU0NjU1OTEyNDE1NzA0NjhqiBcSATAYACJFGjEACipoaG9idGd4dHdmbHdzeGliaGhVQ2JjUnAwbDRydHZ6X3p5MVFxdEhkNUESAgASKhDCDw8aDz8T7wOCBCQBgAQrKosBEAEaeIEG-_r-AAAA-_UN_wcF_gEMEf0E9QEBAO0K8AAFAAAA_QIKAAkBAAD_DgAJ-gAAAP349wL7_gAAAA7zCgMAAAAe_fP6_AAAAAYaBQb-AQAA_PwKBAP_AAAX-_z-AAAAAO4EDfUAAAAABw0LCgAAAAAKAvUBAAAAACAALZbd1Ds4E0AJSE5QAiqEAhAAGvABf_sTAdD70f_dA_cA6fTMAKj3Jv8XR_kAvurzAL8D4gDuGN8A6RQCANMjGv-5Eu7_I-za__De2QAx7wD_RvMG__sg-AEc-_gAKgAsARvY-v7OHxv-8gENAjz21gAZDeb-FgAT_vYpxv7sI9cDDv47AekOMQH58RYE3s0MAfrhGgDm6wH6-iv4AfQGAPbe_gkIIsbhAQ8cGProH-kCCPH4_gjwFvYpM9f_Qt_tAB0j9fjK5_4F-PwFDAQzFf_dFwP-5wMVANf7CfcH-gsGD_wB_-zs7Ar--QER-gL3BP7iAgb_6-0A1fQICAz99QEKA-_5IAAtXDAbOzgTQAlIYVACKs8HEAAawAeM9vi-XgImPPEN6ry-Wfk8EtjcvDwe6bxqTXO9qQjBPLZyBb0bEBE-0lRPvPSFFT1ZwFS-BIyMOSrP1zy14ZA-uhE2vRqJMD2HNCq-nmmoPbZyZbzn_iq-Xcv_PEh0Kjz_LEy9hNU4PbXZv7vpC-E9rR6LvCPUMTzwSrc8clI4PY85T7xRzaY9ABsQvdaF6bxnPQI8ABIZvKYHBzx3Me09jwApvXaWETyDbRQ-IScHvVL5srwFNDG-87oUPT4HlryQURk9eoQ_PfxmLD1Iyxc97AeGPHfzebwiSsU8GeOzPQlG7zuNf587oY59Pf8JLry8myI9wAOovcM_sjsvhvK9dJB8vP0hrDx6hyA9OeyDPUJFmLkSvey9hfYAPfRDmTvQmJk9ygIgvKU6UzvThuM9zHZqPdZ0vTw8PSU8Iz17vOqjvrqQJBC8EN-jPaZiAz2yVbg8xS-GvO8SB7ygm4c9CPh_PGu-iLsbFGi95qzPPNZcibynes28pMHtPOQCIzzhRuU8th2JvKq-jjxFgPM9vGG2vXsvHTskRg89qjuAvU10DrsLEnY93aF2O1uJbbtu_Ok9TOStvStzqbtMule9UeeAvPkyLLxHVOg8zCg2vSqFCLy28GG8yIsWvNRM77uasei9PjwLPeoKcLuFZvK8yU4pPXVPezp8wJe8Wr9UvS_j4Dubfr89FHf8PPSIKzqHy4A9aY4sPAHXYLrVhnk8bMBWvWBd0zucY5q99fVcvW7hKTrCKFI8qCA6vTv2nzk8vfI9SshRvVfBjjkhZ7C9yMImPSMw27js0xu92TtIPNbC7DZ6uTm9JAuYvHmblzn6dYw866qAvfNfxDjK5iK6t5TuuaOzVjq-pmK8mPskPXqThDcSKt28Z3ukvXqeVbkVtMG7tOcyvHi_triEhhk9kSGsvGGPwLifTuA7RvWxvBSnLLeh5a-8VE0VvbUYMbg0Jok9RED0O0DWCjgjrIw99GwGvs9wpTk3Q_270MoCPQvkQDmM0Jk80mvYPE1K7bdI1qs8GxChPRH5bzePxqE8V3g3vdEULTjN51w9RzObPdUtJbmTg-E7NDavPdu-2jiwrZ-8z7SOPGLQvrcc7w49nfuGvJgBSDfWn04962iWPQF3WzjXvXU9b7-6O2rxArk5HMi5nz3XvW4oP7d87NM8ofIvvYneajiBJmK9TagbPXYHdTi9rwU9pUkJvq2ehbjK9HA9IuErPvHLijhgmpg8W5r7PYSt_bjaETi9LSuoPPQiJLhTUMu9LIQPPC4uTLcgADgTQAlIbVABKnMQABpgI_IARNAQ3OroCu_41erx2uAU2SvfBf_l7ADsD7_XCvDRz_0nAAjDLd6uAAAAKfLoGw8A227M7wInBQMloPD6FR5_Cv5CreQ49872Chb98zIS-RZMAA4QsTYvDJooIgc1IAAtRPckOzgTQAlIb1ACKq8GEAwaoAYAAGxCAADIwQAAcEIAAJTCAAD4wQAAuMEAAFRCAAA4QgAABMIAABBBAABMQgAAGMIAAADAAABoQgAAsMEAAHBBAABcQgAAfMIAAIBCAACQwQAA0MEAAIBBAACwwgAAdEIAACzCAAAwwQAAEEEAAPhBAABAwAAAIEEAAEDCAADYwQAAPMIAAMDAAACGwgAAiEEAADDBAAA8QgAAZMIAAChCAAAAQQAAqEEAADBBAAAowgAAiEEAAI7CAAB4QgAAMEIAAIhBAACgQQAA6MEAAMDBAAAAAAAANEIAAJBBAABQQQAAGMIAAKDBAAAAQQAAEEIAABRCAABwwQAAgsIAAATCAABwQQAAjsIAAIjCAAD4wQAAgL8AAMDAAAAgQQAAREIAAOjBAACAPwAAXMIAAPhBAAC8wgAAAAAAAChCAAAQQQAAuMEAAMJCAACgwAAAoMEAAFDBAAAkQgAAgEEAAEjCAABcQgAAEMEAACjCAAAkQgAAdMIAANBBAADYQQAAJMIAABzCAADgQAAAoMEAAIJCAADgwQAA8MEAAARCAAAgQQAALMIAAIRCAADgQAAAMEEAABRCAACKQgAAlkIAAHRCAAAUwgAAcEEAAGDBAAC-QgAACEIAAPDBAAAcwgAAIMEAACTCAACOwgAA8EEAAKjBAABAwQAAMMIAAPDBAAAMwgAAGMIAAHBBAABIwgAAHMIAADhCAACwQQAAhMIAALJCAABAwgAAcEIAAKjBAABYwgAAUMEAACzCAADAQAAAdMIAAGBBAADgQQAAIEEAACBCAACAwQAAAEEAAITCAAC4QQAALEIAAFRCAAAgQQAA2MEAAEjCAAAYwgAAFMIAABDBAAAQwgAA2EEAAARCAAAAwgAAhkIAAGBBAADQwQAAQEIAAGxCAAAQwgAA4MAAAOBAAAAAwQAAIMIAAJDBAAAwQgAACMIAAADBAABwQgAAcEEAAMjCAADowQAAEEEAACDBAAAEQgAAgMEAAGDCAACKwgAAkEEAAEBAAAAMQgAA-EEAAOBAAACAQAAA4MAAAOhBAACQwQAAMMEAADRCAAAAACAAOBNACUh1UAEqjwIQABqAAgAADL4AAAy-AAAsPgAALD4AAHA9AAB0PgAADD4AAEW_AABUvgAAmD0AAIo-AAAUvgAAqD0AAJY-AACgvAAAbL4AAMY-AAAQPQAATD4AACU_AAB_PwAAXD4AAJI-AAA8PgAA4LwAAOg9AAAwvQAADL4AAFQ-AACKPgAAjj4AAM6-AABAvAAAHD4AADA9AABkPgAAgLsAADy-AAAJvwAAmr4AAEy-AABwvQAAPD4AAHC9AACOvgAAiD0AAL4-AAAFvwAA-L0AAMK-AABMvgAA6L0AAMo-AADCPgAAdL4AABC9AABhPwAA2L0AAOi9AABcPgAA6L0AADA9AAAcPgAAdL4gADgTQAlIfFABKo8CEAEagAIAALi9AABQPQAAoDwAABO_AAAMvgAAUD0AADQ-AAAkPgAAUL0AADw-AACIvQAAPL4AAEA8AAAEvgAA4DwAAKA8AAAEPgAALz8AADA9AADCPgAAuD0AAOA8AACIvQAANL4AAOA8AAD4PQAAcL0AAIg9AADgvAAAmD0AAIi9AADIPQAAMD0AAGS-AAAQPQAAUL0AAAQ-AAAcPgAA-L0AAEA8AACOPgAAuL0AAKA8AACovQAAgLsAAHA9AAB_vwAA2L0AADS-AABAPAAAHD4AAIg9AACgvAAAMD0AADQ-AACIPQAAUL0AAJi9AACgvAAAqD0AAMg9AAAcvgAAyL0AADA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=DwjEWdFCDNw","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["6995465591241570468"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1326143133"},"17306785467396322779":{"videoId":"17306785467396322779","docid":"34-4-3-Z1E128F583B708138","description":"In this problem we look at ways to solve problems about how many different 'things' are possible. This video follows problem 21 from Section 1.4 in the book \"Finite Mathematics\" by Daniel P. Maki...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3187192/b44792cd533d8b29976ec67a019b92a3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/rQ8fLwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCz3U0XMTgP0","linkTemplate":"/video/preview/17306785467396322779?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite Mathematics - Sets of Outcomes","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Cz3U0XMTgP0\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhYKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5WhQxNzMwNjc4NTQ2NzM5NjMyMjc3OWqIFxIBMBgAIkUaMQAKKmhob2J0Z3h0d2Zsd3N4aWJoaFVDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QRICABIqEMIPDxoPPxO9BoIEJAGABCsqiwEQARp4gf_5_Pv8BQD8-QYHAgf8AgkI__j3AAAA7gT8-AUAAAD7-Qr6AQAAAAsK-An8AAAA_f_8AQP-AAAKAQD_7QD_ABgC_QD4AAAADRj7Av4BAAD2_gMEAwAAAA3-__j_AAAA8QP7-v7_AAAKCvwMAAAAAAD6_PkAAAAAIAAtWwbhOzgTQAlITlACKoQCEAAa8AF_BAkB2uzn_-0WBwDY7uEAxQQa_y015P_B3AIB3vPvAQsy3ALf9_H_wBAMANIp_v8t2tb_DOjuATXO6P8M2uUA-x34AQ_z_gE1ESj_FOzw__sWPwIG8BcAGunpAAwAAPz5BQj8HQTpAAUa5wAzCygA6w0tAf_lHwLzzAf_4OX_A_fa8gHdIvb99AQP_usHIQH85ukBDgUH9d8n9QIi4_r5B_EV9wcp2v410vsEKCr_ALUC_QPp__YO_CEYCef7BvnpAxMA1hwM9wgJGAUEBPUECPvlCfQJ8g8R_fQICuMK_An68wPYCQoSAwv-Bw326gEgAC3NHSc7OBNACUhhUAIqzwcQABrAB4z2-L5eAiY88Q3qvFrIrTwz3EA9nmKVvE04mr3QpGK7SMETve5zsT0GMYq7qGQqPRx4db5qfBA9fDjSPLXhkD66ETa9GokwPYc0Kr6eaag9tnJlvPNZDr44bzc9dvssuysY9b3J1uk8pBYvvekL4T2tHou8I9QxPOiZgzwkVPo8mykjvdybBDzUk968_O0BvRbqjz3CVXm8822kOyAHuj2CkTe9iLKcvF_w6T0gvbw8dQ6UPAU0Mb7zuhQ9PgeWvP5ukD3H7HI7oXMNPS8_w7svsYk7coKbvBS9gj0hUbI9696vPC3hmrzLXKo8-gZLvIYbsDzkXBS9qACYPA1TK75csqY7Yro1vLWM0DvjaFM9G9uluhyEv71NrQ09N5zkO059ED5AY4u8XxH0u9OG4z3Mdmo91nS9POAUsbwRT9u8cgunPGNgPT0PLsg9ffnuPLQ4xjtFHSy9XlSBvJwlcj1UEYg9W-uLOpIdwLz3mKO8FelZPKsCer3E8Gw8072xO0QgzTwTOIa6ohUOPCGfxj1izCe9Cs4HPGJ7Mj0XZ7y950YBu02mJT1qeW8969gQPLQgBD4YCAK92CA3ujMD8Lwp3AG9llCLvAPBLT3svHK9l7hBuEF4fryynAS7OLTQO5QwE77xax89cLAfunrkCr0Teyo7_xLpu4YwCD1Vp1697EK9OhR5Ej0rWi89JPsUu8h-1j0ChXY7UnTbOMysLz3FvbO9uqHGOoaRrr3_KLW9iV6uOfTRlLuOUWg8jxIduDy98j1KyFG9V8GOOeHZib0seHs9FblGOWlBXjybqMo8ZORyOMHSELz9ky48vauLOYCCpjxbUCm8eZWRuLeyzblrzgU8zWywubYaDb0NN6A8obNPurPFILtRQMS9bz3sOAyMITy44ie9fdXDuHiekz1uuNk8_aiduL2YnLyQbVS9nFSAuaHlr7xUTRW9tRgxuGl7Cj2TFWg8G5CpOCOsjD30bAa-z3ClOdHTF7z-5m47To39OO1-1T2d2pk88dcxOOg_NT1kHwQ-Z7EbOM2ZKD38HF-9XYCvNuexYT3tX349CEMguMJfXTzEd-I9KxylOEDVzTwK4lE7Ag7KN4BxGzyhcde8tHkfuE8ONT2cICA9ylJHOA2eoz1OyNi8dh-_uCKdCz0km6u99w0RuDjnlrxGwDe9auIDuIjnV7vJVAY9PFgYuIYQIT1cd9O93vObt4qWVz0QWPk9jRdAOPI2ID2RGZ494xxiuJLXHLxrMyk8ll-rt68Mxb0j7hs9Bw3dtiAAOBNACUhtUAEqcxAAGmAv9AA_6R-85fEZ8AzV5Pfj0A7aH8oF_-b__9wPyPwiHb3OAiAAC-YWzKoAAAA06wALDgDidMrhyB0C_SbR39ojPX8WAwbV0ikPyPIWCesMThPQEyMABgm1VzY0wUkpOzIgAC0SHCE7OBNACUhvUAIqrwYQDBqgBgAAgEIAAFBBAAA0QgAAcMIAACDBAACwQQAAZEIAABhCAABwwgAAqEEAAJBCAADQwQAA0MEAAExCAAAQQQAAIMEAAIBCAAA8wgAAVEIAAJhBAACgQAAAMEEAAKTCAACcQgAAbMIAABBBAAAQQQAAiMEAANjBAAAAQAAAqMEAAHDBAAAQwgAAQEEAAGTCAADQQQAAgEAAAJpCAAAMwgAATEIAABxCAACgwAAAmEEAAEDCAAAAQQAAVMIAAIJCAAB4QgAAgkIAANhBAADowQAAiMEAAIBAAAAIQgAAgMEAABBBAABwwgAAUMEAAKhBAAAMQgAAHEIAAKDAAADQwQAAIMIAAJhBAABcwgAAiMIAAGBBAAAgwgAABMIAABBBAACUQgAAAMEAAIDAAABQwgAAiEEAAMDCAACgwAAALEIAANBBAAC4QQAA1EIAAADBAAAAQQAAEMEAAGRCAACYQQAARMIAAHxCAACQwQAAAMIAABRCAACYwQAAEEEAAABBAABQwgAALMIAADBBAADAwQAAtEIAAGTCAACQQQAAHEIAACRCAACWwgAAREIAABDBAAAYQgAAoEAAABhCAADgQQAAgEIAAATCAACAQQAAUEEAAKZCAACAQQAABMIAAADBAACAwQAAaMIAADDCAACwwQAA0MEAAMjBAABMwgAAsMEAAKjBAADowQAA8EEAANDBAACgwQAASEIAALhBAABowgAAjkIAAABAAACoQQAA4MAAACDCAADYwQAAFMIAAIC_AABEwgAAkEEAAIZCAACAPwAAOEIAAHBBAABAwAAASMIAAJhBAAAgQQAA8EEAAMBAAAA4wgAAgMIAAKjBAABcwgAAoMEAAMBAAADAQQAA2EEAANDBAAAEQgAAAEEAAHDBAACQQQAAhEIAAGTCAAAAQAAAUEEAAHDBAABswgAAAEEAAIBBAAAAQAAAHMIAAAxCAAAQwQAAAMMAAADCAACQQQAAGEIAAIRCAACCwgAANMIAABDBAAAgwQAAGMIAAIA_AACAQQAAmEEAAPDBAABAQAAAWEIAABBBAAAAQQAAmEIAAFDBIAA4E0AJSHVQASqPAhAAGoACAACgPAAAcL0AALg9AABcPgAAML0AAJI-AACovQAAJb8AACy-AAAQPQAAMD0AAAS-AAC4PQAAwj4AAKi9AAAUvgAAzj4AABw-AACYPQAAIT8AAH8_AADIvQAALD4AADA9AABAvAAAqL0AAIg9AAAQPQAAHD4AAJY-AAB0PgAAfL4AAKA8AABEPgAAgLsAAFQ-AAAwPQAABL4AAMa-AADGvgAAmL0AAIq-AAAQPQAABL4AACy-AAC4vQAAjj4AAMa-AABkvgAAlr4AAIA7AAAQPQAAtj4AADw-AAAcvgAAoDwAAGM_AABQPQAADD4AAFQ-AABwvQAA6D0AAAw-AABkviAAOBNACUh8UAEqjwIQARqAAgAALL4AAHA9AAAEvgAAGb8AAAS-AABAPAAAyD0AABw-AADgPAAAmD0AAOC8AABMvgAAML0AADS-AACYPQAAgDsAAPg9AAArPwAALL4AAJ4-AACYPQAAQLwAAKC8AAAEvgAAUD0AAHQ-AAD4vQAAcD0AAOC8AABQPQAAQLwAAMg9AACIvQAA-L0AAMg9AAAwvQAAuD0AAPg9AAA0vgAAcL0AAEw-AAAEvgAAgDsAAKC8AABQvQAAgLsAAH-_AAAwvQAAor4AAIi9AAAQPQAAmD0AAIA7AADIPQAA-D0AAHA9AACgvAAAmD0AAOA8AAAQPQAAcD0AABy-AAAwPQAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Cz3U0XMTgP0","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["17306785467396322779"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"416423330"},"17815972021937988973":{"videoId":"17815972021937988973","docid":"34-7-7-ZAFFABF460E0940AD","description":"In this problem we look at a kind of problem from chapter 1 that is similar to problems you will see on your midterm or final. This video reviews how to answer questions using Combinations.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1020119/19ebafe724009442707169ba2cc19ba3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/W15f5wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5598ErgTNLY","linkTemplate":"/video/preview/17815972021937988973?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite Mathematics - Review of Combinations","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5598ErgTNLY\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhYKFDE3ODE1OTcyMDIxOTM3OTg4OTczWhQxNzgxNTk3MjAyMTkzNzk4ODk3M2qIFxIBMBgAIkUaMQAKKmhob2J0Z3h0d2Zsd3N4aWJoaFVDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QRICABIqEMIPDxoPPxPPBoIEJAGABCsqiwEQARp4gfv_Af_7BgD89QcA-wX-AQIT-vr3__8A9gD19QIC_wD59gQACwAAAAQF9wECAAAA-_3-Bv7-AAAMAP0D-wAAAB0ACP_6AAAADRf7Av4BAADwAQX_AwAAAAQC_QQAAAAA9Qn6_wIAAAAEAgcIAAAAAP8H_v8AAAAAIAAtxJ_jOzgTQAlITlACKoQCEAAa8AF1EBL-zfzm_-8G2ADqG_oBgSIK_jA44v-98gsAwAPjAO4G6wDk_toA7xAOALMEJAEYBdj_C-r_ADb9BP8t-wYACP0AACzmAgBU8jED8QTc_9ItAv7s7S0BFvLJ_wIW6QMNESD_3QTt_-4DxQIi_CwB-xgk_wMJCQLvzxkD_AwS_fT77_8EFv0F8d__-u0UNwEN8Pr7DjIPA9Ev4gMK_tcB_ewjBSnm1_1B4O0ABRYL_fbzCPr06uUIBAcq_-QKBvrz9yQC_M3y_OsMAwEx0_AG2QwBDvYEAAgfJOT4AM75AdPx_w3EC_oG3PgA_vHm8_4gAC3_IR07OBNACUhhUAIqzwcQABrAB8XnAr8MDbq8O7sGvSWbRj2EdkO3QLYWveDi17x4tBA82JMGuzAcXj2kPuI7-9L2PJsdob5GoZu8yGeoPP29dD6SVEu9A7HsPIc0Kr6eaag9tnJlvLeyJL4pFcM8RNBivOUVXr3riKg8kotWvDAO7jwvGQe8mLZJPEtPAj1Dh8g7f3YTvBH5kzzTI5e83DYCvPSV9jx7IAi9eI99PGDnJj4N0w298R7xvOAR1T1CWog7mLKCvF4uIr5Nj5w8WJ2mPBIduDxvwrO80BzjPIyxXT1hQAU9QvYQvUkL_DyZB1U9SbqoO41_nzuhjn09_wkuvPBuYD1bVTu9VthnvCY19L1-Ay49q7oCPRsqmz1YnUY930wvu8KymL2V6fw8aDC8PCpwkj1lcX-8G_ZWvNOG4z3Mdmo91nS9PKV0H7sjnpG8hcFGPI1KJT3WIyg9LPOWPJ5XgT3AX6c8ioYWvD99Gj28xtM8uECCOxAH6b0fVUM9PKjAOxlBnbvbU8087iGGPOFG5Ty2HYm8qr6OPGBnhD35Eb-9PWsSPJoRGT0w8vK87aIrugJnBD0oTzQ8IkAfO1mHwz0Kz1W99IJTO_bwgL0cpJY8OWl1vKX_QDzZ6rK9U5I3uvLvEjxqNcE7GVDzO6xysb1l4-K7f1IKvLOBL71k6xQ9BpG1u5GgU7zfJq29Fu2euht0yD1AN089VwZVu2MxAD1XXYc8dGILO5YvHj2u2I-99j_huloojr1HdYq9gPcYuhM9Gr3qJgw7Jlv_OZRAtD3gzWS94odqOUyzDLxAo_Q8xBXluWxaTr2oTiw8qKqOOXpEG72VZzk858s3OhiTAz3ef3q9Qr8AOJ32NL10rYO66oh_uXtPwDwGx9s8U6nAumlZcr3TBja9LuDpurplarvX3by87gHKuNoeXT0KtGW9O1DGN02G4zxEPMi85R0quQ0zuLu6-Ju8sL4JuluteD3u9Bk98rGYOEUO0T0pI-694iy_OXbDtjy67lI8XEoBuaxjJrwGVkS85C4AuevQPz2z3TM9y4-TuN5Z-zzY8Z-9GA2XOOexYT3tX349CEMguGRRXb38rw49ZQ8tOfUWKr3s47o7EsuQt41s3TyAsD2922psOBbz2DxKv7M8ZYWVtw2eoz1OyNi8dh-_uFxJAb3K3tK9FyIEuQfiBj3hlk-9maTONZdRkb2Hch09UziLtmEGeT3zOhK-S-epuCL_7D01KQU-835buLoTrLxy3Lk9dDAYuSGsJr1UAXc9YStSuNEQlL3oGEu9RmgGuCAAOBNACUhtUAEqcxAAGmAg-wAv0RDSDv403wTN4__O7vbKCMQM_9r2__YJ4vYHGtfD6QkAGtIO6a8AAAAy4PMi_AD0bqTQ5y8iCCbA0_ELK3_5ECXU6xwRyhojBtT0VizvACAAJOivJy4jrio8ET0gAC0QcSU7OBNACUhvUAIqrwYQDBqgBgAANEIAAETCAACWQgAApMIAAJjBAACAPwAAZEIAAMBBAADQwQAAgD8AADhCAAD4wQAAwMAAAEBBAABAQAAAAEAAAIZCAACIwgAALEIAAGDBAABwwQAAEMEAAMjCAACWQgAATMIAAEBBAAAAAAAAUEEAAKDAAABAwQAAGMIAAEBAAAAEwgAAQEAAALrCAABQQgAAEEEAAABCAABswgAAMEIAAKhBAABwQQAAUEEAAIC_AAAgQgAA4MEAABhCAABIQgAAQEEAAIBAAAAQwgAAmMEAAMBAAAAgQgAAoEAAAJhBAACywgAAgD8AADxCAAAIQgAAbEIAACzCAAA8wgAAVMIAANhBAACowgAAAMIAAHTCAAD4wQAAHMIAAARCAAAAQgAABMIAAFBBAACQwQAAuEEAAIzCAAAwwQAAIEIAAIBAAACowQAAjkIAAATCAADAwAAAmMEAAJBCAADgQAAAAMIAAJBBAACIwQAAQMEAAGhCAAB8wgAA0EEAALhBAACYwQAAYMIAAKDAAACYQQAAPEIAAFDCAAAQwgAAmkIAAAAAAADgwQAANEIAAKBAAABAwAAAoEAAAIBCAACuQgAAaEIAACDCAABAwAAAAMIAAJJCAABsQgAA6MEAAPDBAABwwQAAKMIAAAjCAACAvwAAoMEAAIBAAADowQAA4MAAABRCAADQwQAANEIAALjBAAD4wQAAAEIAAAxCAACIwQAAgkIAAATCAAA0QgAAPMIAAIjCAABAwQAAyMEAAJhBAAB4wgAAAMEAACBCAACAPwAAIEIAAODAAAAMQgAAFMIAANhBAABUQgAAUEIAADBBAADAwQAASMIAAJjBAABcwgAAKMIAAJLCAAAQQQAA4EEAAKjBAAAwQgAAgL8AAHTCAACIQgAAJEIAABDBAABwQQAAuMEAAADCAABYwgAA8MEAABRCAACowQAAwMEAAFhCAABcQgAAzMIAAHDCAAAIQgAAuMEAAARCAADgwQAAEMIAADzCAACIQQAAEEEAAEhCAAAoQgAAiEEAAKDAAAAAwAAAFEIAAFDBAAAUQgAALEIAAKDAIAA4E0AJSHVQASqPAhAAGoACAAB8vgAAHL4AAJg9AACePgAAJD4AAEw-AAAQvQAAK78AAJi9AAD4PQAAZD4AAFy-AABQvQAAVD4AAEy-AADovQAA6j4AADw-AAB0PgAAKT8AAEE_AAAcPgAAuD0AALi9AAAkvgAARL4AAMg9AADIvQAAqD0AAMo-AADCPgAApr4AADw-AADqPgAAUD0AAFQ-AACAuwAAPL4AAJq-AABcvgAAoLwAACS-AAAwvQAAkr4AAFy-AAAQvQAA2D0AANq-AACIvQAAir4AAPg9AAAQPQAAgj4AAEw-AACoPQAA6L0AAH8_AACYPQAA4LwAABA9AACevgAAQLwAAIC7AAA0viAAOBNACUh8UAEqjwIQARqAAgAAiL0AAAw-AADYvQAAC78AAHS-AADoPQAAfD4AAFw-AABAvAAAVD4AALi9AACOvgAAoLwAAES-AAAQPQAAQLwAAOg9AAAjPwAADL4AAK4-AABAPAAA4DwAAJi9AADIvQAAED0AAJg9AADYvQAAoDwAAIg9AABwvQAAcL0AAIg9AABwvQAAjr4AAFA9AAAQvQAAlj4AAOg9AABUvgAA4LwAAIg9AACAuwAAgDsAAJi9AABwPQAABD4AAH-_AABAPAAAVL4AAKC8AAAEPgAAgLsAABA9AABwPQAATD4AADA9AACAuwAA4LwAAOC8AAAkPgAA-D0AAKi9AACoPQAAMD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=5598ErgTNLY","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["17815972021937988973"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1721553060"},"8807874392284340079":{"videoId":"8807874392284340079","docid":"34-6-3-Z7285FA455BBA1B3A","description":"In this problem we look at ways to solve problems about counting arrangements using combinations.This video follows problem 27 from Section 5.2 in the book \"...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1575538/5fc7a020a289473f1afa8392add0b955/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/LjaLGgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcN-KVeCT518","linkTemplate":"/video/preview/8807874392284340079?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite Mathematics - Formulation and Solution of Systems of Linear Equations in Two Variables","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cN-KVeCT518\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhUKEzg4MDc4NzQzOTIyODQzNDAwNzlaEzg4MDc4NzQzOTIyODQzNDAwNzlqiBcSATAYACJFGjEACipoaG9idGd4dHdmbHdzeGliaGhVQ2JjUnAwbDRydHZ6X3p5MVFxdEhkNUESAgASKhDCDw8aDz8TqweCBCQBgAQrKosBEAEaeIH7A_MHAAAA9_YBCfgG_gIQCAML9gEBAPYH-_7_Av8A-fMUAgUAAAAFDvQKBQAAAP7-_v_4_gAAFQT0APUAAAATAAUE_AAAABsR_wD-AQAA7fIE9AIAAAAA_wAKAAAAAPcLB_r7_wAA9A0GBgAAAAAJE__-_wAAACAALZpM1Ds4E0AJSE5QAiqEAhAAGvABfwQJAa0M6_0l_fAAAA_hAYkgCv9PM-MAy-smANID_AHWDecA5Ov1ANcIFQDkEDD_Fdvk_xj7_wAcDe0AIPIHABch-AAh2fUBPuMH_wr9__7iIBD_CxYLASgI7wHrCvD8CfscAdkI3ADvA8kC8vI-AiYGDQIDCQkC8AD8BvwKAAUN_fIDBBT-BdPqGv_k9ioGKvf2_vslCPz0ROkGFwb9-vDyCf8m59r9LvvlAi4FD_3wAQgAAvPg_BMGEQUDEvv78Pb-Bv7--_rz9_QGJer4AAH9Af_qAQL_EB_5CAS_Av_a__r11gAB_PTw_gIN9uoBIAAtzR0nOzgTQAlIYVACKs8HEAAawAfF5wK_DA26vDu7Br3Jym890pKiPMpDFTvDZKo9elPRPPJEK70U88c888CRPFrahDyyL-G-johzPILA0rq14ZA-uhE2vRqJMD0aG7W9rM7FPf3j97vn_iq-Xcv_PEh0Kjz_LEy9hNU4PbXZv7te9ms9lDZRO1bc0bpiUSy9ZFKoPKiWY7zwyTs7qtBlvdIjfDx9ADc9-1wNvXU_pzovUf09sQVgup-rrby-FN49pKSMPZ0PTzzejwu-L7_Xu5aZLTxw0F49syXrvIZgyzysFZI9N7DwPDjhmLtqPq09TDPdPTlOo7uWCmq9rpSKPal_Nby8Wm49t4u8Onblrzsvej29CUr2PIe_B7z2DP678YWUPX_MPbz866677h5lPYgDsjwF85w993gBPZa7hbylaCU-2PinvE5IljnxAee5aUq8PNrKB7wJZMA8z1l1PYVjsTxTeds91vEOPQ1GNry-W-o8ls6XPY82jrmwaGS9Sa83PUBoojxK3Fk9-hGavOsTyjxGn6q8N8xpO0GwjzykGoY9YXxHva6njLvBkJU9P7G5vcNH5Tq9rOQ8mlo7PSWuIzwAKR48m9cCvYSftLtMule9UeeAvPkyLLxB2Ak9QliiveQ_Irr0E3M8CjoQPRIf7TuYoty9eSe6vBvv8brmeoa9tE0YPOwAwruRoFO83yatvRbtnrqbG6g9x8mzO06oFjvRfdQ8RzGKO-YUsjvVhnk8bMBWvWBd0zuVDAC9V19YvTNTczhzVlq9RxB4O9q5XTveuaY9O2gbvdoZxzkydVe95VKLPSq3LTk7Vf68rNz8uIyDVDmoBcq8sRy-OqWEc7mke0w9PUoAu5IOHzrpi3M8Gw0lvaHFG7rf9f48-PYzPTE2aTm0ETm9NygLva1-EDk7TEE7cwIHPGnLIrm3JKw8H7kVvdMaDTncVLS6o8CMvNCRbTkIqcC8BKnUvOvZRzkAK3Y8CLBDPZeTTzhB8QM9cU_Bvdc4ezm3z0-8yQiDvO-3pDhi9cc8tSvfuy35D7fclBw9TqKUPbrAhzeLFoA9RCrBvX0qIzjX9CU9nzIIPUkMcLi5F_u7vQ5mPA_XkjhSqSe71x1mPB7PFzibr209M-KdvFfmmzdBg0m7oQ4wPb3bhDjtHT89iYMfPO2IxriMcRS923tCvcX8Z7gNn7o7z1xRvaFFrraXUZG9h3IdPVM4i7aGECE9XHfTvd7zm7dVGKY9bQvFPYPH5ziVXys8z7yMPcX8BrkrppK8BjneOw5mnzeYZ0q9QRQnPPJETDcgADgTQAlIbVABKnMQABpgNfEANt8b0un9JeX75M8H5uDy1_vM8f_2xf_yEuHnER3ZqtP__1PGCPmfAAAAU8oHAxwAFn-6weolDgkYt8nW_fNzDxT-0csiC7DlFBvS80EKvhtdAAvspC1K9dBJNgQfIAAtOFsWOzgTQAlIb1ACKq8GEAwaoAYAADhCAACgwQAAtEIAAIbCAAA0wgAAGEIAAJhCAAAgwQAAwMIAAKDAAACAwAAAiMEAANjBAADAwAAAAMEAAEBAAAA0QgAAksIAAHRCAABwwQAAAEEAAEDAAACewgAAtEIAADTCAADQQQAABMIAAIA_AACAvwAAwMAAAHDBAABUwgAAZMIAAEBBAACUwgAAPEIAABDBAAAcQgAAgD8AAOhBAAAQQQAAAMEAAAhCAACAQAAAgkIAAFDBAAAEQgAA8EEAABBCAABAQAAAgsIAAGBBAACAwAAAQEIAAJDBAAAQwQAAhMIAAPDBAAA0QgAAVEIAAFBCAACywgAAFMIAAEzCAAAkQgAApMIAAADBAABQQQAApMIAAFDBAABAQgAAHEIAAETCAAAkQgAAqEEAABBBAACqwgAA2MEAAAxCAAAIQgAAUEEAAExCAAB0wgAAmMEAAIDBAACgQgAAgEAAABjCAAAAQgAA8EEAAMBAAADAQQAAkMEAAPDBAACoQQAATMIAALhBAACwQQAAPEIAACBBAABIwgAAIEEAABhCAADYQQAAXMIAACBBAAA0wgAApkIAAADAAACQwQAAfEIAAOhBAADQwQAAoMAAAKDBAAAsQgAABEIAAIDAAAC4QQAAoEAAADzCAABwwQAAsEEAAEBBAAAAQQAABMIAAADCAACQwQAAjsIAAATCAADowQAAlMIAAJBBAACQQQAA2MEAAIZCAACQQQAAQEAAABTCAABwwgAAqEEAAAjCAABIQgAAKMIAABDBAAAYQgAAQEEAAPhBAACgQQAAoEAAAILCAABAQQAALEIAAODAAABwQQAAgMAAALzCAAAowgAAisIAAJjBAAAswgAAmEEAAOBBAAAAAAAAQMAAAMDAAADYwQAATEIAAPhBAABAwgAAQEAAADBBAADAwQAABMIAAEDAAABwQQAADMIAAMjBAADgQQAANEIAAOTCAACQwQAAiEEAABTCAAAAQgAAYMIAAAjCAAAgwQAAwMAAAOBBAABIQgAAYMEAAEhCAABAwQAAkMEAAJRCAAAQwQAA6EEAANhBAACAwCAAOBNACUh1UAEqjwIQABqAAgAA4DwAAIa-AAAwvQAABD4AAPg9AAC6PgAAqD0AAEm_AAAcvgAAiL0AAFC9AAAsvgAA4DwAAK4-AABUvgAAJL4AAPI-AAD4PQAAuD0AAAs_AAB_PwAAQLwAAOg9AACgvAAA-L0AAKi9AAB0PgAAgr4AAFA9AABcPgAArj4AACS-AAAsvgAATD4AAOA8AAB8PgAAQLwAAEC8AADivgAApr4AACy-AAAsvgAAQLwAANg9AAB0vgAATL4AAFw-AACmvgAA-L0AABy-AAAwvQAAFL4AAPI-AAC4PQAAEL0AAHC9AABrPwAAUL0AALi9AABAPAAA6L0AABw-AAAwPQAAFL4gADgTQAlIfFABKo8CEAEagAIAAEC8AADgPAAAED0AADm_AABsvgAAML0AAJI-AAC4PQAAcD0AAFQ-AABAvAAAgr4AAIA7AAD4vQAAFD4AADC9AAD4PQAAFT8AAIC7AADSPgAAML0AAKA8AADYvQAA-L0AADA9AAAUPgAAoDwAAOA8AACIvQAAHD4AAIi9AAAEPgAADL4AAIK-AAAQvQAAoLwAAAw-AABEPgAAfL4AAIA7AABwPQAABD4AABC9AAC4PQAAgDsAAIC7AAB_vwAA4DwAAAS-AADYvQAAoLwAADA9AABAvAAAUD0AADw-AADIPQAAMD0AAHC9AAAwvQAAML0AADQ-AAAQvQAAMD0AABC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=cN-KVeCT518","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["8807874392284340079"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1417900253"},"9288603640561859314":{"videoId":"9288603640561859314","docid":"34-1-16-Z4F6462D16A5B7527","description":"In this video we look at ways to use the Bayes formula or to find the Bayes Probability.This video follows problem 31 from Section 3.5 in the book \"Finite Ma...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1887188/bd67f5bc196ab11428eb32a4b8bb7279/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/u0bBBwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dnn9VSLjggT8","linkTemplate":"/video/preview/9288603640561859314?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finite Mathematics- Bernoulli Trials","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nn9VSLjggT8\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhUKEzkyODg2MDM2NDA1NjE4NTkzMTRaEzkyODg2MDM2NDA1NjE4NTkzMTRqiBcSATAYACJFGjEACipoaG9idGd4dHdmbHdzeGliaGhVQ2JjUnAwbDRydHZ6X3p5MVFxdEhkNUESAgASKhDCDw8aDz8T8gaCBCQBgAQrKosBEAEaeIH-_ff9_wIA_PkGBwIH_AICFPr69___AOkB-Pv5_gEA8_oHAgQAAAAKFAEJ_gAAAPQFAwj8AAAADP_t_AIAAAAZAv0A9wAAABcJ9gj-AQAA9voG-QIAAAAF_gMEAAAAAPr9_gMBAAAA_AINDgAAAAD8Afn7AAAAACAALQpv2Ts4E0AJSE5QAiqEAhAAGvABfw_5AOP47AEG9eEA7Bn6AY0fCf82GuUA0AENAMrn9gDxJ9kA2-nmAdwg-gDFBBQABPni_wrs_wAm_fL_TuoA_xID-AAz3v0AJgAoAf_05v_jHxD_BvAXABTzzv8CFOsD_SYv__P29wDwA8sBFekmAvwWIP8I9x798dQXAvwLEP0I6e3_9RL7BuPk-vz-DhoCAuH2AhIQB_vSHO7_DfXsAAcGHPgiAukCM9P7AwEEHAD-6RIB_QHqA-wLHwPsFPoE9w4bAuXM-PvhGwb_F_f4Adb78wwCEfgPHSXxCwTBAf_T4vYJ4wILAvgC_wbs_u4DIAAtbQMtOzgTQAlIYVACKs8HEAAawAfF5wK_DA26vDu7Br08ZuA8tZLvO1IhgzzCypc8cXZGPCsNJr3uc7E9BjGKu6hkKj2cTZe-6j1cuWSPFrxnYpo-TjqbvBrvWDx1dPy9LxOaPQsCEL1FvPW9Z-jEPKy4J7zdj-W8mXgRPRjZhLxhXYs9Ug_RPJALEz2RVkY8tI6qvJSAHb3cmwQ81JPevPztAb3Ohww9JTI9vMyd0zt3Me09jwApvXaWETyNXo090rDzPAOgAryXUle-n6PAOra_zjxaN_c6zOtru9rdqDyMsV09YUAFPUL2EL2yfU09xGdBPRxTgzuzkpy7xtLBPTaow7sDaIo9d0ZAvUqC7DpAt7G9PSkTPZrcHDyV3Fw9BkI3PXC2yDkUmwq9XTVPPfglUTzQmJk9ygIgvKU6UzvThuM9zHZqPdZ0vTzZEgi9voagvPkcbTv9cbE8eES1PbVXejzHjnw9MC_AOybb5bw_fRo9vMbTPLhAgjtOXuS91kJ_PAevxDuqcxY9BJ4qPXz0xDvhRuU8th2JvKq-jjyvpKY9K9Fjvafc8boCE6M9lM98vZCa-js9FUY96munPHoGQ7z2Bak9wbzRvG988buqpY-9YHlrvLPsSbwDwS097LxyvZe4QbjTRIQ8T-rsu7EBCTyasei9PjwLPeoKcLtHKXe9kT7SPEXDnLt7LS29R2OzvfC-iDkbdMg9QDdPPVcGVbuASvA8z1QhvF01rjs_gYG8ABBhvV6UKDucY5q99fVcvW7hKTp3F8O8UiIRPARUmzsfotE9WPgfvXnRijiQfwu9b02FPZJPmTgtyea83_TTPABpRbmqfuW8IRK0POCmgzngPjw9lEMVvdBXVbpEdQm9ZazRvF2EI7maalo7hwYYPbM_1Dq0ETm9NygLva1-EDkVtMG7tOcyvHi_trg3_w89GNs6vWxgxLVNhuM8RDzIvOUdKrndz-m8d-R-vL82tbh0kjI9lcUUvHsAHzgjrIw99GwGvs9wpTnR0xe8_uZuO06N_Tg_40I8vihGvbtylLjr0D89s90zPcuPk7iaBxA93jjJvQg0-zbnsWE97V9-PQhDILhuS4m8ymsFPahNcTg_cDW9eoOUPBqMKDiNbN08gLA9vdtqbDhKc1A8WeoPPVKYhjgY1DI9vOkWvR1vnbjZXeK6ULeivRCbQbimhpE8I2NavfR-ijf2PMS9RpgCPWQ1EDg_jsY9K94IvocitLgi_-w9NSkFPvN-W7iXuwO80tPBPVFqybghrCa9VAF3PWErUrjREJS96BhLvUZoBrggADgTQAlIbVABKnMQABpgH_MAN-Qc4uf_D-v42v395N4G3CjSEP_xAv_s9s0EGhPesyYpAAHd_eOxAAAAKsgCC_kA32q6v80H-gYK1M_1Dgx_JwcYz8gZCdMH_ufi_lMT5QQ7ABXmsz9AHMknIxclIAAta1QvOzgTQAlIb1ACKq8GEAwaoAYAADRCAADYwQAAeEIAAFzCAABAwQAAwEEAAHBCAAAQQQAASMIAABBBAACQQQAAJMIAANDBAABgQQAAIEEAAJjBAACiQgAAKMIAAIJCAADgwQAA6MEAAIC_AACcwgAAYEIAAGDCAABAQAAAuMEAACDBAADoQQAAuMEAAKDAAACAPwAA-MEAAAAAAADYwgAAEEEAAAAAAAC4QQAArsIAACBCAACQQQAA8MEAAGhCAAAQwgAAYEEAAFjCAAAAQgAAcEIAAMhBAAAAQQAAoMEAANjBAACAvwAAEEIAAIhBAAAgQQAAqMIAAJjBAABQQgAA4EEAAERCAACIwgAAMMIAAIjCAAAgQQAAeMIAAPjBAABUwgAAMMIAAFjCAABUQgAAkkIAAKDAAAAgwQAAyMEAAGTCAABUwgAAqMEAAJhBAABAwAAAMEEAAJhCAABAwgAAAEAAAMDAAACaQgAAcMEAANjBAACoQQAAGMIAAMBBAACoQgAAlsIAAOjBAAAgwQAACMIAABDBAABAwAAAwMAAAJhBAABgwgAAEEIAAIJCAACAwAAATMIAAKBAAAAAwAAAAEEAAMjBAABUQgAAQEIAAIhCAACAPwAA8MEAAODAAACMQgAAJEIAACjCAADAwQAAAMEAANDBAAAcwgAAIMIAAATCAABgQQAAkMEAABDCAADIQQAAFMIAAMBBAAAwwQAAFMIAAJDBAAAQQgAAIMIAAHRCAACgwAAAYEEAADBBAACkwgAAUEEAAIA_AABQwQAAOMIAABBBAADgQQAAUMEAAGBBAAAAwQAAUEEAADDBAABUQgAAokIAAARCAACAPwAAEMIAADTCAACKwgAAkMIAAHBBAAAwwgAAYEEAADDBAADAwAAAoEAAAAhCAACgQAAAeEIAAHxCAADowQAAgMAAAEDAAAAAwQAAiMEAAJjBAAD4QQAAsMEAAAzCAAD4QQAAYEIAAOrCAACowgAAmEEAAIA_AABkQgAABMIAAHzCAABAwQAAEMEAAPjBAADAQQAAAMAAADBBAACAvwAAsMEAAMhCAADAwAAAmEEAAPBBAACwwSAAOBNACUh1UAEqjwIQABqAAgAAgDsAANi9AACIPQAAVD4AAFC9AAB0PgAAqL0AADe_AABsvgAAiD0AAEw-AACCvgAAmD0AAHQ-AABwvQAAgr4AAL4-AABUPgAAnj4AADU_AABtPwAAgDsAADA9AABEPgAAEL0AAES-AACgvAAAHL4AAFQ-AACaPgAAkj4AAM6-AABAvAAARD4AAOg9AACGPgAAEL0AAAy-AAD-vgAA_r4AABC9AABkvgAAcL0AAGS-AABsvgAAoLwAAII-AADOvgAAqL0AAIq-AAAcvgAAqL0AANY-AABkPgAAqr4AAKA8AAB_PwAAqD0AAIg9AABsPgAAcL0AACQ-AACIPQAAJL4gADgTQAlIfFABKo8CEAEagAIAAOC8AAC4PQAA-L0AABe_AABkvgAABD4AACw-AAB0PgAAUL0AADw-AACgvAAAXL4AAJi9AACYvQAAgDsAAIA7AAAEPgAAHz8AAAS-AADKPgAAyD0AABA9AADgvAAAVL4AADC9AAAUPgAA2L0AAKg9AACgvAAA6D0AAKA8AAAwPQAAQLwAAPi9AAC4PQAAiL0AABw-AADIPQAA-L0AAOA8AACaPgAAyL0AAOC8AABAvAAALL4AADQ-AAB_vwAAcL0AAGy-AACIPQAAoDwAABw-AACAuwAALD4AAHQ-AACYPQAAUL0AAEC8AACIPQAAMD0AADA9AABQvQAA4DwAAFA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=nn9VSLjggT8","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["9288603640561859314"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1697708482"},"1026786511878830793":{"videoId":"1026786511878830793","docid":"34-8-9-Z77FD1078EEAB7497","description":"In this video we go over what Venn diagrams are and some basic notation.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1520012/60d6c62f4f532445bf85197884103de4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/UYkREAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5hLEoOTfGVY","linkTemplate":"/video/preview/1026786511878830793?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Venn Diagrams","related_orig_text":"ASRatIUB","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"ASRatIUB\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5hLEoOTfGVY\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MTgyOTI5Mzc3NTI1ODgzMTAxChQxNzQzNTMxMTg1MzAzNzg0NDA4MgoTNDQ4ODkyOTQ5NTM1MTQxMTM2NQoUMTQ3MjQ0NDA4OTAxNDY5NzgzNjYKEzc4MTY0NDQxNTgxNzU3NzIyMjIKETE2OTE3OTI4Mzc2NjA5Mzc1ChIzODM3NTMwMDU4MzY1MjIxNTkKEzYxNDY3OTg2Njk0MDU4MDk5NDEKEzUyODMwNDc4NzM1OTM3NTg0MDkKEzc3NDY1NTkzNDMxNTk4MDY5MTcKEzkxODExNzM5MTUxMjM3NjA1MDkKEzI3NzUwMzcyODUwNTg0MDkzNTcKEzY5OTU0NjU1OTEyNDE1NzA0NjgKFDE3MzA2Nzg1NDY3Mzk2MzIyNzc5ChQxNzgxNTk3MjAyMTkzNzk4ODk3MwoTODgwNzg3NDM5MjI4NDM0MDA3OQoTOTI4ODYwMzY0MDU2MTg1OTMxNAoTMTAyNjc4NjUxMTg3ODgzMDc5MwoUMTM0NDM1NTYyNTM4Mjc1NjU1NTgKFDE3MzkzNDg3NDYyMDA2Mzc3NTYxGhUKEzEwMjY3ODY1MTE4Nzg4MzA3OTNaEzEwMjY3ODY1MTE4Nzg4MzA3OTNqiBcSATAYACJFGjEACipoaG9idGd4dHdmbHdzeGliaGhVQ2JjUnAwbDRydHZ6X3p5MVFxdEhkNUESAgASKhDCDw8aDz8TmgWCBCQBgAQrKosBEAEaeIH_Ef_zAv0A9_79AfkF_wEQ_QYC9gEAABADBv33_wAA4QEKAPr_AADuCgABAAAAAPsDBAX1_gEADgP3EQMAAAAT_gD4_wAAAAX9Cv7-AQAA-PX0CQT_AAADAgkIAAAAAPUE_gD__wAACB34AAAAAAD_9QH-AAAAACAALZKEyjs4E0AJSE5QAiqEAhAAGvABawgbAbkb-_4V7_EAEfH-AoEV8P8tENEAzPwbALcP6__xBgQA4fjz__T7___nDiz_BQzm_yECEQAGBQEAOgzrABAHBgEz8PwAHfwGARkZ-gDwE_oAD-MYABH14v_9EfwAGQ8w_9wH3wAXEtUB-xQXAQ0oIAL68xMD8gkW_vQUGgEKAPr5-gD0BMDxEf30CBYKE_Dz_eof9_rbBekCBR0SCA4AB_kw9u78_eTnAR4DAP8L-Q33MvHi_fgPDwYKGQf88AEF-wMA_Ant7Pz9EM8GBRP2_PvV9w368irzA_7UCPjxDPv78woJAPAHCQXt_u8DIAAtUfQ1OzgTQAlIYVACKs8HEAAawAfF5wK_DA26vDu7Br08ZuA8tZLvO1Ihgzw-ibk9kKUqPVXFcbsrUfY8c77YPDp0erz8jLu-WlMPvMbqxbvFVYU-VDBvvZt_Krxi2Sy-cgKqO8NkCr0VHE6-rE3IPDWXHzujiiy8fV-3uzlBwDuRAwC9YOstvWOuFDxLTwI9Q4fIO392E7wYHCq9vk6KvQYOC7wbf4c81zebva6pYrtg5yY-DdMNvfEe8by8T489K9aFPTufS7zejwu-L7_Xu5aZLTzqr_c9MbJROshNAz2a77s9q24_PNg7bbzDJlc8j_t2PeeibDn3JuE8XYaUPfC18bxKxMU9l9MUvTBjirzesO28m9UxPdn2LDx0reI8KoztPe0Q_7xPPAe9DXnKPYdg5jv5hOw89pUHPbGbgLsongM-rK1YvPHlzzujF707BTPoOxC1yDxutiO9-VhwPQkSwDxVZIk99pfdPZjyRrzPpCi9_COCPVTVlbxOXuS91kJ_PAevxDtb5U494ypNuQ-4LjyZOlk8OaGrvF4pbDtFXKU8c7j2veQENzwJan09c_E8vR3Hjzyt1Jg83wbOOkB7Pzxgcqg9Rz4OPKB_CrtqMYi99h9evWl0A7nBzT28M3uqvL6REDxUJT068FXGPCkT6boHIza9vBybO6PKMLyno029aYVuPUOKBTuRoFO83yatvRbtnrr1K109cxE_PbCV6brmKlG92ImmvB2KijtkWRM7BI8PPcmiF7seE468ex89vVGWqbv8ie-8YUEwPV1DYLkyVyY9uOSYvaBq8rdcLSG9vAcoPSdcszmubuu8pvAgPQuWnrm59JS8kMGKPJyh1Dl3f2E9uqSFPEk6HbkA8Qg8kCOlOm4kv7p9BUk9C3-ju6sIo7gRkwu9W4iEPBD_yjjMLjM9aksCvVBairnaHl09CrRlvTtQxjfVAgA9-vLdPMeiN7gPFgS9XHgaPMyuXbg0Jok9RED0O0DWCjjnItk8A8z8vVJJyDnRJac9ztlnPf6PJDnBfdO8RhgwvYDBTLjPVJM9C7vDvN9d1rfD0-s8Zyb4vSIkJLj06Lw8Q6MlPYwX27dUshe9c7g2vSiRWLev14-8XBEGPcvHPrf2JwE-RFJLvRtsODiWSFg8rkjMPB9HUDiAR3G7Zsp9vTfcaDhuHmK9sSuyvRO_v7jVO4E87z2Hvc2TvzcwRgS-poH6u-2PcDg_jsY9K94IvocitLgi_-w9NSkFPvN-W7iYk2U7gAvSPZjkD7mQONq8FeWyPcSiLTdy8ky94R5QvQHSDbggADgTQAlIbVABKnMQABpgUAIAMNQPzLcv9Mq9x7n8F-bjCiPSCv_6yP8JAp7LFyj5peEB_wPhBgieAAAA6Oj3I_4AE38C7eg19QIZ8Lz_J_tyWRs4oaz6HQTyExnrlwop4CQYABf4vClQxbpMDOX0IAAt1toROzgTQAlIb1ACKq8GEAwaoAYAAAhCAAAgQQAAIEIAAIBAAABwQQAAUEIAAPhBAABkwgAAvMIAAEDBAACgQAAAgEEAACDCAACQQQAAUEEAAADBAACAPwAAOMIAACDBAADgwAAAMEIAAABCAAC4QQAAAEIAAOBAAAAAwQAAsMEAAFBBAAAsQgAAAMIAAEBBAACIQQAAYEEAAAAAAACGwgAAKEIAADxCAADAwAAA8MEAABBBAACgQQAAEMIAAJRCAADgQAAAUEIAAMBBAACwQQAAiEIAABhCAAB8wgAAgEEAAIhBAAAAwAAAWEIAAKDCAADgwAAAcMEAAFjCAAAEQgAAQMEAAHRCAACIwgAALMIAAKDAAAAwQgAAwMIAACRCAABgwgAAEMIAAOjBAAAcQgAAIMEAAGzCAADIwQAAqEIAAL7CAAAQwQAACMIAAJ5CAADwwQAAEMIAADxCAACywgAAwMEAADBBAADGQgAAAMAAAKBBAAAAwAAAIMEAAEBAAACaQgAAqEEAAADBAAAAQAAARMIAAMBBAACAwAAAqMEAAATCAAAcwgAAGEIAAIDAAAAwwgAAAMIAAIBAAAAAQQAACEIAABDBAAAAQgAAhkIAAKDAAAAowgAAYEEAACzCAADYwQAAfEIAAAzCAACgQQAAOEIAABDCAABQwQAAIMEAAIDCAABAwQAAoMIAALTCAAA4QgAAPMIAAADBAACAvwAASMIAAJ7CAAAkQgAABMIAAOBBAADowQAA-MEAAJBBAAAcwgAAgMAAAIBCAAAAwAAAHEIAAEDAAAAAQgAASEIAAKxCAADgQQAAmEIAAJjBAABUQgAAgMIAAGRCAAAMwgAAwMAAACDBAACYQQAAMMEAAAAAAABgwgAAuEEAAOjBAACAwgAASMIAAIA_AACgwAAAkEEAALhBAABEwgAA2EEAABDCAACowQAACMIAALhBAADIwQAAuMEAALDBAACYwQAAPEIAAATCAAAEwgAABMIAAIBBAAAsQgAAJMIAAIjBAACIQQAAAEIAAOBBAAAsQgAAikIAAHRCAADAwAAAwMAAAK5CAACoQQAA8MEAACDBAACIwSAAOBNACUh1UAEqjwIQABqAAgAA-D0AAIK-AACKPgAADD4AAKi9AAC4PQAAqD0AAO6-AACGvgAAMD0AAJi9AAC4vQAAXD4AAKY-AAAwvQAAUL0AADQ-AABQPQAAML0AAA8_AAB_PwAAkr4AAKA8AAAwPQAAfL4AAJI-AABQPQAA4DwAAOA8AABMPgAATD4AAAS-AABQvQAAcD0AAHw-AACAOwAAqL0AAAy-AAD4vQAATD4AAEQ-AAC2vgAAqD0AALi9AAC4vQAAXD4AABQ-AADqvgAAZL4AAAy-AAAcvgAADD4AALo-AAAcvgAAyL0AANg9AAAFPwAAoLwAAHA9AAC-PgAAyL0AAKg9AABQPQAAgDsgADgTQAlIfFABKo8CEAEagAIAAFA9AABwPQAAZL4AABO_AADYvQAAEL0AAEA8AACgvAAAuL0AAIo-AABwvQAAiL0AADA9AAAUvgAA4DwAAOi9AACovQAAAz8AAAS-AACqPgAA2L0AALg9AACAOwAAiL0AADC9AADYvQAAuL0AAKA8AABEPgAAUL0AAIA7AAAcPgAAiL0AAAy-AAD4vQAAQLwAANY-AADaPgAA6L0AAAS-AABEPgAAiL0AAJa-AACgvAAAFD4AAIg9AAB_vwAAUD0AAJg9AABMPgAAZD4AADy-AAC4PQAAmD0AAOC8AACIPQAAoLwAAAS-AACIvQAA2D0AAPg9AAAkPgAAEL0AANi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=5hLEoOTfGVY","parent-reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["1026786511878830793"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2812005409"}},"dups":{"9182929377525883101":{"videoId":"9182929377525883101","title":"Finite Mathematics - Probabilities, Events and equally likely outcomes. Part A","cleanTitle":"Finite Mathematics - Probabilities, Events and equally likely outcomes. Part A","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eLCjXGltPw0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eLCjXGltPw0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"http://www.youtube.com/@ASRatIUB","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":199,"text":"3:19","a11yText":"Süre 3 dakika 19 saniye","shortText":"3 dk."},"views":{"text":"3,9bin","a11yText":"3,9 bin izleme"},"date":"12 oca 2013","modifyTime":1357948800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eLCjXGltPw0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eLCjXGltPw0","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":199},"parentClipId":"9182929377525883101","href":"/preview/9182929377525883101?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/9182929377525883101?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17435311853037844082":{"videoId":"17435311853037844082","title":"Finite Mathematics - Expected Values and Standard Deviations of Random Values","cleanTitle":"Finite Mathematics - Expected Values and Standard Deviations of Random Values","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=J6glMrJhafU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/J6glMrJhafU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"https://www.youtube.com/channel/UCbcRp0l4rtvz_zy1QqtHd5A","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":733,"text":"12:13","a11yText":"Süre 12 dakika 13 saniye","shortText":"12 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"23 şub 2013","modifyTime":1361577600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/J6glMrJhafU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=J6glMrJhafU","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":733},"parentClipId":"17435311853037844082","href":"/preview/17435311853037844082?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/17435311853037844082?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4488929495351411365":{"videoId":"4488929495351411365","title":"Finite Mathematics - Review of Sets and Set Operations","cleanTitle":"Finite Mathematics - Review of Sets and Set Operations","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=abbsodiwlJk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/abbsodiwlJk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"http://www.youtube.com/@ASRatIUB","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":927,"text":"15:27","a11yText":"Süre 15 dakika 27 saniye","shortText":"15 dk."},"views":{"text":"4,9bin","a11yText":"4,9 bin izleme"},"date":"8 oca 2013","modifyTime":1357603200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/abbsodiwlJk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=abbsodiwlJk","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":927},"parentClipId":"4488929495351411365","href":"/preview/4488929495351411365?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/4488929495351411365?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14724440890146978366":{"videoId":"14724440890146978366","title":"Venn Diagram notation examples","cleanTitle":"Venn Diagram notation examples","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=TdFqOglzNh8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/TdFqOglzNh8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"https://www.youtube.com/channel/UCbcRp0l4rtvz_zy1QqtHd5A","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":685,"text":"11:25","a11yText":"Süre 11 dakika 25 saniye","shortText":"11 dk."},"views":{"text":"3,7bin","a11yText":"3,7 bin izleme"},"date":"25 mayıs 2013","modifyTime":1369440000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/TdFqOglzNh8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=TdFqOglzNh8","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":685},"parentClipId":"14724440890146978366","href":"/preview/14724440890146978366?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/14724440890146978366?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7816444158175772222":{"videoId":"7816444158175772222","title":"Finite Mathematics - Probabilities, Events and equally likely outcomes. Part B","cleanTitle":"Finite Mathematics - Probabilities, Events and equally likely outcomes. Part B","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=m1lknj1sA5A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/m1lknj1sA5A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"http://www.youtube.com/@ASRatIUB","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":635,"text":"10:35","a11yText":"Süre 10 dakika 35 saniye","shortText":"10 dk."},"views":{"text":"3,8bin","a11yText":"3,8 bin izleme"},"date":"12 oca 2013","modifyTime":1357948800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/m1lknj1sA5A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=m1lknj1sA5A","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":635},"parentClipId":"7816444158175772222","href":"/preview/7816444158175772222?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/7816444158175772222?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16917928376609375":{"videoId":"16917928376609375","title":"Finite Mathematics - Probability measures","cleanTitle":"Finite Mathematics - Probability measures","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=BHs5bdhFfb0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/BHs5bdhFfb0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"http://www.youtube.com/@ASRatIUB","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":664,"text":"11:04","a11yText":"Süre 11 dakika 4 saniye","shortText":"11 dk."},"views":{"text":"6,2bin","a11yText":"6,2 bin izleme"},"date":"4 şub 2013","modifyTime":1359936000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/BHs5bdhFfb0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=BHs5bdhFfb0","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":664},"parentClipId":"16917928376609375","href":"/preview/16917928376609375?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/16917928376609375?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"383753005836522159":{"videoId":"383753005836522159","title":"Venn Diagram Notation","cleanTitle":"Venn Diagram Notation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7pj5ht2lsRo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7pj5ht2lsRo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"http://www.youtube.com/@ASRatIUB","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":346,"text":"5:46","a11yText":"Süre 5 dakika 46 saniye","shortText":"5 dk."},"date":"25 mayıs 2013","modifyTime":1369440000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7pj5ht2lsRo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7pj5ht2lsRo","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":346},"parentClipId":"383753005836522159","href":"/preview/383753005836522159?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/383753005836522159?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6146798669405809941":{"videoId":"6146798669405809941","title":"Finite Mathematics - Matrix Notation and Algebra","cleanTitle":"Finite Mathematics - Matrix Notation and Algebra","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mYrXi4-U5ps","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mYrXi4-U5ps?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"http://www.youtube.com/@ASRatIUB","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":959,"text":"15:59","a11yText":"Süre 15 dakika 59 saniye","shortText":"15 dk."},"views":{"text":"3,5bin","a11yText":"3,5 bin izleme"},"date":"22 oca 2013","modifyTime":1358812800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mYrXi4-U5ps?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mYrXi4-U5ps","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":959},"parentClipId":"6146798669405809941","href":"/preview/6146798669405809941?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/6146798669405809941?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5283047873593758409":{"videoId":"5283047873593758409","title":"Finite Mathematics - Trees","cleanTitle":"Finite Mathematics - Trees","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Ov5L-fhUDW4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Ov5L-fhUDW4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"http://www.youtube.com/@ASRatIUB","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":763,"text":"12:43","a11yText":"Süre 12 dakika 43 saniye","shortText":"12 dk."},"date":"12 oca 2013","modifyTime":1357948800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Ov5L-fhUDW4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Ov5L-fhUDW4","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":763},"parentClipId":"5283047873593758409","href":"/preview/5283047873593758409?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/5283047873593758409?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7746559343159806917":{"videoId":"7746559343159806917","title":"Finite Mathematics - Review of Equations and Graphs of Lines","cleanTitle":"Finite Mathematics - Review of Equations and Graphs of Lines","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Z77L2NfUg28","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Z77L2NfUg28?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"https://www.youtube.com/channel/UCbcRp0l4rtvz_zy1QqtHd5A","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":581,"text":"9:41","a11yText":"Süre 9 dakika 41 saniye","shortText":"9 dk."},"views":{"text":"1bin","a11yText":"1 bin izleme"},"date":"22 oca 2013","modifyTime":1358812800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Z77L2NfUg28?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Z77L2NfUg28","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":581},"parentClipId":"7746559343159806917","href":"/preview/7746559343159806917?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/7746559343159806917?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9181173915123760509":{"videoId":"9181173915123760509","title":"Finite Mathematics - Review of Venn Diagrams and Tree Diagrams","cleanTitle":"Finite Mathematics - Review of Venn Diagrams and Tree Diagrams","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rWjsVmhq0nk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rWjsVmhq0nk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"http://www.youtube.com/@ASRatIUB","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":853,"text":"14:13","a11yText":"Süre 14 dakika 13 saniye","shortText":"14 dk."},"date":"27 oca 2013","modifyTime":1359244800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rWjsVmhq0nk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rWjsVmhq0nk","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":853},"parentClipId":"9181173915123760509","href":"/preview/9181173915123760509?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/9181173915123760509?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2775037285058409357":{"videoId":"2775037285058409357","title":"Finite Mathematics - Venn Diagrams and Partitions","cleanTitle":"Finite Mathematics - Venn Diagrams and Partitions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=j6lrjfS_3jk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/j6lrjfS_3jk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"http://www.youtube.com/@ASRatIUB","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":633,"text":"10:33","a11yText":"Süre 10 dakika 33 saniye","shortText":"10 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"8 oca 2013","modifyTime":1357603200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/j6lrjfS_3jk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=j6lrjfS_3jk","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":633},"parentClipId":"2775037285058409357","href":"/preview/2775037285058409357?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/2775037285058409357?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6995465591241570468":{"videoId":"6995465591241570468","title":"Finite mathematics - Conditional Probability and Independence","cleanTitle":"Finite mathematics - Conditional Probability and Independence","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DwjEWdFCDNw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DwjEWdFCDNw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"https://www.youtube.com/channel/UCbcRp0l4rtvz_zy1QqtHd5A","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":495,"text":"8:15","a11yText":"Süre 8 dakika 15 saniye","shortText":"8 dk."},"views":{"text":"16,6bin","a11yText":"16,6 bin izleme"},"date":"4 şub 2013","modifyTime":1359936000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DwjEWdFCDNw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DwjEWdFCDNw","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":495},"parentClipId":"6995465591241570468","href":"/preview/6995465591241570468?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/6995465591241570468?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17306785467396322779":{"videoId":"17306785467396322779","title":"Finite Mathematics - Sets of Outcomes","cleanTitle":"Finite Mathematics - Sets of Outcomes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Cz3U0XMTgP0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Cz3U0XMTgP0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"http://www.youtube.com/@ASRatIUB","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":829,"text":"13:49","a11yText":"Süre 13 dakika 49 saniye","shortText":"13 dk."},"date":"12 oca 2013","modifyTime":1357948800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Cz3U0XMTgP0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Cz3U0XMTgP0","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":829},"parentClipId":"17306785467396322779","href":"/preview/17306785467396322779?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/17306785467396322779?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17815972021937988973":{"videoId":"17815972021937988973","title":"Finite Mathematics - Review of Combinations","cleanTitle":"Finite Mathematics - Review of Combinations","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5598ErgTNLY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5598ErgTNLY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"http://www.youtube.com/@ASRatIUB","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":847,"text":"14:07","a11yText":"Süre 14 dakika 7 saniye","shortText":"14 dk."},"views":{"text":"28,2bin","a11yText":"28,2 bin izleme"},"date":"27 oca 2013","modifyTime":1359244800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5598ErgTNLY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5598ErgTNLY","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":847},"parentClipId":"17815972021937988973","href":"/preview/17815972021937988973?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/17815972021937988973?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8807874392284340079":{"videoId":"8807874392284340079","title":"Finite Mathematics - Formulation and Solution of Systems of Linear Equations in Two Variables","cleanTitle":"Finite Mathematics - Formulation and Solution of Systems of Linear Equations in Two Variables","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cN-KVeCT518","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cN-KVeCT518?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"http://www.youtube.com/@ASRatIUB","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":939,"text":"15:39","a11yText":"Süre 15 dakika 39 saniye","shortText":"15 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"22 oca 2013","modifyTime":1358812800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cN-KVeCT518?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cN-KVeCT518","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":939},"parentClipId":"8807874392284340079","href":"/preview/8807874392284340079?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/8807874392284340079?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9288603640561859314":{"videoId":"9288603640561859314","title":"Finite Mathematics- Bernoulli Trials","cleanTitle":"Finite Mathematics- Bernoulli Trials","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nn9VSLjggT8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nn9VSLjggT8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"http://www.youtube.com/@ASRatIUB","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":882,"text":"14:42","a11yText":"Süre 14 dakika 42 saniye","shortText":"14 dk."},"views":{"text":"7,4bin","a11yText":"7,4 bin izleme"},"date":"21 şub 2013","modifyTime":1361404800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nn9VSLjggT8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nn9VSLjggT8","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":882},"parentClipId":"9288603640561859314","href":"/preview/9288603640561859314?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/9288603640561859314?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1026786511878830793":{"videoId":"1026786511878830793","title":"Introduction to Venn Diagrams","cleanTitle":"Introduction to Venn Diagrams","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5hLEoOTfGVY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5hLEoOTfGVY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYmNScDBsNHJ0dnpfenkxUXF0SGQ1QQ==","name":"ASRatIUB","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ASRatIUB","origUrl":"http://www.youtube.com/@ASRatIUB","a11yText":"ASRatIUB. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":666,"text":"11:06","a11yText":"Süre 11 dakika 6 saniye","shortText":"11 dk."},"date":"25 mayıs 2013","modifyTime":1369440000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5hLEoOTfGVY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5hLEoOTfGVY","reqid":"1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL","duration":666},"parentClipId":"1026786511878830793","href":"/preview/1026786511878830793?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","rawHref":"/video/preview/1026786511878830793?parent-reqid=1769682000642000-2355171613401266586-balancer-l7leveler-kubr-yp-vla-47-BAL&text=ASRatIUB","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"2355171613401266586747","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"ASRatIUB","queryUriEscaped":"ASRatIUB","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}