{"pages":{"search":{"query":"Bibmath.net","originalQuery":"Bibmath.net","serpid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","parentReqid":"","serpItems":[{"id":"13277986497630612605-0-0","type":"videoSnippet","props":{"videoId":"13277986497630612605"},"curPage":0},{"id":"4386273987502635996-0-1","type":"videoSnippet","props":{"videoId":"4386273987502635996"},"curPage":0},{"id":"14263135640181245101-0-2","type":"videoSnippet","props":{"videoId":"14263135640181245101"},"curPage":0},{"id":"2385654552977535757-0-3","type":"videoSnippet","props":{"videoId":"2385654552977535757"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEJpYm1hdGgubmV0Cg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","ui":"desktop","yuid":"9894664551769495996"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"17947351950994209391-0-5","type":"videoSnippet","props":{"videoId":"17947351950994209391"},"curPage":0},{"id":"7490150312823352002-0-6","type":"videoSnippet","props":{"videoId":"7490150312823352002"},"curPage":0},{"id":"12610568195942063069-0-7","type":"videoSnippet","props":{"videoId":"12610568195942063069"},"curPage":0},{"id":"6702956549353829144-0-8","type":"videoSnippet","props":{"videoId":"6702956549353829144"},"curPage":0},{"id":"15380540122894530047-0-9","type":"videoSnippet","props":{"videoId":"15380540122894530047"},"curPage":0},{"id":"11043314135298254256-0-10","type":"videoSnippet","props":{"videoId":"11043314135298254256"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEJpYm1hdGgubmV0Cg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","ui":"desktop","yuid":"9894664551769495996"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"15483450331450700430-0-12","type":"videoSnippet","props":{"videoId":"15483450331450700430"},"curPage":0},{"id":"6358975969755638079-0-13","type":"videoSnippet","props":{"videoId":"6358975969755638079"},"curPage":0},{"id":"6210904472453878692-0-14","type":"videoSnippet","props":{"videoId":"6210904472453878692"},"curPage":0},{"id":"16852724468339731416-0-15","type":"videoSnippet","props":{"videoId":"16852724468339731416"},"curPage":0},{"id":"11476945145500740703-0-16","type":"videoSnippet","props":{"videoId":"11476945145500740703"},"curPage":0},{"id":"16115387240368541537-0-17","type":"videoSnippet","props":{"videoId":"16115387240368541537"},"curPage":0},{"id":"13449657232275065648-0-18","type":"videoSnippet","props":{"videoId":"13449657232275065648"},"curPage":0},{"id":"3404855891483320417-0-19","type":"videoSnippet","props":{"videoId":"3404855891483320417"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEJpYm1hdGgubmV0Cg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","ui":"desktop","yuid":"9894664551769495996"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DBibmath.net"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"3247296615166433766725","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1457144,0,90;1471993,0,32;1472323,0,76;554938,0,50;1281084,0,48;287509,0,38;1447467,0,33;1006026,0,43;1473596,0,82;1468028,0,36"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DBibmath.net","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Bibmath.net","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Bibmath.net","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Bibmath.net: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Bibmath.net\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Bibmath.net — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"ye1805673fe055047b93506214972e150","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457144,1471993,1472323,554938,1281084,287509,1447467,1006026,1473596,1468028","queryText":"Bibmath.net","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"9894664551769495996","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769496151","tz":"America/Louisville","to_iso":"2026-01-27T01:42:31-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457144,1471993,1472323,554938,1281084,287509,1447467,1006026,1473596,1468028","queryText":"Bibmath.net","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"9894664551769495996","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"3247296615166433766725","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":155,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"9894664551769495996","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"13277986497630612605":{"videoId":"13277986497630612605","docid":"34-1-11-ZBF6818532359DC31","description":"Démonstration du théorème suivant : un endomorphisme est trigonalisable si et seulement si son polynôme caractéristique est scindé.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2789077/0104f1677b4e214e8a4bc003a6f7bd3d/564x318_1"},"target":"_self","position":"0","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8vQ4ZNcw178","linkTemplate":"/video/preview/13277986497630612605?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Caractérisation des endomorphismes trigonalisables","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8vQ4ZNcw178\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFgoUMTMyNzc5ODY0OTc2MzA2MTI2MDVaFDEzMjc3OTg2NDk3NjMwNjEyNjA1aq4NEgEwGAAiRBowAAopaGhvbWRrc29temZkdWViaGhVQ1AtTFhndkFlN0NNZGZfZGRkVWNMbXcSAgARKhDCDw8aDz8T0gSCBCQBgAQrKosBEAEaeIH_CQL1_gMA_PkGBwIH_AL1FP4B-P39AO4J8QAEAAAA-PwJCwkAAAD_9wACAgAAAPwECPL7_gEAFwED__oAAAAVDPL5AAAAABLx8gX_AQAA-wAC_QP_AAAI-QL9_wAAAPUA__oEAAAA9QcC-AEAAAAQ_QkEAAAAACAALei92Ts4E0AJSE5QAipzEAAaYPoRAPwP8NbYUB_R1RcZBRzxExBB_wkABLz_8AHN0E0G9J_zzQAO4gveqwAAABO6CyALAOxvRDrEASka6d352xTpf9g2zQXnJPbsysX9GQnH6x0jVwDDIuQtDBEvSeIBSyAALS1tHzs4E0AJSG9QAiqvBhAMGqAGAABwQQAAEEIAANBBAAB4wgAAcMEAAMBBAADaQgAAgD8AAKDBAAAcwgAA-EEAAFzCAACIwgAA-MEAAIC_AAAQwQAAhEIAAMjBAAA0QgAAgsIAAAjCAADIwQAACMIAAIhBAACowQAAsMEAAJDBAAAgwQAAhEIAAGBBAABwQQAA-EEAAHjCAACAQQAAysIAAJDBAAAoQgAAXEIAALDBAAAcQgAAmEEAAIhBAACAQAAAQMAAAJBBAACewgAAcMEAAAxCAACIQgAAAEEAAADBAAAAQAAATMIAABxCAAAIQgAAUMEAAKbCAAAAwAAAAEAAAPhBAADwQQAAgsIAAKjBAACGwgAA2EEAANTCAADQwQAAcMIAAEDAAAAAwQAAqkIAAIpCAACCwgAAwEEAADjCAADgQAAAPMIAAIA_AAA8QgAAHEIAADzCAADsQgAAmMEAABRCAAB0QgAAHEIAAEBBAAAAwgAAiEIAALjBAAAAAAAArEIAAGTCAAAAAAAAMEEAAPLCAADowQAAoMAAALxCAADAQAAAGMIAABBBAADgQQAAIMIAAIzCAADwQQAAEMEAAGxCAACoQQAAgEIAALBBAAAAQgAA6MEAAFBBAABwQQAAAEEAAMhBAABQwQAA8MEAAMBAAAD4wQAAsMEAAJhBAABAQAAAgMIAAHBBAACgwAAAgMAAAIBBAACwwQAAmMEAALLCAAAQQQAAAEEAALDBAACgQgAA-EEAANBBAAAgwQAAYMEAAKDBAACAQAAAPEIAAFzCAACAQAAAAEIAAFDCAABwQQAAEMEAAJBBAAAkwgAAsEEAAIA_AACAPwAA4EAAAMDBAAA0wgAA8MEAAHDBAADwwQAADMIAAKhBAAAAQQAAPMIAAMjBAADwwQAAPMIAAJxCAAAEQgAAMMEAAChCAACCQgAALMIAAIDAAAAEwgAAwMAAAMBAAACAQAAAIEIAAFBBAABAwgAAGMIAAEDCAAAwwQAAAMAAAGjCAABAwgAAPMIAAOBBAADAwQAAyEEAANjBAACYQQAAoEEAAKBBAACgQQAAQEEAAPBBAACgwAAAgEEgADgTQAlIdVABKo8CEAAagAIAACw-AABUvgAAkj4AAJi9AAAcvgAAQDwAACy-AAC-vgAAEL0AAEw-AAA8PgAAfD4AAMg9AABsPgAAPL4AAHC9AADYPQAAQDwAAKC8AACiPgAAfz8AAOC8AACIvQAAlj4AAKi9AAAwvQAAUL0AAFy-AABcPgAAZD4AANi9AACgvAAAPL4AAEA8AADgvAAA-L0AAKA8AAD4vQAAir4AAIK-AAAEvgAAPL4AAFC9AABwvQAAVL4AAHy-AADIPQAA-L0AAKi9AABMvgAAMD0AAFA9AACKPgAAUD0AAP6-AACAOwAAET8AAFA9AABAvAAAVD4AABA9AABAvAAA-D0AAJK-IAA4E0AJSHxQASqPAhABGoACAAAQvQAAoLwAALg9AAArvwAAgLsAAFC9AAAQPQAAUL0AAAS-AAAUPgAAgDsAALi9AADoPQAADL4AAMg9AACovQAAML0AAEs_AAD4PQAAZD4AACS-AACGvgAA-D0AADC9AADgvAAAVL4AALg9AACAOwAApj4AABA9AABQvQAAyD0AAAy-AADgvAAAgLsAAOA8AADgPAAAij4AAJi9AAAwvQAAVD4AABC9AADovQAAgLsAAOC8AAC4PQAAf78AAHC9AAAsPgAA6D0AADw-AAA0vgAABD4AAKC8AAC4vQAAMD0AABA9AADIPQAAyL0AAFC9AAA8PgAAQDwAACy-AABMviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=8vQ4ZNcw178","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13277986497630612605"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"4386273987502635996":{"videoId":"4386273987502635996","docid":"34-4-12-ZF99C57902E0D50E2","description":"Cette vidéo donne l'essentiel du cours sur les hyperplans et les formes linéaires en dimension finie....","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3032395/672fb4200bf808024f5b1cd705507e2d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XVm38AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Do8-MTg7Gg6s","linkTemplate":"/video/preview/4386273987502635996?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cours sur les hyperplans et les formes linéaires","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=o8-MTg7Gg6s\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFQoTNDM4NjI3Mzk4NzUwMjYzNTk5NloTNDM4NjI3Mzk4NzUwMjYzNTk5NmqHFxIBMBgAIkQaMAAKKWhob21ka3NvbXpmZHVlYmhoVUNQLUxYZ3ZBZTdDTWRmX2RkZFVjTG13EgIAESoQwg8PGg8_E9QHggQkAYAEKyqLARABGniB_fz9Dv4CAPH4AggDBP4B8Qr5-_n-_QD29AMJCAP_AAX1-wT4AQAA_QUICfkAAADz-gX7-wAAABYP9gcDAAAACPoS_v0AAAAOC_wD_gEAAPPz-PUCAAAABfoK_P8AAADy9AUPAAAAAP8GBf0AAAAABf_79gAAAAAgAC3TpNo7OBNACUhOUAIqhAIQABrwAX8N-QHV-_n_ywUAANn_9gGMCin_JxTlAMP7HwDB6-EB4yn4_-nhAQDUCBcAx0H0ABLatwL77fgAGtjZABTz8QDuDSQAUuMxBD0UA__-Ben_ASEq_hD5Hv8M5gwBGvob_OsDFv0I-9sB9vTdBjgMKwDmJgcCG9wR_ur2F_7uBPoC_Ofg_QgHEAgH9Ab78QMQBA_r4wH8Nev-3Cr0AiXh-fn74wP7FDzq_0oS__7o-O7-xAjtABcC9AHsQRf3Dhz0-QEBBvgE3PH5_AUCDgTUA_v65vb9GdT4EQb57_3v-Aj_-OgCANkfDvvy-AYHB_0E6yAALfWKGjs4E0AJSGFQAirPBxAAGsAH8S3kvjPFNz31Rxy8qgudvcuBvzvA_pC84KD9vS4MpjsFkR68kKIePkoS3zy3QwE89pZivgV4gTx5Pw28_b10PpJUS70Dsew8ehcvvgg8MD0pn9S84Lttvl6Klj0WuUy8IuSXPaqgfb2EAMs7HQDxPfXVFb35njG9b4sIvUNHB7oj2Bi9Twh8O3LSRb3fikS8Wt82PenbnbxTkco8dzHtPY8AKb12lhE8M3hOvDTW_ry-HsS71jEzvY1S-Dw0P8i8D_yOPfyMKz3fIPU8t63SvHaM67yUXmU8K_vuvJnZIj1jrB88g0OYOQGk9jwW2YI6yPDzPDQAar28n8s7-aAHvvQamz0vgYA7Hhk7PkGkujurEEW84KA9vfWR5Ty4b5o8iFfjvA9Hl7xnLBi8HzxkPT7jRz3QAdE778ouPNgHgjvyiIC8_XGxPHhEtT21V3o87N0HuulLqbrbMbW8hI4MPR-CKryWlaa86fDQvWx6MD3p85G8ESqyPRogKDt6UBK7IY0vPKpHmjy8z3E8cArrPEXvub32R-W5x4NtvVcQjr2dt1a8IrCYPRbGcTwju3e8QZSJPW0lL707SPw6x3lJvHVnmjrNGyu7pH29PXPJh70vyC87LL0xvfqMNT3tCK86v2unuzrDuTzWNX-8cXONuy5gOD1Brwc8XRUNvUvdn7xBO_E7ow3GPZavyzpgbr07hijXO02xtDxL4m46ElDBPcF4Qb1h0wq67ECnvCFKqLvPtwk7IX3qO19Z7buAuwk7oZ3TPVGBmL2XnVE5KJnBPHHykbyh8gO4X61_vS7isD0JAjo52j_qPAlG77xybWq6rS-3Ov0S8b28I4k5RrkvvdzFCr14RbO5mbj2ux6U5jyjHxE7fjM2vaRQlr0ug6O3R_govJBe3jxuXZa4eJ6TPW642Tz9qJ24YFnpvEiZnrzTRSC5cU88vX_VNrw0oL844lsTvUQ2qzz6uDM3vufGPQAdpr1qQ4Y5fYDJO2tmbT2aeOE4PiYNPSPgmz2w6xy4TytbPTsnrD08TIS4sRODPLaxs70Vqek429CePXbjmD1QBfW4aHUyvmSkKD0Xyky3k55xO9uZE72LC9o4QXF2Pd40Qj1fnKK2PVusvJEhDL16rEA4kl0ZPtlPUL2swj-5yKR1vHLvK7yggfG3sgQDPY2Uc7ujkWu3m0tbvZI8pz1tcIE4va8FPaVJCb6tnoW4yvRwPSLhKz7xy4o47ZZGOnXopD0KbuO4K6advVjywrzwqKW3htlVvX4JCz2TYHA4IAA4E0AJSG1QASpzEAAaYDL_AP_iCqIILiDk8s5BKf3dG7sayCX_K6f_9A77K0JBD8AN5_82BhXRoAAAAPYMCeoTABh_K-kW4-Id-KjCAjDMab8NRNgs4yDmuhTRI-sE4BQqegDyA8ZlOrPR_BcBCyAALQZrEjs4E0AJSG9QAiqvBhAMGqAGAACEQgAAYEIAAJpCAAAAAAAAiEEAACBCAACIQgAA0MEAAEBBAABAQAAAiEEAAOjBAAD4wQAAwEAAADBBAACQwQAAoEEAAKjCAAAUQgAAcMEAADjCAAAAwQAARMIAAMBBAABkwgAAUMIAAKjBAABwwQAAyEEAAIBBAACKwgAAAEIAAOzCAADgQAAAosIAAIjBAAAgwQAAwEEAAJBBAABAQQAAAMEAAADCAACAPwAAsMEAAADCAACAwgAAIEEAAEBAAABAwAAADEIAAKLCAACQwQAAsMEAABhCAAAwQgAAjkIAAMzCAAAQwQAAMEIAADBCAAAAwQAAiMIAADDCAADAwAAAeEIAAATCAADIwQAAEMEAABzCAABwwgAAqkIAADBCAAB0wgAAbEIAAJTCAACYQQAAFMIAAIC_AAAwQQAAAMAAACDCAAAkQgAA4MAAAMhBAADgQAAA8EEAABDBAABYwgAAREIAAIjBAACwwQAAsEIAAIBAAACgQAAAPEIAAMjBAACAQAAAoEAAAIhBAACAPwAA0MEAAIBBAAA0QgAAuMEAAFDCAAAcQgAAgD8AAIA_AACIwQAAUEEAABBCAADgwQAAuMEAAAAAAAA4wgAAWEIAAFDBAADgwQAAHMIAACTCAAAUwgAADMIAABBBAADwwQAABMIAAAxCAAB4QgAAMMEAALjBAACAQAAAiMEAAKrCAABAwQAACEIAACBBAACwQgAAuEEAAGRCAACAPwAAfMIAAAhCAABQwQAAkEEAAFzCAACgQQAALEIAACTCAACwQQAAsMEAAPhBAADYwQAACEIAAChCAAAgQQAAAMAAAAjCAABQwgAAgMEAAGDBAAAkwgAAPMIAAOhBAADgQAAA4MAAAAhCAADgwQAAosIAAJxCAAAAAAAAUMEAAFjCAABQQQAAQEAAAAjCAACOwgAAUEEAAKpCAABgwgAACEIAALBBAAC4wgAAPMIAAIDAAABYwgAAYEEAAOhBAABIwgAAHMIAAEBAAAC4QQAA8EEAAEDBAACAQAAAiEEAAOhBAACeQgAAUMEAAHBBAACAvwAA2MEgADgTQAlIdVABKo8CEAAagAIAAHA9AAC4vQAAJD4AADQ-AADoPQAAED0AAGy-AAAHvwAAEL0AACQ-AAAkPgAAoDwAAFQ-AACePgAANL4AAIC7AABcPgAADD4AAJg9AACePgAAfz8AABA9AAD4vQAAfD4AAIA7AABcvgAAmD0AAFy-AACoPQAAFD4AAIA7AADovQAAHL4AALi9AABQPQAADD4AAFA9AAAUvgAAZL4AALa-AADIvQAABL4AAMi9AABAvAAAPL4AAHy-AAAcPgAAiL0AAEy-AADCvgAA-D0AAEC8AACCPgAAEL0AAIK-AAAwvQAAKz8AABC9AACYPQAAuD0AAIA7AAAQPQAAoLwAAHC9IAA4E0AJSHxQASqPAhABGoACAABAPAAA6L0AAKC8AAAlvwAAcL0AAKi9AACoPQAAEL0AAHS-AADoPQAAmD0AADy-AABAPAAAZL4AABA9AABwvQAAqL0AAEE_AACovQAADD4AABC9AACCvgAAUL0AAOi9AAAMPgAAEL0AAHC9AABQvQAARD4AAKg9AABAPAAA4DwAAAy-AACIvQAA-D0AAOC8AACYvQAAyD0AADy-AACYvQAAjj4AAIA7AACAOwAAML0AAES-AAC4vQAAf78AAEC8AABQPQAAHL4AANg9AADIvQAAuD0AAPi9AABAvAAAEL0AAEC8AACOPgAAXL4AAIC7AACIPQAAgDsAAFC9AAAMviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=o8-MTg7Gg6s","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["4386273987502635996"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2690717697"},"14263135640181245101":{"videoId":"14263135640181245101","docid":"34-0-13-Z63C0DFDC09948E6C","description":"00:05 Définition de la matrice d'une application linéaire 02:12 Exemple 1 04:15 Exemple 2 (sur un espace de polynômes) 05:54 Exemple 3 (avec des bases un peu plus compliquées)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/985339/75e603d94cd6a66b8c70439566d28e20/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2vcfRgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHqnvDs8gbX8","linkTemplate":"/video/preview/14263135640181245101?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Comment déterminer la matrice d'une application linéaire ?","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HqnvDs8gbX8\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFgoUMTQyNjMxMzU2NDAxODEyNDUxMDFaFDE0MjYzMTM1NjQwMTgxMjQ1MTAxaocXEgEwGAAiRBowAAopaGhvbWRrc29temZkdWViaGhVQ1AtTFhndkFlN0NNZGZfZGRkVWNMbXcSAgARKhDCDw8aDz8T8gOCBCQBgAQrKosBEAEaeIH8-AYLAQAA9v4DBf4F_gEODPIE9QAAAO_4_Qb_AQAA9fcD__cAAAD5_PECAAAAAPUACPYC_wAAFgT0APUAAAAP-vz09QAAAPIH9Pj_AQAA-fML8AIAAAANAQoFAAAAAOf8BAz_AAAAEQj_8gEAAAAC9BAGAAAAACAALbgv0zs4E0AJSE5QAiqEAhAAGvABf-4AANns5__Q7hkA2__3AbQLGf8WQ_oA0OQQAbESz__wBwUA8PDnAOYQIQG8Jfn_D-HTAPrUAgAh2vL_CdL9APXrAQAh3QoAPQIU__4F6v_jHin--egQABLH7gAP8w7-Iv0g__vy6QYJ7b8IDv44Ae4wFwMJ5xX-3dsfAu73DQb96OH-BBX9BfHg__rsGRgADuzkAQETAvreKPUCGdj1B_bv-foTOez_RRH__t0W8QTYE-sE9QD0_gMwFP_0Auj59wQU8_TkAfEH7AcL-uUB9wX78P351PUOGPLo-OgGEgTi7vr3xgv6BeT1_Qzi3f3oIAAtGCAkOzgTQAlIYVACKs8HEAAawAcHB9u-eQOMPMpnMTr6DdO9kHjDPGxwB739hR6-AWpqPOHQW7w-0Oo9mc7zPJ2HUbv2lmK-BXiBPHk_DbzFVYU-VDBvvZt_KrzZQ0u-Q5J2Oyl_gr3gu22-XoqWPRa5TLzNs009Rf1EvbYlvDyg4tg9YTyevMVPiLzomYM8JFT6PJspI71cAB47ecg5vEYiNLz7ipo82ip3vOWtxDx3Me09jwApvXaWETxw8Yu87NiMukMiyDly_gG99BKIPPYCWLwP_I49_IwrPd8g9Ty3rdK8dozrvJReZTzr9rO91r4lPFXXxrvSxaY8eDsnPbZqNrti9Iw9nn7Qvb52Xbv5oAe-9BqbPS-BgDv1vCs-zSx4PPp6vjwUmwq9XTVPPfglUTyIV-O8D0eXvGcsGLwwY6o9oZGZPCZpozzpdgA9MGIEPRsHxTv9cbE8eES1PbVXejyk1BI8zkKxvN6P27zngVk9MhUoO7sd67wD3769LN8JPefyEzsRKrI9GiAoO3pQErunB2U9W5TZPNjCYjzJU1s9AICNvagwWzzO8ga9kDiKvZzLQ7wisJg9FsZxPCO7d7z2Bak9wbzRvG988btICMW82hcWPGkYhLsDwS097LxyvZe4QbjsyYK93igoPaHANztuIqk8jKZOPZtR1rtFgJM8TzAtPW3tszsd3o29cttjvc1KOzrrAdM9qNGaPHk45DuNv7o5YVovPGiPmzvVlQ8-1OxGveVHGbmb3NS8800kvf5cFzvZhOq8L9QrvN39STqUQLQ94M1kveKHajlmCbw8vXDGOxTvnToKv0-9Jh7QPYAjObkC7yk9zRm2vJ0lFTi-xeA7rFMVvqaMyTn92OS8rMIJvM8lYju8lDo9ij_KPAUg4TdrHsG9xK6ivVn4IjijRyO8PXSLPFpSSjlZHJk9dYVoPeFOjjiNWzG9-okYPOShjLnRuny9J3U4vJg2VTlleKa7AJQaPTZx0DgiPKU95cKHvTuMUjmO9mk9eQiOPYpdnjjiiSo9c1Z6PWTZqTcqjkM94gLQPbsB9zjTzwg8ZjHRvT5LlzbN51w9RzObPdUtJblodTK-ZKQoPRfKTLdJjFS870qMvXkr1zYBe5Y9lvP_O-YN5Tc9W6y8kSEMvXqsQDiSXRk-2U9QvazCP7mF3ky9VKiOverKw7ht6tk7sA1LvD2WRjeBJmK9TagbPXYHdTgNEkc8dHz0vVZYWbjK9HA9IuErPvHLijiXuwO80tPBPVFqybh8ToW9Y4RLvMLI6LZ6DIC9KYA9PMRZt7cgADgTQAlIbVABKnMQABpgIQAAEucgmej0R-jlwRMV59T9qjDlAf__9_8a4_joQSP0w_0J_xrtLMyeAAAABufdABoA0XHb_OsKIwoF8szmO_5_4B5G-P4t39HQNuXzMUgsVfFOADLp0ydgIr4YSPNkIAAtRrkVOzgTQAlIb1ACKq8GEAwaoAYAABxCAAA4QgAAmEIAAEjCAABAwAAA8EEAALBCAADQwQAAgL8AAEDBAAAMQgAAbMIAAEjCAACQwQAAIEEAAEBBAABIQgAAIMIAAEhCAAAIwgAAoMEAADBBAAC4wQAA2EEAAGzCAABowgAAsMEAAKDBAACEQgAAgMEAABDBAAD4QQAA0MIAAODAAACuwgAAEMEAAIBBAAAwQgAAoEEAAEBBAACoQQAAuMEAALBBAADowQAAuEEAAHTCAACAQAAAYEEAAFhCAACQQQAAfMIAAOBAAADAwQAA8EEAAFBCAAAQQgAAtsIAAFBBAADIQQAAIEIAAKhBAACYwgAAKMIAAPDBAAA0QgAArsIAADjCAAAUwgAAyMEAAETCAADKQgAAUEIAAKbCAABUQgAACMIAAMBAAAA0wgAAgMAAACRCAABwQQAAgMEAAIBCAACwwQAAIEIAAABAAAAcQgAAUMEAAKDBAACOQgAARMIAAKDBAADIQgAAKMIAAIBAAAAsQgAAlsIAAIDBAACAvwAAGEIAAJDBAAAgwgAAgEEAAEBCAADIwQAAgMIAAARCAABAwAAAiEEAAJDBAABAQgAAAEIAADDBAADowQAAMMEAAKDAAABkQgAAoEAAAKBAAAAUwgAAyMEAALjBAAAAwgAAIEEAAJhBAAAwwgAAAEIAAEBCAABAQAAAwMAAALhBAADQwQAAusIAALDBAADwQQAAQMEAANZCAAAIQgAAJEIAAEBBAAAUwgAA4EAAAEDAAAAcQgAAbMIAAERCAAAYQgAAVMIAABxCAADYwQAAIEEAAADCAAAwQgAAEEEAAPhBAADAQQAAuMEAAIrCAAAwwQAA2EEAACzCAAB4wgAAoEAAADBBAAAIwgAAmEEAADDBAACowgAAgkIAALBBAADgwAAAsMEAACxCAACIwQAAyMEAAEzCAACgQQAAOEIAAPDBAACQQQAAmMEAAJLCAAAowgAAiMEAAHDBAAC4QQAACMIAACjCAAAkwgAAAAAAALBBAAAEQgAAAAAAAAxCAACoQQAAyEEAACxCAACAQQAAEEEAABBBAACAPyAAOBNACUh1UAEqjwIQABqAAgAAgDsAAEC8AAA0PgAAyD0AAKi9AABsPgAANL4AAB-_AACoPQAA-D0AAFQ-AADIPQAAoDwAAIo-AAAUvgAAQDwAAIo-AADgvAAAyD0AALY-AAB_PwAAMD0AAFA9AACOPgAA2L0AAIC7AAC4vQAAXL4AAIg9AAD4PQAA4DwAADC9AABQvQAAUD0AAPg9AADovQAAcD0AAFC9AABMvgAAZL4AAAS-AACAuwAALL4AABy-AAAMvgAAoLwAANI-AADYvQAAFL4AAKa-AAA0PgAAcL0AAEQ-AAD4PQAAmr4AAKC8AAA9PwAANL4AAJg9AAAMPgAABL4AAEw-AABQPQAAjr4gADgTQAlIfFABKo8CEAEagAIAAEy-AADgPAAA4DwAAAu_AACgPAAAoLwAAFC9AAAcPgAAFL4AACQ-AADYvQAAVL4AALg9AAAUvgAA4DwAAIi9AABwPQAAPT8AAAQ-AACuPgAAkr4AABC9AAAwvQAAgLsAAIg9AABEvgAABD4AAEC8AACOPgAAuL0AAHC9AABQPQAAoLwAAAw-AABwPQAAfL4AABQ-AACGPgAA2L0AANg9AACAOwAAiL0AAFS-AAAEvgAAPL4AALi9AAB_vwAAmD0AAJi9AACoPQAAHD4AAFy-AAAQPQAAUD0AADA9AACgPAAAgDsAAOg9AAC4vQAA6D0AAIA7AAAkvgAA2L0AAJi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=HqnvDs8gbX8","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14263135640181245101"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2194105837"},"2385654552977535757":{"videoId":"2385654552977535757","docid":"34-6-1-Z0302104A711A2136","description":"Cette vidéo propose une description pour calculer des coefficients de Bézout à partir de la méthode de la division euclidienne.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1017267/540548e458727522da06b7f4e4407db7/564x318_1"},"target":"_self","position":"3","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1hDq4NlhoB0","linkTemplate":"/video/preview/2385654552977535757?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Comment calculer des coefficients de Bézout?","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1hDq4NlhoB0\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFQoTMjM4NTY1NDU1Mjk3NzUzNTc1N1oTMjM4NTY1NDU1Mjk3NzUzNTc1N2quDRIBMBgAIkQaMAAKKWhob21ka3NvbXpmZHVlYmhoVUNQLUxYZ3ZBZTdDTWRmX2RkZFVjTG13EgIAESoQwg8PGg8_E8gCggQkAYAEKyqLARABGniBBAD99_8BAPPv_AkABf4B_gYFAAn9_gD4-gMO_AT-APMACPz7AAAA9wUCAgAAAAD4Dv4H8v8BABf3-_n0AAAADf_4-wcAAAD_CPH9_wEAAPz7_fYC_wAAHgII-_8AAADs_P_9AgAAAAcR8PwBAAAA_-8HAQAAAAAgAC3MZtY7OBNACUhOUAIqcxAAGmBaEQD2RiX7zv4-38brMAsDCxTi4Nbz_x8h_0ABvsEgNbTD3tv_JfgW0JwAAAD48QIiEwD1fxIhqubvHi38RewnTHAUBBYXQzcWEdoIzPEnPv4iHVIArAD25MkB4ECz_g4gAC0YMxc7OBNACUhvUAIqrwYQDBqgBgAAgMEAAChCAAA0QgAAkMEAANhCAABgwgAAsMEAABjCAACAQAAAmsIAAMDBAADYQQAAsMEAAPBBAACAwAAAyEEAADDBAABgwgAAgL8AAIDAAACYQQAAEMEAAKBBAAAgQgAAsEEAANBBAACWwgAA0MEAAMBBAADSQgAAEMEAAMDBAAAQwgAA4EEAAMLCAABcwgAALEIAAHxCAACGwgAAKEIAAIDAAAAwwQAAkEIAAEBAAABAQAAARMIAADDBAACowQAAqEIAAAxCAACuwgAATEIAACjCAABoQgAAkEEAAHDBAABQwgAAPMIAAFBBAACUQgAAsMEAAITCAACAwAAAYMEAAOBAAADAwQAA0EEAAKBAAABAQAAAUMEAAEDCAABUQgAAQEAAAHhCAABAwAAAgEEAAMBAAAAwQgAAQEIAAAAAAAAYwgAAskIAACDBAACoQQAAIEEAAERCAADAQQAA6MEAADBBAAAAQgAA-MEAALhBAABQQQAAiMEAADBBAAC4wgAAyEEAAIrCAADIwQAA4MEAAIjBAAAwwQAAAEAAABBBAABgwgAAgEEAAJjBAACqQgAAhEIAAIBCAACAvwAA4MEAABjCAACUwgAAUMEAABhCAACQQQAAcMEAAKBBAADgQAAAREIAANjBAAAAwAAAmMEAALDBAADCwgAACEIAAAjCAACIQQAASMIAAOhBAAAgQQAAkEEAAIZCAACwwQAAYEIAAABCAACqwgAAlsIAAHjCAAA8QgAAsMEAABRCAADoQQAAUEIAAOBBAACAwAAAqMEAAOBBAABgwQAALEIAAIhCAACgQQAAeMIAAAzCAADgQQAA2MEAAEBAAAAAQAAAgEEAAPDBAAAwQQAArsIAAKjBAABQQQAAEEEAAPBBAAAAwAAAgD8AAKhBAAAYwgAAgEEAADRCAACYwgAAwEEAAIhBAABcwgAAMEEAAIA_AABwQQAAnMIAAJDCAAAAwQAAgL8AAOBAAADgwQAA4MAAAIhBAABAwQAAiEEAABDBAACgwAAAsMEAALDBAADYwQAAHEIAAAjCAACgQAAABMIAAGTCIAA4E0AJSHVQASqPAhAAGoACAABwPQAAQLwAACw-AADoPQAA6L0AACw-AAA8vgAAyr4AANg9AAAwPQAAcD0AABy-AABAPAAARD4AACy-AAC4vQAA2D0AAMg9AABwPQAApj4AAH8_AABAvAAA6L0AAEw-AADovQAA-L0AAKi9AABQvQAAED0AADQ-AAAQvQAAML0AALg9AAD4PQAAJL4AAHA9AADoPQAAXL4AAKa-AAA8vgAAJL4AADy-AAAwvQAA4LwAAFS-AAAsvgAAND4AAHA9AAA8vgAA6L0AADw-AABUPgAAhj4AABw-AADevgAAQDwAABs_AADIPQAAVD4AACw-AAAkvgAAQLwAALg9AAAEviAAOBNACUh8UAEqjwIQARqAAgAANL4AAEC8AADIvQAALb8AAIC7AABAPAAAiD0AAKA8AABAPAAAqD0AAMg9AABQvQAAcD0AAAy-AAA0PgAAQLwAANg9AAAjPwAARL4AAFQ-AAC2vgAAUL0AAOA8AABAvAAAqD0AADw-AACYPQAAiL0AANg9AACgvAAA4LwAAHA9AABUvgAAEL0AAIA7AAAwPQAAZL4AAEQ-AAD4vQAAHL4AAKC8AACgPAAAiL0AAHA9AAAsvgAAhr4AAH-_AACoPQAA4LwAAEA8AABQPQAAyL0AAHA9AACoPQAAEL0AAIA7AAAQPQAA6D0AADy-AAD4vQAAqD0AAAy-AAAMPgAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=1hDq4NlhoB0","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["2385654552977535757"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17947351950994209391":{"videoId":"17947351950994209391","docid":"34-4-7-Z892FE96448E9158D","description":"Dans cette vidéo, on présente une méthode permettant de déterminer un système générateur d'un sous-espace vectoriel donné par un système d'équations. L'outil principal est l'algorithme du pivot...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2845478/14bd5cc22021b0f98fa1ed41149c9547/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mVaL6wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DO_uj4sQelUM","linkTemplate":"/video/preview/17947351950994209391?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Comment déterminer un système générateur d'un sous-espace vectoriel donné par des équations?","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=O_uj4sQelUM\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFgoUMTc5NDczNTE5NTA5OTQyMDkzOTFaFDE3OTQ3MzUxOTUwOTk0MjA5MzkxaocXEgEwGAAiRBowAAopaGhvbWRrc29temZkdWViaGhVQ1AtTFhndkFlN0NNZGZfZGRkVWNMbXcSAgARKhDCDw8aDz8T-QGCBCQBgAQrKosBEAEaeIEHAQT5Av4A8fr6Af8D_wEE-A0B-f79APPw-f8FAv8A6woCBvsAAAD_BgH_BQAAAP_x__j3_QEAGvgBCPEAAAD6-fjv_QAAAP0F8fD_AQAA_fYB-fYCAAET9QIBAAAAAOv8__0CAAAACBz4AAAAAAAI9wD-AAAAACAALV_nzTs4E0AJSE5QAiqEAhAAGvABf-whAc_70P_k7Bv_0__WAKkK_wAdJeEAu_ELAMsW2ADfHO0A6goNABbwEAGZKf8BIw3k___lBwAO1_UAFv78AO3nFQAu2CcCNg8WAiAA5v7rCiUABvAJAhfY1AP1DBsAEukn_fkByf8K67sJSPopAOAkGQL05gr-6fUX_u32Dgbs3tr-CwD2CQf0BvvJ_h4BHtz1CgwoB_nsEt39EPcC-xvk__0qNNf_HhDpBcYoDP_kAu4GEdbz_usQDvvqF_X15xgh_tLWBAMS9h0G8cnv_vUA6wMJ7_UIBA3zA9nd-QjS8f8N2Cb9BPrz_Q715_HpIAAtVOkYOzgTQAlIYVACKs8HEAAawAcHB9u-eQOMPMpnMTrSuqe9uEAiPVVlhLz75zm-YsJDPPut3bwYmAU-gDPrO3-zvbtZwFS-BIyMOSrP1zxnYpo-TjqbvBrvWDyG4wm-3yD1PKwBKr0UB1C-k3Z-PIqaHr0i5Jc9qqB9vYQAyzvRHyo-6rAivVDCzLyuRRA9g5zBPFXsubxPCHw7ctJFvd-KRLz4Db09KPmHvNk9OT13Me09jwApvXaWETyDSXa9k6W5O9nwjzxrEbG9x8jIPB8R07yCQsg92hPuPCLY3Tx4ADW9V6fzOsWC77vfCQy9zylQObaOHrydon48l0F5OumnbrzI8PM8NABqvbyfyzvKqT2-2xa1PbRM-7jdYDg-KaZcPeMbPjrSV5u93UhUPRr0LbtW74I6a247PA6C8ToongM-rK1YvPHlzzv-npi8YvgGvKuDVTvVX4o9azCIPW_imjzs3Qe66UuputsxtbycBKU8XQB1PKMngLysptC8gOGLvIHpk7uc-uA9QP0CvQx12Du_w4M9NCqVPAsPqbmEnp09Q_KEvZm3ajxTghU86KaovdtcCrx7DZY9ZL5tPcurxrqsA6s9t3EVPd16izt05BA8g4izuwm6Yry-Clo91yfKvEUHajtVdJq9m1R0Pdo-HjxUruy75Fl4PZYVFrz1n7U7KTOvPLWwwLpdFQ29S92fvEE78TuYb1g8w6CnPDF5Bzwscjo7XwQyvPuE4DsSUME9wXhBvWHTCrrJ2lC9IN90vUjZIbn00ZS7jlFoPI8SHbhq3oE9UWZovQIWhDnOGGa9v89dPCPtu7lN9eQ88mPHPS7XNzkxTYm7jR1EuouCqDgUnYu9iXrhvcYncDnl9kO7_AMAvazrCrnKkm-8-O2YOpWByDdrHsG9xK6ivVn4IjgOmiK9KUJqPDpgsrmeUJ492OksPZn8dbgWcKq9PoCLvchHlDY3HHG8jzikvKOYpLhleKa7AJQaPTZx0Djav1w9m0E3vQTN-zhuTPQ8wrUEPesQJjdqiaU9G8WIPc-v0DcIm_A8uf3SPUdpZThSSM-7PjyrvU-y5Dig3Hs9AZm3PVgANrhlU869wuioPP4y6DcCigc8nzmgvbMRnbcdCS89NS1MPf1YGDg_1p28WGttvY78zDeSXRk-2U9QvazCP7lbBZa8cAg1vTxFqLdvSvm8VP9_u0sB17dVMRO8TplbPQ2vyzcU9E09tL2nvZeXjbfK9HA9IuErPvHLijg5oQu90RCEPeXT1bgBLUK9JDo1PSjZHbc46Fy9AGgevCSMUTcgADgTQAlIbVABKnMQABpgW_8AFesS0Q_fFtTcxkkh8ugM2BGv1_8g1P8yJrnaHjDyzNcCAB0HJ8qcAAAA78n7_AoA938o_eQyBTM9y_fhQPRi8Ch67BAzTu-xGh_eEkErDB07AOMXri5A8plQDdsaIAAtX0EQOzgTQAlIb1ACKq8GEAwaoAYAALBCAAB8QgAAqkIAACTCAAAgQQAAFEIAALpCAAAwwQAAAMEAADzCAAC4QQAAQEEAAODBAABMQgAAAAAAAABAAAAcQgAAOMIAAGBCAABAwQAAQEAAACTCAACowQAA8EEAAJDBAACAvwAAuMEAAFDCAACAQQAAoMEAABDBAABgQgAAwMIAAIA_AABAwQAAQEAAAEBBAABEQgAAgEAAAGDBAACgQQAAAMEAAGRCAAAAwQAAIMEAAGjCAADYQQAAgD8AAAxCAACgQQAAnMIAALDBAADAQAAAyEEAAPBBAAAsQgAAlMIAAKjBAAC4QQAAdEIAAJDBAAAgwgAAHMIAAJjBAACOQgAAsMEAAODBAADowQAAcMIAALDBAABwQgAAwEAAAJDBAAAgQQAAdMIAABDBAAA0wgAAsMEAAIBBAACAPwAAMMIAAMBCAAAgwQAALEIAAEhCAAAwQQAADEIAAJjBAACcQgAAOMIAANDBAABEQgAALMIAAGDBAAAYwgAAysIAAOBAAABIwgAA2EEAAMDAAADYwQAADEIAAABCAAAgQQAAdMIAABxCAABowgAAuEEAAEDBAAAgQQAAVEIAAJDBAAC4wQAAUEEAAADAAACOQgAAmEEAAGDBAAB0wgAAIMEAAIjBAACQwQAA4MAAAADAAACEwgAAgL8AAIZCAADgQAAAMEEAADBBAAAwQQAA6MIAAHDBAACyQgAAoMAAAFxCAABQQQAAUEEAAGDBAABowgAAAMAAAIDAAABAwQAAMMEAAPhBAACcQgAA-MEAAJjBAAAIwgAA4EEAAJDBAACCQgAAgD8AAHBBAACQQQAAoEAAAJjCAABwwQAAJMIAABjCAABQwQAA4MAAAMDBAABQQQAAuMEAAJhBAACAwgAAIEIAACBBAADgQAAAbMIAAIjBAABAwQAAgMEAAJjCAACAPwAASEIAABzCAADgwQAAgD8AAADDAAC4wQAAoEEAAOBAAAA8QgAAgEEAAJjBAAAkwgAAoEAAAJhBAACKQgAAoMAAAPBBAACAvwAAoEEAAJBCAADYQQAAmEEAAIDBAADgQCAAOBNACUh1UAEqjwIQABqAAgAADL4AAKC8AACCPgAA4DwAAKA8AAAEPgAAgr4AAAG_AACgvAAAgDsAACw-AAAEPgAAQLwAABQ-AADovQAAmL0AANg9AACAOwAAgDsAAJI-AAB_PwAAmD0AABC9AADoPQAAFL4AACS-AAC4vQAALL4AAPg9AABUPgAAQDwAAOg9AAD4vQAAcD0AAOC8AAAwPQAAFD4AANi9AABcvgAAXL4AANi9AADgvAAAgLsAAKC8AAC4vQAAiL0AAGQ-AAAQPQAAiL0AAGy-AAC4PQAA4DwAAFw-AABEPgAAqr4AAKC8AAATPwAAyL0AAHA9AAAcPgAA2L0AAJg9AACYPQAA2L0gADgTQAlIfFABKo8CEAEagAIAABS-AAAQvQAA2D0AAB2_AABAPAAAJL4AAAS-AACoPQAANL4AACQ-AABwvQAARL4AAIg9AACOvgAAEL0AAIC7AADgPAAAOT8AADQ-AAAQPQAAUL0AAKA8AADgvAAAyD0AAOA8AAAsPgAAJD4AAIg9AACGPgAAQDwAABC9AACgPAAAqL0AAOi9AACGvgAAQDwAAMg9AACgPAAADL4AAFC9AAAQvQAAQDwAAHC9AADgPAAAcD0AAFy-AAB_vwAAoLwAAIC7AABUPgAAQDwAACy-AACAOwAAcL0AAOA8AABAvAAAgLsAAIo-AACCvgAAMD0AAKg9AAAEvgAAoLwAACS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=O_uj4sQelUM","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["17947351950994209391"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1921621721"},"7490150312823352002":{"videoId":"7490150312823352002","docid":"34-7-12-Z70FF4DE8337C34B8","description":"Dans cette vidéo, on démontre l'existence d'une fonction continue sur R mais nulle part dérivable. 00:40 - Présentation sous Geogebra 03:53 - Définition de la fonction de Van der Waerden 05:26...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4418744/cd7d61445fe4435e9384c935d71d0d46/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0UcpRQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnJluqohGlcM","linkTemplate":"/video/preview/7490150312823352002?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Une fonction continue nulle part dérivable : la fonction de Van der Waerden","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nJluqohGlcM\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFQoTNzQ5MDE1MDMxMjgyMzM1MjAwMloTNzQ5MDE1MDMxMjgyMzM1MjAwMmqHFxIBMBgAIkQaMAAKKWhob21ka3NvbXpmZHVlYmhoVUNQLUxYZ3ZBZTdDTWRmX2RkZFVjTG13EgIAESoQwg8PGg8_E-wJggQkAYAEKyqLARABGniBBAD99_8BAPr0_wIEBf4B9QH4APn-_gD4-RD3AgP-AOAO-AP__gAA6gP7DP0AAADq_fb0_QEAAAvs_QgBAAAAD_r89fYAAAD-Bv4K_wEAAO0IAvoCAAAAFBEBCv8AAADy6wcGAAAAAP_8AwoAAAAA-__6BQAAAAAgAC3MZtY7OBNACUhOUAIqhAIQABrwAXD2_wDJCOEA3Msi_9sQFAGBAAL_MhLMAMDyCgDPFNoA7vIDAPb8FAAVCwv_rBALAfsS0__26yIBHuciAAzj9ADcDxMBKQYkAjkTA_8i-PgA1CsC_g_5HP8W29cC_RP7ACXvL_8M6N8A_-jQACH8KgEG-_cC_tgD_uQRBwLvEQEE5gPpAPQT-wYj-PcG9A8O_ScSA_0bH_H9_fv7By7wEQMqAQYE9iXtAhYl7P_m_QL7ABfw9v3k7vsBAgsP-hTd_ebxBfDx2vwK7wv3BfPzC_8AGg37CvkH9wHx8gv-9Oz7wBINAfILCgDoH_0G3OYBBCAALb9PJDs4E0AJSGFQAirPBxAAGsAHkgfyvqZACz3gg5e8qfcUvEQlw7t3Lsy8LqmfvQMLu7xT8G-81xQIPiIGNT1HwqM8OGmKvtEMPTztrn08nUaCPn8WS7y-Esi8YtksvnICqjvDZAq9t7IkvikVwzxE0GK8165fPY7Krb1PiuA8_n4RPukqvb04lGu8W68uPTda6Tv45129l9SeO6xbmL2h0Je8-A29PSj5h7zZPTk9RGnPPeTEMjxxqjW8OR69vOYueLxSqF28eraova7iw7spi-s7CXmTPQ3WyTz8jmE8xHk4vLJMv7uD-OE7RiagvNtPBrwpqFE7Y15sPDsODT0tTuu8vJsiPcADqL3DP7I7OUK2vaRmlD1PsL883WA4PimmXD3jGz46fNyivb9g9zxMRC68QCt2u6lj-rzZegQ8MbEZPqn1Izw7SJk8Ms8lPSRNFz3mut88TvDNPavIjTxQ94C6umMWPeT2yzym1Yy7hI4MPR-CKryWlaa8KlmJvSV0OLumtcy6G-1dPW8UtDxVTEE6kYuQPYrR77pVK9k63Ve6PUMxk70uHdK7rM0cu8R2nDxhEL283cF-Pby7JD2Ie5G8djQOPWmHBL2yMli7MPplPJKruzvdzRW7A8EtPey8cr2XuEG4zxmsvFupoT0sVXW7GlUBvYuBHz11LCW8aagRvRiu8zx8HSE8OHGovBliC72lOpE6Ef8wPd5rTT1Hyek7Jd9WvZFsxzvk_Y86aeTTPcnSvbxSsAa4s_UGvC3fhjqiL0y5f06BvCl7pjxXSqW4H6LRPVj4H7150Yo4CTSYvQHzNbxN58G3Mru4Ozeo3T2bbAQ4eF7PvFlf7rzdghg5XFQLvZwV8b3cnnU5vHf1O8ssAr2-mAG5cKgGvOOIWrxbkqi6Y3RqveAZaL1Zb_23VYQ7vVStBT1IFpy4nlCePdjpLD2Z_HW4pFLLOvQ9fjylLXe42VcBvL3aVr18t5W4dVNvPEq8xz0Zgn-48p0TPXuvkLx1KCg4xFY1PXlhxj225i64g2iSvOSDHj2na6k3Fx-wPEughz04M8e4dlNqvVfPyb1cOmq47hC1PVb3wz2j8CG5yuEDvhDXHjyX_U43WXojvVVosL0M6DG4N27RPSfQUT2HLmo2AmFMvGy14rx2IjI4wqTYPTYqJr17tC25oDNpPLtOqb0fUJu4OFpEPCPuVjw8Xo430d0_va5uqzwSgde39nR6PeAP370_mZu3ipZXPRBY-T2NF0A4i4OAvThoLz2QuIq4squPvXy6-jxzlDQ3e7o_vVELD73IH7e3IAA4E0AJSG1QASpzEAAaYGX9ABfiDPTk8iLZs98--NXK19sYtRr_B9n_-QIENCsnAqDjuf8mDhnemQAAABMe_TcbAP9_Bir63-lRGejrGTX6cBMnVMQRGyTioyHj3-4M-E79ZADZ7tAkUb3LRxojMyAALfb_EDs4E0AJSG9QAiqvBhAMGqAGAADgwAAAlEIAALBBAADgQQAAgEEAADhCAABYQgAAoMAAAEjCAACEwgAAGEIAAIDBAAAgwgAAqMEAABDBAAAQwgAAoMEAAFTCAAAAwQAAQEAAAIA_AAB4wgAA4MEAAKjBAAAAwQAAgL8AAFTCAABAQAAALEIAAPDBAAAgQQAAMEIAAADDAACgwQAAIMIAAAxCAAAAwQAAAMAAABDBAADAQQAAgD8AALBBAAAAQQAABMIAABzCAAAgQQAA4MEAAGDBAACAwAAAgMAAAHDBAADIwQAAMMIAAIrCAABEQgAAIEIAAI7CAACGwgAAgMAAAHBBAABUQgAAiMEAAIbCAACSwgAAMMEAABDCAAAYwgAAAEEAAFzCAACYwQAAmEEAAJBBAADAwQAAAMEAABhCAABQQQAAIEEAALhBAACgQQAAAMIAAAjCAAC2QgAAfMIAAOhBAABsQgAAAAAAABhCAAAAQAAATEIAAABAAABEQgAAEEIAADDCAABEwgAAaEIAALDCAADgwQAAbMIAAARCAAAQQgAAcMIAAEjCAADAwAAAgEAAAPTCAADgQQAAoMEAAKBBAAAswgAAEEEAAFBBAABgQQAAJMIAAHhCAAAUQgAAuEEAAARCAACIwQAAMMEAAIBAAABEQgAAQEAAABjCAAAQwgAAksIAAABAAACoQgAAmMEAADzCAACYQQAAyMEAAPjBAACQwgAAFEIAAIZCAADYwQAAokIAABDCAABowgAARMIAAODAAABgwQAA-MEAAABAAACIQQAAoEEAALDBAAAgQgAAAEEAAMBBAACwwQAAUEIAADBCAAAQQQAAnEIAALjBAAD4wQAAyEEAAMhBAACYQQAAwMAAAMBBAABcwgAAgMAAAKDBAAAcwgAAAEIAALBBAACgwQAAAMIAANDBAABYQgAAgMEAAGDBAABMwgAAcEIAAHBBAACAPwAAgsIAAExCAACKwgAAWMIAAGDCAAC4wQAAeEIAAChCAABwwgAAAMAAAFxCAAAQwgAA4EEAAKhBAADQwQAAOEIAADhCAACOQgAA6EEAAGBBAACAPwAAwMAgADgTQAlIdVABKo8CEAAagAIAAAS-AAA0vgAAwj4AAIC7AABAPAAAhj4AAAS-AAD-vgAAgDsAAHA9AACCPgAAyD0AALg9AAD4PQAAPL4AAJi9AACKPgAAQLwAAIg9AACmPgAAfz8AALg9AACAuwAAdD4AAOC8AAA8vgAAEL0AABy-AABUPgAAJD4AAEC8AADIPQAAcL0AAKg9AADYvQAAyL0AAJg9AABsvgAAhr4AAHy-AADYvQAAQDwAALi9AAAMvgAAPL4AABS-AABsPgAAMD0AABy-AACqvgAA4LwAABQ-AABEPgAAfD4AAJ6-AACgvAAAMT8AADC9AAAEPgAADD4AADy-AADYPQAAQDwAACS-IAA4E0AJSHxQASqPAhABGoACAAAQvQAAcL0AAPg9AAAlvwAAgDsAAJi9AAB8vgAAFD4AAI6-AABUPgAAQLwAABy-AADgvAAAJL4AALg9AACIvQAAyD0AADk_AAAsPgAAdD4AAOi9AAC4PQAAmL0AAOi9AACoPQAAEL0AAJg9AABAvAAADD4AAGQ-AAAQvQAAyD0AAIC7AACAuwAAoDwAAHC9AADgvAAAjj4AACy-AABAvAAAyD0AADC9AABUvgAAoDwAACS-AADIvQAAf78AAFA9AADgPAAAMD0AAOA8AABsvgAAoLwAABA9AADgPAAAoDwAAFA9AADYPQAALL4AAIA7AABwPQAAiL0AAOC8AADovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=nJluqohGlcM","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7490150312823352002"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1348669902"},"12610568195942063069":{"videoId":"12610568195942063069","docid":"34-1-11-Z319ED1FA95E2C928","description":"Présentation de la méthode pour déterminer une base de l'image d'une application linéaire...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2032883/30edbb8dd25a76ef344a0ee055c288b9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/IfVLlQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnqXyAFF8MUY","linkTemplate":"/video/preview/12610568195942063069?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Comment déterminer une base de l'image d'une application linéaire?","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nqXyAFF8MUY\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFgoUMTI2MTA1NjgxOTU5NDIwNjMwNjlaFDEyNjEwNTY4MTk1OTQyMDYzMDY5arUPEgEwGAAiRBowAAopaGhvbWRrc29temZkdWViaGhVQ1AtTFhndkFlN0NNZGZfZGRkVWNMbXcSAgARKhDCDw8aDz8TmwKCBCQBgAQrKosBEAEaeIH9BAkN_wIA9AP-AgAE_wEU_f0A9gEBAPP4Bv__Av8A_vjwBfkBAADy-_gBCAAAAP_6_vD__gEACwEA_-wA_wAc-QL1_QAAAPMC8QQAAQAA_f4F8wIAAAADAggHAAAAAPL_CAX7_wAACAf28AEAAAAE5AH_AQAAACAALTju1zs4E0AJSE5QAiqEAhAAGvABfyb5A9wJEgH29eoA1vLyApcJJf8aIeQAyfwcAMUD5QDcKeX_8PHoAOcQHwG_I_n_IO7d_xnm_QAj7vL_HwT9AfAPDAAw0Q4BNQD9AAjY7QH5-iT__-UdASDq9QAXEwYADBAd_-n83gP_6dEADf42Ae8ZDgMU9h0C5uER_dkTAgHZ7uf_C_kFAyv1AfnsBiEB-PHm_OsL8vj3JvQEIenuAujP9gMZGOX-SR8NCOr58P7EG_P7Bw7qA-sLIAMVJvH6-QUOAQPg8_r6ABQM9bj7AvMO_PIh6vgHEAPt-uXgCPjq8AoA2DL2__n4EQv4_wT5IAAtssQqOzgTQAlIYVACKnMQABpgVAUAEOMckP_7Udnq1ScS9tP2uw7U8P8d___-AfDmNCH7pNn7_y0MJOufAAAA5fblFj4A5H8E-wMK5QYD9cnaPB1kzz9Z6xIn_dXePdfy1hAtX_tuAAX8wytZDss2POsvIAAtK3MUOzgTQAlIb1ACKq8GEAwaoAYAAGBCAAAEQgAAVEIAAKhBAAAsQgAAMEIAAEBBAADQwQAAIMIAAABAAAAwwQAAcMIAAKDBAADgwQAAIEIAABTCAAAcQgAAmsIAAJBBAAA4wgAAQEAAABjCAADAwQAAgkIAABzCAACAwAAAgMAAAIBAAAC0QgAAAMAAABzCAACgwQAAdMIAAEBCAAAQwgAAgL8AAAhCAADSQgAAiEEAAIA_AAA0QgAAcEEAAIhBAACYQQAAaMIAAKDAAACYwQAAAEAAACBBAAAcQgAAnsIAAADCAACwwQAAYEEAAARCAAAoQgAA1sIAAEBAAACAQQAAgL8AAIC_AACewgAAAMIAALjBAABwQQAAMMEAAIDBAACIwgAAeMIAADjCAACaQgAA_kIAAGDCAACAQQAAoMAAAIDAAAAUwgAAIMEAAHBBAACAwAAAzsIAANBCAAAwwgAAxEIAAABAAAA4QgAALMIAAPhBAAAgQQAAoMEAAEDBAAAYQgAAgMAAAADCAACAQAAA4MEAAIDAAAAgQQAAFEIAAKbCAADowQAAikIAAERCAACawgAAgEAAAMBAAAA0QgAAIEIAAIA_AACKQgAAaEIAAMjBAADgwAAAqEEAAMDAAADoQQAAOMIAABDCAAAQwQAA8EEAAIDBAACEwgAA4MAAAILCAAAowgAAQMAAAOjBAAAIwgAAQEEAAIDBAAAYQgAAGMIAADzCAADgwAAAQMAAAIpCAAAwQgAAcEEAAADBAACCwgAAKEIAAATCAAAAQAAAQMEAAKhBAABAwAAAqMEAAIBCAACIwQAAwEAAAKBAAADgQQAAgEIAADBBAAD4wQAAyMEAABjCAABQwgAAiEEAAABBAAAMwgAAAEEAANDBAACAPwAAAEAAAJjBAADIwQAAgEEAALDBAABAwQAAhMIAANhBAADgQAAAVEIAAKDBAACIQQAAeEIAAMDBAACwQQAAREIAAPjBAACWwgAA6EEAAIDBAADoQQAAcMEAAJjCAACAPwAAiEEAACDBAAAAQQAAisIAAFBBAACAQAAAgMAAAPhBAACQwQAAZEIAAABAAABAQCAAOBNACUh1UAEqjwIQABqAAgAA4LwAAKi9AAAsPgAAHD4AALi9AABMPgAAgr4AAAm_AACgPAAAuD0AANg9AAD4PQAAmD0AADw-AAAkvgAA2D0AAKo-AABAvAAAoDwAAHQ-AAB_PwAA6D0AAKC8AACiPgAAuL0AABC9AACIvQAAmr4AAOA8AACoPQAAQLwAADC9AAAQvQAAoLwAADA9AACAuwAAuD0AAES-AAA0vgAABL4AAJa-AADgPAAA6L0AAIA7AAAwvQAAyL0AAJY-AACovQAAUL0AAHy-AACiPgAA4LwAABQ-AAAUPgAAhr4AAJi9AAAtPwAAJL4AAPg9AAC4PQAAFL4AAFA9AACYPQAAbL4gADgTQAlIfFABKo8CEAEagAIAACy-AADIvQAAqL0AACe_AACIvQAAqL0AAFS-AACSPgAAqL0AACw-AAA0vgAA6L0AAKC8AABwvQAAED0AAHC9AAAwPQAAPT8AABA9AADKPgAAtr4AAIi9AACAuwAAcL0AAHA9AADgvAAA-D0AAJi9AAB0PgAAcD0AANi9AABQPQAAMD0AAEA8AAAwPQAAJL4AAIi9AAA0PgAAQDwAAEQ-AADgPAAAmL0AAJa-AADIvQAAmr4AAGS-AAB_vwAAoDwAADy-AAAwPQAAcL0AABS-AABAPAAATD4AAMg9AACAOwAAgLsAAAw-AAAUvgAAQLwAAOA8AAC4vQAAQLwAACS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=nqXyAFF8MUY","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["12610568195942063069"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2523160715"},"6702956549353829144":{"videoId":"6702956549353829144","docid":"34-3-2-ZC5709F8FBE6531B4","description":"Explication de la stratégie optimale dans le problème des secrétaires, présentée dans le cadre d'un jeu du type \"A prendre ou à laisser\". Quelle est la stratégie optimale? Quelle est la...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3252530/53c8af4c62dfcb5f5852469170c06cbb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/UZbdQAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D6FpQ0K4Dong","linkTemplate":"/video/preview/6702956549353829144?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Le problème des secrétaires","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=6FpQ0K4Dong\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFQoTNjcwMjk1NjU0OTM1MzgyOTE0NFoTNjcwMjk1NjU0OTM1MzgyOTE0NGqHFxIBMBgAIkQaMAAKKWhob21ka3NvbXpmZHVlYmhoVUNQLUxYZ3ZBZTdDTWRmX2RkZFVjTG13EgIAESoQwg8PGg8_E5gLggQkAYAEKyqLARABGniBAfwH-QAAAPv-A_8DBP4B9ggE7_n9_ADy-v38BwH_APEL_QkEAAAA_QUICvkAAAAGDgj6-P0BAAYG_fr7AAAA-gD__QQAAAAKBvcJ_gEAAO3yBPQCAAAAF_v8_gAAAADlCggH_wD_AAb5__0AAAAA-Pnz-AAAAAAgAC2n4tM7OBNACUhOUAIqhAIQABrwAX_45gOw__39Gvf_AdwL7AGTHQn_QwD9Abv7FgDG-NIAEQzpAeXuF_8DAB__xgYBAA_r7wAK7f8AMvkP_ynnBgHoEjIAJeoCACnxHAD75O_-BBUS_hvtJwIdBQH__NsVABEZEP33GeQBAAXmAwz-MgELJwUCA_f-BfQGCgEC_wj6CwTm_ub6BwTeCPMCAv0MCQ8L7wEYHPP92wkOAh30Af4DAvoHIyve_yUgC_vp_QH7ERII_xMC9gH8Gg_6CQX5AfABBfvmz_j88vURBBvu_Q0N5hgCFikNCg0VBf8L9wgA29UEDMwK-gX8AAYP4fX3-yAALZ1qNzs4E0AJSGFQAirPBxAAGsAHKSDNvp2MAD2KQga9LC7OvHFwjjwh3oC7qyIMvhIAhz2biKM8zNJOPejoJzyT5X-8tw2TvhtUEzwbtBy9_tWLPiDEnzyGqTE7QNwlvsQrJDzz9m-7tKwbviuwhj1i-AO9Kv-KPfO_JjzZzc473zLnPRqX4LzHYhs9IhTAPNbM9byFKpC8GBwqvb5Oir0GDgu864sUPtOAxbu3cgA9agSBPZOQk70PWCQ7e3qGPSpHtzwEJqY8QxF8vahHBL2Zav-7gH8KPgL_Kj021Sw7-tsUPXOW47zAXl274YKHvLko6bwMkRO9PSgIveO7Hj1nyyC80faeuXV3GbyYGTI7d_UKvqCfLj1c-VG8GyqbPVidRj3fTC-7McIKvdvQHj3530a79VIMPaAPYLz8T8Q7jiBVPntI3bwvp8I7_p6YvGL4Bryrg1U7IqfPPQl3vT155FU7v1paPHkXyT3DUAG8sgN4POujuLwNz4G8ADs3vQxA47wtvpe8ImWlPTE2Pr1o5zQ8kE5dPCAAkj3UVKC8AV8bPKCpsrxCzCW8-FiFPR5dWz0DZIO8GO2BPRkx2Dt0ep48pRNJPcgyoz3uC8e7YwxsvTjaMT0OmJG8pH29PXPJh70vyC87E-iNPewGQD3NIAA8NJGIvfSmYj1-Ztq7gcecPEYIj7wBDVu7nYRSvba_Tj2zyMA7mxuoPcfJsztOqBY77vd6vUHXPr07Rf06B-7gPXrcHrv2pQ66zwSUPDR6j70nmQi6K5pYPYEh0DywrqK5Z1oHvVcb7bySnQQ6tyn9On-6Rj01-k45IUtwPe2Dpz3LUF25H-dnPeujGTyfdY-3qWarvcroNrwToAW5QwiDvUOWoLxfpwG6lLgTvaHoy7yJdzu3Cih5vBxeDrzkS1O5HBXuvNAVmzxRiwS5-9rEvLMuKDvsWhg4TLwIvbpQkbkyGUG5S-tKvXwm-71L7GQ5BaR9PJqEgT2wtak4cCfPulJ9p7ywK5K3cxgGPE6WPz3W3JM3dAarPSTbTz2RO7u4R_LLPDd_nbwlvBC5UkjPuz48q71PsuQ432hsPL1ipz2wGok3uOQovtF_hbyd-Bq5dgWRPcc3Sj135JA4x2OmvT5QWD31ygu3d3PnvPBjMb3Cw9w3raf2PbPqmLx7Ozq5_NNXPTQhN71_jjG3CEm0u6cg_zwwZpM4iWY5PXs4vL2key83YQZ5PfM6Er5L56m4o3_6uzEkFz6M_VC3G3fUPNMnYz2lNKC43LJtvU6XKr2NP1g3NgZYvTInwzwwg8M3IAA4E0AJSG1QASpzEAAaYBoDABgiEsLr71_l7-72AgTPEtT-yvcAEMcABP_T6R_5B84I9f8w6QnjswAAAP_0Jv8-AAlkN_3p9tkX_9T7JhAXZNwQCvAMGx_-w-LH6-EbBfsLfwAP9tFUFu3vDRPaASAALe_kODs4E0AJSG9QAiqvBhAMGqAGAAAQQQAA2EEAAExCAABAwAAAgEEAAHBCAACGQgAAmMEAAHjCAACAQAAAgL8AAIjBAACQwQAA0MEAAARCAABAQgAA6EEAAJrCAAAQQgAAQEEAAEDAAADAwQAAcMEAADBCAAAAQAAA4EAAABBBAACMwgAAHEIAAOjBAADgQQAACEIAAPDCAAAAwQAAVMIAALBBAABAwQAAnEIAAIDBAAAAAAAAAEEAACxCAACAQgAAIEIAAEBAAACCwgAAIEEAABhCAACSQgAAREIAAODBAADAwQAAGMIAAKDAAAAkQgAAOEIAAITCAACIQQAAYEEAAPhBAACAvwAAwMIAACTCAACAwQAAJEIAAIBAAADIwQAA4MAAAGjCAAAwQQAAREIAALRCAACYwQAAMEIAALjBAACAwQAA0MEAABDBAAAcQgAAgD8AAKjCAADWQgAA4MEAAJ5CAABgQgAAIMIAACjCAADgwAAAvkIAAHDBAACmQgAAREIAADDCAABEwgAAwMAAAKzCAADgwAAAEEEAALRCAABowgAAmMIAAFhCAABMQgAA4MEAAEDCAABAQAAA4EAAAGBCAAAcwgAAQEAAAIA_AACgQQAAJMIAAAxCAACAwQAAoEAAAMhBAABkwgAAmMEAAHDBAACowQAAsMEAAITCAABAQAAAQMIAACRCAADQwQAA4MEAAIDBAAAgwQAAOMIAAFTCAAB4wgAAgEEAAHzCAAAIQgAAUEIAAEDBAABAQAAAsMEAAHBBAAAwwQAAwMAAAAjCAAA8QgAAuMEAAKTCAADQQQAA2EEAACDBAACCwgAAPEIAAOBAAABQwQAA0EEAADDCAAB4wgAAAMAAAMBBAAC4wQAAMEEAAMDAAADAQQAAyEEAAJjBAAAwwQAA2EEAAJDBAABAwQAAgL8AACTCAADAwAAAcMIAANjBAAAMwgAAqEEAABhCAACwwQAAEMEAADBBAADgwQAAEMIAAPDBAACwQQAAukIAAMBBAAA0wgAAQEEAABRCAABAQQAAAAAAABjCAAAUQgAAoMEAAMBBAAAAQQAAoMAAAEBBAADIwQAAmMEgADgTQAlIdVABKo8CEAAagAIAAJg9AAC4vQAAHD4AAAw-AAAQPQAABD4AAFy-AAC6vgAA-D0AAOg9AABEPgAA-D0AAMg9AAA8PgAAFL4AAHC9AAAsPgAAoDwAAKC8AACmPgAAfz8AAMg9AAAEvgAAbD4AACy-AADYvQAAcL0AAEy-AADoPQAAHD4AAEC8AACIPQAAuL0AAEA8AABQPQAA2L0AAKA8AAD4vQAAkr4AAHy-AACIvQAAUL0AAAQ-AACIvQAAgDsAAFS-AAD4PQAAcL0AACy-AAAkvgAAgDsAANg9AACGPgAAHD4AAK6-AABAvAAAHz8AADC9AADIPQAAQLwAAMi9AADYPQAAgDsAAKa-IAA4E0AJSHxQASqPAhABGoACAABQvQAAyL0AAIC7AAAXvwAAUL0AAJg9AADIPQAAND4AACy-AADIPQAAqL0AABy-AACAOwAAyL0AAEA8AABQvQAAPD4AABM_AADYvQAAij4AAIK-AACgvAAAuL0AAEC8AACYPQAAyL0AAAQ-AAC4vQAAgj4AALg9AACgPAAAUD0AAAS-AACAOwAAQLwAAIA7AAAEPgAAZD4AABy-AACYPQAA6D0AAJi9AAAwvQAAmD0AAAy-AADIvQAAf78AADw-AACYvQAAdD4AACw-AAC4vQAABD4AAEC8AACgvAAAgDsAABA9AAAsPgAAJL4AAFA9AADIPQAAML0AAKC8AAAQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=6FpQ0K4Dong","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6702956549353829144"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"22777734"},"15380540122894530047":{"videoId":"15380540122894530047","docid":"34-3-17-Z890BADBB61D6F8DC","description":"Présentation, sur deux exemples, de la méthode générale pour calculer le déterminant d'une matrice, par développement suivant une ligne ou une colonne, en ayant mis auparavant un maximum de zéros...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1012733/d32302090d1d63b86847b4b75ffb4a19/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/k5oK-QEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_o6eMCpDgVc","linkTemplate":"/video/preview/15380540122894530047?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Comment calculer le déterminant d'une matrice?","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_o6eMCpDgVc\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFgoUMTUzODA1NDAxMjI4OTQ1MzAwNDdaFDE1MzgwNTQwMTIyODk0NTMwMDQ3aocXEgEwGAAiRBowAAopaGhvbWRrc29temZkdWViaGhVQ1AtTFhndkFlN0NNZGZfZGRkVWNMbXcSAgARKhDCDw8aDz8T2wOCBCQBgAQrKosBEAEaeIHy_P_1_gIA-_z_EAEJ-wL4AAUK-v39APIBBgkDAv8A8wAAB_4AAAD6EAT-BgAAAPYBAgcE_wAAGvT_9gMAAAARAPL2_QAAAAIU9Pj_AQAABAMJ7QEAAAAW_gYDAAAAAOf3BvgAAAAAEwD-_AEAAAAB8AcOAAAAACAALR091js4E0AJSE5QAiqEAhAAGvABfxfwANwG9AHg9-3_1e3eAKb3J_9JMP8Aw_sgALb09gDRNvsA7_P4ANIMJwDGQfQAEN_QAAsI2wEa2NgAJNXvAd8GIwFCDREBMxz0_xX39wH__jv__gAZASwJ7QEZ_wf-FQAr_QD_7ADh9-UFD_48AfkT_QIQ1A8GzeYCAe4SAQX16_D7xAIZBS8O7AHj7Ar__A7jBfwH7v8JLucALcz9APnn7PcNEtIAUSIOCfgV9v72-vAQ_AHnBN0UDQ4nCO738yUE9vv-7wQSAgMD1NIA-iMB8_ofCeoI_eLp9dr6CfgF7f_12B8O-_XUC_zOBP_-IAAt77kYOzgTQAlIYVACKs8HEAAawAexGvu-bDCDPW0Yx7tCpPC8cUQtPQnmw7zZ38O9fjq7O4C-iDzS_9I9aSp1PVSUBbz2lmK-BXiBPHk_DbxnYpo-TjqbvBrvWDx6Fy--CDwwPSmf1Lzgu22-XoqWPRa5TLw7noA9KMAGvZGM5jr_PkM-d38GuAzrQb3OWVo9DasYPTwa4ryX1J47rFuYvaHQl7x3hMM9E_s6vDJvmzsgB7o9gpE3vYiynLxz4XY8BUrvPIK5jDwZWBe-FU0RvS4dczwP_I49_IwrPd8g9TwXy768erKwu2PCILyDvpS9U_0UO9tjzrxS2yG8_aq3vCRSqrvI8PM8NABqvbyfyzvQKkO-mHOfvA-oiDz9z7s9eLmIPasmiLwUmwq9XTVPPfglUTyrMde8oqUhPbrwhzvXitY9cG32O1SLqbp964M8LKuLN9o20jsuTDA9QvmxPcpV-bmDGwS9Xkfeu9dLlbrcIyM8UdMTPRy737xz6Um9A208O1E7MryzVn48zjgtvVHMsDyRi5A9itHvulUr2TqkLcM9Bsq3vF2ofLth3qM8hjzivVlJcbsLEnY93aF2O1uJbbsb1pQ9q-3mPA2YdrxMule9UeeAvPkyLLwCyIo9OIyNvRTHZLvPddC8lsY0PdQ_zjsoclK9dDAxPT6p_rvLogs9MuS7O_nRgrp7LS29R2OzvfC-iDmYb1g8w6CnPDF5Bzzu93q9Qdc-vTtF_Tpru4Q9-7N6vDe5Z7t5p6c7gIpZvaYJVrZW0_U8uWCaPfMOK7kRwig9NF_KvKnru7qykkC9Lb8CPY8myLlNLZs8iXAdPTg23Tib80I8JIECPOEkpzizE7S91kWQvbRnMDn076M7j_2svKAKZTmdCAm8-ALOvHFj6jVrHsG9xK6ivVn4IjijRyO8PXSLPFpSSjn-8pk9zNVqu6_VxDh05569zMA3vZrFlbhDFZO97hyxO9JD3Dn0I7Q87FwnvTLoSjdwzzM9CQlHvVv5lTcp9LC8etCSPdE5SreTVfE9-lhmPSXolDhExv68v4IEPudX9DixE4M8trGzvRWp6TjQgBU9gEq1PZY0kLiik6q9V6fEPb02oDgDhyY9HuwDvZ6K0jdBcXY93jRCPV-coratY4G83M7jPFVxdTigVMs99_HGvC2P1bjvPmI93iEAvQk4ILc6Weo8_wDOO4GmorV7KPY8iQKiPBCDKbe9rwU9pUkJvq2ehbiKllc9EFj5PY0XQDhgmpg8W5r7PYSt_bidpiq9zd14vH7ou7c2Bli9MifDPDCDwzcgADgTQAlIbVABKnMQABpgOBwALvc3luDxNt_gyTMn99wCqibF9P8U_v8f0fG_MSLNvr8e__oNKuCZAAAAEOrc2x8Arn8X3vcY0N0A-s3WQvR5Oj1bExkt4RPaLf7yAkdhF9BWAEES0BA8BZs5LNc_IAAtOfIJOzgTQAlIb1ACKq8GEAwaoAYAAARCAADQQQAANEIAAGDBAAAYwgAAwEAAAMZCAADAQQAA8MEAADDCAAAAQAAAcEEAAFDBAAAQQQAA0EEAAPjBAAAMQgAAgD8AAMBCAAAwwgAAoMEAABjCAADAwAAAAMAAAAjCAADgQAAAuMEAAIA_AACMQgAAsEEAAFxCAACAQAAAvMIAAAAAAACowgAAwEAAALBBAACoQgAAAEIAAOhBAAAswgAAwMEAADBCAAAAQAAAAMIAADzCAABQQgAA0EEAABhCAADAQAAA2MEAABhCAABgwgAAMEEAAJhBAAAQwQAAZMIAALrCAAAAwQAAiEEAANhBAADQwQAA8MEAAEDCAAAEQgAAPMIAAODBAABQwQAAgMAAAKBBAAA0QgAAREIAADBBAABQQQAAjsIAAMBAAAC4wQAAgMAAAFRCAADoQQAAIEEAAP5CAACgwAAAsMEAADRCAACgQQAAXEIAALjBAAC4QgAAqMEAAETCAACiQgAAKMIAAGTCAABwQQAA6MIAAKDBAABgwQAAjkIAACBBAABgQQAAAEAAALDBAACgwQAAssIAAExCAACwwQAASEIAAIjBAAAAQgAAGEIAAIC_AADwwQAAqEEAAKBCAADAQAAAoMEAAOBAAADIwQAAgL8AAKjBAABEwgAAIEIAABDCAAAUwgAALMIAAFxCAADYwQAAsEEAAIzCAAAAwQAAtsIAANDBAADwQQAAwMEAALJCAABQQgAAAMAAANjBAAAcwgAAoEEAAMBAAAAgQQAAAMAAAARCAABoQgAAuMEAAExCAACgQAAA4EEAALDBAACAPwAAqMEAAKDAAABAQgAA4MAAAIjCAADwwQAAgMAAACzCAADgQQAAgEEAAABAAABAwAAAkMEAAEBAAACAwQAACEIAADxCAAAAwgAAwEEAAIBBAAAwwgAAIEEAAEDBAAAowgAAQMEAAJjBAACIQQAAJEIAAMjCAAAAwQAAIMEAAEDAAAAEwgAAEMIAAMjBAAA8wgAAyEEAALjBAADAQQAAwMAAAMjBAACoQQAAwEAAAExCAAAoQgAA8MEAAFBBAAAsQiAAOBNACUh1UAEqjwIQABqAAgAAgLsAAOA8AAAUPgAAML0AABC9AABkPgAABL4AABm_AADYPQAAMD0AACw-AAAwPQAAmD0AACw-AAAkvgAAUL0AAIY-AACAuwAAmD0AAMI-AAB_PwAAQLwAAFA9AAB0PgAA-L0AALi9AACgPAAANL4AAPg9AABUPgAAcD0AACS-AADgvAAAED0AAOg9AADIvQAA4DwAAAS-AAB0vgAAjr4AAAS-AABwvQAA2L0AAMi9AADYvQAAcL0AAOI-AAAEvgAARL4AAGy-AADoPQAAMD0AANg9AAAkPgAAvr4AAIA7AAAxPwAA6L0AAMg9AACoPQAALL4AABw-AACIPQAA9r4gADgTQAlIfFABKo8CEAEagAIAALi9AAAkPgAA4DwAAB-_AAA0vgAA6L0AADA9AAAsPgAAmL0AAIY-AACAuwAAnr4AANg9AABsvgAA4DwAAKi9AACoPQAALz8AADC9AABEPgAAfL4AAKC8AABQvQAA4DwAALg9AACgPAAAEL0AAOA8AABEPgAAUL0AAJi9AAAQPQAAyL0AAIi9AACovQAAuL0AAAQ-AAB8PgAAiL0AAIg9AABAPAAAUL0AAIq-AACgvAAAmL0AAAy-AAB_vwAA2D0AAGy-AACoPQAABD4AALi9AABEPgAA4DwAAHC9AACAOwAAML0AACQ-AABUvgAAqL0AAKg9AABAvAAAED0AAPi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=_o6eMCpDgVc","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["15380540122894530047"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1871707061"},"11043314135298254256":{"videoId":"11043314135298254256","docid":"34-5-6-Z3D6180C9F4A4E4B9","description":"Démonstration que les fonctions sinus et cosinus sont dérivables, et calcul de la dérivée. On démontre au passage, par des considérations géométriques, que sin(x)/x tend vers 1 lorsque x tend...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3810141/17591e4435982a1aa66c5aa06aac5893/564x318_1"},"target":"_self","position":"10","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSALMplAH2J0","linkTemplate":"/video/preview/11043314135298254256?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Dérivabilité des fonctions trigonométriques","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SALMplAH2J0\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFgoUMTEwNDMzMTQxMzUyOTgyNTQyNTZaFDExMDQzMzE0MTM1Mjk4MjU0MjU2aq4NEgEwGAAiRBowAAopaGhvbWRrc29temZkdWViaGhVQ1AtTFhndkFlN0NNZGZfZGRkVWNMbXcSAgARKhDCDw8aDz8TjAaCBCQBgAQrKosBEAEaeIHy_P_1_gIAFP4FCQkL_QPxCvn7-f79AP3x9Pj-BP4A8_0KCPsAAADzBgoKAQAAAPcPAvH__wAACPz1_fgAAAAXBPz9AwAAAAcB_f7_AQAA7PT3_wIAAAAP_gEIAAAAAAD1__oDAAAAAPT--AAAAADz-AQFAAAAACAALR091js4E0AJSE5QAipzEAAaYFQTAAnpxbG_FhTVz_cqHBfL-gT5tUL_AM__TyMI-yHy26sv_v8hxtoMoQAAACj3-jNTABZ_AQvy2gXvR6Xq3UHyavMB4O7tNxrQAywDTBHD7TwKPwCq9RED4N4UJ_YZLSAALVqBFzs4E0AJSG9QAiqvBhAMGqAGAADwQQAAgL8AAKhBAACQwgAAQEAAAFhCAACoQgAAwMAAAIBAAAAgQQAAQEEAADBCAAB8wgAAKEIAAIZCAAC4QQAAAMIAAFzCAAA4QgAAIMIAAABBAACgQAAAwEEAAGBBAADgwAAA4MAAAHxCAAAAwAAAQEEAANBBAACQwQAAbEIAANjCAABAQAAAuMIAAAjCAAA8QgAA-EEAADBBAABQQQAAlkIAAMhBAADYQQAA8EEAABBCAABUwgAAmEEAAJhBAAAgQgAAAEEAAKzCAADAQAAAEEEAAJDBAADAQAAAMEIAAHDCAACAQgAAcEIAAAxCAADowQAAYMIAANDBAAAEwgAAoEEAAHTCAACIQQAAOMIAAIjBAABkwgAArkIAAPBBAAC-wgAAIEIAAAAAAAAgQQAAsMEAALjBAAAsQgAAQEEAAHTCAAAcQgAAUEEAAEBBAAAQQgAAgEAAAMhBAADAwQAABEIAACjCAAAAQQAAOEIAAFTCAACAvwAA6EEAANDCAADgQQAAyMEAAJpCAAAAAAAAtsIAAEDAAAAoQgAA0MEAALjBAAAkQgAAcEEAAABAAADAwAAAVEIAAKBBAACgwAAAMMIAABBCAAAQwgAAgL8AACTCAAAUQgAAkMIAAFjCAABgwgAAjsIAAIhBAADAQAAABMIAAOhBAADgQQAAWMIAAHjCAACUQgAAiMEAACTCAACgwQAAgEIAAIhBAABoQgAAuEEAAPBBAACSwgAAEMEAAMDAAACwQQAACEIAAEjCAADoQQAATEIAABjCAABAQQAAgL8AANDBAABMwgAAKEIAAAhCAABEQgAAgEEAAJDBAACGwgAAWMIAACDCAAAgQQAA-MEAAFRCAABQwQAAqMEAACBCAACgQQAAqMEAAJBBAAA0QgAAoMAAADBBAACgwAAAuMEAAJrCAABQwgAA6MEAAOBAAAAEwgAALMIAAHDBAAAgwQAAHMIAAIjBAADAQQAAeEIAAMDBAACSwgAAcMEAANBBAACgQQAA-EEAABxCAAAwQgAA4EAAANhBAAAQQQAAMMEAAADAAACYQQAA8MEgADgTQAlIdVABKo8CEAAagAIAAOg9AAD4vQAAlj4AAEC8AADIvQAAZD4AAHS-AAD-vgAA4LwAACw-AAAcPgAAQLwAABw-AAAUPgAAVL4AAOi9AAAQPQAAQDwAAAQ-AADuPgAAfz8AAIg9AAAwvQAADD4AAIA7AADYvQAAEL0AAEy-AAA0PgAARD4AAIC7AADYvQAAoLwAAMg9AACYPQAALL4AALi9AADovQAAjr4AAFy-AAAUvgAATL4AAOA8AAB8vgAAqL0AAES-AACCPgAA6L0AAMi9AABsvgAAcL0AAPg9AABcPgAAJD4AANq-AABAvAAAIT8AABA9AAC4PQAABD4AAOC8AAD4PQAAiD0AAJq-IAA4E0AJSHxQASqPAhABGoACAAAQPQAAML0AALi9AAAtvwAAoDwAAIg9AAAEvgAAMD0AAHy-AACOPgAAUD0AAIC7AAAwPQAAmL0AAPg9AACovQAAyL0AAD0_AACgPAAAbD4AAAy-AADovQAADD4AAKi9AABwvQAA4DwAAHA9AAAQvQAAdD4AAAw-AACAOwAAQDwAAAy-AAD4vQAAqL0AAIC7AABwvQAAdD4AAAy-AAAkvgAAmD0AAKg9AAAwvQAAUD0AAKC8AABQPQAAf78AAOC8AABsPgAAuD0AAFA9AABUvgAAuD0AAKg9AAAQPQAA4DwAAIg9AABAvAAA6L0AAKC8AAA8PgAA-D0AAIC7AACWviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=SALMplAH2J0","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["11043314135298254256"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15483450331450700430":{"videoId":"15483450331450700430","docid":"34-4-6-Z2099456598F5E2B3","description":"Dans cette vidéo, on démontre le théorème de caractérisation des endomorphismes diagonalisables en fonction des sous-espaces propres et du polynôme caractéristique de l'endomorphisme...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3242830/f2033773ec1300653b7a8e552d382a77/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/8eSaPgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DpVjW7ylqBKI","linkTemplate":"/video/preview/15483450331450700430?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Caractérisation des endomorphismes diagonalisables","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pVjW7ylqBKI\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFgoUMTU0ODM0NTAzMzE0NTA3MDA0MzBaFDE1NDgzNDUwMzMxNDUwNzAwNDMwaocXEgEwGAAiRBowAAopaGhvbWRrc29temZkdWViaGhVQ1AtTFhndkFlN0NNZGZfZGRkVWNMbXcSAgARKhDCDw8aDz8T4gSCBCQBgAQrKosBEAEaeIEAAwPxAf4A-_4D_wME_gH0Ff4B-P39APMS-gIHAv8A8vEHCgAAAAD68gL7_AAAAAb6B_T7_QEAFgn9_wQAAAAYBPz9AwAAABPw8QX_AQAA_wX7_wP_AAAK9woDAAAAAPD7Cvv-_wAA7RH_8wAAAAAP9xEMAAAAACAALe8yzjs4E0AJSE5QAiqEAhAAGvABdgL6_8r-AwDtDP8A0RUEAIEiCv4QFdQAvdkCAa0Szf_lERIA7_DmANMLJgC9KRsBEODRAA_aBQAv4dr_8_zyAQXuBwEguhsAShUPAfwBDf_sCSQAHdwCARzn5wD7Cf39BwIN_uf82wMABuIDCdc7A_0JEQEJ9iH93f_9_dgJ9wL32PEBGvwLCfP0EADi9i0H_-IE-A0F8_rcKvUCDvPqAPP0GvkUO-v_Ov4RAvP-EwS_HvL73-vfAxQfIf7w8_QA--oX_g_cBPIH-gsGMdPwBuD2Cvcj6PcH9fTi-vIGD_b46QEAzBEDAtwDDQnf4gT4IAAt_yEdOzgTQAlIYVACKs8HEAAawAfYRfm-KKw_u4Kc5jyjUzy99MgbvOtNMbzMpZe9car1PD08lTz-Ddo9Xy1SPJz047z2lmK-BXiBPHk_Dby14ZA-uhE2vRqJMD2G4wm-3yD1PKwBKr20rBu-K7CGPWL4A71qXRM8RnwnvSBzDrupwdQ96qg0PO1KprwrV8O9nWxevfqUCL3jQQm9GTigvOj0_rt9ADc9-1wNvXU_pzpsSFc9sez4vFSGlryCXhO9k11EPDsvOjwWkmK9EV51uz7007x1Ziw9povDPP90qDzu0DC9WHqIvIsqz7vrayK9_oOjPBb7SzsRFlu7V1x8PeMkI73JT3Q8u2WivE8Hsrz5oAe-9BqbPS-BgDvshu09jPeDPXJbkTsUmwq9XTVPPfglUTxDebo8t1I5vaygM7zPfKM9uDJSPafQVDxF1dC7668yu42YWbwJZMA8z1l1PYVjsTwiRAM9RYBTvETf3bxQCDM9Cb8avCRQVLss-ZO9YmBCPA8vo7zlmpI9zE71PPfvMLwWGA08bnNfOymveDtwCus8Re-5vfZH5bku8h28by6Zvc3LfrsdbcE9OWkQPS4Ff7z2Bak9wbzRvG988bubV3W90IYyPIHlMrmkfb09c8mHvS_ILzsILwu9qyArvLlB5TrYv8a8xN5VPH_xMby_rza83CfsPEBpyTvMbJa980qTvQf_XDcLqLE98cP3vJiM-7mx1Yo8jaE1u0aZS7t65Ko9I1-uvG9Igrk9SgK8fCx9vCrUBzx5Wr68F0_YvLmaSDqqgqE9GhiZvUdKoDgcYnc9565ju9YUtLmsPOG9aUNUPZVbsjhZmJ89KGaYOwPlSLm-xeA7rFMVvqaMyTl1wnC8puXRvN1LQTad-8Y8deENPGQSmLnBouy8IbqGvdjyrjmB_eG8wCgcvDVqsTcmQGM9Myr8OyjNgzhZmC-9bh8NvS84XrkY8Xi9wRQvvYVlQjkcObm5UaYsPIHCp7irJog9z7eavfufhzmV4cs65wGHPTIxizcGzmM9DSsmPcvVS7YqjkM94gLQPbsB9zjTzwg8ZjHRvT5LlzbN51w9RzObPdUtJbm0kBC-2IyiPZl7BLdBPWg7HOvivAGx9bcTuss716GauhpeN7aHIai9BuCavcp0LjiSXRk-2U9QvazCP7lbBZa8cAg1vTxFqLd87NM8ofIvvYneajhAkIK9prxxPaB-9bZhBnk98zoSvkvnqbjK9HA9IuErPvHLijjiGK48b6WiPUwnUrgrpp29WPLCvPCopbe-Qzu9I8ahvN5nJTggADgTQAlIbVABKnMQABpgEwwAFgAFxPAnNNrMFTIc9eb8AVnx8P_-rv_S7cv4Lhu9kejC_wz4AdWiAAAAHsMKCdgAF34oQsIE_vryx-TZD-x_rmMVv9hADO_F-gju5szrIhF9ANgboTcgBgA-5AkSIAAtnw0ROzgTQAlIb1ACKq8GEAwaoAYAAGBCAACmQgAATEIAAMhBAAAoQgAAWEIAAI5CAAAAAAAAIMIAADBBAABAQQAAaMIAAMjBAACgwAAA2EEAAADCAABAQAAAksIAANBBAABIwgAAAMIAAJjBAAD4wQAA4EEAADjCAAAQwQAAoMEAABTCAAB8QgAAgMEAACTCAAAYQgAA9MIAAAhCAAA0wgAAUMEAAAAAAABkQgAAAAAAAAhCAABAQAAAKMIAAADAAADgwQAARMIAAFDCAABAQAAAUEEAAIBAAAAUQgAArMIAAABAAACIQQAAMEEAAAhCAACAQgAA5MIAACDCAAAAQgAATEIAAAAAAABEwgAA0MEAAKjBAAAsQgAA4MEAAEBAAAAQwgAA-MEAACDCAAC6QgAAxkIAAAzCAAAwQQAAlMIAALDBAAAowgAAAMEAABBBAAAIwgAAdMIAAJJCAADQwQAA2EEAAOBAAABwQQAAoMAAACDBAADwQQAAAEAAACDBAACwQgAAIMIAABBBAAAgQQAAHMIAANBBAAAAwQAA-EEAACDCAACAwQAAFEIAAGRCAABgwQAAuMEAALhBAAAQwQAA8EEAACjCAAAMQgAA6EEAAFzCAABAQQAAUEEAACDCAAB4QgAADMIAAFDBAAAAwgAAoEAAAADCAABwwgAAAAAAAGTCAADAwQAAkMEAAIBBAACwQQAAAEEAAHDBAACYwQAAksIAAABBAADYQQAAmMEAAKxCAADAQQAAsEEAADBCAAAkwgAAPEIAAEDAAABwQQAADMIAAGRCAADgQQAAfMIAAGhCAAAAwAAAiEEAAOBAAADwQQAAAEIAAHDBAAC4QQAAXMIAACTCAAAAwQAAEEEAAPDBAACYwQAAKEIAAODAAACwwQAAQEAAAJDBAACQwQAAaEIAACDBAACAvwAA0MEAAAxCAAAAwAAAUEEAAHjCAAAAAAAAvEIAACjCAADgQQAANEIAAKbCAACAwgAAUMEAAODBAADwQQAAKEIAAFjCAACYwQAADEIAAKBAAACwQQAAAMIAAIBAAAAkQgAAQEEAAKZCAADYwQAAhEIAABBBAADQwSAAOBNACUh1UAEqjwIQABqAAgAAuD0AAEy-AAB8PgAAiL0AAOi9AACgvAAA-L0AANq-AAAwPQAAJD4AAEQ-AABcPgAAqD0AAJI-AAAkvgAAmL0AAOg9AACAOwAA4LwAAKo-AAB_PwAAML0AAFC9AABMPgAADL4AAJi9AACovQAAfL4AAFQ-AABEPgAAmL0AAIg9AABEvgAAgDsAAOC8AAAcvgAAuD0AAIi9AABsvgAAfL4AAAS-AAAQvQAA4LwAABC9AABEvgAATL4AAAw-AAAEvgAALL4AAES-AACIvQAAiD0AAII-AADIPQAA9r4AAOA8AAAZPwAAQLwAAIA7AAB0PgAAQDwAAKg9AACYPQAAlr4gADgTQAlIfFABKo8CEAEagAIAAIA7AAAwPQAAQLwAACW_AABQvQAADL4AAHC9AADgvAAAPL4AADw-AABAPAAA-L0AAOC8AABsvgAAiD0AALi9AABAvAAAPz8AABQ-AABkPgAAyL0AAEy-AACYPQAAoLwAAHC9AAA0vgAAgDsAAKA8AACWPgAAUD0AAKC8AADIPQAAuL0AAEC8AACYvQAAUD0AANg9AACKPgAAuL0AAIC7AABcPgAAyL0AAGS-AABAPAAAMD0AADw-AAB_vwAADL4AAJg9AADoPQAARD4AAFy-AAD4PQAAiL0AABy-AAAwPQAAoDwAABw-AAC4vQAAoDwAAAQ-AABQPQAAVL4AAAy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=pVjW7ylqBKI","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15483450331450700430"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2014461137"},"6358975969755638079":{"videoId":"6358975969755638079","docid":"34-7-9-ZB6047D6035957210","description":"La définition du produit de deux matrices peut sembler compliquée. Dans cette courte vidéo, on explique sur un exemple pourquoi cette définition est naturelle.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3991551/bde009be2e4e280d08e0d605d3d81b72/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/6QDlkwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCM3en7RkIhE","linkTemplate":"/video/preview/6358975969755638079?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Pourquoi le produit de matrices est-il défini ainsi?","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CM3en7RkIhE\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFQoTNjM1ODk3NTk2OTc1NTYzODA3OVoTNjM1ODk3NTk2OTc1NTYzODA3OWq1DxIBMBgAIkQaMAAKKWhob21ka3NvbXpmZHVlYmhoVUNQLUxYZ3ZBZTdDTWRmX2RkZFVjTG13EgIAESoQwg8PGg8_E_cCggQkAYAEKyqLARABGniB_v33_f8CAP_uAgn7CP0C7Q0C__r-_gD6_gH5BAP_APECDvoHAAAA7wAEBAAAAAD-Bv0KA_4AACEK_AAEAAAAFg4I_vUAAAAODPwD_gEAAAQDCe0BAAAAFf4GAwAAAADyCPcJAQAAAA0IAvwBAAAA_Pn6AAAAAAAgAC0Kb9k7OBNACUhOUAIqhAIQABrwAX8N-QHf9-oBzPH4ANLx8AKMCin_PR7iAMkEOAGqEuj_0g8ZANfn4wH6ABP_min_Af_g3AAG_PQAI9jx_xPv_wDxAxcBUuMxBCsK9wAL_f_--hhEAhoWGgAk1fYBDAAA_PwEPP_2CuMC9vTdBiP7LAH_GhUFCuUW_tgCCgfoFA8CAf3u_ubhGAAYEP_61O0dAhIN7AH8It_65BT8Bj7z5AH55-339ifsAkoS__7bF_AE1RTqBAgQ6APqIRz-By_f-PMkBPb44_UCKAsQCfvRAQn8Fur6J_zyAvUE7f7i3Qn36O4LAPIL_PwKAxYQ7-kD9iAALfWKGjs4E0AJSGFQAipzEAAaYDgAAAwgMJ3bBSbXst8iJN7M7rlHmyP_9un_LN2o4w__5dT34v8B-S7vlgAAABz75-LkAON_9yXAx-gFHfO-AE7eLhcdP__wGxDf2xT5-fY0Fxr6WQDw7tlkFCXV_kz0TiAALYu7GDs4E0AJSG9QAiqvBhAMGqAGAAAkQgAAiEIAABBCAACgQAAAPEIAAIBCAACmQgAAoMEAAEDCAACAQAAABEIAAHDCAAA8wgAA6MEAABBCAACQwQAAEEEAAIDCAADAQQAAdMIAACTCAADowQAALMIAAOBBAADgwAAAJMIAAEDCAABcwgAAqEIAAMDAAABgwQAACEIAAADDAACgwAAARMIAAGDBAAC4QQAAfEIAABBBAAB8QgAA-EEAAIDBAACAQQAAMMEAADDBAACOwgAAcMEAADBCAACSQgAA2EEAAIjCAAC4wQAAgMEAAIBBAADoQQAAQEIAAObCAAAQwQAAcMEAAOBBAABwQQAAMMIAAPDBAACgwgAA8EEAAFzCAADgwAAACMIAANDBAAAMwgAApEIAAJxCAAAgwgAAYEEAAMjBAAAwwQAAgsIAAIhBAACgQQAAAAAAACjCAAC0QgAAwEAAADxCAACAQAAAQEAAAMDAAABwwQAAgkIAAKjBAACwQQAAwkIAAMjBAADAwQAALMIAALjBAACwwQAAgD8AAGxCAABEwgAAGMIAAFBCAABMQgAAgMEAAPDBAAAYQgAA4MAAAGBCAAAYwgAAHEIAACRCAABwQQAAgEAAAGBBAAAIwgAACEIAAOjBAAAQwQAALMIAAKDBAAAcwgAALMIAABTCAAA8wgAAAAAAACBCAABwQQAAUMEAAFDBAACIQQAAqMEAAJzCAACAPwAAkEEAAFjCAACiQgAA8EEAAEBBAABgQQAAQMIAAJhBAAAAQAAA8EEAABjCAAA4QgAAEEEAAGzCAAAIQgAAQMAAAMDBAAA0wgAAMEIAAPhBAADgQQAA0EEAAETCAAAUwgAAgL8AAIA_AACYwQAAiMEAABBCAADIQQAAoMAAAPhBAABwwQAAcMEAAMBBAACYwQAAAEEAAPDBAACAQQAAoMAAAIBAAAD4wQAAoEAAAL5CAAD4wQAAFEIAADBBAACMwgAAeMIAAADBAACYwQAAbEIAAJjBAABQwgAA4EAAALBBAABgwQAAAEEAAHTCAACAPwAAgEIAAJBBAADoQQAAAMIAACRCAAAAAAAAgD8gADgTQAlIdVABKo8CEAAagAIAABA9AABwvQAAsj4AAIC7AAAQvQAAVD4AAI6-AADSvgAAEL0AAHA9AABUPgAAgDsAAMg9AAA0PgAAML0AANi9AAC4PQAAUD0AAKA8AACiPgAAfz8AAAQ-AAAMvgAAfD4AAFC9AAAUvgAAQDwAALi9AAAEPgAAVD4AAHC9AABAPAAAiL0AAMg9AAAQPQAAML0AAMg9AADYvQAAjr4AAJq-AABQPQAAHL4AAFC9AABAvAAA6L0AABS-AAAcPgAAED0AAIA7AACSvgAAiD0AAIo-AACGPgAATD4AANK-AAAQPQAAEz8AAOA8AABsPgAAJD4AABS-AADYPQAAyD0AAJK-IAA4E0AJSHxQASqPAhABGoACAADovQAAFL4AAHA9AAAvvwAAQDwAANg9AACIPQAAyD0AAGS-AACOPgAAUL0AAKi9AAC4PQAAEL0AAFA9AACgvAAABD4AAFM_AABwvQAAnj4AAI6-AAAwPQAAiL0AAEC8AABAPAAAoLwAAEQ-AACgvAAAPD4AALg9AACYvQAAiD0AAOi9AABEvgAAUL0AADA9AADYvQAAqD0AANi9AAD4vQAAUL0AAKC8AAAUvgAA4LwAADy-AAAwvQAAf78AAIi9AAAQvQAAQDwAAIA7AACAuwAAiD0AAOg9AABwvQAAgDsAAIg9AABcPgAAQDwAABC9AAAsPgAAyL0AAKg9AABMviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=CM3en7RkIhE","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6358975969755638079"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3624256596"},"6210904472453878692":{"videoId":"6210904472453878692","docid":"34-7-6-Z1DC14943DFB5A4F6","description":"Dans cette vidéo, on présente et on développe sur un exemple une méthode pour calculer la norme d'une application linéaire continue.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2891573/501e6a05ef20d51e9917f8ac9bea9fb2/564x318_1"},"target":"_self","position":"14","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMXFsurKnR5c","linkTemplate":"/video/preview/6210904472453878692?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Comment calculer la norme d'une application linéaire continue?","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MXFsurKnR5c\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MloTNjIxMDkwNDQ3MjQ1Mzg3ODY5MmquDRIBMBgAIkQaMAAKKWhob21ka3NvbXpmZHVlYmhoVUNQLUxYZ3ZBZTdDTWRmX2RkZFVjTG13EgIAESoQwg8PGg8_E4EEggQkAYAEKyqLARABGniBBfgBA_8BAPj38w4HB_wBAhT6-vf__wDh9wwH_fsCAP0DAPn2AQAA7wkAAQAAAADp_AIEAgIAAAj89f34AAAADPH9__kAAAABBu8LAAEAAP3-BfMCAAAACAQCCgAAAAD39REH_wAAAAYC_fnz_AAAAvQQBgAAAAAgAC2QK9c7OBNACUhOUAIqcxAAGmAlEgD4KAm-nAlmus37JRUGAfS67OQH_yUu__btDdUrCtS02Qf_Gx8R4aEAAADZ9r4oLADIf_INxuADGRrXBtwxDlXbDhYtGgXO4Moy_ispLN53DWsA7xsEChbfBmgGCzUgAC2lcRc7OBNACUhvUAIqrwYQDBqgBgAAoMAAAMDAAABoQgAAAMAAAKDAAAAYQgAAmkIAAETCAAAQwQAASMIAAKhBAABMwgAAAMEAAADAAAAgQgAAgMEAADjCAAC4QQAAoMAAAADAAAAAQQAA4EEAACBBAADgQAAANMIAAOBBAABIwgAASMIAAMpCAABgQQAAoEAAAKZCAADYwQAAQMEAAPjBAAAgQQAAcEEAAOpCAACAwQAAoEAAAHRCAACYQQAAsEIAADhCAAAAwAAAYMEAAHzCAADAwAAAMEIAAADAAACewgAAQMEAAKBAAABwQQAAwkIAAKBBAADOwgAAkEEAAMDAAAA0QgAAmEEAAKjBAAD4wQAAnsIAAJbCAAC4wQAAHMIAABDBAACowQAAMMEAAIJCAAAcQgAALMIAADTCAACIQQAAJMIAAHDCAAAAwQAAlEIAAFDBAAAowgAA4EEAABRCAACaQgAAMEEAAAAAAACYQQAAwMAAAOBAAACgwAAAAAAAABhCAACYQgAAlMIAACBBAABwwgAAHMIAAMDAAABoQgAAVMIAAAzCAAAUQgAAhkIAAIDCAADAwAAAgEIAAIDBAACEQgAAmMEAAI5CAACIQgAAiMEAALDBAABIwgAAHEIAAOhBAAAowgAAyMEAAIBAAABAwQAAnEIAAITCAACgwQAAIEEAAAhCAAC4wQAAgD8AAIDAAABwwgAAyMEAADhCAACgQQAAwMEAAHBCAACgwQAAgD8AAKDAAADgwAAA-EEAAMDCAADAwQAAoMEAAAhCAABwwQAAmEIAAKDAAACIwgAAQEEAAIDAAADAQQAAQEAAANhBAACAQAAAeEIAAIzCAAAwwQAAjMIAAKDBAABAQAAAZEIAAIDAAAAAwAAAYEEAAAzCAAAQQgAAQMAAAEhCAADoQQAAAEEAAADBAAAQwgAAwEAAAPhBAACgwAAAiMEAABRCAABQQgAAgD8AADRCAACAwQAAJMIAAHjCAADgQAAAwEEAAADBAABIwgAAiMEAAABBAACYwQAA6EEAABDCAAAAQAAAAMAAADDBAAB4wgAAAEEAADDBAADgwQAAXMIAABDBIAA4E0AJSHVQASqPAhAAGoACAACovQAAoLwAACw-AAAQPQAAcD0AAAQ-AAC4vQAA6r4AAAw-AABAvAAAXD4AAJg9AACIPQAARD4AAFy-AACAuwAAvj4AAIA7AABwvQAAkj4AAH8_AACYvQAA4LwAAIY-AAAsvgAAiL0AADC9AAA0vgAAmD0AACw-AAAQPQAAQLwAAKA8AADoPQAAcL0AAEC8AADgPAAAbL4AAES-AAAUvgAAXL4AADC9AABQvQAAEL0AADS-AAAUvgAAlj4AALi9AAB8vgAAFL4AAPg9AADoPQAAdD4AABw-AAC6vgAAcL0AABc_AADgvAAA2D0AALg9AACavgAAUD0AAKA8AABMviAAOBNACUh8UAEqjwIQARqAAgAABL4AAKA8AADgvAAAI78AAKg9AACAOwAA2L0AABQ-AAD4vQAAcD0AAPi9AAAMvgAAoDwAABy-AAAkPgAAQLwAAMg9AAATPwAAgLsAAHQ-AACCvgAADD4AAHC9AACgvAAAcD0AAOg9AAAwvQAA6L0AAJg9AABAPAAAqL0AANg9AABAvAAAED0AAPi9AACYvQAAgLsAAOg9AACovQAAFL4AACS-AACYPQAAHL4AAOA8AAAMvgAARL4AAH-_AACIPQAAgLsAADA9AAAwPQAALL4AAKA8AAA0PgAAyL0AADA9AADgPAAABL4AAJi9AAAwPQAAQDwAAES-AABAvAAA2L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=MXFsurKnR5c","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6210904472453878692"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16852724468339731416":{"videoId":"16852724468339731416","docid":"34-8-0-Z8D468BAB19E3C53F","description":"Cette vidéo présente un cours sur la connexité par arcs : Définitions Exemples et contre-exemples de parties connexes par arcs d'un espace vectoriel normé Principales propriétés des parties...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2298643/a4c9fba3f6dd083a229df5e153557c94/564x318_1"},"target":"_self","position":"15","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dv6MSY5Sup5E","linkTemplate":"/video/preview/16852724468339731416?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cours sur la connexité par arcs","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=v6MSY5Sup5E\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTZaFDE2ODUyNzI0NDY4MzM5NzMxNDE2aq4NEgEwGAAiRBowAAopaGhvbWRrc29temZkdWViaGhVQ1AtTFhndkFlN0NNZGZfZGRkVWNMbXcSAgARKhDCDw8aDz8TvAyCBCQBgAQrKosBEAEaeIH4_ggE_AQA-_z_DwEI_ALuCAL3-v7-AOz4_PMC_wEA-vX9B_0AAAD6Avv-BgAAAO4CAPH_AQAAFgAC_wQAAAASAPQC_wAAAAEB-fr_AQAA8gIMBwMAAAAA9g0F_wAAAPr6Awv9AAAA_QT-_QEAAAD_7wP4AAAAACAALZO43js4E0AJSE5QAipzEAAaYC4gAAYjQfXS1BnXzfZCKgDeM7_Y4vX_FMD_KswN7SMH37zoBP8a4BfcogAAACLcAwAyAOl_Kv2P8vccNdoHDDD0fIQWAlzmKRkU8gvlJQ0HzUH5RQDoAMUF_PIJXd5DLSAALdpvFjs4E0AJSG9QAiqvBhAMGqAGAABQQQAAOEIAAFRCAACQQQAA8EEAAMBCAADsQgAAMMIAAFzCAAA0wgAA-EEAAMhBAACgwQAAmMEAAOhBAADgwQAAAMAAADTCAACowQAA6MEAABhCAABAwgAA4EAAADBCAADgQQAAUEEAAKjBAAAQQgAAlkIAAEDAAACQwQAA8EEAAI7CAADwQQAAIMEAAAAAAAAAQQAAzkIAACDCAABAwQAAqMEAALDBAADAQgAA4EEAAIDAAAAAQQAAEEEAAEBBAAAAQQAAwMEAAIrCAACAwgAAUMEAADDBAAAgQQAAMEEAACzCAABgwgAAaEIAAIBBAADIQQAA8MEAAETCAAAswgAAsEEAABDBAADoQQAAQEEAAGzCAABQwQAAEEIAAAxCAAC8wgAAHEIAAFTCAADYwQAAUMEAAMhBAADGQgAAIEEAAIDCAACOQgAAwMAAANBBAACgwQAAgL8AAIDCAACwwQAAkEEAAHzCAAAQwQAAYEEAAHTCAABIwgAArsIAACzCAABkwgAAQEEAAHhCAAAMwgAAhMIAALBBAACIQQAAFMIAAHjCAACAQQAAVMIAAKBCAACAwQAAFEIAAOBAAABAQAAA-MEAAOBAAABQQQAAsEEAAJBBAABQQQAAIMIAAEBBAADgwAAABMIAAIhBAADgQAAAuMEAAOBBAADgQQAA4EEAADzCAADgQQAAAEEAAIbCAAAswgAA4EEAAKBAAACiQgAAjEIAAIrCAACgQQAAdMIAALhBAACGQgAAgD8AAEjCAABMQgAABMIAAADCAABkQgAAAEAAABBBAABwQgAA4MAAAABBAAA8wgAA6MEAANjBAACSwgAAUMEAANhBAAAgQQAAyMEAAKhBAADAwAAAgEAAAEBAAAAIwgAAQEAAALBBAABQQQAAREIAAATCAADgQQAAyMEAABDCAAAQwgAAaEIAAHxCAAAAQQAAUMEAAAhCAAB4wgAA2MEAAMjBAAC4wQAAHEIAADzCAABEwgAAYEEAABhCAAD4QQAAgMAAAEBAAABIwgAAQMEAAEDAAACwQQAAQEEAAJpCAAAkwgAAUMEgADgTQAlIdVABKo8CEAAagAIAABS-AACIvQAABD4AAKg9AADYPQAAND4AAJi9AADqvgAAgDsAAIA7AACOPgAA-L0AAMg9AAAEPgAA-L0AAIA7AAC4PQAA2D0AAPg9AAC2PgAAfz8AAKi9AABUvgAADD4AAGy-AACYvQAAcL0AAJa-AACiPgAATD4AAKg9AACgvAAAqL0AAIi9AACgPAAAmD0AADC9AABUvgAAhr4AAFy-AAA8vgAAEL0AAJi9AAAUvgAAiL0AAKg9AABEPgAAqL0AAGy-AADIvQAAqL0AADA9AADCPgAAED0AANa-AACgPAAALT8AADS-AACWPgAABD4AACS-AADYPQAAyL0AAAy-IAA4E0AJSHxQASqPAhABGoACAAAsvgAAcL0AACQ-AAAzvwAADD4AABC9AABAPAAAiL0AAMi9AABUPgAAyD0AAOi9AAAUPgAAuL0AAIA7AAAQPQAA-D0AAEk_AAAkPgAA2D0AAIC7AAAQPQAAyD0AABC9AACAuwAAoj4AADC9AABwPQAAuD0AAFw-AACgPAAAqD0AAEC8AABAvAAAQDwAADC9AADYPQAAgDsAAPi9AAA8vgAAfD4AAEA8AABQvQAAED0AAPi9AABQvQAAf78AAKC8AACAOwAAiD0AACw-AACovQAAiD0AAKg9AABAvAAAqD0AAIC7AAC4vQAAML0AAJi9AAAkPgAAgr4AAHy-AABwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=v6MSY5Sup5E","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16852724468339731416"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11476945145500740703":{"videoId":"11476945145500740703","docid":"34-11-1-ZF1C839B86520EA69","description":"démonstration de l'équivalence entre convexité et croissance de la dérivée pour une fonction dérivable position relative de la courbe représentative d'une fonction convexe et de ses tangentes...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4485678/c23a5e3d7bcd40c6ad5a4e86a89ea1ec/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0ytcFgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DsrjYU6fiMj4","linkTemplate":"/video/preview/11476945145500740703?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Fonctions convexes dérivables","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=srjYU6fiMj4\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFgoUMTE0NzY5NDUxNDU1MDA3NDA3MDNaFDExNDc2OTQ1MTQ1NTAwNzQwNzAzaocXEgEwGAAiRBowAAopaGhvbWRrc29temZkdWViaGhVQ1AtTFhndkFlN0NNZGZfZGRkVWNMbXcSAgARKhDCDw8aDz8ThAaCBCQBgAQrKosBEAEaeIH4DAT_Av4AEQARAAII_wH_FPcG9v7-APH6_PsHAf8A3PcJCAD-AADuAAANCAAAAPkI-vL1_gEA9gD2BvUAAAAXBv3w-wAAAP4CBAcJAQAB6AEBAPYCAAERBAcRAAAAAPcAAAIG-f8BB_gNDAAAAAAF4wH_AQAAACAALTCYyjs4E0AJSE5QAiqEAhAAGvABf_koAcEJ3QDm_hMA7-YGAcMfFAD8NdEAttYCAbb2xQDhKg3_AvzVAPMM_gDLL_7_EdzMABDXBQAJ5Or_--D6AOjyDAATxQMARgMX_0IMAf7HEzoBA8T6ARW_6wAAKfj_DfgD-hT4vgEL6rYJJvswAfsbJ__v_iYC4dsU_ObWCQT85d39CfH6AAPU__nf9TEIGvMI_-8w_gT2LfIEHNEYAi3V-QMWQen_ViQPCvgcBAbMOuv_0QPjBAQ3Fv_869795u8Z-NnKCvfj9wgA-uEC9Rn98QgX5gj4IN_rDPEHEPX_0uUHyCQQCNjjAwLS9wPsIAAt51gPOzgTQAlIYVACKs8HEAAawAeA7tO-Ed7DuuXolrwKB8y9Vw8UvDSFDr0N_v69Ug6mPIhdgDynzfg97CSsvLWGF70U6DO---_cPFnThrzFVYU-VDBvvZt_Krx6Fy--CDwwPSmf1LwUB1C-k3Z-PIqaHr2rdm095gStvTOQwrwKnRc-k5sVvBGKrbzKLn29SeeuO-CXH71PCHw7ctJFvd-KRLy_s0I9lEKou0dQIT1Eac895MQyPHGqNbz2mwm93XkFvJxWhjpdHka8EAaePGGZLb2QURk9eoQ_PfxmLD3r-4W9PmhMvYc7ETz5KVO9BAMIPG-5ejxoCKa65zCEPEAmo7zYwgc9RMeZvfI7srzKqT2-2xa1PbRM-7j1vCs-zSx4PPp6vjyrTr28kRSsPExw5juaxwq7WJOCva71hbwA8oQ9iSsCPfgrLjzpdgA9MGIEPRsHxTsJZMA8z1l1PYVjsTwiRAM9RYBTvETf3bycBKU8XQB1PKMngLws-ZO9YmBCPA8vo7y71Og91XlUPJyl9zlmCRy94M4NvCK7nDwtyhE9XxeEvZpD8zuV3Dy9PPHBvUPp5rvnzFE9uKCIPVl9Hrwiiuk9_fsnvcH-a7zHeUm8dWeaOs0bK7u-Clo91yfKvEUHajvOJpa9-p6sPLXhMLu_a6e7OsO5PNY1f7yUpn87dtr_PHeIvTvQTye9d6KEvaH3hDoRK409V0IduYvWFzzrNzM9MWdRPcZx-ToLJOg9qwEvvezJ0znZEBK9Sc3ovFpCpTvdaxe9SqoAvR5MPbkfotE9WPgfvXnRijjTREQ80zQDvZtAWbmh8s-9Tu0cPsaq7bmbcPE7gEQ4vbbDaTjLovC8W0IevjcF4zl6KWa9c3sOvVHD4jhaoUi8i7xRPM4THzkS9UK9IhjnvXga6jd72qG8WUAVPFBv2bhGmtg9sjMAPdYLkDiARxS9uWA6vK9z4LhsdqS9Zg-ZvNwtrTkdiLS7DA5lPRJnBzibHak9TbMKvM8sODmSWug8i_GrPbob1jfiiSo9c1Z6PWTZqTeiCKk9PFDnPcSN9jhSSM-7PjyrvU-y5Djb0J49duOYPVAF9bi0kBC-2IyiPZl7BLcqWPe4rAk4vbZyazeWJJ89mZBgPbVtozdBgwm8eUA5vc8ACTjB4ys-3KVovAeJdLmF3ky9VKiOverKw7gq_SW742bdvKAZyTaRvwq9gx6VPYtDkTfVlOQ8vjamvfOjTbjK9HA9IuErPvHLijiVXys8z7yMPcX8BrnnI5-9N8BxPO1kl7ftiHm9B72tPGTFwDcgADgTQAlIbVABKnMQABpgf_4AD-0lAOfgM-TI-Bsp89ra2QfiE_8e5AD_OwIjNQLx3RH6_w0P--msAAAAEA3bNRAADnHOAf7hESQD1OTnGBx50iNMqrpIGPvDHe8V8cQoSARVAAru0RgavcM7CvcUIAAt6SEhOzgTQAlIb1ACKq8GEAwaoAYAABhCAABgQQAAFEIAAIA_AAAAwQAAtEIAALJCAAAAQAAAZMIAAEDAAAAQQgAAGMIAADDBAABgwQAAqEEAAKBBAAA4wgAAUMEAAPhBAABAwQAAgEEAAMDAAACwwQAAgD8AALDBAAAAQQAAoMAAAEDAAACGQgAAMEEAAFzCAACOQgAAZMIAABRCAABswgAAAMAAAERCAADIQgAAyMEAAIC_AABgwQAAAMAAAKhBAADgwAAAiMEAAJDBAABEwgAAAEEAAATCAAAwQQAAEMEAAMjBAACAwAAA4MEAACRCAAC4QQAAFMIAAFDBAABMQgAA0EEAAIDAAACEwgAAhMIAAIDBAAAcQgAArMIAADBBAADYwQAAyMEAACjCAABcQgAAQMAAAI7CAABUQgAAmMIAAIBBAAAgQQAAoEEAALBCAACoQQAAtsIAAJhCAADIwQAAiEIAAMBAAABwQQAAoMAAAHDBAAAQwQAAYMEAAPjBAACIQQAAZMIAAGhCAABkQgAAqsIAAIDAAACYwgAACEIAABzCAAAwwgAAPMIAAARCAAAAQgAAZMIAADxCAADwQQAAgkIAANhBAABQQgAAAEIAAHDBAABYwgAAbEIAAGBBAADAQAAA4MEAAIhBAADwwQAAuMEAAAhCAADAwAAAcMEAAKDBAACCwgAAAMAAAFhCAADAQAAACMIAAGhCAAAQQQAAmMEAAFDBAABgQgAAgD8AAKBAAAAkQgAAwMAAAGTCAABcwgAAcEEAAGBBAADgQAAAsMEAAJhBAAAAAAAAoMAAAIA_AAD4QQAA8EEAAMjBAAB4QgAAiEEAAODAAACAvwAAYEEAAILCAACAwAAA6MEAAKhBAAAcwgAAbEIAAFTCAAA4wgAABMIAADDBAAAAwQAAPEIAABhCAAAAwAAAhsIAAOBBAAAwwQAAWMIAAGTCAACAQAAAqEEAAIBAAAAQwQAAEEIAAIzCAADAwQAAXMIAABTCAAC4QQAAeEIAAK7CAAAIwgAABEIAAIDBAACoQQAA6EEAAKBBAACIQQAA0MEAAKxCAACEQgAAAAAAAKBBAACMwiAAOBNACUh1UAEqjwIQABqAAgAABL4AAIi9AACWPgAAUD0AALi9AABcPgAALL4AAP6-AAC4vQAAHD4AAFw-AADgPAAA4DwAADw-AAAcvgAAgDsAAMg9AAAwPQAA2D0AAL4-AAB_PwAAcD0AANi9AADIPQAAuL0AAMi9AAC4vQAAJL4AADQ-AABUPgAAgLsAAOA8AABAvAAABD4AABA9AACYvQAAED0AAPi9AAA0vgAALL4AACS-AAD4vQAAEL0AADS-AACovQAAuL0AADw-AAAQvQAAEL0AAEy-AAA0PgAAJD4AAGQ-AABEPgAAvr4AAEC8AAAdPwAAqD0AAFw-AAAkPgAAmL0AANg9AADIPQAAZL4gADgTQAlIfFABKo8CEAEagAIAABC9AABwPQAAQLwAAA-_AAC4PQAA2L0AAKC8AACovQAAML0AAFQ-AABQPQAAMD0AADA9AABkvgAALD4AAFC9AACAuwAANT8AAFA9AACaPgAALL4AADC9AAAQPQAAUL0AAHC9AACAOwAA6D0AABA9AAAQPQAAyD0AADA9AAAUPgAA6L0AAAQ-AACAuwAAUD0AAOA8AADiPgAARL4AAMi9AACGPgAAUD0AAAS-AAAQPQAAgDsAAOC8AAB_vwAA-L0AAJg9AACgvAAAuD0AAPi9AABMPgAAML0AAFA9AABQPQAAMD0AAHC9AABcvgAAUL0AADA9AADIPQAAJL4AAAy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=srjYU6fiMj4","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["11476945145500740703"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2938046453"},"16115387240368541537":{"videoId":"16115387240368541537","docid":"34-0-17-ZAEB6EAB91FB4F39E","description":"Démonstration du théorème de structure des groupes monogènes : un groupe monogène infini est isomorphe à Z un groupe monogène fini de cardinal n est isomorphe à Z/nZ.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2407285/ec27946b0ad8f3f80dccf49d35f73c1b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zhihMwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DK_cU2hukpcs","linkTemplate":"/video/preview/16115387240368541537?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Théorème de structure des groupes monogènes","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=K_cU2hukpcs\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFgoUMTYxMTUzODcyNDAzNjg1NDE1MzdaFDE2MTE1Mzg3MjQwMzY4NTQxNTM3aocXEgEwGAAiRBowAAopaGhvbWRrc29temZkdWViaGhVQ1AtTFhndkFlN0NNZGZfZGRkVWNMbXcSAgARKhDCDw8aDz8T8QOCBCQBgAQrKosBEAEaeIEHBwYBAv4AA_kODwYL-QP0AfcA-f79APgFDPkDBP4A8fYK8ggAAAD6EPD_AwAAAP7x__f3_QEAIAsA_fIA_wAXBv3w-wAAABER-vj-AQAA-QH5-AP_AAAA_wT6_wAAAO8FBfz-_wAAABn2CwAAAAD29AAQAAAAACAALTgLzTs4E0AJSE5QAiqEAhAAGvABfwL6_80X6wD08-YA0yfiAYUKK__8NNIAuNYCAacUyf7eHewA7e7kAPH2KP_DRfQANNXQ__nOAgAr1g7_8_L-Af0GBQErufUBWfz7ASIA5f7HEzkBA8X6ARXy2_8IDO3-BQT-__Dr0_4G7eMAOw0tAP8cFwUK9ST83uQAANMWAgHj9tf9-_YHB-_c__nkMiQC_OPmAQEWAvraLfQCF-L__gjvGPYIL9T9P_4SAwz07ge2KQcF7_Tn9xwSChAC7fT78twUCvYF_evv8xYFIO8F9wsO8fAP7AISBvju_e73Cf_0-ur_1ij9BNPr8QbS9wPsIAAt-MYROzgTQAlIYVACKs8HEAAawAfZzOG-Jr9qvBn7FrwKB8y9Vw8UvDSFDr3joLm9HG2LPF4FI7z-Ddo9Xy1SPJz047xs7FK-d2RRPQMqF739vXQ-klRLvQOx7DyG4wm-3yD1PKwBKr23siS-KRXDPETQYryrdm095gStvTOQwrwKnRc-k5sVvBGKrbzKLn29SeeuO-CXH70riMG8wxccvUlb5rxwQqE9hG1-u18elzzr4LA9f3iMvHwVT7z2mwm93XkFvJxWhjrWMTO9jVL4PDQ_yLxFZFg9vaDqPF98j7rr-4W9PmhMvYc7ETxTAge9FNooPC60qTziEx-86P_wPOjOHb2Okpe8Qn5xvQClhrz5oAe-9BqbPS-BgDseGTs-QaS6O6sQRbzgoD299ZHlPLhvmjxDebo8t1I5vaygM7wPv4Y975ysPcNVlDzIbWq7zJGZO64iijv9cbE8eES1PbVXejwiRAM9RYBTvETf3bwqcX09p749vNV-RryNm5q9c5U4Pez7i7wzyZM9sud8PDQR9DuEHAg8w7YqPYIKHDw9zc07-DuPvaiYOTz6WKa9y1CQvR2nrrsdbcE9OWkQPS4Ff7zkabk9XXSNvEcBIDzHeUm8dWeaOs0bK7tjdcA9fVEMvVpnIjoPSCK99thxPF0YIro6eWw8fPN2PC7WJryFZvK8yU4pPXVPezpdFQ29S92fvEE78TveZ0Y9JaOUvKiL1js7Bl89eLcSPUHGs7qBW_c9CEuWvfhf7jgqWSm8m1RUvW8d0jvqdTA8bJihvFICbjuhndM9UYGYvZedUTmZtTk8i3xJuzzpVbp2hHi9pZ4FPqNDorcRDIY9z0lvvBUlijjLovC8W0IevjcF4zmQ-sa8_-FTvGslkLm08Ku7M3V5OvKpjDkS9UK9IhjnvXga6jdw6V29F-R8uydFDrZZHJk9dYVoPeFOjjhZmC-9bh8NvS84Xrna93K9mgwCvUmuojlrl9u8IJukPErucbdyroc9swo7vWFOBDnEVjU9eWHGPbbmLri7z1Y9eyWaPdbMEziwtII9YwggPgvkQDmv2Bk889qWvUlaH7d4ROU9irx2PYzSLbm0kBC-2IyiPZl7BLddvwA9vxkLvclyYjgP2xE9IVTOPGKdTrdBgwm8eUA5vc8ACTj3ASg-cGHdvfFnv7kilZg7hfpnvb7ALLjDEYM5UFUhvYShK7eRvwq9gx6VPYtDkTe9rwU9pUkJvq2ehbi5wXU8LewJPoYn5zjiGK48b6WiPUwnUriVaU-956-pu_C8tzbeAR69GbGNO9UDPjggADgTQAlIbVABKnMQABpgTwQA9-EYxNwGKObR0w8c8dHk1xG-2f8xzf8WNsXgHBQhygHh_-vmFeOiAAAAKdUZIikAzX8a8A8SDeszvu7WHilNs0IwtfdOFuLVDw3UENkLLhd1APv6uBhCKhYf3gfrIAAtYB0dOzgTQAlIb1ACKq8GEAwaoAYAAIBCAABcQgAArkIAAADAAAD4QQAAFEIAAKZCAAAIwgAAOMIAALBBAABsQgAAQMAAAPDBAAAswgAAqEEAAPBBAABgQQAAtsIAAOBAAABwwQAAgEAAAADCAABgwgAAJEIAABjCAADAwQAAVMIAAEzCAABgQgAAsMEAAHDBAABgQgAAmMIAADDBAAAMwgAAAEIAAPhBAABQQgAAwMEAAIBBAADYQQAAUMEAACBCAAA0wgAAkEEAABjCAAAwwQAA8EEAAJ5CAAAoQgAAdMIAAIDBAAAAQAAAYEEAAIZCAABwQgAA7sIAAABAAADoQQAAUEEAAAxCAAAgwgAAJMIAAIDCAABQQgAAnMIAAODBAABgwQAAbMIAAJjBAACqQgAAnkIAAHDBAAAAwAAAcMEAAEDAAACMwgAAiMEAAFBBAAAAAAAAsMEAAMhCAABgwQAAJEIAAIC_AABgQQAAmMEAAODBAABAQgAA8MEAAIBBAACAQgAAJMIAACzCAAAAwQAA4MEAAEDCAACgQQAAjEIAAAzCAAAgwgAAWEIAADRCAAAAQAAAHMIAAIBAAAAwwQAAKEIAADDCAAAEQgAAsEEAAHBBAAAgwgAAoEEAABDBAACSQgAA4EAAAAAAAAAcwgAAQMEAACjCAACwwQAAuMEAAABBAACgwAAAIEIAAIA_AAD4wQAA8MEAAOhBAADIwQAAuMIAAPDBAADIQQAAqMEAAHhCAACKQgAA0MEAAABBAAAgwgAA2EEAAGBBAAAQwQAAcMIAAIhCAADgwAAAUMIAADxCAAAwQQAAAMEAAJDBAAAwQgAA-EEAAABBAABgQQAAIMIAAFTCAAAwwQAAQMAAAFDBAADQwQAAgL8AAMBAAAAAQAAAAEIAAIBAAAAMwgAADEIAAMBBAADAwAAAMMIAAFhCAADAwAAA-MEAAJLCAABsQgAAikIAAADCAAD4QQAAwEAAAJLCAABUwgAAUEEAAODAAABEQgAAEMIAALjBAAAAwQAAUEEAABBBAABUQgAAKMIAAIBBAABAQgAAcMEAAEBBAACAvwAAaEIAAKBBAACAQSAAOBNACUh1UAEqjwIQABqAAgAAUL0AAHS-AACGPgAAcD0AAKA8AABMPgAATL4AAN6-AADYvQAAiD0AABQ-AADIPQAABD4AAJI-AADgPAAAgLsAAOA8AACYPQAAML0AAKo-AAB_PwAA-D0AAMi9AADIPQAAqL0AABy-AABwvQAAiL0AAKg9AAAEPgAAQLwAAFQ-AABsvgAAED0AAFA9AACYvQAAHD4AABC9AACKvgAALL4AAHA9AABQvQAAoDwAAKA8AAA0vgAAdL4AAIA7AACIPQAAuL0AAJK-AACgPAAAuD0AALY-AABkPgAAir4AAIg9AAAjPwAA4LwAACw-AAAkPgAAqD0AACw-AACIPQAAPL4gADgTQAlIfFABKo8CEAEagAIAAOC8AAAcvgAAmD0AADu_AABwvQAAcL0AAKC8AAAMPgAAor4AAHQ-AAA0PgAAHL4AAIi9AAA8vgAA4LwAADC9AABwPQAALz8AAFQ-AAA8PgAAqL0AAJg9AADgPAAABL4AAHC9AABQvQAAUD0AAOC8AAB8PgAAqD0AADA9AAAwPQAAuL0AABS-AADgPAAAmL0AAFA9AABEPgAAdL4AAIg9AAAcPgAAQLwAADS-AADgPAAAJL4AANg9AAB_vwAAUD0AAEw-AACYPQAA6D0AADS-AACgPAAAgDsAAFw-AACgvAAAiD0AAAw-AADYvQAAiL0AAOA8AADIvQAAuL0AABC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=K_cU2hukpcs","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16115387240368541537"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2260487305"},"13449657232275065648":{"videoId":"13449657232275065648","docid":"34-8-8-Z9337DE2E8A0A1005","description":"Toutes les méthodes pour étudier une série numérique : 00:37 - Par équivalence 03:22 - Par majoration / minoration05:32 - Par le critère de d'Alembert08:10 - Par convergence absolue09:06 - Par le...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4115089/9e49c72468d49dbaee58a3c79d6ad738/564x318_1"},"target":"_self","position":"18","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWzSa9ckR7D4","linkTemplate":"/video/preview/13449657232275065648?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Comment étudier une série numérique ? (version Math Spé)","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WzSa9ckR7D4\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFgoUMTM0NDk2NTcyMzIyNzUwNjU2NDhaFDEzNDQ5NjU3MjMyMjc1MDY1NjQ4aq4NEgEwGAAiRBowAAopaGhvbWRrc29temZkdWViaGhVQ1AtTFhndkFlN0NNZGZfZGRkVWNMbXcSAgARKhDCDw8aDz8TxQaCBCQBgAQrKosBEAEaeIHjAQf6DPEAAw0NEQMN-QMU9fD08wAAAN0ICQP1-wIA5wUK7gD_AADyDfv4BgAAABL6_Q70_wEAG_kDDwQAAAAoEPz3-gAAAPwG7u3_AQAA-O4A9QMAAAAXDAoB_wAAAAsDCv4DAAAAGBj69gEAAAAD7AAHAAEAACAALSUAqTs4E0AJSE5QAipzEAAaYCkNAAsaJgemEQHOoPAvC-TcEtr8xPH_GAv_Hu3j2Rsc4bkHBP_k-fwArgAAACEIGAwZAMtuIiKYNB7qATPw4yYff70s5xYTEADxxw2UBQ4M3g_5SgD4EcUFHCn9R_gPQCAALSTmIzs4E0AJSG9QAiqvBhAMGqAGAABwQQAAIEEAAIRCAAC4wQAAgMAAAFBCAACiQgAAGMIAAHDBAABYwgAA8EEAAEzCAABwwQAAIMEAABxCAAC4wQAAuMEAAAAAAAAgQQAA6MEAAABBAAD4QQAAQEEAALhBAAAgwgAAuEEAABjCAABgwgAAzEIAAFBBAAAAQAAALEIAADDCAACAQQAAHMIAAABAAAAAQQAA3EIAAIBAAACQQQAAmkIAAMBAAACkQgAAKEIAAEBAAAC4wQAAMMIAAAAAAAAsQgAAoMAAALLCAACAwAAA4MAAAJBBAACCQgAAAEIAAPDCAACwQQAAUEEAAFRCAACwQQAAJMIAALjBAACSwgAAfMIAABTCAACwwQAAMMEAACjCAADowQAAoEIAAIRCAABcwgAA0MEAAGBBAAAowgAAcMIAAJjBAACWQgAAgMAAABTCAAAMQgAAREIAALhCAAAwQQAAQEEAAADAAAAQwQAAsEEAAIC_AAAAQAAACEIAAABCAACCwgAAIEEAAGjCAAAYwgAAgMAAAIBCAACCwgAAMMIAAGRCAAB4QgAAjsIAANDBAACcQgAAsMEAAKxCAAAgwgAAfEIAAFRCAACQwQAADMIAAHzCAACwQQAAYEEAAFzCAABQwQAAAEAAABBBAAA8QgAAmMIAAKjBAABgQQAAcEEAAADBAACAQAAAAMEAAFDCAADwwQAATEIAAODAAACYwQAAgEIAAIDAAACIQQAAgMAAAOBAAADwQQAAqsIAALDBAAAgwQAA2EEAAEDAAACQQgAAcMEAAGzCAABQQQAAQEAAABxCAAAgQQAA2EEAAJhBAABEQgAATMIAALjBAAAswgAAIMIAAJjBAACAQQAAgD8AACBBAAD4QQAAwMEAABxCAADAwAAAsEEAACBCAAAQwQAAMMEAAGDCAABAQQAAQMAAAIC_AAC4wQAAMEIAAI5CAAC4wQAAAEIAAIBBAABMwgAAnsIAAIjBAAAwQQAAMMEAAFzCAAAEwgAAQMAAAIC_AAC4QQAAKMIAAABAAADAQAAA4MAAAOjBAACAQAAAqMEAAEBBAABUwgAAsMEgADgTQAlIdVABKo8CEAAagAIAAHC9AAAMvgAArj4AAEC8AACgvAAAlj4AABy-AAANvwAAQDwAAMi9AABMPgAA2L0AALg9AABMPgAA4LwAAOC8AAAcPgAAcD0AAIC7AACmPgAAfz8AABA9AACovQAALD4AAKi9AADIvQAAUL0AAPi9AAAUPgAARD4AALg9AAAwvQAAEL0AAAQ-AAAwvQAAuD0AAIg9AACovQAAsr4AAEy-AADIvQAAcL0AAKC8AADgvAAAgr4AALi9AACyPgAAqD0AAEC8AAAsvgAAED0AAKg9AACyPgAAZD4AANq-AABwPQAAMz8AAKA8AABcPgAALD4AAOi9AAC4PQAABD4AAAS-IAA4E0AJSHxQASqPAhABGoACAABUvgAAgDsAAMi9AAARvwAAgDsAAOA8AACAuwAA4DwAADC9AADIPQAA-L0AAPi9AACAOwAAFL4AAOg9AADgPAAATD4AACU_AADovQAAjj4AABy-AADgvAAA4LwAAKC8AABQPQAAhj4AAOA8AADgvAAAND4AAIg9AAAQvQAAmD0AAFC9AABEvgAAUL0AABQ-AACgvAAAFD4AAKC8AAAMvgAAuD0AAEC8AACAuwAAoLwAAIi9AAC4vQAAf78AANi9AAA8vgAAFD4AADQ-AAAsvgAA4LwAAKg9AADgPAAAoDwAAIA7AAAQPQAAPL4AALg9AADYPQAA-L0AAMg9AAAwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=WzSa9ckR7D4","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["13449657232275065648"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3404855891483320417":{"videoId":"3404855891483320417","docid":"34-1-7-Z212925D1893C41B0","description":"Présentation, sur 3 exemples, de la méthode pour décomposer une fraction rationnelle en éléments simples.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3382768/a2bdff6db47117c092b322b8e34ad798/564x318_1"},"target":"_self","position":"19","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOOjs-s-Wfe0","linkTemplate":"/video/preview/3404855891483320417?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Comment décomposer une fraction rationnelle en éléments simples?","related_orig_text":"Bibmath.net","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Bibmath.net\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OOjs-s-Wfe0\",\"src\":\"serp\",\"rvb\":\"Eq8DChQxMzI3Nzk4NjQ5NzYzMDYxMjYwNQoTNDM4NjI3Mzk4NzUwMjYzNTk5NgoUMTQyNjMxMzU2NDAxODEyNDUxMDEKEzIzODU2NTQ1NTI5Nzc1MzU3NTcKFDE3OTQ3MzUxOTUwOTk0MjA5MzkxChM3NDkwMTUwMzEyODIzMzUyMDAyChQxMjYxMDU2ODE5NTk0MjA2MzA2OQoTNjcwMjk1NjU0OTM1MzgyOTE0NAoUMTUzODA1NDAxMjI4OTQ1MzAwNDcKFDExMDQzMzE0MTM1Mjk4MjU0MjU2ChQxNTQ4MzQ1MDMzMTQ1MDcwMDQzMAoTNjM1ODk3NTk2OTc1NTYzODA3OQoTNjIxMDkwNDQ3MjQ1Mzg3ODY5MgoUMTY4NTI3MjQ0NjgzMzk3MzE0MTYKFDExNDc2OTQ1MTQ1NTAwNzQwNzAzChQxNjExNTM4NzI0MDM2ODU0MTUzNwoUMTM0NDk2NTcyMzIyNzUwNjU2NDgKEzM0MDQ4NTU4OTE0ODMzMjA0MTcKEzgzMjMyNDM1NTkzNDA5NTQ2NTgKEzk4ODExODk3MjczNTQwMzkzMTIaFQoTMzQwNDg1NTg5MTQ4MzMyMDQxN1oTMzQwNDg1NTg5MTQ4MzMyMDQxN2quDRIBMBgAIkQaMAAKKWhob21ka3NvbXpmZHVlYmhoVUNQLUxYZ3ZBZTdDTWRmX2RkZFVjTG13EgIAESoQwg8PGg8_E5AIggQkAYAEKyqLARABGniB7gH5_fwFAPX-CgwCBv0BEAMG-gf__wDzAQYJAwL_AP78AgT3AQAAAv0A-QIAAAAD-_37_f4BAA0A_QP7AAAAEvkC__cAAAAGC_r9_gEAAO7yBPUCAAAAE_cO_f8AAADmAwb7_wAAAAsI-fwBAAAAA_EABQABAAAgAC1xht47OBNACUhOUAIqcxAAGmAcDAAI-gbl0Rgl79_wDCgWABH5-t7nAPb2AAUX6sITFujZ6xT_E-j_7cYAAAAAI_AjFQAASzHrvSQH6AoQ2dopAn_tGvwCG-vy5N4e0xD-CyQREz4AAPb-_x8I6CPvCDMgAC0IbmA7OBNACUhvUAIqrwYQDBqgBgAAQEAAAIDAAACGQgAAUEEAAIDBAAAIQgAAmEIAADTCAACIwQAAaMIAALhBAAAkwgAAgEAAAOBAAAAgQgAAgMEAACTCAACgQQAAgL8AAKBAAADAQAAA2EEAAEBAAADgQAAASMIAAAxCAABQwgAAQMIAAMRCAACAQQAAoEAAAKpCAADowQAAQMEAALDBAAAwQQAAQEEAAOxCAAAgwQAAAAAAAExCAACgQAAAsEIAABhCAABQwQAAUMEAAHTCAABAwQAA6EEAAEDAAACowgAAgMEAAABBAACAQQAAvEIAAMhBAAC-wgAAcEEAACBBAABEQgAAIEEAAADBAAAUwgAAisIAAJ7CAAAwwQAAHMIAAMBAAADAwQAA4MAAAIZCAAAcQgAAFMIAAEzCAABQQQAARMIAAHjCAAAQwQAAkkIAAKjBAAAowgAAHEIAAOBBAACQQgAAoEAAAIA_AACIQQAAYMEAAODAAAAAAAAAUMEAAOBBAACUQgAAksIAAOBAAAB4wgAADMIAAIDAAABEQgAASMIAAOjBAAAAQgAAhkIAAGzCAACgwAAAjEIAAKDBAACOQgAAoMEAAJRCAACCQgAA0MEAANjBAABMwgAAIEIAAAhCAAAowgAAsMEAAABBAABgwQAAqEIAAIrCAACAwQAAwEAAABhCAADYwQAAoEAAAODAAABwwgAAwMEAAExCAADIQQAAuMEAAGxCAACQwQAAgEAAAMDAAADgwAAADEIAANTCAACgwQAAmMEAALhBAAAgwQAAsEIAAADAAABowgAAmEEAAKBAAACYQQAAAEEAAOhBAACgwAAAaEIAAJTCAAAAwAAAkMIAAJDBAAAAQQAAWEIAAADAAACgQAAAIEEAAATCAAAsQgAAQEAAADBCAADwQQAAcEEAADDBAAAswgAAwEAAACRCAACAvwAAiMEAACxCAAAsQgAAgD8AADBCAAAQwQAAKMIAAHzCAACAQAAAoEEAAGDBAAAgwgAAgMEAAEBBAADQwQAA4EEAABjCAABQQQAAYMEAAIDAAABswgAAMEEAAODAAAAIwgAASMIAAIDAIAA4E0AJSHVQASqPAhAAGoACAABAPAAAML0AAFQ-AADYPQAAUD0AAKg9AAAkvgAA5r4AAFC9AADgPAAAFD4AAOA8AABAPAAA-D0AACS-AACIPQAAuD0AAIg9AABwvQAAhj4AAH8_AAC4PQAAqL0AAFw-AACovQAAoLwAAOi9AACovQAADD4AABQ-AAAQPQAAUD0AAIi9AAAMPgAA4DwAACw-AAAMPgAALL4AAI6-AACWvgAAuL0AAOi9AAAwvQAAUL0AADy-AAAMvgAAXD4AAKC8AADgPAAAbL4AAII-AADIPQAAmj4AADw-AAC2vgAAcL0AAP4-AACAOwAA6D0AAOg9AAAkvgAAiD0AAOg9AACYvSAAOBNACUh8UAEqjwIQARqAAgAALL4AADA9AABAvAAAF78AAJg9AABwvQAA4LwAAIA7AAAwvQAAHD4AAKi9AAAwvQAA2D0AABS-AAAkPgAAUL0AAJg9AAAtPwAAQDwAAJY-AABcvgAAcL0AABQ-AAC4vQAAUD0AAOg9AABAPAAAEL0AACw-AADgPAAAyL0AAIg9AABAvAAAHL4AADC9AAAwPQAA-L0AACw-AABwPQAAgLsAAMg9AABAvAAAuL0AAIA7AADovQAAHL4AAH-_AAAMvgAA2L0AAGQ-AAD4PQAA2L0AANg9AADYPQAAEL0AAIC7AADgvAAA-L0AAIK-AADIvQAAcD0AAOA8AACoPQAARL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=OOjs-s-Wfe0","parent-reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3404855891483320417"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"13277986497630612605":{"videoId":"13277986497630612605","title":"Caractérisation des endomorphismes trigonalisables","cleanTitle":"Caractérisation des endomorphismes trigonalisables","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8vQ4ZNcw178","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8vQ4ZNcw178?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":594,"text":"9:54","a11yText":"Süre 9 dakika 54 saniye","shortText":"9 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"10 kas 2023","modifyTime":1699574400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8vQ4ZNcw178?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8vQ4ZNcw178","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":594},"parentClipId":"13277986497630612605","href":"/preview/13277986497630612605?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/13277986497630612605?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4386273987502635996":{"videoId":"4386273987502635996","title":"Cours sur les hyperplans et les formes linéaires","cleanTitle":"Cours sur les hyperplans et les formes linéaires","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=o8-MTg7Gg6s","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/o8-MTg7Gg6s?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":980,"text":"16:20","a11yText":"Süre 16 dakika 20 saniye","shortText":"16 dk."},"views":{"text":"14,5bin","a11yText":"14,5 bin izleme"},"date":"21 oca 2022","modifyTime":1642723200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/o8-MTg7Gg6s?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=o8-MTg7Gg6s","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":980},"parentClipId":"4386273987502635996","href":"/preview/4386273987502635996?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/4386273987502635996?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14263135640181245101":{"videoId":"14263135640181245101","title":"Comment déterminer la matrice d'une application linéaire ?","cleanTitle":"Comment déterminer la matrice d'une application linéaire ?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HqnvDs8gbX8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HqnvDs8gbX8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":498,"text":"8:18","a11yText":"Süre 8 dakika 18 saniye","shortText":"8 dk."},"views":{"text":"6,6bin","a11yText":"6,6 bin izleme"},"date":"30 mar 2024","modifyTime":1711756800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HqnvDs8gbX8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HqnvDs8gbX8","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":498},"parentClipId":"14263135640181245101","href":"/preview/14263135640181245101?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/14263135640181245101?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2385654552977535757":{"videoId":"2385654552977535757","title":"Comment calculer des coefficients de Bézout?","cleanTitle":"Comment calculer des coefficients de Bézout?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1hDq4NlhoB0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1hDq4NlhoB0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":328,"text":"5:28","a11yText":"Süre 5 dakika 28 saniye","shortText":"5 dk."},"views":{"text":"4bin","a11yText":"4 bin izleme"},"date":"4 tem 2022","modifyTime":1656892800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1hDq4NlhoB0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1hDq4NlhoB0","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":328},"parentClipId":"2385654552977535757","href":"/preview/2385654552977535757?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/2385654552977535757?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17947351950994209391":{"videoId":"17947351950994209391","title":"Comment déterminer un système générateur d'un sous-espace vectoriel donné par des équations?","cleanTitle":"Comment déterminer un système générateur d'un sous-espace vectoriel donné par des équations?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=O_uj4sQelUM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/O_uj4sQelUM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":249,"text":"4:09","a11yText":"Süre 4 dakika 9 saniye","shortText":"4 dk."},"views":{"text":"14,6bin","a11yText":"14,6 bin izleme"},"date":"10 oca 2022","modifyTime":1641772800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/O_uj4sQelUM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=O_uj4sQelUM","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":249},"parentClipId":"17947351950994209391","href":"/preview/17947351950994209391?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/17947351950994209391?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7490150312823352002":{"videoId":"7490150312823352002","title":"Une fonction continue nulle part dérivable : la fonction de Van der Waerden","cleanTitle":"Une fonction continue nulle part dérivable : la fonction de Van der Waerden","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nJluqohGlcM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nJluqohGlcM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1260,"text":"21:00","a11yText":"Süre 21 dakika","shortText":"21 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"23 mar 2024","modifyTime":1711210172000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nJluqohGlcM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nJluqohGlcM","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":1260},"parentClipId":"7490150312823352002","href":"/preview/7490150312823352002?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/7490150312823352002?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12610568195942063069":{"videoId":"12610568195942063069","title":"Comment déterminer une base de l'image d'une application linéaire?","cleanTitle":"Comment déterminer une base de l'image d'une application linéaire?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nqXyAFF8MUY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nqXyAFF8MUY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":283,"text":"4:43","a11yText":"Süre 4 dakika 43 saniye","shortText":"4 dk."},"views":{"text":"26,3bin","a11yText":"26,3 bin izleme"},"date":"10 nis 2021","modifyTime":1618012800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nqXyAFF8MUY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nqXyAFF8MUY","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":283},"parentClipId":"12610568195942063069","href":"/preview/12610568195942063069?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/12610568195942063069?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6702956549353829144":{"videoId":"6702956549353829144","title":"Le problème des secrétaires","cleanTitle":"Le problème des secrétaires","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=6FpQ0K4Dong","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/6FpQ0K4Dong?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1432,"text":"23:52","a11yText":"Süre 23 dakika 52 saniye","shortText":"23 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"1 ara 2023","modifyTime":1701388800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/6FpQ0K4Dong?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=6FpQ0K4Dong","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":1432},"parentClipId":"6702956549353829144","href":"/preview/6702956549353829144?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/6702956549353829144?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15380540122894530047":{"videoId":"15380540122894530047","title":"Comment calculer le déterminant d'une matrice?","cleanTitle":"Comment calculer le déterminant d'une matrice?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_o6eMCpDgVc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_o6eMCpDgVc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":475,"text":"7:55","a11yText":"Süre 7 dakika 55 saniye","shortText":"7 dk."},"views":{"text":"51,9bin","a11yText":"51,9 bin izleme"},"date":"10 mar 2022","modifyTime":1646870400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_o6eMCpDgVc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_o6eMCpDgVc","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":475},"parentClipId":"15380540122894530047","href":"/preview/15380540122894530047?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/15380540122894530047?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11043314135298254256":{"videoId":"11043314135298254256","title":"Dérivabilité des fonctions trigonométriques","cleanTitle":"Dérivabilité des fonctions trigonométriques","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SALMplAH2J0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SALMplAH2J0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":780,"text":"13:00","a11yText":"Süre 13 dakika","shortText":"13 dk."},"date":"12 ağu 2024","modifyTime":1723420800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SALMplAH2J0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SALMplAH2J0","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":780},"parentClipId":"11043314135298254256","href":"/preview/11043314135298254256?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/11043314135298254256?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15483450331450700430":{"videoId":"15483450331450700430","title":"Caractérisation des endomorphismes diagonalisables","cleanTitle":"Caractérisation des endomorphismes diagonalisables","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pVjW7ylqBKI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pVjW7ylqBKI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":610,"text":"10:10","a11yText":"Süre 10 dakika 10 saniye","shortText":"10 dk."},"views":{"text":"2,4bin","a11yText":"2,4 bin izleme"},"date":"4 kas 2023","modifyTime":1699125401000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pVjW7ylqBKI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pVjW7ylqBKI","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":610},"parentClipId":"15483450331450700430","href":"/preview/15483450331450700430?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/15483450331450700430?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6358975969755638079":{"videoId":"6358975969755638079","title":"Pourquoi le produit de matrices est-il défini ainsi?","cleanTitle":"Pourquoi le produit de matrices est-il défini ainsi?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CM3en7RkIhE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CM3en7RkIhE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":375,"text":"6:15","a11yText":"Süre 6 dakika 15 saniye","shortText":"6 dk."},"views":{"text":"4,4bin","a11yText":"4,4 bin izleme"},"date":"14 nis 2021","modifyTime":1618358400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CM3en7RkIhE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CM3en7RkIhE","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":375},"parentClipId":"6358975969755638079","href":"/preview/6358975969755638079?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/6358975969755638079?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6210904472453878692":{"videoId":"6210904472453878692","title":"Comment calculer la norme d'une application linéaire continue?","cleanTitle":"Comment calculer la norme d'une application linéaire continue?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MXFsurKnR5c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MXFsurKnR5c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":513,"text":"8:33","a11yText":"Süre 8 dakika 33 saniye","shortText":"8 dk."},"views":{"text":"4,6bin","a11yText":"4,6 bin izleme"},"date":"14 şub 2023","modifyTime":1676332800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MXFsurKnR5c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MXFsurKnR5c","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":513},"parentClipId":"6210904472453878692","href":"/preview/6210904472453878692?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/6210904472453878692?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16852724468339731416":{"videoId":"16852724468339731416","title":"Cours sur la connexité par arcs","cleanTitle":"Cours sur la connexité par arcs","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=v6MSY5Sup5E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/v6MSY5Sup5E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1596,"text":"26:36","a11yText":"Süre 26 dakika 36 saniye","shortText":"26 dk."},"views":{"text":"4,5bin","a11yText":"4,5 bin izleme"},"date":"17 mar 2023","modifyTime":1679011200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/v6MSY5Sup5E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=v6MSY5Sup5E","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":1596},"parentClipId":"16852724468339731416","href":"/preview/16852724468339731416?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/16852724468339731416?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11476945145500740703":{"videoId":"11476945145500740703","title":"Fonctions convexes dérivables","cleanTitle":"Fonctions convexes dérivables","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=srjYU6fiMj4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/srjYU6fiMj4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":772,"text":"12:52","a11yText":"Süre 12 dakika 52 saniye","shortText":"12 dk."},"views":{"text":"2,5bin","a11yText":"2,5 bin izleme"},"date":"20 eyl 2022","modifyTime":1663632000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/srjYU6fiMj4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=srjYU6fiMj4","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":772},"parentClipId":"11476945145500740703","href":"/preview/11476945145500740703?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/11476945145500740703?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16115387240368541537":{"videoId":"16115387240368541537","title":"Théorème de structure des groupes monogènes","cleanTitle":"Théorème de structure des groupes monogènes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=K_cU2hukpcs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/K_cU2hukpcs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":497,"text":"8:17","a11yText":"Süre 8 dakika 17 saniye","shortText":"8 dk."},"views":{"text":"3,6bin","a11yText":"3,6 bin izleme"},"date":"11 nis 2023","modifyTime":1681171200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/K_cU2hukpcs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=K_cU2hukpcs","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":497},"parentClipId":"16115387240368541537","href":"/preview/16115387240368541537?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/16115387240368541537?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13449657232275065648":{"videoId":"13449657232275065648","title":"Comment étudier une série numérique ? (version Math Spé)","cleanTitle":"Comment étudier une série numérique ? (version Math Spé)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WzSa9ckR7D4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WzSa9ckR7D4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":837,"text":"13:57","a11yText":"Süre 13 dakika 57 saniye","shortText":"13 dk."},"date":"14 kas 2024","modifyTime":1731542400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WzSa9ckR7D4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WzSa9ckR7D4","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":837},"parentClipId":"13449657232275065648","href":"/preview/13449657232275065648?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/13449657232275065648?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3404855891483320417":{"videoId":"3404855891483320417","title":"Comment décomposer une fraction rationnelle en éléments simples?","cleanTitle":"Comment décomposer une fraction rationnelle en éléments simples?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OOjs-s-Wfe0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OOjs-s-Wfe0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUC1MWGd2QWU3Q01kZl9kZGRVY0xtdw==","name":"Bibmath.net","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bibmath.net","origUrl":"http://www.youtube.com/@bibmath001","a11yText":"Bibmath.net. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1040,"text":"17:20","a11yText":"Süre 17 dakika 20 saniye","shortText":"17 dk."},"views":{"text":"19,9bin","a11yText":"19,9 bin izleme"},"date":"7 kas 2022","modifyTime":1667779200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OOjs-s-Wfe0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OOjs-s-Wfe0","reqid":"1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL","duration":1040},"parentClipId":"3404855891483320417","href":"/preview/3404855891483320417?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","rawHref":"/video/preview/3404855891483320417?parent-reqid=1769496151515121-13247296615166433766-balancer-l7leveler-kubr-yp-sas-25-BAL&text=Bibmath.net","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"3247296615166433766725","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Bibmath.net","queryUriEscaped":"Bibmath.net","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}