{"pages":{"search":{"query":"COS COS","originalQuery":"COS COS","serpid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","parentReqid":"","serpItems":[{"id":"6173906321388923249-0-0","type":"videoSnippet","props":{"videoId":"6173906321388923249"},"curPage":0},{"id":"12549109150055221877-0-1","type":"videoSnippet","props":{"videoId":"12549109150055221877"},"curPage":0},{"id":"8407237142884457935-0-2","type":"videoSnippet","props":{"videoId":"8407237142884457935"},"curPage":0},{"id":"1375124125994576196-0-3","type":"videoSnippet","props":{"videoId":"1375124125994576196"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dENPUyBDT1MK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","ui":"desktop","yuid":"6788545741769844315"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"13717768663838387873-0-5","type":"videoSnippet","props":{"videoId":"13717768663838387873"},"curPage":0},{"id":"2720858543674069694-0-6","type":"videoSnippet","props":{"videoId":"2720858543674069694"},"curPage":0},{"id":"11468943612995843423-0-7","type":"videoSnippet","props":{"videoId":"11468943612995843423"},"curPage":0},{"id":"10755876190564654427-0-8","type":"videoSnippet","props":{"videoId":"10755876190564654427"},"curPage":0},{"id":"10442001985229053920-0-9","type":"videoSnippet","props":{"videoId":"10442001985229053920"},"curPage":0},{"id":"4848635081960118847-0-10","type":"videoSnippet","props":{"videoId":"4848635081960118847"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dENPUyBDT1MK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","ui":"desktop","yuid":"6788545741769844315"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"480953292071314082-0-12","type":"videoSnippet","props":{"videoId":"480953292071314082"},"curPage":0},{"id":"16630276628803534500-0-13","type":"videoSnippet","props":{"videoId":"16630276628803534500"},"curPage":0},{"id":"14589633751136767915-0-14","type":"videoSnippet","props":{"videoId":"14589633751136767915"},"curPage":0},{"id":"5921822158090655676-0-15","type":"videoSnippet","props":{"videoId":"5921822158090655676"},"curPage":0},{"id":"2889689022789410137-0-16","type":"videoSnippet","props":{"videoId":"2889689022789410137"},"curPage":0},{"id":"14461601520280740788-0-17","type":"videoSnippet","props":{"videoId":"14461601520280740788"},"curPage":0},{"id":"9025567330209228771-0-18","type":"videoSnippet","props":{"videoId":"9025567330209228771"},"curPage":0},{"id":"4378428555190918851-0-19","type":"videoSnippet","props":{"videoId":"4378428555190918851"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dENPUyBDT1MK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","ui":"desktop","yuid":"6788545741769844315"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DCOS%2BCOS"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"9213287026312897357201","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1450764,0,87;1472324,0,80;1472346,0,77;1470499,0,0;1414493,0,56;1433081,0,14;1473742,0,63;1476204,0,60;1460955,0,3;1470057,0,13;1460716,0,53;1459297,0,75;1152684,0,69;1459323,0,68;1471624,0,46;138060,0,32;123830,0,11;182559,0,97;1470250,0,6;1463532,0,83;1466295,0,0;1470853,0,92;1467151,0,80;1464404,0,65;1471919,0,33;1064473,0,27;1474027,0,25;1470514,0,12;241535,0,59;1471671,0,69;124071,0,10;1404017,0,89;1473828,0,36;1478803,0,8;1145208,0,42;1477450,0,75;19996,0,7;151171,0,52;126309,0,34;126344,0,92;1281084,0,2;287509,0,74;1447467,0,6;927444,0,95;1473596,0,70;1466396,0,6;1478789,0,1;912281,0,85"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DCOS%2BCOS","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=COS+COS","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=COS+COS","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"COS COS: Yandex'te 1 bin video bulundu","description":"Результаты поиска по запросу \"COS COS\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"COS COS — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y78d2eaebeafeed4393cd9da844cac6d2","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1450764,1472324,1472346,1470499,1414493,1433081,1473742,1476204,1460955,1470057,1460716,1459297,1152684,1459323,1471624,138060,123830,182559,1470250,1463532,1466295,1470853,1467151,1464404,1471919,1064473,1474027,1470514,241535,1471671,124071,1404017,1473828,1478803,1145208,1477450,19996,151171,126309,126344,1281084,287509,1447467,927444,1473596,1466396,1478789,912281","queryText":"COS COS","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"6788545741769844315","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1478181,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769844365","tz":"America/Louisville","to_iso":"2026-01-31T02:26:05-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1450764,1472324,1472346,1470499,1414493,1433081,1473742,1476204,1460955,1470057,1460716,1459297,1152684,1459323,1471624,138060,123830,182559,1470250,1463532,1466295,1470853,1467151,1464404,1471919,1064473,1474027,1470514,241535,1471671,124071,1404017,1473828,1478803,1145208,1477450,19996,151171,126309,126344,1281084,287509,1447467,927444,1473596,1466396,1478789,912281","queryText":"COS COS","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"6788545741769844315","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"9213287026312897357201","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":154,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"6788545741769844315","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1759.0__78afb7e0ef66aeda09c521d3b89f7cdbe661a72a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"6173906321388923249":{"videoId":"6173906321388923249","docid":"34-10-5-Z035715FE4AC69745","description":"This weird expression of taking cos over and over again is just a sequence x_n=cos(x_{n-1}).","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/895469/5e19ac3289b188f90d65756cc0f1e98d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/EFfcQAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqHnXE_h5c2M","linkTemplate":"/video/preview/6173906321388923249?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is cos( cos( cos( cos( cos( cos( cos( cos( cos( cos( cos( cos(…?? // Banach Fixed Point Theorem","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qHnXE_h5c2M\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhUKEzYxNzM5MDYzMjEzODg5MjMyNDlaEzYxNzM5MDYzMjEzODg5MjMyNDlqiBcSATAYACJFGjEACipoaG16d3dhcXN1bnZvanViaGhVQzlyVHN2VHhKbngxRE5yREEzUnFhNkESAgASKhDCDw8aDz8TpgSCBCQBgAQrKosBEAEaeIH_-fz7_AUA9AQFAfoD_wHw_wH7-___AP8D__z5Bf4A_QQA_QUAAAAEEQH-_wAAAAH-AgP-_gEABv749gMAAAARCPj99wAAAAr_-_j_AQAA__z7_wP_AAABAfYDAAAAAAANAfr9_wAA_wX2AgAAAAAA__7_AAAAACAALVsG4Ts4E0AJSE5QAiqEAhAAGvABdv03_cbi2v-wGtf_HDcLAKUGKP4ZDfz_gcDvANc3rQEJAyEA9gIMAClK0v6fCgH_qhbtADzhBQA24xn-6BcFAMZG6QAY9xMAOd1OAgAJMP-WQN8Aytv1_x_ssP59Lrz9IMXv_icntv3PEMUCIdw8A9AN9gXyAuUC6CXu_9Qs_wMHJbz_GxUwBsngDPXUZ_kFLAn6CkA6Kv7w2eMI_QEu-04cAfsXCfEIC-vG_rUK8frSCQ_w8-gFAvTnCw37ucUG1bQzCQDdEPUY6vz_GiMKAwf56PsMvfUB7N0F_McFIfHs6fMRFuf1FB1I6vT2g_UOIAAt-_bZOjgTQAlIYVACKs8HEAAawAe37Ni-XXepPLHUxLxcVww9r0mSPDU1HLxJXie941VWPaa_zbwYmAU-gDPrO3-zvbuKubq9ECwdvS1UyDy14ZA-uhE2vRqJMD3ZQ0u-Q5J2Oyl_gr2zI9W9g5cKPfUd8rxAijo9LBNZPC54DL2g4tg9YTyevMVPiLzSaDc9QGxJvf9107wypRo9VbSDu0yZCr3pQ6e9Q-icu6SDP7xsSFc9sez4vFSGlrxWjv88tgBjPQBnczzsaNy9L70BvBlYBTuE2Nk91PWfPHedNzpwOu68Olq4O1jf5bzAiTK8vQiJPMFwDbyoyjI9fxT1PIk8bry8Wm49t4u8OnblrzuX5DC-RG8sPeyCZrx6hyA9OeyDPUJFmLkY0gG-SYOrPZYmJbz1Ugw9oA9gvPxPxDvnOig9FzY5PR-Cy7szLTY9ICpNPaUrHjtyE_e7LLmKPHMyzDxSB4s5_ikVPHK5B7zPpCi9_COCPVTVlbwlL6G8o7mEPOeUW7yMuAU90MWVPL7RmDxa2689ZByIvO4X_byP4BY-W3gOvgPnDrxXezi9L4f9vSqgZjp_7hU9fA_XPVXVU7tDqR0-H2rbvcSaqTnfm3A9Uxi1vRrx7LuM6Ag9uzxCvJZB1ruYfH29HsZkPd1QArw6eWw8fPN2PC7WJry_rza83CfsPEBpyTs6RJe9itDjvFxabDuVBd28-ZazPbdjh7pjhZU7f5aIPTC_kTmIJIQ9pRm2vdyZLrsRAQe-w3pIvU-IdbmYqSS8ywt1PYrF0jp5Aas9IsG3uyj1Njk7KxK84wgovRvUGrmzvyK9-pDBPOOtHzkxTYm7jR1EuouCqDiJD7e9t0K4vTFCujgYP709qYAAvYkyObkmVkY8w7BQuj69XbqzPxC-yDgQvQyTSrmTm7K856YNPbEi57grc4k9bRUJvd0qxjhIUz09ljlivTLmkjgD3Si8ZLL4vKIxEDmnf0Q9vNK9PScq-zaSUS88URVTvAJIZLnG86495J-pPeQCajY6K5g8EvmePWyeh7i4mBq9VeIVPd84wbga5-U8XQ9rvbiwjTelH0M9bMRdvSf-DDjfbKO9_C0JvM19qrbfn1c90cdhve53qjgKqLs9XFqgOWmrGjhg8pW9nWO1PV5FgTetp_Y9s-qYvHs7Orkm0HY9_GyZvT-yEbhyNAk7cI60vTjSjbafxXc9b49vPW2whjezMQa7CK-9vRx9prci_-w9NSkFPvN-W7i4H7C8r4grPSLTlbhqIAy8U88SPl_PBTe9tBK6WZ-XvfJmM7ggADgTQAlIbVABKnMQABpgGwoAHAYe-8QCT_f_69zo4ezs8PzrHADw_gABBuMRFvrXBujyAPn6L9a-AAAA-e_-WNQA5VDO5c8CAST31MH5KxN_4O0kwP0I7Pz7FgLv_RkEBgkTAL0k7fwTGwj7BCotIAAt2WxNOzgTQAlIb1ACKq8GEAwaoAYAACxCAADgwAAAykIAAODAAACYwQAAQEEAAMxCAAC6wgAA4MIAAIA_AADIQQAAgEIAAGDBAAAgQQAAMMEAALBBAADgQQAAQEEAAKDAAABkwgAAIMEAAKDAAADgQAAAuEEAAODAAACAQQAAhsIAAODBAADYQQAAKEIAAKDBAAAwQgAAwEAAAFBCAADIwQAAkMEAADTCAAAgQgAAPEIAAODBAAAQwQAAEEEAAGBCAABAwQAAEMEAAMDBAABAQgAAiMEAAMhBAACwwQAAcMEAAJBBAAAQwQAADEIAAADAAAB0wgAACMIAACBBAAAwQgAAmkIAAIBBAAAswgAAeMIAAGzCAACAQAAAWMIAAPhBAAAwwgAAIMEAALBBAADYQQAA4EEAAFjCAACIQgAAMEEAALDCAAAMwgAAmEEAADBBAAAYwgAA2MEAAABBAAAwwgAAOMIAAGxCAADgwAAAhMIAAMBBAACWQgAAqMEAANjBAACAQQAAKMIAABDBAAAgQQAAhMIAANhBAACoQQAA6EEAAMDAAAAswgAA6EEAAEBCAADgwAAApsIAAJ5CAAC4wQAAHEIAADzCAABQQgAAeEIAAMBBAABAwQAAOEIAADBBAABUQgAAAAAAAETCAAAMwgAAAMMAAJBBAAAswgAAQEEAABDCAAAwwQAAAEEAAKhBAABYwgAAJMIAAODBAABQwQAARMIAAPDBAACgQgAAwkIAAOBAAACAvwAAgMAAAFDBAACswgAAgkIAAHDBAADIQQAAgL8AAEhCAAAAQAAAsMEAADhCAACoQQAAkMEAABBCAACAvwAAuMEAADTCAABwQQAAAMIAAADCAADQwQAAIEEAAIJCAAD4wQAADEIAADBCAACAPwAAuEEAAKjBAAD4wQAAcEEAADBCAAA0wgAAUMEAAIDBAADoQQAA4EEAAKjBAABsQgAAwEAAACBBAACgQAAAikIAAHTCAABAwQAAEMIAAMDAAAD4QQAAmEEAAEzCAABoQgAA4EAAALBBAABAwQAACEIAAPhBAACoQQAADMIAAAhCAACwwQAA8EEAABTCAAA0wiAAOBNACUh1UAEqjwIQABqAAgAAHL4AAEy-AABQPQAApr4AAIg9AADiPgAARD4AACu_AAC4PQAAqL0AABw-AACYvQAA6D0AAIo-AAAsvgAAoLwAAIo-AACAuwAAoLwAAAs_AABjPwAATL4AAJg9AABUPgAA-L0AAJg9AACIPQAANL4AABC9AACSPgAAjj4AAKq-AAD4vQAAUD0AAEy-AACKvgAAyL0AAHy-AADivgAA2D0AAFS-AACOvgAAoLwAAKC8AAA8vgAAoLwAAO4-AACqvgAAHL4AADS-AAAMvgAATL4AAAM_AACgvAAA4DwAAIA7AAB_PwAAVD4AAKC8AABsPgAAoLwAAKg9AABEvgAAgDsgADgTQAlIfFABKo8CEAEagAIAABA9AABUPgAA6L0AAC2_AAAMvgAAcL0AAIo-AAD4vQAAcD0AAAw-AACAOwAAoLwAAIK-AADovQAAED0AAIC7AAAMvgAA6j4AAFy-AACaPgAAbD4AAEA8AADYvQAAuL0AAEy-AAAcPgAAFL4AAAQ-AAAkvgAAXD4AACw-AAC4PQAAfL4AAAS-AAAMvgAATD4AAFw-AACgvAAAkr4AAAy-AABUPgAAHD4AAEC8AACKPgAAmD0AAJg9AAB_vwAAgLsAAEw-AABAPAAAuL0AADw-AABQvQAA-D0AAII-AAA0PgAAEL0AALi9AABAPAAAEL0AAEC8AABEPgAAPD4AAIi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=qHnXE_h5c2M","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6173906321388923249"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"785302792"},"12549109150055221877":{"videoId":"12549109150055221877","docid":"34-1-11-Z8C1A8B367FBDD61F","description":"In this Video :- Students can learn maximum and minimum values of cos function useful for academic students, SSC and other competitive exams. Trigonometry FULL Playlist :- • Trigonometry...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/226025/aac6f5dfae0cc4dd7ff57899350192c0/564x318_1"},"target":"_self","position":"1","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DA9pP48Sxs74","linkTemplate":"/video/preview/12549109150055221877?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Trigonometric Ratios graph of cos cos function Maximum and minimum values of cos functions","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=A9pP48Sxs74\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhYKFDEyNTQ5MTA5MTUwMDU1MjIxODc3WhQxMjU0OTEwOTE1MDA1NTIyMTg3N2qvDRIBMBgAIkUaMQAKKmhoZmdyZ2lqcXNja2RodmJoaFVDMXpCVWdUQmVvVTBCUzBlNUFaZmRhURICABIqEMIPDxoPPxPMCYIEJAGABCsqiwEQARp4gff5BPv8BAD0BAUB-QP_AQD89v34_v0A9gD19AMC_wDyAg76BwAAAP4LBwIAAAAAA_v9-_3-AQAI_Pb9-AAAABMLAAH-AAAACQf09v8BAAD1-_78AwAAAAAE-_4AAAAAAA0B-v3_AAAFCu8JAAAAAAEEBv7_AAAAIAAtluDdOzgTQAlITlACKnMQABpg_BkAUAwFr8P0Hez92-0N5MD5z--kD__7_QAnLAPdAg7U0fAhACz8GQCwAAAAF_XhHPYAE1zt4toKAhzstLsCIhh_FAgHAPDl9LUBES4YMOjbvBz-AOPqKPEpHPU8LEIWIAAtdZ4vOzgTQAlIb1ACKq8GEAwaoAYAAPBBAAAEQgAAUEIAAKhBAABwQQAAIEEAAJhBAABgwQAAJMIAAAjCAACAQAAAREIAALjBAAAIQgAAjEIAAEDCAAAUQgAARMIAAIhBAADQwQAA8MEAAFTCAAD4wQAAZEIAADhCAACgwQAALMIAAEjCAACAQQAALEIAAEDCAAAwQQAAXMIAAKBBAABwwQAAgEAAADzCAADQQgAAAEEAADhCAAAwwQAAwMEAAABCAACswgAALMIAAADCAAA0wgAAgMAAAIjBAAAQwgAAHMIAADDBAACAwQAAgEAAAARCAAAUQgAAOMIAAHBBAACAQAAA-EEAANBBAAD4QQAAQMIAAATCAACwQQAAEMEAACBCAABgQQAAbMIAAMDAAACcQgAAOEIAAHDBAACsQgAA8MEAAKjBAACgwQAAMMIAAOjBAACYQQAAFMIAAABBAACAPwAAPEIAANjBAAD4QQAAiMEAAETCAACAwQAAgL8AAADCAAAgQQAAgsIAACDCAACAwQAAisIAAMBAAABkQgAASEIAAEjCAADwwQAAmEEAAGxCAABIwgAAtMIAAFxCAABcwgAAXEIAACDCAADAwQAAAMIAAHDCAADwwQAAwMEAAFDBAADwQQAAcMIAANLCAAAAAAAAiMEAAGDBAADgwQAANEIAACDCAAAkQgAAYEEAABBCAADgQAAASMIAAFTCAAAAQQAAoEEAAOBBAACeQgAAMEEAAIhCAABwwQAAgMAAABjCAACWwgAADEIAACDCAAAAwQAAwEAAALBBAACAQQAAGMIAALBBAABAQgAAKEIAAOBAAACWQgAAYEIAAHjCAACYQQAAgEEAADzCAACewgAAFMIAAI5CAAAAQQAAeEIAAAzCAACIwQAAiEEAAJhBAACQQgAA6EEAANBBAAC4wQAAAMAAAHBBAACAvwAA8MEAABDBAADgQQAAIMIAAODBAAAoQgAAnkIAACTCAADgwAAAUMEAAJDBAAAwQgAALEIAALzCAABAQAAAiMEAAJBBAAB0wgAAqMEAAKhBAAAAQQAABEIAALBCAACQwQAAUEIAAGBBAADYwSAAOBNACUh1UAEqjwIQABqAAgAAgLsAAI6-AACWPgAAsr4AACQ-AADuPgAAXD4AAEO_AABEvgAAmL0AAAS-AAB0vgAABD4AAIo-AAAUvgAAHL4AAFQ-AAAQPQAAED0AAA0_AAB_PwAAML0AACw-AACYPQAAgLsAADA9AACWPgAA2L0AAIg9AADaPgAAZD4AAFS-AACovQAAuL0AADA9AABQvQAA4DwAABy-AADGvgAAgDsAAJ6-AAAkvgAAJD4AABA9AABsvgAA4DwAALo-AACSvgAAgr4AADy-AABAvAAAuL0AAMo-AAA8PgAA4DwAAKC8AABXPwAADD4AAHC9AABwPQAAND4AAEC8AAAwPQAAbL4gADgTQAlIfFABKo8CEAEagAIAAHC9AABwPQAAyL0AADm_AADovQAAJL4AAGw-AADYvQAAFL4AABA9AABAvAAAFL4AANi9AAAEvgAAcD0AALi9AAAMvgAA7j4AAMi9AACSPgAAfD4AAIC7AAD4vQAAyL0AAJi9AABUvgAA4LwAABA9AAAQPQAAjj4AAAQ-AAAEPgAA3r4AAPi9AAAMvgAAMD0AAHQ-AABAPAAAtr4AAOA8AADgPAAAgDsAAHC9AAC-PgAA2D0AAEw-AAB_vwAAEL0AAJg9AACAOwAAQDwAAOA8AAAQPQAAgDsAAHA9AAAUPgAAQDwAAPg9AAC4PQAAmL0AAJg9AAB8PgAA6D0AAJa-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=A9pP48Sxs74","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["12549109150055221877"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8407237142884457935":{"videoId":"8407237142884457935","docid":"34-7-1-Z1D11455528CC39BF","description":"Train your logical thinking skills and learn how to deal with complex numbers by trying out Brilliant! = D https://brilliant.org/FlammableMaths Subscribe to @RockHardWoodDaddy to see your dad...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/997038/237effc742448b077bfb43a5aa70ecf8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/6ZVwRAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNHHT79MQto4","linkTemplate":"/video/preview/8407237142884457935?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(x)=x","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NHHT79MQto4\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhUKEzg0MDcyMzcxNDI4ODQ0NTc5MzVaEzg0MDcyMzcxNDI4ODQ0NTc5MzVqiBcSATAYACJFGjEACipoaHJwYnliaGZiYnh6Z3ViaGhVQ3RBSXMxVkNRcnltbEFudzNtR29uaHcSAgASKhDCDw8aDz8TpQiCBCQBgAQrKosBEAEaeIH1BAD4_AUA_QIFAvoF_gH7_AT9-v39APwF-v0GBP4A7Qb-_gP_AADxFP7_BAAAAP0CAfcC_gAABfcM9wQAAAAN_PwG-wAAAAv6-AH_AQAA9v_0AgP_AAABAfYDAAAAAPkOBPEAAAAABQf-_gAAAAD8Afn7AAAAACAALSvk3js4E0AJSE5QAiqEAhAAGvABfwwvBNza6wDVAu0A_h_2AbT4If9PHAQA4wIHANMS3gD2GAcA7P4AAA4O5ADFBgEA4dfJAfLZ7QAE8gv_HvMGAPUZBAEt7BAALdgOACXsB__ACRz_9vYJAAPu4QA7L_b_BtoX_wf84AEEJt4CCvYb_xonDgQEAOcB8-wKAeP8_QLGD9n7AQ3wCN7tB_noDA8GFvv5AAAC-_noAgUKBNjtBTjuEwAELPsBB-_sB93y-Abk7_IE_wX6Cf0eFgkJDe7_6_MU-uHVCPkA-vwD9xUE8ukO8wcH1_kBCu8J--D7CPny5vD47BT0BP4A7Abz6vX-IAAt0Y0zOzgTQAlIYVACKs8HEAAawAe5HAO_ob-ru5pz-LuoVMm8mOAUPSfca708tcQ8riY0vdMUQb0P0vM9kO4svaAE0Tw4aYq-0Qw9PO2ufTzFVYU-VDBvvZt_KrxZDGi9CmKFPVCal7wR_D--f2B4PRBEErw9e8M9_RBAPdUNb7yg4tg9YTyevMVPiLz8NoS8iXkYu-gdwDvYqH091zCTvbwZNDo39Hu9XGFRO90se7sLVRs95J_8uzjU1rsKfdU8QPwZPC6Y0zymEIO9HwAnPTMb_7xp_ig-i13TO0cLKzzP2QK9CSsAuwa3WjzfCQy9zylQObaOHrxjSTS95GgOvC-NuryCNGg9KVXHu4FI9TwNUyu-XLKmO2K6NbynDs08RxZVu8uehDzc74W93Qn2Pcid67qkA6s7xnkOPelHQ7xYfi89dPU-PDt4XDzFg3c9PSYXvVEHw7zsv549uXWSPBrhSDxXGAy9VxsIPVvkQ7y58iO8onnlPBqpUrws-ZO9YmBCPA8vo7zd9EI7_QURPWNFqjulhUu8wTdNvK_hMzzfZsY9ObXzvYcfGDx1-FW9wf4rvRcqf7zQoPw8UInQPIpxALyLy5w9pBd6vV94SryNC5U5RTC5vYj2zjs1-oc9Dv2uvOOZo7vYYfE7TpgQvUc3xjsPpwK9AfFEvQUGILyxlvE8MT5xPPLCCjwx0FW9i5lOveb4_jkMAxY9fQgqvPrUUrs1bLo9LmGjPHtSyThBxYc9oEnMvXhYsDtAwSW9KdaUvYg_lzndaxe9SqoAvR5MPbl5Aas9IsG3uyj1Njm9osA8BL-Vu7lw-rkb6qG9sluVPSzZmTgFC6-7KW37vBsV3ziml_i986upvao0dTgGlsg8KuQqPeWSEbmv0wO9CBRau21ZHTkMicU8_fqcvZLDPbmqTuK8E4pjPfOFrzgSEZ-7nwC6PUsqErnKbIC9OC04vZOSmTiNDqc7BUOpu9A4Mbmelj89VPCKPObqSTid4qc7I0lVvUuegLh-clS9k3EsPSaasbgAIwM9DtvWPT5PjDeTP3M9Q7i4OjQQB7igFfg94s2FvbxVn7jhhKg9c5X4vKBCdbicenO910vTPZ-NlzjhXjk96xrNPbJIHDmQRNS802Y8Pby57reBFYG9UEIfvYeJHTgfnwA-pOSQvRXoOrkHtkq8_1gMPKNRojZt6tk7sA1LvD2WRjeGzYu9CLDoPVSzljje6F49eOWEvUFStLjK9HA9IuErPvHLijgGLFm9O1I_u3g8JrhV18a9u5lRvPmaW7fREJS96BhLvUZoBrggADgTQAlIbVABKnMQABpgIAsAEcgd6MgkQvcTzPL92AIV8OsBCAD48gATBc36JAjw5QgM_-bXEeC4AAAAHPryMu4ABFfhGus0CNX76JnrCht_6QIVvfod7hX0Iezn-f0j4RcjAMgo2i4wAfonLPhLIAAt9xA_OzgTQAlIb1ACKq8GEAwaoAYAAABCAADowQAAqkIAABzCAAAcQgAAIMEAAMBBAAAQwgAAhMIAAIDBAACQQQAAgEEAAABBAAB8wgAAEMEAANBBAAAAQAAA4EAAADBCAABcwgAA6MEAACRCAACgwAAAwEAAACzCAABAwAAA8MEAACTCAABEQgAAJMIAACTCAAAoQgAAgL8AAEDBAACIQQAA4EEAABBBAAA0QgAAQEIAADhCAABgQQAAQEEAAGRCAAA8wgAAEMEAAMjBAAA0QgAAQMAAAKRCAACAQAAAoMEAALDBAABkwgAAOMIAAEBBAAAAQQAA8MEAAADAAAAAQQAAcEEAABDBAACgwQAAwEAAAKDBAAAgwQAAAMMAAABAAAAAwgAAgMAAAODBAACgQgAAgkIAADDCAAB0QgAASEIAAIC_AAB4wgAAgkIAADDBAABQQQAAEMEAAIRCAACYwQAAiEEAALBBAAAMQgAADEIAAHhCAABsQgAA-MEAALbCAABIQgAAgL8AAPDBAABkQgAADMIAABzCAADgQQAASEIAAMBBAAAYwgAAJEIAAIA_AAA4wgAA2MEAADBBAABgQQAAjEIAAIBAAABIQgAAxkIAAIC_AABwwQAALEIAANjBAADoQQAAkEEAANjBAACSQgAAoMAAAMjBAADOwgAAYMEAAJDBAAB8wgAAEMIAAIrCAAAMQgAAMMIAAEjCAACIwQAADEIAACTCAABsQgAAQMIAAERCAAAYQgAAHMIAAGBBAABQwgAAyMEAAFBBAABAQAAAMMEAAIRCAAAUQgAAVMIAAIZCAADQwQAAIEEAAIA_AAAQwgAAQMEAABDCAACAPwAAAMAAAKhBAABAQAAA8MEAAADCAAD4wQAAGMIAAIjBAABIwgAA8MEAAChCAAAQwgAA8EEAAFBBAACAwAAAIEEAAAAAAACAQQAARMIAAILCAAA0QgAAkMEAANDBAAAwwQAAlEIAALTCAAAAQAAAoEEAAJbCAACAPwAAEMIAAODAAABQwQAAgMAAAKpCAAAAAAAANMIAANhCAAAwQgAADMIAAERCAABQQQAAgL8AAMDAAACYwSAAOBNACUh1UAEqjwIQABqAAgAA-D0AAGy-AACSPgAAUL0AAFS-AACaPgAAcL0AACO_AAAQvQAAoLwAAHw-AAAEvgAAiD0AAHQ-AACGvgAAdL4AAL4-AACYPQAAmD0AAKo-AABzPwAAcD0AAOC8AACOPgAA-L0AAJi9AACIPQAALL4AAOA8AAD4PQAALD4AAI6-AAAQvQAAED0AABy-AAA0vgAAyD0AAJ6-AACSvgAA4LwAAEA8AAB0vgAAyD0AAPi9AACoPQAAUD0AACw-AAAcvgAANL4AAIq-AAC4PQAAuD0AAKI-AAAwPQAABL4AAOC8AAB_PwAAED0AAKA8AAAQPQAAyD0AAEC8AADgvAAAor4gADgTQAlIfFABKo8CEAEagAIAADA9AAAEPgAADL4AADG_AAA0vgAAgLsAAL4-AAD4vQAA6D0AAKo-AADoPQAAUL0AADC9AACovQAAML0AADC9AAB0vgAACz8AAKa-AACKPgAALD4AALi9AAC4vQAAQLwAAJi9AADoPQAABL4AALg9AABAvAAA6D0AALg9AABwPQAAgr4AADS-AAC4vQAAUD0AAK4-AADgPAAArr4AAAy-AAAEPgAA-D0AAHA9AADYPQAAPD4AADA9AAB_vwAAbD4AABw-AAAUvgAAuL0AAMg9AAAsPgAAQDwAAPg9AAAMPgAAQLwAAAS-AAAQPQAAgDsAAOg9AACgPAAAqD0AABA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=NHHT79MQto4","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8407237142884457935"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1239065193"},"1375124125994576196":{"videoId":"1375124125994576196","docid":"34-11-6-ZF2F43F0341FF9394","description":"Proofs of cos3x Please subscribe to my channel, I will post more videos that will be helpful to your study. Thank you! #cos #cos3x #trigonometry...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2980752/bd57138c08d80dddad93762ceb248f83/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/6wvKfwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9n8H_NkhraI","linkTemplate":"/video/preview/1375124125994576196?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Express cos 3x in terms of cos x","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9n8H_NkhraI\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhUKEzEzNzUxMjQxMjU5OTQ1NzYxOTZaEzEzNzUxMjQxMjU5OTQ1NzYxOTZqrw0SATAYACJFGjEACipoaGN4Z3ZobnJlbmlraGZkaGhVQ2RPd3h5dmE5SHI4QTd1Q0FSanR2cEESAgASKhDCDw8aDz8T7wKCBCQBgAQrKosBEAEaeIH3-QT7_AQA-AEACfcG_gIHAQf6-P__APoG__QCBP4A_QIKAAkBAAAFDgP3CQAAAAP7_fv9_gEABv749QQAAAAZAv0A-AAAAAkH9Pb_AQAA9f32A_YCAAAEAv0EAAAAAPkOBPEAAAAA_wX2AgAAAAD7__oFAAAAACAALZbg3Ts4E0AJSE5QAipzEAAaYAsgADMeKw-x_13fEfuD7hcC_vvzzyX_5ewABSACARr25vIDCP8b_DXnrwAAAAzZ_xTnAP5lxPfF_P3yHbHlDgxofwkC-gfyEOn16hAV9APsDfUhCgDL_T4NCRUQTEMmGSAALf2oLjs4E0AJSG9QAiqvBhAMGqAGAAAgQgAAkMEAAMpCAADQwQAAiEEAAEBAAAAsQgAAoMEAAHjCAACAQAAA-EEAAPhBAADAwAAAwMEAANDBAACgQAAAwEAAAKjCAAAoQgAAUMEAAAxCAAAgQQAA2MEAAMBAAADoQQAA4EAAAABAAACAPwAAkEEAABzCAAAkwgAAmEEAAADAAABQwQAA4MAAAGBCAADwQQAATEIAADDCAACgwQAAgEAAAEDCAABAQAAAQEEAABxCAAAAwAAAwEAAALDBAACAwAAAQEEAACzCAACAwQAA0MEAAKBBAACAPwAA6EEAAHDBAAA4wgAAvEIAADRCAAAwQQAAlsIAANDBAAAUwgAAYEIAAMDCAADAwAAAsMEAAHzCAABQwQAAGEIAAGBBAABQwgAA4MEAAKBAAADYwgAAmEEAANhBAABwQQAAmMEAAKhBAACwQgAAMMIAAODBAADYwQAAIEEAAHDBAAAkQgAAQMEAAAjCAADgwAAAukIAAKDBAAA4QgAAcEEAACDBAADYwQAAAEEAABBBAAA8QgAAwMEAAChCAAAUQgAAgD8AAAjCAACAQAAAmEEAAKhBAAAQQgAAJEIAAKBBAAAAwgAAkMEAAExCAACOwgAAgEIAABxCAABAwgAACMIAABDCAAAswgAAUMIAAGBBAAC4wQAADMIAAHjCAACAwAAAIEEAAFDCAABQQQAA4MEAAGjCAADwwQAApkIAAMBAAADwQQAAiEIAAADCAAAgQQAAksIAAODBAAAsQgAAgD8AADjCAACwQgAAdEIAACzCAABAQQAAgEAAAFhCAAAsQgAAAMIAAIBAAADgQQAA8MEAAMhBAABwwgAAJMIAABTCAACAwQAABMIAAPjBAACAwgAAQEAAAIC_AAAQQQAAmMIAANhBAACoQQAAqMEAABDCAAC4wQAAgEAAALrCAABUwgAANEIAABTCAABgwgAAiEEAABBBAACGwgAAmEEAALBBAACSwgAALEIAAJjCAAA8wgAAiMIAACDBAAAgQgAAQEIAAHBBAACEQgAAsMEAAAzCAAB8QgAACMIAABxCAADgwQAATMIgADgTQAlIdVABKo8CEAAagAIAABS-AABEvgAA-L0AAGS-AAC4vQAAJD4AAIi9AAALvwAAiD0AAHC9AADovQAAyD0AAFC9AABUPgAAmL0AAKa-AADqPgAAqD0AADS-AADmPgAAOT8AAOC8AAC4vQAALD4AAAy-AACAOwAAUD0AAKq-AABwvQAAiD0AABQ-AAABvwAAXD4AAAy-AACuvgAAbL4AAOA8AABcvgAARL4AANg9AADgvAAAnr4AADy-AACYPQAAgj4AABy-AACYPQAAor4AAAy-AAC4vQAAML0AAPi9AACKPgAAuL0AAFC9AACYPQAAfz8AACQ-AAC4vQAA-D0AABS-AAAsvgAAmL0AAJK-IAA4E0AJSHxQASqPAhABGoACAAA8vgAA4DwAAKa-AAAtvwAAiL0AAJK-AAAUPgAATL4AAKA8AADoPQAAoDwAABA9AACevgAAVL4AABC9AACgvAAAuL0AAMI-AABUvgAAfD4AAFw-AAAEPgAALL4AAKg9AAAcvgAABD4AAKi9AACgPAAAUD0AAFw-AAAMPgAAJD4AAHS-AAAkvgAAZL4AAFw-AABsPgAAQLwAAHy-AACAuwAAFD4AAKA8AADovQAAnj4AAGw-AACIPQAAf78AAIi9AABwPQAAQLwAAIA7AABAvAAAJD4AAKC8AABwPQAABD4AAEC8AADgPAAAuL0AAJi9AAAwvQAATD4AAFA9AADYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=9n8H_NkhraI","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["1375124125994576196"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3452714039"},"13717768663838387873":{"videoId":"13717768663838387873","docid":"34-11-11-Z8EF20E8E6267D190","description":"this short video I will explain how trigonometry identity work and hope you can really understand it. Especially recent spm kbat love to ask about it.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3263370/62d7ccbeb9f3f4d2dc87a2e8872356d6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2TkF7QAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYUUYse59AlE","linkTemplate":"/video/preview/13717768663838387873?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Why cos(-x)= cosx?","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YUUYse59AlE\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhYKFDEzNzE3NzY4NjYzODM4Mzg3ODczWhQxMzcxNzc2ODY2MzgzODM4Nzg3M2qIFxIBMBgAIkUaMQAKKmhoZGFremhxc3JramNzY2JoaFVDM2ZocjRZYW5aWGVOazQzMUZGZ0FLZxICABIqEMIPDxoPPxPjBYIEJAGABCsqiwEQARp4gfv_Af_7BgAFBA4F-gj8Avr6BPP6_fwA9gf8__8C_wD2Df_-BgAAAPoPA_4GAAAAAvoK___-AQAQAwL1BAAAAA4D_v_9AAAADgP4__4BAAD59vUIA_8AAAUH9f0AAAAABhMF9wD_AAD_BfYCAAAAAPb_-_AA_wAAIAAtxJ_jOzgTQAlITlACKoQCEAAa8AF_ERP-2_auAasfy__2IdoBzkgj__w10QDoAPIB2PHsAfrrDQDNJPD_EhHdAJMs_wEF99z_87nT_y-4DAIX_vwAr-cKAQru1gI_AfwA99j__sIPDAHiEPgF9tnQ_gVS3f0L8hP52gTs_-0DwAIP_kAB3xYD_gvo8P_GA_8B2x8WAO8V0_3tJw3_59cU_NcFIwIP4h8AFhMJ-SIT5AIEEBgEBPLtAQDy-P8GBe7zyw4Q-e7mBAjv3P0F-8MKAPkX2PzlAxcABfcLCRP2A-0c9fYB2fHwAvzg8gr69Av8Gd76-v8H9u_t8v3_Dfz0AQ715wEgAC0dRhA7OBNACUhhUAIqzwcQABrABywrzb7IMN06vUgyvb06BTvWBAy9lXDXvEvTtr2Wyys9rO4HvQiRbD62pxU6gocOPYq5ur0QLB29LVTIPBSUQj5GRRy9c-gAvBmBor1Atbs94aRfvb7vub3Wj009QRa9PAC-xb03ZE29a-dFvO8RGz3BxL-9CJABvSCo6LoddRE8M9wAvdQ6mz00VUa9Dp90vaoY3by4CRK9DZCiu8a-qT1PKlA8SRwLPELBVj3XhBm91VHhu2luBb4j1BE9B8hhvIRZEj2451k9YiAZPJuNWr3Dd6y8swhFPG5Tl7xYU3k9t3nju78HpD2m4nA9KGsAumVDnT13NbS9kHYyvSY19L1-Ay49q7oCPblmtz1zE7A9vxuBPK70Kr5txd49itQLuz6bcjuwHje9-5GFus98oz24MlI9p9BUPEF-dj3yHzk7nQgsvG62I735WHA9CRLAPFIHizn-KRU8crkHvPOHqz2IYAG8Eu6-OZXY0DxS0mM9-9uvuuWakj3MTvU89-8wvL_Dgz00KpU8Cw-puQUjpT3WAju-SeWaOseDbb1XEI69nbdWvOfMUT24oIg9WX0evIIb6Tx6_9-9lDEfPGqgXr3ib0C9Bw8uPLidrLy0HA29l1MnPCGPAL7Ve7o9K4uhur9rp7s6w7k81jV_vF8gTT373Ho9h5fUO5GgU7zfJq29Fu2euoHSCz0DaYU9kxsRulC8rzzAzQI97YxGu_c_qz1DId27Kvm7u2EtI738eCA8_mveuF-UhbzwtEa8bMhfuG0D1z21o9i9DJ-vOYLkPb0Fsqo7epIuO5s6z7247kE8LScKuSixPzqCCfU7wwcGt_yzVb13PbK9hRswuLHrrT0C3l287kICOWEM1TtzTDY9ue5muCCix72Svv-8dZ0PuYZWJ7yKWc89h3ENOZ6MWz3DYhi8tf5styJfOD3zZdg8IYIiueCfgj14DRq9qkcHubwvnbyLgZ890q5sNxr4hr3PWEq9LnLFt_1Ylz3ct_o9HVbENaMLRbx2T5M99i1HOP4_kz2bzmk9ZbZ0N-Pxfr3dNGy9ksS-txVHLz3q-1o9njb0uPWisb2obP28Z7CauDwp-Lxxj-W9iR28uAqouz1cWqA5aasaOGGgUD302UY9K5gmOB-fAD6k5JC9Feg6uflK4L0Mj929YzNEuNVdmbwRl4K9B3EDuJa7xzs5R1g9njYDuOTVnrx6ifG9ZVUwuKsPyj2l_pU9wZSaN3xijb0hA9k9gTUwua1t6r0UO788b9LjN1vK3jz6hOi7SVHHNyAAOBNACUhtUAEqcxAAGmATAgAJ3Dr23xlI8h_zx_vA9wAC4-Mg_-b9_xsB1A0E2fHw2voA8dE20KgAAAAR4xM-6AATdrrSCvzkVB65uuUiPX_u8yCt7uIAHAEyBPD_OxwARjIAshHHIRnz7xkdKGQgAC2ZIyA7OBNACUhvUAIqrwYQDBqgBgAAyEEAAAzCAAAIQgAAcMIAAAAAAADgQQAA5kIAABDBAAAgwgAA2MEAAOhBAACQQQAAGMIAAKBAAAAAwQAAuEEAAOhBAACIwQAASEIAADDBAADgwAAAQEAAABjCAACowQAAgMEAAIhBAACIwQAA-EEAAADBAAB8QgAAuMEAAABCAACUwgAAuEEAAM7CAAAkwgAA0EEAALBBAAAAQQAAkkIAAKBBAABwQQAAqEEAAIBAAAAgwQAAbMIAAARCAAAMQgAAgEEAAABAAAAswgAAYMEAACjCAAAQwQAAQEEAAGBBAACmwgAAAMAAADBCAACYQQAANEIAADzCAACowgAAMEEAALDBAAD2wgAAMMEAAETCAABQQQAAAMIAAKBCAACYQQAA0MEAALpCAADAwQAAMMEAADTCAADgQQAAXEIAAIZCAABswgAAzkIAAADBAAAAwgAAQEAAAOBBAACowQAACMIAAERCAACIQgAAAMIAAOBBAAA8wgAAwEAAAFRCAADYwQAAYMEAAIDBAACYQQAAfEIAAIDCAAA8wgAAKMIAAABBAAD4wQAAZEIAAAxCAABAQQAAQEAAAOhBAACaQgAAsEEAAOjBAADYQQAAgEEAANhBAABAQgAAoMEAAIDAAACAwQAAuMEAAPjBAAB0QgAAgMEAABDCAAAAAAAAwMAAABhCAAB8wgAAikIAAMDAAADgwAAAEEEAADRCAABAwAAAQEIAADDBAACwQQAAlsIAAHTCAAAAwgAAgEEAAMBBAACYwQAAQMAAAEBCAAAwQQAA4EAAAKhBAACAwAAACMIAAJDBAABYQgAAsMEAALBBAACoQQAAqsIAAAAAAACSwgAAQMEAAIbCAAA4QgAA-EEAAHBBAACwQQAAyEEAAATCAAAYQgAAZEIAANhBAADYQQAAQEEAANhBAADwwQAATMIAAJhBAADQwQAAmMEAAPDBAADaQgAAeMIAACDCAACgwAAAgEAAALhBAABgQQAAkMIAAAzCAABQwQAAVEIAALBBAACAQQAAmEEAAIA_AADYwQAAcEIAABxCAAAQwQAAqMEAAJDBIAA4E0AJSHVQASqPAhAAGoACAABEPgAAHL4AACQ-AABAPAAATL4AADw-AAA0vgAA-r4AABA9AABkPgAALD4AAFC9AACgPAAAfD4AAJa-AAAcvgAAdD4AAHA9AADoPQAAgj4AAH8_AAAwPQAAcL0AACw-AAD4vQAAgLsAAIC7AABsvgAA6L0AAHw-AABAPAAAfL4AAFC9AAD4PQAAdL4AAES-AACIvQAArr4AAMa-AACgPAAAbL4AAK6-AAAwvQAAMD0AABS-AACovQAAHD4AAIi9AAAkvgAAVL4AABw-AAA0PgAAsj4AABC9AABMvgAAiL0AAFU_AAA0PgAAuD0AAIC7AACAuwAAkr4AAFC9AACyviAAOBNACUh8UAEqjwIQARqAAgAAoLwAALg9AABMvgAAG78AAJi9AACgvAAALD4AAEC8AACIPQAAPD4AADA9AACgvAAAcL0AAPi9AABwPQAA4LwAAJi9AAANPwAAmr4AAEw-AACAOwAAgLsAAIA7AABQvQAAUL0AAJ4-AABAvAAAiD0AAIC7AAAcPgAAUD0AAOg9AACivgAADL4AAES-AADoPQAAND4AALg9AABsvgAAbL4AAAQ-AACgPAAAgDsAAGQ-AAD4PQAAgLsAAH-_AABAvAAAoDwAAJg9AABwvQAAMD0AADA9AAAwPQAAHD4AAIg9AADgPAAAUL0AAIi9AACAOwAAHD4AAIg9AADoPQAALL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=YUUYse59AlE","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13717768663838387873"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3281838174"},"2720858543674069694":{"videoId":"2720858543674069694","docid":"34-8-14-Z1A7C47B3B71003A0","description":"In this video, we will learn to find the integral of cos(cos x) sin x. Here I have applied the substitution method to solve the integral. Other topics for this video are: Integral of sin x cos...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3462037/65c92310a6ab933ce5f15c0e285c38f5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/aEtv-gAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFCzZsLSwoP8","linkTemplate":"/video/preview/2720858543674069694?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of cos(cos x) sin x","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FCzZsLSwoP8\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhUKEzI3MjA4NTg1NDM2NzQwNjk2OTRaEzI3MjA4NTg1NDM2NzQwNjk2OTRq1RASATAYACJEGjAACiloaHlteW14anBycnR1cHRoaFVDMGJMQUNocmNjU0xSUVNqWmsxNDNXZxICABEqEMIPDxoPPxOiAYIEJAGABCsqiwEQARp4gfUEAPj8BQD9AgUC-gX-Ae36-v77AP8A9gf8__8C_wDvAAX_DQAAAPoQA_4GAAAAA_v9-_3-AQAH_wL1BAAAABgC_QD4AAAADQDuAf8BAAD2Bu_5AgAAAPsA_AIAAAAACAoD7wAAAAAFB_7-AAAAAAD__v8AAAAAIAAtK-TeOzgTQAlITlACKoQCEAAa8AF_9P8AsfwB_QEZAADq_f8BpS4l_xIW0QDUBvcB1M3DAfn52v_4CcP_wg_6_8YB7v8R3c0ABMcW_z7n5_8O3_MAChD2AQzNzP8mDg0ABBfg_uoKJwDq3_3_97D6AQQk2f4DFPr89QvhAusl1QMKHzYDBP9EAAr1JPzl3QkK6Pb0Avzl3f0CEewK4Mj2--D1MQf9sAYBFhMJ-eYh6AL89QP6CO8Y9g4T0AAs7wUHDAcC-fTr8gLfB_0AHiQWCdIJDwny9icCxP8B9ejK9_885O3-yv75_g_sAhIZEQoO5PD1Bf3h-OT4DO74zfIEDPse8fogAC2kNxE7OBNACUhhUAIqzwcQABrABy_9674KYgU93dT-O6Wdj71E5M-8hUu9vNnfw71-Ors7gL6IPFTXmz3PkpE8r7j2Oxx4db5qfBA9fDjSPMuAMz7m0Yi9mGIzPJ5ihb6Run09LHOEvBUcTr6sTcg8NZcfO8kzND046Fy9UJAzvGjjDT2soPU6XlLQvCGVoryGRJC8Tt62vKSYk7pqNLm6kXfzvM6HDD0lMj28zJ3TOyDrCT7Fbdm8qpk1vIDeCj3Umf-7hNRtO9YxM72NUvg8ND_IvFpHNT2Dxqe7yIPjPFBiJTvH3zE9clomvOtrIr3-g6M8FvtLOzbsMj0ADQU9xNI7vdjCBz1Ex5m98juyvKjIIb4CfBw96OltPPsFOz7aN9c9RHXKO6tOvbyRFKw8THDmOyveyDx8l_e8pMNDPGAhEz0b3IE9TojOO5_1vrsSQQY9T8k5PODsAL3gWIY8nTnaPKTUEjzOQrG83o_bvLg8d7vsUwm9pz2lvAdECL4diBY9f9OFvBvtXT1vFLQ8VUxBOszJpT3Xfpc8hf6yO2BnhD35Eb-9PWsSPFxNqLy5clG9b1azvH446D1CQIA7fH0QvJFk9j1po1-8AJOSu_nQD73X3qe6flreOw4-Az3nOsi9LzNsPDfpkbxb5IO8iRrYOmj27zyzKh29-jRdvJxkUDyPfYo9LssXvMxslr3zSpO9B_9cN_ji6z18lUE9Rf6yuqGSKT1AoBQ842qJO_c_qz1DId27Kvm7uypZKbybVFS9bx3SOxTqabyUlVA9_EFyu5RAtD3gzWS94odqOYEKQj0P1RA8Yc0zuBvqob2yW5U9LNmZOFOzJz3SkEy9MxqUON0qo7xXPcC9kQYeOV1Vob0A3FE89DzJOB2tKj3c4WU8MMZeOBVwD73dggC9lT9suS1BJr0iTsy7lH8LuSaKlT1uhnu9K2vnOGWtXD0FIY-8UcSZOS7iP7uSgRG8wfjZOKuzmrxN-0E8WKtDt2rjYz2Wy2u9i6k3Oae9Fz1oTmg9hmA6OZzyjTyOOr46D2VRt22TBT2ICCk9P_UJuZ0ORzt3nwO-Q96Mt9f0JT2fMgg9SQxwuGVTzr3C6Kg8_jLoNzxqzLzypWa9-vfltxCsTzw3sGu9rxu4NjKyHz3uIQG9NP1cuJJdGT7ZT1C9rMI_ubhdk73Pq5C92nVEuK9iLD14lG-9glwkNxkTjL0nUEQ8FfhVuB2XDD1JD0O-VDFNuSL_7D01KQU-835buJe7A7zS08E9UWrJuFIJpL0f-FM9CUMwOF_S2LxJqbq8keoLtyAAOBNACUhtUAEqcxAAGmAcDwAszTjEwhBZyCLI--_i-drlxP8j_-LN__bx6tgL99jhBzT_4_b31aEAAAAd3Nw4yQAJe9T5rwnlGfcoks05In_v9UmtvvfcC8cd9ujdMBkhAScAuRi4CgvQE0ocKiMgAC0TihU7OBNACUhvUAIqjwIQABqAAgAAoDwAALK-AABkPgAAJL4AAFC9AADmPgAA4DwAAAO_AAAUPgAAuL0AAIi9AAAQvQAAyD0AAFw-AABMvgAAcL0AAM4-AACAOwAAoLwAAMI-AAB_PwAAFL4AAEC8AAB0PgAAir4AACQ-AACoPQAAkr4AAAQ-AACqPgAALD4AAMq-AACAOwAAyL0AAHS-AAA8vgAAcL0AAMq-AADOvgAA-D0AADw-AABcvgAAuD0AAOg9AACIPQAAXD4AAHQ-AAC-vgAAA78AAKK-AABMvgAAED0AAP4-AAAkvgAA2L0AAJg9AABxPwAAPD4AAIi9AAAEPgAAqD0AAFS-AABsvgAA4r4gADgTQAlIfFABKo8CEAEagAIAAKC8AACIPQAAHL4AAFm_AABkvgAAXL4AANY-AACuvgAAPD4AAEQ-AABAPAAA2D0AAKi9AADgvAAAqL0AAIA7AADGvgAAzj4AAES-AACGPgAAmj4AACS-AAA8vgAAqD0AAFS-AACYPQAAFL4AAJg9AACIvQAAPD4AAJg9AABEPgAAvr4AAFy-AACOvgAARD4AAA0_AAAsvgAAur4AAI6-AACovQAAND4AAFC9AACqPgAAAz8AAKA8AAB_vwAAqD0AAJo-AADovQAAUL0AAAw-AADYPQAAFD4AAES-AACGPgAAML0AAEy-AABcPgAAQDwAAIo-AACYPQAAoLwAACS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=FCzZsLSwoP8","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["2720858543674069694"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4592018"},"11468943612995843423":{"videoId":"11468943612995843423","docid":"34-10-11-Z399FCF4A88BCC136","description":"😵💫 Confused between cos(cos⁻¹x) = x and cos⁻¹(cosx) = x? This is one of the most common traps in *Inverse Trigonometry* questions in **IIT-JEE**. cos inverse confusion explained cos cos...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4307509/35b40e50513165aead68ec73a7a5999d/564x318_1"},"target":"_self","position":"7","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0XE-cE6m0hs","linkTemplate":"/video/preview/11468943612995843423?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(cos⁻¹x) vs cos⁻¹(cosx) | Inverse Trig Confusion Cleared! | IIT-JEE | #Shorts","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0XE-cE6m0hs\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhYKFDExNDY4OTQzNjEyOTk1ODQzNDIzWhQxMTQ2ODk0MzYxMjk5NTg0MzQyM2rEDRIBMBgAIloaRwAKQGhodHNzeWZobWttbmdrcWRoaGh0dHA6Ly93d3cueW91dHViZS5jb20vQE1hbmlzaHNpbmdoTWF0aGVtYXRpY3MSAgASKg_CDw8aDz8TIYIEJAGABCsqiwEQARp4gf77AvT9AwD6Eg8H-gf9AgAD__j4_v4A8QH3AgcB_wD4AAX6BwAAAP0T-vQEAAAABPoD-wT9AQAI_PX9-AAAABEI-P33AAAAB_zx-AABAAD49_f9A_8AAAQC_QQAAAAAAw35_f__AAAH-_wGAAAAAAX9AvkAAAAAIAAtHHLbOzgTQAlITlACKnMQABpgAQ4AGxAbC9IANO33AtvyCQQf-efwI_8IAQANGOXoIs7r1ggg_wXWCPjCAAAACPgHJBgA6k7r_bf77hT7xdH7ITV_7vsKCQAE3gEhIgoRB9wIEhYcALwJAe4cDBM4DxEZIAAthqxdOzgTQAlIb1ACKq8GEAwaoAYAAAxCAACIwQAAEEIAAFDBAACIwQAAMEEAAIZCAACAvwAAJMIAAIbCAACoQQAAgEAAAIDBAAAUQgAABEIAAABAAABMQgAA0MEAALhBAADQwQAAuMEAADDCAABAwAAAwEAAAATCAAAwwQAAYMIAAEDBAACoQQAAgEEAAFDCAACgQQAATMIAADDBAAAwwgAAIMIAAABBAAA4QgAAuEEAAODAAAA0wgAAREIAAKBBAAAIQgAA6EEAAADBAAAQQQAAUMEAAIRCAACIQgAAEMIAAGTCAAA4wgAADEIAANhBAABEwgAAqMIAAIDAAADIwQAAFEIAALhBAAAgwgAAjMIAAJ7CAADgwAAA6MEAAIDAAACcwgAAwMEAAARCAABUQgAAMEIAAKBAAACGQgAAwMEAADzCAACSwgAAAEEAACBBAAAAQQAAAMAAAHBCAADgwAAAoMIAAGDBAACCQgAA0EEAAMDAAADQQQAAwEAAAJjBAABgQQAAAMAAADTCAABAQQAAqsIAAJDBAAAcQgAAaEIAAHhCAAAIwgAALEIAAEBBAAB8wgAAiMIAAAhCAABAwAAAsEEAAIpCAABcQgAAykIAAPhBAACIQQAAIMEAAIDBAACYQQAA4EAAALjBAABQQQAAsMIAACDBAAD4QQAAsEEAAJDBAAAAQgAAwMAAAATCAABAwQAAgsIAAOBBAABAQgAAkMEAAILCAAAMQgAAcEEAAMDAAADoQQAACEIAACDCAADEwgAAQEAAAFhCAACAvwAAQMEAACBCAACQQgAAQEAAAKjBAAAYwgAAwMAAAMjBAACowQAABEIAAFDCAABEwgAAYMEAAK7CAABQQQAAlsIAAGRCAACCwgAAIMEAAMhBAADwQQAAcMEAAFBCAACqQgAAFEIAAFRCAADgwQAAdMIAAEDBAACAPwAAwEAAAHDCAABAQQAAQMEAAARCAADQwQAAgEIAAKBBAACmwgAAyMEAABDBAABgQgAAUMEAAMhBAAAsQgAAVMIAAMhBAAAgwgAASMIAAADBAABAwQAAUEEAAIBBAACAPwAA2EEAAJjBAACWwiAAOBNACUh1UAEqjwIQABqAAgAA6L0AACy-AAA0PgAAmL0AAIC7AAB8PgAA4LwAACO_AADIvQAAmL0AAFQ-AABwvQAA6D0AALY-AABMvgAALL4AAHw-AAAwPQAAcD0AAAE_AAB_PwAAgLsAAIC7AAAUPgAAEL0AAEA8AADYPQAABL4AAIg9AACCPgAAVD4AAJK-AAD4vQAAML0AAAy-AADovQAAoLwAABS-AADWvgAAiL0AAGS-AAAUvgAAuL0AAAy-AACovQAAiD0AABc_AACqvgAAuL0AAIa-AABAvAAAmL0AAOY-AAAwPQAAXL4AABC9AABbPwAAqD0AAJg9AABUPgAAiL0AAIA7AACIvQAAlr4gADgTQAlIfFABKo8CEAEagAIAAIi9AACCPgAAEL0AAA-_AAAUvgAA2L0AAFw-AADIvQAA2L0AAKY-AADYPQAAiL0AAAS-AAAkvgAAML0AAEC8AAAUvgAAHT8AAAy-AABEPgAAVD4AAKi9AAAEvgAA6L0AAAy-AADIPQAA2L0AANg9AAAsvgAAJD4AAPg9AABwPQAAir4AAKC8AABQvQAAqD0AAEQ-AAAEPgAApr4AAFS-AAAcPgAAiD0AAHA9AACoPQAADD4AANg9AAB_vwAAoLwAAKg9AAAsvgAAmD0AABQ-AAA8PgAAoDwAAMg9AACIPQAA4LwAAHA9AAAwvQAAmD0AAIC7AABQPQAAcD0AAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=0XE-cE6m0hs","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["11468943612995843423"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10755876190564654427":{"videoId":"10755876190564654427","docid":"34-8-11-Z4588E5AF94D432D9","description":"In this video, we will learn to find the value of cosine of -x. Other titles for the video are: Value of cos(-theta) Value of cos(-x) Value of cosine of -x Identity for cos(-theta) Identity for...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1001596/4c98706d2f89e4c85ccf191a9c5c398f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/wZK4swAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNa2iu-D5P9w","linkTemplate":"/video/preview/10755876190564654427?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(-x) | cos(-A) | cos(-theta) | Identity for cos(-x) | value of cos(-A)","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Na2iu-D5P9w\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhYKFDEwNzU1ODc2MTkwNTY0NjU0NDI3WhQxMDc1NTg3NjE5MDU2NDY1NDQyN2quDRIBMBgAIkQaMAAKKWhoeW15bXhqcHJydHVwdGhoVUMwYkxBQ2hyY2NTTFJRU2paazE0M1dnEgIAESoQwg8PGg8_E4ABggQkAYAEKyqLARABGniB-_8B__sGAPQDBQH6A_8BAAP_-Pn-_gD_A__8-QX-APkKCvn_AAAABBEB_v8AAAAM9wEDAP4BAAAA__sDAAAAEwsAAf4AAAAGA_YB_wEAAPn39_0D_wAAAAT7_gAAAAAADfryAAAAAP8F9gIAAAAAAP_-_wAAAAAgAC3En-M7OBNACUhOUAIqcxAAGmAJGgAWDBIGwfBE6yP74usKBQH84O0VAOj4APf65fMA8-vc4wn_EPcb4scAAAAD9wRD_gDvSu3ts-79Iwbg2ucFMH_e9AgFEOje_wEN_uYgCv8NCyAA2_337xj3GRwXGiggAC3uxmc7OBNACUhvUAIqrwYQDBqgBgAAUEIAAIjCAADyQgAA4MEAACBBAADAQAAAdEIAALDBAABowgAAFEIAAGDBAADgQAAAsEEAAPjBAAA4wgAAqEEAAEBBAAAcwgAAkEIAAEDCAAAgQQAAikIAADzCAAAwwQAAOMIAAIDBAADowQAAHMIAAJRCAAAkwgAAEMIAABxCAAAgwQAAcMIAAIbCAACMQgAA2EEAAFhCAACAvwAAEEEAABjCAAAAQgAAEEIAAMjBAACgwQAAbMIAAAhCAACwQQAApEIAALjBAAAAwQAAgD8AAEBAAADgwQAAqEEAAOhBAACwwgAAQEEAAExCAACIQQAAAMAAAGDCAABAQQAAEMEAABBBAADYwgAAIMEAAIjBAABwwQAAMMIAAOBBAACYQQAAwMEAAK5CAAAAwQAANEIAAIBBAADgQQAAMMEAAIDBAADgwAAA6EEAAGzCAADgwAAAUEIAAEDAAAAkQgAAqEEAAIRCAADwwQAAIMIAAEhCAAAAQgAAcEEAALJCAADAwQAAAAAAAKBAAABQQQAAiEIAAGDCAABQwQAAuEEAAEDAAAC4wQAAwMEAAADAAABQQgAAgD8AAMBBAACoQgAACEIAAEDAAABkQgAAqMIAALBBAAC4QQAAAEEAAEBAAAAAQQAA-MEAAHjCAAAcwgAA2MEAAEDAAABgwgAA0MEAAAhCAAAAwgAAQMEAAHDBAABgQQAAmMEAAOhBAACowQAAbEIAAChCAADgwAAAEEIAAODBAAAEwgAADEIAABRCAAB4wgAAWEIAABhCAABwwQAAkEEAAKBAAAAAQQAAiMEAAEzCAAC4QQAAAMEAAMhBAACowQAAMEEAAMDAAAAAQAAApMIAAHzCAACAwAAAoMEAAKrCAAAYwgAAaEIAAIjBAACwQQAADEIAAKBBAACoQQAAgMEAACxCAACawgAAVMIAAOBBAACIQQAAgMEAALhBAACKQgAAZMIAADjCAAAEwgAASMIAAChCAAAIwgAAYMEAACzCAACAQAAAiEIAANBBAAAAQAAAPEIAAIDAAAAIwgAASEIAAADCAAA8wgAAmEEAADzCIAA4E0AJSHVQASqPAhAAGoACAAAQvQAAjr4AABw-AACKvgAAiL0AANY-AADIPQAANb8AADA9AAAEvgAA2D0AADy-AADoPQAAXD4AAI6-AADYvQAAoj4AAHA9AABAvAAAzj4AAH8_AAAMvgAAoLwAADQ-AADovQAAPD4AADA9AAAMvgAA4LwAAGQ-AACKPgAA-r4AAFC9AADIvQAAhr4AAFS-AACIvQAAtr4AAN6-AADIPQAA4LwAAIa-AACAOwAA4DwAADC9AAD4PQAA1j4AALq-AACGvgAAHL4AAKC8AABAvAAA2j4AALi9AACYvQAAoDwAAGM_AABkPgAAQLwAAJo-AAAMPgAA2L0AAAy-AACeviAAOBNACUh8UAEqjwIQARqAAgAAmL0AAJg9AADYvQAAQ78AACy-AAAwvQAAij4AAAS-AADgPAAADD4AAIC7AACYvQAAir4AAMi9AADgvAAAgLsAAJi9AAD2PgAAJL4AAKY-AAA0PgAAqL0AACy-AABQvQAAHL4AABQ-AACIvQAA4DwAAHC9AACKPgAA6D0AAMg9AACCvgAARL4AAAS-AAAkPgAAZD4AAKC8AACqvgAA2L0AADA9AAAEPgAA6D0AAHQ-AADIPQAAFD4AAH-_AABAPAAAuD0AAEC8AAAQvQAAmD0AAMg9AABQPQAAyD0AANg9AABAPAAAQLwAABA9AACAuwAA6D0AAJg9AADYPQAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Na2iu-D5P9w","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["10755876190564654427"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3019859165"},"10442001985229053920":{"videoId":"10442001985229053920","docid":"34-2-12-Z256FF70ADD3D2512","description":"To ask Unlimited Maths doubts download Doubtnut from - https://goo.gl/9WZjCW Find the maximum value of `cos (cos (cos x)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1774514/2204c48f70c58612f466840802f25c81/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/GLqTQQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCjVNEdpa0Ok","linkTemplate":"/video/preview/10442001985229053920?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find the maximum value of `cos (cos (cos x))","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CjVNEdpa0Ok\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhYKFDEwNDQyMDAxOTg1MjI5MDUzOTIwWhQxMDQ0MjAwMTk4NTIyOTA1MzkyMGq2DxIBMBgAIkUaMQAKKmhoeGNscGhrYnl4bHJ5bWRoaFVDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQRICABIqEMIPDxoPPxOZAoIEJAGABCsqiwEQARp4gff5BPv8BADyAQ8E-gT_Afv8BP36_f0A9gf8__8C_wDrAwYAAv8AAPoQA_4GAAAABPoC_AT9AQAG-wL2-QAAABMLAAH-AAAAB_zx-AABAAD2__QCA_8AAAAE-_4AAAAAAA0B-v3_AAD_BfYCAAAAAPkEAAEAAAAAIAAtluDdOzgTQAlITlACKoQCEAAa8AF_DSf_y-Xd_7cX2__JMNsBtyYYAOs78gG-2RYC1TLbAqvoDgDWIPEA8Q_-AKMz9v8HtMv__90J_zmqDwIMwfwA9wD4Afz76wJhGxQBLvX2_9QPDf3uywb-Hs3HAww36QAT2_n7JfzxBgY6zQMT_k0BNQgTAxoQLQTVnfwB2ewKBsDUv_rZEA0ECfAI-sfnJQIL5xoG-DQL-twZ-wfsCyMI5NwL8gMo9gILDQQSUSX3BLrg_gff9_H-MyP9AcEZ5v3v9C8Cxxj57jQOFQsC9hry9Rb1AinQ4wI3_xAMOev8_yq28_roAQH09vvy_AgGAfkgAC3clO86OBNACUhhUAIqcxAAGmAZDgA7BDy-7vxW30vmAsq--Oar8a0-_wb__-oJ3-v4ENX-7if_5PohsJkAAAAX3uswvQD9f9AK0w_7Dwvck9RLRHwjF1K-wcnt7uUeGggNOQvRNRcAsvrlHDMbB1kJRUMgAC0IgQ07OBNACUhvUAIqrwYQDBqgBgAAIEEAAMjBAABUQgAADMIAANhBAACGQgAAykIAAKBBAACQwQAABMIAAHhCAABQwgAAIMEAAEBBAADowQAAAEAAAOBAAACqwgAAGEIAAPDBAAAwwQAAQEEAACzCAABAQAAAQMIAALBBAAAUwgAAgEAAAKBAAAA4QgAAiMEAALJCAADQwQAAmMEAAMbCAADQQQAAgD8AABBCAADQwQAAEEIAAATCAABwQQAAUEEAAHzCAAAQwQAAQMAAAABBAACoQQAA0EEAAIBAAADIwQAAYMIAAABAAAAAQQAACEIAAIjBAAAowgAAwEAAAAhCAADwQQAA6EEAABDBAADKwgAAsMEAANhBAADmwgAAwMEAAHDCAAB0wgAAdMIAADBCAADgQAAA2MEAAJjBAADIQQAAwEEAANjBAAAAQQAAsEEAACRCAACwwQAAoEIAABDBAAAwQQAAmMEAAHRCAADIQQAAkMEAAGxCAAAgQQAAwMAAACDBAADAwgAACEIAAOBBAACewgAAOMIAAFDBAADoQQAAXEIAABzCAABYwgAAEMEAAJjBAADAwQAAAMEAAHDBAAAsQgAAoEAAAKJCAAB8QgAAwMEAAATCAAAwQgAAcEEAAIpCAACIQgAAgMEAAOjBAAAwQQAAwMAAAIjBAAAkQgAAiMEAAATCAAC4wQAAQEEAAIhBAAA0wgAAPEIAAIBAAABAwgAAmMEAAMBAAAA8wgAAoEEAAFRCAACAQAAARMIAAPjBAADwwQAAIMEAADDBAABgwQAA4MEAAFRCAACgQQAAlkIAAHBBAACQQQAACMIAACBBAACoQgAA0EEAAIhCAABQQQAAzsIAAMhBAADowQAAIMEAAILCAADAQAAAZEIAAIC_AABwQQAAMEEAADxCAABkQgAAkEIAABDCAACIQQAAuMEAAJDBAAC4wQAAVMIAAABAAADowQAAMEEAAHBBAAB4QgAAZMIAAEDAAACAQQAAYMEAAKBAAADYQQAA4MEAAHBBAABQQQAAMEEAAKBAAAAAQAAAjkIAABRCAACAPwAAUEIAABRCAABAQQAAdEIAAKjBIAA4E0AJSHVQASqPAhAAGoACAADGPgAAPL4AALY-AACyvgAATL4AAP4-AADIvQAAJb8AAKg9AABQPQAA6D0AAKK-AAA0PgAAHD4AAJq-AADIPQAA3j4AAOA8AABwvQAAgj4AAHk_AAAwvQAAML0AAL4-AAAEvgAAoDwAAJg9AAAUvgAA2D0AABQ-AAAUPgAACb8AAIC7AACAuwAAkr4AAK6-AAAwvQAAtr4AAPq-AAAcvgAAdL4AAGy-AAAMPgAAcD0AAFy-AABAvAAAPD4AAHy-AAAQPQAAoLwAADw-AAC4vQAAjj4AAHA9AAC4vQAAgDsAAH8_AAB0PgAAqL0AAFw-AABEPgAAhr4AAHA9AAB8viAAOBNACUh8UAEqjwIQARqAAgAA2L0AAKg9AAC4vQAARb8AAAS-AABwvQAA6D0AAIA7AAAMPgAAUD0AALi9AAAwvQAAbL4AALi9AABAPAAAiL0AAAy-AADOPgAAnr4AAHw-AACgPAAAcL0AAAS-AABwvQAAqL0AABQ-AACIvQAAoDwAAJg9AACCPgAAUD0AABw-AACmvgAAqL0AAPi9AAAsPgAAxj4AAIA7AAB0vgAAgLsAAIC7AABwvQAAFL4AANY-AABAPAAAEL0AAH-_AAAMPgAAiL0AAGw-AAAsvgAAgLsAADw-AACoPQAAUD0AAMg9AACgPAAA6L0AAEA8AAD4vQAA2D0AACQ-AAA0PgAAUL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=CjVNEdpa0Ok","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10442001985229053920"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1940349446"},"4848635081960118847":{"videoId":"4848635081960118847","docid":"34-11-1-Z06F299E33525CAB4","description":"In this lecture, you will learn how to draw graph of cos of cos inverse x or in other words graph of cos(cos^-1(x)) or cos(arccosx) or cos(cos inverse x). If you know, principal domain and range...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/212754/c984501be2ea581127c49e45d3016f12/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cu6F7AAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dy4l8xrb5BjU","linkTemplate":"/video/preview/4848635081960118847?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Graph of cos(cos inverse x) || cos(cos^-1(x)) graph || Graph of cos(arccosx)","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=y4l8xrb5BjU\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhUKEzQ4NDg2MzUwODE5NjAxMTg4NDdaEzQ4NDg2MzUwODE5NjAxMTg4NDdqiBcSATAYACJFGjEACipoaGloanllZHJjc2JmYnNkaGhVQ1N4R3FrdENhNUZPUU5JM3EzX2RIS2cSAgASKhDCDw8aDz8ToAGCBCQBgAQrKosBEAEaeIH3-QT7_AQA9AQFAfkD_wH2-fv8-v79AP__9Pv9BP4A-_kK-gEAAAD6EAP-BgAAAAH-AgP-_gEACQb7-QQAAAARCPj99wAAAA3_7gH_AQAA-ff3_QP_AAAABPv-AAAAAAMN-f3__wAABAT8BgAAAAAA__7_AAAAACAALZbg3Ts4E0AJSE5QAiqEAhAAGvABe6k2_PbdrgS2A98BgVXN_6xm5gENLNv_udnjAalLywDd_TwA9iTTAA8asQKcPSgC7vLn_fe7AgBTzvoASNULAc7vLAESEwgCFD8gABLO-v8MLtn-_f8kASLFvwQpTxL8K-8F_P4S5AHI78IAFf1YAs307gcSBR8C6d0SAd4F4gC3zbb57B8XBAsaAfXjH1IBG_4XCwVDJgHR7en76xIb8xkADPQVNegGIf3vBOzzEvKW6fT9LuAMDg0lGAav-vsR3Oki9dENBQz__x_4VNnm_cMs-PNm0_wGHRPzAOAbCR_-Fw_wHPIKCfX78fzUv_H2IAAtlhvSOjgTQAlIYVACKs8HEAAawAeyDse-51kkPN8Kl7ylnY-9ROTPvIVLvbw8izm9chsIPceBHjo_c0Y-Du4zvZb5fTvDzCi9nNVsvZXzBT1AvTk-4huqOQyl2Ll1dPy9LxOaPQsCEL1CIUe90RMlPaEHyDyVmce9otkQvUGbHDzg2X49UnFNvc03R7zwSrc8clI4PY85T7xBZoc96OEhO_bVUL0Vb4W7R8vBPKlE_jxsz8w9QjofvHeBVDv98r49fnAdvLelRLxXXPy9f04hvVFgprtW9bK8T7m4PA0EnDycWDa9LZ41vZDj4jy82dE7osaOPP33vzv6XuM997NTPXdqSztxyMY8cYQWvccpn7wo8O69CwEKvWJP1rzshu09jPeDPXJbkTtSnqS9tXr9vCyQ6rycq4E86DkYvXla_jwBmbc91qIqvFchijwgnCo9SKrOOsJs_rvDo2i9_k4JPWuU_zzUyo48SdNlvfH4sLumE0Q91U5evfmNp7un3I46gihOvR_eTrwsKfe7dHJxu9ZJhTo_vPg8eUWLPA6zYTyP4BY-W3gOvgPnDrzsQ7i9j1ADvn9AELtjL589Jv-jPbhiNbz3kzG9s2jAvZ_iPLu_Pdk8Th11vDlbZbtzTHa9gfdEvcrp47qY-Q6-6N2IPRq8cTtfojC8kC2QvZATprupVQ-9exSuvL4HeTqEPwk7FY2FvWh8GTueiR89ZsnCPe_m3jgsuas7111qPHapkbvVlQ8-1OxGveVHGbmLw9m9FQrHPMr8Hjp9esc8-vOIPLa3Hbvurw4-nxKRvX7QlDl3Tk69Z3w_PZHcDTpx4Dq9LrpLPXIWxzdu3JI9O7IovSNOI7lUG_y9Yrv7vRPT8jkHPuu8D1hDvXm9Arq8lDo9ij_KPAUg4TcTff68iA8cvpMllzcy16i9VtqtPXGs0rimX-I9ONlGvWp5XjdVxQ-9V3yDPXg2Bbgo1im9FFSJve904ji7ZIe99ekCPQSGqbiM-r-94kHxO10nBrnDdyw97kigPW3tGzmjC0W8dk-TPfYtRzjiZ709w6_iPJjSsLgOPYO9bIMpvYKyyrdY2Qg93Bg2vXmoYjlodTK-ZKQoPRfKTLdvBIM9gGCjveME6jj4pxQ-A_pOPR_07Tb9cRE9okXWPRkG0zg6XdY97EqNOxz7Sbk5xcS9Z7cmvtZHcjif5A6-SGSEvce5trfwuw69xxY9Pb_Sszb2dHo94A_fvT-Zm7egFw49FyW9PSh_ADlSpLG8hCJnPZ3pE7itbeq9FDu_PG_S4zeYSM48ufdVPRvoZDcgADgTQAlIbVABKnMQABpg__oAZukv873zPOgGz8nm2PTP-vD9NP_rsv_3DMv3FPLX0QH9APvxAfCjAAAAIegKHfMA3m3PCNH11S8b78DgLyB82dRmpc_5_PchE_H7EfM0DBb7AIEaxQIj9xAKLCIhIAAtpskfOzgTQAlIb1ACKq8GEAwaoAYAAHBBAAAIwgAA4EEAAIA_AADQwQAAEMIAANxCAAC4QQAAKMIAAKBAAACYwQAAFEIAAJDBAABQQQAAQEIAADhCAACAQAAA8MEAAARCAAD4wQAA4MEAAIA_AACQwQAAAAAAAIDBAACAvwAAgEEAALBBAACAQAAApEIAABTCAAAkQgAAdMIAADDBAAAQwgAAcMEAAABBAACwQgAAWEIAAABAAAAgQQAAwEAAAJhCAABwQQAAwMAAAGTCAACEQgAAQEAAADBBAAD4QQAAgEEAAADBAABgwQAAYMIAAMhBAACIQQAAjsIAAFjCAAAwwQAA-EEAAHBBAAA4wgAAMMIAABjCAAAwwgAAAMMAAOBAAABIwgAAQMAAAEBAAACgQgAASEIAAADBAABsQgAA6MEAAODAAABgwQAATEIAAGBCAABEQgAARMIAALRCAAAgQgAAcMIAALxCAAAgwgAAAEIAAABAAACAQgAAEEEAAOjBAAAAQgAAvMIAAHTCAACMQgAAWMIAAIhBAADQwQAAgEAAABRCAAAwwgAA8MEAAHzCAAC4QQAAgD8AACRCAACgwAAAIEEAAJjBAAAAAAAABEIAAOhBAACgwQAAfEIAAFBBAAAIQgAA4MEAALDBAAAkwgAAIMIAAEDBAACYwgAAqEEAAOBAAACQwQAA6MEAALhBAADQwQAAeMIAAABCAABEwgAAsEEAALjBAABAQQAAKEIAAERCAACAQQAA2MEAAMjBAAD4wQAAwMAAAADBAABoQgAAFMIAAEhCAABsQgAAEMEAAI5CAADwQQAA4EEAAKDBAABMwgAAAAAAALDBAADAQAAAuEEAADjCAABEwgAATMIAABxCAADYwQAAiMEAAJjBAAAkwgAAJMIAAOBAAAAQwQAAhEIAAHxCAABAQQAAoEAAAKBAAADAQQAAisIAAIzCAABAQAAA-MEAAEzCAACIwgAAHEIAAOjBAADIwQAAYMIAAKDBAAAIQgAAgEAAAJzCAACoQQAAoEAAAExCAACAwAAA2EEAAIhBAACgwAAA6MEAAFhCAAAoQgAA4MAAADBBAAAAACAAOBNACUh1UAEqjwIQABqAAgAAVL4AAIK-AACAuwAAHL4AAIi9AACyPgAAcD0AACe_AADYvQAAoLwAAJg9AAC4vQAADD4AAEQ-AADKvgAAkr4AALI-AAAwPQAABL4AAM4-AAB_PwAA4LwAAOC8AAD4PQAA6D0AABw-AAAcPgAANL4AAEC8AAAQPQAAdD4AAJq-AACgvAAAoLwAAPi9AACOvgAAND4AAM6-AAC6vgAA4DwAAFy-AABsvgAAmD0AAIg9AADoPQAABD4AAJI-AABUvgAAjr4AABC9AAAQPQAAgr4AAPI-AAC4PQAA4DwAABC9AAB1PwAAZD4AAFC9AABwvQAAyD0AAMi9AAAUvgAAqr4gADgTQAlIfFABKo8CEAEagAIAAEA8AABcPgAAVL4AACm_AACCvgAAXL4AAN4-AACCvgAA2D0AACQ-AADgPAAA4LwAACy-AAD4vQAAQLwAADC9AABUvgAA1j4AALq-AACaPgAARD4AABy-AACKvgAA4LwAAAy-AACoPQAA-L0AAKg9AABwvQAARD4AAAw-AACoPQAAvr4AALi9AADYvQAAVD4AAM4-AADIvQAAnr4AADy-AAC4PQAAHD4AABC9AACuPgAA2D0AAKg9AAB_vwAAEL0AABC9AACovQAAiL0AAII-AAD4PQAAMD0AAKC8AAAkPgAAcL0AAIA7AABQPQAAgDsAABA9AACGPgAAPD4AABS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=y4l8xrb5BjU","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4848635081960118847"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2359558591"},"480953292071314082":{"videoId":"480953292071314082","docid":"34-10-14-ZEBDE955A39A9192A","description":"inverse sine, inverse cosine, inverse tangent...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2436394/2e5a6237f972574c737c2caf1aa2f99d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mqYDBwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DgwEeqFqzIE0","linkTemplate":"/video/preview/480953292071314082?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(cos^-1 1.2)","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=gwEeqFqzIE0\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhQKEjQ4MDk1MzI5MjA3MTMxNDA4MloSNDgwOTUzMjkyMDcxMzE0MDgyaocXEgEwGAAiRBoxAAoqaGh2bmxjemJia2Nwbm9mY2hoVUNHUTliTUxJOVMwSXFaZUR1VDFFSGVnEgIAEioPwg8PGg8_EyWCBCQBgAQrKosBEAEaeIH3-QT7_AQA9AQFAfkD_wEAA__4-P7-AAII-_3_BP4A_QQA_QUAAAD9E_r0BAAAAAT7_Av__QEABv749QQAAAASAPQC_wAAAA4D-P7-AQAA9-z1AgP_AAAEAv0EAAAAAPsX_PkA_wAA_wr5CwAAAAD_9gH-AAAAACAALZbg3Ts4E0AJSE5QAiqEAhAAGvABWQkA_rEe-_4hH-sA2AzqAYHtHP8VCegA1PHJAOUA7QHxB84A1PwAALgF_QHvIfUAD-HTABzQBwE-9fn__PoJAA7lAAAi2PUBNwD9AP8Y8v7__jf_Hu0FAADp8gAE_vQAExwR_bft4_74AfcGCdk4Ahz-HAUK8jYB8NIYA_QlFAPm99z94_kIBPkC9P3ZLA0AFvUH_wUYCQXRBQP9IP3oAhT3BwIAD_D4QQgdCwr6Gff8MecA9gD0_hgQ-Af3DyADKhsb_tUcDPcK6w79JwIICwfu8_MO3QcD9uwJEPHzC_QG-Ovz6hbzBOcLGP4EDPcCIAAtQVolOzgTQAlIYVACKs8HEAAawAcfvM6-sRKYO0btwDtCpPC8cUQtPQnmw7z4Mzy8h0szPcTBlLubt2A9wPq5Pbfgu7xyNrW-3p5xPexZhLotC1Y-sIpcvUEtJr25vJ69qTD4O9j-BL3gu22-XoqWPRa5TLwer3Y9fbsbPQ54qrwXEks9WZDcPCT4OrwR8WC9IwUAvR0zljv4oRo8H4XrvbyRebx29yU9GCgkvayUubxGWMk9vH6MvUU7ODvrQw289CgmvLYiezzq9ii931rcvNPjrbwpQAQ-E9cxvAEtQr3cVX68_dc-vcogsbooMDg91umbvEvL5TtFK6e9m8FkPZdS17zQcDQ9pbXZuRPoGL2oyCG-AnwcPejpbTz7BTs-2jfXPUR1yjvbTAo9_CL8PIzTtTy-PxS9YP1kvY-puzxSpic9Pth4Pd2aD73o7oS8xyVzPemuLTr9cbE8eES1PbVXejwCP5G6CLzCvFN6JjxHYji8bRuGPCcylDt8nXS9NsIMPaJ91znKbKA9JAlnvGTkkbw7s9W77diIPWIQu7udXcO9xrWMuwGiZLvVBLE9opzDvMneFjwdbcE9OWkQPS4Ff7wplbA8CjWnOOk_0rsIiBM9MolOOaXwpLuSIBw-UzmyvYg6KTo208i9fJQ2PC5zG7yva5o9ypKUvNki6buzgS-9ZOsUPQaRtbuVjXi9666HvAwiTjucaWI9HOqXvYTyTLqtzvs8D5fcvBw8lzrTRJQ9eeIcvFFpozvKyDQ7xG2fu2hsWLu4yP08tuRHPYbvs7reuaY9O2gbvdoZxznTCAc9VhdLvKfG67lu4ZQ8lPoiPpWhpbi19I08cJjovGug4jcF0_q7-E6BvQn5kbl6KWa9c3sOvVHD4jgaoZS9d0xdPKmKrThMd3K9L8gOvP2Mh7r83se7J8YtPcOXYLjIg-M8dQzjPL4c2bfVAgA9-vLdPMeiN7jZ5HU9J2DFvGL2ObjdF5G9wVLCPPUEC7hwzzM9CQlHvVv5lTeXeeU7DVrjvBk0xDYHaic9H0IGPZ5xJriiCKk9PFDnPcSN9jhgmwW8jERNvXadLzjnsWE97V9-PQhDILjEiIO9r3JtPRlrqjjILFa8bRvGvBx7JLhqdF09Ja3YvTwhnDi9HaG8uVUAvrvmLbgfnwA-pOSQvRXoOrmTQ7q9HS14PRJNbrj3YA09AokhPUHvALhRuCM9YS2jPGeMKraGECE9XHfTvd7zm7fK9HA9IuErPvHLijisBEa9ESUwPQ9ys7he0XK9-ym0vTRNHDgZI608qmIKPUeshDggADgTQAlIbVABKnMQABpgThIAL_BP2xb9QQJPBwNF4_7Z7hXoMf_8IwAH9PQV9Ri428Lp_-kbBfelAAAAFereMMEAIHb7CfX0rELt6MDeEB1_CRsch8TfFgXfKvPd9ezvFh1QAN_Wr_oqMfISK_jvIAAt5tkcOzgTQAlIb1ACKq8GEAwaoAYAAIBCAABAQAAArEIAAHDCAAAAQAAA4EAAADBCAACAwAAACMIAAIC_AADAwQAAQMEAAEBBAABkwgAA8MEAADRCAAAUQgAAHMIAAIpCAACswgAAuEEAAPhBAACowQAAiEEAAIjBAAAAwAAAWMIAAOjBAABkQgAAWMIAANjBAAAAwQAAUEEAAEBBAABQwQAAYEEAAJjBAAAAQQAAuEEAAIA_AAAwwQAAMMEAAFxCAAAQwQAAYEEAAKDBAAAkQgAAIMIAABhCAAA8wgAAgsIAAKBBAAD4wQAAiMEAACBCAAAgQgAAnMIAAFDBAACWQgAAmkIAAOBAAACOwgAAYEEAAIjBAABcQgAAzMIAAHDBAAAQQQAAOMIAADDBAACYQgAAYEEAAFzCAAA4QgAAoMAAAOBBAAAQwQAAcEEAAPBBAADAQAAASEIAAEBCAACUwgAAbMIAAOBAAAAIQgAA4EEAABBCAAAIQgAAeMIAAEzCAABUQgAACMIAAADCAACYQQAAbMIAADBBAAAsQgAAQEAAANhBAACWwgAAAEEAAExCAADwQQAAMMEAAEBAAABswgAAJEIAAHDBAADYwQAAJEIAANDBAAAwwgAAEMEAAFTCAABcQgAAYEIAABTCAACQQgAA2EEAAKDAAABgwgAABMIAAAjCAAAwQQAAXMIAAKjBAAAIQgAAHMIAAIrCAADgwAAAEMEAABBBAACYQQAAUMEAABRCAAAgQgAAkMEAAKhBAAAwwgAAAEAAAIhBAABsQgAAQMIAAHhCAAAcQgAAQMEAAPBBAAAAQAAA2EEAAMBAAAAcwgAAIEEAAMjBAAAQQQAA4EAAAPjBAACAvwAAyMEAAGTCAADIwQAAyMEAAOjBAABcwgAA0MEAAOhBAACOwgAAcEEAANBBAABQwQAAsEEAAEDAAAAgQQAAUMIAAEjCAAAUQgAAoMAAAFjCAAAUQgAAQEIAAKjCAACowQAAUEEAALrCAAA0QgAANMIAAODBAACIwQAAsMEAAFRCAAAAQgAAQMAAAI5CAABQwQAAQMIAAMRCAACGwgAA4MEAAKhBAABUwiAAOBNACUh1UAEqjwIQABqAAgAAHD4AAAS-AAC4PQAAcL0AAPi9AAAsPgAAZL4AAAG_AACYPQAAcD0AAGw-AAAkvgAAoDwAAI4-AABMvgAAML0AAK4-AACgPAAA4LwAALo-AAB_PwAAQDwAAFy-AACmPgAAoLwAAPi9AACgPAAAbL4AAIA7AACGPgAAiD0AAHS-AACgvAAAmD0AADy-AAB8vgAAgLsAAI6-AACyvgAAqL0AAES-AAAHvwAADD4AADA9AABEvgAANL4AAJ4-AADovQAADL4AABS-AABkPgAAuL0AANI-AACgPAAATL4AAIA7AAB3PwAAQDwAACQ-AADIPQAAqD0AAOA8AACAuwAAdL4gADgTQAlIfFABKo8CEAEagAIAAKg9AACYPQAAuL0AACu_AADYvQAAcL0AAGw-AAC4vQAAED0AABw-AACgPAAAiL0AAFC9AAAwvQAAQDwAAKi9AADovQAABz8AAJK-AAB8PgAAQLwAAAS-AADgvAAABL4AAMi9AAAwPQAAoLwAAEA8AAAMPgAATD4AALg9AADIPQAAnr4AAJi9AAAEvgAAND4AAEQ-AAAcPgAALL4AABS-AACOPgAAmD0AAKC8AABkPgAAuL0AANg9AAB_vwAAiD0AANg9AADYPQAAML0AAKg9AAA0PgAAiD0AAJg9AADIPQAAgDsAADC9AADYvQAAuL0AAIg9AADIPQAAUD0AAAS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=gwEeqFqzIE0","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["480953292071314082"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3433566654"},"16630276628803534500":{"videoId":"16630276628803534500","docid":"34-0-12-Z6548B0323D58C81C","description":"inverse sine, inverse cosine, inverse tangent...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/472701/57663d12a04e265e1c8cffc111105434/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/I852cQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D6xaPrxJ6z4Q","linkTemplate":"/video/preview/16630276628803534500?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(cos^-1(-2/3))","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=6xaPrxJ6z4Q\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhYKFDE2NjMwMjc2NjI4ODAzNTM0NTAwWhQxNjYzMDI3NjYyODgwMzUzNDUwMGqHFxIBMBgAIkQaMQAKKmhodm5sY3piYmtjcG5vZmNoaFVDR1E5Yk1MSTlTMElxWmVEdVQxRUhlZxICABIqD8IPDxoPPxNBggQkAYAEKyqLARABGniB9_kE-_wEAPQEBQH5A_8BAAP_-Pj-_gACCPv9_wT-AP0CCgAJAQAA_RP69AQAAAAM__wB_v8BAAb--PUEAAAAEgD0Av8AAAAOA_j-_gEAAPn39_0D_wAAAQH2AwAAAAD7F_z5AP8AAAUM-QMAAAAA_Pr6AAAAAAAgAC2W4N07OBNACUhOUAIqhAIQABrwAX8NJ__QEdUAsPTf__X0mALUOg7__EDHALsCEgDKwrYC_gZBAN4yB_8W7doAwhMwABjPogPe79YBP70p_-YC_QD6uOABF8vrAkUTHQPcCeH_Aio2_ubY_f7RvNr_BSzR_krqFf0jI7399QL0CQ7wKf8kECQCzBUQ-O4JEAK4EQ4A--DW_fAa-Qjizxj72fI7CfbkDQY-UREB7_YaA_kAFQkWAAr2BkH4AdAQ9wzdHx4A3APpCPKw_wH0BRL70x4E_eX88_zszBPuBbwJ-Be4HfHi8ur0VQTy_APlFw0H_gMGIf7u9eAD6gMyzPv3DQPq9yAALdyU7zo4E0AJSGFQAirPBxAAGsAHymyYvg31oDytOZs8qgudvcuBvzvA_pC8-KgPvqfz1zzlXiC9_g3aPV8tUjyc9OO8f4MWvqILajshUAc9LQtWPrCKXL1BLSa9DjEOvk0GkTxH6EK8t7IkvikVwzxE0GK8I2XwPMzU_zwrvVu8QbYcPsEwqjyNSXs7YlEsvWRSqDyolmO8-KEaPB-F6728kXm81-rBPTfwlL0J6R88qp2xvY5asb22lrQ7L-u0PAkAKb3bXRa9V1z8vX9OIb1RYKa7-upPPX6fiz0UjsW82lc-vfhekr1Z8Ay9ybNGvbYaiLzocrk8FgIPvTTO8LtTg367ZFIIvYZgS72w3Jy8XZGzvYxCGDw-NYe7Xp0DPbvR5z24EBg8HIS_vU2tDT03nOQ7SfeevVOHqroC-OE7KJ4DPqytWLzx5c87wJaHPUk7lD0PsWa8QVw9u2vUwz3EGwI89AtAPBazjz0cIpM8E7ysPXAk0D3690-8kh3AvPeYo7wV6Vk8s7AMPSuBqT3LOz28kYuQPYrR77pVK9k6yVNbPQCAjb2oMFs8lD5DvRapbrviBY27dHoePjb3Ibsly6y6u89WPRIVCr2mT6G8WBQdPPOlfD3-YQ27sSkBPStyo7y2Ins8Wmq4vZs08jwVqwa888yGvfB63zw4npG7R7-HPQnkrTwr9ji7snGDvSzmgT0GB3C5nGliPRzql72E8ky6OzxfPKrcn72zYEY6oI0sPsuuBb0gAg25KbcovaWhZj2wUce5fmgwvSkrob2UTri4DW0gPqwmADt_Q8y4CADOPdXAoL3cdYM3qLdQvHS0Cj78xVg3icjVPH0_hb1HWoU5HhGovc78Sr4Byw45otd6vKgRZL3dBEu5D-x9PazrK7xSwhC5RkNGvtX-M71GWQ-5qYRnvb4qPL2mK2q4eWFGPcwD_TwpBuA45m-nPGF4O731yqm2eHOyvXaw1brc8Is5npY_PVTwijzm6kk4t8lyPG0tHb3Lo8K44cLAPS0gGb3k1sC4F4V4PSe85D3ojjK3mh-UPaOvAD2wZM43xzdqPSBfgr12-co2D1Q3PfGC6D3pQYI3lIclveVteDu_5S44SYxUvO9KjL15K9c2xM8PPjxq6buey5U2qmmivSRv7zsWRqM4AXBnPa_u2L2hUIe4qCanvVQ9xL0cuIO4OBXpvVJadDkmFju49-qDPUTZoL0-9HQ3r5_JPa-sWby8z5G2yvRwPSLhKz7xy4o4vxYKPaFvwT3_L5y3ktccvGszKTyWX6u3vkM7vSPGobzeZyU4IAA4E0AJSG1QASpzEAAaYBILABMPTgj2Cjj0IgPbGs3z4Qv07xf_6xAAAAHnDR_3-f_a8QDx8h_7wQAAAOv9F0DkAPFS7PEL_OJDA9q95gcZf_ccDtLi9hb3DxIB-g_9KP38FgC329wEFQLqEygKPCAALYaRVDs4E0AJSG9QAiqvBhAMGqAGAABIQgAAQMEAAOBCAACKwgAAuEEAAJDBAACEQgAAmEEAAPjBAAAAwAAAcMEAAEBBAACIQQAAEMEAAIBAAABwQQAAqEEAADzCAACkQgAAiMIAAAAAAADAQQAAGMIAAPBBAAAIwgAAoMAAAEDAAADQwQAAgkIAABzCAAAIwgAAAAAAADDCAACQwQAAjsIAAPBBAACAPwAAmEEAAFBBAADgwAAAcMEAAJBBAAA8QgAAcMEAAOhBAAAkwgAAVEIAAADAAADgQQAAwMEAACTCAACowQAAyMEAAIBAAAAAQQAAAEIAADjCAABAQAAAYEIAAHRCAACwQQAAnMIAANjBAAB4wgAANEIAAKzCAAA4wgAAAAAAACDCAAD4wQAAqEIAAAAAAADAwgAAdEIAABzCAACQQQAAgD8AAGDBAAAgQQAAUMEAABRCAACIQgAARMIAAODBAACQQQAADEIAAARCAADQQQAAAEIAABDCAACYwgAAeEIAACDBAACoQQAAgEIAAK7CAACAvwAAFEIAALhBAAAoQgAAjsIAAADCAADQQQAAAMAAAFDCAAAgwQAAgL8AAAxCAAAwQQAADEIAAExCAAAAwAAAMMIAAODAAABswgAAjEIAAABCAAAkwgAAQEEAAIA_AACAwQAAsMIAAIjBAAAgQQAA-MEAAI7CAADwwQAAgMAAADDCAACQwQAAsMEAAODBAAAQwQAASEIAAAzCAABUQgAAFEIAALBBAAAwwQAA6MEAAGBBAABAwAAAQEIAAKLCAABoQgAAKEIAAATCAADoQQAAuMEAABBBAADgwQAAwMAAAEDBAABAQQAAwEAAAGDBAAAowgAAyMEAAMjBAAAswgAAFMIAAEBAAAAwwgAAisIAAEDAAAAoQgAAlMIAACxCAAAAQgAAsEEAAPBBAAAMQgAAoEAAAIbCAACAwgAAQEEAACjCAADgwQAAEEIAACBBAACQwgAABMIAANDBAACYwgAACEIAANDBAAAAwgAAIMIAALBBAACMQgAAOEIAAKBAAACEQgAAEMEAAIjBAACAQgAAAMEAACDBAAAwQQAA-MEgADgTQAlIdVABKo8CEAAagAIAAFA9AAC4vQAA-D0AAKA8AAC4vQAARD4AADy-AAATvwAAyD0AALg9AAAkPgAANL4AAIC7AABcPgAALL4AAAy-AAB8PgAAUD0AAHC9AADOPgAAfz8AAOC8AABsvgAAkj4AAEC8AAA0vgAA4DwAAHS-AAAMPgAAPD4AAHA9AACKvgAAgDsAAMg9AABcvgAAgr4AAIi9AACGvgAArr4AAJi9AAA8vgAA2r4AABA9AAAQvQAARL4AAGS-AADGPgAAUL0AAAS-AAC4vQAAJD4AAIi9AAC-PgAAqD0AAKK-AACgPAAAbT8AAKA8AAC4PQAAmD0AAKA8AABAPAAAMD0AAIq-IAA4E0AJSHxQASqPAhABGoACAACYPQAAmD0AAMi9AAA3vwAABL4AAAS-AAAsPgAA-L0AAFA9AAAcPgAAoDwAAFC9AACovQAAcL0AAIA7AACYvQAAFL4AABM_AACKvgAAbD4AAOC8AADovQAAML0AAPi9AAAcvgAA4DwAAEA8AABAPAAAFD4AAFw-AADIPQAA2D0AAJ6-AAC4vQAA-L0AAFw-AAA8PgAA2D0AAFS-AAAcvgAAVD4AAJg9AAAEvgAAfD4AAOi9AAAEPgAAf78AAIC7AADIPQAAED0AAIi9AACIPQAAFD4AAHA9AADYPQAAyD0AAOA8AAAQPQAAmL0AANi9AACYPQAAyD0AAIg9AAA8viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=6xaPrxJ6z4Q","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16630276628803534500"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1066174436"},"14589633751136767915":{"videoId":"14589633751136767915","docid":"34-10-7-Z9755AF73CB7874CA","description":"integral of sin(x)cos(cos(x)), integrals of trigonometric functions, integrals of trigonometric composite functions, john rose, abhishekxplains, IB Mathematics, IB Standard level mathematics, IB...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4256252/55c045998bf6f9f1f4fe8ea4a77ace63/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/CkHpcgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DL6Yt8gEwUqs","linkTemplate":"/video/preview/14589633751136767915?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"indefinite integral of sin(x) cos(cos(x))","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=L6Yt8gEwUqs\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhYKFDE0NTg5NjMzNzUxMTM2NzY3OTE1WhQxNDU4OTYzMzc1MTEzNjc2NzkxNWqIFxIBMBgAIkUaMQAKKmhobGZnZXl5ZGVmd2JjbWJoaFVDV2ZXcFoxUmg3QUYtclJCSnhMckk5URICABIqEMIPDxoPPxPIAYIEJAGABCsqiwEQARp4gfUEAPj8BQD9AgUC-gX-AfD_Afv7__8A9gf8__8C_wDy9wnzBwAAAPEU_v8EAAAAEPT-9f3_AgAMBPnuAwAAABgC_QD4AAAADQDuAf8BAAD2Bu_5AgAAAAEB9gMAAAAACAoD7wAAAAABB_j6AQAAAPz9A_wAAAAAIAAtK-TeOzgTQAlITlACKoQCEAAa8AF_D-j-xvvj_z0CCQDD-AQBiBcO_woi4__SBvYC7swWALsD3AHSJM0A2ggM_9Uh-wBF9MX_BMbfAC8D3__04AgAGfIPAEjv3gA-3u0Ay_Dx_v_9Qv4DwfoB6_fcAAoK_gQZNCr8B8bK_9bzEgMb4zADKBM-AOPQKQLtCx390ggVA8DSCAPzt_UB5tUV--QiCgD5tu4B-B0mAfJT5AgT9gP6AAAA-_IU1f8aESYIBwb0Cef79frnB9IDFCj_Cs8JEAkZGyD7_98NCREW8vQd9fYBEBjkBPrQAwYO2fgHxdYB_dL_-fPbHPDyCef5EN0J8-sgAC0ITwg7OBNACUhhUAIqzwcQABrAB-qw6r7a0jy7-JcTPSanhj0fOPy7gTL4OxTamL0nT3k9CxGJu5FZIr3gAZS95eIavMSXWb6MZmW89bolvUHV6D2ElRS9Gzbfu3oXL74IPDA9KZ_UvNjVhL2N8ie8Dt2sPIz4mb32llU6xq04vDzprj3o1Lq7E2BmOrqFHr5QaJ692OIJvT7ynb0ZgBw92FvvvGKJQj3-gMc8sj_aPFsxoj2xkVq9T2xPPFwQYD0Al1a9jlGovP1mQr7TT5O8I5oFvdvvij1jwym97BjTO5uNWr3Dd6y8swhFPGLEGTzfrnI9mAzRvIx4Dzrw4wO927IyPMdanb3RDWg9IX8hPIVjcbwsRXc9nqGLOBpCjz328MA8ZzGpOi5wubwExoo9X0YxuqHccT1bFCw8gWi5u2AhEz0b3IE9TojOOwBgKzyP0IW8DTXKvCtt8btSAYM75IPcO1PKoD0sd1C94rEbvKdbhj3Y3Ky8DR6BPMRDE70_GN08ZZvlvDPJkz2y53w8NBH0O7PyCTuBzG49HsZ_PJuVCL0Idgy-zaXhuw_d4jx1dBy-GGL6uefMUT24oIg9WX0evJFk9j1po1-8AJOSu7892TxOHXW8OVtluwPBLT3svHK9l7hBuAgvC72rICu8uUHlOtsuersv_7o7BrlNu0I9IjwtcWk9WemkO6D6qLt7wFy9hFGkuz1rTT1guAm9VcK1uZkP6D0MA5Y9_F1VukTztT2WIm85Xsv5OjWD8LvxuIc7oRENPIimR71XYIO9dP9nOMo0-j0Te828WYZhOEqhZz3pB5o88xonOWlBXjybqMo8ZORyOE6AAT4C6IG8YkBvuYsGXzzTvKO9P3xBOPFrj70yv6S91aMPOmNel71vSjk944eROcwgw73UDQS-CFOFOefruL3YLSK9F7gfOSaKlT1uhnu9K2vnODzN-LzGN--8ZpzfOMi4ILqwZeg8L8J1uPQjtDzsXCe9MuhKN2rjYz2Wy2u9i6k3ORYy172g31Y7heGVOKImqj3h3zE8_EJzOHLCZD3f_wI9bA0MOIEE5T181Qq-l8dAuaUl4DxBsfo8QDvTuGh1Mr5kpCg9F8pMt9PjEr3xK4a9138OuU0DdbvxGio8CNS-OMWcFr20k6y9UYKDOJJdGT7ZT1C9rMI_uaaX2L36wEQ8cytkuHP5ajxV-KO94xA7N9psob2N5rI9IXQJOGEGeT3zOhK-S-epuMr0cD0i4Ss-8cuKOHAzSz00s8s92dOnt7Krj718uvo8c5Q0N4KAazxMXag8tbgbOCAAOBNACUhtUAEqcxAAGmD9CgAk6RnM3f8w5BHIAufy_wvS7-QX__zNAO_l083kDO7H9RD_6Nje9bkAAAAQ_f0btAD6WNQM1xDvEfz0p-UgHH8XFzHFwwP_9OAcC_jrIif5AwwA1x7HHRfw9iUaBzMgAC0coEA7OBNACUhvUAIqrwYQDBqgBgAAmEEAAOhBAADYQQAAPMIAACxCAADYQQAAqkIAAEBAAACgQQAA0MEAANBBAABUwgAAaMIAAJDBAAAAwgAAmMEAADxCAACgwgAAgD8AAOjBAAAMwgAAAMAAAOrCAADQQQAAwEAAAMDBAADYQQAACMIAALBBAADAQQAA4EAAAHRCAACgwgAAAAAAAJbCAAAAAAAAgEEAAFhCAACoQQAAgD8AAKBBAAAkwgAAGMIAAODAAACwwQAAPMIAAEDAAADIQQAA8EEAAIA_AACoQQAAmEEAAMjBAABAQAAANEIAAPBBAABUwgAAmMEAAExCAABUQgAAAEEAAJDBAACYwgAA-MEAAChCAACcwgAAVMIAAHjCAADowQAAsMEAAFxCAABQQQAAaMIAABxCAACAQQAAIEEAAETCAABAQQAAiMEAAKBBAADAwQAAwEIAABBBAADIwQAAhEIAAPBBAADQQQAAQMAAAMBBAAAAAAAAgMAAANhCAACYwgAAFEIAACDBAAAkwgAAUMIAAEBAAABkQgAAAMEAAABBAAAUwgAAHEIAALjBAACIQQAACEIAADDBAABAwAAAgMAAAOBBAACgQQAAmMEAANjBAAAkwgAAdMIAAKJCAAB8QgAAgMAAANDBAAA0wgAAxMIAACDCAADQQQAABMIAADBBAABAwQAABEIAAJBBAACgQAAAwEEAAPjBAACOwgAAgL8AAPhBAACowQAAyEIAAMDAAAAsQgAAgEAAALBBAADYQQAAGMIAAFhCAAAswgAAuMEAAIJCAAAQwQAAVEIAABjCAAAwQQAAcMEAACDBAADgwAAAkEEAAJhBAACIwQAAUMIAAJDBAAAMwgAAVMIAABTCAABwwgAAAMIAAAAAAABoQgAA-MEAAKjBAAB0QgAAoMAAAERCAAAMQgAAYEEAANDBAABwQQAA-MEAANDBAAAAQgAARMIAAGRCAACwQQAA1sIAABzCAACowQAAZMIAAFxCAAAwQQAALMIAAKDAAACwwQAAEEEAAHBBAAAEwgAAREIAAIhBAABQQQAADEIAAIBAAABkQgAAJEIAABDBIAA4E0AJSHVQASqPAhAAGoACAABEPgAAbL4AAKI-AACAuwAAFL4AALY-AADovQAA6r4AABA9AAC4PQAAmD0AANi9AABEPgAARD4AAJK-AAC4vQAAoj4AAOA8AACYPQAAvj4AAH8_AABwPQAAHL4AALY-AAA8vgAADD4AALg9AACKvgAAZD4AAJ4-AACgPAAAur4AAMi9AAAcPgAA-L0AALi9AADgvAAAtr4AALK-AAAcvgAAgDsAAGy-AACgPAAAMD0AAIC7AACoPQAAND4AAIK-AACavgAAqr4AAHA9AAAMPgAAvj4AAEA8AACKvgAAEL0AAF8_AAC4PQAAML0AACw-AACAuwAAhr4AAMi9AADaviAAOBNACUh8UAEqjwIQARqAAgAABL4AAHA9AACYvQAAVb8AAES-AAAEvgAApj4AAEy-AAAEPgAAbD4AADC9AAC4PQAAEL0AADA9AABAvAAAoLwAALa-AAALPwAABL4AAKI-AABQPQAAVL4AABS-AAAwvQAA6L0AAIA7AADgvAAAUD0AAKC8AAAUPgAAML0AABw-AAB8vgAAdL4AANi9AAAQPQAAzj4AAKi9AACCvgAARL4AAPi9AACIPQAADL4AAII-AACCPgAA-L0AAH-_AABAPAAARD4AABA9AABAPAAAqD0AAIg9AAAkPgAAqL0AACQ-AAAQvQAADL4AACw-AACAuwAAqj4AANg9AABwPQAAXL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=L6Yt8gEwUqs","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14589633751136767915"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3456663426"},"5921822158090655676":{"videoId":"5921822158090655676","docid":"34-3-6-ZC468534E5A48067F","description":"Integral sin(x)cos(cos(x)) with u-substitution,integral sin(x)cos(cos(x)),u substitution,integration with u substitution,how to use u substitution,calculus,calcuus 1,calculus I,how to integrate...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2177248/c8793c2f278ac6f5e7d69ff09dcf444c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/j3HFcgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKz8DtshfeGE","linkTemplate":"/video/preview/5921822158090655676?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral sin(x) cos(cos(x)) with u-substitution","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Kz8DtshfeGE\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhUKEzU5MjE4MjIxNTgwOTA2NTU2NzZaEzU5MjE4MjIxNTgwOTA2NTU2NzZqkhcSATAYACJEGjEACipoaHp6bGJqbm9tdWdoYnZiaGhVQ3I3bG16SWs2M1BabkJ3M2JlemwtTWcSAgASKg_CDw8aDz8TeoIEJAGABCsqiwEQARp4gfUEAPj8BQAFBA4F-gj8AvUB-AD5_v4A9QX1_fYC_wDz-gcBBAAAAPoQA_4GAAAAA_v9-_3-AQAMBPnuAwAAABD69gH1AAAACw3wAv8AAAD8-_PzAQAAAAUI9f0AAAAACAoD7wAAAAD9BP79AQAAAAQB-wQAAAAAIAAtK-TeOzgTQAlITlACKoQCEAAa8AF_AvwC0AflAAcE8AD7BPcBpfsM_ysP0gDPHQsA4fPgACz67AHZ5Nb_-PbxAOP7CgAq9ev_I-AaADDt7f8U5gAA_Br5AR7d9gEGEhL_2wDo__oQBf8JCP4C5-nq__H88ADpDQ35-QQL_PECzwEI3jECA98NAREKHQPz7QoB2iAI_wra3_4MEP7-7eEP_fARLgEV-_kAIwzzA_cQ-QD63vX_-vn9BAYk3v4H8O0GAfAP-_wAC_f5EQr_HQkE_8cKEf_1-R4C7dwJAuYiDPg59P_94PsDBez79Av0Dg4DBMcB__r1-PMFD_fx1w0O_Pkd_wMgAC1mvTw7OBNACUhhUAIqzwcQABrAB3HMur7mrws6R-EhvHMcLryDdn099Oyku0vTtr2Wyys9rO4HvSqxJj32zFe9D9YhuVT8H74nzCo9d_O5PI9xFT7ALru6a2kJPVjH0b0MvIk8bAN8vebUib1DTX694dihOZUspz3Sypg8EkJRvN81R7tOuDe9ZS6VPOo2Er1TFJ69J0z7u4kLcL61xIq8Yq0Qvf7VQz1gPnm9fNa1PJituz3ZGyE82bzgPHlli7oPyaq9UQtKvBaSYr0RXnW7PvTTvHMIsT1Avdm8hcOcPFj-vL3F2Z69KktfOxs1-Du2mIS8ilmvPCZAqD2QqCs9b9GuvOV6wD0pFeA7wwnxvOrQlL1p78I8b90IPfB_bD1mqcA95WUJPCLKEr1kxgA7-1ksPPVSDD2gD2C8_E_EO3mDXLugKhG8lZuoPDxuMz0tFci73k0BPUX_Gj3_6Bu9RPSQOxaE0j1Fdo-9J2covH9qDD4JPfY8aXFGvCIPbr09WRu9HYPjOhvtXT1vFLQ8VUxBOsgozz2--z48wpCLvLxcJL3P99O9-4r_O9zNursg9Ge9SbJUu_yd2LtD0Ic8HtCEO-QsTD7qV4-9AwyFOxbf0L36rDy9Nb9QPCHetL0_DEO9-MSZO4Us4roCzMI7KMrvuoiYt70Ov9u8ynCXu5c6iL3H8r49FWRMuLx9UT0YQTO-sZyRuWVu_j0JQpg9-ASiOtgAGz0N7h09Sb0GuwJmPrxsTQm9m6hnO3JUiTwnBSy95BWIO8cRS70gTpa81-gLu5NikT2mgT-9g5OsuZjHtT2G7m097NN0OZr9y7x_37-8daN2tzlYKT0I6Sm82_VpOWskLj0vFdu9u2o3OUJD2jxG2ZE8aTf6ObUBM7yWjOu7zYowOmsewb3ErqK9WfgiOFAQxjyADlO9G4E1ua8roT2lwrO9k9MXOYG-oTv1D-I8DiUpOXLhmz3SflW9FCR9uY9LoT0U75u80m4hOHjoYLz7Lya9QxYpNaqCMb26__48zZXBuPDCBr4NrF69ul5GODgJLz25hVO8CfoOOJTtyzuv-hK9TzgPOJ_JHr1SFnQ8dCoaOcrhA74Q1x48l_1ON9BhPrw-VlW9LXhGuHpoxL3HXx-9mNOOuEuXWT0v5kK8t5XAt6BUyz338ca8LY_VuM3Her3TFey95pv4uGItPr3sT0K-2EzROK0kQ70Mc0c9HsEWN3wpPD6XR029xTMWuCL_7D01KQU-835buFMror3ncgG84uAauEuRDL6X4po9rk2fOBEJlTz9M-O9pRKBtiAAOBNACUhtUAEqcxAAGmADAAAu6jGq2hdBzSLW8_7fAOfq5dsb_9zp_xz8384B8M--Jyv_IM70AaQAAAAe8wo98wAufNzrsyvs6egCnek3Gn8A9S-XuN7Z2-0e4fHZIivxBlsA4Ry2FgizDEEUMAQgAC0Hyhg7OBNACUhvUAIqrwYQDBqgBgAAwEEAAODBAACgQgAA0MEAAKhBAABgQQAAYEIAAIDCAACEwgAAAMAAAJDBAACKwgAAAMAAAGjCAADIwQAA-EEAABxCAAAgwQAAbEIAAETCAAAMwgAAKEIAAIjBAAAQwQAAbMIAAFzCAABkwgAANMIAAMpCAAA8wgAANMIAADRCAADwwQAAgMEAAFDCAAAoQgAAuEEAACBCAACgwAAAmEEAAADBAACwwQAA4EAAAHTCAACoQQAAgL8AAKBAAAAAAAAAkEIAAEDBAABAwQAAoEAAAOhBAACAQAAA4EAAAIDAAADowgAAEMEAADBBAAAAQQAAgL8AAEzCAACIQQAAYMIAADBBAAAAwwAAgMAAAMDBAAAkwgAAHMIAAIxCAAAQQgAAeMIAALhBAACAQAAAcMEAAMDBAABAwQAA2EEAABBBAADIQQAAcEIAAJjCAADYwQAAEEIAAEBBAAAcQgAAWEIAAAxCAABgwgAAYEEAAIhCAACswgAADEIAADhCAABcwgAAgEEAAIBAAABQQQAAQEEAAIjCAACowQAAsEEAAIC_AADgwQAAcEEAACDBAADoQQAAMMEAANhBAACAQQAAHEIAAMDAAADAwAAANMIAAFRCAAAAQgAAgL8AANjBAACQwQAALMIAAGjCAACgwQAAgMAAAKhBAACIwQAAsEEAAJBBAAAkwgAAsMEAAMDBAABQwQAAHMIAACRCAAAAQQAAVEIAABRCAAAcwgAAFEIAACTCAADowQAAsMEAAAhCAADIwQAAAEIAAOhBAAAcwgAA-EEAAIC_AADQwQAAUEEAAADBAACKQgAAAEEAAPBBAADAQQAAgMAAANDBAACgwQAABMIAAJDCAAAgwQAAhMIAAAjCAAA8wgAAqEIAALDBAACYQgAAYEIAAKDAAABYQgAAIMEAAERCAABEwgAAbMIAACxCAAAEwgAANMIAAKBAAAAsQgAAwMEAAJTCAADIwQAARMIAAHBCAAC4wQAAkMIAABBBAAAAwQAAbEIAAOBAAACowQAAFEIAAKBAAAAwwgAAjEIAANDBAAAowgAAAAAAAKjBIAA4E0AJSHVQASqPAhAAGoACAACSPgAAPL4AAIY-AADYPQAAHL4AAII-AAAwvQAA4r4AABA9AACAOwAAgDsAAKg9AABQPQAAgj4AAJq-AACovQAArj4AAJg9AACgvAAAEz8AAH8_AAAsvgAAjr4AAKI-AACuvgAA6D0AAOg9AADKvgAAiD0AAIo-AADgvAAA2L0AAMi9AAAkPgAAHL4AAKC8AACAOwAAur4AALq-AAAwvQAAmL0AADS-AAAUvgAAJD4AAOA8AACAuwAAPD4AAI6-AAB0vgAAir4AAOA8AABUPgAA4j4AAMg9AAC2vgAAQLwAAFc_AACoPQAAoLwAAPg9AADYvQAANL4AAPi9AACyviAAOBNACUh8UAEqjwIQARqAAgAAoLwAADA9AAA0vgAAQ78AAFy-AABAvAAAkj4AACy-AAAkPgAARD4AAIi9AACgPAAAqL0AAIC7AABAPAAAgLsAAI6-AADePgAAnr4AAII-AAC4PQAAZL4AANi9AABAvAAAML0AAEw-AABEvgAAgLsAANi9AADoPQAAgLsAACQ-AACGvgAALL4AAAy-AAAMPgAAtj4AAKC8AABMvgAAmr4AAOA8AAA0PgAA4LwAAEQ-AACOPgAAVL4AAH-_AAAUPgAAZD4AAKC8AABAvAAA4DwAAKg9AABMPgAA2L0AABw-AAAQvQAAPL4AAIC7AAAwPQAAbD4AAIg9AACYPQAAuL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Kz8DtshfeGE","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":450,"cratio":1.89777,"dups":["5921822158090655676"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1095178396"},"2889689022789410137":{"videoId":"2889689022789410137","docid":"34-2-13-Z782A53AF417765A8","description":"Maths, Math, Revision, Integration, Algebra, Calculus, Core, Pure, C2, C4, Solving, example...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3468180/8329d121264744df4811d63cc0e95f3b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XdvMMAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DoMHdGWRd9MM","linkTemplate":"/video/preview/2889689022789410137?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Differentiation of inverse cos (cos-1x)","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=oMHdGWRd9MM\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhUKEzI4ODk2ODkwMjI3ODk0MTAxMzdaEzI4ODk2ODkwMjI3ODk0MTAxMzdqhxcSATAYACJEGjEACipoaGFlcXFuYmVwbW1oaWRjaGhVQ1l4RkdPSnV0LVRVQjJZWi1MZzBPancSAgASKg_CDw8aDz8TX4IEJAGABCsqiwEQARp4gf77AvT9AwD4AQAK9wb-AgQAAAL4__4A_AX5_QYE_gD1BgYBAQAAAAQSAf7_AAAABwYDBfn9AQAG_vj1BAAAABIA9AL_AAAACQf09v8BAAD18v8BA_8AAAUBAP3_AAAAAw35_f__AAD-CvkLAAAAAPz4BvYAAAAAIAAtHHLbOzgTQAlITlACKoQCEAAa8AF_5gL_0M7kAdcT2wDJGQQAnTIo_-Ynzv-7KQ8BsPXBAesH5wDt18z_6QMKALEIAf850cv-BMIX_0LC4v8W7f8A6uMYACrP8gFGGAT__h3u_v4NJ_4DwPkBFrrqAAUn1v78Ewv98Pvf-fIX1QER_kUB9wEqBhrzJQL-yvn72vv7Awvu0gAMKQUD7tn_-ekYQAEQ3yEAAAcL-fE33_wtAQj4E9wp_PIU1P8a9wkK-AsW-eD1AvfX8f_0LgIVAccbGwIBDTX6zRb68P3wFPc39fMG2Qb19Abt3AQ4HgP35vjeAQsFDOvUF_77t_4JEfsg7_ogAC1qzQU7OBNACUhhUAIqzwcQABrAB4Du074R3sO65eiWvGZOB77-Kp-7gvilvOOgub0cbYs8XgUjvP4N2j1fLVI8nPTjvBx4db5qfBA9fDjSPMuAMz7m0Yi9mGIzPHoXL74IPDA9KZ_UvBUcTr6sTcg8NZcfO0BcKDy4bm-8_QSGuzusAD4Csnw8Anw8vbKCX730CKS8eXyWvE8IfDty0kW934pEvOWAeD1HIUS9GwsOu3cx7T2PACm9dpYRPM72DT1zi9S839Gxu33PqL322gc89EAYvB9nGj2GZug7szyTugR2cL1erF48qOukvEy0Gr2PkQe8rbYNPGNebDw7Dg09LU7rvNjCBz1Ex5m98juyvCY19L1-Ay49q7oCPd1gOD4pplw94xs-OjHCCr3b0B49-d9Gu5dHSLyFwzy9jK1WPB88ZD0-40c90AHROzyUMjxK35o8nmutO-DsAL3gWIY8nTnaPMeOfD0wL8A7JtvlvISODD0fgiq8lpWmvOJ4Dr7Aavo7VPX6ujRH1j30Nja8oWc9uh9VYz0qyYo9DzSVPMU1Qz34UQ2-CW8su8eDbb1XEI69nbdWvCe2Zz2Iztu7SoiovPYFqT3BvNG8b3zxu2oxiL32H169aXQDuTUpZT2hgbi9alAPO-zJgr3eKCg9ocA3O7P-IjxzdVG9VweAvHLsj7yJk0A9TbAsOzo5iL1Tjr69SA4Uuht0yD1AN089VwZVu42_ujlhWi88aI-bO_c_qz1DId27Kvm7u8S5H7vs7LW8mVGDO1-UhbzwtEa8bMhfuKGd0z1RgZi9l51ROdUI_Ty9vfU8IqyOuSpFYb1qXI49h2QruIX5IT3J0Ay9ajb8tb7F4DusUxW-pozJOe4tm7wjSKm7kcD2OjuYAz3OCvu7vTHrurQROb03KAu9rX4QOQ6aIr0pQmo8OmCyuTTrpj1XZA-9JEs4OXo_BD29dG68_IVIuNG6fL0ndTi8mDZVORWV6Lw34d475SovuEUO0T0pI-694iy_OUY_Oj30zoc9bP63uGL1xzy1K9-7LfkPt1MztbwOIHI9JJgiubg-rLxsBvi9ef8guOFqcz1nPUE9ZfbpuMrhA74Q1x48l_1ON0mMVLzvSoy9eSvXNmMbwjz7AXS9qUa8OEGDCbx5QDm9zwAJOJJdGT7ZT1C9rMI_uQpcCL3iw5G9PKVYuAfiBj3hlk-9maTONU1o0r1OYSW8fYDyNh2XDD1JD0O-VDFNucr0cD0i4Ss-8cuKOL8WCj2hb8E9_y-ct32Jgr203jQ9RWE9OMByab34O6-8ULi0tyAAOBNACUhtUAEqcxAAGmAa9wA5GT7tFO5HyfrV7QgK2QjoG7of__Xo_wEL5PIWDbm-6A7_IPkV1qsAAAAE998e4wAkcsvm0BIJJP_q18ZCF2LS9Ri3yfsL3tAmEs3nJxAlJ38AxwPJHhIbyyv1Dw0gAC3ELic7OBNACUhvUAIqrwYQDBqgBgAATEIAALjBAADMQgAAtMIAAKhBAADQQQAAaEIAAHDBAAAAwQAAoEEAAEBAAADAwQAAAMEAAMDAAACIQQAA0EEAAAxCAAAgwQAA2EEAAJjBAACIwQAAYMEAAGzCAACoQQAAQMIAAEzCAAAAwAAAUMIAAHhCAACAwQAACMIAADBBAACuwgAAQMEAANzCAABAQQAAgD8AAKxCAAAQwQAAAEIAAEDAAADQwQAAgMEAAEBAAAAYQgAAisIAACDBAAAwQgAA6EEAACBCAACywgAAgEEAAMjBAAAAQgAAEEEAABhCAAD6wgAAAEEAAJBBAABEQgAAuEEAALLCAAAowgAAUMIAAKBAAACWwgAAuMEAAKjBAADQwQAATMIAALpCAAAUQgAAKMIAAJJCAAAgwgAAEMEAAMDBAAAkwgAAIEEAABhCAADYwQAApEIAANjBAADQQQAAiMEAAARCAABgQQAAwMEAANhBAAAAAAAAyMEAAI5CAADYwQAAIEEAAAxCAADYwQAAEEEAANDBAADwQQAAwEEAAGDCAACgQQAAQEIAAPjBAABIwgAAgD8AAOBBAAAwQQAAQMEAAChCAABAQgAAoEAAAJjBAAAAAAAAQMEAAFxCAAAAQAAAKMIAAEDCAAAkwgAAmEEAAADCAAAAwQAACEIAACTCAABwQQAAQEAAAKjBAACwQQAAIEIAAEDAAACewgAAAEEAAChCAAAQQQAAYEIAAJBBAAAoQgAABMIAADjCAAAwQQAAQEEAABRCAABIwgAA6EEAAFRCAAAEwgAA0MEAAMDAAABAQQAAsMEAAChCAABwQQAAMEEAAJBBAADYwQAAhsIAADDBAAAUwgAAAMIAAGTCAACYQQAAmEEAANjBAAAUwgAAAEAAAIbCAADWQgAAOEIAABxCAAAcwgAA6EEAAODAAAAgwgAAgMIAAPDBAADIQQAADMIAABRCAAA0QgAAosIAACDCAABwwQAABMIAABxCAACowQAAOMIAAHTCAABAQAAA4EAAAERCAAA4wgAAUEEAANjBAAAEQgAAKEIAAIjBAAAAwQAAQEEAAKjBIAA4E0AJSHVQASqPAhAAGoACAACovQAApr4AAEw-AAC4vQAAqL0AAPI-AAAMvgAAFb8AAFy-AABwPQAAuD0AAJ6-AACIPQAAqj4AAFy-AACSvgAAvj4AAOA8AADgPAAAxj4AAH0_AACovQAA2L0AADw-AAAwvQAA2L0AABA9AAAEvgAAyD0AALY-AAAsPgAAdL4AAPi9AADoPQAAmr4AAHC9AABQPQAARL4AAMa-AADIvQAApr4AAES-AADYPQAAUL0AADy-AAAEvgAAPD4AABS-AAAsvgAA2L0AAKA8AABsvgAABz8AAKC8AACCvgAAQLwAAH8_AABEPgAA4DwAAFQ-AADovQAAcL0AAFA9AADIvSAAOBNACUh8UAEqjwIQARqAAgAAqL0AAPg9AABMvgAAM78AAHy-AADovQAAbD4AAKC8AACgPAAAFD4AABA9AAD4vQAALL4AAIi9AACAuwAAmL0AAOi9AAD-PgAAkr4AAJI-AABwPQAA-L0AAMi9AAAsvgAAuL0AAJg9AACovQAA4DwAAEA8AABkPgAAyD0AAMg9AACyvgAAoLwAAEA8AACYPQAAVD4AAAw-AABkvgAA4LwAAII-AAAQvQAAcL0AAIo-AAD4vQAAHD4AAH-_AACAOwAA6L0AAEC8AAAQvQAAuD0AAEw-AACIPQAABD4AAJg9AACgvAAAcD0AAIC7AAAMvgAAED0AABQ-AAAwPQAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=oMHdGWRd9MM","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2889689022789410137"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1394105321"},"14461601520280740788":{"videoId":"14461601520280740788","docid":"34-9-2-Z32DE3BECB56EBBFE","description":"y,sin x cos x = ½,(x + xcos x(/(sin x cos x),formula for cos x + cos y,cos(x),cos,cos theta,identity for cos x + cos y,cos(3x) in terms of cos(x)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1006295/77263ad1155dfa7deaa594e820856c4f/564x318_1"},"target":"_self","position":"17","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D3JzMGIGNox4","linkTemplate":"/video/preview/14461601520280740788?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to prove that cos(-x) = cos x | How to prove that sin(-x) = - sin x","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3JzMGIGNox4\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhYKFDE0NDYxNjAxNTIwMjgwNzQwNzg4WhQxNDQ2MTYwMTUyMDI4MDc0MDc4OGrADRIBMBgAIlYaQwAKPGhobGh0enhid2NvcXhpYWJoaGh0dHA6Ly93d3cueW91dHViZS5jb20vQG1hdGhzZXhhbWV4cGVydDQ3ORICABIqD8IPDxoPPxM8ggQkAYAEKyqLARABGniB9vv7-_sFAPkHCwb5Bv0CBAAAAvn__gD3-_v9_gL_APYGBQEBAAAA_gsGAgAAAAAD-_37_f4BAAf_AvYEAAAAFQ4I_vYAAAAOA_j-_gEAAPz78_MBAAAA_P_9-_8AAAAICgPwAAAAAAQGAfYAAAAABAH7BAAAAAAgAC1ZkeI7OBNACUhOUAIqcxAAGmAWHQAp9xTa1v0k3DL3-ugCCRDhtgQk__bvABQR--0D6vDaAiP_BQAP7b8AAAAiAwc1BwAPUgsQzf8BIej3ou_9I3_58A4GDuHdD_g9BRsPD_ryDw4AwxsD8xXSNiUg6kogAC2-w007OBNACUhvUAIqrwYQDBqgBgAAVEIAAEBBAAAQQgAAgMIAAFhCAAAAQAAArkIAAEBBAABcwgAAIMIAAGRCAADwwQAAAMEAABTCAADgwQAAAEIAABhCAABgQQAAqMEAACDBAADgwQAAQEEAAJjCAAAIQgAAlMIAAPDBAADgwQAAPMIAANBBAAAAQgAACMIAAJBBAACQwgAAHEIAAFDCAAAAQQAAgMAAAJ5CAACAvwAA2EEAAIBAAAAQwQAASEIAAIBAAAAAwQAA2MEAAEBAAADwwQAAQEIAALBBAAA0wgAAIEEAAGTCAAAAwAAA2EEAABxCAACkwgAAcEEAADRCAAAAwAAACEIAAMDBAADQwQAAHMIAABBCAADywgAAAEAAAAjCAABgwQAAAMEAAJZCAAB0QgAAAMEAABRCAAA0wgAAIEEAAKrCAADgQQAAsMEAAGRCAACIwQAAXEIAANDBAAAQwgAA8MEAAIRCAACQQQAANMIAAGxCAABAQgAAgD8AAI5CAACYwQAAcMEAAAhCAAAwwgAA-EEAACBBAAD4QQAANEIAAPDBAAA8QgAAgL8AAIBAAADAwAAA4EAAADRCAADAwQAAqEEAAOBAAAB4QgAAQEEAABBBAABwwQAANMIAACRCAACYQQAAOMIAAGBBAABcwgAAoMEAACTCAABAQQAAsMEAADTCAACowQAAUMEAACBBAACIwgAAgEAAAJDBAACawgAAkEEAANhBAAC4wQAAzEIAANBBAADgQQAAsMEAABjCAACAwQAAjEIAAOBAAADgQAAAmEEAANBCAADgwQAAQEAAAEhCAAA4QgAAQMAAAHzCAABgQQAAAEEAABBBAAAQwgAAwsIAAAzCAACiwgAAQEEAABzCAACAwAAAYEEAAOhBAACAPwAA6MEAANDBAAC8QgAA0EEAAABBAADYwQAAgEEAAFTCAAAAwgAANMIAAIhBAACIwQAAGMIAABRCAADAQAAAtsIAADDCAABAwAAANMIAAIC_AAAgwQAAFMIAAJBBAABIwgAAoMAAAOBAAAAMwgAA8EEAAIRCAAAEwgAADEIAANBBAACQwQAAkEEAAMDBIAA4E0AJSHVQASqPAhAAGoACAADoPQAA-L0AAJ4-AACAuwAALL4AAGw-AAAwvQAA5r4AAI4-AAB8vgAAiD0AAKi9AAAQPQAAFD4AAGy-AADgvAAAVD4AAKA8AAD4PQAAjj4AAH8_AADIvQAAmL0AALI-AAC-vgAAuL0AAIA7AACKvgAAdD4AANg9AAC4PQAAgr4AADA9AADovQAA-L0AAHC9AAAwvQAAxr4AALq-AAC4PQAA4LwAAAS-AACgPAAAoDwAADA9AACYPQAAqj4AAGS-AABUvgAALL4AALi9AADIPQAAnj4AAMi9AACovQAAoDwAAD8_AACYPQAABL4AAEC8AACAOwAAiL0AAAy-AAAEviAAOBNACUh8UAEqjwIQARqAAgAA6L0AAIC7AAB8vgAAHb8AAJi9AABQvQAAtj4AAEC8AAC4PQAAHD4AADC9AAA8PgAAHL4AAIA7AAC4vQAAgDsAAKa-AADiPgAA0r4AAGw-AABUPgAAmL0AAEy-AABwPQAADL4AACw-AACYPQAAiD0AAOC8AAA0PgAA6D0AAOg9AAAHvwAAqL0AAFS-AAAkPgAA3j4AACy-AADGvgAAVL4AAOC8AADgPAAABD4AAKo-AAC6PgAA2L0AAH-_AADYPQAAyD0AAKi9AACGvgAAgj4AAMg9AACYPQAAuD0AADQ-AACgvAAAmL0AAOg9AAD4PQAA6D0AAEA8AACYPQAANL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=3JzMGIGNox4","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14461601520280740788"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9025567330209228771":{"videoId":"9025567330209228771","docid":"34-10-15-ZD97C6C9B11CE673D","description":"Integral of cos(2x)cos(x) (trigonometric identity + substitution) .","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2836774/8e4593f795597a63e64ead40187d0f6f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MRDVSgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYua38WTRfQw","linkTemplate":"/video/preview/9025567330209228771?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of cos(2x) cos(x) (trigonometric identity + substitution)","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Yua38WTRfQw\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhUKEzkwMjU1NjczMzAyMDkyMjg3NzFaEzkwMjU1NjczMzAyMDkyMjg3NzFqhxcSATAYACJEGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKg_CDw8aDz8TUIIEJAGABCsqiwEQARp4gfv_Af_7BgD9AgUC-gX-Af0I-P34_v0A9QX1_fYC_wD3ARIBAQAAAP4GBAoEAAAAA_v9-_3-AQAF_vj2AwAAABEI-P33AAAACQb09v8BAADv_vX5AgAAAAf_-f7_AAAAAAcC9wMAAAADAPr_AAAAAP8H_v8AAAAAIAAtxJ_jOzgTQAlITlACKoQCEAAa8AF35A39wR3lAPgN6v8UQ-wDrypB_0FL2P-w-ioA-dfbASoEAwHa_c0A9NgoAM4n-gAu5s7_5tj6AB69G__xIVEA8uHmAPjOzQFY7Cb_-vr-_8L-DgDu-e0B2dXB_gsOxP0B7Af9IQMYAP7evAAA0w0B9gEwBxEnGQH9wvj6ufb3Cf3UsP4GHfwHFvFPAK4qHwQX2Az-_yIa_wog1_0V2eP_HPMJAucV7AMMgf3_6iUB89AU9wQCIfsKVukP-62-DgVB_jH568sU7vSsDvwk-_LrLgHv-PvZ7w1N_xX9H9b4-M_c_eXy9e38AMj45uUXBA8gAC0yFuo6OBNACUhhUAIqzwcQABrAB4yfBr8qNiu9ed4VvMnKbz3SkqI8ykMVO77cVz7fbkk8TPn1vMzSTj3o6Cc8k-V_vNJykL79rn49XBENusuAMz7m0Yi9mGIzPIbK371fk9q6BaXovBzT071nORq9punYO1SOSTyF1fO8gsiCvUHrJr0mxZe9c8V7vL5WWL2JIju6Fzm6PMWjrr1q1Oy78XufO2U7G7xX9F29n9pjOvp0wT2uTgm97jLyPNFjyj3Ofi49mpfDu2sRsb3HyMg8HxHTvNAgKjx3dgU7VDvDOkFpQz2ivkC82B7HvIjwFL0V3xU9SgQPPQ97hj3suZE9OaErvaG7BD6Rzbo8xgldvHf1Cr6gny49XPlRvKj8Cz6lg5U9JI6GvC5wubwExoo9X0Yxus1hMj1lUVg8-05dvJ2fIjxn0ka9FmWbPL358rykWTQ98SnlPBuerj1fnDM99VKMu3renT3F7Ss88EsCPSgFgrzF3qA9pj_gvHYt67zjrCO9qEurPKhOjD1WEQ49tGx3PIhXKD2ljZk8fGfNupuVCL0Idgy-zaXhu3_vYD2IrY-9ockVPE2mJT1qeW8969gQPHY0Dj1phwS9sjJYu-EoqT0lKYS8dbehuw4-Az3nOsi9LzNsPN6Fd70gJ8w9KAgXN-O1Qb0K1hi9qFbfuzBmyzwqpw0-bpMoup-muzxR_LO9lwabO5xygD1qPEc8bToCvH-Kvry4A3U9gxZQu9Aja7wvKie6PeFlOhdV9bwDIy-8ZCnpu0GaEb1ZNWO9M0gHue6vDj6fEpG9ftCUOf2VH70uk1w9vlinuHNLu73z7fg83HLpOEplBb2LLH49Tm8xOURvzLzsZ5a9m8zqOGM7KT16dnQ9H93QOLT-t7ochC89H6O4uu89l70PZm494vkGunn6Mj3R1IE94KwBObckrDwfuRW90xoNOYEmjT3h33E9dtUUuQPdKLxksvi8ojEQOT4PRD3-D3A9u3bDt5i0Ujs_cMW99y5gOb8hGb01oLk8eVdJNxW-KL0v2R-8oLw-uI1UKbwGKgO9zZiRN95Z-zzY8Z-9GA2XOK_NRr3auFQ9Mu2sOCDnAzx2uXI9ZB6BOFKpJ7vXHWY8Hs8XOI1s3TyAsD2922psODl_K7ojCrI9VJVOODhlDj0B3qK9YHV4NmjXU72nTeY82nxDuNVdmbwRl4K9B3EDuK0kQ70Mc0c9HsEWNwa_qLzmTJS9CspktyL_7D01KQU-835buN6Ggzutc7i5IdGuuG4Djb0naa49v_cWN-Pxvr1zk0K9NsewtyAAOBNACUhtUAEqcxAAGmAOAwAw_AvGqf045UC64_QO0RTi8uQt_9bV_yw78d8g8dnY_hH_J9kFAKQAAAApBvw6BAD7c-Hf7PEKNtfrhvQvJX_oICbzyvEU0tc0-gYC8Cr3D0gA6QbQH0f4EGJcPzMgAC1mcRo7OBNACUhvUAIqrwYQDBqgBgAAYEEAAPDBAACgQgAAwMEAACBBAACIQQAAHEIAAFjCAACWwgAAoMAAAIjBAACEwgAAQEAAABDCAAAMwgAA-EEAAAxCAAC4wQAAgEIAAEjCAADYwQAA-EEAAMjBAACAQAAAWMIAAFTCAACcwgAA6MEAAKZCAABMwgAAjsIAAARCAAAcwgAAoMEAAAjCAAAcQgAA4EEAANhBAADAwAAAmEEAABDBAAAgwQAAoEAAAIbCAAAkQgAA4MAAAEBBAAAAwAAAhkIAALDBAACAwAAAAEAAAPhBAAAAQAAAoEEAAIC_AACowgAAQEAAAKBAAAC4QQAAMEEAAFTCAACAvwAAcMIAAIhBAADqwgAAAMAAAIDBAAAgwgAA4MEAAIBCAACgQQAAnsIAAMBAAAAAQAAAgL8AAAjCAAAwwQAA0EEAAEDAAADwQQAAcEIAAIDCAAA8wgAA4EEAAHBBAABUQgAASEIAABxCAABgwgAAMEEAAFRCAACywgAAXEIAAABCAABQwgAAAEEAAIA_AACoQQAAJEIAAIbCAADowQAAQEAAAJBBAAAcwgAAAEEAAFDBAAAEQgAAoEAAAChCAABAwAAABEIAAEDAAAAAAAAAgMIAAIJCAADwQQAAgL8AAATCAADIwQAAZMIAAJrCAADwwQAAgEEAAGBBAAC4wQAAiEEAAADAAABkwgAAcMEAABjCAACIwQAAgMAAAHBCAACwwQAANEIAAARCAADAwQAAJEIAACTCAAC4wQAAuMEAAOBBAAAAwgAALEIAAMBBAACowQAAOEIAAADAAACYwQAAQEAAADDBAACSQgAAgEEAAOhBAACwQQAA0MEAAJjBAAAQwgAAEMEAAI7CAAAAwQAAZMIAANjBAAAgwgAArkIAAJDBAACMQgAALEIAAIDBAABQQgAAoMEAAGRCAABowgAAhsIAACRCAABQwgAA2MEAAFBBAAAEQgAAEMIAAHzCAAAwwQAARMIAAFRCAACowQAAjMIAAGBBAADAwAAAfEIAAIBAAACgwAAAZEIAAKBAAABcwgAAlEIAANDBAAAswgAAmEEAAJDBIAA4E0AJSHVQASqPAhAAGoACAAC4vQAAur4AALg9AABEvgAALL4AANI-AAC4PQAAJ78AAOg9AACovQAAyD0AAAQ-AABMPgAApj4AAES-AABQvQAAxj4AAHA9AAAsvgAAHT8AAH8_AACevgAA2L0AACw-AABMvgAATD4AABC9AACSvgAA6D0AAFw-AAAkPgAAjr4AAPi9AAAQvQAAuL0AAKa-AADYvQAAUL0AAM6-AAAwvQAAHD4AAJK-AABwvQAAoLwAABC9AAAMPgAAxj4AAAe_AACevgAAqr4AAFC9AABAPAAAHT8AADC9AACivgAAmD0AAH0_AAA0PgAA4DwAANo-AADoPQAAZL4AAFy-AADSviAAOBNACUh8UAEqjwIQARqAAgAAcL0AAAw-AABMvgAAQ78AAEy-AACIvQAAgj4AAFy-AADgvAAATD4AAEA8AABwvQAATL4AAJi9AACgPAAA4LwAAFS-AAAFPwAAHL4AAGw-AABsPgAAXL4AAOC8AABAPAAARL4AAHA9AACOvgAAgDsAAOC8AAAUPgAAuD0AAKg9AABsvgAANL4AAHC9AAAMPgAAnj4AAIA7AACCvgAAir4AAIg9AAB0PgAAUD0AABQ-AACKPgAAXD4AAH-_AACAuwAAjj4AAAS-AAD4PQAAgDsAADQ-AAAUPgAAqL0AABw-AABAvAAA2L0AAMg9AADgPAAAHD4AADQ-AACAOwAABL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Yua38WTRfQw","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["9025567330209228771"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"2517029621"},"4378428555190918851":{"videoId":"4378428555190918851","docid":"34-0-3-ZB488A072C919DCD1","description":"In this video we verify the trigonometric identity cos(pi + x) = -cos(x). To do this we use the difference identity for cosine.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3712659/649eab488aa156b611179dd31230452b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/WDydHwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnWm7BsT8RYk","linkTemplate":"/video/preview/4378428555190918851?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Verify the Trigonometric Identity cos(pi + x) = -cos(x)","related_orig_text":"COS COS","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS COS\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nWm7BsT8RYk\",\"src\":\"serp\",\"rvb\":\"Eq0DChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMjU0OTEwOTE1MDA1NTIyMTg3NwoTODQwNzIzNzE0Mjg4NDQ1NzkzNQoTMTM3NTEyNDEyNTk5NDU3NjE5NgoUMTM3MTc3Njg2NjM4MzgzODc4NzMKEzI3MjA4NTg1NDM2NzQwNjk2OTQKFDExNDY4OTQzNjEyOTk1ODQzNDIzChQxMDc1NTg3NjE5MDU2NDY1NDQyNwoUMTA0NDIwMDE5ODUyMjkwNTM5MjAKEzQ4NDg2MzUwODE5NjAxMTg4NDcKEjQ4MDk1MzI5MjA3MTMxNDA4MgoUMTY2MzAyNzY2Mjg4MDM1MzQ1MDAKFDE0NTg5NjMzNzUxMTM2NzY3OTE1ChM1OTIxODIyMTU4MDkwNjU1Njc2ChMyODg5Njg5MDIyNzg5NDEwMTM3ChQxNDQ2MTYwMTUyMDI4MDc0MDc4OAoTOTAyNTU2NzMzMDIwOTIyODc3MQoTNDM3ODQyODU1NTE5MDkxODg1MQoUMTA5NTkzODAwMDA2MDY0NTA1ODgKFDEyNjYxMTgwMjU4NDQzODA2MzgzGhUKEzQzNzg0Mjg1NTUxOTA5MTg4NTFaEzQzNzg0Mjg1NTUxOTA5MTg4NTFqiBcSATAYACJFGjEACipoaHp6bGJqbm9tdWdoYnZiaGhVQ3I3bG16SWs2M1BabkJ3M2JlemwtTWcSAgASKhDCDw8aDz8TrgGCBCQBgAQrKosBEAEaeIHv-gEA_AUA-_4NBPsG_QIA_Pb9-P79AO4E_PgFAAAA9wESAQEAAAAHCAX9AgAAAAT6AvwE_QEABv749QQAAAARCPj99wAAAA3_7gH_AQAA-ff3_QP_AAAB-_z9AAAAAAAN-vIAAAAABQPx_AAAAAD3C_78__8AACAALXxl3js4E0AJSE5QAiqEAhAAGvABf_HX_svTwgDUFNgApgP5AI49BP8QCrH_nRcYAabx8wD85d8A9uqg__Tx6QDV-Q8AKxDe_xfXHf9I4-T_DMT8APYR6AHxtvUBIwchAd4J4v_gGgf-4BASAPTTyf70-vD5-Bgy_Qjc7P7KFqT76xA5Ag8JMwQi1BX91sEPAeIp4__vrNAA8Rn5CA3aEfboGkQBH_n1ATQS7QXpPgD5-vPf_OgACPUQFsgAMvzxCBfpFPgAAQb7J_cLAzf-__LDPSAC0O82B-r98Pf_RAD6WfvtFMH9-P4X2fgMI_kC_hzy6AMHAgD64RMECeYC-_z4QOz6IAAtiMz7OjgTQAlIYVACKs8HEAAawAfqsOq-2tI8u_iXEz3c8SY9DlVnvL2Ye7uht9G48KdGPEsoM7zNPs89SmervVdnqzwceHW-anwQPXw40jzLgDM-5tGIvZhiMzzZQ0u-Q5J2Oyl_gr38VCW-MdkuvAdz5jdfP-k8N-eauyOsvLyawak7E_mJu30B4jsrV8O9nWxevfqUCL2RP_28DWuPPOy9GL0QFwq9vv-qvJkC4zrtr4g9g-4cvS7aa7sgUoC6ZtaUO-yE17xrEbG9x8jIPB8R07weugc8ck0mPMqceLybjVq9w3esvLMIRTwajZe8BHd7PauLBT1BCwk9vuxIPRFKqbzlRNs9NYc6PQm-jryGd4S9R1QtPd-Zu7u5Zrc9cxOwPb8bgTyhXY-8yXcJPgfSJDuzTeC8gv-MO-oFgruE7Uw95PNqPVSQ-jznDDu9H-SrPNCm2TpgbVG98CoVPYyR-DsHKdg9_1nzvKCJsLymE0Q91U5evfmNp7sLuOe9dlCJO1uEmLynegI-lcEHPTBP37sWGA08bnNfOymveDvFNUM9-FENvglvLLuR5lk8B0m6veouPzzdwX49vLskPYh7kbxO8M09ZjPnvf9XADzvUaS8bvjdvDjEkTqx90e91o4Cve1e1TtDNJ-8CgMAPQkVILvAjgS9ZFUJvVO1vDrEknY732-kPVxAwzqZNtK8vFrOvRicLzr44us9fJVBPUX-srreHuQ9T8THPIhXIzmWLx49rtiPvfY_4brJ2lC9IN90vUjZIbnHeH69YIe7vDHmSLjurw4-nxKRvX7QlDnwTl49c7I-PcFWQjlzS7u98-34PNxy6Ti50mE9Lt6UvXNP3TitL7c6_RLxvbwjiTnl9kO7_AMAvazrCrnhax88vifgPIXAIboXhbi9WqyyvH8i7rkVtMG7tOcyvHi_trhq1fQ7BU6WvaA2Mzgimgo94mwCvJAW_zmChog8bXMhvEeU1bqsuru6UMiOPWTM-jdB8QM9cU_Bvdc4ezk6uoC84bKvu1kxXzhalQ47kO9XPbd1jbjo2AE9EhNUPaqcgraVozu9RZsDvg3aMzcjNvE7O_82PddclrjK4QO-ENcePJf9Tjf-G6q8fXsyvag-zzdEQLQ8akr0O81iJrhLl1k9L-ZCvLeVwLc6XdY97EqNOxz7SbmF3ky9VKiOverKw7i77YK8l-ahvfo4_7fabKG9jeayPSF0CTi9rwU9pUkJvq2ehbgi_-w9NSkFPvN-W7hSpLG8hCJnPZ3pE7inJQa-zxmLu_SONDbj-TG8ngQ7vVZMhzUgADgTQAlIbVABKnMQABpgHfoALukcsfQXV-wJzfkR57Ur8_nG8v_68f8XFMgILPi5tB0S_0HqDvWeAAAAM_kLL_wA9H_B9QIa8DUOjJ6sNlhwAfMq28MPFMrHJvPz_Qb63Ts3AOIHohc4HvwYLRT-IAAtJ6UUOzgTQAlIb1ACKq8GEAwaoAYAAIpCAAAAwQAAoEIAACTCAAAIQgAAAAAAAFxCAABQQQAAEMEAABhCAACwQQAAAMAAAAhCAACAwQAA4EAAAEBBAACAQAAAAMIAAAhCAAD4wQAACEIAAIRCAABgwgAAAMEAAATCAACgwAAAmEEAALjBAADGQgAAAMIAAKDAAADAQAAAiMIAAPjBAACGwgAAfEIAAADAAABsQgAAAMAAAIBBAAAAQAAAgEEAAChCAADgwQAAZEIAAJjCAACgQAAAgEAAAHhCAADAQAAAoMEAAIBBAACgwQAAAEAAALBBAAAAQgAAAMMAAMDBAABwQgAAQEIAAKBAAADQwQAA4MEAACDCAACgQAAA3MIAAMjBAADQwQAAwMEAAADCAABoQgAA2EEAAILCAAAQQgAATMIAAABBAAAQwQAAQEEAAJhBAADAwAAAYEEAAGRCAAAQwgAAAEAAAGDBAAAgQQAAgEEAAAhCAAAkQgAAmMEAAEDBAACUQgAASMIAAIC_AADCQgAA8MEAAIDCAACAQQAAgL8AAABAAAAwwgAAoMEAAFhCAAAYQgAAGMIAAJBBAACoQQAAoMAAAIBAAABgQQAAJEIAAEDAAADgwQAAIMEAAHjCAACUQgAABEIAAEDBAAAswgAAoMEAALjBAAAgwgAABMIAAJDBAABwQQAA0MEAAIBBAACwQQAAmMEAAMDAAAC4wQAAgEEAACDBAACMQgAAgMEAAPBCAAA0QgAAgMAAAODAAAAEwgAA4MAAACBBAABAQgAAPMIAAChCAADIQQAAiMEAALhBAACwQQAAqEEAAJjBAADowQAAoMAAAADAAAA8QgAAwMEAACjCAADgwQAAAMAAAKjCAACgwgAAcEEAAHDBAACewgAAMEEAABRCAABMwgAAIMEAAJBCAACYwQAAYMEAAIA_AADYwQAAksIAAHTCAAAcQgAAsMEAADjCAAAoQgAAMMEAAGTCAABEwgAAgMEAAIjCAAD4QQAAlMIAANjBAAA4wgAAAEAAAJhCAAAsQgAAwEAAAMBAAADQQQAAQMEAABhCAAAgwQAA-MEAADDBAAAkwiAAOBNACUh1UAEqjwIQABqAAgAAUD0AACS-AADGPgAAZL4AAFy-AAC6PgAAcD0AACe_AABAPAAAVL4AADC9AABAPAAATD4AALI-AAC2vgAADL4AAMo-AABAPAAAPL4AAAE_AAB_PwAAlr4AAAy-AAB0PgAAmL0AAPg9AACOPgAAPL4AALg9AAAsPgAAFD4AAOK-AABwPQAAiD0AAAQ-AADSvgAAuL0AAIa-AACKvgAAgDsAACy-AABsvgAAED0AAAS-AAAwPQAAMD0AAN4-AADOvgAAXL4AABA9AAA8PgAA4DwAAAQ-AABcvgAAgr4AABC9AABlPwAAnj4AAIC7AAB0PgAAUD0AABy-AABAvAAAkr4gADgTQAlIfFABKo8CEAEagAIAABC9AACCPgAAQLwAAEG_AABsvgAAqD0AACQ-AAAwPQAAgLsAAFQ-AABwvQAAHL4AAES-AABwvQAAoLwAAOC8AADIvQAAMT8AAOi9AACuPgAAgLsAALq-AABwvQAAmL0AADS-AAAwvQAAcL0AABC9AAAQPQAAXD4AADA9AABAPAAAkr4AAOC8AADgPAAAMD0AACQ-AABwvQAApr4AAPi9AAAUvgAAZD4AALg9AADoPQAAEL0AAKI-AAB_vwAAgLsAAEA8AAAEvgAAQLwAAMg9AABkPgAABD4AAFA9AACoPQAAMD0AADA9AAC4PQAAED0AACQ-AACYPQAAcD0AABS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=nWm7BsT8RYk","parent-reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4378428555190918851"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2785007540"}},"dups":{"6173906321388923249":{"videoId":"6173906321388923249","title":"What is \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[...","cleanTitle":"What is cos( cos( cos( cos( cos( cos( cos( cos( cos( cos( cos( cos(…?? // Banach Fixed Point Theorem","host":{"title":"YouTube","href":"http://www.youtube.com/live/qHnXE_h5c2M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qHnXE_h5c2M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOXJUc3ZUeEpueDFETnJEQTNScWE2QQ==","name":"Dr. Trefor Bazett","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Dr.+Trefor+Bazett","origUrl":"http://www.youtube.com/@DrTrefor","a11yText":"Dr. Trefor Bazett. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":550,"text":"9:10","a11yText":"Süre 9 dakika 10 saniye","shortText":"9 dk."},"views":{"text":"703,7bin","a11yText":"703,7 bin izleme"},"date":"10 oca 2022","modifyTime":1641834461000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qHnXE_h5c2M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qHnXE_h5c2M","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":550},"parentClipId":"6173906321388923249","href":"/preview/6173906321388923249?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/6173906321388923249?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12549109150055221877":{"videoId":"12549109150055221877","title":"Trigonometric Ratios graph of \u0007[cos\u0007] \u0007[cos\u0007] function Maximum and minimum values of cos functions","cleanTitle":"Trigonometric Ratios graph of cos cos function Maximum and minimum values of cos functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=A9pP48Sxs74","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/A9pP48Sxs74?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMXpCVWdUQmVvVTBCUzBlNUFaZmRhUQ==","name":"Online Maths Sir","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Online+Maths+Sir","origUrl":"http://www.youtube.com/@onlinemathssir1111","a11yText":"Online Maths Sir. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1228,"text":"20:28","a11yText":"Süre 20 dakika 28 saniye","shortText":"20 dk."},"date":"4 eki 2020","modifyTime":1601769600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/A9pP48Sxs74?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=A9pP48Sxs74","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":1228},"parentClipId":"12549109150055221877","href":"/preview/12549109150055221877?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/12549109150055221877?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8407237142884457935":{"videoId":"8407237142884457935","title":"\u0007[cos\u0007](x)=x","cleanTitle":"cos(x)=x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NHHT79MQto4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NHHT79MQto4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdEFJczFWQ1FyeW1sQW53M21Hb25odw==","name":"Flammable Maths","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Flammable+Maths","origUrl":"http://www.youtube.com/@PapaFlammy69","a11yText":"Flammable Maths. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1061,"text":"17:41","a11yText":"Süre 17 dakika 41 saniye","shortText":"17 dk."},"views":{"text":"70,8bin","a11yText":"70,8 bin izleme"},"date":"9 eyl 2021","modifyTime":1631188835000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NHHT79MQto4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NHHT79MQto4","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":1061},"parentClipId":"8407237142884457935","href":"/preview/8407237142884457935?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/8407237142884457935?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1375124125994576196":{"videoId":"1375124125994576196","title":"Express \u0007[cos\u0007] 3x in terms of \u0007[cos\u0007] x","cleanTitle":"Express cos 3x in terms of cos x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9n8H_NkhraI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9n8H_NkhraI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZE93eHl2YTlIcjhBN3VDQVJqdHZwQQ==","name":"Mathisyourfriend","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathisyourfriend","origUrl":"http://www.youtube.com/@Mathisyourfriend","a11yText":"Mathisyourfriend. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":367,"text":"6:07","a11yText":"Süre 6 dakika 7 saniye","shortText":"6 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"12 eyl 2020","modifyTime":1599868800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9n8H_NkhraI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9n8H_NkhraI","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":367},"parentClipId":"1375124125994576196","href":"/preview/1375124125994576196?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/1375124125994576196?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13717768663838387873":{"videoId":"13717768663838387873","title":"Why \u0007[cos\u0007](-x)= cosx?","cleanTitle":"Why cos(-x)= cosx?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YUUYse59AlE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YUUYse59AlE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM2ZocjRZYW5aWGVOazQzMUZGZ0FLZw==","name":"Y=mx+c","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Y%3Dmx+c","origUrl":"http://www.youtube.com/@mathew_pang","a11yText":"Y=mx+c. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":739,"text":"12:19","a11yText":"Süre 12 dakika 19 saniye","shortText":"12 dk."},"views":{"text":"22,7bin","a11yText":"22,7 bin izleme"},"date":"30 eki 2019","modifyTime":1572393600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YUUYse59AlE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YUUYse59AlE","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":739},"parentClipId":"13717768663838387873","href":"/preview/13717768663838387873?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/13717768663838387873?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2720858543674069694":{"videoId":"2720858543674069694","title":"Integral of \u0007[cos\u0007](\u0007[cos\u0007] x) sin x","cleanTitle":"Integral of cos(cos x) sin x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FCzZsLSwoP8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FCzZsLSwoP8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMGJMQUNocmNjU0xSUVNqWmsxNDNXZw==","name":"Ravi Ranjan Kumar Singh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ravi+Ranjan+Kumar+Singh","origUrl":"http://www.youtube.com/@RaviRanjanKumarSingh","a11yText":"Ravi Ranjan Kumar Singh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":162,"text":"2:42","a11yText":"Süre 2 dakika 42 saniye","shortText":"2 dk."},"date":"16 mar 2020","modifyTime":1584369553000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FCzZsLSwoP8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FCzZsLSwoP8","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":162},"parentClipId":"2720858543674069694","href":"/preview/2720858543674069694?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/2720858543674069694?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11468943612995843423":{"videoId":"11468943612995843423","title":"\u0007[cos\u0007](\u0007[cos\u0007]⁻¹x) vs cos⁻¹(cosx) | Inverse Trig Confusion Cleared! | IIT-JEE | #Shorts","cleanTitle":"cos(cos⁻¹x) vs cos⁻¹(cosx) | Inverse Trig Confusion Cleared! | IIT-JEE | #Shorts","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/0XE-cE6m0hs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0XE-cE6m0hs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO2h0dHA6Ly93d3cueW91dHViZS5jb20vQE1hbmlzaHNpbmdoTWF0aGVtYXRpY3M=","name":"Manish singh Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Manish+singh+Mathematics","origUrl":"http://www.youtube.com/@ManishsinghMathematics","a11yText":"Manish singh Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":33,"text":"00:33","a11yText":"Süre 33 saniye","shortText":""},"date":"8 tem 2025","modifyTime":1751932800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0XE-cE6m0hs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0XE-cE6m0hs","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":33},"parentClipId":"11468943612995843423","href":"/preview/11468943612995843423?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/11468943612995843423?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10755876190564654427":{"videoId":"10755876190564654427","title":"\u0007[cos\u0007](-x) | \u0007[cos\u0007](-A) | \u0007[cos\u0007](-theta) | Identity for \u0007[cos\u0007](-x) | value of \u0007[cos\u0007](-A)","cleanTitle":"cos(-x) | cos(-A) | cos(-theta) | Identity for cos(-x) | value of cos(-A)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Na2iu-D5P9w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Na2iu-D5P9w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMGJMQUNocmNjU0xSUVNqWmsxNDNXZw==","name":"Ravi Ranjan Kumar Singh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ravi+Ranjan+Kumar+Singh","origUrl":"http://www.youtube.com/@RaviRanjanKumarSingh","a11yText":"Ravi Ranjan Kumar Singh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":128,"text":"2:08","a11yText":"Süre 2 dakika 8 saniye","shortText":"2 dk."},"views":{"text":"12,1bin","a11yText":"12,1 bin izleme"},"date":"5 şub 2019","modifyTime":1549324800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Na2iu-D5P9w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Na2iu-D5P9w","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":128},"parentClipId":"10755876190564654427","href":"/preview/10755876190564654427?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/10755876190564654427?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10442001985229053920":{"videoId":"10442001985229053920","title":"Find the maximum value of `\u0007[cos\u0007] (\u0007[cos\u0007] (\u0007[cos\u0007] x))","cleanTitle":"Find the maximum value of `cos (cos (cos x))","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CjVNEdpa0Ok","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CjVNEdpa0Ok?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":281,"text":"4:41","a11yText":"Süre 4 dakika 41 saniye","shortText":"4 dk."},"views":{"text":"3,3bin","a11yText":"3,3 bin izleme"},"date":"12 eki 2018","modifyTime":1539302400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CjVNEdpa0Ok?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CjVNEdpa0Ok","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":281},"parentClipId":"10442001985229053920","href":"/preview/10442001985229053920?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/10442001985229053920?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4848635081960118847":{"videoId":"4848635081960118847","title":"Graph of \u0007[cos\u0007](\u0007[cos\u0007] inverse x) || \u0007[cos\u0007](\u0007[cos\u0007]^-1(x)) graph || Graph of cos(arccosx)","cleanTitle":"Graph of cos(cos inverse x) || cos(cos^-1(x)) graph || Graph of cos(arccosx)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=y4l8xrb5BjU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/y4l8xrb5BjU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU3hHcWt0Q2E1Rk9RTkkzcTNfZEhLZw==","name":"NumberX","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NumberX","origUrl":"http://www.youtube.com/@NumberX","a11yText":"NumberX. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":160,"text":"2:40","a11yText":"Süre 2 dakika 40 saniye","shortText":"2 dk."},"views":{"text":"4,1bin","a11yText":"4,1 bin izleme"},"date":"14 oca 2020","modifyTime":1579005013000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/y4l8xrb5BjU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=y4l8xrb5BjU","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":160},"parentClipId":"4848635081960118847","href":"/preview/4848635081960118847?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/4848635081960118847?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"480953292071314082":{"videoId":"480953292071314082","title":"\u0007[cos\u0007](\u0007[cos\u0007]^-1 1.2)","cleanTitle":"cos(cos^-1 1.2)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=gwEeqFqzIE0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/gwEeqFqzIE0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR1E5Yk1MSTlTMElxWmVEdVQxRUhlZw==","name":"MSolved Tutoring","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MSolved+Tutoring","origUrl":"http://www.youtube.com/@mathematicssolved","a11yText":"MSolved Tutoring. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":37,"text":"00:37","a11yText":"Süre 37 saniye","shortText":""},"views":{"text":"2,8bin","a11yText":"2,8 bin izleme"},"date":"21 kas 2017","modifyTime":1511222400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/gwEeqFqzIE0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=gwEeqFqzIE0","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":37},"parentClipId":"480953292071314082","href":"/preview/480953292071314082?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/480953292071314082?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16630276628803534500":{"videoId":"16630276628803534500","title":"\u0007[cos\u0007](\u0007[cos\u0007]^-1(-2/3))","cleanTitle":"cos(cos^-1(-2/3))","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=6xaPrxJ6z4Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/6xaPrxJ6z4Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR1E5Yk1MSTlTMElxWmVEdVQxRUhlZw==","name":"MSolved Tutoring","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MSolved+Tutoring","origUrl":"http://www.youtube.com/@mathematicssolved","a11yText":"MSolved Tutoring. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":65,"text":"1:05","a11yText":"Süre 1 dakika 5 saniye","shortText":"1 dk."},"views":{"text":"4,8bin","a11yText":"4,8 bin izleme"},"date":"21 kas 2017","modifyTime":1511285345000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/6xaPrxJ6z4Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=6xaPrxJ6z4Q","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":65},"parentClipId":"16630276628803534500","href":"/preview/16630276628803534500?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/16630276628803534500?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14589633751136767915":{"videoId":"14589633751136767915","title":"indefinite integral of sin(x) \u0007[cos\u0007](\u0007[cos\u0007](x))","cleanTitle":"indefinite integral of sin(x) cos(cos(x))","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=L6Yt8gEwUqs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/L6Yt8gEwUqs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV2ZXcFoxUmg3QUYtclJCSnhMckk5UQ==","name":"john rose","isVerified":false,"subscribersCount":0,"url":"/video/search?text=john+rose","origUrl":"http://www.youtube.com/@johnrose300","a11yText":"john rose. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":200,"text":"3:20","a11yText":"Süre 3 dakika 20 saniye","shortText":"3 dk."},"date":"21 tem 2015","modifyTime":1437436800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/L6Yt8gEwUqs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=L6Yt8gEwUqs","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":200},"parentClipId":"14589633751136767915","href":"/preview/14589633751136767915?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/14589633751136767915?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5921822158090655676":{"videoId":"5921822158090655676","title":"Integral sin(x) \u0007[cos\u0007](\u0007[cos\u0007](x)) with u-substitution","cleanTitle":"Integral sin(x) cos(cos(x)) with u-substitution","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Kz8DtshfeGE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Kz8DtshfeGE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":122,"text":"2:02","a11yText":"Süre 2 dakika 2 saniye","shortText":"2 dk."},"views":{"text":"3,1bin","a11yText":"3,1 bin izleme"},"date":"31 oca 2019","modifyTime":1548892800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Kz8DtshfeGE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Kz8DtshfeGE","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":122},"parentClipId":"5921822158090655676","href":"/preview/5921822158090655676?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/5921822158090655676?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2889689022789410137":{"videoId":"2889689022789410137","title":"Differentiation of inverse \u0007[cos\u0007] (\u0007[cos\u0007]-1x)","cleanTitle":"Differentiation of inverse cos (cos-1x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=oMHdGWRd9MM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/oMHdGWRd9MM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWXhGR09KdXQtVFVCMllaLUxnME9qdw==","name":"Easymaths4u","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Easymaths4u","origUrl":"http://www.youtube.com/@Easymaths4u","a11yText":"Easymaths4u. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":95,"text":"1:35","a11yText":"Süre 1 dakika 35 saniye","shortText":"1 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"24 mar 2012","modifyTime":1332547200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/oMHdGWRd9MM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=oMHdGWRd9MM","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":95},"parentClipId":"2889689022789410137","href":"/preview/2889689022789410137?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/2889689022789410137?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14461601520280740788":{"videoId":"14461601520280740788","title":"How to prove that \u0007[cos\u0007](-x) = \u0007[cos\u0007] x | How to prove that sin(-x) = - sin x","cleanTitle":"How to prove that cos(-x) = cos x | How to prove that sin(-x) = - sin x","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/3JzMGIGNox4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3JzMGIGNox4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO2h0dHA6Ly93d3cueW91dHViZS5jb20vQG1hdGhzZXhhbWV4cGVydDQ3OQ==","name":"Maths exam expert","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Maths+exam+expert","origUrl":"http://www.youtube.com/@mathsexamexpert479","a11yText":"Maths exam expert. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":60,"text":"1:00","a11yText":"Süre 1 dakika","shortText":"1 dk."},"date":"3 haz 2022","modifyTime":1654214400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3JzMGIGNox4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3JzMGIGNox4","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":60},"parentClipId":"14461601520280740788","href":"/preview/14461601520280740788?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/14461601520280740788?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9025567330209228771":{"videoId":"9025567330209228771","title":"Integral of \u0007[cos\u0007](2x) \u0007[cos\u0007](x) (trigonometric identity + substitution)","cleanTitle":"Integral of cos(2x) cos(x) (trigonometric identity + substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/v/Yua38WTRfQw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Yua38WTRfQw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":80,"text":"1:20","a11yText":"Süre 1 dakika 20 saniye","shortText":"1 dk."},"views":{"text":"50,7bin","a11yText":"50,7 bin izleme"},"date":"14 mayıs 2017","modifyTime":1494720000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Yua38WTRfQw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Yua38WTRfQw","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":80},"parentClipId":"9025567330209228771","href":"/preview/9025567330209228771?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/9025567330209228771?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4378428555190918851":{"videoId":"4378428555190918851","title":"Verify the Trigonometric Identity \u0007[cos\u0007](pi + x) = -\u0007[cos\u0007](x)","cleanTitle":"Verify the Trigonometric Identity cos(pi + x) = -cos(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nWm7BsT8RYk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nWm7BsT8RYk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":174,"text":"2:54","a11yText":"Süre 2 dakika 54 saniye","shortText":"2 dk."},"views":{"text":"7,7bin","a11yText":"7,7 bin izleme"},"date":"9 oca 2023","modifyTime":1673290147000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nWm7BsT8RYk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nWm7BsT8RYk","reqid":"1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL","duration":174},"parentClipId":"4378428555190918851","href":"/preview/4378428555190918851?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","rawHref":"/video/preview/4378428555190918851?parent-reqid=1769844365524017-9921328702631289735-balancer-l7leveler-kubr-yp-sas-201-BAL&text=COS+COS","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"9213287026312897357201","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"COS COS","queryUriEscaped":"COS%20COS","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}