{"pages":{"search":{"query":"Integrals ForYou","originalQuery":"Integrals ForYou","serpid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","parentReqid":"","serpItems":[{"id":"15657238154733654672-0-0","type":"videoSnippet","props":{"videoId":"15657238154733654672"},"curPage":0},{"id":"8044466799283513394-0-1","type":"videoSnippet","props":{"videoId":"8044466799283513394"},"curPage":0},{"id":"438749274108929512-0-2","type":"videoSnippet","props":{"videoId":"438749274108929512"},"curPage":0},{"id":"6039368356964989344-0-3","type":"videoSnippet","props":{"videoId":"6039368356964989344"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEludGVncmFscyBGb3JZb3UK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","ui":"desktop","yuid":"1427472771765309445"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"13878281930050929791-0-5","type":"videoSnippet","props":{"videoId":"13878281930050929791"},"curPage":0},{"id":"12615051969900981034-0-6","type":"videoSnippet","props":{"videoId":"12615051969900981034"},"curPage":0},{"id":"10984246358060969142-0-7","type":"videoSnippet","props":{"videoId":"10984246358060969142"},"curPage":0},{"id":"6305597940221329151-0-8","type":"videoSnippet","props":{"videoId":"6305597940221329151"},"curPage":0},{"id":"3137688396063415638-0-9","type":"videoSnippet","props":{"videoId":"3137688396063415638"},"curPage":0},{"id":"18295509786492084838-0-10","type":"videoSnippet","props":{"videoId":"18295509786492084838"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEludGVncmFscyBGb3JZb3UK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","ui":"desktop","yuid":"1427472771765309445"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"11141337599452300289-0-12","type":"videoSnippet","props":{"videoId":"11141337599452300289"},"curPage":0},{"id":"5625469313069090864-0-13","type":"videoSnippet","props":{"videoId":"5625469313069090864"},"curPage":0},{"id":"14429703064678635379-0-14","type":"videoSnippet","props":{"videoId":"14429703064678635379"},"curPage":0},{"id":"5868204995073054354-0-15","type":"videoSnippet","props":{"videoId":"5868204995073054354"},"curPage":0},{"id":"7799513635162916352-0-16","type":"videoSnippet","props":{"videoId":"7799513635162916352"},"curPage":0},{"id":"11423233576807138498-0-17","type":"videoSnippet","props":{"videoId":"11423233576807138498"},"curPage":0},{"id":"3947231011123372325-0-18","type":"videoSnippet","props":{"videoId":"3947231011123372325"},"curPage":0},{"id":"33802355496921706-0-19","type":"videoSnippet","props":{"videoId":"33802355496921706"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEludGVncmFscyBGb3JZb3UK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","ui":"desktop","yuid":"1427472771765309445"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DIntegrals%2BForYou"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"9414575226034244727247","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1397828,0,17;1414494,0,36;1433081,0,96;1402154,0,57;1436971,0,77;1437735,0,31;1436026,0,58;1429981,0,92;1152684,0,91;1427780,0,16;1434898,0,69;1436936,0,85;1417320,0,55;27393,0,69;1383554,0,60;1434403,0,16;124074,0,21;182558,0,29;123843,0,98;45958,0,0;1418739,0,95;1425768,0,86;1433736,0,62;1417827,0,79;1366396,0,50;1428626,0,28;1432895,0,85;1440099,0,2;1419899,0,22;1430624,0,17;1425586,0,99;1417540,0,68;1424138,0,18;1422262,0,46;912217,0,61;266846,0,84;1434558,0,35;45957,0,62;151171,0,87;126318,0,20;1281084,0,26;287509,0,42;86182,0,32;1037339,0,55"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DIntegrals%2BForYou","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Integrals+ForYou","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Integrals+ForYou","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Integrals ForYou: 2 bin video Yandex'te bulundu","description":"\"Integrals ForYou\" sorgusu için arama sonuçları Yandex'te","shareTitle":"Integrals ForYou — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yad6c73c7a3b7878b929c480347a2c189","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1397828,1414494,1433081,1402154,1436971,1437735,1436026,1429981,1152684,1427780,1434898,1436936,1417320,27393,1383554,1434403,124074,182558,123843,45958,1418739,1425768,1433736,1417827,1366396,1428626,1432895,1440099,1419899,1430624,1425586,1417540,1424138,1422262,912217,266846,1434558,45957,151171,126318,1281084,287509,86182,1037339","queryText":"Integrals ForYou","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"1427472771765309445","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1441146,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765309476","tz":"America/Louisville","to_iso":"2025-12-09T14:44:36-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1397828,1414494,1433081,1402154,1436971,1437735,1436026,1429981,1152684,1427780,1434898,1436936,1417320,27393,1383554,1434403,124074,182558,123843,45958,1418739,1425768,1433736,1417827,1366396,1428626,1432895,1440099,1419899,1430624,1425586,1417540,1424138,1422262,912217,266846,1434558,45957,151171,126318,1281084,287509,86182,1037339","queryText":"Integrals ForYou","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"1427472771765309445","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"9414575226034244727247","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":166,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"1427472771765309445","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1729.0__491d2077c35fc53c28577367d9c4833c662b0670","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"15657238154733654672":{"videoId":"15657238154733654672","docid":"34-4-0-ZDAB84A4136D324AD","description":"►Subscribe to Integrals ForYou! / @integralsforyou In this video we will take the Integral of cotx_ln(sinx) and my good friend Integrals ForYou is going to join us! Make sure to check out...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3309421/d3baa678b83d5f821163375cfc826dde/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/krAUcQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DB40G1B89MSE","linkTemplate":"/video/preview/15657238154733654672?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of cotx_ln(sinx) (Featuring Integrals ForYou)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=B40G1B89MSE\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoWChQxNTY1NzIzODE1NDczMzY1NDY3MloUMTU2NTcyMzgxNTQ3MzM2NTQ2NzJqtg8SATAYACJFGjEACipoaHVxa3JjZnZkbXZpa3VjaGhVQ2hWVVNYRnpWOFFDT0tOV0dmRTU2WVESAgASKhDCDw8aDz8TjQGCBCQBgAQrKosBEAEaeIH7DwIG_QQA-P0I_vsD_wHt-vr--wD_APIPBfkEAQAA8_IHCgAAAADrA_sL_QAAAPf9_vX6_wAAChIL-QQAAAD-9PwL_gAAAAYL-v3-AQAA7v70-QIAAAAE-_73_wAAAPcDC_wBAAAAA_oF9wAAAAAC9A8GAAAAACAALTLI3Ds4E0AJSE5QAiqEAhAAGvABevQE_rbb5f_sOM4AzS3eAYEYD_87RNv_0hkWAOUVygENM_gAxOT0AOkECgDW-Q8AFtOpA-3XFP8q0O7-UvftAPYR6AE91NMA-xAmAPgT8v8DQBwBCw8g__LVqAAKDcr-DPAV-CYG4gDqBLkCPOwlAuH4NAUYDyoE5fMb_s0ZAgIiC7v7ESLlAt7zIPu9DhMDEubdAe0hEPe5F_kF6PHyCxD5HQHz9er7JNnbAAAJ8vnw2AL56g_x9hD3IvzjDRYFAQ43-uLsD_v7-OD6QAQA_A3k8gbpztwJEOkBCf_mCfH01RH28_bv_AsCBPYH__gJIAAtAbAAOzgTQAlIYVACKnMQABpgQfcALPwc4uvdHePlrwYMBu7G3gHMHf_muP_qCf_A_CjH2yAD_xa0CdqjAAAA-fzwK8kACX8A278h7iTG_pDdRwt_CBpQvM8J3fq8ExQG0uoNJBhCAMEIqjEFy_1XJT3-IAAtDksVOzgTQAlIb1ACKq8GEAwaoAYAADDBAAAMwgAAuEEAADTCAACAQQAAgEAAALZCAAAowgAAYMIAAKjBAADYwQAAysIAAJDBAAC-wgAAiMEAAPBBAAAAQgAAkEEAAMhBAABowgAA-MEAAEDAAADAwAAAEEEAAETCAABQwgAA4MEAADDBAACWQgAAUEEAAHzCAAAAQQAAQMIAAKBAAABMwgAAQMAAADBCAABIQgAAwEAAALhBAAAcQgAAQEAAABBCAAAQwQAAwEEAAIBAAAAQwQAAgL8AAJpCAAAAwQAAAMEAACjCAADAwAAAgMEAAIBAAAAwwQAAzMIAAIDAAADQwQAAWEIAAADBAACCwgAAsEEAAJTCAAAswgAAAMMAACBBAABgwgAAAMEAABjCAACYQgAAaEIAAGTCAAAEQgAAgD8AAIDCAAAgwQAAEEEAAChCAACgQQAAoMEAAIJCAAAQQQAAsMEAAJhBAACAvwAAJEIAAHBCAAAMQgAASMIAAKjBAACCQgAAcMIAAHDCAADAQAAACMIAAJhBAAAQQgAAcEEAAJBBAACIwgAA0EEAAMBAAAAIwgAA8MEAAGDBAAAIwgAAQEIAAOBAAABoQgAAUEEAAARCAACAvwAANMIAAODAAABAQgAA4MAAAODBAABgQQAAAEAAAGDCAAB8wgAABMIAAMDBAAAAQAAAmMEAAJbCAACIQQAANMIAAIDAAACQwQAAyEEAACBBAAAsQgAAQMAAADBBAAAgQQAA4MEAANBBAABkwgAAPMIAAABCAAAUQgAAuMEAADBCAAAEQgAAwMEAAPhBAAAQwQAA2MEAADhCAAAQwQAAJEIAAAjCAAAEQgAAAEIAAKBBAABswgAAkMIAADBBAABMwgAAmMEAAGTCAAAgwQAAUMIAAHRCAAD4QQAAjkIAAChCAABwwQAAPEIAABBBAADAQAAAQMEAAAjCAADgQAAAoMEAAEDCAAD4wQAAsEIAAADCAAAgwgAAMMEAAODBAACYQQAAPMIAAIDCAACaQgAAoMEAAKDAAAAwQQAAmsIAAMBBAAC4wQAAgMIAAJ5CAABwwQAAgEAAAIjBAABIwiAAOBNACUh1UAEqjwIQABqAAgAAmr4AAES-AACgvAAAQDwAAGy-AACuPgAAgj4AACu_AACIPQAAgLsAAIA7AAAwvQAAoDwAAAQ-AADgvAAADL4AAHw-AACAOwAAMD0AACU_AAB_PwAAmD0AADA9AADYvQAA4LwAAFQ-AAAUvgAA-L0AAPg9AABsPgAA2D0AAOg9AABUvgAAfD4AALi9AACavgAAJL4AANg9AACWvgAALL4AAKA8AAAcvgAAnj4AACQ-AABwvQAAcL0AABy-AAC-vgAAbL4AAKC8AACgvAAAvj4AAJ4-AAAcPgAAjr4AABA9AABPPwAAoj4AAIC7AACSPgAAHD4AAIC7AACAOwAAA78gADgTQAlIfFABKo8CEAEagAIAAOC8AAAMPgAAuL0AAEm_AACuvgAAmL0AAOI-AABkvgAAmD0AAGw-AACIvQAANL4AAKA8AAC4vQAAgDsAAEC8AADYvQAA3j4AAHC9AACePgAAfD4AAAS-AACIvQAAED0AANi9AAD4PQAAgr4AAKg9AADYvQAAQLwAAOC8AAA8PgAA4LwAAMK-AACOvgAABD4AAL4-AADIPQAAqL0AAHS-AAAMPgAAJD4AAOA8AACAOwAA2j4AAMg9AAB_vwAAoDwAADQ-AABwPQAAlj4AAOA8AACIPQAAVD4AAHy-AABUPgAAqL0AAOi9AABQPQAAMD0AAJY-AABAvAAAuL0AAEA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=B40G1B89MSE","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15657238154733654672"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8044466799283513394":{"videoId":"8044466799283513394","docid":"34-2-14-ZC95EF4D3D5BC4F19","description":"Integral of sqrt(x^2-1) - How to integrate it step by step using the substitution method! 🔧 𝐔𝐬𝐞𝐟𝐮𝐥 𝐯𝐢𝐝𝐞𝐨s Integral of 1/cos(x) dx = • (Method 1) Integral of 1/cos(x) (substitut... 𝐥...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3041335/f5df8ba0bc3603927ebfa17f9d9073ac/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/S1GiFgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvyX8PmhR7JM","linkTemplate":"/video/preview/8044466799283513394?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sqrt(x^2-1) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vyX8PmhR7JM\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoVChM4MDQ0NDY2Nzk5MjgzNTEzMzk0WhM4MDQ0NDY2Nzk5MjgzNTEzMzk0aogXEgEwGAAiRRoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioQwg8PGg8_E-8CggQkAYAEKyqLARABGniB-w8CBv0EAPsKAPz9AwAB7QP2APr__wDpAfj7-f4BAOv5BQX8_wAA_gYECgQAAAD8_AT7_P4AAAYFBfsEAAAACOj3_P0AAAAGC_r9_gEAAO7-9PkCAAAACwT5BQAAAAD6BgEGBAEAAAECCQAAAAAAAvwFAAAAAAAgAC0yyNw7OBNACUhOUAIqhAIQABrwAX8HDQDg68cBwfXOAOo_5ACfDiD__DvLAOTx2ADT7dEAzyEHAOw_wgD2IxsArx0JADvPyf4Su_X_RNf7APvM6gG77f4BF9YFAlPxBgDv6Ab91w4M_f7EFQAb0MsDCg3K_v7jGf_-DukB7gXbARzhMwMsJScGECMXARG49ga0CPUC_OLZ_Rbm-woM2xH3nv4gCC_jBAL5Geb_zgL9BgjnEvTr7gv_BB3fBie-7gMQFQAEuvoDAQkT4wM7Hy4LyP3sBfH1LAK8_gLz9vcD8jvyAPPPCN8KC-zzCTP_Dwv0vAoI2ur49QzxAPQDFukE-yHv-SAALVzRADs4E0AJSGFQAirPBxAAGsAHcSDMvtQ9HL0GL1W8vqOGvezpeb2ixJ28jY8AvYDMuD0WkiO7MzIYPhA0cL18PcQ8dLUVvpmDkD0tBg-920_mPYW0xr0_lJO9ehcvvgg8MD0pn9S8bTvtvX24P7wa8hU8CPeEvT27N73G6BA74Nl-PVJxTb3NN0e8ZgOvvWj8DD2GuTO9K4jBvMMXHL1JW-a8OURcvXMIpr30CrS7bEhXPbHs-LxUhpa8NZgGPsBy5zscfKG8FpJivRFedbs-9NO8VTt5vOD9J7u_kx48SByNvSd1l7rKci-72pKAvf5V0TxyoOw8lVKGPSMxwTy7ZWK8aTPzPB5v8r3XJdM6BTNGvSNJgL19Vwi799a2Parw1DloVwQ7HT3evb7ADD67CAu6svHgPXpPCr3C7Zq8MGOqPaGRmTwmaaM8VmZFPQyoXD1bUOm8BSotPEZBED3d81c8IkQDPUWAU7xE3928lz0kPUEr8jtPwpa7En_5POW4oz1cfQ48pUNMPCAalz2FHOM7OU_rvD8ZEjrvm1I7BSOlPdYCO75J5Zo6LvIdvG8umb3Ny367dH7KPGokcz2FxKi7c_NtPS2Tgb2vUDU8eJxSuvc9IzrzO008baSRPF7Ieb0frDU7coedvVthFb08CAs8bcVDveP1lT03TI25_tm6PSsSAz7LsVu5uNIGPQhW1b0-uhK6YYIEPfql9Dwg-6y7J_SvPV9AlD2I2xa32hAtPejOHztGsgm87c9qvdX_nrzq-Xu6zbzLvafPTr3MSqm37nScPazizb0q_7055ETgvABajDt2dpC4xPd0vSdmXjtz_hA54PgVvWdTZL1S6ym4y6LwvFtCHr43BeM5WpOoPXJGvj2trwA6vJQ6PYo_yjwFIOE3ax7BvcSuor1Z-CI4R_govJBe3jxuXZa4xeKcvJTdDD0UvbK3YFnpvEiZnrzTRSC5WxELvVCc7bxw0wM5_hvFvBMql7tKzIa45yLZPAPM_L1SScg5SbqmvfKdgz1qhEa4P8l4PJ4Bvz17QIe2OAkvPbmFU7wJ-g44kZsRPgjvsb0wpdW41mLmPAspHz5IB404opOqvVenxD29NqA4T4B2uy7mZz2b9LQ4gtWSPXME-rwL3zu2-AAYvXEtpD3en5I4kl0ZPtlPUL2swj-5hd5MvVSojr3qysO4RyfmPL6nrb3JNG-32myhvY3msj0hdAk4n7hSvOzbSbxgU5Q3Iv_sPTUpBT7zflu4lV8rPM-8jD3F_Aa5cMrBvTMX-D263KY4R9uSvT9vDTxlX6o3IAA4E0AJSG1QASpzEAAaYP8FACf2OcgC_x3-LLgKDenj18Tu8Qz_3NP_JyQN4wwO3L_3-QApu-zwqgAAACcNAFXuABRs_ukCM-oV4kWY5CsJf_UIVbfF5QDr9FYDH_YIIf_0PAAPIKv--9vpSx9EKCAALed4Hzs4E0AJSG9QAiqvBhAMGqAGAABwwQAAlsIAAKJCAABAwgAAyEEAAMhBAAA4QgAAQMAAAAjCAAAAQQAAwMAAAADCAACgQQAA4MAAAHDCAACAQQAATEIAAIjBAADIQQAAAMIAAIBAAACgwAAAMMIAABBBAABEwgAA-MEAAJrCAAAAQQAAkEIAAGDBAABwwgAAuEEAAFDCAAAowgAAjMIAADhCAAAAQgAAoEEAAPjBAACgwAAAqMEAAAAAAACwwQAA4MEAAGxCAAD4wQAAEEIAAARCAAAcQgAAgD8AADBBAABwwgAAwEAAAADAAACAPwAAUEIAAODBAACgQQAAWEIAAOBBAACwQQAAcMIAACTCAACawgAAoMEAAODCAAAAwQAABMIAAJDBAAAcwgAAwEAAAETCAADEwgAAoEEAAKjBAADAwQAAmMEAAEBAAADowQAAjMIAAHBBAADYQgAAQMEAABDCAACAQQAAEMEAAGxCAAAwQQAAHEIAACDCAACAvwAA2EEAACjCAABoQgAAiEEAABTCAACwwQAAMMEAALBBAADsQgAACMIAAEDBAACAQAAAkEIAAGjCAAD4wQAAEEEAABhCAAC4QQAAyEIAAKBAAAAYQgAAgMEAANBBAABMwgAAHEIAADxCAAC4wQAASMIAAGDBAAAIwgAArsIAADTCAACgQQAAkMEAAETCAAAgwQAAoMEAAJDBAABEQgAAgMEAACDBAADQQQAAhkIAADDCAABMQgAAOEIAAMBAAADAwQAA6MEAAAjCAADAQAAA0EEAAFDCAACgQQAAMEIAALjBAAAQQQAAmMEAAPDBAADAwAAAAEEAABhCAACYQQAAMEIAAKBAAAD4wQAAgL8AAHDCAAAwwQAAcMIAADBBAAA0wgAA8MEAAODAAACcQgAAMEEAAJZCAAAwQgAADEIAADBBAABQwQAAAEIAAETCAACGwgAAgEEAABDCAAAAQAAAkEEAAGRCAAAgwgAAmMEAAEDBAACcwgAAAEIAAIBAAABwwQAAsMEAAIhBAAAgQQAA-EEAAMDBAADwQQAAAMAAABzCAACaQgAAgL8AAFjCAAAwQgAADMIgADgTQAlIdVABKo8CEAAagAIAAIi9AABMvgAADL4AABA9AAA8vgAAhj4AAKg9AAAdvwAAED0AAAw-AAAcPgAA4DwAAKi9AACGPgAAVL4AAFC9AABMPgAAUD0AABC9AAATPwAAfz8AADS-AAD4vQAAuL0AAMK-AABEPgAABL4AAFy-AABQPQAA2D0AAOg9AAAEPgAAdL4AANg9AABwPQAA4LwAAIg9AACAOwAAkr4AAJK-AAA8PgAAiL0AADQ-AADIPQAA2L0AAOi9AAAwvQAAJL4AAFy-AADGvgAA2L0AAFQ-AAAJPwAAqj4AAKq-AACYPQAAQz8AAEC8AAAEPgAA4DwAABC9AAAQvQAAgLsAANK-IAA4E0AJSHxQASqPAhABGoACAADYvQAAMD0AADS-AABdvwAAPL4AAFA9AAC-PgAA2L0AAIg9AACSPgAA2D0AAIg9AABAvAAAyL0AABC9AABQPQAAFL4AANo-AAA8vgAAdD4AAEA8AAC4vQAA4DwAAIC7AADIvQAAfD4AAIa-AACYPQAATL4AABS-AACgPAAAyD0AABA9AACWvgAAHL4AAIC7AACOPgAAfD4AAOi9AACavgAAND4AABA9AACgvAAAiL0AALI-AAAsvgAAf78AAOg9AAB0PgAADD4AAKY-AAAwPQAAbD4AADw-AAB8vgAA-D0AAOi9AAA8vgAA2D0AAMi9AACCPgAAoLwAAAS-AAAUPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=vyX8PmhR7JM","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["8044466799283513394"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"438749274108929512":{"videoId":"438749274108929512","docid":"34-2-4-Z027A1F0093694639","description":"Integration by parts ► Integration by substitution • 🧑🔧 Integration by substitution ► Integration by trig substitution • 🧑🔧 Integration by trig substitution ► Integration by Weierstrass...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1028268/9b9543a3ee5086faafe9ded1821a3425/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XEUGZQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJYatquFMJbc","linkTemplate":"/video/preview/438749274108929512?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 1/(16+x^2) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JYatquFMJbc\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoUChI0Mzg3NDkyNzQxMDg5Mjk1MTJaEjQzODc0OTI3NDEwODkyOTUxMmq1DxIBMBgAIkQaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqD8IPDxoPPxNpggQkAYAEKyqLARABGniBABD6-_0EAAP-Cvv9A_8B9AjxBfj-_QDsDv39-_8AAOoA-wv-_wAA_gYECgQAAAABCAH-8v4BAAkG-_kEAAAAAvX1APkAAAAFFAD6_gEAAPb8_u4BAAAABAj7CgAAAAD8DAf_AgAAAP3_DAUAAAAAAwMBBQULAP8gAC2Teds7OBNACUhOUAIqhAIQABrwAX8HDQDsxtgC3CnuAOo_5ADKJPoACjjvAMjsuQDT7dEA6R71AOwiGf_zFOwBu07yABPYxwAkwgkBKtDu_gXw9AG77ecATe7cACs-LP4dEP4A_9In_fHH6__11Mv-BSnU_ub_7P41Hev_6CrPBDMUGAX3ASwH-vw9BAOWAQjixO8FC-Hm_8kbCgESAPwA3hEVCQbsCfsiC_D64_7aBR_LGwIJCCb11SDL_Se-7gP1_e8FuvoDAQEGCQIeTQf2vvv8DtHwNAbGK-395uAGCxsd7fr7GuX5C-zzCR7xEAUSGgMH6tgA9C0CA_bv9wgI4h3Z8CAALVzRADs4E0AJSGFQAipzEAAaYBEDAC4CHNzsDRL0D970_vzt99zw7hEA0-gAFB8Q5icN2OAOAP8h0O_6xAAAABEXByj6AARPFwXlG_gW9iWn7C4Cf_n-Ns_m-wHk7yXvKer6EfHyOQAFGOAf_-73RAs3HiAALeHHVTs4E0AJSG9QAiqvBhAMGqAGAACgwQAAmMIAAMRCAABQwgAAEEIAAABAAACEQgAAAEEAAOjBAAAQQQAADMIAAAAAAABQQgAAgEEAAEDCAAAgQgAAAEIAAPjBAAA4QgAALMIAANjBAAAoQgAAKMIAAABBAADwwQAAXMIAAKDBAACAPwAA2kIAAKDAAAAowgAAgEAAADjCAADowQAAGMIAAFRCAAAUQgAAYEIAAJjBAACAPwAABMIAAADBAACIwQAA8MEAANhBAABkwgAAmEEAABRCAAD4QQAA-MEAAABAAAAQwgAAgMAAACDBAAAgQQAAUEIAAFTCAAAAQAAA0EEAAJBBAADwQQAATMIAACjCAACCwgAA4MEAAADDAACAwQAAWMIAAAAAAABgwgAA2EEAAHTCAAC0wgAAQEIAADzCAABAQAAAuEEAAKDAAADwwQAAWMIAACDBAACWQgAAAMAAANDBAABgQQAAMMEAAIZCAAAAQQAAAEIAAMBAAAAcwgAAJEIAAIDBAAAkQgAA-EEAAAzCAABgwQAAgL8AAEBBAADUQgAAGMIAAFjCAACAwAAAVEIAAKjBAAC4wQAAuEEAAKBBAACQQQAAkEIAANhBAABYQgAAuMEAAHBBAACOwgAAeEIAAOhBAABQQQAAUMIAAATCAAAowgAArsIAAKjBAACoQQAAmMEAAHDCAABgwQAAYMEAAFDBAABwQQAAoMEAALDBAACQQQAAQEIAAEzCAACuQgAAbEIAAGBBAAD4wQAA8MEAAEDBAABgwQAAAEIAACzCAAD4QQAALEIAAMBBAACoQQAAwMAAACDCAABwwQAAoMAAAAhCAADoQQAAIEIAAJBBAABgwQAAkMEAADTCAACQwQAAIMIAAPBBAAAgwgAAOMIAAGDBAACyQgAAwMAAAHRCAAAkQgAAsEEAAAAAAAAQQQAALEIAAGDCAABkwgAAmEEAACjCAABAwAAAoEEAAHBCAADAwQAA4MAAAIjBAACwwgAAIEEAAIhBAACwwQAATMIAAIC_AAAMQgAA8EEAAJjBAADgQAAA8MEAAETCAAB4QgAAEEEAAFTCAAAoQgAAEMIgADgTQAlIdVABKo8CEAAagAIAAFy-AACavgAApr4AAIi9AACOvgAAPD4AAEw-AAA7vwAAqD0AAJi9AAAUPgAA2D0AAAS-AABQPQAAlr4AAIA7AACqPgAA2D0AADC9AAA7PwAAfz8AAKq-AACGvgAA2L0AAPK-AABsPgAAZL4AAFS-AAAMPgAA2D0AAFw-AAB8PgAAVL4AABC9AAAQvQAAmD0AAIg9AAC4PQAALL4AAJa-AAC6PgAAuL0AAHA9AACoPQAALL4AADA9AADgvAAAqr4AAJq-AAC6vgAAcD0AACQ-AAALPwAApj4AAJK-AAD4PQAAZT8AAIi9AACgPAAARD4AABA9AAB8vgAAmL0AAOq-IAA4E0AJSHxQASqPAhABGoACAADovQAABL4AAJK-AABjvwAAor4AAFC9AADCPgAA2L0AAEw-AADoPQAAHD4AAAw-AAAwPQAAyL0AAOC8AADYPQAALL4AAMI-AACqvgAAbD4AAIC7AAD4vQAAoLwAADC9AACIvQAAfD4AALK-AABQPQAATL4AAHy-AABQPQAAXD4AABC9AACyvgAAQLwAAAw-AADCPgAA8j4AALi9AAC2vgAAwj4AANi9AABEvgAA-L0AAOo-AACevgAAf78AANg9AAAUPgAA2L0AAN4-AABAPAAAbD4AABw-AACmvgAARD4AADS-AAA8vgAAmD0AAAS-AACWPgAABL4AAIa-AAA8PiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=JYatquFMJbc","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["438749274108929512"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"6039368356964989344":{"videoId":"6039368356964989344","docid":"34-5-6-Z7E0AFCB457A6DB6C","description":"Integral of sqrt(x^2-1)/x - How to integrate it step by step using the substitution method! ✅ 𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞 𝐭𝐨 𝐜𝐡𝐞𝐜𝐤 𝐭𝐡𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 Derivative of sqrt(x^2-1) - arctan(sqrt(x...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4302889/61a50a142e20632088f84206c562bdf2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/NLG6RwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DjfS3Fq3THJI","linkTemplate":"/video/preview/6039368356964989344?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sqrt(x^2-1)/x (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jfS3Fq3THJI\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoVChM2MDM5MzY4MzU2OTY0OTg5MzQ0WhM2MDM5MzY4MzU2OTY0OTg5MzQ0aogXEgEwGAAiRRoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioQwg8PGg8_E7UBggQkAYAEKyqLARABGniB-w8CBv0EAAMD_f77A_8B7QP2APr__wDkBf0BAPwCAOv5BQX8_wAA-gf6EAIAAAAC_v328_0BAAAA__oDAAAACOj3_P0AAAACFPT4_wEAAO7-9PkCAAAABQj0_QAAAAD3Awv8AQAAAAECCQAAAAAAAvwFAAAAAAAgAC0yyNw7OBNACUhOUAIqhAIQABrwAX_sIQHvz94C3BHfAO016ACuDBv_-B7wANjh1gDR3ewA9yfxAfIg8wARBPoAtyj4_zLX0v8ezAgBOd78AAXy9gHG8OsAIgfg_zYnGAD-Avj_3-8UAPTQ7v_9yN8AHizk__f9_PwcHMv-BS3YAxYDHQH4ASUGJ-Qn_ve_9QP19_T-7fz7-NoQ-f8E_Pf12QQhAg7jHQAlF_r36P7gBAfrD_b8_g_4CC3W_hTnEQ7xBvz6xAwDCPUGEAQvFA0CxAT3-vP3JQLFIQMD7gIP-SYq6_n8Fun6EP_yAQf7DQP09Pv9_-vtABMLCP3t4QUA5xjg8iAALVTpGDs4E0AJSGFQAirPBxAAGsAHvHSrvipbIDxklVK8vqOGvezpeb2ixJ28qyIMvhIAhz2biKM8MzIYPhA0cL18PcQ8aDePvSZ-1jxA_Je8J2_LPZfQk7ybW7y8ehcvvgg8MD0pn9S89DMlvoCJbj0I2i492oZWvS6s272nTzy8wX6-PfL3wb0XrW28fh34vJxNRz2LQCu83GoZOvURWL0TfFi9G3-HPNc3m72uqWK79gyRPcq1Mrw--xs9r8epPSgmELus0Ba9TyRzvLiCHD1aDYm8Wkc1PYPGp7vIg-M8U9DtvR8yQL2R1568sgKdvR9hPbySWNI8JkCoPZCoKz1v0a68gqv8vDif-r0yRS-9fsUKvk8gDL2iRt879fX8PZyiCD3rK1m8HIS_vU2tDT03nOQ7KnCSPWVxf7wb9la80pGaO3zeorswbt07My02PSAqTT2lKx47JNENvJloKz1YkGY8ASqmvI3kPL1vP6q8Z4I8PXoNuz3dbGK8cQyHPTWgWT0dkW87KzIavhAuoz0UmZi64UblPLYdibyqvo48xTVDPfhRDb4Jbyy7CcMAvvnZuL0_iiI6f7DCvNBSqLxKhpK8Wz6XPfikw72o1Dq7GAbMPfxzrDyxZFg744CHvX6q6r2z-yE8WzQuvVmOq70uoMQ7Zh6_vYUtbD1qMVu7cwdbPQNTxz1yDME508xpPQ7d7L2Piji6LIL_vF9QNT1Wuya8kIPSPUaUWz3VHBS4BeoDPbZHD70dhM67i8PZvRUKxzzK_B46QZoRvVk1Y70zSAe5ZrZQPYnu2b0hlb05BCkHvaOK7LzdBqq4qHPlvaHp9ryAmW-5mS6fO0x_wL2GlFY4VBv8vWK7-70T0_I5n4nZOzCnXz2VyeA4FbVqvBKJIr0BFt24tsRFPVuY5b3cGci3011jvbvnCj0uuo84y6nTPFBoHzxuiaK4TLwIvbpQkbkyGUG51VOQvEItPL000Ws3eB9MPaWv8TyXzwI5EaBQPbpJnL2osHk5CvITveOdvT2VU9W4jNCZPNJr2DxNSu23FqeaPI5rbT39FsQ4IqsLPtimCLvXJIY3xKvRPBhdwTtDtlW4cpxCuydP-T01WAw5N8hfPboSQT3P0JM4llJhPHoQDLyWDMY4eBc-PXYStj1XwI04H58APqTkkL0V6Dq5If9xvI82jr3KEa64dfX0vFnd6r0NI_E1IA3nvBUqDj0eLr42PEaePCU5Bb04z7y1Iv_sPTUpBT7zflu44hiuPG-loj1MJ1K45yOfvTfAcTztZJe34h_WvZysvD20see0IAA4E0AJSG1QASpzEAAaYBAIACv2KuDsEBv3Dcv2COjt79v07AMA3-EAExoJ6Br_6t8CCgAN0fL3xgAAAAgJACz_AP9JDwXuJeoB8B6q5iEIf-4RPNToABTuBCryDQEBF-_qMQD3JtEZAOb0OwokHyAALQRkXjs4E0AJSG9QAiqvBhAMGqAGAACQwQAApMIAAL5CAAAowgAANEIAAIBBAAA8QgAAmEEAABzCAADgQAAAUMEAAJDBAAA4QgAA4EAAAILCAACIQQAASEIAAODAAABwQQAAsMEAAIC_AACAwAAARMIAAIBAAAAwwgAAFMIAAGjCAABAwAAAwkIAANDBAAAQwgAAgMAAAAjCAAAgwgAAiMIAACRCAAAMQgAAKEIAAPjBAADAQAAAFMIAAKjBAAD4wQAAFMIAADhCAAAowgAA2EEAADxCAACwQQAAwMAAAKDAAABAwgAAYMEAACBBAACAPwAAcEIAABjCAADYQQAAcEIAAKBBAADYQQAAfMIAACTCAACQwgAAsMEAANbCAAAQwQAAEMIAAFDBAAAswgAAgL8AAIjCAAC4wgAAGEIAABDCAADAwAAAQEEAABDBAABEwgAAhsIAAIA_AACwQgAAcMEAANjBAAAAAAAAAAAAAFRCAABAwAAA0EEAAADAAABAwQAAuEEAAODBAAB0QgAAmEEAACDCAADowQAAwMAAAIA_AAD2QgAAsMEAACDCAAAwQQAAhkIAAFjCAAD4wQAAkEEAACRCAACIQQAAtEIAAJhBAAA4QgAAcMEAAARCAACKwgAABEIAACBCAABgwQAAUMIAAHDBAADQwQAAksIAANjBAACoQQAAwMEAAGDCAAD4wQAAIMEAAABBAAC4QQAAQMAAAKDBAACQQQAAYEIAADTCAACUQgAAOEIAADBBAAAowgAAuMEAAKDBAACAQAAAkEEAACDCAACQQQAASEIAAMBAAADgwAAAoMEAABTCAACIwQAAkEEAAChCAADYQQAAIEIAAGBBAACYwQAAQMAAAFzCAACwwQAAUMIAANBBAADAwQAA8MEAAEDAAACSQgAAEEEAAJBCAAAMQgAAHEIAAKDAAAAAAAAAEEIAACzCAAAowgAAuEEAAEzCAACoQQAA4EEAAJ5CAADgwQAAMMEAALDBAADUwgAAUEEAAOBBAACAvwAANMIAAFBBAABQQQAA6EEAAKDBAACYQQAAgMEAANjBAACOQgAAgEAAAI7CAAAAQgAAGMIgADgTQAlIdVABKo8CEAAagAIAAFC9AAA0vgAADL4AAKA8AACOvgAATD4AABw-AAAnvwAAqD0AALg9AACCPgAAEL0AAIA7AAAcPgAAXL4AABC9AACSPgAAcD0AAIA7AAD-PgAAfz8AAAy-AAAMvgAAyL0AAOK-AABkPgAAuL0AAJa-AACoPQAAUL0AABw-AAAMPgAANL4AADA9AADIPQAAgDsAAHA9AABQPQAAhr4AAK6-AACCPgAAgDsAADw-AAAcPgAA4LwAAEA8AAAQvQAAJL4AACS-AAC-vgAAmL0AADw-AAADPwAAyj4AAHy-AACoPQAAPT8AAOC8AACAOwAAUL0AAOA8AAAMvgAAQLwAAPq-IAA4E0AJSHxQASqPAhABGoACAAAwvQAAiD0AAHS-AABJvwAArr4AAKg9AAADPwAAgLsAABQ-AACyPgAAyD0AAOg9AABwPQAAcL0AAAS-AADYPQAAZL4AANY-AACivgAAZD4AAMg9AAAkvgAAgLsAABA9AAC4vQAAlj4AAJa-AAAEPgAARL4AAHS-AABAvAAAUD0AAOC8AAC-vgAATL4AAKA8AADCPgAAVD4AAKi9AADKvgAAdD4AAFA9AAAQPQAADL4AAAs_AABcvgAAf78AABQ-AABUPgAAMD0AAKI-AABkPgAAjj4AABw-AACSvgAAJD4AAEy-AABcvgAAFD4AAHC9AACSPgAAQLwAABS-AACoPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=jfS3Fq3THJI","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6039368356964989344"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"13878281930050929791":{"videoId":"13878281930050929791","docid":"34-6-11-ZCA425692A3BED5F8","description":"substitution ► Integration by Weierstrass substitution • 🧑🔧 Integration by Weierstrass substitution ► Integration by partial fraction decomposition • 🧑🔧 I...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3477941/0c54c95d71dd6dad332b7d7eaef6738f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/o1-uqwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTvV_lCuSjew","linkTemplate":"/video/preview/13878281930050929791?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of ln(ax+b) (substitution + by parts)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=TvV_lCuSjew\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoWChQxMzg3ODI4MTkzMDA1MDkyOTc5MVoUMTM4NzgyODE5MzAwNTA5Mjk3OTFqiBcSATAYACJFGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKhDCDw8aDz8TiAGCBCQBgAQrKosBEAEaeIEACPsOCPcAAQ0EB_cI_QLzAfYA-P79AOMQ_PcI_QEA8e8ICwAAAADoA_oN_QAAAP78DP3y_QEACgj6-AUAAAAQ8-oB_gAAAPoeAf7-AQAA9Pz-7AIAAAARB_gR_wAAAOrtEvz_AAAACwQJAQAAAAAN_f0BAAAAACAALe7wvTs4E0AJSE5QAiqEAhAAGvABfwb7_ufV9wHfGbIBwUznAaAOH__tNvMBx-DpAdTvugH1DvoA9BH8_xrtEwG-ItIAOtDK_iPDCQFD2PwABfD0AdUC_AEk8N0APy4cABsW6v_oCywA28X5AfXVy_4FKNX-5OboARAN1AEhGcQCIuUaA-UROgEYDikEA5cBCNPT5gL2-tkAAhPqCwDk-P7TBScCEd4iADQWCQPkJOUC7OYB_P7bGvzyFdP-J7gO_ykEAf7THAwDBhcH_iErC_ms9Qn-AQ42-tED-P_h9ggAMA0F7_MA5wMG7dsEHfIQBQPz_fr5yf78Hf389v3iBwTiHNrwIAAtLKoCOzgTQAlIYVACKs8HEAAawAeyDse-51kkPN8Kl7w1bsC90VLevEUzibvjoLm9HG2LPF4FI7wP0vM9kO4svaAE0Txuige-v2rAPOZddbyJmQ0-zD9fveudn7l6Fy--CDwwPSmf1LxXsTi-R6V9PKXUCj1WYTM8MbytvRuun7zvERs9wcS_vQiQAb1zr1088yyCPSXB5bzUOps9NFVGvQ6fdL3lgHg9RyFEvRsLDrsuWaU9Y0JMvB8IWjyhlHo9ZGirvMGqurx7rgW9wwd7PSPKDb0HtxS7TjzxPMW2-zxKuIu9rTLTvEdQArw0w8G92lc-PcETwDs27DI9AA0FPcTSO73Ywgc9RMeZvfI7srwUe1i-WbcLvSVIG7w9RCM-VhzYvE2aqzwmDHS9XUa7PUwsujy7KlA9-o1AvL_vvjrAdWq8dBOrvDRcG7nQgJU9Q5CDPMF9kbua0oU9Ny8TPUELCTyXeQY9tax2vX7k0jtngjw9eg27Pd1sYrztM109krzpPF9NszuJMxW9kKuXPYXy-DtFTvy7knUYPZ0m2DyblQi9CHYMvs2l4bvgvNi9d2GAvT59ArwtS4k7IR2BO9h4erxbPpc9-KTDvajUOrv32Kc9JnMsPNVYxjvzJ2C8P8bcvSnKxruQ2Vm9sCNpvDWlCLwtfaO92YcmPV6pgLv-2bo9KxIDPsuxW7lyU_87v4LUvTqLgzpoR-S6c6QuPQ7oO7xMEZo9SH1jPTqFXrki7TU8db7pvA5hhLvS8bK9J6g8vLfqnToDuJS93j1AvAk4jjltA9c9taPYvQyfrzmBCkI9D9UQPGHNM7hCTLi9rvI9um3Bj7e_f3O9FI06vUxYuDhUG_y9Yrv7vRPT8jl2qbK7PgixPd1NUThAc3G9JJd_vPIz7rhmUIg8gKi6vZhztDlVhDu9VK0FPUgWnLiFcHY9UXZJPWZXhDgea2Y9c91PPdcAHTkmN8w6kf6ovIkI3jlDEsc8TRC1PLW7gzjrpGM8ooyivb9SZDkKgLG8JxfjPWJgkrlbPUy7uzS0PMu1mbjv5xQ97eLsPOP6mLW71Mg9A0A1vdi-ezfLXps9Lg-IPAK0A7YX0PC8IQe1PaKTMjkqWPe4rAk4vbZyazcYUPk8tKpKPMKq9jfXRmE9xlRVPD1WprcfnwA-pOSQvRXoOrl36Qa3DdMovbpSHzdIlkK9LBHDvcHMj7jE9cE77g4kPYf5zbfVlOQ8vjamvfOjTbgi_-w9NSkFPvN-W7gpnmm8eM2QPaHmmrjoVbO9FiTsPM24IThtDpa9LoRmPQTvtzcgADgTQAlIbVABKnMQABpgFwgALwsv6-cEC_L_1QME9t_41wHbBADr4wAcGQL0GAfn3w35_yrW7wDFAAAABwEEJv0AA0oS_uQS-RL0H6kDKxx_6BRE0eD_FO3vF_EPA_gIAvA7APIU2wkE7PZABSkKIAAtQsZeOzgTQAlIb1ACKq8GEAwaoAYAAIBAAACAwgAAfEIAAJjBAACAQAAAMEEAAFxCAAAUwgAAKMIAANBBAACowQAAaMIAAIA_AAAgwgAAsMEAANBBAAAEQgAA4MEAAERCAAA0wgAA4MEAALBBAADowQAAcMEAAEzCAAA4wgAAcMIAAIDBAADCQgAAiMEAAJDCAADYQQAAhsIAAPjBAACIwgAANEIAAAhCAAA4QgAAmMEAALBBAABQwQAAQMEAAHDBAABAwgAALEIAAJjBAAAAwQAAoEEAAExCAACgwAAAIEEAACDBAABwQQAAgD8AAAAAAACgQQAA2sIAAFDBAACAQQAAcEEAAJhBAABowgAAAMAAAKbCAABwwQAAAMMAAIjBAABIwgAABMIAADjCAABIQgAAMEEAALrCAAAgQQAAsMEAAMDBAADYwQAAwMAAAABAAADgwQAAAEEAAJhCAAAgwgAA2MEAANhBAADgwAAAZEIAABRCAADYQQAAGMIAADBBAACMQgAAhMIAACBCAABYQgAAAMIAAABAAAAgwQAAmEEAAGhCAACMwgAAqMEAAKBAAADoQQAAFMIAAEBBAADgQAAAwEAAAGBBAABcQgAAQEEAAPhBAABAwAAAIEEAAGTCAABYQgAADEIAAADBAABUwgAAuMEAADDCAACewgAAsMEAAOBAAACAQQAA-MEAAGBBAACAPwAAMMIAAHBBAAAIwgAAoMAAAMBAAAA0QgAA4MAAAFRCAAA0QgAAMMEAAABBAABEwgAAIMIAACDBAABsQgAAEMIAAPBBAADAQQAAqMEAAMBBAABAQQAA0MEAAIBBAABgwQAAikIAAABBAAD4QQAAiEEAADDBAACAwQAAHMIAANjBAACgwgAAIEEAAHzCAAAAwgAA4MEAAJBCAAAAwQAAokIAAIRCAAAAwQAAaEIAAMDAAABEQgAAXMIAAIzCAABwQQAAyMEAAOjBAACYQQAAhkIAAODBAAB4wgAAwMEAACzCAAA4QgAAcMEAAIrCAACAwAAAgEAAAFxCAADQQQAAoMEAANhBAACQwQAAUMIAAGBCAACQwQAAQMIAAMBBAACQwSAAOBNACUh1UAEqjwIQABqAAgAAtr4AAIq-AAAUvgAAFD4AAHA9AAC2PgAAmD0AAGm_AAAMPgAA6D0AAGw-AAAMPgAAyL0AAJ4-AABwvQAAir4AAAw-AADYPQAAgDsAAG0_AAB_PwAAmr4AAAy-AAA0vgAAir4AAEA8AACIPQAAtr4AAKg9AAABPwAATD4AAKY-AACKvgAAVD4AADS-AAD4vQAAUL0AACQ-AACuvgAAoLwAAAw-AACavgAA4LwAAEw-AAAwvQAAuD0AAKg9AAAlvwAA7r4AAMK-AAAUvgAAsj4AAAU_AACYPQAA3r4AAPg9AAB1PwAABD4AABQ-AAD2PgAAiD0AAKA8AAAkvgAACb8gADgTQAlIfFABKo8CEAEagAIAAMi9AAAQPQAAtr4AAH-_AADOvgAAgDsAANY-AADavgAAND4AAJY-AACgPAAAqL0AACS-AAAcvgAA4DwAAHA9AAAsvgAA5j4AALi9AACqPgAABD4AABy-AACIPQAADD4AAEy-AADWPgAAnr4AABw-AACKvgAAHL4AAIg9AABQPQAARD4AABe_AAAMvgAADD4AAIo-AABAvAAAiL0AAHy-AABcPgAApj4AAKi9AABAvAAAmj4AAJi9AABjvwAAfL4AADQ-AADIPQAAdD4AAFC9AADgPAAAhj4AAIi9AAA0PgAABL4AAFA9AABAPAAARL4AAO4-AADCPgAAMD0AAKA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=TvV_lCuSjew","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13878281930050929791"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12615051969900981034":{"videoId":"12615051969900981034","docid":"34-5-16-ZEDA0F057A5BC1A6E","description":"𝐭𝐞𝐠𝐫𝐚𝐭𝐢𝐨𝐧 𝐦𝐞𝐭𝐡𝐨𝐝𝐬 𝐩𝐥𝐚𝐲𝐥𝐢𝐬𝐭 ► Integration by parts • 🧑🔧 Integration by parts ► Integration by substitution • 🧑🔧 Integration by substitution ► Integration by trig...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/926621/504d798ceecbdec2ec433974f70e39f3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/nLCqCQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dz96EoOKFk3w","linkTemplate":"/video/preview/12615051969900981034?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of arctan(2x) (substitution + by parts)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=z96EoOKFk3w\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoWChQxMjYxNTA1MTk2OTkwMDk4MTAzNFoUMTI2MTUwNTE5Njk5MDA5ODEwMzRqiBcSATAYACJFGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKhDCDw8aDz8T1QGCBCQBgAQrKosBEAEaeIEBIAT_C_IA7Ab09f0AAgDe9fLu-wABANwFBPL--wMA9fsMDQsAAAAGEfEMBgAAAP38Df3x_QEABAns9QMAAAAM8PQO-QAAAAAd8wj9AAAA3wv2-AMAAAADDOwK_wAAAO3_ERL_AAAAAxUBCgAAAAAS9hQPAAEAACAALem8rDs4E0AJSE5QAiqEAhAAGvABfxTs_uTQ9gH3JNcAuiz1AI06Lv8MKN7_qOPu_8gI1gHoCOMA-BHoAQLyDv_NFOAAGc2fAxrTIP9L0vsAG-_sAMsJ4wAp7tgBQAMK_xcXzgH2-DX_5db9_vy21QAnILUA4__q_hIW9f4lHLwCJuIdA933OgUoAx76A4oBCfXN3wP739X9_AkCBQPJ_vetKiAEE9onABsYC_jxGvUA9s0G_BbXMPzwGM7-LK4Q_xwE__vCDRUBDTPh_SUxDfnI8PkG7_QxArkU8QXN5R7_Nw8G7fEA5AT72O8NNB4SAQf9BAbstfXpJe30Au32CQm-OPb5IAAt1szmOjgTQAlIYVACKs8HEAAawAdqFtC-rJQZPVMN97ux38O9PKhfvXC-B73g4te8eLQQPNiTBrv90qc9CbIUvUv9oTzsM8e9-nKwPIi9ML3LgDM-5tGIvZhiMzx6Fy--CDwwPSmf1LyjddS9t0_9vP0vFz2ay7K5IBrHvT2xszzBfr498vfBvRetbbwvlpi8Wqm2PSig5Lxar1M9yCHHvGMl5rw_P2c9e2GXvNILDryho7A8NmDrvKraizvxBZc9CyYevae0Gb0QlJm7yCuLPe7mzry4k0i9eOgAPZ-EYzzr-4W9PmhMvYc7ETwRdpW9DwlfvKQkWryVUoY9IzHBPLtlYrxpM_M8Hm_yvdcl0zrQKkO-mHOfvA-oiDyfIPE9EA4svY4RJzl6tl29aUA4PY-axLtDebo8t1I5vaygM7xLP2G8R49fO9a-DToyzyU9JE0XPea63zwFKi08RkEQPd3zVzzjghg9I6eqvdbcl7s_fRo9vMbTPLhAgjsRje48p1QuPW2jprzwt4O7g-S4PQiZPzzkGpe6PHLaO3qJljwkXp67YvjovVMYZzvgvNi9d2GAvT59Arx33PA8RvsuPfYNp7xu_Ok9TOStvStzqbtC454979jZPE2_AjzkyPm8aRGrvciiALx3WcK9Lk5GvO6lOrwtfaO92YcmPV6pgLuDbeQ9wqaZPUuiZTkpxKs7J-uhvWwGeju6JcE7wABnPCvhR7ujbYE9kuOTPcOJHLiJIim9zlC_uxp4JLvtz2q91f-evOr5e7q0IqW9bS09vWq4hDl9ldw9Fm4pvnw88rnVk3k8axaePEknWDlzS7u98-34PNxy6TgTqzC9oXqlvSR1XbhUG_y9Yrv7vRPT8jmzdwo8gQHJPexxp7hUXba8cYcXO9CkfroUHIO9xyStvRpRFTjtpSQ9a8YYPULW47aeUJ492OksPZn8dbhDk489RcwWPSNy0jcNsCW9inIhusaWLjlBlHk8IsKeuso_TDckRs88blyFvUlcnzicaxi9BHEOPoIJjbm5MSK91fTROtp8y7gWp5o8jmttPf0WxDiIaao99lJCvSfpKjgYyYM9a8sKPc6hMrecenO910vTPZ-NlzgNZg06nZCMvD0ztrjjQtQ8P5KtPNwvwbZ5JDk9U0FFPJGYPbYfnwA-pOSQvRXoOrk5HMi5nz3XvW4oP7cylO68uvi7vTYXJriOuaG8yQmuPWRuFLehb0G7C4uQvWKGCbgi_-w9NSkFPvN-W7hZlnk8xQxjPRu4jrhSCaS9H_hTPQlDMDhy7L-9yKt4PRfZjTggADgTQAlIbVABKnMQABpgHwgATQUz2NLmEOkMyOkK9rf0xBDbC__Y0P8WMv_wHwvLv_j6_znS6fqoAAAAEvADOwQAAXQX8e0n5SbnKaMRORB_tQlcy8sCAM_fE_Ab9gv2FfZXAOAOwCj53vBoID3jIAAt2XgdOzgTQAlIb1ACKq8GEAwaoAYAAPDBAABcwgAACEIAAODBAABgQQAAsEEAAEBCAAA8wgAAIMIAAADBAACwwQAAeMIAAMDAAACKwgAA8MEAANBBAACoQQAAoMAAADhCAAA4wgAAoMEAAARCAACAvwAAEMEAAEjCAACIwgAAiMIAAADCAADGQgAAUMEAAITCAABwQQAAGMIAACzCAACMwgAAAEIAAAhCAADoQQAAAMEAABBCAAAQwQAAoMAAALjBAACCwgAAJEIAAKBAAABAwQAAIMEAAJxCAADAwAAAgEAAAHDBAAAgQQAAAEAAAMDAAACgwAAAxMIAAGDBAAAgwQAAkEEAAODAAABYwgAAqEEAAJ7CAADYwQAA9MIAAADAAAAQwgAAWMIAABDCAAB4QgAAAEEAAKLCAAAgQQAAgD8AAAjCAADQwQAAoMEAAJBBAABQwQAAAAAAAI5CAAAMwgAAGMIAADxCAADAwQAAfEIAADxCAACoQQAAlsIAALhBAAB8QgAAqsIAABxCAAAAQQAATMIAAEBBAABAQAAAwEEAAFBCAAB8wgAAUMEAABDBAAAAAAAARMIAAFDBAAAAQAAA2EEAAKhBAABUQgAAMMEAAPBBAAAAQAAAMMEAAAjCAAC4QQAAIEEAAIDAAABgwgAAAMEAAFzCAACCwgAA2MEAALDBAADgQQAAIMEAAODAAAAgQQAAgMIAAODAAACQwQAAAEEAAMBAAAAUQgAAIMEAACBCAAAkQgAAJMIAAOBAAAA4wgAAJMIAAKDBAAAcQgAAAAAAAKhBAADIQQAADMIAAJhBAAAAQAAABMIAAKBBAABgwQAAqkIAAIA_AAAEQgAAsEEAAOBAAAD4wQAAKMIAABBBAACMwgAAQMAAAHDCAADowQAAQMIAAJBCAACIQQAAvkIAAGxCAABwwQAAeEIAAKDAAABUQgAA-MEAAIrCAACIQQAANMIAACDCAACAPwAAiEIAAIA_AACIwgAAQMEAAPDBAACAQgAA4MEAAJTCAADwQQAAwMAAAPhBAABAQAAABMIAACBCAACIwQAAYMIAAJZCAACowQAAIMIAACBBAADgwSAAOBNACUh1UAEqjwIQABqAAgAAir4AAI6-AACYvQAA-D0AABy-AABEPgAAmD0AABe_AACAOwAAcL0AALi9AAD4PQAAJD4AALI-AABcvgAADL4AAOg9AABMPgAA4DwAAC8_AAB_PwAA2r4AAIq-AABwvQAA-r4AAEC8AABwPQAAkr4AABQ-AABMPgAA6D0AAAy-AACmvgAAiD0AAOi9AADIvQAAgDsAAFC9AADOvgAAyL0AAOA8AACoPQAAuD0AAMg9AACIvQAAmD0AALg9AACWvgAAuL0AAGy-AAA0vgAATD4AACM_AABsPgAAdL4AAOg9AABtPwAATD4AAEQ-AAC2PgAAyD0AAHS-AAA0vgAA6r4gADgTQAlIfFABKo8CEAEagAIAAIg9AACgvAAALL4AAGu_AAA8vgAAiD0AAII-AAB0vgAABL4AAMI-AAAkPgAA6L0AAIA7AADovQAAPD4AABC9AABAvAAAEz8AAKC8AACmPgAAmD0AAOC8AADYPQAAoDwAAAy-AABkPgAAhr4AAEA8AAAEvgAAQDwAAOA8AABAPAAA2D0AAKK-AABQvQAA2D0AAJg9AABAPAAA6L0AAHy-AAAQPQAAmj4AAKC8AACgPAAAqD0AACQ-AAB_vwAAcL0AADw-AABwvQAAcD0AAOC8AAA0PgAAkj4AAIK-AAD4PQAAgLsAALi9AAAMPgAAJL4AAHQ-AABMPgAAQDwAAKA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=z96EoOKFk3w","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12615051969900981034"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"10984246358060969142":{"videoId":"10984246358060969142","docid":"34-8-6-ZFA72770CF2C7F846","description":"Integral of sqrt(9-x^2) - How to integrate it step by step using the trig substitution method! ✅ 𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞 𝐭𝐨 𝐜𝐡𝐞𝐜𝐤 𝐭𝐡𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 Derivative of (9/2)arcsin(x/3) + (x/2)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1597833/06c06cf142430c91a45dfdb38c0fd103/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3eaTNgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLIOWZCm_ls8","linkTemplate":"/video/preview/10984246358060969142?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sqrt(9-x^2) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LIOWZCm_ls8\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoWChQxMDk4NDI0NjM1ODA2MDk2OTE0MloUMTA5ODQyNDYzNTgwNjA5NjkxNDJqiBcSATAYACJFGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKhDCDw8aDz8TsQKCBCQBgAQrKosBEAEaeIHwEwAAAQAA-QgO_PsE_wEBDO7_9v79APABAvz-AQAA5fD7CQL-AAD9BwQLBAAAAP7-_v_4_gAABgb8-vsAAAAJ5_b7_QAAAAUVAPr-AQAA6QEBAPYCAAEMBPgGAAAAAPAKBhEAAAAA_AgJBQAAAAAJ_gQGAAAAACAALXZQzjs4E0AJSE5QAiqEAhAAGvABfxsK_9ev8wDPBr4A6UHjALQoPf_8PcoAztrNAMwH2gEFJ9oA4_0AABb5Cf-3BdD-FNfFAPjGAgBG1vsAHtgAAd8W5wAm79sAOwIJAB0F8f--FkIB0qYBAvLTpf8FKtP-6tPe_hwh4P0iGsECI-QbA-D4NQUZDysE2p0sANXc_wQM7c8ABhwRBezg7PndEhUJ9r0EAUAH_f_tDecF7tEsBv3sB_MEHt4GFcQE_xAWAATGDBMBEQv_Cx9QB_bF2ff74dwj_7b17wXaxAT3Mw4G7s4J3gsg8vIO_94FA_7bAwftuvbrDvDyAP7_8uvhHtjvIAAt7lr5OjgTQAlIYVACKs8HEAAawAfjGLG-X5BePRFgRzxOY_u9N-kMvXfp8LwU2pi9J095PQsRibsP0vM9kO4svaAE0TxoN4-9Jn7WPED8l7yY3SM-gUmQvUP09byHNCq-nmmoPbZyZbxXsTi-R6V9PKXUCj3_lTW9DxuWvUCnezzBfr498vfBvRetbbz2vTy92r2GPWxo-bwoEzI9sF8rvbGnPb2lmv47lcm6vHjl4bv4RGg9vcNtvN7bvjvxBZc9CyYevae0Gb0QlJm7yCuLPe7mzrxSkKk8v3cAPSEbrTxEIL29tGA9vVvVRzkGYn69HaVcvATmvjrqB3U9v4TEO7HVCr30bGm5YKskvoAygLtCCi6-Pl8OvWzDcrz31rY9qvDUOWhXBDtQw9e9xJJ3PWuMzjp_ZUo9v9HzvP_MoLw8mcm8zlWzPCpd6DneWrY9jyYNPbbfczuqHka6gIGAPVTTZDz0t249eliTvSp3Gzz84Bw9ueNIPWq77LsRje48p1QuPW2jpryDid-9XGupPfujOTxjn1s8TNmOupgY5jwkXp67YvjovVMYZzsJwwC--dm4vT-KIjrrE8o8CeZDPG5Cq7xO8M09ZjPnvf9XADzhKKk9JSmEvHW3obtktmC7qASPvZo0GbtrAMW9xHUxvYNujrtmHr-9hS1sPWoxW7v-2bo9KxIDPsuxW7m40gY9CFbVvT66Erpi36k80654PLV3W7sBGMo90lPEPRdY8LnBbbO7jxxpvGaUmbsIzqS9GxGpO3zsETsuiVi93ekzvfSNprptA9c9taPYvQyfrzm9osA8BL-Vu7lw-rnr4-G9dYgJvCS2FbkpNYW8JB_FvcgYMDlUG_y9Yrv7vRPT8jniAqU5oQWSPedkB7ZUXba8cYcXO9CkfroS9UK9IhjnvXga6jdlRJi8clNDPa0ZMbd4npM9brjZPP2onbjMsmc9B3OVPWyjGzedrwO9jgiEu78WJTnYWYC792zjut2AwTeMGDE9FxiIvTOVHDmcaxi9BHEOPoIJjbnj3Iu8xg3JPJPDj7Y8sG09JO2LPcJGr7hpd7M9pbLyvNP4-zerrHI9uRvAO_-s0bicenO910vTPZ-NlzgX1Tq6-VAxOtBY3DeVERI9Y3iyuhuDgThqU4A9GwAAPVclQzjjbvA9Dkzuvclll7kKXAi94sORvTylWLhIlkK9LBHDvcHMj7iOuaG8yQmuPWRuFLehb0G7C4uQvWKGCbgi_-w9NSkFPvN-W7jyNiA9kRmePeMcYrjoVbO9FiTsPM24IThJXqe9RqyqPVQyiDggADgTQAlIbVABKnMQABpgBBYAIQQe6e4AE_8I2Pv_5_P35PLw_gDp6gAHGAjvFwvy5gH4AA_c_wXVAAAA_gMGIQ8A_zIKAPYb_QPuFb3xGRJ_8wYr3-H6Ce4FGv8SAg0T-PcgAPMS7gMI8_YnDhoZIAAtTAeNOzgTQAlIb1ACKq8GEAwaoAYAAIBAAACAwgAAuEIAACzCAACQQQAAEEEAACBCAACQwQAARMIAAFDBAADgQAAAFMIAAPhBAADgQAAAcMIAAFBBAABcQgAAwMEAABhCAAAgwgAA4MAAAADAAAD4wQAAgEEAACDCAADIwQAAkMIAAOBAAACAQgAAAMIAAHzCAAAgQgAAaMIAABTCAABQwgAANEIAAMhBAACQQQAAyMEAAEBAAACAwQAAUMEAAMjBAADAwQAAOEIAAMDBAAAwQgAA0EEAACBCAABAwAAAUEEAAHTCAABAQAAAAEAAAHBBAAA4QgAAwMEAAFBBAABMQgAAiEEAAPBBAABUwgAAKMIAAJbCAAAQwQAA1sIAAGDBAACIwQAAcMEAAPjBAACgQAAASMIAAL7CAADAQAAAYMEAACDBAABgwQAAAMAAAMjBAACMwgAAkEEAALZCAACowQAA-MEAAJhBAACAvwAAVEIAADBBAAAgQgAAGMIAAIBAAAAoQgAAZMIAAIBCAACgQQAAHMIAAODBAABgwQAAiEEAAM5CAAAswgAA0MEAAIDAAACAQgAANMIAAIDBAAAQQQAALEIAAJhBAAC6QgAAAEEAABhCAAAQwQAAMEIAAIbCAAA8QgAAWEIAACDBAABEwgAA2MEAADTCAAC0wgAAAMIAAMhBAADAwQAAQMIAAKDAAADgwAAAcMEAABBCAADYwQAAwMEAANBBAACeQgAAMMIAAFBCAAA4QgAAMEEAAHDBAAAAwgAAmMEAAFDBAACgQQAAQMIAAABCAAA0QgAAAMIAAKBBAADAwQAAkMEAAIC_AACAQQAABEIAAPBBAAA4QgAAyEEAABDCAAAAQAAAVMIAAIDBAACOwgAAIEEAAEzCAACowQAA4MAAAKBCAACAwQAAhEIAAABCAADYQQAAoMAAAPDBAAAQQgAAWMIAAIbCAAAUQgAAXMIAAIhBAABgQQAAcEIAABjCAACgwQAA4MAAAMLCAADoQQAAyEEAAKjBAAC4wQAAIEEAAKBBAADYQQAAIMEAADhCAADAQAAAGMIAAJxCAABAwAAAYMIAACBCAADowSAAOBNACUh1UAEqjwIQABqAAgAAmL0AAOi9AACgvAAAcD0AACS-AADIPQAAED0AABu_AACgvAAAiD0AAIY-AAAsPgAAEL0AAKY-AACgvAAAPL4AAIY-AABwPQAAbL4AACc_AAB_PwAAfL4AAK6-AABwPQAAxr4AAFw-AABMvgAAnr4AACw-AAAkPgAAmD0AAII-AABUvgAAED0AAIA7AAAkvgAAcL0AAKg9AACuvgAANL4AACQ-AABQvQAA4LwAAKg9AAA0vgAAiL0AABw-AACOvgAAHL4AAHy-AACovQAAFD4AAB8_AAC6PgAA_r4AAAQ-AABVPwAAFD4AAOg9AAB8PgAA6L0AAHS-AACAOwAAgr4gADgTQAlIfFABKo8CEAEagAIAAPi9AABQvQAAUL0AAD2_AAAMvgAABD4AAIY-AAAwPQAA4LwAANI-AABQPQAAoDwAAIC7AACIvQAAiL0AALg9AACAOwAADT8AAFy-AABkPgAAgLsAAJg9AACAuwAAgLsAALi9AABcPgAAhr4AAHA9AABcvgAAqL0AAKA8AAAEPgAAqD0AAKq-AACgPAAAoDwAAK4-AACWPgAAHL4AAIa-AAA0PgAAoDwAALi9AABUvgAAjj4AAAy-AAB_vwAADD4AAAw-AABQvQAAoj4AADA9AACaPgAAPD4AAMi9AACoPQAAUL0AADS-AAC4PQAAgLsAAEw-AACovQAABL4AAEQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=LIOWZCm_ls8","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10984246358060969142"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"6305597940221329151":{"videoId":"6305597940221329151","docid":"34-6-11-ZE6F92DCAB8AFE996","description":"𝐞𝐬 𝐡𝐞𝐫𝐞: ► Integration by parts 👉https://integralsforyou.com/integrati... ► Integration by substitution 👉https://integralsforyou.com/integrati... ► Integration by trig substitution 👉...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4080290/16c4e862ce33fb792de5741356a9018e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/U1k5PwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DyDV_TeNAX4M","linkTemplate":"/video/preview/6305597940221329151?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of ln(sqrt(1+x^2)) (by parts)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=yDV_TeNAX4M\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoVChM2MzA1NTk3OTQwMjIxMzI5MTUxWhM2MzA1NTk3OTQwMjIxMzI5MTUxaogXEgEwGAAiRRoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioQwg8PGg8_E-EBggQkAYAEKyqLARABGniB8BECCAj3AAT-DPr9A_8B-f318Pj8_ADiBA0JCP0BAOfqDAAF_gAA8BH2CPsAAAAC_v308f0BAAf99vMEAAAA7OH4__sAAAAKCfv2Cv8BAeny9f8DAAAAHADwCP8AAAD2AAACB_n_AQ4NC_AAAAAA_PIA-vvz_gAgAC1X6Lk7OBNACUhOUAIqhAIQABrwAX8U-__p2PgB2BLcAMUl9wClDR7_9yHuAM765QHRD7UBAATtAPUQ_P8Z7hIBzO3ZADfSzf4Ewxf_LdQP_xXt_wDiFOoAAALeATUCCQATE9YB__1C_und_f7z2K4AIRvBAOXn6gH-DeoBHxjHAiDmGAPmEDcBOe4aAQOdAQf37eT94fXV_QUZ_QYD0v_51B0jAg3KE_4XFAn56hTZ_ev2FAD-3Bn8DxTNABPKA_8hDfIDzAsRAQgB_vpFNBb0vev--d7EKAfTA_j_1uoZ_zIHF_b8GOf6CdroAQzqDPrz9fAPCMvs8AAA8gTm7wb9yC_4-iAALVJtCTs4E0AJSGFQAirPBxAAGsAHahbQvqyUGT1TDfe7sd_DvTyoX71wvge9PIs5vXIbCD3HgR46D9LzPZDuLL2gBNE8i_vPvW6ukDydU-K7y4AzPubRiL2YYjM8hzQqvp5pqD22cmW8mrVEvkFLEr3irj49msuyuSAax709sbM8wX6-PfL3wb0XrW28yVfCvOYMAD1C7gK9vHzGPG4OH7wiDXi9fQA3PftcDb11P6c6-ERoPb3Dbbze27478QWXPQsmHr2ntBm9EJSZu8griz3u5s68B7cUu0488TzFtvs8WP68vcXZnr0qS187JRetvdtewbwLIc46JkCoPZCoKz1v0a68ZUOdPXc1tL2QdjK9FHtYvlm3C70lSBu88IsLPvM_s7viOsY7xmGqvatbnT3u1Jo7Q3m6PLdSOb2soDO8Sz9hvEePXzvWvg06NAW8PYaDTjwbsgk8CWTAPM9ZdT2FY7E844IYPSOnqr3W3Je7Xf8pPQy1wTw_dJy8NkPDuwPvPz3wG_y6iTMVvZCrlz2F8vg7RU78u5J1GD2dJtg8m5UIvQh2DL7NpeG74LzYvXdhgL0-fQK8LUuJOyEdgTvYeHq8TvDNPWYz573_VwA8-WhxPbokGDw6VxQ7Vms8vFKvsL1ixxg7dKCyvbryfjwShdQ7NJGIvfSmYj1-Ztq7cwdbPQNTxz1yDME5uNIGPQhW1b0-uhK6qrqHPHES1Dwiot67o22BPZLjkz3DiRy4DjRZOg3FHb0f23C7WL2NvayZyrs9K-W6Z7yYvXrr8rzUFAw5bQPXPbWj2L0Mn6850wgHPVYXS7ynxuu5c0u7vfPt-Dzccuk4E6swvaF6pb0kdV24FJ2LvYl64b3GJ3A53qFyvMyQvz2TEqs6cKgGvOOIWrxbkqi6BiRGvcNXtb0IyF03yZRqPCn4NzxcvAC4nlCePdjpLD2Z_HW4gSaNPeHfcT121RS5LuI_u5KBEbzB-Nk4dZq7PKTf_jwaNti3EaBQPbpJnL2osHk5CoCxvCcX4z1iYJK5NWIhvTmmXTyE0MK3bZMFPYgIKT0_9Qm5ge2LPQjKTb3nrKA4yaqNPSOe7DrQ47Y4nHpzvddL0z2fjZc4_PGsO7UKEbyjdpq4REC0PGpK9DvNYia4qC9VPUQK0DrWkw42H58APqTkkL0V6Dq5cKc-vCfTbb10QV-4MpTuvLr4u702Fya4m9KPu-Lkjj1g3kc3szEGuwivvb0cfaa3Iv_sPTUpBT7zflu47ZZGOnXopD0KbuO4UgmkvR_4Uz0JQzA4oZ1YvfTuWT1T31g4IAA4E0AJSG1QASpzEAAaYCERACcTLu_X_BH4-9QC_wbn7uny7PwA-tEAFBPy6RcP8-cCAP8O3vvzygAAAP8BARz5APREGAfrDwMU8xOw_g0df-kWP-TYDQvz4CH1FPv1Dv_fJgDYG9QI7e8EOxAeGSAALV_Pajs4E0AJSG9QAiqvBhAMGqAGAABgQQAAdMIAAKZCAAAgwQAAwMAAAOBAAACQQgAAoMAAADTCAADQQQAAwEAAAGzCAACAwAAAcMEAACDCAACoQQAAWEIAANjBAAAoQgAA2MEAAOBAAAC4QQAAYMIAAEDBAACcwgAAPMIAALbCAADAwAAAvkIAALDBAAAwwgAAiEEAAKDCAAAUwgAAxMIAAFxCAAAgQgAAiEEAAOjBAABAQAAAJMIAAAAAAAAAAAAAMMIAADhCAAAcwgAAqEEAAAxCAABAQgAAEEEAAMhBAACgwQAA6EEAACBBAABAwAAAAEIAAJrCAACQwQAADEIAADBBAACYQQAAmMIAAFDBAAB4wgAAIMEAANLCAACwwQAANMIAAMjBAACowQAAyEEAADBBAACSwgAAmEEAAPDBAAD4wQAAiMEAAADBAACAQAAACMIAAKBBAADSQgAAGMIAANDBAADYQQAAAMEAACxCAAAAQAAALEIAAADCAAD4QQAAREIAAEDCAADYQQAAaEIAAAzCAAAAAAAAEMEAAEBAAAC0QgAATMIAACDBAABwQQAAjkIAAIjCAACYwQAAkEEAAKhBAADYQQAAgEIAAIBAAAAwQgAAQMEAAHBBAAAowgAATEIAACBCAAAEwgAATMIAADDBAAAYwgAAjMIAABzCAAAAQAAAMEEAALjBAABQQQAAEEEAAETCAABQQgAA2MEAAKDBAACAvwAAREIAAADCAABYQgAAIEIAAIC_AACgwAAALMIAAHjCAADIQQAAJEIAADTCAABQQQAAKEIAAHDBAADIQQAAQEAAANDBAACAvwAAAAAAAGBCAABAQQAABEIAAMBAAADIwQAAiMEAALjBAAAIwgAAjsIAADBBAABMwgAAoMEAAIjBAACOQgAA4EAAAKRCAACWQgAA4EAAACBCAACAPwAADEIAAEDCAABQwgAAAEEAAEDAAAAEwgAAgEAAAIJCAABIwgAAYMIAABTCAAAUwgAAOEIAAMDBAABAwgAAgEAAAIA_AADQQQAA6EEAAMDBAABgQQAAoMAAABjCAABwQgAAAEAAAGTCAAC4QQAAwMAgADgTQAlIdVABKo8CEAAagAIAAJ6-AAAkvgAAbL4AAOC8AAC2vgAAbD4AANg9AABZvwAA4DwAAAw-AADGPgAAEL0AAFC9AAAEPgAAqL0AADy-AAC6PgAAyD0AAAQ-AAAhPwAAfz8AADC9AAAQvQAAVL4AAFS-AACyPgAAJL4AAPa-AAD4PQAADD4AAEQ-AADePgAAUL0AAIg9AACovQAABL4AAFC9AABMPgAAfL4AAL6-AACqPgAAqL0AACQ-AAAEPgAAMD0AALg9AAAUvgAAor4AAHS-AAA8vgAAyD0AABw-AAAPPwAA3j4AADy-AAAcPgAAVz8AAIg9AADgvAAATD4AACw-AACIvQAA4DwAADO_IAA4E0AJSHxQASqPAhABGoACAABAvAAAyD0AACS-AABdvwAAhr4AAMg9AAAlPwAAZL4AAEw-AACmPgAA2D0AAMg9AADIvQAAoLwAAKA8AABQPQAAbL4AAO4-AABkvgAA0j4AAKC8AACWvgAA6L0AABA9AAAMvgAAFD4AAPi9AAAwPQAADL4AALi9AAAQvQAAqD0AANi9AADavgAATL4AAOg9AAA8PgAA2D0AAAy-AAB8vgAAiD0AADw-AAAcPgAAQLwAAL4-AAAwvQAAf78AAOC8AACWPgAAgDsAAAw-AAA8PgAALD4AAIg9AAA0vgAALD4AANi9AABcvgAA6D0AAKA8AAC6PgAA4DwAAIi9AAC4PSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=yDV_TeNAX4M","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6305597940221329151"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"3137688396063415638":{"videoId":"3137688396063415638","docid":"34-7-0-ZCE9902691E74BDD2","description":"𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou #integrals #integrationbysubstitution...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2004094/eed69ac91981afe3771eb1ffe46c034f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1wwiHAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrMA1VK_gEfE","linkTemplate":"/video/preview/3137688396063415638?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 1/(16+9x^2) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rMA1VK_gEfE\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoVChMzMTM3Njg4Mzk2MDYzNDE1NjM4WhMzMTM3Njg4Mzk2MDYzNDE1NjM4aocXEgEwGAAiRBoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioPwg8PGg8_E3qCBCQBgAQrKosBEAEaeIH8CfUB-wUA_QIFAvoF_gH0CPEE-f79AO0O_f37_wAA6vkDBgj_AAD1DgEJAgAAAAEHAf7y_gEACAb7-QQAAAAI6ff8_QAAAAUUAPv-AQAA9vz-7wEAAAAECPsKAAAAAPUKA_oCAAAABQIHCAAAAAAH-_4JAAAAACAALWA94Ts4E0AJSE5QAiqEAhAAGvABfxT7_9Lo4v_F9tIA6zvlAKUNHv8gKt4A5vLaAPndxwHrB-gAHA_d_-wSEACwFOv_FdauAhHA9f8_2vwA6Nn6ANcC_AH4EO8CPCsbAOv_Bf_s5B3_6-nxAd_by_4hMOH-7_IK_SER8AIGMtQDIOYYA_gBKQYv-ygBELz2BcsE4gDh9dX99A3x_g7iJPzBDREDL_AU-RwiBwPl_t0ECe_3_fHSJv_yFNb_HOMd_AYZDP2qAxgCDCIJBSwCFAHC5QIK5Bsl_s356vToDQQCEuz29wgp8Pko5fYIJuwW-P3y6fvvwfft4BYK8vbf9ALLGvUKIAAtUm0JOzgTQAlIYVACKs8HEAAawAecTa--6sJZvEln_btOY_u9N-kMvXfp8LxL07a9lssrPazuB72nzfg97CSsvLWGF72hRwy-UtyMvLAsAr0W-8s9dOGRveFMp7yG4wm-3yD1PKwBKr1Hjw--baSRPGg4yjxHf669mwGOvUtEkzzg2X49UnFNvc03R7zJV8K85gwAPULuAr2JR_28k52ovWtwEb1lOxu8V_RdvZ_aYzrtr4g9g-4cvS7aa7uDbRQ-IScHvVL5srymEIO9HwAnPTMb_7zDHfm8qTXovEeTyzybjVq9w3esvLMIRTyyAp29H2E9vJJY0jxmFuE9QbUGPRPWhrxpM_M8Hm_yvdcl0zqt-QG-VKWSPCHR3zvkhv89OXb1PIxvnjwchL-9Ta0NPTec5Dvd8aE9S3qTvWArl7zg3jA93_DMPBBYPTqZ4mA8Nek7PTmfEzzt7gM8Fy8UPHijhTz-H_E8fP5qvVwYzrxngjw9eg27Pd1sYrxl_x28WqirPKxjxzqyYIe9kdKcPflOCjvpNpc845s3vEug8zoFI6U91gI7vknlmjqV3Dy9PPHBvUPp5rs9FUY96munPHoGQ7xu_Ok9TOStvStzqbtRSi0903IWvKE4lTul_0A82eqyvVOSN7prAMW9xHUxvYNujrt4I9i8zciVPTIdHbv-2bo9KxIDPsuxW7kvEbQ9SpoPvopX4rmquoc8cRLUPCKi3rsBGMo90lPEPRdY8Ll3dkM8hgqEPFHCp7pWYai9X3AXveOgrbnNvMu9p89OvcxKqbeqgqE9GhiZvUdKoDhgxEO9kSXYvJTsBTn-65G9Z4dTPZxI8bjg-BW9Z1NkvVLrKbirPZG9GlIVvjBRCjriAqU5oQWSPedkB7Za3YU9fooDvcxSd7kGJEa9w1e1vQjIXTejRyO8PXSLPFpSSjnr-BQ9aZU0PaEVsjhORaq8z6PivL6kUzlYchW9wpIhvRHorDnvGMM85AYuO2u9xDjnItk8A8z8vVJJyDkKgLG8JxfjPWJgkrlR2fC8OeUbPZJKlDjo2AE9EhNUPaqcgrbzzMY95dODvWMJjzffaGw8vWKnPbAaiTea_5y90JCbPQLbLjgPml09ybRxPYQajzhP1Gg9d342vRMJIzdoglm7unyQPcLWZzj3ASg-cGHdvfFnv7luHmK9sSuyvRO_v7hyNAk7cI60vTjSjbYHFKC6ySC3PcLXmrechsk7cDIAvcMdGTci_-w9NSkFPvN-W7gFHF091hDmPPgQz7hLkQy-l-KaPa5NnzivDMW9I-4bPQcN3bYgADgTQAlIbVABKnMQABpgCvsANvc71QMGFfsa3f728Ofv2_rVE__g5gAeJRbhFgvX2Pvv_zXEA_CzAAAAEA4PKO0AEWQFBPsj4yLcIZ7xJPt_DAg5udYCDNDiS-Yk5vES9_lJAAceyC324-ZEMUMaIAAt4tgyOzgTQAlIb1ACKq8GEAwaoAYAAFBBAAAQwgAA8EIAAKLCAADgQQAAgD8AAJxCAACIQQAAkMEAAJjBAACYwQAAgMAAAEBBAABAQAAAcMEAALhBAAAsQgAARMIAAJJCAAAswgAA2MEAAFBBAAAUwgAAIEEAADTCAAAgwgAAAAAAAIDAAACIQgAAgL8AAFTCAAAAwAAAosIAAIDAAABUwgAAXEIAAFBBAAB4QgAAgEAAAEBAAAC4wQAAoEEAAODAAADAwAAAEEIAABzCAAC4QQAAHEIAAHBBAAAEwgAAmMEAAEjCAACYwQAAgL8AAKhBAADYQQAAEMIAAADBAACQQQAAHEIAAIBBAABwwgAASMIAADjCAAAwQQAA6MIAAODBAAAYwgAASMIAADzCAABoQgAAIMEAAK7CAACIQgAAcMIAAADAAACAvwAAkMEAAKjBAAA0wgAAcMEAAKRCAACgwAAAgL8AAIBBAABAQQAATEIAAEBBAADYQQAAoMAAADzCAAAAQgAAGMIAAHBBAABIQgAAgMIAALDBAABwQQAAuEEAAMJCAABswgAAOMIAACDBAACYQQAAcMIAAMDAAACQQQAA2EEAAAhCAACKQgAAyEEAAOBBAACIwQAA2MEAABjCAACyQgAAAEIAAATCAABYwgAABMIAABjCAACewgAAAMAAAABCAABAwgAAMMIAAEDAAAAYwgAAsMEAAADBAAD4wQAAKMIAACBBAACaQgAADMIAALxCAAAsQgAAUEIAACzCAADYwQAAmEEAAKBAAAC4QQAARMIAAKBBAAAoQgAAgD8AANBBAABAwAAAMMEAAGDBAADAwAAA4EEAAKBAAAAYQgAAqEEAAFjCAAAIwgAAAMIAAMDBAAAQwgAAwEEAADTCAAC4wQAAUMEAAI5CAAAowgAAgkIAAFBCAACAQAAAMMEAAHBBAAAQQQAAGMIAAHzCAAD4QQAAGMIAADDBAAAQQQAAEEIAAIrCAADgwAAAmMEAAIzCAAAQQQAAYEEAAEjCAACOwgAA4EAAADhCAAAcQgAAAMIAAMhBAADAwQAAoMEAAHRCAACwQQAAoMEAABRCAADQwSAAOBNACUh1UAEqjwIQABqAAgAAZL4AADy-AAAUvgAAgLsAABS-AAD4PQAAyD0AACm_AADgPAAAED0AAHA9AACgPAAA-L0AALg9AABEvgAAmL0AACw-AADIPQAA-L0AACc_AAB_PwAAbL4AAL6-AADgPAAAxr4AAMg9AAD4vQAAHL4AAMg9AADoPQAAFD4AAPg9AAA8vgAAgLsAAHC9AABwvQAAqD0AAAQ-AAAUvgAAgr4AAGQ-AAAUvgAAoLwAAHC9AABMvgAAQLwAABw-AACGvgAAhr4AAJa-AADIPQAAqD0AAAE_AABsPgAA0r4AAIg9AABXPwAAgDsAAIA7AAC-PgAA6D0AAAy-AACgvAAAVL4gADgTQAlIfFABKo8CEAEagAIAAJi9AAAsvgAAir4AAFe_AADIvQAAQLwAACw-AAAkvgAAUD0AAMg9AADYPQAAND4AADC9AACYvQAA4DwAAIg9AACovQAA4j4AALa-AACKPgAAPL4AAPi9AAAwPQAAFL4AAFC9AAAcPgAAjr4AAKC8AAAQvQAABL4AAJg9AAA8PgAAoLwAAJ6-AABQPQAAXD4AAHw-AADqPgAAcL0AAKq-AACyPgAALL4AAIa-AACYvQAAFD4AAFy-AAB_vwAAQDwAAAQ-AACIPQAAyj4AAMi9AAD4PQAAJD4AAJK-AADYPQAAyL0AAPi9AADgPAAAcL0AAEQ-AACYvQAA2L0AAAQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=rMA1VK_gEfE","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["3137688396063415638"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"18295509786492084838":{"videoId":"18295509786492084838","docid":"34-11-16-ZA820DBB463F88658","description":"substitution ► Integration by Weierstrass substitution • 🧑🔧 Integration by Weierstrass substitution ► Integration by partial fraction decomposition • 🧑🔧 Integration by partial fraction...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4543705/7bdfdeadb1674e7d9698659609f2a80c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RbfUBgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DGUR0iQjFFq0","linkTemplate":"/video/preview/18295509786492084838?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of (ax+b)^n (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=GUR0iQjFFq0\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoWChQxODI5NTUwOTc4NjQ5MjA4NDgzOFoUMTgyOTU1MDk3ODY0OTIwODQ4MzhqhxcSATAYACJEGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKg_CDw8aDz8TToIEJAGABCsqiwEQARp4gQYH-QQD_QABDAQH-Aj9AuT7_gr7AQEA5Q_8-Aj9AQDp-AUF_P8AAPIGCwsBAAAA9v4U-vr_AQAOBAH-BQAAAP367wr_AAAA-hwB_v4BAAD1_P7tAQAAAAUJ-wv_AAAA9gMM_AIAAAAFAggJAAAAAA39_gEAAAAAIAAtMYLKOzgTQAlITlACKoQCEAAa8AF__9UA0-ji__kL7gDRKeEBpw0d_woh5P_P-uUBu-ndAQsL9gD5G94AAvn7AMIg1QA8DNf_Fdsa_1W7CgAB5tYA1QjoABzd2gApGx3_BBje_eT5JvzeyfoB_cPcACAbwgDa-gz-IwXlAPMW1wET9AkABP9HABYNJwQCngEH7-PYAeDx7v3yFvoH5tYV_NUcIgIMyxP-Jh4T_OUi5wIJ0gv8Et4n_Ngdz_0kvQ3_DPPtB78NBAkBBggCHygK-tf3Ff4BDTL6zvnr9NTs-vv9HfL47_vd8wrt9AgSCgn-8x71-OzbAPUfFP7y-PcUDusb8wEgAC1D7gs7OBNACUhhUAIqzwcQABrAB4fbqb69UKU8HCAdPaWdj71E5M-8hUu9vOCg_b0uDKY7BZEevP3Spz0JshS9S_2hPIv7z71urpA8nVPiu4mZDT7MP1-9652fudlDS75DknY7KX-Cvef-Kr5dy_88SHQqPIJEibx1K4q9_CtYu-8RGz3BxL-9CJABvclXwrzmDAA9Qu4CvbGczryXnEm8tu1gvfSV9jx7IAi9eI99PPp0wT2uTgm97jLyPMTBdD38HLy6DrGLu3uuBb3DB3s9I8oNvb7NET2UgYc7meRWPX8V4L1uOyO98Z2YPLICnb0fYT28kljSPN_8xj3sG_M8h1k-vfII7j17FM69x4CsvFyRgL5tNEW9tn4fPOSG_z05dvU8jG-ePBSbCr1dNU89-CVRPAO6yjxUYFe9GXdePBompLxHVEi99E4qPDLPJT0kTRc95rrfPKpUPzzYtqg84BDLukR-R714Bce9N-9JvGeCPD16Dbs93WxivO0zXT2SvOk8X02zO4TTh73GTtg9epVvOy24Gj0tmb66MhxAOpuVCL0Idgy-zaXhu-xDuL2PUAO-f0AQu7cwgbwOzMU5XQqZvG786T1M5K29K3Opu_fYpz0mcyw81VjGO_MnYLw_xty9KcrGuxmBQr0jsQ69MVIYvL9rp7s6w7k81jV_vP7Zuj0rEgM-y7FbucVlBj36DAi-VSEDurwpQDzSwzA9EJp6u6NtgT2S45M9w4kcuIkiKb3OUL-7Gngku1i9jb2smcq7PSvlun69p71fNZk5JshiOcdnEj6uoOm9kAm0uVmTXTxYUvI7c2Ccups6z7247kE8LScKud_4v7xItC68QxcPNh4RqL3O_Eq-AcsOOZnw8LzQS6A9O9uzOAMRnb3QqIq8l4iZORL1Qr0iGOe9eBrqN_y3_TpLL3-7aglZt4Vwdj1Rdkk9ZleEOB5rZj1z3U891wAdOS7iP7uSgRG8wfjZOHSSMj2VxRS8ewAfOOy5r7vFwZq9E4B2OQryE73jnb09lVPVuIs0r7qaspE7ZcsguHTEDjz5dEs9MhXguP-X6z1HiDe9C4mVNqgXnTsiFes8B6t-toBX1bxqoAk-dU5ZOLzWGDwxs488ukW1OBKfYLuyHDa7ZQsyNjC7Jz3-DsU8PqRkt-Nu8D0OTO69yWWXuVxJAb3K3tK9FyIEuW9FZ720Fpu9TnD4t465obzJCa49ZG4Ut9ecaD3fETq9T2IZuCL_7D01KQU-835buA-G1byGfMY8KLLGt1IJpL0f-FM9CUMwOFNQy70shA88Li5MtyAAOBNACUhtUAEqcxAAGmAM_QA49kTM4_gF6xnH_xf02uzLBs4T_9bn_wYjF-UR-cvCA_v_Ldjx96oAAAAK9uwy_AD-cAr72yHmCuY0iu9SFn8HCkC6u_8XzgcK4QP79hcC8FEA_R-_GgTD-konPRMgAC3WkSU7OBNACUhvUAIqrwYQDBqgBgAAAEEAAHTCAACcQgAAoMEAAKDAAABAQQAAYEIAANjBAABAwgAAoEEAAIjBAAB4wgAAMEEAALjBAADIwQAAsEEAABxCAAAUwgAAWEIAAEDCAAD4wQAAsEEAABTCAACAPwAAZMIAABTCAAB0wgAAgMAAALZCAACYwQAAjsIAAPBBAABwwgAAAMIAAGzCAAA4QgAAJEIAAChCAACgwQAAQEEAAMjBAABgwQAAYMEAACzCAAA4QgAA0MEAAIBAAADoQQAAIEIAADDBAACAQQAAiMEAAHBBAAAQQQAAoEAAALBBAACmwgAAcMEAAFBBAABgQQAABEIAAGzCAACQwQAApsIAADDBAAD-wgAAqMEAAFjCAADIwQAALMIAADhCAADAwAAAzMIAAABBAADAwQAAYMEAAMjBAACAQAAAAMAAABDCAABAQQAAnkIAAATCAADgwQAA2EEAAAAAAABMQgAA8EEAANBBAADgwQAAAMAAAIpCAAB0wgAATEIAAGBCAADAwQAAgMAAAFDBAACAQQAAeEIAAHDCAADwwQAAIEEAABxCAAAEwgAAgEAAADBBAAAgQQAAYEEAAIpCAABgQQAADEIAACDBAACAQQAAeMIAAIZCAAAcQgAAIMEAADzCAADQwQAAQMIAALTCAACwwQAAiEEAAIA_AAAkwgAAAEEAAEDAAAAYwgAAsEEAACTCAABAwQAAoEAAAFxCAACIwQAAVEIAACRCAABAQAAAYEEAAFzCAAAMwgAAMMEAAGRCAABYwgAAEEIAAMBBAACAwQAAGEIAAKDAAABgwQAAYEEAACDBAAB0QgAAEEEAAPBBAACQQQAAqMEAALDBAAAUwgAAuMEAAJbCAAAAQQAAfMIAAPjBAADAwQAAlEIAAIDBAACkQgAAdEIAAADBAABIQgAAAMEAAChCAABcwgAAjMIAAKBBAADwwQAAkMEAANBBAACAQgAAHMIAAGjCAACwwQAAVMIAAOhBAADgwAAAdMIAAFDBAADAQAAAVEIAAPhBAAAQwQAADEIAAFDBAABswgAAfEIAABDBAABEwgAA-EEAAIDBIAA4E0AJSHVQASqPAhAAGoACAABUvgAARL4AAFA9AAA8PgAAJD4AAJo-AACAOwAAJ78AAFQ-AABkPgAAfD4AACQ-AACgvAAAvj4AADA9AACIvQAAHD4AALg9AADgvAAAQT8AAH8_AAAcvgAAgr4AAOg9AACmvgAAML0AAOg9AACKvgAA4DwAAPY-AABQPQAAUD0AAKq-AABMPgAAyD0AACS-AABwvQAAQDwAAJK-AABQvQAABD4AAKK-AABAvAAABD4AAEC8AABAvAAAcD0AAMq-AAC6vgAA5r4AABS-AADGPgAA8j4AAOC8AAD6vgAAiD0AAHM_AABAPAAAqj4AAKI-AAC4vQAAqD0AAEy-AACWviAAOBNACUh8UAEqjwIQARqAAgAATL4AAFA9AACWvgAAdb8AAGy-AACAuwAAqj4AALK-AAAEPgAAqj4AAKC8AABwvQAAHL4AAFS-AABAvAAA-D0AAAS-AAAFPwAAJL4AAII-AABwPQAAoDwAAOA8AAAEPgAATL4AAOI-AADivgAADD4AAHS-AABMvgAAMD0AAAw-AABkPgAAHb8AAKi9AAD4PQAA6j4AAOA8AACYvQAArr4AADQ-AABcPgAAhr4AAOi9AACaPgAA2L0AAH-_AABsvgAAPD4AALg9AADCPgAA-L0AAIg9AACCPgAA4LwAACQ-AAAEvgAA-L0AAFA9AABQvQAAtj4AAFw-AACAOwAAuD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=GUR0iQjFFq0","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["18295509786492084838"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"11141337599452300289":{"videoId":"11141337599452300289","docid":"34-10-5-Z8D2EC3318B45859D","description":"𝐠𝐫𝐚𝐥𝐬 𝐅𝐨𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsfory... 📸 Instagram: / integralsf...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/927845/e379d3bd664b56e78b408e623dfe112b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/WSPpuQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPzorndRrE9Y","linkTemplate":"/video/preview/11141337599452300289?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 1/(x^2+9) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PzorndRrE9Y\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoWChQxMTE0MTMzNzU5OTQ1MjMwMDI4OVoUMTExNDEzMzc1OTk0NTIzMDAyODlqhxcSATAYACJEGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKg_CDw8aDz8TcoIEJAGABCsqiwEQARp4gf8E-wH-AgAM_f_8AwQBAfMI8QX4_v0A5AQD9f78AgDq-QUF_P8AAPUOAQoCAAAAAv799vP9AQAGBQX7BAAAAAjo9_z9AAAABRQA-v4BAADk-vz3AgAAAAsE-AUAAAAA9wML_AEAAAD6AQUAAAAAAAMDAQUFCwD_IAAtE_PZOzgTQAlITlACKoQCEAAa8AF_Bvv-59X3AcTh4QDYNv0Anx8LAAk37wDk8dgA-PW4Ad718QD6-egA_BEUANMs2gAW06oDErz1_zDRD_8Lxv0A0e_2ARP-4QE_EhoC-wEQ_-vjHv8K1fv_8tWpAB4e2QDz3AsAEvjy_AY10gMU8woABfcgAjL7KgEDlwEI09PmAt_00v3zDfD-DNsR97YlHAQuAyoEFBv6_ekV1_wI5xL06NUSAQk0z_0U3wMIJP8OBboOBAkAOBALRiUCApjx_Qbx9SsC0vL5AO3xGAUp_AX9CSzv-R7z8w4mCBP1DQDz--vZAPUBEQD38Oz9A9YO8P8gAC0sqgI7OBNACUhhUAIqzwcQABrAB3HMur7mrws6R-EhvE5j-7036Qy9d-nwvEvTtr2Wyys9rO4HvZ9bOD7nE3692Ao_vIv7z71urpA8nVPiuyb_8z3xBbe9oGUnPIbjCb7fIPU8rAEqvU_l1L369488uuwhPaT7ib12GNO9DIfvPKtNoj1U3B29CXYSvfa9PL3avYY9bGj5vNxqGTr1EVi9E3xYvWU7G7xX9F29n9pjOu2viD2D7hy9Ltpru1fpvj2q-eC8iq2gvGV7k737lqQ9_3WuvBIduDxvwrO80BzjPGQqs71BPjK8OsY6PCUXrb3bXsG8CyHOOmYW4T1BtQY9E9aGvPRsablgqyS-gDKAu2O0Hr42Fnu7f2BYPOSG_z05dvU8jG-ePFDD173Eknc9a4zOOt3xoT1LepO9YCuXvFh-Lz109T48O3hcPOl2AD0wYgQ9GwfFO8se17x2YbU8DfwoO7Q4xjtFHSy9XlSBvPzgHD2540g9arvsu8g9BDyGE2I9aZ5tPLJgh72R0pw9-U4KO-k2lzzjmze8S6DzOgUjpT3WAju-SeWaOgpCg71sv7u9DIPoO3fc8DxG-y499g2nvG786T1M5K29K3OpuzX78jwWxYY8Rik-O99N-brjTDi9ZRnBuhcJkr2u-Uy9TnAcvJR3JL0vhbc9J6HXu-zvpj1aTbI9T3OmudPMaT0O3ey9j4o4urRgWD3P-ek8xC-rOgEYyj3SU8Q9F1jwuWsUbTw8jKQ7CRz3uVi9jb2smcq7PSvlurQipb1tLT29ariEOaqCoT0aGJm9R0qgODbWdL3o-VO9Ofs-uZG6eL0onB09xwEJuCrG-byIOyi9VnZMt6s9kb0aUhW-MFEKOqUVXzyG-Yw93_cnOW7F2TwK5Mi83-UCOmsewb3ErqK9WfgiOHvaobxZQBU8UG_ZuHuzuDtf9kY9NKPduAwHgry0i8y7D7P_OVsRC71QnO28cNMDOW0IqTz4zEg8JsnjNEHjeLx8R-29YROrOQryE73jnb09lVPVuINokrzkgx49p2upN_ZHMz2mNHE9Cu2xuP-X6z1HiDe9C4mVNjV2rjzmrM899QzYNlo0o718Wko9ciBsOKzyMz1jA5M9-s7UOJ1wpTzZlwy9Iwl3uOO1AT18N0w9MUePtvcBKD5wYd298We_uVxJAb3K3tK9FyIEuXP5ajxV-KO94xA7N8JGfrwPe-E9DLXBN80zQLx55Tq90QZatyL_7D01KQU-835buCSsNz30Ycc8Q_LxuLQWwL1UNLs9PF-yOC43-L0zccY8-NJ-tyAAOBNACUhtUAEqcxAAGmAl9wBA8jSy_AonACnB7__93OTE8_YI_87-_w0gFtckFby9CvUAP8Lv6qMAAAAQBgMw5AAAfO0H-T7lJ94klvMn7X8DAEOjwOwB4QJq0Cb_6yHy-EgA7xmsMu_h6181RiIgAC23zBQ7OBNACUhvUAIqrwYQDBqgBgAAkMEAAJbCAAC8QgAAXMIAAMhBAAAAwAAAiEIAAOBAAADwwQAAwEAAAKjBAAAAwQAAREIAAMhBAAAgwgAABEIAABhCAAAQwgAAPEIAACjCAAAIwgAACEIAABDCAABAQQAA-MEAAFzCAACgwQAAUEEAAMhCAACgwAAAQMIAAIBAAABIwgAA6MEAACzCAABUQgAAOEIAAIBCAAC4wQAA4EAAABDCAADgwAAAqMEAAODBAACYQQAAdMIAAMBBAABAQgAA4EEAALjBAADgQAAAKMIAABDBAAAgwQAAYEEAAFRCAABIwgAAoEAAADBBAACQQQAAEEIAAEDCAAAowgAAhMIAAAzCAAD6wgAA8MEAAFjCAAAAQQAAXMIAALhBAABwwgAArMIAABhCAABUwgAAoEAAAEBBAABAwAAA8MEAAEzCAACgwQAAkEIAAAAAAABwwQAAEEEAAEDAAACMQgAAQEAAAPhBAABQQQAAJMIAADBCAABgwQAANEIAANBBAAAMwgAAsMEAAEDBAACAQAAA2EIAAAzCAAB0wgAAIMEAAChCAACIwQAAYMEAANBBAACgQQAAgEEAAJxCAADoQQAAfEIAAKDBAAAEQgAAjMIAAJJCAADoQQAAMEEAAFTCAAAEwgAAPMIAALLCAABQwQAA0EEAAMDBAACIwgAA0MEAAGDBAAAgwQAAkEEAAADCAADYwQAAuEEAAEBCAACEwgAApkIAADhCAAC4QQAA-MEAAADCAADAwAAAYMEAAPBBAAAgwgAALEIAACBCAACgQQAA8EEAADDBAAD4wQAAcMEAAADAAADgQQAADEIAAARCAACgQQAAgMEAAEDBAAAswgAAIMEAABjCAAAgQgAAFMIAAETCAACgwAAAokIAADDBAAB8QgAAKEIAAHBBAADAwAAAQEAAACRCAABYwgAAQMIAADBBAAA8wgAAQEAAAKhBAABgQgAAuMEAAADAAACAwQAAlsIAAAAAAACwQQAAuMEAAGDCAAAAwAAA8EEAANhBAAAwwQAAIEEAAADCAAA8wgAASEIAAHBBAABYwgAAOEIAAJDBIAA4E0AJSHVQASqPAhAAGoACAACgvAAAJL4AABS-AAC4vQAAuL0AACQ-AAA0PgAALb8AAJg9AACYPQAAPD4AADA9AAAwvQAAHD4AAJi9AABQvQAATD4AAMg9AADYvQAACz8AAH8_AABMvgAAqL0AAFA9AAC-vgAAmj4AADS-AAAkvgAAHD4AALg9AAA0PgAAPD4AAAy-AAAQvQAA2D0AABA9AADgPAAAUD0AAI6-AACCvgAAij4AAOi9AAAQvQAAQDwAAHC9AACIPQAAcD0AAGS-AAB8vgAAkr4AAFA9AABQPQAACz8AAKo-AADevgAA-D0AAEU_AAC4vQAAgLsAAAQ-AACAOwAAqL0AABA9AADOviAAOBNACUh8UAEqjwIQARqAAgAAmL0AAIC7AAAMvgAAUb8AAKa-AACgPAAAsj4AAJi9AACoPQAAnj4AAIC7AACgPAAAUL0AADC9AACIvQAAMD0AACS-AADaPgAAgr4AAIY-AAAUPgAA6L0AANi9AADgPAAABL4AADQ-AACSvgAAcD0AADS-AACovQAAgDsAAOg9AADoPQAAqr4AAKi9AAD4PQAAtj4AAII-AADYvQAAZL4AAFw-AABwPQAAgDsAAAy-AAC6PgAAFL4AAH-_AABkPgAARD4AAKi9AACGPgAAED0AAKI-AAAkPgAAXL4AABw-AAC4vQAAHL4AALg9AAAQvQAARD4AAOC8AAAUvgAAdD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=PzorndRrE9Y","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["11141337599452300289"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"5625469313069090864":{"videoId":"5625469313069090864","docid":"34-1-14-ZDAD43218F58096C2","description":"www.youtube.com/integralsfory... 📸 Instagram: / integralsforyou 👍 Facebook: / integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsfory...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1775633/8ac2c2e184efea091c709e5fa62de5e5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RZ3ywAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dt3QkKB0e-c8","linkTemplate":"/video/preview/5625469313069090864?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of (ax+b)^2 (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=t3QkKB0e-c8\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoVChM1NjI1NDY5MzEzMDY5MDkwODY0WhM1NjI1NDY5MzEzMDY5MDkwODY0aocXEgEwGAAiRBoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioPwg8PGg8_E0OCBCQBgAQrKosBEAEaeIH_BPsB_gIAAQsDBvgH_QLpBf4D-___AO4E_PgFAAAA8_EHCgAAAADnCwQJ_QAAAP79Cv70_gEACP3-_QMAAAAO9e0B_gAAAAEQAAT-AQAA9fz-7gEAAAAAAPgL_wAAAPcDC_wBAAAABAgEBAAAAAAH-AD-AAAAACAALRPz2Ts4E0AJSE5QAiqEAhAAGvABfxrW_-PtzAHrDf4A9iLZAroFH_8fKd8A2wMJANIH3gEABO0A_i3l_-D-_gCq_eYCQ_XH_xHWBQA-2_wA-9_6AOMT6gAJ4u8BKDgo_v4F5__74jv9Befz__3E3AAgGsIAzvr6_isG1v7qJtMDJNAH_wLqK_wBEin99rn0A-vm9ATm7PcI4wnuAfHvB_fE_iEBE98K_g0sB_nmIucCCdIL_P7dGPy-K-QBPakEAioN2wG_DQMI7hsACBcjJf60DRf-AQ0y-88U-vHX_wT5_h3y-O_73fMFAvENBPb9A_3y6fvs3AD1Iv0S7PLt_QPqOPkLIAAtGPAMOzgTQAlIYVACKs8HEAAawAfou6O-dew5O2-wgTyjUzy99MgbvOtNMbzjoLm9HG2LPF4FI7wglsI9CqMZvRAGnrzDeFe9QVKbOxlZMryY3SM-gUmQvUP09bzZQ0u-Q5J2Oyl_gr0XfgC-6mA4PfmutzxYFSa9odwxvRUZnbzBfr498vfBvRetbbzJV8K85gwAPULuAr28fMY8bg4fvCINeL1nPQI8ABIZvKYHBzxbMaI9sZFavU9sTzzEwXQ9_By8ug6xi7vWMTO9jVL4PDQ_yLw4Aic8U5IWPE3XGD1EIL29tGA9vVvVRzn5KVO9BAMIPG-5ejzqB3U9v4TEO7HVCr15KoY9RQcpvQqQF70Ue1i-WbcLvSVIG7w-6r896LT4PHYKj7ew4tS9dTbJPTyOVTyc2VM80LHovMdVkjkaJqS8R1RIvfROKjwyzyU9JE0XPea63zwIzUk9fm2iPOr_xTtAsm-8kJnAvUTmJTwTvKw9cCTQPfr3T7zaiIw9UpRwPM_2pjuyYIe9kdKcPflOCjuimSc9YPtuvGfO3TublQi9CHYMvs2l4bsour69puy5vUOkjTtSSPC7INa2PNWokbxu_Ok9TOStvStzqbsYBsw9_HOsPLFkWDtd_p47gLYVvl2DRrsXCZK9rvlMvU5wHLwaVQG9i4EfPXUsJbz-2bo9KxIDPsuxW7nFZQY9-gwIvlUhA7oxgr47-F7yPDxLFTqLEJg9EZ_FPP5M8rnmWwA8RJCevCUhU7si-IS9h-sDPMnzDbuEBbG9jf2bvBDfQbXHZxI-rqDpvZAJtLlw9yg9VAqwPCNOIzlCTLi9rvI9um3Bj7cqxvm8iDsovVZ2TLerPZG9GlIVvjBRCjqlFV88hvmMPd_3Jzm8TLO9MhRBvNfZ7jjp9q28JTv2vbm8zDjM--68Vj0JO7u7lrkbi3w9NckZPW07graEPkI99wSZPcbq4rltMck8KEnyvLSerDielj89VPCKPObqSTjrpGM8ooyivb9SZDkp9LC8etCSPdE5SreYmeO6nWYDvC_wErYXH7A8S6CHPTgzx7j_l-s9R4g3vQuJlTYLtSY8lX8tPGCZKjhynEK7J0_5PTVYDDlA1c08CuJROwIOyjelUkc8YIE-vb_m0jewsjE9Nvm1uzXA8zbjbvA9Dkzuvclll7kh_3G8jzaOvcoRrrhuG7G9LC7OvT7xXrhVMRO8TplbPQ2vyzfTM4g9hQv5vEB6JLgi_-w9NSkFPvN-W7ifnBe9d9XoPEoCQLjaETi9LSuoPPQiJLhTUMu9LIQPPC4uTLcgADgTQAlIbVABKnMQABpgEwQAMwQu4PQEA_UO3PcM-ePv3frhBgDg5QAWExLdHPbt3AH0_x3a6v_EAAAAEAT9KAcA_EwHD-EK7AXbIrzwKg1_-wZH29jyEuP6JvMXAvgO9OdDAAMe0hz_4vg8GDETIAAtOGhaOzgTQAlIb1ACKq8GEAwaoAYAAMBBAADAwQAA5EIAABDCAACAvwAAcEEAAHxCAAAwwQAAFMIAAEDBAACAvwAALMIAAGDBAADAwQAAQMAAABBBAAAwQgAASMIAAK5CAABQwgAAGMIAAMBAAADowQAAgMAAAGjCAAC4wQAAEMIAAOBAAABkQgAAEMEAAKzCAACgQQAApMIAAODBAACWwgAAUEIAANBBAABIQgAAQEAAAHBBAADQwQAAgEAAABDBAADYwQAAAEIAAOjBAACYQQAALEIAANBBAABAwAAA4MAAACDCAACAPwAAgEAAAKhBAADQQQAAWMIAAADBAACAQQAADEIAAIBBAACAwgAA0MEAAHTCAAAQQQAA6sIAANDBAAAowgAAXMIAACTCAABMQgAAmEEAALLCAAAcQgAAVMIAADDBAACwwQAAwMAAAIC_AAA4wgAAoEAAAJJCAACQwQAA4MAAAKhBAABgQQAAKEIAAKBBAABQQQAA-MEAAOjBAAA8QgAAYMIAAAxCAACOQgAAVMIAAJDBAADgwAAAUEEAAJxCAABUwgAAEMIAAEBAAACAQQAAlMIAAIBBAAAwQQAA2EEAAIhBAACWQgAAEEEAANhBAACIwQAAAEAAABjCAACoQgAAgEEAABjCAAAMwgAAwMEAADjCAACowgAAAAAAAFBBAAAcwgAADMIAAJBBAADowQAA4MEAAOBBAAAMwgAAyMEAABBBAACqQgAAoMAAAJJCAADwQQAALEIAAIC_AABMwgAAmMEAAIBAAABIQgAAeMIAAABCAAAcQgAAoMEAADhCAAAAwQAAgD8AACBBAADgwAAAEEIAAMDAAACgQQAAkEEAAEzCAADgwQAAyMEAABDCAACAwgAAUEEAAFjCAACQwQAAcMEAAGBCAAA8wgAAhkIAAJBCAAAgwQAAkEEAAOBAAAC4QQAALMIAAHTCAACAQQAAkMEAANjBAACgQAAAWEIAAIrCAABUwgAAAMIAACTCAABwQQAAAAAAAJrCAABMwgAAEEEAAFxCAADQQQAAUMEAABRCAABAwQAAGMIAAIRCAABAQAAA8MEAACBCAAAAwSAAOBNACUh1UAEqjwIQABqAAgAAVL4AABy-AAC4PQAALD4AADw-AAC2PgAAcD0AAFG_AAAQPQAAlj4AABQ-AABwPQAA6L0AAIo-AAAwvQAAmL0AAFQ-AACYPQAADD4AADk_AAB_PwAA6L0AAMi9AACYPQAAhr4AALg9AABQvQAAXL4AAAQ-AACaPgAAMD0AAMg9AABMvgAAHD4AAEA8AAAwvQAA4DwAAIg9AABkvgAAFL4AABw-AAAUvgAAgLsAAPg9AACIvQAAuL0AAOA8AADWvgAAkr4AAMa-AADgvAAAkj4AANo-AABUPgAAzr4AAFA9AABHPwAAoLwAAIg9AAB0PgAAUL0AAIg9AABwvQAALL4gADgTQAlIfFABKo8CEAEagAIAAGy-AACAOwAArr4AAH-_AABUvgAAyL0AACQ-AACWvgAAUD0AAHQ-AAC4PQAAQDwAADS-AAA8vgAAoLwAAJg9AAAMvgAABz8AAMi9AAA0PgAA4DwAAIA7AABQPQAAcD0AACy-AADCPgAAnr4AAAQ-AAAcvgAA-L0AAIg9AAC4PQAAND4AAO6-AACYvQAAED0AAKY-AABwPQAABL4AAKK-AAA0PgAAcD0AAJK-AABAPAAAdD4AAOi9AABzvwAAPL4AACQ-AAD4PQAAvj4AABy-AADgPAAALD4AAJi9AADoPQAAuL0AAHA9AAAkPgAAHL4AAL4-AABEPgAAiL0AAEA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=t3QkKB0e-c8","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5625469313069090864"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"14429703064678635379":{"videoId":"14429703064678635379","docid":"34-3-13-ZE343D6ECE58DFB0E","description":"𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou #integrals #integrationbysubstitution...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/918064/c5902cee7ad00e10b2571e8fae7c204f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/V4WcFwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQQxfJ1pcj9Y","linkTemplate":"/video/preview/14429703064678635379?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sqrt(ax+b) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QQxfJ1pcj9Y\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoWChQxNDQyOTcwMzA2NDY3ODYzNTM3OVoUMTQ0Mjk3MDMwNjQ2Nzg2MzUzNzlqtQ8SATAYACJEGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKg_CDw8aDz8TaYIEJAGABCsqiwEQARp4gfsK_gkC_QD6CwD7_QMAAe8E-wn5_v4A7QT8-AUAAADn-AQHCf8AAPIGCwsBAAAA_vwL_fP-AQAGBvz6-wAAAPfu9Af8AAAA-hwB_v4BAAD1_P7tAQAAAAQJ-wv_AAAAAAUKAwEAAAAFAggJAAAAAAL8BQAAAAAAIAAt4HXMOzgTQAlITlACKoQCEAAa8AF_ERP-1Onj_8j21AD8MQEBofYp__w10QDo9gEA6ubZAfYN-wDoFOkA_Q8SALQT7P8U2LICEMP2_zzb_AAF6QUA1vD3ASHx4AA5KRoA-wEP_9rcDv_33uz-89myAAkLz_7P3xH9_g3sAR4XyQIZ5S4D9uUkBS37JgH2u_QDwu8C_vXq7_v7E-P9C98P-Kj-HQcs4iMCFhMJ-dMZ2AAH6hD2CO8Y9vj11gIt7wUHBR_7AKkC_APuGwAHQgwg_sEE9vry9icC5fwF_-7zFgUmBPL5_Bfo-hH_8QII-wjw9OXz7vDE9-4BDwD43AH-CNoN8f8gAC0dRhA7OBNACUhhUAIqcxAAGmAI_wA390vQ5fgS6TCq_Q_s9dDCALsK_8_h_yAhEuwT_eS9_e3_JMP686QAAAAMAg9A9AAYdvPr7iXVHs4xgek7CHj9KUyf3_wR3wg5_hPw5ywE6j4ABzS2FwjU5U4ySwggAC2rARk7OBNACUhvUAIqrwYQDBqgBgAAwMAAAITCAACwQgAAJMIAADBBAACwQQAAEEIAACDBAAAUwgAAAAAAANDBAAAowgAAEEEAAHDBAABkwgAAMEEAAGBCAACowQAABEIAACDCAACAQAAAoEAAAAjCAADAQAAATMIAAPDBAACewgAAAEAAAHxCAACAwQAAXMIAAARCAAB0wgAALMIAAIbCAABUQgAAuEEAAGBBAABwwQAAAMEAAHDBAAAAwAAAIMEAAEDBAABoQgAAwMEAAOhBAADIQQAANEIAAAAAAABgQQAAKMIAAIA_AADAwAAAQMAAACBCAABMwgAAgD8AAEhCAADYQQAAqEEAAGzCAAAMwgAAlMIAAIDAAAAAwwAAAEAAABDCAAAEwgAACMIAALhBAADwwQAAzMIAANhBAAAQwQAAEMIAAODAAADAwAAAgMEAAITCAAAAQgAAxEIAANjBAAAgwgAA2EEAAIjBAABQQgAAyEEAAFRCAABMwgAAwEAAADhCAABowgAAJEIAAMBBAAAIwgAAgMEAAAAAAAC4QQAA0EIAAFTCAACgwAAAQEEAAJJCAABQwgAA2MEAAOBAAADoQQAAyEEAAKpCAACAQAAAkEEAABDBAACoQQAAYMIAABxCAABoQgAAEMEAAFDCAACgwQAALMIAAKDCAAAUwgAAIEEAAIA_AAAUwgAAgD8AAADBAAAEwgAA-EEAALjBAABQwQAAmEEAAIxCAADQwQAAXEIAAHBCAADgwAAAQMEAAATCAAAYwgAAgD8AAAxCAAA4wgAAsEEAABRCAADIwQAAcEEAAIC_AABwwQAAoEAAAIA_AABAQgAAoEAAAFBCAACQQQAAAMIAAAAAAABIwgAA2MEAAJTCAABAwAAATMIAAMjBAADwwQAArkIAACBBAACMQgAAWEIAAIhBAADoQQAAsMEAAOBBAAAswgAAosIAAPBBAADIwQAAuMEAAIA_AABkQgAAGMIAANDBAAAwwQAAjMIAADBCAADAwAAABMIAAJjBAABAwAAA8EEAAMhBAAAQwgAA-EEAAADBAAAwwgAAokIAAIC_AABIwgAABEIAACzCIAA4E0AJSHVQASqPAhAAGoACAABcvgAAjr4AAKC8AADoPQAAUD0AAMI-AABwPQAAN78AAPg9AAAcPgAATD4AADA9AAC4vQAAvj4AAEA8AADgPAAABD4AAHA9AACAOwAAST8AAH8_AAAcvgAANL4AAIC7AADGvgAA6D0AAIC7AAC-vgAA4DwAANI-AACYPQAABD4AAKK-AAA8PgAAUL0AABC9AABwvQAAiD0AAJq-AACYvQAAmD0AAK6-AACgPAAAVD4AAOi9AADovQAAoLwAAAW_AAC-vgAAFb8AACS-AACuPgAAHz8AAOA8AAAHvwAAcD0AAGU_AADgPAAAij4AAK4-AAC4vQAA4DwAACS-AAB8viAAOBNACUh8UAEqjwIQARqAAgAAqL0AADA9AACSvgAAc78AAJK-AADgvAAAbD4AAHS-AACAOwAAqj4AAIC7AAAQvQAA6L0AAFy-AAAQvQAAcD0AANi9AAAFPwAA2L0AAEw-AAAwvQAA4LwAAEA8AAD4PQAANL4AALo-AACivgAA6D0AACy-AAAkvgAA4DwAAJg9AABsPgAA9r4AADy-AABQPQAAkj4AAPg9AACIvQAAnr4AADw-AABUPgAAZL4AAIi9AACCPgAAHL4AAH-_AADovQAAfD4AABw-AADOPgAADL4AAKg9AABMPgAAqL0AANg9AADIvQAAoDwAAFC9AADYvQAAqj4AAIo-AAAwvQAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=QQxfJ1pcj9Y","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["14429703064678635379"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"5868204995073054354":{"videoId":"5868204995073054354","docid":"34-2-6-Z8006D93E9D051A4A","description":"substitution ► Integration by trig substitution • 🧑🔧 Integration by trig substitution ► Integration by Weierstrass substitution • 🧑🔧 Integration by Weierstrass substitution ► Integration by...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1779255/d11ade426a998beb3176263e7dba6756/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2s4AUQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1agpoqk1cig","linkTemplate":"/video/preview/5868204995073054354?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of ln(x+sqrt(x^2-1)) (by parts)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1agpoqk1cig\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoVChM1ODY4MjA0OTk1MDczMDU0MzU0WhM1ODY4MjA0OTk1MDczMDU0MzU0aogXEgEwGAAiRRoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioQwg8PGg8_E88CggQkAYAEKyqLARABGniB8BMAAAEAAAP-C_r9A_8BB_8A7_f__wDs_AEFCQAAAOj4AwcJ_wAA8Bb-_wQAAAAK_AP-9_4BAAj_AvUEAAAACef2-_0AAAACBPj_CP8BAPX_8wID_wAADAT4BgAAAAD3AAACBvn_AQwMCfIAAAAA__UB_gAAAAAgAC12UM47OBNACUhOUAIqhAIQABrwAX8G-_7Z9uUB0QXBABI87gK3Jjr_OkPc_-Tx2AD528QB6gfmAP0x4v8CD_gAqy73_we7z_8SvPX_KdDu_uzl7QC68RkAF_S1AhopCQHi7xIAxQYg__KxCv_y1akACQ3K_ueY6P3vC_j9IRnEAiLlGgMj_SQG-xUYAPW08wTT0-YCC-7RANwODAQc0hz_wsoKBf7nIvsZFeQCxvHZ_t3nEfnpAAj18hXT_v7d_gH-KRYI0_b-BwENGAtJDiP-3PDnAckNIgHi-wX_-8r28hz5GPPjLekJQvHjDCERA_Hy4vLs69kA9f7sAf0O9OwR1g7w_yAALSyqAjs4E0AJSGFQAirPBxAAGsAH36WsvvyTEz0Zfqa8sd_DvTyoX71wvge9IxPwvdctJz33_UC8Z5owPiCRW7xD5K05aDePvSZ-1jxA_Je8mN0jPoFJkL1D9PW8dXT8vS8Tmj0LAhC9PiYivhei3rzcqto8pPuJvXYY070Mh-88wX6-PfL3wb0XrW28ArVdvV96Gz3TsC69KBMyPbBfK72xpz29G3-HPNc3m72uqWK7bEhXPbHs-LxUhpa8oZR6PWRoq7zBqrq8I36avU1wZT1vMC-88FnNPKxygDtG0m48fxXgvW47I73xnZg80V6IvfqCEb32pek7nLS6PUrtRTywepu89GxpuWCrJL6AMoC7L4byvXSQfLz9Iaw83bQZPj0W0TwDYPq7yEUlvmnRgT2dCMe8G9xxPcH6RL3MYmK8YCETPRvcgT1OiM47-abEPc6IUj135L68JNENvJloKz1YkGY8_h_xPHz-ar1cGM68VkduPX_oeD2rE8a8ldjQPFLSYz3726-6g4nfvVxrqT37ozk8QbltvHW227wQ1Yo8BSOlPdYCO75J5Zo6-limvctQkL0dp6676xPKPAnmQzxuQqu8bvzpPUzkrb0rc6m7sEFaPcsnr7vzwy089kVfO5psbb1O1qS7d1nCvS5ORrzupTq8GlUBvYuBHz11LCW8cwdbPQNTxz1yDME5_kHJPFsMjr0d32Y7uiXBO8AAZzwr4Ue7ARjKPdJTxD0XWPC52hAtPejOHztGsgm8LEJWvUhj_ryhXQ072rrlvMA1sb1SWQ66fZXcPRZuKb58PPK5VMeqvF6jIL3Tbw85LdEJvpYhLj2euGC4NeEoPDWVmr2o5Ec5FJ2LvYl64b3GJ3A5-W0jPbKnsz1eduA5h-T_PO67_Tzynac5BiRGvcNXtb0IyF03E-gdvZRptDy80Pk5XAy0PVVtkjxVNBo4KDGEO4N8GLw4Fng5vRiKvNnUVLyQe0M4POkTPa-hKj3_27U4w4AlPOeOjr3DZnI5XGZCvZkM5z2QmAK5dOgZu8mwJT2kwxE48Vh9PHQXFz3FMOG3v7W4PZ2ZZLlcHTq4oNx7PQGZtz1YADa4CrtovUUwmT1HvMI4DAwPvXFa8Dyhh544Yi-UPa1pHrw_ddy1nOEGPYg3oT1gwTI4kl0ZPtlPUL2swj-5uF2Tvc-rkL3adUS41TuBPO89h73Nk783m0tbvZI8pz1tcIE46XM_vcnUg70b0Ja3VRimPW0LxT2Dx-c4l7sDvNLTwT1Rasm4fifMvSy8iz3JKcE4SV6nvUasqj1UMog4IAA4E0AJSG1QASpzEAAaYB8JAC_9Oc3fBB_uAdkLCfzs4urq-v__-rkAJhfp6B8H4NIJEf8e0uf3tQAAABQFGkbcAA1dGP7iHwAo-hOG9hAMf_khNNflBf0D1ETvD970GvDdKwDkG8oM5uD_VyojHCAALUvlNjs4E0AJSG9QAiqvBhAMGqAGAACgQQAAfMIAAMRCAAAYwgAAAEEAAAAAAABgQgAAgMAAAADCAADwQQAAQEAAAEjCAAAAQAAAoMAAABzCAACAQQAAQEIAABTCAADIQQAAoMEAAADBAAAgQQAAfMIAAADBAACAwgAADMIAAGjCAACAwAAAsEIAAJjBAABowgAAsEEAAKrCAABEwgAAqsIAAFxCAADQQQAAuEEAAAzCAABwQQAAkMEAABDBAABgwQAA0MEAAGBCAAAUwgAAgEEAADxCAADQQQAAgEEAAHBBAAC4wQAAoEEAAEBBAAAQQQAADEIAAKbCAACAwAAAOEIAABBBAAAoQgAAaMIAAKjBAACIwgAAEMEAAO7CAAAIwgAAHMIAAIjBAADgwQAA0EEAAADBAACkwgAAgEEAAPDBAACAwQAAwMEAAADBAACAvwAAKMIAAMBBAADOQgAADMIAAPjBAAAgQQAAQMAAADRCAAAQwQAA8EEAAHDBAADYQQAAUEIAADjCAAAcQgAAhEIAAMDBAACQwQAAkMEAAIC_AAC2QgAAUMIAAPjBAADQQQAAeEIAAFTCAABAQAAA0EEAAFBBAADYQQAAnkIAAEBBAAAcQgAA4MAAANhBAABUwgAAkkIAAFBCAAAEwgAAgMIAANjBAADYwQAAjsIAANjBAACIQQAAAMAAAKDBAACoQQAAIEEAAODBAABsQgAA0MEAAKjBAAAAAAAAcEIAAKDAAABYQgAAGEIAAMhBAAD4wQAALMIAABTCAABAQQAAIEIAAFzCAACwQQAAHEIAALjBAADQQQAAgD8AAOjBAABAQAAAAEEAAFRCAAAAQgAABEIAAKBAAAD4wQAAEMEAAFDBAABIwgAAoMIAALBBAAAkwgAAqMEAABDBAACCQgAAwMAAAIRCAACGQgAAYEEAANhBAABQwQAA4EEAAGjCAABswgAAqEEAAIjBAAAwwQAAsEEAAHhCAAAUwgAAUMIAAODBAACGwgAASEIAAMDAAABYwgAA4MEAALhBAAAIQgAAEEIAAHDBAABwQQAAEMEAAAjCAAA8QgAAMMEAAFTCAADIQQAAoMAgADgTQAlIdVABKo8CEAAagAIAAOi9AAD4vQAAuL0AAOg9AAC6vgAALD4AAIA7AAApvwAAED0AAEw-AABkPgAA4LwAAHC9AABUPgAALL4AAPi9AABsPgAAUD0AAJg9AADePgAAfz8AAPi9AADYvQAANL4AAGy-AABsPgAA6L0AALK-AAAcPgAA6D0AAFA9AAC6PgAAFL4AAIg9AACIvQAANL4AAIA7AABQPQAAkr4AAMa-AACaPgAAoLwAAGQ-AAAEPgAAoLwAAIC7AAAEvgAAHL4AAEy-AAB0vgAAMD0AAKo-AADOPgAAoj4AAHS-AADoPQAAPT8AAKg9AAAEPgAAHD4AAOg9AAA0vgAA4DwAACO_IAA4E0AJSHxQASqPAhABGoACAACgvAAAUD0AAAS-AABlvwAANL4AACw-AAAfPwAATL4AAHQ-AADGPgAA-D0AABQ-AAAQPQAAEL0AADC9AACYPQAAfL4AAAk_AAB8vgAAuj4AAIi9AACivgAA4DwAAIg9AACovQAAbD4AAOi9AAC4PQAAuL0AAAS-AABwvQAA4DwAAOi9AAAHvwAAgr4AALg9AADYPQAAcD0AALi9AACGvgAAqD0AAAw-AAA8PgAAuL0AANY-AAAcvgAAf78AAEA8AACSPgAA2D0AAOg9AABUPgAAVD4AAKg9AABsvgAAFD4AABS-AACCvgAAiD0AAJi9AADGPgAAQLwAAEC8AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=1agpoqk1cig","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["5868204995073054354"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"7799513635162916352":{"videoId":"7799513635162916352","docid":"34-8-0-ZEF1224DB25141146","description":"integrals, integration, integral problem of various type, integral calculus, integration class 11, integration class 12, integral questions and solutions, integral questions, integral problems...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/213495/9b83ff67e61608dcd1191bf9fc7501cc/564x318_1"},"target":"_self","position":"16","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAfzQTxxPYhU","linkTemplate":"/video/preview/7799513635162916352?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integrals for you ||Problem-01||#fsetResearch#Integrals#Integralcalculus#Integration","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AfzQTxxPYhU\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoVChM3Nzk5NTEzNjM1MTYyOTE2MzUyWhM3Nzk5NTEzNjM1MTYyOTE2MzUyaq8NEgEwGAAiRRoxAAoqaGhrdWFscnRvdHV0cWlqY2hoVUNBNDJLcDdJT0lTZVBleWRrbVRWdjdnEgIAEioQwg8PGg8_E8oCggQkAYAEKyqLARABGniBBQoBAPwEAAMD_f77A_8BAgwA__j__wD5BQv6AwP_APf5APcBAAAA-gr7AwIAAAD3_f71-v8AAAYF_fv7AAAAAvD1AwMAAAACAPj-9_z9A-7-APYCAAAADP79AQAAAAD29QUC_P8AAAT7BAMAAAAA_PgJAQAAAAAgAC3FJN87OBNACUhOUAIqcxAAGmAaEgAhIOzcxv8T2uPJCxgl5Mr53Osh_-jcAP0TALETM9_a7xP_F9r9A70AAADyHRMi1gD-VBHj2uMLL_Mps_QTJH_jEBzqy_j6CtAI6hXK1fwUCRoAxywDG-TT9TUVEAggAC0R8UA7OBNACUhvUAIqrwYQDBqgBgAAQMAAAJDBAADwQQAAYEEAAARCAACwQQAAiEIAAEBBAAAUwgAAKEIAAERCAABcwgAAJMIAAEDCAAAsQgAAAEEAAABBAAAwQQAA4MAAAJzCAACoQQAAiMEAALhBAABQQQAAIMEAAIbCAABAwgAAlsIAADRCAABgQQAAYMIAAKBBAADgwAAAcMEAADDBAABgwQAA8EEAAKpCAAAYwgAAbEIAAIBBAAAAwQAAVEIAAKBAAACwQQAAwMEAAMDBAACYQQAA1EIAAABBAABAQAAA4MAAAJjBAAAkQgAAYEEAAJDBAADcwgAAiMEAABjCAAAAQgAA0EEAAJjBAAAQQQAAlsIAAIBAAAC4wgAAiMEAAJDCAADIwQAAgEAAAJBCAAB8QgAAcMEAAChCAACYQQAAvsIAAADAAACgQAAAkkIAAKBBAAAAwgAAQEIAANhBAADYQQAAgEAAABRCAABwQgAAyEEAAOBAAACCwgAAFEIAAIRCAACgwQAAUMEAAGDBAACQwgAAuMEAAKZCAAAAAAAA4MAAAADCAAAQQQAAhkIAAGzCAABYwgAAgMEAABRCAADgQQAAoEEAADxCAADwQQAA6EEAABjCAACIwQAAAEEAAAxCAACgwQAAmMEAACBCAADAwAAAkMEAACTCAAAwwQAAAMIAAJBBAAC4QQAA0MIAANBBAABowgAAcMIAAFDBAABcQgAAYMEAAAxCAABEwgAA4EEAAIBAAACwwQAA6MEAALDCAACYwQAALEIAAPDBAADwwQAAPEIAACjCAACgwQAA0EEAABDCAABwwQAAgMAAAKhBAAAMQgAAYMIAAIBAAABAwQAAWEIAANjBAAAAQQAA4EEAAIC_AABQQgAAgMAAABDBAABAwgAAIEEAACBCAAAcQgAABEIAACBBAACIQQAAAEIAAGjCAACAwAAA2MEAAMBAAADYwQAAuMEAADBBAACoQgAAcEEAAADBAACgQAAAMMEAAFRCAACgwgAAuMIAAMhBAACQwQAAiEEAACTCAABwwgAAwEEAAGTCAAD4wQAAPEIAAGzCAAB8QgAAGMIAADjCIAA4E0AJSHVQASqPAhAAGoACAADIPQAALL4AAAw-AACYvQAA-L0AADA9AABAPAAAFb8AABA9AACoPQAAQDwAALg9AAAUPgAAgj4AADy-AACIPQAAND4AAIC7AADgvAAAHz8AAH8_AABQvQAAQDwAAMg9AADIvQAAnj4AAIg9AACavgAAVD4AABQ-AACgvAAAJD4AABS-AAAUPgAAMD0AAOC8AAAQvQAAuL0AAAy-AACOvgAAHL4AAFC9AAB0PgAA4DwAAAS-AADYvQAAUD0AAJ6-AABsvgAAJL4AABA9AAAkPgAAyj4AACQ-AAC6vgAA4LwAAEE_AAAEvgAAcD0AACw-AACIPQAAmD0AAOA8AACiviAAOBNACUh8UAEqjwIQARqAAgAA6L0AABA9AACYvQAAS78AAFy-AABwvQAAhj4AAOi9AADgPAAAND4AAIC7AAAwvQAAEL0AAHC9AABcPgAAoLwAAOi9AAANPwAAiD0AAJ4-AADgvAAA6L0AADA9AACAOwAA2L0AAAQ-AADYvQAAUD0AAHC9AAC4vQAAmL0AAAQ-AABQPQAAnr4AAMi9AADIPQAAmD0AAIY-AADgvAAAFL4AAAw-AABMPgAAUL0AAIA7AAB0PgAAFL4AAH-_AABwvQAArj4AAHA9AAAsPgAAqL0AAIg9AABcPgAA4LwAAAQ-AAAQvQAA6L0AANi9AAC4vQAAjj4AAOg9AAAQvQAAcL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=AfzQTxxPYhU","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7799513635162916352"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11423233576807138498":{"videoId":"11423233576807138498","docid":"34-11-4-Z13FC882549C214C8","description":"Integral of x*sin^2(x) - How to integrate it by parts step by step! ✅ 𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞 𝐭𝐨 𝐜𝐡𝐞𝐜𝐤 𝐭𝐡𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 Derivative of x^2/4 - (x/4)sin(2x) - (1/8)cos(2x) = • Derivative...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4325500/c239ac3461154aaa2ce95f0220883cd7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/WZJXEQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D036gMFMAytU","linkTemplate":"/video/preview/11423233576807138498?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of x*sin^2(x) (by parts)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=036gMFMAytU\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoWChQxMTQyMzIzMzU3NjgwNzEzODQ5OFoUMTE0MjMyMzM1NzY4MDcxMzg0OThqiBcSATAYACJFGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKhDCDw8aDz8T1AGCBCQBgAQrKosBEAEaeIH4Evb2C_H_BP4N-f0E_wHlEesA9__-AOTz8gsJ_wEA4_cECAr_AAD8HvsGAwAAAP7v__b2_QEACf8C8gUAAAAU-PMB8gAAAA8R6wL-AQAA9AUD9gMAAAD8DPUC_wAAAAT1B-0A__8A-gkI8gEAAAAT_QsFAAAAACAALfwcrzs4E0AJSE5QAiqEAhAAGvABa_33_uPtzAHVBcYAxkbpAYEKLf_8NtAA4ODqAdfwvwELC_YACwT5AAgaKf-_BNb_FNewAgTFFv8s1Q7_BukFANgC_AER_uMBMB8GAAkJBgDbDQv97OryAPPZsADqFsf_AfAG_uztAv_sA78CH-cYA-P5LwQgAxn78MMI_8HvAv4L79UAGiQG-AveD_e8IxoDHsgiAA4GAwLRBuMC-en3AO3vCv_49dUCE-EDBxgWC_vX_REECAvy-RcIFAay9Qj-AQ0y-9XkAPfx1wADK-b2AMj--f4c9PQNPwf98hne-vrwwvft-gcK9fLt_QPZDfH_IAAtUCMNOzgTQAlIYVACKs8HEAAawAfZzOG-Jr9qvBn7FrxTYBy9JELjvG-RBb3vLXY8GUeLPebqR7wUdhE-3w7evCa-gzscQhW-UPCDPJtIH73LgDM-5tGIvZhiMzx6Fy--CDwwPSmf1Lw-JiK-F6LevNyq2jwkBYu9AxaPveT7PbzvERs9wcS_vQiQAb3JV8K85gwAPULuAr2xnM68l5xJvLbtYL2F2qW82TgHveBWsLzI1Bg9bMtFvYhcmbuDoe49i1owvfwHx7tPJHO8uIIcPVoNibzW98a8Br23vDwLDLsXy768erKwu2PCILw33dK9a6SAvJNl0jvb2809obqpPaaIwrxlQ509dzW0vZB2Mr3ZBeO9a_hRvfB3vTvwiws-8z-zu-I6xjsdPd69vsAMPrsIC7oJX6k9dt0bvZA6cLynSd88_KKMu1KE7zzUhfM8utJXPDOJQbqa0oU9Ny8TPUELCTxNHVo9Y81tvCSKf7yXPSQ9QSvyO0_ClrspFNi8oW8BPR2JQLqzsAw9K4GpPcs7PbxGn6q8N8xpO0GwjzwFI6U91gI7vknlmjrczbq7IPRnvUmyVLu1kSY9f6swPbsdzLtz8209LZOBva9QNTzE6F48BzSFOxPThTxWazy8Uq-wvWLHGDunFou9xW8vPDqvMTwoclK9dDAxPT6p_rv-2bo9KxIDPsuxW7nFZQY9-gwIvlUhA7oanI095McOPZ6R77s7YkM9HYbAPUHibLktz4M8mhsdPZtmbLtSi_e8EmP8u6LhXjsxl4S9qIkjvePEpjjudJw9rOLNvSr_vTkH9WM7ghaWOt6aDTtzS7u98-34PNxy6Tg_Y1C97e17vQ_KOLerPZG9GlIVvjBRCjo44mQ9EYzjPS0UxTn4PYU9MF8WuhSbBTjPjcS97e4mPFxlDLl8HcI8_LuIPA1mg7nZtiK8v8cqPV-FhriLa3w8yWP8PCdGLbm9GIq82dRUvJB7QzgTiDI87UqmPCghqDiYtFI7P3DFvfcuYDnQ8Ga9eIuhPfOdJLnrDx68-mP1PA4yNrcacRw9NuodO5syW7iYGqw91_CpvQLoXrhU_tY7zuLlPU9VWjia_5y90JCbPQLbLjgMDA-9cVrwPKGHnji3xDs9P96QvFHfhThsE908kFIkPYt16TgfnwA-pOSQvRXoOrkdVU284Qy-vKEyJLhmErU8XqHPvYC6sjfmOzi9qC1_PcoQyLLNM0C8eeU6vdEGWrci_-w9NSkFPvN-W7gvwSm8CsTGPFtMlrhwysG9Mxf4Pbrcpjh7uj-9UQsPvcgft7cgADgTQAlIbVABKnMQABpgIgEAMQEzzuMEFez63Qge8OTs29_5-__3wwAgD9_SBhTS0BEK_yjT5Oy1AAAAFBD7KNwAEl0ZBd85_Sn1FoH4Kwp1Dxcvxu0aCBXMOOQP9u8c_usiAOofyR4F2_Y6FSMgIAAthpo5OzgTQAlIb1ACKq8GEAwaoAYAAOBAAAA0wgAAjEIAAPDBAAAwQQAAgEEAAExCAAAYwgAAaMIAAAAAAAAwwQAAgMIAAEDBAAAEwgAACMIAAJhBAAAgQgAAEMIAAEhCAABEwgAAAMIAAKBAAADgwQAAQEEAAFDCAAAYwgAAksIAAODAAACsQgAA-MEAAKTCAADAQQAAVMIAAADCAABkwgAAHEIAAAhCAAAYQgAA2MEAAFBBAAAQwQAAgEAAADDBAABswgAAYEIAAKDBAABQQQAAcEEAAGBCAABwwQAAAEAAANjBAADQQQAAwEAAAIhBAABwQQAAjsIAAIBAAABAQQAAwEEAAOhBAABYwgAAYMEAALzCAACgwAAA8sIAAHDBAAAcwgAA8MEAABDCAAAgQgAA4EAAAMzCAACAvwAAUMEAAIjBAAAEwgAAgL8AAAAAAADIwQAAAEEAAKJCAADIwQAAHMIAAAxCAADAQAAAgEIAADxCAACoQQAAPMIAAABAAABsQgAAlsIAAEhCAADIQQAALMIAACDBAAAAwQAAAEIAAHBCAACWwgAAyMEAAIA_AACQQQAALMIAAIA_AAAAwQAAuEEAAKBBAACeQgAAQEEAABxCAACgwAAAsEEAAGDCAABAQgAADEIAAEDAAAAUwgAAyMEAAITCAAC-wgAADMIAADBBAAAAQAAABMIAAODAAABAwQAAKMIAABBBAAAUwgAAgMEAAGBBAABMQgAA-MEAAFBCAAAQQgAAgD8AAJBBAAA0wgAAiMEAAADBAAAwQgAAGMIAADxCAADYQQAAqMEAAPhBAACwwQAAsMEAAEBAAAAAAAAAkkIAAIBBAAAgQgAAUEEAAKDBAACYwQAAbMIAAMDAAACMwgAAQEAAAGDCAAAEwgAAoMEAAJRCAABQwQAAukIAAChCAAAAAAAAREIAAFDBAAAsQgAANMIAAHjCAADwQQAAVMIAAMDAAADgQQAAPEIAABjCAABkwgAAiMEAADzCAAAYQgAAqMEAAFzCAADgwAAAoMAAAChCAAAEQgAAMMEAAEhCAAAAwQAASMIAAIJCAADowQAAIMIAAABCAABgwSAAOBNACUh1UAEqjwIQABqAAgAAmL0AADS-AABUPgAA2D0AAIK-AACqPgAA2D0AAP6-AAAUPgAAiL0AAEC8AACYvQAAqD0AALg9AAAEvgAAiD0AADQ-AABAvAAAJD4AAP4-AAB_PwAABL4AAEy-AABwPQAA3r4AAMY-AADYvQAA1r4AAGw-AACuPgAA2D0AANg9AACIvQAAEL0AAPg9AAC4vQAAFL4AABC9AACqvgAAiL0AANY-AAC4PQAAjj4AABw-AADIvQAAsj4AAOA8AAB0vgAAnr4AAFy-AAAkvgAAgj4AANY-AABkPgAA-L0AACw-AAA5PwAARD4AADC9AACCPgAAqD0AAI6-AADIvQAAE78gADgTQAlIfFABKo8CEAEagAIAAOg9AACSvgAAML0AAH-_AABAvAAA4LwAANo-AADmvgAAVD4AAIY-AAAEPgAAoj4AADw-AAAwPQAABL4AAMg9AADWvgAAGT8AAEy-AAAsPgAALD4AAK6-AADoPQAAFD4AAJi9AACIPQAARL4AANg9AACgvAAAoDwAAOA8AADoPQAAZL4AAOK-AABEvgAAPD4AAIo-AACCvgAAZL4AAN6-AAD4PQAAVD4AAFC9AABQPQAADT8AAIa-AABnvwAAyD0AAA8_AAAUvgAAqL0AAFw-AADgPAAAbD4AAPq-AACSPgAADL4AAFy-AABEPgAADL4AAMI-AACIvQAA6L0AAES-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=036gMFMAytU","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["11423233576807138498"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"3947231011123372325":{"videoId":"3947231011123372325","docid":"34-8-5-ZC586767EF58DE82B","description":"𝐥𝐨𝐰 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐥𝐬 𝐅𝐨𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integrals...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3472629/b5e2ae69485777ea493a8cf7e6ef8fca/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_6__5gAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMVbidNk3MRA","linkTemplate":"/video/preview/3947231011123372325?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of ln(1-x) (substitution + by parts)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MVbidNk3MRA\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoVChMzOTQ3MjMxMDExMTIzMzcyMzI1WhMzOTQ3MjMxMDExMTIzMzcyMzI1aogXEgEwGAAiRRoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioQwg8PGg8_E6sBggQkAYAEKyqLARABGniBBRT9CQT8AA39__sEBAEB7f719vr-_gDiBgcC9vwCAPr0_Qf8AAAA-gj5EQIAAAAC_v318v0BAP8H_PQEAAAACeb2-_0AAAAPG_oC_QEAAPHy-PQCAAAADAT4BgAAAADw8gX7AgAAAAEKDv8AAAAADf3-AQAAAAAgAC1L5Mc7OBNACUhOUAIqhAIQABrwAX8bCv_f68UByzXIALsO-f-cDyH__D3KAMTf6AHS7rYB2CLoAPkQ6QH1IgIAqwkB_xfRpgMTufT_Ec7y_0C8DQDaL_wBC-_lAScXOAIF9yD99_gx__zgAgD008n-Ef_dAPXs9v8QFfb-8RnSAhXzCwDkEj0BNPssAQOSAQjR0eUCEAba_PUpBgYZ8QX00B8mAhbaC_7x9fn3w_DX_dv_Ff3c6xv_EBbIACPVBQI2OP4A1eIODP74-QAjKhkKvyYMCtDvNge6_gLz9vcD8THi9QDfFe0KJgvlCTQM9vcTGwMHKbj0-wv_Af_13PMCyRcE8yAALe5a-To4E0AJSGFQAirPBxAAGsAHsg7HvudZJDzfCpe8sd_DvTyoX71wvge946C5vRxtizxeBSO8pg7yPZX0MLxkyWe6booHvr9qwDzmXXW8mN0jPoFJkL1D9PW8cT1avucWvz2FTKi8qaIIvqJIsbtITFU92oZWvS6s272nTzy8ch5pPTtqcb28tDy9w_hEvEyJRD0tWVq93GoZOvURWL0TfFi9G8lUvJ_xM7y5cB487a-IPYPuHL0u2mu7r8epPSgmELus0Ba9phCDvR8AJz0zG_-8Wjf3Oszra7va3ag8t63SvHaM67yUXmU81IABvizg9btAMIc83_zGPewb8zyHWT69YvSMPZ5-0L2-dl27Y7QevjYWe7t_YFg83WA4PimmXD3jGz460lebvd1IVD0a9C27f2VKPb_R87z_zKC8XEmhPNhr1Tzi8s48IKKHPPmkbj2gSIG8CWTAPM9ZdT2FY7E8_h_xPHz-ar1cGM68Xf8pPQy1wTw_dJy8KRTYvKFvAT0diUC6k_7evClHzD39n-Q77N7KPFOeDz3hqnw8BSOlPdYCO75J5Zo6CkKDvWy_u70Mg-g73cF-Pby7JD2Ie5G8WYfDPQrPVb30glM7hAF6PfMckbwL--o5Vms8vFKvsL1ixxg7wMtsvWVKtbxvFgw8_H8mvQBKbT2Slue77O-mPVpNsj1Pc6a5uNIGPQhW1b0-uhK6YYIEPfql9Dwg-6y7mDIAPhZ_QD0tP7W3slvVPGuhP7yB9GK7QMElvSnWlL2IP5c5LolYvd3pM730jaa6bQPXPbWj2L0Mn6859SksvTWYhrxjKjs5izy0vX01UT04Hxg4BQuvuylt-7wbFd84y6LwvFtCHr43BeM5pRVfPIb5jD3f9yc5Ha0qPdzhZTwwxl44f35kvaOxMb1g3eM6FbTBu7TnMrx4v7a4pGc_PbsOlT3YPnY4wYwJPSws-jvfoVc6daREvBLprTwVY0u5W614Pe70GT3ysZg4QfEDPXFPwb3XOHs5efmpu6clxj3Erv-4OiuYPBL5nj1snoe4YIksPTBXED0SDCo3h0VWPdNlpr2_KPQ2VP7WO87i5T1PVVo4nHpzvddL0z2fjZc4NlwEvVeu2Lv4dq-4HO8OPZ37hryYAUg3Cii5PP7dkT3Sr2U39wEoPnBh3b3xZ7-5XEkBvcre0r0XIgS5K0wfPZ0kor2_a-U3kb8KvYMelT2LQ5E32YTqvCJXtb3SQjC4Iv_sPTUpBT7zflu44hiuPG-loj1MJ1K4l_RBvby8vz3pDhI4-te9vRY4tLvj21i3IAA4E0AJSG1QASpzEAAaYCoBAEwBRtHn-ib5Dsz_AffZ880D2QD_2sv_Dh4B7S_0xcYaD_82vPPaogAAAAwZ5kHYABZ7Eub4NAc58heF-jsKf-X8PqDZ_O7J5VHeO__ZLAbcSgDRAqwh9eHgYxklFSAALVWcFDs4E0AJSG9QAiqvBhAMGqAGAADAwAAAisIAAIJCAACowQAAkEEAAIhBAABQQgAA-MEAABTCAACwQQAAyMEAAEDCAACAQAAAHMIAAPDBAADAQQAA2EEAAIjBAAAAQgAAHMIAAIjBAABwQQAAJMIAAJDBAABswgAAKMIAAEzCAAAwwQAA3EIAADDBAACEwgAA2EEAAFDCAAAEwgAAmMIAACxCAABUQgAAOEIAAFDBAACwQQAAoMEAALDBAADwwQAASMIAAExCAACgwQAAMMEAAChCAAAUQgAAUMEAAABBAACowQAAAAAAAMBAAACgwAAA0EEAAL7CAACAwAAA-EEAAFBBAACgQQAAVMIAAJDBAACwwgAA0MEAAADDAADAwAAARMIAAPDBAAAwwgAABEIAAIjBAADEwgAAoEEAALjBAACgwQAAkMEAAIBAAADAwQAATMIAAOBAAACsQgAAwMEAANDBAADwQQAAgMAAAIBCAAAUQgAAIEEAALDBAAAAQQAAikIAADjCAABYQgAAVEIAALDBAABgwQAAwMEAAIhBAACQQgAAUMIAAODBAACIQQAABEIAABjCAAAAwQAAYEEAAFBBAABAQQAAmkIAAGBBAAAQQgAAAMEAABBBAABUwgAANEIAACBCAABAwQAASMIAAOjBAAAkwgAAnMIAAPjBAADgwAAAQEAAAPDBAAAAQAAAAMAAAIjBAAD4QQAAoMEAAEBBAAAQQQAALEIAAODAAABkQgAAQEIAAADAAACAvwAANMIAACzCAACAQAAAdEIAABjCAADgQQAA6EEAAIjBAABAQAAAgMAAANDBAACoQQAAQMAAAExCAAAAQAAADEIAAEBBAADAwAAAYMEAADzCAAAIwgAAjsIAAIBBAACEwgAAFMIAAJjBAACOQgAAoEAAALJCAACWQgAAgD8AAFxCAADgwAAATEIAAEjCAACWwgAAAEEAALjBAACAwQAAuEEAAIpCAAD4wQAAeMIAAMDBAABMwgAA8EEAAEDBAABAwgAAmMEAAGBBAAAkQgAAIEIAAIDBAACwQQAAkMEAAFjCAAB8QgAAoMEAAHDCAAAAQgAAcMEgADgTQAlIdVABKo8CEAAagAIAAGS-AAAMvgAAVL4AAOg9AACGvgAAmD0AANg9AAAzvwAAoLwAADA9AAAkPgAAgLsAAHA9AACAOwAATL4AAES-AABEPgAABD4AAAy-AAAPPwAAfz8AANi9AAAMvgAAhr4AAFy-AAA0PgAA4DwAALq-AACIPQAAyD0AAGQ-AACOPgAAmL0AAAw-AACYvQAAqL0AAPg9AACAuwAAPL4AAIq-AABMPgAANL4AALg9AADIPQAATD4AAIo-AADgvAAAur4AALK-AACCvgAA2D0AAEQ-AACmPgAAgj4AAFy-AACIPQAARz8AAIg9AACgvAAAjj4AADw-AAAEvgAAML0AAEm_IAA4E0AJSHxQASqPAhABGoACAABwPQAA2D0AAJq-AABTvwAAvr4AAAQ-AAALPwAAXL4AAEQ-AACWPgAAmL0AAOC8AABAPAAAcL0AAMg9AADgPAAAgr4AAPI-AACOvgAA0j4AAKA8AAC-vgAA4DwAAJg9AADIvQAARD4AAJa-AACgPAAAHL4AADS-AABQvQAAoDwAABA9AADOvgAABL4AALg9AAB8PgAAMD0AAHC9AACSvgAAyD0AAKo-AAAUPgAAmL0AAKo-AACYvQAAf78AAFC9AABEPgAA4LwAAAw-AAC4PQAAPD4AAGw-AAB8vgAAND4AAAy-AABcvgAAED0AAOA8AACyPgAAbD4AAIC7AADgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=MVbidNk3MRA","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["3947231011123372325"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"33802355496921706":{"videoId":"33802355496921706","docid":"34-8-10-ZE4D0EEFA387393BA","description":"integrals, integration problem of various type, integration, integration questions, integration problem, integration problem with solution, integration class 11, integration class 12, integral...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3919086/618a21c7d116ee11fc1c340edb4ed3a2/564x318_1"},"target":"_self","position":"19","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1ZmGYalErPI","linkTemplate":"/video/preview/33802355496921706?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integrals for you ||Problem-02||#fsetResearch#Integrals#Integralcalculus#Integration","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1ZmGYalErPI\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNTY1NzIzODE1NDczMzY1NDY3MgoTODA0NDQ2Njc5OTI4MzUxMzM5NAoSNDM4NzQ5Mjc0MTA4OTI5NTEyChM2MDM5MzY4MzU2OTY0OTg5MzQ0ChQxMzg3ODI4MTkzMDA1MDkyOTc5MQoUMTI2MTUwNTE5Njk5MDA5ODEwMzQKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChM2MzA1NTk3OTQwMjIxMzI5MTUxChMzMTM3Njg4Mzk2MDYzNDE1NjM4ChQxODI5NTUwOTc4NjQ5MjA4NDgzOAoUMTExNDEzMzc1OTk0NTIzMDAyODkKEzU2MjU0NjkzMTMwNjkwOTA4NjQKFDE0NDI5NzAzMDY0Njc4NjM1Mzc5ChM1ODY4MjA0OTk1MDczMDU0MzU0ChM3Nzk5NTEzNjM1MTYyOTE2MzUyChQxMTQyMzIzMzU3NjgwNzEzODQ5OAoTMzk0NzIzMTAxMTEyMzM3MjMyNQoRMzM4MDIzNTU0OTY5MjE3MDYKFDE1OTQ0MTY5NzUyODI1MDY4NDM5ChQxNzI4NTA0NzE3NTkzNTIxNjU0OBoTChEzMzgwMjM1NTQ5NjkyMTcwNloRMzM4MDIzNTU0OTY5MjE3MDZqrw0SATAYACJFGjEACipoaGt1YWxydG90dXRxaWpjaGhVQ0E0MktwN0lPSVNlUGV5ZGttVFZ2N2cSAgASKhDCDw8aDz8ThQGCBCQBgAQrKosBEAEaeIEFCgEA_AQAAwP9_vsD_wECDAD_-P__APkFC_oDA_8A9_kA9wEAAAD6CvsDAgAAAO4A__v7AQAABgX9-_sAAAAC9fUA-QAAAAIA-P73_P0D7v4A9gIAAAAM_v0BAAAAAPb1BQL8_wAABPsEAwAAAAD8-AkBAAAAACAALcUk3zs4E0AJSE5QAipzEAAaYA8PABwh8tzI_g7i7tYJDR7p1_bh7x0A7uoABBX7txgq5dzvDwAU4foDxgAAAPQbFCDgAP5FD-ne4Akp8Cm__Q0hf-kLIvLN-_sJ1RDnD9fdAgUKEADQKggT6-P6MBgHCSAALeUlWzs4E0AJSG9QAiqvBhAMGqAGAADgwAAA0MEAAJBBAABAwAAAIEEAAODAAACUQgAANEIAAHDCAACQQQAA8EEAAITCAABwwgAAcMIAAEhCAAAAwAAA4MAAAKDAAAAAwQAAmsIAAIhBAADYwQAAGEIAAPBBAACAwQAARMIAABDCAACkwgAAOEIAABxCAAA8wgAAHEIAAKjBAABQwQAAMMEAAMDBAADYQQAApkIAAEDCAAAwQgAABEIAAAAAAABsQgAASEIAAOBBAAB8wgAAVMIAAIC_AACqQgAAoMAAAJjBAAAgwQAAMMIAAKBBAACwQQAAAMAAANTCAACAPwAAoMEAAERCAAAUQgAADMIAAHDBAAB0wgAAYEEAAMzCAADAwQAAcMIAAADBAAAAQQAAyEIAAExCAAAAwgAAJEIAAEBAAACiwgAAIMEAAIBBAABcQgAAwMAAAFzCAAAYQgAAGEIAABxCAACAPwAALEIAAGRCAACIQQAAYEEAAKDCAABwQQAAjEIAAHDBAAAAwQAA4MAAAIzCAABwwQAAEEIAABBBAACQwQAANMIAAABCAABQQgAAXMIAADDCAACwwQAAGEIAADhCAACAQQAAPEIAAAhCAADgwAAA8MEAAOjBAACgwQAAkEEAAGDBAAC4wQAACEIAAIDAAAAYwgAAVMIAAGDBAABIwgAAgEEAADBBAADIwgAAmEEAAOjBAABQwgAAgD8AAChCAACYwQAA-EEAAJjBAAAkQgAAAEAAAIjBAAAwwQAA2MIAALjBAAA0QgAAAMIAAATCAAC4QQAAgMEAAHDBAADgQQAAoMAAALjBAADgQQAAgEEAAABCAAA0wgAAoMEAAHDBAABcQgAAdMIAAEBAAAAYQgAAcMEAAFhCAACAwQAAIMEAAGjCAACAvwAAwEEAAGRCAADQQQAAmMEAAMBBAAAgQgAARMIAAMDBAACQwQAA4EAAAODAAABwwQAACEIAAKZCAAAAwAAAsMEAAAzCAAC4wQAAXEIAAGjCAACswgAA8EEAAIC_AADgwAAAiMIAAHTCAAAAQgAAcMEAAADAAAAYQgAAPMIAABRCAABEwgAANMIgADgTQAlIdVABKo8CEAAagAIAAEA8AAAEvgAA-D0AAIA7AAAkvgAAiD0AAEA8AAAfvwAAUD0AAAQ-AACIPQAAuD0AAAw-AAC2PgAALL4AAEC8AABEPgAAgLsAAJg9AAAhPwAAfz8AAKi9AACgvAAAJD4AABS-AACyPgAAUD0AAMq-AABkPgAABD4AAOC8AAAcPgAA-L0AANg9AAAwPQAAQLwAAHC9AAAQvQAAHL4AAFy-AAAEvgAAQDwAAAQ-AACIPQAAHL4AAAS-AADIPQAAtr4AAAS-AACYvQAAMD0AAMg9AAD-PgAALD4AAKK-AACAOwAANz8AAAS-AACAuwAAXD4AAFC9AACoPQAAUD0AAGS-IAA4E0AJSHxQASqPAhABGoACAAD4vQAA-D0AAPi9AABJvwAAhr4AAFC9AACWPgAAuL0AAIg9AACCPgAA4DwAABC9AABQvQAAEL0AAEQ-AADgvAAA-L0AAAk_AAC4PQAAoj4AAHC9AAD4vQAAcD0AAEA8AAAUvgAAJD4AAMi9AACYPQAAEL0AABS-AAC4vQAA2D0AADA9AACWvgAABL4AAJg9AADIPQAAjj4AAIC7AAAsvgAADD4AAHQ-AABQvQAAQLwAAI4-AAC4vQAAf78AADC9AAC6PgAAyD0AACw-AACIvQAAmD0AAHw-AABAvAAADD4AAOC8AAAkvgAAuL0AANi9AACOPgAAuD0AAFC9AABwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=1ZmGYalErPI","parent-reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["33802355496921706"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"15657238154733654672":{"videoId":"15657238154733654672","title":"\u0007[Integral\u0007] of cotx_ln(sinx) (Featuring \u0007[Integrals\u0007] \u0007[ForYou\u0007])","cleanTitle":"Integral of cotx_ln(sinx) (Featuring Integrals ForYou)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=B40G1B89MSE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/B40G1B89MSE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaFZVU1hGelY4UUNPS05XR2ZFNTZZUQ==","name":"BriTheMathGuy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=BriTheMathGuy","origUrl":"http://www.youtube.com/@BriTheMathGuy","a11yText":"BriTheMathGuy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":141,"text":"2:21","a11yText":"Süre 2 dakika 21 saniye","shortText":"2 dk."},"views":{"text":"1,5bin","a11yText":"1,5 bin izleme"},"date":"17 mayıs 2020","modifyTime":1589733035000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/B40G1B89MSE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=B40G1B89MSE","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":141},"parentClipId":"15657238154733654672","href":"/preview/15657238154733654672?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/15657238154733654672?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8044466799283513394":{"videoId":"8044466799283513394","title":"\u0007[Integral\u0007] of sqrt(x^2-1) (substitution)","cleanTitle":"Integral of sqrt(x^2-1) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vyX8PmhR7JM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vyX8PmhR7JM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":367,"text":"6:07","a11yText":"Süre 6 dakika 7 saniye","shortText":"6 dk."},"views":{"text":"19,4bin","a11yText":"19,4 bin izleme"},"date":"29 eki 2017","modifyTime":1509235200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vyX8PmhR7JM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vyX8PmhR7JM","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":367},"parentClipId":"8044466799283513394","href":"/preview/8044466799283513394?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/8044466799283513394?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"438749274108929512":{"videoId":"438749274108929512","title":"\u0007[Integral\u0007] of 1/(16+x^2) (substitution)","cleanTitle":"Integral of 1/(16+x^2) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JYatquFMJbc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JYatquFMJbc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":105,"text":"1:45","a11yText":"Süre 1 dakika 45 saniye","shortText":"1 dk."},"views":{"text":"45,6bin","a11yText":"45,6 bin izleme"},"date":"20 eyl 2020","modifyTime":1600604738000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JYatquFMJbc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JYatquFMJbc","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":105},"parentClipId":"438749274108929512","href":"/preview/438749274108929512?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/438749274108929512?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6039368356964989344":{"videoId":"6039368356964989344","title":"\u0007[Integral\u0007] of sqrt(x^2-1)/x (substitution)","cleanTitle":"Integral of sqrt(x^2-1)/x (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=jfS3Fq3THJI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jfS3Fq3THJI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":181,"text":"3:01","a11yText":"Süre 3 dakika 1 saniye","shortText":"3 dk."},"views":{"text":"35,8bin","a11yText":"35,8 bin izleme"},"date":"15 kas 2020","modifyTime":1605398400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jfS3Fq3THJI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jfS3Fq3THJI","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":181},"parentClipId":"6039368356964989344","href":"/preview/6039368356964989344?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/6039368356964989344?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13878281930050929791":{"videoId":"13878281930050929791","title":"\u0007[Integral\u0007] of ln(ax+b) (substitution + by parts)","cleanTitle":"Integral of ln(ax+b) (substitution + by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=TvV_lCuSjew","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/TvV_lCuSjew?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":136,"text":"2:16","a11yText":"Süre 2 dakika 16 saniye","shortText":"2 dk."},"views":{"text":"16,1bin","a11yText":"16,1 bin izleme"},"date":"6 haz 2021","modifyTime":1622937600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/TvV_lCuSjew?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=TvV_lCuSjew","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":136},"parentClipId":"13878281930050929791","href":"/preview/13878281930050929791?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/13878281930050929791?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12615051969900981034":{"videoId":"12615051969900981034","title":"\u0007[Integral\u0007] of arctan(2x) (substitution + by parts)","cleanTitle":"Integral of arctan(2x) (substitution + by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=z96EoOKFk3w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/z96EoOKFk3w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":213,"text":"3:33","a11yText":"Süre 3 dakika 33 saniye","shortText":"3 dk."},"views":{"text":"29,3bin","a11yText":"29,3 bin izleme"},"date":"8 mar 2020","modifyTime":1583625600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/z96EoOKFk3w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=z96EoOKFk3w","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":213},"parentClipId":"12615051969900981034","href":"/preview/12615051969900981034?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/12615051969900981034?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10984246358060969142":{"videoId":"10984246358060969142","title":"\u0007[Integral\u0007] of sqrt(9-x^2) (substitution)","cleanTitle":"Integral of sqrt(9-x^2) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LIOWZCm_ls8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LIOWZCm_ls8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":305,"text":"5:05","a11yText":"Süre 5 dakika 5 saniye","shortText":"5 dk."},"views":{"text":"60,8bin","a11yText":"60,8 bin izleme"},"date":"31 oca 2021","modifyTime":1612051200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LIOWZCm_ls8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LIOWZCm_ls8","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":305},"parentClipId":"10984246358060969142","href":"/preview/10984246358060969142?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/10984246358060969142?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6305597940221329151":{"videoId":"6305597940221329151","title":"\u0007[Integral\u0007] of ln(sqrt(1+x^2)) (by parts)","cleanTitle":"Integral of ln(sqrt(1+x^2)) (by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=yDV_TeNAX4M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/yDV_TeNAX4M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":225,"text":"3:45","a11yText":"Süre 3 dakika 45 saniye","shortText":"3 dk."},"views":{"text":"8,1bin","a11yText":"8,1 bin izleme"},"date":"31 eki 2021","modifyTime":1635638400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/yDV_TeNAX4M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=yDV_TeNAX4M","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":225},"parentClipId":"6305597940221329151","href":"/preview/6305597940221329151?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/6305597940221329151?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3137688396063415638":{"videoId":"3137688396063415638","title":"\u0007[Integral\u0007] of 1/(16+9x^2) (substitution)","cleanTitle":"Integral of 1/(16+9x^2) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rMA1VK_gEfE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rMA1VK_gEfE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":122,"text":"2:02","a11yText":"Süre 2 dakika 2 saniye","shortText":"2 dk."},"views":{"text":"33,3bin","a11yText":"33,3 bin izleme"},"date":"5 mar 2017","modifyTime":1488734399000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rMA1VK_gEfE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rMA1VK_gEfE","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":122},"parentClipId":"3137688396063415638","href":"/preview/3137688396063415638?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/3137688396063415638?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18295509786492084838":{"videoId":"18295509786492084838","title":"\u0007[Integral\u0007] of (ax+b)^n (substitution)","cleanTitle":"Integral of (ax+b)^n (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=GUR0iQjFFq0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/GUR0iQjFFq0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":78,"text":"1:18","a11yText":"Süre 1 dakika 18 saniye","shortText":"1 dk."},"views":{"text":"31,4bin","a11yText":"31,4 bin izleme"},"date":"5 nis 2020","modifyTime":1586095151000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/GUR0iQjFFq0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=GUR0iQjFFq0","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":78},"parentClipId":"18295509786492084838","href":"/preview/18295509786492084838?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/18295509786492084838?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11141337599452300289":{"videoId":"11141337599452300289","title":"\u0007[Integral\u0007] of 1/(x^2+9) (substitution)","cleanTitle":"Integral of 1/(x^2+9) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/v/PzorndRrE9Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PzorndRrE9Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/channel/UCNLRwiQSPlAn_hiEM2yWIwg","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":114,"text":"1:54","a11yText":"Süre 1 dakika 54 saniye","shortText":"1 dk."},"views":{"text":"135,7bin","a11yText":"135,7 bin izleme"},"date":"2 nis 2017","modifyTime":1491116400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PzorndRrE9Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PzorndRrE9Y","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":114},"parentClipId":"11141337599452300289","href":"/preview/11141337599452300289?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/11141337599452300289?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5625469313069090864":{"videoId":"5625469313069090864","title":"\u0007[Integral\u0007] of (ax+b)^2 (substitution)","cleanTitle":"Integral of (ax+b)^2 (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=t3QkKB0e-c8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/t3QkKB0e-c8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":67,"text":"1:07","a11yText":"Süre 1 dakika 7 saniye","shortText":"1 dk."},"views":{"text":"20,9bin","a11yText":"20,9 bin izleme"},"date":"22 ağu 2021","modifyTime":1629590400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/t3QkKB0e-c8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=t3QkKB0e-c8","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":67},"parentClipId":"5625469313069090864","href":"/preview/5625469313069090864?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/5625469313069090864?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14429703064678635379":{"videoId":"14429703064678635379","title":"\u0007[Integral\u0007] of sqrt(ax+b) (substitution)","cleanTitle":"Integral of sqrt(ax+b) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QQxfJ1pcj9Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QQxfJ1pcj9Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":105,"text":"1:45","a11yText":"Süre 1 dakika 45 saniye","shortText":"1 dk."},"views":{"text":"20,2bin","a11yText":"20,2 bin izleme"},"date":"27 ağu 2017","modifyTime":1503860095000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QQxfJ1pcj9Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QQxfJ1pcj9Y","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":105},"parentClipId":"14429703064678635379","href":"/preview/14429703064678635379?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/14429703064678635379?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5868204995073054354":{"videoId":"5868204995073054354","title":"\u0007[Integral\u0007] of ln(x+sqrt(x^2-1)) (by parts)","cleanTitle":"Integral of ln(x+sqrt(x^2-1)) (by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1agpoqk1cig","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1agpoqk1cig?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":335,"text":"5:35","a11yText":"Süre 5 dakika 35 saniye","shortText":"5 dk."},"views":{"text":"32,2bin","a11yText":"32,2 bin izleme"},"date":"6 haz 2016","modifyTime":1465171200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1agpoqk1cig?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1agpoqk1cig","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":335},"parentClipId":"5868204995073054354","href":"/preview/5868204995073054354?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/5868204995073054354?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7799513635162916352":{"videoId":"7799513635162916352","title":"\u0007[Integrals\u0007] \u0007[for\u0007] \u0007[you\u0007] ||Problem-01||#fsetResearch#\u0007[Integrals\u0007]#Integralcalculus#\u0007[Integrati...","cleanTitle":"Integrals for you ||Problem-01||#fsetResearch#Integrals#Integralcalculus#Integration","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AfzQTxxPYhU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AfzQTxxPYhU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQTQyS3A3SU9JU2VQZXlka21UVnY3Zw==","name":"fset-Research","isVerified":false,"subscribersCount":0,"url":"/video/search?text=fset-Research","origUrl":"http://www.youtube.com/@fsetResearch","a11yText":"fset-Research. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":330,"text":"5:30","a11yText":"Süre 5 dakika 30 saniye","shortText":"5 dk."},"date":"9 tem 2021","modifyTime":1625788800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AfzQTxxPYhU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AfzQTxxPYhU","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":330},"parentClipId":"7799513635162916352","href":"/preview/7799513635162916352?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/7799513635162916352?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11423233576807138498":{"videoId":"11423233576807138498","title":"\u0007[Integral\u0007] of x*sin^2(x) (by parts)","cleanTitle":"Integral of x*sin^2(x) (by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=036gMFMAytU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/036gMFMAytU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":212,"text":"3:32","a11yText":"Süre 3 dakika 32 saniye","shortText":"3 dk."},"views":{"text":"55,8bin","a11yText":"55,8 bin izleme"},"date":"2 nis 2017","modifyTime":1491091200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/036gMFMAytU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=036gMFMAytU","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":212},"parentClipId":"11423233576807138498","href":"/preview/11423233576807138498?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/11423233576807138498?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3947231011123372325":{"videoId":"3947231011123372325","title":"\u0007[Integral\u0007] of ln(1-x) (substitution + by parts)","cleanTitle":"Integral of ln(1-x) (substitution + by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MVbidNk3MRA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MVbidNk3MRA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":171,"text":"2:51","a11yText":"Süre 2 dakika 51 saniye","shortText":"2 dk."},"views":{"text":"67,6bin","a11yText":"67,6 bin izleme"},"date":"17 nis 2016","modifyTime":1460851200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MVbidNk3MRA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MVbidNk3MRA","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":171},"parentClipId":"3947231011123372325","href":"/preview/3947231011123372325?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/3947231011123372325?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"33802355496921706":{"videoId":"33802355496921706","title":"\u0007[Integrals\u0007] \u0007[for\u0007] \u0007[you\u0007] ||Problem-02||#fsetResearch#\u0007[Integrals\u0007]#Integralcalculus#\u0007[Integrati...","cleanTitle":"Integrals for you ||Problem-02||#fsetResearch#Integrals#Integralcalculus#Integration","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1ZmGYalErPI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1ZmGYalErPI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQTQyS3A3SU9JU2VQZXlka21UVnY3Zw==","name":"fset-Research","isVerified":false,"subscribersCount":0,"url":"/video/search?text=fset-Research","origUrl":"http://www.youtube.com/@fsetResearch","a11yText":"fset-Research. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":133,"text":"2:13","a11yText":"Süre 2 dakika 13 saniye","shortText":"2 dk."},"date":"10 tem 2021","modifyTime":1625875200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1ZmGYalErPI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1ZmGYalErPI","reqid":"1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":133},"parentClipId":"33802355496921706","href":"/preview/33802355496921706?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","rawHref":"/video/preview/33802355496921706?parent-reqid=1765309476014448-15941457522603424472-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"9414575226034244727247","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Integrals ForYou","queryUriEscaped":"Integrals%20ForYou","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}