{"pages":{"search":{"query":"Integrals ForYou","originalQuery":"Integrals ForYou","serpid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","parentReqid":"","serpItems":[{"id":"12615051969900981034-0-0","type":"videoSnippet","props":{"videoId":"12615051969900981034"},"curPage":0},{"id":"15316352002330825183-0-1","type":"videoSnippet","props":{"videoId":"15316352002330825183"},"curPage":0},{"id":"1365325187185584928-0-2","type":"videoSnippet","props":{"videoId":"1365325187185584928"},"curPage":0},{"id":"12458871617743588631-0-3","type":"videoSnippet","props":{"videoId":"12458871617743588631"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEludGVncmFscyBGb3JZb3UK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","ui":"desktop","yuid":"4837981131769301659"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"2072825662016090101-0-5","type":"videoSnippet","props":{"videoId":"2072825662016090101"},"curPage":0},{"id":"787543797431395244-0-6","type":"videoSnippet","props":{"videoId":"787543797431395244"},"curPage":0},{"id":"6821118100945185960-0-7","type":"videoSnippet","props":{"videoId":"6821118100945185960"},"curPage":0},{"id":"3482254653173653736-0-8","type":"videoSnippet","props":{"videoId":"3482254653173653736"},"curPage":0},{"id":"1930999456278746482-0-9","type":"videoSnippet","props":{"videoId":"1930999456278746482"},"curPage":0},{"id":"4489216167531479793-0-10","type":"videoSnippet","props":{"videoId":"4489216167531479793"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEludGVncmFscyBGb3JZb3UK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","ui":"desktop","yuid":"4837981131769301659"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"14454409323832395985-0-12","type":"videoSnippet","props":{"videoId":"14454409323832395985"},"curPage":0},{"id":"12722066716350592627-0-13","type":"videoSnippet","props":{"videoId":"12722066716350592627"},"curPage":0},{"id":"10984246358060969142-0-14","type":"videoSnippet","props":{"videoId":"10984246358060969142"},"curPage":0},{"id":"2453598555517141157-0-15","type":"videoSnippet","props":{"videoId":"2453598555517141157"},"curPage":0},{"id":"13893584749606851801-0-16","type":"videoSnippet","props":{"videoId":"13893584749606851801"},"curPage":0},{"id":"12106507926067141452-0-17","type":"videoSnippet","props":{"videoId":"12106507926067141452"},"curPage":0},{"id":"3037563882283317828-0-18","type":"videoSnippet","props":{"videoId":"3037563882283317828"},"curPage":0},{"id":"13009395592255300312-0-19","type":"videoSnippet","props":{"videoId":"13009395592255300312"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEludGVncmFscyBGb3JZb3UK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","ui":"desktop","yuid":"4837981131769301659"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DIntegrals%2BForYou"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"0618690893837981137162","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1466868,0,88;1414492,0,67;1193316,0,50;1460716,0,13;1462157,0,86;1460214,0,41;1152685,0,96;1472010,0,94;1459323,0,17;27383,0,38;1201470,0,2;1459946,0,49;182559,0,3;123850,0,95;1464523,0,16;1455765,0,38;1470223,0,70;1282204,0,31;1466296,0,16;1465958,0,71;1470857,0,84;1466082,0,29;1467149,0,30;1464403,0,71;1146115,0,73;1349071,0,99;1466618,0,11;1215677,0,35;1470514,0,56;241535,0,29;1471176,0,54;45963,0,74;45961,0,38;30278,0,7;1470317,0,13;1297911,0,52;1470415,0,82;151171,0,66;1281084,0,32;287509,0,98;1447467,0,79;1037339,0,6;1466396,0,74"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DIntegrals%2BForYou","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Integrals+ForYou","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Integrals+ForYou","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Integrals ForYou: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Integrals ForYou\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Integrals ForYou — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y19a0290dcf945c4a3c49e31c0e61880b","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,1414492,1193316,1460716,1462157,1460214,1152685,1472010,1459323,27383,1201470,1459946,182559,123850,1464523,1455765,1470223,1282204,1466296,1465958,1470857,1466082,1467149,1464403,1146115,1349071,1466618,1215677,1470514,241535,1471176,45963,45961,30278,1470317,1297911,1470415,151171,1281084,287509,1447467,1037339,1466396","queryText":"Integrals ForYou","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"4837981131769301659","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769301659","tz":"America/Louisville","to_iso":"2026-01-24T19:40:59-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,1414492,1193316,1460716,1462157,1460214,1152685,1472010,1459323,27383,1201470,1459946,182559,123850,1464523,1455765,1470223,1282204,1466296,1465958,1470857,1466082,1467149,1464403,1146115,1349071,1466618,1215677,1470514,241535,1471176,45963,45961,30278,1470317,1297911,1470415,151171,1281084,287509,1447467,1037339,1466396","queryText":"Integrals ForYou","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"4837981131769301659","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"0618690893837981137162","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":149,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"4837981131769301659","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"12615051969900981034":{"videoId":"12615051969900981034","docid":"34-5-16-ZEDA0F057A5BC1A6E","description":"Final answer! 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐭𝐢𝐨𝐧 𝐦𝐞𝐭𝐡𝐨𝐝𝐬 𝐩𝐥𝐚𝐲𝐥𝐢𝐬𝐭 ► Integration by parts • 🧑🔧 Integration by parts ► Integration by substitution • 🧑🔧 Integration by substitution ►...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/926621/504d798ceecbdec2ec433974f70e39f3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/nLCqCQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dz96EoOKFk3w","linkTemplate":"/video/preview/12615051969900981034?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of arctan(2x) (substitution + by parts)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=z96EoOKFk3w\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhYKFDEyNjE1MDUxOTY5OTAwOTgxMDM0WhQxMjYxNTA1MTk2OTkwMDk4MTAzNGqIFxIBMBgAIkUaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqEMIPDxoPPxPVAYIEJAGABCsqiwEQARp4gQEgBP8L8gDsBvT1_QACAN718u77AAEA3AUE8v77AwD1-wwNCwAAAAYR8QwGAAAA_fwN_fH9AQAECez1AwAAAAzw9A75AAAAAB3zCP0AAADfC_b4AwAAAAMM7Ar_AAAA7f8REv8AAAADFQEKAAAAABL2FA8AAQAAIAAt6bysOzgTQAlITlACKoQCEAAa8AF_FOz-5ND2Afck1wC6LPUAjTou_wwo3v-o4-7_yAjWAegI4wD4EegBAvIO_80U4AAZzZ8DGtMg_0vS-wAb7-wAywnjACnu2AFAAwr_FxfOAfb4Nf_l1v3-_LbVACcgtQDj_-r-Ehb1_iUcvAIm4h0D3fc6BSgDHvoDigEJ9c3fA_vf1f38CQIFA8n-960qIAQT2icAGxgL-PEa9QD2zQb8Ftcw_PAYzv4srhD_HAT_-8INFQENM-H9JTEN-cjw-Qbv9DECuRTxBc3lHv83Dwbt8QDkBPvY7w00HhIBB_0EBuy19ekl7fQC7fYJCb449vkgAC3WzOY6OBNACUhhUAIqzwcQABrAB2oW0L6slBk9Uw33u7Hfw708qF-9cL4HveDi17x4tBA82JMGu_3Spz0JshS9S_2hPOwzx736crA8iL0wvcuAMz7m0Yi9mGIzPHoXL74IPDA9KZ_UvKN11L23T_28_S8XPZrLsrkgGse9PbGzPMF-vj3y98G9F61tvC-WmLxaqbY9KKDkvFqvUz3IIce8YyXmvD8_Zz17YZe80gsOvKGjsDw2YOu8qtqLO_EFlz0LJh69p7QZvRCUmbvIK4s97ubOvLiTSL146AA9n4RjPOv7hb0-aEy9hzsRPBF2lb0PCV-8pCRavJVShj0jMcE8u2VivGkz8zweb_K91yXTOtAqQ76Yc5-8D6iIPJ8g8T0QDiy9jhEnOXq2Xb1pQDg9j5rEu0N5ujy3Ujm9rKAzvEs_YbxHj1871r4NOjLPJT0kTRc95rrfPAUqLTxGQRA93fNXPOOCGD0jp6q91tyXuz99Gj28xtM8uECCOxGN7jynVC49baOmvPC3g7uD5Lg9CJk_POQal7o8cto7eomWPCRenrti-Oi9UxhnO-C82L13YYC9Pn0CvHfc8DxG-y499g2nvG786T1M5K29K3Opu0Ljnj3v2Nk8Tb8CPOTI-bxpEau9yKIAvHdZwr0uTka87qU6vC19o73ZhyY9XqmAu4Nt5D3Cppk9S6JlOSnEqzsn66G9bAZ6O7olwTvAAGc8K-FHu6NtgT2S45M9w4kcuIkiKb3OUL-7Gngku-3Par3V_5686vl7urQipb1tLT29ariEOX2V3D0Wbim-fDzyudWTeTxrFp48SSdYOXNLu73z7fg83HLpOBOrML2heqW9JHVduFQb_L1iu_u9E9PyObN3CjyBAck97HGnuFRdtrxxhxc70KR-uhQcg73HJK29GlEVOO2lJD1rxhg9Qtbjtp5Qnj3Y6Sw9mfx1uEOTjz1FzBY9I3LSNw2wJb2KciG6xpYuOUGUeTwiwp66yj9MNyRGzzxuXIW9SVyfOJxrGL0EcQ4-ggmNubkxIr3V9NE62nzLuBanmjyOa209_RbEOIhpqj32UkK9J-kqOBjJgz1rywo9zqEyt5x6c73XS9M9n42XOA1mDTqdkIy8PTO2uONC1Dw_kq083C_BtnkkOT1TQUU8kZg9th-fAD6k5JC9Feg6uTkcyLmfPde9big_tzKU7ry6-Lu9NhcmuI65obzJCa49ZG4Ut6FvQbsLi5C9YoYJuCL_7D01KQU-835buFmWeTzFDGM9G7iOuFIJpL0f-FM9CUMwOHLsv73Iq3g9F9mNOCAAOBNACUhtUAEqcxAAGmAhBwBPBDXX0uMQ6g3F6Qr0tfPEEtoK_9fP_xM0AO8gCsi--Pv_OtLo-qYAAAAR7gE9BAAAdxjw7irlJ-gpohE7D3-zCV7JyAICzt8S8B30C_UW9lkA3Q2-Kvnd8WkgP-IgAC2cExo7OBNACUhvUAIqrwYQDBqgBgAA8MEAAFzCAAAIQgAA4MEAAGBBAACwQQAAQEIAADzCAAAgwgAAAMEAALDBAAB4wgAAwMAAAIrCAADwwQAA0EEAAKhBAACgwAAAOEIAADjCAACgwQAABEIAAIC_AAAQwQAASMIAAIjCAACIwgAAAMIAAMZCAABQwQAAhMIAAHBBAAAYwgAALMIAAIzCAAAAQgAACEIAAOhBAAAAwQAAEEIAABDBAACgwAAAuMEAAILCAAAkQgAAoEAAAEDBAAAgwQAAnEIAAMDAAACAQAAAcMEAACBBAAAAQAAAwMAAAKDAAADEwgAAYMEAACDBAACQQQAA4MAAAFjCAACoQQAAnsIAANjBAAD0wgAAAMAAABDCAABYwgAAEMIAAHhCAAAAQQAAosIAACBBAACAPwAACMIAANDBAACgwQAAkEEAAFDBAAAAAAAAjkIAAAzCAAAYwgAAPEIAAMDBAAB8QgAAPEIAAKhBAACWwgAAuEEAAHxCAACqwgAAHEIAAABBAABMwgAAQEEAAEBAAADAQQAAUEIAAHzCAABQwQAAEMEAAAAAAABEwgAAUMEAAABAAADYQQAAqEEAAFRCAAAwwQAA8EEAAABAAAAwwQAACMIAALhBAAAgQQAAgMAAAGDCAAAAwQAAXMIAAILCAADYwQAAsMEAAOBBAAAgwQAA4MAAACBBAACAwgAA4MAAAJDBAAAAQQAAwEAAABRCAAAgwQAAIEIAACRCAAAkwgAA4EAAADjCAAAkwgAAoMEAABxCAAAAAAAAqEEAAMhBAAAMwgAAmEEAAABAAAAEwgAAoEEAAGDBAACqQgAAgD8AAARCAACwQQAA4EAAAPjBAAAowgAAEEEAAIzCAABAwAAAcMIAAOjBAABAwgAAkEIAAIhBAAC-QgAAbEIAAHDBAAB4QgAAoMAAAFRCAAD4wQAAisIAAIhBAAA0wgAAIMIAAIA_AACIQgAAgD8AAIjCAABAwQAA8MEAAIBCAADgwQAAlMIAAPBBAADAwAAA-EEAAEBAAAAEwgAAIEIAAIjBAABgwgAAlkIAAKjBAAAgwgAAIEEAAODBIAA4E0AJSHVQASqPAhAAGoACAACKvgAAjr4AAJi9AAAEPgAAJL4AAEQ-AACYPQAAF78AAIA7AABwvQAAuL0AAPg9AAAkPgAAsj4AAFy-AAAMvgAA-D0AAEw-AADgPAAALz8AAH8_AADWvgAAir4AAFC9AAD6vgAAQLwAAHA9AACSvgAAFD4AAEw-AADoPQAADL4AAKa-AACIPQAA6L0AAMi9AACAOwAAUL0AAM6-AADYvQAAED0AAKg9AAC4PQAAyD0AAIi9AACYPQAAqD0AAJK-AAC4vQAAbL4AACy-AABMPgAAIz8AAGw-AAB0vgAA6D0AAG0_AABMPgAAPD4AALY-AADIPQAAdL4AACy-AADqviAAOBNACUh8UAEqjwIQARqAAgAAiD0AAKC8AAAsvgAAa78AADy-AACIPQAAfD4AAHS-AAAEvgAAwj4AACQ-AADovQAAgDsAANi9AAA8PgAAEL0AAEC8AAATPwAAQLwAAKY-AACYPQAA4LwAANg9AABAPAAADL4AAFw-AACCvgAAQDwAAAS-AABAPAAA4DwAAKA8AADYPQAAor4AAFC9AADIPQAAmD0AAKA8AADovQAAfL4AADA9AACWPgAAoLwAAKA8AACoPQAAHD4AAH-_AABwvQAAPD4AAFC9AABwPQAAEL0AADQ-AACSPgAAgr4AAOg9AACAuwAAuL0AAAQ-AAAkvgAAdD4AAEw-AACgPAAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=z96EoOKFk3w","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12615051969900981034"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"622691358"},"15316352002330825183":{"videoId":"15316352002330825183","docid":"34-4-7-Z0B604A6DD5A10FA3","description":"C 07:16 Final answer! 07:23 See more! #integralsforyou #integrals #integration...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3192075/abd4b882608746c780bfbdbb9c1dba07/564x318_1"},"target":"_self","position":"1","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnqiokEAeN2g","linkTemplate":"/video/preview/15316352002330825183?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 5x^2/(x^2+4)(x^2+9) (partial fraction decomposition)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nqiokEAeN2g\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhYKFDE1MzE2MzUyMDAyMzMwODI1MTgzWhQxNTMxNjM1MjAwMjMzMDgyNTE4M2qvDRIBMBgAIkUaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqEMIPDxoPPxPRA4IEJAGABCsqiwEQARp4gfUEAPj8BQAD_gr7_QP_AQYC8_b3__8A-P3-AwUC_wD0_QoI_AAAAAUM_wUDAAAACfwD__j-AQAO_f4DBAAAABXw9_f9AAAABgP2Af8BAAD4Cv78AwAAAAn98QsAAAAA8wEDCQEAAAD8Bwb1AQAAAAL8BQAAAAAAIAAtK-TeOzgTQAlITlACKnMQABpgER4AIxAG4OASGvQC7fYNAO_7Ad729QD17QASCuq9Fgfx5gD5AAff7v_TAAAAAxD2HQgA8zcd-N0cCRD5FsHnDRB_-BQX-fII5wH2KvEK9PQE8fMIANsG-QoL8PQnAiseIAAtSSOFOzgTQAlIb1ACKq8GEAwaoAYAACRCAACowQAA4kIAACjCAAAAwQAAoMEAAIJCAACIQQAATMIAABDBAACYQQAAIMIAALhBAAAUQgAAFMIAACBCAAA0QgAAbMIAAIxCAADwwQAAuMEAAFRCAABIwgAACEIAAFjCAACGwgAAOMIAAOBAAACeQgAADMIAABzCAAAQwQAAisIAADjCAAAEwgAAaEIAAMhBAAAEQgAA0MEAANhBAABIwgAAQEEAAGBBAACMwgAACEIAAFDCAACgQQAA0EEAABBBAACgwAAAYMEAADDBAADoQQAAFEIAAOBBAAAQQgAAWMIAAAjCAAAgQQAAIEEAAHBCAAA8wgAAQMIAABTCAABAwAAAxMIAABzCAAAEwgAAwMAAALjBAAAgQgAAIMEAAKbCAAD4QQAAUMIAAFBBAADgQAAAQMEAADBBAACowQAAMEEAAGhCAAAAwgAAuMEAAKDBAABQQQAA4EEAAFDBAAAUQgAAoEAAAODAAABMQgAAsMEAAARCAABsQgAAHMIAAIjBAACgQAAA6MEAAJRCAAAUwgAAksIAAIA_AAAcQgAAAMIAAKDAAACwQQAAUEEAAABCAACSQgAAYEEAAHhCAADgwAAA4EEAAFzCAADaQgAAEEEAAKDAAAAwwgAA6MEAAPjBAACmwgAAMMEAAARCAABQwQAA6MEAAKBBAAAAwAAAHMIAALBBAABYwgAALMIAAJhBAABUQgAAWMIAAMxCAADYQQAA0EEAAODBAAAQwgAAAMEAAIDBAAAwQQAASMIAAEBCAAAQQgAA6EEAAIJCAACQwQAAJMIAADjCAACgQAAAIEIAAHhCAADYQQAAgEEAADDCAACowQAAQMEAAODAAACEwgAAAEIAAKDBAACowQAAQEAAAFxCAAAUwgAAVEIAAAhCAAAQwQAAoEAAAPBBAAD4QQAAmsIAAKjBAAA0QgAAQMIAAJDBAABwQQAAAEIAADzCAAAUwgAA0MEAAHDCAADoQQAAQMAAAEDCAABYwgAAgD8AAChCAACgQQAAyEEAAEBBAAAAQAAABMIAAHBCAAAQQQAASMIAANhBAAAAwCAAOBNACUh1UAEqjwIQABqAAgAA4LwAAES-AADIvQAA1r4AALi9AAB0PgAAbD4AAG2_AACOvgAA-D0AALo-AABQvQAAUL0AAEw-AADgvAAAHL4AADQ-AADgPAAA6D0AADE_AAB_PwAAhr4AACw-AABcvgAAkr4AAMY-AACWvgAAFL4AADw-AABMPgAAdD4AABk_AABcvgAAmL0AABw-AADgvAAAMD0AAAw-AACOvgAAPL4AADw-AAAUPgAAiD0AAHA9AAA8vgAAgLsAAJK-AADWvgAA6L0AAJK-AADovQAAJD4AAP4-AAD-PgAAkr4AADQ-AAAxPwAAmD0AAHA9AAAkPgAA-L0AACS-AADoPQAArr4gADgTQAlIfFABKo8CEAEagAIAAKA8AABEvgAAcL0AAF2_AABEvgAAUD0AACQ-AACAOwAA6L0AAKY-AABkPgAAcD0AAFC9AAAwvQAA4LwAAIA7AACYPQAA0j4AALi9AACmPgAALD4AADw-AADgPAAAqL0AANi9AAD4PQAANL4AALg9AAAEvgAALD4AAPg9AADYPQAAiL0AAKK-AAAQvQAAFD4AAHA9AACyPgAAJL4AAJi9AACaPgAA4DwAANi9AACgPAAAPD4AAIC7AAB_vwAAkj4AAIY-AADgvAAAuD0AAOA8AAAEPgAAbD4AAJi9AAAkPgAAEL0AABy-AAAwPQAAkr4AAJg9AACAuwAAMD0AAAw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=nqiokEAeN2g","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15316352002330825183"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1365325187185584928":{"videoId":"1365325187185584928","docid":"34-3-10-Z5FB4A6830202043E","description":"sides 04:31 Rewrite expression 04:58 Integrate dx, cos(u)du and cos(v)dv 05:24 Undo substitution: u in terms of x 05:34...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3927639/215482fe4335781fbbfe78573aa0745b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/wxn1WAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUp3uJXuTGFY","linkTemplate":"/video/preview/1365325187185584928?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sin^4(x) (trigonometric identities + substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Up3uJXuTGFY\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhUKEzEzNjUzMjUxODcxODU1ODQ5MjhaEzEzNjUzMjUxODcxODU1ODQ5Mjhqtg8SATAYACJFGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKhDCDw8aDz8T8wKCBCQBgAQrKosBEAEaeIH0CPsH_QMA_QIFAvoF_gL9AfQG-P39AOwO_f37_wAA-vMTAgQAAAD-BgQKBAAAAPUBA_z0_wEADAT57gMAAAAQ-vUB9QAAABAQ-vn-AQAA8gj68wIAAAAN_v_4_wAAAAAIAvcDAAAABAED_AAAAAAI_gQGAAAAACAALSM_3Ds4E0AJSE5QAiqEAhAAGvABfwcNAMzUxADRBcAAuhva_5E8BP_8O8sAxuDoAen-1ADdCfEADAT4APwRFAC5BNL-FtOpA_Sk9QAq0O7-Ks3sAdwWBQET_uABLR4f_yggDv_ZKhX_59v9_vLVqAAjHbwAHer3_vkAAPzqBLkCHOEzA9orHQIz-ysBA5YBCNLT5QL1973--DP3Ae3Y__jmHx4BDcYV_Sn6-_7MBuAC_PMD-d3rGv8QFskAGuwH_hAVAATW4w4MJRXtCCIsC_nO8foF0fA0Brz-AvPQ6_n7JNYD8M0T-wAr4_UJIOr_9SLT_wnhwecBAucBEff88_zA-OsDIAAtXNEAOzgTQAlIYVACKnMQABpgF_oAKgsUtvYSIPgSvQgE99r-wQDSAv_T1f8bM_r_K_TI2BQZACPWDu6wAAAAFgztOxUAFWPY3jIfGhX124HnKhlhDQAK0-jzFbvoNecw7O037Ck0APgR0TwP9u4hIxsOIAAtFQMyOzgTQAlIb1ACKq8GEAwaoAYAAKDAAABUwgAAjEIAAMDBAAAAQQAAUEEAAIBCAAAcwgAAQMIAAIBAAABgwQAAjsIAAODAAADIwQAACMIAAEBBAAAQQgAA4MEAAFBCAAAgwgAA2MEAAIBBAADYwQAAiEEAAHDCAAAcwgAAlsIAAIA_AAC6QgAAsMEAAKDCAACwQQAAfMIAACzCAACMwgAA8EEAAEhCAADQQQAAmMEAAEBBAAC4wQAAgEAAAGDBAABswgAATEIAAPjBAACAQQAAsEEAAGBCAADAwAAAEEEAABDCAACIQQAA4EAAAMBAAABgQQAAiMIAAEDAAABgQQAAYEEAAKhBAACKwgAAQMEAAKrCAACIwQAA1MIAAHDBAABMwgAAmMEAAFjCAAD4QQAA4MAAAM7CAAAwQQAAQMEAAKjBAACowQAAwEAAADDBAAAQwgAA4EAAAJ5CAACwwQAA-MEAAChCAAAAAAAAVEIAACBCAACAQQAAPMIAAKBAAACQQgAAVMIAAFBCAADgQQAABMIAAMBAAABgwQAA2EEAAJBCAACSwgAAcMEAAOBAAACgQQAAaMIAAFDBAABAQAAAAEIAANBBAACyQgAAkEEAAERCAAAwwQAAqEEAAETCAADwQQAA8EEAAIBAAAAwwgAAoMEAAFTCAAC-wgAAFMIAAABAAAAAAAAAuMEAAIDBAABAwQAAMMIAANBBAADQwQAAYMEAAEBBAABUQgAA2MEAADRCAAAgQgAAwEAAAEBBAABcwgAA6MEAAGDBAABIQgAABMIAACRCAADIQQAAoMEAALBBAADAwQAAcMEAAABAAAAQQQAAiEIAADBBAAAEQgAAMEEAAIjBAACwwQAANMIAAODAAACYwgAAQEAAAFTCAAAIwgAAqMEAAJRCAADgwAAAzEIAADhCAACgQAAAOEIAAKDAAAAsQgAALMIAAIrCAACIQQAAKMIAACDBAACoQQAAeEIAAATCAAB8wgAABMIAADDCAABEQgAAwMAAAEDCAADgwAAAAAAAAARCAAAIQgAAQMEAAChCAABAwQAANMIAAIpCAACowQAASMIAAJhBAACwwSAAOBNACUh1UAEqjwIQABqAAgAAuD0AAOi9AABEPgAAJL4AAAy-AACaPgAAUD0AABG_AACYPQAAmL0AAKC8AACaPgAAJD4AAGw-AAAMvgAA6L0AACQ-AABwPQAADL4AAC0_AAB_PwAALL4AAOA8AABEPgAAbL4AAEw-AADovQAApr4AADQ-AACOPgAAgLsAAIA7AACIvQAA2D0AAFQ-AACIvQAAUD0AALi9AABkvgAAmr4AADw-AADovQAAcL0AAHC9AAC4vQAAgLsAAKA8AACavgAAvr4AANK-AAD4vQAAfD4AALY-AAA0PgAA0r4AAJg9AABJPwAAMD0AAJg9AABsPgAAHL4AAKi9AAAwvQAAlr4gADgTQAlIfFABKo8CEAEagAIAABS-AABwvQAAcL0AAGe_AAAMvgAAFL4AAKg9AAB8vgAA2L0AAJ4-AACoPQAAML0AAAw-AAAwvQAAoDwAAJi9AACIvQAAFT8AADw-AACaPgAAmL0AAFC9AACoPQAAiL0AAOC8AADgvAAAQLwAABA9AADgPAAAyD0AABA9AAAUPgAAyL0AAKi9AACAuwAABL4AAGw-AACmPgAAPL4AADS-AADoPQAAND4AAFy-AACoPQAAuD0AAJi9AAB_vwAA2D0AAFw-AADYPQAAlj4AADy-AADIPQAAdD4AACS-AAD4PQAAgDsAAKA8AAAQvQAAbL4AAHQ-AADoPQAA2L0AAEy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Up3uJXuTGFY","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":600,"cheight":360,"cratio":1.66666,"dups":["1365325187185584928"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"645092691"},"12458871617743588631":{"videoId":"12458871617743588631","docid":"34-9-5-Z01211B12CAC4B02F","description":"parts ► Integration by substitution • 🧑🔧 Integration by substitution ► Integration by trig substitution • 🧑🔧 Integration by trig substitution ► Integration by Weierstrass substitution • 🧑...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3312451/80b40df4a09dded383d2a968bcf3e064/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hr/GptMAAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDX0VW3zE3f0","linkTemplate":"/video/preview/12458871617743588631?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sin^3(x) cos^4(x) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DX0VW3zE3f0\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhYKFDEyNDU4ODcxNjE3NzQzNTg4NjMxWhQxMjQ1ODg3MTYxNzc0MzU4ODYzMWqIFxIBMBgAIkUaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqEMIPDxoPPxOdAYIEJAGABCsqiwEQARp4gfYJ_vX_AQAPCwT__QUAAPAE-wn5_v4A9Qb1_fUC_wD3_AoLCQAAAPQOAQoCAAAACvwD_vf-AQANBPntAwAAABD69QH0AAAAERH6-f4BAAD1Bu74AgAAAAEB9QQAAAAAAAgC9gMAAAD-EAUBAAAAAAwD-woAAAAAIAAtS6PSOzgTQAlITlACKoQCEAAa8AF_D-j-0dr7AA8gvf_EJfcApA4e_woi4_-15_H_uejcAQAP3QDjMeUA9OsP_83__f9F9MX_Def_AFe5Cv_x_PAB8fjXARzn9AE9ERkCGhXr_-8OGP_f7v0BGtPOAwQn1_7v8gr9DwIK__33z_ww1_YC9eQmBhMuNAAEvRMA2vv7A-ra1f3yF_oH5tUV-9UFJQIQ4CEAFxQJ-ddK7gD46PcACe4Z9eEK3QgKk_7_8v0FAcsLEgEENPj4JRMU8p3y_QYeBiUA1PP6AOL3CAALEAfu5ub4Afze8gssGg8BAe0FCAbHDPMT_Q311uIDAvg77vsgAC0ITwg7OBNACUhhUAIqzwcQABrAByuE7b43C8U7s2y5u1NgHL0kQuO8b5EFvZcsuDy3Df48MXV8vJgw2j0FIKS8HtZlPARUOL6WoaK7BEi-vJjdIz6BSZC9Q_T1vHE9Wr7nFr89hUyovJt2Ib4aJTm9G1AIO2pdEzxGfCe9IHMOu-8RGz3BxL-9CJABvcP4RLxMiUQ9LVlavTKlGj1VtIO7TJkKvatH9TzqR3m94ezWvMjUGD1sy0W9iFyZu89Jnz2FmZG8LqqHu_EPe72-Ghs9dNi3uh66BzxyTSY8ypx4vC8_w7svsYk7coKbvDTDwb3aVz49wRPAOyZAqD2QqCs9b9GuvGVDnT13NbS9kHYyvX7FCr5PIAy9okbfO920GT49FtE8A2D6u8Zhqr2rW5097tSaOxLJxjwqT4W8QkN_vLk7hjwgruI7HrV4PDMtNj0gKk09pSseO21eCz2JTXo9EGIhOwB1Xj2DTDe9xDdQOvzgHD2540g9arvsuwVRFz22iCm6HvxEvLnfQT38I6c90yk0PPhAIT1PJgk8rGG1PJuVCL0Idgy-zaXhuyaUeb2xCVq9kYJ9OVRkHj1YVQA673pEvBWQVj2_Xpa93UPCu_locT26JBg8OlcUO9-uETxMqeu9vd3UO1ACpr16H0I9BMFKu_PMhr3wet88OJ6Ru_7Zuj0rEgM-y7FbuWwB57swR--9P5qgumGCBD36pfQ8IPusuxTIMT0e8pA9t5DiuXd2QzyGCoQ8UcKnuoR1Db2L2Ay9vyNwu828y72nz069zEqpt8dnEj6uoOm9kAm0ubvO7TtThRU9gm-_t4s8tL19NVE9OB8YOOD4Fb1nU2S9UuspuKs9kb0aUhW-MFEKOutteD01UrU9cqKSOC91CDxPOja80Sw1uRVwD73dggC9lT9suaQRvTwqaaw6xmdluGrxbj3Ikn49kA4OOIEmjT3h33E9dtUUuSY3zDqR_qi8iQjeOcgoqrzlohA9DKeQOJi0Ujs_cMW99y5gOQqAsbwnF-M9YmCSuesPHrz6Y_U8DjI2t-jYAT0SE1Q9qpyCtt5Z-zzY8Z-9GA2XOC33uDwPiow9qb2KuPQLQLyFRbA9OWfrOF2_AD2_GQu9yXJiOE_UaD13fja9EwkjN2qirjtSKAs8AphZOJJdGT7ZT1C9rMI_uYxxFL3be0K9xfxnuNU7gTzvPYe9zZO_N_C7Dr3HFj09v9KzNtyNVL2dJ7O9LDQSuCL_7D01KQU-835buDwp-rtVKm094DKNuJgPjb3dH4Q9jMPRN68Mxb0j7hs9Bw3dtiAAOBNACUhtUAEqcxAAGmAe9wBX-Tqw1Qwf2hy89Af53NzP7PAG_-rq__sp8tQKBuLbDxD_HtjdBqkAAAAO7uQ84AAAcQQJziviBe0pg_hMCn_vBi-8vf0s1_kU8fkMDivh_EEA1RjRNxSx_D8XMBcgAC3dLyE7OBNACUhvUAIqrwYQDBqgBgAAqEEAAODBAACQQgAAoMEAAABBAAAAQQAAcEIAAFTCAABswgAA4EAAABDBAACYwgAAUMEAAADCAADYwQAAyEEAADBCAADIwQAAYEIAADzCAAAUwgAAQEEAAADCAAAAQQAAeMIAAETCAACcwgAAcMEAAMBCAAAQwgAAjsIAANhBAABYwgAAoMEAAILCAAAAQgAADEIAAPhBAACowQAAqEEAAADBAABQwQAAAMAAAIbCAAA8QgAAqMEAAABAAACQQQAAcEIAAODAAADgQAAAEMEAAOBBAABwQQAAmEEAAIBAAACswgAAgD8AAABBAACgQQAAuEEAAFzCAADgwAAAksIAAOBAAADuwgAAAMEAABDCAACgwQAAHMIAAFxCAACoQQAAvMIAAMBAAAAAwQAAmMEAAODBAAAwwQAAgEEAAADBAADAQQAAkkIAAEzCAAAMwgAACEIAAIBBAABQQgAALEIAANhBAAA8wgAAcEEAAJRCAACMwgAAJEIAACxCAABMwgAA4EAAAODAAACgQQAANEIAAJzCAADQwQAAQEEAAIBBAAA0wgAAQEEAAODAAACwQQAAQEEAAHBCAAAwQQAALEIAAIDAAAAQQQAAWMIAAFxCAAAkQgAAgL8AACjCAADQwQAAXMIAAKjCAAAEwgAAoEAAADBBAABAwQAAoEEAAAAAAAAowgAAMEEAABDCAAAAwgAAmMEAAEhCAABQwQAANEIAAAhCAACAPwAA4EEAAEDCAADAwQAAqMEAAEBCAAAgwgAAKEIAANBBAACwwQAAAEIAAJDBAADgwQAAgEAAADBBAACWQgAAUEEAAABCAACQQQAAUMEAALjBAAAIwgAAcMEAAJrCAACAQAAAYMIAANDBAAD4wQAAnkIAAKjBAAC-QgAAZEIAAGDBAABEQgAAMMEAACBCAABIwgAAdMIAAPBBAAAEwgAAmMEAAIhBAAAcQgAABMIAAIbCAAC4wQAAHMIAAFhCAABgwQAAgsIAAIC_AAAgwQAAIEIAAJhBAAAwwQAALEIAAAAAAAAYwgAAhEIAANjBAAA4wgAAgEEAAMDAIAA4E0AJSHVQASqPAhAAGoACAADIvQAAEL0AACQ-AAAQPQAAoDwAAAw-AADoPQAACb8AAFA9AAAQvQAAcL0AAEQ-AAAQPQAAMD0AABC9AADIvQAAZD4AAJg9AABcvgAAAT8AAH8_AABQvQAAqL0AAKI-AADKvgAAVD4AAIi9AAC-vgAAFD4AAEw-AACIPQAAPL4AAHC9AAD4PQAAXL4AABC9AABwvQAAnr4AALK-AAB8vgAAXD4AAIA7AAAcvgAAUD0AADC9AAD4PQAAbD4AAOa-AADKvgAAC78AADS-AACqPgAA-j4AAOg9AAC2vgAAgLsAAE8_AABcPgAAML0AAIY-AADYvQAAJL4AABS-AADOviAAOBNACUh8UAEqjwIQARqAAgAA-L0AAKC8AABUvgAAV78AAGS-AABQvQAAfD4AAPi9AADYPQAAbD4AAOC8AACIPQAAyL0AAIC7AACYPQAAgDsAAIa-AADCPgAAZL4AAHw-AAAsPgAAyL0AAIA7AACAOwAAyL0AADQ-AACGvgAA4DwAABS-AACAOwAAgDsAAFQ-AAAkvgAAur4AALi9AAD4PQAA5j4AABQ-AABMvgAAhr4AAKA8AAAcPgAAmL0AANg9AAD6PgAALL4AAH-_AAAkPgAAoj4AAOC8AADYPQAAyL0AAMg9AACWPgAAyL0AAEQ-AABAvAAAdL4AADA9AABAvAAAkj4AADA9AAAQPQAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=DX0VW3zE3f0","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12458871617743588631"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3429383992"},"2072825662016090101":{"videoId":"2072825662016090101","docid":"34-0-13-Z6A3EACD7B4EE927B","description":"integralsforyou 👍 Facebook: / integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou #integrals #integrationbysubstitution...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4568266/1a3954783a56d89f0f58a84d01f04126/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gEvOBwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9AYy_VqmjoE","linkTemplate":"/video/preview/2072825662016090101?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of cos(x)*ln(sin(x)) (substitution + by parts)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9AYy_VqmjoE\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhUKEzIwNzI4MjU2NjIwMTYwOTAxMDFaEzIwNzI4MjU2NjIwMTYwOTAxMDFqhxcSATAYACJEGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKg_CDw8aDz8Te4IEJAGABCsqiwEQARp4gfkP9P4C_gARABEAAgj_Ae3-9fb6_v4A5wH3-_j-AQD3_AoLCgAAAPQPAQoDAAAA_vH_9_f9AQAHCwTwBAAAABH59QH0AAAADQ7uAv8BAAD1Bu74AgAAAAIL7wn_AAAA_AUO7wAAAAAGDQb8AAAAAAsC9AEAAAAAIAAtjvrLOzgTQAlITlACKoQCEAAa8AF__PX-5N_dAuXqvAHUPPz_lCMMABYbxgDG-eAB0O2yAdr07wDp6t0BFgX5AKcJAf9Ay8X-J70KASqw9P4owQMAsw7YADj5wwAxICL__iHs_f4OLP0U5f__8dGh_-YavP7pD_P57vva-AY6zQMVzB7-9gEwBzf6LgESsvUG0tr_BPD56v8GHfwH69T_-K8pHwQyAy4EEv8a--4-2vzo9RcA_esH8vAXz_77tv4KHAT_-8QDMwb6D_z8KhUX8KH0IggBDzv53An69tjBBPcoKfUI8gDlBAfr2ARCCgYBAL72AujVAPMN7wDz5voX-NEP7v8gAC19v-w6OBNACUhhUAIqzwcQABrAB7-6ur6AC9c8kf1ivOYQZ70WqEC9LB-DvfgzPLyHSzM9xMGUu5gw2j0FIKS8HtZlPBxCFb5Q8IM8m0gfvdtP5j2FtMa9P5STvdlDS75DknY7KX-CvamiCL6iSLG7SExVPYJEibx1K4q9_CtYu-8RGz3BxL-9CJABvbKCX730CKS8eXyWvCIXob07nIq8BStTvfeSRrxSc8O9LxOoO-vgsD1_eIy8fBVPvL_jSj32C1Y9lvn9vL-aA72RlDk9deuQuhIduDxvwrO80BzjPEq4i72tMtO8R1ACvLc8e70RnyY7zeA0PQ97hj3suZE9OaErvfII7j17FM69x4CsvKjIIb4CfBw96OltPOSG_z05dvU8jG-ePNzvhb3dCfY9yJ3runvylTwCrCG8I-EWvQGZtz3Woiq8VyGKPNCAlT1DkIM8wX2Ruy-Rtj0f1YU9AHifvE0dWj1jzW28JIp_vIaYtj0KZIs9_K3Xu7BoZL1Jrzc9QGiiPLOwDD0rgak9yzs9vEVO_LuSdRg9nSbYPJuVCL0Idgy-zaXhu8eDbb1XEI69nbdWvBIrSL3thmg9juBrvEOpHT4fatu9xJqpOUUb9jxPtho7PSwvPA4-Az3nOsi9LzNsPFACpr16H0I9BMFKu79rp7s6w7k81jV_vHMHWz0DU8c9cgzBOdPMaT0O3ey9j4o4uqN70rt4lgA9qp-SO0wRmj1IfWM9OoVeudoQLT3ozh87RrIJvGkYH7wUIiC9OiakOtO--b1TBi69y-RbOW0D1z21o9i9DJ-vOc2h1jx4UpU8PMqXOC3RCb6WIS49nrhguGg6QL2mQvy89cqPOVxUC72cFfG93J51ObpVxrv2JuY9p8_oODu_nT3gh14851euuF9_vb0fGDu9CNU3ubplarvX3by87gHKuDgU3j2LPZ89Mq23uCrVdLxW7b88sx9xNw8WBL1ceBo8zK5duMN4kj0UVIk9sfw1OIwYMT0XGIi9M5UcOZXhyzrnAYc9MjGLNzgBH7wOg3k84MFEuAkcJD3Ur9m8_xwsuJgarD3X8Km9AuheuLGLAbz0xck9JfkdOUpRqL1jbu08-wU-ODvVm70J3aW8p5rAt5uvbT0z4p28V-abN9c1tTw_hbg9Y2IFOJJdGT7ZT1C9rMI_uRZOAr4wq2a9VSpWODKU7ry6-Lu9NhcmuJtLW72SPKc9bXCBODW3grwsMWq9uqFGuCL_7D01KQU-835buPCyNb1czM89DEYKuXDKwb0zF_g9utymOL1AH73rnRu8g1A4NyAAOBNACUhtUAEqcxAAGmAOBAAq9DDc0vwn8RXZ8gQD4u_L-90O__3V_xsc6NwNAtPOCAb_Jsrt97EAAAAj-QE25AADZPj-4ynsEfQamvkwAX_uAU7F0eYN4esy_Avm_RQI70YA4RzCHgXc-2UTHhMgAC1laDQ7OBNACUhvUAIqrwYQDBqgBgAAVEIAAJDBAACSQgAAKMIAAFBBAADIQQAAikIAAIDBAAAwwgAAmMEAAODAAACIwgAAgD8AAAzCAABAQQAA4EEAADBCAAAswgAAmkIAAIzCAACgwQAAAEAAAHzCAADAQAAAfMIAAOjBAACEwgAA8MEAAHxCAACQwQAAcMIAAJBBAAAowgAAMEEAAJLCAADQQQAA2EEAAMBBAAAAwQAAIEEAAHDBAAAQwQAAQEAAANjBAAAQQgAAcMEAAEBBAACYQQAAqEEAAADBAAAwwQAAuMEAAKBBAACYQQAAAEAAAARCAACcwgAAcEEAAJhBAAA4QgAAiEEAAHDCAABAwQAAiMIAABRCAADGwgAA4MAAAADBAABAwgAADMIAAJBCAAAkQgAAgMIAAIhBAAA4wgAAwEAAAMjBAAAIwgAAoEEAAKDBAAAQQQAAwkIAAFjCAACAwAAAUEEAAAhCAAAUQgAA2EEAAFBBAABkwgAAoEEAACxCAACKwgAA2EEAABhCAAB8wgAAYEEAAIjBAACYQQAASEIAAJDCAABQwQAAhEIAAIBBAABkwgAAgEAAADDBAAAoQgAAmMEAADBCAAAAQQAAJEIAAHDBAAD4wQAAUMEAAKBCAADQQQAAWMIAAIjBAAC4wQAATMIAAJTCAAAgwQAAQEAAAAAAAACAwQAAgEEAAKjBAADYwQAAiEEAAMDBAABMwgAAAMEAAGRCAAAQQQAAQEIAABhCAACAQAAAIEEAAKLCAACwwQAAgMAAAOhBAABQwgAAiEEAAERCAABEwgAAHEIAAKBAAACIwQAAAAAAALBBAABQQgAAAEAAAABBAADAQQAAZMIAABzCAAAAwgAAJMIAAJLCAADgQAAAPMIAAIjBAACAwQAAaEIAABDCAACKQgAApEIAAIDBAAA4QgAAoMAAACBBAAAcwgAAlsIAAIhBAAAAwAAAFMIAABRCAAD4QQAAWMIAAHzCAABAwAAAMMIAADBCAABAwAAAiMIAAPjBAAAgwQAAGEIAAGBBAAC4wQAAMEIAAABBAADQwQAAwEIAAGDBAAAYwgAA0EEAABDBIAA4E0AJSHVQASqPAhAAGoACAACovQAARL4AAIg9AABQPQAAgr4AAII-AADgPAAAI78AAAw-AABwvQAAiD0AADw-AAAMPgAAVD4AAEy-AAC4vQAAPD4AAMg9AAD4vQAAET8AAH8_AACGvgAAHL4AADC9AACevgAAij4AADC9AADSvgAALD4AAHw-AADoPQAAmD0AAKi9AADgPAAAZL4AACS-AACgvAAAJL4AAKq-AACovQAAlj4AAAS-AAAQPQAAPD4AAEQ-AABEPgAA2D0AAO6-AACyvgAAnr4AAEC8AACiPgAA2j4AAHA9AACCvgAADD4AAFc_AACKPgAAED0AAJY-AAAEPgAAvr4AACS-AAA9vyAAOBNACUh8UAEqjwIQARqAAgAAuD0AALg9AACOvgAAWb8AALa-AABAPAAA-j4AAJq-AAB0PgAAlj4AAJi9AAAwPQAAQDwAAIA7AAAwvQAA4DwAAMa-AAD2PgAApr4AAKI-AABMPgAA0r4AAKA8AAC4PQAAyL0AABw-AACivgAAUD0AAAy-AACAOwAAQLwAAMg9AACCvgAAyr4AAHS-AAAcPgAAwj4AACS-AAAcvgAAwr4AAIA7AACmPgAA4DwAAKg9AAALPwAAuL0AAH-_AACgPAAAmj4AAKi9AAAwPQAAND4AAMg9AACOPgAApr4AAHQ-AAAMvgAAPL4AALg9AACgPAAAxj4AAEQ-AACYPQAAbL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=9AYy_VqmjoE","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["2072825662016090101"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2556513797"},"787543797431395244":{"videoId":"787543797431395244","docid":"34-5-2-ZBE401A35E3A3C610","description":"substitution • 🧑🔧 Integration by Weierstrass substitution Integrals by parts • 🧑🔧 Integration by parts Integrals by partial fraction decomposition • 🧑🔧 Integration by partial fraction...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1021996/a7c726a733e6ca7acafa299921aa728e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/TPflogAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSATPZs7kHM8","linkTemplate":"/video/preview/787543797431395244?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 1/(x - x*ln(x)) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SATPZs7kHM8\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhQKEjc4NzU0Mzc5NzQzMTM5NTI0NFoSNzg3NTQzNzk3NDMxMzk1MjQ0aocXEgEwGAAiRBoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioPwg8PGg8_E3CCBCQBgAQrKosBEAEaeIHzDfr9_AUADwoE__0FAAD1AfgA-f7-APYH_P7_Av8A8_oHAQQAAAD4BQICAAAAAP0GAfv6_gAA_AcI9AQAAAAJ8_cL-wAAAAQO_AQKAAEB7v70-QIAAAALBPkFAAAAAPcDC_wBAAAA__sH_gEAAAAG-vr9-_b-ACAALVNm3Ts4E0AJSE5QAiqEAhAAGvABfyP2_-bh3wLPBb4A_SzyAZwPIf8LJeH_yfriAfnZwgHr8uIADAjj_ggbBgC5UPIAPc7I_iLd_QA2rQ4CBuYGAL_97wEm79sALh8g__oBEf_G_g0A3vPgAPLUpv8lNd7-7vEL_forAQEGN9ADI-QbAwLnMPw-7R0BCMfUBNf6-wPwDOj15yL0_A3aEfazJx0EFu83ATgyJf4PEMYB6gAI-PDOKv8i_r76AdQT_PoNA_2y5hn98gcUBTECFgK84wIL4h4o_QDs_gTv8___DBEH7fwo7Qse5Oj6GfQD6wDB9wLPxgTz7g77-_Dr_QPzBPQAIAAtuAv6OjgTQAlIYVACKs8HEAAawAeIgrm-xSUBvFpF_7wKB8y9Vw8UvDSFDr08izm9chsIPceBHjqlokE-sGH8vM8vKr3DeFe9QVKbOxlZMrwm__M98QW3vaBlJzx1dPy9LxOaPQsCEL3KopW95kcyPPF-AT05Q_G9sG2Gvcc4EjyrTaI9VNwdvQl2Er0zOKW8gCXbO1sAZLzcahk69RFYvRN8WL0W0DW98MYbu7aMKzvtr4g9g-4cvS7aa7tX6b49qvngvIqtoLwjfpq9TXBlPW8wL7xoqoq7B4_bvNUofzxKuIu9rTLTvEdQAryar7e9v6VSvfVMyjzf_MY97BvzPIdZPr30bGm5YKskvoAygLux4Um-LpL2PE8InTzkhv89OXb1PIxvnjwSvey9hfYAPfRDmTvd8aE9S3qTvWArl7zg3jA93_DMPBBYPTo8lDI8St-aPJ5rrTtyE_e7LLmKPHMyzDy0OMY7RR0svV5UgbzPPpA9XPr8PCofwrxf3We87GQVPXL3XjyyYIe9kdKcPflOCjunB2U9W5TZPNjCYjwFI6U91gI7vknlmjoKQoO9bL-7vQyD6DvdwX49vLskPYh7kbxu_Ok9TOStvStzqbv5aHE9uiQYPDpXFDul_0A82eqyvVOSN7q3KPO9JpUEvcGoZrv8fya9AEptPZKW57vs76Y9Wk2yPU9zprnFZQY9-gwIvlUhA7qZi648655mPWSiFLuZD-g9DAOWPfxdVbp7ubQ81d9cPI2if7tpzD-90GM0vciPnbpgQoC9gF9ovQrOaDnudJw9rOLNvSr_vTlz_4e9ueaKu7xT4ziLPLS9fTVRPTgfGDh6RBu9lWc5POfLNzoUnYu9iXrhvcYncDm4Tq08MZVePZxGjjha3YU9fooDvcxSd7kC9Iu9RTWQvTuGMTjrnBW9QGzpOz4P7beFcHY9UXZJPWZXhDhiwJI8lyL1OxTHXzl1pES8EumtPBVjS7l0kjI9lcUUvHsAHzjrpGM8ooyivb9SZDlFnO87PdHVPeIJR7kwZku8-TThO1bDG7gXH7A8S6CHPTgzx7g5tJg9po-Kvcwd2jc1dq485qzPPfUM2DagUM-9Fe-GPcLSAjhBaWI78EDTPGL7_DYJERU9LKdzvRsJODjjtQE9fDdMPTFHj7bjbvA9Dkzuvclll7kr3BO8ZJUCvnE9G7jOcjS8XQ_Lvahwm7ftkZe8QfaFPX6Fn7YGv6i85kyUvQrKZLci_-w9NSkFPvN-W7i1V1o90rKEPZHZu7i0FsC9VDS7PTxfsjiUzKC9LAY0PbotgjcgADgTQAlIbVABKnMQABpgFPUAI_cy2OcVGPYXwwX-8fH2zvT7_P_p7gAMJwLdFe3o2AwXAB3G7_G6AAAAABQTJ94AEln1-eE38BL8EpLlMfl_7QkqyukHFtnvLOoI7vAV6hAxAPUq1SD82vVUIyIrIAAtyyhBOzgTQAlIb1ACKq8GEAwaoAYAABBBAABYwgAAwkIAAFzCAAA8QgAAgL8AAGRCAAAAQAAA6MEAAEBAAADIwQAACMIAAOBBAAAAAAAARMIAACxCAABYQgAAuMEAABBCAAD4wQAA4EAAALhBAAAwwgAA4EAAAEDCAAB4wgAAwMEAAEDBAADgQgAAYMEAAPjBAAAQwQAAVMIAAKDBAAAcwgAAIEIAAPhBAAAsQgAA4MAAAKBBAAC4wQAA4MAAALDBAAA4wgAAcEIAACTCAABAwAAAGEIAAIhBAADYwQAAQMEAAAzCAACAPwAAYEEAAABBAABAQgAAbMIAAMDAAADYQQAAcEEAAChCAAAgwgAATMIAAJrCAABQwQAAAMMAAODAAABIwgAAiMEAAETCAAAIQgAAUMIAAOTCAAAEQgAAHMIAAABAAAAwQQAAAMEAAADCAAA4wgAAoEAAAKpCAABgwQAAkMEAAAAAAAAgwQAAfEIAANBBAACYQQAAAAAAAEDAAAAwQgAAIMIAABxCAAAUQgAALMIAANjBAADgwAAAgL8AAKpCAAA4wgAAgMIAACBBAAAsQgAABMIAAIDBAACwQQAAYEEAAPhBAAC-QgAAoEEAAEBCAABgwQAAAMEAAEzCAACYQgAACEIAAHBBAABQwgAAJMIAABDCAACuwgAA0MEAAKBBAACAQAAADMIAAIA_AACowQAAgL8AAMhBAADYwQAAwMEAAIhBAABMQgAA-MEAAMJCAABQQgAAmEEAADTCAACgwQAA4MAAAMDAAAC4QQAA2MEAAPBBAAAUQgAAoEEAAEBBAAAAwAAAQMIAAEDBAAAAQQAAUEIAAAxCAAB4QgAAiEEAABzCAADgwAAARMIAALjBAABkwgAAwEEAACTCAAAEwgAAAAAAAKpCAAAgwQAAhkIAAExCAADgQAAAoEEAACBBAADAQQAAPMIAAEzCAADYQQAAcMIAAIDAAABgQQAAuEEAAMjBAABwwQAAkMEAAKDCAACQQQAAkEEAAPjBAAA0wgAAgL8AAABCAAAMQgAAcMEAADBBAACAwQAAHMIAAIpCAACAPwAAhMIAACRCAADIwSAAOBNACUh1UAEqjwIQABqAAgAA-L0AADS-AABQvQAAMD0AAK6-AACYPQAA-D0AADu_AADoPQAA4DwAAGQ-AACgPAAA4DwAAHA9AAB8vgAAcL0AAGw-AADoPQAADL4AAAk_AAB_PwAAcL0AABy-AABwvQAAZL4AAI4-AABwvQAAsr4AAIg9AABQvQAAJD4AACQ-AAAwvQAA6D0AAFC9AACovQAAFD4AAAS-AAAcvgAAgr4AAI4-AACOvgAAmD0AAIg9AAB8PgAAhj4AAOC8AAC6vgAAjr4AAKq-AAA0PgAAgj4AAM4-AAAkPgAAmr4AABA9AABhPwAAQLwAABA9AABEPgAADD4AABS-AAC4vQAABb8gADgTQAlIfFABKo8CEAEagAIAAFA9AABQPQAAqr4AADu_AADWvgAA-D0AAAc_AAAQvQAABD4AAKo-AAAwvQAAML0AAIg9AAAwvQAAgLsAABA9AABUvgAA5j4AALa-AACaPgAAmD0AAGy-AACgPAAAqD0AAFC9AABUPgAAor4AADA9AADovQAAVL4AAFC9AADgPAAAEL0AAMq-AAAcvgAAUD0AAKY-AADYPQAAmL0AAJ6-AAA8PgAAbD4AALg9AAAMvgAA6j4AAPi9AAB_vwAA2D0AACw-AAAEvgAAVD4AAPg9AABkPgAAPD4AAEy-AAAsPgAABL4AACy-AABQPQAAoDwAAJY-AAC4PQAAqL0AAEC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=SATPZs7kHM8","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":600,"cheight":360,"cratio":1.66666,"dups":["787543797431395244"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3584358783"},"6821118100945185960":{"videoId":"6821118100945185960","docid":"34-10-12-ZADD7D6B80334759A","description":"✍🏼 https://integralsforyou.com - Integral of (x^3)*sqrt(x^2-1) - How to integrate it step by step using integration by substitution! ✅ 𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞 𝐭𝐨 𝐜𝐡𝐞𝐜𝐤 𝐭𝐡𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3802758/229fc8692da8f2db93d0bd860ae42963/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cKMcnAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9abzJKNMsxE","linkTemplate":"/video/preview/6821118100945185960?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of (x^3)*sqrt(x^2-1) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9abzJKNMsxE\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhUKEzY4MjExMTgxMDA5NDUxODU5NjBaEzY4MjExMTgxMDA5NDUxODU5NjBqiBcSATAYACJFGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKhDCDw8aDz8TkAKCBCQBgAQrKosBEAEaeIHxBQMB-wUA-woA_P0DAAHpBPH5-wAAAOkB-Pv5_gEA8_oHAQQAAAD_EggKBQAAAP_y__j4_gEAAAD_-wMAAAAC9fUA-QAAAAUUAPv-AQAA8_P49gIAAAD9CfcC_wAAAPcDC_wBAAAAAQIJAAAAAAAGAgEAAAAAACAALRIG4Ds4E0AJSE5QAiqEAhAAGvABf_z1_uXR9gGv9N__-zwCAZQjDAAlMNgA4e_U__jzsAHp8eAADQX3AA8JHP-jF-j_GM-hAwS6G_81zBH_DcD8ANEC-wEV_t4BTTwB__0ZEP_V6hr_8MLp__HRof8KDsX9BM0G_wD-5v9ARssE_gY4AAb3IwIk0Rb9A40BCLup7wHy5ev67xsVBBDdKfy5_icBDvsd-kAw5P_IB90D1eP7-e_LLP8RGMUAAun3ABEXAASzDwQK_wf2DVEPJ_7X2_ADAQ87-cr6DPTuzwADH_ga8Rg64gIhxvYWJBMD8N7c6P0F1_b4CgT97_QD_wjRD-7_IAAtfb_sOjgTQAlIYVACKs8HEAAawAfMXcO-ZNL4ukvw_ju-o4a97Ol5vaLEnbxJXie941VWPaa_zbwzMhg-EDRwvXw9xDyh4SO9ilAWPcYlWLwm__M98QW3vaBlJzx1dPy9LxOaPQsCEL0CzLa941MdvE0EYD2k-4m9dhjTvQyH7zyrTaI9VNwdvQl2Er32vTy92r2GPWxo-bzUOps9NFVGvQ6fdL1lOxu8V_RdvZ_aYzqho7A8NmDrvKraiztbleQ9LSXLvDTmH717rgW9wwd7PSPKDb1e_4W5qPe5PKv11TtkKrO9QT4yvDrGOjzyDUC9t-07vVpCYzyctLo9Su1FPLB6m7z0bGm5YKskvoAygLsxzSS-4Y9svSFhczzwiws-8z-zu-I6xjvv5LO995GbPc39urxVPAQ9EHpWvSpTDL3HEve6fm4IPfVG8zvpdgA9MGIEPRsHxTuqHka6gIGAPVTTZDxQhBq7jfaDvUXCkrz84Bw9ueNIPWq77LvIPQQ8hhNiPWmebTyE04e9xk7YPXqVbztB2AS77-73vEHxxjsFI6U91gI7vknlmjoour69puy5vUOkjTs9FUY96munPHoGQ7x3Lwc-CHtuvZPkOTwKMKw9BgEJvECmkDyyEci8vUpIve32k7oz3oa95_fivGTb1LvmwqK9KeGjPbQq-LtzB1s9A1PHPXIMwTnFZQY9-gwIvlUhA7p7bCY8Edaxu7lpWLuu8gQ-CcX2PaHA4jbmWwA8RJCevCUhU7tWYai9X3AXveOgrblBmhG9WTVjvTNIB7ltA9c9taPYvQyfrznZcEK9MXzEuyQvCbob6qG9sluVPSzZmTis8Yi8nHeivW6FUTlcVAu9nBXxvdyedTk44mQ9EYzjPS0UxTmZuPa7HpTmPKMfETsUHIO9xyStvRpRFTg7TEE7cwIHPGnLIrlq8W49yJJ-PZAODjg_bmQ8vlgtuzd9gzifuzO9JTubPNJ4Izlpewo9kxVoPBuQqTjnItk8A8z8vVJJyDmzRpi9qiufPan6OriM0Jk80mvYPE1K7bfr0D89s90zPcuPk7gnUrU9and-vHYDADh3suU73_uLPVrn1LeAV9W8aqAJPnVOWTh4-re8e7zQPHKqmjdEQLQ8akr0O81iJrjjtQE9fDdMPTFHj7b3ASg-cGHdvfFnv7kr3BO8ZJUCvnE9G7i77YK8l-ahvfo4_7fCRn68D3vhPQy1wTeuJx-9EAMAvHPsd7ci_-w9NSkFPvN-W7glzV07LR5jPUERC7l-J8y9LLyLPckpwThya_K91NVdPRFChbcgADgTQAlIbVABKnMQABpgGv4AMwM-w_QIGv4Utf4J5fLrz-fp8P_R6P8lJwzVLfjVzPoWADPL__yrAAAAERr0PdkAHmcI_gg99RfWH4HvKOx0FQsgt-EFCdn9SeIY8PUk2OcpAOceyCvs1tlNNTIWIAAtsbcmOzgTQAlIb1ACKq8GEAwaoAYAAOBAAAB0wgAAwEIAADTCAAAgQQAAcEEAADBCAAAAAAAAOMIAACBBAAAAwAAAKMIAAEBAAACgwAAAbMIAAFBBAACGQgAA4MEAAJBBAAAUwgAAoMAAAKDBAABIwgAAmEEAAFjCAACgwQAAnMIAAIhBAACMQgAA2MEAAGDCAACoQQAAgMIAACDCAACUwgAAOEIAAIBBAAC4QQAAIMIAAIDAAABQwQAAcMEAAJjBAAD4wQAAeEIAANjBAAAkQgAA4EEAAPBBAAAAQQAAgD8AACDCAABgQQAAEEEAAABBAAAoQgAAHMIAAGBBAAB0QgAAuEEAACBCAAB0wgAA6MEAAKrCAAAQwQAA3MIAANjBAADAwQAAkMEAAKjBAABAQQAACMIAAMbCAAAAQQAAqMEAAIjBAADAwQAAoMAAAHDBAABQwgAAqEEAANRCAADIwQAANMIAAKBBAACAvwAAYEIAAEDAAAAEQgAA8MEAAIBAAAAoQgAAaMIAAEhCAAAQQQAAKMIAAPDBAABAwAAAyEEAANJCAABQwgAAqMEAAKBAAACCQgAAXMIAAEDBAAAAQAAAFEIAANBBAAC0QgAAIEEAACxCAADAwAAAKEIAAFjCAABAQgAAVEIAAKjBAAA0wgAAgMEAAAzCAACuwgAAIMIAAKBBAABwwQAANMIAAADBAACAwAAAoMEAAAxCAABwwQAAIMIAAHBBAABsQgAACMIAAERCAAAsQgAAmEEAANjBAADYwQAAsMEAAEBBAAAMQgAAeMIAABRCAAAoQgAAuMEAAJBBAADAwQAAoMEAAGDBAABwQQAAREIAAOhBAAAwQgAAcEEAABjCAAAgwQAATMIAAIDBAABwwgAAEEEAACzCAADIwQAAQMEAAIZCAAAwwQAAqEIAADBCAAAIQgAAEEEAAKjBAADIQQAATMIAAGzCAADoQQAAPMIAAHBBAACwQQAAaEIAADzCAACYwQAAUMEAAKjCAAAEQgAAwEAAAKjBAACYwQAAAEEAAOBAAAA0QgAAkMEAAABCAAAAwQAAEMIAAIRCAAAAwQAASMIAAAhCAAC4wSAAOBNACUh1UAEqjwIQABqAAgAAyL0AAKi9AACoPQAAqD0AACS-AACCPgAAMD0AABW_AAAMPgAAoDwAAOg9AABQvQAA4DwAACw-AAAkvgAAED0AAGQ-AABwPQAAiL0AANI-AAB_PwAA6L0AABS-AADovQAAZL4AAOg9AAAEvgAAjr4AAMg9AADgPAAAiD0AADw-AADYvQAAmD0AAEA8AADIvQAAoLwAAFC9AACOvgAAqr4AAGQ-AABQPQAA-D0AAKA8AAAwPQAAmL0AAKC8AADgPAAAVL4AAHS-AACAOwAAPD4AAMo-AACGPgAAtr4AAJg9AAA3PwAAQLwAALg9AACgPAAAEL0AAMi9AACgvAAArr4gADgTQAlIfFABKo8CEAEagAIAABy-AAD4vQAANL4AAGW_AABMvgAAUD0AAOI-AABQvQAAUD0AAHQ-AACGPgAAJD4AAKC8AAC4vQAAEL0AAAw-AABUvgAA-j4AAI6-AABEPgAA2D0AABC9AABAvAAAoLwAAOi9AABUPgAAlr4AALg9AABEvgAAbL4AAHA9AAC4PQAAMD0AAO6-AACAOwAAmD0AADQ-AAB0PgAAJL4AAJK-AACOPgAAML0AABC9AAA0vgAA1j4AAHS-AAB_vwAA-D0AALo-AAAkvgAAqj4AAKg9AABcPgAA6D0AAAS-AAAcPgAADL4AABS-AAAcPgAADL4AAFw-AAAMvgAADL4AAFQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=9abzJKNMsxE","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["6821118100945185960"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3405500522"},"3482254653173653736":{"videoId":"3482254653173653736","docid":"34-11-2-Z0C9FFA101D207A28","description":"substitution • 🧑🔧 Integration by Weierstrass substitution Integrals by parts • 🧑🔧 Integration by parts Integrals by partial fraction decomposition • 🧑🔧 Integration by partial fraction...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4890576/4b71648b93dade512891accf397c40a1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/CETTBwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2n2hMArDX0g","linkTemplate":"/video/preview/3482254653173653736?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of (x+1)/sqrt(x-1) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2n2hMArDX0g\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhUKEzM0ODIyNTQ2NTMxNzM2NTM3MzZaEzM0ODIyNTQ2NTMxNzM2NTM3MzZqiBcSATAYACJFGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKhDCDw8aDz8T7QGCBCQBgAQrKosBEAEaeIH6BwAG-gYAAwP9_vsD_wHyCfn8-v79APIAAvz-AQAA9AAI_PwAAAD-BgQKBAAAAPj9_vb6_wAABgUE-wQAAAAC9fUA-QAAAAkOAwD-AQAA8_T59gIAAAAFCvwB_wAAAPwH_vwG-gH__f8MBQAAAAAC_AUAAAAAACAALSv14zs4E0AJSE5QAiqEAhAAGvABf_z1_uTf3QLNBroA-hv6AbAqQP_8QMcAzNjKAOXh0QHoH9UAByHzARwkBQC1VPEAGM-hAxTOBv81zBH_EdjwALXr5QA4-cMALTsTAgoLBwDS1RH-8MLp__HRof8nONz-4uX4-wYu7AEGOs0DHQMmAfTgKwYy3DL-A40BCM7P4wIF7Pb56TAP_g_uGf23DxQDDvsd-kQH_f_nF9P86QAJ9-f7MwERGMUABegPBiEl5Ae0-gMB9BwP_zQCGALHx_4Lze45B74MBwbd2wz1HgwG-uAy5woT5wMXKgkV9AXh9PgEpOz5GQ4K_O72CAnfH9buIAAtfb_sOjgTQAlIYVACKs8HEAAawAeIgrm-xSUBvFpF_7yx38O9PKhfvXC-B72etVu9D19rPUf6_jwUdhE-3w7evCa-gzvnRqK96wAIu1p_y7yY3SM-gUmQvUP09bx6Fy--CDwwPSmf1LxP5dS9-vePPLrsIT19CfW9lwLSvQpEdDxyHmk9O2pxvby0PL0CtV29X3obPdOwLr3cahk69RFYvRN8WL0QFwq9vv-qvJkC4zpsSFc9sez4vFSGlrxbleQ9LSXLvDTmH73WMTO9jVL4PDQ_yLxoqoq7B4_bvNUofzxKuIu9rTLTvEdQArwdOt29SqubvVEuzTxmFuE9QbUGPRPWhrz0bGm5YKskvoAygLt-xQq-TyAMvaJG3zv19fw9nKIIPesrWbwY0gG-SYOrPZYmJbwJX6k9dt0bvZA6cLxLFwc9_4kbPTTPWzzxAee5aUq8PNrKB7wErNU8M6KZPPTzSzxQhBq7jfaDvUXCkrxOjsw9HnohPT4u4LsSf_k85bijPVx9DjzLcb29jwG0PZJeVLwhjS88qkeaPLzPcTwFI6U91gI7vknlmjoKQoO9bL-7vQyD6DvrE8o8CeZDPG5Cq7xO8M09ZjPnvf9XADx_I2s9wb7nPHDZVzxktmC7qASPvZo0Gbv7rV29xIQnvQr4kDtmHr-9hS1sPWoxW7tzB1s9A1PHPXIMwTkpcJw9kivLvSj22jiquoc8cRLUPCKi3rsn9K89X0CUPYjbFreyW9U8a6E_vIH0YrtpzD-90GM0vciPnbpgQoC9gF9ovQrOaDnudJw9rOLNvSr_vTmiYGa9mToZvaKI-zqbOs-9uO5BPC0nCrnuc-O70qGIvcMjPDlcVAu9nBXxvdyedTnfmFQ907eRPWpFyjcdrSo93OFlPDDGXjgC9Iu9RTWQvTuGMThH-Ci8kF7ePG5dlrgbOuw8Cg-aPF-CA7nXNMq8bAD8u_drr7h1pES8EumtPBVjS7lcomQ91wZdvO7jIDnrpGM8ooyivb9SZDkK8hO94529PZVT1bioT5c8I0ItPc_afjjo2AE9EhNUPaqcgrb7Ows-D7AbvfkUnbjVNo-8bM0WPrIhQDmcenO910vTPZ-NlziH28K788iPPZbNgziwBE09LHoMvVbi-DfN-RM94vyCPU_KujT3ASg-cGHdvfFnv7lcSQG9yt7SvRciBLlmErU8XqHPvYC6sjcHFKC6ySC3PcLXmrdyjL-6M9zAvKjAZrgi_-w9NSkFPvN-W7jyNiA9kRmePeMcYrjOhmG90Oz6PcASljhTUMu9LIQPPC4uTLcgADgTQAlIbVABKnMQABpgCvcANfhAyuYIFwEawgsE-Ob30_nlDf_Z4_8GMgjwHfTU5QoQACzL-O-wAAAABRT-N9wAFmUK8PQ03w7vKoHsL_Z3-Q4nw9j4Asf5MeYw6-8c-fU0APEixBTq3-VVGToLIAAtPZ0wOzgTQAlIb1ACKq8GEAwaoAYAAJDBAACYwgAAxEIAAFzCAAAMQgAAAAAAAFxCAADwQQAAGMIAACBBAABgwQAAUMEAACBCAACgQQAAcMIAAIhBAAB0QgAAsMEAAIBBAACwwQAAIMEAAGBBAAA8wgAA4MAAAFDCAAAwwgAALMIAANhBAADSQgAAwMEAABjCAAAAwQAAdMIAAATCAACIwgAAKEIAAABCAABMQgAAuMEAAOBAAAAQwgAAIMEAAKDBAAAAwgAA0EEAAFzCAAAMQgAAYEIAAJhBAACAPwAAQEEAAAjCAABQwQAAAMAAAEBAAABMQgAAPMIAAFBBAAAkQgAAIEEAALBBAABkwgAAJMIAAJLCAADQwQAA5MIAAMjBAAAswgAAwEAAADDCAAAAQQAAYMIAAKTCAAA8QgAAYMIAAADAAABAQQAAQEAAABzCAACIwgAAAMAAAMxCAABAwAAA-MEAAAAAAADAwAAAREIAACDBAAAcQgAAAEAAANjBAADQQQAAoMEAADRCAAAEQgAAEMIAAAzCAACAwAAAQMEAAOZCAACgwQAAMMIAAKBAAACOQgAAQMIAAIjBAADIQQAAmEEAALBBAAC0QgAAyEEAAEBCAADAwQAAAEIAAITCAABkQgAAIEIAAADBAAB8wgAA0MEAAATCAACuwgAA6MEAAJhBAADIwQAAdMIAAOjBAABgwQAAAEEAABRCAABQwQAAIMEAAJBBAABoQgAATMIAAJJCAAAYQgAA4EEAAEjCAADYwQAAiMEAAEDAAACwQQAADMIAAIhBAAA4QgAAkEEAAIBAAADAwAAAwMEAAMDBAACAvwAADEIAANhBAAAQQgAAkEEAAMDBAACAvwAANMIAAOjBAAA0wgAA4EEAAKDBAAAowgAAAAAAAKxCAABgQQAAgkIAAGRCAAAMQgAAQMAAAIA_AABwQQAAKMIAAEjCAABgQQAALMIAAIC_AADAQQAAhEIAAATCAABAwQAAkMEAAKLCAAAAQAAAmEEAAFDBAABIwgAAoEEAAABAAAD4QQAAqMEAAIA_AACYwQAACMIAAFRCAACAQQAAfMIAAChCAADYwSAAOBNACUh1UAEqjwIQABqAAgAAML0AALi9AADovQAAFD4AABS-AABcPgAAHD4AAAG_AACYPQAA6D0AAFC9AAAQPQAAgDsAAJg9AAAsvgAA2D0AAPg9AABQPQAAQDwAAB0_AAB_PwAAQDwAAJi9AACovQAAZL4AAFw-AAAwvQAAjr4AAPi9AABEPgAAiD0AAKg9AAB0vgAA2D0AAEC8AAAQPQAABD4AANi9AACCvgAAsr4AABw-AABsvgAAND4AAOg9AAAkPgAAmL0AABy-AACOvgAAqr4AAAO_AACYvQAAbD4AAMY-AAD4PQAAgr4AAEA8AAA3PwAAVL4AADQ-AAAcPgAAUL0AAOA8AADIvQAAtr4gADgTQAlIfFABKo8CEAEagAIAALg9AABAvAAAgr4AAFW_AABsvgAAUD0AAMI-AAA8vgAAEL0AAJY-AABQvQAAQLwAAEC8AABsvgAAED0AAEA8AAAUvgAA4j4AADS-AACOPgAAJL4AAAS-AACovQAA-D0AAJi9AAD4PQAAbL4AABC9AACYvQAARL4AAFC9AABwPQAAmD0AANK-AACOvgAAcD0AACw-AADIPQAAcL0AAFS-AAAQPQAAfD4AAIi9AAAQvQAAfD4AACy-AAB_vwAAmL0AAI4-AACYPQAAgj4AALi9AAAsPgAAUD0AAGS-AACYPQAAqL0AAIi9AAAMvgAAgLsAAGQ-AAB0PgAAUL0AAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=2n2hMArDX0g","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":480,"cheight":360,"cratio":1.33333,"dups":["3482254653173653736"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1309329284"},"1930999456278746482":{"videoId":"1930999456278746482","docid":"34-3-4-ZD1039274A7C2F380","description":"fraction decomp...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2957823/fdd6675c15f1d9f0ff327849483f2476/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_6gWKQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFK5HFw6rXIU","linkTemplate":"/video/preview/1930999456278746482?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sin(ln(x))/x (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FK5HFw6rXIU\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhUKEzE5MzA5OTk0NTYyNzg3NDY0ODJaEzE5MzA5OTk0NTYyNzg3NDY0ODJqhxcSATAYACJEGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKg_CDw8aDz8TRoIEJAGABCsqiwEQARp4gfATAAABAAAQABEAAgj_AewD9QD6__8A9Ab0_fUC_wDx9_wOBQAAAO8ABAQAAAAAAv799vP9AQAHCwTwBAAAABLo_Af_AAAAERH6-P4BAAD1Bu74AgAAAAwE-AYAAAAA__8J-AMAAAADBAv3AAAAAAUB-wUAAAAAIAAtdlDOOzgTQAlITlACKoQCEAAa8AF_LBP_ytT6_-kIywDjEMsBoyn2AAo97gDS8fL_EPrvAOgf1QD3INgAyR3jAL85_f9Ay8X-N8Dz_zXMEf_7yOgByvHNASHW0wAKMDcAERwi_9gCS_4bysoA_bjWAA3zsADSCPT-HiPe_eYuywQj-RUFHuhJABoQLgUupdkF9c7gA_bm__2u8_UCI_wAALP0CQf75Pb_LSMW--4-2vwJ5RTz5vszAQo6yv0WwQT_EvgK_pwDHAPNCicAJTAM-cEDC_sBDzv5ny7z-uvwGwYeIOz6ExzgBPXv5wQUIQj_DwDy-_za990lGP7w_d8IBb839vkgAC2rMew6OBNACUhhUAIqzwcQABrABxFumr5V5py8QxaAuqKY3L0hg0s7fZDIu-1-1b076oO855RbvHHpsz0ma_m8L4eNvYzim73m9Cu8xeMCPSb_8z3xBbe9oGUnPNlDS75DknY7KX-Cvcqilb3mRzI88X4BPYJEibx1K4q9_CtYu7J1mj2ly9G8LegBvGD9ZL15uW26eHy5u4lH_byTnai9a3ARvQ13OTpigQ89q8m2O-2viD2D7hy9Ltpru-AR1T1CWog7mLKCvKYQg70fACc9Mxv_vL7NET2UgYc7meRWPWQqs71BPjK8OsY6PLICnb0fYT28kljSPDbsMj0ADQU9xNI7vWVDnT13NbS9kHYyvWGlir5znFs8VQTuO_3Puz14uYg9qyaIvBSbCr1dNU89-CVRPBvccT3B-kS9zGJivMbLaT0bJRS9vg33O2_KprxZYq88YqylPPaFxrzGLSy7ukZwPAItPb1uJIq9VoVhvBO8rD1wJNA9-vdPvEkV4LzP93A703Launm-EL1NMcc9f6VzvNkuBrzMofs82jPwOgUjpT3WAju-SeWaOld7OL0vh_29KqBmOnfc8DxG-y499g2nvG786T1M5K29K3Opu6RuRz1e06g8Nz6Lu6X_QDzZ6rK9U5I3uvgmrL3553O93m2DOxpVAb2LgR89dSwlvINt5D3Cppk9S6JlObx9UT0YQTO-sZyRuZmLrjzrnmY9ZKIUu5kP6D0MA5Y9_F1VusFts7uPHGm8ZpSZu-3Par3V_5686vl7utO--b1TBi69y-RbOW0D1z21o9i9DJ-vOZOKa737boS8c6_iOAeW4737m-s8NJV6N_Fe2ryPfzA8Ealyuas9kb0aUhW-MFEKOvAk8zzloI89oh3SuJ4NVDxC9xu9wGoNOmN0ar3gGWi9WW_9t4t8TTyLsX25G9kfucjegTxADUk9qOZROEOaKTuhXro7-bV5OPayrbwINSg9UedLuPc8vz365868MknZOOci2TwDzPy9UknIOQryE73jnb09lVPVuABaEDvWl1s8a7wouKwTYTwChO89qBqeNsxi4j1pG7-9qOZsuNZi5jwLKR8-SAeNOCpMKb0NPb098M9fOYNi8bsG5jc9E0MTuJZSYTx6EAy8lgzGOM35Ez3i_II9T8q6NPcBKD5wYd298We_uZOMnLwmsaq99wHbuEiWQr0sEcO9wcyPuAcUoLrJILc9wteatwPsRDvkzSu9MqqZuCL_7D01KQU-835buE_LDz1OH-Y8hzW3uG4Djb0naa49v_cWN8xDJr4ckKk8qWYxuCAAOBNACUhtUAEqcxAAGmAO_AA-8kbF5wsS-SWsDgjl9ea_8Nn-_-jQ_wogCs0o-M_fFRf_Dtzn66oAAAAbCfkd3QAIavL91UH1Dd8hk8w-B38K_Cq92fAO1gAs8h3j_jHaAkgA7QfYPvGxA10CFhYgAC3tdyQ7OBNACUhvUAIqrwYQDBqgBgAAgD8AAIDCAACiQgAAyMEAABxCAAAQQQAAgEIAAJjBAADowQAAgD8AAPDBAACEwgAAiEEAABDCAAAIwgAA2EEAADxCAABAwQAAMEIAACTCAABQwQAAQEEAAMDBAABwwQAAWMIAAHjCAABIwgAADMIAAPpCAACgwQAAHMIAAKBAAABAwgAAJMIAAKrCAAAoQgAAJEIAAAxCAAAQwQAABEIAADDBAADAwQAAoMEAAFTCAABcQgAA6MEAALjBAAAEQgAASEIAAEDAAADgQAAAmMEAAEBAAABAQQAAAMAAAOBBAADKwgAAgL8AAIBBAAAQQQAAuEEAAEjCAAAwwQAAwsIAAEDBAAD8wgAAgMAAAGjCAAC4wQAAOMIAABBCAACowQAA0MIAAPBBAACowQAAyMEAAABBAACIwQAAuMEAANjBAAAAAAAAmEIAAPDBAACgwQAAcEEAAKDAAABMQgAAFEIAAHBBAADowQAAIEEAAHxCAABowgAAWEIAAARCAAA4wgAAgMEAAIDBAACAPwAAhkIAAGjCAAAMwgAAsEEAAKBBAAAkwgAAEMEAAIBBAAAwQQAAYEEAAJRCAADIQQAACEIAABDBAAAAQQAAHMIAAMBBAACoQQAAgD8AAEjCAADgwQAA8MEAAKTCAACgwQAAgEAAAFBBAACgwQAA4MAAAAAAAADQwQAAkEEAACDBAABAwQAAYMEAABxCAACAvwAAmEIAADRCAAAAwQAAcMEAABzCAACwwQAAwMAAAERCAACQwQAAmEEAAARCAACAvwAAoMEAAAAAAAAIwgAAAEEAAHBBAACQQgAAQEEAAERCAACQQQAAQMEAAKjBAABkwgAAUMEAAI7CAABAQQAAMMIAAATCAAAkwgAApEIAADDBAACyQgAAcEIAAEBBAABkQgAAoEAAABhCAAAwwgAAXMIAALhBAAAwwgAAoMEAALBBAACEQgAAwMAAAHDCAADYwQAAXMIAANBBAADgQAAAMMIAABDCAADgwAAAJEIAAIhBAADwwQAA4EEAAMjBAADIwQAAlEIAAODAAACGwgAAwEAAAPjBIAA4E0AJSHVQASqPAhAAGoACAABwvQAAVL4AAFA9AAAwPQAAbL4AABQ-AAAwvQAAF78AAMg9AACoPQAA4DwAAAw-AABQPQAAUD0AAES-AAAQvQAALD4AAHA9AAAEvgAABT8AAH8_AAAsvgAADL4AAFC9AACavgAAdD4AAPi9AACSvgAAPD4AANg9AACYPQAAmD0AAOC8AAC4PQAAmL0AACS-AACgvAAAyL0AABy-AAD4vQAAlj4AADy-AADIPQAAcD0AANg9AACoPQAAoDwAAMq-AACuvgAApr4AAIC7AAC-PgAAsj4AAPg9AACWvgAAmD0AADs_AAA8PgAAMD0AAEQ-AADYPQAAhr4AAKi9AAAVvyAAOBNACUh8UAEqjwIQARqAAgAAUL0AAEC8AACavgAAa78AAN6-AABwPQAAET8AABy-AABUPgAApj4AAKC8AAAQPQAADD4AAOg9AACovQAAUD0AAJK-AADaPgAAqr4AAIY-AAAUPgAAdL4AAFA9AADIPQAAyL0AAFQ-AACuvgAAcD0AABy-AADovQAA4LwAAKg9AACovQAA2r4AABy-AADgPAAA3j4AAKC8AACYvQAAzr4AAAw-AAB0PgAAgLsAADC9AAAHPwAARL4AAH-_AABMPgAAhj4AAJi9AACGPgAARD4AAFw-AAC-PgAArr4AAHw-AAAUvgAANL4AAGQ-AAD4vQAA2j4AAFA9AADovQAAyL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=FK5HFw6rXIU","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["1930999456278746482"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1326792036"},"4489216167531479793":{"videoId":"4489216167531479793","docid":"34-1-15-Z51BE2BB16D2B5698","description":"Instagram: / integralsforyou 👍 Facebook: / integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou #integrals #integrationbysubstitution...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4887154/ed73dcdd458b80b46565e3aa7f1d416f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/FKr5BgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dx9jBq_5RgAo","linkTemplate":"/video/preview/4489216167531479793?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of cos^2(x)/sin^4(x) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=x9jBq_5RgAo\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhUKEzQ0ODkyMTYxNjc1MzE0Nzk3OTNaEzQ0ODkyMTYxNjc1MzE0Nzk3OTNqiBcSATAYACJFGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKhDCDw8aDz8TlgGCBCQBgAQrKosBEAEaeIH2Cf71_wEA-QgN_PsE_wHzCfAF-P39APUG9f31Av8A9_wKCwkAAAD_EwgLBgAAAAH2AQT1_QEADQT57QMAAAAQ-vUB9AAAAAwO7wL_AQAAAAX67gIAAAAABPr-_wAAAAAIAvYDAAAA_wcF_QAAAAAJCQEUAAAAACAALUuj0js4E0AJSE5QAiqEAhAAGvABfxT7_9D6-f_gGLYB6zvlAIkXDv8TF84Axw3m_7L2wgHP9-UA0yTOAA0IGP-0GwkAN9LN_jDJ9f8n0-_-G9wAAcX-8AEi8d8ANQIJAO_x6f7pCykA-PD6APPYrgDqFsb--vwVAOP71gMfGMcCEeIRAwT_SAAZ8yQC9rf0A97uCQbuFtH9-_UICAjyB_u6JBsDKwMoBBcUCfnqFNn97ecB_N_tGf8f_8T7_MD_CQ0IAvjW_RIE7CgJ9DcdKwqw9Qj-8vYpAvHeAe4E2P_8EfsB_-_73PMG7t0EMPQK-uvI8gL48fXv7ADw7v3kBwThDvMVIAAtUm0JOzgTQAlIYVACKs8HEAAawAdma8W-fnN_vCNN-rux38O9PKhfvXC-B71JXie941VWPaa_zbweT-s92p-FvXMzt7wU6DO---_cPFnThrzbT-Y9hbTGvT-Uk72G4wm-3yD1PKwBKr1XsTi-R6V9PKXUCj1WYTM8MbytvRuun7ygNMQ9ptVQvRH_1jkrV8O9nWxevfqUCL2JR_28k52ovWtwEb1Nn6E7yrhzvRiOET2FOIA9b960uq7XFL2zzXI9QfuHPAr3yrx3CL29-BJvPb3jFL1oqoq7B4_bvNUofzydLuu9r09vvF-aw7uyAp29H2E9vJJY0jz3JuE8XYaUPfC18bz0bGm5YKskvoAygLsmNfS9fgMuPau6Aj3shu09jPeDPXJbkTsDc1m9DeaaPS9jL7x_ZUo9v9HzvP_MoLwA8oQ9iSsCPfgrLjzQgJU9Q5CDPMF9kbsk0Q28mWgrPViQZjxNHVo9Y81tvCSKf7ycJXI9VBGIPVvrizp6rJS9yJblPOEziDxzT4I9ljhXPUOwxbyOXzO9UapYPFMOAT2blQi9CHYMvs2l4bvHg229VxCOvZ23VrzXXKS8lecLPU3IPbx3Lwc-CHtuvZPkOTwvMqI7FBT1vBj2izul_0A82eqyvVOSN7pz2ci9YjN7PQntybu_a6e7OsO5PNY1f7z-2bo9KxIDPsuxW7lyU_87v4LUvTqLgzq8KUA80sMwPRCaerslSLs9nqAjPWBPK7lJDn09RcD8vCsy17tUYaK8nP0Bvczhxbq8Isi9MqrBvZwBUrjdYZM9u5cLvqUOaDnVk3k8axaePEknWDmsPOG9aUNUPZVbsjgqxvm8iDsovVZ2TLfLovC8W0IevjcF4zmZ8PC80EugPTvbszgVW6w9Mt9mvQfmODk-Qp296KpUvZaHTrnEsU69lf-aPGlBYbhZHJk9dYVoPeFOjjisNh89EGmnumfebrnvmka9tIQmPVwS0jihpUY9ZTs6PfB_vzhar4M9AY_DvabRWjlzGAY8TpY_PdbckzdbPUy7uzS0PMu1mbjr0D89s90zPcuPk7jubm89FEEcvQkVsbbb0J49duOYPVAF9bhlU869wuioPP4y6DfKUaC9cRL3OtqOFbUKqLs9XFqgOWmrGjgKKLk8_t2RPdKvZTeSXRk-2U9QvazCP7mqnse9ep2OvZJN1Te77YK8l-ahvfo4_7cgTau9zkSHPWc8NDi_n3W84Au4vMRogLgi_-w9NSkFPvN-W7iYk2U7gAvSPZjkD7lLkQy-l-KaPa5NnzhLKY698iiQPeAzXLggADgTQAlIbVABKnMQABpgDPwAOPc5w_IGK_Uc0PIS7ezYy-_yDP_u3v8WBQPWE_bUzvj8_yPL7f6sAAAAI_z4O9gAEWn19Ogv5g_oGIj3Jv9__xVMsM_4CPXmNPL_7QAg4e5JAOoWuhcT3-ZYMR0cIAAtivcqOzgTQAlIb1ACKq8GEAwaoAYAAMBBAAA8wgAAvEIAAADCAAAkQgAAUMEAAExCAACgwQAAIMIAAADBAABQwQAAQMIAALBBAABgQQAAsMEAAKBBAAAQQgAAcMIAAIRCAAAEwgAAMMIAAAxCAACwwQAAwEAAAMjBAAB0wgAAOMIAAAAAAADYQgAAHMIAAEDCAABAQQAAhsIAACTCAAAkwgAAVEIAAEhCAAAYQgAAoMEAADxCAADAwQAAoMAAAEBAAABQwgAAIEIAAEDCAAAgQQAAsEEAABhCAACIwQAAoMAAAFDBAAAwQQAAgEEAAKhBAADIQQAAoMIAAODAAAAAwQAAmEEAABRCAABMwgAAMMIAAJ7CAADAwAAA2sIAAKDBAABYwgAAAEAAAFzCAAAIQgAA-MEAAMDCAADgQQAA8MEAAKBAAACAwAAAgMEAAADBAADQwQAAQMEAAGhCAAAgwgAAqMEAABBBAACgQAAAMEIAAOhBAADoQQAAMMEAAGDBAACGQgAAJMIAAFhCAABYQgAAKMIAAKDBAABwwQAAMEEAAIBCAAB0wgAAQMIAAOBAAABwQQAA2MEAAMBAAACAQQAAgEEAABBBAACIQgAA-EEAADBCAAAgwQAA2EEAAJTCAACQQgAAqEEAAIC_AAA8wgAAGMIAAEzCAACewgAAAAAAAAxCAABAwAAAMMIAAIC_AAAAQAAAHMIAAIC_AAAEwgAAkMEAAIBBAABoQgAAEMIAALRCAADYQQAA4EAAAKDBAABIwgAAIMEAANDBAADIQQAAsMEAABBCAAAgQgAAgEAAAIBBAAAQwQAA-MEAAPDBAACAQAAAgEIAAAxCAADwQQAAYEEAAPDBAABQwQAAUMIAAEBAAACSwgAAQEEAAFDCAAAgwgAAMMEAAIxCAAAQwgAAkkIAALBBAAAQQQAAGEIAAMDAAAAMQgAAcMIAACDCAADwQQAAksIAAMDAAAAcQgAALEIAAATCAABMwgAAUMEAAIrCAAAgQgAAUEEAAEzCAABEwgAAgEAAAJRCAADgQAAA4EAAAExCAACgwAAA4MEAAIJCAACYwQAARMIAAEBAAABgwSAAOBNACUh1UAEqjwIQABqAAgAAEL0AABS-AADIPQAA6L0AAIA7AACqPgAATD4AAB-_AACYPQAAQLwAAKC8AAAMPgAA4LwAAFQ-AAD4vQAAoLwAALI-AAAQPQAAEL0AABc_AAB_PwAAXL4AACS-AABkPgAA8r4AAIo-AADovQAAwr4AACQ-AAC6PgAA-D0AAOi9AAC4vQAAUL0AAEC8AACIvQAAgLsAADC9AACyvgAAPL4AANo-AACIPQAAqL0AALg9AADgvAAARD4AAGQ-AAABvwAAvr4AAA2_AADovQAAdD4AAA0_AADIPQAANL4AALg9AABTPwAAgj4AALi9AACyPgAAcL0AAIK-AABEvgAA0r4gADgTQAlIfFABKo8CEAEagAIAABC9AADgvAAAXL4AAG2_AABcvgAA2L0AAJo-AACmvgAAyD0AAIo-AACYPQAAFD4AAKi9AABAPAAAqL0AAEC8AAC-vgAA2j4AAIa-AABkPgAAbD4AAGS-AAAQPQAAUL0AAPi9AADIPQAApr4AALg9AACIvQAAyD0AAKg9AAAkPgAAgr4AAKa-AACIvQAABD4AAN4-AAAwPQAAZL4AAJ6-AABEPgAA6D0AAAS-AAAsPgAA0j4AAOi9AAB_vwAAND4AAN4-AADgPAAA-D0AAEA8AABQPQAAkj4AACy-AABUPgAAmL0AAEy-AACYPQAAyL0AAII-AAAEPgAAcD0AAOi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=x9jBq_5RgAo","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["4489216167531479793"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"945386151"},"14454409323832395985":{"videoId":"14454409323832395985","docid":"34-8-1-Z31C481498F4D376D","description":"𝐥𝐥𝐨𝐰 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐥𝐬 𝐅𝐨𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsfory... 📸 Ins...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1570076/29fec0e3a72b48e93d4815087d5fe14a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/wNHSBgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dr5w5xhar0g4","linkTemplate":"/video/preview/14454409323832395985?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sin^2(x)/cos^4(x) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=r5w5xhar0g4\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhYKFDE0NDU0NDA5MzIzODMyMzk1OTg1WhQxNDQ1NDQwOTMyMzgzMjM5NTk4NWqIFxIBMBgAIkUaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqEMIPDxoPPxOWAYIEJAGABCsqiwEQARp4ge0E-_cD_AAD_gv6_QP_AfIJ7wX4_f0A9Ab0_PQD_wD3_AoMCgAAAP8VCQsGAAAACvwD_vb-AQAOBPjsAwAAABH59AH0AAAADQ_uAv8BAADwCfnxAgAAAAYI8_0AAAAAAAgC9gMAAAD9EQUBAAAAABD_AxAAAAAAIAAtnNXGOzgTQAlITlACKoQCEAAa8AFvExT95uLgAtEFwADqP-QAgRgP_wsk4v_L-uMB-drDAd318ADjFs3-CCIWAaov9_8W06kDM8b0_zWwDgL63PkA0QjmABP-4AErEA8A1gMI_u4OGv_wzwb-8tWoAOgYwv754fv27_vd-fIY0wIS4BIDJOksAzMWHwL1svMEv_f3CN_00vwN__QLDNsR957-IAguAysEAAP59ukV1_wa3v_-1s4G-SH_wPr8vP8JECIc_sgLEwHdIxcDMAIWAqv0Cf7x9SwC6t3v9_b3A_IS-wH_zwjfCiUK5gke8RAF6cTxAvfw9e7z9u_89_zz_Okd8gEgAC0BsAA7OBNACUhhUAIqzwcQABrAB7nEub7teFi9zb2RPLHfw708qF-9cL4HvUvTtr2Wyys9rO4HvR5P6z3an4W9czO3vFT8H74nzCo9d_O5PBb7yz104ZG94UynvHV0_L0vE5o9CwIQvUePD75tpJE8aDjKPFZhMzwxvK29G66fvLVrAj7Ek107oFiju4f76L2pWye93S-Xu4lH_byTnai9a3ARvRNctLsxzA69L_rIO4U4gD1v3rS6rtcUvf2AvD3liRY9ibcJvaYQg70fACc9Mxv_vFo39zrM62u72t2oPFeU8r1hzIw8Bfmbu9FeiL36ghG99qXpO0ELCT2-7Eg9EUqpvPRsablgqyS-gDKAu1UUz73OQ_076PioPC03wj25RlU9-K6cPANzWb0N5po9L2MvvFU8BD0Qela9KlMMvYTtTD3k82o9VJD6PEIDVj3E3c88eWirOuDsAL3gWIY8nTnaPLQ4xjtFHSy9XlSBvIaYtj0KZIs9_K3Xu_ifJr1H0fY5A2RDPLOwDD0rgak9yzs9vLVlSr36EsW8gviKPJuVCL0Idgy-zaXhuwpCg71sv7u9DIPoO7WRJj1_qzA9ux3MuyIbKD6xacq826XLOkUb9jxPtho7PSwvPCuuYLwmYya9W7SdujbTyL18lDY8LnMbvK6wqjxcfAA9qwbAuzBmyzwqpw0-bpMounJT_zu_gtS9OouDOi-yD7wmjrw8IDJ-u5gyAD4Wf0A9LT-1t0kOfT1FwPy8KzLXu5UMAL1XX1i9M1NzOO7oD74tdbW96bCGOMdnEj6uoOm9kAm0uYLkPb0Fsqo7epIuO6w84b1pQ1Q9lVuyOInI1Tx9P4W9R1qFOcui8LxbQh6-NwXjOUI-SL36Y1U9jCO4Oce8Lj2SdBK9_Q-qOBL1Qr0iGOe9eBrqN7zCjL0Rhb879ULEuGrxbj3Ikn49kA4OONTjCD1fPTO98WvLuCk_yb0rAGE92_2AOZZSoT2a9iM9Zc1oN0HxAz1xT8G91zh7OZVBWrwSaZs8ITWwOGVFHj0ygTE9NFyVtug_NT1kHwQ-Z7EbOIhpqj32UkK9J-kqOM3nXD1HM5s91S0luWZVP721gms9Rl-4OEvqH71-hyc9o3YSOA0RnD16sCA9PHjDN2iCWbu6fJA9wtZnOJJdGT7ZT1C9rMI_uflK4L0Mj929YzNEuHkzFL1qLJa9SOgwt4bNi70IsOg9VLOWOOrsv7zqTVa8husEuGpPGT6pbpk9CAIyt78WCj2hb8E9_y-ct7QWwL1UNLs9PF-yOPikE76wo7s9NkOXtyAAOBNACUhtUAEqcxAAGmAJAQA39yy67xIp-B7P8wbt89XQ4ewN__zdABIAANwHAdzQ-_7_JN_s97QAAAAc_ek01gACXvzs7ijpDuUVgecr8X8FETy24_sF4QM_9QDxByvl-C4A2ifPGATO-jcZGCUgAC0LIDc7OBNACUhvUAIqrwYQDBqgBgAA0EEAAEjCAAC4QgAACMIAACxCAAAAwQAAXEIAAIjBAAAEwgAAgD8AAJDBAABMwgAAkEEAAGBBAACQwQAAkEEAAAxCAAB8wgAAgEIAABTCAAAwwgAA8EEAAMjBAADAQAAAyMEAAHTCAAA4wgAAoMAAANhCAAAEwgAASMIAAOBAAACSwgAAJMIAADzCAABQQgAAPEIAACBCAACwwQAAREIAAKjBAAAQwQAAAAAAADjCAAAgQgAAVMIAAIA_AAC4QQAAIEIAAADBAADAwAAAUMEAABBBAACAQQAAiEEAANhBAAC8wgAAoMAAADDBAACQQQAAIEIAAFDCAAAgwgAAoMIAAKDAAADawgAAqMEAAIDCAABAQAAAdMIAAPhBAADowQAAxMIAAPhBAAD4wQAAAEAAAADAAACIwQAAMMEAAMjBAABAwQAAYEIAACDCAACowQAA4EAAAIA_AAAgQgAA0EEAAMhBAAAgwQAAIMEAAIpCAAAMwgAASEIAAFRCAAAowgAAiMEAAIDBAAAwQQAAbEIAAHzCAAAkwgAAQEEAAFBBAADQwQAAoEAAAJBBAABAQQAAIEEAAIRCAAAMQgAAREIAACDBAADgQQAAksIAAJBCAACIQQAAgD8AAFDCAAAUwgAAUMIAAJzCAAAAAAAADEIAAIBAAAAgwgAAgL8AAIBAAAAswgAAAAAAAADCAACQwQAAiEEAAGBCAADgwQAAtEIAAOBBAABQQQAAyMEAAFDCAAAwwQAAkMEAAPBBAACowQAA8EEAAAxCAACAPwAAoEAAAODAAAAAwgAA4MEAAKBAAACKQgAADEIAAPhBAAAQQQAA2MEAAJDBAABEwgAAgL8AAJLCAACYQQAASMIAACjCAAAwwQAAjEIAAPjBAACUQgAAwEEAAOBAAAAsQgAAQMAAANhBAABwwgAAIMIAANBBAACCwgAAEMEAACRCAAAwQgAA4MEAAEjCAABQwQAAfMIAADBCAACAQQAAXMIAAFTCAABAQAAAkkIAAEBAAAAAQAAAPEIAAADBAACowQAAdEIAANDBAABEwgAAoMAAALjBIAA4E0AJSHVQASqPAhAAGoACAACgPAAAHL4AAFA9AACovQAAcL0AAHQ-AAAsPgAAEb8AAIg9AABAvAAAQLwAAPg9AABwvQAAFD4AADy-AAAwvQAAnj4AAOA8AABQvQAAFz8AAH8_AAD4vQAARL4AAGw-AADavgAATD4AABy-AAC-vgAADD4AAKo-AAC4PQAAFL4AALi9AACAuwAAgLsAALi9AABAvAAAiL0AAL6-AAA0vgAArj4AAJg9AACovQAAcD0AAAy-AAAMPgAAVD4AAPK-AADGvgAAB78AAAy-AACePgAAAT8AACQ-AABsvgAAED0AAEU_AACGPgAAqL0AALI-AACIvQAATL4AACy-AADCviAAOBNACUh8UAEqjwIQARqAAgAAcL0AAFC9AAA8vgAAZ78AABy-AACYvQAAfD4AAKK-AADYPQAAdD4AABA9AAAkPgAAUL0AADA9AABQvQAAQDwAAKq-AADiPgAAbL4AAGw-AACOPgAAHL4AAOA8AAAwvQAA2L0AAAw-AACOvgAA6D0AABy-AAAUPgAAyD0AADQ-AABUvgAAdL4AAFC9AAC4PQAA1j4AAOA8AACCvgAArr4AAEQ-AAAMPgAA2L0AADw-AADKPgAARL4AAH-_AABUPgAA3j4AAIA7AACYPQAAED0AAKC8AACuPgAADL4AAHw-AACIvQAAVL4AAOg9AACovQAAfD4AAMg9AABwPQAA-L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=r5w5xhar0g4","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["14454409323832395985"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"2933919996"},"12722066716350592627":{"videoId":"12722066716350592627","docid":"34-6-7-Z7785004AD2F954AE","description":"𝐅𝐨𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsfory... 📸 Instagram: / integralsforyou 👍 Facebook: / integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4362296/125fd6a2d3b4728ca4b3bdf1040e7cd5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/__fcMgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DfdEmDPuLp2I","linkTemplate":"/video/preview/12722066716350592627?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 1/(x*(1+ln(x))^4) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fdEmDPuLp2I\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhYKFDEyNzIyMDY2NzE2MzUwNTkyNjI3WhQxMjcyMjA2NjcxNjM1MDU5MjYyN2qHFxIBMBgAIkQaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqD8IPDxoPPxNqggQkAYAEKyqLARABGniB9Aj7B_0DAAMD_f77A_8B_Qj4_fj-_QDo_QUC__4BAPP9Cgj8AAAA_gYECgQAAAABBwH-8v4BAAYKBPEEAAAA-O_1Bv0AAAAGC_r9_gEAAO7-9PkCAAAADQgBBQAAAAD1AP_6AwAAAP35DvkAAAAAA_n-AwAAAAAgAC0jP9w7OBNACUhOUAIqhAIQABrwAX8j9v_m4d8C1BTYAOge5ACcDyH_9iXsAOPw1v_S7rcB6QjlAPIF2P8IGwYAmivMAD3OyP4i3f0AMs8Q_x7YAAHLG_IBC-_lARsrCQHo_wb_4fgq-xXGCQD9vNgABSrT_vng-_b-D-gBBjfQAxLfEwMC5zD8JOoVAvWw8gTG0PwAAfzq_fg19gEZ8QX0sycdBCHrG_8qIRX82-vK_tvmEvjc6xv_EBbIABXdAwgkK_L2oQMaAs8KJQAxAhYCqg8a_gEOOPr9_vr4DeQS_SwE8Pf8KO0LIPLyDhQLCv3y4fHr9NQS9u4O-_sK5_z_5P3oBSAALbgL-jo4E0AJSGFQAirPBxAAGsAHLiCkviK42zxn81A5TmP7vTfpDL136fC8IxPwvdctJz33_UC8IJbCPQqjGb0QBp68aDePvSZ-1jxA_Je8QdXoPYSVFL0bNt-7ehcvvgg8MD0pn9S8V7E4vkelfTyl1Ao9msuyuSAax709sbM84Nl-PVJxTb3NN0e8YlEsvWRSqDyolmO8Q-f1vX-2H71aIgG9bjC5PNkFSL1qocc76-CwPX94jLx8FU-8_fK-PX5wHby3pUS8e64FvcMHez0jyg29Eh24PG_Cs7zQHOM8F9USvune-bw2JRQ9DpisvQlsbr2yDJa73_zGPewb8zyHWT699GxpuWCrJL6AMoC7Y7QevjYWe7t_YFg85Ib_PTl29TyMb548fJrTvbGiJj19XrG8Q3m6PLdSOb2soDO8XEmhPNhr1Tzi8s48PF23PdYleT2KNQo6aDoBPBnkLrxxgTo8Rqe4vEBumr0wkDG8E7ysPXAk0D3690-8slIYPAIJDz3ZvL87smCHvZHSnD35Tgo74UblPLYdibyqvo48xTVDPfhRDb4Jbyy7-limvctQkL0dp667tzCBvA7MxTldCpm85CxMPupXj70DDIU7vz3ZPE4ddbw5W2W7ZLZgu6gEj72aNBm7awDFvcR1Mb2Dbo67v2unuzrDuTzWNX-87O-mPVpNsj1Pc6a5KXCcPZIry70o9to4DZqMvBeZZT2q2km7NqsOPmHApz2Qe2i62hAtPejOHztGsgm8zAybvPPArLzJKc87xRNLvfiNyr0_7Ue5bQPXPbWj2L0Mn6858nE3vG6JjL1DaJw3rDzhvWlDVD2VW7I4m3DxO4BEOL22w2k4y6LwvFtCHr43BeM53qFyvMyQvz2TEqs6MNoDPaReJr0B3bO5zCDDvdQNBL4IU4U5gf3hvMAoHLw1arE3DISzPY8vBj1Idea4sqPMPKRsNjyPVuw3hbGJu5L6_Ds6jEK4fSCpPdU9sjz1SPU4w4AlPOeOjr3DZnI5zfIrvOMmmT3azh-4IgnxvFjfgjv26A646NgBPRITVD2qnIK2cETXPWWE3LyNmAi4Lfe4PA-KjD2pvYq4WjSjvXxaSj1yIGw4DAwPvXFa8Dyhh544m69tPTPinbxX5ps3g4eJPU58tT2qKOk39wEoPnBh3b3xZ7-5TsGQvT--Tr1TTmU3dfX0vFnd6r0NI_E1kb8KvYMelT2LQ5E3WvwBPQLhebyJKsG3Iv_sPTUpBT7zflu4Jc1dOy0eYz1BEQu5tBbAvVQ0uz08X7I4WCSBvRYKYj2Mkji4IAA4E0AJSG1QASpzEAAaYAoHACwAKdXuCBX3DM8AGQj47d3z8wQA5ewAEhQA4SEC59kKAwAdy_f-xQAAAAURCyDlAAxNBALgGfIi-Caq6xz8f_cRMsze9gXe6zPyFfzsGPLxLwDnG9AT--TqPyEeFCAALU68WDs4E0AJSG9QAiqvBhAMGqAGAACYQQAAIMIAANxCAAAcwgAABEIAAFDBAACSQgAAIEEAABDCAABAQQAAkMEAAEzCAADQQQAAYEEAACzCAAAEQgAATEIAAJDBAAAoQgAAyMEAAKBAAABUQgAAdMIAAKBAAACEwgAAbMIAANjBAACIwQAA9kIAAHDBAABgwQAAuMEAAHzCAADowQAATMIAAEBCAACQQQAAsEEAAEDAAABwQQAAwMEAAABAAACAvwAAUMIAADhCAABswgAAgMAAAChCAAAAQQAAIMEAAAAAAACgwQAAYEEAANhBAABQQQAA-EEAAITCAACwwQAA4EEAAIBAAAAkQgAAQMIAABDCAABcwgAAgEAAAOTCAACwwQAAPMIAAODAAAAMwgAAREIAAPjBAADOwgAANEIAAEzCAACgQAAAAEEAAIC_AAAgwQAAIMIAAMBBAACuQgAAsMEAAJjBAACAQAAAQMEAACxCAADgQAAA2EEAAABAAAAAAAAAQEIAAADCAADIQQAAREIAACzCAABQwQAAQMAAAMDBAACmQgAAHMIAAITCAAC4QQAAVEIAACjCAABQwQAAUEEAAABBAAAYQgAArEIAAKhBAABQQgAAkMEAAIjBAAAAwgAAskIAAABCAAAAQQAAQMIAAAzCAACQwQAApMIAAMDBAAAQQQAA4EAAAJjBAACIQQAAoMEAAMDAAADwQQAAwMEAAMjBAABAQAAAVEIAAKDBAADcQgAATEIAALhBAAAkwgAAwMEAAGDBAAAgwQAACEIAAATCAADwQQAACEIAABxCAADQQQAAUEEAADzCAAD4wQAAMEEAAERCAAAcQgAANEIAAFBBAAAUwgAAQMEAAKDBAAD4wQAAcMIAAMBBAADAwQAA8MEAAMDAAACoQgAAwMAAAGRCAAB0QgAAwEAAAARCAAAsQgAA8EEAAEjCAAAYwgAAwEEAACjCAAD4wQAAAAAAANhBAAAMwgAAGMIAAAjCAAB0wgAA6EEAAKBAAADowQAAMMIAAABAAADgQQAAIEIAAKDAAABAwAAAgMEAACjCAACIQgAAQEEAAKLCAAAMQgAAoMEgADgTQAlIdVABKo8CEAAagAIAAAS-AABwvQAAyL0AAEA8AACCvgAAyD0AADw-AAArvwAA-D0AAFC9AAAcPgAAgDsAAIA7AABAPAAAfL4AADC9AABcPgAAiD0AAEC8AAAJPwAAfz8AAOC8AABwvQAABL4AANi9AAAcPgAAUL0AAIa-AAAQvQAAuD0AADQ-AABMPgAA2L0AAIA7AACYvQAAQDwAAHQ-AAC4vQAAbL4AAK6-AABsPgAAXL4AAHA9AADoPQAAnj4AAFw-AACYPQAAlr4AALq-AADGvgAAmD0AAPg9AACePgAAHD4AAES-AACYPQAAPT8AANi9AABAvAAAPD4AANg9AABAPAAAuL0AAA2_IAA4E0AJSHxQASqPAhABGoACAACIPQAAiD0AAM6-AABPvwAAyr4AABQ-AAATPwAANL4AAAw-AACmPgAAcL0AAKC8AAAQvQAAEL0AAFA9AABAvAAApr4AAMY-AAC-vgAAxj4AAEC8AACyvgAAML0AAMg9AACYvQAABD4AAJa-AABwPQAA6L0AAHS-AAAwvQAA4DwAAFC9AACqvgAAJL4AAKA8AACmPgAA-D0AAHC9AACGvgAALD4AAHw-AAC4PQAAiL0AAKY-AAAEvgAAf78AAIg9AACGPgAA4LwAANg9AAAwPQAADD4AAFw-AABsvgAAPD4AAAS-AAAEvgAA4DwAAFA9AACWPgAAPD4AAOC8AACgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=fdEmDPuLp2I","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":600,"cheight":360,"cratio":1.66666,"dups":["12722066716350592627"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2664798627"},"10984246358060969142":{"videoId":"10984246358060969142","docid":"34-8-6-ZFA72770CF2C7F846","description":"Integral of sqrt(9-x^2) - How to integrate it step by step using the trig substitution method! ✅ 𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞 𝐭𝐨 𝐜𝐡𝐞𝐜𝐤 𝐭𝐡𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 Derivative of (9/2)arcsin(x/3) + (x/2)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1597833/06c06cf142430c91a45dfdb38c0fd103/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3eaTNgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLIOWZCm_ls8","linkTemplate":"/video/preview/10984246358060969142?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sqrt(9-x^2) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LIOWZCm_ls8\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhYKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyWhQxMDk4NDI0NjM1ODA2MDk2OTE0MmqIFxIBMBgAIkUaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqEMIPDxoPPxOxAoIEJAGABCsqiwEQARp4gfATAAABAAD5CA78-wT_AQEM7v_2_v0A8AEC_P4BAADl8PsJAv4AAP0HBAsEAAAA_v7-__j-AAAGBvz6-wAAAAnn9vv9AAAABRUA-v4BAADpAQEA9gIAAQwE-AYAAAAA8AoGEQAAAAD8CAkFAAAAAAn-BAYAAAAAIAAtdlDOOzgTQAlITlACKoQCEAAa8AF_Gwr_16_zAM8GvgDpQeMAtCg9__w9ygDO2s0AzAfaAQUn2gDj_QAAFvkJ_7cF0P4U18UA-MYCAEbW-wAe2AAB3xbnACbv2wA7AgkAHQXx_74WQgHSpgEC8tOl_wUq0_7q097-HCHg_SIawQIj5BsD4Pg1BRkPKwTanSwA1dz_BAztzwAGHBEF7ODs-d0SFQn2vQQBQAf9_-0N5wXu0SwG_ewH8wQe3gYVxAT_EBYABMYMEwERC_8LH1AH9sXZ9_vh3CP_tvXvBdrEBPczDgbuzgneCyDy8g7_3gUD_tsDB-269usO8PIA_v_y6-Ee2O8gAC3uWvk6OBNACUhhUAIqzwcQABrAB-MYsb5fkF49EWBHPE5j-7036Qy9d-nwvBTamL0nT3k9CxGJuw_S8z2Q7iy9oATRPGg3j70mftY8QPyXvJjdIz6BSZC9Q_T1vIc0Kr6eaag9tnJlvFexOL5HpX08pdQKPf-VNb0PG5a9QKd7PMF-vj3y98G9F61tvPa9PL3avYY9bGj5vCgTMj2wXyu9sac9vaWa_juVybq8eOXhu_hEaD29w2283tu-O_EFlz0LJh69p7QZvRCUmbvIK4s97ubOvFKQqTy_dwA9IRutPEQgvb20YD29W9VHOQZifr0dpVy8BOa-OuoHdT2_hMQ7sdUKvfRsablgqyS-gDKAu0IKLr4-Xw69bMNyvPfWtj2q8NQ5aFcEO1DD173Eknc9a4zOOn9lSj2_0fO8_8ygvDyZybzOVbM8Kl3oOd5atj2PJg09tt9zO6oeRrqAgYA9VNNkPPS3bj16WJO9KncbPPzgHD2540g9arvsuxGN7jynVC49baOmvIOJ371ca6k9-6M5PGOfWzxM2Y66mBjmPCRenrti-Oi9UxhnOwnDAL752bi9P4oiOusTyjwJ5kM8bkKrvE7wzT1mM-e9_1cAPOEoqT0lKYS8dbehu2S2YLuoBI-9mjQZu2sAxb3EdTG9g26Ou2Yev72FLWw9ajFbu_7Zuj0rEgM-y7FbubjSBj0IVtW9ProSumLfqTzTrng8tXdbuwEYyj3SU8Q9F1jwucFts7uPHGm8ZpSZuwjOpL0bEak7fOwROy6JWL3d6TO99I2mum0D1z21o9i9DJ-vOb2iwDwEv5W7uXD6uevj4b11iAm8JLYVuSk1hbwkH8W9yBgwOVQb_L1iu_u9E9PyOeICpTmhBZI952QHtlRdtrxxhxc70KR-uhL1Qr0iGOe9eBrqN2VEmLxyU0M9rRkxt3iekz1uuNk8_aiduMyyZz0Hc5U9bKMbN52vA72OCIS7vxYlOdhZgLv3bOO63YDBN4wYMT0XGIi9M5UcOZxrGL0EcQ4-ggmNuePci7zGDck8k8OPtjywbT0k7Ys9wkavuGl3sz2lsvK80_j7N6uscj25G8A7_6zRuJx6c73XS9M9n42XOBfVOrr5UDE60FjcN5UREj1jeLK6G4OBOGpTgD0bAAA9VyVDOONu8D0OTO69yWWXuQpcCL3iw5G9PKVYuEiWQr0sEcO9wcyPuI65obzJCa49ZG4Ut6FvQbsLi5C9YoYJuCL_7D01KQU-835buPI2ID2RGZ494xxiuOhVs70WJOw8zbghOElep71GrKo9VDKIOCAAOBNACUhtUAEqcxAAGmAEFgAhBB7p7gAT_wjY-__n8_fk8vD-AOnqAAcYCO8XC_LmAfgAD9z_BdUAAAD-AwYhDwD_MgoA9hv9A-4VvfEZEn_zBivf4foJ7gUa_xICDRP49yAA8xLuAwjz9icOGhkgAC1KB407OBNACUhvUAIqrwYQDBqgBgAAgEAAAIDCAAC4QgAALMIAAJBBAAAQQQAAIEIAAJDBAABEwgAAUMEAAOBAAAAUwgAA-EEAAOBAAABwwgAAUEEAAFxCAADAwQAAGEIAACDCAADgwAAAAMAAAPjBAACAQQAAIMIAAMjBAACQwgAA4EAAAIBCAAAAwgAAfMIAACBCAABowgAAFMIAAFDCAAA0QgAAyEEAAJBBAADIwQAAQEAAAIDBAABQwQAAyMEAAMDBAAA4QgAAwMEAADBCAADQQQAAIEIAAEDAAABQQQAAdMIAAEBAAAAAQAAAcEEAADhCAADAwQAAUEEAAExCAACIQQAA8EEAAFTCAAAowgAAlsIAABDBAADWwgAAYMEAAIjBAABwwQAA-MEAAKBAAABIwgAAvsIAAMBAAABgwQAAIMEAAGDBAAAAwAAAyMEAAIzCAACQQQAAtkIAAKjBAAD4wQAAmEEAAIC_AABUQgAAMEEAACBCAAAYwgAAgEAAAChCAABkwgAAgEIAAKBBAAAcwgAA4MEAAGDBAACIQQAAzkIAACzCAADQwQAAgMAAAIBCAAA0wgAAgMEAABBBAAAsQgAAmEEAALpCAAAAQQAAGEIAABDBAAAwQgAAhsIAADxCAABYQgAAIMEAAETCAADYwQAANMIAALTCAAAAwgAAyEEAAMDBAABAwgAAoMAAAODAAABwwQAAEEIAANjBAADAwQAA0EEAAJ5CAAAwwgAAUEIAADhCAAAwQQAAcMEAAADCAACYwQAAUMEAAKBBAABAwgAAAEIAADRCAAAAwgAAoEEAAMDBAACQwQAAgL8AAIBBAAAEQgAA8EEAADhCAADIQQAAEMIAAABAAABUwgAAgMEAAI7CAAAgQQAATMIAAKjBAADgwAAAoEIAAIDBAACEQgAAAEIAANhBAACgwAAA8MEAABBCAABYwgAAhsIAABRCAABcwgAAiEEAAGBBAABwQgAAGMIAAKDBAADgwAAAwsIAAOhBAADIQQAAqMEAALjBAAAgQQAAoEEAANhBAAAgwQAAOEIAAMBAAAAYwgAAnEIAAEDAAABgwgAAIEIAAOjBIAA4E0AJSHVQASqPAhAAGoACAACYvQAA6L0AAKC8AABwPQAAJL4AAMg9AAAQPQAAG78AAKC8AACIPQAAhj4AACw-AAAQvQAApj4AAKC8AAA8vgAAhj4AAHA9AABsvgAAJz8AAH8_AAB8vgAArr4AAHA9AADGvgAAXD4AAEy-AACevgAALD4AACQ-AACYPQAAgj4AAFS-AAAQPQAAgDsAACS-AABwvQAAqD0AAK6-AAA0vgAAJD4AAFC9AADgvAAAqD0AADS-AACIvQAAHD4AAI6-AAAcvgAAfL4AAKi9AAAUPgAAHz8AALo-AAD-vgAABD4AAFU_AAAUPgAA6D0AAHw-AADovQAAdL4AAIA7AACCviAAOBNACUh8UAEqjwIQARqAAgAA-L0AAFC9AABQvQAAPb8AAAy-AAAEPgAAhj4AADA9AADgvAAA0j4AAFA9AACgPAAAgLsAAIi9AACIvQAAuD0AAIA7AAANPwAAXL4AAGQ-AACAuwAAmD0AAIC7AACAuwAAuL0AAFw-AACGvgAAcD0AAFy-AACovQAAoDwAAAQ-AACoPQAAqr4AAKA8AACgPAAArj4AAJY-AAAcvgAAhr4AADQ-AACgPAAAuL0AAFS-AACOPgAADL4AAH-_AAAMPgAADD4AAFC9AACiPgAAMD0AAJo-AAA8PgAAyL0AAKg9AABQvQAANL4AALg9AACAuwAATD4AAKi9AAAEvgAARD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=LIOWZCm_ls8","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10984246358060969142"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"923208937"},"2453598555517141157":{"videoId":"2453598555517141157","docid":"34-5-11-ZA371DC4C56A88B89","description":"𝐨𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsfory... 📸 Instagram: / integralsforyou 👍 Facebook: / integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2731499/d936a2257bb43f0b881ac11c59721426/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3PsgtQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPx5eC3D4LyY","linkTemplate":"/video/preview/2453598555517141157?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 1/(x*(ln(x))^4) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Px5eC3D4LyY\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhUKEzI0NTM1OTg1NTU1MTcxNDExNTdaEzI0NTM1OTg1NTU1MTcxNDExNTdqhxcSATAYACJEGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKg_CDw8aDz8TUYIEJAGABCsqiwEQARp4gfQI-wf9AwAD_gr7_QP_Af0I-P34_v0A7QL8BAAAAADz_QoI_AAAAP4GBAoEAAAAAQcB_vL-AQAGCgTxBAAAAAPnAgf8AQEABRQA-v4BAADu_vT5AgAAAAUK_AH_AAAA-AAAAgb6_wH9-Q75AAAAAAX8-f4AAAAAIAAtIz_cOzgTQAlITlACKoQCEAAa8AF7Ggn_2LLzAMQC5QHlIfkBgRgP__w7ywDG4OgB-drDAdj91gD4HdsA9iECALtO8gA7z8n-JMIJATDREP_7zOoBzvLSAQvs0AJAEhsC2g4n_-L4Kfv22un-8tWoACMdvADg9QD79AzdAgY20QMA5xn_BP9NAT3tHAEqrdwFvd3pAd8D4wD3APAFDNsR97UmHAQR3iMAGRUK-fsE3AL88wP53wERAQk1zv3_0gcMEBUABKQDGQLXNQf7GQgWB6wOGf4BDjf6Bej78gTW__wZDvrtERriBB_z8g4nCBP1_fHn-vfw9e4FJvX-7_cICNUO8P8gAC0BsAA7OBNACUhhUAIqzwcQABrAB8xdw75k0vi6S_D-OwoHzL1XDxS8NIUOvUleJ73jVVY9pr_NvJ9bOD7nE3692Ao_vG6KB76_asA85l11vCb_8z3xBbe9oGUnPHV0_L0vE5o9CwIQvamiCL6iSLG7SExVPVgVJr2h3DG9FRmdvMF-vj3y98G9F61tvG-LCL1DRwe6I9gYvdxqGTr1EVi9E3xYvWU7G7xX9F29n9pjOvhEaD29w2283tu-O_3yvj1-cB28t6VEvHuuBb3DB3s9I8oNvVpHNT2Dxqe7yIPjPFj-vL3F2Z69KktfO1US2b0Lg4287xMRPTbsMj0ADQU9xNI7vWVDnT13NbS9kHYyvQ1TK75csqY7Yro1vPfWtj2q8NQ5aFcEO7Di1L11Nsk9PI5VPJrHCrtYk4K9rvWFvNKRmjt83qK7MG7dO_6Hjz2PyxM9rongPJAkELwQ36M9pmIDPfTzUD3TwA-9u5KuvIaYtj0KZIs9_K3XuykU2LyhbwE9HYlAuqi4njtCGVQ9YZ9nuvO9UD0iaxE81m59O0VcpTxzuPa95AQ3PCi6vr2m7Lm9Q6SNO93Bfj28uyQ9iHuRvEOpHT4fatu9xJqpOW-7MD2eSiG9oybMOaX_QDzZ6rK9U5I3urdE7r3AnsS7BXqXu23FQ73j9ZU9N0yNuezvpj1aTbI9T3OmucVlBj36DAi-VSEDurRgWD3P-ek8xC-rOvubaz32C1Y9DisnugXqAz22Rw-9HYTOu1i9jb2smcq7PSvlui6JWL3d6TO99I2muu50nD2s4s29Kv-9OarwSrv0fu07mWSiupSJ270J3Zo9773oOGLvKr0UPZU8oHxDulxUC72cFfG93J51OcVCY7x43jw9qHXDuECFIz0a8EO8yaCyOV9_vb0fGDu9CNU3uTdTobyzrxU5_TI1ORYjIT1wW8A8P2ASOcbcFT3HG489M2gQt3FPPL1_1Ta8NKC_ODzpEz2voSo9_9u1OFqvgz0Bj8O9ptFaOeNvcjnJv6A9uf0nOLkxIr3V9NE62nzLuOZVYj1TklU9AC4qOIHtiz0Iyk2956ygOOLX_rqKeqw91ViVuPj3fr1bxSw9GCm-OFlLpryMmnQ9ggZ_OAd3LD34GTe9numrOE8ONT2cICA9ylJHOONu8D0OTO69yWWXuVxJAb3K3tK9FyIEuXP5ajxV-KO94xA7N5G_Cr2DHpU9i0ORNy9FA72r6Vq9LTD0tyL_7D01KQU-835buE_LDz1OH-Y8hzW3uH4nzL0svIs9ySnBOBozmb1fhN88YxgxtyAAOBNACUhtUAEqcxAAGmAP9AAv_UCz9xwO_B-4ChAK6NDN9-8O_-jm_w4iDOIQ-dTRDwMAKLzz7KkAAAAOBvspwwAocP3w5DzpH_ElhwMz7n8FEDSf3PcL6exO1hPc8SXqBDMA4TOzKO3b6FEYNiYgAC1VMSA7OBNACUhvUAIqrwYQDBqgBgAAgD8AAIjCAADQQgAA8MEAADhCAAAgwQAAgEIAAIDAAAAQwgAAwEAAAPjBAABAwgAABEIAAEBAAABAwgAA4EEAAExCAABAwQAADEIAANDBAAAAQAAAEEIAADzCAAAAAAAAUMIAAFDCAAC4wQAAYMEAAP5CAACQwQAAkMEAADDBAABowgAADMIAAFTCAAA8QgAA4EEAAOBBAADAwAAAqEEAAJDBAAAwwQAAkMEAAEDCAAA8QgAAUMIAADDBAABIQgAAIEEAAFDBAADAQAAA8MEAAIC_AACgQQAAQEAAACxCAACAwgAAQMEAAPBBAACAQAAA4EEAAEzCAAAUwgAAjsIAAODAAAD4wgAAIMEAAFDCAADAwAAAIMIAACRCAAA8wgAA4sIAADhCAAAUwgAAgEAAAKBBAAAAQAAADMIAAGzCAACgQAAAmkIAAIDBAAAgwQAAIEEAAEDBAAA8QgAAgEEAADBBAAAAAAAAgL8AAFxCAAAEwgAAJEIAADhCAAAkwgAAkMEAAFDBAAAgwQAArkIAACzCAACMwgAAcEEAACxCAAAIwgAA4MAAAIhBAABwQQAA-EEAAKxCAAAEQgAALEIAACDBAAAAAAAARMIAAGhCAAAMQgAAqEEAAFzCAAAkwgAAwMEAAJ7CAACAwQAA4EAAAIBAAADYwQAAQMAAAIjBAACAQAAA2EEAAEDBAACQwQAAQMAAAFhCAABwwQAA1kIAAFhCAACgQQAANMIAAMDBAADAwAAAAMEAABRCAAC4wQAAwEEAAAxCAADYQQAAgD8AAOBAAAAowgAAcMEAAJhBAABgQgAA4EEAAExCAACIQQAAqMEAAKDAAAAQwgAA4MEAAHjCAACoQQAA8MEAAMjBAAAQwQAAqEIAAIA_AACQQgAAVEIAAKhBAAD4QQAA0EEAABBCAAA8wgAAPMIAAOBBAABUwgAAoMAAAOBAAAAwQgAAiMEAACDCAAAMwgAAlsIAALBBAADgQQAAqMEAAEjCAADAQAAA-EEAACRCAABAwQAAQEAAAMjBAAAQwgAAiEIAABBBAACowgAA6EEAANDBIAA4E0AJSHVQASqPAhAAGoACAACAOwAAQLwAAKC8AAAwPQAAjr4AABA9AADoPQAAH78AAHA9AABQvQAAND4AAIA7AACgPAAAcD0AAFy-AAC4vQAAZD4AALg9AAC4vQAA7j4AAH8_AACgvAAA6L0AAKi9AAA0vgAARD4AAHC9AACOvgAAMD0AAIg9AAAUPgAAZD4AANi9AABQPQAAmL0AAKA8AABsPgAA2L0AADy-AACqvgAATD4AAES-AADgvAAAFD4AAHw-AABkPgAAED0AAJK-AACivgAApr4AAAw-AABEPgAAnj4AABQ-AABcvgAAiD0AADU_AAAwvQAAgLsAADw-AACYPQAABL4AADC9AADuviAAOBNACUh8UAEqjwIQARqAAgAAUD0AAEA8AACqvgAAR78AALa-AADoPQAA2j4AAAy-AAC4PQAAqj4AAFC9AACgvAAAcD0AAOC8AABwPQAAoLwAAHy-AADqPgAAhr4AALo-AACgPAAAjr4AABA9AADgPAAAEL0AACw-AAB0vgAAED0AAKi9AAAUvgAAcL0AABA9AACgvAAArr4AAOi9AABAPAAAhj4AACw-AABwvQAAhr4AADw-AABcPgAAyD0AALi9AACaPgAABL4AAH-_AACoPQAATD4AAOC8AAAUPgAAgLsAAPg9AABcPgAANL4AABw-AAC4vQAADL4AAKA8AACgPAAAmj4AAAw-AADgvAAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Px5eC3D4LyY","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["2453598555517141157"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3164501183"},"13893584749606851801":{"videoId":"13893584749606851801","docid":"34-9-15-ZF3DCF40F983F5E72","description":"𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsfory... 📸 Instagram: / integralsforyou 👍 Facebook: / integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1780239/32eab34e0a6e7fd9f5c473397d899cbb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/q5wBPgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLx_NTB5WiGg","linkTemplate":"/video/preview/13893584749606851801?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 1/(1-sqrt(x)) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Lx_NTB5WiGg\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhYKFDEzODkzNTg0NzQ5NjA2ODUxODAxWhQxMzg5MzU4NDc0OTYwNjg1MTgwMWqHFxIBMBgAIkQaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqD8IPDxoPPxN5ggQkAYAEKyqLARABGniB-w8CBv0EAPsKAPz9AwAB7QP2APr__wDxAf8F9gEAAPP6BwEEAAAA_gYECgQAAAD2-P__9P8BAAYFBfsEAAAACfP3C_sAAAAFFAD6_gEAAPPz-PUCAAAADQgBBQAAAAD6BgEGBAEAAAECCQAAAAAAAvgFBwAAAAAgAC0yyNw7OBNACUhOUAIqhAIQABrwAX8NJ__l0vYBvPTLANU7_P-WIgwACjzuAMzYywDQ7bMB6AjkAO4p8P8WBfkAzzDWABjPogMUtvT_NM0R__DABQDRAvsBGjbMADAgIv_k8Pr_7A8c_9vs_AHa1sP-BSzR_gfl-QIJG98C5i3LBBwDJQH2AS8HMtwy_gOOAQjV7OEG8Azn9dYjAwoN2BL2sCkfBCoDEvwWHfn94f3XBekACfjvzCz_ERfFABbcAwkRFwAEtA8ECvQbD_88GhEDnhUDDM7uOAfO8fkACfgOBzoIG_XuOOj0IfLxD_nxDfsD8v3669no9A8S9v7o2QYAu_fpAyAALdyU7zo4E0AJSGFQAirPBxAAGsAHICrFviyWh7yltvm8TmP7vTfpDL136fC8FNqYvSdPeT0LEYm71IEMPlK9gL0C0sC7booHvr9qwDzmXXW8FvvLPXThkb3hTKe8huMJvt8g9TysASq9T-XUvfr3jzy67CE9fQn1vZcC0r0KRHQ8oOLYPWE8nrzFT4i8LpJ2vYmmQj0b7si7-Ua5vVOXnL1lmt-8BSmCvJp-RL1mz688WzGiPbGRWr1PbE88W5XkPS0ly7w05h-9e64FvcMHez0jyg29Eh24PG_Cs7zQHOM8ZCqzvUE-Mrw6xjo80V6IvfqCEb32pek73_zGPewb8zyHWT699GxpuWCrJL6AMoC7qMghvgJ8HD3o6W085Ib_PTl29TyMb548JrrIvU8-nDvFiKs73fGhPUt6k71gK5e8APKEPYkrAj34Ky48meJgPDXpOz05nxM8CJvwvP9jHD0XDZk8pNQSPM5Csbzej9u8_OAcPbnjSD1qu-y7gxT-O-cYgD1qXG6867elvRY3aT2YJ8I7RCDNPBM4hrqiFQ48xTVDPfhRDb4Jbyy7CcMAvvnZuL0_iiI6PRVGPeprpzx6BkO8bvzpPUzkrb0rc6m7bgWDPUEA3zyXErS7baSRPF7Ieb0frDU7-Casvfnnc73ebYM7lHckvS-Ftz0node705SjPXuOfj0B9eo708xpPQ7d7L2Piji6MYK-O_he8jw8SxU6mQ_oPQwDlj38XVW6axRtPDyMpDsJHPe50dWRvfU2rLwiJ-E6tCKlvW0tPb1quIQ5MlcmPbjkmL2gavK3QW-wvX0_Fb2H4UU5KkVhvWpcjj2HZCu4kG30PLLoR71t68C5qz2RvRpSFb4wUQo6fBn7vBgJbT0ZWY0348dTPahlNb3Lr2m5EvVCvSIY5714Guo3cOldvRfkfLsnRQ62yIPjPHUM4zy-HNm3vZicvJBtVL2cVIC5CKnAvASp1Lzr2Uc5POkTPa-hKj3_27U4QfEDPXFPwb3XOHs5V6AMvU92kz3qSGe4rQ4lPFHAFj0NyVW3e5KqPC-CSz1hDe-4iGmqPfZSQr0n6So4Lfe4PA-KjD2pvYq4WjSjvXxaSj1yIGw4b4-EPdrzpj1XwQ45t2niPJpOobzhPbC4hBtfvNoVPz0kVA44427wPQ5M7r3JZZe5K9wTvGSVAr5xPRu4ZhK1PF6hz72AurI37ZGXvEH2hT1-hZ-2L0UDvavpWr0tMPS3Iv_sPTUpBT7zflu4JxEhPV44Zj2246u4fifMvSy8iz3JKcE4cuy_vcireD0X2Y04IAA4E0AJSG1QASpzEAAaYA_uACkIRdoADiIDHLj_DPjr4db03gr_0-7_DSMS6yH2xcj1BgBC2QXnqgAAABUh90fOAA5xDeD1LO8qCySWCS_vfwMFQZPY9frA5z_oIPHyLfwgMQDwF78k4PfpWTUmGCAALey0ITs4E0AJSG9QAiqvBhAMGqAGAADAwQAAmsIAAKxCAABUwgAAREIAAHBBAABgQgAAYEEAAOjBAABgQQAAoMEAAKjBAAA0QgAAoEAAAGzCAABgQQAAUEIAAOBAAABAQQAAUMEAAHBBAAAQQQAAWMIAAEBAAAA0wgAAKMIAADTCAABgQQAA3EIAAHDBAADowQAAQMAAADzCAADYwQAAgMIAACxCAAD4QQAAGEIAADDBAAAAAAAADMIAAFDBAACwwQAA8MEAACBCAAAwwgAA4EEAAExCAACwQQAAYMEAAKBAAABUwgAAUMEAAKDAAACgwAAAeEIAACDCAACQQQAAhEIAACBBAACAQQAAWMIAACzCAACEwgAABMIAANjCAAAgwQAA6MEAAODAAAAswgAAQMAAAJDCAAC6wgAATEIAABjCAAAAQAAAIEEAAEBBAAAwwgAAnsIAAEBAAADSQgAAAMAAAJDBAADgQAAAUMEAAFhCAACgQAAA2EEAAEDBAABAwQAAuEEAAIDBAABcQgAAqEEAAAzCAADowQAAmMEAAMBAAADwQgAAmMEAAEDCAABAQAAAkEIAAFTCAAAcwgAAqEEAACBCAACIQQAAvEIAALhBAAA4QgAA-MEAACBBAABgwgAAKEIAADhCAAAAwQAAWMIAAIjBAACAwQAAmMIAABzCAABAQQAAcMEAAETCAADQwQAAwMEAAHBBAAAsQgAAgD8AAIC_AABgQQAAQEIAAEzCAACWQgAASEIAAGBBAABMwgAAiMEAAIDBAAAAQQAAMEEAAATCAACIQQAALEIAAGBBAADAwAAAAMAAANDBAACowQAAwEAAAARCAADIQQAALEIAACBBAADgwQAAQEEAAEzCAADAwQAAJMIAAKhBAACowQAAIMIAAEBAAACwQgAA2EEAAIxCAABYQgAANEIAAIDAAADAQAAA6EEAABTCAAA4wgAAUEEAADTCAAAwQQAAUEEAAIRCAAAAwgAA4MAAAMDBAAC2wgAAIEEAALhBAADAQAAAGMIAAMhBAACAwAAANEIAAMjBAAAAQAAAUMEAANjBAACMQgAAqEEAAJDCAAA4QgAAIMIgADgTQAlIdVABKo8CEAAagAIAAMi9AACYvQAAcL0AADA9AAAEvgAAJD4AAKA8AAADvwAAqD0AADA9AADIPQAAUD0AAHA9AAB8PgAA6L0AAOA8AAAcPgAAcD0AABy-AAAPPwAAfz8AAJi9AAAMvgAAEL0AAK6-AAA8PgAA4LwAAIK-AACgvAAAZD4AAKg9AAA8PgAAXL4AACQ-AAAQvQAAoDwAAAw-AACovQAATL4AAKa-AABQPQAAgr4AACQ-AAAMPgAAcD0AAOC8AADYvQAAlr4AAJa-AADOvgAA4DwAADw-AAABPwAAHD4AANK-AAAQPQAAUT8AAAS-AAB8PgAATD4AAIi9AABwvQAAML0AALq-IAA4E0AJSHxQASqPAhABGoACAACgPAAAgLsAAHS-AABTvwAAXL4AADA9AACyPgAABL4AAKC8AABEPgAAQDwAAIi9AAAwPQAAJL4AABA9AACAOwAAqL0AAOI-AAA0vgAAZD4AAMi9AAAMvgAAcD0AAEA8AABQvQAAPD4AAJq-AADgvAAAEL0AAEy-AABAvAAAqD0AAHA9AACuvgAARL4AADA9AAA8PgAAgj4AAEC8AACOvgAAfD4AAAw-AAAQvQAAqL0AAFw-AADYvQAAf78AAOA8AABsPgAABD4AAMI-AAC4vQAAXD4AABw-AAB8vgAAuD0AALi9AADYvQAA2L0AAIi9AABkPgAAqD0AABS-AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Lx_NTB5WiGg","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":600,"cheight":360,"cratio":1.66666,"dups":["13893584749606851801"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2160020470"},"12106507926067141452":{"videoId":"12106507926067141452","docid":"34-7-6-Z26549332B56509B1","description":"𝐨𝐰 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐥𝐬 𝐅𝐨𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsf...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1118064/771b6a56da48524c845c3fbeebfee78e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ZIA-ZwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Drrsblo75dT4","linkTemplate":"/video/preview/12106507926067141452?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 1/(1+sin^2(x)) (substitution + substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rrsblo75dT4\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhYKFDEyMTA2NTA3OTI2MDY3MTQxNDUyWhQxMjEwNjUwNzkyNjA2NzE0MTQ1MmqIFxIBMBgAIkUaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqEMIPDxoPPxOhAoIEJAGABCsqiwEQARp4gfwJ9QH7BQD7CgD8_QMAAeoF9An7AAAA6gH4-_n-AQD69f0H_QAAAP4GBAoEAAAA_v7-__j-AAAIBvv5BAAAAAnz9wv7AAAACQ4DAP4BAAD2_P7vAQAAAAUK_AH_AAAA9QoD-gIAAAD6AgMHAAAAAA7_Aw4AAAAAIAAtYD3hOzgTQAlITlACKoQCEAAa8AF_9w__6dj4AdQFxQDnHvkBpw0d__w30ADt9Q8A1_C-Aesc9gAK9OwA_RATAMskFAA2087-EcH1_y3UDv_80ewB5ev2AP387gJdLwUA2gMH_szsGP3yy-z_89ivAAkMzv703woACBfkAhgl5gEk5wEADgkuBAviGP4CngEH7-PYAe8V0v0AH_L879v_-cT-IQEd7Rj_MBQJA-sU2v3XEBv28dMl_x__xfv8wf8JNQf_CasDFwIPCv8KQiICAtLz-gXV8TAG1AP4_-0CEPgh2QPx5SrrCCv78QId7P_2DNjlAPDC9-34_wAD-fL8EOQa3fEgAC1O_As7OBNACUhhUAIqzwcQABrAByAqxb4sloe8pbb5vLHfw708qF-9cL4HvRTamL0nT3k9CxGJuxiYBT6AM-s7f7O9u-wzx736crA8iL0wvRb7yz104ZG94UynvHoXL74IPDA9KZ_UvPxUJb4x2S68B3PmNzlD8b2wbYa9xzgSPHIeaT07anG9vLQ8vclXwrzmDAA9Qu4CvQ9YQ70_GWO8bInmvNdWB72D5WO9qcNlvOvgsD1_eIy8fBVPvINtFD4hJwe9UvmyvDgv7r0nEUE9uIwgvWiqirsHj9u81Sh_PJuNWr3Dd6y8swhFPNFeiL36ghG99qXpO8ReKD41rR48udNnvPRsablgqyS-gDKAuy-G8r10kHy8_SGsPC03wj25RlU9-K6cPBjSAb5Jg6s9liYlvN3xoT1LepO9YCuXvA-_hj3vnKw9w1WUPMQQlD3EVvU81pS_vCGkGL1FLc28oLFlPKTUEjzOQrG83o_bvPzgHD2540g9arvsu4MU_jvnGIA9alxuvLJgh72R0pw9-U4KO0QgzTwTOIa6ohUOPAUjpT3WAju-SeWaOmMqfbyjRcy9hypGvB-HILxQ-uc7CGaWu1s-lz34pMO9qNQ6u5EuMjuilPU8t_7pO2S2YLuoBI-9mjQZu7co870mlQS9wahmu5R3JL0vhbc9J6HXu3MHWz0DU8c9cgzBOYXoVT01cLG9IscZOhR5Ej0rWi89JPsUuyf0rz1fQJQ9iNsWt867Fj3GSnE882FNuwTKJr29d227TeaKOpFhpb0lRoq99Ki7OWa2UD2J7tm9IZW9OUTskr2Zrxy9ZM_KuKkomL398QM9y0V9OGg6QL2mQvy89cqPOVxUC72cFfG93J51Od-YVD3Tt5E9akXKN1rdhT1-igO9zFJ3uS9Q8r2oXJy9Q4C_t-pZ9bwReeY8C-zbOGAdxzw2sRs9XhRZuL2YnLyQbVS9nFSAuQipwLwEqdS869lHOebNoTxeJUS8XmMXOey5r7vFwZq9E4B2OQqAsbwnF-M9YmCSuePci7zGDck8k8OPtktshDuXBCM9gKTyuGl3sz2lsvK80_j7Nw9UNz3xgug96UGCN6KTqr1Xp8Q9vTagOKTonDw_xEY96LqTOFIxiT3fclC9c1JYNwMRmLzPCqE91BPJNx-fAD6k5JC9Feg6uW4eYr2xK7K9E7-_uK9iLD14lG-9glwkN-2Rl7xB9oU9foWftnKMv7oz3MC8qMBmuCL_7D01KQU-835buG0nwDzrw_o8mg-4uNcXGb6bkPY96u4sOXwkur05ibc8XGwKtyAAOBNACUhtUAEqcxAAGmAQ9wAmBUjR_v8f9SrZ8wfV6PTE_uoC_9vq_xcgIOIlBt7CC-r_PsrpBa4AAAAUBQEv7gAoav74-zHoEewjlOQiAn_2CC600OYRzOVb4h73_hzg8kwA8iK7GPnZ1l8WKRIgAC3ftiY7OBNACUhvUAIqrwYQDBqgBgAAoEAAAILCAADYQgAAMMIAADxCAAAAQQAAkEIAAOBAAADAwQAAwEEAAATCAAAwwgAAYEEAAIC_AAAswgAA-EEAACRCAAC4wQAADEIAAOjBAADgwAAADEIAAGTCAAAAAAAAXMIAAGTCAACgwQAAgMEAANxCAAAAwQAA8MEAAHDBAACCwgAA8MEAAIbCAABEQgAAuEEAACRCAACwwQAAcEEAAHDBAACAwAAAUMEAABDCAABcQgAAaMIAAIC_AAA8QgAACEIAAIDBAAAAAAAAqMEAACBBAABAQQAAQEAAAAhCAACSwgAAQMAAAMhBAACAQQAAAEIAAFjCAAAQwgAAhsIAAIDAAAAAwwAAkMEAAILCAABgwQAATMIAAChCAADIwQAAwsIAADxCAAA4wgAAcMEAADBBAACAwAAAmMEAACzCAADgQAAAxEIAAADAAAC4wQAAqEEAAKjBAABYQgAAYEEAAABCAABAwQAAMMEAADRCAADQwQAA-EEAACBCAAA8wgAAAMEAAKDAAADgQAAAtEIAADjCAABAwgAAYEEAAEhCAAAowgAAuMEAAIhBAABgQQAABEIAAJ5CAADYQQAAPEIAALjBAABgwQAAHMIAAJJCAAAsQgAAQEEAAFjCAADYwQAADMIAAKzCAAAUwgAAIEEAABBBAADAwQAAQEAAAIjBAABQwQAACEIAAKDBAABgwQAA4EAAAChCAACwwQAAwkIAAFRCAACoQQAAMMIAAMDBAACYwQAAAEAAACxCAAAEwgAAqEEAABxCAACwQQAAAEEAAEBAAAA0wgAAQMEAAIBAAAB8QgAAsEEAAEhCAAAAQAAAqMEAAIjBAAAYwgAABMIAAEjCAACwQQAA8MEAACTCAABwwQAAvEIAAKBAAACKQgAAhkIAAIBBAAAkQgAA4EEAANBBAAAwwgAAUMIAAHBBAADQwQAAsMEAAIBAAAAMQgAAFMIAAAzCAADQwQAAWMIAAOhBAAAAAAAAEMIAACjCAAAAwAAAyEEAAARCAADIwQAAgL8AANDBAAAcwgAAbEIAAIA_AABkwgAACEIAAADCIAA4E0AJSHVQASqPAhAAGoACAADovQAABL4AAOC8AACgPAAAQLwAAIo-AAAwPQAACb8AAOg9AAAQvQAAMD0AAFA9AADgPAAAFD4AAOi9AAAsPgAA-D0AAEA8AAAwvQAABz8AAH8_AAAUvgAAJL4AAKg9AADivgAAFD4AAOC8AAAkvgAAmD0AAFw-AAAUPgAAED0AAGy-AABAPAAAmD0AAOA8AACAOwAAED0AAHS-AACWvgAAbD4AADy-AABEPgAAMD0AAJi9AAAQPQAAXD4AAHy-AACSvgAAA78AAEA8AACIPQAA5j4AAAw-AAC-vgAAcD0AAEU_AABAvAAAUD0AAAQ-AAC4PQAAQLwAAJi9AADWviAAOBNACUh8UAEqjwIQARqAAgAAmL0AAJi9AAA8vgAAYb8AAPi9AAAQvQAAXD4AAES-AABQPQAA-D0AAEC8AAC4PQAA-D0AAFC9AACgPAAAoLwAADy-AADePgAAPL4AAGw-AACgPAAAPL4AAPg9AACYvQAAEL0AAMg9AAB8vgAAoDwAANi9AACovQAA4DwAABw-AACgvAAADL4AAMi9AACgPAAAZD4AAIY-AABwvQAAkr4AAII-AACgPAAAiL0AAOA8AAB0PgAAfL4AAH-_AAA8PgAAij4AABw-AACSPgAAEL0AABQ-AACWPgAApr4AABQ-AAC4vQAAFL4AAFA9AAAcvgAAND4AAEA8AAAEvgAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=rrsblo75dT4","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["12106507926067141452"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"2541450583"},"3037563882283317828":{"videoId":"3037563882283317828","docid":"34-7-6-ZE7220A58367C031C","description":"by Weierstrass substitution Integrals by parts • 🧑🔧 Integration by parts Integrals by partial fraction decomposition • 🧑🔧 Integration by partial fraction decomp...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4233250/c4b0e5bf241944233ee9ecf472d598b6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/VSBrEAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEMcw0ESfMR0","linkTemplate":"/video/preview/3037563882283317828?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sqrt((1-x)/(1+x))","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=EMcw0ESfMR0\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhUKEzMwMzc1NjM4ODIyODMzMTc4MjhaEzMwMzc1NjM4ODIyODMzMTc4MjhqiBcSATAYACJFGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKhDCDw8aDz8TqwGCBCQBgAQrKosBEAEaeIHxBQMB-wUAAwP9_vsD_wEAA__4-f7-APb_CQAGAv8A4_gG9wH-AAAFDP8FAwAAAAL-_fb0_QEABwIO8wQAAAD87Pr6AAEAAAYL-v3-AQAA-Pjs_gL_AAAIBQQBAAAAAPwMB_8CAAAA__sG_gEAAAD38wP9AAAAACAALRIG4Ds4E0AJSE5QAiqEAhAAGvABfyj6_-rb-AHJ9tUA-xX8AawMG__8M9MAzuTsAern2gHd_twA-RngABYdBAC1Kfj_M9bR_yHa5AAq1w7_DuDzANfx9wEg8uEAJQ4NAOcAFgDe7hUA99_t_vTbtAAeGcYA6Or6_PUf3QEFLtcDC_Mh_wT_QwAe7hICD8L3Bd7w5wUMAPn48xX6BwvgD_jH_h8BKAIlAz0XDgANDc8B4eoP-uvbDwAd_8j7AdsQ_Rk__Py_6xX99xYM_0AMH_7C7f752PItBtj0-gDy9f__Cgz2-PwW6fob9PQMEQkI_uXj7f7wxvjuCvMA9ezgBQDbDPL_IAAt-ecUOzgTQAlIYVACKs8HEAAawAcsK82-yDDdOr1IMr1TYBy9JELjvG-RBb3g4te8eLQQPNiTBrs_c0Y-Du4zvZb5fTuNtQ--p0OCPOWXgzsm__M98QW3vaBlJzwZgaK9QLW7PeGkX73xhN69gB-fPLdBDjxzL9C9rgyvvV428LxyHmk9O2pxvby0PL0hsrO9TTutu6sxV7zcahk69RFYvRN8WL1Yk6K9D-cLvXjOOzz50I89hUSKva6gxLzgEdU9QlqIO5iygrwjfpq9TXBlPW8wL7xaRzU9g8anu8iD4zwTCYu9CjdUvbK2jrzRXoi9-oIRvfal6TuctLo9Su1FPLB6m7yCq_y8OJ_6vTJFL71At7G9PSkTPZrcHDz19fw9nKIIPesrWby3JUK-jHCuPN8MSDzd8aE9S3qTvWArl7y0yWE8FaePPf8WLjwgooc8-aRuPaBIgbxutiO9-VhwPQkSwDz-H_E8fP5qvVwYzrxWR249f-h4PasTxrw2PB48y6UMPeE8QbwrMhq-EC6jPRSZmLrhRuU8th2JvKq-jjzFNUM9-FENvglvLLsour69puy5vUOkjTsisJg9FsZxPCO7d7xDqR0-H2rbvcSaqTmMgdU93d_qvMxbB7kwq1O57s6avG2ThrtJcFm9dC7BuyuQ0Tt5sdC9NZnRPXaNcbtzB1s9A1PHPXIMwTlKuTY9zXqMvZNxmDdi36k80654PLV3W7uYMgA-Fn9APS0_tbfJLPE8bq4wva-KATsf1dW8SpywvGRml7qdqL66A9mRvRpKCLqUQLQ94M1kveKHajlBb7C9fT8VvYfhRTmbOs-9uO5BPC0nCrm19I08cJjovGug4jeuGU-87DZDvRpOtTkGlsg8KuQqPeWSEbk7mAM9zgr7u70x67p31x28-h-avUTxSjk1lSq92-K1vLpCD7nNKEy8dywbPBZ3ZzjqKrg8deQFOmBEU7gPUia8YO7NukJYJziCv4Q9PohOPQ5rRzhFDtE9KSPuveIsvzkKgLG8JxfjPWJgkrldrjg7gfOdPbMYYrYIm_A8uf3SPUdpZTgnA5Y9OPgCvaq8ZzffaGw8vWKnPbAaiTdEHye9UfqSPTbwwTjwlQ89SpaoPX840TgJERU9LKdzvRsJODj20Sk89JSbPUGPJTcfnwA-pOSQvRXoOrnZXeK6ULeivRCbQbjTyz495zniva1qWjjtkZe8QfaFPX6Fn7b-zYC9rThwvS6X7bYi_-w9NSkFPvN-W7jBgI89o_q4PadtiLghrCa9VAF3PWErUrjiH9a9nKy8PbSx57QgADgTQAlIbVABKnMQABpgFAUANfE71uYMEvQDsyAI_PPZ3fntC__w1QASGf_ZEQvnzwgYAPrEDPS3AAAAAg0PNssADFz3-vQ59CH1K4jvFQh_9Rkxx90PEvnYNvYJ8uwo_PYbAPInyxL34OtTHhgTIAAtA5c5OzgTQAlIb1ACKq8GEAwaoAYAAKjBAACMwgAAokIAAKjBAADAQQAAAEEAAGhCAABQQQAABMIAALhBAAAQQQAAiMEAANhBAACwQQAAbMIAAGBBAABMQgAA0MEAAKhBAABwwQAAoMAAAKBAAABEwgAAAEAAADTCAAAswgAAjMIAAOhBAACyQgAAAMEAACzCAABAwAAAnMIAABDCAACkwgAAMEIAAGRCAAC4QQAABMIAAKBAAAA0wgAAEMEAAODBAAAgwgAAAEIAAIbCAAAMQgAAaEIAALhBAAAgwQAAuEEAAFDCAADAwAAAUEEAAEDBAABgQgAAFMIAAMBAAAA8QgAAoEEAAEBAAACqwgAAUMIAAI7CAACgwQAAxsIAAIDBAAAEwgAAIEEAADzCAADAwAAAUMIAALTCAADYQQAAKMIAAEDBAACAwAAAgD8AACjCAACCwgAAoMAAANxCAACwwQAA6MEAAJBBAABAwAAALEIAAJDBAAAcQgAAAMAAACDBAADwQQAA6MEAAEBCAAAoQgAA-MEAAMjBAADAwAAAQMAAAP5CAAC4wQAAcMEAAABBAACeQgAAYMIAANDBAADAQQAAIEIAAPBBAAC2QgAAyEEAAERCAACQwQAA4EEAAEjCAAD4QQAAJEIAAMjBAABwwgAAoMEAAADCAACKwgAA-MEAAEBBAACwwQAAIMIAAADBAACowQAAAEAAABxCAAAgwQAA6MEAAOBBAACAQgAAbMIAAJRCAAAgQgAA2EEAAAzCAAAYwgAAGMIAAIA_AAAoQgAAIMIAAEBAAABUQgAAgD8AAHBBAABAwQAA6MEAABjCAADgQAAAoEEAALhBAADwQQAAAEAAAOjBAAAAAAAAUMIAALDBAABYwgAAiEEAADTCAAAEwgAAwEAAAIBCAACAQQAAoEIAAChCAAAIQgAAIEEAAGBBAACgQQAAFMIAAEzCAABAQAAA6MEAACBBAADoQQAAhkIAAFDCAAAwwQAA-MEAAJTCAACoQQAAsEEAAEDBAAAcwgAAYEEAAKBAAADwQQAAEMEAABBBAACgwAAAwMEAAGxCAACQQQAAWMIAACBCAABAwSAAOBNACUh1UAEqjwIQABqAAgAA-L0AAMi9AADgPAAAQLwAAFS-AABEPgAAJD4AAAm_AACIPQAABD4AADQ-AABwvQAAqD0AAHC9AAA0vgAAqD0AAIY-AABAPAAA4DwAAKI-AAB_PwAAHD4AAEA8AACoPQAA6L0AAJI-AAAwvQAAdL4AALi9AABQvQAAyD0AABA9AACIvQAA-D0AAEA8AACovQAAyD0AABS-AABsvgAAnr4AAMg9AABsvgAAND4AAFA9AAAUPgAAyD0AAJi9AADIvQAAhr4AAJK-AADYPQAAgDsAAN4-AAA0PgAAZL4AAEC8AAAxPwAAPL4AAOC8AADYPQAAyD0AAJg9AAAwvQAAmr4gADgTQAlIfFABKo8CEAEagAIAAAw-AACoPQAARL4AADe_AACevgAAiD0AAAc_AABQvQAA4DwAALI-AAAwvQAAQDwAABA9AACovQAAoLwAAOA8AABsvgAA_j4AAFS-AACSPgAA2L0AAEy-AAD4vQAAyD0AAAy-AACoPQAA6L0AAEA8AACAuwAANL4AAMi9AABQPQAABL4AAKa-AACmvgAAmD0AAMY-AAAwPQAADL4AALq-AAAQvQAAfD4AAKC8AACAuwAAwj4AAIC7AAB_vwAAqL0AAII-AADgvAAABD4AABw-AAAsPgAAiD0AAGy-AAAUPgAAqL0AABy-AADoPQAAHD4AAKo-AACoPQAAFL4AAAy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=EMcw0ESfMR0","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["3037563882283317828"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"4242189781"},"13009395592255300312":{"videoId":"13009395592255300312","docid":"34-2-4-Z9EE64F420462B8F9","description":"📸 Instagram: / integralsforyou 👍 Facebook: / integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou #integrationbyparts #integrationbysubstitution...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4565106/5b8b41ce6fce51042a2662776948d807/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Gww7egAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUYmXmkujrtQ","linkTemplate":"/video/preview/13009395592255300312?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sin(sqrt(x)) (substitution + by parts)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UYmXmkujrtQ\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoUMTUzMTYzNTIwMDIzMzA4MjUxODMKEzEzNjUzMjUxODcxODU1ODQ5MjgKFDEyNDU4ODcxNjE3NzQzNTg4NjMxChMyMDcyODI1NjYyMDE2MDkwMTAxChI3ODc1NDM3OTc0MzEzOTUyNDQKEzY4MjExMTgxMDA5NDUxODU5NjAKEzM0ODIyNTQ2NTMxNzM2NTM3MzYKEzE5MzA5OTk0NTYyNzg3NDY0ODIKEzQ0ODkyMTYxNjc1MzE0Nzk3OTMKFDE0NDU0NDA5MzIzODMyMzk1OTg1ChQxMjcyMjA2NjcxNjM1MDU5MjYyNwoUMTA5ODQyNDYzNTgwNjA5NjkxNDIKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEzODkzNTg0NzQ5NjA2ODUxODAxChQxMjEwNjUwNzkyNjA2NzE0MTQ1MgoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTMwMDkzOTU1OTIyNTUzMDAzMTIKFDEwNzg1MTAzMzY2NjM2NjQzMzk0ChMzNTk1MzY2NDgwNzk4MTA2NzYxGhYKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyWhQxMzAwOTM5NTU5MjI1NTMwMDMxMmqIFxIBMBgAIkUaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqEMIPDxoPPxOlAYIEJAGABCsqiwEQARp4gfARAggI9wAE_gz6_QP_Ad0I7wL6AQEA3gb9AQD7AgD26f4HCAAAAPED-ggBAAAA_vD_9_b9AQAIDAXuBQAAAA7u_f74AAAABhgA-f4BAAD0B-z3AgAAAA0F9wYAAAAA__8K9wMAAAABCw__AAAAABf7AAYAAQAAIAAtV-i5OzgTQAlITlACKoQCEAAa8AF_Gwr_3-vFAb_0zQDXOfwAnA8h__w9ygDO2s0A-dnCAdf91QAHH_QBGw4O_5_94gIX0aYDE7n0_ybb_v4e2AAB2xcFARsU2AJCExwD6P8G__f4Mf_Z7xL-077c_wUq0_4Ez_D8_g_oAfEZ0gId4DUD9wEtBz7tHQHWofwB4cLuBvvh2P0FG_0GDdoS9tAfJgIz7xb4AAP59ugW1fz88wP5AcQP_hAWyAAptQ__EBYABLj6AwH7D_z8PSAwC7cE9fnQ7zYH0PL5AAD3-gQQ4gr83xXtCjzw_w8UCwr9A_P9-uC-5wEDAg8B8Ov9A7736gMgAC3uWvk6OBNACUhhUAIqzwcQABrAB4Du074R3sO65eiWvLHfw708qF-9cL4Hvcyll71xqvU8PTyVPA_S8z2Q7iy9oATRPK8I3r2G1GW7icTOu8uAMz7m0Yi9mGIzPHoXL74IPDA9KZ_UvBzT071nORq9punYO0d_rr2bAY69S0STPHIeaT07anG9vLQ8vcP4RLxMiUQ9LVlavdybBDzUk968_O0BvT_jIr2PyV294IWIPO2viD2D7hy9Ltpru89Jnz2FmZG8LqqHu3uuBb3DB3s9I8oNvVU7ebzg_Se7v5MePChCb71C0ae9oX-nu5qvt72_pVK99UzKPMx6ET4WhxM9fJOLvGkz8zweb_K91yXTOrHhSb4ukvY8TwidPB4ZOz5BpLo7qxBFvO_ks733kZs9zf26vN3xoT1LepO9YCuXvITtTD3k82o9VJD6PFZakDxVcf48KpMWvAlkwDzPWXU9hWOxPIbiTj2Q_nK9RqBVvF3_KT0MtcE8P3ScvAwYKb1qxr08FqS6O2w_2Tw7rNA9GxjxOyGNLzyqR5o8vM9xPAUjpT3WAju-SeWaOs7yBr2QOIq9nMtDvN3Bfj28uyQ9iHuRvE7wzT1mM-e9_1cAPEUb9jxPtho7PSwvPGS2YLuoBI-9mjQZu9n1sb1IRym6IzAZuvx_Jr0ASm09kpbnu-zvpj1aTbI9T3OmuXJT_zu_gtS9OouDOg1u6zwAm2I8EKXmOkwRmj1IfWM9OoVeua9yzzs3PzS8Va2_upUMAL1XX1i9M1NzOJFhpb0lRoq99Ki7OW0D1z21o9i9DJ-vOeFi4Lw4zYy8BmWluKw84b1pQ1Q9lVuyOARfh7zFmiC9RuE_Ocui8LxbQh6-NwXjObN3CjyBAck97HGnuPg9hT0wXxa6FJsFOF9_vb0fGDu9CNU3ucmUajwp-Dc8XLwAuKRnPz27DpU92D52OGLAkjyXIvU7FMdfOd3P6bx35H68vza1uLuPq7q1Bbo8Y_gFOUyoAD3H8J29_u4wOXn5qbunJcY9xK7_uOhRjLxaQHI9CeW8N-_nFD3t4uw84_qYtcc3aj0gX4K9dvnKNg9UNz3xgug96UGCN1o0o718Wko9ciBsOHj6t7x7vNA8cqqaN1IxiT3fclC9c1JYN2ikrzy3G249F0UPOJJdGT7ZT1C9rMI_uc3Her3TFey95pv4uAfiBj3hlk-9maTONZG_Cr2DHpU9i0ORNzW3grwsMWq9uqFGuCL_7D01KQU-835buO2WRjp16KQ9Cm7juHDKwb0zF_g9utymOMByab34O6-8ULi0tyAAOBNACUhtUAEqcxAAGmAY-gA29ETH7xIR8AbNBfLf5uzG5c4P_-3H_xEu_eUNArjCGA4ANMoL86YAAAAcCvM13QAWc_jiAybvG_Efggg06n_xDV2n6O4H0OxP9jnz6zX1BDsA7R7FJPXR2mIKLh0gAC3cqRs7OBNACUhvUAIqrwYQDBqgBgAAqMEAAIrCAABEQgAAoMEAAIA_AAAIQgAAREIAAPjBAAAQwgAAQEAAAKDBAACKwgAAQMEAADjCAAAgwgAAEEEAAARCAACowQAA8EEAAODBAABwwQAAAEEAAJjBAADgQAAAcMIAAETCAACkwgAAoEAAANBCAABQwQAAbMIAAGBBAABswgAAQMIAAMTCAAD4QQAASEIAAEBBAAC4wQAAqEEAALjBAABQwQAAyMEAAGDCAAA8QgAAQMEAAEBBAACoQQAAaEIAAMBAAACQQQAA6MEAAGBBAAAQQQAAEMEAAIhBAACowgAAoMAAAMBBAACAQAAAQEAAAIzCAACgQAAAqMIAAAzCAADawgAAAAAAADTCAAAYwgAAGMIAALBBAAAQwQAAusIAAJhBAABAwAAACMIAAIDBAADgwAAAQMEAAPDBAACgQAAAtEIAAKDBAAAUwgAAPEIAACDBAAA8QgAAJEIAAEBBAAB4wgAAAEIAAIxCAAB4wgAAOEIAAOBAAAAMwgAAwEAAAADBAADAQQAAnEIAAILCAABQwQAAUEEAALhBAACKwgAA8MEAAFBBAAAEQgAAuEEAAKZCAABAQQAASEIAAEDAAACAQQAABMIAAEBAAADwQQAAgMAAAGDCAABwwQAARMIAAJzCAAAQwgAAYMEAAHBBAAAAwQAAMMEAAKBAAABUwgAA8EEAAIDAAAAAAAAAUEEAACBCAADgwAAAIEIAABhCAACAwAAAoMAAAFTCAAAswgAAEMEAABhCAAAAwQAAmEEAAMBBAADwwQAAgEAAAIjBAACAwQAAYEEAACBBAACeQgAAAEEAAAxCAABgQQAAAMAAALjBAAAswgAA4EAAAJLCAACAvwAAPMIAANjBAAAMwgAAcEIAAKBBAADWQgAAXEIAADBBAABIQgAAQMEAADBCAADwwQAAiMIAAABAAAAIwgAAuMEAACBBAACuQgAA6MEAAIjCAAAAwgAANMIAAHBCAABAwQAAbMIAABBBAACgQAAAYEEAAOBBAADowQAA2EEAAHDBAAAYwgAAkEIAAKDBAABEwgAAgEAAAAzCIAA4E0AJSHVQASqPAhAAGoACAAC4vQAA2L0AAOg9AAAsPgAAyL0AAJY-AACAOwAA8r4AAEA8AABAPAAAcL0AABQ-AAAUPgAAHD4AABy-AACgvAAAED0AAHA9AADIvQAA_j4AAH8_AABUvgAAJL4AAEA8AADuvgAAdD4AAIC7AACqvgAAND4AAGw-AABQPQAAMD0AAES-AAAsPgAAoLwAAKC8AABAvAAALL4AAHy-AACovQAA2D0AAFA9AADYPQAABD4AAOA8AADYPQAAQDwAAES-AAB8vgAAkr4AAOi9AACOPgAA2j4AACQ-AACOvgAAiD0AADE_AACIPQAA-D0AACQ-AACIvQAAZL4AAIi9AADmviAAOBNACUh8UAEqjwIQARqAAgAAoDwAAHA9AAC4vQAAZb8AADS-AACAOwAAuj4AAKq-AAC4PQAArj4AAHC9AACgPAAAJD4AAJi9AABwvQAAUD0AAJq-AAAbPwAAFL4AAHQ-AABwPQAAqr4AAAQ-AACYPQAAmL0AAHA9AACqvgAAMD0AABy-AAAEvgAAUL0AABQ-AACYvQAAvr4AAFy-AABAPAAArj4AAAS-AAD4vQAAwr4AAKi9AABsPgAADL4AAIi9AADqPgAAHL4AAH-_AAAwvQAAnj4AAFA9AAB8PgAAiD0AAAQ-AACqPgAA9r4AACw-AAAEvgAADL4AAIg9AAAwPQAAwj4AAIg9AAAQvQAARL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=UYmXmkujrtQ","parent-reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["13009395592255300312"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1505139099"}},"dups":{"12615051969900981034":{"videoId":"12615051969900981034","title":"\u0007[Integral\u0007] of arctan(2x) (substitution + by parts)","cleanTitle":"Integral of arctan(2x) (substitution + by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=z96EoOKFk3w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/z96EoOKFk3w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":213,"text":"3:33","a11yText":"Süre 3 dakika 33 saniye","shortText":"3 dk."},"views":{"text":"29,5bin","a11yText":"29,5 bin izleme"},"date":"8 mar 2020","modifyTime":1583625600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/z96EoOKFk3w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=z96EoOKFk3w","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":213},"parentClipId":"12615051969900981034","href":"/preview/12615051969900981034?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/12615051969900981034?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15316352002330825183":{"videoId":"15316352002330825183","title":"\u0007[Integral\u0007] of 5x^2/(x^2+4)(x^2+9) (partial fraction decomposition)","cleanTitle":"Integral of 5x^2/(x^2+4)(x^2+9) (partial fraction decomposition)","host":{"title":"YouTube","href":"http://www.youtube.com/live/nqiokEAeN2g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nqiokEAeN2g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":465,"text":"7:45","a11yText":"Süre 7 dakika 45 saniye","shortText":"7 dk."},"views":{"text":"2bin","a11yText":"2 bin izleme"},"date":"15 eyl 2024","modifyTime":1726403654000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nqiokEAeN2g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nqiokEAeN2g","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":465},"parentClipId":"15316352002330825183","href":"/preview/15316352002330825183?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/15316352002330825183?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1365325187185584928":{"videoId":"1365325187185584928","title":"\u0007[Integral\u0007] of sin^4(x) (trigonometric identities + substitution)","cleanTitle":"Integral of sin^4(x) (trigonometric identities + substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Up3uJXuTGFY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Up3uJXuTGFY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/channel/UCNLRwiQSPlAn_hiEM2yWIwg","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":371,"text":"6:11","a11yText":"Süre 6 dakika 11 saniye","shortText":"6 dk."},"views":{"text":"3,9bin","a11yText":"3,9 bin izleme"},"date":"15 oca 2017","modifyTime":1484438400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Up3uJXuTGFY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Up3uJXuTGFY","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":371},"parentClipId":"1365325187185584928","href":"/preview/1365325187185584928?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/1365325187185584928?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12458871617743588631":{"videoId":"12458871617743588631","title":"\u0007[Integral\u0007] of sin^3(x) cos^4(x) (substitution)","cleanTitle":"Integral of sin^3(x) cos^4(x) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DX0VW3zE3f0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DX0VW3zE3f0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":157,"text":"2:37","a11yText":"Süre 2 dakika 37 saniye","shortText":"2 dk."},"views":{"text":"27,1bin","a11yText":"27,1 bin izleme"},"date":"24 şub 2020","modifyTime":1582496238000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DX0VW3zE3f0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DX0VW3zE3f0","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":157},"parentClipId":"12458871617743588631","href":"/preview/12458871617743588631?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/12458871617743588631?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2072825662016090101":{"videoId":"2072825662016090101","title":"\u0007[Integral\u0007] of cos(x)*ln(sin(x)) (substitution + by parts)","cleanTitle":"Integral of cos(x)*ln(sin(x)) (substitution + by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/v/9AYy_VqmjoE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9AYy_VqmjoE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":123,"text":"2:03","a11yText":"Süre 2 dakika 3 saniye","shortText":"2 dk."},"views":{"text":"22,4bin","a11yText":"22,4 bin izleme"},"date":"31 tem 2016","modifyTime":1469923200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9AYy_VqmjoE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9AYy_VqmjoE","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":123},"parentClipId":"2072825662016090101","href":"/preview/2072825662016090101?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/2072825662016090101?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"787543797431395244":{"videoId":"787543797431395244","title":"\u0007[Integral\u0007] of 1/(x - x*ln(x)) (substitution)","cleanTitle":"Integral of 1/(x - x*ln(x)) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SATPZs7kHM8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SATPZs7kHM8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":112,"text":"1:52","a11yText":"Süre 1 dakika 52 saniye","shortText":"1 dk."},"views":{"text":"5,1bin","a11yText":"5,1 bin izleme"},"date":"10 oca 2016","modifyTime":1452384000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SATPZs7kHM8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SATPZs7kHM8","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":112},"parentClipId":"787543797431395244","href":"/preview/787543797431395244?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/787543797431395244?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6821118100945185960":{"videoId":"6821118100945185960","title":"\u0007[Integral\u0007] of (x^3)*sqrt(x^2-1) (substitution)","cleanTitle":"Integral of (x^3)*sqrt(x^2-1) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/v/9abzJKNMsxE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9abzJKNMsxE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":272,"text":"4:32","a11yText":"Süre 4 dakika 32 saniye","shortText":"4 dk."},"views":{"text":"187bin","a11yText":"187 bin izleme"},"date":"1 mayıs 2016","modifyTime":1462060800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9abzJKNMsxE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9abzJKNMsxE","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":272},"parentClipId":"6821118100945185960","href":"/preview/6821118100945185960?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/6821118100945185960?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3482254653173653736":{"videoId":"3482254653173653736","title":"\u0007[Integral\u0007] of (x+1)/sqrt(x-1) (substitution)","cleanTitle":"Integral of (x+1)/sqrt(x-1) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2n2hMArDX0g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2n2hMArDX0g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":237,"text":"3:57","a11yText":"Süre 3 dakika 57 saniye","shortText":"3 dk."},"views":{"text":"14,8bin","a11yText":"14,8 bin izleme"},"date":"17 oca 2016","modifyTime":1452988800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2n2hMArDX0g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2n2hMArDX0g","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":237},"parentClipId":"3482254653173653736","href":"/preview/3482254653173653736?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/3482254653173653736?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1930999456278746482":{"videoId":"1930999456278746482","title":"\u0007[Integral\u0007] of sin(ln(x))/x (substitution)","cleanTitle":"Integral of sin(ln(x))/x (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FK5HFw6rXIU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FK5HFw6rXIU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":70,"text":"1:10","a11yText":"Süre 1 dakika 10 saniye","shortText":"1 dk."},"views":{"text":"22,2bin","a11yText":"22,2 bin izleme"},"date":"28 şub 2016","modifyTime":1456617600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FK5HFw6rXIU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FK5HFw6rXIU","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":70},"parentClipId":"1930999456278746482","href":"/preview/1930999456278746482?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/1930999456278746482?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4489216167531479793":{"videoId":"4489216167531479793","title":"\u0007[Integral\u0007] of cos^2(x)/sin^4(x) (substitution)","cleanTitle":"Integral of cos^2(x)/sin^4(x) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=x9jBq_5RgAo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/x9jBq_5RgAo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":150,"text":"2:30","a11yText":"Süre 2 dakika 30 saniye","shortText":"2 dk."},"views":{"text":"24,2bin","a11yText":"24,2 bin izleme"},"date":"8 eki 2016","modifyTime":1475884800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/x9jBq_5RgAo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=x9jBq_5RgAo","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":150},"parentClipId":"4489216167531479793","href":"/preview/4489216167531479793?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/4489216167531479793?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14454409323832395985":{"videoId":"14454409323832395985","title":"\u0007[Integral\u0007] of sin^2(x)/cos^4(x) (substitution)","cleanTitle":"Integral of sin^2(x)/cos^4(x) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/live/r5w5xhar0g4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/r5w5xhar0g4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":150,"text":"2:30","a11yText":"Süre 2 dakika 30 saniye","shortText":"2 dk."},"views":{"text":"50,3bin","a11yText":"50,3 bin izleme"},"date":"8 eki 2016","modifyTime":1475884800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/r5w5xhar0g4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=r5w5xhar0g4","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":150},"parentClipId":"14454409323832395985","href":"/preview/14454409323832395985?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/14454409323832395985?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12722066716350592627":{"videoId":"12722066716350592627","title":"\u0007[Integral\u0007] of 1/(x*(1+ln(x))^4) (substitution)","cleanTitle":"Integral of 1/(x*(1+ln(x))^4) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fdEmDPuLp2I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fdEmDPuLp2I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":106,"text":"1:46","a11yText":"Süre 1 dakika 46 saniye","shortText":"1 dk."},"views":{"text":"2,3bin","a11yText":"2,3 bin izleme"},"date":"19 haz 2016","modifyTime":1466294400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fdEmDPuLp2I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fdEmDPuLp2I","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":106},"parentClipId":"12722066716350592627","href":"/preview/12722066716350592627?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/12722066716350592627?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10984246358060969142":{"videoId":"10984246358060969142","title":"\u0007[Integral\u0007] of sqrt(9-x^2) (substitution)","cleanTitle":"Integral of sqrt(9-x^2) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LIOWZCm_ls8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LIOWZCm_ls8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":305,"text":"5:05","a11yText":"Süre 5 dakika 5 saniye","shortText":"5 dk."},"views":{"text":"61,3bin","a11yText":"61,3 bin izleme"},"date":"31 oca 2021","modifyTime":1612051200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LIOWZCm_ls8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LIOWZCm_ls8","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":305},"parentClipId":"10984246358060969142","href":"/preview/10984246358060969142?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/10984246358060969142?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2453598555517141157":{"videoId":"2453598555517141157","title":"\u0007[Integral\u0007] of 1/(x*(ln(x))^4) (substitution)","cleanTitle":"Integral of 1/(x*(ln(x))^4) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Px5eC3D4LyY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Px5eC3D4LyY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":81,"text":"1:21","a11yText":"Süre 1 dakika 21 saniye","shortText":"1 dk."},"views":{"text":"6,6bin","a11yText":"6,6 bin izleme"},"date":"8 eyl 2019","modifyTime":1567900800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Px5eC3D4LyY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Px5eC3D4LyY","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":81},"parentClipId":"2453598555517141157","href":"/preview/2453598555517141157?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/2453598555517141157?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13893584749606851801":{"videoId":"13893584749606851801","title":"\u0007[Integral\u0007] of 1/(1-sqrt(x)) (substitution)","cleanTitle":"Integral of 1/(1-sqrt(x)) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Lx_NTB5WiGg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Lx_NTB5WiGg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":121,"text":"2:01","a11yText":"Süre 2 dakika 1 saniye","shortText":"2 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"3 şub 2018","modifyTime":1517616000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Lx_NTB5WiGg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Lx_NTB5WiGg","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":121},"parentClipId":"13893584749606851801","href":"/preview/13893584749606851801?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/13893584749606851801?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12106507926067141452":{"videoId":"12106507926067141452","title":"\u0007[Integral\u0007] of 1/(1+sin^2(x)) (substitution + substitution)","cleanTitle":"Integral of 1/(1+sin^2(x)) (substitution + substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rrsblo75dT4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rrsblo75dT4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":289,"text":"4:49","a11yText":"Süre 4 dakika 49 saniye","shortText":"4 dk."},"views":{"text":"103,7bin","a11yText":"103,7 bin izleme"},"date":"8 oca 2017","modifyTime":1483833600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rrsblo75dT4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rrsblo75dT4","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":289},"parentClipId":"12106507926067141452","href":"/preview/12106507926067141452?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/12106507926067141452?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3037563882283317828":{"videoId":"3037563882283317828","title":"\u0007[Integral\u0007] of sqrt((1-x)/(1+x))","cleanTitle":"Integral of sqrt((1-x)/(1+x))","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=EMcw0ESfMR0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/EMcw0ESfMR0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":171,"text":"2:51","a11yText":"Süre 2 dakika 51 saniye","shortText":"2 dk."},"views":{"text":"18,1bin","a11yText":"18,1 bin izleme"},"date":"7 oca 2016","modifyTime":1452124800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/EMcw0ESfMR0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=EMcw0ESfMR0","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":171},"parentClipId":"3037563882283317828","href":"/preview/3037563882283317828?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/3037563882283317828?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13009395592255300312":{"videoId":"13009395592255300312","title":"\u0007[Integral\u0007] of sin(sqrt(x)) (substitution + by parts)","cleanTitle":"Integral of sin(sqrt(x)) (substitution + by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/v/UYmXmkujrtQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UYmXmkujrtQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/channel/UCNLRwiQSPlAn_hiEM2yWIwg","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":165,"text":"2:45","a11yText":"Süre 2 dakika 45 saniye","shortText":"2 dk."},"views":{"text":"49bin","a11yText":"49 bin izleme"},"date":"23 eki 2016","modifyTime":1477180800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UYmXmkujrtQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UYmXmkujrtQ","reqid":"1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL","duration":165},"parentClipId":"13009395592255300312","href":"/preview/13009395592255300312?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","rawHref":"/video/preview/13009395592255300312?parent-reqid=1769301659617640-16061869089383798113-balancer-l7leveler-kubr-yp-sas-162-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"0618690893837981137162","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Integrals ForYou","queryUriEscaped":"Integrals%20ForYou","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}