{"pages":{"search":{"query":"COS SYSTEM","originalQuery":"COS SYSTEM","serpid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","parentReqid":"","serpItems":[{"id":"12035266204779446312-0-0","type":"videoSnippet","props":{"videoId":"12035266204779446312"},"curPage":0},{"id":"4993547905766727963-0-1","type":"videoSnippet","props":{"videoId":"4993547905766727963"},"curPage":0},{"id":"13081590616672028239-0-2","type":"videoSnippet","props":{"videoId":"13081590616672028239"},"curPage":0},{"id":"17567248041656172890-0-3","type":"videoSnippet","props":{"videoId":"17567248041656172890"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dENPUyBTWVNURU0K","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","ui":"desktop","yuid":"4040711711769795465"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"2227015733586855652-0-5","type":"videoSnippet","props":{"videoId":"2227015733586855652"},"curPage":0},{"id":"6173906321388923249-0-6","type":"videoSnippet","props":{"videoId":"6173906321388923249"},"curPage":0},{"id":"10742302042762857256-0-7","type":"videoSnippet","props":{"videoId":"10742302042762857256"},"curPage":0},{"id":"10755876190564654427-0-8","type":"videoSnippet","props":{"videoId":"10755876190564654427"},"curPage":0},{"id":"14142943240466626521-0-9","type":"videoSnippet","props":{"videoId":"14142943240466626521"},"curPage":0},{"id":"6031551655068242742-0-10","type":"videoSnippet","props":{"videoId":"6031551655068242742"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dENPUyBTWVNURU0K","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","ui":"desktop","yuid":"4040711711769795465"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"6658885321012211513-0-12","type":"videoSnippet","props":{"videoId":"6658885321012211513"},"curPage":0},{"id":"7576703401418446621-0-13","type":"videoSnippet","props":{"videoId":"7576703401418446621"},"curPage":0},{"id":"14988775306520052221-0-14","type":"videoSnippet","props":{"videoId":"14988775306520052221"},"curPage":0},{"id":"14383683986215311712-0-15","type":"videoSnippet","props":{"videoId":"14383683986215311712"},"curPage":0},{"id":"13717768663838387873-0-16","type":"videoSnippet","props":{"videoId":"13717768663838387873"},"curPage":0},{"id":"5047182275207449292-0-17","type":"videoSnippet","props":{"videoId":"5047182275207449292"},"curPage":0},{"id":"1897638725340761787-0-18","type":"videoSnippet","props":{"videoId":"1897638725340761787"},"curPage":0},{"id":"7319125204343951205-0-19","type":"videoSnippet","props":{"videoId":"7319125204343951205"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dENPUyBTWVNURU0K","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","ui":"desktop","yuid":"4040711711769795465"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DCOS%2BSYSTEM"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"9301044079312550887219","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455698,0,99;1414493,0,85;1193347,0,40;1473738,0,66;1476204,0,3;1471964,0,43;1470058,0,29;1460712,0,27;1459297,0,83;1312967,0,43;1465969,0,26;1456929,0,67;1472031,0,52;1471630,0,36;27383,0,89;1470250,0,71;1470221,0,52;1282204,0,17;1466296,0,43;1475919,0,69;1478695,0,67;1452016,0,11;1471919,0,21;1477466,0,8;1473864,0,33;1404022,0,0;1475804,0,44;1478803,0,8;1002327,0,96;1297912,0,73;124080,0,88;151171,0,61;1281084,0,27;287509,0,88;1447467,0,68;1231503,0,58;1473596,0,13;1466397,0,32;1467129,0,84;1478789,0,20"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DCOS%2BSYSTEM","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=COS+SYSTEM","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=COS+SYSTEM","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"COS SYSTEM: Yandex'te 3 bin video bulundu","description":"Результаты поиска по запросу \"COS SYSTEM\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"COS SYSTEM — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"ya53e688172774d0ab1a7ef6cc1063a7f","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455698,1414493,1193347,1473738,1476204,1471964,1470058,1460712,1459297,1312967,1465969,1456929,1472031,1471630,27383,1470250,1470221,1282204,1466296,1475919,1478695,1452016,1471919,1477466,1473864,1404022,1475804,1478803,1002327,1297912,124080,151171,1281084,287509,1447467,1231503,1473596,1466397,1467129,1478789","queryText":"COS SYSTEM","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"4040711711769795465","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1478181,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769795478","tz":"America/Louisville","to_iso":"2026-01-30T12:51:18-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455698,1414493,1193347,1473738,1476204,1471964,1470058,1460712,1459297,1312967,1465969,1456929,1472031,1471630,27383,1470250,1470221,1282204,1466296,1475919,1478695,1452016,1471919,1477466,1473864,1404022,1475804,1478803,1002327,1297912,124080,151171,1281084,287509,1447467,1231503,1473596,1466397,1467129,1478789","queryText":"COS SYSTEM","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"4040711711769795465","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"9301044079312550887219","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":162,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"4040711711769795465","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1759.0__78afb7e0ef66aeda09c521d3b89f7cdbe661a72a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"12035266204779446312":{"videoId":"12035266204779446312","docid":"34-3-2-Z86869F22456DC412","description":"COS Systems Animated Explainer Style Video || COS Product Explainer Video || Expansion Videos Our latest Animated Explainer Video freshly rendered for COS Systems! For more info visit our site...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/966322/e6d5b2e60ee8d1fe89e7b9e8b8ed8917/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_kE9cQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRbbfxJw6cO8","linkTemplate":"/video/preview/12035266204779446312?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"COS Systems Animated Explainer Style Video || COS Product Explainer Video || Expansion Videos","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RbbfxJw6cO8\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoWChQxMjAzNTI2NjIwNDc3OTQ0NjMxMloUMTIwMzUyNjYyMDQ3Nzk0NDYzMTJqtA8SATAYACJDGjAACiloaG1jcXdnbXR5dHRxY3JoaFVDSlVLNXJsemdLQ3R4NVU4MW5JcU9XQRICABEqD8IPDxoPPxM9ggQkAYAEKyqLARABGniB9Aj7B_0DAAD7BQj4CP0CEvcB9_cBAAD2B_z-_wL_AP8CBvn_AQAA-wX1_P8AAADw9QYAAAAAABH2-QgCAAAAEAb-CPcAAAAQEPr5_gEAAPPz-PUCAAAACAQCCgAAAAD5Bf74_gAAAAcO_fgBAAAAAwwDBAAAAAAgAC0jP9w7OBNACUhOUAIqhAIQABrwAX_7EwHTCQIA2_IFAO406ACLGO8APwj5AMsCDgCeAvf-4wf0AAzsFQEHHBIAyPcw_xME6wB_F-z_weEWAS4jCgAP5AAALwT4AhvcEgA07vH_MgULACQ-8ADszvICKDb0_v0RCv3pDtcB3wkIACQJBgP5E_0CDAMVAQkOCgMB8_oAAR32BQ8L7f3i-Ar_5O0K_9f-9gIBB_0I0_X1AuvbEPoj9vL9-tDtA-wYGQbs5Ab8Ger8-SAHJfwKRuoC9xAiA_v2DwEPFOD__A78Af7t_Qfi3gP13RwW_-Y6CwXm5O3-_wf28N8Z8vQKAxUQBP0IBiAALQqLGzs4E0AJSGFQAipzEAAaYBj0ACr1B_7DAmnP8t7g_RQV8trhvCz_-cX_GjXODPj786fGMf8z8A7ingAAABH87jn2ADV_0dztAeEpGIWO_z0zfyv3BOA-AzD65fX57NnW8_4vFgD6E8sJYOyuWQ8IByAALSNSEzs4E0AJSG9QAiqvBhAMGqAGAABQQQAAqMEAAARCAACYQQAAgL8AAABCAADQQQAAEMEAAKjCAABAQQAAqkIAAHjCAACQwgAAAEAAAFxCAAC4QQAAaEIAAPDBAACCwgAAwMEAAOBAAACAwgAAkMEAAMhBAACAwAAAoMAAAFDCAADAwgAAUEIAALDBAAAEwgAAwkIAALbCAACIwQAAIMIAABDCAABwwQAA1EIAAOhBAAAgQQAAMEEAAIhBAAAAQAAAmEIAAKDBAAA0wgAAEMIAAIjBAACiQgAAIEEAAPjBAACgwQAAAMIAAOBBAACwQQAAEEEAAEDCAACIwQAAgEEAAOjBAAAAQgAAYMEAANjBAACcwgAAyEEAABjCAADwwQAAfMIAAKDAAADQwQAAqEEAAHBCAACGwgAAMEEAAKDBAACGwgAAdMIAALBBAACmQgAAusIAAAjCAAD4QQAAjEIAAADBAAAkwgAABEIAAIhBAACAQAAA2EEAAKjBAACgQAAAWEIAAOBBAACYwgAABEIAAPDBAAAowgAAZEIAAIA_AACowQAAXMIAAJhBAABcQgAAXMIAAKDBAACiQgAAgL8AABDBAABsQgAAUEIAAJpCAACYQQAA4MEAAATCAAAAQQAAIMEAALhBAAAIQgAADMIAAILCAABAQAAAyMEAAAjCAACAPwAADEIAAJhBAADIwQAABMIAACjCAADgQAAAqEEAAKDAAAAswgAALMIAAMBAAACYwQAAqEEAABxCAABgQQAA0MEAAFBBAAAAwgAADMIAAEBBAABoQgAANEIAADDBAAAQwQAA2MEAAFDBAABAQgAAAAAAADRCAAAMwgAAsMEAAFzCAABIwgAAGMIAAEDCAABAwAAA2MEAAOhBAAAAwAAAUMEAAPDBAAAAAAAAeEIAAJxCAAAwwQAA8MEAAFjCAAAMQgAABMIAAAhCAACQQQAAsMEAACjCAABQQQAA6EEAAJBBAABwQQAA4MEAABjCAABAQgAAYEIAAFTCAACowQAAPEIAAMDBAAAcQgAAUMIAAJrCAACAPwAAoMAAAMjBAACgwQAAoEAAAPjBAAAAwgAADMIgADgTQAlIdVABKo8CEAAagAIAAKK-AAD6vgAALL4AAIa-AADovQAA6D0AAEy-AADqvgAADL4AABy-AABkPgAAqD0AAMg9AADyPgAA4LwAAAu_AADePgAAUD0AAPg9AAApPwAAcT8AAOA8AADgvAAAiD0AAIA7AABEvgAA4LwAADS-AADgvAAAHz8AAGw-AAAEPgAAFL4AAJK-AADYvQAAbL4AADA9AACSvgAAqr4AAI4-AACyvgAAtr4AAEC8AACAOwAA-D0AALa-AACoPQAArr4AAIK-AADIPQAAEL0AAK6-AABMPgAAbD4AAMg9AAD4PQAAfz8AAKI-AAAEPgAA0j4AABC9AABAvAAAgLsAAJ6-IAA4E0AJSHxQASqPAhABGoACAAD4PQAAuL0AACS-AAA1vwAAXL4AAJq-AAC4PQAAEL0AAKC8AADoPQAAoLwAAFC9AAAQvQAALL4AAIC7AABwvQAAFL4AAPo-AADYPQAAsj4AAPg9AAAUvgAAyL0AAJi9AACAOwAAuD0AAJi9AADgvAAAED0AADw-AADgvAAA-D0AAHC9AACIvQAARL4AAOA8AAAsPgAAQDwAAAy-AACYPQAAgj4AALg9AACovQAAJD4AAAw-AAAwvQAAf78AABC9AAAwPQAAFL4AAKC8AACovQAAiL0AAIA7AACovQAAFD4AAFC9AADYvQAAFL4AAEA8AAAQPQAAML0AAI6-AADovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=RbbfxJw6cO8","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["12035266204779446312"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4022382541"},"4993547905766727963":{"videoId":"4993547905766727963","docid":"34-5-9-Z0B12872508606916","description":"This video explains how Open Access networks work in a nutshell. Click the link if you want to learn more https://insights.cossystems.com/open-...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/468659/3049cdb90843c7e59de8a75a5a885fd5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Yp1IOAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcGljAlbp3lM","linkTemplate":"/video/preview/4993547905766727963?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"COS Systems - Open Access Explained in under 3 Minutes","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cGljAlbp3lM\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoVChM0OTkzNTQ3OTA1NzY2NzI3OTYzWhM0OTkzNTQ3OTA1NzY2NzI3OTYzaocXEgEwGAAiRBoxAAoqaGh6cGhzcG9senNic3ZoY2hoVUNxMVF0M3FhYWlmUzg0SjhKN0p6MzNREgIAEioPwg8PGg8_E3CCBCQBgAQrKosBEAEaeIEJEvf7BPwAAPj_A_oH_gIf9vj59AMDAPMP9vQDAf8A_fgP__cAAAD9-fD2BAAAAP339wL6_gEABgT9AQUAAAAg_fL6_AAAAAoO_u7-AQAA6vP2_wMAAAAF9vQB_wAAAPwFDu4AAAAA-f3zAwAAAAALAvQBAAAAACAALTmyxzs4E0AJSE5QAiqEAhAAGvABe_oEA9_4FgHi-O7_-B3eAYEAAv8i9QsAyusmALv19gDa7fYA5r0eAhn2Of_BFwcANPMA_3gW7f_x6Cj_RA4NACwTDAAL_fUCQfQEADUW4_8Y9QIADwYP_-rkKP8MFvP-CCgK_u0q5QDy8vYFEw_-AgoCBwEm5Q4B8wYMAewGFP0B_e_-Fhz7A-X2GfzLCw8C4fXvBQcQ9QHnBPMB8fYFBw4D-_0d_PsJ_QAR-uTq-vcC7wD2DQAKAe8J7AAdBAv-5M4iBhQo6QcGDv8IBNH3AQ29_PbhHf7-Awz0A9_98foKHAIGzhTz9dsqFv0Z8Rb9IAAtv08kOzgTQAlIYVACKs8HEAAawAenIL--LZPGPCkQLL3Jd4S61TXkPPvxzbwlyt69Mi1bvQAxrrtJE889IiYXO7Cvdb1ZwFS-BIyMOSrP1zzqIO8983g1PJGmsDyGyt-9X5PaugWl6LxEGF--1GRnO6WdPzwk03E-2-xZvRbUgbzCyYw9L1JDvXwZuzwgqOi6HXURPDPcAL0YHCq9vk6KvQYOC7wYW5A-hkIfvQtR8DrcEY4-vVPBvGA4fDyyuRq-L_DkumxINzyet7w9itDjPEavqzxoqoq7B4_bvNUofzz1Zw8-NjmRvcL3grsdhIo9ltEoPRxOzzxvLsk9V6s7veRE4Lzog8q8CoMaOYULlLwQZd68w80uvbRP0TxqpdA9fX6TvdBRnjs8acE9pAUDPRcq_zzDJ8K8rEaFPZD5mzzuvb49ucpOvX-sljwPVm09hSHXvC88pTyZa5y9FLoiPMGYozyuRvY9UulMPOXQorwjoti8xLU1PeHAmrzl6UG9oGRcvdMlLTyvpvw8IMTfupgWdTxEIM08EziGuqIVDjxcSmc9xogEvMlIrLtyogK9qTxwvJ0uCztLeEI9IOY3PN9Y6Tssx3W882a_u5ro1jv50A-9196nun5a3jvXI169i5MxvINXJjzBAig-i4uTPV1-Rrr1xXS9s1-YuxNPLLz_sHY6-iT7uyxSFzzPzjM7vbu_PTSg3rmHy7C9IUcpPbYgCjwscjo7XwQyvPuE4DvqKKK8--4xPEckJzsuzoO9YQgvvaioyrkRYEc84-mQPVsAMDl8K9I86jijvDv9wTkcYnc9565ju9YUtLmMZTo9azTvvCTnJrlx3PM7IvwLvRAv2zhy4uk7c0EHvRKYbrnovtw9rpGuPA8bHDm6EJu9lSfAvQ7RHzkVcA-93YIAvZU_bLlf02O9u-2HvUQcKzj6xEs8LRx0utv_SLdZmC-9bh8NvS84XrkcAUE9Q8YGPL_EY7kFpH08moSBPbC1qTgS0589aFD-vKmaGjlgPOM9-IhdPfhwdzic24S9vtirPSdfNjhLRZm8kylVPP7VJzeYzKe8P0YqvcKdADi6Ljw91OETPIFlFbjuiY-9a5-pvXJkLzfFQii9P2A0vWrYlTaU3Yy8eIfKvC4naDhKc1A8WeoPPVKYhjiAoFc9WNmIvU7JhbhYx9A7SkxLPf-ACzchjU-97oJ8vUYVjrhe9JW8APFpvZBWSbUU9E09tL2nvZeXjbfgSva9pu-1PHlCX7nb2628a_AePpA5Ibk1ehW9K2E3PC6yDzfiy0Q8KIk7vTf01bcgADgTQAlIbVABKnMQABpgMf4ALv312uv4ctXkxfb1Ed7csOnAPP8K6v8BK__z3QD_vNoFAEHNNPigAAAA-RDwHO8AM3_mzBEVzyPYuZcBBwI1Agb_yQApNdUAKTLk9_YDGzIlAN731eZT0NBr6-wDIAAtf3MeOzgTQAlIb1ACKq8GEAwaoAYAAJhBAADwQQAAoEEAACzCAADwQQAAHEIAADxCAADgwQAACMIAAEDBAAAwQQAAZMIAAHjCAACKwgAAwkIAAMDBAACAPwAAOMIAAMDAAACMwgAAAEEAANDBAACowQAAqEEAAMBBAABcwgAAuMIAAPjBAACQQgAAHEIAAJDBAACgQQAArMIAAAxCAABkwgAAcMEAAKhBAAD-QgAAIMIAAChCAAAwwQAA8EEAAERCAABgQQAA0EEAAJjBAABgwgAAAAAAABBCAABAwQAAdMIAALBBAAAQQQAAEEEAAKBAAACQQQAAAMMAALhBAAAYwgAAyEEAADBBAAA4wgAAGMIAALTCAACQQQAAKMIAAODAAABgwQAARMIAALDBAABUQgAAZEIAAIC_AAAoQgAA4MEAAETCAAAgQQAAyMEAAIhCAADAwAAAFMIAABBBAACIQQAAokIAAEjCAACgwQAAwEAAAAhCAABwQgAAsMEAAIhBAACAQQAAAMAAALbCAADAwQAAkMEAABTCAABQwQAADEIAAOBAAACUwgAA8EEAAIxCAACOwgAAsMEAABDBAACgwQAAeEIAABDCAAAgwQAA4EEAAKDAAAAAwQAAEMIAAOBBAACYQQAAuMEAAJrCAADgQQAAoMAAAIDAAADQwQAA2MEAAEDCAACYQQAAVEIAAKDBAACAQQAA0MEAAFDBAAAAQAAAYEEAAJDBAAAkQgAAoMAAAAAAAACgQQAAmEEAAFjCAACwwgAAyMEAAHhCAAAsQgAAoMAAAPBBAABAQQAAiMIAAKDAAAAQQQAAiMEAAKDAAACgQAAA4EEAALjBAADgwQAAgL8AABDBAAAowgAAqsIAAIDAAABgwQAA4EAAAFDCAABAwAAAwMEAAAhCAAD4QQAAOEIAAOhBAAD4QQAASMIAAMBBAAAkwgAAAMAAAOjBAABwwQAA4EAAAHDBAABEQgAAQEIAAKjBAABYwgAACEIAAAhCAACyQgAAgL8AAITCAAA4QgAAuEEAAGBBAACQwQAAFMIAAFBBAAAowgAAQMEAAEhCAACSwgAAAMEAABDCAAAUwiAAOBNACUh1UAEqjwIQABqAAgAA0r4AAIq-AAAMPgAArj4AANi9AACIPQAAUL0AAB2_AADSvgAA2L0AACS-AADgPAAAML0AAKY-AACgvAAAmr4AAK4-AABUPgAARD4AAA8_AAB_PwAAHL4AANg9AAB0vgAARL4AAHy-AACYPQAA6r4AAEC8AADYPQAAVD4AADw-AAA8PgAAuD0AAKq-AACYvQAAgLsAAGy-AACCvgAAXD4AALi9AABcvgAAiL0AAOA8AAAwPQAAgLsAAOA8AAC2vgAAoDwAAEA8AACoPQAAVD4AAAw-AADgvAAAZL4AAFA9AABnPwAA6D0AACQ-AACmPgAAgDsAAOC8AAAwPQAA5r4gADgTQAlIfFABKo8CEAEagAIAAGy-AACAuwAAQLwAAEO_AAC4PQAA-L0AAKA8AAB8vgAAoLwAAHA9AABsvgAAyL0AANi9AAAcvgAAgDsAADC9AABEvgAAKz8AAFC9AAAUPgAAyD0AAMi9AABQvQAAqD0AADC9AAAwvQAA6L0AAOC8AACAOwAAPD4AAHA9AAAkPgAA2L0AAJi9AACYvQAAoLwAAGQ-AACIvQAAor4AAAS-AACAuwAADD4AAIA7AADYPQAAJD4AACy-AAB_vwAAiD0AAHQ-AABwvQAAJD4AADS-AABwPQAAqD0AAKA8AAC4PQAAED0AAHA9AADovQAAyD0AACQ-AABQPQAAEL0AAFS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=cGljAlbp3lM","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4993547905766727963"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1185324971"},"13081590616672028239":{"videoId":"13081590616672028239","docid":"34-4-7-Z4EE4B1CD85A954D7","description":"In today's fast-paced fiber industry, network operators need advanced tools to maintain efficiency, reduce manual errors, and provide top-notch customer experiences. The integration between COS...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2236277/9836459801d157cf5a00fa7a388eff7d/564x318_1"},"target":"_self","position":"2","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D62L9VYEPi7U","linkTemplate":"/video/preview/13081590616672028239?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Seamless Fiber Network Management with COS Business Engine and Calix Integration","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=62L9VYEPi7U\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoWChQxMzA4MTU5MDYxNjY3MjAyODIzOVoUMTMwODE1OTA2MTY2NzIwMjgyMzlqrw0SATAYACJFGjEACipoaHpwaHNwb2x6c2JzdmhjaGhVQ3ExUXQzcWFhaWZTODRKOEo3SnozM1ESAgASKhDCDw8aDz8TtgGCBCQBgAQrKosBEAEaeIEGDREFAv8A_AMFAvkG_gIeAPz-9AMDAOsP_f36_wAA8voIAgQAAAADCfj79wAAAPsDBAX1_gEAEAH3_AQAAAAU-AL-9wAAAPEI9Pj_AQAABOoC9AIAAAAR-vcFAAAAAPkWCPz-_wAA_Q_zAgEAAAD_AQoG_wAAACAALQTxzTs4E0AJSE5QAipzEAAaYA4RACwN_enQARTj7_jo_Af--Oz06_wABQcAEB3_3Pwe59bxFP8WAA8K0gAAAPcNCx_oAO43-u_i7vwpAOLX-hATfwoJDP4OBfTi2gj0DwAEAREdLQAQExH0GPLyQBUHCSAALUx6hTs4E0AJSG9QAiqvBhAMGqAGAACYwQAAYEIAAChCAACAwAAAsEEAAMBAAAAgQQAAAMAAAJTCAABswgAA0MEAADDBAABUwgAA8EEAACBCAACowQAAwEAAAKLCAAAAAAAAiMIAAJBCAAAYwgAAAAAAAAhCAADgwAAAEMIAAJjBAABwwQAAgkIAAPhBAADgQQAAmMEAAPrCAADIwQAAiEEAABjCAABQwgAAPEIAAKBBAAD4wQAA6MEAAAAAAADAQAAAgL8AAAjCAACAQQAAiMIAACjCAACgQQAAIEEAAJDCAAAYwgAA0MEAALBBAAAIQgAAYEEAAADBAABAwQAAtkIAAFBBAADgQAAAmMEAANrCAAAMwgAAMEIAABjCAACAQAAAgD8AAARCAACgwAAA4EAAAJZCAAAQQQAAoEAAAOjBAAAAQAAAAMAAAIhCAACIQgAAIMEAAKDBAADmQgAAQMIAAAxCAAAcwgAA4EAAACTCAACwQQAAwEAAAEDAAAAUQgAAQEAAALDBAADAwgAA4EAAABTCAAAsQgAAUEEAAGDBAACAwAAAnMIAAPBBAABgQgAAmMEAADBBAACwQQAAAEAAAMBBAADAQAAAkEEAAARCAABAwQAAPMIAACBCAACAvwAAwEEAAFBBAABAQAAAEEEAALhBAAAsQgAAaMIAAGBBAACowgAAcMEAAEDAAAAQQQAAgMAAAOBAAAAAQAAAIMEAAAhCAAC4wQAAkEEAAOBBAAAkQgAAXEIAAGDBAAC4QQAAbMIAAEBAAABwwQAAIEEAACDBAADoQQAAfMIAALDCAABAwAAA-MEAAJrCAAAoQgAA2MEAAADBAABQwQAATEIAAAzCAADAwAAAMMIAAIBBAAAsQgAAQEAAADhCAABwwgAAmMEAACDBAAAwwQAAAEEAABhCAADAQQAAQEAAADDBAAAEQgAA-MEAANBBAACYQQAAnkIAACDBAAC4wQAA-EEAAPBBAADAwQAAgD8AADDBAADOwgAAZEIAAKhBAAC-wgAA6EEAAFBBAAAMQgAAJMIAABDBAAAIwgAASEIAAMjBAABQQgAAysIAADDCAAAswgAA6MEgADgTQAlIdVABKo8CEAAagAIAAEy-AAAEvgAAiD0AADw-AABMvgAALD4AADw-AAAZvwAAnr4AAKg9AABQPQAALD4AAIC7AABUPgAANL4AAI6-AADqPgAA-D0AAOI-AABFPwAAfz8AALi9AABwvQAAyD0AAIa-AACePgAAmL0AAO6-AADIvQAA0j4AAPg9AACAuwAAuL0AAEA8AAAsvgAAyD0AAAy-AACovQAAnr4AAIC7AAAcvgAAVL4AAAS-AAD4PQAAdD4AAEA8AABcPgAAC78AAAS-AACoPQAAFD4AABC9AADGPgAAcD0AAIi9AACAOwAAOT8AAHw-AAA0vgAAgj4AAKi9AADYvQAAUL0AAEy-IAA4E0AJSHxQASqPAhABGoACAAD4vQAADD4AAGy-AAAfvwAAyL0AAKi9AADIPQAAXL4AAHA9AAD4PQAAiL0AABS-AACavgAAhr4AABw-AACAOwAAiL0AABE_AACYPQAAnj4AAGQ-AAAMvgAAmL0AAKg9AACAOwAAdD4AAHy-AAAwPQAAmL0AAKC8AABAvAAA2D0AAHA9AACgPAAAgDsAAOA8AABsPgAAEL0AAES-AAAkvgAAXD4AAI4-AADgPAAAoLwAAEQ-AACgPAAAf78AAAS-AAAcPgAAPL4AAKC8AAA8vgAAuL0AAIg9AADgPAAAJD4AAEC8AADovQAA6L0AAEQ-AAAQPQAAoLwAAAy-AADYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=62L9VYEPi7U","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13081590616672028239"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17567248041656172890":{"videoId":"17567248041656172890","docid":"34-1-8-ZBE79A20B9D3B33F2","description":"All About Cos(x) Function | by GP SIR →6:37 - Continuity of Cos(x) Function and Inverse of C...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3933039/bcf8a7539c62204962f6d6fd1c41d44a/564x318_1"},"target":"_self","position":"3","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFQEN3SCitkU","linkTemplate":"/video/preview/17567248041656172890?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cos(x) Function and Inverse of Cos(x) Function | All About Cos(x) Function | by GP SIR","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FQEN3SCitkU\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoWChQxNzU2NzI0ODA0MTY1NjE3Mjg5MFoUMTc1NjcyNDgwNDE2NTYxNzI4OTBqrw0SATAYACJFGjEACipoaHBqb210cHhqd3VuaWpiaGhVQ3JPbUZiSGdmX2s0cGstallSbXloancSAgASKhDCDw8aDz8TmwiCBCQBgAQrKosBEAEaeIH7_wH_-wYA9AMFAfoD_wEEAAAC-f_-APf7-_3-Av8A9wT_9wEAAAD_CQH3AAAAAAP7_fv9_gEAAAD_-wMAAAAYAv0A-AAAAP8H8v3_AQAA-ff3_QP_AAAFAQD9_wAAAAANAfr9_wAABAT9BgAAAAD8Afn8AAAAACAALcSf4zs4E0AJSE5QAipzEAAaYAYaABv4FvjdABr0FATj8fX4AwXk-QUA_OkABBnx7w0A-N33CAAO8wH92gAAAAsOCiEHAPMtDvrm_Owx-u3iAAAdf_39DvoD-OjkBwsPCgvv8_4I-wDn_P72FQL8JgoPFSAALaZemzs4E0AJSG9QAiqvBhAMGqAGAACAQgAAKMIAAOBCAABgwQAAGMIAAHDBAADQQQAAgMEAAIzCAAAwQQAAUEEAAKBCAAC8wgAAFMIAAABCAACAQAAAoEAAAGDCAADgQAAAiMIAAEBBAABAQgAA6MEAAJxCAAA0QgAAoEAAANDBAAA0wgAAUEEAAEhCAACIQQAAsEIAAKDBAAAAAAAAgEEAACBCAACAwAAAyEIAABRCAAAkwgAAgMEAACBBAACIQQAAAMAAAIA_AABUwgAAmMEAAMjBAABAQgAAiEEAACDBAAD4QQAAoEAAAMBBAACQQQAA2EEAACBBAADYQQAAkEEAADxCAADQQQAAgMEAAEDCAABwQQAAkEEAAAhCAACeQgAAUMIAAAjCAACgQAAAykIAAGBCAACGwgAAvkIAAGxCAAC-wgAA0MEAAJhBAACAQAAAIEEAACDCAACIwQAAYEEAAMRCAABAQAAAbEIAAODBAACIQQAAoEEAABDCAAAowgAAcEEAADDBAAC4wQAABMIAAEDBAAAAwAAATEIAAGhCAAAIwgAACMIAAMBCAABgQQAA4MEAAIjCAACAQAAA4EAAANhBAAB0wgAAFEIAAIxCAADYwQAAVMIAAKBAAACOQgAAAEIAAODAAABgwQAAUEEAAGzCAAA8wgAATMIAAJhBAACKwgAAEEIAADRCAAD4wQAAKMIAAGBBAAAQwgAAUMEAAJbCAACgQAAAcEIAAABAAABQQQAAUEEAABzCAABgwQAAkMIAABBBAABgwQAAAMIAAFBBAADAQAAAEEEAAKjBAACKQgAAEMEAADBBAACgQQAAgMAAAFDBAABwwQAAEEEAAABCAAAwQQAAGMIAALBBAACSQgAAAMIAAIhBAACgQAAABMIAAEDBAACAwQAAuEEAALDBAAAQQgAAoMEAAGzCAACYQQAAgEEAACBBAABAQAAA-EEAANDBAACwwQAAXEIAAFBCAABIwgAA4MAAADTCAAAMwgAAHEIAAJbCAADYwQAAiEEAAJjBAAAoQgAAAEAAADhCAAA8QgAAEEIAAODAAACoQQAAIMIAAKBBAAAswgAAGMIgADgTQAlIdVABKo8CEAAagAIAABA9AAC6vgAALD4AABC9AAAUvgAAtj4AAJi9AAApvwAALL4AAOA8AAA0PgAAmL0AAJo-AACGPgAAbL4AANi9AABUPgAAcD0AALg9AADuPgAAaT8AAIC7AACgvAAA-D0AAKA8AACYPQAAZD4AAKq-AAC4vQAA4DwAACw-AACovQAAUL0AAIi9AACAOwAAjr4AABA9AACyvgAAxr4AAAw-AABUvgAAor4AAHA9AABAvAAABD4AADQ-AAC2PgAAkr4AADy-AADmvgAAoDwAAKC8AADiPgAA2D0AAKg9AACgvAAAfz8AAAQ-AAB0PgAAoDwAAKo-AABcvgAAgr4AAKK-IAA4E0AJSHxQASqPAhABGoACAACgvAAA2D0AACS-AAAVvwAADL4AAJi9AACmPgAAUL0AABC9AACKPgAAcD0AAMi9AAAwvQAAJL4AAIC7AABQvQAABL4AAAs_AAAkvgAAfD4AAFQ-AAAQPQAAEL0AABA9AACYvQAAyD0AAKi9AADoPQAAQDwAAPg9AACoPQAAqD0AAPq-AAAcvgAAFL4AAOA8AADSPgAAyL0AAM6-AAAcvgAAiL0AADQ-AACgvAAAhj4AAJ4-AADYPQAAf78AAIA7AAAQPQAAmL0AACS-AAAsPgAAoDwAALg9AAD4PQAABD4AAEC8AAAwvQAAMD0AADA9AADYPQAAPD4AAFw-AACSviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=FQEN3SCitkU","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17567248041656172890"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2227015733586855652":{"videoId":"2227015733586855652","docid":"34-5-10-Z3C1D8623CD59E963","description":"Subscribe Now: http://www.youtube.com/subscription_center?add_user=ehoweducation Watch More: http://www.youtube.com/ehoweducation You can tell when to use Cos or Sin in physics by paying attention...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/366886/f466934f55d5a59a107fb35e2eb2a47a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zEr9nQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZBshEGex_po","linkTemplate":"/video/preview/2227015733586855652?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How Do You Know When to Use Cos or Sin in Physics? : Physics & Math","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ZBshEGex_po\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoVChMyMjI3MDE1NzMzNTg2ODU1NjUyWhMyMjI3MDE1NzMzNTg2ODU1NjUyapMXEgEwGAAiRRoxAAoqaGhub3FkY2lsYmplbmZwY2hoVUNRUmNHOW8ycEJoTVg5bXVxTFlJbW13EgIAEioQwg8PGg8_E4MCggQkAYAEKyqLARABGniB9wT6_voGAPj9CP78A_8BBgb4APf__wD2APX1AgL_AP32BgMCAAAA_gf0B_wAAADy-ff8-gAAAAQB9v4DAAAAEQj4_fcAAAAS_f78_gEAAAP3-fkC_wAAEgQB_f8AAAAMDvz4AAAAAP0MAPoAAAAAFgf_BgAAAAAgAC1aVOQ7OBNACUhOUAIqhAIQABrwAX_fPwCp4_v-Be00AA8h6gHmKfj_OwYZAKIyAwAY9toAJ0DiAAf4PgAr6tsAkeXiAuco_P_i-AoAHOhF_fP24QH15eoACvDnATL7GgE_G97_EwLY_hQh-v8KAt0BzufZ-9zz8v0V-LsBsAzk_0gHGwE2_u0Eovvf-_P3A_rlJub_-dEDAPv1CAjM9fH_9OAsBB3m_QEeGSkAu-D4ACDxEAT_4ewGHuHhBsz-0P6sFQ799fEJ-hvcGgLvOfv_-RPuBAYPBgHR4xX2FjL0COkbCf0F1fj3NQ7y_PEBE_klx__80v_58wr_Af8F4-b_HukIFyAALa2XCTs4E0AJSGFQAirPBxAAGsAHiIK5vsUlAbxaRf-8vln5PBLY3Lw8Hum8lyy4PLcN_jwxdXy8zT7PPUpnq71XZ6s8eV3_vQVuXbynSQA8QL05PuIbqjkMpdi51ClPvq0eZrxH3XO8ejSVPFXXhrwi1xe9qDXNPXOpwLzFa8O8b5spPXG7Qb3O0C48J2GNO9lXs72zYeo6-KEaPB-F6728kXm8LQGdPT8I3DwtWoA7fDQLPWZ1gruDpuU83bTJPbTvxT2dV0i7FV1SPRy85bzPG528L012PcaViT3C60Q8b4dhPKoKbb3inp27g76UvVP9FDvbY868YHlrPc-1-bzhDB69LR1YPZlxyTxHf9w7d_UKvqCfLj1c-VG8LZOWvbkJnT2X8Lq8ZDvEvRV1gTykC3u8-YTsPPaVBz2xm4C7LEUSPqDcO73PiZg8FtC1PSBgDb5Bmmm6CS2APbY3Lj2TQ7q8v1paPHkXyT3DUAG8pztvvTtrXLzuDuO7XJkLPamfl737U088mFsQPbl52Tzp8QA6TzigPXbCqz0-3hQ8BSOlPdYCO75J5Zo6cqICvak8cLydLgs7rNEBPUdZv7t-cEc62zElPt2hlzyi0xA7ukytvVXaYjz40iU8KIKjPddn8zxW2Cm7R_nuvJ552T0NYf-5A-HxO4IRxTx9Qx-7NA8APZ0YCrvoPzU88pTVPL9-GD7yNiu6ebGwvc39urz_RMA6OwZfPXi3Ej1BxrO6UyimPG4HqT03qFw5H9XVvEqcsLxkZpe6muaCPSw3qLtFiIa6TyMdPpW4Dr0Ne9I4d05OvWd8Pz2R3A06doR4vaWeBT6jQ6K3KTWFvCQfxb3IGDA5w7wHvqk_bL3ae2U34RKbvB6lAr6Wx9e5DOUEvkn5RbtWkbg5IviEvVN3pbxF6Hg6o0cjvD10izxaUko5iXNZvR7gyTxmBBe4haeRvfDgFz5LhmG5oeWvvFRNFb21GDG42VN8PeqzAz4-RQq5CrWquzOx77wSTry4G_KvPa9Jrbz7fYW4iaxaO_Z_Lj68OxW5qYdovMVWAL5oFpO3Ruq9PagxhjzRCAY4qu3LvNOBkT0Gk2a3RMpKvVYLkbzmV_-3OrG3PYLbPz25i4E5vjA5PaNLrjzwjkY4MSjTveVsEL36wlg44tBWPdmKhz2hsAS5cKc-vCfTbb10QV-49zBlvRTFdbzHsS43k6csvAO8-7xb7Yk3ptSFPaSRy7sW7IC4VRimPW0LxT2Dx-c4KZ5pvHjNkD2h5pq4fE6FvWOES7zCyOi2mAlQvHJr0jwD9nw4IAA4E0AJSG1QASpzEAAaYE70ABT_Mga2DEX68uPZHtj3_MY71u7_7Af_Etrs6fohzL4E6f8g5vfkowAAAP4StRMMABB25cbYNPPsHq7My_Ldfx3vBfnkLB2qBO4vIgpFCso9UgDD_L5O-eTpFwZJNyAALeHPGjs4E0AJSG9QAiqvBhAMGqAGAACoQQAAgMAAACxCAAAAwQAAVMIAALhBAACEQgAAMMIAAKhBAAAgwgAA4MAAAAxCAABgQQAAUEIAAJhCAADgQQAAmkIAAHDBAACAQgAAUMEAAKDBAACmwgAAYMEAAMhBAAAAwAAAkEEAADzCAAD4QQAA6EEAAERCAABowgAAgEEAAKDBAADgQAAAgsIAACzCAAAAQAAAGEIAAIDAAAAowgAAJMIAAKhBAADIQQAADEIAAPhBAAAAwAAAgEEAAPjBAACoQQAAsEEAAKjBAAAUwgAAVMIAAKBBAABgwQAAGMIAANDBAAAQQQAA0EEAAMRCAACAvwAACMIAAIDCAAC4wQAAYEEAAIDAAACYwQAAsMIAANjBAACwQQAAEEEAAGBBAACwwQAAhEIAAMDBAACSwgAAuMIAAIjBAACgQQAACMIAABTCAACIQQAAEMIAAGDCAADgwAAAREIAAMDAAAC4wQAA-EEAAMBBAAAMwgAAEEIAAGBBAADgwQAAkEEAAHzCAABYQgAAQMAAAPhBAADEQgAAPMIAALhBAAAgQQAAPMIAAHjCAADwQQAAqMEAAARCAAAkwgAATEIAACxCAACAwQAAgL8AALBBAACAwQAADEIAAIDAAACMwgAAuEEAAKLCAACYwQAAUEIAAOBBAABAwgAAuMEAAAjCAADgwAAAgEAAAPjBAACYwQAAcEEAANDBAABEwgAAlkIAAABCAACgQQAAUEIAABTCAAAswgAA8MIAAI5CAABUQgAAkEEAAARCAABAQQAALEIAANDBAACAQAAAuEEAAADCAACgwQAAwMAAAIjBAAB4wgAAhsIAABDCAACiwgAAQEEAADDBAAAkQgAAEMIAAFBBAAD4wQAAPEIAACRCAADoQQAAEEEAAGBBAACIQgAAwMEAAEzCAADgwQAAcEEAAMDBAAAYwgAAOEIAAJBBAACIQQAAIMIAAFxCAACgwAAAlsIAAKBAAAAgwQAAtEIAADBBAACgwAAA6EEAADDBAABQQQAAgD8AALhBAACQwQAAgD8AAJhBAAAgwQAAuMEAADBCAACAPwAAfMIgADgTQAlIdVABKo8CEAAagAIAANg9AACavgAALD4AAJi9AACCPgAADT8AAEC8AABBvwAAor4AALi9AACIvQAA6L0AAAw-AACyPgAA2L0AAGy-AAC2PgAAMD0AAIg9AAAFPwAAUT8AAEy-AACKPgAAFD4AAI6-AABAvAAA0j4AAGS-AACgvAAAFD4AAJI-AACKvgAAXL4AABw-AACgPAAAML0AABS-AABsvgAAkr4AAEA8AAA0vgAAor4AAMg9AADgPAAAML0AAAy-AADIPQAAkr4AAPi9AADSvgAAir4AAPi9AACmPgAA4LwAAIC7AAAwvQAAfz8AAIC7AADgvAAAFL4AABy-AAC4PQAAqL0AABC9IAA4E0AJSHxQASqPAhABGoACAACgvAAAgLsAAIK-AAAFvwAA6L0AAEy-AACuPgAAuL0AAKC8AACAuwAAoLwAANi9AABwvQAADL4AAOA8AAAQvQAAED0AALI-AAAkvgAAtj4AAFw-AAA0PgAAfL4AAKi9AAAQvQAAML0AADA9AACgvAAAgDsAAEQ-AAAMPgAAFD4AAKa-AAAwvQAAFL4AAHA9AABkPgAAPD4AAKK-AAAwvQAAfD4AALg9AAAEPgAAbD4AAPg9AADYPQAAf78AAOA8AACgvAAAuL0AAOA8AAAcPgAAUD0AAKC8AAAEPgAADD4AAOC8AAAwvQAAuL0AAHA9AADIvQAAiD0AAIC7AAD4vSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=ZBshEGex_po","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2227015733586855652"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2687804135"},"6173906321388923249":{"videoId":"6173906321388923249","docid":"34-10-5-Z035715FE4AC69745","description":"This weird expression of taking cos over and over again is just a sequence x_n=cos(x_{n-1}). There is a very cool theorem called the Banach Fixed Point Theorem that let's figure out the limit of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/895469/5e19ac3289b188f90d65756cc0f1e98d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/EFfcQAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqHnXE_h5c2M","linkTemplate":"/video/preview/6173906321388923249?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is cos( cos( cos( cos( cos( cos( cos( cos( cos( cos( cos( cos(…?? // Banach Fixed Point Theorem","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qHnXE_h5c2M\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoVChM2MTczOTA2MzIxMzg4OTIzMjQ5WhM2MTczOTA2MzIxMzg4OTIzMjQ5aogXEgEwGAAiRRoxAAoqaGhtend3YXFzdW52b2p1YmhoVUM5clRzdlR4Sm54MUROckRBM1JxYTZBEgIAEioQwg8PGg8_E6YEggQkAYAEKyqLARABGniB__n8-_wFAPQEBQH6A_8B8P8B-_v__wD_A__8-QX-AP0EAP0FAAAABBEB_v8AAAAB_gID_v4BAAb--PYDAAAAEQj4_fcAAAAK__v4_wEAAP_8-_8D_wAAAQH2AwAAAAAADQH6_f8AAP8F9gIAAAAAAP_-_wAAAAAgAC1bBuE7OBNACUhOUAIqhAIQABrwAXb9N_3G4tr_sBrX_xw3CwClBij-GQ38_4HA7wDXN60BCQMhAPYCDAApStL-nwoB_6oW7QA84QUANuMZ_ugXBQDGRukAGPcTADndTgIACTD_lkDfAMrb9f8f7LD-fS68_SDF7_4nJ7b9zxDFAiHcPAPQDfYF8gLlAugl7v_ULP8DByW8_xsVMAbJ4Az11Gf5BSwJ-gpAOir-8NnjCP0BLvtOHAH7FwnxCAvrxv61CvH60gkP8PPoBQL05wsN-7nFBtW0MwkA3RD1GOr8_xojCgMH-ej7DL31AezdBfzHBSHx7OnzERbn9RQdSOr09oP1DiAALfv22To4E0AJSGFQAirPBxAAGsAHt-zYvl13qTyx1MS8XFcMPa9Jkjw1NRy8SV4nveNVVj2mv828GJgFPoAz6zt_s727irm6vRAsHb0tVMg8teGQProRNr0aiTA92UNLvkOSdjspf4K9syPVvYOXCj31HfK8QIo6PSwTWTwueAy9oOLYPWE8nrzFT4i80mg3PUBsSb3_ddO8MqUaPVW0g7tMmQq96UOnvUPonLukgz-8bEhXPbHs-LxUhpa8Vo7_PLYAYz0AZ3M87GjcvS-9AbwZWAU7hNjZPdT1nzx3nTc6cDruvDpauDtY3-W8wIkyvL0IiTzBcA28qMoyPX8U9TyJPG68vFpuPbeLvDp25a87l-QwvkRvLD3sgma8eocgPTnsgz1CRZi5GNIBvkmDqz2WJiW89VIMPaAPYLz8T8Q75zooPRc2OT0fgsu7My02PSAqTT2lKx47chP3uyy5ijxzMsw8UgeLOf4pFTxyuQe8z6Qovfwjgj1U1ZW8JS-hvKO5hDznlFu8jLgFPdDFlTy-0Zg8WtuvPWQciLzuF_28j-AWPlt4Dr4D5w68V3s4vS-H_b0qoGY6f-4VPXwP1z1V1VO7Q6kdPh9q273Emqk535twPVMYtb0a8ey7jOgIPbs8QryWQda7mHx9vR7GZD3dUAK8OnlsPHzzdjwu1ia8v682vNwn7DxAack7OkSXvYrQ47xcWmw7lQXdvPmWsz23Y4e6Y4WVO3-WiD0wv5E5iCSEPaUZtr3cmS67EQEHvsN6SL1PiHW5mKkkvMsLdT2KxdI6eQGrPSLBt7so9TY5OysSvOMIKL0b1Bq5s78ivfqQwTzjrR85MU2Ju40dRLqLgqg4iQ-3vbdCuL0xQro4GD-9PamAAL2JMjm5JlZGPMOwULo-vV26sz8Qvsg4EL0Mk0q5k5uyvOemDT2xIue4K3OJPW0VCb3dKsY4SFM9PZY5Yr0y5pI4A90ovGSy-LyiMRA5p39EPbzSvT0nKvs2klEvPFEVU7wCSGS5xvOuPeSfqT3kAmo2OiuYPBL5nj1snoe4uJgavVXiFT3fOMG4GuflPF0Pa724sI03pR9DPWzEXb0n_gw432yjvfwtCbzNfaq2359XPdHHYb3ud6o4Cqi7PVxaoDlpqxo4YPKVvZ1jtT1eRYE3raf2PbPqmLx7Ozq5JtB2Pfxsmb0_shG4cjQJO3COtL040o22n8V3PW-Pbz1tsIY3szEGuwivvb0cfaa3Iv_sPTUpBT7zflu4uB-wvK-IKz0i05W4aiAMvFPPEj5fzwU3vbQSulmfl73yZjO4IAA4E0AJSG1QASpzEAAaYBsKABwGHvvEAk_3_-vc6OHs7PD86xwA8P4AAQbjERb61wbo8gD5-i_WvgAAAPnv_ljUAOVQzuXPAgEk99TB-SsTf-DtJMD9COz8-xYC7_0ZBAYJEwC9JO38ExsI-wQqLSAALdlsTTs4E0AJSG9QAiqvBhAMGqAGAAAsQgAA4MAAAMpCAADgwAAAmMEAAEBBAADMQgAAusIAAODCAACAPwAAyEEAAIBCAABgwQAAIEEAADDBAACwQQAA4EEAAEBBAACgwAAAZMIAACDBAACgwAAA4EAAALhBAADgwAAAgEEAAIbCAADgwQAA2EEAAChCAACgwQAAMEIAAMBAAABQQgAAyMEAAJDBAAA0wgAAIEIAADxCAADgwQAAEMEAABBBAABgQgAAQMEAABDBAADAwQAAQEIAAIjBAADIQQAAsMEAAHDBAACQQQAAEMEAAAxCAAAAwAAAdMIAAAjCAAAgQQAAMEIAAJpCAACAQQAALMIAAHjCAABswgAAgEAAAFjCAAD4QQAAMMIAACDBAACwQQAA2EEAAOBBAABYwgAAiEIAADBBAACwwgAADMIAAJhBAAAwQQAAGMIAANjBAAAAQQAAMMIAADjCAABsQgAA4MAAAITCAADAQQAAlkIAAKjBAADYwQAAgEEAACjCAAAQwQAAIEEAAITCAADYQQAAqEEAAOhBAADAwAAALMIAAOhBAABAQgAA4MAAAKbCAACeQgAAuMEAABxCAAA8wgAAUEIAAHhCAADAQQAAQMEAADhCAAAwQQAAVEIAAAAAAABEwgAADMIAAADDAACQQQAALMIAAEBBAAAQwgAAMMEAAABBAACoQQAAWMIAACTCAADgwQAAUMEAAETCAADwwQAAoEIAAMJCAADgQAAAgL8AAIDAAABQwQAArMIAAIJCAABwwQAAyEEAAIC_AABIQgAAAEAAALDBAAA4QgAAqEEAAJDBAAAQQgAAgL8AALjBAAA0wgAAcEEAAADCAAAAwgAA0MEAACBBAACCQgAA-MEAAAxCAAAwQgAAgD8AALhBAACowQAA-MEAAHBBAAAwQgAANMIAAFDBAACAwQAA6EEAAOBBAACowQAAbEIAAMBAAAAgQQAAoEAAAIpCAAB0wgAAQMEAABDCAADAwAAA-EEAAJhBAABMwgAAaEIAAOBAAACwQQAAQMEAAAhCAAD4QQAAqEEAAAzCAAAIQgAAsMEAAPBBAAAUwgAANMIgADgTQAlIdVABKo8CEAAagAIAABy-AABMvgAAUD0AAKa-AACIPQAA4j4AAEQ-AAArvwAAuD0AAKi9AAAcPgAAmL0AAOg9AACKPgAALL4AAKC8AACKPgAAgLsAAKC8AAALPwAAYz8AAEy-AACYPQAAVD4AAPi9AACYPQAAiD0AADS-AAAQvQAAkj4AAI4-AACqvgAA-L0AAFA9AABMvgAAir4AAMi9AAB8vgAA4r4AANg9AABUvgAAjr4AAKC8AACgvAAAPL4AAKC8AADuPgAAqr4AABy-AAA0vgAADL4AAEy-AAADPwAAoLwAAOA8AACAOwAAfz8AAFQ-AACgvAAAbD4AAKC8AACoPQAARL4AAIA7IAA4E0AJSHxQASqPAhABGoACAAAQPQAAVD4AAOi9AAAtvwAADL4AAHC9AACKPgAA-L0AAHA9AAAMPgAAgDsAAKC8AACCvgAA6L0AABA9AACAuwAADL4AAOo-AABcvgAAmj4AAGw-AABAPAAA2L0AALi9AABMvgAAHD4AABS-AAAEPgAAJL4AAFw-AAAsPgAAuD0AAHy-AAAEvgAADL4AAEw-AABcPgAAoLwAAJK-AAAMvgAAVD4AABw-AABAvAAAij4AAJg9AACYPQAAf78AAIC7AABMPgAAQDwAALi9AAA8PgAAUL0AAPg9AACCPgAAND4AABC9AAC4vQAAQDwAABC9AABAvAAARD4AADw-AACIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=qHnXE_h5c2M","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6173906321388923249"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"785302792"},"10742302042762857256":{"videoId":"10742302042762857256","docid":"34-7-10-ZAF9E5C585E586E70","description":"View more at http://www.MathAndScience.com. In this lesson, we will learn fundamentally what the sine function and cosine function represent. We will learn that the sine function, also written...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3468180/740a07473f27132444b76d17237736c0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/LangGQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvuoNyvMvDtA","linkTemplate":"/video/preview/10742302042762857256?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"05 - Sine and Cosine - Definition & Meaning - Part 1 - What is Sin(x) & Cos(x) ?","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vuoNyvMvDtA\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoWChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NloUMTA3NDIzMDIwNDI3NjI4NTcyNTZqhxcSATAYACJEGjAACiloaG1rbGxnanhpZmdrZHNoaFVDWWdMODFsYzdET0xOaG5lbDFfSjZWZxICABEqEMIPDxoPPxPFFoIEJAGABCsqiwEQARp4ge0E-_cD_AAGBRAF-Qn8Au_8_wT6__8A9AD08wMC_wDr-wP6A_8AAAQTAf3_AAAA__n-7v_9AQASBAL0BQAAABsC_QD3AAAAGQf1-f4BAAAD9vj4A_8AAAEB9AQAAAAACQsE7QAAAAD9EPMCAQAAAPwB-PsAAAAAIAAtnNXGOzgTQAlITlACKoQCEAAa8AFs-A3_ge_9-S3xAQA3_PcAtAsZ_1X3DwCY5fYD2QzCAS0B-AEd5fv_AB70_8AHAf_0GO3--BAmAN4CBv8RFwkA-A3uAB3z5AAyJBcA9QEbAeEhEP_1EwsA5PcDACvuzAD0-iX9DgbtAQDZ4AQA7RT_BRcJAN0N6ADbAgkGBQzoAfES2f416PkD5PgJ_9sj5QElH_cA6u_V_-0h_gQJ5wUD-Ab1ARgDEf0DFuIGKhDx-BoH6AIQAeEB-UEBAx8X9AHd4wn3Cfn2_RMq9gYaCA8F-fb6_engBQ_wL_ID6QL2CdwCAwjx0wEK-vT9DfrW8wEgAC0yiiQ7OBNACUhhUAIqzwcQABrAB4z2-L5eAiY88Q3qvFSqBD5a8AK9QZ9IPLml9T05J4Y9Gspfvc_b2D3I5Im91i9ivZfHqr4Tx-w7vhGdvP29dD6SVEu9A7HsPDV5Or4Oq5E7Sn5EPPWha76E0wc9dDXDux6vdj19uxs9DniqvKmECrzdRIi88xDXvEaUxj1Y8Ty9T1ktvQ_gIz2gE2e9ueQTPddWB72D5WO9qcNlvCAHuj2CkTe9iLKcvPUlQDyHv6a8oGyKvHq2qL2u4sO7KYvrO-M1Tz552uu8g13DPCGU1z3r4nY9ApkfPAwjHT04Pbm8bzmNvDaJiz1tALY9hEtHvDihkDzMWJk8RIvsuzJ9qr33iYg9cXxlu_X1_D2cogg96ytZvAiOy71CTSG8Zn4avGZlHjwJAp67VhaBuw-vkDwd-nY7BQK4vPmmxD3OiFI9d-S-vDBsCL30oTC9Gb5wOYCANTzc8QY9JQequzxiub1RbAU9CICeuVAGAj1qW6S7E0C1O2lXzD2mEyQ9bSsLPMGL4zzS7HA85xmvubYUCz2RVIC95WuFvNGPq7vkNB-9spE1vBFLb7x2rsM8_aWgPGoQyTtMk608c8i8OZtcRz2iOIG9f32du8M-mz0TjzW9JSQSPHL57z3YbDs9LR5FOpELDj0h07U8zpwBvK6JAL2LH3497JF5OsiAh7yd8qi8PJj7O7nDJj0gz069U9SVu8ldj72TN-G7s-InO-x9pD1Yy509vs64uqaW0jyTx_S73pZAO-ypMD3nLjI7HuYOOsRYC7075je9ILdbO_BOXj1zsj49wVZCOUl-ST2sxUc9ZApeuO5z47vSoYi9wyM8OXZaMr37FR28L9-0NxzWDz1aYqU8cF3luXuL4jsMssC9errpt_nA6bv5pG68Di-QuNVwhj3W6yw9S6RUuRIRn7ufALo9SyoSuRRNNj3EtTU84v2fuf3GEj0ZmuG82ZV6uB0psT38Ta09AtsDuEHjeLx8R-29YROrOZXhyzrnAYc9MjGLNxg8UT0LHvA8C4MBt1MztbwOIHI9JJgiuYgko7v1ph29SHZEOJRfR7oNZwY8HjFlNzxfPb0crCQ9khPmOJzbmT1zbg49J5C_N6DOaz3NJri7rqu9N_akQr0wJRc9g8PIN0-IyjyLwBi8uLa2uGaCkb16lQu9VNSEt2MzVj12UbS9P5udOEFJkb2SJbO8E742t3L4pDuo-Y-846fEt4iEzz1rsks9ibeFOE6xj7ymgBS9X0y7uOhVs70WJOw8zbghOKDOizztpmo9fwYvOCAAOBNACUhtUAEqcxAAGmAi_wAq6yzs3gs0BvXo6fffCA7o8u4I__QAAP331-QCCN3EBAj_Et0C6boAAAAm5_kT2AAJVt317x71Cg3NrPj2BH8o5wnm1wHj2dcDDP_1LyT0JDAA1Tu-Jy7x3w0kEzYgAC1UT0k7OBNACUhvUAIqrwYQDBqgBgAAGEIAAAzCAADiQgAASMIAALBBAADwQQAAlkIAAIhBAADowQAAIMIAAKBAAABgQgAAWMIAAOBAAABAwQAAQMEAAFRCAABwwQAAAMEAAPDBAAAUQgAA-MEAAGDBAACGQgAAQEEAABBCAABAwgAAgMEAAI5CAAAEQgAAKMIAAL5CAAB0wgAA0EEAAHDCAABwQQAA4EEAAIhCAACYQQAANMIAACDBAAAcQgAAAEEAAABBAAA0QgAAAMIAAJBBAAAAQQAAHEIAAKBAAAAAwgAAuMEAAODBAAAoQgAAwMAAAEjCAAAQwQAABEIAAHBCAABEQgAAVEIAAPjBAACUwgAAhMIAAIDAAABkwgAAgMAAAKzCAAAgwQAAIMEAAABCAAAYQgAAksIAACRCAACAvwAAWMIAAKDCAABAwgAAoMAAAFDBAAAowgAAYEEAAAjCAABAQQAAQEIAADBCAABEwgAAMMEAAARCAAAQwgAAgMEAAIxCAAAQQQAAAEIAAKBBAABwwgAABMIAAMDAAACoQgAAHEIAAFTCAAA0QgAA-EEAAKDBAACSwgAAyEEAAADBAAB8QgAAgEEAAI5CAACEQgAAQMAAAMDBAAAQQQAAYMEAABhCAAA4QgAAYMEAAHTCAACSwgAAYEEAALjBAACYQQAAWMIAAADAAABQwQAAQEEAACjCAAAEwgAAgL8AAABBAAAAwgAAAMEAAFRCAAAEQgAAMEEAALjBAADAwQAA6MEAAJ7CAADQQQAAPEIAAEBAAACAwAAAQEEAAKDAAACAwQAAVMIAADDBAADgwQAAUMEAAIBBAAAEQgAATMIAAFBBAACwwQAAsMIAABDCAACcwgAACEIAAIjCAABcQgAAEEIAAGDBAABQwQAA4EEAAKDAAAB0QgAANEIAAJDBAABYwgAAoEAAAHxCAAAAQQAAOMIAAGDBAACQQQAA4EEAAJhBAAD4QQAAusIAAJjBAAAYwgAAgD8AAHBCAAAgwgAAYMEAAABBAAAQwgAAmEEAALhBAACgQAAAQEEAAIDBAACAQQAAQEEAABBBAADIQQAAMMIAAFDBIAA4E0AJSHVQASqPAhAAGoACAACYvQAALL4AAIo-AADgPAAA2L0AAGw-AABMPgAAlr4AAOi9AAB8vgAALL4AAKA8AAAsPgAAyD0AAES-AACAOwAAUD0AADC9AAB8PgAA5j4AAH8_AAD4vQAAMD0AAII-AAC-vgAAuD0AAJI-AACIvQAAVD4AALI-AAAcPgAAfL4AAIK-AAAsvgAAEL0AAPi9AACgPAAAtr4AAIK-AAAUPgAA4DwAANK-AACyPgAAoDwAABQ-AABsPgAApj4AAMK-AAAMvgAAhr4AACy-AAC4PQAARD4AADy-AACGPgAAcD0AAEU_AABAvAAAED0AAEC8AACgPAAAoLwAAAy-AADCviAAOBNACUh8UAEqjwIQARqAAgAADL4AAMi9AACOvgAAGb8AADS-AAAwPQAAqj4AANi9AAAwvQAAoDwAAGS-AACYvQAAgLsAABC9AAAQvQAAoLwAAFA9AADuPgAAEL0AALY-AAB0PgAAED0AAMi9AAD4PQAAoLwAAIK-AAAQvQAAML0AAKA8AAAwPQAAiD0AAEQ-AADevgAAMD0AAOC8AACYvQAABT8AAOi9AADSvgAAhr4AANi9AACOPgAA4DwAADw-AADyPgAA6D0AAH-_AAC4PQAA-D0AAMi9AAAEPgAALD4AAFC9AACePgAARL4AAHQ-AACgPAAAcD0AAFQ-AAAcPgAATD4AAKg9AABAvAAAsr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=vuoNyvMvDtA","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["10742302042762857256"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1732153009"},"10755876190564654427":{"videoId":"10755876190564654427","docid":"34-8-11-Z4588E5AF94D432D9","description":"In this video, we will learn to find the value of cosine of -x. Other titles for the video are: Value of cos(-theta) Value of cos(-x) Value of cosine of -x Identity for cos(-theta) Identity for...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1001596/4c98706d2f89e4c85ccf191a9c5c398f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/wZK4swAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNa2iu-D5P9w","linkTemplate":"/video/preview/10755876190564654427?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(-x) | cos(-A) | cos(-theta) | Identity for cos(-x) | value of cos(-A)","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Na2iu-D5P9w\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoWChQxMDc1NTg3NjE5MDU2NDY1NDQyN1oUMTA3NTU4NzYxOTA1NjQ2NTQ0Mjdqrg0SATAYACJEGjAACiloaHlteW14anBycnR1cHRoaFVDMGJMQUNocmNjU0xSUVNqWmsxNDNXZxICABEqEMIPDxoPPxOAAYIEJAGABCsqiwEQARp4gfv_Af_7BgD0AwUB-gP_AQAD__j5_v4A_wP__PkF_gD5Cgr5_wAAAAQRAf7_AAAADPcBAwD-AQAAAP_7AwAAABMLAAH-AAAABgP2Af8BAAD59_f9A_8AAAAE-_4AAAAAAA368gAAAAD_BfYCAAAAAAD__v8AAAAAIAAtxJ_jOzgTQAlITlACKnMQABpgCRoAFgwSBsHwROsj--LrCgUB_ODtFQDo-AD3-uXzAPPr3OMJ_xD3G-LHAAAAA_cEQ_4A70rt7bPu_SMG4NrnBTB_3vQIBRDo3v8BDf7mIAr_DQsgANv99-8Y9xkcFxooIAAt7sZnOzgTQAlIb1ACKq8GEAwaoAYAAFBCAACIwgAA8kIAAODBAAAgQQAAwEAAAHRCAACwwQAAaMIAABRCAABgwQAA4EAAALBBAAD4wQAAOMIAAKhBAABAQQAAHMIAAJBCAABAwgAAIEEAAIpCAAA8wgAAMMEAADjCAACAwQAA6MEAABzCAACUQgAAJMIAABDCAAAcQgAAIMEAAHDCAACGwgAAjEIAANhBAABYQgAAgL8AABBBAAAYwgAAAEIAABBCAADIwQAAoMEAAGzCAAAIQgAAsEEAAKRCAAC4wQAAAMEAAIA_AABAQAAA4MEAAKhBAADoQQAAsMIAAEBBAABMQgAAiEEAAADAAABgwgAAQEEAABDBAAAQQQAA2MIAACDBAACIwQAAcMEAADDCAADgQQAAmEEAAMDBAACuQgAAAMEAADRCAACAQQAA4EEAADDBAACAwQAA4MAAAOhBAABswgAA4MAAAFBCAABAwAAAJEIAAKhBAACEQgAA8MEAACDCAABIQgAAAEIAAHBBAACyQgAAwMEAAAAAAACgQAAAUEEAAIhCAABgwgAAUMEAALhBAABAwAAAuMEAAMDBAAAAwAAAUEIAAIA_AADAQQAAqEIAAAhCAABAwAAAZEIAAKjCAACwQQAAuEEAAABBAABAQAAAAEEAAPjBAAB4wgAAHMIAANjBAABAwAAAYMIAANDBAAAIQgAAAMIAAEDBAABwwQAAYEEAAJjBAADoQQAAqMEAAGxCAAAoQgAA4MAAABBCAADgwQAABMIAAAxCAAAUQgAAeMIAAFhCAAAYQgAAcMEAAJBBAACgQAAAAEEAAIjBAABMwgAAuEEAAADBAADIQQAAqMEAADBBAADAwAAAAEAAAKTCAAB8wgAAgMAAAKDBAACqwgAAGMIAAGhCAACIwQAAsEEAAAxCAACgQQAAqEEAAIDBAAAsQgAAmsIAAFTCAADgQQAAiEEAAIDBAAC4QQAAikIAAGTCAAA4wgAABMIAAEjCAAAoQgAACMIAAGDBAAAswgAAgEAAAIhCAADQQQAAAEAAADxCAACAwAAACMIAAEhCAAAAwgAAPMIAAJhBAAA8wiAAOBNACUh1UAEqjwIQABqAAgAAEL0AAI6-AAAcPgAAir4AAIi9AADWPgAAyD0AADW_AAAwPQAABL4AANg9AAA8vgAA6D0AAFw-AACOvgAA2L0AAKI-AABwPQAAQLwAAM4-AAB_PwAADL4AAKC8AAA0PgAA6L0AADw-AAAwPQAADL4AAOC8AABkPgAAij4AAPq-AABQvQAAyL0AAIa-AABUvgAAiL0AALa-AADevgAAyD0AAOC8AACGvgAAgDsAAOA8AAAwvQAA-D0AANY-AAC6vgAAhr4AABy-AACgvAAAQLwAANo-AAC4vQAAmL0AAKA8AABjPwAAZD4AAEC8AACaPgAADD4AANi9AAAMvgAAnr4gADgTQAlIfFABKo8CEAEagAIAAJi9AACYPQAA2L0AAEO_AAAsvgAAML0AAIo-AAAEvgAA4DwAAAw-AACAuwAAmL0AAIq-AADIvQAA4LwAAIC7AACYvQAA9j4AACS-AACmPgAAND4AAKi9AAAsvgAAUL0AABy-AAAUPgAAiL0AAOA8AABwvQAAij4AAOg9AADIPQAAgr4AAES-AAAEvgAAJD4AAGQ-AACgvAAAqr4AANi9AAAwPQAABD4AAOg9AAB0PgAAyD0AABQ-AAB_vwAAQDwAALg9AABAvAAAEL0AAJg9AADIPQAAUD0AAMg9AADYPQAAQDwAAEC8AAAQPQAAgLsAAOg9AACYPQAA2D0AAIA7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Na2iu-D5P9w","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["10755876190564654427"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3019859165"},"14142943240466626521":{"videoId":"14142943240466626521","docid":"34-0-9-ZD43DBA1D034443BC","description":"Integrals of powers of trigonometric functions get increasingly difficult and tedious as the power increases. The idea is to reduce the power to the first order, and this can be done with power...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/761933/40ce8e2177d5b851b5db2da3ef87483c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/HzvzCgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWimAAyZW764","linkTemplate":"/video/preview/14142943240466626521?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integrals of powers of cos(x) - cos^6(x) dx","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WimAAyZW764\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoWChQxNDE0Mjk0MzI0MDQ2NjYyNjUyMVoUMTQxNDI5NDMyNDA0NjY2MjY1MjFqkxcSATAYACJFGjEACipoaHl0ZWJiY2NyeWxsZ3pjaGhVQ1loMjUxMGUwQUo1QkVjb3BydG13YmcSAgASKhDCDw8aDz8T-QSCBCQBgAQrKosBEAEaeIH8Agn7_QQA-ggN_PsE_wEAA__4-P7-APYH_P7_Av8A7gAF_w0AAAAJFv4BCQAAAAUDA_z-_gEADPcD8AMAAAAZAv0A-AAAAAwN8AL_AAAA7v70-QIAAAALBPkFAAAAAAEJC_n-_wAABQf-_gAAAAAGAwEAAAAAACAALbR03Ds4E0AJSE5QAiqEAhAAGvABfw_o_sb74__TBcQA1jwbAp8yJ__3Iu4AwwIQANHJvwIXEOEB3_3UAPkAFv_IMv7_ONLM_vnLAgBBw-P_D93yAPL86QFcxPUBPSwbAO_x6f7vDhj_E8sIABrTzgMP_-AA7_IK_f7q_QDrA70CKPsyAfXkJgYiAxr72cYOAc_47Pzws9MAHBAIBOC5Fv7oHhwBGbcLBB7n-PvhFvsHCP_0-w_pC_wQKe4F5ccDA-P7-wrk3BP39BXxCBxJB_fnGvTz8fYpAuvf8PcH8wL3TvD--8nrCfr62Qv4ERwH_w7VBhAE3Pj5Ad7rCOQW_ATdCfPrIAAtCE8IOzgTQAlIYVACKs8HEAAawAcfvM6-sRKYO0btwDuagpu9qbUXvAMFXr3joLm9HG2LPF4FI7weT-s92p-FvXMzt7wTGle9Yf-lPWc6Bb39vXQ-klRLvQOx7DyG4wm-3yD1PKwBKr1Hjw--baSRPGg4yjzigfm79LZDvdXH6LxUUwI-3Es6vXbMELxviwi9Q0cHuiPYGL214CW-PaqrvPf8Fb1RVoI8KzfMvSV1wjyYrbs92RshPNm84Dyl7i89tSWRvfi5K72mEIO9HwAnPTMb_7yEWRI9uOdZPWIgGTyqgea9AisHvtJiXzwgpvO8GojlvM9l6jt88UU9-wQ9OcWHYbtlQ509dzW0vZB2Mr1jtB6-NhZ7u39gWDy2QZc9yhaJvI4B2TzCz0m7fKJGPIlutjnRJK27Xgp0vWFuN73HEve6fm4IPfVG8zunKog9v8KXu9vmfDzt7gM8Fy8UPHijhTxi-YM96iXmvSH3nTu6h389Jc53um_TYTtJFeC8z_dwO9Ny2roHHgQ79njGPDwYzrshjS88qkeaPLzPcTw9zc07-DuPvaiYOTwour69puy5vUOkjTsfhyC8UPrnOwhmlrtIGAY-bsllve3VBbx-8wy92HrrvCqyMTy4nay8tBwNvZdTJzzU8Ti9iRiFvQb63bspIM29XIgbPGbuxrt4kbK7T0EZPaJE7LvTzGk9Dt3svY-KOLobdMg9QDdPPVcGVbv7m2s99gtWPQ4rJ7qiAhG9xymfvRMVAbuVDAC9V19YvTNTczgHyPy808wpvYOlW7rudJw9rOLNvSr_vTkYVZA9eIsxPWDEEjle-Fy9jYK7PKbBWjdx3PM7IvwLvRAv2zjpD008qDg-vnKfXTmZ8PC80EugPTvbszgaoZS9d0xdPKmKrTjMIMO91A0EvghThTm8tLw73gQ_PfCspTmZUm09FinevBPzjbhOFu286AgqPEVbYjc3HHG8jzikvKOYpLgcObm5UaYsPIHCp7id4qc7I0lVvUuegLgp23a85-yzPSefgDdC6la9z0M3u04JYjVywmQ93_8CPWwNDDiIJKO79aYdvUh2RDgSh6w9Vc36uQ8c97W45Ci-0X-FvJ34GrmaVrO7ncMLvd3ovjftQpi8fccVPRCtQ7b9GVk9p9vIPDuQ5jcfnwA-pOSQvRXoOrlcSQG9yt7SvRciBLl_iYO9Dtj1vQvRErhTLy49lrD2PUEryDdcqKE9fcSUvbihljci_-w9NSkFPvN-W7hGqz-93xasPGaz_LZvZD6-VNRPvLGwNLhbyt48-oTou0lRxzcgADgTQAlIbVABKnMQABpgM_sAEe1C7e3-LuEXtuQWC9YD4xPlEf_rygD7EdwFAgC6rh4r_xTVEtaqAAAABv4AGNEA7Wvf6s8e5RcQ-IHlFBpU0_Qu0PYI9w72Ex36_x4cDiIqAMINsjEc6OQjBD4OIAAthXgxOzgTQAlIb1ACKq8GEAwaoAYAAPBBAABAwQAA2EEAAFTCAABQQQAAIMEAAKhCAAAAwQAAIMEAAPhBAAA4QgAAYMIAAMDBAAAMQgAA4EEAAEBBAAA8QgAAgMEAAIZCAAAAwgAAoMIAADzCAACcwgAABEIAAJTCAABcwgAAoEEAAAzCAAAQwQAAFEIAABzCAADQQQAATMIAAKhBAACowgAAMMEAAOBBAABoQgAAkMEAALZCAACgQAAAuMEAABBCAAB0wgAAuEEAAEzCAABAQQAAgEIAAEBCAADgQQAA-EEAAETCAABQwQAAfEIAAExCAAAAAAAAosIAAABAAABAwAAAYEEAACRCAADQwQAAMMIAADzCAABAwAAAssIAADDBAACYwgAAAMAAACDCAAAQQgAAVEIAAFDBAADoQQAAEMEAAHjCAABwwQAAsMEAALjBAAA4QgAAgL8AAMJCAABAQQAAgMAAADDBAABsQgAAYMEAAMBBAAAIQgAA8MEAAKBAAACgQgAAlMIAAKhBAADgwQAAsMEAANDBAACgQAAATEIAADRCAAB4wgAAQEEAALBBAAAkwgAAHMIAAIhBAABQwQAAuMEAABjCAAC0QgAAbEIAAAxCAADYwQAAoMAAAKDBAABcQgAAoMEAABTCAAAEwgAANMIAANjBAAAMwgAAiMEAAODBAADAQAAAZEIAAGDBAAAAwQAALMIAABhCAAAMwgAAsMEAAJjBAABcQgAAAMIAAARCAAAAAAAAgEIAAIBAAACcwgAAwEEAAEBBAAAQQgAAisIAADBCAACQQQAAkMEAALBBAABAwgAADEIAAEBAAABEQgAABEIAAFDBAACIwQAAsMEAAOjBAACYwQAAksIAAOBAAACgwgAAYEEAAIC_AADAQQAA4EAAABhCAADIwQAAjEIAABhCAADgQAAAiMEAAJjBAADAQQAAVMIAAFTCAABgQgAAQMAAAAAAAAAwQQAAokIAAIbCAACGwgAAyMEAAOBAAADIQQAAoMEAAHzCAABQwQAAHMIAAHDBAAAAAAAAYMEAAEBAAAC4wQAAgMAAABRCAAAIwgAAwEEAABBBAAAwwiAAOBNACUh1UAEqjwIQABqAAgAAoDwAAHy-AABMPgAAML0AACS-AABkPgAAUD0AAB2_AACgvAAAUD0AAHC9AABMvgAAND4AAOY-AACCvgAAdL4AAKI-AACIPQAA2D0AANo-AABbPwAAgDsAAAQ-AAAQPQAAgLsAAIg9AACWPgAAlr4AAOi9AADgPAAA6D0AAIq-AAD4vQAAHD4AANi9AACWvgAAED0AAGy-AADqvgAAFL4AAIi9AABEvgAAyD0AAOg9AACAuwAAML0AAIg9AACGvgAAPL4AACy-AAC4vQAA4LwAAOY-AAAwPQAAHL4AABC9AAB_PwAAZD4AAES-AACgvAAAqD0AACS-AAAcvgAA6r4gADgTQAlIfFABKo8CEAEagAIAANi9AACAuwAAUL0AAEu_AACgPAAAHL4AAII-AAC-vgAAUL0AAAw-AAAQPQAAqL0AANi9AACGvgAAQLwAAEC8AACIvQAAFT8AAFC9AACCPgAAyD0AAEC8AABwvQAAoDwAAAy-AABQPQAAEL0AAKA8AACAOwAADD4AAAw-AAAUPgAApr4AAGS-AAAcvgAALD4AAHw-AACovQAA0r4AAES-AADIvQAAVD4AAIA7AABsPgAABD4AACw-AAB_vwAANL4AANg9AACAuwAAED0AAIA7AAAkPgAAQDwAAHC9AABwPQAAMD0AAJg9AACAuwAAiL0AAAw-AAAkPgAABD4AACS-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=WimAAyZW764","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14142943240466626521"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1558414723"},"6031551655068242742":{"videoId":"6031551655068242742","docid":"34-3-0-ZB780AD438E7B81A9","description":"Trigonometric Functions...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2826360/7a7cc226d260f0ebbc6a107794f51741/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/EyisLgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHsXSyqFNDsc","linkTemplate":"/video/preview/6031551655068242742?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cosine Function Cos (-x) = Cos x","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HsXSyqFNDsc\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoVChM2MDMxNTUxNjU1MDY4MjQyNzQyWhM2MDMxNTUxNjU1MDY4MjQyNzQyaocXEgEwGAAiRBowAAopaGh5eW9waHBjcWl3bGtoaGhVQ19fcDRDRC1SV0xuWVpuSTRTUjd2VlESAgARKhDCDw8aDz8T1gKCBCQBgAQrKosBEAEaeIH2-_v7-wUA-P0I_vsD_wEG9gD6-f7-APYA9fUCAv8A-AAF-gcAAAD6DwP-BgAAAAT6AvwE_QEAB_8C9gQAAAARCPj99wAAAAYD9gH_AQAA9v_0AgP_AAABAfYDAAAAAAgKA_AAAAAAAQf4-gEAAAD8Afn8AAAAACAALVmR4js4E0AJSE5QAiqEAhAAGvABf9wmANj2qAGt6OoA5Q4IAdwbCgAtL_MAyOHpAdAPtAHhFBX_BBADAN8VAQDEF_IB_PfH_hG-9f8s6RX_F_HvAN4VBAH-DgsAPREZAvna6P7LNAL-5v0h_ha76gAFWNr9Og4ZAB4n8_zpKNEDQA4xANLk-wH28AD97uUOAdDr0QD298D-Di4eA-7a__npGEABP-vxBv8eF_-v1tr-5vjx-_HyH_gPFcwATw3h_voMA_29-gMBJOcJCxQp_wru-d0Lyg0hAfIF_gTfA_0EFcj889MOARFA1fD5EP7---cVBxjt3er1DdP4EgMV6gT5zfABIAAtfLMGOzgTQAlIYVACKs8HEAAawAcsK82-yDDdOr1IMr1TYBy9JELjvG-RBb1qTXO9qQjBPLZyBb3-DmU-xmasvAaQkLw7cZm9vLhjvcesqLzLgDM-5tGIvZhiMzx1dPy9LxOaPQsCEL0CzLa941MdvE0EYD1YFSa9odwxvRUZnbz-fhE-6Sq9vTiUa7wBnMW7ff7Bu6CSbr30Hy09P7m3vZ4_Er22_WE88aKKPIz-hjzbb-06XIZJPPnn87wv67Q8CQApvdtdFr04L-69JxFBPbiMIL0v4tY8ztyoPTDHoTxCJpm9ykBBOk_RLL35FIC8NnSzvD0KV7zqB3U9v4TEO7HVCr25q9e887-mvS6rEL1jtB6-NhZ7u39gWDzkZvg9ZkzhPRgj1DundyG-UbYtPa_Tozqy8eA9ek8KvcLtmrxN05w95Db1vAlsjjyJF5o91QIevCEUpbpyE_e7LLmKPHMyzDxWPpU8j7bgvBsNojvdiUg9aUEevWU14TugG7W83I-KPAAPVjwtj5o8hnvAPD0SqzvZLga8zKH7PNoz8DoFI6U91gI7vknlmjp1-FW9wf4rvRcqf7znzFE9uKCIPVl9HryCG-k8ev_fvZQxHzzvUaS8bvjdvDjEkToXmSO8Zyx1vYu4SjyJFcS9pn_pPesQLLrYv8a8xN5VPH_xMbyUpn87dtr_PHeIvTtqepo85AlOvYLE-jsUeRI9K1ovPST7FLsbO6c9ujH9PQj4hLkSUME9wXhBvWHTCrqrk9O93IgivWuLBDvfHde6vltvvZKdjjqqgqE9GhiZvUdKoDjZcEK9MXzEuyQvCbqubuu8pvAgPQuWnrmdB4G9U0WKO3utC7lUG_y9Yrv7vRPT8jn1_W89zcavPM7gZLgUrQE9BMCdPCrwo7gU5-i9c8kivSLeQ7lt4uS9vt6dPYc_A7lZHJk9dYVoPeFOjjiwZWg9RTcRPQBDfThtnck8oqAvvX-jprk61to7OQ9nPdQ53zd7Eti8zwZqvfGnoTgUBA89EF0APo3DcbhR2fC8OeUbPZJKlDiiU8E9pSNqPWinTDi_uZ66H526vHmuPTdPpcA9m8dBPbLI3LigUM-9Fe-GPcLSAjjzRVG9Nt5HvZFMvLeKIuQ93lXPvJt2VDcPw309CvM-PYj3vzaSXRk-2U9QvazCP7k5xcS9Z7cmvtZHcjj7zeS9WlFZvVdV07dAkIK9prxxPaB-9bZJ9448rVDEvXOc8rjK9HA9IuErPvHLijgvwSm8CsTGPFtMlrhvvQG9j4mUPTSh2zfkOaG9UtkjOkQd37cgADgTQAlIbVABKnMQABpgGgMAGuUszOQVQ-cV3_EGresF0e4HI__9_wALC7_2Fe67ztMMAPkYIOasAAAAABL0W9MAIWrLJgH60DAfv7T2KTF_8N4srvTi-N3UJBL59gYM7iEfAMwg2RIVIuIeNw86IAAtBesoOzgTQAlIb1ACKq8GEAwaoAYAAIBCAAD4wQAA7EIAACzCAABgQQAAQEAAAJxCAACAwAAAMMEAAIjBAACAQAAAkEEAAKDAAACgQAAAyMEAACBBAADwQQAAaMIAAMBBAADAwQAAgD8AAPDBAACSwgAAwEEAAHDCAADAwQAAoMEAAKDAAAAQQQAAqEIAAEjCAABYQgAAaMIAABDBAADewgAAcEEAAARCAABIQgAAQEEAAIC_AACAQAAAQEEAAEBAAAAwQQAATEIAAFDCAAAAwQAAmEEAACxCAAA0QgAANMIAAHjCAAAYwgAAuEEAABBCAADYQQAAVMIAAPDBAACIQgAAgMAAAIZCAAAcwgAAksIAAODAAADgQAAAysIAAKDBAAAwwgAAAAAAAATCAACaQgAA4EAAAFTCAAAQQgAAIMEAAAxCAACCwgAA4EAAAARCAABQwQAAiMEAACBCAADAwQAAMMEAAPhBAADIQQAAoEAAAKTCAADMQgAAwEEAAEBCAABQQQAAEMIAAMDAAABcQgAAQMEAAKDBAAA8wgAAkEEAAIhCAABwwgAA8MEAAIBBAACQQQAA2MEAANhBAAAswgAAsEEAADDBAADwQQAAeEIAAABCAAAQQQAAdEIAAJjBAAAAQgAAiEEAAIBAAACAwgAAUMEAAFDBAAA8wgAADEIAAMjBAAAEwgAAwMAAABhCAADAQAAAEMEAABBCAAAwwQAAdMIAANjBAACgQQAAgD8AAERCAACAQQAAwEEAAI7CAAA8wgAAUMEAAGDBAAAIQgAAsMIAAPDBAAA8QgAAwMAAAKBAAAAgQQAAAMIAAEzCAADgQAAAXEIAADBCAAAAQgAACEIAAIzCAACYwQAADMIAADDCAAB4wgAAUEIAAKhBAAAkQgAA4MAAADBBAADIwQAAsEIAALJCAABwQQAAgD8AAADAAABwwQAApMIAAPDBAABAQQAAwEAAAOBBAADgwAAAoEEAAFjCAAD4wQAAgMAAABzCAABoQgAAyEEAAEDBAAAAwgAAMEEAACBCAABYQgAAgEEAAIBBAADQwQAAQMEAADxCAABQQgAABMIAAIBAAAAgQSAAOBNACUh1UAEqjwIQABqAAgAAXD4AABS-AAC6PgAAED0AADS-AAB8PgAAiL0AANa-AABAvAAA4DwAAAQ-AADYvQAALD4AAIo-AAB8vgAAoLwAAHQ-AABwPQAA6D0AAIY-AAB_PwAAiL0AAGy-AACaPgAA6L0AAIC7AADoPQAAir4AAJg9AABsPgAAQLwAAFS-AACovQAAiD0AAKi9AACGvgAAEL0AAM6-AADCvgAAQLwAAPi9AACOvgAAiL0AAKA8AACYPQAAyL0AAII-AAAsvgAA6L0AAES-AABkPgAAJD4AAJY-AACIvQAAiL0AAEC8AABFPwAAFD4AAOg9AAAcPgAALD4AAFy-AADYvQAAur4gADgTQAlIfFABKo8CEAEagAIAADA9AADgPAAAXL4AABm_AAAsvgAAUD0AAHQ-AACgPAAA4LwAACQ-AACAOwAA6L0AAEC8AAC4vQAAMD0AAHC9AAAEvgAABT8AAIK-AABMPgAAoDwAAIi9AABQvQAAQDwAABC9AABAvAAAED0AAIC7AAAEPgAAuD0AAFA9AADIPQAA8r4AAKi9AAA0vgAAMD0AAJI-AACoPQAApr4AAFS-AACgvAAABD4AAKA8AABkPgAAZD4AAIg9AAB_vwAADD4AAEw-AAAQvQAAcL0AAOC8AABAPAAAED0AAPg9AADYPQAAUD0AADA9AACgvAAAyD0AACQ-AACYPQAA2D0AAHy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=HsXSyqFNDsc","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1278,"cheight":720,"cratio":1.775,"dups":["6031551655068242742"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2557449907"},"6658885321012211513":{"videoId":"6658885321012211513","docid":"34-2-5-Z86F74F0F909E96A2","description":"Please support us at: / garguniversity The 3rd-century astronomers first noted that the lengths of the sides of a right-angle triangle and the angles between those sides have fixed relationships...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/936905/247f397df58159c833e955d3422e39f2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/vUqbAAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2p1RbZZxbdM","linkTemplate":"/video/preview/6658885321012211513?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is the meaning of Sin or Cos theta?","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2p1RbZZxbdM\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoVChM2NjU4ODg1MzIxMDEyMjExNTEzWhM2NjU4ODg1MzIxMDEyMjExNTEzapIXEgEwGAAiRBowAAopaGhqdXR5eXdidXdtcGpiaGhVQ3lMdmRfMnB5Q19ZLVNqNHkxd1pxTGcSAgARKhDCDw8aDz8T0AWCBCQBgAQrKosBEAEaeIHy_P_1_gIA9_0I_vsE_wHoBf4D-___AP77_PX8Bf4A9Q7__gYAAAAJFv4BCQAAAP0B8gcC_gAAB_8C9QQAAAAZAv0A9wAAABHy-_7_AQAACvv--gP_AAALBPgFAAAAAAAN-fEAAAAABxHw_AEAAAAM_v4BAAAAACAALR091js4E0AJSE5QAiqEAhAAGvABf8IfAsvTwgDA7vb_6UHjALk8DwD8PcoAwg7k_80H2gHj_jIA4DAG_wzt6_6sMyEB4ui8__Oi9QBeswv_-8vpAcit_gAPFeQDNSMGAPnY5v7tDxr__OACAAzT4_8yQ_H-D_cD-Wgp1f7oK84ECyQ-A-oMHQf6Fwb-0_AG_84L9QL197z-DCsFBP8AGADezy0DJNTzDBAG8Pn56PwD-Ob2AQkIJ_UGPvgBJBTkBvkiLQDt9v0GKb_nAxkJFgflG_gG1f8O8OHrEPvf3Qv2E-r29s4I3gsw--8DDugN-e4NBwQYEvfw4gPrAgMW6QTz4u7kIAAtnlH7OjgTQAlIYVACKs8HEAAawAcfD72-omExvWp5D73_VMG8s36zvZgQGLztA6q9X_yjPDjYi71-VYY-YLyQvdh1OTyKubq9ECwdvS1UyDzLgDM-5tGIvZhiMzwZgaK9QLW7PeGkX70XoaO9GfSvPNMFKzyM-Jm99pZVOsatOLzpC-E9rR6LvCPUMTwzOKW8gCXbO1sAZLzZ2bY93EbDvQtxtrw39Hu9XGFRO90se7u_tr689R-jPNmCtTr9gLw95YkWPYm3Cb3saNy9L70BvBlYBTuEWRI9uOdZPWIgGTz_f7e9nXMGPT4ow7z5FIC8NnSzvD0KV7zf_MY97BvzPIdZPr1ik6k7cSrIvchqqbyt-QG-VKWSPCHR3zt0reI8KoztPe0Q_7xPPVK-twiBPX_tS7sDuso8VGBXvRl3Xjy5ido9CesVPa4LhTtWgfo9miGqvas3j7xutiO9-VhwPQkSwDx11p08f7n7PChJsrynW4Y92NysvA0egTygG7W83I-KPAAPVjxsP9k8O6zQPRsY8Ttj1LU8TqI5Pew9WbkFI6U91gI7vknlmjpzWsG8Vb1BvfoOertqNg08n3sqPTHJbbxu_Ok9TOStvStzqbucHFm9jtX7u_nTazxB2Ak9QliiveQ_Irpz2ci9YjN7PQntybvmwqK9KeGjPbQq-Lsx6VS9QDX5PAGCvTs7Hs684eN9PSZF-TsFXbE8_BaCvKXuMbsgAtg8aP03PZe5jjtru4Q9-7N6vDe5Z7sEyia9vXdtu03mijpNKGk9aBLLvcjNt7mhndM9UYGYvZedUTmXOPK93Tk5vGiMf7h2hHi9pZ4FPqNDorcTqzC9oXqlvSR1XbiJD7e9t0K4vTFCujjA7SQ9W--uOR6PxbkdYJy8vDuSPYgxsLci-IS9U3elvEXoeDoev3y9XICsvAnd-jg0SAO8qZL3PF1jcLhEuO48mQR5PZCtOrkyT3g8tPTyvGevmbh1Ae881vW1PT0Q8bi8hiq9qROQvQDKqDiO9mk9eQiOPYpdnjhaxvy8qVBYPSraBLWaH5Q9o68APbBkzjetaJi8bqRsvT9TMDjnsWE97V9-PQhDILjEiIO9r3JtPRlrqjh19bY7wMomPX4VJjjMe9w9ksNxPJxCijcgSg08QzhGPQz4zDetp_Y9s-qYvHs7Ormr3xa9DfsdvqO8_rg3zLa9-7KwO9ZyBjZCzRA9du4nPddAEji4cwE9zCuCvS9mdLghMrY8OznjPQQbBjkeOIK9M_OePZzn8rjoVbO9FiTsPM24ITjY6wK9KqM2PZjybTQgADgTQAlIbVABKnMQABpgHQ4APtgoy_r3LPUp2tLx3fwZ4Ojc9v_24gAA_wsDAQXSx-76_ygJL86zAAAAGdzgLNoAAWDQ-RoX7hMV1L_AKAF_GOwY4e0X19rrBicSGzwXASdMAMoj1P4Q6dYYC0RYIAAt6sIxOzgTQAlIb1ACKq8GEAwaoAYAAIBBAACgwQAAWEIAAPDBAACgQAAApEIAAHBCAAAEwgAAcMIAAEDCAACAvwAAyEEAACjCAACwQQAAmMEAAODAAACAPwAAgsIAAADAAACAPwAAgEIAAPjBAABQwQAAWEIAAKBBAABEQgAA8EEAAKDBAAD4wQAABMIAAPjBAACAQAAA8MEAAODAAAAAwgAAQEAAACxCAAAcQgAAcMIAACTCAACAQQAArsIAAOhBAAAcQgAAuEEAAIhBAAD4QQAAoEEAACBBAACcwgAAAMIAAJTCAACAvwAAqEEAAFTCAADAwQAAcEEAACzCAACCQgAA8EEAADBBAABAwgAAUMEAAGzCAAAcQgAAtsIAACDBAABAwQAASMIAAGDBAACYwQAAQMEAALbCAAA8QgAAQMAAAEDCAADIwQAABMIAAEBAAAAgwQAAEMEAALRCAABowgAAYMEAAKhBAAAoQgAAgD8AAIA_AADgQAAAJMIAALhBAACOQgAAXMIAAJDBAABUwgAAWMIAAATCAACowQAAPEIAAGRCAACgwgAAGEIAAGhCAABAwAAA0MEAACxCAABwwgAApkIAAGBBAAD4QQAAREIAAABAAACQwQAAmMEAAHBBAAAgQQAAokIAANDBAACAvwAA0EEAACDCAACgwAAAqEEAAJjBAACgwQAALMIAAJbCAABAQgAARMIAAIBBAABAQAAA2MEAADTCAACIQgAAAMAAADBBAABoQgAATMIAAGDBAAA0wgAAAEEAAChCAABoQgAAAMIAAIA_AAAgQQAAEEEAAGBBAABEQgAAIMEAAEBBAABwQQAAGEIAANjBAACQwQAAIMEAAGDCAADgwQAAkEEAAADBAACAvwAA6EEAAJDBAACgQAAAUMEAAIhBAAAgQgAA-EEAAAhCAABgQQAAGMIAABDCAADAQQAAsMIAAHTCAAAAQgAAAEAAAMhBAABEwgAAMEIAAIrCAAAMwgAANMIAABjCAAB8QgAAoEAAADDBAACQwQAAEMEAAPDBAAD4QQAAGEIAACBBAACgwQAAMEIAAKBCAABEQgAA4EEAAATCAACAwiAAOBNACUh1UAEqjwIQABqAAgAA-L0AAFS-AAA0PgAA6L0AAIC7AAAkPgAAcD0AAPa-AAC4vQAA4DwAAKi9AABQvQAAUL0AACQ-AAAEvgAAFL4AAIg9AACYvQAApj4AAOo-AAB_PwAAyL0AAIY-AACCPgAAHL4AAJg9AADIPQAAmL0AAJY-AADiPgAA2D0AAJq-AAAUvgAAoLwAAMi9AACIvQAAUL0AAKa-AACyvgAA2D0AACS-AACOvgAArj4AAEA8AAA8vgAAgLsAAJY-AACGvgAAFL4AALi9AACevgAAgLsAAJ4-AABwPQAAyD0AADA9AAAvPwAAgLsAAMi9AADIPQAAoLwAAII-AAAwPQAAbL4gADgTQAlIfFABKo8CEAEagAIAAEy-AAAcvgAAtr4AAF-_AAB0vgAArr4AALo-AADGvgAABD4AAAy-AAAUvgAAUL0AAIi9AAAEvgAAoDwAAKC8AAAEvgAAxj4AAMi9AAC6PgAArj4AAKg9AACWvgAAED0AAFC9AACgvAAAQDwAAEA8AACovQAAFD4AAMg9AABUPgAAhr4AACy-AAD4vQAAUD0AANo-AABEvgAA2r4AAFS-AACgvAAARD4AADC9AADKPgAAlj4AAIC7AAB_vwAA2L0AAKC8AAAcvgAAgDsAACw-AACYvQAA6D0AABS-AABsPgAA4LwAAAQ-AACCPgAAyL0AADQ-AABMPgAAoDwAAI6-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=2p1RbZZxbdM","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":542,"cratio":2.36162,"dups":["6658885321012211513"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1521556773"},"7576703401418446621":{"videoId":"7576703401418446621","docid":"34-0-13-Z5394959BC1FB12A5","description":"How draw the graph of cos x Cos x Graph || Domain and Range of cos x || Period of cos x S A Mathematics Even and odd function...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2268407/b6ac40b8e3976d1ff34fd52e8bd6c628/564x318_1"},"target":"_self","position":"13","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnPGehWedYYA","linkTemplate":"/video/preview/7576703401418446621?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cos x Graph || Domain and Range of cos x || Period of cos x","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nPGehWedYYA\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoVChM3NTc2NzAzNDAxNDE4NDQ2NjIxWhM3NTc2NzAzNDAxNDE4NDQ2NjIxaq8NEgEwGAAiRRoxAAoqaGhhY3lneHd3aG9oem9pZGhoVUNmM2lodVJkUmxhWW5DTHVGb1dGUFJREgIAEioQwg8PGg8_E8IQggQkAYAEKyqLARABGniB9QQA-PwFAPAIAvz7AQABBAAAAvj__gD2-_v9_gL_APv5CvoBAAAAAgkN_AQAAAAB8_b4AP0BAAYF_fv7AAAAHwz9-fsAAAAGA_YB_wEAAAP3-fkC_wAA9Af5Af8AAAAICgPvAAAAAAUMBvwAAAAABgIBAAAAAAAgAC0r5N47OBNACUhOUAIqcxAAGmD9GwAc3Rr3xwIZ3Qz-3dwEFvT86_kVAO7VAAoL_PAY6OLa6RL_DuIMAsUAAAAX9vQ19gD8SAIMyQ_-7wYF-vYXLX_hAhLV7O7a7OMg-w4SIfsLAuQAuRDw9wvxC0gBHDcgAC0Yq2M7OBNACUhvUAIqrwYQDBqgBgAAUEEAAOhBAACUQgAAHMIAAChCAACgwAAAAMAAAODBAAA4wgAA6MEAADhCAADAQQAArMIAABzCAACWQgAASMIAAPjBAADQwQAAQEAAAJzCAAAAQAAA0MEAAMjBAACOQgAAokIAALDBAAAAwAAAgMIAAJhBAACGQgAAAAAAAEhCAADwwQAAEEEAAPjBAADgwAAAuMEAAJhCAADAwAAAmEEAAHBBAAAwQQAABEIAAIC_AACMQgAAMMIAAIzCAABgwQAAWEIAAFRCAAAgwgAAiEEAAMDBAABQQQAAQEAAAKDAAADGwgAAPEIAAIDCAAAAQAAA8EEAABjCAAAAwgAAgD8AAKBBAABIwgAA0EEAAATCAACgQAAA-MEAAKBAAADOQgAAFMIAALxCAABkwgAAQMEAAFBCAACAvwAAgMAAABBBAAAcwgAAAEEAAIA_AABMQgAAMEEAAGBCAAAkwgAAAAAAAPBBAADgwQAAFMIAAPhBAADwQQAAkMEAAIDBAACkwgAABMIAAEDAAADIQgAAyMEAAFDCAADSQgAA0MEAAOjCAACMwgAAwEAAACDBAAAAwgAAwMEAAEBCAACoQQAAEMIAAEDBAABwwgAADEIAAKBBAACWwgAATMIAABDCAACwQQAAgEAAAGDCAACgQQAAkMEAACBBAABAQgAAgEAAACTCAACAPwAAAMIAAIDBAAAMwgAAyMEAAJJCAAAYQgAAuEEAAIhBAABgQgAAjsIAAATCAAAIQgAAgD8AAMhBAACYQQAAMEEAAJhBAABQwQAAIEEAACDBAADgwAAA6EEAAIRCAACwQQAAqMEAAKDAAAAsQgAAQMAAAPjCAACwwQAAIEIAALjBAABwQgAAkMEAACTCAACQwQAAwEEAAHRCAACAQQAACEIAANBBAAAcwgAAgMAAAOBAAABQQQAAMMEAANDBAABQQQAAQEEAAKBBAAAAQgAAQEAAAIjCAACAwAAAGEIAAKBBAAA4wgAAZMIAAIDAAACgwAAAsMEAAEDBAACIwQAAQMAAAIjBAABkQgAAGEIAAMjBAACoQQAAKMIAABTCIAA4E0AJSHVQASqPAhAAGoACAACIvQAAdL4AACQ-AABMvgAAHL4AAHw-AAAQvQAAA78AADC9AABQvQAAQDwAAOA8AAC2PgAA6D0AAGS-AABUvgAA_j4AADA9AAA8vgAAlj4AAH8_AABAPAAAmL0AAEw-AAAwPQAAiD0AAOg9AADqvgAAuL0AAIg9AACIPQAAdL4AANg9AAAwvQAAUL0AACy-AABUPgAAC78AAFS-AABAPAAABL4AAJa-AADgvAAAqj4AACQ-AAA0vgAAED0AACy-AADOvgAARL4AAKA8AABUvgAAmj4AANg9AACIPQAAMD0AAE0_AAAkPgAAUL0AABC9AAAwvQAAlr4AAPi9AACOviAAOBNACUh8UAEqjwIQARqAAgAAmL0AABA9AABEvgAAOb8AADS-AADIvQAAmj4AACy-AAAQPQAAZD4AAHC9AACgvAAA-L0AAKi9AACAOwAAQLwAABS-AADqPgAAXL4AAJo-AAD4PQAAiL0AAGS-AAAwPQAAQLwAACQ-AACYvQAAgLsAALi9AABcPgAAgDsAAKg9AABcvgAAdL4AACS-AADYPQAAbD4AABy-AACOvgAAHL4AAKi9AAAEPgAAcD0AAHQ-AABUPgAAuL0AAH-_AACgPAAAQLwAAMi9AAAwvQAAiD0AAHA9AAAwPQAAmL0AAAQ-AACgvAAAEL0AABA9AABQPQAAND4AANg9AADoPQAABL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=nPGehWedYYA","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7576703401418446621"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14988775306520052221":{"videoId":"14988775306520052221","docid":"34-8-5-Z38C48C1930F10856","description":"Differentiating functions that input and output vectors and matrices.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/758769/1180287a35b00e6b7f81e06ba7f552cb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/tTKIrAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dxemqzd_0i8s","linkTemplate":"/video/preview/14988775306520052221?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"COS 302: Practical Multivariate Differentiation","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xemqzd_0i8s\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoWChQxNDk4ODc3NTMwNjUyMDA1MjIyMVoUMTQ5ODg3NzUzMDY1MjAwNTIyMjFqiBcSATAYACJFGjEACipoaGx4bGVjd3FkemJzZGFjaGhVQzdxRllhNEhWb3VmS2N6LTJxM3ByN0ESAgASKhDCDw8aDz8Tzg6CBCQBgAQrKosBEAEaeIEJAAj_BvkA-_z_EQEJ-wIlAwcC8wQEABT7AvYF_wEA8fkIAgQAAAD9FfnyBAAAAAsEDgLy_QEAHAbu_gQAAAAH-vYGAgAAABX-APwM_wEB-PAOCQT_AAAa-wPz_wAAAAAP-fAA_wAABg75AwEAAADz-wf7_wAAACAALSYlxDs4E0AJSE5QAiqEAhAAGvABf_fyAtb96__v8tYA9wPtAcwEF_8HGOz_zAT9AMDyJf_-E_YA-fLA__Tl9gDT-Sf_4vLkAPvaAQAuJur_HhohAOwE8QEJ2dgAChj6AOn13gDz_fb-7v4X_xEF_gEW_-L_-hAh_gsJ4gER8OcACN4xAu0MKAHbARIC7foHA-QYEQAn2d0B4wIVAwPm8QXuBh0BzvsaAfgV9_rqAgQJBwnsBQP28gEA9fr_DwbnBBf0A_oj8wYE4NrqAv0dFQj2AAUB8AAFBr32_fcbIAj5HP0D_vcVAQnu4AAC6PkACQ_tB_sODPoDEeoKCOgW8frwDgMJIAAtp7o-OzgTQAlIYVACKs8HEAAawAcrhO2-NwvFO7NsubuimQc-rdEcPa1S1Tz19HE9bg9nPbOJ3TwwHF49pD7iO_vS9jw0TSi-WS7AO_QJjzzFVYU-VDBvvZt_Krxi2Sy-cgKqO8NkCr2OQKy9ofEpPZqpmLvdj-W8mXgRPRjZhLwFxCS8ROPkvIFKPbpVZ3W910SwvT8tUDxPCHw7ctJFvd-KRLwwucG9OM6HvWSytDtK9v687ifjvQvD17sBGE89iA0bPfgPEz3KlAU9jaICPbuzm7yOrkI-IVeqvbX5QbudLuu9r09vvF-aw7vDJlc8j_t2PeeibDm9bKC9JuZUPaEWvTrrmdY7V29cO94UID3cZuq8FK5svHde8DpmMGY9C8qZPfOBk7wdPd69vsAMPrsIC7pFKRE-Y8h7PfdOdTs3dVm9EDuYPftDzDsIuky94c9wPfa8tLstDh-8VVYuPRBCGz3vPBG-1sFmPRtvAjxDOXG9INTgPNHNwDvY5UU9326JPcYdiryC5tO9IZMOvI8lgzoY64s9BVklvd5UZjsENLY8is_4vFBW57uo2Sg8WEhPvROxLTx0fso8aiRzPYXEqLt2NA49aYcEvbIyWLsodtm8VwirvTSIi7t8YRI-o-BuPd9Nmjs01E28jhsCPEKhErxUruy75Fl4PZYVFrwodom9UJR_PbSLDDzXsaC9FdtpPWdF_zkxgr47-F7yPDxLFTogCPU89KbkOxQwkbvMrC89xb2zvbqhxjpYvY29rJnKuz0r5br5jWU8JMxZvFzy7Lpq3oE9UWZovQIWhDkMEhE9KlICux5HlTjBdxe8lQ9hvX_siTgf52c966MZPJ91j7etunW7cmZgvPq2sbnIfqE9soPKvNhcVboUrQE9BMCdPCrwo7ilgBc89UEeO9JqY7nowNI9M-DsPBMJWrg3_w89GNs6vWxgxLW862w8-2HfvPNJk7inwX48Mlx8u_h7zzjBgXo9wWmmPOfY1zhwzzM9CQlHvVv5lTcKgLG8JxfjPWJgkrk6K5g8EvmePWyeh7gih4y7GtoEuwijJbjRV1U9kmagO9kpiLgmsiU9-HEEvkYLBDlUU9K96HTPvC_4xTekwpg9tz_dO4ED_zhZpKo7WT-8vZEY7jgRw6O9nVWVvGHdmDetp_Y9s-qYvHs7OrndJCa9ZXJFvB_YKLceKng7JQTrvSO_ZzjE9cE77g4kPYf5zbdcqKE9fcSUvbihljdqTxk-qW6ZPQgCMrcAO_c8rHQ3Pjd9HrlE0IM77rqyPbrqrDfsbZM97vGNvbxWbrcgADgTQAlIbVABKnMQABpgLfcAQyRA8CguK8_tvwsi-dMz1hfPE__KyP8WLujrQh7Qvd8cABHj78mfAAAAIbjoReQAIH_l2dPAERbs5rHIDSx_4DsEy6A0-rzj8PH48DMd6Vk9ALoMujgH_ZEDINTbIAAtiyANOzgTQAlIb1ACKq8GEAwaoAYAACxCAADIwQAAPEIAAFzCAADowQAALEIAAJBCAACAQAAAvMIAABhCAADoQQAANEIAAIDBAAAwwQAAcEEAAKhBAACwQQAAgMEAAOBAAACAwQAAgMAAANjBAABowgAALEIAAIhBAAAAAAAAUMEAAAjCAACYQgAAYEIAAOBBAADYwQAAAMAAAI5CAACMwgAAlkIAAEDAAABcQgAA8EEAABBBAAA8QgAAoMAAALDBAADwwQAAgMAAAAjCAACgQQAAoEAAAJRCAAAAQQAAGMIAAKBBAADowQAAOEIAAAzCAACEwgAAnMIAAIBAAABgQQAAUEIAAEDAAAAwwgAABMIAAMDBAABAwQAAyMEAADDBAAAEwgAAIMIAAADBAACYQgAAYEEAADjCAACqQgAAsMEAACjCAADOwgAA-EEAAHBBAABAQQAAPMIAAExCAAAAAAAAAEAAABBCAADyQgAAOMIAAGDBAADwQQAAUMEAAADBAACwQQAAAEAAAIDAAACAQAAAAAAAAAxCAABQQQAAoEEAAKhBAAAMwgAAgkIAAIJCAADoQQAACMIAAJhBAACAQQAASEIAAIbCAAAQQgAAoEEAAJJCAABQwgAAkEEAAFRCAACUQgAA6EEAACDCAAAwQQAArsIAAJDCAACYwQAAMEEAADjCAADwwQAAsEEAAPDBAAA0wgAADMIAAAjCAABAwAAAMMIAAABBAACaQgAAEEIAAODBAAAEQgAAYMIAAAzCAACQwgAAYEEAAOhBAADgQAAA2MEAANBBAACwQQAAwEAAAJBBAABgwQAAQMAAAADAAADYQQAA2EEAABjCAAAAwgAAqMEAAIBAAABgwQAAqMIAAEDAAADIwQAAYMEAALhBAACIQQAAXEIAAJLCAADAQAAAgMEAAChCAAAkwgAACMIAAIA_AADIQQAAgEEAACDBAAAwQQAAYEEAADDCAADIQQAAjkIAAFzCAAC2wgAA8MEAADDBAABIQgAA6MEAAFzCAACWQgAAoMAAADTCAAC4wQAA-EEAADTCAACQwQAAgEAAAOBBAACQwgAAREIAAKjBAAAQwiAAOBNACUh1UAEqjwIQABqAAgAATL4AADC9AACCPgAA2L0AAMi9AAA8PgAAcD0AAA-_AAA8vgAA2D0AAAS-AABQvQAAoDwAAKI-AACgvAAAEL0AAEQ-AADYPQAAZD4AABM_AAB_PwAANL4AAEA8AACYvQAAfL4AAKg9AACIPQAAuD0AAKi9AAC2PgAAmD0AABA9AABAvAAARD4AAJg9AAB8PgAA6D0AAPi9AADovQAATL4AABS-AABAvAAAcD0AAFC9AAAkPgAANL4AAMi9AAAQvQAA2L0AADC9AACCPgAAQLwAAJY-AABEPgAAPL4AAFA9AABBPwAAZD4AAFC9AAAMPgAAML0AAOA8AAAkPgAAmL0gADgTQAlIfFABKo8CEAEagAIAALi9AAD4PQAAor4AADm_AAB0vgAA4DwAADw-AACgvAAAgDsAAKg9AADgPAAALL4AADy-AAC4vQAA2D0AAOC8AACYvQAA4j4AAGS-AACmPgAABD4AAJi9AABwvQAATL4AAIC7AABEPgAALL4AAHC9AACIvQAALD4AAIg9AADgPAAAVL4AALi9AACgPAAAQDwAABA9AAC4PQAAXL4AABS-AAA0PgAA6D0AABQ-AAA0PgAAuL0AAOg9AAB_vwAAoDwAAKC8AAC4vQAAQLwAAOC8AADoPQAA6D0AAAQ-AAC4PQAAgLsAAHC9AACAuwAAuL0AADA9AABQPQAAuD0AAOC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=xemqzd_0i8s","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14988775306520052221"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4220839022"},"14383683986215311712":{"videoId":"14383683986215311712","docid":"34-3-10-Z907B23BFC6B009FB","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/ap-c... Approximating cos(x) with a Maclaurin series (which is like...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2255217/c5c137cf23d9b30a03bd2bd35a737e44/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cCxyxwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWWe7pZjc4s8","linkTemplate":"/video/preview/14383683986215311712?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Maclaurin series of cos(x) | Series | AP Calculus BC | Khan Academy","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WWe7pZjc4s8\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoWChQxNDM4MzY4Mzk4NjIxNTMxMTcxMloUMTQzODM2ODM5ODYyMTUzMTE3MTJqkhcSATAYACJEGjAACiloaGRvdml3eHNldmZxcmdoaFVDNGEtR2Jkdzd2T2FjY0htRm80MGI5ZxICABEqEMIPDxoPPxPRAoIEJAGABCsqiwEQARp4gQQI_wUAAADw9wIIAwT-Afr6BPL6_fwA4wQD9f78AgD6DAPtAAAAAPoQBP4GAAAABgj5-_n9AQAa9P_2AwAAACAN_fn7AAAA9gv3Df8BAAD_A-sEAv8AAAAWCfv_AAAAAA758QAAAAD8A_72AQAAAAD__v8AAAAAIAAtAAfVOzgTQAlITlACKoQCEAAa8AF_Bw0A1_WkAcg0AQDNErUA1wUc_-UpzP-Z5P7_sA3-ARPW5__yBdn_zhrlALkE0v4IEdv-DuX_AETX-wA-vwwA4BXoAPXmDgA1-xwBJgEG_ukGCwDwzwb-9vHKAPny1_3y3AsAJe_6--oEuQLsMkAC4fg0BQ3uRgEEuRQA9grx_R7r1_0CE-kM_uwZANzzNwgk7uQECucV-fFY4ggPGDEE2tz1-RAWyQA__AIFDggC-MkCLwXl4AwG4wIWB7cy6gTIDiMByxb57___Gfof2-rz8wDnA-P47hAe8RAFItP_CRUR-AXeFwvx_uny8wop-QIgAC1c0QA7OBNACUhhUAIqzwcQABrAB7-6ur6AC9c8kf1ivMl3hLrVNeQ8-_HNvA3-_r1SDqY8iF2APJ9bOD7nE3692Ao_vK8I3r2G1GW7icTOu8VVhT5UMG-9m38qvIbjCb7fIPU8rAEqvSpddb3ND9I8XwzEO48Oib2qU1Q7yTkxPKA0xD2m1VC9Ef_WOW-LCL1DRwe6I9gYvUFmhz3o4SE79tVQvXEeTjz84Lw88m52vCAHuj2CkTe9iLKcvL_jSj32C1Y9lvn9vOEfu70BQIS8ObTtvEMEdzw_RZQ9ANUuvAhT-bzUntK98N0GPeBtib09uPs9xjwGu3zxRT37BD05xYdhuw9XWD2ttuw8B2CDvG2s5L2mES49lE7BOyeSfj18-Yg94HyPPLDi1L11Nsk9PI5VPAf91rxrCqa67yKnvLmJ2j0J6xU9rguFO_6emLxi-Aa8q4NVO8se17x2YbU8DfwoO_4f8Tx8_mq9XBjOvGueQz3yYry8l7MxO3PpSb0DbTw7UTsyvGlXzD2mEyQ9bSsLPJk6WTw5oau8XilsO99mxj05tfO9hx8YPFd7OL0vh_29KqBmOkt2bD0N7cI9OeajO_D5YT0UXw2-d4QRuxjsxjw7M7a9oOEsO_Aan71UQge84FgCvFACpr16H0I9BMFKu7XFsTsUWCW8LjnRu6DM9TxwysE8b7iPu3stLb1HY7O98L6IOTCDET5ARBQ9NoxbumMxAD1XXYc8dGILO1qzWj09dpG96obYur_tTr38Lxw90MdnO5Fhpb0lRoq99Ki7Of4MPz7JIq29TbCPuHqjGz2cPqE94FPgOTtV_rys3Py4jINUOcsU0z0LCdi8eCo_uekPTTyoOD6-cp9dObrShz3LuM68z3sROTaZbL0S81E9z0duOeWMkr2TuQO9432eubgHkT2EP828mkYBuVwMtD1VbZI8VTQaOIBHFL25YDq8r3PguAPdKLxksvi8ojEQOcfKOb15E8082aEVuEHxAz1xT8G91zh7OUY_Oj30zoc9bP63uJLMqjwiVQQ-BQ0fN0jWqzwbEKE9EflvN5WjO71FmwO-DdozN8_g3Tn6umc9CgWHuMJLtb2NTQI8DbpPNvrmSD1B2Am--rirOA8Vvj0tfxk9f9KauJtoIbzpHI29zWuEONRD9D1WYE09lItduavfFr0N-x2-o7z-uCGNT73ugny9RhWOuPC7Dr3HFj09v9KzNt7oXj145YS9QVK0uCL_7D01KQU-835buHF8Y736JQI-qYEsuR71PL0tDiK9F5JDNoVMqDxUf1O9ckKdtiAAOBNACUhtUAEqcxAAGmA5AQAu_y_9ycJq3fH66QPP6wny0e___wuy_7sY4_7j9bPS4DH_FwYt7KIAAAAH49QRGQAYf9v41zPhGRHop70rQD_t7CWKrfbr9fkT4_0yDED6CkwA2gfEKASy8D0CPRYgAC1hDRk7OBNACUhvUAIqrwYQDBqgBgAALEIAACBBAABgQQAAQMIAAPBBAACgQQAAzEIAAGDBAABwwgAA4EAAAAhCAAC4wgAAPMIAAFTCAADgQQAAsMEAABRCAADAwQAAcEEAADTCAAAowgAAPMIAADzCAAC4QQAA6MEAAMjBAABowgAAgMEAABxCAACoQQAACMIAAABAAAC4wgAAMEIAAIbCAAAowgAAuEEAAJpCAADgQAAAtkIAANBBAADgQQAAlkIAAEDAAACYwQAApMIAAIBBAACIQQAAvkIAADBCAADYwQAAQMAAADBBAAAwQQAAMEIAAEBAAADwwgAAoEEAAPDBAABAQgAADEIAAHTCAADgQAAAlMIAAOjBAABMwgAAoMAAAEzCAACQQQAASMIAAGBCAACMQgAAkMEAAERCAADAQQAAfMIAACDCAADgQAAAKEIAABBCAAD4wQAAQEIAAGDBAACgQQAAEEEAAIBAAADgwAAAVEIAAFRCAABgwQAA4EEAAIRCAACEwgAAxsIAAABBAADgwQAAgEEAAKDAAAAcQgAAUMEAALrCAACMQgAA6EEAABzCAABYwgAAUEEAACjCAAAwQgAAKMIAABBCAABoQgAAAMAAAKBAAABgQQAAyMEAAKBAAAAAwgAAoMEAAEBBAAAQwQAAqMEAABTCAAD4wQAAqMEAABBBAAAQQgAAoMEAAABBAAAkwgAAIMEAAKBAAAAAAAAAMMEAAGBCAACIwQAADEIAAIDBAAAAQgAAgMAAAIrCAADQwQAAyEEAAERCAADgwQAAMEIAAIBBAAB4wgAAoEEAADDBAABAQQAA0MEAALBBAAAYQgAAWMIAAODAAAAQwQAAQMEAAEzCAACOwgAAuEEAAKjBAADAQAAAMMEAAFBBAACAQAAAUEEAACBBAABYQgAAkEEAAPhBAACgwQAAoEEAADDBAADAQAAAiMEAAOBAAACoQQAA8MEAAIA_AACWQgAAZMIAAGDCAACgwQAAEMEAAFBCAAAAwgAAnMIAAAxCAADgwAAAMMEAANBBAAA4wgAAgEEAAEBBAACAQAAA-EEAABzCAAAsQgAAeMIAAIbCIAA4E0AJSHVQASqPAhAAGoACAAAwvQAA-D0AAO4-AADIPQAAcD0AAPg9AAB8PgAAGb8AAMi9AAAQPQAAHD4AAKi9AAAcPgAAJD4AAES-AAAUvgAA2j4AAEA8AAAEPgAAxj4AAH8_AABAPAAAyL0AALI-AADoPQAAJL4AAFQ-AADGvgAAdD4AAGQ-AAAQPQAARL4AANi9AADovQAA6D0AANa-AABQPQAAur4AAJK-AACOvgAAfL4AACS-AAA0PgAAED0AAAy-AAAcPgAA3j4AAHS-AAAEvgAA4LwAANg9AACYPQAALL4AAKC8AAA8vgAAEL0AAF8_AABQPQAADD4AABA9AADoPQAAQLwAAEA8AACSviAAOBNACUh8UAEqjwIQARqAAgAAVL4AAKA8AABEvgAAU78AADC9AAAUPgAAFD4AANi9AAAcvgAArj4AAIA7AABQvQAAcL0AAKi9AABQPQAAuL0AAIi9AAAfPwAAgLsAAJ4-AADgvAAAFD4AALg9AAAMPgAA6L0AAIA7AAC4PQAA6D0AAKg9AABAvAAA6D0AAFC9AABcvgAAXL4AANi9AACovQAADD4AABC9AACqvgAA2L0AAHS-AACWPgAAQLwAACw-AAAEPgAAML0AAH-_AAAkPgAAij4AADQ-AACovQAAML0AAOA8AACWPgAADD4AALg9AABwPQAALD4AAKA8AABMvgAALD4AAKo-AAC-PgAAkr4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=WWe7pZjc4s8","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14383683986215311712"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2658677085"},"13717768663838387873":{"videoId":"13717768663838387873","docid":"34-11-11-Z8EF20E8E6267D190","description":"this short video I will explain how trigonometry identity work and hope you can really understand it. Especially recent spm kbat love to ask about it.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3263370/62d7ccbeb9f3f4d2dc87a2e8872356d6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2TkF7QAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYUUYse59AlE","linkTemplate":"/video/preview/13717768663838387873?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Why cos(-x)= cosx?","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YUUYse59AlE\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoWChQxMzcxNzc2ODY2MzgzODM4Nzg3M1oUMTM3MTc3Njg2NjM4MzgzODc4NzNqiBcSATAYACJFGjEACipoaGRha3pocXNya2pjc2NiaGhVQzNmaHI0WWFuWlhlTms0MzFGRmdBS2cSAgASKhDCDw8aDz8T4wWCBCQBgAQrKosBEAEaeIH7_wH_-wYABQQOBfoI_AL6-gTz-v38APYH_P__Av8A9g3__gYAAAD6DwP-BgAAAAL6Cv___gEAEAMC9QQAAAAOA_7__QAAAA4D-P_-AQAA-fb1CAP_AAAFB_X9AAAAAAYTBfcA_wAA_wX2AgAAAAD2__vwAP8AACAALcSf4zs4E0AJSE5QAiqEAhAAGvABfxET_tv2rgGrH8v_9iHaAc5II__8NdEA6ADyAdjx7AH66w0AzSTw_xIR3QCTLP8BBffc__O50_8vuAwCF_78AK_nCgEK7tYCPwH8APfY__7CDwwB4hD4BfbZ0P4FUt39C_IT-doE7P_tA8ACD_5AAd8WA_4L6PD_xgP_AdsfFgDvFdP97ScN_-fXFPzXBSMCD-IfABYTCfkiE-QCBBAYBATy7QEA8vj_BgXu88sOEPnu5gQI79z9BfvDCgD5F9j85QMXAAX3CwkT9gPtHPX2Adnx8AL84PIK-vQL_Bne-vr_B_bv7fL9_w389AEO9ecBIAAtHUYQOzgTQAlIYVACKs8HEAAawAcsK82-yDDdOr1IMr29OgU71gQMvZVw17xL07a9lssrPazuB70IkWw-tqcVOoKHDj2Kubq9ECwdvS1UyDwUlEI-RkUcvXPoALwZgaK9QLW7PeGkX72-77m91o9NPUEWvTwAvsW9N2RNvWvnRbzvERs9wcS_vQiQAb0gqOi6HXURPDPcAL3UOps9NFVGvQ6fdL2qGN28uAkSvQ2QorvGvqk9TypQPEkcCzxCwVY914QZvdVR4btpbgW-I9QRPQfIYbyEWRI9uOdZPWIgGTybjVq9w3esvLMIRTxuU5e8WFN5Pbd547u_B6Q9puJwPShrALplQ509dzW0vZB2Mr0mNfS9fgMuPau6Aj25Zrc9cxOwPb8bgTyu9Cq-bcXePYrUC7s-m3I7sB43vfuRhbrPfKM9uDJSPafQVDxBfnY98h85O50ILLxutiO9-VhwPQkSwDxSB4s5_ikVPHK5B7zzh6s9iGABvBLuvjmV2NA8UtJjPfvbr7rlmpI9zE71PPfvMLy_w4M9NCqVPAsPqbkFI6U91gI7vknlmjrHg229VxCOvZ23VrznzFE9uKCIPVl9HryCG-k8ev_fvZQxHzxqoF694m9AvQcPLjy4nay8tBwNvZdTJzwhjwC-1Xu6PSuLobq_a6e7OsO5PNY1f7xfIE09-9x6PYeX1DuRoFO83yatvRbtnrqB0gs9A2mFPZMbEbpQvK88wM0CPe2MRrv3P6s9QyHduyr5u7thLSO9_HggPP5r3rhflIW88LRGvGzIX7htA9c9taPYvQyfrzmC5D29BbKqO3qSLjubOs-9uO5BPC0nCrkosT86ggn1O8MHBrf8s1W9dz2yvYUbMLix6609At5dvO5CAjlhDNU7c0w2PbnuZrggose9kr7_vHWdD7mGVie8ilnPPYdxDTmejFs9w2IYvLX-bLciXzg982XYPCGCIrngn4I9eA0avapHB7m8L528i4GfPdKubDca-Ia9z1hKvS5yxbf9WJc93Lf6PR1WxDWjC0W8dk-TPfYtRzj-P5M9m85pPWW2dDfj8X693TRsvZLEvrcVRy896vtaPZ429Lj1orG9qGz9vGewmrg8Kfi8cY_lvYkdvLgKqLs9XFqgOWmrGjhhoFA99NlGPSuYJjgfnwA-pOSQvRXoOrn5SuC9DI_dvWMzRLjVXZm8EZeCvQdxA7iWu8c7OUdYPZ42A7jk1Z68eonxvWVVMLirD8o9pf6VPcGUmjd8Yo29IQPZPYE1MLmtbeq9FDu_PG_S4zdbyt48-oTou0lRxzcgADgTQAlIbVABKnMQABpgEwIACdw69t8ZSPIf88f7wPcAAuPjIP_m_f8bAdQNBNnx8Nr6APHRNtCoAAAAEeMTPugAE3a60gr85FQeubrlIj1_7vMgre7iABwBMgTw_zscAEYyALIRxyEZ8-8ZHShkIAAtmSMgOzgTQAlIb1ACKq8GEAwaoAYAAMhBAAAMwgAACEIAAHDCAAAAAAAA4EEAAOZCAAAQwQAAIMIAANjBAADoQQAAkEEAABjCAACgQAAAAMEAALhBAADoQQAAiMEAAEhCAAAwwQAA4MAAAEBAAAAYwgAAqMEAAIDBAACIQQAAiMEAAPhBAAAAwQAAfEIAALjBAAAAQgAAlMIAALhBAADOwgAAJMIAANBBAACwQQAAAEEAAJJCAACgQQAAcEEAAKhBAACAQAAAIMEAAGzCAAAEQgAADEIAAIBBAAAAQAAALMIAAGDBAAAowgAAEMEAAEBBAABgQQAApsIAAADAAAAwQgAAmEEAADRCAAA8wgAAqMIAADBBAACwwQAA9sIAADDBAABEwgAAUEEAAADCAACgQgAAmEEAANDBAAC6QgAAwMEAADDBAAA0wgAA4EEAAFxCAACGQgAAbMIAAM5CAAAAwQAAAMIAAEBAAADgQQAAqMEAAAjCAABEQgAAiEIAAADCAADgQQAAPMIAAMBAAABUQgAA2MEAAGDBAACAwQAAmEEAAHxCAACAwgAAPMIAACjCAAAAQQAA-MEAAGRCAAAMQgAAQEEAAEBAAADoQQAAmkIAALBBAADowQAA2EEAAIBBAADYQQAAQEIAAKDBAACAwAAAgMEAALjBAAD4wQAAdEIAAIDBAAAQwgAAAAAAAMDAAAAYQgAAfMIAAIpCAADAwAAA4MAAABBBAAA0QgAAQMAAAEBCAAAwwQAAsEEAAJbCAAB0wgAAAMIAAIBBAADAQQAAmMEAAEDAAABAQgAAMEEAAOBAAACoQQAAgMAAAAjCAACQwQAAWEIAALDBAACwQQAAqEEAAKrCAAAAAAAAksIAAEDBAACGwgAAOEIAAPhBAABwQQAAsEEAAMhBAAAEwgAAGEIAAGRCAADYQQAA2EEAAEBBAADYQQAA8MEAAEzCAACYQQAA0MEAAJjBAADwwQAA2kIAAHjCAAAgwgAAoMAAAIBAAAC4QQAAYEEAAJDCAAAMwgAAUMEAAFRCAACwQQAAgEEAAJhBAACAPwAA2MEAAHBCAAAcQgAAEMEAAKjBAACQwSAAOBNACUh1UAEqjwIQABqAAgAARD4AABy-AAAkPgAAQDwAAEy-AAA8PgAANL4AAPq-AAAQPQAAZD4AACw-AABQvQAAoDwAAHw-AACWvgAAHL4AAHQ-AABwPQAA6D0AAII-AAB_PwAAMD0AAHC9AAAsPgAA-L0AAIC7AACAuwAAbL4AAOi9AAB8PgAAQDwAAHy-AABQvQAA-D0AAHS-AABEvgAAiL0AAK6-AADGvgAAoDwAAGy-AACuvgAAML0AADA9AAAUvgAAqL0AABw-AACIvQAAJL4AAFS-AAAcPgAAND4AALI-AAAQvQAATL4AAIi9AABVPwAAND4AALg9AACAuwAAgLsAAJK-AABQvQAAsr4gADgTQAlIfFABKo8CEAEagAIAAKC8AAC4PQAATL4AABu_AACYvQAAoLwAACw-AABAvAAAiD0AADw-AAAwPQAAoLwAAHC9AAD4vQAAcD0AAOC8AACYvQAADT8AAJq-AABMPgAAgDsAAIC7AACAOwAAUL0AAFC9AACePgAAQLwAAIg9AACAuwAAHD4AAFA9AADoPQAAor4AAAy-AABEvgAA6D0AADQ-AAC4PQAAbL4AAGy-AAAEPgAAoDwAAIA7AABkPgAA-D0AAIC7AAB_vwAAQLwAAKA8AACYPQAAcL0AADA9AAAwPQAAMD0AABw-AACIPQAA4DwAAFC9AACIvQAAgDsAABw-AACIPQAA6D0AACy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=YUUYse59AlE","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13717768663838387873"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3281838174"},"5047182275207449292":{"videoId":"5047182275207449292","docid":"34-10-8-Z89E706851DDD59B2","description":"A step-by-step explanation of how to draw the COS Lewis Dot Structure ( Carbonyl Sulfide). For the COS structure use the periodic table to find the total number of valence electrons for the COS...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3228067/40f44b3148b102c631a004dcb30d4e0e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ZQE3wwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dx5HXeZ49Ajs","linkTemplate":"/video/preview/5047182275207449292?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"COS Lewis Structure: How to Draw the Lewis Structure for (COS)","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=x5HXeZ49Ajs\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoVChM1MDQ3MTgyMjc1MjA3NDQ5MjkyWhM1MDQ3MTgyMjc1MjA3NDQ5MjkyarUPEgEwGAAiRBoxAAoqaGh3bHd2bXd6cnJzbG9nZGhoVUNhVUY3M1lYLXVRVEd3REIyMEkzbjNnEgIAEioPwg8PGg8_E3iCBCQBgAQrKosBEAEaeIH2-_v7-wUA8AL--wQBAAAGBvgA9___APwF-v0GBP4AA_oO_gYBAAD-CwYCAAAAAP_v9Qj9_gAACAb7-QQAAAARCPj99wAAAA0A7gH_AQAA-ff3_QP_AAAECPsKAAAAAAUF-_f-_wAA-Qn6_wAAAAAM-fgFAAAAACAALVmR4js4E0AJSE5QAiqEAhAAGvABf_sTAdjyBQH5G-IAtv7k_5cUDP8ILvIAxxEiAQnO3QLj9_MAqRHw_fUJ3gHRDiUAEN_QACoDLQA43vwADQfxAADb4QAS1_ACBxYW__fb__4DNRcB5-QKAQUA9QMZDeb-FiT-_RsbzP4d2dYB--0sAQ0IFgQUDCMD_er_ANUVAgHry_wE_QcCBA8HC_3k2CUD9f4O-vw16_4WSvUA-Avi_fz-D_gk8_IAFx0HBQjgC_zz3wL65wIF9vXs_vzOMhoB2fIsBeXz-_TTGvnyOeXv_vrm9v30_vj-5t0EFBfh-voaFQUF5Qn59fnsEvkXA_0AIAAtXDAbOzgTQAlIYVACKnMQABpgHO8AJhA4xfYTM_0R3fsA9uAA8hnhF__h3wDjJ94qFcjW9egYABm9MdqmAAAACuXOOQsA_njhtBb2-Pns1bXQEDF_-ys66OwYLd750-v8FOkwDFZNAKLVufMcyRodDD0GIAAt5MshOzgTQAlIb1ACKq8GEAwaoAYAACBCAACIwQAAhEIAAGDCAADQQQAAAMAAAMhBAACAPwAAhMIAACTCAACgQQAAjMIAABzCAAAYwgAAAMAAAJjBAACYQgAASMIAAOBAAAAYwgAAwEEAAKDBAAAQQQAAQEIAAAzCAACgQQAASMIAAJDBAADIQQAAgMAAAMjBAAB0QgAAoMEAACzCAAAgwgAAwEEAACDBAADMQgAAgEAAAGxCAAAgQQAAoEEAAChCAACAPwAAqMEAAJDBAABQQQAAYMEAAJRCAACgQAAAYMEAAKDBAABAwQAA8MEAAEBBAABQwgAAlsIAAOBBAACgQAAAAEEAADBCAAAAAAAAUEEAAHTCAAAsQgAAusIAAEjCAAAAwgAAAEAAAPDBAAAwQgAAkkIAAATCAACIQQAA0EEAAHDBAACCwgAAMEEAACBCAAD4QQAALMIAAPBBAAAcwgAAmEEAAFhCAABsQgAAWEIAABxCAAC4QgAAmsIAAIDCAADEQgAAqMEAAOBAAAAgwgAAzsIAAJDCAACIQQAAAEIAAHDBAAC4wgAAHEIAAKBAAAAkwgAAOMIAAARCAAAEwgAATEIAAJDBAAAQQgAAaEIAAKhBAAC4wQAAPEIAABDCAADgQAAAIEIAAMBBAACAQAAAgL8AAHzCAACMwgAAwMAAAADCAACgQAAAUMIAAGzCAACYQgAAMMEAADzCAABAQAAAoMAAAADCAACIwQAAoMAAAExCAACAvwAAIMEAAHBCAADgwQAAAEAAAIDBAAAAQQAAmEEAAIxCAADAQAAADMIAAFxCAACQQQAA0EEAAMDBAABAwAAAYEEAAHBBAAAgQgAANMIAAGDBAACAwQAAiMEAAADAAABQwgAAIMEAAEBBAAC0wgAAoMIAAIDAAAAEwgAAwEIAAKDAAADYwQAAgkIAAHBBAAAEwgAAAAAAANhBAACYQQAAgD8AAHBBAAAAQQAAJEIAADzCAAAIwgAAUMIAAOBBAAAoQgAAMMEAAGDBAACAwAAACMIAAIC_AABUwgAASMIAAKBCAACgwQAAyMEAAPBBAACAQQAAcEEAAMDBAACgwCAAOBNACUh1UAEqjwIQABqAAgAAyL0AANi9AACWPgAAQDwAANg9AACePgAAML0AAPK-AABkvgAAuD0AADS-AAAUvgAAqD0AAHw-AACGPgAAtr4AAIY-AABQvQAABL4AAL4-AAB_PwAA-D0AAPg9AABcPgAAZL4AAOi9AAAkPgAAgLsAABy-AADOPgAAND4AABC9AAAcPgAAkj4AADC9AADYvQAAyD0AAMi9AAAcvgAAvj4AAHC9AAAEvgAAXD4AAKA8AABAvAAABD4AAEC8AAB8vgAAir4AADS-AAC4PQAAuL0AAPY-AACovQAAJD4AAIC7AABPPwAA4LwAAES-AACOPgAA-L0AACw-AAC4PQAAdD4gADgTQAlIfFABKo8CEAEagAIAABy-AAAwPQAA6L0AADW_AACgvAAAHL4AAHA9AABAvAAAiL0AAIi9AACmvgAAgr4AAHy-AACCvgAAiD0AAIi9AACAuwAABT8AAKC8AABEPgAAPD4AAEA8AAC4vQAAEL0AAFC9AABsPgAAQLwAAIC7AADYPQAAJD4AAEA8AADIPQAA2L0AADy-AACKvgAABD4AAKo-AADovQAAXL4AAFC9AAD4PQAA6D0AANg9AACSPgAA4LwAAMg9AAB_vwAAFL4AABS-AABcPgAAML0AAAS-AAAQvQAAoDwAADw-AABQPQAAiD0AAJg9AAD4vQAAoDwAAOA8AACYPQAAcL0AAOi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=x5HXeZ49Ajs","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5047182275207449292"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1075540887"},"1897638725340761787":{"videoId":"1897638725340761787","docid":"34-5-9-Z5D5541BC60099BD7","description":"MIT grad shows how to find sin, cos, and tan using SohCahToa as well as the csc, sec, and cot trig functions. To skip ahead: 1) For how to find the adjacent, opposite, and hypotenuse sides of the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/910407/7f2258912d10c4286017f4afb4527960/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/-AsDlwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbSM7RNSbWhM","linkTemplate":"/video/preview/1897638725340761787?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Basic Trigonometry: Sin Cos Tan (NancyPi)","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bSM7RNSbWhM\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoVChMxODk3NjM4NzI1MzQwNzYxNzg3WhMxODk3NjM4NzI1MzQwNzYxNzg3apIXEgEwGAAiRBowAAopaGh5d2dtcmd4ZnRkeW16aGhVQ1JHWFYxUWx4WjhhdWNtRTQ1dFJ4OHcSAgARKhDCDw8aDz8T6AWCBCQBgAQrKosBEAEaeIHw_QoA_gIA_wH5B_gH_QL9AvQH-P39APUF9f31Av8A_QQA_AUAAADvCQABAAAAAPryA_oD_gAAFPr09AMAAAAZAv0A9wAAABEA_PD_AQAA_Pv99gL_AAAD8PwG_wAAAA0P_PcAAAAABQPw_AAAAAACAvwNAAAAACAALegN1zs4E0AJSE5QAiqEAhAAGvABfwZG_vXw4AHMyvcAyTDbAbU_EAAlMNgAlvkiAc_rzQA56voB9wILAFHCDv-jM_b_CBLY_uDAMAAy5hf_Eh33AODo9QAh5yoCMCAi_1D_7_4CKzb-P_QzATTZzgLx6_AD6-8j_Oznyv3-370AZOIYACoO_Qj17gD8D9j3AssM9AL19rj9Dv_zDMTz7v7ePSwC_9gF9hY-7P_UvQYEScMjAyri6gPSI8b95R79-_DtKv8NJvgA28H9DPZaAgTsD_4GAQ87-swD9_8X9CUI4erqBBg64wIyHQINIPASBd7w-vMF1_f4vBcFAvQD_wjy4O3iIAAtjmDuOjgTQAlIYVACKs8HEAAawAdqFtC-rJQZPVMN97scyD-9CeqMO5zMLr10fHQ9qoGmPbkXGLwglsI9CqMZvRAGnrz2lmK-BXiBPHk_DbzFVYU-VDBvvZt_KryeYoW-kbp9PSxzhLyfwrY8DxbEPEpE-LwJh_49ff16PTi4Gb1-eXw9GcWyvBaePDwkuiK9CQyDvUvqJL3wVQY9zYR1veY1wLzjKIo9rENEPUYWG7uPsoS9j5GHPLq1lry-FN49pKSMPZ0PTzzYNU67G3R4PBShR7w7BEk9YRHovI_dB7yCkKy8IgS_O8HIa71sB4O9zRbaPJYwibxjXmw8Ow4NPS1O67wn8qk9Rx9zPYM7yLugtZG8EtkHvSPGAb3wf2w9ZqnAPeVlCTxkO8S9FXWBPKQLe7zXtpI9bFRxPbKBlTt-rMs97G55vFRVibu4tzY8ZJHmPE1qCL0rbfG7UgGDO-SD3Du_Wlo8eRfJPcNQAbzEsfA7eMArPbGe_ztTpiI9TJymvGuMzLx7fdI8Vyx5PV0uBzs0nLI9HazfPf0HQ7sFI6U91gI7vknlmjr54-67W2H6vYUCvjsskRU8RFxPPSM0ADx3Lwc-CHtuvZPkOTxxY4m9zBG9vSy1JDvou_s9CxZdvaDmHDwKeb69mAAXPYMuBjwmk-68cKXoPJSdwDqh_Bg90XxJPXYqKjydhFK9tr9OPbPIwDs1Iv282XZavBs-djq6np0903vTO3k1ijp7ubQ81d9cPI2if7ss8eC9LnD9uyAnGDqJVpM7sIWqvIoBlrvW6Zs8oj85PTifHTlpRB-97bydPQIHoLmh8s-9Tu0cPsaq7blYEiq9vEHUvY_yYrmml_i986upvao0dTgHPuu8D1hDvXm9ArpHCRW9t2J_vEs3XTqy7Ym9NNqqPAOLlrhc4SI92VVNPRLHDLj0uzW9Ov3FvOgBwzfVAgA9-vLdPMeiN7hy4Zs90n5VvRQkfbnDeJI9FFSJPbH8NTg71lY8KWB2vclQULinvRc9VmzCPLWXRTmM0Jk80mvYPE1K7bdxWnA8uvXavfmfCjmxE4M8trGzvRWp6Thn-Kq8YcmwvOwnjTj49369W8UsPRgpvjhEr1U9f9h3vHMalTf2JwE-RFJLvRtsODib-Zq9LiYsPdddlzfUQ_Q9VmBNPZSLXbkdVU284Qy-vKEyJLh5MxS9aiyWvUjoMLdaWte84Zo7vAGZF7heqki9OukdvrRj-rgi_-w9NSkFPvN-W7iSE7s6PSgovRxLargrppK8BjneOw5mnzcZI608qmIKPUeshDggADgTQAlIbVABKnMQABpgQQYAEPYPub8HIe8c6N4R69cFryWlAv_Q__8ZB_AtCvXkqNw2ACX67NCiAAAAIuvnLdIALXjT4h36Cw8R2afXEhZ_P9cr_-4YJc3hAG4bJBAVID8kACYXtzZQxRAsNHQtIAAtvPkROzgTQAlIb1ACKq8GEAwaoAYAACBCAABAwQAAyEEAABxCAABQwQAAhEIAAIhCAABkwgAAhsIAAEDCAADgwAAAtkIAAPDBAACgQAAAAMAAAHBBAABEQgAAVEIAAFBCAAAUwgAAIEEAADjCAAAAwQAAmEEAAOBAAABMQgAAcMEAAJhBAACEQgAAQEAAAIC_AACiQgAA6MEAALjBAAAkwgAAgL8AAKhBAAAUQgAAAEIAACDCAACAPwAAjEIAANjBAABYQgAAYMEAABDCAAC4QQAAwEEAANBBAACAwQAAcMEAAFDCAABowgAA0EEAAPjBAACAPwAAqEEAAADCAAAsQgAAoEIAAADBAAAEwgAAeMIAAKDAAABEwgAA4MAAABDCAADAwQAAjMIAAKDAAAAgwQAAgMAAABTCAAAAQgAAFEIAAADDAACywgAAAEEAAEBCAAAAwQAA2MEAAIBAAAAAQAAAhMIAAKDAAACAwQAAqMEAAABBAAAQQgAAgL8AAABBAAA8QgAAAEEAAOjBAACAQAAApMIAAOBBAACAvwAAsEEAAGRCAAAAwgAAAEEAAFxCAACwQQAAgsIAALBCAABAwQAAqEIAAIC_AABAQAAACEIAABBBAACAwAAAKEIAAAAAAACIQQAAcEIAALDBAABUwgAArsIAABDBAADAQAAA2EEAAADAAAAAwgAAisIAANDBAACowQAAGMIAAJDBAAAAQgAAoMAAAFTCAACKQgAAQMEAACDBAAAcQgAACMIAAAzCAAC2wgAAgkIAABBBAAAwwgAA0EEAAEBAAAAoQgAAUEEAAITCAADYQQAAfMIAAOBAAACIwQAAyEEAAHTCAABAwgAAIMIAAJrCAADowQAAsMEAAMBCAAC4wQAAFEIAAMDAAABwQQAAAEEAANBBAABAQQAAgEAAAJBCAAA0wgAAuMEAADDBAADYQQAADMIAABjCAADwQQAAgD8AAEDBAAAswgAAkkIAACDCAACQQQAAuMEAANjBAACSQgAABEIAAIC_AAAAQAAAmEEAAEBBAADAQAAA-EEAACDBAABkwgAAYMEAACBBAAAoQgAASEIAAMBAAACAwiAAOBNACUh1UAEqjwIQABqAAgAAFL4AALa-AACqPgAAyL0AACQ-AACWPgAAgj4AABW_AACAuwAA6D0AAI6-AAC4PQAABD4AAAQ-AAAwPQAAuL0AAKA8AABAPAAAuD0AAD0_AABrPwAAqL0AAOA8AACSPgAA6L0AALg9AABkPgAAQLwAAAQ-AADePgAAcD0AAOq-AAA8vgAAyD0AAOi9AAB8vgAATL4AAES-AAC2vgAApj4AAJi9AACIvQAAiD0AAAS-AADIvQAAuD0AAHw-AAAsvgAADL4AAHS-AACqvgAA2D0AAMo-AAC4PQAAmL0AAIg9AAB_PwAAUD0AABS-AACCPgAA4DwAABQ-AADIvQAAir4gADgTQAlIfFABKo8CEAEagAIAAEA8AACGPgAA2L0AAFO_AACSvgAA6L0AALg9AACIvQAAQDwAAGw-AABwvQAA-L0AAEC8AACAOwAAML0AALi9AACWvgAAIT8AAJi9AABsPgAAmD0AAIK-AABAvAAAJL4AAAy-AACovQAAcL0AABA9AAAQPQAAND4AAFA9AAAEPgAAkr4AAKi9AAAcvgAAmL0AAMI-AAAEPgAAmr4AAJa-AABAPAAABD4AACy-AABEPgAAND4AANg9AAB_vwAAyD0AAFw-AACoPQAAPD4AADC9AACAuwAAbD4AABA9AAAUPgAAoDwAAHA9AACoPQAAED0AAKI-AACoPQAAQLwAAK6-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=bSM7RNSbWhM","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1897638725340761787"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3651369209"},"7319125204343951205":{"videoId":"7319125204343951205","docid":"34-1-3-ZD9919F7A948536D2","description":"Integration by Parts...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2756605/5e9332bb3d2dc4a0eb0b87f731739588/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/q-celwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXZne57aKl58","linkTemplate":"/video/preview/7319125204343951205?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(arcsinx) as an algebraic expression, cosine of inverse sine x","related_orig_text":"COS SYSTEM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"COS SYSTEM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XZne57aKl58\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxMjAzNTI2NjIwNDc3OTQ0NjMxMgoTNDk5MzU0NzkwNTc2NjcyNzk2MwoUMTMwODE1OTA2MTY2NzIwMjgyMzkKFDE3NTY3MjQ4MDQxNjU2MTcyODkwChMyMjI3MDE1NzMzNTg2ODU1NjUyChM2MTczOTA2MzIxMzg4OTIzMjQ5ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKFDE0MTQyOTQzMjQwNDY2NjI2NTIxChM2MDMxNTUxNjU1MDY4MjQyNzQyChM2NjU4ODg1MzIxMDEyMjExNTEzChM3NTc2NzAzNDAxNDE4NDQ2NjIxChQxNDk4ODc3NTMwNjUyMDA1MjIyMQoUMTQzODM2ODM5ODYyMTUzMTE3MTIKFDEzNzE3NzY4NjYzODM4Mzg3ODczChM1MDQ3MTgyMjc1MjA3NDQ5MjkyChMxODk3NjM4NzI1MzQwNzYxNzg3ChM3MzE5MTI1MjA0MzQzOTUxMjA1ChQxNTgwNTA0NTYxMTAwNzA4Nzc4MgoTNjk4ODQyMzAyMzk0MjA0NjA3NxoVChM3MzE5MTI1MjA0MzQzOTUxMjA1WhM3MzE5MTI1MjA0MzQzOTUxMjA1apMXEgEwGAAiRRoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioQwg8PGg8_E9wBggQkAYAEKyqLARABGniBAAMD8QH-APwAEQUHB_wCAgwA__f__wDtBPz4BQAAAPvy__0DAAAAAQ36_QUAAAD_8f_49_0BAA0E-e0DAAAAGgL9APcAAAAREfr4_gEAAOQJ-PkCAAAABQP9BAAAAAAJCwTuAAAAAAEI-PkBAAAAAPn8-AAAAAAgAC3vMs47OBNACUhOUAIqhAIQABrwAX_CHwLE-sb_5-D3AOMPCAHWOA7_PEbb_8r64gHmGOcBxxMfAO4n8f8QwgIAxSgXABfSpwPVtxAAPMEn_yYE5gG57P4BKyswAWnvPgMRAd7_A0IdAdTYKP878ugAIkIP_Qfm-QIkEu8CEjD-ACv6NwEoBesG8eAN_vf3xwTqBfkD6NfS_bP09QId8xv72_M4Cfz83wgZFgr43QcX_gru9v0J7Bv08RbS_gsMBBHZ_hUFuPoDAfraDBELHxQFySX2CP3MGfPPA_f_Hg8NCQ4IE_0XN-QCRLzwBSP5Av7pBf76CTX68zAs8hDM5-8H-eroECAALZ5R-zo4E0AJSGFQAirPBxAAGsAH14XnvkS8Or0KoaQ79QoPPBo25ztVPU-9FNqYvSdPeT0LEYm7by4ePi3gr7xhFZS8ll1QvpDs27yJKKY8FJRCPkZFHL1z6AC8huMJvt8g9TysASq9HZHPveQKiT2NwgG8qDXNPXOpwLzFa8O84Nl-PVJxTb3NN0e8b7EMvVZbG71SOMy8-Ua5vVOXnL1lmt-8pZr-O5XJurx45eG76-CwPX94jLx8FU-80WPKPc5-Lj2al8O7v7WDvXmKgTxaaQy7gH8KPgL_Kj021Sw7ZftVvZu8krxpRvW8D6mzPI94CTzYUvY7JkCoPZCoKz1v0a68ccjGPHGEFr3HKZ-8PGsHvjWEPjxoDfm85Gb4PWZM4T0YI9Q7rvQqvm3F3j2K1Au7YKWsPS8MvzvaOe47zR7oPUUCl7xoycg8YhFDvPRn5Dw6a8G8Eg8LvCQUtjzuKK07-HG0vFgcDjzxR1G8nCVyPVQRiD1b64s64uVpPfDXKb1lDTM4vUtzvS4gDz33mMC7cr8DPRFfHD0Sb3i8BSOlPdYCO75J5Zo6JpR5vbEJWr2Rgn0558xRPbigiD1ZfR68Wz6XPfikw72o1Dq7I2knPosztr1vdpQ6A70mPTS_9byUULg76-oIPGBmLj0zdTK8NJGIvfSmYj1-Ztq7cXONuy5gOD1Brwc8WsVxPe8lCL1F8747MYK-O_he8jw8SxU6KgExPRWt3Dw1tD87Yi9UPSmjwLy_dyO7QMElvSnWlL2IP5c5jKFHOpa5NL0cCsm4H6LRPVj4H7150Yo4TDOivfJ72zya4L85XvhcvY2CuzymwVo3hfkhPcnQDL1qNvy1VBv8vWK7-70T0_I537syPbuv7zwrFOO3tyTJO-coMb0b0ca5s91zPTNkBr0HkYu5o4h2vUeIVz3WMDi4e7O4O1_2Rj00o924ymyAvTgtOL2Tkpk4rh17PNx5LL0XQgY3w3iSPRRUiT2x_DU4QfEDPXFPwb3XOHs5KfSwvHrQkj3ROUq3sOmcvHY2BD7X81236J5aPcMRJLwVIHy26jaNPAwRBr2ZfnI3nsfyPAZuWD1slHa4IvsAvsZfJD0XmGU4RK9VPX_Yd7xzGpU3N27RPSfQUT2HLmo2qOkOvRnvHT0O7ok4kl0ZPtlPUL2swj-5WwWWvHAINb08Rai3OOeWvEbAN71q4gO4l1GRvYdyHT1TOIu2QyLIPKVN1b1QB3e4oBcOPRclvT0ofwA57cSbPEVJyD3uUgq5L9JVvOHn5DxipDK3WFjwvb-11bs6qRG4IAA4E0AJSG1QASpzEAAaYP74ABDwLtkFHV7l3cnR-dnkAcj-uij_2Mf_9fXI5_gQ4rDqCf8p_wTaoAAAABf6-gjsAAt-yvXcDfwG-9-09RQHeaoDCeXMG_Pi2zEF8-UCREJBfwCrDblILfzcUBIgUCAALVRwFTs4E0AJSG9QAiqvBhAMGqAGAACSQgAAgMEAAGhCAAAkwgAAdMIAABxCAAC-QgAAgL8AAAzCAADgwQAAMMEAAIxCAACAwAAAiEEAAPhBAACYwQAAskIAACzCAACMQgAAoMEAAADAAACgwQAAQMIAAEBCAADwQQAAJMIAAMDAAACAwAAAgEEAANhBAABUwgAA6MEAAJjBAACAwQAAvsIAAOBBAABQQQAAhEIAAFBBAAAAAAAAqEEAAIA_AADgwAAAiEEAAIJCAACgwQAAWEIAACBBAACQQgAAYEEAADjCAAAgwgAAyMEAAMhBAACAPwAA4MEAAEzCAACIQQAAUEEAABhCAABgQQAAUMEAAHzCAAAkwgAAsMEAAHDCAABowgAAzsIAAIDAAACgwAAAdEIAANhBAACIwQAAAEIAADBCAACIwgAAusIAAHBBAADAQAAAiEEAAHzCAABEQgAAUEEAAABBAADoQQAABEIAADzCAAAcwgAAAEIAAOBAAAA0QgAAwEAAAIC_AAAowgAAwMAAACjCAABQQQAAYMEAAFxCAACgQgAAVMIAABRCAAAMQgAAVMIAADjCAAAYQgAAYMEAAMRCAABAQQAAXEIAAFxCAAAMQgAAoMEAAFxCAABAwQAAAEIAAGhCAAAAwQAAgEEAAKbCAACYQQAAwMAAAAxCAAAQwgAAEMEAACTCAAAAwQAAqMEAAOjBAACgQAAAAEEAACDBAABAQAAAtkIAAFBBAACAQQAAJEIAAEBAAABAwgAAUMIAAMBBAACAQQAAHEIAAJjBAAAIQgAAHEIAADDBAADowQAAQEEAANDBAACgQQAAAAAAAHRCAACgQAAAcMEAADzCAACowgAAkEEAAMjBAACIQQAAEMIAAFhCAABQwQAAZEIAAEBAAABMQgAA4EAAAPBBAAAQQgAAcMIAAHjCAADAwQAAkEEAAIjBAABwQQAA0EEAAFRCAAAwwQAAjMIAAFxCAAAgwgAAjMIAALhBAADQwQAAyEIAAEjCAAAEwgAA0EEAAFDBAACgwAAAQEEAAIhBAADQwQAAIMEAALhBAADwQQAAAMEAADxCAACAvwAA4MEgADgTQAlIdVABKo8CEAAagAIAAPg9AAAQPQAAkj4AABQ-AAAsvgAAMD0AALi9AADuvgAAiD0AAIi9AACoPQAAUL0AAGw-AACqPgAATL4AAFS-AAAwPQAAmD0AADA9AACiPgAAfz8AAJi9AAAEvgAAlj4AAPi9AAD4PQAAND4AAGS-AABcPgAAPD4AAIi9AAC4vQAABL4AABQ-AAAkvgAAEL0AAKC8AACSvgAAfL4AANi9AACKvgAAcD0AABA9AACAuwAA4LwAAJi9AAA8PgAA6L0AAFC9AADYvQAARD4AAJ4-AACqPgAAoLwAADS-AABQvQAAKz8AAKA8AADYPQAA6D0AABC9AAA8vgAAED0AAJa-IAA4E0AJSHxQASqPAhABGoACAACovQAA4DwAAHC9AAArvwAAgr4AAOA8AABsPgAAED0AACS-AAB0PgAAgLsAAHS-AACYvQAA4LwAAIg9AABwvQAAQLwAACE_AABwvQAAVD4AAEA8AAD4vQAA2L0AAOC8AACgPAAA4DwAAAS-AAAQvQAAuD0AAOg9AADgvAAAqD0AAEy-AAD4vQAAcD0AAEC8AAB8PgAAmD0AAES-AAAkvgAAUD0AABQ-AABQvQAAqD0AAJg9AADgPAAAf78AALg9AADoPQAAmL0AABw-AABwvQAA6D0AANg9AACAOwAAiD0AABA9AACoPQAAoLwAAFA9AACCPgAAcD0AAIA7AAAMviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=XZne57aKl58","parent-reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7319125204343951205"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2324119594"}},"dups":{"12035266204779446312":{"videoId":"12035266204779446312","title":"\u0007[COS\u0007] \u0007[Systems\u0007] Animated Explainer Style Video || \u0007[COS\u0007] Product Explainer Video || Expansion V...","cleanTitle":"COS Systems Animated Explainer Style Video || COS Product Explainer Video || Expansion Videos","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RbbfxJw6cO8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RbbfxJw6cO8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSlVLNXJsemdLQ3R4NVU4MW5JcU9XQQ==","name":"Expansionvideos","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Expansionvideos","origUrl":"http://www.youtube.com/@expansionvideosofficial","a11yText":"Expansionvideos. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":61,"text":"1:01","a11yText":"Süre 1 dakika 1 saniye","shortText":"1 dk."},"date":"29 mayıs 2020","modifyTime":1590710400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RbbfxJw6cO8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RbbfxJw6cO8","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":61},"parentClipId":"12035266204779446312","href":"/preview/12035266204779446312?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/12035266204779446312?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4993547905766727963":{"videoId":"4993547905766727963","title":"\u0007[COS\u0007] \u0007[Systems\u0007] - Open Access Explained in under 3 Minutes","cleanTitle":"COS Systems - Open Access Explained in under 3 Minutes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cGljAlbp3lM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cGljAlbp3lM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcTFRdDNxYWFpZlM4NEo4SjdKejMzUQ==","name":"COS Systems","isVerified":false,"subscribersCount":0,"url":"/video/search?text=COS+Systems","origUrl":"http://www.youtube.com/@cossystems6146","a11yText":"COS Systems. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":112,"text":"1:52","a11yText":"Süre 1 dakika 52 saniye","shortText":"1 dk."},"date":"1 şub 2023","modifyTime":1675209600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cGljAlbp3lM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cGljAlbp3lM","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":112},"parentClipId":"4993547905766727963","href":"/preview/4993547905766727963?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/4993547905766727963?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13081590616672028239":{"videoId":"13081590616672028239","title":"Seamless Fiber Network Management with \u0007[COS\u0007] Business Engine and Calix Integration","cleanTitle":"Seamless Fiber Network Management with COS Business Engine and Calix Integration","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=62L9VYEPi7U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/62L9VYEPi7U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcTFRdDNxYWFpZlM4NEo4SjdKejMzUQ==","name":"COS Systems","isVerified":false,"subscribersCount":0,"url":"/video/search?text=COS+Systems","origUrl":"http://www.youtube.com/@cossystems6146","a11yText":"COS Systems. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":182,"text":"3:02","a11yText":"Süre 3 dakika 2 saniye","shortText":"3 dk."},"date":"27 eyl 2024","modifyTime":1727429266000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/62L9VYEPi7U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=62L9VYEPi7U","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":182},"parentClipId":"13081590616672028239","href":"/preview/13081590616672028239?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/13081590616672028239?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17567248041656172890":{"videoId":"17567248041656172890","title":"\u0007[Cos\u0007](x) Function and Inverse of \u0007[Cos\u0007](x) Function | All About \u0007[Cos\u0007](x) Function | by GP SIR","cleanTitle":"Cos(x) Function and Inverse of Cos(x) Function | All About Cos(x) Function | by GP SIR","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FQEN3SCitkU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FQEN3SCitkU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDck9tRmJIZ2ZfazRway1qWVJteWhqdw==","name":"Dr.Gajendra Purohit - GATE / IIT JAM / CSIR NET","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Dr.Gajendra+Purohit+-+GATE+%2F+IIT+JAM+%2F+CSIR+NET","origUrl":"http://www.youtube.com/@gajendrapurohit-GATE-NET-JAM","a11yText":"Dr.Gajendra Purohit - GATE / IIT JAM / CSIR NET. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1051,"text":"17:31","a11yText":"Süre 17 dakika 31 saniye","shortText":"17 dk."},"views":{"text":"3,9bin","a11yText":"3,9 bin izleme"},"date":"13 kas 2022","modifyTime":1668297600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FQEN3SCitkU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FQEN3SCitkU","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":1051},"parentClipId":"17567248041656172890","href":"/preview/17567248041656172890?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/17567248041656172890?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2227015733586855652":{"videoId":"2227015733586855652","title":"How Do You Know When to Use \u0007[Cos\u0007] or Sin in Physics? : Physics & Math","cleanTitle":"How Do You Know When to Use Cos or Sin in Physics? : Physics & Math","host":{"title":"YouTube","href":"http://www.youtube.com/v/ZBshEGex_po","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ZBshEGex_po?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJjRzlvMnBCaE1YOW11cUxZSW1tdw==","name":"eHowEducation","isVerified":true,"subscribersCount":0,"url":"/video/search?text=eHowEducation","origUrl":"http://www.youtube.com/@eHowEducation","a11yText":"eHowEducation. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":259,"text":"4:19","a11yText":"Süre 4 dakika 19 saniye","shortText":"4 dk."},"views":{"text":"309,2bin","a11yText":"309,2 bin izleme"},"date":"1 eki 2013","modifyTime":1380585600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ZBshEGex_po?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ZBshEGex_po","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":259},"parentClipId":"2227015733586855652","href":"/preview/2227015733586855652?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/2227015733586855652?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6173906321388923249":{"videoId":"6173906321388923249","title":"What is \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[cos\u0007]( \u0007[...","cleanTitle":"What is cos( cos( cos( cos( cos( cos( cos( cos( cos( cos( cos( cos(…?? // Banach Fixed Point Theorem","host":{"title":"YouTube","href":"http://www.youtube.com/live/qHnXE_h5c2M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qHnXE_h5c2M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOXJUc3ZUeEpueDFETnJEQTNScWE2QQ==","name":"Dr. Trefor Bazett","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Dr.+Trefor+Bazett","origUrl":"http://www.youtube.com/@DrTrefor","a11yText":"Dr. Trefor Bazett. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":550,"text":"9:10","a11yText":"Süre 9 dakika 10 saniye","shortText":"9 dk."},"views":{"text":"698,5bin","a11yText":"698,5 bin izleme"},"date":"10 oca 2022","modifyTime":1641834461000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qHnXE_h5c2M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qHnXE_h5c2M","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":550},"parentClipId":"6173906321388923249","href":"/preview/6173906321388923249?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/6173906321388923249?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10742302042762857256":{"videoId":"10742302042762857256","title":"05 - Sine and Cosine - Definition & Meaning - Part 1 - What is Sin(x) & \u0007[Cos\u0007](x) ?","cleanTitle":"05 - Sine and Cosine - Definition & Meaning - Part 1 - What is Sin(x) & Cos(x) ?","host":{"title":"YouTube","href":"http://www.youtube.com/live/vuoNyvMvDtA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vuoNyvMvDtA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWdMODFsYzdET0xOaG5lbDFfSjZWZw==","name":"Math and Science","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+and+Science","origUrl":"http://www.youtube.com/@MathAndScience","a11yText":"Math and Science. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2885,"text":"48:05","a11yText":"Süre 48 dakika 5 saniye","shortText":"48 dk."},"views":{"text":"1,9milyon","a11yText":"1,9 milyon izleme"},"date":"23 haz 2020","modifyTime":1592916349000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vuoNyvMvDtA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vuoNyvMvDtA","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":2885},"parentClipId":"10742302042762857256","href":"/preview/10742302042762857256?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/10742302042762857256?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10755876190564654427":{"videoId":"10755876190564654427","title":"\u0007[cos\u0007](-x) | \u0007[cos\u0007](-A) | \u0007[cos\u0007](-theta) | Identity for \u0007[cos\u0007](-x) | value of \u0007[cos\u0007](-A)","cleanTitle":"cos(-x) | cos(-A) | cos(-theta) | Identity for cos(-x) | value of cos(-A)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Na2iu-D5P9w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Na2iu-D5P9w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMGJMQUNocmNjU0xSUVNqWmsxNDNXZw==","name":"Ravi Ranjan Kumar Singh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ravi+Ranjan+Kumar+Singh","origUrl":"http://www.youtube.com/@RaviRanjanKumarSingh","a11yText":"Ravi Ranjan Kumar Singh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":128,"text":"2:08","a11yText":"Süre 2 dakika 8 saniye","shortText":"2 dk."},"views":{"text":"12,1bin","a11yText":"12,1 bin izleme"},"date":"5 şub 2019","modifyTime":1549324800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Na2iu-D5P9w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Na2iu-D5P9w","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":128},"parentClipId":"10755876190564654427","href":"/preview/10755876190564654427?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/10755876190564654427?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14142943240466626521":{"videoId":"14142943240466626521","title":"Integrals of powers of \u0007[cos\u0007](x) - \u0007[cos\u0007]^6(x) dx","cleanTitle":"Integrals of powers of cos(x) - cos^6(x) dx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WimAAyZW764","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WimAAyZW764?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWgyNTEwZTBBSjVCRWNvcHJ0bXdiZw==","name":"MasterWuMathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MasterWuMathematics","origUrl":"http://www.youtube.com/@MasterWuMathematics","a11yText":"MasterWuMathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":633,"text":"10:33","a11yText":"Süre 10 dakika 33 saniye","shortText":"10 dk."},"views":{"text":"7,2bin","a11yText":"7,2 bin izleme"},"date":"1 ara 2015","modifyTime":1448928000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WimAAyZW764?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WimAAyZW764","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":633},"parentClipId":"14142943240466626521","href":"/preview/14142943240466626521?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/14142943240466626521?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6031551655068242742":{"videoId":"6031551655068242742","title":"cosine Function \u0007[Cos\u0007] (-x) = \u0007[Cos\u0007] x","cleanTitle":"cosine Function Cos (-x) = Cos x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HsXSyqFNDsc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HsXSyqFNDsc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX19wNENELVJXTG5ZWm5JNFNSN3ZWUQ==","name":"ProTeacher","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ProTeacher","origUrl":"http://www.youtube.com/@anshumaninstitute","a11yText":"ProTeacher. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":342,"text":"5:42","a11yText":"Süre 5 dakika 42 saniye","shortText":"5 dk."},"date":"2 haz 2015","modifyTime":1433203200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HsXSyqFNDsc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HsXSyqFNDsc","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":342},"parentClipId":"6031551655068242742","href":"/preview/6031551655068242742?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/6031551655068242742?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6658885321012211513":{"videoId":"6658885321012211513","title":"What is the meaning of Sin or \u0007[Cos\u0007] theta?","cleanTitle":"What is the meaning of Sin or Cos theta?","host":{"title":"YouTube","href":"http://www.youtube.com/watch/2p1RbZZxbdM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2p1RbZZxbdM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUx2ZF8ycHlDX1ktU2o0eTF3WnFMZw==","name":"Garg University","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Garg+University","origUrl":"http://www.youtube.com/@laramie123","a11yText":"Garg University. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":720,"text":"12:00","a11yText":"Süre 12 dakika","shortText":"12 dk."},"views":{"text":"179bin","a11yText":"179 bin izleme"},"date":"28 kas 2015","modifyTime":1448668800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2p1RbZZxbdM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2p1RbZZxbdM","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":720},"parentClipId":"6658885321012211513","href":"/preview/6658885321012211513?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/6658885321012211513?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7576703401418446621":{"videoId":"7576703401418446621","title":"\u0007[Cos\u0007] x Graph || Domain and Range of \u0007[cos\u0007] x || Period of \u0007[cos\u0007] x","cleanTitle":"Cos x Graph || Domain and Range of cos x || Period of cos x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nPGehWedYYA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nPGehWedYYA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZjNpaHVSZFJsYVluQ0x1Rm9XRlBSUQ==","name":"S A Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=S+A+Mathematics","origUrl":"http://www.youtube.com/@SAMathematics73","a11yText":"S A Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2114,"text":"35:14","a11yText":"Süre 35 dakika 14 saniye","shortText":"35 dk."},"date":"21 oca 2024","modifyTime":1705795200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nPGehWedYYA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nPGehWedYYA","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":2114},"parentClipId":"7576703401418446621","href":"/preview/7576703401418446621?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/7576703401418446621?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14988775306520052221":{"videoId":"14988775306520052221","title":"\u0007[COS\u0007] 302: Practical Multivariate Differentiation","cleanTitle":"COS 302: Practical Multivariate Differentiation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xemqzd_0i8s","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xemqzd_0i8s?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDN3FGWWE0SFZvdWZLY3otMnEzcHI3QQ==","name":"Intelligent Systems Lab","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Intelligent+Systems+Lab","origUrl":"http://www.youtube.com/@intelligentsystemslab907","a11yText":"Intelligent Systems Lab. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1870,"text":"31:10","a11yText":"Süre 31 dakika 10 saniye","shortText":"31 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"12 nis 2021","modifyTime":1618185600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xemqzd_0i8s?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xemqzd_0i8s","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":1870},"parentClipId":"14988775306520052221","href":"/preview/14988775306520052221?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/14988775306520052221?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14383683986215311712":{"videoId":"14383683986215311712","title":"Maclaurin series of \u0007[cos\u0007](x) | Series | AP Calculus BC | Khan Academy","cleanTitle":"Maclaurin series of cos(x) | Series | AP Calculus BC | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/WWe7pZjc4s8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WWe7pZjc4s8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":337,"text":"5:37","a11yText":"Süre 5 dakika 37 saniye","shortText":"5 dk."},"views":{"text":"450,6bin","a11yText":"450,6 bin izleme"},"date":"17 mayıs 2011","modifyTime":1305590400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WWe7pZjc4s8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WWe7pZjc4s8","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":337},"parentClipId":"14383683986215311712","href":"/preview/14383683986215311712?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/14383683986215311712?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13717768663838387873":{"videoId":"13717768663838387873","title":"Why \u0007[cos\u0007](-x)= cosx?","cleanTitle":"Why cos(-x)= cosx?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YUUYse59AlE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YUUYse59AlE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM2ZocjRZYW5aWGVOazQzMUZGZ0FLZw==","name":"Y=mx+c","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Y%3Dmx+c","origUrl":"http://www.youtube.com/@mathew_pang","a11yText":"Y=mx+c. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":739,"text":"12:19","a11yText":"Süre 12 dakika 19 saniye","shortText":"12 dk."},"views":{"text":"22,7bin","a11yText":"22,7 bin izleme"},"date":"30 eki 2019","modifyTime":1572393600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YUUYse59AlE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YUUYse59AlE","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":739},"parentClipId":"13717768663838387873","href":"/preview/13717768663838387873?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/13717768663838387873?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5047182275207449292":{"videoId":"5047182275207449292","title":"\u0007[COS\u0007] Lewis Structure: How to Draw the Lewis Structure for (\u0007[COS\u0007])","cleanTitle":"COS Lewis Structure: How to Draw the Lewis Structure for (COS)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=x5HXeZ49Ajs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/x5HXeZ49Ajs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYVVGNzNZWC11UVRHd0RCMjBJM24zZw==","name":"Wayne Breslyn (Dr. B.)","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wayne+Breslyn+%28Dr.+B.%29","origUrl":"http://www.youtube.com/@wbreslyn","a11yText":"Wayne Breslyn (Dr. B.). Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":120,"text":"2:00","a11yText":"Süre 2 dakika","shortText":"2 dk."},"views":{"text":"25,2bin","a11yText":"25,2 bin izleme"},"date":"2 ağu 2013","modifyTime":1375401600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/x5HXeZ49Ajs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=x5HXeZ49Ajs","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":120},"parentClipId":"5047182275207449292","href":"/preview/5047182275207449292?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/5047182275207449292?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1897638725340761787":{"videoId":"1897638725340761787","title":"Basic Trigonometry: Sin \u0007[Cos\u0007] Tan (NancyPi)","cleanTitle":"Basic Trigonometry: Sin Cos Tan (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/live/bSM7RNSbWhM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bSM7RNSbWhM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":744,"text":"12:24","a11yText":"Süre 12 dakika 24 saniye","shortText":"12 dk."},"views":{"text":"1,3milyon","a11yText":"1,3 milyon izleme"},"date":"15 mayıs 2018","modifyTime":1526413326000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bSM7RNSbWhM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bSM7RNSbWhM","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":744},"parentClipId":"1897638725340761787","href":"/preview/1897638725340761787?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/1897638725340761787?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7319125204343951205":{"videoId":"7319125204343951205","title":"\u0007[cos\u0007](arcsinx) as an algebraic expression, cosine of inverse sine x","cleanTitle":"cos(arcsinx) as an algebraic expression, cosine of inverse sine x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XZne57aKl58","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XZne57aKl58?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":220,"text":"3:40","a11yText":"Süre 3 dakika 40 saniye","shortText":"3 dk."},"views":{"text":"83,4bin","a11yText":"83,4 bin izleme"},"date":"16 oca 2015","modifyTime":1421366400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XZne57aKl58?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XZne57aKl58","reqid":"1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL","duration":220},"parentClipId":"7319125204343951205","href":"/preview/7319125204343951205?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","rawHref":"/video/preview/7319125204343951205?parent-reqid=1769795478166885-5930104407931255088-balancer-l7leveler-kubr-yp-sas-219-BAL&text=COS+SYSTEM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"9301044079312550887219","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"COS SYSTEM","queryUriEscaped":"COS%20SYSTEM","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}