{"pages":{"search":{"query":"NancyPi","originalQuery":"NancyPi","serpid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","parentReqid":"","serpItems":[{"id":"8372858000050192703-0-0","type":"videoSnippet","props":{"videoId":"8372858000050192703"},"curPage":0},{"id":"17114899087870818377-0-1","type":"videoSnippet","props":{"videoId":"17114899087870818377"},"curPage":0},{"id":"1214543894641186426-0-2","type":"videoSnippet","props":{"videoId":"1214543894641186426"},"curPage":0},{"id":"14102572461375447004-0-3","type":"videoSnippet","props":{"videoId":"14102572461375447004"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dE5hbmN5UGkK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","ui":"desktop","yuid":"7119704861769527673"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"4342704706084558132-0-5","type":"videoSnippet","props":{"videoId":"4342704706084558132"},"curPage":0},{"id":"6444415079265789412-0-6","type":"videoSnippet","props":{"videoId":"6444415079265789412"},"curPage":0},{"id":"15841895844880990042-0-7","type":"videoSnippet","props":{"videoId":"15841895844880990042"},"curPage":0},{"id":"1730985809397540321-0-8","type":"videoSnippet","props":{"videoId":"1730985809397540321"},"curPage":0},{"id":"2515962507896417478-0-9","type":"videoSnippet","props":{"videoId":"2515962507896417478"},"curPage":0},{"id":"13315109333605268476-0-10","type":"videoSnippet","props":{"videoId":"13315109333605268476"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dE5hbmN5UGkK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","ui":"desktop","yuid":"7119704861769527673"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"7231366887646331297-0-12","type":"videoSnippet","props":{"videoId":"7231366887646331297"},"curPage":0},{"id":"1107275528919795124-0-13","type":"videoSnippet","props":{"videoId":"1107275528919795124"},"curPage":0},{"id":"11519259727116947522-0-14","type":"videoSnippet","props":{"videoId":"11519259727116947522"},"curPage":0},{"id":"4449485200549904692-0-15","type":"videoSnippet","props":{"videoId":"4449485200549904692"},"curPage":0},{"id":"16600713651883241406-0-16","type":"videoSnippet","props":{"videoId":"16600713651883241406"},"curPage":0},{"id":"13358093349961821997-0-17","type":"videoSnippet","props":{"videoId":"13358093349961821997"},"curPage":0},{"id":"17236668885635337886-0-18","type":"videoSnippet","props":{"videoId":"17236668885635337886"},"curPage":0},{"id":"1696301533094749607-0-19","type":"videoSnippet","props":{"videoId":"1696301533094749607"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE5hbmN5UGkK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","ui":"desktop","yuid":"7119704861769527673"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DNancyPi"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"7576613973888862876724","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472350,0,57;1466867,0,33;1457615,0,80;1473742,0,29;1460716,0,30;1460214,0,47;1312966,0,37;1152685,0,43;1459323,0,12;132354,0,93;123850,0,75;1464523,0,75;1470250,0,97;1282205,0,22;1469597,0,86;1466295,0,12;1465947,0,41;1470794,0,17;1466082,0,91;1467160,0,13;1467149,0,91;1464404,0,27;1146115,0,70;1470513,0,89;260561,0,68;1473864,0,70;1404017,0,6;263461,0,87;255406,0,87;1466270,0,0;1469393,0,43;1470414,0,97;151171,0,36;1281084,0,24;287509,0,56;1447467,0,69;1231503,0,50;1473595,0,45;1466396,0,45;681841,0,11"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DNancyPi","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=NancyPi","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=NancyPi","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"NancyPi: Yandex'te 1 bin video bulundu","description":"Результаты поиска по запросу \"NancyPi\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"NancyPi — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y33b83c97408034bbb3f98a0f167c8773","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472350,1466867,1457615,1473742,1460716,1460214,1312966,1152685,1459323,132354,123850,1464523,1470250,1282205,1469597,1466295,1465947,1470794,1466082,1467160,1467149,1464404,1146115,1470513,260561,1473864,1404017,263461,255406,1466270,1469393,1470414,151171,1281084,287509,1447467,1231503,1473595,1466396,681841","queryText":"NancyPi","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7119704861769527673","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769527692","tz":"America/Louisville","to_iso":"2026-01-27T10:28:12-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472350,1466867,1457615,1473742,1460716,1460214,1312966,1152685,1459323,132354,123850,1464523,1470250,1282205,1469597,1466295,1465947,1470794,1466082,1467160,1467149,1464404,1146115,1470513,260561,1473864,1404017,263461,255406,1466270,1469393,1470414,151171,1281084,287509,1447467,1231503,1473595,1466396,681841","queryText":"NancyPi","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7119704861769527673","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"7576613973888862876724","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":159,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7119704861769527673","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"8372858000050192703":{"videoId":"8372858000050192703","docid":"34-1-5-Z5F3A3BCDFD4D35B8","description":"MIT grad shows how to find derivatives using the rules (Power Rule, Product Rule, Quotient Rule, etc.). When? (NancyPi) For my video on the Definition of the derivative: • Derivatives... What?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3657547/f78406e9cb91662eadf4354c81ab16cd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/X3-pbwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQqF3i1pnyzU","linkTemplate":"/video/preview/8372858000050192703?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivatives... How? (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QqF3i1pnyzU\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoVChM4MzcyODU4MDAwMDUwMTkyNzAzWhM4MzcyODU4MDAwMDUwMTkyNzAzapIXEgEwGAAiRBowAAopaGh5d2dtcmd4ZnRkeW16aGhVQ1JHWFYxUWx4WjhhdWNtRTQ1dFJ4OHcSAgARKhDCDw8aDz8T5QaCBCQBgAQrKosBEAEaeIH6BwAG-gYABQQOBfoI_AIHAwkJ-P__AAj8AAMEA_8AA_vy-fsBAAD4BxP7AQAAAAH3AQT2_QEA_gX8_wQAAAAM__j7BgAAAAsN8AL_AAAAAvYKBvUCAAEIBQQBAAAAAPwH_vwG-gH_-_sCAwAAAAAH8_EJAAAAACAALSv14zs4E0AJSE5QAiqEAhAAGvABcPjz_ubv-gPr7ssBjv0O_qEzA_8wBu0AgQ0HAqgS5__TBwsAE_XNAirB_P__H0AB-xTP_-HmCAAX8fv_KCLjAc8NLQDu9ekBIO0CAQfl7P4QAPP_Cgwc_wDn8QAoCxT_JxoK_cMA2QAB-fb_FOQAAS3JFwMD9f4GAgQEB-wuCP4NBeH95g0f_fkD8_wBMSABAgc3B9b82AH66R779A3x-znn-AD59tgC8u_79f_T_AAKFwXw3ureAwfoKQfkHxP9GwYiAP3y8PkIDAj_Lhf5_fMTBvsZ6ez7Mh_y9gTn9_oGHO3o8QIYAOcQBxUE2wIWIAAt99kWOzgTQAlIYVACKs8HEAAawAeA7tO-Ed7DuuXolrythSm-3X1pPZTphjqetVu9D19rPUf6_jzqUYI8ET5vvAf1yLy3DZO-G1QTPBu0HL3LgDM-5tGIvZhiMzxxPVq-5xa_PYVMqLwx6iq-unDWOkESEb3BOj4-ia4QPeUrQb1-eXw9GcWyvBaePDwR8WC9IwUAvR0zljuYrWu9F-VDvbxJAr25F309t5c0vHcdYDwJldE7TZEuOxGdLzztyAI9KxI4PJE2I7wU8AY9BUFTOzo3krvHTAI-SAwsPV4cCz01_xk9mmmBPc_-27yDvpS9U_0UO9tjzrwQZgm9GWJLPSUi_Lxhiw0-pPOrPKIZejyGd4S9R1QtPd-Zu7vkhv89OXb1PIxvnjwilK28dEuhPc7BszxrufM8MA1IPeM1DjxeliA9KvcMve8ZS7sgooc8-aRuPaBIgbyqHka6gIGAPVTTZDwqhB89aY_2O3HIhryOfHm9lhCkO9btIjsibJ28uYP9vHd7tbzttwY-UofPu7woVbzMyaU9136XPIX-sjsFI6U91gI7vknlmjr54-67W2H6vYUCvjv7eU49KDAXvM1cYDwiiuk9_fsnvcH-a7wxxjC7EqTyvVgrybp-n5s975Y_vPwIFTzOJpa9-p6sPLXhMLsoclK9dDAxPT6p_rvp7Mk8TBjNPV_omrkktru90sQcPMHosLq19Zg9OYKvvHkYA7tSk0U9zvxqvDpm0bssZyo9iqtPvZydUjvZEBK9Sc3ovFpCpTsKDYq7iUgovIKFwbmNYvc7fpOBvPjH9zrAkJs6PBSFPTfmtDgt0Qm-liEuPZ64YLg_Y1C97e17vQ_KOLeox9a9WQ1TvcknP7ieEmu98mMnPI0fQDnRnKu8uWFFPQXaobqy7Ym9NNqqPAOLlrgL1yG8HG98PYzBrLgyv6S8O7UJvVGJErmfEHA9CZ2-OzQgsrmYGTa8eei7vH55tzqWUqE9mvYjPWXNaDdar4M9AY_DvabRWjkp23a85-yzPSefgDeY8ka9AxpWPeTphTiph2i8xVYAvmgWk7edDkc7d58DvkPejLdRavE7Le8FvYXijjcZrUO9J-CyPCbOhzicSFU9Ty2RPN6pnDjyDNM5jq5yvQjgujja2Ha9GllIPbisNDgvphk-eDvMPPzmG7nQMXs8aVmSPFHaRjjOcjS8XQ_Lvahwm7eUtKy8bK00PQQY87Veqki9OukdvrRj-rijf_q7MSQXPoz9ULe4H7C8r4grPSLTlbjaETi9LSuoPPQiJLga22u8sYMQPDqBJDggADgTQAlIbVABKnMQABpgfwMAExMH1c7hFtfS98UTH-X1xwHZIf_-5___O-8R9t_S1ffs_zkE9fiqAAAAIgXoJOMABHe389vv8RkHt8MC6Sx6QQc7s98X-87h8S0YF91bBVtHAOPZxBv-xdMcGg8JIAAtMBgdOzgTQAlIb1ACKq8GEAwaoAYAAIZCAACwQQAA8EEAABRCAABgwQAAQEAAAGhCAABgwQAAHMIAAPDBAACOQgAAAEAAABjCAACYwQAAVEIAADDBAACgQQAAXEIAAKZCAABAQAAAEMIAAODBAACowgAAhkIAAHBBAAAoQgAAQMIAAODBAACeQgAAFEIAAIBAAADgQQAA4MAAAFDBAACUwgAAYEEAAFDBAAB0QgAAyMEAADxCAACgwQAAoEEAAKBAAAAQQQAAFEIAABDBAACowQAAoEEAALBCAADAwAAA0EEAABDCAACGwgAAOEIAABBBAADIwQAAYMIAAEBAAAAwwQAAlEIAAGBBAACWwgAARMIAAGDBAADgwQAAZMIAAFDBAABswgAAlsIAAHDCAADQQQAALEIAAEjCAADgQQAAcMEAAMLCAACmwgAAcMEAADBBAACIQQAAgL8AAKBBAAAAAAAAFMIAAIC_AABQQgAAisIAAODAAAB8QgAAuMEAALDBAABMQgAAwMEAAODAAADoQQAAYMIAAJBBAABwwQAACEIAAEBCAABEwgAArEIAADBBAAAQwQAAYMEAAIBCAAAAQgAA-EEAAIA_AABAQgAAjkIAAHBCAABwwQAAoEAAAEBAAABcQgAA0EEAADBBAACOwgAAXMIAAOBAAADoQQAAMMEAAEDAAABAQQAAOMIAABDBAACAwQAA0MEAAJjBAABwwQAAIMIAAKDAAACkQgAAyMEAAAzCAACAQgAA8MEAABjCAADSwgAAPEIAADBBAACYQQAAyMEAANBBAACuQgAA2EEAAHjCAADAwAAADMIAAADAAACAwQAAwEEAABDCAAAowgAArsIAAATCAAAYwgAAoMEAAI5CAAC4wQAA-EEAAABBAABwwQAAEEEAAChCAADgQAAAIEEAAAhCAADwwQAAgL8AALDBAADAQQAAUEEAABDBAACYQQAA8EEAANBBAAAAQgAAYEIAAJzCAAAEwgAAgMEAALDBAACMQgAAAMIAAGDBAAAwQgAAIMEAACBBAAAwQQAAyMEAAFBBAAAwwQAAuMEAAIA_AAAwwQAAOEIAAEDAAACOwiAAOBNACUh1UAEqjwIQABqAAgAAUL0AAEy-AAA0PgAA2D0AABS-AABkPgAAcD0AAA2_AACCvgAAJD4AAIg9AABUvgAAiD0AAFw-AACAuwAATL4AAFA9AAAUPgAAMD0AAL4-AABVPwAAlj4AAOC8AAA8PgAAnr4AAGy-AADgvAAAyL0AAFC9AAAMPgAA-D0AADy-AABUvgAA2L0AADy-AAB0vgAAFD4AAFy-AAB8vgAAoLwAAOi9AAC4vQAA2D0AAAy-AACOvgAAiD0AAAS-AAAcvgAAiL0AAJa-AADIPQAAuD0AAAQ-AADIPQAADL4AABC9AAB_PwAAEL0AABQ-AACuPgAAMD0AADC9AACIPQAAEL0gADgTQAlIfFABKo8CEAEagAIAAOC8AAAEPgAAUL0AACm_AACIvQAA2L0AALg9AADovQAAQLwAAJY-AADgvAAAiL0AAHA9AABkvgAAML0AAIi9AAC4PQAALT8AAOA8AACmPgAAiL0AAHC9AAC4PQAAUL0AAPi9AAAUPgAA4DwAABA9AAAMPgAAHD4AAOA8AABwPQAAoLwAADS-AABEvgAA6D0AAMg9AAAkPgAAqL0AAEC8AABsPgAAQLwAAOC8AABwPQAAQLwAAGw-AAB_vwAAVL4AAGy-AAB0PgAAVD4AAIC7AACePgAAML0AAJi9AACAOwAAQLwAAEA8AAAEvgAA-L0AAOg9AAAcPgAA-L0AAMi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=QqF3i1pnyzU","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8372858000050192703"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2340119102"},"17114899087870818377":{"videoId":"17114899087870818377","docid":"34-10-5-ZCA027A8158664248","description":"MIT grad explains whether or not you can always factor a quadratic expression. How? (NancyPi) . Support Nancy on Patreon: / nancypi Follow Nancy on Instagram: / nancypi Follow Nancy on Twitter...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4547703/b9b0c4a242c032a300c1c7f6a5a1dbb9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Hab45QEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkxrkxLqW_TI","linkTemplate":"/video/preview/17114899087870818377?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Factoring Quadratics... What If You Can't? (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kxrkxLqW_TI\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoWChQxNzExNDg5OTA4Nzg3MDgxODM3N1oUMTcxMTQ4OTkwODc4NzA4MTgzNzdqhxcSATAYACJEGjAACiloaHl3Z21yZ3hmdGR5bXpoaFVDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dxICABEqEMIPDxoPPxPTAoIEJAGABCsqiwEQARp4geoFAvr-AgD0CQ8JBQb8AQgDCQn4__8A9O4A_fcC_wAEAQH-_wEAAPUK_PkEAAAA7QD_-_sBAAABAQMBBQAAABzwAgH6AAAADA7vAv8BAAD8-QEJ-QEAAAv1AQcAAAAABQoF_wAAAAD-9gkFAAAAAPT7B_z_AAAAIAAtuojVOzgTQAlITlACKoQCEAAa8AF_D-j--tnlBNMFxACTCfv_lzkE_0jy2_-SE_gBtgPeAN8v9v8C6d0AHNkHANU1NAD6Fsr__-IIABvi6f41KAwA7wQaAenl-gEy-xoBEAHh_-IF6AAT-CL_9N_jAjwVCQEXADD9yga2__7jxgD9_Aj7J9oWAg7yEQkS3yoCzUEl_Q4F3f0FGg8E-PH6-vdTGwTkFDUB5uzM_9zQE_vi6-f7OdgOBvIU1f_k6fIEG-v4Au73_Qba6NoECOUuCOUNFQX1EiID_f76-SYtC_c29fQG3Tfz-RL_8AJXCgkE6eMA_P8I9e3bAw4C9BD3DgbyABcgAC0ITwg7OBNACUhhUAIqzwcQABrABykgzb6djAA9ikIGva2FKb7dfWk9lOmGOrzK2r1AGMM9Ik-zu8zSTj3o6Cc8k-V_vPaWYr4FeIE8eT8NvBSUQj5GRRy9c-gAvHE9Wr7nFr89hUyovMLZLb7Yk0q9AgIHvcE6Pj6JrhA95StBvV72az2UNlE7VtzRuimrELzxpKC8JGG-unzOkr0mLaa8cY10vKaohD1M2Ig8gQmcPJSUBT3nON25GbsQPPUlQDyHv6a8oGyKvJVmDr0pnaO8RNsxPGn-KD6LXdM7RwsrPMBOoDzVyBM9DIjavIO-lL1T_RQ722POvC3hmrzLXKo8-gZLvGGLDT6k86s8ohl6PDJ9qr33iYg9cXxlu91gOD4pplw94xs-Ohg-Yr12t3w9Ft8rPGGiRj2rwDo9uhdzPODeMD3f8Mw8EFg9OujuhLzHJXM96a4tOjEtRb0kYLY79LCGPE0dWj1jzW28JIp_vDc2u7yVqiO9urgyPFYf2bzKA2y7ZNrIvF7bGz6a_rI7wq8FPMgozz2--z48wpCLvMU1Qz34UQ2-CW8su2HeozyGPOK9WUlxu2ReYj3O-tS8xx4QPCKK6T39-ye9wf5rvDHGMLsSpPK9WCvJuqd25j1cfIC8gpucO5Ion73OF3u8E-PnO9i_xrzE3lU8f_ExvDBmyzwqpw0-bpMoutPY3r2QEyY84VKtuAuosT3xw_e8mIz7uVgriTwklU69322cO5WNjT3qN5i9hVVvOmkYH7wUIiC9OiakOsIoUjyoIDq9O_afOcoInjxrPji9JIlpOQ0WszwIfIk93Kn4OKw84b1pQ1Q9lVuyOOPi6LwVWIu9ekuyN1Qb_L1iu_u9E9PyOUMIg71DlqC8X6cBuuSCszwO1yo9UONoumgWor3WdYO8AyWTOd804LrDTqw96gkVuEZXUzgWLlC8FkjQuNI_dzwbQKQ824H7OFGfZL1miam8mfFXOVWJ8j0-6UQ8kYoUOUHxAz1xT8G91zh7OZJa6DyL8as9uhvWN1qVDjuQ71c9t3WNuJfJcDyLM6a9rCwsNJ0ORzt3nwO-Q96Mt4goy7taLMW8c2E0OKwJmL1IELY7BKbBN-w5BD0qdo-8UyCRt-GIBD1JyQG9N_maNqppor0kb-87FkajOLEVBD7G__g7MtlTuAu5zjqSvKm8NQ9ktzKU7ry6-Lu9NhcmuOGZkDxVm6k9vZm4t51tyb3U1BK-Hz6RuLnBdTwt7Ak-hifnOEitCz0DdyU9hvZ4uKgNHb2J3AI9ojz2ttgR5ruEP009HsdVOCAAOBNACUhtUAEqcxAAGmAyCQAW-x3R0AQM9f_36wn2Dhbc_xPtAOHzACAQD-sDHbXa5gkAGdr64cAAAAD94O4lvwAGVPHd8xf3Kd_Ru-MZF38i9j359CoSBOb8NgAJ5yAHRgkA6CTFF-_p8jIj_SYgAC29bkg7OBNACUhvUAIqrwYQDBqgBgAAgkIAALhBAAAQQgAAiEIAAIBAAACAQQAAcEIAACjCAAA4wgAADMIAACRCAACoQQAAeMIAAMjBAAAMQgAAwMAAAABCAAB0QgAAmEIAANjBAACwwQAAAMIAAHzCAAD4QQAAAMAAAFRCAADAwQAAYEEAALxCAADIQQAAYEEAALBBAABAQAAAQMEAAJ7CAABYQgAAAEEAAGRCAACAwQAA2EEAADDBAAAIQgAAJEIAALBBAAAAQAAAMEEAAPDBAACIQQAAYEIAAAjCAAC4QQAA0MEAAEzCAACQQQAAgEAAABTCAADgwAAA4EAAAMBAAACGQgAAQMAAAJLCAAD4wQAACMIAAJDCAAAcwgAALMIAAHDCAACUwgAADMIAABBBAAAEQgAAZMIAAEBAAACAPwAAAMMAAMLCAACgwAAA2EEAAKBAAAD4wQAAgL8AAJBBAAC4wQAAAAAAALhBAAAkwgAA4EEAAOhBAAAAwAAATMIAAIRCAADowQAAdMIAADxCAAAYwgAAAMEAAOjBAADQQQAAmEEAABDCAACYQgAAYEIAABDBAADQwQAAhEIAAIBAAAA8QgAAuMEAAARCAABAQgAAsEEAAADAAABgQQAAUMEAAHRCAACYQQAAAMAAAKDCAACgwgAAgL8AAAxCAAAgQQAAuMEAANDBAAAowgAAkMEAAJjBAAAgQQAAFMIAAJBBAAAYwgAABMIAAFRCAADAQAAAEMIAAChCAADQwQAAsMEAAOjCAAB4QgAAKEIAALhBAADYwQAAEEEAAGhCAADwQQAAPMIAAAAAAAAMwgAAKEIAAFDBAAD4QQAAJMIAAJbCAACgwgAA0MEAAIDCAADwwQAAnEIAAGDBAADAQAAAUMIAAAAAAAAAQgAAMMEAABhCAAAQwQAAMEIAAATCAADAQAAA8MEAAAxCAAAAQAAAUMEAAIhBAAAAQgAAoEEAANhBAACsQgAARMIAANDBAAAAAAAAYMIAAJBBAABgQQAAIMEAAABCAABAQQAAQMAAABBBAADowQAAgMAAANDBAABswgAA2EEAAADBAAAcQgAAoEAAAKrCIAA4E0AJSHVQASqPAhAAGoACAACCvgAAyD0AAEC8AACCPgAAFD4AAOA8AACWPgAAFb8AAJ6-AAAEPgAAoLwAAHS-AAA0PgAAUL0AAKi9AACIPQAALD4AAEQ-AADYPQAA4j4AAH8_AABQvQAA4LwAAFA9AAD4vQAAmL0AALg9AAAwPQAAJD4AAIC7AAAcPgAAUL0AAIa-AACYPQAA4DwAABC9AAAMPgAAhr4AAGS-AADivgAAdL4AABC9AAAQPQAAiL0AACy-AABwPQAAMD0AABS-AABwvQAARL4AACQ-AABQPQAAFD4AAJY-AAAUvgAA4LwAADs_AABwvQAAhj4AANg9AADgvAAAMD0AAKA8AAB8viAAOBNACUh8UAEqjwIQARqAAgAAHL4AALg9AADgvAAAJb8AABC9AACIvQAA6D0AAIi9AADYvQAApj4AAFA9AAAUvgAAUL0AAAS-AACovQAAyL0AAJi9AAArPwAAiL0AAII-AAAsPgAAEL0AAAQ-AAAMvgAAML0AAIA7AAB8vgAAuD0AACw-AACAOwAAyD0AAEA8AACgPAAAuL0AAEQ-AAC4vQAAkj4AACQ-AAAUvgAAQDwAAMo-AACIPQAAQLwAACS-AAAMvgAAFD4AAH-_AAA0PgAAoDwAABA9AABwPQAA4DwAAJY-AABkPgAAqD0AADA9AAAQvQAAmL0AAAS-AAD4vQAA2L0AAIC7AAAwPQAABD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=kxrkxLqW_TI","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2026,"cratio":1.89536,"dups":["17114899087870818377"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2184534178"},"1214543894641186426":{"videoId":"1214543894641186426","docid":"34-9-16-Z5C01F52912D670EB","description":"MIT grad shows the Definition of the derivative and how to FIND the derivative using that limit definition. How? (NancyPi) Follow Nancy on Instagram: / nancypi Twitter: / nancypi Introduction to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2796879/ab10fda6e3bcc9084bc7c1145d4520fd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1V4uxwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-ktrtzYVk_I","linkTemplate":"/video/preview/1214543894641186426?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivatives... What? (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-ktrtzYVk_I\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoVChMxMjE0NTQzODk0NjQxMTg2NDI2WhMxMjE0NTQzODk0NjQxMTg2NDI2apIXEgEwGAAiRBowAAopaGh5d2dtcmd4ZnRkeW16aGhVQ1JHWFYxUWx4WjhhdWNtRTQ1dFJ4OHcSAgARKhDCDw8aDz8T5QaCBCQBgAQrKosBEAEaeIHxBQMB-wUABQQOBfoI_AIHAwkJ-P__AAD-AwMHBf4A_v769wEAAAD3BAn9_wAAAPfz_gn4_wEA9AX6_AMAAAAG9f37BAAAAAIL-Ab-AQAABfcMBwP_AAAM_v0BAAAAAPwH_vwG-gH_9____wAAAAD_9_4G_Pb-ACAALRIG4Ds4E0AJSE5QAiqEAhAAGvABf_44AfgJ5wIj_cUA5w0HAcD6Pf9A9vIAlygdAtnx7QEFIeAACtzN_zIBG__93hj_5xnb_9vCDgAy39f_5PjUALH_-gDu2usAFBcJAQgIBgDTGAH-8QENAviy-gHjISb_KBoK_REf_wILDuUCJfsuAfgBJgYICfAEAgQECPMpFwTwFNT929z8A9YK8ALS7B4C9f4O-Rr73v8j5fYC7_jkCRHgJf0OE9AAHA349wEBDPgTBw0L0b3z_egMJQT1J-v_8_cmAsLP-PcLChf0SCIL-wEGAwr38uwDMx_y9g_J-fIL-fEEEv0M9s387Awv-P0SIAAtpO8TOzgTQAlIYVACKs8HEAAawAeyDse-51kkPN8Kl7xMGA2-p5q0PFQ9F7wNVEY9-jyAPUsdhL0rUfY8c77YPDp0erzY1Hm-BQRJvfOGBb3LgDM-5tGIvZhiMzyeYoW-kbp9PSxzhLyuDoC9fEQMvYZHDzzBOj4-ia4QPeUrQb0nwHA99M4ZvE-x6rxuCEQ8mNlMvdsz6LuX1J47rFuYvaHQl7w-dlc9ONYHPJ7BE7wIqQC99vYdPfzPkDw1mAY-wHLnOxx8oby31aw758wxPdk-BL0r2fE9PX0EvS8BUzw8rCY84NadPP56KrxogEG9a5mxvP6co7tBCwk9vuxIPRFKqbx3SzI-MetFvMnU0zwb6VY8cbXpvBlVSDuo_As-pYOVPSSOhrx6tl29aUA4PY-axLu60tc8yEmcPeYDBrvuvb49ucpOvX-sljw0Bbw9hoNOPBuyCTxG9Yw9cf9xvTgGrrzq48Y8evGPPdJvobv3Bjo8AEJ6Pa4kIDyn3I46gihOvR_eTrw-Mrc9uZ3HPMplpziKPp89_LgHPIBsSLwFI6U91gI7vknlmjokRg89qjuAvU10DrsGuwG9x6dbPd-BizwiGyg-sWnKvNulyzrDqrC9ZcM6vegnwbsDvSY9NL_1vJRQuDv8MbK9y0GqPQMfQLlL2K28qxW3vcWaAryd-Ki76ZFwPVXnRbt1WwK-w1b_vCvP5Lm0YFg9z_npPMQvqzqoktw8O8C4PUXGKro9SM899QZJPS2_obp19Xm9tbe1vaz_lLrqOEO9wSkCPayPqDnkKTA9pVYOvfHYDTvR6I69ZWerPW_wgLkt0Qm-liEuPZ64YLibA-S9pVBxvVJCUbmox9a9WQ1TvcknP7gc1g89WmKlPHBd5blyMZa9xR4aPSwgljlm9Ki9w1ACPV0hiLmNP_Y88YF9PUIe07id-IU84gQmvDh8tbjFTZc9RCBNPf7K6jiuqk092MNbOuPPijlR2vs9fptvPYOETDhDpqE8mgmGvERBpbjtgyw83mSqPV7pvbisYya8BlZEvOQuALmLhSa9TcF1vavq6jjTzwg8ZjHRvT5LlzZdO8y9ofOeO0zWfjiVEp28hmE2PYN52ThrEay7i4DxuwU9hTibPdA9_oqLvdqhkjhcRMq7fcXDO31dkzfB4ys-3KVovAeJdLmGC688QyY0vVrcUbimP5C9l-ZxvQ5_hbc6ShS9HbdOvF_02LfcjVS9nSezvSw0ErigSlI9BziOPRWSjDgRG6y8zC85vQYVfriQONq8FeWyPcSiLTe9tBK6WZ-XvfJmM7ggADgTQAlIbVABKnMQABpgZAcADgQA6t_4G97p6swDF-Tr5e7zFgDy6QD8HtweDuv91fTtADHqCvm_AAAABQT3DdUA-lvX89T9DQ4Bw8QG5zV_MwMtudcY6dro3ycU9eky_ik7APjs2gvxxdwl_gYKIAAtbepCOzgTQAlIb1ACKq8GEAwaoAYAAGBCAACgwAAAUEIAAIBAAAAAwQAABEIAAJRCAADwwQAAyMEAADTCAADgQQAAMEIAAATCAACAwQAABEIAAGBBAAAUQgAAYEIAAMBCAACwwQAAAMAAABjCAAA8wgAAYEIAAIA_AABYQgAATMIAAADBAAB0QgAAoEEAAIjBAAAYQgAAkMEAACDBAADCwgAAcMEAAJBBAAAIQgAAAEAAAEBAAACYwQAAYEEAAMDAAADwQQAAEEIAAKDBAAAgwQAAGEIAAIJCAADwwQAAMMEAAFTCAABgwgAACEIAAMBAAABAwAAAUMIAAFDBAACgwAAAikIAABBCAACAwgAAUMIAAPjBAAAEwgAAZMIAADDBAACYwgAAfMIAAEjCAAAAQgAAuEEAAKbCAAA8QgAAYEEAAMjCAACKwgAAEMIAAJhBAAAYQgAAqMEAAIhBAAAAwQAA4MEAAADBAADYQQAARMIAAJDBAACMQgAAEMEAAKjBAACCQgAAuMEAAEDBAACgQQAAsMIAAKhBAADIwQAAEEIAAHBCAABUwgAAfEIAAIhBAABgwQAASMIAAJ5CAADoQQAABEIAAMDAAAAUQgAAXEIAAOhBAADgwAAAAMAAAHDBAAAQQgAALEIAAJhBAACCwgAAkMIAAIC_AABwQQAAyEEAACDBAABwwQAACMIAAEDBAADAwQAA8MEAABBBAADYQQAAeMIAAJDBAACOQgAAiEEAABDBAAAgQgAA-MEAAOjBAACswgAAPEIAACBBAACAvwAA4MEAAAAAAABsQgAAQEAAAJjCAACgwAAAOMIAAIC_AADgQAAA2EEAACzCAAAYwgAAisIAAGjCAAAMwgAABMIAAKxCAADwwQAAFEIAABBBAAAEwgAAAMAAABRCAAAAQQAAIEIAAKpCAAD4wQAAoMAAAAjCAAAYQgAAQMAAAODBAACIQQAAAEIAADBCAAAAwAAAgkIAAKTCAABwwQAAoMAAAHDBAACQQgAAcEEAABDCAAAAAAAAoEEAADBBAACYQQAAQMEAAOBAAAAUwgAAwEAAAMBBAAAMQgAAAEIAAHBBAAB8wiAAOBNACUh1UAEqjwIQABqAAgAARL4AAJi9AAA8PgAA-D0AAFy-AACCPgAADD4AAOa-AACSvgAAHD4AANi9AACevgAABD4AABQ-AABEPgAA2L0AALg9AADgPAAAuD0AAHw-AAB_PwAAmj4AAOg9AAA8PgAAhr4AABy-AAAEvgAAmD0AAJi9AADgPAAA6D0AACS-AABMvgAAzr4AAEy-AADuvgAAmD0AADS-AAB8vgAAuD0AAOC8AACCvgAAbD4AAJi9AAAcvgAA6D0AAJi9AACavgAAyL0AAK6-AADgPAAAmD0AALg9AABwPQAAgDsAAHA9AABhPwAAqD0AADw-AAC6PgAAyD0AABS-AACYPQAAyL0gADgTQAlIfFABKo8CEAEagAIAAEy-AABcPgAAQLwAADm_AABAPAAAuL0AAEQ-AAA0vgAAoDwAALI-AABAvAAAEL0AADA9AAA8vgAALL4AADC9AAAQvQAAMz8AAIg9AACiPgAAMD0AABC9AAA8PgAA2L0AADy-AAD4PQAA6L0AAPg9AAAQPQAAUD0AAHA9AACYPQAAMD0AADy-AAD4vQAAqL0AAEQ-AAAEPgAAiL0AAEC8AACePgAA4LwAABC9AACIvQAAQDwAAFQ-AAB_vwAATL4AAAS-AACePgAAnj4AAAQ-AADaPgAAmD0AAKC8AACAOwAAmL0AANi9AABQvQAAZL4AAJg9AAAEPgAAHL4AAFC9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=-ktrtzYVk_I","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1214543894641186426"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2928123484"},"14102572461375447004":{"videoId":"14102572461375447004","docid":"34-0-4-ZD0D57401D99E1914","description":"Q&A with Nancy! Nancy, formerly of MathBFF, answers your questions on her new math channel, NancyPi. Support Nancy on Patreon! Help make new videos possible: / nancypi Follow Nancy on Instagram...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/404150/bdfca63e187b08438bdde8dffbe2d358/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/5hlJtAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOe2VbbShLpI","linkTemplate":"/video/preview/14102572461375447004?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nancy answers your questions (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Oe2VbbShLpI\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoWChQxNDEwMjU3MjQ2MTM3NTQ0NzAwNFoUMTQxMDI1NzI0NjEzNzU0NDcwMDRqtQ8SATAYACJEGjAACiloaHl3Z21yZ3hmdGR5bXpoaFVDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dxICABEqEMIPDxoPPxPsAoIEJAGABCsqiwEQARp4gfwJAP37BQD_AfkG-Qf-AvED_Aj6__4A8QH_BfYBAAD9Av8E_wEAAPIBAPv_AAAA9_j3BAH_AAACDQD8BAAAABP6Cf0BAAAABgP2Af8BAAD8-AL_Av8AAAD_AAkAAAAAAAUKAwEAAAAE-wQDAAAAAPj98wMAAAAAIAAtowvhOzgTQAlITlACKoQCEAAa8AF_DhgC0wI2AUrzIwD99O4BvAoW_2kQFQDG9AkAIOn-APkKEgAk8Qr_KPMhABUSDwDY6v__AwbuAOUcCf_PD_EAxQYNAdj99AD38_YB8PEa__cH6f8tBP0AHQUB_wj9CAMT3fb_AeUF_yzuHQEiABD-7O4GBAXtB_8J8fX9DdsJ_gcsCgL_zQoD__Tv_wMgCP8W7f4B7fkEAwv_6AD_IQIFHRzp_wQZBQH49ecD_L0N_PXS6P3g5foA_PgL_fHzAwP3Bvb_5BH4AAb7CQX-9AL5KD4JCvPr9_r6Jvj0-gwRBP_3AQH5E_sANukR_wr5Af0gAC30Fzc7OBNACUhhUAIqcxAAGmAuBQATHh7Rjg0y3vcCvuYCExff-vYG_-33_wcKD-b6CwbS2B7_JALlBrcAAAAQFRw71QALW-zUzSYN-TTR5RcLAH8iAwPg8Rn4BAH0KBX5GTD8DW8A8TzI9tnTNjcl8RUgAC2NqDU7OBNACUhvUAIqrwYQDBqgBgAAgEEAAKJCAACwQQAAnEIAAKDAAAAEQgAACEIAABTCAACwwQAACMIAAEBAAAD4QQAAsMIAAJDBAACIQgAAMMIAAChCAADoQQAAhEIAABRCAADYwQAAXMIAAOjBAACiQgAAQMEAAJhBAAB4wgAA8MEAAGxCAACIwQAA0EEAAIjBAACAvwAACMIAAGDBAACAwQAA4MAAACBBAAAkwgAAgEAAAIDAAADgQQAADEIAAOBBAACAQAAAcEIAABDBAADQwQAAXEIAAEDCAAAwwQAAyMIAACzCAACAPwAAoMEAAFDBAACaQgAA4EAAAOjBAAB8QgAAqkIAAPDBAAAMQgAA2MEAAEBBAAAwQQAAEEEAAPjBAADqwgAA4MEAACDBAACWQgAAmsIAAOhBAADgwQAAiMIAAHTCAABQQQAAOEIAABhCAACAwQAAAEAAAHRCAADYwQAAiEEAACBCAAAgwgAAkEEAAGxCAACAwgAA-MEAADBCAABQQQAAAEAAALhBAAAkQgAAAMAAACBBAADIwQAAQEEAADDCAAB8QgAAiMEAAGDBAABQwgAAcEEAAMhBAACAvwAANEIAAFxCAACgQQAAVEIAAIbCAABQwQAAgEAAAAxCAAB0QgAAwMAAACTCAADIwQAAOEIAADDBAACAPwAAyEEAADDBAABgQQAAyEEAANBBAAAAQgAAIMIAAOBBAAC4wQAAEEEAAJhCAAAQwgAAGMIAADxCAAD4wQAAqMEAAEDCAADYQgAABEIAAIjBAACIwQAAkMIAAIBCAACIQgAAgEAAAODBAADYwQAAmEEAAGDBAABYQgAAgMEAAPhBAAA4wgAAmEEAAITCAADoQQAAWEIAADzCAAAYwgAAgL8AAHDBAABowgAAQMIAAIhBAABEwgAA-EEAACDCAAC4QQAAKMIAAMBAAABkwgAAQEEAAKjBAABMQgAAgD8AAHBBAACmQgAAYEEAAAzCAACYQQAAaMIAAEBBAACYQQAAFMIAALBBAABYQgAAAMAAAEDCAACAwgAAIEIAAEBAAABUwgAAEEIAAAhCAABAQAAAYMEAACTCIAA4E0AJSHVQASqPAhAAGoACAAD4vQAAhr4AADw-AACoPQAAoLwAALo-AABAvAAAAb8AAFS-AAC4vQAAqj4AAJi9AAAUPgAAPD4AABA9AACSvgAAzj4AAEA8AACovQAA1j4AADU_AAB8PgAAED0AAII-AAA8vgAAJL4AAOA8AAAwPQAAgDsAABw-AABsPgAAuD0AAIa-AAAQPQAABL4AAJq-AAAkPgAAML0AAJK-AACIPQAAED0AAOi9AABQPQAAQDwAAJ6-AADSPgAAJD4AAFS-AAAQvQAAmr4AADC9AACAuwAAij4AAJo-AACKvgAAMD0AAH8_AAC4vQAA-D0AACw-AABUvgAAoLwAAIC7AAC-viAAOBNACUh8UAEqjwIQARqAAgAAND4AADC9AADoPQAAE78AAEy-AABQPQAAyD0AANg9AAAwvQAAhj4AAGy-AABwPQAA6D0AAIa-AACgvAAAED0AAAy-AABtPwAATL4AAKo-AAAQPQAAmr4AAPi9AACgPAAA-L0AADC9AABMvgAA-D0AABC9AAAQPQAAEL0AAKC8AACePgAARL4AAHw-AACCPgAArj4AABA9AAAUvgAA2D0AAJ4-AABkvgAAPL4AAAS-AACgPAAAcL0AAH-_AABUvgAAwr4AAHy-AADoPQAA2D0AAMY-AAAUvgAAJL4AAMg9AAAMvgAAEL0AAKA8AAAEPgAAHD4AAIo-AABcvgAAQDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Oe2VbbShLpI","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14102572461375447004"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3535246978"},"4342704706084558132":{"videoId":"4342704706084558132","docid":"34-5-10-Z74B6B7A65CE06684","description":"MIT grad shows how to find antiderivatives, or indefinite integrals, using basic integration rules. How? (NancyPi) Follow Nancy on Instagram: / nancypi Twitter: / nancypi 1) Power RULE: If...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3661512/ca2dd022dc720646512730167fde8de3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Poe7ngAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3De1nxhJQyLYI","linkTemplate":"/video/preview/4342704706084558132?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Basic Integration... How? (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=e1nxhJQyLYI\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoVChM0MzQyNzA0NzA2MDg0NTU4MTMyWhM0MzQyNzA0NzA2MDg0NTU4MTMyaocXEgEwGAAiRBowAAopaGh5d2dtcmd4ZnRkeW16aGhVQ1JHWFYxUWx4WjhhdWNtRTQ1dFJ4OHcSAgARKhDCDw8aDz8TqAeCBCQBgAQrKosBEAEaeIH8Agn7_QQA_wH5BvgH_gIM_vsI9___AAgHEAcCA_8A9_kA9wEAAAD4BQICAAAAAPn2CvT8_gAABgAM_wQAAAAV8Pf3_QAAAAIU9Pj_AQAA8wQK8gIAAAAO_gEIAAAAAPgAAAIG-v8BBPQCBwAAAAAI8_kCAAAAACAALbR03Ds4E0AJSE5QAiqEAhAAGvABfxQSBMMD3v59Af0BoAkF_bUD9wDl9v8A8PkAAO78_gANBAUA6P8L__QD9gAfBvb_4wUP_yn2-QAJAA3_J-XwAN0DEADo9foAIfj8AAP59QDw-gEA9_gIAAf5-_8mDQUAHu8C_v8J8gEFAA0A6Pj4AQH7BgTn_P0EAf_w_x8Q6QH29Bf_ChTwAfgAGf8IEf7_A__9_BHyDwPsBA7_4Bz3ANj98AES4w8D__78Au7s7QD1DQz9BQH__PP9AgECDvz8FvgK_xH4_fn7ABAJBwj5-wH-AQDu6Q3_7-sBBBDxE_z_9w76AugJAfEB_f7-CAMCIAAtyS1YOzgTQAlIYVACKs8HEAAawAdma8W-fnN_vCNN-rtmTge-_iqfu4L4pbzvLXY8GUeLPebqR7z90qc9CbIUvUv9oTyz8HW-x9CWvEVkQDnLgDM-5tGIvZhiMzzv5U6-EKhDPRiswLum1AW-P0ypugVmqryw5ws-UbcauwWxAr12CT09jmNavItSH7yFYHW9GxZevYF-OryX1J47rFuYvaHQl7z7ipo82ip3vOWtxDwLVRs95J_8uzjU1rvtyAI9KxI4PJE2I7wRbcc86XWVvHqKHrwED8I9IiaHPRBKTjyxh7Y8_dodPKdrV70_1Cy9eKI6PVV9uLwRFlu7V1x8PeMkI72T_t49lPVAPJ9nfTwvej29CUr2PIe_B7wnFxM-T9VzPRWpsDwYPmK9drd8PRbfKzyxN8w8MnaCPIr1P7oA8oQ9iSsCPfgrLjzpdgA9MGIEPRsHxTsBvZW8VIhsPTELVjnHizs94JXuPLSAv7y58iO8onnlPBqpUrw4PIO9k7g9veXbsbzRk9I9fUXxu-jJq7yRi5A9itHvulUr2ToFI6U91gI7vknlmjr54-67W2H6vYUCvjt4bUU9CQQQPXHOozxu_Ok9TOStvStzqbtm-iC9FK_SvcHsljtj3a497G8mO2vLaztVdJq9m1R0Pdo-Hjw0kYi99KZiPX5m2rswZss8KqcNPm6TKLoozJW9gPkgvMtDrju19Zg9OYKvvHkYA7vSWJY9BaiEvU5bHTmVjY096jeYvYVVbzosQla9SGP-vKFdDTvW7gu8FRvpOTZ6LDrYLu085-o9vVN1JrnAkJs6PBSFPTfmtDiSXSm-e5qYPQj3zblvMoW9owVovdwyhzmao429wDaMvbpRlrj4mWm8btyiPFTTZLlFfTe8nfZUPeIyfzrPjcS97e4mPFxlDLmXDaG8SPXCPPQImrihpBu9kKN3u1gforcEHc09U4CDPKJvHzeFf6y8Q5iRupS0XzYDRpI9Pc3uPLZH0DgjrIw99GwGvs9wpTnU7le8pDkSPsX9VblGGia9ftcRPVAAI7ePeAk7_p7IvfHtrzidDkc7d58DvkPejLeUX0e6DWcGPB4xZTcNPw69qW80PRX2uDcWIIA8CFTBuyXkerZSCZG6164_vSZG27c9Tke9MX9gPAnasTiZSt89gHPQPFS4vri85no8nEkgPY9DNjgeKng7JQTrvSO_ZzibS1u9kjynPW1wgTheqki9OukdvrRj-rjK9HA9IuErPvHLijib2HC71ZgLPb8U4bhiglq9WyBmPWQ1uzfPa-y7aFJxu3ZZ0TcgADgTQAlIbVABKnMQABpgLhIAGRgQ1qnwM-IM6-kP9u_71e3j-gC49QAfFAvpARflwPYVADD-3AC8AAAA8eYIPswAIFfP6-b-2gb4BbnlIxd_OB8Q0OkD9_bL8vsC5-oTFx8nAO_wt-YV7BckDxojIAAtkv8_OzgTQAlIb1ACKq8GEAwaoAYAADRCAADgwAAAQEIAAFBBAADgwQAAAAAAAHRCAAC4wQAAMMIAAIjBAAAwQgAAQEEAAFDBAACgQAAAqEEAALjBAAB8QgAAwEAAALRCAABAQAAA6MEAAAjCAACwwgAAWEIAAJDBAABYQgAA8MEAAIDAAACIQgAAQEIAAJjBAABwQQAAyMEAAFBBAADUwgAAMMEAAMDAAAAwQgAAwMEAACxCAADYwQAA0EEAABBBAACAPwAAkEEAALjBAADgQAAA6EEAAGhCAAAgwQAAYMEAADDCAACYwgAAQEIAAFBBAAAQwQAAbMIAAMDAAAAAQQAAQEIAAARCAABAwgAAVMIAAOjBAADowQAAjsIAACDCAAC0wgAApMIAABTCAACYQQAANEIAACjCAACAQAAAIMEAAMrCAACowgAAIMIAADBBAABAQAAA-MEAAOhBAAAAwQAAyMEAAIA_AABYQgAAmsIAAJjBAABIQgAA4MAAAMBAAAAoQgAAwMEAAADAAAAIQgAAcMIAACBBAAAgQQAAyEEAAGRCAAAUwgAAkEIAAChCAAAwwQAA8MEAAIBCAAAUQgAACEIAAODAAAD4QQAAkkIAAHhCAADgQAAAQMAAAMjBAAA4QgAAEEIAAADBAABAwgAAbMIAAABAAADQQQAAFEIAABzCAADQQQAA0MEAABjCAABwwQAAMMIAAOBAAACoQQAAIMIAADBBAACAQgAAcMEAAODAAAAUQgAAiMEAAAjCAACowgAAYEIAAEBAAAAAQQAA4MEAABBBAABIQgAAoEEAAJLCAAAAAAAA2MEAAHBBAACAwAAAZEIAAAjCAAA4wgAAqsIAADzCAAAcwgAA8MEAAIBCAAAwwgAACEIAAAhCAACgwQAA4EEAABRCAAAQQgAA-EEAAIpCAAAowgAAwMAAANDBAAAYQgAAEMEAADDBAADgQQAAkEEAAARCAADAQQAAlkIAAKrCAAAAwgAAgMAAANjBAACMQgAAcMEAAMjBAAAAAAAAAEEAAKDAAACoQQAA0MEAABDBAAA8wgAAIMEAAIhBAACIwQAAkEEAAIhBAACcwiAAOBNACUh1UAEqjwIQABqAAgAAnr4AAMa-AAAQvQAA6D0AAHA9AABUPgAAdD4AADW_AABwvQAAiD0AAIg9AAD4vQAAMD0AANg9AAAwvQAAPL4AAHw-AACYPQAA4LwAADc_AAA5PwAALD4AALg9AABwPQAA2L0AAGw-AACIPQAAUL0AAAS-AAC4PQAAdD4AAJi9AACavgAAZD4AABy-AAA0vgAAmD0AACy-AABsvgAAcD0AAEA8AADYvQAAML0AAEC8AACAuwAA2D0AAOi9AADSvgAAgr4AAJa-AABsvgAAmD0AAKI-AACePgAABL4AAIC7AAB_PwAAyL0AALi9AADSPgAAJL4AAEw-AAAUvgAArr4gADgTQAlIfFABKo8CEAEagAIAAAS-AAA8PgAAgr4AAD-_AABkvgAAEL0AALo-AAA0vgAAoDwAAMI-AACgPAAAUL0AAFA9AADIvQAAUL0AABC9AADYvQAAFT8AAKC8AAC2PgAAoDwAAES-AADYPQAAmL0AAPi9AADYPQAAfL4AAKg9AABwvQAAyL0AAIA7AABQPQAAqD0AACS-AACgvAAABL4AANo-AAD4PQAAqL0AABy-AACmPgAAQLwAAIi9AABwvQAAFD4AAFw-AAB_vwAA-L0AAKi9AADYPQAA3j4AAOC8AAA0PgAA-D0AABS-AAD4PQAAuL0AABS-AAAsPgAAgLsAAFw-AABwPQAAsr4AAKA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=e1nxhJQyLYI","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4342704706084558132"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"285989702"},"6444415079265789412":{"videoId":"6444415079265789412","docid":"34-10-16-Z8B91F7F34C074956","description":"MIT grad shows what a limit is, how to read the notation, what it means on a graph and how to find the limit on a graph. To skip ahead: 1) For how to understand limit Notation and the Concept of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4364898/f252a895b7b05c6782ce6d30adeb8b14/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9dOrnwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DpoBobcFn1Co","linkTemplate":"/video/preview/6444415079265789412?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Limits (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=poBobcFn1Co\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoVChM2NDQ0NDE1MDc5MjY1Nzg5NDEyWhM2NDQ0NDE1MDc5MjY1Nzg5NDEyapIXEgEwGAAiRBowAAopaGh5d2dtcmd4ZnRkeW16aGhVQ1JHWFYxUWx4WjhhdWNtRTQ1dFJ4OHcSAgARKhDCDw8aDz8T_wWCBCQBgAQrKosBEAEaeIHuAfn9_AUA9QEDBQcE_QEGBvgA9___AN_4Avz6-gMA_QL_BP8BAAD0BwIH9wAAAPYBAgcE_wAA9goAAgQAAAAR8gH8AwAAAAAW9gb-AAAA7_sN-gIAAAALA-4BAAAAAAAFCgMBAAAA_vcJBQAAAAAA9fT_AAAAACAALXGG3js4E0AJSE5QAiqEAhAAGvABf_8eAMb6yP_11dIA9_cUAZo0Kf8_Fr4AkPPvAJwWwv7z6PH_C_TqAEvR9gACBR4A-Ajl_7XaNQBGEhv_8vXfAdHv9gED3gP_KfoIATPlCf_YGtH-9_guAf2_2gDkDQn9RwAu_Aju6gAR_84D_gUzAD7gLAEWBQcI7Awf_c8L9QLf9NL9ze7zBwXa6QjlCCsBGCkF_csm6v8KAv8G59MT-DUBBwUhH9394vTdABnS-_jOBPz67ML0-S8g_QHR9fL04-0c-PUG_OgdDwwJAQ8lBPEWB_or4_YJUSAF-xzb-fnrLOn-tDP4BsEr7vv17xEXIAAtOBwCOzgTQAlIYVACKs8HEAAawAfxLeS-M8U3PfVHHLygFHK927oAPfPu_rwNVEY9-jyAPUsdhL3M0k496OgnPJPlf7y9jpC-fOdcvdimKTvFVYU-VDBvvZt_KrxxPVq-5xa_PYVMqLxtO-29fbg_vBryFTzBOj4-ia4QPeUrQb2_Pq89F-ufu7UVAL0pqxC88aSgvCRhvrpPCHw7ctJFvd-KRLymqIQ9TNiIPIEJnDxHwb29GlpTPJXYW7qzzXI9QfuHPAr3yry_tYO9eYqBPFppDLsDwcI9N0oovML4q7uxh7Y8_dodPKdrV72DvpS9U_0UO9tjzrwPe4Y97LmRPTmhK71D8bk9zOFEPdxeFz10o_68q2SbPNDukLzkZvg9ZkzhPRgj1Dse0qm9FvLOOl4yqTykA6s7xnkOPelHQ7wKStE9JDxrvaq-TrxDo4E7hpuSPeGQMjwErNU8M6KZPPTzSzzRpF68ZqwsPfdeV7v-D4u83pcOPaEmwDtvOEI9IQ09vep1sLxdp1E9VZedPE2DojyWlhE-qLMJvc9ngLwFI6U91gI7vknlmjqR5lk8B0m6veouPzyDDK47NVkIPT_vvjtZh8M9Cs9VvfSCUzsmiYo8AdR5vdaPybtu_6U9SKK8vDq-qLtK0-C9YyCEPbU_6TuI2Yu8AXW5PC6tczpxc427LmA4PUGvBzzMbJa980qTvQf_XDc9MjE7SVsmPZOTwzuNI3s8Ve86vLCRQTt65Ko9I1-uvG9IgrnsQKe8IUqou8-3CTs7sQK9y_OgvLNxTLumB6o8eW5GPNI0NrohZ7C9yMImPSMw27iUidu9Cd2aPe-96DgTqzC9oXqlvSR1Xbiml_i986upvao0dTg-jBU912kkvFZzxTmp0yq7wF5hPN1bazY4Aby9zEV8PaVXmLmTm7K856YNPbEi57gqpSm7Q6qLOwmV4jefEHA9CZ2-OzQgsrm0sOW723sivYAc8Dikb9I9z4nYPI57Czk7sBY8N9cbuxbpDLef8XE7pdgBPqiuMbllhNy8rJeVPXovCTcocEG95iTvvA-6djnHN2o9IF-CvXb5yjZF2HC9k5kiPIJfIjcNPw69qW80PRX2uDcqWPe4rAk4vbZyazeKIuQ93lXPvJt2VDflL4i8dO52PQn0eTiPoZg9898ovJUnHrn1w6-5bBvrvLLlgLimP5C9l-ZxvQ5_hbfIfcy7nWHuu8KgfDdeqki9OukdvrRj-rhCy189Yxq3PW6Qjjjdb368b9l8vNk_sbhqIAy8U88SPl_PBTdutoM7My3WvFR9cbcgADgTQAlIbVABKnMQABpgIQAACeEUo8whItwcC9f56c8MqBjICv8D-f_iEc33BO35qv0DAAH9-uenAAAAIRPsGMUA-nfp7t456__u4YYKGQt_TgouxMcECaTV7SI24QAn5CobAA_3qhNHzugkRS0PIAAtvLwbOzgTQAlIb1ACKq8GEAwaoAYAAI5CAACAQAAAsEEAAIJCAAAwwQAAAEEAAFBCAAAkwgAAGMIAAFDCAADgQQAAHEIAAIDCAAA0wgAAgMAAAHBBAABAQgAAikIAAHhCAABEwgAAIEEAAADBAACowQAAwEAAAJjBAAAcQgAAJMIAAMBAAACUQgAAoEEAADDBAACSQgAAgMEAADzCAABcwgAAcMEAAEBBAADgQQAA2EEAANDBAAA4wgAALEIAAEBAAAD4QQAAMMEAAABAAAAAAAAAAEEAAGxCAADowQAAoEEAAIDCAABswgAAuEEAAOjBAACAPwAADMIAADDCAADowQAA8EEAAABAAACIwQAAkMIAAIC_AAAUwgAAsMEAAATCAACMwgAAisIAAMDAAAAQwQAAyEEAACzCAACAQQAAiEEAANLCAAC-wgAAqMEAAChCAADAwAAA4MAAAMDAAADgQQAA-MEAADBBAAAwQQAA6MEAADDBAACUQgAAYMEAAHBBAABcQgAAEEEAADDCAACAwQAAtMIAAKBBAAAEwgAAsEEAACxCAAAAwgAAaEIAABRCAACAPwAA0MEAAIpCAACgQQAAnkIAAKBBAAAUQgAAGEIAAKhBAADQwQAAgMAAAIC_AAAQQQAAbEIAABhCAABswgAAmsIAAIBAAACAQAAABEIAAEDAAAAAwQAAgsIAAAzCAACAPwAAdMIAAPDBAAAsQgAAIEEAAEDBAABsQgAA4EAAAODBAACEQgAADMIAAFDCAACiwgAA8EEAAIC_AABwwgAAqEEAAIA_AABwQgAAMEEAAEDCAACwQQAA6MEAAOBBAAAUwgAAGEIAANDBAAAswgAAHMIAAOjBAABwwgAAwEAAAPJCAACIwQAAGEIAAKDAAAAwQQAAUMEAABBCAAAsQgAAqEEAAPxCAAAcwgAAkEEAAADBAADAQQAAgMAAAEBAAACgQAAAEEEAAJhBAABQwgAAnEIAAFjCAADgwAAAwMAAAJjBAACKQgAAAEEAAFDBAAAUQgAADEIAAKBBAAAwQQAAoEAAAOBAAAC4wQAAWMIAAIhBAACEQgAA-EEAADBBAACiwiAAOBNACUh1UAEqjwIQABqAAgAAML0AAPq-AACiPgAAiL0AAIg9AAC-PgAABD4AAA-_AAB0vgAAMD0AAK4-AABMvgAAXD4AAFQ-AABQvQAAEL0AAJI-AACgPAAAQLwAACk_AAB_PwAADD4AABS-AAAsPgAAjr4AAOi9AAA0PgAABD4AAHy-AAAcPgAAij4AAJa-AAC6vgAAoDwAAIC7AAB8vgAAmD0AAAy-AADSvgAADD4AAIa-AACYvQAAmD0AAAy-AADgPAAAcD0AAOg9AACSvgAAuD0AAL6-AAC2vgAAML0AAKI-AABsPgAA6L0AAEA8AABjPwAAQLwAAHA9AAATPwAAmL0AAII-AABAvAAAmD0gADgTQAlIfFABKo8CEAEagAIAAAy-AABwPQAAJL4AAD2_AADIPQAAdD4AAI4-AAAEvgAAEL0AABM_AAA0PgAAgj4AALg9AADYPQAAqL0AAJi9AACCvgAAaz8AAEy-AAAFPwAAcL0AAIq-AACyPgAABL4AAAy-AABsvgAARL4AAJY-AABUPgAAFL4AAPg9AADIvQAAQLwAAHA9AAD6PgAAVL4AAPI-AADoPQAA6L0AALi9AAAHPwAABL4AAI6-AABUvgAAHL4AAGQ-AAB_vwAAED0AABA9AAAkPgAAQDwAAJY-AACCPgAAuj4AABy-AAAUPgAAHL4AAHS-AADCPgAAPL4AADA9AAB0PgAAoLwAAEC8IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=poBobcFn1Co","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6444415079265789412"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"4047347860"},"15841895844880990042":{"videoId":"15841895844880990042","docid":"34-5-16-Z0128EE2580A6A852","description":"MIT grad shows an easy way to use the Quotient Rule to differentiate rational functions and a shortcut to remember the formula. The calculus Quotient Rule derivative rule is one of the derivative...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3292645/2a2b8970a454494badb6d1623767f7f0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Y3pWBAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DjwuiVb84Xx4","linkTemplate":"/video/preview/15841895844880990042?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Quotient Rule Made Easier (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jwuiVb84Xx4\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoWChQxNTg0MTg5NTg0NDg4MDk5MDA0MloUMTU4NDE4OTU4NDQ4ODA5OTAwNDJqkhcSATAYACJEGjAACiloaHl3Z21yZ3hmdGR5bXpoaFVDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dxICABEqEMIPDxoPPxPBAYIEJAGABCsqiwEQARp4gf8HBwUAAAAU_QUJCQv9A_gABQr5_f0A5QQLCAf9AQD1Dv_-BgAAAPL9DgIGAAAA9wb6_vT_AQARFAUFBQAAAA_z-AQDAAAAAgv3Bv4BAAD3_QoB9AIAAQX-AwQAAAAAAwYCBwAAAAAFBPD8AAAAAAD18_4AAAAAIAAtZCbSOzgTQAlITlACKoQCEAAa8AF_JsH99eb1A8sGuACY_0D_jDsv_yLp1QCOPAMAmfARAPQ07AH2DLL_OK37___iQv7iOdz-8uMxAVIV5wA1LNkBB-cKAfrQ9AIjrS7__u7Z_gkP2P7wGw8A88_E_gwfAfxFEB4AxOD7BOve4P_wriwJHMgzBvYS-QYsC_cLyQoZBP3Trv4J-tz_-8jn-wJAKgEY7TwB1OfdAwi_IQLUI-b2FeXq_PbyywLX1eX88PwGAf7tDQrryN8DHAkYCPFFHgQkBywA6Pzu9zwVAf9HKegL5hHn9wvS4wErCRbzEdP5BBIkBum5GAUCxw_8GeUBCRggAC3CmeQ6OBNACUhhUAIqzwcQABrAB4Du074R3sO65eiWvKoLnb3Lgb87wP6QvO8tdjwZR4s95upHvB5P6z3an4W9czO3vFnAVL4EjIw5Ks_XPP29dD6SVEu9A7HsPFouW77qj5U8bmKSvPAuzL0raYW8HM58vI7IJz7zRGY9sGgjvNaiLz1UPfS82qQqu6r_jb3Wg7O91J3nvL5SsbzhiwK8fUHLvBVvhbtHy8E8qUT-PKGjsDw2YOu8qtqLO7dXSz1WdNa7xqcgvXAOFTy-bxe9ZTEWvITY2T3U9Z88d503Ot1bwT3R4CA98EcWvWwHg73NFto8ljCJvDbsMj0ADQU9xNI7vaD-Ez5QwxY7q6UIuy96Pb0JSvY8h78HvN1gOD4pplw94xs-OrDi1L11Nsk9PI5VPFi7NzzUpO88IGqtuUHCZjzwdMI8i3WiOxdc_byUPC09X-HuO85qJr0Q8hA912wjvGycCD1mcVU9C9SivJpdd7wCJQq9Usscu1Yf2bzKA2y7ZNrIvMPvJj42Tak8kLlXvJ0cxD0EuI-7pcMgvAUjpT3WAju-SeWaOmMqfbyjRcy9hypGvGAVeT2OPNA8Qa8qOyIbKD6xacq826XLOry7Jbv9EIu904OjtxaJ6T0ybi89zn2Hu_g4U70iLxA9C-B3PFSu7LvkWXg9lhUWvH07rru1pc49PmrhulG91b2Pcza9XMf6Oke5mj1jVjm8XgaMOyZWhj1a-QC9PJL4uAsk6D2rAS-97MnTOZUMAL1XX1i9M1NzOIOpgztvQ7E86qIxOuQpMD2lVg698dgNO6LHVju4zaQ9cRnCOBHfCb4fZ9o9xMubuO5z47vSoYi9wyM8ObMTtL3WRZC9tGcwObx39TvLLAK9vpgBueFrHzy-J-A8hcAhuu-5Hb3YV6i8bzohumVEmLxyU0M9rRkxt_rESzwtHHS62_9ItzdBCj0v5Ky83H_HuQ9SJrxg7s26QlgnOLdXED0qtOY63j8NOSOsjD30bAa-z3ClObNGmL2qK589qfo6uK0OJTxRwBY9DclVt5fJcDyLM6a9rCwsNNPPCDxmMdG9PkuXNmf4qrxhybC87CeNOOPnGr2_lvw8OTL5ODdbLz0yaDK9vA4AOI1s3TyAsD2922psOHl6gLxJCP87uB5nOBOGjD1N3UU6kNuduGd1G7yEbd26eLCvN85yNLxdD8u9qHCbt7xBL70logk9zb9mOJ1tyb3U1BK-Hz6RuMr0cD0i4Ss-8cuKOIF4ALw4drs6PrASuQEtQr0kOjU9KNkdt8XdRb3_q9C6poM8OCAAOBNACUhtUAEqcxAAGmBICAD_ESXuufk13_8B3fz96SfJGK4h_w3k__4F7QEH-9-z6hH_ABgA5awAAAAjMeko3AArbwvywwjhAjXdsuwcCn8W_SnTGOsXyLD0BwEiIQ8ITVkA4-PBBiHE5wczRwMgAC1S7yU7OBNACUhvUAIqrwYQDBqgBgAAbEIAAGDBAABoQgAAQEIAAEDBAACAvwAATEIAAAzCAADgwQAAKMIAACxCAACQQQAA2MEAAABBAAAAQQAAgEAAABRCAABwQQAAwkIAAIjBAAAQwgAAkMEAAITCAACwQQAAAAAAAKJCAAAMwgAAwMAAAKpCAABgQQAAIMEAAARCAABAQAAAEEEAAKzCAABwQQAAIMEAAHxCAACYwQAAPEIAAILCAACYQQAAQEEAAGDBAAC4QQAAcMEAAIDBAACwQQAAUEIAAMjBAAAQQQAAwMAAAKTCAABcQgAAAMAAAMjBAADAwQAAgL8AADBBAABoQgAAgEAAAFDBAACIwgAADMIAAPjBAACowQAAiMEAAILCAACQwgAAwMAAAIhBAAA8QgAAfMIAAMDAAADAwAAA6sIAAKjCAAC4wQAAAEAAAABAAADwwQAAQEAAAIDBAABIwgAAYMEAAGhCAAB0wgAAiMEAADxCAACQwQAAuMEAAPhBAABwwQAAyMEAAExCAACowgAAoEAAABDBAAAkQgAAPEIAAMjBAACkQgAAUEEAAEDAAADAwAAAiEIAAIBBAACoQQAAsMEAAChCAABwQgAAAEIAAKDAAACAPwAAAEAAAIBCAACIQQAAIMEAAGDCAACWwgAAwEAAAAxCAAAAQgAAsMEAADBBAAB4wgAA6MEAAIjBAACgwQAAEMIAAPhBAAAswgAAAEEAAEhCAAAQwQAA2MEAAIRCAABMwgAAiMIAAObCAABcQgAA6EEAADDBAACYQQAAoEAAAKxCAAAgQgAAHMIAAOBAAABQwgAAuEEAAADAAABkQgAAOMIAAHjCAACOwgAAgMIAAMjBAADgwAAAskIAAOjBAAAAQQAAgEAAAAAAAACAQAAAAMAAAKBAAAAgQQAAiEIAAETCAACAwAAAyMEAABxCAADgwAAAQMAAACxCAADYQQAAkEEAAMBBAACIQgAAjMIAAPDBAAAwQQAAaMIAACxCAACowQAAsMEAAPhBAACAvwAAgMAAAOBAAADowQAAIEEAANDBAACgwAAA2EEAAIDBAAD4QQAAwEAAACTCIAA4E0AJSHVQASqPAhAAGoACAACgvAAAyL0AABw-AAAMPgAAyL0AAIY-AADaPgAAnr4AAIq-AAD4vQAA2L0AAMK-AAAQPQAABD4AABw-AAB8vgAAgDsAAOg9AACoPQAAET8AAH8_AAAcPgAAbL4AAAQ-AAD6vgAAjr4AAIC7AACaPgAAHL4AAGw-AABMPgAAjr4AAHS-AACoPQAALL4AACy-AADCPgAAfL4AAAG_AABEPgAAoDwAAOi9AADgvAAAMD0AAAQ-AAAMPgAAcD0AALK-AAAwPQAAwr4AALi9AACaPgAAnj4AAMg9AABQvQAA2D0AAF8_AACoPQAAlj4AAOY-AABsvgAAMD0AAIi9AABwvSAAOBNACUh8UAEqjwIQARqAAgAAEL0AAIo-AAAMvgAABb8AADy-AABAvAAAND4AAMg9AABQPQAAdD4AAHC9AAAUvgAAFD4AAFS-AAAQvQAAQDwAAEQ-AAAjPwAAgDsAALI-AABwPQAAqL0AACw-AAC4vQAA6L0AAI4-AABwvQAAiD0AABA9AAC4PQAAgLsAABA9AAAsvgAAuL0AAGS-AACIPQAAcD0AAIg9AAAwvQAAmL0AADQ-AACgPAAAcD0AAFA9AADYPQAArj4AAH-_AABsvgAAur4AAAw-AAAkPgAADD4AAEw-AADYPQAAiL0AAJg9AACovQAABL4AAHC9AACYvQAA4DwAAIC7AAC4vQAAPL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=jwuiVb84Xx4","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15841895844880990042"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"5837041"},"1730985809397540321":{"videoId":"1730985809397540321","docid":"34-3-3-Z4A260088DEC7EB15","description":"MIT grad explains solving inequalities. This video focuses on solving linear inequalities. It shows when to switch the sign of the inequality, if you divide or multiply by a negative number, and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1575406/3ee1a1f07ec341e589f2867d7dded621/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/z7qIpgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DONuIIvgkE3c","linkTemplate":"/video/preview/1730985809397540321?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Solve Inequalities (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ONuIIvgkE3c\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoVChMxNzMwOTg1ODA5Mzk3NTQwMzIxWhMxNzMwOTg1ODA5Mzk3NTQwMzIxaocXEgEwGAAiRBowAAopaGh5d2dtcmd4ZnRkeW16aGhVQ1JHWFYxUWx4WjhhdWNtRTQ1dFJ4OHcSAgARKhDCDw8aDz8TqQKCBCQBgAQrKosBEAEaeIH9Avv5_AQA9v4DBf4F_gEM_vsI9___APMBBgkDAv8ACfv4AQAAAAD5BAT3BwAAAPr7-PoC_gAABgoE8QQAAAAI9Qj_BQAAABAQ-vn-AQAAEPv6AwP_AAAJ_fELAAAAAAEJC_n-_wAA9QcB-AEAAAD_9v4G_Pb-ACAALYjv3js4E0AJSE5QAiqEAhAAGvABf_T_ANPR5gGyBdoAx_kEAaUuJf8s_9YAhSjvAaUPCP_uCAUACiHPABrcBgAKCEEB6QXt_uLwHP8Z5Ov_QiL2AAXhFQAi7wUBEswL_wzv_P4BA_AB5BMn_ivg1wIR8RD-IxwgAM8O8AD289sG4_clAjfjJwEPDPwAAvn4_tQ19AAg2uj-5hLaAOPoDwHrFjsBKQImA9X81gH56B_7Gwf9-hb1CALc9s__5fXhABns-QIN6PIA1s_kAjruIgHIIQoICCMkDMT_AfUw-fv3FwPiBfdC7AEeAPT4B_sOAwS_7QwGHuzn5_QV9NPr8QbZwwoPIAAtpDcROzgTQAlIYVACKs8HEAAawAeA7tO-Ed7DuuXolrxTYBy9JELjvG-RBb3vLXY8GUeLPebqR7wzMhg-EDRwvXw9xDz2lmK-BXiBPHk_DbzFVYU-VDBvvZt_KryHNCq-nmmoPbZyZbzaQzG8dmRWPelahb3fbsk8N0Y8PZmSNr0t-qQ9e3xnPL-gYDwkuiK9CQyDvUvqJL30Hy09P7m3vZ4_Er0KAtq8IgXFPEdSdzy3n2c8RTGUvJABD7z98r49fnAdvLelRLz8C5Q71gbAu6__ALzikgM-h6OQPDgPTDw39EC9t_vLPG-rL72qdwC8LuWZO2voMDwHJGE8MdC1PACmMbwatZw9MfC3vDDhJztOhl698zHpvI46X7yV3Fw9BkI3PXC2yDkX7xe-992OPWpQtDxgpaw9Lwy_O9o57jsfPGQ9PuNHPdAB0TtiEUO89GfkPDprwbyUBk29P4zQPcZPozzHizs94JXuPLSAv7ygm4c9CPh_PGu-iLtiU4I8ne8MvWNc1rwieJK9_yNTPduqf7zL9fY9GpySvDzjMbyP4BY-W3gOvgPnDrzsQ7i9j1ADvn9AELt0fso8aiRzPYXEqLtDqR0-H2rbvcSaqTmIEKc9G9YUva4Zsjsi_Cs-756NvDMGjDpwpEK9qrgSPMgtQTxmHr-9hS1sPWoxW7vp7Mk8TBjNPV_omrk3zIo7x4_nOyrIy7tHTNo8KrcjvcXNXrphONc9yHjUvcHpfTgW65o9Eav_vWzXAbrtz2q91f-evOr5e7o0tRE9hceIvHIfsbojzvU7Nq7_vMnWyDr9lR-9LpNcPb5Yp7gt0Qm-liEuPZ64YLg14Sg8NZWavajkRzlkO1-9N1vvvHciyjhMezk9B01BvSjCn7lfyV-9bfxLu9saTDgT8VY9suWGvVAxu7iO53G7EG5XPSBy3Ln2kIq9127WvFHVLjijHie9Rhy8vISPqbfctL48XEKZvJc8y7htKaY9V59hPVSCKLjikgM-jsOlvYIxoTmqgjG9uv_-PM2Vwbi7z1Y9eyWaPdbMEzg4CS89uYVTvAn6DjiHRVY902Wmvb8o9DZn-Kq8YcmwvOwnjTj0C0C8hUWwPTln6zikwpg9tz_dO4ED_ziU3Yy8eIfKvC4naDgTJvG8G_yDPXcdqjiZSt89gHPQPFS4vriNMsE9XnSDvFcaWzgeKng7JQTrvSO_Zzi4w-y78wUtPXf-_7Reqki9OukdvrRj-riKllc9EFj5PY0XQDjEkjc9X2gFPFWFu7jK6gw8mCGEPEFgVbguXRy9E3G0Pcnz1TcgADgTQAlIbVABKnMQABpgLgIAFSYhuuIBOtkRExoE7wLq5ODMH__u4wANBAz9JSyxwuYZADMg-ueyAAAAEPf2Kb4AJGPf-AgCDOYbzc3DKOl_OfsIzv0KFbXS3xAI-Plq-jY-AM8RwxA32t8CFdoYIAAtBzAqOzgTQAlIb1ACKq8GEAwaoAYAAFhCAAAQwQAAOEIAAGBBAAAEwgAAEEEAAERCAABAwAAAgMIAABzCAAAIQgAA-EEAANjBAAC4QQAAIEEAADBBAAA0QgAA4EEAAJxCAABQQQAA4MAAAADBAACWwgAA8EEAAADAAACgQQAAkMEAAOBAAABgQgAA2EEAAIC_AACQQQAAsMEAAMhBAAB4wgAACEIAALjBAACeQgAAQEAAABBBAACgwAAAEEEAAABAAABwwQAAiEEAABTCAACYQQAAHEIAAFBCAACAQQAAYEEAALDBAACAwgAAsEEAAOjBAADQwQAADMIAABDBAAAQQQAAmEIAAFDBAACAwAAAqMIAAADBAABkwgAAMEEAADTCAABgwgAAhsIAADDBAACAwAAAoEEAACDCAABQQQAAAMAAAPDCAADgwgAAAAAAAGBBAACYQQAAqMEAAKBAAABAwAAAAMIAAGBBAAB8QgAAoMEAAFDBAABEQgAAsMEAAMjBAADgQQAAwEAAAIjBAADgQQAAaMIAAKDAAACQQQAAGEIAAIZCAADIwQAAfEIAADBCAADQQQAAyMEAAGxCAAAAQQAAiEIAAGDBAABEQgAAMEIAAKpCAADowQAAyEEAADhCAAA8QgAAiEEAAADBAABQwgAAwsIAAMjBAABwQQAAoEEAABzCAAAQQQAAqMIAAGDCAABUwgAA0MEAACDCAAAsQgAA6MEAABBBAABEQgAAUMEAALjBAACCQgAAiMEAAJzCAADMwgAAEEIAAMBAAACAQAAAgEEAAMhBAAAkQgAAMEIAAFTCAACAPwAARMIAAAzCAABAQQAAwEEAABTCAACGwgAAssIAAHTCAAAAwAAAHMIAALRCAACAwQAAEEEAADBBAABQQQAA8EEAAABAAAAAAAAAgMEAAFBCAAA8wgAAkMEAAHBBAADAQQAAYMEAAIDAAAAYQgAAuEEAAODAAACgQAAAokIAALzCAAAYwgAAAEAAAADBAABgQgAABMIAADBBAABkQgAAYEEAAEDBAAAAQAAAAAAAAPjBAABQwgAAmMEAAGBBAAAowgAAXEIAAMhBAACCwiAAOBNACUh1UAEqjwIQABqAAgAA4DwAAOC8AACovQAADD4AAEC8AAC4PQAA4LwAADe_AAAEvgAAXD4AAIY-AABkvgAAcD0AABC9AACavgAAdL4AAKg9AAAUPgAAZD4AADk_AAB_PwAAdD4AADC9AAAUPgAAXL4AAJi9AADYPQAA4LwAAEw-AACIPQAAVD4AANa-AADYvQAAVD4AAIg9AAAwvQAAgLsAANi9AACuvgAAor4AAES-AACgvAAA-D0AAFS-AAB0vgAAbD4AABw-AACqvgAABD4AABy-AABAPAAA6D0AAN4-AACOPgAAqr4AAPi9AABbPwAAPL4AAOA8AAC4vQAAPL4AAFw-AABQPQAAvr4gADgTQAlIfFABKo8CEAEagAIAAIi9AACOPgAAgLsAAA-_AAA8vgAAqL0AAJY-AABAvAAAqD0AAHw-AADoPQAAyL0AAKC8AABkvgAARD4AAHC9AADIPQAABT8AAMi9AADGPgAAFL4AAAS-AACovQAAUL0AAHC9AABQvQAAFL4AAEC8AADIPQAATL4AAHC9AADoPQAAEL0AABA9AAA0PgAA6D0AAGw-AACOPgAAFL4AADC9AACoPQAAqD0AAPi9AADIvQAAiL0AAEw-AAB_vwAABD4AAAy-AAAMvgAAuD0AAOC8AACCPgAABD4AAES-AADYPQAAQDwAADy-AACIvQAAoDwAAPi9AABEvgAA4LwAAJY-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=ONuIIvgkE3c","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1730985809397540321"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2327711488"},"2515962507896417478":{"videoId":"2515962507896417478","docid":"34-4-6-ZA20BAC215EE31774","description":"MIT grad shows how to do a binomial expansion with the Binomial Theorem and/or Pascal's Triangle. the expansion for a Subtraction/Difference binomial raised to a power, skip to time 13:11 - Nancy...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1520253/378486a5d36fae17f2c3ebb400e9b85a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/h2gVnQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DiOQjV0FB9nY","linkTemplate":"/video/preview/2515962507896417478?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Use the Binomial Theorem (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iOQjV0FB9nY\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoVChMyNTE1OTYyNTA3ODk2NDE3NDc4WhMyNTE1OTYyNTA3ODk2NDE3NDc4aocXEgEwGAAiRBowAAopaGh5d2dtcmd4ZnRkeW16aGhVQ1JHWFYxUWx4WjhhdWNtRTQ1dFJ4OHcSAgARKhDCDw8aDz8TrgmCBCQBgAQrKosBEAEaeIHy-vsH_wIAAPsFCfgI_AIB_Pb8-P39APr1Bf4GBP4AAfkA9_oBAAD_ChIHAAAAAAT7_Av__QEAB_8C9QQAAAAM9wgC-wAAAAwO7wL_AAAAAvcD-AIAAAAH_PsK_wAAAAQIAAIH-wL_AQIJAAAAAAAI_vsI_PL-ACAALSN_2Ds4E0AJSE5QAiqEAhAAGvABfwgIAeEDBgEj_cUAswP6AKYuJP9l-t3_hfjxAZ_05gDPCvkAAuvgADnjBgACBRoABfjd_9ny-QARwub9KSLiAeADDwH62NcBN9ARAAfl7P7sGPkACwr-AhD06wAa_wf-KBoK_c4FvP8L_usAJvXtABvRCATl7O8GHQMSA9Q19AANBeD93fH8-usI9QLqGxoB4xwQAOD18gYd2xgE-_Xk_Vb48wAcC_D52MkJ__feEgQDCvoAAvLb-_z5GAvwFAX4C_wJCdflAPj46QX3JhYFBQYLDOwU3_kKRxwE_OXz-_UGHezo8AwLANQL_RMi7wYFIAAtjbsTOzgTQAlIYVACKs8HEAAawAdPPsW-ftjcPDHGsDsKB8y9Vw8UvDSFDr3DZKo9elPRPPJEK70fptg7QZS5vB_f1jo4aYq-0Qw9PO2ufTzFVYU-VDBvvZt_KryHNCq-nmmoPbZyZbwqXXW9zQ_SPF8MxDvwhvQ9p7PTPHebHL0wUYM9QfyyPNsBEr1vsQy9VlsbvVI4zLzwyTs7qtBlvdIjfDylVJ09SpZLul39WLqPsoS9j5GHPLq1lrwyLaA9DZ4zPbK5ajxdHka8EAaePGGZLb2P_ew9tBVlPfxkYLotiJK6WIxfvKbeCb282dE7osaOPP33vzt_F3a9cvnPPGSV0rxnCt09ChTxPT9g9bs_byq9UU50PRFIMrvcBKk9g7_fPRwxqbxQ_q68vRBcPZqCkLzNYTI9ZVFYPPtOXbwHJnc9XA0_PM3SKbzEEDQ9BF7eO2f_TTzLHte8dmG1PA38KDu6YxY95PbLPKbVjLs2LUe9-6i7PU2h0rsibJ28uYP9vHd7tbzMGYs93fVoPUs5hDxjJlE9nx1QvVFLc7zfZsY9ObXzvYcfGDzBa3w9UrfzvWsViDkskRU8RFxPPSM0ADzkLEw-6lePvQMMhTuscfa8fI9kvYDCjzpjdcA9fVEMvVpnIjqnFou9xW8vPDqvMTy_a6e7OsO5PNY1f7yqHIm8K6YCPg7qDblmhFe9NpIEvSwQ-zvwP2g7nrliO2dOfDqap0Q9nBhSvT7-GLsPgX48IpCGvcaDEDss8eC9LnD9uyAnGDo8IpW9VS7UvVmg0Dh5Aas9IsG3uyj1NjnAkJs6PBSFPTfmtDgR3wm-H2faPcTLm7gGjLS9_VwevVTHaLklMh29lRCMvdIjqThbwxY9lxtMPWFfjbilrbC9WsCfPNXZhLleE9K9zt7ZPMw2SLkG5x09YF7bukPZqjiJc1m9HuDJPGYEF7hDk489RcwWPSNy0jdQtUw8uJSzPMuq5LhXCBs-giJxPJLSITkjrIw99GwGvs9wpTnEVjU9eWHGPbbmLribzuk81vJUPVTLHriOKTO85bTnPGs0tri4Pqy8bAb4vXn_ILiQmTC8reYPPccmFjgAMhk9e2SoPcI90Tc3Wy89MmgyvbwOADhjG8I8-wF0valGvDiF-Ka97M_PPIhbnzjzz7c9-01SPcQsIrmB26g6eKDKOnbHObhuG7G9LC7OvT7xXriXpSI9EFLBPRGZT7grMvq9u33WvbhenriKllc9EFj5PY0XQDiPev68R-5EvOMvjLipo2O89Ssduy8tqDbunIE9Vs7DPDNNJ7ggADgTQAlIbVABKnMQABpgRAUAH_f55rz2G9j_5-T97Bk01PjdBP8V-QALKxkECfnQte81_wn_Bf64AAAAGg3oH-sAAmPJ3OYe_9_7y8LhJhV_LAUlzOf__eDE8EgIBRREERw9AP4cx_Ir3_A-EjczIAAtG9UzOzgTQAlIb1ACKq8GEAwaoAYAAAhCAAAwQgAAUEIAAAxCAACowQAATEIAANhBAAAwwgAAdMIAADTCAADoQQAACEIAAGTCAACgwAAAFEIAAHBBAAAQwQAAoEAAAKJCAACwwQAAQMIAAAjCAABkwgAAOEIAAKBBAADgQAAA0MEAAMDAAACUQgAACEIAAIBAAAAgwgAAiEEAADDBAAC2wgAAAEAAADDBAABkQgAAqEEAAIBAAABkwgAADEIAAEDAAADoQQAAQEAAAJhBAAAEwgAAEMEAAFRCAABUwgAAOMIAAADBAAAswgAAcEIAAPBBAADwQQAAoEEAAKBBAACoQQAAhkIAAMDBAABIwgAA2MEAACDBAAC4wQAAEEEAAMhBAACAvwAApMIAAIDBAACgwQAAzkIAAHTCAAAUQgAAgEEAAJTCAABAwgAAsEEAABDBAABUQgAA2MEAAOBBAADIQQAAAEAAAEDCAADYQQAA2MEAABBBAABoQgAAHMIAAGDBAAB8QgAAGMIAANDBAABAQQAAkMIAAIDAAACIwgAAcEEAADhCAACEwgAAdEIAACDBAADIwQAAYMIAAHhCAAAIwgAAkMEAAODAAABQQQAAJEIAAEBAAABYwgAAwMAAAOBAAAAgQgAAuEEAAKDAAACowQAAgsIAAEDBAAC4QQAAoEEAACDBAAAcwgAAJMIAACBBAADgQAAAiEEAAIDCAADAQAAACMIAAIA_AABsQgAAcEEAAFDBAAAsQgAAuMEAAGTCAACqwgAA0EIAAIBCAACwQQAAoMAAANDBAAAAQgAAwEEAAPDBAACYQQAADMIAAHBBAADgwQAAkEIAABDCAAAswgAAtMIAANjBAABswgAA-EEAABhCAAC4wQAAEMEAAJ7CAACwQQAAuMEAADzCAACAwAAAqEEAACxCAABowgAAFMIAAABBAAD4QQAAcEEAAIA_AADwQQAA6EEAAMDAAAAwwQAAikIAAJDCAABwwgAAGEIAALrCAAAQQgAAYMEAAKLCAACAQQAATEIAAODAAAAAAAAAsMEAAMBAAADowQAAIMEAABRCAABgwQAA0EEAAKBAAABQwSAAOBNACUh1UAEqjwIQABqAAgAAZL4AAMi9AADWPgAAZD4AANg9AAC4PQAAiL0AACm_AAD4vQAAJD4AAIA7AADYvQAAmD0AAAQ-AACGvgAAcL0AAPg9AACoPQAAUD0AAO4-AAB_PwAAuD0AAKA8AAAUPgAA-L0AAOA8AAAcPgAAQLwAADA9AABkPgAAiD0AAHC9AAAMvgAAgj4AAIK-AAAMvgAADD4AAJa-AAAcvgAAML0AAFC9AADovQAAuD0AAPi9AAAEvgAAqD0AAJg9AACavgAAHL4AAKK-AACOPgAA6D0AAL4-AAD4PQAAqL0AABy-AABNPwAAqD0AAAy-AAAkPgAAmL0AAIi9AABQvQAA6L0gADgTQAlIfFABKo8CEAEagAIAAIq-AAAMPgAAiL0AAC-_AABAvAAAiL0AAFA9AACovQAAuL0AAKI-AAAMvgAAQDwAAIg9AACIvQAAcD0AAKi9AADgvAAAOT8AAHA9AACePgAAuD0AAAS-AAAEPgAA6L0AAIC7AAAMPgAAuL0AAFA9AAAwvQAABD4AAKC8AABwPQAAcD0AAAS-AADoPQAAcL0AAL4-AADYPQAANL4AADS-AAAcPgAAgLsAAKA8AAAwPQAAFD4AADA9AAB_vwAAqL0AAEy-AAA0PgAAnj4AADC9AAA0PgAATD4AALi9AABQPQAAgDsAAPi9AACYPQAAgDsAAI4-AAAkPgAAUL0AABS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=iOQjV0FB9nY","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":2560,"cheight":1440,"cratio":1.77777,"dups":["2515962507896417478"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1261223218"},"13315109333605268476":{"videoId":"13315109333605268476","docid":"34-8-4-Z34C5CC14B1B597B7","description":"MIT grad shows how to do implicit differentiation to find dy/dx (Calculus). To skip ahead: 1) For a Basic example using the Power RULE, skip to time 3:57. Nancy formerly of MathBFF explains the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3946358/ff3ec4a5b05744b06b063bb30a94764e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ICQP5wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DfIy5Wav4rok","linkTemplate":"/video/preview/13315109333605268476?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Do Implicit Differentiation (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fIy5Wav4rok\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoWChQxMzMxNTEwOTMzMzYwNTI2ODQ3NloUMTMzMTUxMDkzMzM2MDUyNjg0NzZqkhcSATAYACJEGjAACiloaHl3Z21yZ3hmdGR5bXpoaFVDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dxICABEqEMIPDxoPPxPYBoIEJAGABCsqiwEQARp4gQL4_fgC_gD99vYM-An9Ah31_Qf1AgIAAvr6CgcF_gAECQUA9wEAAOgFEQH_AAAA5P3___YCAAAODQH5BQAAAALv9AMDAAAAHBL_AP4BAAAG9g7yAQAAABMIA_P_AAAAAwEG__3_AAD0CAL3AQAAAAnrC_kAAAAAIAAtEe3OOzgTQAlITlACKoQCEAAa8AF_6A4AAfkDBBTiwQDACA0BoTMD_ykS_gCZ_ysDqhPL_t8c7ADQ-sj_QusUABILKf75B-j_2PwfABj-BgA0DuAAzQQFAB_y4gAg7QIB9ur2AC8d3P0KDBv_JdT2ARDxEP4gBAP72PbkABbs4AApABT9GtMIBPgO-gUG9ggD1TP1ABnu3f39BwIE3vvi_cj-HwH7ASEBrSX5Aev2LP8HC_n_GgfwAPn22AL83-IBIsfq-RT68gXE5eT_BAcr_-8oBwo64xIF_RMHARICAwNRL-7-GBj6_hMFAwE7B_3z9v0FCQ4bBe4SEAvrz_MECwXzABUgAC3RQhc7OBNACUhhUAIqzwcQABrAB7fs2L5dd6k8sdTEvME72b1TFr89V2J5PO8tdjwZR4s95upHvBCAbj3ZVW28OXuIuqFId75zVro8pDYxvcVVhT5UMG-9m38qvFouW77qj5U8bmKSvD9U-r1tXsu8hhQtvY7IJz7zRGY9sGgjvGFdiz1SD9E8kAsTPU2wibyLwYO9NN97u7GczryXnEm8tu1gvWhH4DxU_B89AEPFO2VtVzuM5GG8Sx5PPKGUej1kaKu8waq6vPwLlDvWBsC7r_8AvPc_ED4XoG28n0nyO8BOoDzVyBM9DIjavFWnXrxoKyU9-JlEvERplLtttT09G-VPPH0EHj6UNIo9uW81PAFsID050Q49bAqBu_X1_D2cogg96ytZvBSbCr1dNU89-CVRPNe2kj1sVHE9soGVO52fIjxn0ka9FmWbPBdc_byUPC09X-HuOytt8btSAYM75IPcO59NqD38byU9udSSvEEnKb1Z9sk8tRyDPCJsnby5g_28d3u1vLjq-j2E2SS9ZciMvMgozz2--z48wpCLvN9mxj05tfO9hx8YPJiBr7yPwrq9q74pPGayCT3zwgQ6ZbegPPYFqT3BvNG8b3zxu9pOIL3sLxu-94zIOvHYzz3Io0i7ci54unCkQr2quBI8yC1BPAcjNr28HJs7o8owvOnsyTxMGM09X-iaubjqCr4_9kS7sH9ZuU4QwD3o3ym9yiJYul1pvjzEln694Lclungqv7r_HuG8zb7AutkQEr1Jzei8WkKlO4h6izx0Yqy60A5tunwr0jzqOKO8O_3BOYJHZbyh2ys9csMjOS3RCb6WIS49nrhguCrG-byIOyi9VnZMt82Rdb01RWC9HDIuOfYjhbzaSCi9J7mOOdGcq7y5YUU9BdqhupzsgL1f1yo9LAj3uC5Z8DvW5dQ97n7BuLeCAb1fwZy91lMFub7iJD0f-_S86LT-N7Sw5bvbeyK9gBzwOJi85jyVovC7yiW6OL7nxj0AHaa9akOGOSn0sLx60JI90TlKtwYKQb2Q77c8EQdjODv9oDzydx--62Cpt689mLwX9B6-_YqquLxw7zseeoG9TdDCOMwBzLy8aPq6NNKmOBbVhzxeCIM7c0yUOPIM0zmOrnK9COC6OPqwI70o8LG70HPEOLUlsT3rUPI8erxIucRr6jpQ5KQ82dP9Nh4qeDslBOu9I79nOJG_Cr2DHpU9i0ORN16qSL066R2-tGP6uIqWVz0QWPk9jRdAOGZcAr10Fkw9gHiYuH8vxbzk1ik9TDOIuMHFjrtiFa-8QXEzNyAAOBNACUhtUAEqcxAAGmAw_gA1HgDd0A0r2efm3xEg0jq4IeQW_9sO_zcO4eb4B6Wf5w__PgDR5aEAAAAsG-7w2wAxf__iqh392g3rr-ML-WHkKQfr5RfplMAFKh_xCTQUMmwAzxOdDzjq2ixY6B8gAC0CHBQ7OBNACUhvUAIqrwYQDBqgBgAAdEIAABBCAADAQAAA-kIAAEBAAAC4QQAAqEEAAMjBAAAswgAAEMEAAIJCAABQwQAAfMIAACTCAABwQgAABMIAAARCAAAgQQAAHEIAAADCAACgwQAA6MEAAFzCAACcQgAAgEAAAGhCAADQwQAAMMIAALxCAAAIQgAAMEEAAOBAAACgQAAAQMEAALTCAAAIQgAA0EEAAM5CAABAQAAAQEIAAGDBAADQQQAAiEEAAIjBAAAgQgAA4MAAAPDBAADwQQAAqkIAAPjBAAAQQQAAFMIAAITCAADgQQAAIMEAANjBAABAwQAAkMEAADjCAAC4QQAAsMEAAGzCAAAwwgAAAMAAAATCAAAgwgAAQMAAAGDCAACOwgAAUMIAAIBBAABkQgAAlMIAANhBAACoQQAAwMIAAMbCAACYwQAAmEEAAHBBAADowQAAoMAAABBCAADQwQAAHMIAAPhBAACGwgAAgEAAAIhCAAAowgAAMMEAANhBAABQwQAAAMIAAFBBAAA0wgAAMEEAAMjBAACwQQAAYEEAAATCAAC8QgAA8EEAAMDBAAAAwQAA0EEAAOBBAACQQQAAHMIAANhBAAA8QgAAJEIAAEBAAABwwQAAMMEAAChCAAC4QQAAkEEAAGDCAADwwQAAQMAAABRCAACQwQAAQMAAAFDBAAAAwgAA0MEAAODAAABwwQAAKMIAAEDAAACCwgAA0MEAAIhCAACgwAAASMIAADxCAABIwgAAFMIAAOrCAADQQQAAIEEAAEBBAACIwQAAUMEAAJpCAACgQAAAcMIAAJhBAAA8wgAABEIAAMjBAACAQgAAcMIAAPDBAACawgAAwMAAAETCAAAgwQAAsEIAAMDAAACgwAAAyMEAAODAAACAQAAAoEAAAERCAAAkwgAASEIAABjCAABQwQAAIMEAAJBBAAAgQQAAgEAAAKBAAAAcQgAAIEIAALBBAADoQQAAOMIAAADCAADAQAAAMMEAAJRCAAAMwgAAgMEAAGRCAAAcQgAAUEEAAIC_AACgwQAAQEEAAPDBAABwwQAAMEEAAKBBAAAIQgAAwMEAACTCIAA4E0AJSHVQASqPAhAAGoACAACgPAAAmr4AAII-AACgPAAAgLsAAOo-AAA8PgAACb8AALi9AAAkPgAAgDsAAAy-AAAQvQAAmD0AADS-AACgPAAAhj4AADA9AACAOwAACT8AAH8_AAAwPQAAcL0AABw-AAC6vgAAcL0AAHA9AABAvAAAmD0AAIY-AAAEPgAAoDwAAIa-AAAcPgAAUL0AAJi9AADoPQAAoLwAAIK-AAAcvgAAJL4AABy-AACovQAALL4AAKA8AAAEvgAAuL0AAIq-AACYvQAAjr4AADA9AAAwPQAAtj4AAFw-AAB0vgAAcL0AAEk_AACgvAAA2L0AAIo-AAA0vgAAuD0AAFA9AAAQvSAAOBNACUh8UAEqjwIQARqAAgAA6L0AACw-AAAEvgAAQb8AAAS-AABAPAAATD4AAJg9AACYvQAAHD4AAFA9AABEvgAAQLwAABy-AABwvQAAEL0AABA9AAA7PwAAJL4AAKY-AABQPQAAgr4AACQ-AACCvgAAuL0AAAQ-AABcvgAAQDwAABw-AACoPQAAUD0AAKC8AAD4vQAARL4AAKg9AACAOwAA4DwAAHC9AACgvAAAgDsAAJY-AAA0vgAAQLwAAKA8AACOvgAAvj4AAH-_AABsvgAA3r4AAAw-AAAcPgAAND4AAIY-AAAMPgAAmL0AAIC7AAC4vQAAcD0AAMg9AAA0vgAAED0AAIA7AAAQvQAAcL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=fIy5Wav4rok","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13315109333605268476"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3977787646"},"7231366887646331297":{"videoId":"7231366887646331297","docid":"34-3-11-Z73F3E88ADEA942B1","description":"MIT grad shows how to integrate by parts and the Liate trick. Nancy formerly of MathBFF explains the steps. Follow Nancy on Instagram: / nancypi Twitter: / nancypi WHEN to use Integration BY...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/222020/f13b346fcd57ac483bd1cd2cd8244dc2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/BF84DwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKKg88oSUv0o","linkTemplate":"/video/preview/7231366887646331297?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration by Parts... How? (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KKg88oSUv0o\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoVChM3MjMxMzY2ODg3NjQ2MzMxMjk3WhM3MjMxMzY2ODg3NjQ2MzMxMjk3apIXEgEwGAAiRBowAAopaGh5d2dtcmd4ZnRkeW16aGhVQ1JHWFYxUWx4WjhhdWNtRTQ1dFJ4OHcSAgARKhDCDw8aDz8TtwiCBCQBgAQrKosBEAEaeIH8CQD9-wUA_wH5BvkH_gL1AfgA-f7-AP4JDAT6BP4A9_kA9wEAAAD4BQICAAAAAPz8BPv8_gAABgUF-wQAAAAG9f37BAAAAAsN8AL_AAAA7_sN-gIAAAAPBvkO_wAAAPgAAAEG-v8ABv0L_wAAAAAI8_kCAAAAACAALaML4Ts4E0AJSE5QAiqEAhAAGvABcPjz_vft9wLr7ssBjv0O_qgtJP8s9ekAgQ0HAqH05wDWHAYAAvzXACrB_P8QLi0ADCHd_-HmCAAk1_D_KCLjAdTiEQDe4AIBJewSASAA5v4cBez_Bx8V_xHc9wAXCwz_IhsfAOb72gPx8fUFC_Qh_y3JFwPy7-X_CQ8LA9EoC_8NBeH92wMbBN774v3qGxoB3wQe99_t5gPp3w4C5e3q-zny6AP59tgC8dkC_-zL9wMMCgb7xOXk_wfoKQfcFwT-K_YYBfYF_ewSAgMDRyIL-wIa-_ce1P3-RA70AQwA9fwGHO3o8QIYAM787Awb6wgVIAAt99kWOzgTQAlIYVACKs8HEAAawAe37Ni-XXepPLHUxLythSm-3X1pPZTphjrzdw68YhwyPV8Ieb240ka89FWNvKgOw7y3DZO-G1QTPBu0HL3LgDM-5tGIvZhiMzxxPVq-5xa_PYVMqLzJcvK9wWoRvQIVq7uzXI4-xUIjPddO1LyVels9Kp8XOv7Btjw5oja9-DNcvSlCqjxD5_W9f7YfvVoiAb1a3zY96dudvFORyjxLg_A7ammuPHbAtTyhlHo9ZGirvMGqurxZ_2I9xTvAPIjBdDuUwhw-5JPfu3qjGz0Vs5g7LGdqPcaWNL2XV869oKkyvBD8uby5ALS8ZU2RPUysZ7yVfy0-LmbVPD_9jDyC1Du7bnjwPI4xIDzkhv89OXb1PIxvnjxberS88J29PFGC4zykA6s7xnkOPelHQ7xeliA9KvcMve8ZS7vSrn09wTKLPY4BmTzt7gM8Fy8UPHijhTyeV4E9wF-nPIqGFrzbV7m8PVrBPPJDpTxKV9W8vR5sveIyuLw0R9Y99DY2vKFnPbrjxWI95XUuPV95kLyP4BY-W3gOvgPnDryAAQ497hiYvcN5nbyt1Jg83wbOOkB7PzxZh8M9Cs9VvfSCUztxY4m9zBG9vSy1JDunduY9XHyAvIKbnDvOJpa9-p6sPLXhMLvYv8a8xN5VPH_xMbxzB1s9A1PHPXIMwTmWlgG-Mze6PKIz2DgLqLE98cP3vJiM-7mHgG09kZSZvDzWGTrmHCE9WV4DvR4GKTub3NS8800kvf5cFzuiNdA8EHznPJxzDbsNYWu7tjyFPETeNDuiLi28GcyaPflwwbmUidu9Cd2aPe-96DgGjLS9_VwevVTHaLmzE7S91kWQvbRnMDnRKIi9mam_PBzF97UdYJy8vDuSPYgxsLdfCs-9OHApuhhDtbmNP_Y88YF9PUIe07g_o9m8CKEtvdBdG7kWbrQ93dMRPI3LgDg9_ZQ7HB0BvS-lorh4H0w9pa_xPJfPAjmrJog9z7eavfufhznQ8Ga9eIuhPfOdJLkUSqW95IdKvBQZGTieBjG9g8DqvTPMkDjTzwg8ZjHRvT5Llzb9Jp68vBw7vWLEOjnJeXq94oEWPFnNZTjWH7w8JTZEvMJCCDi4Cwg9x8qZvXBWfTj2pEK9MCUXPYPDyDdJ4aU93HcUPNS2I7lHxxe88bnTPFBPdLcylO68uvi7vTYXJriUtKy8bK00PQQY87XCFYC9FHjnvdm0oLi5wXU8LewJPoYn5zhEci294frmu7I9mbgBLUK9JDo1PSjZHbfF3UW9_6vQuqaDPDggADgTQAlIbVABKnMQABpgQQ4AGBMR0ar0FOrv7OcC_esVv_zxEv_q6QApFADp_gjFwu4c_yfz4Oi3AAAA9QwOMMIAEGP18skB5Cnk87_5ChN_IwI4zsIjEdzRAygJF-4xGBU6AP77vPX41BZNHxUPIAAtSMI1OzgTQAlIb1ACKq8GEAwaoAYAAGRCAADgQQAAkEEAAHxCAACAwAAAkMEAACBBAAAkwgAAPMIAAPjBAACCQgAA0MEAAGzCAABIwgAAeEIAANhBAADYwQAAgEIAALJCAAAAwQAAUMEAADjCAABEwgAAdEIAAGBBAAA0QgAASMIAABzCAACkQgAAGEIAABDBAAAwQQAAAEIAAIDBAACIwgAAsMEAABBBAAA4QgAAFMIAAARCAADIwQAAmEEAANBBAABAQQAANEIAABBCAAA0wgAA4EAAAKRCAADIwQAAMEIAAJrCAACawgAAEEIAAADBAACAPwAAIMEAACBBAADAwQAAjEIAACxCAACGwgAAEMIAALDBAAAswgAAJMIAABRCAADAwQAAiMIAADzCAADAwAAAXEIAAITCAADgQQAAgL8AAKjCAAA0wgAAsMEAAKBAAAAEQgAAgMAAAKBAAABAQAAAUMIAACDBAACAQQAAcMIAAEBBAACoQgAAXMIAAEBBAACEQgAASMIAACTCAABQwQAAKMIAACxCAABUwgAAEEIAAHhCAAAMwgAAqkIAAADAAAA0wgAAAAAAAOBBAACAQAAAIEEAAFDBAAAkQgAAHEIAAEBCAACgQAAAUMEAACBBAABgQgAAmEEAACBCAABQwgAADMIAAMBBAADwQQAA2MEAAMDAAACAwAAABMIAALDBAABAQQAAyEEAAKjBAACIwQAAPMIAAIhBAABAQgAAmMEAAFjCAAB0QgAANMIAABTCAACiwgAAmEIAAPBBAABAQAAAAAAAAKjBAACyQgAATEIAAEDCAABgQQAA6MEAAOhBAAAwwQAALEIAADDBAADIwQAAdMIAAJDBAAB4wgAAiEEAAOZCAACAwAAAyEEAAKDBAACAwAAAAMEAAIBBAABgQQAAAAAAADBCAACwwQAAmEEAAKjBAAAgQQAAQEAAAMBAAACwQQAAKEIAAEBCAACAQAAAoEIAAFzCAAAgwQAAcMEAAIDBAAB8QgAAmMEAADTCAAA0QgAAyEEAAKhBAABwwQAA8MEAAEhCAADAwAAAHMIAAMDAAADgQAAAUEEAAJDBAACEwiAAOBNACUh1UAEqjwIQABqAAgAAZL4AALq-AABQvQAAZD4AAOi9AABMPgAADD4AABG_AAD4vQAAgDsAAGw-AABEvgAAmj4AAEQ-AABQvQAAor4AAEw-AAA8PgAAQDwAADk_AAArPwAAND4AADC9AACgvAAAVL4AADw-AAAUPgAAbL4AALi9AAAsPgAAfD4AAOC8AACGvgAAsj4AAOi9AACovQAAiD0AADy-AAB0vgAAUD0AAMi9AAAQPQAAoLwAAIg9AABEvgAAVD4AAFS-AACevgAAVL4AAAy-AAB0vgAAHD4AAM4-AADCPgAAuL0AABA9AAB_PwAAcL0AAMg9AADGPgAANL4AAIC7AAAEvgAA9r4gADgTQAlIfFABKo8CEAEagAIAAMg9AACIPQAA2L0AAE-_AAA8vgAAEL0AAI4-AAB8vgAA4LwAANI-AAAQvQAAuL0AAMg9AAA8vgAAMD0AAKi9AAAMvgAAMT8AALg9AAC-PgAAcD0AAKK-AADoPQAAoDwAAMi9AACoPQAAVL4AAEA8AABAPAAAED0AADC9AACgPAAAHD4AAHS-AAC4vQAAED0AAJI-AADgvAAAyL0AADC9AAA8PgAAJD4AABA9AABAvAAAFD4AAGQ-AAB_vwAAJL4AABC9AADgPAAALD4AAMi9AACOPgAAUD0AAJK-AAC4PQAAEL0AABS-AACgPAAAoLwAAIo-AABUPgAAjr4AAKC8IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=KKg88oSUv0o","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7231366887646331297"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3792462979"},"1107275528919795124":{"videoId":"1107275528919795124","docid":"34-4-4-ZB97968196AF3A26F","description":"MIT grad shows how to use the chain rule for Exponential, LOG, and ROOT forms and how to use the chain rule with the Product RULE to find the derivative. To skip ahead: 4) For an example with an...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/220374/712bc711cfb805700bcc02216ab4d075/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/va5v0gAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DU_qp0isxQYU","linkTemplate":"/video/preview/1107275528919795124?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"More Chain Rule (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=U_qp0isxQYU\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoVChMxMTA3Mjc1NTI4OTE5Nzk1MTI0WhMxMTA3Mjc1NTI4OTE5Nzk1MTI0apIXEgEwGAAiRBowAAopaGh5d2dtcmd4ZnRkeW16aGhVQ1JHWFYxUWx4WjhhdWNtRTQ1dFJ4OHcSAgARKhDCDw8aDz8TywWCBCQBgAQrKosBEAEaeIEE_AcEA_0AGAQHCPoL_QHl-_4K-wEBAO34EQUHAQAA9A___gcAAAD07wj-BwAAAP0B8ggC_gAACQf7-QUAAAAN_QT6BwAAAA778wz_AQAA_wUG-PcBAAAD8wD__wAAAAkO_QUBAQAABQTw_AAAAAAG-fn9-_X-ACAALeXyyzs4E0AJSE5QAiqEAhAAGvABdxnZ__vd5wPr7ssBjg0X_qEzA_9B89__gQ0HAqH05wD0HAgACfXtACvUDAD1JCP_FRftAPDyBQAU89b_Jij4Ad8GJAH76egBNe8IAP4F6P_1CeT_GhYbAADo_wENAAD8Hw4W_9QJ2ADy-uz9EfUJAC3JFwMAAfkEEP8JAegxIgP3-Mf-_AkZ_esH9QIBMSAB3wQe9-Ld7PwGzxkB5e3q-yHp7wIHAuH60OT-CeHZ-f8MLAYFAvLc-wQHK__nCxMEBgsTC_v-7gQXFP8DIxgaBfMTBvsg2ukCRA70Ae0E_vvsA_Hz3wMNAu0A-BMb6wgVIAAt99kWOzgTQAlIYVACKs8HEAAawAdqFtC-rJQZPVMN97txjvq9cMFoPQW5sLwU2pi9J095PQsRibvRYO48VxIvPT4Ue72cTZe-6j1cuWSPFrwUlEI-RkUcvXPoALzv5U6-EKhDPRiswLsVN06-rTTpvGU6T7zAX0w-8qXmPNe0ALl2CT09jmNavItSH7whlaK8hkSQvE7etrxdqbK9wZwqvT0eRLzlgHg9RyFEvRsLDrv4RGg9vcNtvN7bvjs8BOE6mJxBO-jhIbssUC66_BdNvRx5oDznq1Q-8F2UPGzJDTzATqA81cgTPQyI2ryDvpS9U_0UO9tjzrwPe4Y97LmRPTmhK708MAA-jFkFvaOFlTvMUEu9WMu9PR0GzjzdYDg-KaZcPeMbPjrLBqO9htVuPabc2DyrMde8oqUhPbrwhzupHp88tU6BvO0PtTuZ4mA8Nek7PTmfEzwxLUW9JGC2O_SwhjyfTag9_G8lPbnUkrwfxCm8CcrpupLLYrtYa229Qo_eu4s-1byc-uA9QP0CvQx12Du_w4M9NCqVPAsPqblE87U92NTZvTpxILyV3Dy9PPHBvUPp5rsxfvU7q200vUx9rDqGWp49J1BEul03gLxa42K9N8PtvQxLEbxjdcA9fVEMvVpnIjpwpEK9qrgSPMgtQTzFpwW9as_6uu4Mjbvp7Mk8TBjNPV_omrkvv9O9cqPtvNe0XrvVvHk9m336OYLQNDvG_Fw8xo0WvSG1ojlU-p49mug4vXhaTzjEuR-77Oy1vJlRgzsKzJQ8qA3YvCnghbp0EiU5Lug4vf-qgbnwTl49c7I-PcFWQjmLPLS9fTVRPTgfGDjuc-O70qGIvcMjPDkUnYu9iXrhvcYncDnz3Xe72JMGvKZKI7om2Y88srYOPZcUlDlTWfS9r-GzvIyMj7m8tLw73gQ_PfCspTnJHwq8keGCvGIavrgxf2A9xiuaPNgK_TjRuny9J3U4vJg2VTk7FsA9wVIdPWo7AjkRoFA9ukmcvaiweTkUBA89EF0APo3DcbgjvYi92Fk-PeyKsDgDzOE88d6MvSRKFDmdDkc7d58DvkPejLdKNeK84TMGu7PEzTjJeXq94oEWPFnNZTgX1Tq6-VAxOtBY3DeGqng9tSIAvdovAzgmZme9TZzBPPI_CTid2e49n5WTuqNqDrlWVZ68xN1qPPTfTrdyNAk7cI60vTjSjbZ5dty7EbWjPIHqjLidbcm91NQSvh8-kbi5wXU8LewJPoYn5zi6E6y8cty5PXQwGLmyq4-9fLr6PHOUNDcdkyQ791BHvMFIxDcgADgTQAlIbVABKnMQABpgPxAADyAqA7TSPN4DDsznAAEKrPz1Cf8cA_8LDC0bA-rTufsZ_xrjEfStAAAAHBHfBc4ADHDy6ckB3uYf79gmCRN8LRc9ygIzEdPO9BAGJSwYB0VJABAvtgYlgR8SPxr_IAAtCsYjOzgTQAlIb1ACKq8GEAwaoAYAAIZCAABgQQAAMEIAABhCAADAwQAA4EEAAFxCAABIwgAAKMIAAEzCAAA8QgAAQEEAAGDCAAAAwgAAKEIAAKDBAABIQgAALEIAAJhCAADowQAA4MEAACzCAAB0wgAAuEEAAABBAAA0QgAABMIAAGDBAACEQgAAoEEAAADAAABYQgAAQMEAABDBAAC4wgAAoMAAAKBBAAAcQgAAmEEAAHBBAAAowgAA6EEAALhBAAAsQgAA4MAAAABAAADYwQAAEEEAAIZCAAAkwgAAIMEAANDBAABMwgAAaEIAAMhBAACIwQAA8MEAAEDAAAAAwAAAJEIAAIBBAABwwgAAIMIAALDBAACgwQAAyMEAAFDCAAB8wgAAgMIAAOjBAADgwAAAWEIAACTCAABQQQAAAEEAAADDAADewgAAMMEAAJhBAADgQAAAEMIAACBBAACQQQAAQMEAAIDAAAAoQgAANMIAAIDAAABgQgAAuMEAAKjBAACUQgAAQMEAAAzCAAAoQgAAgMIAAIC_AADwwQAAHEIAABhCAABcwgAAgEIAABBCAACowQAAQMIAAJZCAABwQQAAOEIAAEDBAAAcQgAAlEIAAKhBAADgwAAAAMAAAKBAAABQQgAAIEEAADBBAACMwgAAvMIAAABBAAAAQgAAEEEAALDBAADAwAAATMIAALDBAABQQQAAuMEAACjCAAC4QQAAUMEAAIDAAAA8QgAAwEAAALjBAAAAQgAAiMEAAADCAAC-wgAAkEIAAMBBAABAwQAAgMAAAKhBAABEQgAAcEEAAIzCAADYQQAALMIAAMhBAABAwQAAAEIAABzCAACAwgAAkMIAALjBAAC0wgAAIMEAAKZCAABAwQAAIEIAAPjBAAAAAAAAQMAAAMBBAAAkQgAAwEEAAIBCAAAswgAAgEEAAJjBAAA0QgAAMEEAACBBAACAQAAAIEEAADBBAADoQQAAwkIAAIzCAACIwQAAAMAAANDBAADoQQAAIEEAAIjBAACgQQAAwEEAAIA_AAAwQQAAkMEAACBBAADIwQAAuMEAACRCAACQQQAASEIAAHBBAACMwiAAOBNACUh1UAEqjwIQABqAAgAA6D0AAHS-AACKPgAA4LwAAKA8AADYPQAAnj4AAOq-AADSvgAADL4AAFC9AADqvgAAoLwAAHw-AAAkPgAAHL4AAJg9AAAwPQAAED0AAOY-AAB5PwAAuj4AAFS-AAAkPgAAxr4AAKK-AAAsPgAAFD4AAGy-AAD4PQAAPD4AAHy-AACOvgAAgDsAAAS-AAAFvwAAhj4AALK-AADOvgAAtj4AAOA8AACAOwAAPD4AANg9AABQvQAAfD4AAEA8AACivgAADD4AANK-AACYvQAA0j4AADw-AAAQPQAAuD0AAOA8AAB_PwAAgLsAAKI-AAC-PgAAiL0AAIo-AADIvQAAPL4gADgTQAlIfFABKo8CEAEagAIAAEA8AACKPgAATL4AAAm_AABEvgAAqL0AAIA7AABwPQAAcD0AAPI-AABQvQAAgDsAAJg9AACovQAAEL0AADC9AABAvAAAMT8AAJi9AADePgAA2D0AALi9AAC4PQAAuL0AAPi9AABMPgAAcL0AALg9AACIPQAAJD4AAIi9AABQPQAAEL0AAOi9AAA0vgAAcD0AAEw-AAA8PgAAML0AACS-AAA0PgAAoLwAAIi9AAC4vQAAPD4AAKo-AAB_vwAAHL4AAJq-AADgvAAAgLsAAOg9AABkPgAALD4AAAy-AADYPQAAUL0AAGS-AACIPQAAiD0AALg9AACAuwAAqL0AAAS-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=U_qp0isxQYU","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1012,"cratio":1.89723,"dups":["1107275528919795124"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3671151370"},"11519259727116947522":{"videoId":"11519259727116947522","docid":"34-2-14-ZDCB8EC147B98E3A2","description":"MIT grad shows how to integrate using trigonometric substitution. How? (NancyPi) For my video on how to integrate using U-Substitution, jump to: • How to Integrate Using U-Substitution (Nan...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2992750/68e520b21bab5e80988a79765ba8a149/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/X8Q7sgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dcyi-qyG1Yds","linkTemplate":"/video/preview/11519259727116947522?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Trig Substitution... How? (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cyi-qyG1Yds\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoWChQxMTUxOTI1OTcyNzExNjk0NzUyMloUMTE1MTkyNTk3MjcxMTY5NDc1MjJqkhcSATAYACJEGjAACiloaHl3Z21yZ3hmdGR5bXpoaFVDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dxICABEqEMIPDxoPPxPRDIIEJAGABCsqiwEQARp4gf7_-P_7BgABCwMG-Qf9Av0B9Qb4_f0ABQIE-_EC_wAFAfsB9wEAAPv9CAQAAAAA9QYA-P0AAAAEAfb-AwAAAAn09wv7AAAADxD6-f4BAAD2_wD9-QEAAAf8-wkAAAAA-gUBBQQBAAAE-wQDAAAAAAj--wj88_4AIAAt2W3kOzgTQAlITlACKoQCEAAa8AF_7P8D_OPsA-_y1ADCAvsAuCUd_ycF8AC5DSMBsvbrAN0XBQDo_t8AAN_7AOcWF_8E-eP_-9kBAB3e8_89_9z_4_YZARbl4wAeCwoAFAP2__z-Cv8b7ScCCPj6_yIaBv4LDxv_7AzeAQ_e7AMt-wgDEs8WAQv99QHy3wAA4xkRABXx4_7vF_j96g_rAt0oDAD8ARsB_Abx__nyCf7t-vX8EvgGAQYC5vv9-QT9Duvy-ePsCgjf2eoCBuwiBtcQ7_4O-RcI-AT97xwiCPkRCfYF9SXw-A3_9AE6FgT9FOX7-xEM-vX4KBMA7A0GEvcL9gggAC3Ybjc7OBNACUhhUAIqzwcQABrABwlPoL6H7T09-Ii9PI0N_b1VbG27_KF-vRTamL0nT3k9CxGJu6fN-D3sJKy8tYYXvXalNb59Clu8itKYO4mZDT7MP1-9652fuXE9Wr7nFr89hUyovLeyJL4pFcM8RNBivLDnCz5Rtxq7BbECvcLJjD0vUkO9fBm7PF0Xvr1dlqW8ks1VvV2psr3BnCq9PR5EvJRnXrwDoMC8xYMXPXX1hD0Ugis98sH8vKGUej1kaKu8waq6vJzW9zyOr_08VCjeO-KSAz6Ho5A8OA9MPGX7Vb2bvJK8aUb1vIO-lL1T_RQ722POvBEWW7tXXHw94yQjvdKjjj2ZpA29UN-yPF2Rs72MQhg8PjWHuxpCjz328MA8ZzGpOnq2Xb1pQDg9j5rEu7E3zDwydoI8ivU_ugGZtz3Woiq8VyGKPDdMiT2N_TY9yyrPumBtUb3wKhU9jJH4O1BTmz22ngS8hq5EvOFioDtslb87GCS_O1Yf2bzKA2y7ZNrIvKi4njtCGVQ9YZ9nukQIXj15cnK8ICQwvAUjpT3WAju-SeWaOld7OL0vh_29KqBmOimMkjyAY5E79Ve8u07wzT1mM-e9_1cAPDHGMLsSpPK9WCvJumN1wD19UQy9WmciOgp5vr2YABc9gy4GPC19o73ZhyY9XqmAuzBmyzwqpw0-bpMoutyohL2HNCq9X1aTu6CRBDwTLr-8u8A8u20B4T3kni69rNokuFT6nj2a6Di9eFpPONApSDuTLRy99QdSOwcuBzyhwgy9xMmBu2P9MLslC7E7Pee4uj_ekjsQCM8888TWuAvUMr6yKgc9FcbmuSyONL2FnzO9mOOWORSdi72JeuG9xidwOf8NNbzO1d47RBCMuhStAT0EwJ08KvCjuC9Q8r2oXJy9Q4C_t1ShS7zEVhU97CZKt_vaxLyzLig77FoYOKw2Hz0Qaae6Z95uudlXAby92la9fLeVuEmfBj54or88RkBMOaw5kD2EZay82KwQOemTw7pZ2ik-lhOHuRt5tb3gsek8zLILON5JODtKJFG9FTd9N8PT6zxnJvi9IiQkuJ_JHr1SFnQ8dCoaOaBQz70V74Y9wtICODmuCz0ohRa8AU9DN7-YkjxHdI-9BsS5t7NQfL3EZos9A1cKOJJdGT7ZT1C9rMI_ucSJmrv77UY8XH1atwaoX7wbng6-mX_AN5tLW72SPKc9bXCBOJ1tyb3U1BK-Hz6RuMr0cD0i4Ss-8cuKODpmDzwuMia8WyHkuCGsJr1UAXc9YStSuJDv9zqpwXQ9CWiwtSAAOBNACUhtUAEqcxAAGmA1BgAfChDVt_kS5Rbv8v7s-yS8EM8G_9z4ADcb7BYS-8e-DCL_Mt3X9rMAAAAPDe4z7AAzbObkzxfi4uPou9MZ_H8i_A3RxwoCse0EMwoj_irwJEIAA_61HzS-7zk2MQwgAC09MCo7OBNACUhvUAIqrwYQDBqgBgAAbEIAAIC_AAAsQgAAgEEAAMDBAADwQQAAKEIAANjBAAA8wgAAjMIAAHBBAAAsQgAAeMIAAGDBAAAIQgAADEIAAAxCAABIQgAAwEIAAADBAACgwQAAcMEAAIDCAABUQgAAoEAAAJhBAABgwgAAQMEAAJJCAADoQQAAQEAAANhBAADgQAAAcMEAAIDCAACAPwAA8MEAAIZCAABAwQAAcMEAAMDBAAAEQgAA4EAAAOBBAAAAQQAAAEAAAHBBAABIQgAAqEIAAAzCAACoQQAAaMIAAIbCAACaQgAAcEEAALjBAAAswgAAAAAAAADBAABoQgAAXEIAAHDCAACGwgAACMIAAATCAACIwQAAEEEAAFjCAACwwgAAEMEAAMBBAABAQgAAWMIAAJBCAABgwQAA4MIAAKrCAAAIwgAAUEEAAARCAADQQQAAQEEAAIC_AAAowgAAgD8AAEBCAADIwQAAmMEAADhCAAD4wQAAIMIAAGBCAADYwQAALMIAAIDAAACGwgAAIMEAACDBAAAEQgAAZEIAADDCAABoQgAAYEEAAMDAAABgwgAAqEIAABBBAABIQgAAQEEAAABCAACCQgAAIEIAADTCAACgQAAAyEEAABBCAADwQQAAAMAAAGDCAACcwgAAAEAAAIC_AACoQQAA6MEAAJDBAABgwgAAMMIAAODBAAAAwQAAWMIAAIBBAADQwQAADMIAAEhCAACAvwAAUMEAABxCAAAowgAATMIAAITCAABsQgAAsEEAAEDCAABAQAAAcEEAAFBCAAC4QQAAdMIAADDBAACGwgAAEEEAAADBAACIQQAAmsIAAGDBAACMwgAALMIAAGzCAAAAwgAAqEIAAMDBAAC4QQAAgEAAAKjBAAAwQQAAQEAAACBBAABwQQAAGEIAACjCAABAQAAAMMIAAKhBAACYwQAA4EAAAKBAAADQQQAAgEAAAPhBAACeQgAAEMIAABDBAAAAwgAACMIAAHhCAADgwAAA8MEAAIBAAABAQQAAsEEAAIA_AACAwAAAwMAAAATCAACowQAAYMEAAHBBAACAQQAAcEEAAHDCIAA4E0AJSHVQASqPAhAAGoACAACKvgAANL4AAOA8AAB8PgAA4LwAAII-AAAcPgAAM78AAKi9AAAwPQAAFD4AAOC8AAA0PgAAgj4AAHC9AAB8vgAALD4AAFQ-AACgPAAAXT8AAD0_AABwPQAAqL0AACw-AAAcvgAA6D0AANg9AADYvQAAED0AADQ-AAAsPgAAir4AAIK-AACIPQAAJL4AAOC8AAC4PQAANL4AAFy-AAA0vgAAgDsAAOC8AACovQAA4LwAAAy-AADoPQAAiD0AANa-AAB0vgAAvr4AADy-AABEPgAAhj4AAJY-AACSvgAAMD0AAH8_AAAQvQAAHD4AAL4-AAAkvgAA-D0AAFC9AADOviAAOBNACUh8UAEqjwIQARqAAgAAiL0AAOA8AAAUvgAAMb8AAOi9AADIPQAAuD0AAIi9AAAcvgAArj4AAMi9AACovQAAHD4AAEy-AACgvAAAML0AABC9AAA7PwAAcL0AAJI-AACgvAAA2L0AACw-AABQvQAAiL0AAOg9AABUvgAAuD0AAMi9AACYvQAAUD0AADA9AAAsPgAA-L0AAHA9AADYvQAAuj4AAFw-AADYvQAABL4AAJo-AABwvQAAyL0AAOi9AABwPQAAQDwAAH-_AAAUvgAANL4AADw-AADCPgAAiL0AAI4-AAAUPgAAFL4AAEA8AACIvQAAUD0AAKA8AACAOwAAZD4AAIY-AAA0vgAAML0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=cyi-qyG1Yds","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11519259727116947522"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1947031578"},"4449485200549904692":{"videoId":"4449485200549904692","docid":"34-6-16-ZF0F94E85F1B4405F","description":"MIT grad shows how to find the limit at a finite value with a square root, (sin x)/x, or absolute value. To skip ahead: 5) for a Square ROOT in the numerator or denominator (to Rationalize by...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3174072/c25aa4369030f75122c083d5d57f46d4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ombEnAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dv9fQ_QeCHpI","linkTemplate":"/video/preview/4449485200549904692?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Find Any Limit: Part 2 (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=v9fQ_QeCHpI\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoVChM0NDQ5NDg1MjAwNTQ5OTA0NjkyWhM0NDQ5NDg1MjAwNTQ5OTA0NjkyapIXEgEwGAAiRBowAAopaGh5d2dtcmd4ZnRkeW16aGhVQ1JHWFYxUWx4WjhhdWNtRTQ1dFJ4OHcSAgARKhDCDw8aDz8TwwqCBCQBgAQrKosBEAEaeIHjAQf6DPEA-_cICQIJ-wIk8_wI8wICANkS8wUD-gMA6Bv3AgD_AADiE_78-AAAAPUH-P3x_gEA8w0AAgYAAAAI8fz6BQAAAA0I9Av-AQD_EQUX9wIAAAAE6_oI_wAAAPgGFwj-AAAA_fv-_AAAAAD88QD6-_L-ACAALSUAqTs4E0AJSE5QAiqEAhAAGvABZhDw_uXv-gPtBtUApgsUAKQvJf9B3d8AgfjwAZzz5QDsG_YAAvzVAC7SDQD6ExD_-xXN_-DlCAAgD-oANw7eAPAEGQHe5-cBLdwEABkE8_8IDOD-Ahou_wDl8AAz_A7_Nw0YAOkC7QP289oGDPMi_xvQCATv-_sFGgEjAcpN_QEeCsL75Q0h_PgD8_z-ER8D-wEiAdHa7wAGzBoC3Rzr-Dzm-ADzE9f_397r_ffl8voNCgb78dnN_h_5JAbvKgcKBgwUDOPx-_MkKwv3XP0K-wwE_vskt_sKRw_0AQP0_fsGHuzn3x4IDs8e9w4d6ggWIAAtwoQPOzgTQAlIYVACKs8HEAAawAe6o_e-MYOnPCJ8XjzJd4S61TXkPPvxzbwTuAU-fAGXPb6-VrwQgG492VVtvDl7iLo4aYq-0Qw9PO2ufTzFVYU-VDBvvZt_Krx6Fy--CDwwPSmf1LxM3J-9m9oDvcn3Fry6Eww-rMDkOZAWl7086a496NS6uxNgZjqFYHW9GxZevYF-OrwriMG8wxccvUlb5ryTHDC8CPpRO6BSpTxZVyC99MyBumIJkLzfktI8xI0APXRIRbvIv8W8DkA0OhKOsLu7L7I9Fjz7PKUFGruxh7Y8_dodPKdrV736NhM9XtoQPf_GIrxY8y28dRE1PXrhTryl4ro9YDSlPdweTjwC61079n-OO4h6przshu09jPeDPXJbkTsYPmK9drd8PRbfKzxUI2w7pL6RPJL-gzycnyc9a-8TvU3zjjzo7oS8xyVzPemuLTpyE_e7LLmKPHMyzDzq48Y8evGPPdJvobuX3uO87vHdPKVhvrtWH9m8ygNsu2TayLw_4wI-BRkBvPOhVTz9xac9cy2avBRefrvFNUM9-FENvglvLLsu8h28by6Zvc3Lfrt7DZY9ZL5tPcurxroiiuk9_fsnvcH-a7ypOAk9cQD9vaGAbbnQtAQ-sOLUPH7dLztVdJq9m1R0Pdo-Hjwmk-68cKXoPJSdwDrLmOe8Wg25PeyMiDtUcq69r14lvX7FWLsDJ7s9TayCvN7bALt9DRy9cln7vCr6bbosZyo9iqtPvZydUjtYvY29rJnKuz0r5bqkRQc9_LINPIjT1zkF_gs94qlsvDno-Tg7dSO8wIFkPWLiLbkL1DK-sioHPRXG5rkTqzC9oXqlvSR1Xbiyqz-9r8hUvXOuPrdNx5I8xFiLvPeQqbmSAjA80TaTPaZF9DirYC-9Fo6rPW8p2Dj83se7J8YtPcOXYLhPohC7CXzPvGivzDjpTDU91H2EO_3BLjndz-m8d-R-vL82tbiPS6E9FO-bvNJuIThFDtE9KSPuveIsvzlXoAy9T3aTPepIZ7h7QAq91ULJPBOm5zYeHbK8Tg6_vXZlFzi4Pqy8bAb4vXn_ILh42zu8ZJoEvVqIkjjNcMm6iFFLPf_rGjlBPWg7HOvivAGx9bfFrYI8RcmqvZKmlThPJHi9OCZVPH23PTetTPg8PJo0PH7C67jslei7M_MpPTgaUbh19fS8Wd3qvQ0j8TVrE4K87YoPPVfS3bedbcm91NQSvh8-kbijf_q7MSQXPoz9ULdm2RO9hBiePHZTdrgtZyW8nuLCPbB8K7gGlu08XBZdPH4g1DcgADgTQAlIbVABKnMQABpgNQ0ANegjltkQM-_39gb15N80tAbuHP8DzP8DFev03um8wgET_yDSBdufAAAAGBnUAucAG3_q-tI0Agz9047-9wRofOoP49ovCqOwGhg1DREOEUEpACL1vCRFyNIiQEgvIAAtlQcUOzgTQAlIb1ACKq8GEAwaoAYAAJ5CAAAwwQAAnkIAAGhCAADwwQAAAEIAAIRCAACowQAA8MEAAGDCAADwQQAAJEIAALjBAABwwQAAREIAAHDBAAAMQgAABEIAAHxCAAD4wQAAsMEAAKDBAAA0wgAAqEEAANDBAAA8QgAAAMIAAEDBAACCQgAAQMEAAHBBAAD4QQAAcMEAAMjBAABowgAAsEEAAOhBAABMQgAAgD8AAABAAACowQAAiEEAAMDAAAAgwQAAAEAAAKDBAABQQQAAyEEAAGxCAAA4wgAAgD8AAIjBAABwwgAAaEIAAKhBAABwwQAAcMEAAKjBAAAgQgAAlkIAAIC_AADIwQAAdMIAAKDAAADIwQAAkMEAAIjBAACAwgAARMIAAIDBAAD4QQAAMEIAAITCAABAQAAAyEEAAPzCAACwwgAAcMEAAIDAAACQQQAA-MEAAMBAAAAQwQAATMIAAIBAAAAMQgAAaMIAAJDBAABAQgAAkMEAADDCAABEQgAAIMIAACDCAADgQQAALMIAAOBBAAAcwgAAEEIAADRCAABowgAAWEIAABhCAACIQQAABMIAAKJCAADIQQAAAEIAAKDAAABEQgAA6EEAANhBAADYwQAA-EEAAIC_AABQQQAADEIAAPDBAAA0wgAAZMIAAKBAAADwQQAAMEEAANDBAABgwQAArsIAAODBAABgwQAA4MEAAFzCAADQQQAAYMIAADzCAACKQgAA4MEAAJjBAAA4QgAApsIAAAzCAADEwgAAfEIAACxCAAAYwgAAmMEAAIA_AACaQgAAMEEAAGTCAACIQQAAEMIAAABBAACIwQAAKEIAAAjCAABowgAAlMIAADzCAABkwgAAsMEAAKZCAAAYwgAAIEEAAKDAAADoQQAAiMEAABBBAAAAAAAAsMEAAHRCAAB0wgAA4MAAAFjCAABIQgAAMMEAALDBAAAAQgAAgEAAAKhBAACIQQAALEIAAJjCAAAgQQAAuEEAAIjCAABIQgAAgMAAAADBAADIQQAAEMEAAOhBAAAgQQAAwMAAABBCAACQwQAAGMIAADBBAACAwAAAaEIAADBBAABMwiAAOBNACUh1UAEqjwIQABqAAgAA2D0AAKq-AADGPgAA6L0AAJg9AAAkPgAAmL0AAAe_AAA0vgAAND4AACw-AADYvQAAgj4AANg9AAA8vgAAoDwAAEw-AAAMPgAA6D0AAL4-AAB_PwAAUD0AAJg9AACCPgAA0r4AANi9AAAcPgAAgLsAABC9AACYPQAA6D0AAES-AACOvgAAgLsAAIA7AACCvgAAUL0AABy-AACavgAAqL0AAGy-AABQPQAABL4AAJq-AACyvgAAgLsAAHA9AAAQvQAAgj4AADS-AABAPAAADD4AABQ-AACuPgAAJL4AAPi9AABTPwAAED0AADA9AACmPgAABL4AAMi9AACgPAAAUL0gADgTQAlIfFABKo8CEAEagAIAAAy-AAAQPQAAoDwAACG_AAAcvgAAML0AAHA9AAA8PgAAcD0AAFw-AAAwvQAAmD0AAOA8AABAvAAAML0AAJi9AABQvQAAJz8AAOi9AADKPgAAED0AAHS-AABAvAAAHL4AAJg9AABAPAAA4LwAAMg9AAC4PQAAuD0AAKC8AAC4PQAAMD0AANg9AACCPgAAiL0AAA0_AAA8PgAABL4AAHA9AACWPgAAjr4AABy-AABQPQAAcD0AAAS-AAB_vwAAFD4AANK-AAB8PgAAcD0AAEw-AACKPgAAJD4AAGy-AACYPQAAqL0AAIi9AAAUPgAAQDwAAEQ-AACYPQAAyL0AAMg9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=v9fQ_QeCHpI","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4449485200549904692"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"169085149"},"16600713651883241406":{"videoId":"16600713651883241406","docid":"34-3-0-ZC7154FB907AFB876","description":"MIT grad shows how to factor quadratic expressions. Nancy formerly of MathBFF explains the steps. Follow Nancy on Instagram: / nancypi Twitter: / nancypi The shortcut method (\"The Magic X\"...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1905157/7e83f20516550ce7a074947a526fdb2e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/wIDM5gAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYtN9_tCaRQc","linkTemplate":"/video/preview/16600713651883241406?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Factoring Quadratics... How? (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YtN9_tCaRQc\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoWChQxNjYwMDcxMzY1MTg4MzI0MTQwNloUMTY2MDA3MTM2NTE4ODMyNDE0MDZqhxcSATAYACJEGjAACiloaHl3Z21yZ3hmdGR5bXpoaFVDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dxICABEqEMIPDxoPPxOpBIIEJAGABCsqiwEQARp4ge4B-f38BQADAAUHAQj8Agz--wj3__8AAfEEBfgE_gAKBwD_AQAAAP8GAf8FAAAA9v7-_vz_AAAE-w0IBAAAABHyAfwDAAAADRj7Av4BAAD4_QkB9QIAAQP7_QMAAAAAAAUKAwEAAAAA9hMBAAAAAPj6_vkAAAAAIAAtcYbeOzgTQAlITlACKoQCEAAa8AF_A-X-5tP3Ac8GvgCyCRABlTYr_zP_zgCDLyMCjdwH_9oQAgDOKMgAM7P7_-X1QQD4CeP_7e4GABYL9v9PDv0A_AcFAQD1DQITzzYA_vDc_gv8Av_fFi3-DNPj_zsAMAMbOS78xxDtABzv7AMO8Sj_N70cBPkBCAEjAxUEzD_yADjq1fwSBQYA_-7n_gE7JwER3SQA4-rH_wfEHgIMG-f6OOoHANb1xv_-2_4BC-oE6iAAEP_szeEDHuwYAd0lF_wV9iMM3gn79jEO5P1SF-sF5yX3ARviCfclH_8DDdPhAQsGDOrWAyL6yw39F9f6EB4gAC3HDfg6OBNACUhhUAIqzwcQABrAB4z2-L5eAiY88Q3qvFPkVb1R3oc8i-IwvD6JuT2QpSo9VcVxu1TXmz3PkpE8r7j2O7cNk74bVBM8G7QcvcVVhT5UMG-9m38qvJ5ihb6Run09LHOEvNFch72PPl47oG7iuvCG9D2ns9M8d5scvS1vWLxdKSO5bBk6vBdIED0bRZu926JMvCuIwbzDFxy9SVvmvGhH4DxU_B89AEPFO2tr_rvKbbu8SRkMvO3IAj0rEjg8kTYjvBFtxzzpdZW8eooevPc_ED4XoG28n0nyO-iwsTzvL4o7i5TcvHN2_LwzuLc8Dw52vPTh9DxVuqA80C8EO6D-Ez5QwxY7q6UIu3v6iDx9U_28etCivOSG_z05dvU8jG-ePMKymL2V6fw8aDC8PFi7NzzUpO88IGqtuVO-VjywUzE93qA2Oix6jLx2ZWE8yS8su4Ns2bxwUy09rNgyOJ9NqD38byU9udSSvDc2u7yVqiO9urgyPFYf2bzKA2y7ZNrIvBvtXT1vFLQ8VUxBOviI-D2Vbwk8c8DLO99mxj05tfO9hx8YPFd7OL0vh_29KqBmOiyRFTxEXE89IzQAPG786T1M5K29K3Opu45PUr1JII-9s3XTO5w0DT7H3oM6OCnUOoEZ3bxktZQ8kQJVPChyUr10MDE9Pqn-uzBmyzwqpw0-bpMouiRztr26F_e7HIJMOjWGnz0_CDy9UGyJO2Ytij00nUK9WbY9u1qzWj09dpG96obYulZhqL1fcBe946CtuTohE7xkKvM82ch5u9gu7Tzn6j29U3UmuQ0WszwIfIk93Kn4OBHfCb4fZ9o9xMubuOD4Fb1nU2S9UuspuERvzLzsZ5a9m8zqOMnQjDxZP-y88iqbOSzkAL1RLeI87OSzuQooebwcXg685EtTuby0vDveBD898KylOZ34hTziBCa8OHy1uP6C-DyhR4w85ubwuIV_rLxDmJG6lLRfNh3ALD0hiL28F7AEOasmiD3Pt5q9-5-HOcjQ8b0xVmU9OwroNos0r7qaspE7ZcsguI94CTv-nsi98e2vOK89mLwX9B6-_YqquADrzLh-Kji8Ry43OPJREL28W5k8LuxvONYfvDwlNkS8wkIIOPIM0zmOrnK9COC6OAJhTLxsteK8diIyOKJfOz1FHz09h_NyuGBnFD1_zQW8mQ8guB4qeDslBOu9I79nONAlAb3QRLs75TDQt8OcIL1KKN297SBJuKN_-rsxJBc-jP1Qt8bcdzrqpt68AAPCuAahfL1gHIE8YXy1N3rOTLzobYe8urGbNyAAOBNACUhtUAEqcxAAGmAuCAAu-yq8xfca2wDgAhYLDCvQ9_Pp_9jc_zYsEN3wH4vMwR4AD-D30aIAAAALzf1GrAAierbX4iwFIAXBoMMV5n8SDFfL40oS7_D2FwETDkzzSxUA3R2o_vz32j5HDiggAC2nXxI7OBNACUhvUAIqrwYQDBqgBgAAsEEAAIBAAAAIQgAA1EIAAKjBAADAwAAA6EEAACDCAAAgwgAAKMIAACBCAAAAwAAACMIAAKDAAAC4QQAAgEAAAJBBAAA4QgAAREIAADjCAADgwAAAQMEAABzCAAAAQgAAYMEAAJBCAACgwQAAAEAAAJhCAACIwQAAYEEAACBBAADgwAAAIMEAAITCAADYQQAAYEEAALpCAACwQQAAoMAAADjCAACAQQAAYEEAAKDAAAAAAAAAEMEAAKDAAACwQQAANEIAADDCAAAsQgAAEMEAANTCAAAcQgAAuMEAACTCAACAQAAAmMEAAABAAABsQgAAZMIAABDCAABgwgAAgD8AAIjBAAAAQQAALMIAABDCAAAkwgAAAMAAAKjBAABMQgAALMIAAABBAAAAQQAAnMIAAODCAAAQQQAAgL8AAMDAAAAgwQAAYMEAAERCAACAwgAAQEAAAFxCAADowQAAMMEAAIZCAAAcwgAARMIAAEhCAACAPwAAGMIAAIA_AAA4wgAAyEEAAMDBAABgQQAAWEIAAEDCAAAkQgAAwEEAAIC_AADAwAAAwkIAABDBAAAsQgAAMMIAAHBCAACwQQAAbEIAAADCAAAwQQAA2EEAAKhBAACwQQAAwMEAADjCAAB8wgAAoMAAAIBBAACwwQAAQMEAAKjBAACqwgAALMIAACBCAAAwwQAArMIAAFBBAADAwQAAkMEAAEhCAACIwQAAZMIAALpCAAB4wgAADMIAAM7CAAA0QgAAKEIAAODBAACAvwAAgEEAAKRCAAAQQgAAqMEAAARCAAB4wgAA8EEAAADCAAAMQgAAMMIAAGDCAAC0wgAAoMAAAHTCAAAEQgAA2EIAAEDAAAAgQQAABMIAAARCAACAwAAA4MAAAMhBAABgwgAAkkIAADjCAADgQAAAgMEAAMhBAACYwQAAEMEAADxCAAAgQQAAAEEAAKDAAACAQgAAXMIAAMjBAADIwQAAgMEAAOhBAAAAQQAAoEAAACBCAAAcQgAAAEAAAEBAAADQwQAA4EAAAATCAACYwQAAAMAAAADAAABUQgAAsMEAAEDCIAA4E0AJSHVQASqPAhAAGoACAAC6vgAAQDwAAES-AADaPgAATD4AAAQ-AAB8PgAARb8AALK-AAAsPgAAij4AAES-AAAQPQAAyD0AABS-AABAvAAAbD4AAGw-AACIPQAAOz8AAH8_AACIPQAA4LwAALi9AABMvgAATL4AAKC8AABQvQAAUD0AACw-AACuPgAAVL4AALa-AABUPgAA4DwAABA9AAB0PgAArr4AAK6-AACyvgAAJL4AAOA8AAD4vQAAqL0AAKa-AADIPQAAoDwAALq-AAAwvQAAA78AAOC8AAAQPQAAmD0AANY-AACovQAAUL0AAG0_AAAkvgAAXD4AALo-AAAsvgAAQDwAAIC7AABMviAAOBNACUh8UAEqjwIQARqAAgAAyL0AAMg9AABQvQAAD78AAFC9AADIvQAA4DwAAIC7AACovQAAVD4AAKA8AAA0vgAAEL0AAEy-AACAuwAAuL0AAKA8AAA1PwAAcL0AAFQ-AABMPgAAqL0AAAw-AADYvQAAmL0AANg9AABsvgAA-D0AAFw-AACoPQAAyD0AALg9AADovQAAgLsAAFQ-AADgPAAA_j4AAEQ-AABkvgAAuL0AANo-AAAQvQAAyL0AAEA8AAAwvQAAoj4AAH-_AACgPAAADL4AADA9AAC4PQAAqL0AADQ-AAAMPgAAuD0AAKg9AACAOwAAmL0AAOC8AADgPAAA4LwAAOA8AACIvQAAED0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=YtN9_tCaRQc","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16600713651883241406"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1627865232"},"13358093349961821997":{"videoId":"13358093349961821997","docid":"34-6-1-Z775C64B046909A3F","description":"Nancy's not perfect! A lot of you have asked if she's ever failed a test. This one's for you. ♡ For the shock, skip to time 0:34! For the important thing to remember if you've just failed a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1894132/62b0f452f34752b475e2d69845290e98/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gxI4sQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1g29WVCrKlQ","linkTemplate":"/video/preview/13358093349961821997?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"I Failed a Test (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1g29WVCrKlQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoWChQxMzM1ODA5MzM0OTk2MTgyMTk5N1oUMTMzNTgwOTMzNDk5NjE4MjE5OTdqtQ8SATAYACJEGjAACiloaHl3Z21yZ3hmdGR5bXpoaFVDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dxICABEqEMIPDxoPPxP0AYIEJAGABCsqiwEQARp4gfT__gX7BgAFBP4N-Qr7A_8GCP_5_v4A6f0FAv_-AQD0AP7-_wAAAPoPA_4GAAAA9_j3BAH_AAACDQD8BAAAAAjp9_z9AAAADgP4__4BAAAE_Qj_-gEAAAf8-wkAAAAA_AwH_wIAAAAEAgcIAAAAAALr9gIBAAAAIAAtTxjkOzgTQAlITlACKoQCEAAa8AF_Cg0DvgsD_Wf1-wHc9PQCvQf_ACQF8QDBDg8B8xH9ANcW-wD16PQAE_oX_yP6EQDk9g0A2Q_xAPESFf8OEwcA4-jyAfL47gH0BAQA__bp__sPBf_79fwAEA4WACUAHgI3ChD93Ar0ADvh9AE5DQQBGPj1BPn1AP4SCjAB7gPwABf2DPwM_xL-_A3yA_cWBwb9C-oEzecW_hIW7wHsEg8BKArw_RUU6f7x-gr8BP38_gz0BP7t-gQC1uYCCfH7FAQBCSP87fMK_fjq-f77BuYEBv75CgD89_YZBv0F4vv8BQLjAwTd9QT4-Av6CQ4ACQogAC1p6kY7OBNACUhhUAIqcxAAGmAjCwAWAzbksQIh8_gY4PMFGyD4zwcHABcOAOcO6PzaEdXa_yf_RP4H37UAAAALABQw5ADpYN7g3Qn83RDd3gQY_X81JRLGFSz65NbtE-0NPB7MPCYA_wSuLQPc-zxQ8RsgAC1spDg7OBNACUhvUAIqrwYQDBqgBgAAAEEAAEhCAABAQQAArEIAADBCAAC4QQAAUEEAABDBAACAwAAAPMIAAIBBAACIQQAAyMIAAADAAAC-QgAAGMIAALjBAACcQgAAWEIAADBBAABQQQAAMMEAAATCAACCQgAAwMAAACBBAAB0wgAAAMIAAL5CAAD4QQAA2EEAAMDBAAAQQQAAqMEAAIjCAAC4QQAAEMEAANBBAADowQAAQEAAAODAAAA8QgAADEIAAEBAAACQQQAAKEIAADDCAACowQAAlkIAAHDCAADAQAAAKMIAAIDCAAAAAAAAgD8AAEDBAACcQgAAUMEAAATCAADCQgAA8EEAAIrCAABUQgAAOMIAAIC_AAAowgAADEIAADDBAACuwgAASMIAAEDAAAAgQgAAqMIAAOhBAACowQAAiMIAALjBAADwQQAAQEEAAABAAABAwAAAgL8AAChCAACIwQAAQEEAAIjBAADAwQAAkEIAALxCAABswgAAYMIAAMJCAACIwQAAAEAAAGDBAABQQQAAHMIAAKBAAAAIwgAAUEEAAFzCAADOQgAAUMEAAKBAAAAYwgAAkEEAALhBAACgQAAA0EEAAKhCAACIQQAAgkIAAIC_AAAAwAAA4EAAAGBBAACwQQAAAMAAAEzCAADAwAAACEIAACRCAADowQAAHEIAAMBAAAAwQgAAuMEAAHBBAABAQgAAisIAABRCAABwwQAAIEEAAGBCAADgQQAAkMIAACBCAABgwQAA6MEAAGzCAACIQgAA4EEAABDBAACIwQAAVMIAAAxCAAAoQgAAGMIAAIC_AACgwQAAMEEAAPDBAADQQQAAHMIAADBBAAB8wgAAwEAAACDCAACAQQAAhkIAAMDBAABUwgAA6MEAABDBAAAMwgAAUMEAADBCAAAgwgAA4MAAANjBAADgQAAAuMEAAIA_AAA4wgAAFEIAAIjBAABMQgAAgEEAAERCAABQQgAAEEEAAIBAAACAwQAAlMIAAPhBAACAQQAAwMEAADhCAAAMQgAAEMEAAFjCAAAQwgAAKEIAAKhBAABEwgAAmMEAAKBBAABAwQAAhMIAACTCIAA4E0AJSHVQASqPAhAAGoACAABAvAAA2L0AAJo-AAB8PgAABL4AAMY-AADIvQAAH78AAHC9AAC4PQAAqj4AABS-AACaPgAAHD4AAIC7AADgPAAARD4AAIg9AACgPAAA8j4AAEs_AAB0PgAAiL0AAFA9AABQvQAAir4AAGQ-AAA8vgAATL4AABw-AAAkPgAAUL0AAKa-AADIPQAAFL4AALa-AACgPAAAUD0AAAG_AADYvQAAEL0AADC9AADGPgAAiD0AAPi9AABMPgAAHD4AAIi9AACGPgAAxr4AAFC9AAAUPgAAmj4AALI-AACgvAAAQDwAAH8_AAAQvQAAPD4AAPg9AAAEPgAAEL0AAOC8AADSviAAOBNACUh8UAEqjwIQARqAAgAAyL0AABC9AABAvAAAOb8AAJi9AADgPAAAZD4AAIi9AAC4vQAAAz8AAKg9AADgPAAAJD4AAES-AAAEvgAAML0AAOC8AAB7PwAAQDwAAJ4-AAAcvgAAhr4AABw-AADgPAAABL4AAOA8AACgvAAAuD0AADQ-AAC4vQAAgDsAADC9AAAwPQAAHL4AAAQ-AADgPAAAgLsAAIo-AABwvQAAQLwAANY-AADgvAAAQLwAAKa-AABAvAAADD4AAH-_AAAMvgAAHL4AABy-AAA8PgAA2D0AABs_AABAvAAAPL4AAKC8AAAwvQAAFD4AAPi9AACKvgAA2D0AAJg9AACOvgAA4LwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=1g29WVCrKlQ","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13358093349961821997"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3451286145"},"17236668885635337886":{"videoId":"17236668885635337886","docid":"34-2-10-Z0C7C509963A63CF4","description":"Everything you need to know to evaluate logarithms, explained in the easiest way, by MIT grad. 4) For even weirder logs, including Solving logarithmic equations for X and using the Change-OF-BASE...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1590789/7afbf5ed39b2fc716330706f3c2cf2a1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ROe80AAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZw5t6BTQYRU","linkTemplate":"/video/preview/17236668885635337886?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Logarithms... How? (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Zw5t6BTQYRU\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoWChQxNzIzNjY2ODg4NTYzNTMzNzg4NloUMTcyMzY2Njg4ODU2MzUzMzc4ODZqkhcSATAYACJEGjAACiloaHl3Z21yZ3hmdGR5bXpoaFVDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dxICABEqEMIPDxoPPxOCCYIEJAGABCsqiwEQARp4gfT89v4B_wADCwsOAgv6AvMJ8AX4_f0ADRMGBwMAAAAVDP_7-_8AAAIKDvwFAAAA9_3-9fr_AAD-Bvz_BAAAABLxAfsDAAAAGAb1-f4BAAAC9QoG9AIAAQ_-AQgAAAAABAgAAgf7Av_78Qf7AAAAAAb5-f379f4AIAAthUHROzgTQAlITlACKoQCEAAa8AF_G9v-9un2A94arwGKCfr_jj0E_zL_zwCJFPcBpvHzAM4iBwAM1sT_NMwPAPIrKv8OKNb_DuX_ABvu-v5MKPUA6xQQAefj-gEs6BUB_vDc_gkO3P4oAx4A6dnvAEEWCQEpICUAzArQAO7t8wYS3xIDLK0BBATy_gciAxUE4zspBBAG2vzaKBf-8fr2COA6KgLiFjoBwt7VAfffGg3XCPX4ROL3APf00ALV5P_57tXnBPsZBP3X5tcEJPgqB9UcBP0U9iIL3u_68R8dEvZRDRMI5yX3ASTL_f5UIQX7-N7uAwci6ePtDg0A4hj7BAbxABkgAC1exfs6OBNACUhhUAIqzwcQABrAB3jQ5L6pPJE7DA3fvK2FKb7dfWk9lOmGOviBtbwDq888aRT3vNiLOjsb94E8U0MWvZxNl77qPVy5ZI8WvMuAMz7m0Yi9mGIzPIc0Kr6eaag9tnJlvMly8r3BahG9AhWru0eshT7T4R28kAkCvX55fD0ZxbK8Fp48PHzf7rytrhm9Ze6QO_N_Xb2Bhg29HZGMuubLiz18lgy9bjzOPF1VUT307a48oPdrPO3IAj0rEjg8kTYjvJzW9zyOr_08VCjeO2n-KD6LXdM7RwsrPBWzmDssZ2o9xpY0vYO-lL1T_RQ722POvLkAtLxlTZE9TKxnvJP-3j2U9UA8n2d9PIZ3hL1HVC0935m7u920GT49FtE8A2D6u7LknjsMpNU8hU3TPFi7NzzUpO88IGqtuWLglDzRQRK92LKAu5niYDw16Ts9OZ8TPPIzvzyqa-M8dGIPPceLOz3gle48tIC_vDCWc73yZmg8JpOuPAA7N70MQOO8Lb6XvD_jAj4FGQG886FVPMJkvz1Ihww95xHpu0TztT3Y1Nm9OnEgvFOCFTzopqi921wKvBjtgT0ZMdg7dHqePCKK6T39-ye9wf5rvGb6IL0Ur9K9weyWO27_pT1Iory8Or6ou1V0mr2bVHQ92j4ePPxlQbyF7Nm7h0I6vHMHWz0DU8c9cgzBOc6qz70HZya8XObTu3kToj0nAQO7kMPcu4sx1TzXQyW9qOOCupWNjT3qN5i9hVVvOlRhoryc_QG9zOHFuuypMD3nLjI7HuYOOnvnhjxCi7Y6mK6kOZDC0DzJu1k9njYeOZSJ270J3Zo9773oOBOrML2heqW9JHVduIkPt723Qri9MUK6ONEoiL2Zqb88HMX3tb6mYryY-yQ9epOEN2QGqr2dm7Y88scbO3e2zztPF5M9w2imuE-iELsJfM-8aK_MODXwQz3k2Qi8tvDTuFhyFb3CkiG9EeisOT7qzz0-p-o7PcTUOL7nxj0AHaa9akOGOSn0sLx60JI90TlKtzViIb05pl08hNDCtx4dsrxODr-9dmUXOAacJbyMatG9-lP3N4goy7taLMW8c2E0OD-SDb0rFAg8dcfEOIS5PT3P0Ac8eEpPt41s3TyAsD2922psOKjpDr0Z7x09Du6JOEnhpT3cdxQ81LYjubzmejycSSA9j0M2OHkzFL1qLJa9SOgwt-2Rl7xB9oU9foWftl6qSL066R2-tGP6uLnBdTwt7Ak-hifnONiioLx1La07g7vruKgNHb2J3AI9ojz2ts9r7LtoUnG7dlnRNyAAOBNACUhtUAEqcxAAGmBHCAAgDSHZs9IL5OP5CAXo7ifGFPfw_9_O__8iFvnS5rzW5DT_POj36aoAAAAyDNU11gAMc93hywbX3OOrlvAF4X86_gXJ9AkBt_HeKhgr6ycfPlMA69fFDPrU6Tcs8hYgAC3kdR47OBNACUhvUAIqrwYQDBqgBgAAkkIAAEBBAAAcQgAAhkIAAADCAABAQQAAaEIAALjBAAA8wgAA4MEAADRCAACAQQAANMIAABDCAADIQQAAoMAAAEBCAABwQgAAtEIAAJjBAAC4wQAAuMEAAEjCAAAEQgAAAEAAAAxCAABAwgAAQMAAALRCAADYQQAAwEAAABxCAACgQAAAAMEAAIjCAAAIQgAAAAAAAERCAABQwQAAqEEAAMDBAACgQQAAIEEAAOBAAACAQAAAcEEAAMBAAABgQQAAjEIAALDBAAAcQgAAVMIAAIrCAACAQQAA8EEAALDBAAAMwgAAgMAAAKBAAABAQgAAYEEAACzCAABQwgAAHMIAAETCAADAwQAAHMIAAIbCAAAowgAAEMIAAKBAAAAgQgAAnMIAAJDBAAAwQQAAAMMAAPjCAADAwAAAoEEAAARCAACYwQAAQEEAAGBBAACYwQAAcMEAAAhCAAA0wgAAyEEAAGxCAABAwAAA4MAAAJJCAAAAwQAAuMIAAAxCAABQwgAAAEAAABDCAAAAQgAA6EEAAPjBAACaQgAAHEIAAODAAABQwQAAeEIAAIBBAADYQQAAYMEAAJhBAACGQgAAAEIAAMDAAAAQwQAAqMEAAHRCAADgQQAAwMAAAHjCAACCwgAAgD8AAGBBAADIQQAAwMEAADDBAACCwgAAGMIAALjBAAAAwQAAFMIAAIBBAAAgwQAA8MEAAPBBAACAvwAAyMEAAGxCAAAkwgAAmMEAAMrCAABoQgAA4EEAAKhBAABQwQAAgEEAAGRCAADgQQAAZMIAAABAAAAAwgAA-EEAAJjBAABIQgAAmMEAAHTCAAB0wgAAcMEAAFTCAACowQAApEIAAKDBAAAgQQAACMIAAMDBAADgQQAA4EAAAAxCAADgQAAAaEIAADTCAABAwQAAIMIAAAxCAABwwQAAgL8AAOhBAAAQQgAA0EEAAKBBAACeQgAAkMIAAGzCAAAwwQAA-MEAAAhCAACAwAAABMIAADxCAACAQAAA4EAAAJhBAAAIwgAAAEAAAATCAAAYwgAAkEEAAOBAAAAwQgAAMEEAAILCIAA4E0AJSHVQASqPAhAAGoACAADovQAArr4AACw-AACoPQAAQLwAAII-AAAsPgAAL78AAEy-AAD4PQAAmD0AAKq-AABwPQAAyD0AAHC9AAA8vgAAND4AAAw-AADgPAAADz8AAFc_AAAkPgAAqL0AAJg9AAAkvgAA2L0AAPg9AACAuwAAgLsAADA9AAA0PgAAPL4AAHS-AACSPgAAML0AABy-AAAEPgAAVL4AAFy-AADIvQAAuL0AAKi9AAAUvgAALL4AADS-AACAuwAADL4AAHC9AACYvQAAbL4AAOi9AAC4PQAAFD4AAIo-AACSvgAAgLsAAH8_AAA8vgAAcD0AAN4-AAA8vgAAZD4AABA9AADovSAAOBNACUh8UAEqjwIQARqAAgAAcL0AAAQ-AADIvQAAF78AAHC9AAD4vQAAMD0AAMi9AAAwvQAAfD4AAFC9AADIvQAAmD0AAFS-AAAEPgAA-L0AABA9AAAZPwAAUL0AAK4-AAAcvgAAoDwAAIA7AAAQvQAAoDwAAOC8AACIvQAAQDwAAJg9AAAQPQAAQLwAABQ-AABAvAAAEL0AABA9AABQvQAArj4AAGQ-AAAsvgAAgLsAAHA9AAAQvQAAgr4AALg9AABAvAAAgDsAAH-_AADgvAAARL4AACw-AABEPgAAJL4AAMg9AABwPQAAmL0AAFA9AADgPAAAML0AAIi9AACIPQAABD4AACw-AACgPAAAmL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Zw5t6BTQYRU","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17236668885635337886"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1572285385"},"1696301533094749607":{"videoId":"1696301533094749607","docid":"34-6-11-ZAC7F7F781AB57110","description":"MIT grad shows how to remember the unit circle angles and points. The cos value is the first number in the point, and the sin is the second coordinate in the point. There are patterns within the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1840187/374031b78f0f0be892ffcdfaef179761/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cu-snAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dc819bGfH8FA","linkTemplate":"/video/preview/1696301533094749607?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Remember the Unit Circle (NancyPi)","related_orig_text":"NancyPi","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"NancyPi\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=c819bGfH8FA\",\"src\":\"serp\",\"rvb\":\"Eq4DChM4MzcyODU4MDAwMDUwMTkyNzAzChQxNzExNDg5OTA4Nzg3MDgxODM3NwoTMTIxNDU0Mzg5NDY0MTE4NjQyNgoUMTQxMDI1NzI0NjEzNzU0NDcwMDQKEzQzNDI3MDQ3MDYwODQ1NTgxMzIKEzY0NDQ0MTUwNzkyNjU3ODk0MTIKFDE1ODQxODk1ODQ0ODgwOTkwMDQyChMxNzMwOTg1ODA5Mzk3NTQwMzIxChMyNTE1OTYyNTA3ODk2NDE3NDc4ChQxMzMxNTEwOTMzMzYwNTI2ODQ3NgoTNzIzMTM2Njg4NzY0NjMzMTI5NwoTMTEwNzI3NTUyODkxOTc5NTEyNAoUMTE1MTkyNTk3MjcxMTY5NDc1MjIKEzQ0NDk0ODUyMDA1NDk5MDQ2OTIKFDE2NjAwNzEzNjUxODgzMjQxNDA2ChQxMzM1ODA5MzM0OTk2MTgyMTk5NwoUMTcyMzY2Njg4ODU2MzUzMzc4ODYKEzE2OTYzMDE1MzMwOTQ3NDk2MDcKFDExMjE4MjE5NDU1MzI0MTc1MDAxChQxMTI2MjIxNzc5ODI5MDY2Njc5NRoVChMxNjk2MzAxNTMzMDk0NzQ5NjA3WhMxNjk2MzAxNTMzMDk0NzQ5NjA3apIXEgEwGAAiRBowAAopaGh5d2dtcmd4ZnRkeW16aGhVQ1JHWFYxUWx4WjhhdWNtRTQ1dFJ4OHcSAgARKhDCDw8aDz8T0gWCBCQBgAQrKosBEAEaeIH_CQL1_gMA7Pb-BPkCAAD79v0G-v79AOL6A_YH-wIABAkFAPgBAADvCQABAAAAAPf1_f79_wAABRP58gQAAAD_-gsABAAAAA4M_AP-AQAA_PQM_AIAAAAQ-_gFAAAAAPkB-gr_AAAACgAAAQAAAAD99AD7_PX-ACAALei92Ts4E0AJSE5QAiqEAhAAGvABf98_AKsaP_zz7QUB7L_gAQYj-_9nJAUAhBfcALrvBQAJ6xoA-AIJABz4If_fEzv_0BLW_8Xf_wBA4xsAAikOAaru6AEeB-wCJ_oIASzS6f4jQuv_EggS_xbx2f8I0OYA_uIrAAMG9v4y7uMDFuL_AQXTEgLaMdsD2cYNAaUSEf4mzfwB3fgJBQP98gT29Cj-CBUiAuUN7vYPFhn9EfsfBSMC_fv8AvL7qAXpAuYkCQIR7wb9y-zsA-v7AwLoGvTzCBH2B8H_AvTu8hcFGhzu-wEGBAsV7vz_E-rwAe3pAAr4IvQF6CoL7tfiAwLv4_H-IAAtrZcJOzgTQAlIYVACKs8HEAAawAfHoPu-RrFBPdGa-jxcVww9r0mSPDU1HLy5pfU9OSeGPRrKX70qsSY99sxXvQ_WIbk7cZm9vLhjvcesqLxnYpo-TjqbvBrvWDzv5U6-EKhDPRiswLsLUfS8kiEHveNwprzfbsk8N0Y8PZmSNr0XEks9WZDcPCT4OrzX1Y07CEwxPVyhWTy-UrG84YsCvH1By7xiiUI9_oDHPLI_2jzDm2W-Mr75PP-Xa7wM8qk92QF8PF_qqbu_tYO9eYqBPFppDLtmqjs9-KcUPTV_zLxCJpm9ykBBOk_RLL0pD2G9QDX7O_d2y7s27DI9AA0FPcTSO7116To8AXprPfjSyjuFxRK9C8sxuv2uvrzA0Wk6kiQYPso0uzpXeNe9LFMCvTzRP7xmZR48CQKeu1YWgbvLx2Q9Q5eLvN6ynjtWZkU9DKhcPVtQ6bzg7AC94FiGPJ052jzRpF68ZqwsPfdeV7vd83Q77w7fPDXx0TmEp6Y99GqAvF-DmbzfMxS8Q52IPb2chjtbKLk9f_YjvbyQM7yP4BY-W3gOvgPnDrxyogK9qTxwvJ0uCzstS4k7IR2BO9h4erxz8209LZOBva9QNTyRLjI7opT1PLf-6Ttj3a497G8mO2vLazuQLzG-u72PPQEXEDjAjgS9ZFUJvVO1vDqUqY09tzoqPcSZnTs1hB697s4cPIC_lLtiaIW9q4_qut0oMrtJigO9Ti02POZRNzsF6gM9tkcPvR2Ezrt8SFM8FcwTPVMYKrov6d68jfDWvX2NTjltnW49myiIPY0vSLlcLSG9vAcoPSdcszkR3wm-H2faPcTLm7jQI2u8uKwyvk6GWzmml_i986upvao0dTjsGog8s4KavVVDGblt2IC9ahaJO1X90DnFAp-87v03PZoqs7e8woy9EYW_O_VCxLhGV1M4Fi5QvBZI0LjO2ek6wEhjPdJLsThYchW9wpIhvRHorDnBgXo9wWmmPOfY1zjeqDo99yiSvNnfvLRcOyE-W3LkOieoAbeSzKo8IlUEPgUNHzfRjIq9tcHJvaGiDjhugnQ9h_jsPCo8W7jqY3m9GKoMvafCrTiM4su8d4bEPLwx4TicHq88KaXxvExP6rfEzw8-PGrpu57LlTb2pEK9MCUXPYPDyDeAR3G7Zsp9vTfcaDjNx3q90xXsveab-Lg3zLa9-7KwO9ZyBjZ7cHI9bklzvZtZvzc8Rp48JTkFvTjPvLWBXS29Ze2FPaaeT7j_CnQ9GMCaPU90cTcYqJi709YtPaNMTrjyoPK6W4kqPV4QqjcgADgTQAlIbVABKnMQABpgFvkAOwUD68cqUgIC6sIh3cQjov2w4__-5v_7_PAk6xCv0fkk_zb688edAAAAERgDH-YAF3zFwfYnEhjky8rbDTh_Qx_1_cUBNbzU2CcJFRtTQCFzAAMRsT5H6vkwWA0RIAAt_wMQOzgTQAlIb1ACKq8GEAwaoAYAABBCAACwQQAAIEIAAKRCAADYwQAAoEEAANhBAABMwgAAQMEAAHDCAABwQQAAkkIAABDCAAAwwgAAZEIAAAhCAAAQQQAAIEIAAJZCAAAQwQAAcEEAALDBAADgwQAAyEEAAEDAAABAQgAAMMEAAPhBAACyQgAAgMAAANhBAAAEQgAAMMEAABDCAAB0wgAAcMEAAMjBAABoQgAAwMAAAMBAAAAcwgAAikIAAPBBAADAQAAAgMAAAFBBAAAQQgAAgL8AAHBCAABkwgAAAEEAAKDBAACuwgAAAEEAAJDBAACgQAAAgMAAAKjBAAAAQAAAQEIAAFDBAABAwgAAGMIAABjCAABQwQAAoEAAAMDBAABMwgAAlsIAAMDAAADYQQAAhEIAAJDCAAAgQgAAAMAAANjCAADOwgAAYMEAAADBAAAAwAAAsMEAAEDAAADwwQAAhMIAAAhCAADQQQAAAEAAADhCAABkQgAAMEEAAKDAAABoQgAA4MEAAIDBAADgQQAAxsIAADBCAADAwAAA8EEAAExCAABgwgAAgkIAAGBBAADgQQAA6MEAAJZCAACAvwAA-EEAAIA_AACgQAAASEIAAFRCAAAwwgAAkMEAAGDBAACAQQAAMEEAACBBAADQwQAAiMIAAMBAAAAgwQAAwEEAANjBAAAQwgAAQMIAAAzCAAAAwAAAMMIAAAjCAADoQQAAAMAAAKjBAABgQgAAgEAAAGTCAADeQgAAiMEAAJLCAAAkwgAAkEIAAMDAAAAEwgAAAAAAACBCAABkQgAAGEIAAAjCAACgwAAAdMIAABBCAACAwQAAUEIAAEjCAABAwQAA6MEAAODBAAAUwgAAoMAAAMJCAABAQAAAyMEAAJjBAAAIwgAAPEIAAJhBAAA4QgAAQMAAADRCAADYwQAAgEIAAODBAABQQQAAHMIAANhBAACAvwAAgEAAAADBAADQwQAAnEIAAETCAADgwQAAyMEAAIC_AABgQgAAEEEAAODBAABoQgAAVEIAAMBAAACQQQAALEIAAHDBAAAkwgAAiMEAAAjCAAAMQgAAsEEAAADBAACQwiAAOBNACUh1UAEqjwIQABqAAgAA4DwAAIq-AACWPgAA6L0AAEQ-AACOPgAA-D0AAEu_AACWvgAABD4AABS-AAAcvgAA6L0AAIC7AAAQvQAA4LwAADA9AABQPQAAfL4AACk_AABrPwAAQLwAABC9AAAkPgAAbL4AAHC9AAAEPgAAgDsAAEw-AAAUPgAAHD4AAHS-AACCvgAAZD4AADC9AACuvgAAmL0AACy-AADCvgAADL4AAKi9AAAEvgAAFD4AACS-AADevgAA6D0AAIY-AAAMvgAAUD0AAK6-AABEvgAAND4AAOg9AADmPgAA3r4AAHC9AAB_PwAAbD4AADC9AACiPgAAmD0AAPg9AADYPQAAdL4gADgTQAlIfFABKo8CEAEagAIAALg9AACYvQAA6L0AACG_AACIvQAAcD0AAKC8AABQPQAANL4AAOA8AAAEvgAAgLsAAPg9AAAkvgAAqD0AABC9AACIPQAANz8AAKC8AADuPgAAML0AACS-AABAPAAADL4AAAy-AADIvQAAUD0AANi9AABwPQAATD4AAHA9AACgPAAAUL0AADA9AADgPAAAyD0AAHC9AABwPQAALL4AAOA8AACIPQAAEL0AAHA9AAC4PQAAVL4AAK4-AAB_vwAAkr4AAKa-AAAUvgAAMD0AADA9AAB0PgAAiD0AADy-AACIPQAAgDsAAOA8AAC4PQAAgLsAAEA8AADYPQAARL4AAFS-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=c819bGfH8FA","parent-reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1696301533094749607"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"445883065"}},"dups":{"8372858000050192703":{"videoId":"8372858000050192703","title":"Derivatives... How? (\u0007[NancyPi\u0007])","cleanTitle":"Derivatives... How? (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/live/QqF3i1pnyzU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QqF3i1pnyzU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/channel/UCRGXV1QlxZ8aucmE45tRx8w","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":869,"text":"14:29","a11yText":"Süre 14 dakika 29 saniye","shortText":"14 dk."},"views":{"text":"1,4milyon","a11yText":"1,4 milyon izleme"},"date":"15 mayıs 2018","modifyTime":1526342400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QqF3i1pnyzU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QqF3i1pnyzU","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":869},"parentClipId":"8372858000050192703","href":"/preview/8372858000050192703?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/8372858000050192703?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17114899087870818377":{"videoId":"17114899087870818377","title":"Factoring Quadratics... What If You Can't? (\u0007[NancyPi\u0007])","cleanTitle":"Factoring Quadratics... What If You Can't? (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kxrkxLqW_TI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kxrkxLqW_TI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":339,"text":"5:39","a11yText":"Süre 5 dakika 39 saniye","shortText":"5 dk."},"views":{"text":"878bin","a11yText":"878 bin izleme"},"date":"9 ara 2021","modifyTime":1639008000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kxrkxLqW_TI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kxrkxLqW_TI","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":339},"parentClipId":"17114899087870818377","href":"/preview/17114899087870818377?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/17114899087870818377?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1214543894641186426":{"videoId":"1214543894641186426","title":"Derivatives... What? (\u0007[NancyPi\u0007])","cleanTitle":"Derivatives... What? (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/v/-ktrtzYVk_I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-ktrtzYVk_I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":869,"text":"14:29","a11yText":"Süre 14 dakika 29 saniye","shortText":"14 dk."},"views":{"text":"1,2milyon","a11yText":"1,2 milyon izleme"},"date":"6 eyl 2018","modifyTime":1536192000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-ktrtzYVk_I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-ktrtzYVk_I","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":869},"parentClipId":"1214543894641186426","href":"/preview/1214543894641186426?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/1214543894641186426?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14102572461375447004":{"videoId":"14102572461375447004","title":"Nancy answers your questions (\u0007[NancyPi\u0007])","cleanTitle":"Nancy answers your questions (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Oe2VbbShLpI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Oe2VbbShLpI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":364,"text":"6:04","a11yText":"Süre 6 dakika 4 saniye","shortText":"6 dk."},"views":{"text":"518,3bin","a11yText":"518,3 bin izleme"},"date":"15 ağu 2018","modifyTime":1534291200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Oe2VbbShLpI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Oe2VbbShLpI","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":364},"parentClipId":"14102572461375447004","href":"/preview/14102572461375447004?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/14102572461375447004?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4342704706084558132":{"videoId":"4342704706084558132","title":"Basic Integration... How? (\u0007[NancyPi\u0007])","cleanTitle":"Basic Integration... How? (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/live/e1nxhJQyLYI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/e1nxhJQyLYI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":936,"text":"15:36","a11yText":"Süre 15 dakika 36 saniye","shortText":"15 dk."},"views":{"text":"1,4milyon","a11yText":"1,4 milyon izleme"},"date":"22 ağu 2018","modifyTime":1534966125000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/e1nxhJQyLYI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=e1nxhJQyLYI","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":936},"parentClipId":"4342704706084558132","href":"/preview/4342704706084558132?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/4342704706084558132?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6444415079265789412":{"videoId":"6444415079265789412","title":"Introduction to Limits (\u0007[NancyPi\u0007])","cleanTitle":"Introduction to Limits (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/live/poBobcFn1Co","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/poBobcFn1Co?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":767,"text":"12:47","a11yText":"Süre 12 dakika 47 saniye","shortText":"12 dk."},"views":{"text":"771,8bin","a11yText":"771,8 bin izleme"},"date":"31 ağu 2018","modifyTime":1535698800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/poBobcFn1Co?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=poBobcFn1Co","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":767},"parentClipId":"6444415079265789412","href":"/preview/6444415079265789412?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/6444415079265789412?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15841895844880990042":{"videoId":"15841895844880990042","title":"Quotient Rule Made Easier (\u0007[NancyPi\u0007])","cleanTitle":"Quotient Rule Made Easier (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=jwuiVb84Xx4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jwuiVb84Xx4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":193,"text":"3:13","a11yText":"Süre 3 dakika 13 saniye","shortText":"3 dk."},"views":{"text":"310,1bin","a11yText":"310,1 bin izleme"},"date":"23 eyl 2018","modifyTime":1537660800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jwuiVb84Xx4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jwuiVb84Xx4","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":193},"parentClipId":"15841895844880990042","href":"/preview/15841895844880990042?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/15841895844880990042?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1730985809397540321":{"videoId":"1730985809397540321","title":"How to Solve Inequalities (\u0007[NancyPi\u0007])","cleanTitle":"How to Solve Inequalities (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/live/ONuIIvgkE3c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ONuIIvgkE3c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":297,"text":"4:57","a11yText":"Süre 4 dakika 57 saniye","shortText":"4 dk."},"views":{"text":"658,8bin","a11yText":"658,8 bin izleme"},"date":"27 eyl 2018","modifyTime":1538006400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ONuIIvgkE3c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ONuIIvgkE3c","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":297},"parentClipId":"1730985809397540321","href":"/preview/1730985809397540321?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/1730985809397540321?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2515962507896417478":{"videoId":"2515962507896417478","title":"How to Use the Binomial Theorem (\u0007[NancyPi\u0007])","cleanTitle":"How to Use the Binomial Theorem (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/live/iOQjV0FB9nY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iOQjV0FB9nY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1198,"text":"19:58","a11yText":"Süre 19 dakika 58 saniye","shortText":"19 dk."},"views":{"text":"648bin","a11yText":"648 bin izleme"},"date":"26 nis 2017","modifyTime":1493164800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iOQjV0FB9nY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iOQjV0FB9nY","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":1198},"parentClipId":"2515962507896417478","href":"/preview/2515962507896417478?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/2515962507896417478?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13315109333605268476":{"videoId":"13315109333605268476","title":"How to Do Implicit Differentiation (\u0007[NancyPi\u0007])","cleanTitle":"How to Do Implicit Differentiation (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/live/fIy5Wav4rok","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fIy5Wav4rok?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":856,"text":"14:16","a11yText":"Süre 14 dakika 16 saniye","shortText":"14 dk."},"views":{"text":"1,1milyon","a11yText":"1,1 milyon izleme"},"date":"16 eyl 2018","modifyTime":1537045393000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fIy5Wav4rok?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fIy5Wav4rok","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":856},"parentClipId":"13315109333605268476","href":"/preview/13315109333605268476?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/13315109333605268476?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7231366887646331297":{"videoId":"7231366887646331297","title":"Integration by Parts... How? (\u0007[NancyPi\u0007])","cleanTitle":"Integration by Parts... How? (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/live/KKg88oSUv0o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KKg88oSUv0o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1079,"text":"17:59","a11yText":"Süre 17 dakika 59 saniye","shortText":"17 dk."},"views":{"text":"1,8milyon","a11yText":"1,8 milyon izleme"},"date":"12 eyl 2018","modifyTime":1536710400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KKg88oSUv0o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KKg88oSUv0o","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":1079},"parentClipId":"7231366887646331297","href":"/preview/7231366887646331297?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/7231366887646331297?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1107275528919795124":{"videoId":"1107275528919795124","title":"More Chain Rule (\u0007[NancyPi\u0007])","cleanTitle":"More Chain Rule (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/live/U_qp0isxQYU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/U_qp0isxQYU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":715,"text":"11:55","a11yText":"Süre 11 dakika 55 saniye","shortText":"11 dk."},"views":{"text":"516,9bin","a11yText":"516,9 bin izleme"},"date":"23 eki 2019","modifyTime":1571788800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/U_qp0isxQYU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=U_qp0isxQYU","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":715},"parentClipId":"1107275528919795124","href":"/preview/1107275528919795124?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/1107275528919795124?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11519259727116947522":{"videoId":"11519259727116947522","title":"Trig Substitution... How? (\u0007[NancyPi\u0007])","cleanTitle":"Trig Substitution... How? (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cyi-qyG1Yds","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cyi-qyG1Yds?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"https://www.youtube.com/channel/UCRGXV1QlxZ8aucmE45tRx8w","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1617,"text":"26:57","a11yText":"Süre 26 dakika 57 saniye","shortText":"26 dk."},"views":{"text":"691,5bin","a11yText":"691,5 bin izleme"},"date":"16 eki 2018","modifyTime":1539648000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cyi-qyG1Yds?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cyi-qyG1Yds","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":1617},"parentClipId":"11519259727116947522","href":"/preview/11519259727116947522?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/11519259727116947522?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4449485200549904692":{"videoId":"4449485200549904692","title":"How to Find Any Limit: Part 2 (\u0007[NancyPi\u0007])","cleanTitle":"How to Find Any Limit: Part 2 (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/live/v9fQ_QeCHpI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/v9fQ_QeCHpI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/channel/UCRGXV1QlxZ8aucmE45tRx8w","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1347,"text":"22:27","a11yText":"Süre 22 dakika 27 saniye","shortText":"22 dk."},"views":{"text":"572,7bin","a11yText":"572,7 bin izleme"},"date":"17 mayıs 2018","modifyTime":1526515200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/v9fQ_QeCHpI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=v9fQ_QeCHpI","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":1347},"parentClipId":"4449485200549904692","href":"/preview/4449485200549904692?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/4449485200549904692?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16600713651883241406":{"videoId":"16600713651883241406","title":"Factoring Quadratics... How? (\u0007[NancyPi\u0007])","cleanTitle":"Factoring Quadratics... How? (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/live/YtN9_tCaRQc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YtN9_tCaRQc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":553,"text":"9:13","a11yText":"Süre 9 dakika 13 saniye","shortText":"9 dk."},"views":{"text":"2,7milyon","a11yText":"2,7 milyon izleme"},"date":"15 mayıs 2018","modifyTime":1526380523000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YtN9_tCaRQc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YtN9_tCaRQc","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":553},"parentClipId":"16600713651883241406","href":"/preview/16600713651883241406?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/16600713651883241406?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13358093349961821997":{"videoId":"13358093349961821997","title":"I Failed a Test (\u0007[NancyPi\u0007])","cleanTitle":"I Failed a Test (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1g29WVCrKlQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1g29WVCrKlQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"https://www.youtube.com/channel/UCRGXV1QlxZ8aucmE45tRx8w","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":244,"text":"4:04","a11yText":"Süre 4 dakika 4 saniye","shortText":"4 dk."},"views":{"text":"402,2bin","a11yText":"402,2 bin izleme"},"date":"4 mar 2019","modifyTime":1551657600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1g29WVCrKlQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1g29WVCrKlQ","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":244},"parentClipId":"13358093349961821997","href":"/preview/13358093349961821997?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/13358093349961821997?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17236668885635337886":{"videoId":"17236668885635337886","title":"Logarithms... How? (\u0007[NancyPi\u0007])","cleanTitle":"Logarithms... How? (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/live/Zw5t6BTQYRU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Zw5t6BTQYRU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1154,"text":"19:14","a11yText":"Süre 19 dakika 14 saniye","shortText":"19 dk."},"views":{"text":"3,7milyon","a11yText":"3,7 milyon izleme"},"date":"19 ağu 2018","modifyTime":1534636800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Zw5t6BTQYRU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Zw5t6BTQYRU","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":1154},"parentClipId":"17236668885635337886","href":"/preview/17236668885635337886?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/17236668885635337886?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1696301533094749607":{"videoId":"1696301533094749607","title":"How to Remember the Unit Circle (\u0007[NancyPi\u0007])","cleanTitle":"How to Remember the Unit Circle (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/live/c819bGfH8FA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/c819bGfH8FA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"https://www.youtube.com/channel/UCRGXV1QlxZ8aucmE45tRx8w","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":722,"text":"12:02","a11yText":"Süre 12 dakika 2 saniye","shortText":"12 dk."},"views":{"text":"631,3bin","a11yText":"631,3 bin izleme"},"date":"2 eki 2018","modifyTime":1538438400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/c819bGfH8FA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=c819bGfH8FA","reqid":"1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL","duration":722},"parentClipId":"1696301533094749607","href":"/preview/1696301533094749607?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","rawHref":"/video/preview/1696301533094749607?parent-reqid=1769527692897283-7576613973888862876-balancer-l7leveler-kubr-yp-klg-24-BAL&text=NancyPi","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"7576613973888862876724","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"NancyPi","queryUriEscaped":"NancyPi","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}