{"pages":{"search":{"query":"Confounding Factor","originalQuery":"Confounding Factor","serpid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","parentReqid":"","serpItems":[{"id":"10449347862704243508-0-0","type":"videoSnippet","props":{"videoId":"10449347862704243508"},"curPage":0},{"id":"2185009741832017605-0-1","type":"videoSnippet","props":{"videoId":"2185009741832017605"},"curPage":0},{"id":"11566024019379640184-0-2","type":"videoSnippet","props":{"videoId":"11566024019379640184"},"curPage":0},{"id":"12478325000934928005-0-3","type":"videoSnippet","props":{"videoId":"12478325000934928005"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dENvbmZvdW5kaW5nIEZhY3Rvcgo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","ui":"desktop","yuid":"2037638671766853013"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"3831572712816319801-0-5","type":"videoSnippet","props":{"videoId":"3831572712816319801"},"curPage":0},{"id":"2217670231095771390-0-6","type":"videoSnippet","props":{"videoId":"2217670231095771390"},"curPage":0},{"id":"10265212140505977827-0-7","type":"videoSnippet","props":{"videoId":"10265212140505977827"},"curPage":0},{"id":"134663069669154345-0-8","type":"videoSnippet","props":{"videoId":"134663069669154345"},"curPage":0},{"id":"2053309463877765549-0-9","type":"videoSnippet","props":{"videoId":"2053309463877765549"},"curPage":0},{"id":"9296497360036154988-0-10","type":"videoSnippet","props":{"videoId":"9296497360036154988"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dENvbmZvdW5kaW5nIEZhY3Rvcgo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","ui":"desktop","yuid":"2037638671766853013"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"10960169519203159179-0-12","type":"videoSnippet","props":{"videoId":"10960169519203159179"},"curPage":0},{"id":"12027258773399482163-0-13","type":"videoSnippet","props":{"videoId":"12027258773399482163"},"curPage":0},{"id":"178259305913839359-0-14","type":"videoSnippet","props":{"videoId":"178259305913839359"},"curPage":0},{"id":"4309350067593035947-0-15","type":"videoSnippet","props":{"videoId":"4309350067593035947"},"curPage":0},{"id":"5517986444889106194-0-16","type":"videoSnippet","props":{"videoId":"5517986444889106194"},"curPage":0},{"id":"3241175464174481547-0-17","type":"videoSnippet","props":{"videoId":"3241175464174481547"},"curPage":0},{"id":"7109583256602993481-0-18","type":"videoSnippet","props":{"videoId":"7109583256602993481"},"curPage":0},{"id":"13089664989695963546-0-19","type":"videoSnippet","props":{"videoId":"13089664989695963546"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dENvbmZvdW5kaW5nIEZhY3Rvcgo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","ui":"desktop","yuid":"2037638671766853013"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DConfounding%2BFactor"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"3440805741178201261797","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1443982,0,3;1397828,0,86;1414493,0,37;66182,0,21;66285,0,45;1424970,0,34;1447484,0,83;1460721,0,11;1460923,0,23;1455916,0,17;1460730,0,69;1460149,0,78;1312966,0,77;1444116,0,26;1455695,0,40;1454919,0,44;1461639,0,36;27382,0,79;1201470,0,93;123831,0,12;1447942,0,63;1456124,0,39;1457072,0,85;1447625,0,59;1453818,0,42;1457981,0,43;1455401,0,31;1448580,0,4;1452016,0,16;1452327,0,9;1454028,0,17;88927,0,50;1460387,0,30;1458606,0,57;461653,0,78;1459643,0,28;1455132,0,58;1460869,0,63;1456200,0,88;1456209,0,40;1457019,0,25;1460556,0,20;151171,0,5;1459211,0,12;1281084,0,52;287509,0,4;1447467,0,46;1447550,0,26"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DConfounding%2BFactor","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Confounding+Factor","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Confounding+Factor","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Confounding Factor: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Confounding Factor\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Confounding Factor — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y3b6ba0df0399a5f94c0f7f2698046ceb","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1443982,1397828,1414493,66182,66285,1424970,1447484,1460721,1460923,1455916,1460730,1460149,1312966,1444116,1455695,1454919,1461639,27382,1201470,123831,1447942,1456124,1457072,1447625,1453818,1457981,1455401,1448580,1452016,1452327,1454028,88927,1460387,1458606,461653,1459643,1455132,1460869,1456200,1456209,1457019,1460556,151171,1459211,1281084,287509,1447467,1447550","queryText":"Confounding Factor","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2037638671766853013","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1460915,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1766853058","tz":"America/Louisville","to_iso":"2025-12-27T11:30:58-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1443982,1397828,1414493,66182,66285,1424970,1447484,1460721,1460923,1455916,1460730,1460149,1312966,1444116,1455695,1454919,1461639,27382,1201470,123831,1447942,1456124,1457072,1447625,1453818,1457981,1455401,1448580,1452016,1452327,1454028,88927,1460387,1458606,461653,1459643,1455132,1460869,1456200,1456209,1457019,1460556,151171,1459211,1281084,287509,1447467,1447550","queryText":"Confounding Factor","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2037638671766853013","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"3440805741178201261797","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":161,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"2037638671766853013","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1743.0__eecddcd035f1600a552b89c33e76f4a866ae10da","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"10449347862704243508":{"videoId":"10449347862704243508","docid":"34-10-0-ZC9FD54BE4FF06C2E","description":"Module 4 of the What Works Clearinghouse (WWC) Group Design Standards Training focuses on the WWC standards related to confounding factors. This module outlines the WWC’s definition of a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4067076/ded0fb3dcaa2d0ba821964b16db8d29f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/PYS3RAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dzr56wb4gLgc","linkTemplate":"/video/preview/10449347862704243508?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Module 4, Chapter 2: Defining Confounding Factors","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zr56wb4gLgc\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFgoUMTA0NDkzNDc4NjI3MDQyNDM1MDhaFDEwNDQ5MzQ3ODYyNzA0MjQzNTA4arYPEgEwGAAiRRoxAAoqaGhqdGhscmh0bXB2dXdkY2hoVUNSVUNqUGVoQnhGUTZsZlpEcXFfZjdnEgIAEioQwg8PGg8_E-MDggQkAYAEKyqLARABGniB9_78AP4DAPQCCwACBP4BCwoHAPcBAQDmBAsIBv4BAO0JAgb7AAAA9Q4BCgIAAAD-_v7_-P4AAAn8-AUDAAAAB_Tz9f8AAAAJEPsO_gAAAPj9CgH1AgABC_YBBgAAAAD6Dvz7_wAAAAwLCfMAAAAADvcG_AABAAAgAC0AU9s7OBNACUhOUAIqhAIQABrwAX8C_ALQDPz_GvHkAfsE9wGWHAn_NPblALnt_wC6D-z_BBrnAO_uDQAQ7R4A6A0LAAT55P8J-gAAH-8P_zQ1FwAIDPkAEOMDATAA_QDiEOj_CQ7zADf7DwAO3BsACgAA_REAIv7A7-b_CQvrAhICGAD6AR4F--v_BfADJQHxJ_wG9-_z_CHpDP3XDg7_7BgHAO38FgPtCvP53O0SAvki2f4b9P8G_QL2_AT-BwcN7PL55gUJ9xMC9gEY-xwF9yoSAiMBDPv-__z7ChULACTbDQEK8A_8_N0CBAML9QLz9An19PIG8_0MBAjkIQgQ9wL4ACAALWa9PDs4E0AJSGFQAipzEAAaYDsEAD4CFtT4IyXxFvT2Dez1FvT59RD_9P0A7A_u1_wbt7_gB_8Xwdv2twAAABgL1CoTAAZhCfjjGd9P-PWk6PIJfzIhOfffIvQW2vcM6xAM3RP_KwAKCrwSItLJKjY2_CAALQZgODs4E0AJSG9QAiqvBhAMGqAGAACAQAAAOEIAALhBAAAYwgAAQEIAAMBAAAAoQgAAkEEAABDCAABgQQAAVEIAADTCAAAkwgAAQEAAANxCAAAMwgAAwMAAACTCAACYwQAAnMIAAAAAAADAwAAAoMAAAExCAADAQQAAhMIAAJ7CAABMwgAAQEIAANhBAABQwQAAkkIAAKTCAAAgQgAAwEEAAIDBAABAwAAA5EIAADTCAABIQgAAIMEAAARCAABUQgAAQMAAAEDBAAAkwgAAmMEAAFBBAAAAwQAA8MEAAKBAAACAQQAAmEEAAKhBAACaQgAAwMAAAMbCAACAwAAAwMAAAPBBAADoQQAASEIAAIBAAACYwgAAQEIAAETCAADYQQAAYMEAAIBAAACwQQAABEIAALhCAACAwQAAHEIAALjBAAD4wQAAoEAAAOjBAABUQgAA4EAAAATCAAAkQgAAqMEAAIDBAADEwgAA0MEAAEBBAABQQgAAAEIAAEDBAAAAAAAAIEEAAPDBAAAYwgAAQMEAADzCAAA8wgAAAMAAAJhBAAC4wQAAyMEAABBBAACSQgAASMIAAJhBAABgQQAAEMIAAKBCAADYwQAAJEIAALBBAADIwQAAKMIAAMDBAADgQAAAGEIAAGDCAAA4wgAAOEIAAKBAAAAAQQAAiMEAABTCAABAwgAAXEIAAJhBAACgwAAAwEAAACzCAAAAAAAAAEEAAKDAAAAAwgAAEEEAAAxCAABAQAAAPEIAAEBCAAAEwgAA3sIAAChCAADAQQAAuEEAALjBAAAwQgAAMMEAAHTCAABcQgAAcMEAABDBAACMwgAAAMAAAGBCAABQwQAAAAAAAOjBAAAMwgAADMIAAODAAACAPwAAEMIAAHxCAAAUwgAAoMIAAEDCAAD4QQAAEEIAAJJCAACAwAAAXEIAAIbCAAAAAAAAsMEAACjCAAAcwgAAbEIAAOBAAACAvwAAfEIAABxCAAAAAAAAiMEAAIRCAAAMQgAAsEEAAKBAAACkwgAAgL8AAHDBAAAQwQAAUMIAAAzCAACQQQAAqMEAAIhBAACgwAAAXMIAAIhBAADIwQAAjMIgADgTQAlIdVABKo8CEAAagAIAAOg9AADgvAAAQDwAAAQ-AAD4vQAABD4AAK4-AAAZvwAAxr4AADQ-AAAkPgAAyD0AADC9AAA8PgAApr4AADS-AACmPgAAgDsAADQ-AAAzPwAAfz8AAMg9AAAQPQAA-D0AAAy-AABAvAAAFL4AACy-AAAUPgAAuj4AAFw-AAC4vQAAbL4AAFQ-AACGPgAAML0AAHQ-AACYvQAA9r4AAHC9AAA0vgAAJD4AABC9AACovQAA6L0AAII-AAAUPgAAnr4AACw-AAB8vgAAUD0AAKi9AAA8PgAA1j4AAIg9AAAQvQAAOz8AABS-AABUvgAAqj4AABS-AACgvAAA-D0AABS-IAA4E0AJSHxQASqPAhABGoACAAA0vgAAgj4AAKC8AAAPvwAADD4AAFA9AAAkPgAABL4AAEA8AABkPgAAUD0AAMi9AAAMvgAA4r4AAMg9AADgvAAAgDsAACs_AACoPQAAwj4AAOC8AACgvAAAcD0AAKC8AAAwvQAAgLsAAAS-AAAMPgAAmL0AADy-AAAwPQAAJD4AAFC9AABwPQAAyD0AANi9AADGPgAAjj4AAK6-AACAOwAADD4AAHC9AADYvQAAcL0AAKg9AABUPgAAf78AAGS-AACovQAA2D0AAOg9AAAcvgAAJD4AAKi9AACYPQAAUD0AAEC8AAA8vgAA4LwAAAw-AAAQvQAAMD0AAJi9AABMPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=zr56wb4gLgc","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10449347862704243508"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3033446712"},"2185009741832017605":{"videoId":"2185009741832017605","docid":"34-3-15-Z40C721D6142AE7B0","description":"A variable that is not considered but plays a role in the outcome of an event is considered a confounding factor. In epidemiology, a confounding variable refers to a variable that is a risk...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3174000/dd906c4b88cf7239c9e96435add7100a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Uy_yuQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1NCVy8Tylx0","linkTemplate":"/video/preview/2185009741832017605?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What Are Confounding Variables and How Do You Standardize Populations?","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1NCVy8Tylx0\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFQoTMjE4NTAwOTc0MTgzMjAxNzYwNVoTMjE4NTAwOTc0MTgzMjAxNzYwNWqIFxIBMBgAIkUaMQAKKmhoc2p1Y3plaW9nY2NrZGRoaFVDbUxHSjNWWUJjZlJhV2JQNkpMSmNwQRICABIqEMIPDxoPPxOhBYIEJAGABCsqiwEQARp4gf_y-P_9AwD2AQH5-wEAAfUU_gH5_f0A9A339QMBAAD6BQcE-QEAAP8SCAoFAAAA7gD_-_sBAAAMBvUDAwAAABvwAgH7AAAABwf_Av4BAAD4_QkB9QIAAQ0IAQUAAAAA-hUH_f7_AAD-CAMLAAAAABPwBwIAAQAAIAAtlD7eOzgTQAlITlACKoQCEAAa8AF_9RgBthz7_kTx2QAMGu8BiQAB_ykG7wDE8wkAoOzb_yYdCQC68Qf_BhUh__sPDf8fC-j_HugP_yLuEP8tDAn_EQP4ADLf_QBCEg4B-RTX_uT48wAn9Q0AFvYWAO8F_AEB8wX-BhLpAhcC9AIN6A0CJAUNAiT9-P8CCf3-5AYe_xsBCgEZ5Rj-2hvz_egHDP0U7_L98g_5A-nn-AX3-_j9COv_BQ4G9wUUGgYFGvz2-fEBBwALCwv3Dx__CAoTEAkU7wkK_v_8-gclCggn2A4B89YR9wEfE_sF-vH9C_MA8OvwCQDIJfoE-_0G-eIjCPsgAC0PbC87OBNACUhhUAIqzwcQABrAB6w4Cb-6Fd08v0UGvG1Bqj22uRY9AGmkPEkrvjxXsqO8mfLfu5_Woz0h8PY8RfacvJxNl77qPVy5ZI8WvN0nnz4Z63Y9lA2QPBCw9r0IpE49R7dSu094kb5nFUw9qeaLutogMz4mXha8l40OPfrV3D03fnI8q6AWPAGcxbt9_sG7oJJuvV2psr3BnCq9PR5EvJV_DT6ipFa9sVVdPHcx7T2PACm9dpYRPPL4TL1CE3E6OM63u7oRlr0ZPAg8vn0HPR3owT2G_H656kmPPEKHyj0MJwQ9ra2OPJNRpTzBR448W-83vHTPOj22nDA9CIWxO9Kjjj2ZpA29UN-yPFR8Mr3QQ-08woyEPN1gOD4pplw94xs-OhSbCr1dNU89-CVRPM4op7wn8Y49VeC_u3QNrj0eeiG9ysqGu2_KprxZYq88YqylPKW8Fj0Xw4-78_jHvEuWbrwJ7rE9pCQYvEdiOLxtG4Y8JzKUOycHrb0XVmC89Pt-vPES_D3AKJy9rShru_3Fpz1zLZq8FF5-u6PHhD2DxxS8G4NKO4Aqrjy47yw9Kh1SuhdKYT1Q03i9uzkFulUZQT3a_0A9Zlmku0gIxbzaFxY8aRiEu9WhmT0irpg7Y28UvLEkLz3oZ2o8aNTXO7XFsTsUWCW8LjnRuzktk7wVgJC74GLqu5-dwrs_dpg5G7P0uusB0z2o0Zo8eTjkO2Ujhr2WBOi8E_aKOs67Fj3GSnE882FNu9HVkb31Nqy8IifhOtScPD2zzJc9jLDOuGdaB71XG-28kp0EOo0lEb27jOw8FCCOuo6YhD2m5-e8LGGvOSMFYD2sXAG8t5kZOMNsvLtsa9W8lkfZuEX-zzyQ4707IBaNOTu_nT3gh14851euuGqMEb0MV0c9gs4QOCm6JL0N5T89WbHZuJ34hTziBCa8OHy1uKJpAbwipBO9Ca1iuYV_rLxDmJG6lLRfNu8ambyRXrm8TRwZOMOAJTznjo69w2ZyOZEfu7yj7l49NHvjtls9TLu7NLQ8y7WZuP-AHb1dhI6828OBt-XiubxxaJu95a0INpRfR7oNZwY8HjFlN0N-vL2bRkm8eEvINzxqzLzypWa9-vflt_W47zwSdgA9EoO-OHFP4Ty5gMC6pMytt61M-Dw8mjQ8fsLruNndzbs5ZIO89j61t5mDHjx3rVM9hn0cOPnGZr3fkpK9u88CN5XfWD31zNy82S39t-obQbumqcQ97EGXOHxijb0hA9k9gTUwufs3FL2Jzjc9rw2Pt888D71ASSa9jE_INyAAOBNACUhtUAEqcxAAGmBTAAAX7zXqsxcM1uEG1P0X8gn5MO3x_-Xx_-Y68uAYAbqo7AP_cNQY46QAAAAT8tkI0wALfwby3ATXIg2T0vgJB3sJDje6zx4C3NaxSuAE2L3eHE8Atw-rAj3M9xcD-_ggAC0SixY7OBNACUhvUAIqrwYQDBqgBgAABEIAACBBAACcQgAAiEEAABBBAAAQwQAAVEIAALDBAAA0wgAAAEEAAAxCAAAgQQAApMIAACDCAABIQgAA4MEAAIhBAAAQwQAAAMEAAGjCAADgQAAACMIAAMBBAAAYQgAAkkIAAIBAAACAwgAAbMIAAKpCAAA8QgAAFEIAADRCAACkwgAAyMEAAK7CAABkwgAA2MEAAOJCAAAgQQAAsEEAAABAAAAoQgAA2EEAAKBAAAAUQgAA4MAAAMDBAABwwQAAqkIAAABAAABYwgAAIMEAAIDAAACYQQAAqEEAANjBAADGwgAAgMAAAATCAAAwQQAAIEEAAEDCAAAswgAAaMIAAKjBAACAPwAA4MEAAKDBAACgwAAAgEEAAChCAACIQgAA6MEAAEBCAAAAwgAA0MIAAETCAAAMwgAAQEIAAKDAAACIwgAAEEIAAPjBAAA8QgAA6EEAADhCAABQwQAAWEIAAIhBAAAwwgAAMEEAAFBCAABgQgAAVMIAACxCAADawgAAiMEAAERCAABAQQAABMIAAETCAABsQgAAwEAAABTCAABcwgAAyEEAACBBAAAAwAAANEIAACBBAAB4QgAAQEEAAKBAAAAAwgAA0EEAAIhBAAAMwgAAuMEAACjCAAAswgAAoMEAANjBAADYwQAAFMIAAJDBAACoQQAAkEEAANjBAACQwQAAIEEAADhCAACAwQAAVMIAAIBAAADAQQAAEMIAAODAAACYQQAAjsIAAIzCAADAwQAAAEIAACBCAAAQwQAAXEIAAOBBAAB8wgAAQEEAACDCAABYwgAAAEIAAIpCAACIQQAAVMIAALjBAABwQQAADMIAAITCAADowQAAnEIAALDBAADYQQAAiMEAAMDBAADgwQAAIEEAAFhCAACeQgAAMEIAACDBAABMwgAA4EAAAMhBAACgQAAAQMEAADBBAADAQQAAQEEAADBCAABYQgAAgD8AAIDBAAAAwQAAgMAAAPhBAAAUwgAAyMEAAARCAAAQwQAABEIAADjCAADowQAAMMEAACTCAAAsQgAA0MEAAMBBAADowQAAsMIAAEBBIAA4E0AJSHVQASqPAhAAGoACAAAEPgAAFL4AANi9AAAMPgAAML0AAHA9AABQPQAA-r4AAKK-AABwPQAAqD0AADA9AACAOwAAhj4AAES-AAAwvQAAPD4AAKA8AAC4PQAA2j4AAH8_AADYPQAAVD4AAJi9AAA8vgAATD4AAIA7AADIvQAAEL0AAJg9AAB0PgAA-D0AALa-AACgPAAAJD4AANg9AAAUPgAAMD0AAKq-AACSvgAAVL4AABA9AACAuwAAoLwAAAS-AAAwvQAAMD0AAKq-AADIPQAARL4AALi9AABwvQAAfD4AAHA9AACAuwAAcL0AAAc_AADYvQAAUD0AAFw-AAD4vQAAMD0AAMg9AACgvCAAOBNACUh8UAEqjwIQARqAAgAAUL0AACw-AACYvQAAPb8AANi9AADYvQAAbD4AAJi9AAAMvgAA6j4AACw-AAAcvgAA4LwAAJq-AACgPAAAqL0AACQ-AAATPwAA6D0AANI-AADgvAAAtj4AAKC8AAD4vQAAUL0AABQ-AABQvQAAFD4AAFS-AADoPQAAuD0AAHA9AACYvQAA-L0AAEA8AAAMvgAAij4AADQ-AACyvgAAyD0AAOg9AACYPQAAir4AAHQ-AAAUvgAAJD4AAH-_AAAwvQAATL4AAFw-AABwPQAAcD0AAKg9AAAEPgAAbD4AAOA8AACAuwAA2L0AAFC9AABsvgAAoDwAALI-AABMPgAAmL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=1NCVy8Tylx0","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2185009741832017605"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1968702873"},"11566024019379640184":{"videoId":"11566024019379640184","docid":"34-9-14-Z7F46659A08257A00","description":"Brief explanation of confounding and selection bias and how to deal with this issues that introduce noise in our investigation of the causal relationship between variables.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3335527/412b15a1c7855b32c18620d87e7bbd9d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/6qe6cwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFW4Lv8b0ZJk","linkTemplate":"/video/preview/11566024019379640184?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Confounding and Selection Bias","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FW4Lv8b0ZJk\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFgoUMTE1NjYwMjQwMTkzNzk2NDAxODRaFDExNTY2MDI0MDE5Mzc5NjQwMTg0aogXEgEwGAAiRRoxAAoqaGhhYXloaHpiZnZvaXhkYmhoVUNRa1ZwN2tHbVBMdFo2ZFNlYldnR0tBEgIAEioQwg8PGg8_E8IFggQkAYAEKyqLARABGniB_Qf-Df4CAAELAwb4B_0CDAX_AvcAAAD9CfgIAwX-APMA_v7_AAAA8A8LAwYAAADs9gf0AAEAAAoFAAgEAAAAGAT8Cv8AAAAD_PYI_wEAAAL2Cgb1AgABEgoIAf8AAAD6Dvz7_wAAAP4PBQAAAAAAFf8D_QABAAAgAC2Nj9o7OBNACUhOUAIqhAIQABrwAX_79AHO_Of_7wbZAMcW4f-CIgr-JhTlAMjqKACu0-QADx7wAd8H-wDq_RcBwAQWABfZ4__t4vsAOf7T_gXrBQD48xgARODwARH_CAD6EPUA8B0cACADGAD6Ae_9-_Tf_RQB9fr2CuMCAAbiAw7-OgHhEBf_FAwiA98HGQPNEhsBCefr__0HAgT_8uz_2wQgAgXx7v8cCfP77CL-BNwKBgEG8vz5APP5_zAj6fzlCwr6__IJBwLz3vscIRQI9ALn-QsH_fsQ7gcJ8RQI8UAKDwb65BUCFwsP9-QB9f_-zgn35_oC98kHCvIEDP4ICu739iAALWPLHTs4E0AJSGFQAirPBxAAGsAHjPb4vl4CJjzxDeq8yXeEutU15Dz78c28lyy4PLcN_jwxdXy8zNJOPejoJzyT5X-8l8eqvhPH7Du-EZ28Z2KaPk46m7wa71g8ehcvvgg8MD0pn9S89aGDvjx38TsuxZc7PXvDPf0QQD3VDW-8C7-qPT8KjbzSacI8bhsjPKomjb0-8fe8-Ua5vVOXnL1lmt-8rX_hPLPFv7zETy286-CwPX94jLx8FU-8QsFWPdeEGb3VUeG7yj1zvaT1wbyLS7o8af4oPotd0ztHCys8rBWSPTew8Dw44Zi7HOagvbT4Pr3P2SK9rMJrPZ1_YD3XRXa8u7upPZIkiL1yKFm6UwlqvUQ2oD2YZ0U69fX8PZyiCD3rK1m8FJsKvV01Tz34JVE8_5k8vaEbED3Xtzg8Sw-ZPSEYrLw_iCa7x1TwPGKWhz0qo7Y8JNENvJloKz1YkGY83Ws3PYycqj0EfoO8QVliPe0bDj0XlVy7dRetvRkXMzzXcy08uakxPkiYuL0Jel68bV0lPUiVNz2BfGQ854U_u2GBqb3rCBa8emKnvBvG07wj_ZG8zniRPRtrGr3170A7V1QuPfWBJD3p4A88kx-8vb-Q37xQ4Qq8jOgIPbs8QryWQda7QzSfvAoDAD0JFSC7v2unuzrDuTzWNX-8efNKPVwtBTyzmi48zO65vdL2ubytr4U7GpyNPeTHDj2eke-7jSN7PFXvOrywkUE7B-7gPXrcHrv2pQ66BRJ5Pbv7cr3c3qg7f06BvCl7pjxXSqW4TQpYPehJvryk7lo60wgHPVYXS7ynxuu5OhcQu1cbiDxqqfY6lGEBvVi4vLvlA8M56HYlvbEL0LwSqwi5sZZxvH5zWrz3_zM7F6ibPYyyHbp3GWy5iYBevbhTnzy2lky5MteovVbarT1xrNK4FkBCPF7aED3ceYe3dCEcPJSpjb3zwCc3bZ3JPKKgL71_o6a5FwMVPb98dz09Bwc5q8wKOsurKb0JVcK3kR-7vKPuXj00e-O2ACMDPQ7b1j0-T4w3IYqOPaOjh7sAr423h0VWPdNlpr2_KPQ2Lfe4PA-KjD2pvYq4za47vdz7L7xKfS04sK2fvM-0jjxi0L63fSB5PbAiAjzPt603VZB1vZCqfbvADLs4oFTLPffxxrwtj9W4RHiqvEF9i7w_dUI3OOeWvEbAN71q4gO4NcC7PFwbj7wqfiWz2YTqvCJXtb3SQjC4VRimPW0LxT2Dx-c4BwunvL387j2DtB65L9JVvOHn5DxipDK3cJmuvHD66bwPZ7g3IAA4E0AJSG1QASpzEAAaYFL0AAL1FuX58kL-BQYJC8QO4vcRrQf_67sAGyDS_AMMxpvZ8f9FzvT5ogAAABkm3j8MACB-5Pj_AvYk9J_SxzMJfw8nLsHT__jB1u40EgoI3AcoVADV5qYTJKjRO_ZQDSAALYatFTs4E0AJSG9QAiqvBhAMGqAGAADwQQAAAAAAAGBCAAAcwgAAZEIAAHxCAADIQgAAaMIAAKDBAACgQAAA4MAAACxCAACYwQAAEMEAAEBCAAAQwQAAIEEAAMDBAADAQQAAPMIAAHBBAADQwQAAUMEAAIC_AADwQQAAAMAAAATCAACMwgAAokIAAMBBAACAwAAAsEIAADjCAABgQQAAbMIAAKBAAADIQQAAskIAAADBAADgQQAAkkIAADBCAAAgQQAACEIAAGxCAACgwgAA6MEAAEBAAACWQgAA0MEAAJLCAAAcwgAAqMEAABBCAAAAwQAAgL8AAK7CAAAwQgAA2EEAAGhCAAAYQgAAMMIAAETCAAAAQAAA4EEAAFDCAACAwAAAeMIAAITCAACgwQAALEIAAPhBAACEwgAAYEIAAIjBAAAAwgAAUMEAAGTCAADwQQAAoEAAALTCAABEQgAAyMEAAP5CAAAEQgAAgEAAAIBAAAAMQgAAwEEAANDBAACYQQAAqEIAAHBCAACAvwAAMEIAAJrCAAAwwQAALMIAAJpCAACQwQAAiMEAABzCAADgQQAAoMEAAFzCAACQQQAAoMAAABhCAACAPwAAAEIAALBBAAAcQgAAgL8AAPDBAAAAwQAAGEIAAEDBAACAvwAAKMIAALDBAACAwAAA6MEAAAAAAABwwgAAJMIAAAAAAAAAQQAAFMIAAIDBAAA0QgAA0EEAAADBAAAIwgAAOEIAACTCAADgQAAAAMEAAKDBAABYwgAALMIAAABCAAAkQgAAMEEAAADCAADwQQAAgMEAAADBAABUwgAA8EEAAAjCAADAwAAA5kIAAOhBAADgwQAAEEIAAAxCAACOwgAAQMIAAHTCAADYQQAAqMEAAIRCAABAQQAAQEAAAEDAAAAAwAAAiEEAABhCAADwQQAAMEEAAIDBAACgQAAAJEIAAKBBAAAAAAAAIMIAAABAAABAQAAAqMEAADBCAABcwgAAhsIAABTCAABQwQAAREIAAKDBAAAAwAAAgMAAAHDBAACgQQAAsEEAACzCAACEQgAAAMIAAKhBAAAgQgAAEEEAAKDAAAAIwgAAAEEgADgTQAlIdVABKo8CEAAagAIAACS-AABcvgAABD4AAOA8AABAPAAAML0AAEA8AAAHvwAAgr4AADA9AACqPgAAZD4AADw-AABQPQAAJL4AAKA8AAD4PQAAED0AAEw-AADOPgAAfz8AAKA8AADIPQAARD4AABC9AADgvAAAJL4AAIi9AAAEvgAAND4AABQ-AACAOwAAtr4AADA9AAAMPgAA-D0AACQ-AAAUvgAA2r4AAFy-AACIvQAAQLwAAIA7AACAOwAAQLwAALi9AADYPQAAXL4AAFA9AADOvgAAJL4AAAS-AACOPgAAZD4AABS-AABAPAAA6j4AABA9AADovQAA3j4AABA9AAA8PgAA4LwAANi9IAA4E0AJSHxQASqPAhABGoACAACgvAAAHD4AAIC7AAAvvwAAEL0AAAS-AABwvQAAiL0AANi9AAAXPwAAJD4AAKC8AADoPQAAmr4AABy-AAAQvQAAgLsAADE_AAAcPgAAgj4AABQ-AACWPgAAPD4AAHC9AAAEvgAABD4AAES-AABkPgAAmL0AAHA9AAAQPQAA6D0AAJg9AAAUvgAAqL0AAAy-AADaPgAAPD4AAI6-AABQvQAAND4AAOC8AACqvgAAiL0AACQ-AABsPgAAf78AAEA8AABwvQAAiD0AAAQ-AABQvQAARD4AABw-AAAQPQAAiD0AAOC8AAB0vgAAgDsAAAS-AADgPAAAmD0AAHC9AACAuyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=FW4Lv8b0ZJk","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":638,"cratio":2.00626,"dups":["11566024019379640184"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"751977187"},"12478325000934928005":{"videoId":"12478325000934928005","docid":"34-6-9-Z661BBEFC30235C47","description":"In this video, we delve into the critical concepts of confounders and confounding in research. Learn how external variables can distort causal pathways and lead to misleading conclusions.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3048760/9296311aa619452b2d95f2133b7a92f5/564x318_1"},"target":"_self","position":"3","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DH-jach8N5wY","linkTemplate":"/video/preview/12478325000934928005?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Confounder vs Confounding | External variable distort Causal Pathway | RR vs Adjusted RR","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=H-jach8N5wY\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFgoUMTI0NzgzMjUwMDA5MzQ5MjgwMDVaFDEyNDc4MzI1MDAwOTM0OTI4MDA1aq8NEgEwGAAiRRoxAAoqaGh0ZnZneHR2c2prbWJ0Y2hoVUN0VnoxdWVleTBUdDJZMnlTVTJTanVnEgIAEioQwg8PGg8_E-UIggQkAYAEKyqLARABGniBDAEHDgn1AO0GDgYTBPwABxET_PYA_wDq-wf5CAAAAN4CC__5_wAAEQ7__AQAAADo9v78_gEAABX-7QgCAAAACf_--P0AAAAC9wEH_wEAAPMHAwIEAAAADwIMBgAAAAANBQIG-_8AARcLBA0AAAAAIf4ICwABAAAgAC1xEbs7OBNACUhOUAIqcxAAGmD6BAAcIyL03yAR6dsf_PQGChMA6AH5__bKAORQ2fAU3dnI-BkAP7Ii8LQAAAAT_8UW-gD1XgL83AXtIOPjDQIpHX8lEgnWFRcD-B3S6s7yCNjpPeoA9P4JH0iwyz0KKgYgAC34hjo7OBNACUhvUAIqrwYQDBqgBgAAgEEAAKjBAABEQgAAMMEAAKBAAAAgwgAAuEEAAIC_AABcwgAAYMEAALhBAAA4QgAASMIAAJDBAAA4QgAAAMEAAIjBAAAMwgAAmMEAAITCAAAgQQAAcEEAAIDBAAAgQgAAeEIAAKDAAAAkwgAAwsIAAERCAACOQgAA4EAAABhCAACAwgAAMMEAAJDBAAAQwgAAsMEAAO5CAACYQQAAQMEAAFDBAABAQQAAgEEAAMBAAADQQQAAgsIAAFjCAADgwAAAiEIAAEzCAACKwgAAkEIAABDBAABgQgAA4EEAAABAAACQwgAAqEEAAIhBAADgQQAAUEEAABBBAACwwQAAIMIAACBBAACgQAAAsEEAAATCAACYwQAA6MEAAKRCAACQQgAAnMIAAHhCAADoQQAAKMIAAODBAABAQAAA8MEAAJDBAADIwQAAgEEAALjBAADIQQAAqEEAAGBCAABAwAAAyEEAAFhCAADMwgAAcMEAAABCAAD4QQAAQMEAAKDBAAC4wgAASEIAAChCAACmQgAAAEEAAEzCAAB8QgAAgEEAAIDCAAAcwgAA8EEAAFDBAACoQQAA2MEAADxCAADgQQAAgD8AAAzCAABUwgAAjkIAACBCAAAAQQAAMMEAALDBAADwwQAAQMEAAHDCAABwQQAAuMEAAHBCAADAwQAAMEEAAJ7CAAAgQQAAAMIAAMDAAACgwQAAEMEAABDBAAAYQgAAQMAAAMBBAABwQQAAgMIAAAzCAADQQQAAAAAAACxCAACIQQAAwEEAAEDAAACYwQAAMEEAAMDAAABIwgAAYEEAAGBBAADYQQAA6MEAAAAAAAAwwQAABMIAAHTCAADgQAAAyEIAAIDBAAAwQgAAQMEAADTCAACgwAAAQMAAAHxCAACiQgAAmEEAAMBAAADgwQAASEIAAEDAAAAAQgAAEEEAAIhBAADQQQAAoEEAAGRCAABAQAAAIMIAAJBBAADgwAAAMMEAACBBAADWwgAAqMIAAAhCAABAQAAAqMEAAATCAADgwAAAIMEAADBBAABUQgAA0MEAACDCAAAEQgAAQMIAAETCIAA4E0AJSHVQASqPAhAAGoACAABAPAAA2L0AAOC8AACIPQAA4LwAALg9AAAwPQAAC78AAJK-AACYPQAAyD0AADA9AAAMPgAAoLwAAGS-AAAwvQAABD4AAOA8AABAPAAA0j4AAH8_AACYvQAATD4AAOi9AADIvQAAmD0AAMi9AADgPAAALL4AABA9AACKPgAA-D0AAKa-AACAuwAAgDsAAAw-AADYPQAAmL0AALa-AACKvgAADL4AABC9AABQPQAAML0AAIC7AABQvQAA2D0AAHy-AACYvQAAir4AAFS-AAC4vQAAfD4AADQ-AADYvQAA4LwAAOo-AACAOwAAUL0AAEQ-AAAwvQAAcD0AAOA8AACIvSAAOBNACUh8UAEqjwIQARqAAgAAVL4AACQ-AADgPAAAKb8AAJg9AACAuwAAXD4AANi9AABMvgAA0j4AAOg9AACAuwAA4LwAAEy-AABQPQAAEL0AAMi9AABPPwAA4DwAAI4-AADIPQAAEL0AAIA7AAC4vQAA-L0AAJg9AAAwvQAAHD4AADS-AAAwPQAAiD0AAIA7AACAuwAAUL0AAKg9AACovQAAuD0AAEQ-AAB8vgAA6L0AAGQ-AAAwvQAAuD0AAHC9AACgPAAAyD0AAH-_AAA8vgAAML0AAOi9AADIPQAADD4AAJo-AACgvAAAcD0AAEA8AADgvAAA4DwAANg9AABwvQAAED0AABQ-AAC4vQAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=H-jach8N5wY","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12478325000934928005"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3831572712816319801":{"videoId":"3831572712816319801","docid":"34-10-13-ZECADB72D9A0F8E3B","description":"Module 4 covers the first step when conducting What Works Clearinghouse (WWC) reviews of studies: reviewing outcome measures and checking for confounding factors. Chapter 2 defines a confounding...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4945510/c1cc20a79be4108f3919b1e47ae8feb3/564x318_1"},"target":"_self","position":"5","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5M1Z6D-rerQ","linkTemplate":"/video/preview/3831572712816319801?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"WWC Group Design Training, Module 4, Part 2: Confounding Factors","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5M1Z6D-rerQ\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFQoTMzgzMTU3MjcxMjgxNjMxOTgwMVoTMzgzMTU3MjcxMjgxNjMxOTgwMWqvDRIBMBgAIkUaMQAKKmhoanRobHJodG1wdnV3ZGNoaFVDUlVDalBlaEJ4RlE2bGZaRHFxX2Y3ZxICABIqEMIPDxoPPxPeB4IEJAGABCsqiwEQARp4gQIJCgUF-gDuBQ0GEgT9ABgGBgL0AgIA6wv_Bgn_AADyAAEH_QAAAOUMBQr9AAAA9PsKDfP_AQALBgAJBAAAABX4Av72AAAA-hH6__4BAADe-Ar9AgAAABj-BwMAAAAA7AkB8v__AAANDQrxAAAAABD3Eg0AAAAAIAAt2zbEOzgTQAlITlACKnMQABpg_REAIBAI3_AbGvX_9u8Y7uYF5evyBAD47wAKIPbbFAXd3u__AAvE8fzNAAAACxflFQoABT8T__MFAjkE9cH1CQ9_ISgFDv8c7vnh7_cX-_LyHPIWAAcJBQYdzvcwBTIMIAAtF5t6OzgTQAlIb1ACKq8GEAwaoAYAAKhBAAAcQgAAJEIAAADAAABIQgAAQMEAACRCAACKwgAAhMIAAJDBAACUQgAAAMIAAIBBAADSwgAAKEIAAPBBAACAwAAAEMEAACjCAACwwQAATEIAAKBAAAD4QQAAPEIAAKBAAACwwQAATMIAAIjBAAC4QgAAWEIAAIBAAAA4QgAAFMIAACDBAABYwgAAYEEAAEBCAACMQgAArMIAADBBAAAAAAAADMIAAFhCAAAwQgAAgkIAAIJCAAAMwgAAwMAAAKpCAADAQAAAuMEAAIBAAAAEwgAAgD8AAGxCAABQQQAAwsIAAEDAAACAvwAAwMEAAIA_AAAMwgAAYMEAAJDCAAC4QQAAzMIAAIDBAAD4wQAABMIAAHBBAACAQQAAeEIAAIZCAABIwgAAAAAAAIzCAACAwQAAwMAAABxCAADQQQAABMIAACBCAACowQAAoEEAAMjBAAAwQgAAuEEAAEhCAADIQQAAkMEAAADBAADAQAAAsEEAALzCAACgwQAAQMEAAOhBAABsQgAAUMEAAOjBAAAQwgAAAAAAAERCAABcwgAAiEEAAAjCAACgQAAA-EEAAFDBAAAAQQAAMEEAAIA_AADAQQAA4MEAACBCAACgQQAAIEEAAJjCAADAQAAAAMIAAGDBAABswgAAgEAAABzCAACgwAAAYEEAALjBAABAwQAAgsIAACDCAACowQAADMIAAIjBAAAAwAAAQMIAAIBAAADIQQAAoMEAABzCAACWwgAAhMIAADRCAABwQQAAQEAAABBCAADgQAAAtMIAAGBBAADYQQAAgMEAAKhBAACgwAAAyEEAAMjBAAAswgAACMIAALDBAAA0wgAAUMIAAEBBAAAAwAAAJMIAAHDCAAC4QQAAQMEAAFBCAACYQQAAhEIAAFhCAACgwQAAUMIAADxCAAD4wQAAFMIAAMDBAACKQgAAkEEAAGDCAAAIQgAAkkIAAKDAAAAQwgAAmMEAAEDAAACKQgAAiMEAAEDCAACgQgAAEMEAADhCAABAwAAAEMIAAGxCAABAQQAASMIAAAhCAAAswgAAPMIAAIBAAAAgwSAAOBNACUh1UAEqjwIQABqAAgAA2L0AABA9AACYPQAATD4AAKi9AABAvAAAFD4AANK-AACevgAA6D0AABA9AABEPgAAoDwAAKA8AABMvgAA-L0AAGQ-AABAPAAA6D0AAA8_AAB_PwAADD4AAFC9AAAQvQAAmL0AABA9AAD4vQAALL4AAEC8AAAkPgAAmD0AAJg9AABMvgAAJD4AAMg9AABAvAAAND4AAKC8AACevgAABL4AADC9AACYPQAA2L0AAKA8AACgvAAAyD0AACQ-AAD4vQAAuD0AAIa-AAAwPQAAQDwAAJo-AACWPgAAoDwAAOC8AAD6PgAA-L0AAJi9AAB0PgAA6L0AAIC7AACgPAAAoDwgADgTQAlIfFABKo8CEAEagAIAACS-AAAUPgAA4LwAABG_AADgPAAA4LwAABA9AAA0vgAAgLsAAMI-AAAQvQAAUL0AADC9AACSvgAAqD0AAFC9AABAvAAAIT8AAHA9AADCPgAAEL0AABA9AABQvQAAoLwAAEC8AADIPQAAQDwAANg9AAAMvgAAEL0AAKA8AAAMPgAAED0AAKA8AABQPQAA4LwAALI-AACWPgAAmr4AAFC9AACIPQAAED0AAJi9AAAwvQAAmD0AAKC8AAB_vwAAcL0AAPi9AAAQPQAAcD0AAFS-AADoPQAAoDwAAFA9AAAwPQAA4DwAALi9AAAEvgAAHD4AAIC7AADgPAAA4LwAACw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=5M1Z6D-rerQ","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3831572712816319801"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2217670231095771390":{"videoId":"2217670231095771390","docid":"34-3-0-Z6FA6711DC3A50D99","description":"perceived relationship between an independent variable and a dependent variable that has been estimated incorrectly because the estimate fails to account for a confounding factor. =","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4454975/07a1e81769d850b8161347e8329efbf7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pg_ddAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DabjN6R3i0XI","linkTemplate":"/video/preview/2217670231095771390?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Confounding","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=abjN6R3i0XI\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFQoTMjIxNzY3MDIzMTA5NTc3MTM5MFoTMjIxNzY3MDIzMTA5NTc3MTM5MGq2DxIBMBgAIkUaMQAKKmhodWRpeHp1cXhqcXZzZGNoaFVDU3hzaTJ1TndtZXdnZXRJZXZldThwURICABIqEMIPDxoPPxOCCYIEJAGABCsqiwEQARp4gf7-AQj7BQDwDAf3_QABAAsQ_QT2AQEABwkEBAYD_wDuBv7-A_8AAP8NAAn7AAAA8gAGAAAAAAAICgQCBAAAAA39_Ab7AAAAAwAEA_8BAAD2_gMEAwAAABT-BgIAAAAA8wsCAQT6-AQFCwb8AAAAABPxBgIAAQAAIAAteaDiOzgTQAlITlACKoQCEAAa8AF_AvwCjB74-V3p-QHx9fQBhhTw_yH_3wDI9AkAygPoACcB-QHk_wz_-RYCAOT9GAD6Bu3_A_oMAD_6Gf8wARIABPEGACTt8QAeFBUAGwkQAOoQ7___5xoBAOz0AAj9BwIWEQL-7yTpABz42wLu5hD-FgAE__wBBQH0BOv_7BANAvveAgD98_IDFAnz_-T-CAb3_gv7AAL7-Q8qCQTzAiwC9RQP_Bro9fn9Iu4C9wPq-Rn2Bvz39PYF_eYABusP5gYODQf4E-r3AfgQ-fY56w0J4PsDBf79BgD89fn5_-4G9vP2_P3mAgoCDQD9Cwn5Af0gAC1mvTw7OBNACUhhUAIqcxAAGmA8DgAR-jjW-gM67AoXAyDTAub0-QDYAMvnAOId9_YBEN_a7AcAN9br8LsAAAD47sEPBAD_X_X75A71J9q83N0z_38mMgsG3h4FvOTEHvTm7ugOGP0A8Oe8GRvJ5lUkGSogAC1YXDo7OBNACUhvUAIqrwYQDBqgBgAAmEEAAMDBAACYQgAAAMIAAIZCAADYQQAAvkIAAGDCAAAAAAAAuEEAAJjBAAAAQAAAyMEAABDBAAAAQQAAQMAAADBCAACAPwAACEIAAMDBAABEQgAA4MAAAJhBAACAwAAAyMEAAMDAAACAvwAAmMIAAIJCAABQQQAAmEEAAExCAABEwgAAQEAAAI7CAACAQAAA8EEAAORCAABQQQAAPEIAAGBBAACEQgAAVEIAAIhBAACgQAAAJMIAAOhBAADYQQAAyEIAAMDAAABAQAAAKMIAAHBBAACwQQAAwEEAAGRCAACcwgAAEMEAAMBAAAAwQgAAgMAAABDCAACAPwAA4MAAAOBAAABwwQAAXMIAAODBAACQQQAAaMIAAMBBAACQQgAAdMIAAEDAAACgwQAAlMIAALDBAACgwQAABMIAAIBAAACwwgAANEIAAEzCAAD-QgAAlkIAAMDAAACGQgAAtEIAAI5CAAB0wgAAcEEAAPpCAABQQgAAEMIAAPhBAAA8wgAA2EEAAKjBAABsQgAAAMAAAJDBAACAwAAAgEAAALDBAABowgAAAAAAAADAAADAQAAA-MEAALhBAAAgQgAAgD8AANDBAAAAAAAAyMEAANDBAAAUQgAAwEAAAADAAACgwAAAoEAAAKDBAADwwQAAqsIAAMjBAABUwgAAwEAAAIA_AABgwQAAQMEAAIC_AACAQAAASMIAAODBAACGwgAAoEAAAEhCAADgQAAABMIAABDCAAAwQQAAJEIAADBCAACAwQAAUEIAAAAAAADIwQAAEMIAAMBBAACgwQAAcMEAAKxCAADAwAAAAMAAAMBBAACgwAAA6MEAAIDBAACEwgAAkEEAAHDCAAAQQgAAMEEAAJzCAAAAQQAAAAAAADxCAACGQgAAQEEAAPDBAADIQQAACMIAAEBBAAAAAAAAoMAAAEzCAABMQgAAQEAAAIC_AAAYQgAAJMIAAADCAAAEwgAABEIAAFhCAACgwAAAiEEAAKDAAABAQAAAoMEAAFTCAAAswgAAWEIAACDCAADgwAAAgEAAAEDAAABYwgAAcMEAAJBBIAA4E0AJSHVQASqPAhAAGoACAABAvAAAPL4AAIC7AAD4PQAAQLwAAKC8AAAQvQAAC78AADS-AAA0PgAAZD4AAKg9AABAPAAAMD0AAAS-AACAuwAAuD0AAJg9AAAwPQAAsj4AAH8_AAC4PQAA4LwAABA9AADgvAAAUL0AACy-AAAsvgAA4DwAADw-AAAcPgAA4DwAAJq-AAAwPQAAiD0AAMg9AABwPQAA6L0AAKa-AAAkvgAAJL4AAIi9AAAQPQAAoDwAABS-AAAMvgAA4LwAAKi9AACAOwAAJL4AAAS-AADgvAAAij4AAAw-AABsvgAAQDwAAAM_AACIvQAAUD0AAHw-AABAPAAALD4AAOg9AAD4vSAAOBNACUh8UAEqjwIQARqAAgAAoLwAADA9AADgPAAARb8AAOA8AAAEvgAAiD0AAAS-AACIvQAA_j4AAFw-AAAQPQAALD4AADS-AADgvAAAyL0AAOC8AABHPwAA2D0AAHQ-AACYvQAA4DwAABw-AADgvAAABL4AAAw-AABAvAAAuD0AACQ-AADoPQAAED0AAKA8AAC4PQAAyL0AAIC7AADgvAAAVD4AAGQ-AADovQAAUL0AAJY-AABAPAAATL4AAIC7AADgvAAA-D0AAH-_AACAuwAAEL0AAPg9AAAUPgAAoLwAAN4-AABAvAAAcL0AAEA8AACgPAAADL4AAIC7AACWvgAADD4AABw-AABMvgAAEL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=abjN6R3i0XI","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2217670231095771390"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2927081810"},"10265212140505977827":{"videoId":"10265212140505977827","docid":"34-8-11-ZD80FD9B25332942F","description":"Statistical Videos...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1473655/82e7d5750c427e87ece0b2505fb9a09d/564x318_1"},"target":"_self","position":"7","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D3_zS75H_Y6w","linkTemplate":"/video/preview/10265212140505977827?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"STAT 1040 -- Section 5.1 Association and Confounding Factors","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3_zS75H_Y6w\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFgoUMTAyNjUyMTIxNDA1MDU5Nzc4MjdaFDEwMjY1MjEyMTQwNTA1OTc3ODI3aq8NEgEwGAAiRRoxAAoqaGh1am5jZGpjYXZjanN3Y2hoVUNSdXlGWXgweXhCNXBYbDJNUFBMblNnEgIAEioQwg8PGg8_E94OggQkAYAEKyqLARABGniB9voC_gEAAPYBAfn7AQABGwABCvUCAgD0DAMG_AL_APcI-wH_AAAA8vYGAv4AAAD_-v7v__0BAAD57voCAAAAEAb-CPYAAAAPAPsG_gEAAPD7_AMDAAAACPz7Cv8AAAAAAPoFBQAAAAQFEwcAAAAAC_0M9gAAAAAgAC2tPtE7OBNACUhOUAIqcxAAGmAUGQA1BCPVzC811xwHBDEH6A0Jy-j3__39ABZD56jsFrmq1xT_MMQK86QAAAALJMJNDwDidgoOwiXuPtL61vIWKX_rKfAbDfHdztsAKCnq__wENRUApgMaHOXC2mExJx4gAC0e4Rw7OBNACUhvUAIqrwYQDBqgBgAAsEEAAGxCAACkQgAAUMEAAKBBAAA0QgAA_kIAAPBBAACawgAAMMEAAOBAAABEwgAAWMIAAAhCAABgQQAAQMIAAEBAAABIwgAAEEEAANDBAADAwAAANMIAABDCAABcQgAAqMEAAMhBAADAwQAAlMIAADxCAAAAQAAA2EEAAJBCAAB4wgAAYMEAAIjCAACYwQAAHEIAAFRCAACYwQAAKEIAAMBAAAAUQgAAcEIAAODBAACAwQAAUMIAAJDBAACAvwAALEIAAABBAACMwgAAoMEAAKhBAAAIQgAAgkIAAABBAACowgAAmMEAAPhBAABAQgAAMEIAAExCAACcwgAARMIAAHRCAAAowgAAUMEAAKLCAACAPwAAHMIAAFRCAABwQQAAoMEAAETCAADowQAAiMIAANjBAACwwQAAIEIAALjBAAC6wgAA5EIAAFTCAACWQgAAwEEAAOBAAADAQQAAQEIAAChCAAAgwQAA4EEAAFxCAAAgQQAAYMEAAHDBAACAwgAAAMEAAGjCAAC2QgAAQMIAAAzCAABAQAAAikIAAKDBAAAQQQAAmMEAADzCAADAQQAADMIAAGBCAABEQgAAmEEAAJjBAADwQQAA0MEAACRCAACYwQAAUEEAAATCAACgQAAAAAAAAMDAAACIwQAAPMIAAOjBAADgQQAAAMAAABRCAACIwQAAwEEAACBBAABkwgAAEEEAANhBAACIwQAAyMEAAIBAAAAIwgAAAMEAAMjBAAAQwQAAEEIAAODAAADIwQAAMEIAAPhBAABwwQAAoMEAAMDAAACAwAAAyMEAANhBAACAQQAAgEEAAHDBAAA8wgAAmMEAABBBAAAQwQAACEIAABTCAACgQQAAiMEAAJDCAAAEwgAAkMEAAABAAACWQgAAwEAAAEDCAABQwQAACEIAANBBAAAAwQAAYMEAAMBAAACoQQAAQMAAAFDBAABwQQAA3MIAAIDBAACoQQAAQEAAAGBCAAAAQQAAKMIAAKjBAACAQQAAyEEAAKDAAAAkwgAAeEIAAAzCAAAAwAAANEIAALDBAABgwQAATMIAAIhBIAA4E0AJSHVQASqPAhAAGoACAAB8PgAAFL4AACQ-AABwPQAAuD0AAEC8AABwPQAAxr4AAIa-AABkPgAAQDwAABA9AAAUPgAAQLwAAFy-AADgPAAAQLwAAKA8AADIPQAAyj4AAH8_AAAwPQAAmD0AAMg9AAC4vQAAEL0AAAQ-AAAEvgAAQDwAAFQ-AADgPAAAij4AAHy-AACAOwAA2D0AAAw-AABMPgAA6L0AALa-AACmvgAAhr4AADA9AAA0PgAAUL0AAHS-AACYvQAAUD0AAHC9AACgPAAARL4AAKi9AADgPAAALD4AAJI-AACOvgAAiL0AANY-AAB8vgAAcD0AAOg9AADYvQAAgLsAAAQ-AAAwvSAAOBNACUh8UAEqjwIQARqAAgAAEL0AAKg9AAAwPQAAJb8AAOg9AACYvQAAyD0AAMi9AABAvAAA2j4AABw-AAC4vQAAHD4AAIq-AADovQAAmL0AAJi9AAA5PwAA4LwAAOg9AACIvQAAyL0AADQ-AADovQAAED0AAFQ-AAAQPQAA2D0AADw-AACIPQAAoLwAAIg9AACWvgAAmL0AAAS-AACIvQAARD4AAKg9AABMvgAAyL0AAEQ-AABQvQAAEL0AAIg9AAC4vQAA-D0AAH-_AADgPAAAcL0AAFw-AADYvQAAyL0AADw-AADgvAAAiD0AADC9AABAPAAAuL0AADy-AAD4vQAAoLwAAAS-AAAwvQAAmL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=3_zS75H_Y6w","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["10265212140505977827"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"134663069669154345":{"videoId":"134663069669154345","docid":"34-0-9-Z82E0124DB0C30665","description":"What do researchers mean when they say they have 'adjusted for' factors like age, sex and diet? And how can you communicate what this means to a broad audience? Professor Sir David Spiegelhalter...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3990845/6b0939f010ecc3d45998e01a474dd4e9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/m2nSSwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dj8J2L_g76c4","linkTemplate":"/video/preview/134663069669154345?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Why Research Results are 'Adjusted' for Confounding Factors - and How To Communicate About It","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=j8J2L_g76c4\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFAoSMTM0NjYzMDY5NjY5MTU0MzQ1WhIxMzQ2NjMwNjk2NjkxNTQzNDVqtg8SATAYACJFGjEACipoaHN6anB5d2N0Z2Z2Z2dkaGhVQ3J4VUdfM0NkeG1uM0o0UVhfdy1IS3cSAgASKhDCDw8aDz8TpgKCBCQBgAQrKosBEAEaeIEHAf4C_gIA-ggN_PsE_wELCgcA9wEBAAX-BAH6A_4A9wT29fgAAAAI_Qj-AwAAAPb4___z_wEABgX9-vsAAAAI-AAH_QAAAP4G_gr_AQAAB_UI_QP_AAAjAfwE_wAAAPgKB_v7_wAABgwG_AAAAAAV_wP9AAEAACAALW6y2js4E0AJSE5QAiqEAhAAGvABfxMEA-H46wHbBM0A4Cz9ALIZCQAbI-MAuA7sAM4U2gAfG_UB4PMEASQa9AHCBBUAL9nV_wv5AABG5QkAQ_MG_-8QDQAh3AoAUwYbAPHk3f_RGvP_5fH9AfXeuwAcKeb_DPkD-xYZ6P468dQCJgAT_hoMGgH65_4GC-P5Ad8cFADu4Nz-ISr7ABP0BPftFDUBEf4PB0AYJ_0LCPv5_Pbn_RDjIv0a_838CO3qBwsHAfrp9BH-MuYT_-oLIQP9_wP7EfYd9PHaDvMB__j0GwkPBdQy8Ab--QEQDwgI_v7kAgUEEvQK-f8AAwjr-g78GvL7IAAtBLoiOzgTQAlIYVACKnMQABpgMfsAKhwn7fH7Ptry2tQG9wsdB_XdCv_f5AANN-XdCB3G1QD2_xzHIeWxAAAAJezcCwwA6W3uzeEX6vwEzajpGx5_zRAh2vcwJ_G92Bnl8wL4FjcwAN4UviI53LpT_Q0mIAAtgdQsOzgTQAlIb1ACKq8GEAwaoAYAABRCAADAwQAAiEIAAHDBAABgQQAAAEEAAARCAAAAwAAA6MEAANjBAABUQgAAIEIAAJTCAADIwQAAwEEAACzCAABwQQAAgMEAANhBAAAYwgAAHMIAACzCAADQwQAAIEIAAGBBAACQQQAAMMIAACjCAAC2QgAAUEEAAIhBAADoQgAAjMIAAABBAAAgQQAAcEEAABzCAADWQgAAyMEAACBCAAAwQgAAuEEAAGRCAAC4QQAAoMAAAEzCAAAUwgAAAMAAADBCAAAgQQAAQEAAABBBAABAwAAAuEEAAChCAABgwgAABMIAAABBAABwwQAAgL8AAFhCAACIwQAATMIAAIrCAAAkwgAAFMIAAMjBAAB4wgAA2EEAAADBAABAQQAAwEIAADDCAABYQgAAkMEAANjCAACOwgAAAMAAAHhCAACwwQAAQMIAAEDAAAAEQgAAAEIAADhCAADAwQAAeMIAADBBAACAQQAAOMIAAKjBAAAQQgAAkEEAALjBAACIQQAAlMIAAFDBAAAAwAAAokIAAFTCAADIwQAAVEIAAEDBAABswgAAiMIAAMBBAAAcwgAAbEIAAADAAACMQgAAkEIAADDBAACwwQAA2MEAAOBBAACwQQAA2MEAACDCAABgwQAAcMIAAHxCAAD4wQAAHMIAANjBAADgQQAAgEAAAChCAABswgAANMIAAADCAACAvwAAoEAAAHDBAADIQQAAkkIAADzCAACAPwAAoEEAAPjBAAAAwwAAEEIAAKhBAAC4wQAAsMEAAABAAAAAwgAAAEAAAEBBAAAcwgAAcMEAAEBBAAAsQgAAiEEAAFjCAACowQAAEEIAABDCAADAwQAARMIAABhCAADowQAAlkIAAGDBAAAkwgAA8EEAAIBBAADEQgAA8EEAAAxCAACQwQAAKMIAAIDAAADoQQAAoEEAAADCAAAgQQAAAMEAABhCAABAQgAAMEIAAIjBAACwwQAAuMEAABRCAAAwQQAAFMIAAFjCAAAwQQAADMIAAJBBAABAwgAAYMEAAIC_AACgwQAAwMAAAMhBAADYwQAAMEEAAMjBAAAswiAAOBNACUh1UAEqjwIQABqAAgAAUL0AAEC8AAAsvgAA-D0AAIK-AACIPQAAHD4AACm_AAA0vgAAcD0AAFQ-AABMPgAAJD4AANg9AAAwvQAAFL4AAEC8AACAuwAAEL0AAM4-AAB_PwAAgLsAAKo-AADYPQAAML0AAKo-AADYvQAADL4AAKK-AABAvAAAkj4AAFC9AABkvgAAqD0AAFw-AAAcPgAAQLwAAOi9AAD6vgAAEL0AAIq-AACovQAAcD0AAIA7AAAsvgAA6D0AAII-AACKvgAAcL0AAKa-AABcvgAA-L0AAKo-AAAsPgAAHL4AAEC8AAANPwAA4LwAAOC8AADaPgAADD4AAKA8AADoPQAAoDwgADgTQAlIfFABKo8CEAEagAIAACy-AABkPgAAmD0AAC-_AAA0vgAAJL4AAAw-AABwvQAAQDwAAFQ-AACgvAAAhr4AAIg9AACWvgAAND4AAEC8AACgPAAAKT8AAIY-AAC2PgAAND4AADC9AADoPQAAHL4AAKC8AAD4PQAAZL4AACQ-AAB0vgAA6L0AABC9AACIPQAAND4AAIC7AAAUPgAADL4AAJI-AAC4PQAAVL4AABA9AAD4PQAAMD0AAKi9AABQvQAAoLwAAPg9AAB_vwAADL4AAIK-AACIvQAAiD0AAKA8AABAPAAAVD4AAOC8AADYPQAAmL0AAMi9AADIPQAAcL0AAEA8AACgvAAA6L0AABQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=j8J2L_g76c4","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["134663069669154345"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2472829427"},"2053309463877765549":{"videoId":"2053309463877765549","docid":"34-1-3-ZD46CF8A8AEE8EA1C","description":"http://www.theopeneducator.com/ / theopeneducator Module 0. Introduction to Design of Experiments 1. What is Design of Experiments DOE? Design of Experiments 1. Introduction to Factorial Design...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3906381/ddc985b5d951a604c789abb336632c88/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MuNEJAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDD0_9VFfE4Y","linkTemplate":"/video/preview/2053309463877765549?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Confounding in Factorial and Fractional Factorial Design of Experiments DOE Explained","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DD0_9VFfE4Y\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFQoTMjA1MzMwOTQ2Mzg3Nzc2NTU0OVoTMjA1MzMwOTQ2Mzg3Nzc2NTU0OWqIFxIBMBgAIkUaMQAKKmhob3liZGl5anlpaW56a2RoaFVDN0RVV3NMc0hjRUpLVW5TdU1LUlJjdxICABIqEMIPDxoPPxPjAoIEJAGABCsqiwEQARp4gfMJBwj_AgD7_g4E-gf9AgwA-_r3AAAA8QEC_P4BAAAECQUA-AEAABIB9QEIAAAA9_3-9fr_AAAKBQAJBAAAABn29Qj9AAAACg8DAP4BAAD9_wIGBP8AABYF_gYAAAAA7_0C8gD_AAAADwz1AAAAABT8AAUAAQAAIAAt2X3WOzgTQAlITlACKoQCEAAa8AF_F_AAtfwB_Qf03AD98uoBpvcn_10hBQDD-yAAwuT1AOENAgDr6hAAuhENAM4s_v_n7Mj_HwTbASoD4v8JBwEA_QkdATXoEwAd8vMBBMr8_u0FCgAUCCsAUAfpARkM-f_8BD3_3ATt___mzAD77S0BHy0RBeMiGv3iEgcCCg8WAPfW8ALEAhkF_A4N_NTsHQIe8egD5TLpAPNK5wcP8-oA6ecABj8G3wE6Dv4LARYA8gIiCfwh4eYC5PAIBx8eA_b1B_T_GfX79vwO_AH_3-wJDO8GCO_u-gr0Df___swJ994MAfLoLgkB4vT9Den-7AQgAC3vuRg7OBNACUhhUAIqzwcQABrAB3XLAr-EVSs9mEEGvWtyJz25kS09kjk7PHyhmzwi3RQ9gMRlPP4N2j1fLVI8nPTjvLcNk74bVBM8G7QcvWdimj5OOpu8Gu9YPHoXL74IPDA9KZ_UvPWha76E0wc9dDXDu3baYDv20Sk9ciiNvCC0Lj4TLyq9vahdPAGcxbt9_sG7oJJuvRgcKr2-Toq9Bg4LvHBCoT2EbX67Xx6XPCAHuj2CkTe9iLKcvGd3EDxXfnQ9MgfeO7Hh6b00XC69rBJ2PA_8jj38jCs93yD1PGAqrDzFTkI8KSq0O6TYNr2gds87A4oCvWgIprrnMIQ8QCajvBSu5z2kGIC9Ux5-u07ys73ezKi8RvJwPPB_bD1mqcA95WUJPCYMdL1dRrs9TCy6PM4op7wn8Y49VeC_u1wdAD6QZpE8M1eCO991ETt4DC891Q8APW1eCz2JTXo9EGIhO6TUEjzOQrG83o_bvPzgHD2540g9arvsu0kV4LzP93A703LauiJlpT0xNj69aOc0PPEplT3BxQo9RdA9vN9mxj05tfO9hx8YPB7TlD0USYq9B4FwvCmMkjyAY5E79Ve8uxvWlD2r7eY8DZh2vDnFdLyozjm9IbPxu8M-mz0TjzW9JSQSPA9IIr322HE8XRgiur9rp7s6w7k81jV_vHLsj7yJk0A9TbAsOzT-E7044kS9S74GO6MNxj2Wr8s6YG69O30NHL1yWfu8KvptunAWZT3h4x09ErLBukik7Tx_jT-9EqROu4te2zv8zxA9GMhcO-QpMD2lVg698dgNOzt1I7zAgWQ9YuItuSfz0buvS8M8ATESul-jWz3flr48vI7bN5Xtx7o36VK4ZyFMuqoBdD31e2e9ERHluTu_nT3gh14851euuGlZcr3TBja9LuDpuiqKHD1AoNg810e0uTf_Dz0Y2zq9bGDEtRdnDL3TNEO9ReaRuABWJ71YuaG82o2hOdk3IT1PL2e9_6GjOFqvgz0Bj8O9ptFaOXMYBjxOlj891tyTN1F3VD34IhK8wWegN787Q7yIE6M9ssdTuJoHED3eOMm9CDT7Nt9obDy9Yqc9sBqJN1ifzL2mLjQ9g38sOQexs7yBQRA7avJkN3HbKD0SBem8yUO4OAJhTLxsteK8diIyOFi-mD3N5pG9klsduQVGiD0QbKa8MvmONvZG7TxUg7o8J1aKt95Ij7y2EY88bunRtuwDvTt81A--F_rcuIqWVz0QWPk9jRdAOIfVST1AL_w9t6oHueEti72bf8s65gAKOAhkgjvWLGG9KOhcuCAAOBNACUhtUAEqcxAAGmAc-gA05RHq3SZGBxPg-hQA4wv7CeIJ__XIAAMf5tYVBNTV7xP_Ccn34bUAAAAeCP490wATYeL_xfXvKfnezs4o_H_zIS-76Rjt48jY_N3y3BgLE0MABwSpEz_h3xIkFhkgAC1JSjc7OBNACUhvUAIqrwYQDBqgBgAASEIAAFRCAAAgQQAAOMIAAOBAAAA4QgAAQEEAAPjBAABQwgAAOMIAANhBAACOQgAAoEEAAHBBAABwQQAAiMEAAGhCAACKwgAAXEIAAIhBAADgQQAA0MEAALjBAABAwAAAgMEAAABBAABQwQAA2EEAAKBBAAAQQQAAwMAAAKhBAACQwQAAsEEAAJLCAACAQAAA4EEAAGBCAACIQQAAVEIAANBBAACgQAAAoEAAAOBAAADAwQAACMIAAFxCAACMQgAAcEIAAIBAAABswgAAoMEAAIDBAABkQgAAMMIAAODAAAAAwgAAoMAAACxCAACAQQAAIEEAADDBAABUwgAAsMEAAHBCAADuwgAAAMAAAADBAACWwgAAgMEAAPBBAACgQQAAWMIAABRCAACIQQAAmsIAADTCAABcwgAAmEIAAMBAAAD4wQAA_kIAAJTCAACAvwAAUEEAAJRCAADoQQAAEMEAADBBAACIQQAAEMEAAHhCAABAQAAAQMEAABBCAACgwgAAJMIAADDBAABQQgAADEIAABDCAADAQAAAUMEAANjBAACQwgAAgkIAACDCAACQQgAAQEAAAOhBAAAMQgAAYEEAADDBAAC4wQAAYEEAAADAAADwQQAAIMIAAIpCAAAAQgAAdMIAADDBAACiQgAAqMIAAK7CAACIwQAA2MEAAPjBAACgwAAAgsIAADxCAAA0wgAAyEEAAPBBAACowQAA2EEAAEBAAADAwAAAGMIAAFDCAAAgwQAADEIAAABBAADowQAA6MEAAHhCAACgQQAAAEEAAPBBAAAAQgAAuMEAAIxCAACoQQAAQMEAAIjBAAAQwQAARMIAADDBAADgwQAAGMIAAKDBAAB8QgAA4EAAAMDAAADYQQAAiMEAACTCAAB0QgAA4EEAAADBAAAQQgAA2MEAALDBAADAwQAAMEEAAATCAAA0wgAAoMEAANDBAABwQgAA2sIAABTCAABwQQAAcEEAACBCAABkwgAAAMIAAAAAAADAwAAAcEEAAABCAACAQAAA0EEAALhBAABAQgAAcEIAAAxCAAAgQQAAmMEAAIC_IAA4E0AJSHVQASqPAhAAGoACAACivgAAoLwAAJi9AAD4PQAAyD0AAJg9AAAMPgAAG78AABy-AAAwvQAAED0AADA9AACAOwAAgLsAAES-AACoPQAAiD0AAIC7AACAOwAABT8AAH8_AAAQPQAA6D0AAIK-AACovQAAiD0AAEy-AAD4PQAA-L0AAEC8AACKPgAAED0AAIK-AABwPQAAMD0AACQ-AAB0PgAAuL0AAKK-AACCvgAAuL0AALg9AABUPgAAUD0AAKC8AABwvQAAmD0AACy-AAAwPQAAmr4AAPi9AAAEvgAARD4AAIo-AACYvQAAQLwAAPo-AACIvQAA4LwAAFw-AAAwvQAAiD0AABA9AADoPSAAOBNACUh8UAEqjwIQARqAAgAAPL4AAPg9AADgvAAAG78AAJi9AAA8vgAAND4AAAS-AABwvQAARD4AAFA9AACIvQAAmD0AAHy-AAAMPgAAoLwAAHA9AAAnPwAARD4AAMY-AACAOwAA6D0AAIA7AAD4vQAAJL4AAFA9AAAwvQAAyD0AAFy-AAAQPQAAuD0AABQ-AAAMvgAAyD0AABw-AACIvQAAnj4AAJY-AAC2vgAAyL0AAJg9AAD4PQAAJL4AAOg9AAAQPQAAHD4AAH-_AAB0vgAAFL4AABy-AAAsPgAAcD0AABw-AAAcPgAAyD0AAMg9AACAuwAAHL4AAJg9AABwvQAAMD0AADQ-AAC4vQAAFL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=DD0_9VFfE4Y","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2053309463877765549"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2399474535"},"9296497360036154988":{"videoId":"9296497360036154988","docid":"34-10-0-Z2E1B74AD9EECF7F2","description":"This lecture by Bishwa Ghimire (University of Helsinki) is part of the course \"Single cell RNA-seq data analysis with R\" (27.-29.5.2019). Please see https://www.csc.fi/web/training/-/scr... for...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1020119/4130d1238343e916bea89d028fd85568/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/JI3qDwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrhuYhD4GwKw","linkTemplate":"/video/preview/9296497360036154988?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"4. Removal of confounding factors in scRNA-seq data","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rhuYhD4GwKw\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFQoTOTI5NjQ5NzM2MDAzNjE1NDk4OFoTOTI5NjQ5NzM2MDAzNjE1NDk4OGqIFxIBMBgAIkUaMQAKKmhobGd3cGpiZWNsZXZ3cWJoaFVDbkwtTHg1Z0dsVzAxT2tza1pMN0pFURICABIqEMIPDxoPPxPgCYIEJAGABCsqiwEQARp4gf_8BfoE_ADr_xP5BwAAAB8C-v4DAgMA8RAF-AUBAADwCwL7-QAAAAD79wv-AAAA9fj__vL-AQD4B-4AAwAAABQABQT8AAAABgQE-f8BAAD7BwgIA_8AABMKCQH_AAAACAX7_AUBAAANDArxAAAAABbxBfMAAAAAIAAti_vHOzgTQAlITlACKoQCEAAa8AFZ-gv_xwjz_in--QDvCeEBgQUL_yQF8QC97v8AufftAAMY6ADP7Az_8gwLANYB8_8N7fEAIPz8ACEDDgAq9g8BARQOASLsAgAvEAIABPn0AP4X-_8iDCb_E_cTAPwH_f4mEvr_7P3jAvkS8wTzCiQBDxcGASrx9__tEBQA9RIYAfwIAgMGBgwG2Qn__uENBwT9C-oEBQ33AeAB_gT5Ef8D_woDAjAE5wE5Dv_-AQEJ-v0QAv4GAf_8FQ0HC_oI_Pzw8gcABuv_AOkGDAE17AwJ--oRAQAPAgbxDPgBFvcE8_YDDfviHf4D8u4JDPP4-v8gAC1uJ0g7OBNACUhhUAIqzwcQABrAB3XLAr-EVSs9mEEGvVxXDD2vSZI8NTUcvEkrvjxXsqO8mfLfu9L_0j1pKnU9VJQFvJfHqr4Tx-w7vhGdvP7Viz4gxJ88hqkxOxCw9r0IpE49R7dSu094kb5nFUw9qeaLum7ngT2WpF87FItJPQqdFz6TmxW8EYqtvFuvLj03Wuk7-OddvZfUnjusW5i9odCXvJV_DT6ipFa9sVVdPLsmBD6th5-9QHf4vAPFF7xUQmY9XMBTu5VmDr0pnaO8RNsxPOKSAz6Ho5A8OA9MPEfiijz4J6e8LUPaO5NRpTzBR448W-83vG8fgzyuDOo8n32APLybIj3AA6i9wz-yO1J8fLzEzQq8hUksPd20GT49FtE8A2D6u_zrrrvuHmU9iAOyPI6bUL2cd1K8jszhu36syz3sbnm8VFWJu8QQND0EXt47Z_9NPP1b0zygH-E8kxbTvBapCz0yItE9nmdHPB_EKbwJyum6kstiuyjV3r1oCvi87QO5u9gocD3F7qG9Ncn2Oyxnuj2R-gQ84hBgPKPHhD2DxxS8G4NKO2gN-TwMyEM9ShuYvAtPHjzAAOe83ynwu48MqDwEx6W8XzICvEnjZr2KEv48ZrbxujX6hz0O_a6845mju-YJnz1t4LM8UZ8JPNjugzyNXg29oJXNu-Z6hr20TRg87ADCu04CZbzwrIi9-PXHOusB0z2o0Zo8eTjkOxYY0r1a33a8Adceumx7ez1N4LE8q4qZOtkQEr1Jzei8WkKlO9hDAD2GQMk9ZR81ucoInjxrPji9JIlpOYJHZbyh2ys9csMjOdZYnT2ceD28GfskOGvjPjx0CJy8bbVsuYX4FTz7aa28V3q5ORlNdLtUa4Y8UMi8uTDaAz2kXia9Ad2zuReG4bqziV08fOUxupObsrznpg09sSLnuFi_47xtr2C8I9OKOP6wSjzEIBW96bEHN3FPPL1_1Ta8NKC_OJWabDlmpDm89R7bON8DDz3AsDy90KATuHisI7yun349fQTTOP6SHjzNhLA8t9GVtWoFXL1WvKw8xZrwt3ZTar1Xz8m9XDpquKUl4DxBsfo8QDvTuEN-vL2bRkm8eEvIN5pWs7udwwu93ei-N6Zchj3Dm_U8OcGkt8xKLj2bUkO9WrZLuJXAQT17vNA8xC8KuSUyHT3Mh9a8RBiMOOnwkD37wSo9-lKFuOlMUjuijY29H-lcNzLurD1cJr697GpDN8595js8H5Q9vRK_OO_ys73aAgI-UPFguehVs70WJOw8zbghOPnJB7wggRq9bnydtyAAOBNACUhtUAEqcxAAGmAlCQAq0yvb2CBR5Rjf2xXdCszsAuXy__yi__UP6-Hp8r3BEhD_Qcn73qAAAAD809kq-wDZf_jl2QvcRsb-r-Y6InoEOkj05lUBzNzh_PLK9fUY5kEAGu6UHxfLuykZWh4gAC1oyRQ7OBNACUhvUAIqrwYQDBqgBgAAoEAAAPBBAACAQgAAoMAAAEBAAABwQQAAJEIAAERCAADIwQAAmEEAAMRCAACWwgAA0MEAALjBAAA0QgAAMMEAABDBAABgwgAAqMEAAIDBAAAAQgAAAMIAAKhBAACoQQAAgEAAAAzCAACIwgAAlMIAAAxCAAA0QgAANEIAAJhCAAAIwgAAIMEAAJTCAAB4wgAAnEIAAJxCAAAcwgAAIEIAAPjBAABAwgAASEIAAGBCAABQQgAALMIAAETCAADAQAAAwEIAAMhBAABQwQAA6EEAALBBAACAQQAAZEIAAOjBAADQwgAA6EEAACzCAABQwQAAoEEAAABAAAAwwQAAZMIAADxCAAA4wgAAwMEAAATCAACgQAAAcEEAADBCAAA0QgAAwMAAAGBCAACAwAAAIMIAAKDAAAAUwgAAkEEAAADBAADgwQAABEIAAJhBAAD4QQAAOMIAAHBBAAAIQgAAMMEAABRCAADgwQAAQMEAAI5CAAAcQgAAgEAAAPjBAAC2wgAAcMIAAKBBAACYQQAAIMEAAODBAABAwAAAgEAAADzCAABgwQAAyMEAAODBAAAIQgAA0MEAAIBCAACaQgAA4EEAACzCAAAQwQAAsEEAAAhCAAAUwgAAiMEAALDBAABgwQAAlMIAACDCAABUwgAAgEEAAJhBAADYQQAAMMIAAKDBAACYwQAAgEEAAIDBAADwwQAAIMIAAEDBAACoQQAAgMAAAFDBAAAUQgAAhMIAAGzCAACwwQAAsEEAADDCAACowQAAcEIAAAzCAACAQAAAkEEAAKDAAACAvwAA4EAAABBBAACGQgAAGMIAACDBAABMwgAAsMEAAKTCAAAAwgAAkkIAACTCAACYQQAAGMIAADTCAAA4wgAACEIAANBBAAC0QgAAgEIAAFBBAABQwgAAkEIAAPDBAAAkwgAAQMAAAI5CAAAYQgAAKMIAABxCAACEQgAAREIAAMDAAAAQwQAAkEEAAIC_AAAAwgAA2MEAALBBAACSwgAADMIAAEDBAAAwwgAA-EEAAGDBAAAgwQAAMMEAAFDBAACEwgAAdMIAAMBAIAA4E0AJSHVQASqPAhAAGoACAACgPAAAUD0AADQ-AADYPQAAuL0AAEA8AAD4PQAAB78AALK-AACYPQAA2L0AADQ-AABAPAAAij4AAES-AAD4vQAALD4AALg9AAAwvQAACz8AAH8_AACAuwAA4LwAAKg9AADIvQAABD4AAKi9AAD4vQAAuL0AAKI-AADIPQAANL4AAIK-AAAQPQAAiL0AAAQ-AAAkPgAAbL4AAJ6-AACSvgAAyL0AAIA7AACgPAAAML0AAKi9AABQvQAAHD4AACy-AADgPAAAnr4AAIg9AACgPAAAjj4AANg9AAC4vQAAUL0AAD0_AACAOwAAuD0AAII-AAAcvgAAmL0AANg9AADIPSAAOBNACUh8UAEqjwIQARqAAgAAMD0AAFA9AACAOwAAI78AACy-AAAwvQAA-L0AABA9AAAkvgAAxj4AAOC8AABwvQAAML0AAJ6-AACgPAAAmL0AABQ-AAA3PwAAqD0AAM4-AACCvgAAEL0AALi9AAAwvQAAQLwAAOA8AABwPQAAEL0AAOA8AAAEPgAAcL0AAHA9AADgPAAABL4AAEC8AACYPQAAQDwAALY-AACCvgAAgLsAABC9AAAwPQAAFL4AAIi9AABAvAAAED0AAH-_AADgvAAADL4AAEC8AAD4PQAAPL4AADQ-AACAOwAAcL0AAIi9AACYPQAAyD0AAFy-AAAQPQAABD4AAAw-AADIPQAAEL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=rhuYhD4GwKw","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9296497360036154988"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3923020242"},"10960169519203159179":{"videoId":"10960169519203159179","docid":"34-8-3-Z554AC084B05A7128","description":"Module 4 of the What Works Clearinghouse (WWC) Group Design Standards Training focuses on the WWC standards related to confounding factors. This module outlines the WWC’s definition of a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3661631/d76abc97a5adf9178f58172125a44d05/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/O2rNHgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DgVDRMEXlrVE","linkTemplate":"/video/preview/10960169519203159179?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Module 4, Chapter 1: Introduction to Confounding Factors","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=gVDRMEXlrVE\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFgoUMTA5NjAxNjk1MTkyMDMxNTkxNzlaFDEwOTYwMTY5NTE5MjAzMTU5MTc5aocXEgEwGAAiRBoxAAoqaGhqdGhscmh0bXB2dXdkY2hoVUNSVUNqUGVoQnhGUTZsZlpEcXFfZjdnEgIAEioPwg8PGg8_E1qCBCQBgAQrKosBEAEaeIH0AwL-_wEA6wUH_QMAAAATAgT59gEBAOUECwgH_QEA7AoCBvsAAAD0DgEKAgAAAPj9BwP8_wAABgT9AQQAAAAN-fj8_gAAAA4M_AP-AQAA7gEG_wMAAAAS-AwMAAAAAPkO_Pv_AAAA_hQQAQAAAAAJ9QgDAAAAACAALdgy1Ds4E0AJSE5QAiqEAhAAGvABfwL8Arsa-_4g_fIADPPuAJYcCf85COYAv_8AALAC-f8ICPkAzOsN_wH3CQDz_A__Efbq_wn6AAAT_wUAMxr4AAv49gAd4QkAJwIGAPQD4v8lDQD-JPYMAPXaDAH_FQ7-JAEL_88A4QD8CvL9DP4xAf8WEgQV4B8E8-0KAfIOAQTq5vEANfEJANz_AwDqJxwC9_4L--wKA_0I8QEE-Qnn_SUA9_4RCekDHgkGCwAG9_sCCPsAHAz5-TEaAQIHHRz6D_gZ9v8V-_0KFQsAFtv1AwDkCvYH2foBChjuAP727_wY7Qr27hcBAOoKFf74_AUFIAAtZr08OzgTQAlIYVACKs8HEAAawAdxzLq-5q8LOkfhIbzSuqe9uEAiPVVlhLyEEyy8NRCWvbUrhTn90qc9CbIUvUv9oTw4aYq-0Qw9PO2ufTwKL2E-F3GwvEHTxjlA3CW-xCskPPP2b7tPeJG-ZxVMPanmi7o5Kic-YLB6OznqDzycjBo-rSJyPVoCGr1fZUg80J1gPPOYXLzzf129gYYNvR2RjLrmlOA95ty3vLbQnzzmA0I-9j1PvUcBAbsoGS-9rGAKvYXmn7zdWX07SbrmvEugUjwm5CM-o6iYPfh-NDy5JZg9oYcVvc6UrbvPklY92N_Iu7QgVL304fQ8VbqgPNAvBDt5KoY9RQcpvQqQF70Ktcu8ZjftuwW9nDx7h0s-2G_cvKBoAbtkMDA90Sz_vOMQ1jyJ1NS9PJIhvY7rXzypHp88tU6BvO0PtTvnDDu9H-SrPNCm2TrAsWe8msaAPHuvkLyPGN098_uDPQ4mj7ymE0Q91U5evfmNp7vT-iu-Zz83vRNNEzq5qTE-SJi4vQl6XrzbYX09f9ZBPd64uTs57Uk9XJwHPUXHI7vWH2G9EZZHPcNgH7xiZt-8LQfavZve6jtqEMk7TJOtPHPIvDm6TK29VdpiPPjSJTwW-Oo971-PPDPa7DrmCZ89beCzPFGfCTz-LNa8YVygvPO-O7zcNiK9UahCPd3q2jv78yO8nBl9PO-r1bv1K109cxE_PbCV6boMc8K80X3zu7Nn6LskK_88ujiAPex27jnEuR-77Oy1vJlRgzt0CWc9sHQePiv1Bbk1TY48zCJ5vbnClLhw9yg9VAqwPCNOIzmcaeI9IC6UPfhvS7kspJe8nbj8vej9Wbj6dYw866qAvfNfxDieEmu98mMnPI0fQDmFfda8A_46vW9mtzYfYqi9PpB-O2WfyrmnKZ08EK4QPpn3VTlPpnu90jNivF-OeLdIWXq9JCYovPUXDrmTj3293er5PKzSnDmvA2y9YAChPGQ_GjgKtaq7M7HvvBJOvLidPIa9-sfMPYRhYblMlzS8e3-ovHg-Q7ghio49o6OHuwCvjbc2Ie29rn5MvYFYZrgRy4G8SJNBPMor47djqIS9Zpkvvcc-yTcvgrs9HqjTPEyT_jhEQLQ8akr0O81iJrgwoYI9uFGOveKERLgp76E6XOc-OXO4jbhf9uE8ukNUPMSWBrnYyUq9DFBEvVrAqrgMkv49fZIbvRwZgjhy-KQ7qPmPvOOnxLeGle65_2GmvAFRjjZTU3y98PNkPSZxw7fcsm29TpcqvY0_WDfzbHs9LsDnu04aUjcgADgTQAlIbVABKnMQABpgJQYAIO0S3-cuGvED8PIW9vIX5wDpCP_68gAGD-Lo-BnHsdgFABHg-Pe_AAAACBXQIBMACFQJ9_Un3kfw-br1BA5_Jicy6d4K6__f6Qj1_fbuCQ0VAA0CyBIwz80uJTX7IAAtD1JOOzgTQAlIb1ACKq8GEAwaoAYAAGDBAAAsQgAAEEEAAEzCAADoQQAAEMEAAHBCAAC4QQAAUMEAACBCAABcQgAAZMIAAEzCAADgwAAAtkIAABjCAACgwAAA-MEAAAAAAAB0wgAAuEEAAMDAAAAgQQAA8EEAALBBAACewgAAdMIAAIjCAABwQgAADEIAAJDBAACMQgAApMIAADBCAACAvwAA4MEAAADBAADsQgAARMIAADxCAACAwQAAFEIAAFBCAABAQAAAAMEAANjBAADowQAAkEEAAODAAADYwQAAEEEAAIA_AAAwQQAA8EEAAJJCAACAQAAA4MIAAADBAACAwAAAcEEAAPhBAABAQgAAAEAAAJLCAAAYQgAAjMIAAJBBAACYwQAAAMAAAMBBAADwQQAA0EIAAABAAACoQQAAUMEAAAzCAACAQAAA2MEAAFhCAABQQQAAPMIAABhCAAAgwQAA4EAAAJ7CAADYwQAAqEEAAHhCAAAMQgAAHMIAALhBAADwQQAAGMIAAPDBAAC4wQAAUMIAAADCAADgQAAAsEEAAJDBAACwwQAAiEEAAGxCAABIwgAAQEEAADBBAADgwAAAikIAAKDBAABIQgAA8EEAAJDBAAAcwgAAoMEAAIBBAAAQQgAAQMIAAFjCAAAAQgAAAEAAAIBAAACYwQAAJMIAAHzCAAA4QgAABEIAAHDBAABQQQAA0MEAAFBBAACAQAAAAEEAADjCAAAwwQAA-EEAAADAAAAQQgAASEIAAAzCAADgwgAAKEIAAMBAAACYQQAAqMEAADBCAABgwQAAgMIAACBCAABgwQAAAMEAAFTCAADgQAAAdEIAAPDBAABAwAAACMIAALjBAAAowgAAEMEAAOBAAABwwgAAgEIAAAzCAACcwgAAHMIAAOhBAADIQQAAlkIAAJhBAAAMQgAAjMIAAOBAAABwwQAAXMIAADzCAABQQgAAkEEAADDBAABYQgAAHEIAAMBBAAAQwQAA-EEAAEhCAABQQQAAEEEAALjCAAAwQQAAAMIAADDBAACQwgAAAMIAAIDAAADAwQAAwEEAAIDAAABUwgAAgEAAAKjBAACYwiAAOBNACUh1UAEqjwIQABqAAgAABD4AAIC7AACgPAAAHD4AAOC8AABQPQAATD4AAM6-AADCvgAAUD0AAEA8AAAMPgAAmL0AAMg9AACuvgAAEL0AAKg9AABQvQAAEL0AAA8_AAB_PwAAyD0AAIA7AAAwvQAAUL0AAKC8AAAQvQAAmL0AAFA9AACKPgAARD4AAIC7AABkvgAAbD4AAIo-AACIvQAApj4AAKq-AAD6vgAABL4AANi9AABAvAAAuD0AAJi9AACIPQAAND4AAAw-AABUvgAAmD0AAOq-AABQvQAA2L0AABQ-AACWPgAAuD0AABC9AAAHPwAAXL4AADC9AACWPgAAgDsAAPg9AACYPQAAFL4gADgTQAlIfFABKo8CEAEagAIAACy-AABEPgAA4LwAAAO_AACqPgAAyD0AALg9AAAsvgAAoLwAAGw-AAAwvQAAgDsAAIi9AAC6vgAAHD4AAFC9AACIvQAAMT8AAJg9AAC-PgAADL4AAKC8AADIPQAAED0AAEC8AAA0vgAA4DwAANg9AACIvQAABL4AAKg9AAAUPgAAFL4AAIo-AAAMPgAARL4AANY-AACaPgAAzr4AADC9AABQPQAAoDwAAIi9AABAvAAAmD0AAKg9AAB_vwAABL4AAEA8AADYPQAA4DwAACy-AAAEPgAAcL0AAHA9AACIPQAAoDwAAFS-AADgvAAATD4AAFC9AAAEPgAA-L0AADA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=gVDRMEXlrVE","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10960169519203159179"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2870828285"},"12027258773399482163":{"videoId":"12027258773399482163","docid":"34-1-17-Z9A66A96A67E3C97D","description":"Usmle, NBME, CK2...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1339794/639a6d07af47eb3390992fe0d93ca81c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9NDCOgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOypZnZzdf_A","linkTemplate":"/video/preview/12027258773399482163?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"effect modification vs confounding factor Explained","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OypZnZzdf_A\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFgoUMTIwMjcyNTg3NzMzOTk0ODIxNjNaFDEyMDI3MjU4NzczMzk5NDgyMTYzapMXEgEwGAAiRRoxAAoqaGhrYnpjeW91d29qaGp3Y2hoVUNSd1dTLXBFQlBia1Y3aTZ1ajd6ZGdREgIAEioQwg8PGg8_E-4JggQkAYAEKyqLARABGniB9Aj7B_0DAOwFB_0DAAAABwEH-vj__wDuBwcAAf8AAPEKAvv6AAAA-f3yAgAAAADu-f_09gAAAAQE-AcEAAAAEOn8Bv8AAAAGCQEJ_gEAAAMCBwED_wAACgX9_AAAAAD7_QL9_f4AAAAPDPYAAAAAFgkKAQAAAAAgAC0jP9w7OBNACUhOUAIqhAIQABrwAXwE6__N_Ob_7O_NAdYk5AGBIgr-NBLJAMgRIgHAA-MACf3jAM_p9gD17g3_2i4tABsBxwATAyMAIOYkAEAPL__yAxYACewKARsLAP8EBtQB5hPr_yIMDP_33NT_Bwvv_v8KGf0I-9wB7gPFAv8EKgAl-wgGARAl_RYLCv7oFA8C5fba_RkOBwTsAAgD7RQ3ARbt8fz7Fev_6Bf0-P0B7QP73wMJB-TdAB3g4gAg9BUA-Qgd9Sbu9wAm8wQJ9xAhAwELLfsPFOD_3hL8AB7wBfgM7wYI8Of1-RcQCQ37Afj67QPy8-ADDALR8gv3-u7tDSAALf8hHTs4E0AJSGFQAirPBxAAGsAHuRwDv6G_q7uac_i7W3jePfH4kTxoRto83EkkPtVp0zxEfPG80WDuPFcSLz0-FHu9_Iy7vlpTD7zG6sW7xVWFPlQwb72bfyq8K_66vcz3Qj2bOQS9y4NUvppVqbwRmpM8QFwoPLhub7z9BIa7Xo2ivDU5Rr24AYS8JLoivQkMg71L6iS96-Z9vYmukL3-HiM893_EvHoiY73yRmG9bEhXPbHs-LxUhpa8Zkj6vPFuOz0JaZG70s6PvecpobwQ3_C74pIDPoejkDw4D0w8YhB4PQliSj38mEW8-jYTPV7aED3_xiK8ERZbu1dcfD3jJCO9eSqGPUUHKb0KkBe9Yf4qPe13zTx3xxg93ASpPYO_3z0cMam8dNk-vVaixz05D-e8sTgXPSoLNT3Ay8y8LEUSPqDcO73PiZg8Ms8lPSRNFz3mut889UhjvWJvHDtnYmW5VWSJPfaX3T2Y8ka8vmjRu5DeSz2sIyK8eqyUvciW5TzhM4g8ImWlPTE2Pr1o5zQ84iZevYl3pbwvbI28JF6eu2L46L1TGGc7zZVBvFOs4DpsUwa7oPOkPF8eFz0ws_i6z4UPPPvZPj1IU5i8jk9SvUkgj72zddM7wc09vDN7qry-kRA8uQAvPdnP4j3Hd7U6_GVBvIXs2buHQjq8Jgm4vSwrbT3tBC05JPMEPDgsrb0ptfK7nokfPWbJwj3v5t44QjJTvJi1Hj1L-qS6bHt7PU3gsTyripk6lZ7pPCKhEr1H5DE6wNWVO4IsVT17eIm4eW0gPWGPtL1b0Jc5kH8LvW9NhT2ST5k40UoQvWwwQ7z_a7A5rCwbPSsBDD1fZGY58EGZvCRz47n0-A269eC0PcnqczvWpCa4O7-dPeCHXjznV664rXSMu9V2Mz1C_xq6xAAuPP4PsDxEu6y3q21UPLcoc72OqtW3aEYaPcHDWT2lGwQ6DbAlvYpyIbrGli45WB8vPeYqMb3SxcA47Lmvu8XBmr0TgHY5cxgGPE6WPz3W3JM3PSNWvfz9Ir2cvvy38Vh9PHQXFz3FMOG3r9gZPPPalr1JWh-3n8kevVIWdDx0Kho5tMBIvekAMr1SM5c3ioicvYOyGr1DuKG3xM8PPjxq6buey5U2LWKTPRRQ8rsFZiW3X0DUPKPMhr1kn1W36UA7vQknGL1YaCi4c_lqPFX4o73jEDs3Nay-vdgRYjwk22g4SfeOPK1QxL1znPK4oEpSPQc4jj0Vkow48LI1vVzMzz0MRgq56FWzvRYk7DzNuCE4hHP8vGKDZb0heg-4IAA4E0AJSG1QASpzEAAaYBz1ACXXMNoVIlAC7tUVJureBPjd6Qf_B9f_KEfo3gEP1b31Bv8vwAzkoAAAAAXIBRTNAAl_xwIDJ8z2-6nmxUc6SxUCM-cUKwXE7QH-5dfB_gUJPwD3A542OPDKOzszCyAALcQkITs4E0AJSG9QAiqvBhAMGqAGAAAkQgAAOEIAAJhBAACowQAAXEIAAJBCAAAQwQAAbMIAAGTCAACIwQAAwEEAABjCAAAQQQAAMEIAAKDAAACgwQAAYEEAAHTCAABwQgAAYEEAALDBAACAQAAAZMIAAFxCAABIwgAA2EEAACBBAAA0QgAATEIAANBBAADAwAAAMEEAAETCAACGwgAAjsIAAFhCAABgQQAAIEEAAGBBAAA4QgAATEIAAIBAAACAQgAAiEIAAEBCAAAcQgAAKEIAAABCAACYQQAASMIAAKDCAABAwgAA2MEAAFhCAACQwQAAgMEAALBBAAAAQAAAoMAAAIBAAADQwQAAoMIAACjCAACYwgAAwEEAAILCAAAcwgAAEMIAAJDBAACQwQAAiEEAADxCAAAIwgAAgL8AAAAAAAAswgAACMIAAJ7CAACoQQAAgMIAAITCAADWQgAAQMEAAPhBAAAAwAAAtkIAAMjBAAAAQgAAgMAAAKDAAAAkwgAAikIAAFjCAABgwQAAlEIAAAzCAAAQwgAAkMEAANBBAAAwwQAAQMIAANhBAABIQgAAnsIAADzCAACAwAAAcMEAAIBCAAC4wQAAkEIAAAxCAABAQAAAyMEAAMBAAAAEQgAAXMIAADRCAABAwAAAqMEAADRCAAAMwgAAQEEAAGDBAABUwgAAkMIAADzCAADIwQAAmMEAABDBAAAAwgAAgMEAAODAAACQwQAA6EEAAIBAAACAQQAAgMIAABDCAAA4wgAAmMEAAOhBAACAvwAAOEIAAGBBAAAIwgAANEIAABBCAAAAQgAApkIAABhCAAAwQQAAoEIAAADAAACAPwAAgEEAAJZCAACAvwAAAMIAAJBBAABwQQAA-MEAABRCAABcwgAAcMEAAIBBAADgwAAAAAAAAKZCAACAQAAAeMIAAKhBAACwwQAAcMEAAJhBAADQQQAAMMIAAFDCAAAgwQAASMIAAFhCAABYwgAAyMEAAHDBAACgwAAAwMAAAAzCAACowQAAiEIAABzCAACowQAAsEEAADBBAADAQQAAIEIAAPjBAABAQQAAQMEAAARCAABQQgAAwMAgADgTQAlIdVABKo8CEAAagAIAAIg9AAAEvgAA4LwAAFQ-AACgvAAAyD0AAFA9AAANvwAAyL0AADA9AACaPgAAmL0AAKC8AAAQPQAAkr4AAMg9AAAcPgAAyD0AAEA8AAALPwAAfz8AAOA8AAAwvQAAgDsAAEy-AAAwvQAAmL0AAKi9AACAOwAA6D0AAJI-AACgPAAArr4AAIA7AABwPQAAfD4AAAw-AAC4vQAA3r4AAHS-AADWvgAALL4AAOA8AACgvAAA-L0AAJg9AAAkPgAALL4AAFw-AAAUvgAAiL0AAIA7AAA8PgAAlj4AAJq-AACYvQAAPT8AAFC9AAAMPgAAND4AAAy-AACIvQAAMD0AABA9IAA4E0AJSHxQASqPAhABGoACAABwPQAAcL0AAOC8AAApvwAAQDwAABC9AACoPQAAqD0AAHS-AACKPgAAqD0AAIi9AAAQPQAAlr4AAKA8AACIvQAAoLwAADU_AADgPAAAfD4AAOA8AACIvQAAcD0AAKC8AABQvQAAmL0AAAS-AACAuwAAoDwAAPg9AABAPAAA4DwAAKi9AABAvAAAQDwAAHC9AAAwPQAAND4AAGS-AABQPQAAVD4AAJi9AACgvAAAoLwAABA9AABkPgAAf78AAIi9AACovQAAhr4AAHA9AABAvAAAqj4AAMi9AADovQAAED0AAIC7AAAwvQAAMD0AAHC9AABAvAAAyD0AAI6-AAC4vSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=OypZnZzdf_A","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":624,"cratio":2.05128,"dups":["12027258773399482163"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3966516116"},"178259305913839359":{"videoId":"178259305913839359","docid":"34-11-9-Z4F39C56D8FC6FF72","description":"Module 3 introduces how the What Works Clearinghouse (WWC) assesses outcome measures and confounding factors for a Single-Case designs (SCDs). Chapter 2 reintroduces confounding factors and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1533463/67d3f157a375831820cd5ff3df47e929/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/FjG2MAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DyEflvJ9qwzI","linkTemplate":"/video/preview/178259305913839359?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"WWC Single Case Design Training, Module 3, Part 2: Confounding Factors","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=yEflvJ9qwzI\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFAoSMTc4MjU5MzA1OTEzODM5MzU5WhIxNzgyNTkzMDU5MTM4MzkzNTlqiBcSATAYACJFGjEACipoaGp0aGxyaHRtcHZ1d2RjaGhVQ1JVQ2pQZWhCeEZRNmxmWkRxcV9mN2cSAgASKhDCDw8aDz8TtAKCBCQBgAQrKosBEAEaeIH6__z3Af8A9AIMAQME_gEdBhH89QMDANgB9v_6-AQA8_wLCPsAAAD-CPMH_AAAAPIE_gL5AAAADgD9A_sAAAAJAvcA_QAAAPsQ-v_-AQAA6vUMCAMAAAAZ-f4NAAAAAPQLA_oCAAAAGgsH-AEAAAAY8v8NAAAAACAALcszzjs4E0AJSE5QAiqEAhAAGvABWQH7_8sYCP8d_vMA8RLvAIHw-_8g-O8Axf8AAMEO2f_yBfAA3u8KAPoIHADZD_cADOfcAC7_Av8S_wUAMRoSAAsQGwAr5P4AIAf5AAgI9v8TAgT_JPkdARfhEgEKEvb-FvcD_tMA5AACEwMD_PIhABkOCwEC-P8E_AURBP0JDv77EQf8EPgbAugTAQLlF__-DAEC_PQN-gPs6_kE-xbyAwfu_wQw9gcAJ_4BAwT78vv1Dgz9BxP3_hgB_Qr6FgD_-vf5AQzzBQf09w8DId4MAezpEf7t6A3__xXrBf_wBvf19Ab14xz-A_LpBAD8-vv0IAAtkPpOOzgTQAlIYVACKs8HEAAawAcXKwq_Iz-OtTzViDtayK08M9xAPZ5ilbyUKAU9nY1LvFWMzjybt2A9wPq5Pbfgu7z8jLu-WlMPvMbqxbs7GWw-rgzqPIKMJTwQsPa9CKROPUe3UrtPeJG-ZxVMPanmi7rSSJU9_iLNvB7tCT2TbwY-b7AhPZyQDrwCtV29X3obPdOwLr3zf129gYYNvR2RjLrrixQ-04DFu7dyAD1pGRk-vV87vWUX7ztRTN679jnIPCncPLwjnQO8zdo3PDecQzzqr_c9MbJROshNAz1Iyxc97AeGPHfzebzAiTK8vQiJPMFwDbyNf587oY59Pf8JLry8myI9wAOovcM_sjuz7RS9d4ZkPXscPD3dYDg-KaZcPeMbPjr866677h5lPYgDsjz285G9K_6KvDriGDoJfG89JmMGvUlZULzIbWq7zJGZO64iijuqVD882LaoPOAQy7r0C0A8FrOPPRwikzyE8dO8Dtkgvc_zp7xz6Um9A208O1E7Mrw2EME9urvOvcDUxzpkldI9rQsJPUZdazy3cwq8l4YrPaphPzsbG7A8NADKPCT-l7wzVvY8uJubvZYgpzljXkc8pFA7PfmvPbv28IC9HKSWPDlpdbzDPps9E481vSUkEjxv5bY83PlZPC1Bhjyz_iI8c3VRvVcHgLzHhBi9jdozvI96ALzIgIe8nfKovDyY-zujDcY9lq_LOmBuvTvmKlG92ImmvB2Kijt7ubQ81d9cPI2if7tSi_e8EmP8u6LhXjsRYEc84-mQPVsAMDkp7he8eNRYvVVnyLgVykI8yrFrPZvM6jlR1oQ97gZRvPBqvrmnh1I9OblfvaxBhrjDbLy7bGvVvJZH2bhAuCe9432mPNyBIjr1FBk92A4pO4Bk0rg66f077XcNvYftbLlUoUu8xFYVPewmSrdiVdK7NHYTvRSSH7iyr4a8KE80ve2SAjrRuny9J3U4vJg2VTl29rq8H178vLHkWLg71lY8KWB2vclQULiRH7u8o-5ePTR747brDx68-mP1PA4yNreJU1e9saIGvUY7R7gGnCW8jGrRvfpT9zdwFqU8ypRFPFfMibis5nm9bVeovHlp9rcUD168M54SvRyWN7cYUPk8tKpKPMKq9jcwoYI9uFGOveKERLiiXzs9RR89PYfzcrh09kk968oiPWPHFzjbwQg9xVJJPXUxqbY-Kpm8DtGNvQaN-7e9rwU9pUkJvq2ehbhwgko8Kuq3PecKCTl8Yo29IQPZPYE1MLlgRqe9F4EQu5N02Td2ehQ8bycWvdF7zbYgADgTQAlIbVABKnMQABpgPwgALPsZ1PcbUvjj9-My2PzyyA3dJP__3v__BdfhEifBo-8D_xKs4PqjAAAACwPWKxAAGHQD9-oSzS8C3p_2G-1_EDE77uol8QfSDRHy5PjOMhM4AC_6qgpWv8FRE0X0IAAtrLMbOzgTQAlIb1ACKq8GEAwaoAYAAKhBAAAgQgAACEIAAODAAABUQgAAwMAAACBCAACmwgAAZMIAANjBAAA8QgAAUMIAADBBAAC8wgAAaEIAAOBAAACgwAAAcMEAACjCAADYwQAAmEEAADDBAAAgQQAAIEIAAIC_AAAAwgAAfMIAABzCAACyQgAASEIAAIA_AADoQQAAOMIAAGBBAABcwgAAQEEAAERCAADUQgAAosIAAMhBAACQQQAAUMEAAERCAAAMQgAALEIAAKhBAACMwgAAmMEAAIxCAACAPwAAAMIAAOhBAABwwQAAEMEAAChCAAAQQQAAAMMAAEBBAACAPwAAAMEAAIhBAAAAwgAA-MEAAJzCAABAQQAAtsIAABDCAADowQAAmMEAAIDAAADoQQAAfEIAACRCAADgwQAAAMAAAKDCAAAgwQAAoMEAAFRCAADIQQAAEMIAAPBBAADYwQAAVEIAAMDBAAC4QQAAAEAAADhCAABwQgAAwMAAAIC_AACQQQAAmEEAALbCAAAgwQAAoMEAAJBBAAAAQgAAAEAAAAzCAAAcwgAAqEEAAHxCAABwwgAA2EEAAPDBAAAgwQAASEIAAKDBAAAQQQAA4EAAAHBBAAC4QQAACMIAANhBAAAQQgAAoEAAAJ7CAAAgQQAAFMIAAIjBAABowgAAoMEAACjCAADAQAAA4EEAAMDBAACowQAAUMIAAOjBAAAAAAAAqMEAANjBAACAQAAAFMIAAABAAAAQQgAAuMEAAEDCAACywgAAQMIAAMhBAADIQQAAMMEAAARCAACAQAAAqsIAAHBBAAC4QQAADMIAAABAAAAgQQAAOEIAAKDAAAAswgAAEMEAABDBAACCwgAAksIAAJhBAACYwQAACMIAAGzCAAAQQQAAAMEAAFRCAAAYQgAAGEIAAExCAABAwQAAKMIAACBCAADAwQAAYMEAAIjBAABsQgAAgEEAADzCAABMQgAAJEIAABBBAAA8wgAAgEEAAABBAACaQgAAQMEAADDCAABMQgAAUEEAACxCAABAwQAAOMIAAEBCAACAPwAAsMEAAMBBAACAwgAAWMIAAKjBAADgwCAAOBNACUh1UAEqjwIQABqAAgAAJL4AAMg9AAAcPgAAbD4AAKA8AACgvAAA-D0AAMq-AADmvgAA6D0AAPi9AACYvQAAyD0AAKg9AAD4PQAA-L0AAOg9AAAwPQAAFD4AAAE_AAB_PwAA-D0AABC9AAA8vgAAyL0AADA9AABQvQAAPL4AAEC8AABMPgAA2D0AADQ-AACYvQAA-D0AAKA8AAAwPQAAQLwAAFA9AACSvgAAmL0AAAy-AAC4PQAAiL0AAKi9AADIPQAAfD4AAFw-AAC4vQAA6D0AAFy-AAAwPQAAQLwAALY-AAB8PgAAHL4AAIA7AAALPwAAqL0AAEA8AACKPgAAmL0AAKC8AACYPQAAmL0gADgTQAlIfFABKo8CEAEagAIAAMi9AAAEPgAAFD4AAC2_AAAwvQAA6L0AANi9AAAsvgAAiL0AAEw-AACgvAAAPL4AAHC9AACyvgAAcD0AAIC7AADgPAAAPT8AAIg9AAB8PgAAQDwAAOC8AACYvQAAiL0AAHC9AAC4PQAABL4AAIg9AACIvQAAUD0AAKA8AAA8PgAA4DwAALi9AACIPQAA2D0AAEw-AACoPQAAmr4AALi9AABQvQAAgDsAAHy-AADgvAAAcL0AABA9AAB_vwAA2L0AALi9AADIvQAAuD0AAHy-AADgvAAAiD0AAIA7AAAwPQAAMD0AALg9AAD4vQAAHD4AABA9AAD4vQAAcD0AAOg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=yEflvJ9qwzI","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["178259305913839359"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3855848396"},"4309350067593035947":{"videoId":"4309350067593035947","docid":"34-5-1-Z5F2FE74AEA20B882","description":"What are Confounding factors? How can we adjust the confounding factors? These are not Errors in the research study. Linkedin: / dr-kashif-ramay-646b30116 Youtube Channel: / ksramay...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3918172/b55b32bf19997a8f789834ab1ddffbd2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kqSqVQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DoiwyCiu94cs","linkTemplate":"/video/preview/4309350067593035947?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"68- What are Confounding Factors in Research Studies? | Medical Research | Dr. Kashif Ramay | 2020","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=oiwyCiu94cs\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFQoTNDMwOTM1MDA2NzU5MzAzNTk0N1oTNDMwOTM1MDA2NzU5MzAzNTk0N2q2DxIBMBgAIkUaMQAKKmhoa3B2bW9qbHdic29mbGNoaFVDMmZBV0c1ajhMUmVFNDZDQkJQX29sQRICABIqEMIPDxoPPxOiBIIEJAGABCsqiwEQARp4gQIFAv7_AgDvBQwFEAP9APQEB_n6_f0ABgUI_P4D_wDx-vX6_wAAAA8BAPoEAAAA9wD1Avr_AAD4CAAE-wAAABcE_P0DAAAA-AsBBf4BAAD_BQb4-AEAABf5_g0AAAAAAgEG__3_AAADAwv3AAAAABfz_wwAAAAAIAAtMyDXOzgTQAlITlACKoQCEAAa8AFw_OQAgQfq9y3--ABX9ez_uwoX_1ThA_-_De4AvfEn_xsDAgD39AUA8PD9AR3rFQAE-PEAAvo2AATyCv8ME_oA3vP5AE3r6QD0-ukACfL9_r4HC_8B9u_-EBAIAAXf-_4DGhT-4_0KAvgl7gL52OoDBPoXAfgB8AEB-vr__un6AQwBAgPyAgsB2v8DAOgI9gH9-_gE-xLt_xkH9vwH8_n-FBH49wsP2QDpAf8F-hYDBQAV8ff9Bxf8Fg75BhkOAQrkBOQDSgcH_wf28wYJBQ3-Id0Z_OsBAv8YIPv5GQoC_w7w9QD1B_MIIw_3Avj_A_kgAC3rmjQ7OBNACUhhUAIqcxAAGmD49wD-ECcgvO4Z1-4a9iP-5QHt8tX-_yLdAPU8ELYIGOi8_xn_BMYMBrQAAAAT7NUVFgDzX_7dvRTyNRLo4vYn-n_HCAXn4zbq1v25CeDC6QMOPDYADBLJHiDTzzotDAMgAC274jU7OBNACUhvUAIqrwYQDBqgBgAAQEAAAKBBAAAYQgAASMIAAIA_AABQQQAAQMEAABBBAADgwAAAAAAAAHBBAADowQAAbMIAABDBAAAIQgAAcMEAAIA_AAAEQgAALEIAACDCAACwwQAAQMIAAFzCAABYQgAA2EEAAHTCAADgQAAAeMIAAGDBAADAQAAAgL8AAOhBAAAswgAA0EEAABDCAADgQAAAgEAAAMpCAABwwQAAREIAAEBCAADAwAAAqEEAACzCAABgQgAApsIAAFjCAABcQgAAhkIAAKBAAAAwwQAAosIAACTCAACwQQAAoEAAAHDBAACywgAAgL8AABDCAADYQQAAlEIAAATCAABQwgAAwMEAACzCAAAYwgAA4EAAACDBAAD4wQAACMIAAKhCAAAwQQAA-MEAAJBCAACYwQAAgMAAAMBBAAAgwQAAHMIAAABBAADgwAAAMEEAALhBAACeQgAAIEEAAMJCAADgwQAAiEEAAOBAAACewgAAgL8AADxCAAAcwgAAIEEAAIDCAADgwQAAXMIAAIBBAAA4QgAAQEAAAILCAADCQgAASEIAAKTCAAAgwgAAAMIAANhBAAAgQQAAUMIAAIhCAAAwwQAAWEIAAIDBAAAAwAAANEIAAGBBAAAIwgAAgD8AACzCAADQwQAAMMEAAIDCAAAYwgAAoEAAAABBAADQQgAARMIAAEzCAADwwQAAyMEAAOBAAABQwQAAAAAAAHRCAAC4wQAA6EEAAKjBAAA0QgAAOMIAAGDCAAAUQgAAgEEAADBBAAAYwgAAIEIAAHDBAACgQAAA4MAAAFjCAADwQQAAqEEAAIBCAAAwQgAA4MEAAJBBAAAQQQAAAMEAALzCAACmwgAAuEIAANDBAAAQwQAAgkIAAHBBAAAUwgAADEIAAFRCAABEQgAAFEIAAEBBAABwwgAAwEAAAMBAAABAQAAAmMEAAJBBAACgwQAAiEEAABhCAABEQgAAAMAAADzCAABAwQAAGEIAAJBBAADYwQAAEMIAACBCAAAcwgAAEMIAAIjBAAAAQQAAmMEAAHDCAAAYQgAA8EEAAADBAACYQQAAmMEAAIzCIAA4E0AJSHVQASqPAhAAGoACAABAvAAAEL0AAEw-AACIPQAAFL4AAFQ-AACaPgAAE78AAEy-AACYvQAAgDsAAAw-AAA0PgAAhj4AAKi9AADgPAAAHD4AABA9AABAPAAAAz8AAH8_AACAuwAAPD4AAIC7AACYvQAAmD0AAOi9AACIvQAAir4AANg9AABEPgAAQDwAADS-AABQvQAAuD0AAAw-AABkPgAAFL4AANK-AADgvAAAZL4AALg9AADgvAAAqD0AANi9AACYvQAALD4AAFy-AABwvQAAnr4AAKi9AACAuwAADD4AAFQ-AABAPAAA4DwAABs_AADgPAAAcD0AAM4-AACIPQAAqL0AAJg9AABMPiAAOBNACUh8UAEqjwIQARqAAgAAoDwAAJI-AADgvAAAJ78AAMa-AAC4vQAAxj4AADC9AABwvQAALD4AABw-AADevgAA6D0AALK-AACoPQAAgLsAAMg9AAAhPwAAmD0AAGw-AADYPQAAUL0AAEA8AAAcvgAAEL0AALg9AACGvgAADD4AADy-AAAUvgAAED0AANg9AAAsvgAA-L0AAOA8AADYvQAAgj4AAGQ-AACCvgAAFL4AAEQ-AAAQPQAAFL4AAIC7AACIPQAARD4AAH-_AAA0vgAANL4AAFC9AACSPgAAuD0AAIC7AAC4PQAAQDwAAKg9AADYvQAAHD4AAKC8AACAuwAALD4AAOA8AACAOwAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=oiwyCiu94cs","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4309350067593035947"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5517986444889106194":{"videoId":"5517986444889106194","docid":"34-5-0-Z69B29174B66C2ABC","description":"This video briefly shows how we can check numerically for confounding in linear regression. It also demonstrates how we can statistically adjust for confounding in a regression model.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3243621/b28b6baf41839190cec7ff7c9e6f8fe1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/akaluAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Df_i6NPUA8wM","linkTemplate":"/video/preview/5517986444889106194?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"2.11 Confounding: Statistically Checking And Adjusting For It In R","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=f_i6NPUA8wM\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFQoTNTUxNzk4NjQ0NDg4OTEwNjE5NFoTNTUxNzk4NjQ0NDg4OTEwNjE5NGqIFxIBMBgAIkUaMQAKKmhoc3Vsa3BtdmJ0c21ydWNoaFVDYU5JeFZhZ0xocXVwdlVpREswMU1nZxICABIqEMIPDxoPPxOtAYIEJAGABCsqiwEQARp4gfz4BgsBAADvAwv6-wEAAQwR_QX1AQEA7QcHAAL_AAD3CPsB_wAAAO0IB_gFAAAA-gf7B_v-AAAEBPcHBAAAABHo_Ab_AAAABgP2Af8BAAD4AfwBA_8AABj5_g0AAAAAAg8SBP8AAAAPAg0LAAAAAB7-BwoAAQAAIAAtuC_TOzgTQAlITlACKoQCEAAa8AFgGvj_6Q7tAc3-DQDL_e4Bge0c_xAT1wDA8goA2QzCAeT7BAD6CiwB9Qv_AL0l-f8U9Of_Hu7rACbbDAD9APsAGgwfABLfFgEhDQsA2_QF_vEcGwAPBg__A-zeABzq4_8d5Rv_yuzu_9fbzAUW6CgCEhsHAU3oBQHe9AX_2gn3AtcR1_75APMECuv_AwIDEf8eEfP_-EbpAPX38AIfDwoE8PIJ__Yl7QIaJhUE6h4IAeAE3gL_-voA6wshA_oYEAH5EQb6-toFAgD5_AMZ4v4B-fb6_TX06Qnw9fP_8wbu-d_5DvLhPQcC1PQECuj2AfQgAC1BWiU7OBNACUhhUAIqzwcQABrAB7IOx77nWSQ83wqXvD4rlL1I8xE94WBvvfvnOb5iwkM8-63dvNcUCD4iBjU9R8KjPDhpir7RDD087a59PJjdIz6BSZC9Q_T1vIbjCb7fIPU8rAEqvRUcTr6sTcg8NZcfO5rLsrkgGse9PbGzPP8-Qz53fwa4DOtBvXAtbjujK4e8s1aZvBH5kzzTI5e83DYCvMHBsz3oUUw8w_raPBhaHT5qB3G7tIUQPG9nurx4wiE9Yiz0OxM8Dbvz1u8880yauh3owT2G_H656kmPPHZNbby9B8O8jZG2u0kL_DyZB1U9SbqoO5kOnTpdLgk846hcO58R1zv5tXq99k6euzlCtr2kZpQ9T7C_PN1gOD4pplw94xs-Ogmp-72l50w8JUQWu5tATL3n9ve83OqgO69nfj3BQhw8QnkdPCx6jLx2ZWE8yS8su92Qyz3esGg9RuOaPP0fdj0i-EQ9y_J1vJwEpTxdAHU8oyeAvIcEYr03rno9_jZ6vFAIEz1VYy48xhaCO76HCz6faXS7f5CbPKA9Uj3MHxi9SNoyPM7yBr2QOIq9nMtDvOfMUT24oIg9WX0evHSJmTzobIy9NQ5QvAYKo7pC9WU9UNBcvKR9vT1zyYe9L8gvO08eu7zWAYA9ALYTuzp5bDx883Y8LtYmvMSSdjvfb6Q9XEDDOqD6qLt7wFy9hFGkuwuosT3xw_e8mIz7uQAAjDelTsC8s17rOqCNLD7LrgW9IAINucSEh72Cxxc9synIuIIQ2rwnvOQ9fVKIuco0-j0Te828WYZhONNERDzTNAO9m0BZuRsfe7trFo49wnRgOR_nZz3roxk8n3WPt6k_kLsfXye9k46dOJ7wULucqSu91YHFuYV91rwD_jq9b2a3NhIq3bxne6S9ep5VubzCjL0Rhb879ULEuI-ggj3oijK6Qr4iOC1hCL0tnYq96KQwufmrtrywLGe9J_IjOdpCpr07KZ09Ai-Ntz1lMD38s9W72IwAOY72aT15CI49il2eOICckD1IwK09fL7iOP4_kz2bzmk9ZbZ0N5WjO71FmwO-DdozN4efBD1qPZI9NCKkuG3F_r2i1D69Gi_0uATuL7zLvAW-OXnCuILVkj1zBPq8C987tu-AYb1aoZi9kA-POK2n9j2z6pi8ezs6uZ-ubr1X8Nc7Bpvut6kIwzu4BWi7WZ9XOJS0rLxsrTQ9BBjztWEGeT3zOhK-S-epuIqWVz0QWPk9jRdAODwp-rtVKm094DKNuEt-j71a2T69pHd_Nhrba7yxgxA8OoEkOCAAOBNACUhtUAEqcxAAGmAZ9wAzDjzjBxRq9-Yv2hK-4-3qNfQM_-zz__cg8_Da567VEB0APMMI8KMAAAAoLd5ACwD3fwvKBR7UKPTCtvU7AnQW-ki-LhgO9NRSIez4Dr8pSFQAAu68JB772mQvBDcgAC2AdBU7OBNACUhvUAIqrwYQDBqgBgAAgD8AAFRCAAAQQgAAkMEAABhCAACAwAAA4EEAAIhBAACQwgAAgL8AAIA_AABQwgAAPMIAADTCAABwQgAAEMIAABTCAACWwgAAwEAAAADCAABAQAAA2MEAAGxCAACgQAAAIEIAAIC_AACwwQAACMIAAFBCAACAQAAAiMIAAAhCAABEwgAAgEEAAJzCAACYwQAAUEEAAJpCAADIwQAA4EEAAPhBAAAsQgAAoMAAABhCAAA0wgAA4MAAAIDBAABwwQAADEIAAPBBAACCwgAAQMEAAIBAAABQQQAAYEIAAKBBAADkwgAAIMEAAHDBAAAMQgAAgL8AAAzCAABQwQAA1MIAAExCAACOwgAAEMEAACDBAACCwgAANMIAAJhCAACoQgAAwEEAAFDBAADIwQAAoMIAABzCAADAwQAAXEIAAOBAAACYwgAAUEIAAGDBAAAwQQAA-EEAABBCAACkQgAAsEEAAEBCAABcwgAAwEAAAHRCAAAAwgAARMIAAODAAACOwgAAUEEAAIDAAAAAAAAAgL8AAGTCAAAUQgAAHEIAAFTCAACAPwAACEIAAMjBAADwQQAADMIAACBCAACYQQAAgL8AAEBBAAAwQQAAIEEAAMBBAACAvwAA2MEAAIDAAABAQAAA4MAAABjCAACAQQAAMMIAACjCAACAPwAAgMAAADDBAAAAAAAAhsIAANDBAABAQAAAIMEAANhBAACAQQAA0EEAAMBAAABAQQAAwEEAAJzCAAA0QgAAgMEAADBBAAAAwAAAQEIAAKBAAAC8wgAAJEIAAGBBAACAQAAAcEEAAGBBAACgQAAAAMAAAGTCAAAgwgAAsMEAAADCAAC4wQAAUEEAANjBAACYQQAAhMIAAKjBAABEwgAAKEIAAIA_AAC8QgAAoEEAAADBAAAwwQAAXEIAABDBAABQwQAA4MAAAFBBAAAQQQAAgMEAAPhBAAAsQgAAEMIAADzCAABcwgAAyEEAAO5CAABoQgAApsIAAKhBAAAgQgAA8EEAABDCAADIwQAA-EEAAKBBAACowQAAvkIAAATCAADQQQAAQEAAANjBIAA4E0AJSHVQASqPAhAAGoACAABAPAAALL4AAIK-AADgPAAAHL4AADC9AABUPgAA9r4AAKC8AAAUPgAAJD4AAMi9AACAuwAAiL0AAHS-AACgvAAAHD4AAIA7AAB0PgAAET8AAH8_AABQPQAA4LwAAEA8AAAcvgAAED0AAKA8AABEPgAAsr4AAHQ-AACqPgAAmD0AAIi9AACIvQAAMD0AAJo-AAAwPQAAPD4AANK-AABMvgAAnr4AAOA8AACoPQAAgr4AAJK-AADYPQAAwj4AAHS-AABMvgAAur4AAJi9AACgvAAAtj4AABA9AACAuwAAiL0AAAE_AADYPQAAFD4AAAE_AACoPQAA4DwAAKA8AADWPiAAOBNACUh8UAEqjwIQARqAAgAAmr4AAIg9AAAEvgAAS78AAKA8AAD4vQAAQDwAAGS-AACYvQAATD4AAIg9AAC4vQAAbL4AAJq-AACAuwAAUL0AACy-AAAbPwAAiD0AAFw-AACGPgAA4LwAAIg9AADYvQAAiL0AAIY-AAAUvgAAHD4AAKA8AACgPAAAyD0AAOA8AABQPQAAJL4AAIg9AACYvQAAlj4AAMg9AACWvgAAUL0AAFw-AADgPAAAqD0AAIg9AADgvAAAyD0AAH-_AADIvQAA4DwAAFQ-AAAQvQAAPL4AABw-AAAQPQAABD4AAIA7AACgvAAAoLwAAOC8AADYvQAAgLsAAAw-AAAwPQAABD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=f_i6NPUA8wM","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1918,"cheight":1080,"cratio":1.77592,"dups":["5517986444889106194"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3373058753"},"3241175464174481547":{"videoId":"3241175464174481547","docid":"34-10-15-Z1C5B01D06EA04AD4","description":"Confounding Factor is an enigmatic electronic musical project formed by Asférico (ES) & Saffronkeira (IT) coming from the deepest depths of an unknown forest... This project gently leads the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1656660/b1e4e5ef4b6192a9d6638a108161a671/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/W6SWcQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8Zxuxu50p_I","linkTemplate":"/video/preview/3241175464174481547?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Asférico & Saffronkeira | The Sound of Confounding Factor","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8Zxuxu50p_I\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFQoTMzI0MTE3NTQ2NDE3NDQ4MTU0N1oTMzI0MTE3NTQ2NDE3NDQ4MTU0N2q2DxIBMBgAIkUaMQAKKmhoaXJsdGtjd2txbHZ4dWJoaFVDc2F5aHk5Zy1WNkljYUk4bVBKVFQ3URICABIqEMIPDxoPPxODAoIEJAGABCsqiwEQARp4gQH6Cgb-AwDwCwwC-gP_AfYLBgL5_f0AAP4DAwcF_gDuFfkBAAAAAOsD-wv9AAAA7gAJ9vgAAAAXCgINBAAAAAX_9Ab2AAAA-wkKC_4BAAD2BAIJ9wIAAQYACAAAAAAA9QcIA___AAABCg3_AAAAAAf4AP4AAAAAIAAtaa3aOzgTQAlITlACKoQCEAAa8AF_Gv8Aswvs_QDb-wCNCgb9ruY7_8wFCf8c6goA9-ACAerPDQHj9AMBAfv8ANT6DwC-9Qf_HgYGANERAgBSD-AACir8ABQx9gD9ARAA3Q8H__L2DwAG8RYA_xMGAwgTAf4bBAP8IBcRBCzk5_4KBQn-5RID_hEKHgMC8_4KCAwSAB8U-QMKKfYC7Bb1_efvCf_97vn_JgUQ_f8F9f8KAwP-7wAG-Abp_AEeC_kE3CHlA_sH8v7lFwEB6fb4-iX-8goE_BD78f71-uoRBAvREAn_JRr7CuQL_wIY-wH_HyjyBf_tCAgUx_38BRAHBAYU-gwgAC1-MzQ7OBNACUhhUAIqcxAAGmBBDQAqFUrn-RY91PPy4OXxBSnl7sgR_-37AOL9D_wNH7-s7iIA-7353KsAAADr3goE3ADNbP_R4urmO9wOxih8-H_5JuPyQyjOAMX47R4B0uXg9QUA7dGwLQMD9TsQQx8gAC1GzSI7OBNACUhvUAIqrwYQDBqgBgAAAMEAABDBAADAQQAAIEEAAFBBAACAQAAA8EEAAIDCAAAUwgAAUMEAAHzCAAAswgAArMIAAKBBAACgwAAAAMAAAODAAAA0QgAAHEIAAMTCAACAQQAAuMEAAOBAAAAAQAAA-EEAAEBBAADIwgAAVMIAAJRCAACAPwAAcEEAAGDBAACgwAAAkEEAAMhBAACAvwAADEIAAABAAACQwQAAKMIAAIC_AAAgQgAAwMAAACBBAAAQQQAAMEEAAMhBAADIwQAA2EEAACzCAABAQAAAVEIAAKDAAAAwQgAA4MEAAMhBAAAkwgAA8EEAAKhBAABkQgAA2MEAAFTCAACgQAAAQMIAABTCAAAgwQAAiMIAACTCAABQwQAAsMEAAGDCAAAQwgAAAEEAAFhCAAAkQgAAcMIAACDBAACgwAAAMEEAALjBAAB8wgAAPMIAAARCAABgwQAAYEIAAEBBAACYwQAAoEEAAGBCAADwQQAAmEEAAABCAAC4QQAAgMEAAHDBAAAUwgAAeEIAAJZCAAAAwQAAqEEAAADAAABMQgAA8EEAAADBAABowgAAuMEAACDBAAA4QgAAPMIAAOBBAAAAwgAAwMAAAETCAADowQAAHEIAAExCAAA0QgAA4EAAAFhCAACswgAAqMEAAADAAAD4wQAArsIAAOhBAACYQgAAFMIAAIDAAADAwAAAQMAAAEDBAAB4wgAAgMAAAAxCAABoQgAAqMEAAMhBAAAwwgAAIMIAAGBBAAB8QgAAFEIAADzCAAC-QgAAhkIAAHTCAABgwQAAVEIAACDBAAAsQgAA4EEAAHDBAADAwAAAQMIAANBBAADAwAAAoEAAALhBAAB8QgAAAAAAAEzCAABsQgAAqEEAALDBAABgwQAAGMIAADjCAABAQAAAskIAAJBBAACKwgAA2EEAAADCAAAEQgAAqEEAAI5CAABAQAAAbMIAAIRCAADCQgAA4EEAANDCAAAYwgAAPMIAAKhBAAAQQQAAlsIAAHBCAADAwAAAgD8AACjCAAAkQgAASEIAAAAAAADgwAAAYMEAAGDBAABUwgAAiMIAAARCIAA4E0AJSHVQASqPAhAAGoACAAAMvgAAfL4AAOo-AACAuwAA-D0AAEQ-AACoPQAA1r4AAIa-AAC4PQAAjj4AAKi9AABsPgAAgLsAAJi9AADYvQAAZD4AABC9AAAQPQAAvj4AAH8_AACIPQAAor4AALg9AAAcPgAAmr4AABA9AABkvgAAND4AABM_AAAwPQAAyD0AAKq-AAAwPQAAUD0AAHA9AABcPgAA6L0AANK-AABEvgAAhr4AABA9AACSPgAALD4AAIg9AAAEPgAAqD0AADC9AACgPAAAgr4AAIK-AAAQvQAAdD4AAFw-AADKvgAAMD0AAAE_AAD4PQAA2D0AAMY-AADYvQAAuL0AAOA8AACgvCAAOBNACUh8UAEqjwIQARqAAgAAUL0AAAw-AABQPQAAKb8AAES-AABcvgAAcL0AAHS-AAB0vgAA1j4AACS-AAAsvgAAij4AAHy-AAAEvgAADL4AABS-AABPPwAAmj4AALI-AAA0PgAANL4AAHA9AABAvAAA-L0AAFS-AABwPQAAuD0AAHw-AABQPQAAoLwAAFC9AADYPQAAPL4AACS-AABwvQAADD4AAOg9AAD4vQAAiD0AADA9AAAsPgAAcD0AADS-AABQPQAAgj4AAH-_AAD4vQAADL4AAHA9AAAUPgAAqL0AAKI-AAAUPgAAZL4AAOA8AABwvQAATD4AAGS-AACovQAAiD0AAFQ-AABAPAAAfL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=8Zxuxu50p_I","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3241175464174481547"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"2084504011"},"7109583256602993481":{"videoId":"7109583256602993481","docid":"34-9-7-Z83611DDC1CD4FC64","description":"Nursing Experts: Translating the Evidence (NExT) Acute & Ambulatory Care Online Course Module / Public Health Online Course Module Appraising the Evidence - Question 20 [Confounding Factors]...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4480760/f8b093e2da27f26cdf54a839834ada15/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hHGuzAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DA3o75u2Vfkg","linkTemplate":"/video/preview/7109583256602993481?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"NExT_Appraising the Evidence - Question 20 [Confounding Factors]","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=A3o75u2Vfkg\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFQoTNzEwOTU4MzI1NjYwMjk5MzQ4MVoTNzEwOTU4MzI1NjYwMjk5MzQ4MWqIFxIBMBgAIkUaMQAKKmhodWh4dXNzcWN6bXNzcmRoaFVDQnhxdkh6T0dMVnprR3VUYnJwcGI1ZxICABIqEMIPDxoPPxPjAYIEJAGABCsqiwEQARp4gfr6-gsD_QD79A7-CAX9AQ8N8QT0AAAA8w4NBgYC_wDwCwL7-QAAAPr_AQYIAAAA9_X9_f3_AADsCgT7BAAAABsC_QD3AAAA9gv2Df8BAAAE_Qn_-gIAARn5_g0AAAAA_vwM-fv_AAAAEA31AAAAAA_2BvsAAQAAIAAtYMbLOzgTQAlITlACKoQCEAAa8AFo8gAA3QcCAPsI8wDfHeoAgQUL_xEH7ADB_BQAnAjV_uoG9gDd7wsAAwAd_97__gAo9ez_KwITABb5FQAnCggA8BYTAC7y_AAlAgYABPn0AAz-Df8b8hP-GOASAQYJ8v8X9A794evaAOsJ7gT_EAj-GCMNBCH9GwD1BQkB7iUZA-X6Cf8cAv4D6AcC__AUEwAD__38BQ33Af0C6QHqKP8B6On5_CDr4P4SBgMDEvL7AfoGFvcxEAAAGgXyAfkMGgL-7wb3_xT8_ekGDAEi3Q0BBuUKBev5Dv__FuoG_vbw_P8MCPjYGgwGDfIKBwUEAfwgAC1uJ0g7OBNACUhhUAIqzwcQABrAB8GnBb_UlRU8csPvvHMcLryDdn099Oykuww3RT0Dm468XkLqvCurhD1piG89Dwlfu5mAp75l-9A8n_oRPTsZbD6uDOo8gowlPNz0F75-1DU9qmINPE94kb5nFUw9qeaLun0D0z1XAow7q3ZNPaDi2D1hPJ68xU-IvFuvLj03Wuk7-OddvfN_Xb2Bhg29HZGMuinopj09L4C9_z8uPWkZGT69Xzu9ZRfvO-ZtFr1yD9M8CYeDu-T39rxjFec7S2ryPJTCHD7kk9-7eqMbPeWDeT3_gD084DBRvLzZ0Tuixo48_fe_O5VShj0jMcE8u2VivMjw8zw0AGq9vJ_LO5jPKDygEJs9V6kFPd1gOD4pplw94xs-OhSbCr1dNU89-CVRPHdjtr1dVjw8eyWduV6WID0q9wy97xlLu6MXvTsFM-g7ELXIPNGFhzwaj4w6J1cIu91rNz2MnKo9BH6DvPFImzrRrkI8iZI1vN-Izr2SGTm8tqFPuvES_D3AKJy9rShru971Yz1jzvm7_e2ZOhjMnzyavs-7_qjdO_m6MbyJbQE9LYFvuxk0GT0UACi98uOWu5aLgjyPeZM8tOJAvB8Wlb0pWY488zTkum2kkTxeyHm9H6w1O13alT1DHaY9HfovOpht5zzp5xO8nj_Qu2moEb0YrvM8fB0hPOcH5Lxol4-9mbUYu5t-vz0Ud_w89IgrOiXfVr2RbMc75P2POnAWZT3h4x09ErLBulKL97wSY_y7ouFeO2t7nrt0m8A9OP0wuekN9zyALoW9kk3dudWTeTxrFp48SSdYOdZYnT2ceD28GfskOCMFYD2sXAG8t5kZOHLi6TtzQQe9EphuuRlNdLtUa4Y8UMi8uZbiND3zisy8d4OOuTzB_jvo_gU9YinwuMw1Vr3Wi-M7RkoAuV8h2DwztRm8oTdnOB7M4LvW8U69P-YluZ2vA72OCIS7vxYlOf4bxbwTKpe7SsyGuBdWAL2_hhu9goIfuFk_DL2u7yg9M5NNuIs0r7qaspE7ZcsguD_Ko7yd-IW8yG6QuNPPCDxmMdG9PkuXNi35abzyCsQ8ki9yN_Wisb2obP28Z7CauFl6I71VaLC9DOgxuHHbKD0SBem8yUO4OBfTET1G2YG9O_4TOHoK7zzmLyM98-aauJP0-rzzyjU9nMofuRgWUj2gacs7YxYEuIPvJ73vSJu98wCdN7hzAT3MK4K9L2Z0uHCCSjwq6rc95woJOa7vk70648A9HgLpuJgPjb3dH4Q9jMPRN3u6P71RCw-9yB-3tyAAOBNACUhtUAEqcxAAGmA_DwAZEi6_5AQb4fUV_wXyAg7kAe31_wPtAAsV1LzkFdbJ4Ab_Pq0QB60AAAAkB70TGwD0b_4H2QLjHCDFpNUzDn_dHCPb3S708dXiCyfC6OwBLUwAGPStBRgB4kf1JC4gAC0Yzig7OBNACUhvUAIqrwYQDBqgBgAAqEEAAJBBAABUQgAAVMIAAKBBAAC4QQAAjkIAAEDBAACSwgAAwEEAAIhBAACSwgAAbMIAAABAAACQQQAAMMIAAAhCAABwwgAAQMAAAHDBAADgQQAAKMIAAFDBAADAQQAAyMEAAHDBAACKwgAAjsIAAAxCAACgQAAAuEEAAI5CAACYwQAAsMEAAKDCAAA8wgAATEIAAJBCAACowQAATEIAAHDBAABYQgAAWEIAAPBBAACgQQAAZMIAAGzCAABQwQAAFEIAAOBAAACIwgAAoEEAADxCAADQQQAAjEIAAKBBAAAAwwAAEEEAAOjBAACQQQAAGEIAAMBAAABgwQAAOMIAAChCAABQQQAAlsIAAKLCAABEQgAAaMIAABBBAADQQQAAQMAAAAAAAACIwQAAmMIAAETCAABMwgAAoEEAABjCAADSwgAAkEIAAPDBAACKQgAAkEEAAOjBAAD4QQAAjkIAAABCAAAAwgAAAMEAAK5CAACiQgAAkMEAAADAAAAswgAAwMAAACjCAAB8QgAAAMIAAKDAAAAYQgAA8EEAALjBAACQwQAAgD8AABzCAACgQAAAEEEAAFRCAAAYQgAAMMEAAHDBAAAkQgAAYMEAAJBBAAAYwgAAwEAAAFzCAAA4wgAAsEEAABjCAABYwgAAOMIAALjBAAAAQQAAqEEAAOhBAACAvwAAiEEAAPhBAADYwQAADMIAAIDAAACAPwAAAMIAAIDAAABwQQAAyMEAAILCAACYwQAAFEIAADBBAADAwAAATEIAAJhBAAAQwgAA6MEAAKBBAACgQQAAQMAAABBCAAAQQQAAwEEAAATCAADAwAAAwMEAAFDBAADYwQAAgEIAADzCAABAQQAALMIAAEDCAADQwQAAIEEAANBBAACoQgAAsEEAAADCAAAAQQAA-EEAAOBAAABAQAAAoEAAACDCAAAsQgAAQMEAAHBBAAAAAAAAMMIAABDBAAAAQQAAXEIAAHBCAADgwQAABMIAAIA_AAAAQQAAwEAAAKjBAAAswgAAgkIAAAjCAADYwQAAgL8AABzCAABswgAAlMIAAOBBIAA4E0AJSHVQASqPAhAAGoACAAAQPQAAcL0AAIC7AACIPQAAUL0AANg9AAAQPQAAGb8AAI6-AACYPQAALL4AABC9AABwPQAABD4AADy-AACIPQAAcD0AAEC8AACoPQAADT8AAH8_AAAQvQAAgDsAAHA9AAAsvgAATD4AABC9AACKvgAAuD0AADQ-AADoPQAAJD4AALq-AABkvgAABD4AABw-AAA0PgAAoLwAAEy-AABUvgAAmr4AACQ-AADoPQAAUD0AAKi9AACWPgAA-D0AAIi9AACgvAAAjr4AACS-AAAUvgAAgj4AAJI-AAAkvgAA4DwAAC0_AAAEvgAAuD0AACQ-AAD4vQAAyD0AAFA9AADgvCAAOBNACUh8UAEqjwIQARqAAgAAqL0AAIi9AAAQPQAABb8AABQ-AADYPQAAQDwAAPg9AAAcvgAAcL0AABC9AAB0vgAAQDwAAMK-AACoPQAA4DwAAIo-AAArPwAALD4AAFw-AACYPQAAJD4AACQ-AADYvQAAiD0AAEA8AACAuwAAMD0AAIA7AACAOwAA6D0AAAQ-AAC4vQAAUD0AAFA9AADovQAA6D0AAJY-AACOvgAAoDwAALY-AACgvAAAqD0AAKC8AACgvAAA-D0AAH-_AAAsvgAAcL0AADQ-AAAkPgAAiL0AADA9AABwvQAARD4AAKA8AABAvAAAMD0AADS-AABAPAAA4LwAAIC7AABEvgAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=A3o75u2Vfkg","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7109583256602993481"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4253159282"},"13089664989695963546":{"videoId":"13089664989695963546","docid":"34-5-8-Z16D8763C03004D81","description":"http://www.stomponstep1.com/confounding-placebo-stratification-randomization-blinding/ Sampling Bias or Selection Bias is when selection of the study sample from the overall population is not random.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1003559/efa41f3b422060261c21fb14336e123c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/SBGatgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DwbNEjfvpyiw","linkTemplate":"/video/preview/13089664989695963546?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Confounding Randomization & blinding","related_orig_text":"Confounding Factor","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Confounding Factor\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=wbNEjfvpyiw\",\"src\":\"serp\",\"rvb\":\"EqkDChQxMDQ0OTM0Nzg2MjcwNDI0MzUwOAoTMjE4NTAwOTc0MTgzMjAxNzYwNQoUMTE1NjYwMjQwMTkzNzk2NDAxODQKFDEyNDc4MzI1MDAwOTM0OTI4MDA1ChMzODMxNTcyNzEyODE2MzE5ODAxChMyMjE3NjcwMjMxMDk1NzcxMzkwChQxMDI2NTIxMjE0MDUwNTk3NzgyNwoSMTM0NjYzMDY5NjY5MTU0MzQ1ChMyMDUzMzA5NDYzODc3NzY1NTQ5ChM5Mjk2NDk3MzYwMDM2MTU0OTg4ChQxMDk2MDE2OTUxOTIwMzE1OTE3OQoUMTIwMjcyNTg3NzMzOTk0ODIxNjMKEjE3ODI1OTMwNTkxMzgzOTM1OQoTNDMwOTM1MDA2NzU5MzAzNTk0NwoTNTUxNzk4NjQ0NDg4OTEwNjE5NAoTMzI0MTE3NTQ2NDE3NDQ4MTU0NwoTNzEwOTU4MzI1NjYwMjk5MzQ4MQoUMTMwODk2NjQ5ODk2OTU5NjM1NDYKEzEwMjY3ODM4MzE3MjkwNTU3NzgKEzM1OTY5OTE2OTAzMDk2MTY3MzYaFgoUMTMwODk2NjQ5ODk2OTU5NjM1NDZaFDEzMDg5NjY0OTg5Njk1OTYzNTQ2apMXEgEwGAAiRRoxAAoqaGhlcnBleWtxZWxoZ2N4YmhoVUNaZjdMeXRydWM5VWg1WkNiTXoxazhREgIAEioQwg8PGg8_E48GggQkAYAEKyqLARABGniB-P4IBPwEAPYBAfn7AQABEwn8_PUCAgD8Bfr9BgT-AO4DBQoFAAAA_QQICfoAAADx_P0AAwAAAAsM-wEFAAAAEgAFBPwAAAD_AgsE_gEAAPsAAv0D_wAADQgBBQAAAAD3Awv8AQAAAAwGEfwAAAAACewJBgAAAAAgAC2TuN47OBNACUhOUAIqhAIQABrwAX_5_wHmAwUB4AgIAMAC-wC1Jh7_JP_dALoQEQHGCf4B-CLzAeMD7QAP-wb_sg8KAR_v3_8e6Q7_K_EA_zsM6wDWCyYAPeTyARn09AEQ6M7_ECQO__npDwANB_QAH_v--wku-QD6AdH_-PXhBRf7DgP-CA8BBhX3_w3l7AHPCwoAGgInAA4Q2AHzDez53hYbAewNAQb6DQcC7dgbACQX5QEDCQ78B_rtBAbE8AH56vT7_e3t-e0nAgj58QcI1RHv_vkN_QbUCAUE9R0X9g3r9AXe-wMF_iL8CxD99Qf69AwE8hMI_-0hCPLs8wX-y-z-_CAALZx_MTs4E0AJSGFQAirPBxAAGsAHxecCvwwNurw7uwa95AVCvdv7lD33Qpw8Df7-vVIOpjyIXYA8S2fxPMeSAzuy2VG9l8eqvhPH7Du-EZ28Ci9hPhdxsLxB08Y57-VOvhCoQz0YrMC7_FQlvjHZLrwHc-Y3vPOqPawZnj1n_40870jLPe6KDTyJDCY9kVZGPLSOqryUgB29qb--vdbxa7u9Aea8veMkPh-0g7xkHv075gNCPvY9T71HAQG735LSPMSNAD10SEW73o8Lvi-_17uWmS08SZwVPnXqBb0omZy8QWlDPaK-QLzYHse8siiRuz7k0jz-zfC8anNXPWCU4LwNFjE7uyrAPaZsJz3yZX08UwlqvUQ2oD2YZ0U6DTN5PWIGND1lWva820wKPfwi_DyM07U8odxxPVsULDyBaLm7pWglPtj4p7xOSJY5KylhvcZ7Hz3QHY48oFRWPKuaGz1w1ju8x4s7PeCV7jy0gL-8O27bu3iCmLxddKo7ODyDvZO4Pb3l27G8Uu2jPcXgxrwmfIQ7-GbFPb-ihj02RTa8GMyfPJq-z7v-qN07eQcIPmTfj71nOug63Ua-PSYnybxYebw7rU-Yu-5KwbzJd-e6TLpXvVHngLz5Miy8Y3XAPX1RDL1aZyI6sSQvPehnajxo1Nc72mpAvbF_CbxUi6k5lKZ_O3ba_zx3iL07Jk7TvPq-bryQ4Wu7nHKAPWo8RzxtOgK8XWm-PMSWfr3gtyW6RE4_vX4FJD3n6j-7PgNquzfh3r3ZfM650WAuPY1dZz1cczW3FPQNvV11UzyWxnU5rYCnvFZjiT3pNZk5SX5JPazFRz1kCl64p4dSPTm5X72sQYa43SZ8vRT6Cj0pmG-5u-wXvnwiUzvIKdw4mbj2ux6U5jyjHxE7Wx3lPPvYU71wqT85Hr98vVyArLwJ3fo4T6IQuwl8z7xor8w4jv68vBRGzjw1h8a38vKPvO7Wjb3-HDc4S1aqPEO5Iz208h05cCfPulJ9p7ywK5K3QTuxPLOrtTx5IVY576SNO972Lr3d5jy4qYdovMVWAL5oFpO33ln7PNjxn70YDZc4DCl1PB7mBj2DLVg3gL9zvCHIpjyMTXE4nEhVPU8tkTzeqZw4REC0PGpK9DvNYia4khLxPBsNQL30ZmM488-3PftNUj3ELCK5ZTMsPYUigrx_T-A3bO5oPCkgkryHGKo33kiPvLYRjzxu6dG2va8FPaVJCb6tnoW4ucF1PC3sCT6GJ-c4AEg3u3dVNj0-ld24K6aSvAY53jsOZp83e7o_vVELD73IH7e3IAA4E0AJSG1QASpzEAAaYEf4ACbfLtwF-g7r5wzxB-z0-eFB8_H_BKX_6TTWAhvystz1BAAf1QvwqgAAAAn7vxkfANp0-eneTMzt38rT1BrhfwcBM_Tb6SKS1uQMJgPVOhoxHQAC3rEuItDTYhgoFCAALXDcHjs4E0AJSG9QAiqvBhAMGqAGAAAsQgAAcMEAAFhCAABQwQAAoEEAAJBBAACwQgAAeMIAADjCAACAwQAAEEEAAJBBAABQQQAANMIAAFBBAACQQQAA2MEAAETCAABAwQAAgL8AAKRCAACgwgAANEIAACBCAADAQQAAqEEAAPjBAACGwgAADMIAABDBAABwQQAAqMEAADRCAACoQQAAOMIAAIhCAADgQQAAREIAAOhBAABAQAAAUEEAAJDBAABoQgAAmEEAAIpCAACAwAAACEIAAHRCAAAUQgAAEEEAAATCAABAQQAAYMEAANjBAACYQQAATEIAADjCAACgwAAAuMEAAKhCAABkQgAAOMIAAADAAAB4wgAAIEIAABTCAAAEwgAAGMIAAODAAADIwQAAHEIAALBBAACAwQAAIEIAALDBAADMwgAAKMIAAHzCAAAoQgAAqMEAALjBAAC4QgAAgD8AAEBCAAA0QgAA4MAAAIA_AACCQgAAQEEAAMjBAABAwAAAnkIAAATCAACcwgAAAAAAAMjBAAAUwgAAQEIAADBCAAAwQQAACEIAAIBAAACKQgAAqsIAAFzCAAAcQgAAAEAAAJBBAACKwgAAuEEAAEBCAADAwQAAZMIAAEDAAACgQQAAAMEAAIBAAACAwgAAAMEAAIjBAADAwQAAkMIAAADBAAB8QgAATEIAAOjBAADCwgAABMIAAFzCAAAcwgAASMIAAEBAAABAwQAA-MEAAKjBAADIQQAAUEEAAKjBAAAowgAAsMEAAGRCAADQQQAAbEIAAAAAAADIQQAARMIAAIjBAAAYwgAAkEIAAIpCAAAwwQAAiMEAAHBBAABwwQAAAEAAANDBAAC4wQAAcMEAADDCAACgQQAA4EAAAJhBAACAvwAAmMEAAIzCAAAEQgAAJEIAAOhBAABMQgAAQMIAAADAAACoQgAAcMEAACTCAAA8wgAAuEEAAABBAACYwgAAUEEAAGhCAADAwAAAfMIAAHTCAABwwQAAcEEAAABCAAAYwgAAhMIAAABBAAAQwQAAiMIAAIDBAADAQAAAUEEAAHBBAADgQAAA2MEAAMjBAADgQAAAAEIgADgTQAlIdVABKo8CEAAagAIAAKC8AACivgAAoDwAAHA9AAAMPgAAED0AABA9AAADvwAAdL4AABw-AAAkPgAArj4AAMg9AAC4PQAAXL4AALg9AABcPgAAgDsAALi9AAD2PgAAfz8AAKg9AAAsPgAA4LwAAEC8AABwvQAAiL0AAOi9AABEvgAADD4AAGw-AACIPQAAjr4AAOA8AAAkPgAA4DwAAAQ-AACAOwAAzr4AAAy-AAD4vQAAqL0AAHA9AACAOwAATL4AAKi9AAAwPQAAdL4AAOA8AACOvgAALL4AAGS-AAB0PgAAuD0AAGy-AABwvQAACT8AADC9AADIvQAAbD4AALi9AAC4PQAAgDsAADC9IAA4E0AJSHxQASqPAhABGoACAAAQvQAAVD4AAEC8AAA7vwAAUL0AAOi9AACAuwAAML0AADy-AAABPwAAJD4AADC9AACgPAAAor4AABy-AABQvQAA6L0AADM_AADoPQAAbD4AAEw-AAAUPgAABD4AAOi9AAA0vgAAiD0AAGy-AABMPgAADL4AAFA9AADoPQAAQDwAADw-AABQvQAAgDsAADS-AACCPgAA6D0AAFy-AACoPQAAjj4AALi9AAB0vgAAUL0AAIA7AAA0PgAAf78AABC9AACIvQAA-D0AACw-AAAwPQAAuj4AAMg9AAAwPQAAoDwAAJi9AACovQAAoDwAAGy-AABQvQAAdD4AAKi9AADgPCAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=wbNEjfvpyiw","parent-reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13089664989695963546"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"500968921"}},"dups":{"10449347862704243508":{"videoId":"10449347862704243508","title":"Module 4, Chapter 2: Defining \u0007[Confounding\u0007] \u0007[Factors\u0007]","cleanTitle":"Module 4, Chapter 2: Defining Confounding Factors","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zr56wb4gLgc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zr56wb4gLgc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUlVDalBlaEJ4RlE2bGZaRHFxX2Y3Zw==","name":"Institute of Education Sciences","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Institute+of+Education+Sciences","origUrl":"http://www.youtube.com/@InstituteofEducationSciences","a11yText":"Institute of Education Sciences. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":483,"text":"8:03","a11yText":"Süre 8 dakika 3 saniye","shortText":"8 dk."},"views":{"text":"6,8bin","a11yText":"6,8 bin izleme"},"date":"15 ara 2016","modifyTime":1481760000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zr56wb4gLgc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zr56wb4gLgc","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":483},"parentClipId":"10449347862704243508","href":"/preview/10449347862704243508?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/10449347862704243508?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2185009741832017605":{"videoId":"2185009741832017605","title":"What Are \u0007[Confounding\u0007] Variables and How Do You Standardize Populations?","cleanTitle":"What Are Confounding Variables and How Do You Standardize Populations?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1NCVy8Tylx0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1NCVy8Tylx0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbUxHSjNWWUJjZlJhV2JQNkpMSmNwQQ==","name":"Seattle Data Guy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Seattle+Data+Guy","origUrl":"http://www.youtube.com/@SeattleDataGuy","a11yText":"Seattle Data Guy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":673,"text":"11:13","a11yText":"Süre 11 dakika 13 saniye","shortText":"11 dk."},"views":{"text":"2,8bin","a11yText":"2,8 bin izleme"},"date":"28 mayıs 2018","modifyTime":1527465600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1NCVy8Tylx0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1NCVy8Tylx0","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":673},"parentClipId":"2185009741832017605","href":"/preview/2185009741832017605?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/2185009741832017605?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11566024019379640184":{"videoId":"11566024019379640184","title":"\u0007[Confounding\u0007] and Selection Bias","cleanTitle":"Confounding and Selection Bias","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FW4Lv8b0ZJk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FW4Lv8b0ZJk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUWtWcDdrR21QTHRaNmRTZWJXZ0dLQQ==","name":"Guillermo Campitelli","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Guillermo+Campitelli","origUrl":"http://www.youtube.com/@gjcampitelli","a11yText":"Guillermo Campitelli. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":706,"text":"11:46","a11yText":"Süre 11 dakika 46 saniye","shortText":"11 dk."},"views":{"text":"3bin","a11yText":"3 bin izleme"},"date":"21 ara 2017","modifyTime":1513814400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FW4Lv8b0ZJk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FW4Lv8b0ZJk","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":706},"parentClipId":"11566024019379640184","href":"/preview/11566024019379640184?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/11566024019379640184?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12478325000934928005":{"videoId":"12478325000934928005","title":"Confounder vs \u0007[Confounding\u0007] | External variable distort Causal Pathway | RR vs Adjusted RR","cleanTitle":"Confounder vs Confounding | External variable distort Causal Pathway | RR vs Adjusted RR","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=H-jach8N5wY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/H-jach8N5wY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdFZ6MXVlZXkwVHQyWTJ5U1UyU2p1Zw==","name":"HPH","isVerified":false,"subscribersCount":0,"url":"/video/search?text=HPH","origUrl":"http://www.youtube.com/@HPHChannel","a11yText":"HPH. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1125,"text":"18:45","a11yText":"Süre 18 dakika 45 saniye","shortText":"18 dk."},"date":"15 tem 2024","modifyTime":1721033639000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/H-jach8N5wY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=H-jach8N5wY","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":1125},"parentClipId":"12478325000934928005","href":"/preview/12478325000934928005?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/12478325000934928005?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3831572712816319801":{"videoId":"3831572712816319801","title":"WWC Group Design Training, Module 4, Part 2: \u0007[Confounding\u0007] \u0007[Factors\u0007]","cleanTitle":"WWC Group Design Training, Module 4, Part 2: Confounding Factors","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5M1Z6D-rerQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5M1Z6D-rerQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUlVDalBlaEJ4RlE2bGZaRHFxX2Y3Zw==","name":"Institute of Education Sciences","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Institute+of+Education+Sciences","origUrl":"http://www.youtube.com/@InstituteofEducationSciences","a11yText":"Institute of Education Sciences. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":990,"text":"16:30","a11yText":"Süre 16 dakika 30 saniye","shortText":"16 dk."},"date":"17 mar 2023","modifyTime":1679011200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5M1Z6D-rerQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5M1Z6D-rerQ","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":990},"parentClipId":"3831572712816319801","href":"/preview/3831572712816319801?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/3831572712816319801?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2217670231095771390":{"videoId":"2217670231095771390","title":"\u0007[Confounding\u0007]","cleanTitle":"Confounding","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=abjN6R3i0XI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/abjN6R3i0XI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU3hzaTJ1TndtZXdnZXRJZXZldThwUQ==","name":"WikiAudio","isVerified":false,"subscribersCount":0,"url":"/video/search?text=WikiAudio","origUrl":"http://www.youtube.com/channel/UCSxsi2uNwmewgetIeveu8pQ","a11yText":"WikiAudio. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1154,"text":"19:14","a11yText":"Süre 19 dakika 14 saniye","shortText":"19 dk."},"date":"22 oca 2016","modifyTime":1453420800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/abjN6R3i0XI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=abjN6R3i0XI","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":1154},"parentClipId":"2217670231095771390","href":"/preview/2217670231095771390?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/2217670231095771390?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10265212140505977827":{"videoId":"10265212140505977827","title":"STAT 1040 -- Section 5.1 Association and \u0007[Confounding\u0007] \u0007[Factors\u0007]","cleanTitle":"STAT 1040 -- Section 5.1 Association and Confounding Factors","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=3_zS75H_Y6w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3_zS75H_Y6w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUnV5Rll4MHl4QjVwWGwyTVBQTG5TZw==","name":"Professor Loveland's Math and Statistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Professor+Loveland%27s+Math+and+Statistics","origUrl":"http://www.youtube.com/@MathNStats","a11yText":"Professor Loveland's Math and Statistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1886,"text":"31:26","a11yText":"Süre 31 dakika 26 saniye","shortText":"31 dk."},"date":"25 eyl 2024","modifyTime":1727222400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3_zS75H_Y6w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3_zS75H_Y6w","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":1886},"parentClipId":"10265212140505977827","href":"/preview/10265212140505977827?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/10265212140505977827?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"134663069669154345":{"videoId":"134663069669154345","title":"Why Research Results are 'Adjusted' for \u0007[Confounding\u0007] \u0007[Factors\u0007] - and How To Communicate About I...","cleanTitle":"Why Research Results are 'Adjusted' for Confounding Factors - and How To Communicate About It","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=j8J2L_g76c4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/j8J2L_g76c4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcnhVR18zQ2R4bW4zSjRRWF93LUhLdw==","name":"The Winton Centre","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Winton+Centre","origUrl":"http://www.youtube.com/@TheWintonCentre","a11yText":"The Winton Centre. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":294,"text":"4:54","a11yText":"Süre 4 dakika 54 saniye","shortText":"4 dk."},"views":{"text":"26,1bin","a11yText":"26,1 bin izleme"},"date":"3 kas 2020","modifyTime":1604361600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/j8J2L_g76c4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=j8J2L_g76c4","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":294},"parentClipId":"134663069669154345","href":"/preview/134663069669154345?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/134663069669154345?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2053309463877765549":{"videoId":"2053309463877765549","title":"\u0007[Confounding\u0007] in \u0007[Factorial\u0007] and Fractional \u0007[Factorial\u0007] Design of Experiments DOE Explained","cleanTitle":"Confounding in Factorial and Fractional Factorial Design of Experiments DOE Explained","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DD0_9VFfE4Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DD0_9VFfE4Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDN0RVV3NMc0hjRUpLVW5TdU1LUlJjdw==","name":"The Open Educator","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Open+Educator","origUrl":"http://www.youtube.com/@TheOpenEducator","a11yText":"The Open Educator. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":355,"text":"5:55","a11yText":"Süre 5 dakika 55 saniye","shortText":"5 dk."},"views":{"text":"20,2bin","a11yText":"20,2 bin izleme"},"date":"4 eki 2020","modifyTime":1601769600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DD0_9VFfE4Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DD0_9VFfE4Y","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":355},"parentClipId":"2053309463877765549","href":"/preview/2053309463877765549?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/2053309463877765549?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9296497360036154988":{"videoId":"9296497360036154988","title":"4. Removal of \u0007[confounding\u0007] \u0007[factors\u0007] in scRNA-seq data","cleanTitle":"4. Removal of confounding factors in scRNA-seq data","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rhuYhD4GwKw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rhuYhD4GwKw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkwtTHg1Z0dsVzAxT2tza1pMN0pFUQ==","name":"Chipster Tutorials","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Chipster+Tutorials","origUrl":"http://www.youtube.com/@ChipsterTutorials","a11yText":"Chipster Tutorials. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1248,"text":"20:48","a11yText":"Süre 20 dakika 48 saniye","shortText":"20 dk."},"views":{"text":"3,1bin","a11yText":"3,1 bin izleme"},"date":"3 tem 2019","modifyTime":1562112000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rhuYhD4GwKw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rhuYhD4GwKw","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":1248},"parentClipId":"9296497360036154988","href":"/preview/9296497360036154988?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/9296497360036154988?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10960169519203159179":{"videoId":"10960169519203159179","title":"Module 4, Chapter 1: Introduction to \u0007[Confounding\u0007] \u0007[Factors\u0007]","cleanTitle":"Module 4, Chapter 1: Introduction to Confounding Factors","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=gVDRMEXlrVE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/gVDRMEXlrVE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUlVDalBlaEJ4RlE2bGZaRHFxX2Y3Zw==","name":"Institute of Education Sciences","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Institute+of+Education+Sciences","origUrl":"http://www.youtube.com/@InstituteofEducationSciences","a11yText":"Institute of Education Sciences. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":90,"text":"1:30","a11yText":"Süre 1 dakika 30 saniye","shortText":"1 dk."},"views":{"text":"4,7bin","a11yText":"4,7 bin izleme"},"date":"15 ara 2016","modifyTime":1481760000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/gVDRMEXlrVE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=gVDRMEXlrVE","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":90},"parentClipId":"10960169519203159179","href":"/preview/10960169519203159179?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/10960169519203159179?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12027258773399482163":{"videoId":"12027258773399482163","title":"effect modification vs \u0007[confounding\u0007] \u0007[factor\u0007] Explained","cleanTitle":"effect modification vs confounding factor Explained","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OypZnZzdf_A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OypZnZzdf_A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUndXUy1wRUJQYmtWN2k2dWo3emRnUQ==","name":"Crushed USMLE Questions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Crushed+USMLE+Questions","origUrl":"http://www.youtube.com/@crushedusmlequestions7543","a11yText":"Crushed USMLE Questions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1262,"text":"21:02","a11yText":"Süre 21 dakika 2 saniye","shortText":"21 dk."},"views":{"text":"25,4bin","a11yText":"25,4 bin izleme"},"date":"2 eki 2017","modifyTime":1506902400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OypZnZzdf_A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OypZnZzdf_A","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":1262},"parentClipId":"12027258773399482163","href":"/preview/12027258773399482163?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/12027258773399482163?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"178259305913839359":{"videoId":"178259305913839359","title":"WWC Single Case Design Training, Module 3, Part 2: \u0007[Confounding\u0007] \u0007[Factors\u0007]","cleanTitle":"WWC Single Case Design Training, Module 3, Part 2: Confounding Factors","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=yEflvJ9qwzI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/yEflvJ9qwzI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUlVDalBlaEJ4RlE2bGZaRHFxX2Y3Zw==","name":"Institute of Education Sciences","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Institute+of+Education+Sciences","origUrl":"http://www.youtube.com/@InstituteofEducationSciences","a11yText":"Institute of Education Sciences. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":308,"text":"5:08","a11yText":"Süre 5 dakika 8 saniye","shortText":"5 dk."},"date":"17 mar 2023","modifyTime":1679075430000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/yEflvJ9qwzI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=yEflvJ9qwzI","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":308},"parentClipId":"178259305913839359","href":"/preview/178259305913839359?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/178259305913839359?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4309350067593035947":{"videoId":"4309350067593035947","title":"68- What are \u0007[Confounding\u0007] \u0007[Factors\u0007] in Research Studies? | Medical Research | Dr. Kashif Ramay...","cleanTitle":"68- What are Confounding Factors in Research Studies? | Medical Research | Dr. Kashif Ramay | 2020","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=oiwyCiu94cs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/oiwyCiu94cs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMmZBV0c1ajhMUmVFNDZDQkJQX29sQQ==","name":"Dr Kashif Ramay","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dr+Kashif+Ramay","origUrl":"http://www.youtube.com/@KSRamay","a11yText":"Dr Kashif Ramay. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":546,"text":"9:06","a11yText":"Süre 9 dakika 6 saniye","shortText":"9 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"22 nis 2020","modifyTime":1587513600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/oiwyCiu94cs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=oiwyCiu94cs","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":546},"parentClipId":"4309350067593035947","href":"/preview/4309350067593035947?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/4309350067593035947?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5517986444889106194":{"videoId":"5517986444889106194","title":"2.11 \u0007[Confounding\u0007]: Statistically Checking And Adjusting For It In R","cleanTitle":"2.11 Confounding: Statistically Checking And Adjusting For It In R","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=f_i6NPUA8wM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/f_i6NPUA8wM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYU5JeFZhZ0xocXVwdlVpREswMU1nZw==","name":"MarinStatsLectures-R Programming & Statistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MarinStatsLectures-R+Programming+%26+Statistics","origUrl":"http://www.youtube.com/@marinstatlectures","a11yText":"MarinStatsLectures-R Programming & Statistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":173,"text":"2:53","a11yText":"Süre 2 dakika 53 saniye","shortText":"2 dk."},"views":{"text":"14,9bin","a11yText":"14,9 bin izleme"},"date":"3 oca 2021","modifyTime":1609632000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/f_i6NPUA8wM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=f_i6NPUA8wM","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":173},"parentClipId":"5517986444889106194","href":"/preview/5517986444889106194?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/5517986444889106194?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3241175464174481547":{"videoId":"3241175464174481547","title":"Asférico & Saffronkeira | The Sound of \u0007[Confounding\u0007] \u0007[Factor\u0007]","cleanTitle":"Asférico & Saffronkeira | The Sound of Confounding Factor","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8Zxuxu50p_I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8Zxuxu50p_I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDc2F5aHk5Zy1WNkljYUk4bVBKVFQ3UQ==","name":"Confounding Factor","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Confounding+Factor","origUrl":"https://www.youtube.com/channel/UCsayhy9g-V6IcaI8mPJTT7Q","a11yText":"Confounding Factor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":259,"text":"4:19","a11yText":"Süre 4 dakika 19 saniye","shortText":"4 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"24 nis 2017","modifyTime":1492992000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8Zxuxu50p_I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8Zxuxu50p_I","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":259},"parentClipId":"3241175464174481547","href":"/preview/3241175464174481547?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/3241175464174481547?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7109583256602993481":{"videoId":"7109583256602993481","title":"NExT_Appraising the Evidence - Question 20 [\u0007[Confounding\u0007] \u0007[Factors\u0007]]","cleanTitle":"NExT_Appraising the Evidence - Question 20 [Confounding Factors]","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=A3o75u2Vfkg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/A3o75u2Vfkg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnhxdkh6T0dMVnprR3VUYnJwcGI1Zw==","name":"UICLibrary","isVerified":false,"subscribersCount":0,"url":"/video/search?text=UICLibrary","origUrl":"http://www.youtube.com/@UICLibrary","a11yText":"UICLibrary. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":227,"text":"3:47","a11yText":"Süre 3 dakika 47 saniye","shortText":"3 dk."},"date":"15 ara 2020","modifyTime":1607990400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/A3o75u2Vfkg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=A3o75u2Vfkg","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":227},"parentClipId":"7109583256602993481","href":"/preview/7109583256602993481?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/7109583256602993481?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13089664989695963546":{"videoId":"13089664989695963546","title":"\u0007[Confounding\u0007] Randomization & blinding","cleanTitle":"Confounding Randomization & blinding","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=wbNEjfvpyiw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/wbNEjfvpyiw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWmY3THl0cnVjOVVoNVpDYk16MWs4UQ==","name":"Stomp On Step 1","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stomp+On+Step+1","origUrl":"http://www.youtube.com/@stomponstep1989","a11yText":"Stomp On Step 1. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":783,"text":"13:03","a11yText":"Süre 13 dakika 3 saniye","shortText":"13 dk."},"views":{"text":"34,4bin","a11yText":"34,4 bin izleme"},"date":"10 haz 2014","modifyTime":1402358400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/wbNEjfvpyiw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=wbNEjfvpyiw","reqid":"1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL","duration":783},"parentClipId":"13089664989695963546","href":"/preview/13089664989695963546?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","rawHref":"/video/preview/13089664989695963546?parent-reqid=1766853058375609-3440805741178201261-balancer-l7leveler-kubr-yp-klg-97-BAL&text=Confounding+Factor","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"3440805741178201261797","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Confounding Factor","queryUriEscaped":"Confounding%20Factor","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}