{"pages":{"search":{"query":"Diskriminant","originalQuery":"Discriminant","serpid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","parentReqid":"","serpItems":[{"id":"5216245172226749471-0-0","type":"videoSnippet","props":{"videoId":"5216245172226749471"},"curPage":0},{"id":"1502062815518035664-0-1","type":"videoSnippet","props":{"videoId":"1502062815518035664"},"curPage":0},{"id":"17393708646315024672-0-2","type":"videoSnippet","props":{"videoId":"17393708646315024672"},"curPage":0},{"id":"video-related-suggest-0-3","type":"relatedSuggest","props":{"title":"Bunlar aranıyor","columns":[[{"text":"Delta formülü","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Delta+form%C3%BCl%C3%BC&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Diskriminant formülü","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Diskriminant+form%C3%BCl%C3%BC&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"İkinci dereceden denklem kökleri","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=%C4%B0kinci+dereceden+denklem+k%C3%B6kleri&source=video-related-suggest&rq=1&src=int_discovery_recommender"}],[{"text":"Kuadratik formül","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Kuadratik+form%C3%BCl&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Diskriminan","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Diskriminan&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Polinom kökleri","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Polinom+k%C3%B6kleri&source=video-related-suggest&rq=1&src=int_discovery_recommender"}]]},"curPage":0},{"id":"5245791624246043822-0-4","type":"videoSnippet","props":{"videoId":"5245791624246043822"},"curPage":0},{"id":"R-I-113683-5-0-5","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":5,"grab":"dERpc2tyaW1pbmFudAo=","statId":5,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","ui":"desktop","yuid":"7878040411769421450"}}},"isAdult":false,"position":5,"placement":"empty"},"curPage":0},{"id":"18027578143086519951-0-6","type":"videoSnippet","props":{"videoId":"18027578143086519951"},"curPage":0},{"id":"12641791836822785704-0-7","type":"videoSnippet","props":{"videoId":"12641791836822785704"},"curPage":0},{"id":"13825159172606627663-0-8","type":"videoSnippet","props":{"videoId":"13825159172606627663"},"curPage":0},{"id":"15675733911184176802-0-9","type":"videoSnippet","props":{"videoId":"15675733911184176802"},"curPage":0},{"id":"3080068688509813275-0-10","type":"videoSnippet","props":{"videoId":"3080068688509813275"},"curPage":0},{"id":"16408323450376813422-0-11","type":"videoSnippet","props":{"videoId":"16408323450376813422"},"curPage":0},{"id":"R-I-113683-5-0-12","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":12,"grab":"dERpc2tyaW1pbmFudAo=","statId":12,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","ui":"desktop","yuid":"7878040411769421450"}}},"isAdult":false,"position":12,"placement":"empty"},"curPage":0},{"id":"10110021599078119446-0-13","type":"videoSnippet","props":{"videoId":"10110021599078119446"},"curPage":0},{"id":"18266746040834772719-0-14","type":"videoSnippet","props":{"videoId":"18266746040834772719"},"curPage":0},{"id":"8419830624026496190-0-15","type":"videoSnippet","props":{"videoId":"8419830624026496190"},"curPage":0},{"id":"18377376384322908470-0-16","type":"videoSnippet","props":{"videoId":"18377376384322908470"},"curPage":0},{"id":"6085696997064182177-0-17","type":"videoSnippet","props":{"videoId":"6085696997064182177"},"curPage":0},{"id":"6762153203497132001-0-18","type":"videoSnippet","props":{"videoId":"6762153203497132001"},"curPage":0},{"id":"7279300056562890965-0-19","type":"videoSnippet","props":{"videoId":"7279300056562890965"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"correction":{"items":[{"kind":"reask","rule":"Misspell","query":"Dis\u0007(c\u0007)riminant","url":"/video/search?text=Discriminant&noreask=1&nomisspell=1","params":{"text":"Discriminant","noreask":"1","nomisspell":"1"},"helpUrl":"https://yandex.com.tr/support/search/info/request-correction.xml","helpTarget":"_blank","helpAriaLabel":"Yazım hatası düzeltme servisi"}],"id":"484097321621"},"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dERpc2tyaW1pbmFudAo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","ui":"desktop","yuid":"7878040411769421450"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DDiscriminant"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"5906017226949107727247","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1457140,0,11;1472323,0,85;1472350,0,67;1466867,0,14;1460336,0,66;1457617,0,17;1468855,0,89;1470057,0,96;1460710,0,13;1462157,0,44;1460214,0,87;1456929,0,66;1472031,0,95;1461639,0,44;1469885,0,86;1339938,0,65;1464524,0,62;1455765,0,26;1470250,0,55;1463532,0,39;1466295,0,14;1465958,0,7;1468618,0,32;1466081,0,1;708541,0,2;1452051,0,11;658770,0,52;364898,0,52;1466618,0,86;1470513,0,83;260563,0,80;133998,0,81;1465679,0,94;724556,0,24;724636,0,24;263460,0,29;255407,0,29;1467158,0,39;1470316,0,43;63006,0,50;46451,0,52;151171,0,21;1281084,0,10;287509,0,64;1447467,0,13;927534,0,50;1468028,0,69;912286,0,19"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DDiscriminant","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Discriminant","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Discriminant","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Diskriminant: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Diskriminant\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Diskriminant — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yca5571cbd78abc8d4ce65306a16eb6d4","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457140,1472323,1472350,1466867,1460336,1457617,1468855,1470057,1460710,1462157,1460214,1456929,1472031,1461639,1469885,1339938,1464524,1455765,1470250,1463532,1466295,1465958,1468618,1466081,708541,1452051,658770,364898,1466618,1470513,260563,133998,1465679,724556,724636,263460,255407,1467158,1470316,63006,46451,151171,1281084,287509,1447467,927534,1468028,912286","queryText":"Discriminant","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7878040411769421450","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,310194,278842,331010,338398,378416,359879,415420,571985,644350,652605,645301,679708,689693,690449,696466,696473,698168,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769421483","tz":"America/Louisville","to_iso":"2026-01-26T04:58:03-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457140,1472323,1472350,1466867,1460336,1457617,1468855,1470057,1460710,1462157,1460214,1456929,1472031,1461639,1469885,1339938,1464524,1455765,1470250,1463532,1466295,1465958,1468618,1466081,708541,1452051,658770,364898,1466618,1470513,260563,133998,1465679,724556,724636,263460,255407,1467158,1470316,63006,46451,151171,1281084,287509,1447467,927534,1468028,912286","queryText":"Discriminant","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7878040411769421450","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"5906017226949107727247","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":153,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7878040411769421450","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"5216245172226749471":{"videoId":"5216245172226749471","docid":"34-9-5-Z72AB25C0940F72A8","description":"Matematikteki zorlukları aşmanın yolu diskriminantı anlamaktan geçiyor! Bu videoda, hangi değerlerin diskriminant olamayacağını detaylıca ele alıyoruz. TYT ve AYT sınavlarına hazırlananlar, bu...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3603743/d521e09ffa7fbca3844ea49199c92584/564x318_1"},"target":"_self","position":"0","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dp5EiRVPaFSg","linkTemplate":"/video/preview/5216245172226749471?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Diskriminant (Delta) | Matematik TYT ve AYT","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=p5EiRVPaFSg\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhUKEzUyMTYyNDUxNzIyMjY3NDk0NzFaEzUyMTYyNDUxNzIyMjY3NDk0NzFqug0SATAYACJQGj0ACjZoaHBrZ2RwY2dpZnhpem5jaGhodHRwOi8vd3d3LnlvdXR1YmUuY29tL0BzbWxtYXRlbWF0aWsSAgASKg_CDw8aDz8TO4IEJAGABCsqiwEQARp4gfv6AQT-AgD_AfkG-Af9AhP1Bwb3AAAA8QEC_P4BAADv_AD0-QAAAOn78QkEAAAABvwJC_v9AQAH_wL1BAAAAAsI-vkAAAAAAhT0-P8BAAAGBv8A-wAAAAUD-vf_AAAA_BgDCP8AAAAJAfv5AAAAAPf1AA8AAAAAIAAtwqTaOzgTQAlITlACKnMQABpgGgkAO_n2z7P7_-wP9A8C5cvZ1QvI4QDT_gAoFObX9BfF1dodAPr_Ee60AAAAIdYYKiQA7VvL2-U2BA7t-Mj-8xZ_YxMRFj8QCtDrEQgBAxIG9O4dACX3FtE3FsUnPfgvIAAtCFQ1OzgTQAlIb1ACKq8GEAwaoAYAAEDBAABQQQAAqEIAAKDBAACQQQAAiEEAAMhBAABgQQAAvsIAAIhBAAAwQgAA-EEAAPDBAABwwQAA2EEAANhBAAAMwgAAjsIAACjCAAB0wgAAgEAAAEjCAAAAwgAAnkIAACBBAACgwQAAYMIAAHDCAADUQgAAmEEAACzCAACgQQAAiMIAAIZCAACowQAAUMEAABhCAAC4QgAA-EEAAKDBAABkwgAAgL8AAEDBAACAwAAACMIAAKBAAACAPwAAqMEAAIBCAACgQAAA3MIAAERCAAAowgAAFEIAANBBAACgwQAAkMIAACBBAACMQgAAiEEAACBCAABQwQAAwMEAAHjCAACIQQAAHMIAAFRCAAD4wQAAKMIAAADBAACgQgAAcEIAAADCAABkQgAA0MEAAKDAAABAwgAAMEEAAIDCAACAQAAARMIAAMhBAAAEwgAAAEAAANDBAABkQgAA8MEAAFDBAABgQgAAUMEAAABAAACYQQAAaMIAAODAAADAwQAAXMIAABRCAABwQQAANEIAABDBAADowQAASEIAAIxCAABAwAAA2MEAAABAAACgwAAAYEEAAPjBAACEQgAAPEIAABBBAAAswgAA8MEAAFhCAABsQgAAAEAAAIDAAADAQAAAjsIAAMBAAAAQwQAAuEEAACjCAAC4QQAAsEEAACjCAAA0wgAABMIAAEBAAAAAwQAAvsIAAHBBAACgQQAAGEIAAEDAAABwQQAAmMEAAEBBAAA4wgAAJEIAAABCAADowQAAMMEAAIhBAACoQQAAAMIAAJBBAAAkwgAAoEAAADBBAADAQAAACEIAAGDCAAAYwgAAcMEAALDBAACIwQAAiMEAABRCAAA0wgAAEEEAAHBBAACgwQAAcEEAAHzCAAAgQQAAJEIAAOjBAADwwQAAHMIAAADAAAAAAAAAEEIAAKDBAADgQAAAgEAAAIDBAACAQgAAIEEAAJzCAACowgAACMIAABDBAAAEQgAAMMEAAL7CAACoQgAAQMEAACDCAABcwgAAUEEAAOBAAAB0QgAAoMAAAFBBAACowQAANEIAAEDBAACQwSAAOBNACUh1UAEqjwIQABqAAgAAuL0AAKC8AAAsPgAAoLwAAIC7AAALPwAA6L0AADe_AABEvgAA3j4AAJg9AABEPgAALD4AACQ-AACAOwAAiL0AAJ4-AADgPAAAmj4AACs_AAA7PwAAUL0AALI-AACAOwAA-L0AAIq-AACoPQAAML0AAPi9AADgvAAAFD4AANi9AAADPwAAij4AAEw-AADqvgAAgr4AAPi9AAAJvwAAML0AAJi9AAAQvQAA2D0AAA-_AABwPQAA2L0AAIA7AAAUvgAATD4AAOi9AACmPgAAvr4AACy-AADGPgAAkr4AAIA7AAB_PwAAyL0AAEy-AACuPgAAyD0AAGS-AAAEPgAAiL0gADgTQAlIfFABKo8CEAEagAIAAKg9AACiPgAAuL0AAGe_AACivgAA2D0AAAU_AACYvQAAqD0AAMo-AAA0PgAAUL0AAKi9AABkvgAA2L0AAHC9AADCvgAANT8AAJq-AADGPgAAgLsAAAm_AAC4vQAAmL0AAMi9AAAkvgAA2L0AAEQ-AABMvgAAUL0AABA9AAC4vQAADL4AAHC9AACIPQAANL4AAKi9AADovQAAmr4AAEQ-AADIPQAAJL4AAOA8AAAQPQAAmL0AAIA7AAB_vwAAFD4AAEA8AACYvQAAmL0AAIY-AAAUPgAAQLwAAIC7AACoPQAABL4AAIY-AAAMPgAA-L0AANg9AABMPgAADD4AAHA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=p5EiRVPaFSg","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["5216245172226749471"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1502062815518035664":{"videoId":"1502062815518035664","docid":"34-1-14-Z3BEC3B1DC9832ED8","description":"Diskriminant içinde Diskriminant🔔🔔 #tyt #ayt #matematik 9.10.11. ve 12.Sınıf Matematik Konu Anlatım ve Soru Çözüm videolarını kaçırmamak için kanalıma abone olup bildirimleri açabilirsin.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4314090/a0e774f1577f08708bebcc4d58168112/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/GDphWAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"isFull":true,"fullTextUrl":"/video/result?ask_summarization=1&numdoc=1&noreask=1&nomisspell=1&parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=videoid:1502062815518035664","teaser":[{"list":{"type":"unordered","items":["Bu video, bir matematik eğitim içeriğidir. Eğitmen, ikinci dereceden denklemlerle ilgili bir soru çözümü sunmaktadır.","Videoda, diskriminant (delta) içeren bir ikinci dereceden denklem sorusu çözülmektedir. Eğitmen önce diskriminant formülünü hatırlatarak başlar, ardından verilen ifadeyi diskriminant formülüne yerleştirerek denklemi kurar. Çözüm sürecinde diskriminantın değerini bulur ve kökler çarpımını hesaplayarak cevabı 55/4 olarak bulur. Video, öğrencilere zor görünen ancak aslında kolay çözülebilen bir soru örneği sunmaktadır."]},"endTime":212,"title":"İkinci Dereceden Denklemlerde Diskriminant Sorusu Çözümü","beginTime":0}],"fullResult":[{"index":0,"title":"İkinci Dereceden Denklemlerde Diskriminant Sorusu","list":{"type":"unordered","items":["İkinci dereceden denklemlerle ilgili, diskriminant içinde diskriminant soran bir soru çözülecek.","Soruda delta sıfırdan büyük ve delta, verilen denklemin diskriminantı olarak belirtilmiş.","Diskriminantın normal formülü delta = b² - 4ac olarak hatırlatılmış."]},"beginTime":5,"endTime":29,"href":"/video/preview/1502062815518035664?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=5&ask_summarization=1"},{"index":1,"title":"Diskriminantın Hesaplanması","list":{"type":"unordered","items":["B'ye x'in katsayısı, c'ye ise sabit kısmında bir diskriminant verilmiş.","Diskriminant formülü kullanılarak delta² = (b² - 4ac)² - 4(a(b² - 4ac) + c) hesaplanmış.","İşlemler sonucunda delta² = -9 - 8delta - 10 denklemi elde edilmiş."]},"beginTime":29,"endTime":102,"href":"/video/preview/1502062815518035664?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=29&ask_summarization=1"},{"index":2,"title":"Diskriminantın Değerinin Bulunması","list":{"type":"unordered","items":["Denklem çarpanlarına ayrılarak delta² = 9 veya delta² = -1 bulunmuş.","Diskriminant sıfırdan büyük olduğu için delta² = 9 olarak kabul edilmiş.","Delta = 9 değeri denklemde yerine konularak kökler çarpımı hesaplanmış."]},"beginTime":102,"endTime":155,"href":"/video/preview/1502062815518035664?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=102&ask_summarization=1"},{"index":3,"title":"Sonuç ve Değerlendirme","list":{"type":"unordered","items":["Kökler çarpımı x₁ × x₂ = c/a kuralı kullanılarak 55/4 olarak bulunmuş.","Soru standartın biraz daha üzerine çıkarılarak zor görünen ama aslında kolay bir soru olarak değerlendirilmiş.","İlk başta diskriminantların iç içe geçmiş olması korkutucu olabilir, ancak işlemleri yapmaya başlandığında çözülebileceği vurgulanmış."]},"beginTime":155,"endTime":201,"href":"/video/preview/1502062815518035664?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=155&ask_summarization=1"}],"linkTemplate":"/video/preview/1502062815518035664?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Diskriminant içinde Diskriminant#tyt #ayt #matematik","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CMseVIWEVc0\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhUKEzE1MDIwNjI4MTU1MTgwMzU2NjRaEzE1MDIwNjI4MTU1MTgwMzU2NjRqtg8SATAYACJFGjEACipoaG1ya2xmY3premZ1dG5iaGhVQ3phemxDbGp0blFkQzJOTVNnYWYxRWcSAgASKhDCDw8aDz8T1AGCBCQBgAQrKosBEAEaeIH3Bff8_gIA_wH5B_gH_QIT9QcG9wAAAPECCPIDAQAA7_wA9PkAAADxAvf-AQAAAAT7_Av__QEA9wQG9fgAAAAWDPL5AAAAAAYM-v3-AQAAAQcHBvcCAAELBPgFAAAAAPoVCPz-_wAACQH7-QAAAAD39QAPAAAAACAALVog2Ds4E0AJSE5QAiqEAhAAGvABf-whAern5QLYBMoAyyH4AJUUDP_9MtQAmv8rA9YNvQHtGvcA3vIEASD-Av_aHvsABsXW_-zh-wAsvQwCCs79APzz9wDz3xkBOhIs_zPeGf8A-Bv_-fL7ABfY1AMP8tz_Au_f_fkByf8cFcwBHxQlAQ0IKgQW9SEC3rL9AekS8gXs3tr-9yEFBQf0Bvvi9S4HAxMI_hz5DPzkFPwGB__1_BHhJP0VPer__Mf_CBAEEwbDCO0AEcgHCiEREvPBFgL4AQwu-9b7CfckAgIBGvb3ARIG6_wF8OEDFAIZA_nyDgUs-PMG4Pn9-erl9Q3OBP_-IAAtVOkYOzgTQAlIYVACKnMQABpgHPUAOf4I19L6EPD_3AH30tHoxRv35wDb_gAGGgHlDBff5PAJAAH6CP7AAAAAFu_4HQUA30jFCfIn_xb05bnV_QZ_MQs53hQqC9nhGw0DA_0hBwIgAB8M1u5AHM8bF-QuIAAtfQ1ROzgTQAlIb1ACKq8GEAwaoAYAAEBCAABAQAAAFEIAABBBAABcwgAAoEEAAExCAAAgQQAA4MEAADTCAADIQQAAIMEAAAhCAABQQQAAQEEAAABAAABcQgAAcMIAAChCAADwwQAAlsIAABDCAAB8wgAACEIAANbCAACIwQAAUEEAAFjCAADgQAAA2EEAADjCAADAQAAAfMIAACBBAABUwgAAsEEAAHhCAACKQgAAJEIAAKhCAAAgwQAAJEIAAGBBAAAUwgAAQMEAAMhBAAAAQAAAAMEAAAxCAABAwAAAEMEAAOjBAACQwQAADEIAACxCAAAQQQAAWMIAAGDCAACAvwAAwEAAABzCAADgwQAAkMIAACDCAACgwQAADMIAAOjBAAA4wgAADMIAALhBAAAsQgAA0MEAAMDBAACgwQAAIEIAAFzCAADKwgAAMMEAACBCAAAQQQAAlMIAANBBAAD4wQAAZMIAAABAAAAYQgAAAAAAAJTCAAAoQgAAiMEAAMBAAAC4QQAAEMEAAPjBAABAQQAAQMIAAIDAAABgwQAAQEEAADBCAACwwgAAEEEAADhCAADgwQAAZMIAAFBCAACAwQAAEEIAANBBAAAQQgAAVEIAAIA_AABwwQAAUMEAAIC_AAAcQgAAAEEAAIzCAACAwQAAiMIAADjCAADAwAAA8EEAAABAAADwwQAANMIAAMDBAADgwQAAaMIAACTCAACIQQAAUMIAAMBAAAAkQgAAmMEAAIDBAAB8QgAAQEEAAOBBAABEwgAAEEIAAATCAABgQQAAuMEAACxCAACKQgAAiEEAANjBAADAQAAADEIAACDCAADowQAAQEIAAFDBAACAQQAAOMIAAJLCAAAAwQAAIMIAAFDBAAAQQQAAUMEAAFRCAAD4QQAAQEAAAChCAADQQQAAUEIAALJCAACuwgAABMIAABDBAADgQQAAMEEAACDBAAAgwQAAisIAANDBAACIQQAAMEIAAFDCAADAwgAAAAAAAIC_AABAQAAAPMIAAITCAADgQQAAQMAAAIDAAACeQgAA4MEAAMBAAABAwQAAIEEAAIBBAAAQwQAATEIAAJZCAABAwiAAOBNACUh1UAEqjwIQABqAAgAADD4AADA9AACoPQAAuL0AACy-AABLPwAA6L0AADu_AACSvgAA9j4AAOi9AACSPgAA4j4AAMg9AADgvAAAkj4AAGw-AAA0vgAAvj4AAH0_AAAbPwAA9r4AAOo-AADGvgAANL4AADS-AACGPgAA6L0AAJ6-AABwvQAAbD4AALa-AAD2PgAAnj4AAAU_AAAnvwAA6r4AAAQ-AAD-vgAAgLsAABC9AAAwPQAArj4AABe_AAC4PQAAqD0AABA9AAD6vgAAij4AANK-AAD4vQAAMb8AANi9AABAvAAApr4AAMg9AAB_PwAA8r4AAMi9AABcPgAAgDsAAJq-AACgvAAA4DwgADgTQAlIfFABKo8CEAEagAIAAEC8AAAFPwAALD4AAHG_AACKvgAAgDsAADU_AABkvgAAqD0AAMI-AACqPgAAmL0AAIg9AADWvgAAmL0AAOC8AAAzvwAATz8AAPi9AABUPgAAij4AAPK-AACYvQAAuL0AAGS-AABkvgAAsr4AAMo-AAAHvwAAsr4AAAw-AAAQvQAAQDwAAHA9AACSPgAArr4AAMI-AACYvQAA8r4AANg9AABUPgAALL4AAOi9AABAPAAAiD0AABS-AAB_vwAA4DwAABQ-AADYvQAAyD0AAM4-AAC2PgAAUL0AAHA9AAAMPgAAhr4AAMg9AACaPgAAXL4AAAw-AADGPgAA4LwAACw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=CMseVIWEVc0","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1502062815518035664"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3471347950"},"17393708646315024672":{"videoId":"17393708646315024672","docid":"34-2-12-Z7981DD990E56BD3A","description":"Kök,diskriminant ilişkisi nedir? Kök nedir? Diskriminant ne işi yarar? #yks #ayt #10.sınıfmatematik...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/226025/902f29f30e91c03b1a612477adfccb45/564x318_1"},"target":"_self","position":"2","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DIbhLbWOBIhw","linkTemplate":"/video/preview/17393708646315024672?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Nedir bu diskriminant? (10. Sınıf ve AYT)","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IbhLbWOBIhw\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhYKFDE3MzkzNzA4NjQ2MzE1MDI0NjcyWhQxNzM5MzcwODY0NjMxNTAyNDY3MmqvDRIBMBgAIkUaMQAKKmhoZ3N2bXdjcXRlYnhuaGNoaFVDVjROMExnM19aS0tsYVpsZEZxUVNBZxICABIqEMIPDxoPPxP6CIIEJAGABCsqiwEQARp4gff-_AD-AwD_AfkG-Af9AhP1Bwb3AAAA5gQLCAb-AQDv_AD0-QAAAOgBAP8AAAAABPv8C__9AQAHAg7zBAAAAAUD-PD_AAAA-Ab5AP8BAAAADwgEAwAAABEF9_0AAAAACggKCAAAAAATEvz4AQAAAAvs_QoBAAAAIAAtAFPbOzgTQAlITlACKnMQABpg-_cATwsK6eH5Cgor-vn16ffM-RDmAgDXGQDeMvTu7gXqvPgLACYMACK9AAAABvfmICQA_0zhCsQY2wz-7-js6xV_ewAD6wkf9Pn9Kw4O8RQRBAYcABUU-d8hBMsHNfonIAAtTLxOOzgTQAlIb1ACKq8GEAwaoAYAACDBAADAQQAAgEIAAAAAAAC4QQAAEEEAAMBAAACAwgAAXMIAAHBBAAAAQAAAoMEAAEzCAABkwgAABEIAADBBAACAwQAAiEEAAIC_AABQwgAACEIAAGDCAABAwgAALEIAAIxCAAAMwgAAMMIAACTCAAAYQgAAwEEAACTCAACgQQAAyMEAAAAAAAAwwgAAAEIAADBBAABQQgAAMEIAALjBAACwQQAAUEIAAOBAAABoQgAAoEAAABRCAABMwgAAgEEAALJCAABYwgAA6MEAAETCAACAwQAA-EEAAIA_AACwwQAAIMIAALhBAACAwQAAuEEAACBCAAAowgAAwMAAAFzCAABwwQAA8MEAAMBBAADAQAAARMIAAIDAAACaQgAAQEEAAGjCAAC4QgAAdMIAACBBAADgwAAAoEAAAPhBAABAwAAAoMEAAABBAACKQgAAfEIAAAxCAABQQgAANMIAAHDBAAAgQQAATMIAAOBAAADAQQAAAEAAAIjCAADgwQAAQMIAAJBBAADIQQAAREIAABhCAABwwgAAvEIAAIJCAADMwgAAEMIAABhCAABAQQAAaEIAAABAAAAkQgAAQEIAAMBAAAAAwAAAYMIAANRCAABwQQAAwEAAAKBAAABAQAAAPMIAAMDBAACIwQAAqEEAAADCAADwQQAA0kIAALBBAAC4wQAA2MEAAHDBAAAQwgAAUMIAALBBAAAgQgAAUEIAAHDCAADwwQAAEEEAABzCAABMwgAAoEEAABBCAAA0QgAAoMEAAOBBAAA0QgAAVMIAAIA_AADgwAAAcMEAAHxCAAAQQQAADEIAAEzCAAAAQAAAuEEAAExCAACgwgAAkMIAAI5CAAAYwgAAQEAAAODBAABQQQAATMIAAPDBAABUQgAATEIAAAhCAACAPwAAYMEAAADBAADgwAAAIEEAABBBAACgwQAAAAAAAMDAAACqQgAAskIAADTCAABswgAAisIAAIDAAAAwwQAAYMIAAKrCAACwQQAA0EEAAHBBAACgwQAAAMEAAABCAAAgwQAAAEAAAEBAAAAgwQAAXEIAAGDBAACowSAAOBNACUh1UAEqjwIQABqAAgAAJL4AABQ-AAB0PgAAgDsAAAS-AAArPwAAZD4AACe_AAB0vgAAvj4AABy-AACaPgAAbD4AAPg9AABMPgAApj4AAHA9AADIvQAAEz8AAEk_AAB_PwAADL4AAOI-AACYPQAAjj4AAHA9AADYvQAAcL0AAEA8AACyPgAAcD0AAOA8AADSPgAAFD4AAM4-AAD-vgAA9r4AAI6-AAAVvwAA4DwAAJo-AACSvgAAJD4AAMq-AACaPgAAuL0AAAy-AABcvgAArj4AAOi9AACaPgAAFL4AACS-AAAwvQAAur4AAGQ-AAB3PwAADL4AAAQ-AADKPgAAoDwAAHA9AACYPQAAlr4gADgTQAlIfFABKo8CEAEagAIAAKC8AAD4vQAAVL4AAH-_AAAEvgAABD4AAJY-AACAOwAAPL4AAGQ-AACIPQAAED0AADS-AAA8vgAALD4AAIA7AAA8vgAAIz8AABC9AAC-PgAAqr4AAFC9AAAMvgAAMD0AAES-AABwPQAAPL4AAHC9AABkvgAATL4AAIC7AACgvAAAnj4AAJi9AADYPQAA6L0AABA9AACIPQAATL4AAFC9AACAOwAAuD0AAFy-AAAQvQAANL4AABy-AAB_vwAAyL0AADw-AABcvgAAiD0AADC9AACWPgAAyD0AAOi9AACoPQAAgLsAAIC7AABsPgAADL4AAFQ-AABEPgAAgr4AAAw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=IbhLbWOBIhw","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17393708646315024672"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5245791624246043822":{"videoId":"5245791624246043822","docid":"34-1-4-Z42D49034DF39E0BC","description":"#10sınıf #tyt #denklem 10.sınıf matematiğin tüm konularını MEB ile uyumlu okul müfredatı sırasına uygun bir şekilde öğrenmeye devam ediyoruz. Beni takip et geri de kalma :) Abone Ol...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4418270/3e29b3e7eba27bce25d7565717700df7/564x318_1"},"target":"_self","position":"4","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMYtQywjWPdE","linkTemplate":"/video/preview/5245791624246043822?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Diskriminant | 2.Dereceden Denklemler -2 | 10.Sinif | 2025 Matematik","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MYtQywjWPdE\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhUKEzUyNDU3OTE2MjQyNDYwNDM4MjJaEzUyNDU3OTE2MjQyNDYwNDM4MjJqrw0SATAYACJFGjEACipoaG1ya2xmY3premZ1dG5iaGhVQ3phemxDbGp0blFkQzJOTVNnYWYxRWcSAgASKhDCDw8aDz8T2AyCBCQBgAQrKosBEAEaeIH6__z3Af8A8_cIAQME_gH4AAUK-f39AOUDBP0J_QIA-fT4-_gAAAADBOwABgAAABTw9An8_wIBCwEA_-sA_wAN-fj8_gAAAAwO7wL_AQAA-gwC8QIAAAAZDvQG_wAAAAIQEgT_AAAADAn4_AEAAAD7-QgLAAAAACAALcszzjs4E0AJSE5QAipzEAAaYCDxAE3yCuDd_QAHDvICFOjP6OEU5dkA8_4A-Qjh2v4u3vj_-gAw9ALuvgAAACb16AsjAPZPxeniLwki9v-z_c70fz35KgYuFvfT_zb8DfsaFd8J-wAh7O7sGRGwHSkHNCAALefaSDs4E0AJSG9QAiqvBhAMGqAGAABcQgAAyEEAAEBCAAAcQgAAwMAAAKjBAAAQwQAA8MEAAMDBAAAswgAAuEEAAFDBAAB0wgAA0MEAAGxCAABkwgAAREIAAKDAAABoQgAAIEIAAOjBAAAAwgAAAMEAAPhBAAAwQgAA-EEAACzCAACAwQAAaEIAAIhBAAAAwAAATEIAADTCAABAQQAAUEEAAKhBAAAAAAAAykIAABzCAADQQQAA0EEAAIBBAABYQgAAAAAAAEBAAAAQwQAAFMIAAODBAAB4QgAA4MAAAODBAADQwQAARMIAANBBAACAQgAAUEEAAGDBAACAQAAA8MEAAARCAACAQgAA-MEAANjBAABgwgAAUEEAAJhBAACAQQAARMIAAJbCAACAwQAAiEIAAIJCAACMwgAAhkIAAATCAACkwgAAcMIAALDBAAAIQgAA0MEAAATCAABAwAAANEIAAHhCAADowQAAJEIAAEDAAABAwAAAmEEAADzCAAC2wgAAoEAAAPjBAACGwgAAwMAAABDCAADowQAAiEIAANBBAACowQAAqMEAAERCAACQQQAAsMIAAHDBAABUQgAAkEEAAFBCAADYQQAA2EEAAFBCAABAQAAATMIAAMBAAABEQgAAEEIAAJhBAACKwgAAgsIAAITCAABUwgAAcMEAANjBAACAvwAAhEIAAPBBAACYQQAAnMIAADDBAACcwgAAoMEAAMDAAADIwQAAuEEAAGBBAACYwQAA8EEAALDBAABQwgAAtsIAAHxCAADgQAAAYMIAAKhBAABAQAAA6EEAAFBBAACAvwAAgEAAAHDCAADIQQAAVMIAAFBBAAAEwgAAoMAAALjBAACgQAAApMIAAADBAACMQgAAkMEAAHBBAADgwQAA-MEAADTCAACAPwAAREIAAMBAAABUQgAA0MEAAFDBAADIwQAAQMAAAEBAAADIwQAAmEIAACDCAAB4wgAAoEIAAGhCAAAMQgAAFEIAAARCAAAUwgAAVEIAADzCAACIwQAAUMEAAEzCAACgQQAAQEAAACTCAABMQgAAoEAAAPDBAAC4wQAAfMIAABhCAACAwAAALMIgADgTQAlIdVABKo8CEAAagAIAADQ-AACYPQAAHD4AABS-AAA0vgAANz8AAIY-AAB_vwAAPL4AABU_AABAPAAAuL0AAIY-AADiPgAAoDwAAFy-AACuPgAAyL0AALY-AAAHPwAAUT8AACS-AAD2PgAAVL4AAMg9AAA0PgAAHD4AAFC9AACGvgAA-D0AAJI-AAC4vQAACz8AAJY-AACSPgAAtr4AAAQ-AAA0PgAAvr4AABA9AAAkPgAAjj4AAIA7AABsvgAAhj4AABw-AACoPQAAor4AABw-AAAsvgAA2j4AAAu_AADoPQAADL4AADQ-AAA0PgAAST8AALi9AACqvgAAXD4AACS-AAC4vQAAhj4AAOC8IAA4E0AJSHxQASqPAhABGoACAAAcvgAAHD4AAOA8AABNvwAADL4AAOg9AADyPgAAmL0AAKC8AABUPgAAbD4AAJg9AAD4vQAAyL0AAKA8AAAwPQAAZL4AADM_AAAUvgAA5j4AAOC8AACevgAARL4AAGS-AAAUvgAAfL4AAKA8AAAUPgAARL4AAIi9AADoPQAAQLwAAOi9AACAuwAAtj4AAFC9AACovQAAND4AAKq-AABwPQAAXD4AAEy-AABwPQAAcL0AAFy-AABAvAAAf78AAKg9AAAUPgAALL4AAJg9AABUPgAAiD0AAIC7AAAUPgAA6D0AAKi9AAAMPgAAdD4AAJi9AADgvAAAuL0AAFA9AAB8PiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=MYtQywjWPdE","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5245791624246043822"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18027578143086519951":{"videoId":"18027578143086519951","docid":"34-7-9-Z4A8B391E192AB63B","description":"AYT Yedi Adımda Temelden Zirveye Matematik 1.Kitap | Mehmet Bilge Yıldız & Ersin Öztürk | Yediiklim Yayınları Merhaba Matematik Severler! Bu videoda, AYT Yedi Adımda Temelden Zirveye Matematik...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4259802/6c1485d29e9b532ca8faef1bbd4f9b32/564x318_1"},"target":"_self","position":"6","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dme_Vroz2F3k","linkTemplate":"/video/preview/18027578143086519951?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"2. Adım 3. Ders Diskriminant Yönetimi ve Köklerin Varlığı","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=me_Vroz2F3k\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhYKFDE4MDI3NTc4MTQzMDg2NTE5OTUxWhQxODAyNzU3ODE0MzA4NjUxOTk1MWqvDRIBMBgAIkUaMQAKKmhoeXZ0b3ptZ2tnZWFib2RoaFVDZGVIbjBORFl3aFY5T1AxZHVuZ0wxZxICABIqEMIPDxoPPxOQA4IEJAGABCsqiwEQARp4gQQNAP0C_gAM_fcG-gj-AvgABQr5_f0A7PwBBQkAAADyAAj8-wAAAPEP9wf8AAAADgj4BvoAAAAG-gL2-AAAAAz3_-8AAAAA_wjx_f8BAAAJBA8HA_8AABv88Pn_AAAADA0Q-QAAAAAUFPv4AQAAAPvlCv4AAAAAIAAtbQzOOzgTQAlITlACKnMQABpgVvwASSEC1NTO9gEN7_PzBu2wCw7t-P_LBQD-NNj78__ny_YXACUHFSOoAAAALuqzECkABm3M7O5JyBYbqQPe4gZ_cAkD8w0a9AL-7wAPDygFKQNOAAsF79030bUTPTEPIAAtm5gkOzgTQAlIb1ACKq8GEAwaoAYAANjBAABIwgAASEIAAEBAAABgwQAAoEAAAGhCAABgwQAAEEIAALDBAACQQgAASMIAANjBAAAkwgAAMEIAAMjBAAAAQQAAwMIAABzCAADIwQAAfEIAAHzCAACYwgAAAEEAAHRCAAAwwQAAAMMAAADBAABQQgAAkEEAANjBAAB8QgAAhsIAAJBBAABYwgAAmEEAAOhBAACoQgAAQMAAAIjBAAAAAAAA0EEAADDBAACWQgAAEEIAAODBAAAAwAAACMIAAIJCAAAwwgAA4MAAAEzCAABcQgAAuEEAADhCAAAIQgAAwMIAAEBAAAAcQgAAMEIAAHxCAAAcQgAAmMEAAJjBAADYwQAAsEEAAODBAAAAwAAAwEAAAADCAABwwQAAMEIAAHzCAABkQgAAAMIAACDCAAAcQgAAIMEAAIDAAAAgQQAAaMIAAADBAACAQQAAaEIAACTCAACgQQAAMEEAAEjCAADQQQAAmMEAAMjBAAAAQgAACMIAALDBAADgwAAAAMAAAATCAABYQgAABEIAACBBAAAQQQAANEIAAIJCAAAMwgAAVMIAAAjCAAAUQgAA0EEAAOBAAAAAQAAAIEIAABRCAABUwgAA8MEAAMRCAACgwQAAIEEAAPjBAABUQgAAMMEAADTCAABwwQAAAMAAAGDCAADWQgAAYEIAAEBBAACAwQAAwMAAAOjBAABQQQAABMIAAODAAACoQgAAmMEAAETCAADQwgAAgMAAAMBBAACIwQAAkEEAAABCAADYwQAAIMEAAKhBAADIQQAAAEAAAIhBAABgQQAAAEEAAADAAAAAQAAAHEIAAODBAACYQQAAPEIAAPhBAACWwgAAMMIAAMRCAAAAwQAAUEIAAADAAABAwQAALMIAAAjCAADYQQAAWEIAADxCAADoQQAAAAAAAADBAAAEwgAAyMEAAGBBAAAwwQAAqMEAACzCAAD4QQAAREIAAODBAABQwQAAIMIAAABBAAAcQgAAtMIAAFjCAAAIQgAAqMEAAEBBAABkwgAAMMEAAMDAAAAAAAAAiEEAAIBBAADIQQAAMEEAAHzCAADQwSAAOBNACUh1UAEqjwIQABqAAgAAdL4AACS-AACSPgAAQDwAAAQ-AACuPgAAbD4AAB-_AACavgAAjj4AABS-AABMPgAA3j4AACQ-AADYPQAAFD4AAFQ-AABQPQAAkj4AADE_AAB_PwAAgDsAAFA9AAAQPQAAoLwAACy-AAAwPQAAVL4AAOC8AADYPQAA2D0AALi9AAC2PgAAED0AAJ4-AACavgAAsr4AAMg9AACGvgAAUL0AADC9AABEPgAAqD0AAB2_AADovQAAkr4AAOg9AAB8vgAAbD4AAGS-AACiPgAAbL4AAHA9AACAuwAAVL4AABC9AABfPwAAyL0AABC9AADePgAAgLsAAFy-AACIPQAARD4gADgTQAlIfFABKo8CEAEagAIAAIC7AACYPQAAtr4AAG2_AADOvgAAPD4AAIY-AABAPAAAPL4AAKI-AABwPQAA2L0AAJq-AABcvgAAuD0AAFC9AAAUvgAAAz8AAHy-AADePgAA6L0AACS-AAAcvgAAcL0AAMi9AAAQPQAAgr4AAKA8AAAsvgAATL4AAEA8AACAuwAAHD4AAI6-AAAwPQAAQDwAAKA8AACqPgAAFL4AADC9AABEPgAAQLwAABy-AADIvQAAoLwAAEC8AAB_vwAAgLsAAKg9AAAQvQAAJD4AAPi9AABkPgAA6D0AANi9AABwPQAAML0AAGQ-AADgPAAA6L0AABw-AACSPgAAuD0AAFQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=me_Vroz2F3k","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18027578143086519951"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12641791836822785704":{"videoId":"12641791836822785704","docid":"34-7-10-ZDF534E5EC75AE5B4","description":"Rehber Matematik ile 10.Sınıf Matematik 4.Ünite İkinci Dereceden Denklemler 2.Ders İkinci Dereceden Denklemin Kökleri Diskriminant Diskriminant ile Kök Bulma 10.Sınıf matematiğin tüm konularını...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4274804/db791f5daa84d230036ca8ff63ffd7c5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Y0xgQgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"isFull":true,"fullTextUrl":"/video/result?ask_summarization=1&numdoc=1&noreask=1&nomisspell=1&parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=videoid:12641791836822785704","teaser":[{"list":{"type":"unordered","items":["Bu video, Deniz Sercan Hoca tarafından sunulan Rehber Matematik serisinin 10. sınıf matbook serisinin ikinci dersidir. Öğretmen, öğrencilere hitap ederek ikinci derece denklemlerde discriminant (delta) yöntemini anlatmaktadır.","Videoda discriminant kavramının tanımı, formülü (b² - 4ac) ve ispatı detaylı olarak açıklanmaktadır. Daha sonra delta'nın değerine göre denklemin köklerinin durumları (delta > 0, delta = 0, delta \u003c 0) incelenmekte ve simetrik kökler ile çakışık kökler konuları ele alınmaktadır. Video, teorik bilgilerin yanı sıra çeşitli örnek sorular üzerinden konuyu pekiştirmektedir.","Dersin sonunda, öğrencilerin 10. sınıf kamp programındaki ikinci derste bu konuyla ilgili soruları çözmeleri gerektiği belirtilmektedir. Video, ikinci derece denklemlerin çarpanlarına ayrılmayan durumlarda discriminant yönteminin nasıl kullanılacağını öğrenmek isteyenler için faydalı bir kaynaktır."]},"endTime":1813,"title":"10. Sınıf Matematik: İkinci Derece Denklemlerde Discriminant Yöntemi","beginTime":0}],"fullResult":[{"index":0,"title":"İkinci Derece Denklemlerde Kök Bulma Yöntemi","list":{"type":"unordered","items":["Rehber Matematik'te 10. sınıf matbook serisi kapsamında ikinci derece denklemler konusuna devam ediliyor.","Bu derste ikinci derece denklemlerin köklerini discriminant (delta) yöntemiyle bulma metodu anlatılacak.","Discriminant yöntemi, ikinci derece denklemlerin genel geçerli bir kök bulma metodudur."]},"beginTime":0,"endTime":116,"href":"/video/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=0&ask_summarization=1"},{"index":1,"title":"Discriminant Kavramı ve Formülü","list":{"type":"unordered","items":["İkinci derece denklemin discriminantı (delta) üçgenimsi bir sembolle gösterilir ve \"delta\" olarak okunur.","Discriminant formülü b² - 4ac şeklindedir; burada a x²'nin katsayısı, b x'in katsayısı, c ise sabit terimdir.","Discriminant formülü ispatlanarak türetilmiştir ve ikinci derece denklemin köklerini bulmak için kullanılır."]},"beginTime":116,"endTime":442,"href":"/video/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=116&ask_summarization=1"},{"index":2,"title":"İkinci Derece Denklemin Kökleri","list":{"type":"unordered","items":["İkinci derece denklemin kökleri discriminant yöntemiyle x = (-b + √Δ) / 2a ve x = (-b - √Δ) / 2a formülleriyle bulunur.","Δ sembolü, b² - 4ac ifadesini temsil eder ve discriminant olarak adlandırılır.","Örnek olarak, x² - 6x - 3 = 0 denkleminin discriminantı Δ = (-6)² - 4(1)(-3) = 36 + 12 = 48 olarak hesaplanır."]},"beginTime":442,"endTime":535,"href":"/video/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=442&ask_summarization=1"},{"index":3,"title":"İkinci Derece Denklemlerde Diskriminant Örneği","list":{"type":"unordered","items":["İkinci derece denklemin diskriminantı (Δ) b² - 4ac formülüyle hesaplanır ve bu örnekte Δ = 16 olarak verilmiştir.","Denklem x² - (a+3)x + (a+2) = 0 şeklindeyken, a'nın değerleri bulunmak istenmektedir.","Diskriminant formülü kullanılarak a² + 2a - 15 = 0 denklemi elde edilir ve çarpanlara ayrıldığında a = -5 veya a = 3 olarak bulunur."]},"beginTime":538,"endTime":662,"href":"/video/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=538&ask_summarization=1"},{"index":4,"title":"Diskriminantın Değerine Göre Köklerin Durumu","list":{"type":"unordered","items":["Δ > 0 ise denklemin iki farklı gerçek kökü vardır.","Δ = 0 ise denklemin birbirine eşit iki gerçek kökü (çakışık kökler) vardır ve kökler x₁ = x₂ = -b/2a formülüyle bulunur.","Δ \u003c 0 ise denklemin gerçek kökü yoktur, çözüm kümesi boş kümedir (reel sayılar kümesinde)."]},"beginTime":662,"endTime":825,"href":"/video/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=662&ask_summarization=1"},{"index":5,"title":"Örneklerle Diskriminant Uygulamaları","list":{"type":"unordered","items":["Denklem çarpanlara ayrılamıyorsa, diskriminant yöntemi (Δ = b² - 4ac) kullanılarak çözüm yapılır.","Örnek olarak x² - 5x - 2 = 0 denkleminde Δ = 33 bulunur ve kökler x₁ = (5 + √33)/2, x₂ = (5 - √33)/2 olarak hesaplanır.","3x² - 3x + 2m + 1 denkleminin birbirinden farklı iki gerçek kökü olması için Δ > 0 koşulu uygulanır ve m'nin alabileceği en büyük iki tamsayı değerinin toplamı -3 olarak bulunur."]},"beginTime":825,"endTime":1035,"href":"/video/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=825&ask_summarization=1"},{"index":6,"title":"Gerçek Kökü Olmayan Denklemler","list":{"type":"unordered","items":["2x² - 6x + n = 0 denkleminin gerçek kökü olmadığına göre Δ \u003c 0 koşulu uygulanır.","Δ = 36 - 8n \u003c 0 eşitsizliği çözülür ve n > 9/2 bulunur.","n'nin alabileceği en küçük tam sayı değeri 5 olarak hesaplanır."]},"beginTime":1035,"endTime":1117,"href":"/video/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1035&ask_summarization=1"},{"index":7,"title":"İkinci Derece Denklemlerde Simetrik Kökler","list":{"type":"unordered","items":["İkinci derece denklemlerde (ax² + bx + c = 0) simetrik iki gerçek kök varsa, köklerin işaretleri zıttır (örneğin bir kök 5 ise diğer kök -5 olur).","Simetrik iki gerçek kök varsa, b'nin sıfıra eşit olması gerekir çünkü x terimi yoktur.","Simetrik köklerde a ile c'nin çarpımı sıfırdan küçük olmalıdır (a·c \u003c 0)."]},"beginTime":1126,"endTime":1283,"href":"/video/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1126&ask_summarization=1"},{"index":8,"title":"Çakışık Kökler ve Delta Değeri","list":{"type":"unordered","items":["Çakışık iki kök varsa, delta'nın (Δ) sıfıra eşit olması gerekir (Δ = b² - 4ac = 0).","Delta'nın değeri duruma göre değişir: Δ > 0 iki farklı gerçek kök, Δ = 0 çakışık iki kök, Δ \u003c 0 gerçek kök yok.","Denklemin gerçek kökü yoksa delta sıfırdan küçük olmalıdır (Δ \u003c 0), farklı iki gerçek kökü varsa delta sıfırdan büyük olmalıdır (Δ > 0)."]},"beginTime":1283,"endTime":1470,"href":"/video/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1283&ask_summarization=1"},{"index":9,"title":"Delta Değerinin İncelenmesi","list":{"type":"unordered","items":["Delta değeri b² - 4ac formülüyle hesaplanır ve bu örnekte delta'nın sıfırdan küçük olması isteniyor.","İlk durumda b=2, a=2c ve delta\u003c0 koşulu uygulanarak b'nin değer aralığı 1/2'den büyük bulunuyor.","İkinci durumda a=4 alınarak delta>0 koşulu uygulanıyor ve b'nin değer aralığı 1'den küçük bulunuyor."]},"beginTime":1474,"endTime":1607,"href":"/video/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1474&ask_summarization=1"},{"index":10,"title":"Köklerin Özellikleri","list":{"type":"unordered","items":["Delta sıfırdan küçük ise denklemin karmaşık iki kökü vardır, reel kökü yoktur.","B'nin sıfırdan küçük olması karmaşık kökler için önemli değildir, çünkü negatifin karesi pozitiftir.","A çarpı c'nin sıfırdan küçük olması durumunda delta pozitif olur ve denklemin gerçek iki kökü vardır."]},"beginTime":1607,"endTime":1761,"href":"/video/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1607&ask_summarization=1"},{"index":11,"title":"Dersin Sonucu","list":{"type":"unordered","items":["Dersin sonunda doğru cevap 1 ve 3 seçenekleri olarak belirleniyor.","Öğrencilerin dersi tamamlamak için 10. sınıf kitabındaki soru bankasını çözmesi gerekiyor.","İkinci derste bu konuyla ilgili sorular çözülerek üçüncü derse geçiş sağlanacak."]},"beginTime":1761,"endTime":1812,"href":"/video/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1761&ask_summarization=1"}],"linkTemplate":"/video/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"İkinci Dereceden Denklemler 2 | Diskriminant | 10.Sinif Matematik MatBook | 2024","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=h-tPxAqjTeQ\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhYKFDEyNjQxNzkxODM2ODIyNzg1NzA0WhQxMjY0MTc5MTgzNjgyMjc4NTcwNGqIFxIBMBgAIkUaMQAKKmhobHNucmNlbmhvcmlwaGNoaFVDenhqOVNLa0x1RGhkeFNEWHhjbXdxURICABIqEMIPDxoPPxOVDoIEJAGABCsqiwEQARp4gfb6Av4BAADz9wgBAgT-AQgDCgn4__8A5QME_Qn9AgAB8AT_-gEAAO4E7QT9AAAAD_v-C_b_AAAGBvz6-wAAABP-APj_AAAADA7vAv8BAAD6DALxAgAAABQSAQv_AAAAAg8SBP8AAAAOCAL8AQAAAAHwCA8AAAAAIAAtrT7ROzgTQAlITlACKoQCEAAa8AFoEfD-yPvk_7X-9ADGJPcAgQot_wz71AC9-yIAuAPgAM8hIwDt7uMA9OsP_-AdHv8Z1N__-c0CAAW6CP8B5tYA8P8LAC229AFk6BEA99f__pUHIvwTzQgAC9jm_zEm6gEB8Ab-DeTa_wbt4gEM8yP_JxI8AOW8DP_Y8QX_-wwBBsPw8P-_AhsF5tYV_NYFJAL1BQAEEAYJ88s13wQA4OX3_P4Q9zUT4wEZ9wgJ-g3lCr7y3QDnB-f-IPklBvf48-8RAg7_ztMFBCTr_wH54AL19QT8AxP_CA8VDvcA_AT7Ce7z-vy9DfkG0urxBu_j8v4gAC1QIw07OBNACUhhUAIqzwcQABrAB090lb7PfzQ9GlyIuwoHzL1XDxS8NIUOvVHdXL4DHhw8ZyEmvJkpLT5aVbW9U20BvVnAVL4EjIw5Ks_XPAovYT4XcbC8QdPGOcnuXb3ifvY8GNZIvbisEr7Vr9Q9CR1PPME6Pj6JrhA95StBvSsxHz5u76S8yyNJPT0M7b1z_py9S34buzlswb2kxdm9OmMOPM2Uhr3BdIq9Qpv3PFFGsT3J7lg9XkIEOvL4TL1CE3E6OM63u6XiOr3BKii8V6lKveqv9z0xslE6yE0DPUQgvb20YD29W9VHOQwjHT04Pbm8bzmNvH8Xdr1y-c88ZJXSvM5hiDz5BYW8l2NDPGzp0b2pVqU9bRrbvMp-hrvLv7E855UGPcZhqr2rW5097tSaO2u58zwwDUg94zUOPPQ04D04k8A9dwJQPDjX8D1QyI68aFpFuwlkwDzPWXU9hWOxPMeLOz3gle48tIC_vJwlcj1UEYg9W-uLOnGvx71Iso29K5tevB1aZLx5hwU9wuyOujVSlT3UwXC96UZYvGBnhD35Eb-9PWsSPFi_rr0yVTC8MaEZvKDzpDxfHhc9MLP4uukLAT6oIJo8KKU5Oaxx9rx8j2S9gMKPOr4KWj3XJ8q8RQdqOyGGZ706aAQ8XYyeu1Su7LvkWXg9lhUWvK9meLwtN5I9nlUPOwYharxasak9AIYrus_iu7wOGlW9CiCIu087_D3NCMo6c-oEt8JM2z07Hei9ds_YOYAb2Dxob7W9dDtGuQrMlDyoDdi8KeCFurVDgj2B1tc8Vuf1OAwSET0qUgK7HkeVOC3J5rzf9NM8AGlFuTFNibuNHUS6i4KoOFQb_L1iu_u9E9PyOa9rJb2TfUa8f6U2umEM1TtzTDY9ue5muKdHybybE8W9AwKzONUPpb3wOhY9MtjSuRaNsD2bkoe8nnyZOMrDgrxp0we94AelOKAfAb1JLKk86xtaOZymzz0juic-9QqwufRAij1PZnI8JMSbOB7Osjy2JVc9q0lMt1d9CT2kaXU87TQHuMFYnz0LGZ49vRkjOAb5NDwJvLi8XVHDN_TovDxDoyU9jBfbt99so738LQm8zX2qtkmMVLzvSoy9eSvXNgd3LD34GTe9numrOKppor0kb-87FkajOJJdGT7ZT1C9rMI_uRZOAr4wq2a9VSpWOHX19LxZ3eq9DSPxNR0-hDyRYdU9uPe8t7-ez71Hdyu9TXGbuCL_7D01KQU-835buPCyNb1czM89DEYKuedkczyoqtA9Ejhht5URsrxlMKs8ixWPNiAAOBNACUhtUAEqcxAAGmAf2gA98g7i4vb6Cw7fEP_a1-7ONe30AOT_APoN5ucZH_bpE_4AD_Hp474AAAAX_vwADwDiUL4A8RT5GPnks_HbHn8qBzfZBTAK6fgnC-ABFwXrChUAJfOxACIzxSM8EyYgAC0YyEg7OBNACUhvUAIqrwYQDBqgBgAAIEIAAAzCAABoQgAAsEEAAIzCAACAQAAAMMEAABDBAADgwAAAFMIAABxCAAAUQgAAkMIAAODCAAD4QQAAgMEAABzCAADQwQAAqMEAADDCAACSQgAATMIAAGzCAACQwQAAPEIAAKBAAABkwgAAIMIAAIZCAAAAQgAAYMEAAJBCAAAIwgAAjEIAAAAAAAB4QgAAEEEAALZCAAAowgAATMIAAJjBAACwQQAAIEEAADDBAACowQAAgEAAAKDAAADQwQAAeEIAAKDAAADAQAAAgEEAAFRCAAAUQgAAAEIAADBCAAAIwgAAsMEAAEDBAABcQgAAIEIAAMBAAAAUwgAAGMIAAJDBAACUQgAAgEIAANjBAADgwQAASEIAACRCAACAQQAAmMIAAKxCAABIwgAAUMIAACjCAAAAwQAAEMIAAPjBAADAwAAAQMAAAIjBAACKQgAAQMIAAEBCAACQwgAAgsIAADxCAABAQAAAMMEAAEBAAADwwQAAAMEAAABBAAAkwgAA4EAAADRCAAC4QQAAEEEAAPBBAAAQQgAAAEIAAILCAACOwgAAIMEAAOhBAADAwAAADMIAAEDBAABEQgAAAMIAAJLCAADowQAAukIAAJDBAABgQQAAqMEAAOBBAABswgAA4MEAAATCAABgQQAAcMIAAEBCAABEQgAAsEEAAEzCAADowQAAFMIAABjCAABEwgAA4EAAAHxCAAB8QgAAOMIAAKjBAAAQwgAAYMEAABjCAABwwQAALEIAAPDBAABAQQAAoMAAAGBBAAAMQgAAnkIAAADBAABQwQAANEIAAMDBAACIwQAAaMIAAOhBAABMQgAA-EEAADjCAADgQQAAGEIAAADCAACYQQAAQEAAAMhBAAAMwgAAdMIAADBCAADowQAAGEIAAOhBAADMwgAAoMEAAHDBAABAQQAAgD8AAABBAAA0wgAAYMEAAIhBAABgQgAAwMAAAFDBAABwwgAAYMEAAIA_AACQwQAAXMIAAHRCAACQwQAABMIAAIDBAABUQgAAgEAAACxCAAAAwAAAAEAAAHDCAAAAAAAAJMIAAKjBIAA4E0AJSHVQASqPAhAAGoACAACYPQAAEL0AACw-AABcvgAAyD0AADs_AAAkPgAAf78AAKi9AAAkPgAAML0AAKi9AABsPgAA2D0AAEA8AADIvQAAFD4AAOC8AACGPgAAHz8AAB0_AABQvQAAzj4AAHy-AABEPgAAEL0AAHw-AAAMPgAA0r4AAHA9AACmPgAALL4AACw-AAAsPgAA6D0AAHy-AABwPQAAVD4AALq-AAD4vQAA2D0AAHA9AABsvgAAqr4AAEQ-AAAQPQAAkj4AAIq-AAA8PgAAtr4AAHw-AADOvgAAqL0AAKi9AAB0vgAAcD0AAF0_AAC-vgAANL4AABw-AABEvgAAyL0AAIg9AAAMviAAOBNACUh8UAEqjwIQARqAAgAARL4AAKY-AAC4PQAAWb8AADS-AADgvAAAoj4AACy-AAAwvQAAdD4AADw-AACAuwAAHL4AAOi9AADgvAAA4DwAAMq-AABHPwAAuL0AAKo-AADYPQAA0r4AACS-AACSvgAATL4AADS-AAD4vQAAND4AAJK-AAAQPQAADD4AAIC7AADIvQAAuD0AAKY-AACovQAAML0AAKg9AACmvgAA4LwAAFw-AAAEvgAAoLwAABC9AABsvgAAoLwAAH-_AABAPAAAFD4AAGy-AADIPQAARD4AAAQ-AACYPQAA-D0AAOg9AADYvQAALD4AADQ-AAD4vQAAgDsAAOC8AADgPAAA6D0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=h-tPxAqjTeQ","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["12641791836822785704"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3928131078"},"13825159172606627663":{"videoId":"13825159172606627663","docid":"34-5-5-ZD2F179BDCED35840","description":"Daha fazlası için: http://www.khanacademy.org.tr Matematikten sanat tarihine, ekonomiden fen bilimlerine, basit toplamadan diferansiyel denklemlere, ilkokul seviyesinden üniversite seviyesine...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/467972/6eb19a338cc440d0af036ca51e497fb3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gUmTTAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"isFull":true,"fullTextUrl":"/video/result?ask_summarization=1&numdoc=1&noreask=1&nomisspell=1&parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=videoid:13825159172606627663","teaser":[{"list":{"type":"unordered","items":["Bu video, bir matematik eğitim içeriğidir. Eğitmen, ikinci dereceden denklemlerin çözüm kümesini belirlemek için diskriminant kavramını açıklamaktadır.","Video, ikinci dereceden denklemlerin çözüm kümesinin nasıl belirleneceğini diskriminant (b² - 4ac) üzerinden anlatmaktadır. Eğitmen önce diskriminantın ne olduğunu açıklar, ardından diskriminantın değerine göre çözüm kümesinin nasıl değiştiğini (büyükse iki adet çözüm, eşitse tek çözüm, küçükse çözüm yok) detaylı şekilde anlatır. Son bölümde ise bu bilgileri pekiştirmek için çeşitli örnekler çözer ve diskriminantın çözüm kümesinin türünü belirlemedeki önemini vurgular."]},"endTime":605,"title":"İkinci Dereceden Denklemlerin Diskriminantı ve Çözüm Kümesi","beginTime":0}],"fullResult":[{"index":0,"title":"İkinci Dereceden Denklemlerin Çözüm Kümesi","list":{"type":"unordered","items":["İkinci dereceden denklem ax² + bx + c = 0 şeklinde ifade edilir ve çözüm kümesi x = (-b ± √(b² - 4ac)) / 2a formülüyle bulunur.","Bu videoda, denklemin çözüm kümesinin nasıl olacağını belirleyen b² - 4ac (diskriminant) hakkında detaylı bilgi verilecektir."]},"beginTime":0,"endTime":42,"href":"/video/preview/13825159172606627663?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=0&ask_summarization=1"},{"index":1,"title":"Diskriminantın Önemi","list":{"type":"unordered","items":["Diskriminant, kök işaretinin altında kalan b² - 4ac ifadesidir ve denklemin çözüm kümesinin nasıl olacağını belirler.","b² - 4ac > 0 denklemin iki adet çözümü olduğunu, b² - 4ac = 0 denklemin tek çözümü olduğunu ve b² - 4ac \u003c 0 denklemin gerçel sayılarda çözümü olmadığını gösterir.","Diskriminant pozitif işaretliyse (b² - 4ac > 0, çözüm kümesi elemanları rasyonel sayı olabilir, tam kare ise tam sayı olabilir)."]},"beginTime":42,"endTime":246,"href":"/video/preview/13825159172606627663?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=42&ask_summarization=1"},{"index":2,"title":"Örneklerle Diskriminant Kullanımı","list":{"type":"unordered","items":["-x² + 3x - 6 = 0 denkleminin diskriminantı -24'tür, bu nedenle gerçel sayılarda çözümü yoktur ve grafiği x ekseniyle kesişmez.","5x² = 6x denkleminin diskriminantı 36'dır, bu nedenle iki adet gerçel sayı çözümü vardır ve bu çözümler rasyonel sayıdır.","41x² - 31x - 52 = 0 denkleminin diskriminantı pozitiftir, bu nedenle iki adet gerçel sayı çözümü vardır.","x² - 8x + 16 = 0 denkleminin diskriminantı sıfırdır, bu nedenle tek çözümü vardır ve bu çözüm rasyonel sayıdır."]},"beginTime":246,"endTime":601,"href":"/video/preview/13825159172606627663?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=246&ask_summarization=1"}],"linkTemplate":"/video/preview/13825159172606627663?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"İkinci Dereceden Denklemlerin Diskriminantı","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kGuTNbgjKnk\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhYKFDEzODI1MTU5MTcyNjA2NjI3NjYzWhQxMzgyNTE1OTE3MjYwNjYyNzY2M2qIFxIBMBgAIkUaMQAKKmhoZ3pkbGFqb2JjeWh5eWJoaFVDOGhneDVoQ2l5RG1PM1VlQmw5NV8xURICABIqEMIPDxoPPxPdBIIEJAGABCsqiwEQARp4gfsK_gkC_QD3_PoHAQb9AeD9BxL9AgIA-AUN-QME_gD9_vn2AQAAAPP69Qz9AAAABAH5BfL-AQAR9gr68wAAABP-APj_AAAAAgz3Bv4BAAAOBQj-9wIAAQwP9QX_AAAA-RYI_P7_AAAAE_z_AQAAAPrlAQkAAAAAIAAt4HXMOzgTQAlITlACKoQCEAAa8AF_9w__-ObDA9AvzgDq_f8B3hoKAA4e-QDP-uUB0BrrAerh_wEC_NQA0hjnAMFH8wD8-Mn--cwCAD_F5P8fr-kC5efgATb2BAEoOSn-Gw_-APcE_f8Dw_oBFb3rACEw4f4O3xH-LvICA-wDvgIMFyYA4_saAQESKf0TsSP93O_lBQ3N1P7tKQ3_C94Q9_b0KP44yf4AEAYJ8-Ui5wLsAAf58dMl_w4UzgAPB_AHDe0DBK7SDv8J6foKFwgUBt7x6AHV8TAGyijv_e0TGggS_u_64QD2Bgnb6AESCgn-DxcWBgYN8fvs8v3_4B3r9_g67vsgAC1O_As7OBNACUhhUAIqzwcQABrAB3pR475vUSC6hTJDPFXZ9zwSVdM8-DAgveDi17x4tBA82JMGuw_S8z2Q7iy9oATRPOwzx736crA8iL0wvcVVhT5UMG-9m38qvHV0_L0vE5o9CwIQvWLerr1hGZu8vjcfPFgVJr2h3DG9FRmdvODZfj1ScU29zTdHvMoufb1J56474JcfvUPn9b1_th-9WiIBvXGxHLy0OZ69xmntvKr0Lj1HUve81B5APEE_uD3hO4u9bTrCvOrVu72ixzk8kExHvZlD9zxCPDc9O5YtvEQgvb20YD29W9VHOR-hpLtWJiE9ZoaqOw97hj3suZE9OaErvXsyWj0iFla8XNslvK35Ab5UpZI8IdHfOy03wj25RlU9-K6cPO_ks733kZs9zf26vH9lSj2_0fO8_8ygvE8U8jzELbg7XZqqO-lrET1NGn68TPIOPODsAL3gWIY8nTnaPNnN7D2A9O2911g_uo-M1T0bNAu8eyBoPEJN3zthx5q8B6AsPBlBnbvbU8087iGGPBzjs7rfPTa9t5APvMU1Qz34UQ2-CW8su5PHM72drZK9VnknPOfMUT24oIg9WX0evE7wzT1mM-e9_1cAPMR7zj2FNa-9hxWPO8MstL1URNm7To1hu4Cvkr0z8Cu7lH9SvKxysb1l4-K7f1IKvK6JAL2LH3497JF5Oi8RtD1Kmg--ilfiuYlmWT0B8ZQ90X68uHP8iz1kXcc976iwt2NpW70QDpy9r35jutkQEr1Jzei8WkKlO2BCgL2AX2i9Cs5oOX2V3D0Wbim-fDzyudWTeTxrFp48SSdYOakiprx1YkW8Q9HNuInI1Tx9P4W9R1qFOcui8LxbQh6-NwXjOSUlmD32JZs82_SDORFqS72Yw0k8sWWZOSXWOL0YzES9Hx_MOQ3SYj1TJQg7XC2yubbQOj0I0gC9JfcUN7KjzDykbDY8j1bsN4SpfD1F7xa6CwokucgoqrzlohA9DKeQOHsS2LzPBmq98aehOB7Osjy2JVc9q0lMt5_PO734AIg9sZSoN1jciT2XfS09D2ghtYgko7v1ph29SHZEOMSr0TwYXcE7Q7ZVuMJLtb2NTQI8DbpPNmfZDj3Ncl69wIanN31V07xb_SC8xtoUuHkkOT1TQUU8kZg9tpJdGT7ZT1C9rMI_uSvcE7xklQK-cT0buHX19LxZ3eq9DSPxNft5LjyD_4g9mMmgNUn3jjytUMS9c5zyuCL_7D01KQU-835buKeMZL1BRAo9eBTkuH4nzL0svIs9ySnBODoKDLvw3tE8SNeEOCAAOBNACUhtUAEqcxAAGmAh6QBz9yLr09j1BATZDNrt9uABLNnl_9ntAM0o0QAnB-Dg4gQA9goZAawAAAAKKdEQ5wDtapD-5jv3HRPZtM4CK38wAyXH7Bv72-EHDfPjAyNDEl8AGQrJAfsPqEwUJBsgAC1v5iI7OBNACUhvUAIqrwYQDBqgBgAATEIAAIA_AABMQgAAZMIAABBBAABQQQAAukIAAEBBAACAwgAAuEEAADBCAABswgAAoMAAAEDBAACgwAAA4EEAAHBCAADwwQAA2EEAAOjBAAAkwgAA6MEAAOLCAADYQQAAjsIAACzCAAAwwQAAIMEAAGBBAAAAQgAAEMIAAKBAAACAwgAAjEIAANrCAAAYwgAA4EEAAHxCAAAAAAAAhkIAAHRCAABMwgAADEIAAPDBAACgQAAAJMIAABBCAABcQgAASEIAAChCAACgwQAA-MEAAKDBAADIQQAA8EEAADBCAAC-wgAAgEEAAMBAAACYQQAA-EEAAGDCAACYwQAAwMEAABDCAADEwgAAAEEAACzCAACwwQAAiMEAAHBCAABUQgAAIEEAAHhCAACAPwAAEMIAABjCAABQwQAAuEEAAHhCAADgwAAApEIAAADAAADIwQAAUMEAAIxCAAAEwgAAgMAAAExCAACgQQAAHEIAAGRCAABEwgAAqMEAAIC_AAAgwQAAiMEAAAjCAACAQAAABEIAAIzCAABsQgAAcEEAAKBAAADIwQAAmMEAAADCAACYQQAAPMIAAFBBAACEQgAA8EEAAEBBAADIQQAAoMAAAJZCAADgwAAAgMEAAOBBAAAQwQAA6MEAACjCAAAAQQAAmMEAAJjBAACAQQAARMIAACRCAADIwQAAAEIAALjBAAAUwgAAUEEAAGBCAAAAwAAA6EEAAADBAAAgQgAAwMAAADjCAABAwQAAOEIAABxCAABAwgAAaEIAADhCAAAgwQAAIMEAACDBAABAQQAA4MAAADBBAAAoQgAAuMEAAEDAAACAQAAASMIAAJDBAACgwgAACMIAACTCAACoQQAAMEEAADBCAACgQQAAUEEAALDBAACGQgAAYEIAAIBAAACAPwAA2EEAAABAAAAgwgAAGMIAABhCAAAAAAAAUMEAAHDBAADQQgAAwsIAAFDCAADAQAAAwMEAAPhBAAC4wQAAdMIAACBCAAAgwgAAqEEAAFRCAACAPwAAuEEAALDBAAAcwgAAfEIAACDBAAAgQQAAIMEAAAzCIAA4E0AJSHVQASqPAhAAGoACAAA8PgAAiL0AAFQ-AAAcvgAAmD0AAPY-AABcPgAAQ78AALK-AAD2PgAA2L0AAAQ-AACePgAALD4AAFC9AADgvAAA2D0AAOA8AAC-PgAAIT8AAH8_AAAUvgAAmj4AADC9AAAwvQAAir4AABw-AAAcvgAAJL4AABQ-AAC4PQAAnr4AADA9AACIPQAAyj4AANK-AACYvQAATL4AAIK-AABwvQAAMD0AAGS-AAAEvgAAsr4AAHC9AADgPAAAEL0AAAy-AAAwvQAAFb8AABC9AAAkvgAA6L0AANi9AACOvgAAmD0AAG8_AACWvgAAmD0AAJo-AABwvQAAUL0AADC9AABwvSAAOBNACUh8UAEqjwIQARqAAgAAgDsAADQ-AABUvgAAU78AADS-AADYPQAAVD4AAKC8AACivgAA2j4AADw-AACovQAAbL4AADy-AAC4PQAAuL0AABS-AAAdPwAAqL0AAKo-AAAcvgAAcL0AAMi9AAAMvgAAqL0AAAS-AAA8vgAA4LwAAMi9AACovQAAUD0AAOC8AACgvAAAoDwAAAQ-AAAEvgAAyD0AABQ-AAB0vgAA6L0AAKA8AABQPQAAhr4AAEA8AAAcvgAABD4AAH-_AAAQPQAALD4AAJi9AADoPQAAcL0AAFw-AACYPQAAqL0AAKA8AAAQPQAAmD0AADw-AACovQAA4DwAAFw-AACgPAAAcD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=kGuTNbgjKnk","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13825159172606627663"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1849128959"},"15675733911184176802":{"videoId":"15675733911184176802","docid":"34-11-4-Z6B2575D58C5E45D6","description":"10.Sınıf Matematik Güncel Müfredat Konuları Dördüncü Ünite İkinci Dereceden Denklemler # 2 diskriminant delta kök bulma konu anlatım ve soru çözümü yapıyoruz. 10 sınıf matematik konularını Rehber...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4237322/5ff228fd9baf2487b6a2c83c7d5a6e6d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/O85dOQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"isFull":true,"fullTextUrl":"/video/result?ask_summarization=1&numdoc=1&noreask=1&nomisspell=1&parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=videoid:15675733911184176802","teaser":[{"list":{"type":"unordered","items":["Bu video, bir matematik öğretmeninin 10. sınıf öğrencilerine yönelik hazırladığı eğitim içeriğidir. Öğretmen, ikinci dereceden denklemlerde discriminant (delta) konusunu detaylı şekilde anlatmaktadır.","Video, discriminant'ın ne olduğunu, formülünü (b² - 4ac) ve ispatını açıklayarak başlamakta, ardından discriminant'ın üç farklı durumunu (delta \u003c 0, delta = 0, delta > 0) ve bunların denklemin köklerine etkilerini örneklerle anlatmaktadır. Öğretmen, denklemlerin çarpanlarına ayrılması, gerçek köklerin varlığı, çakışık kökler ve simetrik kökler konularını ele almaktadır.","Videoda teorik bilgilerin yanı sıra çeşitli örnek sorular çözülmekte ve öğrencilere notlarını dikkatlice okumaları tavsiye edilmektedir. Video, ikinci dereceden denklemler konusunun üçüncü dersi olup, öğrencilere ödev olarak altı soru verilmektedir."]},"endTime":2136,"title":"İkinci Dereceden Denklemlerde Discriminant Dersi","beginTime":0}],"fullResult":[{"index":0,"title":"İkinci Dereceden Denklemlerde Diskriminant","list":{"type":"unordered","items":["Bu derste ikinci dereceden denklemlerde diskriminant (delta) konusu anlatılacak ve ispatı gösterilecek.","İkinci dereceden denklemlerde çarpanlarına ayrılamayan denklemlerin köklerini bulmak için diskriminant kullanılır.","Diskriminant, ikinci dereceden denklemin köklerini bulmak için kullanılan önemli bir kavramdır."]},"beginTime":0,"endTime":109,"href":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=0&ask_summarization=1"},{"index":1,"title":"Diskriminant Formülünün İspatı","list":{"type":"unordered","items":["Diskriminant (delta) üçgen sembolüyle gösterilir ve formülü b² - 4ac'dir.","İkinci dereceden denklem ax² + bx + c = 0 şeklindeyken, x² teriminin önündeki katsayıya bölünerek işlem yapılır.","Tam kare elde etmek için ortadaki terimin yarısının karesi alınır ve denklem düzenlenir."]},"beginTime":109,"endTime":331,"href":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=109&ask_summarization=1"},{"index":2,"title":"Köklerin Bulunması","list":{"type":"unordered","items":["Denklem düzenlenerek her tarafın karekökü alınır ve mutlak değer kullanılır.","Denklemin kökleri x = (-b + √(b² - 4ac)) / 2a ve x = (-b - √(b² - 4ac)) / 2a olarak bulunur.","b² - 4ac ifadesine delta adı verilir ve denklemin köklerini bulmak için kullanılır."]},"beginTime":331,"endTime":479,"href":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=331&ask_summarization=1"},{"index":3,"title":"Diskriminant Hesaplama Örnekleri","list":{"type":"unordered","items":["Diskriminant hesaplaması için a, b ve c katsayıları denklemdeki karşılıklarına yerleştirilir.","Örnek olarak x² - 6x - 3 = 0 denkleminde delta = (-6)² - 4(1)(-3) = 36 + 12 = 48 olarak hesaplanır.","Delta'nın değeri verildiğinde, denklemin köklerini bulmak için a, b ve c katsayıları arasındaki ilişki kullanılır."]},"beginTime":479,"endTime":553,"href":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=479&ask_summarization=1"},{"index":4,"title":"İkinci Dereceden Denklemlerde Karıştırılmaması Gereken Noktalar","list":{"type":"unordered","items":["İkinci dereceden denklemin genel gösterimindeki \"a\" katsayısı ile sorunun içerisinde kendisine ait bir \"a\" değişkeni karıştırılmamalıdır.","İkinci dereceden denklemin köklerini bulmak için delta (Δ) formülü kullanılır: Δ = b² - 4ac.","Denklem çarpanlarına ayrılamazsa, önce delta değeri kontrol edilmelidir."]},"beginTime":560,"endTime":751,"href":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=560&ask_summarization=1"},{"index":5,"title":"Delta Değerine Göre Köklerin Durumları","list":{"type":"unordered","items":["Delta (Δ) sıfırdan küçük (Δ \u003c 0) ise, denklemin gerçek kökü yoktur ve çözüm kümesi boş kümedir, ancak karmaşık sayı olan iki kökü vardır.","Delta (Δ) sıfıra eşit (Δ = 0) ise, denklemin birbirine eşit iki gerçek kökü (çakışık kök) vardır ve kökler x₁ = x₂ = -b/2a'dır.","Delta (Δ) sıfırdan büyük (Δ > 0) ise, denklemin farklı iki gerçek kökü vardır: x₁ = (-b + √Δ)/2a ve x₂ = (-b - √Δ)/2a."]},"beginTime":751,"endTime":1032,"href":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=751&ask_summarization=1"},{"index":6,"title":"Örnek Sorular","list":{"type":"unordered","items":["Denklemin çözüm kümesini bulmak için önce çarpanlarına ayrılma denemesi yapılır, ayrılırsa kökler bulunur, ayrılırsa delta değeri kontrol edilir.","Delta değeri hesaplanıp durumu belirlendikten sonra, denklemin kökleri formüllerinden bulunur.","Denklemin kökleri hakkında bilgi verildiğinde (örneğin farklı iki gerçek kökü varsa), delta değeri durumuna göre çözüm yapılır."]},"beginTime":1032,"endTime":1290,"href":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1032&ask_summarization=1"},{"index":7,"title":"Denklemlerin Kök Durumları","list":{"type":"unordered","items":["Denklemin gerçek kökü olmadığı durumda, delta (Δ) sıfırdan küçük olmalıdır.","Delta sıfıra eşit olduğunda birbirine eşit iki kök bulunur, delta sıfırdan büyük olduğunda ise birbirinden farklı iki kök vardır.","Denklemin simetrik iki gerçek kökü varsa, b değeri sıfır olur ve a çarpı c değeri sıfırdan küçüktür."]},"beginTime":1291,"endTime":1322,"href":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1291&ask_summarization=1"},{"index":8,"title":"Denklem Çözümleri","list":{"type":"unordered","items":["Denklemin gerçek kökü yoksa, delta (Δ) = b² - 4ac ifadesi sıfırdan küçük olmalıdır.","Simetrik kökler, birbirine tam ters işaretli olan köklerdir (örneğin 1 ve -1, 5 ve -5).","Çakışık iki kök durumunda delta sıfıra eşittir ve denklemin birbirine eşit iki kökü vardır."]},"beginTime":1322,"endTime":1662,"href":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1322&ask_summarization=1"},{"index":9,"title":"Yorum Soruları","list":{"type":"unordered","items":["Yorum sorularında denklemlerin kök durumları ve delta değerleri incelenir.","Denklemin gerçek kökü yoksa delta sıfırdan küçüktür, farklı iki gerçek kökü varsa delta sıfırdan büyüktür."]},"beginTime":1662,"endTime":1725,"href":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1662&ask_summarization=1"},{"index":10,"title":"İkinci Dereceden Denklemlerde Delta Analizi","list":{"type":"unordered","items":["İkinci dereceden denklemlerde delta (Δ) formülü b² - 4ac olarak hesaplanır.","Denklemin kökü yoksa delta sıfırdan küçük olmalıdır (Δ \u003c 0).","Denklemin iki farklı gerçek kökü varsa delta sıfırdan büyük olmalıdır (Δ > 0)."]},"beginTime":1728,"endTime":1870,"href":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1728&ask_summarization=1"},{"index":11,"title":"Denklemin Kökleri Hakkında Doğru İfadeler","list":{"type":"unordered","items":["Delta sıfırdan küçükse (Δ \u003c 0), denklemin karmaşık iki kökü vardır.","Delta sıfıra eşitse (Δ = 0), denklemin çakışık iki kökü vardır.","Delta sıfırdan büyükse (Δ > 0), denklemin iki farklı gerçek kökü vardır."]},"beginTime":1870,"endTime":1962,"href":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1870&ask_summarization=1"},{"index":12,"title":"Denklemin Köklerinin Tanımlanması","list":{"type":"unordered","items":["Denklemin kökleri x₁ ve x₂ için x = (-b ± √Δ) / 2a formülüyle bulunur.","Kök delta (√Δ) ifadesi, delta sıfırdan küçükse tanımlanamaz.","Delta sıfırdan büyükse kök delta tanımlanabilir ve gerçek kökler elde edilir."]},"beginTime":1962,"endTime":2010,"href":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1962&ask_summarization=1"},{"index":13,"title":"Denklemin Kökleri İçin Koşullar","list":{"type":"unordered","items":["a × c \u003c 0 koşulu, delta'nın her zaman pozitif olacağını sağlar.","Delta pozitif olduğunda, denklemin gerçek iki kökü vardır.","a × c \u003c 0 koşulu, delta'nın sıfırdan büyük olma ihtimalini tamamen ortadan kaldırır."]},"beginTime":2010,"endTime":2115,"href":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=2010&ask_summarization=1"}],"linkTemplate":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Diskriminant | İkinci Dereceden Denklemler 2 | 10.Sinif Matematik MatBook","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XP3hxuIaChI\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhYKFDE1Njc1NzMzOTExMTg0MTc2ODAyWhQxNTY3NTczMzkxMTE4NDE3NjgwMmqIFxIBMBgAIkUaMQAKKmhobHNucmNlbmhvcmlwaGNoaFVDenhqOVNLa0x1RGhkeFNEWHhjbXdxURICABIqEMIPDxoPPxPYEIIEJAGABCsqiwEQARp4gff-_AD-AwD69P8CBAX-AQcDCQn4__8A5gME_Qj9AQAB8QT_-gAAAO4E7gT9AAAAAPvyDPn-AAAFBgf4-AAAABL-APj_AAAADA3wAv8AAAD8Dw74AgAAABMRAQr_AAAAAg8RBP8AAAATEvz4AQAAAPnyAgYAAAAAIAAtAFPbOzgTQAlITlACKoQCEAAa8AF_Gwr_twvXAMIC5QHLE7MAsAYj_w_m9AC55DMApfHzAMYTHwD5EOkBtvkOAeobAv_798L-6Nr6ABbPBgC2_9YB7yQGASmoIwBV8AYA7dwW_q_1HP384AIAFeX7_ygd8_3XGv39Xffb_-XRzwAO8Sj_EzovA8vlJAPZ9-7_5R7IAt700PyxERYD_c0cANHYEgDhHt0CJAzv-swd0QAS8OQAEc8P-zI27AJHEv4O9f3uBa_D7QXi9gcDCyAUBfEC4Pfw8_7y5KoTBBrg-gwZD_rtAgcEDPzb8AwV6O8C9PwGCwjfC_G0DvgH2Nfz9fPi7uMgAC3uWvk6OBNACUhhUAIqzwcQABrAB9HPnL61kzc90R4vvZwBibzj1Ji8OO1uveCg_b0uDKY7BZEevBR2ET7fDt68Jr6DO_aWYr4FeIE8eT8NvJ1Ggj5_Fku8vhLIvBzh3TupxuQ7lXIovRd-AL7qYDg9-a63PI7IJz7zRGY9sGgjvKA0xD2m1VC9Ef_WObqFHr5QaJ692OIJve56Kb7cy6e9Rn1tvDC5wb04zoe9ZLK0O1ZOFj3P1zE9hU8EvBasJzxxtak8-8Qmu6XiOr3BKii8V6lKvdvvij1jwym97BjTO0gcjb0ndZe6ynIvu82aTj3H0xe9RYBTvPdJJL20PoA8UNMdvclPdDy7ZaK8TweyvDJ9qr33iYg9cXxlu-DlyL2mIrq8c17IPB093r2-wAw-uwgLus1hMj1lUVg8-05dvKHbBj0L6Ko955F9u_6cMj6ZZr857C-eO21eCz2JTXo9EGIhO5HE_bs00OE83eGAvFltXj2zkVA9pzt0PKo-HbzXrKm8nU4WOs9PLL2HDHU88nwCOzo7Pj0Y7RG9ESJwuy3KET1fF4S9mkPzO7INsb12u-i8f4-TO-Dpn7w6OL095uUwvNsxJT7doZc8otMQOwZ1y73vHYW9YRZVucM-mz0TjzW9JSQSPAjb2byRyp48oB42vPDVlju3HzU9Yp3Puzppa700BzI94BKdO0WlDD1w7m89zf5lOz8IPL0rFr-8O-9WuzarDj5hwKc9kHtousJM2z07Hei9ds_YOSsbUT2nraa95-DbugcuBzyhwgy9xMmBu9FIyj0L6oC8ju3guAwSET0qUgK7HkeVODni-7tYAR-8b3OsOSwWyj2F2BG8JnuLuVxUC72cFfG93J51Obp2mDyKKYc88FTZuj1-7zxataA9nQwvucwgw73UDQS-CFOFOeIMub3pIio8ZJo9uMaoCz6sIIG9bYiZOOzbC7y27Ji7H0UvujNWtrxonec8SGyfOLHzyz3heek93RKDNw9k-zucxea8o5CcuHMYBjxOlj891tyTN_SAoz1u2Ua8MaRROG2TBT2ICCk9P_UJuZjcmD13cOY8JflANwH-BD1mXwO8VtRPOPWisb2obP28Z7CauCPRsLxyU8O84xA7uHzhhDw3_LC6bMzUNiZmZ71NnME88j8JOJJdGT7ZT1C9rMI_ubiFmL0_ggu8wg_etxVvSb0p7BK-tN5MN-GZkDxVm6k9vZm4t6T3kr2ejFu9_cbxtyL_7D01KQU-835buCmeabx4zZA9oeaauK4pMD3Z0B0-3mDBt42R9Doexws8WvCXOCAAOBNACUhtUAEqcxAAGmAd1AA_7__q3QH8Bw7YFwTl1OXIKPH5AOgBAPMU6dwVJPrlDP0AD_nr5b8AAAANB_kECQDUULgF-Q8BGfPnwPDwFX8tAjHa_EMA6-s__-L7HP_e_w8AJQG59SQ-0R82CSUgAC1_q0g7OBNACUhvUAIqrwYQDBqgBgAAkEEAACDBAAD4QQAAiEEAAODAAABswgAAsEEAAOBBAAAcwgAA8MEAAIBAAACAPwAAlsIAABTCAAC0QgAAiMIAAIhBAACAwgAAYMEAAOBAAAAoQgAAisIAAPhBAACYQQAApkIAAKDAAAAAwgAAQMIAACBBAACowQAAhMIAAKBCAABMwgAAoMAAAAjCAACAwAAA4MAAAN5CAADYwQAA4MAAABhCAAAAwQAAMEIAAHBBAAAwQQAAMEEAAGTCAABAwgAAwEIAALDBAADYwQAAEMIAAABBAADIQQAANEIAAPBBAAA4wgAAYMEAAOBAAABAQAAAUEIAALBBAADAwAAAnMIAALhBAAAQwQAACEIAAIA_AADgwAAAoEAAAEBCAAAcQgAAXMIAAGRCAADQwQAAAMIAABTCAACAwQAAgEAAAJ7CAABAwgAAkMEAACRCAACUQgAAIMIAABzCAADQwQAAcMIAAIC_AABAwAAAQMEAAGBBAACYwQAAEEEAAAhCAABQwgAAAAAAADBBAADgQAAAgMAAAJDBAACgQQAAnkIAAN7CAAC4wQAA0EEAAKBAAACEQgAABEIAAARCAADQQQAAwsIAAAjCAAAwwgAAHEIAACTCAABAQgAAoMEAAPBBAAD4wQAAoEAAAHDBAACowQAAcMIAAIZCAACIQgAAAAAAAEDCAACwwQAAisIAAKDBAADAQQAAAMAAACRCAAAoQgAA4EAAAADCAABAQAAASMIAAJbCAADYQQAAiMEAALBBAAAAAAAAUEEAACxCAAA0wgAAcEEAACDBAAD4wQAAQEAAAIDAAACIQQAATMIAAABCAACQwQAAgMAAAMrCAABgQQAAXEIAAIDBAAC4QgAAXMIAAABAAAAAwAAALMIAAGhCAADAQQAAEEEAACDBAABAwgAAIEEAAFDBAACYQQAAQEAAAEBBAACoQQAAeMIAAIhCAACIQQAA4EAAAFRCAAAwwgAAbMIAAGhCAABAQQAAfMIAAMDAAAA8wgAAAEIAAIDCAACAwQAAREIAANBBAACgQAAAQEEAAODBAAAQQQAAfMIAADTCIAA4E0AJSHVQASqPAhAAGoACAAAsPgAAUL0AAGQ-AABcvgAAmD0AAB0_AADYPQAAf78AACy-AACGPgAA4DwAAES-AABMPgAAJD4AAJi9AABMvgAAVD4AAJg9AACCPgAACT8AAFU_AACIPQAAkj4AAFy-AABQPQAA2L0AAEQ-AAAUPgAAor4AAJg9AACiPgAArr4AAKg9AAAEPgAALD4AADS-AADYPQAAVD4AAGS-AACSvgAABD4AAMg9AACKvgAAmr4AAKA8AAAwPQAA6D0AANi9AAAsPgAAsr4AACw-AAAMvgAAFL4AAKi9AAA8vgAAMD0AAGE_AAAUvgAABL4AAFQ-AAA0vgAA4LwAACw-AACovSAAOBNACUh8UAEqjwIQARqAAgAAbL4AAIo-AAAsPgAAYb8AADy-AACAOwAAmj4AAMi9AABwvQAAXD4AAAw-AABAvAAALL4AAHC9AACYvQAA4DwAAKK-AAA_PwAAML0AAMI-AAC4PQAAvr4AAGy-AACOvgAANL4AAJq-AABwvQAABD4AAGy-AADIPQAADD4AAIA7AADgvAAAuD0AALY-AADovQAAEL0AABw-AACevgAAcD0AADw-AAAUvgAAQLwAAHC9AACOvgAAQLwAAH-_AAAMPgAAFD4AADy-AAAUPgAAPD4AAFw-AABwPQAAyD0AAOg9AADIvQAAND4AAFQ-AAAsvgAA4LwAADC9AACAOwAALD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=XP3hxuIaChI","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["15675733911184176802"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1852902555"},"3080068688509813275":{"videoId":"3080068688509813275","docid":"34-10-15-Z80C466793790779A","description":"BUders Üniversite Sınavı Matematik Hazırlık konu anlatım videolarından \"Diskriminant Nedir?\" videosudur. Hazırlayan: Kemal Duran (Matematik Öğretmeni) http://www.buders.com/kadromuz.html...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2835853/7f831b954899f8ad8fd3ac750e82e358/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jxmzNAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"isFull":true,"fullTextUrl":"/video/result?ask_summarization=1&numdoc=1&noreask=1&nomisspell=1&parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=videoid:3080068688509813275","teaser":[{"list":{"type":"unordered","items":["Bu video, matematik eğitimi formatında bir ders anlatımıdır. Eğitmen, ikinci derece denklemlerde kullanılan discriminant kavramını açıklamaktadır.","Video, discriminantın ne olduğunu, formülünü (b² - 4ac) ve iki temel görevini anlatmaktadır. Discriminantın ikinci derece denklemleri çözmede ve denklemin köklerini çözmeden kökleri hakkında bilgi vermede kullanıldığı belirtilmektedir. Eğitmen, discriminant hesaplama örnekleri vererek konuyu pekiştirmekte ve bir sonraki videoda discriminant ile kökler arasındaki ilişkiyi ele alacağını söylemektedir."]},"endTime":454,"title":"İkinci Derece Denklemlerde Discriminant Kavramı","beginTime":0}],"fullResult":[{"index":0,"title":"Diskriminant Kavramı","list":{"type":"unordered","items":["Diskriminant, ikinci derece denklemlerde karşımıza gelen bir kavramdır ve denklemden elde edilen bir sabit değerdir.","Diskriminant, ikinci derece denklemin katsayılarından (a, b, c) elde edilen değerdir ve küçük üçgen (delta) sembolü ile gösterilir.","Diskriminantın formülü b² - 4ac şeklindedir ve her ikinci derece denklemden elde edilebilir."]},"beginTime":1,"endTime":80,"href":"/video/preview/3080068688509813275?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1&ask_summarization=1"},{"index":1,"title":"Diskriminantın Faydaları","list":{"type":"unordered","items":["Diskriminant, ikinci derece denklemleri çözmede önemli bir rol oynar.","Diskriminant, ikinci derece denklemin kökleri hakkında bilgi verir, yani denklemi çözmeden kökleri sağlayan x değerleri hakkında bilgi sağlar.","Diskriminantın iki temel görevi vardır: ikinci derece denklemleri çözmeye yardımcı olmak ve kökleri hakkında bilgi vermek."]},"beginTime":80,"endTime":167,"href":"/video/preview/3080068688509813275?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=80&ask_summarization=1"},{"index":2,"title":"Diskriminant Hesaplama Örnekleri","list":{"type":"unordered","items":["x² - 7x + 4 denkleminin diskriminantı 33'tür (b² - 4ac = (-7)² - 4·1·4 = 49 - 16 = 33).","x² + 9 denkleminin diskriminantı -36'dır (b² - 4ac = 0² - 4·1·9 = 0 - 36 = -36).","x² - 6x + 9 denkleminin diskriminantı 0'dır (b² - 4ac = (-6)² - 4·1·9 = 36 - 36 = 0)."]},"beginTime":167,"endTime":383,"href":"/video/preview/3080068688509813275?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=167&ask_summarization=1"},{"index":3,"title":"Diskriminantın Önemi","list":{"type":"unordered","items":["Diskriminant, ikinci derece denklemlerden elde edilen bir sabittir ve formülü b² - 4ac'dir.","Diskriminant, ikinci derece denklemleri çözmede fayda sağlar.","Diskriminant, ikinci derece denklemleri çözmeden kökleri hakkında bilgi verir ve bu bilgiyi yorumlamak en değerli kısmıdır."]},"beginTime":383,"endTime":450,"href":"/video/preview/3080068688509813275?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=383&ask_summarization=1"}],"linkTemplate":"/video/preview/3080068688509813275?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"LYS Matematik Hazırlık : Diskriminant Nedir? (www.buders.com)","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XfAKVNWPNa8\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhUKEzMwODAwNjg2ODg1MDk4MTMyNzVaEzMwODAwNjg2ODg1MDk4MTMyNzVqkxcSATAYACJFGjEACipoaGh6Y2VoamZ4ZWhieGxiaGhVQ2xLQmQtNHhGVm9kRm1LM2JaZkpBQVESAgASKhDCDw8aDz8TxgOCBCQBgAQrKosBEAEaeIH7Cv4JAv0AAQwEB_gI_QL4AAUK-f39AO0E_PgFAAAA-_0H7v0AAADpA_sM_QAAAAD78Q34_QAAC_UAAfkAAAAXBv3w-wAAAAIV8_f_AQAAChEC_gP_AAAJBQQB_wAAAPsaAwn_AAAACwAAAQAAAAAA7_oOAAAAACAALeB1zDs4E0AJSE5QAiqEAhAAGvABf_8eAMb6yP_WFNoA0v_0AaAOH__8O8wAsubw_5wWwv7BIfgA-wD4_t8UKQGsFer_FtOqA9Xh6gFD1_sAKs3sAQj-EgEK4O4CZe88AxwE8f_sIyIAB-0KAvLVqQDnH-D-FeoIARAN0wHqBLkCEf5HAfsdK_8a8yYCvMYxCOjZ8vf2977-BRr9BtzB9fv-EyMDDMn8_vH2-ffDJej_COcS9P7aGvwJNM_9CunkCSkEAf7j-iURG-D4AyAUCxLqMPUJ3MErB9cUCvng3gv2MucIBtAI3woK7PMJJwn8B_X8Bgsd4vPxyQEB-_YkBQ3iHNrwIAAtOBwCOzgTQAlIYVACKs8HEAAawAcHB9u-eQOMPMpnMTqagpu9qbUXvAMFXr0U2pi9J095PQsRibtNMhI-mYm9PGOH57yhSHe-c1a6PKQ2Mb39vXQ-klRLvQOx7Dx1dPy9LxOaPQsCEL1MxDu-gpxFu1Yy17rc9RI9kQvOvKAHELurTaI9VNwdvQl2Er0kuiK9CQyDvUvqJL2JR_28k52ovWtwEb1uMLk82QVIvWqhxzuGHnE9T5snvdWCLb2Hr-U894Q2vN2grLzWMTO9jVL4PDQ_yLwfZxo9hmboO7M8k7pCJpm9ykBBOk_RLL0gpvO8GojlvM9l6js27DI9AA0FPcTSO73Ywgc9RMeZvfI7srwmNfS9fgMuPau6Aj3shu09jPeDPXJbkTvv5LO995GbPc39urxDebo8t1I5vaygM7z0NOA9OJPAPXcCUDzQgJU9Q5CDPMF9kbtyE_e7LLmKPHMyzDwgS6o9qBb2vFx2iLygm4c9CPh_PGu-iLuNm5q9c5U4Pez7i7xtjjM9Vfo9OqSLzbs_vPg8eUWLPA6zYTyblQi9CHYMvs2l4bv6WKa9y1CQvR2nrrsCZwQ9KE80PCJAHztZh8M9Cs9VvfSCUzs30kO9VcJyuwK6TLtB2Ak9QliiveQ_IrpQAqa9eh9CPQTBSrvYv8a8xN5VPH_xMbypq1a9kwEgPqGKTLmg-qi7e8BcvYRRpLubG6g9x8mzO06oFjv7m2s99gtWPQ4rJ7pp5NM9ydK9vFKwBrhUYaK8nP0Bvczhxbo7sQK9y_OgvLNxTLttA9c9taPYvQyfrzkmA1s9aXFGvPKEczsb6qG9sluVPSzZmTjxXtq8j38wPBGpcrlcVAu9nBXxvdyedTm4Q-A7iowzvE0kPLmd-8Y8deENPGQSmLlff729Hxg7vQjVN7k4lqA6Av7fPODFSLf-8pk9zNVqu6_VxDiyo8w8pGw2PI9W7DfRuny9J3U4vJg2VTmsuru6UMiOPWTM-jdB8QM9cU_Bvdc4eznOr8E8SZPMPd9Eh7iYmeO6nWYDvC_wErY8sG09JO2LPcJGr7jTzwg8ZjHRvT5LlzZP0aw9w40KPancibjK4QO-ENcePJf9TjddvwA9vxkLvclyYji3aeI8mk6hvOE9sLhhXva8_U_ZPJTiUTj3ASg-cGHdvfFnv7msG0-9cABivXH6orgNn7o7z1xRvaFFrrZAkIK9prxxPaB-9bYm3JC8FjAxvkGgWrnK9HA9IuErPvHLijiYk2U7gAvSPZjkD7mYD4293R-EPYzD0TcQvyy951ovPS2mZDggADgTQAlIbVABKnMQABpgDOkATub6s9v1Gvzv1gX-3erJuhO68__55P_hLNne8vux2O4PAO30_sidAAAAPtfDIAIAA3-g4Q1IAQsRssXR_jZxUOs1uQQ19sPvKfi59BA1M-1EAAzIvQJEGcUaEfBEIAAtEuATOzgTQAlIb1ACKq8GEAwaoAYAAEBAAADAwQAA2EEAALDBAAAIwgAAVMIAABBCAACAvwAAEEEAAIDAAAAQwgAA8EEAAGRCAABgQgAA4EAAACBBAACKQgAAOMIAAEBAAAAwQQAANEIAAPjBAACgwgAA0MEAABDBAADAQAAAQMAAAIA_AACoQQAAGEIAAEjCAABYQgAAQEAAAPBBAABUwgAAAMEAAARCAACoQQAAgEIAAHDBAAAAAAAAQEEAACxCAABAwgAAZMIAAJhBAACYQgAAuMEAAABAAADYQQAAOMIAAHjCAAAEwgAAsEIAAAAAAAAQwQAAGEIAAAjCAABwwgAAWEIAAAjCAAAYwgAAkMEAACTCAABwQQAA-MEAACzCAABAwgAAXMIAABDBAACgQQAAoEEAACDBAACoQQAAkEEAAGTCAADQwQAA0MEAAIBBAAAMwgAAEMIAABxCAAAEQgAAwMAAAGBBAAAgQQAAwEAAAMjBAABAwAAAOMIAAIjBAACQQQAA8EEAALbCAADAQQAA2MEAAADAAAAoQgAAhEIAAHRCAACuwgAAhEIAABBBAABwwQAA6MEAAGxCAAAQwgAAPEIAAGzCAACUQgAAwEEAAATCAACgQQAAbEIAAAjCAADYwQAA-EEAABTCAACIQQAAUMIAAJDBAABQwQAAoMEAAPDBAADYQQAAOMIAAIDBAADAwAAATMIAAHDCAAAAQQAAuEIAAABAAAAwQgAAgD8AAHzCAADgQAAAIMIAAMjBAACYwQAAiMEAALjBAABQwQAAwMAAANBBAACSQgAAwEEAAEBBAADSQgAAiEIAADzCAABQwgAAHEIAAFRCAABQwgAAAEEAAKDBAABgwgAA2EEAABBBAADAwgAAuEEAABBCAACAPwAANEIAACxCAAB0QgAALEIAAGBBAABwwQAAgMAAADBCAACIQQAA4MAAAPjBAABAwAAAwMAAAJTCAACAvwAAokIAAIDAAAA4wgAAUMEAAMxCAAAoQgAA-EEAALBBAAAUQgAAGMIAAGTCAAD4wQAAmMEAADjCAAAAQQAAisIAAGBCAACgwQAAkEIAANDBAAB0wiAAOBNACUh1UAEqjwIQABqAAgAAUD0AAAy-AAD4PQAAuL0AABS-AAAhPwAAuD0AADG_AAAkvgAAzj4AAHS-AADoPQAAVD4AAEw-AAAQPQAAoLwAACw-AAAMvgAA_j4AAH8_AAB1PwAA4DwAABM_AACyvgAAHD4AAHS-AAA0PgAA4LwAAA-_AABcPgAAZD4AAI6-AACWPgAAHD4AAEQ-AAAPvwAATL4AAKg9AAAXvwAAQDwAAHA9AAB8vgAAcD0AAAG_AADoPQAAFL4AADA9AADmvgAAED0AALq-AACqvgAApr4AANi9AADYvQAARL4AANg9AAB_PwAABb8AAAS-AAA1PwAAgDsAAFQ-AACgvAAAML0gADgTQAlIfFABKo8CEAEagAIAAIA7AACWPgAAmr4AAFG_AADSvgAAiD0AANY-AABQPQAAFL4AAO4-AAA0PgAAPL4AAJa-AAA8vgAAgDsAAFC9AAD4vQAA9j4AADy-AADGPgAA-L0AADC9AABcvgAAqL0AAPi9AAAQPQAAgr4AAHA9AABUvgAAJL4AAKA8AABQvQAAUD0AAIC7AABwPQAAHL4AAAw-AADIPQAALL4AADC9AAAEPgAAqD0AAFy-AACgvAAAVL4AAAQ-AAB_vwAAmD0AAEA8AADYvQAAUD0AANg9AABUPgAAHD4AABC9AACIPQAAcL0AAMg9AAAMPgAAHL4AAEC8AAAcPgAAgDsAAEw-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=XfAKVNWPNa8","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":596,"cheight":360,"cratio":1.65555,"dups":["3080068688509813275"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3088593683"},"16408323450376813422":{"videoId":"16408323450376813422","docid":"34-3-0-ZE9EB1824A2700F9E","description":"Rehber Matematik' te üç madde bizler için çok önemli; 1-Tanımlar 2-Kavramlar ve en önemlisi 3-İspatlar. İşte bu serimizde Kara Tahta başında en temelden başlayarak en karmaşık ispatlara kadar...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2274928/1972b52703a66c8e6360fe543f6ecfaf/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ZqeB6wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"11","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"isFull":true,"fullTextUrl":"/video/result?ask_summarization=1&numdoc=1&noreask=1&nomisspell=1&parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=videoid:16408323450376813422","teaser":[{"list":{"type":"unordered","items":["Bu video, Mehmet Hoca tarafından sunulan bir matematik dersidir. Hoca, kara tahtada ikinci dereceden denklemlerde kök bulma formülünün ispatını anlatmaktadır.","Videoda, ikinci dereceden denklemlerin köklerinin nasıl bulunacağı adım adım gösterilmektedir. İspat, denklemin her iki tarafının x² katsayısına bölünmesiyle başlayıp, tam kare ifade oluşturma, paydaları eşitleme ve karekök alma işlemleriyle devam etmektedir. Sonuç olarak, ikinci dereceden denklemlerin köklerinin x = (-b ± √Δ) / 2a şeklinde bulunabileceği ispatlanmaktadır."]},"endTime":294,"title":"İkinci Dereceden Denklemlerde Kök Bulma İspatı","beginTime":0}],"fullResult":[{"index":0,"title":"İkinci Dereceden Denklemlerin Köklerinin İspatı","list":{"type":"unordered","items":["Mehmet hocanın kara tahtada ispat serisi devam ediyor ve bu sefer ikinci dereceden denklemlerin köklerinin ispatı yapılacak.","İkinci dereceden denklem a≠0 olmak üzere ax²+bx+c=0 şeklinde ifade edilir.","İspatın ilk adımında denklemin her tarafı a'ya bölünerek x²+(b/a)x+(c/a)=0 şeklinde düzenlenir."]},"beginTime":2,"endTime":52,"href":"/video/preview/16408323450376813422?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=2&ask_summarization=1"},{"index":1,"title":"Tam Kare İfade Oluşturma","list":{"type":"unordered","items":["Tam kare ifadeyi hatırlatmak için (x+3)²=x²+6x+9 örneği verilir, burada 6x birinci ile ikincinin çarpımının iki katıdır.","Denklemde tam kare ifade oluşturmak için (b/2a)² terimi eklenip çıkarılır.","Denklem x²+(b/a)x+(b/2a)²=(b²-4ac)/4a² şeklinde düzenlenir ve sol taraf (x+b/2a)² tam kare ifadesine dönüşür."]},"beginTime":52,"endTime":157,"href":"/video/preview/16408323450376813422?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=52&ask_summarization=1"},{"index":2,"title":"Kök Bulma ve İspatın Tamamlanması","list":{"type":"unordered","items":["Her iki tarafın karekökü alınarak |x+b/2a|=√(b²-4ac)/2a ifadesi elde edilir.","Matematikçiler tarafından b²-4ac ifadesine \"delta\" (Δ) adı verilir.","Mutlak değerden çıkarak iki kök bulunur: x₁=(-b+√Δ)/2a ve x₂=(-b-√Δ)/2a."]},"beginTime":157,"endTime":276,"href":"/video/preview/16408323450376813422?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=157&ask_summarization=1"}],"linkTemplate":"/video/preview/16408323450376813422?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"2.Dereceden Denklemin Kökleri ve Diskriminant İspat | Kara Tahta 7","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=b7l8Qh3eSNY\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhYKFDE2NDA4MzIzNDUwMzc2ODEzNDIyWhQxNjQwODMyMzQ1MDM3NjgxMzQyMmqIFxIBMBgAIkUaMQAKKmhobHNucmNlbmhvcmlwaGNoaFVDenhqOVNLa0x1RGhkeFNEWHhjbXdxURICABIqEMIPDxoPPxOmAoIEJAGABCsqiwEQARp4ge4F_AUB_wD99vYM-An9AvLwCwT8_v8A9f8KAAcC_wD59Pj7-AAAAP309QoHAAAAAwH5BfL-AQAW_Qz2BAAAAAz3_-8AAAAA-Ab5AP4BAAAOBBP5AgAAAAwP9QX_AAAA-xoDCf8AAAAAEvz_AQAAAPvlCv4AAAAAIAAtaizPOzgTQAlITlACKoQCEAAa8AF_-_QBxgngAOcK7QAAEOAB4fAfACj_2QC98goA-vfEAf4W9AC8DOwA-BsCAL0HAf8bAccA-tICACfZDQAaMvn_6xzzACzmAgBTKgQAB-bt_sXhIADz2AX-J-PaAlYg0f7-5iYAEQP9AwrsvQgWAxwBBPkaAgwDFQH7Gef-1hQCAe3f2_7iDAoDAtj_-uXZJAP96_j_LiYH_QkV-wr7wNwBGckT_Qcr2P4n3PcB9QTl98DQ8QTfDPUL_CMZCgj84Qbe_wv07uYR-ggLCP8P7_j41w_8APvpBQgUAhgDDcwLBPDi7vcHCgEF-A36_Q4U9fEgAC1jyx07OBNACUhhUAIqzwcQABrAB3HMur7mrws6R-EhvDXatT1NTzM8K8glvaoFWz0daxA9HIbFvP8j0z3BUl08mgucPJZdUL6Q7Nu8iSimPC0LVj6wily9QS0mvYbjCb7fIPU8rAEqvfNZDr44bzc9dvssuwmH_j19_Xo9OLgZvb64eTtXLBS9Q9j6vOo2Er1TFJ69J0z7u12psr3BnCq9PR5EvD_lyL2R7Ty9vx6dvFZspz3_CMM81VLKvAk9gT0iYZ49qhXBPOr2KL3fWty80-OtvCvZ8T09fQS9LwFTPEq4i72tMtO8R1ACvPkpU70EAwg8b7l6PFpAMr2Lmrk9zHICvF1OLj0xA_q8rXesO52dDL6-EV28lXY0vDDY7b1-EY49aFL1O6Fdj7zJdwk-B9IkO6Rupzz90kc8Frq3vEsXBz3_iRs9NM9bPP6cMj6ZZr857C-eO3bhB70qMp89GbRrPFEzv7zFVlA90Ui6vPTtvr2VRuw97CDIOnyddL02wgw9on3XOVTmBr3JfWY9FbnWPMzJpT3Xfpc8hf6yO99mxj05tfO9hx8YPPnj7rtbYfq9hQK-O1RjE715rHk9aTGmuU7wzT1mM-e9_1cAPOE7xr2qneG9cpKcuz2RcT34YS69-eaKu7HrLb1rira8Xt1KO_x_Jr0ASm09kpbnu69meLwtN5I9nlUPOyTzBDw4LK29KbXyu5UF3bz5lrM9t2OHuqiS3Dw7wLg9RcYqupYvHj2u2I-99j_hukpKFb0xWsy9siNVt-9lrLxYbSO9LE8cO-JbmD26JJi8HZ97OVIljz3OpT29fnIFOI6imL15t2i9BOm9OWRssjxcA9u94KQUuSexmDtNoIi9ZLBsOl3aNT0BDoa8QDpauTcNmz1Rxzk9uSM-N0oLF74K3Jq9qarhtrsg7Ly3FCa93cbXN4DM2Dx_6mm9LFR4ONUCAD368t08x6I3uF5ryj01ptm5RwOouWzp8T1Wix49ECUmOasmiD3Pt5q9-5-HOe1EST1b7PY843xnOFSl0rwfzMc9ctVYtwa997zF0cu8NP5lOL-1uD2dmWS5XB06uJRfR7oNZwY8HjFlNy90YD1p3ha9MeUcOWbeBT3oWgk8Ey1uN6VSRzxggT69v-bSN0GOd72iDBU9lsz7Nzpd1j3sSo07HPtJuS6DG714KfW8WSWluAaoX7wbng6-mX_AN_t5LjyD_4g9mMmgNc64er15IR29_0fqtyL_7D01KQU-835buJ9b5DsVIvs8CcbAuLPp7TxKx0Y9gZLItig1qrwz3CC9FZJMNiAAOBNACUhtUAEqcxAAGmAn0QBGBi7j6AnfCRPnLOjm6N7bI-QC_9oA_98r0hAQDOvZ8e8ACAUg6asAAAAb5cz8FwDpX9QH5i3TOOnHrvrMFX_9CzjY-Cca-sHrN97uPBQQNhUABR6r7S0PzCQ1KicgAC1uYS07OBNACUhvUAIqrwYQDBqgBgAAgD8AAHBBAADoQQAADEIAAJjCAAAAQgAAyEEAAGDBAAAgwQAAoMAAAIC_AACAwAAAIMIAAJjCAABQQQAAMEIAAHBBAABwwQAAQEEAAKjBAADyQgAARMIAAATCAADAwAAAwEEAANjBAACcwgAAEEEAAMBBAADAQAAAIMEAAJhBAACIwQAAjEIAACTCAABIQgAAEEIAAERCAACYQQAAAMEAAJDBAADYQQAAAAAAAOBAAADwwQAA4EEAAEBAAABgQQAAJEIAABzCAACgQAAAoMIAAMBBAAAUQgAAwEEAADxCAADgQAAAYMIAAMhBAADgQAAAgMAAACjCAADIwQAAKMIAAKjBAAC8QgAA4EEAAPBBAABwwQAAoEAAABxCAABgQQAAaMIAALZCAABMwgAALMIAADTCAACQwQAAIMEAAIDCAABAwAAAREIAAADAAACoQgAAYMEAAODAAACCwgAAuMEAAIA_AAAcwgAABEIAACBCAABwQQAAFMIAAODAAAAYwgAAgkIAACBCAACwQQAAgEIAAEDBAAAEQgAAjkIAAHTCAACgwgAAgD8AAHxCAAAAwQAAJMIAAJBBAACwQQAARMIAAJDCAACgQAAA7EIAADDCAADgQQAAMMIAAKhBAAAwwQAAgEEAAMDBAADgQQAAmMIAAEBCAACeQgAAiMEAAHjCAAAkwgAACMIAAKjBAAAYwgAAcEEAAPhBAAAAwQAAAMIAAFDBAABUwgAAYMEAAAjCAADgQQAAMEIAAAAAAABQQQAAyEEAABhCAACQwQAAyEEAACDCAABwwQAAoEEAAPBBAAAMQgAApsIAALBBAAAAwQAAKEIAAL7CAACIQQAANEIAAAAAAAAAQAAAoMEAAPhBAAC4wQAAXMIAAMBBAABgQQAAaEIAAABAAACUwgAAGMIAACRCAABAQAAAIEEAAABAAACAwAAAwMAAAADBAADiQgAAlsIAAFTCAAB8wgAAgL8AAMDBAACUwgAANMIAAHBCAAAAAAAAgMAAAIBBAACAQQAAPEIAAADAAAAQQQAA8EEAABDCAADIQQAAZMIAAHDBIAA4E0AJSHVQASqPAhAAGoACAAAEvgAAML0AAJo-AABwvQAAJD4AAOY-AAD4PQAAT78AACS-AADWPgAAEL0AAMi9AAAsPgAAgj4AAAy-AAA8vgAAhj4AAFC9AACWPgAAGz8AAH8_AAC4vQAAZD4AABS-AABAPAAAUL0AAFA9AACgPAAAgLsAAGw-AACIPQAAEL0AAOA8AABEPgAAQLwAAP6-AADgPAAAmD0AAIK-AABEvgAArj4AAJI-AABQvQAAnr4AAJK-AADIPQAAXD4AAAS-AAA8vgAA3r4AABQ-AAAcvgAAbD4AAMg9AABEvgAA4DwAAEs_AACGvgAATL4AAJo-AABEvgAAmL0AAFC9AAAMviAAOBNACUh8UAEqjwIQARqAAgAA-L0AAII-AABQPQAAV78AAKi9AAAEPgAAkj4AAIi9AABcvgAAAT8AAJY-AAAQvQAApr4AADS-AABkvgAAQDwAADy-AABLPwAAiL0AAJ4-AABAPAAAnr4AAJi9AAA8vgAAPL4AAIi9AAAMvgAAJD4AAIi9AAAwPQAA6D0AAEC8AAAkvgAA4DwAAAQ-AADovQAAcD0AAFA9AACKvgAAqL0AAGw-AAAEvgAAqL0AAOi9AABcvgAAkj4AAH-_AABAvAAAFD4AAIA7AADIPQAAND4AAIo-AABAPAAAgLsAAIA7AABQvQAALD4AAEQ-AAAMvgAAML0AABC9AACgvAAAXD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=b7l8Qh3eSNY","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16408323450376813422"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"791409519"},"10110021599078119446":{"videoId":"10110021599078119446","docid":"34-0-6-ZF1FB74DC86A20980","description":"10. Sınıf Matematik dersi İkinci Dereceden Denklemler | Diskriminant Yöntemi konusunu Matematik Öğretmeni Gürkan Çubuk ile işleyeceğiz. Hadi gelin hız kesmeden dersimize başlayalım. 00:00...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/215469/80296ab40c130236106a93ba4496bc6e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MCK3NgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"isFull":true,"fullTextUrl":"/video/result?ask_summarization=1&numdoc=1&noreask=1&nomisspell=1&parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=videoid:10110021599078119446","teaser":[{"list":{"type":"unordered","items":["Bu video, Gürkan Çubuk tarafından sunulan bir matematik dersidir. Öğretmen, tahtada formülleri yazarak ve örnekler üzerinden konuyu açıklamaktadır.","Videoda ikinci dereceden denklemlerde discriminant (delta) yöntemi detaylı olarak anlatılmaktadır. Öğretmen, discriminantın formülü (b² - 4ac), delta'nın sıfırdan büyük, sıfıra eşit veya sıfırdan küçük olma durumlarını ve bunların köklerin varlığına etkilerini açıklamaktadır. Video, teorik bilgilerin ardından çeşitli örnek sorularla devam etmektedir.","Öğretmen, denklemlerin çarpanlarına ayrılamadığında delta kavramının nasıl kullanılacağını göstermekte ve mutlak değer içeren denklemlerin çözümü gibi konuları da ele almaktadır. Dersin sonunda öğretmen, bir sonraki videoda karmaşık sayılar konusunu ele alacağını belirtmektedir."]},"endTime":1334,"title":"İkinci Dereceden Denklemlerde Discriminant (Delta) Yöntemi","beginTime":0}],"fullResult":[{"index":0,"title":"Discriminant (Delta) Yöntemi Tanıtımı","list":{"type":"unordered","items":["İkinci dereceden denklemlerde discriminant (delta) yöntemi öğretilecek.","Discriminant, matematik dilinde tercih edilirken bazı yabancı kaynaklarda delta olarak da kullanılmıştır.","Discriminant, denklem çarpanlarına ayrılamadığında kullanılan bir sistemdir."]},"beginTime":8,"endTime":166,"href":"/video/preview/10110021599078119446?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=8&ask_summarization=1"},{"index":1,"title":"Discriminant Formülü ve Köklerin Sayısı","list":{"type":"unordered","items":["İkinci dereceden denklemde discriminant formülü b² - 4ac'tir.","Delta sıfırdan büyükse denklemin iki farklı kökü vardır ve kökler (-b - √Δ) / 2a ve (-b + √Δ) / 2a formülleriyle bulunur.","Delta sıfıra eşitse denklemin tek kökü vardır ve kökler -b / 2a formülüyle bulunur.","Delta sıfırdan küçükse denklemin reel kökü yoktur, ancak karmaşık sayılar konusunda sanal kökü vardır."]},"beginTime":166,"endTime":329,"href":"/video/preview/10110021599078119446?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=166&ask_summarization=1"},{"index":2,"title":"Discriminant Örnekleri","list":{"type":"unordered","items":["İlk örnekte discriminant formülü kullanılarak 2(x-1)² - 4(x+1)(x-3) = 25 olarak bulunmuştur.","İkinci örnekte discriminant 25 olduğu bilgisi kullanılarak denklem çözülmüş ve a = 1/5 veya a = -1 değerleri bulunmuştur.","Eşkenar üçgen yapan x değerleri için x² + 6x - 1 = 2x² + 2x - 3 denklemi kurulmuştur."]},"beginTime":329,"endTime":514,"href":"/video/preview/10110021599078119446?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=329&ask_summarization=1"},{"index":3,"title":"Diskriminant Kullanımı","list":{"type":"unordered","items":["Bir denklem çarpanlarına ayrılamadığında, delta (diskriminant) kullanılır.","Delta formülü b² - 4ac'tir ve sıfırdan büyük olduğunda denklemin iki farklı kökü vardır.","İki farklı kök olduğunda, kök formülü (-b ± √Δ) / 2a kullanılır."]},"beginTime":516,"endTime":637,"href":"/video/preview/10110021599078119446?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=516&ask_summarization=1"},{"index":4,"title":"Delta Kullanımı Örnekleri","list":{"type":"unordered","items":["İki farklı kök varsa delta sıfırdan büyük olmalıdır.","Çakışık kök varsa delta sıfıra eşit olmalıdır.","Kök yoksa delta sıfırdan küçük olmalıdır."]},"beginTime":637,"endTime":841,"href":"/video/preview/10110021599078119446?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=637&ask_summarization=1"},{"index":5,"title":"Mutlak Değerli Denklemler","list":{"type":"unordered","items":["Mutlak değerli denklemlerde, mutlak değer kavramından kurtulmak için iki durum incelenir.","Mutlak değerli denklemin çözüm aralığı, mutlak değerden kurtulduktan sonra bulunur.","Çözüm aralığı, sonsuzdan eksi on'a kadar ve altıdan artı sonsuza kadar olabilir."]},"beginTime":841,"endTime":940,"href":"/video/preview/10110021599078119446?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=841&ask_summarization=1"},{"index":6,"title":"İkinci Dereceden Denklemlerde Diskriminant Yöntemi","list":{"type":"unordered","items":["İkinci dereceden denklemlerde diskriminant (delta) formülü b² - 4ac kullanılarak hesaplanır.","Delta sıfırdan büyük olduğunda denklemin iki farklı reel kökü vardır.","Kökler formülü -b ± √Δ / 2a kullanılarak bulunur."]},"beginTime":942,"endTime":1013,"href":"/video/preview/10110021599078119446?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=942&ask_summarization=1"},{"index":7,"title":"Örnek Sorular","list":{"type":"unordered","items":["İlk örnekte delta hesaplanarak 16 olarak bulunmuş ve kökler 3 - √29/2 ve 3 + √29/2 olarak hesaplanmıştır.","İkinci örnekte delta hesaplanarak 16 olarak bulunmuş ve kökler 2 - 2√2 ve 2 + 2√2 olarak hesaplanmıştır.","Üçüncü örnekte delta sıfırdan büyük olması için m \u003c 7 koşulu bulunmuş ve m'nin alabileceği en büyük iki sayının toplamı 11 olarak hesaplanmıştır."]},"beginTime":1013,"endTime":1187,"href":"/video/preview/10110021599078119446?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1013&ask_summarization=1"},{"index":8,"title":"Son Örnek ve Kapanış","list":{"type":"unordered","items":["Son örnekte payda eşitleme yapılarak denklem sadeleştirilmiş ve delta hesaplanarak 12 olarak bulunmuştur.","Kökler formülü kullanılarak kökler -1 - √3/2 ve -1 + √3/2 olarak hesaplanmıştır.","Video, ikinci dereceden denklemlerde diskriminant yönteminin karmaşık sayılar konusuna hazırlık amacıyla kullanıldığını belirterek sonlanmıştır."]},"beginTime":1187,"endTime":1327,"href":"/video/preview/10110021599078119446?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1187&ask_summarization=1"}],"linkTemplate":"/video/preview/10110021599078119446?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"İkinci Dereceden Denklemler | Diskriminant Yöntemi | 10. Sınıf Matematik Konu Anlatımları","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RS-k369ORZA\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhYKFDEwMTEwMDIxNTk5MDc4MTE5NDQ2WhQxMDExMDAyMTU5OTA3ODExOTQ0NmqHFxIBMBgAIkQaMAAKKWhobG9rZmRmamRwdGN5eWhoVUNlM2Y0MkRzTG1wSUVXcXRSMFhINE13EgIAESoQwg8PGg8_E7YKggQkAYAEKyqLARABGniB9_78AP4DAPv-Av8DBP4B-AAECfr-_QDmAwT9CP0BAAHxBP_6AAAA9Pv2C_0AAAAA-_IM-f4AABD2Cfv0AAAACP_--f4AAAD_CPL9_wEAAP4PA_oCAAAAGA31Bf8AAAACDxEE_wAAAAsI-fwBAAAA-ucBCQAAAAAgAC0AU9s7OBNACUhOUAIqhAIQABrwAX8G-_7R7wYBwvXPAKlVKwGaNCn_DfrQ_8ECEQCdyt4AyxDgAMjXw__pBAoAqy73_zrQyv7_4uIBT_L3__D87wH8E_oBWt0QAk0DGv8F9e4AwRU_AQfiOP8XuOkALw0A_AAp_v042Oj-_uLDACLlGgMqFEEA__cR_eb0G_72CvL99vrZAPAZEwQDz_74_hMjA_bt3vsPBvD5siQS_xHx5gDn3wvzExnwADfo6wnK4wD7wOL-Bi7q9f_7Kh8M2gn08QX7Fvncu_X67BQcCRLj8AbOEvsAFtv4CzH6-AIP8wwAAtQFB9oDDwIXDvIO2wnz6iAALSyqAjs4E0AJSGFQAirPBxAAGsAHLCvNvsgw3Tq9SDK9pZ2PvUTkz7yFS728S9O2vZbLKz2s7ge9_g3aPV8tUjyc9OO89pZivgV4gTx5Pw28PSlzPpTA5rv1cg49WMfRvQy8iTxsA3y94Lttvl6Klj0WuUy8rFcBPmEllTyk8dU8VFMCPtxLOr12zBC8qv-NvdaDs73Unee8OWzBvaTF2b06Yw489JX2PHsgCL14j308IOsJPsVt2byqmTW8L2_pvCGp6DthZoS82DVOuxt0eDwUoUe86q_3PTGyUTrITQM9QiaZvcpAQTpP0Sy9-RSAvDZ0s7w9Cle8ERZbu1dcfD3jJCO9vJsiPcADqL3DP7I7l-QwvkRvLD3sgma8F5iKPdlCzjsLEYs8TzwHvQ15yj2HYOY7ipUsvOWfdDw34zS8XB0APpBmkTwzV4I7ONfwPVDIjrxoWkW7jUolPdYjKD0s85Y8TR1aPWPNbbwkin-8_OAcPbnjSD1qu-y7A9--vSzfCT3n8hM7Uu2jPcXgxrwmfIQ7-8uOPUDperxV10Y8thQLPZFUgL3la4W8dfhVvcH-K70XKn-8oPOkPF8eFz0ws_i66QsBPqggmjwopTk5BnXLve8dhb1hFlW5KfRwPUhcNrxCnKC6-CAfvYOMGz28-kK807arPLA6kj2J8fW7KHaJvVCUfz20iww8mjTXPPJWIzxop9E7TbrtPEQc3jmN9So7ULyvPMDNAj3tjEa7wkzbPTsd6L12z9g5H9XVvEqcsLxkZpe6yOpWPHYe8DzU70K7B9FaPQ9MCb2zhYC6HGJ3PeeuY7vWFLS52m28PEaPxDxc9Zk4rFOlPB5Yabx_dqE52AKMPINozb0uJMK4LvBrvd0A_TzRa4a4vJQ6PYo_yjwFIOE3ax7BvcSuor1Z-CI4Hs5SvXPshbz8GhW5gCkDPncbyjzI7zk5WZgvvW4fDb0vOF65lMk_vRel-jyodtc4sfPLPeF56T3dEoM3neKnOyNJVb1LnoC4F755PX9Urj05MdU4AFoQO9aXWzxrvCi48Vh9PHQXFz3FMOG3j8ahPFd4N73RFC04ui48PdThEzyBZRW4bcX-vaLUPr0aL_S44TSzPNxheL0496q3AXuWPZbz_zvmDeU3VZB1vZCqfbvADLs4weMrPtylaLwHiXS5jHEUvdt7Qr3F_Ge4dfX0vFnd6r0NI_E1axOCvO2KDz1X0t23uHMBPcwrgr0vZnS4Iv_sPTUpBT7zflu4HjiCvTPznj2c5_K4LWclvJ7iwj2wfCu4b_g4PGdmgb0ReOG2IAA4E0AJSG1QASpzEAAaYCrhAEPhBNDq3fDzFMQbFOin0M004dr_9uAA1R3f7CIw6t0U-wAp7fv_qwAAAC8Q3B78AONwpQX4EegcANO16MUqfywZReECNfXs8Cny6g4WFPUYIwA33q36HC6TPisyMCAALYpyHjs4E0AJSG9QAiqvBhAMGqAGAACAQQAAQMIAAIBCAAAwQQAAAMAAAIDAAADQQQAAHMIAAIC_AADAwQAAkEIAALhBAADiwgAAUMIAACxCAADAwAAAVMIAALBBAAAYwgAADMIAAARCAADgwQAAMMEAAJhBAADoQQAAuEEAADTCAADYwQAAtEIAAJpCAAD4wQAAPEIAAIDCAAAAwQAA2MEAAFhCAACgQAAATEIAAAAAAABowgAA4MAAADBBAAAAQQAAEEEAAPBBAAAgQQAAKMIAANjBAABUQgAAgL8AAIDAAAAgwQAAUEEAADBCAAAAQAAAgD8AAIA_AADgQQAAyMEAACxCAACAQQAA6MEAAEDCAABMwgAAYMEAADRCAAAYQgAAqMEAACzCAACoQQAAZEIAAKhBAAA8wgAAcEIAADDCAACKwgAAEMEAAIDBAAA0wgAAuMEAAJDBAADAQAAAEEEAAHBCAABAwgAAOEIAAADCAAAQwgAA4MAAAABBAACgwAAAAEEAAETCAAAUwgAA4EAAACjCAACgwAAA8EEAABhCAABAwQAAKMIAALhCAAAoQgAA8MIAAJ7CAABwQQAA-EEAAMDAAAAAwgAAwEEAADBBAAAwQQAAIMEAAEzCAACsQgAAIMEAADjCAABMwgAACMIAAGjCAABswgAARMIAAMBBAABYwgAAsEEAANpCAACwQQAAqEEAACBBAABwwQAAcEEAAGzCAACAQAAAqEIAAPhBAAC4wQAAIMEAAIBAAAAIwgAAgMIAAFDBAAAgQQAAgEAAANjBAACYwQAATEIAAMDAAABQQgAAyEEAAMDAAACCQgAAAEAAAIDAAABMwgAAVEIAADRCAACAwAAAwMIAAMDAAABMQgAAnsIAACDBAACwwQAAEMEAAEDBAABwwgAAkEIAAMDAAACIQQAAAEAAAFTCAACgwAAAEEEAAOBBAAC4QQAAiMEAAMjBAACowQAA3EIAABBCAACwQQAAOMIAAOjBAACgwAAAEEEAAIjBAABowgAA0kIAAODAAAAAwAAAZMIAAIC_AAAAQgAAqEEAAPBBAACwwQAAQMIAAGBBAABEwgAA0EEgADgTQAlIdVABKo8CEAAagAIAABQ-AABwvQAAcD0AALq-AAC4PQAAHz8AAJ4-AABlvwAAXL4AAJY-AAD4vQAAED0AAI4-AABUPgAAUD0AAEC8AAAkvgAAcL0AAEw-AAAZPwAAGT8AADA9AAAdPwAApr4AAHA9AAAQPQAAqj4AAEA8AAARvwAAuL0AAKI-AAA8vgAAuj4AAKo-AABwPQAAzr4AAKg9AACgvAAA6r4AAOA8AABAvAAAML0AAES-AADSvgAAdD4AAOg9AACoPQAAdL4AAFw-AADqvgAA2D0AANK-AACIvQAAZL4AAFy-AABwPQAAfz8AALa-AABwvQAAmj4AAHy-AABwPQAAgLsAAJi9IAA4E0AJSHxQASqPAhABGoACAAD4vQAAsj4AAIA7AABnvwAAHL4AADA9AACCPgAA2L0AAAy-AACuPgAAXD4AAIA7AACivgAAjr4AAIC7AADgPAAAzr4AAEc_AAD4vQAAfD4AAEC8AACqvgAAHL4AADS-AACSvgAA-L0AAIq-AAAMPgAAqr4AAAS-AAAcPgAAqL0AAKA8AAA8PgAAtj4AAMi9AAAQPQAAiD0AANK-AACovQAAuD0AAEA8AADYvQAAUL0AAIq-AACIPQAAf78AAFA9AABUPgAAtr4AADA9AADoPQAAsj4AADA9AACYPQAAcD0AAIi9AAC4PQAAZD4AAES-AAAEvgAA-D0AAOC8AABcPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=RS-k369ORZA","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10110021599078119446"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"989063212"},"18266746040834772719":{"videoId":"18266746040834772719","docid":"34-2-11-Z274C93093DBC8467","description":"Bu videodaki soru 3D Yayinlari / AYT Matematik SORU Bankasi / Özgür Balci / 9. Bölüm – Limit ve Süreklilik içerisinden seçilmiştir.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/993978/b49b0bc232668ac8ebdbb47b1625d37b/564x318_1"},"target":"_self","position":"14","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3De4fXYfPiCmQ","linkTemplate":"/video/preview/18266746040834772719?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Diskriminant - Limit ve Süreklilik - 3D Yayınları AYT Matematik Soru Bankası","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=e4fXYfPiCmQ\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhYKFDE4MjY2NzQ2MDQwODM0NzcyNzE5WhQxODI2Njc0NjA0MDgzNDc3MjcxOWqvDRIBMBgAIkUaMQAKKmhocXdieG9kZWFraWdrZGRoaFVDTFJSaGZQYzU3SFJSSnVaX3BSR24yURICABIqEMIPDxoPPxOSAYIEJAGABCsqiwEQARp4ger4_PsC_gAD9PoJBwn7AhT0Bwb3AAAA9AYC_wgC_wD17wr8_gAAAO_7AAf1AAAABAH5BfL-AQAHCwTvBAAAAAkCAADzAQAA-xH6__4BAAAMEhADAwAAAAX29AH_AAAA_gwJBPr_AAAH-_sGAAAAAADv-g4AAAAAIAAtjk7LOzgTQAlITlACKnMQABpgCf4AZ_zT_MH6wdwY9yIl17zBxfPN_f8J-gAHLebS6BDu-wUtABP7BhWwAAAACgL7ExUA1WK67dosDA3wq7AB9B5_Oysh-SYD5r7P-7YT9fseH-n7APH-A91QEtgPGf0EIAAt1hgrOzgTQAlIb1ACKq8GEAwaoAYAAFRCAADAQAAAsEIAADzCAADwQQAA2EEAAHxCAACAwAAA8EEAAOBAAAAAQgAAMMEAAADAAAAAwAAAoMAAAAxCAADoQQAAAMIAAOBAAADAwQAAUMEAABjCAABEwgAAiEIAAGjCAACowQAA6MEAAGzCAACIQQAAgMAAAODAAADAQQAAVMIAAAAAAACAwgAAIEEAAOBAAADSQgAAwMEAAPjBAAAQwQAAQEAAABBBAAAMwgAANEIAAEDCAABAQQAAoEEAAIhBAACgQQAAoMIAAEDBAADAwAAAREIAAAhCAABYQgAAksIAABBBAABEQgAAKEIAALBBAACswgAAgMIAAJjBAAAIQgAAOMIAAKDAAADQwQAAwMEAADjCAACyQgAAgEIAALTCAAAMQgAAmMEAAAxCAADIwQAAQMIAAMBBAAAMQgAADMIAAAxCAAC4wQAAuEEAACzCAACAPwAAIMEAAEzCAABkQgAAgEEAACjCAABMQgAAnsIAAGBBAAAAQQAA-MEAAPDBAACAQQAAJEIAAODAAABgwgAAgL8AAHBCAACgwQAAsMEAAABBAAAkwgAA4EEAABDCAABYQgAAhEIAABDBAACgQAAAMEIAAJDBAABkQgAAUEEAADBBAAA0wgAA6MEAAEzCAAAEwgAA2EEAAARCAAAIwgAAgD8AACxCAAAgwQAAkEEAAIjBAAD4wQAAzMIAAKBAAAA0QgAA8MEAAJRCAABAQQAAOEIAAKDAAABgwQAAgEAAAMDAAADwQQAAisIAADxCAAB8QgAAJMIAAOhBAAAQwgAAMMEAABjCAABYQgAAgD8AAABCAABcQgAAkEEAAGDCAAAowgAAwMEAALjBAAAUwgAAuEEAADxCAABAwQAA8EEAAHDBAACewgAArkIAAODAAADoQQAAVMIAAIhBAACAQAAAbMIAAHTCAAAgQQAAgD8AAEDBAADwQQAAwEEAAJrCAAC4wQAAAEEAAGTCAADQQQAAQEAAAATCAACwwgAAyMEAAJBBAACsQgAAuMEAAPhBAAC4wQAA4EEAACxCAACgQQAACEIAADxCAACgQSAAOBNACUh1UAEqjwIQABqAAgAANL4AADw-AADSPgAAFD4AAKA8AAAXPwAAgLsAABW_AAD-vgAAdD4AALg9AAD4PQAAqj4AAKC8AAA0vgAAij4AAEw-AAAwvQAA2j4AADs_AAB_PwAAPL4AAPg9AADgPAAAfL4AAKa-AAA8PgAAnr4AAEA8AAA0PgAAHD4AAJa-AADKPgAAHT8AAMY-AACKvgAAvr4AAJq-AADyvgAAML0AAEy-AABAPAAAnj4AANa-AAAEvgAAyL0AAAS-AACSvgAAkj4AABS-AAAsPgAA3r4AAOi9AAAsPgAAbL4AAJi9AABJPwAAqL0AAMq-AAANPwAADD4AAIA7AACoPQAAcD0gADgTQAlIfFABKo8CEAEagAIAAKC8AABcPgAA-L0AADe_AACAOwAAqD0AAJI-AADgvAAA-L0AAMI-AAD4PQAA2L0AABA9AABEvgAA-D0AABy-AAC2vgAALz8AAI6-AAB8PgAAgDsAALK-AADoPQAAmL0AAIg9AAAMvgAATL4AAAw-AABQvQAAFL4AABC9AACgvAAAJL4AAHA9AAAQPQAAgr4AAJg9AACoPQAABL4AAEA8AAAsPgAALL4AABC9AACAuwAA4LwAADC9AAB_vwAABD4AAHA9AADgPAAAuL0AADA9AABcPgAAUD0AACy-AABAPAAAiL0AADA9AADYPQAAiL0AAIC7AABMPgAAUD0AABC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=e4fXYfPiCmQ","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18266746040834772719"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8419830624026496190":{"videoId":"8419830624026496190","docid":"34-10-10-Z8B12BBB6E114BC32","description":"10.sınıf matematik ders anlatım videoları ile Partikül Matematik artık 10.sınıfta da sizlerle. Videoyu beğenmeyi ve kanala abone olmayı unutmayın. 10.Sınıf derslerimizi siz de kaçırmadan takipte...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/399189/33185266955aa0232fe1ccfc4f5f71b6/564x318_1"},"target":"_self","position":"15","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdquIioL140c","linkTemplate":"/video/preview/8419830624026496190?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"10.Sınıf Matematik | İkinci Dereceden Denklemler - 2 | Diskriminant Kavramı","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dquIioL140c\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhUKEzg0MTk4MzA2MjQwMjY0OTYxOTBaEzg0MTk4MzA2MjQwMjY0OTYxOTBqrw0SATAYACJFGjEACipoaGFyendiZXF3dnVldXFkaGhVQ1JuVDk2UEpPcjRLZU1FamhpekVNZmcSAgASKhDCDw8aDz8T5QyCBCQBgAQrKosBEAEaeIH89_sAAAEA9v4DBf4F_gHt-QMO-wAAAOYO_fgI_QEAAev5-v8AAAD5_PECAAAAAAD78Q34_gAACwEA_-wA_wAFA_jw_wAAAP8I8f3_AQAABQoL_QMAAAALDvYF_wAAAAIPEgT_AAAAExP8-AEAAAAB8AgPAAAAACAALQZu1Ds4E0AJSE5QAipzEAAaYAXzAEbq_Org-fkIAvUdD_rY39wq5OkA5-oA9RrY8BQZ6PX59QAa5vEKxAAAAA_4EhcXAO9GuwXwFQcb-wnaA-sUfzcKFhEtKRDuACzqC_8gJA4CBAAl7vzpASa6JysUMiAALa-GXTs4E0AJSG9QAiqvBhAMGqAGAADgQAAAAMAAAIBCAABQwQAAAEAAAMDAAACQQQAAYMEAAADCAAAAQAAAUEEAANhBAAC4wgAAosIAAPBBAACwwQAAWMIAAADAAADAwQAARMIAAExCAAAMwgAAKMIAAIBBAACAQQAACEIAAIDAAADYwQAAjkIAABhCAAAYwgAAwEAAAFTCAACmQgAAgsIAADRCAABQwQAAqkIAAEBAAAB8wgAAgkIAAKhBAABAwAAABEIAABBBAAAQwQAASMIAABzCAADYQQAAgEAAALjBAADQQQAAUEEAAPBBAACgwAAAUMEAALDBAADAwQAAoEAAAMxCAADoQQAACMIAACzCAADQwQAAYEEAAHxCAABgQQAAYMEAAADBAADwQQAANEIAADBBAACCwgAAnkIAADzCAADEwgAAyMEAAEBAAAAIwgAARMIAAEjCAADAQAAAuEEAAJxCAABgwQAAjEIAANDBAACAQAAAMEIAAKjBAAAAwAAA0EEAAGDBAACSwgAAsEEAACzCAADwQQAAiEEAAEBCAAAgQQAAqEEAAAhCAABwQgAAfMIAALrCAAAAwgAABEIAAFDBAACYwQAAgEEAAHBBAAAAQQAAwMEAAHTCAADoQgAA4EEAACjCAABswgAAAEAAAITCAACQwgAAQMIAAGBBAACGwgAAiEEAAIhCAAAQwQAAhsIAAMDAAACQwQAA6EEAADzCAAAMwgAAQEIAAFxCAAAQwQAAuEEAAODBAABAwAAALMIAABBBAABAQAAAEMEAAPjBAAAQQQAA0EEAAAzCAABoQgAAIMEAAIC_AADgQQAAoMAAANBBAAAMwgAAAEAAAExCAAAAAAAAlsIAAJhBAAAgQgAAOMIAACDBAAAwwQAAoEEAAAhCAACiwgAAjkIAAADAAAA8QgAA2MEAAIDCAAAcQgAAqMEAABhCAAAAAAAAEMIAAGjCAACAQAAAIEIAACRCAAAwQQAAKMIAAJrCAABAQAAAuEEAAMDBAADQwQAAXEIAAIhBAAAYwgAAEMEAAIBBAAAAAAAAwEEAAFxCAACwQQAAksIAALDBAABkwgAAgD8gADgTQAlIdVABKo8CEAAagAIAAHw-AABwvQAAgj4AAOa-AADoPQAAWT8AAIo-AAB_vwAAjr4AAIY-AACIPQAAcL0AAJY-AACCPgAANL4AABy-AADoPQAAcD0AAK4-AAAlPwAART8AAGS-AADePgAAjr4AANg9AABwPQAAqj4AAHA9AAC2vgAATD4AAK4-AAAEvgAAnj4AAHw-AACIPQAA-L0AAFA9AABQPQAA8r4AAIq-AADIPQAAcD0AAAS-AADKvgAAVD4AAKC8AABwPQAAoLwAABQ-AAB8vgAAZD4AAMa-AABAPAAAqL0AAGy-AADIPQAAaz8AACy-AADYvQAARD4AADy-AACovQAAFD4AAKC8IAA4E0AJSHxQASqPAhABGoACAAAUvgAAjj4AAIg9AABrvwAABL4AAEA8AACyPgAATL4AAIA7AACaPgAAbD4AABA9AAB0vgAABL4AAOC8AACAOwAAir4AAEM_AABcvgAAtj4AAEA8AACyvgAANL4AAIK-AABcvgAAUL0AAMi9AAAkPgAAnr4AANg9AAAUPgAA4DwAABS-AACoPQAAlj4AAOA8AADovQAAyD0AAK6-AAAQvQAAjj4AANi9AACYvQAAmD0AALK-AADgPAAAf78AAKg9AAAcPgAAXL4AAOA8AAA0PgAABD4AALg9AAA8PgAA2D0AABC9AAAMPgAABD4AAFS-AACIvQAAQLwAAKg9AAAsPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=dquIioL140c","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8419830624026496190"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18377376384322908470":{"videoId":"18377376384322908470","docid":"34-10-2-Z1EC70F1BECE38B14","description":"Özet: Bu videoda, yüksek dereceli diferansiyel denklemlerde zarf ve C diskriminantı kavramları üzerine odaklanılıyor. İlk olarak zarf tanımı yapılarak, eğri ailesinin bir Z eğrisi ile teyit...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1648649/0aab0c0f2b1485948cca23ce3b98051d/564x318_1"},"target":"_self","position":"16","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLyClb61_KGk","linkTemplate":"/video/preview/18377376384322908470?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"ZARF: C-Diskriminantı (C-discriminant)","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LyClb61_KGk\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhYKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwWhQxODM3NzM3NjM4NDMyMjkwODQ3MGqvDRIBMBgAIkUaMQAKKmhobWJ4dHFhc2RxY2FrcWNoaFVDUEY2blFiY2pDTWtWTTJ6M0xFM1BxURICABIqEMIPDxoPPxPnCYIEJAGABCsqiwEQARp4gfwJ9QH7BQD2A_UN9wb-AfgABAn6_v0A-QUL-gMD_wD3BPb1-QAAAPEC-P4BAAAA-fwD_wP-AAD9ABP6BAAAABAA8_f9AAAABwb_Av4BAAAGBv8A-wAAAAUK_AH_AAAA7g0I_f8A_wAEBgH2AAAAAP3z-gQAAAAAIAAtYD3hOzgTQAlITlACKnMQABpg4gQAOfYJ78cFQAEK5hvjC97f1wHf5wDLBQDjIw7w-vr0xtogAB4nB_y8AAAABv_QLdQAQE_M5s4d7gEH-PXvEPx_SQMY8A8R-_4OCPn5CPchMeA0ACcJAeQr1dUyCedDIAAtRrtEOzgTQAlIb1ACKq8GEAwaoAYAAIDAAADgwQAA4MAAAEBAAACAwQAAhkIAAFhCAAAAQQAAJMIAAMDBAAAMQgAAMEEAAJ7CAACAQAAAcMIAAMBBAACwQQAAqMEAAGDBAAAIwgAA6EEAAOBAAABEQgAAAAAAAGBBAADMQgAAJMIAAIC_AACAwAAAQEEAAKDAAADgQQAAAMIAAODAAAAkwgAAgL8AABBBAABIQgAAQMIAAJDBAACgwAAA4EAAAFBCAAAAwQAAREIAAKBAAABQwgAA8MEAACxCAAB8wgAACMIAAEBAAAAQwgAAiMEAAAxCAADgQQAA5MIAAPjBAADYQQAAJEIAADRCAAAwwgAAGEIAAHDCAADIQQAAgEEAAOjBAAAMwgAAIMEAAIjCAACYQQAAcMEAAGTCAAAoQgAAcEEAAIBBAABQwQAAlEIAAOjBAACIwQAAoMEAALZCAADAwAAAQMAAAKBCAAC4wQAAwMAAAGhCAADgQAAAoMAAAPjBAABUQgAAsMEAABBCAABwwQAAUMIAAMjBAABEwgAAJEIAAHBBAADMwgAAgMEAACxCAABAQAAArsIAAHxCAAA8wgAAkEEAAKBBAAAEQgAAREIAACzCAACOwgAAwEEAAMBAAACgQAAAwEEAAMDBAAAkwgAAZMIAAJhBAACQwQAARMIAABzCAABYwgAAYMEAAChCAABAwQAA-MEAADhCAAAAQAAAeMIAAIDBAAAcQgAArkIAAIBBAACEQgAAIEEAAOjBAACgwAAA2MEAABDCAAAcQgAA-MEAAAhCAACwwQAAiEEAABDCAACKQgAA3EIAAOBBAACYwQAAIMEAAFBBAADQQQAA4MEAAAjCAAAAQQAAEEEAAEBBAACAQAAAyMEAAFDBAADYwQAAwEEAAMhBAACCwgAAlEIAAJhBAACYwQAAAEAAAEBCAACAPwAAvMIAAETCAACgQQAA6EEAAHDCAACgQAAAiEIAACzCAABwwQAAAMIAABDCAABgQgAAkEIAAIBAAACYQQAA2kIAALBBAAAUQgAAfEIAADBBAAAAwgAAUEEAAMhBAABAQAAAMMEAAEDBAAAwwiAAOBNACUh1UAEqjwIQABqAAgAAED0AAEy-AACKPgAALL4AABC9AAALPwAAZD4AACO_AAAwvQAAZD4AAIi9AADKPgAAfD4AAII-AADYvQAAkj4AACw-AADIvQAAPD4AACE_AAB_PwAAHL4AALI-AAC4vQAA4LwAAKg9AADgPAAAXL4AAIK-AACqPgAABD4AAOi9AACYPQAAXD4AAMo-AADavgAARL4AAAy-AADevgAABL4AACQ-AABAPAAAqD0AANK-AAD4vQAAUD0AADQ-AADgvAAAuL0AAM6-AAAwPQAAgr4AAEC8AAA8vgAAFL4AAJg9AABzPwAAor4AAPg9AACyPgAAmL0AANg9AACYvQAAFL4gADgTQAlIfFABKo8CEAEagAIAAOA8AABkPgAAPL4AAFe_AABkvgAABD4AAFQ-AAAQvQAAPL4AABc_AACIPQAAUD0AAIq-AAAMvgAA-L0AAIi9AACKvgAAKT8AAOC8AAAFPwAAQDwAAHS-AABwvQAAgDsAAEy-AADYvQAAbL4AAAw-AACKvgAAML0AAFA9AADgvAAAPD4AAPg9AAAQPQAAVL4AAGQ-AACgPAAADL4AAIg9AAAUPgAA4LwAAIa-AAD4vQAAEL0AAOg9AAB_vwAAUL0AABA9AACAOwAAUD0AABw-AACGPgAATD4AAHS-AADIPQAA2L0AAHA9AACOPgAAEL0AAIg9AACSPgAADL4AABw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=LyClb61_KGk","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18377376384322908470"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6085696997064182177":{"videoId":"6085696997064182177","docid":"34-11-11-ZF17D3F586B3BA2DB","description":"Hoca Website 👉 https://merthoca.com/ -🚀2023 Kamplarımız : 🟡70 Günde TYT Kampı : https://bit.ly/3LqGAk7 🔵60 Günde TYT-AYT Geometri Kampı...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3286658/292ec9936809a98fd1a15bec10d8a738/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MmiZJQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"isFull":true,"fullTextUrl":"/video/result?ask_summarization=1&numdoc=1&noreask=1&nomisspell=1&parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=videoid:6085696997064182177","teaser":[{"list":{"type":"unordered","items":["Bu video, Mert Hoca tarafından sunulan 10. sınıf matematik dersinin ikinci bölümüdür. Öğretmen, ikinci dereceden denklemler ünitesinde delta (discriminant) konusunu ve çözüm yöntemlerini anlatmaktadır.","Videoda delta'nın ne olduğu, formülü (b² - 4ac) ve ikinci dereceden denklemlerin kökleriyle ilişkisi detaylı olarak açıklanmaktadır. Delta'nın üç farklı durumu (pozitif, sıfır ve negatif) ve bunların denklemin köklerine etkileri örneklerle gösterilmektedir. Ayrıca kök bulma formülü ve tam kareye tamamlama yöntemi de anlatılmaktadır.","Video, bir sonraki derste diskriminantın sıfırdan küçük olma durumunun inceleneceği ve dördüncü videoda karmaşık sayılar konusunun işleneceği bilgisiyle sonlanmaktadır."]},"endTime":1524,"title":"10. Sınıf İkinci Dereceden Denklemler: Delta ve Çözüm Yöntemleri","beginTime":0}],"fullResult":[{"index":0,"title":"İkinci Dereceden Denklemlerin Delta Değeri","list":{"type":"unordered","items":["İkinci dereceden denklemler ünitesinde discriminant (delta) konusu ele alınıyor.","Delta, ikinci dereceden denklemlerin kökleriyle ilgili önemli bir kavramdır ve üniversiteye kadar karşınıza çıkacak.","Her videonun PDF'si videonun açıklama kısmındaki Google Drive linkinde bulunmaktadır."]},"beginTime":11,"endTime":71,"href":"/video/preview/6085696997064182177?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=11&ask_summarization=1"},{"index":1,"title":"Delta Kavramı ve Formülü","list":{"type":"unordered","items":["Delta, ikinci dereceden denklemleri birbirinden ayırmaya yarayan bir reel sayıdır.","İkinci dereceden denklemin deltası formülü: Δ = b² - 4ac'tir (b: x'in katsayısı, a: x²'nin katsayısı, c: sabit terim).","Delta'nın üç durumu vardır: pozitif, sıfır veya negatif."]},"beginTime":71,"endTime":203,"href":"/video/preview/6085696997064182177?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=71&ask_summarization=1"},{"index":2,"title":"Delta'nın Değerine Göre Köklerin Durumu","list":{"type":"unordered","items":["Δ > 0 (pozitif) olduğunda, denklemin birbirinden farklı iki reel kökü vardır.","Δ = 0 olduğunda, denklemin birbiriyle aynı iki reel kökü vardır (çift kat kök, çakışık kök, tam kare denklem).","Δ \u003c 0 (negatif) olduğunda, denklemin reel kökü yoktur."]},"beginTime":203,"endTime":520,"href":"/video/preview/6085696997064182177?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=203&ask_summarization=1"},{"index":3,"title":"Örnek Sorular","list":{"type":"unordered","items":["Denkleminin farklı iki reel kökü olduğuna göre, m'nin alabileceği en büyük tam sayı değeri 6'dır.","Çözüm kümesi tek elemanlı olduğuna göre, denklemin çift kat kökü vardır ve bu kök 2'dir.","İkinci dereceden denklemin kökleri x₁ ve x₂ olmak üzere, x₁ = (-b + √Δ) / 2a ve x₂ = (-b - √Δ) / 2a formülleriyle hesaplanır."]},"beginTime":520,"endTime":840,"href":"/video/preview/6085696997064182177?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=520&ask_summarization=1"},{"index":4,"title":"Kök Bulma Formülü","list":{"type":"unordered","items":["Kök bulma formülü, denklem çarpanlarına ayrılmadığında kullanılır.","Formül: x = (-b ± √Δ) / 2a şeklindedir.","Denklemi çarpanlarına ayıramıyorsanız ve delta değeri sıfırdan büyük çıkıyorsa, kök bulma formülüne başvurulur."]},"beginTime":844,"endTime":913,"href":"/video/preview/6085696997064182177?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=844&ask_summarization=1"},{"index":5,"title":"Kök Bulma Formülünün Kullanımı","list":{"type":"unordered","items":["x² + 4x - 1 denklemi çarpanlarına ayrılamadığında, delta değeri hesaplanır.","Δ = b² - 4ac formülüyle hesaplanan delta değeri 20 olarak bulunur.","Δ > 0 olduğunda, denklemin iki farklı kökü vardır ve kök bulma formülüyle x₁ = -2 + √5 ve x₂ = -2 - √5 bulunur."]},"beginTime":913,"endTime":1073,"href":"/video/preview/6085696997064182177?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=913&ask_summarization=1"},{"index":6,"title":"Tam Kareye Tamamlama Yöntemi","list":{"type":"unordered","items":["Tam kareye tamamlama yöntemi, denklemi tam kare haline getirerek çözmeyi sağlar.","x² + 4x - 1 denklemi için, x² + 4x + 4 = (x + 2)² şeklinde tam kareye tamamlanır.","Tam kareye tamamlama yöntemi, x² teriminin katsayısı 1 ve x teriminin katsayısının çift olduğu durumlarda kullanılır."]},"beginTime":1073,"endTime":1157,"href":"/video/preview/6085696997064182177?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1073&ask_summarization=1"},{"index":7,"title":"Çözüm Yöntemlerinin Karşılaştırılması","list":{"type":"unordered","items":["Tam kareye tamamlama yöntemi, x² ile başlayıp 2x, 4x, 6x, 8x gibi çift katsayılı x terimleri olan denklemlerde kullanılır.","Kök bulma formülü, her ikinci dereceden denklemde kullanılabilir ve bir sınırı yoktur."]},"beginTime":1157,"endTime":1191,"href":"/video/preview/6085696997064182177?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1157&ask_summarization=1"},{"index":8,"title":"İkinci Dereceden Denklemlerin Kökleri","list":{"type":"unordered","items":["Bir ikinci dereceden denklemin kökleri gerçek sayıdır ve bir kökü x=2'dir.","Denklem çarpanlarına ayrıldığında (x-2)(x-a) şeklinde ifade edilebilir, bu da köklerin 2 ve a olduğunu gösterir.","Diskriminant (delta) hesaplandığında a-2'nin karesi olarak bulunur, bu da delta'nın daima sıfırdan büyük olduğunu gösterir."]},"beginTime":1195,"endTime":1324,"href":"/video/preview/6085696997064182177?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1195&ask_summarization=1"},{"index":9,"title":"Delta'nın Değerinin İncelenmesi","list":{"type":"unordered","items":["a=2 durumunda delta sıfıra eşit olur, bu durumda delta'nın \"büyük eşit\" olması gerekir.","a=2 durumunda kökleri gerçek sayıdır ve bir kökü 2'dir, ancak bu durumda kökler aynı olabilir.","Köklerin birbirinden farklı olup olmadığına dikkat edilmelidir, çünkü kökler aynı da olabilir."]},"beginTime":1324,"endTime":1398,"href":"/video/preview/6085696997064182177?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1324&ask_summarization=1"},{"index":10,"title":"Delta'nın Kullanımı","list":{"type":"unordered","items":["Bir soruda kök(delta)=2 olduğuna göre a'nın değeri 8 olarak bulunur.","Delta'nın sıfırdan büyük, sıfıra eşit veya sıfırdan küçük olma durumlarının hem sayısal hem de kök anlamındaki sonuçlarına dikkat edilmelidir.","Bir sonraki derste delta'nın sıfırdan küçük olma durumu incelenecek ve karmaşık sayılarla ilgili dört videoluk bir içerik sunulacaktır."]},"beginTime":1398,"endTime":1523,"href":"/video/preview/6085696997064182177?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=1398&ask_summarization=1"}],"linkTemplate":"/video/preview/6085696997064182177?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"İkinci Dereceden Denklemler-2 | Diskriminant(Delta) | 10.Sınıf Konu Anlatımı | Akademi Serisi","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DHlCaDPj0WY\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhUKEzYwODU2OTY5OTcwNjQxODIxNzdaEzYwODU2OTY5OTcwNjQxODIxNzdqiBcSATAYACJFGjEACipoaGRzcWZ5ZGNkZG15bmpjaGhVQ3pNVmlfQ1B4X1hCOXVoTWw0dVdSOWcSAgASKhDCDw8aDz8T9AuCBCQBgAQrKosBEAEaeIEB_foFAAAA9QEDBQgF_QH4AAUK-v39AOYDBP0J_QIAAfkA9_oBAADzA_sHAQAAAAD78Q34_gAAEPYK-vMAAAAH8_P1_gAAAP8I8f3_AQAAAAUI-AP_AAAFCPT9AAAAAAYUBgL-AAAAExP8-AEAAAAJ6wkGAAEAACAALSxg1Ts4E0AJSE5QAiqEAhAAGvABbRHv_tDO5AHo7MUBqxnnAIH6Ef9A6sEB0Cso_rMM_gHrG9oA3cnr_-oDCgDu-xX_FOTp_xDsKQAZ6xH_AhgLAA04-wER1y0BX7sIAQrN6AHDFD0BEuj__wz1-P8c8v8BCTEN_jfmzwDs0e0EEf5EAQ8JGQX54v4HGBQeA_ItGQTuFtD9yuwv--gI9ALf6gz_z_Td_QQ4-gHQAv0GMNim-yXv_wkQ9_gHDs7vAcv6CPmjAvwDAvDY-tbZHQHgCwf5Bg8HAfPjCf0WOwYDJ_Pk--PT7AQdzfcTKe3wAB3OEvH6_fYB5TQLAdkO9P0THAgNIAAtxv0GOzgTQAlIYVACKs8HEAAawAd6UeO-b1EguoUyQzy-Wfk8EtjcvDwe6bz4Mzy8h0szPcTBlLsfgT-8TSzVPI1S17v8jLu-WlMPvMbqxbvFVYU-VDBvvZt_KryX9OI7bygBPcFvw7ym1AW-P0ypugVmqrydvSM-eLu5PEXDmLyydZo9pcvRvC3oAbw9DO29c_6cvUt-G7tdqbK9wZwqvT0eRLytf-E8s8W_vMRPLbyv1w-88BtaPd4VBztmSPq88W47PQlpkbul4jq9wSoovFepSr2QMhI-hZRkvZp8szwxQhi9wvr_PDGviLyoNEI9L-FwvTNkhrwL1CK-CL7xu4cwo7y1NQI9TNQcPdx7JLm008W8OTq4PA8CWTsqO5i8AZQ1PcSmobtsPi48xcXRPf_mqjzNYTI9ZVFYPPtOXbzd1Is9KGtPPQpembxWWpA8VXH-PCqTFry4P9c8HvKBuyqRRDwP5-u8pk2APePq17owlnO98mZoPCaTrjzTtoY7oCZpPN3oyLwdWmS8eYcFPcLsjrpjJlE9nx1QvVFLc7y2FAs9kVSAveVrhbzczbq7IPRnvUmyVLtLdmw9De3CPTnmozusA6s9t3EVPd16iztBPFy9whrCvFNPDzwhHok9oK5pPUA4GTzHOQC9uhq0vD95M7waY3E8UvLqPdCpN7sIJ529dkW6PGeOZzomTtO8-r5uvJDha7v8hSM9bFeNPA9iCDtozBQ-NTyDu3EoGrqIJIQ9pRm2vdyZLrtcMS09jkk1vY0qIrv0U4e9R_xtOzPYELoGmF49fus5vR4lzTkcegs94sYSPE0vKLo6FxC7VxuIPGqp9jqq1Lw99LMHPWXzU7lUG_y9Yrv7vRPT8jnUnDy8dkDIOKfeCjr2nG89vbXCPKauajhGQ0a-1f4zvUZZD7kOmiK9KUJqPDpgsrmmX-I9ONlGvWp5Xjfl8vo8v_xYuJ_7Krk2MY69BrSZPJoGDDmJRQy9CAT6PW9xOrhnyQ29fvMMPcwqobinvRc9aE5oPYZgOjmID-w8HNP3OVzznzc-5JI8N0k9vE4aUjiIaao99lJCvSfpKjhq9M26fKNRve0D3zgTz_68OtdmPWhh7DjeiLg8wm4zve2cr7f89VQ9hhQNPX1KzrYCYUy8bLXivHYiMjil078976x9vaAsDrlw9Ky9iZgSPAUgGziO04s9ol4gvr3cMDlTLy49lrD2PUEryDe_n3W84Au4vMRogLjK9HA9IuErPvHLijgxiQS9-Om3uft1hbjc8IA97-2BPSgpW7c5Jms9A3eFvQ7uV7ggADgTQAlIbVABKnMQABpgKd8ASgr2_9b5EBEm1hXo79nqBC_YAQDv4gDGJdTbLBkRwe_nADrr_BmtAAAAGxDvDCgAA2TiEdoNxirY7r7m5Tx_OQsLyukuBQLkOBcCJycX_x82ADL6vxEhCrk0Njo2IAAt8horOzgTQAlIb1ACKq8GEAwaoAYAANhBAABAQQAA4EEAAKDBAADYwQAAlEIAAIA_AACAQQAAsEEAAATCAACAwAAAQEAAAIDAAADoQQAAmEEAAJzCAAAMQgAADMIAAMDBAAAAAAAAcEEAANLCAAAQwQAAwEAAACBCAACwwQAAksIAAJrCAADAQAAAwEEAAMDAAADQQQAAWMIAAAxCAABwwQAAcEEAAOjBAAD-QgAAFMIAALDBAADwQQAAFMIAAOhBAABgQQAA6EEAAJTCAAA4QgAADMIAAKJCAACgwQAAAEIAAPBBAAAgQQAAOEIAADBBAACkQgAAXMIAAAjCAACQQQAAFEIAAABCAACwQQAAgEAAAEBAAACGQgAAYEIAAHhCAAAIQgAAEMIAABBBAAAsQgAA-EEAAJjCAABAQAAAuMEAAFDBAABwQQAAwMAAADBBAADowQAAAMAAALDBAACQQQAAqEEAAIzCAAAAwAAAQEEAAMLCAACAwQAAkkIAABzCAADoQQAAyMEAALhBAACAwQAATMIAABDBAAAEQgAAOMIAAIBBAABAwQAAMMIAALBBAAD4wQAAgL8AACDBAACIQQAAsEEAAARCAABQQQAAyEEAAJTCAACKwgAA6EEAADBCAABQwQAA2EEAAI7CAADgQQAAAMEAAKDBAACAvwAAhsIAAEDCAACeQgAAYEEAABDCAABQwQAAwMEAAHDBAABAQQAAEEEAABxCAAB8QgAAAEEAAOhBAAAcwgAAVMIAAILCAACYwgAAZEIAANhBAACiwgAA4EEAAARCAAAYQgAAMEEAAIhBAABgQgAAgL8AABBBAAAIwgAAYEEAAAzCAABAwAAAisIAAIjBAABkwgAAcMEAAIhCAABgQQAAkkIAAIDAAAAwwQAAMEIAAABAAABsQgAAFEIAAHBCAABgwQAAGMIAAOhBAAAkwgAAfMIAAFDBAACwQQAAJMIAACTCAADEQgAA8EEAAMBBAADAwAAAXEIAACTCAAAIQgAAIMEAAEDCAACAPwAAMMIAAGDBAADQwgAAEMEAACRCAABgQQAA2EEAACBBAABgwQAALMIAABDBAADQwSAAOBNACUh1UAEqjwIQABqAAgAAML0AAFC9AADIPQAAor4AAHw-AAALPwAAmj4AAH-_AAAQvQAAVD4AADA9AACYvQAA6D0AALY-AAAwvQAAMD0AAFw-AACYPQAAHD4AAAU_AAA3PwAAyD0AAJI-AABwvQAAUD0AAOg9AAAEPgAAcL0AAAy-AAAUvgAATD4AABS-AABcPgAAmL0AAAw-AABsvgAAqD0AAHA9AACSvgAA6L0AAHC9AABwPQAAmr4AAES-AABQPQAAyL0AAIC7AAAQvQAA2D0AAHS-AADSPgAA2r4AALi9AADIPQAAHL4AAFA9AABXPwAADL4AAIq-AACmPgAAoLwAAOi9AADoPQAARD4gADgTQAlIfFABKo8CEAEagAIAAJi9AAAwPQAAqD0AAGu_AABwvQAABD4AACQ-AAC4vQAAuL0AAHQ-AADIPQAAED0AACS-AAAwvQAAQDwAAOC8AACOvgAATz8AAOi9AADuPgAADL4AANa-AACovQAAbL4AAMi9AACCvgAAoDwAANg9AAAQvQAAyD0AANg9AADgvAAAcL0AAEA8AACqPgAAuL0AAFC9AADYPQAAor4AABA9AAAEPgAAyL0AANi9AACAOwAAxr4AADC9AAB_vwAAyD0AAEw-AAAQvQAA4LwAAHA9AAAwPQAAiD0AANg9AACIPQAA4LwAAFw-AABcPgAA-L0AABA9AADYPQAABD4AAHA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=DHlCaDPj0WY","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["6085696997064182177"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1253883069"},"6762153203497132001":{"videoId":"6762153203497132001","docid":"34-8-17-Z809FBEE6D379306A","description":"Okulda ezberlediğimiz Diskriminant formülünün ispatını, nasıl bulunduğunu hep merak etmişimdir. Tüm ayrıntılarıyla, hiç bir noktayı atlamadan anlattığım bu videoda ''Diskriminant'' ın nasıl...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2966463/6e3a38ee8a2ab597d5db48a944bb347c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kkHgHQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"isFull":true,"fullTextUrl":"/video/result?ask_summarization=1&numdoc=1&noreask=1&nomisspell=1&parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=videoid:6762153203497132001","teaser":[{"list":{"type":"unordered","items":["Bu video, bir matematik eğitim içeriğidir. Eğitmen, okulda sıkça karşılaşılan ancak müfredatta yer almadığı için ispatını öğretemedikleri ikinci dereceden denklemlerin diskriminantı (delta) kavramını açıklamaktadır.","Video, diskriminantın tanımıyla başlayıp, ikinci dereceden bir denklemin (ax² + bx + c) çözüm formülünün (x = (-b ± √Δ) / 2a) nasıl elde edildiğini adım adım göstermektedir. Eğitmen, x'i yalnız bırakarak başlayıp, tam kare oluşturma, köklerden kurtarma ve mutlak değer alma gibi matematiksel işlemler kullanarak delta formülünü ispatlamaktadır."]},"endTime":380,"title":"İkinci Dereceden Denklemlerin Diskriminantı İspatı","beginTime":0}],"fullResult":[{"index":0,"title":"Diskriminant Tanımı","list":{"type":"unordered","items":["Diskriminant, ikinci dereceden polinom denklemlerinin çözümü için kullanılan bir kavramdır ve delta sembol ile gösterilir.","İkinci dereceden bir denklem ax² + bx + c şeklinde yazılır ve a ≠ 0 denklem olmalıdır.","Diskriminant formülü Δ = b² - 4ac'tir."]},"beginTime":7,"endTime":59,"href":"/video/preview/6762153203497132001?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=7&ask_summarization=1"},{"index":1,"title":"Diskriminant İspatı","list":{"type":"unordered","items":["İspat için önce denklem her iki tarafı a ile bölünerek x² + (b/a)x + (c/a) = 0 denklemine dönüştürülür.","Denklemde c/a ifadesi karşıya atılarak x² + (b/a)x = (c/a) şeklinde yazılır.","İfadeye b²/4a² eklenerek (x + (b/2a))² = (b²/4a² - c/a) şeklinde tam kare elde edilir."]},"beginTime":59,"endTime":224,"href":"/video/preview/6762153203497132001?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=59&ask_summarization=1"},{"index":2,"title":"Köklerden Kurtulma ve Sonuç","list":{"type":"unordered","items":["Kökten kurtulmak için (x + (b/2a))² = √(b²/4a² - c/a) denklemi yazılır.","Mutlak değer alınarak x + (b/2a) = ±√(b²/4a² - c/a) / 2a şeklinde ifade edilir.","x = (-b ± √Δ) / 2a formülüyle ikinci dereceden denklemin kökleri bulunur, burada Δ = b² - 4ac'tir."]},"beginTime":224,"endTime":379,"href":"/video/preview/6762153203497132001?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=224&ask_summarization=1"}],"linkTemplate":"/video/preview/6762153203497132001?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Diskriminant Nasıl Bulunur? - İspat İçerir - (Discriminant Proof)","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LcFrChdPdOQ\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhUKEzY3NjIxNTMyMDM0OTcxMzIwMDFaEzY3NjIxNTMyMDM0OTcxMzIwMDFqiBcSATAYACJFGjEACipoaGd4aGtqc2RkZGlneWlkaGhVQ2tqbTlYcG5YU21zWjNlb1NMSXFVb2cSAgASKhDCDw8aDz8T_AKCBCQBgAQrKosBEAEaeIEA_f_-_gMA8vXyBvkDAAET9QcG9wAAAPECCPIDAQAA9fcD__cAAAD4-_0C_gAAAPj5-w___wAABPwN_fcAAAALCPr5AAAAAAIL9wb-AQAAEwkB_gP_AAAKBf38AAAAAPoVCPz-_wAABQYB9gEAAAD65wEJAAAAACAALVL32js4E0AJSE5QAiqEAhAAGvABf-3oAt8F9QHQAusB2CPlAa4qIf8vNuP_1swQAMAK_gEEHuIA3vfx_wflL_7cDukAL9nV_w_K9_8i9OD-8_zyAdgkFQEi-hgBOAD9AOLr-wDS8C0A9Nkk_ybj2wIHC-_-AAoZ_e_t7AEU7eIAC_Qe_x3uIwLh9AsG4e0XA-D8_ALzv9sABQj2AAfQCwGy_hoH_f3mBg32_vruDgb6BdPrBfPZIP_7Nuf7KPEFBuzr9wXYA_37FvDtBxAi_wjRE-3-EvYd9NX67fYQ_vr5EdH89frn9v0S4voJGg4C9A3NCgTb0wP26A8DB-4A-BHiB_XuIAAtzDIiOzgTQAlIYVACKs8HEAAawAdPPsW-ftjcPDHGsDsKB8y9Vw8UvDSFDr0jE_C91y0nPff9QLxRu689ns46vAiiOLyhSHe-c1a6PKQ2Mb3LgDM-5tGIvZhiMzxi2Sy-cgKqO8NkCr31oWu-hNMHPXQ1w7uxpLw98PTvvBiNRjzBfr498vfBvRetbbyygl-99AikvHl8lrw2RMC96O15vS5STTzbmVM9kguZvbzr7LsgB7o9gpE3vYiynLyHr-U894Q2vN2grLxdHka8EAaePGGZLb0P_I49_IwrPd8g9TwXy768erKwu2PCILzfGJK92b_hPAGZxju5ALS8ZU2RPUysZ7xi9Iw9nn7Qvb52XbudnQy-vhFdvJV2NLwnFxM-T9VzPRWpsDzGYaq9q1udPe7Umjtz2P08SfaEOeXHKbxcHQA-kGaRPDNXgjuWxQ49gZmaPf_HT7vkO8Y7jPcDPr8syDzHjnw9MC_AOybb5bz84Bw9ueNIPWq77Lvcix69A9J-PInACbykLI09nRwVvHlskTvPE8-7tBlMPGbEfTskXp67YvjovVMYZzvO8ga9kDiKvZzLQ7wntmc9iM7bu0qIqLzcEc498ZP2Osr8Uznhb2U9oYYvvTpqmrvDPps9E481vSUkEjyYfH29HsZkPd1QArzmwqK9KeGjPbQq-LswZss8KqcNPm6TKLo7iQy8BGkQvUEWnjtHuZo9Y1Y5vF4GjDutzvs8D5fcvBw8lzpp5NM9ydK9vFKwBrjrY088y8WOvKAXTbuJVpM7sIWqvIoBlrttA9c9taPYvQyfrzkomcE8cfKRvKHyA7iubuu8pvAgPQuWnrl5q1M8k3FsvaqGAzlUG_y9Yrv7vRPT8jmeEmu98mMnPI0fQDm8lDo9ij_KPAUg4TenR8m8mxPFvQMCszikEb08KmmsOsZnZbj6xEs8LRx0utv_SLeZYbi9dd8WvCsIobnEsGi9X-DiOizAkDmsuru6UMiOPWTM-jdar4M9AY_DvabRWjkp23a85-yzPSefgDdk5NE8xQ-EPd6i_rcjYYQ8ume9PSVfd7fubm89FEEcvQkVsbbQgBU9gEq1PZY0kLgi-wC-xl8kPReYZTiBe948sMSoPDkUJLdSMYk933JQvXNSWDd4WJK9SX0HOksUUjiSXRk-2U9QvazCP7kqBA-8jCJVPZZS3DfDJv23s0OMvU2KDjetJEO9DHNHPR7BFjegRYC9NpGZvb4H97fK9HA9IuErPvHLiji_Fgo9oW_BPf8vnLdYYz88N3akvDEcCTZtaxC9xXmTPdUgKDggADgTQAlIbVABKnMQABpg8_AAbOgPyMLYLPYo6hPs2czQ2PzY-__aCf_cNM73-jTH4NMNACgOARehAAAAIeLIHxkACXSB6sEm2yvKs8b0FApwVgFV1gIX7cLLCyjh-hcuFxA8APUBvuxL980qL_8GIAAtP30WOzgTQAlIb1ACKq8GEAwaoAYAAIhCAAAwwQAAKMIAAADBAABQwgAAKMIAALxCAAAUQgAACEIAAFDBAACYQQAAhMIAAIA_AACGwgAACEIAAMjBAAAAQAAANMIAACDBAAAAwAAANEIAACzCAAAowgAAJMIAAABAAADwwQAAeMIAACDCAABAQQAAkEEAAIDAAACgQQAAxMIAAFRCAACAwgAAAEEAAIA_AACuQgAA6EEAAKBAAAC4wQAAoMAAAEhCAACgQAAA0EEAAPjBAABAwAAAYMEAADBBAACgQAAAIMEAAEjCAADAwQAAMEIAAFxCAABEQgAAjsIAABBBAACYQQAALEIAACDBAACOwgAACMIAACDCAACowQAAUEEAALLCAAAswgAAHEIAAGDBAAA8QgAAQEAAAI7CAAD4QQAAOMIAALzCAABAwgAAwMEAABDBAACgQQAAqMEAAJJCAACQQQAAXEIAABDCAAA0QgAAEEIAABBBAADAQAAAnMIAAAAAAAAwQgAA8EEAALDBAADwQQAACMIAAKhBAAC4QQAA-EEAANhBAAAAwgAA2kIAANhBAACIQQAAwsIAAFjCAACAQAAA4EEAANDBAABwQgAAcEEAAODBAACAwgAAJMIAADBBAAD4wQAAiMEAAKLCAAAsQgAAEMIAAAzCAABAwgAATMIAAODAAAD4QQAABMIAAATCAACYwQAA4MEAAFjCAADQwQAA8MEAAFjCAACCQgAA6MEAACTCAADYQQAA2MEAAEBBAACcwgAAmMEAAGRCAAAcQgAAAEEAAChCAAA4QgAABMIAAGDCAAAQQQAAPEIAACDCAAD4QQAANEIAAATCAADYQQAAqMEAAATCAACGwgAAwMIAAExCAAAAAAAAAAAAAJDBAAB4QgAAoEAAAIhBAACQwQAAiEEAANhBAACYQQAAmMEAAIBAAAAQwgAA6MEAAIjBAABAwgAAkEEAABDCAAAQQQAAEEEAAGTCAACwwQAAxMIAAPBBAABAQQAAkMEAADDBAAAMQgAAFMIAAHDBAACwwQAACMIAAIDBAACAwQAA8EEAAChCAAAwQQAAIMEAAJjBAAA0wiAAOBNACUh1UAEqjwIQABqAAgAAcL0AAJg9AABcPgAA3r4AAIC7AACyPgAAiD0AABe_AADYPQAAXD4AAFC9AABMPgAA2D0AAHQ-AABwPQAAgDsAADA9AABsvgAAZD4AAB8_AAB_PwAAiL0AAJY-AACIvQAAdL4AAHC9AAAQPQAABL4AAAy-AADyPgAAqD0AALa-AACWPgAAdD4AADQ-AAD6vgAAlr4AAMi9AACevgAAyD0AAAQ-AACgvAAAFD4AAK6-AACWvgAA6D0AAMo-AABMvgAABL4AAK6-AACYvQAAuL0AAAQ-AAAsvgAAkr4AAMg9AABRPwAAyr4AAKA8AAD6PgAAXL4AABQ-AACgPAAAHL4gADgTQAlIfFABKo8CEAEagAIAAJg9AABsPgAAqL0AAG-_AAA0vgAAFD4AAFw-AABQvQAAir4AAPo-AAC4PQAAgLsAAOi9AACCvgAAUD0AAFC9AACivgAAGT8AAJi9AACmPgAA4LwAAIi9AACovQAAEL0AACy-AADgvAAAZL4AABQ-AADSvgAAJL4AAHA9AACYvQAAij4AAEC8AACovQAAyL0AALg9AAAsPgAARL4AAHC9AABwPQAAEL0AABS-AAAQvQAAUL0AALi9AAB_vwAAiD0AABQ-AABQPQAA4DwAAHA9AACiPgAAHD4AAIa-AACYPQAA6L0AAHA9AAA0PgAALL4AAJg9AACqPgAAoLwAAEw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=LcFrChdPdOQ","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6762153203497132001"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4074431542"},"7279300056562890965":{"videoId":"7279300056562890965","docid":"34-10-17-ZFB9B42360DE43F3E","description":"Merhaba Arkadaşlar! Ayt Matematik'te önemli yer tutan ve birçok konu ile yakın ilişkili ikinci dereceden denklemler, çok zor olmasa da çeşitli ayrıntılar içeriyorr. Bu derste son zamanların...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3133343/b0f900b8f506790e400bfa2cfbdec305/564x318_1"},"target":"_self","position":"19","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPSHA5tvgpRU","linkTemplate":"/video/preview/7279300056562890965?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Diskriminant İçeren Orijinal Sorular - 1","related_orig_text":"Discriminant","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Discriminant\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PSHA5tvgpRU\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1MjE2MjQ1MTcyMjI2NzQ5NDcxChMxNTAyMDYyODE1NTE4MDM1NjY0ChQxNzM5MzcwODY0NjMxNTAyNDY3MgoTNTI0NTc5MTYyNDI0NjA0MzgyMgoUMTgwMjc1NzgxNDMwODY1MTk5NTEKFDEyNjQxNzkxODM2ODIyNzg1NzA0ChQxMzgyNTE1OTE3MjYwNjYyNzY2MwoUMTU2NzU3MzM5MTExODQxNzY4MDIKEzMwODAwNjg2ODg1MDk4MTMyNzUKFDE2NDA4MzIzNDUwMzc2ODEzNDIyChQxMDExMDAyMTU5OTA3ODExOTQ0NgoUMTgyNjY3NDYwNDA4MzQ3NzI3MTkKEzg0MTk4MzA2MjQwMjY0OTYxOTAKFDE4Mzc3Mzc2Mzg0MzIyOTA4NDcwChM2MDg1Njk2OTk3MDY0MTgyMTc3ChM2NzYyMTUzMjAzNDk3MTMyMDAxChM3Mjc5MzAwMDU2NTYyODkwOTY1ChI4NTU0MzIwMDI5MzA2MTgwNjYKFDE2NDM4MTg1NTYyMzA2NDQzMzU3ChM2NzE1OTk3Njg1MzgxNjU1MTY1GhUKEzcyNzkzMDAwNTY1NjI4OTA5NjVaEzcyNzkzMDAwNTY1NjI4OTA5NjVqrw0SATAYACJFGjEACipoaGZ3YWJ3bmV0c3RsbXZjaGhVQ1I1enBxdk9PSGN1OHBFUWltQ0o4bEESAgASKhDCDw8aDz8TngaCBCQBgAQrKosBEAEaeIH7A_MHAAAA_ff2DPgI_QIU9QcG9wAAAPQGAv8IAv8A7vwA8_gAAAD5EP3--wAAAP0GAfv6_gAADfcD8AMAAAAI__75_QAAAAUB_Qf_AQAAABAIBAMAAAAQBvkP_wAAAPoWCPz-_wAA_BH09QEAAAD65gEJAAAAACAALZpM1Ds4E0AJSE5QAipzEAAaYBwIAEcY-tTV4gb2G_MN8-7I7PL03_z_2-sA_wTp8O8M29D0Iv9BHPwbuQAAAADi1h78ACVWqe7ZB_366tDc2wPpfzwEHdfxEO_Y5CMHLBseKR_cLAAHAf7kC8HPMhsCKyAALYwnQTs4E0AJSG9QAiqvBhAMGqAGAACMQgAAGMIAAEBAAAAMwgAAYEEAAADAAAAoQgAAqEEAAPhBAADgQQAABEIAAEzCAAAYwgAABMIAAJpCAADAwQAAoEAAABjCAAAQwQAAcMIAAIZCAABEwgAA6MEAABBBAAAgwQAAEMIAAEzCAADQwgAAoEEAAAAAAAAAAAAAHEIAAGTCAADwQQAAWMIAAKDAAADQQQAA9kIAAAAAAAAQQgAA0EEAAIjBAABYQgAAoMAAAFhCAAC-wgAAKMIAAAhCAADIQQAAAEEAAFTCAAA8wgAAmMEAAPhBAABEQgAAAEIAAPLCAACoQQAAAEEAAFRCAADYQQAAwMEAACjCAADgwQAAuEEAAFDBAADgQAAAHMIAAIC_AAAIwgAApEIAAJhCAAB4wgAAcMEAAIA_AAB4wgAA0MEAALjBAADgQAAAMEEAAFDBAABQQgAAMEIAAIpCAADAwQAAYEEAAEBBAAAoQgAAUEIAAI7CAAAwQgAAEEIAABDCAABUwgAADMIAAIjBAABUwgAAqMEAAMhCAACgwAAAksIAAMBCAACUQgAAAMEAALDBAACAPwAAbMIAAARCAABkwgAAtEIAAChCAACowQAASMIAAGDBAACgwAAAEMIAAHDBAACAvwAAGMIAAADAAACwwQAARMIAABjCAAAcwgAA2EEAABBBAADgwQAA6MEAAMDBAAAswgAA6MEAAIjBAAAowgAAaEIAAEjCAADIQQAAKEIAAMDAAABgwQAAZMIAAEDBAACAwAAA4EAAAEDBAACoQQAAAEEAAIbCAAAYwgAAIEIAADDBAADYwQAAuEEAALhBAABAQQAA6EEAACDBAAAEwgAAaMIAAJbCAACAQAAA-MEAAKBBAAAMQgAAoMAAAOBAAAAUQgAAwMAAAGRCAABQwQAAkEEAAETCAADoQQAAQMIAAGBBAAAIwgAAmMEAAADAAABAwQAAkkIAAIBAAACgwQAAUMIAAKjBAACSQgAAOEIAAOjBAADQwQAAAMEAAIjBAACAvwAAAMEAALjBAAC4QQAAkMEAAJhBAACgwAAAEMIAAMhBAADAwAAAJMIgADgTQAlIdVABKo8CEAAagAIAABQ-AACYvQAAEL0AALg9AACqvgAAOz8AAGQ-AAD6vgAArr4AABc_AADovQAALD4AAPg9AADYPQAArr4AAOC8AAD4PQAAEL0AAGw-AAAhPwAAfz8AAMq-AADSPgAAhr4AAGS-AACSvgAAjj4AABw-AACqvgAAXD4AAOg9AADYPQAApj4AAAc_AACAOwAAA78AABA9AACKvgAAIb8AAHC9AAAMPgAAkr4AAAc_AAAJvwAAVD4AAMg9AAA0vgAATL4AACS-AAAJvwAAoj4AAOA8AADYPQAAUD0AAEy-AADgvAAAVz8AAHy-AAD4PQAAwj4AAEA8AAAUvgAA4DwAAFS-IAA4E0AJSHxQASqPAhABGoACAACovQAAZD4AAGy-AAB1vwAAqL0AAIA7AACOPgAAdL4AALi9AAC6PgAA2D0AAEC8AADIvQAAXL4AALg9AADovQAAzr4AABc_AABsvgAAij4AAOi9AACGvgAAQDwAAEC8AAAUvgAAiL0AAHS-AADgPAAA2L0AABS-AAAQPQAAQDwAAIi9AADovQAAuL0AAIi9AADoPQAAFD4AADy-AAAUvgAAEL0AAHC9AADYvQAA4DwAADA9AAAwPQAAf78AAOC8AADoPQAAoDwAAKg9AABwvQAAxj4AAMg9AACivgAAMD0AAFC9AAAwPQAAJD4AABS-AAA8PgAAZD4AAOC8AACgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=PSHA5tvgpRU","parent-reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":null,"cheight":null,"cratio":null,"dups":["7279300056562890965"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"5216245172226749471":{"videoId":"5216245172226749471","title":"\u0007[Diskriminant\u0007] (Delta) | Matematik TYT ve AYT","cleanTitle":"Diskriminant (Delta) | Matematik TYT ve AYT","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/p5EiRVPaFSg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/p5EiRVPaFSg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO2h0dHA6Ly93d3cueW91dHViZS5jb20vQHNtbG1hdGVtYXRpaw==","name":"SML Matematik","isVerified":true,"subscribersCount":0,"url":"/video/search?text=SML+Matematik","origUrl":"http://www.youtube.com/@smlmatematik","a11yText":"SML Matematik. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":59,"text":"00:59","a11yText":"Süre 59 saniye","shortText":""},"views":{"text":"17,1bin","a11yText":"17,1 bin izleme"},"date":"1 mar 2024","modifyTime":1709301369000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/p5EiRVPaFSg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=p5EiRVPaFSg","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":59},"parentClipId":"5216245172226749471","href":"/preview/5216245172226749471?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/5216245172226749471?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1502062815518035664":{"videoId":"1502062815518035664","title":"\u0007[Diskriminant\u0007] içinde \u0007[Diskriminant\u0007]#tyt #ayt #matematik","cleanTitle":"Diskriminant içinde Diskriminant#tyt #ayt #matematik","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CMseVIWEVc0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CMseVIWEVc0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDemF6bENsanRuUWRDMk5NU2dhZjFFZw==","name":"Matematiğin Kaderi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Matemati%C4%9Fin+Kaderi","origUrl":"http://www.youtube.com/@MatematiginKaderi","a11yText":"Matematiğin Kaderi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":212,"text":"3:32","a11yText":"Süre 3 dakika 32 saniye","shortText":"3 dk."},"views":{"text":"2,1bin","a11yText":"2,1 bin izleme"},"date":"9 oca 2021","modifyTime":1610196365000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CMseVIWEVc0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CMseVIWEVc0","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":212},"parentClipId":"1502062815518035664","href":"/preview/1502062815518035664?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/1502062815518035664?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17393708646315024672":{"videoId":"17393708646315024672","title":"Nedir bu \u0007[diskriminant\u0007]? (10. Sınıf ve AYT)","cleanTitle":"Nedir bu diskriminant? (10. Sınıf ve AYT)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=IbhLbWOBIhw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IbhLbWOBIhw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVjROMExnM19aS0tsYVpsZEZxUVNBZw==","name":"no35matematik I Sami Hoca","isVerified":false,"subscribersCount":0,"url":"/video/search?text=no35matematik+I+Sami+Hoca","origUrl":"http://www.youtube.com/@no35matematik","a11yText":"no35matematik I Sami Hoca. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1146,"text":"19:06","a11yText":"Süre 19 dakika 6 saniye","shortText":"19 dk."},"date":"12 nis 2025","modifyTime":1744416000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IbhLbWOBIhw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IbhLbWOBIhw","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":1146},"parentClipId":"17393708646315024672","href":"/preview/17393708646315024672?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/17393708646315024672?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5245791624246043822":{"videoId":"5245791624246043822","title":"\u0007[Diskriminant\u0007] | 2.Dereceden Denklemler -2 | 10.Sinif | 2025 Matematik","cleanTitle":"Diskriminant | 2.Dereceden Denklemler -2 | 10.Sinif | 2025 Matematik","host":{"title":"YouTube","href":"http://www.youtube.com/live/MYtQywjWPdE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MYtQywjWPdE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDemF6bENsanRuUWRDMk5NU2dhZjFFZw==","name":"Matematiğin Kaderi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Matemati%C4%9Fin+Kaderi","origUrl":"http://www.youtube.com/@MatematiginKaderi","a11yText":"Matematiğin Kaderi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1624,"text":"27:04","a11yText":"Süre 27 dakika 4 saniye","shortText":"27 dk."},"date":"4 mar 2025","modifyTime":1741046400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MYtQywjWPdE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MYtQywjWPdE","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":1624},"parentClipId":"5245791624246043822","href":"/preview/5245791624246043822?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/5245791624246043822?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18027578143086519951":{"videoId":"18027578143086519951","title":"2. Adım 3. Ders \u0007[Diskriminant\u0007] Yönetimi ve Köklerin Varlığı","cleanTitle":"2. Adım 3. Ders Diskriminant Yönetimi ve Köklerin Varlığı","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=me_Vroz2F3k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/me_Vroz2F3k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZGVIbjBORFl3aFY5T1AxZHVuZ0wxZw==","name":"Yediiklim Yayıncılık ( TYT - AYT )","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Yediiklim+Yay%C4%B1nc%C4%B1l%C4%B1k+%28+TYT+-+AYT+%29","origUrl":"http://www.youtube.com/@yediiklimyayinciliktytayt","a11yText":"Yediiklim Yayıncılık ( TYT - AYT ). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":400,"text":"6:40","a11yText":"Süre 6 dakika 40 saniye","shortText":"6 dk."},"date":"30 eki 2024","modifyTime":1730246400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/me_Vroz2F3k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=me_Vroz2F3k","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":400},"parentClipId":"18027578143086519951","href":"/preview/18027578143086519951?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/18027578143086519951?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12641791836822785704":{"videoId":"12641791836822785704","title":"İkinci Dereceden Denklemler 2 | \u0007[Diskriminant\u0007] | 10.Sinif Matematik MatBook | 2024","cleanTitle":"İkinci Dereceden Denklemler 2 | Diskriminant | 10.Sinif Matematik MatBook | 2024","host":{"title":"YouTube","href":"http://www.youtube.com/live/h-tPxAqjTeQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/h-tPxAqjTeQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDenhqOVNLa0x1RGhkeFNEWHhjbXdxUQ==","name":"Rehber Matematik","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Rehber+Matematik","origUrl":"http://www.youtube.com/@RehberMatematik","a11yText":"Rehber Matematik. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1813,"text":"30:13","a11yText":"Süre 30 dakika 13 saniye","shortText":"30 dk."},"views":{"text":"95,6bin","a11yText":"95,6 bin izleme"},"date":"24 oca 2024","modifyTime":1706054400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/h-tPxAqjTeQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=h-tPxAqjTeQ","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":1813},"parentClipId":"12641791836822785704","href":"/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/12641791836822785704?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13825159172606627663":{"videoId":"13825159172606627663","title":"İkinci Dereceden Denklemlerin \u0007[Diskriminantı\u0007]","cleanTitle":"İkinci Dereceden Denklemlerin Diskriminantı","host":{"title":"YouTube","href":"http://www.youtube.com/v/kGuTNbgjKnk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kGuTNbgjKnk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOGhneDVoQ2l5RG1PM1VlQmw5NV8xUQ==","name":"KhanAcademyTurkce","isVerified":true,"subscribersCount":0,"url":"/video/search?text=KhanAcademyTurkce","origUrl":"http://www.youtube.com/@KhanAcademyTurkce","a11yText":"KhanAcademyTurkce. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":605,"text":"10:05","a11yText":"Süre 10 dakika 5 saniye","shortText":"10 dk."},"views":{"text":"1,7bin","a11yText":"1,7 bin izleme"},"date":"30 haz 2017","modifyTime":1498830299000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kGuTNbgjKnk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kGuTNbgjKnk","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":605},"parentClipId":"13825159172606627663","href":"/preview/13825159172606627663?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/13825159172606627663?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15675733911184176802":{"videoId":"15675733911184176802","title":"\u0007[Diskriminant\u0007] | İkinci Dereceden Denklemler 2 | 10.Sinif Matematik MatBook","cleanTitle":"Diskriminant | İkinci Dereceden Denklemler 2 | 10.Sinif Matematik MatBook","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XP3hxuIaChI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XP3hxuIaChI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDenhqOVNLa0x1RGhkeFNEWHhjbXdxUQ==","name":"Rehber Matematik","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Rehber+Matematik","origUrl":"http://www.youtube.com/@RehberMatematik","a11yText":"Rehber Matematik. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2136,"text":"35:36","a11yText":"Süre 35 dakika 36 saniye","shortText":"35 dk."},"views":{"text":"183bin","a11yText":"183 bin izleme"},"date":"22 şub 2023","modifyTime":1677080724000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XP3hxuIaChI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XP3hxuIaChI","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":2136},"parentClipId":"15675733911184176802","href":"/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/15675733911184176802?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3080068688509813275":{"videoId":"3080068688509813275","title":"LYS Matematik Hazırlık : \u0007[Diskriminant\u0007] Nedir? (www.buders.com)","cleanTitle":"LYS Matematik Hazırlık : Diskriminant Nedir? (www.buders.com)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XfAKVNWPNa8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XfAKVNWPNa8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbEtCZC00eEZWb2RGbUszYlpmSkFBUQ==","name":"BUders Boğaziçiliden Özel Ders","isVerified":false,"subscribersCount":0,"url":"/video/search?text=BUders+Bo%C4%9Fazi%C3%A7iliden+%C3%96zel+Ders","origUrl":"http://www.youtube.com/@Buders","a11yText":"BUders Boğaziçiliden Özel Ders. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":454,"text":"7:34","a11yText":"Süre 7 dakika 34 saniye","shortText":"7 dk."},"views":{"text":"19,9bin","a11yText":"19,9 bin izleme"},"date":"27 ağu 2017","modifyTime":1503827765000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XfAKVNWPNa8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XfAKVNWPNa8","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":454},"parentClipId":"3080068688509813275","href":"/preview/3080068688509813275?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/3080068688509813275?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16408323450376813422":{"videoId":"16408323450376813422","title":"2.Dereceden Denklemin Kökleri ve \u0007[Diskriminant\u0007] İspat | Kara Tahta 7","cleanTitle":"2.Dereceden Denklemin Kökleri ve Diskriminant İspat | Kara Tahta 7","host":{"title":"YouTube","href":"http://www.youtube.com/live/b7l8Qh3eSNY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/b7l8Qh3eSNY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDenhqOVNLa0x1RGhkeFNEWHhjbXdxUQ==","name":"Rehber Matematik","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Rehber+Matematik","origUrl":"http://www.youtube.com/@RehberMatematik","a11yText":"Rehber Matematik. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":294,"text":"4:54","a11yText":"Süre 4 dakika 54 saniye","shortText":"4 dk."},"views":{"text":"45,6bin","a11yText":"45,6 bin izleme"},"date":"13 oca 2022","modifyTime":1642089613000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/b7l8Qh3eSNY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=b7l8Qh3eSNY","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":294},"parentClipId":"16408323450376813422","href":"/preview/16408323450376813422?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/16408323450376813422?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10110021599078119446":{"videoId":"10110021599078119446","title":"İkinci Dereceden Denklemler | \u0007[Diskriminant\u0007] Yöntemi | 10. Sınıf Matematik Konu Anlatımları","cleanTitle":"İkinci Dereceden Denklemler | Diskriminant Yöntemi | 10. Sınıf Matematik Konu Anlatımları","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RS-k369ORZA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RS-k369ORZA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZTNmNDJEc0xtcElFV3F0UjBYSDRNdw==","name":"Paraf Akademi","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Paraf+Akademi","origUrl":"http://www.youtube.com/@ParafAkademi","a11yText":"Paraf Akademi. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1334,"text":"22:14","a11yText":"Süre 22 dakika 14 saniye","shortText":"22 dk."},"views":{"text":"3,1bin","a11yText":"3,1 bin izleme"},"date":"7 mar 2021","modifyTime":1615137703000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RS-k369ORZA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RS-k369ORZA","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":1334},"parentClipId":"10110021599078119446","href":"/preview/10110021599078119446?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/10110021599078119446?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18266746040834772719":{"videoId":"18266746040834772719","title":"\u0007[Diskriminant\u0007] - Limit ve Süreklilik - 3D Yayınları AYT Matematik Soru Bankası","cleanTitle":"Diskriminant - Limit ve Süreklilik - 3D Yayınları AYT Matematik Soru Bankası","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=e4fXYfPiCmQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/e4fXYfPiCmQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTFJSaGZQYzU3SFJSSnVaX3BSR24yUQ==","name":"Matematik Çizgileri","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Matematik+%C3%87izgileri","origUrl":"http://www.youtube.com/@matematikcizgileri630","a11yText":"Matematik Çizgileri. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":146,"text":"2:26","a11yText":"Süre 2 dakika 26 saniye","shortText":"2 dk."},"date":"9 şub 2021","modifyTime":1612828800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/e4fXYfPiCmQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=e4fXYfPiCmQ","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":146},"parentClipId":"18266746040834772719","href":"/preview/18266746040834772719?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/18266746040834772719?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8419830624026496190":{"videoId":"8419830624026496190","title":"10.Sınıf Matematik | İkinci Dereceden Denklemler - 2 | \u0007[Diskriminant\u0007] Kavramı","cleanTitle":"10.Sınıf Matematik | İkinci Dereceden Denklemler - 2 | Diskriminant Kavramı","host":{"title":"YouTube","href":"http://www.youtube.com/live/dquIioL140c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dquIioL140c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUm5UOTZQSk9yNEtlTUVqaGl6RU1mZw==","name":"Partikül Matematik","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Partik%C3%BCl+Matematik","origUrl":"http://www.youtube.com/c/Partik%C3%BClMatematik","a11yText":"Partikül Matematik. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1637,"text":"27:17","a11yText":"Süre 27 dakika 17 saniye","shortText":"27 dk."},"views":{"text":"21,4bin","a11yText":"21,4 bin izleme"},"date":"5 mar 2025","modifyTime":1741132800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dquIioL140c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dquIioL140c","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":1637},"parentClipId":"8419830624026496190","href":"/preview/8419830624026496190?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/8419830624026496190?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18377376384322908470":{"videoId":"18377376384322908470","title":"ZARF: C-\u0007[Diskriminantı\u0007] (C-\u0007[discriminant\u0007])","cleanTitle":"ZARF: C-Diskriminantı (C-discriminant)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LyClb61_KGk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LyClb61_KGk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUEY2blFiY2pDTWtWTTJ6M0xFM1BxUQ==","name":"Yıldırım ÖZDEMİR","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Y%C4%B1ld%C4%B1r%C4%B1m+%C3%96ZDEM%C4%B0R","origUrl":"http://www.youtube.com/@yildirimozdemir1","a11yText":"Yıldırım ÖZDEMİR. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1255,"text":"20:55","a11yText":"Süre 20 dakika 55 saniye","shortText":"20 dk."},"date":"11 ara 2024","modifyTime":1733875200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LyClb61_KGk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LyClb61_KGk","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":1255},"parentClipId":"18377376384322908470","href":"/preview/18377376384322908470?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/18377376384322908470?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6085696997064182177":{"videoId":"6085696997064182177","title":"İkinci Dereceden Denklemler-2 | \u0007[Diskriminant\u0007](Delta) | 10.Sınıf Konu Anlatımı | Akademi Serisi","cleanTitle":"İkinci Dereceden Denklemler-2 | Diskriminant(Delta) | 10.Sınıf Konu Anlatımı | Akademi Serisi","host":{"title":"YouTube","href":"http://www.youtube.com/live/DHlCaDPj0WY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DHlCaDPj0WY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDek1WaV9DUHhfWEI5dWhNbDR1V1I5Zw==","name":"Mert Hoca","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Mert+Hoca","origUrl":"http://www.youtube.com/@merthoca","a11yText":"Mert Hoca. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1524,"text":"25:24","a11yText":"Süre 25 dakika 24 saniye","shortText":"25 dk."},"views":{"text":"114,4bin","a11yText":"114,4 bin izleme"},"date":"28 şub 2023","modifyTime":1677595500000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DHlCaDPj0WY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DHlCaDPj0WY","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":1524},"parentClipId":"6085696997064182177","href":"/preview/6085696997064182177?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/6085696997064182177?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6762153203497132001":{"videoId":"6762153203497132001","title":"\u0007[Diskriminant\u0007] Nasıl Bulunur? - İspat İçerir - (\u0007[Discriminant\u0007] Proof)","cleanTitle":"Diskriminant Nasıl Bulunur? - İspat İçerir - (Discriminant Proof)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LcFrChdPdOQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LcFrChdPdOQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa2ptOVhwblhTbXNaM2VvU0xJcVVvZw==","name":"Ali Rıza SUNGUR","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ali+R%C4%B1za+SUNGUR","origUrl":"https://www.youtube.com/channel/UCkjm9XpnXSmsZ3eoSLIqUog","a11yText":"Ali Rıza SUNGUR. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":380,"text":"6:20","a11yText":"Süre 6 dakika 20 saniye","shortText":"6 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"6 haz 2020","modifyTime":1591401600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LcFrChdPdOQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LcFrChdPdOQ","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":380},"parentClipId":"6762153203497132001","href":"/preview/6762153203497132001?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/6762153203497132001?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7279300056562890965":{"videoId":"7279300056562890965","title":"\u0007[Diskriminant\u0007] İçeren Orijinal Sorular - 1","cleanTitle":"Diskriminant İçeren Orijinal Sorular - 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=PSHA5tvgpRU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PSHA5tvgpRU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUjV6cHF2T09IY3U4cEVRaW1DSjhsQQ==","name":"SİGMA MATEMATİK","isVerified":false,"subscribersCount":0,"url":"/video/search?text=S%C4%B0GMA+MATEMAT%C4%B0K","a11yText":"SİGMA MATEMATİK. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":798,"text":"13:18","a11yText":"Süre 13 dakika 18 saniye","shortText":"13 dk."},"date":"3 ara 2025","modifyTime":1764720000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PSHA5tvgpRU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PSHA5tvgpRU","reqid":"1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL","duration":798},"parentClipId":"7279300056562890965","href":"/preview/7279300056562890965?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","rawHref":"/video/preview/7279300056562890965?parent-reqid=1769421483808832-4590601722694910772-balancer-l7leveler-kubr-yp-klg-247-BAL&text=Discriminant","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"5906017226949107727247","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Discriminant","queryUriEscaped":"Diskriminant","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}