{"pages":{"search":{"query":"FerranteMath","originalQuery":"FerranteMath","serpid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","parentReqid":"","serpItems":[{"id":"16292461794447869235-0-0","type":"videoSnippet","props":{"videoId":"16292461794447869235"},"curPage":0},{"id":"5784041891055680201-0-1","type":"videoSnippet","props":{"videoId":"5784041891055680201"},"curPage":0},{"id":"16587212620585915880-0-2","type":"videoSnippet","props":{"videoId":"16587212620585915880"},"curPage":0},{"id":"1344928960310595180-0-3","type":"videoSnippet","props":{"videoId":"1344928960310595180"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEZlcnJhbnRlTWF0aAo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","ui":"desktop","yuid":"6438107181767136755"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"15308174854235881883-0-5","type":"videoSnippet","props":{"videoId":"15308174854235881883"},"curPage":0},{"id":"15473983192105888820-0-6","type":"videoSnippet","props":{"videoId":"15473983192105888820"},"curPage":0},{"id":"16288166524656160597-0-7","type":"videoSnippet","props":{"videoId":"16288166524656160597"},"curPage":0},{"id":"9091940489587090011-0-8","type":"videoSnippet","props":{"videoId":"9091940489587090011"},"curPage":0},{"id":"4438283303160589618-0-9","type":"videoSnippet","props":{"videoId":"4438283303160589618"},"curPage":0},{"id":"14396701191278791769-0-10","type":"videoSnippet","props":{"videoId":"14396701191278791769"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEZlcnJhbnRlTWF0aAo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","ui":"desktop","yuid":"6438107181767136755"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"6038219596149269829-0-12","type":"videoSnippet","props":{"videoId":"6038219596149269829"},"curPage":0},{"id":"506958031528267836-0-13","type":"videoSnippet","props":{"videoId":"506958031528267836"},"curPage":0},{"id":"4151868899996755503-0-14","type":"videoSnippet","props":{"videoId":"4151868899996755503"},"curPage":0},{"id":"14217972748373241748-0-15","type":"videoSnippet","props":{"videoId":"14217972748373241748"},"curPage":0},{"id":"16280715204743830710-0-16","type":"videoSnippet","props":{"videoId":"16280715204743830710"},"curPage":0},{"id":"1730439994421345145-0-17","type":"videoSnippet","props":{"videoId":"1730439994421345145"},"curPage":0},{"id":"4084023650851229958-0-18","type":"videoSnippet","props":{"videoId":"4084023650851229958"},"curPage":0},{"id":"5822434966116582186-0-19","type":"videoSnippet","props":{"videoId":"5822434966116582186"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEZlcnJhbnRlTWF0aAo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","ui":"desktop","yuid":"6438107181767136755"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DFerranteMath"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"4740684299815784298769","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1460339,0,70;1414492,0,20;82359,0,15;1424968,0,13;1447482,0,49;1460724,0,0;1460956,0,79;1455915,0,52;1460733,0,39;1460214,0,25;1152685,0,76;1460507,0,48;1452511,0,55;1454919,0,93;1442997,0,73;1461640,0,13;138060,0,21;27382,0,42;1460349,0,35;27393,0,69;1454364,0,78;187287,0,86;1447942,0,23;1455767,0,67;1457071,0,16;1456176,0,12;1282205,0,79;1453816,0,38;1457981,0,97;1451618,0,67;1448580,0,95;1461374,0,39;1349038,0,79;1452327,0,44;1454916,0,2;90500,0,17;1461035,0,38;1459637,0,0;1447783,0,94;1455157,0,88;1460869,0,87;1456200,0,85;805348,0,51;1456209,0,69;1460555,0,93;151171,0,60;1459211,0,64;1281084,0,57;287509,0,96;1447467,0,40;1447551,0,98;912280,0,39"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DFerranteMath","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=FerranteMath","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=FerranteMath","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"FerranteMath: Yandex'te 570 video bulundu","description":"Результаты поиска по запросу \"FerranteMath\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"FerranteMath — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y2574fcf33c2b5e426a191b6d8e8e9d5f","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1460339,1414492,82359,1424968,1447482,1460724,1460956,1455915,1460733,1460214,1152685,1460507,1452511,1454919,1442997,1461640,138060,27382,1460349,27393,1454364,187287,1447942,1455767,1457071,1456176,1282205,1453816,1457981,1451618,1448580,1461374,1349038,1452327,1454916,90500,1461035,1459637,1447783,1455157,1460869,1456200,805348,1456209,1460555,151171,1459211,1281084,287509,1447467,1447551,912280","queryText":"FerranteMath","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"6438107181767136755","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1460915,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1767136758","tz":"America/Louisville","to_iso":"2025-12-30T18:19:18-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1460339,1414492,82359,1424968,1447482,1460724,1460956,1455915,1460733,1460214,1152685,1460507,1452511,1454919,1442997,1461640,138060,27382,1460349,27393,1454364,187287,1447942,1455767,1457071,1456176,1282205,1453816,1457981,1451618,1448580,1461374,1349038,1452327,1454916,90500,1461035,1459637,1447783,1455157,1460869,1456200,805348,1456209,1460555,151171,1459211,1281084,287509,1447467,1447551,912280","queryText":"FerranteMath","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"6438107181767136755","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"4740684299815784298769","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":161,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"6438107181767136755","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1743.0__eecddcd035f1600a552b89c33e76f4a866ae10da","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"16292461794447869235":{"videoId":"16292461794447869235","docid":"34-9-9-Z620B97433B19F244","description":"Title...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/762391/c1f95ba138cc98e8ec294b546b23d22a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1544D5EE027C13EA46C19D74D96C5AE42BF98010C14BDB9F1BEFFBC59F7ADFFE31A5EC5F4A91E88A59DA03987BA078116E2317BB4588A1986C458204EB1452A9.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dg4VFZzWFu0w","linkTemplate":"/video/preview/16292461794447869235?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Ferrantemath: Solving a Radical Expression","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=g4VFZzWFu0w\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoWChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNVoUMTYyOTI0NjE3OTQ0NDc4NjkyMzVqtQ8SATAYACJEGjEACipoaGVleHlyZXJ3cGVuaWFjaGhVQ2pDWTBKMFlYbjMwbjBlQ3hfMkVucncSAgASKg_CDw8aDz8TPIIEJAGABCsqiwEQARp4gfL8__X-AgD57QkJBgf8AQgDCQn4__8A9QD19AMC_wDuAAX_DQAAAP0L_AUMAAAA_-71CP39AAAQAff8BAAAAB0J9AX9AAAADw39AxH-AQH2BAIJ9wIAAQYNCQD_AAAA_QUN8AAAAAD-DwUAAAAAAAD6_PkAAAAAIAAtHT3WOzgTQAlITlACKoQCEAAa8AFm4_j8mREF-yfp1wEm9uACujwPAH858QHAPtkBPPru_w3H_wETHOQAxh8IAML3FQAcz9z_6wYiAPzWE_8m47YAASTIAOoE6QHoCfcAGuY4_-JJ-v_V2Cj_HM_KAyTJ0vvqJfUAMgsjAdUO-gMG7QECNtD_A_kBCAEgtQX-4hgTAw7Iz_76Ft_8__YFBtvzOAkW_hMJxhsPAqMl9P0A9fkJ0-gz_esPHQgx0_UCI_8uAQLqAPQ8HeL4FuMD9toeLAH3Fwj4TjQL_vvI9vEMDvT3JPHd-wkK1A7JQvUIAML3AtX3Eu4t8QgK_hgC6rIDBhYgAC3Xw_w6OBNACUhhUAIqcxAAGmD_GAAwOxzhA9MW146o-dQdl9HaD8H3_9yh__nl8PIx9sjQzgwAPNsTCZQAAAAoojEwIQAIf_b7tV3yuwC3Ff05Hl8MKRXd-AY04_ws_gaZ50LH1hoA5C_ydCXD2v86CR8gAC18bwk7OBNACUhvUAIqrwYQDBqgBgAAkkIAAJBBAAA4QgAA0EEAABTCAABQQgAAYEEAALhBAABIwgAA8MEAAKjBAABAwAAAMEEAAMDBAAAQQgAAoMAAAGBBAABUwgAAEEIAAADCAAA4wgAAAMIAAIzCAAAgQgAAAMEAAMDAAADowQAAgMEAAEBBAADgQQAADMIAAKhBAABQwQAAYMEAAJbCAACIQQAAVEIAAKhCAABEQgAAHEIAAKDAAAAIwgAALEIAAADBAAAEwgAAqkIAAJDBAACgQQAAgEAAAAzCAADwwQAAWMIAAADCAABAQAAA0EEAAMhBAAC4wQAA2MEAAARCAABQQQAAUEEAAFzCAABEwgAAUMEAAEBCAAA4wgAAWMIAAILCAABUwgAA6EEAAEDAAAAAwgAAkEEAAMBBAAAQwQAAYMIAAGjCAADIwQAAXEIAAGDCAABMwgAA-EEAAJjBAAAowgAA2MEAABhCAACAQAAAgMIAAMBBAAAIwgAAgD8AAGDBAABAQgAAYMIAANjBAABwwgAAQEIAAMDBAAD4QQAAqEEAAJLCAADQwQAAdEIAAHDCAABUwgAAqEEAAGDBAAB8QgAAYEEAAIZCAACAQQAAqMEAAGzCAABAwAAAXEIAAFDBAABoQgAA3MIAAKBBAADYwQAAQMIAAJhBAAAEQgAAOMIAAKbCAABswgAABMIAAIjBAACAwgAAeMIAAEBBAABAQQAAsMEAADhCAACAQAAAwEAAAMZCAACAvwAAiEEAALDCAACgQQAAoEAAAIC_AAAkQgAAgL8AAGBCAAAowgAAGMIAAIxCAACOQgAAgEEAAAzCAAD4QQAA4EAAAKDAAACAPwAAlsIAAIrCAACAQQAAcMEAAFxCAACIQQAAUEEAALhBAADgwAAAGEIAAAAAAADIQQAAvEIAAILCAABAwgAAwEAAAIA_AACgQAAAwMAAAAzCAABYwgAABMIAAJjBAACeQgAAMMEAAITCAABAQQAAAEAAAABCAAAwwgAAoMAAAOhBAABIQgAAUEEAAFxCAACgQAAAQMEAABRCAAAAQAAAAMAAAKBBAACAQAAAgEIAAMDAIAA4E0AJSHVQASqPAhAAGoACAADYPQAAQDwAAOI-AABAvAAAJL4AAGw-AAD4vQAAF78AAIA7AACYPQAAoj4AAIC7AADoPQAAPD4AAKC8AACAuwAA2D0AAKg9AABwPQAAsj4AAH8_AAAEvgAAFD4AAAw-AABUvgAAMD0AAFC9AABAvAAAhj4AAAw-AABAPAAAMD0AAIC7AABsPgAA-D0AACQ-AABAvAAARL4AAGy-AACSvgAADL4AAKC8AABAPAAAyL0AAJq-AAC4vQAAqL0AAIg9AACAuwAAuL0AANg9AABkPgAADD4AAFQ-AADSvgAAED0AACM_AABwvQAAHD4AAMg9AACovQAANL4AAII-AABQPSAAOBNACUh8UAEqjwIQARqAAgAAqL0AAIA7AACAOwAAb78AAAS-AAD4PQAAXD4AANg9AAAQvQAARD4AABQ-AACAuwAAgLsAAHC9AACgPAAAUL0AABS-AAApPwAADL4AAMo-AABcvgAARL4AAPg9AACKvgAAqL0AABS-AABUvgAAoDwAAMg9AACAOwAAgDsAAKA8AACAOwAAhr4AAI4-AADovQAAgDsAAAw-AACIvQAAdD4AADw-AACKvgAAlr4AADA9AACmvgAAgDsAAH-_AAAwPQAAoLwAAFQ-AAAsPgAAED0AAFQ-AAAcPgAAiD0AABA9AACovQAA-L0AAAQ-AACWvgAAFD4AAAw-AACYPQAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=g4VFZzWFu0w","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16292461794447869235"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1126597449"},"5784041891055680201":{"videoId":"5784041891055680201","docid":"34-3-11-ZB22A2D7470414F84","description":"Radical expressions...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3920107/b57e227c212f13a1939d55558fda7d4a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/A_06HwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJifpBXCJ8BI","linkTemplate":"/video/preview/5784041891055680201?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Complex Radical Expressions(FerranteMath)","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JifpBXCJ8BI\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoVChM1Nzg0MDQxODkxMDU1NjgwMjAxWhM1Nzg0MDQxODkxMDU1NjgwMjAxaoYXEgEwGAAiQxowAAopaGhmcm12emFvcHZ1c216aGhVQ2ExUl8wWXpIY1E3VGg4dm9VNjdlOHcSAgARKg_CDw8aDz8TbYIEJAGABCsqiwEQARp4ge0E-_cD_AD47AkKBwf8AvkJEwT5_f0AAwP38gME_gDwAhD6BwAAABEBAPoFAAAA_-z0Cf39AAAHCwTvBAAAACkA_Qb7AAAA_RICEP4BAADq9gL_AwAAABEG-BD_AAAA9gIH9f__AAAHDgsKAAAAAPcABwX__wAAIAAtnNXGOzgTQAlITlACKoQCEAAa8AFo_gP9gSrv-TU7_gBIAawAyyT6AE9KHgDX8vT_Q9YCAPzm4ADvJfH_0zfT_9UA2wAG9ewAEtMGADDRD_8QCO4BGSHdAevz5QFNAxr_HRD-AO4OGf_RA9oBBhXr_gjN5QDtGBv_FswRANPyzgBAFPcENMEbBAEULP31tPME8SAL_g7K0f687NsBCRUB98zpIgISDv0G9AMi-fgtxAI77_D9u_QH_Qk0z_0N8_sOJBMl9f7F6QIG8wcEEPch_OMxA_n3BxIB6RPt8xko_Py8Ie8H7vvb8u0g9g8Y-wcQIg4C_yP5_u30FgTk3NgG7NwoBhQgAC3bzgI7OBNACUhhUAIqzwcQABrAB3rF076hHaa9dGIvvTuqij0xWcG8IDljvE7TRz7v2m88SYObPFG7rz2ezjq8CKI4vDhpir7RDD087a59PBh3Ez7VioC8_o2Hu-dU0r2HQyA9n3ipPC7-pj1nVM-7_icivHHoHb7PjFk9GUbwvD_DAL3jT5Y7gqJ-vbOudr3rPfC8IIAvvb7I-ryAso69po0UPc2Uhr3BdIq9Qpv3PLFeGz0QpJw8ivXXvHFXDz44X9E8FRQQPZxs471t2MC8zWUZPbOC-jxA34a94lqKOwNmWT1qwSu9PUiPvLzZ0Tuixo48_fe_O52ifjyXQXk66aduvJxarDyjHsc7fEj4vDqWcr0sp3M9SJbCvLaAULy4W9I9m-4MvHq2Xb1pQDg9j5rEu6Yr2D066269_9ubu6ky7D3xP4O9ERWyO8QxwTw0DtU9KkBvPN2Qyz3esGg9RuOaPFN52z3W8Q49DUY2vJfe47zu8d08pWG-uwyXMD3rej298cGGPB1aZLx5hwU9wuyOuucMG71w_lA9jAclvOeFP7thgam96wgWvMGQlT0_sbm9w0flOhmocT3nCoU9JclzPHPzbT0tk4G9r1A1PELjnj3v2Nk8Tb8CPNlC0D2UFNi9IhEJuJh8fb0exmQ93VACvEfHBb7aqy-9DS4zOr-vNrzcJ-w8QGnJO9PMaT0O3ey9j4o4uo8jDrww7is8mQ4-O3-Hkr2ywoi881Epu2n7fLyDxqe8-7jsuis1m707M6Y8WgiJuX--Lb0hV6o8cI4Eu965pj07aBu92hnHOfolAr7rUuM8HDEKuQq_T70mHtA9gCM5uWTriT34gXU89RleuICCpjxbUCm8eZWRuOs_Zj0h2Ce8MKb5uOSCszwO1yo9UONoumsewb3ErqK9WfgiOOpZ9bwReeY8C-zbOGrV9DsFTpa9oDYzONTjCD1fPTO98WvLuPLyj7zu1o29_hw3OJ4DML0P8io-vcXfuFXv-rxjT_G7BewOuVdCFjyG6oE8RAOyOAgDL70Utqo9P-glN1MlpTsCctM7bSRWuBLRt7sM_Yi9UGX6N7oNr73WHWs9LBUTOSgsjLz73Nq8zFjKOPwVNz0EcPM9ebouOQkRFT0sp3O9Gwk4OGDylb2dY7U9XkWBN9vVVT3vQYk5viYduKwbT71wAGK9cfqiuB4qeDslBOu9I79nOMJGfrwPe-E9DLXBN7MxBrsIr729HH2mt8r0cD0i4Ss-8cuKOHxNmj1CO-k7-b-auDXaID0LUp88q30auC6kmL19u1u8kOUnuCAAOBNACUhtUAEqcxAAGmAeCwA5DhvXGgYO9KfS59ETl_rhCMkC_-PP__338uA92tTlpy8A_8oNz6AAAAAb_wAb9AD6eOHRxTL80f278u0iPm_6OhjT3DkP19kOEsyu6w7mtBQABwXcf0gT3BoW-iUgAC397xc7OBNACUhvUAIqrwYQDBqgBgAAUEEAAMBBAACCQgAAUMEAANDBAABkQgAAcEIAANhBAACYwgAArsIAABDBAACQwQAAUEEAABjCAACgQQAAAEAAADBCAAB4wgAAREIAAFzCAAAYwgAAaMIAACzCAAD4QQAAoMEAAEDBAABwwQAAIMIAABxCAABUQgAABMIAAKjBAAAAwgAAAEEAACTCAACQQQAAGEIAAI5CAADQQQAAVEIAAODAAADAQAAA-EEAAHDBAABwwQAAGEIAAMBBAAC4wQAAgL8AAODBAADowQAAmMEAAGDBAAAAwAAAIEEAABhCAACAwAAAgMAAAMBBAAAYQgAAmMEAAHDCAABAwAAAWMIAAExCAAA4wgAACMIAAJjBAADGwgAAAEIAALBBAAAgwQAA4MAAAHBBAAAAwAAAOMIAAKDCAACAwQAAfEIAAODBAABAwgAAPEIAABTCAAAgwQAAiMEAAOhBAACQQQAATMIAAKBBAACYwQAAoEAAANhBAAAAQQAAmsIAALjBAACEwgAA-EEAAAAAAAAAAAAAmEIAAKzCAADgQAAAMEIAAOjBAABowgAA0EEAAGzCAACKQgAAyMEAAAAAAADAQAAAQMAAADTCAAAQwgAAEEEAALBBAACIQQAA9MIAAHBCAADIwQAAUMIAAABBAABgQgAAAMIAAITCAAA4wgAASMIAAAAAAAAwwgAAfMIAAGxCAAAkwgAAiEEAAGxCAADIwQAAGEIAAI5CAACwQQAA4MAAAIDCAADYQQAAgEAAAGxCAAC4QQAAoEAAAERCAADAwQAAqMEAAFRCAACGQgAAoEAAAJDBAABwQgAAEEEAAAzCAACgwAAAqMIAAGDBAAAwwQAAcMEAADBCAAAkQgAAAEEAAOhBAAAAQQAAcEEAABTCAAD4QQAAhkIAADzCAAAwwgAAgMAAAODAAABAwQAAQEAAAJjBAACAwQAADMIAADDBAAAQQgAAgMIAAPzCAACIQQAAEMIAACRCAABMwgAAPMIAAIBBAAC4QQAAAAAAAAxCAAAAwAAAQMAAAKBAAABQwQAAjEIAAKjBAABgwQAAfEIAALjBIAA4E0AJSHVQASqPAhAAGoACAAAQPQAAEL0AAGw-AABkPgAAdL4AAKY-AABsvgAAE78AAJa-AAAcPgAAfD4AALi9AADgvAAAjj4AAHC9AACYvQAAmD0AAOA8AACOPgAA6j4AAH8_AAAwvQAAcD0AAMi9AAB0vgAAyD0AANi9AABUvgAAfD4AAKI-AACIPQAAgDsAAFC9AADWPgAAFD4AAKg9AADYvQAAnr4AAJa-AABMvgAAtr4AAHA9AACoPQAAHL4AADy-AAAwvQAAmL0AAFA9AACYPQAAFL4AAHA9AABEPgAAgLsAADQ-AAB0vgAAQLwAAEk_AAAwvQAAtj4AAEQ-AADIvQAARL4AAGQ-AADIvSAAOBNACUh8UAEqjwIQARqAAgAAmL0AAAQ-AABwvQAASb8AAOi9AADoPQAAbD4AAJg9AACAOwAAgj4AACw-AACAuwAAJD4AAMi9AAAwvQAAUL0AAHS-AAA3PwAAuL0AAK4-AABwvQAAXL4AAFw-AACGvgAAUL0AADC9AAAUvgAAuD0AADA9AAAwvQAAgDsAAHC9AADgPAAAbL4AAOg9AABkvgAAiL0AAIg9AACgvAAAfD4AAJY-AACWvgAAEL0AAOC8AABEvgAAoLwAAH-_AABAvAAAEL0AAIY-AAAsPgAAqD0AACw-AACYPQAAJD4AAIA7AAAcvgAA2L0AAEA8AAB0vgAA6D0AAMg9AABAPAAAEL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=JifpBXCJ8BI","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":270,"cheight":360,"cratio":0.75,"dups":["5784041891055680201"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2418683805"},"16587212620585915880":{"videoId":"16587212620585915880","docid":"34-0-8-ZC6C97AA0F3B01BB5","description":"This video is a demonstration of how to solve a right triangle using Trigonometric Ratios. This video is does not cover inverse trig ratios which is left for a second video.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1022590/686de1b35f256f62ba6f93b2a573416d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/rDA4jgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dx0N06LYSKQA","linkTemplate":"/video/preview/16587212620585915880?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Trigonometry: Introduction (Part 1)","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=x0N06LYSKQA\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoWChQxNjU4NzIxMjYyMDU4NTkxNTg4MFoUMTY1ODcyMTI2MjA1ODU5MTU4ODBqiBcSATAYACJFGjEACipoaHZqc2luaWRiYXJpeXJkaGhVQ1A2TkdLNzNDUlV3UkFfU3N5YnJrLXcSAgASKhDCDw8aDz8T1AOCBCQBgAQrKosBEAEaeIHv-gEA_AUA-AcFCAAG_QIGBvgA9___APYH_P__Av8A8_oHAQQAAAD_BgH_BQAAAPcPAvL__wAAF_z6AAMAAAALCPr6AAAAABAA_PH_AQAA7vP9CwP_AAAH-gL9_wAAAP0G-fz6_gABBQPx_AAAAAD7-gEDAAAAACAALXxl3js4E0AJSE5QAiqEAhAAGvABfwtXAOLtygG59uP_0CrgAZYj6P8gKt0Au_skALno3AH98f4A_Of4_xTw3wCaFA0BDgAI_wDX9QA3xiT_Jd3XAMgFGQAeAwIDRRcE_0UMAf7fK_r__P4CAPPXrQAEJ9b-NesjAPkBw__rA70COe0iAuIrCALsHA4BE-sW_-ozCf7I2cf74grtAQT79vPe9DQIDfv8CA8F8fnc0BP7EvsfBTMBBwQCI_cC5eLIBsoXGAfm7-z19Lr_AQwM_A3T9fP05AQYAL_EFvzj0BwA1hIK9Nrg4PgS__AC9QETD-vI8gLJHfwMBhXz6-b47QIQ1uj6IAAteD0IOzgTQAlIYVACKs8HEAAawAcgKsW-LJaHvKW2-bwjXqi8tKy7vKQev7s_6V-98GScPRKPWr16cCc-baZnPD4CpL3Y1Hm-BQRJvfOGBb0UlEI-RkUcvXPoALxaLlu-6o-VPG5ikrxFvPW9Z-jEPKy4J7wjZfA8zNT_PCu9W7xvmyk9cbtBvc7QLjz27WQ96hK0vds1Ib0RQpY969qDvZo737wyp6A9_Zs8vC2KKL3r4LA9f3iMvHwVT7xUf049xuqDO-yW7jyFWJK9jAFovXQ_TDzb74o9Y8MpvewY0zsvbZi9Kyg2PVqNmzzfCQy9zylQObaOHrwXY-A9TfjxuR0vTbtbg1K9s1M9O9vPmLv04M69cqiKvefGtLzwf2w9ZqnAPeVlCTzIRSW-adGBPZ0Ix7y30eA9ikImPRNBHrwongM-rK1YvPHlzztypxQ-52FyPUnVdrwQFn89jRnXPE53Az1RM7-8xVZQPdFIuryWWak8ogGGPMA9sjusptC8gOGLvIHpk7u-24w9S1X7Oju1qTy-s2o7nUn7PTIUgbwFI6U91gI7vknlmjrKMkk9vHbpvAnxkrw4DuE86_8MPggySLuWi4I8j3mTPLTiQLwodtm8VwirvTSIi7s9kXE9-GEuvfnmirtaari9mzTyPBWrBrwaVQG9i4EfPXUsJbx580o9XC0FPLOaLjw7iQy8BGkQvUEWnjvivyq9jW3IPCDw4bqnpNi8CLCjPOuFyLqL-qQ9uLlnPbGCRrsYI9I8tbBhO3mfWzuj4289k9qFvWcXlzfMEjg9T3l0vJakHTpcLSG9vAcoPSdcsznm3SI9tMalPYBJarcsjjS9hZ8zvZjjljn_I0O-ZmfRvTzykDmTJem8VxAaPPrI9zomVkY8w7BQuj69XbrvPZe9D2ZuPeL5BrqGVie8ilnPPYdxDTng6T-98AAvOoTXFrhOFu286AgqPEVbYjeHTH49SLRTvRE9aTik35699Pj9PaAIFTgvFJW9KzQQvTfi07gtQcY9zkwVPRbyhjg1Kza8rjB4vS6dArgXfjC9MVTPvN3MF7mIJKO79aYdvUh2RDgHPuu8hrZSPLWuhjfqEA69mqTHu8DZbTg3SiM9wO5PPGch9rauDkA-eNMtveyKfbZCoVQ8qeUdvZ6Nqjg6XdY97EqNOxz7Sbn5SuC9DI_dvWMzRLhyNAk7cI60vTjSjbaceWa7Yw7CvCQqZTgy7qw9XCa-vexqQzc4St49O6IHPRRKeDgOCo-90DoCusUCKLjoVbO9FiTsPM24IThDPZg9a8OXvFL3CjggADgTQAlIbVABKnMQABpgIPYA-u7-ywstIPD30OYQ-df05iHK-ADo6QA3IdEgLAcM0wT8ABnoAOy7AAAAHgIAGQQAAVnw5CQdCi0e2q_tIRh_IBPm2cwNGc_mFickExgl_CMJACX_wx437-sgNEU4IAAtivU9OzgTQAlIb1ACKq8GEAwaoAYAAJhCAAAgwQAA0EEAAMDBAABAwQAAAEIAALhCAAAAQAAAqMEAADjCAADowQAA8EEAAGDBAAAgwgAA0EEAANhBAAD4QQAACMIAAIhBAACSwgAAuEEAAPDBAACQwQAA4EAAAEBBAAA0QgAAhkIAACTCAACgwQAA2EEAANDBAADgQAAAmsIAAIDBAABMwgAAwEEAANBBAABkQgAA0EEAAKBBAAC4QQAAIEEAAKBAAACOQgAAYEIAAEDBAADoQQAAgEEAAAxCAAAwwQAALMIAAFDCAAAAwQAAeEIAAPhBAAAUwgAAQEAAAGDCAACYQQAAZEIAAMBAAACIwgAALMIAAATCAAAAQAAAlMIAAEDBAACMwgAAAMIAAEBAAADoQQAAuMEAAI7CAADQQQAAEEEAAIjCAAB0wgAA0MEAAJ5CAAAAQgAAgsIAAERCAACgwQAAwMEAAFhCAABMwgAA4EEAANjBAAAwQgAAGMIAABxCAAAAQgAAIMIAAKDBAAAQwQAAnsIAAFBBAACwwQAAjkIAAMBAAACwwgAAgD8AAODAAADgwQAAWMIAADBBAAAQwQAA8EEAAABAAAA8QgAA6EEAAFDBAACYwQAATEIAAHDBAAAwQQAAwEAAAAjCAABYwgAAGMIAANDBAABEwgAAAEIAAKhBAAA4wgAAAMIAAADAAAAAwgAAMMIAAMDBAAAQwgAAIMIAAKjBAAC0QgAAqMEAAADBAADwQQAA0MEAANjBAAB8wgAABEIAAKjBAADgwAAAuMEAAKBBAAAYQgAAIMIAAHTCAAAAAAAAgL8AACzCAABQQQAAVEIAACzCAAA4QgAAQMAAAKzCAACGwgAAoMIAAHRCAACIQQAA6EEAAADBAAAEQgAAGMIAAGBCAACQQQAAgkIAAKpCAADgwQAAAAAAAOjBAABQwQAAuMEAABzCAACwwQAANMIAAFzCAACYwgAAAAAAAGTCAABcwgAAuMEAAJBBAABwQgAAuEEAACzCAABAwgAAcEEAAEBBAAB4QgAAoEAAAIhBAAAAwQAAAEIAADxCAAAwQgAAQEIAABBBAABQwSAAOBNACUh1UAEqjwIQABqAAgAAFD4AAAy-AACqPgAAcL0AAHS-AACaPgAAqD0AABW_AADGvgAA-D0AAFC9AACAOwAA2D0AAKI-AADIvQAAiL0AABQ-AACAOwAAmj4AAF0_AAB_PwAAuL0AAFA9AAAMPgAARL4AABw-AACIPQAAqL0AACw-AACSPgAA2D0AAJ6-AAD4vQAAEL0AADw-AACGvgAADL4AAIa-AABMvgAALL4AAJi9AADYvQAAhj4AANK-AAC4vQAAmD0AAKg9AACqvgAAML0AADS-AABEvgAAqL0AADQ-AADIPQAAJL4AAJg9AAB_PwAAkr4AAHA9AACqPgAALD4AAMY-AAAkPgAAXL4gADgTQAlIfFABKo8CEAEagAIAAFA9AAAwPQAAoLwAACe_AACIvQAAUD0AAMg9AAD4vQAAHL4AAAw-AAAQvQAANL4AADw-AAC4vQAA6D0AANi9AAAQvQAAOz8AAIg9AACiPgAAML0AANi9AAAMPgAAuL0AAOi9AACqvgAAED0AAIC7AACoPQAAqD0AABQ-AACIPQAANL4AAOg9AAAEPgAAyL0AACQ-AACSPgAAir4AAHC9AABEPgAATD4AABC9AABwPQAAcL0AACw-AAB_vwAA4DwAAEQ-AADgPAAAZD4AAFC9AADYPQAARD4AAJg9AADIPQAAoDwAAPg9AACYvQAAoLwAABQ-AAB0PgAAmL0AAJq-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=x0N06LYSKQA","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16587212620585915880"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2344442082"},"1344928960310595180":{"videoId":"1344928960310595180","docid":"34-7-6-Z8F34DC1BD07F2854","description":"This video is an explanation of how to use tables to graph linear and quadratic functions. The video emphasizes that functions (inputs and outputs) are a different way of viewing linear equations...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3118869/167426c5f3723102f8aa893324760dce/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mNkkhwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DL4FnUul9Nm4","linkTemplate":"/video/preview/1344928960310595180?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Functions: What is the Difference Between a Linear Function and a Quaratic Function?","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=L4FnUul9Nm4\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoVChMxMzQ0OTI4OTYwMzEwNTk1MTgwWhMxMzQ0OTI4OTYwMzEwNTk1MTgwaogXEgEwGAAiRRoxAAoqaGh2anNpbmlkYmFyaXlyZGhoVUNQNk5HSzczQ1JVd1JBX1NzeWJyay13EgIAEioQwg8PGg8_E8IFggQkAYAEKyqLARABGniB9v70AfwEAPAD_vsEAQAADwgDCvYBAQDz_QH19gEAAPICDvoHAAAA-P8BDP0AAAD39v3-_f8AAAwG9QMDAAAAB_oG-fUAAAAGA_YB_wEAAPb-AwQDAAAAD_v4BQAAAAD4Cgf7-_8AAPcG_gkAAAAAD_4JBAAAAAAgAC1QGeE7OBNACUhOUAIqhAIQABrwAX_3D__lEOkBqCDJ_8VH6QGnDR3_HyneAKcVFQHQGusB0AgLAM0NDf8I4Df-xxbzADbTzv4A2PUAJ9Pv_ibvCACyBxABA9oVAkgDGP8Exfz-rgwk_uThCwEo0PUBMibqASDzBP0J-tcBNAvVAif7MQERNCoCFg0nBADRCgbwCAn_69vX_fv1CAce_AAAu9goAu_w8v4OBfH50AbjAvoAEggB7w8CF0Po_zrgAwDvBvz549jxDBLS8v0XIyX-wPje__roGv7C_wH0LOIOCyHZA_H0AOkDHPTzDSMIEvUL3Qz7C_nwBOgpCu717OoLDOv29SAALU78Czs4E0AJSGFQAirPBxAAGsAHgO7TvhHew7rl6Ja8vToFO9YEDL2VcNe8lyy4PLcN_jwxdXy8zNJOPejoJzyT5X-8_Iy7vlpTD7zG6sW7mN0jPoFJkL1D9PW87-VOvhCoQz0YrMC7FRxOvqxNyDw1lx87Xz_pPDfnmrsjrLy8b8ACPTjRU70KCaK8MbksvLSXKL2imSe88kbFO84Dg720jzU9BcN5PTDNvr2754o8hTiAPW_etLqu1xS9I3yEPTlZxD2jlfu8peI6vcEqKLxXqUq9A8HCPTdKKLzC-Ku7eAA1vVen8zrFgu-7Q27rvDksuD2dyYg8H2favQySjj11BqE8xh6FPbAPQT1RHoy8tNPFvDk6uDwPAlk7ZjBmPQvKmT3zgZO86wNEPfSL8j1LTYo717aSPWxUcT2ygZU7pWglPtj4p7xOSJY5GXUNPQr11D2O1Zy8_XGxPHhEtT21V3o83Ws3PYycqj0EfoO8KQrPvGqtjj0HiAQ67TNdPZK86TxfTbM7aVfMPaYTJD1tKws8gDOnPOhY1DySwTw7m5UIvQh2DL7NpeG7JOMCPdgvM71JGx68BrsBvcenWz3fgYs8NQcIvb6CGT3FgHy7oRGNu7mwJLzgwvS6nEfPPBLVgL3OgnW8CNvZvJHKnjygHja8_H8mvQBKbT2Slue7cwdbPQNTxz1yDME5kaBTvN8mrb0W7Z66ioaWvIvJ1TvIa5A7XWm-PMSWfr3gtyW62scqPSFLNb2Atri7SKTtPH-NP70SpE67I5olvdChp7ymi2I7lEC0PeDNZL3ih2o5ZmFUPbfxhz1K3LE5734rvUocaTqOtXM4Kcx7vCGjrDunglM5iQ-3vbdCuL0xQro4sR5SPO_PAD2FS5k59RQZPdgOKTuAZNK467yXvA6TOr3nVqW4o0cjvD10izxaUko5YlXSuzR2E70Ukh-4W9pfvNImHT1I3tG48Qw_PTKpArxEDKu4QSMdPUkv6j3kQu24wJWJukRjd71e3BW4V6AMvU92kz3qSGe4XRfhu5dssT1do2U4g7jXPBl_EzwLRZQ4EKyvPdvD3r3Inzy4ovtIvc4LpjxEo-o4V3uYPAfqNL1deG04Z0XUvLoFHD1R_pQ4pyTrPel1GLriWkW4EybxvBv8gz13Hao4ndnuPZ-Vk7qjag65VMXUvf97S70YUVe2Hip4OyUE670jv2c4l1GRvYdyHT1TOIu2Br-ovOZMlL0KymS3Iv_sPTUpBT7zflu4-k_tOux1wTyL7aC4UG8IvEqomj0jJgq2rHovvVqc8Tyoo-w3IAA4E0AJSG1QASpzEAAaYCH8ADX6F-4L8grzKsXl8t7GG-QU7_H_9dcACinWFQkMzrzZ6wA84iHwsQAAABv6EQrdAO5nHOz8Nwgq2qbB9d5GfxkXPtDmOBHC9Q0gIg_6FP4SSgDlBrcZLwjGNyEeKSAALRwrKzs4E0AJSG9QAiqvBhAMGqAGAABcQgAAgEAAAHRCAAAQQQAAcMIAALhBAACKQgAAgEAAADDCAADwwQAA6EEAAAzCAABgwQAAoMEAAFBBAAAQwgAAWEIAAGjCAAAoQgAAwMEAANDBAABQwQAAaMIAAFBBAABMwgAAqEEAAFDBAACAwQAAoEAAADxCAACAwQAAgD8AAIbCAAAgwQAA2MEAAPBBAAAQQQAAqkIAAFRCAACGQgAAQMAAAODAAABAQgAAMEEAAABBAAAAQAAA4EAAAHBBAAA0QgAAmEEAAMDBAADgwQAAiEEAAOhBAABUQgAARMIAAGjCAABUwgAAiEEAADBBAABAQAAAnMIAADTCAABAwgAAcMEAALjBAAAcwgAAfMIAAFjCAAAQQQAAYEEAAIDAAAA8wgAAgMEAAARCAADgwgAAuMIAAADCAACYQgAAmMEAAGTCAAAsQgAAKMIAAFDBAABgwQAAcEEAAIjBAABswgAAcEEAANDBAAAwQQAAgEAAAFBCAABgwgAA-EEAAGjCAACgwQAAAEIAADBBAABgwgAAisIAAHBCAACYQQAAAMAAADzCAABwQQAAFMIAAFBCAACIQQAAoEEAAEhCAABAQAAAUMEAAIDAAABAwAAAHEIAAEBBAACkwgAA8MEAALDCAACYwQAAAEAAAKjBAABwwQAAUEEAANjBAAAMwgAAdMIAAGTCAAAgwgAAqEEAAATCAAAgwQAAqEIAABDBAAAcwgAAjkIAAFBBAAAAAAAAkMIAAFBBAACAwAAAIEEAANBBAABMQgAAEEIAADBBAABAwQAAMEEAACRCAADgwQAAmEEAAAhCAABIwgAAwMEAANDBAACgwgAAcMIAAIjCAAA0QgAAAAAAAIjBAADwQQAAiEEAAABAAABMQgAAIEIAABhCAACcQgAAZMIAAIDBAAAEQgAAiMEAAPhBAADAwAAAoMEAADTCAACKwgAA4EAAADxCAAC8wgAAmMIAAABBAAAQQgAAVEIAAIbCAAAwwgAAMEIAAIjBAAAAQgAAFEIAACTCAACgwAAAgMAAAMDAAADgQAAAwMAAACxCAADAQQAAQEAgADgTQAlIdVABKo8CEAAagAIAAKC8AAB0vgAABD4AAOg9AAAQPQAAXD4AAMg9AADuvgAAhr4AAPg9AAAcvgAAgr4AAJg9AADoPQAAgr4AALg9AAAkPgAA4LwAAK4-AADSPgAAfz8AAES-AAA8PgAAgLsAADC9AABQPQAApj4AADA9AADIPQAAXD4AACw-AAC4PQAAVL4AAOC8AAAkPgAA2L0AABA9AAAsvgAAnr4AAHC9AABcvgAAjr4AAEQ-AAA0vgAAFD4AAHC9AABsPgAAor4AAMi9AACSvgAAQDwAAOC8AAB8PgAAUD0AAKo-AAAwvQAADT8AAOA8AACoPQAAMD0AALg9AADIPQAAuL0AAFy-IAA4E0AJSHxQASqPAhABGoACAACAOwAADL4AAPa-AABfvwAAZL4AACy-AAABPwAA-L0AAKC8AAAEvgAALD4AAIK-AACCvgAAlr4AAKg9AABwvQAAcL0AAMo-AAAsvgAAuj4AACw-AAD4PQAAoDwAAPi9AACovQAAML0AAHS-AABwPQAAqD0AAFC9AABkPgAALD4AABO_AABsvgAAoDwAAIi9AADuPgAAFD4AAPa-AAAkvgAAoj4AAEQ-AABEvgAAtj4AAOg9AADmPgAAf78AAGy-AADYPQAA2L0AAJi9AAAEPgAAUL0AAIg9AAAkPgAAJD4AADC9AACAOwAAXD4AAGy-AACoPQAAvj4AAHA9AACSviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=L4FnUul9Nm4","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1344928960310595180"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3010120556"},"15308174854235881883":{"videoId":"15308174854235881883","docid":"34-4-11-Z105E36E9EACC0C17","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/760154/0f5dca7d4261a9fbe0764143702ef2df/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/idpqIAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-D7Fk8nrB0Q","linkTemplate":"/video/preview/15308174854235881883?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Linear Inequalities: Determining the Inequality from the Graph","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-D7Fk8nrB0Q\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoWChQxNTMwODE3NDg1NDIzNTg4MTg4M1oUMTUzMDgxNzQ4NTQyMzU4ODE4ODNqkxcSATAYACJFGjEACipoaHZqc2luaWRiYXJpeXJkaGhVQ1A2TkdLNzNDUlV3UkFfU3N5YnJrLXcSAgASKhDCDw8aDz8TjQOCBCQBgAQrKosBEAEaeIH7_wH_-wYA9v4DBf4F_gEA_Pf9-P79APv2Bf4GBP4A-_T__QMAAAAFA_wJCQAAAAMA9AD9_gEADQMB_gQAAAAE-QUA_gAAAAgM_vD-AQAACAYD-gMAAAAI_fILAAAAAPEEBP3-_wAA7xD_9AAAAAAE_Pn-AAAAACAALcSf4zs4E0AJSE5QAiqEAhAAGvABf_koAbPq0f7I8PcA5x75AeAGL__8NdEAw-csAOEA6gER2-r_9PsXABjvEQGzE-z_BfbuAMfh_wBP3jUA8vzxAc8aCQEEF_oAQAH8ACIBBf6wCyP-8AEOAgTp2QD2FN_-zOnyAAfJzf_x-uv9Lu0N_QL4CQa_DRf-3uQAAN4DCwHL28r78ggVDPMHAfbGSg0CKuYDAgEWAvm7vRsC-en3ADzx5wMEGuMFGSrp_8IrDf8DC_oAGOP5A_siE_ju4OUB2N8K9sLHFfz63xkA2BEJ9fQA6gPv8QP-FdoT-wzZ5QDaCO_85O71D_4A5wj60PEBIAAt51gPOzgTQAlIYVACKs8HEAAawAenIL--LZPGPCkQLL3JXV89sEJgvXjJybw_6V-98GScPRKPWr3AW1A-bai9PJwnaL0EVDi-lqGiuwRIvryJmQ0-zD9fveudn7li2Sy-cgKqO8NkCr1KTcG9ZuY4O08ajzwkBYu9AxaPveT7PbwwR888OLqPvfInKjwkuiK9CQyDvUvqJL3cahk69RFYvRN8WL3lgHg9RyFEvRsLDruGHnE9T5snvdWCLb17eoY9Kke3PAQmpjzq9ii931rcvNPjrbzJIm09RYTaOyUzKDybjVq9w3esvLMIRTykRJy8skOhPDsOjzuCELo9akzIPBpfBTy5q9e887-mvS6rEL2FxRK9C8sxuv2uvrxmMGY9C8qZPfOBk7xPPVK-twiBPX_tS7tgpaw9Lwy_O9o57juOIFU-e0jdvC-nwjsDmPI9E8rMPFxZ4rz9cbE8eES1PbVXejz9H3Y9IvhEPcvydbyyA3g866O4vA3PgbwN9gs9cqYJPeY8JTtU5ga9yX1mPRW51jyBxEC9ASeVPc49vTsFI6U91gI7vknlmjryBwe7J2n-vAnc37zr56i8wPSMPZ6dZ7zkabk9XXSNvEcBIDyIEKc9G9YUva4ZsjsCyIo9OIyNvRTHZLuJFcS9pn_pPesQLLqyy4G89wy8PXHyDbtwXEY9ZEbTPNx9M7yK1VU87N8VPQdQnTuGXU-94n0KOssAarqoktw8O8C4PUXGKroNP549eeyCPMsnjjphLSO9_HggPP5r3rj5jWU8JMxZvFzy7LqhndM9UYGYvZedUTmpHyq9ff33OwZ6MLuot1C8dLQKPvzFWDe19I08cJjovGug4jdUG_y9Yrv7vRPT8jmd9jS9dK2DuuqIf7lhDNU7c0w2PbnuZrie6sW98a4kPZiAVLk4lqA6Av7fPODFSLeSnhg9-t0KPWR4ADiBvqE79Q_iPA4lKTly4Zs90n5VvRQkfbmeAzC9D_IqPr3F37jL7WK7Tq2IPMDDvLfOr8E8SZPMPd9Eh7ioT5c8I0ItPc_afjjfIkY97VyNvbsOfDeq-QU9Hw4yvcHhvzcjNvE7O_82Pddclrhtxf69otQ-vRov9Lhi3wg8j_53PW0OazgcXvA9fQT-PPTnkLhoglm7unyQPcLWZzjB4ys-3KVovAeJdLkWTgK-MKtmvVUqVjjVXZm8EZeCvQdxA7iZn4u969oovG4VRDcd4ww8Z0bfvWlQEripa409iwuRPRMnIjgpnmm8eM2QPaHmmrhcKK-93hIqvfwiYzeyUrc8UIiVPaIZJDcgADgTQAlIbVABKnMQABpgNf0ALqUO3RUXG_MWtBQW8t3z4wCx6v8Kn_8g6fYPKAu40_fz_yjDF_mWAAAAAbDzHhMA5X_f4iMdJ9T1x77HKx15SxfTnv1E_tCotvk7BkM0GAAlAPoTzF1WE7fnLyZFIAAtR30LOzgTQAlIb1ACKq8GEAwaoAYAACBBAAAQQQAAYEIAAFDCAADwwQAAgD8AALhCAACAwAAAGMIAAGDCAACgQAAAgEAAADDBAADowQAABEIAAIBBAACgQAAAXMIAAOhBAACQwQAAIMEAACTCAACCwgAAgkIAABTCAADwwQAA8EEAAGDCAAAUwgAAGEIAAAzCAAAQwQAAisIAAMhBAAB0wgAAAAAAACBCAACmQgAA0EEAAPhBAADgwQAAqEEAABBBAABgQQAAiEEAAKDBAACQQQAAJMIAAKBAAACgQAAAUMIAAIjBAACAPwAAMEEAAAxCAABAwAAA0MEAAATCAADoQQAASEIAADBBAABIwgAAXMIAADzCAADAQAAAXMIAAGDBAAAUwgAAuMEAAEDBAABMQgAAwMEAALDBAACkQgAAgEEAACBBAACAwgAAAEEAAGRCAAB0QgAAAMEAAHRCAADowQAAjMIAAGDBAACAQQAAUEIAAKbCAADgQQAAmEEAAFhCAAAgQQAAAAAAAKjBAADowQAARMIAADhCAAAAwAAA8EEAAJJCAADWwgAAsEEAABBBAADAwQAAYMIAANBBAAB0wgAAlEIAAOBAAADgwQAAAEIAADDBAAAowgAAiEEAAADAAACQQQAA4EEAAHjCAAAgQQAA2MEAAMjBAADgQAAAOEIAAKBAAACIwgAAYMIAAKBBAABkwgAAkMIAAPhBAADgQAAAlsIAAKDBAAA8QgAAiMEAAIhBAACGQgAAYEEAAEDBAAA0wgAAYMEAAIC_AABMQgAAqsIAAABCAAB4QgAAgL8AAOjBAAA4QgAAEEEAAHDCAACQwQAA2EEAAEDBAAAgwgAAgMAAALDCAABgwQAAbMIAAADCAABAQAAAmEEAAEDAAAAYQgAAoMAAAMDAAACIwQAAfEIAAIJCAAAIwgAA-MEAACRCAAD4wQAAnMIAAMjBAADgwAAAMEEAACjCAAA4wgAAQEAAACDCAACMwgAAVMIAAODAAACSQgAAbMIAAJrCAAAgQQAAUMEAAIBAAADoQQAAQEEAAOjBAADgQAAA4MAAADhCAACAwAAALEIAAHxCAAAcwiAAOBNACUh1UAEqjwIQABqAAgAA4LwAAIA7AAAUPgAA-D0AAKi9AACgPAAADL4AANq-AAD4vQAAyD0AAFA9AACIPQAAoDwAAEQ-AABkvgAADL4AAIg9AACAuwAAyD0AAGw-AAB_PwAATD4AAOC8AACKPgAAoDwAABA9AABAPAAABL4AAEQ-AAAkPgAAgLsAAAS-AACovQAA6D0AAIg9AACgPAAALD4AAHS-AACmvgAAmr4AAHS-AACAOwAAiD0AAKC8AAC4vQAAiL0AAEw-AACYvQAAEL0AABS-AACCPgAAFL4AAJI-AACYPQAAbL4AAKi9AAAdPwAAUD0AAJi9AABAvAAA4DwAADA9AAD4PQAAtr4gADgTQAlIfFABKo8CEAEagAIAABC9AACIPQAAEL0AADG_AABsvgAAMD0AADw-AACAOwAAED0AALg9AABQvQAAjr4AALi9AADIvQAABD4AALi9AABQPQAADT8AACS-AAC2PgAARL4AAEy-AACovQAAuL0AAIg9AABwPQAAoDwAAEA8AACCPgAAoLwAADC9AACIPQAAJL4AABC9AACgPAAA6D0AABQ-AAAkPgAAyL0AAIi9AADIPQAAiD0AAFC9AAC4PQAAlr4AAHA9AAB_vwAAHD4AAIi9AAAsPgAABL4AANi9AADgvAAAPD4AAFC9AACYPQAA4DwAAOg9AADIvQAAQLwAAIg9AAAMvgAAJD4AAPg9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=-D7Fk8nrB0Q","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15308174854235881883"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2994862185"},"15473983192105888820":{"videoId":"15473983192105888820","docid":"34-1-2-ZBCD291BE6D96235E","description":"This video describes how to determine how many solutions or roots there are in a quadratic function. The formula used to make this determination is called the discriminant.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1992543/aabbf7ceeb199f328c6b20fcf6fa62f3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3CE8AE95221DD4224CBF56BEFBC4737379B6173D9B416158C10D80489FFA1651AEABACB1E0E3E0F33B26D22F2AA2D349E0B1C8211189E6C47496D7E23311B75F.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcEr6xxXj9rY","linkTemplate":"/video/preview/15473983192105888820?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Quadratic Functions: Discriminant (How Many Roots?)","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cEr6xxXj9rY\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoWChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMFoUMTU0NzM5ODMxOTIxMDU4ODg4MjBqtg8SATAYACJFGjEACipoaHZqc2luaWRiYXJpeXJkaGhVQ1A2TkdLNzNDUlV3UkFfU3N5YnJrLXcSAgASKhDCDw8aDz8TkQKCBCQBgAQrKosBEAEaeIH7C_4A_wEA7_4ABfgD_wEbAAEK9QICAOv4-_MC_wEA_QMA-fYBAAD6CPoQAgAAAPcA9AL6_wAAEPYK-vMAAAAREv72_AAAAAgODQf-AQAA_fcB-fYCAAH9CvcC_wAAAPcMEvv_AAAAFAkDDAAAAAAF_QL5AAAAACAALQhh1Ts4E0AJSE5QAiqEAhAAGvABf9wmAM7WxgClIcf-5iD5AdMbKAD8Oc4AovoeAdAH3AHn8R4A9RH8__MT7QGuLff__9vXAO3M5wAZ7_r_Fe0VAN0EEAEeAwIEPREZAv7dKQDZDgz93PAR_hrSzgMLMewAFwHz-SAXAgDzF9UBC9BFAwX4HwIZ8yUC78AI__ca7QX298D-7RgiCADl-f6i_h8IHfn2Ad0A-f7I8dr-y9oPA_z-EfcEHOEGSvfzAOg0FvvV2QUBEAr_CgQIMf7QD_0G5Bsm_tPiAPcp9Q8ICtHh-KgX6gVA8eQLJusW-PwE-wkGxgzz6_H9_-oL6Af69_juIAAtfLMGOzgTQAlIYVACKnMQABpgF_sAR8UUqx3oBwwK5OwD5f763hLABP_l0f8UR-0NF_apvskaAAzr_NObAAAAGfL2QeAAB3_U5gRH2CgFpqTy9DN7VihIrf0kFdP1P_cABxYZEPoHAAIHpu1lLso6LSM9IAAt_xMSOzgTQAlIb1ACKq8GEAwaoAYAAFhCAABgwQAAeEIAANjBAADQwQAADEIAAGxCAAAQQgAAgMEAAEBAAAAAQQAAoMEAAAzCAACQwQAAMEIAAODBAACAQQAAMMIAAFBCAACAwAAAUMEAAADBAACswgAAkEEAAHDCAAC4wQAAqMEAALjBAACAQQAAAEIAAAAAAACAQQAAmsIAAJjBAACuwgAAREIAAKBAAABwQgAAAEAAAIBCAADwwQAAFEIAAHBBAADQwQAA8EEAAAjCAADIwQAAuEEAADxCAADIwQAAgEAAAADCAAAAwAAAmEEAAAxCAADIwQAAoMIAAATCAAAwwQAAsMEAACBBAACmwgAAsMIAAADBAAC4wQAAkMIAAI7CAACQwgAA-MEAADDBAAAkQgAAiEEAAAjCAAAQQgAAqMEAAGTCAACIwgAAMMIAAIZCAAAEQgAAjMIAAJpCAAD4wQAAoMEAAODAAABoQgAAcMEAABzCAACYQQAAgMAAACBBAACAQQAA4MAAACBBAABIQgAAqsIAAADBAABgwQAAuEEAABhCAACSwgAAcEEAAKBAAACgwQAAWMIAADBBAACAvwAAYEIAAJhBAADAQQAAFEIAANBBAADwwQAAcEEAANhBAAAYQgAAuEEAADTCAADowQAAaMIAAMDBAABAwQAAAMAAAABCAABIwgAAQMEAACBBAAAQwgAASMIAAEBAAACAQAAAUMEAANDBAACEQgAA6MEAAIDBAABUQgAAyMEAAETCAAC2wgAAoMEAADDBAAAAQQAAMEEAAOBAAACoQQAADEIAAAAAAAAcQgAAYEEAAKDAAADgQAAAGEIAADDCAABAQAAAQMEAAIbCAABAwAAAksIAAGBBAABQwgAAgEEAAABBAACIQQAAZMIAAEBCAABoQgAAYEIAAOxCAABUwgAAsMEAABxCAADAwQAAcEEAABjCAAAQwgAAQMIAAPjBAADAwQAAhkIAAMDCAACWwgAAHMIAAABCAAAwQgAAwMEAAILCAABAwAAAUEEAAIBBAAAQQQAAgL8AADDBAADowQAAuEEAAJhBAABMQgAAcEIAABxCAAAcwiAAOBNACUh1UAEqjwIQABqAAgAAJD4AAFA9AADgPAAAmL0AACQ-AACaPgAAVD4AAD2_AAC6vgAA0j4AABw-AABQvQAA2D0AALo-AABQvQAAyL0AADQ-AAAwPQAAJD4AAOY-AAB_PwAADL4AAHA9AAB8PgAALL4AAKK-AACSPgAAZL4AANg9AACmPgAABD4AAMq-AABcvgAA4DwAAMY-AADGvgAAQLwAAHS-AACqvgAATL4AAIK-AACIvQAAQLwAACy-AACyvgAA2L0AAK4-AACuvgAAEL0AAAO_AABwPQAAML0AAAw-AAAQvQAA4LwAAOC8AABXPwAAHL4AAI4-AADYPQAAUD0AAFQ-AABwPQAAlr4gADgTQAlIfFABKo8CEAEagAIAAKi9AAAUPgAAkr4AAFu_AACuvgAAUL0AAGw-AAAQPQAAgr4AAOI-AAAsPgAAmL0AANi9AAAkvgAA2D0AAKi9AACgPAAA7j4AAHA9AADSPgAAcL0AAFQ-AACgvAAA2L0AABS-AACgvAAA-L0AABA9AACOvgAAUL0AAHA9AAAwPQAAQDwAALi9AACAOwAA6L0AAFw-AACyPgAAbL4AAIi9AADYPQAAuD0AAKa-AADoPQAAMD0AAEw-AAB_vwAA4LwAADC9AACAuwAAhj4AABA9AABkPgAAgj4AAJi9AACoPQAAoLwAAFA9AAAcPgAAkr4AABQ-AADGPgAA4LwAAJi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=cEr6xxXj9rY","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15473983192105888820"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"393223803"},"16288166524656160597":{"videoId":"16288166524656160597","docid":"34-4-13-Z4AC8E909535254CD","description":"This video is a description of four properties that are used in two-column proofs in Geometry. These properties are the bridge from Algebra to Geometry so will seem very familiar to you.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4229267/85ffb22a976d167b41114e4fe46cbb1f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/HWRBeAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUesco94VChA","linkTemplate":"/video/preview/16288166524656160597?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proofs: Algebra Properties used in Geometry","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Uesco94VChA\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoWChQxNjI4ODE2NjUyNDY1NjE2MDU5N1oUMTYyODgxNjY1MjQ2NTYxNjA1OTdqiBcSATAYACJFGjEACipoaHZqc2luaWRiYXJpeXJkaGhVQ1A2TkdLNzNDUlV3UkFfU3N5YnJrLXcSAgASKhDCDw8aDz8T8QGCBCQBgAQrKosBEAEaeIH_-fz7_AUA-Pz6BgEF_gEG9gD6-f7-AOcN_fkH_QEABfX7BPkAAAD8Av78_gAAAPYE-gIC_wAACwz7AQUAAAAR_gD5_wAAAAwBAQH_AQAA8fz8AwMAAAAD9AD__wAAAAD_8fwAAAAA_QwA-gAAAAAX-g7_AAEAACAALVsG4Ts4E0AJSE5QAiqEAhAAGvABfvcP_9H6-f_VBcYAxkbpAYEKLf82Pt__vfsiAMn_6wHgCPIA2fXv_xbnKQDKMP7_OfHk_tnR_QEm8gT_Fe7_APEfBQEn0vMBIOslAd_h6_7rBgoAB_f5__3E3QAEJdj-CQvt__oAAP3sA78CGuQvAw4ILgQWDSYEEuAoAvIdCv7-277_DP_1CgfzB_um_h0ICAbr_QgT9ALIIur_AODl9wABIgIPKO4FK9UQAgj2GgrX2wQBJRD39yD5JQbUDCL19QUX8NjJCvf98RP3RwXx9Njx7wIc9PQNKhkPARne-vru8_r85x8BAMrv-_XZDfH_IAAtUCMNOzgTQAlIYVACKs8HEAAawAcrhO2-NwvFO7Nsubv9HBk8K7qavDszYjv19HE9bg9nPbOJ3TyqPTa9MLjLPGmQgryyL-G-johzPILA0roUlEI-RkUcvXPoALx6Fy--CDwwPSmf1Lz1oWu-hNMHPXQ1w7vJMzQ9OOhcvVCQM7yphAq83USIvPMQ17wNeA-9_i1cvFsu7bmciem9-Pc-vdPsKz0Fw3k9MM2-vbvnijzTTu09dUANvZ1pHb0ucwo-e_8aPaikE70TPA2789bvPPNMmrod6ME9hvx-uepJjzwF7mo9TrXWvFMfbTs0w8G92lc-PcETwDtjVqm95dC3PUBCoLs8MAA-jFkFvaOFlTtTCWq9RDagPZhnRTr9z7s9eLmIPasmiLxsPi48xcXRPf_mqjyR-pE9giXyPJA2hjsongM-rK1YvPHlzzsoAus5FgarPRAWX7zVX4o9azCIPW_imjyfTag9_G8lPbnUkrwpCs-8aq2OPQeIBDqsFCe98qsePdjvLrwRKrI9GiAoO3pQErt7_o-8TT6XPS9iqTyblQi9CHYMvs2l4bsW9pQ9rrYnvb55fbt80Ng70YH-u9pQ1rpilBK8XN-MPXCNtjsw-mU8kqu7O93NFbvnooY8T2WHvDYCEDy28GG8yIsWvNRM77vzzIa98HrfPDiekbvEknY732-kPVxAwzp8wJe8Wr9UvS_j4DsMAxY9fQgqvPrUUrvzgOg7OnxNvQBAqbvmWwA8RJCevCUhU7sS-GS77iwwvDbX9jc860c77t9WOgxiWrsfotE9WPgfvXnRijinwJM8UlWiPeZVLzlTb5e88ncPPfgIJDmngiO7Zj_cPBc0MzpEb8y87GeWvZvM6jj4mWm8btyiPFTTZLmTF349NqwpPWUTDjkXj8G8G9QDvdeR9TmsvgS9Up8fPUmRvDlgAGG8lKWWvSIyTblMvAi9ulCRuTIZQbkmN8w6kf6ovIkI3jk-D0Q9_g9wPbt2w7e3Yn88Pc9EvYVOyjZJr4e94a0YPbpOkzhaxvy8qVBYPSraBLUfR3M8vxLhO-wWL7iaBxA93jjJvQg0-zaMcwq9FuofPU_5ijhzo-O8gnYCvXWxPjeDYvG7BuY3PRNDE7iC1ZI9cwT6vAvfO7ZhXva8_U_ZPJTiUTjUYNo9B-ORvceXT7kUIZW9tgvyPKkNGzjOcjS8XQ_Lvahwm7etJEO9DHNHPR7BFjezMQa7CK-9vRx9prdVGKY9bQvFPYPH5ziVXys8z7yMPcX8BrkYqJi709YtPaNMTrjOK6i8-qkHOj1V4zcgADgTQAlIbVABKnMQABpgGvMAJvYv-CUSLvHh9fgf8rD_3ymsEP_1_P_VMMQ3_xbU0AgDAFDl_OSgAAAAVSUZMe4AD3_L9BsV9hgCpa_qDytr6gbonvMr48LqV04A2g_sDCpYAOXQsxw6De_2Me4ZIAAt2q4XOzgTQAlIb1ACKq8GEAwaoAYAACBBAACAPwAAMEEAAIBAAAA4wgAAUEIAAPhBAAAgQQAAuMEAAADAAACAwQAAgsIAADzCAADAwQAAGEIAABTCAAAwQgAABMIAABBBAAB8wgAAJMIAACjCAAAowgAAQEEAAJjBAAAMwgAAuMEAAIbCAAAMQgAAYEIAAETCAABAQAAAQMIAAHDBAABIwgAAMEEAAIBCAADkQgAAQEEAAJRCAAAQQgAAgL8AAIBBAAAwQQAAUMEAAAAAAADgwQAAAMEAAERCAACQwQAAoMEAALjBAAAgQQAAQEEAAIpCAAAAwAAApsIAAADAAABAQAAA-MEAADBBAACIwgAA4MEAAOjBAADowQAAfMIAABTCAABAwgAAAMIAAMDAAAAQQQAAkMEAAPDBAAAwwQAANEIAALDCAACcwgAAkMIAAJ5CAAAAAAAAXMIAAAhCAAC4wQAAQEEAAODBAACgQQAA6MEAACjCAAA8QgAANMIAABhCAAC4QQAAPEIAAJjCAABAQAAAFMIAAJjBAAAAwQAAIMEAAMDBAADAwgAAUEEAAARCAAAYwgAAgMEAAJjBAAAswgAAJEIAAEBAAACAwAAAyEEAAERCAAA4QgAA4MEAAKDAAAAQQgAAgD8AAKTCAACYwQAAcMIAAMjBAABAQAAAEEEAABDBAAAwwgAAQMAAAJbCAADgwAAA2MEAAADCAAA4QgAAAMEAAABAAAAwQgAAsMEAAAjCAACAQgAAuEEAAKBAAACSwgAAsEEAAEBBAAD4QQAABEIAAJhBAABQQQAAUMEAABTCAAAAQAAAjEIAAHBBAACgQAAAxEIAAABAAAAkwgAAFMIAAGDCAACgwgAAfMIAACxCAABwQQAAsEEAALDBAACAQQAAAMAAAGRCAABEQgAAmEEAAJpCAAB0wgAA4MAAAHBBAAAQQQAAOEIAAKBBAAAAwgAACMIAACDBAAAwQQAAVEIAABzCAADKwgAACEIAAAhCAACKQgAAkMIAAITCAACwQQAAOEIAAKhBAACIQQAAKMIAAIDBAAAowgAAUMEAAPBBAABwwQAAKEIAAPhBAAAAwCAAOBNACUh1UAEqjwIQABqAAgAAPL4AAOA8AAAMvgAAqD0AAKg9AADWPgAANL4AABu_AAD6vgAAPD4AAMg9AABUvgAAyD0AAKC8AAC2vgAAVL4AABQ-AACgvAAA0j4AABM_AAB_PwAADD4AAAQ-AADKvgAA-L0AAJg9AADYvQAAfL4AAAQ-AADOPgAAlj4AAIa-AABMvgAAPD4AABC9AADIvQAAXL4AABS-AACWvgAAjr4AAIa-AACgvAAA_j4AABS-AAAsvgAALL4AAEy-AAAsvgAABD4AADA9AADovQAAPL4AAEQ-AAAwPQAAJD4AANi9AABDPwAAyL0AAAQ-AACWvgAAsr4AAIq-AACIPQAAyL0gADgTQAlIfFABKo8CEAEagAIAAMi9AADgPAAA6L0AAC-_AACYvQAAmD0AAGw-AADgvAAAUL0AACw-AABAvAAAhr4AADy-AABkvgAAMD0AAHC9AABwvQAAIT8AACS-AAAsPgAADD4AACS-AAAwPQAAcD0AAJg9AACAOwAAPL4AAHA9AACgPAAAUD0AANg9AACIPQAAVL4AAKi9AADoPQAAqL0AAMY-AABEPgAAtr4AADC9AACGPgAAmD0AANg9AABQPQAAVD4AAKC8AAB_vwAAFD4AAJg9AABQPQAAHD4AAIi9AAB0PgAAmL0AAMg9AAAwPQAAgDsAAAw-AACIvQAAoDwAAFw-AACKPgAAoLwAAKC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Uesco94VChA","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1906,"cheight":1080,"cratio":1.76481,"dups":["16288166524656160597"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"598445862"},"9091940489587090011":{"videoId":"9091940489587090011","docid":"34-0-3-Z17FBE2F0B376A005","description":"This video defines the meaning of coefficients in a quadratic function. The quadratic coefficient (a) describes which direction the parabola opens; the linear coefficient (b) in combination with...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2955583/ddcba362fc256170cd0c7b21548b6183/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ycYYmwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeL6pUU09UbU","linkTemplate":"/video/preview/9091940489587090011?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Quadratic Functions: Introduction (What do the Coefficients tell us?)","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eL6pUU09UbU\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoVChM5MDkxOTQwNDg5NTg3MDkwMDExWhM5MDkxOTQwNDg5NTg3MDkwMDExaogXEgEwGAAiRRoxAAoqaGh2anNpbmlkYmFyaXlyZGhoVUNQNk5HSzczQ1JVd1JBX1NzeWJyay13EgIAEioQwg8PGg8_E4IEggQkAYAEKyqLARABGniB9wwH_P4DAOv8A_36AAEA_gYFAAn9_gDb8_wL_vkDAPECDvoHAAAA-v0JBQAAAAD28v0J9_8BABf3-_n0AAAABgYB__4AAAD9Af8D_gEAAOz3Av8DAAAAGxAD_f8AAADtAxAC_wAAAPkQ_QcAAAAADgYCAwAAAAAgAC3EQtg7OBNACUhOUAIqhAIQABrwAX_3D__Q2MkA1AXFANEp4QGnDR3__DfQAL37IwC4A98A7AfoAMcB2_8N3Br_6vzq_zbTzv4ExBb_KPLb_g4I7wHeKvwBIvHfACAGHgEI4-v-ySMe_une_f8Z1NADBCbY_hIZ8Pz6AAD9C-m0CTbRKQIOCS4EFg0nBOHaFfzsNPoI9vjD_hTo-wnt9un_xP4hAevz_wQd5_j70NrrAwD2-QgI7hn1DyjuBSHc3gDz_QUB1eIhAvzf6_oXIyX-vwT2-vL2KALewPb64_cIAD_YAPfY8e8CGxf0_BIKCf4m5A7679f5CgEPAPjf8_0O3gn06yAALU78Czs4E0AJSGFQAirPBxAAGsAHK4TtvjcLxTuzbLm7nAGJvOPUmLw47W69dHx0PaqBpj25Fxi8TTISPpmJvTxjh-e8oUh3vnNWujykNjG9xVWFPlQwb72bfyq8cT1avucWvz2FTKi8m3YhvholOb0bUAg79DY2vJ36m7xxJKu8KtyXPFTeU73fFmy9kVZGPLSOqryUgB296-Z9vYmukL3-HiM8bp4PvWDXBb2pARm9bEhXPbHs-LxUhpa8r8epPSgmELus0Ba9lWYOvSmdo7xE2zE8uy-yPRY8-zylBRq7xHk4vLJMv7uD-OE7k5jGvYaPiDyO0ZU89ybhPF2GlD3wtfG8SsTFPZfTFL0wY4q8gBNlvciMVjp__as8uWa3PXMTsD2_G4E8HT3evb7ADD67CAu6sTfMPDJ2gjyK9T-6KJ4DPqytWLzx5c87VmZFPQyoXD1bUOm8t372O6qJVD2447C68WbNPa9Xv7vdLPu7P30aPbzG0zy4QII7qjiPvSEjWz2zO6g7PjK3PbmdxzzKZac4O38kvM8627r8QIs7xTVDPfhRDb4Jbyy7c1rBvFW9Qb36Dnq7ajYNPJ97Kj0xyW28EiIvPeT-Pr06eZG7RCCNPFdTo7wJ_jc8Vms8vFKvsL1ixxg7l-IqvcvdDrpA1OS7_H8mvQBKbT2Slue77O-mPVpNsj1Pc6a5mTbSvLxazr0YnC86Y0w1PVBfJrt0wjq8lNTwu5YgxLtn7--6euSqPSNfrrxvSIK5Z1VVPX5JdLwAMa67Z7yYvXrr8rzUFAw5bQPXPbWj2L0Mn685P96SOxAIzzzzxNa40UoQvWwwQ7z_a7A5FAtXvDVPJD25Qr05FJ2LvYl64b3GJ3A5JSWYPfYlmzzb9IM5Nw2bPVHHOT25Iz435YySvZO5A73jfZ65TqixPAUgJLx7Y6O5zShMvHcsGzwWd2c4IIypPGeeVz1SADc4qZQNvVTuFD3LyYI4rLq7ulDIjj1kzPo35yLZPAPM_L1SScg51O5XvKQ5Ej7F_VW5Go4EOyFC9zzlqz24H0dzPL8S4TvsFi-4088IPGYx0b0-S5c2U_gCvenOqD1v5_A4Ga1DvSfgsjwmzoc4hPJevV-AtzuqJRg4mz3QPf6Ki73aoZI4h_bzumA7gLl5hns4kl0ZPtlPUL2swj-59cOvuWwb67yy5YC408s-Pec54r2talo4AAJ2veoSxDw9yPO3XqpIvTrpHb60Y_q4yvRwPSLhKz7xy4o4gV74vCXvFz082aa4kDjavBXlsj3Eoi03dxSEutq6Bb0FWlA4IAA4E0AJSG1QASpzEAAaYDz-ABgDJN4c_h_zGuTZAPjt__b26_gA9PAAARvL-RUZyL3g9wAX5w_ouwAAAAgDJTXfAPpYDfryBgFIIdi4_f8ufxwOO8HzIRTR7wMe-v8X-uIVHAD3-7gAChC9LAwoCCAALbMnRTs4E0AJSG9QAiqvBhAMGqAGAACEQgAAUEEAAGRCAACAwQAAJMIAABxCAABgQgAAUEEAADDBAACYwQAAQEAAAAzCAADAwAAAZMIAAARCAACowQAAKEIAAGDCAAAgQgAAFMIAAEDCAAA4wgAAiMIAAFBBAABwwgAAwMAAAKBBAAA0wgAA0MEAADhCAAA4wgAAgEAAACjCAACAwAAAJMIAACRCAACAQgAApkIAAOBBAACSQgAAAMEAAADAAACgQAAAgL8AAEBBAAAAQAAAAEEAADBCAAAkQgAAkMEAAADBAACwwQAAcEEAAEBCAACwQgAAqMEAAFzCAAAAwQAAgD8AAMBAAADwwQAAmsIAAODBAADAwQAAmEEAACjCAABAwgAAPMIAAJjBAABAQAAAwEAAAODAAABAwgAAcMEAAChCAAB4wgAA1MIAAFDBAACaQgAABEIAAI7CAABsQgAAkMEAAKDBAACAwQAAOEIAADBBAACSwgAAqEEAAOjBAABAwAAA-EEAAMBAAACgwAAAUEEAAEDCAACowQAAgMEAACxCAADoQQAA5MIAAGDBAADgQAAAmMEAAFTCAABMQgAAAMIAAERCAAAQQQAAGEIAADRCAACIwQAAAMEAAOBAAAAUwgAABEIAAJhBAACswgAAFMIAABTCAACMwgAAqMEAADBBAACoQQAAPMIAAETCAACgwAAAUMEAAMjBAAAkwgAA6MEAAEjCAACgwQAAmEIAAMjBAAAgwQAAKEIAAFBBAAAgQQAAiMIAABBBAAAAwQAAoEEAAFDBAAAkQgAAmEEAAFDBAABAwAAAuEEAACRCAAD4wQAAAMEAAGhCAAAAwAAAiEEAABDCAABIwgAAmMIAAIrCAACgQQAABEIAAIDBAACQQQAABEIAAEDBAADgQQAAwEEAADBCAACiQgAAoMIAAKDAAADIQQAA0EEAAMBAAACIwQAAwMEAAJDBAABYwgAAQMAAALhBAACWwgAAksIAANDBAAAMQgAAoEEAAHTCAAC4wgAAsMEAAADAAACQwQAAXEIAAADCAABAQQAA4MAAABBBAAAAwAAAQMEAALhCAAA8QgAAAAAgADgTQAlIdVABKo8CEAAagAIAALi9AAAMvgAARD4AAJI-AADYPQAABD4AADA9AADSvgAA2r4AACQ-AACgvAAAHL4AAOC8AADKPgAA6L0AABy-AADoPQAAQDwAAHw-AAD2PgAAfz8AAEA8AACgvAAAFL4AAFS-AACovQAAmj4AAHS-AABAvAAAZD4AABQ-AAD4vQAANL4AAOg9AADYPQAAuL0AAEQ-AAB8vgAA-r4AADS-AABUvgAAJL4AAMg9AAAQPQAARD4AAKi9AACuPgAAkr4AACQ-AACavgAATL4AALi9AABMPgAAND4AAOC8AACgPAAACz8AAEA8AACYPQAAdD4AAOi9AAAMPgAAED0AAKK-IAA4E0AJSHxQASqPAhABGoACAADIvQAAmD0AAJK-AAAZvwAAuL0AAPg9AAAEPgAA4LwAABy-AADCPgAAuD0AAAy-AADYvQAAHL4AANi9AAAwvQAA6D0AADM_AADYvQAA5j4AAES-AAAQPQAAyD0AADS-AADIvQAAcD0AAFA9AAAQPQAAJD4AAIg9AAAEPgAAUD0AAMa-AADovQAAcD0AAKi9AABQPQAAoj4AAHy-AADovQAAfD4AAPg9AADYvQAAML0AAGS-AAC6PgAAf78AABy-AACIvQAAUD0AABQ-AACIvQAAUD0AABw-AACiPgAAQLwAAOA8AADIPQAAPL4AAIi9AACgvAAAuD0AAPg9AABUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=eL6pUU09UbU","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9091940489587090011"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"864094280"},"4438283303160589618":{"videoId":"4438283303160589618","docid":"34-8-10-ZDF96B13E06D4481F","description":"This video is a graphic and verbal explanation of the domain and range of a function.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3459340/8021e3a63c6f1a3a9219ad767c88560f/564x318_1"},"target":"_self","position":"9","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dq44JvsuXQZ0","linkTemplate":"/video/preview/4438283303160589618?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Functions: Domain and Range","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=q44JvsuXQZ0\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoVChM0NDM4MjgzMzAzMTYwNTg5NjE4WhM0NDM4MjgzMzAzMTYwNTg5NjE4aq8NEgEwGAAiRRoxAAoqaGh2anNpbmlkYmFyaXlyZGhoVUNQNk5HSzczQ1JVd1JBX1NzeWJyay13EgIAEioQwg8PGg8_E_kCggQkAYAEKyqLARABGniB9wX3_P4CAAP_BQENBv4BFAX4BvUBAQDr-PvzAv8BAOz5EPz9_wAA-v0JBQAAAAD47fT9-v4AAAX5-wvyAP8ACQ0G-_oAAAACBgP_B_8AAAT6AwED_wAAEAQHEAAAAAD5DwTxAP8AAAwP_wIBAAAAF_P_DAAAAAAgAC1aINg7OBNACUhOUAIqcxAAGmATEQAX9hD17-UA6_IK9e4OExkFCuYCAPDUAPogCAgaAOm68hIAL_IP9tAAAAAMCAYeGwDuPyMI1DHxCiLuCP8CEn8ODBkC8gD01Nj_EA4J-xccFfMA8fjt_A7g7TDxERUgAC2MwIA7OBNACUhvUAIqrwYQDBqgBgAAqMEAAMBAAAA8QgAAcMEAAHDBAACiQgAAWEIAAKBAAAA4wgAAZMIAADDBAADAQAAAXMIAALTCAAAgQgAAIEEAAGhCAAAAQQAA4MAAAEzCAADIQQAAgMAAANjBAABAwQAAsMEAAIDBAAAAwgAAAAAAAFxCAABQQQAAFMIAAETCAACOwgAAUEEAALrCAAAAwQAAkEEAALJCAAAkQgAAoEIAACDCAAAUQgAAbEIAACBCAADQwQAAOEIAAIDBAACQwQAAQEIAABjCAADAwQAAQMAAAHBBAACAwAAAwEEAAIDAAABwwgAAIMIAAJjBAABgQQAAAMIAABjCAADowQAA4MAAANBBAACCwgAAwMEAAJzCAABgwgAA4MAAAABCAACIQQAAsMEAACxCAACAQAAAEMIAAAjCAACKwgAAmkIAAKDAAABIwgAAAEIAAIBBAABAQQAAiEEAAMBAAAAQQQAAAMEAAHRCAADwwQAAQEAAAEhCAABAwAAAuMIAAAAAAACswgAAgEIAABjCAAC4QQAAQMEAALTCAAA4QgAA0EEAAIDBAACKwgAA4EAAAHDBAACIQQAAPEIAAEBBAAA4QgAAAEIAAPDBAACowQAAHEIAAKBBAAAwQQAALMIAABBCAACgwgAAyMEAAPBBAAAQwQAAGMIAAMDBAABQQQAAisIAAEBAAACMwgAAyMEAAHhCAABAwAAAMMEAAJBBAAC4QQAAQMEAAJBCAAAAwQAAYMEAABDCAAAwwQAAGEIAABBBAAAAAAAAMMEAAHRCAAA0wgAAwMAAAIC_AABYQgAA2EEAAETCAABUQgAADMIAAABBAABAwQAArMIAAILCAABgwQAAQEEAAPDBAABAwAAAsEEAAFxCAABcwgAAAMAAAMBAAABoQgAA5kIAAKDAAADowQAAgD8AAAzCAAA0QgAAwMAAAKDCAABIwgAAHMIAABTCAACQQQAAgMEAAMTCAABAwAAAYEEAAHhCAAAwwgAAUMIAAOBBAACQQQAAEMEAAARCAADQwQAAPMIAAEBBAACIwQAAEEIAAIDAAAAQwQAAAEEAAIjBIAA4E0AJSHVQASqPAhAAGoACAABQvQAAqL0AADw-AAAQvQAA4LwAAGQ-AAAQPQAAsr4AALi9AADoPQAA4DwAAAS-AAAMPgAAcL0AAJi9AAAwPQAAyD0AAOA8AADoPQAAfD4AAH8_AABQPQAAgLsAAPg9AAB0vgAABL4AADC9AABwvQAAmD0AALg9AAAQPQAAgLsAAMi9AADgPAAAgj4AAKi9AAC4PQAANL4AAFS-AACYvQAAFL4AAFy-AADYPQAA4LwAAEC8AAD4vQAAyL0AALg9AACAuwAAHL4AABA9AABwPQAADD4AAJo-AACIvQAA4DwAAAE_AACovQAAqD0AAOg9AADgvAAAQLwAAJg9AADIvSAAOBNACUh8UAEqjwIQARqAAgAAqL0AAIK-AACovQAAM78AAPg9AAAQPQAA4DwAAMi9AAA0vgAAHD4AACS-AAAQvQAAyD0AAAy-AADgPAAAcL0AAEy-AAA1PwAA6L0AAOg9AACYPQAAMD0AAFA9AACIPQAAoDwAABC9AAAcvgAAEL0AALg9AABwPQAA4LwAAAw-AAD4vQAAPL4AADC9AAAQvQAAij4AACy-AACKvgAAmL0AAIC7AAAQvQAAyL0AABQ-AAAkPgAADL4AAH-_AACoPQAATD4AAJi9AAAwPQAAZL4AAEA8AADIPQAAML0AAKg9AABwPQAAmL0AAIA7AADIPQAALD4AAIA7AADYvQAAdL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=q44JvsuXQZ0","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4438283303160589618"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14396701191278791769":{"videoId":"14396701191278791769","docid":"34-4-17-Z9C0CAEBC02733A83","description":"This video is a demonstration of how to connect coordinates to create line segments...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2425688/498f347399da0cf4d361c4362dfc4b95/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/J5mdWgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1V_WRFePmPY","linkTemplate":"/video/preview/14396701191278791769?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Desmos: How to Connect Coordinates to Create Line Segments","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1V_WRFePmPY\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoWChQxNDM5NjcwMTE5MTI3ODc5MTc2OVoUMTQzOTY3MDExOTEyNzg3OTE3NjlqhxcSATAYACJEGjEACipoaHZqc2luaWRiYXJpeXJkaGhVQ1A2TkdLNzNDUlV3UkFfU3N5YnJrLXcSAgASKg_CDw8aDz8TdoIEJAGABCsqiwEQARp4gfwXC_0E_AD4AQEL9gf9AiELA_nzBAQA6_fv-wUAAAD9-A__9wAAAPUE-AL4AAAA9fj__vL-AQARAff7BAAAAAYD9-7_AAAA9gv2Dv8BAADw8QEB9QIAAQsLBPr_AAAA4BAA_AD-_gH9EPMCAQAAAAT1CfoAAAAAIAAt92PEOzgTQAlITlACKoQCEAAa8AF_707_3-v5BL7nIwDIFK8AkDkt_zX_zACC18wBvBzMAPP89gEWSgMA6gbtAKc2IwEG9tT_Ed7nAR6-G__9CuQA1PEnAQXrIQBNPAH_Ju3bAedDE_0tE_cABOXRAB4t-QIdL_78ERb1_s7xyQAu-joB9iHRBSDiCf_qzQAB_v3vCs_F3P0GHfwHFAD7AA3sIggkGAoCP1IRAQfBIAJO8v4FIrYZ_AZC-AEFKBUM4ikLAu7z0AL82Bb80y0DAhVGHQLIGgrx1c8AAAgoAQ__6ev7JOEKBTgk5gX4AvUF8CPz9v4UDfLiH-4GBtgZDBToDvEgAC3Gnuw6OBNACUhhUAIqzwcQABrAB6cEhL5pTw49S1BoPGZOB77-Kp-7gvilvFHdXL4DHhw8ZyEmvGk6Kz5hKxK9LD_6PJZdUL6Q7Nu8iSimPJ1Ggj5_Fku8vhLIvFcumr3xSQc90Y3VPKmGvTwnvCQ907fUO5Uspz3Sypg8EkJRvAqdFz6TmxW8EYqtvACBmLycm2A943VYPA1BxDwecBi93_5cvAXD-T0xi1q9C4gfPVsxoj2xkVq9T2xPPPL4TL1CE3E6OM63u2sRsb3HyMg8HxHTvF7_hbmo97k8q_XVOzysJjzg1p08_noqvPlhyT3qBDQ8iLkkvMh0Lb0LxKG8UvkyvbOiHL2Je-y9tXOzutAqQ76Yc5-8D6iIPNwEqT2Dv989HDGpvLq5Xb2aH6S9um4lvFrXCTwxYIm87prKO_FmPT59NVG9iXHIu7P7Xz2Q8GK8kXDvOtVfij1rMIg9b-KaPL4zdb09WoE8c1nWvN2NT71AtnY9qUq-OiixkLzXnXa7J-YRPM9PLL2HDHU88nwCOz6NoDzmCYA7fvSXu7pOEz6WBr48PCEmu2HeozyGPOK9WUlxu-nJZj2BsDM9nHU-O1NTXD3boQY9-pUQvIiSOTvZFpQ9wdvzucTCOr3-95u9kzYVPE0SCz0mEbs9XPXru4iYt70Ov9u8ynCXu25HnbzHh7S9GIrHO_AMpL3bk9U7iUTCOwA84r3TFyI9c8gduJ0Tu70dbDu92J7nuePFAj7ZnQk9sOXFuUpKFb0xWsy9siNVt4OpgztvQ7E86qIxOq50BjzBO1m91K8BuYJHZbyh2ys9csMjOQ4gUj1ItoQ9JNXDOXmrUzyTcWy9qoYDOf8jQ75mZ9G9PPKQOfvoFL0TlAc83QZburxMs70yFEG819nuOBL1Qr0iGOe9eBrqN-1Aor2ze3K7Tnf3uOp2Bj5S3l09Nzj4NTPuGbx8V049HnUIOVvuPL6PkDy9V4VGOsnhOL0i2D09aHQxuHAKK71xOZ68yz6FuGeq8TwvMRa8eQhouYwIgD1LTOE80qQcOCNhhDy6Z709JV93tzYh7b2ufky9gVhmuE-lwD2bx0E9ssjcuKBQz70V74Y9wtICOC-Cuz0eqNM8TJP-OHL_nD13O7E8qBfANeUviLx07nY9CfR5OJNhK70CJpU8llYDNSNAh73fQSI9cY7FtjKU7ry6-Lu9NhcmuAKbwz0O_a68EEGXNzLurD1cJr697GpDN1kPBLymHYg99Pk9OCmeabx4zZA9oeaauJgPjb3dH4Q9jMPRNwET2L2TRou9nA-tuCAAOBNACUhtUAEqcxAAGmBDAgAt1B7QACYy6PbkASLZ9v3a9fEK_wbSANPuAiAt_c7c1v0ACwgX5LUAAAASItc1CgAFWfLwFkvoCAq90Noj_n8X5QX08SMkAv0TCyQF-ikRCDoAD_H3NkYaFCn10VsgAC3mhzk7OBNACUhvUAIqrwYQDBqgBgAAsMEAAChCAACgwAAA0EEAAOjBAACQQQAApkIAAOBAAACIwQAAHMIAAADBAABQQQAAgEAAAKhBAACgQQAAQMAAAPDBAACAwgAAEEIAAAzCAADAQQAAiMEAAABAAADgQQAAAEEAAI7CAACQQQAAAEEAAAxCAABwQgAABMIAAARCAAAQwgAAAMEAAEzCAACgQQAAwMEAADhCAACgwAAAqMEAACBBAADgQQAADEIAAHDBAACSwgAAQEAAABRCAAAgQQAAIEEAACxCAADAQQAAkMIAAADAAADYwQAAJEIAAKhBAACAwQAAXMIAAOBAAAAAwAAAgD8AACDBAADGwgAAWMIAAKBBAADGwgAAgD8AAGTCAACuwgAAQMAAAJRCAACYQQAAsEEAABDBAAD4wQAAcEEAAAzCAAAAwAAAbEIAAHxCAABAwAAAXEIAANjBAADYwQAAZEIAAOhBAACmQgAAuMEAAChCAABAQAAA2EEAALhBAACQwgAAqMIAAIBBAACowgAAcEEAANjBAACIQQAA-EEAAEjCAABcwgAA4MEAAHBBAACwQQAAKMIAACDBAADIQQAAwMAAAIhCAAA8QgAAKEIAAODAAACOQgAAcEIAAMDBAACgwAAAmMEAAEjCAAAQwQAAoEEAAMjBAABkQgAA8MEAADDCAACAQAAApEIAACzCAAAQwgAAIEEAAADCAAC4wQAAaMIAAATCAAAcwgAAEEIAACBCAADgQQAAkEEAAMBAAADgwAAAMMEAAIC_AABwQQAAhEIAAFRCAADwwQAA_kIAANBBAADQQQAAEMIAAEDAAAAoQgAAUEEAAOhBAADYwQAAgsIAAIA_AADgQAAASEIAAKDAAAAAQQAAwMEAALjBAADIQQAAoMAAAChCAABwQgAAwEAAACTCAAAQwQAAUEIAANhBAAC6wgAA6MEAAEBAAACEwgAAeMIAAAzCAABQwQAAuMEAABBBAABkwgAAoMAAAEBAAAD4wQAAMMIAAEBBAACAwQAAQEIAAEBBAACKQgAAMEEAAJDBAAAYwgAAwEAAADhCAAAIwgAAVEIAAABBIAA4E0AJSHVQASqPAhAAGoACAAC4vQAADL4AAGQ-AACCPgAA6L0AAOi9AAC4vQAAC78AABS-AAB8PgAAcL0AAEA8AACoPQAAQLwAAGy-AABQvQAAXD4AAFA9AABwPQAAGz8AAH8_AABcPgAABL4AACw-AAAMPgAAoDwAACw-AACIvQAA2D0AABw-AADgPAAAmD0AABA9AAAUPgAAiL0AANg9AADIPQAAFL4AAJi9AACavgAAhr4AABA9AADgPAAAsr4AAAw-AADYvQAAiD0AAFS-AAC4vQAAFL4AAJo-AABAvAAAJD4AAPg9AADIvQAAHL4AAEc_AAD4vQAAqL0AAIY-AACovQAARD4AALg9AACYvSAAOBNACUh8UAEqjwIQARqAAgAA4LwAAIA7AACivgAAI78AAES-AADgPAAA6D0AAPi9AABwvQAAfD4AAAy-AAAcvgAA6L0AADC9AADIPQAA6L0AABC9AAAPPwAAZL4AAN4-AAAsvgAALL4AAKi9AACgPAAAED0AAOA8AABwPQAA4LwAAGw-AADgPAAA4LwAAHA9AAA0vgAAHL4AAPi9AAC4PQAAPD4AAEw-AAC4vQAATL4AAJg9AAAMPgAA4LwAAIC7AABQvQAAcD0AAH-_AACgPAAAoDwAAJg9AADgvAAARL4AAKi9AAD4PQAAcL0AAFA9AAAQPQAALD4AAKi9AAAsPgAALD4AAIg9AAAEPgAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=1V_WRFePmPY","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":570,"cratio":2.24561,"dups":["14396701191278791769"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4103838581"},"6038219596149269829":{"videoId":"6038219596149269829","docid":"34-10-9-Z727C53F3393245EF","description":"An introduction to linear equations...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/905851/aee347206ba1da40f2f604c61deb4958/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/liRtqgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DyTNUnVAjGKY","linkTemplate":"/video/preview/6038219596149269829?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Linear Equations: Introduction","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=yTNUnVAjGKY\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoVChM2MDM4MjE5NTk2MTQ5MjY5ODI5WhM2MDM4MjE5NTk2MTQ5MjY5ODI5arYPEgEwGAAiRRoxAAoqaGh2anNpbmlkYmFyaXlyZGhoVUNQNk5HSzczQ1JVd1JBX1NzeWJyay13EgIAEioQwg8PGg8_E7sDggQkAYAEKyqLARABGniB_BH4CP8CAPgLAA75B_0CCAMJCfj__wDt_Ab6BwAAAPcABfoHAAAAAgj_Av0AAAD9-PcC-_4AABUJ_f8EAAAAAwILAf4AAAAL__v4_wEAAPLz-PUCAAAACAQCCgAAAAD4Cwf6-_8AAO0TCgEAAAAADP7-AQAAAAAgAC21k9Y7OBNACUhOUAIqhAIQABrwAX_cJgDO1sYApffJANo1_QC_IRUAISrdALr7JAC8O9YA5OEQAPsA-P7w-f__rhTr_wzn-v7Xz_0BQdn8AOnsEgGtMzUA8ycLADcCCQAd8g7_5An8_sEDD_8u3tQCLj_y_iLvFfs1_-v-_ffP_AvQRQPlHPoI0gMIAvb2I___Gf78sxTN-g4uHgMA5fn-0x0jAhX-EgjjKvT4wsj8BfoAEwgF8ewBGAzgBDn53wPhHBsAAev4Bhrs6QgECDH-vvfd_wX7Fvmw8w37__8Y-hLs9vaoF-oFLfvwAkP_Ev4C7QUI7fL6_PQgGQQDFeoEEdXo-iAALXyzBjs4E0AJSGFQAipzEAAaYCH2ABnmGPQgQijN6QL7HNXP7MzztRL_7MH_DiSsCwMiBtPB0gAe6ATppwAAABPp3SnPAOVx2A8tKAER_te36Bw1fwInGcDWHRmj_zvgNNQmOhotLQAl_rssJAqgHkIYIyAALV_2Gjs4E0AJSG9QAiqvBhAMGqAGAACGQgAAkEEAAERCAAAAwgAAGMIAAOBAAADOQgAAYEEAAAzCAACQwQAAuMEAAKBAAACgQAAA4MAAABxCAABwQQAAkEIAAIrCAABcQgAAWMIAAADCAACowQAAdMIAANhBAADwwQAAsEEAADhCAAAwwQAAcMEAAJBCAACIwQAA4EAAAIrCAADowQAAmMIAAGxCAADYQQAAoEIAADhCAACcQgAAQEAAAJhBAAAkQgAAMEIAAIC_AAAcwgAAIEIAABBCAACwQQAAcEEAABDBAAAYwgAAJEIAAPBBAAAEQgAAAMIAAHDBAABUwgAAAEEAAEDAAACoQQAAisIAAGDCAABgwgAAIEEAAETCAACgwQAAhMIAAMDBAACAwAAAcEEAAHBBAACwwQAAQEAAAADAAACMwgAAnsIAAMDBAACIQgAAuEEAAOjBAACsQgAA6MEAABTCAADgQAAAAEAAAMBAAACQwgAAkEIAAADAAAAQQQAAMEEAAABAAAAswgAA2EEAADzCAABgQQAAIMEAAKhBAABAwAAAhsIAAFBBAADAwQAAAEAAAATCAAAwQQAAGMIAAMhBAACAwQAAqEEAAMhBAADgQQAAMEEAAAxCAAAQQQAAWEIAAIjBAAB8wgAA4MEAAFjCAABQwQAAgMAAAKDAAAAQwQAAsMEAANDBAADgQQAAUMIAAFzCAACAPwAACMIAADDCAACAPwAAkEIAAAzCAABAQAAAHEIAAKhBAABEwgAAisIAALBBAAAYwgAAoMAAAMDAAADYQQAA0EEAABBBAABQQQAA0EEAACBBAABEwgAAIEEAAFhCAAAgwQAAUEEAAADAAADawgAAssIAAEjCAABsQgAAmEEAAAxCAACoQQAAkEEAAJDBAAAgQgAAsEEAAFBCAAC0QgAAOMIAANBBAABAwQAAAEEAAODBAAAAwAAACMIAAKjBAABgwgAAisIAAIhBAADAwgAAgsIAAOjBAAB8QgAAYEIAAFzCAACAwgAAFMIAAIBAAABgQQAAuEEAAJjBAACoQQAAwEEAAMDAAAAgQgAAQEEAACRCAAAQQgAAwEAgADgTQAlIdVABKo8CEAAagAIAAFQ-AAAwvQAAiD0AAIo-AACGPgAAUD0AABy-AAARvwAAor4AALg9AABAPAAA6L0AAES-AACOPgAAir4AAAy-AABsPgAAmD0AAMg9AADePgAAfz8AAMg9AAAMvgAAmL0AAMi9AABkvgAA6D0AADy-AAAEPgAAZD4AAEw-AAAQvQAAFL4AABC9AADgvAAAED0AAMg9AACCvgAArr4AAFy-AADgPAAALL4AAFA9AACgvAAAmD0AABy-AACoPQAAFL4AAOC8AABEvgAAgDsAADy-AAAEPgAAoDwAABA9AABAvAAAKz8AACS-AAAsvgAAoDwAAHC9AAB8PgAAmD0AABS-IAA4E0AJSHxQASqPAhABGoACAAAEPgAAQDwAAKi9AAA_vwAAcL0AALi9AACmPgAAXL4AAEQ-AADYPQAA2D0AAPi9AADIvQAAqL0AAFQ-AABwvQAA4LwAAA0_AAAMvgAAvj4AADS-AAAsvgAAcL0AADA9AACgvAAAgDsAABA9AABAPAAAdD4AAKg9AABAvAAADD4AAHS-AACIvQAAiL0AACw-AACIPQAAgLsAABS-AABQvQAAND4AAFQ-AAAkvgAARD4AACS-AABQPQAAf78AAJg9AAB0PgAAML0AAFS-AACYvQAAHL4AAEA8AACIPQAARD4AADA9AAC4vQAAmL0AABC9AACYPQAAuL0AAIC7AACAuyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=yTNUnVAjGKY","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6038219596149269829"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1809927887"},"506958031528267836":{"videoId":"506958031528267836","docid":"34-8-12-ZFDE6A69475CC8AA8","description":"In this video I demonstrate how to identify perpendicular and parallel lines. I also include an explaination of the symbols used to identify perpendicular and parallel lines.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3009500/f766b5a7957769c04220764994e950f4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/O5IEfQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-ixG5qSV0G0","linkTemplate":"/video/preview/506958031528267836?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Linear Equations: Perpendicular and Parallel Lines.wmv","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-ixG5qSV0G0\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoUChI1MDY5NTgwMzE1MjgyNjc4MzZaEjUwNjk1ODAzMTUyODI2NzgzNmqIFxIBMBgAIkUaMQAKKmhodmpzaW5pZGJhcml5cmRoaFVDUDZOR0s3M0NSVXdSQV9Tc3licmstdxICABIqEMIPDxoPPxP1AoIEJAGABCsqiwEQARp4gQgG-QwAAAD7_P8QAQn7Ag_9BgL3AAAA-PQB8gMD_wDp-QMGCf8AAPoFCgMJAAAA9wD0Avr_AAAeAPcMAgAAAA32CAL7AAAAEvoH9P8BAADw-_wDAwAAAAkKDQkAAAAA8v8IBfv_AADrCA0DAAAAAAz-_gEAAAAAIAAtmUDVOzgTQAlITlACKoQCEAAa8AF_wh8ClwbF_OfrwAG-T-YBnA8h_xxX-AC1-icAsATcABIILAD5D-oBFvkJ_8M2_v8kC_b_ANT0ACvO7f721R4ArgsrAA8QBwJCEhsDDez7_tIN9__Z7xL-HM_KAxJG-PwA4eoAJwbiAPTx1QcO8Sf_2RQd_uoeDwEiyhX-6hYBBsPWwvooLhQEAOP4_tvzOAko1AwCFRz6_cWt9wLTDQgBHPL69gAS8wYk2NsA1AQu_9jo7AYtBf0LAwogA9oR7API-xID2QsECvrnBgX53AL0uCEE_Dvw_w8j-QL-D9f6BNUK7Pvq8P3_AxbpBCLf-PwgAC2eUfs6OBNACUhhUAIqzwcQABrAB4kJ8r7vro68PRbRvL5Z-TwS2Ny8PB7pvI2PAL2AzLg9FpIju5_Woz0h8PY8RfacvNjUeb4FBEm984YFvS0LVj6wily9QS0mvXE9Wr7nFr89hUyovEzEO76CnEW7VjLXuh7XwL1Js5683G1yvCrclzxU3lO93xZsvVuvLj03Wuk7-OddvVY_wLwX-EW9O3mJuxt_hzzXN5u9rqliu4U4gD1v3rS6rtcUvf3yvj1-cB28t6VEvOxo3L0vvQG8GVgFO3VmLD2mi8M8_3SoPMBOoDzVyBM9DIjavJOYxr2Gj4g8jtGVPC2OEjyR5pk9TP4nPGL0jD2eftC9vnZduxNDkr33HD29ucdSO-yG7T2M94M9cluRO-_ks733kZs9zf26vIwv-j2SB546TbyDPA5O5D1a-gu9K3ZqO8CWhz1JO5Q9D7FmvBAWfz2NGdc8TncDPbJVuDzFL4a87xIHvISODD0fgiq8lpWmvLJSGDwCCQ892by_Ox1aZLx5hwU9wuyOuqTt7zuRgFE9HCUvvAUjpT3WAju-SeWaOoPq1TpRkBC8GrjJu3fc8DxG-y499g2nvDXejLwHLqq8-nk2Ow4cJ7saax89YjRpu9-uETxMqeu9vd3UO5h8fb0exmQ93VACvL9rp7s6w7k81jV_vL7syD0Pszw9pNIrOp-muzxR_LO9lwabO_UrXT1zET89sJXpuuoypbuFZq46nzjGO8gjrT3eEd88CFVNu3mnpzuAilm9pglWti6JWL3d6TO99I2muqqCoT0aGJm9R0qgOFwtIb28Byg9J1yzOezTG73ZO0g81sLsNqgFyryxHL46pYRzuYkPt723Qri9MUK6OBbzmD1_VrI7WQT3uheomz2Msh26dxlsueWMkr2TuQO9432euWVEmLxyU0M9rRkxt3lhRj3MA_08KQbgOCCMqTxnnlc9UgA3ONy0vjxcQpm8lzzLuDzpEz2voSo9_9u1OBJntb2nhme9bqvfOJ_xcTul2AE-qK4xuVSl0rwfzMc9ctVYtx9Hczy_EuE77BYvuIsWgD1EKsG9fSojODV2rjzmrM899QzYNocsN73emza7HWiON7Ctn7zPtI48YtC-t2IvlD2taR68P3XctYAmp7xdg8M9ojLMNPcBKD5wYd298We_ubhdk73Pq5C92nVEuLvtgryX5qG9-jj_tyL8i7yIH9K81G1IuA0SRzx0fPS9VlhZuKlrjT2LC5E9EyciOCmeabx4zZA9oeaauJf0Qb28vL896Q4SOHoMgL0pgD08xFm3tyAAOBNACUhtUAEqcxAAGmAv_AA09R4QAAsG3eHxKiTc6BnmK9NA__WF__ECzBM0EcbG7A0ALtP--qAAAAAV1soTHwD0f_gLDBXj_hidqOEuGHbSJSi17UcXptgU5Sn2MxFEFCgAvg68NDrzwvQxLjwgAC3OUBQ7OBNACUhvUAIqrwYQDBqgBgAAgEIAAMBAAAB4QgAAGMIAAAzCAABwQQAAgkIAAHBCAAAwwQAAVMIAAEDBAABgwQAA4EAAAAzCAAAkQgAA4MAAABRCAAAswgAA2EEAAGjCAABwwQAACMIAAMLCAABQwQAAhsIAAIC_AACgQAAAJMIAAFBBAAAcQgAASMIAAABBAACIwgAAMEEAAEDCAAAgQQAAEEIAAExCAAB4QgAAZEIAAKDAAADQQQAAEMEAADDBAABQQQAAoMAAACDBAACAPwAAwEEAAOjBAADIwQAAJMIAAHDBAAAMQgAAWEIAAGBBAABwwgAAkMEAANhBAACAQQAAYMEAAEDCAABkwgAA8MEAAABBAABAwgAAQMEAAJDCAABswgAAoEAAABxCAAAowgAA2MEAAPBBAAAgQQAAgMAAAKLCAAAwwgAAokIAAJhBAAB8wgAAMEIAAADBAADAwQAAgL8AAJBBAACgQQAAiMIAABxCAACwwQAA8EEAAKhBAADAQQAAmMEAAIhBAACOwgAAqEEAAIDBAACYQQAAVEIAANDCAACAwQAA-EEAAAjCAABAwQAA4EEAAKDBAACSQgAAUMEAAAhCAACwQQAAAAAAABjCAACowQAAAAAAAFhCAABAQAAAzMIAAFDBAACgwgAAfMIAAGDBAACoQQAAKMIAADzCAAAkwgAAwMAAAOjBAAAgwgAAGMIAALBBAAAMwgAAgMAAAJhCAABAwAAAAEEAAIRCAAAgwQAAYMEAAIDCAAAAQgAAAMAAACBBAACowQAA2EEAAGxCAACgwAAA-MEAABxCAACEQgAAwMEAAIDBAABgQgAAwMAAAFDBAABAwQAAWMIAAEDCAABMwgAAAMEAAKDAAAA8QgAA2EEAAGBBAABgwQAA4EAAADBBAACYQgAA6EIAAJrCAAAQwQAAMEEAAJhBAACowQAAgMEAALDBAACowQAACMIAAMDAAABQQgAAisIAANjCAADgQAAAwMAAAPhBAABAwgAAHMIAALjBAAC4QQAAUEEAAIxCAAAEwgAA4MEAAOBAAACIQQAAwEEAAJBBAABAQgAAREIAAIDBIAA4E0AJSHVQASqPAhAAGoACAABQvQAAkr4AANg9AADIPQAAqD0AADQ-AAAwPQAA6r4AALq-AADoPQAAhr4AAEC8AAAEvgAAfD4AACy-AAAQPQAAoj4AAIA7AACoPQAAgj4AAH8_AACgPAAAmD0AAKi9AADgvAAAgDsAAMg9AADovQAADD4AAJI-AAA0PgAAiL0AADC9AAAwvQAAQDwAAEC8AAAwPQAAcL0AAKq-AABEvgAAZL4AAOC8AADIPQAAHL4AAEC8AABQvQAARD4AAPi9AACAOwAAMD0AAGQ-AACevgAAND4AADS-AACYvQAAcL0AADk_AABwvQAAoLwAAAw-AABAvAAAgDsAAOg9AAAsviAAOBNACUh8UAEqjwIQARqAAgAAqD0AANg9AAC4vQAAY78AALa-AACCvgAARD4AAJi9AAD4vQAAiD0AAIC7AACevgAAbL4AAFy-AACIvQAAyL0AAFC9AADiPgAAUD0AAIY-AAAkPgAAEL0AAAS-AABQvQAA-L0AAJi9AABUvgAAED0AAGw-AAD4PQAAMD0AANg9AADIvQAAnr4AAJK-AAD4PQAAij4AADC9AADovQAAcD0AADw-AACgPAAAhr4AAGw-AACAOwAAoj4AAH-_AABQvQAAcD0AADw-AADYPQAAoLwAADC9AACoPQAAyL0AAAQ-AABwvQAAND4AAIC7AADYvQAAJD4AABQ-AABAvAAAuL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=-ixG5qSV0G0","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":320,"cheight":240,"cratio":1.33333,"dups":["506958031528267836"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1287278547"},"4151868899996755503":{"videoId":"4151868899996755503","docid":"34-11-9-ZF76AA187BD989545","description":"This video is an explanation of how to rotate a two-dimensional object about the coordinate plane. Keywords: (1) angle of rotation; (2) direction of rotation; and (3) center of rotation or pivot...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2397543/5e629f36b3bdc91152b75b288ab6036a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ImFAXQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_O4ZhAbEFpk","linkTemplate":"/video/preview/4151868899996755503?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Transformations: Rotation","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_O4ZhAbEFpk\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoVChM0MTUxODY4ODk5OTk2NzU1NTAzWhM0MTUxODY4ODk5OTk2NzU1NTAzarYPEgEwGAAiRRoxAAoqaGh2anNpbmlkYmFyaXlyZGhoVUNQNk5HSzczQ1JVd1JBX1NzeWJyay13EgIAEioQwg8PGg8_E6UDggQkAYAEKyqLARABGniB_vn1Bf0DAPAIFf37AgABBwEH-vj__wDz-_38BwEAAAL7BPoOAQAA-QQE9wcAAADzCQX-AwAAAPvz9_4DAAAA_vMICvwAAAAVCAL1_gEAAO_7DfoCAAAA_wgL8f8AAAD2DgEDAQAAAPMGCQ0AAAAADPn3BQAAAAAgAC3W8t47OBNACUhOUAIqhAIQABrwAV2-Kf3p2PgB6_v9AKBB2f-YOAT_HhfwAMfeEwHf3AABFfgTAAW-If8A2g4As-zqAX_y8_3v8AUAP9r8AOUC5gGvMTQA9e77Ag729_7wFOP-2BAe_gwL_gIb9__-_Bf6ABMLBgAJ-tcB0fn-AEgHGwHzKuoIyv_w_yQDAv3dAwwB1s7i_fvf2wDmHfL85wgoAQgG6_31HfT43gb_-xH7HwUZywED9SzpAyzVEQLiDAv55jfw-gLx2fsGJvYF6y31Cf7RF_TH5u78-BIq-vcOEvDY8e8CM0v_Bi__DgsO2_oEpjD5AhoIBhEL0u4PBwUB-iAALT51Cjs4E0AJSGFQAipzEAAaYAv7AC3kFe4AC__qDu-8Fg3r9-9G4_H_ur4ABSPjARYK-uvnGABG4wTyugAAAP7u813_APdg3Nv1KBkTGdbd9BcMfxwTGNTE-gPK_xgZ_BdCIvo4OADs7dcoDwL6PxU-MyAALTv-Nzs4E0AJSG9QAiqvBhAMGqAGAACwQQAAgL8AANhBAAAwwQAAgMEAAHBCAACOQgAAIEEAAODAAABswgAAoMAAAMBAAAA0wgAAgMIAAKBBAADgQAAA2EEAAGTCAABEQgAAbMIAABDBAAD4wQAA2MEAAIBBAACowQAAQEAAADBBAADYwQAA4EAAAARCAAAAwAAAsMEAAFTCAAAIwgAAoMEAAGRCAACoQQAAsEIAAHBBAAAEQgAAoEAAAKhBAACAPwAAJEIAAIDAAACIwQAAuEEAAGBBAAA0QgAAAMEAAKhBAADIwQAAAMAAAJhBAAAMQgAALMIAAHjCAABYwgAAgL8AACBBAACwQQAA0MIAAODBAABMwgAAoEAAAMDBAAD4wQAAeMIAABzCAABAwQAAoEEAAODAAAAMwgAAAAAAAGRCAACswgAAXMIAALjBAADUQgAAgEAAAGDCAABEQgAAoEAAAODBAACgQAAALMIAABBCAACEwgAAHEIAAIBBAADoQQAAkkIAANBBAACUwgAAoEAAAL7CAAAAAAAAgEAAAJhBAAAAAAAAusIAAADAAABAwAAAJMIAAFTCAACAPwAAEMEAAHRCAABAwAAAAEEAAIhBAAAwQQAAUEEAAEBAAACQQQAAEEIAABxCAADMwgAAsMEAAITCAACYwQAAMMEAAAAAAADAQQAAEMIAAOjBAABQwQAAJMIAABjCAADwwQAAoEAAADBBAAAIwgAAvkIAAEDBAACIwQAA7EIAABDCAADQwQAAhsIAAMhBAABQQQAAMMEAAHRCAABcQgAAqMEAAABAAAAkwgAAEEIAAJRCAACAvwAAQMAAACBCAADgwAAAYEEAAEDAAABUwgAAeMIAAEDCAADgQQAAwEEAAABBAABAQQAAsEEAAIDBAABEQgAAJEIAAGBBAACUQgAARMIAAGDBAABgQgAAGMIAANBBAAAQwgAABMIAAKDBAABIwgAACMIAAMBAAACkwgAAnsIAAAAAAAAIQgAA-EEAANjBAACywgAAgEEAAPBBAAAgQQAAgEEAABDBAAB0wgAAIMIAAKDAAADgQQAA-EEAAIpCAACGQgAAAMAgADgTQAlIdVABKo8CEAAagAIAABC9AAA0vgAAZL4AAJI-AADgvAAAmL0AAPg9AAAxvwAAoLwAAFw-AAB8PgAATD4AAIg9AACYPQAABL4AAIg9AADuPgAAuD0AAAy-AAD2PgAAdT8AAOg9AACqPgAADD4AAHC9AADgvAAAcL0AALi9AADgvAAAoLwAAIo-AAAUPgAAur4AAPi9AACYvQAAyD0AAI4-AAAMvgAAkr4AAKK-AAAUvgAA6L0AAHA9AADYPQAAjr4AAEA8AACovQAAkr4AAMi9AAC-vgAA2L0AAKC8AAAMPgAAmj4AALg9AADgvAAAfz8AAAy-AAD4PQAAMD0AABy-AAAwvQAAgLsAABC9IAA4E0AJSHxQASqPAhABGoACAADgPAAAUL0AAHC9AAAzvwAA6L0AAAS-AAA0PgAAQLwAABy-AACmPgAARD4AADC9AAAwPQAAZL4AALi9AABwvQAAmD0AABc_AADYPQAAvj4AAAQ-AABsPgAAQLwAAFC9AAD4vQAAFL4AAEC8AACIPQAAiD0AABw-AACoPQAAUD0AAFA9AABsvgAAML0AAHC9AAAMPgAAcD0AAHy-AACSPgAAXD4AAOi9AAAUvgAAiD0AAEA8AACGPgAAf78AAIC7AADgvAAAgDsAAOg9AAAwPQAAFD4AAIi9AAAUPgAAiD0AAKC8AABAvAAAcD0AAAy-AABAvAAA6D0AALi9AABAPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=_O4ZhAbEFpk","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4151868899996755503"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3119897704"},"14217972748373241748":{"videoId":"14217972748373241748","docid":"34-5-10-Z8D165313EB9962D3","description":"This video is a demonstration of quick sketching a quadratic function. You will be able to find the vertex, the y-intercept, the x-intercepts, and the direction of the parabola after viewing the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3447593/402f37047d792240a7197ee54d0a5d6e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/W_x2EwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnECZ9kLwlC4","linkTemplate":"/video/preview/14217972748373241748?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Quadratic Functions: Sketching (1) Real Roots","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nECZ9kLwlC4\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoWChQxNDIxNzk3Mjc0ODM3MzI0MTc0OFoUMTQyMTc5NzI3NDgzNzMyNDE3NDhq1hASATAYACJFGjEACipoaHZqc2luaWRiYXJpeXJkaGhVQ1A2TkdLNzNDUlV3UkFfU3N5YnJrLXcSAgASKhDCDw8aDz8T-wKCBCQBgAQrKosBEAEaeIH5D_T-Av4A6vwD_foAAQANBv8C9gAAAOTw-wAJ_QEA_wQO8wgBAAD9BwQLBAAAAPID6vr5_wAAGvgBCPEAAAACBQb89wAAAAoG9gn-AQAA5er-AAMAAADwE_IG_wAAAPkWCPz-_wAABQcDFQAAAAAN-vj6AAAAACAALY76yzs4E0AJSE5QAiqEAhAAGvABf-gOAN33sgGv-M8A1SbjAdgYJAD9MtMAverzANUG4AHhDQIA-hoi__XtDv_IAe__EN7PAPrQAgAf4f7_Eu8TANjyCQAGFxMALAAuAQ3d_P_p-AIA6NARABfX0wMPOvn9DPTw_iwhAv_tA8MCD_49Ae4KGAYb2CcF4K8kAP7-8wj-3sL_IiYRAwfG9gHh9S8HCszsBBUSCPrT3e0D7gAH-f7gF_0NEtEAEeMDB_ntDwXf7O8FJQX-CfsgEvjmE-AIwgMQ_d7aAAAJ6fL6Es789NggAQga0_gRHfoB_vEU9wju3gD25hADB_4A6QfgCPXtIAAt0UIXOzgTQAlIYVACKs8HEAAawAePNNi-Py2QvB4sCL2cAYm849SYvDjtbr1JXie941VWPaa_zbwzqUE-2cQwOlizqTyNtQ--p0OCPOWXgzvLgDM-5tGIvZhiMzx1dPy9LxOaPQsCEL1KTcG9ZuY4O08ajzyL_gC-xeg0vXh0SLzBfr498vfBvRetbbxviwi9Q0cHuiPYGL0RQpY969qDvZo737yqGN28uAkSvQ2QortT0K08FuwQvRJv-LxX6b49qvngvIqtoLx9z6i99toHPPRAGLzhn608n9rqPHmoz7hIHI29J3WXuspyL7tPZjK9CkJ-PbOXrTwccv08ha1-PdeE_DdpM_M8Hm_yvdcl0zp-xQq-TyAMvaJG3zvshu09jPeDPXJbkTuu9Cq-bcXePYrUC7uy8eA9ek8KvcLtmrzg3jA93_DMPBBYPTogooc8-aRuPaBIgbzkO8Y7jPcDPr8syDwAdV49g0w3vcQ3UDr84Bw9ueNIPWq77LuV2NA8UtJjPfvbr7q2tWq9eq9VPb_WJTw_vPg8eUWLPA6zYTzFNUM9-FENvglvLLtzWsG8Vb1BvfoOersdbcE9OWkQPS4Ff7xbPpc9-KTDvajUOru_Pdk8Th11vDlbZbvRMho854xIvdk8MzxgQYW9TXn-PPnUVrzmwqK9KeGjPbQq-Lv-2bo9KxIDPsuxW7kpxKs7J-uhvWwGejuZi648655mPWSiFLuhkik9QKAUPONqiTuXI589-8Z8vQOsEjos8eC9LnD9uyAnGDoHyPy808wpvYOlW7rHZxI-rqDpvZAJtLlp5mS9nbv6ORhWU7kjEhW-FPUXPHW7Arqsgy297UJYPVuLSDmzE7S91kWQvbRnMDkc1g89WmKlPHBd5bmTF349NqwpPWUTDjkGJEa9w1e1vQjIXTc3--I6vFQRPVxwubaPoII96IoyukK-IjiLa3w8yWP8PCdGLbkPDQs9tZVNvOThqLh1mrs8pN_-PBo22LdZ08Y8UBxgvSDSFzgUBA89EF0APo3Dcbg_yXg8ngG_PXtAh7aiCKk9PFDnPcSN9jiU7cs7r_oSvU84Dzig3Hs9AZm3PVgANrgqTCm9DT29PfDPXzlrEay7i4DxuwU9hTj-XFk9cxaBvQIwBjj9cRE9okXWPRkG0zil078976x9vaAsDrluHmK9sSuyvRO_v7jOcjS8XQ_Lvahwm7dXv8i8-RXGPK5pq7fk1Z68eonxvWVVMLgi_-w9NSkFPvN-W7hgmpg8W5r7PYSt_bgBLUK9JDo1PSjZHbdJXqe9RqyqPVQyiDggADgTQAlIbVABKnMQABpgMP0APtgCpz7wJdc95dpF1Q0J4uHRDP_61v8NXNUlFvvJrd_uACnLFwScAAAABOXwRA8A5H_9xEMz5T8Wj7_gHEp74AU7ws0jHOXgFvwnNv8t7xT8AMICu_UJOM1MIEscIAAtJiQOOzgTQAlIb1ACKo8CEAAagAIAAFA9AADgvAAAZL4AAOA8AACKPgAAVD4AAFQ-AAAhvwAAD78AAPg9AADgPAAAvr4AAOC8AACaPgAA6L0AALg9AAAQvQAAoDwAABQ-AADePgAAfz8AAGS-AAD4PQAAfL4AAGS-AADYvQAAmj4AAIi9AADgvAAAiD0AAJ4-AAD4PQAAjr4AAKg9AAD-PgAAuL0AACQ-AADWvgAA5r4AADy-AADOvgAABL4AAKo-AACYvQAAuD0AANi9AAAwvQAAJL4AABA9AACevgAA2L0AAFy-AABwPQAATD4AAPg9AABAvAAAJz8AAGy-AACuPgAAoLwAAKC8AACaPgAA4DwAAES-IAA4E0AJSHxQASqPAhABGoACAABwvQAAuD0AABy-AAAxvwAAyL0AAJg9AACCPgAAgDsAAIi9AABMPgAA6D0AABy-AADIvQAAhr4AAIA7AACgvAAAyD0AACk_AACovQAArj4AAPi9AADgvAAA2D0AADS-AABQvQAA2D0AAFC9AADgPAAAgDsAABA9AADYPQAAgDsAADy-AABEvgAAuD0AAFC9AABAvAAARD4AAHS-AAAQPQAAjj4AABA9AACAOwAAED0AAES-AAAkPgAAf78AADy-AADovQAABD4AADQ-AAAwPQAADD4AAKC8AACWPgAAEL0AADC9AAC4PQAALL4AABy-AACYPQAAVD4AALg9AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=nECZ9kLwlC4","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":676,"cheight":480,"cratio":1.40833,"dups":["14217972748373241748"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"49718882"},"16280715204743830710":{"videoId":"16280715204743830710","docid":"34-8-6-ZF5EDDF884930914A","description":"This video tries to accomplish a couple of things: (1) solve inequalities with fractions; (2) compares the different types of notation used to answer linear inequalities...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3657528/63476e6250f9afc49e69e46bbb0a4ddd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/UkFq3AAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdQ72kLi8QFs","linkTemplate":"/video/preview/16280715204743830710?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Linear Inequalities: Regular, Graphic, Interval Notations (with problems)","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dQ72kLi8QFs\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoWChQxNjI4MDcxNTIwNDc0MzgzMDcxMFoUMTYyODA3MTUyMDQ3NDM4MzA3MTBqiBcSATAYACJFGjEACipoaHZqc2luaWRiYXJpeXJkaGhVQ1A2TkdLNzNDUlV3UkFfU3N5YnJrLXcSAgASKhDCDw8aDz8T0AWCBCQBgAQrKosBEAEaeIEIEwwLCfUA8QQGAfgE_wEi9fj48wMDAOr7CPkIAAAA8e8IDAAAAAD5BO8KCAAAAOwA9v7uAAEAEA8B-QYAAAAE4gMI_AEBAP3x-gf_AQAA-wAD_QP_AAAN9Pv__wAAAP4NCgT5_wAA9x_1_QEAAAAP-PYGAAAAACAALYh7uDs4E0AJSE5QAiqEAhAAGvABfwgIAcIJ3gDJ9tUA9yHaAcD6Pf8KH-b_rBMUAcwE-wHkMRwA0xkDAPH2J_-1Kfj_JevY_-_c1wA73PwAC9oMAOADDwEC4gP_MgIIANjCCf6m7BD-8tUF_iL_3gEvJOsB_ucW_wcW5QIW698AGeUsAyUROgDe8wwG79cAAd8HJP_3-90A0_D1BvrjCv6q_hwHD-rhAfoW6f-8EOUB_PUD-uUMG_YVP-n_LO8FB-oT_gLl2vILGO7rCB75IwbeCPXz8_cmAqr0_PU86_YN7d7r8tUH4wkU3_kKAAcHAvb9BQr_6uwA5S32_-j47wL69_nvIAAtjbsTOzgTQAlIYVACKs8HEAAawAeyDse-51kkPN8Kl7yp9xS8RCXDu3cuzLyetVu9D19rPUf6_jxRu689ns46vAiiOLy3DZO-G1QTPBu0HL2Y3SM-gUmQvUP09bx6Fy--CDwwPSmf1LwR_D--f2B4PRBEErwQhHq9OpzUPF3vKL1o4w09rKD1Ol5S0Lyygl-99AikvHl8lrw5bMG9pMXZvTpjDjwbf4c81zebva6pYrudhXg9vD6Qu4oFPrwucwo-e_8aPaikE70Qq2S8Q_mnvDXN4Lpp_ig-i13TO0cLKzxIHI29J3WXuspyL7vJGko6CjGnPdM7jTss9Ze9DVa3PMpv8ruCokO8dXKrvdIKADvOd0s8wc-TPO5KBbzwf2w9ZqnAPeVlCTzc74W93Qn2Pcid67q30eA9ikImPRNBHrwxsRk-qfUjPDtImTws6Me8PdrDPV8M5bxjYD09Dy7IPX357jxSB4s5_ikVPHK5B7wTvKw9cCTQPfr3T7zmxsk9awAmOr_VGzyC5tO9IZMOvI8lgzoumak9ulc8PZ1uNDyblQi9CHYMvs2l4btiezI9F2e8vedGAbvnzFE9uKCIPVl9HrwYL0w8wh4NvF_IsDtUMYo9v_GUu04Dqzu-Clo91yfKvEUHajue_r08GQzkvAigAbwWLYW9eSPTPa9Fzjnp7Mk8TBjNPV_omrlqepo85AlOvYLE-jsLDcS87xLmvKSRjTtMes48l_3avcIwyDlU-p49mug4vXhaTziz9Qa8Ld-GOqIvTLnW7gu8FRvpOTZ6LDqqgqE9GhiZvUdKoDg7dSO8wIFkPWLiLbn9PWe8gJ4GvXubxzg6WpU8h50uPRjHYTj1lle9UmaevOd3A7qmo4c9f_ZDPTkkezfHvC49knQSvf0PqjhT_Jk92Rp7vVnjY7nMNVa91ovjO0ZKALliVdK7NHYTvRSSH7hiicK92vs5vZBdkrjae6c9IGxnvDCCBLre_yc9mhOaPRnbFLkkRs88blyFvUlcnzjN8iu84yaZPdrOH7iSzKo8IlUEPgUNHzdywmQ93_8CPWwNDDjxWSg9d5aKvdU16ziPTkK9oZTKPbJRAjmAv3O8IcimPIxNcThvj4Q92vOmPVfBDjmC1ZI9cwT6vAvfO7b3-Vm9urzZPUEKvzjCpNg9NiomvXu0Lbm-XQC9yM9eOlOmnLceKng7JQTrvSO_ZzhXv8i8-RXGPK5pq7e9rwU9pUkJvq2ehbhVGKY9bQvFPYPH5zgkppo9O-EVPqRcbriX98I8unjsu-8naLg7w1S9jwCJPR3nhzggADgTQAlIbVABKnMQABpgQv4AOf0v7PcQFe8T2QoA17ni4SPOF__1rQAFC_fzIxfL5AQBAC_wFO2wAAAACOzrGAYA9WfhDtkf8Ord2sDoHTB_Jx9Hud8w-sLV8hQP9wAP9iI9AAHyxT05_5wSPgYRIAAtj78qOzgTQAlIb1ACKq8GEAwaoAYAAJhCAAAsQgAAIEIAACzCAABowgAA-EEAAEhCAAC4QQAAuMEAANDBAADYQQAAQMEAAABAAACgQQAAFEIAADDBAADIQQAAWMIAAGxCAACgQAAAuEEAAABAAACGwgAATEIAAPDBAACgwAAAIEIAANDBAAAswgAAcEIAAJjBAACowQAAOMIAAIBBAAAEwgAAgkIAAJDBAADUQgAAYEIAAIZCAADQQQAAEEEAAFBBAACIwQAAoEAAAHDBAAAkQgAAUEIAAAhCAAC4QQAAGMIAAPjBAACAPwAANEIAAKhBAAAUwgAAdMIAAODBAAC4QQAAoEEAAEDBAAA4wgAAEMIAAOjBAADgQQAAkMEAAGjCAACYwQAAUMIAAIA_AAAgwQAAgMEAAKhBAADgQQAAiMEAAADCAAC8wgAAkMEAAKRCAACYQQAAoMEAADhCAAAAwQAADMIAABDBAAB0QgAA8EEAAJjCAACQQQAAuMEAABBBAAC4wQAAJEIAAOBAAACAQQAAYMIAAFDBAAAMQgAA8EEAAJBBAACgwgAAHEIAANBBAADAwAAAYMIAAABBAABQwQAAxkIAANjBAACgQQAAQEEAAAxCAACQwgAAGEIAAOBBAAD4QQAAkEEAAITCAABQQQAAkMIAAPDBAADAwQAA-EEAALjBAAAEwgAA-MEAALjBAADCwgAA8MEAAADCAABAwAAA8MEAAJBBAACGQgAADMIAADBBAABMQgAADEIAAAjCAABAwgAAQMAAADzCAAAgQQAAgMAAAHhCAAA4QgAAAEEAANDBAABAQQAAmEEAAKTCAADIQQAADEIAAFDBAADAQQAA8MEAALLCAACAwQAAgsIAAADBAADAQAAAEMEAAIJCAADIQQAA2EEAABRCAACQwQAAAEEAAKpCAACawgAAUMEAADRCAAC4wQAAQMAAABDBAAC4wQAAQMEAAJrCAACQwQAAwEEAALbCAACWwgAA2MEAADBCAACIQgAAmMIAAMDBAAAIQgAAAMAAALhBAADYQQAAgEAAAIDBAACQwQAA4EAAADBBAACAvwAAWEIAAJZCAABgwSAAOBNACUh1UAEqjwIQABqAAgAARL4AANi9AABAvAAAij4AALg9AABwPQAAJD4AAAu_AAAsvgAAEL0AAOg9AADgvAAA4DwAAII-AACyvgAAqL0AAHQ-AAAwPQAAbD4AALo-AAB_PwAAgLsAAPg9AABwPQAAuL0AAMg9AACoPQAAED0AANg9AAAEPgAAfD4AAMi9AABMvgAAuD0AAFC9AAD4PQAADD4AAHS-AADuvgAADL4AAEy-AACIPQAAdD4AAMg9AABAvAAAQLwAAFw-AACqvgAA4LwAAIi9AACoPQAAPL4AAOI-AACIPQAA4DwAAJi9AAAhPwAADD4AAEy-AAAMvgAAoLwAAFA9AADgvAAAkr4gADgTQAlIfFABKo8CEAEagAIAAHA9AABwPQAAJL4AAD-_AAAMvgAAML0AAGQ-AAAsvgAAuL0AAAQ-AABcPgAAdL4AAHC9AACCvgAAZD4AAKi9AABwPQAAEz8AADA9AADGPgAAoLwAAHC9AADYPQAA2L0AAHA9AACAOwAALL4AAFA9AAD4PQAAyL0AAKA8AABQPQAABL4AACS-AAAQPQAAoLwAAJi9AADoPQAABL4AAIi9AABUPgAAJD4AABy-AABAPAAAJL4AACw-AAB_vwAA6L0AAPg9AACgPAAAcL0AAHC9AAA8vgAAJD4AAHC9AADIPQAA4LwAALg9AADIvQAAuL0AAEA8AADgPAAAHD4AAKC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=dQ72kLi8QFs","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16280715204743830710"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"928387446"},"1730439994421345145":{"videoId":"1730439994421345145","docid":"34-5-15-Z5FB3949F25EF6937","description":"This video is an explanation of the concept of vectors used in the context of a geometric transformation. The concepts/questions covered in this video are: (1) What is a vector? (2) initial...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/761302/22929acbb50a90ba43bb10803b245b49/564x318_1"},"target":"_self","position":"17","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeGcReUA9O7A","linkTemplate":"/video/preview/1730439994421345145?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Transformation: Vectors (Part 1) with Embedded Problem","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eGcReUA9O7A\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoVChMxNzMwNDM5OTk0NDIxMzQ1MTQ1WhMxNzMwNDM5OTk0NDIxMzQ1MTQ1aq8NEgEwGAAiRRoxAAoqaGh2anNpbmlkYmFyaXlyZGhoVUNQNk5HSzczQ1JVd1JBX1NzeWJyay13EgIAEioQwg8PGg8_E74DggQkAYAEKyqLARABGniB-AACBgH_AO8DC_r7AQEBDwMTAfcBAAAFA_oEBwT-APkJBg0BAQAA8QEA-_8AAAD5B_ry9v4BAAD57voCAAAAAPEAAfgAAAAF_Qn-_gEAAPHsCv0CAAAAFwX-BgAAAAD0CwP6AgAAAPEKDPUAAAAACvABA_vy_gAgAC30CdA7OBNACUhOUAIqcxAAGmANDgAq9xLV8AgW_vHsxg8Y9Q34APbiAOnDAOse4fQmG9_V8xEAJdL68cIAAAAI2uMGEwAETBLuzycBBPfcCvgG6X8SEgLnHxEF4g8WFRMK2AP8BAMAF_sNEC3zr03wJS4gAC2mFFo7OBNACUhvUAIqrwYQDBqgBgAATEIAAIA_AAAUQgAAUEEAABjCAADgQAAAdEIAAAhCAADgwQAAbMIAAIC_AABwQQAAEEEAABjCAAD4QQAAAEAAAARCAADIwQAAeEIAADzCAABAQQAAgMEAANjBAACAwQAASMIAABBCAAAAAAAAgMAAAMDAAABMQgAAgEAAALDBAACQwgAABMIAAPDBAAAQQgAACEIAAJpCAADYQQAAmEEAAIC_AACIQQAAqEEAAABCAABwwQAAgMEAAKhBAAAwQQAAIEIAALDBAAAEQgAASMIAADDBAABAQAAAiEEAAIA_AABIwgAAUMIAAADBAACgQAAAQEAAAIrCAADQwQAAMMIAABDCAABAwgAAksIAAJbCAAAQwgAAwEEAAGBBAADgwAAA0MEAAOBAAAAMQgAAnsIAAHTCAACwwQAA0EIAADBBAACQwgAAQEIAANDBAADYwQAANEIAANjBAAAcQgAAyMEAANBBAAAAwgAAgEEAACBCAABoQgAAWMIAAKBBAACswgAAEEEAAABBAABYQgAA0EEAAKDCAABQwQAAgEAAAKjBAAAUwgAAQEEAAHDBAACeQgAAuEEAABhCAADYQQAAyEEAAEDBAACQQQAAREIAAKBBAACAwAAAmMIAAOjBAAC0wgAAyMEAANjBAAAIQgAAoEAAAADBAAD4wQAA8MEAAHzCAABowgAAAMIAAEBBAAAwQQAA4MEAAJZCAACgQAAAcMEAANBCAACYwQAAyMEAAILCAAAAAAAA4MEAAKjBAAAAQgAAhEIAAOBBAAD4QQAACMIAAHxCAABcQgAAwMEAAEDAAABsQgAAOMIAAFBBAACAvwAASMIAAHDCAABQwgAAdEIAAHDBAADgQQAAwEAAAMBAAADowQAAikIAAJhCAAAYQgAAwkIAAHzCAAAAwAAAyEEAAODAAADAQAAAEMIAACDBAABswgAAGMIAAFDCAABUQgAAoMIAAJrCAAAwwQAAdEIAACBCAABwwQAAsMEAAJDBAAAAAAAADEIAAARCAAAAAAAAEMIAAOjBAABAQAAAcEEAAHxCAADAQQAAAEIAAOBAIAA4E0AJSHVQASqPAhAAGoACAAAQPQAALL4AAIg9AAAsPgAAtr4AAJY-AADYPQAAMb8AAGS-AAA8PgAABD4AAEA8AAA0PgAAML0AAAS-AABAvAAA2D0AADA9AACAuwAAEz8AAH8_AACIPQAAlj4AAIi9AAAwvQAAgLsAAFA9AABAPAAATL4AAKA8AACGPgAAVD4AAGS-AABEPgAAFL4AACQ-AADqPgAALL4AAKq-AABMvgAAH78AAGy-AABQPQAAUD0AAJi9AABAPAAAgLsAADS-AADovQAANL4AAOA8AACWvgAAiD0AAJ4-AAAUvgAA4DwAAHc_AABcvgAAiD0AAFw-AAAUPgAAuL0AAFw-AADgvCAAOBNACUh8UAEqjwIQARqAAgAAcL0AADA9AAAQPQAAB78AABA9AADgPAAABD4AALg9AABwvQAAhj4AAOg9AACovQAAyD0AAES-AACAuwAAcL0AAMg9AAAzPwAAmD0AAKo-AACIPQAAgLsAAMg9AAD4vQAAMD0AAIA7AACYPQAAUD0AAKC8AAA0PgAAcD0AABA9AADovQAAoDwAANg9AAAMvgAAoLwAAEQ-AACCvgAAPD4AAJ4-AAC4vQAAHD4AAIC7AACgvAAAqD0AAH-_AACYPQAAuL0AAIA7AABQPQAAED0AAOg9AABQvQAAdD4AAOA8AACAuwAAoLwAAOi9AAAQvQAAEL0AAOC8AADYvQAAgLsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=eGcReUA9O7A","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1730439994421345145"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3821649473"},"4084023650851229958":{"videoId":"4084023650851229958","docid":"34-7-0-Z94F94D8D798BA637","description":"This demonstration is a beginning tutorial on logarithms. In the video, the following questions will be addressed: What is a logarithm? How do you graph a logarithm?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/405756/d3ea3db2223d316e8b8d62ffc4273e05/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gl-YKAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOJ0u6q0XpYg","linkTemplate":"/video/preview/4084023650851229958?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Logarithms: Tutorial (Part 1).avi","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OJ0u6q0XpYg\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoVChM0MDg0MDIzNjUwODUxMjI5OTU4WhM0MDg0MDIzNjUwODUxMjI5OTU4aogXEgEwGAAiRRoxAAoqaGh2anNpbmlkYmFyaXlyZGhoVUNQNk5HSzczQ1JVd1JBX1NzeWJyay13EgIAEioQwg8PGg8_E74CggQkAYAEKyqLARABGniB9wX3_P4CAOsOBQYBAv8A_gv48vf-_gABE_v3AgT-AAkP-gT8AQAA_w0ACfoAAAD3_f71-v8AAA0DAf4EAAAAEfEB_AMAAAAI9gj7_wEAAPzu_Q4E_wAABgwJAP8AAAD7B_77BvoB__v_BPcAAAAAAOv29wEAAAAgAC1aINg7OBNACUhOUAIqhAIQABrwAX_5KAGz6tH-6u3IAesa5wCI-hD_CTLxAMr2_gDX79YA8_wQAO4fF_8FBAcAzCMUABPm6gD1rvYAKurw_-WyDADtDScABBf6ABUKDwDp8_v_z0oj_9cCKQEZ1dEDED35_CEPF__7JQEB9vPaBjXSKAIR9hMEM_MKA_f3If_tEwEF9vjE_gUZDgTc8vIA9_Qn_hT-6gnvMP4E4O7R_uIBJP_74QT6NBLkAT4P_gwCBCIAAu0A9eX_9RAWIiT-5BTeCObvGfjy3wHuB_QC-AXXEvTTEfwAVu4GCdbjA_QAyfgB7t_s9vn_AAPn-O4C8Mj_9CAALedYDzs4E0AJSGFQAirPBxAAGsAHeNDkvqk8kTsMDd-8vToFO9YEDL2VcNe8SV4nveNVVj2mv8287rK_PbewUz1WNVe92NR5vgUESb3zhgW9mN0jPoFJkL1D9PW8hzQqvp5pqD22cmW85_4qvl3L_zxIdCo8SYQWvnPXkr1VJPC8ch5pPTtqcb28tDy9W68uPTda6Tv451299B8tPT-5t72ePxK99JX2PHsgCL14j308R-T7PJpzVT1aVBq9k2mJPb49rr1m0_g6crWvvWJZOr3nbdG8HejBPYb8frnqSY88eAA1vVen8zrFgu-762sivf6DozwW-0s7ByRhPDHQtTwApjG8nxHXO_m1er32Tp67DMiDvf8Zrzxe8XU75Gb4PWZM4T0YI9Q77-SzvfeRmz3N_bq8Tn0QPkBji7xfEfS714rWPXBt9jtUi6m6HTB5PZP2yz1QwLg78jO_PKpr4zx0Yg89UgeLOf4pFTxyuQe8a4OuvMlILDzexou83IsevQPSfjyJwAm8LCn3u3RycbvWSYU6871QPSJrETzWbn0732bGPTm1872HHxg8efu9PCk39rwJh568ew2WPWS-bT3Lq8a6VkkFPCNDk7088DU7MPplPJKruzvdzRW7ZLZgu6gEj72aNBm7_DGyvctBqj0DH0C5_GVBvIXs2buHQjq8D6l4Pagwiz0YMFS7mTbSvLxazr0YnC86RTG3u48Y3T1Nn3c6KgExPRWt3Dw1tD87B-7gPXrcHrv2pQ66EScGvf6NDD0455K7neqavJBDDj00XTq7k2KRPaaBP72Dk6y5OpC1vAUqzrv65WM3G-qhvbJblT0s2Zk49VhkvYr4WD2SlW04VBv8vWK7-70T0_I5VNFOPY5Q_bw3l9u548dTPahlNb3Lr2m5U1n0va_hs7yMjI-5nVI0vTeffz2YhJK4CwWRPJ8x3TyDT5Q3Gq1ePRHJ67xtHgI5LXM_PQD4cb2cg5u4JdcDvQS0uD2qJ6q438csvRzMSzxuY5C5_ViXPdy3-j0dVsQ1sOmcvHY2BD7X8123Ko5DPeIC0D27Afc4EtG3uwz9iL1QZfo3nzrWPTB0pj0LPFm5wku1vY1NAjwNuk82I9GwvHJTw7zjEDu4pyTrPel1GLriWkW4YaBQPfTZRj0rmCY41GDaPQfjkb3Hl0-5q98WvQ37Hb6jvP64eTMUvWoslr1I6DC3l1GRvYdyHT1TOIu2szEGuwivvb0cfaa3iITPPWuySz2Jt4U4PCn6u1UqbT3gMo24UG8IvEqomj0jJgq2wcWOu2IVr7xBcTM3IAA4E0AJSG1QASpzEAAaYAL4ACX0RNgI9hns7dkoQ7HA094k5QX_6r__8zUCJvjT5M3-FwA5xQHYnAAAAC8W2UvUAA1_5LkeN-LpDZTO6wXYdwY5HK4JHf2fwC_2HPInBxf7YADr_qYQBfXpClQ5TyAALWheEDs4E0AJSG9QAiqvBhAMGqAGAAAAQgAA4MAAADxCAAAUwgAAMMIAAMhBAACIQgAAwEEAAIDAAAB0wgAAoEAAAFDBAADgwAAAhMIAAADAAAAEQgAAAEIAAKDBAAAoQgAAiMEAABDBAABAwAAACMIAAIA_AAAAwgAAwEAAAMDAAACgwAAAAEEAAFBCAAAcwgAAoEAAAFjCAACQQQAAsMIAAOBBAABMQgAAoEIAAGxCAACAQgAAYEEAACDBAACoQQAAmMEAALhBAAAgwgAAkMEAAHDBAACoQQAAuMEAAIjBAADQwQAAoEAAAIDBAAB8QgAAoEAAAFjCAABkwgAAUEEAAKDBAAAMQgAACMIAADzCAACAwQAAoEAAAADDAAAAwgAA5sIAAMDAAAC4wQAALEIAAIDBAABIwgAAIEEAAMDBAADoQQAAEMIAAKBBAADEQgAAcEIAAAzCAACqQgAA2MEAAAzCAAC4QQAAiEEAAFRCAACKwgAAIEIAAIDAAACgwQAAgEEAAADAAACIQQAAhkIAAHzCAACYQQAAXMIAAIBAAAB0QgAA4MEAACjCAABgwQAAkEEAAGDBAAAEQgAAUMEAAEBBAACYQQAAIEIAABBCAAAgQQAAFMIAAAxCAAAcQgAAGEIAABDBAADYwQAAgMAAAODAAAAAQAAA0MEAAMBBAABwwQAAhMIAAJjBAACEQgAAEMEAAJDBAABIQgAAIEEAAIzCAACoQQAAMEIAAFDBAACIQQAA2EEAAEDBAACwwgAAMMEAADDCAAAMwgAAUEEAAAzCAACAvwAADEIAANBBAACAQAAATEIAABBCAAB8wgAAQMAAACRCAAAQQQAAqEEAALhBAACWwgAAYMEAADTCAADAQQAA0MEAAGhCAAC4QQAAHMIAAFTCAACwwQAAYMEAAI5CAADGQgAA4MEAAKjBAAAQQQAAiMEAADzCAADYQQAAgMEAABBBAACYwQAA0MEAAIA_AADOwgAAnMIAAODBAACAvwAAwEEAAPDBAACewgAANMIAAMBBAACIwQAAjEIAABRCAACQwQAAuMEAADzCAAB8QgAAREIAABxCAABEQgAAoMAgADgTQAlIdVABKo8CEAAagAIAAIi9AAA0vgAAbD4AAIA7AAC4vQAAmj4AACw-AAAdvwAArr4AABw-AAAkPgAAhr4AACS-AACYPQAA4LwAALi9AABcPgAAgDsAAEC8AAAjPwAAWz8AAAy-AAAUvgAAFL4AAK6-AACgvAAAVD4AADC9AAAcvgAAcD0AAII-AADIvQAATL4AAMY-AAAkPgAAir4AAIg9AABsvgAAPL4AAAS-AABEvgAAPL4AABC9AACWvgAAiL0AAOA8AABAvAAAcL0AAKC8AADYvQAAnr4AADC9AABAPAAAND4AAIK-AADgPAAAfz8AAMa-AABUPgAA2j4AAAy-AACyPgAA-D0AAEA8IAA4E0AJSHxQASqPAhABGoACAAAcvgAAbD4AAJK-AAAVvwAAcL0AAMg9AAAMPgAA4LwAABw-AABAPAAABL4AADy-AAAwvQAANL4AAFQ-AACIvQAA-D0AAAs_AAB8vgAAvj4AACS-AACgvAAABD4AAIC7AADgPAAAoLwAACS-AACAuwAAcL0AAKi9AACYPQAAqD0AAIi9AAAwPQAALD4AACS-AAAEPgAAVD4AACy-AACAOwAAND4AALg9AABQvQAAiD0AAIi9AABwvQAAf78AAKg9AACYvQAAND4AADQ-AACovQAAiL0AAI4-AAAkPgAAyD0AAEC8AADgvAAAHL4AAHA9AACoPQAAJD4AACQ-AADYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=OJ0u6q0XpYg","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":674,"cheight":480,"cratio":1.40416,"dups":["4084023650851229958"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1165366101"},"5822434966116582186":{"videoId":"5822434966116582186","docid":"34-6-6-Z6EB6482F9DF32635","description":"This video is a demonstration of how to graph a line of best fit from raw data (table form) using Desmos.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3275282/fa60b2f6c03c6c624fbfaf9892d7267a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qBCaMgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DyT5uJ2wmG0Y","linkTemplate":"/video/preview/5822434966116582186?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Desmos: How to Graph a Line of Best Fit (Quadratic)","related_orig_text":"FerranteMath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"FerranteMath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=yT5uJ2wmG0Y\",\"src\":\"serp\",\"rvb\":\"EqsDChQxNjI5MjQ2MTc5NDQ0Nzg2OTIzNQoTNTc4NDA0MTg5MTA1NTY4MDIwMQoUMTY1ODcyMTI2MjA1ODU5MTU4ODAKEzEzNDQ5Mjg5NjAzMTA1OTUxODAKFDE1MzA4MTc0ODU0MjM1ODgxODgzChQxNTQ3Mzk4MzE5MjEwNTg4ODgyMAoUMTYyODgxNjY1MjQ2NTYxNjA1OTcKEzkwOTE5NDA0ODk1ODcwOTAwMTEKEzQ0MzgyODMzMDMxNjA1ODk2MTgKFDE0Mzk2NzAxMTkxMjc4NzkxNzY5ChM2MDM4MjE5NTk2MTQ5MjY5ODI5ChI1MDY5NTgwMzE1MjgyNjc4MzYKEzQxNTE4Njg4OTk5OTY3NTU1MDMKFDE0MjE3OTcyNzQ4MzczMjQxNzQ4ChQxNjI4MDcxNTIwNDc0MzgzMDcxMAoTMTczMDQzOTk5NDQyMTM0NTE0NQoTNDA4NDAyMzY1MDg1MTIyOTk1OAoTNTgyMjQzNDk2NjExNjU4MjE4NgoTODIwNzg0MTQ5ODAzMzYyNTAwNwoTMTAwMDA5NDA1MTU2NDQzMjM0NhoVChM1ODIyNDM0OTY2MTE2NTgyMTg2WhM1ODIyNDM0OTY2MTE2NTgyMTg2arYPEgEwGAAiRRoxAAoqaGh2anNpbmlkYmFyaXlyZGhoVUNQNk5HSzczQ1JVd1JBX1NzeWJyay13EgIAEioQwg8PGg8_E6ACggQkAYAEKyqLARABGniB9wwH_P4DAAELAwb4B_0CDgzyBPUAAAD49AHyAwP_AAHxBP_6AAAA9Q4BCgIAAAD2-P__8_8BABYCDwUEAAAAEfEB_AMAAAAEDvsECgABAf33Afn2AgABAAUI_v8AAADrCP4AAQAAAP_1AQAAAAAADAT9-wAAAAAgAC3EQtg7OBNACUhOUAIqhAIQABrwAVQGPfrgE-UC48MM_846sAK0QBAAUNXYAIHWzAHm_dABvdwZAB4x8QAOGLkBpjckAbMEpP_y4zABHr0b_8zrDAEH6AoBQRIIAx0wvwEs9MQD5kQU_QkoHP8V8eUAHi34AywjJwAmBQQB2-cGBkHIMQIhGekAHbL0ACbj6gHgGhQDx-bb_xDnHAoDAdr42sYDBMECAvwtXdQBOOAO_kjVBQA86QgA7QTyDA8UCP_2HPT-3dTUAM_V9wDrQ_r-QVjsANsN_fHipRQF_0kA-u7_Bf4p9AEPLAkABVcS8QER8g0Az9z95fvR__7k3PIRJfMC8CAALUc26jo4E0AJSGFQAipzEAAaYDL4AFr4FLr3JPrzG9kfDca56rb02Uz__dr_KxIF3gDk18ME3wAbD9vMmwAAAOgUAS_vAON9wLMqNSDozMu5-Sr7fxj-Nbe6P0XB8hkiCgwTShNDKADhytEZL0MwKhYaSSAALVL7EDs4E0AJSG9QAiqvBhAMGqAGAAAAAAAAHEIAAJBBAABAwAAAyMEAAGBCAACSQgAAsMEAAIzCAACIwgAABMIAAHDBAADowQAAQEAAAJBCAAAowgAAwMEAADTCAACgQQAA2MEAAIhCAACGwgAAUMEAALBBAAC4QQAABMIAAEBAAAAQwQAAlkIAAOBBAABIwgAAMEIAAHDCAABgQQAAUMIAAIA_AADowQAAEEEAAFBBAAAQwQAAgL8AAARCAAAwQQAAAMAAAIDCAABAwQAA6EEAANhBAADgwAAAgEEAAIjCAABIwgAAOMIAAEjCAACoQQAAGEIAACDCAABkwgAAQEAAANBBAABAQAAANMIAADTCAADCwgAA2EEAAKLCAAAwQQAAAEEAAKLCAACgwAAAskIAAOBAAABsQgAA2EEAAMjBAABAQQAAuMEAAKBAAAB0QgAAHEIAAOhBAABsQgAAEMIAAKBAAADAQQAAUEIAAEhCAADQQQAAMMEAAOhBAAD4QQAAYEEAAK7CAAC0wgAABEIAAGTCAAAQQQAAUMEAAIBBAAAwwQAAgMIAACDCAAAAQQAAqMEAAATCAAAEwgAAAAAAAFRCAAAAwQAAFEIAADBCAAAkQgAAIMEAAFBCAAAsQgAAFMIAAIBBAADowQAAyEEAAABAAACIQQAAEMEAAABCAACYwgAAgMEAACBBAABkQgAAoEAAAATCAAAQwgAABMIAAMDBAADowQAAiEEAAIDAAAAYQgAAqEEAAABBAAAgwQAA6MEAAIhBAAAgQgAAyEEAADRCAABMQgAAwEEAADjCAABUQgAA4MAAAJhBAAAQwQAAEEIAAExCAAAgwgAAmEEAAODBAABwwgAAXMIAAPBBAACAQQAAWEIAAFRCAAD4wQAAEEEAAOBBAABEwgAAZEIAAGxCAAAwwQAAYMIAAFTCAACEQgAA4MAAAHzCAACgwAAAsEEAAGjCAAB4wgAA8MEAAHBCAAA0wgAAgEEAAFDCAAAYwgAACEIAAJjBAAAowgAAIEEAAMhBAACwQQAAAEAAAEBAAAAEwgAAmMEAAAzCAAB4QgAA4MEAALjBAAAMwgAAmEEgADgTQAlIdVABKo8CEAAagAIAACy-AACgvAAAND4AADw-AABwPQAAQLwAADy-AAAFvwAA-L0AABQ-AABUPgAAcL0AAAw-AAAsPgAAsr4AADy-AAB0PgAAqD0AAJg9AADyPgAAfz8AAMg9AACYvQAAJD4AACw-AADgvAAABD4AANi9AAAMPgAABD4AADA9AABAvAAA2L0AADw-AACYvQAAiL0AAMg9AACuvgAALL4AAKK-AABUvgAAFL4AAOA8AABQvQAAfL4AAJq-AACoPQAAJL4AABy-AACIvQAABD4AAEC8AACmPgAALD4AAJi9AAC4vQAAKT8AAOA8AACYPQAAcL0AADy-AAA0PgAAMD0AADy-IAA4E0AJSHxQASqPAhABGoACAADYvQAAyD0AAGS-AABnvwAApr4AAEA8AACWPgAAcL0AABA9AABQPQAAoDwAAMK-AADovQAAiL0AALg9AACIvQAAmD0AAAE_AACivgAAlj4AADC9AAAEvgAAQDwAALi9AACgPAAAHD4AABy-AABwPQAAiD0AAIA7AABQPQAAiD0AAES-AAA8vgAAgLsAABC9AAAcPgAAQLwAABy-AABsvgAAqD0AAPg9AADYvQAA-D0AAI6-AADoPQAAf78AANg9AAD4vQAALD4AAEC8AACIPQAAqL0AALo-AAC4vQAAmD0AAIC7AACyPgAA2D0AABS-AAA8PgAAED0AAJY-AAAQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=yT5uJ2wmG0Y","parent-reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":596,"cratio":2.14765,"dups":["5822434966116582186"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1582116664"}},"dups":{"16292461794447869235":{"videoId":"16292461794447869235","title":"\u0007[Ferrantemath\u0007]: Solving a Radical Expression","cleanTitle":"Ferrantemath: Solving a Radical Expression","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=g4VFZzWFu0w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/g4VFZzWFu0w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDakNZMEowWVhuMzBuMGVDeF8yRW5ydw==","name":"KamTheman","isVerified":false,"subscribersCount":0,"url":"/video/search?text=KamTheman","origUrl":"http://www.youtube.com/@swaggerlaxer88","a11yText":"KamTheman. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":60,"text":"1:00","a11yText":"Süre 1 dakika","shortText":"1 dk."},"date":"20 mayıs 2012","modifyTime":1337472000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/g4VFZzWFu0w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=g4VFZzWFu0w","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":60},"parentClipId":"16292461794447869235","href":"/preview/16292461794447869235?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/16292461794447869235?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5784041891055680201":{"videoId":"5784041891055680201","title":"Complex Radical Expressions(\u0007[FerranteMath\u0007])","cleanTitle":"Complex Radical Expressions(FerranteMath)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JifpBXCJ8BI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JifpBXCJ8BI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYTFSXzBZekhjUTdUaDh2b1U2N2U4dw==","name":"UbaT11JHS","isVerified":false,"subscribersCount":0,"url":"/video/search?text=UbaT11JHS","origUrl":"https://www.youtube.com/channel/UCa1R_0YzHcQ7Th8voU67e8w","a11yText":"UbaT11JHS. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":109,"text":"1:49","a11yText":"Süre 1 dakika 49 saniye","shortText":"1 dk."},"date":"14 mayıs 2012","modifyTime":1336953600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JifpBXCJ8BI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JifpBXCJ8BI","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":109},"parentClipId":"5784041891055680201","href":"/preview/5784041891055680201?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/5784041891055680201?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16587212620585915880":{"videoId":"16587212620585915880","title":"Trigonometry: Introduction (Part 1)","cleanTitle":"Trigonometry: Introduction (Part 1)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=x0N06LYSKQA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/x0N06LYSKQA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":468,"text":"7:48","a11yText":"Süre 7 dakika 48 saniye","shortText":"7 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"14 kas 2017","modifyTime":1510617600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/x0N06LYSKQA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=x0N06LYSKQA","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":468},"parentClipId":"16587212620585915880","href":"/preview/16587212620585915880?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/16587212620585915880?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1344928960310595180":{"videoId":"1344928960310595180","title":"Functions: What is the Difference Between a Linear Function and a Quaratic Function?","cleanTitle":"Functions: What is the Difference Between a Linear Function and a Quaratic Function?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=L4FnUul9Nm4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/L4FnUul9Nm4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":706,"text":"11:46","a11yText":"Süre 11 dakika 46 saniye","shortText":"11 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"10 şub 2016","modifyTime":1455062400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/L4FnUul9Nm4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=L4FnUul9Nm4","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":706},"parentClipId":"1344928960310595180","href":"/preview/1344928960310595180?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/1344928960310595180?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15308174854235881883":{"videoId":"15308174854235881883","title":"Linear Inequalities: Determining the Inequality from the Graph","cleanTitle":"Linear Inequalities: Determining the Inequality from the Graph","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-D7Fk8nrB0Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-D7Fk8nrB0Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":397,"text":"6:37","a11yText":"Süre 6 dakika 37 saniye","shortText":"6 dk."},"views":{"text":"19,9bin","a11yText":"19,9 bin izleme"},"date":"1 kas 2016","modifyTime":1477958400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-D7Fk8nrB0Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-D7Fk8nrB0Q","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":397},"parentClipId":"15308174854235881883","href":"/preview/15308174854235881883?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/15308174854235881883?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15473983192105888820":{"videoId":"15473983192105888820","title":"Quadratic Functions: Discriminant (How Many Roots?)","cleanTitle":"Quadratic Functions: Discriminant (How Many Roots?)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cEr6xxXj9rY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cEr6xxXj9rY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":273,"text":"4:33","a11yText":"Süre 4 dakika 33 saniye","shortText":"4 dk."},"views":{"text":"38,4bin","a11yText":"38,4 bin izleme"},"date":"31 mar 2017","modifyTime":1490918400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cEr6xxXj9rY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cEr6xxXj9rY","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":273},"parentClipId":"15473983192105888820","href":"/preview/15473983192105888820?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/15473983192105888820?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16288166524656160597":{"videoId":"16288166524656160597","title":"Proofs: Algebra Properties used in Geometry","cleanTitle":"Proofs: Algebra Properties used in Geometry","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Uesco94VChA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Uesco94VChA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":241,"text":"4:01","a11yText":"Süre 4 dakika 1 saniye","shortText":"4 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"3 eki 2013","modifyTime":1380758400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Uesco94VChA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Uesco94VChA","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":241},"parentClipId":"16288166524656160597","href":"/preview/16288166524656160597?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/16288166524656160597?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9091940489587090011":{"videoId":"9091940489587090011","title":"Quadratic Functions: Introduction (What do the Coefficients tell us?)","cleanTitle":"Quadratic Functions: Introduction (What do the Coefficients tell us?)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eL6pUU09UbU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eL6pUU09UbU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":514,"text":"8:34","a11yText":"Süre 8 dakika 34 saniye","shortText":"8 dk."},"views":{"text":"4,4bin","a11yText":"4,4 bin izleme"},"date":"20 mar 2017","modifyTime":1489968000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eL6pUU09UbU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eL6pUU09UbU","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":514},"parentClipId":"9091940489587090011","href":"/preview/9091940489587090011?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/9091940489587090011?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4438283303160589618":{"videoId":"4438283303160589618","title":"Functions: Domain and Range","cleanTitle":"Functions: Domain and Range","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=q44JvsuXQZ0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/q44JvsuXQZ0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":377,"text":"6:17","a11yText":"Süre 6 dakika 17 saniye","shortText":"6 dk."},"date":"24 mar 2013","modifyTime":1364083200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/q44JvsuXQZ0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=q44JvsuXQZ0","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":377},"parentClipId":"4438283303160589618","href":"/preview/4438283303160589618?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/4438283303160589618?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14396701191278791769":{"videoId":"14396701191278791769","title":"Desmos: How to Connect Coordinates to Create Line Segments","cleanTitle":"Desmos: How to Connect Coordinates to Create Line Segments","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1V_WRFePmPY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1V_WRFePmPY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":118,"text":"1:58","a11yText":"Süre 1 dakika 58 saniye","shortText":"1 dk."},"views":{"text":"328,7bin","a11yText":"328,7 bin izleme"},"date":"25 eki 2017","modifyTime":1508889600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1V_WRFePmPY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1V_WRFePmPY","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":118},"parentClipId":"14396701191278791769","href":"/preview/14396701191278791769?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/14396701191278791769?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6038219596149269829":{"videoId":"6038219596149269829","title":"Linear Equations: Introduction","cleanTitle":"Linear Equations: Introduction","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=yTNUnVAjGKY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/yTNUnVAjGKY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":443,"text":"7:23","a11yText":"Süre 7 dakika 23 saniye","shortText":"7 dk."},"date":"6 eyl 2016","modifyTime":1473120000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/yTNUnVAjGKY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=yTNUnVAjGKY","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":443},"parentClipId":"6038219596149269829","href":"/preview/6038219596149269829?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/6038219596149269829?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"506958031528267836":{"videoId":"506958031528267836","title":"Linear Equations: Perpendicular and Parallel Lines.wmv","cleanTitle":"Linear Equations: Perpendicular and Parallel Lines.wmv","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-ixG5qSV0G0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-ixG5qSV0G0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":373,"text":"6:13","a11yText":"Süre 6 dakika 13 saniye","shortText":"6 dk."},"date":"27 eki 2012","modifyTime":1351296000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-ixG5qSV0G0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-ixG5qSV0G0","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":373},"parentClipId":"506958031528267836","href":"/preview/506958031528267836?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/506958031528267836?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4151868899996755503":{"videoId":"4151868899996755503","title":"Transformations: Rotation","cleanTitle":"Transformations: Rotation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_O4ZhAbEFpk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_O4ZhAbEFpk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":421,"text":"7:01","a11yText":"Süre 7 dakika 1 saniye","shortText":"7 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"2 şub 2015","modifyTime":1422835200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_O4ZhAbEFpk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_O4ZhAbEFpk","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":421},"parentClipId":"4151868899996755503","href":"/preview/4151868899996755503?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/4151868899996755503?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14217972748373241748":{"videoId":"14217972748373241748","title":"Quadratic Functions: Sketching (1) Real Roots","cleanTitle":"Quadratic Functions: Sketching (1) Real Roots","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nECZ9kLwlC4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nECZ9kLwlC4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":379,"text":"6:19","a11yText":"Süre 6 dakika 19 saniye","shortText":"6 dk."},"views":{"text":"6bin","a11yText":"6 bin izleme"},"date":"18 nis 2010","modifyTime":1271548800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nECZ9kLwlC4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nECZ9kLwlC4","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":379},"parentClipId":"14217972748373241748","href":"/preview/14217972748373241748?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/14217972748373241748?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16280715204743830710":{"videoId":"16280715204743830710","title":"Linear Inequalities: Regular, Graphic, Interval Notations (with problems)","cleanTitle":"Linear Inequalities: Regular, Graphic, Interval Notations (with problems)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dQ72kLi8QFs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dQ72kLi8QFs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":720,"text":"12:00","a11yText":"Süre 12 dakika","shortText":"12 dk."},"date":"4 kas 2015","modifyTime":1446595200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dQ72kLi8QFs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dQ72kLi8QFs","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":720},"parentClipId":"16280715204743830710","href":"/preview/16280715204743830710?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/16280715204743830710?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1730439994421345145":{"videoId":"1730439994421345145","title":"Transformation: Vectors (Part 1) with Embedded Problem","cleanTitle":"Transformation: Vectors (Part 1) with Embedded Problem","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eGcReUA9O7A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eGcReUA9O7A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":446,"text":"7:26","a11yText":"Süre 7 dakika 26 saniye","shortText":"7 dk."},"date":"9 şub 2015","modifyTime":1423440000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eGcReUA9O7A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eGcReUA9O7A","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":446},"parentClipId":"1730439994421345145","href":"/preview/1730439994421345145?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/1730439994421345145?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4084023650851229958":{"videoId":"4084023650851229958","title":"Logarithms: Tutorial (Part 1).avi","cleanTitle":"Logarithms: Tutorial (Part 1).avi","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OJ0u6q0XpYg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OJ0u6q0XpYg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":318,"text":"5:18","a11yText":"Süre 5 dakika 18 saniye","shortText":"5 dk."},"views":{"text":"28,4bin","a11yText":"28,4 bin izleme"},"date":"22 nis 2010","modifyTime":1271894400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OJ0u6q0XpYg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OJ0u6q0XpYg","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":318},"parentClipId":"4084023650851229958","href":"/preview/4084023650851229958?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/4084023650851229958?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5822434966116582186":{"videoId":"5822434966116582186","title":"Desmos: How to Graph a Line of Best Fit (Quadratic)","cleanTitle":"Desmos: How to Graph a Line of Best Fit (Quadratic)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=yT5uJ2wmG0Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/yT5uJ2wmG0Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUDZOR0s3M0NSVXdSQV9Tc3licmstdw==","name":"FerranteMath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FerranteMath","origUrl":"http://www.youtube.com/@FerranteMath","a11yText":"FerranteMath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":288,"text":"4:48","a11yText":"Süre 4 dakika 48 saniye","shortText":"4 dk."},"views":{"text":"23,8bin","a11yText":"23,8 bin izleme"},"date":"5 tem 2017","modifyTime":1499212800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/yT5uJ2wmG0Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=yT5uJ2wmG0Y","reqid":"1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL","duration":288},"parentClipId":"5822434966116582186","href":"/preview/5822434966116582186?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","rawHref":"/video/preview/5822434966116582186?parent-reqid=1767136758270324-14740684299815784298-balancer-l7leveler-kubr-yp-sas-69-BAL&text=FerranteMath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"4740684299815784298769","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"FerranteMath","queryUriEscaped":"FerranteMath","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}