{"pages":{"search":{"query":"GVSUmath","originalQuery":"GVSUmath","serpid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","parentReqid":"","serpItems":[{"id":"17231090716992113633-0-0","type":"videoSnippet","props":{"videoId":"17231090716992113633"},"curPage":0},{"id":"17667584103366527097-0-1","type":"videoSnippet","props":{"videoId":"17667584103366527097"},"curPage":0},{"id":"952209172118958348-0-2","type":"videoSnippet","props":{"videoId":"952209172118958348"},"curPage":0},{"id":"8054478065010704972-0-3","type":"videoSnippet","props":{"videoId":"8054478065010704972"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEdWU1VtYXRoCg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","ui":"desktop","yuid":"7524589271769550972"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"7532529569671920201-0-5","type":"videoSnippet","props":{"videoId":"7532529569671920201"},"curPage":0},{"id":"13999462337675216260-0-6","type":"videoSnippet","props":{"videoId":"13999462337675216260"},"curPage":0},{"id":"2625225150792192952-0-7","type":"videoSnippet","props":{"videoId":"2625225150792192952"},"curPage":0},{"id":"280291901679885100-0-8","type":"videoSnippet","props":{"videoId":"280291901679885100"},"curPage":0},{"id":"282140083623236304-0-9","type":"videoSnippet","props":{"videoId":"282140083623236304"},"curPage":0},{"id":"410827777004243502-0-10","type":"videoSnippet","props":{"videoId":"410827777004243502"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEdWU1VtYXRoCg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","ui":"desktop","yuid":"7524589271769550972"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"4726237740371245236-0-12","type":"videoSnippet","props":{"videoId":"4726237740371245236"},"curPage":0},{"id":"1509785881798106465-0-13","type":"videoSnippet","props":{"videoId":"1509785881798106465"},"curPage":0},{"id":"15410752899654033537-0-14","type":"videoSnippet","props":{"videoId":"15410752899654033537"},"curPage":0},{"id":"1976327025978003736-0-15","type":"videoSnippet","props":{"videoId":"1976327025978003736"},"curPage":0},{"id":"3145172457981620394-0-16","type":"videoSnippet","props":{"videoId":"3145172457981620394"},"curPage":0},{"id":"13115137577088784577-0-17","type":"videoSnippet","props":{"videoId":"13115137577088784577"},"curPage":0},{"id":"3340950234573723267-0-18","type":"videoSnippet","props":{"videoId":"3340950234573723267"},"curPage":0},{"id":"10224534839535515978-0-19","type":"videoSnippet","props":{"videoId":"10224534839535515978"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEdWU1VtYXRoCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","ui":"desktop","yuid":"7524589271769550972"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DGVSUmath"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"2986222024920000097233","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1466868,0,22;1457622,0,44;1186711,0,88;1424968,0,47;1460716,0,71;1460214,0,77;1472031,0,58;1471624,0,18;1431640,0,45;1339938,0,30;1464524,0,55;1463532,0,84;1282204,0,9;1466296,0,5;1467161,0,5;1475652,0,91;1464403,0,31;1471919,0,16;1279757,0,52;1467620,0,3;1404022,0,36;1469413,0,17;1357005,0,94;1470415,0,67;124070,0,15;151171,0,46;1281084,0,16;287509,0,13;1447467,0,68;1037339,0,46;1473596,0,29;1467129,0,43;912286,0,69"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DGVSUmath","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=GVSUmath","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=GVSUmath","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"GVSUmath: Yandex'te 1 bin video bulundu","description":"Результаты поиска по запросу \"GVSUmath\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"GVSUmath — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yc3c0c08e9fefa2d07911665882ecd892","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,1457622,1186711,1424968,1460716,1460214,1472031,1471624,1431640,1339938,1464524,1463532,1282204,1466296,1467161,1475652,1464403,1471919,1279757,1467620,1404022,1469413,1357005,1470415,124070,151171,1281084,287509,1447467,1037339,1473596,1467129,912286","queryText":"GVSUmath","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7524589271769550972","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769551033","tz":"America/Louisville","to_iso":"2026-01-27T16:57:13-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,1457622,1186711,1424968,1460716,1460214,1472031,1471624,1431640,1339938,1464524,1463532,1282204,1466296,1467161,1475652,1464403,1471919,1279757,1467620,1404022,1469413,1357005,1470415,124070,151171,1281084,287509,1447467,1037339,1473596,1467129,912286","queryText":"GVSUmath","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7524589271769550972","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"2986222024920000097233","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":156,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7524589271769550972","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"17231090716992113633":{"videoId":"17231090716992113633","docid":"34-3-11-Z953FEB971D39F6E6","description":"This video introduces the GVSU Mathematics Department and offers useful perspectives to students considering a mathematics major.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1780845/daa9645037b7f0dc265f5bb8e3ba7b9f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/q-PhGgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D02LQqoxVtL8","linkTemplate":"/video/preview/17231090716992113633?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The GVSU Mathematics Department and Math Major","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=02LQqoxVtL8\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFgoUMTcyMzEwOTA3MTY5OTIxMTM2MzNaFDE3MjMxMDkwNzE2OTkyMTEzNjMzaocXEgEwGAAiRBowAAopaGh2cGl5Y29oaWdnYWxqaGhVQ0FHMnUyS0Vra0d5NHlXR2VLYV91N1ESAgARKhDCDw8aDz8TvQKCBCQBgAQrKosBEAEaeIHv-gEA_AUA-wMDDgoI-wL9CPj9-P79APP9AfX2AQAA-O3_BgcAAAALCvgK_AAAAAUJ9Q39_QEA__z1BAMAAAAWBPz9AwAAABAQ-vn-AQAA9fcHAgMAAAAMDQ73AAAAAAb6-voBAAAADA__AgEAAAAF_QL5AAAAACAALXxl3js4E0AJSE5QAiqEAhAAGvABfxYBA93tGv_j9QQAHvj8AeT2CgA3_wwAzfzvAKzu4P_YFfsAAeYqACTx-gDEAxwB2eQMAB4UAwADAPcAHPn3APwzGQAxAPkBHfDqAQ3eCADyBAcABw7vAADlBwAfGAb_EBcO_isM_wAh_gkAAwH-Aw8WBQEM9e4BC_ECANAF-QH54PQBABb3_fDw_wEJJPoB7uAIAPcF___fBOwCBvT6_vP0BwD1Fe_7C-r0-usICPsL9AT-GPoHAs31-QMICwQC5OkH-e4Z7wT3Avr_FPj5Afvs-P78CQb_6vcH___pAgQEDgUO-_8AAgAPCBHx2PkGIAAtLXhJOzgTQAlIYVACKs8HEAAawAfYRfm-KKw_u4Kc5jxayK08M9xAPZ5ilbxfJX-9FK8yPBmikrvtGVg9_yMzvfZ6Fz0fadC9YXegvRi7szzPSno-9tz4PPlBR70oYea9vk5JO1dPdzwx6iq-unDWOkESEb12b3U-rfBEujnBTLtHzp092L-GPHQjLLz3VrQ9ZKAhPTKZIL0oEzI9sF8rvbGnPb0oCw8-YgQjPXg8kjwSFgU-3wqXvP-jQD35D448Wc9_vDZ13jxrbpo7Sfhjuu-RCTx9WF8-1-C7O-q5-7xonAE9jgIEvc5npTzshNm7kjRpvV3Ay7xdero9bfujvWkyyDxId7Y9AnhVPL8K1TydnQy-vhFdvJV2NLz19fw9nKIIPesrWbzvkli9k8kNOQgqfLs5LGi81E8OPYBRG7xTvlY8sFMxPd6gNjrC1Bu9s2EtPW8ePbz9W9M8oB_hPJMW07zAg8W9UuIpvWo1A7x_kg4858q7vJTIdDxxr8e9SLKNvSubXrxFILi9p5wlPWrCtjwMki4-sCGTvaydNLqvpKY9K9Fjvafc8bp1kq07PPYzPCzzFrzJpKs998NUveLTUrzpCwE-qCCaPCilOTmldpA9_KBTPYwaArwDwS097LxyvZe4QbgZ5uQ9Qn0Gva2HADp8Hq08MWSAPTED-DtzB1s9A1PHPXIMwTnYc2O9j0CyPAzH1rtpYvC8RTotvfgWVjvzENc8YUPmPHufqjvMrC89xb2zvbqhxjrJ2lC9IN90vUjZIbk860c77t9WOgxiWruPN9k9nWltuuEGCbnTVyY9oCfvvC9JGbi_IQe65D7FO07WDDoxC409F8zpPCRHLLlB1L292hwHvYWpgblU0U49jlD9vDeX27ljXpe9b0o5PeOHkTm0-xo9ryIDvRdmMLkpuiS9DeU_PVmx2bjxE4I9P7qiPcduWTfkggO-RKGKO1g8s7kIqcC8BKnUvOvZRzl4H0w9pa_xPJfPAjk4aVo9sRx8vMcZmbhGLtO89gESPWgL8Thracm8One7PIrCw7cuTkG9xW-ru3ozVbg0RhA9DhrVvAbq2jdMxlG9LFLXvPcPIrdUU9K96HTPvC_4xTeJtuO8rI-HvBTa_TidmWU9w9TWPZChtjhCoVQ8qeUdvZ6NqjgzRxy8ph8-PfF0Brjmgf48zJGqPVV8eDdB5z-9M3uPOzi4LjcuQrc9fvoVO13XeTdZPEs9ELkvPQEVqbjrnTu9zMu2PXbGwLfyNiA9kRmePeMcYrhNcAC9uxZjvCfozLeWkR-99z1KvWJTabUgADgTQAlIbVABKnMQABpgDPoAKfMf9MIBBvjQ5__p4975yg7m9P_9IAAmBtL4CxLv2RMfAAzFGu65AAAAEfEBBTEA2V_PxOlUFRoL4MkPG-p_9ffl5_IM5sQO-O8BHiIS8etNAAT41CMAFsAjCzY3IAAtu1A_OzgTQAlIb1ACKq8GEAwaoAYAAIhBAACuwgAAfEIAALDBAABMwgAAAEIAAExCAACiwgAAYMIAAAhCAABAQAAAIEIAACzCAACoQQAAMEIAAFhCAAAUwgAAkMEAAAAAAACcwgAA4MAAANDBAADYwQAAoEAAAFDBAAAIQgAAqMEAAAAAAACUQgAAaEIAAEBBAACIQQAAuEEAAGRCAABQwgAAcEEAAERCAACQQQAA0EEAAMDAAAAQwgAAoMAAAAAAAABwQQAAUMEAAHBBAACQQQAAGMIAABBBAABAwAAAPMIAABBBAACgQQAAgEEAAJTCAAAowgAAoMEAACBBAAC4QQAANEIAABzCAABQwQAAEMIAAJDBAADAwAAA-EEAAIBBAACMwgAAcMEAAHBBAAAgQgAAwEAAAKjCAABkQgAA0EEAAI7CAAAYwgAAYEEAAEBBAAAcwgAAZMIAAHBBAABwwgAA4MAAAHBCAACiQgAA4MEAAIBBAABgQgAAgEAAAEDBAACEQgAAIEEAADBBAABQQQAASMIAAFRCAAAQQgAAVEIAAOhBAADIwQAAaEIAABRCAABEwgAAPMIAAIA_AACwQQAA-MEAAK7CAAB8QgAAEEIAACBCAACowQAAYEEAAJxCAACwQgAAMMEAAIC_AAAwQQAArsIAADzCAADIwQAAQEAAAMjCAABAQAAA-EEAAAjCAABQwQAA-MEAAEDCAAA0wgAAjsIAAADAAACKQgAA4EEAAKDBAABAQgAA4MAAAADBAAAQwQAA8EEAABxCAAC4wQAAAMEAALBBAADAQAAA6EEAAFhCAADgwAAAEMEAAMBBAABAQgAA4EEAAADCAACAwQAABMIAAGBBAABwwQAAgEEAAIjBAABwwgAAQMEAAMDBAACQQQAAAEIAACzCAAAAwAAAMMEAABBCAACWwgAAZMIAAEBBAABUQgAAAEEAAOhBAABMQgAAcEEAAFTCAAAoQgAAyEIAAIBAAAAwwgAAEMEAAGDBAADYQQAAFEIAABzCAACqQgAAMEEAAODBAAAEwgAAUEIAALjBAADAwAAAwEAAAOjBAAB8wgAAgD8AAILCAAA4wiAAOBNACUh1UAEqjwIQABqAAgAAfL4AAIi9AACIPQAAqD0AAIA7AAAHPwAA2L0AAEu_AADGvgAAuD0AAJi9AACOvgAA6L0AAFw-AAAcvgAADL4AAI4-AABQPQAABD4AAMI-AAB_PwAANL4AABQ-AAAwvQAAPL4AADS-AABQPQAADL4AADA9AADIPQAAjj4AAPi9AADYvQAAML0AAOA8AABAPAAAED0AAFy-AADSvgAAsr4AADy-AAC4vQAAcD0AAPi9AABQvQAAXL4AAIY-AADYvQAAFL4AALq-AACovQAAmr4AAOg9AACOPgAAcL0AAEA8AABJPwAAhj4AAEC8AAB0PgAAiD0AABQ-AAAMPgAAmL0gADgTQAlIfFABKo8CEAEagAIAAIa-AACAOwAA4DwAAAm_AAAwvQAAZD4AAKo-AACYPQAABD4AAEC8AACovQAAHL4AABC9AADgvAAAUL0AALg9AABsPgAAGT8AADy-AADaPgAABD4AAOA8AADIvQAABL4AAIC7AACgvAAAUL0AAOg9AACAOwAAmD0AAHA9AAAcPgAAFL4AAEC8AAB0PgAAoLwAAFQ-AAAUPgAAXL4AAIA7AACyPgAALL4AAOg9AAC4vQAA6L0AACQ-AAB_vwAA6D0AABy-AAAwvQAADD4AABw-AABQvQAAFD4AAEw-AAA0PgAAML0AAKi9AAAcPgAAuD0AAFC9AAC-vgAAUL0AAHQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=02LQqoxVtL8","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17231090716992113633"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2693900268"},"17667584103366527097":{"videoId":"17667584103366527097","docid":"34-11-3-Z7DDA3EA93A994D44","description":"This video introduces the Second Principle of Mathematical Induction, sometimes called \"strong induction\", and uses it to prove every natural number greater than 1 can be factored into a product...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/997943/29d089a189d0674ae8972e6e29a4b9a9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jzyZUAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dn-bJB_7QbQU","linkTemplate":"/video/preview/17667584103366527097?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Second Principle of Mathematical Induction (Screencast 4.2.3)","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=n-bJB_7QbQU\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFgoUMTc2Njc1ODQxMDMzNjY1MjcwOTdaFDE3NjY3NTg0MTAzMzY2NTI3MDk3apIXEgEwGAAiRBowAAopaGh2cGl5Y29oaWdnYWxqaGhVQ0FHMnUyS0Vra0d5NHlXR2VLYV91N1ESAgARKhDCDw8aDz8TkASCBCQBgAQrKosBEAEaeIH4_ggE_AQA-_4C_wME_gEMBf8C9wAAAPn_BQD6BP4A8gIO-gcAAAAPAQD7BAAAAAMB-QXz_gEABALuBgIAAAASAAUE_AAAAB0DAwf-AQAA__wJ-wMAAAANCAEFAAAAAPgKB_v7_wAA_ggDCwAAAAAAAAIGAAAAACAALZO43js4E0AJSE5QAiqEAhAAGvABZfsDAtIL_P8T8PIA0xHn_4EFC__9Jt4AtOYNAr4O7f8DGOgA2AHm__sAD__e__4AL_jY_wzjBAAm8wD_MegTAAEUDgEgzPgBLgD9AOnq8f8BGSD_DfoX_wDt9ADq6v8A-wQH_cTw6P_1_PH-C_8uAQ0WEwAe6x7_5PYEAOgYAAL5-tX-EgDyAvcFAPntFwcABgTy_g0S_P7gAf4E9wr1_PTl_f_9Avb9HAkFCgr7Bv_38fYBEf8A_AcUDAPzHgUHAQEF-fThDPXr-gUAIt0NAfvqEQH96fYH-APy__jiAP3j_xEE5xP19-j1Dgf5_wP6IAAtbidIOzgTQAlIYVACKs8HEAAawAeSB_K-pkALPeCDl7wXqaS69YOKPWrTPb08izm9chsIPceBHjqf1qM9IfD2PEX2nLycTZe-6j1cuWSPFrzFVYU-VDBvvZt_KrxxPVq-5xa_PYVMqLz1oWu-hNMHPXQ1w7smZ7I9szEGO9HTmzyrTaI9VNwdvQl2Er2RVkY8tI6qvJSAHb1D5_W9f7YfvVoiAb3my4s9fJYMvW48zjxpGRk-vV87vWUX7ztu6z09gMCcu0Sqg7xDEXy9qEcEvZlq_7sd6ME9hvx-uepJjzxbM2g8fO4kvahkqTtGJqC8208GvCmoUTtBCwk9vuxIPRFKqbx_wrQ8Wnc9vUcl7bs5Qra9pGaUPU-wvzwnFxM-T9VzPRWpsDwmDHS9XUa7PUwsujx8e5e87moovXsuU7zfiK49BIkSPE4YILw8lDI8St-aPJ5rrTua0oU9Ny8TPUELCTzeC8I97VagPFPuGToqcX09p749vNV-Rrzp8NC9bHowPenzkbyc-uA9QP0CvQx12DvMyaU9136XPIX-sjvZiJa7S55hvZIFDrw_wlU8qlN0vRoFd7z8ndi7Q9CHPB7QhDuGWp49J1BEul03gLzdtNm9WatRvBOVMrwDwS097LxyvZe4QbhDNJ-8CgMAPQkVILs6eWw8fPN2PC7WJrwOT688gzXpPAP4-jufprs8UfyzvZcGmzueCe09XRvFPLt7bbpjMQA9V12HPHRiCzv3P6s9QyHduyr5u7vMDJu888CsvMkpzzs_-iu9QmI2Pd3CuDmTYpE9poE_vYOTrLk3JQ8967iAPR3VuzlcbH88U-NKPONzvzn13Ug921ZoOXiYBLnYAow8g2jNvS4kwri3ss25a84FPM1ssLluxdk8CuTIvN_lAjol1ji9GMxEvR8fzDm6ZWq71928vO4Byriw87A9E999OxMsn7efTuA7RvWxvBSnLLcu4j-7koERvMH42TgdiLS7DA5lPRJnBzh7Eti8zwZqvfGnoTg55Zu8fW_dPBi3_LejhsA8lFBVPEJ4Urjr0D89s90zPcuPk7jD0-s8Zyb4vSIkJLinbY08aNxFPeD2xri45Ci-0X-FvJ34GrmaEv-8vbImvRW6x7d84YQ8N_ywumzM1DZBgwm8eUA5vc8ACTitp_Y9s-qYvHs7OrnsI2G9vyeYu13D5bemhpE8I2NavfR-ijeNbnO85j1vu3Q1OLdhBnk98zoSvkvnqbghMrY8OznjPQQbBjnwsjW9XMzPPQxGCrla7ca9DxQzPWjb-ze-Qzu9I8ahvN5nJTggADgTQAlIbVABKnMQABpgLhIAIxMl1erueunS-uL3-tn47jzk8P_p0P_o8dra7fvMv_st___RJeapAAAA_-fQKREA03b16d03CAEDxOTgBh1_DTVFl-YDDeLKH_fwJTjv5cgtABzSniZH3cIpMxcgIAAtLIMbOzgTQAlIb1ACKq8GEAwaoAYAAFhCAAB4QgAASEIAAEDBAABUQgAA6EEAAJBCAAAAwAAAkMEAAMBBAACgQQAAfMIAADjCAACoQQAADEIAAODAAABAQQAADMIAAMBBAAA4wgAAkMEAAPDBAAA8wgAAyEEAABzCAABAwQAAIMEAAKTCAABgQQAAgL8AAHDBAAAIQgAArMIAAFBBAACUwgAAAMEAANBBAACUQgAAkEEAAGBCAADIQQAADMIAABhCAAAswgAAgMAAAKrCAAAwwQAAkkIAANhBAAA8QgAAnsIAAIC_AABQQQAAuEEAAChCAABAQgAA6MIAABDBAACgQAAAEEIAALBBAACSwgAADMIAADTCAAAsQgAACMIAAOjBAAAQwgAAwMEAABjCAACGQgAAukIAALjBAACIQQAAKMIAAMDBAAA4wgAAqMEAAKDBAABQQQAADMIAAKZCAAAwwQAAQEIAAADAAAAMQgAAAEEAAKDBAAA4QgAAJMIAAHBBAACyQgAAqMEAAEDBAACYwQAAoMEAAKBAAADAwQAAcEIAAADBAABwwQAAeEIAAGBCAACAvwAAUMIAAMhBAAAowgAAMEEAAGzCAAB8QgAAJEIAAADBAABAQAAAEMIAALDBAACGQgAAoMEAAJDBAACWwgAAIEEAAOjBAACSwgAAQMAAALjBAABwwQAAiEEAAABAAAAcwgAAgD8AAJBBAABQwQAAkMIAAABBAAAUQgAAkMEAAKpCAADgwAAAoEEAAKhBAABEwgAAMEEAANjBAAAwQQAA8MEAAABCAAAsQgAANMIAADhCAAAQwQAAoEAAAGDBAAB4QgAAJEIAAMBAAAAAwAAAOMIAADzCAAAcwgAANMIAAAxCAAAwwgAAQEEAAMBAAAAAwQAAAMAAAEDAAABgwQAArkIAAJDBAABAwAAA4MEAAAhCAACAQQAAAMEAAFTCAACYwQAAYEIAABTCAAAAQgAAVEIAANjCAACIwgAA-MEAAGBBAAAIQgAAgMEAADDCAAAIwgAAAEAAABTCAACIQQAA4MEAALBBAAAEQgAAsEEAAI5CAAAQwgAA0EEAAMBAAABAwSAAOBNACUh1UAEqjwIQABqAAgAAgDsAALg9AABUPgAA4DwAAHA9AADYPQAAUL0AABW_AACyvgAAoj4AADC9AADYvQAAXD4AABQ-AADovQAAoLwAAGQ-AABwPQAAkj4AAAE_AAB_PwAAZL4AACQ-AACIvQAADD4AAES-AAAUvgAAEL0AADC9AACmPgAAmD0AAJ6-AABwPQAAVD4AAEA8AACAOwAAEL0AAIq-AAC2vgAADL4AAAS-AAAQPQAAcL0AAPi9AAB0vgAAbL4AAGw-AABUvgAAiL0AAMK-AACYvQAAmL0AALI-AABkPgAABL4AAKA8AAAJPwAAQDwAABA9AAAkPgAAcL0AAHA9AABwPQAAyL0gADgTQAlIfFABKo8CEAEagAIAALi9AADgPAAAML0AACe_AABEvgAAEL0AABw-AACAuwAAEL0AAJg9AAAUvgAAVL4AAIA7AAD4vQAAqD0AABC9AABEPgAABT8AAFA9AAAVPwAAoLwAAKg9AAD4vQAATL4AAOC8AADYvQAAoDwAAOC8AAAwvQAA-D0AAEC8AAAsPgAA4DwAADS-AAAQPQAAiL0AACw-AACKPgAANL4AAIg9AADgPAAAQDwAAKi9AABAPAAA6L0AACQ-AAB_vwAALL4AAI6-AAD4PQAAHD4AAJg9AACIPQAALD4AAIA7AACIPQAAQLwAAIC7AAAQPQAAcD0AAOg9AAC4PQAA2D0AAKC8IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=n-bJB_7QbQU","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1330,"cheight":1080,"cratio":1.23148,"dups":["17667584103366527097"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2401215520"},"952209172118958348":{"videoId":"952209172118958348","docid":"34-4-12-Z1218D3273D90A698","description":"This video introduces the concept of the composition of two functions.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/223388/5a6af66ea05a3284e8612c0a93aec39a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jTOLEwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Df_t1I3WgXbM","linkTemplate":"/video/preview/952209172118958348?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Compositions of functions (Screencast 6.4.1)","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=f_t1I3WgXbM\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFAoSOTUyMjA5MTcyMTE4OTU4MzQ4WhI5NTIyMDkxNzIxMTg5NTgzNDhqhxcSATAYACJEGjAACiloaHZwaXljb2hpZ2dhbGpoaFVDQUcydTJLRWtrR3k0eVdHZUthX3U3URICABEqEMIPDxoPPxOJBIIEJAGABCsqiwEQARp4gfcE-v76BgD09AP5BwEAAAwF_wL3AAAA7Q79_fv_AAD5Cgr5_wAAAAgH_f8KAAAA9_7-_vz_AAAM-wb8BAAAAAsBCwT2AAAABQYIEf4BAADwAQX_AwAAAAIFBRAAAAAA9QoD-gIAAAAEB_7-AAAAAAjwAf4AAQAAIAAtWlTkOzgTQAlITlACKoQCEAAa8AF0BgwA7v71AOsN_gDRD-YBgQot__w20ACV3BMCu-neAeEt9__g_dUA9SQ8AMskFAA58eT-I-vnACbyBP8lBfwBIhgFAS229AFHAxj_8PLq_t4jL_0V5A__H-XkAPUU3_7hERL3-QHF_wvptQkM8yP_Hw4eAVD2JgDY8QX_3iL_A_IK6_cbCvn8-uIL_vf5FfsIBuv9KRn69uYi5wII__T70PP8_AAR7fdH-PQA4Ob59dDtDfn7Df39AwkdA-gZ9PT1BRfwBsr_9_cVDQA-2QD3-ufiAPzg8goG-O78_sgK9t7uHAy6L_kFAAcNAhkD_AAgAC1QIw07OBNACUhhUAIqzwcQABrAByuE7b43C8U7s2y5u1PkVb1R3oc8i-IwvPiDRr1WwYO87cT6u6ZIPj6dvEg9-JKhO_aWYr4FeIE8eT8NvMVVhT5UMG-9m38qvFouW77qj5U8bmKSvBUcTr6sTcg8NZcfOzgvzjzObcK8MW-fPGmEyD2tchw9JJO4vCGVoryGRJC8Tt62vPBVBj3NhHW95jXAvJMcMLwI-lE7oFKlPHglOT6iEQk8dnIAvJjtkrvYiDu88HZzvKxw673w04I8MgWpu3VmLD2mi8M8_3SoPEPHPTq42Sm92VqfvH_u1TyA4AA9yqFqPINDmDkBpPY8FtmCOp8R1zv5tXq99k6euyY19L1-Ay49q7oCPd1gOD4pplw94xs-OtlCkL02vbo8SOxqO3x7l7zuaii9ey5TvD0mVz13EaY8I7YAPUQU0zxH0ok8XxbJPI1KJT3WIyg9LPOWPMeOfD0wL8A7JtvlvKpdqD1LcA88bjVrvN0KMb4sL7e7xJ1iu5z64D1A_QK9DHXYO_vLjj1A6Xq8VddGPHAK6zxF77m99kfluc7yBr2QOIq9nMtDvN3Bfj28uyQ9iHuRvPYFqT3BvNG8b3zxu9gasL181_-7TLxquzUpZT2hgbi9alAPO8910LyWxjQ91D_OO08nhD3G7go8AstbvHn8w7yrsJm8otbuu-oDCb07DsO5dR7XO7iPfD08HJO8uEswu8wucz1QGb88Xb4aOwfu4D163B679qUOupvc1LzzTSS9_lwXO4OpgztvQ7E86qIxOjy98j1KyFG9V8GOORXKQjzKsWs9m8zqOV74XL2Ngrs8psFaN-5vmjyjLDK9vPebuAXT-rv4ToG9CfmRucrmIrq3lO65o7NWOhW1arwSiSK9ARbduKkEGr3vB1e9f-ZFuvfizbpHuzu9qMMTufFFkD1SrU88nrK_ODdBCj0v5Ky83H_HuYV_rLxDmJG6lLRfNuq6JjyNixk8Y9QMOCOsjD30bAa-z3ClOQRrgTytDHS8sYoDOBg8UT0LHvA8C4MBt1jciT2XfS09D2ghtZ0ORzt3nwO-Q96Mt83nXD1HM5s91S0luSL7AL7GXyQ9F5hlOI8ofr24f3u9r8Xnt1IxiT3fclC9c1JYNzjshLoR7sS8KwdeN-uEYT0rGNW8PJPxuLlg-ryzxmq8DUC_N56moDykqd68nfchNwetnL3GhCo6j1O2N2EGeT3zOhK-S-epuMr0cD0i4Ss-8cuKONvbrbxr8B4-kDkhuagNHb2J3AI9ojz2tit4kL1sC-q862w1uCAAOBNACUhtUAEqcxAAGmBACAAW4yHA-_ZbAALJ-RcC2v_7FOT2__30ANoy5_D85dWu9QP_AM8uFqoAAAD_OMkR-QDdchPz6TPTNRiy1_7tKn8IOSumx_0C4dIr-gQt7jHf7hwAGuShBAr_lTkiCBUgAC3msCA7OBNACUhvUAIqrwYQDBqgBgAAqEEAAARCAABQQQAAsMEAAL5CAAAsQgAA_kIAAAxCAABMwgAACMIAAAAAAAAAwwAAQEEAAFBBAAAwwgAAgEAAAIC_AACIwQAAoMAAADBCAACYQQAAGMIAAFDBAACMQgAAAEAAAAhCAAAAwQAAoMAAANDBAAAMQgAA6MEAAIpCAAAgwQAAAEEAAFDCAACAQgAAyEEAAAxCAABAwQAA-EEAAPBBAAAQQgAABEIAADBCAACQwQAA6MEAAATCAAAgQgAAZEIAAJjBAACkwgAAYMIAAEDCAAAwQgAAOEIAAHBBAACMwgAA6EEAAODAAABAQgAALEIAABDBAABYwgAAwMEAAGxCAABcwgAAMMIAAFjCAAAsQgAAQMEAABxCAACAPwAANMIAABhCAABAQQAAcMEAAJrCAABgwQAAnEIAAIBAAADYwgAA1EIAAAjCAACIQgAADMIAALRCAAAQwQAAEEIAAIBCAABUwgAAAAAAAMhCAAAgQgAANMIAANjBAACgwgAAWMIAAIDBAAAYQgAA2EEAADjCAADAQAAAQEIAAADAAACCwgAAcMEAACBBAABQQQAAQMAAAPBBAADYQQAAkMEAANjBAACoQQAAEEEAAEBAAABUQgAAwEEAAIDAAAAAwgAAGMIAALjBAAAQwQAA4MAAAIjBAABAwgAAGMIAAIxCAABAwAAAgMEAAIjBAADoQQAAeMIAAIDBAAAUwgAA-EEAAJhBAADAwAAA6MEAAABBAAAQQgAAFEIAADTCAACAQAAAEEEAACDCAACAPwAAqMEAAMhCAAAgwQAAqEEAAIBAAADIwQAAgEAAAFBBAABYQgAAQEAAAGTCAABwwQAAyEEAAMDBAACgQQAAoMEAAJjBAACMwgAAoMAAABBBAADAQAAAuMEAABDCAAAIQgAAEEIAAPjBAACAwAAAqMEAADDBAADgwAAADMIAABRCAAAwQgAAAMAAAIDAAAAMwgAAQEEAAKZCAAAAAAAAwEEAANhBAAAAQgAAUMEAADDCAAAIQgAAKEIAACDBAABQwQAAqEEAABBBAADAwAAAmEEAALhBIAA4E0AJSHVQASqPAhAAGoACAAAEPgAABD4AAOg9AABwPQAAyD0AAJg9AAAwPQAABb8AAMK-AAA0PgAABL4AAJq-AAAwPQAA-D0AAJ6-AAD4PQAAkj4AAIC7AAAcPgAA3j4AAH8_AAAsvgAAbD4AABC9AADYvQAAfL4AAII-AABQvQAAuL0AAFA9AADoPQAAcL0AAKA8AABcPgAALD4AAKi9AAA8PgAAyr4AAJK-AABMvgAAZL4AAPa-AAD4PQAAUD0AAEA8AAAwPQAAuD0AAJq-AAC4vQAAyr4AABw-AAAwvQAAiD0AAII-AAAwvQAAqL0AAB0_AABQPQAA6L0AAKC8AAC4vQAAFD4AAKC8AACGviAAOBNACUh8UAEqjwIQARqAAgAAnj4AADy-AABMvgAAJb8AACy-AAA8PgAAQLwAAMi9AAA0vgAAij4AAOC8AACAOwAAoj4AAI6-AAAUPgAAqL0AAIg9AAA_PwAA-D0AAP4-AAAQvQAAuL0AAJ4-AADovQAAoLwAANi9AAAQPQAAyD0AAIg9AACgvAAAED0AAKA8AABQvQAANL4AAJg9AABAvAAAFD4AAJ4-AAB0vgAA2L0AAJI-AABMPgAABL4AAOA8AABwPQAAND4AAH-_AACCvgAAQDwAAEQ-AABQPQAAuL0AAHC9AAA0PgAAML0AAJg9AADgvAAAQDwAAAy-AACYvQAAVD4AAA8_AADYPQAAzr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=f_t1I3WgXbM","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["952209172118958348"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1703803489"},"8054478065010704972":{"videoId":"8054478065010704972","docid":"34-11-14-Z68FCB1B91584C6FB","description":"In this example we show how to find the exact value of a definite integral using the geometry of the graph of the integrand.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4032631/dbd33a395fd665f5956111becaaf46d2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ohG4YgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DoHIH69Ou4DE","linkTemplate":"/video/preview/8054478065010704972?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Screencast 4.3.2: Calculating a definite integral using geometry","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=oHIH69Ou4DE\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFQoTODA1NDQ3ODA2NTAxMDcwNDk3MloTODA1NDQ3ODA2NTAxMDcwNDk3Mmq1DxIBMBgAIkQaMAAKKWhodnBpeWNvaGlnZ2FsamhoVUNBRzJ1MktFa2tHeTR5V0dlS2FfdTdREgIAESoQwg8PGg8_E5YDggQkAYAEKyqLARABGniBBwEE-QL-APj--QQNBf0BFwYGAvUCAgDXBAIL_fgEAA7vDP3_AAAA-hEE_gcAAAD-Ce4D9v4BAAn9_vwEAAAAH_3y-vwAAAAPDPsE_gEAAPEI-vICAAAAA-_7Bv8AAADzCvn_AwAAAAABAQMBAAAABv0NAQAAAAAgAC1f5807OBNACUhOUAIqhAIQABrwAX_fPwDZ9qoBzBj2Aa0Z6AC0JN4A_hDfAODmEwD-2PMB6u8DAPAj8v8GEegAsy8eARjy4v7tzegAGccX_-UC5gHi8TcA_g0LADUCCQAF9e8AAiUv_icNDv_9AskA7j75AA7fEf4sBtX-CeIGBDfQKgL24OkCAwsLA9_q6gHQFwICtBPO-hAFBQDg9B771QUlAhEN_QbiY_D-Dg7LAev2FAAdwRb9LjHuAi3X9gIPFAAE2eUNC_vf9QbvOfv_4xXdCesCB_nB5QX-6Ab78fcOEvDRIvr2RBv5AhnWDhAf6fkN6gPw8uQD7QLo4vQO-vf47iAALa2XCTs4E0AJSGFQAipzEAAaYE7iADgCG9Eg3S_a6L8C-_2oz80ayhH_3u__3w_O9BQS3bfZHQAPxvHVogAAABQQ7DypAAV_0_8yLScoJ-bF3AErfjkU_sGiAiTwkzYyHt8y7TQEPwD5FKAuKeq8IicKMCAALdoSEDs4E0AJSG9QAiqvBhAMGqAGAABAwQAA6MEAAKBBAABgwQAAEMIAAERCAABYQgAAoEAAAFTCAACOwgAAuEEAAKBAAADgwQAAQEAAAHDBAADAQAAAEEEAABzCAAA4QgAAFEIAAKBAAACAwgAAoMEAAOjBAABAwAAAoEEAABDCAACYQQAALMIAACBBAADgwAAAqEIAAFTCAADgQAAAusIAAPhBAAAAQQAAiMEAAEjCAABkwgAA-EEAAOBAAACoQQAA0EEAACBCAABgwQAAMEEAALhBAABYwgAAIMEAABDCAAA0wgAAoMAAAKjBAACAPwAAoEEAAODBAAAMwgAAkEIAAOhBAABgQgAARMIAAILCAAAEwgAA4MAAAMjCAAAAwAAAsMEAABzCAADQwQAAREIAADDBAACawgAANEIAAOBAAADgwAAA6MEAAOBAAABYQgAA-EEAAATCAADIQgAAHMIAADDCAABMQgAAcEEAAFBBAACuwgAAgMAAAFDBAACowQAAIEEAAKjCAACAwQAAEEEAAEDCAAAwwQAAAMEAAFhCAAC8QgAA2MEAADjCAABAwAAAKEIAADzCAABUQgAAQMEAABhCAACAwAAAfEIAADxCAACQQQAAQMEAAIxCAAAAwAAAoMAAAKRCAABgwQAAsMIAAEBAAAC4QQAA6MEAACxCAACgwAAAAMIAAIC_AABMQgAAQEEAAMjBAAA0QgAAYMEAAIjCAABwwgAAMEIAANhBAACwQQAAQEEAAEBAAAA4wgAAPMIAAABAAABkwgAAgD8AAFzCAACAvwAAwEAAABDBAABYQgAAIMEAABxCAAAkwgAACEIAALZCAABgQQAAaEIAAOBBAACSwgAAIMEAACzCAAAkQgAAYMIAABRCAABEQgAAEMEAALhBAACYQQAA2EEAAEhCAABEQgAAcEEAAOjBAAAQwgAA8EEAAIjCAABMwgAADMIAABDBAACIwQAAsMEAAKBBAAD4wQAALMIAAMDAAAAAQAAAiEIAABBBAABgwgAAhsIAAGhCAACAQQAAAEIAAKhBAACAQQAAyEEAAFDBAACuQgAA4EEAAMBBAACgQAAAYMEgADgTQAlIdVABKo8CEAAagAIAAOg9AADIPQAABD4AAEC8AAC4PQAAhj4AAMo-AAAPvwAAmr4AALg9AACyvgAAuL0AABQ-AAAMPgAA6L0AACy-AAARPwAA6D0AAEA8AAApPwAAfz8AALi9AAAkPgAAdD4AAKA8AACOPgAAQDwAAIC7AAB8PgAAlj4AAMg9AAAhvwAAXD4AACw-AAAQPQAAgDsAAGy-AADKvgAAor4AAI6-AABQPQAAcD0AAJg9AAAsvgAAgr4AACQ-AACIvQAAdL4AAHy-AACYvQAAMD0AAOg9AABEPgAALD4AAGy-AAAQvQAAXT8AAKi9AAAMvgAAfD4AAHS-AACIvQAA2D0AANi9IAA4E0AJSHxQASqPAhABGoACAABsvgAAFD4AAAS-AABdvwAAXL4AAIC7AADYPQAA6L0AAKC8AABEPgAAUD0AAJi9AABMvgAAQLwAAFA9AABQvQAADL4AABU_AADgPAAAwj4AAJg9AABUvgAAqD0AAFy-AADIvQAAEL0AADy-AACIPQAAQLwAABA9AAAQPQAAuD0AAOC8AABEvgAAFD4AAOi9AABEPgAAlj4AAGS-AAAkvgAAFD4AAHA9AACgvAAAEL0AALg9AADIPQAAf78AAKg9AABkPgAAuD0AAHQ-AADovQAAQDwAAJY-AABQPQAA2D0AAIA7AABwvQAA2D0AABC9AABsPgAAED0AAJg9AADgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=oHIH69Ou4DE","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["8054478065010704972"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"795244862"},"7532529569671920201":{"videoId":"7532529569671920201","docid":"34-4-9-Z7858C726DDCEC9E3","description":"We solve an example of a separable differential equation.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3294337/45d875d405f3d5fa3083d665153774b4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/bM7UGAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_i87zMz4WNA","linkTemplate":"/video/preview/7532529569671920201?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Screencast 7.4.3 Solving a separable differential equation example 2","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_i87zMz4WNA\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFQoTNzUzMjUyOTU2OTY3MTkyMDIwMVoTNzUzMjUyOTU2OTY3MTkyMDIwMWqHFxIBMBgAIkQaMAAKKWhodnBpeWNvaGlnZ2FsamhoVUNBRzJ1MktFa2tHeTR5V0dlS2FfdTdREgIAESoQwg8PGg8_E5ACggQkAYAEKyqLARABGniB9QEC_gX6AO_8-w_9Bf4BNfkLDfIHBwHh6QP6AfwCAPACEPoIAAAA_Az8BQ0AAAD99_cC-v4BAAP6_AIEAAAADgkHA_wAAAAc_PUE_gEAAP_8CvsDAAAA_vAJ_f8AAADuFv_6____AOsVDAEAAAAAF_8D_AABAAAgAC23ycI7OBNACUhOUAIqhAIQABrwAX_sIQHP-9D_3BHfANUl4wHAEAMACC_yALvxCwC698kA1xwGAN7_D__iADsA4hANADLX0v8A3PYALL0MAgr6BAD5APoAEsgDAFUrBAAN7d0A3yMS_9f28wD81foAAhfoA9sFFQD2Ht4BD__VAyP7LQEkETgAKxIaAt6y_QHH4-0B8rvYAAQW_QXjwRT-2t8PAArN7AQx9gX75BT8Bgjc-fn-4Bb9FT3q_yrwBQf0_QQB1v3t_wz78AovFA0C-Pn08PP3JQLdEQn6-gUJAATTA_veBfb1_vgBER36Af7-4gMGBOD5-ucQAwftCAsG4Qj17SAALVTpGDs4E0AJSGFQAirPBxAAGsAHv7q6voAL1zyR_WK8TmP7vTfpDL136fC8PIs5vXIbCD3HgR46mSktPlpVtb1TbQG9gQgBvjc-ST2ubYC8UTAzPvqAmzuR50Q92UNLvkOSdjspf4K9_FQlvjHZLrwHc-Y3IDDKPcDLUb0Xt5O7snWaPaXL0bwt6AG8OBvGvAth9Tx1T6Y7IhehvTucirwFK1O9BcP5PTGLWr0LiB89GFodPmoHcbu0hRA812gZPZwfNb0MkfQ7e64FvcMHez0jyg29kFEZPXqEPz38Ziw9SXQlvQhcEr3-XHq78gP8O0FNCL2ziYK8QQsJPb7sSD0RSqm8uavXvPO_pr0uqxC9seFJvi6S9jxPCJ08banjPQYRqbwUnds8IJKWPSZ8cbp3f2G8xSIBPTO54rzTRru7APKEPYkrAj34Ky48egCmPGLgVL3EH0k74OwAveBYhjydOdo8IEuqPagW9rxcdoi8nASlPF0AdTyjJ4C8Tl7kvdZCfzwHr8Q7bayEPB0QNz2zW3A8RU78u5J1GD2dJtg8Pc3NO_g7j72omDk8zvIGvZA4ir2cy0O8KYySPIBjkTv1V7y7WYfDPQrPVb30glM72e0DvmLY5bt0LIy6364RPEyp67293dQ79BNzPAo6ED0SH-07LX2jvdmHJj1eqYC7DTSfPK13sLvspF87shLzvZYxdL36Was5R7maPWNWObxeBow7-5trPfYLVj0OKye6tyuyOyMfar0WEQu7QMElvSnWlL2IP5c5Tn8WPavnhL1ytGq5bQPXPbWj2L0Mn685wJCbOjwUhT035rQ4ceA6vS66Sz1yFsc3PxmjvLL2V71D9Qu4y6LwvFtCHr43BeM51BuUvd3a27vBgXA4D-x9PazrK7xSwhC5zCDDvdQNBL4IU4U5vLS8O94EPz3wrKU5y6nTPFBoHzxuiaK4yLu-vEGcRz0o3je4hbGJu5L6_Ds6jEK44ZbPPXBeXD2mlHC4JEbPPG5chb1JXJ84eKwjvK6ffj19BNM4E2NZvc67Gz0_fzw4wVifPQsZnj29GSM4DLG6PFFjp7zwN6c2pivYPUaYAj2BRn-4aHUyvmSkKD0Xyky3u-eKvdZe-jz92344jEj5vJI8F73kLxs3j4FmPTtFPb0uoyO4427wPQ5M7r3JZZe5uF2Tvc-rkL3adUS4f4mDvQ7Y9b0L0RK48LsOvccWPT2_0rM25NWevHqJ8b1lVTC4Iv_sPTUpBT7zflu44hiuPG-loj1MJ1K4VdfGvbuZUbz5mlu3v8gXPLPvmj1sAz04IAA4E0AJSG1QASpzEAAaYDYAABEkId4M7SzPz9UbEd3K3ccYxgf__q3_DyDx-i0czbHc9f82thzwogAAABzH-fILAB1_HQELZAnsAsPpxRwPbswzMp7MPjfF6xj24vkqHAftZADm96xAJ8G8INIJ_CAALQ2hEzs4E0AJSG9QAiqvBhAMGqAGAACMQgAAAMEAALhCAACswgAAcMEAAOhBAACCQgAAoMAAABTCAAAQwQAA4EEAABTCAADYwQAAmMEAABBCAADgQAAAHEIAAHDCAAAsQgAAcMEAACDCAACAwQAAqsIAAJ5CAABswgAASMIAALjBAABAwAAAyEEAAOBAAAB0wgAAHEIAAHTCAAAcQgAA0sIAAEBBAAAQQQAAoEIAAKjBAADwQQAA4EAAAMDAAACAwQAAAEAAAOBAAABwwQAAgEEAAABCAABMQgAA-EEAAETCAAAcwgAAQMEAACRCAAAcQgAAmEEAAKbCAACoQQAAgEAAAOhBAAAgQgAASMIAAPDBAABwwgAAuEEAAIjCAAD4wQAA4MEAADDBAACgwgAANEIAAIRCAAAowgAANEIAADTCAADgQQAAksIAANjBAAAEQgAAIEIAAEDAAAB0QgAAoEAAAOBBAACAwQAAPEIAAIC_AAAAwgAACEIAAKDAAAAAwAAAnkIAADDCAACAPwAAkEEAAMDBAABgwQAAgL8AAOBBAAAcQgAAtMIAAEDAAABkQgAAGMIAABTCAAAQQgAAgMEAAJBBAABgwQAAGEIAAHBCAADAQAAACMIAAABAAADAwQAAfEIAAIDAAABwwQAAsMEAANDBAAAAwgAANMIAAAAAAABAwAAABMIAAJjBAACYQQAAoEAAAKDAAAC4QQAAiMEAAJrCAAAAQAAAkEEAALjBAAAwQgAAgL8AAMZCAAAwQQAAEMIAAODAAAAQQQAAPEIAAK7CAAAgQgAAgkIAAKDBAAC4QQAAiMEAADBBAACIwQAAuEEAAARCAADgQQAAgEEAAIA_AACIwgAA0MEAADTCAAD4wQAAuMEAAJhBAAC4QQAAIMEAAIC_AAAAwQAAaMIAALpCAADgQQAAgD8AAAzCAAAwQQAAYMEAAGDCAAAwwgAAgD8AAOhBAAC4wQAA0EEAACBCAADYwgAAdMIAAJDBAABgwQAANEIAAJjBAACkwgAAKMIAAJjBAAAAwQAANEIAAIBAAADwQQAAUMEAAODAAAAAQgAAyMEAAPhBAABEQgAAwEAgADgTQAlIdVABKo8CEAAagAIAABw-AADoPQAAdD4AAFA9AACIPQAAoj4AANg9AAARvwAAsr4AABA9AABkvgAAEL0AAFC9AABkPgAAEL0AADS-AAC-PgAAiD0AAIg9AAADPwAAfz8AAIA7AAAsPgAAHD4AAAS-AACuvgAAgLsAAOA8AABQPQAAmj4AAPg9AADYvQAA4DwAAAQ-AABAvAAAgj4AAHQ-AACovQAA6r4AAL6-AACovQAABD4AAAS-AABAvAAADL4AAGy-AACoPQAADL4AAKg9AACWvgAAHD4AAOi9AADoPQAAdD4AADy-AABAvAAAJT8AAIC7AABkvgAAdD4AAJ6-AABwPQAAij4AACQ-IAA4E0AJSHxQASqPAhABGoACAADYvQAAMD0AADC9AAA9vwAAqL0AAOA8AAAUPgAAmD0AAEA8AAAwPQAAFD4AAJi9AADYvQAAcL0AAAQ-AABQvQAAQLwAAB0_AACYvQAA4j4AAOC8AAAEvgAAiD0AAJK-AACIvQAAcL0AABC9AABQPQAAVD4AALg9AACAOwAA6D0AACy-AABcvgAAHD4AAKC8AADgvAAAlj4AABy-AABAPAAAbD4AAOi9AAAQvQAAgDsAAFy-AAB0PgAAf78AAEC8AACoPQAAmD0AAKC8AACgvAAAML0AABQ-AABcPgAAmD0AAKA8AADovQAAcD0AAHC9AAAwPQAADL4AAAQ-AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=_i87zMz4WNA","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["7532529569671920201"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3053752065"},"13999462337675216260":{"videoId":"13999462337675216260","docid":"34-5-10-Z28C612C5BB8F2E34","description":"In this video we introduce the spreadsheet as a tool for finding limits of functions with as much accuracy as we want. We learn how to enter in data and find its address, and how to enter in and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4324275/0619a5ccc6b206f815343fefd638579e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/JvdCHwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DuAepmkpG34A","linkTemplate":"/video/preview/13999462337675216260?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Screencast 1.2.4: Limits of functions using spreadsheets","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=uAepmkpG34A\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFgoUMTM5OTk0NjIzMzc2NzUyMTYyNjBaFDEzOTk5NDYyMzM3Njc1MjE2MjYwaocXEgEwGAAiRBowAAopaGh2cGl5Y29oaWdnYWxqaGhVQ0FHMnUyS0Vra0d5NHlXR2VLYV91N1ESAgARKhDCDw8aDz8T0QKCBCQBgAQrKosBEAEaeIHy-vsH_wIA9AIMAAIE_gEQCAML9gEBANoB9v_6-QMA_wQN9AgBAAD3-_0C_gAAAAMB-QXy_gEABgT9AQQAAAATFAkDAgAAAAUB-xH_AQAA7fIE9QIAAAARBff9AAAAAPoO_Pv_AAAABPQCBwAAAAAI7Av5AAAAACAALSN_2Ds4E0AJSE5QAiqEAhAAGvABbyYQAAns4wScK_UBtez5AIH6Ef8EBQQAkRP4AbUE3gCsyhAB-vnpAOrr_AGyMB8BONHM_iME1gEZ7_r_KggSAfnU-QBm5OEAQjjbA_sBEP8WEjX_OAARARXPCAIi4_L-JNAO_83W8_n18tgHG-MxA_8eGAYM4Rn96s_mBNA68wDnyRL9Ef4b_BAB4wTvAxIFCBYiAhQa-v38-voI5SHwCtIn5AAJ39cAJxgF_gAI8_rt5AQISQLqAgQKDQPnGvTz8TP5ABX-AAAoAgIBG_kX8xPm_hsLEer4Ogfj_NIEGvQGCBn5vwgM8A7JBvsC2w7yIAAtxv0GOzgTQAlIYVACKs8HEAAawAfqsOq-2tI8u_iXEz2cAYm849SYvDjtbr1NOJq90KRiu0jBE719skI-pIU3usOmZD1_gxa-ogtqOyFQBz3-1Ys-IMSfPIapMTt1ySi-2lSdPZOQozxXsTi-R6V9PKXUCj2VLKc90sqYPBJCUby-S1k-kRzdO6B8izpvsQy9VlsbvVI4zLwypRo9VbSDu0yZCr1iiUI9_oDHPLI_2jwYWh0-agdxu7SFEDw5Hr285i54vFKoXbwZWBe-FU0RvS4dczyQURk9eoQ_PfxmLD3ATqA81cgTPQyI2ry7kFg9XCDeO4fYhTwRhzE9b2glvUj1gryFX-q8PTw1vUl0YD0vhvK9dJB8vP0hrDw-6r896LT4PHYKj7cFkpa9yn08vHHy8Lvo8UC9S5jEvW82jDw9Jlc9dxGmPCO2AD2Z4mA8Nek7PTmfEzwip889CXe9PXnkVTtT94c9RB3Su2pU-TuCb7-8iR1XvBWUGjuSKsC8oKdhPaV9UbmnegI-lcEHPTBP37tX5Pw8omKcu52Imbz7Xag9h5udPAfMaDwWpk89UEMqvX8sBjvOeJE9G2savfXvQDvfe648RhwcvV4MKzufR1s9Lf-GPfPXdbzx2M89yKNIu3IueLquMQM9_SBhPS85yTv8ZYG9jqFSPN_rWrz_vSq92xs3vQfPCDx8wJe8Wr9UvS_j4DsR_zA93mtNPUfJ6TtlI4a9lgTovBP2ijqvcs87Nz80vFWtv7os8eC9LnD9uyAnGDq8e3s9pHGIPbFawbmTjKw9XP4oPUpHOrlYBFq9jfS9PB8R4Tk6FxC7VxuIPGqp9jq50mE9Lt6UvXNP3Thq9iO7752nvWJI3Lj92OS8rMIJvM8lYjuaalo7hwYYPbM_1DoGJEa9w1e1vQjIXTdLRBO93JVnvfJHAbkTRP09jh4fviQtmjh6PwQ9vXRuvPyFSLjincK9G4LDPZBUzzgPd1q9LUb4PFwcFjh5eVW9U13gvcKXWDkraL88r_ApvdkCgbhD05g9y2CxPNR_dTdeDsC9etsRPT8QFbniz5u9M1D5vUbKDbjQ3zq8kF0zvO3VazgNPw69qW80PRX2uDdN3JU9yF_avQThDjkP2xE9IVTOPGKdTrdY55i7WBlyPZzcXzgmGqS7KydrPSEqNbh-cYm9a5W1PUZz-rgrTB89nSSivb9r5TeuGho9eXM4u5taOLgy7qw9XCa-vexqQzeCxHs9SnsDPcTziDiXuwO80tPBPVFqybiyq4-9fLr6PHOUNDcupJi9fbtbvJDlJ7ggADgTQAlIbVABKnMQABpgLQwAPfYcxCcUSP4HF-YT--rc3QrdPP8w6ADvHsTt_v3AqhUBAO-4HQqhAAAACjyy8ggA-X8T17klwyQbzM_rGgNoPA8-vdH5DNoCPQosG7Tl0zo7ABHgqRNGArc3NDDnIAAtlmIWOzgTQAlIb1ACKq8GEAwaoAYAAPDBAACAPwAAOEIAADRCAAAUwgAAPEIAAFhCAADYQQAAYMEAAMDAAACwwQAAwEAAAADAAACIwQAAAEAAAAAAAABgQQAA6MEAAIDAAACAQQAALEIAABhCAADwwQAANEIAADjCAAAgQgAADEIAAHzCAAC0QgAAAMEAAKjBAAAgQQAAeMIAAKBBAABQQQAAIEIAAFDCAABAQAAAQMEAABDBAADAwAAAaEIAAATCAAAUwgAAjMIAAKLCAACIQQAAgL8AAJBBAABsQgAA4MAAAATCAAAQQQAAAEEAAExCAAAIQgAAIMIAAIhBAABsQgAAUEEAAEDCAADQwQAAXMIAAETCAADYQQAAssIAAAzCAABAQAAArsIAAJDBAAAsQgAAwMEAABBCAAAswgAAsMEAALBBAAD4wQAAIMEAAIBBAADwQQAA0MEAAJ5CAAAUwgAAAAAAAIDBAAA4wgAAWEIAAJjBAABwQQAAYEEAAODAAAAwQgAAtMIAALDBAABIwgAAqMEAALBBAAAAwAAAcEIAAGBBAAAkwgAAwEAAADhCAACiQgAAHMIAAIBBAACgQAAA6MEAACzCAACCQgAApkIAAJhBAACgQAAAmkIAACTCAAAwwQAAZEIAAIjBAAAAQAAAgL8AAEDCAACQwQAAeEIAAADCAAAIwgAAOEIAADBCAAAIwgAAgEAAALDBAABUwgAAwMEAAABAAAC4wQAACMIAAKBBAAB4QgAAmEEAAADAAAAAAAAAIEIAALjCAABgQQAA2EEAAFRCAABEQgAAOMIAAKxCAABYQgAArkIAAIbCAABYQgAADEIAACDCAADgwQAA-MEAAEzCAACQwQAAwEEAACxCAAA0QgAATEIAAMBBAAD4wQAAEMIAAGhCAAAQwgAAMEIAAOBBAAA0wgAA4MAAAPBBAAAoQgAAgsIAACDBAAAAQAAAsMEAAPhBAACYwQAAHEIAADjCAABkQgAAPMIAAOjBAABAQQAAAAAAALDBAADAQAAAAAAAAIhBAAA4QgAAdEIAAIBAAACIwQAAsMEAADBCAAAAwgAAmMEAAIJCAABAwSAAOBNACUh1UAEqjwIQABqAAgAAXD4AAAQ-AAAUPgAADL4AAMg9AACWPgAAXD4AADO_AAAFvwAA5j4AAJi9AACgvAAA4LwAAGw-AAAsvgAAoDwAACQ-AAAQvQAA4DwAAPY-AAB_PwAAmL0AADA9AAAwPQAAED0AAAy-AACaPgAAcL0AAFS-AACqPgAA6D0AACy-AADIvQAAmL0AAOI-AAC-vgAAfD4AAIa-AACCvgAAEL0AAHS-AAC4vQAAqD0AABS-AACgvAAA4DwAAEw-AACYvQAAcD0AAPa-AABUPgAABL4AAJi9AACGPgAAnj4AAKC8AAArPwAAVL4AABw-AAD4PQAA6D0AACQ-AAA8PgAAqL0gADgTQAlIfFABKo8CEAEagAIAAOC8AABQvQAAwr4AACe_AAAEvgAADD4AACQ-AAAkvgAARL4AAK4-AAAMvgAAcD0AAAS-AACYvQAAJD4AAAS-AAAUvgAALT8AACS-AAAtPwAAcL0AAJK-AAD4PQAAJL4AADC9AAB8vgAA6L0AAHA9AACYPQAAiL0AAHA9AABAvAAAUL0AAOi9AACiPgAAgDsAADw-AACSPgAABL4AAOA8AACiPgAAqD0AANi9AABwvQAABL4AAFw-AAB_vwAAbL4AAKi9AACgPAAAEL0AAFC9AACYPQAAij4AAJi9AADoPQAAEL0AAEC8AACAOwAAQDwAABA9AAD2PgAAPD4AABS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=uAepmkpG34A","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["13999462337675216260"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2890225638"},"2625225150792192952":{"videoId":"2625225150792192952","docid":"34-10-4-ZB7C65D5F62418481","description":"We continue investigating how to determine if a function has a limit at a point, by starting with functions given as algebraic formulas and then graphing them with a graphing tool. Here we use...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/893334/eb1657edfe409d093005bd506a5ec2e4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lghwZgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5TFu_sh_orM","linkTemplate":"/video/preview/2625225150792192952?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Screencast 1.2.2: Limits of functions using graphing tools","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5TFu_sh_orM\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFQoTMjYyNTIyNTE1MDc5MjE5Mjk1MloTMjYyNTIyNTE1MDc5MjE5Mjk1MmqSFxIBMBgAIkQaMAAKKWhodnBpeWNvaGlnZ2FsamhoVUNBRzJ1MktFa2tHeTR5V0dlS2FfdTdREgIAESoQwg8PGg8_E4IDggQkAYAEKyqLARABGniB9AMC_v8BAPQEB_cEAQABJv7_CvQEBADo-vz-BP4BAAMED_3-AQAA8wP7BwEAAAAFCfQO_f0BAAYE_QEEAAAAERL-9vwAAAAI-PwK_wEAAO3yBPQCAAAACw72Bf8AAADvFP_7____AP__-w0AAAAACe8C_gABAAAgAC3YMtQ7OBNACUhOUAIqhAIQABrwAV32Ev_g9-oB2df5ALcW6wCBIgr-9BDSAKT18gCtEs3_4vsE__X7FQAHHBIAoykfADPy5_7x3xD_Fs4U_xPw_wDyAxYANOkTADoA_QAB4wsA7TMP_iIMDP8K3On_BCLc_hYAEv7u7wL_79jwAyL8LAEFGAkAOM4V_9za9wLiHgAC9_vgAAojBAMR_gwE5O0K_x4G_AcSQwT-8PcBAw8WBwUeBhL9ByvX_hoh9gsDCgoF9vzr__3iEP3wBwYJBR7sB-XwBfD62AUC7gz3BQfxDwMR_gQEN_PoCv3j6fX-4wIG2BMPBQj_Af_uAPgS-dYB6SAALf8hHTs4E0AJSGFQAirPBxAAGsAHv7q6voAL1zyR_WK8moKbvam1F7wDBV69O8cgvi8KjLyrC1O8kKIePkoS3zy3QwE8NE0ovlkuwDv0CY88Ci9hPhdxsLxB08Y52UNLvkOSdjspf4K9FRxOvqxNyDw1lx873PUSPZELzrygBxC70R8qPuqwIr1Qwsy86JmDPCRU-jybKSO98FUGPc2Edb3mNcC8-A29PSj5h7zZPTk9GFodPmoHcbu0hRA8xQDoO9_mqLzf3x48QxF8vahHBL2Zav-7dWYsPaaLwzz_dKg8iQMtvQdAYb2elv67qncAvC7lmTtr6DA8fPFFPfsEPTnFh2G7vJsiPcADqL3DP7I7qMghvgJ8HD3o6W08Hhk7PkGkujurEEW84CwFvpz5VbxZvce7vj8UvWD9ZL2Pqbs8APKEPYkrAj34Ky486XYAPTBiBD0bB8U71V-KPWswiD1v4po8TR1aPWPNbbwkin-8Xf8pPQy1wTw_dJy8KNXevWgK-LztA7m7jLJIPIhWXTzIGZQ8LGe6PZH6BDziEGA8RYDzPbxhtr17Lx07x4NtvVcQjr2dt1a858xRPbigiD1ZfR68r0M1PWi-yb1nO5G7h-YVvOWagjyqQFK8AsiKPTiMjb0Ux2S7YEGFvU15_jz51Fa8tcWxOxRYJbwuOdG7AgA2vIV9lryfxyy7hD8JOxWNhb1ofBk7FHkSPStaLz0k-xS7hijXO02xtDxL4m46B-7gPXrcHrv2pQ66IviEvYfrAzzJ8w27KOB_OjR2gz1_46W6DW0gPqwmADt_Q8y45ETgvABajDt2dpC47eWIvMx5tj2_8Tq5jk-Su2iwKb1d3oe3qz2RvRpSFb4wUQo6wxHkPMjo5bxiRhS6Kcz7vErfNbyFYNE5E33-vIgPHL6TJZc3DpoivSlCajw6YLK5gCkDPncbyjzI7zk5AfKpOqZkFL3j5Nk4GPF4vcEUL72FZUI5Ue6YvQU3bT1q9k04d36TOs_zTLwpe0e5F755PX9Urj05MdU4ZUUePTKBMT00XJW2wVifPQsZnj29GSM489r2vAj5yr1ah3u229CePXbjmD1QBfW4IvsAvsZfJD0XmGU4Klj3uKwJOL22cms3QXF2Pd40Qj1fnKK2V8IDvAAIjjyM4po4wqTYPTYqJr17tC25ClwIveLDkb08pVi4KusQPH-e67waMYU3VTETvE6ZWz0Nr8s3P47GPSveCL6HIrS4ITK2PDs54z0EGwY5KZ5pvHjNkD2h5pq4Wu3GvQ8UMz1o2_s37Yh5vQe9rTxkxcA3IAA4E0AJSG1QASpzEAAaYDT4ACPvItQsDFvv_N3gC9zi6dcw0x__Abb_7Bzy_efm0ZwQ7gAf8QnhoQAAAB01xgEPAOt_Bdj5T_Q3Ccu8BSEaayUgOqjrExTMwzYAIAfz8e8iPgDu65EgXdmsJEcZHCAALfWsFTs4E0AJSG9QAiqvBhAMGqAGAAB4wgAAQEAAABxCAAAAQgAAYMEAAHxCAACUQgAAkEEAAMDBAAAcwgAA4MAAAAAAAACQwQAAAEAAACDBAACgwQAAwMEAAPDBAAAgQQAAwMAAAJhBAAAIwgAAEMEAALDBAACQQQAA4EAAAIDBAACgQQAAQEIAAFBBAAB0wgAAgEEAAKjCAADgQQAAcMIAAFDBAABgQgAAEEIAADBBAADAwAAAgEAAAPBBAAAUQgAAoEAAAMDBAAAUwgAAIMEAAADBAACAwAAAAEAAAFDBAAAMwgAAEMIAAGDCAADoQQAAEEIAAGDCAABswgAAMEEAAJBBAADQwQAAVMIAAJzCAAAowgAAIMEAAOTCAACQwQAAgMAAAJrCAACYwQAApkIAADDBAADowQAA8EEAACDBAADgQQAAoEAAAPhBAACmQgAAuEEAAKBAAACiQgAAmMEAAIhBAAAAQgAAoEEAAGxCAAAQwgAAMEEAAEDBAABgwQAAVEIAADjCAACgwQAAMEIAANDCAAAQQQAAlsIAACxCAABEQgAA-MEAAHDBAAA4QgAAIEIAABDCAADwQQAA4EAAAPBBAABAwQAAREIAAERCAACoQQAAMMEAANJCAAAYQgAAuMEAANhBAACAQAAAfMIAAODAAABwQQAAYMEAAJBCAACwwQAAkMIAABDBAACQQgAAOMIAAMDBAADYQQAAgEAAAFDBAACAvwAACEIAAFBBAACgQQAAREIAADDBAAAAwAAA0MEAAEDAAAA0wgAAgMAAABDBAADAwAAAAEIAACDBAACkQgAAPEIAAExCAAAAwQAAAEIAAGxCAAAAQQAAEEEAAODAAADowQAAgD8AAMDAAABgQgAAFMIAAHBCAAAgQQAAuMEAAIC_AAAQQQAA0EEAAI5CAABAQgAA4MEAADDBAACGQgAAgEAAAFTCAACYwQAAAMAAAAAAAACowQAA8MEAAEBCAACEwgAAEMEAAHjCAAAswgAAHEIAAGBCAACawgAAiMEAAARCAACYQQAAQEEAAJBCAAAUwgAAgL8AABDCAAAkQgAAZEIAAJjBAACoQQAAJMIgADgTQAlIdVABKo8CEAAagAIAAJg9AAAwvQAAFD4AADS-AADIPQAAlj4AAII-AAD2vgAA_r4AAEQ-AACAOwAA2L0AAOg9AAAsPgAAHL4AAKC8AAC2PgAA4LwAAAw-AAD2PgAAfz8AAHA9AADYvQAAQDwAADC9AAAwPQAAND4AAHC9AABMvgAAhj4AAIg9AAAcvgAAMD0AAEC8AACKPgAAFL4AAOg9AADIvQAAFL4AAOg9AACuvgAAEL0AANg9AACIPQAAmL0AAOA8AAAEPgAABL4AAFC9AACKvgAARD4AAEA8AAB8PgAAmj4AADA9AAAwvQAABT8AADC9AAAMPgAAoDwAAEC8AADgPAAAqD0AAAS-IAA4E0AJSHxQASqPAhABGoACAAAwPQAAED0AAJK-AABHvwAANL4AAJg9AACmPgAADL4AADS-AAA0PgAABD4AANi9AAAkvgAA6L0AABQ-AADYvQAAmL0AABc_AADovQAA4j4AAOC8AABsvgAAHD4AAGS-AAAQvQAAJL4AAHS-AAC4PQAA6D0AAKi9AAC4PQAAMD0AAHS-AAAcvgAAPD4AAHC9AACCPgAAdD4AACS-AAAkvgAAxj4AAFA9AABcvgAAyD0AALi9AACaPgAAf78AAFy-AAAEPgAARD4AANg9AABQPQAAiL0AAGw-AACIvQAA-D0AAIi9AADgPAAAyD0AAJi9AAAsPgAAtj4AANg9AAAsviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=5TFu_sh_orM","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":576,"cheight":360,"cratio":1.6,"dups":["2625225150792192952"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"84486219"},"280291901679885100":{"videoId":"280291901679885100","docid":"34-0-4-Z0DA4FE3508DB1FC4","description":"Example of using the Extreme Value Theorem to find the absolute extreme values of a continuous function on a closed interval.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3355059/80a08b9c94af85cacc0323bf3f0547c1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/nFPqKgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYE57SJzL8r8","linkTemplate":"/video/preview/280291901679885100?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Screencast 3.3.2: Finding absolute extreme values","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YE57SJzL8r8\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFAoSMjgwMjkxOTAxNjc5ODg1MTAwWhIyODAyOTE5MDE2Nzk4ODUxMDBqtQ8SATAYACJEGjAACiloaHZwaXljb2hpZ2dhbGpoaFVDQUcydTJLRWtrR3k0eVdHZUthX3U3URICABEqEMIPDxoPPxPnA4IEJAGABCsqiwEQARp4gQj3-goB_wD9AgUC-gb-AhUC8vr1AgIA4wX9AQD8AgAB_Q4J_wEAAA0N8_wIAAAA9wD0Avr_AAAVCf3_BAAAAAcN-Q78AAAACvkDA_8BAAAAD_0AA_8AAO72_w7_AAAA9wwS-_8AAAD-_P79AAAAAPz0APv89f4AIAAtB3zUOzgTQAlITlACKoQCEAAa8AF3BwgBzfzm_-H47v_bK8QBgSIK_hAV1ADO9_8A2_DZANIK-QD2Dv3_4__-ANAr_v9F3-_-9rX3ACDE9__81u4B4gMOARPdBAFS_PwBGsXpAMwRNQH95wIAF9nVAwQJCv8DHRf9JgXa_g7_1wMi_CwBLgAmARLv_QTr8P4D8gcIAO3f2_4XAO8DA_30A-L2LQf85egBFBII-uwi_gQF0uoF_uEW_Qcr1_4W-AcIAwoKBQHk6QYQAd8BFB8h_ucS4Qj5Bg8B1-cS-OsMAwEE1AP75hDxCDDzAAwb0_7-9fbyDe0D8vPVCQoT2t3_FQvt9_YgAC3_IR07OBNACUhhUAIqcxAAGmBJAQAzISK_BwRV4wvaKPLvwuPF8AQZ_-Hl_97xzeIGAPOs-AsAAqsz6ZwAAAApC6MK5QDtfyHhJhPw7_iQ3enYL30MHBSU1hgjuaUp9fAdGPIQNi4A-uqpRVjkxCo6_ewgAC03ZQ87OBNACUhvUAIqrwYQDBqgBgAABEIAACDBAACoQgAAaMIAAODBAAAQQQAAZEIAADxCAACAwQAAMEEAAHBBAADQwQAAiMEAABRCAACYQQAAMEEAACBCAABQwgAAIEIAAAAAAACAvwAAMMEAAIbCAACIQgAAPMIAAAAAAABAwQAAYEEAAHDBAABAQAAAbMIAAHBBAACowQAAoEEAAFjCAACIQgAAwMAAAHRCAADgwAAAAEAAANBBAAA4QgAADEIAAGDBAACoQQAAiMEAADRCAABoQgAAmEEAAARCAACgwQAAPMIAANhBAAAQQgAAnkIAAGDBAABcwgAA2MEAAPhBAAB4QgAAJEIAAATCAACSwgAABMIAAAxCAABwwgAAWMIAABzCAABswgAAHMIAACBCAACIQgAAYMEAAKBBAADgwAAAsEEAAKzCAABwwQAATEIAAGRCAAAAwAAAeEIAAJDBAAAAwAAA4MEAAJhCAACAQAAA4MEAAKhBAABwQQAACMIAAGRCAABIwgAA4EAAALhBAAAMwgAAVMIAAAAAAACIQQAAuEIAAHTCAADIwQAAwEEAAOBAAAAAQAAA4MAAACzCAAAkQgAAQMAAAGxCAAAQQgAAyEEAAFzCAADAQQAAJMIAAFhCAACQQgAA6MEAADBBAAAwwQAAgMEAAIjBAABMQgAA4MEAADzCAABQwgAAdEIAAKDAAAAAwgAAAEIAAODAAAAcwgAAmEEAAMBBAABowgAA0EEAABzCAAAwQgAA4MAAACBBAABYwgAAQMEAAIBAAACYwgAAZEIAAEhCAADAQAAAREIAALhBAAAwQQAATMIAAIBBAAAkQgAAgEAAAKBBAAAQwgAAgsIAAADBAAAMwgAAYMEAAFzCAAAAQAAANEIAAADAAAC4QQAA6MEAAIDAAACKQgAAgEEAAIzCAADIwQAAQEAAABBCAACYwgAAQMIAAMDAAABAQAAACMIAAJBBAACAQQAA5sIAAKDBAACQQQAAQMEAAOhBAABowgAAhsIAANjBAAAgwQAAoEEAABhCAACgQAAAFEIAAGjCAAAcwgAADEIAAIC_AAAEQgAAnkIAAEhCIAA4E0AJSHVQASqPAhAAGoACAACKPgAAmL0AAB8_AACgvAAAyj4AAIo-AADOPgAAeb8AAPa-AAA0PgAAur4AAES-AAAcPgAAbD4AANi9AAAMPgAABD4AAEw-AABsvgAAPT8AAH8_AACavgAAcL0AAAS-AACYPQAAPL4AAFQ-AAAkvgAAjj4AAL4-AAA0PgAAjr4AAFC9AAC4PQAAmL0AAHy-AAAUvgAAor4AAP6-AACAOwAAmL0AAEw-AABQPQAA-L0AAOa-AAAsvgAAPD4AAFS-AAA8PgAAqL0AAAQ-AACYPQAAMD0AAK4-AAB0vgAAoDwAAGU_AADIPQAABL4AAJg9AADgPAAATL4AAJI-AABMviAAOBNACUh8UAEqjwIQARqAAgAAnr4AAIA7AABwvQAAd78AAOi9AAC4vQAAmD0AAEC8AADIvQAATL4AABA9AACYvQAAfL4AAJi9AABEPgAAUL0AAAy-AABHPwAAUD0AAJY-AABAvAAAjr4AAEC8AAAkvgAA2L0AADy-AACgvAAAgDsAAI4-AABQPQAAgDsAAFA9AACYvQAAgr4AAEw-AABAvAAAJL4AAIA7AAAsvgAAgDsAABA9AAAMvgAADL4AAOg9AAAsvgAAmD0AAH-_AAB8vgAADD4AAHA9AAC4PQAAgLsAANi9AACoPQAAuD0AALg9AACAOwAAoj4AAFQ-AAAUvgAApj4AAJg9AACoPQAAZL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=YE57SJzL8r8","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["280291901679885100"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"138422541"},"282140083623236304":{"videoId":"282140083623236304","docid":"34-2-12-Z861B9A301F48C214","description":"MTH 201, Screencast, Active Calculus, GVSU, Talbert, screencast, calculus, math, mathematics, concavity, second derivative...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2407423/94774aa9165836773a503e803c45e434/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Oj_kVwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Do1_o4E-LGsA","linkTemplate":"/video/preview/282140083623236304?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Screencast 1.6.3: Determining concavity from a graph","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=o1_o4E-LGsA\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFAoSMjgyMTQwMDgzNjIzMjM2MzA0WhIyODIxNDAwODM2MjMyMzYzMDRqtQ8SATAYACJEGjAACiloaHZwaXljb2hpZ2dhbGpoaFVDQUcydTJLRWtrR3k0eVdHZUthX3U3URICABEqEMIPDxoPPxPOA4IEJAGABCsqiwEQARp4gfb6Av4BAADw-hIGBgT-AQEI_gj3_v4A_fcBAv8G_QD7_Qfu_QAAAAH8-P__AAAA-Qf68vb-AQACBQgHBQAAABEA8vb8AAAACQMICP8BAAD-CAMAA_8AAAMCCQgAAAAA7QgB8___AAAMCfj8AQAAAAzw-fQAAAAAIAAtrT7ROzgTQAlITlACKoQCEAAa8AF_8xj-jgbA_OXd9wCqze8Bgyrk_iYx1wC_3OYB5v3PAdbWIgD5QPj_6gbtAIE3KgHcB7b_2NVJAGesDP_7xucB0_AoASX59QArPfYAGB0P_uZFFP0g9RQA2dTA_vA93v8pEh3_Eg_OAeLNywBf-DcA8On0ASHhCf_SCiIEvvYh__c74P78CQIFL-Tm_sXmJgIVAQT69WXgAAPz9_oQGzcFERYB_Q8y6vEfJwoHGv_6Cev2_Qfd9_D--CoAAsUKxfz58xUB8d4L_cvo-foHzhbx9Rf0An8o__ww6u0AGAoCEL0ZAfbo5ATt0hHy_Oy7__IgAC0dBuc6OBNACUhhUAIqcxAAGmAt_ABQswXOFPVf6vLq_BEOB67lHBER_x3D_w4w1Brvz-fyIur_Fc8g8p0AAAAW77El9gC2fuDp_yb3YTO69e4FAX8wHhWj2__5_rr80CAtLzMR8h0A5N3NLyCtjxFW_g0gAC2v8RE7OBNACUhvUAIqrwYQDBqgBgAAmMEAAODBAACgQQAAyEEAAODBAACUQgAAoEIAAHhCAABswgAAAEAAAHDBAACwwQAARMIAALhBAACgQAAAMEEAABTCAABgwQAAAMAAAODAAADYQQAA2EEAACzCAAA0wgAAwMAAABRCAAAQwQAAkEEAABBCAABAwQAAEMIAACRCAAAcwgAA6EEAAJbCAABwQQAAfEIAAKxCAACgwAAAgEAAAMhBAACgwQAABEIAAEBBAACAQQAAQMAAAATCAADIwQAAIMEAAGBCAAAAwQAAuMEAAIC_AADYwQAA2EEAAEDAAACewgAA2MEAABxCAAAEQgAAQEIAAILCAAB4wgAAgMEAAFBBAADqwgAAUMEAAPjBAACwwQAAkMIAAGhCAABAwAAAxsIAAOBBAAAEwgAASEIAAIC_AACwQQAAukIAADhCAABswgAAUEIAAODBAAAcQgAAFEIAAIDAAAAcQgAAQMAAAMDAAACgwQAAXMIAADBCAABowgAAsEEAAIhBAACkwgAAyMEAAFjCAABoQgAAUEEAACzCAAAswgAAoEEAAEhCAADowQAADEIAAEDBAADAwAAAMMEAAKxCAABEQgAAKEIAAKDCAACGQgAA-EEAAJDBAAAAQQAAwMAAALjBAADgwAAA0EEAANjBAADgQAAA6MEAAAzCAAAYwgAAVEIAAABBAAA8wgAAMEIAAKjBAABAwgAAEMIAABBCAADgwAAAgEEAABRCAAAwwQAAkMIAADBBAACwwQAAQMEAAEBBAACowQAAsEEAAIhBAAAwQQAAgMAAANBBAABQQgAAUMEAAIhCAACUQgAADEIAALBBAAAAwQAACMIAAFDCAABwwQAAmkIAAGTCAAAgQgAAFEIAAKjCAACgwQAAcEEAADBBAABkQgAAmEEAAIjBAAAgwgAAIEEAAAAAAAB4wgAA2MEAAADBAAAUQgAA2MEAAHDBAAAMQgAAaMIAAODBAABAwgAAisIAACxCAAAsQgAAfMIAAPDBAABMQgAAAEAAANBBAACqQgAAuEEAAADAAAAYwgAAHEIAAARCAACQQQAAQEAAALjBIAA4E0AJSHVQASqPAhAAGoACAACgPAAAQDwAALI-AADIPQAAoDwAAJg9AACIPQAA2r4AAFS-AADIPQAAED0AADA9AAAcPgAAMD0AACS-AACYPQAAND4AAMg9AACgPAAAdD4AAH8_AAAQPQAAML0AACQ-AACYvQAAHL4AAJg9AAD4vQAAmL0AAAw-AACgvAAAiL0AAIi9AAA8PgAAMD0AALg9AAAUPgAAtr4AAKK-AABkvgAAZL4AAPi9AACgvAAAHD4AABS-AABwvQAAyD0AALg9AACYvQAABL4AAIY-AABAPAAAyD0AAHw-AADCvgAAEL0AAAU_AACYPQAAML0AABA9AACgPAAAUL0AANg9AACCviAAOBNACUh8UAEqjwIQARqAAgAAqL0AABA9AACovQAAMb8AAHC9AAAcPgAAcD0AAIi9AADovQAAHD4AAKC8AAAMvgAAmL0AAJi9AAAEPgAAmL0AADA9AAApPwAAqL0AANI-AAAkvgAAqL0AAMg9AABcvgAAQLwAAKC8AACgPAAA4DwAAPg9AACAOwAAQDwAAKg9AABQvQAABL4AAIg9AABAvAAAgDsAAIY-AACovQAA2L0AAEQ-AAAQPQAAiL0AAEC8AACavgAA2D0AAH-_AAAMvgAAcD0AAKY-AABwPQAAiL0AAIA7AABsPgAAmD0AAIC7AADgPAAA2D0AANi9AACgvAAA-D0AANg9AABEPgAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=o1_o4E-LGsA","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1122,"cheight":720,"cratio":1.55833,"dups":["282140083623236304"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2996544861"},"410827777004243502":{"videoId":"410827777004243502","docid":"34-11-0-Z03452A8E871660C2","description":"This video gives an application of the Division Algorithm and integer congruence to a classical problem in cryptography.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2743364/f7ab7fcad599ac24e5633559d57b004b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/wasYYQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcNJqWyQ4PaQ","linkTemplate":"/video/preview/410827777004243502?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Application to Cryptography (Screencast 3.5.4)","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cNJqWyQ4PaQ\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFAoSNDEwODI3Nzc3MDA0MjQzNTAyWhI0MTA4Mjc3NzcwMDQyNDM1MDJqhxcSATAYACJEGjAACiloaHZwaXljb2hpZ2dhbGpoaFVDQUcydTJLRWtrR3k0eVdHZUthX3U3URICABEqEMIPDxoPPxOAA4IEJAGABCsqiwEQARp4gfgAAgYB_wD0AgwAAwT-ARYC8fr0AgIA7AL7BAAAAAAI-wz0_gEAAP309QkGAAAA7QAK9vgAAAACDgD7BQAAAB_98_r8AAAA_wMMBP4BAAD8CP4GBP8AAAAFCP7_AAAA7wgDBv4AAADr_gUNAAAAAP7uA_gAAAAAIAAt9AnQOzgTQAlITlACKoQCEAAa8AF_BfsC1RTuAPb16gC7FgEAix8K_wgb6f-lIhkCyef2AOMZ7wDV-87_-BoUAMQEFAAg7t3_Dt0EAE7k7QA3_AAA8wMVAFPsAAAq9foA8eXf___-Nf_61jAAH_4i_v_m9P_yEhUA6-b4_ff14AUt8RwCBPkYART2HQLw0xgD5BwAAinw4f3i7-4DAgHm-tjuGgL2AvL8ARMC-sgA9v8f_ukC8PIJ__0C6QYw_QEE__QD_Rvq6P4F9_D8-gr2CNcb-QYFDAUB3AL6__0FAg0k6vgA7vn9_vvrBAf2BO_-EesI-vT6Cf_dEv789RAGAuQH9u8gAC3g4Sk7OBNACUhhUAIqzwcQABrAB-li076K8AU9kHjDPEKk8LxxRC09CebDvA3-_r1SDqY8iF2APBiYBT6AM-s7f7O9u9GuUr6fZIE9Lq6MPMVVhT5UMG-9m38qvHE9Wr7nFr89hUyovPWha76E0wc9dDXDu2RMUD1Gz608-6qeugqdFz6TmxW8EYqtvAGcxbt9_sG7oJJuvaj8a732C7Y8LoxUvVrfNj3p2528U5HKPOYDQj72PU-9RwEBu_ViLT1ZVJ88cbvhO3R76b2lFsq8u1qTvP5ukD3H7HI7oXMNPdxVfrz91z69yiCxuutrIr3-g6M8FvtLOxhA-Dyyp5O8dIcBvEh3tj0CeFU8vwrVPK35Ab5UpZI8IdHfOxsqmz1YnUY930wvu8sGo72G1W49ptzYPCNsdLsQ37I6UDqRvM98oz24MlI9p9BUPG_KprxZYq88YqylPC5MMD1C-bE9ylX5uVPKoD0sd1C94rEbvISODD0fgiq8lpWmvOnw0L1sejA96fORvKQsjT2dHBW8eWyROyxnuj2R-gQ84hBgPMlTWz0AgI29qDBbPA_d4jx1dBy-GGL6udCg_DxQidA8inEAvCKK6T39-ye9wf5rvDF2R706voy9sH03vMM-mz0TjzW9JSQSPKjiBLsJWRe6ljI6PL9rp7s6w7k81jV_vDd1-TzVQik94B-Au5-muzxR_LO9lwabO9pVCD583jA6VJ0Cu7CFqj12tjG9UT47OtrHKj0hSzW9gLa4u8naUL0g33S9SNkhuZ3qmryQQw49NF06u8o0-j0Te828WYZhOHqjGz2cPqE94FPgOQIPCjwoHc84EeNIOie1sT2L-BO91YBHtmr2I7vvnae9YkjcuP3Y5Lyswgm8zyViO3OJwDpkLMk8Mx80OOn2rbwlO_a9ubzMOC09Hjw5SU68IehzuKZf4j042Ua9anleN6DF0rz2IGm9GN-juW0xyTwoSfK8tJ6sOGl7Cj2TFWg8G5CpOEyoAD3H8J29_u4wOQOwprwQcdo7oNa7NgbOYz0NKyY9y9VLtofSZrsr3T09KN79N5oHED3eOMm9CDT7NiM28Ts7_zY911yWuLSQEL7YjKI9mXsEt9BhPrw-VlW9LXhGuOIcmjwFIrq8bjuEt62asbuismG93Qi0N7EVBD7G__g7MtlTuER4qrxBfYu8P3VCNx4qeDslBOu9I79nOO2Rl7xB9oU9foWfth2XDD1JD0O-VDFNucr0cD0i4Ss-8cuKOJe7A7zS08E9UWrJuOcjn703wHE87WSXtzQo_7yFR7i6wWI-OCAAOBNACUhtUAEqcxAAGmAbEgAnEBq76Ohw5uDs2gsZ0K7K_wkH_wbi_8wN7QMt5selGPP_5tgP4aYAAAD_FsQd4wDfePYJ2h_ZIBLB4uEuA38LIkKFtw3VyfYW9eFF-wfm_igA7uimLjfg5zJH_tsgAC3aTxc7OBNACUhvUAIqrwYQDBqgBgAA2EEAAJhCAACQQQAA2MEAAIxCAABwQgAAcEIAAMBAAABowgAAQEAAAGBBAACawgAANMIAAABAAAB8QgAAAAAAAKBAAACowQAAkMEAAFzCAAAgwQAAsMEAADDBAAAMQgAAgD8AAAAAAACYwQAAyMIAAJxCAAAgQQAAiMEAACxCAADawgAAsEEAADDCAACAPwAABEIAANJCAADgQQAAFEIAACRCAACgQQAADEIAAOBAAABQQQAAsMIAAATCAAAIQgAANEIAADBBAABMwgAAwMAAAJDBAACgwAAAaEIAAARCAADuwgAA-MEAALDBAAC4QQAAIEIAACTCAACAwAAAhMIAADRCAACAwgAAqMEAAMDBAABwwQAABMIAAHxCAADUQgAABMIAAIA_AABwwQAANMIAAHDBAABQQQAAsEEAAIjBAACKwgAAlEIAANjBAAAYQgAAQEAAAPBBAACgQAAAsEEAAHhCAADAwAAAuEEAAHhCAACAwAAAoMEAALjBAAAQwQAAgMAAAHDBAAAcQgAA4MEAALDBAABUQgAACEIAAJjBAACgQAAAAAAAAKjBAAAIQgAARMIAAExCAACAwQAA4MAAADBCAABEwgAA0MEAANBBAAAwwgAAEMIAADjCAADIQQAAQMEAAGjCAACSwgAAEMIAAODAAADIQQAABMIAAODBAADAwAAAyMEAAIC_AACAwgAA4EEAABxCAABMwgAAAEIAANhBAAD4QQAAgEEAAATCAACAQgAA4EAAADRCAABQwQAASEIAAGBBAABMwgAAsEEAALBBAACAwAAAQMEAAMDAAACAQQAAQEEAAAAAAAB0wgAAdMIAAADCAAAgwgAA4EEAAJjBAAAAQAAAIEEAAEDBAAC4wQAAqMEAACBBAABQQgAACMIAAHDBAACQwQAALEIAABzCAACgwAAAoMAAAEDBAACKQgAAcMEAAABCAAAYQgAAksIAAFTCAABQwgAA4EAAADRCAABwQQAAEMIAADBBAAAYQgAAwMEAAATCAACGwgAAokIAAARCAACAQQAAcEIAAHzCAABMQgAA6MEAAADAIAA4E0AJSHVQASqPAhAAGoACAAD4vQAAMD0AAHQ-AACgvAAAuD0AALg9AAAsPgAA5r4AAOK-AADIPQAAQLwAAMg9AABwPQAAqL0AADC9AACovQAAuj4AAFA9AAAsvgAARD4AAH8_AACYvQAAcL0AAAw-AAD4vQAAlr4AAHC9AAC4vQAABL4AADQ-AAC4PQAAPL4AAJg9AABAvAAAED0AANi9AADIPQAAvr4AAGS-AABAvAAATL4AAOC8AADIvQAAgDsAABy-AABwPQAAPD4AADy-AAB0vgAAtr4AAMg9AAD4PQAAqD0AADQ-AACavgAAcL0AAA0_AAAkPgAAFD4AAFQ-AAAQPQAAiL0AAIg9AABkviAAOBNACUh8UAEqjwIQARqAAgAAPL4AAOg9AAAcvgAAI78AAEA8AACgPAAABL4AAFC9AABAvAAA6D0AACy-AACYvQAA4LwAAOC8AAAEPgAAmL0AAJg9AAAbPwAAUL0AAOo-AADgvAAAML0AAFw-AAA0vgAAiL0AACS-AABQvQAAED0AAJg9AACAOwAAUD0AADw-AACgvAAAoDwAAJg9AABQvQAARD4AALo-AADovQAALL4AACQ-AAAQPQAAFL4AAKi9AADgvAAAVD4AAH-_AABQvQAA4DwAAGQ-AAAUPgAA6L0AAOC8AADiPgAAmL0AANg9AAAQPQAA4LwAABA9AAC4PQAAoDwAAKC8AABwPQAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=cNJqWyQ4PaQ","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1330,"cheight":1080,"cratio":1.23148,"dups":["410827777004243502"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"283224350"},"4726237740371245236":{"videoId":"4726237740371245236","docid":"34-8-12-Z52B7E14B4D5A50D3","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3487963/7d41fc1fa2ca7384de69479a0f631ff7/564x318_1"},"target":"_self","position":"12","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DlD-71JDT_24","linkTemplate":"/video/preview/4726237740371245236?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Screencast 10.7.1 Introduction to Optimization","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=lD-71JDT_24\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFQoTNDcyNjIzNzc0MDM3MTI0NTIzNloTNDcyNjIzNzc0MDM3MTI0NTIzNmquDRIBMBgAIkQaMAAKKWhodnBpeWNvaGlnZ2FsamhoVUNBRzJ1MktFa2tHeTR5V0dlS2FfdTdREgIAESoQwg8PGg8_E7oDggQkAYAEKyqLARABGniB7gX8BQH_AO8JAvz7AQABJ_7_CvQEBADiBf0BAPwCAPv9B-79AAAAAv0A-AIAAAAGCPn7-f0BAAgCD_IEAAAAE_gC_vcAAAADAAQD_gEAAPAF-v0DAAAACwoE-_8AAAD5Fgj8_v8AAP4IAwwAAAAA--v-_wAAAAAgAC1qLM87OBNACUhOUAIqcxAAGmAhCgD9-unV4A1R69312SIG-vXYFPUL_-zrAAQ68O799ge3FOX_A-UdC7sAAADvD9Yz8gAEWBEBzkPoGB7c4_kOKX8m9gLY7twg7BEv3hIJKQbaFyEA9-ANGvXvwR0OCR4gAC3oIEs7OBNACUhvUAIqrwYQDBqgBgAA-MEAAJhBAABgwQAAEMEAABxCAACgQQAAukIAAIjBAAD4wQAAEMIAAKRCAABQwQAAHMIAAHDBAAAUwgAAqEEAAEBAAABAQQAAgL8AAIBAAADowQAAOMIAACBBAAD4QQAAUMEAAAhCAAAgwgAAuMEAAABAAAAsQgAAgMEAAExCAABswgAAqMEAADTCAACYQQAAyEEAACRCAAAwwgAAwMEAAEDBAABMwgAAnEIAAGBBAAB4QgAAgsIAAJDCAAAkQgAAwEAAAGjCAABAwQAAcMEAAMDBAACQwQAAQMAAAFBCAADQwgAAEMEAAAxCAACAPwAA0EEAACDCAAAAwQAA4MAAAKDAAAAAwgAAPMIAACDCAADIQQAAnMIAAIhCAABswgAAkMIAABRCAADIQQAAFMIAAMDAAABwQgAAcEEAAODAAABwwgAA6kIAAGDBAAAAwAAAoEEAAKBBAAAQwQAA2EEAAJDBAADIwQAAPMIAAKRCAAA4QgAAVEIAAIC_AABAwgAAgMEAAEDCAABUQgAAJEIAAHDCAABAwQAACEIAACDBAACcwgAAiEIAAAxCAACgQAAAiEEAAJZCAACwQQAA2MEAANDBAACCQgAAhsIAAEDAAABgQgAAAMEAAIDCAABEwgAAQMAAAJDBAACAwAAAAAAAABTCAACQwQAAwEAAAODBAACgwAAAaEIAAIA_AAC8wgAANMIAAGBBAAA4QgAAuEEAAERCAAA4wgAA-EEAAFjCAABgwQAAIEEAAIDBAAA8wgAALEIAAPDBAACwQQAAoEAAAAxCAABwQgAAgD8AABhCAABQwQAACEIAACxCAAD4wQAAwMAAADRCAADQwQAAEEIAADDBAACAQAAAlMIAAFDBAABQwQAAgD8AACTCAACOQgAAoEIAAOjBAABAQgAA2EEAAJjBAAC2wgAAQEAAADjCAAAIQgAAmMEAAPBBAADIQQAABMIAAIjBAAAgwgAAgMEAAJhCAABQwQAAIMEAAIDBAAB8QgAAkMEAAIbCAAAsQgAAqEEAAATCAAAAwQAAIEIAABhCAACgwQAAsMEAAIDCIAA4E0AJSHVQASqPAhAAGoACAABEPgAAQDwAAEC8AACIvQAAfL4AAHA9AAAUPgAA5r4AANq-AAB0PgAA2L0AAEQ-AABcvgAAJD4AAJi9AAAkvgAA2D0AAKC8AAAUvgAA_j4AAH8_AABQPQAAED0AAHC9AAAcvgAAbL4AAEC8AACovQAA4LwAAAw-AAAwPQAA6L0AAHA9AABQPQAAdD4AABy-AACWPgAAhr4AADS-AAC4PQAAPL4AAJ6-AABQvQAAED0AABC9AABAvAAAqD0AAFC9AAAwPQAAtr4AACQ-AAAQPQAAcD0AAAw-AABQvQAAED0AACM_AAA0vgAAHD4AAKi9AABQvQAADD4AAHQ-AADovSAAOBNACUh8UAEqjwIQARqAAgAA4DwAAFC9AAAMvgAAE78AAAQ-AABEPgAAED0AAJg9AACAuwAA6D0AAOA8AADoPQAAML0AAIA7AABUPgAA4LwAAPg9AAAjPwAA-L0AABM_AABMvgAAgLsAAOg9AABMvgAAQLwAACy-AAAkPgAAQDwAAGw-AAAMPgAAoDwAAMg9AAAkvgAAuL0AABw-AAAQPQAAqL0AAK4-AADYvQAAML0AAIo-AACAuwAAyL0AAEA8AABcvgAAJD4AAH-_AABwvQAAFD4AADw-AAC4vQAAQLwAAES-AAAsPgAAgj4AAPg9AABAPAAAdL4AAKC8AABQPQAAgDsAAHA9AAAcPgAAFL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=lD-71JDT_24","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4726237740371245236"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1509785881798106465":{"videoId":"1509785881798106465","docid":"34-4-17-Z5FD7F37D04F35B22","description":"MTH 201, Active Calculus, Frobish, GVSU, -Grand Valley-, mathematics, math, tutorial, screencast, Calculus, FTC, definite integral...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1653298/129ec80fa429061374c0a3c5cdc9e2e9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/QuD3FAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSafcRvQKe4g","linkTemplate":"/video/preview/1509785881798106465?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Screencast 4.4.3: Fundamental Theorem of Calculus with exponential functions","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SafcRvQKe4g\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFQoTMTUwOTc4NTg4MTc5ODEwNjQ2NVoTMTUwOTc4NTg4MTc5ODEwNjQ2NWqHFxIBMBgAIkQaMAAKKWhodnBpeWNvaGlnZ2FsamhoVUNBRzJ1MktFa2tHeTR5V0dlS2FfdTdREgIAESoQwg8PGg8_E9wDggQkAYAEKyqLARABGniBAAj7Dgj3APT4BwoQB_sBEgkEDPQBAQDyFPkDBwL_APkOA-oAAAAA-RIE_gcAAAAA-vAO9_0AAAwBAP_pAP8ACvYBCPwAAAAaCvUJ_gEAAPgK9QIE_wAADQX3BgAAAADqEAr9_v__AAcPDAsAAAAABv4MDwAAAAAgAC3u8L07OBNACUhOUAIqhAIQABrwAXwU_P_c9ucByQLoAece-QGBCi3__DbQALjo8gCkFMf-_hnzAO3y9wDeKCoBnhMNATbTzv7q3_sALNUO_xTtFAAKHvIAFMQDAC8AMQH-Avf-ySMd_vfkEgD9xN0AAhnmAwHwBv7U4soB7AO_AiIWKAH4ASgGLvsnAdfWJALn9vQC4PHv_RsPBwThuxX-1gUkAu7Q9wEA7AT-rSH1_QgL-f_y1CX_-j7j-i7vBQcXBP_80Bf49_wB5QQKHBIF3g_vA_L2KALz5An-093_B0zkEQzhAPcFCdvoAfHlBP348Q8F7vP6_M4BAfz1D_cN-vf47yAALVAjDTs4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6CgfMvVcPFLw0hQ692d_DvX46uzuAvog8Z5owPiCRW7xD5K05gQgBvjc-ST2ubYC8xVWFPlQwb72bfyq8ehcvvgg8MD0pn9S8FRxOvqxNyDw1lx873PUSPZELzrygBxC7oOLYPWE8nrzFT4i8w_hEvEyJRD0tWVq93JsEPNST3rz87QG9Zz0CPAASGbymBwc8bM_MPUI6H7x3gVQ7NDzHPHADk731XTa81jEzvY1S-Dw0P8i8hFkSPbjnWT1iIBk8SXQlvQhcEr3-XHq7EXaVvQ8JX7ykJFq8NuwyPQANBT3E0ju9aTPzPB5v8r3XJdM6qMghvgJ8HD3o6W088IsLPvM_s7viOsY70lebvd1IVD0a9C27mscKu1iTgr2u9YW8xxL3un5uCD31RvM7pyqIPb_Cl7vb5nw8qh5GuoCBgD1U02Q89PNQPdPAD727kq68HLZNPZCuCL0SaZu8wwqcvUk1xzwkKYq7M8mTPbLnfDw0EfQ77N7KPFOeDz3hqnw8cArrPEXvub32R-W5bamjvdnFPr3Hi7-7HW3BPTlpED0uBX-8bvzpPUzkrb0rc6m7-dAPvdfep7p-Wt47baSRPF7Ieb0frDU7TQVGvWGq2TxHV2m7v2unuzrDuTzWNX-8nfiou-mRcD1V50W7Hd6NvXLbY73NSjs6oYbPPaUX0juj6rK7TBGaPUh9Yz06hV65a7uEPfuzerw3uWe7WiiOvUd1ir2A9xi6O7ECvcvzoLyzcUy7oZ3TPVGBmL2XnVE5HHoLPeLGEjxNLyi6X61_vS7isD0JAjo5m3DxO4BEOL22w2k4XFQLvZwV8b3cnnU5ePf2vFjypzx765k4LrrpO8x5az0cvE05PkKdveiqVL2Wh065OJagOgL-3zzgxUi3HTXLPVCWUD1brGE45fL6PL_8WLif-yq5na8DvY4IhLu_FiU5ZXimuwCUGj02cdA4JEbPPG5chb1JXJ84xFY1PXlhxj225i64dUc1vB3TST37LDK3EXPpPb_COD0Gl-o3FRSQPHPlgr2P6Xw4pivYPUaYAj2BRn-4tJAQvtiMoj2ZewS3mhL_vL2yJr0Vuse3oM5rPc0muLuuq703FYNRPG9WzrwlJhA4wqTYPTYqJr17tC25bh5ivbErsr0Tv7-4Kv0lu-Nm3bygGck2rSRDvQxzRz0ewRY3DRJHPHR89L1WWFm4yvRwPSLhKz7xy4o4l7sDvNLTwT1Rasm46FWzvRYk7DzNuCE4xd1Fvf-r0Lqmgzw4IAA4E0AJSG1QASpzEAAaYDgLAC4VFs_Z11ra9rHp5b7EAPb51ej_FcAA1xW-GOoJt7XuIf8Dyjn0ngAAACIczkC7AOp_5wjbJPcd_7Dl3hpBZB0rQJfuBfzRpkI89-sE69DQPwD5D6EEPNe0IikTACAALRO9Djs4E0AJSG9QAiqvBhAMGqAGAAB0QgAAgD8AALxCAADowQAAMEEAAODAAACCQgAABMIAAOjBAAAAQQAA-EEAADzCAADgwAAAAAAAAAAAAABQwQAAHEIAADzCAABUQgAACMIAANDBAABwQQAAjsIAALhBAACKwgAA6MEAAODAAABQwQAAOEIAAIhBAAA8wgAAWEIAAGjCAACQwQAA-sIAADBBAAAEQgAAHEIAALDBAAAQQgAAyEEAAOjBAABgwQAAIMIAANBBAABkwgAAQEAAAFxCAAAMQgAAuEEAAEDBAAD4wQAAAMAAANBBAADwQQAAMEEAALDCAAAAQQAA-EEAAABBAAA4QgAAPMIAAATCAAA4wgAACEIAAMbCAABMwgAAoMIAAIBBAACCwgAAdEIAADxCAACawgAA2EEAANDBAAAQwQAAOMIAAMBAAACwQQAA4EAAAHDBAACKQgAAAMIAAOhBAAAQQQAANEIAAHBBAADowQAA-EEAAADBAACgQAAAnkIAAMDBAADwQQAAgEIAANjBAACgwAAAwMEAAGBBAAAEQgAAbMIAAADCAAAsQgAAAMAAAIjBAAAgQgAAsEEAAMDBAABwQQAAgEIAAFhCAAAIQgAAuMEAAFDBAAAYwgAAkEIAAHRCAAAAwQAAuMEAAKjBAAC4wQAAnsIAAHBBAACYwQAAwMEAAKBAAAAsQgAAqEEAAMDAAACAQgAAsMEAAFjCAACowQAAuEEAAMBAAABAQgAAgEEAAHxCAACYwQAAEMIAAKDAAACAPwAAgEIAAJbCAAAUQgAAKEIAAAjCAAAsQgAAoMEAACDBAAAAwQAA8EEAABBCAACMQgAA4EAAAEDBAAAQwgAAuMEAAEBAAAAwwgAAnsIAAPBBAADAwAAAiMEAAChCAADgQAAAnMIAAMZCAACKQgAAQMEAANhBAABwQQAAoEEAAILCAAAEwgAAwEEAAOBAAAAAwQAAVEIAANhBAACAwgAAfMIAAOjBAACgwQAAMEIAAADAAAAUwgAAHMIAAKhBAABAQQAAmEEAALBBAAAIQgAAAAAAAADAAAAkQgAAoMAAAETCAADgQQAA2EEgADgTQAlIdVABKo8CEAAagAIAAAQ-AACoPQAApj4AAIA7AAAQPQAAwj4AAIA7AAD6vgAAPL4AAKC8AAAwvQAA4LwAACw-AABsPgAAXL4AAIi9AAA0PgAAmD0AAKi9AACqPgAAfz8AAAS-AABQPQAAXD4AAAy-AACAuwAAoDwAABC9AAAcPgAAFD4AAOA8AABEvgAAmL0AAPg9AAC4PQAAqL0AAEC8AAC2vgAAqr4AAGy-AAAkvgAAUL0AAKA8AADovQAALL4AAPi9AACIPQAAFL4AALi9AAB8vgAABD4AAFQ-AAAEPgAAVD4AAJK-AACYvQAAET8AAJg9AACYPQAAfD4AAOC8AAAkvgAA6D0AAAS-IAA4E0AJSHxQASqPAhABGoACAAA8vgAAED0AAIC7AAAxvwAAoLwAACQ-AABEPgAAoLwAAKC8AADIPQAAyD0AALi9AACoPQAAcL0AAGQ-AABQvQAAQDwAADk_AAAwvQAAlj4AAMi9AAAEvgAAVD4AACS-AACgPAAAUD0AAIC7AAC4PQAA-D0AABC9AABAvAAAyD0AAHS-AABUvgAADD4AADC9AAAQPQAAlj4AACy-AABUvgAAFD4AAKA8AAAwPQAA4DwAAIA7AABAvAAAf78AADC9AAAcPgAAbD4AANg9AABAvAAAoLwAAEw-AADoPQAAMD0AAEA8AACgvAAA4LwAAIi9AACWPgAAUD0AAFQ-AAAcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=SafcRvQKe4g","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1509785881798106465"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3097584168"},"15410752899654033537":{"videoId":"15410752899654033537","docid":"34-1-15-Z72D416235A02FBEB","description":"Part 3 of a three-part video series on getting started with Jupyter notebooks. This one features a short example of creating a Jupyter notebook from scratch ...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1778143/685b25039e04e809b2b0e76a7ef0059a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/eQatQgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DwoEVRMADIck","linkTemplate":"/video/preview/15410752899654033537?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Jupyter Notebook Environment part 3","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=woEVRMADIck\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFgoUMTU0MTA3NTI4OTk2NTQwMzM1MzdaFDE1NDEwNzUyODk5NjU0MDMzNTM3arUPEgEwGAAiRBowAAopaGh2cGl5Y29oaWdnYWxqaGhVQ0FHMnUyS0Vra0d5NHlXR2VLYV91N1ESAgARKhDCDw8aDz8TyQOCBCQBgAQrKosBEAEaeIEBDAr3A_0A5v4A-wT_AQAqAPv68wUGAPH6_PsHAf8A_AP_Bf4BAAAK__gD-QAAAAEIAv7x_gEAAPnt-gIAAAAP_PsG-gAAAA7_7AH_AQAA_vz2_vkCAAANDg_2AAAAAPMRDQf-AAAABwkCAvX8AADv_vYO__8AACAALXf5yTs4E0AJSE5QAiqEAhAAGvABfwTq__jt9wLcEeAA2f_2AZD6D_84GPEAzhAD_9vy7gHU-OgA0PUiAL388wC4Eu7__PnO_kAwEAD__BMAJQcQAPP53AFM4w0BJAjYAeQH6P8FGRb-LPMPADn1FAAb-hv8DPTx_tfkzgHQ1Or_CR4zAy7wEQEeAhf82foi_vMbCf7l4O4A2xD5_9D-Gf_48wH99zLs_zn67gAC_BgAIvj4CgHQDf4J-eoFDggUBfQVFvLq-_f7AQsVCusQDvsQNhcB3_wIBtn0-gAAHxQBG9PyBOwe-QEk6PcHEvzzCOAX7fjhFgAD5TQDD-z7Evr1FAz3IAAtrqMZOzgTQAlIYVACKnMQABpgRgoAUcsIyO8UJef20tkZEMxTJRfX9P8mv__7GMExCh3Gryo6_xb_IfGgAAAALuPvIu4ACH8OutsBz18Wqgr6-eBdDv4Du80DNOymJSLoBubR_A4dAOTVyAU2J9AkU8_lIAAtxB0XOzgTQAlIb1ACKq8GEAwaoAYAADDCAAAMQgAAgD8AAMhBAADAQQAAEEIAAOhBAADAwAAAFMIAAEBAAACAQAAArMIAAITCAACIwQAAIEEAAKDAAACAwQAApMIAAOjBAABgwgAA8EEAAOBBAACYQgAAQEEAABBCAACwwQAAhMIAAKjCAADSQgAA8MEAAAzCAACAPwAANMIAAJhBAADYQQAAmMEAAIC_AAB0QgAAUMIAAEhCAACQQQAATEIAAOjBAADIQQAAUMEAACTCAACOwgAAAEAAAJ5CAACwQQAAdMIAALBBAACowQAAQEEAAJpCAABwQgAA3MIAAADBAADgwQAAyEEAAODAAADIwQAA0MEAAMTCAAAIQgAAQMIAADDCAABgwQAAhMIAABjCAABUQgAAUEIAACBBAADYwQAA6MEAAETCAAA8wgAAQMEAABBCAADYwQAAaMIAAGxCAAAQwQAADEIAAEDBAACAwQAAREIAABBCAADOQgAAKMIAACxCAAAUQgAAAMEAAILCAABYwgAAUMIAAKhBAACQQQAAIEEAANDBAAAwwgAAQEIAAJJCAACAwAAAYMEAAKhBAAAcQgAAsEEAAIjBAAAEQgAAAMEAAABCAACowQAAEEIAALBBAAD4QQAAgEEAACjCAACowQAALEIAAIC_AAAowgAAsMEAAATCAACAQQAA4EAAAKDBAACAPwAAYEEAAETCAAA4wgAAYEEAAEDAAACQwQAAFMIAADBBAAAcQgAAQEEAAOBAAAB0wgAAUEIAALjBAABYQgAAMEEAAIhCAACAwQAAvMIAAGBCAADgQQAAAEEAAJBBAABwQQAAwEEAAKBBAABAwQAAWMIAAAzCAAAAwQAAQEAAAGBBAAAgQQAAVEIAAKDBAABQwgAAOMIAAKBBAACAPwAAIEIAAODAAACQQQAAUEEAAJJCAAAIwgAAiEEAAEDAAACAvwAAPEIAAGDBAAAwQgAAmEEAAIjBAABYwgAAAMIAAFRCAADOQgAA8EEAABDCAAAgQgAAHEIAAOBAAAAwwQAAEMEAAIBBAACAwAAAQMAAAPBBAACCwgAAQEEAAOBBAABAwSAAOBNACUh1UAEqjwIQABqAAgAAgr4AAKi9AACKPgAAij4AAOA8AADgvAAAMD0AAPq-AAB8vgAAgLsAAJg9AADIPQAAmD0AABA9AABAvAAATL4AACQ-AACIPQAAyD0AACQ-AAB_PwAAXD4AANg9AADoPQAAoLwAAIi9AACgvAAAcL0AADC9AABAPAAAFD4AABC9AABQPQAAuD0AADS-AADgPAAADD4AAMK-AACyvgAAML0AAKK-AADoPQAA2L0AAMi9AAD4PQAAiL0AAIY-AACAuwAAML0AADS-AAAMPgAAQLwAADA9AABwPQAAcL0AABC9AAA1PwAAUD0AALg9AAAwPQAA4DwAAPi9AACoPQAARL4gADgTQAlIfFABKo8CEAEagAIAADS-AABQPQAAUD0AACW_AACIPQAAij4AANi9AADYPQAAmL0AAOg9AACCvgAAyL0AAFA9AACgvAAAcD0AAIC7AAAQPQAAST8AAHC9AADSPgAAoDwAAOC8AAB8PgAAZL4AAJi9AACYvQAAoDwAADA9AABAvAAAFD4AAEA8AADoPQAAUL0AAJK-AACAuwAAoLwAAIC7AACoPQAA2L0AAOA8AACgvAAAJL4AAOA8AABQvQAAcL0AANg9AAB_vwAAVL4AAPi9AACiPgAAqD0AAEA8AACgvAAAmj4AABQ-AAAwPQAAQDwAAEA8AADgPAAAuD0AAEw-AACgPAAATD4AADS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=woEVRMADIck","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":988,"cheight":720,"cratio":1.37222,"dups":["15410752899654033537"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2792586654"},"1976327025978003736":{"videoId":"1976327025978003736","docid":"34-10-4-ZD1F94691F9CAD5D7","description":"This lightboard video shows how to solve a separable differential equation.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4518462/38141d923981c78773955c9b2c1fd726/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/L5wlZgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DjD5sdHJRF4o","linkTemplate":"/video/preview/1976327025978003736?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Screencast 7.4.2: Solving a separable differential equation","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jD5sdHJRF4o\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFQoTMTk3NjMyNzAyNTk3ODAwMzczNloTMTk3NjMyNzAyNTk3ODAwMzczNmqHFxIBMBgAIkQaMAAKKWhodnBpeWNvaGlnZ2FsamhoVUNBRzJ1MktFa2tHeTR5V0dlS2FfdTdREgIAESoQwg8PGg8_E8oBggQkAYAEKyqLARABGniB9QEC_gX6APb2AQr3B_0CNfkLDfIHBwHz7QD99wL_APACEPoIAAAA_Az8BQ0AAAD99_cC-v4BAA4H9AMEAAAADgkHA_wAAAAU-PL4_wEAAAn_CfgDAAAA_vAJ_f8AAADzDPfyAP8AAOsVDAEAAAAAEPYH-wABAAAgAC23ycI7OBNACUhOUAIqhAIQABrwAX8DCwLV9w7_GvHkAfsE9wGpEQoAFPLmALP39ADKA-gAGgMCAODkKv4oAyP_2QwfABPf9P8J7v8ADegT_zsMDAAP6OwABNDtATAmAf__9dr___j9_zz3IgD36OsB_QPrAOkKIf_f6dcAEc3wASPxCv0LBhIDBe0H_wXa4wLU-voG9-_z_CP2Bf_m5vv9zRoTAu3y7P0eK_b-5_cB_xIE7v4ZAf79-unw__AGEP7w6QX9FgcB_QD7DfkXHBEH7AkPBA_4GfYBGgT0Jfr8-Rru_QzkDAv1BgfjCfMN8A_w1_YCDfH1APoJ8vrm9A4H6-X6BCAALZpbPDs4E0AJSGFQAirPBxAAGsAHsg7HvudZJDzfCpe8qfcUvEQlw7t3Lsy8zKWXvXGq9Tw9PJU8EtUAPRhmfLwRf947WcBUvgSMjDkqz9c8QL05PuIbqjkMpdi5BvSCvqyfSDzxIYq59aGDvjx38TsuxZc74bYGPh7gSb2YOgI8Qd4jOxk5m71sKma8QAFKPTaVxTsvz7k8y_szvUAQ5jsMg6Y7rDxhPr87I708WQA9YOcmPg3TDb3xHvG8c-F2PAVK7zyCuYw8nBu-PXTYtzoLkDe6lMIcPuST37t6oxs9CMfMPRWANb2t2ho9v3b6vNbsnDyTdym9bx-DPK4M6jyffYA8vFpuPbeLvDp25a87nZ0Mvr4RXbyVdjS8O8hrPgDZ9TzoJ2Y7Q95XPctK1TtL50M8TV7su1s2ZD3Tgxk6AZm3PdaiKrxXIYo8wzw1vQD8qL2xBXO8mWucvRS6IjzBmKM8x4s7PeCV7jy0gL-8_0F_vNADhLwyjGC88ofVvKZpaz0Y9Lm83x6fPC0iCr1eTia7PRRgPWuW8LznzTw83Ve6PUMxk70uHdK7TYXXu4easrx6KQa8J9sAPc-Nn7yj4Rw8WYfDPQrPVb30glM7n_irvc3K9jwMnY289kVfO5psbb1O1qS7XLVhPXSZej3vu_U7rMr-PI0lHTra-q87Qp--PFwxjT1He5M7EB-YvY7IFz2DUNq7pIMaPRxbNL0c_A48utduPK8qFjzXoJI7DT-ePXnsgjzLJ446JT8iPfYqDbw62j-60F8IPekQGD13fX25qoKhPRoYmb1HSqA4CvcKPc8GKj32rb055AaNPIHwrD3Geio5oofQPJPOmzwq0La4ppf4vfOrqb2qNHU47N4qvXhGq714Fd24Dv2-PZ8WCL2hKJY5AvSLvUU1kL07hjE4Pz5puckDkTw5ygK54AMqvU3cqjzUZ5g1Y3zYvU458DyBnoe5tLDlu9t7Ir2AHPA4dQHvPNb1tT09EPG466RjPKKMor2_UmQ5ER7Iu5F9UD3vHYw2iaxaO_Z_Lj68OxW5Wk8oPTPUcjwBYEy3EKyvPdvD3r3Inzy4DCl1PB7mBj2DLVg3E4lYvS7ghjpqxDs2uqwYPfHFTT3c0ss4yAO2vBTll73vie84SUMyPEbpt72kLmA3H58APqTkkL0V6Dq5_VfMvAPTpD02ZqK3DZ-6O89cUb2hRa620d0_va5uqzwSgde37AO9O3zUD74X-ty4ak8ZPqlumT0IAjK3ZTu6vLHYqrvYLGS4pyUGvs8Zi7v0jjQ2slK3PFCIlT2iGSQ3IAA4E0AJSG1QASpzEAAaYF4FABBEF-IG70_XwNYEKfn619rvwj__Br3_Cy7b_y4C57bGAv9H1OnmmAAAABS53f8vADB_KArnWdkN7uT4_-AQWfH9JaPjKTz1CObx9hD0GvwITgDCHc5dMIvDJ_L87yAALWlzEzs4E0AJSG9QAiqvBhAMGqAGAAD4QQAAQEAAAHhCAADIwQAAQMAAAGxCAADGQgAAAMIAAMjBAABQwgAAQEEAALDBAAAgwgAAYEEAAMBBAACIwQAAIMEAAODAAACCQgAAwMEAAADCAAAoQgAAKMIAAJhCAAB0QgAAgMAAAADCAAA8wgAAWEIAAExCAAAwQgAAgMAAAOjBAACIQgAAOMIAALhBAACwwQAArEIAAKDAAACgQQAATEIAAIBAAADYQQAADEIAABBBAADIQQAAAEIAAMDAAABMQgAAQEEAADDBAAAsQgAAyMEAAOjBAACYwQAAnsIAAIjBAACAQQAABMIAAJJCAAD4QQAARMIAAODBAAAQQQAAFMIAAIjBAAAgQQAAusIAAIC_AACAQQAAEEIAAChCAAAcwgAAtkIAACzCAADSwgAAqsIAADBCAABEQgAA2MEAACDCAACIQQAAgEEAAADBAAAAQQAAYEIAACDCAACAQQAAdEIAAHxCAAAAwQAAmkIAAGhCAADgwQAA-EEAALDBAAAEwgAAkEEAAIA_AADgQAAAZMIAAIZCAACAwQAAgD8AACjCAAAYQgAAwEAAAHxCAACKwgAAqkIAADBBAAAcQgAA4EAAAKBAAAAkQgAAzEIAAJ7CAAAgwgAAiEEAAIC_AADwwQAAgMAAAEBBAABAwAAAREIAAODAAADgwQAAQMIAAGDBAADwwQAAiEEAALjCAABswgAAKEIAACBBAAAEwgAAoEEAAEzCAABswgAAqsIAAIC_AABcQgAAgEEAAAxCAACYQQAA6EEAAEBAAAAAwgAAgEEAAIDBAADoQQAAAEIAAKhBAACgQQAA6MEAACTCAAAcwgAAgL8AALjBAACAvwAAMMIAACDBAACgwQAALEIAAIxCAADYQQAAIEEAAMBAAADYQQAA6MEAAIBAAADQwQAAkEEAACBBAABQQQAAQMAAAChCAABgwQAAXEIAAHxCAACYQQAAjMIAADTCAABswgAAyEEAAMDAAACAPwAAUEIAAHBBAAAAwQAAOEIAAIC_AACMwgAAQEAAALjBAACAQAAANMIAAARCAABgwgAAMMIgADgTQAlIdVABKo8CEAAagAIAAAQ-AAAwPQAARD4AAJi9AABQPQAAsj4AABQ-AADmvgAAhr4AANg9AACYvQAA4LwAAKC8AACoPQAAhr4AAAS-AADaPgAAcD0AACQ-AADiPgAAfz8AAJi9AACgPAAAmD0AAJi9AAC2vgAAgLsAALg9AACAOwAArj4AAKg9AAC4vQAAED0AAMg9AAAQvQAABD4AAJI-AAAEvgAAvr4AAGS-AAC4vQAA4DwAAAy-AABAPAAAML0AAFS-AABAvAAAcL0AAOC8AAA8vgAAVD4AAKi9AABkPgAAND4AADC9AACAuwAABT8AAFC9AAAcvgAAqD0AAIa-AADgvAAAFD4AAPg9IAA4E0AJSHxQASqPAhABGoACAACYvQAAiD0AABC9AABDvwAAuL0AAJg9AAB0PgAAQDwAABA9AACoPQAABD4AAPi9AADIvQAAEL0AAMg9AACYvQAAML0AABk_AAAUvgAAzj4AAKi9AABUvgAA4DwAAHS-AACAuwAAmL0AAIi9AACgPAAAVD4AAMg9AACAOwAAyD0AAHS-AAAcvgAADD4AAIi9AADgPAAARD4AABy-AABAvAAALD4AADC9AADgvAAAiD0AAGy-AAAkPgAAf78AAHA9AADIPQAADD4AABC9AAAwPQAAgLsAAAw-AAAEPgAAiD0AAIA7AACovQAAMD0AAJi9AAC4PQAAcL0AADQ-AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=jD5sdHJRF4o","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1976327025978003736"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1933296633"},"3145172457981620394":{"videoId":"3145172457981620394","docid":"34-1-0-Z5C14875848950736","description":"This screencast shows how to calculate the partial sums of a series.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4079689/89dccf2ab40d4dadafc2de8ef8c058b6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mHZzQwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVLWSPDU-DDM","linkTemplate":"/video/preview/3145172457981620394?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Screencast 8.3.2: Partial sums of an infinite series","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VLWSPDU-DDM\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFQoTMzE0NTE3MjQ1Nzk4MTYyMDM5NFoTMzE0NTE3MjQ1Nzk4MTYyMDM5NGqHFxIBMBgAIkQaMAAKKWhodnBpeWNvaGlnZ2FsamhoVUNBRzJ1MktFa2tHeTR5V0dlS2FfdTdREgIAESoQwg8PGg8_E9YCggQkAYAEKyqLARABGniB-P0RCAL_AAbyCAMECP0CDAoH__YBAQDo9fQJCP8BAPkMA-wAAAAAAQ36_QUAAAAOCPgG-gAAAAr89wUDAAAAKAD9BvsAAAD-Bv4L_wEAAPgB_AID_wAA-wD8AwAAAADvFP_6____APH_8vYBAAAA9Ov8-AAAAAAgAC3uws47OBNACUhOUAIqhAIQABrwAX8ECQHT-9T_7fDQAOwL2wG0GAkA6x_YAK3W9QCyEdD_-CTyAdcS6P_kISMB3SLiADj30P8Z5v0AHsf3_wnT_QDfAf0BNd39AE4oBAAU7PD_3w0Z__PaBf4R2AcCKiDtAf7nJAAH-94BAAbjAzMLKAAMBycDKBEYAQKuAQbd3ewC7_z8-f0GAgP1-_kG4P4JB_zm6QETEAf62hH0_fz25_0B0wz--zTo-ybxBAYGBfYIyPTiABb2_QT8HRD5FAv9-9zzKAXkHP_4HyUJ-P76-gDf8_ICDe4CEAvg-QUP7gcMDPj999gJChIDC_4H-Qr48yAALc0dJzs4E0AJSGFQAirPBxAAGsAHXB_GvgBBdD2nEpQ8CgfMvVcPFLw0hQ69qOEbvt8W7DyH20Y8pg7yPZX0MLxkyWe6IDVXvee3Hj3ROo88PSlzPpTA5rv1cg49cT1avucWvz2FTKi89aFrvoTTBz10NcO7yTM0PTjoXL1QkDO88zsNPnYUzLyGS1g8w_hEvEyJRD0tWVq9K4jBvMMXHL1JW-a85suLPXyWDL1uPM48bM_MPUI6H7x3gVQ7XBBgPQCXVr2OUai81jEzvY1S-Dw0P8i8hFkSPbjnWT1iIBk8nFg2vS2eNb2Q4-I8aIBBvWuZsbz-nKO7lVKGPSMxwTy7ZWK8YpOpO3EqyL3Iaqm8YaWKvnOcWzxVBO475Ib_PTl29TyMb548SdV7vZ_ziby1IBA8XD6tPPi7ob1EXVo8U75WPLBTMT3eoDY6xBA0PQRe3jtn_008w6Novf5OCT1rlP88f3tovKD96L02V028VkduPX_oeD2rE8a83IsevQPSfjyJwAm836N-vL86t7v6jFU8RCDNPBM4hrqiFQ48YGeEPfkRv709axI8V3s4vS-H_b0qoGY6KYySPIBjkTv1V7y7bvzpPUzkrb0rc6m7SAjFvNoXFjxpGIS7pf9APNnqsr1Tkje6d1TrvG_CE72OhZW6rYEyvbdWxTz-MPy7Qp--PFwxjT1He5M75wfkvGiXj72ZtRi7Aye7PU2sgrze2wC7mDIAPhZ_QD0tP7W3wW2zu48cabxmlJm7mE8GvhhZ17zZJpE6XmAePEmUZ72iRh26FbN0PUBgr72NYn44HHoLPeLGEjxNLyi6X61_vS7isD0JAjo5mS6fO0x_wL2GlFY4XFQLvZwV8b3cnnU5nhJrvfJjJzyNH0A5VF22vHGHFzvQpH66zCDDvdQNBL4IU4U5KoocPUCg2DzXR7S5JkBjPTMq_DsozYM4QgbRu7ZQzbyLRSa5NxxxvI84pLyjmKS4HDm5uVGmLDyBwqe4Wq-DPQGPw72m0Vo5zq_BPEmTzD3fRIe4dUc1vB3TST37LDK3TytbPTsnrD08TIS4h0VWPdNlpr2_KPQ2baljPag04jyxRbS434GrveUoED7ZPrC3g2YcPfnDqjySoPA4llJhPHoQDLyWDMY4sLIxPTb5tbs1wPM2weMrPtylaLwHiXS5hd5MvVSojr3qysO4iZ_7u2aBW71MZfC3zJrYvOO1YT2Q36G31ZTkPL42pr3zo024yvRwPSLhKz7xy4o4uB-wvK-IKz0i05W4I2jMvQ0B-jtvBgY3B8mnvAI-ST0wAdi2IAA4E0AJSG1QASpzEAAaYCX-ADr2JsPx3TAE7tza89ve6soJsSz_3cX_yynU8-gG3cwWAP8V6gz8ogAAAC_p5RfiANx_7PPxNuJaGsS6-_8ne_ML9qCWMBXc7gbwBCQe5QXSWADh9a9PPvnVJ_kJDiAALYKqGTs4E0AJSG9QAiqvBhAMGqAGAAAYQgAAAMAAANRCAADAwgAAiMEAANDBAAA8QgAAIMEAABTCAAAgwQAA8EEAAKBAAABgwQAAcEEAAJDBAADYQQAAEEIAAMDAAACgQAAAiMEAABTCAAAAAAAAnsIAABBCAACgwgAAkMIAAIDBAACgwQAAOEIAAEDAAACgwQAADEIAAFTCAACAwAAAtMIAAIC_AAC4QQAAhEIAABzCAAAgQgAAMMEAAFBBAAAgwQAAZMIAAJpCAACCwgAAoMAAAFRCAAAUQgAAQMAAALjBAAC4wQAAAMEAAFBCAABQQgAADEIAAI7CAABAwAAALEIAAEBAAABoQgAAgsIAAGDCAAA0wgAAIEEAAMbCAAAQwgAAsMEAAHBBAAAMwgAAWEIAAARCAACOwgAAmEEAACjCAADAQAAAHMIAANjBAAAUQgAAqEEAAHDBAACaQgAA4MAAAKDAAACIwQAAIEIAALhBAAAowgAAhkIAANhBAAAAwAAA4EEAADDCAAAMQgAAVEIAAATCAABgwQAAEMEAAIA_AACuQgAAVMIAAHzCAAAEQgAAgMAAAJjBAAAcQgAAQMAAAFBBAADAQAAApEIAAOBBAAAsQgAAyMEAABBBAAAAwAAApEIAABBCAAAAwgAAEMIAAAjCAAAUwgAAdMIAAIDAAABQQQAA-MEAABBBAABAQQAACMIAADBBAAAIQgAA4MEAAIbCAAAQQQAAiEEAAKDBAABEQgAAgEAAAI5CAABswgAAIMEAAADAAADAwAAACEIAAKrCAAAsQgAAHEIAAIDAAAAUQgAAmMEAADDCAAAUwgAAIEIAAIhBAAC2QgAA6EEAAKDAAABowgAAAMEAAKDAAAAEwgAAcMIAAAxCAAAYQgAAqMEAAFhCAADAQAAA-MEAALZCAACKQgAAQMAAAIC_AAAQQgAAgL8AAGjCAAA4wgAAJEIAAADCAABgwQAA0EEAAMBAAABEwgAAPMIAABDBAADQwQAASEIAABDBAADowQAAQMIAALBBAACAPwAAMEIAAMBAAAAwQQAAcMEAAMDAAACYQQAAQMAAAFTCAABgQgAAEEIgADgTQAlIdVABKo8CEAAagAIAAKg9AADovQAA2j4AAJg9AADIPQAAZD4AAMg9AAAbvwAAir4AAKg9AACovQAAHL4AAOA8AABAPAAANL4AAIC7AAD4PQAADD4AAIg9AACePgAAfz8AADC9AAB8vgAAMD0AAIi9AACWvgAABD4AAIC7AAAQPQAAND4AAOg9AAA0vgAAoDwAAOg9AABAPAAAiD0AAMg9AADYvQAAZL4AAHC9AACgvAAAuL0AANi9AAC4vQAAJL4AAIa-AACCPgAAoLwAACw-AAAUvgAAqj4AAAQ-AAC4PQAAiD0AAAS-AAAQvQAACT8AAOg9AACYvQAAUD0AAEA8AAAEvgAAVD4AAEC8IAA4E0AJSHxQASqPAhABGoACAAD4vQAAuD0AAHy-AAA3vwAATL4AAFA9AACYvQAAUD0AACS-AACWPgAAQDwAABS-AADovQAAoLwAAMg9AADovQAA4DwAAC8_AACIvQAAzj4AADC9AACYvQAAJD4AADS-AABQvQAAQDwAAHA9AAC4PQAAcD0AAAw-AACIPQAAED0AAPi9AABAPAAAyD0AAAy-AACAOwAAdD4AAAy-AADYvQAAJD4AAKg9AAAMvgAAUD0AADy-AAA0PgAAf78AAHC9AAAwvQAARD4AAHC9AABAPAAAMD0AALY-AABwPQAA4DwAADA9AACKPgAAQDwAABS-AAAUPgAAkj4AAGQ-AAB8viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=VLWSPDU-DDM","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":414,"cratio":2.0628,"dups":["3145172457981620394"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1715325476"},"13115137577088784577":{"videoId":"13115137577088784577","docid":"34-10-5-Z0B20086A27F033B8","description":"Uses graph of polynomial functions to solve applications...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1003147/91486181e5c7fe164d43f6f168833637/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hhREDwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQu_17w9dJsA","linkTemplate":"/video/preview/13115137577088784577?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"122.4.3.3 Polynomial Graphs Applications","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Qu_17w9dJsA\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFgoUMTMxMTUxMzc1NzcwODg3ODQ1NzdaFDEzMTE1MTM3NTc3MDg4Nzg0NTc3arUPEgEwGAAiRBowAAopaGh2cGl5Y29oaWdnYWxqaGhVQ0FHMnUyS0Vra0d5NHlXR2VLYV91N1ESAgARKhDCDw8aDz8TwAOCBCQBgAQrKosBEAEaeIHqBgsCBPwA_AAMEPgK-wIMDfX39QAAAP3w8_f-Bf4AAvoE-RABAAD-_RENBAAAAP4D_xL2_QEAAwz1_wQAAAAO_vf6BwAAABQSBwr-AQAA8-YECQT_AAAN_v0BAAAAAPwBAwb-_wAA9gwJ_QAAAAAM_PrrAAAAACAALUzFxjs4E0AJSE5QAiqEAhAAGvABf_44AaIO6P0BGAAA5PYNAIUZ7gAzO-D_yAIPAKgTyv7T9-cAzA72_8QP-v-dKyEAE9m0AhPuDQEiwPb_Gd8AAR4BFQBC8iQBJC8PAvre6v7vHx4AEwj0AP3H3gAIC9H-E-ko_eQN-ATp2dcAJfsuAe0dEQMNAxYB9_cg_-Ag_wINAPn48xX6B_oIAgPY3g8AKgTsAyQcEvwWK_sJAg0EC_viBPoRKwMJHjEBA_ntDwW7zfAEF_8A-hMTBgHbGAT-EAEO_80IGQHk9wcA_97rCRj-DfLz_vj-9QXt_v7-CfoSDA4G7QDx7-zgBQDd4AT3IAAtpO8TOzgTQAlIYVACKnMQABpgLgUAUfhV0P_zN-fbx-ft6OrG9STfDv8YBv8M-_TQNP32xfQcAAXDJPioAAAAGOvYBOgAxnHb5_cYGAxCxfn8SvZ_ABgehOML7cbl8iMJIRcUBxEJAM7wuRwf6p4ySjIPIAAtrfgeOzgTQAlIb1ACKq8GEAwaoAYAAKjBAABAQAAANEIAAABAAAAswgAAZEIAAOhBAACAvwAATMIAAIDAAADwQQAAJMIAANDCAABgQQAAsEEAAADBAADwQQAANMIAAADAAADgQAAAAMEAABBBAABAQQAAkEIAAGzCAAAwQQAAcMEAAKDBAADeQgAAEMEAAABBAAAgQQAAuMIAACBBAADAwAAALEIAAABBAABUQgAAMEEAAJ5CAABQQQAAMEIAAEDAAACIQQAAAMEAAGTCAAC4QQAA4MEAAMBBAABAwAAAnMIAAIhBAABEwgAAaEIAADhCAAAwQgAAosIAAFjCAABwQQAAoEEAAKhBAAB4wgAAcMEAAEDAAAAQQgAAfMIAAFhCAAD4QQAAgsIAABDBAAAYQgAAEEIAADTCAAAcQgAAQEIAAPhBAAAwwgAAYEEAAFBCAAAwwQAAmMEAAHRCAACAPwAAMEEAADhCAACIQQAAcEIAAHDBAAAQwQAA4MAAAIjBAABAQQAAAMIAAJBBAACqQgAApsIAAAzCAABAwQAAgEEAABBBAAA4wgAAAEIAAIhCAAAMQgAAOMIAAEhCAAAAwgAAvkIAADTCAADwQQAAoMEAAEBAAAAAAAAAwEEAAHBBAACAQQAAEMEAAIBAAAC4QQAAwMAAAABBAAAUwgAAwEEAAKjBAADAwQAAZEIAACDBAAA0wgAAwMEAAEDBAAAMwgAAJMIAAADAAAAcQgAAyEEAAFhCAABkQgAAgL8AANDBAACYwQAAEEIAAHDCAAAYwgAAQMEAABxCAADIQQAAmMEAAFDBAACGQgAABEIAABjCAADgQAAAgEAAAKjCAAAMQgAANMIAALDCAABswgAAPMIAABDBAADAQAAAkEEAAGhCAADYwQAAnsIAABjCAABAwgAAyMEAADBBAACQwQAAVMIAAKhBAABgwQAAJMIAAKDBAAA0QgAAiMEAAETCAAA4QgAAwEEAAODBAACAwQAAPMIAAADBAABwQQAAJMIAAKDCAACiwgAAgkIAAAhCAABAQQAAwEAAAIDBAACIQQAAPEIAAAxCAABQwQAAiMEAACzCAACgQSAAOBNACUh1UAEqjwIQABqAAgAAFD4AALi9AABMPgAAND4AAES-AAAUPgAAXL4AAK6-AAB8vgAA-D0AABC9AADgvAAAND4AADw-AABUvgAAhr4AAFQ-AADgPAAAgDsAAJY-AAB_PwAAcD0AABQ-AAC2PgAAML0AAGy-AAC4PQAAmL0AACw-AABEPgAAED0AAIY-AAAwvQAAbD4AAFC9AABEPgAAoj4AAKq-AAC2vgAAtr4AAM6-AABwvQAARL4AADy-AABwPQAAkr4AAJi9AAAMvgAAqL0AAJK-AABMPgAAmL0AACw-AABMPgAAbL4AAKi9AAAjPwAA2D0AAEA8AAA8PgAAwr4AAKi9AABMPgAAQLwgADgTQAlIfFABKo8CEAEagAIAAGS-AADoPQAAqL0AADW_AACgvAAAiD0AABQ-AADgvAAAMD0AAEQ-AAAQvQAA6L0AAKC8AAAQvQAA-D0AAJi9AADgvAAAFT8AABy-AADCPgAA4LwAAKi9AABwPQAAJL4AAEA8AACoPQAAEL0AAOC8AACoPQAAoDwAAFC9AAC4PQAAMD0AAGy-AACAOwAA4LwAALi9AAAcPgAA4LwAAEC8AAD4PQAAgDsAAOg9AACYvQAABL4AAIC7AAB_vwAA6D0AAFA9AAAcPgAAuD0AAAy-AADoPQAAVD4AAIg9AAAQPQAAMD0AAPi9AADIvQAAmL0AAKA8AAAcvgAA-D0AAMg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Qu_17w9dJsA","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13115137577088784577"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3740557870"},"3340950234573723267":{"videoId":"3340950234573723267","docid":"34-8-3-Z888511BC0D801D52","description":"This video shows how to estimate the derivative of a function at a point using a graph, by tracing a tangent line to the graph and estimating slope.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3369275/4c2cdcd9679ef26259501aa6acd8456a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9GLoYwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0DJPSYeLFpc","linkTemplate":"/video/preview/3340950234573723267?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Screencast 1.3.3: Derivative of a function at a point using graphs","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0DJPSYeLFpc\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFQoTMzM0MDk1MDIzNDU3MzcyMzI2N1oTMzM0MDk1MDIzNDU3MzcyMzI2N2qHFxIBMBgAIkQaMAAKKWhodnBpeWNvaGlnZ2FsamhoVUNBRzJ1MktFa2tHeTR5V0dlS2FfdTdREgIAESoQwg8PGg8_E9cCggQkAYAEKyqLARABGniB-wQBAv4DAOkGDgMEAf8AEAgDC_YBAQD07wD9-AL_AAj7C_X-AQAA__cAAgIAAAD-_v7_-P4AAPoEAgcEAAAAFQzy-QAAAAAGCQEJ_gEAAPX-AwQDAAAAAggB_P8AAAD4Cgf7-_8AAAQE_AYAAAAA_fP6BAAAAAAgAC2ddds7OBNACUhOUAIqhAIQABrwAW7sR_nUF60CluHkAI_g4v_cUeQADETsALnZ4wEKJLQAxOcNAPhG9_8gERH_qCpc_gDU5v7x4DUBQJ4RAu3s_QG6E0AAEhMIAjYkJv8B1BAAEmD__toTFQAixsAEKU8S_B4sG_tBJOb_7x7JAmj3PAA33uYBE_ruAdDiIwXy9xz82PLI_BH1CQVK_hUC8_A1_h0zBvz6TuL9FujNCf7rKQUl1BgCFDXoBhgg-v8ZHOvzgdDl-gjx5_kFSx7_vwvA_K7uHfHPyQAA5xkiCxPdDPu4KyP6WSP2Ai8F2wgRNwsN-Pz0AhLU-gPH-eTw6drt_SAALdLb0jo4E0AJSGFQAirPBxAAGsAHt-zYvl13qTyx1MS8vToFO9YEDL2VcNe8LqmfvQMLu7xT8G-8PtDqPZnO8zydh1G7dOrqvThCEL22YBC8FJRCPkZFHL1z6AC87-VOvhCoQz0YrMC7T-XUvfr3jzy67CE9HtfAvUmznrzcbXK8oDTEPabVUL0R_9Y5ZZcEusnHgz2Mfpe71DqbPTRVRr0On3S9DXc5OmKBDz2rybY77Ri9Pc7dgz15lZC8zvYNPXOL1Lzf0bG7dGBZvvcMh72-7wQ7UpCpPL93AD0hG608KEJvvULRp72hf6e73wkMvc8pUDm2jh68JkCoPZCoKz1v0a68YpOpO3EqyL3Iaqm8XZGzvYxCGDw-NYe73bQZPj0W0TwDYPq7MvtBvaRkA70gszM8KjI_PZCPzL2MRZk7qR6fPLVOgbztD7U7meJgPDXpOz05nxM8chP3uyy5ijxzMsw8KxVUvDfdsryihqW8oJuHPQj4fzxrvoi7NSdPPVp7xLx7vBA8gjDBPD_1-jvShLO7HOOzut89Nr23kA-8Y5bBu4PmKb3N8aM7Yyp9vKNFzL2HKka8Yy-fPSb_oz24YjW88PlhPRRfDb53hBG7ouCYPRh5Wb0Leca744CHvX6q6r2z-yE8IY8AvtV7uj0ri6G6nSFmvJQWDr2TLR68MkEovSmsmb1Ph0I7ZA29vUM63L3QkTe3VIWLPQ-b6D1epFE6ONg7PaMCBz49nOu51ZUPPtTsRr3lRxm5F1X1vAMjL7xkKem7IAN-vTHdmj2yza43KlQHPpy7wjwrJyg44WLgvDjNjLwGZaW4ceA6vS66Sz1yFsc3LI40vYWfM72Y45Y5qMfWvVkNU73JJz-4sCKfOxZBrb2AqIe64WsfPL4n4DyFwCG6EirdvGd7pL16nlW56s3ovUxq7DvuIJM3gCkDPncbyjzI7zk5RLjuPJkEeT2QrTq5Pf2UOxwdAb0vpaK4D9Gqu2-eCj6gohm5D2T7O5zF5ryjkJy4SXffOtMkwjwLXRY2u89WPXslmj3WzBM4SNarPBsQoT0R-W8370fAvXi6Dr010Ge4VP7WO87i5T1PVVo4KkwpvQ09vT3wz1856yNrvY2-uLxEt9O3yF86PtyVwjzNr0s42o4JPi13hj26CwA5NzeWPYOKCj15hpK4JLb7Pd6rBr4swuC3a8o_vXj6dzxu1pw3Pe1VvSG9Fzt7NWc41ZTkPL42pr3zo024-WTlPcjZmj21QNY2MZoVPX5JdLzwhOe46FWzvRYk7DzNuCE4e7o_vVELD73IH7e3IAA4E0AJSG1QASpzEAAaYDb0ACwaF-Mc-xfU8fTj7_29yc4a9DL_6dEA_yrZGQsE2LoM6wAU3yn7sAAAAAYw4zoCAOxoHvn5IOwTCdrT5f0BfwsgU8T6CSK3wxoDKQHpEAQ6IADa8d8zLNKuMiceKCAALZsNLDs4E0AJSG9QAiqvBhAMGqAGAABwwQAA-MEAACRCAACYQQAAUMEAAIxCAACWQgAAqEEAADDBAACQwQAA0EEAABDCAACAvwAAAAAAACBBAACQQQAABMIAABjCAADgQQAAgEEAAEDBAACAwAAAJMIAAPjBAAAYwgAAAMEAAMjBAACoQQAACEIAANhBAABswgAAlEIAAFTCAADIQQAAMMIAADRCAAC4QQAAbEIAAIhBAACAQQAAoEAAAHBCAAAEQgAAgEAAAOjBAACYwQAAsMEAAMDBAAAAwgAAIEIAAIC_AACQwgAAAMEAAADCAABwQgAAsEEAAHjCAAAwwQAAGEIAANBBAABwQQAAisIAAKTCAAAEwgAAoEEAANzCAADQwQAAHMIAAFzCAACewgAAmEEAAMDAAABUwgAA4MAAAKjCAAAAwAAAEMEAAAxCAABwQgAAoMEAALrCAADiQgAA0EEAABhCAABkQgAAAEEAAGBBAABAwQAAgMAAAEDBAADgwQAAyEEAAKzCAACIQQAAIEIAAFzCAABAwQAAgsIAAAhCAAAcQgAAiMIAAEzCAAAAAAAAYEIAAEDBAAAsQgAAIMEAAAhCAACwwQAAsEEAAPhBAACAQQAAbMIAAHRCAABQQQAAQEEAAGBBAAC4wQAAwMEAAADCAAAIQgAAAMEAAJhBAABAQAAAPMIAAIDAAAC0QgAA2MEAABDCAABYQgAA4MAAAAAAAABAQAAAAEIAAADBAADQQQAACEIAAIA_AACmwgAAUMEAAIDAAACowQAAgEAAAIjBAADoQQAAEEIAAEDAAAAgQgAAHEIAAGhCAADYwQAAiEEAAPBBAAAwwQAA6EEAAPBBAABowgAAgL8AADDCAADoQQAAjMIAAKhBAABAQQAA-MEAAADBAACYwQAAcEEAAGRCAACAvwAAgMEAABjCAAAgQQAAkMEAABjCAADMwgAAyMEAAIBAAABAwgAAcEEAAEBCAADWwgAABMIAACzCAACQwQAAIEIAAOhBAACowgAAFMIAAEBBAACwQQAAuEEAAERCAAD4QQAAgD8AAKbCAADwQQAAyEEAAPhBAABYQgAAmMEgADgTQAlIdVABKo8CEAAagAIAAIC7AACgvAAAnj4AAKi9AAAQPQAAfD4AANg9AADCvgAAor4AABw-AABwvQAAqL0AAHQ-AAAcPgAAgDsAAIg9AAC4PQAAiD0AANi9AAAEPgAAfz8AAEC8AABQvQAABD4AAAy-AAAwPQAA2D0AABS-AAAkvgAAPD4AAKC8AACoPQAAQDwAADA9AABwPQAAiL0AAMg9AADevgAAPL4AAEA8AAA8vgAALL4AADA9AAAcPgAA6L0AAAy-AACovQAA2D0AAFS-AABsvgAAoj4AABC9AACOPgAAZD4AABS-AADgPAAA9j4AAJg9AADIPQAA2D0AANg9AABwvQAABD4AADS-IAA4E0AJSHxQASqPAhABGoACAAAkvgAAoDwAABS-AAA7vwAAUD0AADC9AABMPgAA6L0AAFA9AACoPQAAoDwAAHC9AABQPQAAML0AACw-AAC4vQAAUL0AAAk_AABUvgAArj4AAAy-AADovQAAdD4AAGS-AABAPAAA4DwAADC9AABAPAAAmD0AAOC8AACgPAAARD4AAGy-AAAkvgAA4LwAAFC9AABAPAAAwj4AABC9AAAUvgAAmj4AAKA8AABwvQAAED0AAOi9AACAuwAAf78AAJi9AACoPQAAfD4AAKg9AABAvAAAiD0AAIo-AADgPAAAcD0AAIA7AACYvQAADL4AABy-AAC4PQAAgDsAAKg9AAAcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=0DJPSYeLFpc","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1614,"cheight":1244,"cratio":1.29742,"dups":["3340950234573723267"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2246006184"},"10224534839535515978":{"videoId":"10224534839535515978","docid":"34-5-8-ZD766164B87851791","description":"tutorial, graphs, GVSU, Active Calculus, -Grand Valley-, mathematics, MTH 201, math, screencast, limits, Frobish...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3569262/dfb7b467afe044c107b6a64be3610e9f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/W1MOTgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DGZzJOAUOqLI","linkTemplate":"/video/preview/10224534839535515978?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Screencast 1.2.1: Limits","related_orig_text":"GVSUmath","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"GVSUmath\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=GZzJOAUOqLI\",\"src\":\"serp\",\"rvb\":\"EqYDChQxNzIzMTA5MDcxNjk5MjExMzYzMwoUMTc2Njc1ODQxMDMzNjY1MjcwOTcKEjk1MjIwOTE3MjExODk1ODM0OAoTODA1NDQ3ODA2NTAxMDcwNDk3MgoTNzUzMjUyOTU2OTY3MTkyMDIwMQoUMTM5OTk0NjIzMzc2NzUyMTYyNjAKEzI2MjUyMjUxNTA3OTIxOTI5NTIKEjI4MDI5MTkwMTY3OTg4NTEwMAoSMjgyMTQwMDgzNjIzMjM2MzA0ChI0MTA4Mjc3NzcwMDQyNDM1MDIKEzQ3MjYyMzc3NDAzNzEyNDUyMzYKEzE1MDk3ODU4ODE3OTgxMDY0NjUKFDE1NDEwNzUyODk5NjU0MDMzNTM3ChMxOTc2MzI3MDI1OTc4MDAzNzM2ChMzMTQ1MTcyNDU3OTgxNjIwMzk0ChQxMzExNTEzNzU3NzA4ODc4NDU3NwoTMzM0MDk1MDIzNDU3MzcyMzI2NwoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzgKEzUwNzYyNDg3NDQ0ODQwMjU0NDMKEzQzOTY0MDEzMzMxOTc1NTI2MzYaFgoUMTAyMjQ1MzQ4Mzk1MzU1MTU5NzhaFDEwMjI0NTM0ODM5NTM1NTE1OTc4aocXEgEwGAAiRBowAAopaGh2cGl5Y29oaWdnYWxqaGhVQ0FHMnUyS0Vra0d5NHlXR2VLYV91N1ESAgARKhDCDw8aDz8T6QKCBCQBgAQrKosBEAEaeIH0CPsH_QMAAv8FAQ0F_gEGB_gA9___AOXx9v_8_QEAAwQP_f4BAAD6D_H_AwAAAPoH-wf7_gAA_gcE_gQAAAATBAYFBAAAAAYJAQn-AQAA9vz-7gEAAAABAfUDAAAAAPED-_r-_wAA__wDCgAAAAAE5wDzAAAAACAALSM_3Ds4E0AJSE5QAiqEAhAAGvABfAkfAdEW7ADj5OYA2yvEAYEiCv4cJOIAvfILAM0V2QAADeEAzw33_wL1CgC9KRsBIu3a_wPZJgA2_QT_Eu8SANYlFgEa7hABLPwXAfAC8_-xMBz9-BQbAf3K4ADvF_v9FB0S_e8V7v8K7L0IIvwsAQT5GgIy8RcB6QUCAAUBGQPVEtX-GQ4HBPnz-_vaGR4CCR7q_gwnB_rQ89_-8PYFBwHRDP4T9t8AKP30BwEWAPLk9gL45_n0_xQHEgb2JO3_-gz99O7mEfry9f__K9MQAv8KBPzh7P_-_PP3-PbaAPzoBwYB5RYX_ugT_AMV9P8FIAAt_yEdOzgTQAlIYVACKs8HEAAawAdqFtC-rJQZPVMN97uagpu9qbUXvAMFXr1L07a9lssrPazuB72xbvw9t0-9PdwE6byz8HW-x9CWvEVkQDktC1Y-sIpcvUEtJr1xPVq-5xa_PYVMqLxEGF--1GRnO6WdPzw7RV09mborvF3fhzwdAPE99dUVvfmeMb1bry49N1rpO_jnXb0riMG8wxccvUlb5ry5F309t5c0vHcdYDxWbKc9_wjDPNVSyrw0PMc8cAOTvfVdNrzq9ii931rcvNPjrbzqr_c9MbJROshNAz0ZHbG7lcJyPKKeOjuoMxy9ND9Ive9QGLsmQKg9kKgrPW_RrrxpM_M8Hm_yvdcl0zo5Qra9pGaUPU-wvzz7BTs-2jfXPUR1yjt4dJi9hTMpPSPb-bwDuso8VGBXvRl3Xjx0Da49HnohvcrKhruWxQ49gZmaPf_HT7sErNU8M6KZPPTzSzyyVbg8xS-GvO8SB7yXPSQ9QSvyO0_ClrsMGCm9asa9PBakujs0R9Y99DY2vKFnPbqIVyg9pY2ZPHxnzbrJU1s9AICNvagwWzzyBwe7J2n-vAnc37x0fso8aiRzPYXEqLsSIi895P4-vTp5kbssSPO8ukawPN4W0TttpJE8Xsh5vR-sNTuJFcS9pn_pPesQLLo6eWw8fPN2PC7WJrxy7I-8iZNAPU2wLDunPeW864wPviXevbf1K109cxE_PbCV6bo7YkM9HYbAPUHibLkgKUI-IIwMPDtmxLhpGB-8FCIgvTompDoXIZa9G4qBPUjmqjmUQLQ94M1kveKHajkH9WM7ghaWOt6aDTvmKaM6fu2vPe6OwTg5rxa9oHwLO-SNurf8s1W9dz2yvYUbMLhNx5I8xFiLvPeQqbkXqJs9jLIduncZbLkgose9kr7_vHWdD7m8woy9EYW_O_VCxLhGmtg9sjMAPdYLkDjefeU7V55suTQRq7gPDQs9tZVNvOThqLi_IDO8rBvPPUkMNDUKtaq7M7HvvBJOvLif8XE7pdgBPqiuMbnrDx68-mP1PA4yNrfBWJ89CxmePb0ZIzjUuki9aqWQvQ61NrjN51w9RzObPdUtJbnK4QO-ENcePJf9TjeW5IW9SWm2vXbfprfEzw8-PGrpu57LlTa0Va487jFHvIBMn7eSXRk-2U9QvazCP7moJqe9VD3EvRy4g7hRuQ696XLUvDj-7zY97VW9Ib0XO3s1Zzgd4ww8Z0bfvWlQErhVGKY9bQvFPYPH5zh6U5G82dX_PC8FBbliglq9WyBmPWQ1uzfPPA-9QEkmvYxPyDcgADgTQAlIbVABKnMQABpgJxIAAOQevAETc9307w4Z_cPP9PnpN_8K9QDwCfD6DuHszBnmAOXOKuisAAAADRmzJBwAxnH--eM9zR73tdH3DSN_BycjpPPvH8zYLvMSJRwgBPxBAAjfvxop3OkMXewnIAAt-L4iOzgTQAlIb1ACKq8GEAwaoAYAAGRCAABAQAAAhkIAAI7CAADIQQAAcEIAALxCAABQQQAAAEAAANjBAACYQQAAgMAAAJDBAAAgwgAAmEEAAJBBAABEQgAAgMEAAKxCAABwwQAA4EAAACzCAADwwQAA4EAAAEDBAABQQgAAsMEAANjBAACgwAAAyEEAAATCAACAQQAAsMEAAOhBAACawgAAyMEAAFxCAAAAQgAAgD8AAHBBAAAgQgAAAMEAAIBAAAAAAAAAIEIAACTCAADgQAAAyEEAAMhBAACowQAAYMIAAKDBAACAQQAAkMEAAABBAAAwQQAA0MIAAIA_AAAAQQAAyEEAAHxCAABkwgAAAMIAAFDCAABAQgAAiMIAAIDAAACOwgAAuMEAAGzCAAAgQgAAdEIAAPTCAACwQQAAgMEAACBBAABswgAA6MEAACRCAAC0QgAAjsIAANZCAABAwQAAdEIAAEhCAADAQAAA2EEAABTCAABEQgAADMIAAAjCAADYQQAAQMIAAGDBAACAQQAAzsIAAEzCAABswgAAjEIAADBCAACIwgAAkMEAAFBBAACQwQAAcMIAAIpCAADgwAAA6EEAAEDAAABgQgAAXEIAAOBBAABQwQAAuMEAAEDAAAAMQgAAFEIAAABAAACKwgAAQEEAACjCAAAgwgAAgEEAAGBBAABgwQAAAMAAAHBBAACQQQAAYMEAACxCAAAAQQAAaMIAAODBAAC4QQAAgEEAADxCAADwQQAAQMEAAIbCAADAwAAAqMEAAFTCAAAYQgAAuMEAAJDBAADwQQAAQEEAACBCAADwQQAAgL8AAJjBAAAIQgAAAEIAALhBAAD4QQAAkEEAAIjCAAAgwgAADMIAAABAAAAkwgAAmEEAAEBBAAAIwgAAuMEAAGBBAADgwQAAZEIAAABCAADgQQAA4MAAADBCAACYwQAAJMIAAFDCAABwwgAA6EEAAADAAACAwQAAYEEAAJLCAACCwgAAHMIAAARCAABMQgAAAMEAAKjCAADgwAAAgEAAAMDAAAAQQQAAqMEAACxCAABAQQAAgD8AAJZCAAAAQgAAgD8AAIC_AAAgQSAAOBNACUh1UAEqjwIQABqAAgAAbD4AABS-AABkPgAAiL0AAKi9AAAkPgAAgDsAAN6-AABkvgAAnj4AAIA7AADovQAAQLwAAOA8AABUvgAAyD0AAFQ-AABAPAAAoDwAALI-AAB_PwAAqL0AAOi9AACYPQAAoDwAAFy-AAAwPQAAcD0AAKi9AAB0PgAAED0AAKi9AACgPAAAuD0AADA9AADIvQAABD4AAFy-AACCvgAAyL0AAI6-AAC2vgAA2D0AAJi9AABEvgAAmr4AAKg9AACoPQAAqL0AABy-AABUPgAAmL0AAMg9AABEPgAAXL4AAEA8AAAfPwAAUL0AAAQ-AABwPQAAqD0AAKg9AABkPgAAqL0gADgTQAlIfFABKo8CEAEagAIAABC9AABAvAAANL4AAC2_AADIPQAAgj4AABw-AABQvQAA-L0AAFw-AACgvAAAcD0AAHC9AAC4PQAA2D0AAKi9AADIvQAAQT8AAES-AAD6PgAAJL4AAIa-AABUPgAALL4AADC9AAA0vgAAUL0AAJg9AACCPgAAQDwAAHA9AACgvAAAiL0AAEA8AABUPgAA2L0AAJg9AACIPQAAEL0AALi9AACqPgAAgDsAALi9AADgvAAAnr4AABw-AAB_vwAAqL0AADQ-AACiPgAAEL0AALg9AACgvAAAoj4AAIA7AAC4PQAAEL0AAIi9AADoPQAAQDwAANg9AABEPgAA6D0AABS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=GZzJOAUOqLI","parent-reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10224534839535515978"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1964060087"}},"dups":{"17231090716992113633":{"videoId":"17231090716992113633","title":"The \u0007[GVSU\u0007] Mathematics Department and \u0007[Math\u0007] Major","cleanTitle":"The GVSU Mathematics Department and Math Major","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=02LQqoxVtL8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/02LQqoxVtL8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":317,"text":"5:17","a11yText":"Süre 5 dakika 17 saniye","shortText":"5 dk."},"views":{"text":"2bin","a11yText":"2 bin izleme"},"date":"14 ağu 2014","modifyTime":1407974400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/02LQqoxVtL8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=02LQqoxVtL8","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":317},"parentClipId":"17231090716992113633","href":"/preview/17231090716992113633?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/17231090716992113633?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17667584103366527097":{"videoId":"17667584103366527097","title":"The Second Principle of Mathematical Induction (Screencast 4.2.3)","cleanTitle":"The Second Principle of Mathematical Induction (Screencast 4.2.3)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=n-bJB_7QbQU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/n-bJB_7QbQU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":528,"text":"8:48","a11yText":"Süre 8 dakika 48 saniye","shortText":"8 dk."},"views":{"text":"37,9bin","a11yText":"37,9 bin izleme"},"date":"8 eki 2012","modifyTime":1349654400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/n-bJB_7QbQU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=n-bJB_7QbQU","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":528},"parentClipId":"17667584103366527097","href":"/preview/17667584103366527097?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/17667584103366527097?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"952209172118958348":{"videoId":"952209172118958348","title":"Compositions of functions (Screencast 6.4.1)","cleanTitle":"Compositions of functions (Screencast 6.4.1)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=f_t1I3WgXbM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/f_t1I3WgXbM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":521,"text":"8:41","a11yText":"Süre 8 dakika 41 saniye","shortText":"8 dk."},"views":{"text":"6,5bin","a11yText":"6,5 bin izleme"},"date":"8 kas 2012","modifyTime":1352332800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/f_t1I3WgXbM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=f_t1I3WgXbM","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":521},"parentClipId":"952209172118958348","href":"/preview/952209172118958348?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/952209172118958348?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8054478065010704972":{"videoId":"8054478065010704972","title":"Screencast 4.3.2: Calculating a definite integral using geometry","cleanTitle":"Screencast 4.3.2: Calculating a definite integral using geometry","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=oHIH69Ou4DE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/oHIH69Ou4DE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":406,"text":"6:46","a11yText":"Süre 6 dakika 46 saniye","shortText":"6 dk."},"views":{"text":"23,9bin","a11yText":"23,9 bin izleme"},"date":"6 kas 2013","modifyTime":1383696000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/oHIH69Ou4DE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=oHIH69Ou4DE","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":406},"parentClipId":"8054478065010704972","href":"/preview/8054478065010704972?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/8054478065010704972?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7532529569671920201":{"videoId":"7532529569671920201","title":"Screencast 7.4.3 Solving a separable differential equation example 2","cleanTitle":"Screencast 7.4.3 Solving a separable differential equation example 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_i87zMz4WNA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_i87zMz4WNA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":272,"text":"4:32","a11yText":"Süre 4 dakika 32 saniye","shortText":"4 dk."},"views":{"text":"2,9bin","a11yText":"2,9 bin izleme"},"date":"7 mar 2015","modifyTime":1425686400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_i87zMz4WNA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_i87zMz4WNA","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":272},"parentClipId":"7532529569671920201","href":"/preview/7532529569671920201?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/7532529569671920201?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13999462337675216260":{"videoId":"13999462337675216260","title":"Screencast 1.2.4: Limits of functions using spreadsheets","cleanTitle":"Screencast 1.2.4: Limits of functions using spreadsheets","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=uAepmkpG34A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/uAepmkpG34A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":337,"text":"5:37","a11yText":"Süre 5 dakika 37 saniye","shortText":"5 dk."},"views":{"text":"9,1bin","a11yText":"9,1 bin izleme"},"date":"22 tem 2013","modifyTime":1374451200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/uAepmkpG34A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=uAepmkpG34A","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":337},"parentClipId":"13999462337675216260","href":"/preview/13999462337675216260?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/13999462337675216260?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2625225150792192952":{"videoId":"2625225150792192952","title":"Screencast 1.2.2: Limits of functions using graphing tools","cleanTitle":"Screencast 1.2.2: Limits of functions using graphing tools","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5TFu_sh_orM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5TFu_sh_orM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":386,"text":"6:26","a11yText":"Süre 6 dakika 26 saniye","shortText":"6 dk."},"views":{"text":"22,9bin","a11yText":"22,9 bin izleme"},"date":"22 tem 2013","modifyTime":1374451200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5TFu_sh_orM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5TFu_sh_orM","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":386},"parentClipId":"2625225150792192952","href":"/preview/2625225150792192952?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/2625225150792192952?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"280291901679885100":{"videoId":"280291901679885100","title":"Screencast 3.3.2: Finding absolute extreme values","cleanTitle":"Screencast 3.3.2: Finding absolute extreme values","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YE57SJzL8r8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YE57SJzL8r8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":487,"text":"8:07","a11yText":"Süre 8 dakika 7 saniye","shortText":"8 dk."},"views":{"text":"13,7bin","a11yText":"13,7 bin izleme"},"date":"31 ağu 2013","modifyTime":1377907200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YE57SJzL8r8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YE57SJzL8r8","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":487},"parentClipId":"280291901679885100","href":"/preview/280291901679885100?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/280291901679885100?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"282140083623236304":{"videoId":"282140083623236304","title":"Screencast 1.6.3: Determining concavity from a graph","cleanTitle":"Screencast 1.6.3: Determining concavity from a graph","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=o1_o4E-LGsA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/o1_o4E-LGsA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":462,"text":"7:42","a11yText":"Süre 7 dakika 42 saniye","shortText":"7 dk."},"views":{"text":"16,8bin","a11yText":"16,8 bin izleme"},"date":"29 tem 2013","modifyTime":1375056000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/o1_o4E-LGsA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=o1_o4E-LGsA","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":462},"parentClipId":"282140083623236304","href":"/preview/282140083623236304?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/282140083623236304?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"410827777004243502":{"videoId":"410827777004243502","title":"Application to Cryptography (Screencast 3.5.4)","cleanTitle":"Application to Cryptography (Screencast 3.5.4)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cNJqWyQ4PaQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cNJqWyQ4PaQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":384,"text":"6:24","a11yText":"Süre 6 dakika 24 saniye","shortText":"6 dk."},"views":{"text":"6bin","a11yText":"6 bin izleme"},"date":"30 eyl 2012","modifyTime":1348963200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cNJqWyQ4PaQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cNJqWyQ4PaQ","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":384},"parentClipId":"410827777004243502","href":"/preview/410827777004243502?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/410827777004243502?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4726237740371245236":{"videoId":"4726237740371245236","title":"Screencast 10.7.1 Introduction to Optimization","cleanTitle":"Screencast 10.7.1 Introduction to Optimization","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=lD-71JDT_24","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/lD-71JDT_24?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"https://www.youtube.com/channel/UCAG2u2KEkkGy4yWGeKa_u7Q","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":442,"text":"7:22","a11yText":"Süre 7 dakika 22 saniye","shortText":"7 dk."},"date":"21 ara 2022","modifyTime":1671576204000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/lD-71JDT_24?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=lD-71JDT_24","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":442},"parentClipId":"4726237740371245236","href":"/preview/4726237740371245236?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/4726237740371245236?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1509785881798106465":{"videoId":"1509785881798106465","title":"Screencast 4.4.3: Fundamental Theorem of Calculus with exponential functions","cleanTitle":"Screencast 4.4.3: Fundamental Theorem of Calculus with exponential functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SafcRvQKe4g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SafcRvQKe4g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":476,"text":"7:56","a11yText":"Süre 7 dakika 56 saniye","shortText":"7 dk."},"views":{"text":"7,8bin","a11yText":"7,8 bin izleme"},"date":"13 kas 2013","modifyTime":1384300800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SafcRvQKe4g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SafcRvQKe4g","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":476},"parentClipId":"1509785881798106465","href":"/preview/1509785881798106465?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/1509785881798106465?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15410752899654033537":{"videoId":"15410752899654033537","title":"The Jupyter Notebook Environment part 3","cleanTitle":"The Jupyter Notebook Environment part 3","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=woEVRMADIck","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/woEVRMADIck?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":457,"text":"7:37","a11yText":"Süre 7 dakika 37 saniye","shortText":"7 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"13 eyl 2016","modifyTime":1473724800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/woEVRMADIck?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=woEVRMADIck","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":457},"parentClipId":"15410752899654033537","href":"/preview/15410752899654033537?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/15410752899654033537?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1976327025978003736":{"videoId":"1976327025978003736","title":"Screencast 7.4.2: Solving a separable differential equation","cleanTitle":"Screencast 7.4.2: Solving a separable differential equation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=jD5sdHJRF4o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jD5sdHJRF4o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":202,"text":"3:22","a11yText":"Süre 3 dakika 22 saniye","shortText":"3 dk."},"views":{"text":"3,2bin","a11yText":"3,2 bin izleme"},"date":"2 mar 2015","modifyTime":1425254400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jD5sdHJRF4o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jD5sdHJRF4o","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":202},"parentClipId":"1976327025978003736","href":"/preview/1976327025978003736?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/1976327025978003736?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3145172457981620394":{"videoId":"3145172457981620394","title":"Screencast 8.3.2: Partial sums of an infinite series","cleanTitle":"Screencast 8.3.2: Partial sums of an infinite series","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VLWSPDU-DDM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VLWSPDU-DDM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":342,"text":"5:42","a11yText":"Süre 5 dakika 42 saniye","shortText":"5 dk."},"views":{"text":"2,8bin","a11yText":"2,8 bin izleme"},"date":"1 mar 2015","modifyTime":1425168000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VLWSPDU-DDM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VLWSPDU-DDM","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":342},"parentClipId":"3145172457981620394","href":"/preview/3145172457981620394?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/3145172457981620394?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13115137577088784577":{"videoId":"13115137577088784577","title":"122.4.3.3 Polynomial Graphs Applications","cleanTitle":"122.4.3.3 Polynomial Graphs Applications","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Qu_17w9dJsA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Qu_17w9dJsA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":448,"text":"7:28","a11yText":"Süre 7 dakika 28 saniye","shortText":"7 dk."},"date":"30 eyl 2013","modifyTime":1380499200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Qu_17w9dJsA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Qu_17w9dJsA","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":448},"parentClipId":"13115137577088784577","href":"/preview/13115137577088784577?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/13115137577088784577?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3340950234573723267":{"videoId":"3340950234573723267","title":"Screencast 1.3.3: Derivative of a function at a point using graphs","cleanTitle":"Screencast 1.3.3: Derivative of a function at a point using graphs","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0DJPSYeLFpc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0DJPSYeLFpc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":343,"text":"5:43","a11yText":"Süre 5 dakika 43 saniye","shortText":"5 dk."},"views":{"text":"16,3bin","a11yText":"16,3 bin izleme"},"date":"24 tem 2013","modifyTime":1374624000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0DJPSYeLFpc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0DJPSYeLFpc","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":343},"parentClipId":"3340950234573723267","href":"/preview/3340950234573723267?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/3340950234573723267?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10224534839535515978":{"videoId":"10224534839535515978","title":"Screencast 1.2.1: Limits","cleanTitle":"Screencast 1.2.1: Limits","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=GZzJOAUOqLI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/GZzJOAUOqLI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQUcydTJLRWtrR3k0eVdHZUthX3U3UQ==","name":"GVSUmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GVSUmath","origUrl":"http://www.youtube.com/@GVSUmath","a11yText":"GVSUmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":361,"text":"6:01","a11yText":"Süre 6 dakika 1 saniye","shortText":"6 dk."},"views":{"text":"23,5bin","a11yText":"23,5 bin izleme"},"date":"24 tem 2013","modifyTime":1374624000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/GZzJOAUOqLI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=GZzJOAUOqLI","reqid":"1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":361},"parentClipId":"10224534839535515978","href":"/preview/10224534839535515978?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","rawHref":"/video/preview/10224534839535515978?parent-reqid=1769551033980070-2298622202492000009-balancer-l7leveler-kubr-yp-sas-233-BAL&text=GVSUmath","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"2986222024920000097233","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"GVSUmath","queryUriEscaped":"GVSUmath","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}